body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
89f6f4083ef78a4648fbfbd93d3d9474b165f6b75e75c0a1620acd7cf3589e90
def rename_frame_field(self, field_name, new_field_name): 'Renames the frame-level field to the given new name.\n\n You can use dot notation (``embedded.field.name``) to rename embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._rename_frame_fields({field_name: new_field_name})
Renames the frame-level field to the given new name. You can use dot notation (``embedded.field.name``) to rename embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name`` new_field_name: the new field name or ``embedded.field.name``
fiftyone/core/dataset.py
rename_frame_field
dadounhind/fiftyone
1
python
def rename_frame_field(self, field_name, new_field_name): 'Renames the frame-level field to the given new name.\n\n You can use dot notation (``embedded.field.name``) to rename embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._rename_frame_fields({field_name: new_field_name})
def rename_frame_field(self, field_name, new_field_name): 'Renames the frame-level field to the given new name.\n\n You can use dot notation (``embedded.field.name``) to rename embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._rename_frame_fields({field_name: new_field_name})<|docstring|>Renames the frame-level field to the given new name. You can use dot notation (``embedded.field.name``) to rename embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name`` new_field_name: the new field name or ``embedded.field.name``<|endoftext|>
cbff95dc9523e2436fb4e8ac80024b0c0fcf72963a2c1b536fb89093db8f65aa
def rename_frame_fields(self, field_mapping): 'Renames the frame-level fields to the given new names.\n\n You can use dot notation (``embedded.field.name``) to rename embedded\n frame fields.\n\n Args:\n field_mapping: a dict mapping field names to new field names\n ' self._rename_frame_fields(field_mapping)
Renames the frame-level fields to the given new names. You can use dot notation (``embedded.field.name``) to rename embedded frame fields. Args: field_mapping: a dict mapping field names to new field names
fiftyone/core/dataset.py
rename_frame_fields
dadounhind/fiftyone
1
python
def rename_frame_fields(self, field_mapping): 'Renames the frame-level fields to the given new names.\n\n You can use dot notation (``embedded.field.name``) to rename embedded\n frame fields.\n\n Args:\n field_mapping: a dict mapping field names to new field names\n ' self._rename_frame_fields(field_mapping)
def rename_frame_fields(self, field_mapping): 'Renames the frame-level fields to the given new names.\n\n You can use dot notation (``embedded.field.name``) to rename embedded\n frame fields.\n\n Args:\n field_mapping: a dict mapping field names to new field names\n ' self._rename_frame_fields(field_mapping)<|docstring|>Renames the frame-level fields to the given new names. You can use dot notation (``embedded.field.name``) to rename embedded frame fields. Args: field_mapping: a dict mapping field names to new field names<|endoftext|>
108eb56b71817de0b30c3dd6abb40fe70bc9d862366dc7e5c7776e8955a29ef9
def clone_sample_field(self, field_name, new_field_name): 'Clones the given sample field into a new field of the dataset.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._clone_sample_fields({field_name: new_field_name})
Clones the given sample field into a new field of the dataset. You can use dot notation (``embedded.field.name``) to clone embedded fields. Args: field_name: the field name or ``embedded.field.name`` new_field_name: the new field name or ``embedded.field.name``
fiftyone/core/dataset.py
clone_sample_field
dadounhind/fiftyone
1
python
def clone_sample_field(self, field_name, new_field_name): 'Clones the given sample field into a new field of the dataset.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._clone_sample_fields({field_name: new_field_name})
def clone_sample_field(self, field_name, new_field_name): 'Clones the given sample field into a new field of the dataset.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._clone_sample_fields({field_name: new_field_name})<|docstring|>Clones the given sample field into a new field of the dataset. You can use dot notation (``embedded.field.name``) to clone embedded fields. Args: field_name: the field name or ``embedded.field.name`` new_field_name: the new field name or ``embedded.field.name``<|endoftext|>
2d9b50a37a42130549d7843077490d867f312f6fb46d219497b9d4656ad4aed3
def clone_sample_fields(self, field_mapping): 'Clones the given sample fields into new fields of the dataset.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n fields.\n\n Args:\n field_mapping: a dict mapping field names to new field names into\n which to clone each field\n ' self._clone_sample_fields(field_mapping)
Clones the given sample fields into new fields of the dataset. You can use dot notation (``embedded.field.name``) to clone embedded fields. Args: field_mapping: a dict mapping field names to new field names into which to clone each field
fiftyone/core/dataset.py
clone_sample_fields
dadounhind/fiftyone
1
python
def clone_sample_fields(self, field_mapping): 'Clones the given sample fields into new fields of the dataset.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n fields.\n\n Args:\n field_mapping: a dict mapping field names to new field names into\n which to clone each field\n ' self._clone_sample_fields(field_mapping)
def clone_sample_fields(self, field_mapping): 'Clones the given sample fields into new fields of the dataset.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n fields.\n\n Args:\n field_mapping: a dict mapping field names to new field names into\n which to clone each field\n ' self._clone_sample_fields(field_mapping)<|docstring|>Clones the given sample fields into new fields of the dataset. You can use dot notation (``embedded.field.name``) to clone embedded fields. Args: field_mapping: a dict mapping field names to new field names into which to clone each field<|endoftext|>
5c96f959a3c957b0a28c063c8041347e8cb368075a4f4a4a2b6909cf8d8c77f0
def clone_frame_field(self, field_name, new_field_name): 'Clones the frame-level field into a new field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._clone_frame_fields({field_name: new_field_name})
Clones the frame-level field into a new field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name`` new_field_name: the new field name or ``embedded.field.name``
fiftyone/core/dataset.py
clone_frame_field
dadounhind/fiftyone
1
python
def clone_frame_field(self, field_name, new_field_name): 'Clones the frame-level field into a new field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._clone_frame_fields({field_name: new_field_name})
def clone_frame_field(self, field_name, new_field_name): 'Clones the frame-level field into a new field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n new_field_name: the new field name or ``embedded.field.name``\n ' self._clone_frame_fields({field_name: new_field_name})<|docstring|>Clones the frame-level field into a new field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name`` new_field_name: the new field name or ``embedded.field.name``<|endoftext|>
18c1ba87ce34e959b9a3ad3b3b0c72eee08bc81c7ad55c75f8f40ceec311e019
def clone_frame_fields(self, field_mapping): 'Clones the frame-level fields into new fields.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_mapping: a dict mapping field names to new field names into\n which to clone each field\n ' self._clone_frame_fields(field_mapping)
Clones the frame-level fields into new fields. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_mapping: a dict mapping field names to new field names into which to clone each field
fiftyone/core/dataset.py
clone_frame_fields
dadounhind/fiftyone
1
python
def clone_frame_fields(self, field_mapping): 'Clones the frame-level fields into new fields.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_mapping: a dict mapping field names to new field names into\n which to clone each field\n ' self._clone_frame_fields(field_mapping)
def clone_frame_fields(self, field_mapping): 'Clones the frame-level fields into new fields.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_mapping: a dict mapping field names to new field names into\n which to clone each field\n ' self._clone_frame_fields(field_mapping)<|docstring|>Clones the frame-level fields into new fields. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_mapping: a dict mapping field names to new field names into which to clone each field<|endoftext|>
2ff67b926dd3cb97bbc14bea2dc01ec5867f314a146df6b4f8925bc6c6b28db3
def clear_sample_field(self, field_name): "Clears the values of the field from all samples in the dataset.\n\n The field will remain in the dataset's schema, and all samples will\n have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n " self._clear_sample_fields(field_name)
Clears the values of the field from all samples in the dataset. The field will remain in the dataset's schema, and all samples will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Args: field_name: the field name or ``embedded.field.name``
fiftyone/core/dataset.py
clear_sample_field
dadounhind/fiftyone
1
python
def clear_sample_field(self, field_name): "Clears the values of the field from all samples in the dataset.\n\n The field will remain in the dataset's schema, and all samples will\n have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n " self._clear_sample_fields(field_name)
def clear_sample_field(self, field_name): "Clears the values of the field from all samples in the dataset.\n\n The field will remain in the dataset's schema, and all samples will\n have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n " self._clear_sample_fields(field_name)<|docstring|>Clears the values of the field from all samples in the dataset. The field will remain in the dataset's schema, and all samples will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Args: field_name: the field name or ``embedded.field.name``<|endoftext|>
84815b77f2242d914f0cb42032a156ae3b2da2897270ae38f90a297abcabae5e
def clear_sample_fields(self, field_names): "Clears the values of the fields from all samples in the dataset.\n\n The field will remain in the dataset's schema, and all samples will\n have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Args:\n field_names: the field name or iterable of field names\n " self._clear_sample_fields(field_names)
Clears the values of the fields from all samples in the dataset. The field will remain in the dataset's schema, and all samples will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Args: field_names: the field name or iterable of field names
fiftyone/core/dataset.py
clear_sample_fields
dadounhind/fiftyone
1
python
def clear_sample_fields(self, field_names): "Clears the values of the fields from all samples in the dataset.\n\n The field will remain in the dataset's schema, and all samples will\n have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Args:\n field_names: the field name or iterable of field names\n " self._clear_sample_fields(field_names)
def clear_sample_fields(self, field_names): "Clears the values of the fields from all samples in the dataset.\n\n The field will remain in the dataset's schema, and all samples will\n have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Args:\n field_names: the field name or iterable of field names\n " self._clear_sample_fields(field_names)<|docstring|>Clears the values of the fields from all samples in the dataset. The field will remain in the dataset's schema, and all samples will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Args: field_names: the field name or iterable of field names<|endoftext|>
0a6de84947f1babffe09e2799dad94ce9e3086a7c09b5f25c36a80f1400b683b
def clear_frame_field(self, field_name): "Clears the values of the frame-level field from all samples in the\n dataset.\n\n The field will remain in the dataset's frame schema, and all frames\n will have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n " self._clear_frame_fields(field_name)
Clears the values of the frame-level field from all samples in the dataset. The field will remain in the dataset's frame schema, and all frames will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name``
fiftyone/core/dataset.py
clear_frame_field
dadounhind/fiftyone
1
python
def clear_frame_field(self, field_name): "Clears the values of the frame-level field from all samples in the\n dataset.\n\n The field will remain in the dataset's frame schema, and all frames\n will have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n " self._clear_frame_fields(field_name)
def clear_frame_field(self, field_name): "Clears the values of the frame-level field from all samples in the\n dataset.\n\n The field will remain in the dataset's frame schema, and all frames\n will have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n " self._clear_frame_fields(field_name)<|docstring|>Clears the values of the frame-level field from all samples in the dataset. The field will remain in the dataset's frame schema, and all frames will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name``<|endoftext|>
fe4fc4424a0914dd0af4fa72e4801baec184968dbade8affb1385ef428af3dcd
def clear_frame_fields(self, field_names): "Clears the values of the frame-level fields from all samples in the\n dataset.\n\n The fields will remain in the dataset's frame schema, and all frames\n will have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_names: the field name or iterable of field names\n " self._clear_frame_fields(field_names)
Clears the values of the frame-level fields from all samples in the dataset. The fields will remain in the dataset's frame schema, and all frames will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_names: the field name or iterable of field names
fiftyone/core/dataset.py
clear_frame_fields
dadounhind/fiftyone
1
python
def clear_frame_fields(self, field_names): "Clears the values of the frame-level fields from all samples in the\n dataset.\n\n The fields will remain in the dataset's frame schema, and all frames\n will have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_names: the field name or iterable of field names\n " self._clear_frame_fields(field_names)
def clear_frame_fields(self, field_names): "Clears the values of the frame-level fields from all samples in the\n dataset.\n\n The fields will remain in the dataset's frame schema, and all frames\n will have the value ``None`` for the field.\n\n You can use dot notation (``embedded.field.name``) to clone embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_names: the field name or iterable of field names\n " self._clear_frame_fields(field_names)<|docstring|>Clears the values of the frame-level fields from all samples in the dataset. The fields will remain in the dataset's frame schema, and all frames will have the value ``None`` for the field. You can use dot notation (``embedded.field.name``) to clone embedded frame fields. Only applicable to video datasets. Args: field_names: the field name or iterable of field names<|endoftext|>
492a851a99a057c2b916fc6529d210048dbb3477e39fccbb28aa0d1de602ede9
def delete_sample_field(self, field_name, error_level=0): 'Deletes the field from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_sample_fields(field_name, error_level)
Deletes the field from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded fields. Args: field_name: the field name or ``embedded.field.name`` error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted
fiftyone/core/dataset.py
delete_sample_field
dadounhind/fiftyone
1
python
def delete_sample_field(self, field_name, error_level=0): 'Deletes the field from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_sample_fields(field_name, error_level)
def delete_sample_field(self, field_name, error_level=0): 'Deletes the field from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n fields.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_sample_fields(field_name, error_level)<|docstring|>Deletes the field from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded fields. Args: field_name: the field name or ``embedded.field.name`` error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted<|endoftext|>
bada8acebbdbd6a74fbdd348868bac5d405d091c15bd7e629d65f2c04351643f
def delete_sample_fields(self, field_names, error_level=0): 'Deletes the fields from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n fields.\n\n Args:\n field_names: the field name or iterable of field names\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_sample_fields(field_names, error_level)
Deletes the fields from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded fields. Args: field_names: the field name or iterable of field names error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted
fiftyone/core/dataset.py
delete_sample_fields
dadounhind/fiftyone
1
python
def delete_sample_fields(self, field_names, error_level=0): 'Deletes the fields from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n fields.\n\n Args:\n field_names: the field name or iterable of field names\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_sample_fields(field_names, error_level)
def delete_sample_fields(self, field_names, error_level=0): 'Deletes the fields from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n fields.\n\n Args:\n field_names: the field name or iterable of field names\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_sample_fields(field_names, error_level)<|docstring|>Deletes the fields from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded fields. Args: field_names: the field name or iterable of field names error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted<|endoftext|>
772f448419f2cf7da72733145084b454c3a40b50ee004c204b7c4a5a90998912
def delete_frame_field(self, field_name, error_level=0): 'Deletes the frame-level field from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_frame_fields(field_name, error_level)
Deletes the frame-level field from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name`` error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted
fiftyone/core/dataset.py
delete_frame_field
dadounhind/fiftyone
1
python
def delete_frame_field(self, field_name, error_level=0): 'Deletes the frame-level field from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_frame_fields(field_name, error_level)
def delete_frame_field(self, field_name, error_level=0): 'Deletes the frame-level field from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_frame_fields(field_name, error_level)<|docstring|>Deletes the frame-level field from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded frame fields. Only applicable to video datasets. Args: field_name: the field name or ``embedded.field.name`` error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted<|endoftext|>
697e8126e7f88e47fd62a5dcff70b0af010e0ca1ac6502fb416a40ed5bc799da
def delete_frame_fields(self, field_names, error_level=0): 'Deletes the frame-level fields from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_names: a field name or iterable of field names\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_frame_fields(field_names, error_level)
Deletes the frame-level fields from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded frame fields. Only applicable to video datasets. Args: field_names: a field name or iterable of field names error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted
fiftyone/core/dataset.py
delete_frame_fields
dadounhind/fiftyone
1
python
def delete_frame_fields(self, field_names, error_level=0): 'Deletes the frame-level fields from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_names: a field name or iterable of field names\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_frame_fields(field_names, error_level)
def delete_frame_fields(self, field_names, error_level=0): 'Deletes the frame-level fields from all samples in the dataset.\n\n You can use dot notation (``embedded.field.name``) to delete embedded\n frame fields.\n\n Only applicable to video datasets.\n\n Args:\n field_names: a field name or iterable of field names\n error_level (0): the error level to use. Valid values are:\n\n 0: raise error if a top-level field cannot be deleted\n 1: log warning if a top-level field cannot be deleted\n 2: ignore top-level fields that cannot be deleted\n ' self._delete_frame_fields(field_names, error_level)<|docstring|>Deletes the frame-level fields from all samples in the dataset. You can use dot notation (``embedded.field.name``) to delete embedded frame fields. Only applicable to video datasets. Args: field_names: a field name or iterable of field names error_level (0): the error level to use. Valid values are: 0: raise error if a top-level field cannot be deleted 1: log warning if a top-level field cannot be deleted 2: ignore top-level fields that cannot be deleted<|endoftext|>
b1f4d91fac73b05a2fe3151749d6e9c35e917a21323d06e65007a04c9efe3b0b
def iter_samples(self): 'Returns an iterator over the samples in the dataset.\n\n Returns:\n an iterator over :class:`fiftyone.core.sample.Sample` instances\n ' for d in self._aggregate(detach_frames=True): doc = self._sample_dict_to_doc(d) sample = fos.Sample.from_doc(doc, dataset=self) (yield sample)
Returns an iterator over the samples in the dataset. Returns: an iterator over :class:`fiftyone.core.sample.Sample` instances
fiftyone/core/dataset.py
iter_samples
dadounhind/fiftyone
1
python
def iter_samples(self): 'Returns an iterator over the samples in the dataset.\n\n Returns:\n an iterator over :class:`fiftyone.core.sample.Sample` instances\n ' for d in self._aggregate(detach_frames=True): doc = self._sample_dict_to_doc(d) sample = fos.Sample.from_doc(doc, dataset=self) (yield sample)
def iter_samples(self): 'Returns an iterator over the samples in the dataset.\n\n Returns:\n an iterator over :class:`fiftyone.core.sample.Sample` instances\n ' for d in self._aggregate(detach_frames=True): doc = self._sample_dict_to_doc(d) sample = fos.Sample.from_doc(doc, dataset=self) (yield sample)<|docstring|>Returns an iterator over the samples in the dataset. Returns: an iterator over :class:`fiftyone.core.sample.Sample` instances<|endoftext|>
7dceca8c6cd20cfe2a60c45b17c97d606fd576490818c2ee4e52f1a6fb345163
def add_sample(self, sample, expand_schema=True): "Adds the given sample to the dataset.\n\n If the sample instance does not belong to a dataset, it is updated\n in-place to reflect its membership in this dataset. If the sample\n instance belongs to another dataset, it is not modified.\n\n Args:\n sample: a :class:`fiftyone.core.sample.Sample`\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample's schema is not a subset of the dataset schema\n\n Returns:\n the ID of the sample in the dataset\n\n Raises:\n ``mongoengine.errors.ValidationError``: if a field of the sample\n has a type that is inconsistent with the dataset schema, or if\n ``expand_schema == False`` and a new field is encountered\n " if sample._in_db: sample = sample.copy() if (self.media_type is None): self.media_type = sample.media_type if expand_schema: self._expand_schema([sample]) self._validate_sample(sample) d = sample.to_mongo_dict() d.pop('_id', None) self._sample_collection.insert_one(d) if (not sample._in_db): doc = self._sample_doc_cls.from_dict(d, extended=False) sample._set_backing_doc(doc, dataset=self) if (self.media_type == fom.VIDEO): sample.frames._serve(sample) sample.frames._save(insert=True) return str(d['_id'])
Adds the given sample to the dataset. If the sample instance does not belong to a dataset, it is updated in-place to reflect its membership in this dataset. If the sample instance belongs to another dataset, it is not modified. Args: sample: a :class:`fiftyone.core.sample.Sample` expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if the sample's schema is not a subset of the dataset schema Returns: the ID of the sample in the dataset Raises: ``mongoengine.errors.ValidationError``: if a field of the sample has a type that is inconsistent with the dataset schema, or if ``expand_schema == False`` and a new field is encountered
fiftyone/core/dataset.py
add_sample
dadounhind/fiftyone
1
python
def add_sample(self, sample, expand_schema=True): "Adds the given sample to the dataset.\n\n If the sample instance does not belong to a dataset, it is updated\n in-place to reflect its membership in this dataset. If the sample\n instance belongs to another dataset, it is not modified.\n\n Args:\n sample: a :class:`fiftyone.core.sample.Sample`\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample's schema is not a subset of the dataset schema\n\n Returns:\n the ID of the sample in the dataset\n\n Raises:\n ``mongoengine.errors.ValidationError``: if a field of the sample\n has a type that is inconsistent with the dataset schema, or if\n ``expand_schema == False`` and a new field is encountered\n " if sample._in_db: sample = sample.copy() if (self.media_type is None): self.media_type = sample.media_type if expand_schema: self._expand_schema([sample]) self._validate_sample(sample) d = sample.to_mongo_dict() d.pop('_id', None) self._sample_collection.insert_one(d) if (not sample._in_db): doc = self._sample_doc_cls.from_dict(d, extended=False) sample._set_backing_doc(doc, dataset=self) if (self.media_type == fom.VIDEO): sample.frames._serve(sample) sample.frames._save(insert=True) return str(d['_id'])
def add_sample(self, sample, expand_schema=True): "Adds the given sample to the dataset.\n\n If the sample instance does not belong to a dataset, it is updated\n in-place to reflect its membership in this dataset. If the sample\n instance belongs to another dataset, it is not modified.\n\n Args:\n sample: a :class:`fiftyone.core.sample.Sample`\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample's schema is not a subset of the dataset schema\n\n Returns:\n the ID of the sample in the dataset\n\n Raises:\n ``mongoengine.errors.ValidationError``: if a field of the sample\n has a type that is inconsistent with the dataset schema, or if\n ``expand_schema == False`` and a new field is encountered\n " if sample._in_db: sample = sample.copy() if (self.media_type is None): self.media_type = sample.media_type if expand_schema: self._expand_schema([sample]) self._validate_sample(sample) d = sample.to_mongo_dict() d.pop('_id', None) self._sample_collection.insert_one(d) if (not sample._in_db): doc = self._sample_doc_cls.from_dict(d, extended=False) sample._set_backing_doc(doc, dataset=self) if (self.media_type == fom.VIDEO): sample.frames._serve(sample) sample.frames._save(insert=True) return str(d['_id'])<|docstring|>Adds the given sample to the dataset. If the sample instance does not belong to a dataset, it is updated in-place to reflect its membership in this dataset. If the sample instance belongs to another dataset, it is not modified. Args: sample: a :class:`fiftyone.core.sample.Sample` expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if the sample's schema is not a subset of the dataset schema Returns: the ID of the sample in the dataset Raises: ``mongoengine.errors.ValidationError``: if a field of the sample has a type that is inconsistent with the dataset schema, or if ``expand_schema == False`` and a new field is encountered<|endoftext|>
7203caa7bee46514f0eb46c4f03b3594f709df83130aa08976df8c353f060399
def add_samples(self, samples, expand_schema=True, num_samples=None): "Adds the given samples to the dataset.\n\n Any sample instances that do not belong to a dataset are updated\n in-place to reflect membership in this dataset. Any sample instances\n that belong to other datasets are not modified.\n\n Args:\n samples: an iterable of :class:`fiftyone.core.sample.Sample`\n instances. For example, ``samples`` may be a :class:`Dataset`\n or a :class:`fiftyone.core.views.DatasetView`\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample's schema is not a subset of the dataset schema\n num_samples (None): the number of samples in ``samples``. If not\n provided, this is computed via ``len(samples)``, if possible.\n This value is optional and is used only for optimization and\n progress tracking\n\n Returns:\n a list of IDs of the samples in the dataset\n\n Raises:\n ``mongoengine.errors.ValidationError``: if a field of a sample has\n a type that is inconsistent with the dataset schema, or if\n ``expand_schema == False`` and a new field is encountered\n " if (num_samples is None): try: num_samples = len(samples) except: pass batch_size = (128 if (self.media_type == fom.IMAGE) else 1) sample_ids = [] with fou.ProgressBar(total=num_samples) as pb: for batch in fou.iter_batches(samples, batch_size): sample_ids.extend(self._add_samples_batch(batch, expand_schema)) pb.update(count=len(batch)) return sample_ids
Adds the given samples to the dataset. Any sample instances that do not belong to a dataset are updated in-place to reflect membership in this dataset. Any sample instances that belong to other datasets are not modified. Args: samples: an iterable of :class:`fiftyone.core.sample.Sample` instances. For example, ``samples`` may be a :class:`Dataset` or a :class:`fiftyone.core.views.DatasetView` expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema num_samples (None): the number of samples in ``samples``. If not provided, this is computed via ``len(samples)``, if possible. This value is optional and is used only for optimization and progress tracking Returns: a list of IDs of the samples in the dataset Raises: ``mongoengine.errors.ValidationError``: if a field of a sample has a type that is inconsistent with the dataset schema, or if ``expand_schema == False`` and a new field is encountered
