body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
e03f165ce174f6c37eb7431d5ef36aab7a71f3c80fea7d92453dffbe24c85274
def real_sph_harm(l, zero_m_only=True, spherical_coordinates=True): '\n Computes formula strings of the the real part of the spherical harmonics up to order l (excluded).\n Variables are either cartesian coordinates x,y,z on the unit sphere or spherical coordinates phi and theta.\n ' if (not zero_m_only): S_m = [0] C_m = [1] for i in range(1, l): x = sym.symbols('x') y = sym.symbols('y') S_m += [((x * S_m[(i - 1)]) + (y * C_m[(i - 1)]))] C_m += [((x * C_m[(i - 1)]) - (y * S_m[(i - 1)]))] P_l_m = associated_legendre_polynomials(l, zero_m_only) if spherical_coordinates: theta = sym.symbols('theta') z = sym.symbols('z') for i in range(len(P_l_m)): for j in range(len(P_l_m[i])): if (type(P_l_m[i][j]) != int): P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta)) if (not zero_m_only): phi = sym.symbols('phi') for i in range(len(S_m)): S_m[i] = S_m[i].subs(x, (sym.sin(theta) * sym.cos(phi))).subs(y, (sym.sin(theta) * sym.sin(phi))) for i in range(len(C_m)): C_m[i] = C_m[i].subs(x, (sym.sin(theta) * sym.cos(phi))).subs(y, (sym.sin(theta) * sym.sin(phi))) Y_func_l_m = [(['0'] * ((2 * j) + 1)) for j in range(l)] for i in range(l): Y_func_l_m[i][0] = sym.simplify((sph_harm_prefactor(i, 0) * P_l_m[i][0])) if (not zero_m_only): for i in range(1, l): for j in range(1, (i + 1)): Y_func_l_m[i][j] = sym.simplify(((((2 ** 0.5) * sph_harm_prefactor(i, j)) * C_m[j]) * P_l_m[i][j])) for i in range(1, l): for j in range(1, (i + 1)): Y_func_l_m[i][(- j)] = sym.simplify(((((2 ** 0.5) * sph_harm_prefactor(i, (- j))) * S_m[j]) * P_l_m[i][j])) return Y_func_l_m
Computes formula strings of the the real part of the spherical harmonics up to order l (excluded). Variables are either cartesian coordinates x,y,z on the unit sphere or spherical coordinates phi and theta.
nff/utils/functions.py
real_sph_harm
jkaraguesian/NeuralForceField
0
python
def real_sph_harm(l, zero_m_only=True, spherical_coordinates=True): '\n Computes formula strings of the the real part of the spherical harmonics up to order l (excluded).\n Variables are either cartesian coordinates x,y,z on the unit sphere or spherical coordinates phi and theta.\n ' if (not zero_m_only): S_m = [0] C_m = [1] for i in range(1, l): x = sym.symbols('x') y = sym.symbols('y') S_m += [((x * S_m[(i - 1)]) + (y * C_m[(i - 1)]))] C_m += [((x * C_m[(i - 1)]) - (y * S_m[(i - 1)]))] P_l_m = associated_legendre_polynomials(l, zero_m_only) if spherical_coordinates: theta = sym.symbols('theta') z = sym.symbols('z') for i in range(len(P_l_m)): for j in range(len(P_l_m[i])): if (type(P_l_m[i][j]) != int): P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta)) if (not zero_m_only): phi = sym.symbols('phi') for i in range(len(S_m)): S_m[i] = S_m[i].subs(x, (sym.sin(theta) * sym.cos(phi))).subs(y, (sym.sin(theta) * sym.sin(phi))) for i in range(len(C_m)): C_m[i] = C_m[i].subs(x, (sym.sin(theta) * sym.cos(phi))).subs(y, (sym.sin(theta) * sym.sin(phi))) Y_func_l_m = [(['0'] * ((2 * j) + 1)) for j in range(l)] for i in range(l): Y_func_l_m[i][0] = sym.simplify((sph_harm_prefactor(i, 0) * P_l_m[i][0])) if (not zero_m_only): for i in range(1, l): for j in range(1, (i + 1)): Y_func_l_m[i][j] = sym.simplify(((((2 ** 0.5) * sph_harm_prefactor(i, j)) * C_m[j]) * P_l_m[i][j])) for i in range(1, l): for j in range(1, (i + 1)): Y_func_l_m[i][(- j)] = sym.simplify(((((2 ** 0.5) * sph_harm_prefactor(i, (- j))) * S_m[j]) * P_l_m[i][j])) return Y_func_l_m
def real_sph_harm(l, zero_m_only=True, spherical_coordinates=True): '\n Computes formula strings of the the real part of the spherical harmonics up to order l (excluded).\n Variables are either cartesian coordinates x,y,z on the unit sphere or spherical coordinates phi and theta.\n ' if (not zero_m_only): S_m = [0] C_m = [1] for i in range(1, l): x = sym.symbols('x') y = sym.symbols('y') S_m += [((x * S_m[(i - 1)]) + (y * C_m[(i - 1)]))] C_m += [((x * C_m[(i - 1)]) - (y * S_m[(i - 1)]))] P_l_m = associated_legendre_polynomials(l, zero_m_only) if spherical_coordinates: theta = sym.symbols('theta') z = sym.symbols('z') for i in range(len(P_l_m)): for j in range(len(P_l_m[i])): if (type(P_l_m[i][j]) != int): P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta)) if (not zero_m_only): phi = sym.symbols('phi') for i in range(len(S_m)): S_m[i] = S_m[i].subs(x, (sym.sin(theta) * sym.cos(phi))).subs(y, (sym.sin(theta) * sym.sin(phi))) for i in range(len(C_m)): C_m[i] = C_m[i].subs(x, (sym.sin(theta) * sym.cos(phi))).subs(y, (sym.sin(theta) * sym.sin(phi))) Y_func_l_m = [(['0'] * ((2 * j) + 1)) for j in range(l)] for i in range(l): Y_func_l_m[i][0] = sym.simplify((sph_harm_prefactor(i, 0) * P_l_m[i][0])) if (not zero_m_only): for i in range(1, l): for j in range(1, (i + 1)): Y_func_l_m[i][j] = sym.simplify(((((2 ** 0.5) * sph_harm_prefactor(i, j)) * C_m[j]) * P_l_m[i][j])) for i in range(1, l): for j in range(1, (i + 1)): Y_func_l_m[i][(- j)] = sym.simplify(((((2 ** 0.5) * sph_harm_prefactor(i, (- j))) * S_m[j]) * P_l_m[i][j])) return Y_func_l_m<|docstring|>Computes formula strings of the the real part of the spherical harmonics up to order l (excluded). Variables are either cartesian coordinates x,y,z on the unit sphere or spherical coordinates phi and theta.<|endoftext|>
7264554eeb7d16d8fb871985c43591bf0bd03b0accd6cf8143487f74eb5d7ddb
def get_subject(db: Session, subcode: str) -> SubjectReport: 'Get Subject From Code\n\n Args:\n db (Session): SQLAlchemy Session.\n subcode (str): Subject Code.\n\n Raises:\n NoResultFound\n\n Returns:\n SubjectReport: Details Of the Requested Subject.\n ' res = db.query(Subject).filter((Subject.Code == subcode)).one() rep = SubjectReport.from_orm(res) return rep
Get Subject From Code Args: db (Session): SQLAlchemy Session. subcode (str): Subject Code. Raises: NoResultFound Returns: SubjectReport: Details Of the Requested Subject.
semesterstat/crud/subject.py
get_subject
Rushyanth111/Semester-Stats
0
python
def get_subject(db: Session, subcode: str) -> SubjectReport: 'Get Subject From Code\n\n Args:\n db (Session): SQLAlchemy Session.\n subcode (str): Subject Code.\n\n Raises:\n NoResultFound\n\n Returns:\n SubjectReport: Details Of the Requested Subject.\n ' res = db.query(Subject).filter((Subject.Code == subcode)).one() rep = SubjectReport.from_orm(res) return rep
def get_subject(db: Session, subcode: str) -> SubjectReport: 'Get Subject From Code\n\n Args:\n db (Session): SQLAlchemy Session.\n subcode (str): Subject Code.\n\n Raises:\n NoResultFound\n\n Returns:\n SubjectReport: Details Of the Requested Subject.\n ' res = db.query(Subject).filter((Subject.Code == subcode)).one() rep = SubjectReport.from_orm(res) return rep<|docstring|>Get Subject From Code Args: db (Session): SQLAlchemy Session. subcode (str): Subject Code. Raises: NoResultFound Returns: SubjectReport: Details Of the Requested Subject.<|endoftext|>
45cfea7cb4f55310bb04ae6fd84033c0171925308c68a5a2a58dc78d765b27bd
def put_subject(db: Session, sub: SubjectReport) -> None: 'Add a Subject to the Database\n\n Args:\n db (Session): SQLAlchemy Session.\n sub (SubjectReport): Subject Report Object.\n\n Raises:\n IntegrityError\n ' ipt = Subject(Code=sub.Code, Name=sub.Name, Semester=sub.Semester, Scheme=sub.Scheme, Department=sub.Department) db.add(ipt) db.commit()
Add a Subject to the Database Args: db (Session): SQLAlchemy Session. sub (SubjectReport): Subject Report Object. Raises: IntegrityError
semesterstat/crud/subject.py
put_subject
Rushyanth111/Semester-Stats
0
python
def put_subject(db: Session, sub: SubjectReport) -> None: 'Add a Subject to the Database\n\n Args:\n db (Session): SQLAlchemy Session.\n sub (SubjectReport): Subject Report Object.\n\n Raises:\n IntegrityError\n ' ipt = Subject(Code=sub.Code, Name=sub.Name, Semester=sub.Semester, Scheme=sub.Scheme, Department=sub.Department) db.add(ipt) db.commit()
def put_subject(db: Session, sub: SubjectReport) -> None: 'Add a Subject to the Database\n\n Args:\n db (Session): SQLAlchemy Session.\n sub (SubjectReport): Subject Report Object.\n\n Raises:\n IntegrityError\n ' ipt = Subject(Code=sub.Code, Name=sub.Name, Semester=sub.Semester, Scheme=sub.Scheme, Department=sub.Department) db.add(ipt) db.commit()<|docstring|>Add a Subject to the Database Args: db (Session): SQLAlchemy Session. sub (SubjectReport): Subject Report Object. Raises: IntegrityError<|endoftext|>
ff19f77d291f830cd02680b17ba0dda4d46e33ee22aa111450c711f8981d9d9b
def update_subject(db: Session, old_sub: str, new_sub: SubjectReport) -> None: 'Update a Subject\n\n Args:\n db (Session): SQLAlchemy Session.\n old_sub (str): Old Subject Code.\n new_sub (SubjectReport): Subject Details to Change\n\n Raises:\n IntegrityError\n ' upd = db.query(Subject).filter((Subject.Code == old_sub)).first() upd.Code = new_sub.Code upd.Name = new_sub.Name upd.Semester = new_sub.Semester upd.Scheme = new_sub.Scheme upd.Department = new_sub.Department db.commit()
Update a Subject Args: db (Session): SQLAlchemy Session. old_sub (str): Old Subject Code. new_sub (SubjectReport): Subject Details to Change Raises: IntegrityError
semesterstat/crud/subject.py
update_subject
Rushyanth111/Semester-Stats
0
python
def update_subject(db: Session, old_sub: str, new_sub: SubjectReport) -> None: 'Update a Subject\n\n Args:\n db (Session): SQLAlchemy Session.\n old_sub (str): Old Subject Code.\n new_sub (SubjectReport): Subject Details to Change\n\n Raises:\n IntegrityError\n ' upd = db.query(Subject).filter((Subject.Code == old_sub)).first() upd.Code = new_sub.Code upd.Name = new_sub.Name upd.Semester = new_sub.Semester upd.Scheme = new_sub.Scheme upd.Department = new_sub.Department db.commit()
def update_subject(db: Session, old_sub: str, new_sub: SubjectReport) -> None: 'Update a Subject\n\n Args:\n db (Session): SQLAlchemy Session.\n old_sub (str): Old Subject Code.\n new_sub (SubjectReport): Subject Details to Change\n\n Raises:\n IntegrityError\n ' upd = db.query(Subject).filter((Subject.Code == old_sub)).first() upd.Code = new_sub.Code upd.Name = new_sub.Name upd.Semester = new_sub.Semester upd.Scheme = new_sub.Scheme upd.Department = new_sub.Department db.commit()<|docstring|>Update a Subject Args: db (Session): SQLAlchemy Session. old_sub (str): Old Subject Code. new_sub (SubjectReport): Subject Details to Change Raises: IntegrityError<|endoftext|>
e635eb670f694dc3f4f66643ababeab181279c1f30bec027a15b4ee03bcfffd2
def is_subject_exist(db: Session, subcode: str) -> bool: 'Checks if Subject Exists.\n\n Args:\n db (Session): SQLAlchemy Session.\n subcode (str): Subject Code.\n\n Returns:\n bool: True if Present, Else False.\n ' equery = db.query(Subject).filter((Subject.Code == subcode)) res = db.query(equery.exists()).scalar() return res
Checks if Subject Exists. Args: db (Session): SQLAlchemy Session. subcode (str): Subject Code. Returns: bool: True if Present, Else False.
semesterstat/crud/subject.py
is_subject_exist
Rushyanth111/Semester-Stats
0
python
def is_subject_exist(db: Session, subcode: str) -> bool: 'Checks if Subject Exists.\n\n Args:\n db (Session): SQLAlchemy Session.\n subcode (str): Subject Code.\n\n Returns:\n bool: True if Present, Else False.\n ' equery = db.query(Subject).filter((Subject.Code == subcode)) res = db.query(equery.exists()).scalar() return res
def is_subject_exist(db: Session, subcode: str) -> bool: 'Checks if Subject Exists.\n\n Args:\n db (Session): SQLAlchemy Session.\n subcode (str): Subject Code.\n\n Returns:\n bool: True if Present, Else False.\n ' equery = db.query(Subject).filter((Subject.Code == subcode)) res = db.query(equery.exists()).scalar() return res<|docstring|>Checks if Subject Exists. Args: db (Session): SQLAlchemy Session. subcode (str): Subject Code. Returns: bool: True if Present, Else False.<|endoftext|>
6793e3fd551e601ef4ea16f9936b50504fc3706c0608d086e8d5a95aef44649b
def get_subjects(db: Session, batch: int=None, dept: str=None, sem: int=None) -> List[str]: 'Obtains a List of Subjects According to Optional Params\n\n Args:\n db (Session): SQLAlchemy Session.\n batch (int, optional): Batch that Attended That Subject. Defaults to None.\n dept (str, optional): Department of the Subject(Includes "XX" By default).\n Defaults to None.\n sem (int, optional): Semester Of the Subject. Defaults to None.\n\n Raises:\n NoResultFound\n\n Returns:\n List[str]: List of the Subject Codes Searched.\n ' res = db.query(Subject) if (batch is not None): scheme = get_scheme(db, batch) if (scheme is None): return [] res = res.filter((Subject.Scheme == scheme)) if (dept is not None): if (dept != 'XX'): res = res.filter(or_((Subject.Department == dept), (Subject.Department == 'XX'))) else: res = res.filter((Subject.Department == 'XX')) if (sem is not None): res = res.filter((Subject.Semester == sem)) subcodes = [sub.Code for sub in res] return subcodes
Obtains a List of Subjects According to Optional Params Args: db (Session): SQLAlchemy Session. batch (int, optional): Batch that Attended That Subject. Defaults to None. dept (str, optional): Department of the Subject(Includes "XX" By default). Defaults to None. sem (int, optional): Semester Of the Subject. Defaults to None. Raises: NoResultFound Returns: List[str]: List of the Subject Codes Searched.
semesterstat/crud/subject.py
get_subjects
Rushyanth111/Semester-Stats
0
python
def get_subjects(db: Session, batch: int=None, dept: str=None, sem: int=None) -> List[str]: 'Obtains a List of Subjects According to Optional Params\n\n Args:\n db (Session): SQLAlchemy Session.\n batch (int, optional): Batch that Attended That Subject. Defaults to None.\n dept (str, optional): Department of the Subject(Includes "XX" By default).\n Defaults to None.\n sem (int, optional): Semester Of the Subject. Defaults to None.\n\n Raises:\n NoResultFound\n\n Returns:\n List[str]: List of the Subject Codes Searched.\n ' res = db.query(Subject) if (batch is not None): scheme = get_scheme(db, batch) if (scheme is None): return [] res = res.filter((Subject.Scheme == scheme)) if (dept is not None): if (dept != 'XX'): res = res.filter(or_((Subject.Department == dept), (Subject.Department == 'XX'))) else: res = res.filter((Subject.Department == 'XX')) if (sem is not None): res = res.filter((Subject.Semester == sem)) subcodes = [sub.Code for sub in res] return subcodes
def get_subjects(db: Session, batch: int=None, dept: str=None, sem: int=None) -> List[str]: 'Obtains a List of Subjects According to Optional Params\n\n Args:\n db (Session): SQLAlchemy Session.\n batch (int, optional): Batch that Attended That Subject. Defaults to None.\n dept (str, optional): Department of the Subject(Includes "XX" By default).\n Defaults to None.\n sem (int, optional): Semester Of the Subject. Defaults to None.\n\n Raises:\n NoResultFound\n\n Returns:\n List[str]: List of the Subject Codes Searched.\n ' res = db.query(Subject) if (batch is not None): scheme = get_scheme(db, batch) if (scheme is None): return [] res = res.filter((Subject.Scheme == scheme)) if (dept is not None): if (dept != 'XX'): res = res.filter(or_((Subject.Department == dept), (Subject.Department == 'XX'))) else: res = res.filter((Subject.Department == 'XX')) if (sem is not None): res = res.filter((Subject.Semester == sem)) subcodes = [sub.Code for sub in res] return subcodes<|docstring|>Obtains a List of Subjects According to Optional Params Args: db (Session): SQLAlchemy Session. batch (int, optional): Batch that Attended That Subject. Defaults to None. dept (str, optional): Department of the Subject(Includes "XX" By default). Defaults to None. sem (int, optional): Semester Of the Subject. Defaults to None. Raises: NoResultFound Returns: List[str]: List of the Subject Codes Searched.<|endoftext|>
060be6ba08659a4bbf08bd1c936a95439bb8e851431ca1817d69bf1b4bf8a266
def __init__(self, num_rollouts=1): '\n\n Args:\n num_rollouts: the number of rollouts we simulate\n ' self.num_rollouts = num_rollouts
Args: num_rollouts: the number of rollouts we simulate
connect_four/agents/flat_ucb.py
__init__
rpachauri/connect4
0
python
def __init__(self, num_rollouts=1): '\n\n Args:\n num_rollouts: the number of rollouts we simulate\n ' self.num_rollouts = num_rollouts
def __init__(self, num_rollouts=1): '\n\n Args:\n num_rollouts: the number of rollouts we simulate\n ' self.num_rollouts = num_rollouts<|docstring|>Args: num_rollouts: the number of rollouts we simulate<|endoftext|>
3fff461e04cd9337ed780e98e5bd01e11e7c50ee4475ced472da14480e4a3be4
def action(self, env, last_action=None): 'Returns an action.\n\n Args:\n env: a plannable gym.Env\n last_action: the last_action we took. None by default.\n Requires:\n - env must implement env_variables, which returns a variable that can\n be passed to env.reset() to restore a state (this supports planning agents)\n - env is a deterministic environment.\n - action space of env is finite.\n Returns:\n the best action after performing num_rollouts simulations\n ' action_total_values = np.zeros(env.action_space) action_visits = np.zeros(env.action_space) env_variables = env.env_variables for _ in range(self.num_rollouts): action = self._select_action_for_rollout(action_total_values, action_visits) value = self.rollout(env, action) action_total_values[action] += value action_visits[action] += 1 env.reset(env_variables) print('action_visits =', action_visits, '=>', np.sum(action_visits)) best_action = np.argmax(action_visits) return best_action
Returns an action. Args: env: a plannable gym.Env last_action: the last_action we took. None by default. Requires: - env must implement env_variables, which returns a variable that can be passed to env.reset() to restore a state (this supports planning agents) - env is a deterministic environment. - action space of env is finite. Returns: the best action after performing num_rollouts simulations
connect_four/agents/flat_ucb.py
action
rpachauri/connect4
0
python
def action(self, env, last_action=None): 'Returns an action.\n\n Args:\n env: a plannable gym.Env\n last_action: the last_action we took. None by default.\n Requires:\n - env must implement env_variables, which returns a variable that can\n be passed to env.reset() to restore a state (this supports planning agents)\n - env is a deterministic environment.\n - action space of env is finite.\n Returns:\n the best action after performing num_rollouts simulations\n ' action_total_values = np.zeros(env.action_space) action_visits = np.zeros(env.action_space) env_variables = env.env_variables for _ in range(self.num_rollouts): action = self._select_action_for_rollout(action_total_values, action_visits) value = self.rollout(env, action) action_total_values[action] += value action_visits[action] += 1 env.reset(env_variables) print('action_visits =', action_visits, '=>', np.sum(action_visits)) best_action = np.argmax(action_visits) return best_action
def action(self, env, last_action=None): 'Returns an action.\n\n Args:\n env: a plannable gym.Env\n last_action: the last_action we took. None by default.\n Requires:\n - env must implement env_variables, which returns a variable that can\n be passed to env.reset() to restore a state (this supports planning agents)\n - env is a deterministic environment.\n - action space of env is finite.\n Returns:\n the best action after performing num_rollouts simulations\n ' action_total_values = np.zeros(env.action_space) action_visits = np.zeros(env.action_space) env_variables = env.env_variables for _ in range(self.num_rollouts): action = self._select_action_for_rollout(action_total_values, action_visits) value = self.rollout(env, action) action_total_values[action] += value action_visits[action] += 1 env.reset(env_variables) print('action_visits =', action_visits, '=>', np.sum(action_visits)) best_action = np.argmax(action_visits) return best_action<|docstring|>Returns an action. Args: env: a plannable gym.Env last_action: the last_action we took. None by default. Requires: - env must implement env_variables, which returns a variable that can be passed to env.reset() to restore a state (this supports planning agents) - env is a deterministic environment. - action space of env is finite. Returns: the best action after performing num_rollouts simulations<|endoftext|>
ba65a04ee73019c8235d4ed80a88344d1c5c01f3b0f7e5481b230507f008fc28
@staticmethod def rollout(env, action) -> float: "Obtains a sample estimate of the action-value for the current\n environment's player.\n\n Args:\n env (gym.Env): a gym.Env object. Note that this function modifies env\n and env will reach a terminal state. Assumes a terminal state\n is reachable through uniform random move selection.\n action (int): The action to obtain a sample estimate of the action-value for.\n\n Returns:\n value (float): the total return after performing rollout from the state env is in\n " (_, r, done, _) = env.step(action) value = r while (not done): all_actions = np.arange(env.action_space) action = np.random.choice(all_actions) (_, r, done, _) = env.step(action) value += r value *= (- 1) return value
Obtains a sample estimate of the action-value for the current environment's player. Args: env (gym.Env): a gym.Env object. Note that this function modifies env and env will reach a terminal state. Assumes a terminal state is reachable through uniform random move selection. action (int): The action to obtain a sample estimate of the action-value for. Returns: value (float): the total return after performing rollout from the state env is in
connect_four/agents/flat_ucb.py
rollout
rpachauri/connect4
0
python
@staticmethod def rollout(env, action) -> float: "Obtains a sample estimate of the action-value for the current\n environment's player.\n\n Args:\n env (gym.Env): a gym.Env object. Note that this function modifies env\n and env will reach a terminal state. Assumes a terminal state\n is reachable through uniform random move selection.\n action (int): The action to obtain a sample estimate of the action-value for.\n\n Returns:\n value (float): the total return after performing rollout from the state env is in\n " (_, r, done, _) = env.step(action) value = r while (not done): all_actions = np.arange(env.action_space) action = np.random.choice(all_actions) (_, r, done, _) = env.step(action) value += r value *= (- 1) return value
@staticmethod def rollout(env, action) -> float: "Obtains a sample estimate of the action-value for the current\n environment's player.\n\n Args:\n env (gym.Env): a gym.Env object. Note that this function modifies env\n and env will reach a terminal state. Assumes a terminal state\n is reachable through uniform random move selection.\n action (int): The action to obtain a sample estimate of the action-value for.\n\n Returns:\n value (float): the total return after performing rollout from the state env is in\n " (_, r, done, _) = env.step(action) value = r while (not done): all_actions = np.arange(env.action_space) action = np.random.choice(all_actions) (_, r, done, _) = env.step(action) value += r value *= (- 1) return value<|docstring|>Obtains a sample estimate of the action-value for the current environment's player. Args: env (gym.Env): a gym.Env object. Note that this function modifies env and env will reach a terminal state. Assumes a terminal state is reachable through uniform random move selection. action (int): The action to obtain a sample estimate of the action-value for. Returns: value (float): the total return after performing rollout from the state env is in<|endoftext|>
25c16a7931595ed6302d146ec01618dab4c2d570d635b78d806a15795a71ac73
def __init__(self, grid_size=(16, 16), random_spawn=False, seed=None): " Game ends if the snake's head touches its body or goes out of\n bounds. Eat apples to get a reward and grow the snakes body by one\n segment. Agents should call `actions()` and `feature_space()` to get\n valid actions and boundaries, and then `step()` with an `action` to\n advance one frame in the game.\n\n Args:\n - grid_size: (tuple) play area dimensions x, y\n - random_spawn: (bool) if False, player will begin centered\n - seed: if not None, randomly generated numbers will be repeatable\n " (self.width, self.height) = grid_size self.random_spawn = random_spawn self.seed = seed self.reset()
Game ends if the snake's head touches its body or goes out of bounds. Eat apples to get a reward and grow the snakes body by one segment. Agents should call `actions()` and `feature_space()` to get valid actions and boundaries, and then `step()` with an `action` to advance one frame in the game. Args: - grid_size: (tuple) play area dimensions x, y - random_spawn: (bool) if False, player will begin centered - seed: if not None, randomly generated numbers will be repeatable
snake.py
__init__
tyoungNIO/snake-python
0
python
def __init__(self, grid_size=(16, 16), random_spawn=False, seed=None): " Game ends if the snake's head touches its body or goes out of\n bounds. Eat apples to get a reward and grow the snakes body by one\n segment. Agents should call `actions()` and `feature_space()` to get\n valid actions and boundaries, and then `step()` with an `action` to\n advance one frame in the game.\n\n Args:\n - grid_size: (tuple) play area dimensions x, y\n - random_spawn: (bool) if False, player will begin centered\n - seed: if not None, randomly generated numbers will be repeatable\n " (self.width, self.height) = grid_size self.random_spawn = random_spawn self.seed = seed self.reset()
def __init__(self, grid_size=(16, 16), random_spawn=False, seed=None): " Game ends if the snake's head touches its body or goes out of\n bounds. Eat apples to get a reward and grow the snakes body by one\n segment. Agents should call `actions()` and `feature_space()` to get\n valid actions and boundaries, and then `step()` with an `action` to\n advance one frame in the game.\n\n Args:\n - grid_size: (tuple) play area dimensions x, y\n - random_spawn: (bool) if False, player will begin centered\n - seed: if not None, randomly generated numbers will be repeatable\n " (self.width, self.height) = grid_size self.random_spawn = random_spawn self.seed = seed self.reset()<|docstring|>Game ends if the snake's head touches its body or goes out of bounds. Eat apples to get a reward and grow the snakes body by one segment. Agents should call `actions()` and `feature_space()` to get valid actions and boundaries, and then `step()` with an `action` to advance one frame in the game. Args: - grid_size: (tuple) play area dimensions x, y - random_spawn: (bool) if False, player will begin centered - seed: if not None, randomly generated numbers will be repeatable<|endoftext|>
d8ec4486917a448b1b5d92189bf3414a0fc42d2bf823066d8a71619934769758
def actions(self): ' Returns a map of valid actions as `{key: action}` pairs.' return {'LEFT': ((- 1), 0), 'RIGHT': (1, 0), 'UP': (0, (- 1)), 'DOWN': (0, 1)}
Returns a map of valid actions as `{key: action}` pairs.
snake.py
actions
tyoungNIO/snake-python
0
python
def actions(self): ' ' return {'LEFT': ((- 1), 0), 'RIGHT': (1, 0), 'UP': (0, (- 1)), 'DOWN': (0, 1)}
def actions(self): ' ' return {'LEFT': ((- 1), 0), 'RIGHT': (1, 0), 'UP': (0, (- 1)), 'DOWN': (0, 1)}<|docstring|>Returns a map of valid actions as `{key: action}` pairs.<|endoftext|>
e25718fb34cb508397954c2fd73eaeaab53cd34828af8208d7ede466cdbd05e7
def feature_space(self): ' Returns the play area dimensions.' return (self.width, self.height)
Returns the play area dimensions.
snake.py
feature_space
tyoungNIO/snake-python
0
python
def feature_space(self): ' ' return (self.width, self.height)
def feature_space(self): ' ' return (self.width, self.height)<|docstring|>Returns the play area dimensions.<|endoftext|>
5ef1c4df82f1520ba430d5c202b3103f9d38d4e5669c5f0de0b9bbcef1e8c9ac
def game_state(self): ' Returns the game state.' return (self.apple, self.snake, self.score)
Returns the game state.
snake.py
game_state
tyoungNIO/snake-python
0
python
def game_state(self): ' ' return (self.apple, self.snake, self.score)
def game_state(self): ' ' return (self.apple, self.snake, self.score)<|docstring|>Returns the game state.<|endoftext|>
693b998739d6972cc6b1c27c8356cb4f72afa7e91715bc3fb7b7f84c899c9d50
def reset(self): ' Call to reset the game. If a random seed has been set random\n numbers, such as the sequence of apples, will be repeated exactly.\n ' if (self.seed != None): random.seed(self.seed) if self.random_spawn: self.snake = [self._random_coords()] else: center = ((self.width // 2), (self.height // 2)) self.snake = [center] self.apple = self._random_coords(self.snake) self.game_over = False self.score = 0
Call to reset the game. If a random seed has been set random numbers, such as the sequence of apples, will be repeated exactly.
