body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
a2213862f26d42b4d72b5048e200dc1a42660be06bb04300025ef44ca441e6ec | def tract_to_cd(self, df):
'\n tract to cd\n '
df = df.merge(self.lookup_geo[['geoid_tract', 'cd']].drop_duplicates(), how='left', right_on='geoid_tract', left_on='census_geoid')
output = AggregatedGeography.create_output(df, 'cd')
output['pff_variable'] = df['pff_variable'].to_list()[0]
output['geotype'] = 'cd'
return output[['census_geoid', 'pff_variable', 'geotype', 'e', 'm']] | tract to cd | factfinder/geography/2010.py | tract_to_cd | EricaMaurer/db-factfinder | 0 | python | def tract_to_cd(self, df):
'\n \n '
df = df.merge(self.lookup_geo[['geoid_tract', 'cd']].drop_duplicates(), how='left', right_on='geoid_tract', left_on='census_geoid')
output = AggregatedGeography.create_output(df, 'cd')
output['pff_variable'] = df['pff_variable'].to_list()[0]
output['geotype'] = 'cd'
return output[['census_geoid', 'pff_variable', 'geotype', 'e', 'm']] | def tract_to_cd(self, df):
'\n \n '
df = df.merge(self.lookup_geo[['geoid_tract', 'cd']].drop_duplicates(), how='left', right_on='geoid_tract', left_on='census_geoid')
output = AggregatedGeography.create_output(df, 'cd')
output['pff_variable'] = df['pff_variable'].to_list()[0]
output['geotype'] = 'cd'
return output[['census_geoid', 'pff_variable', 'geotype', 'e', 'm']]<|docstring|>tract to cd<|endoftext|> |
e626566b8975edc5fedb3b42ef1440251a4f8c11a59b6f52e80a6b5d0f942bee | def after_iter(self):
'\n `after_iter` contains two parts of logic:\n * log information\n * reset setting of resize\n '
if (((self.iter + 1) % self.exp.print_interval) == 0):
left_iters = ((self.max_iter * self.max_epoch) - (self.progress_in_iter + 1))
eta_seconds = (self.meter['iter_time'].global_avg * left_iters)
eta_str = 'ETA: {}'.format(datetime.timedelta(seconds=int(eta_seconds)))
progress_str = 'epoch: {}/{}, iter: {}/{}'.format((self.epoch + 1), self.max_epoch, (self.iter + 1), self.max_iter)
loss_meter = self.meter.get_filtered_meter('loss')
loss_str = ', '.join(['{}: {:.1f}'.format(k, v.latest) for (k, v) in loss_meter.items()])
time_meter = self.meter.get_filtered_meter('time')
time_str = ', '.join(['{}: {:.3f}s'.format(k, v.avg) for (k, v) in time_meter.items()])
logger.info(('{}, mem: {:.0f}Mb, {}, {}, lr: {:.3e}'.format(progress_str, gpu_mem_usage(), time_str, loss_str, self.meter['lr'].latest) + ', size: {:d}, {}'.format(self.input_size[0], eta_str)))
self.meter.clear_meters()
if ((self.exp.random_size is not None) and (((self.progress_in_iter + 1) % 10) == 0)):
self.input_size = self.exp.random_resize(self.train_loader, self.epoch, self.rank, self.is_distributed) | `after_iter` contains two parts of logic:
* log information
* reset setting of resize | yolox/core/trainer.py | after_iter | willy541222/YOLOX | 0 | python | def after_iter(self):
'\n `after_iter` contains two parts of logic:\n * log information\n * reset setting of resize\n '
if (((self.iter + 1) % self.exp.print_interval) == 0):
left_iters = ((self.max_iter * self.max_epoch) - (self.progress_in_iter + 1))
eta_seconds = (self.meter['iter_time'].global_avg * left_iters)
eta_str = 'ETA: {}'.format(datetime.timedelta(seconds=int(eta_seconds)))
progress_str = 'epoch: {}/{}, iter: {}/{}'.format((self.epoch + 1), self.max_epoch, (self.iter + 1), self.max_iter)
loss_meter = self.meter.get_filtered_meter('loss')
loss_str = ', '.join(['{}: {:.1f}'.format(k, v.latest) for (k, v) in loss_meter.items()])
time_meter = self.meter.get_filtered_meter('time')
time_str = ', '.join(['{}: {:.3f}s'.format(k, v.avg) for (k, v) in time_meter.items()])
logger.info(('{}, mem: {:.0f}Mb, {}, {}, lr: {:.3e}'.format(progress_str, gpu_mem_usage(), time_str, loss_str, self.meter['lr'].latest) + ', size: {:d}, {}'.format(self.input_size[0], eta_str)))
self.meter.clear_meters()
if ((self.exp.random_size is not None) and (((self.progress_in_iter + 1) % 10) == 0)):
self.input_size = self.exp.random_resize(self.train_loader, self.epoch, self.rank, self.is_distributed) | def after_iter(self):
'\n `after_iter` contains two parts of logic:\n * log information\n * reset setting of resize\n '
if (((self.iter + 1) % self.exp.print_interval) == 0):
left_iters = ((self.max_iter * self.max_epoch) - (self.progress_in_iter + 1))
eta_seconds = (self.meter['iter_time'].global_avg * left_iters)
eta_str = 'ETA: {}'.format(datetime.timedelta(seconds=int(eta_seconds)))
progress_str = 'epoch: {}/{}, iter: {}/{}'.format((self.epoch + 1), self.max_epoch, (self.iter + 1), self.max_iter)
loss_meter = self.meter.get_filtered_meter('loss')
loss_str = ', '.join(['{}: {:.1f}'.format(k, v.latest) for (k, v) in loss_meter.items()])
time_meter = self.meter.get_filtered_meter('time')
time_str = ', '.join(['{}: {:.3f}s'.format(k, v.avg) for (k, v) in time_meter.items()])
logger.info(('{}, mem: {:.0f}Mb, {}, {}, lr: {:.3e}'.format(progress_str, gpu_mem_usage(), time_str, loss_str, self.meter['lr'].latest) + ', size: {:d}, {}'.format(self.input_size[0], eta_str)))
self.meter.clear_meters()
if ((self.exp.random_size is not None) and (((self.progress_in_iter + 1) % 10) == 0)):
self.input_size = self.exp.random_resize(self.train_loader, self.epoch, self.rank, self.is_distributed)<|docstring|>`after_iter` contains two parts of logic:
* log information
* reset setting of resize<|endoftext|> |
530cd284c057c3022cc54405acd616b1202d452e21be0476c1ed9864de67ffef | def model_map_util(map_model, data):
'\n Metodo recursivo de map apartir de um modelo já definido\n Args:\n map_model: dict com o modelo desejado, com os valores sendo qual dados desejam\n data: payload com os dados brutos\n\n Returns:\n dict modelado da forma especificada\n '
for (k, v) in map_model.items():
if isinstance(v, dict):
map_model[k] = model_map_util(v, data)
elif isinstance(v, list):
map_model[k] = []
for x in v:
map_model[k].append(model_map_util(x, data))
else:
try:
if is_string_value(v):
map_model[k] = get_value_string(v)
else:
map_model[k] = get_values(v.split('.'), data)
except AttributeError:
map_model[k] = v
except TypeError:
map_model[k] = v
return map_model | Metodo recursivo de map apartir de um modelo já definido
Args:
map_model: dict com o modelo desejado, com os valores sendo qual dados desejam
data: payload com os dados brutos
Returns:
dict modelado da forma especificada | src/middleware-kafka/utils/rules_util.py | model_map_util | LeoNog96/IntegradorRedmine | 0 | python | def model_map_util(map_model, data):
'\n Metodo recursivo de map apartir de um modelo já definido\n Args:\n map_model: dict com o modelo desejado, com os valores sendo qual dados desejam\n data: payload com os dados brutos\n\n Returns:\n dict modelado da forma especificada\n '
for (k, v) in map_model.items():
if isinstance(v, dict):
map_model[k] = model_map_util(v, data)
elif isinstance(v, list):
map_model[k] = []
for x in v:
map_model[k].append(model_map_util(x, data))
else:
try:
if is_string_value(v):
map_model[k] = get_value_string(v)
else:
map_model[k] = get_values(v.split('.'), data)
except AttributeError:
map_model[k] = v
except TypeError:
map_model[k] = v
return map_model | def model_map_util(map_model, data):
'\n Metodo recursivo de map apartir de um modelo já definido\n Args:\n map_model: dict com o modelo desejado, com os valores sendo qual dados desejam\n data: payload com os dados brutos\n\n Returns:\n dict modelado da forma especificada\n '
for (k, v) in map_model.items():
if isinstance(v, dict):
map_model[k] = model_map_util(v, data)
elif isinstance(v, list):
map_model[k] = []
for x in v:
map_model[k].append(model_map_util(x, data))
else:
try:
if is_string_value(v):
map_model[k] = get_value_string(v)
else:
map_model[k] = get_values(v.split('.'), data)
except AttributeError:
map_model[k] = v
except TypeError:
map_model[k] = v
return map_model<|docstring|>Metodo recursivo de map apartir de um modelo já definido
Args:
map_model: dict com o modelo desejado, com os valores sendo qual dados desejam
data: payload com os dados brutos
Returns:
dict modelado da forma especificada<|endoftext|> |
4a08c94a4ea0b3bf4a75e96a87c3ad064bce72da2b18e83e2b2fb11f06141b9f | def get_values(string, dictionary):
'\n Metodo para pegar valores de um dict indepedente da hierarquia em que se encontra\n Args:\n string: nivel desejado. ex: teste.objeto.id\n dictionary: dict que contem o valor desejado\n\n Returns:\n Retorna o valor da chave especificada\n '
new_dictionary = dictionary
for x in string:
new_dictionary = new_dictionary.get(x)
return new_dictionary | Metodo para pegar valores de um dict indepedente da hierarquia em que se encontra
Args:
string: nivel desejado. ex: teste.objeto.id
dictionary: dict que contem o valor desejado
Returns:
Retorna o valor da chave especificada | src/middleware-kafka/utils/rules_util.py | get_values | LeoNog96/IntegradorRedmine | 0 | python | def get_values(string, dictionary):
'\n Metodo para pegar valores de um dict indepedente da hierarquia em que se encontra\n Args:\n string: nivel desejado. ex: teste.objeto.id\n dictionary: dict que contem o valor desejado\n\n Returns:\n Retorna o valor da chave especificada\n '
new_dictionary = dictionary
for x in string:
new_dictionary = new_dictionary.get(x)
return new_dictionary | def get_values(string, dictionary):
'\n Metodo para pegar valores de um dict indepedente da hierarquia em que se encontra\n Args:\n string: nivel desejado. ex: teste.objeto.id\n dictionary: dict que contem o valor desejado\n\n Returns:\n Retorna o valor da chave especificada\n '
new_dictionary = dictionary
for x in string:
new_dictionary = new_dictionary.get(x)
return new_dictionary<|docstring|>Metodo para pegar valores de um dict indepedente da hierarquia em que se encontra
Args:
string: nivel desejado. ex: teste.objeto.id
dictionary: dict que contem o valor desejado
Returns:
Retorna o valor da chave especificada<|endoftext|> |
e87e39940d9d9c854a5404865df901f8528b2c926dc1f66c6123c0e8ce938dcb | def post(self, request, *args, **kwargs):
'\n Activates a token\n\n :param request:\n :type request:\n :param args:\n :type args:\n :param kwargs:\n :type kwargs:\n :return: 200 / 400\n :rtype:\n '
serializer = self.get_serializer(data=self.request.data)
if (not serializer.is_valid()):
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
token = serializer.validated_data['token']
token.active = True
token.user_validator = None
token.save()
return Response({'user': {'id': request.user.id, 'authentication': 'AUTHKEY', 'email': decrypt_with_db_secret(request.user.email), 'secret_key': request.user.secret_key, 'secret_key_nonce': request.user.secret_key_nonce}}, status=status.HTTP_200_OK) | Activates a token
:param request:
:type request:
:param args:
:type args:
:param kwargs:
:type kwargs:
:return: 200 / 400
:rtype: | psono/restapi/views/activate_token.py | post | dirigeant/psono-server | 48 | python | def post(self, request, *args, **kwargs):
'\n Activates a token\n\n :param request:\n :type request:\n :param args:\n :type args:\n :param kwargs:\n :type kwargs:\n :return: 200 / 400\n :rtype:\n '
serializer = self.get_serializer(data=self.request.data)
if (not serializer.is_valid()):
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
token = serializer.validated_data['token']
token.active = True
token.user_validator = None
token.save()
return Response({'user': {'id': request.user.id, 'authentication': 'AUTHKEY', 'email': decrypt_with_db_secret(request.user.email), 'secret_key': request.user.secret_key, 'secret_key_nonce': request.user.secret_key_nonce}}, status=status.HTTP_200_OK) | def post(self, request, *args, **kwargs):
'\n Activates a token\n\n :param request:\n :type request:\n :param args:\n :type args:\n :param kwargs:\n :type kwargs:\n :return: 200 / 400\n :rtype:\n '
serializer = self.get_serializer(data=self.request.data)
if (not serializer.is_valid()):
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
token = serializer.validated_data['token']
token.active = True
token.user_validator = None
token.save()
return Response({'user': {'id': request.user.id, 'authentication': 'AUTHKEY', 'email': decrypt_with_db_secret(request.user.email), 'secret_key': request.user.secret_key, 'secret_key_nonce': request.user.secret_key_nonce}}, status=status.HTTP_200_OK)<|docstring|>Activates a token
:param request:
:type request:
:param args:
:type args:
:param kwargs:
:type kwargs:
:return: 200 / 400
:rtype:<|endoftext|> |
7970f90afb13ac84f3f6f16dde2b23aa6c458608cafcf322fb58a33c585df4d3 | def check_max_depth(self):
"\n check the maximum subdirectory depth (relative to the PlateMicroscopy dir)\n Depth is three for 'plate_dir/exp_dir/sortday_dir/'\n Depth is two for either 'plate_dir/exp_dir/' or 'plate_dir/PublicationQuality/'\n "
maxx = 0
for row in self.os_walk:
(path, subdirs, filenames) = row
filenames = [name for name in filenames if ('.tif' in name)]
if (not filenames):
continue
maxx = max(maxx, len(path.replace(self.root_dir, '').split(os.sep)))
return maxx | check the maximum subdirectory depth (relative to the PlateMicroscopy dir)
Depth is three for 'plate_dir/exp_dir/sortday_dir/'
Depth is two for either 'plate_dir/exp_dir/' or 'plate_dir/PublicationQuality/' | opencell/imaging/managers.py | check_max_depth | czbiohub/opencell-portal-pub | 2 | python | def check_max_depth(self):
"\n check the maximum subdirectory depth (relative to the PlateMicroscopy dir)\n Depth is three for 'plate_dir/exp_dir/sortday_dir/'\n Depth is two for either 'plate_dir/exp_dir/' or 'plate_dir/PublicationQuality/'\n "
maxx = 0
for row in self.os_walk:
(path, subdirs, filenames) = row
filenames = [name for name in filenames if ('.tif' in name)]
if (not filenames):
continue
maxx = max(maxx, len(path.replace(self.root_dir, ).split(os.sep)))
return maxx | def check_max_depth(self):
"\n check the maximum subdirectory depth (relative to the PlateMicroscopy dir)\n Depth is three for 'plate_dir/exp_dir/sortday_dir/'\n Depth is two for either 'plate_dir/exp_dir/' or 'plate_dir/PublicationQuality/'\n "
maxx = 0
for row in self.os_walk:
(path, subdirs, filenames) = row
filenames = [name for name in filenames if ('.tif' in name)]
if (not filenames):
continue
maxx = max(maxx, len(path.replace(self.root_dir, ).split(os.sep)))
return maxx<|docstring|>check the maximum subdirectory depth (relative to the PlateMicroscopy dir)
Depth is three for 'plate_dir/exp_dir/sortday_dir/'
Depth is two for either 'plate_dir/exp_dir/' or 'plate_dir/PublicationQuality/'<|endoftext|> |
e16593e490848904791385c58bdf767a1ef5a357a9165e4a1e014bcb6c2f3139 | @staticmethod
def parse_raw_tiff_filename(filename):
"\n Parse well_id, site_num, and target name from a raw TIFF filename\n\n For almost all filenames, the format is '{well_id}_{site_num}_{target_name}.ome.tif'\n\n The exception is 'Jin' lines, which appear in plate6 and plate7;\n here, the format is '{well_id}_{site_num}_Jin_{well_id}_{target_name}.ome.tif',\n and it is the first well_id that is the 'real', pipeline-relevant, well_id\n\n Note that the target name sometimes includes the terminus that was tagged,\n in the form of a trailing '-N', '-C', '_N', '_C', '_Int', '-Int'\n\n Also, two target names include a trailing '-A' or '-B'\n (these are 'HLA-A' and 'ARHGAP11A-B')\n "
well_id = '[A-H][1-9][0-2]?'
site_num = '[1-9][0-9]?'
target_name = '[a-zA-Z0-9]+'
appendix = '[\\-|_][a-zA-Z]+'
raw_pattern = f'^({well_id})_({site_num})_({target_name})({appendix})?.ome.tif$'
raw_jin_pattern = f'^({well_id})_({site_num})_Jin_(?:{well_id})_({target_name})({appendix})?.ome.tif$'
filename_was_parsed = False
for pattern in [raw_pattern, raw_jin_pattern]:
result = re.match(pattern, filename)
if result:
filename_was_parsed = True
(well_id, site_num, target_name, appendix) = result.groups()
break
if (not filename_was_parsed):
return None
site_num = int(site_num)
return (well_id, site_num, target_name) | Parse well_id, site_num, and target name from a raw TIFF filename
For almost all filenames, the format is '{well_id}_{site_num}_{target_name}.ome.tif'
The exception is 'Jin' lines, which appear in plate6 and plate7;
here, the format is '{well_id}_{site_num}_Jin_{well_id}_{target_name}.ome.tif',
and it is the first well_id that is the 'real', pipeline-relevant, well_id
Note that the target name sometimes includes the terminus that was tagged,
in the form of a trailing '-N', '-C', '_N', '_C', '_Int', '-Int'
Also, two target names include a trailing '-A' or '-B'
(these are 'HLA-A' and 'ARHGAP11A-B') | opencell/imaging/managers.py | parse_raw_tiff_filename | czbiohub/opencell-portal-pub | 2 | python | @staticmethod
def parse_raw_tiff_filename(filename):
"\n Parse well_id, site_num, and target name from a raw TIFF filename\n\n For almost all filenames, the format is '{well_id}_{site_num}_{target_name}.ome.tif'\n\n The exception is 'Jin' lines, which appear in plate6 and plate7;\n here, the format is '{well_id}_{site_num}_Jin_{well_id}_{target_name}.ome.tif',\n and it is the first well_id that is the 'real', pipeline-relevant, well_id\n\n Note that the target name sometimes includes the terminus that was tagged,\n in the form of a trailing '-N', '-C', '_N', '_C', '_Int', '-Int'\n\n Also, two target names include a trailing '-A' or '-B'\n (these are 'HLA-A' and 'ARHGAP11A-B')\n "
well_id = '[A-H][1-9][0-2]?'
site_num = '[1-9][0-9]?'
target_name = '[a-zA-Z0-9]+'
appendix = '[\\-|_][a-zA-Z]+'
raw_pattern = f'^({well_id})_({site_num})_({target_name})({appendix})?.ome.tif$'
raw_jin_pattern = f'^({well_id})_({site_num})_Jin_(?:{well_id})_({target_name})({appendix})?.ome.tif$'
filename_was_parsed = False
for pattern in [raw_pattern, raw_jin_pattern]:
result = re.match(pattern, filename)
if result:
filename_was_parsed = True
(well_id, site_num, target_name, appendix) = result.groups()
break
if (not filename_was_parsed):
return None
site_num = int(site_num)
return (well_id, site_num, target_name) | @staticmethod
def parse_raw_tiff_filename(filename):
"\n Parse well_id, site_num, and target name from a raw TIFF filename\n\n For almost all filenames, the format is '{well_id}_{site_num}_{target_name}.ome.tif'\n\n The exception is 'Jin' lines, which appear in plate6 and plate7;\n here, the format is '{well_id}_{site_num}_Jin_{well_id}_{target_name}.ome.tif',\n and it is the first well_id that is the 'real', pipeline-relevant, well_id\n\n Note that the target name sometimes includes the terminus that was tagged,\n in the form of a trailing '-N', '-C', '_N', '_C', '_Int', '-Int'\n\n Also, two target names include a trailing '-A' or '-B'\n (these are 'HLA-A' and 'ARHGAP11A-B')\n "
well_id = '[A-H][1-9][0-2]?'
site_num = '[1-9][0-9]?'