fiftyone/core/dataset.py
add_samples
dadounhind/fiftyone
1
python
def add_samples(self, samples, expand_schema=True, num_samples=None): "Adds the given samples to the dataset.\n\n Any sample instances that do not belong to a dataset are updated\n in-place to reflect membership in this dataset. Any sample instances\n that belong to other datasets are not modified.\n\n Args:\n samples: an iterable of :class:`fiftyone.core.sample.Sample`\n instances. For example, ``samples`` may be a :class:`Dataset`\n or a :class:`fiftyone.core.views.DatasetView`\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample's schema is not a subset of the dataset schema\n num_samples (None): the number of samples in ``samples``. If not\n provided, this is computed via ``len(samples)``, if possible.\n This value is optional and is used only for optimization and\n progress tracking\n\n Returns:\n a list of IDs of the samples in the dataset\n\n Raises:\n ``mongoengine.errors.ValidationError``: if a field of a sample has\n a type that is inconsistent with the dataset schema, or if\n ``expand_schema == False`` and a new field is encountered\n " if (num_samples is None): try: num_samples = len(samples) except: pass batch_size = (128 if (self.media_type == fom.IMAGE) else 1) sample_ids = [] with fou.ProgressBar(total=num_samples) as pb: for batch in fou.iter_batches(samples, batch_size): sample_ids.extend(self._add_samples_batch(batch, expand_schema)) pb.update(count=len(batch)) return sample_ids
def add_samples(self, samples, expand_schema=True, num_samples=None): "Adds the given samples to the dataset.\n\n Any sample instances that do not belong to a dataset are updated\n in-place to reflect membership in this dataset. Any sample instances\n that belong to other datasets are not modified.\n\n Args:\n samples: an iterable of :class:`fiftyone.core.sample.Sample`\n instances. For example, ``samples`` may be a :class:`Dataset`\n or a :class:`fiftyone.core.views.DatasetView`\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample's schema is not a subset of the dataset schema\n num_samples (None): the number of samples in ``samples``. If not\n provided, this is computed via ``len(samples)``, if possible.\n This value is optional and is used only for optimization and\n progress tracking\n\n Returns:\n a list of IDs of the samples in the dataset\n\n Raises:\n ``mongoengine.errors.ValidationError``: if a field of a sample has\n a type that is inconsistent with the dataset schema, or if\n ``expand_schema == False`` and a new field is encountered\n " if (num_samples is None): try: num_samples = len(samples) except: pass batch_size = (128 if (self.media_type == fom.IMAGE) else 1) sample_ids = [] with fou.ProgressBar(total=num_samples) as pb: for batch in fou.iter_batches(samples, batch_size): sample_ids.extend(self._add_samples_batch(batch, expand_schema)) pb.update(count=len(batch)) return sample_ids<|docstring|>Adds the given samples to the dataset. Any sample instances that do not belong to a dataset are updated in-place to reflect membership in this dataset. Any sample instances that belong to other datasets are not modified. Args: samples: an iterable of :class:`fiftyone.core.sample.Sample` instances. For example, ``samples`` may be a :class:`Dataset` or a :class:`fiftyone.core.views.DatasetView` expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema num_samples (None): the number of samples in ``samples``. If not provided, this is computed via ``len(samples)``, if possible. This value is optional and is used only for optimization and progress tracking Returns: a list of IDs of the samples in the dataset Raises: ``mongoengine.errors.ValidationError``: if a field of a sample has a type that is inconsistent with the dataset schema, or if ``expand_schema == False`` and a new field is encountered<|endoftext|>
363d92b49674d238b7efa43612ef73e84fb6c2c758465038b41b63358468b046
def merge_samples(self, samples, key_field='filepath', key_fcn=None, omit_none_fields=True, skip_existing=False, insert_new=True, omit_default_fields=False, overwrite=True): 'Merges the given samples into this dataset.\n\n By default, samples with the same absolute ``filepath`` are merged.\n You can customize this behavior via the ``key_field`` and ``key_fcn``\n parameters. For example, you could set\n ``key_fcn = lambda sample: os.path.basename(sample.filepath)`` to merge\n samples with the same base filename.\n\n Args:\n samples: an iterable of :class:`fiftyone.core.sample.Sample`\n instances. For example, ``samples`` may be a :class:`Dataset`\n or a :class:`fiftyone.core.views.DatasetView`\n key_field ("filepath"): the sample field to use to decide whether\n to join with an existing sample\n key_fcn (None): a function that accepts a\n :class:`fiftyone.core.sample.Sample` instance and computes a\n key to decide if two samples should be merged. If a ``key_fcn``\n is provided, ``key_field`` is ignored\n omit_none_fields (True): whether to omit ``None``-valued fields of\n the provided samples when merging their fields\n skip_existing (False): whether to skip existing samples (True) or\n merge them (False)\n insert_new (True): whether to insert new samples (True) or skip\n them (False)\n omit_default_fields (False): whether to omit default sample fields\n when merging. If ``True``, ``insert_new`` must be ``False``\n overwrite (True): whether to overwrite (True) or skip (False)\n existing sample fields\n ' if (isinstance(samples, foc.SampleCollection) and (key_fcn is None) and overwrite): self._merge_samples(samples, key_field=key_field, omit_none_fields=omit_none_fields, skip_existing=skip_existing, insert_new=insert_new, omit_default_fields=omit_default_fields) return if (key_fcn is None): key_fcn = (lambda sample: sample[key_field]) if omit_default_fields: if insert_new: raise ValueError('Cannot omit default fields when `insert_new=True`') omit_fields = fos.get_default_sample_fields() else: omit_fields = None id_map = {} logger.info('Indexing dataset...') with fou.ProgressBar() as pb: for sample in pb(self): id_map[key_fcn(sample)] = sample.id logger.info('Merging samples...') with fou.ProgressBar() as pb: for sample in pb(samples): key = key_fcn(sample) if (key in id_map): if (not skip_existing): existing_sample = self[id_map[key]] existing_sample.merge(sample, omit_fields=omit_fields, omit_none_fields=omit_none_fields, overwrite=overwrite) existing_sample.save() elif insert_new: self.add_sample(sample)
Merges the given samples into this dataset. By default, samples with the same absolute ``filepath`` are merged. You can customize this behavior via the ``key_field`` and ``key_fcn`` parameters. For example, you could set ``key_fcn = lambda sample: os.path.basename(sample.filepath)`` to merge samples with the same base filename. Args: samples: an iterable of :class:`fiftyone.core.sample.Sample` instances. For example, ``samples`` may be a :class:`Dataset` or a :class:`fiftyone.core.views.DatasetView` key_field ("filepath"): the sample field to use to decide whether to join with an existing sample key_fcn (None): a function that accepts a :class:`fiftyone.core.sample.Sample` instance and computes a key to decide if two samples should be merged. If a ``key_fcn`` is provided, ``key_field`` is ignored omit_none_fields (True): whether to omit ``None``-valued fields of the provided samples when merging their fields skip_existing (False): whether to skip existing samples (True) or merge them (False) insert_new (True): whether to insert new samples (True) or skip them (False) omit_default_fields (False): whether to omit default sample fields when merging. If ``True``, ``insert_new`` must be ``False`` overwrite (True): whether to overwrite (True) or skip (False) existing sample fields
fiftyone/core/dataset.py
merge_samples
dadounhind/fiftyone
1
python
def merge_samples(self, samples, key_field='filepath', key_fcn=None, omit_none_fields=True, skip_existing=False, insert_new=True, omit_default_fields=False, overwrite=True): 'Merges the given samples into this dataset.\n\n By default, samples with the same absolute ``filepath`` are merged.\n You can customize this behavior via the ``key_field`` and ``key_fcn``\n parameters. For example, you could set\n ``key_fcn = lambda sample: os.path.basename(sample.filepath)`` to merge\n samples with the same base filename.\n\n Args:\n samples: an iterable of :class:`fiftyone.core.sample.Sample`\n instances. For example, ``samples`` may be a :class:`Dataset`\n or a :class:`fiftyone.core.views.DatasetView`\n key_field ("filepath"): the sample field to use to decide whether\n to join with an existing sample\n key_fcn (None): a function that accepts a\n :class:`fiftyone.core.sample.Sample` instance and computes a\n key to decide if two samples should be merged. If a ``key_fcn``\n is provided, ``key_field`` is ignored\n omit_none_fields (True): whether to omit ``None``-valued fields of\n the provided samples when merging their fields\n skip_existing (False): whether to skip existing samples (True) or\n merge them (False)\n insert_new (True): whether to insert new samples (True) or skip\n them (False)\n omit_default_fields (False): whether to omit default sample fields\n when merging. If ``True``, ``insert_new`` must be ``False``\n overwrite (True): whether to overwrite (True) or skip (False)\n existing sample fields\n ' if (isinstance(samples, foc.SampleCollection) and (key_fcn is None) and overwrite): self._merge_samples(samples, key_field=key_field, omit_none_fields=omit_none_fields, skip_existing=skip_existing, insert_new=insert_new, omit_default_fields=omit_default_fields) return if (key_fcn is None): key_fcn = (lambda sample: sample[key_field]) if omit_default_fields: if insert_new: raise ValueError('Cannot omit default fields when `insert_new=True`') omit_fields = fos.get_default_sample_fields() else: omit_fields = None id_map = {} logger.info('Indexing dataset...') with fou.ProgressBar() as pb: for sample in pb(self): id_map[key_fcn(sample)] = sample.id logger.info('Merging samples...') with fou.ProgressBar() as pb: for sample in pb(samples): key = key_fcn(sample) if (key in id_map): if (not skip_existing): existing_sample = self[id_map[key]] existing_sample.merge(sample, omit_fields=omit_fields, omit_none_fields=omit_none_fields, overwrite=overwrite) existing_sample.save() elif insert_new: self.add_sample(sample)
def merge_samples(self, samples, key_field='filepath', key_fcn=None, omit_none_fields=True, skip_existing=False, insert_new=True, omit_default_fields=False, overwrite=True): 'Merges the given samples into this dataset.\n\n By default, samples with the same absolute ``filepath`` are merged.\n You can customize this behavior via the ``key_field`` and ``key_fcn``\n parameters. For example, you could set\n ``key_fcn = lambda sample: os.path.basename(sample.filepath)`` to merge\n samples with the same base filename.\n\n Args:\n samples: an iterable of :class:`fiftyone.core.sample.Sample`\n instances. For example, ``samples`` may be a :class:`Dataset`\n or a :class:`fiftyone.core.views.DatasetView`\n key_field ("filepath"): the sample field to use to decide whether\n to join with an existing sample\n key_fcn (None): a function that accepts a\n :class:`fiftyone.core.sample.Sample` instance and computes a\n key to decide if two samples should be merged. If a ``key_fcn``\n is provided, ``key_field`` is ignored\n omit_none_fields (True): whether to omit ``None``-valued fields of\n the provided samples when merging their fields\n skip_existing (False): whether to skip existing samples (True) or\n merge them (False)\n insert_new (True): whether to insert new samples (True) or skip\n them (False)\n omit_default_fields (False): whether to omit default sample fields\n when merging. If ``True``, ``insert_new`` must be ``False``\n overwrite (True): whether to overwrite (True) or skip (False)\n existing sample fields\n ' if (isinstance(samples, foc.SampleCollection) and (key_fcn is None) and overwrite): self._merge_samples(samples, key_field=key_field, omit_none_fields=omit_none_fields, skip_existing=skip_existing, insert_new=insert_new, omit_default_fields=omit_default_fields) return if (key_fcn is None): key_fcn = (lambda sample: sample[key_field]) if omit_default_fields: if insert_new: raise ValueError('Cannot omit default fields when `insert_new=True`') omit_fields = fos.get_default_sample_fields() else: omit_fields = None id_map = {} logger.info('Indexing dataset...') with fou.ProgressBar() as pb: for sample in pb(self): id_map[key_fcn(sample)] = sample.id logger.info('Merging samples...') with fou.ProgressBar() as pb: for sample in pb(samples): key = key_fcn(sample) if (key in id_map): if (not skip_existing): existing_sample = self[id_map[key]] existing_sample.merge(sample, omit_fields=omit_fields, omit_none_fields=omit_none_fields, overwrite=overwrite) existing_sample.save() elif insert_new: self.add_sample(sample)<|docstring|>Merges the given samples into this dataset. By default, samples with the same absolute ``filepath`` are merged. You can customize this behavior via the ``key_field`` and ``key_fcn`` parameters. For example, you could set ``key_fcn = lambda sample: os.path.basename(sample.filepath)`` to merge samples with the same base filename. Args: samples: an iterable of :class:`fiftyone.core.sample.Sample` instances. For example, ``samples`` may be a :class:`Dataset` or a :class:`fiftyone.core.views.DatasetView` key_field ("filepath"): the sample field to use to decide whether to join with an existing sample key_fcn (None): a function that accepts a :class:`fiftyone.core.sample.Sample` instance and computes a key to decide if two samples should be merged. If a ``key_fcn`` is provided, ``key_field`` is ignored omit_none_fields (True): whether to omit ``None``-valued fields of the provided samples when merging their fields skip_existing (False): whether to skip existing samples (True) or merge them (False) insert_new (True): whether to insert new samples (True) or skip them (False) omit_default_fields (False): whether to omit default sample fields when merging. If ``True``, ``insert_new`` must be ``False`` overwrite (True): whether to overwrite (True) or skip (False) existing sample fields<|endoftext|>
ce68d66c8dcbae60c607adc70f54907a9e909af24e9064ee33b8d810136f665b
def _merge_samples(self, sample_collection, key_field='filepath', omit_none_fields=True, skip_existing=False, insert_new=True, omit_default_fields=False): 'Merges the given sample collection into this dataset.\n\n By default, samples with the same absolute ``filepath`` are merged.\n You can customize this behavior via the ``key_field`` parameter.\n\n Args:\n sample_collection: a\n :class:`fiftyone.core.collections.SampleCollection`\n key_field ("filepath"): the sample field to use to decide whether\n to join with an existing sample\n omit_none_fields (True): whether to omit ``None``-valued fields of\n the provided samples when merging their fields\n skip_existing (False): whether to skip existing samples (True) or\n merge them (False)\n insert_new (True): whether to insert new samples (True) or skip\n them (False)\n omit_default_fields (False): whether to omit default sample fields\n when merging. If ``True``, ``insert_new`` must be ``False``\n ' if (self.media_type == fom.VIDEO): raise ValueError('Merging video collections is not yet supported') if (omit_default_fields and insert_new): raise ValueError('Cannot omit default fields when `insert_new=True`') if (key_field == 'id'): key_field = '_id' if skip_existing: when_matched = 'keepExisting' else: when_matched = 'merge' if insert_new: when_not_matched = 'insert' else: when_not_matched = 'discard' self.create_index(key_field, unique=True) sample_collection.create_index(key_field, unique=True) schema = sample_collection.get_field_schema() self._sample_doc_cls.merge_field_schema(schema) if omit_default_fields: omit_fields = list(self.get_default_sample_fields(include_private=True)) else: omit_fields = ['_id'] try: omit_fields.remove(key_field) except ValueError: pass pipeline = [] if omit_fields: pipeline.append({'$unset': omit_fields}) if omit_none_fields: pipeline.append({'$replaceWith': {'$arrayToObject': {'$filter': {'input': {'$objectToArray': '$$ROOT'}, 'as': 'item', 'cond': {'$ne': ['$$item.v', None]}}}}}) pipeline.append({'$merge': {'into': self._sample_collection_name, 'on': key_field, 'whenMatched': when_matched, 'whenNotMatched': when_not_matched}}) sample_collection._aggregate(pipeline=pipeline, attach_frames=False) fos.Sample._reload_docs(self._sample_collection_name)
Merges the given sample collection into this dataset. By default, samples with the same absolute ``filepath`` are merged. You can customize this behavior via the ``key_field`` parameter. Args: sample_collection: a :class:`fiftyone.core.collections.SampleCollection` key_field ("filepath"): the sample field to use to decide whether to join with an existing sample omit_none_fields (True): whether to omit ``None``-valued fields of the provided samples when merging their fields skip_existing (False): whether to skip existing samples (True) or merge them (False) insert_new (True): whether to insert new samples (True) or skip them (False) omit_default_fields (False): whether to omit default sample fields when merging. If ``True``, ``insert_new`` must be ``False``
fiftyone/core/dataset.py
_merge_samples
dadounhind/fiftyone
1
python
def _merge_samples(self, sample_collection, key_field='filepath', omit_none_fields=True, skip_existing=False, insert_new=True, omit_default_fields=False): 'Merges the given sample collection into this dataset.\n\n By default, samples with the same absolute ``filepath`` are merged.\n You can customize this behavior via the ``key_field`` parameter.\n\n Args:\n sample_collection: a\n :class:`fiftyone.core.collections.SampleCollection`\n key_field ("filepath"): the sample field to use to decide whether\n to join with an existing sample\n omit_none_fields (True): whether to omit ``None``-valued fields of\n the provided samples when merging their fields\n skip_existing (False): whether to skip existing samples (True) or\n merge them (False)\n insert_new (True): whether to insert new samples (True) or skip\n them (False)\n omit_default_fields (False): whether to omit default sample fields\n when merging. If ``True``, ``insert_new`` must be ``False``\n ' if (self.media_type == fom.VIDEO): raise ValueError('Merging video collections is not yet supported') if (omit_default_fields and insert_new): raise ValueError('Cannot omit default fields when `insert_new=True`') if (key_field == 'id'): key_field = '_id' if skip_existing: when_matched = 'keepExisting' else: when_matched = 'merge' if insert_new: when_not_matched = 'insert' else: when_not_matched = 'discard' self.create_index(key_field, unique=True) sample_collection.create_index(key_field, unique=True) schema = sample_collection.get_field_schema() self._sample_doc_cls.merge_field_schema(schema) if omit_default_fields: omit_fields = list(self.get_default_sample_fields(include_private=True)) else: omit_fields = ['_id'] try: omit_fields.remove(key_field) except ValueError: pass pipeline = [] if omit_fields: pipeline.append({'$unset': omit_fields}) if omit_none_fields: pipeline.append({'$replaceWith': {'$arrayToObject': {'$filter': {'input': {'$objectToArray': '$$ROOT'}, 'as': 'item', 'cond': {'$ne': ['$$item.v', None]}}}}}) pipeline.append({'$merge': {'into': self._sample_collection_name, 'on': key_field, 'whenMatched': when_matched, 'whenNotMatched': when_not_matched}}) sample_collection._aggregate(pipeline=pipeline, attach_frames=False) fos.Sample._reload_docs(self._sample_collection_name)
def _merge_samples(self, sample_collection, key_field='filepath', omit_none_fields=True, skip_existing=False, insert_new=True, omit_default_fields=False): 'Merges the given sample collection into this dataset.\n\n By default, samples with the same absolute ``filepath`` are merged.\n You can customize this behavior via the ``key_field`` parameter.\n\n Args:\n sample_collection: a\n :class:`fiftyone.core.collections.SampleCollection`\n key_field ("filepath"): the sample field to use to decide whether\n to join with an existing sample\n omit_none_fields (True): whether to omit ``None``-valued fields of\n the provided samples when merging their fields\n skip_existing (False): whether to skip existing samples (True) or\n merge them (False)\n insert_new (True): whether to insert new samples (True) or skip\n them (False)\n omit_default_fields (False): whether to omit default sample fields\n when merging. If ``True``, ``insert_new`` must be ``False``\n ' if (self.media_type == fom.VIDEO): raise ValueError('Merging video collections is not yet supported') if (omit_default_fields and insert_new): raise ValueError('Cannot omit default fields when `insert_new=True`') if (key_field == 'id'): key_field = '_id' if skip_existing: when_matched = 'keepExisting' else: when_matched = 'merge' if insert_new: when_not_matched = 'insert' else: when_not_matched = 'discard' self.create_index(key_field, unique=True) sample_collection.create_index(key_field, unique=True) schema = sample_collection.get_field_schema() self._sample_doc_cls.merge_field_schema(schema) if omit_default_fields: omit_fields = list(self.get_default_sample_fields(include_private=True)) else: omit_fields = ['_id'] try: omit_fields.remove(key_field) except ValueError: pass pipeline = [] if omit_fields: pipeline.append({'$unset': omit_fields}) if omit_none_fields: pipeline.append({'$replaceWith': {'$arrayToObject': {'$filter': {'input': {'$objectToArray': '$$ROOT'}, 'as': 'item', 'cond': {'$ne': ['$$item.v', None]}}}}}) pipeline.append({'$merge': {'into': self._sample_collection_name, 'on': key_field, 'whenMatched': when_matched, 'whenNotMatched': when_not_matched}}) sample_collection._aggregate(pipeline=pipeline, attach_frames=False) fos.Sample._reload_docs(self._sample_collection_name)<|docstring|>Merges the given sample collection into this dataset. By default, samples with the same absolute ``filepath`` are merged. You can customize this behavior via the ``key_field`` parameter. Args: sample_collection: a :class:`fiftyone.core.collections.SampleCollection` key_field ("filepath"): the sample field to use to decide whether to join with an existing sample omit_none_fields (True): whether to omit ``None``-valued fields of the provided samples when merging their fields skip_existing (False): whether to skip existing samples (True) or merge them (False) insert_new (True): whether to insert new samples (True) or skip them (False) omit_default_fields (False): whether to omit default sample fields when merging. If ``True``, ``insert_new`` must be ``False``<|endoftext|>
9a728886d116ec3503f415c0f77f5666c9677626e6eef6bb1d95faededc2a174
def remove_sample(self, sample_or_id): 'Removes the given sample from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n\n Args:\n sample_or_id: the sample to remove. Can be any of the following:\n\n - a sample ID\n - a :class:`fiftyone.core.sample.Sample`\n - a :class:`fiftyone.core.sample.SampleView`\n ' if isinstance(sample_or_id, (fos.Sample, fos.SampleView)): sample_id = sample_or_id.id else: sample_id = sample_or_id self._sample_collection.delete_one({'_id': ObjectId(sample_id)}) fos.Sample._reset_docs(self._sample_collection_name, doc_ids=[sample_id]) if (self.media_type == fom.VIDEO): fofr.Frame._reset_docs(self._frame_collection_name, sample_ids=[sample_id])
Removes the given sample from the dataset. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``. Args: sample_or_id: the sample to remove. Can be any of the following: - a sample ID - a :class:`fiftyone.core.sample.Sample` - a :class:`fiftyone.core.sample.SampleView`
fiftyone/core/dataset.py
remove_sample
dadounhind/fiftyone
1
python
def remove_sample(self, sample_or_id): 'Removes the given sample from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n\n Args:\n sample_or_id: the sample to remove. Can be any of the following:\n\n - a sample ID\n - a :class:`fiftyone.core.sample.Sample`\n - a :class:`fiftyone.core.sample.SampleView`\n ' if isinstance(sample_or_id, (fos.Sample, fos.SampleView)): sample_id = sample_or_id.id else: sample_id = sample_or_id self._sample_collection.delete_one({'_id': ObjectId(sample_id)}) fos.Sample._reset_docs(self._sample_collection_name, doc_ids=[sample_id]) if (self.media_type == fom.VIDEO): fofr.Frame._reset_docs(self._frame_collection_name, sample_ids=[sample_id])
def remove_sample(self, sample_or_id): 'Removes the given sample from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n\n Args:\n sample_or_id: the sample to remove. Can be any of the following:\n\n - a sample ID\n - a :class:`fiftyone.core.sample.Sample`\n - a :class:`fiftyone.core.sample.SampleView`\n ' if isinstance(sample_or_id, (fos.Sample, fos.SampleView)): sample_id = sample_or_id.id else: sample_id = sample_or_id self._sample_collection.delete_one({'_id': ObjectId(sample_id)}) fos.Sample._reset_docs(self._sample_collection_name, doc_ids=[sample_id]) if (self.media_type == fom.VIDEO): fofr.Frame._reset_docs(self._frame_collection_name, sample_ids=[sample_id])<|docstring|>Removes the given sample from the dataset. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``. Args: sample_or_id: the sample to remove. Can be any of the following: - a sample ID - a :class:`fiftyone.core.sample.Sample` - a :class:`fiftyone.core.sample.SampleView`<|endoftext|>
15267624e969f4b75283d9dc6c28b0a54f3c930de1f7b0f132da5bd40ab91847
def remove_samples(self, samples_or_ids): 'Removes the given samples from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n\n Args:\n samples_or_ids: the samples to remove. Can be any of the following:\n\n - a sample ID\n - an iterable of sample IDs\n - a :class:`fiftyone.core.sample.Sample` or\n :class:`fiftyone.core.sample.SampleView`\n - an iterable of sample IDs\n - a :class:`fiftyone.core.collections.SampleCollection`\n - an iterable of :class:`fiftyone.core.sample.Sample` or\n :class:`fiftyone.core.sample.SampleView` instances\n ' sample_ids = _get_sample_ids(samples_or_ids) self._sample_collection.delete_many({'_id': {'$in': [ObjectId(_id) for _id in sample_ids]}}) fos.Sample._reset_docs(self._sample_collection_name, doc_ids=sample_ids) if (self.media_type == fom.VIDEO): fofr.Frame._reset_docs(self._frame_collection_name, sample_ids=sample_ids)
Removes the given samples from the dataset. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``. Args: samples_or_ids: the samples to remove. Can be any of the following: - a sample ID - an iterable of sample IDs - a :class:`fiftyone.core.sample.Sample` or :class:`fiftyone.core.sample.SampleView` - an iterable of sample IDs - a :class:`fiftyone.core.collections.SampleCollection` - an iterable of :class:`fiftyone.core.sample.Sample` or :class:`fiftyone.core.sample.SampleView` instances
fiftyone/core/dataset.py
remove_samples
dadounhind/fiftyone
1
python
def remove_samples(self, samples_or_ids): 'Removes the given samples from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n\n Args:\n samples_or_ids: the samples to remove. Can be any of the following:\n\n - a sample ID\n - an iterable of sample IDs\n - a :class:`fiftyone.core.sample.Sample` or\n :class:`fiftyone.core.sample.SampleView`\n - an iterable of sample IDs\n - a :class:`fiftyone.core.collections.SampleCollection`\n - an iterable of :class:`fiftyone.core.sample.Sample` or\n :class:`fiftyone.core.sample.SampleView` instances\n ' sample_ids = _get_sample_ids(samples_or_ids) self._sample_collection.delete_many({'_id': {'$in': [ObjectId(_id) for _id in sample_ids]}}) fos.Sample._reset_docs(self._sample_collection_name, doc_ids=sample_ids) if (self.media_type == fom.VIDEO): fofr.Frame._reset_docs(self._frame_collection_name, sample_ids=sample_ids)
def remove_samples(self, samples_or_ids): 'Removes the given samples from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n\n Args:\n samples_or_ids: the samples to remove. Can be any of the following:\n\n - a sample ID\n - an iterable of sample IDs\n - a :class:`fiftyone.core.sample.Sample` or\n :class:`fiftyone.core.sample.SampleView`\n - an iterable of sample IDs\n - a :class:`fiftyone.core.collections.SampleCollection`\n - an iterable of :class:`fiftyone.core.sample.Sample` or\n :class:`fiftyone.core.sample.SampleView` instances\n ' sample_ids = _get_sample_ids(samples_or_ids) self._sample_collection.delete_many({'_id': {'$in': [ObjectId(_id) for _id in sample_ids]}}) fos.Sample._reset_docs(self._sample_collection_name, doc_ids=sample_ids) if (self.media_type == fom.VIDEO): fofr.Frame._reset_docs(self._frame_collection_name, sample_ids=sample_ids)<|docstring|>Removes the given samples from the dataset. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``. Args: samples_or_ids: the samples to remove. Can be any of the following: - a sample ID - an iterable of sample IDs - a :class:`fiftyone.core.sample.Sample` or :class:`fiftyone.core.sample.SampleView` - an iterable of sample IDs - a :class:`fiftyone.core.collections.SampleCollection` - an iterable of :class:`fiftyone.core.sample.Sample` or :class:`fiftyone.core.sample.SampleView` instances<|endoftext|>
112292f735154f8ca2ad165dea160e74ef31b8cf041b5550d599f9e6f7e1eb54
def save(self): 'Saves the dataset to the database.\n\n This only needs to be called when dataset-level information such as its\n :meth:`Dataset.info` is modified.\n ' self._save()
Saves the dataset to the database. This only needs to be called when dataset-level information such as its :meth:`Dataset.info` is modified.