snake.py
reset
tyoungNIO/snake-python
0
python
def reset(self): ' Call to reset the game. If a random seed has been set random\n numbers, such as the sequence of apples, will be repeated exactly.\n ' if (self.seed != None): random.seed(self.seed) if self.random_spawn: self.snake = [self._random_coords()] else: center = ((self.width // 2), (self.height // 2)) self.snake = [center] self.apple = self._random_coords(self.snake) self.game_over = False self.score = 0
def reset(self): ' Call to reset the game. If a random seed has been set random\n numbers, such as the sequence of apples, will be repeated exactly.\n ' if (self.seed != None): random.seed(self.seed) if self.random_spawn: self.snake = [self._random_coords()] else: center = ((self.width // 2), (self.height // 2)) self.snake = [center] self.apple = self._random_coords(self.snake) self.game_over = False self.score = 0<|docstring|>Call to reset the game. If a random seed has been set random numbers, such as the sequence of apples, will be repeated exactly.<|endoftext|>
b994183357ceefd09c8cd0e9ce2d2ce260aab1d34eec8cdab1b2d57988d54033
def step(self, action): " Advance one frame in the game.\n\n Args:\n - action: (tuple) direction to move, must be a value from\n `actions()` otherwise an `ValueError` is raised\n Returns:\n - apple: (tuple) coordinates of the apple\n - snake: (list) tuples of coordinate pairs of each segment of the\n snake's body, ordered from head to tail\n - reward: (int) 1 if an apple is consumed, -1 if the player dies,\n otherwise 0\n - game_over: (bool) if True further calls to this method will raise\n an `Exception` until `reset()` has been called\n " if self.game_over: raise Exception('Game Over'.format(self.score)) if (action not in self.actions().values()): raise ValueError('Invalid action "{}"'.format(action)) reward = 0 current_head = self.snake[0] new_head = ((current_head[0] + action[0]), (current_head[1] + action[1])) if (new_head == self.apple): self.score += 1 reward = 1 excluded = ([new_head] + self.snake[:self.score]) self.apple = self._random_coords(excluded) self.snake = ([new_head] + self.snake[:self.score]) if ((new_head in self.snake[1:]) or (new_head[0] not in range(self.width)) or (new_head[1] not in range(self.height))): self.game_over = True reward = (- 1) return (reward, self.game_over)
Advance one frame in the game. Args: - action: (tuple) direction to move, must be a value from `actions()` otherwise an `ValueError` is raised Returns: - apple: (tuple) coordinates of the apple - snake: (list) tuples of coordinate pairs of each segment of the snake's body, ordered from head to tail - reward: (int) 1 if an apple is consumed, -1 if the player dies, otherwise 0 - game_over: (bool) if True further calls to this method will raise an `Exception` until `reset()` has been called
snake.py
step
tyoungNIO/snake-python
0
python
def step(self, action): " Advance one frame in the game.\n\n Args:\n - action: (tuple) direction to move, must be a value from\n `actions()` otherwise an `ValueError` is raised\n Returns:\n - apple: (tuple) coordinates of the apple\n - snake: (list) tuples of coordinate pairs of each segment of the\n snake's body, ordered from head to tail\n - reward: (int) 1 if an apple is consumed, -1 if the player dies,\n otherwise 0\n - game_over: (bool) if True further calls to this method will raise\n an `Exception` until `reset()` has been called\n " if self.game_over: raise Exception('Game Over'.format(self.score)) if (action not in self.actions().values()): raise ValueError('Invalid action "{}"'.format(action)) reward = 0 current_head = self.snake[0] new_head = ((current_head[0] + action[0]), (current_head[1] + action[1])) if (new_head == self.apple): self.score += 1 reward = 1 excluded = ([new_head] + self.snake[:self.score]) self.apple = self._random_coords(excluded) self.snake = ([new_head] + self.snake[:self.score]) if ((new_head in self.snake[1:]) or (new_head[0] not in range(self.width)) or (new_head[1] not in range(self.height))): self.game_over = True reward = (- 1) return (reward, self.game_over)
def step(self, action): " Advance one frame in the game.\n\n Args:\n - action: (tuple) direction to move, must be a value from\n `actions()` otherwise an `ValueError` is raised\n Returns:\n - apple: (tuple) coordinates of the apple\n - snake: (list) tuples of coordinate pairs of each segment of the\n snake's body, ordered from head to tail\n - reward: (int) 1 if an apple is consumed, -1 if the player dies,\n otherwise 0\n - game_over: (bool) if True further calls to this method will raise\n an `Exception` until `reset()` has been called\n " if self.game_over: raise Exception('Game Over'.format(self.score)) if (action not in self.actions().values()): raise ValueError('Invalid action "{}"'.format(action)) reward = 0 current_head = self.snake[0] new_head = ((current_head[0] + action[0]), (current_head[1] + action[1])) if (new_head == self.apple): self.score += 1 reward = 1 excluded = ([new_head] + self.snake[:self.score]) self.apple = self._random_coords(excluded) self.snake = ([new_head] + self.snake[:self.score]) if ((new_head in self.snake[1:]) or (new_head[0] not in range(self.width)) or (new_head[1] not in range(self.height))): self.game_over = True reward = (- 1) return (reward, self.game_over)<|docstring|>Advance one frame in the game. Args: - action: (tuple) direction to move, must be a value from `actions()` otherwise an `ValueError` is raised Returns: - apple: (tuple) coordinates of the apple - snake: (list) tuples of coordinate pairs of each segment of the snake's body, ordered from head to tail - reward: (int) 1 if an apple is consumed, -1 if the player dies, otherwise 0 - game_over: (bool) if True further calls to this method will raise an `Exception` until `reset()` has been called<|endoftext|>
61d263ea948cbc84634c4b1a01c2d8afdfcd1ad075de340a4ac3a5efa5a5e362
def _random_coords(self, excluded=[]): ' Create a random coordinate pair. Does not return until a random\n coordinate is found that is not in `excluded`, potentially forever if\n a valid value cannot be found.\n\n Args:\n - excluded: a list of coordinate tuples that will not be returned\n Returns:\n - coords: (tuple) x, y integers\n ' def new_coords(): return (random.randint(0, (self.width - 1)), random.randint(0, (self.height - 1))) coords = new_coords() while (coords in excluded): coords = new_coords() return coords
Create a random coordinate pair. Does not return until a random coordinate is found that is not in `excluded`, potentially forever if a valid value cannot be found. Args: - excluded: a list of coordinate tuples that will not be returned Returns: - coords: (tuple) x, y integers
snake.py
_random_coords
tyoungNIO/snake-python
0
python
def _random_coords(self, excluded=[]): ' Create a random coordinate pair. Does not return until a random\n coordinate is found that is not in `excluded`, potentially forever if\n a valid value cannot be found.\n\n Args:\n - excluded: a list of coordinate tuples that will not be returned\n Returns:\n - coords: (tuple) x, y integers\n ' def new_coords(): return (random.randint(0, (self.width - 1)), random.randint(0, (self.height - 1))) coords = new_coords() while (coords in excluded): coords = new_coords() return coords
def _random_coords(self, excluded=[]): ' Create a random coordinate pair. Does not return until a random\n coordinate is found that is not in `excluded`, potentially forever if\n a valid value cannot be found.\n\n Args:\n - excluded: a list of coordinate tuples that will not be returned\n Returns:\n - coords: (tuple) x, y integers\n ' def new_coords(): return (random.randint(0, (self.width - 1)), random.randint(0, (self.height - 1))) coords = new_coords() while (coords in excluded): coords = new_coords() return coords<|docstring|>Create a random coordinate pair. Does not return until a random coordinate is found that is not in `excluded`, potentially forever if a valid value cannot be found. Args: - excluded: a list of coordinate tuples that will not be returned Returns: - coords: (tuple) x, y integers<|endoftext|>
5ac6f7358f6fb5ce6d39a5a20d75dc94bc3123fd8bc5f590af1d3f6df8185b54
def __init__(self, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n Initialization of the parent class. All sub-classes must call this at the end of their __init__,\n as it takes care of initializing the correct attributes to self for the other methods to work.\n\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set \n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n \n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. \n \n Parameters\n ----------\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics: abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' self.degree = degree self.cross = cross self.previous_statistics = previous_statistics if (reference_simulations is not None): training_statistics = self.statistics([reference_simulations[i] for i in range(reference_simulations.shape[0])]) self.std_statistics = np.std(training_statistics, axis=0)
Initialization of the parent class. All sub-classes must call this at the end of their __init__, as it takes care of initializing the correct attributes to self for the other methods to work. `degree` and `cross` specify the polynomial expansion you want to apply to the statistics. If `reference_simulations` are provided, the standard deviation of the different statistics on the set of reference simulations is computed and stored; these will then be used to rescale the statistics for each new simulation or observation. If no set of reference simulations are provided, then this is not done. `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. Parameters ---------- degree: integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross: boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics: abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations.
abcpy/statistics.py
__init__
LoryPack/abcpy
89
python
def __init__(self, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n Initialization of the parent class. All sub-classes must call this at the end of their __init__,\n as it takes care of initializing the correct attributes to self for the other methods to work.\n\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set \n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n \n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. \n \n Parameters\n ----------\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics: abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' self.degree = degree self.cross = cross self.previous_statistics = previous_statistics if (reference_simulations is not None): training_statistics = self.statistics([reference_simulations[i] for i in range(reference_simulations.shape[0])]) self.std_statistics = np.std(training_statistics, axis=0)
def __init__(self, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n Initialization of the parent class. All sub-classes must call this at the end of their __init__,\n as it takes care of initializing the correct attributes to self for the other methods to work.\n\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set \n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n \n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. \n \n Parameters\n ----------\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics: abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' self.degree = degree self.cross = cross self.previous_statistics = previous_statistics if (reference_simulations is not None): training_statistics = self.statistics([reference_simulations[i] for i in range(reference_simulations.shape[0])]) self.std_statistics = np.std(training_statistics, axis=0)<|docstring|>Initialization of the parent class. All sub-classes must call this at the end of their __init__, as it takes care of initializing the correct attributes to self for the other methods to work. `degree` and `cross` specify the polynomial expansion you want to apply to the statistics. If `reference_simulations` are provided, the standard deviation of the different statistics on the set of reference simulations is computed and stored; these will then be used to rescale the statistics for each new simulation or observation. If no set of reference simulations are provided, then this is not done. `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. Parameters ---------- degree: integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross: boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics: abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations.<|endoftext|>
a50843d66d08469acb56d9ba9462e2dd074c95615d995028eef6015c0e1c8493
@abstractmethod def statistics(self, data: object) -> object: 'To be overwritten by any sub-class: should extract statistics from the\n data set data. It is assumed that data is a list of n same type\n elements(eg., The data can be a list containing n timeseries, n graphs or n np.ndarray).\n\n All statistics implementation should follow this structure:\n\n >>> # need to call this first which takes care of calling the\n >>> # previous statistics if that is defined and of properly\n >>> # formatting data\n >>> data = self._preprocess(data)\n >>>\n >>> # !!! here do all the processing on the statistics (data) !!!\n >>>\n >>> # Expand the data with polynomial expansion\n >>> result = self._polynomial_expansion(data)\n >>>\n >>> # now call the _rescale function which automatically rescales\n >>> # the different statistics using the standard\n >>> # deviation of them on the training set provided at initialization.\n >>> result = self._rescale(result)\n\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nxp matrix where for each of the n data points p statistics are calculated.\n\n ' raise NotImplementedError
To be overwritten by any sub-class: should extract statistics from the data set data. It is assumed that data is a list of n same type elements(eg., The data can be a list containing n timeseries, n graphs or n np.ndarray). All statistics implementation should follow this structure: >>> # need to call this first which takes care of calling the >>> # previous statistics if that is defined and of properly >>> # formatting data >>> data = self._preprocess(data) >>> >>> # !!! here do all the processing on the statistics (data) !!! >>> >>> # Expand the data with polynomial expansion >>> result = self._polynomial_expansion(data) >>> >>> # now call the _rescale function which automatically rescales >>> # the different statistics using the standard >>> # deviation of them on the training set provided at initialization. >>> result = self._rescale(result) Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray nxp matrix where for each of the n data points p statistics are calculated.
abcpy/statistics.py
statistics
LoryPack/abcpy
89
python
@abstractmethod def statistics(self, data: object) -> object: 'To be overwritten by any sub-class: should extract statistics from the\n data set data. It is assumed that data is a list of n same type\n elements(eg., The data can be a list containing n timeseries, n graphs or n np.ndarray).\n\n All statistics implementation should follow this structure:\n\n >>> # need to call this first which takes care of calling the\n >>> # previous statistics if that is defined and of properly\n >>> # formatting data\n >>> data = self._preprocess(data)\n >>>\n >>> # !!! here do all the processing on the statistics (data) !!!\n >>>\n >>> # Expand the data with polynomial expansion\n >>> result = self._polynomial_expansion(data)\n >>>\n >>> # now call the _rescale function which automatically rescales\n >>> # the different statistics using the standard\n >>> # deviation of them on the training set provided at initialization.\n >>> result = self._rescale(result)\n\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nxp matrix where for each of the n data points p statistics are calculated.\n\n ' raise NotImplementedError
@abstractmethod def statistics(self, data: object) -> object: 'To be overwritten by any sub-class: should extract statistics from the\n data set data. It is assumed that data is a list of n same type\n elements(eg., The data can be a list containing n timeseries, n graphs or n np.ndarray).\n\n All statistics implementation should follow this structure:\n\n >>> # need to call this first which takes care of calling the\n >>> # previous statistics if that is defined and of properly\n >>> # formatting data\n >>> data = self._preprocess(data)\n >>>\n >>> # !!! here do all the processing on the statistics (data) !!!\n >>>\n >>> # Expand the data with polynomial expansion\n >>> result = self._polynomial_expansion(data)\n >>>\n >>> # now call the _rescale function which automatically rescales\n >>> # the different statistics using the standard\n >>> # deviation of them on the training set provided at initialization.\n >>> result = self._rescale(result)\n\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nxp matrix where for each of the n data points p statistics are calculated.\n\n ' raise NotImplementedError<|docstring|>To be overwritten by any sub-class: should extract statistics from the data set data. It is assumed that data is a list of n same type elements(eg., The data can be a list containing n timeseries, n graphs or n np.ndarray). All statistics implementation should follow this structure: >>> # need to call this first which takes care of calling the >>> # previous statistics if that is defined and of properly >>> # formatting data >>> data = self._preprocess(data) >>> >>> # !!! here do all the processing on the statistics (data) !!! >>> >>> # Expand the data with polynomial expansion >>> result = self._polynomial_expansion(data) >>> >>> # now call the _rescale function which automatically rescales >>> # the different statistics using the standard >>> # deviation of them on the training set provided at initialization. >>> result = self._rescale(result) Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray nxp matrix where for each of the n data points p statistics are calculated.<|endoftext|>
4845b389d7fc4ad0de59974790d02aa8e7c458815e539025a7fadc7cbf4ac928
def _polynomial_expansion(self, summary_statistics): 'Helper function that does the polynomial expansion and includes cross-product\n terms of summary_statistics, already calculated summary statistics. It is tipically called in the `statistics`\n method of a `Statistics` class, after the statistics have been computed from data but before the statistics\n are (optionally) rescaled.\n\n Parameters\n ----------\n summary_statistics: numpy.ndarray\n nxp matrix where n is number of data points in the datasets data set and p number os\n summary statistics calculated.\n Returns\n -------\n numpy.ndarray\n nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n points with\n p statistics, degree*p polynomial expansion term and cross*nchoosek(p,2) many\n cross-product terms are calculated.\n\n ' if (not isinstance(summary_statistics, np.ndarray)): raise TypeError('Summary statistics is not of allowed types') result = summary_statistics for ind in range(2, (self.degree + 1)): result = np.column_stack((result, np.power(summary_statistics, ind))) if (self.cross and (summary_statistics.shape[1] > 1)): for ind1 in range(0, summary_statistics.shape[1]): for ind2 in range((ind1 + 1), summary_statistics.shape[1]): result = np.column_stack((result, (summary_statistics[(:, ind1)] * summary_statistics[(:, ind2)]))) return result
Helper function that does the polynomial expansion and includes cross-product terms of summary_statistics, already calculated summary statistics. It is tipically called in the `statistics` method of a `Statistics` class, after the statistics have been computed from data but before the statistics are (optionally) rescaled. Parameters ---------- summary_statistics: numpy.ndarray nxp matrix where n is number of data points in the datasets data set and p number os summary statistics calculated. Returns ------- numpy.ndarray nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n points with p statistics, degree*p polynomial expansion term and cross*nchoosek(p,2) many cross-product terms are calculated.
abcpy/statistics.py
_polynomial_expansion
LoryPack/abcpy
89
python
def _polynomial_expansion(self, summary_statistics): 'Helper function that does the polynomial expansion and includes cross-product\n terms of summary_statistics, already calculated summary statistics. It is tipically called in the `statistics`\n method of a `Statistics` class, after the statistics have been computed from data but before the statistics\n are (optionally) rescaled.\n\n Parameters\n ----------\n summary_statistics: numpy.ndarray\n nxp matrix where n is number of data points in the datasets data set and p number os\n summary statistics calculated.\n Returns\n -------\n numpy.ndarray\n nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n points with\n p statistics, degree*p polynomial expansion term and cross*nchoosek(p,2) many\n cross-product terms are calculated.\n\n ' if (not isinstance(summary_statistics, np.ndarray)): raise TypeError('Summary statistics is not of allowed types') result = summary_statistics for ind in range(2, (self.degree + 1)): result = np.column_stack((result, np.power(summary_statistics, ind))) if (self.cross and (summary_statistics.shape[1] > 1)): for ind1 in range(0, summary_statistics.shape[1]): for ind2 in range((ind1 + 1), summary_statistics.shape[1]): result = np.column_stack((result, (summary_statistics[(:, ind1)] * summary_statistics[(:, ind2)]))) return result
def _polynomial_expansion(self, summary_statistics): 'Helper function that does the polynomial expansion and includes cross-product\n terms of summary_statistics, already calculated summary statistics. It is tipically called in the `statistics`\n method of a `Statistics` class, after the statistics have been computed from data but before the statistics\n are (optionally) rescaled.\n\n Parameters\n ----------\n summary_statistics: numpy.ndarray\n nxp matrix where n is number of data points in the datasets data set and p number os\n summary statistics calculated.\n Returns\n -------\n numpy.ndarray\n nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n points with\n p statistics, degree*p polynomial expansion term and cross*nchoosek(p,2) many\n cross-product terms are calculated.\n\n ' if (not isinstance(summary_statistics, np.ndarray)): raise TypeError('Summary statistics is not of allowed types') result = summary_statistics for ind in range(2, (self.degree + 1)): result = np.column_stack((result, np.power(summary_statistics, ind))) if (self.cross and (summary_statistics.shape[1] > 1)): for ind1 in range(0, summary_statistics.shape[1]): for ind2 in range((ind1 + 1), summary_statistics.shape[1]): result = np.column_stack((result, (summary_statistics[(:, ind1)] * summary_statistics[(:, ind2)]))) return result<|docstring|>Helper function that does the polynomial expansion and includes cross-product terms of summary_statistics, already calculated summary statistics. It is tipically called in the `statistics` method of a `Statistics` class, after the statistics have been computed from data but before the statistics are (optionally) rescaled. Parameters ---------- summary_statistics: numpy.ndarray nxp matrix where n is number of data points in the datasets data set and p number os summary statistics calculated. Returns ------- numpy.ndarray nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n points with p statistics, degree*p polynomial expansion term and cross*nchoosek(p,2) many cross-product terms are calculated.<|endoftext|>
b22d320460bd1f2f90c2405dba333efc94fe0f437b9597025a45792c03761a64
def _rescale(self, result): 'Rescales the final summary statistics using the standard deviations computed at initialization on the set of\n reference simulations. If that was not done, no rescaling is done.\n\n Parameters\n ----------\n result: numpy.ndarray\n Final summary statistics (after polynomial expansion)\n\n Returns\n -------\n numpy.ndarray\n Rescaled summary statistics, with the same shape as the input.\n ' if hasattr(self, 'std_statistics'): if (result.shape[(- 1)] != self.std_statistics.shape[(- 1)]): raise RuntimeError('The size of the statistics is not the same as the stored standard deviations for rescaling! Please check that you initialized the statistics with the correct set of reference samples.') result = (result / self.std_statistics) return result
Rescales the final summary statistics using the standard deviations computed at initialization on the set of reference simulations. If that was not done, no rescaling is done. Parameters ---------- result: numpy.ndarray Final summary statistics (after polynomial expansion) Returns ------- numpy.ndarray Rescaled summary statistics, with the same shape as the input.
abcpy/statistics.py
_rescale
LoryPack/abcpy
89
python
def _rescale(self, result): 'Rescales the final summary statistics using the standard deviations computed at initialization on the set of\n reference simulations. If that was not done, no rescaling is done.\n\n Parameters\n ----------\n result: numpy.ndarray\n Final summary statistics (after polynomial expansion)\n\n Returns\n -------\n numpy.ndarray\n Rescaled summary statistics, with the same shape as the input.\n ' if hasattr(self, 'std_statistics'): if (result.shape[(- 1)] != self.std_statistics.shape[(- 1)]): raise RuntimeError('The size of the statistics is not the same as the stored standard deviations for rescaling! Please check that you initialized the statistics with the correct set of reference samples.') result = (result / self.std_statistics) return result
def _rescale(self, result): 'Rescales the final summary statistics using the standard deviations computed at initialization on the set of\n reference simulations. If that was not done, no rescaling is done.\n\n Parameters\n ----------\n result: numpy.ndarray\n Final summary statistics (after polynomial expansion)\n\n Returns\n -------\n numpy.ndarray\n Rescaled summary statistics, with the same shape as the input.\n ' if hasattr(self, 'std_statistics'): if (result.shape[(- 1)] != self.std_statistics.shape[(- 1)]): raise RuntimeError('The size of the statistics is not the same as the stored standard deviations for rescaling! Please check that you initialized the statistics with the correct set of reference samples.') result = (result / self.std_statistics) return result<|docstring|>Rescales the final summary statistics using the standard deviations computed at initialization on the set of reference simulations. If that was not done, no rescaling is done. Parameters ---------- result: numpy.ndarray Final summary statistics (after polynomial expansion) Returns ------- numpy.ndarray Rescaled summary statistics, with the same shape as the input.<|endoftext|>
722be8cb5955fdad8eb9f1e8c8fe835a02ea81eaf712c3996f8fda692fb1741c
def _preprocess(self, data): 'Utility which needs to be called at the beginning of the `statistics` method for all `Statistics` classes.\n It takes care of calling the `previous_statistics` if that is available (pipelining)\n and of correctly formatting the data.\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n Formatted statistics after pipelining.\n ' if (self.previous_statistics is not None): data = self.previous_statistics.statistics(data) else: data = self._check_and_transform_input(data) return data
Utility which needs to be called at the beginning of the `statistics` method for all `Statistics` classes. It takes care of calling the `previous_statistics` if that is available (pipelining) and of correctly formatting the data. Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray Formatted statistics after pipelining.
abcpy/statistics.py
_preprocess
LoryPack/abcpy
89
python
def _preprocess(self, data): 'Utility which needs to be called at the beginning of the `statistics` method for all `Statistics` classes.\n It takes care of calling the `previous_statistics` if that is available (pipelining)\n and of correctly formatting the data.\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n Formatted statistics after pipelining.\n ' if (self.previous_statistics is not None): data = self.previous_statistics.statistics(data) else: data = self._check_and_transform_input(data) return data
def _preprocess(self, data): 'Utility which needs to be called at the beginning of the `statistics` method for all `Statistics` classes.\n It takes care of calling the `previous_statistics` if that is available (pipelining)\n and of correctly formatting the data.\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n Formatted statistics after pipelining.\n ' if (self.previous_statistics is not None): data = self.previous_statistics.statistics(data) else: data = self._check_and_transform_input(data) return data<|docstring|>Utility which needs to be called at the beginning of the `statistics` method for all `Statistics` classes. It takes care of calling the `previous_statistics` if that is available (pipelining) and of correctly formatting the data. Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray Formatted statistics after pipelining.<|endoftext|>
b53e397f0f4fe89ea6bf42f705fab91839ccda1f456a23f24114e71b9edd31d4
def _check_and_transform_input(self, data): ' Formats the input in the correct way for computing summary statistics; specifically takes as input a\n list and returns a numpy.ndarray.\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n Formatted statistics after pipelining.\n ' if isinstance(data, list): if (np.array(data).shape == (len(data),)): if (len(data) == 1): data = np.array(data).reshape(1, 1) data = np.array(data).reshape(len(data), 1) else: data = np.concatenate(data).reshape(len(data), (- 1)) else: raise TypeError('Input data should be of type list, but found type {}'.format(type(data))) return data
Formats the input in the correct way for computing summary statistics; specifically takes as input a list and returns a numpy.ndarray. Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray Formatted statistics after pipelining.
abcpy/statistics.py
_check_and_transform_input
LoryPack/abcpy
89
python
def _check_and_transform_input(self, data): ' Formats the input in the correct way for computing summary statistics; specifically takes as input a\n list and returns a numpy.ndarray.\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n Formatted statistics after pipelining.\n ' if isinstance(data, list): if (np.array(data).shape == (len(data),)): if (len(data) == 1): data = np.array(data).reshape(1, 1) data = np.array(data).reshape(len(data), 1) else: data = np.concatenate(data).reshape(len(data), (- 1)) else: raise TypeError('Input data should be of type list, but found type {}'.format(type(data))) return data
def _check_and_transform_input(self, data): ' Formats the input in the correct way for computing summary statistics; specifically takes as input a\n list and returns a numpy.ndarray.\n\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n Formatted statistics after pipelining.\n ' if isinstance(data, list): if (np.array(data).shape == (len(data),)): if (len(data) == 1): data = np.array(data).reshape(1, 1) data = np.array(data).reshape(len(data), 1) else: data = np.concatenate(data).reshape(len(data), (- 1)) else: raise TypeError('Input data should be of type list, but found type {}'.format(type(data))) return data<|docstring|>Formats the input in the correct way for computing summary statistics; specifically takes as input a list and returns a numpy.ndarray. Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray Formatted statistics after pipelining.<|endoftext|>
e82a23e90a6bcc84615f052435b52ddf34bbfbf9d2a27280afb1321af302dfaa
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n data points with length p,\n (p+degree*p+cross*nchoosek(p,2)) statistics are calculated.\n ' data = self._preprocess(data) result = self._polynomial_expansion(data) result = self._rescale(result) return result
Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n data points with length p, (p+degree*p+cross*nchoosek(p,2)) statistics are calculated.
abcpy/statistics.py
statistics
LoryPack/abcpy
89
python
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n data points with length p,\n (p+degree*p+cross*nchoosek(p,2)) statistics are calculated.\n ' data = self._preprocess(data) result = self._polynomial_expansion(data) result = self._rescale(result) return result
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n data points with length p,\n (p+degree*p+cross*nchoosek(p,2)) statistics are calculated.\n ' data = self._preprocess(data) result = self._polynomial_expansion(data) result = self._rescale(result) return result<|docstring|>Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n data points with length p, (p+degree*p+cross*nchoosek(p,2)) statistics are calculated.<|endoftext|>
0c0487d8d00aa8b76b618750cb78a6452a443583755b30a296daef842781da1a
def __init__(self, coefficients, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set \n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n\n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. \n\n Parameters\n ----------\n coefficients: coefficients is a matrix with size d x p, where d is the dimension of the summary statistic that\n is obtained after applying the linear transformation (i.e. before a possible polynomial expansion is\n applied), while d is the dimension of each data.\n degree : integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross : boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics : abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' self.coefficients = coefficients super(LinearTransformation, self).__init__(degree, cross, reference_simulations, previous_statistics)
`degree` and `cross` specify the polynomial expansion you want to apply to the statistics. If `reference_simulations` are provided, the standard deviation of the different statistics on the set of reference simulations is computed and stored; these will then be used to rescale the statistics for each new simulation or observation. If no set of reference simulations are provided, then this is not done. `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. Parameters ---------- coefficients: coefficients is a matrix with size d x p, where d is the dimension of the summary statistic that is obtained after applying the linear transformation (i.e. before a possible polynomial expansion is applied), while d is the dimension of each data. degree : integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross : boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics : abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations.
abcpy/statistics.py
__init__
LoryPack/abcpy
89
python
def __init__(self, coefficients, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set \n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n\n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. \n\n Parameters\n ----------\n coefficients: coefficients is a matrix with size d x p, where d is the dimension of the summary statistic that\n is obtained after applying the linear transformation (i.e. before a possible polynomial expansion is\n applied), while d is the dimension of each data.\n degree : integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross : boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics : abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' self.coefficients = coefficients super(LinearTransformation, self).__init__(degree, cross, reference_simulations, previous_statistics)
def __init__(self, coefficients, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set \n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n\n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. \n\n Parameters\n ----------\n coefficients: coefficients is a matrix with size d x p, where d is the dimension of the summary statistic that\n is obtained after applying the linear transformation (i.e. before a possible polynomial expansion is\n applied), while d is the dimension of each data.\n degree : integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross : boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics : abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' self.coefficients = coefficients super(LinearTransformation, self).__init__(degree, cross, reference_simulations, previous_statistics)<|docstring|>`degree` and `cross` specify the polynomial expansion you want to apply to the statistics. If `reference_simulations` are provided, the standard deviation of the different statistics on the set of reference simulations is computed and stored; these will then be used to rescale the statistics for each new simulation or observation. If no set of reference simulations are provided, then this is not done. `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. Parameters ---------- coefficients: coefficients is a matrix with size d x p, where d is the dimension of the summary statistic that is obtained after applying the linear transformation (i.e. before a possible polynomial expansion is applied), while d is the dimension of each data. degree : integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross : boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics : abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations.<|endoftext|>
c515c96f7baa14ee6d81e8d0930f4b7fd0716ec73802544a694c366079babf4a
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nx(d+degree*d+cross*nchoosek(d,2)) matrix where for each of the n data points with length p you apply the\n linear transformation to get to dimension d, from where (d+degree*d+cross*nchoosek(d,2)) statistics are\n calculated.\n ' data = self._preprocess(data) if (not (data.shape[1] == self.coefficients.shape[0])): raise ValueError('Mismatch in dimension of summary statistics and coefficients') data = np.dot(data, self.coefficients) result = self._polynomial_expansion(data) result = self._rescale(result) return result
Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray nx(d+degree*d+cross*nchoosek(d,2)) matrix where for each of the n data points with length p you apply the linear transformation to get to dimension d, from where (d+degree*d+cross*nchoosek(d,2)) statistics are calculated.
abcpy/statistics.py
statistics
LoryPack/abcpy
89
python
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nx(d+degree*d+cross*nchoosek(d,2)) matrix where for each of the n data points with length p you apply the\n linear transformation to get to dimension d, from where (d+degree*d+cross*nchoosek(d,2)) statistics are\n calculated.\n ' data = self._preprocess(data) if (not (data.shape[1] == self.coefficients.shape[0])): raise ValueError('Mismatch in dimension of summary statistics and coefficients') data = np.dot(data, self.coefficients) result = self._polynomial_expansion(data) result = self._rescale(result) return result
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n Returns\n -------\n numpy.ndarray\n nx(d+degree*d+cross*nchoosek(d,2)) matrix where for each of the n data points with length p you apply the\n linear transformation to get to dimension d, from where (d+degree*d+cross*nchoosek(d,2)) statistics are\n calculated.\n ' data = self._preprocess(data) if (not (data.shape[1] == self.coefficients.shape[0])): raise ValueError('Mismatch in dimension of summary statistics and coefficients') data = np.dot(data, self.coefficients) result = self._polynomial_expansion(data) result = self._rescale(result) return result<|docstring|>Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray nx(d+degree*d+cross*nchoosek(d,2)) matrix where for each of the n data points with length p you apply the linear transformation to get to dimension d, from where (d+degree*d+cross*nchoosek(d,2)) statistics are calculated.<|endoftext|>
6af95dde22170762c565c8b710e3b550116e52825433224860f8ecaac8649ba0
def __init__(self, net, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set\n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n\n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n\n Parameters\n ----------\n net : torch.nn object\n the embedding neural network. The input size of the neural network must coincide with the size of each of\n the datapoints.\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics: abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' if (not has_torch): raise ImportError('Pytorch is required to instantiate an element of the {} class, in order to handle neural networks. Please install it. '.format(self.__class__.__name__)) self.net = net super(NeuralEmbedding, self).__init__(degree, cross, reference_simulations, previous_statistics)
`degree` and `cross` specify the polynomial expansion you want to apply to the statistics. If `reference_simulations` are provided, the standard deviation of the different statistics on the set of reference simulations is computed and stored; these will then be used to rescale the statistics for each new simulation or observation. If no set of reference simulations are provided, then this is not done. `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. Parameters ---------- net : torch.nn object the embedding neural network. The input size of the neural network must coincide with the size of each of the datapoints. degree: integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross: boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics: abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations.
