body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
cec14cc18872bf4e2e42db166b83bd13559ffb24e6468025a1b93f149b3a3d18
def forward(self, pos): '\n @brief API \n @param pos cell locations. The array consists of x locations of movable cells, fixed cells, and filler cells, then y locations of them \n ' if (self.initial_density_map is None): if pos.is_cuda: func = density_map_cuda.fixed_density_map else: func = density_map_cpp.fixed_density_map self.initial_density_map = func(pos, self.node_size_x, self.node_size_y, self.bin_center_x, self.bin_center_y, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_terminals) density_map = DensityMapFunction.forward(pos=pos, node_size_x=self.node_size_x, node_size_y=self.node_size_y, bin_center_x=self.bin_center_x, bin_center_y=self.bin_center_y, initial_density_map=self.initial_density_map, xl=self.xl, yl=self.yl, xh=self.xh, yh=self.yh, bin_size_x=self.bin_size_x, bin_size_y=self.bin_size_y, num_movable_nodes=self.num_movable_nodes, num_filler_nodes=self.num_filler_nodes) return density_map
@brief API @param pos cell locations. The array consists of x locations of movable cells, fixed cells, and filler cells, then y locations of them
dreamplace/ops/density_map/density_map.py
forward
ArEsKay3/DREAMPlace
323
python
def forward(self, pos): '\n @brief API \n @param pos cell locations. The array consists of x locations of movable cells, fixed cells, and filler cells, then y locations of them \n ' if (self.initial_density_map is None): if pos.is_cuda: func = density_map_cuda.fixed_density_map else: func = density_map_cpp.fixed_density_map self.initial_density_map = func(pos, self.node_size_x, self.node_size_y, self.bin_center_x, self.bin_center_y, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_terminals) density_map = DensityMapFunction.forward(pos=pos, node_size_x=self.node_size_x, node_size_y=self.node_size_y, bin_center_x=self.bin_center_x, bin_center_y=self.bin_center_y, initial_density_map=self.initial_density_map, xl=self.xl, yl=self.yl, xh=self.xh, yh=self.yh, bin_size_x=self.bin_size_x, bin_size_y=self.bin_size_y, num_movable_nodes=self.num_movable_nodes, num_filler_nodes=self.num_filler_nodes) return density_map
def forward(self, pos): '\n @brief API \n @param pos cell locations. The array consists of x locations of movable cells, fixed cells, and filler cells, then y locations of them \n ' if (self.initial_density_map is None): if pos.is_cuda: func = density_map_cuda.fixed_density_map else: func = density_map_cpp.fixed_density_map self.initial_density_map = func(pos, self.node_size_x, self.node_size_y, self.bin_center_x, self.bin_center_y, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_terminals) density_map = DensityMapFunction.forward(pos=pos, node_size_x=self.node_size_x, node_size_y=self.node_size_y, bin_center_x=self.bin_center_x, bin_center_y=self.bin_center_y, initial_density_map=self.initial_density_map, xl=self.xl, yl=self.yl, xh=self.xh, yh=self.yh, bin_size_x=self.bin_size_x, bin_size_y=self.bin_size_y, num_movable_nodes=self.num_movable_nodes, num_filler_nodes=self.num_filler_nodes) return density_map<|docstring|>@brief API @param pos cell locations. The array consists of x locations of movable cells, fixed cells, and filler cells, then y locations of them<|endoftext|>
1d6f324292dd85c2e7f90e786f6cf2c1429a09b7072e8c3a28872da0e499fd0f
def get_template_names(self): '\n Dispatch template according to the kind of request: ajax or normal.\n ' if self.request.is_ajax(): return [self.list_template_name] else: return [self.template_name]
Dispatch template according to the kind of request: ajax or normal.
umap/views.py
get_template_names
xiongjiabin/umap
0
python
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return [self.template_name]
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return [self.template_name]<|docstring|>Dispatch template according to the kind of request: ajax or normal.<|endoftext|>
67d6431f8e51682ef25fe9fcfd7035ed748026a59175a944fde3f953d87ceeb0
def get_template_names(self): '\n Dispatch template according to the kind of request: ajax or normal.\n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(CompanyMaps, self).get_template_names()
Dispatch template according to the kind of request: ajax or normal.
umap/views.py
get_template_names
xiongjiabin/umap
0
python
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(CompanyMaps, self).get_template_names()
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(CompanyMaps, self).get_template_names()<|docstring|>Dispatch template according to the kind of request: ajax or normal.<|endoftext|>
44b0a93750f28975a3c80944345b45f42277fae32755879035e1e3593a704699
def get_template_names(self): '\n Dispatch template according to the kind of request: ajax or normal.\n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(UserMaps, self).get_template_names()
Dispatch template according to the kind of request: ajax or normal.
umap/views.py
get_template_names
xiongjiabin/umap
0
python
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(UserMaps, self).get_template_names()
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(UserMaps, self).get_template_names()<|docstring|>Dispatch template according to the kind of request: ajax or normal.<|endoftext|>
44a42ec37eb6485d1a8da002d59f339f51d9c17daa65999d33834fa4fc7cdc7f
def get_template_names(self): '\n Dispatch template according to the kind of request: ajax or normal.\n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(Search, self).get_template_names()
Dispatch template according to the kind of request: ajax or normal.
umap/views.py
get_template_names
xiongjiabin/umap
0
python
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(Search, self).get_template_names()
def get_template_names(self): '\n \n ' if self.request.is_ajax(): return [self.list_template_name] else: return super(Search, self).get_template_names()<|docstring|>Dispatch template according to the kind of request: ajax or normal.<|endoftext|>
501dffd4e531ddebc6bcca503783b0e46a87b01bffdbd376710a23e68e3a646e
def categorical(x, mu=255, normalize=True): '\n Mu-law compress a block of audio samples, and convert them into a\n categorical distribution\n ' if normalize: mx = x.max() x = np.divide(x, mx, where=(mx != 0)) x = mu_law(x) x = ((x - x.min()) * 0.5) x = (x * mu).astype(np.uint8) c = np.zeros((np.product(x.shape), (mu + 1)), dtype=np.uint8) c[(np.arange(len(c)), x.flatten())] = 1 return ArrayWithUnits(c.reshape((x.shape + ((mu + 1),))), (x.dimensions + (IdentityDimension(),)))
Mu-law compress a block of audio samples, and convert them into a categorical distribution
zounds/timeseries/functional.py
categorical
FelixAbrahamsson/zounds
20
python
def categorical(x, mu=255, normalize=True): '\n Mu-law compress a block of audio samples, and convert them into a\n categorical distribution\n ' if normalize: mx = x.max() x = np.divide(x, mx, where=(mx != 0)) x = mu_law(x) x = ((x - x.min()) * 0.5) x = (x * mu).astype(np.uint8) c = np.zeros((np.product(x.shape), (mu + 1)), dtype=np.uint8) c[(np.arange(len(c)), x.flatten())] = 1 return ArrayWithUnits(c.reshape((x.shape + ((mu + 1),))), (x.dimensions + (IdentityDimension(),)))
def categorical(x, mu=255, normalize=True): '\n Mu-law compress a block of audio samples, and convert them into a\n categorical distribution\n ' if normalize: mx = x.max() x = np.divide(x, mx, where=(mx != 0)) x = mu_law(x) x = ((x - x.min()) * 0.5) x = (x * mu).astype(np.uint8) c = np.zeros((np.product(x.shape), (mu + 1)), dtype=np.uint8) c[(np.arange(len(c)), x.flatten())] = 1 return ArrayWithUnits(c.reshape((x.shape + ((mu + 1),))), (x.dimensions + (IdentityDimension(),)))<|docstring|>Mu-law compress a block of audio samples, and convert them into a categorical distribution<|endoftext|>
f32712e41aeb400ef21c4ebb3a1fe33fbd78b05e66c9f5c254a7ea890497bd1f
def inverse_categorical(x, mu=255): '\n Invert categorical samples\n ' flat = x.reshape(((- 1), x.shape[(- 1)])) indices = np.argmax(flat, axis=1).astype(np.float32) indices = ((indices / mu) - 0.5) inverted = inverse_mu_law(indices, mu=mu).reshape(x.shape[:(- 1)]) return ArrayWithUnits(inverted, x.dimensions[:2])
Invert categorical samples
zounds/timeseries/functional.py
inverse_categorical
FelixAbrahamsson/zounds
20
python
def inverse_categorical(x, mu=255): '\n \n ' flat = x.reshape(((- 1), x.shape[(- 1)])) indices = np.argmax(flat, axis=1).astype(np.float32) indices = ((indices / mu) - 0.5) inverted = inverse_mu_law(indices, mu=mu).reshape(x.shape[:(- 1)]) return ArrayWithUnits(inverted, x.dimensions[:2])
def inverse_categorical(x, mu=255): '\n \n ' flat = x.reshape(((- 1), x.shape[(- 1)])) indices = np.argmax(flat, axis=1).astype(np.float32) indices = ((indices / mu) - 0.5) inverted = inverse_mu_law(indices, mu=mu).reshape(x.shape[:(- 1)]) return ArrayWithUnits(inverted, x.dimensions[:2])<|docstring|>Invert categorical samples<|endoftext|>
78a024ff3cf07a1b92bce11f47c45da43d77df5e02cf1f6e8dc953fbbfecd5b4
def _get_network(self, pod_id, pod_name, pod_namespace): "\n Get virtual network to be associated with the pod.\n The heuristics to determine which virtual network to use for the pod\n is as follows:\n if (virtual network is annotated in the pod config):\n Use virtual network configured on the pod.\n else if (virtual network if annotated in the pod's namespace):\n Use virtual network configured on the namespace.\n else if (pod is in a isolated namespace):\n Use the virtual network associated with isolated namespace.\n else:\n Use the pod virtual network associated with kubernetes cluster.\n " pod = PodKM.find_by_name_or_uuid(pod_id) if (not pod): self._logger.notice(('%s - Pod %s:%s:%s Not Found(Might Got Delete Event From K8s)' % (self._name, pod_namespace, pod_name, pod_id))) return vn_fq_name = pod.get_vn_fq_name() ns = self._get_namespace(pod_namespace) if (not vn_fq_name): vn_fq_name = ns.get_annotated_network_fq_name() if (not vn_fq_name): if self._is_pod_network_isolated(pod_namespace): vn_fq_name = ns.get_isolated_network_fq_name() if (not vn_fq_name): vn_fq_name = vnc_kube_config.cluster_default_network_fq_name() vn_obj = self._vnc_lib.virtual_network_read(fq_name=vn_fq_name) return vn_obj
Get virtual network to be associated with the pod. The heuristics to determine which virtual network to use for the pod is as follows: if (virtual network is annotated in the pod config): Use virtual network configured on the pod. else if (virtual network if annotated in the pod's namespace): Use virtual network configured on the namespace. else if (pod is in a isolated namespace): Use the virtual network associated with isolated namespace. else: Use the pod virtual network associated with kubernetes cluster.