target_name = '[a-zA-Z0-9]+'
appendix = '[\\-|_][a-zA-Z]+'
raw_pattern = f'^({well_id})_({site_num})_({target_name})({appendix})?.ome.tif$'
raw_jin_pattern = f'^({well_id})_({site_num})_Jin_(?:{well_id})_({target_name})({appendix})?.ome.tif$'
filename_was_parsed = False
for pattern in [raw_pattern, raw_jin_pattern]:
result = re.match(pattern, filename)
if result:
filename_was_parsed = True
(well_id, site_num, target_name, appendix) = result.groups()
break
if (not filename_was_parsed):
return None
site_num = int(site_num)
return (well_id, site_num, target_name)<|docstring|>Parse well_id, site_num, and target name from a raw TIFF filename
For almost all filenames, the format is '{well_id}_{site_num}_{target_name}.ome.tif'
The exception is 'Jin' lines, which appear in plate6 and plate7;
here, the format is '{well_id}_{site_num}_Jin_{well_id}_{target_name}.ome.tif',
and it is the first well_id that is the 'real', pipeline-relevant, well_id
Note that the target name sometimes includes the terminus that was tagged,
in the form of a trailing '-N', '-C', '_N', '_C', '_Int', '-Int'
Also, two target names include a trailing '-A' or '-B'
(these are 'HLA-A' and 'ARHGAP11A-B')<|endoftext|> |
f7f93c68b41971b942e3da2797e92e81dd8c439db7816ec3852dd74991895153 | def construct_metadata(self, paths_only=False):
'\n Create metadata dataframe from the os.walk results\n '
rows = []
for row in self.os_walk:
(path, subdirs, filenames) = row
filenames = [name for name in filenames if ('.tif' in name)]
if (not filenames):
continue
rel_path = path.replace(self.root_dir, '')
if (not re.match('^mNG96wp[1-9]([0-9])?(_Thawed|/)', rel_path)):
continue
path_dirs = rel_path.split(os.sep)
path_info = {('level_%d' % ind): path_dir for (ind, path_dir) in enumerate(path_dirs)}
(plate_num, imaging_round_num) = self.parse_src_plate_dir(path_dirs[0])
plate_info = {'plate_num': plate_num, 'imaging_round_num': imaging_round_num}
if paths_only:
rows.append({**path_info, **plate_info})
continue
for filename in filenames:
rows.append({'filename': filename, **path_info, **plate_info})
md = pd.DataFrame(data=rows)
md = md.rename(columns={'level_0': 'plate_dir', 'level_1': 'exp_dir', 'level_2': 'exp_subdir'})
md['is_raw'] = md.exp_dir.apply((lambda s: (re.match('^ML[0-9]{4}_[0-9]{8}$', s) is not None)))
self.md = md | Create metadata dataframe from the os.walk results | opencell/imaging/managers.py | construct_metadata | czbiohub/opencell-portal-pub | 2 | python | def construct_metadata(self, paths_only=False):
'\n \n '
rows = []
for row in self.os_walk:
(path, subdirs, filenames) = row
filenames = [name for name in filenames if ('.tif' in name)]
if (not filenames):
continue
rel_path = path.replace(self.root_dir, )
if (not re.match('^mNG96wp[1-9]([0-9])?(_Thawed|/)', rel_path)):
continue
path_dirs = rel_path.split(os.sep)
path_info = {('level_%d' % ind): path_dir for (ind, path_dir) in enumerate(path_dirs)}
(plate_num, imaging_round_num) = self.parse_src_plate_dir(path_dirs[0])
plate_info = {'plate_num': plate_num, 'imaging_round_num': imaging_round_num}
if paths_only:
rows.append({**path_info, **plate_info})
continue
for filename in filenames:
rows.append({'filename': filename, **path_info, **plate_info})
md = pd.DataFrame(data=rows)
md = md.rename(columns={'level_0': 'plate_dir', 'level_1': 'exp_dir', 'level_2': 'exp_subdir'})
md['is_raw'] = md.exp_dir.apply((lambda s: (re.match('^ML[0-9]{4}_[0-9]{8}$', s) is not None)))
self.md = md | def construct_metadata(self, paths_only=False):
'\n \n '
rows = []
for row in self.os_walk:
(path, subdirs, filenames) = row
filenames = [name for name in filenames if ('.tif' in name)]
if (not filenames):
continue
rel_path = path.replace(self.root_dir, )
if (not re.match('^mNG96wp[1-9]([0-9])?(_Thawed|/)', rel_path)):
continue
path_dirs = rel_path.split(os.sep)
path_info = {('level_%d' % ind): path_dir for (ind, path_dir) in enumerate(path_dirs)}
(plate_num, imaging_round_num) = self.parse_src_plate_dir(path_dirs[0])
plate_info = {'plate_num': plate_num, 'imaging_round_num': imaging_round_num}
if paths_only:
rows.append({**path_info, **plate_info})
continue
for filename in filenames:
rows.append({'filename': filename, **path_info, **plate_info})
md = pd.DataFrame(data=rows)
md = md.rename(columns={'level_0': 'plate_dir', 'level_1': 'exp_dir', 'level_2': 'exp_subdir'})
md['is_raw'] = md.exp_dir.apply((lambda s: (re.match('^ML[0-9]{4}_[0-9]{8}$', s) is not None)))
self.md = md<|docstring|>Create metadata dataframe from the os.walk results<|endoftext|> |
a63a6a41c110117d3d0d8b93848e5ff3f377d303c7ef7fab0101752ed5693fa3 | @staticmethod
def parse_src_plate_dir(src_plate_dir):
"\n Parse the plate number from a src plate_dir\n Example: 'mNG96wp19' -> '19'\n "
plate_num = int(re.findall('^mNG96wp([0-9]{1,2})', src_plate_dir.split(os.sep)[0])[0])
if ('Thawed2' in src_plate_dir):
imaging_round_num = 3
elif ('Thawed' in src_plate_dir):
imaging_round_num = 2
else:
imaging_round_num = 1
return (plate_num, imaging_round_num) | Parse the plate number from a src plate_dir
Example: 'mNG96wp19' -> '19' | opencell/imaging/managers.py | parse_src_plate_dir | czbiohub/opencell-portal-pub | 2 | python | @staticmethod
def parse_src_plate_dir(src_plate_dir):
"\n Parse the plate number from a src plate_dir\n Example: 'mNG96wp19' -> '19'\n "
plate_num = int(re.findall('^mNG96wp([0-9]{1,2})', src_plate_dir.split(os.sep)[0])[0])
if ('Thawed2' in src_plate_dir):
imaging_round_num = 3
elif ('Thawed' in src_plate_dir):
imaging_round_num = 2
else:
imaging_round_num = 1
return (plate_num, imaging_round_num) | @staticmethod
def parse_src_plate_dir(src_plate_dir):
"\n Parse the plate number from a src plate_dir\n Example: 'mNG96wp19' -> '19'\n "
plate_num = int(re.findall('^mNG96wp([0-9]{1,2})', src_plate_dir.split(os.sep)[0])[0])
if ('Thawed2' in src_plate_dir):
imaging_round_num = 3
elif ('Thawed' in src_plate_dir):
imaging_round_num = 2
else:
imaging_round_num = 1
return (plate_num, imaging_round_num)<|docstring|>Parse the plate number from a src plate_dir
Example: 'mNG96wp19' -> '19'<|endoftext|> |
127415b00716c490f63554ef561dca55b01bbfe3f2c4a4e151c273db36ef6573 | def construct_raw_metadata(self):
'\n Construct the raw metadata (a subset of self.md)\n '
md_raw = self.md.loc[self.md.is_raw].copy()
for column in ['well_id', 'site_num', 'target_name', 'fov_id']:
md_raw[column] = None
dropped_inds = []
for (ind, row) in md_raw.iterrows():
result = self.parse_raw_tiff_filename(row.filename)
if (not result):
if ('MMStack' not in row.filename):
logger.warning(('Unparseable raw filename %s' % row.filename))
dropped_inds.append(ind)
continue
(well_id, site_num, target_name) = result
md_raw.at[(ind, 'site_num')] = site_num
md_raw.at[(ind, 'target_name')] = target_name
(well_row, well_col) = re.match('([A-H])([0-9]{1,2})', well_id).groups()
md_raw.at[(ind, 'well_id')] = ('%s%02d' % (well_row, int(well_col)))
logger.warning(('Dropping %s rows of unparseable raw metadata' % len(dropped_inds)))
md_raw.drop(dropped_inds, inplace=True)
md_raw['parental_line'] = constants.PARENTAL_LINE_NAME
md_raw['ep_id'] = 'EP01'
md_raw['exp_id'] = [exp_dir.split('_')[0] for exp_dir in md_raw.exp_dir]
md_raw['pml_id'] = [f'P{ml_id}' for ml_id in md_raw.exp_id]
md_raw['site_id'] = [('S%02d' % int(num)) for num in md_raw.site_num]
md_raw['plate_id'] = [('P%04d' % num) for num in md_raw.plate_num]
md_raw['imaging_round_id'] = [('R%02d' % num) for num in md_raw.imaging_round_num]
for (ind, row) in md_raw.iterrows():
md_raw.at[(ind, 'raw_filepath')] = os.path.join(row.plate_dir, row.exp_dir, (row.exp_subdir if (not pd.isna(row.exp_subdir)) else ''), row.filename)
for (ind, row) in md_raw.iterrows():
md_raw.at[(ind, 'fov_id')] = ('%s-%s-%s' % (row.exp_id, row.well_id, row.site_id))
n = md_raw.groupby('fov_id').count()
degenerate_fov_ids = n.loc[(n.filename > 1)].index
md_raw = md_raw.loc[(~ md_raw.fov_id.isin(degenerate_fov_ids))]
logger.warning(('Dropping non-unique fov_ids %s' % list(degenerate_fov_ids)))
self.md_raw = md_raw | Construct the raw metadata (a subset of self.md) | opencell/imaging/managers.py | construct_raw_metadata | czbiohub/opencell-portal-pub | 2 | python | def construct_raw_metadata(self):
'\n \n '
md_raw = self.md.loc[self.md.is_raw].copy()
for column in ['well_id', 'site_num', 'target_name', 'fov_id']:
md_raw[column] = None
dropped_inds = []
for (ind, row) in md_raw.iterrows():
result = self.parse_raw_tiff_filename(row.filename)
if (not result):
if ('MMStack' not in row.filename):
logger.warning(('Unparseable raw filename %s' % row.filename))
dropped_inds.append(ind)
continue
(well_id, site_num, target_name) = result
md_raw.at[(ind, 'site_num')] = site_num
md_raw.at[(ind, 'target_name')] = target_name
(well_row, well_col) = re.match('([A-H])([0-9]{1,2})', well_id).groups()
md_raw.at[(ind, 'well_id')] = ('%s%02d' % (well_row, int(well_col)))
logger.warning(('Dropping %s rows of unparseable raw metadata' % len(dropped_inds)))
md_raw.drop(dropped_inds, inplace=True)
md_raw['parental_line'] = constants.PARENTAL_LINE_NAME
md_raw['ep_id'] = 'EP01'
md_raw['exp_id'] = [exp_dir.split('_')[0] for exp_dir in md_raw.exp_dir]
md_raw['pml_id'] = [f'P{ml_id}' for ml_id in md_raw.exp_id]
md_raw['site_id'] = [('S%02d' % int(num)) for num in md_raw.site_num]
md_raw['plate_id'] = [('P%04d' % num) for num in md_raw.plate_num]
md_raw['imaging_round_id'] = [('R%02d' % num) for num in md_raw.imaging_round_num]
for (ind, row) in md_raw.iterrows():
md_raw.at[(ind, 'raw_filepath')] = os.path.join(row.plate_dir, row.exp_dir, (row.exp_subdir if (not pd.isna(row.exp_subdir)) else ), row.filename)
for (ind, row) in md_raw.iterrows():
md_raw.at[(ind, 'fov_id')] = ('%s-%s-%s' % (row.exp_id, row.well_id, row.site_id))
n = md_raw.groupby('fov_id').count()
degenerate_fov_ids = n.loc[(n.filename > 1)].index
md_raw = md_raw.loc[(~ md_raw.fov_id.isin(degenerate_fov_ids))]
logger.warning(('Dropping non-unique fov_ids %s' % list(degenerate_fov_ids)))
self.md_raw = md_raw | def construct_raw_metadata(self):
'\n \n '
md_raw = self.md.loc[self.md.is_raw].copy()
for column in ['well_id', 'site_num', 'target_name', 'fov_id']:
md_raw[column] = None
dropped_inds = []
for (ind, row) in md_raw.iterrows():
result = self.parse_raw_tiff_filename(row.filename)
if (not result):
if ('MMStack' not in row.filename):
logger.warning(('Unparseable raw filename %s' % row.filename))
dropped_inds.append(ind)
continue
(well_id, site_num, target_name) = result
md_raw.at[(ind, 'site_num')] = site_num
md_raw.at[(ind, 'target_name')] = target_name
(well_row, well_col) = re.match('([A-H])([0-9]{1,2})', well_id).groups()
md_raw.at[(ind, 'well_id')] = ('%s%02d' % (well_row, int(well_col)))
logger.warning(('Dropping %s rows of unparseable raw metadata' % len(dropped_inds)))
md_raw.drop(dropped_inds, inplace=True)
md_raw['parental_line'] = constants.PARENTAL_LINE_NAME
md_raw['ep_id'] = 'EP01'
md_raw['exp_id'] = [exp_dir.split('_')[0] for exp_dir in md_raw.exp_dir]
md_raw['pml_id'] = [f'P{ml_id}' for ml_id in md_raw.exp_id]
md_raw['site_id'] = [('S%02d' % int(num)) for num in md_raw.site_num]
md_raw['plate_id'] = [('P%04d' % num) for num in md_raw.plate_num]
md_raw['imaging_round_id'] = [('R%02d' % num) for num in md_raw.imaging_round_num]
for (ind, row) in md_raw.iterrows():
md_raw.at[(ind, 'raw_filepath')] = os.path.join(row.plate_dir, row.exp_dir, (row.exp_subdir if (not pd.isna(row.exp_subdir)) else ), row.filename)
for (ind, row) in md_raw.iterrows():
md_raw.at[(ind, 'fov_id')] = ('%s-%s-%s' % (row.exp_id, row.well_id, row.site_id))
n = md_raw.groupby('fov_id').count()
degenerate_fov_ids = n.loc[(n.filename > 1)].index
md_raw = md_raw.loc[(~ md_raw.fov_id.isin(degenerate_fov_ids))]
logger.warning(('Dropping non-unique fov_ids %s' % list(degenerate_fov_ids)))
self.md_raw = md_raw<|docstring|>Construct the raw metadata (a subset of self.md)<|endoftext|> |
a6d19fc7a8f1050b91df166ffbda98ccb88e22c46e50f344877194eccd2c4198 | def append_file_info(self):
'\n Append the file size and creation time to the metadata\n (requires that the partition be mounted)\n '
if (not os.path.isdir(self.root_dir)):
logger.warning('Cannot determine file info unless the partition is mounted')
return
md = self.md.replace(to_replace=np.nan, value='')
for (ind, row) in md.iterrows():
if (not np.mod(ind, 10000)):
print(ind)
s = os.stat(os.path.join(self.root_dir, row.plate_dir, row.exp_dir, row.exp_subdir, row.filename))
md.at[(ind, 'filesize')] = s.st_size
md.at[(ind, 'ctime')] = s.st_ctime
self.md = md | Append the file size and creation time to the metadata
(requires that the partition be mounted) | opencell/imaging/managers.py | append_file_info | czbiohub/opencell-portal-pub | 2 | python | def append_file_info(self):
'\n Append the file size and creation time to the metadata\n (requires that the partition be mounted)\n '
if (not os.path.isdir(self.root_dir)):
logger.warning('Cannot determine file info unless the partition is mounted')
return
md = self.md.replace(to_replace=np.nan, value=)
for (ind, row) in md.iterrows():
if (not np.mod(ind, 10000)):
print(ind)
s = os.stat(os.path.join(self.root_dir, row.plate_dir, row.exp_dir, row.exp_subdir, row.filename))
md.at[(ind, 'filesize')] = s.st_size
md.at[(ind, 'ctime')] = s.st_ctime
self.md = md | def append_file_info(self):
'\n Append the file size and creation time to the metadata\n (requires that the partition be mounted)\n '
if (not os.path.isdir(self.root_dir)):
logger.warning('Cannot determine file info unless the partition is mounted')
return
md = self.md.replace(to_replace=np.nan, value=)
for (ind, row) in md.iterrows():
if (not np.mod(ind, 10000)):
print(ind)
s = os.stat(os.path.join(self.root_dir, row.plate_dir, row.exp_dir, row.exp_subdir, row.filename))
md.at[(ind, 'filesize')] = s.st_size
md.at[(ind, 'ctime')] = s.st_ctime
self.md = md<|docstring|>Append the file size and creation time to the metadata
(requires that the partition be mounted)<|endoftext|> |
08e8ba9fa5e9cc92b58108e4078cc1b71b6dec2905baac34109407b37a61618d | def test_create_valid_user_success(self):
'Test creating user with valid payload is successful'
payload = {'email': '[email protected]', 'password': 'testpass', 'name': 'Test name'}
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_201_CREATED)
user = get_user_model().objects.get(**res.data)
self.assertTrue(user.check_password(payload['password']))
self.assertNotIn('password', res.data) | Test creating user with valid payload is successful | app/user/test/test_user_api.py | test_create_valid_user_success | mandeepdhillon01/recipe-app-api | 0 | python | def test_create_valid_user_success(self):
payload = {'email': '[email protected]', 'password': 'testpass', 'name': 'Test name'}
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_201_CREATED)
user = get_user_model().objects.get(**res.data)
self.assertTrue(user.check_password(payload['password']))
self.assertNotIn('password', res.data) | def test_create_valid_user_success(self):
payload = {'email': '[email protected]', 'password': 'testpass', 'name': 'Test name'}
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_201_CREATED)
user = get_user_model().objects.get(**res.data)
self.assertTrue(user.check_password(payload['password']))
self.assertNotIn('password', res.data)<|docstring|>Test creating user with valid payload is successful<|endoftext|> |
7e5bcd300e29b4c7c2bc1c2d57c32bf58b16f90be81f933d7e39cc53171b3d00 | def test_user_exists(self):
'test creating a user that already exists (fails)'
payload = {'email': '[email protected]', 'password': 'testpass'}
create_user(**payload)
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | test creating a user that already exists (fails) | app/user/test/test_user_api.py | test_user_exists | mandeepdhillon01/recipe-app-api | 0 | python | def test_user_exists(self):
payload = {'email': '[email protected]', 'password': 'testpass'}
create_user(**payload)
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | def test_user_exists(self):
payload = {'email': '[email protected]', 'password': 'testpass'}
create_user(**payload)
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)<|docstring|>test creating a user that already exists (fails)<|endoftext|> |
ee6a088135fd4e74d3c8268d34dbec10ed7bff1347d1c3ac6875bfeb925c278b | def test_password_too_Short(self):
'test password must be more than 5 characters'
payload = {'email': '[email protected]', 'password': 'pw'}
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
user_exists = get_user_model().objects.filter(email=payload['email']).exists()
self.assertFalse(user_exists) | test password must be more than 5 characters | app/user/test/test_user_api.py | test_password_too_Short | mandeepdhillon01/recipe-app-api | 0 | python | def test_password_too_Short(self):
payload = {'email': '[email protected]', 'password': 'pw'}
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
user_exists = get_user_model().objects.filter(email=payload['email']).exists()
self.assertFalse(user_exists) | def test_password_too_Short(self):
payload = {'email': '[email protected]', 'password': 'pw'}
res = self.client.post(CREATE_USER_URL, payload)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
user_exists = get_user_model().objects.filter(email=payload['email']).exists()
self.assertFalse(user_exists)<|docstring|>test password must be more than 5 characters<|endoftext|> |
7f334e4809941ba0e10812faaff6b4bafc38c0b3631e240220f6a26063392248 | def test_create_token_for_user(self):
'Test that a token is created for the user'
payload = {'email': '[email protected]', 'password': 'testpass'}
create_user(**payload)
res = self.client.post(TOKEN_URL, payload)
self.assertIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_200_OK) | Test that a token is created for the user | app/user/test/test_user_api.py | test_create_token_for_user | mandeepdhillon01/recipe-app-api | 0 | python | def test_create_token_for_user(self):
payload = {'email': '[email protected]', 'password': 'testpass'}
create_user(**payload)
res = self.client.post(TOKEN_URL, payload)
self.assertIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_200_OK) | def test_create_token_for_user(self):
payload = {'email': '[email protected]', 'password': 'testpass'}
create_user(**payload)
res = self.client.post(TOKEN_URL, payload)
self.assertIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_200_OK)<|docstring|>Test that a token is created for the user<|endoftext|> |
cf4fdbc7c0250b9ae2fdde7a39604f74e97ecf649eaaec1ef378c8ae55224ef1 | def test_create_token_invalid_credentials(self):
'Test that token is not created if invalid credentials are given'
create_user(email='[email protected]', password='testpass')
payload = {'email': '[email protected]', 'password': 'wrong'}
res = self.client.post(TOKEN_URL, payload)
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | Test that token is not created if invalid credentials are given | app/user/test/test_user_api.py | test_create_token_invalid_credentials | mandeepdhillon01/recipe-app-api | 0 | python | def test_create_token_invalid_credentials(self):
create_user(email='[email protected]', password='testpass')
payload = {'email': '[email protected]', 'password': 'wrong'}
res = self.client.post(TOKEN_URL, payload)
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | def test_create_token_invalid_credentials(self):
create_user(email='[email protected]', password='testpass')
payload = {'email': '[email protected]', 'password': 'wrong'}
res = self.client.post(TOKEN_URL, payload)
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)<|docstring|>Test that token is not created if invalid credentials are given<|endoftext|> |
f0c56dd21d007bba8e7413288d0d131c294b757a9cbfcdce813dbac6329e5b94 | def test_create_token_no_user(self):
"Test that token is not created if user doens't exist"
payload = {'email': '[email protected]', 'password': 'testpass'}
res = self.client.post(TOKEN_URL, payload)
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | Test that token is not created if user doens't exist | app/user/test/test_user_api.py | test_create_token_no_user | mandeepdhillon01/recipe-app-api | 0 | python | def test_create_token_no_user(self):
payload = {'email': '[email protected]', 'password': 'testpass'}
res = self.client.post(TOKEN_URL, payload)
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | def test_create_token_no_user(self):
payload = {'email': '[email protected]', 'password': 'testpass'}
res = self.client.post(TOKEN_URL, payload)
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)<|docstring|>Test that token is not created if user doens't exist<|endoftext|> |
8a88ea42e4be0997f62e198cc99550dc219441658b2c1062a81b62ef62e7e5d3 | def test_create_token_missing_field(self):
'Test that email and password are required'
res = self.client.post(TOKEN_URL, {'email': 'one', 'password': ''})
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | Test that email and password are required | app/user/test/test_user_api.py | test_create_token_missing_field | mandeepdhillon01/recipe-app-api | 0 | python | def test_create_token_missing_field(self):
res = self.client.post(TOKEN_URL, {'email': 'one', 'password': })
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) | def test_create_token_missing_field(self):
res = self.client.post(TOKEN_URL, {'email': 'one', 'password': })
self.assertNotIn('token', res.data)
self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)<|docstring|>Test that email and password are required<|endoftext|> |
3729b3b9c9c71f6ce56af0403f5c9035e7bf6d8dad73498043fa4c78015f9a42 | def group_lasso_regularizer(X: Tensor, groups: List[List[int]]) -> Tensor:
'Computes the group lasso regularization function for the given point.\n\n Args:\n X: A bxd tensor representing the points to evaluate the regularization at.\n groups: List of indices of different groups.\n\n Returns:\n Computed group lasso norm of at the given points.\n '
return torch.sum(torch.stack([(math.sqrt(len(g)) * torch.norm(X[(..., g)], p=2, dim=(- 1))) for g in groups], dim=(- 1)), dim=(- 1)) | Computes the group lasso regularization function for the given point.
Args:
X: A bxd tensor representing the points to evaluate the regularization at.
groups: List of indices of different groups.
Returns:
Computed group lasso norm of at the given points. | botorch/acquisition/penalized.py | group_lasso_regularizer | saitcakmak/botorch | 2,344 | python | def group_lasso_regularizer(X: Tensor, groups: List[List[int]]) -> Tensor:
'Computes the group lasso regularization function for the given point.\n\n Args:\n X: A bxd tensor representing the points to evaluate the regularization at.\n groups: List of indices of different groups.\n\n Returns:\n Computed group lasso norm of at the given points.\n '
return torch.sum(torch.stack([(math.sqrt(len(g)) * torch.norm(X[(..., g)], p=2, dim=(- 1))) for g in groups], dim=(- 1)), dim=(- 1)) | def group_lasso_regularizer(X: Tensor, groups: List[List[int]]) -> Tensor:
'Computes the group lasso regularization function for the given point.\n\n Args:\n X: A bxd tensor representing the points to evaluate the regularization at.\n groups: List of indices of different groups.\n\n Returns:\n Computed group lasso norm of at the given points.\n '
return torch.sum(torch.stack([(math.sqrt(len(g)) * torch.norm(X[(..., g)], p=2, dim=(- 1))) for g in groups], dim=(- 1)), dim=(- 1))<|docstring|>Computes the group lasso regularization function for the given point.
Args:
X: A bxd tensor representing the points to evaluate the regularization at.
groups: List of indices of different groups.
Returns:
Computed group lasso norm of at the given points.<|endoftext|> |
b096ef366e3cb765b4c731b36852c99e0a5d4c3f81341d5b4c4e8464e7a0aba9 | def __init__(self, init_point: Tensor):
'Initializing L2 regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point | Initializing L2 regularization.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize. | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, init_point: Tensor):
'Initializing L2 regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point | def __init__(self, init_point: Tensor):
'Initializing L2 regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point<|docstring|>Initializing L2 regularization.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize.<|endoftext|> |
ec07626d17009766fcf8c4fe747a479a859189172b2fe25d1c7359d67506b08c | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
regularization_term = (torch.norm((X - self.init_point), p=2, dim=(- 1)).max(dim=(- 1)).values ** 2)
return regularization_term | Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A tensor of size "batch_shape" representing the acqfn for each q-batch. | botorch/acquisition/penalized.py | forward | saitcakmak/botorch | 2,344 | python | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
regularization_term = (torch.norm((X - self.init_point), p=2, dim=(- 1)).max(dim=(- 1)).values ** 2)
return regularization_term | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
regularization_term = (torch.norm((X - self.init_point), p=2, dim=(- 1)).max(dim=(- 1)).values ** 2)
return regularization_term<|docstring|>Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A tensor of size "batch_shape" representing the acqfn for each q-batch.<|endoftext|> |
234f16bf58f7591c53c85c0e6418d2bd024e919bfba39bbcfd711f61e3949da5 | def __init__(self, init_point: Tensor):
'Initializing L1 regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point | Initializing L1 regularization.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize. | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, init_point: Tensor):
'Initializing L1 regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point | def __init__(self, init_point: Tensor):
'Initializing L1 regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point<|docstring|>Initializing L1 regularization.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize.<|endoftext|> |
dcbbdb38e254735456937d1fb2662673868cfeab522909abf36922189deac86e | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
regularization_term = torch.norm((X - self.init_point), p=1, dim=(- 1)).max(dim=(- 1)).values
return regularization_term | Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A tensor of size "batch_shape" representing the acqfn for each q-batch. | botorch/acquisition/penalized.py | forward | saitcakmak/botorch | 2,344 | python | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
regularization_term = torch.norm((X - self.init_point), p=1, dim=(- 1)).max(dim=(- 1)).values
return regularization_term | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
regularization_term = torch.norm((X - self.init_point), p=1, dim=(- 1)).max(dim=(- 1)).values
return regularization_term<|docstring|>Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A tensor of size "batch_shape" representing the acqfn for each q-batch.<|endoftext|> |
09783f562ce99297075fa1b9bfaa88ba09bef82f06b4fd9d53922a56179b6679 | def __init__(self, init_point: Tensor, sigma: float):
'Initializing Gaussian regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n sigma: The parameter used in gaussian function.\n '
super().__init__()
self.init_point = init_point
self.sigma = sigma | Initializing Gaussian regularization.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize.
sigma: The parameter used in gaussian function. | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, init_point: Tensor, sigma: float):
'Initializing Gaussian regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n sigma: The parameter used in gaussian function.\n '
super().__init__()
self.init_point = init_point
self.sigma = sigma | def __init__(self, init_point: Tensor, sigma: float):
'Initializing Gaussian regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n sigma: The parameter used in gaussian function.\n '
super().__init__()
self.init_point = init_point
self.sigma = sigma<|docstring|>Initializing Gaussian regularization.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize.
sigma: The parameter used in gaussian function.<|endoftext|> |
d8e7e504191874dec496334c4308a29a1fe76694ed7718296a2973c48df23ace | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
sq_diff = (torch.norm((X - self.init_point), p=2, dim=(- 1)) ** 2)
pdf = torch.exp(((sq_diff / 2) / (self.sigma ** 2)))
regularization_term = pdf.max(dim=(- 1)).values
return regularization_term | Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A tensor of size "batch_shape" representing the acqfn for each q-batch. | botorch/acquisition/penalized.py | forward | saitcakmak/botorch | 2,344 | python | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
sq_diff = (torch.norm((X - self.init_point), p=2, dim=(- 1)) ** 2)
pdf = torch.exp(((sq_diff / 2) / (self.sigma ** 2)))
regularization_term = pdf.max(dim=(- 1)).values
return regularization_term | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A tensor of size "batch_shape" representing the acqfn for each q-batch.\n '
sq_diff = (torch.norm((X - self.init_point), p=2, dim=(- 1)) ** 2)
pdf = torch.exp(((sq_diff / 2) / (self.sigma ** 2)))
regularization_term = pdf.max(dim=(- 1)).values
return regularization_term<|docstring|>Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A tensor of size "batch_shape" representing the acqfn for each q-batch.<|endoftext|> |
abe3143986e73453cfd3abe39f0df275557e823dce5275aa2d9580b12cbed905 | def __init__(self, init_point: Tensor, groups: List[List[int]]):
'Initializing Group-Lasso regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which we want\n to regularize.\n groups: Groups of indices used in group lasso.\n '
super().__init__()
self.init_point = init_point
self.groups = groups | Initializing Group-Lasso regularization.