abcpy/statistics.py
__init__
LoryPack/abcpy
89
python
def __init__(self, net, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set\n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n\n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n\n Parameters\n ----------\n net : torch.nn object\n the embedding neural network. The input size of the neural network must coincide with the size of each of\n the datapoints.\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics: abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' if (not has_torch): raise ImportError('Pytorch is required to instantiate an element of the {} class, in order to handle neural networks. Please install it. '.format(self.__class__.__name__)) self.net = net super(NeuralEmbedding, self).__init__(degree, cross, reference_simulations, previous_statistics)
def __init__(self, net, degree=1, cross=False, reference_simulations=None, previous_statistics=None): '\n `degree` and `cross` specify the polynomial expansion you want to apply to the statistics.\n\n If `reference_simulations` are provided, the standard deviation of the different statistics on the set\n of reference simulations is computed and stored; these will then be used to rescale\n the statistics for each new simulation or observation. \n If no set of reference simulations are provided, then this is not done.\n\n `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final \n statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n\n Parameters\n ----------\n net : torch.nn object\n the embedding neural network. The input size of the neural network must coincide with the size of each of\n the datapoints.\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, \n statistics are computed at initialization for all reference simulations, and the standard deviation of the \n different statistics is extracted. The standard deviation is then used to standardize the summary \n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case \n standardization is not applied.\n previous_statistics: abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations.\n ' if (not has_torch): raise ImportError('Pytorch is required to instantiate an element of the {} class, in order to handle neural networks. Please install it. '.format(self.__class__.__name__)) self.net = net super(NeuralEmbedding, self).__init__(degree, cross, reference_simulations, previous_statistics)<|docstring|>`degree` and `cross` specify the polynomial expansion you want to apply to the statistics. If `reference_simulations` are provided, the standard deviation of the different statistics on the set of reference simulations is computed and stored; these will then be used to rescale the statistics for each new simulation or observation. If no set of reference simulations are provided, then this is not done. `previous_statistics` allows different Statistics object to be pipelined. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. Parameters ---------- net : torch.nn object the embedding neural network. The input size of the neural network must coincide with the size of each of the datapoints. degree: integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross: boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics: abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations.<|endoftext|>
b5ee3c0fb94431e4f956d95caff1e2ef10e759e8748c3f9914b41a293a5306b0
@classmethod def fromFile(cls, path_to_net_state_dict, network_class=None, path_to_scaler=None, input_size=None, output_size=None, hidden_sizes=None, degree=1, cross=False, reference_simulations=None, previous_statistics=None): 'If the neural network state_dict was saved to the disk, this method can be used to instantiate a\n NeuralEmbedding object with that neural network.\n\n In order for the state_dict to be read correctly, the network class is needed. Therefore, we provide 2 options:\n 1) the Pytorch neural network class can be passed (if the user defined it, for instance)\n 2) if the neural network was defined by using the DefaultNN class in abcpy.NN_utilities.networks, you can\n provide arguments `input_size`, `output_size` and `hidden_sizes` (the latter is optional) that define\n the sizes of a fully connected network; then a DefaultNN is instantiated with those sizes. This can be used\n if for instance the neural network was trained using the utilities in abcpy.statisticslearning and you did\n not provide explicitly the neural network class there, but defined it through the sizes of the different layers.\n\n In both cases, note that the input size of the neural network must coincide with the size of each of the\n datapoints generated from the model (unless some other statistics are computed beforehand).\n\n Note that if the neural network was of the class `ScalerAndNet`, ie a scaler was applied before the data is fed\n through it, you need to pass `path_to_scaler` as well. Then this method will instantiate the network in the\n correct way.\n\n Parameters\n ----------\n path_to_net_state_dict : basestring\n the path where the state-dict is saved\n network_class : torch.nn class, optional\n if the neural network class is known explicitly (for instance if the used defined it), then it has to be\n passed here. This must not be provided together with `input_size` or `output_size`.\n path_to_scaler: basestring, optional\n The path where the scaler which was applied before the neural network is saved. Note that if the neural\n network was trained on scaled data and now you do not pass the correct scaler, the behavior will not be\n correct, leading to wrong inference. Default to None.\n input_size : integer, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you should provide here the input size of the network. It has to be provided together with\n the corresponding output_size, and it must not be provided with `network_class`.\n output_size : integer, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you should provide here the output size of the network. It has to be provided together\n with the corresponding input_size, and it must not be provided with `network_class`.\n hidden_sizes : array-like, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you can provide here an array-like with the size of the hidden layers (for instance\n [5,7,5] denotes 3 hidden layers with correspondingly 5,7,5 neurons). In case this parameter is not provided,\n the hidden sizes are determined from the input and output sizes as determined in\n abcpy.NN_utilities.networks.DefaultNN. Note that this must not be provided together with `network_class`.\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided,\n statistics are computed at initialization for all reference simulations, and the standard deviation of the\n different statistics is extracted. The standard deviation is then used to standardize the summary\n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case\n standardization is not applied.\n previous_statistics : abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. In this case, this is the statistics that has to be computed before the neural network\n transformation is applied.\n Returns\n -------\n abcpy.statistics.NeuralEmbedding\n the `NeuralEmbedding` object with the neural network obtained from the specified file.\n ' if (not has_torch): raise ImportError('Pytorch is required to instantiate an element of the {} class, in order to handle neural networks. Please install it. '.format(cls.__name__)) if ((network_class is None) and ((input_size is None) or (output_size is None))): raise RuntimeError('You need to pass either network class or both input_size and output_size.') if ((network_class is not None) and ((input_size is not None) or (output_size is not None))): raise RuntimeError("You can't pass together network_class and one of input_size, output_size") if ((network_class is not None) and (hidden_sizes is not None)): raise RuntimeError('You passed hidden_sizes as an argument, but that may be passed only if you are passing input_size and input_size as well, and you are not passing network_class.') if (network_class is None): network_class = createDefaultNN(input_size=input_size, output_size=output_size, hidden_sizes=hidden_sizes) try: net = load_net(path_to_net_state_dict, network_class) except RuntimeError: net = load_net(path_to_net_state_dict, DiscardLastOutputNet, network_class()) if (path_to_scaler is not None): f = open(path_to_scaler, 'rb') scaler = cloudpickle.load(f) f.close() net = ScalerAndNet(net, scaler) statistic_object = cls(net, degree=degree, cross=cross, reference_simulations=reference_simulations, previous_statistics=previous_statistics) return statistic_object
If the neural network state_dict was saved to the disk, this method can be used to instantiate a NeuralEmbedding object with that neural network. In order for the state_dict to be read correctly, the network class is needed. Therefore, we provide 2 options: 1) the Pytorch neural network class can be passed (if the user defined it, for instance) 2) if the neural network was defined by using the DefaultNN class in abcpy.NN_utilities.networks, you can provide arguments `input_size`, `output_size` and `hidden_sizes` (the latter is optional) that define the sizes of a fully connected network; then a DefaultNN is instantiated with those sizes. This can be used if for instance the neural network was trained using the utilities in abcpy.statisticslearning and you did not provide explicitly the neural network class there, but defined it through the sizes of the different layers. In both cases, note that the input size of the neural network must coincide with the size of each of the datapoints generated from the model (unless some other statistics are computed beforehand). Note that if the neural network was of the class `ScalerAndNet`, ie a scaler was applied before the data is fed through it, you need to pass `path_to_scaler` as well. Then this method will instantiate the network in the correct way. Parameters ---------- path_to_net_state_dict : basestring the path where the state-dict is saved network_class : torch.nn class, optional if the neural network class is known explicitly (for instance if the used defined it), then it has to be passed here. This must not be provided together with `input_size` or `output_size`. path_to_scaler: basestring, optional The path where the scaler which was applied before the neural network is saved. Note that if the neural network was trained on scaled data and now you do not pass the correct scaler, the behavior will not be correct, leading to wrong inference. Default to None. input_size : integer, optional if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and output size, then you should provide here the input size of the network. It has to be provided together with the corresponding output_size, and it must not be provided with `network_class`. output_size : integer, optional if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and output size, then you should provide here the output size of the network. It has to be provided together with the corresponding input_size, and it must not be provided with `network_class`. hidden_sizes : array-like, optional if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and output size, then you can provide here an array-like with the size of the hidden layers (for instance [5,7,5] denotes 3 hidden layers with correspondingly 5,7,5 neurons). In case this parameter is not provided, the hidden sizes are determined from the input and output sizes as determined in abcpy.NN_utilities.networks.DefaultNN. Note that this must not be provided together with `network_class`. degree: integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross: boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics : abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. In this case, this is the statistics that has to be computed before the neural network transformation is applied. Returns ------- abcpy.statistics.NeuralEmbedding the `NeuralEmbedding` object with the neural network obtained from the specified file.
abcpy/statistics.py
fromFile
LoryPack/abcpy
89
python
@classmethod def fromFile(cls, path_to_net_state_dict, network_class=None, path_to_scaler=None, input_size=None, output_size=None, hidden_sizes=None, degree=1, cross=False, reference_simulations=None, previous_statistics=None): 'If the neural network state_dict was saved to the disk, this method can be used to instantiate a\n NeuralEmbedding object with that neural network.\n\n In order for the state_dict to be read correctly, the network class is needed. Therefore, we provide 2 options:\n 1) the Pytorch neural network class can be passed (if the user defined it, for instance)\n 2) if the neural network was defined by using the DefaultNN class in abcpy.NN_utilities.networks, you can\n provide arguments `input_size`, `output_size` and `hidden_sizes` (the latter is optional) that define\n the sizes of a fully connected network; then a DefaultNN is instantiated with those sizes. This can be used\n if for instance the neural network was trained using the utilities in abcpy.statisticslearning and you did\n not provide explicitly the neural network class there, but defined it through the sizes of the different layers.\n\n In both cases, note that the input size of the neural network must coincide with the size of each of the\n datapoints generated from the model (unless some other statistics are computed beforehand).\n\n Note that if the neural network was of the class `ScalerAndNet`, ie a scaler was applied before the data is fed\n through it, you need to pass `path_to_scaler` as well. Then this method will instantiate the network in the\n correct way.\n\n Parameters\n ----------\n path_to_net_state_dict : basestring\n the path where the state-dict is saved\n network_class : torch.nn class, optional\n if the neural network class is known explicitly (for instance if the used defined it), then it has to be\n passed here. This must not be provided together with `input_size` or `output_size`.\n path_to_scaler: basestring, optional\n The path where the scaler which was applied before the neural network is saved. Note that if the neural\n network was trained on scaled data and now you do not pass the correct scaler, the behavior will not be\n correct, leading to wrong inference. Default to None.\n input_size : integer, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you should provide here the input size of the network. It has to be provided together with\n the corresponding output_size, and it must not be provided with `network_class`.\n output_size : integer, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you should provide here the output size of the network. It has to be provided together\n with the corresponding input_size, and it must not be provided with `network_class`.\n hidden_sizes : array-like, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you can provide here an array-like with the size of the hidden layers (for instance\n [5,7,5] denotes 3 hidden layers with correspondingly 5,7,5 neurons). In case this parameter is not provided,\n the hidden sizes are determined from the input and output sizes as determined in\n abcpy.NN_utilities.networks.DefaultNN. Note that this must not be provided together with `network_class`.\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided,\n statistics are computed at initialization for all reference simulations, and the standard deviation of the\n different statistics is extracted. The standard deviation is then used to standardize the summary\n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case\n standardization is not applied.\n previous_statistics : abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. In this case, this is the statistics that has to be computed before the neural network\n transformation is applied.\n Returns\n -------\n abcpy.statistics.NeuralEmbedding\n the `NeuralEmbedding` object with the neural network obtained from the specified file.\n ' if (not has_torch): raise ImportError('Pytorch is required to instantiate an element of the {} class, in order to handle neural networks. Please install it. '.format(cls.__name__)) if ((network_class is None) and ((input_size is None) or (output_size is None))): raise RuntimeError('You need to pass either network class or both input_size and output_size.') if ((network_class is not None) and ((input_size is not None) or (output_size is not None))): raise RuntimeError("You can't pass together network_class and one of input_size, output_size") if ((network_class is not None) and (hidden_sizes is not None)): raise RuntimeError('You passed hidden_sizes as an argument, but that may be passed only if you are passing input_size and input_size as well, and you are not passing network_class.') if (network_class is None): network_class = createDefaultNN(input_size=input_size, output_size=output_size, hidden_sizes=hidden_sizes) try: net = load_net(path_to_net_state_dict, network_class) except RuntimeError: net = load_net(path_to_net_state_dict, DiscardLastOutputNet, network_class()) if (path_to_scaler is not None): f = open(path_to_scaler, 'rb') scaler = cloudpickle.load(f) f.close() net = ScalerAndNet(net, scaler) statistic_object = cls(net, degree=degree, cross=cross, reference_simulations=reference_simulations, previous_statistics=previous_statistics) return statistic_object
@classmethod def fromFile(cls, path_to_net_state_dict, network_class=None, path_to_scaler=None, input_size=None, output_size=None, hidden_sizes=None, degree=1, cross=False, reference_simulations=None, previous_statistics=None): 'If the neural network state_dict was saved to the disk, this method can be used to instantiate a\n NeuralEmbedding object with that neural network.\n\n In order for the state_dict to be read correctly, the network class is needed. Therefore, we provide 2 options:\n 1) the Pytorch neural network class can be passed (if the user defined it, for instance)\n 2) if the neural network was defined by using the DefaultNN class in abcpy.NN_utilities.networks, you can\n provide arguments `input_size`, `output_size` and `hidden_sizes` (the latter is optional) that define\n the sizes of a fully connected network; then a DefaultNN is instantiated with those sizes. This can be used\n if for instance the neural network was trained using the utilities in abcpy.statisticslearning and you did\n not provide explicitly the neural network class there, but defined it through the sizes of the different layers.\n\n In both cases, note that the input size of the neural network must coincide with the size of each of the\n datapoints generated from the model (unless some other statistics are computed beforehand).\n\n Note that if the neural network was of the class `ScalerAndNet`, ie a scaler was applied before the data is fed\n through it, you need to pass `path_to_scaler` as well. Then this method will instantiate the network in the\n correct way.\n\n Parameters\n ----------\n path_to_net_state_dict : basestring\n the path where the state-dict is saved\n network_class : torch.nn class, optional\n if the neural network class is known explicitly (for instance if the used defined it), then it has to be\n passed here. This must not be provided together with `input_size` or `output_size`.\n path_to_scaler: basestring, optional\n The path where the scaler which was applied before the neural network is saved. Note that if the neural\n network was trained on scaled data and now you do not pass the correct scaler, the behavior will not be\n correct, leading to wrong inference. Default to None.\n input_size : integer, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you should provide here the input size of the network. It has to be provided together with\n the corresponding output_size, and it must not be provided with `network_class`.\n output_size : integer, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you should provide here the output size of the network. It has to be provided together\n with the corresponding input_size, and it must not be provided with `network_class`.\n hidden_sizes : array-like, optional\n if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and\n output size, then you can provide here an array-like with the size of the hidden layers (for instance\n [5,7,5] denotes 3 hidden layers with correspondingly 5,7,5 neurons). In case this parameter is not provided,\n the hidden sizes are determined from the input and output sizes as determined in\n abcpy.NN_utilities.networks.DefaultNN. Note that this must not be provided together with `network_class`.\n degree: integer, optional\n Of polynomial expansion. The default value is 2 meaning second order polynomial expansion.\n cross: boolean, optional\n Defines whether to include the cross-product terms. The default value is True, meaning the cross product term\n is included.\n reference_simulations: array, optional\n A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided,\n statistics are computed at initialization for all reference simulations, and the standard deviation of the\n different statistics is extracted. The standard deviation is then used to standardize the summary\n statistics each time they are compute on a new observation or simulation. Defaults to None, in which case\n standardization is not applied.\n previous_statistics : abcpy.statistics.Statistics, optional\n It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the\n composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it\n is sufficient to call the `statistics` method of the second one, and that will automatically apply both\n transformations. In this case, this is the statistics that has to be computed before the neural network\n transformation is applied.\n Returns\n -------\n abcpy.statistics.NeuralEmbedding\n the `NeuralEmbedding` object with the neural network obtained from the specified file.\n ' if (not has_torch): raise ImportError('Pytorch is required to instantiate an element of the {} class, in order to handle neural networks. Please install it. '.format(cls.__name__)) if ((network_class is None) and ((input_size is None) or (output_size is None))): raise RuntimeError('You need to pass either network class or both input_size and output_size.') if ((network_class is not None) and ((input_size is not None) or (output_size is not None))): raise RuntimeError("You can't pass together network_class and one of input_size, output_size") if ((network_class is not None) and (hidden_sizes is not None)): raise RuntimeError('You passed hidden_sizes as an argument, but that may be passed only if you are passing input_size and input_size as well, and you are not passing network_class.') if (network_class is None): network_class = createDefaultNN(input_size=input_size, output_size=output_size, hidden_sizes=hidden_sizes) try: net = load_net(path_to_net_state_dict, network_class) except RuntimeError: net = load_net(path_to_net_state_dict, DiscardLastOutputNet, network_class()) if (path_to_scaler is not None): f = open(path_to_scaler, 'rb') scaler = cloudpickle.load(f) f.close() net = ScalerAndNet(net, scaler) statistic_object = cls(net, degree=degree, cross=cross, reference_simulations=reference_simulations, previous_statistics=previous_statistics) return statistic_object<|docstring|>If the neural network state_dict was saved to the disk, this method can be used to instantiate a NeuralEmbedding object with that neural network. In order for the state_dict to be read correctly, the network class is needed. Therefore, we provide 2 options: 1) the Pytorch neural network class can be passed (if the user defined it, for instance) 2) if the neural network was defined by using the DefaultNN class in abcpy.NN_utilities.networks, you can provide arguments `input_size`, `output_size` and `hidden_sizes` (the latter is optional) that define the sizes of a fully connected network; then a DefaultNN is instantiated with those sizes. This can be used if for instance the neural network was trained using the utilities in abcpy.statisticslearning and you did not provide explicitly the neural network class there, but defined it through the sizes of the different layers. In both cases, note that the input size of the neural network must coincide with the size of each of the datapoints generated from the model (unless some other statistics are computed beforehand). Note that if the neural network was of the class `ScalerAndNet`, ie a scaler was applied before the data is fed through it, you need to pass `path_to_scaler` as well. Then this method will instantiate the network in the correct way. Parameters ---------- path_to_net_state_dict : basestring the path where the state-dict is saved network_class : torch.nn class, optional if the neural network class is known explicitly (for instance if the used defined it), then it has to be passed here. This must not be provided together with `input_size` or `output_size`. path_to_scaler: basestring, optional The path where the scaler which was applied before the neural network is saved. Note that if the neural network was trained on scaled data and now you do not pass the correct scaler, the behavior will not be correct, leading to wrong inference. Default to None. input_size : integer, optional if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and output size, then you should provide here the input size of the network. It has to be provided together with the corresponding output_size, and it must not be provided with `network_class`. output_size : integer, optional if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and output size, then you should provide here the output size of the network. It has to be provided together with the corresponding input_size, and it must not be provided with `network_class`. hidden_sizes : array-like, optional if the neural network is an instance of abcpy.NN_utilities.networks.DefaultNN with some input and output size, then you can provide here an array-like with the size of the hidden layers (for instance [5,7,5] denotes 3 hidden layers with correspondingly 5,7,5 neurons). In case this parameter is not provided, the hidden sizes are determined from the input and output sizes as determined in abcpy.NN_utilities.networks.DefaultNN. Note that this must not be provided together with `network_class`. degree: integer, optional Of polynomial expansion. The default value is 2 meaning second order polynomial expansion. cross: boolean, optional Defines whether to include the cross-product terms. The default value is True, meaning the cross product term is included. reference_simulations: array, optional A numpy array with shape (n_samples, output_size) containing a set of reference simulations. If provided, statistics are computed at initialization for all reference simulations, and the standard deviation of the different statistics is extracted. The standard deviation is then used to standardize the summary statistics each time they are compute on a new observation or simulation. Defaults to None, in which case standardization is not applied. previous_statistics : abcpy.statistics.Statistics, optional It allows pipelining of Statistics. Specifically, if the final statistic to be used is determined by the composition of two Statistics, you can pass the first here; then, whenever the final statistic is needed, it is sufficient to call the `statistics` method of the second one, and that will automatically apply both transformations. In this case, this is the statistics that has to be computed before the neural network transformation is applied. Returns ------- abcpy.statistics.NeuralEmbedding the `NeuralEmbedding` object with the neural network obtained from the specified file.<|endoftext|>
c1d25646ea3f1cbaef9e442cb0e386b7db23bd8788e4320a355ecc57cc56906d
def save_net(self, path_to_net_state_dict, path_to_scaler=None): 'Method to save the neural network state dict to a file. If the network is of the class ScalerAndNet, ie a\n scaler is applied before the data is fed through the network, then you are required to pass the path where you\n want the scaler to be saved.\n\n Parameters\n ----------\n path_to_net_state_dict: basestring\n Path where the state dict of the neural network is saved.\n path_to_scaler: basestring\n Path where the scaler is saved (with pickle); this is required if the neural network is of the class\n ScalerAndNet, and is ignored otherwise.\n ' if (hasattr(self.net, 'scaler') and (path_to_scaler is None)): raise RuntimeError('You did not specify path_to_scaler, which is required as the neural network is an element of the class `ScalerAndNet`, ie a scaler is applied before the data is fed through the network') if hasattr(self.net, 'scaler'): save_net(path_to_net_state_dict, self.net.net) f = open(path_to_scaler, 'wb') cloudpickle.dump(self.net.scaler, f) f.close() else: save_net(path_to_net_state_dict, self.net)
Method to save the neural network state dict to a file. If the network is of the class ScalerAndNet, ie a scaler is applied before the data is fed through the network, then you are required to pass the path where you want the scaler to be saved. Parameters ---------- path_to_net_state_dict: basestring Path where the state dict of the neural network is saved. path_to_scaler: basestring Path where the scaler is saved (with pickle); this is required if the neural network is of the class ScalerAndNet, and is ignored otherwise.
abcpy/statistics.py
save_net
LoryPack/abcpy
89
python
def save_net(self, path_to_net_state_dict, path_to_scaler=None): 'Method to save the neural network state dict to a file. If the network is of the class ScalerAndNet, ie a\n scaler is applied before the data is fed through the network, then you are required to pass the path where you\n want the scaler to be saved.\n\n Parameters\n ----------\n path_to_net_state_dict: basestring\n Path where the state dict of the neural network is saved.\n path_to_scaler: basestring\n Path where the scaler is saved (with pickle); this is required if the neural network is of the class\n ScalerAndNet, and is ignored otherwise.\n ' if (hasattr(self.net, 'scaler') and (path_to_scaler is None)): raise RuntimeError('You did not specify path_to_scaler, which is required as the neural network is an element of the class `ScalerAndNet`, ie a scaler is applied before the data is fed through the network') if hasattr(self.net, 'scaler'): save_net(path_to_net_state_dict, self.net.net) f = open(path_to_scaler, 'wb') cloudpickle.dump(self.net.scaler, f) f.close() else: save_net(path_to_net_state_dict, self.net)
def save_net(self, path_to_net_state_dict, path_to_scaler=None): 'Method to save the neural network state dict to a file. If the network is of the class ScalerAndNet, ie a\n scaler is applied before the data is fed through the network, then you are required to pass the path where you\n want the scaler to be saved.\n\n Parameters\n ----------\n path_to_net_state_dict: basestring\n Path where the state dict of the neural network is saved.\n path_to_scaler: basestring\n Path where the scaler is saved (with pickle); this is required if the neural network is of the class\n ScalerAndNet, and is ignored otherwise.\n ' if (hasattr(self.net, 'scaler') and (path_to_scaler is None)): raise RuntimeError('You did not specify path_to_scaler, which is required as the neural network is an element of the class `ScalerAndNet`, ie a scaler is applied before the data is fed through the network') if hasattr(self.net, 'scaler'): save_net(path_to_net_state_dict, self.net.net) f = open(path_to_scaler, 'wb') cloudpickle.dump(self.net.scaler, f) f.close() else: save_net(path_to_net_state_dict, self.net)<|docstring|>Method to save the neural network state dict to a file. If the network is of the class ScalerAndNet, ie a scaler is applied before the data is fed through the network, then you are required to pass the path where you want the scaler to be saved. Parameters ---------- path_to_net_state_dict: basestring Path where the state dict of the neural network is saved. path_to_scaler: basestring Path where the scaler is saved (with pickle); this is required if the neural network is of the class ScalerAndNet, and is ignored otherwise.<|endoftext|>
a40c193648eb3126ad3c7fc09b7e6157175739eb564490e9f6deeae281f8196e
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n the statistics computed by applying the neural network.\n ' data = self._preprocess(data) data = torch.from_numpy(data.astype('float32')) if next(self.net.parameters()).is_cuda: data = data.cuda() try: data = self.net(data).cpu().detach().numpy() except (IndexError, RuntimeError, ValueError) as e: raise RuntimeError('There was an error in passing the data through the network, likely due to the data not being of the right size.') data = np.array(data) result = self._polynomial_expansion(data) result = self._rescale(result) return result
Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray the statistics computed by applying the neural network.
