body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
4060a941d79f64585301a11a7598cb1ef0ed5502f44553dbd106fb604455f361 | def restart_all_services(self):
'\n Restart all magma services on magma_dev VM\n '
self.exec_command('sudo service magma@* stop ; sudo service magma@magmad start')
time.sleep(10) | Restart all magma services on magma_dev VM | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | restart_all_services | marosmars/magma | 2 | python | def restart_all_services(self):
'\n \n '
self.exec_command('sudo service magma@* stop ; sudo service magma@magmad start')
time.sleep(10) | def restart_all_services(self):
'\n \n '
self.exec_command('sudo service magma@* stop ; sudo service magma@magmad start')
time.sleep(10)<|docstring|>Restart all magma services on magma_dev VM<|endoftext|> |
d60af252264686e4bfcccdb3408cc9368e9754c2c37b8a6255138e9157eea34d | def restart_services(self, services):
'\n Restart a list of magmad services.\n\n Args:\n services: List of (str) services names\n\n '
self._magmad_client.restart_services(services) | Restart a list of magmad services.
Args:
services: List of (str) services names | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | restart_services | marosmars/magma | 2 | python | def restart_services(self, services):
'\n Restart a list of magmad services.\n\n Args:\n services: List of (str) services names\n\n '
self._magmad_client.restart_services(services) | def restart_services(self, services):
'\n Restart a list of magmad services.\n\n Args:\n services: List of (str) services names\n\n '
self._magmad_client.restart_services(services)<|docstring|>Restart a list of magmad services.
Args:
services: List of (str) services names<|endoftext|> |
c5f8b0cdb159a29cc75bf4b7e4947743cec151d7eb443d1db2cd3d708acf9451 | def __init__(self, mobility_client):
'\n Initialize mobility util.\n\n Args:\n mobility_client (mobility_service_client.MobilityServiceClient):\n client interacting with our mobility APIs\n '
self._mobility_client = mobility_client | Initialize mobility util.
Args:
mobility_client (mobility_service_client.MobilityServiceClient):
client interacting with our mobility APIs | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | __init__ | marosmars/magma | 2 | python | def __init__(self, mobility_client):
'\n Initialize mobility util.\n\n Args:\n mobility_client (mobility_service_client.MobilityServiceClient):\n client interacting with our mobility APIs\n '
self._mobility_client = mobility_client | def __init__(self, mobility_client):
'\n Initialize mobility util.\n\n Args:\n mobility_client (mobility_service_client.MobilityServiceClient):\n client interacting with our mobility APIs\n '
self._mobility_client = mobility_client<|docstring|>Initialize mobility util.
Args:
mobility_client (mobility_service_client.MobilityServiceClient):
client interacting with our mobility APIs<|endoftext|> |
e4b790c11e43474c1667426f7308b88ee4118cdeef08fcd4e9b0c8580615f5f1 | def add_ip_block(self, ip_block):
' Add an ip block\n\n Args:\n ip_block (str | ipaddress.ip_network): the IP block to add\n '
ip_network_block = ipaddress.ip_network(ip_block)
self._mobility_client.add_ip_block(ip_network_block) | Add an ip block
Args:
ip_block (str | ipaddress.ip_network): the IP block to add | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | add_ip_block | marosmars/magma | 2 | python | def add_ip_block(self, ip_block):
' Add an ip block\n\n Args:\n ip_block (str | ipaddress.ip_network): the IP block to add\n '
ip_network_block = ipaddress.ip_network(ip_block)
self._mobility_client.add_ip_block(ip_network_block) | def add_ip_block(self, ip_block):
' Add an ip block\n\n Args:\n ip_block (str | ipaddress.ip_network): the IP block to add\n '
ip_network_block = ipaddress.ip_network(ip_block)
self._mobility_client.add_ip_block(ip_network_block)<|docstring|>Add an ip block
Args:
ip_block (str | ipaddress.ip_network): the IP block to add<|endoftext|> |
813f24dff0fc12d317b3714df9f3695fe8a335a80f79162cf6a0ab44a0f339eb | def remove_all_ip_blocks(self):
' Delete all allocated IP blocks. '
self._mobility_client.remove_all_ip_blocks() | Delete all allocated IP blocks. | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | remove_all_ip_blocks | marosmars/magma | 2 | python | def remove_all_ip_blocks(self):
' '
self._mobility_client.remove_all_ip_blocks() | def remove_all_ip_blocks(self):
' '
self._mobility_client.remove_all_ip_blocks()<|docstring|>Delete all allocated IP blocks.<|endoftext|> |
55897a713bf828b7e3c226e2197329a0e9c520125e59ec2a1dcb629a1eafeaa7 | def get_subscriber_table(self):
' Retrieve subscriber table from mobilityd '
table = self._mobility_client.get_subscriber_ip_table()
return table | Retrieve subscriber table from mobilityd | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | get_subscriber_table | marosmars/magma | 2 | python | def get_subscriber_table(self):
' '
table = self._mobility_client.get_subscriber_ip_table()
return table | def get_subscriber_table(self):
' '
table = self._mobility_client.get_subscriber_ip_table()
return table<|docstring|>Retrieve subscriber table from mobilityd<|endoftext|> |
9f1ec7dd5c1595f66a37bc09dd452711be8161843fc330690c24c1af50366ef5 | def list_ip_blocks(self):
' List all IP blocks in mobilityd '
blocks = self._mobility_client.list_added_blocks()
return blocks | List all IP blocks in mobilityd | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | list_ip_blocks | marosmars/magma | 2 | python | def list_ip_blocks(self):
' '
blocks = self._mobility_client.list_added_blocks()
return blocks | def list_ip_blocks(self):
' '
blocks = self._mobility_client.list_added_blocks()
return blocks<|docstring|>List all IP blocks in mobilityd<|endoftext|> |
e57cdb5522132db4fdae4b9ac3c2a97536442b0a5c128746a1ac3722274ce996 | def remove_ip_blocks(self, blocks):
' Attempt to remove the given blocks from mobilityd\n\n Args:\n blocks (tuple(ip_network)): tuple of ipaddress.ip_network objects\n representing the IP blocks to remove.\n Returns:\n removed_blocks (tuple(ip_network)): tuple of ipaddress.ip_netework\n objects representing the removed IP blocks.\n '
removed_blocks = self._mobility_client.remove_ip_blocks(blocks)
return removed_blocks | Attempt to remove the given blocks from mobilityd
Args:
blocks (tuple(ip_network)): tuple of ipaddress.ip_network objects
representing the IP blocks to remove.
Returns:
removed_blocks (tuple(ip_network)): tuple of ipaddress.ip_netework
objects representing the removed IP blocks. | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | remove_ip_blocks | marosmars/magma | 2 | python | def remove_ip_blocks(self, blocks):
' Attempt to remove the given blocks from mobilityd\n\n Args:\n blocks (tuple(ip_network)): tuple of ipaddress.ip_network objects\n representing the IP blocks to remove.\n Returns:\n removed_blocks (tuple(ip_network)): tuple of ipaddress.ip_netework\n objects representing the removed IP blocks.\n '
removed_blocks = self._mobility_client.remove_ip_blocks(blocks)
return removed_blocks | def remove_ip_blocks(self, blocks):
' Attempt to remove the given blocks from mobilityd\n\n Args:\n blocks (tuple(ip_network)): tuple of ipaddress.ip_network objects\n representing the IP blocks to remove.\n Returns:\n removed_blocks (tuple(ip_network)): tuple of ipaddress.ip_netework\n objects representing the removed IP blocks.\n '
removed_blocks = self._mobility_client.remove_ip_blocks(blocks)
return removed_blocks<|docstring|>Attempt to remove the given blocks from mobilityd
Args:
blocks (tuple(ip_network)): tuple of ipaddress.ip_network objects
representing the IP blocks to remove.
Returns:
removed_blocks (tuple(ip_network)): tuple of ipaddress.ip_netework
objects representing the removed IP blocks.<|endoftext|> |
96990df6f3806ee2d812dd6e073d2f051b072e971565ea48190f7f111607889b | def cleanup(self):
' Cleanup added IP blocks '
blocks = self.list_ip_blocks()
self.remove_ip_blocks(blocks) | Cleanup added IP blocks | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | cleanup | marosmars/magma | 2 | python | def cleanup(self):
' '
blocks = self.list_ip_blocks()
self.remove_ip_blocks(blocks) | def cleanup(self):
' '
blocks = self.list_ip_blocks()
self.remove_ip_blocks(blocks)<|docstring|>Cleanup added IP blocks<|endoftext|> |
d7ad8a2df9c10f72742c74b5bf958d4235a6bfa12732f97f5f332b7ca076439a | def __init__(self):
'\n Initialize spgw util.\n '
self._stub = SpgwServiceStub(get_rpc_channel('spgw_service')) | Initialize spgw util. | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | __init__ | marosmars/magma | 2 | python | def __init__(self):
'\n \n '
self._stub = SpgwServiceStub(get_rpc_channel('spgw_service')) | def __init__(self):
'\n \n '
self._stub = SpgwServiceStub(get_rpc_channel('spgw_service'))<|docstring|>Initialize spgw util.<|endoftext|> |
73505e7ba052038ef254e250e83ede30d58b2a94a5e758443fd9555a7da532cf | def create_bearer(self, imsi, lbi, qci_val=1):
'\n Sends a CreateBearer Request to SPGW service\n '
print('Sending CreateBearer request to spgw service')
req = CreateBearerRequest(sid=SIDUtils.to_pb(imsi), link_bearer_id=lbi, policy_rules=[PolicyRule(qos=FlowQos(qci=qci_val, gbr_ul=10000000, gbr_dl=10000000, max_req_bw_ul=10000000, max_req_bw_dl=10000000, arp=QosArp(priority_level=1, pre_capability=1, pre_vulnerability=0)), flow_list=[FlowDescription(match=FlowMatch(ipv4_dst='0.0.0.0/0', tcp_dst=5001, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42/24', tcp_dst=5002, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5003, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5004, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5005, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.DENY), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42', tcp_src=5001, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='', tcp_src=5002, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.64/26', tcp_src=5003, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42/16', tcp_src=5004, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42', tcp_src=5005, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.DENY)])])
self._stub.CreateBearer(req) | Sends a CreateBearer Request to SPGW service | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | create_bearer | marosmars/magma | 2 | python | def create_bearer(self, imsi, lbi, qci_val=1):
'\n \n '
print('Sending CreateBearer request to spgw service')
req = CreateBearerRequest(sid=SIDUtils.to_pb(imsi), link_bearer_id=lbi, policy_rules=[PolicyRule(qos=FlowQos(qci=qci_val, gbr_ul=10000000, gbr_dl=10000000, max_req_bw_ul=10000000, max_req_bw_dl=10000000, arp=QosArp(priority_level=1, pre_capability=1, pre_vulnerability=0)), flow_list=[FlowDescription(match=FlowMatch(ipv4_dst='0.0.0.0/0', tcp_dst=5001, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42/24', tcp_dst=5002, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5003, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5004, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5005, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.DENY), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42', tcp_src=5001, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src=, tcp_src=5002, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.64/26', tcp_src=5003, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42/16', tcp_src=5004, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42', tcp_src=5005, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.DENY)])])
self._stub.CreateBearer(req) | def create_bearer(self, imsi, lbi, qci_val=1):
'\n \n '
print('Sending CreateBearer request to spgw service')
req = CreateBearerRequest(sid=SIDUtils.to_pb(imsi), link_bearer_id=lbi, policy_rules=[PolicyRule(qos=FlowQos(qci=qci_val, gbr_ul=10000000, gbr_dl=10000000, max_req_bw_ul=10000000, max_req_bw_dl=10000000, arp=QosArp(priority_level=1, pre_capability=1, pre_vulnerability=0)), flow_list=[FlowDescription(match=FlowMatch(ipv4_dst='0.0.0.0/0', tcp_dst=5001, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42/24', tcp_dst=5002, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5003, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5004, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_dst='192.168.129.42', tcp_dst=5005, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.UPLINK), action=FlowDescription.DENY), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42', tcp_src=5001, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src=, tcp_src=5002, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.64/26', tcp_src=5003, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42/16', tcp_src=5004, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.PERMIT), FlowDescription(match=FlowMatch(ipv4_src='192.168.129.42', tcp_src=5005, ip_proto=FlowMatch.IPPROTO_TCP, direction=FlowMatch.DOWNLINK), action=FlowDescription.DENY)])])
self._stub.CreateBearer(req)<|docstring|>Sends a CreateBearer Request to SPGW service<|endoftext|> |
7c959440b9abfd7c1aef305f4e025f4997a3c8957f32b73bc45240ee3e589a72 | def delete_bearer(self, imsi, lbi, ebi):
'\n Sends a DeleteBearer Request to SPGW service\n '
print('Sending DeleteBearer request to spgw service')
req = DeleteBearerRequest(sid=SIDUtils.to_pb(imsi), link_bearer_id=lbi, eps_bearer_ids=[ebi])
self._stub.DeleteBearer(req) | Sends a DeleteBearer Request to SPGW service | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | delete_bearer | marosmars/magma | 2 | python | def delete_bearer(self, imsi, lbi, ebi):
'\n \n '
print('Sending DeleteBearer request to spgw service')
req = DeleteBearerRequest(sid=SIDUtils.to_pb(imsi), link_bearer_id=lbi, eps_bearer_ids=[ebi])
self._stub.DeleteBearer(req) | def delete_bearer(self, imsi, lbi, ebi):
'\n \n '
print('Sending DeleteBearer request to spgw service')
req = DeleteBearerRequest(sid=SIDUtils.to_pb(imsi), link_bearer_id=lbi, eps_bearer_ids=[ebi])
self._stub.DeleteBearer(req)<|docstring|>Sends a DeleteBearer Request to SPGW service<|endoftext|> |
cac3b0d20942b2be0642ff219cf284397e4461e8198dfc3610f9d0bd8a4dfa96 | def __init__(self):
'\n Initialize sessionManager util.\n '
self._session_stub = SessionProxyResponderStub(get_rpc_channel('sessiond'))
self._directorydstub = GatewayDirectoryServiceStub(get_rpc_channel('directoryd')) | Initialize sessionManager util. | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | __init__ | marosmars/magma | 2 | python | def __init__(self):
'\n \n '
self._session_stub = SessionProxyResponderStub(get_rpc_channel('sessiond'))
self._directorydstub = GatewayDirectoryServiceStub(get_rpc_channel('directoryd')) | def __init__(self):
'\n \n '
self._session_stub = SessionProxyResponderStub(get_rpc_channel('sessiond'))
self._directorydstub = GatewayDirectoryServiceStub(get_rpc_channel('directoryd'))<|docstring|>Initialize sessionManager util.<|endoftext|> |
48f5de6989d4e67e65108bf3955ae68fb2dd4a81dd896a6c930d2679f7da86de | def get_flow_match(self, flow_list, flow_match_list):
'\n Populates flow match list\n '
for flow in flow_list:
flow_direction = (FlowMatch.UPLINK if (flow['direction'] == 'UL') else FlowMatch.DOWNLINK)
ip_protocol = flow['ip_proto']
if (ip_protocol == 'TCP'):
ip_protocol = FlowMatch.IPPROTO_TCP
udp_src_port = 0
udp_dst_port = 0
tcp_src_port = (int(flow['tcp_src_port']) if ('tcp_src_port' in flow) else 0)
tcp_dst_port = (int(flow['tcp_dst_port']) if ('tcp_dst_port' in flow) else 0)
elif (ip_protocol == 'UDP'):
ip_protocol = FlowMatch.IPPROTO_UDP
tcp_src_port = 0
tcp_dst_port = 0
udp_src_port = (int(flow['udp_src_port']) if ('udp_src_port' in flow) else 0)
udp_dst_port = (int(flow['udp_dst_port']) if ('udp_dst_port' in flow) else 0)
else:
udp_src_port = 0
udp_dst_port = 0
tcp_src_port = 0
tcp_dst_port = 0
ipv4_src_addr = flow.get('ipv4_src', None)
ipv4_dst_addr = flow.get('ipv4_dst', None)
flow_match_list.append(FlowDescription(match=FlowMatch(ipv4_dst=ipv4_dst_addr, ipv4_src=ipv4_src_addr, tcp_src=tcp_src_port, tcp_dst=tcp_dst_port, udp_src=udp_src_port, udp_dst=udp_dst_port, ip_proto=ip_protocol, direction=flow_direction), action=FlowDescription.PERMIT)) | Populates flow match list | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | get_flow_match | marosmars/magma | 2 | python | def get_flow_match(self, flow_list, flow_match_list):
'\n \n '
for flow in flow_list:
flow_direction = (FlowMatch.UPLINK if (flow['direction'] == 'UL') else FlowMatch.DOWNLINK)
ip_protocol = flow['ip_proto']
if (ip_protocol == 'TCP'):
ip_protocol = FlowMatch.IPPROTO_TCP
udp_src_port = 0
udp_dst_port = 0
tcp_src_port = (int(flow['tcp_src_port']) if ('tcp_src_port' in flow) else 0)
tcp_dst_port = (int(flow['tcp_dst_port']) if ('tcp_dst_port' in flow) else 0)
elif (ip_protocol == 'UDP'):
ip_protocol = FlowMatch.IPPROTO_UDP
tcp_src_port = 0
tcp_dst_port = 0
udp_src_port = (int(flow['udp_src_port']) if ('udp_src_port' in flow) else 0)
udp_dst_port = (int(flow['udp_dst_port']) if ('udp_dst_port' in flow) else 0)
else:
udp_src_port = 0
udp_dst_port = 0
tcp_src_port = 0
tcp_dst_port = 0
ipv4_src_addr = flow.get('ipv4_src', None)
ipv4_dst_addr = flow.get('ipv4_dst', None)
flow_match_list.append(FlowDescription(match=FlowMatch(ipv4_dst=ipv4_dst_addr, ipv4_src=ipv4_src_addr, tcp_src=tcp_src_port, tcp_dst=tcp_dst_port, udp_src=udp_src_port, udp_dst=udp_dst_port, ip_proto=ip_protocol, direction=flow_direction), action=FlowDescription.PERMIT)) | def get_flow_match(self, flow_list, flow_match_list):
'\n \n '
for flow in flow_list:
flow_direction = (FlowMatch.UPLINK if (flow['direction'] == 'UL') else FlowMatch.DOWNLINK)
ip_protocol = flow['ip_proto']
if (ip_protocol == 'TCP'):
ip_protocol = FlowMatch.IPPROTO_TCP
udp_src_port = 0
udp_dst_port = 0
tcp_src_port = (int(flow['tcp_src_port']) if ('tcp_src_port' in flow) else 0)
tcp_dst_port = (int(flow['tcp_dst_port']) if ('tcp_dst_port' in flow) else 0)
elif (ip_protocol == 'UDP'):
ip_protocol = FlowMatch.IPPROTO_UDP
tcp_src_port = 0
tcp_dst_port = 0
udp_src_port = (int(flow['udp_src_port']) if ('udp_src_port' in flow) else 0)
udp_dst_port = (int(flow['udp_dst_port']) if ('udp_dst_port' in flow) else 0)
else:
udp_src_port = 0
udp_dst_port = 0
tcp_src_port = 0
tcp_dst_port = 0
ipv4_src_addr = flow.get('ipv4_src', None)
ipv4_dst_addr = flow.get('ipv4_dst', None)
flow_match_list.append(FlowDescription(match=FlowMatch(ipv4_dst=ipv4_dst_addr, ipv4_src=ipv4_src_addr, tcp_src=tcp_src_port, tcp_dst=tcp_dst_port, udp_src=udp_src_port, udp_dst=udp_dst_port, ip_proto=ip_protocol, direction=flow_direction), action=FlowDescription.PERMIT))<|docstring|>Populates flow match list<|endoftext|> |
505ea4458e9cab625f0070314348c5ae7be27d46715fe17660e1b9f98418e411 | def create_ReAuthRequest(self, imsi, policy_id, flow_list, qos):
'\n Sends Policy RAR message to session manager\n '
print('Sending Policy RAR message to session manager')
flow_match_list = []
res = None
self.get_flow_match(flow_list, flow_match_list)
policy_qos = FlowQos(qci=qos['qci'], max_req_bw_ul=qos['max_req_bw_ul'], max_req_bw_dl=qos['max_req_bw_dl'], gbr_ul=qos['gbr_ul'], gbr_dl=qos['gbr_dl'], arp=QosArp(priority_level=qos['arp_prio'], pre_capability=qos['pre_cap'], pre_vulnerability=qos['pre_vul']))
policy_rule = PolicyRule(id=policy_id, priority=qos['priority'], flow_list=flow_match_list, tracking_type=PolicyRule.NO_TRACKING, rating_group=1, monitoring_key=None, qos=policy_qos)
qos = QoSInformation(qci=qos['qci'])
req = GetDirectoryFieldRequest(id=imsi, field_key='session_id')
try:
res = self._directorydstub.GetDirectoryField(req, DEFAULT_GRPC_TIMEOUT)
except grpc.RpcError as err:
logging.error('GetDirectoryFieldRequest error for id: %s! [%s] %s', imsi, err.code(), err.details())
self._session_stub.PolicyReAuth(PolicyReAuthRequest(session_id=res.value, imsi=imsi, rules_to_remove=[], rules_to_install=[], dynamic_rules_to_install=[DynamicRuleInstall(policy_rule=policy_rule)], event_triggers=[], revalidation_time=None, usage_monitoring_credits=[], qos_info=qos)) | Sends Policy RAR message to session manager | lte/gateway/python/integ_tests/s1aptests/s1ap_utils.py | create_ReAuthRequest | marosmars/magma | 2 | python | def create_ReAuthRequest(self, imsi, policy_id, flow_list, qos):
'\n \n '
print('Sending Policy RAR message to session manager')
flow_match_list = []
res = None
self.get_flow_match(flow_list, flow_match_list)
policy_qos = FlowQos(qci=qos['qci'], max_req_bw_ul=qos['max_req_bw_ul'], max_req_bw_dl=qos['max_req_bw_dl'], gbr_ul=qos['gbr_ul'], gbr_dl=qos['gbr_dl'], arp=QosArp(priority_level=qos['arp_prio'], pre_capability=qos['pre_cap'], pre_vulnerability=qos['pre_vul']))
policy_rule = PolicyRule(id=policy_id, priority=qos['priority'], flow_list=flow_match_list, tracking_type=PolicyRule.NO_TRACKING, rating_group=1, monitoring_key=None, qos=policy_qos)
qos = QoSInformation(qci=qos['qci'])
req = GetDirectoryFieldRequest(id=imsi, field_key='session_id')
try:
res = self._directorydstub.GetDirectoryField(req, DEFAULT_GRPC_TIMEOUT)
except grpc.RpcError as err:
logging.error('GetDirectoryFieldRequest error for id: %s! [%s] %s', imsi, err.code(), err.details())
self._session_stub.PolicyReAuth(PolicyReAuthRequest(session_id=res.value, imsi=imsi, rules_to_remove=[], rules_to_install=[], dynamic_rules_to_install=[DynamicRuleInstall(policy_rule=policy_rule)], event_triggers=[], revalidation_time=None, usage_monitoring_credits=[], qos_info=qos)) | def create_ReAuthRequest(self, imsi, policy_id, flow_list, qos):
'\n \n '
print('Sending Policy RAR message to session manager')
flow_match_list = []
res = None
self.get_flow_match(flow_list, flow_match_list)
policy_qos = FlowQos(qci=qos['qci'], max_req_bw_ul=qos['max_req_bw_ul'], max_req_bw_dl=qos['max_req_bw_dl'], gbr_ul=qos['gbr_ul'], gbr_dl=qos['gbr_dl'], arp=QosArp(priority_level=qos['arp_prio'], pre_capability=qos['pre_cap'], pre_vulnerability=qos['pre_vul']))
policy_rule = PolicyRule(id=policy_id, priority=qos['priority'], flow_list=flow_match_list, tracking_type=PolicyRule.NO_TRACKING, rating_group=1, monitoring_key=None, qos=policy_qos)
qos = QoSInformation(qci=qos['qci'])
req = GetDirectoryFieldRequest(id=imsi, field_key='session_id')
try:
res = self._directorydstub.GetDirectoryField(req, DEFAULT_GRPC_TIMEOUT)
except grpc.RpcError as err:
logging.error('GetDirectoryFieldRequest error for id: %s! [%s] %s', imsi, err.code(), err.details())
self._session_stub.PolicyReAuth(PolicyReAuthRequest(session_id=res.value, imsi=imsi, rules_to_remove=[], rules_to_install=[], dynamic_rules_to_install=[DynamicRuleInstall(policy_rule=policy_rule)], event_triggers=[], revalidation_time=None, usage_monitoring_credits=[], qos_info=qos))<|docstring|>Sends Policy RAR message to session manager<|endoftext|> |
4f3452e103ac90a8335a216ac883f2c7687f9269ad3b5cf1eb89c001d4ce5697 | def __init__(self, env, noop_max=30):
'Sample initial states by taking random number of no-ops on reset.\n No-op is assumed to be action 0.\n '
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert (env.unwrapped.get_action_meanings()[0] == 'NOOP') | Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0. | reward/utils/wrapper/gym/atari_wrappers.py | __init__ | lgvaz/torchrl | 5 | python | def __init__(self, env, noop_max=30):
'Sample initial states by taking random number of no-ops on reset.\n No-op is assumed to be action 0.\n '
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert (env.unwrapped.get_action_meanings()[0] == 'NOOP') | def __init__(self, env, noop_max=30):
'Sample initial states by taking random number of no-ops on reset.\n No-op is assumed to be action 0.\n '
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert (env.unwrapped.get_action_meanings()[0] == 'NOOP')<|docstring|>Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.<|endoftext|> |
c0bbd486931d17d929dc86a4b6d3f726e96f5f4308b97d937a7ee6ae27ec8533 | def reset(self, **kwargs):
' Do no-op action for a number of steps in [1, noop_max].'
self.env.reset(**kwargs)
if (self.override_num_noops is not None):
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, (self.noop_max + 1))
assert (noops > 0)
obs = None
for _ in range(noops):
(obs, _, done, _) = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs | Do no-op action for a number of steps in [1, noop_max]. | reward/utils/wrapper/gym/atari_wrappers.py | reset | lgvaz/torchrl | 5 | python | def reset(self, **kwargs):
' '
self.env.reset(**kwargs)
if (self.override_num_noops is not None):
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, (self.noop_max + 1))
assert (noops > 0)
obs = None
for _ in range(noops):
(obs, _, done, _) = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs | def reset(self, **kwargs):
' '
self.env.reset(**kwargs)
if (self.override_num_noops is not None):
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, (self.noop_max + 1))
assert (noops > 0)
obs = None
for _ in range(noops):
(obs, _, done, _) = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs<|docstring|>Do no-op action for a number of steps in [1, noop_max].<|endoftext|> |
56d0be54500241e0b54dabb5c19919baf097f50408fcc735d4c079b790f18e5b | def __init__(self, env):
'Take action on reset for environments that are fixed until firing.'