fiftyone/core/dataset.py
save
dadounhind/fiftyone
1
python
def save(self): 'Saves the dataset to the database.\n\n This only needs to be called when dataset-level information such as its\n :meth:`Dataset.info` is modified.\n ' self._save()
def save(self): 'Saves the dataset to the database.\n\n This only needs to be called when dataset-level information such as its\n :meth:`Dataset.info` is modified.\n ' self._save()<|docstring|>Saves the dataset to the database. This only needs to be called when dataset-level information such as its :meth:`Dataset.info` is modified.<|endoftext|>
4611df2bc861dc6f769ab738b7eadce1858d28c428db04729ff2f87a10bdd685
def clone(self, name=None): 'Creates a clone of the dataset containing deep copies of all samples\n and dataset-level information in this dataset.\n\n Args:\n name (None): a name for the cloned dataset. By default,\n :func:`get_default_dataset_name` is used\n\n Returns:\n the new :class:`Dataset`\n ' return self._clone(name=name)
Creates a clone of the dataset containing deep copies of all samples and dataset-level information in this dataset. Args: name (None): a name for the cloned dataset. By default, :func:`get_default_dataset_name` is used Returns: the new :class:`Dataset`
fiftyone/core/dataset.py
clone
dadounhind/fiftyone
1
python
def clone(self, name=None): 'Creates a clone of the dataset containing deep copies of all samples\n and dataset-level information in this dataset.\n\n Args:\n name (None): a name for the cloned dataset. By default,\n :func:`get_default_dataset_name` is used\n\n Returns:\n the new :class:`Dataset`\n ' return self._clone(name=name)
def clone(self, name=None): 'Creates a clone of the dataset containing deep copies of all samples\n and dataset-level information in this dataset.\n\n Args:\n name (None): a name for the cloned dataset. By default,\n :func:`get_default_dataset_name` is used\n\n Returns:\n the new :class:`Dataset`\n ' return self._clone(name=name)<|docstring|>Creates a clone of the dataset containing deep copies of all samples and dataset-level information in this dataset. Args: name (None): a name for the cloned dataset. By default, :func:`get_default_dataset_name` is used Returns: the new :class:`Dataset`<|endoftext|>
7837480cb2b5e3ac7de8c290c46e6d7989b779fed3166b3a750dd97651313b56
def clear(self): 'Removes all samples from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n ' self._sample_doc_cls.drop_collection() fos.Sample._reset_docs(self._sample_collection_name) self._frame_doc_cls.drop_collection() fofr.Frame._reset_docs(self._frame_collection_name)
Removes all samples from the dataset. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``.
fiftyone/core/dataset.py
clear
dadounhind/fiftyone
1
python
def clear(self): 'Removes all samples from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n ' self._sample_doc_cls.drop_collection() fos.Sample._reset_docs(self._sample_collection_name) self._frame_doc_cls.drop_collection() fofr.Frame._reset_docs(self._frame_collection_name)
def clear(self): 'Removes all samples from the dataset.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n ' self._sample_doc_cls.drop_collection() fos.Sample._reset_docs(self._sample_collection_name) self._frame_doc_cls.drop_collection() fofr.Frame._reset_docs(self._frame_collection_name)<|docstring|>Removes all samples from the dataset. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``.<|endoftext|>
aec894215780fac2733b17142b9f81bc5da8a4233ed68c65b0c8044052b4eec7
def delete(self): 'Deletes the dataset.\n\n Once deleted, only the ``name`` and ``deleted`` attributes of a dataset\n may be accessed.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n ' self.clear() _delete_dataset_doc(self._doc) self._deleted = True
Deletes the dataset. Once deleted, only the ``name`` and ``deleted`` attributes of a dataset may be accessed. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``.
fiftyone/core/dataset.py
delete
dadounhind/fiftyone
1
python
def delete(self): 'Deletes the dataset.\n\n Once deleted, only the ``name`` and ``deleted`` attributes of a dataset\n may be accessed.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n ' self.clear() _delete_dataset_doc(self._doc) self._deleted = True
def delete(self): 'Deletes the dataset.\n\n Once deleted, only the ``name`` and ``deleted`` attributes of a dataset\n may be accessed.\n\n If reference to a sample exists in memory, the sample object will be\n updated such that ``sample.in_dataset == False``.\n ' self.clear() _delete_dataset_doc(self._doc) self._deleted = True<|docstring|>Deletes the dataset. Once deleted, only the ``name`` and ``deleted`` attributes of a dataset may be accessed. If reference to a sample exists in memory, the sample object will be updated such that ``sample.in_dataset == False``.<|endoftext|>
85ca42c10306346a9e9a5eb90d63c62be842f669fb9c183ea113d34e8a6b5b32
def add_dir(self, dataset_dir, dataset_type, label_field='ground_truth', tags=None, expand_schema=True, add_info=True, **kwargs): 'Adds the contents of the given directory to the dataset.\n\n See :doc:`this guide </user_guide/dataset_creation/datasets>` for\n descriptions of available dataset types.\n\n Args:\n dataset_dir: the dataset directory\n dataset_type (None): the\n :class:`fiftyone.types.dataset_types.Dataset` type of the\n dataset in ``dataset_dir``\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n add_info (True): whether to add dataset info from the importer (if\n any) to the dataset\'s ``info``\n **kwargs: optional keyword arguments to pass to the constructor of\n the :class:`fiftyone.utils.data.importers.DatasetImporter` for\n the specified ``dataset_type`` via the syntax\n ``DatasetImporter(dataset_dir, **kwargs)``\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if inspect.isclass(dataset_type): dataset_type = dataset_type() if (isinstance(dataset_type, (fot.TFImageClassificationDataset, fot.TFObjectDetectionDataset)) and ('images_dir' not in kwargs)): images_dir = get_default_dataset_dir(self.name) logger.info("Unpacking images to '%s'", images_dir) kwargs['images_dir'] = images_dir dataset_importer_cls = dataset_type.get_dataset_importer_cls() try: dataset_importer = dataset_importer_cls(dataset_dir, **kwargs) except Exception as e: importer_name = dataset_importer_cls.__name__ raise ValueError(('Failed to construct importer using syntax %s(dataset_dir, **kwargs); you may need to supply mandatory arguments to the constructor via `kwargs`. Please consult the documentation of `%s` to learn more' % (importer_name, etau.get_class_name(dataset_importer_cls)))) from e return self.add_importer(dataset_importer, label_field=label_field, tags=tags, expand_schema=expand_schema, add_info=add_info)
Adds the contents of the given directory to the dataset. See :doc:`this guide </user_guide/dataset_creation/datasets>` for descriptions of available dataset types. Args: dataset_dir: the dataset directory dataset_type (None): the :class:`fiftyone.types.dataset_types.Dataset` type of the dataset in ``dataset_dir`` label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema add_info (True): whether to add dataset info from the importer (if any) to the dataset's ``info`` **kwargs: optional keyword arguments to pass to the constructor of the :class:`fiftyone.utils.data.importers.DatasetImporter` for the specified ``dataset_type`` via the syntax ``DatasetImporter(dataset_dir, **kwargs)`` Returns: a list of IDs of the samples that were added to the dataset
fiftyone/core/dataset.py
add_dir
dadounhind/fiftyone
1
python
def add_dir(self, dataset_dir, dataset_type, label_field='ground_truth', tags=None, expand_schema=True, add_info=True, **kwargs): 'Adds the contents of the given directory to the dataset.\n\n See :doc:`this guide </user_guide/dataset_creation/datasets>` for\n descriptions of available dataset types.\n\n Args:\n dataset_dir: the dataset directory\n dataset_type (None): the\n :class:`fiftyone.types.dataset_types.Dataset` type of the\n dataset in ``dataset_dir``\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n add_info (True): whether to add dataset info from the importer (if\n any) to the dataset\'s ``info``\n **kwargs: optional keyword arguments to pass to the constructor of\n the :class:`fiftyone.utils.data.importers.DatasetImporter` for\n the specified ``dataset_type`` via the syntax\n ``DatasetImporter(dataset_dir, **kwargs)``\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if inspect.isclass(dataset_type): dataset_type = dataset_type() if (isinstance(dataset_type, (fot.TFImageClassificationDataset, fot.TFObjectDetectionDataset)) and ('images_dir' not in kwargs)): images_dir = get_default_dataset_dir(self.name) logger.info("Unpacking images to '%s'", images_dir) kwargs['images_dir'] = images_dir dataset_importer_cls = dataset_type.get_dataset_importer_cls() try: dataset_importer = dataset_importer_cls(dataset_dir, **kwargs) except Exception as e: importer_name = dataset_importer_cls.__name__ raise ValueError(('Failed to construct importer using syntax %s(dataset_dir, **kwargs); you may need to supply mandatory arguments to the constructor via `kwargs`. Please consult the documentation of `%s` to learn more' % (importer_name, etau.get_class_name(dataset_importer_cls)))) from e return self.add_importer(dataset_importer, label_field=label_field, tags=tags, expand_schema=expand_schema, add_info=add_info)
def add_dir(self, dataset_dir, dataset_type, label_field='ground_truth', tags=None, expand_schema=True, add_info=True, **kwargs): 'Adds the contents of the given directory to the dataset.\n\n See :doc:`this guide </user_guide/dataset_creation/datasets>` for\n descriptions of available dataset types.\n\n Args:\n dataset_dir: the dataset directory\n dataset_type (None): the\n :class:`fiftyone.types.dataset_types.Dataset` type of the\n dataset in ``dataset_dir``\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n add_info (True): whether to add dataset info from the importer (if\n any) to the dataset\'s ``info``\n **kwargs: optional keyword arguments to pass to the constructor of\n the :class:`fiftyone.utils.data.importers.DatasetImporter` for\n the specified ``dataset_type`` via the syntax\n ``DatasetImporter(dataset_dir, **kwargs)``\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if inspect.isclass(dataset_type): dataset_type = dataset_type() if (isinstance(dataset_type, (fot.TFImageClassificationDataset, fot.TFObjectDetectionDataset)) and ('images_dir' not in kwargs)): images_dir = get_default_dataset_dir(self.name) logger.info("Unpacking images to '%s'", images_dir) kwargs['images_dir'] = images_dir dataset_importer_cls = dataset_type.get_dataset_importer_cls() try: dataset_importer = dataset_importer_cls(dataset_dir, **kwargs) except Exception as e: importer_name = dataset_importer_cls.__name__ raise ValueError(('Failed to construct importer using syntax %s(dataset_dir, **kwargs); you may need to supply mandatory arguments to the constructor via `kwargs`. Please consult the documentation of `%s` to learn more' % (importer_name, etau.get_class_name(dataset_importer_cls)))) from e return self.add_importer(dataset_importer, label_field=label_field, tags=tags, expand_schema=expand_schema, add_info=add_info)<|docstring|>Adds the contents of the given directory to the dataset. See :doc:`this guide </user_guide/dataset_creation/datasets>` for descriptions of available dataset types. Args: dataset_dir: the dataset directory dataset_type (None): the :class:`fiftyone.types.dataset_types.Dataset` type of the dataset in ``dataset_dir`` label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema add_info (True): whether to add dataset info from the importer (if any) to the dataset's ``info`` **kwargs: optional keyword arguments to pass to the constructor of the :class:`fiftyone.utils.data.importers.DatasetImporter` for the specified ``dataset_type`` via the syntax ``DatasetImporter(dataset_dir, **kwargs)`` Returns: a list of IDs of the samples that were added to the dataset<|endoftext|>
e886a43e5abc31a53ccf92b1d54187ed4a712bea851f1adf40e04f3d15a69140
def add_importer(self, dataset_importer, label_field='ground_truth', tags=None, expand_schema=True, add_info=True): 'Adds the samples from the given\n :class:`fiftyone.utils.data.importers.DatasetImporter` to the dataset.\n\n See :ref:`this guide <custom-dataset-importer>` for more details about\n importing datasets in custom formats by defining your own\n :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`.\n\n Args:\n dataset_importer: a\n :class:`fiftyone.utils.data.importers.DatasetImporter`\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n add_info (True): whether to add dataset info from the importer (if\n any) to the dataset\'s ``info``\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.import_samples(self, dataset_importer, label_field=label_field, tags=tags, expand_schema=expand_schema, add_info=add_info)
Adds the samples from the given :class:`fiftyone.utils.data.importers.DatasetImporter` to the dataset. See :ref:`this guide <custom-dataset-importer>` for more details about importing datasets in custom formats by defining your own :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`. Args: dataset_importer: a :class:`fiftyone.utils.data.importers.DatasetImporter` label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema add_info (True): whether to add dataset info from the importer (if any) to the dataset's ``info`` Returns: a list of IDs of the samples that were added to the dataset
fiftyone/core/dataset.py
add_importer
dadounhind/fiftyone
1
python
def add_importer(self, dataset_importer, label_field='ground_truth', tags=None, expand_schema=True, add_info=True): 'Adds the samples from the given\n :class:`fiftyone.utils.data.importers.DatasetImporter` to the dataset.\n\n See :ref:`this guide <custom-dataset-importer>` for more details about\n importing datasets in custom formats by defining your own\n :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`.\n\n Args:\n dataset_importer: a\n :class:`fiftyone.utils.data.importers.DatasetImporter`\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n add_info (True): whether to add dataset info from the importer (if\n any) to the dataset\'s ``info``\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.import_samples(self, dataset_importer, label_field=label_field, tags=tags, expand_schema=expand_schema, add_info=add_info)
def add_importer(self, dataset_importer, label_field='ground_truth', tags=None, expand_schema=True, add_info=True): 'Adds the samples from the given\n :class:`fiftyone.utils.data.importers.DatasetImporter` to the dataset.\n\n See :ref:`this guide <custom-dataset-importer>` for more details about\n importing datasets in custom formats by defining your own\n :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`.\n\n Args:\n dataset_importer: a\n :class:`fiftyone.utils.data.importers.DatasetImporter`\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n add_info (True): whether to add dataset info from the importer (if\n any) to the dataset\'s ``info``\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.import_samples(self, dataset_importer, label_field=label_field, tags=tags, expand_schema=expand_schema, add_info=add_info)<|docstring|>Adds the samples from the given :class:`fiftyone.utils.data.importers.DatasetImporter` to the dataset. See :ref:`this guide <custom-dataset-importer>` for more details about importing datasets in custom formats by defining your own :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`. Args: dataset_importer: a :class:`fiftyone.utils.data.importers.DatasetImporter` label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema add_info (True): whether to add dataset info from the importer (if any) to the dataset's ``info`` Returns: a list of IDs of the samples that were added to the dataset<|endoftext|>
ab0b0db16143dbf022ab1b2a7690176cdb96519170f55db1cbd2497ccd655d63
def add_images(self, samples, sample_parser=None, tags=None): 'Adds the given images to the dataset.\n\n This operation does not read the images.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding images to a dataset by defining your own\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of image paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if (sample_parser is None): sample_parser = foud.ImageSampleParser() return foud.add_images(self, samples, sample_parser, tags=tags)
Adds the given images to the dataset. This operation does not read the images. See :ref:`this guide <custom-sample-parser>` for more details about adding images to a dataset by defining your own :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of image paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples that were added to the dataset
fiftyone/core/dataset.py
add_images
dadounhind/fiftyone
1
python
def add_images(self, samples, sample_parser=None, tags=None): 'Adds the given images to the dataset.\n\n This operation does not read the images.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding images to a dataset by defining your own\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of image paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if (sample_parser is None): sample_parser = foud.ImageSampleParser() return foud.add_images(self, samples, sample_parser, tags=tags)
def add_images(self, samples, sample_parser=None, tags=None): 'Adds the given images to the dataset.\n\n This operation does not read the images.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding images to a dataset by defining your own\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of image paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if (sample_parser is None): sample_parser = foud.ImageSampleParser() return foud.add_images(self, samples, sample_parser, tags=tags)<|docstring|>Adds the given images to the dataset. This operation does not read the images. See :ref:`this guide <custom-sample-parser>` for more details about adding images to a dataset by defining your own :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of image paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples that were added to the dataset<|endoftext|>
4b9c72a9fa7a0a8c8c684f56524cf755b641abb7d0bd959eb3874cf6d9417aff
def add_labeled_images(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True): 'Adds the given labeled images to the dataset.\n\n This operation will iterate over all provided samples, but the images\n will not be read (unless the sample parser requires it in order to\n compute image metadata).\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding labeled images to a dataset by defining your own\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.add_labeled_images(self, samples, sample_parser, label_field=label_field, tags=tags, expand_schema=expand_schema)
Adds the given labeled images to the dataset. This operation will iterate over all provided samples, but the images will not be read (unless the sample parser requires it in order to compute image metadata). See :ref:`this guide <custom-sample-parser>` for more details about adding labeled images to a dataset by defining your own :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser` instance to use to parse the samples label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema Returns: a list of IDs of the samples that were added to the dataset
fiftyone/core/dataset.py
add_labeled_images
dadounhind/fiftyone
1
python
def add_labeled_images(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True): 'Adds the given labeled images to the dataset.\n\n This operation will iterate over all provided samples, but the images\n will not be read (unless the sample parser requires it in order to\n compute image metadata).\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding labeled images to a dataset by defining your own\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.add_labeled_images(self, samples, sample_parser, label_field=label_field, tags=tags, expand_schema=expand_schema)
def add_labeled_images(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True): 'Adds the given labeled images to the dataset.\n\n This operation will iterate over all provided samples, but the images\n will not be read (unless the sample parser requires it in order to\n compute image metadata).\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding labeled images to a dataset by defining your own\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.add_labeled_images(self, samples, sample_parser, label_field=label_field, tags=tags, expand_schema=expand_schema)<|docstring|>Adds the given labeled images to the dataset. This operation will iterate over all provided samples, but the images will not be read (unless the sample parser requires it in order to compute image metadata). See :ref:`this guide <custom-sample-parser>` for more details about adding labeled images to a dataset by defining your own :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser` instance to use to parse the samples label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema Returns: a list of IDs of the samples that were added to the dataset<|endoftext|>
2f2ad1e4faa7f67bf39f01a1a32e1d2104e6fa7cb40b2b6e9132b791e45bd122
def add_images_dir(self, images_dir, tags=None, recursive=True): 'Adds the given directory of images to the dataset.\n\n See :class:`fiftyone.types.dataset_types.ImageDirectory` for format\n details. In particular, note that files with non-image MIME types are\n omitted.\n\n This operation does not read the images.\n\n Args:\n images_dir: a directory of images\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a list of IDs of the samples in the dataset\n ' image_paths = foud.parse_images_dir(images_dir, recursive=recursive) sample_parser = foud.ImageSampleParser() return self.add_images(image_paths, sample_parser, tags=tags)
Adds the given directory of images to the dataset. See :class:`fiftyone.types.dataset_types.ImageDirectory` for format details. In particular, note that files with non-image MIME types are omitted. This operation does not read the images. Args: images_dir: a directory of images tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
add_images_dir
dadounhind/fiftyone
1
python
def add_images_dir(self, images_dir, tags=None, recursive=True): 'Adds the given directory of images to the dataset.\n\n See :class:`fiftyone.types.dataset_types.ImageDirectory` for format\n details. In particular, note that files with non-image MIME types are\n omitted.\n\n This operation does not read the images.\n\n Args:\n images_dir: a directory of images\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a list of IDs of the samples in the dataset\n ' image_paths = foud.parse_images_dir(images_dir, recursive=recursive) sample_parser = foud.ImageSampleParser() return self.add_images(image_paths, sample_parser, tags=tags)
def add_images_dir(self, images_dir, tags=None, recursive=True): 'Adds the given directory of images to the dataset.\n\n See :class:`fiftyone.types.dataset_types.ImageDirectory` for format\n details. In particular, note that files with non-image MIME types are\n omitted.\n\n This operation does not read the images.\n\n Args:\n images_dir: a directory of images\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a list of IDs of the samples in the dataset\n ' image_paths = foud.parse_images_dir(images_dir, recursive=recursive) sample_parser = foud.ImageSampleParser() return self.add_images(image_paths, sample_parser, tags=tags)<|docstring|>Adds the given directory of images to the dataset. See :class:`fiftyone.types.dataset_types.ImageDirectory` for format details. In particular, note that files with non-image MIME types are omitted. This operation does not read the images. Args: images_dir: a directory of images tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a list of IDs of the samples in the dataset<|endoftext|>
fd325de05929f08e3e81812a86c26a38faff84f858cd0370af24aefabf537714
def add_images_patt(self, images_patt, tags=None): 'Adds the given glob pattern of images to the dataset.\n\n This operation does not read the images.\n\n Args:\n images_patt: a glob pattern of images like\n ``/path/to/images/*.jpg``\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples in the dataset\n ' image_paths = etau.get_glob_matches(images_patt) sample_parser = foud.ImageSampleParser() return self.add_images(image_paths, sample_parser, tags=tags)
Adds the given glob pattern of images to the dataset. This operation does not read the images. Args: images_patt: a glob pattern of images like ``/path/to/images/*.jpg`` tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
add_images_patt
dadounhind/fiftyone
1
python
def add_images_patt(self, images_patt, tags=None): 'Adds the given glob pattern of images to the dataset.\n\n This operation does not read the images.\n\n Args:\n images_patt: a glob pattern of images like\n ``/path/to/images/*.jpg``\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples in the dataset\n ' image_paths = etau.get_glob_matches(images_patt) sample_parser = foud.ImageSampleParser() return self.add_images(image_paths, sample_parser, tags=tags)
def add_images_patt(self, images_patt, tags=None): 'Adds the given glob pattern of images to the dataset.\n\n This operation does not read the images.\n\n Args:\n images_patt: a glob pattern of images like\n ``/path/to/images/*.jpg``\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples in the dataset\n ' image_paths = etau.get_glob_matches(images_patt) sample_parser = foud.ImageSampleParser() return self.add_images(image_paths, sample_parser, tags=tags)<|docstring|>Adds the given glob pattern of images to the dataset. This operation does not read the images. Args: images_patt: a glob pattern of images like ``/path/to/images/*.jpg`` tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples in the dataset<|endoftext|>
e1f4dfb923c65ed81d5f31b2a64ff973422623484c35f966caee964fe4e3f7a4
def ingest_images(self, samples, sample_parser=None, tags=None, dataset_dir=None, image_format=None): 'Ingests the given iterable of images into the dataset.\n\n The images are read in-memory and written to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting images into a dataset by defining your own\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of image paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n dataset_dir (None): the directory in which the images will be\n written. By default, :func:`get_default_dataset_dir` is used\n image_format (None): the image format to use to write the images to\n disk. By default, ``fiftyone.config.default_image_ext`` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (sample_parser is None): sample_parser = foud.ImageSampleParser() if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.UnlabeledImageDatasetIngestor(dataset_dir, samples, sample_parser, image_format=image_format) return self.add_importer(dataset_ingestor, tags=tags)
Ingests the given iterable of images into the dataset. The images are read in-memory and written to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting images into a dataset by defining your own :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of image paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample dataset_dir (None): the directory in which the images will be written. By default, :func:`get_default_dataset_dir` is used image_format (None): the image format to use to write the images to disk. By default, ``fiftyone.config.default_image_ext`` is used Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
ingest_images
dadounhind/fiftyone
1
python
def ingest_images(self, samples, sample_parser=None, tags=None, dataset_dir=None, image_format=None): 'Ingests the given iterable of images into the dataset.\n\n The images are read in-memory and written to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting images into a dataset by defining your own\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of image paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n dataset_dir (None): the directory in which the images will be\n written. By default, :func:`get_default_dataset_dir` is used\n image_format (None): the image format to use to write the images to\n disk. By default, ``fiftyone.config.default_image_ext`` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (sample_parser is None): sample_parser = foud.ImageSampleParser() if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.UnlabeledImageDatasetIngestor(dataset_dir, samples, sample_parser, image_format=image_format) return self.add_importer(dataset_ingestor, tags=tags)
def ingest_images(self, samples, sample_parser=None, tags=None, dataset_dir=None, image_format=None): 'Ingests the given iterable of images into the dataset.\n\n The images are read in-memory and written to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting images into a dataset by defining your own\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of image paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n dataset_dir (None): the directory in which the images will be\n written. By default, :func:`get_default_dataset_dir` is used\n image_format (None): the image format to use to write the images to\n disk. By default, ``fiftyone.config.default_image_ext`` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (sample_parser is None): sample_parser = foud.ImageSampleParser() if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.UnlabeledImageDatasetIngestor(dataset_dir, samples, sample_parser, image_format=image_format) return self.add_importer(dataset_ingestor, tags=tags)<|docstring|>Ingests the given iterable of images into the dataset. The images are read in-memory and written to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting images into a dataset by defining your own :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of image paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample dataset_dir (None): the directory in which the images will be written. By default, :func:`get_default_dataset_dir` is used image_format (None): the image format to use to write the images to disk. By default, ``fiftyone.config.default_image_ext`` is used Returns: a list of IDs of the samples in the dataset<|endoftext|>
59653a4df4203d395de075e5e48eb807dbbe6aebc96d2a1f055a37c7c451067e
def ingest_labeled_images(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True, dataset_dir=None, skip_unlabeled=False, image_format=None): 'Ingests the given iterable of labeled image samples into the\n dataset.\n\n The images are read in-memory and written to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting labeled images into a dataset by defining your own\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample\'s schema is not a subset of the dataset schema\n dataset_dir (None): the directory in which the images will be\n written. By default, :func:`get_default_dataset_dir` is used\n skip_unlabeled (False): whether to skip unlabeled images when\n importing\n image_format (None): the image format to use to write the images to\n disk. By default, ``fiftyone.config.default_image_ext`` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.LabeledImageDatasetIngestor(dataset_dir, samples, sample_parser, skip_unlabeled=skip_unlabeled, image_format=image_format) return self.add_importer(dataset_ingestor, label_field=label_field, tags=tags, expand_schema=expand_schema)
Ingests the given iterable of labeled image samples into the dataset. The images are read in-memory and written to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting labeled images into a dataset by defining your own :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser` instance to use to parse the samples label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if the sample's schema is not a subset of the dataset schema dataset_dir (None): the directory in which the images will be written. By default, :func:`get_default_dataset_dir` is used skip_unlabeled (False): whether to skip unlabeled images when importing image_format (None): the image format to use to write the images to disk. By default, ``fiftyone.config.default_image_ext`` is used Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
ingest_labeled_images
dadounhind/fiftyone
1
python
def ingest_labeled_images(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True, dataset_dir=None, skip_unlabeled=False, image_format=None): 'Ingests the given iterable of labeled image samples into the\n dataset.\n\n The images are read in-memory and written to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting labeled images into a dataset by defining your own\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample\'s schema is not a subset of the dataset schema\n dataset_dir (None): the directory in which the images will be\n written. By default, :func:`get_default_dataset_dir` is used\n skip_unlabeled (False): whether to skip unlabeled images when\n importing\n image_format (None): the image format to use to write the images to\n disk. By default, ``fiftyone.config.default_image_ext`` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.LabeledImageDatasetIngestor(dataset_dir, samples, sample_parser, skip_unlabeled=skip_unlabeled, image_format=image_format) return self.add_importer(dataset_ingestor, label_field=label_field, tags=tags, expand_schema=expand_schema)