abcpy/statistics.py
statistics
LoryPack/abcpy
89
python
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n the statistics computed by applying the neural network.\n ' data = self._preprocess(data) data = torch.from_numpy(data.astype('float32')) if next(self.net.parameters()).is_cuda: data = data.cuda() try: data = self.net(data).cpu().detach().numpy() except (IndexError, RuntimeError, ValueError) as e: raise RuntimeError('There was an error in passing the data through the network, likely due to the data not being of the right size.') data = np.array(data) result = self._polynomial_expansion(data) result = self._rescale(result) return result
def statistics(self, data): '\n Parameters\n ----------\n data: python list\n Contains n data sets with length p.\n\n Returns\n -------\n numpy.ndarray\n the statistics computed by applying the neural network.\n ' data = self._preprocess(data) data = torch.from_numpy(data.astype('float32')) if next(self.net.parameters()).is_cuda: data = data.cuda() try: data = self.net(data).cpu().detach().numpy() except (IndexError, RuntimeError, ValueError) as e: raise RuntimeError('There was an error in passing the data through the network, likely due to the data not being of the right size.') data = np.array(data) result = self._polynomial_expansion(data) result = self._rescale(result) return result<|docstring|>Parameters ---------- data: python list Contains n data sets with length p. Returns ------- numpy.ndarray the statistics computed by applying the neural network.<|endoftext|>
832b8985af6bf113f14cd68b2851b09b2a19d0a69911598351e867c2e727fe1a
@abstractmethod def __call__(self, population, target_population_size): 'Performs selection on individuals.\n\n Parameters\n ----------\n population : list of chromosomes\n The population on which to perform selection\n target_population_size : int\n Target size of the population after selection\n\n Returns\n -------\n list of chromosomes :\n A subset of the input population\n ' raise NotImplementedError
Performs selection on individuals. Parameters ---------- population : list of chromosomes The population on which to perform selection target_population_size : int Target size of the population after selection Returns ------- list of chromosomes : A subset of the input population
bingo/selection/selection.py
__call__
nolanstr/bingo_nolan_fork
37
python
@abstractmethod def __call__(self, population, target_population_size): 'Performs selection on individuals.\n\n Parameters\n ----------\n population : list of chromosomes\n The population on which to perform selection\n target_population_size : int\n Target size of the population after selection\n\n Returns\n -------\n list of chromosomes :\n A subset of the input population\n ' raise NotImplementedError
@abstractmethod def __call__(self, population, target_population_size): 'Performs selection on individuals.\n\n Parameters\n ----------\n population : list of chromosomes\n The population on which to perform selection\n target_population_size : int\n Target size of the population after selection\n\n Returns\n -------\n list of chromosomes :\n A subset of the input population\n ' raise NotImplementedError<|docstring|>Performs selection on individuals. Parameters ---------- population : list of chromosomes The population on which to perform selection target_population_size : int Target size of the population after selection Returns ------- list of chromosomes : A subset of the input population<|endoftext|>
672b8a9f52efa179a75a27fbe695f8e20e256fbf34e5a740abb1e708aef601a7
def get_time_created(self, instance): 'get time the article was created and return in iso format' return instance.time_created.isoformat()
get time the article was created and return in iso format
authors/apps/articles/serializers.py
get_time_created
andela/ah-codeofduty
0
python
def get_time_created(self, instance): return instance.time_created.isoformat()
def get_time_created(self, instance): return instance.time_created.isoformat()<|docstring|>get time the article was created and return in iso format<|endoftext|>
58a3c900ffbeca028cb31bd5094c2a0c0bfab378b522aae25217c44b8a3427fb
def get_time_updated(self, instance): 'get time the article was updated and return in iso format' return instance.time_updated.isoformat()
get time the article was updated and return in iso format
authors/apps/articles/serializers.py
get_time_updated
andela/ah-codeofduty
0
python
def get_time_updated(self, instance): return instance.time_updated.isoformat()
def get_time_updated(self, instance): return instance.time_updated.isoformat()<|docstring|>get time the article was updated and return in iso format<|endoftext|>
5c492574cad3f3e60b7a62cbf511389691d30693bfa6c3bc9ed409bf627294be
def get_time_to_read(self, text, images): 'method calculating time it takes to read' average_image_view_time = 0 if images: average_image_view_time = (len(images) * 0.2) return math.ceil(((len(text.split()) / 200) + average_image_view_time))
method calculating time it takes to read
authors/apps/articles/serializers.py
get_time_to_read
andela/ah-codeofduty
0
python
def get_time_to_read(self, text, images): average_image_view_time = 0 if images: average_image_view_time = (len(images) * 0.2) return math.ceil(((len(text.split()) / 200) + average_image_view_time))
def get_time_to_read(self, text, images): average_image_view_time = 0 if images: average_image_view_time = (len(images) * 0.2) return math.ceil(((len(text.split()) / 200) + average_image_view_time))<|docstring|>method calculating time it takes to read<|endoftext|>
634c71c94ae623e15813dfa8fa1271bf594a4a742846cad8681721845e72ff04
def create(self, validated_data): 'method creating articles' email = self.context.get('email') user = User.objects.get(email=email) validated_data['author'] = user images = validated_data.get('images', None) tags = validated_data.pop('tags', []) slug = slugify(validated_data['title']) num = 1 while Article.objects.filter(slug=slug).exists(): slug = (slug + '{}'.format(num)) num += 1 validated_data['slug'] = slug validated_data['time_to_read'] = self.get_time_to_read(validated_data['body'], images) article = Article.objects.create(**validated_data) for tag in tags: article.tags.add(tag) return article
method creating articles
authors/apps/articles/serializers.py
create
andela/ah-codeofduty
0
python
def create(self, validated_data): email = self.context.get('email') user = User.objects.get(email=email) validated_data['author'] = user images = validated_data.get('images', None) tags = validated_data.pop('tags', []) slug = slugify(validated_data['title']) num = 1 while Article.objects.filter(slug=slug).exists(): slug = (slug + '{}'.format(num)) num += 1 validated_data['slug'] = slug validated_data['time_to_read'] = self.get_time_to_read(validated_data['body'], images) article = Article.objects.create(**validated_data) for tag in tags: article.tags.add(tag) return article
def create(self, validated_data): email = self.context.get('email') user = User.objects.get(email=email) validated_data['author'] = user images = validated_data.get('images', None) tags = validated_data.pop('tags', []) slug = slugify(validated_data['title']) num = 1 while Article.objects.filter(slug=slug).exists(): slug = (slug + '{}'.format(num)) num += 1 validated_data['slug'] = slug validated_data['time_to_read'] = self.get_time_to_read(validated_data['body'], images) article = Article.objects.create(**validated_data) for tag in tags: article.tags.add(tag) return article<|docstring|>method creating articles<|endoftext|>
0a9eccfb37123be9f8550d44bee44c6816ee93809693749de8a51caee4acbd0e
def update(self, instance, validated_data): 'method updating articles' email = self.context.get('email') tags = validated_data.get('tags', None) if (email != instance.author): raise PermissionDenied instance.title = validated_data.get('title', instance.title) instance.body = validated_data.get('body', instance.body) instance.description = validated_data.get('description', instance.description) if tags: instance.tags.set(tags) Tag.edit_tags() instance.images = validated_data.get('images', instance.images) instance.time_to_read = self.get_time_to_read(instance.body, instance.images) instance.save() return instance
method updating articles
authors/apps/articles/serializers.py
update
andela/ah-codeofduty
0
python
def update(self, instance, validated_data): email = self.context.get('email') tags = validated_data.get('tags', None) if (email != instance.author): raise PermissionDenied instance.title = validated_data.get('title', instance.title) instance.body = validated_data.get('body', instance.body) instance.description = validated_data.get('description', instance.description) if tags: instance.tags.set(tags) Tag.edit_tags() instance.images = validated_data.get('images', instance.images) instance.time_to_read = self.get_time_to_read(instance.body, instance.images) instance.save() return instance
def update(self, instance, validated_data): email = self.context.get('email') tags = validated_data.get('tags', None) if (email != instance.author): raise PermissionDenied instance.title = validated_data.get('title', instance.title) instance.body = validated_data.get('body', instance.body) instance.description = validated_data.get('description', instance.description) if tags: instance.tags.set(tags) Tag.edit_tags() instance.images = validated_data.get('images', instance.images) instance.time_to_read = self.get_time_to_read(instance.body, instance.images) instance.save() return instance<|docstring|>method updating articles<|endoftext|>
4e0d6e13440b86741854bdb9a1310ead4b3c88e120f1e5b0a7945ca8d655facf
def count_likes(self, instance): 'Returns the total likes of an article' request = self.context.get('request') liked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id liked_by_me = (instance.likes.all().filter(id=user_id).count() == 1) return {'count': instance.likes.count(), 'me': liked_by_me}
Returns the total likes of an article
authors/apps/articles/serializers.py
count_likes
andela/ah-codeofduty
0
python
def count_likes(self, instance): request = self.context.get('request') liked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id liked_by_me = (instance.likes.all().filter(id=user_id).count() == 1) return {'count': instance.likes.count(), 'me': liked_by_me}
def count_likes(self, instance): request = self.context.get('request') liked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id liked_by_me = (instance.likes.all().filter(id=user_id).count() == 1) return {'count': instance.likes.count(), 'me': liked_by_me}<|docstring|>Returns the total likes of an article<|endoftext|>
2e70e78483fc44276ea49d019761c83c67973536c3f5a18c839dc0b92a246875
def count_dislikes(self, instance): 'Returns the total dislikes of an article' request = self.context.get('request') disliked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id disliked_by_me = (instance.dislikes.all().filter(id=user_id).count() == 1) return {'count': instance.dislikes.count(), 'me': disliked_by_me}
Returns the total dislikes of an article
authors/apps/articles/serializers.py
count_dislikes
andela/ah-codeofduty
0
python
def count_dislikes(self, instance): request = self.context.get('request') disliked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id disliked_by_me = (instance.dislikes.all().filter(id=user_id).count() == 1) return {'count': instance.dislikes.count(), 'me': disliked_by_me}
def count_dislikes(self, instance): request = self.context.get('request') disliked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id disliked_by_me = (instance.dislikes.all().filter(id=user_id).count() == 1) return {'count': instance.dislikes.count(), 'me': disliked_by_me}<|docstring|>Returns the total dislikes of an article<|endoftext|>
337465f2a18d5b8631cd587e807466e5c844734912d376db61b2355dfb7c62ea
def update(self, instance, valid_input, **kwargs): '\n Update and return a comment instance, given valid_input\n ' instance.body = valid_input.get('body', instance.body) instance.save() return instance
Update and return a comment instance, given valid_input
authors/apps/articles/serializers.py
update
andela/ah-codeofduty
0
python
def update(self, instance, valid_input, **kwargs): '\n \n ' instance.body = valid_input.get('body', instance.body) instance.save() return instance
def update(self, instance, valid_input, **kwargs): '\n \n ' instance.body = valid_input.get('body', instance.body) instance.save() return instance<|docstring|>Update and return a comment instance, given valid_input<|endoftext|>
a7f38946c66b697dba0736ebd6b27b9f596eb9a85acd8feb133c4f598bc855fe
def create(self, valid_input): '\n Create and return a new comment instance, given a valid_input\n ' parent = self.context.get('parent', None) instance = Comment.objects.create(parent=parent, **valid_input) return instance
Create and return a new comment instance, given a valid_input
authors/apps/articles/serializers.py
create
andela/ah-codeofduty
0
python
def create(self, valid_input): '\n \n ' parent = self.context.get('parent', None) instance = Comment.objects.create(parent=parent, **valid_input) return instance
def create(self, valid_input): '\n \n ' parent = self.context.get('parent', None) instance = Comment.objects.create(parent=parent, **valid_input) return instance<|docstring|>Create and return a new comment instance, given a valid_input<|endoftext|>
64dabd31a72f85a95e202bb92b5e171ae0306ca7d0c8127e6b235badfb670cb5
def count_likes(self, instance): 'Returns the total likes of a comment' request = self.context.get('request') liked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id liked_by_me = (instance.likes.all().filter(id=user_id).count() == 1) return {'count': instance.likes.count(), 'me': liked_by_me}
Returns the total likes of a comment
authors/apps/articles/serializers.py
count_likes
andela/ah-codeofduty
0
python
def count_likes(self, instance): request = self.context.get('request') liked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id liked_by_me = (instance.likes.all().filter(id=user_id).count() == 1) return {'count': instance.likes.count(), 'me': liked_by_me}
def count_likes(self, instance): request = self.context.get('request') liked_by_me = False if ((request is not None) and request.user.is_authenticated): user_id = request.user.id liked_by_me = (instance.likes.all().filter(id=user_id).count() == 1) return {'count': instance.likes.count(), 'me': liked_by_me}<|docstring|>Returns the total likes of a comment<|endoftext|>
744e39b8e617ad3e363bb2975798093e1b1ac937af20c4e961e40ce4fd408ef1
def create(self, validated_data): 'method creating a new highlight' validated_data['highlighter'] = self.context.get('highlighter') validated_data['article'] = self.context.get('article') highlight_text = validated_data['article'].body[validated_data['index_start']:validated_data['index_stop']] if (not highlight_text): raise serializers.ValidationError("Text doesn't exist on this article") validated_data['highlighted_article_piece'] = highlight_text return Highlight.objects.create(**validated_data)
method creating a new highlight
authors/apps/articles/serializers.py
create
andela/ah-codeofduty
0
python
def create(self, validated_data): validated_data['highlighter'] = self.context.get('highlighter') validated_data['article'] = self.context.get('article') highlight_text = validated_data['article'].body[validated_data['index_start']:validated_data['index_stop']] if (not highlight_text): raise serializers.ValidationError("Text doesn't exist on this article") validated_data['highlighted_article_piece'] = highlight_text return Highlight.objects.create(**validated_data)
def create(self, validated_data): validated_data['highlighter'] = self.context.get('highlighter') validated_data['article'] = self.context.get('article') highlight_text = validated_data['article'].body[validated_data['index_start']:validated_data['index_stop']] if (not highlight_text): raise serializers.ValidationError("Text doesn't exist on this article") validated_data['highlighted_article_piece'] = highlight_text return Highlight.objects.create(**validated_data)<|docstring|>method creating a new highlight<|endoftext|>
c1a784110f18e495947876422d6f5b038c0d4fa405c0a1209476b452be10880e
def update(self, instance, validated_data): 'method updating highlights' user = self.context.get('user') if (user != instance.highlighter): raise PermissionDenied index_start = validated_data.get('index_start', instance.index_start) index_stop = validated_data.get('index_stop', instance.index_stop) highlight_text = instance.article.body[index_start:index_stop] if (not highlight_text): raise serializers.ValidationError("Text doesn't exist on this article") instance.comment = validated_data.get('comment', instance.comment) instance.index_start = index_start instance.index_stop = index_stop instance.highlighted_article_piece = highlight_text instance.save() return instance
method updating highlights
authors/apps/articles/serializers.py
update
andela/ah-codeofduty
0
python
def update(self, instance, validated_data): user = self.context.get('user') if (user != instance.highlighter): raise PermissionDenied index_start = validated_data.get('index_start', instance.index_start) index_stop = validated_data.get('index_stop', instance.index_stop) highlight_text = instance.article.body[index_start:index_stop] if (not highlight_text): raise serializers.ValidationError("Text doesn't exist on this article") instance.comment = validated_data.get('comment', instance.comment) instance.index_start = index_start instance.index_stop = index_stop instance.highlighted_article_piece = highlight_text instance.save() return instance
def update(self, instance, validated_data): user = self.context.get('user') if (user != instance.highlighter): raise PermissionDenied index_start = validated_data.get('index_start', instance.index_start) index_stop = validated_data.get('index_stop', instance.index_stop) highlight_text = instance.article.body[index_start:index_stop] if (not highlight_text): raise serializers.ValidationError("Text doesn't exist on this article") instance.comment = validated_data.get('comment', instance.comment) instance.index_start = index_start instance.index_stop = index_stop instance.highlighted_article_piece = highlight_text instance.save() return instance<|docstring|>method updating highlights<|endoftext|>
7102e9da0f8d192b3ad77eb0a8bf14e8efcbd6a8a6e6b7dff8f292f3844a8d31
def __init__(self, triad, uid, model, device, batch_size=32) -> None: '客户端调用fit进行训练\n\n Args:\n triad: 三元组\n batch_size : local 训练的bs, 默认10, -1表示\n ' super().__init__(device, model) self.triad = triad self.uid = uid self.loss_list = [] self.n_item = len(triad) self.batch_size = (batch_size if (batch_size != (- 1)) else self.n_item) self.data_loader = DataLoader(ToTorchDataset(self.triad), batch_size=self.batch_size)
客户端调用fit进行训练 Args: triad: 三元组 batch_size : local 训练的bs, 默认10, -1表示
models/FedNeuMF/client.py
__init__
TD21forever/QoS-Predcition-Algorithm-library
2
python
def __init__(self, triad, uid, model, device, batch_size=32) -> None: '客户端调用fit进行训练\n\n Args:\n triad: 三元组\n batch_size : local 训练的bs, 默认10, -1表示\n ' super().__init__(device, model) self.triad = triad self.uid = uid self.loss_list = [] self.n_item = len(triad) self.batch_size = (batch_size if (batch_size != (- 1)) else self.n_item) self.data_loader = DataLoader(ToTorchDataset(self.triad), batch_size=self.batch_size)
def __init__(self, triad, uid, model, device, batch_size=32) -> None: '客户端调用fit进行训练\n\n Args:\n triad: 三元组\n batch_size : local 训练的bs, 默认10, -1表示\n ' super().__init__(device, model) self.triad = triad self.uid = uid self.loss_list = [] self.n_item = len(triad) self.batch_size = (batch_size if (batch_size != (- 1)) else self.n_item) self.data_loader = DataLoader(ToTorchDataset(self.triad), batch_size=self.batch_size)<|docstring|>客户端调用fit进行训练 Args: triad: 三元组 batch_size : local 训练的bs, 默认10, -1表示<|endoftext|>
67fa8690549df7f13b3484529ef9cfd0a3258d517904dde2ffe1a3c2e21aca53
def test_subclass_of_Request(self): '\n Test that HEADREQUEST is a subclass of urllib2.Request.\n ' assert issubclass(util.HEADREQUEST, Request)
Test that HEADREQUEST is a subclass of urllib2.Request.
tests/util/test_requests.py
test_subclass_of_Request
unt-libraries/codalib
0
python
def test_subclass_of_Request(self): '\n \n ' assert issubclass(util.HEADREQUEST, Request)
def test_subclass_of_Request(self): '\n \n ' assert issubclass(util.HEADREQUEST, Request)<|docstring|>Test that HEADREQUEST is a subclass of urllib2.Request.<|endoftext|>
6024bb9644f0c58a51b9bf1e7b784acc62c0d61e0b67f08d12a91779b2727230
def test_get_method(self): '\n Verify the HTTP method is HEAD.\n ' request = util.HEADREQUEST('http://example.com') assert (request.get_method() == 'HEAD')
Verify the HTTP method is HEAD.
tests/util/test_requests.py
test_get_method
unt-libraries/codalib
0
python
def test_get_method(self): '\n \n ' request = util.HEADREQUEST('http://example.com') assert (request.get_method() == 'HEAD')
def test_get_method(self): '\n \n ' request = util.HEADREQUEST('http://example.com') assert (request.get_method() == 'HEAD')<|docstring|>Verify the HTTP method is HEAD.<|endoftext|>
a11f2e5b8192e19dbda4ef8d7bf5956e8f5f190169be05a6f20aaf7e45823951
def test_subclass_of_Request(self): '\n Test that PUTREQUEST is a subclass of urllib2.Request.\n ' assert issubclass(util.PUTREQUEST, Request)
Test that PUTREQUEST is a subclass of urllib2.Request.
tests/util/test_requests.py
test_subclass_of_Request
unt-libraries/codalib
0
python
def test_subclass_of_Request(self): '\n \n ' assert issubclass(util.PUTREQUEST, Request)
def test_subclass_of_Request(self): '\n \n ' assert issubclass(util.PUTREQUEST, Request)<|docstring|>Test that PUTREQUEST is a subclass of urllib2.Request.<|endoftext|>
4ad1e6cff8b49857425f0f0aa2228694e7f32e1c5c6aea7e3e12593a53f149ce
def test_get_method(self): '\n Verify the HTTP method is PUT.\n ' request = util.PUTREQUEST('http://example.com') assert (request.get_method() == 'PUT')
Verify the HTTP method is PUT.
tests/util/test_requests.py
test_get_method
unt-libraries/codalib
0
python
def test_get_method(self): '\n \n ' request = util.PUTREQUEST('http://example.com') assert (request.get_method() == 'PUT')
def test_get_method(self): '\n \n ' request = util.PUTREQUEST('http://example.com') assert (request.get_method() == 'PUT')<|docstring|>Verify the HTTP method is PUT.<|endoftext|>
575b52e73eddae4c5b8277316436a66e972b3ae72e22eac856af22eeac000bcb
def test_subclass_of_Request(self): '\n Test that DELETEREQUEST is a subclass of urllib2.Request.\n ' assert issubclass(util.DELETEREQUEST, Request)
Test that DELETEREQUEST is a subclass of urllib2.Request.
tests/util/test_requests.py
test_subclass_of_Request
unt-libraries/codalib
0
python
def test_subclass_of_Request(self): '\n \n ' assert issubclass(util.DELETEREQUEST, Request)
def test_subclass_of_Request(self): '\n \n ' assert issubclass(util.DELETEREQUEST, Request)<|docstring|>Test that DELETEREQUEST is a subclass of urllib2.Request.<|endoftext|>
4b0f3582f0137e5d32e5523bbfe19783c9cca078dab60ce074245d875cd65abd
def test_get_method(self): '\n Verify the HTTP method is DELETE.\n ' request = util.DELETEREQUEST('http://example.com') assert (request.get_method() == 'DELETE')
Verify the HTTP method is DELETE.
tests/util/test_requests.py
test_get_method
unt-libraries/codalib
0
python
def test_get_method(self): '\n \n ' request = util.DELETEREQUEST('http://example.com') assert (request.get_method() == 'DELETE')
def test_get_method(self): '\n \n ' request = util.DELETEREQUEST('http://example.com') assert (request.get_method() == 'DELETE')<|docstring|>Verify the HTTP method is DELETE.<|endoftext|>
6e0719fbe59931d3065d54ee5ec328d5cde624e8f1010794f23229e9338337e8
def on_cancel(self) -> None: '\n Helpfull when called TaskManager.shutdown.\n E.g. Your task is working with file, in this case you have time to save and close it.\n ' pass
Helpfull when called TaskManager.shutdown. E.g. Your task is working with file, in this case you have time to save and close it.
ben_ten_adventure/schedulers.py
on_cancel
Ben-10-Secret-of-the-Omnitrix-Game/Ben-10-Adventure
1
python
def on_cancel(self) -> None: '\n Helpfull when called TaskManager.shutdown.\n E.g. Your task is working with file, in this case you have time to save and close it.\n ' pass
def on_cancel(self) -> None: '\n Helpfull when called TaskManager.shutdown.\n E.g. Your task is working with file, in this case you have time to save and close it.\n ' pass<|docstring|>Helpfull when called TaskManager.shutdown. E.g. Your task is working with file, in this case you have time to save and close it.<|endoftext|>
7ee3f401733668147e6b3122f9a9f13719edbebe6358300fb581eae94b3095d2
def __init__(self, client): '\n :param client: HorizonClient\n ' self.client = client
:param client: HorizonClient
src/mf_horizon_client/client/datasets/data_interface.py
__init__
MF-HORIZON/mf-horizon-python-client
0
python
def __init__(self, client): '\n \n ' self.client = client
def __init__(self, client): '\n \n ' self.client = client<|docstring|>:param client: HorizonClient<|endoftext|>
3b8a14946e38f0b81f1434ca8c013903ef599b309a949bc1cce5600d2a5fcaa6
def upload_data(self, data: pd.DataFrame, name: str, forward_fill_missing_values: bool=False, replace_missing_values: bool=False, align_to_column: str='') -> IndividualDataset: '\n Uploads the given data set to the Horizon API.\n\n :param align_to_column: Aligns data to column if the data is misaligned. This should be selected as the target\n if data is misaligned or has missing values. Selecting this will also cause missing data in the specified\n column to be dropped.\n :param data: DataFrame to be uploaded\n :param name: Name of the data set to be uploaded\n :param forward_fill_missing_values: Forward-fill missing values\n :param replace_missing_values: Replace missing values\n :return: A summary of the uploaded data set.\n ' str_buffer = io.StringIO(data.to_csv(encoding='utf-8', index=False)) str_buffer.seek(0) str_buffer.name = name if (forward_fill_missing_values and (not align_to_column)): print_warning('Forward-fill select without alignment to column. Please be aware that if you choose a target column that has been forward-filled this will yield scientifically inaccurate results') options = {'alignTo': align_to_column, 'missingDataStrategy': {'ffill': {'enabled': forward_fill_missing_values}, 'replaceMissing': {'enabled': replace_missing_values, 'replaceWith': 1}}} request_data = dict(file=str_buffer, follow_redirects=True) data = dict(options=json.dumps(options)) response = self.client.post(endpoint=Endpoints.UPLOAD_DATA, body=data, files=request_data, on_success_message=f"Data set '{name}' uploaded. Analyzing...") ingestion_process = IngestionProcess(**convert_dict_from_camel_to_snake(response)) while (ingestion_process.status not in ['completed', 'error']): sleep(0.5) response = self.client.get(endpoint=Endpoints.SINGLE_INGESTION_PROCESS(ingestion_process.id_)) ingestion_process = IngestionProcess(**convert_dict_from_camel_to_snake(response)) if (ingestion_process.status == 'error'): raise ValueError(f'''Error analyzing data {ingestion_process.error}''') return self.get_dataset(ingestion_process.dataset_id)
Uploads the given data set to the Horizon API. :param align_to_column: Aligns data to column if the data is misaligned. This should be selected as the target if data is misaligned or has missing values. Selecting this will also cause missing data in the specified column to be dropped. :param data: DataFrame to be uploaded :param name: Name of the data set to be uploaded :param forward_fill_missing_values: Forward-fill missing values :param replace_missing_values: Replace missing values :return: A summary of the uploaded data set.
src/mf_horizon_client/client/datasets/data_interface.py
upload_data
MF-HORIZON/mf-horizon-python-client
0
python
def upload_data(self, data: pd.DataFrame, name: str, forward_fill_missing_values: bool=False, replace_missing_values: bool=False, align_to_column: str=) -> IndividualDataset: '\n Uploads the given data set to the Horizon API.\n\n :param align_to_column: Aligns data to column if the data is misaligned. This should be selected as the target\n if data is misaligned or has missing values. Selecting this will also cause missing data in the specified\n column to be dropped.\n :param data: DataFrame to be uploaded\n :param name: Name of the data set to be uploaded\n :param forward_fill_missing_values: Forward-fill missing values\n :param replace_missing_values: Replace missing values\n :return: A summary of the uploaded data set.\n ' str_buffer = io.StringIO(data.to_csv(encoding='utf-8', index=False)) str_buffer.seek(0) str_buffer.name = name if (forward_fill_missing_values and (not align_to_column)): print_warning('Forward-fill select without alignment to column. Please be aware that if you choose a target column that has been forward-filled this will yield scientifically inaccurate results') options = {'alignTo': align_to_column, 'missingDataStrategy': {'ffill': {'enabled': forward_fill_missing_values}, 'replaceMissing': {'enabled': replace_missing_values, 'replaceWith': 1}}} request_data = dict(file=str_buffer, follow_redirects=True) data = dict(options=json.dumps(options)) response = self.client.post(endpoint=Endpoints.UPLOAD_DATA, body=data, files=request_data, on_success_message=f"Data set '{name}' uploaded. Analyzing...") ingestion_process = IngestionProcess(**convert_dict_from_camel_to_snake(response)) while (ingestion_process.status not in ['completed', 'error']): sleep(0.5) response = self.client.get(endpoint=Endpoints.SINGLE_INGESTION_PROCESS(ingestion_process.id_)) ingestion_process = IngestionProcess(**convert_dict_from_camel_to_snake(response)) if (ingestion_process.status == 'error'): raise ValueError(f'Error analyzing data {ingestion_process.error}') return self.get_dataset(ingestion_process.dataset_id)
def upload_data(self, data: pd.DataFrame, name: str, forward_fill_missing_values: bool=False, replace_missing_values: bool=False, align_to_column: str=) -> IndividualDataset: '\n Uploads the given data set to the Horizon API.\n\n :param align_to_column: Aligns data to column if the data is misaligned. This should be selected as the target\n if data is misaligned or has missing values. Selecting this will also cause missing data in the specified\n column to be dropped.\n :param data: DataFrame to be uploaded\n :param name: Name of the data set to be uploaded\n :param forward_fill_missing_values: Forward-fill missing values\n :param replace_missing_values: Replace missing values\n :return: A summary of the uploaded data set.\n ' str_buffer = io.StringIO(data.to_csv(encoding='utf-8', index=False)) str_buffer.seek(0) str_buffer.name = name if (forward_fill_missing_values and (not align_to_column)): print_warning('Forward-fill select without alignment to column. Please be aware that if you choose a target column that has been forward-filled this will yield scientifically inaccurate results') options = {'alignTo': align_to_column, 'missingDataStrategy': {'ffill': {'enabled': forward_fill_missing_values}, 'replaceMissing': {'enabled': replace_missing_values, 'replaceWith': 1}}} request_data = dict(file=str_buffer, follow_redirects=True) data = dict(options=json.dumps(options)) response = self.client.post(endpoint=Endpoints.UPLOAD_DATA, body=data, files=request_data, on_success_message=f"Data set '{name}' uploaded. Analyzing...") ingestion_process = IngestionProcess(**convert_dict_from_camel_to_snake(response)) while (ingestion_process.status not in ['completed', 'error']): sleep(0.5) response = self.client.get(endpoint=Endpoints.SINGLE_INGESTION_PROCESS(ingestion_process.id_)) ingestion_process = IngestionProcess(**convert_dict_from_camel_to_snake(response)) if (ingestion_process.status == 'error'): raise ValueError(f'Error analyzing data {ingestion_process.error}') return self.get_dataset(ingestion_process.dataset_id)<|docstring|>Uploads the given data set to the Horizon API. :param align_to_column: Aligns data to column if the data is misaligned. This should be selected as the target if data is misaligned or has missing values. Selecting this will also cause missing data in the specified column to be dropped. :param data: DataFrame to be uploaded :param name: Name of the data set to be uploaded :param forward_fill_missing_values: Forward-fill missing values :param replace_missing_values: Replace missing values :return: A summary of the uploaded data set.<|endoftext|>
8daba2e437c6c6620d9b0e09e549171353a6ca523d2b93d3846e40a583117c7f
@catch_errors def list_datasets(self) -> List[DatasetSummary]: '\n requests a list of datasets (DatasetSchema) that have been uploaded into horizon. The data itself is not returned - just\n the metadata.\n\n ' datasets = self.client.get(Endpoints.ALL_DATASETS) return [DatasetSummary(**convert_dict_from_camel_to_snake(dataset)) for dataset in datasets]
requests a list of datasets (DatasetSchema) that have been uploaded into horizon. The data itself is not returned - just the metadata.
src/mf_horizon_client/client/datasets/data_interface.py
list_datasets
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def list_datasets(self) -> List[DatasetSummary]: '\n requests a list of datasets (DatasetSchema) that have been uploaded into horizon. The data itself is not returned - just\n the metadata.\n\n ' datasets = self.client.get(Endpoints.ALL_DATASETS) return [DatasetSummary(**convert_dict_from_camel_to_snake(dataset)) for dataset in datasets]
@catch_errors def list_datasets(self) -> List[DatasetSummary]: '\n requests a list of datasets (DatasetSchema) that have been uploaded into horizon. The data itself is not returned - just\n the metadata.\n\n ' datasets = self.client.get(Endpoints.ALL_DATASETS) return [DatasetSummary(**convert_dict_from_camel_to_snake(dataset)) for dataset in datasets]<|docstring|>requests a list of datasets (DatasetSchema) that have been uploaded into horizon. The data itself is not returned - just the metadata.<|endoftext|>
51b1ebe372067050ee77b0d90f287861dc6dfc24dff250d2e122de590d29ef55
@catch_errors def delete_datasets(self, identifiers: List[int]=None): '\n Deletes data sets as identified by their identifiers.\n These may be retrieved by calling DataInterface.list_datasets.\n\n :param identifiers: list of numeric identifiers\n :return:\n ' pbar = tqdm(identifiers) for identifier in pbar: pbar.set_description(f'Deleting Data Set with ID: {identifier}') self.client.delete(Endpoints.SINGLE_DATASET(identifier))
Deletes data sets as identified by their identifiers. These may be retrieved by calling DataInterface.list_datasets. :param identifiers: list of numeric identifiers :return:
src/mf_horizon_client/client/datasets/data_interface.py
delete_datasets
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def delete_datasets(self, identifiers: List[int]=None): '\n Deletes data sets as identified by their identifiers.\n These may be retrieved by calling DataInterface.list_datasets.\n\n :param identifiers: list of numeric identifiers\n :return:\n ' pbar = tqdm(identifiers) for identifier in pbar: pbar.set_description(f'Deleting Data Set with ID: {identifier}') self.client.delete(Endpoints.SINGLE_DATASET(identifier))
@catch_errors def delete_datasets(self, identifiers: List[int]=None): '\n Deletes data sets as identified by their identifiers.\n These may be retrieved by calling DataInterface.list_datasets.\n\n :param identifiers: list of numeric identifiers\n :return:\n ' pbar = tqdm(identifiers) for identifier in pbar: pbar.set_description(f'Deleting Data Set with ID: {identifier}') self.client.delete(Endpoints.SINGLE_DATASET(identifier))<|docstring|>Deletes data sets as identified by their identifiers. These may be retrieved by calling DataInterface.list_datasets. :param identifiers: list of numeric identifiers :return:<|endoftext|>
6487de2696fcb45c721e8a115fda812cf075a92de3ae1eeac6d86031a1ea4267
@catch_errors def delete_all_datasets(self): '\n Deletes all data sets previously uploaded by the authorised user.\n\n WARNING: All associated pipelines will also be deleted.\n WARNING: Calling this endpoint is effectively the same as resetting Horizon for a user.\n\n :return:\n ' datasets = self.list_datasets() dataset_ids = [dataset.id_ for dataset in datasets] self.delete_datasets(dataset_ids) print_success('All data successfully deleted from Horizon!')
Deletes all data sets previously uploaded by the authorised user. WARNING: All associated pipelines will also be deleted. WARNING: Calling this endpoint is effectively the same as resetting Horizon for a user. :return:
src/mf_horizon_client/client/datasets/data_interface.py
delete_all_datasets
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def delete_all_datasets(self): '\n Deletes all data sets previously uploaded by the authorised user.\n\n WARNING: All associated pipelines will also be deleted.\n WARNING: Calling this endpoint is effectively the same as resetting Horizon for a user.\n\n :return:\n ' datasets = self.list_datasets() dataset_ids = [dataset.id_ for dataset in datasets] self.delete_datasets(dataset_ids) print_success('All data successfully deleted from Horizon!')