gym.Wrapper.__init__(self, env)
assert (env.unwrapped.get_action_meanings()[1] == 'FIRE')
assert (len(env.unwrapped.get_action_meanings()) >= 3) | Take action on reset for environments that are fixed until firing. | reward/utils/wrapper/gym/atari_wrappers.py | __init__ | lgvaz/torchrl | 5 | python | def __init__(self, env):
gym.Wrapper.__init__(self, env)
assert (env.unwrapped.get_action_meanings()[1] == 'FIRE')
assert (len(env.unwrapped.get_action_meanings()) >= 3) | def __init__(self, env):
gym.Wrapper.__init__(self, env)
assert (env.unwrapped.get_action_meanings()[1] == 'FIRE')
assert (len(env.unwrapped.get_action_meanings()) >= 3)<|docstring|>Take action on reset for environments that are fixed until firing.<|endoftext|> |
948958a8908ae8a7d19992f33ba825f5a1c9080d0e88e3a395e866de125f0f10 | def __init__(self, env):
'Make end-of-life == end-of-episode, but only reset on true game over.\n Done by DeepMind for the DQN and co. since it helps value estimation.\n '
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True | Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation. | reward/utils/wrapper/gym/atari_wrappers.py | __init__ | lgvaz/torchrl | 5 | python | def __init__(self, env):
'Make end-of-life == end-of-episode, but only reset on true game over.\n Done by DeepMind for the DQN and co. since it helps value estimation.\n '
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True | def __init__(self, env):
'Make end-of-life == end-of-episode, but only reset on true game over.\n Done by DeepMind for the DQN and co. since it helps value estimation.\n '
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True<|docstring|>Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.<|endoftext|> |
acd3d4c5542291608b53c9e17ceb0573bca23e15c0eeed3292a4f011b75a2a5c | def reset(self, **kwargs):
'Reset only when lives are exhausted.\n This way all states are still reachable even though lives are episodic,\n and the learner need not know about any of this behind-the-scenes.\n '
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
(obs, _, _, _) = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs | Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes. | reward/utils/wrapper/gym/atari_wrappers.py | reset | lgvaz/torchrl | 5 | python | def reset(self, **kwargs):
'Reset only when lives are exhausted.\n This way all states are still reachable even though lives are episodic,\n and the learner need not know about any of this behind-the-scenes.\n '
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
(obs, _, _, _) = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs | def reset(self, **kwargs):
'Reset only when lives are exhausted.\n This way all states are still reachable even though lives are episodic,\n and the learner need not know about any of this behind-the-scenes.\n '
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
(obs, _, _, _) = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs<|docstring|>Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.<|endoftext|> |
912288f283c9a31361c105444a6d148cac7b3f707a67778dd380bf00affc5f4d | def __init__(self, env, skip=4):
'Return only every `skip`-th frame'
gym.Wrapper.__init__(self, env)
self._obs_buffer = np.zeros(((2,) + env.observation_space.shape), dtype=np.uint8)
self._skip = skip | Return only every `skip`-th frame | reward/utils/wrapper/gym/atari_wrappers.py | __init__ | lgvaz/torchrl | 5 | python | def __init__(self, env, skip=4):
gym.Wrapper.__init__(self, env)
self._obs_buffer = np.zeros(((2,) + env.observation_space.shape), dtype=np.uint8)
self._skip = skip | def __init__(self, env, skip=4):
gym.Wrapper.__init__(self, env)
self._obs_buffer = np.zeros(((2,) + env.observation_space.shape), dtype=np.uint8)
self._skip = skip<|docstring|>Return only every `skip`-th frame<|endoftext|> |
1a35b438664f869bf4a4c16fa213bf9fc7f3fe09dc72a523f77bf05f7466e5af | def step(self, action):
'Repeat action, sum reward, and max over last observations.'
total_reward = 0.0
done = None
for i in range(self._skip):
(obs, reward, done, info) = self.env.step(action)
if (i == (self._skip - 2)):
self._obs_buffer[0] = obs
if (i == (self._skip - 1)):
self._obs_buffer[1] = obs
total_reward += reward
if done:
break
max_frame = self._obs_buffer.max(axis=0)
return (max_frame, total_reward, done, info) | Repeat action, sum reward, and max over last observations. | reward/utils/wrapper/gym/atari_wrappers.py | step | lgvaz/torchrl | 5 | python | def step(self, action):
total_reward = 0.0
done = None
for i in range(self._skip):
(obs, reward, done, info) = self.env.step(action)
if (i == (self._skip - 2)):
self._obs_buffer[0] = obs
if (i == (self._skip - 1)):
self._obs_buffer[1] = obs
total_reward += reward
if done:
break
max_frame = self._obs_buffer.max(axis=0)
return (max_frame, total_reward, done, info) | def step(self, action):
total_reward = 0.0
done = None
for i in range(self._skip):
(obs, reward, done, info) = self.env.step(action)
if (i == (self._skip - 2)):
self._obs_buffer[0] = obs
if (i == (self._skip - 1)):
self._obs_buffer[1] = obs
total_reward += reward
if done:
break
max_frame = self._obs_buffer.max(axis=0)
return (max_frame, total_reward, done, info)<|docstring|>Repeat action, sum reward, and max over last observations.<|endoftext|> |
17ac5fb9599f5d83a2a66250a3367ab66fc5d4cf48de6ede4225a04e7091c603 | def reward(self, reward):
'Bin reward to {+1, 0, -1} by its sign.'
return np.sign(reward) | Bin reward to {+1, 0, -1} by its sign. | reward/utils/wrapper/gym/atari_wrappers.py | reward | lgvaz/torchrl | 5 | python | def reward(self, reward):
return np.sign(reward) | def reward(self, reward):
return np.sign(reward)<|docstring|>Bin reward to {+1, 0, -1} by its sign.<|endoftext|> |
37fb6aacab3acb21a34b1f715a1d23a5a27c97a266ebd0e20fbdab047acf38ba | def SupportedFiletypes(self):
' Just csharp '
return ['cs'] | Just csharp | vim/patches/YouCompleteMe_linux/cs_completer.py | SupportedFiletypes | yjpark/dotfiles | 7 | python | def SupportedFiletypes(self):
' '
return ['cs'] | def SupportedFiletypes(self):
' '
return ['cs']<|docstring|>Just csharp<|endoftext|> |
2736c731d20a27f586bed683b8e32d0ee82eabb6ae00b9f475044a090159acf0 | def _StartServer(self, request_data):
' Start the OmniSharp server '
self._logger.info('startup')
path_to_solutionfile = solutiondetection.FindSolutionPath(request_data['filepath'])
if (not path_to_solutionfile):
raise RuntimeError('Autodetection of solution file failed.\n')
self._logger.info('Loading solution file {0}'.format(path_to_solutionfile))
self._omnisharp_port = utils.GetUnusedLocalhostPort()
command = ' '.join([PATH_TO_OMNISHARP_BINARY, '-p', str(self._omnisharp_port), '-s', path_to_solutionfile])
if ((not utils.OnWindows()) and (not utils.OnCygwin())):
command = ('/opt/monodevelop/bin/mono ' + command)
if utils.OnCygwin():
command = (command + ' --client-path-mode Cygwin')
filename_format = os.path.join(utils.PathToTempDir(), 'omnisharp_{port}_{sln}_{std}.log')
solutionfile = os.path.basename(path_to_solutionfile)
self._filename_stdout = filename_format.format(port=self._omnisharp_port, sln=solutionfile, std='stdout')
self._filename_stderr = filename_format.format(port=self._omnisharp_port, sln=solutionfile, std='stderr')
with open(self._filename_stderr, 'w') as fstderr:
with open(self._filename_stdout, 'w') as fstdout:
utils.SafePopen(command, stdout=fstdout, stderr=fstderr, shell=True)
self._solution_path = path_to_solutionfile
self._logger.info('Starting OmniSharp server') | Start the OmniSharp server | vim/patches/YouCompleteMe_linux/cs_completer.py | _StartServer | yjpark/dotfiles | 7 | python | def _StartServer(self, request_data):
' '
self._logger.info('startup')
path_to_solutionfile = solutiondetection.FindSolutionPath(request_data['filepath'])
if (not path_to_solutionfile):
raise RuntimeError('Autodetection of solution file failed.\n')
self._logger.info('Loading solution file {0}'.format(path_to_solutionfile))
self._omnisharp_port = utils.GetUnusedLocalhostPort()
command = ' '.join([PATH_TO_OMNISHARP_BINARY, '-p', str(self._omnisharp_port), '-s', path_to_solutionfile])
if ((not utils.OnWindows()) and (not utils.OnCygwin())):
command = ('/opt/monodevelop/bin/mono ' + command)
if utils.OnCygwin():
command = (command + ' --client-path-mode Cygwin')
filename_format = os.path.join(utils.PathToTempDir(), 'omnisharp_{port}_{sln}_{std}.log')
solutionfile = os.path.basename(path_to_solutionfile)
self._filename_stdout = filename_format.format(port=self._omnisharp_port, sln=solutionfile, std='stdout')
self._filename_stderr = filename_format.format(port=self._omnisharp_port, sln=solutionfile, std='stderr')
with open(self._filename_stderr, 'w') as fstderr:
with open(self._filename_stdout, 'w') as fstdout:
utils.SafePopen(command, stdout=fstdout, stderr=fstderr, shell=True)
self._solution_path = path_to_solutionfile
self._logger.info('Starting OmniSharp server') | def _StartServer(self, request_data):
' '
self._logger.info('startup')
path_to_solutionfile = solutiondetection.FindSolutionPath(request_data['filepath'])
if (not path_to_solutionfile):
raise RuntimeError('Autodetection of solution file failed.\n')
self._logger.info('Loading solution file {0}'.format(path_to_solutionfile))
self._omnisharp_port = utils.GetUnusedLocalhostPort()
command = ' '.join([PATH_TO_OMNISHARP_BINARY, '-p', str(self._omnisharp_port), '-s', path_to_solutionfile])
if ((not utils.OnWindows()) and (not utils.OnCygwin())):
command = ('/opt/monodevelop/bin/mono ' + command)
if utils.OnCygwin():
command = (command + ' --client-path-mode Cygwin')
filename_format = os.path.join(utils.PathToTempDir(), 'omnisharp_{port}_{sln}_{std}.log')
solutionfile = os.path.basename(path_to_solutionfile)
self._filename_stdout = filename_format.format(port=self._omnisharp_port, sln=solutionfile, std='stdout')
self._filename_stderr = filename_format.format(port=self._omnisharp_port, sln=solutionfile, std='stderr')
with open(self._filename_stderr, 'w') as fstderr:
with open(self._filename_stdout, 'w') as fstdout:
utils.SafePopen(command, stdout=fstdout, stderr=fstderr, shell=True)
self._solution_path = path_to_solutionfile
self._logger.info('Starting OmniSharp server')<|docstring|>Start the OmniSharp server<|endoftext|> |
b26970ed3be0bae65052b0aeeec97adea4729a3ca86a55b883cd2a248eeb6f14 | def _StopServer(self):
' Stop the OmniSharp server '
self._GetResponse('/stopserver')
self._omnisharp_port = None
self._logger.info('Stopping OmniSharp server') | Stop the OmniSharp server | vim/patches/YouCompleteMe_linux/cs_completer.py | _StopServer | yjpark/dotfiles | 7 | python | def _StopServer(self):
' '
self._GetResponse('/stopserver')
self._omnisharp_port = None
self._logger.info('Stopping OmniSharp server') | def _StopServer(self):
' '
self._GetResponse('/stopserver')
self._omnisharp_port = None
self._logger.info('Stopping OmniSharp server')<|docstring|>Stop the OmniSharp server<|endoftext|> |
027113869539578b5c1b7273d5b9a317f7ef2314c4871652256fe619b5d99fd4 | def _RestartServer(self, request_data):
' Restarts the OmniSharp server '
if self.ServerIsRunning():
self._StopServer()
return self._StartServer(request_data) | Restarts the OmniSharp server | vim/patches/YouCompleteMe_linux/cs_completer.py | _RestartServer | yjpark/dotfiles | 7 | python | def _RestartServer(self, request_data):
' '
if self.ServerIsRunning():
self._StopServer()
return self._StartServer(request_data) | def _RestartServer(self, request_data):
' '
if self.ServerIsRunning():
self._StopServer()
return self._StartServer(request_data)<|docstring|>Restarts the OmniSharp server<|endoftext|> |
3efee70e70102a49aa5cdb39e9e439682cac43471b0716359459ada155014b79 | def _ReloadSolution(self):
' Reloads the solutions in the OmniSharp server '
self._logger.info('Reloading Solution in OmniSharp server')
return self._GetResponse('/reloadsolution') | Reloads the solutions in the OmniSharp server | vim/patches/YouCompleteMe_linux/cs_completer.py | _ReloadSolution | yjpark/dotfiles | 7 | python | def _ReloadSolution(self):
' '
self._logger.info('Reloading Solution in OmniSharp server')
return self._GetResponse('/reloadsolution') | def _ReloadSolution(self):
' '
self._logger.info('Reloading Solution in OmniSharp server')
return self._GetResponse('/reloadsolution')<|docstring|>Reloads the solutions in the OmniSharp server<|endoftext|> |
61cfcfcb769b91a581ca7d751c921e5f15fdce922ee67dd43a2e056bba5f7c77 | def _GetCompletions(self, request_data):
' Ask server for completions '
completions = self._GetResponse('/autocomplete', self._DefaultParameters(request_data))
return (completions if (completions != None) else []) | Ask server for completions | vim/patches/YouCompleteMe_linux/cs_completer.py | _GetCompletions | yjpark/dotfiles | 7 | python | def _GetCompletions(self, request_data):
' '
completions = self._GetResponse('/autocomplete', self._DefaultParameters(request_data))
return (completions if (completions != None) else []) | def _GetCompletions(self, request_data):
' '
completions = self._GetResponse('/autocomplete', self._DefaultParameters(request_data))
return (completions if (completions != None) else [])<|docstring|>Ask server for completions<|endoftext|> |
39f419969b6847c9e63cb93eeaa9c8d2be7534dc1aa0a3f2095b5b76ddbfdbad | def _GoToDefinition(self, request_data):
' Jump to definition of identifier under cursor '
definition = self._GetResponse('/gotodefinition', self._DefaultParameters(request_data))
if (definition['FileName'] != None):
return responses.BuildGoToResponse(definition['FileName'], definition['Line'], definition['Column'])
else:
raise RuntimeError("Can't jump to definition") | Jump to definition of identifier under cursor | vim/patches/YouCompleteMe_linux/cs_completer.py | _GoToDefinition | yjpark/dotfiles | 7 | python | def _GoToDefinition(self, request_data):
' '
definition = self._GetResponse('/gotodefinition', self._DefaultParameters(request_data))
if (definition['FileName'] != None):
return responses.BuildGoToResponse(definition['FileName'], definition['Line'], definition['Column'])
else:
raise RuntimeError("Can't jump to definition") | def _GoToDefinition(self, request_data):
' '
definition = self._GetResponse('/gotodefinition', self._DefaultParameters(request_data))
if (definition['FileName'] != None):
return responses.BuildGoToResponse(definition['FileName'], definition['Line'], definition['Column'])
else:
raise RuntimeError("Can't jump to definition")<|docstring|>Jump to definition of identifier under cursor<|endoftext|> |
a316b508a488ab12e58f9bec902847cedfa3c552732f95dca9f07dabb1a28bf2 | def _GoToImplementation(self, request_data, fallback_to_declaration):
' Jump to implementation of identifier under cursor '
implementation = self._GetResponse('/findimplementations', self._DefaultParameters(request_data))
if implementation['QuickFixes']:
if (len(implementation['QuickFixes']) == 1):
return responses.BuildGoToResponse(implementation['QuickFixes'][0]['FileName'], implementation['QuickFixes'][0]['Line'], implementation['QuickFixes'][0]['Column'])
else:
return [responses.BuildGoToResponse(x['FileName'], x['Line'], x['Column']) for x in implementation['QuickFixes']]
elif fallback_to_declaration:
return self._GoToDefinition(request_data)
elif (implementation['QuickFixes'] == None):
raise RuntimeError("Can't jump to implementation")
else:
raise RuntimeError('No implementations found') | Jump to implementation of identifier under cursor | vim/patches/YouCompleteMe_linux/cs_completer.py | _GoToImplementation | yjpark/dotfiles | 7 | python | def _GoToImplementation(self, request_data, fallback_to_declaration):
' '
implementation = self._GetResponse('/findimplementations', self._DefaultParameters(request_data))
if implementation['QuickFixes']:
if (len(implementation['QuickFixes']) == 1):
return responses.BuildGoToResponse(implementation['QuickFixes'][0]['FileName'], implementation['QuickFixes'][0]['Line'], implementation['QuickFixes'][0]['Column'])
else:
return [responses.BuildGoToResponse(x['FileName'], x['Line'], x['Column']) for x in implementation['QuickFixes']]
elif fallback_to_declaration:
return self._GoToDefinition(request_data)
elif (implementation['QuickFixes'] == None):
raise RuntimeError("Can't jump to implementation")
else:
raise RuntimeError('No implementations found') | def _GoToImplementation(self, request_data, fallback_to_declaration):
' '
implementation = self._GetResponse('/findimplementations', self._DefaultParameters(request_data))
if implementation['QuickFixes']:
if (len(implementation['QuickFixes']) == 1):
return responses.BuildGoToResponse(implementation['QuickFixes'][0]['FileName'], implementation['QuickFixes'][0]['Line'], implementation['QuickFixes'][0]['Column'])
else:
return [responses.BuildGoToResponse(x['FileName'], x['Line'], x['Column']) for x in implementation['QuickFixes']]
elif fallback_to_declaration:
return self._GoToDefinition(request_data)
elif (implementation['QuickFixes'] == None):
raise RuntimeError("Can't jump to implementation")
else:
raise RuntimeError('No implementations found')<|docstring|>Jump to implementation of identifier under cursor<|endoftext|> |
5f6857e203ffed083328db370c3c73b80976f3daba4f7161a19d5854bc1210a2 | def _DefaultParameters(self, request_data):
' Some very common request parameters '
parameters = {}
parameters['line'] = request_data['line_num']
parameters['column'] = request_data['column_num']
filepath = request_data['filepath']
parameters['buffer'] = request_data['file_data'][filepath]['contents']
parameters['filename'] = filepath
return parameters | Some very common request parameters | vim/patches/YouCompleteMe_linux/cs_completer.py | _DefaultParameters | yjpark/dotfiles | 7 | python | def _DefaultParameters(self, request_data):
' '
parameters = {}
parameters['line'] = request_data['line_num']
parameters['column'] = request_data['column_num']
filepath = request_data['filepath']
parameters['buffer'] = request_data['file_data'][filepath]['contents']
parameters['filename'] = filepath
return parameters | def _DefaultParameters(self, request_data):
' '
parameters = {}
parameters['line'] = request_data['line_num']
parameters['column'] = request_data['column_num']
filepath = request_data['filepath']
parameters['buffer'] = request_data['file_data'][filepath]['contents']
parameters['filename'] = filepath
return parameters<|docstring|>Some very common request parameters<|endoftext|> |
ca75358378bba2178e2853bbff80753eb51efb332489921832a4445fa39edd42 | def ServerIsRunning(self):
' Check if our OmniSharp server is running (up and serving).'
try:
return bool((self._omnisharp_port and self._GetResponse('/checkalivestatus', silent=True)))
except:
return False | Check if our OmniSharp server is running (up and serving). | vim/patches/YouCompleteMe_linux/cs_completer.py | ServerIsRunning | yjpark/dotfiles | 7 | python | def ServerIsRunning(self):
' '
try:
return bool((self._omnisharp_port and self._GetResponse('/checkalivestatus', silent=True)))
except:
return False | def ServerIsRunning(self):
' '
try:
return bool((self._omnisharp_port and self._GetResponse('/checkalivestatus', silent=True)))
except:
return False<|docstring|>Check if our OmniSharp server is running (up and serving).<|endoftext|> |
54520ea7b9be22cd1f4d34e7ed5f35db07f9ff6689c4f757d626f2515a7378d4 | def ServerIsReady(self):
' Check if our OmniSharp server is ready (loaded solution file).'
try:
return bool((self._omnisharp_port and self._GetResponse('/checkreadystatus', silent=True)))
except:
return False | Check if our OmniSharp server is ready (loaded solution file). | vim/patches/YouCompleteMe_linux/cs_completer.py | ServerIsReady | yjpark/dotfiles | 7 | python | def ServerIsReady(self):
' '
try:
return bool((self._omnisharp_port and self._GetResponse('/checkreadystatus', silent=True)))
except:
return False | def ServerIsReady(self):
' '
try:
return bool((self._omnisharp_port and self._GetResponse('/checkreadystatus', silent=True)))
except:
return False<|docstring|>Check if our OmniSharp server is ready (loaded solution file).<|endoftext|> |
e387831b2f19458f92edcd7905b52a089abc7137ebe43db8f41eba2025b73814 | def _SolutionFile(self):
' Find out which solution file server was started with '
return self._solution_path | Find out which solution file server was started with | vim/patches/YouCompleteMe_linux/cs_completer.py | _SolutionFile | yjpark/dotfiles | 7 | python | def _SolutionFile(self):
' '
return self._solution_path | def _SolutionFile(self):
' '
return self._solution_path<|docstring|>Find out which solution file server was started with<|endoftext|> |
b1b67b370f0a74e27c169cdca3252dcdf4b374c2c3ac845316ad31fedd23ea33 | def _GetResponse(self, handler, parameters={}, silent=False):
' Handle communication with server '
target = urlparse.urljoin(self._ServerLocation(), handler)
parameters = urllib.urlencode(parameters)
response = urllib2.urlopen(target, parameters)
return json.loads(response.read()) | Handle communication with server | vim/patches/YouCompleteMe_linux/cs_completer.py | _GetResponse | yjpark/dotfiles | 7 | python | def _GetResponse(self, handler, parameters={}, silent=False):
' '
target = urlparse.urljoin(self._ServerLocation(), handler)
parameters = urllib.urlencode(parameters)
response = urllib2.urlopen(target, parameters)
return json.loads(response.read()) | def _GetResponse(self, handler, parameters={}, silent=False):
' '
target = urlparse.urljoin(self._ServerLocation(), handler)
parameters = urllib.urlencode(parameters)
response = urllib2.urlopen(target, parameters)
return json.loads(response.read())<|docstring|>Handle communication with server<|endoftext|> |
546f888001f80a487a9b7edf548a9960573d5c6a9a599ea7b8403c0575d25124 | def __init__(self, action_space: gym.spaces.Discrete, observation_space: gym.spaces.Dict, rgb_uuid: str, subtask_uuid: str, rel_position_change_uuid: str, ordered_object_types: Sequence[str], hidden_size=512, prev_action_embedding_dim: int=32, task_type_embedding_dim: int=32, object_type_embedding_dim: int=128, object_visible_embedding_dim: int=16, position_dim: int=32, num_rnn_layers=1, rnn_type='GRU'):
'\n # Parameters\n action_space : The action space of the agent.\n Should equal `gym.spaces.Discrete(# actions available to the agent)`.\n observation_space : The observation space available to the agent.\n rgb_uuid : The unique id of the RGB image sensor (see `RGBSensor`).\n unshuffled_rgb_uuid : The unique id of the `UnshuffledRGBRearrangeSensor` available to the agent.\n hidden_size : The size of the hidden layer of the RNN.\n num_rnn_layers: The number of hidden layers in the RNN.\n rnn_type : The RNN type, should be "GRU" or "LSTM".\n '
super().__init__(action_space=action_space, observation_space=observation_space)
self._hidden_size = hidden_size
self.rgb_uuid = rgb_uuid
self.subtask_uuid = subtask_uuid
self.rel_position_change_uuid = rel_position_change_uuid
self.prev_action_embedder = nn.Embedding((action_space.n + 1), embedding_dim=prev_action_embedding_dim)
self.task_type_embedder = nn.Embedding(num_embeddings=8, embedding_dim=task_type_embedding_dim)
self.object_type_embedder = nn.Embedding(num_embeddings=(len(ordered_object_types) + 1), embedding_dim=object_type_embedding_dim)
self.object_visible_embedder = nn.Embedding(num_embeddings=3, embedding_dim=object_visible_embedding_dim)
self.position_encoder = nn.Linear(11, position_dim)
self.visual_encoder = self._create_visual_encoder()
self.state_encoder = RNNStateEncoder((((((prev_action_embedding_dim + task_type_embedding_dim) + (object_type_embedding_dim * 2)) + (object_visible_embedding_dim * 2)) + position_dim) + self.recurrent_hidden_state_size), self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type)
self.actor = LinearActorHead(self._hidden_size, action_space.n)
self.critic = LinearCriticHead(self._hidden_size)
self.train() | # Parameters
action_space : The action space of the agent.
Should equal `gym.spaces.Discrete(# actions available to the agent)`.
observation_space : The observation space available to the agent.
rgb_uuid : The unique id of the RGB image sensor (see `RGBSensor`).
unshuffled_rgb_uuid : The unique id of the `UnshuffledRGBRearrangeSensor` available to the agent.
hidden_size : The size of the hidden layer of the RNN.
num_rnn_layers: The number of hidden layers in the RNN.
rnn_type : The RNN type, should be "GRU" or "LSTM". | env/baseline_models.py | __init__ | SAMMiCA/robot_home_service | 0 | python | def __init__(self, action_space: gym.spaces.Discrete, observation_space: gym.spaces.Dict, rgb_uuid: str, subtask_uuid: str, rel_position_change_uuid: str, ordered_object_types: Sequence[str], hidden_size=512, prev_action_embedding_dim: int=32, task_type_embedding_dim: int=32, object_type_embedding_dim: int=128, object_visible_embedding_dim: int=16, position_dim: int=32, num_rnn_layers=1, rnn_type='GRU'):
'\n # Parameters\n action_space : The action space of the agent.\n Should equal `gym.spaces.Discrete(# actions available to the agent)`.\n observation_space : The observation space available to the agent.\n rgb_uuid : The unique id of the RGB image sensor (see `RGBSensor`).\n unshuffled_rgb_uuid : The unique id of the `UnshuffledRGBRearrangeSensor` available to the agent.\n hidden_size : The size of the hidden layer of the RNN.\n num_rnn_layers: The number of hidden layers in the RNN.\n rnn_type : The RNN type, should be "GRU" or "LSTM".\n '
super().__init__(action_space=action_space, observation_space=observation_space)
self._hidden_size = hidden_size
self.rgb_uuid = rgb_uuid
self.subtask_uuid = subtask_uuid
self.rel_position_change_uuid = rel_position_change_uuid
self.prev_action_embedder = nn.Embedding((action_space.n + 1), embedding_dim=prev_action_embedding_dim)
self.task_type_embedder = nn.Embedding(num_embeddings=8, embedding_dim=task_type_embedding_dim)
self.object_type_embedder = nn.Embedding(num_embeddings=(len(ordered_object_types) + 1), embedding_dim=object_type_embedding_dim)
self.object_visible_embedder = nn.Embedding(num_embeddings=3, embedding_dim=object_visible_embedding_dim)
self.position_encoder = nn.Linear(11, position_dim)
self.visual_encoder = self._create_visual_encoder()
self.state_encoder = RNNStateEncoder((((((prev_action_embedding_dim + task_type_embedding_dim) + (object_type_embedding_dim * 2)) + (object_visible_embedding_dim * 2)) + position_dim) + self.recurrent_hidden_state_size), self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type)
self.actor = LinearActorHead(self._hidden_size, action_space.n)
self.critic = LinearCriticHead(self._hidden_size)
self.train() | def __init__(self, action_space: gym.spaces.Discrete, observation_space: gym.spaces.Dict, rgb_uuid: str, subtask_uuid: str, rel_position_change_uuid: str, ordered_object_types: Sequence[str], hidden_size=512, prev_action_embedding_dim: int=32, task_type_embedding_dim: int=32, object_type_embedding_dim: int=128, object_visible_embedding_dim: int=16, position_dim: int=32, num_rnn_layers=1, rnn_type='GRU'):
'\n # Parameters\n action_space : The action space of the agent.\n Should equal `gym.spaces.Discrete(# actions available to the agent)`.\n observation_space : The observation space available to the agent.\n rgb_uuid : The unique id of the RGB image sensor (see `RGBSensor`).\n unshuffled_rgb_uuid : The unique id of the `UnshuffledRGBRearrangeSensor` available to the agent.\n hidden_size : The size of the hidden layer of the RNN.\n num_rnn_layers: The number of hidden layers in the RNN.\n rnn_type : The RNN type, should be "GRU" or "LSTM".\n '
super().__init__(action_space=action_space, observation_space=observation_space)
self._hidden_size = hidden_size
self.rgb_uuid = rgb_uuid
self.subtask_uuid = subtask_uuid
self.rel_position_change_uuid = rel_position_change_uuid
self.prev_action_embedder = nn.Embedding((action_space.n + 1), embedding_dim=prev_action_embedding_dim)
self.task_type_embedder = nn.Embedding(num_embeddings=8, embedding_dim=task_type_embedding_dim)
self.object_type_embedder = nn.Embedding(num_embeddings=(len(ordered_object_types) + 1), embedding_dim=object_type_embedding_dim)
self.object_visible_embedder = nn.Embedding(num_embeddings=3, embedding_dim=object_visible_embedding_dim)
self.position_encoder = nn.Linear(11, position_dim)
self.visual_encoder = self._create_visual_encoder()
self.state_encoder = RNNStateEncoder((((((prev_action_embedding_dim + task_type_embedding_dim) + (object_type_embedding_dim * 2)) + (object_visible_embedding_dim * 2)) + position_dim) + self.recurrent_hidden_state_size), self._hidden_size, num_layers=num_rnn_layers, rnn_type=rnn_type)
self.actor = LinearActorHead(self._hidden_size, action_space.n)
self.critic = LinearCriticHead(self._hidden_size)
self.train()<|docstring|># Parameters
action_space : The action space of the agent.