Args:
init_point: The "1 x dim" reference point against which we want
to regularize.
groups: Groups of indices used in group lasso. | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, init_point: Tensor, groups: List[List[int]]):
'Initializing Group-Lasso regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which we want\n to regularize.\n groups: Groups of indices used in group lasso.\n '
super().__init__()
self.init_point = init_point
self.groups = groups | def __init__(self, init_point: Tensor, groups: List[List[int]]):
'Initializing Group-Lasso regularization.\n\n Args:\n init_point: The "1 x dim" reference point against which we want\n to regularize.\n groups: Groups of indices used in group lasso.\n '
super().__init__()
self.init_point = init_point
self.groups = groups<|docstring|>Initializing Group-Lasso regularization.
Args:
init_point: The "1 x dim" reference point against which we want
to regularize.
groups: Groups of indices used in group lasso.<|endoftext|> |
9b748132cf48839d42bb27c8a4a4b9f95415ba50764057ae590afe8acecb5ecf | def forward(self, X: Tensor) -> Tensor:
'\n X should be batch_shape x 1 x dim tensor. Evaluation for q-batch is not\n implemented yet.\n '
if (X.shape[(- 2)] != 1):
raise NotImplementedError('group-lasso has not been implemented for q>1 yet.')
regularization_term = group_lasso_regularizer(X=(X.squeeze((- 2)) - self.init_point), groups=self.groups)
return regularization_term | X should be batch_shape x 1 x dim tensor. Evaluation for q-batch is not
implemented yet. | botorch/acquisition/penalized.py | forward | saitcakmak/botorch | 2,344 | python | def forward(self, X: Tensor) -> Tensor:
'\n X should be batch_shape x 1 x dim tensor. Evaluation for q-batch is not\n implemented yet.\n '
if (X.shape[(- 2)] != 1):
raise NotImplementedError('group-lasso has not been implemented for q>1 yet.')
regularization_term = group_lasso_regularizer(X=(X.squeeze((- 2)) - self.init_point), groups=self.groups)
return regularization_term | def forward(self, X: Tensor) -> Tensor:
'\n X should be batch_shape x 1 x dim tensor. Evaluation for q-batch is not\n implemented yet.\n '
if (X.shape[(- 2)] != 1):
raise NotImplementedError('group-lasso has not been implemented for q>1 yet.')
regularization_term = group_lasso_regularizer(X=(X.squeeze((- 2)) - self.init_point), groups=self.groups)
return regularization_term<|docstring|>X should be batch_shape x 1 x dim tensor. Evaluation for q-batch is not
implemented yet.<|endoftext|> |
b0df18c09595d582b477d218d7166e0f98cd986528ae58490a1a47ecbc4763e6 | def __init__(self, raw_acqf: AcquisitionFunction, penalty_func: torch.nn.Module, regularization_parameter: float) -> None:
'Initializing Group-Lasso regularization.\n\n Args:\n raw_acqf: The raw acquisition function that is going to be regularized.\n penalty_func: The regularization function.\n regularization_parameter: Regularization parameter used in optimization.\n '
super().__init__(model=raw_acqf.model)
self.raw_acqf = raw_acqf
self.penalty_func = penalty_func
self.regularization_parameter = regularization_parameter | Initializing Group-Lasso regularization.
Args:
raw_acqf: The raw acquisition function that is going to be regularized.
penalty_func: The regularization function.
regularization_parameter: Regularization parameter used in optimization. | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, raw_acqf: AcquisitionFunction, penalty_func: torch.nn.Module, regularization_parameter: float) -> None:
'Initializing Group-Lasso regularization.\n\n Args:\n raw_acqf: The raw acquisition function that is going to be regularized.\n penalty_func: The regularization function.\n regularization_parameter: Regularization parameter used in optimization.\n '
super().__init__(model=raw_acqf.model)
self.raw_acqf = raw_acqf
self.penalty_func = penalty_func
self.regularization_parameter = regularization_parameter | def __init__(self, raw_acqf: AcquisitionFunction, penalty_func: torch.nn.Module, regularization_parameter: float) -> None:
'Initializing Group-Lasso regularization.\n\n Args:\n raw_acqf: The raw acquisition function that is going to be regularized.\n penalty_func: The regularization function.\n regularization_parameter: Regularization parameter used in optimization.\n '
super().__init__(model=raw_acqf.model)
self.raw_acqf = raw_acqf
self.penalty_func = penalty_func
self.regularization_parameter = regularization_parameter<|docstring|>Initializing Group-Lasso regularization.
Args:
raw_acqf: The raw acquisition function that is going to be regularized.
penalty_func: The regularization function.
regularization_parameter: Regularization parameter used in optimization.<|endoftext|> |
018c2ad035650fde97d697f0f52aecdf3ace9784b72e28664c111f0baa4c389a | def __init__(self, init_point: Tensor):
'Initializing L1 penalty objective.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point | Initializing L1 penalty objective.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize. | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, init_point: Tensor):
'Initializing L1 penalty objective.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point | def __init__(self, init_point: Tensor):
'Initializing L1 penalty objective.\n\n Args:\n init_point: The "1 x dim" reference point against which\n we want to regularize.\n '
super().__init__()
self.init_point = init_point<|docstring|>Initializing L1 penalty objective.
Args:
init_point: The "1 x dim" reference point against which
we want to regularize.<|endoftext|> |
9b0d0d06d440223d7be2b5de01987ec4a8069ba65f07ddcc4af3b246d86e745b | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A "1 x batch_shape x q" tensor representing the penalty for each point.\n The first dimension corresponds to the dimension of MC samples.\n '
return torch.norm((X - self.init_point), p=1, dim=(- 1)).unsqueeze(dim=0) | Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A "1 x batch_shape x q" tensor representing the penalty for each point.
The first dimension corresponds to the dimension of MC samples. | botorch/acquisition/penalized.py | forward | saitcakmak/botorch | 2,344 | python | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A "1 x batch_shape x q" tensor representing the penalty for each point.\n The first dimension corresponds to the dimension of MC samples.\n '
return torch.norm((X - self.init_point), p=1, dim=(- 1)).unsqueeze(dim=0) | def forward(self, X: Tensor) -> Tensor:
'\n Args:\n X: A "batch_shape x q x dim" representing the points to be evaluated.\n\n Returns:\n A "1 x batch_shape x q" tensor representing the penalty for each point.\n The first dimension corresponds to the dimension of MC samples.\n '
return torch.norm((X - self.init_point), p=1, dim=(- 1)).unsqueeze(dim=0)<|docstring|>Args:
X: A "batch_shape x q x dim" representing the points to be evaluated.
Returns:
A "1 x batch_shape x q" tensor representing the penalty for each point.
The first dimension corresponds to the dimension of MC samples.<|endoftext|> |
b4c06dd14ff34d12929bc8c09cd139bbca59d0a7d6d5d570d578279de8390621 | def __init__(self, objective: Callable[([Tensor, Optional[Tensor]], Tensor)], penalty_objective: torch.nn.Module, regularization_parameter: float) -> None:
'Penalized MC objective.\n\n Args:\n objective: A callable `f(samples, X)` mapping a\n `sample_shape x batch-shape x q x m`-dim Tensor `samples` and\n an optional `batch-shape x q x d`-dim Tensor `X` to a\n `sample_shape x batch-shape x q`-dim Tensor of objective values.\n penalty_objective: A torch.nn.Module `f(X)` that takes in a\n `batch-shape x q x d`-dim Tensor `X` and outputs a\n `1 x batch-shape x q`-dim Tensor of penalty objective values.\n regularization_parameter: weight of the penalty (regularization) term\n '
super().__init__(objective=objective)
self.penalty_objective = penalty_objective
self.regularization_parameter = regularization_parameter | Penalized MC objective.
Args:
objective: A callable `f(samples, X)` mapping a
`sample_shape x batch-shape x q x m`-dim Tensor `samples` and
an optional `batch-shape x q x d`-dim Tensor `X` to a
`sample_shape x batch-shape x q`-dim Tensor of objective values.
penalty_objective: A torch.nn.Module `f(X)` that takes in a
`batch-shape x q x d`-dim Tensor `X` and outputs a
`1 x batch-shape x q`-dim Tensor of penalty objective values.
regularization_parameter: weight of the penalty (regularization) term | botorch/acquisition/penalized.py | __init__ | saitcakmak/botorch | 2,344 | python | def __init__(self, objective: Callable[([Tensor, Optional[Tensor]], Tensor)], penalty_objective: torch.nn.Module, regularization_parameter: float) -> None:
'Penalized MC objective.\n\n Args:\n objective: A callable `f(samples, X)` mapping a\n `sample_shape x batch-shape x q x m`-dim Tensor `samples` and\n an optional `batch-shape x q x d`-dim Tensor `X` to a\n `sample_shape x batch-shape x q`-dim Tensor of objective values.\n penalty_objective: A torch.nn.Module `f(X)` that takes in a\n `batch-shape x q x d`-dim Tensor `X` and outputs a\n `1 x batch-shape x q`-dim Tensor of penalty objective values.\n regularization_parameter: weight of the penalty (regularization) term\n '
super().__init__(objective=objective)
self.penalty_objective = penalty_objective
self.regularization_parameter = regularization_parameter | def __init__(self, objective: Callable[([Tensor, Optional[Tensor]], Tensor)], penalty_objective: torch.nn.Module, regularization_parameter: float) -> None:
'Penalized MC objective.\n\n Args:\n objective: A callable `f(samples, X)` mapping a\n `sample_shape x batch-shape x q x m`-dim Tensor `samples` and\n an optional `batch-shape x q x d`-dim Tensor `X` to a\n `sample_shape x batch-shape x q`-dim Tensor of objective values.\n penalty_objective: A torch.nn.Module `f(X)` that takes in a\n `batch-shape x q x d`-dim Tensor `X` and outputs a\n `1 x batch-shape x q`-dim Tensor of penalty objective values.\n regularization_parameter: weight of the penalty (regularization) term\n '
super().__init__(objective=objective)
self.penalty_objective = penalty_objective
self.regularization_parameter = regularization_parameter<|docstring|>Penalized MC objective.
Args:
objective: A callable `f(samples, X)` mapping a
`sample_shape x batch-shape x q x m`-dim Tensor `samples` and
an optional `batch-shape x q x d`-dim Tensor `X` to a
`sample_shape x batch-shape x q`-dim Tensor of objective values.
penalty_objective: A torch.nn.Module `f(X)` that takes in a
`batch-shape x q x d`-dim Tensor `X` and outputs a
`1 x batch-shape x q`-dim Tensor of penalty objective values.
regularization_parameter: weight of the penalty (regularization) term<|endoftext|> |
1acb0aeeffe72af997bfdc95c79168b3ee6d064840ceb8077e6ddfd625176c9e | def forward(self, samples: Tensor, X: Optional[Tensor]=None) -> Tensor:
'Evaluate the penalized objective on the samples.\n\n Args:\n samples: A `sample_shape x batch_shape x q x m`-dim Tensors of\n samples from a model posterior.\n X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if\n the objective depends on the inputs explicitly.\n\n Returns:\n A `sample_shape x batch_shape x q`-dim Tensor of objective values\n with penalty added for each point.\n '
obj = super().forward(samples=samples, X=X)
penalty_obj = self.penalty_objective(X)
return (obj - (self.regularization_parameter * penalty_obj)) | Evaluate the penalized objective on the samples.
Args:
samples: A `sample_shape x batch_shape x q x m`-dim Tensors of
samples from a model posterior.
X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if
the objective depends on the inputs explicitly.
Returns:
A `sample_shape x batch_shape x q`-dim Tensor of objective values
with penalty added for each point. | botorch/acquisition/penalized.py | forward | saitcakmak/botorch | 2,344 | python | def forward(self, samples: Tensor, X: Optional[Tensor]=None) -> Tensor:
'Evaluate the penalized objective on the samples.\n\n Args:\n samples: A `sample_shape x batch_shape x q x m`-dim Tensors of\n samples from a model posterior.\n X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if\n the objective depends on the inputs explicitly.\n\n Returns:\n A `sample_shape x batch_shape x q`-dim Tensor of objective values\n with penalty added for each point.\n '
obj = super().forward(samples=samples, X=X)
penalty_obj = self.penalty_objective(X)
return (obj - (self.regularization_parameter * penalty_obj)) | def forward(self, samples: Tensor, X: Optional[Tensor]=None) -> Tensor:
'Evaluate the penalized objective on the samples.\n\n Args:\n samples: A `sample_shape x batch_shape x q x m`-dim Tensors of\n samples from a model posterior.\n X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if\n the objective depends on the inputs explicitly.\n\n Returns:\n A `sample_shape x batch_shape x q`-dim Tensor of objective values\n with penalty added for each point.\n '
obj = super().forward(samples=samples, X=X)
penalty_obj = self.penalty_objective(X)
return (obj - (self.regularization_parameter * penalty_obj))<|docstring|>Evaluate the penalized objective on the samples.
Args:
samples: A `sample_shape x batch_shape x q x m`-dim Tensors of
samples from a model posterior.
X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if
the objective depends on the inputs explicitly.
Returns:
A `sample_shape x batch_shape x q`-dim Tensor of objective values
with penalty added for each point.<|endoftext|> |
e3c27b973760366b4a35656d3c616961d25eac9dab315671be7426e3a34d2f63 | def remove_all_whitespace(str):
'\n Strips all whitespace from a given string.\n :return: new string without whitespaces, will return the original string if it is empty or None\n '
if str:
return re.sub('\\s+', '', str)
else:
return str | Strips all whitespace from a given string.
:return: new string without whitespaces, will return the original string if it is empty or None | lsh/utils/strings_utils.py | remove_all_whitespace | singhj/locality-sensitive-hashing | 19 | python | def remove_all_whitespace(str):
'\n Strips all whitespace from a given string.\n :return: new string without whitespaces, will return the original string if it is empty or None\n '
if str:
return re.sub('\\s+', , str)
else:
return str | def remove_all_whitespace(str):
'\n Strips all whitespace from a given string.\n :return: new string without whitespaces, will return the original string if it is empty or None\n '
if str:
return re.sub('\\s+', , str)
else:
return str<|docstring|>Strips all whitespace from a given string.
:return: new string without whitespaces, will return the original string if it is empty or None<|endoftext|> |
b38c8fe918fb34b6d74f7bb648ebdfa21c01f38b5461e6ed650c6c2061bf9d82 | def tokenize(str, delimiter=DEFAULT_TOKENIZER_DELIMITER):
'\n Splits a string by a given delimiter. Default delimiter is a single whitespace.\n :return: list of string tokens, will return the original string if it is empty or None\n '
if str:
return str.split(delimiter)
else:
return str | Splits a string by a given delimiter. Default delimiter is a single whitespace.
:return: list of string tokens, will return the original string if it is empty or None | lsh/utils/strings_utils.py | tokenize | singhj/locality-sensitive-hashing | 19 | python | def tokenize(str, delimiter=DEFAULT_TOKENIZER_DELIMITER):
'\n Splits a string by a given delimiter. Default delimiter is a single whitespace.\n :return: list of string tokens, will return the original string if it is empty or None\n '
if str:
return str.split(delimiter)
else:
return str | def tokenize(str, delimiter=DEFAULT_TOKENIZER_DELIMITER):
'\n Splits a string by a given delimiter. Default delimiter is a single whitespace.\n :return: list of string tokens, will return the original string if it is empty or None\n '
if str:
return str.split(delimiter)
else:
return str<|docstring|>Splits a string by a given delimiter. Default delimiter is a single whitespace.
:return: list of string tokens, will return the original string if it is empty or None<|endoftext|> |
c4fb3f32a343a99df5ed9e7583fa26186fcd21ddb574a62436c0ac8a5c718dec | def normalize(str):
'\n Normalizes the string making string all lower case and removes all punctuation.\n :param str: string to be normalized\n :return: normalized string, if str is None or empty it returns the original string\n '
if str:
if isinstance(str, unicode):
not_letters_or_digits = u'!"#%\'()*+,-./:;<=>?@[\\]^_`{|}~'
translate_to = u''
translate_table = dict(((ord(char), translate_to) for char in not_letters_or_digits))
return str.translate(translate_table)
else:
return str.lower().translate(string.maketrans('', ''), string.punctuation)
else:
return str | Normalizes the string making string all lower case and removes all punctuation.
:param str: string to be normalized
:return: normalized string, if str is None or empty it returns the original string | lsh/utils/strings_utils.py | normalize | singhj/locality-sensitive-hashing | 19 | python | def normalize(str):
'\n Normalizes the string making string all lower case and removes all punctuation.\n :param str: string to be normalized\n :return: normalized string, if str is None or empty it returns the original string\n '
if str:
if isinstance(str, unicode):
not_letters_or_digits = u'!"#%\'()*+,-./:;<=>?@[\\]^_`{|}~'
translate_to = u
translate_table = dict(((ord(char), translate_to) for char in not_letters_or_digits))
return str.translate(translate_table)
else:
return str.lower().translate(string.maketrans(, ), string.punctuation)
else:
return str | def normalize(str):
'\n Normalizes the string making string all lower case and removes all punctuation.\n :param str: string to be normalized\n :return: normalized string, if str is None or empty it returns the original string\n '
if str:
if isinstance(str, unicode):
not_letters_or_digits = u'!"#%\'()*+,-./:;<=>?@[\\]^_`{|}~'
translate_to = u
translate_table = dict(((ord(char), translate_to) for char in not_letters_or_digits))
return str.translate(translate_table)
else:
return str.lower().translate(string.maketrans(, ), string.punctuation)
else:
return str<|docstring|>Normalizes the string making string all lower case and removes all punctuation.
:param str: string to be normalized
:return: normalized string, if str is None or empty it returns the original string<|endoftext|> |
3b858f1ba69824973de9265ad73569b495a79305981a6d80e2d5e39a295b7268 | def mirror(self, plane: str='M'):
"\n Mirror all previous moves and scramble moves across a plane.\n\n Parameters\n ----------\n plane : {'M', 'E', 'S'}, optional\n Plane the moves are reflected across.\n\n If `plane` == 'M': the moves are mirrored left to right.\n If `plane` == 'E': the moves are mirrored top to bottom.\n If `plane` == 'S': the moves are mirrored front to back.\n "
def mirror_moves(moves, swaps, planes):
mirrored_moves = []
for move in moves:
for (char, swap) in swaps:
if (char in move):
move = move.replace(char, swap)
break
if (not set(planes).intersection(move)):
if (move[(- 1)] == "'"):
move = move[:(- 1)]
elif (move[(- 1)] != '2'):
move += "'"
mirrored_moves.append(move)
return mirrored_moves
if (plane.upper() == 'M'):
swaps = ('RL', 'LR', 'rl', 'lr')
planes = 'Mm'
elif (plane.upper() == 'E'):
swaps = ('UD', 'DU', 'ud', 'du')
planes = 'Ee'
elif (plane.upper() == 'S'):
swaps = ('FB', 'BF', 'fb', 'bf')
planes = 'Ss'
else:
raise ValueError
moves = self.moves
smoves = self.smoves
self.reset(self.size)
self.smoves = mirror_moves(smoves, swaps, planes)
self.move(self.smoves)
self.moves = []
self.move(mirror_moves(moves, swaps, planes)) | Mirror all previous moves and scramble moves across a plane.
Parameters
----------
plane : {'M', 'E', 'S'}, optional
Plane the moves are reflected across.
If `plane` == 'M': the moves are mirrored left to right.
If `plane` == 'E': the moves are mirrored top to bottom.
If `plane` == 'S': the moves are mirrored front to back. | cube/_mirror.py | mirror | 17LangF/virtual-cube | 0 | python | def mirror(self, plane: str='M'):
"\n Mirror all previous moves and scramble moves across a plane.\n\n Parameters\n ----------\n plane : {'M', 'E', 'S'}, optional\n Plane the moves are reflected across.\n\n If `plane` == 'M': the moves are mirrored left to right.\n If `plane` == 'E': the moves are mirrored top to bottom.\n If `plane` == 'S': the moves are mirrored front to back.\n "
def mirror_moves(moves, swaps, planes):
mirrored_moves = []
for move in moves:
for (char, swap) in swaps:
if (char in move):
move = move.replace(char, swap)
break
if (not set(planes).intersection(move)):
if (move[(- 1)] == "'"):
move = move[:(- 1)]
elif (move[(- 1)] != '2'):
move += "'"
mirrored_moves.append(move)
return mirrored_moves
if (plane.upper() == 'M'):
swaps = ('RL', 'LR', 'rl', 'lr')
planes = 'Mm'
elif (plane.upper() == 'E'):
swaps = ('UD', 'DU', 'ud', 'du')
planes = 'Ee'
elif (plane.upper() == 'S'):
swaps = ('FB', 'BF', 'fb', 'bf')
planes = 'Ss'
else:
raise ValueError
moves = self.moves
smoves = self.smoves
self.reset(self.size)
self.smoves = mirror_moves(smoves, swaps, planes)
self.move(self.smoves)
self.moves = []
self.move(mirror_moves(moves, swaps, planes)) | def mirror(self, plane: str='M'):
"\n Mirror all previous moves and scramble moves across a plane.\n\n Parameters\n ----------\n plane : {'M', 'E', 'S'}, optional\n Plane the moves are reflected across.\n\n If `plane` == 'M': the moves are mirrored left to right.\n If `plane` == 'E': the moves are mirrored top to bottom.\n If `plane` == 'S': the moves are mirrored front to back.\n "
def mirror_moves(moves, swaps, planes):
mirrored_moves = []
for move in moves:
for (char, swap) in swaps:
if (char in move):
move = move.replace(char, swap)
break
if (not set(planes).intersection(move)):
if (move[(- 1)] == "'"):
move = move[:(- 1)]
elif (move[(- 1)] != '2'):
move += "'"
mirrored_moves.append(move)
return mirrored_moves
if (plane.upper() == 'M'):
swaps = ('RL', 'LR', 'rl', 'lr')
planes = 'Mm'
elif (plane.upper() == 'E'):
swaps = ('UD', 'DU', 'ud', 'du')
planes = 'Ee'
elif (plane.upper() == 'S'):
swaps = ('FB', 'BF', 'fb', 'bf')
planes = 'Ss'
else:
raise ValueError
moves = self.moves
smoves = self.smoves
self.reset(self.size)
self.smoves = mirror_moves(smoves, swaps, planes)
self.move(self.smoves)
self.moves = []
self.move(mirror_moves(moves, swaps, planes))<|docstring|>Mirror all previous moves and scramble moves across a plane.
Parameters
----------
plane : {'M', 'E', 'S'}, optional
Plane the moves are reflected across.
If `plane` == 'M': the moves are mirrored left to right.
If `plane` == 'E': the moves are mirrored top to bottom.
If `plane` == 'S': the moves are mirrored front to back.<|endoftext|> |
83eee5e57c7a3a5b5a997eecc5fd0fbd6aef8afda49d29b07fec097658b2f3ab | def initializeDB(self):
' Deletes item from database.\n\n Args:\n key (String): name of item to delete\n Returns:\n None\n '
client = pymongo.MongoClient(host=self.host, port=self.port)
db = client[self.databaseName]
return MongoDatabase(db, client) | Deletes item from database.
Args:
key (String): name of item to delete
Returns:
None | overwatch/database/mongoDatabaseFactory.py | initializeDB | ostr00000/OVERWATCH | 0 | python | def initializeDB(self):
' Deletes item from database.\n\n Args:\n key (String): name of item to delete\n Returns:\n None\n '
client = pymongo.MongoClient(host=self.host, port=self.port)
db = client[self.databaseName]
return MongoDatabase(db, client) | def initializeDB(self):
' Deletes item from database.\n\n Args:\n key (String): name of item to delete\n Returns:\n None\n '
client = pymongo.MongoClient(host=self.host, port=self.port)
db = client[self.databaseName]
return MongoDatabase(db, client)<|docstring|>Deletes item from database.
Args:
key (String): name of item to delete
Returns:
None<|endoftext|> |
3e893c77b678997edbc9a45a1cebd1f34458bd68e4f8ce69afa753e353fe6e85 | def __init__(self, capacity, operation, neutral_element):
"Build a Segment Tree data structure.\n\n https://en.wikipedia.org/wiki/Segment_tree\n\n Can be used as regular array, but with two\n important differences:\n\n a) setting item's value is slightly slower.\n It is O(lg capacity) instead of O(1).\n b) user has access to an efficient `reduce`\n operation which reduces `operation` over\n a contiguous subsequence of items in the\n array.\n\n Paramters\n ---------\n capacity: int\n Total size of the array - must be a power of two.\n operation: lambda obj, obj -> obj\n and operation for combining elements (eg. sum, max)\n must for a mathematical group together with the set of\n possible values for array elements.\n neutral_element: obj\n neutral element for the operation above. eg. float('-inf')\n for max and 0 for sum.\n "
assert ((capacity > 0) and ((capacity & (capacity - 1)) == 0)), 'capacity must be positive and a power of 2.'
self._capacity = capacity
self._value = [neutral_element for _ in range((2 * capacity))]
self._operation = operation | Build a Segment Tree data structure.
https://en.wikipedia.org/wiki/Segment_tree
Can be used as regular array, but with two
important differences:
a) setting item's value is slightly slower.
It is O(lg capacity) instead of O(1).
b) user has access to an efficient `reduce`
operation which reduces `operation` over
a contiguous subsequence of items in the
array.