@catch_errors def delete_all_datasets(self): '\n Deletes all data sets previously uploaded by the authorised user.\n\n WARNING: All associated pipelines will also be deleted.\n WARNING: Calling this endpoint is effectively the same as resetting Horizon for a user.\n\n :return:\n ' datasets = self.list_datasets() dataset_ids = [dataset.id_ for dataset in datasets] self.delete_datasets(dataset_ids) print_success('All data successfully deleted from Horizon!')<|docstring|>Deletes all data sets previously uploaded by the authorised user. WARNING: All associated pipelines will also be deleted. WARNING: Calling this endpoint is effectively the same as resetting Horizon for a user. :return:<|endoftext|>
92d920687e8c6d4799ba37098356b56c87e3fbfe9632df957a3f4226585f5109
@catch_errors def rename_dataset(self, identifier: int, name: str): '\n Renames an already existing dataset\n :param identifier: id of a dataset\n :param name: The new name for the dataset\n :return:\n ' assert (len(name) < 100), 'Name too long. Please keep to under 100 chars.' self.client.put(Endpoints.RENAME_DATASET(identifier), body={'newName': name})
Renames an already existing dataset :param identifier: id of a dataset :param name: The new name for the dataset :return:
src/mf_horizon_client/client/datasets/data_interface.py
rename_dataset
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def rename_dataset(self, identifier: int, name: str): '\n Renames an already existing dataset\n :param identifier: id of a dataset\n :param name: The new name for the dataset\n :return:\n ' assert (len(name) < 100), 'Name too long. Please keep to under 100 chars.' self.client.put(Endpoints.RENAME_DATASET(identifier), body={'newName': name})
@catch_errors def rename_dataset(self, identifier: int, name: str): '\n Renames an already existing dataset\n :param identifier: id of a dataset\n :param name: The new name for the dataset\n :return:\n ' assert (len(name) < 100), 'Name too long. Please keep to under 100 chars.' self.client.put(Endpoints.RENAME_DATASET(identifier), body={'newName': name})<|docstring|>Renames an already existing dataset :param identifier: id of a dataset :param name: The new name for the dataset :return:<|endoftext|>
effe1fb8ceafafddd5abb7be80f6f53321948f8051390055c8c7691873c19d49
@catch_errors def get_dataset(self, identifier: int) -> IndividualDataset: "\n Gets a single data set's meta data.\n\n :param identifier: dataset id as returned from upload_dataset or list_all_datasets.\n :return: Individual data set sans data\n " response = self.client.get(Endpoints.SINGLE_DATASET(identifier)) individual_dataset_dictionary = response column_data = [ColumnPassport(**convert_dict_from_camel_to_snake(col)) for col in individual_dataset_dictionary['analysis']] dataset = IndividualDataset(analysis=column_data, summary=DatasetSummary(**convert_dict_from_camel_to_snake(individual_dataset_dictionary['summary']))) dataset.summary.columns = [RawColumn(name=col.name, id_=col.id_, is_text=col.is_text, is_binary=col.is_binary) for col in column_data] return dataset
Gets a single data set's meta data. :param identifier: dataset id as returned from upload_dataset or list_all_datasets. :return: Individual data set sans data
src/mf_horizon_client/client/datasets/data_interface.py
get_dataset
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def get_dataset(self, identifier: int) -> IndividualDataset: "\n Gets a single data set's meta data.\n\n :param identifier: dataset id as returned from upload_dataset or list_all_datasets.\n :return: Individual data set sans data\n " response = self.client.get(Endpoints.SINGLE_DATASET(identifier)) individual_dataset_dictionary = response column_data = [ColumnPassport(**convert_dict_from_camel_to_snake(col)) for col in individual_dataset_dictionary['analysis']] dataset = IndividualDataset(analysis=column_data, summary=DatasetSummary(**convert_dict_from_camel_to_snake(individual_dataset_dictionary['summary']))) dataset.summary.columns = [RawColumn(name=col.name, id_=col.id_, is_text=col.is_text, is_binary=col.is_binary) for col in column_data] return dataset
@catch_errors def get_dataset(self, identifier: int) -> IndividualDataset: "\n Gets a single data set's meta data.\n\n :param identifier: dataset id as returned from upload_dataset or list_all_datasets.\n :return: Individual data set sans data\n " response = self.client.get(Endpoints.SINGLE_DATASET(identifier)) individual_dataset_dictionary = response column_data = [ColumnPassport(**convert_dict_from_camel_to_snake(col)) for col in individual_dataset_dictionary['analysis']] dataset = IndividualDataset(analysis=column_data, summary=DatasetSummary(**convert_dict_from_camel_to_snake(individual_dataset_dictionary['summary']))) dataset.summary.columns = [RawColumn(name=col.name, id_=col.id_, is_text=col.is_text, is_binary=col.is_binary) for col in column_data] return dataset<|docstring|>Gets a single data set's meta data. :param identifier: dataset id as returned from upload_dataset or list_all_datasets. :return: Individual data set sans data<|endoftext|>
e93876516d4b50f05af98a8437a57a557bb56963a94037de89cc377b26c59839
@catch_errors def get_series_data_sampled(self, dataset_identifier: int, series_identifier: int): '\n Retrieves sampled data of a particular series in a data set. Suitable for plotting.\n\n In the case of intra-day data this data is aggregated into a daily plot.\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' response = self.client.get(Endpoints.SINGLE_SERIES(dataset_identifier, series_identifier)) return convert_dict_from_camel_to_snake(response)
Retrieves sampled data of a particular series in a data set. Suitable for plotting. In the case of intra-day data this data is aggregated into a daily plot. :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :return:
src/mf_horizon_client/client/datasets/data_interface.py
get_series_data_sampled
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def get_series_data_sampled(self, dataset_identifier: int, series_identifier: int): '\n Retrieves sampled data of a particular series in a data set. Suitable for plotting.\n\n In the case of intra-day data this data is aggregated into a daily plot.\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' response = self.client.get(Endpoints.SINGLE_SERIES(dataset_identifier, series_identifier)) return convert_dict_from_camel_to_snake(response)
@catch_errors def get_series_data_sampled(self, dataset_identifier: int, series_identifier: int): '\n Retrieves sampled data of a particular series in a data set. Suitable for plotting.\n\n In the case of intra-day data this data is aggregated into a daily plot.\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' response = self.client.get(Endpoints.SINGLE_SERIES(dataset_identifier, series_identifier)) return convert_dict_from_camel_to_snake(response)<|docstring|>Retrieves sampled data of a particular series in a data set. Suitable for plotting. In the case of intra-day data this data is aggregated into a daily plot. :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :return:<|endoftext|>
4dc0e6ddfc8167bdf34ccb9d70bfddf84075b615d17c0f4e20f228ae7203df81
@catch_errors def get_correlations(self, dataset_identifier: int, series_identifier: int): '\n Calculates the pearson correlation of a single series with every other series in a dataset\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] correlation_data = self.client.get(Endpoints.SINGLE_SERIES_CORRELATIONS_WITH_OTHER_SERIES(dataset_identifier, series_identifier)) correlations = pd.DataFrame.from_dict(correlation_data['data']) correlations.columns = ['Series', 'Pearson Correlation'] correlations.name = series_name return correlations
Calculates the pearson correlation of a single series with every other series in a dataset :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :return:
src/mf_horizon_client/client/datasets/data_interface.py
get_correlations
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def get_correlations(self, dataset_identifier: int, series_identifier: int): '\n Calculates the pearson correlation of a single series with every other series in a dataset\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] correlation_data = self.client.get(Endpoints.SINGLE_SERIES_CORRELATIONS_WITH_OTHER_SERIES(dataset_identifier, series_identifier)) correlations = pd.DataFrame.from_dict(correlation_data['data']) correlations.columns = ['Series', 'Pearson Correlation'] correlations.name = series_name return correlations
@catch_errors def get_correlations(self, dataset_identifier: int, series_identifier: int): '\n Calculates the pearson correlation of a single series with every other series in a dataset\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] correlation_data = self.client.get(Endpoints.SINGLE_SERIES_CORRELATIONS_WITH_OTHER_SERIES(dataset_identifier, series_identifier)) correlations = pd.DataFrame.from_dict(correlation_data['data']) correlations.columns = ['Series', 'Pearson Correlation'] correlations.name = series_name return correlations<|docstring|>Calculates the pearson correlation of a single series with every other series in a dataset :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :return:<|endoftext|>
11b6fe17c1a17d86db7386342f2e21fa34f02598d339d88bff9c17b35bae4a9d
@catch_errors def get_autocorrelation(self, dataset_identifier: int, series_identifier: int): '\n Calculates the autocorrelation functon of a single series\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :returndT:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] acf = self.client.get(Endpoints.SINGLE_SERIES_AUTOCORRELATION(dataset_identifier, series_identifier)) acf_df = pd.DataFrame(acf['data']) acf_df.columns = ['Lag', f'Correlation: f{series_name}'] return acf_df
Calculates the autocorrelation functon of a single series :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :returndT:
src/mf_horizon_client/client/datasets/data_interface.py
get_autocorrelation
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def get_autocorrelation(self, dataset_identifier: int, series_identifier: int): '\n Calculates the autocorrelation functon of a single series\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :returndT:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] acf = self.client.get(Endpoints.SINGLE_SERIES_AUTOCORRELATION(dataset_identifier, series_identifier)) acf_df = pd.DataFrame(acf['data']) acf_df.columns = ['Lag', f'Correlation: f{series_name}'] return acf_df
@catch_errors def get_autocorrelation(self, dataset_identifier: int, series_identifier: int): '\n Calculates the autocorrelation functon of a single series\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :returndT:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] acf = self.client.get(Endpoints.SINGLE_SERIES_AUTOCORRELATION(dataset_identifier, series_identifier)) acf_df = pd.DataFrame(acf['data']) acf_df.columns = ['Lag', f'Correlation: f{series_name}'] return acf_df<|docstring|>Calculates the autocorrelation functon of a single series :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :returndT:<|endoftext|>
9452842207fe6badf42b0f51021ce5cc4479609275f0d3e8e0da477a77d0df73
@catch_errors def get_stationarity_scores(self, dataset_identifier: int) -> pd.DataFrame: '\n Returns the Augmented-dicky-fuller ADF score of the signals in a data set. For large data a data sample is used to compute this.\n\n :param dataset_identifier: Unique identifier of a dataset\n :return: Dataframe of stationarity scores\n ' dataset = self.get_dataset(identifier=dataset_identifier) df = pd.DataFrame.from_records([dataclasses.asdict(series) for series in dataset.analysis])[['id_', 'name', 'adf']] df['id_'] = df['id_'].astype(str) return df
Returns the Augmented-dicky-fuller ADF score of the signals in a data set. For large data a data sample is used to compute this. :param dataset_identifier: Unique identifier of a dataset :return: Dataframe of stationarity scores
src/mf_horizon_client/client/datasets/data_interface.py
get_stationarity_scores
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def get_stationarity_scores(self, dataset_identifier: int) -> pd.DataFrame: '\n Returns the Augmented-dicky-fuller ADF score of the signals in a data set. For large data a data sample is used to compute this.\n\n :param dataset_identifier: Unique identifier of a dataset\n :return: Dataframe of stationarity scores\n ' dataset = self.get_dataset(identifier=dataset_identifier) df = pd.DataFrame.from_records([dataclasses.asdict(series) for series in dataset.analysis])[['id_', 'name', 'adf']] df['id_'] = df['id_'].astype(str) return df
@catch_errors def get_stationarity_scores(self, dataset_identifier: int) -> pd.DataFrame: '\n Returns the Augmented-dicky-fuller ADF score of the signals in a data set. For large data a data sample is used to compute this.\n\n :param dataset_identifier: Unique identifier of a dataset\n :return: Dataframe of stationarity scores\n ' dataset = self.get_dataset(identifier=dataset_identifier) df = pd.DataFrame.from_records([dataclasses.asdict(series) for series in dataset.analysis])[['id_', 'name', 'adf']] df['id_'] = df['id_'].astype(str) return df<|docstring|>Returns the Augmented-dicky-fuller ADF score of the signals in a data set. For large data a data sample is used to compute this. :param dataset_identifier: Unique identifier of a dataset :return: Dataframe of stationarity scores<|endoftext|>
10f4a328dd69df3499dbc7eb3258bf8a103d393585ab42b0400284cbc975ab64
@catch_errors def get_mutual_information(self, dataset_identifier: int, series_identifier: int): '\n Calculates the mutual information of a single series with all other columns in a dataset\n\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] mutual_information_data = self.client.get(Endpoints.SINGLE_SERIES_MUTUAL_INFORMATION_WITH_OTHER_SERIES(dataset_identifier, series_identifier)) mutual_information_data = pd.DataFrame.from_dict(mutual_information_data['data']) mutual_information_data.columns = ['Series', 'Mutual Information'] mutual_information_data.name = series_name return mutual_information_data
Calculates the mutual information of a single series with all other columns in a dataset :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :return:
src/mf_horizon_client/client/datasets/data_interface.py
get_mutual_information
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def get_mutual_information(self, dataset_identifier: int, series_identifier: int): '\n Calculates the mutual information of a single series with all other columns in a dataset\n\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] mutual_information_data = self.client.get(Endpoints.SINGLE_SERIES_MUTUAL_INFORMATION_WITH_OTHER_SERIES(dataset_identifier, series_identifier)) mutual_information_data = pd.DataFrame.from_dict(mutual_information_data['data']) mutual_information_data.columns = ['Series', 'Mutual Information'] mutual_information_data.name = series_name return mutual_information_data
@catch_errors def get_mutual_information(self, dataset_identifier: int, series_identifier: int): '\n Calculates the mutual information of a single series with all other columns in a dataset\n\n\n :param dataset_identifier: Unique identifier of a dataset.\n :param series_identifier: Unique identifier of a column\n :return:\n ' dataset_summary = self.get_dataset(dataset_identifier) names = [col.name for col in dataset_summary.analysis if (col.id_ == series_identifier)] if (len(names) == 0): raise ValueError('Invalid series identifier specified') series_name = names[0] mutual_information_data = self.client.get(Endpoints.SINGLE_SERIES_MUTUAL_INFORMATION_WITH_OTHER_SERIES(dataset_identifier, series_identifier)) mutual_information_data = pd.DataFrame.from_dict(mutual_information_data['data']) mutual_information_data.columns = ['Series', 'Mutual Information'] mutual_information_data.name = series_name return mutual_information_data<|docstring|>Calculates the mutual information of a single series with all other columns in a dataset :param dataset_identifier: Unique identifier of a dataset. :param series_identifier: Unique identifier of a column :return:<|endoftext|>
89f77da899964647c9ff1597ef3d87143d63155fa18133e3c0bd83a73d438cb6
@catch_errors def upload_data_long_format_as_single_data_set(self, data: pd.DataFrame, name: str, cross_section_column_name: str, date_column_name: str, replace_missing_values: bool=True, forward_fill_missing_values: bool=False) -> IndividualDataset: '\n Uploads long format data into Horizon. The data frame should have a date column, with a numeric index.\n\n :param data: The dataset in a pandas data frame. Must have a valid date column.\n :param name: Name of the data set to be uploaded\n :param cross_section_column_name: The identifier column that groups the records\n :param date_column_name: The column name of the date index.\n :param forward_fill_missing_values: Forward-fill missing values\n :param replace_missing_values: Replace missing values\n :return: A summary of the uploaded data set.\n :param encode_categorical_data: Categorically encode data that is non-numeric\n :param max_categories: Maximum number of categories per series.\n ' df = data.pivot_table(columns=cross_section_column_name, index=date_column_name) df.reset_index(inplace=True) df.columns = ['/'.join(column) for column in df.columns] return self.upload_data(data=df, name=name, forward_fill_missing_values=forward_fill_missing_values, replace_missing_values=replace_missing_values)
Uploads long format data into Horizon. The data frame should have a date column, with a numeric index. :param data: The dataset in a pandas data frame. Must have a valid date column. :param name: Name of the data set to be uploaded :param cross_section_column_name: The identifier column that groups the records :param date_column_name: The column name of the date index. :param forward_fill_missing_values: Forward-fill missing values :param replace_missing_values: Replace missing values :return: A summary of the uploaded data set. :param encode_categorical_data: Categorically encode data that is non-numeric :param max_categories: Maximum number of categories per series.
src/mf_horizon_client/client/datasets/data_interface.py
upload_data_long_format_as_single_data_set
MF-HORIZON/mf-horizon-python-client
0
python
@catch_errors def upload_data_long_format_as_single_data_set(self, data: pd.DataFrame, name: str, cross_section_column_name: str, date_column_name: str, replace_missing_values: bool=True, forward_fill_missing_values: bool=False) -> IndividualDataset: '\n Uploads long format data into Horizon. The data frame should have a date column, with a numeric index.\n\n :param data: The dataset in a pandas data frame. Must have a valid date column.\n :param name: Name of the data set to be uploaded\n :param cross_section_column_name: The identifier column that groups the records\n :param date_column_name: The column name of the date index.\n :param forward_fill_missing_values: Forward-fill missing values\n :param replace_missing_values: Replace missing values\n :return: A summary of the uploaded data set.\n :param encode_categorical_data: Categorically encode data that is non-numeric\n :param max_categories: Maximum number of categories per series.\n ' df = data.pivot_table(columns=cross_section_column_name, index=date_column_name) df.reset_index(inplace=True) df.columns = ['/'.join(column) for column in df.columns] return self.upload_data(data=df, name=name, forward_fill_missing_values=forward_fill_missing_values, replace_missing_values=replace_missing_values)
@catch_errors def upload_data_long_format_as_single_data_set(self, data: pd.DataFrame, name: str, cross_section_column_name: str, date_column_name: str, replace_missing_values: bool=True, forward_fill_missing_values: bool=False) -> IndividualDataset: '\n Uploads long format data into Horizon. The data frame should have a date column, with a numeric index.\n\n :param data: The dataset in a pandas data frame. Must have a valid date column.\n :param name: Name of the data set to be uploaded\n :param cross_section_column_name: The identifier column that groups the records\n :param date_column_name: The column name of the date index.\n :param forward_fill_missing_values: Forward-fill missing values\n :param replace_missing_values: Replace missing values\n :return: A summary of the uploaded data set.\n :param encode_categorical_data: Categorically encode data that is non-numeric\n :param max_categories: Maximum number of categories per series.\n ' df = data.pivot_table(columns=cross_section_column_name, index=date_column_name) df.reset_index(inplace=True) df.columns = ['/'.join(column) for column in df.columns] return self.upload_data(data=df, name=name, forward_fill_missing_values=forward_fill_missing_values, replace_missing_values=replace_missing_values)<|docstring|>Uploads long format data into Horizon. The data frame should have a date column, with a numeric index. :param data: The dataset in a pandas data frame. Must have a valid date column. :param name: Name of the data set to be uploaded :param cross_section_column_name: The identifier column that groups the records :param date_column_name: The column name of the date index. :param forward_fill_missing_values: Forward-fill missing values :param replace_missing_values: Replace missing values :return: A summary of the uploaded data set. :param encode_categorical_data: Categorically encode data that is non-numeric :param max_categories: Maximum number of categories per series.<|endoftext|>
30ec0d9b019ae2249e516843c151aa66c8733a6adaf10cff2d83ffd1ca5f2479
def reference(t_data: np.array, weights_data: np.array) -> np.array: 'Return result of equivalent calculation of the test in pytorch.\n\n Args:\n t_data (np.array): Input tensor data\n weights_data (np.array): Input tensor weights\n\n Returns:\n np.array: The result of the pytorch operations\n ' t_in = torch.from_numpy(t_data) weights = torch.from_numpy(weights_data) t_1 = torch.matmul(t_in, weights) t_2 = torch.nn.functional.gelu(t_1) t_out = torch.nn.functional.softmax(t_2, dim=1) return t_out.numpy()
Return result of equivalent calculation of the test in pytorch. Args: t_data (np.array): Input tensor data weights_data (np.array): Input tensor weights Returns: np.array: The result of the pytorch operations
tests/integration/popart.ir/test_fwd_pipeline.py
reference
graphcore/popart
61
python
def reference(t_data: np.array, weights_data: np.array) -> np.array: 'Return result of equivalent calculation of the test in pytorch.\n\n Args:\n t_data (np.array): Input tensor data\n weights_data (np.array): Input tensor weights\n\n Returns:\n np.array: The result of the pytorch operations\n ' t_in = torch.from_numpy(t_data) weights = torch.from_numpy(weights_data) t_1 = torch.matmul(t_in, weights) t_2 = torch.nn.functional.gelu(t_1) t_out = torch.nn.functional.softmax(t_2, dim=1) return t_out.numpy()
def reference(t_data: np.array, weights_data: np.array) -> np.array: 'Return result of equivalent calculation of the test in pytorch.\n\n Args:\n t_data (np.array): Input tensor data\n weights_data (np.array): Input tensor weights\n\n Returns:\n np.array: The result of the pytorch operations\n ' t_in = torch.from_numpy(t_data) weights = torch.from_numpy(weights_data) t_1 = torch.matmul(t_in, weights) t_2 = torch.nn.functional.gelu(t_1) t_out = torch.nn.functional.softmax(t_2, dim=1) return t_out.numpy()<|docstring|>Return result of equivalent calculation of the test in pytorch. Args: t_data (np.array): Input tensor data weights_data (np.array): Input tensor weights Returns: np.array: The result of the pytorch operations<|endoftext|>
25e63d4d3bc94009640dea82dd6f6d5521d294bedf73605fe7f0d6b90c27e4a0
def build_model(weights_data: np.array, input_shape: Tuple[int]) -> Tuple[(_ir.Ir, HostToDeviceStream, DeviceToHostStream)]: 'Build the model using popart.ir API.\n \n Args:\n weights_data (np.array): The (non-streamed) data of the weights\n input_shape (tuple): The shape of the streamed input tensor\n\n Returns:\n (tuple): tuple containing:\n\n ir._pb_ir(_ir.Ir): The underlying IR\n t_in_h2d(HostToDeviceStream): The input stream of t_in\n t_out_d2h (DeviceToHostStream): The output stream of t_out\n ' ir = pir.Ir() main = ir.main_graph() with main: weights = pir.variable(weights_data, name='weights') t_in_h2d = pir.h2d_stream(input_shape, pir.float32, name='t_in_stream') with pir.virtual_graph(0): t_in = ops.host_load(t_in_h2d, 't_in') t_1 = ops.matmul(t_in, weights) t_1_c = ops.ipu_copy(t_1, 1) with pir.virtual_graph(1): t_2 = ops.gelu(t_1_c) t_2_c = ops.ipu_copy(t_2, 2) with pir.virtual_graph(2): t_out = ops.softmax(t_2_c, axis=1) t_out_d2h = pir.d2h_stream(t_out.shape, pir.float32, name='t_out_stream') ops.host_store(t_out_d2h, t_out) return (ir._pb_ir, t_in_h2d, t_out_d2h)
Build the model using popart.ir API. Args: weights_data (np.array): The (non-streamed) data of the weights input_shape (tuple): The shape of the streamed input tensor Returns: (tuple): tuple containing: ir._pb_ir(_ir.Ir): The underlying IR t_in_h2d(HostToDeviceStream): The input stream of t_in t_out_d2h (DeviceToHostStream): The output stream of t_out
tests/integration/popart.ir/test_fwd_pipeline.py
build_model
graphcore/popart
61
python
def build_model(weights_data: np.array, input_shape: Tuple[int]) -> Tuple[(_ir.Ir, HostToDeviceStream, DeviceToHostStream)]: 'Build the model using popart.ir API.\n \n Args:\n weights_data (np.array): The (non-streamed) data of the weights\n input_shape (tuple): The shape of the streamed input tensor\n\n Returns:\n (tuple): tuple containing:\n\n ir._pb_ir(_ir.Ir): The underlying IR\n t_in_h2d(HostToDeviceStream): The input stream of t_in\n t_out_d2h (DeviceToHostStream): The output stream of t_out\n ' ir = pir.Ir() main = ir.main_graph() with main: weights = pir.variable(weights_data, name='weights') t_in_h2d = pir.h2d_stream(input_shape, pir.float32, name='t_in_stream') with pir.virtual_graph(0): t_in = ops.host_load(t_in_h2d, 't_in') t_1 = ops.matmul(t_in, weights) t_1_c = ops.ipu_copy(t_1, 1) with pir.virtual_graph(1): t_2 = ops.gelu(t_1_c) t_2_c = ops.ipu_copy(t_2, 2) with pir.virtual_graph(2): t_out = ops.softmax(t_2_c, axis=1) t_out_d2h = pir.d2h_stream(t_out.shape, pir.float32, name='t_out_stream') ops.host_store(t_out_d2h, t_out) return (ir._pb_ir, t_in_h2d, t_out_d2h)
def build_model(weights_data: np.array, input_shape: Tuple[int]) -> Tuple[(_ir.Ir, HostToDeviceStream, DeviceToHostStream)]: 'Build the model using popart.ir API.\n \n Args:\n weights_data (np.array): The (non-streamed) data of the weights\n input_shape (tuple): The shape of the streamed input tensor\n\n Returns:\n (tuple): tuple containing:\n\n ir._pb_ir(_ir.Ir): The underlying IR\n t_in_h2d(HostToDeviceStream): The input stream of t_in\n t_out_d2h (DeviceToHostStream): The output stream of t_out\n ' ir = pir.Ir() main = ir.main_graph() with main: weights = pir.variable(weights_data, name='weights') t_in_h2d = pir.h2d_stream(input_shape, pir.float32, name='t_in_stream') with pir.virtual_graph(0): t_in = ops.host_load(t_in_h2d, 't_in') t_1 = ops.matmul(t_in, weights) t_1_c = ops.ipu_copy(t_1, 1) with pir.virtual_graph(1): t_2 = ops.gelu(t_1_c) t_2_c = ops.ipu_copy(t_2, 2) with pir.virtual_graph(2): t_out = ops.softmax(t_2_c, axis=1) t_out_d2h = pir.d2h_stream(t_out.shape, pir.float32, name='t_out_stream') ops.host_store(t_out_d2h, t_out) return (ir._pb_ir, t_in_h2d, t_out_d2h)<|docstring|>Build the model using popart.ir API. Args: weights_data (np.array): The (non-streamed) data of the weights input_shape (tuple): The shape of the streamed input tensor Returns: (tuple): tuple containing: ir._pb_ir(_ir.Ir): The underlying IR t_in_h2d(HostToDeviceStream): The input stream of t_in t_out_d2h (DeviceToHostStream): The output stream of t_out<|endoftext|>
65dded8c4074df014917f1f609fa0615353ca2f46bb1f97b2de23571989ab52b
def test_fwd_pipeline(): '\n Test one forward pass of a simple pipeline model in serial.\n\n The test compares the outcome from popart.ir with outcome from pytorch\n ' input_shape = (2, 16) w_shape = (input_shape[(- 1)], 4) weights_data = np.random.normal(0, 0.1, w_shape).astype(np.float32) t_data = np.random.normal(0, 0.1, input_shape).astype(np.float32) (ir, t_in_h2d, t_out_d2h) = build_model(weights_data, input_shape) t_in_id = t_in_h2d.tensor_id() t_out_id = t_out_d2h.tensor_id() bps = 1 data_flow = popart.DataFlow(bps, {t_out_id: popart.AnchorReturnType('All')}) ir.setDataFlow(data_flow) opts = ir.getSessionOptions() opts.useHostCopyOps = True opts.virtualGraphMode = popart.VirtualGraphMode.Manual ir.updateVertices() session = popart.InferenceSession.fromIr(ir=ir, deviceInfo=tu.create_test_device(numIpus=3)) session.prepareDevice() anchors = session.initAnchorArrays() stepio = popart.PyStepIO({t_in_id: t_data}, anchors) session.weightsFromHost() session.run(stepio) expected_t_out = reference(t_data, weights_data) t_out = anchors[t_out_id] assert (t_out.shape == expected_t_out.shape) assert (t_out.dtype == expected_t_out.dtype) assert np.allclose(t_out, expected_t_out)
Test one forward pass of a simple pipeline model in serial. The test compares the outcome from popart.ir with outcome from pytorch
tests/integration/popart.ir/test_fwd_pipeline.py
test_fwd_pipeline
graphcore/popart
61
python
def test_fwd_pipeline(): '\n Test one forward pass of a simple pipeline model in serial.\n\n The test compares the outcome from popart.ir with outcome from pytorch\n ' input_shape = (2, 16) w_shape = (input_shape[(- 1)], 4) weights_data = np.random.normal(0, 0.1, w_shape).astype(np.float32) t_data = np.random.normal(0, 0.1, input_shape).astype(np.float32) (ir, t_in_h2d, t_out_d2h) = build_model(weights_data, input_shape) t_in_id = t_in_h2d.tensor_id() t_out_id = t_out_d2h.tensor_id() bps = 1 data_flow = popart.DataFlow(bps, {t_out_id: popart.AnchorReturnType('All')}) ir.setDataFlow(data_flow) opts = ir.getSessionOptions() opts.useHostCopyOps = True opts.virtualGraphMode = popart.VirtualGraphMode.Manual ir.updateVertices() session = popart.InferenceSession.fromIr(ir=ir, deviceInfo=tu.create_test_device(numIpus=3)) session.prepareDevice() anchors = session.initAnchorArrays() stepio = popart.PyStepIO({t_in_id: t_data}, anchors) session.weightsFromHost() session.run(stepio) expected_t_out = reference(t_data, weights_data) t_out = anchors[t_out_id] assert (t_out.shape == expected_t_out.shape) assert (t_out.dtype == expected_t_out.dtype) assert np.allclose(t_out, expected_t_out)
def test_fwd_pipeline(): '\n Test one forward pass of a simple pipeline model in serial.\n\n The test compares the outcome from popart.ir with outcome from pytorch\n ' input_shape = (2, 16) w_shape = (input_shape[(- 1)], 4) weights_data = np.random.normal(0, 0.1, w_shape).astype(np.float32) t_data = np.random.normal(0, 0.1, input_shape).astype(np.float32) (ir, t_in_h2d, t_out_d2h) = build_model(weights_data, input_shape) t_in_id = t_in_h2d.tensor_id() t_out_id = t_out_d2h.tensor_id() bps = 1 data_flow = popart.DataFlow(bps, {t_out_id: popart.AnchorReturnType('All')}) ir.setDataFlow(data_flow) opts = ir.getSessionOptions() opts.useHostCopyOps = True opts.virtualGraphMode = popart.VirtualGraphMode.Manual ir.updateVertices() session = popart.InferenceSession.fromIr(ir=ir, deviceInfo=tu.create_test_device(numIpus=3)) session.prepareDevice() anchors = session.initAnchorArrays() stepio = popart.PyStepIO({t_in_id: t_data}, anchors) session.weightsFromHost() session.run(stepio) expected_t_out = reference(t_data, weights_data) t_out = anchors[t_out_id] assert (t_out.shape == expected_t_out.shape) assert (t_out.dtype == expected_t_out.dtype) assert np.allclose(t_out, expected_t_out)<|docstring|>Test one forward pass of a simple pipeline model in serial. The test compares the outcome from popart.ir with outcome from pytorch<|endoftext|>
280756f4092f71a40e963d883d02f458784268d1d94921fac04c248e033589eb
def train(): 'Train CIFAR-10 for a number of steps.' g1 = tf.Graph() with g1.as_default(): global_step = tf.contrib.framework.get_or_create_global_step() (images, labels) = cifar10.distorted_inputs() logits = cifar10.inference(images) loss = cifar10.loss(logits, labels) grads = cifar10.train_part1(loss, global_step) only_gradients = [g for (g, _) in grads] only_vars = [v for (_, v) in grads] placeholder_gradients = [] for grad_var in grads: placeholder_gradients.append((tf.placeholder('float', shape=grad_var[0].get_shape()), grad_var[1])) feed_dict = {} for (i, grad_var) in enumerate(grads): feed_dict[placeholder_gradients[i][0]] = np.zeros(placeholder_gradients[i][0].shape) train_op = cifar10.train_part2(global_step, placeholder_gradients) class _LoggerHook(tf.train.SessionRunHook): 'Logs loss and runtime.' def begin(self): self._step = (- 1) self._start_time = time.time() def before_run(self, run_context): self._step += 1 if ((self._step % 2) == 0): return tf.train.SessionRunArgs(loss) else: return None def after_run(self, run_context, run_values): if (((self._step % FLAGS.log_frequency) == 0) and ((self._step % 2) == 0)): current_time = time.time() duration = (current_time - self._start_time) self._start_time = current_time loss_value = run_values.results examples_per_sec = ((FLAGS.log_frequency * FLAGS.batch_size) / duration) sec_per_batch = float((duration / FLAGS.log_frequency)) format_str = '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)' print((format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch))) with tf.train.MonitoredTrainingSession(checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as mon_sess: while (not mon_sess.should_stop()): (dummy_loss, gradients) = mon_sess.run([loss, only_gradients], feed_dict=feed_dict) gradients2 = gradients feed_dict = {} for (i, grad_var) in enumerate(gradients2): feed_dict[placeholder_gradients[i][0]] = gradients2[i] res = mon_sess.run(train_op, feed_dict=feed_dict)
Train CIFAR-10 for a number of steps.