src/container/kube-manager/kube_manager/vnc/vnc_pod.py
_get_network
zhongyangni/controller
0
python
def _get_network(self, pod_id, pod_name, pod_namespace): "\n Get virtual network to be associated with the pod.\n The heuristics to determine which virtual network to use for the pod\n is as follows:\n if (virtual network is annotated in the pod config):\n Use virtual network configured on the pod.\n else if (virtual network if annotated in the pod's namespace):\n Use virtual network configured on the namespace.\n else if (pod is in a isolated namespace):\n Use the virtual network associated with isolated namespace.\n else:\n Use the pod virtual network associated with kubernetes cluster.\n " pod = PodKM.find_by_name_or_uuid(pod_id) if (not pod): self._logger.notice(('%s - Pod %s:%s:%s Not Found(Might Got Delete Event From K8s)' % (self._name, pod_namespace, pod_name, pod_id))) return vn_fq_name = pod.get_vn_fq_name() ns = self._get_namespace(pod_namespace) if (not vn_fq_name): vn_fq_name = ns.get_annotated_network_fq_name() if (not vn_fq_name): if self._is_pod_network_isolated(pod_namespace): vn_fq_name = ns.get_isolated_network_fq_name() if (not vn_fq_name): vn_fq_name = vnc_kube_config.cluster_default_network_fq_name() vn_obj = self._vnc_lib.virtual_network_read(fq_name=vn_fq_name) return vn_obj
def _get_network(self, pod_id, pod_name, pod_namespace): "\n Get virtual network to be associated with the pod.\n The heuristics to determine which virtual network to use for the pod\n is as follows:\n if (virtual network is annotated in the pod config):\n Use virtual network configured on the pod.\n else if (virtual network if annotated in the pod's namespace):\n Use virtual network configured on the namespace.\n else if (pod is in a isolated namespace):\n Use the virtual network associated with isolated namespace.\n else:\n Use the pod virtual network associated with kubernetes cluster.\n " pod = PodKM.find_by_name_or_uuid(pod_id) if (not pod): self._logger.notice(('%s - Pod %s:%s:%s Not Found(Might Got Delete Event From K8s)' % (self._name, pod_namespace, pod_name, pod_id))) return vn_fq_name = pod.get_vn_fq_name() ns = self._get_namespace(pod_namespace) if (not vn_fq_name): vn_fq_name = ns.get_annotated_network_fq_name() if (not vn_fq_name): if self._is_pod_network_isolated(pod_namespace): vn_fq_name = ns.get_isolated_network_fq_name() if (not vn_fq_name): vn_fq_name = vnc_kube_config.cluster_default_network_fq_name() vn_obj = self._vnc_lib.virtual_network_read(fq_name=vn_fq_name) return vn_obj<|docstring|>Get virtual network to be associated with the pod. The heuristics to determine which virtual network to use for the pod is as follows: if (virtual network is annotated in the pod config): Use virtual network configured on the pod. else if (virtual network if annotated in the pod's namespace): Use virtual network configured on the namespace. else if (pod is in a isolated namespace): Use the virtual network associated with isolated namespace. else: Use the pod virtual network associated with kubernetes cluster.<|endoftext|>
17d19fbf0d955b5b8fb33aad954a259471f32694aff00c2e7929876ad9a23c83
def _create_cluster_service_fip(self, pod_name, pod_namespace, vmi_uuid): '\n Isolated Pods in the cluster will be allocated a floating ip\n from the cluster service network, so that the pods can talk\n to cluster services.\n ' if (not self._service_fip_pool): return fip_pool_obj = FloatingIpPool() fip_pool_obj.uuid = self._service_fip_pool.uuid fip_pool_obj.fq_name = self._service_fip_pool.fq_name fip_pool_obj.name = self._service_fip_pool.name obj_uuid = str(uuid.uuid1()) display_name = VncCommon.make_display_name(pod_namespace, pod_name) name = VncCommon.make_name(pod_name, obj_uuid) fip_obj = FloatingIp(name=('cluster-svc-fip-%s' % name), parent_obj=fip_pool_obj, floating_ip_traffic_direction='egress', display_name=display_name) fip_obj.uuid = obj_uuid vmi_obj = self._vnc_lib.virtual_machine_interface_read(id=vmi_uuid) fip_obj.set_virtual_machine_interface(vmi_obj) FloatingIpKM.add_annotations(self, fip_obj, pod_namespace, pod_name) try: fip_uuid = self._vnc_lib.floating_ip_create(fip_obj) except RefsExistError: fip_uuid = self._vnc_lib.floating_ip_update(fip_obj) FloatingIpKM.locate(fip_uuid) return
Isolated Pods in the cluster will be allocated a floating ip from the cluster service network, so that the pods can talk to cluster services.
src/container/kube-manager/kube_manager/vnc/vnc_pod.py
_create_cluster_service_fip
zhongyangni/controller
0
python
def _create_cluster_service_fip(self, pod_name, pod_namespace, vmi_uuid): '\n Isolated Pods in the cluster will be allocated a floating ip\n from the cluster service network, so that the pods can talk\n to cluster services.\n ' if (not self._service_fip_pool): return fip_pool_obj = FloatingIpPool() fip_pool_obj.uuid = self._service_fip_pool.uuid fip_pool_obj.fq_name = self._service_fip_pool.fq_name fip_pool_obj.name = self._service_fip_pool.name obj_uuid = str(uuid.uuid1()) display_name = VncCommon.make_display_name(pod_namespace, pod_name) name = VncCommon.make_name(pod_name, obj_uuid) fip_obj = FloatingIp(name=('cluster-svc-fip-%s' % name), parent_obj=fip_pool_obj, floating_ip_traffic_direction='egress', display_name=display_name) fip_obj.uuid = obj_uuid vmi_obj = self._vnc_lib.virtual_machine_interface_read(id=vmi_uuid) fip_obj.set_virtual_machine_interface(vmi_obj) FloatingIpKM.add_annotations(self, fip_obj, pod_namespace, pod_name) try: fip_uuid = self._vnc_lib.floating_ip_create(fip_obj) except RefsExistError: fip_uuid = self._vnc_lib.floating_ip_update(fip_obj) FloatingIpKM.locate(fip_uuid) return
def _create_cluster_service_fip(self, pod_name, pod_namespace, vmi_uuid): '\n Isolated Pods in the cluster will be allocated a floating ip\n from the cluster service network, so that the pods can talk\n to cluster services.\n ' if (not self._service_fip_pool): return fip_pool_obj = FloatingIpPool() fip_pool_obj.uuid = self._service_fip_pool.uuid fip_pool_obj.fq_name = self._service_fip_pool.fq_name fip_pool_obj.name = self._service_fip_pool.name obj_uuid = str(uuid.uuid1()) display_name = VncCommon.make_display_name(pod_namespace, pod_name) name = VncCommon.make_name(pod_name, obj_uuid) fip_obj = FloatingIp(name=('cluster-svc-fip-%s' % name), parent_obj=fip_pool_obj, floating_ip_traffic_direction='egress', display_name=display_name) fip_obj.uuid = obj_uuid vmi_obj = self._vnc_lib.virtual_machine_interface_read(id=vmi_uuid) fip_obj.set_virtual_machine_interface(vmi_obj) FloatingIpKM.add_annotations(self, fip_obj, pod_namespace, pod_name) try: fip_uuid = self._vnc_lib.floating_ip_create(fip_obj) except RefsExistError: fip_uuid = self._vnc_lib.floating_ip_update(fip_obj) FloatingIpKM.locate(fip_uuid) return<|docstring|>Isolated Pods in the cluster will be allocated a floating ip from the cluster service network, so that the pods can talk to cluster services.<|endoftext|>
99f29d36f72080ecfc74a62266ac16e9e9fdf4a67215d368aa10cd4bce371068
def __init__(self, n_input=7, n_output=6, n_h=2, size_h=128): '\n Specify the neural network architecture\n\n :param n_input: The dimension of the input\n :param n_output: The dimension of the output\n :param n_h: The number of the hidden layer\n :param size_h: The dimension of the hidden layer\n ' super(MLP, self).__init__() self.n_input = n_input self.fc_in = nn.Linear(n_input, size_h) self.relu = nn.ReLU() self.tanh = nn.Tanh() assert (n_h >= 1), 'h must be integer and >= 1' self.fc_list = nn.ModuleList() for i in range((n_h - 1)): self.fc_list.append(nn.Linear(size_h, size_h)) self.fc_out = nn.Linear(size_h, n_output) nn.init.uniform_(self.fc_in.weight, (- 0.1), 0.1) nn.init.uniform_(self.fc_out.weight, (- 0.1), 0.1) self.fc_list.apply(self.init_normal)
Specify the neural network architecture :param n_input: The dimension of the input :param n_output: The dimension of the output :param n_h: The number of the hidden layer :param size_h: The dimension of the hidden layer
MPC/MPC-Qube/dynamics.py
__init__
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def __init__(self, n_input=7, n_output=6, n_h=2, size_h=128): '\n Specify the neural network architecture\n\n :param n_input: The dimension of the input\n :param n_output: The dimension of the output\n :param n_h: The number of the hidden layer\n :param size_h: The dimension of the hidden layer\n ' super(MLP, self).__init__() self.n_input = n_input self.fc_in = nn.Linear(n_input, size_h) self.relu = nn.ReLU() self.tanh = nn.Tanh() assert (n_h >= 1), 'h must be integer and >= 1' self.fc_list = nn.ModuleList() for i in range((n_h - 1)): self.fc_list.append(nn.Linear(size_h, size_h)) self.fc_out = nn.Linear(size_h, n_output) nn.init.uniform_(self.fc_in.weight, (- 0.1), 0.1) nn.init.uniform_(self.fc_out.weight, (- 0.1), 0.1) self.fc_list.apply(self.init_normal)
def __init__(self, n_input=7, n_output=6, n_h=2, size_h=128): '\n Specify the neural network architecture\n\n :param n_input: The dimension of the input\n :param n_output: The dimension of the output\n :param n_h: The number of the hidden layer\n :param size_h: The dimension of the hidden layer\n ' super(MLP, self).__init__() self.n_input = n_input self.fc_in = nn.Linear(n_input, size_h) self.relu = nn.ReLU() self.tanh = nn.Tanh() assert (n_h >= 1), 'h must be integer and >= 1' self.fc_list = nn.ModuleList() for i in range((n_h - 1)): self.fc_list.append(nn.Linear(size_h, size_h)) self.fc_out = nn.Linear(size_h, n_output) nn.init.uniform_(self.fc_in.weight, (- 0.1), 0.1) nn.init.uniform_(self.fc_out.weight, (- 0.1), 0.1) self.fc_list.apply(self.init_normal)<|docstring|>Specify the neural network architecture :param n_input: The dimension of the input :param n_output: The dimension of the output :param n_h: The number of the hidden layer :param size_h: The dimension of the hidden layer<|endoftext|>
da49e022b21d3c6bf52fac67f441bea03e5d246169134bb5b51da91ceacb83a2
def train(self, trainset, testset=0): '\n Train the dynamic model with input dataset\n\n :param trainset: (Dictionary) The input training set\n :param testset: (Dictionary) The input test set\n :return:\n ' (datasets, labels) = self.norm_train_data(trainset['data'], trainset['label']) if (testset != 0): (test_datasets, test_labels) = self.norm_test_data(testset['data'], testset['label']) train_dataset = MyDataset(datasets, labels) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True) total_step = len(train_loader) print(f'Total training step per epoch [{total_step}]') loss_epochs = [] for epoch in range(1, (self.n_epochs + 1)): loss_this_epoch = [] for (i, (datas, labels)) in enumerate(train_loader): datas = self.Variable(torch.FloatTensor(np.float32(datas))) labels = self.Variable(torch.FloatTensor(np.float32(labels))) self.optimizer.zero_grad() outputs = self.model(datas) loss = self.criterion(outputs, labels) loss.backward() self.optimizer.step() loss_this_epoch.append(loss.item()) loss_epochs.append(np.mean(loss_this_epoch)) if self.save_model_flag: torch.save(self.model, self.save_model_path) if (self.save_loss_fig and ((epoch % self.save_loss_fig_frequency) == 0)): self.save_figure(epoch, loss_epochs, loss_this_epoch) if (testset != 0): loss_test = self.validate_model(test_datasets, test_labels) print(f'Epoch [{epoch}/{self.n_epochs}], Training Loss: {np.mean(loss_this_epoch):.8f}, Test Loss: {loss_test:.8f}') return loss_epochs
Train the dynamic model with input dataset :param trainset: (Dictionary) The input training set :param testset: (Dictionary) The input test set :return:
MPC/MPC-Qube/dynamics.py
train