Paramters
---------
capacity: int
Total size of the array - must be a power of two.
operation: lambda obj, obj -> obj
and operation for combining elements (eg. sum, max)
must for a mathematical group together with the set of
possible values for array elements.
neutral_element: obj
neutral element for the operation above. eg. float('-inf')
for max and 0 for sum. | utils/segment_tree.py | __init__ | ManUtdMoon/Safe_Reachability_RL | 6 | python | def __init__(self, capacity, operation, neutral_element):
"Build a Segment Tree data structure.\n\n https://en.wikipedia.org/wiki/Segment_tree\n\n Can be used as regular array, but with two\n important differences:\n\n a) setting item's value is slightly slower.\n It is O(lg capacity) instead of O(1).\n b) user has access to an efficient `reduce`\n operation which reduces `operation` over\n a contiguous subsequence of items in the\n array.\n\n Paramters\n ---------\n capacity: int\n Total size of the array - must be a power of two.\n operation: lambda obj, obj -> obj\n and operation for combining elements (eg. sum, max)\n must for a mathematical group together with the set of\n possible values for array elements.\n neutral_element: obj\n neutral element for the operation above. eg. float('-inf')\n for max and 0 for sum.\n "
assert ((capacity > 0) and ((capacity & (capacity - 1)) == 0)), 'capacity must be positive and a power of 2.'
self._capacity = capacity
self._value = [neutral_element for _ in range((2 * capacity))]
self._operation = operation | def __init__(self, capacity, operation, neutral_element):
"Build a Segment Tree data structure.\n\n https://en.wikipedia.org/wiki/Segment_tree\n\n Can be used as regular array, but with two\n important differences:\n\n a) setting item's value is slightly slower.\n It is O(lg capacity) instead of O(1).\n b) user has access to an efficient `reduce`\n operation which reduces `operation` over\n a contiguous subsequence of items in the\n array.\n\n Paramters\n ---------\n capacity: int\n Total size of the array - must be a power of two.\n operation: lambda obj, obj -> obj\n and operation for combining elements (eg. sum, max)\n must for a mathematical group together with the set of\n possible values for array elements.\n neutral_element: obj\n neutral element for the operation above. eg. float('-inf')\n for max and 0 for sum.\n "
assert ((capacity > 0) and ((capacity & (capacity - 1)) == 0)), 'capacity must be positive and a power of 2.'
self._capacity = capacity
self._value = [neutral_element for _ in range((2 * capacity))]
self._operation = operation<|docstring|>Build a Segment Tree data structure.
https://en.wikipedia.org/wiki/Segment_tree
Can be used as regular array, but with two
important differences:
a) setting item's value is slightly slower.
It is O(lg capacity) instead of O(1).
b) user has access to an efficient `reduce`
operation which reduces `operation` over
a contiguous subsequence of items in the
array.
Paramters
---------
capacity: int
Total size of the array - must be a power of two.
operation: lambda obj, obj -> obj
and operation for combining elements (eg. sum, max)
must for a mathematical group together with the set of
possible values for array elements.
neutral_element: obj
neutral element for the operation above. eg. float('-inf')
for max and 0 for sum.<|endoftext|> |
d901b74222ee1e56f3b21acfb5f0cd35926f921c1468c318ae0dc16787945445 | def reduce(self, start=0, end=None):
'Returns result of applying `self.operation`\n to a contiguous subsequence of the array.\n\n self.operation(\n arr[start], operation(arr[start+1], operation(... arr[end])))\n\n Parameters\n ----------\n start: int\n beginning of the subsequence\n end: int\n end of the subsequences\n\n Returns\n -------\n reduced: obj\n result of reducing self.operation over the specified range of array\n elements.\n '
if (end is None):
end = (self._capacity - 1)
if (end < 0):
end += self._capacity
return self._reduce_helper(start, end, 1, 0, (self._capacity - 1)) | Returns result of applying `self.operation`
to a contiguous subsequence of the array.
self.operation(
arr[start], operation(arr[start+1], operation(... arr[end])))
Parameters
----------
start: int
beginning of the subsequence
end: int
end of the subsequences
Returns
-------
reduced: obj
result of reducing self.operation over the specified range of array
elements. | utils/segment_tree.py | reduce | ManUtdMoon/Safe_Reachability_RL | 6 | python | def reduce(self, start=0, end=None):
'Returns result of applying `self.operation`\n to a contiguous subsequence of the array.\n\n self.operation(\n arr[start], operation(arr[start+1], operation(... arr[end])))\n\n Parameters\n ----------\n start: int\n beginning of the subsequence\n end: int\n end of the subsequences\n\n Returns\n -------\n reduced: obj\n result of reducing self.operation over the specified range of array\n elements.\n '
if (end is None):
end = (self._capacity - 1)
if (end < 0):
end += self._capacity
return self._reduce_helper(start, end, 1, 0, (self._capacity - 1)) | def reduce(self, start=0, end=None):
'Returns result of applying `self.operation`\n to a contiguous subsequence of the array.\n\n self.operation(\n arr[start], operation(arr[start+1], operation(... arr[end])))\n\n Parameters\n ----------\n start: int\n beginning of the subsequence\n end: int\n end of the subsequences\n\n Returns\n -------\n reduced: obj\n result of reducing self.operation over the specified range of array\n elements.\n '
if (end is None):
end = (self._capacity - 1)
if (end < 0):
end += self._capacity
return self._reduce_helper(start, end, 1, 0, (self._capacity - 1))<|docstring|>Returns result of applying `self.operation`
to a contiguous subsequence of the array.
self.operation(
arr[start], operation(arr[start+1], operation(... arr[end])))
Parameters
----------
start: int
beginning of the subsequence
end: int
end of the subsequences
Returns
-------
reduced: obj
result of reducing self.operation over the specified range of array
elements.<|endoftext|> |
b865f2c7b22b1d5dbb2ab89af7160f270cc5f8b790496f91e7b183fd0ae51262 | def sum(self, start=0, end=None):
'Returns arr[start] + ... + arr[end]'
return super(SumSegmentTree, self).reduce(start, end) | Returns arr[start] + ... + arr[end] | utils/segment_tree.py | sum | ManUtdMoon/Safe_Reachability_RL | 6 | python | def sum(self, start=0, end=None):
return super(SumSegmentTree, self).reduce(start, end) | def sum(self, start=0, end=None):
return super(SumSegmentTree, self).reduce(start, end)<|docstring|>Returns arr[start] + ... + arr[end]<|endoftext|> |
b9f306c13c878cdb5fddb0e74608b5b86fefa21ca87d88481b6157aea83b069f | def find_prefixsum_idx(self, prefixsum):
'Find the highest index `i` in the array such that\n sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum\n\n if array values are probabilities, this function\n allows to sample indexes according to the discrete\n probability efficiently.\n\n Parameters\n ----------\n perfixsum: float\n upperbound on the sum of array prefix\n\n Returns\n -------\n idx: int\n highest index satisfying the prefixsum constraint\n '
assert (0 <= prefixsum <= (self.sum() + 1e-05))
idx = 1
while (idx < self._capacity):
if (self._value[(2 * idx)] > prefixsum):
idx = (2 * idx)
else:
prefixsum -= self._value[(2 * idx)]
idx = ((2 * idx) + 1)
return (idx - self._capacity) | Find the highest index `i` in the array such that
sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum
if array values are probabilities, this function
allows to sample indexes according to the discrete
probability efficiently.
Parameters
----------
perfixsum: float
upperbound on the sum of array prefix
Returns
-------
idx: int
highest index satisfying the prefixsum constraint | utils/segment_tree.py | find_prefixsum_idx | ManUtdMoon/Safe_Reachability_RL | 6 | python | def find_prefixsum_idx(self, prefixsum):
'Find the highest index `i` in the array such that\n sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum\n\n if array values are probabilities, this function\n allows to sample indexes according to the discrete\n probability efficiently.\n\n Parameters\n ----------\n perfixsum: float\n upperbound on the sum of array prefix\n\n Returns\n -------\n idx: int\n highest index satisfying the prefixsum constraint\n '
assert (0 <= prefixsum <= (self.sum() + 1e-05))
idx = 1
while (idx < self._capacity):
if (self._value[(2 * idx)] > prefixsum):
idx = (2 * idx)
else:
prefixsum -= self._value[(2 * idx)]
idx = ((2 * idx) + 1)
return (idx - self._capacity) | def find_prefixsum_idx(self, prefixsum):
'Find the highest index `i` in the array such that\n sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum\n\n if array values are probabilities, this function\n allows to sample indexes according to the discrete\n probability efficiently.\n\n Parameters\n ----------\n perfixsum: float\n upperbound on the sum of array prefix\n\n Returns\n -------\n idx: int\n highest index satisfying the prefixsum constraint\n '
assert (0 <= prefixsum <= (self.sum() + 1e-05))
idx = 1
while (idx < self._capacity):
if (self._value[(2 * idx)] > prefixsum):
idx = (2 * idx)
else:
prefixsum -= self._value[(2 * idx)]
idx = ((2 * idx) + 1)
return (idx - self._capacity)<|docstring|>Find the highest index `i` in the array such that
sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum
if array values are probabilities, this function
allows to sample indexes according to the discrete
probability efficiently.
Parameters
----------
perfixsum: float
upperbound on the sum of array prefix
Returns
-------
idx: int
highest index satisfying the prefixsum constraint<|endoftext|> |
21a0600b1e8f3f3b59049a775f634c24cdf19850ed7d21db3ce18494772f7b57 | def min(self, start=0, end=None):
'Returns min(arr[start], ..., arr[end])'
return super(MinSegmentTree, self).reduce(start, end) | Returns min(arr[start], ..., arr[end]) | utils/segment_tree.py | min | ManUtdMoon/Safe_Reachability_RL | 6 | python | def min(self, start=0, end=None):
return super(MinSegmentTree, self).reduce(start, end) | def min(self, start=0, end=None):
return super(MinSegmentTree, self).reduce(start, end)<|docstring|>Returns min(arr[start], ..., arr[end])<|endoftext|> |
742080c91610fd131489cd6a606045e3a6616ad112c8e7a902a2e516cb71c153 | def generate(env):
'\n Add Builders and construction variables for C compilers to an Environment.\n '
(static_obj, shared_obj) = SCons.Tool.createObjBuilders(env)
for suffix in CSuffixes:
static_obj.add_action(suffix, SCons.Defaults.CAction)
shared_obj.add_action(suffix, SCons.Defaults.ShCAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
shared_obj.add_emitter(suffix, SCons.Defaults.SharedObjectEmitter)
env['_CCCOMCOM'] = '$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS'
env['FRAMEWORKS'] = SCons.Util.CLVar('')
env['FRAMEWORKPATH'] = SCons.Util.CLVar('')
if (env['PLATFORM'] == 'darwin'):
env['_CCCOMCOM'] = (env['_CCCOMCOM'] + ' $_FRAMEWORKPATH')
env['CC'] = 'cc'
env['CCFLAGS'] = SCons.Util.CLVar('')
env['CCCOM'] = '$CC -o $TARGET -c $CCFLAGS $_CCCOMCOM $SOURCES'
env['SHCC'] = '$CC'
env['SHCCFLAGS'] = SCons.Util.CLVar('$CCFLAGS')
env['SHCCCOM'] = '$SHCC -o $TARGET -c $SHCCFLAGS $_CCCOMCOM $SOURCES'
env['CPPDEFPREFIX'] = '-D'
env['CPPDEFSUFFIX'] = ''
env['INCPREFIX'] = '-I'
env['INCSUFFIX'] = ''
env['SHOBJSUFFIX'] = '.os'
env['STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME'] = 0
env['CFILESUFFIX'] = '.c' | Add Builders and construction variables for C compilers to an Environment. | okl4_kernel/okl4_2.1.1-patch.9/tools/SCons/Tool/cc.py | generate | CyberQueenMara/baseband-research | 77 | python | def generate(env):
'\n \n '
(static_obj, shared_obj) = SCons.Tool.createObjBuilders(env)
for suffix in CSuffixes:
static_obj.add_action(suffix, SCons.Defaults.CAction)
shared_obj.add_action(suffix, SCons.Defaults.ShCAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
shared_obj.add_emitter(suffix, SCons.Defaults.SharedObjectEmitter)
env['_CCCOMCOM'] = '$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS'
env['FRAMEWORKS'] = SCons.Util.CLVar()
env['FRAMEWORKPATH'] = SCons.Util.CLVar()
if (env['PLATFORM'] == 'darwin'):
env['_CCCOMCOM'] = (env['_CCCOMCOM'] + ' $_FRAMEWORKPATH')
env['CC'] = 'cc'
env['CCFLAGS'] = SCons.Util.CLVar()
env['CCCOM'] = '$CC -o $TARGET -c $CCFLAGS $_CCCOMCOM $SOURCES'
env['SHCC'] = '$CC'
env['SHCCFLAGS'] = SCons.Util.CLVar('$CCFLAGS')
env['SHCCCOM'] = '$SHCC -o $TARGET -c $SHCCFLAGS $_CCCOMCOM $SOURCES'
env['CPPDEFPREFIX'] = '-D'
env['CPPDEFSUFFIX'] =
env['INCPREFIX'] = '-I'
env['INCSUFFIX'] =
env['SHOBJSUFFIX'] = '.os'
env['STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME'] = 0
env['CFILESUFFIX'] = '.c' | def generate(env):
'\n \n '
(static_obj, shared_obj) = SCons.Tool.createObjBuilders(env)
for suffix in CSuffixes:
static_obj.add_action(suffix, SCons.Defaults.CAction)
shared_obj.add_action(suffix, SCons.Defaults.ShCAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
shared_obj.add_emitter(suffix, SCons.Defaults.SharedObjectEmitter)
env['_CCCOMCOM'] = '$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS'
env['FRAMEWORKS'] = SCons.Util.CLVar()
env['FRAMEWORKPATH'] = SCons.Util.CLVar()
if (env['PLATFORM'] == 'darwin'):
env['_CCCOMCOM'] = (env['_CCCOMCOM'] + ' $_FRAMEWORKPATH')
env['CC'] = 'cc'
env['CCFLAGS'] = SCons.Util.CLVar()
env['CCCOM'] = '$CC -o $TARGET -c $CCFLAGS $_CCCOMCOM $SOURCES'
env['SHCC'] = '$CC'
env['SHCCFLAGS'] = SCons.Util.CLVar('$CCFLAGS')
env['SHCCCOM'] = '$SHCC -o $TARGET -c $SHCCFLAGS $_CCCOMCOM $SOURCES'
env['CPPDEFPREFIX'] = '-D'
env['CPPDEFSUFFIX'] =
env['INCPREFIX'] = '-I'
env['INCSUFFIX'] =
env['SHOBJSUFFIX'] = '.os'
env['STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME'] = 0
env['CFILESUFFIX'] = '.c'<|docstring|>Add Builders and construction variables for C compilers to an Environment.<|endoftext|> |
69bfccf3b2a8d6732ace3e4025de0ff5e44877ee6a04fcd40d3d50bd7cdf9587 | def __enumerate_all(self, node, value):
' We are going to iterate through all values of all non-evidence nodes. For each state of the evidence we sum the probability of that state by the probabilities of all other states.\n '
oldValue = self.evidence[node]
self.evidence[node] = value
nonEvidence = self.evidence.empty()
self.__initialize(nonEvidence)
prob = self.__probability(self.evidence)
while self.__next_state(nonEvidence):
prob += self.__probability(self.evidence)
self.evidence[nonEvidence] = (- 1)
self.evidence[node] = oldValue
return prob | We are going to iterate through all values of all non-evidence nodes. For each state of the evidence we sum the probability of that state by the probabilities of all other states. | PBNT/Inference.py | __enumerate_all | NunoEdgarGFlowHub/quantum-fog | 87 | python | def __enumerate_all(self, node, value):
' \n '
oldValue = self.evidence[node]
self.evidence[node] = value
nonEvidence = self.evidence.empty()
self.__initialize(nonEvidence)
prob = self.__probability(self.evidence)
while self.__next_state(nonEvidence):
prob += self.__probability(self.evidence)
self.evidence[nonEvidence] = (- 1)
self.evidence[node] = oldValue
return prob | def __enumerate_all(self, node, value):
' \n '
oldValue = self.evidence[node]
self.evidence[node] = value
nonEvidence = self.evidence.empty()
self.__initialize(nonEvidence)
prob = self.__probability(self.evidence)
while self.__next_state(nonEvidence):
prob += self.__probability(self.evidence)
self.evidence[nonEvidence] = (- 1)
self.evidence[node] = oldValue
return prob<|docstring|>We are going to iterate through all values of all non-evidence nodes. For each state of the evidence we sum the probability of that state by the probabilities of all other states.<|endoftext|> |
0e63b9a173ff3450256c9649fc33fc9e668acffef0092aae4d55dd497793d51b | def project(self, clique, sepset):
' We want to project from the clique to the sepset. We do this by marginalizing the clique potential into the sepset potential.\n '
oldSepsetPotential = copy.deepcopy(sepset.potential)
sepset.potential = clique.potential.marginalize(sepset.potential)
return oldSepsetPotential | We want to project from the clique to the sepset. We do this by marginalizing the clique potential into the sepset potential. | PBNT/Inference.py | project | NunoEdgarGFlowHub/quantum-fog | 87 | python | def project(self, clique, sepset):
' \n '
oldSepsetPotential = copy.deepcopy(sepset.potential)
sepset.potential = clique.potential.marginalize(sepset.potential)
return oldSepsetPotential | def project(self, clique, sepset):
' \n '
oldSepsetPotential = copy.deepcopy(sepset.potential)
sepset.potential = clique.potential.marginalize(sepset.potential)
return oldSepsetPotential<|docstring|>We want to project from the clique to the sepset. We do this by marginalizing the clique potential into the sepset potential.<|endoftext|> |
13fe5c5f3f6fe292014c040a3a584f4ad097535a7b3ff5d9cb45da950514e8a3 | def absorb(self, clique, sepset, oldPotential):
" absorb divides the sepset's potential by the old potential. The result is multiplied by the clique's potential. Please see c. Huang and A. Darwiche 96. As with project, this could be optimized by finding the best set of axes to iterate over (either the sepsets, or the clique's axes that are not in the sepset). The best solution would be to define a multiplication operation on a Potential that hides the details.\n "
oldPotential[repr((sepset.potential.table == 0))] = 1
sepset.potential /= oldPotential
clique.potential *= sepset.potential | absorb divides the sepset's potential by the old potential. The result is multiplied by the clique's potential. Please see c. Huang and A. Darwiche 96. As with project, this could be optimized by finding the best set of axes to iterate over (either the sepsets, or the clique's axes that are not in the sepset). The best solution would be to define a multiplication operation on a Potential that hides the details. | PBNT/Inference.py | absorb | NunoEdgarGFlowHub/quantum-fog | 87 | python | def absorb(self, clique, sepset, oldPotential):
" \n "
oldPotential[repr((sepset.potential.table == 0))] = 1
sepset.potential /= oldPotential
clique.potential *= sepset.potential | def absorb(self, clique, sepset, oldPotential):
" \n "
oldPotential[repr((sepset.potential.table == 0))] = 1
sepset.potential /= oldPotential
clique.potential *= sepset.potential<|docstring|>absorb divides the sepset's potential by the old potential. The result is multiplied by the clique's potential. Please see c. Huang and A. Darwiche 96. As with project, this could be optimized by finding the best set of axes to iterate over (either the sepsets, or the clique's axes that are not in the sepset). The best solution would be to define a multiplication operation on a Potential that hides the details.<|endoftext|> |
6b1408021b75cf8d93b6fdfdd4a9d427768a2bef7cc21f2ada03b80cc09c5633 | def create_sepset_priority_queue(self, cliques):
' Create a sepset (with a unique id) for every unique pair of cliques, and insert it into a priority queue.\n '
sepsetHeap = []
id = 0
for i in range((len(cliques) - 1)):
for clique in cliques[(i + 1):]:
sepset = Sepset(id, cliques[i], clique)
id += 1
heapq.heappush(sepsetHeap, sepset)
return sepsetHeap | Create a sepset (with a unique id) for every unique pair of cliques, and insert it into a priority queue. | PBNT/Inference.py | create_sepset_priority_queue | NunoEdgarGFlowHub/quantum-fog | 87 | python | def create_sepset_priority_queue(self, cliques):
' \n '
sepsetHeap = []
id = 0
for i in range((len(cliques) - 1)):
for clique in cliques[(i + 1):]:
sepset = Sepset(id, cliques[i], clique)
id += 1
heapq.heappush(sepsetHeap, sepset)
return sepsetHeap | def create_sepset_priority_queue(self, cliques):
' \n '
sepsetHeap = []
id = 0
for i in range((len(cliques) - 1)):
for clique in cliques[(i + 1):]:
sepset = Sepset(id, cliques[i], clique)
id += 1
heapq.heappush(sepsetHeap, sepset)
return sepsetHeap<|docstring|>Create a sepset (with a unique id) for every unique pair of cliques, and insert it into a priority queue.<|endoftext|> |
450e8a9db3cb3a461146db4e808f201351e9f183582c990a9182dc18b4595e1a | def test_success(database):
' Tests that SF 133 amount for line 1000 matches Appropriation budget_authority_unobligat_fyb for the specified\n fiscal year and period\n '
tas_1 = 'tas_one_line_1'
tas_2 = 'tas_one_line_2'
sf_1 = SF133(line=1000, tas=tas_1, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000')
sf_2 = SF133(line=1000, tas=tas_2, period=1, fiscal_year=2016, amount=0, agency_identifier='sys', main_account_code='000', sub_account_code='000')
ap_1 = Appropriation(job_id=1, row_number=1, tas=tas_1, budget_authority_unobligat_fyb=1)
ap_2 = Appropriation(job_id=2, row_number=1, tas=tas_2, budget_authority_unobligat_fyb=None)
assert (number_of_errors(_FILE, database, models=[sf_1, sf_2, ap_1, ap_2]) == 0)
tas = 'tas_two_lines'
sf_1 = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000', disaster_emergency_fund_code='n')
sf_2 = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=4, agency_identifier='sys', main_account_code='000', sub_account_code='000', disaster_emergency_fund_code='o')
ap = Appropriation(job_id=1, row_number=1, tas=tas, budget_authority_unobligat_fyb=5)
assert (number_of_errors(_FILE, database, models=[sf_1, sf_2, ap]) == 0) | Tests that SF 133 amount for line 1000 matches Appropriation budget_authority_unobligat_fyb for the specified
fiscal year and period | tests/unit/dataactvalidator/test_a7_appropriations.py | test_success | RonSherfey/data-act-broker-backend | 0 | python | def test_success(database):
' Tests that SF 133 amount for line 1000 matches Appropriation budget_authority_unobligat_fyb for the specified\n fiscal year and period\n '
tas_1 = 'tas_one_line_1'
tas_2 = 'tas_one_line_2'
sf_1 = SF133(line=1000, tas=tas_1, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000')
sf_2 = SF133(line=1000, tas=tas_2, period=1, fiscal_year=2016, amount=0, agency_identifier='sys', main_account_code='000', sub_account_code='000')
ap_1 = Appropriation(job_id=1, row_number=1, tas=tas_1, budget_authority_unobligat_fyb=1)
ap_2 = Appropriation(job_id=2, row_number=1, tas=tas_2, budget_authority_unobligat_fyb=None)
assert (number_of_errors(_FILE, database, models=[sf_1, sf_2, ap_1, ap_2]) == 0)
tas = 'tas_two_lines'
sf_1 = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000', disaster_emergency_fund_code='n')
sf_2 = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=4, agency_identifier='sys', main_account_code='000', sub_account_code='000', disaster_emergency_fund_code='o')
ap = Appropriation(job_id=1, row_number=1, tas=tas, budget_authority_unobligat_fyb=5)
assert (number_of_errors(_FILE, database, models=[sf_1, sf_2, ap]) == 0) | def test_success(database):
' Tests that SF 133 amount for line 1000 matches Appropriation budget_authority_unobligat_fyb for the specified\n fiscal year and period\n '
tas_1 = 'tas_one_line_1'
tas_2 = 'tas_one_line_2'
sf_1 = SF133(line=1000, tas=tas_1, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000')
sf_2 = SF133(line=1000, tas=tas_2, period=1, fiscal_year=2016, amount=0, agency_identifier='sys', main_account_code='000', sub_account_code='000')
ap_1 = Appropriation(job_id=1, row_number=1, tas=tas_1, budget_authority_unobligat_fyb=1)
ap_2 = Appropriation(job_id=2, row_number=1, tas=tas_2, budget_authority_unobligat_fyb=None)
assert (number_of_errors(_FILE, database, models=[sf_1, sf_2, ap_1, ap_2]) == 0)
tas = 'tas_two_lines'
sf_1 = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000', disaster_emergency_fund_code='n')
sf_2 = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=4, agency_identifier='sys', main_account_code='000', sub_account_code='000', disaster_emergency_fund_code='o')
ap = Appropriation(job_id=1, row_number=1, tas=tas, budget_authority_unobligat_fyb=5)
assert (number_of_errors(_FILE, database, models=[sf_1, sf_2, ap]) == 0)<|docstring|>Tests that SF 133 amount for line 1000 matches Appropriation budget_authority_unobligat_fyb for the specified
fiscal year and period<|endoftext|> |
420030a41a8d04aea1b7786b9ff33ca2be9c94bcf27f1c764148da7440e3906b | def test_failure(database):
' Tests that SF 133 amount for line 1000 does not match Appropriation budget_authority_unobligat_fyb for the\n specified fiscal year and period\n '
tas = 'fail_tas'
sf = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000')
ap_1 = Appropriation(job_id=1, row_number=1, tas=tas, budget_authority_unobligat_fyb=0)
ap_2 = Appropriation(job_id=2, row_number=1, tas=tas, budget_authority_unobligat_fyb=None)
assert (number_of_errors(_FILE, database, models=[sf, ap_1, ap_2]) == 2) | Tests that SF 133 amount for line 1000 does not match Appropriation budget_authority_unobligat_fyb for the