weightgrad/baseline.py
train
sabuj7177/CovidProject
0
python
def train(): g1 = tf.Graph() with g1.as_default(): global_step = tf.contrib.framework.get_or_create_global_step() (images, labels) = cifar10.distorted_inputs() logits = cifar10.inference(images) loss = cifar10.loss(logits, labels) grads = cifar10.train_part1(loss, global_step) only_gradients = [g for (g, _) in grads] only_vars = [v for (_, v) in grads] placeholder_gradients = [] for grad_var in grads: placeholder_gradients.append((tf.placeholder('float', shape=grad_var[0].get_shape()), grad_var[1])) feed_dict = {} for (i, grad_var) in enumerate(grads): feed_dict[placeholder_gradients[i][0]] = np.zeros(placeholder_gradients[i][0].shape) train_op = cifar10.train_part2(global_step, placeholder_gradients) class _LoggerHook(tf.train.SessionRunHook): 'Logs loss and runtime.' def begin(self): self._step = (- 1) self._start_time = time.time() def before_run(self, run_context): self._step += 1 if ((self._step % 2) == 0): return tf.train.SessionRunArgs(loss) else: return None def after_run(self, run_context, run_values): if (((self._step % FLAGS.log_frequency) == 0) and ((self._step % 2) == 0)): current_time = time.time() duration = (current_time - self._start_time) self._start_time = current_time loss_value = run_values.results examples_per_sec = ((FLAGS.log_frequency * FLAGS.batch_size) / duration) sec_per_batch = float((duration / FLAGS.log_frequency)) format_str = '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)' print((format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch))) with tf.train.MonitoredTrainingSession(checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as mon_sess: while (not mon_sess.should_stop()): (dummy_loss, gradients) = mon_sess.run([loss, only_gradients], feed_dict=feed_dict) gradients2 = gradients feed_dict = {} for (i, grad_var) in enumerate(gradients2): feed_dict[placeholder_gradients[i][0]] = gradients2[i] res = mon_sess.run(train_op, feed_dict=feed_dict)
def train(): g1 = tf.Graph() with g1.as_default(): global_step = tf.contrib.framework.get_or_create_global_step() (images, labels) = cifar10.distorted_inputs() logits = cifar10.inference(images) loss = cifar10.loss(logits, labels) grads = cifar10.train_part1(loss, global_step) only_gradients = [g for (g, _) in grads] only_vars = [v for (_, v) in grads] placeholder_gradients = [] for grad_var in grads: placeholder_gradients.append((tf.placeholder('float', shape=grad_var[0].get_shape()), grad_var[1])) feed_dict = {} for (i, grad_var) in enumerate(grads): feed_dict[placeholder_gradients[i][0]] = np.zeros(placeholder_gradients[i][0].shape) train_op = cifar10.train_part2(global_step, placeholder_gradients) class _LoggerHook(tf.train.SessionRunHook): 'Logs loss and runtime.' def begin(self): self._step = (- 1) self._start_time = time.time() def before_run(self, run_context): self._step += 1 if ((self._step % 2) == 0): return tf.train.SessionRunArgs(loss) else: return None def after_run(self, run_context, run_values): if (((self._step % FLAGS.log_frequency) == 0) and ((self._step % 2) == 0)): current_time = time.time() duration = (current_time - self._start_time) self._start_time = current_time loss_value = run_values.results examples_per_sec = ((FLAGS.log_frequency * FLAGS.batch_size) / duration) sec_per_batch = float((duration / FLAGS.log_frequency)) format_str = '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)' print((format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch))) with tf.train.MonitoredTrainingSession(checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as mon_sess: while (not mon_sess.should_stop()): (dummy_loss, gradients) = mon_sess.run([loss, only_gradients], feed_dict=feed_dict) gradients2 = gradients feed_dict = {} for (i, grad_var) in enumerate(gradients2): feed_dict[placeholder_gradients[i][0]] = gradients2[i] res = mon_sess.run(train_op, feed_dict=feed_dict)<|docstring|>Train CIFAR-10 for a number of steps.<|endoftext|>
7c8a4705975c9ce7397a64a49f039e51574962ac89566188f05b447acfe3949a
def get_entities(seq, suffix=False): "Gets entities from sequence.\n Args:\n seq (list): sequence of labels.\n Returns:\n list: list of (chunk_type, chunk_start, chunk_end).\n Example:\n >>> from sagas.nlu.utils import get_entities\n >>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC']\n >>> get_entities(seq)\n [('PER', 0, 1), ('LOC', 3, 3)]\n " if any((isinstance(s, list) for s in seq)): seq = [item for sublist in seq for item in (sublist + ['O'])] prev_tag = 'O' prev_type = '' begin_offset = 0 chunks = [] for (i, chunk) in enumerate((seq + ['O'])): if suffix: tag = chunk[(- 1)] type_ = chunk.split('-', maxsplit=1)[0] else: tag = chunk[0] type_ = chunk.split('-', maxsplit=1)[(- 1)] if end_of_chunk(prev_tag, tag, prev_type, type_): chunks.append((prev_type, begin_offset, (i - 1))) if start_of_chunk(prev_tag, tag, prev_type, type_): begin_offset = i prev_tag = tag prev_type = type_ return chunks
Gets entities from sequence. Args: seq (list): sequence of labels. Returns: list: list of (chunk_type, chunk_start, chunk_end). Example: >>> from sagas.nlu.utils import get_entities >>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC'] >>> get_entities(seq) [('PER', 0, 1), ('LOC', 3, 3)]
sagas/nlu/utils.py
get_entities
samlet/stack
3
python
def get_entities(seq, suffix=False): "Gets entities from sequence.\n Args:\n seq (list): sequence of labels.\n Returns:\n list: list of (chunk_type, chunk_start, chunk_end).\n Example:\n >>> from sagas.nlu.utils import get_entities\n >>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC']\n >>> get_entities(seq)\n [('PER', 0, 1), ('LOC', 3, 3)]\n " if any((isinstance(s, list) for s in seq)): seq = [item for sublist in seq for item in (sublist + ['O'])] prev_tag = 'O' prev_type = begin_offset = 0 chunks = [] for (i, chunk) in enumerate((seq + ['O'])): if suffix: tag = chunk[(- 1)] type_ = chunk.split('-', maxsplit=1)[0] else: tag = chunk[0] type_ = chunk.split('-', maxsplit=1)[(- 1)] if end_of_chunk(prev_tag, tag, prev_type, type_): chunks.append((prev_type, begin_offset, (i - 1))) if start_of_chunk(prev_tag, tag, prev_type, type_): begin_offset = i prev_tag = tag prev_type = type_ return chunks
def get_entities(seq, suffix=False): "Gets entities from sequence.\n Args:\n seq (list): sequence of labels.\n Returns:\n list: list of (chunk_type, chunk_start, chunk_end).\n Example:\n >>> from sagas.nlu.utils import get_entities\n >>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC']\n >>> get_entities(seq)\n [('PER', 0, 1), ('LOC', 3, 3)]\n " if any((isinstance(s, list) for s in seq)): seq = [item for sublist in seq for item in (sublist + ['O'])] prev_tag = 'O' prev_type = begin_offset = 0 chunks = [] for (i, chunk) in enumerate((seq + ['O'])): if suffix: tag = chunk[(- 1)] type_ = chunk.split('-', maxsplit=1)[0] else: tag = chunk[0] type_ = chunk.split('-', maxsplit=1)[(- 1)] if end_of_chunk(prev_tag, tag, prev_type, type_): chunks.append((prev_type, begin_offset, (i - 1))) if start_of_chunk(prev_tag, tag, prev_type, type_): begin_offset = i prev_tag = tag prev_type = type_ return chunks<|docstring|>Gets entities from sequence. Args: seq (list): sequence of labels. Returns: list: list of (chunk_type, chunk_start, chunk_end). Example: >>> from sagas.nlu.utils import get_entities >>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC'] >>> get_entities(seq) [('PER', 0, 1), ('LOC', 3, 3)]<|endoftext|>
4e55ddf7420a02169e6662a4cef5f0342b5ef68a15bce65741d6354742685ed1
def end_of_chunk(prev_tag, tag, prev_type, type_): 'Checks if a chunk ended between the previous and current word.\n Args:\n prev_tag: previous chunk tag.\n tag: current chunk tag.\n prev_type: previous type.\n type_: current type.\n Returns:\n chunk_end: boolean.\n ' chunk_end = False if (prev_tag == 'E'): chunk_end = True if (prev_tag == 'S'): chunk_end = True if ((prev_tag == 'B') and (tag == 'B')): chunk_end = True if ((prev_tag == 'B') and (tag == 'S')): chunk_end = True if ((prev_tag == 'B') and (tag == 'O')): chunk_end = True if ((prev_tag == 'I') and (tag == 'B')): chunk_end = True if ((prev_tag == 'I') and (tag == 'S')): chunk_end = True if ((prev_tag == 'I') and (tag == 'O')): chunk_end = True if ((prev_tag != 'O') and (prev_tag != '.') and (prev_type != type_)): chunk_end = True return chunk_end
Checks if a chunk ended between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_end: boolean.
sagas/nlu/utils.py
end_of_chunk
samlet/stack
3
python
def end_of_chunk(prev_tag, tag, prev_type, type_): 'Checks if a chunk ended between the previous and current word.\n Args:\n prev_tag: previous chunk tag.\n tag: current chunk tag.\n prev_type: previous type.\n type_: current type.\n Returns:\n chunk_end: boolean.\n ' chunk_end = False if (prev_tag == 'E'): chunk_end = True if (prev_tag == 'S'): chunk_end = True if ((prev_tag == 'B') and (tag == 'B')): chunk_end = True if ((prev_tag == 'B') and (tag == 'S')): chunk_end = True if ((prev_tag == 'B') and (tag == 'O')): chunk_end = True if ((prev_tag == 'I') and (tag == 'B')): chunk_end = True if ((prev_tag == 'I') and (tag == 'S')): chunk_end = True if ((prev_tag == 'I') and (tag == 'O')): chunk_end = True if ((prev_tag != 'O') and (prev_tag != '.') and (prev_type != type_)): chunk_end = True return chunk_end
def end_of_chunk(prev_tag, tag, prev_type, type_): 'Checks if a chunk ended between the previous and current word.\n Args:\n prev_tag: previous chunk tag.\n tag: current chunk tag.\n prev_type: previous type.\n type_: current type.\n Returns:\n chunk_end: boolean.\n ' chunk_end = False if (prev_tag == 'E'): chunk_end = True if (prev_tag == 'S'): chunk_end = True if ((prev_tag == 'B') and (tag == 'B')): chunk_end = True if ((prev_tag == 'B') and (tag == 'S')): chunk_end = True if ((prev_tag == 'B') and (tag == 'O')): chunk_end = True if ((prev_tag == 'I') and (tag == 'B')): chunk_end = True if ((prev_tag == 'I') and (tag == 'S')): chunk_end = True if ((prev_tag == 'I') and (tag == 'O')): chunk_end = True if ((prev_tag != 'O') and (prev_tag != '.') and (prev_type != type_)): chunk_end = True return chunk_end<|docstring|>Checks if a chunk ended between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_end: boolean.<|endoftext|>
439499348288cf587523b727c1772c5537c8c3f9d53118c03832f13fc61bb6b9
def start_of_chunk(prev_tag, tag, prev_type, type_): 'Checks if a chunk started between the previous and current word.\n Args:\n prev_tag: previous chunk tag.\n tag: current chunk tag.\n prev_type: previous type.\n type_: current type.\n Returns:\n chunk_start: boolean.\n ' chunk_start = False if (tag == 'B'): chunk_start = True if (tag == 'S'): chunk_start = True if ((prev_tag == 'E') and (tag == 'E')): chunk_start = True if ((prev_tag == 'E') and (tag == 'I')): chunk_start = True if ((prev_tag == 'S') and (tag == 'E')): chunk_start = True if ((prev_tag == 'S') and (tag == 'I')): chunk_start = True if ((prev_tag == 'O') and (tag == 'E')): chunk_start = True if ((prev_tag == 'O') and (tag == 'I')): chunk_start = True if ((tag != 'O') and (tag != '.') and (prev_type != type_)): chunk_start = True return chunk_start
Checks if a chunk started between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_start: boolean.
sagas/nlu/utils.py
start_of_chunk
samlet/stack
3
python
def start_of_chunk(prev_tag, tag, prev_type, type_): 'Checks if a chunk started between the previous and current word.\n Args:\n prev_tag: previous chunk tag.\n tag: current chunk tag.\n prev_type: previous type.\n type_: current type.\n Returns:\n chunk_start: boolean.\n ' chunk_start = False if (tag == 'B'): chunk_start = True if (tag == 'S'): chunk_start = True if ((prev_tag == 'E') and (tag == 'E')): chunk_start = True if ((prev_tag == 'E') and (tag == 'I')): chunk_start = True if ((prev_tag == 'S') and (tag == 'E')): chunk_start = True if ((prev_tag == 'S') and (tag == 'I')): chunk_start = True if ((prev_tag == 'O') and (tag == 'E')): chunk_start = True if ((prev_tag == 'O') and (tag == 'I')): chunk_start = True if ((tag != 'O') and (tag != '.') and (prev_type != type_)): chunk_start = True return chunk_start
def start_of_chunk(prev_tag, tag, prev_type, type_): 'Checks if a chunk started between the previous and current word.\n Args:\n prev_tag: previous chunk tag.\n tag: current chunk tag.\n prev_type: previous type.\n type_: current type.\n Returns:\n chunk_start: boolean.\n ' chunk_start = False if (tag == 'B'): chunk_start = True if (tag == 'S'): chunk_start = True if ((prev_tag == 'E') and (tag == 'E')): chunk_start = True if ((prev_tag == 'E') and (tag == 'I')): chunk_start = True if ((prev_tag == 'S') and (tag == 'E')): chunk_start = True if ((prev_tag == 'S') and (tag == 'I')): chunk_start = True if ((prev_tag == 'O') and (tag == 'E')): chunk_start = True if ((prev_tag == 'O') and (tag == 'I')): chunk_start = True if ((tag != 'O') and (tag != '.') and (prev_type != type_)): chunk_start = True return chunk_start<|docstring|>Checks if a chunk started between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_start: boolean.<|endoftext|>
26ea27236783214f1a1dcef20ff67ede98f5b3461f37056b158750eb6314d09a
def generate_prediction_data(self, *args, **kwargs): 'Generates data that consumers will use to make predictions for the next trading day.\n\n Currently there is no implementation for this, and calling this method will result in a NotImplementedError\n ' raise NotImplementedError()
Generates data that consumers will use to make predictions for the next trading day. Currently there is no implementation for this, and calling this method will result in a NotImplementedError
src/data_providing_module/data_providers/clustered_block_provider.py
generate_prediction_data
Freitacr/ML-StockAnalysisProject
0
python
def generate_prediction_data(self, *args, **kwargs): 'Generates data that consumers will use to make predictions for the next trading day.\n\n Currently there is no implementation for this, and calling this method will result in a NotImplementedError\n ' raise NotImplementedError()
def generate_prediction_data(self, *args, **kwargs): 'Generates data that consumers will use to make predictions for the next trading day.\n\n Currently there is no implementation for this, and calling this method will result in a NotImplementedError\n ' raise NotImplementedError()<|docstring|>Generates data that consumers will use to make predictions for the next trading day. Currently there is no implementation for this, and calling this method will result in a NotImplementedError<|endoftext|>
3036423b60790bf819ea36ab101089c89116e5f6545991c03b28967367bbee31
def load_configuration(self, parser: 'configparser.ConfigParser'): 'Attempts to load the configurable parameters for this provider from the provided parser.\n\n For more details see abstract class documentation.\n ' section = config_util.create_type_section(parser, self) if (not parser.has_option(section.name, _ENABLED_CONFIG_ID)): self.write_default_configuration(section) enabled = parser.getboolean(section.name, _ENABLED_CONFIG_ID) if enabled: data_provider_registry.registry.register_provider(data_provider_static_names.CLUSTERED_BLOCK_PROVIDER_ID, self)
Attempts to load the configurable parameters for this provider from the provided parser. For more details see abstract class documentation.
src/data_providing_module/data_providers/clustered_block_provider.py
load_configuration
Freitacr/ML-StockAnalysisProject
0
python
def load_configuration(self, parser: 'configparser.ConfigParser'): 'Attempts to load the configurable parameters for this provider from the provided parser.\n\n For more details see abstract class documentation.\n ' section = config_util.create_type_section(parser, self) if (not parser.has_option(section.name, _ENABLED_CONFIG_ID)): self.write_default_configuration(section) enabled = parser.getboolean(section.name, _ENABLED_CONFIG_ID) if enabled: data_provider_registry.registry.register_provider(data_provider_static_names.CLUSTERED_BLOCK_PROVIDER_ID, self)
def load_configuration(self, parser: 'configparser.ConfigParser'): 'Attempts to load the configurable parameters for this provider from the provided parser.\n\n For more details see abstract class documentation.\n ' section = config_util.create_type_section(parser, self) if (not parser.has_option(section.name, _ENABLED_CONFIG_ID)): self.write_default_configuration(section) enabled = parser.getboolean(section.name, _ENABLED_CONFIG_ID) if enabled: data_provider_registry.registry.register_provider(data_provider_static_names.CLUSTERED_BLOCK_PROVIDER_ID, self)<|docstring|>Attempts to load the configurable parameters for this provider from the provided parser. For more details see abstract class documentation.<|endoftext|>
497d50d9400920609899e12549fd7101f52a17d554ebc5f3fab2688b09bb9352
def write_default_configuration(self, section: 'configparser.SectionProxy'): 'Writes default configuration values into the SectionProxy provided.\n\n For more details see abstract class documentation.\n ' section[_ENABLED_CONFIG_ID] = 'True'
Writes default configuration values into the SectionProxy provided. For more details see abstract class documentation.
src/data_providing_module/data_providers/clustered_block_provider.py
write_default_configuration
Freitacr/ML-StockAnalysisProject
0
python
def write_default_configuration(self, section: 'configparser.SectionProxy'): 'Writes default configuration values into the SectionProxy provided.\n\n For more details see abstract class documentation.\n ' section[_ENABLED_CONFIG_ID] = 'True'
def write_default_configuration(self, section: 'configparser.SectionProxy'): 'Writes default configuration values into the SectionProxy provided.\n\n For more details see abstract class documentation.\n ' section[_ENABLED_CONFIG_ID] = 'True'<|docstring|>Writes default configuration values into the SectionProxy provided. For more details see abstract class documentation.<|endoftext|>
f3ce46c57cad01da4cf89fcef09531455a2faaf31eb014a9ff65491636c21684
def __init__(self): 'Initializes ClusteredBlockProvider and registers it with the global DataProviderRegistry\n\n ' super(ClusteredBlockProvider, self).__init__() configurable_registry.config_registry.register_configurable(self)
Initializes ClusteredBlockProvider and registers it with the global DataProviderRegistry
src/data_providing_module/data_providers/clustered_block_provider.py
__init__
Freitacr/ML-StockAnalysisProject
0
python
def __init__(self): '\n\n ' super(ClusteredBlockProvider, self).__init__() configurable_registry.config_registry.register_configurable(self)
def __init__(self): '\n\n ' super(ClusteredBlockProvider, self).__init__() configurable_registry.config_registry.register_configurable(self)<|docstring|>Initializes ClusteredBlockProvider and registers it with the global DataProviderRegistry<|endoftext|>
7bed1794b3c240a32ee11a9611e0de9e324a756454d4297a211820a70c50592a
def generate_data(self, *args, **kwargs) -> Tuple[(np.ndarray, np.ndarray, np.ndarray, np.ndarray)]: 'Generates data for Consumers to use by clustering together stocks in a time period\n\n The time period for cluster creation is a period of 52 * 4 weeks (approximately 4 years).\n Consumers requiring data from this provider are expected to provide the arguments specified in the\n *args entry of the Arguments section\n\n As a note, the data provided is not separated by cluster. If separation is desired, see SplitBlockProvider.\n\n Arguments:\n *args:\n List of arguments that are expected to be in the following order, with the specified types\n train_columns: List[str]\n List of names of columns from a StockDataTable. These will be used to retrieve data\n from the database and construct the returned data blocks\n expectation_columns: List[int]\n List of integers representing the indices of the columns to be used as the target data\n in the generation of the data blocks\n Returns:\n See StockClusterDataManager.retrieve_training_data_movement_targets\n ' if (len(args) <= 1): raise ValueError(('Expected at least the first argument from the following list;' + ' train_columns: List["str"], expectation_columns: List["int"]')) columns = args[0] expectation_columns = None if (len(args) == 2): expectation_columns = args[1] start_date = (datetime.datetime.now() - datetime.timedelta(weeks=(52 * 4))) start_date = start_date.isoformat()[:10].replace('-', '/') end_date = datetime.datetime.now().isoformat()[:10].replace('-', '/') data_retriever = stock_cluster_data_manager.StockClusterDataManager(start_date, end_date, column_list=columns) return data_retriever.retrieveTrainingDataMovementTargets(expectation_columns=expectation_columns)
Generates data for Consumers to use by clustering together stocks in a time period The time period for cluster creation is a period of 52 * 4 weeks (approximately 4 years). Consumers requiring data from this provider are expected to provide the arguments specified in the *args entry of the Arguments section As a note, the data provided is not separated by cluster. If separation is desired, see SplitBlockProvider. Arguments: *args: List of arguments that are expected to be in the following order, with the specified types train_columns: List[str] List of names of columns from a StockDataTable. These will be used to retrieve data from the database and construct the returned data blocks expectation_columns: List[int] List of integers representing the indices of the columns to be used as the target data in the generation of the data blocks Returns: See StockClusterDataManager.retrieve_training_data_movement_targets
src/data_providing_module/data_providers/clustered_block_provider.py
generate_data
Freitacr/ML-StockAnalysisProject
0
python
def generate_data(self, *args, **kwargs) -> Tuple[(np.ndarray, np.ndarray, np.ndarray, np.ndarray)]: 'Generates data for Consumers to use by clustering together stocks in a time period\n\n The time period for cluster creation is a period of 52 * 4 weeks (approximately 4 years).\n Consumers requiring data from this provider are expected to provide the arguments specified in the\n *args entry of the Arguments section\n\n As a note, the data provided is not separated by cluster. If separation is desired, see SplitBlockProvider.\n\n Arguments:\n *args:\n List of arguments that are expected to be in the following order, with the specified types\n train_columns: List[str]\n List of names of columns from a StockDataTable. These will be used to retrieve data\n from the database and construct the returned data blocks\n expectation_columns: List[int]\n List of integers representing the indices of the columns to be used as the target data\n in the generation of the data blocks\n Returns:\n See StockClusterDataManager.retrieve_training_data_movement_targets\n ' if (len(args) <= 1): raise ValueError(('Expected at least the first argument from the following list;' + ' train_columns: List["str"], expectation_columns: List["int"]')) columns = args[0] expectation_columns = None if (len(args) == 2): expectation_columns = args[1] start_date = (datetime.datetime.now() - datetime.timedelta(weeks=(52 * 4))) start_date = start_date.isoformat()[:10].replace('-', '/') end_date = datetime.datetime.now().isoformat()[:10].replace('-', '/') data_retriever = stock_cluster_data_manager.StockClusterDataManager(start_date, end_date, column_list=columns) return data_retriever.retrieveTrainingDataMovementTargets(expectation_columns=expectation_columns)
def generate_data(self, *args, **kwargs) -> Tuple[(np.ndarray, np.ndarray, np.ndarray, np.ndarray)]: 'Generates data for Consumers to use by clustering together stocks in a time period\n\n The time period for cluster creation is a period of 52 * 4 weeks (approximately 4 years).\n Consumers requiring data from this provider are expected to provide the arguments specified in the\n *args entry of the Arguments section\n\n As a note, the data provided is not separated by cluster. If separation is desired, see SplitBlockProvider.\n\n Arguments:\n *args:\n List of arguments that are expected to be in the following order, with the specified types\n train_columns: List[str]\n List of names of columns from a StockDataTable. These will be used to retrieve data\n from the database and construct the returned data blocks\n expectation_columns: List[int]\n List of integers representing the indices of the columns to be used as the target data\n in the generation of the data blocks\n Returns:\n See StockClusterDataManager.retrieve_training_data_movement_targets\n ' if (len(args) <= 1): raise ValueError(('Expected at least the first argument from the following list;' + ' train_columns: List["str"], expectation_columns: List["int"]')) columns = args[0] expectation_columns = None if (len(args) == 2): expectation_columns = args[1] start_date = (datetime.datetime.now() - datetime.timedelta(weeks=(52 * 4))) start_date = start_date.isoformat()[:10].replace('-', '/') end_date = datetime.datetime.now().isoformat()[:10].replace('-', '/') data_retriever = stock_cluster_data_manager.StockClusterDataManager(start_date, end_date, column_list=columns) return data_retriever.retrieveTrainingDataMovementTargets(expectation_columns=expectation_columns)<|docstring|>Generates data for Consumers to use by clustering together stocks in a time period The time period for cluster creation is a period of 52 * 4 weeks (approximately 4 years). Consumers requiring data from this provider are expected to provide the arguments specified in the *args entry of the Arguments section As a note, the data provided is not separated by cluster. If separation is desired, see SplitBlockProvider. Arguments: *args: List of arguments that are expected to be in the following order, with the specified types train_columns: List[str] List of names of columns from a StockDataTable. These will be used to retrieve data from the database and construct the returned data blocks expectation_columns: List[int] List of integers representing the indices of the columns to be used as the target data in the generation of the data blocks Returns: See StockClusterDataManager.retrieve_training_data_movement_targets<|endoftext|>
e8f12f22bbe4b9496cd603c285bdb5d8401a0d30dcfac13830b4c29625e40fef
def _hashlist(items): 'return sha1 hexdigest for a list' return hashlib.sha1(str(items)).hexdigest()
return sha1 hexdigest for a list
python/lib/python2.7/site-packages/hgext/chgserver.py
_hashlist
gtfarng/Odoo_migrade
1
python
def _hashlist(items): return hashlib.sha1(str(items)).hexdigest()
def _hashlist(items): return hashlib.sha1(str(items)).hexdigest()<|docstring|>return sha1 hexdigest for a list<|endoftext|>
cf96cf357714a09ab483cd16897e5efaad31c8691e58dfd08568bd6ea55a3f4b
def _confighash(ui): 'return a quick hash for detecting config/env changes\n\n confighash is the hash of sensitive config items and environment variables.\n\n for chgserver, it is designed that once confighash changes, the server is\n not qualified to serve its client and should redirect the client to a new\n server. different from mtimehash, confighash change will not mark the\n server outdated and exit since the user can have different configs at the\n same time.\n ' sectionitems = [] for section in _configsections: sectionitems.append(ui.configitems(section)) sectionhash = _hashlist(sectionitems) envitems = [(k, v) for (k, v) in os.environ.iteritems() if _envre.match(k)] envhash = _hashlist(sorted(envitems)) return (sectionhash[:6] + envhash[:6])
return a quick hash for detecting config/env changes confighash is the hash of sensitive config items and environment variables. for chgserver, it is designed that once confighash changes, the server is not qualified to serve its client and should redirect the client to a new server. different from mtimehash, confighash change will not mark the server outdated and exit since the user can have different configs at the same time.
python/lib/python2.7/site-packages/hgext/chgserver.py
_confighash
gtfarng/Odoo_migrade
1
python
def _confighash(ui): 'return a quick hash for detecting config/env changes\n\n confighash is the hash of sensitive config items and environment variables.\n\n for chgserver, it is designed that once confighash changes, the server is\n not qualified to serve its client and should redirect the client to a new\n server. different from mtimehash, confighash change will not mark the\n server outdated and exit since the user can have different configs at the\n same time.\n ' sectionitems = [] for section in _configsections: sectionitems.append(ui.configitems(section)) sectionhash = _hashlist(sectionitems) envitems = [(k, v) for (k, v) in os.environ.iteritems() if _envre.match(k)] envhash = _hashlist(sorted(envitems)) return (sectionhash[:6] + envhash[:6])
def _confighash(ui): 'return a quick hash for detecting config/env changes\n\n confighash is the hash of sensitive config items and environment variables.\n\n for chgserver, it is designed that once confighash changes, the server is\n not qualified to serve its client and should redirect the client to a new\n server. different from mtimehash, confighash change will not mark the\n server outdated and exit since the user can have different configs at the\n same time.\n ' sectionitems = [] for section in _configsections: sectionitems.append(ui.configitems(section)) sectionhash = _hashlist(sectionitems) envitems = [(k, v) for (k, v) in os.environ.iteritems() if _envre.match(k)] envhash = _hashlist(sorted(envitems)) return (sectionhash[:6] + envhash[:6])<|docstring|>return a quick hash for detecting config/env changes confighash is the hash of sensitive config items and environment variables. for chgserver, it is designed that once confighash changes, the server is not qualified to serve its client and should redirect the client to a new server. different from mtimehash, confighash change will not mark the server outdated and exit since the user can have different configs at the same time.<|endoftext|>
42e91411e2681448602d9c8592e4d313b6f8cd1f135f63fffd4f1f3a1fd608f3
def _getmtimepaths(ui): 'get a list of paths that should be checked to detect change\n\n The list will include:\n - extensions (will not cover all files for complex extensions)\n - mercurial/__version__.py\n - python binary\n ' modules = [m for (n, m) in extensions.extensions(ui)] try: from mercurial import __version__ modules.append(__version__) except ImportError: pass files = [sys.executable] for m in modules: try: files.append(inspect.getabsfile(m)) except TypeError: pass return sorted(set(files))
get a list of paths that should be checked to detect change The list will include: - extensions (will not cover all files for complex extensions) - mercurial/__version__.py - python binary
python/lib/python2.7/site-packages/hgext/chgserver.py
_getmtimepaths
gtfarng/Odoo_migrade
1
python
def _getmtimepaths(ui): 'get a list of paths that should be checked to detect change\n\n The list will include:\n - extensions (will not cover all files for complex extensions)\n - mercurial/__version__.py\n - python binary\n ' modules = [m for (n, m) in extensions.extensions(ui)] try: from mercurial import __version__ modules.append(__version__) except ImportError: pass files = [sys.executable] for m in modules: try: files.append(inspect.getabsfile(m)) except TypeError: pass return sorted(set(files))
def _getmtimepaths(ui): 'get a list of paths that should be checked to detect change\n\n The list will include:\n - extensions (will not cover all files for complex extensions)\n - mercurial/__version__.py\n - python binary\n ' modules = [m for (n, m) in extensions.extensions(ui)] try: from mercurial import __version__ modules.append(__version__) except ImportError: pass files = [sys.executable] for m in modules: try: files.append(inspect.getabsfile(m)) except TypeError: pass return sorted(set(files))<|docstring|>get a list of paths that should be checked to detect change The list will include: - extensions (will not cover all files for complex extensions) - mercurial/__version__.py - python binary<|endoftext|>
c908bd6f28ca34ac041081ef56cf3934985c162731af713324a4df90bbde3782
def _mtimehash(paths): "return a quick hash for detecting file changes\n\n mtimehash calls stat on given paths and calculate a hash based on size and\n mtime of each file. mtimehash does not read file content because reading is\n expensive. therefore it's not 100% reliable for detecting content changes.\n it's possible to return different hashes for same file contents.\n it's also possible to return a same hash for different file contents for\n some carefully crafted situation.\n\n for chgserver, it is designed that once mtimehash changes, the server is\n considered outdated immediately and should no longer provide service.\n\n mtimehash is not included in confighash because we only know the paths of\n extensions after importing them (there is imp.find_module but that faces\n race conditions). We need to calculate confighash without importing.\n " def trystat(path): try: st = os.stat(path) return (st.st_mtime, st.st_size) except OSError: pass return _hashlist(map(trystat, paths))[:12]
return a quick hash for detecting file changes mtimehash calls stat on given paths and calculate a hash based on size and mtime of each file. mtimehash does not read file content because reading is expensive. therefore it's not 100% reliable for detecting content changes. it's possible to return different hashes for same file contents. it's also possible to return a same hash for different file contents for some carefully crafted situation. for chgserver, it is designed that once mtimehash changes, the server is considered outdated immediately and should no longer provide service. mtimehash is not included in confighash because we only know the paths of extensions after importing them (there is imp.find_module but that faces race conditions). We need to calculate confighash without importing.