Should equal `gym.spaces.Discrete(# actions available to the agent)`.
observation_space : The observation space available to the agent.
rgb_uuid : The unique id of the RGB image sensor (see `RGBSensor`).
unshuffled_rgb_uuid : The unique id of the `UnshuffledRGBRearrangeSensor` available to the agent.
hidden_size : The size of the hidden layer of the RNN.
num_rnn_layers: The number of hidden layers in the RNN.
rnn_type : The RNN type, should be "GRU" or "LSTM".<|endoftext|> |
fd667ecf5b51c98a762f4370f04624bf07590f568ec6123ca4beddd8058a511a | def _create_visual_encoder(self) -> nn.Module:
'Create the visual encoder for the model.'
return SimpleCNN(observation_space=gym.spaces.Dict({self.rgb_uuid: self.observation_space[self.rgb_uuid]}), output_size=self._hidden_size, rgb_uuid=self.rgb_uuid, depth_uuid=None) | Create the visual encoder for the model. | env/baseline_models.py | _create_visual_encoder | SAMMiCA/robot_home_service | 0 | python | def _create_visual_encoder(self) -> nn.Module:
return SimpleCNN(observation_space=gym.spaces.Dict({self.rgb_uuid: self.observation_space[self.rgb_uuid]}), output_size=self._hidden_size, rgb_uuid=self.rgb_uuid, depth_uuid=None) | def _create_visual_encoder(self) -> nn.Module:
return SimpleCNN(observation_space=gym.spaces.Dict({self.rgb_uuid: self.observation_space[self.rgb_uuid]}), output_size=self._hidden_size, rgb_uuid=self.rgb_uuid, depth_uuid=None)<|docstring|>Create the visual encoder for the model.<|endoftext|> |
233bccc350d4cdc4aa88ecfeafce9c02af9db5d529a815c13e558708892a4260 | def __init__(self, action_space: gym.spaces.Discrete, observation_space: gym.spaces.Dict, rgb_uuid: str, subtask_uuid: str, rel_position_change_uuid: str, ordered_object_types: Sequence[str], hidden_size=512, task_type_embedding_dim: int=32, object_type_embedding_dim: int=128, object_visible_embedding_dim: int=16, position_dim: int=32, num_rnn_layers=1, rnn_type='GRU'):
"A CNN->RNN rearrangement model that expects ResNet features instead\n of RGB images.\n\n Nearly identical to `RearrangeActorCriticSimpleConvRNN` but\n `rgb_uuid` should now be the unique id of the ResNetPreprocessor\n used to featurize RGB images using a pretrained ResNet before\n they're passed to this model.\n "
self.visual_attention: Optional[nn.Module] = None
super().__init__(**prepare_locals_for_super(locals())) | A CNN->RNN rearrangement model that expects ResNet features instead
of RGB images.
Nearly identical to `RearrangeActorCriticSimpleConvRNN` but
`rgb_uuid` should now be the unique id of the ResNetPreprocessor
used to featurize RGB images using a pretrained ResNet before
they're passed to this model. | env/baseline_models.py | __init__ | SAMMiCA/robot_home_service | 0 | python | def __init__(self, action_space: gym.spaces.Discrete, observation_space: gym.spaces.Dict, rgb_uuid: str, subtask_uuid: str, rel_position_change_uuid: str, ordered_object_types: Sequence[str], hidden_size=512, task_type_embedding_dim: int=32, object_type_embedding_dim: int=128, object_visible_embedding_dim: int=16, position_dim: int=32, num_rnn_layers=1, rnn_type='GRU'):
"A CNN->RNN rearrangement model that expects ResNet features instead\n of RGB images.\n\n Nearly identical to `RearrangeActorCriticSimpleConvRNN` but\n `rgb_uuid` should now be the unique id of the ResNetPreprocessor\n used to featurize RGB images using a pretrained ResNet before\n they're passed to this model.\n "
self.visual_attention: Optional[nn.Module] = None
super().__init__(**prepare_locals_for_super(locals())) | def __init__(self, action_space: gym.spaces.Discrete, observation_space: gym.spaces.Dict, rgb_uuid: str, subtask_uuid: str, rel_position_change_uuid: str, ordered_object_types: Sequence[str], hidden_size=512, task_type_embedding_dim: int=32, object_type_embedding_dim: int=128, object_visible_embedding_dim: int=16, position_dim: int=32, num_rnn_layers=1, rnn_type='GRU'):
"A CNN->RNN rearrangement model that expects ResNet features instead\n of RGB images.\n\n Nearly identical to `RearrangeActorCriticSimpleConvRNN` but\n `rgb_uuid` should now be the unique id of the ResNetPreprocessor\n used to featurize RGB images using a pretrained ResNet before\n they're passed to this model.\n "
self.visual_attention: Optional[nn.Module] = None
super().__init__(**prepare_locals_for_super(locals()))<|docstring|>A CNN->RNN rearrangement model that expects ResNet features instead
of RGB images.
Nearly identical to `RearrangeActorCriticSimpleConvRNN` but
`rgb_uuid` should now be the unique id of the ResNetPreprocessor
used to featurize RGB images using a pretrained ResNet before
they're passed to this model.<|endoftext|> |
9daa34a9b060ccccfe65158d2eb132f53655b8267cbc9691be3f63fa303c8fb4 | def get_test_sets():
"Get test sentence and dict from rmrb dataset\n Return:\n test_set: a list of tokenized sentences. Each of it is a list of words.\n For example, [['今天', '是', '星期二', '。'], ...]\n dicts: a list of all words that appear in the dataset\n "
with open('data/rmrb.txt', 'r', encoding='utf-8') as f:
lines = f.readlines()
test_set = []
dicts = []
for line in lines:
line = pre_process(line, use_re=0)
idata = line.strip().split()
if (len(idata) == 0):
continue
idata = [x.split('/')[0] for x in idata]
test_set.append(idata)
dicts.extend(idata)
dicts = list(set(dicts))
return (test_set, dicts) | Get test sentence and dict from rmrb dataset
Return:
test_set: a list of tokenized sentences. Each of it is a list of words.
For example, [['今天', '是', '星期二', '。'], ...]
dicts: a list of all words that appear in the dataset | test_exp1.py | get_test_sets | volgachen/Chinese-Tokenization | 0 | python | def get_test_sets():
"Get test sentence and dict from rmrb dataset\n Return:\n test_set: a list of tokenized sentences. Each of it is a list of words.\n For example, [['今天', '是', '星期二', '。'], ...]\n dicts: a list of all words that appear in the dataset\n "
with open('data/rmrb.txt', 'r', encoding='utf-8') as f:
lines = f.readlines()
test_set = []
dicts = []
for line in lines:
line = pre_process(line, use_re=0)
idata = line.strip().split()
if (len(idata) == 0):
continue
idata = [x.split('/')[0] for x in idata]
test_set.append(idata)
dicts.extend(idata)
dicts = list(set(dicts))
return (test_set, dicts) | def get_test_sets():
"Get test sentence and dict from rmrb dataset\n Return:\n test_set: a list of tokenized sentences. Each of it is a list of words.\n For example, [['今天', '是', '星期二', '。'], ...]\n dicts: a list of all words that appear in the dataset\n "
with open('data/rmrb.txt', 'r', encoding='utf-8') as f:
lines = f.readlines()
test_set = []
dicts = []
for line in lines:
line = pre_process(line, use_re=0)
idata = line.strip().split()
if (len(idata) == 0):
continue
idata = [x.split('/')[0] for x in idata]
test_set.append(idata)
dicts.extend(idata)
dicts = list(set(dicts))
return (test_set, dicts)<|docstring|>Get test sentence and dict from rmrb dataset
Return:
test_set: a list of tokenized sentences. Each of it is a list of words.
For example, [['今天', '是', '星期二', '。'], ...]
dicts: a list of all words that appear in the dataset<|endoftext|> |
ad7663df2e5c48e07c29d3084c1a78a7481bb89425d80dd2224cdaacefef66e8 | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type query: List[List[str]]\n :rtype: List[float]\n '
def dfs(x, y):
if (y in graph[x]):
return graph[x][y]
for nei in graph[x]:
if (nei not in visited):
visited.add(nei)
ret = dfs(nei, y)
if (ret is not None):
return (graph[x][nei] * ret)
return None
graph = collections.defaultdict(dict)
for (i, (a, b)) in enumerate(equations):
graph[a][a] = 1
graph[b][b] = 1
graph[a][b] = values[i]
if values[i]:
graph[b][a] = (1 / values[i])
ans = []
for (x, y) in queries:
if ((x not in graph) or (y not in graph)):
ans.append((- 1.0))
else:
visited = set()
v = dfs(x, y)
ans.append((v if (v is not None) else (- 1.0)))
return ans | :type equations: List[List[str]]
:type values: List[float]
:type query: List[List[str]]
:rtype: List[float] | Python/evaluate-division.py | calcEquation | RideGreg/LeetCode | 1 | python | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type query: List[List[str]]\n :rtype: List[float]\n '
def dfs(x, y):
if (y in graph[x]):
return graph[x][y]
for nei in graph[x]:
if (nei not in visited):
visited.add(nei)
ret = dfs(nei, y)
if (ret is not None):
return (graph[x][nei] * ret)
return None
graph = collections.defaultdict(dict)
for (i, (a, b)) in enumerate(equations):
graph[a][a] = 1
graph[b][b] = 1
graph[a][b] = values[i]
if values[i]:
graph[b][a] = (1 / values[i])
ans = []
for (x, y) in queries:
if ((x not in graph) or (y not in graph)):
ans.append((- 1.0))
else:
visited = set()
v = dfs(x, y)
ans.append((v if (v is not None) else (- 1.0)))
return ans | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type query: List[List[str]]\n :rtype: List[float]\n '
def dfs(x, y):
if (y in graph[x]):
return graph[x][y]
for nei in graph[x]:
if (nei not in visited):
visited.add(nei)
ret = dfs(nei, y)
if (ret is not None):
return (graph[x][nei] * ret)
return None
graph = collections.defaultdict(dict)
for (i, (a, b)) in enumerate(equations):
graph[a][a] = 1
graph[b][b] = 1
graph[a][b] = values[i]
if values[i]:
graph[b][a] = (1 / values[i])
ans = []
for (x, y) in queries:
if ((x not in graph) or (y not in graph)):
ans.append((- 1.0))
else:
visited = set()
v = dfs(x, y)
ans.append((v if (v is not None) else (- 1.0)))
return ans<|docstring|>:type equations: List[List[str]]
:type values: List[float]
:type query: List[List[str]]
:rtype: List[float]<|endoftext|> |
5a4cdcf1e19c65bac9f4f2cd40e449fbe001cd61af693329db3f2cbb5bcc55b0 | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
union_find = UnionFind()
for ((a, b), k) in zip(equations, values):
union_find.union_set(a, b, k)
return [union_find.query_set(a, b) for (a, b) in queries] | :type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float] | Python/evaluate-division.py | calcEquation | RideGreg/LeetCode | 1 | python | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
union_find = UnionFind()
for ((a, b), k) in zip(equations, values):
union_find.union_set(a, b, k)
return [union_find.query_set(a, b) for (a, b) in queries] | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
union_find = UnionFind()
for ((a, b), k) in zip(equations, values):
union_find.union_set(a, b, k)
return [union_find.query_set(a, b) for (a, b) in queries]<|docstring|>:type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float]<|endoftext|> |
b2a0e361808667073b856ca1666feaacbe38e8ff57605f16bbb3d48abf557f29 | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
adj = collections.defaultdict(dict)
for ((a, b), k) in zip(equations, values):
adj[a][b] = k
adj[b][a] = (1.0 / k)
def bfs(adj, a, b, lookup):
if ((a not in adj) or (b not in adj)):
return (- 1.0)
if ((a, b) in lookup):
return lookup[(a, b)]
visited = {a}
q = collections.deque([(a, 1.0)])
while q:
(u, val) = q.popleft()
if (u == b):
lookup[(a, b)] = val
return val
for (v, k) in adj[u].items():
if (v not in visited):
visited.add(v)
q.append((v, (val * k)))
lookup[(a, b)] = (- 1.0)
return (- 1.0)
lookup = {}
return [bfs(adj, a, b, lookup) for (a, b) in queries] | :type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float] | Python/evaluate-division.py | calcEquation | RideGreg/LeetCode | 1 | python | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
adj = collections.defaultdict(dict)
for ((a, b), k) in zip(equations, values):
adj[a][b] = k
adj[b][a] = (1.0 / k)
def bfs(adj, a, b, lookup):
if ((a not in adj) or (b not in adj)):
return (- 1.0)
if ((a, b) in lookup):
return lookup[(a, b)]
visited = {a}
q = collections.deque([(a, 1.0)])
while q:
(u, val) = q.popleft()
if (u == b):
lookup[(a, b)] = val
return val
for (v, k) in adj[u].items():
if (v not in visited):
visited.add(v)
q.append((v, (val * k)))
lookup[(a, b)] = (- 1.0)
return (- 1.0)
lookup = {}
return [bfs(adj, a, b, lookup) for (a, b) in queries] | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
adj = collections.defaultdict(dict)
for ((a, b), k) in zip(equations, values):
adj[a][b] = k
adj[b][a] = (1.0 / k)
def bfs(adj, a, b, lookup):
if ((a not in adj) or (b not in adj)):
return (- 1.0)
if ((a, b) in lookup):
return lookup[(a, b)]
visited = {a}
q = collections.deque([(a, 1.0)])
while q:
(u, val) = q.popleft()
if (u == b):
lookup[(a, b)] = val
return val
for (v, k) in adj[u].items():
if (v not in visited):
visited.add(v)
q.append((v, (val * k)))
lookup[(a, b)] = (- 1.0)
return (- 1.0)
lookup = {}
return [bfs(adj, a, b, lookup) for (a, b) in queries]<|docstring|>:type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float]<|endoftext|> |
1b3fad24c414765f69895d9759a61e356c7b1ba1bcec5ff6bc7a0d11820cc97e | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
adj = collections.defaultdict(dict)
for ((a, b), k) in itertools.izip(equations, values):
adj[a][a] = adj[b][b] = 1.0
adj[a][b] = k
adj[b][a] = (1.0 / k)
for k in adj:
for i in adj[k]:
for j in adj[k]:
adj[i][j] = (adj[i][k] * adj[k][j])
return [adj[a].get(b, (- 1.0)) for (a, b) in queries] | :type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float] | Python/evaluate-division.py | calcEquation | RideGreg/LeetCode | 1 | python | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
adj = collections.defaultdict(dict)
for ((a, b), k) in itertools.izip(equations, values):
adj[a][a] = adj[b][b] = 1.0
adj[a][b] = k
adj[b][a] = (1.0 / k)
for k in adj:
for i in adj[k]:
for j in adj[k]:
adj[i][j] = (adj[i][k] * adj[k][j])
return [adj[a].get(b, (- 1.0)) for (a, b) in queries] | def calcEquation(self, equations, values, queries):
'\n :type equations: List[List[str]]\n :type values: List[float]\n :type queries: List[List[str]]\n :rtype: List[float]\n '
adj = collections.defaultdict(dict)
for ((a, b), k) in itertools.izip(equations, values):
adj[a][a] = adj[b][b] = 1.0
adj[a][b] = k
adj[b][a] = (1.0 / k)
for k in adj:
for i in adj[k]:
for j in adj[k]:
adj[i][j] = (adj[i][k] * adj[k][j])
return [adj[a].get(b, (- 1.0)) for (a, b) in queries]<|docstring|>:type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float]<|endoftext|> |
f11c4127d29f86f1ce557c8366c1bc12af5c81854d15282e00e551785ec7ea53 | def search_api(query, index, limit=10):
'\n Sends a query to the search API (supports simple search\n queries only)\n '
api_gateway = get_from_config('apiGatewayEndpoint')
api_gateway_host = urlparse(api_gateway).hostname
match = re.match('.*\\.([a-z]{2}-[a-z]+-\\d)\\.amazonaws\\.com$', api_gateway_host)
region = match.groups()[0]
auth = search_credentials(api_gateway_host, region, 'execute-api')
encoded_params = urlencode(dict(index=index, action='search', query=query), quote_via=quote)
response = requests.get(f'{api_gateway}/search?{encoded_params}', auth=auth)
if (not response.ok):
raise QuiltException(response.text)
return response.json() | Sends a query to the search API (supports simple search
queries only) | api/python/quilt3/search_util.py | search_api | BearerPipelineTest/quilt | 1,115 | python | def search_api(query, index, limit=10):
'\n Sends a query to the search API (supports simple search\n queries only)\n '
api_gateway = get_from_config('apiGatewayEndpoint')
api_gateway_host = urlparse(api_gateway).hostname
match = re.match('.*\\.([a-z]{2}-[a-z]+-\\d)\\.amazonaws\\.com$', api_gateway_host)
region = match.groups()[0]
auth = search_credentials(api_gateway_host, region, 'execute-api')
encoded_params = urlencode(dict(index=index, action='search', query=query), quote_via=quote)
response = requests.get(f'{api_gateway}/search?{encoded_params}', auth=auth)
if (not response.ok):
raise QuiltException(response.text)
return response.json() | def search_api(query, index, limit=10):
'\n Sends a query to the search API (supports simple search\n queries only)\n '
api_gateway = get_from_config('apiGatewayEndpoint')
api_gateway_host = urlparse(api_gateway).hostname
match = re.match('.*\\.([a-z]{2}-[a-z]+-\\d)\\.amazonaws\\.com$', api_gateway_host)
region = match.groups()[0]
auth = search_credentials(api_gateway_host, region, 'execute-api')
encoded_params = urlencode(dict(index=index, action='search', query=query), quote_via=quote)
response = requests.get(f'{api_gateway}/search?{encoded_params}', auth=auth)
if (not response.ok):
raise QuiltException(response.text)
return response.json()<|docstring|>Sends a query to the search API (supports simple search
queries only)<|endoftext|> |
5bbd7a165aae94a523bda275aaaf0d7ab90230d6fd1c1f79746cdf5abc37765e | def get_key_by_value(dc: dict, value):
' Returns key from dict by value '
for (k, v) in dc.items():
if (v == value):
return k | Returns key from dict by value | app/eparser/ecommons.py | get_key_by_value | fs-basis/DemonEditor | 66 | python | def get_key_by_value(dc: dict, value):
' '
for (k, v) in dc.items():
if (v == value):
return k | def get_key_by_value(dc: dict, value):
' '
for (k, v) in dc.items():
if (v == value):
return k<|docstring|>Returns key from dict by value<|endoftext|> |
1da963574bf3e0b6bd925003d4986990df072406f1fb32120db5edf2dfa6b947 | def get_value_by_name(en, name):
' Returns value by name from enums '
for n in en:
if (n.name == name):
return n.value | Returns value by name from enums | app/eparser/ecommons.py | get_value_by_name | fs-basis/DemonEditor | 66 | python | def get_value_by_name(en, name):
' '
for n in en:
if (n.name == name):
return n.value | def get_value_by_name(en, name):
' '
for n in en:
if (n.name == name):
return n.value<|docstring|>Returns value by name from enums<|endoftext|> |
cae67b8601586638357fe795d13b328720c9bfa6f91cc2ea8b90888b3c39013e | def is_transponder_valid(tr: Transponder):
' Checks transponder validity '
try:
int(tr.frequency)
int(tr.symbol_rate)
((tr.pls_mode is None) or int(tr.pls_mode))
((tr.pls_code is None) or int(tr.pls_code))
((tr.is_id is None) or int(tr.is_id))
except TypeError:
return False
if (tr.polarization not in POLARIZATION.values()):
return False
if (tr.fec_inner not in FEC.values()):
return False
if (tr.system not in SYSTEM.values()):
return False
if (tr.modulation not in MODULATION.values()):
return False
return True | Checks transponder validity | app/eparser/ecommons.py | is_transponder_valid | fs-basis/DemonEditor | 66 | python | def is_transponder_valid(tr: Transponder):
' '
try:
int(tr.frequency)
int(tr.symbol_rate)
((tr.pls_mode is None) or int(tr.pls_mode))
((tr.pls_code is None) or int(tr.pls_code))
((tr.is_id is None) or int(tr.is_id))
except TypeError:
return False
if (tr.polarization not in POLARIZATION.values()):
return False
if (tr.fec_inner not in FEC.values()):
return False
if (tr.system not in SYSTEM.values()):
return False
if (tr.modulation not in MODULATION.values()):
return False
return True | def is_transponder_valid(tr: Transponder):
' '
try:
int(tr.frequency)
int(tr.symbol_rate)
((tr.pls_mode is None) or int(tr.pls_mode))
((tr.pls_code is None) or int(tr.pls_code))
((tr.is_id is None) or int(tr.is_id))
except TypeError:
return False
if (tr.polarization not in POLARIZATION.values()):
return False
if (tr.fec_inner not in FEC.values()):
return False
if (tr.system not in SYSTEM.values()):
return False
if (tr.modulation not in MODULATION.values()):
return False
return True<|docstring|>Checks transponder validity<|endoftext|> |
55a82cdd5b1e1ad5d29f5b7e81a9c433cc161f997bf2b5d2627135fcd846814c | def test_status_iter(log_fh, cache_filepath=None):
" Iterator generator, which accepts a log file handle\n (which contains an output of a CI job) and yields\n (test, conf, status) tuples.\n\n Caches result in the 'cache_filepath' file when its name\n is provided. Reuses the existing cache on next\n invocations.\n "
if cache_filepath:
if os.path.isfile(cache_filepath):
with open(cache_filepath, 'r') as cache_fh:
data = json.load(cache_fh)
for test_status in data:
(yield tuple(test_status))
return
cache = []
hang_detected = False
for line in log_fh:
m = TEST_STATUS_LINE_RE.match(line)
if m:
status = (m.group('status') or 'fail')
res = (m['test'], m['conf'], status)
if cache_filepath:
cache.append(res)
(yield res)
continue
m = TEST_HANG_RE.match(line)
if m:
hang_detected = True
continue
if hang_detected:
hang_detected = False
m = HANG_RESULT_RE.match(line)
if m:
result = m['result']
test = (result.split('.', 1)[0] + '.test.lua')
res = (test, None, 'hang')
if cache_filepath:
cache.append(res)
(yield res)
continue
if cache_filepath:
with open(cache_filepath, 'w') as cache_fh:
json.dump(cache, cache_fh, indent=2) | Iterator generator, which accepts a log file handle
(which contains an output of a CI job) and yields
(test, conf, status) tuples.
Caches result in the 'cache_filepath' file when its name
is provided. Reuses the existing cache on next
invocations. | multivac/sensors/test_status.py | test_status_iter | Totktonada/multivac | 1 | python | def test_status_iter(log_fh, cache_filepath=None):
" Iterator generator, which accepts a log file handle\n (which contains an output of a CI job) and yields\n (test, conf, status) tuples.\n\n Caches result in the 'cache_filepath' file when its name\n is provided. Reuses the existing cache on next\n invocations.\n "
if cache_filepath:
if os.path.isfile(cache_filepath):
with open(cache_filepath, 'r') as cache_fh:
data = json.load(cache_fh)
for test_status in data:
(yield tuple(test_status))
return
cache = []
hang_detected = False
for line in log_fh:
m = TEST_STATUS_LINE_RE.match(line)
if m:
status = (m.group('status') or 'fail')
res = (m['test'], m['conf'], status)
if cache_filepath:
cache.append(res)
(yield res)
continue
m = TEST_HANG_RE.match(line)
if m:
hang_detected = True
continue
if hang_detected:
hang_detected = False
m = HANG_RESULT_RE.match(line)
if m:
result = m['result']
test = (result.split('.', 1)[0] + '.test.lua')
res = (test, None, 'hang')
if cache_filepath:
cache.append(res)
(yield res)
continue
if cache_filepath:
with open(cache_filepath, 'w') as cache_fh:
json.dump(cache, cache_fh, indent=2) | def test_status_iter(log_fh, cache_filepath=None):
" Iterator generator, which accepts a log file handle\n (which contains an output of a CI job) and yields\n (test, conf, status) tuples.\n\n Caches result in the 'cache_filepath' file when its name\n is provided. Reuses the existing cache on next\n invocations.\n "
if cache_filepath:
if os.path.isfile(cache_filepath):
with open(cache_filepath, 'r') as cache_fh:
data = json.load(cache_fh)
for test_status in data:
(yield tuple(test_status))
return
cache = []
hang_detected = False
for line in log_fh:
m = TEST_STATUS_LINE_RE.match(line)
if m:
status = (m.group('status') or 'fail')
res = (m['test'], m['conf'], status)
if cache_filepath:
cache.append(res)
(yield res)
continue
m = TEST_HANG_RE.match(line)
if m:
hang_detected = True
continue
if hang_detected:
hang_detected = False
m = HANG_RESULT_RE.match(line)
if m:
result = m['result']
test = (result.split('.', 1)[0] + '.test.lua')
res = (test, None, 'hang')
if cache_filepath:
cache.append(res)
(yield res)
continue
if cache_filepath:
with open(cache_filepath, 'w') as cache_fh:
json.dump(cache, cache_fh, indent=2)<|docstring|>Iterator generator, which accepts a log file handle
(which contains an output of a CI job) and yields
(test, conf, status) tuples.
Caches result in the 'cache_filepath' file when its name
is provided. Reuses the existing cache on next
invocations.<|endoftext|> |
bedd0fcb49a7b6e8b28ee24c330bc02a9c69ba3026dd63ee97aaeb857c8ed9f6 | def test_smart_status_iter(log_fh, cache_filepath=None):
" Iterator generator that yields (test, conf, status)\n tuples.\n\n The difference from `test_status_iter()` is that this\n iterator squashes duplicates and reports 'transient fail'\n status for a test, which fails, run again and succeeds.\n "
tmp = OrderedDict()
for (test, conf, status) in test_status_iter(log_fh, cache_filepath):
key = (test, conf)
if ((status == 'pass') and (tmp.get(key) == 'fail')):
status = 'transient fail'
tmp[key] = status
for (key, status) in tmp.items():
(test, conf) = key
(yield (test, conf, status)) | Iterator generator that yields (test, conf, status)
tuples.