specified fiscal year and period | tests/unit/dataactvalidator/test_a7_appropriations.py | test_failure | RonSherfey/data-act-broker-backend | 0 | python | def test_failure(database):
' Tests that SF 133 amount for line 1000 does not match Appropriation budget_authority_unobligat_fyb for the\n specified fiscal year and period\n '
tas = 'fail_tas'
sf = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000')
ap_1 = Appropriation(job_id=1, row_number=1, tas=tas, budget_authority_unobligat_fyb=0)
ap_2 = Appropriation(job_id=2, row_number=1, tas=tas, budget_authority_unobligat_fyb=None)
assert (number_of_errors(_FILE, database, models=[sf, ap_1, ap_2]) == 2) | def test_failure(database):
' Tests that SF 133 amount for line 1000 does not match Appropriation budget_authority_unobligat_fyb for the\n specified fiscal year and period\n '
tas = 'fail_tas'
sf = SF133(line=1000, tas=tas, period=1, fiscal_year=2016, amount=1, agency_identifier='sys', main_account_code='000', sub_account_code='000')
ap_1 = Appropriation(job_id=1, row_number=1, tas=tas, budget_authority_unobligat_fyb=0)
ap_2 = Appropriation(job_id=2, row_number=1, tas=tas, budget_authority_unobligat_fyb=None)
assert (number_of_errors(_FILE, database, models=[sf, ap_1, ap_2]) == 2)<|docstring|>Tests that SF 133 amount for line 1000 does not match Appropriation budget_authority_unobligat_fyb for the
specified fiscal year and period<|endoftext|> |
840cc42b9755e97e4fcbfa8824fa93eaa02b82afed1bc57b8bb905b6ed9df7a7 | def clean_product_version(version: str) -> str:
'\n Replace / alias "latest" with "release"\n\n :type version: str\n :rtype: str\n :param version: The current version being used\n :return: The cleaned/replaced version\n '
if (version == 'latest'):
version = 'release'
return version | Replace / alias "latest" with "release"
:type version: str
:rtype: str
:param version: The current version being used
:return: The cleaned/replaced version | get-version.py | clean_product_version | rstudio/rstudio-docker-products | 31 | python | def clean_product_version(version: str) -> str:
'\n Replace / alias "latest" with "release"\n\n :type version: str\n :rtype: str\n :param version: The current version being used\n :return: The cleaned/replaced version\n '
if (version == 'latest'):
version = 'release'
return version | def clean_product_version(version: str) -> str:
'\n Replace / alias "latest" with "release"\n\n :type version: str\n :rtype: str\n :param version: The current version being used\n :return: The cleaned/replaced version\n '
if (version == 'latest'):
version = 'release'
return version<|docstring|>Replace / alias "latest" with "release"
:type version: str
:rtype: str
:param version: The current version being used
:return: The cleaned/replaced version<|endoftext|> |
007b4b1311f011ad5d85ddd48961f499557b34c4583374058acd4cffe791cd0f | def clean_product_selection(product: str) -> str:
'\n Clean up / alias products together for version determination\n - Remove rstudio- prefix\n - Remove -preview suffix\n - Convert r-session prefixed products to workbench\n - Convert connect- prefixed products to connect\n - Convert rsw -> workbench, rsc -> connect, rspm -> package-manager\n\n :rtype: str\n :param product: The current product being requested\n :return: The cleaned/replaced product name\n '
pref = re.compile('^rstudio-')
product = pref.sub('', product)
suffix = re.compile('-preview$')
product = suffix.sub('', product)
rsw = re.compile('^rsw$')
if rsw.match(product):
product = 'workbench'
rsc = re.compile('^rsc$')
if rsc.match(product):
product = 'connect'
rspm = re.compile('^rspm$')
if rspm.match(product):
product = 'package-manager'
session_pref = re.compile('^r-session')
if session_pref.match(product):
print(f"Swapping product '{product}' for 'workbench'", file=sys.stderr)
product = 'workbench'
connect_pref = re.compile('^connect-')
if connect_pref.match(product):
print(f"Swapping product '{product}' for 'connect'", file=sys.stderr)
product = 'connect'
return product | Clean up / alias products together for version determination
- Remove rstudio- prefix
- Remove -preview suffix
- Convert r-session prefixed products to workbench
- Convert connect- prefixed products to connect
- Convert rsw -> workbench, rsc -> connect, rspm -> package-manager
:rtype: str
:param product: The current product being requested
:return: The cleaned/replaced product name | get-version.py | clean_product_selection | rstudio/rstudio-docker-products | 31 | python | def clean_product_selection(product: str) -> str:
'\n Clean up / alias products together for version determination\n - Remove rstudio- prefix\n - Remove -preview suffix\n - Convert r-session prefixed products to workbench\n - Convert connect- prefixed products to connect\n - Convert rsw -> workbench, rsc -> connect, rspm -> package-manager\n\n :rtype: str\n :param product: The current product being requested\n :return: The cleaned/replaced product name\n '
pref = re.compile('^rstudio-')
product = pref.sub(, product)
suffix = re.compile('-preview$')
product = suffix.sub(, product)
rsw = re.compile('^rsw$')
if rsw.match(product):
product = 'workbench'
rsc = re.compile('^rsc$')
if rsc.match(product):
product = 'connect'
rspm = re.compile('^rspm$')
if rspm.match(product):
product = 'package-manager'
session_pref = re.compile('^r-session')
if session_pref.match(product):
print(f"Swapping product '{product}' for 'workbench'", file=sys.stderr)
product = 'workbench'
connect_pref = re.compile('^connect-')
if connect_pref.match(product):
print(f"Swapping product '{product}' for 'connect'", file=sys.stderr)
product = 'connect'
return product | def clean_product_selection(product: str) -> str:
'\n Clean up / alias products together for version determination\n - Remove rstudio- prefix\n - Remove -preview suffix\n - Convert r-session prefixed products to workbench\n - Convert connect- prefixed products to connect\n - Convert rsw -> workbench, rsc -> connect, rspm -> package-manager\n\n :rtype: str\n :param product: The current product being requested\n :return: The cleaned/replaced product name\n '
pref = re.compile('^rstudio-')
product = pref.sub(, product)
suffix = re.compile('-preview$')
product = suffix.sub(, product)
rsw = re.compile('^rsw$')
if rsw.match(product):
product = 'workbench'
rsc = re.compile('^rsc$')
if rsc.match(product):
product = 'connect'
rspm = re.compile('^rspm$')
if rspm.match(product):
product = 'package-manager'
session_pref = re.compile('^r-session')
if session_pref.match(product):
print(f"Swapping product '{product}' for 'workbench'", file=sys.stderr)
product = 'workbench'
connect_pref = re.compile('^connect-')
if connect_pref.match(product):
print(f"Swapping product '{product}' for 'connect'", file=sys.stderr)
product = 'connect'
return product<|docstring|>Clean up / alias products together for version determination
- Remove rstudio- prefix
- Remove -preview suffix
- Convert r-session prefixed products to workbench
- Convert connect- prefixed products to connect
- Convert rsw -> workbench, rsc -> connect, rspm -> package-manager
:rtype: str
:param product: The current product being requested
:return: The cleaned/replaced product name<|endoftext|> |
f1000af643dd1fc16ce572c2c4bdddf9171ef100caa29ca41c0db5f896ea9bfc | def get_child_accounts(self):
"\n Return a list of all child accounts of the integration's account.\n "
params = {}
response = self.json_api_call('POST', '/accounts/v1/account/list', params)
return response | Return a list of all child accounts of the integration's account. | duo_client/accounts.py | get_child_accounts | cavemanpi/duo_client_python | 96 | python | def get_child_accounts(self):
"\n \n "
params = {}
response = self.json_api_call('POST', '/accounts/v1/account/list', params)
return response | def get_child_accounts(self):
"\n \n "
params = {}
response = self.json_api_call('POST', '/accounts/v1/account/list', params)
return response<|docstring|>Return a list of all child accounts of the integration's account.<|endoftext|> |
a67e36fa94c5820f1e265b1a6bd1f9d251b79fafbcbb99437aa3492882439251 | def create_account(self, name):
"\n Create a new child account of the integration's account.\n "
params = {'name': name}
response = self.json_api_call('POST', '/accounts/v1/account/create', params)
return response | Create a new child account of the integration's account. | duo_client/accounts.py | create_account | cavemanpi/duo_client_python | 96 | python | def create_account(self, name):
"\n \n "
params = {'name': name}
response = self.json_api_call('POST', '/accounts/v1/account/create', params)
return response | def create_account(self, name):
"\n \n "
params = {'name': name}
response = self.json_api_call('POST', '/accounts/v1/account/create', params)
return response<|docstring|>Create a new child account of the integration's account.<|endoftext|> |
62adf5d4ce736b81b82ade51e01477d0f263925bc39a412181482254e60e1a73 | def delete_account(self, account_id):
"\n Delete a child account of the integration's account.\n "
params = {'account_id': account_id}
response = self.json_api_call('POST', '/accounts/v1/account/delete', params)
return response | Delete a child account of the integration's account. | duo_client/accounts.py | delete_account | cavemanpi/duo_client_python | 96 | python | def delete_account(self, account_id):
"\n \n "
params = {'account_id': account_id}
response = self.json_api_call('POST', '/accounts/v1/account/delete', params)
return response | def delete_account(self, account_id):
"\n \n "
params = {'account_id': account_id}
response = self.json_api_call('POST', '/accounts/v1/account/delete', params)
return response<|docstring|>Delete a child account of the integration's account.<|endoftext|> |
cff373a1f5167813af901d862641e8c1c7afd0feaaeca4c2de320feb0815ec4d | def handle_file_download(url: str, filename: str):
'Handle file download from url, write to file and save to static directory.'
if (isfile(filename) is False):
response = io.StringIO(urllib.request.urlopen(url).read().decode('utf-8'))
with open(filename, 'w') as f:
f.write(response.read()) | Handle file download from url, write to file and save to static directory. | viewer/src/utils.py | handle_file_download | DecoPath/DecoPath | 1 | python | def handle_file_download(url: str, filename: str):
if (isfile(filename) is False):
response = io.StringIO(urllib.request.urlopen(url).read().decode('utf-8'))
with open(filename, 'w') as f:
f.write(response.read()) | def handle_file_download(url: str, filename: str):
if (isfile(filename) is False):
response = io.StringIO(urllib.request.urlopen(url).read().decode('utf-8'))
with open(filename, 'w') as f:
f.write(response.read())<|docstring|>Handle file download from url, write to file and save to static directory.<|endoftext|> |
76638dbb4e37687fba78e5411529df92f9dd3081c8199bacf0d783aebfa46897 | def read_data_file(file_path: str, filename: str) -> Union[(pd.DataFrame, str)]:
'Check read data file.'
logger.info(f'Reading {file_path}')
try:
if file_path.endswith(CSV):
return pd.read_csv(file_path, sep=',')
elif file_path.endswith(TSV):
return pd.read_csv(file_path, sep='\t')
else:
return pd.read_csv(file_path, sep=None, engine='python')
except IOError:
logger.error(f'Failed to read {filename} {file_path}. File exists: {os.path.isfile(file_path)}')
return f'There is a problem with your file {filename}. please check that it meets the criteria.' | Check read data file. | viewer/src/utils.py | read_data_file | DecoPath/DecoPath | 1 | python | def read_data_file(file_path: str, filename: str) -> Union[(pd.DataFrame, str)]:
logger.info(f'Reading {file_path}')
try:
if file_path.endswith(CSV):
return pd.read_csv(file_path, sep=',')
elif file_path.endswith(TSV):
return pd.read_csv(file_path, sep='\t')
else:
return pd.read_csv(file_path, sep=None, engine='python')
except IOError:
logger.error(f'Failed to read {filename} {file_path}. File exists: {os.path.isfile(file_path)}')
return f'There is a problem with your file {filename}. please check that it meets the criteria.' | def read_data_file(file_path: str, filename: str) -> Union[(pd.DataFrame, str)]:
logger.info(f'Reading {file_path}')
try:
if file_path.endswith(CSV):
return pd.read_csv(file_path, sep=',')
elif file_path.endswith(TSV):
return pd.read_csv(file_path, sep='\t')
else:
return pd.read_csv(file_path, sep=None, engine='python')
except IOError:
logger.error(f'Failed to read {filename} {file_path}. File exists: {os.path.isfile(file_path)}')
return f'There is a problem with your file {filename}. please check that it meets the criteria.'<|docstring|>Check read data file.<|endoftext|> |
ed7f755d0ef8a1553fdf1f5c24d7a1e4657bf217294231b7a88b6dba7fb2e0f9 | @functools.lru_cache()
def _get_hgnc_mapping_dict(hgnc_mappings=HGNC_MAPPINGS):
'Load HGNC name-id mappings.'
with open(hgnc_mappings) as json_file:
return json.load(json_file) | Load HGNC name-id mappings. | viewer/src/utils.py | _get_hgnc_mapping_dict | DecoPath/DecoPath | 1 | python | @functools.lru_cache()
def _get_hgnc_mapping_dict(hgnc_mappings=HGNC_MAPPINGS):
with open(hgnc_mappings) as json_file:
return json.load(json_file) | @functools.lru_cache()
def _get_hgnc_mapping_dict(hgnc_mappings=HGNC_MAPPINGS):
with open(hgnc_mappings) as json_file:
return json.load(json_file)<|docstring|>Load HGNC name-id mappings.<|endoftext|> |
2941252ddf2425c6068a3218e3a678525025d50ced5d2566245dbecb172f3395 | def concatenate_files(files_list: List, databases_list: List) -> str:
'Concatenate GMT files in a list of files and write to a new file.'
databases = '_'.join((str(x) for x in sorted(databases_list)))
concatenated_file = (databases + GMT_FILE_EXTENSION)
file_path = os.path.join(GMT_FILES_DIR, concatenated_file)
if (not isfile(file_path)):
with open(file_path, 'w') as outfile:
for file in files_list:
with open(file) as infile:
for line in infile:
outfile.write(line)
return file_path | Concatenate GMT files in a list of files and write to a new file. | viewer/src/utils.py | concatenate_files | DecoPath/DecoPath | 1 | python | def concatenate_files(files_list: List, databases_list: List) -> str:
databases = '_'.join((str(x) for x in sorted(databases_list)))
concatenated_file = (databases + GMT_FILE_EXTENSION)
file_path = os.path.join(GMT_FILES_DIR, concatenated_file)
if (not isfile(file_path)):
with open(file_path, 'w') as outfile:
for file in files_list:
with open(file) as infile:
for line in infile:
outfile.write(line)
return file_path | def concatenate_files(files_list: List, databases_list: List) -> str:
databases = '_'.join((str(x) for x in sorted(databases_list)))
concatenated_file = (databases + GMT_FILE_EXTENSION)
file_path = os.path.join(GMT_FILES_DIR, concatenated_file)
if (not isfile(file_path)):
with open(file_path, 'w') as outfile:
for file in files_list:
with open(file) as infile:
for line in infile:
outfile.write(line)
return file_path<|docstring|>Concatenate GMT files in a list of files and write to a new file.<|endoftext|> |
d2927dffa8af134858bf6ba4b02591113ccfe2db067487527b0d976029f93a4d | def spliterate(lines: Iterable[str], sep='\t') -> Iterable[Tuple[(str, ...)]]:
'Split each line in the iterable by the given separator.'
for line in lines:
(yield line.strip().split(sep)) | Split each line in the iterable by the given separator. | viewer/src/utils.py | spliterate | DecoPath/DecoPath | 1 | python | def spliterate(lines: Iterable[str], sep='\t') -> Iterable[Tuple[(str, ...)]]:
for line in lines:
(yield line.strip().split(sep)) | def spliterate(lines: Iterable[str], sep='\t') -> Iterable[Tuple[(str, ...)]]:
for line in lines:
(yield line.strip().split(sep))<|docstring|>Split each line in the iterable by the given separator.<|endoftext|> |
a55ac557637078656f731ff72508b29def9edcfb8332cf7fae64f58d5fb2e03a | def query_pathway_db_model():
'Query pathway database model for all databases to display as multiple choice field for user selection.'
return tuple([(index, DATABASES[str(obj)]) for (index, obj) in enumerate(PathwayDatabase.objects.filter(database_name__in=[KEGG, REACTOME, PATHBANK, WIKIPATHWAYS]))]) | Query pathway database model for all databases to display as multiple choice field for user selection. | viewer/src/utils.py | query_pathway_db_model | DecoPath/DecoPath | 1 | python | def query_pathway_db_model():
return tuple([(index, DATABASES[str(obj)]) for (index, obj) in enumerate(PathwayDatabase.objects.filter(database_name__in=[KEGG, REACTOME, PATHBANK, WIKIPATHWAYS]))]) | def query_pathway_db_model():
return tuple([(index, DATABASES[str(obj)]) for (index, obj) in enumerate(PathwayDatabase.objects.filter(database_name__in=[KEGG, REACTOME, PATHBANK, WIKIPATHWAYS]))])<|docstring|>Query pathway database model for all databases to display as multiple choice field for user selection.<|endoftext|> |
c0831def5d2a93dda517813b6e4dec2e9531a600aa0a8a3c22c05f716b95a896 | def get_database_by_id(row: pd.Series):
'Get database by identifier suffix if default databases used for analysis.'
if row.startswith('hsa'):
return KEGG
elif row.startswith('PW'):
return PATHBANK
elif row.startswith('R-HSA'):
return REACTOME
elif row.startswith('WP'):
return WIKIPATHWAYS
elif row.startswith('DC'):
return DECOPATH
return CUSTOM | Get database by identifier suffix if default databases used for analysis. | viewer/src/utils.py | get_database_by_id | DecoPath/DecoPath | 1 | python | def get_database_by_id(row: pd.Series):
if row.startswith('hsa'):
return KEGG
elif row.startswith('PW'):
return PATHBANK
elif row.startswith('R-HSA'):
return REACTOME
elif row.startswith('WP'):
return WIKIPATHWAYS
elif row.startswith('DC'):
return DECOPATH
return CUSTOM | def get_database_by_id(row: pd.Series):
if row.startswith('hsa'):
return KEGG
elif row.startswith('PW'):
return PATHBANK
elif row.startswith('R-HSA'):
return REACTOME
elif row.startswith('WP'):
return WIKIPATHWAYS
elif row.startswith('DC'):
return DECOPATH
return CUSTOM<|docstring|>Get database by identifier suffix if default databases used for analysis.<|endoftext|> |
8aa489d7589fddace2fbb551f3487dbdf49f2437c74403aa8dc4665bb8f69575 | def get_missing_columns(column_labels: set, df: pd.DataFrame) -> List:
'Get missing column labels.'
return [column for column in column_labels if (column not in df)] | Get missing column labels. | viewer/src/utils.py | get_missing_columns | DecoPath/DecoPath | 1 | python | def get_missing_columns(column_labels: set, df: pd.DataFrame) -> List:
return [column for column in column_labels if (column not in df)] | def get_missing_columns(column_labels: set, df: pd.DataFrame) -> List:
return [column for column in column_labels if (column not in df)]<|docstring|>Get missing column labels.<|endoftext|> |
893809846cd53a19c31877316768b03814bc7f06562fdf6d86d45d71854538eb | def get_equivalent_dicts(equivalent_rows):
'Return equivalent pathways.'
equivalent_pathways = defaultdict(list)
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in equivalent_rows.values:
equivalent_pathways[(source_db, source_id)].append((target_db, target_id))
equivalent_pathways[(target_db, target_id)].append((source_db, source_id))
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in equivalent_rows.values:
if (len(equivalent_pathways[(source_db, source_id)]) != len(equivalent_pathways[(target_db, target_id)])):
raise ValueError(f'{(source_db, source_id)} has {len(equivalent_pathways[(source_db, source_id)])} mappings{(target_db, target_id)} has {len(equivalent_pathways[(target_db, target_id)])} mappings')
return dict(equivalent_pathways) | Return equivalent pathways. | viewer/src/utils.py | get_equivalent_dicts | DecoPath/DecoPath | 1 | python | def get_equivalent_dicts(equivalent_rows):
equivalent_pathways = defaultdict(list)
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in equivalent_rows.values:
equivalent_pathways[(source_db, source_id)].append((target_db, target_id))
equivalent_pathways[(target_db, target_id)].append((source_db, source_id))
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in equivalent_rows.values:
if (len(equivalent_pathways[(source_db, source_id)]) != len(equivalent_pathways[(target_db, target_id)])):
raise ValueError(f'{(source_db, source_id)} has {len(equivalent_pathways[(source_db, source_id)])} mappings{(target_db, target_id)} has {len(equivalent_pathways[(target_db, target_id)])} mappings')
return dict(equivalent_pathways) | def get_equivalent_dicts(equivalent_rows):
equivalent_pathways = defaultdict(list)
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in equivalent_rows.values:
equivalent_pathways[(source_db, source_id)].append((target_db, target_id))
equivalent_pathways[(target_db, target_id)].append((source_db, source_id))
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in equivalent_rows.values:
if (len(equivalent_pathways[(source_db, source_id)]) != len(equivalent_pathways[(target_db, target_id)])):
raise ValueError(f'{(source_db, source_id)} has {len(equivalent_pathways[(source_db, source_id)])} mappings{(target_db, target_id)} has {len(equivalent_pathways[(target_db, target_id)])} mappings')
return dict(equivalent_pathways)<|docstring|>Return equivalent pathways.<|endoftext|> |
72ce83d2870e9e804301ce4c259f157088839cb0b6c1d975c01743c25b0d4d42 | def _check_duplicates(df):
'Check quality of df.'
hierarchy_df = df[(df[MAPPING_TYPE] == IS_PART_OF)]
duplicates_hierarchy = [df.iloc[i] for (i, duplicated) in hierarchy_df[SOURCE_ID].duplicated().items() if duplicated]
if duplicates_hierarchy:
raise ValueError(f'Duplicate hierarchy: {duplicates_hierarchy}') | Check quality of df. | viewer/src/utils.py | _check_duplicates | DecoPath/DecoPath | 1 | python | def _check_duplicates(df):
hierarchy_df = df[(df[MAPPING_TYPE] == IS_PART_OF)]
duplicates_hierarchy = [df.iloc[i] for (i, duplicated) in hierarchy_df[SOURCE_ID].duplicated().items() if duplicated]
if duplicates_hierarchy:
raise ValueError(f'Duplicate hierarchy: {duplicates_hierarchy}') | def _check_duplicates(df):
hierarchy_df = df[(df[MAPPING_TYPE] == IS_PART_OF)]
duplicates_hierarchy = [df.iloc[i] for (i, duplicated) in hierarchy_df[SOURCE_ID].duplicated().items() if duplicated]
if duplicates_hierarchy:
raise ValueError(f'Duplicate hierarchy: {duplicates_hierarchy}')<|docstring|>Check quality of df.<|endoftext|> |
31c94a74fa826edb120c1295379e4a774fe389c6d5c995eee67890fd32e1a831 | def _add_gsea_cmap(nodes, node_to_score, fdr_dict, significance_value):
'Return dictionary with the nodes and their corresponding normalized colors.'
cmap = matplotlib.colors.LinearSegmentedColormap.from_list('DecoPath ColorMap', COLORMAP_VALUES)
norm = matplotlib.colors.Normalize(min(node_to_score.items(), key=operator.itemgetter(1))[1], max(node_to_score.items(), key=operator.itemgetter(1))[1])
color_map = {}
for node_id in nodes:
if (node_id in node_to_score):
if (fdr_dict[node_id] < significance_value):
color_map[node_id] = matplotlib.colors.rgb2hex(cmap(norm(float(node_to_score[node_id]))))
else:
color_map[node_id] = '#b4b4b4'
else:
color_map[node_id] = '#dadada'
return color_map | Return dictionary with the nodes and their corresponding normalized colors. | viewer/src/utils.py | _add_gsea_cmap | DecoPath/DecoPath | 1 | python | def _add_gsea_cmap(nodes, node_to_score, fdr_dict, significance_value):
cmap = matplotlib.colors.LinearSegmentedColormap.from_list('DecoPath ColorMap', COLORMAP_VALUES)
norm = matplotlib.colors.Normalize(min(node_to_score.items(), key=operator.itemgetter(1))[1], max(node_to_score.items(), key=operator.itemgetter(1))[1])
color_map = {}
for node_id in nodes:
if (node_id in node_to_score):
if (fdr_dict[node_id] < significance_value):
color_map[node_id] = matplotlib.colors.rgb2hex(cmap(norm(float(node_to_score[node_id]))))
else:
color_map[node_id] = '#b4b4b4'
else:
color_map[node_id] = '#dadada'
return color_map | def _add_gsea_cmap(nodes, node_to_score, fdr_dict, significance_value):
cmap = matplotlib.colors.LinearSegmentedColormap.from_list('DecoPath ColorMap', COLORMAP_VALUES)
norm = matplotlib.colors.Normalize(min(node_to_score.items(), key=operator.itemgetter(1))[1], max(node_to_score.items(), key=operator.itemgetter(1))[1])
color_map = {}
for node_id in nodes:
if (node_id in node_to_score):
if (fdr_dict[node_id] < significance_value):
color_map[node_id] = matplotlib.colors.rgb2hex(cmap(norm(float(node_to_score[node_id]))))
else:
color_map[node_id] = '#b4b4b4'
else:
color_map[node_id] = '#dadada'
return color_map<|docstring|>Return dictionary with the nodes and their corresponding normalized colors.<|endoftext|> |
568431f30ad740e9117d98bb715d8069553403761a3dda00887ef3836ec956dd | def _add_pvalue_cmap(nodes, node_to_score, significance_value):
'Return dictionary with the nodes and their corresponding normalized colors according to p value.'