def ingest_labeled_images(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True, dataset_dir=None, skip_unlabeled=False, image_format=None): 'Ingests the given iterable of labeled image samples into the\n dataset.\n\n The images are read in-memory and written to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting labeled images into a dataset by defining your own\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample\'s schema is not a subset of the dataset schema\n dataset_dir (None): the directory in which the images will be\n written. By default, :func:`get_default_dataset_dir` is used\n skip_unlabeled (False): whether to skip unlabeled images when\n importing\n image_format (None): the image format to use to write the images to\n disk. By default, ``fiftyone.config.default_image_ext`` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.LabeledImageDatasetIngestor(dataset_dir, samples, sample_parser, skip_unlabeled=skip_unlabeled, image_format=image_format) return self.add_importer(dataset_ingestor, label_field=label_field, tags=tags, expand_schema=expand_schema)<|docstring|>Ingests the given iterable of labeled image samples into the dataset. The images are read in-memory and written to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting labeled images into a dataset by defining your own :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser` instance to use to parse the samples label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if the sample's schema is not a subset of the dataset schema dataset_dir (None): the directory in which the images will be written. By default, :func:`get_default_dataset_dir` is used skip_unlabeled (False): whether to skip unlabeled images when importing image_format (None): the image format to use to write the images to disk. By default, ``fiftyone.config.default_image_ext`` is used Returns: a list of IDs of the samples in the dataset<|endoftext|>
d10e8aefa985e6e7fe04a905913204a3bfe4c88404d397751e408a9f28b3a265
def add_videos(self, samples, sample_parser=None, tags=None): 'Adds the given videos to the dataset.\n\n This operation does not read the videos.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding videos to a dataset by defining your own\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of video paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if (sample_parser is None): sample_parser = foud.VideoSampleParser() return foud.add_videos(self, samples, sample_parser, tags=tags)
Adds the given videos to the dataset. This operation does not read the videos. See :ref:`this guide <custom-sample-parser>` for more details about adding videos to a dataset by defining your own :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of video paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples that were added to the dataset
fiftyone/core/dataset.py
add_videos
dadounhind/fiftyone
1
python
def add_videos(self, samples, sample_parser=None, tags=None): 'Adds the given videos to the dataset.\n\n This operation does not read the videos.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding videos to a dataset by defining your own\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of video paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if (sample_parser is None): sample_parser = foud.VideoSampleParser() return foud.add_videos(self, samples, sample_parser, tags=tags)
def add_videos(self, samples, sample_parser=None, tags=None): 'Adds the given videos to the dataset.\n\n This operation does not read the videos.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding videos to a dataset by defining your own\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of video paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' if (sample_parser is None): sample_parser = foud.VideoSampleParser() return foud.add_videos(self, samples, sample_parser, tags=tags)<|docstring|>Adds the given videos to the dataset. This operation does not read the videos. See :ref:`this guide <custom-sample-parser>` for more details about adding videos to a dataset by defining your own :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of video paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples that were added to the dataset<|endoftext|>
3424848ce5085d72836a08e3a1c6fec1764136c07a8ed7a11f14397b70c82abd
def add_labeled_videos(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True): 'Adds the given labeled videos to the dataset.\n\n This operation will iterate over all provided samples, but the videos\n will not be read/decoded/etc.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding labeled videos to a dataset by defining your own\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n frame field(s) to use for the labels\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.add_labeled_videos(self, samples, sample_parser, label_field=label_field, tags=tags, expand_schema=expand_schema)
Adds the given labeled videos to the dataset. This operation will iterate over all provided samples, but the videos will not be read/decoded/etc. See :ref:`this guide <custom-sample-parser>` for more details about adding labeled videos to a dataset by defining your own :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser` instance to use to parse the samples label_field ("ground_truth"): the name (or root name) of the frame field(s) to use for the labels tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema Returns: a list of IDs of the samples that were added to the dataset
fiftyone/core/dataset.py
add_labeled_videos
dadounhind/fiftyone
1
python
def add_labeled_videos(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True): 'Adds the given labeled videos to the dataset.\n\n This operation will iterate over all provided samples, but the videos\n will not be read/decoded/etc.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding labeled videos to a dataset by defining your own\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n frame field(s) to use for the labels\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.add_labeled_videos(self, samples, sample_parser, label_field=label_field, tags=tags, expand_schema=expand_schema)
def add_labeled_videos(self, samples, sample_parser, label_field='ground_truth', tags=None, expand_schema=True): 'Adds the given labeled videos to the dataset.\n\n This operation will iterate over all provided samples, but the videos\n will not be read/decoded/etc.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n adding labeled videos to a dataset by defining your own\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n label_field ("ground_truth"): the name (or root name) of the\n frame field(s) to use for the labels\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if a sample\'s schema is not a subset of the dataset schema\n\n Returns:\n a list of IDs of the samples that were added to the dataset\n ' return foud.add_labeled_videos(self, samples, sample_parser, label_field=label_field, tags=tags, expand_schema=expand_schema)<|docstring|>Adds the given labeled videos to the dataset. This operation will iterate over all provided samples, but the videos will not be read/decoded/etc. See :ref:`this guide <custom-sample-parser>` for more details about adding labeled videos to a dataset by defining your own :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser` instance to use to parse the samples label_field ("ground_truth"): the name (or root name) of the frame field(s) to use for the labels tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if a sample's schema is not a subset of the dataset schema Returns: a list of IDs of the samples that were added to the dataset<|endoftext|>
020be7f16d0dee02c2d88c50243c04a33d23fb62528af87e887f9d9483cc189e
def add_videos_dir(self, videos_dir, tags=None, recursive=True): 'Adds the given directory of videos to the dataset.\n\n See :class:`fiftyone.types.dataset_types.VideoDirectory` for format\n details. In particular, note that files with non-video MIME types are\n omitted.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_dir: a directory of videos\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a list of IDs of the samples in the dataset\n ' video_paths = foud.parse_videos_dir(videos_dir, recursive=recursive) sample_parser = foud.VideoSampleParser() return self.add_videos(video_paths, sample_parser, tags=tags)
Adds the given directory of videos to the dataset. See :class:`fiftyone.types.dataset_types.VideoDirectory` for format details. In particular, note that files with non-video MIME types are omitted. This operation does not read/decode the videos. Args: videos_dir: a directory of videos tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
add_videos_dir
dadounhind/fiftyone
1
python
def add_videos_dir(self, videos_dir, tags=None, recursive=True): 'Adds the given directory of videos to the dataset.\n\n See :class:`fiftyone.types.dataset_types.VideoDirectory` for format\n details. In particular, note that files with non-video MIME types are\n omitted.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_dir: a directory of videos\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a list of IDs of the samples in the dataset\n ' video_paths = foud.parse_videos_dir(videos_dir, recursive=recursive) sample_parser = foud.VideoSampleParser() return self.add_videos(video_paths, sample_parser, tags=tags)
def add_videos_dir(self, videos_dir, tags=None, recursive=True): 'Adds the given directory of videos to the dataset.\n\n See :class:`fiftyone.types.dataset_types.VideoDirectory` for format\n details. In particular, note that files with non-video MIME types are\n omitted.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_dir: a directory of videos\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a list of IDs of the samples in the dataset\n ' video_paths = foud.parse_videos_dir(videos_dir, recursive=recursive) sample_parser = foud.VideoSampleParser() return self.add_videos(video_paths, sample_parser, tags=tags)<|docstring|>Adds the given directory of videos to the dataset. See :class:`fiftyone.types.dataset_types.VideoDirectory` for format details. In particular, note that files with non-video MIME types are omitted. This operation does not read/decode the videos. Args: videos_dir: a directory of videos tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a list of IDs of the samples in the dataset<|endoftext|>
1b03c73505551ff74b90defb16636399248412ef90850dbea100b248af2e74ae
def add_videos_patt(self, videos_patt, tags=None): 'Adds the given glob pattern of videos to the dataset.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_patt: a glob pattern of videos like\n ``/path/to/videos/*.mp4``\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples in the dataset\n ' video_paths = etau.get_glob_matches(videos_patt) sample_parser = foud.VideoSampleParser() return self.add_videos(video_paths, sample_parser, tags=tags)
Adds the given glob pattern of videos to the dataset. This operation does not read/decode the videos. Args: videos_patt: a glob pattern of videos like ``/path/to/videos/*.mp4`` tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
add_videos_patt
dadounhind/fiftyone
1
python
def add_videos_patt(self, videos_patt, tags=None): 'Adds the given glob pattern of videos to the dataset.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_patt: a glob pattern of videos like\n ``/path/to/videos/*.mp4``\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples in the dataset\n ' video_paths = etau.get_glob_matches(videos_patt) sample_parser = foud.VideoSampleParser() return self.add_videos(video_paths, sample_parser, tags=tags)
def add_videos_patt(self, videos_patt, tags=None): 'Adds the given glob pattern of videos to the dataset.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_patt: a glob pattern of videos like\n ``/path/to/videos/*.mp4``\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a list of IDs of the samples in the dataset\n ' video_paths = etau.get_glob_matches(videos_patt) sample_parser = foud.VideoSampleParser() return self.add_videos(video_paths, sample_parser, tags=tags)<|docstring|>Adds the given glob pattern of videos to the dataset. This operation does not read/decode the videos. Args: videos_patt: a glob pattern of videos like ``/path/to/videos/*.mp4`` tags (None): an optional list of tags to attach to each sample Returns: a list of IDs of the samples in the dataset<|endoftext|>
f618bd17ed1f1eeb4273d1e0cfb7e230ecca50b1fc3e33afa76f298f20947d2e
def ingest_videos(self, samples, sample_parser=None, tags=None, dataset_dir=None): 'Ingests the given iterable of videos into the dataset.\n\n The videos are copied to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting videos into a dataset by defining your own\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of video paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n dataset_dir (None): the directory in which the videos will be\n written. By default, :func:`get_default_dataset_dir` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (sample_parser is None): sample_parser = foud.VideoSampleParser() if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.UnlabeledVideoDatasetIngestor(dataset_dir, samples, sample_parser) return self.add_importer(dataset_ingestor, tags=tags)
Ingests the given iterable of videos into the dataset. The videos are copied to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting videos into a dataset by defining your own :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of video paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample dataset_dir (None): the directory in which the videos will be written. By default, :func:`get_default_dataset_dir` is used Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
ingest_videos
dadounhind/fiftyone
1
python
def ingest_videos(self, samples, sample_parser=None, tags=None, dataset_dir=None): 'Ingests the given iterable of videos into the dataset.\n\n The videos are copied to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting videos into a dataset by defining your own\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of video paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n dataset_dir (None): the directory in which the videos will be\n written. By default, :func:`get_default_dataset_dir` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (sample_parser is None): sample_parser = foud.VideoSampleParser() if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.UnlabeledVideoDatasetIngestor(dataset_dir, samples, sample_parser) return self.add_importer(dataset_ingestor, tags=tags)
def ingest_videos(self, samples, sample_parser=None, tags=None, dataset_dir=None): 'Ingests the given iterable of videos into the dataset.\n\n The videos are copied to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting videos into a dataset by defining your own\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples. If no ``sample_parser`` is\n provided, this must be an iterable of video paths. If a\n ``sample_parser`` is provided, this can be an arbitrary\n iterable whose elements can be parsed by the sample parser\n sample_parser (None): a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n dataset_dir (None): the directory in which the videos will be\n written. By default, :func:`get_default_dataset_dir` is used\n\n Returns:\n a list of IDs of the samples in the dataset\n ' if (sample_parser is None): sample_parser = foud.VideoSampleParser() if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.UnlabeledVideoDatasetIngestor(dataset_dir, samples, sample_parser) return self.add_importer(dataset_ingestor, tags=tags)<|docstring|>Ingests the given iterable of videos into the dataset. The videos are copied to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting videos into a dataset by defining your own :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`. Args: samples: an iterable of samples. If no ``sample_parser`` is provided, this must be an iterable of video paths. If a ``sample_parser`` is provided, this can be an arbitrary iterable whose elements can be parsed by the sample parser sample_parser (None): a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample dataset_dir (None): the directory in which the videos will be written. By default, :func:`get_default_dataset_dir` is used Returns: a list of IDs of the samples in the dataset<|endoftext|>
48ac3001b73b5b333d1039db8781ec4c3fa1966d3d626cfe336c6c19bfa68fdd
def ingest_labeled_videos(self, samples, sample_parser, tags=None, expand_schema=True, dataset_dir=None, skip_unlabeled=False): "Ingests the given iterable of labeled video samples into the\n dataset.\n\n The videos are copied to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting labeled videos into a dataset by defining your own\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample's schema is not a subset of the dataset schema\n dataset_dir (None): the directory in which the videos will be\n written. By default, :func:`get_default_dataset_dir` is used\n skip_unlabeled (False): whether to skip unlabeled videos when\n importing\n\n Returns:\n a list of IDs of the samples in the dataset\n " if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.LabeledVideoDatasetIngestor(dataset_dir, samples, sample_parser, skip_unlabeled=skip_unlabeled) return self.add_importer(dataset_ingestor, tags=tags, expand_schema=expand_schema)
Ingests the given iterable of labeled video samples into the dataset. The videos are copied to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting labeled videos into a dataset by defining your own :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if the sample's schema is not a subset of the dataset schema dataset_dir (None): the directory in which the videos will be written. By default, :func:`get_default_dataset_dir` is used skip_unlabeled (False): whether to skip unlabeled videos when importing Returns: a list of IDs of the samples in the dataset
fiftyone/core/dataset.py
ingest_labeled_videos
dadounhind/fiftyone
1
python
def ingest_labeled_videos(self, samples, sample_parser, tags=None, expand_schema=True, dataset_dir=None, skip_unlabeled=False): "Ingests the given iterable of labeled video samples into the\n dataset.\n\n The videos are copied to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting labeled videos into a dataset by defining your own\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample's schema is not a subset of the dataset schema\n dataset_dir (None): the directory in which the videos will be\n written. By default, :func:`get_default_dataset_dir` is used\n skip_unlabeled (False): whether to skip unlabeled videos when\n importing\n\n Returns:\n a list of IDs of the samples in the dataset\n " if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.LabeledVideoDatasetIngestor(dataset_dir, samples, sample_parser, skip_unlabeled=skip_unlabeled) return self.add_importer(dataset_ingestor, tags=tags, expand_schema=expand_schema)
def ingest_labeled_videos(self, samples, sample_parser, tags=None, expand_schema=True, dataset_dir=None, skip_unlabeled=False): "Ingests the given iterable of labeled video samples into the\n dataset.\n\n The videos are copied to ``dataset_dir``.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n ingesting labeled videos into a dataset by defining your own\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n tags (None): an optional list of tags to attach to each sample\n expand_schema (True): whether to dynamically add new sample fields\n encountered to the dataset schema. If False, an error is raised\n if the sample's schema is not a subset of the dataset schema\n dataset_dir (None): the directory in which the videos will be\n written. By default, :func:`get_default_dataset_dir` is used\n skip_unlabeled (False): whether to skip unlabeled videos when\n importing\n\n Returns:\n a list of IDs of the samples in the dataset\n " if (dataset_dir is None): dataset_dir = get_default_dataset_dir(self.name) dataset_ingestor = foud.LabeledVideoDatasetIngestor(dataset_dir, samples, sample_parser, skip_unlabeled=skip_unlabeled) return self.add_importer(dataset_ingestor, tags=tags, expand_schema=expand_schema)<|docstring|>Ingests the given iterable of labeled video samples into the dataset. The videos are copied to ``dataset_dir``. See :ref:`this guide <custom-sample-parser>` for more details about ingesting labeled videos into a dataset by defining your own :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser` instance to use to parse the samples tags (None): an optional list of tags to attach to each sample expand_schema (True): whether to dynamically add new sample fields encountered to the dataset schema. If False, an error is raised if the sample's schema is not a subset of the dataset schema dataset_dir (None): the directory in which the videos will be written. By default, :func:`get_default_dataset_dir` is used skip_unlabeled (False): whether to skip unlabeled videos when importing Returns: a list of IDs of the samples in the dataset<|endoftext|>
2265364259db49da2c102821898a2747ca0b1d62ec87d182345934cef35a5d0c
@classmethod def from_dir(cls, dataset_dir, dataset_type, name=None, label_field='ground_truth', tags=None, **kwargs): 'Creates a :class:`Dataset` from the contents of the given directory.\n\n See :doc:`this guide </user_guide/dataset_creation/datasets>` for\n descriptions of available dataset types.\n\n Args:\n dataset_dir: the dataset directory\n dataset_type: the :class:`fiftyone.types.dataset_types.Dataset`\n type of the dataset in ``dataset_dir``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n **kwargs: optional keyword arguments to pass to the constructor of\n the :class:`fiftyone.utils.data.importers.DatasetImporter` for\n the specified ``dataset_type`` via the syntax\n ``DatasetImporter(dataset_dir, **kwargs)``\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_dir(dataset_dir, dataset_type, label_field=label_field, tags=tags, **kwargs) return dataset
Creates a :class:`Dataset` from the contents of the given directory. See :doc:`this guide </user_guide/dataset_creation/datasets>` for descriptions of available dataset types. Args: dataset_dir: the dataset directory dataset_type: the :class:`fiftyone.types.dataset_types.Dataset` type of the dataset in ``dataset_dir`` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample **kwargs: optional keyword arguments to pass to the constructor of the :class:`fiftyone.utils.data.importers.DatasetImporter` for the specified ``dataset_type`` via the syntax ``DatasetImporter(dataset_dir, **kwargs)`` Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_dir
dadounhind/fiftyone
1
python
@classmethod def from_dir(cls, dataset_dir, dataset_type, name=None, label_field='ground_truth', tags=None, **kwargs): 'Creates a :class:`Dataset` from the contents of the given directory.\n\n See :doc:`this guide </user_guide/dataset_creation/datasets>` for\n descriptions of available dataset types.\n\n Args:\n dataset_dir: the dataset directory\n dataset_type: the :class:`fiftyone.types.dataset_types.Dataset`\n type of the dataset in ``dataset_dir``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n **kwargs: optional keyword arguments to pass to the constructor of\n the :class:`fiftyone.utils.data.importers.DatasetImporter` for\n the specified ``dataset_type`` via the syntax\n ``DatasetImporter(dataset_dir, **kwargs)``\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_dir(dataset_dir, dataset_type, label_field=label_field, tags=tags, **kwargs) return dataset
@classmethod def from_dir(cls, dataset_dir, dataset_type, name=None, label_field='ground_truth', tags=None, **kwargs): 'Creates a :class:`Dataset` from the contents of the given directory.\n\n See :doc:`this guide </user_guide/dataset_creation/datasets>` for\n descriptions of available dataset types.\n\n Args:\n dataset_dir: the dataset directory\n dataset_type: the :class:`fiftyone.types.dataset_types.Dataset`\n type of the dataset in ``dataset_dir``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n **kwargs: optional keyword arguments to pass to the constructor of\n the :class:`fiftyone.utils.data.importers.DatasetImporter` for\n the specified ``dataset_type`` via the syntax\n ``DatasetImporter(dataset_dir, **kwargs)``\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_dir(dataset_dir, dataset_type, label_field=label_field, tags=tags, **kwargs) return dataset<|docstring|>Creates a :class:`Dataset` from the contents of the given directory. See :doc:`this guide </user_guide/dataset_creation/datasets>` for descriptions of available dataset types. Args: dataset_dir: the dataset directory dataset_type: the :class:`fiftyone.types.dataset_types.Dataset` type of the dataset in ``dataset_dir`` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample **kwargs: optional keyword arguments to pass to the constructor of the :class:`fiftyone.utils.data.importers.DatasetImporter` for the specified ``dataset_type`` via the syntax ``DatasetImporter(dataset_dir, **kwargs)`` Returns: a :class:`Dataset`<|endoftext|>
524a18e90d3711a185c73a4c129cb49f9ae6c8151d9abb20da56a78b40898ad9
@classmethod def from_importer(cls, dataset_importer, name=None, label_field='ground_truth', tags=None): 'Creates a :class:`Dataset` by importing the samples in the given\n :class:`fiftyone.utils.data.importers.DatasetImporter`.\n\n See :ref:`this guide <custom-dataset-importer>` for more details about\n providing a custom\n :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`\n to import datasets into FiftyOne.\n\n Args:\n dataset_importer: a\n :class:`fiftyone.utils.data.importers.DatasetImporter`\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_importer(dataset_importer, label_field=label_field, tags=tags) return dataset
Creates a :class:`Dataset` by importing the samples in the given :class:`fiftyone.utils.data.importers.DatasetImporter`. See :ref:`this guide <custom-dataset-importer>` for more details about providing a custom :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>` to import datasets into FiftyOne. Args: dataset_importer: a :class:`fiftyone.utils.data.importers.DatasetImporter` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_importer
dadounhind/fiftyone
1
python
@classmethod def from_importer(cls, dataset_importer, name=None, label_field='ground_truth', tags=None): 'Creates a :class:`Dataset` by importing the samples in the given\n :class:`fiftyone.utils.data.importers.DatasetImporter`.\n\n See :ref:`this guide <custom-dataset-importer>` for more details about\n providing a custom\n :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`\n to import datasets into FiftyOne.\n\n Args:\n dataset_importer: a\n :class:`fiftyone.utils.data.importers.DatasetImporter`\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_importer(dataset_importer, label_field=label_field, tags=tags) return dataset
@classmethod def from_importer(cls, dataset_importer, name=None, label_field='ground_truth', tags=None): 'Creates a :class:`Dataset` by importing the samples in the given\n :class:`fiftyone.utils.data.importers.DatasetImporter`.\n\n See :ref:`this guide <custom-dataset-importer>` for more details about\n providing a custom\n :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>`\n to import datasets into FiftyOne.\n\n Args:\n dataset_importer: a\n :class:`fiftyone.utils.data.importers.DatasetImporter`\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels (if applicable)\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_importer(dataset_importer, label_field=label_field, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` by importing the samples in the given :class:`fiftyone.utils.data.importers.DatasetImporter`. See :ref:`this guide <custom-dataset-importer>` for more details about providing a custom :class:`DatasetImporter <fiftyone.utils.data.importers.DatasetImporter>` to import datasets into FiftyOne. Args: dataset_importer: a :class:`fiftyone.utils.data.importers.DatasetImporter` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels (if applicable) tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
02d358488dec035c663cb98c0f9df27b32bf8576f17ce12b47c8fb00af4da899
@classmethod def from_images(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given images.\n\n This operation does not read the images.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`\n to load image samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images(samples, sample_parser, tags=tags) return dataset
Creates a :class:`Dataset` from the given images. This operation does not read the images. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>` to load image samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_images
dadounhind/fiftyone
1
python
@classmethod def from_images(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given images.\n\n This operation does not read the images.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`\n to load image samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images(samples, sample_parser, tags=tags) return dataset
@classmethod def from_images(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given images.\n\n This operation does not read the images.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>`\n to load image samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images(samples, sample_parser, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` from the given images. This operation does not read the images. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`UnlabeledImageSampleParser <fiftyone.utils.data.parsers.UnlabeledImageSampleParser>` to load image samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.UnlabeledImageSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
c2452bc0ce40718cab02ffe9e272f4c01ce2fcdc2100a9ac66d2aceeb5c0e437
@classmethod def from_labeled_images(cls, samples, sample_parser, name=None, label_field='ground_truth', tags=None): 'Creates a :class:`Dataset` from the given labeled images.\n\n This operation will iterate over all provided samples, but the images\n will not be read.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`\n to load labeled image samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_labeled_images(samples, sample_parser, label_field=label_field, tags=tags) return dataset
Creates a :class:`Dataset` from the given labeled images. This operation will iterate over all provided samples, but the images will not be read. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>` to load labeled image samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_labeled_images
dadounhind/fiftyone
1
python
@classmethod def from_labeled_images(cls, samples, sample_parser, name=None, label_field='ground_truth', tags=None): 'Creates a :class:`Dataset` from the given labeled images.\n\n This operation will iterate over all provided samples, but the images\n will not be read.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`\n to load labeled image samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_labeled_images(samples, sample_parser, label_field=label_field, tags=tags) return dataset
@classmethod def from_labeled_images(cls, samples, sample_parser, name=None, label_field='ground_truth', tags=None): 'Creates a :class:`Dataset` from the given labeled images.\n\n This operation will iterate over all provided samples, but the images\n will not be read.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>`\n to load labeled image samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n label_field ("ground_truth"): the name (or root name) of the\n field(s) to use for the labels\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_labeled_images(samples, sample_parser, label_field=label_field, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` from the given labeled images. This operation will iterate over all provided samples, but the images will not be read. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`LabeledImageSampleParser <fiftyone.utils.data.parsers.LabeledImageSampleParser>` to load labeled image samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledImageSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used label_field ("ground_truth"): the name (or root name) of the field(s) to use for the labels tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
86a02acb783469576100943f5aa4fa374f1c07e69d6931f13fb7a92b5292ec85
@classmethod def from_images_dir(cls, images_dir, name=None, tags=None, recursive=True): 'Creates a :class:`Dataset` from the given directory of images.\n\n This operation does not read the images.\n\n Args:\n images_dir: a directory of images\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images_dir(images_dir, tags=tags, recursive=recursive) return dataset
Creates a :class:`Dataset` from the given directory of images. This operation does not read the images. Args: images_dir: a directory of images name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_images_dir
dadounhind/fiftyone
1
python
@classmethod def from_images_dir(cls, images_dir, name=None, tags=None, recursive=True): 'Creates a :class:`Dataset` from the given directory of images.\n\n This operation does not read the images.\n\n Args:\n images_dir: a directory of images\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images_dir(images_dir, tags=tags, recursive=recursive) return dataset
@classmethod def from_images_dir(cls, images_dir, name=None, tags=None, recursive=True): 'Creates a :class:`Dataset` from the given directory of images.\n\n This operation does not read the images.\n\n Args:\n images_dir: a directory of images\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images_dir(images_dir, tags=tags, recursive=recursive) return dataset<|docstring|>Creates a :class:`Dataset` from the given directory of images. This operation does not read the images. Args: images_dir: a directory of images name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a :class:`Dataset`<|endoftext|>
4074c575ea208f319b57ea428fe2a03631d38a907b081c32991e5184c8e47ab2