The difference from `test_status_iter()` is that this
iterator squashes duplicates and reports 'transient fail'
status for a test, which fails, run again and succeeds. | multivac/sensors/test_status.py | test_smart_status_iter | Totktonada/multivac | 1 | python | def test_smart_status_iter(log_fh, cache_filepath=None):
" Iterator generator that yields (test, conf, status)\n tuples.\n\n The difference from `test_status_iter()` is that this\n iterator squashes duplicates and reports 'transient fail'\n status for a test, which fails, run again and succeeds.\n "
tmp = OrderedDict()
for (test, conf, status) in test_status_iter(log_fh, cache_filepath):
key = (test, conf)
if ((status == 'pass') and (tmp.get(key) == 'fail')):
status = 'transient fail'
tmp[key] = status
for (key, status) in tmp.items():
(test, conf) = key
(yield (test, conf, status)) | def test_smart_status_iter(log_fh, cache_filepath=None):
" Iterator generator that yields (test, conf, status)\n tuples.\n\n The difference from `test_status_iter()` is that this\n iterator squashes duplicates and reports 'transient fail'\n status for a test, which fails, run again and succeeds.\n "
tmp = OrderedDict()
for (test, conf, status) in test_status_iter(log_fh, cache_filepath):
key = (test, conf)
if ((status == 'pass') and (tmp.get(key) == 'fail')):
status = 'transient fail'
tmp[key] = status
for (key, status) in tmp.items():
(test, conf) = key
(yield (test, conf, status))<|docstring|>Iterator generator that yields (test, conf, status)
tuples.
The difference from `test_status_iter()` is that this
iterator squashes duplicates and reports 'transient fail'
status for a test, which fails, run again and succeeds.<|endoftext|> |
fdf3533080f2f04000314ac680718fcc2bde3109569d829722bef8aa49d48c91 | def execute(log_filepath):
" External API for the smart test status iterator.\n\n The result format is designed to provide some level of\n unification between different sensors. The event\n dictionary for the 'test status' event contains `test`,\n `conf` and `status` fields (except common `event` field).\n "
cache_filepath = get_cache_filepath(log_filepath)
with open(log_filepath, 'r') as log_fh:
for (test, conf, status) in test_smart_status_iter(log_fh, cache_filepath):
(yield {'event': 'test status', 'test': test, 'conf': conf, 'status': status}) | External API for the smart test status iterator.
The result format is designed to provide some level of
unification between different sensors. The event
dictionary for the 'test status' event contains `test`,
`conf` and `status` fields (except common `event` field). | multivac/sensors/test_status.py | execute | Totktonada/multivac | 1 | python | def execute(log_filepath):
" External API for the smart test status iterator.\n\n The result format is designed to provide some level of\n unification between different sensors. The event\n dictionary for the 'test status' event contains `test`,\n `conf` and `status` fields (except common `event` field).\n "
cache_filepath = get_cache_filepath(log_filepath)
with open(log_filepath, 'r') as log_fh:
for (test, conf, status) in test_smart_status_iter(log_fh, cache_filepath):
(yield {'event': 'test status', 'test': test, 'conf': conf, 'status': status}) | def execute(log_filepath):
" External API for the smart test status iterator.\n\n The result format is designed to provide some level of\n unification between different sensors. The event\n dictionary for the 'test status' event contains `test`,\n `conf` and `status` fields (except common `event` field).\n "
cache_filepath = get_cache_filepath(log_filepath)
with open(log_filepath, 'r') as log_fh:
for (test, conf, status) in test_smart_status_iter(log_fh, cache_filepath):
(yield {'event': 'test status', 'test': test, 'conf': conf, 'status': status})<|docstring|>External API for the smart test status iterator.
The result format is designed to provide some level of
unification between different sensors. The event
dictionary for the 'test status' event contains `test`,
`conf` and `status` fields (except common `event` field).<|endoftext|> |
a83516990815966b68cfef948af661972d2faa5f29a7171941d0648c3a54c461 | def run_task(snapshot_config, *_):
'Run task.\n\n Args:\n snapshot_config (garage.experiment.SnapshotConfig): The snapshot\n configuration used by LocalRunner to create the snapshotter.\n *_ (object): Ignored by this function.\n\n '
with LocalTFRunner(snapshot_config=snapshot_config) as runner:
env = TfEnv(gym.make('FetchReach-v1'))
action_noise = OUStrategy(env.spec, sigma=0.2)
policy = ContinuousMLPPolicy(env_spec=env.spec, name='Policy', hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh)
qf = ContinuousMLPQFunction(env_spec=env.spec, name='QFunction', hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu)
replay_buffer = HerReplayBuffer(env_spec=env.spec, size_in_transitions=int(1000000.0), time_horizon=100, replay_k=0.4, reward_fun=env.compute_reward)
ddpg = DDPG(env_spec=env.spec, policy=policy, policy_lr=0.001, qf_lr=0.001, qf=qf, replay_buffer=replay_buffer, target_update_tau=0.05, steps_per_epoch=20, max_path_length=100, n_train_steps=40, discount=0.9, exploration_strategy=action_noise, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer, buffer_batch_size=256)
runner.setup(algo=ddpg, env=env)
runner.train(n_epochs=50, batch_size=100) | Run task.
Args:
snapshot_config (garage.experiment.SnapshotConfig): The snapshot
configuration used by LocalRunner to create the snapshotter.
*_ (object): Ignored by this function. | examples/tf/her_ddpg_fetchreach.py | run_task | maliesa96/garage | 0 | python | def run_task(snapshot_config, *_):
'Run task.\n\n Args:\n snapshot_config (garage.experiment.SnapshotConfig): The snapshot\n configuration used by LocalRunner to create the snapshotter.\n *_ (object): Ignored by this function.\n\n '
with LocalTFRunner(snapshot_config=snapshot_config) as runner:
env = TfEnv(gym.make('FetchReach-v1'))
action_noise = OUStrategy(env.spec, sigma=0.2)
policy = ContinuousMLPPolicy(env_spec=env.spec, name='Policy', hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh)
qf = ContinuousMLPQFunction(env_spec=env.spec, name='QFunction', hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu)
replay_buffer = HerReplayBuffer(env_spec=env.spec, size_in_transitions=int(1000000.0), time_horizon=100, replay_k=0.4, reward_fun=env.compute_reward)
ddpg = DDPG(env_spec=env.spec, policy=policy, policy_lr=0.001, qf_lr=0.001, qf=qf, replay_buffer=replay_buffer, target_update_tau=0.05, steps_per_epoch=20, max_path_length=100, n_train_steps=40, discount=0.9, exploration_strategy=action_noise, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer, buffer_batch_size=256)
runner.setup(algo=ddpg, env=env)
runner.train(n_epochs=50, batch_size=100) | def run_task(snapshot_config, *_):
'Run task.\n\n Args:\n snapshot_config (garage.experiment.SnapshotConfig): The snapshot\n configuration used by LocalRunner to create the snapshotter.\n *_ (object): Ignored by this function.\n\n '
with LocalTFRunner(snapshot_config=snapshot_config) as runner:
env = TfEnv(gym.make('FetchReach-v1'))
action_noise = OUStrategy(env.spec, sigma=0.2)
policy = ContinuousMLPPolicy(env_spec=env.spec, name='Policy', hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh)
qf = ContinuousMLPQFunction(env_spec=env.spec, name='QFunction', hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu)
replay_buffer = HerReplayBuffer(env_spec=env.spec, size_in_transitions=int(1000000.0), time_horizon=100, replay_k=0.4, reward_fun=env.compute_reward)
ddpg = DDPG(env_spec=env.spec, policy=policy, policy_lr=0.001, qf_lr=0.001, qf=qf, replay_buffer=replay_buffer, target_update_tau=0.05, steps_per_epoch=20, max_path_length=100, n_train_steps=40, discount=0.9, exploration_strategy=action_noise, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer, buffer_batch_size=256)
runner.setup(algo=ddpg, env=env)
runner.train(n_epochs=50, batch_size=100)<|docstring|>Run task.
Args:
snapshot_config (garage.experiment.SnapshotConfig): The snapshot
configuration used by LocalRunner to create the snapshotter.
*_ (object): Ignored by this function.<|endoftext|> |
29ff2a4a01f829dbecce48252fd382f3c1b1f3f379c76e2d3e814e3fb26eff13 | def get_tagger():
'\n Return a tagging function given some app settings.\n `Settings` is the settings module of an app.\n The returned value is a function that receives a unicode string and returns\n a list of `Word` instances.\n '
from quepy.nltktagger import run_nltktagger
tagger_function = (lambda x: run_nltktagger(x, settings.NLTK_DATA_PATH))
def wrapper(string):
assert_valid_encoding(string)
words = tagger_function(string)
for word in words:
if (word.pos not in PENN_TAGSET):
logger.warning('Tagger emmited a non-penn POS tag {!r}'.format(word.pos))
return words
return wrapper | Return a tagging function given some app settings.
`Settings` is the settings module of an app.
The returned value is a function that receives a unicode string and returns
a list of `Word` instances. | quepy/tagger.py | get_tagger | DrDub/quepy | 951 | python | def get_tagger():
'\n Return a tagging function given some app settings.\n `Settings` is the settings module of an app.\n The returned value is a function that receives a unicode string and returns\n a list of `Word` instances.\n '
from quepy.nltktagger import run_nltktagger
tagger_function = (lambda x: run_nltktagger(x, settings.NLTK_DATA_PATH))
def wrapper(string):
assert_valid_encoding(string)
words = tagger_function(string)
for word in words:
if (word.pos not in PENN_TAGSET):
logger.warning('Tagger emmited a non-penn POS tag {!r}'.format(word.pos))
return words
return wrapper | def get_tagger():
'\n Return a tagging function given some app settings.\n `Settings` is the settings module of an app.\n The returned value is a function that receives a unicode string and returns\n a list of `Word` instances.\n '
from quepy.nltktagger import run_nltktagger
tagger_function = (lambda x: run_nltktagger(x, settings.NLTK_DATA_PATH))
def wrapper(string):
assert_valid_encoding(string)
words = tagger_function(string)
for word in words:
if (word.pos not in PENN_TAGSET):
logger.warning('Tagger emmited a non-penn POS tag {!r}'.format(word.pos))
return words
return wrapper<|docstring|>Return a tagging function given some app settings.
`Settings` is the settings module of an app.
The returned value is a function that receives a unicode string and returns
a list of `Word` instances.<|endoftext|> |
26aed4b066cdabf8eb7534a47e98d28f739fce512ec4125bcc59670a9b504cd8 | def wavelength_to_xy_config(lad, ind, band='yj'):
'\n convert wavelength to X-Y position\n Input: wavelength in microns, index (1 less than\n desired configuration number)\n\n Returns X and Y position on the detector in mm for + and - sides of slit\n '
if (band.lower() == 'yj'):
band_string = ''
elif (band.lower() == 'hk'):
band_string = '_HK'
Xp = np.loadtxt('XY_eq{}/X_plus.dat')
Xm = np.loadtxt('XY_eq{}/X_minus.dat')
Yp = np.loadtxt('XY_eq{}/Y_plus.dat')
Ym = np.loadtxt('XY_eq{}/Y_minus.dat')
pxp = np.poly1d(Xp[ind])
pxm = np.poly1d(Xm[ind])
pyp = np.poly1d(Yp[ind])
pym = np.poly1d(Ym[ind])
Xla = [pxp(lad), pxm(lad)]
Yla = [pyp(lad), pym(lad)]
return (Xla, Yla) | convert wavelength to X-Y position
Input: wavelength in microns, index (1 less than
desired configuration number)
Returns X and Y position on the detector in mm for + and - sides of slit | rimas.py | wavelength_to_xy_config | joedurbak/echelle_simulator_model_creation | 0 | python | def wavelength_to_xy_config(lad, ind, band='yj'):
'\n convert wavelength to X-Y position\n Input: wavelength in microns, index (1 less than\n desired configuration number)\n\n Returns X and Y position on the detector in mm for + and - sides of slit\n '
if (band.lower() == 'yj'):
band_string =
elif (band.lower() == 'hk'):
band_string = '_HK'
Xp = np.loadtxt('XY_eq{}/X_plus.dat')
Xm = np.loadtxt('XY_eq{}/X_minus.dat')
Yp = np.loadtxt('XY_eq{}/Y_plus.dat')
Ym = np.loadtxt('XY_eq{}/Y_minus.dat')
pxp = np.poly1d(Xp[ind])
pxm = np.poly1d(Xm[ind])
pyp = np.poly1d(Yp[ind])
pym = np.poly1d(Ym[ind])
Xla = [pxp(lad), pxm(lad)]
Yla = [pyp(lad), pym(lad)]
return (Xla, Yla) | def wavelength_to_xy_config(lad, ind, band='yj'):
'\n convert wavelength to X-Y position\n Input: wavelength in microns, index (1 less than\n desired configuration number)\n\n Returns X and Y position on the detector in mm for + and - sides of slit\n '
if (band.lower() == 'yj'):
band_string =
elif (band.lower() == 'hk'):
band_string = '_HK'
Xp = np.loadtxt('XY_eq{}/X_plus.dat')
Xm = np.loadtxt('XY_eq{}/X_minus.dat')
Yp = np.loadtxt('XY_eq{}/Y_plus.dat')
Ym = np.loadtxt('XY_eq{}/Y_minus.dat')
pxp = np.poly1d(Xp[ind])
pxm = np.poly1d(Xm[ind])
pyp = np.poly1d(Yp[ind])
pym = np.poly1d(Ym[ind])
Xla = [pxp(lad), pxm(lad)]
Yla = [pyp(lad), pym(lad)]
return (Xla, Yla)<|docstring|>convert wavelength to X-Y position
Input: wavelength in microns, index (1 less than
desired configuration number)
Returns X and Y position on the detector in mm for + and - sides of slit<|endoftext|> |
62921736c622dab8105cf3d46b281f173621bd2a1140fc320925e40df9926fa9 | def do_affine_transformation_calculation(ccd=default_ccd, config_to_order_array=default_config_to_order_array, band='YJ', sw=80, sh=800):
'\n Calculates Affine Matrices that describe spectrograph\n\n The spectrograph can be described by affine transformations from the input slit to the focal plane.\n an affine transofmration can be described by a 3x3 matrix.\n this function calculates the 3x3 matrix per wavelength and order that matches the input slit to the focal plane\n\n :param band:\n :type band:\n :param config_to_order_array:\n :type config_to_order_array:\n :param ccd:\n :type ccd: PyEchelle.CCD\n :param fw: fiber/slit width [microns]\n :param fh: fiber/slit height [microns]\n :return:\n '
from skimage import transform as tf
ray_trace_csv = 'RIMAS_{}_affine_dependencies.csv'.format(band.upper())
df = pd.read_csv(ray_trace_csv, encoding='utf-16')
df['config'] = df['config'].astype(np.int)
df['order'] = config_to_order_array[(df['config'] - 1)]
unique_orders = df['order'].unique()
fields = df[['fieldy', 'fieldx']]
unique_fields = fields.drop_duplicates()
unique_fields_array = unique_fields.to_numpy()
nfields = len(unique_fields_array.tolist())
norm_field = fields.loc[(0:(nfields - 1), :)]
norm_field = norm_field.to_numpy()
norm_field = norm_field.astype(np.int)
norm_field_list = norm_field.tolist()
fw = sw
fh = sh
sampling_input_x = fw
sampling_input_y = fh
res = {'MatricesPerOrder': np.int(unique_orders.shape[0]), 'norm_field': norm_field_list, 'sampling_input_x': np.int(sampling_input_x)}
print(('Field width: ' + str(fw)))
print(('Field height: ' + str(fh)))
res['field_width'] = np.double(fw)
res['field_height'] = np.double(fh)
src = np.array(norm_field, dtype=float)
src[(:, 0)] -= np.min(src[(:, 0)])
src[(:, 1)] -= np.min(src[(:, 1)])
src[(:, 0)] /= np.max(src[(:, 0)])
src[(:, 1)] /= np.max(src[(:, 1)])
dst_x = df['y'].to_numpy()
dst_y = df['x'].to_numpy()
orders = df['order'].to_numpy()
wavelength = df['wavelength'].to_numpy()
dst_x = np.array(dst_x)
dst_y = np.array(dst_y)
dst = np.vstack((dst_x, dst_y))
dst /= (ccd.pixelSize / 1000.0)
dst += (ccd.Nx / 2)
dst = dst.reshape(2, (len(dst[0]) / nfields), nfields).transpose((1, 2, 0))
orders = orders.reshape(((len(orders) / nfields), nfields))
wavelength = wavelength.reshape(((len(wavelength) / nfields), nfields))
affine_matrices = {}
transformations = {}
p_headers = ['p{:d}'.format(i) for i in range(nfields)]
src_headers = ['src{:d}'.format(i) for i in range(nfields)]
affine_tsv_headers = (((['order', 'wavelength'] + p_headers) + src_headers) + ['rotation', 'scale0', 'scale1', 'shear', 'translation0', 'translation1'])
affine_save_lines = ['\t'.join(affine_tsv_headers)]
for (order, wavel, p) in zip(orders, wavelength, dst):
print('affine transformation inputs {} {}'.format(src, p))
p_list = [i for i in p]
src_list = [i for i in src]
inputs_list = (([order[0], wavel[0]] + p_list) + src_list)
params = tf.estimate_transform('affine', src, p)
params_list = [params.rotation, params.scale[0], params.scale[1], params.shear, params.translation[0], params.translation[1]]
affine_save_line = (inputs_list + params_list)
affine_save_lines.append('\t'.join([str(i) for i in affine_save_line]))
if affine_matrices.has_key(order[0]):
affine_matrices[order[0]].update({wavel[0]: np.array(params_list)})
else:
affine_matrices[order[0]] = {wavel[0]: np.array(params_list)}
with open(affine_tsv_filename(), 'w') as f:
f.write('\n'.join(affine_save_lines))
res['matrices'] = affine_matrices
return res | Calculates Affine Matrices that describe spectrograph
The spectrograph can be described by affine transformations from the input slit to the focal plane.
an affine transofmration can be described by a 3x3 matrix.
this function calculates the 3x3 matrix per wavelength and order that matches the input slit to the focal plane
:param band:
:type band:
:param config_to_order_array:
:type config_to_order_array:
:param ccd:
:type ccd: PyEchelle.CCD
:param fw: fiber/slit width [microns]
:param fh: fiber/slit height [microns]
:return: | rimas.py | do_affine_transformation_calculation | joedurbak/echelle_simulator_model_creation | 0 | python | def do_affine_transformation_calculation(ccd=default_ccd, config_to_order_array=default_config_to_order_array, band='YJ', sw=80, sh=800):
'\n Calculates Affine Matrices that describe spectrograph\n\n The spectrograph can be described by affine transformations from the input slit to the focal plane.\n an affine transofmration can be described by a 3x3 matrix.\n this function calculates the 3x3 matrix per wavelength and order that matches the input slit to the focal plane\n\n :param band:\n :type band:\n :param config_to_order_array:\n :type config_to_order_array:\n :param ccd:\n :type ccd: PyEchelle.CCD\n :param fw: fiber/slit width [microns]\n :param fh: fiber/slit height [microns]\n :return:\n '
from skimage import transform as tf
ray_trace_csv = 'RIMAS_{}_affine_dependencies.csv'.format(band.upper())
df = pd.read_csv(ray_trace_csv, encoding='utf-16')
df['config'] = df['config'].astype(np.int)
df['order'] = config_to_order_array[(df['config'] - 1)]
unique_orders = df['order'].unique()
fields = df[['fieldy', 'fieldx']]
unique_fields = fields.drop_duplicates()
unique_fields_array = unique_fields.to_numpy()
nfields = len(unique_fields_array.tolist())
norm_field = fields.loc[(0:(nfields - 1), :)]
norm_field = norm_field.to_numpy()
norm_field = norm_field.astype(np.int)
norm_field_list = norm_field.tolist()
fw = sw
fh = sh
sampling_input_x = fw
sampling_input_y = fh
res = {'MatricesPerOrder': np.int(unique_orders.shape[0]), 'norm_field': norm_field_list, 'sampling_input_x': np.int(sampling_input_x)}
print(('Field width: ' + str(fw)))
print(('Field height: ' + str(fh)))
res['field_width'] = np.double(fw)
res['field_height'] = np.double(fh)
src = np.array(norm_field, dtype=float)
src[(:, 0)] -= np.min(src[(:, 0)])
src[(:, 1)] -= np.min(src[(:, 1)])
src[(:, 0)] /= np.max(src[(:, 0)])
src[(:, 1)] /= np.max(src[(:, 1)])
dst_x = df['y'].to_numpy()
dst_y = df['x'].to_numpy()
orders = df['order'].to_numpy()
wavelength = df['wavelength'].to_numpy()
dst_x = np.array(dst_x)
dst_y = np.array(dst_y)
dst = np.vstack((dst_x, dst_y))
dst /= (ccd.pixelSize / 1000.0)
dst += (ccd.Nx / 2)
dst = dst.reshape(2, (len(dst[0]) / nfields), nfields).transpose((1, 2, 0))
orders = orders.reshape(((len(orders) / nfields), nfields))
wavelength = wavelength.reshape(((len(wavelength) / nfields), nfields))
affine_matrices = {}
transformations = {}
p_headers = ['p{:d}'.format(i) for i in range(nfields)]
src_headers = ['src{:d}'.format(i) for i in range(nfields)]
affine_tsv_headers = (((['order', 'wavelength'] + p_headers) + src_headers) + ['rotation', 'scale0', 'scale1', 'shear', 'translation0', 'translation1'])
affine_save_lines = ['\t'.join(affine_tsv_headers)]
for (order, wavel, p) in zip(orders, wavelength, dst):
print('affine transformation inputs {} {}'.format(src, p))
p_list = [i for i in p]
src_list = [i for i in src]
inputs_list = (([order[0], wavel[0]] + p_list) + src_list)
params = tf.estimate_transform('affine', src, p)
params_list = [params.rotation, params.scale[0], params.scale[1], params.shear, params.translation[0], params.translation[1]]
affine_save_line = (inputs_list + params_list)
affine_save_lines.append('\t'.join([str(i) for i in affine_save_line]))
if affine_matrices.has_key(order[0]):
affine_matrices[order[0]].update({wavel[0]: np.array(params_list)})
else:
affine_matrices[order[0]] = {wavel[0]: np.array(params_list)}
with open(affine_tsv_filename(), 'w') as f:
f.write('\n'.join(affine_save_lines))
res['matrices'] = affine_matrices
return res | def do_affine_transformation_calculation(ccd=default_ccd, config_to_order_array=default_config_to_order_array, band='YJ', sw=80, sh=800):
'\n Calculates Affine Matrices that describe spectrograph\n\n The spectrograph can be described by affine transformations from the input slit to the focal plane.\n an affine transofmration can be described by a 3x3 matrix.\n this function calculates the 3x3 matrix per wavelength and order that matches the input slit to the focal plane\n\n :param band:\n :type band:\n :param config_to_order_array:\n :type config_to_order_array:\n :param ccd:\n :type ccd: PyEchelle.CCD\n :param fw: fiber/slit width [microns]\n :param fh: fiber/slit height [microns]\n :return:\n '
from skimage import transform as tf
ray_trace_csv = 'RIMAS_{}_affine_dependencies.csv'.format(band.upper())
df = pd.read_csv(ray_trace_csv, encoding='utf-16')
df['config'] = df['config'].astype(np.int)
df['order'] = config_to_order_array[(df['config'] - 1)]
unique_orders = df['order'].unique()
fields = df[['fieldy', 'fieldx']]
unique_fields = fields.drop_duplicates()
unique_fields_array = unique_fields.to_numpy()
nfields = len(unique_fields_array.tolist())
norm_field = fields.loc[(0:(nfields - 1), :)]
norm_field = norm_field.to_numpy()
norm_field = norm_field.astype(np.int)
norm_field_list = norm_field.tolist()
fw = sw
fh = sh
sampling_input_x = fw
sampling_input_y = fh
res = {'MatricesPerOrder': np.int(unique_orders.shape[0]), 'norm_field': norm_field_list, 'sampling_input_x': np.int(sampling_input_x)}
print(('Field width: ' + str(fw)))
print(('Field height: ' + str(fh)))
res['field_width'] = np.double(fw)
res['field_height'] = np.double(fh)
src = np.array(norm_field, dtype=float)
src[(:, 0)] -= np.min(src[(:, 0)])
src[(:, 1)] -= np.min(src[(:, 1)])
src[(:, 0)] /= np.max(src[(:, 0)])
src[(:, 1)] /= np.max(src[(:, 1)])
dst_x = df['y'].to_numpy()
dst_y = df['x'].to_numpy()
orders = df['order'].to_numpy()
wavelength = df['wavelength'].to_numpy()
dst_x = np.array(dst_x)
dst_y = np.array(dst_y)
dst = np.vstack((dst_x, dst_y))
dst /= (ccd.pixelSize / 1000.0)
dst += (ccd.Nx / 2)
dst = dst.reshape(2, (len(dst[0]) / nfields), nfields).transpose((1, 2, 0))
orders = orders.reshape(((len(orders) / nfields), nfields))
wavelength = wavelength.reshape(((len(wavelength) / nfields), nfields))
affine_matrices = {}
transformations = {}
p_headers = ['p{:d}'.format(i) for i in range(nfields)]
src_headers = ['src{:d}'.format(i) for i in range(nfields)]
affine_tsv_headers = (((['order', 'wavelength'] + p_headers) + src_headers) + ['rotation', 'scale0', 'scale1', 'shear', 'translation0', 'translation1'])
affine_save_lines = ['\t'.join(affine_tsv_headers)]
for (order, wavel, p) in zip(orders, wavelength, dst):
print('affine transformation inputs {} {}'.format(src, p))
p_list = [i for i in p]
src_list = [i for i in src]
inputs_list = (([order[0], wavel[0]] + p_list) + src_list)
params = tf.estimate_transform('affine', src, p)
params_list = [params.rotation, params.scale[0], params.scale[1], params.shear, params.translation[0], params.translation[1]]
affine_save_line = (inputs_list + params_list)
affine_save_lines.append('\t'.join([str(i) for i in affine_save_line]))
if affine_matrices.has_key(order[0]):
affine_matrices[order[0]].update({wavel[0]: np.array(params_list)})
else:
affine_matrices[order[0]] = {wavel[0]: np.array(params_list)}
with open(affine_tsv_filename(), 'w') as f:
f.write('\n'.join(affine_save_lines))
res['matrices'] = affine_matrices
return res<|docstring|>Calculates Affine Matrices that describe spectrograph
The spectrograph can be described by affine transformations from the input slit to the focal plane.
an affine transofmration can be described by a 3x3 matrix.
this function calculates the 3x3 matrix per wavelength and order that matches the input slit to the focal plane
:param band:
:type band:
:param config_to_order_array:
:type config_to_order_array:
:param ccd:
:type ccd: PyEchelle.CCD
:param fw: fiber/slit width [microns]
:param fh: fiber/slit height [microns]
:return:<|endoftext|> |
f46b8f91dc5804315b9b8f3d9ea19240e631eee49d0af34e65b14ec46749ca2c | @force_fp32(apply_to=('bbox_preds',))
def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
"Refine bboxes during training.\n\n Args:\n rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,\n and bs is the sampled RoIs per image. The first column is\n the image id and the next 4 columns are x1, y1, x2, y2.\n labels (Tensor): Shape (n*bs, ).\n bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).\n pos_is_gts (list[Tensor]): Flags indicating if each positive bbox\n is a gt bbox.\n img_metas (list[dict]): Meta info of each image.\n\n Returns:\n list[Tensor]: Refined bboxes of each image in a mini-batch.\n\n Example:\n >>> # xdoctest: +REQUIRES(module:kwarray)\n >>> import kwarray\n >>> import numpy as np\n >>> from mmdet.core.bbox.demodata import random_boxes\n >>> self = BBoxHead(reg_class_agnostic=True)\n >>> n_roi = 2\n >>> n_img = 4\n >>> scale = 512\n >>> rng = np.random.RandomState(0)\n >>> img_metas = [{'img_shape': (scale, scale)}\n ... for _ in range(n_img)]\n >>> # Create rois in the expected format\n >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)\n >>> img_ids = torch.randint(0, n_img, (n_roi,))\n >>> img_ids = img_ids.float()\n >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)\n >>> # Create other args\n >>> labels = torch.randint(0, 2, (n_roi,)).long()\n >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)\n >>> # For each image, pretend random positive boxes are gts\n >>> is_label_pos = (labels.numpy() > 0).astype(np.int)\n >>> lbl_per_img = kwarray.group_items(is_label_pos,\n ... img_ids.numpy())\n >>> pos_per_img = [sum(lbl_per_img.get(gid, []))\n ... for gid in range(n_img)]\n >>> pos_is_gts = [\n >>> torch.randint(0, 2, (npos,)).byte().sort(\n >>> descending=True)[0]\n >>> for npos in pos_per_img\n >>> ]\n >>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,\n >>> pos_is_gts, img_metas)\n >>> print(bboxes_list)\n "
img_ids = rois[(:, 0)].long().unique(sorted=True)
assert (img_ids.numel() <= len(img_metas))
bboxes_list = []
for i in range(len(img_metas)):
inds = torch.nonzero((rois[(:, 0)] == i), as_tuple=False).squeeze(dim=1)
num_rois = inds.numel()
bboxes_ = rois[(inds, 1:)]
label_ = labels[inds]
bbox_pred_ = bbox_preds[inds]
img_meta_ = img_metas[i]
pos_is_gts_ = pos_is_gts[i]
bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_, img_meta_)
pos_keep = (1 - pos_is_gts_)
keep_inds = pos_is_gts_.new_ones(num_rois)
keep_inds[:len(pos_is_gts_)] = pos_keep
bboxes_list.append(bboxes[keep_inds.type(torch.bool)])
return bboxes_list | Refine bboxes during training.