cmap = matplotlib.cm.get_cmap('Reds').reversed()
norm = matplotlib.colors.Normalize((- 0.01), 0.05)
color_map = {}
for node_id in nodes:
if ((node_id in node_to_score) and (node_to_score[node_id] < significance_value)):
color_map[node_id] = matplotlib.colors.rgb2hex(cmap(norm(float(node_to_score[node_id]))))
else:
color_map[node_id] = '#94989c'
return color_map | Return dictionary with the nodes and their corresponding normalized colors according to p value. | viewer/src/utils.py | _add_pvalue_cmap | DecoPath/DecoPath | 1 | python | def _add_pvalue_cmap(nodes, node_to_score, significance_value):
cmap = matplotlib.cm.get_cmap('Reds').reversed()
norm = matplotlib.colors.Normalize((- 0.01), 0.05)
color_map = {}
for node_id in nodes:
if ((node_id in node_to_score) and (node_to_score[node_id] < significance_value)):
color_map[node_id] = matplotlib.colors.rgb2hex(cmap(norm(float(node_to_score[node_id]))))
else:
color_map[node_id] = '#94989c'
return color_map | def _add_pvalue_cmap(nodes, node_to_score, significance_value):
cmap = matplotlib.cm.get_cmap('Reds').reversed()
norm = matplotlib.colors.Normalize((- 0.01), 0.05)
color_map = {}
for node_id in nodes:
if ((node_id in node_to_score) and (node_to_score[node_id] < significance_value)):
color_map[node_id] = matplotlib.colors.rgb2hex(cmap(norm(float(node_to_score[node_id]))))
else:
color_map[node_id] = '#94989c'
return color_map<|docstring|>Return dictionary with the nodes and their corresponding normalized colors according to p value.<|endoftext|> |
ee774bdcfeebd6c95e877a0ea693de9197cceb3717a0b3d7737210afa41d8751 | def _label_tree(network, id_to_database, id_to_name):
'Add attributes to the nodes in the tree.'
nx.set_node_attributes(network, id_to_database, 'database')
nx.set_node_attributes(network, {node_id: (id_to_name[node_id] if (node_id in id_to_name) else '') for node_id in network.nodes()}, 'name')
mapping = {node_name: node_name.replace('path:', '') for node_name in network if ('path:' in node_name)}
nx.relabel_nodes(network, mapping, copy=False) | Add attributes to the nodes in the tree. | viewer/src/utils.py | _label_tree | DecoPath/DecoPath | 1 | python | def _label_tree(network, id_to_database, id_to_name):
nx.set_node_attributes(network, id_to_database, 'database')
nx.set_node_attributes(network, {node_id: (id_to_name[node_id] if (node_id in id_to_name) else ) for node_id in network.nodes()}, 'name')
mapping = {node_name: node_name.replace('path:', ) for node_name in network if ('path:' in node_name)}
nx.relabel_nodes(network, mapping, copy=False) | def _label_tree(network, id_to_database, id_to_name):
nx.set_node_attributes(network, id_to_database, 'database')
nx.set_node_attributes(network, {node_id: (id_to_name[node_id] if (node_id in id_to_name) else ) for node_id in network.nodes()}, 'name')
mapping = {node_name: node_name.replace('path:', ) for node_name in network if ('path:' in node_name)}
nx.relabel_nodes(network, mapping, copy=False)<|docstring|>Add attributes to the nodes in the tree.<|endoftext|> |
fa9c942ce9dc31f660a311e45b9faedadeb9f56aa03e91ec613c2b113093c764 | def parse_hierarchy_excel(url):
'Parse hierarchy file.'
xls = pd.ExcelFile(DECOPATH_ONTOLOGY)
root_node = 'SuperPathway'
tree_network = DiGraph()
id_to_database = {}
id_to_name = {}
for sheet_name in xls.sheet_names:
if (sheet_name == 'equivalence_same_db'):
continue
df = pd.read_excel(io=xls, sheet_name=sheet_name, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str)
equivalent_pathways_dict = get_equivalent_dicts(df[(df[MAPPING_TYPE] == EQUIVALENT_TO)])
_check_duplicates(df)
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in df.values:
if ((mapping == EQUIVALENT_TO) or pd.isna(mapping)):
continue
id_to_name[target_id] = target_name
id_to_database[target_id] = target_db
id_to_name[source_id] = source_name
id_to_database[source_id] = source_db
'Logic to generate the tree'
if (mapping == 'SuperPathway'):
tree_network.add_edge(root_node, target_id)
elif (mapping == IS_PART_OF):
tree_network.add_edge(target_id, source_id)
else:
raise ValueError(f'invalid {mapping}')
_label_tree(tree_network, id_to_database, id_to_name)
return (tree_data(tree_network, root_node), tree_network, equivalent_pathways_dict, root_node) | Parse hierarchy file. | viewer/src/utils.py | parse_hierarchy_excel | DecoPath/DecoPath | 1 | python | def parse_hierarchy_excel(url):
xls = pd.ExcelFile(DECOPATH_ONTOLOGY)
root_node = 'SuperPathway'
tree_network = DiGraph()
id_to_database = {}
id_to_name = {}
for sheet_name in xls.sheet_names:
if (sheet_name == 'equivalence_same_db'):
continue
df = pd.read_excel(io=xls, sheet_name=sheet_name, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str)
equivalent_pathways_dict = get_equivalent_dicts(df[(df[MAPPING_TYPE] == EQUIVALENT_TO)])
_check_duplicates(df)
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in df.values:
if ((mapping == EQUIVALENT_TO) or pd.isna(mapping)):
continue
id_to_name[target_id] = target_name
id_to_database[target_id] = target_db
id_to_name[source_id] = source_name
id_to_database[source_id] = source_db
'Logic to generate the tree'
if (mapping == 'SuperPathway'):
tree_network.add_edge(root_node, target_id)
elif (mapping == IS_PART_OF):
tree_network.add_edge(target_id, source_id)
else:
raise ValueError(f'invalid {mapping}')
_label_tree(tree_network, id_to_database, id_to_name)
return (tree_data(tree_network, root_node), tree_network, equivalent_pathways_dict, root_node) | def parse_hierarchy_excel(url):
xls = pd.ExcelFile(DECOPATH_ONTOLOGY)
root_node = 'SuperPathway'
tree_network = DiGraph()
id_to_database = {}
id_to_name = {}
for sheet_name in xls.sheet_names:
if (sheet_name == 'equivalence_same_db'):
continue
df = pd.read_excel(io=xls, sheet_name=sheet_name, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str)
equivalent_pathways_dict = get_equivalent_dicts(df[(df[MAPPING_TYPE] == EQUIVALENT_TO)])
_check_duplicates(df)
for (source_db, source_id, source_name, mapping, target_db, target_id, target_name) in df.values:
if ((mapping == EQUIVALENT_TO) or pd.isna(mapping)):
continue
id_to_name[target_id] = target_name
id_to_database[target_id] = target_db
id_to_name[source_id] = source_name
id_to_database[source_id] = source_db
'Logic to generate the tree'
if (mapping == 'SuperPathway'):
tree_network.add_edge(root_node, target_id)
elif (mapping == IS_PART_OF):
tree_network.add_edge(target_id, source_id)
else:
raise ValueError(f'invalid {mapping}')
_label_tree(tree_network, id_to_database, id_to_name)
return (tree_data(tree_network, root_node), tree_network, equivalent_pathways_dict, root_node)<|docstring|>Parse hierarchy file.<|endoftext|> |
2f46ff20163e633cbd8c55a29d71844a0ab9577dea68253ffa70a401de0ad121 | def map_results_to_hierarchy(network_hierarchy, root_node, results: List[Tuple[(str, str, str, str, str)]], enrichment_method: str, significance_value: float) -> Dict[(Any, Any)]:
'Map results of GSEA experiment to hierarchy.\n\n :param network_hierarchy: network reprsenting the hierarchy\n :param root_node: hierarchy root\n :param results: results of gsea experiment\n :param enrichment_method: enrichment method\n :return: hierarchy with mapped results\n '
geneset_size_mapping = {}
node_to_score = {}
fdr_dict = {}
for (db, pathway_id, score, fdr, geneset_size) in results:
if (pathway_id not in network_hierarchy):
continue
if (enrichment_method == ORA):
node_to_score[pathway_id] = fdr
elif ((enrichment_method == GSEA) or (enrichment_method == PRERANK)):
node_to_score[pathway_id] = score
fdr_dict[pathway_id] = fdr
else:
logger.warning(f'unknown enrichment method {enrichment_method}')
raise ValueError()
geneset_size_mapping[pathway_id] = geneset_size
if (not node_to_score):
raise ValueError('could not map to any pathway in the hierarchy')
elif all(((i is None) for i in node_to_score.values())):
logger.warning('error with pathway scores')
raise ValueError()
nx.set_node_attributes(network_hierarchy, geneset_size_mapping, 'geneset_size')
nx.set_node_attributes(network_hierarchy, node_to_score, 'direction')
if (enrichment_method == ORA):
nx.set_node_attributes(network_hierarchy, _add_pvalue_cmap(network_hierarchy.nodes(), node_to_score, significance_value), 'color')
else:
nx.set_node_attributes(network_hierarchy, fdr_dict, 'fdr')
nx.set_node_attributes(network_hierarchy, _add_gsea_cmap(network_hierarchy.nodes(), node_to_score, fdr_dict, significance_value), 'color')
return tree_data(network_hierarchy, root_node) | Map results of GSEA experiment to hierarchy.
:param network_hierarchy: network reprsenting the hierarchy
:param root_node: hierarchy root
:param results: results of gsea experiment
:param enrichment_method: enrichment method
:return: hierarchy with mapped results | viewer/src/utils.py | map_results_to_hierarchy | DecoPath/DecoPath | 1 | python | def map_results_to_hierarchy(network_hierarchy, root_node, results: List[Tuple[(str, str, str, str, str)]], enrichment_method: str, significance_value: float) -> Dict[(Any, Any)]:
'Map results of GSEA experiment to hierarchy.\n\n :param network_hierarchy: network reprsenting the hierarchy\n :param root_node: hierarchy root\n :param results: results of gsea experiment\n :param enrichment_method: enrichment method\n :return: hierarchy with mapped results\n '
geneset_size_mapping = {}
node_to_score = {}
fdr_dict = {}
for (db, pathway_id, score, fdr, geneset_size) in results:
if (pathway_id not in network_hierarchy):
continue
if (enrichment_method == ORA):
node_to_score[pathway_id] = fdr
elif ((enrichment_method == GSEA) or (enrichment_method == PRERANK)):
node_to_score[pathway_id] = score
fdr_dict[pathway_id] = fdr
else:
logger.warning(f'unknown enrichment method {enrichment_method}')
raise ValueError()
geneset_size_mapping[pathway_id] = geneset_size
if (not node_to_score):
raise ValueError('could not map to any pathway in the hierarchy')
elif all(((i is None) for i in node_to_score.values())):
logger.warning('error with pathway scores')
raise ValueError()
nx.set_node_attributes(network_hierarchy, geneset_size_mapping, 'geneset_size')
nx.set_node_attributes(network_hierarchy, node_to_score, 'direction')
if (enrichment_method == ORA):
nx.set_node_attributes(network_hierarchy, _add_pvalue_cmap(network_hierarchy.nodes(), node_to_score, significance_value), 'color')
else:
nx.set_node_attributes(network_hierarchy, fdr_dict, 'fdr')
nx.set_node_attributes(network_hierarchy, _add_gsea_cmap(network_hierarchy.nodes(), node_to_score, fdr_dict, significance_value), 'color')
return tree_data(network_hierarchy, root_node) | def map_results_to_hierarchy(network_hierarchy, root_node, results: List[Tuple[(str, str, str, str, str)]], enrichment_method: str, significance_value: float) -> Dict[(Any, Any)]:
'Map results of GSEA experiment to hierarchy.\n\n :param network_hierarchy: network reprsenting the hierarchy\n :param root_node: hierarchy root\n :param results: results of gsea experiment\n :param enrichment_method: enrichment method\n :return: hierarchy with mapped results\n '
geneset_size_mapping = {}
node_to_score = {}
fdr_dict = {}
for (db, pathway_id, score, fdr, geneset_size) in results:
if (pathway_id not in network_hierarchy):
continue
if (enrichment_method == ORA):
node_to_score[pathway_id] = fdr
elif ((enrichment_method == GSEA) or (enrichment_method == PRERANK)):
node_to_score[pathway_id] = score
fdr_dict[pathway_id] = fdr
else:
logger.warning(f'unknown enrichment method {enrichment_method}')
raise ValueError()
geneset_size_mapping[pathway_id] = geneset_size
if (not node_to_score):
raise ValueError('could not map to any pathway in the hierarchy')
elif all(((i is None) for i in node_to_score.values())):
logger.warning('error with pathway scores')
raise ValueError()
nx.set_node_attributes(network_hierarchy, geneset_size_mapping, 'geneset_size')
nx.set_node_attributes(network_hierarchy, node_to_score, 'direction')
if (enrichment_method == ORA):
nx.set_node_attributes(network_hierarchy, _add_pvalue_cmap(network_hierarchy.nodes(), node_to_score, significance_value), 'color')
else:
nx.set_node_attributes(network_hierarchy, fdr_dict, 'fdr')
nx.set_node_attributes(network_hierarchy, _add_gsea_cmap(network_hierarchy.nodes(), node_to_score, fdr_dict, significance_value), 'color')
return tree_data(network_hierarchy, root_node)<|docstring|>Map results of GSEA experiment to hierarchy.
:param network_hierarchy: network reprsenting the hierarchy
:param root_node: hierarchy root
:param results: results of gsea experiment
:param enrichment_method: enrichment method
:return: hierarchy with mapped results<|endoftext|> |
72031f4735ca9b873889ad5c573606712d097691e012d1c12d51d206d6a63055 | def export_geneset(geneset_dict, database, temp_file, gmt_file):
'Export gene set to gmt file format.'
df = pd.DataFrame.from_dict(data=geneset_dict, orient='index')
df['Resource'] = pd.Series(database, index=df.index)
df = df[(['Resource'] + [col for col in df.columns if (col != 'Resource')])]
df.to_csv(temp_file, header=False, sep='\t')
_export_geneset_to_gmt(temp_file, gmt_file)
os.remove(temp_file) | Export gene set to gmt file format. | viewer/src/utils.py | export_geneset | DecoPath/DecoPath | 1 | python | def export_geneset(geneset_dict, database, temp_file, gmt_file):
df = pd.DataFrame.from_dict(data=geneset_dict, orient='index')
df['Resource'] = pd.Series(database, index=df.index)
df = df[(['Resource'] + [col for col in df.columns if (col != 'Resource')])]
df.to_csv(temp_file, header=False, sep='\t')
_export_geneset_to_gmt(temp_file, gmt_file)
os.remove(temp_file) | def export_geneset(geneset_dict, database, temp_file, gmt_file):
df = pd.DataFrame.from_dict(data=geneset_dict, orient='index')
df['Resource'] = pd.Series(database, index=df.index)
df = df[(['Resource'] + [col for col in df.columns if (col != 'Resource')])]
df.to_csv(temp_file, header=False, sep='\t')
_export_geneset_to_gmt(temp_file, gmt_file)
os.remove(temp_file)<|docstring|>Export gene set to gmt file format.<|endoftext|> |
a82ade716434f997429b86bd7bfba43636c90f9013028b54f77748c06b3e7408 | def _export_geneset_to_gmt(geneset_file, outfile):
'Export gene set to gmt file format.'
with open(geneset_file, 'r') as file:
with open(outfile, 'w') as f:
for line in file:
line = line.rstrip()
f.write((line + '\n'))
f.close() | Export gene set to gmt file format. | viewer/src/utils.py | _export_geneset_to_gmt | DecoPath/DecoPath | 1 | python | def _export_geneset_to_gmt(geneset_file, outfile):
with open(geneset_file, 'r') as file:
with open(outfile, 'w') as f:
for line in file:
line = line.rstrip()
f.write((line + '\n'))
f.close() | def _export_geneset_to_gmt(geneset_file, outfile):
with open(geneset_file, 'r') as file:
with open(outfile, 'w') as f:
for line in file:
line = line.rstrip()
f.write((line + '\n'))
f.close()<|docstring|>Export gene set to gmt file format.<|endoftext|> |
78a48253fa6023c105a8981efe27ab69ff426b1566934768188020e8656bb3d4 | def get_equivalent_pathway_dc_ids(decopath_ontology):
'Parse DecoPath ontology file and get DC IDs for equivalent super pathways.'
sheets_dict = pd.read_excel(io=decopath_ontology, engine='openpyxl', sheet_name=None, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str, index_col=None)
sheets_dict.pop('equivalence_same_db', None)
frames = [sheet for (name, sheet) in sheets_dict.items()]
df = pd.concat(frames)
df[SOURCE_ID] = df[SOURCE_ID].str.replace('path:', '')
df[TARGET_ID] = df[TARGET_ID].str.replace('path:', '')
equivalence_df = df.loc[(df[MAPPING_TYPE] == EQUIVALENT_TO)]
equivalent_pathways = (equivalence_df[SOURCE_ID].to_list() + equivalence_df[TARGET_ID].to_list())
id_to_dc_id = pd.DataFrame.from_dict({source_id: {'pathway_id': source_id, 'dc_id': target_id, 'dc_name': target_name} for (source_db, source_id, source_name, mapping_type, target_db, target_id, target_name) in df.values if (mapping_type == IS_PART_OF) if (source_id in equivalent_pathways)}, orient='index')
id_to_dc_id = id_to_dc_id.reset_index(drop=True)
return (id_to_dc_id, df) | Parse DecoPath ontology file and get DC IDs for equivalent super pathways. | viewer/src/utils.py | get_equivalent_pathway_dc_ids | DecoPath/DecoPath | 1 | python | def get_equivalent_pathway_dc_ids(decopath_ontology):
sheets_dict = pd.read_excel(io=decopath_ontology, engine='openpyxl', sheet_name=None, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str, index_col=None)
sheets_dict.pop('equivalence_same_db', None)
frames = [sheet for (name, sheet) in sheets_dict.items()]
df = pd.concat(frames)
df[SOURCE_ID] = df[SOURCE_ID].str.replace('path:', )
df[TARGET_ID] = df[TARGET_ID].str.replace('path:', )
equivalence_df = df.loc[(df[MAPPING_TYPE] == EQUIVALENT_TO)]
equivalent_pathways = (equivalence_df[SOURCE_ID].to_list() + equivalence_df[TARGET_ID].to_list())
id_to_dc_id = pd.DataFrame.from_dict({source_id: {'pathway_id': source_id, 'dc_id': target_id, 'dc_name': target_name} for (source_db, source_id, source_name, mapping_type, target_db, target_id, target_name) in df.values if (mapping_type == IS_PART_OF) if (source_id in equivalent_pathways)}, orient='index')
id_to_dc_id = id_to_dc_id.reset_index(drop=True)
return (id_to_dc_id, df) | def get_equivalent_pathway_dc_ids(decopath_ontology):
sheets_dict = pd.read_excel(io=decopath_ontology, engine='openpyxl', sheet_name=None, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str, index_col=None)
sheets_dict.pop('equivalence_same_db', None)
frames = [sheet for (name, sheet) in sheets_dict.items()]
df = pd.concat(frames)
df[SOURCE_ID] = df[SOURCE_ID].str.replace('path:', )
df[TARGET_ID] = df[TARGET_ID].str.replace('path:', )
equivalence_df = df.loc[(df[MAPPING_TYPE] == EQUIVALENT_TO)]
equivalent_pathways = (equivalence_df[SOURCE_ID].to_list() + equivalence_df[TARGET_ID].to_list())
id_to_dc_id = pd.DataFrame.from_dict({source_id: {'pathway_id': source_id, 'dc_id': target_id, 'dc_name': target_name} for (source_db, source_id, source_name, mapping_type, target_db, target_id, target_name) in df.values if (mapping_type == IS_PART_OF) if (source_id in equivalent_pathways)}, orient='index')
id_to_dc_id = id_to_dc_id.reset_index(drop=True)
return (id_to_dc_id, df)<|docstring|>Parse DecoPath ontology file and get DC IDs for equivalent super pathways.<|endoftext|> |
ef9451b05787a5f319f7e1a23210c2759370b169a9b1e0aaed04a7413633b970 | def get_dc_pathway_resources(decopath_ontology):
'Parse DecoPath ontology file and get source resources for DC super pathways.'
sheets_dict = pd.read_excel(io=decopath_ontology, engine='openpyxl', sheet_name=None, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str, index_col=None)
sheets_dict.pop('equivalence_same_db', None)
frames = [sheet for (name, sheet) in sheets_dict.items()]
df = pd.concat(frames)
df[SOURCE_ID] = df[SOURCE_ID].str.replace('path:', '')
df[TARGET_ID] = df[TARGET_ID].str.replace('path:', '')
equivalence_df = df.loc[(df[MAPPING_TYPE] == EQUIVALENT_TO)]
equivalent_pathways = (equivalence_df[SOURCE_ID].to_list() + equivalence_df[TARGET_ID].to_list())
dc_source_dict = defaultdict(set)
dc_source_id_dict = defaultdict(set)
for (source_db, source_id, source_name, mapping_type, target_db, target_id, target_name) in df.values:
if (mapping_type == IS_PART_OF):
if (source_id in equivalent_pathways):
dc_source_dict[target_id].add(source_db)
dc_source_id_dict[target_id].add(source_id)
return (dc_source_dict, dc_source_id_dict) | Parse DecoPath ontology file and get source resources for DC super pathways. | viewer/src/utils.py | get_dc_pathway_resources | DecoPath/DecoPath | 1 | python | def get_dc_pathway_resources(decopath_ontology):
sheets_dict = pd.read_excel(io=decopath_ontology, engine='openpyxl', sheet_name=None, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str, index_col=None)
sheets_dict.pop('equivalence_same_db', None)
frames = [sheet for (name, sheet) in sheets_dict.items()]
df = pd.concat(frames)
df[SOURCE_ID] = df[SOURCE_ID].str.replace('path:', )
df[TARGET_ID] = df[TARGET_ID].str.replace('path:', )
equivalence_df = df.loc[(df[MAPPING_TYPE] == EQUIVALENT_TO)]
equivalent_pathways = (equivalence_df[SOURCE_ID].to_list() + equivalence_df[TARGET_ID].to_list())
dc_source_dict = defaultdict(set)
dc_source_id_dict = defaultdict(set)
for (source_db, source_id, source_name, mapping_type, target_db, target_id, target_name) in df.values:
if (mapping_type == IS_PART_OF):
if (source_id in equivalent_pathways):
dc_source_dict[target_id].add(source_db)
dc_source_id_dict[target_id].add(source_id)
return (dc_source_dict, dc_source_id_dict) | def get_dc_pathway_resources(decopath_ontology):
sheets_dict = pd.read_excel(io=decopath_ontology, engine='openpyxl', sheet_name=None, usecols=[SOURCE_RESOURCE, SOURCE_ID, SOURCE_NAME, MAPPING_TYPE, TARGET_RESOURCE, TARGET_ID, TARGET_NAME], dtype=str, index_col=None)
sheets_dict.pop('equivalence_same_db', None)
frames = [sheet for (name, sheet) in sheets_dict.items()]
df = pd.concat(frames)
df[SOURCE_ID] = df[SOURCE_ID].str.replace('path:', )
df[TARGET_ID] = df[TARGET_ID].str.replace('path:', )
equivalence_df = df.loc[(df[MAPPING_TYPE] == EQUIVALENT_TO)]
equivalent_pathways = (equivalence_df[SOURCE_ID].to_list() + equivalence_df[TARGET_ID].to_list())
dc_source_dict = defaultdict(set)
dc_source_id_dict = defaultdict(set)
for (source_db, source_id, source_name, mapping_type, target_db, target_id, target_name) in df.values:
if (mapping_type == IS_PART_OF):
if (source_id in equivalent_pathways):
dc_source_dict[target_id].add(source_db)
dc_source_id_dict[target_id].add(source_id)
return (dc_source_dict, dc_source_id_dict)<|docstring|>Parse DecoPath ontology file and get source resources for DC super pathways.<|endoftext|> |
56519b1db746458ff850eebc3c5eee960af435937d0834a62512150652cf8791 | def _get_gmt_dict(filename):
'Parse gmt files and get gene sets.'
with open(filename, 'r') as f:
content = [line.strip().split('\t') for line in f]
return {pathway[0]: pathway[2:] for pathway in content} | Parse gmt files and get gene sets. | viewer/src/utils.py | _get_gmt_dict | DecoPath/DecoPath | 1 | python | def _get_gmt_dict(filename):
with open(filename, 'r') as f:
content = [line.strip().split('\t') for line in f]
return {pathway[0]: pathway[2:] for pathway in content} | def _get_gmt_dict(filename):
with open(filename, 'r') as f:
content = [line.strip().split('\t') for line in f]
return {pathway[0]: pathway[2:] for pathway in content}<|docstring|>Parse gmt files and get gene sets.<|endoftext|> |
fd0f23f364e9144ff4c2e255bcfdd28939311ef64877e1752bbe2f4b1d6c5297 | def get_decopath_genesets(decopath_ontology, gmt_dir: str):
'Generate DecoPath gene sets with super pathways.'