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def train(self, trainset, testset=0): '\n Train the dynamic model with input dataset\n\n :param trainset: (Dictionary) The input training set\n :param testset: (Dictionary) The input test set\n :return:\n ' (datasets, labels) = self.norm_train_data(trainset['data'], trainset['label']) if (testset != 0): (test_datasets, test_labels) = self.norm_test_data(testset['data'], testset['label']) train_dataset = MyDataset(datasets, labels) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True) total_step = len(train_loader) print(f'Total training step per epoch [{total_step}]') loss_epochs = [] for epoch in range(1, (self.n_epochs + 1)): loss_this_epoch = [] for (i, (datas, labels)) in enumerate(train_loader): datas = self.Variable(torch.FloatTensor(np.float32(datas))) labels = self.Variable(torch.FloatTensor(np.float32(labels))) self.optimizer.zero_grad() outputs = self.model(datas) loss = self.criterion(outputs, labels) loss.backward() self.optimizer.step() loss_this_epoch.append(loss.item()) loss_epochs.append(np.mean(loss_this_epoch)) if self.save_model_flag: torch.save(self.model, self.save_model_path) if (self.save_loss_fig and ((epoch % self.save_loss_fig_frequency) == 0)): self.save_figure(epoch, loss_epochs, loss_this_epoch) if (testset != 0): loss_test = self.validate_model(test_datasets, test_labels) print(f'Epoch [{epoch}/{self.n_epochs}], Training Loss: {np.mean(loss_this_epoch):.8f}, Test Loss: {loss_test:.8f}') return loss_epochs
def train(self, trainset, testset=0): '\n Train the dynamic model with input dataset\n\n :param trainset: (Dictionary) The input training set\n :param testset: (Dictionary) The input test set\n :return:\n ' (datasets, labels) = self.norm_train_data(trainset['data'], trainset['label']) if (testset != 0): (test_datasets, test_labels) = self.norm_test_data(testset['data'], testset['label']) train_dataset = MyDataset(datasets, labels) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True) total_step = len(train_loader) print(f'Total training step per epoch [{total_step}]') loss_epochs = [] for epoch in range(1, (self.n_epochs + 1)): loss_this_epoch = [] for (i, (datas, labels)) in enumerate(train_loader): datas = self.Variable(torch.FloatTensor(np.float32(datas))) labels = self.Variable(torch.FloatTensor(np.float32(labels))) self.optimizer.zero_grad() outputs = self.model(datas) loss = self.criterion(outputs, labels) loss.backward() self.optimizer.step() loss_this_epoch.append(loss.item()) loss_epochs.append(np.mean(loss_this_epoch)) if self.save_model_flag: torch.save(self.model, self.save_model_path) if (self.save_loss_fig and ((epoch % self.save_loss_fig_frequency) == 0)): self.save_figure(epoch, loss_epochs, loss_this_epoch) if (testset != 0): loss_test = self.validate_model(test_datasets, test_labels) print(f'Epoch [{epoch}/{self.n_epochs}], Training Loss: {np.mean(loss_this_epoch):.8f}, Test Loss: {loss_test:.8f}') return loss_epochs<|docstring|>Train the dynamic model with input dataset :param trainset: (Dictionary) The input training set :param testset: (Dictionary) The input test set :return:<|endoftext|>
01002227f3d6ca9458616aadbff7d637592f4e7619d0b3eff94835e84ca4db4a
def predict(self, x): '\n Given the current state and action, predict the next state\n\n :param x: (numpy array) current state and action in one array\n :return: (numpy array) next state numpy array\n ' x = np.array(x) x = self.pre_process(x) x_tensor = self.Variable(torch.FloatTensor(x).unsqueeze(0), volatile=True) out_tensor = self.model(x_tensor) out = out_tensor.cpu().detach().numpy() out = self.after_process(out) return out
Given the current state and action, predict the next state :param x: (numpy array) current state and action in one array :return: (numpy array) next state numpy array
MPC/MPC-Qube/dynamics.py
predict
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def predict(self, x): '\n Given the current state and action, predict the next state\n\n :param x: (numpy array) current state and action in one array\n :return: (numpy array) next state numpy array\n ' x = np.array(x) x = self.pre_process(x) x_tensor = self.Variable(torch.FloatTensor(x).unsqueeze(0), volatile=True) out_tensor = self.model(x_tensor) out = out_tensor.cpu().detach().numpy() out = self.after_process(out) return out
def predict(self, x): '\n Given the current state and action, predict the next state\n\n :param x: (numpy array) current state and action in one array\n :return: (numpy array) next state numpy array\n ' x = np.array(x) x = self.pre_process(x) x_tensor = self.Variable(torch.FloatTensor(x).unsqueeze(0), volatile=True) out_tensor = self.model(x_tensor) out = out_tensor.cpu().detach().numpy() out = self.after_process(out) return out<|docstring|>Given the current state and action, predict the next state :param x: (numpy array) current state and action in one array :return: (numpy array) next state numpy array<|endoftext|>
f11b5486ae3b2e20ce90512fe32b2886325cc6869ccd0b0734f448044359eed7
def pre_process(self, x): '\n Pre-process the input data\n :param x: (numpy array) current state and action in one array\n :return: (numpy array) normalized input array\n ' x = ((x - self.mean_data) / self.std_data) return x
Pre-process the input data :param x: (numpy array) current state and action in one array :return: (numpy array) normalized input array
MPC/MPC-Qube/dynamics.py
pre_process
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def pre_process(self, x): '\n Pre-process the input data\n :param x: (numpy array) current state and action in one array\n :return: (numpy array) normalized input array\n ' x = ((x - self.mean_data) / self.std_data) return x
def pre_process(self, x): '\n Pre-process the input data\n :param x: (numpy array) current state and action in one array\n :return: (numpy array) normalized input array\n ' x = ((x - self.mean_data) / self.std_data) return x<|docstring|>Pre-process the input data :param x: (numpy array) current state and action in one array :return: (numpy array) normalized input array<|endoftext|>
c386efcd65a9982c973f4154f7cd821908f413ddef52345a2a886bca27dbfa25
def norm_train_data(self, datas, labels): '\n Normalize the training data and record the data distribution\n\n :param datas: (numpy array) input data\n :param labels: (numpy array) the label\n :return: (numpy array) normalized data and label\n ' self.mean_data = np.mean(datas, axis=0) self.mean_label = np.mean(labels, axis=0) self.std_data = np.std(datas, axis=0) self.std_label = np.std(labels, axis=0) datas = ((datas - self.mean_data) / self.std_data) labels = ((labels - self.mean_label) / self.std_label) return (datas, labels)
Normalize the training data and record the data distribution :param datas: (numpy array) input data :param labels: (numpy array) the label :return: (numpy array) normalized data and label
MPC/MPC-Qube/dynamics.py
norm_train_data
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def norm_train_data(self, datas, labels): '\n Normalize the training data and record the data distribution\n\n :param datas: (numpy array) input data\n :param labels: (numpy array) the label\n :return: (numpy array) normalized data and label\n ' self.mean_data = np.mean(datas, axis=0) self.mean_label = np.mean(labels, axis=0) self.std_data = np.std(datas, axis=0) self.std_label = np.std(labels, axis=0) datas = ((datas - self.mean_data) / self.std_data) labels = ((labels - self.mean_label) / self.std_label) return (datas, labels)
def norm_train_data(self, datas, labels): '\n Normalize the training data and record the data distribution\n\n :param datas: (numpy array) input data\n :param labels: (numpy array) the label\n :return: (numpy array) normalized data and label\n ' self.mean_data = np.mean(datas, axis=0) self.mean_label = np.mean(labels, axis=0) self.std_data = np.std(datas, axis=0) self.std_label = np.std(labels, axis=0) datas = ((datas - self.mean_data) / self.std_data) labels = ((labels - self.mean_label) / self.std_label) return (datas, labels)<|docstring|>Normalize the training data and record the data distribution :param datas: (numpy array) input data :param labels: (numpy array) the label :return: (numpy array) normalized data and label<|endoftext|>
1d74752e75d8305591d0d09bad570da93872c84f1222837ef219aa91f1707bc9
def norm_test_data(self, datas, labels): '\n Normalize the test data\n\n :param datas: (numpy array) input data\n :param labels: (numpy array) the label\n :return: (numpy array) normalized data and label\n ' datas = ((datas - self.mean_data) / self.std_data) labels = ((labels - self.mean_label) / self.std_label) return (datas, labels)
Normalize the test data :param datas: (numpy array) input data :param labels: (numpy array) the label :return: (numpy array) normalized data and label
MPC/MPC-Qube/dynamics.py
norm_test_data
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def norm_test_data(self, datas, labels): '\n Normalize the test data\n\n :param datas: (numpy array) input data\n :param labels: (numpy array) the label\n :return: (numpy array) normalized data and label\n ' datas = ((datas - self.mean_data) / self.std_data) labels = ((labels - self.mean_label) / self.std_label) return (datas, labels)
def norm_test_data(self, datas, labels): '\n Normalize the test data\n\n :param datas: (numpy array) input data\n :param labels: (numpy array) the label\n :return: (numpy array) normalized data and label\n ' datas = ((datas - self.mean_data) / self.std_data) labels = ((labels - self.mean_label) / self.std_label) return (datas, labels)<|docstring|>Normalize the test data :param datas: (numpy array) input data :param labels: (numpy array) the label :return: (numpy array) normalized data and label<|endoftext|>
10348fb303dee14b7ac5dbd46caa9ada5a2ffd0a6ed88cb0d6f04af490bc9a6e
def validate_model(self, datasets, labels): '\n Validate the trained model\n\n :param datasets: (numpy array) input data\n :param labels: (numpy array) corresponding label\n :return: average loss\n ' test_dataset = MyDataset(datasets, labels) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=self.batch_size) loss_list = [] for (i, (datas, labels)) in enumerate(test_loader): datas = self.Variable(torch.FloatTensor(np.float32(datas))) labels = self.Variable(torch.FloatTensor(np.float32(labels))) outputs = self.model(datas) loss = self.criterion(outputs, labels) loss_list.append(loss.item()) loss_avr = np.average(loss_list) return loss_avr
Validate the trained model :param datasets: (numpy array) input data :param labels: (numpy array) corresponding label :return: average loss
MPC/MPC-Qube/dynamics.py
validate_model
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def validate_model(self, datasets, labels): '\n Validate the trained model\n\n :param datasets: (numpy array) input data\n :param labels: (numpy array) corresponding label\n :return: average loss\n ' test_dataset = MyDataset(datasets, labels) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=self.batch_size) loss_list = [] for (i, (datas, labels)) in enumerate(test_loader): datas = self.Variable(torch.FloatTensor(np.float32(datas))) labels = self.Variable(torch.FloatTensor(np.float32(labels))) outputs = self.model(datas) loss = self.criterion(outputs, labels) loss_list.append(loss.item()) loss_avr = np.average(loss_list) return loss_avr
def validate_model(self, datasets, labels): '\n Validate the trained model\n\n :param datasets: (numpy array) input data\n :param labels: (numpy array) corresponding label\n :return: average loss\n ' test_dataset = MyDataset(datasets, labels) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=self.batch_size) loss_list = [] for (i, (datas, labels)) in enumerate(test_loader): datas = self.Variable(torch.FloatTensor(np.float32(datas))) labels = self.Variable(torch.FloatTensor(np.float32(labels))) outputs = self.model(datas) loss = self.criterion(outputs, labels) loss_list.append(loss.item()) loss_avr = np.average(loss_list) return loss_avr<|docstring|>Validate the trained model :param datasets: (numpy array) input data :param labels: (numpy array) corresponding label :return: average loss<|endoftext|>
1c9a6718b46ff5f20439fc06d16107a97aba9058a3f7ba065d6e47c9021e6264