Args:
rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
and bs is the sampled RoIs per image. The first column is
the image id and the next 4 columns are x1, y1, x2, y2.
labels (Tensor): Shape (n*bs, ).
bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).
pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
is a gt bbox.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Refined bboxes of each image in a mini-batch.
Example:
>>> # xdoctest: +REQUIRES(module:kwarray)
>>> import kwarray
>>> import numpy as np
>>> from mmdet.core.bbox.demodata import random_boxes
>>> self = BBoxHead(reg_class_agnostic=True)
>>> n_roi = 2
>>> n_img = 4
>>> scale = 512
>>> rng = np.random.RandomState(0)
>>> img_metas = [{'img_shape': (scale, scale)}
... for _ in range(n_img)]
>>> # Create rois in the expected format
>>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)
>>> img_ids = torch.randint(0, n_img, (n_roi,))
>>> img_ids = img_ids.float()
>>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)
>>> # Create other args
>>> labels = torch.randint(0, 2, (n_roi,)).long()
>>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)
>>> # For each image, pretend random positive boxes are gts
>>> is_label_pos = (labels.numpy() > 0).astype(np.int)
>>> lbl_per_img = kwarray.group_items(is_label_pos,
... img_ids.numpy())
>>> pos_per_img = [sum(lbl_per_img.get(gid, []))
... for gid in range(n_img)]
>>> pos_is_gts = [
>>> torch.randint(0, 2, (npos,)).byte().sort(
>>> descending=True)[0]
>>> for npos in pos_per_img
>>> ]
>>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,
>>> pos_is_gts, img_metas)
>>> print(bboxes_list) | mmdet/models/roi_heads/bbox_heads/bbox_head_cb.py | refine_bboxes | zhenyuw16/combatnoise | 1 | python | @force_fp32(apply_to=('bbox_preds',))
def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
"Refine bboxes during training.\n\n Args:\n rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,\n and bs is the sampled RoIs per image. The first column is\n the image id and the next 4 columns are x1, y1, x2, y2.\n labels (Tensor): Shape (n*bs, ).\n bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).\n pos_is_gts (list[Tensor]): Flags indicating if each positive bbox\n is a gt bbox.\n img_metas (list[dict]): Meta info of each image.\n\n Returns:\n list[Tensor]: Refined bboxes of each image in a mini-batch.\n\n Example:\n >>> # xdoctest: +REQUIRES(module:kwarray)\n >>> import kwarray\n >>> import numpy as np\n >>> from mmdet.core.bbox.demodata import random_boxes\n >>> self = BBoxHead(reg_class_agnostic=True)\n >>> n_roi = 2\n >>> n_img = 4\n >>> scale = 512\n >>> rng = np.random.RandomState(0)\n >>> img_metas = [{'img_shape': (scale, scale)}\n ... for _ in range(n_img)]\n >>> # Create rois in the expected format\n >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)\n >>> img_ids = torch.randint(0, n_img, (n_roi,))\n >>> img_ids = img_ids.float()\n >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)\n >>> # Create other args\n >>> labels = torch.randint(0, 2, (n_roi,)).long()\n >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)\n >>> # For each image, pretend random positive boxes are gts\n >>> is_label_pos = (labels.numpy() > 0).astype(np.int)\n >>> lbl_per_img = kwarray.group_items(is_label_pos,\n ... img_ids.numpy())\n >>> pos_per_img = [sum(lbl_per_img.get(gid, []))\n ... for gid in range(n_img)]\n >>> pos_is_gts = [\n >>> torch.randint(0, 2, (npos,)).byte().sort(\n >>> descending=True)[0]\n >>> for npos in pos_per_img\n >>> ]\n >>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,\n >>> pos_is_gts, img_metas)\n >>> print(bboxes_list)\n "
img_ids = rois[(:, 0)].long().unique(sorted=True)
assert (img_ids.numel() <= len(img_metas))
bboxes_list = []
for i in range(len(img_metas)):
inds = torch.nonzero((rois[(:, 0)] == i), as_tuple=False).squeeze(dim=1)
num_rois = inds.numel()
bboxes_ = rois[(inds, 1:)]
label_ = labels[inds]
bbox_pred_ = bbox_preds[inds]
img_meta_ = img_metas[i]
pos_is_gts_ = pos_is_gts[i]
bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_, img_meta_)
pos_keep = (1 - pos_is_gts_)
keep_inds = pos_is_gts_.new_ones(num_rois)
keep_inds[:len(pos_is_gts_)] = pos_keep
bboxes_list.append(bboxes[keep_inds.type(torch.bool)])
return bboxes_list | @force_fp32(apply_to=('bbox_preds',))
def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
"Refine bboxes during training.\n\n Args:\n rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,\n and bs is the sampled RoIs per image. The first column is\n the image id and the next 4 columns are x1, y1, x2, y2.\n labels (Tensor): Shape (n*bs, ).\n bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).\n pos_is_gts (list[Tensor]): Flags indicating if each positive bbox\n is a gt bbox.\n img_metas (list[dict]): Meta info of each image.\n\n Returns:\n list[Tensor]: Refined bboxes of each image in a mini-batch.\n\n Example:\n >>> # xdoctest: +REQUIRES(module:kwarray)\n >>> import kwarray\n >>> import numpy as np\n >>> from mmdet.core.bbox.demodata import random_boxes\n >>> self = BBoxHead(reg_class_agnostic=True)\n >>> n_roi = 2\n >>> n_img = 4\n >>> scale = 512\n >>> rng = np.random.RandomState(0)\n >>> img_metas = [{'img_shape': (scale, scale)}\n ... for _ in range(n_img)]\n >>> # Create rois in the expected format\n >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)\n >>> img_ids = torch.randint(0, n_img, (n_roi,))\n >>> img_ids = img_ids.float()\n >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)\n >>> # Create other args\n >>> labels = torch.randint(0, 2, (n_roi,)).long()\n >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)\n >>> # For each image, pretend random positive boxes are gts\n >>> is_label_pos = (labels.numpy() > 0).astype(np.int)\n >>> lbl_per_img = kwarray.group_items(is_label_pos,\n ... img_ids.numpy())\n >>> pos_per_img = [sum(lbl_per_img.get(gid, []))\n ... for gid in range(n_img)]\n >>> pos_is_gts = [\n >>> torch.randint(0, 2, (npos,)).byte().sort(\n >>> descending=True)[0]\n >>> for npos in pos_per_img\n >>> ]\n >>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,\n >>> pos_is_gts, img_metas)\n >>> print(bboxes_list)\n "
img_ids = rois[(:, 0)].long().unique(sorted=True)
assert (img_ids.numel() <= len(img_metas))
bboxes_list = []
for i in range(len(img_metas)):
inds = torch.nonzero((rois[(:, 0)] == i), as_tuple=False).squeeze(dim=1)
num_rois = inds.numel()
bboxes_ = rois[(inds, 1:)]
label_ = labels[inds]
bbox_pred_ = bbox_preds[inds]
img_meta_ = img_metas[i]
pos_is_gts_ = pos_is_gts[i]
bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_, img_meta_)
pos_keep = (1 - pos_is_gts_)
keep_inds = pos_is_gts_.new_ones(num_rois)
keep_inds[:len(pos_is_gts_)] = pos_keep
bboxes_list.append(bboxes[keep_inds.type(torch.bool)])
return bboxes_list<|docstring|>Refine bboxes during training.
Args:
rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
and bs is the sampled RoIs per image. The first column is
the image id and the next 4 columns are x1, y1, x2, y2.
labels (Tensor): Shape (n*bs, ).
bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).
pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
is a gt bbox.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Refined bboxes of each image in a mini-batch.
Example:
>>> # xdoctest: +REQUIRES(module:kwarray)
>>> import kwarray
>>> import numpy as np
>>> from mmdet.core.bbox.demodata import random_boxes
>>> self = BBoxHead(reg_class_agnostic=True)
>>> n_roi = 2
>>> n_img = 4
>>> scale = 512
>>> rng = np.random.RandomState(0)
>>> img_metas = [{'img_shape': (scale, scale)}
... for _ in range(n_img)]
>>> # Create rois in the expected format
>>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)
>>> img_ids = torch.randint(0, n_img, (n_roi,))
>>> img_ids = img_ids.float()
>>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)
>>> # Create other args
>>> labels = torch.randint(0, 2, (n_roi,)).long()
>>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)
>>> # For each image, pretend random positive boxes are gts
>>> is_label_pos = (labels.numpy() > 0).astype(np.int)
>>> lbl_per_img = kwarray.group_items(is_label_pos,
... img_ids.numpy())
>>> pos_per_img = [sum(lbl_per_img.get(gid, []))
... for gid in range(n_img)]
>>> pos_is_gts = [
>>> torch.randint(0, 2, (npos,)).byte().sort(
>>> descending=True)[0]
>>> for npos in pos_per_img
>>> ]
>>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,
>>> pos_is_gts, img_metas)
>>> print(bboxes_list)<|endoftext|> |
72af6f5947d4b3dae37d6bc79019108c8e7dce90c07eecd466487be88e4ec791 | @force_fp32(apply_to=('bbox_pred',))
def regress_by_class(self, rois, label, bbox_pred, img_meta):
'Regress the bbox for the predicted class. Used in Cascade R-CNN.\n\n Args:\n rois (Tensor): shape (n, 4) or (n, 5)\n label (Tensor): shape (n, )\n bbox_pred (Tensor): shape (n, 4*(#class)) or (n, 4)\n img_meta (dict): Image meta info.\n\n Returns:\n Tensor: Regressed bboxes, the same shape as input rois.\n '
assert ((rois.size(1) == 4) or (rois.size(1) == 5)), repr(rois.shape)
if (not self.reg_class_agnostic):
label = (label * 4)
inds = torch.stack((label, (label + 1), (label + 2), (label + 3)), 1)
bbox_pred = torch.gather(bbox_pred, 1, inds)
assert (bbox_pred.size(1) == 4)
if (rois.size(1) == 4):
new_rois = self.bbox_coder.decode(rois, bbox_pred, max_shape=img_meta['img_shape'])
else:
bboxes = self.bbox_coder.decode(rois[(:, 1:)], bbox_pred, max_shape=img_meta['img_shape'])
new_rois = torch.cat((rois[(:, [0])], bboxes), dim=1)
return new_rois | Regress the bbox for the predicted class. Used in Cascade R-CNN.
Args:
rois (Tensor): shape (n, 4) or (n, 5)
label (Tensor): shape (n, )
bbox_pred (Tensor): shape (n, 4*(#class)) or (n, 4)
img_meta (dict): Image meta info.
Returns:
Tensor: Regressed bboxes, the same shape as input rois. | mmdet/models/roi_heads/bbox_heads/bbox_head_cb.py | regress_by_class | zhenyuw16/combatnoise | 1 | python | @force_fp32(apply_to=('bbox_pred',))
def regress_by_class(self, rois, label, bbox_pred, img_meta):
'Regress the bbox for the predicted class. Used in Cascade R-CNN.\n\n Args:\n rois (Tensor): shape (n, 4) or (n, 5)\n label (Tensor): shape (n, )\n bbox_pred (Tensor): shape (n, 4*(#class)) or (n, 4)\n img_meta (dict): Image meta info.\n\n Returns:\n Tensor: Regressed bboxes, the same shape as input rois.\n '
assert ((rois.size(1) == 4) or (rois.size(1) == 5)), repr(rois.shape)
if (not self.reg_class_agnostic):
label = (label * 4)
inds = torch.stack((label, (label + 1), (label + 2), (label + 3)), 1)
bbox_pred = torch.gather(bbox_pred, 1, inds)
assert (bbox_pred.size(1) == 4)
if (rois.size(1) == 4):
new_rois = self.bbox_coder.decode(rois, bbox_pred, max_shape=img_meta['img_shape'])
else:
bboxes = self.bbox_coder.decode(rois[(:, 1:)], bbox_pred, max_shape=img_meta['img_shape'])
new_rois = torch.cat((rois[(:, [0])], bboxes), dim=1)
return new_rois | @force_fp32(apply_to=('bbox_pred',))
def regress_by_class(self, rois, label, bbox_pred, img_meta):
'Regress the bbox for the predicted class. Used in Cascade R-CNN.\n\n Args:\n rois (Tensor): shape (n, 4) or (n, 5)\n label (Tensor): shape (n, )\n bbox_pred (Tensor): shape (n, 4*(#class)) or (n, 4)\n img_meta (dict): Image meta info.\n\n Returns:\n Tensor: Regressed bboxes, the same shape as input rois.\n '
assert ((rois.size(1) == 4) or (rois.size(1) == 5)), repr(rois.shape)
if (not self.reg_class_agnostic):
label = (label * 4)
inds = torch.stack((label, (label + 1), (label + 2), (label + 3)), 1)
bbox_pred = torch.gather(bbox_pred, 1, inds)
assert (bbox_pred.size(1) == 4)
if (rois.size(1) == 4):
new_rois = self.bbox_coder.decode(rois, bbox_pred, max_shape=img_meta['img_shape'])
else:
bboxes = self.bbox_coder.decode(rois[(:, 1:)], bbox_pred, max_shape=img_meta['img_shape'])
new_rois = torch.cat((rois[(:, [0])], bboxes), dim=1)
return new_rois<|docstring|>Regress the bbox for the predicted class. Used in Cascade R-CNN.
Args:
rois (Tensor): shape (n, 4) or (n, 5)
label (Tensor): shape (n, )
bbox_pred (Tensor): shape (n, 4*(#class)) or (n, 4)
img_meta (dict): Image meta info.
Returns:
Tensor: Regressed bboxes, the same shape as input rois.<|endoftext|> |
c5499e8b358d9f99b92a7ad888d633e01e38f397e4035e261992380b47f8612a | def parse(self):
'Generator of testsuites parsed from the given YAML file.'
suite = None
with open(self.filepath) as f:
for (idx, raw_yaml) in enumerate(yaml.safe_load_all(f.read())):
try:
suite = self._merge(suite, raw_yaml)
self._validate(suite)
(yield dict(suite))
except SchemaError as e:
if (idx == 0):
raise e
raise SchemaError(('failed to parse %s testsuite' % common.ordinal((idx + 1)))) from e | Generator of testsuites parsed from the given YAML file. | utils/parser.py | parse | miabbott/redhat-ci | 0 | python | def parse(self):
suite = None
with open(self.filepath) as f:
for (idx, raw_yaml) in enumerate(yaml.safe_load_all(f.read())):
try:
suite = self._merge(suite, raw_yaml)
self._validate(suite)
(yield dict(suite))
except SchemaError as e:
if (idx == 0):
raise e
raise SchemaError(('failed to parse %s testsuite' % common.ordinal((idx + 1)))) from e | def parse(self):
suite = None
with open(self.filepath) as f:
for (idx, raw_yaml) in enumerate(yaml.safe_load_all(f.read())):
try:
suite = self._merge(suite, raw_yaml)
self._validate(suite)
(yield dict(suite))
except SchemaError as e:
if (idx == 0):
raise e
raise SchemaError(('failed to parse %s testsuite' % common.ordinal((idx + 1)))) from e<|docstring|>Generator of testsuites parsed from the given YAML file.<|endoftext|> |
8fe91e89a8d63621a1673538fa38d42abc71c58bc4e9f4803eb94caa30cd1cc4 | def _merge(self, suite, new):
'Merge the next document into the current one.'
if (type(new) is not dict):
raise SyntaxError('top-level type should be a dict')
if (suite is None):
if ('context' not in new):
new['context'] = 'Red Hat CI'
if (('inherit' in new) and (type(new['inherit']) is not bool)):
raise SyntaxError("expected 'bool' value for 'inherit' key")
if ((suite is None) or (not new.get('inherit', False))):
return self._normalize(new.copy())
assert (type(suite) is dict)
envtypes = ['container', 'host', 'cluster']
if any([(i in new) for i in envtypes]):
for i in envtypes:
if (i in suite):
del suite[i]
del suite['context']
suite.update(new)
return self._normalize(suite) | Merge the next document into the current one. | utils/parser.py | _merge | miabbott/redhat-ci | 0 | python | def _merge(self, suite, new):
if (type(new) is not dict):
raise SyntaxError('top-level type should be a dict')
if (suite is None):
if ('context' not in new):
new['context'] = 'Red Hat CI'
if (('inherit' in new) and (type(new['inherit']) is not bool)):
raise SyntaxError("expected 'bool' value for 'inherit' key")
if ((suite is None) or (not new.get('inherit', False))):
return self._normalize(new.copy())
assert (type(suite) is dict)
envtypes = ['container', 'host', 'cluster']
if any([(i in new) for i in envtypes]):
for i in envtypes:
if (i in suite):
del suite[i]
del suite['context']
suite.update(new)
return self._normalize(suite) | def _merge(self, suite, new):
if (type(new) is not dict):
raise SyntaxError('top-level type should be a dict')
if (suite is None):
if ('context' not in new):
new['context'] = 'Red Hat CI'
if (('inherit' in new) and (type(new['inherit']) is not bool)):
raise SyntaxError("expected 'bool' value for 'inherit' key")
if ((suite is None) or (not new.get('inherit', False))):
return self._normalize(new.copy())
assert (type(suite) is dict)
envtypes = ['container', 'host', 'cluster']
if any([(i in new) for i in envtypes]):
for i in envtypes:
if (i in suite):
del suite[i]
del suite['context']
suite.update(new)
return self._normalize(suite)<|docstring|>Merge the next document into the current one.<|endoftext|> |
e784bc48d8bb23009bed0ed654e035f625def350007408dd1780728039c8f4ed | def _find_s3_output_path(self):
'Looks in SageMaker hyperparameters for the S3 output path.\n Uses SM module directory to extract the output path.\n Returns:\n tuple (bucket, prefix)\n '
module_dir_s3_path = self._required_environment_param('module_dir')
if (not module_dir_s3_path.startswith('s3://')):
raise ValueError('Unexpected format for module_dir_s3_path. Expected "s3://...')
bucket_prefix = module_dir_s3_path.replace('s3://', '')
(bucket, key) = bucket_prefix.split('/', 1)
prefix = '/'.join(key.split('/')[:(- 2)])
if (prefix == ''):
prefix = self._required_environment_param('job_name')
return (bucket, prefix) | Looks in SageMaker hyperparameters for the S3 output path.
Uses SM module directory to extract the output path.
Returns:
tuple (bucket, prefix) | reinforcement_learning/rl_tic_tac_toe_coach_customEnv/common/sagemaker_rl/sage_cluster_communicator.py | _find_s3_output_path | Amirosimani/amazon-sagemaker-examples | 2,610 | python | def _find_s3_output_path(self):
'Looks in SageMaker hyperparameters for the S3 output path.\n Uses SM module directory to extract the output path.\n Returns:\n tuple (bucket, prefix)\n '
module_dir_s3_path = self._required_environment_param('module_dir')
if (not module_dir_s3_path.startswith('s3://')):
raise ValueError('Unexpected format for module_dir_s3_path. Expected "s3://...')
bucket_prefix = module_dir_s3_path.replace('s3://', )
(bucket, key) = bucket_prefix.split('/', 1)
prefix = '/'.join(key.split('/')[:(- 2)])
if (prefix == ):
prefix = self._required_environment_param('job_name')
return (bucket, prefix) | def _find_s3_output_path(self):
'Looks in SageMaker hyperparameters for the S3 output path.\n Uses SM module directory to extract the output path.\n Returns:\n tuple (bucket, prefix)\n '
module_dir_s3_path = self._required_environment_param('module_dir')
if (not module_dir_s3_path.startswith('s3://')):
raise ValueError('Unexpected format for module_dir_s3_path. Expected "s3://...')
bucket_prefix = module_dir_s3_path.replace('s3://', )
(bucket, key) = bucket_prefix.split('/', 1)
prefix = '/'.join(key.split('/')[:(- 2)])
if (prefix == ):
prefix = self._required_environment_param('job_name')
return (bucket, prefix)<|docstring|>Looks in SageMaker hyperparameters for the S3 output path.
Uses SM module directory to extract the output path.
Returns:
tuple (bucket, prefix)<|endoftext|> |
8be955027496b3b99e4d0fe28fe4af09686750ff0a7edbd43ff2b527f73a7544 | def train_step(self, dataloader) -> dict:
'One-step training on the input dataloader.\n\n Parameters\n ----------\n dataloader : DataLoader\n the training dataloader\n\n Returns\n -------\n dict\n the output logs, including `loss` and `val_accuracy`, etc.\n '
loss_fn = self.loss
model = self.model
self.reset_metrics()
model.train()
att_reg = self.cfg.get('att_reg', 0.07)
for (epoch, batch) in enumerate(dataloader):
self.callbacks.on_train_batch_begin(epoch)
(x, y, out_index) = self.unravel_batch(batch)
x = self.to_device(x)
y = self.to_device(y)
if (not isinstance(x, tuple)):
x = (x,)
out = model(*x)
if (out_index is not None):
out = out[out_index]
loss = (loss_fn(out, y) + (att_reg * torch.sum(model.attention.view((- 1)).square())))
loss.backward(loss)
for metric in self.metrics:
metric.update_state(y.cpu(), out.detach().cpu())
self.callbacks.on_train_batch_end(epoch)
metrics = [metric.result() for metric in self.metrics]
results = ([loss.cpu().item()] + metrics)
return dict(zip(self.metrics_names, results)) | One-step training on the input dataloader.
Parameters
----------
dataloader : DataLoader
the training dataloader
Returns
-------
dict
the output logs, including `loss` and `val_accuracy`, etc. | graphgallery/gallery/nodeclas/pytorch/node2grids.py | train_step | houchengbin/GraphGallery | 1 | python | def train_step(self, dataloader) -> dict:
'One-step training on the input dataloader.\n\n Parameters\n ----------\n dataloader : DataLoader\n the training dataloader\n\n Returns\n -------\n dict\n the output logs, including `loss` and `val_accuracy`, etc.\n '
loss_fn = self.loss
model = self.model
self.reset_metrics()
model.train()
att_reg = self.cfg.get('att_reg', 0.07)
for (epoch, batch) in enumerate(dataloader):
self.callbacks.on_train_batch_begin(epoch)
(x, y, out_index) = self.unravel_batch(batch)
x = self.to_device(x)
y = self.to_device(y)
if (not isinstance(x, tuple)):
x = (x,)
out = model(*x)
if (out_index is not None):
out = out[out_index]
loss = (loss_fn(out, y) + (att_reg * torch.sum(model.attention.view((- 1)).square())))
loss.backward(loss)
for metric in self.metrics:
metric.update_state(y.cpu(), out.detach().cpu())
self.callbacks.on_train_batch_end(epoch)
metrics = [metric.result() for metric in self.metrics]
results = ([loss.cpu().item()] + metrics)
return dict(zip(self.metrics_names, results)) | def train_step(self, dataloader) -> dict:
'One-step training on the input dataloader.\n\n Parameters\n ----------\n dataloader : DataLoader\n the training dataloader\n\n Returns\n -------\n dict\n the output logs, including `loss` and `val_accuracy`, etc.\n '
loss_fn = self.loss
model = self.model
self.reset_metrics()
model.train()
att_reg = self.cfg.get('att_reg', 0.07)
for (epoch, batch) in enumerate(dataloader):
self.callbacks.on_train_batch_begin(epoch)
(x, y, out_index) = self.unravel_batch(batch)
x = self.to_device(x)
y = self.to_device(y)
if (not isinstance(x, tuple)):
x = (x,)
out = model(*x)
if (out_index is not None):
out = out[out_index]
loss = (loss_fn(out, y) + (att_reg * torch.sum(model.attention.view((- 1)).square())))
loss.backward(loss)
for metric in self.metrics:
metric.update_state(y.cpu(), out.detach().cpu())
self.callbacks.on_train_batch_end(epoch)
metrics = [metric.result() for metric in self.metrics]
results = ([loss.cpu().item()] + metrics)
return dict(zip(self.metrics_names, results))<|docstring|>One-step training on the input dataloader.