@classmethod def from_images_patt(cls, images_patt, name=None, tags=None): 'Creates a :class:`Dataset` from the given glob pattern of images.\n\n This operation does not read the images.\n\n Args:\n images_patt: a glob pattern of images like\n ``/path/to/images/*.jpg``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images_patt(images_patt, tags=tags) return dataset
Creates a :class:`Dataset` from the given glob pattern of images. This operation does not read the images. Args: images_patt: a glob pattern of images like ``/path/to/images/*.jpg`` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_images_patt
dadounhind/fiftyone
1
python
@classmethod def from_images_patt(cls, images_patt, name=None, tags=None): 'Creates a :class:`Dataset` from the given glob pattern of images.\n\n This operation does not read the images.\n\n Args:\n images_patt: a glob pattern of images like\n ``/path/to/images/*.jpg``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images_patt(images_patt, tags=tags) return dataset
@classmethod def from_images_patt(cls, images_patt, name=None, tags=None): 'Creates a :class:`Dataset` from the given glob pattern of images.\n\n This operation does not read the images.\n\n Args:\n images_patt: a glob pattern of images like\n ``/path/to/images/*.jpg``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_images_patt(images_patt, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` from the given glob pattern of images. This operation does not read the images. Args: images_patt: a glob pattern of images like ``/path/to/images/*.jpg`` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
94d3734f3a00e9af39843565be21e5e8b9640546958c5f8da6e773e95600489f
@classmethod def from_videos(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given videos.\n\n This operation does not read/decode the videos.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`\n to load video samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.UnlabeledVideoSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos(samples, sample_parser, tags=tags) return dataset
Creates a :class:`Dataset` from the given videos. This operation does not read/decode the videos. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>` to load video samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.UnlabeledVideoSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_videos
dadounhind/fiftyone
1
python
@classmethod def from_videos(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given videos.\n\n This operation does not read/decode the videos.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`\n to load video samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.UnlabeledVideoSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos(samples, sample_parser, tags=tags) return dataset
@classmethod def from_videos(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given videos.\n\n This operation does not read/decode the videos.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>`\n to load video samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.UnlabeledVideoSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos(samples, sample_parser, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` from the given videos. This operation does not read/decode the videos. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`UnlabeledVideoSampleParser <fiftyone.utils.data.parsers.UnlabeledVideoSampleParser>` to load video samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.UnlabeledVideoSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
e170960d40cc602f2d9b1468100aff21e411fc2494b81b2206e70a93cdbb92ac
@classmethod def from_labeled_videos(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given labeled videos.\n\n This operation will iterate over all provided samples, but the videos\n will not be read/decoded/etc.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`\n to load labeled video samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_labeled_videos(samples, sample_parser, tags=tags) return dataset
Creates a :class:`Dataset` from the given labeled videos. This operation will iterate over all provided samples, but the videos will not be read/decoded/etc. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>` to load labeled video samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_labeled_videos
dadounhind/fiftyone
1
python
@classmethod def from_labeled_videos(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given labeled videos.\n\n This operation will iterate over all provided samples, but the videos\n will not be read/decoded/etc.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`\n to load labeled video samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_labeled_videos(samples, sample_parser, tags=tags) return dataset
@classmethod def from_labeled_videos(cls, samples, sample_parser, name=None, tags=None): 'Creates a :class:`Dataset` from the given labeled videos.\n\n This operation will iterate over all provided samples, but the videos\n will not be read/decoded/etc.\n\n See :ref:`this guide <custom-sample-parser>` for more details about\n providing a custom\n :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>`\n to load labeled video samples into FiftyOne.\n\n Args:\n samples: an iterable of samples\n sample_parser: a\n :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser`\n instance to use to parse the samples\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_labeled_videos(samples, sample_parser, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` from the given labeled videos. This operation will iterate over all provided samples, but the videos will not be read/decoded/etc. See :ref:`this guide <custom-sample-parser>` for more details about providing a custom :class:`LabeledVideoSampleParser <fiftyone.utils.data.parsers.LabeledVideoSampleParser>` to load labeled video samples into FiftyOne. Args: samples: an iterable of samples sample_parser: a :class:`fiftyone.utils.data.parsers.LabeledVideoSampleParser` instance to use to parse the samples name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
b45112c870af4b032642b88e4221b88968b7df31f823a9957389e1fd34330928
@classmethod def from_videos_dir(cls, videos_dir, name=None, tags=None, recursive=True): 'Creates a :class:`Dataset` from the given directory of videos.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_dir: a directory of videos\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos_dir(videos_dir, tags=tags, recursive=recursive) return dataset
Creates a :class:`Dataset` from the given directory of videos. This operation does not read/decode the videos. Args: videos_dir: a directory of videos name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_videos_dir
dadounhind/fiftyone
1
python
@classmethod def from_videos_dir(cls, videos_dir, name=None, tags=None, recursive=True): 'Creates a :class:`Dataset` from the given directory of videos.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_dir: a directory of videos\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos_dir(videos_dir, tags=tags, recursive=recursive) return dataset
@classmethod def from_videos_dir(cls, videos_dir, name=None, tags=None, recursive=True): 'Creates a :class:`Dataset` from the given directory of videos.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_dir: a directory of videos\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n recursive (True): whether to recursively traverse subdirectories\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos_dir(videos_dir, tags=tags, recursive=recursive) return dataset<|docstring|>Creates a :class:`Dataset` from the given directory of videos. This operation does not read/decode the videos. Args: videos_dir: a directory of videos name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample recursive (True): whether to recursively traverse subdirectories Returns: a :class:`Dataset`<|endoftext|>
82bd14f299138101e9e1207399fda168bdf54154b10f2369f646b291874545dc
@classmethod def from_videos_patt(cls, videos_patt, name=None, tags=None): 'Creates a :class:`Dataset` from the given glob pattern of videos.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_patt: a glob pattern of videos like\n ``/path/to/videos/*.mp4``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos_patt(videos_patt, tags=tags) return dataset
Creates a :class:`Dataset` from the given glob pattern of videos. This operation does not read/decode the videos. Args: videos_patt: a glob pattern of videos like ``/path/to/videos/*.mp4`` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_videos_patt
dadounhind/fiftyone
1
python
@classmethod def from_videos_patt(cls, videos_patt, name=None, tags=None): 'Creates a :class:`Dataset` from the given glob pattern of videos.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_patt: a glob pattern of videos like\n ``/path/to/videos/*.mp4``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos_patt(videos_patt, tags=tags) return dataset
@classmethod def from_videos_patt(cls, videos_patt, name=None, tags=None): 'Creates a :class:`Dataset` from the given glob pattern of videos.\n\n This operation does not read/decode the videos.\n\n Args:\n videos_patt: a glob pattern of videos like\n ``/path/to/videos/*.mp4``\n name (None): a name for the dataset. By default,\n :func:`get_default_dataset_name` is used\n tags (None): an optional list of tags to attach to each sample\n\n Returns:\n a :class:`Dataset`\n ' dataset = cls(name) dataset.add_videos_patt(videos_patt, tags=tags) return dataset<|docstring|>Creates a :class:`Dataset` from the given glob pattern of videos. This operation does not read/decode the videos. Args: videos_patt: a glob pattern of videos like ``/path/to/videos/*.mp4`` name (None): a name for the dataset. By default, :func:`get_default_dataset_name` is used tags (None): an optional list of tags to attach to each sample Returns: a :class:`Dataset`<|endoftext|>
d418e5043bdd2f6caed93cb3d563952574d83dc55aa43382630c06c0576c9f79
def list_indexes(self): 'Returns the fields of the dataset that are indexed.\n\n Returns:\n a list of field names\n ' index_info = self._sample_collection.index_information() index_fields = [v['key'][0][0] for v in index_info.values()] return [f for f in index_fields if (not f.startswith('_'))]
Returns the fields of the dataset that are indexed. Returns: a list of field names
fiftyone/core/dataset.py
list_indexes
dadounhind/fiftyone
1
python
def list_indexes(self): 'Returns the fields of the dataset that are indexed.\n\n Returns:\n a list of field names\n ' index_info = self._sample_collection.index_information() index_fields = [v['key'][0][0] for v in index_info.values()] return [f for f in index_fields if (not f.startswith('_'))]
def list_indexes(self): 'Returns the fields of the dataset that are indexed.\n\n Returns:\n a list of field names\n ' index_info = self._sample_collection.index_information() index_fields = [v['key'][0][0] for v in index_info.values()] return [f for f in index_fields if (not f.startswith('_'))]<|docstring|>Returns the fields of the dataset that are indexed. Returns: a list of field names<|endoftext|>
b2b525f0dbb426db05e02acd1f5a641755e4ff1b234dda53661931e6816e28d4
def create_index(self, field_name, unique=False, sphere2d=False): 'Creates an index on the given field.\n\n If the given field already has a unique index, it will be retained\n regardless of the ``unique`` value you specify.\n\n If the given field already has a non-unique index but you requested a\n unique index, the existing index will be dropped.\n\n Indexes enable efficient sorting, merging, and other such operations.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n unique (False): whether to add a uniqueness constraint to the index\n sphere2d (False): whether the field is a GeoJSON field that\n requires a sphere2d index\n ' root = field_name.split('.', 1)[0] if (root not in self.get_field_schema()): raise ValueError(("Dataset has no field '%s'" % root)) index_info = self._sample_collection.index_information() index_map = {v['key'][0][0]: v.get('unique', False) for v in index_info.values()} if (field_name in index_map): _unique = index_map[field_name] if (_unique or (unique == _unique)): return self.drop_index(field_name) if sphere2d: index_spec = [(field_name, '2dsphere')] else: index_spec = field_name self._sample_collection.create_index(index_spec, unique=unique)
Creates an index on the given field. If the given field already has a unique index, it will be retained regardless of the ``unique`` value you specify. If the given field already has a non-unique index but you requested a unique index, the existing index will be dropped. Indexes enable efficient sorting, merging, and other such operations. Args: field_name: the field name or ``embedded.field.name`` unique (False): whether to add a uniqueness constraint to the index sphere2d (False): whether the field is a GeoJSON field that requires a sphere2d index
fiftyone/core/dataset.py
create_index
dadounhind/fiftyone
1
python
def create_index(self, field_name, unique=False, sphere2d=False): 'Creates an index on the given field.\n\n If the given field already has a unique index, it will be retained\n regardless of the ``unique`` value you specify.\n\n If the given field already has a non-unique index but you requested a\n unique index, the existing index will be dropped.\n\n Indexes enable efficient sorting, merging, and other such operations.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n unique (False): whether to add a uniqueness constraint to the index\n sphere2d (False): whether the field is a GeoJSON field that\n requires a sphere2d index\n ' root = field_name.split('.', 1)[0] if (root not in self.get_field_schema()): raise ValueError(("Dataset has no field '%s'" % root)) index_info = self._sample_collection.index_information() index_map = {v['key'][0][0]: v.get('unique', False) for v in index_info.values()} if (field_name in index_map): _unique = index_map[field_name] if (_unique or (unique == _unique)): return self.drop_index(field_name) if sphere2d: index_spec = [(field_name, '2dsphere')] else: index_spec = field_name self._sample_collection.create_index(index_spec, unique=unique)
def create_index(self, field_name, unique=False, sphere2d=False): 'Creates an index on the given field.\n\n If the given field already has a unique index, it will be retained\n regardless of the ``unique`` value you specify.\n\n If the given field already has a non-unique index but you requested a\n unique index, the existing index will be dropped.\n\n Indexes enable efficient sorting, merging, and other such operations.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n unique (False): whether to add a uniqueness constraint to the index\n sphere2d (False): whether the field is a GeoJSON field that\n requires a sphere2d index\n ' root = field_name.split('.', 1)[0] if (root not in self.get_field_schema()): raise ValueError(("Dataset has no field '%s'" % root)) index_info = self._sample_collection.index_information() index_map = {v['key'][0][0]: v.get('unique', False) for v in index_info.values()} if (field_name in index_map): _unique = index_map[field_name] if (_unique or (unique == _unique)): return self.drop_index(field_name) if sphere2d: index_spec = [(field_name, '2dsphere')] else: index_spec = field_name self._sample_collection.create_index(index_spec, unique=unique)<|docstring|>Creates an index on the given field. If the given field already has a unique index, it will be retained regardless of the ``unique`` value you specify. If the given field already has a non-unique index but you requested a unique index, the existing index will be dropped. Indexes enable efficient sorting, merging, and other such operations. Args: field_name: the field name or ``embedded.field.name`` unique (False): whether to add a uniqueness constraint to the index sphere2d (False): whether the field is a GeoJSON field that requires a sphere2d index<|endoftext|>
0b3f5236925d47baa1d2051ef450a7ad0f2b48a4fcf2129bf4043e9988b87670
def drop_index(self, field_name): 'Drops the index on the given field.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n ' index_info = self._sample_collection.index_information() index_map = {v['key'][0][0]: k for (k, v) in index_info.items()} if (field_name not in index_map): if (('.' not in field_name) and (field_name not in self.get_field_schema())): raise ValueError(("Dataset has no field '%s'" % field_name)) raise ValueError(("Dataset field '%s' is not indexed" % field_name)) self._sample_collection.drop_index(index_map[field_name])
Drops the index on the given field. Args: field_name: the field name or ``embedded.field.name``
fiftyone/core/dataset.py
drop_index
dadounhind/fiftyone
1
python
def drop_index(self, field_name): 'Drops the index on the given field.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n ' index_info = self._sample_collection.index_information() index_map = {v['key'][0][0]: k for (k, v) in index_info.items()} if (field_name not in index_map): if (('.' not in field_name) and (field_name not in self.get_field_schema())): raise ValueError(("Dataset has no field '%s'" % field_name)) raise ValueError(("Dataset field '%s' is not indexed" % field_name)) self._sample_collection.drop_index(index_map[field_name])
def drop_index(self, field_name): 'Drops the index on the given field.\n\n Args:\n field_name: the field name or ``embedded.field.name``\n ' index_info = self._sample_collection.index_information() index_map = {v['key'][0][0]: k for (k, v) in index_info.items()} if (field_name not in index_map): if (('.' not in field_name) and (field_name not in self.get_field_schema())): raise ValueError(("Dataset has no field '%s'" % field_name)) raise ValueError(("Dataset field '%s' is not indexed" % field_name)) self._sample_collection.drop_index(index_map[field_name])<|docstring|>Drops the index on the given field. Args: field_name: the field name or ``embedded.field.name``<|endoftext|>
e34d4998aae9147fcb4a5e2b020727c6d4196e41b56f6c9c6895d3965ba8b4ab
@classmethod def from_dict(cls, d, name=None, rel_dir=None, frame_labels_dir=None): 'Loads a :class:`Dataset` from a JSON dictionary generated by\n :func:`fiftyone.core.collections.SampleCollection.to_dict`.\n\n The JSON dictionary can contain an export of any\n :class:`fiftyone.core.collections.SampleCollection`, e.g.,\n :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`.\n\n Args:\n d: a JSON dictionary\n name (None): a name for the new dataset. By default, ``d["name"]``\n is used\n rel_dir (None): a relative directory to prepend to the ``filepath``\n of each sample, if the filepath is not absolute (begins with a\n path separator). The path is converted to an absolute path\n (if necessary) via\n ``os.path.abspath(os.path.expanduser(rel_dir))``\n frame_labels_dir (None): a directory of per-sample JSON files\n containing the frame labels for video samples. If omitted, it\n is assumed that the frame labels are included directly in the\n provided JSON dict. Only applicable to video datasets\n\n Returns:\n a :class:`Dataset`\n ' if (name is None): name = d['name'] if (rel_dir is not None): rel_dir = os.path.abspath(os.path.expanduser(rel_dir)) name = make_unique_dataset_name(name) dataset = cls(name) media_type = d.get('media_type', None) if (media_type is not None): dataset.media_type = media_type dataset._apply_field_schema(d['sample_fields']) if (media_type == fom.VIDEO): dataset._apply_frame_field_schema(d['frame_fields']) dataset.info = d.get('info', {}) dataset.classes = d.get('classes', {}) dataset.default_classes = d.get('default_classes', []) dataset.mask_targets = dataset._parse_mask_targets(d.get('mask_targets', {})) dataset.default_mask_targets = dataset._parse_default_mask_targets(d.get('default_mask_targets', {})) def parse_sample(sd): if (rel_dir and (not sd['filepath'].startswith(os.path.sep))): sd['filepath'] = os.path.join(rel_dir, sd['filepath']) if (media_type == fom.VIDEO): frames = sd.pop('frames', {}) if etau.is_str(frames): frames_path = os.path.join(frame_labels_dir, frames) frames = etas.load_json(frames_path).get('frames', {}) sample = fos.Sample.from_dict(sd) sample._frames = fofr.Frames() for (key, value) in frames.items(): sample.frames[int(key)] = fofr.Frame.from_dict(value) else: sample = fos.Sample.from_dict(sd) return sample samples = d['samples'] num_samples = len(samples) _samples = map(parse_sample, samples) dataset.add_samples(_samples, expand_schema=False, num_samples=num_samples) return dataset
Loads a :class:`Dataset` from a JSON dictionary generated by :func:`fiftyone.core.collections.SampleCollection.to_dict`. The JSON dictionary can contain an export of any :class:`fiftyone.core.collections.SampleCollection`, e.g., :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`. Args: d: a JSON dictionary name (None): a name for the new dataset. By default, ``d["name"]`` is used rel_dir (None): a relative directory to prepend to the ``filepath`` of each sample, if the filepath is not absolute (begins with a path separator). The path is converted to an absolute path (if necessary) via ``os.path.abspath(os.path.expanduser(rel_dir))`` frame_labels_dir (None): a directory of per-sample JSON files containing the frame labels for video samples. If omitted, it is assumed that the frame labels are included directly in the provided JSON dict. Only applicable to video datasets Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_dict
dadounhind/fiftyone
1
python
@classmethod def from_dict(cls, d, name=None, rel_dir=None, frame_labels_dir=None): 'Loads a :class:`Dataset` from a JSON dictionary generated by\n :func:`fiftyone.core.collections.SampleCollection.to_dict`.\n\n The JSON dictionary can contain an export of any\n :class:`fiftyone.core.collections.SampleCollection`, e.g.,\n :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`.\n\n Args:\n d: a JSON dictionary\n name (None): a name for the new dataset. By default, ``d["name"]``\n is used\n rel_dir (None): a relative directory to prepend to the ``filepath``\n of each sample, if the filepath is not absolute (begins with a\n path separator). The path is converted to an absolute path\n (if necessary) via\n ``os.path.abspath(os.path.expanduser(rel_dir))``\n frame_labels_dir (None): a directory of per-sample JSON files\n containing the frame labels for video samples. If omitted, it\n is assumed that the frame labels are included directly in the\n provided JSON dict. Only applicable to video datasets\n\n Returns:\n a :class:`Dataset`\n ' if (name is None): name = d['name'] if (rel_dir is not None): rel_dir = os.path.abspath(os.path.expanduser(rel_dir)) name = make_unique_dataset_name(name) dataset = cls(name) media_type = d.get('media_type', None) if (media_type is not None): dataset.media_type = media_type dataset._apply_field_schema(d['sample_fields']) if (media_type == fom.VIDEO): dataset._apply_frame_field_schema(d['frame_fields']) dataset.info = d.get('info', {}) dataset.classes = d.get('classes', {}) dataset.default_classes = d.get('default_classes', []) dataset.mask_targets = dataset._parse_mask_targets(d.get('mask_targets', {})) dataset.default_mask_targets = dataset._parse_default_mask_targets(d.get('default_mask_targets', {})) def parse_sample(sd): if (rel_dir and (not sd['filepath'].startswith(os.path.sep))): sd['filepath'] = os.path.join(rel_dir, sd['filepath']) if (media_type == fom.VIDEO): frames = sd.pop('frames', {}) if etau.is_str(frames): frames_path = os.path.join(frame_labels_dir, frames) frames = etas.load_json(frames_path).get('frames', {}) sample = fos.Sample.from_dict(sd) sample._frames = fofr.Frames() for (key, value) in frames.items(): sample.frames[int(key)] = fofr.Frame.from_dict(value) else: sample = fos.Sample.from_dict(sd) return sample samples = d['samples'] num_samples = len(samples) _samples = map(parse_sample, samples) dataset.add_samples(_samples, expand_schema=False, num_samples=num_samples) return dataset
@classmethod def from_dict(cls, d, name=None, rel_dir=None, frame_labels_dir=None): 'Loads a :class:`Dataset` from a JSON dictionary generated by\n :func:`fiftyone.core.collections.SampleCollection.to_dict`.\n\n The JSON dictionary can contain an export of any\n :class:`fiftyone.core.collections.SampleCollection`, e.g.,\n :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`.\n\n Args:\n d: a JSON dictionary\n name (None): a name for the new dataset. By default, ``d["name"]``\n is used\n rel_dir (None): a relative directory to prepend to the ``filepath``\n of each sample, if the filepath is not absolute (begins with a\n path separator). The path is converted to an absolute path\n (if necessary) via\n ``os.path.abspath(os.path.expanduser(rel_dir))``\n frame_labels_dir (None): a directory of per-sample JSON files\n containing the frame labels for video samples. If omitted, it\n is assumed that the frame labels are included directly in the\n provided JSON dict. Only applicable to video datasets\n\n Returns:\n a :class:`Dataset`\n ' if (name is None): name = d['name'] if (rel_dir is not None): rel_dir = os.path.abspath(os.path.expanduser(rel_dir)) name = make_unique_dataset_name(name) dataset = cls(name) media_type = d.get('media_type', None) if (media_type is not None): dataset.media_type = media_type dataset._apply_field_schema(d['sample_fields']) if (media_type == fom.VIDEO): dataset._apply_frame_field_schema(d['frame_fields']) dataset.info = d.get('info', {}) dataset.classes = d.get('classes', {}) dataset.default_classes = d.get('default_classes', []) dataset.mask_targets = dataset._parse_mask_targets(d.get('mask_targets', {})) dataset.default_mask_targets = dataset._parse_default_mask_targets(d.get('default_mask_targets', {})) def parse_sample(sd): if (rel_dir and (not sd['filepath'].startswith(os.path.sep))): sd['filepath'] = os.path.join(rel_dir, sd['filepath']) if (media_type == fom.VIDEO): frames = sd.pop('frames', {}) if etau.is_str(frames): frames_path = os.path.join(frame_labels_dir, frames) frames = etas.load_json(frames_path).get('frames', {}) sample = fos.Sample.from_dict(sd) sample._frames = fofr.Frames() for (key, value) in frames.items(): sample.frames[int(key)] = fofr.Frame.from_dict(value) else: sample = fos.Sample.from_dict(sd) return sample samples = d['samples'] num_samples = len(samples) _samples = map(parse_sample, samples) dataset.add_samples(_samples, expand_schema=False, num_samples=num_samples) return dataset<|docstring|>Loads a :class:`Dataset` from a JSON dictionary generated by :func:`fiftyone.core.collections.SampleCollection.to_dict`. The JSON dictionary can contain an export of any :class:`fiftyone.core.collections.SampleCollection`, e.g., :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`. Args: d: a JSON dictionary name (None): a name for the new dataset. By default, ``d["name"]`` is used rel_dir (None): a relative directory to prepend to the ``filepath`` of each sample, if the filepath is not absolute (begins with a path separator). The path is converted to an absolute path (if necessary) via ``os.path.abspath(os.path.expanduser(rel_dir))`` frame_labels_dir (None): a directory of per-sample JSON files containing the frame labels for video samples. If omitted, it is assumed that the frame labels are included directly in the provided JSON dict. Only applicable to video datasets Returns: a :class:`Dataset`<|endoftext|>
001932c356a6e48d14d84771386ac185a16576a1c0c301e7fd3d572657ee35fa
@classmethod def from_json(cls, path_or_str, name=None, rel_dir=None, frame_labels_dir=None): 'Loads a :class:`Dataset` from JSON generated by\n :func:`fiftyone.core.collections.SampleCollection.write_json` or\n :func:`fiftyone.core.collections.SampleCollection.to_json`.\n\n The JSON file can contain an export of any\n :class:`fiftyone.core.collections.SampleCollection`, e.g.,\n :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`.\n\n Args:\n path_or_str: the path to a JSON file on disk or a JSON string\n name (None): a name for the new dataset. By default, ``d["name"]``\n is used\n rel_dir (None): a relative directory to prepend to the ``filepath``\n of each sample, if the filepath is not absolute (begins with a\n path separator). The path is converted to an absolute path\n (if necessary) via\n ``os.path.abspath(os.path.expanduser(rel_dir))``\n\n Returns:\n a :class:`Dataset`\n ' d = etas.load_json(path_or_str) return cls.from_dict(d, name=name, rel_dir=rel_dir, frame_labels_dir=frame_labels_dir)
Loads a :class:`Dataset` from JSON generated by :func:`fiftyone.core.collections.SampleCollection.write_json` or :func:`fiftyone.core.collections.SampleCollection.to_json`. The JSON file can contain an export of any :class:`fiftyone.core.collections.SampleCollection`, e.g., :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`. Args: path_or_str: the path to a JSON file on disk or a JSON string name (None): a name for the new dataset. By default, ``d["name"]`` is used rel_dir (None): a relative directory to prepend to the ``filepath`` of each sample, if the filepath is not absolute (begins with a path separator). The path is converted to an absolute path (if necessary) via ``os.path.abspath(os.path.expanduser(rel_dir))`` Returns: a :class:`Dataset`
fiftyone/core/dataset.py
from_json
dadounhind/fiftyone
1
python
@classmethod def from_json(cls, path_or_str, name=None, rel_dir=None, frame_labels_dir=None): 'Loads a :class:`Dataset` from JSON generated by\n :func:`fiftyone.core.collections.SampleCollection.write_json` or\n :func:`fiftyone.core.collections.SampleCollection.to_json`.\n\n The JSON file can contain an export of any\n :class:`fiftyone.core.collections.SampleCollection`, e.g.,\n :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`.\n\n Args:\n path_or_str: the path to a JSON file on disk or a JSON string\n name (None): a name for the new dataset. By default, ``d["name"]``\n is used\n rel_dir (None): a relative directory to prepend to the ``filepath``\n of each sample, if the filepath is not absolute (begins with a\n path separator). The path is converted to an absolute path\n (if necessary) via\n ``os.path.abspath(os.path.expanduser(rel_dir))``\n\n Returns:\n a :class:`Dataset`\n ' d = etas.load_json(path_or_str) return cls.from_dict(d, name=name, rel_dir=rel_dir, frame_labels_dir=frame_labels_dir)
@classmethod def from_json(cls, path_or_str, name=None, rel_dir=None, frame_labels_dir=None): 'Loads a :class:`Dataset` from JSON generated by\n :func:`fiftyone.core.collections.SampleCollection.write_json` or\n :func:`fiftyone.core.collections.SampleCollection.to_json`.\n\n The JSON file can contain an export of any\n :class:`fiftyone.core.collections.SampleCollection`, e.g.,\n :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`.\n\n Args:\n path_or_str: the path to a JSON file on disk or a JSON string\n name (None): a name for the new dataset. By default, ``d["name"]``\n is used\n rel_dir (None): a relative directory to prepend to the ``filepath``\n of each sample, if the filepath is not absolute (begins with a\n path separator). The path is converted to an absolute path\n (if necessary) via\n ``os.path.abspath(os.path.expanduser(rel_dir))``\n\n Returns:\n a :class:`Dataset`\n ' d = etas.load_json(path_or_str) return cls.from_dict(d, name=name, rel_dir=rel_dir, frame_labels_dir=frame_labels_dir)<|docstring|>Loads a :class:`Dataset` from JSON generated by :func:`fiftyone.core.collections.SampleCollection.write_json` or :func:`fiftyone.core.collections.SampleCollection.to_json`. The JSON file can contain an export of any :class:`fiftyone.core.collections.SampleCollection`, e.g., :class:`Dataset` or :class:`fiftyone.core.view.DatasetView`. Args: path_or_str: the path to a JSON file on disk or a JSON string name (None): a name for the new dataset. By default, ``d["name"]`` is used rel_dir (None): a relative directory to prepend to the ``filepath`` of each sample, if the filepath is not absolute (begins with a path separator). The path is converted to an absolute path (if necessary) via ``os.path.abspath(os.path.expanduser(rel_dir))`` Returns: a :class:`Dataset`<|endoftext|>
a3c261e517d5f62115129d0468b829cd89d6c0675c35691ca236045520161bda
def plugin_unloaded(self) -> None: '\n This is called **from the main thread** when the plugin unloads. In that case we must destroy all sessions\n from the main thread. That could lead to some dict/list being mutated while iterated over, so be careful\n ' self._end_sessions_async()
This is called **from the main thread** when the plugin unloads. In that case we must destroy all sessions from the main thread. That could lead to some dict/list being mutated while iterated over, so be careful
plugin/core/windows.py
plugin_unloaded
chendesheng/LSP
0
python
def plugin_unloaded(self) -> None: '\n This is called **from the main thread** when the plugin unloads. In that case we must destroy all sessions\n from the main thread. That could lead to some dict/list being mutated while iterated over, so be careful\n ' self._end_sessions_async()
def plugin_unloaded(self) -> None: '\n This is called **from the main thread** when the plugin unloads. In that case we must destroy all sessions\n from the main thread. That could lead to some dict/list being mutated while iterated over, so be careful\n ' self._end_sessions_async()<|docstring|>This is called **from the main thread** when the plugin unloads. In that case we must destroy all sessions from the main thread. That could lead to some dict/list being mutated while iterated over, so be careful<|endoftext|>
b6329cfd9ce5533cfc0cb03a381c3b2178c8db0dd1e313b498daa35352d7a166
def stderr_message(self, message: str) -> None: '\n Not handled here as stderr messages are handled by WindowManager regardless\n if this logger is enabled.\n ' pass
Not handled here as stderr messages are handled by WindowManager regardless if this logger is enabled.