def save_figure(self, epoch, loss_epochs, loss_this_epoch): '\n Save the loss figures\n ' plt.clf() plt.close('all') plt.figure(figsize=(12, 5)) plt.subplot(121) plt.title(('Loss Trend with %s Epochs' % epoch)) plt.plot(loss_epochs) plt.subplot(122) plt.title('Loss Trend in the latest Epoch') plt.plot(loss_this_epoch) plt.savefig((('storage/loss-' + str(self.exp_number)) + '.png'))
Save the loss figures
MPC/MPC-Qube/dynamics.py
save_figure
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def save_figure(self, epoch, loss_epochs, loss_this_epoch): '\n \n ' plt.clf() plt.close('all') plt.figure(figsize=(12, 5)) plt.subplot(121) plt.title(('Loss Trend with %s Epochs' % epoch)) plt.plot(loss_epochs) plt.subplot(122) plt.title('Loss Trend in the latest Epoch') plt.plot(loss_this_epoch) plt.savefig((('storage/loss-' + str(self.exp_number)) + '.png'))
def save_figure(self, epoch, loss_epochs, loss_this_epoch): '\n \n ' plt.clf() plt.close('all') plt.figure(figsize=(12, 5)) plt.subplot(121) plt.title(('Loss Trend with %s Epochs' % epoch)) plt.plot(loss_epochs) plt.subplot(122) plt.title('Loss Trend in the latest Epoch') plt.plot(loss_this_epoch) plt.savefig((('storage/loss-' + str(self.exp_number)) + '.png'))<|docstring|>Save the loss figures<|endoftext|>
01acfe0be08a20e62ce8d68d65888cd7e7ca155508eab43354b2e2fce9bd4a74
def model_validation(self, env, horizon=40, n_sample=200, mpc=[]): '\n Validate the model in the environment\n\n :param env: OpenAI gym style environment\n :param horizon: The prediction horizon\n :param n_sample:\n :param mpc: whether to use the mpc to generate action\n :return: the errors along the horizon\n ' n_state = env.observation_space.shape[0] errors = np.zeros([n_sample, horizon, n_state]) for i in range(n_sample): state = env.reset() state_pred = state.copy() state_real = state.copy() for j in range(horizon): if (mpc != []): action = mpc.act(state_pred, self) action = np.array([action]) else: action = env.action_space.sample() input_data = np.concatenate((state_pred, action)) state_dt = self.predict(input_data) state_pred = (state_pred + state_dt[0]) (state_real, reward, done, info) = env.step(action) error_tmp = (state_real - state_pred) errors[(i, j)] = abs(error_tmp) errors_mean = np.mean(errors, axis=0) errors_max = np.max(errors, axis=0) errors_min = np.min(errors, axis=0) errors_std = np.min(errors, axis=0) return (errors_mean, errors_max, errors_min, errors_std)
Validate the model in the environment :param env: OpenAI gym style environment :param horizon: The prediction horizon :param n_sample: :param mpc: whether to use the mpc to generate action :return: the errors along the horizon
MPC/MPC-Qube/dynamics.py
model_validation
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def model_validation(self, env, horizon=40, n_sample=200, mpc=[]): '\n Validate the model in the environment\n\n :param env: OpenAI gym style environment\n :param horizon: The prediction horizon\n :param n_sample:\n :param mpc: whether to use the mpc to generate action\n :return: the errors along the horizon\n ' n_state = env.observation_space.shape[0] errors = np.zeros([n_sample, horizon, n_state]) for i in range(n_sample): state = env.reset() state_pred = state.copy() state_real = state.copy() for j in range(horizon): if (mpc != []): action = mpc.act(state_pred, self) action = np.array([action]) else: action = env.action_space.sample() input_data = np.concatenate((state_pred, action)) state_dt = self.predict(input_data) state_pred = (state_pred + state_dt[0]) (state_real, reward, done, info) = env.step(action) error_tmp = (state_real - state_pred) errors[(i, j)] = abs(error_tmp) errors_mean = np.mean(errors, axis=0) errors_max = np.max(errors, axis=0) errors_min = np.min(errors, axis=0) errors_std = np.min(errors, axis=0) return (errors_mean, errors_max, errors_min, errors_std)
def model_validation(self, env, horizon=40, n_sample=200, mpc=[]): '\n Validate the model in the environment\n\n :param env: OpenAI gym style environment\n :param horizon: The prediction horizon\n :param n_sample:\n :param mpc: whether to use the mpc to generate action\n :return: the errors along the horizon\n ' n_state = env.observation_space.shape[0] errors = np.zeros([n_sample, horizon, n_state]) for i in range(n_sample): state = env.reset() state_pred = state.copy() state_real = state.copy() for j in range(horizon): if (mpc != []): action = mpc.act(state_pred, self) action = np.array([action]) else: action = env.action_space.sample() input_data = np.concatenate((state_pred, action)) state_dt = self.predict(input_data) state_pred = (state_pred + state_dt[0]) (state_real, reward, done, info) = env.step(action) error_tmp = (state_real - state_pred) errors[(i, j)] = abs(error_tmp) errors_mean = np.mean(errors, axis=0) errors_max = np.max(errors, axis=0) errors_min = np.min(errors, axis=0) errors_std = np.min(errors, axis=0) return (errors_mean, errors_max, errors_min, errors_std)<|docstring|>Validate the model in the environment :param env: OpenAI gym style environment :param horizon: The prediction horizon :param n_sample: :param mpc: whether to use the mpc to generate action :return: the errors along the horizon<|endoftext|>
971bc11b3b43712790fc7df1a2fd58e249c8b8c34108b1caaf77b145ae0b6094
def plot_model_validation(self, env, horizon=40, n_sample=200, mpc=[], mode='mean'): ' Plot the model validation in the simulation environment' if (mode == 'mean'): errors = self.model_validation(env, horizon, n_sample, mpc)[0] elif (mode == 'max'): errors = self.model_validation(env, horizon, n_sample, mpc)[1] elif (mode == 'min'): errors = self.model_validation(env, horizon, n_sample, mpc)[2] elif (mode == 'std'): errors = self.model_validation(env, horizon, n_sample, mpc)[3] else: return 0 plt.close('all') plt.ioff() plt.figure(figsize=[12, 6]) plt.title((mode + ' state error between the predictive model and real world along different horizons')) plt.xlabel('horizon') plt.ylabel('error') for i in range(errors.shape[1]): plt.plot(errors[(:, i)], label=('state ' + str(i))) plt.legend() plt.savefig((('storage/model_error_exp_' + str(self.exp_number)) + '.png')) plt.show()
Plot the model validation in the simulation environment
MPC/MPC-Qube/dynamics.py
plot_model_validation
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def plot_model_validation(self, env, horizon=40, n_sample=200, mpc=[], mode='mean'): ' ' if (mode == 'mean'): errors = self.model_validation(env, horizon, n_sample, mpc)[0] elif (mode == 'max'): errors = self.model_validation(env, horizon, n_sample, mpc)[1] elif (mode == 'min'): errors = self.model_validation(env, horizon, n_sample, mpc)[2] elif (mode == 'std'): errors = self.model_validation(env, horizon, n_sample, mpc)[3] else: return 0 plt.close('all') plt.ioff() plt.figure(figsize=[12, 6]) plt.title((mode + ' state error between the predictive model and real world along different horizons')) plt.xlabel('horizon') plt.ylabel('error') for i in range(errors.shape[1]): plt.plot(errors[(:, i)], label=('state ' + str(i))) plt.legend() plt.savefig((('storage/model_error_exp_' + str(self.exp_number)) + '.png')) plt.show()
def plot_model_validation(self, env, horizon=40, n_sample=200, mpc=[], mode='mean'): ' ' if (mode == 'mean'): errors = self.model_validation(env, horizon, n_sample, mpc)[0] elif (mode == 'max'): errors = self.model_validation(env, horizon, n_sample, mpc)[1] elif (mode == 'min'): errors = self.model_validation(env, horizon, n_sample, mpc)[2] elif (mode == 'std'): errors = self.model_validation(env, horizon, n_sample, mpc)[3] else: return 0 plt.close('all') plt.ioff() plt.figure(figsize=[12, 6]) plt.title((mode + ' state error between the predictive model and real world along different horizons')) plt.xlabel('horizon') plt.ylabel('error') for i in range(errors.shape[1]): plt.plot(errors[(:, i)], label=('state ' + str(i))) plt.legend() plt.savefig((('storage/model_error_exp_' + str(self.exp_number)) + '.png')) plt.show()<|docstring|>Plot the model validation in the simulation environment<|endoftext|>
1945b7ba23e943c81513b333a5d40a6899e3e8f18ac4cb239e2cf42d27d748ec
def collect_random_dataset(self): '\n Collect n_random_episodes data (numpy array) with maximum n_max_steps steps per episode\n ' datasets = [] labels = [] for i in range(self.n_random_episodes): data_tmp = [] label_tmp = [] state_old = self.env.reset() for j in range(self.n_max_steps): action = self.env.action_space.sample() data_tmp.append(np.concatenate((state_old, action))) (state_new, reward, done, info) = self.env.step(action) label_tmp.append((state_new - state_old)) if done: break state_old = state_new data_tmp = np.array(data_tmp) label_tmp = np.array(label_tmp) if (datasets == []): datasets = data_tmp else: datasets = np.concatenate((datasets, data_tmp)) if (labels == []): labels = label_tmp else: labels = np.concatenate((labels, label_tmp)) data_and_label = np.concatenate((datasets, labels), axis=1) np.random.shuffle(data_and_label) print('Collect random dataset shape: ', datasets.shape) testset_len = int((datasets.shape[0] * self.testset_split)) data_len = datasets.shape[1] self.random_testset = {'data': data_and_label[(:testset_len, :data_len)], 'label': data_and_label[(:testset_len, data_len:)]} self.random_trainset = {'data': data_and_label[(testset_len:, :data_len)], 'label': data_and_label[(testset_len:, data_len:)]} self.random_dataset = {'data': datasets, 'label': labels} self.all_dataset = self.random_dataset
Collect n_random_episodes data (numpy array) with maximum n_max_steps steps per episode
MPC/MPC-Qube/dynamics.py
collect_random_dataset
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def collect_random_dataset(self): '\n \n ' datasets = [] labels = [] for i in range(self.n_random_episodes): data_tmp = [] label_tmp = [] state_old = self.env.reset() for j in range(self.n_max_steps): action = self.env.action_space.sample() data_tmp.append(np.concatenate((state_old, action))) (state_new, reward, done, info) = self.env.step(action) label_tmp.append((state_new - state_old)) if done: break state_old = state_new data_tmp = np.array(data_tmp) label_tmp = np.array(label_tmp) if (datasets == []): datasets = data_tmp else: datasets = np.concatenate((datasets, data_tmp)) if (labels == []): labels = label_tmp else: labels = np.concatenate((labels, label_tmp)) data_and_label = np.concatenate((datasets, labels), axis=1) np.random.shuffle(data_and_label) print('Collect random dataset shape: ', datasets.shape) testset_len = int((datasets.shape[0] * self.testset_split)) data_len = datasets.shape[1] self.random_testset = {'data': data_and_label[(:testset_len, :data_len)], 'label': data_and_label[(:testset_len, data_len:)]} self.random_trainset = {'data': data_and_label[(testset_len:, :data_len)], 'label': data_and_label[(testset_len:, data_len:)]} self.random_dataset = {'data': datasets, 'label': labels} self.all_dataset = self.random_dataset
def collect_random_dataset(self): '\n \n ' datasets = [] labels = [] for i in range(self.n_random_episodes): data_tmp = [] label_tmp = [] state_old = self.env.reset() for j in range(self.n_max_steps): action = self.env.action_space.sample() data_tmp.append(np.concatenate((state_old, action))) (state_new, reward, done, info) = self.env.step(action) label_tmp.append((state_new - state_old)) if done: break state_old = state_new data_tmp = np.array(data_tmp) label_tmp = np.array(label_tmp) if (datasets == []): datasets = data_tmp else: datasets = np.concatenate((datasets, data_tmp)) if (labels == []): labels = label_tmp else: labels = np.concatenate((labels, label_tmp)) data_and_label = np.concatenate((datasets, labels), axis=1) np.random.shuffle(data_and_label) print('Collect random dataset shape: ', datasets.shape) testset_len = int((datasets.shape[0] * self.testset_split)) data_len = datasets.shape[1] self.random_testset = {'data': data_and_label[(:testset_len, :data_len)], 'label': data_and_label[(:testset_len, data_len:)]} self.random_trainset = {'data': data_and_label[(testset_len:, :data_len)], 'label': data_and_label[(testset_len:, data_len:)]} self.random_dataset = {'data': datasets, 'label': labels} self.all_dataset = self.random_dataset<|docstring|>Collect n_random_episodes data (numpy array) with maximum n_max_steps steps per episode<|endoftext|>