Parameters
----------
dataloader : DataLoader
the training dataloader
Returns
-------
dict
the output logs, including `loss` and `val_accuracy`, etc.<|endoftext|> |
042d55fbcd6233f9e94118dd37b04a43bba63312a710a3f4c9938882d2caef96 | def topological_sort(graph):
'\n Return list of vertices in (reverse) topologically sorted order\n '
result = []
explored = set()
dfs_stack = [(v, 0) for v in graph.vertices]
while dfs_stack:
(v, i) = dfs_stack.pop()
if ((v, i) in explored):
continue
explored.add((v, i))
if (i == 0):
dfs_stack.extend(([(v, 1)] + [(u, 0) for u in graph.adjacencies(v)]))
elif (i == 1):
result.append(v)
return result | Return list of vertices in (reverse) topologically sorted order | QueryScripts/QueryAscending.py | topological_sort | marciogameiro/three-node-hysteresis | 0 | python | def topological_sort(graph):
'\n \n '
result = []
explored = set()
dfs_stack = [(v, 0) for v in graph.vertices]
while dfs_stack:
(v, i) = dfs_stack.pop()
if ((v, i) in explored):
continue
explored.add((v, i))
if (i == 0):
dfs_stack.extend(([(v, 1)] + [(u, 0) for u in graph.adjacencies(v)]))
elif (i == 1):
result.append(v)
return result | def topological_sort(graph):
'\n \n '
result = []
explored = set()
dfs_stack = [(v, 0) for v in graph.vertices]
while dfs_stack:
(v, i) = dfs_stack.pop()
if ((v, i) in explored):
continue
explored.add((v, i))
if (i == 0):
dfs_stack.extend(([(v, 1)] + [(u, 0) for u in graph.adjacencies(v)]))
elif (i == 1):
result.append(v)
return result<|docstring|>Return list of vertices in (reverse) topologically sorted order<|endoftext|> |
f04737768f5c98549b685abde7b82e8768f374714e04e047323e020697d2a6e8 | def count_paths(graph, source=None, target=None, allowed=None):
'\n returns card{ (u,v) : source(u) & target(v) & there is an allowed path from u to v}\n '
if (source == None):
source = (lambda v: True)
if (target == None):
target = (lambda v: True)
if (allowed == None):
allowed = (lambda x: True)
ts = topological_sort(graph)
unit_paths = {}
paths = {}
result_unit = 0
result = 0
for v in ts:
if (not allowed(v)):
continue
unit_paths[v] = sum([1 for u in graph.adjacencies(v) if (target(u) and allowed(u))])
paths[v] = sum([(paths[u] + unit_paths[u]) for u in graph.adjacencies(v) if allowed(u)])
if source(v):
result_unit += unit_paths[v]
result += paths[v]
return result | returns card{ (u,v) : source(u) & target(v) & there is an allowed path from u to v} | QueryScripts/QueryAscending.py | count_paths | marciogameiro/three-node-hysteresis | 0 | python | def count_paths(graph, source=None, target=None, allowed=None):
'\n \n '
if (source == None):
source = (lambda v: True)
if (target == None):
target = (lambda v: True)
if (allowed == None):
allowed = (lambda x: True)
ts = topological_sort(graph)
unit_paths = {}
paths = {}
result_unit = 0
result = 0
for v in ts:
if (not allowed(v)):
continue
unit_paths[v] = sum([1 for u in graph.adjacencies(v) if (target(u) and allowed(u))])
paths[v] = sum([(paths[u] + unit_paths[u]) for u in graph.adjacencies(v) if allowed(u)])
if source(v):
result_unit += unit_paths[v]
result += paths[v]
return result | def count_paths(graph, source=None, target=None, allowed=None):
'\n \n '
if (source == None):
source = (lambda v: True)
if (target == None):
target = (lambda v: True)
if (allowed == None):
allowed = (lambda x: True)
ts = topological_sort(graph)
unit_paths = {}
paths = {}
result_unit = 0
result = 0
for v in ts:
if (not allowed(v)):
continue
unit_paths[v] = sum([1 for u in graph.adjacencies(v) if (target(u) and allowed(u))])
paths[v] = sum([(paths[u] + unit_paths[u]) for u in graph.adjacencies(v) if allowed(u)])
if source(v):
result_unit += unit_paths[v]
result += paths[v]
return result<|docstring|>returns card{ (u,v) : source(u) & target(v) & there is an allowed path from u to v}<|endoftext|> |
b21c0c1a52c0c18b2f4740ac9bb1a6e2fc380b7e8d3fdebe9ff1011b57432796 | def _get_import_parent_path(mod) -> str:
'Get the parent directory of the given module'
if (not hasattr(mod, '__file__')):
return _std_lib_dir
file_path = mod.__file__
if (os.path.splitext(os.path.basename(mod.__file__))[0] == '__init__'):
file_path = os.path.dirname(file_path)
parent_path = os.path.dirname(file_path)
return parent_path | Get the parent directory of the given module | import_tracker/__main__.py | _get_import_parent_path | IBM/import-tracker | 0 | python | def _get_import_parent_path(mod) -> str:
if (not hasattr(mod, '__file__')):
return _std_lib_dir
file_path = mod.__file__
if (os.path.splitext(os.path.basename(mod.__file__))[0] == '__init__'):
file_path = os.path.dirname(file_path)
parent_path = os.path.dirname(file_path)
return parent_path | def _get_import_parent_path(mod) -> str:
if (not hasattr(mod, '__file__')):
return _std_lib_dir
file_path = mod.__file__
if (os.path.splitext(os.path.basename(mod.__file__))[0] == '__init__'):
file_path = os.path.dirname(file_path)
parent_path = os.path.dirname(file_path)
return parent_path<|docstring|>Get the parent directory of the given module<|endoftext|> |
78710ae09be4f4fbbdc532cb0f9896e246c975e5ab8c393378d2bc6117221e50 | def _get_non_std_modules(mod_names: Union[(Set[str], Dict[(str, List[dict])])]) -> Set[str]:
'Take a snapshot of the non-standard modules currently imported'
non_std_mods = {mod_name.split('.')[0] for (mod_name, mod) in sys.modules.items() if ((mod_name in mod_names) and (not mod_name.startswith('_')) and ('.' not in mod_name) and (_get_import_parent_path(mod) not in [_std_lib_dir, _std_dylib_dir]) and (mod_name.split('.')[0] != THIS_PACKAGE))}
if isinstance(mod_names, set):
return non_std_mods
return {mod_name: mod_vals for (mod_name, mod_vals) in mod_names.items() if (mod_name in non_std_mods)} | Take a snapshot of the non-standard modules currently imported | import_tracker/__main__.py | _get_non_std_modules | IBM/import-tracker | 0 | python | def _get_non_std_modules(mod_names: Union[(Set[str], Dict[(str, List[dict])])]) -> Set[str]:
non_std_mods = {mod_name.split('.')[0] for (mod_name, mod) in sys.modules.items() if ((mod_name in mod_names) and (not mod_name.startswith('_')) and ('.' not in mod_name) and (_get_import_parent_path(mod) not in [_std_lib_dir, _std_dylib_dir]) and (mod_name.split('.')[0] != THIS_PACKAGE))}
if isinstance(mod_names, set):
return non_std_mods
return {mod_name: mod_vals for (mod_name, mod_vals) in mod_names.items() if (mod_name in non_std_mods)} | def _get_non_std_modules(mod_names: Union[(Set[str], Dict[(str, List[dict])])]) -> Set[str]:
non_std_mods = {mod_name.split('.')[0] for (mod_name, mod) in sys.modules.items() if ((mod_name in mod_names) and (not mod_name.startswith('_')) and ('.' not in mod_name) and (_get_import_parent_path(mod) not in [_std_lib_dir, _std_dylib_dir]) and (mod_name.split('.')[0] != THIS_PACKAGE))}
if isinstance(mod_names, set):
return non_std_mods
return {mod_name: mod_vals for (mod_name, mod_vals) in mod_names.items() if (mod_name in non_std_mods)}<|docstring|>Take a snapshot of the non-standard modules currently imported<|endoftext|> |
5acc011e50ac7a49434f0577908ec93bee4c8282c306a999b8d9e9c29df93c6f | def main():
'Main entrypoint as a function'
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--name', '-n', help='Module name to import', required=True)
parser.add_argument('--package', '-p', help='Package for relative imports', default=None)
parser.add_argument('--indent', '-i', type=int, help='Indent for json printing', default=None)
parser.add_argument('--log_level', '-l', help='Log level', default=os.environ.get('LOG_LEVEL', 'error'))
parser.add_argument('--recursive', '-r', action='store_true', help='Recursively perform tracking on all nested modules', default=False)
parser.add_argument('--submodules', '-u', nargs='*', default=None, help='List of sub-modules to recurse on (only used when --recursive set)')
parser.add_argument('--num_jobs', '-j', type=int, help='Number of workers to spawn when recursing', default=0)
parser.add_argument('--side_effect_modules', '-s', nargs='*', default=None, help='Modules with known import-time side effect which should always be allowed to import')
parser.add_argument('--track_import_stack', '-t', action='store_true', default=False, help='Store the stack trace of imports belonging to the tracked module')
args = parser.parse_args()
if (args.submodules and (not args.recursive)):
raise ValueError('Ignoring --submodules without --recursive')
enable_tracking_mode()
log_level = getattr(logging, args.log_level.upper(), None)
if (log_level is None):
log_level = int(args.log_level)
logging.basicConfig(level=log_level)
full_module_name = args.name
if (args.package is not None):
assert args.name.startswith('.'), "When providing --package, module name must be relative (start with '.')"
full_module_name = f'{args.package}{args.name}'
tracker_finder = ImportTrackerMetaFinder(tracked_module=full_module_name, side_effect_modules=args.side_effect_modules, track_import_stack=args.track_import_stack)
sys.meta_path = ([tracker_finder] + sys.meta_path)
log.debug('Importing %s', full_module_name)
try:
imported = importlib.import_module(full_module_name)
except Exception as err:
log.error('Error on top-level import [%s]: %s', full_module_name, err)
raise
downstream_mapping = {full_module_name: _get_non_std_modules(tracker_finder.get_all_new_modules())}
if args.recursive:
all_internals = [downstream for downstream in sys.modules.keys() if (downstream.startswith(full_module_name) and (downstream != full_module_name))]
recursive_internals = all_internals
if args.submodules:
recursive_internals = [downstream for downstream in all_internals if (downstream in args.submodules)]
log.debug('Recursing on: %s', recursive_internals)
recursive_kwargs = dict(log_level=log_level, recursive=False, side_effect_modules=args.side_effect_modules, track_import_stack=args.track_import_stack)
if (args.num_jobs > 0):
pool = ThreadPoolExecutor(max_workers=args.num_jobs)
futures = []
for internal_downstream in recursive_internals:
futures.append(pool.submit(track_module, module_name=internal_downstream, **recursive_kwargs))
for future in futures:
downstream_mapping.update(future.result())
else:
for internal_downstream in recursive_internals:
try:
log.debug('Starting sub-module tracking for [%s]', internal_downstream)
downstream_mapping.update(track_module(module_name=internal_downstream, **recursive_kwargs))
except Exception as err:
log.error('Error while tracking submodule [%s]: %s', internal_downstream, err)
raise
log.debug('Downstream Mapping: %s', downstream_mapping)
if args.track_import_stack:
output_dict = {key: dict(sorted(val.items())) for (key, val) in downstream_mapping.items()}
else:
output_dict = {key: sorted(list(val)) for (key, val) in downstream_mapping.items()}
print(json.dumps(output_dict, indent=args.indent)) | Main entrypoint as a function | import_tracker/__main__.py | main | IBM/import-tracker | 0 | python | def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--name', '-n', help='Module name to import', required=True)
parser.add_argument('--package', '-p', help='Package for relative imports', default=None)
parser.add_argument('--indent', '-i', type=int, help='Indent for json printing', default=None)
parser.add_argument('--log_level', '-l', help='Log level', default=os.environ.get('LOG_LEVEL', 'error'))
parser.add_argument('--recursive', '-r', action='store_true', help='Recursively perform tracking on all nested modules', default=False)
parser.add_argument('--submodules', '-u', nargs='*', default=None, help='List of sub-modules to recurse on (only used when --recursive set)')
parser.add_argument('--num_jobs', '-j', type=int, help='Number of workers to spawn when recursing', default=0)
parser.add_argument('--side_effect_modules', '-s', nargs='*', default=None, help='Modules with known import-time side effect which should always be allowed to import')
parser.add_argument('--track_import_stack', '-t', action='store_true', default=False, help='Store the stack trace of imports belonging to the tracked module')
args = parser.parse_args()
if (args.submodules and (not args.recursive)):
raise ValueError('Ignoring --submodules without --recursive')
enable_tracking_mode()
log_level = getattr(logging, args.log_level.upper(), None)
if (log_level is None):
log_level = int(args.log_level)
logging.basicConfig(level=log_level)
full_module_name = args.name
if (args.package is not None):
assert args.name.startswith('.'), "When providing --package, module name must be relative (start with '.')"
full_module_name = f'{args.package}{args.name}'
tracker_finder = ImportTrackerMetaFinder(tracked_module=full_module_name, side_effect_modules=args.side_effect_modules, track_import_stack=args.track_import_stack)
sys.meta_path = ([tracker_finder] + sys.meta_path)
log.debug('Importing %s', full_module_name)
try:
imported = importlib.import_module(full_module_name)
except Exception as err:
log.error('Error on top-level import [%s]: %s', full_module_name, err)
raise
downstream_mapping = {full_module_name: _get_non_std_modules(tracker_finder.get_all_new_modules())}
if args.recursive:
all_internals = [downstream for downstream in sys.modules.keys() if (downstream.startswith(full_module_name) and (downstream != full_module_name))]
recursive_internals = all_internals
if args.submodules:
recursive_internals = [downstream for downstream in all_internals if (downstream in args.submodules)]
log.debug('Recursing on: %s', recursive_internals)
recursive_kwargs = dict(log_level=log_level, recursive=False, side_effect_modules=args.side_effect_modules, track_import_stack=args.track_import_stack)
if (args.num_jobs > 0):
pool = ThreadPoolExecutor(max_workers=args.num_jobs)
futures = []
for internal_downstream in recursive_internals:
futures.append(pool.submit(track_module, module_name=internal_downstream, **recursive_kwargs))
for future in futures:
downstream_mapping.update(future.result())
else:
for internal_downstream in recursive_internals:
try:
log.debug('Starting sub-module tracking for [%s]', internal_downstream)
downstream_mapping.update(track_module(module_name=internal_downstream, **recursive_kwargs))
except Exception as err:
log.error('Error while tracking submodule [%s]: %s', internal_downstream, err)
raise
log.debug('Downstream Mapping: %s', downstream_mapping)
if args.track_import_stack:
output_dict = {key: dict(sorted(val.items())) for (key, val) in downstream_mapping.items()}
else:
output_dict = {key: sorted(list(val)) for (key, val) in downstream_mapping.items()}
print(json.dumps(output_dict, indent=args.indent)) | def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--name', '-n', help='Module name to import', required=True)
parser.add_argument('--package', '-p', help='Package for relative imports', default=None)
parser.add_argument('--indent', '-i', type=int, help='Indent for json printing', default=None)
parser.add_argument('--log_level', '-l', help='Log level', default=os.environ.get('LOG_LEVEL', 'error'))
parser.add_argument('--recursive', '-r', action='store_true', help='Recursively perform tracking on all nested modules', default=False)
parser.add_argument('--submodules', '-u', nargs='*', default=None, help='List of sub-modules to recurse on (only used when --recursive set)')
parser.add_argument('--num_jobs', '-j', type=int, help='Number of workers to spawn when recursing', default=0)
parser.add_argument('--side_effect_modules', '-s', nargs='*', default=None, help='Modules with known import-time side effect which should always be allowed to import')
parser.add_argument('--track_import_stack', '-t', action='store_true', default=False, help='Store the stack trace of imports belonging to the tracked module')
args = parser.parse_args()
if (args.submodules and (not args.recursive)):
raise ValueError('Ignoring --submodules without --recursive')
enable_tracking_mode()
log_level = getattr(logging, args.log_level.upper(), None)
if (log_level is None):
log_level = int(args.log_level)
logging.basicConfig(level=log_level)
full_module_name = args.name
if (args.package is not None):
assert args.name.startswith('.'), "When providing --package, module name must be relative (start with '.')"
full_module_name = f'{args.package}{args.name}'
tracker_finder = ImportTrackerMetaFinder(tracked_module=full_module_name, side_effect_modules=args.side_effect_modules, track_import_stack=args.track_import_stack)
sys.meta_path = ([tracker_finder] + sys.meta_path)
log.debug('Importing %s', full_module_name)
try:
imported = importlib.import_module(full_module_name)
except Exception as err:
log.error('Error on top-level import [%s]: %s', full_module_name, err)
raise
downstream_mapping = {full_module_name: _get_non_std_modules(tracker_finder.get_all_new_modules())}
if args.recursive:
all_internals = [downstream for downstream in sys.modules.keys() if (downstream.startswith(full_module_name) and (downstream != full_module_name))]
recursive_internals = all_internals
if args.submodules:
recursive_internals = [downstream for downstream in all_internals if (downstream in args.submodules)]
log.debug('Recursing on: %s', recursive_internals)
recursive_kwargs = dict(log_level=log_level, recursive=False, side_effect_modules=args.side_effect_modules, track_import_stack=args.track_import_stack)
if (args.num_jobs > 0):
pool = ThreadPoolExecutor(max_workers=args.num_jobs)
futures = []
for internal_downstream in recursive_internals:
futures.append(pool.submit(track_module, module_name=internal_downstream, **recursive_kwargs))
for future in futures:
downstream_mapping.update(future.result())
else:
for internal_downstream in recursive_internals:
try:
log.debug('Starting sub-module tracking for [%s]', internal_downstream)
downstream_mapping.update(track_module(module_name=internal_downstream, **recursive_kwargs))
except Exception as err:
log.error('Error while tracking submodule [%s]: %s', internal_downstream, err)
raise
log.debug('Downstream Mapping: %s', downstream_mapping)
if args.track_import_stack:
output_dict = {key: dict(sorted(val.items())) for (key, val) in downstream_mapping.items()}
else:
output_dict = {key: sorted(list(val)) for (key, val) in downstream_mapping.items()}
print(json.dumps(output_dict, indent=args.indent))<|docstring|>Main entrypoint as a function<|endoftext|> |
d197065e330940f94095a07a5b18568d1041a99611f97ef9b06dd4f6c230365a | def __init__(self, name: str):
'Hang onto the import args to use lazily'
self.__name = name
self.__wrapped_module = None | Hang onto the import args to use lazily | import_tracker/__main__.py | __init__ | IBM/import-tracker | 0 | python | def __init__(self, name: str):
self.__name = name
self.__wrapped_module = None | def __init__(self, name: str):
self.__name = name
self.__wrapped_module = None<|docstring|>Hang onto the import args to use lazily<|endoftext|> |
ee7866c69171433c1aed0afcaf3515bde0e771db7121fa9adeac3b6992002706 | def __getattr__(self, name: str) -> any:
'When asked for an attribute, make sure the wrapped module is imported\n and then delegate\n '
if (self.__wrapped_module is None):
if (name in ['__name__', '__loader__', '__package__', '__path__', '__file__', '__cached__']):
log.debug4('Not triggering load of [%s] for getattr(%s)', self.name, name)
return None
log.debug1('Triggering lazy import for %s.%s', self.name, name)
self.do_import()
return getattr(self.__wrapped_module, name) | When asked for an attribute, make sure the wrapped module is imported
and then delegate | import_tracker/__main__.py | __getattr__ | IBM/import-tracker | 0 | python | def __getattr__(self, name: str) -> any:
'When asked for an attribute, make sure the wrapped module is imported\n and then delegate\n '
if (self.__wrapped_module is None):
if (name in ['__name__', '__loader__', '__package__', '__path__', '__file__', '__cached__']):
log.debug4('Not triggering load of [%s] for getattr(%s)', self.name, name)
return None
log.debug1('Triggering lazy import for %s.%s', self.name, name)
self.do_import()
return getattr(self.__wrapped_module, name) | def __getattr__(self, name: str) -> any:
'When asked for an attribute, make sure the wrapped module is imported\n and then delegate\n '
if (self.__wrapped_module is None):
if (name in ['__name__', '__loader__', '__package__', '__path__', '__file__', '__cached__']):
log.debug4('Not triggering load of [%s] for getattr(%s)', self.name, name)
return None
log.debug1('Triggering lazy import for %s.%s', self.name, name)
self.do_import()
return getattr(self.__wrapped_module, name)<|docstring|>When asked for an attribute, make sure the wrapped module is imported
and then delegate<|endoftext|> |
76b8c40abc260e9edc4d31c6b7cfa8d6fdd1e8cadaf6716bd4a06158c3b56a9f | @property
def imported(self) -> bool:
'Return whether or not this module has actually imported'
return (self.__wrapped_module is not None) | Return whether or not this module has actually imported | import_tracker/__main__.py | imported | IBM/import-tracker | 0 | python | @property
def imported(self) -> bool:
return (self.__wrapped_module is not None) | @property
def imported(self) -> bool:
return (self.__wrapped_module is not None)<|docstring|>Return whether or not this module has actually imported<|endoftext|> |
b5a49a495c37aa4d576ca72082bca5e0ee5ec5814ac116ddcdb778b56ed6241d | @property
def name(self) -> str:
'Expose the name of this module'
return self.__name | Expose the name of this module | import_tracker/__main__.py | name | IBM/import-tracker | 0 | python | @property
def name(self) -> str:
return self.__name | @property
def name(self) -> str:
return self.__name<|docstring|>Expose the name of this module<|endoftext|> |
b9e3d9699ec94771f60a577d4fa5f6739c11215f3f3dcd7cc0578eecc7125448 | def do_import(self):
'Trigger the import'
if (log.level <= logging.DEBUG4):
for line in traceback.format_stack():
log.debug4(line.strip())
log.debug2('Clearing sys.modules of parents of [%s]', self.name)
self_mod_name_parts = self.name.split('.')
popped_mods = {}
for i in range(1, (len(self_mod_name_parts) + 1)):
pop_mod_name = '.'.join(self_mod_name_parts[:i])
sys_mod = sys.modules.get(pop_mod_name)
if (isinstance(sys_mod, self.__class__) and (not sys_mod.imported)):
log.debug2('Removing sys.modules[%s]', pop_mod_name)
popped_mods[pop_mod_name] = sys.modules.pop(pop_mod_name)
log.debug2('Performing deferred import of [%s]', self.name)
self.__wrapped_module = importlib.import_module(self.name)
log.debug2('Done with deferred import of [%s]', self.name)
for (popped_mod_name, popped_mod) in popped_mods.items():
updated_mod = sys.modules.get(popped_mod_name)
assert updated_mod, f'No re-imported version of [{popped_mod_name}] found'
popped_mod.__dict__.update(updated_mod.__dict__) | Trigger the import | import_tracker/__main__.py | do_import | IBM/import-tracker | 0 | python | def do_import(self):
if (log.level <= logging.DEBUG4):
for line in traceback.format_stack():
log.debug4(line.strip())
log.debug2('Clearing sys.modules of parents of [%s]', self.name)
self_mod_name_parts = self.name.split('.')
popped_mods = {}
for i in range(1, (len(self_mod_name_parts) + 1)):
pop_mod_name = '.'.join(self_mod_name_parts[:i])
sys_mod = sys.modules.get(pop_mod_name)
if (isinstance(sys_mod, self.__class__) and (not sys_mod.imported)):
log.debug2('Removing sys.modules[%s]', pop_mod_name)
popped_mods[pop_mod_name] = sys.modules.pop(pop_mod_name)
log.debug2('Performing deferred import of [%s]', self.name)
self.__wrapped_module = importlib.import_module(self.name)
log.debug2('Done with deferred import of [%s]', self.name)
for (popped_mod_name, popped_mod) in popped_mods.items():
updated_mod = sys.modules.get(popped_mod_name)
assert updated_mod, f'No re-imported version of [{popped_mod_name}] found'
popped_mod.__dict__.update(updated_mod.__dict__) | def do_import(self):
if (log.level <= logging.DEBUG4):
for line in traceback.format_stack():
log.debug4(line.strip())
log.debug2('Clearing sys.modules of parents of [%s]', self.name)
self_mod_name_parts = self.name.split('.')
popped_mods = {}
for i in range(1, (len(self_mod_name_parts) + 1)):
pop_mod_name = '.'.join(self_mod_name_parts[:i])
sys_mod = sys.modules.get(pop_mod_name)
if (isinstance(sys_mod, self.__class__) and (not sys_mod.imported)):
log.debug2('Removing sys.modules[%s]', pop_mod_name)
popped_mods[pop_mod_name] = sys.modules.pop(pop_mod_name)
log.debug2('Performing deferred import of [%s]', self.name)
self.__wrapped_module = importlib.import_module(self.name)
log.debug2('Done with deferred import of [%s]', self.name)
for (popped_mod_name, popped_mod) in popped_mods.items():
updated_mod = sys.modules.get(popped_mod_name)
assert updated_mod, f'No re-imported version of [{popped_mod_name}] found'
popped_mod.__dict__.update(updated_mod.__dict__)<|docstring|>Trigger the import<|endoftext|> |
6f97cd35e95fe40f2e572b6b855a77d385e5dadcdeff74cdb48d102420e8c2d6 | def referenced_by(self, module_name: str) -> bool:
'Determine if this deferred module is referenced by the module with\n the given name\n '
assert (module_name in sys.modules), f'Programming error: Ref module not found {module_name}'
ref_module = sys.modules[module_name]
ref_module_pkg = module_name.split('.')[0]
mods_to_check = [ref_module]
checked_modules = []
while mods_to_check:
next_mods_to_check = []
for mod in mods_to_check:
for attr in vars(mod).values():
if (attr is self):
return True
next_mods_to_check.extend([attr for attr in vars(mod).values() if (isinstance(attr, ModuleType) and attr.__name__.startswith(ref_module_pkg) and (mod not in checked_modules))])
checked_modules.append(mod)
mods_to_check = next_mods_to_check
return False | Determine if this deferred module is referenced by the module with
the given name | import_tracker/__main__.py | referenced_by | IBM/import-tracker | 0 | python | def referenced_by(self, module_name: str) -> bool:
'Determine if this deferred module is referenced by the module with\n the given name\n '
assert (module_name in sys.modules), f'Programming error: Ref module not found {module_name}'
ref_module = sys.modules[module_name]
ref_module_pkg = module_name.split('.')[0]
mods_to_check = [ref_module]
checked_modules = []
while mods_to_check:
next_mods_to_check = []
for mod in mods_to_check:
for attr in vars(mod).values():
if (attr is self):
return True
next_mods_to_check.extend([attr for attr in vars(mod).values() if (isinstance(attr, ModuleType) and attr.__name__.startswith(ref_module_pkg) and (mod not in checked_modules))])
checked_modules.append(mod)
mods_to_check = next_mods_to_check
return False | def referenced_by(self, module_name: str) -> bool:
'Determine if this deferred module is referenced by the module with\n the given name\n '
assert (module_name in sys.modules), f'Programming error: Ref module not found {module_name}'
ref_module = sys.modules[module_name]
ref_module_pkg = module_name.split('.')[0]
mods_to_check = [ref_module]
checked_modules = []
while mods_to_check:
next_mods_to_check = []
for mod in mods_to_check:
for attr in vars(mod).values():
if (attr is self):
return True
next_mods_to_check.extend([attr for attr in vars(mod).values() if (isinstance(attr, ModuleType) and attr.__name__.startswith(ref_module_pkg) and (mod not in checked_modules))])
checked_modules.append(mod)
mods_to_check = next_mods_to_check
return False<|docstring|>Determine if this deferred module is referenced by the module with
the given name<|endoftext|> |
62c72fc9e2ab97624021726e3e20eecb71566593d28317358bd21d4b7b7588c5 | def exec_module(self, *_, **__):
'Nothing to do here because the errors will be thrown by the module\n created in create_module\n ' | Nothing to do here because the errors will be thrown by the module
created in create_module | import_tracker/__main__.py | exec_module | IBM/import-tracker | 0 | python | def exec_module(self, *_, **__):
'Nothing to do here because the errors will be thrown by the module\n created in create_module\n ' | def exec_module(self, *_, **__):
'Nothing to do here because the errors will be thrown by the module\n created in create_module\n '<|docstring|>Nothing to do here because the errors will be thrown by the module
created in create_module<|endoftext|> |
6061094f5fcced942681091862ed06e2e881956ffdbe1a608a1bf1fb03aca085 | def __init__(self, tracked_module: str, side_effect_modules: Optional[List[str]]=None, track_import_stack: bool=False):
'Initialize with the name of the package being tracked\n\n Args:\n tracked_module: str\n The name of the module (may be nested) being tracked\n side_effect_modules: Optional[List[str]]\n Some libraries rely on certain import-time side effects in order\n to perform required import tasks (e.g. global singleton\n registries). These modules will be allowed to import regardless\n of where they fall relative to the targeted module.\n track_import_stack: bool\n If true, when imports are allowed through, their stack trace is\n captured.\n NOTE: This will cause a stack trace to be computed for every\n import in the tracked set, so it will be very slow and\n should only be used as a debugging tool on targeted imports.\n '
self._tracked_module = tracked_module
self._side_effect_modules = (side_effect_modules or [])
self._tracked_module_parts = tracked_module.split('.')
self._enabled = True
self._starting_modules = set(sys.modules.keys())
log.debug2('Starting modules: %s', self._starting_modules)
self._ending_modules = None
self._deferred_modules = set()
self._track_import_stack = track_import_stack
self._import_stacks = {} | Initialize with the name of the package being tracked
Args:
tracked_module: str
The name of the module (may be nested) being tracked
side_effect_modules: Optional[List[str]]
Some libraries rely on certain import-time side effects in order
to perform required import tasks (e.g. global singleton
registries). These modules will be allowed to import regardless
of where they fall relative to the targeted module.
track_import_stack: bool
If true, when imports are allowed through, their stack trace is
captured.