python/lib/python2.7/site-packages/hgext/chgserver.py
_mtimehash
gtfarng/Odoo_migrade
1
python
def _mtimehash(paths): "return a quick hash for detecting file changes\n\n mtimehash calls stat on given paths and calculate a hash based on size and\n mtime of each file. mtimehash does not read file content because reading is\n expensive. therefore it's not 100% reliable for detecting content changes.\n it's possible to return different hashes for same file contents.\n it's also possible to return a same hash for different file contents for\n some carefully crafted situation.\n\n for chgserver, it is designed that once mtimehash changes, the server is\n considered outdated immediately and should no longer provide service.\n\n mtimehash is not included in confighash because we only know the paths of\n extensions after importing them (there is imp.find_module but that faces\n race conditions). We need to calculate confighash without importing.\n " def trystat(path): try: st = os.stat(path) return (st.st_mtime, st.st_size) except OSError: pass return _hashlist(map(trystat, paths))[:12]
def _mtimehash(paths): "return a quick hash for detecting file changes\n\n mtimehash calls stat on given paths and calculate a hash based on size and\n mtime of each file. mtimehash does not read file content because reading is\n expensive. therefore it's not 100% reliable for detecting content changes.\n it's possible to return different hashes for same file contents.\n it's also possible to return a same hash for different file contents for\n some carefully crafted situation.\n\n for chgserver, it is designed that once mtimehash changes, the server is\n considered outdated immediately and should no longer provide service.\n\n mtimehash is not included in confighash because we only know the paths of\n extensions after importing them (there is imp.find_module but that faces\n race conditions). We need to calculate confighash without importing.\n " def trystat(path): try: st = os.stat(path) return (st.st_mtime, st.st_size) except OSError: pass return _hashlist(map(trystat, paths))[:12]<|docstring|>return a quick hash for detecting file changes mtimehash calls stat on given paths and calculate a hash based on size and mtime of each file. mtimehash does not read file content because reading is expensive. therefore it's not 100% reliable for detecting content changes. it's possible to return different hashes for same file contents. it's also possible to return a same hash for different file contents for some carefully crafted situation. for chgserver, it is designed that once mtimehash changes, the server is considered outdated immediately and should no longer provide service. mtimehash is not included in confighash because we only know the paths of extensions after importing them (there is imp.find_module but that faces race conditions). We need to calculate confighash without importing.<|endoftext|>
c29bedf53b552b68737f1553fdb2761a0cb6230e5f7b5260e44f93108f5bfd18
def attachio(self): "Attach to client's stdio passed via unix domain socket; all\n channels except cresult will no longer be used\n " self.clientsock.sendall(struct.pack('>cI', 'I', 1)) clientfds = osutil.recvfds(self.clientsock.fileno()) _log(('received fds: %r\n' % clientfds)) ui = self.ui ui.flush() first = self._saveio() for (fd, (cn, fn, mode)) in zip(clientfds, _iochannels): assert (fd > 0) fp = getattr(ui, fn) os.dup2(fd, fp.fileno()) os.close(fd) if (not first): continue if (fn == 'ferr'): newfp = fp else: if fp.isatty(): bufsize = 1 else: bufsize = (- 1) newfp = os.fdopen(fp.fileno(), mode, bufsize) setattr(ui, fn, newfp) setattr(self, cn, newfp) self.cresult.write(struct.pack('>i', len(clientfds)))
Attach to client's stdio passed via unix domain socket; all channels except cresult will no longer be used
python/lib/python2.7/site-packages/hgext/chgserver.py
attachio
gtfarng/Odoo_migrade
1
python
def attachio(self): "Attach to client's stdio passed via unix domain socket; all\n channels except cresult will no longer be used\n " self.clientsock.sendall(struct.pack('>cI', 'I', 1)) clientfds = osutil.recvfds(self.clientsock.fileno()) _log(('received fds: %r\n' % clientfds)) ui = self.ui ui.flush() first = self._saveio() for (fd, (cn, fn, mode)) in zip(clientfds, _iochannels): assert (fd > 0) fp = getattr(ui, fn) os.dup2(fd, fp.fileno()) os.close(fd) if (not first): continue if (fn == 'ferr'): newfp = fp else: if fp.isatty(): bufsize = 1 else: bufsize = (- 1) newfp = os.fdopen(fp.fileno(), mode, bufsize) setattr(ui, fn, newfp) setattr(self, cn, newfp) self.cresult.write(struct.pack('>i', len(clientfds)))
def attachio(self): "Attach to client's stdio passed via unix domain socket; all\n channels except cresult will no longer be used\n " self.clientsock.sendall(struct.pack('>cI', 'I', 1)) clientfds = osutil.recvfds(self.clientsock.fileno()) _log(('received fds: %r\n' % clientfds)) ui = self.ui ui.flush() first = self._saveio() for (fd, (cn, fn, mode)) in zip(clientfds, _iochannels): assert (fd > 0) fp = getattr(ui, fn) os.dup2(fd, fp.fileno()) os.close(fd) if (not first): continue if (fn == 'ferr'): newfp = fp else: if fp.isatty(): bufsize = 1 else: bufsize = (- 1) newfp = os.fdopen(fp.fileno(), mode, bufsize) setattr(ui, fn, newfp) setattr(self, cn, newfp) self.cresult.write(struct.pack('>i', len(clientfds)))<|docstring|>Attach to client's stdio passed via unix domain socket; all channels except cresult will no longer be used<|endoftext|>
a181b25f7dcf3e691e84edd6107faf1803e78fa750f9d79028f42b0523c86501
def validate(self): 'Reload the config and check if the server is up to date\n\n Read a list of \'\x00\' separated arguments.\n Write a non-empty list of \'\x00\' separated instruction strings or \'\x00\'\n if the list is empty.\n An instruction string could be either:\n - "unlink $path", the client should unlink the path to stop the\n outdated server.\n - "redirect $path", the client should attempt to connect to $path\n first. If it does not work, start a new server. It implies\n "reconnect".\n - "exit $n", the client should exit directly with code n.\n This may happen if we cannot parse the config.\n - "reconnect", the client should close the connection and\n reconnect.\n If neither "reconnect" nor "redirect" is included in the instruction\n list, the client can continue with this server after completing all\n the instructions.\n ' args = self._readlist() try: (self.ui, lui) = _loadnewui(self.ui, args) except error.ParseError as inst: dispatch._formatparse(self.ui.warn, inst) self.ui.flush() self.cresult.write('exit 255') return newhash = hashstate.fromui(lui, self.hashstate.mtimepaths) insts = [] if (newhash.mtimehash != self.hashstate.mtimehash): addr = _hashaddress(self.baseaddress, self.hashstate.confighash) insts.append(('unlink %s' % addr)) if self.hashstate.mtimehash: insts.append('reconnect') if (newhash.confighash != self.hashstate.confighash): addr = _hashaddress(self.baseaddress, newhash.confighash) insts.append(('redirect %s' % addr)) _log(('validate: %s\n' % insts)) self.cresult.write(('\x00'.join(insts) or '\x00'))
Reload the config and check if the server is up to date Read a list of '' separated arguments. Write a non-empty list of '' separated instruction strings or '' if the list is empty. An instruction string could be either: - "unlink $path", the client should unlink the path to stop the outdated server. - "redirect $path", the client should attempt to connect to $path first. If it does not work, start a new server. It implies "reconnect". - "exit $n", the client should exit directly with code n. This may happen if we cannot parse the config. - "reconnect", the client should close the connection and reconnect. If neither "reconnect" nor "redirect" is included in the instruction list, the client can continue with this server after completing all the instructions.
python/lib/python2.7/site-packages/hgext/chgserver.py
validate
gtfarng/Odoo_migrade
1
python
def validate(self): 'Reload the config and check if the server is up to date\n\n Read a list of \'\x00\' separated arguments.\n Write a non-empty list of \'\x00\' separated instruction strings or \'\x00\'\n if the list is empty.\n An instruction string could be either:\n - "unlink $path", the client should unlink the path to stop the\n outdated server.\n - "redirect $path", the client should attempt to connect to $path\n first. If it does not work, start a new server. It implies\n "reconnect".\n - "exit $n", the client should exit directly with code n.\n This may happen if we cannot parse the config.\n - "reconnect", the client should close the connection and\n reconnect.\n If neither "reconnect" nor "redirect" is included in the instruction\n list, the client can continue with this server after completing all\n the instructions.\n ' args = self._readlist() try: (self.ui, lui) = _loadnewui(self.ui, args) except error.ParseError as inst: dispatch._formatparse(self.ui.warn, inst) self.ui.flush() self.cresult.write('exit 255') return newhash = hashstate.fromui(lui, self.hashstate.mtimepaths) insts = [] if (newhash.mtimehash != self.hashstate.mtimehash): addr = _hashaddress(self.baseaddress, self.hashstate.confighash) insts.append(('unlink %s' % addr)) if self.hashstate.mtimehash: insts.append('reconnect') if (newhash.confighash != self.hashstate.confighash): addr = _hashaddress(self.baseaddress, newhash.confighash) insts.append(('redirect %s' % addr)) _log(('validate: %s\n' % insts)) self.cresult.write(('\x00'.join(insts) or '\x00'))
def validate(self): 'Reload the config and check if the server is up to date\n\n Read a list of \'\x00\' separated arguments.\n Write a non-empty list of \'\x00\' separated instruction strings or \'\x00\'\n if the list is empty.\n An instruction string could be either:\n - "unlink $path", the client should unlink the path to stop the\n outdated server.\n - "redirect $path", the client should attempt to connect to $path\n first. If it does not work, start a new server. It implies\n "reconnect".\n - "exit $n", the client should exit directly with code n.\n This may happen if we cannot parse the config.\n - "reconnect", the client should close the connection and\n reconnect.\n If neither "reconnect" nor "redirect" is included in the instruction\n list, the client can continue with this server after completing all\n the instructions.\n ' args = self._readlist() try: (self.ui, lui) = _loadnewui(self.ui, args) except error.ParseError as inst: dispatch._formatparse(self.ui.warn, inst) self.ui.flush() self.cresult.write('exit 255') return newhash = hashstate.fromui(lui, self.hashstate.mtimepaths) insts = [] if (newhash.mtimehash != self.hashstate.mtimehash): addr = _hashaddress(self.baseaddress, self.hashstate.confighash) insts.append(('unlink %s' % addr)) if self.hashstate.mtimehash: insts.append('reconnect') if (newhash.confighash != self.hashstate.confighash): addr = _hashaddress(self.baseaddress, newhash.confighash) insts.append(('redirect %s' % addr)) _log(('validate: %s\n' % insts)) self.cresult.write(('\x00'.join(insts) or '\x00'))<|docstring|>Reload the config and check if the server is up to date Read a list of '' separated arguments. Write a non-empty list of '' separated instruction strings or '' if the list is empty. An instruction string could be either: - "unlink $path", the client should unlink the path to stop the outdated server. - "redirect $path", the client should attempt to connect to $path first. If it does not work, start a new server. It implies "reconnect". - "exit $n", the client should exit directly with code n. This may happen if we cannot parse the config. - "reconnect", the client should close the connection and reconnect. If neither "reconnect" nor "redirect" is included in the instruction list, the client can continue with this server after completing all the instructions.<|endoftext|>
713ee3640c30cee5d7022b97059a13625889467b10910f4931530bdc16befaf9
def chdir(self): 'Change current directory\n\n Note that the behavior of --cwd option is bit different from this.\n It does not affect --config parameter.\n ' path = self._readstr() if (not path): return _log(('chdir to %r\n' % path)) os.chdir(path)
Change current directory Note that the behavior of --cwd option is bit different from this. It does not affect --config parameter.
python/lib/python2.7/site-packages/hgext/chgserver.py
chdir
gtfarng/Odoo_migrade
1
python
def chdir(self): 'Change current directory\n\n Note that the behavior of --cwd option is bit different from this.\n It does not affect --config parameter.\n ' path = self._readstr() if (not path): return _log(('chdir to %r\n' % path)) os.chdir(path)
def chdir(self): 'Change current directory\n\n Note that the behavior of --cwd option is bit different from this.\n It does not affect --config parameter.\n ' path = self._readstr() if (not path): return _log(('chdir to %r\n' % path)) os.chdir(path)<|docstring|>Change current directory Note that the behavior of --cwd option is bit different from this. It does not affect --config parameter.<|endoftext|>
a90ffe013dc1863b700451bdcfee49be697436950489c4ef7586e3fb67909972
def setumask(self): 'Change umask' mask = struct.unpack('>I', self._read(4))[0] _log(('setumask %r\n' % mask)) os.umask(mask)
Change umask
python/lib/python2.7/site-packages/hgext/chgserver.py
setumask
gtfarng/Odoo_migrade
1
python
def setumask(self): mask = struct.unpack('>I', self._read(4))[0] _log(('setumask %r\n' % mask)) os.umask(mask)
def setumask(self): mask = struct.unpack('>I', self._read(4))[0] _log(('setumask %r\n' % mask)) os.umask(mask)<|docstring|>Change umask<|endoftext|>
62db587af3b7f9a37634ea257a0de344044f9a51c6b3f7f1dffd5fbb74ae6fc4
def getpager(self): "Read cmdargs and write pager command to r-channel if enabled\n\n If pager isn't enabled, this writes '\x00' because channeledoutput\n does not allow to write empty data.\n " args = self._readlist() try: (cmd, _func, args, options, _cmdoptions) = dispatch._parse(self.ui, args) except (error.Abort, error.AmbiguousCommand, error.CommandError, error.UnknownCommand): cmd = None options = {} if ((not cmd) or ('pager' not in options)): self.cresult.write('\x00') return pagercmd = _setuppagercmd(self.ui, options, cmd) if pagercmd: if (util.safehasattr(signal, 'SIGPIPE') and (signal.getsignal(signal.SIGPIPE) == signal.SIG_IGN)): signal.signal(signal.SIGPIPE, signal.SIG_DFL) self.cresult.write(pagercmd) else: self.cresult.write('\x00')
Read cmdargs and write pager command to r-channel if enabled If pager isn't enabled, this writes '' because channeledoutput does not allow to write empty data.
python/lib/python2.7/site-packages/hgext/chgserver.py
getpager
gtfarng/Odoo_migrade
1
python
def getpager(self): "Read cmdargs and write pager command to r-channel if enabled\n\n If pager isn't enabled, this writes '\x00' because channeledoutput\n does not allow to write empty data.\n " args = self._readlist() try: (cmd, _func, args, options, _cmdoptions) = dispatch._parse(self.ui, args) except (error.Abort, error.AmbiguousCommand, error.CommandError, error.UnknownCommand): cmd = None options = {} if ((not cmd) or ('pager' not in options)): self.cresult.write('\x00') return pagercmd = _setuppagercmd(self.ui, options, cmd) if pagercmd: if (util.safehasattr(signal, 'SIGPIPE') and (signal.getsignal(signal.SIGPIPE) == signal.SIG_IGN)): signal.signal(signal.SIGPIPE, signal.SIG_DFL) self.cresult.write(pagercmd) else: self.cresult.write('\x00')
def getpager(self): "Read cmdargs and write pager command to r-channel if enabled\n\n If pager isn't enabled, this writes '\x00' because channeledoutput\n does not allow to write empty data.\n " args = self._readlist() try: (cmd, _func, args, options, _cmdoptions) = dispatch._parse(self.ui, args) except (error.Abort, error.AmbiguousCommand, error.CommandError, error.UnknownCommand): cmd = None options = {} if ((not cmd) or ('pager' not in options)): self.cresult.write('\x00') return pagercmd = _setuppagercmd(self.ui, options, cmd) if pagercmd: if (util.safehasattr(signal, 'SIGPIPE') and (signal.getsignal(signal.SIGPIPE) == signal.SIG_IGN)): signal.signal(signal.SIGPIPE, signal.SIG_DFL) self.cresult.write(pagercmd) else: self.cresult.write('\x00')<|docstring|>Read cmdargs and write pager command to r-channel if enabled If pager isn't enabled, this writes '' because channeledoutput does not allow to write empty data.<|endoftext|>
fcaae9b6fa390ad5488968b20dc3c4677125a394e204adf05ddfe26405914b13
def setenv(self): 'Clear and update os.environ\n\n Note that not all variables can make an effect on the running process.\n ' l = self._readlist() try: newenv = dict((s.split('=', 1) for s in l)) except ValueError: raise ValueError('unexpected value in setenv request') _log(('setenv: %r\n' % sorted(newenv.keys()))) os.environ.clear() os.environ.update(newenv)
Clear and update os.environ Note that not all variables can make an effect on the running process.
python/lib/python2.7/site-packages/hgext/chgserver.py
setenv
gtfarng/Odoo_migrade
1
python
def setenv(self): 'Clear and update os.environ\n\n Note that not all variables can make an effect on the running process.\n ' l = self._readlist() try: newenv = dict((s.split('=', 1) for s in l)) except ValueError: raise ValueError('unexpected value in setenv request') _log(('setenv: %r\n' % sorted(newenv.keys()))) os.environ.clear() os.environ.update(newenv)
def setenv(self): 'Clear and update os.environ\n\n Note that not all variables can make an effect on the running process.\n ' l = self._readlist() try: newenv = dict((s.split('=', 1) for s in l)) except ValueError: raise ValueError('unexpected value in setenv request') _log(('setenv: %r\n' % sorted(newenv.keys()))) os.environ.clear() os.environ.update(newenv)<|docstring|>Clear and update os.environ Note that not all variables can make an effect on the running process.<|endoftext|>
dd53e240a96f7035e6f34e502d0cd904120513081b8c862e1ac9ed9a761fc90e
@staticmethod def image_to_lines(image_array: numpy.array, offset: int, rsleep: int, lsleep: int, app: str) -> None: '\n\t\tConverts an image array to mouseclicks.\n\t\t:param image_array:\n\t\tA numpy array of bools, where False represents a click, and True represents no click.\n\t\t:param offset:\n\t\tAn int which provides spacing between each pixel in image_array. Usefull to adjust for brush size used in whatever this will be outputting for.\n\t\t:param rlseep:\n\t\tint which designates how long in second the mouse will take drawing a line\n\t\t:param rsleep:\n\t\tint which designates how long in seconds to pause at end of row\n\t\t:return:\n\t\t' (startpositionx, startpositiony) = pyautogui.position() for row in image_array: xoffset = 0 white = palette[app][1] alreadydrawing = [white, 0, 0] row[(- 1)] = [255, 105, 180] for value in row: closest = closest_color(value, palette[app][0]) if (closest == white): alreadydrawing[0] = closest xoffset += offset continue if (alreadydrawing[0] == closest): alreadydrawing[2] += offset xoffset += offset continue alreadydrawing[0] = closest pyautogui.mouseUp() pyautogui.moveTo((startpositionx + alreadydrawing[1]), startpositiony) pyautogui.mouseDown() pyautogui.dragTo(((startpositionx + alreadydrawing[1]) + alreadydrawing[2]), startpositiony, duration=lsleep, button='left') pyautogui.mouseUp() alreadydrawing[1] = xoffset alreadydrawing[2] = 0 change_color(closest, app) time.sleep(lsleep) xoffset += offset pyautogui.mouseUp() change_color(white, app) startpositiony += offset pyautogui.mouseUp() pyautogui.moveTo(startpositionx, startpositiony) time.sleep(rsleep)
Converts an image array to mouseclicks. :param image_array: A numpy array of bools, where False represents a click, and True represents no click. :param offset: An int which provides spacing between each pixel in image_array. Usefull to adjust for brush size used in whatever this will be outputting for. :param rlseep: int which designates how long in second the mouse will take drawing a line :param rsleep: int which designates how long in seconds to pause at end of row :return:
src/mouse_automate_color.py
image_to_lines
Nekose/Mouseomate
322
python
@staticmethod def image_to_lines(image_array: numpy.array, offset: int, rsleep: int, lsleep: int, app: str) -> None: '\n\t\tConverts an image array to mouseclicks.\n\t\t:param image_array:\n\t\tA numpy array of bools, where False represents a click, and True represents no click.\n\t\t:param offset:\n\t\tAn int which provides spacing between each pixel in image_array. Usefull to adjust for brush size used in whatever this will be outputting for.\n\t\t:param rlseep:\n\t\tint which designates how long in second the mouse will take drawing a line\n\t\t:param rsleep:\n\t\tint which designates how long in seconds to pause at end of row\n\t\t:return:\n\t\t' (startpositionx, startpositiony) = pyautogui.position() for row in image_array: xoffset = 0 white = palette[app][1] alreadydrawing = [white, 0, 0] row[(- 1)] = [255, 105, 180] for value in row: closest = closest_color(value, palette[app][0]) if (closest == white): alreadydrawing[0] = closest xoffset += offset continue if (alreadydrawing[0] == closest): alreadydrawing[2] += offset xoffset += offset continue alreadydrawing[0] = closest pyautogui.mouseUp() pyautogui.moveTo((startpositionx + alreadydrawing[1]), startpositiony) pyautogui.mouseDown() pyautogui.dragTo(((startpositionx + alreadydrawing[1]) + alreadydrawing[2]), startpositiony, duration=lsleep, button='left') pyautogui.mouseUp() alreadydrawing[1] = xoffset alreadydrawing[2] = 0 change_color(closest, app) time.sleep(lsleep) xoffset += offset pyautogui.mouseUp() change_color(white, app) startpositiony += offset pyautogui.mouseUp() pyautogui.moveTo(startpositionx, startpositiony) time.sleep(rsleep)
@staticmethod def image_to_lines(image_array: numpy.array, offset: int, rsleep: int, lsleep: int, app: str) -> None: '\n\t\tConverts an image array to mouseclicks.\n\t\t:param image_array:\n\t\tA numpy array of bools, where False represents a click, and True represents no click.\n\t\t:param offset:\n\t\tAn int which provides spacing between each pixel in image_array. Usefull to adjust for brush size used in whatever this will be outputting for.\n\t\t:param rlseep:\n\t\tint which designates how long in second the mouse will take drawing a line\n\t\t:param rsleep:\n\t\tint which designates how long in seconds to pause at end of row\n\t\t:return:\n\t\t' (startpositionx, startpositiony) = pyautogui.position() for row in image_array: xoffset = 0 white = palette[app][1] alreadydrawing = [white, 0, 0] row[(- 1)] = [255, 105, 180] for value in row: closest = closest_color(value, palette[app][0]) if (closest == white): alreadydrawing[0] = closest xoffset += offset continue if (alreadydrawing[0] == closest): alreadydrawing[2] += offset xoffset += offset continue alreadydrawing[0] = closest pyautogui.mouseUp() pyautogui.moveTo((startpositionx + alreadydrawing[1]), startpositiony) pyautogui.mouseDown() pyautogui.dragTo(((startpositionx + alreadydrawing[1]) + alreadydrawing[2]), startpositiony, duration=lsleep, button='left') pyautogui.mouseUp() alreadydrawing[1] = xoffset alreadydrawing[2] = 0 change_color(closest, app) time.sleep(lsleep) xoffset += offset pyautogui.mouseUp() change_color(white, app) startpositiony += offset pyautogui.mouseUp() pyautogui.moveTo(startpositionx, startpositiony) time.sleep(rsleep)<|docstring|>Converts an image array to mouseclicks. :param image_array: A numpy array of bools, where False represents a click, and True represents no click. :param offset: An int which provides spacing between each pixel in image_array. Usefull to adjust for brush size used in whatever this will be outputting for. :param rlseep: int which designates how long in second the mouse will take drawing a line :param rsleep: int which designates how long in seconds to pause at end of row :return:<|endoftext|>
2ebca353232bc4513a3e7ebeef18751d033ab3d87f52d55657677be275ac990a
def fold(s): 'auxiliary function: shorten long option values for output' offset = (64 * ' ') maxlen = 70 sep = '|' parts = s.split(sep) line = '' out = '' for f in range(0, len(parts)): if (f != (len(parts) - 1)): line = ((line + parts[f]) + sep) else: line = (line + parts[f]) if (len(line) >= maxlen): out = (((out + line) + '\n') + offset) line = '' out = (out + line) return out
auxiliary function: shorten long option values for output
CTANLoad+Out/CTANLoad+Out.py
fold
GuenterPartosch/Convert_CTAN
1
python
def fold(s): offset = (64 * ' ') maxlen = 70 sep = '|' parts = s.split(sep) line = out = for f in range(0, len(parts)): if (f != (len(parts) - 1)): line = ((line + parts[f]) + sep) else: line = (line + parts[f]) if (len(line) >= maxlen): out = (((out + line) + '\n') + offset) line = out = (out + line) return out
def fold(s): offset = (64 * ' ') maxlen = 70 sep = '|' parts = s.split(sep) line = out = for f in range(0, len(parts)): if (f != (len(parts) - 1)): line = ((line + parts[f]) + sep) else: line = (line + parts[f]) if (len(line) >= maxlen): out = (((out + line) + '\n') + offset) line = out = (out + line) return out<|docstring|>auxiliary function: shorten long option values for output<|endoftext|>
f542c41b5b2a3033844e9bba9bb25adee60be06a42dbb95868401469bcf3f523
def remove_LaTeX_file(t): 'auxiliary function: remove named LaTeX file.' if delete_temporary_file: if (t in latex_files): if path.exists((args.output_name + t)): os.remove((args.output_name + t)) if verbose: print("* Warning: LaTeX file '{}' removed".format((args.output_name + t))) else: pass
auxiliary function: remove named LaTeX file.
CTANLoad+Out/CTANLoad+Out.py
remove_LaTeX_file
GuenterPartosch/Convert_CTAN
1
python
def remove_LaTeX_file(t): if delete_temporary_file: if (t in latex_files): if path.exists((args.output_name + t)): os.remove((args.output_name + t)) if verbose: print("* Warning: LaTeX file '{}' removed".format((args.output_name + t))) else: pass
def remove_LaTeX_file(t): if delete_temporary_file: if (t in latex_files): if path.exists((args.output_name + t)): os.remove((args.output_name + t)) if verbose: print("* Warning: LaTeX file '{}' removed".format((args.output_name + t))) else: pass<|docstring|>auxiliary function: remove named LaTeX file.<|endoftext|>
30904e570217edc220d07a836f712163a0f75d121ee596e876e389972427e1ba
def remove_other_file(t): 'auxiliary function: remove named other file.' if delete_temporary_file: if (t in other_files): if path.exists((args.output_name + t)): os.remove((args.output_name + t)) if verbose: print("* Warning: file '{}' removed".format((args.output_name + t))) else: pass
auxiliary function: remove named other file.
CTANLoad+Out/CTANLoad+Out.py
remove_other_file
GuenterPartosch/Convert_CTAN
1
python
def remove_other_file(t): if delete_temporary_file: if (t in other_files): if path.exists((args.output_name + t)): os.remove((args.output_name + t)) if verbose: print("* Warning: file '{}' removed".format((args.output_name + t))) else: pass
def remove_other_file(t): if delete_temporary_file: if (t in other_files): if path.exists((args.output_name + t)): os.remove((args.output_name + t)) if verbose: print("* Warning: file '{}' removed".format((args.output_name + t))) else: pass<|docstring|>auxiliary function: remove named other file.<|endoftext|>
32da3a9a7a9b8c51056c21c0f48393d9644b7f9f8099023fb1c459a3b6b1df45
def func_call_load(): 'CTANLoad is processed.' print(('-' * 80)) print('* Info: CTANLoad (Load)') try: process_load = subprocess.run(call_load, capture_output=True, universal_newlines=True) load_message = process_load.stdout load_errormessage = process_load.stderr if (len(load_errormessage) > 0): print('* Error: Error in CTANLoad (Load):') print(load_errormessage) sys.exit() else: print(load_message) except: sys.exit('* Error: Error in CTANLoad (Load)') if verbose: print('* Info: CTANLoad (Load) completed')
CTANLoad is processed.
CTANLoad+Out/CTANLoad+Out.py
func_call_load
GuenterPartosch/Convert_CTAN
1
python
def func_call_load(): print(('-' * 80)) print('* Info: CTANLoad (Load)') try: process_load = subprocess.run(call_load, capture_output=True, universal_newlines=True) load_message = process_load.stdout load_errormessage = process_load.stderr if (len(load_errormessage) > 0): print('* Error: Error in CTANLoad (Load):') print(load_errormessage) sys.exit() else: print(load_message) except: sys.exit('* Error: Error in CTANLoad (Load)') if verbose: print('* Info: CTANLoad (Load) completed')
def func_call_load(): print(('-' * 80)) print('* Info: CTANLoad (Load)') try: process_load = subprocess.run(call_load, capture_output=True, universal_newlines=True) load_message = process_load.stdout load_errormessage = process_load.stderr if (len(load_errormessage) > 0): print('* Error: Error in CTANLoad (Load):') print(load_errormessage) sys.exit() else: print(load_message) except: sys.exit('* Error: Error in CTANLoad (Load)') if verbose: print('* Info: CTANLoad (Load) completed')<|docstring|>CTANLoad is processed.<|endoftext|>
85065a6c839e453c832770677515160eb330b3024075879d40567ff09c4e20e2
def func_call_check(): 'CTANLoad (Check) is processed.' print(('-' * 80)) print('* Info: CTANLoad (Check)') try: process_check = subprocess.run(call_check, universal_newlines=True) except: sys.exit('* Error: Error in CTANLoad (Check)') if verbose: print('* Info: CTANLoad (Check) completed')
CTANLoad (Check) is processed.
CTANLoad+Out/CTANLoad+Out.py
func_call_check
GuenterPartosch/Convert_CTAN
1
python
def func_call_check(): print(('-' * 80)) print('* Info: CTANLoad (Check)') try: process_check = subprocess.run(call_check, universal_newlines=True) except: sys.exit('* Error: Error in CTANLoad (Check)') if verbose: print('* Info: CTANLoad (Check) completed')
def func_call_check(): print(('-' * 80)) print('* Info: CTANLoad (Check)') try: process_check = subprocess.run(call_check, universal_newlines=True) except: sys.exit('* Error: Error in CTANLoad (Check)') if verbose: print('* Info: CTANLoad (Check) completed')<|docstring|>CTANLoad (Check) is processed.<|endoftext|>
68806551da68a99b97b6db118a43e13458535bc3175738025ecc6865ca7f546a
def func_call_regeneration(): 'CTANLoad (Regeneration) is processed.' print(('-' * 80)) print('* Info: CTANLoad (Regeneration)') try: process_regeneration = subprocess.run(call_regeneration, capture_output=True, universal_newlines=True) regeneration_errormessage = process_regeneration.stderr regeneration_message = process_regeneration.stdout if (len(regeneration_errormessage) > 0): print('* Error: Error in CTANLoad (Regeneration)') print(regeneration_errormessage) sys.exit() else: print(regeneration_message) except: sys.exit('* Error: Error in CTANLoad (Regeneration)') if verbose: print('* Info: CTANLoad (Regeneration) completed')
CTANLoad (Regeneration) is processed.