60b9c8c49bf637a821e284427394474ccc8d31b3873da0be169c31c5000fcd33
def collect_mpc_dataset(self, mpc, dynamic_model, render=False): '\n Collect reinforced dataset by model predictive control\n\n :param mpc: MPC controller\n :param dynamic_model: System dynamic model\n :param render: Whether render the environment\n :return: list of reward of each episodes\n ' datasets = [] labels = [] reward_episodes = [] for i in range(self.n_mpc_episodes): data_tmp = [] label_tmp = [] reward_episode = 0 state_old = self.env.reset() for j in range(self.n_max_steps): if render: self.env.render() action = mpc.act(state_old, dynamic_model) action = np.array([action]) data_tmp.append(np.concatenate((state_old, action))) (state_new, reward, done, info) = self.env.step(action) reward_episode += reward label_tmp.append((state_new - state_old)) if done: break state_old = state_new data_tmp = np.array(data_tmp) label_tmp = np.array(label_tmp) if (datasets == []): datasets = data_tmp else: datasets = np.concatenate((datasets, data_tmp)) if (labels == []): labels = label_tmp else: labels = np.concatenate((labels, label_tmp)) reward_episodes.append(reward_episode) print(f'Episode [{i}/{self.n_mpc_episodes}], Reward: {reward_episode:.8f}, Step: [{j}/{self.n_max_steps}]') self.mpc_dataset = {'data': datasets, 'label': labels} self.mpc_dataset_len = datasets.shape[0] print(('Totally collect %s data based on MPC' % self.mpc_dataset_len)) all_datasets = np.concatenate((datasets, self.all_dataset['data'])) all_labels = np.concatenate((labels, self.all_dataset['label'])) self.all_dataset = {'data': all_datasets, 'label': all_labels} if self.save_flag: self.save_datasets(self.all_dataset) return reward_episodes
Collect reinforced dataset by model predictive control :param mpc: MPC controller :param dynamic_model: System dynamic model :param render: Whether render the environment :return: list of reward of each episodes
MPC/MPC-Qube/dynamics.py
collect_mpc_dataset
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def collect_mpc_dataset(self, mpc, dynamic_model, render=False): '\n Collect reinforced dataset by model predictive control\n\n :param mpc: MPC controller\n :param dynamic_model: System dynamic model\n :param render: Whether render the environment\n :return: list of reward of each episodes\n ' datasets = [] labels = [] reward_episodes = [] for i in range(self.n_mpc_episodes): data_tmp = [] label_tmp = [] reward_episode = 0 state_old = self.env.reset() for j in range(self.n_max_steps): if render: self.env.render() action = mpc.act(state_old, dynamic_model) action = np.array([action]) data_tmp.append(np.concatenate((state_old, action))) (state_new, reward, done, info) = self.env.step(action) reward_episode += reward label_tmp.append((state_new - state_old)) if done: break state_old = state_new data_tmp = np.array(data_tmp) label_tmp = np.array(label_tmp) if (datasets == []): datasets = data_tmp else: datasets = np.concatenate((datasets, data_tmp)) if (labels == []): labels = label_tmp else: labels = np.concatenate((labels, label_tmp)) reward_episodes.append(reward_episode) print(f'Episode [{i}/{self.n_mpc_episodes}], Reward: {reward_episode:.8f}, Step: [{j}/{self.n_max_steps}]') self.mpc_dataset = {'data': datasets, 'label': labels} self.mpc_dataset_len = datasets.shape[0] print(('Totally collect %s data based on MPC' % self.mpc_dataset_len)) all_datasets = np.concatenate((datasets, self.all_dataset['data'])) all_labels = np.concatenate((labels, self.all_dataset['label'])) self.all_dataset = {'data': all_datasets, 'label': all_labels} if self.save_flag: self.save_datasets(self.all_dataset) return reward_episodes
def collect_mpc_dataset(self, mpc, dynamic_model, render=False): '\n Collect reinforced dataset by model predictive control\n\n :param mpc: MPC controller\n :param dynamic_model: System dynamic model\n :param render: Whether render the environment\n :return: list of reward of each episodes\n ' datasets = [] labels = [] reward_episodes = [] for i in range(self.n_mpc_episodes): data_tmp = [] label_tmp = [] reward_episode = 0 state_old = self.env.reset() for j in range(self.n_max_steps): if render: self.env.render() action = mpc.act(state_old, dynamic_model) action = np.array([action]) data_tmp.append(np.concatenate((state_old, action))) (state_new, reward, done, info) = self.env.step(action) reward_episode += reward label_tmp.append((state_new - state_old)) if done: break state_old = state_new data_tmp = np.array(data_tmp) label_tmp = np.array(label_tmp) if (datasets == []): datasets = data_tmp else: datasets = np.concatenate((datasets, data_tmp)) if (labels == []): labels = label_tmp else: labels = np.concatenate((labels, label_tmp)) reward_episodes.append(reward_episode) print(f'Episode [{i}/{self.n_mpc_episodes}], Reward: {reward_episode:.8f}, Step: [{j}/{self.n_max_steps}]') self.mpc_dataset = {'data': datasets, 'label': labels} self.mpc_dataset_len = datasets.shape[0] print(('Totally collect %s data based on MPC' % self.mpc_dataset_len)) all_datasets = np.concatenate((datasets, self.all_dataset['data'])) all_labels = np.concatenate((labels, self.all_dataset['label'])) self.all_dataset = {'data': all_datasets, 'label': all_labels} if self.save_flag: self.save_datasets(self.all_dataset) return reward_episodes<|docstring|>Collect reinforced dataset by model predictive control :param mpc: MPC controller :param dynamic_model: System dynamic model :param render: Whether render the environment :return: list of reward of each episodes<|endoftext|>
a0c2e17bea424858c18654a8853cdea9635d47cc49343f2355d6a9ae0cfa2c0e
def make_dataset(self): '\n Sample the training dataset from MPC-based data and previous data\n :return: (numpy array) trainingset and testset\n ' all_length = max(int((self.mpc_dataset_len / self.mpc_dataset_split)), self.min_train_samples) sample_length = (all_length - self.mpc_dataset_len) sample_length = min(self.all_dataset['data'].shape[0], sample_length) print(('Sample %s training data from all previous dataset, total training sample: %s' % (sample_length, all_length))) data_and_label = np.concatenate((self.all_dataset['data'], self.all_dataset['label']), axis=1) np.random.shuffle(data_and_label) testset_len = min(int((all_length * self.testset_split)), self.all_dataset['data'].shape[0]) data_len = self.mpc_dataset['data'].shape[1] trainset_data = np.concatenate((self.mpc_dataset['data'], data_and_label[(:sample_length, :data_len)])) trainset_label = np.concatenate((self.mpc_dataset['label'], data_and_label[(:sample_length, data_len:)])) testset_data = data_and_label[(testset_len:, :data_len)] testset_label = data_and_label[(testset_len:, data_len:)] trainset = {'data': trainset_data, 'label': trainset_label} testset = {'data': testset_data, 'label': testset_label} return (trainset, testset)
Sample the training dataset from MPC-based data and previous data :return: (numpy array) trainingset and testset
MPC/MPC-Qube/dynamics.py
make_dataset
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def make_dataset(self): '\n Sample the training dataset from MPC-based data and previous data\n :return: (numpy array) trainingset and testset\n ' all_length = max(int((self.mpc_dataset_len / self.mpc_dataset_split)), self.min_train_samples) sample_length = (all_length - self.mpc_dataset_len) sample_length = min(self.all_dataset['data'].shape[0], sample_length) print(('Sample %s training data from all previous dataset, total training sample: %s' % (sample_length, all_length))) data_and_label = np.concatenate((self.all_dataset['data'], self.all_dataset['label']), axis=1) np.random.shuffle(data_and_label) testset_len = min(int((all_length * self.testset_split)), self.all_dataset['data'].shape[0]) data_len = self.mpc_dataset['data'].shape[1] trainset_data = np.concatenate((self.mpc_dataset['data'], data_and_label[(:sample_length, :data_len)])) trainset_label = np.concatenate((self.mpc_dataset['label'], data_and_label[(:sample_length, data_len:)])) testset_data = data_and_label[(testset_len:, :data_len)] testset_label = data_and_label[(testset_len:, data_len:)] trainset = {'data': trainset_data, 'label': trainset_label} testset = {'data': testset_data, 'label': testset_label} return (trainset, testset)
def make_dataset(self): '\n Sample the training dataset from MPC-based data and previous data\n :return: (numpy array) trainingset and testset\n ' all_length = max(int((self.mpc_dataset_len / self.mpc_dataset_split)), self.min_train_samples) sample_length = (all_length - self.mpc_dataset_len) sample_length = min(self.all_dataset['data'].shape[0], sample_length) print(('Sample %s training data from all previous dataset, total training sample: %s' % (sample_length, all_length))) data_and_label = np.concatenate((self.all_dataset['data'], self.all_dataset['label']), axis=1) np.random.shuffle(data_and_label) testset_len = min(int((all_length * self.testset_split)), self.all_dataset['data'].shape[0]) data_len = self.mpc_dataset['data'].shape[1] trainset_data = np.concatenate((self.mpc_dataset['data'], data_and_label[(:sample_length, :data_len)])) trainset_label = np.concatenate((self.mpc_dataset['label'], data_and_label[(:sample_length, data_len:)])) testset_data = data_and_label[(testset_len:, :data_len)] testset_label = data_and_label[(testset_len:, data_len:)] trainset = {'data': trainset_data, 'label': trainset_label} testset = {'data': testset_data, 'label': testset_label} return (trainset, testset)<|docstring|>Sample the training dataset from MPC-based data and previous data :return: (numpy array) trainingset and testset<|endoftext|>
cdf2c7029a76193d140bc744c8598b42e240011e764eb7e0f8f8594fc7926c8a
def save_datasets(self, data): 'Save the collected dataset (dictionary)' print(('Saving all datas to %s' % self.save_path)) with open(self.save_path, 'wb') as f: pickle.dump(data, f, (- 1))
Save the collected dataset (dictionary)
MPC/MPC-Qube/dynamics.py
save_datasets
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def save_datasets(self, data): print(('Saving all datas to %s' % self.save_path)) with open(self.save_path, 'wb') as f: pickle.dump(data, f, (- 1))
def save_datasets(self, data): print(('Saving all datas to %s' % self.save_path)) with open(self.save_path, 'wb') as f: pickle.dump(data, f, (- 1))<|docstring|>Save the collected dataset (dictionary)<|endoftext|>
75d1823dabfd3826a668ba8c29cac4c1c0fa3a9da71ab4fe04e8428ad787fc07
def load_dataset(self): 'Load the dataset (dictionary)' print(('Load datas from %s' % self.load_path)) with open(self.load_path, 'rb') as f: dataset = pickle.load(f) return dataset
Load the dataset (dictionary)
MPC/MPC-Qube/dynamics.py
load_dataset
lambert-x/Reinforcement-Learning-DQN-MPC
5
python
def load_dataset(self): print(('Load datas from %s' % self.load_path)) with open(self.load_path, 'rb') as f: dataset = pickle.load(f) return dataset
def load_dataset(self): print(('Load datas from %s' % self.load_path)) with open(self.load_path, 'rb') as f: dataset = pickle.load(f) return dataset<|docstring|>Load the dataset (dictionary)<|endoftext|>
6fcac8c37af22faa69a3271da4a20e4210e8f6181db7bfd76003a8c870a09244
def check_glob(path, group, disable_glob): 'Find files with glob.' if (isinstance(path, str) and (not disable_glob)): path_glob = glob(path) if path_glob: path = sorted(path_glob) msg = '\n'.join((f'{i}: {os.path.normpath(fpath)}' for (i, fpath) in enumerate(path, 1))) len_p = len(path) _log.info("glob found %d files for '%s':\n%s", len_p, group, msg) return path
Find files with glob.