NOTE: This will cause a stack trace to be computed for every
import in the tracked set, so it will be very slow and
should only be used as a debugging tool on targeted imports. | import_tracker/__main__.py | __init__ | IBM/import-tracker | 0 | python | def __init__(self, tracked_module: str, side_effect_modules: Optional[List[str]]=None, track_import_stack: bool=False):
'Initialize with the name of the package being tracked\n\n Args:\n tracked_module: str\n The name of the module (may be nested) being tracked\n side_effect_modules: Optional[List[str]]\n Some libraries rely on certain import-time side effects in order\n to perform required import tasks (e.g. global singleton\n registries). These modules will be allowed to import regardless\n of where they fall relative to the targeted module.\n track_import_stack: bool\n If true, when imports are allowed through, their stack trace is\n captured.\n NOTE: This will cause a stack trace to be computed for every\n import in the tracked set, so it will be very slow and\n should only be used as a debugging tool on targeted imports.\n '
self._tracked_module = tracked_module
self._side_effect_modules = (side_effect_modules or [])
self._tracked_module_parts = tracked_module.split('.')
self._enabled = True
self._starting_modules = set(sys.modules.keys())
log.debug2('Starting modules: %s', self._starting_modules)
self._ending_modules = None
self._deferred_modules = set()
self._track_import_stack = track_import_stack
self._import_stacks = {} | def __init__(self, tracked_module: str, side_effect_modules: Optional[List[str]]=None, track_import_stack: bool=False):
'Initialize with the name of the package being tracked\n\n Args:\n tracked_module: str\n The name of the module (may be nested) being tracked\n side_effect_modules: Optional[List[str]]\n Some libraries rely on certain import-time side effects in order\n to perform required import tasks (e.g. global singleton\n registries). These modules will be allowed to import regardless\n of where they fall relative to the targeted module.\n track_import_stack: bool\n If true, when imports are allowed through, their stack trace is\n captured.\n NOTE: This will cause a stack trace to be computed for every\n import in the tracked set, so it will be very slow and\n should only be used as a debugging tool on targeted imports.\n '
self._tracked_module = tracked_module
self._side_effect_modules = (side_effect_modules or [])
self._tracked_module_parts = tracked_module.split('.')
self._enabled = True
self._starting_modules = set(sys.modules.keys())
log.debug2('Starting modules: %s', self._starting_modules)
self._ending_modules = None
self._deferred_modules = set()
self._track_import_stack = track_import_stack
self._import_stacks = {}<|docstring|>Initialize with the name of the package being tracked
Args:
tracked_module: str
The name of the module (may be nested) being tracked
side_effect_modules: Optional[List[str]]
Some libraries rely on certain import-time side effects in order
to perform required import tasks (e.g. global singleton
registries). These modules will be allowed to import regardless
of where they fall relative to the targeted module.
track_import_stack: bool
If true, when imports are allowed through, their stack trace is
captured.
NOTE: This will cause a stack trace to be computed for every
import in the tracked set, so it will be very slow and
should only be used as a debugging tool on targeted imports.<|endoftext|> |
200291e778ae5dcf3e050f90a8979431b8a2b8163a423cc5cc52814d5cf10e0d | def find_spec(self, fullname: str, *args, **kwargs) -> Optional[importlib.machinery.ModuleSpec]:
'The find_spec implementation for this finder tracks the source of the\n import call for the given module and determines if it is on the critical\n path for the target module.\n\n https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder.find_spec\n\n Args:\n fullname: str\n The fully qualified module name under import\n\n Returns:\n spec: Optional[importlib.machinery.ModuleSpec]\n If the desired import is not on the critical path for the target\n module, a spec with a _DeferredLoader will be returned. If the\n import is on the critical path, None will be returned to defer\n to the rest of the "real" finders.\n '
result = self._find_spec(fullname, *args, **kwargs)
if (result is not None):
log.debug2('Returning deferred module for [%s]', fullname)
return result
log.debug2('Stack tracking? %s, Ending modules set? %s', self._track_import_stack, (self._ending_modules is not None))
if (self._track_import_stack and (fullname != self._tracked_module) and (not self._enabled)):
stack = inspect.stack()
stack_info = []
for frame in stack:
frame_module_name = frame.frame.f_globals['__name__'].split('.')[0]
if (frame_module_name == self._tracked_module_parts[0]):
stack_info.append({'filename': frame.filename, 'lineno': frame.lineno, 'code_context': [line.strip('\n') for line in frame.code_context]})
log.debug2('Found %d stack frames for [%s]', len(stack_info), fullname)
self._import_stacks[fullname] = stack_info
return None | The find_spec implementation for this finder tracks the source of the
import call for the given module and determines if it is on the critical
path for the target module.
https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder.find_spec
Args:
fullname: str
The fully qualified module name under import
Returns:
spec: Optional[importlib.machinery.ModuleSpec]
If the desired import is not on the critical path for the target
module, a spec with a _DeferredLoader will be returned. If the
import is on the critical path, None will be returned to defer
to the rest of the "real" finders. | import_tracker/__main__.py | find_spec | IBM/import-tracker | 0 | python | def find_spec(self, fullname: str, *args, **kwargs) -> Optional[importlib.machinery.ModuleSpec]:
'The find_spec implementation for this finder tracks the source of the\n import call for the given module and determines if it is on the critical\n path for the target module.\n\n https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder.find_spec\n\n Args:\n fullname: str\n The fully qualified module name under import\n\n Returns:\n spec: Optional[importlib.machinery.ModuleSpec]\n If the desired import is not on the critical path for the target\n module, a spec with a _DeferredLoader will be returned. If the\n import is on the critical path, None will be returned to defer\n to the rest of the "real" finders.\n '
result = self._find_spec(fullname, *args, **kwargs)
if (result is not None):
log.debug2('Returning deferred module for [%s]', fullname)
return result
log.debug2('Stack tracking? %s, Ending modules set? %s', self._track_import_stack, (self._ending_modules is not None))
if (self._track_import_stack and (fullname != self._tracked_module) and (not self._enabled)):
stack = inspect.stack()
stack_info = []
for frame in stack:
frame_module_name = frame.frame.f_globals['__name__'].split('.')[0]
if (frame_module_name == self._tracked_module_parts[0]):
stack_info.append({'filename': frame.filename, 'lineno': frame.lineno, 'code_context': [line.strip('\n') for line in frame.code_context]})
log.debug2('Found %d stack frames for [%s]', len(stack_info), fullname)
self._import_stacks[fullname] = stack_info
return None | def find_spec(self, fullname: str, *args, **kwargs) -> Optional[importlib.machinery.ModuleSpec]:
'The find_spec implementation for this finder tracks the source of the\n import call for the given module and determines if it is on the critical\n path for the target module.\n\n https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder.find_spec\n\n Args:\n fullname: str\n The fully qualified module name under import\n\n Returns:\n spec: Optional[importlib.machinery.ModuleSpec]\n If the desired import is not on the critical path for the target\n module, a spec with a _DeferredLoader will be returned. If the\n import is on the critical path, None will be returned to defer\n to the rest of the "real" finders.\n '
result = self._find_spec(fullname, *args, **kwargs)
if (result is not None):
log.debug2('Returning deferred module for [%s]', fullname)
return result
log.debug2('Stack tracking? %s, Ending modules set? %s', self._track_import_stack, (self._ending_modules is not None))
if (self._track_import_stack and (fullname != self._tracked_module) and (not self._enabled)):
stack = inspect.stack()
stack_info = []
for frame in stack:
frame_module_name = frame.frame.f_globals['__name__'].split('.')[0]
if (frame_module_name == self._tracked_module_parts[0]):
stack_info.append({'filename': frame.filename, 'lineno': frame.lineno, 'code_context': [line.strip('\n') for line in frame.code_context]})
log.debug2('Found %d stack frames for [%s]', len(stack_info), fullname)
self._import_stacks[fullname] = stack_info
return None<|docstring|>The find_spec implementation for this finder tracks the source of the
import call for the given module and determines if it is on the critical
path for the target module.
https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder.find_spec
Args:
fullname: str
The fully qualified module name under import
Returns:
spec: Optional[importlib.machinery.ModuleSpec]
If the desired import is not on the critical path for the target
module, a spec with a _DeferredLoader will be returned. If the
import is on the critical path, None will be returned to defer
to the rest of the "real" finders.<|endoftext|> |
eabceb7a7cf77b0d217bf29fad76a5375793b9e76d580c44a083cadbd19e6067 | def _find_spec(self, fullname: str, *args, **kwargs) -> Optional[importlib.machinery.ModuleSpec]:
'This implements the core logic of find_spec. It is wrapped by the\n public find_spec so that when an import is allowed, the stack can be\n optionally tracked.\n '
if (fullname in self._side_effect_modules):
log.debug('Allowing import of side-effect module [%s]', fullname)
return None
if (self._enabled and (fullname != self._tracked_module) and (not self._is_parent_module(fullname)) and (fullname not in self._deferred_modules) and (fullname.split('.')[0] == self._tracked_module_parts[0])):
log.debug3('Deferring import of [%s]', fullname)
self._deferred_modules.add(fullname)
loader = _LazyLoader()
return importlib.util.spec_from_loader(fullname, loader)
if (fullname == self._tracked_module):
log.debug('Tracked module [%s] found. Tracking started', self._tracked_module)
self._enabled = False
lazy_modules = [mod_name for (mod_name, mod) in sys.modules.items() if isinstance(mod, _DeferredModule)]
for mod_name in lazy_modules:
log.debug2('Removing lazy module [%s]', mod_name)
del sys.modules[mod_name]
if ((self._ending_modules is None) and (not getattr(getattr(sys.modules.get(self._tracked_module, {}), '__spec__', {}), '_initializing', True))):
log.debug('Tracked module [%s] finished importing', self._tracked_module)
self._set_ending_modules(fullname)
log.debug2('Ending modules: %s', self._ending_modules)
log.debug3('Allowing import of [%s]', fullname)
return None | This implements the core logic of find_spec. It is wrapped by the
public find_spec so that when an import is allowed, the stack can be
optionally tracked. | import_tracker/__main__.py | _find_spec | IBM/import-tracker | 0 | python | def _find_spec(self, fullname: str, *args, **kwargs) -> Optional[importlib.machinery.ModuleSpec]:
'This implements the core logic of find_spec. It is wrapped by the\n public find_spec so that when an import is allowed, the stack can be\n optionally tracked.\n '
if (fullname in self._side_effect_modules):
log.debug('Allowing import of side-effect module [%s]', fullname)
return None
if (self._enabled and (fullname != self._tracked_module) and (not self._is_parent_module(fullname)) and (fullname not in self._deferred_modules) and (fullname.split('.')[0] == self._tracked_module_parts[0])):
log.debug3('Deferring import of [%s]', fullname)
self._deferred_modules.add(fullname)
loader = _LazyLoader()
return importlib.util.spec_from_loader(fullname, loader)
if (fullname == self._tracked_module):
log.debug('Tracked module [%s] found. Tracking started', self._tracked_module)
self._enabled = False
lazy_modules = [mod_name for (mod_name, mod) in sys.modules.items() if isinstance(mod, _DeferredModule)]
for mod_name in lazy_modules:
log.debug2('Removing lazy module [%s]', mod_name)
del sys.modules[mod_name]
if ((self._ending_modules is None) and (not getattr(getattr(sys.modules.get(self._tracked_module, {}), '__spec__', {}), '_initializing', True))):
log.debug('Tracked module [%s] finished importing', self._tracked_module)
self._set_ending_modules(fullname)
log.debug2('Ending modules: %s', self._ending_modules)
log.debug3('Allowing import of [%s]', fullname)
return None | def _find_spec(self, fullname: str, *args, **kwargs) -> Optional[importlib.machinery.ModuleSpec]:
'This implements the core logic of find_spec. It is wrapped by the\n public find_spec so that when an import is allowed, the stack can be\n optionally tracked.\n '
if (fullname in self._side_effect_modules):
log.debug('Allowing import of side-effect module [%s]', fullname)
return None
if (self._enabled and (fullname != self._tracked_module) and (not self._is_parent_module(fullname)) and (fullname not in self._deferred_modules) and (fullname.split('.')[0] == self._tracked_module_parts[0])):
log.debug3('Deferring import of [%s]', fullname)
self._deferred_modules.add(fullname)
loader = _LazyLoader()
return importlib.util.spec_from_loader(fullname, loader)
if (fullname == self._tracked_module):
log.debug('Tracked module [%s] found. Tracking started', self._tracked_module)
self._enabled = False
lazy_modules = [mod_name for (mod_name, mod) in sys.modules.items() if isinstance(mod, _DeferredModule)]
for mod_name in lazy_modules:
log.debug2('Removing lazy module [%s]', mod_name)
del sys.modules[mod_name]
if ((self._ending_modules is None) and (not getattr(getattr(sys.modules.get(self._tracked_module, {}), '__spec__', {}), '_initializing', True))):
log.debug('Tracked module [%s] finished importing', self._tracked_module)
self._set_ending_modules(fullname)
log.debug2('Ending modules: %s', self._ending_modules)
log.debug3('Allowing import of [%s]', fullname)
return None<|docstring|>This implements the core logic of find_spec. It is wrapped by the
public find_spec so that when an import is allowed, the stack can be
optionally tracked.<|endoftext|> |
f2fa5ed6a5d8a6ab72a6a4ebe4d299de24c21778db773b6f9dcb32715f221ac6 | def get_all_new_modules(self) -> Set[str]:
'Get all of the imports that have happened since the start'
assert (self._starting_modules is not None), f'Target module never impoted!'
if (self._ending_modules is None):
self._set_ending_modules()
mod_names = {mod for mod in (self._ending_modules - self._starting_modules) if (not self._is_parent_module(mod))}
if self._track_import_stack:
return {mod_name: self._import_stacks.get(mod_name, []) for mod_name in mod_names}
return mod_names | Get all of the imports that have happened since the start | import_tracker/__main__.py | get_all_new_modules | IBM/import-tracker | 0 | python | def get_all_new_modules(self) -> Set[str]:
assert (self._starting_modules is not None), f'Target module never impoted!'
if (self._ending_modules is None):
self._set_ending_modules()
mod_names = {mod for mod in (self._ending_modules - self._starting_modules) if (not self._is_parent_module(mod))}
if self._track_import_stack:
return {mod_name: self._import_stacks.get(mod_name, []) for mod_name in mod_names}
return mod_names | def get_all_new_modules(self) -> Set[str]:
assert (self._starting_modules is not None), f'Target module never impoted!'
if (self._ending_modules is None):
self._set_ending_modules()
mod_names = {mod for mod in (self._ending_modules - self._starting_modules) if (not self._is_parent_module(mod))}
if self._track_import_stack:
return {mod_name: self._import_stacks.get(mod_name, []) for mod_name in mod_names}
return mod_names<|docstring|>Get all of the imports that have happened since the start<|endoftext|> |
6ef7d2576911d1f8576007e8ae862191b60d63d35234ebdbf413614c14d24f12 | def _is_parent_module(self, fullname: str) -> bool:
'Determine if the given module fullname is a direct parent of the\n tracked module\n '
parts = fullname.split('.')
return (self._tracked_module_parts[:len(parts)] == parts) | Determine if the given module fullname is a direct parent of the
tracked module | import_tracker/__main__.py | _is_parent_module | IBM/import-tracker | 0 | python | def _is_parent_module(self, fullname: str) -> bool:
'Determine if the given module fullname is a direct parent of the\n tracked module\n '
parts = fullname.split('.')
return (self._tracked_module_parts[:len(parts)] == parts) | def _is_parent_module(self, fullname: str) -> bool:
'Determine if the given module fullname is a direct parent of the\n tracked module\n '
parts = fullname.split('.')
return (self._tracked_module_parts[:len(parts)] == parts)<|docstring|>Determine if the given module fullname is a direct parent of the
tracked module<|endoftext|> |
5fbe5a6a76b3fdc597a999aff21d756055b49b78da431a36148cae8549311de7 | def _set_ending_modules(self, trigger_module_name: Optional[str]=None):
'Set the ending module set for the target'
self._ending_modules = {}
deferred_attrs = []
while True:
for (mod_name, mod) in list(sys.modules.items()):
if mod_name.startswith(self._tracked_module.split('.')[0]):
for (attr_name, attr) in vars(mod).items():
if (isinstance(attr, _DeferredModule) and (not attr.imported) and attr.referenced_by(self._tracked_module)):
deferred_attrs.append((mod_name, attr_name, attr))
if (not deferred_attrs):
break
for (mod_name, attr_name, attr) in deferred_attrs:
log.debug2('Finalizing deferred import for %s.%s', mod_name, attr_name)
attr.do_import()
log.debug2('Done finalizing deferred import for %s.%s', mod_name, attr_name)
deferred_attrs = []
self._ending_modules = (set(sys.modules.keys()) - {trigger_module_name}) | Set the ending module set for the target | import_tracker/__main__.py | _set_ending_modules | IBM/import-tracker | 0 | python | def _set_ending_modules(self, trigger_module_name: Optional[str]=None):
self._ending_modules = {}
deferred_attrs = []
while True:
for (mod_name, mod) in list(sys.modules.items()):
if mod_name.startswith(self._tracked_module.split('.')[0]):
for (attr_name, attr) in vars(mod).items():
if (isinstance(attr, _DeferredModule) and (not attr.imported) and attr.referenced_by(self._tracked_module)):
deferred_attrs.append((mod_name, attr_name, attr))
if (not deferred_attrs):
break
for (mod_name, attr_name, attr) in deferred_attrs:
log.debug2('Finalizing deferred import for %s.%s', mod_name, attr_name)
attr.do_import()
log.debug2('Done finalizing deferred import for %s.%s', mod_name, attr_name)
deferred_attrs = []
self._ending_modules = (set(sys.modules.keys()) - {trigger_module_name}) | def _set_ending_modules(self, trigger_module_name: Optional[str]=None):
self._ending_modules = {}
deferred_attrs = []
while True:
for (mod_name, mod) in list(sys.modules.items()):
if mod_name.startswith(self._tracked_module.split('.')[0]):
for (attr_name, attr) in vars(mod).items():
if (isinstance(attr, _DeferredModule) and (not attr.imported) and attr.referenced_by(self._tracked_module)):
deferred_attrs.append((mod_name, attr_name, attr))
if (not deferred_attrs):
break
for (mod_name, attr_name, attr) in deferred_attrs:
log.debug2('Finalizing deferred import for %s.%s', mod_name, attr_name)
attr.do_import()
log.debug2('Done finalizing deferred import for %s.%s', mod_name, attr_name)
deferred_attrs = []
self._ending_modules = (set(sys.modules.keys()) - {trigger_module_name})<|docstring|>Set the ending module set for the target<|endoftext|> |
f75dea44bc0f96cc0a5973fa3edc10e20d1e675cb577d83b91f1ed9be8fc0b38 | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_acc_list = rsp_pb.s2c.accList
acc_list = [{'acc_id': record.accID, 'trd_env': (TRADE.REV_TRD_ENV_MAP[record.trdEnv] if (record.trdEnv in TRADE.REV_TRD_ENV_MAP) else ''), 'trdMarket_list': [(TRADE.REV_TRD_MKT_MAP[trdMkt] if (trdMkt in TRADE.REV_TRD_MKT_MAP) else TrdMarket.NONE) for trdMkt in record.trdMarketAuthList]} for record in raw_acc_list]
return (RET_OK, '', acc_list) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_acc_list = rsp_pb.s2c.accList
acc_list = [{'acc_id': record.accID, 'trd_env': (TRADE.REV_TRD_ENV_MAP[record.trdEnv] if (record.trdEnv in TRADE.REV_TRD_ENV_MAP) else ), 'trdMarket_list': [(TRADE.REV_TRD_MKT_MAP[trdMkt] if (trdMkt in TRADE.REV_TRD_MKT_MAP) else TrdMarket.NONE) for trdMkt in record.trdMarketAuthList]} for record in raw_acc_list]
return (RET_OK, , acc_list) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_acc_list = rsp_pb.s2c.accList
acc_list = [{'acc_id': record.accID, 'trd_env': (TRADE.REV_TRD_ENV_MAP[record.trdEnv] if (record.trdEnv in TRADE.REV_TRD_ENV_MAP) else ), 'trdMarket_list': [(TRADE.REV_TRD_MKT_MAP[trdMkt] if (trdMkt in TRADE.REV_TRD_MKT_MAP) else TrdMarket.NONE) for trdMkt in record.trdMarketAuthList]} for record in raw_acc_list]
return (RET_OK, , acc_list)<|docstring|>Convert from PLS response to user response<|endoftext|> |
a46e7f710f7f649e79acc67c5ff2ea55ae41fee820ebb50f3e8b40259a60707e | @classmethod
def pack_req(cls, is_unlock, password_md5, conn_id):
'Convert from user request for trading days to PLS request'
from futuquant.common.pb.Trd_UnlockTrade_pb2 import Request
req = Request()
req.c2s.unlock = is_unlock
req.c2s.pwdMD5 = password_md5
return pack_pb_req(req, ProtoId.Trd_UnlockTrade, conn_id) | Convert from user request for trading days to PLS request | futuquant/trade/trade_query.py | pack_req | hxhxhx88/futuquant | 5 | python | @classmethod
def pack_req(cls, is_unlock, password_md5, conn_id):
from futuquant.common.pb.Trd_UnlockTrade_pb2 import Request
req = Request()
req.c2s.unlock = is_unlock
req.c2s.pwdMD5 = password_md5
return pack_pb_req(req, ProtoId.Trd_UnlockTrade, conn_id) | @classmethod
def pack_req(cls, is_unlock, password_md5, conn_id):
from futuquant.common.pb.Trd_UnlockTrade_pb2 import Request
req = Request()
req.c2s.unlock = is_unlock
req.c2s.pwdMD5 = password_md5
return pack_pb_req(req, ProtoId.Trd_UnlockTrade, conn_id)<|docstring|>Convert from user request for trading days to PLS request<|endoftext|> |
842c042f8a9b6fc698be0e7852101417238a23df6db4bea7ed4e7b2e213d38ba | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
if rsp_pb.HasField('retMsg'):
return (RET_OK, rsp_pb.retMsg, None)
return (RET_OK, '', None) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
if rsp_pb.HasField('retMsg'):
return (RET_OK, rsp_pb.retMsg, None)
return (RET_OK, , None) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
if rsp_pb.HasField('retMsg'):
return (RET_OK, rsp_pb.retMsg, None)
return (RET_OK, , None)<|docstring|>Convert from PLS response to user response<|endoftext|> |
c3e324eb9f3f59625fef9d119fdf0d3d1b5bd37551df8ef8fee69a9446367439 | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
return (RET_OK, '', None) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
return (RET_OK, , None) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
return (RET_OK, , None)<|docstring|>Convert from PLS response to user response<|endoftext|> |
2b33d61a0a7f747c092f5b80a2f9af521a80abf47f8aaac44f63f51739820095 | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_funds = rsp_pb.s2c.funds
accinfo_list = [{'power': raw_funds.power, 'total_assets': raw_funds.totalAssets, 'cash': raw_funds.cash, 'market_val': raw_funds.marketVal, 'frozen_cash': raw_funds.frozenCash, 'avl_withdrawal_cash': raw_funds.avlWithdrawalCash}]
return (RET_OK, '', accinfo_list) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_funds = rsp_pb.s2c.funds
accinfo_list = [{'power': raw_funds.power, 'total_assets': raw_funds.totalAssets, 'cash': raw_funds.cash, 'market_val': raw_funds.marketVal, 'frozen_cash': raw_funds.frozenCash, 'avl_withdrawal_cash': raw_funds.avlWithdrawalCash}]
return (RET_OK, , accinfo_list) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_funds = rsp_pb.s2c.funds
accinfo_list = [{'power': raw_funds.power, 'total_assets': raw_funds.totalAssets, 'cash': raw_funds.cash, 'market_val': raw_funds.marketVal, 'frozen_cash': raw_funds.frozenCash, 'avl_withdrawal_cash': raw_funds.avlWithdrawalCash}]
return (RET_OK, , accinfo_list)<|docstring|>Convert from PLS response to user response<|endoftext|> |
eceaa908643cd86ebcb1e643af8d24d69f9fd80eb5d0e5d5a92f94b55e05675f | @classmethod
def pack_req(cls, code, pl_ratio_min, pl_ratio_max, trd_env, acc_id, trd_mkt, conn_id):
'Convert from user request for trading days to PLS request'
from futuquant.common.pb.Trd_GetPositionList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
if (pl_ratio_min is not None):
req.c2s.filterPLRatioMin = (float(pl_ratio_min) / 100.0)
if (pl_ratio_max is not None):
req.c2s.filterPLRatioMax = (float(pl_ratio_max) / 100.0)
return pack_pb_req(req, ProtoId.Trd_GetPositionList, conn_id) | Convert from user request for trading days to PLS request | futuquant/trade/trade_query.py | pack_req | hxhxhx88/futuquant | 5 | python | @classmethod
def pack_req(cls, code, pl_ratio_min, pl_ratio_max, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_GetPositionList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
if (pl_ratio_min is not None):
req.c2s.filterPLRatioMin = (float(pl_ratio_min) / 100.0)
if (pl_ratio_max is not None):
req.c2s.filterPLRatioMax = (float(pl_ratio_max) / 100.0)
return pack_pb_req(req, ProtoId.Trd_GetPositionList, conn_id) | @classmethod
def pack_req(cls, code, pl_ratio_min, pl_ratio_max, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_GetPositionList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
if (pl_ratio_min is not None):
req.c2s.filterPLRatioMin = (float(pl_ratio_min) / 100.0)
if (pl_ratio_max is not None):
req.c2s.filterPLRatioMax = (float(pl_ratio_max) / 100.0)