plugin/core/windows.py
stderr_message
chendesheng/LSP
0
python
def stderr_message(self, message: str) -> None: '\n Not handled here as stderr messages are handled by WindowManager regardless\n if this logger is enabled.\n ' pass
def stderr_message(self, message: str) -> None: '\n Not handled here as stderr messages are handled by WindowManager regardless\n if this logger is enabled.\n ' pass<|docstring|>Not handled here as stderr messages are handled by WindowManager regardless if this logger is enabled.<|endoftext|>
2ddba18b5447029135df4290f497b149c433c957a7e82446fd382e567e0a55cf
def _on_new_client(self, client: Dict, server: WebsocketServer) -> None: 'Called for every client connecting (after handshake).' debug(('New client connected and was given id %d' % client['id']))
Called for every client connecting (after handshake).
plugin/core/windows.py
_on_new_client
chendesheng/LSP
0
python
def _on_new_client(self, client: Dict, server: WebsocketServer) -> None: debug(('New client connected and was given id %d' % client['id']))
def _on_new_client(self, client: Dict, server: WebsocketServer) -> None: debug(('New client connected and was given id %d' % client['id']))<|docstring|>Called for every client connecting (after handshake).<|endoftext|>
6b6a7a987b39358e1eb823041e53c65f1613655813dc9e075ccf23c9f1848722
def _on_client_left(self, client: Dict, server: WebsocketServer) -> None: 'Called for every client disconnecting.' debug(('Client(%d) disconnected' % client['id']))
Called for every client disconnecting.
plugin/core/windows.py
_on_client_left
chendesheng/LSP
0
python
def _on_client_left(self, client: Dict, server: WebsocketServer) -> None: debug(('Client(%d) disconnected' % client['id']))
def _on_client_left(self, client: Dict, server: WebsocketServer) -> None: debug(('Client(%d) disconnected' % client['id']))<|docstring|>Called for every client disconnecting.<|endoftext|>
c7071900d1a3322aff7654ae75be251879333999c43babdcf30119d07a7e18cb
def _on_message_received(self, client: Dict, server: WebsocketServer, message: str) -> None: 'Called when a client sends a message.' debug(('Client(%d) said: %s' % (client['id'], message)))
Called when a client sends a message.
plugin/core/windows.py
_on_message_received
chendesheng/LSP
0
python
def _on_message_received(self, client: Dict, server: WebsocketServer, message: str) -> None: debug(('Client(%d) said: %s' % (client['id'], message)))
def _on_message_received(self, client: Dict, server: WebsocketServer, message: str) -> None: debug(('Client(%d) said: %s' % (client['id'], message)))<|docstring|>Called when a client sends a message.<|endoftext|>
da05866294adef670d63a4dac5e8492aa1df718e996f65752a0ade06843de666
def printProgress(iteration, total, prefix='', suffix='', decimals=1, barLength=100): '\n Call in a loop to create terminal progress bar\n @params:\n iteration - Required : current iteration (Int)\n total - Required : total iterations (Int)\n prefix - Optional : prefix string (Str)\n suffix - Optional : suffix string (Str)\n decimals - Optional : positive number of decimals in percent complete (Int)\n barLength - Optional : character length of bar (Int)\n ' formatStr = (('{0:.' + str(decimals)) + 'f}') percents = formatStr.format((100 * (iteration / float(total)))) filledLength = int(round(((barLength * iteration) / float(total)))) bar = (('' * filledLength) + ('-' * (barLength - filledLength))) (sys.stdout.write(('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix))),) if (iteration == total): sys.stdout.write('\x1b[2K\r') sys.stdout.flush()
Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) barLength - Optional : character length of bar (Int)
pysot/datasets/creation/vid.py
printProgress
eldercrow/tracking-pytorch
0
python
def printProgress(iteration, total, prefix=, suffix=, decimals=1, barLength=100): '\n Call in a loop to create terminal progress bar\n @params:\n iteration - Required : current iteration (Int)\n total - Required : total iterations (Int)\n prefix - Optional : prefix string (Str)\n suffix - Optional : suffix string (Str)\n decimals - Optional : positive number of decimals in percent complete (Int)\n barLength - Optional : character length of bar (Int)\n ' formatStr = (('{0:.' + str(decimals)) + 'f}') percents = formatStr.format((100 * (iteration / float(total)))) filledLength = int(round(((barLength * iteration) / float(total)))) bar = (( * filledLength) + ('-' * (barLength - filledLength))) (sys.stdout.write(('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix))),) if (iteration == total): sys.stdout.write('\x1b[2K\r') sys.stdout.flush()
def printProgress(iteration, total, prefix=, suffix=, decimals=1, barLength=100): '\n Call in a loop to create terminal progress bar\n @params:\n iteration - Required : current iteration (Int)\n total - Required : total iterations (Int)\n prefix - Optional : prefix string (Str)\n suffix - Optional : suffix string (Str)\n decimals - Optional : positive number of decimals in percent complete (Int)\n barLength - Optional : character length of bar (Int)\n ' formatStr = (('{0:.' + str(decimals)) + 'f}') percents = formatStr.format((100 * (iteration / float(total)))) filledLength = int(round(((barLength * iteration) / float(total)))) bar = (( * filledLength) + ('-' * (barLength - filledLength))) (sys.stdout.write(('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix))),) if (iteration == total): sys.stdout.write('\x1b[2K\r') sys.stdout.flush()<|docstring|>Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) barLength - Optional : character length of bar (Int)<|endoftext|>
3504eac8cb1c07455d3b20099515cc3cb190ebebc458dd35cb0bc9a9004dc7a2
def load_concepts(skip_homonym=False) -> List[List[str]]: 'Load concepts from disk. ' data = {} feature_vocab = set() category_vocab = set() ref_vocab = set() for f in os.listdir('resources/concepts/'): tree = et.parse(('resources/concepts/%s' % f)).getroot() cat = tree.get('category') category_vocab.add(cat) for subcat in tree: if (subcat.tag == 'concept'): subcatname = cat concept = subcat name = concept.get('name') if (('_' in name) and skip_homonym): continue ref_vocab.add(name) feats = [] for aspect in concept: attrs = aspect.text.split() feats += attrs feature_vocab.update(set(attrs)) data[(cat, subcatname, name)] = feats elif (subcat.tag == 'subcategory'): subcatname = subcat.get('name') category_vocab.add(subcatname) for concept in subcat.findall('concept'): name = concept.get('name') if (('_' in name) and skip_homonym): continue ref_vocab.add(name) feats = [] for aspect in concept: attrs = aspect.text.split() feats += attrs feature_vocab.update(set(attrs)) data[(cat, subcatname, name)] = feats else: assert False, '`concept` and `subcategory` should be exhaustive.' return (data, feature_vocab, category_vocab)
Load concepts from disk.
egg/zoo/objects_game_concepts/concepts.py
load_concepts
cjlovering/EGG
0
python
def load_concepts(skip_homonym=False) -> List[List[str]]: ' ' data = {} feature_vocab = set() category_vocab = set() ref_vocab = set() for f in os.listdir('resources/concepts/'): tree = et.parse(('resources/concepts/%s' % f)).getroot() cat = tree.get('category') category_vocab.add(cat) for subcat in tree: if (subcat.tag == 'concept'): subcatname = cat concept = subcat name = concept.get('name') if (('_' in name) and skip_homonym): continue ref_vocab.add(name) feats = [] for aspect in concept: attrs = aspect.text.split() feats += attrs feature_vocab.update(set(attrs)) data[(cat, subcatname, name)] = feats elif (subcat.tag == 'subcategory'): subcatname = subcat.get('name') category_vocab.add(subcatname) for concept in subcat.findall('concept'): name = concept.get('name') if (('_' in name) and skip_homonym): continue ref_vocab.add(name) feats = [] for aspect in concept: attrs = aspect.text.split() feats += attrs feature_vocab.update(set(attrs)) data[(cat, subcatname, name)] = feats else: assert False, '`concept` and `subcategory` should be exhaustive.' return (data, feature_vocab, category_vocab)
def load_concepts(skip_homonym=False) -> List[List[str]]: ' ' data = {} feature_vocab = set() category_vocab = set() ref_vocab = set() for f in os.listdir('resources/concepts/'): tree = et.parse(('resources/concepts/%s' % f)).getroot() cat = tree.get('category') category_vocab.add(cat) for subcat in tree: if (subcat.tag == 'concept'): subcatname = cat concept = subcat name = concept.get('name') if (('_' in name) and skip_homonym): continue ref_vocab.add(name) feats = [] for aspect in concept: attrs = aspect.text.split() feats += attrs feature_vocab.update(set(attrs)) data[(cat, subcatname, name)] = feats elif (subcat.tag == 'subcategory'): subcatname = subcat.get('name') category_vocab.add(subcatname) for concept in subcat.findall('concept'): name = concept.get('name') if (('_' in name) and skip_homonym): continue ref_vocab.add(name) feats = [] for aspect in concept: attrs = aspect.text.split() feats += attrs feature_vocab.update(set(attrs)) data[(cat, subcatname, name)] = feats else: assert False, '`concept` and `subcategory` should be exhaustive.' return (data, feature_vocab, category_vocab)<|docstring|>Load concepts from disk.<|endoftext|>
dc257c81c7602dd0897484e2a669dce2b5229786782869927cfd2519202d1da8
def save_summary(dataset_path: str, train, test, dev): 'Summarize the dataset. ' data = ((train + test) + dev) features = sorted(list(set(list(itertools.chain.from_iterable(data))))) with open(f'{dataset_path}/summary.json', 'w') as f: json.dump({'num_train_items': len(train), 'num_test_items': len(test), 'num_dev_items': len(dev), 'num_feature_sets': len(features), 'num_feature_values': 1, 'num_features': len(features), 'features': features}, f, indent=2)
Summarize the dataset.
egg/zoo/objects_game_concepts/concepts.py
save_summary
cjlovering/EGG
0
python
def save_summary(dataset_path: str, train, test, dev): ' ' data = ((train + test) + dev) features = sorted(list(set(list(itertools.chain.from_iterable(data))))) with open(f'{dataset_path}/summary.json', 'w') as f: json.dump({'num_train_items': len(train), 'num_test_items': len(test), 'num_dev_items': len(dev), 'num_feature_sets': len(features), 'num_feature_values': 1, 'num_features': len(features), 'features': features}, f, indent=2)
def save_summary(dataset_path: str, train, test, dev): ' ' data = ((train + test) + dev) features = sorted(list(set(list(itertools.chain.from_iterable(data))))) with open(f'{dataset_path}/summary.json', 'w') as f: json.dump({'num_train_items': len(train), 'num_test_items': len(test), 'num_dev_items': len(dev), 'num_feature_sets': len(features), 'num_feature_values': 1, 'num_features': len(features), 'features': features}, f, indent=2)<|docstring|>Summarize the dataset.<|endoftext|>
14a9305996725fff2ddfb52d377e86561494ce47f1c1a52754c78f1bfda67b28
def format_client_list_result(result, exclude_attributes=None): '\n Format an API client list return which contains a list of objects.\n\n :param exclude_attributes: Optional list of attributes to exclude from the item.\n :type exclude_attributes: ``list``\n\n :rtype: ``list`` of ``dict``\n ' formatted = [] for item in result: value = item.to_dict(exclude_attributes=exclude_attributes) formatted.append(value) return formatted
Format an API client list return which contains a list of objects. :param exclude_attributes: Optional list of attributes to exclude from the item. :type exclude_attributes: ``list`` :rtype: ``list`` of ``dict``
packs/st2/actions/lib/formatters.py
format_client_list_result
Mierdin/st2contrib
164
python
def format_client_list_result(result, exclude_attributes=None): '\n Format an API client list return which contains a list of objects.\n\n :param exclude_attributes: Optional list of attributes to exclude from the item.\n :type exclude_attributes: ``list``\n\n :rtype: ``list`` of ``dict``\n ' formatted = [] for item in result: value = item.to_dict(exclude_attributes=exclude_attributes) formatted.append(value) return formatted
def format_client_list_result(result, exclude_attributes=None): '\n Format an API client list return which contains a list of objects.\n\n :param exclude_attributes: Optional list of attributes to exclude from the item.\n :type exclude_attributes: ``list``\n\n :rtype: ``list`` of ``dict``\n ' formatted = [] for item in result: value = item.to_dict(exclude_attributes=exclude_attributes) formatted.append(value) return formatted<|docstring|>Format an API client list return which contains a list of objects. :param exclude_attributes: Optional list of attributes to exclude from the item. :type exclude_attributes: ``list`` :rtype: ``list`` of ``dict``<|endoftext|>
203adfd203a6bb76718cfa3909310e39494b1c8804532411e1b3d8cc0f0a5603
def _get_dictionary(variables: List[Tuple[(str, List[str])]], dict_name: str, dict_items: List[str]): '\n Get the dictionary whose keys are the autocompletion options\n ${dict_name}([dict_key])*[<dictionary.keys()>]\n ' for (var_name, var_value) in variables: if (not var_name.startswith(dict_name)): continue dictionary = _as_dictionary(var_value) dict_keys = dictionary.keys() dict_entry = dict_items.pop() if (dict_entry == ''): return dictionary matching_keys = [key for key in dict_keys if (dict_entry in key)] if (len(matching_keys) == 0): return {} if ((len(matching_keys) == 1) and (dict_entry == matching_keys[0])): dict_value = dictionary[dict_entry] if dict_value.startswith('&'): dict_name = _get_dict_name(dict_value) dict_items += _get_dict_keys(dict_value) return _get_dictionary(variables, dict_name, dict_items) else: return {} else: return {key: dictionary[key] for key in matching_keys} return None
Get the dictionary whose keys are the autocompletion options ${dict_name}([dict_key])*[<dictionary.keys()>]
robotframework-ls/src/robotframework_ls/impl/dictionary_completions.py
_get_dictionary
JoeyGrajciar/robotframework-lsp
92
python
def _get_dictionary(variables: List[Tuple[(str, List[str])]], dict_name: str, dict_items: List[str]): '\n Get the dictionary whose keys are the autocompletion options\n ${dict_name}([dict_key])*[<dictionary.keys()>]\n ' for (var_name, var_value) in variables: if (not var_name.startswith(dict_name)): continue dictionary = _as_dictionary(var_value) dict_keys = dictionary.keys() dict_entry = dict_items.pop() if (dict_entry == ): return dictionary matching_keys = [key for key in dict_keys if (dict_entry in key)] if (len(matching_keys) == 0): return {} if ((len(matching_keys) == 1) and (dict_entry == matching_keys[0])): dict_value = dictionary[dict_entry] if dict_value.startswith('&'): dict_name = _get_dict_name(dict_value) dict_items += _get_dict_keys(dict_value) return _get_dictionary(variables, dict_name, dict_items) else: return {} else: return {key: dictionary[key] for key in matching_keys} return None
def _get_dictionary(variables: List[Tuple[(str, List[str])]], dict_name: str, dict_items: List[str]): '\n Get the dictionary whose keys are the autocompletion options\n ${dict_name}([dict_key])*[<dictionary.keys()>]\n ' for (var_name, var_value) in variables: if (not var_name.startswith(dict_name)): continue dictionary = _as_dictionary(var_value) dict_keys = dictionary.keys() dict_entry = dict_items.pop() if (dict_entry == ): return dictionary matching_keys = [key for key in dict_keys if (dict_entry in key)] if (len(matching_keys) == 0): return {} if ((len(matching_keys) == 1) and (dict_entry == matching_keys[0])): dict_value = dictionary[dict_entry] if dict_value.startswith('&'): dict_name = _get_dict_name(dict_value) dict_items += _get_dict_keys(dict_value) return _get_dictionary(variables, dict_name, dict_items) else: return {} else: return {key: dictionary[key] for key in matching_keys} return None<|docstring|>Get the dictionary whose keys are the autocompletion options ${dict_name}([dict_key])*[<dictionary.keys()>]<|endoftext|>
6f97a969bab54b4ec1b2e7c19055863b057756ac3ab29a6bdc85d5aa0f4694b3
def _as_dictionary(dict_tokens: List[str]): '\n Parse ["key1=val1", "key2=val2",...] as a dictionary\n ' dictionary = {} for token in dict_tokens: (key, val) = token.split('=') dictionary.update({key: val}) return dictionary
Parse ["key1=val1", "key2=val2",...] as a dictionary
robotframework-ls/src/robotframework_ls/impl/dictionary_completions.py
_as_dictionary
JoeyGrajciar/robotframework-lsp
92
python
def _as_dictionary(dict_tokens: List[str]): '\n \n ' dictionary = {} for token in dict_tokens: (key, val) = token.split('=') dictionary.update({key: val}) return dictionary
def _as_dictionary(dict_tokens: List[str]): '\n \n ' dictionary = {} for token in dict_tokens: (key, val) = token.split('=') dictionary.update({key: val}) return dictionary<|docstring|>Parse ["key1=val1", "key2=val2",...] as a dictionary<|endoftext|>
e97cb964616153d87fd00cafb506625d72958e1abc1a43a779b81accf3e4fc0a
def get(self, telegram_id: int) -> Optional[User]: '\n Find user by his telegram_id\n :param telegram_id: User telegram_id\n :rtype: Optional[User]\n :return: Found user or None\n ' return db.session.query(User).from_statement(text('SELECT * FROM users WHERE telegram_id = :telegram_id')).params(telegram_id=telegram_id).first()
Find user by his telegram_id :param telegram_id: User telegram_id :rtype: Optional[User] :return: Found user or None
bot/src/repository/user_repository.py
get
demidovakatya/telegram-channels-feed
37
python
def get(self, telegram_id: int) -> Optional[User]: '\n Find user by his telegram_id\n :param telegram_id: User telegram_id\n :rtype: Optional[User]\n :return: Found user or None\n ' return db.session.query(User).from_statement(text('SELECT * FROM users WHERE telegram_id = :telegram_id')).params(telegram_id=telegram_id).first()
def get(self, telegram_id: int) -> Optional[User]: '\n Find user by his telegram_id\n :param telegram_id: User telegram_id\n :rtype: Optional[User]\n :return: Found user or None\n ' return db.session.query(User).from_statement(text('SELECT * FROM users WHERE telegram_id = :telegram_id')).params(telegram_id=telegram_id).first()<|docstring|>Find user by his telegram_id :param telegram_id: User telegram_id :rtype: Optional[User] :return: Found user or None<|endoftext|>
24baab672ef977b45b830bd85b325d3f24b35ec61cee66dbd4484c62bbdf3c11
def get_or_create(self, telegram_id: int) -> User: "\n Creates user if he doesn't exists or simply returns found user\n :param telegram_id: User telegram_id\n :rtype: User\n :return: Created or existing user\n " return db.session.query(User).from_statement(text('\n INSERT INTO users (telegram_id)\n VALUES (:telegram_id)\n ON CONFLICT DO NOTHING;\n SELECT * FROM users WHERE telegram_id = :telegram_id;\n ')).params(telegram_id=telegram_id).first()
Creates user if he doesn't exists or simply returns found user :param telegram_id: User telegram_id :rtype: User :return: Created or existing user
bot/src/repository/user_repository.py
get_or_create
demidovakatya/telegram-channels-feed
37
python
def get_or_create(self, telegram_id: int) -> User: "\n Creates user if he doesn't exists or simply returns found user\n :param telegram_id: User telegram_id\n :rtype: User\n :return: Created or existing user\n " return db.session.query(User).from_statement(text('\n INSERT INTO users (telegram_id)\n VALUES (:telegram_id)\n ON CONFLICT DO NOTHING;\n SELECT * FROM users WHERE telegram_id = :telegram_id;\n ')).params(telegram_id=telegram_id).first()
def get_or_create(self, telegram_id: int) -> User: "\n Creates user if he doesn't exists or simply returns found user\n :param telegram_id: User telegram_id\n :rtype: User\n :return: Created or existing user\n " return db.session.query(User).from_statement(text('\n INSERT INTO users (telegram_id)\n VALUES (:telegram_id)\n ON CONFLICT DO NOTHING;\n SELECT * FROM users WHERE telegram_id = :telegram_id;\n ')).params(telegram_id=telegram_id).first()<|docstring|>Creates user if he doesn't exists or simply returns found user :param telegram_id: User telegram_id :rtype: User :return: Created or existing user<|endoftext|>
8b2f0f6cabfbf034e3b41ddf2aaaabea2ddf14729f64598a3bc8d2f9f7d4c558
def change_settings(self, telegram_id: int, redirect_url: Optional[str]) -> bool: '\n Change user settings\n :param telegram_id: User telegram ID\n :param redirect_url: Redirect URL. Can be None\n :rtype: bool\n :return: Update successful or not\n ' return (db.session.execute(text('UPDATE users SET redirect_url = :redirect_url WHERE telegram_id = :telegram_id'), {'telegram_id': telegram_id, 'redirect_url': redirect_url}).rowcount > 0)
Change user settings :param telegram_id: User telegram ID :param redirect_url: Redirect URL. Can be None :rtype: bool :return: Update successful or not
bot/src/repository/user_repository.py
change_settings
demidovakatya/telegram-channels-feed
37
python
def change_settings(self, telegram_id: int, redirect_url: Optional[str]) -> bool: '\n Change user settings\n :param telegram_id: User telegram ID\n :param redirect_url: Redirect URL. Can be None\n :rtype: bool\n :return: Update successful or not\n ' return (db.session.execute(text('UPDATE users SET redirect_url = :redirect_url WHERE telegram_id = :telegram_id'), {'telegram_id': telegram_id, 'redirect_url': redirect_url}).rowcount > 0)
def change_settings(self, telegram_id: int, redirect_url: Optional[str]) -> bool: '\n Change user settings\n :param telegram_id: User telegram ID\n :param redirect_url: Redirect URL. Can be None\n :rtype: bool\n :return: Update successful or not\n ' return (db.session.execute(text('UPDATE users SET redirect_url = :redirect_url WHERE telegram_id = :telegram_id'), {'telegram_id': telegram_id, 'redirect_url': redirect_url}).rowcount > 0)<|docstring|>Change user settings :param telegram_id: User telegram ID :param redirect_url: Redirect URL. Can be None :rtype: bool :return: Update successful or not<|endoftext|>
b468f39ea09445b7f941ee7ffea8929b6c20e91852c9fdf049fdc3667e30e4d3
def train_step(x_batch, y_batch): '\n A single training step\n ' feed_dict = {cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: args.dropout_keep_prob} (_, step, loss) = sess.run([train_op, global_step, cnn.loss], feed_dict)
A single training step
ConvKB_tf/train.py
train_step
daiquocnguyen/ConvKB
188
python
def train_step(x_batch, y_batch): '\n \n ' feed_dict = {cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: args.dropout_keep_prob} (_, step, loss) = sess.run([train_op, global_step, cnn.loss], feed_dict)
def train_step(x_batch, y_batch): '\n \n ' feed_dict = {cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: args.dropout_keep_prob} (_, step, loss) = sess.run([train_op, global_step, cnn.loss], feed_dict)<|docstring|>A single training step<|endoftext|>
8ab25d8ff196eb97a47c08ecc2917626ead49d035eb0834ae61fc5d8d2e0b58d
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback) -> None: 'Set up the sensor config entry.' controller_data = get_controller_data(hass, entry) async_add_entities([VeraSensor(device, controller_data) for device in controller_data.devices[Platform.SENSOR]], True)
Set up the sensor config entry.