arviz/data/io_cmdstan.py
check_glob
peterroelants/arviz
1,159
python
def check_glob(path, group, disable_glob): if (isinstance(path, str) and (not disable_glob)): path_glob = glob(path) if path_glob: path = sorted(path_glob) msg = '\n'.join((f'{i}: {os.path.normpath(fpath)}' for (i, fpath) in enumerate(path, 1))) len_p = len(path) _log.info("glob found %d files for '%s':\n%s", len_p, group, msg) return path
def check_glob(path, group, disable_glob): if (isinstance(path, str) and (not disable_glob)): path_glob = glob(path) if path_glob: path = sorted(path_glob) msg = '\n'.join((f'{i}: {os.path.normpath(fpath)}' for (i, fpath) in enumerate(path, 1))) len_p = len(path) _log.info("glob found %d files for '%s':\n%s", len_p, group, msg) return path<|docstring|>Find files with glob.<|endoftext|>
fe73e234b99002cf2cf6cd1fd67779dffe4f5a69617e039d6878f9380d974c34
def _process_configuration(comments): 'Extract sampling information.' results = {'comments': '\n'.join(comments), 'stan_version': {}} comments_gen = iter(comments) for comment in comments_gen: comment = re.sub('^\\s*#\\s*|\\s*\\(Default\\)\\s*$', '', comment).strip() if comment.startswith('stan_version_'): (key, val) = re.sub('^\\s*stan_version_', '', comment).split('=') results['stan_version'][key.strip()] = val.strip() elif comment.startswith('Step size'): (_, val) = comment.split('=') results['step_size'] = float(val.strip()) elif ('inverse mass matrix' in comment): comment = re.sub('^\\s*#\\s*', '', next(comments_gen)).strip() results['inverse_mass_matrix'] = [float(item) for item in comment.split(',')] elif (('seconds' in comment) and any(((item in comment) for item in ('(Warm-up)', '(Sampling)', '(Total)')))): value = re.sub('^Elapsed\\s*Time:\\s*|\\s*seconds\\s*\\(Warm-up\\)\\s*|\\s*seconds\\s*\\(Sampling\\)\\s*|\\s*seconds\\s*\\(Total\\)\\s*', '', comment) key = ('warmup_time_seconds' if ('(Warm-up)' in comment) else ('sampling_time_seconds' if ('(Sampling)' in comment) else 'total_time_seconds')) results[key] = float(value) elif ('=' in comment): match_int = re.search('^(\\S+)\\s*=\\s*([-+]?[0-9]+)$', comment) match_float = re.search('^(\\S+)\\s*=\\s*([-+]?[0-9]+\\.[0-9]+)$', comment) match_str = re.search('^(\\S+)\\s*=\\s*(\\S+)$', comment) match_empty = re.search('^(\\S+)\\s*=\\s*$', comment) if match_int: (key, value) = (match_int.group(1), match_int.group(2)) results[key] = int(value) elif match_float: (key, value) = (match_float.group(1), match_float.group(2)) results[key] = float(value) elif match_str: (key, value) = (match_str.group(1), match_str.group(2)) results[key] = value elif match_empty: key = match_empty.group(1) results[key] = None results = {key: str(results[key]) for key in sorted(results)} return results
Extract sampling information.
arviz/data/io_cmdstan.py
_process_configuration
peterroelants/arviz
1,159
python
def _process_configuration(comments): results = {'comments': '\n'.join(comments), 'stan_version': {}} comments_gen = iter(comments) for comment in comments_gen: comment = re.sub('^\\s*#\\s*|\\s*\\(Default\\)\\s*$', , comment).strip() if comment.startswith('stan_version_'): (key, val) = re.sub('^\\s*stan_version_', , comment).split('=') results['stan_version'][key.strip()] = val.strip() elif comment.startswith('Step size'): (_, val) = comment.split('=') results['step_size'] = float(val.strip()) elif ('inverse mass matrix' in comment): comment = re.sub('^\\s*#\\s*', , next(comments_gen)).strip() results['inverse_mass_matrix'] = [float(item) for item in comment.split(',')] elif (('seconds' in comment) and any(((item in comment) for item in ('(Warm-up)', '(Sampling)', '(Total)')))): value = re.sub('^Elapsed\\s*Time:\\s*|\\s*seconds\\s*\\(Warm-up\\)\\s*|\\s*seconds\\s*\\(Sampling\\)\\s*|\\s*seconds\\s*\\(Total\\)\\s*', , comment) key = ('warmup_time_seconds' if ('(Warm-up)' in comment) else ('sampling_time_seconds' if ('(Sampling)' in comment) else 'total_time_seconds')) results[key] = float(value) elif ('=' in comment): match_int = re.search('^(\\S+)\\s*=\\s*([-+]?[0-9]+)$', comment) match_float = re.search('^(\\S+)\\s*=\\s*([-+]?[0-9]+\\.[0-9]+)$', comment) match_str = re.search('^(\\S+)\\s*=\\s*(\\S+)$', comment) match_empty = re.search('^(\\S+)\\s*=\\s*$', comment) if match_int: (key, value) = (match_int.group(1), match_int.group(2)) results[key] = int(value) elif match_float: (key, value) = (match_float.group(1), match_float.group(2)) results[key] = float(value) elif match_str: (key, value) = (match_str.group(1), match_str.group(2)) results[key] = value elif match_empty: key = match_empty.group(1) results[key] = None results = {key: str(results[key]) for key in sorted(results)} return results
def _process_configuration(comments): results = {'comments': '\n'.join(comments), 'stan_version': {}} comments_gen = iter(comments) for comment in comments_gen: comment = re.sub('^\\s*#\\s*|\\s*\\(Default\\)\\s*$', , comment).strip() if comment.startswith('stan_version_'): (key, val) = re.sub('^\\s*stan_version_', , comment).split('=') results['stan_version'][key.strip()] = val.strip() elif comment.startswith('Step size'): (_, val) = comment.split('=') results['step_size'] = float(val.strip()) elif ('inverse mass matrix' in comment): comment = re.sub('^\\s*#\\s*', , next(comments_gen)).strip() results['inverse_mass_matrix'] = [float(item) for item in comment.split(',')] elif (('seconds' in comment) and any(((item in comment) for item in ('(Warm-up)', '(Sampling)', '(Total)')))): value = re.sub('^Elapsed\\s*Time:\\s*|\\s*seconds\\s*\\(Warm-up\\)\\s*|\\s*seconds\\s*\\(Sampling\\)\\s*|\\s*seconds\\s*\\(Total\\)\\s*', , comment) key = ('warmup_time_seconds' if ('(Warm-up)' in comment) else ('sampling_time_seconds' if ('(Sampling)' in comment) else 'total_time_seconds')) results[key] = float(value) elif ('=' in comment): match_int = re.search('^(\\S+)\\s*=\\s*([-+]?[0-9]+)$', comment) match_float = re.search('^(\\S+)\\s*=\\s*([-+]?[0-9]+\\.[0-9]+)$', comment) match_str = re.search('^(\\S+)\\s*=\\s*(\\S+)$', comment) match_empty = re.search('^(\\S+)\\s*=\\s*$', comment) if match_int: (key, value) = (match_int.group(1), match_int.group(2)) results[key] = int(value) elif match_float: (key, value) = (match_float.group(1), match_float.group(2)) results[key] = float(value) elif match_str: (key, value) = (match_str.group(1), match_str.group(2)) results[key] = value elif match_empty: key = match_empty.group(1) results[key] = None results = {key: str(results[key]) for key in sorted(results)} return results<|docstring|>Extract sampling information.<|endoftext|>
ee0d801c1a30c488cab17af62ffa284d059b5aad9c1920b603c1db7b2428cbde
def _read_output_file(path): 'Read Stan csv file to ndarray.' comments = [] data = [] columns = None with open(path, 'rb') as f_obj: for line in f_obj: if line.startswith(b'#'): comments.append(line.strip().decode('utf-8')) continue columns = {key: idx for (idx, key) in enumerate(line.strip().decode('utf-8').split(','))} break for line in f_obj: line = line.strip() if line.startswith(b'#'): comments.append(line.decode('utf-8')) continue if line: data.append(np.array(line.split(b','), dtype=np.float64)) return (columns, np.array(data, dtype=np.float64), comments)
Read Stan csv file to ndarray.
arviz/data/io_cmdstan.py
_read_output_file
peterroelants/arviz
1,159
python
def _read_output_file(path): comments = [] data = [] columns = None with open(path, 'rb') as f_obj: for line in f_obj: if line.startswith(b'#'): comments.append(line.strip().decode('utf-8')) continue columns = {key: idx for (idx, key) in enumerate(line.strip().decode('utf-8').split(','))} break for line in f_obj: line = line.strip() if line.startswith(b'#'): comments.append(line.decode('utf-8')) continue if line: data.append(np.array(line.split(b','), dtype=np.float64)) return (columns, np.array(data, dtype=np.float64), comments)
def _read_output_file(path): comments = [] data = [] columns = None with open(path, 'rb') as f_obj: for line in f_obj: if line.startswith(b'#'): comments.append(line.strip().decode('utf-8')) continue columns = {key: idx for (idx, key) in enumerate(line.strip().decode('utf-8').split(','))} break for line in f_obj: line = line.strip() if line.startswith(b'#'): comments.append(line.decode('utf-8')) continue if line: data.append(np.array(line.split(b','), dtype=np.float64)) return (columns, np.array(data, dtype=np.float64), comments)<|docstring|>Read Stan csv file to ndarray.<|endoftext|>
a0b07adcee05e001492a7b3334831dbf759826a783835f730c79b573f791bccb
def _read_output(path): 'Read CmdStan output csv file.\n\n Parameters\n ----------\n path : str\n\n Returns\n -------\n Dict[str, Any]\n ' (columns, data, comments) = _read_output_file(path) pconf = _process_configuration(comments) saved_warmup = ((int(pconf.get('save_warmup', 0)) * int(pconf.get('num_warmup', 0))) // int(pconf.get('thin', 1))) data_warmup = data[:saved_warmup] data = data[saved_warmup:] sample_stats_columns = {col: idx for (col, idx) in columns.items() if col.endswith('__')} sample_columns = {col: idx for (col, idx) in columns.items() if (col not in sample_stats_columns)} return {'sample': data, 'sample_warmup': data_warmup, 'sample_columns': sample_columns, 'sample_stats_columns': sample_stats_columns, 'configuration_info': pconf}
Read CmdStan output csv file. Parameters ---------- path : str Returns ------- Dict[str, Any]
arviz/data/io_cmdstan.py
_read_output
peterroelants/arviz
1,159
python
def _read_output(path): 'Read CmdStan output csv file.\n\n Parameters\n ----------\n path : str\n\n Returns\n -------\n Dict[str, Any]\n ' (columns, data, comments) = _read_output_file(path) pconf = _process_configuration(comments) saved_warmup = ((int(pconf.get('save_warmup', 0)) * int(pconf.get('num_warmup', 0))) // int(pconf.get('thin', 1))) data_warmup = data[:saved_warmup] data = data[saved_warmup:] sample_stats_columns = {col: idx for (col, idx) in columns.items() if col.endswith('__')} sample_columns = {col: idx for (col, idx) in columns.items() if (col not in sample_stats_columns)} return {'sample': data, 'sample_warmup': data_warmup, 'sample_columns': sample_columns, 'sample_stats_columns': sample_stats_columns, 'configuration_info': pconf}
def _read_output(path): 'Read CmdStan output csv file.\n\n Parameters\n ----------\n path : str\n\n Returns\n -------\n Dict[str, Any]\n ' (columns, data, comments) = _read_output_file(path) pconf = _process_configuration(comments) saved_warmup = ((int(pconf.get('save_warmup', 0)) * int(pconf.get('num_warmup', 0))) // int(pconf.get('thin', 1))) data_warmup = data[:saved_warmup] data = data[saved_warmup:] sample_stats_columns = {col: idx for (col, idx) in columns.items() if col.endswith('__')} sample_columns = {col: idx for (col, idx) in columns.items() if (col not in sample_stats_columns)} return {'sample': data, 'sample_warmup': data_warmup, 'sample_columns': sample_columns, 'sample_stats_columns': sample_stats_columns, 'configuration_info': pconf}<|docstring|>Read CmdStan output csv file. Parameters ---------- path : str Returns ------- Dict[str, Any]<|endoftext|>
ab2d59585339ec1fc2bf264e8071fbf7bd2ce841a471af77f346fb04256bc480
def _process_data_var(string): 'Transform datastring to key, values pair.\n\n All values are transformed to floating point values.\n\n Parameters\n ----------\n string : str\n\n Returns\n -------\n Tuple[Str, Str]\n key, values pair\n ' (key, var) = string.split('<-') if ('structure' in var): (var, dim) = var.replace('structure(', '').replace(',', '').split('.Dim') dtype = float var = var.replace('c(', '').replace(')', '').strip().split() dim = dim.replace('=', '').replace('c(', '').replace(')', '').strip().split() dim = tuple(map(int, dim)) var = np.fromiter(map(dtype, var), dtype).reshape(dim, order='F') elif ('c(' in var): dtype = float var = var.replace('c(', '').replace(')', '').split(',') var = np.fromiter(map(dtype, var), dtype) else: dtype = float var = dtype(var) return (key.strip(), var)
Transform datastring to key, values pair. All values are transformed to floating point values. Parameters ---------- string : str Returns ------- Tuple[Str, Str] key, values pair
arviz/data/io_cmdstan.py
_process_data_var
peterroelants/arviz
1,159
python
def _process_data_var(string): 'Transform datastring to key, values pair.\n\n All values are transformed to floating point values.\n\n Parameters\n ----------\n string : str\n\n Returns\n -------\n Tuple[Str, Str]\n key, values pair\n ' (key, var) = string.split('<-') if ('structure' in var): (var, dim) = var.replace('structure(', ).replace(',', ).split('.Dim') dtype = float var = var.replace('c(', ).replace(')', ).strip().split() dim = dim.replace('=', ).replace('c(', ).replace(')', ).strip().split() dim = tuple(map(int, dim)) var = np.fromiter(map(dtype, var), dtype).reshape(dim, order='F') elif ('c(' in var): dtype = float var = var.replace('c(', ).replace(')', ).split(',') var = np.fromiter(map(dtype, var), dtype) else: dtype = float var = dtype(var) return (key.strip(), var)
def _process_data_var(string): 'Transform datastring to key, values pair.\n\n All values are transformed to floating point values.\n\n Parameters\n ----------\n string : str\n\n Returns\n -------\n Tuple[Str, Str]\n key, values pair\n ' (key, var) = string.split('<-') if ('structure' in var): (var, dim) = var.replace('structure(', ).replace(',', ).split('.Dim') dtype = float var = var.replace('c(', ).replace(')', ).strip().split() dim = dim.replace('=', ).replace('c(', ).replace(')', ).strip().split() dim = tuple(map(int, dim)) var = np.fromiter(map(dtype, var), dtype).reshape(dim, order='F') elif ('c(' in var): dtype = float var = var.replace('c(', ).replace(')', ).split(',') var = np.fromiter(map(dtype, var), dtype) else: dtype = float var = dtype(var) return (key.strip(), var)<|docstring|>Transform datastring to key, values pair. All values are transformed to floating point values. Parameters ---------- string : str Returns ------- Tuple[Str, Str] key, values pair<|endoftext|>
bba11a5cb98c61aa511eb70b2f1c0eb63d3577a899054142a2d2048632efbca5
def _read_data(path): 'Read Rdump or JSON output to dictionary.\n\n Parameters\n ----------\n path : str\n\n Returns\n -------\n Dict\n key, values pairs from Rdump/JSON formatted data.\n ' data = {} with open(path, 'r', encoding='utf8') as f_obj: if path.lower().endswith('.json'): return json.load(f_obj) var = '' for line in f_obj: if ('<-' in line): if len(var): (key, var) = _process_data_var(var) data[key] = var var = '' var += (' ' + line.strip()) if len(var): (key, var) = _process_data_var(var) data[key] = var return data
Read Rdump or JSON output to dictionary. Parameters ---------- path : str Returns ------- Dict key, values pairs from Rdump/JSON formatted data.