CTANLoad+Out/CTANLoad+Out.py
func_call_regeneration
GuenterPartosch/Convert_CTAN
1
python
def func_call_regeneration(): print(('-' * 80)) print('* Info: CTANLoad (Regeneration)') try: process_regeneration = subprocess.run(call_regeneration, capture_output=True, universal_newlines=True) regeneration_errormessage = process_regeneration.stderr regeneration_message = process_regeneration.stdout if (len(regeneration_errormessage) > 0): print('* Error: Error in CTANLoad (Regeneration)') print(regeneration_errormessage) sys.exit() else: print(regeneration_message) except: sys.exit('* Error: Error in CTANLoad (Regeneration)') if verbose: print('* Info: CTANLoad (Regeneration) completed')
def func_call_regeneration(): print(('-' * 80)) print('* Info: CTANLoad (Regeneration)') try: process_regeneration = subprocess.run(call_regeneration, capture_output=True, universal_newlines=True) regeneration_errormessage = process_regeneration.stderr regeneration_message = process_regeneration.stdout if (len(regeneration_errormessage) > 0): print('* Error: Error in CTANLoad (Regeneration)') print(regeneration_errormessage) sys.exit() else: print(regeneration_message) except: sys.exit('* Error: Error in CTANLoad (Regeneration)') if verbose: print('* Info: CTANLoad (Regeneration) completed')<|docstring|>CTANLoad (Regeneration) is processed.<|endoftext|>
0bbec1c080256ccad9da2ed08c01112f8ca1062ea1021649f8f2ece8a0f3bbeb
def func_call_output(): 'CTANOut is processed.' print(('-' * 80)) print('* Info: CTANOut') if (mode == 'BibLaTeX'): remove_other_file('.bib') elif (mode == 'LaTeX'): remove_LaTeX_file('.tex') remove_LaTeX_file('.tap') remove_LaTeX_file('.top') remove_LaTeX_file('.xref') elif (mode == 'RIS'): remove_other_file('.ris') elif (mode == 'plain'): remove_other_file('.txt') elif (mode == 'Excel'): remove_other_file('.tsv') else: pass try: process_output = subprocess.run(call_output, capture_output=True, universal_newlines=True) output_errormessage = process_output.stderr output_message = process_output.stdout if (len(output_errormessage) > 0): print('* Error: Error in CTANOut') print(output_errormessage) sys.exit() else: print(output_message) except: sys.exit('* Error: Error in CTANOut') if verbose: print('* Info: CTANOut completed')
CTANOut is processed.
CTANLoad+Out/CTANLoad+Out.py
func_call_output
GuenterPartosch/Convert_CTAN
1
python
def func_call_output(): print(('-' * 80)) print('* Info: CTANOut') if (mode == 'BibLaTeX'): remove_other_file('.bib') elif (mode == 'LaTeX'): remove_LaTeX_file('.tex') remove_LaTeX_file('.tap') remove_LaTeX_file('.top') remove_LaTeX_file('.xref') elif (mode == 'RIS'): remove_other_file('.ris') elif (mode == 'plain'): remove_other_file('.txt') elif (mode == 'Excel'): remove_other_file('.tsv') else: pass try: process_output = subprocess.run(call_output, capture_output=True, universal_newlines=True) output_errormessage = process_output.stderr output_message = process_output.stdout if (len(output_errormessage) > 0): print('* Error: Error in CTANOut') print(output_errormessage) sys.exit() else: print(output_message) except: sys.exit('* Error: Error in CTANOut') if verbose: print('* Info: CTANOut completed')
def func_call_output(): print(('-' * 80)) print('* Info: CTANOut') if (mode == 'BibLaTeX'): remove_other_file('.bib') elif (mode == 'LaTeX'): remove_LaTeX_file('.tex') remove_LaTeX_file('.tap') remove_LaTeX_file('.top') remove_LaTeX_file('.xref') elif (mode == 'RIS'): remove_other_file('.ris') elif (mode == 'plain'): remove_other_file('.txt') elif (mode == 'Excel'): remove_other_file('.tsv') else: pass try: process_output = subprocess.run(call_output, capture_output=True, universal_newlines=True) output_errormessage = process_output.stderr output_message = process_output.stdout if (len(output_errormessage) > 0): print('* Error: Error in CTANOut') print(output_errormessage) sys.exit() else: print(output_message) except: sys.exit('* Error: Error in CTANOut') if verbose: print('* Info: CTANOut completed')<|docstring|>CTANOut is processed.<|endoftext|>
f0fb1971b3f71b603aa125cf1534e353f24a72a60924ebdf24450d96eb89b5a0
def func_call_compile(): 'Compile the generated LaTeX file.' print(('-' * 80)) print('* Info: Compilation') for e in ['.aux', '.idx', '.ind', '.log', '.ilg', '.pdf', '.out']: remove_LaTeX_file(e) print('\n* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile1 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile1_errormessage = process_compile1.stderr compile1_message = process_compile1.stdout if (len(compile1_errormessage) > 0): print('* Error: Error in compilation') print(compile1_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') print(('.' * 80)) print('* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile2 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile2_errormessage = process_compile2.stderr compile2_message = process_compile2.stdout if (len(compile2_errormessage) > 0): print('* Error: Error in compilation:') print(compile2_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') print(('.' * 80)) print('* Info: Makeindex') if verbose: print('* Info: Call:', call_index) try: process_index = subprocess.run(call_index, capture_output=True, universal_newlines=True) index_errormessage = process_index.stderr index_message = process_index.stdout except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".ilg'\n")) sys.exit('* Error: Error in Makeindex') if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".ilg'\n")) print('* Info: Makeindex OK') print(('.' * 80)) print('* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile3 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile3_errormessage = process_compile3.stderr compile3_message = process_compile3.stdout if (len(compile3_errormessage) > 0): print('* Error: Error in compilation:') print(compile3_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) print(((("* Info: result in '" + direc) + output_name) + ".pdf'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') for e in ['.aux', '.idx', '.ind', '.out']: remove_LaTeX_file(e)
Compile the generated LaTeX file.
CTANLoad+Out/CTANLoad+Out.py
func_call_compile
GuenterPartosch/Convert_CTAN
1
python
def func_call_compile(): print(('-' * 80)) print('* Info: Compilation') for e in ['.aux', '.idx', '.ind', '.log', '.ilg', '.pdf', '.out']: remove_LaTeX_file(e) print('\n* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile1 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile1_errormessage = process_compile1.stderr compile1_message = process_compile1.stdout if (len(compile1_errormessage) > 0): print('* Error: Error in compilation') print(compile1_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') print(('.' * 80)) print('* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile2 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile2_errormessage = process_compile2.stderr compile2_message = process_compile2.stdout if (len(compile2_errormessage) > 0): print('* Error: Error in compilation:') print(compile2_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') print(('.' * 80)) print('* Info: Makeindex') if verbose: print('* Info: Call:', call_index) try: process_index = subprocess.run(call_index, capture_output=True, universal_newlines=True) index_errormessage = process_index.stderr index_message = process_index.stdout except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".ilg'\n")) sys.exit('* Error: Error in Makeindex') if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".ilg'\n")) print('* Info: Makeindex OK') print(('.' * 80)) print('* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile3 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile3_errormessage = process_compile3.stderr compile3_message = process_compile3.stdout if (len(compile3_errormessage) > 0): print('* Error: Error in compilation:') print(compile3_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) print(((("* Info: result in '" + direc) + output_name) + ".pdf'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') for e in ['.aux', '.idx', '.ind', '.out']: remove_LaTeX_file(e)
def func_call_compile(): print(('-' * 80)) print('* Info: Compilation') for e in ['.aux', '.idx', '.ind', '.log', '.ilg', '.pdf', '.out']: remove_LaTeX_file(e) print('\n* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile1 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile1_errormessage = process_compile1.stderr compile1_message = process_compile1.stdout if (len(compile1_errormessage) > 0): print('* Error: Error in compilation') print(compile1_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') print(('.' * 80)) print('* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile2 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile2_errormessage = process_compile2.stderr compile2_message = process_compile2.stdout if (len(compile2_errormessage) > 0): print('* Error: Error in compilation:') print(compile2_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') print(('.' * 80)) print('* Info: Makeindex') if verbose: print('* Info: Call:', call_index) try: process_index = subprocess.run(call_index, capture_output=True, universal_newlines=True) index_errormessage = process_index.stderr index_message = process_index.stdout except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".ilg'\n")) sys.exit('* Error: Error in Makeindex') if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".ilg'\n")) print('* Info: Makeindex OK') print(('.' * 80)) print('* Info: XeLaTeX') if verbose: print('* Info: Call:', call_compile) try: process_compile3 = subprocess.run(call_compile, capture_output=True, universal_newlines=True) compile3_errormessage = process_compile3.stderr compile3_message = process_compile3.stdout if (len(compile3_errormessage) > 0): print('* Error: Error in compilation:') print(compile3_errormessage) sys.exit() elif verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) print(((("* Info: result in '" + direc) + output_name) + ".pdf'\n")) print('* Info: Compilation OK') except: if verbose: print(((("* Info: more information in '" + direc) + output_name) + ".log'")) sys.exit('* Error: Error in compilation') for e in ['.aux', '.idx', '.ind', '.out']: remove_LaTeX_file(e)<|docstring|>Compile the generated LaTeX file.<|endoftext|>
766c070903d870c54f1d1a79c3c7de10a65b0809f08ba7c79627bd0a1d0d8897
def head(): 'Show the given options.' print('* Info: CTANLoad+Out') if verbose: print('* Info: Call:', call) if (('-c' in call) or ('--check_integrity' in call)): print(' {0:5} {1:55}'.format('-c', (('(' + integrity_text) + ')'))) if (('-f' in call) or ('--download_files' in call)): print(' {0:5} {1:55}'.format('-f', (('(' + download_text) + ')'))) if (('-l' in call) or ('--lists' in call)): print(' {0:5} {1:55}'.format('-l', (('(' + (lists_text + ')')[0:50]) + ellipse))) if (('-mo' in call) or ('--make_output' in call)): print(' {0:5} {1:55}'.format('-mo', (('(' + (make_output_text + ')')[0:50]) + ellipse))) if (('-mt' in call) or ('--make_topics' in call)): print(' {0:5} {1:55}'.format('-mt', (('(' + (topics_text + ')')[0:50]) + ellipse))) if (('-p' in call) or ('--pdf_output' in call)): print(' {0:5} {1:55}'.format('-p', (('(' + pdf_text) + ')'))) if (('-r' in call) or ('--regenerate_pickle_files' in call)): print(' {0:5} {1:55}'.format('-r', (('(' + regenerate_text) + ')'))) if (('-stat' in call) or ('--statistics' in call)): print(' {0:5} {1:55}'.format('-stat', (('(' + statistics_text) + ')'))) if (('-v' in call) or ('--verbose' in call)): print(' {0:5} {1:55}'.format('-v', (('(' + verbose_text) + ')'))) if (('-b' in call) or ('--btype' in call)): print(' {0:5} {2:55} {1}'.format('-b', btype, (('(' + btype_text) + ')'))) if (('-d' in call) or ('--directory' in call)): print(' {0:5} {2:55} {1}'.format('-d', direc, (('(' + direc_text) + ')'))) if (('-m' in call) or ('--mode' in call)): print(' {0:5} {2:55} {1}'.format('-m', mode, (('(' + mode_text) + ')'))) if (('-n' in call) or ('--number' in call)): print(' {0:5} {2:55} {1}'.format('-n', number, (('(' + number_text) + ')'))) if (('-o' in call) or ('--output' in call)): print(' {0:5} {2:55} {1}'.format('-o', args.output_name, (('(' + output_text) + ')'))) if (('-k' in call) or ('--key' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key), (('(' + (key_text + ')')[0:50]) + ellipse))) if (('-kl' in call) or ('--key_load' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key_load), (('(' + key_load_text) + ')'))) if (('-ko' in call) or ('--key_out' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key_out), (('(' + key_out_text) + ')'))) if (('-s' in call) or ('--skip' in call)): print(' {0:5} {2:55} {1}'.format('-s', skip, (('(' + skip_text) + ')'))) if (('-t' in call) or ('--template' in call)): print(' {0:5} {2:55} {1}'.format('-t', fold(template), (('(' + template_text) + ')'))) if (('-tl' in call) or ('--template_load' in call)): print(' {0:5} {2:55} {1}'.format('-tl', template_load, (('(' + template_load_text) + ')'))) if (('-to' in call) or ('--template_out' in call)): print(' {0:5} {2:55} {1}'.format('-to', template_out, (('(' + template_out_text) + ')'))) if (('-A' in call) or ('--author_template' in call)): print(' {0:5} {2:55} {1}'.format('-A', fold(author_template), (('(' + author_template_text) + ')'))) if (('-Al' in call) or ('-author_load_template' in call)): print(' {0:5} {2:55} {1}'.format('-Al', fold(author_load_template), (('(' + author_load_template_text) + ')'))) if (('-Ao' in call) or ('--author_outd_template' in call)): print(' {0:5} {2:55} {1}'.format('-Ao', fold(author_out_template), (('(' + author_out_template_text) + ')'))) print('\n') if regeneration: print('* Info: CTANLoad (Regeneration) to be executed') if load: print('* Info: CTANLoad (Load) to be executed') if check: print('* Info: CTANLoad (Check) to be executed') if output: print('* Info: CTANOut to be executed') if compile: print('* Info: XeLaTeX and MakeIndex to be executed') print('\n')
Show the given options.
CTANLoad+Out/CTANLoad+Out.py
head
GuenterPartosch/Convert_CTAN
1
python
def head(): print('* Info: CTANLoad+Out') if verbose: print('* Info: Call:', call) if (('-c' in call) or ('--check_integrity' in call)): print(' {0:5} {1:55}'.format('-c', (('(' + integrity_text) + ')'))) if (('-f' in call) or ('--download_files' in call)): print(' {0:5} {1:55}'.format('-f', (('(' + download_text) + ')'))) if (('-l' in call) or ('--lists' in call)): print(' {0:5} {1:55}'.format('-l', (('(' + (lists_text + ')')[0:50]) + ellipse))) if (('-mo' in call) or ('--make_output' in call)): print(' {0:5} {1:55}'.format('-mo', (('(' + (make_output_text + ')')[0:50]) + ellipse))) if (('-mt' in call) or ('--make_topics' in call)): print(' {0:5} {1:55}'.format('-mt', (('(' + (topics_text + ')')[0:50]) + ellipse))) if (('-p' in call) or ('--pdf_output' in call)): print(' {0:5} {1:55}'.format('-p', (('(' + pdf_text) + ')'))) if (('-r' in call) or ('--regenerate_pickle_files' in call)): print(' {0:5} {1:55}'.format('-r', (('(' + regenerate_text) + ')'))) if (('-stat' in call) or ('--statistics' in call)): print(' {0:5} {1:55}'.format('-stat', (('(' + statistics_text) + ')'))) if (('-v' in call) or ('--verbose' in call)): print(' {0:5} {1:55}'.format('-v', (('(' + verbose_text) + ')'))) if (('-b' in call) or ('--btype' in call)): print(' {0:5} {2:55} {1}'.format('-b', btype, (('(' + btype_text) + ')'))) if (('-d' in call) or ('--directory' in call)): print(' {0:5} {2:55} {1}'.format('-d', direc, (('(' + direc_text) + ')'))) if (('-m' in call) or ('--mode' in call)): print(' {0:5} {2:55} {1}'.format('-m', mode, (('(' + mode_text) + ')'))) if (('-n' in call) or ('--number' in call)): print(' {0:5} {2:55} {1}'.format('-n', number, (('(' + number_text) + ')'))) if (('-o' in call) or ('--output' in call)): print(' {0:5} {2:55} {1}'.format('-o', args.output_name, (('(' + output_text) + ')'))) if (('-k' in call) or ('--key' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key), (('(' + (key_text + ')')[0:50]) + ellipse))) if (('-kl' in call) or ('--key_load' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key_load), (('(' + key_load_text) + ')'))) if (('-ko' in call) or ('--key_out' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key_out), (('(' + key_out_text) + ')'))) if (('-s' in call) or ('--skip' in call)): print(' {0:5} {2:55} {1}'.format('-s', skip, (('(' + skip_text) + ')'))) if (('-t' in call) or ('--template' in call)): print(' {0:5} {2:55} {1}'.format('-t', fold(template), (('(' + template_text) + ')'))) if (('-tl' in call) or ('--template_load' in call)): print(' {0:5} {2:55} {1}'.format('-tl', template_load, (('(' + template_load_text) + ')'))) if (('-to' in call) or ('--template_out' in call)): print(' {0:5} {2:55} {1}'.format('-to', template_out, (('(' + template_out_text) + ')'))) if (('-A' in call) or ('--author_template' in call)): print(' {0:5} {2:55} {1}'.format('-A', fold(author_template), (('(' + author_template_text) + ')'))) if (('-Al' in call) or ('-author_load_template' in call)): print(' {0:5} {2:55} {1}'.format('-Al', fold(author_load_template), (('(' + author_load_template_text) + ')'))) if (('-Ao' in call) or ('--author_outd_template' in call)): print(' {0:5} {2:55} {1}'.format('-Ao', fold(author_out_template), (('(' + author_out_template_text) + ')'))) print('\n') if regeneration: print('* Info: CTANLoad (Regeneration) to be executed') if load: print('* Info: CTANLoad (Load) to be executed') if check: print('* Info: CTANLoad (Check) to be executed') if output: print('* Info: CTANOut to be executed') if compile: print('* Info: XeLaTeX and MakeIndex to be executed') print('\n')
def head(): print('* Info: CTANLoad+Out') if verbose: print('* Info: Call:', call) if (('-c' in call) or ('--check_integrity' in call)): print(' {0:5} {1:55}'.format('-c', (('(' + integrity_text) + ')'))) if (('-f' in call) or ('--download_files' in call)): print(' {0:5} {1:55}'.format('-f', (('(' + download_text) + ')'))) if (('-l' in call) or ('--lists' in call)): print(' {0:5} {1:55}'.format('-l', (('(' + (lists_text + ')')[0:50]) + ellipse))) if (('-mo' in call) or ('--make_output' in call)): print(' {0:5} {1:55}'.format('-mo', (('(' + (make_output_text + ')')[0:50]) + ellipse))) if (('-mt' in call) or ('--make_topics' in call)): print(' {0:5} {1:55}'.format('-mt', (('(' + (topics_text + ')')[0:50]) + ellipse))) if (('-p' in call) or ('--pdf_output' in call)): print(' {0:5} {1:55}'.format('-p', (('(' + pdf_text) + ')'))) if (('-r' in call) or ('--regenerate_pickle_files' in call)): print(' {0:5} {1:55}'.format('-r', (('(' + regenerate_text) + ')'))) if (('-stat' in call) or ('--statistics' in call)): print(' {0:5} {1:55}'.format('-stat', (('(' + statistics_text) + ')'))) if (('-v' in call) or ('--verbose' in call)): print(' {0:5} {1:55}'.format('-v', (('(' + verbose_text) + ')'))) if (('-b' in call) or ('--btype' in call)): print(' {0:5} {2:55} {1}'.format('-b', btype, (('(' + btype_text) + ')'))) if (('-d' in call) or ('--directory' in call)): print(' {0:5} {2:55} {1}'.format('-d', direc, (('(' + direc_text) + ')'))) if (('-m' in call) or ('--mode' in call)): print(' {0:5} {2:55} {1}'.format('-m', mode, (('(' + mode_text) + ')'))) if (('-n' in call) or ('--number' in call)): print(' {0:5} {2:55} {1}'.format('-n', number, (('(' + number_text) + ')'))) if (('-o' in call) or ('--output' in call)): print(' {0:5} {2:55} {1}'.format('-o', args.output_name, (('(' + output_text) + ')'))) if (('-k' in call) or ('--key' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key), (('(' + (key_text + ')')[0:50]) + ellipse))) if (('-kl' in call) or ('--key_load' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key_load), (('(' + key_load_text) + ')'))) if (('-ko' in call) or ('--key_out' in call)): print(' {0:5} {2:55} {1}'.format('-k', fold(key_out), (('(' + key_out_text) + ')'))) if (('-s' in call) or ('--skip' in call)): print(' {0:5} {2:55} {1}'.format('-s', skip, (('(' + skip_text) + ')'))) if (('-t' in call) or ('--template' in call)): print(' {0:5} {2:55} {1}'.format('-t', fold(template), (('(' + template_text) + ')'))) if (('-tl' in call) or ('--template_load' in call)): print(' {0:5} {2:55} {1}'.format('-tl', template_load, (('(' + template_load_text) + ')'))) if (('-to' in call) or ('--template_out' in call)): print(' {0:5} {2:55} {1}'.format('-to', template_out, (('(' + template_out_text) + ')'))) if (('-A' in call) or ('--author_template' in call)): print(' {0:5} {2:55} {1}'.format('-A', fold(author_template), (('(' + author_template_text) + ')'))) if (('-Al' in call) or ('-author_load_template' in call)): print(' {0:5} {2:55} {1}'.format('-Al', fold(author_load_template), (('(' + author_load_template_text) + ')'))) if (('-Ao' in call) or ('--author_outd_template' in call)): print(' {0:5} {2:55} {1}'.format('-Ao', fold(author_out_template), (('(' + author_out_template_text) + ')'))) print('\n') if regeneration: print('* Info: CTANLoad (Regeneration) to be executed') if load: print('* Info: CTANLoad (Load) to be executed') if check: print('* Info: CTANLoad (Check) to be executed') if output: print('* Info: CTANOut to be executed') if compile: print('* Info: XeLaTeX and MakeIndex to be executed') print('\n')<|docstring|>Show the given options.<|endoftext|>
c8f72a86bb5bbe0871c64799780fad6bbf9b93ecff5f0cb004ac0f0d3ec55820
def main(): 'Main Function' print(('=' * 80)) head() if regeneration: func_call_regeneration() if load: func_call_load() if check: func_call_check() if output: func_call_output() if compile: if path.exists(((direc + output_name) + '.tex')): func_call_compile() else: print("* Warning: LaTeX file '{0}' does not exist".format(((direc + output_name) + '.tex'))) print(('-' * 80))
Main Function
CTANLoad+Out/CTANLoad+Out.py
main
GuenterPartosch/Convert_CTAN
1
python
def main(): print(('=' * 80)) head() if regeneration: func_call_regeneration() if load: func_call_load() if check: func_call_check() if output: func_call_output() if compile: if path.exists(((direc + output_name) + '.tex')): func_call_compile() else: print("* Warning: LaTeX file '{0}' does not exist".format(((direc + output_name) + '.tex'))) print(('-' * 80))
def main(): print(('=' * 80)) head() if regeneration: func_call_regeneration() if load: func_call_load() if check: func_call_check() if output: func_call_output() if compile: if path.exists(((direc + output_name) + '.tex')): func_call_compile() else: print("* Warning: LaTeX file '{0}' does not exist".format(((direc + output_name) + '.tex'))) print(('-' * 80))<|docstring|>Main Function<|endoftext|>
eff9ceaed33c94753aaf9890050b45a2635dec531a065a7976a89c63921cbfac
def get_model(points, w, mu, sigma, is_training, bn_decay=None, weigth_decay=0.005, add_noise=False, num_classes=40): ' Classification PointNet, input is BxNx3, output Bx40 ' batch_size = points.get_shape()[0].value n_points = points.get_shape()[1].value n_gaussians = w.shape[0].value res = int(np.round(np.power(n_gaussians, (1.0 / 3.0)))) fv = tf_util.get_3dmfv(points, w, mu, sigma, flatten=False) if add_noise: noise = tf.cond(is_training, (lambda : tf.random_normal(shape=tf.shape(fv), mean=0.0, stddev=0.01, dtype=tf.float32)), (lambda : tf.zeros(shape=tf.shape(fv)))) fv = (fv + noise) grid_fisher = tf.reshape(fv, [batch_size, (- 1), res, res, res]) grid_fisher = tf.transpose(grid_fisher, [0, 2, 3, 4, 1]) layer = 1 net = inception_module(grid_fisher, n_filters=64, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=128, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=256, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = tf_util.max_pool3d(net, [2, 2, 2], scope=('maxpool' + str(layer)), stride=[2, 2, 2], padding='SAME') layer = (layer + 1) net = inception_module(net, n_filters=256, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=512, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = tf_util.max_pool3d(net, [2, 2, 2], scope=('maxpool' + str(layer)), stride=[2, 2, 2], padding='SAME') net = tf.reshape(net, [batch_size, (- 1)]) net = tf_util.fully_connected(net, 1024, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp2') net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='fc3', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp3') net = tf_util.fully_connected(net, num_classes, activation_fn=None, scope='fc4', is_training=is_training, weigth_decay=weigth_decay) return (net, fv)
Classification PointNet, input is BxNx3, output Bx40
models/3dmfv_net_cls.py
get_model
mhwasil/3DmFV-Net
172
python
def get_model(points, w, mu, sigma, is_training, bn_decay=None, weigth_decay=0.005, add_noise=False, num_classes=40): ' ' batch_size = points.get_shape()[0].value n_points = points.get_shape()[1].value n_gaussians = w.shape[0].value res = int(np.round(np.power(n_gaussians, (1.0 / 3.0)))) fv = tf_util.get_3dmfv(points, w, mu, sigma, flatten=False) if add_noise: noise = tf.cond(is_training, (lambda : tf.random_normal(shape=tf.shape(fv), mean=0.0, stddev=0.01, dtype=tf.float32)), (lambda : tf.zeros(shape=tf.shape(fv)))) fv = (fv + noise) grid_fisher = tf.reshape(fv, [batch_size, (- 1), res, res, res]) grid_fisher = tf.transpose(grid_fisher, [0, 2, 3, 4, 1]) layer = 1 net = inception_module(grid_fisher, n_filters=64, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=128, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=256, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = tf_util.max_pool3d(net, [2, 2, 2], scope=('maxpool' + str(layer)), stride=[2, 2, 2], padding='SAME') layer = (layer + 1) net = inception_module(net, n_filters=256, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=512, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = tf_util.max_pool3d(net, [2, 2, 2], scope=('maxpool' + str(layer)), stride=[2, 2, 2], padding='SAME') net = tf.reshape(net, [batch_size, (- 1)]) net = tf_util.fully_connected(net, 1024, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp2') net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='fc3', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp3') net = tf_util.fully_connected(net, num_classes, activation_fn=None, scope='fc4', is_training=is_training, weigth_decay=weigth_decay) return (net, fv)
def get_model(points, w, mu, sigma, is_training, bn_decay=None, weigth_decay=0.005, add_noise=False, num_classes=40): ' ' batch_size = points.get_shape()[0].value n_points = points.get_shape()[1].value n_gaussians = w.shape[0].value res = int(np.round(np.power(n_gaussians, (1.0 / 3.0)))) fv = tf_util.get_3dmfv(points, w, mu, sigma, flatten=False) if add_noise: noise = tf.cond(is_training, (lambda : tf.random_normal(shape=tf.shape(fv), mean=0.0, stddev=0.01, dtype=tf.float32)), (lambda : tf.zeros(shape=tf.shape(fv)))) fv = (fv + noise) grid_fisher = tf.reshape(fv, [batch_size, (- 1), res, res, res]) grid_fisher = tf.transpose(grid_fisher, [0, 2, 3, 4, 1]) layer = 1 net = inception_module(grid_fisher, n_filters=64, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=128, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=256, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = tf_util.max_pool3d(net, [2, 2, 2], scope=('maxpool' + str(layer)), stride=[2, 2, 2], padding='SAME') layer = (layer + 1) net = inception_module(net, n_filters=256, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = inception_module(net, n_filters=512, kernel_sizes=[3, 5], is_training=is_training, bn_decay=bn_decay, scope=('inception' + str(layer))) layer = (layer + 1) net = tf_util.max_pool3d(net, [2, 2, 2], scope=('maxpool' + str(layer)), stride=[2, 2, 2], padding='SAME') net = tf.reshape(net, [batch_size, (- 1)]) net = tf_util.fully_connected(net, 1024, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp2') net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='fc3', bn_decay=bn_decay, weigth_decay=weigth_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp3') net = tf_util.fully_connected(net, num_classes, activation_fn=None, scope='fc4', is_training=is_training, weigth_decay=weigth_decay) return (net, fv)<|docstring|>Classification PointNet, input is BxNx3, output Bx40<|endoftext|>
ae79a826c603bec6cc782fb236dfb8aafc20a201f55ce2df403aea6d397e1266
def get_loss(pred, label): ' pred: B*NUM_CLASSES,\n label: B, ' loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label) classify_loss = tf.reduce_mean(loss) tf.summary.scalar('classify loss', classify_loss) return classify_loss
pred: B*NUM_CLASSES, label: B,
models/3dmfv_net_cls.py
get_loss
mhwasil/3DmFV-Net
172
python
def get_loss(pred, label): ' pred: B*NUM_CLASSES,\n label: B, ' loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label) classify_loss = tf.reduce_mean(loss) tf.summary.scalar('classify loss', classify_loss) return classify_loss
def get_loss(pred, label): ' pred: B*NUM_CLASSES,\n label: B, ' loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label) classify_loss = tf.reduce_mean(loss) tf.summary.scalar('classify loss', classify_loss) return classify_loss<|docstring|>pred: B*NUM_CLASSES, label: B,<|endoftext|>
8de176db65b4ba73b74069280d1c807523efa8c8e0c8d562b942e8c4203d79f0
def setUp(self): 'Override to set up a mock database and install the plugins.' logging.disable() self.database = Mock() self.database.reports_overviews.find_one.return_value = dict(_id='id') self.database.sessions.find_one.return_value = None self.success = '{"ok": true}' self.session = dict(user='jadoe', email='[email protected]', session_expiration_datetime=datetime.max.replace(tzinfo=timezone.utc)) self.injection_plugin = bottle.install(InjectionPlugin(self.database, 'database')) self.auth_plugin = bottle.install(AuthPlugin())
Override to set up a mock database and install the plugins.
components/server/tests/external/routes/plugins/test_route_auth_plugin.py
setUp
ICTU/quality-time
33
python
def setUp(self): logging.disable() self.database = Mock() self.database.reports_overviews.find_one.return_value = dict(_id='id') self.database.sessions.find_one.return_value = None self.success = '{"ok": true}' self.session = dict(user='jadoe', email='[email protected]', session_expiration_datetime=datetime.max.replace(tzinfo=timezone.utc)) self.injection_plugin = bottle.install(InjectionPlugin(self.database, 'database')) self.auth_plugin = bottle.install(AuthPlugin())
def setUp(self): logging.disable() self.database = Mock() self.database.reports_overviews.find_one.return_value = dict(_id='id') self.database.sessions.find_one.return_value = None self.success = '{"ok": true}' self.session = dict(user='jadoe', email='[email protected]', session_expiration_datetime=datetime.max.replace(tzinfo=timezone.utc)) self.injection_plugin = bottle.install(InjectionPlugin(self.database, 'database')) self.auth_plugin = bottle.install(AuthPlugin())<|docstring|>Override to set up a mock database and install the plugins.<|endoftext|>
43f6671c282a5e15690e16b16ed59536be4ae8afc3c47296bdb694256f9e891c
def tearDown(self): 'Override to remove the plugins and reset the logging.' bottle.uninstall(self.auth_plugin) bottle.uninstall(self.injection_plugin) logging.disable(logging.NOTSET)
Override to remove the plugins and reset the logging.
components/server/tests/external/routes/plugins/test_route_auth_plugin.py
tearDown
ICTU/quality-time
33
python
def tearDown(self): bottle.uninstall(self.auth_plugin) bottle.uninstall(self.injection_plugin) logging.disable(logging.NOTSET)
def tearDown(self): bottle.uninstall(self.auth_plugin) bottle.uninstall(self.injection_plugin) logging.disable(logging.NOTSET)<|docstring|>Override to remove the plugins and reset the logging.<|endoftext|>