homeassistant/components/vera/sensor.py
async_setup_entry
a-p-z/core
30,023
python
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback) -> None: controller_data = get_controller_data(hass, entry) async_add_entities([VeraSensor(device, controller_data) for device in controller_data.devices[Platform.SENSOR]], True)
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback) -> None: controller_data = get_controller_data(hass, entry) async_add_entities([VeraSensor(device, controller_data) for device in controller_data.devices[Platform.SENSOR]], True)<|docstring|>Set up the sensor config entry.<|endoftext|>
a172d4668611aa3833d2002b92dbd5f077128eaa9a9efb9a5a375437c8a16562
def __init__(self, vera_device: veraApi.VeraSensor, controller_data: ControllerData) -> None: 'Initialize the sensor.' self.current_value: StateType = None self._temperature_units: (str | None) = None self.last_changed_time = None VeraDevice.__init__(self, vera_device, controller_data) self.entity_id = ENTITY_ID_FORMAT.format(self.vera_id)
Initialize the sensor.
homeassistant/components/vera/sensor.py
__init__
a-p-z/core
30,023
python
def __init__(self, vera_device: veraApi.VeraSensor, controller_data: ControllerData) -> None: self.current_value: StateType = None self._temperature_units: (str | None) = None self.last_changed_time = None VeraDevice.__init__(self, vera_device, controller_data) self.entity_id = ENTITY_ID_FORMAT.format(self.vera_id)
def __init__(self, vera_device: veraApi.VeraSensor, controller_data: ControllerData) -> None: self.current_value: StateType = None self._temperature_units: (str | None) = None self.last_changed_time = None VeraDevice.__init__(self, vera_device, controller_data) self.entity_id = ENTITY_ID_FORMAT.format(self.vera_id)<|docstring|>Initialize the sensor.<|endoftext|>
7895def382c720515d107eabfb8cf4c221bdf94f47ee80c7e27df0c53ef34f12
@property def native_value(self) -> StateType: 'Return the name of the sensor.' return self.current_value
Return the name of the sensor.
homeassistant/components/vera/sensor.py
native_value
a-p-z/core
30,023
python
@property def native_value(self) -> StateType: return self.current_value
@property def native_value(self) -> StateType: return self.current_value<|docstring|>Return the name of the sensor.<|endoftext|>
18a8f45897a36af0bcff6877a29f3fd284b53637b6dae6b2ce1688fcfd585b05
@property def device_class(self) -> (str | None): 'Return the class of this entity.' if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): return SensorDeviceClass.TEMPERATURE if (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): return SensorDeviceClass.ILLUMINANCE if (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): return SensorDeviceClass.HUMIDITY if (self.vera_device.category == veraApi.CATEGORY_POWER_METER): return SensorDeviceClass.POWER return None
Return the class of this entity.
homeassistant/components/vera/sensor.py
device_class
a-p-z/core
30,023
python
@property def device_class(self) -> (str | None): if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): return SensorDeviceClass.TEMPERATURE if (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): return SensorDeviceClass.ILLUMINANCE if (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): return SensorDeviceClass.HUMIDITY if (self.vera_device.category == veraApi.CATEGORY_POWER_METER): return SensorDeviceClass.POWER return None
@property def device_class(self) -> (str | None): if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): return SensorDeviceClass.TEMPERATURE if (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): return SensorDeviceClass.ILLUMINANCE if (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): return SensorDeviceClass.HUMIDITY if (self.vera_device.category == veraApi.CATEGORY_POWER_METER): return SensorDeviceClass.POWER return None<|docstring|>Return the class of this entity.<|endoftext|>
70428b9fae81591ff11d6be7ce972d4ba0f9bffabdb2a5b56f89924410fbc4da
@property def native_unit_of_measurement(self) -> (str | None): 'Return the unit of measurement of this entity, if any.' if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): return self._temperature_units if (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): return LIGHT_LUX if (self.vera_device.category == veraApi.CATEGORY_UV_SENSOR): return 'level' if (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): return PERCENTAGE if (self.vera_device.category == veraApi.CATEGORY_POWER_METER): return POWER_WATT return None
Return the unit of measurement of this entity, if any.
homeassistant/components/vera/sensor.py
native_unit_of_measurement
a-p-z/core
30,023
python
@property def native_unit_of_measurement(self) -> (str | None): if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): return self._temperature_units if (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): return LIGHT_LUX if (self.vera_device.category == veraApi.CATEGORY_UV_SENSOR): return 'level' if (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): return PERCENTAGE if (self.vera_device.category == veraApi.CATEGORY_POWER_METER): return POWER_WATT return None
@property def native_unit_of_measurement(self) -> (str | None): if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): return self._temperature_units if (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): return LIGHT_LUX if (self.vera_device.category == veraApi.CATEGORY_UV_SENSOR): return 'level' if (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): return PERCENTAGE if (self.vera_device.category == veraApi.CATEGORY_POWER_METER): return POWER_WATT return None<|docstring|>Return the unit of measurement of this entity, if any.<|endoftext|>
52cf0466461c6023119c87e309bdbbde1ff667235ecb88588ce2f4171945351d
def update(self) -> None: 'Update the state.' super().update() if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): self.current_value = self.vera_device.temperature vera_temp_units = self.vera_device.vera_controller.temperature_units if (vera_temp_units == 'F'): self._temperature_units = TEMP_FAHRENHEIT else: self._temperature_units = TEMP_CELSIUS elif (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): self.current_value = self.vera_device.light elif (self.vera_device.category == veraApi.CATEGORY_UV_SENSOR): self.current_value = self.vera_device.light elif (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): self.current_value = self.vera_device.humidity elif (self.vera_device.category == veraApi.CATEGORY_SCENE_CONTROLLER): controller = cast(veraApi.VeraSceneController, self.vera_device) value = controller.get_last_scene_id(True) time = controller.get_last_scene_time(True) if (time == self.last_changed_time): self.current_value = None else: self.current_value = value self.last_changed_time = time elif (self.vera_device.category == veraApi.CATEGORY_POWER_METER): self.current_value = self.vera_device.power elif self.vera_device.is_trippable: tripped = self.vera_device.is_tripped self.current_value = ('Tripped' if tripped else 'Not Tripped') else: self.current_value = 'Unknown'
Update the state.
homeassistant/components/vera/sensor.py
update
a-p-z/core
30,023
python
def update(self) -> None: super().update() if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): self.current_value = self.vera_device.temperature vera_temp_units = self.vera_device.vera_controller.temperature_units if (vera_temp_units == 'F'): self._temperature_units = TEMP_FAHRENHEIT else: self._temperature_units = TEMP_CELSIUS elif (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): self.current_value = self.vera_device.light elif (self.vera_device.category == veraApi.CATEGORY_UV_SENSOR): self.current_value = self.vera_device.light elif (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): self.current_value = self.vera_device.humidity elif (self.vera_device.category == veraApi.CATEGORY_SCENE_CONTROLLER): controller = cast(veraApi.VeraSceneController, self.vera_device) value = controller.get_last_scene_id(True) time = controller.get_last_scene_time(True) if (time == self.last_changed_time): self.current_value = None else: self.current_value = value self.last_changed_time = time elif (self.vera_device.category == veraApi.CATEGORY_POWER_METER): self.current_value = self.vera_device.power elif self.vera_device.is_trippable: tripped = self.vera_device.is_tripped self.current_value = ('Tripped' if tripped else 'Not Tripped') else: self.current_value = 'Unknown'
def update(self) -> None: super().update() if (self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR): self.current_value = self.vera_device.temperature vera_temp_units = self.vera_device.vera_controller.temperature_units if (vera_temp_units == 'F'): self._temperature_units = TEMP_FAHRENHEIT else: self._temperature_units = TEMP_CELSIUS elif (self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR): self.current_value = self.vera_device.light elif (self.vera_device.category == veraApi.CATEGORY_UV_SENSOR): self.current_value = self.vera_device.light elif (self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR): self.current_value = self.vera_device.humidity elif (self.vera_device.category == veraApi.CATEGORY_SCENE_CONTROLLER): controller = cast(veraApi.VeraSceneController, self.vera_device) value = controller.get_last_scene_id(True) time = controller.get_last_scene_time(True) if (time == self.last_changed_time): self.current_value = None else: self.current_value = value self.last_changed_time = time elif (self.vera_device.category == veraApi.CATEGORY_POWER_METER): self.current_value = self.vera_device.power elif self.vera_device.is_trippable: tripped = self.vera_device.is_tripped self.current_value = ('Tripped' if tripped else 'Not Tripped') else: self.current_value = 'Unknown'<|docstring|>Update the state.<|endoftext|>
8407e368d55eb7ec4cfd54748f6fdc542dc1ca8a201b50169b29ce5c450b8747
def __init__(self, settings, screen): 'Initialise the board and set its starting position.' self.settings = settings self.screen = screen self.n_rows = settings.n_rows self.n_cols = settings.n_cols self.cell_length = settings.cell_size[0] self.grid = np.zeros((settings.n_rows, settings.n_cols)) self.rects = self.init_rect_grid() self.rect = pygame.Rect((self.settings.padding_left, self.settings.padding_top), settings.board_size) self.dark_tile_image = pygame.transform.scale(pygame.image.load(settings.tile_image_paths['dark']), settings.cell_size) self.light_tile_image = pygame.transform.scale(pygame.image.load(settings.tile_image_paths['light']), settings.cell_size) self.image = self.init_board_image()
Initialise the board and set its starting position.
board.py
__init__
jonjau/connect-4-pancake
0
python
def __init__(self, settings, screen): self.settings = settings self.screen = screen self.n_rows = settings.n_rows self.n_cols = settings.n_cols self.cell_length = settings.cell_size[0] self.grid = np.zeros((settings.n_rows, settings.n_cols)) self.rects = self.init_rect_grid() self.rect = pygame.Rect((self.settings.padding_left, self.settings.padding_top), settings.board_size) self.dark_tile_image = pygame.transform.scale(pygame.image.load(settings.tile_image_paths['dark']), settings.cell_size) self.light_tile_image = pygame.transform.scale(pygame.image.load(settings.tile_image_paths['light']), settings.cell_size) self.image = self.init_board_image()
def __init__(self, settings, screen): self.settings = settings self.screen = screen self.n_rows = settings.n_rows self.n_cols = settings.n_cols self.cell_length = settings.cell_size[0] self.grid = np.zeros((settings.n_rows, settings.n_cols)) self.rects = self.init_rect_grid() self.rect = pygame.Rect((self.settings.padding_left, self.settings.padding_top), settings.board_size) self.dark_tile_image = pygame.transform.scale(pygame.image.load(settings.tile_image_paths['dark']), settings.cell_size) self.light_tile_image = pygame.transform.scale(pygame.image.load(settings.tile_image_paths['light']), settings.cell_size) self.image = self.init_board_image()<|docstring|>Initialise the board and set its starting position.<|endoftext|>
5465728cbbfce5260d56279ca0cc15156e8758afc1516fbc158394075f69aea8
def init_rect_grid(self): "\n Initialises and returns a 2D grid of pygame.Rect's, representing\n the tiles on the board.\n " n_rows = self.n_rows n_cols = self.n_cols cell_length = self.cell_length rects = [[None for i in range(n_cols)] for j in range(n_rows)] for i in range(n_rows): for j in range(n_cols): rects[i][j] = pygame.Rect((i * cell_length), (j * cell_length), cell_length, cell_length) return rects
Initialises and returns a 2D grid of pygame.Rect's, representing the tiles on the board.
board.py
init_rect_grid
jonjau/connect-4-pancake
0
python
def init_rect_grid(self): "\n Initialises and returns a 2D grid of pygame.Rect's, representing\n the tiles on the board.\n " n_rows = self.n_rows n_cols = self.n_cols cell_length = self.cell_length rects = [[None for i in range(n_cols)] for j in range(n_rows)] for i in range(n_rows): for j in range(n_cols): rects[i][j] = pygame.Rect((i * cell_length), (j * cell_length), cell_length, cell_length) return rects
def init_rect_grid(self): "\n Initialises and returns a 2D grid of pygame.Rect's, representing\n the tiles on the board.\n " n_rows = self.n_rows n_cols = self.n_cols cell_length = self.cell_length rects = [[None for i in range(n_cols)] for j in range(n_rows)] for i in range(n_rows): for j in range(n_cols): rects[i][j] = pygame.Rect((i * cell_length), (j * cell_length), cell_length, cell_length) return rects<|docstring|>Initialises and returns a 2D grid of pygame.Rect's, representing the tiles on the board.<|endoftext|>
0e2353c0608a4488792a43897c6bf6c6f5e80e8a860edf129bca7175c1b348cd
def init_board_image(self): '\n Draws the board at its current position, tile by tile, then\n returns that image as a `pygame.Surface`.\n ' image = pygame.Surface(self.settings.board_size) for row in range(self.n_rows): for col in range(self.n_cols): if ((row % 2) == (col % 2)): tile_image = self.light_tile_image else: tile_image = self.dark_tile_image image.blit(tile_image, self.rects[row][col].topleft[::(- 1)]) return image
Draws the board at its current position, tile by tile, then returns that image as a `pygame.Surface`.
board.py
init_board_image
jonjau/connect-4-pancake
0
python
def init_board_image(self): '\n Draws the board at its current position, tile by tile, then\n returns that image as a `pygame.Surface`.\n ' image = pygame.Surface(self.settings.board_size) for row in range(self.n_rows): for col in range(self.n_cols): if ((row % 2) == (col % 2)): tile_image = self.light_tile_image else: tile_image = self.dark_tile_image image.blit(tile_image, self.rects[row][col].topleft[::(- 1)]) return image
def init_board_image(self): '\n Draws the board at its current position, tile by tile, then\n returns that image as a `pygame.Surface`.\n ' image = pygame.Surface(self.settings.board_size) for row in range(self.n_rows): for col in range(self.n_cols): if ((row % 2) == (col % 2)): tile_image = self.light_tile_image else: tile_image = self.dark_tile_image image.blit(tile_image, self.rects[row][col].topleft[::(- 1)]) return image<|docstring|>Draws the board at its current position, tile by tile, then returns that image as a `pygame.Surface`.<|endoftext|>
deb8e9c70f1374fc74eb08c30dd817fd030f564ce23a2029a76681cce5070091
def draw(self): 'Blit the board to the screen at its current position.' self.screen.blit(self.image, self.rect)
Blit the board to the screen at its current position.