arviz/data/io_cmdstan.py
_read_data
peterroelants/arviz
1,159
python
def _read_data(path): 'Read Rdump or JSON output to dictionary.\n\n Parameters\n ----------\n path : str\n\n Returns\n -------\n Dict\n key, values pairs from Rdump/JSON formatted data.\n ' data = {} with open(path, 'r', encoding='utf8') as f_obj: if path.lower().endswith('.json'): return json.load(f_obj) var = for line in f_obj: if ('<-' in line): if len(var): (key, var) = _process_data_var(var) data[key] = var var = var += (' ' + line.strip()) if len(var): (key, var) = _process_data_var(var) data[key] = var return data
def _read_data(path): 'Read Rdump or JSON output to dictionary.\n\n Parameters\n ----------\n path : str\n\n Returns\n -------\n Dict\n key, values pairs from Rdump/JSON formatted data.\n ' data = {} with open(path, 'r', encoding='utf8') as f_obj: if path.lower().endswith('.json'): return json.load(f_obj) var = for line in f_obj: if ('<-' in line): if len(var): (key, var) = _process_data_var(var) data[key] = var var = var += (' ' + line.strip()) if len(var): (key, var) = _process_data_var(var) data[key] = var return data<|docstring|>Read Rdump or JSON output to dictionary. Parameters ---------- path : str Returns ------- Dict key, values pairs from Rdump/JSON formatted data.<|endoftext|>
35e2cf1edcb1a61d4c1ad5bc21246d9bb9134856763870e2ca93d451482b6f7e
def _unpack_ndarrays(arrays, columns, dtypes=None): 'Transform a list of ndarrays to dictionary containing ndarrays.\n\n Parameters\n ----------\n arrays : List[np.ndarray]\n columns: Dict[str, int]\n dtypes: Dict[str, Any]\n\n Returns\n -------\n Dict\n key, values pairs. Values are formatted to shape = (nchain, ndraws, *shape)\n ' col_groups = defaultdict(list) for (col, col_idx) in columns.items(): (key, *loc) = col.split('.') loc = tuple(((int(i) - 1) for i in loc)) col_groups[key].append((col_idx, loc)) chains = len(arrays) draws = len(arrays[0]) sample = {} if draws: for (key, cols_locs) in col_groups.items(): ndim = (np.array([loc for (_, loc) in cols_locs]).max(0) + 1) dtype = dtypes.get(key, np.float64) sample[key] = np.zeros((chains, draws, *ndim), dtype=dtype) for (col, loc) in cols_locs: for (chain_id, arr) in enumerate(arrays): draw = arr[(:, col)] if (loc == ()): sample[key][(chain_id, :)] = draw else: axis1_all = range(sample[key].shape[1]) slicer = (chain_id, axis1_all, *loc) sample[key][slicer] = draw return sample
Transform a list of ndarrays to dictionary containing ndarrays. Parameters ---------- arrays : List[np.ndarray] columns: Dict[str, int] dtypes: Dict[str, Any] Returns ------- Dict key, values pairs. Values are formatted to shape = (nchain, ndraws, *shape)
arviz/data/io_cmdstan.py
_unpack_ndarrays
peterroelants/arviz
1,159
python
def _unpack_ndarrays(arrays, columns, dtypes=None): 'Transform a list of ndarrays to dictionary containing ndarrays.\n\n Parameters\n ----------\n arrays : List[np.ndarray]\n columns: Dict[str, int]\n dtypes: Dict[str, Any]\n\n Returns\n -------\n Dict\n key, values pairs. Values are formatted to shape = (nchain, ndraws, *shape)\n ' col_groups = defaultdict(list) for (col, col_idx) in columns.items(): (key, *loc) = col.split('.') loc = tuple(((int(i) - 1) for i in loc)) col_groups[key].append((col_idx, loc)) chains = len(arrays) draws = len(arrays[0]) sample = {} if draws: for (key, cols_locs) in col_groups.items(): ndim = (np.array([loc for (_, loc) in cols_locs]).max(0) + 1) dtype = dtypes.get(key, np.float64) sample[key] = np.zeros((chains, draws, *ndim), dtype=dtype) for (col, loc) in cols_locs: for (chain_id, arr) in enumerate(arrays): draw = arr[(:, col)] if (loc == ()): sample[key][(chain_id, :)] = draw else: axis1_all = range(sample[key].shape[1]) slicer = (chain_id, axis1_all, *loc) sample[key][slicer] = draw return sample
def _unpack_ndarrays(arrays, columns, dtypes=None): 'Transform a list of ndarrays to dictionary containing ndarrays.\n\n Parameters\n ----------\n arrays : List[np.ndarray]\n columns: Dict[str, int]\n dtypes: Dict[str, Any]\n\n Returns\n -------\n Dict\n key, values pairs. Values are formatted to shape = (nchain, ndraws, *shape)\n ' col_groups = defaultdict(list) for (col, col_idx) in columns.items(): (key, *loc) = col.split('.') loc = tuple(((int(i) - 1) for i in loc)) col_groups[key].append((col_idx, loc)) chains = len(arrays) draws = len(arrays[0]) sample = {} if draws: for (key, cols_locs) in col_groups.items(): ndim = (np.array([loc for (_, loc) in cols_locs]).max(0) + 1) dtype = dtypes.get(key, np.float64) sample[key] = np.zeros((chains, draws, *ndim), dtype=dtype) for (col, loc) in cols_locs: for (chain_id, arr) in enumerate(arrays): draw = arr[(:, col)] if (loc == ()): sample[key][(chain_id, :)] = draw else: axis1_all = range(sample[key].shape[1]) slicer = (chain_id, axis1_all, *loc) sample[key][slicer] = draw return sample<|docstring|>Transform a list of ndarrays to dictionary containing ndarrays. Parameters ---------- arrays : List[np.ndarray] columns: Dict[str, int] dtypes: Dict[str, Any] Returns ------- Dict key, values pairs. Values are formatted to shape = (nchain, ndraws, *shape)<|endoftext|>
2340584654617b779f6537c6615693143394191bc398b59d659e7b21b6807b6e
def from_cmdstan(posterior: Optional[Union[(str, List[str])]]=None, *, posterior_predictive: Optional[Union[(str, List[str])]]=None, predictions: Optional[Union[(str, List[str])]]=None, prior: Optional[Union[(str, List[str])]]=None, prior_predictive: Optional[Union[(str, List[str])]]=None, observed_data: Optional[str]=None, observed_data_var: Optional[Union[(str, List[str])]]=None, constant_data: Optional[str]=None, constant_data_var: Optional[Union[(str, List[str])]]=None, predictions_constant_data: Optional[str]=None, predictions_constant_data_var: Optional[Union[(str, List[str])]]=None, log_likelihood: Optional[Union[(str, List[str])]]=None, index_origin: Optional[int]=None, coords: Optional[CoordSpec]=None, dims: Optional[DimSpec]=None, disable_glob: Optional[bool]=False, save_warmup: Optional[bool]=None, dtypes: Optional[Dict]=None) -> InferenceData: 'Convert CmdStan data into an InferenceData object.\n\n For a usage example read the\n :ref:`Creating InferenceData section on from_cmdstan <creating_InferenceData>`\n\n Parameters\n ----------\n posterior : str or list of str, optional\n List of paths to output.csv files.\n posterior_predictive : str or list of str, optional\n Posterior predictive samples for the fit. If endswith ".csv" assumes file.\n predictions : str or list of str, optional\n Out of sample predictions samples for the fit. If endswith ".csv" assumes file.\n prior : str or list of str, optional\n List of paths to output.csv files\n prior_predictive : str or list of str, optional\n Prior predictive samples for the fit. If endswith ".csv" assumes file.\n observed_data : str, optional\n Observed data used in the sampling. Path to data file in Rdump or JSON format.\n observed_data_var : str or list of str, optional\n Variable(s) used for slicing observed_data. If not defined, all\n data variables are imported.\n constant_data : str, optional\n Constant data used in the sampling. Path to data file in Rdump or JSON format.\n constant_data_var : str or list of str, optional\n Variable(s) used for slicing constant_data. If not defined, all\n data variables are imported.\n predictions_constant_data : str, optional\n Constant data for predictions used in the sampling.\n Path to data file in Rdump or JSON format.\n predictions_constant_data_var : str or list of str, optional\n Variable(s) used for slicing predictions_constant_data.\n If not defined, all data variables are imported.\n log_likelihood : str or list of str, optional\n Pointwise log_likelihood for the data.\n index_origin : int, optional\n Starting value of integer coordinate values. Defaults to the value in rcParam\n ``data.index_origin``.\n coords : dict of {str: array_like}, optional\n A dictionary containing the values that are used as index. The key\n is the name of the dimension, the values are the index values.\n dims : dict of {str: list of str}, optional\n A mapping from variables to a list of coordinate names for the variable.\n disable_glob : bool\n Don\'t use glob for string input. This means that all string input is\n assumed to be variable names (samples) or a path (data).\n save_warmup : bool\n Save warmup iterations into InferenceData object, if found in the input files.\n If not defined, use default defined by the rcParams.\n dtypes : dict or str\n A dictionary containing dtype information (int, float) for parameters.\n If input is a string, it is assumed to be a model code or path to model code file.\n\n Returns\n -------\n InferenceData object\n ' return CmdStanConverter(posterior=posterior, posterior_predictive=posterior_predictive, predictions=predictions, prior=prior, prior_predictive=prior_predictive, observed_data=observed_data, observed_data_var=observed_data_var, constant_data=constant_data, constant_data_var=constant_data_var, predictions_constant_data=predictions_constant_data, predictions_constant_data_var=predictions_constant_data_var, log_likelihood=log_likelihood, index_origin=index_origin, coords=coords, dims=dims, disable_glob=disable_glob, save_warmup=save_warmup, dtypes=dtypes).to_inference_data()
Convert CmdStan data into an InferenceData object. For a usage example read the :ref:`Creating InferenceData section on from_cmdstan <creating_InferenceData>` Parameters ---------- posterior : str or list of str, optional List of paths to output.csv files. posterior_predictive : str or list of str, optional Posterior predictive samples for the fit. If endswith ".csv" assumes file. predictions : str or list of str, optional Out of sample predictions samples for the fit. If endswith ".csv" assumes file. prior : str or list of str, optional List of paths to output.csv files prior_predictive : str or list of str, optional Prior predictive samples for the fit. If endswith ".csv" assumes file. observed_data : str, optional Observed data used in the sampling. Path to data file in Rdump or JSON format. observed_data_var : str or list of str, optional Variable(s) used for slicing observed_data. If not defined, all data variables are imported. constant_data : str, optional Constant data used in the sampling. Path to data file in Rdump or JSON format. constant_data_var : str or list of str, optional Variable(s) used for slicing constant_data. If not defined, all data variables are imported. predictions_constant_data : str, optional Constant data for predictions used in the sampling. Path to data file in Rdump or JSON format. predictions_constant_data_var : str or list of str, optional Variable(s) used for slicing predictions_constant_data. If not defined, all data variables are imported. log_likelihood : str or list of str, optional Pointwise log_likelihood for the data. index_origin : int, optional Starting value of integer coordinate values. Defaults to the value in rcParam ``data.index_origin``. coords : dict of {str: array_like}, optional A dictionary containing the values that are used as index. The key is the name of the dimension, the values are the index values. dims : dict of {str: list of str}, optional A mapping from variables to a list of coordinate names for the variable. disable_glob : bool Don't use glob for string input. This means that all string input is assumed to be variable names (samples) or a path (data). save_warmup : bool Save warmup iterations into InferenceData object, if found in the input files. If not defined, use default defined by the rcParams. dtypes : dict or str A dictionary containing dtype information (int, float) for parameters. If input is a string, it is assumed to be a model code or path to model code file. Returns ------- InferenceData object