concatenated_genesets_dict = {}
dc_mapping = defaultdict(list)
if (not os.path.isdir(gmt_dir)):
make_geneset_dir()
(super_pathway_mappings, ontology_df) = get_equivalent_pathway_dc_ids(decopath_ontology)
gmt_files = [os.path.join(GMT_FILES_DIR, filename) for filename in os.listdir(gmt_dir) if filename.endswith('.gmt')]
genesets = [_get_gmt_dict(file) for file in gmt_files]
for geneset in genesets:
concatenated_genesets_dict.update(geneset)
for (pathway_id, dc_id, dc_name) in super_pathway_mappings.values:
if (pathway_id in concatenated_genesets_dict):
dc_mapping[dc_id].append(concatenated_genesets_dict[pathway_id])
return {pathway_id: {gene for sublist in geneset for gene in sublist} for (pathway_id, geneset) in dc_mapping.items()} | Generate DecoPath gene sets with super pathways. | viewer/src/utils.py | get_decopath_genesets | DecoPath/DecoPath | 1 | python | def get_decopath_genesets(decopath_ontology, gmt_dir: str):
concatenated_genesets_dict = {}
dc_mapping = defaultdict(list)
if (not os.path.isdir(gmt_dir)):
make_geneset_dir()
(super_pathway_mappings, ontology_df) = get_equivalent_pathway_dc_ids(decopath_ontology)
gmt_files = [os.path.join(GMT_FILES_DIR, filename) for filename in os.listdir(gmt_dir) if filename.endswith('.gmt')]
genesets = [_get_gmt_dict(file) for file in gmt_files]
for geneset in genesets:
concatenated_genesets_dict.update(geneset)
for (pathway_id, dc_id, dc_name) in super_pathway_mappings.values:
if (pathway_id in concatenated_genesets_dict):
dc_mapping[dc_id].append(concatenated_genesets_dict[pathway_id])
return {pathway_id: {gene for sublist in geneset for gene in sublist} for (pathway_id, geneset) in dc_mapping.items()} | def get_decopath_genesets(decopath_ontology, gmt_dir: str):
concatenated_genesets_dict = {}
dc_mapping = defaultdict(list)
if (not os.path.isdir(gmt_dir)):
make_geneset_dir()
(super_pathway_mappings, ontology_df) = get_equivalent_pathway_dc_ids(decopath_ontology)
gmt_files = [os.path.join(GMT_FILES_DIR, filename) for filename in os.listdir(gmt_dir) if filename.endswith('.gmt')]
genesets = [_get_gmt_dict(file) for file in gmt_files]
for geneset in genesets:
concatenated_genesets_dict.update(geneset)
for (pathway_id, dc_id, dc_name) in super_pathway_mappings.values:
if (pathway_id in concatenated_genesets_dict):
dc_mapping[dc_id].append(concatenated_genesets_dict[pathway_id])
return {pathway_id: {gene for sublist in geneset for gene in sublist} for (pathway_id, geneset) in dc_mapping.items()}<|docstring|>Generate DecoPath gene sets with super pathways.<|endoftext|> |
8f5fe7a69d5baa5ac4c36f4abcc04a149f1433cb363284c0ca6f130eb23ccf1b | def get_name_id_mapping(db_file, pathway, outfile):
'Create a database connection to the SQLite database specified by the db_file and get pathway name/ID mappings.'
conn = sqlite3.connect(db_file)
cur = conn.cursor()
cur.execute(('SELECT * FROM ' + pathway))
rows = cur.fetchall()
name_id_mappings = {identifier: name for (_, identifier, name) in rows}
export_to_json(name_id_mappings, outfile) | Create a database connection to the SQLite database specified by the db_file and get pathway name/ID mappings. | viewer/src/utils.py | get_name_id_mapping | DecoPath/DecoPath | 1 | python | def get_name_id_mapping(db_file, pathway, outfile):
conn = sqlite3.connect(db_file)
cur = conn.cursor()
cur.execute(('SELECT * FROM ' + pathway))
rows = cur.fetchall()
name_id_mappings = {identifier: name for (_, identifier, name) in rows}
export_to_json(name_id_mappings, outfile) | def get_name_id_mapping(db_file, pathway, outfile):
conn = sqlite3.connect(db_file)
cur = conn.cursor()
cur.execute(('SELECT * FROM ' + pathway))
rows = cur.fetchall()
name_id_mappings = {identifier: name for (_, identifier, name) in rows}
export_to_json(name_id_mappings, outfile)<|docstring|>Create a database connection to the SQLite database specified by the db_file and get pathway name/ID mappings.<|endoftext|> |
7c29cf330571e216d2b7f99d8c1797399851063951520c285fe2fd43a32a995b | def handle_zipfile_download(path: str) -> None:
'Download and extract zip file content.'
r = requests.get(path)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall() | Download and extract zip file content. | viewer/src/utils.py | handle_zipfile_download | DecoPath/DecoPath | 1 | python | def handle_zipfile_download(path: str) -> None:
r = requests.get(path)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall() | def handle_zipfile_download(path: str) -> None:
r = requests.get(path)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall()<|docstring|>Download and extract zip file content.<|endoftext|> |
bd3f7b0f904588bad0a884b5e5a6681551e75a99d7906a86d576a7a7b2199a3a | def export_pathbank_name_id_mappings(outfile, pathbank_pathways_url: str=PATHBANK_PATHWAY_URL):
'Download PathBank pathway metadata and export as json.'
logger.info('Downloading PathBank content.')
handle_zipfile_download(pathbank_pathways_url)
df = pd.read_csv(PATHBANK_PATHWAYS_FILE, sep=',')
pathbank_mappings = pd.Series(df['Name'].values, index=df['PW ID']).to_dict()
export_to_json(pathbank_mappings, outfile) | Download PathBank pathway metadata and export as json. | viewer/src/utils.py | export_pathbank_name_id_mappings | DecoPath/DecoPath | 1 | python | def export_pathbank_name_id_mappings(outfile, pathbank_pathways_url: str=PATHBANK_PATHWAY_URL):
logger.info('Downloading PathBank content.')
handle_zipfile_download(pathbank_pathways_url)
df = pd.read_csv(PATHBANK_PATHWAYS_FILE, sep=',')
pathbank_mappings = pd.Series(df['Name'].values, index=df['PW ID']).to_dict()
export_to_json(pathbank_mappings, outfile) | def export_pathbank_name_id_mappings(outfile, pathbank_pathways_url: str=PATHBANK_PATHWAY_URL):
logger.info('Downloading PathBank content.')
handle_zipfile_download(pathbank_pathways_url)
df = pd.read_csv(PATHBANK_PATHWAYS_FILE, sep=',')
pathbank_mappings = pd.Series(df['Name'].values, index=df['PW ID']).to_dict()
export_to_json(pathbank_mappings, outfile)<|docstring|>Download PathBank pathway metadata and export as json.<|endoftext|> |
90504d1f4ecf61d58c8926bbcd49e33b5a3ef47048f38b2eb906eb5fa1d3f0cd | def new_file(self, *args, **kwargs):
'\n Create the file object to append to as data is coming in.\n '
super().new_file(*args, **kwargs)
self.file = TransientUploadedFile(self.file_name, self.content_type, 0, self.charset, self.content_type_extra) | Create the file object to append to as data is coming in. | viewer/src/utils.py | new_file | DecoPath/DecoPath | 1 | python | def new_file(self, *args, **kwargs):
'\n \n '
super().new_file(*args, **kwargs)
self.file = TransientUploadedFile(self.file_name, self.content_type, 0, self.charset, self.content_type_extra) | def new_file(self, *args, **kwargs):
'\n \n '
super().new_file(*args, **kwargs)
self.file = TransientUploadedFile(self.file_name, self.content_type, 0, self.charset, self.content_type_extra)<|docstring|>Create the file object to append to as data is coming in.<|endoftext|> |
af7b83a4a07bbf82707bf6bc24a5a57c93eb0d73c7d8c2bd93a4b9a0108a156b | def transient_file_path(self):
'Return the full path of this file.'
return self.file.name | Return the full path of this file. | viewer/src/utils.py | transient_file_path | DecoPath/DecoPath | 1 | python | def transient_file_path(self):
return self.file.name | def transient_file_path(self):
return self.file.name<|docstring|>Return the full path of this file.<|endoftext|> |
6f26e611979c750541a74681d120595edb7a19d4a551f39cdad0c60053ae4254 | def get_argument_parser() -> ArgumentParser:
'Create an ArgumentParser which will parse arguments from\n the command line parameters passed to this tool.\n\n :return: The argument parser\n '
usage = 'Parse an $UpCase:$Info file and display the output. v{}'.format(VERSION)
arguments = ArgumentParser(description=usage)
arguments.add_argument('-s', '--source', dest='source', action='store', required=True, help='The source $UpCase:$Info file to parse.')
arguments.add_argument('-f', '--format', dest='format', action='store', choices=['text', 'json'], default='json', required=True, help='The output format.')
arguments.add_argument('--logging', dest='logging', action='store', default='INFO', choices=['CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'], help='Logging level [default=INFO]')
return arguments | Create an ArgumentParser which will parse arguments from
the command line parameters passed to this tool.
:return: The argument parser | scripts/upcaseinfo_parser.py | get_argument_parser | forensicmatt/upcaseinfo-py | 1 | python | def get_argument_parser() -> ArgumentParser:
'Create an ArgumentParser which will parse arguments from\n the command line parameters passed to this tool.\n\n :return: The argument parser\n '
usage = 'Parse an $UpCase:$Info file and display the output. v{}'.format(VERSION)
arguments = ArgumentParser(description=usage)
arguments.add_argument('-s', '--source', dest='source', action='store', required=True, help='The source $UpCase:$Info file to parse.')
arguments.add_argument('-f', '--format', dest='format', action='store', choices=['text', 'json'], default='json', required=True, help='The output format.')
arguments.add_argument('--logging', dest='logging', action='store', default='INFO', choices=['CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'], help='Logging level [default=INFO]')
return arguments | def get_argument_parser() -> ArgumentParser:
'Create an ArgumentParser which will parse arguments from\n the command line parameters passed to this tool.\n\n :return: The argument parser\n '
usage = 'Parse an $UpCase:$Info file and display the output. v{}'.format(VERSION)
arguments = ArgumentParser(description=usage)
arguments.add_argument('-s', '--source', dest='source', action='store', required=True, help='The source $UpCase:$Info file to parse.')
arguments.add_argument('-f', '--format', dest='format', action='store', choices=['text', 'json'], default='json', required=True, help='The output format.')
arguments.add_argument('--logging', dest='logging', action='store', default='INFO', choices=['CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'], help='Logging level [default=INFO]')
return arguments<|docstring|>Create an ArgumentParser which will parse arguments from
the command line parameters passed to this tool.
:return: The argument parser<|endoftext|> |
28adb0e700d904402cba41f723db83a64e4dd4c9c3a055a513e942c11dda1f9e | def set_logging_level(logging_level: str):
"Set the logging level to use.\n\n :param logging_level: The logging level's variable name as used in the logging lib.\n :return:\n "
logging.basicConfig(level=getattr(logging, logging_level)) | Set the logging level to use.
:param logging_level: The logging level's variable name as used in the logging lib.
:return: | scripts/upcaseinfo_parser.py | set_logging_level | forensicmatt/upcaseinfo-py | 1 | python | def set_logging_level(logging_level: str):
"Set the logging level to use.\n\n :param logging_level: The logging level's variable name as used in the logging lib.\n :return:\n "
logging.basicConfig(level=getattr(logging, logging_level)) | def set_logging_level(logging_level: str):
"Set the logging level to use.\n\n :param logging_level: The logging level's variable name as used in the logging lib.\n :return:\n "
logging.basicConfig(level=getattr(logging, logging_level))<|docstring|>Set the logging level to use.
:param logging_level: The logging level's variable name as used in the logging lib.
:return:<|endoftext|> |
eccc6fbda01fa7b138dc6c98f16c8afc4d8ea94660b9a1df94cd16d2a1a2b662 | @register_make_test_function()
def make_space_to_batch_nd_tests(options):
'Make a set of tests to do space_to_batch_nd.'
test_parameters = [{'dtype': [tf.int32, tf.int64, tf.float32], 'input_shape': [[1, 2, 2, 3], [2, 2, 4, 1]], 'block_shape': [[1, 3], [2, 2]], 'paddings': [[[0, 0], [0, 0]], [[0, 0], [2, 0]], [[1, 1], [1, 1]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[2, 3, 7, 3]], 'block_shape': [[1, 3], [2, 2]], 'paddings': [[[0, 0], [2, 0]], [[1, 0], [1, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[1, 4, 4, 4, 1, 1]], 'block_shape': [[2, 2, 2]], 'paddings': [[[0, 0], [0, 0], [0, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[1, 4, 4]], 'block_shape': [[2]], 'paddings': [[[0, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}]
def build_graph(parameters):
'Build a space_to_batch graph given `parameters`.'
input_tensor = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input', shape=parameters['input_shape'])
input_tensors = [input_tensor]
if parameters['constant_block_shape']:
block_shape = parameters['block_shape']
else:
shape = [len(parameters['block_shape'])]
block_shape = tf.compat.v1.placeholder(dtype=tf.int32, name='shape', shape=shape)
input_tensors.append(block_shape)
if parameters['constant_paddings']:
paddings = parameters['paddings']
else:
shape = [len(parameters['paddings']), 2]
paddings = tf.compat.v1.placeholder(dtype=tf.int32, name='paddings', shape=shape)
input_tensors.append(paddings)
out = tf.space_to_batch_nd(input_tensor, block_shape, paddings)
return (input_tensors, [out])
def build_inputs(parameters, sess, inputs, outputs):
values = [create_tensor_data(parameters['dtype'], parameters['input_shape'])]
if (not parameters['constant_block_shape']):
values.append(np.array(parameters['block_shape']))
if (not parameters['constant_paddings']):
values.append(np.array(parameters['paddings']))
return (values, sess.run(outputs, feed_dict=dict(zip(inputs, values))))
if options.use_experimental_converter:
test_parameters = [test_parameters[0], test_parameters[1], test_parameters[3]]
make_zip_of_tests(options, test_parameters, build_graph, build_inputs, expected_tf_failures=56) | Make a set of tests to do space_to_batch_nd. | tensorflow/lite/testing/op_tests/space_to_batch_nd.py | make_space_to_batch_nd_tests | antlad/tensorflow | 190,993 | python | @register_make_test_function()
def make_space_to_batch_nd_tests(options):
test_parameters = [{'dtype': [tf.int32, tf.int64, tf.float32], 'input_shape': [[1, 2, 2, 3], [2, 2, 4, 1]], 'block_shape': [[1, 3], [2, 2]], 'paddings': [[[0, 0], [0, 0]], [[0, 0], [2, 0]], [[1, 1], [1, 1]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[2, 3, 7, 3]], 'block_shape': [[1, 3], [2, 2]], 'paddings': [[[0, 0], [2, 0]], [[1, 0], [1, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[1, 4, 4, 4, 1, 1]], 'block_shape': [[2, 2, 2]], 'paddings': [[[0, 0], [0, 0], [0, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[1, 4, 4]], 'block_shape': [[2]], 'paddings': [[[0, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}]
def build_graph(parameters):
'Build a space_to_batch graph given `parameters`.'
input_tensor = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input', shape=parameters['input_shape'])
input_tensors = [input_tensor]
if parameters['constant_block_shape']:
block_shape = parameters['block_shape']
else:
shape = [len(parameters['block_shape'])]
block_shape = tf.compat.v1.placeholder(dtype=tf.int32, name='shape', shape=shape)
input_tensors.append(block_shape)
if parameters['constant_paddings']:
paddings = parameters['paddings']
else:
shape = [len(parameters['paddings']), 2]
paddings = tf.compat.v1.placeholder(dtype=tf.int32, name='paddings', shape=shape)
input_tensors.append(paddings)
out = tf.space_to_batch_nd(input_tensor, block_shape, paddings)
return (input_tensors, [out])
def build_inputs(parameters, sess, inputs, outputs):
values = [create_tensor_data(parameters['dtype'], parameters['input_shape'])]
if (not parameters['constant_block_shape']):
values.append(np.array(parameters['block_shape']))
if (not parameters['constant_paddings']):
values.append(np.array(parameters['paddings']))
return (values, sess.run(outputs, feed_dict=dict(zip(inputs, values))))
if options.use_experimental_converter:
test_parameters = [test_parameters[0], test_parameters[1], test_parameters[3]]
make_zip_of_tests(options, test_parameters, build_graph, build_inputs, expected_tf_failures=56) | @register_make_test_function()
def make_space_to_batch_nd_tests(options):
test_parameters = [{'dtype': [tf.int32, tf.int64, tf.float32], 'input_shape': [[1, 2, 2, 3], [2, 2, 4, 1]], 'block_shape': [[1, 3], [2, 2]], 'paddings': [[[0, 0], [0, 0]], [[0, 0], [2, 0]], [[1, 1], [1, 1]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[2, 3, 7, 3]], 'block_shape': [[1, 3], [2, 2]], 'paddings': [[[0, 0], [2, 0]], [[1, 0], [1, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[1, 4, 4, 4, 1, 1]], 'block_shape': [[2, 2, 2]], 'paddings': [[[0, 0], [0, 0], [0, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}, {'dtype': [tf.float32], 'input_shape': [[1, 4, 4]], 'block_shape': [[2]], 'paddings': [[[0, 0]]], 'constant_block_shape': [True, False], 'constant_paddings': [True, False]}]
def build_graph(parameters):
'Build a space_to_batch graph given `parameters`.'
input_tensor = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input', shape=parameters['input_shape'])
input_tensors = [input_tensor]
if parameters['constant_block_shape']:
block_shape = parameters['block_shape']
else:
shape = [len(parameters['block_shape'])]
block_shape = tf.compat.v1.placeholder(dtype=tf.int32, name='shape', shape=shape)
input_tensors.append(block_shape)
if parameters['constant_paddings']:
paddings = parameters['paddings']
else:
shape = [len(parameters['paddings']), 2]
paddings = tf.compat.v1.placeholder(dtype=tf.int32, name='paddings', shape=shape)
input_tensors.append(paddings)
out = tf.space_to_batch_nd(input_tensor, block_shape, paddings)
return (input_tensors, [out])
def build_inputs(parameters, sess, inputs, outputs):
values = [create_tensor_data(parameters['dtype'], parameters['input_shape'])]
if (not parameters['constant_block_shape']):
values.append(np.array(parameters['block_shape']))
if (not parameters['constant_paddings']):
values.append(np.array(parameters['paddings']))
return (values, sess.run(outputs, feed_dict=dict(zip(inputs, values))))
if options.use_experimental_converter:
test_parameters = [test_parameters[0], test_parameters[1], test_parameters[3]]
make_zip_of_tests(options, test_parameters, build_graph, build_inputs, expected_tf_failures=56)<|docstring|>Make a set of tests to do space_to_batch_nd.<|endoftext|> |
36306c67bb7c8b778dd03fa67ba01a750e3daf66a1690f294d9e4ed5375d0e49 | def build_graph(parameters):
'Build a space_to_batch graph given `parameters`.'
input_tensor = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input', shape=parameters['input_shape'])
input_tensors = [input_tensor]
if parameters['constant_block_shape']:
block_shape = parameters['block_shape']
else:
shape = [len(parameters['block_shape'])]
block_shape = tf.compat.v1.placeholder(dtype=tf.int32, name='shape', shape=shape)
input_tensors.append(block_shape)
if parameters['constant_paddings']:
paddings = parameters['paddings']
else:
shape = [len(parameters['paddings']), 2]
paddings = tf.compat.v1.placeholder(dtype=tf.int32, name='paddings', shape=shape)
input_tensors.append(paddings)
out = tf.space_to_batch_nd(input_tensor, block_shape, paddings)
return (input_tensors, [out]) | Build a space_to_batch graph given `parameters`. | tensorflow/lite/testing/op_tests/space_to_batch_nd.py | build_graph | antlad/tensorflow | 190,993 | python | def build_graph(parameters):
input_tensor = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input', shape=parameters['input_shape'])
input_tensors = [input_tensor]
if parameters['constant_block_shape']:
block_shape = parameters['block_shape']
else:
shape = [len(parameters['block_shape'])]
block_shape = tf.compat.v1.placeholder(dtype=tf.int32, name='shape', shape=shape)
input_tensors.append(block_shape)
if parameters['constant_paddings']:
paddings = parameters['paddings']
else:
shape = [len(parameters['paddings']), 2]
paddings = tf.compat.v1.placeholder(dtype=tf.int32, name='paddings', shape=shape)
input_tensors.append(paddings)
out = tf.space_to_batch_nd(input_tensor, block_shape, paddings)
return (input_tensors, [out]) | def build_graph(parameters):
input_tensor = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input', shape=parameters['input_shape'])
input_tensors = [input_tensor]
if parameters['constant_block_shape']:
block_shape = parameters['block_shape']
else:
shape = [len(parameters['block_shape'])]
block_shape = tf.compat.v1.placeholder(dtype=tf.int32, name='shape', shape=shape)
input_tensors.append(block_shape)
if parameters['constant_paddings']:
paddings = parameters['paddings']
else:
shape = [len(parameters['paddings']), 2]
paddings = tf.compat.v1.placeholder(dtype=tf.int32, name='paddings', shape=shape)
input_tensors.append(paddings)
out = tf.space_to_batch_nd(input_tensor, block_shape, paddings)
return (input_tensors, [out])<|docstring|>Build a space_to_batch graph given `parameters`.<|endoftext|> |
e3a3530dd3d8434b9432976251f27033c861163cc30fdadeb900aa72fdf0aa77 | @staticmethod
def s1ap_callback(msg_type, msg_p, msg_len):
' S1ap tester compatible callback'
with S1ApUtil._cond:
S1ApUtil._msg.put(S1ApUtil.Msg(msg_type, msg_p, msg_len))
S1ApUtil._cond.notify_all() | S1ap tester compatible callback | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | s1ap_callback | marosmars/magma | 2 | python | @staticmethod
def s1ap_callback(msg_type, msg_p, msg_len):
' '
with S1ApUtil._cond:
S1ApUtil._msg.put(S1ApUtil.Msg(msg_type, msg_p, msg_len))
S1ApUtil._cond.notify_all() | @staticmethod
def s1ap_callback(msg_type, msg_p, msg_len):
' '
with S1ApUtil._cond:
S1ApUtil._msg.put(S1ApUtil.Msg(msg_type, msg_p, msg_len))
S1ApUtil._cond.notify_all()<|docstring|>S1ap tester compatible callback<|endoftext|> |
c42698c72090f07aae8b1c4386c086dd9afcff6b55b5deb84e7e23dacfc23356 | def __init__(self):
'\n Initialize the s1aplibrary and its callbacks.\n '
lib_path = os.environ['S1AP_TESTER_ROOT']
lib = os.path.join(lib_path, 'bin', S1ApUtil.lib_name)
os.chdir(lib_path)
self._test_lib = ctypes.cdll.LoadLibrary(lib)
self._callback_type = ctypes.CFUNCTYPE(None, ctypes.c_short, ctypes.c_void_p, ctypes.c_short)
self._callback_fn = self._callback_type(S1ApUtil.s1ap_callback)
self._test_lib.initTestFrameWork(self._callback_fn)
self._test_api = self._test_lib.tfwApi
self._test_api.restype = ctypes.c_int16
self._test_api.argtypes = [ctypes.c_uint16, ctypes.c_void_p]
self._lock = threading.RLock()
self._ue_ip_map = {} | Initialize the s1aplibrary and its callbacks. | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | __init__ | marosmars/magma | 2 | python | def __init__(self):
'\n \n '
lib_path = os.environ['S1AP_TESTER_ROOT']
lib = os.path.join(lib_path, 'bin', S1ApUtil.lib_name)
os.chdir(lib_path)
self._test_lib = ctypes.cdll.LoadLibrary(lib)
self._callback_type = ctypes.CFUNCTYPE(None, ctypes.c_short, ctypes.c_void_p, ctypes.c_short)
self._callback_fn = self._callback_type(S1ApUtil.s1ap_callback)
self._test_lib.initTestFrameWork(self._callback_fn)
self._test_api = self._test_lib.tfwApi
self._test_api.restype = ctypes.c_int16
self._test_api.argtypes = [ctypes.c_uint16, ctypes.c_void_p]
self._lock = threading.RLock()
self._ue_ip_map = {} | def __init__(self):
'\n \n '
lib_path = os.environ['S1AP_TESTER_ROOT']
lib = os.path.join(lib_path, 'bin', S1ApUtil.lib_name)
os.chdir(lib_path)
self._test_lib = ctypes.cdll.LoadLibrary(lib)
self._callback_type = ctypes.CFUNCTYPE(None, ctypes.c_short, ctypes.c_void_p, ctypes.c_short)
self._callback_fn = self._callback_type(S1ApUtil.s1ap_callback)
self._test_lib.initTestFrameWork(self._callback_fn)
self._test_api = self._test_lib.tfwApi
self._test_api.restype = ctypes.c_int16
self._test_api.argtypes = [ctypes.c_uint16, ctypes.c_void_p]
self._lock = threading.RLock()
self._ue_ip_map = {}<|docstring|>Initialize the s1aplibrary and its callbacks.<|endoftext|> |
9164fa2fc816710b8a2a31bc34da182fd05f6ec74beeaf6824907cfd05030f0a | def cleanup(self):
"\n Cleanup the dll loaded explicitly so the next run doesn't reuse the\n same globals as ctypes LoadLibrary uses dlopen under the covers\n\n Also clear out the UE ID: IP mappings\n "
self._test_lib = None
self._ue_ip_map = {} | Cleanup the dll loaded explicitly so the next run doesn't reuse the
same globals as ctypes LoadLibrary uses dlopen under the covers
Also clear out the UE ID: IP mappings | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | cleanup | marosmars/magma | 2 | python | def cleanup(self):
"\n Cleanup the dll loaded explicitly so the next run doesn't reuse the\n same globals as ctypes LoadLibrary uses dlopen under the covers\n\n Also clear out the UE ID: IP mappings\n "
self._test_lib = None
self._ue_ip_map = {} | def cleanup(self):
"\n Cleanup the dll loaded explicitly so the next run doesn't reuse the\n same globals as ctypes LoadLibrary uses dlopen under the covers\n\n Also clear out the UE ID: IP mappings\n "
self._test_lib = None
self._ue_ip_map = {}<|docstring|>Cleanup the dll loaded explicitly so the next run doesn't reuse the
same globals as ctypes LoadLibrary uses dlopen under the covers
Also clear out the UE ID: IP mappings<|endoftext|> |
455a87e47e8856799fb97afb5891d5c6ab60e36dac9632b6cbe818584fddc3f7 | def issue_cmd(self, cmd_type, req):
'\n Issue a command to the s1aptester and blocks until response is recvd.\n Args:\n cmd_type: The cmd type enum\n req: The request Structure\n Returns:\n None\n '
c_req = None
if req:
c_req = ctypes.byref(req)
with self._cond:
rc = self._test_api(cmd_type.value, c_req)
if rc:
logging.error(('Error executing command %s' % repr(cmd_type)))
return rc
return 0 | Issue a command to the s1aptester and blocks until response is recvd.