board.py
draw
jonjau/connect-4-pancake
0
python
def draw(self): self.screen.blit(self.image, self.rect)
def draw(self): self.screen.blit(self.image, self.rect)<|docstring|>Blit the board to the screen at its current position.<|endoftext|>
e70a5c0f295127abab423823ea8e3ba03f987e9d4e6447f2d3fdd4df259065a1
def _set_up_test_uptime(self): '\n Define common mock data for status.uptime tests\n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.now = 1477004312 m.ut = 1540154.0 m.idle = 3047777.32 m.ret = {'users': 3, 'seconds': 1540154, 'since_t': 1475464158, 'days': 17, 'since_iso': '2016-10-03T03:09:18', 'time': '19:49'} return m
Define common mock data for status.uptime tests
tests/unit/modules/test_status.py
_set_up_test_uptime
johnskopis/salt
12
python
def _set_up_test_uptime(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.now = 1477004312 m.ut = 1540154.0 m.idle = 3047777.32 m.ret = {'users': 3, 'seconds': 1540154, 'since_t': 1475464158, 'days': 17, 'since_iso': '2016-10-03T03:09:18', 'time': '19:49'} return m
def _set_up_test_uptime(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.now = 1477004312 m.ut = 1540154.0 m.idle = 3047777.32 m.ret = {'users': 3, 'seconds': 1540154, 'since_t': 1475464158, 'days': 17, 'since_iso': '2016-10-03T03:09:18', 'time': '19:49'} return m<|docstring|>Define common mock data for status.uptime tests<|endoftext|>
79303cfec42c76b40e099e9fc068c2c8df122785d69905061617122c235647ca
def _set_up_test_uptime_sunos(self): '\n Define common mock data for cmd.run_all for status.uptime on SunOS\n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = {'retcode': 0, 'stdout': 'unix:0:system_misc:boot_time 1475464158'} return m
Define common mock data for cmd.run_all for status.uptime on SunOS
tests/unit/modules/test_status.py
_set_up_test_uptime_sunos
johnskopis/salt
12
python
def _set_up_test_uptime_sunos(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = {'retcode': 0, 'stdout': 'unix:0:system_misc:boot_time 1475464158'} return m
def _set_up_test_uptime_sunos(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = {'retcode': 0, 'stdout': 'unix:0:system_misc:boot_time 1475464158'} return m<|docstring|>Define common mock data for cmd.run_all for status.uptime on SunOS<|endoftext|>
62c97889c272655af3f48949ed5e9604954e6fc00fb68f6035d41c3dab376582
def test_uptime_linux(self): '\n Test modules.status.uptime function for Linux\n ' m = self._set_up_test_uptime() with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=True), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3']))}), patch('time.time', MagicMock(return_value=m.now)), patch('os.path.exists', MagicMock(return_value=True)): proc_uptime = salt.utils.stringutils.to_str('{0} {1}'.format(m.ut, m.idle)) with patch('salt.utils.files.fopen', mock_open(read_data=proc_uptime)): ret = status.uptime() self.assertDictEqual(ret, m.ret) with patch('os.path.exists', MagicMock(return_value=False)): with self.assertRaises(CommandExecutionError): status.uptime()
Test modules.status.uptime function for Linux
tests/unit/modules/test_status.py
test_uptime_linux
johnskopis/salt
12
python
def test_uptime_linux(self): '\n \n ' m = self._set_up_test_uptime() with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=True), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3']))}), patch('time.time', MagicMock(return_value=m.now)), patch('os.path.exists', MagicMock(return_value=True)): proc_uptime = salt.utils.stringutils.to_str('{0} {1}'.format(m.ut, m.idle)) with patch('salt.utils.files.fopen', mock_open(read_data=proc_uptime)): ret = status.uptime() self.assertDictEqual(ret, m.ret) with patch('os.path.exists', MagicMock(return_value=False)): with self.assertRaises(CommandExecutionError): status.uptime()
def test_uptime_linux(self): '\n \n ' m = self._set_up_test_uptime() with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=True), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3']))}), patch('time.time', MagicMock(return_value=m.now)), patch('os.path.exists', MagicMock(return_value=True)): proc_uptime = salt.utils.stringutils.to_str('{0} {1}'.format(m.ut, m.idle)) with patch('salt.utils.files.fopen', mock_open(read_data=proc_uptime)): ret = status.uptime() self.assertDictEqual(ret, m.ret) with patch('os.path.exists', MagicMock(return_value=False)): with self.assertRaises(CommandExecutionError): status.uptime()<|docstring|>Test modules.status.uptime function for Linux<|endoftext|>
e6f4d8327d2e8e2eda424a1351c5d2769c94061b4ba11b39d0d10339f370babe
def test_uptime_sunos(self): '\n Test modules.status.uptime function for SunOS\n ' m = self._set_up_test_uptime() m2 = self._set_up_test_uptime_sunos() with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=True), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3'])), 'cmd.run_all': MagicMock(return_value=m2.ret)}), patch('time.time', MagicMock(return_value=m.now)): ret = status.uptime() self.assertDictEqual(ret, m.ret)
Test modules.status.uptime function for SunOS
tests/unit/modules/test_status.py
test_uptime_sunos
johnskopis/salt
12
python
def test_uptime_sunos(self): '\n \n ' m = self._set_up_test_uptime() m2 = self._set_up_test_uptime_sunos() with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=True), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3'])), 'cmd.run_all': MagicMock(return_value=m2.ret)}), patch('time.time', MagicMock(return_value=m.now)): ret = status.uptime() self.assertDictEqual(ret, m.ret)
def test_uptime_sunos(self): '\n \n ' m = self._set_up_test_uptime() m2 = self._set_up_test_uptime_sunos() with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=True), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3'])), 'cmd.run_all': MagicMock(return_value=m2.ret)}), patch('time.time', MagicMock(return_value=m.now)): ret = status.uptime() self.assertDictEqual(ret, m.ret)<|docstring|>Test modules.status.uptime function for SunOS<|endoftext|>
d4507b0183a2e8239e992cbdefdae9602b2e570631bfc4aa86d2e96fc381bc96
def test_uptime_macos(self): '\n Test modules.status.uptime function for macOS\n ' m = self._set_up_test_uptime() kern_boottime = '{{ sec = {0}, usec = {1:0<6} }} Mon Oct 03 03:09:18.23 2016'.format(*six.text_type((m.now - m.ut)).split('.')) with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=True), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3'])), 'sysctl.get': MagicMock(return_value=kern_boottime)}), patch('time.time', MagicMock(return_value=m.now)): ret = status.uptime() self.assertDictEqual(ret, m.ret) with patch.dict(status.__salt__, {'sysctl.get': MagicMock(return_value='')}): with self.assertRaises(CommandExecutionError): status.uptime()
Test modules.status.uptime function for macOS
tests/unit/modules/test_status.py
test_uptime_macos
johnskopis/salt
12
python
def test_uptime_macos(self): '\n \n ' m = self._set_up_test_uptime() kern_boottime = '{{ sec = {0}, usec = {1:0<6} }} Mon Oct 03 03:09:18.23 2016'.format(*six.text_type((m.now - m.ut)).split('.')) with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=True), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3'])), 'sysctl.get': MagicMock(return_value=kern_boottime)}), patch('time.time', MagicMock(return_value=m.now)): ret = status.uptime() self.assertDictEqual(ret, m.ret) with patch.dict(status.__salt__, {'sysctl.get': MagicMock(return_value=)}): with self.assertRaises(CommandExecutionError): status.uptime()
def test_uptime_macos(self): '\n \n ' m = self._set_up_test_uptime() kern_boottime = '{{ sec = {0}, usec = {1:0<6} }} Mon Oct 03 03:09:18.23 2016'.format(*six.text_type((m.now - m.ut)).split('.')) with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=True), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=os.linesep.join(['1', '2', '3'])), 'sysctl.get': MagicMock(return_value=kern_boottime)}), patch('time.time', MagicMock(return_value=m.now)): ret = status.uptime() self.assertDictEqual(ret, m.ret) with patch.dict(status.__salt__, {'sysctl.get': MagicMock(return_value=)}): with self.assertRaises(CommandExecutionError): status.uptime()<|docstring|>Test modules.status.uptime function for macOS<|endoftext|>
1855376d12642a6392a8700e673c8db749238744b2e8e49bee2e9132dc976db9
def test_uptime_return_success_not_supported(self): '\n Test modules.status.uptime function for other platforms\n ' with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)): exc_mock = MagicMock(side_effect=CommandExecutionError) with self.assertRaises(CommandExecutionError): with patch.dict(status.__salt__, {'cmd.run': exc_mock}): status.uptime()
Test modules.status.uptime function for other platforms
tests/unit/modules/test_status.py
test_uptime_return_success_not_supported
johnskopis/salt
12
python
def test_uptime_return_success_not_supported(self): '\n \n ' with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)): exc_mock = MagicMock(side_effect=CommandExecutionError) with self.assertRaises(CommandExecutionError): with patch.dict(status.__salt__, {'cmd.run': exc_mock}): status.uptime()
def test_uptime_return_success_not_supported(self): '\n \n ' with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=False), is_netbsd=MagicMock(return_value=False)): exc_mock = MagicMock(side_effect=CommandExecutionError) with self.assertRaises(CommandExecutionError): with patch.dict(status.__salt__, {'cmd.run': exc_mock}): status.uptime()<|docstring|>Test modules.status.uptime function for other platforms<|endoftext|>
74c3d3e9f3a9110724a1d8a4bf02dc0eacd1565bea57641ac693d5cb6142f906
def _set_up_test_cpustats_openbsd(self): '\n Define mock data for status.cpustats on OpenBSD\n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = {'0': {'User': '0.0%', 'Nice': '0.0%', 'System': '4.5%', 'Interrupt': '0.5%', 'Idle': '95.0%'}} return m
Define mock data for status.cpustats on OpenBSD
tests/unit/modules/test_status.py
_set_up_test_cpustats_openbsd
johnskopis/salt
12
python
def _set_up_test_cpustats_openbsd(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = {'0': {'User': '0.0%', 'Nice': '0.0%', 'System': '4.5%', 'Interrupt': '0.5%', 'Idle': '95.0%'}} return m
def _set_up_test_cpustats_openbsd(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = {'0': {'User': '0.0%', 'Nice': '0.0%', 'System': '4.5%', 'Interrupt': '0.5%', 'Idle': '95.0%'}} return m<|docstring|>Define mock data for status.cpustats on OpenBSD<|endoftext|>
cfa312847fdfd8334e220c475d3d434cf8a7a037151212146bbdddedca5b146d
def test_cpustats_openbsd(self): '\n Test modules.status.cpustats function for OpenBSD\n ' m = self._set_up_test_cpustats_openbsd() systat = '\n\n 1 users Load 0.20 0.07 0.05 salt.localdomain 09:42:42\nCPU User Nice System Interrupt Idle\n0 0.0% 0.0% 4.5% 0.5% 95.0%\n' with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=True), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__grains__, {'kernel': 'OpenBSD'}), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=systat)}): ret = status.cpustats() self.assertDictEqual(ret, m.ret)
Test modules.status.cpustats function for OpenBSD
tests/unit/modules/test_status.py
test_cpustats_openbsd
johnskopis/salt
12
python
def test_cpustats_openbsd(self): '\n \n ' m = self._set_up_test_cpustats_openbsd() systat = '\n\n 1 users Load 0.20 0.07 0.05 salt.localdomain 09:42:42\nCPU User Nice System Interrupt Idle\n0 0.0% 0.0% 4.5% 0.5% 95.0%\n' with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=True), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__grains__, {'kernel': 'OpenBSD'}), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=systat)}): ret = status.cpustats() self.assertDictEqual(ret, m.ret)
def test_cpustats_openbsd(self): '\n \n ' m = self._set_up_test_cpustats_openbsd() systat = '\n\n 1 users Load 0.20 0.07 0.05 salt.localdomain 09:42:42\nCPU User Nice System Interrupt Idle\n0 0.0% 0.0% 4.5% 0.5% 95.0%\n' with patch.multiple(salt.utils.platform, is_linux=MagicMock(return_value=False), is_sunos=MagicMock(return_value=False), is_darwin=MagicMock(return_value=False), is_freebsd=MagicMock(return_value=False), is_openbsd=MagicMock(return_value=True), is_netbsd=MagicMock(return_value=False)), patch('salt.utils.path.which', MagicMock(return_value=True)), patch.dict(status.__grains__, {'kernel': 'OpenBSD'}), patch.dict(status.__salt__, {'cmd.run': MagicMock(return_value=systat)}): ret = status.cpustats() self.assertDictEqual(ret, m.ret)<|docstring|>Test modules.status.cpustats function for OpenBSD<|endoftext|>
00090ec01fc7a13d2132a1aaaa388c595e9cfc3efc3454e6eb6cb501bacbbfce
def _set_up_test_w_linux(self): '\n Define mock data for status.w on Linux\n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = [{'idle': '0s', 'jcpu': '0.24s', 'login': '13:42', 'pcpu': '0.16s', 'tty': 'pts/1', 'user': 'root', 'what': 'nmap -sV 10.2.2.2'}] return m
Define mock data for status.w on Linux
tests/unit/modules/test_status.py
_set_up_test_w_linux
johnskopis/salt
12
python
def _set_up_test_w_linux(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = [{'idle': '0s', 'jcpu': '0.24s', 'login': '13:42', 'pcpu': '0.16s', 'tty': 'pts/1', 'user': 'root', 'what': 'nmap -sV 10.2.2.2'}] return m
def _set_up_test_w_linux(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = [{'idle': '0s', 'jcpu': '0.24s', 'login': '13:42', 'pcpu': '0.16s', 'tty': 'pts/1', 'user': 'root', 'what': 'nmap -sV 10.2.2.2'}] return m<|docstring|>Define mock data for status.w on Linux<|endoftext|>
665d37643909e5919ab8fe1b27cc281fa46d172b7135554e6b004f4867ff8276
def _set_up_test_w_bsd(self): '\n Define mock data for status.w on Linux\n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = [{'idle': '0', 'from': '10.2.2.1', 'login': '1:42PM', 'tty': 'p1', 'user': 'root', 'what': 'nmap -sV 10.2.2.2'}] return m
Define mock data for status.w on Linux
tests/unit/modules/test_status.py
_set_up_test_w_bsd
johnskopis/salt
12
python
def _set_up_test_w_bsd(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = [{'idle': '0', 'from': '10.2.2.1', 'login': '1:42PM', 'tty': 'p1', 'user': 'root', 'what': 'nmap -sV 10.2.2.2'}] return m
def _set_up_test_w_bsd(self): '\n \n ' class MockData(object): '\n Store mock data\n ' m = MockData() m.ret = [{'idle': '0', 'from': '10.2.2.1', 'login': '1:42PM', 'tty': 'p1', 'user': 'root', 'what': 'nmap -sV 10.2.2.2'}] return m<|docstring|>Define mock data for status.w on Linux<|endoftext|>
e7d34f0b86d78db1d50fb0b62b04792cbeb32048afb80b30c7d9a585154a0559
def __init__(self, endpoint: Endpoint, *, address: str): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint\n ' self._endpoint = endpoint self._address: str = address self._session: aiohttp.ClientSession = None self._verb2coro = dict()
Initializes instance. Args: address (str): Resource endpoint
src/rmlab_http_client/client/_core.py
__init__
antonrv/rmlab-py-http-client
0
python
def __init__(self, endpoint: Endpoint, *, address: str): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint\n ' self._endpoint = endpoint self._address: str = address self._session: aiohttp.ClientSession = None self._verb2coro = dict()
def __init__(self, endpoint: Endpoint, *, address: str): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint\n ' self._endpoint = endpoint self._address: str = address self._session: aiohttp.ClientSession = None self._verb2coro = dict()<|docstring|>Initializes instance. Args: address (str): Resource endpoint<|endoftext|>
c6a87ec22fc96e18a22a3ed518c8867de5d9cb5e8b91fa5473d9e89078ca1d22
def __init__(self, endpoint: Endpoint, *, address: str): 'Initializes instance.\n\n Args:\n address (str): Public resource endpoint\n ' super(HTTPClientPublic, self).__init__(endpoint=endpoint, address=address)
Initializes instance. Args: address (str): Public resource endpoint
src/rmlab_http_client/client/_core.py
__init__
antonrv/rmlab-py-http-client
0
python
def __init__(self, endpoint: Endpoint, *, address: str): 'Initializes instance.\n\n Args:\n address (str): Public resource endpoint\n ' super(HTTPClientPublic, self).__init__(endpoint=endpoint, address=address)
def __init__(self, endpoint: Endpoint, *, address: str): 'Initializes instance.\n\n Args:\n address (str): Public resource endpoint\n ' super(HTTPClientPublic, self).__init__(endpoint=endpoint, address=address)<|docstring|>Initializes instance. Args: address (str): Public resource endpoint<|endoftext|>
151471b51634e8009351aab707492c68900326a60346059aab9ba275c1179576
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client for public resources.\n\n Returns:\n HTTPClientPublic: This client instance.\n ' self._session = aiohttp.ClientSession(raise_for_status=False) return (await super(HTTPClientPublic, self).__aenter__())
Initializes asynchronous context manager, creating a http client for public resources. Returns: HTTPClientPublic: This client instance.
src/rmlab_http_client/client/_core.py
__aenter__
antonrv/rmlab-py-http-client
0
python
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client for public resources.\n\n Returns:\n HTTPClientPublic: This client instance.\n ' self._session = aiohttp.ClientSession(raise_for_status=False) return (await super(HTTPClientPublic, self).__aenter__())
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client for public resources.\n\n Returns:\n HTTPClientPublic: This client instance.\n ' self._session = aiohttp.ClientSession(raise_for_status=False) return (await super(HTTPClientPublic, self).__aenter__())<|docstring|>Initializes asynchronous context manager, creating a http client for public resources. Returns: HTTPClientPublic: This client instance.<|endoftext|>
5b02882eabad2d344b92394698698031ad6d9e6a6f5966d7d09db93385cc3178
def __init__(self, endpoint: Endpoint, address: str, *, basic_auth: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the basic auth\n basic_auth (Optional[str]): Basic authentication data. Defaults to None.\n ' super(HTTPClientBasic, self).__init__(endpoint=endpoint, address=address) basic_auth = (basic_auth or Cache.get_credential('basic_auth')) if (basic_auth is None): raise ValueError(f'Undefined Basic auth') self._basic_auth = base64.b64encode(basic_auth.encode()).decode('utf-8')
Initializes instance. Args: address (str): Resource endpoint behind the basic auth basic_auth (Optional[str]): Basic authentication data. Defaults to None.
src/rmlab_http_client/client/_core.py
__init__
antonrv/rmlab-py-http-client
0
python
def __init__(self, endpoint: Endpoint, address: str, *, basic_auth: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the basic auth\n basic_auth (Optional[str]): Basic authentication data. Defaults to None.\n ' super(HTTPClientBasic, self).__init__(endpoint=endpoint, address=address) basic_auth = (basic_auth or Cache.get_credential('basic_auth')) if (basic_auth is None): raise ValueError(f'Undefined Basic auth') self._basic_auth = base64.b64encode(basic_auth.encode()).decode('utf-8')
def __init__(self, endpoint: Endpoint, address: str, *, basic_auth: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the basic auth\n basic_auth (Optional[str]): Basic authentication data. Defaults to None.\n ' super(HTTPClientBasic, self).__init__(endpoint=endpoint, address=address) basic_auth = (basic_auth or Cache.get_credential('basic_auth')) if (basic_auth is None): raise ValueError(f'Undefined Basic auth') self._basic_auth = base64.b64encode(basic_auth.encode()).decode('utf-8')<|docstring|>Initializes instance. Args: address (str): Resource endpoint behind the basic auth basic_auth (Optional[str]): Basic authentication data. Defaults to None.<|endoftext|>
4342f380549800e32029becc8f1dd1483ef70e1f4523b99c3d32c3d7ecbaecfc
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind basic auth.\n\n Returns:\n HTTPClientBasic: This client instance.\n ' auth_headers = {'Authorization': ('Basic ' + self._basic_auth)} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientBasic, self).__aenter__())
Initializes asynchronous context manager, creating a http client session for resources behind basic auth. Returns: HTTPClientBasic: This client instance.
src/rmlab_http_client/client/_core.py
__aenter__
antonrv/rmlab-py-http-client
0
python
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind basic auth.\n\n Returns:\n HTTPClientBasic: This client instance.\n ' auth_headers = {'Authorization': ('Basic ' + self._basic_auth)} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientBasic, self).__aenter__())
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind basic auth.\n\n Returns:\n HTTPClientBasic: This client instance.\n ' auth_headers = {'Authorization': ('Basic ' + self._basic_auth)} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientBasic, self).__aenter__())<|docstring|>Initializes asynchronous context manager, creating a http client session for resources behind basic auth. Returns: HTTPClientBasic: This client instance.<|endoftext|>
4a32cd10861ad7e701740ee809880ba328d78d0f4bbbb2604a058401b32db080
def __init__(self, endpoint: Endpoint, address: str, *, api_key: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the api key\n api_key (Optional[str]): Api key. Defaults to None.\n ' super(HTTPClientApiKey, self).__init__(endpoint=endpoint, address=address) self._api_key = (api_key or Cache.get_credential('api_key')) if (self._api_key is None): raise ValueError(f'Undefined Api Key')
Initializes instance. Args: address (str): Resource endpoint behind the api key api_key (Optional[str]): Api key. Defaults to None.
src/rmlab_http_client/client/_core.py
__init__
antonrv/rmlab-py-http-client
0
python
def __init__(self, endpoint: Endpoint, address: str, *, api_key: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the api key\n api_key (Optional[str]): Api key. Defaults to None.\n ' super(HTTPClientApiKey, self).__init__(endpoint=endpoint, address=address) self._api_key = (api_key or Cache.get_credential('api_key')) if (self._api_key is None): raise ValueError(f'Undefined Api Key')
def __init__(self, endpoint: Endpoint, address: str, *, api_key: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the api key\n api_key (Optional[str]): Api key. Defaults to None.\n ' super(HTTPClientApiKey, self).__init__(endpoint=endpoint, address=address) self._api_key = (api_key or Cache.get_credential('api_key')) if (self._api_key is None): raise ValueError(f'Undefined Api Key')<|docstring|>Initializes instance. Args: address (str): Resource endpoint behind the api key api_key (Optional[str]): Api key. Defaults to None.<|endoftext|>
1051986b8b68a543484eb3864599c76f956e925ff7a6b8da13955c23b8a06f8f
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind a API key.\n\n Returns:\n HTTPClientApiKey: This client instance.\n ' auth_headers = {'X-Api-Key': self._api_key} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientApiKey, self).__aenter__())
Initializes asynchronous context manager, creating a http client session for resources behind a API key. Returns: HTTPClientApiKey: This client instance.
src/rmlab_http_client/client/_core.py
__aenter__
antonrv/rmlab-py-http-client
0
python
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind a API key.\n\n Returns:\n HTTPClientApiKey: This client instance.\n ' auth_headers = {'X-Api-Key': self._api_key} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientApiKey, self).__aenter__())
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind a API key.\n\n Returns:\n HTTPClientApiKey: This client instance.\n ' auth_headers = {'X-Api-Key': self._api_key} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientApiKey, self).__aenter__())<|docstring|>Initializes asynchronous context manager, creating a http client session for resources behind a API key. Returns: HTTPClientApiKey: This client instance.<|endoftext|>
4974e248766e93d366e6339b59319afb323516f4dedb4bf107551c2ebd5e8865
def __init__(self, endpoint: Endpoint, address: str, *, jwt: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the access token\n jwt (Optional[str]): JWT (access or refresh). Defaults to None.\n ' super(HTTPClientJWT, self).__init__(endpoint=endpoint, address=address) self._jwt = (jwt or Cache.get_credential('access_token')) if (self._jwt is None): raise ValueError(f'Undefined JWT')
Initializes instance. Args: address (str): Resource endpoint behind the access token jwt (Optional[str]): JWT (access or refresh). Defaults to None.
src/rmlab_http_client/client/_core.py
__init__
antonrv/rmlab-py-http-client
0
python
def __init__(self, endpoint: Endpoint, address: str, *, jwt: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the access token\n jwt (Optional[str]): JWT (access or refresh). Defaults to None.\n ' super(HTTPClientJWT, self).__init__(endpoint=endpoint, address=address) self._jwt = (jwt or Cache.get_credential('access_token')) if (self._jwt is None): raise ValueError(f'Undefined JWT')
def __init__(self, endpoint: Endpoint, address: str, *, jwt: Optional[str]=None): 'Initializes instance.\n\n Args:\n address (str): Resource endpoint behind the access token\n jwt (Optional[str]): JWT (access or refresh). Defaults to None.\n ' super(HTTPClientJWT, self).__init__(endpoint=endpoint, address=address) self._jwt = (jwt or Cache.get_credential('access_token')) if (self._jwt is None): raise ValueError(f'Undefined JWT')<|docstring|>Initializes instance. Args: address (str): Resource endpoint behind the access token jwt (Optional[str]): JWT (access or refresh). Defaults to None.<|endoftext|>
ae6a103b10e886fc35fae7071bd3899b07f7fc1196abc8981996d546129940ac
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind JWT auth.\n\n Returns:\n HTTPClientJWT: This client instance.\n ' auth_headers = {'Authorization': ('Bearer ' + self._jwt)} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientJWT, self).__aenter__())
Initializes asynchronous context manager, creating a http client session for resources behind JWT auth. Returns: HTTPClientJWT: This client instance.
src/rmlab_http_client/client/_core.py
__aenter__
antonrv/rmlab-py-http-client
0
python
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind JWT auth.\n\n Returns:\n HTTPClientJWT: This client instance.\n ' auth_headers = {'Authorization': ('Bearer ' + self._jwt)} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientJWT, self).__aenter__())
async def __aenter__(self): 'Initializes asynchronous context manager, creating a http client session\n for resources behind JWT auth.\n\n Returns:\n HTTPClientJWT: This client instance.\n ' auth_headers = {'Authorization': ('Bearer ' + self._jwt)} self._session = aiohttp.ClientSession(headers=auth_headers, raise_for_status=False) return (await super(HTTPClientJWT, self).__aenter__())<|docstring|>Initializes asynchronous context manager, creating a http client session for resources behind JWT auth. Returns: HTTPClientJWT: This client instance.<|endoftext|>
02e760f1a1ad5f64d6ee189549f1d904e295ecc85944ad1530a47eb7613ef93e
def plot(density_map, name): '\n @brief density map contour and heat map \n ' print(np.amax(density_map)) print(np.mean(density_map)) fig = plt.figure(figsize=(4, 3)) ax = fig.gca(projection='3d') x = np.arange(density_map.shape[0]) y = np.arange(density_map.shape[1]) (x, y) = np.meshgrid(x, y) ax.plot_surface(x, y, density_map, alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('density') plt.savefig((name + '.3d.png')) plt.clf() (fig, ax) = plt.subplots() ax.pcolor(density_map) fig.tight_layout() plt.savefig((name + '.2d.png'))
@brief density map contour and heat map
dreamplace/ops/density_map/density_map.py
plot
ArEsKay3/DREAMPlace
323
python
def plot(density_map, name): '\n \n ' print(np.amax(density_map)) print(np.mean(density_map)) fig = plt.figure(figsize=(4, 3)) ax = fig.gca(projection='3d') x = np.arange(density_map.shape[0]) y = np.arange(density_map.shape[1]) (x, y) = np.meshgrid(x, y) ax.plot_surface(x, y, density_map, alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('density') plt.savefig((name + '.3d.png')) plt.clf() (fig, ax) = plt.subplots() ax.pcolor(density_map) fig.tight_layout() plt.savefig((name + '.2d.png'))
def plot(density_map, name): '\n \n ' print(np.amax(density_map)) print(np.mean(density_map)) fig = plt.figure(figsize=(4, 3)) ax = fig.gca(projection='3d') x = np.arange(density_map.shape[0]) y = np.arange(density_map.shape[1]) (x, y) = np.meshgrid(x, y) ax.plot_surface(x, y, density_map, alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('density') plt.savefig((name + '.3d.png')) plt.clf() (fig, ax) = plt.subplots() ax.pcolor(density_map) fig.tight_layout() plt.savefig((name + '.2d.png'))<|docstring|>@brief density map contour and heat map<|endoftext|>
755bfb27be57c6c6e3c3f5e156972430910c68f88dd7f4b2664535cbae83f066
def __init__(self, node_size_x, node_size_y, bin_center_x, bin_center_y, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_terminals, num_filler_nodes): '\n @brief initialization \n @param node_size_x cell width array consisting of movable cells, fixed cells, and filler cells in order \n @param node_size_y cell height array consisting of movable cells, fixed cells, and filler cells in order \n @param bin_center_x bin center x locations \n @param bin_center_y bin center y locations \n @param xl left boundary \n @param yl bottom boundary \n @param xh right boundary \n @param yh top boundary \n @param bin_size_x bin width \n @param bin_size_y bin height \n @param num_movable_nodes number of movable cells \n @param num_terminals number of fixed cells \n @param num_filler_nodes number of filler cells \n ' super(DensityMap, self).__init__() self.node_size_x = node_size_x self.node_size_y = node_size_y self.bin_center_x = bin_center_x self.bin_center_y = bin_center_y self.xl = xl self.yl = yl self.xh = xh self.yh = yh self.bin_size_x = bin_size_x self.bin_size_y = bin_size_y self.num_movable_nodes = num_movable_nodes self.num_terminals = num_terminals self.num_filler_nodes = num_filler_nodes self.initial_density_map = None
@brief initialization @param node_size_x cell width array consisting of movable cells, fixed cells, and filler cells in order @param node_size_y cell height array consisting of movable cells, fixed cells, and filler cells in order @param bin_center_x bin center x locations @param bin_center_y bin center y locations @param xl left boundary @param yl bottom boundary @param xh right boundary @param yh top boundary @param bin_size_x bin width @param bin_size_y bin height @param num_movable_nodes number of movable cells @param num_terminals number of fixed cells @param num_filler_nodes number of filler cells
dreamplace/ops/density_map/density_map.py
__init__
ArEsKay3/DREAMPlace
323
python
def __init__(self, node_size_x, node_size_y, bin_center_x, bin_center_y, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_terminals, num_filler_nodes): '\n @brief initialization \n @param node_size_x cell width array consisting of movable cells, fixed cells, and filler cells in order \n @param node_size_y cell height array consisting of movable cells, fixed cells, and filler cells in order \n @param bin_center_x bin center x locations \n @param bin_center_y bin center y locations \n @param xl left boundary \n @param yl bottom boundary \n @param xh right boundary \n @param yh top boundary \n @param bin_size_x bin width \n @param bin_size_y bin height \n @param num_movable_nodes number of movable cells \n @param num_terminals number of fixed cells \n @param num_filler_nodes number of filler cells \n ' super(DensityMap, self).__init__() self.node_size_x = node_size_x self.node_size_y = node_size_y self.bin_center_x = bin_center_x self.bin_center_y = bin_center_y self.xl = xl self.yl = yl self.xh = xh self.yh = yh self.bin_size_x = bin_size_x self.bin_size_y = bin_size_y self.num_movable_nodes = num_movable_nodes self.num_terminals = num_terminals self.num_filler_nodes = num_filler_nodes self.initial_density_map = None
def __init__(self, node_size_x, node_size_y, bin_center_x, bin_center_y, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_terminals, num_filler_nodes): '\n @brief initialization \n @param node_size_x cell width array consisting of movable cells, fixed cells, and filler cells in order \n @param node_size_y cell height array consisting of movable cells, fixed cells, and filler cells in order \n @param bin_center_x bin center x locations \n @param bin_center_y bin center y locations \n @param xl left boundary \n @param yl bottom boundary \n @param xh right boundary \n @param yh top boundary \n @param bin_size_x bin width \n @param bin_size_y bin height \n @param num_movable_nodes number of movable cells \n @param num_terminals number of fixed cells \n @param num_filler_nodes number of filler cells \n ' super(DensityMap, self).__init__() self.node_size_x = node_size_x self.node_size_y = node_size_y self.bin_center_x = bin_center_x self.bin_center_y = bin_center_y self.xl = xl self.yl = yl self.xh = xh self.yh = yh self.bin_size_x = bin_size_x self.bin_size_y = bin_size_y self.num_movable_nodes = num_movable_nodes self.num_terminals = num_terminals self.num_filler_nodes = num_filler_nodes self.initial_density_map = None<|docstring|>@brief initialization @param node_size_x cell width array consisting of movable cells, fixed cells, and filler cells in order @param node_size_y cell height array consisting of movable cells, fixed cells, and filler cells in order @param bin_center_x bin center x locations @param bin_center_y bin center y locations @param xl left boundary @param yl bottom boundary @param xh right boundary @param yh top boundary @param bin_size_x bin width @param bin_size_y bin height @param num_movable_nodes number of movable cells @param num_terminals number of fixed cells @param num_filler_nodes number of filler cells<|endoftext|>