return pack_pb_req(req, ProtoId.Trd_GetPositionList, conn_id)<|docstring|>Convert from user request for trading days to PLS request<|endoftext|> |
6747e65626184900f5f2b44db6831f8eb26ad2cae3b2363ffb175b66ecb71442 | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_position_list = rsp_pb.s2c.positionList
position_list = [{'code': merge_trd_mkt_stock_str(rsp_pb.s2c.header.trdMarket, position.code), 'stock_name': position.name, 'qty': position.qty, 'can_sell_qty': position.canSellQty, 'cost_price': (position.costPrice if position.HasField('costPrice') else 0), 'cost_price_valid': (1 if position.HasField('costPrice') else 0), 'market_val': position.val, 'nominal_price': position.price, 'pl_ratio': ((100 * position.plRatio) if position.HasField('plRatio') else 0), 'pl_ratio_valid': (1 if position.HasField('plRatio') else 0), 'pl_val': (position.plVal if position.HasField('plVal') else 0), 'pl_val_valid': (1 if position.HasField('plVal') else 0), 'today_buy_qty': (position.td_buyQty if position.HasField('td_buyQty') else 0), 'today_buy_val': (position.td_buyVal if position.HasField('td_buyVal') else 0), 'today_pl_val': (position.td_plVal if position.HasField('td_plVal') else 0), 'today_sell_qty': (position.td_sellQty if position.HasField('td_sellQty') else 0), 'today_sell_val': (position.td_sellVal if position.HasField('td_sellVal') else 0), 'position_side': (TRADE.REV_POSITION_SIDE_MAP[position.positionSide] if (position.positionSide in TRADE.REV_POSITION_SIDE_MAP) else PositionSide.NONE)} for position in raw_position_list]
return (RET_OK, '', position_list) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_position_list = rsp_pb.s2c.positionList
position_list = [{'code': merge_trd_mkt_stock_str(rsp_pb.s2c.header.trdMarket, position.code), 'stock_name': position.name, 'qty': position.qty, 'can_sell_qty': position.canSellQty, 'cost_price': (position.costPrice if position.HasField('costPrice') else 0), 'cost_price_valid': (1 if position.HasField('costPrice') else 0), 'market_val': position.val, 'nominal_price': position.price, 'pl_ratio': ((100 * position.plRatio) if position.HasField('plRatio') else 0), 'pl_ratio_valid': (1 if position.HasField('plRatio') else 0), 'pl_val': (position.plVal if position.HasField('plVal') else 0), 'pl_val_valid': (1 if position.HasField('plVal') else 0), 'today_buy_qty': (position.td_buyQty if position.HasField('td_buyQty') else 0), 'today_buy_val': (position.td_buyVal if position.HasField('td_buyVal') else 0), 'today_pl_val': (position.td_plVal if position.HasField('td_plVal') else 0), 'today_sell_qty': (position.td_sellQty if position.HasField('td_sellQty') else 0), 'today_sell_val': (position.td_sellVal if position.HasField('td_sellVal') else 0), 'position_side': (TRADE.REV_POSITION_SIDE_MAP[position.positionSide] if (position.positionSide in TRADE.REV_POSITION_SIDE_MAP) else PositionSide.NONE)} for position in raw_position_list]
return (RET_OK, , position_list) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_position_list = rsp_pb.s2c.positionList
position_list = [{'code': merge_trd_mkt_stock_str(rsp_pb.s2c.header.trdMarket, position.code), 'stock_name': position.name, 'qty': position.qty, 'can_sell_qty': position.canSellQty, 'cost_price': (position.costPrice if position.HasField('costPrice') else 0), 'cost_price_valid': (1 if position.HasField('costPrice') else 0), 'market_val': position.val, 'nominal_price': position.price, 'pl_ratio': ((100 * position.plRatio) if position.HasField('plRatio') else 0), 'pl_ratio_valid': (1 if position.HasField('plRatio') else 0), 'pl_val': (position.plVal if position.HasField('plVal') else 0), 'pl_val_valid': (1 if position.HasField('plVal') else 0), 'today_buy_qty': (position.td_buyQty if position.HasField('td_buyQty') else 0), 'today_buy_val': (position.td_buyVal if position.HasField('td_buyVal') else 0), 'today_pl_val': (position.td_plVal if position.HasField('td_plVal') else 0), 'today_sell_qty': (position.td_sellQty if position.HasField('td_sellQty') else 0), 'today_sell_val': (position.td_sellVal if position.HasField('td_sellVal') else 0), 'position_side': (TRADE.REV_POSITION_SIDE_MAP[position.positionSide] if (position.positionSide in TRADE.REV_POSITION_SIDE_MAP) else PositionSide.NONE)} for position in raw_position_list]
return (RET_OK, , position_list)<|docstring|>Convert from PLS response to user response<|endoftext|> |
1f1c0fc7410946189d57c55586e00b81838889cbb1c55a6937cbe8c9facd7943 | @classmethod
def pack_req(cls, order_id, status_filter_list, code, start, end, trd_env, acc_id, trd_mkt, conn_id):
'Convert from user request for trading days to PLS request'
from futuquant.common.pb.Trd_GetOrderList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
if order_id:
req.c2s.filterConditions.idList.append(int(order_id))
if start:
req.c2s.filterConditions.beginTime = start
if end:
req.c2s.filterConditions.endTime = end
if len(status_filter_list):
for order_status in status_filter_list:
req.c2s.filterStatusList.append(ORDER_STATUS_MAP[order_status])
return pack_pb_req(req, ProtoId.Trd_GetOrderList, conn_id) | Convert from user request for trading days to PLS request | futuquant/trade/trade_query.py | pack_req | hxhxhx88/futuquant | 5 | python | @classmethod
def pack_req(cls, order_id, status_filter_list, code, start, end, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_GetOrderList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
if order_id:
req.c2s.filterConditions.idList.append(int(order_id))
if start:
req.c2s.filterConditions.beginTime = start
if end:
req.c2s.filterConditions.endTime = end
if len(status_filter_list):
for order_status in status_filter_list:
req.c2s.filterStatusList.append(ORDER_STATUS_MAP[order_status])
return pack_pb_req(req, ProtoId.Trd_GetOrderList, conn_id) | @classmethod
def pack_req(cls, order_id, status_filter_list, code, start, end, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_GetOrderList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
if order_id:
req.c2s.filterConditions.idList.append(int(order_id))
if start:
req.c2s.filterConditions.beginTime = start
if end:
req.c2s.filterConditions.endTime = end
if len(status_filter_list):
for order_status in status_filter_list:
req.c2s.filterStatusList.append(ORDER_STATUS_MAP[order_status])
return pack_pb_req(req, ProtoId.Trd_GetOrderList, conn_id)<|docstring|>Convert from user request for trading days to PLS request<|endoftext|> |
a6f0d5b4096c6b9b4f86df0137a350b08ce92cb748c3808b9a8b2f54abf5b356 | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_order_list = rsp_pb.s2c.orderList
order_list = [OrderListQuery.parse_order(rsp_pb, order) for order in raw_order_list]
return (RET_OK, '', order_list) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_order_list = rsp_pb.s2c.orderList
order_list = [OrderListQuery.parse_order(rsp_pb, order) for order in raw_order_list]
return (RET_OK, , order_list) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_order_list = rsp_pb.s2c.orderList
order_list = [OrderListQuery.parse_order(rsp_pb, order) for order in raw_order_list]
return (RET_OK, , order_list)<|docstring|>Convert from PLS response to user response<|endoftext|> |
db4477d2fd87d82e00886bab1f6f24c5cf6a9770b7e67b061c86b48573032e57 | @classmethod
def pack_req(cls, trd_side, order_type, price, qty, code, adjust_limit, trd_env, sec_mkt_str, acc_id, trd_mkt, conn_id):
'Convert from user request for place order to PLS request'
from futuquant.common.pb.Trd_PlaceOrder_pb2 import Request
req = Request()
serial_no = get_unique_id32()
req.c2s.packetID.serialNo = serial_no
req.c2s.packetID.connID = conn_id
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
req.c2s.trdSide = TRD_SIDE_MAP[trd_side]
req.c2s.orderType = ORDER_TYPE_MAP[order_type]
req.c2s.code = code
req.c2s.qty = qty
req.c2s.price = price
req.c2s.adjustPrice = (adjust_limit != 0)
req.c2s.adjustSideAndLimit = adjust_limit
proto_qot_mkt = MKT_MAP.get(sec_mkt_str, Qot_Common_pb2.QotMarket_Unknown)
proto_trd_sec_mkt = QOT_MARKET_TO_TRD_SEC_MARKET_MAP.get(proto_qot_mkt, Trd_Common_pb2.TrdSecMarket_Unknown)
req.c2s.secMarket = proto_trd_sec_mkt
return pack_pb_req(req, ProtoId.Trd_PlaceOrder, conn_id, serial_no) | Convert from user request for place order to PLS request | futuquant/trade/trade_query.py | pack_req | hxhxhx88/futuquant | 5 | python | @classmethod
def pack_req(cls, trd_side, order_type, price, qty, code, adjust_limit, trd_env, sec_mkt_str, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_PlaceOrder_pb2 import Request
req = Request()
serial_no = get_unique_id32()
req.c2s.packetID.serialNo = serial_no
req.c2s.packetID.connID = conn_id
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
req.c2s.trdSide = TRD_SIDE_MAP[trd_side]
req.c2s.orderType = ORDER_TYPE_MAP[order_type]
req.c2s.code = code
req.c2s.qty = qty
req.c2s.price = price
req.c2s.adjustPrice = (adjust_limit != 0)
req.c2s.adjustSideAndLimit = adjust_limit
proto_qot_mkt = MKT_MAP.get(sec_mkt_str, Qot_Common_pb2.QotMarket_Unknown)
proto_trd_sec_mkt = QOT_MARKET_TO_TRD_SEC_MARKET_MAP.get(proto_qot_mkt, Trd_Common_pb2.TrdSecMarket_Unknown)
req.c2s.secMarket = proto_trd_sec_mkt
return pack_pb_req(req, ProtoId.Trd_PlaceOrder, conn_id, serial_no) | @classmethod
def pack_req(cls, trd_side, order_type, price, qty, code, adjust_limit, trd_env, sec_mkt_str, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_PlaceOrder_pb2 import Request
req = Request()
serial_no = get_unique_id32()
req.c2s.packetID.serialNo = serial_no
req.c2s.packetID.connID = conn_id
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
req.c2s.trdSide = TRD_SIDE_MAP[trd_side]
req.c2s.orderType = ORDER_TYPE_MAP[order_type]
req.c2s.code = code
req.c2s.qty = qty
req.c2s.price = price
req.c2s.adjustPrice = (adjust_limit != 0)
req.c2s.adjustSideAndLimit = adjust_limit
proto_qot_mkt = MKT_MAP.get(sec_mkt_str, Qot_Common_pb2.QotMarket_Unknown)
proto_trd_sec_mkt = QOT_MARKET_TO_TRD_SEC_MARKET_MAP.get(proto_qot_mkt, Trd_Common_pb2.TrdSecMarket_Unknown)
req.c2s.secMarket = proto_trd_sec_mkt
return pack_pb_req(req, ProtoId.Trd_PlaceOrder, conn_id, serial_no)<|docstring|>Convert from user request for place order to PLS request<|endoftext|> |
681ec6881dea8a947df01d91e7bab0ee2a7d98c44412bb620ab8fe1818fd862f | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
order_id = str(rsp_pb.s2c.orderID)
return (RET_OK, '', order_id) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
order_id = str(rsp_pb.s2c.orderID)
return (RET_OK, , order_id) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
order_id = str(rsp_pb.s2c.orderID)
return (RET_OK, , order_id)<|docstring|>Convert from PLS response to user response<|endoftext|> |
ee43f1670d97730905ac4963abaf50637cdd4f9e0be271e43ab2fbf53e1d4dfd | @classmethod
def pack_req(cls, modify_order_op, order_id, price, qty, adjust_limit, trd_env, acc_id, trd_mkt, conn_id):
'Convert from user request for place order to PLS request'
from futuquant.common.pb.Trd_ModifyOrder_pb2 import Request
req = Request()
serial_no = get_unique_id32()
req.c2s.packetID.serialNo = serial_no
req.c2s.packetID.connID = conn_id
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
req.c2s.orderID = int(order_id)
req.c2s.modifyOrderOp = MODIFY_ORDER_OP_MAP[modify_order_op]
req.c2s.forAll = False
if (modify_order_op == ModifyOrderOp.NORMAL):
req.c2s.qty = qty
req.c2s.price = price
req.c2s.adjustPrice = (adjust_limit != 0)
req.c2s.adjustSideAndLimit = adjust_limit
return pack_pb_req(req, ProtoId.Trd_ModifyOrder, conn_id, serial_no) | Convert from user request for place order to PLS request | futuquant/trade/trade_query.py | pack_req | hxhxhx88/futuquant | 5 | python | @classmethod
def pack_req(cls, modify_order_op, order_id, price, qty, adjust_limit, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_ModifyOrder_pb2 import Request
req = Request()
serial_no = get_unique_id32()
req.c2s.packetID.serialNo = serial_no
req.c2s.packetID.connID = conn_id
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
req.c2s.orderID = int(order_id)
req.c2s.modifyOrderOp = MODIFY_ORDER_OP_MAP[modify_order_op]
req.c2s.forAll = False
if (modify_order_op == ModifyOrderOp.NORMAL):
req.c2s.qty = qty
req.c2s.price = price
req.c2s.adjustPrice = (adjust_limit != 0)
req.c2s.adjustSideAndLimit = adjust_limit
return pack_pb_req(req, ProtoId.Trd_ModifyOrder, conn_id, serial_no) | @classmethod
def pack_req(cls, modify_order_op, order_id, price, qty, adjust_limit, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_ModifyOrder_pb2 import Request
req = Request()
serial_no = get_unique_id32()
req.c2s.packetID.serialNo = serial_no
req.c2s.packetID.connID = conn_id
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
req.c2s.orderID = int(order_id)
req.c2s.modifyOrderOp = MODIFY_ORDER_OP_MAP[modify_order_op]
req.c2s.forAll = False
if (modify_order_op == ModifyOrderOp.NORMAL):
req.c2s.qty = qty
req.c2s.price = price
req.c2s.adjustPrice = (adjust_limit != 0)
req.c2s.adjustSideAndLimit = adjust_limit
return pack_pb_req(req, ProtoId.Trd_ModifyOrder, conn_id, serial_no)<|docstring|>Convert from user request for place order to PLS request<|endoftext|> |
7d0b222d3fa2c017230ceb07336e3dc79f20c9610aa62cd719bf8145e18f4953 | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
order_id = str(rsp_pb.s2c.orderID)
modify_order_list = [{'trd_env': TRADE.REV_TRD_ENV_MAP[rsp_pb.s2c.header.trdEnv], 'order_id': order_id}]
return (RET_OK, '', modify_order_list) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
order_id = str(rsp_pb.s2c.orderID)
modify_order_list = [{'trd_env': TRADE.REV_TRD_ENV_MAP[rsp_pb.s2c.header.trdEnv], 'order_id': order_id}]
return (RET_OK, , modify_order_list) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
order_id = str(rsp_pb.s2c.orderID)
modify_order_list = [{'trd_env': TRADE.REV_TRD_ENV_MAP[rsp_pb.s2c.header.trdEnv], 'order_id': order_id}]
return (RET_OK, , modify_order_list)<|docstring|>Convert from PLS response to user response<|endoftext|> |
760fa64cfcdea9d69c21686f41f176cfe7fc2405c6c0022730eb968a415e64f3 | @classmethod
def pack_req(cls, code, trd_env, acc_id, trd_mkt, conn_id):
'Convert from user request for place order to PLS request'
from futuquant.common.pb.Trd_GetOrderFillList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
return pack_pb_req(req, ProtoId.Trd_GetOrderFillList, conn_id) | Convert from user request for place order to PLS request | futuquant/trade/trade_query.py | pack_req | hxhxhx88/futuquant | 5 | python | @classmethod
def pack_req(cls, code, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_GetOrderFillList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
return pack_pb_req(req, ProtoId.Trd_GetOrderFillList, conn_id) | @classmethod
def pack_req(cls, code, trd_env, acc_id, trd_mkt, conn_id):
from futuquant.common.pb.Trd_GetOrderFillList_pb2 import Request
req = Request()
req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env]
req.c2s.header.accID = acc_id
req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt]
if code:
req.c2s.filterConditions.codeList.append(code)
return pack_pb_req(req, ProtoId.Trd_GetOrderFillList, conn_id)<|docstring|>Convert from user request for place order to PLS request<|endoftext|> |
4b8d55a5c95b4aa75ead86da44a2fcdb1e8200671bf2b17866bcac8559fc50ee | @classmethod
def unpack_rsp(cls, rsp_pb):
'Convert from PLS response to user response'
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_deal_list = rsp_pb.s2c.orderFillList
deal_list = [DealListQuery.parse_deal(rsp_pb, deal) for deal in raw_deal_list]
return (RET_OK, '', deal_list) | Convert from PLS response to user response | futuquant/trade/trade_query.py | unpack_rsp | hxhxhx88/futuquant | 5 | python | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_deal_list = rsp_pb.s2c.orderFillList
deal_list = [DealListQuery.parse_deal(rsp_pb, deal) for deal in raw_deal_list]
return (RET_OK, , deal_list) | @classmethod
def unpack_rsp(cls, rsp_pb):
if (rsp_pb.retType != RET_OK):
return (RET_ERROR, rsp_pb.retMsg, None)
raw_deal_list = rsp_pb.s2c.orderFillList
deal_list = [DealListQuery.parse_deal(rsp_pb, deal) for deal in raw_deal_list]
return (RET_OK, , deal_list)<|docstring|>Convert from PLS response to user response<|endoftext|> |
b640365f135cf0dcac9e80bf29d10e0503e3dc472c79be07ee1d7ea286959160 | def Jn(r, n):
'\n numerical spherical bessel functions of order n\n '
return (np.sqrt((np.pi / (2 * r))) * sp.jv((n + 0.5), r)) | numerical spherical bessel functions of order n | nff/utils/functions.py | Jn | jkaraguesian/NeuralForceField | 0 | python | def Jn(r, n):
'\n \n '
return (np.sqrt((np.pi / (2 * r))) * sp.jv((n + 0.5), r)) | def Jn(r, n):
'\n \n '
return (np.sqrt((np.pi / (2 * r))) * sp.jv((n + 0.5), r))<|docstring|>numerical spherical bessel functions of order n<|endoftext|> |
fb1a30817723d94ec7eaf1ff7b1ecdc11dfb61d68cf765a74d0374762315bd28 | def Jn_zeros(n, k):
'\n Compute the first k zeros of the spherical bessel functions up to order n (excluded)\n '
zerosj = np.zeros((n, k), dtype='float32')
zerosj[0] = (np.arange(1, (k + 1)) * np.pi)
points = (np.arange(1, (k + n)) * np.pi)
racines = np.zeros(((k + n) - 1), dtype='float32')
for i in range(1, n):
for j in range((((k + n) - 1) - i)):
foo = brentq(Jn, points[j], points[(j + 1)], (i,))
racines[j] = foo
points = racines
zerosj[i][:k] = racines[:k]
return zerosj | Compute the first k zeros of the spherical bessel functions up to order n (excluded) | nff/utils/functions.py | Jn_zeros | jkaraguesian/NeuralForceField | 0 | python | def Jn_zeros(n, k):
'\n \n '
zerosj = np.zeros((n, k), dtype='float32')
zerosj[0] = (np.arange(1, (k + 1)) * np.pi)
points = (np.arange(1, (k + n)) * np.pi)
racines = np.zeros(((k + n) - 1), dtype='float32')
for i in range(1, n):
for j in range((((k + n) - 1) - i)):
foo = brentq(Jn, points[j], points[(j + 1)], (i,))
racines[j] = foo
points = racines
zerosj[i][:k] = racines[:k]
return zerosj | def Jn_zeros(n, k):
'\n \n '
zerosj = np.zeros((n, k), dtype='float32')
zerosj[0] = (np.arange(1, (k + 1)) * np.pi)
points = (np.arange(1, (k + n)) * np.pi)
racines = np.zeros(((k + n) - 1), dtype='float32')
for i in range(1, n):
for j in range((((k + n) - 1) - i)):
foo = brentq(Jn, points[j], points[(j + 1)], (i,))
racines[j] = foo
points = racines
zerosj[i][:k] = racines[:k]
return zerosj<|docstring|>Compute the first k zeros of the spherical bessel functions up to order n (excluded)<|endoftext|> |
66d125895cca9f85ce421738695c9f6c95842ace3f5ebb703563f743339cf3b6 | def spherical_bessel_formulas(n):
'\n Computes the sympy formulas for the spherical bessel functions up to order n (excluded)\n '
x = sym.symbols('x')
f = [(sym.sin(x) / x)]
a = (sym.sin(x) / x)
for i in range(1, n):
b = (sym.diff(a, x) / x)
f += [sym.simplify((b * ((- x) ** i)))]
a = sym.simplify(b)
return f | Computes the sympy formulas for the spherical bessel functions up to order n (excluded) | nff/utils/functions.py | spherical_bessel_formulas | jkaraguesian/NeuralForceField | 0 | python | def spherical_bessel_formulas(n):
'\n \n '
x = sym.symbols('x')
f = [(sym.sin(x) / x)]
a = (sym.sin(x) / x)
for i in range(1, n):
b = (sym.diff(a, x) / x)
f += [sym.simplify((b * ((- x) ** i)))]
a = sym.simplify(b)
return f | def spherical_bessel_formulas(n):
'\n \n '
x = sym.symbols('x')
f = [(sym.sin(x) / x)]
a = (sym.sin(x) / x)
for i in range(1, n):
b = (sym.diff(a, x) / x)
f += [sym.simplify((b * ((- x) ** i)))]
a = sym.simplify(b)
return f<|docstring|>Computes the sympy formulas for the spherical bessel functions up to order n (excluded)<|endoftext|> |
6da74b15a919265b8bdb2c947a9a0b02ee2f0f4811d8f515d3f99fc4b4c1e9fa | def bessel_basis(n, k):
'\n Compute the sympy formulas for the normalized and rescaled spherical bessel functions up to\n order n (excluded) and maximum frequency k (excluded).\n '
zeros = Jn_zeros(n, k)
normalizer = []
for order in range(n):
normalizer_tmp = []
for i in range(k):
normalizer_tmp += [(0.5 * (Jn(zeros[(order, i)], (order + 1)) ** 2))]
normalizer_tmp = (1 / (np.array(normalizer_tmp) ** 0.5))
normalizer += [normalizer_tmp]
f = spherical_bessel_formulas(n)
x = sym.symbols('x')
bess_basis = []
for order in range(n):
bess_basis_tmp = []
for i in range(k):
bess_basis_tmp += [sym.simplify((normalizer[order][i] * f[order].subs(x, (zeros[(order, i)] * x))))]
bess_basis += [bess_basis_tmp]
return bess_basis | Compute the sympy formulas for the normalized and rescaled spherical bessel functions up to
order n (excluded) and maximum frequency k (excluded). | nff/utils/functions.py | bessel_basis | jkaraguesian/NeuralForceField | 0 | python | def bessel_basis(n, k):
'\n Compute the sympy formulas for the normalized and rescaled spherical bessel functions up to\n order n (excluded) and maximum frequency k (excluded).\n '
zeros = Jn_zeros(n, k)
normalizer = []
for order in range(n):
normalizer_tmp = []
for i in range(k):
normalizer_tmp += [(0.5 * (Jn(zeros[(order, i)], (order + 1)) ** 2))]
normalizer_tmp = (1 / (np.array(normalizer_tmp) ** 0.5))
normalizer += [normalizer_tmp]
f = spherical_bessel_formulas(n)
x = sym.symbols('x')
bess_basis = []
for order in range(n):
bess_basis_tmp = []
for i in range(k):
bess_basis_tmp += [sym.simplify((normalizer[order][i] * f[order].subs(x, (zeros[(order, i)] * x))))]
bess_basis += [bess_basis_tmp]
return bess_basis | def bessel_basis(n, k):
'\n Compute the sympy formulas for the normalized and rescaled spherical bessel functions up to\n order n (excluded) and maximum frequency k (excluded).\n '
zeros = Jn_zeros(n, k)
normalizer = []
for order in range(n):
normalizer_tmp = []
for i in range(k):
normalizer_tmp += [(0.5 * (Jn(zeros[(order, i)], (order + 1)) ** 2))]
normalizer_tmp = (1 / (np.array(normalizer_tmp) ** 0.5))
normalizer += [normalizer_tmp]
f = spherical_bessel_formulas(n)
x = sym.symbols('x')
bess_basis = []
for order in range(n):
bess_basis_tmp = []
for i in range(k):
bess_basis_tmp += [sym.simplify((normalizer[order][i] * f[order].subs(x, (zeros[(order, i)] * x))))]
bess_basis += [bess_basis_tmp]
return bess_basis<|docstring|>Compute the sympy formulas for the normalized and rescaled spherical bessel functions up to
order n (excluded) and maximum frequency k (excluded).<|endoftext|> |
eb3adc8a5f6deeb528486b1337af820601ac1f3fcdd639ad8d23eb5f8aa0fd10 | def sph_harm_prefactor(l, m):
'\n Computes the constant pre-factor for the spherical harmonic of degree l and order m\n input:\n l: int, l>=0\n m: int, -l<=m<=l\n '
return (((((2 * l) + 1) * np.math.factorial((l - abs(m)))) / ((4 * np.pi) * np.math.factorial((l + abs(m))))) ** 0.5) | Computes the constant pre-factor for the spherical harmonic of degree l and order m
input:
l: int, l>=0
m: int, -l<=m<=l | nff/utils/functions.py | sph_harm_prefactor | jkaraguesian/NeuralForceField | 0 | python | def sph_harm_prefactor(l, m):
'\n Computes the constant pre-factor for the spherical harmonic of degree l and order m\n input:\n l: int, l>=0\n m: int, -l<=m<=l\n '
return (((((2 * l) + 1) * np.math.factorial((l - abs(m)))) / ((4 * np.pi) * np.math.factorial((l + abs(m))))) ** 0.5) | def sph_harm_prefactor(l, m):
'\n Computes the constant pre-factor for the spherical harmonic of degree l and order m\n input:\n l: int, l>=0\n m: int, -l<=m<=l\n '
return (((((2 * l) + 1) * np.math.factorial((l - abs(m)))) / ((4 * np.pi) * np.math.factorial((l + abs(m))))) ** 0.5)<|docstring|>Computes the constant pre-factor for the spherical harmonic of degree l and order m
input:
l: int, l>=0
m: int, -l<=m<=l<|endoftext|> |
0655349d04b36caea5df78276a2c05dadbe8c562a37873ab27b0eec29a608d3b | def associated_legendre_polynomials(l, zero_m_only=True):
'\n Computes sympy formulas of the associated legendre polynomials up to order l (excluded).\n '
z = sym.symbols('z')
P_l_m = [([0] * (j + 1)) for j in range(l)]
P_l_m[0][0] = 1
if (l > 0):
P_l_m[1][0] = z
for j in range(2, l):
P_l_m[j][0] = sym.simplify(((((((2 * j) - 1) * z) * P_l_m[(j - 1)][0]) - ((j - 1) * P_l_m[(j - 2)][0])) / j))
if (not zero_m_only):
for i in range(1, l):
P_l_m[i][i] = sym.simplify(((1 - (2 * i)) * P_l_m[(i - 1)][(i - 1)]))
if ((i + 1) < l):
P_l_m[(i + 1)][i] = sym.simplify(((((2 * i) + 1) * z) * P_l_m[i][i]))
for j in range((i + 2), l):
P_l_m[j][i] = sym.simplify(((((((2 * j) - 1) * z) * P_l_m[(j - 1)][i]) - (((i + j) - 1) * P_l_m[(j - 2)][i])) / (j - i)))
return P_l_m | Computes sympy formulas of the associated legendre polynomials up to order l (excluded). | nff/utils/functions.py | associated_legendre_polynomials | jkaraguesian/NeuralForceField | 0 | python | def associated_legendre_polynomials(l, zero_m_only=True):
'\n \n '
z = sym.symbols('z')
P_l_m = [([0] * (j + 1)) for j in range(l)]
P_l_m[0][0] = 1
if (l > 0):
P_l_m[1][0] = z
for j in range(2, l):
P_l_m[j][0] = sym.simplify(((((((2 * j) - 1) * z) * P_l_m[(j - 1)][0]) - ((j - 1) * P_l_m[(j - 2)][0])) / j))
if (not zero_m_only):
for i in range(1, l):
P_l_m[i][i] = sym.simplify(((1 - (2 * i)) * P_l_m[(i - 1)][(i - 1)]))
if ((i + 1) < l):
P_l_m[(i + 1)][i] = sym.simplify(((((2 * i) + 1) * z) * P_l_m[i][i]))
for j in range((i + 2), l):
P_l_m[j][i] = sym.simplify(((((((2 * j) - 1) * z) * P_l_m[(j - 1)][i]) - (((i + j) - 1) * P_l_m[(j - 2)][i])) / (j - i)))
return P_l_m | def associated_legendre_polynomials(l, zero_m_only=True):
'\n \n '
z = sym.symbols('z')
P_l_m = [([0] * (j + 1)) for j in range(l)]
P_l_m[0][0] = 1
if (l > 0):
P_l_m[1][0] = z
for j in range(2, l):
P_l_m[j][0] = sym.simplify(((((((2 * j) - 1) * z) * P_l_m[(j - 1)][0]) - ((j - 1) * P_l_m[(j - 2)][0])) / j))
if (not zero_m_only):
for i in range(1, l):
P_l_m[i][i] = sym.simplify(((1 - (2 * i)) * P_l_m[(i - 1)][(i - 1)]))
if ((i + 1) < l):
P_l_m[(i + 1)][i] = sym.simplify(((((2 * i) + 1) * z) * P_l_m[i][i]))
for j in range((i + 2), l):
P_l_m[j][i] = sym.simplify(((((((2 * j) - 1) * z) * P_l_m[(j - 1)][i]) - (((i + j) - 1) * P_l_m[(j - 2)][i])) / (j - i)))
return P_l_m<|docstring|>Computes sympy formulas of the associated legendre polynomials up to order l (excluded).<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.