Args:
cmd_type: The cmd type enum
req: The request Structure
Returns:
None | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | issue_cmd | marosmars/magma | 2 | python | def issue_cmd(self, cmd_type, req):
'\n Issue a command to the s1aptester and blocks until response is recvd.\n Args:\n cmd_type: The cmd type enum\n req: The request Structure\n Returns:\n None\n '
c_req = None
if req:
c_req = ctypes.byref(req)
with self._cond:
rc = self._test_api(cmd_type.value, c_req)
if rc:
logging.error(('Error executing command %s' % repr(cmd_type)))
return rc
return 0 | def issue_cmd(self, cmd_type, req):
'\n Issue a command to the s1aptester and blocks until response is recvd.\n Args:\n cmd_type: The cmd type enum\n req: The request Structure\n Returns:\n None\n '
c_req = None
if req:
c_req = ctypes.byref(req)
with self._cond:
rc = self._test_api(cmd_type.value, c_req)
if rc:
logging.error(('Error executing command %s' % repr(cmd_type)))
return rc
return 0<|docstring|>Issue a command to the s1aptester and blocks until response is recvd.
Args:
cmd_type: The cmd type enum
req: The request Structure
Returns:
None<|endoftext|> |
835b30e5b38969c01064235cd03a8fbc92324cb1eafbdf8b5f99cb93a89b04dc | def get_ip(self, ue_id):
' Returns the IP assigned to a given UE ID\n\n Args:\n ue_id: the ue_id to query\n\n Returns an ipaddress.ip_address for the given UE ID, or None if no IP\n has been observed to be assigned to this IP\n '
with self._lock:
if (ue_id in self._ue_ip_map):
return self._ue_ip_map[ue_id]
return None | Returns the IP assigned to a given UE ID
Args:
ue_id: the ue_id to query
Returns an ipaddress.ip_address for the given UE ID, or None if no IP
has been observed to be assigned to this IP | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | get_ip | marosmars/magma | 2 | python | def get_ip(self, ue_id):
' Returns the IP assigned to a given UE ID\n\n Args:\n ue_id: the ue_id to query\n\n Returns an ipaddress.ip_address for the given UE ID, or None if no IP\n has been observed to be assigned to this IP\n '
with self._lock:
if (ue_id in self._ue_ip_map):
return self._ue_ip_map[ue_id]
return None | def get_ip(self, ue_id):
' Returns the IP assigned to a given UE ID\n\n Args:\n ue_id: the ue_id to query\n\n Returns an ipaddress.ip_address for the given UE ID, or None if no IP\n has been observed to be assigned to this IP\n '
with self._lock:
if (ue_id in self._ue_ip_map):
return self._ue_ip_map[ue_id]
return None<|docstring|>Returns the IP assigned to a given UE ID
Args:
ue_id: the ue_id to query
Returns an ipaddress.ip_address for the given UE ID, or None if no IP
has been observed to be assigned to this IP<|endoftext|> |
d9ea3cc6cd6e9d928bd9380100b9a0aec222d98ec1ec1d24c3cdb20cd642cbde | def attach(self, ue_id, attach_type, resp_type, resp_msg_type, sec_ctxt=s1ap_types.TFW_CREATE_NEW_SECURITY_CONTEXT, id_type=s1ap_types.TFW_MID_TYPE_IMSI, eps_type=s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH):
'\n Given a UE issue the attach request of specified type\n\n Caches the assigned IP address, if any is assigned\n\n Args:\n ue_id: The eNB ue_id\n attach_type: The type of attach e.g. UE_END_TO_END_ATTACH_REQUEST\n resp_type: enum type of the expected response\n sec_ctxt: Optional param allows for the reuse of the security\n context, defaults to creating a new security context.\n id_type: Optional param allows for changing up the ID type,\n defaults to s1ap_types.TFW_MID_TYPE_IMSI.\n eps_type: Optional param allows for variation in the EPS attach\n type, defaults to s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH.\n '
attach_req = s1ap_types.ueAttachRequest_t()
attach_req.ue_Id = ue_id
attach_req.mIdType = id_type
attach_req.epsAttachType = eps_type
attach_req.useOldSecCtxt = sec_ctxt
assert (self.issue_cmd(attach_type, attach_req) == 0)
response = self.get_response()
if (s1ap_types.tfwCmd.INT_CTX_SETUP_IND.value == response.msg_type):
response = self.get_response()
elif (s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND.value == response.msg_type):
context_setup = self.get_response()
assert (context_setup.msg_type == s1ap_types.tfwCmd.INT_CTX_SETUP_IND.value)
logging.debug('s1ap response expected, received: %d, %d', resp_type.value, response.msg_type)
assert (resp_type.value == response.msg_type)
msg = response.cast(resp_msg_type)
if (resp_msg_type == s1ap_types.ueAttachAccept_t):
pdn_type = msg.esmInfo.pAddr.pdnType
addr = msg.esmInfo.pAddr.addrInfo
if (S1ApUtil.CM_ESM_PDN_IPV4 == pdn_type):
ip = ipaddress.ip_address(bytes(addr[:4]))
with self._lock:
self._ue_ip_map[ue_id] = ip
else:
raise ValueError(('PDN TYPE %s not supported' % pdn_type))
return msg | Given a UE issue the attach request of specified type
Caches the assigned IP address, if any is assigned
Args:
ue_id: The eNB ue_id
attach_type: The type of attach e.g. UE_END_TO_END_ATTACH_REQUEST
resp_type: enum type of the expected response
sec_ctxt: Optional param allows for the reuse of the security
context, defaults to creating a new security context.
id_type: Optional param allows for changing up the ID type,
defaults to s1ap_types.TFW_MID_TYPE_IMSI.
eps_type: Optional param allows for variation in the EPS attach
type, defaults to s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH. | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | attach | marosmars/magma | 2 | python | def attach(self, ue_id, attach_type, resp_type, resp_msg_type, sec_ctxt=s1ap_types.TFW_CREATE_NEW_SECURITY_CONTEXT, id_type=s1ap_types.TFW_MID_TYPE_IMSI, eps_type=s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH):
'\n Given a UE issue the attach request of specified type\n\n Caches the assigned IP address, if any is assigned\n\n Args:\n ue_id: The eNB ue_id\n attach_type: The type of attach e.g. UE_END_TO_END_ATTACH_REQUEST\n resp_type: enum type of the expected response\n sec_ctxt: Optional param allows for the reuse of the security\n context, defaults to creating a new security context.\n id_type: Optional param allows for changing up the ID type,\n defaults to s1ap_types.TFW_MID_TYPE_IMSI.\n eps_type: Optional param allows for variation in the EPS attach\n type, defaults to s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH.\n '
attach_req = s1ap_types.ueAttachRequest_t()
attach_req.ue_Id = ue_id
attach_req.mIdType = id_type
attach_req.epsAttachType = eps_type
attach_req.useOldSecCtxt = sec_ctxt
assert (self.issue_cmd(attach_type, attach_req) == 0)
response = self.get_response()
if (s1ap_types.tfwCmd.INT_CTX_SETUP_IND.value == response.msg_type):
response = self.get_response()
elif (s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND.value == response.msg_type):
context_setup = self.get_response()
assert (context_setup.msg_type == s1ap_types.tfwCmd.INT_CTX_SETUP_IND.value)
logging.debug('s1ap response expected, received: %d, %d', resp_type.value, response.msg_type)
assert (resp_type.value == response.msg_type)
msg = response.cast(resp_msg_type)
if (resp_msg_type == s1ap_types.ueAttachAccept_t):
pdn_type = msg.esmInfo.pAddr.pdnType
addr = msg.esmInfo.pAddr.addrInfo
if (S1ApUtil.CM_ESM_PDN_IPV4 == pdn_type):
ip = ipaddress.ip_address(bytes(addr[:4]))
with self._lock:
self._ue_ip_map[ue_id] = ip
else:
raise ValueError(('PDN TYPE %s not supported' % pdn_type))
return msg | def attach(self, ue_id, attach_type, resp_type, resp_msg_type, sec_ctxt=s1ap_types.TFW_CREATE_NEW_SECURITY_CONTEXT, id_type=s1ap_types.TFW_MID_TYPE_IMSI, eps_type=s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH):
'\n Given a UE issue the attach request of specified type\n\n Caches the assigned IP address, if any is assigned\n\n Args:\n ue_id: The eNB ue_id\n attach_type: The type of attach e.g. UE_END_TO_END_ATTACH_REQUEST\n resp_type: enum type of the expected response\n sec_ctxt: Optional param allows for the reuse of the security\n context, defaults to creating a new security context.\n id_type: Optional param allows for changing up the ID type,\n defaults to s1ap_types.TFW_MID_TYPE_IMSI.\n eps_type: Optional param allows for variation in the EPS attach\n type, defaults to s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH.\n '
attach_req = s1ap_types.ueAttachRequest_t()
attach_req.ue_Id = ue_id
attach_req.mIdType = id_type
attach_req.epsAttachType = eps_type
attach_req.useOldSecCtxt = sec_ctxt
assert (self.issue_cmd(attach_type, attach_req) == 0)
response = self.get_response()
if (s1ap_types.tfwCmd.INT_CTX_SETUP_IND.value == response.msg_type):
response = self.get_response()
elif (s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND.value == response.msg_type):
context_setup = self.get_response()
assert (context_setup.msg_type == s1ap_types.tfwCmd.INT_CTX_SETUP_IND.value)
logging.debug('s1ap response expected, received: %d, %d', resp_type.value, response.msg_type)
assert (resp_type.value == response.msg_type)
msg = response.cast(resp_msg_type)
if (resp_msg_type == s1ap_types.ueAttachAccept_t):
pdn_type = msg.esmInfo.pAddr.pdnType
addr = msg.esmInfo.pAddr.addrInfo
if (S1ApUtil.CM_ESM_PDN_IPV4 == pdn_type):
ip = ipaddress.ip_address(bytes(addr[:4]))
with self._lock:
self._ue_ip_map[ue_id] = ip
else:
raise ValueError(('PDN TYPE %s not supported' % pdn_type))
return msg<|docstring|>Given a UE issue the attach request of specified type
Caches the assigned IP address, if any is assigned
Args:
ue_id: The eNB ue_id
attach_type: The type of attach e.g. UE_END_TO_END_ATTACH_REQUEST
resp_type: enum type of the expected response
sec_ctxt: Optional param allows for the reuse of the security
context, defaults to creating a new security context.
id_type: Optional param allows for changing up the ID type,
defaults to s1ap_types.TFW_MID_TYPE_IMSI.
eps_type: Optional param allows for variation in the EPS attach
type, defaults to s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH.<|endoftext|> |
3c91152350c066d6bc0f14854e9ec929b8d5e2732a0f9662aba3e3e31481f465 | def detach(self, ue_id, reason_type, wait_for_s1_ctxt_release=True):
' Given a UE issue a detach request '
detach_req = s1ap_types.uedetachReq_t()
detach_req.ue_Id = ue_id
detach_req.ueDetType = reason_type
assert (self.issue_cmd(s1ap_types.tfwCmd.UE_DETACH_REQUEST, detach_req) == 0)
if (reason_type == s1ap_types.ueDetachType_t.UE_NORMAL_DETACH.value):
response = self.get_response()
assert (s1ap_types.tfwCmd.UE_DETACH_ACCEPT_IND.value == response.msg_type)
if wait_for_s1_ctxt_release:
response = self.get_response()
assert (s1ap_types.tfwCmd.UE_CTX_REL_IND.value == response.msg_type)
with self._lock:
del self._ue_ip_map[ue_id] | Given a UE issue a detach request | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | detach | marosmars/magma | 2 | python | def detach(self, ue_id, reason_type, wait_for_s1_ctxt_release=True):
' '
detach_req = s1ap_types.uedetachReq_t()
detach_req.ue_Id = ue_id
detach_req.ueDetType = reason_type
assert (self.issue_cmd(s1ap_types.tfwCmd.UE_DETACH_REQUEST, detach_req) == 0)
if (reason_type == s1ap_types.ueDetachType_t.UE_NORMAL_DETACH.value):
response = self.get_response()
assert (s1ap_types.tfwCmd.UE_DETACH_ACCEPT_IND.value == response.msg_type)
if wait_for_s1_ctxt_release:
response = self.get_response()
assert (s1ap_types.tfwCmd.UE_CTX_REL_IND.value == response.msg_type)
with self._lock:
del self._ue_ip_map[ue_id] | def detach(self, ue_id, reason_type, wait_for_s1_ctxt_release=True):
' '
detach_req = s1ap_types.uedetachReq_t()
detach_req.ue_Id = ue_id
detach_req.ueDetType = reason_type
assert (self.issue_cmd(s1ap_types.tfwCmd.UE_DETACH_REQUEST, detach_req) == 0)
if (reason_type == s1ap_types.ueDetachType_t.UE_NORMAL_DETACH.value):
response = self.get_response()
assert (s1ap_types.tfwCmd.UE_DETACH_ACCEPT_IND.value == response.msg_type)
if wait_for_s1_ctxt_release:
response = self.get_response()
assert (s1ap_types.tfwCmd.UE_CTX_REL_IND.value == response.msg_type)
with self._lock:
del self._ue_ip_map[ue_id]<|docstring|>Given a UE issue a detach request<|endoftext|> |
3b7e9ed8d4a8b86834d0dfe6be79dd7aaccd0bb1529cdaaf3574836afe40dd6d | def __init__(self, subscriber_client):
'\n Initialize subscriber util.\n\n Args:\n subscriber_client (subscriber_db_client.SubscriberDbClient):\n client interacting with our subscriber APIs\n '
self._sid_idx = 1
self._ue_id = 1
self._ue_cfgs = []
self._subscriber_client = subscriber_client | Initialize subscriber util.
Args:
subscriber_client (subscriber_db_client.SubscriberDbClient):
client interacting with our subscriber APIs | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | __init__ | marosmars/magma | 2 | python | def __init__(self, subscriber_client):
'\n Initialize subscriber util.\n\n Args:\n subscriber_client (subscriber_db_client.SubscriberDbClient):\n client interacting with our subscriber APIs\n '
self._sid_idx = 1
self._ue_id = 1
self._ue_cfgs = []
self._subscriber_client = subscriber_client | def __init__(self, subscriber_client):
'\n Initialize subscriber util.\n\n Args:\n subscriber_client (subscriber_db_client.SubscriberDbClient):\n client interacting with our subscriber APIs\n '
self._sid_idx = 1
self._ue_id = 1
self._ue_cfgs = []
self._subscriber_client = subscriber_client<|docstring|>Initialize subscriber util.
Args:
subscriber_client (subscriber_db_client.SubscriberDbClient):
client interacting with our subscriber APIs<|endoftext|> |
c1b878a448529ff6095bdd8d9d16b1cdee5c5d4a7a6628162f3f189960d1e60f | def _gen_next_sid(self):
'\n Generate the sid based on index offset and prefix\n '
idx = str(self._sid_idx)
padding = ((self.IMSI_LEN - len(idx)) - len(self.SID_PREFIX[4:]))
sid = ((self.SID_PREFIX + ('0' * padding)) + idx)
self._sid_idx += 1
print(('Using subscriber IMSI %s' % sid))
return sid | Generate the sid based on index offset and prefix | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | _gen_next_sid | marosmars/magma | 2 | python | def _gen_next_sid(self):
'\n \n '
idx = str(self._sid_idx)
padding = ((self.IMSI_LEN - len(idx)) - len(self.SID_PREFIX[4:]))
sid = ((self.SID_PREFIX + ('0' * padding)) + idx)
self._sid_idx += 1
print(('Using subscriber IMSI %s' % sid))
return sid | def _gen_next_sid(self):
'\n \n '
idx = str(self._sid_idx)
padding = ((self.IMSI_LEN - len(idx)) - len(self.SID_PREFIX[4:]))
sid = ((self.SID_PREFIX + ('0' * padding)) + idx)
self._sid_idx += 1
print(('Using subscriber IMSI %s' % sid))
return sid<|docstring|>Generate the sid based on index offset and prefix<|endoftext|> |
4a74c2c7abcd968da926fafe120b480964144d3876e07650d7dd33794b2cf374 | def _get_s1ap_sub(self, sid):
'\n Get the subscriber data in s1aptester format.\n Args:\n The string representation of the subscriber id\n '
ue_cfg = s1ap_types.ueConfig_t()
ue_cfg.ue_id = self._ue_id
ue_cfg.auth_key = 1
for i in range(0, 15):
ue_cfg.imsi[i] = ctypes.c_ubyte(int(sid[(4 + i)]))
ue_cfg.imei[i] = ctypes.c_ubyte(int('1'))
ue_cfg.imei[15] = ctypes.c_ubyte(int('1'))
ue_cfg.imsiLen = self.IMSI_LEN
self._ue_cfgs.append(ue_cfg)
self._ue_id += 1
return ue_cfg | Get the subscriber data in s1aptester format.
Args:
The string representation of the subscriber id | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | _get_s1ap_sub | marosmars/magma | 2 | python | def _get_s1ap_sub(self, sid):
'\n Get the subscriber data in s1aptester format.\n Args:\n The string representation of the subscriber id\n '
ue_cfg = s1ap_types.ueConfig_t()
ue_cfg.ue_id = self._ue_id
ue_cfg.auth_key = 1
for i in range(0, 15):
ue_cfg.imsi[i] = ctypes.c_ubyte(int(sid[(4 + i)]))
ue_cfg.imei[i] = ctypes.c_ubyte(int('1'))
ue_cfg.imei[15] = ctypes.c_ubyte(int('1'))
ue_cfg.imsiLen = self.IMSI_LEN
self._ue_cfgs.append(ue_cfg)
self._ue_id += 1
return ue_cfg | def _get_s1ap_sub(self, sid):
'\n Get the subscriber data in s1aptester format.\n Args:\n The string representation of the subscriber id\n '
ue_cfg = s1ap_types.ueConfig_t()
ue_cfg.ue_id = self._ue_id
ue_cfg.auth_key = 1
for i in range(0, 15):
ue_cfg.imsi[i] = ctypes.c_ubyte(int(sid[(4 + i)]))
ue_cfg.imei[i] = ctypes.c_ubyte(int('1'))
ue_cfg.imei[15] = ctypes.c_ubyte(int('1'))
ue_cfg.imsiLen = self.IMSI_LEN
self._ue_cfgs.append(ue_cfg)
self._ue_id += 1
return ue_cfg<|docstring|>Get the subscriber data in s1aptester format.
Args:
The string representation of the subscriber id<|endoftext|> |
48e7e674a96afc86c6615305f7749422e9f3d1bd35f98cfd9b2d8ced29853a6e | def add_sub(self, num_ues=1):
' Add subscribers to the EPC, is blocking '
subscribers = []
for _ in range(num_ues):
sid = self._gen_next_sid()
self._subscriber_client.add_subscriber(sid)
subscribers.append(self._get_s1ap_sub(sid))
self._subscriber_client.wait_for_changes()
return subscribers | Add subscribers to the EPC, is blocking | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | add_sub | marosmars/magma | 2 | python | def add_sub(self, num_ues=1):
' '
subscribers = []
for _ in range(num_ues):
sid = self._gen_next_sid()
self._subscriber_client.add_subscriber(sid)
subscribers.append(self._get_s1ap_sub(sid))
self._subscriber_client.wait_for_changes()
return subscribers | def add_sub(self, num_ues=1):
' '
subscribers = []
for _ in range(num_ues):
sid = self._gen_next_sid()
self._subscriber_client.add_subscriber(sid)
subscribers.append(self._get_s1ap_sub(sid))
self._subscriber_client.wait_for_changes()
return subscribers<|docstring|>Add subscribers to the EPC, is blocking<|endoftext|> |
4b3508f5c2085260fc0e8003e659fcfb07159967ba950eb5a91a28ea0dc8b647 | def config_apn_data(self, imsi, apn_list):
' Add APN details '
self._subscriber_client.config_apn_details(imsi, apn_list) | Add APN details | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | config_apn_data | marosmars/magma | 2 | python | def config_apn_data(self, imsi, apn_list):
' '
self._subscriber_client.config_apn_details(imsi, apn_list) | def config_apn_data(self, imsi, apn_list):
' '
self._subscriber_client.config_apn_details(imsi, apn_list)<|docstring|>Add APN details<|endoftext|> |
dd448000e10101c86386e6485727c10502ecb85a1d8fe586bcef1fb8a0356cb9 | def cleanup(self):
' Cleanup added subscriber from subscriberdb '
self._subscriber_client.clean_up()
self._subscriber_client.wait_for_changes() | Cleanup added subscriber from subscriberdb | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | cleanup | marosmars/magma | 2 | python | def cleanup(self):
' '
self._subscriber_client.clean_up()
self._subscriber_client.wait_for_changes() | def cleanup(self):
' '
self._subscriber_client.clean_up()
self._subscriber_client.wait_for_changes()<|docstring|>Cleanup added subscriber from subscriberdb<|endoftext|> |
37ff60b85f2dcd59040e913db6351b59348a8b9775f179bb090de62ebf584298 | def __init__(self, magmad_client):
'\n Init magmad util.\n\n Args:\n magmad_client: MagmadServiceClient\n '
self._magmad_client = magmad_client
self._data = {'user': 'vagrant', 'host': '192.168.60.142', 'password': 'vagrant', 'command': 'test'}
self._command = 'sshpass -p {password} ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no {user}@{host} {command}' | Init magmad util.
Args:
magmad_client: MagmadServiceClient | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | __init__ | marosmars/magma | 2 | python | def __init__(self, magmad_client):
'\n Init magmad util.\n\n Args:\n magmad_client: MagmadServiceClient\n '
self._magmad_client = magmad_client
self._data = {'user': 'vagrant', 'host': '192.168.60.142', 'password': 'vagrant', 'command': 'test'}
self._command = 'sshpass -p {password} ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no {user}@{host} {command}' | def __init__(self, magmad_client):
'\n Init magmad util.\n\n Args:\n magmad_client: MagmadServiceClient\n '
self._magmad_client = magmad_client
self._data = {'user': 'vagrant', 'host': '192.168.60.142', 'password': 'vagrant', 'command': 'test'}
self._command = 'sshpass -p {password} ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no {user}@{host} {command}'<|docstring|>Init magmad util.
Args:
magmad_client: MagmadServiceClient<|endoftext|> |
952473ab51e7191b128d3dcd208894425e087dc4abcc96afcad3f31f780c460b | def exec_command(self, command):
"\n Run a command remotly on magma_dev VM.\n\n Args:\n command: command (str) to be executed on remote host\n e.g. 'sed -i 's/config1/config2/g' /etc/magma/mme.yml'\n\n "
data = self._data
data['command'] = (('"' + command) + '"')
os.system(self._command.format(**data)) | Run a command remotly on magma_dev VM.
Args:
command: command (str) to be executed on remote host
e.g. 'sed -i 's/config1/config2/g' /etc/magma/mme.yml' | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | exec_command | marosmars/magma | 2 | python | def exec_command(self, command):
"\n Run a command remotly on magma_dev VM.\n\n Args:\n command: command (str) to be executed on remote host\n e.g. 'sed -i 's/config1/config2/g' /etc/magma/mme.yml'\n\n "
data = self._data
data['command'] = (('"' + command) + '"')
os.system(self._command.format(**data)) | def exec_command(self, command):
"\n Run a command remotly on magma_dev VM.\n\n Args:\n command: command (str) to be executed on remote host\n e.g. 'sed -i 's/config1/config2/g' /etc/magma/mme.yml'\n\n "
data = self._data
data['command'] = (('"' + command) + '"')
os.system(self._command.format(**data))<|docstring|>Run a command remotly on magma_dev VM.
Args:
command: command (str) to be executed on remote host
e.g. 'sed -i 's/config1/config2/g' /etc/magma/mme.yml'<|endoftext|> |
67a18b8a802db7c371c0cbeb00900d75c190ff339595dfaefce745fc1e72cc46 | def set_config_stateless(self, enabled):
'\n Sets the use_stateless flag in mme.yml file\n\n Args:\n enabled: sets the flag to true if enabled\n\n '
if enabled:
self.exec_command("sed -i 's/use_stateless: false/use_stateless: true/g' /etc/magma/mme.yml")
else:
self.exec_command("sed -i 's/use_stateless: true/use_stateless: false/g' /etc/magma/mme.yml") | Sets the use_stateless flag in mme.yml file
Args:
enabled: sets the flag to true if enabled | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | set_config_stateless | marosmars/magma | 2 | python | def set_config_stateless(self, enabled):
'\n Sets the use_stateless flag in mme.yml file\n\n Args:\n enabled: sets the flag to true if enabled\n\n '
if enabled:
self.exec_command("sed -i 's/use_stateless: false/use_stateless: true/g' /etc/magma/mme.yml")
else:
self.exec_command("sed -i 's/use_stateless: true/use_stateless: false/g' /etc/magma/mme.yml") | def set_config_stateless(self, enabled):
'\n Sets the use_stateless flag in mme.yml file\n\n Args:\n enabled: sets the flag to true if enabled\n\n '
if enabled:
self.exec_command("sed -i 's/use_stateless: false/use_stateless: true/g' /etc/magma/mme.yml")
else:
self.exec_command("sed -i 's/use_stateless: true/use_stateless: false/g' /etc/magma/mme.yml")<|docstring|>Sets the use_stateless flag in mme.yml file
Args:
enabled: sets the flag to true if enabled<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.