arviz/data/io_cmdstan.py
from_cmdstan
peterroelants/arviz
1,159
python
def from_cmdstan(posterior: Optional[Union[(str, List[str])]]=None, *, posterior_predictive: Optional[Union[(str, List[str])]]=None, predictions: Optional[Union[(str, List[str])]]=None, prior: Optional[Union[(str, List[str])]]=None, prior_predictive: Optional[Union[(str, List[str])]]=None, observed_data: Optional[str]=None, observed_data_var: Optional[Union[(str, List[str])]]=None, constant_data: Optional[str]=None, constant_data_var: Optional[Union[(str, List[str])]]=None, predictions_constant_data: Optional[str]=None, predictions_constant_data_var: Optional[Union[(str, List[str])]]=None, log_likelihood: Optional[Union[(str, List[str])]]=None, index_origin: Optional[int]=None, coords: Optional[CoordSpec]=None, dims: Optional[DimSpec]=None, disable_glob: Optional[bool]=False, save_warmup: Optional[bool]=None, dtypes: Optional[Dict]=None) -> InferenceData: 'Convert CmdStan data into an InferenceData object.\n\n For a usage example read the\n :ref:`Creating InferenceData section on from_cmdstan <creating_InferenceData>`\n\n Parameters\n ----------\n posterior : str or list of str, optional\n List of paths to output.csv files.\n posterior_predictive : str or list of str, optional\n Posterior predictive samples for the fit. If endswith ".csv" assumes file.\n predictions : str or list of str, optional\n Out of sample predictions samples for the fit. If endswith ".csv" assumes file.\n prior : str or list of str, optional\n List of paths to output.csv files\n prior_predictive : str or list of str, optional\n Prior predictive samples for the fit. If endswith ".csv" assumes file.\n observed_data : str, optional\n Observed data used in the sampling. Path to data file in Rdump or JSON format.\n observed_data_var : str or list of str, optional\n Variable(s) used for slicing observed_data. If not defined, all\n data variables are imported.\n constant_data : str, optional\n Constant data used in the sampling. Path to data file in Rdump or JSON format.\n constant_data_var : str or list of str, optional\n Variable(s) used for slicing constant_data. If not defined, all\n data variables are imported.\n predictions_constant_data : str, optional\n Constant data for predictions used in the sampling.\n Path to data file in Rdump or JSON format.\n predictions_constant_data_var : str or list of str, optional\n Variable(s) used for slicing predictions_constant_data.\n If not defined, all data variables are imported.\n log_likelihood : str or list of str, optional\n Pointwise log_likelihood for the data.\n index_origin : int, optional\n Starting value of integer coordinate values. Defaults to the value in rcParam\n ``data.index_origin``.\n coords : dict of {str: array_like}, optional\n A dictionary containing the values that are used as index. The key\n is the name of the dimension, the values are the index values.\n dims : dict of {str: list of str}, optional\n A mapping from variables to a list of coordinate names for the variable.\n disable_glob : bool\n Don\'t use glob for string input. This means that all string input is\n assumed to be variable names (samples) or a path (data).\n save_warmup : bool\n Save warmup iterations into InferenceData object, if found in the input files.\n If not defined, use default defined by the rcParams.\n dtypes : dict or str\n A dictionary containing dtype information (int, float) for parameters.\n If input is a string, it is assumed to be a model code or path to model code file.\n\n Returns\n -------\n InferenceData object\n ' return CmdStanConverter(posterior=posterior, posterior_predictive=posterior_predictive, predictions=predictions, prior=prior, prior_predictive=prior_predictive, observed_data=observed_data, observed_data_var=observed_data_var, constant_data=constant_data, constant_data_var=constant_data_var, predictions_constant_data=predictions_constant_data, predictions_constant_data_var=predictions_constant_data_var, log_likelihood=log_likelihood, index_origin=index_origin, coords=coords, dims=dims, disable_glob=disable_glob, save_warmup=save_warmup, dtypes=dtypes).to_inference_data()
def from_cmdstan(posterior: Optional[Union[(str, List[str])]]=None, *, posterior_predictive: Optional[Union[(str, List[str])]]=None, predictions: Optional[Union[(str, List[str])]]=None, prior: Optional[Union[(str, List[str])]]=None, prior_predictive: Optional[Union[(str, List[str])]]=None, observed_data: Optional[str]=None, observed_data_var: Optional[Union[(str, List[str])]]=None, constant_data: Optional[str]=None, constant_data_var: Optional[Union[(str, List[str])]]=None, predictions_constant_data: Optional[str]=None, predictions_constant_data_var: Optional[Union[(str, List[str])]]=None, log_likelihood: Optional[Union[(str, List[str])]]=None, index_origin: Optional[int]=None, coords: Optional[CoordSpec]=None, dims: Optional[DimSpec]=None, disable_glob: Optional[bool]=False, save_warmup: Optional[bool]=None, dtypes: Optional[Dict]=None) -> InferenceData: 'Convert CmdStan data into an InferenceData object.\n\n For a usage example read the\n :ref:`Creating InferenceData section on from_cmdstan <creating_InferenceData>`\n\n Parameters\n ----------\n posterior : str or list of str, optional\n List of paths to output.csv files.\n posterior_predictive : str or list of str, optional\n Posterior predictive samples for the fit. If endswith ".csv" assumes file.\n predictions : str or list of str, optional\n Out of sample predictions samples for the fit. If endswith ".csv" assumes file.\n prior : str or list of str, optional\n List of paths to output.csv files\n prior_predictive : str or list of str, optional\n Prior predictive samples for the fit. If endswith ".csv" assumes file.\n observed_data : str, optional\n Observed data used in the sampling. Path to data file in Rdump or JSON format.\n observed_data_var : str or list of str, optional\n Variable(s) used for slicing observed_data. If not defined, all\n data variables are imported.\n constant_data : str, optional\n Constant data used in the sampling. Path to data file in Rdump or JSON format.\n constant_data_var : str or list of str, optional\n Variable(s) used for slicing constant_data. If not defined, all\n data variables are imported.\n predictions_constant_data : str, optional\n Constant data for predictions used in the sampling.\n Path to data file in Rdump or JSON format.\n predictions_constant_data_var : str or list of str, optional\n Variable(s) used for slicing predictions_constant_data.\n If not defined, all data variables are imported.\n log_likelihood : str or list of str, optional\n Pointwise log_likelihood for the data.\n index_origin : int, optional\n Starting value of integer coordinate values. Defaults to the value in rcParam\n ``data.index_origin``.\n coords : dict of {str: array_like}, optional\n A dictionary containing the values that are used as index. The key\n is the name of the dimension, the values are the index values.\n dims : dict of {str: list of str}, optional\n A mapping from variables to a list of coordinate names for the variable.\n disable_glob : bool\n Don\'t use glob for string input. This means that all string input is\n assumed to be variable names (samples) or a path (data).\n save_warmup : bool\n Save warmup iterations into InferenceData object, if found in the input files.\n If not defined, use default defined by the rcParams.\n dtypes : dict or str\n A dictionary containing dtype information (int, float) for parameters.\n If input is a string, it is assumed to be a model code or path to model code file.\n\n Returns\n -------\n InferenceData object\n ' return CmdStanConverter(posterior=posterior, posterior_predictive=posterior_predictive, predictions=predictions, prior=prior, prior_predictive=prior_predictive, observed_data=observed_data, observed_data_var=observed_data_var, constant_data=constant_data, constant_data_var=constant_data_var, predictions_constant_data=predictions_constant_data, predictions_constant_data_var=predictions_constant_data_var, log_likelihood=log_likelihood, index_origin=index_origin, coords=coords, dims=dims, disable_glob=disable_glob, save_warmup=save_warmup, dtypes=dtypes).to_inference_data()<|docstring|>Convert CmdStan data into an InferenceData object. For a usage example read the :ref:`Creating InferenceData section on from_cmdstan <creating_InferenceData>` Parameters ---------- posterior : str or list of str, optional List of paths to output.csv files. posterior_predictive : str or list of str, optional Posterior predictive samples for the fit. If endswith ".csv" assumes file. predictions : str or list of str, optional Out of sample predictions samples for the fit. If endswith ".csv" assumes file. prior : str or list of str, optional List of paths to output.csv files prior_predictive : str or list of str, optional Prior predictive samples for the fit. If endswith ".csv" assumes file. observed_data : str, optional Observed data used in the sampling. Path to data file in Rdump or JSON format. observed_data_var : str or list of str, optional Variable(s) used for slicing observed_data. If not defined, all data variables are imported. constant_data : str, optional Constant data used in the sampling. Path to data file in Rdump or JSON format. constant_data_var : str or list of str, optional Variable(s) used for slicing constant_data. If not defined, all data variables are imported. predictions_constant_data : str, optional Constant data for predictions used in the sampling. Path to data file in Rdump or JSON format. predictions_constant_data_var : str or list of str, optional Variable(s) used for slicing predictions_constant_data. If not defined, all data variables are imported. log_likelihood : str or list of str, optional Pointwise log_likelihood for the data. index_origin : int, optional Starting value of integer coordinate values. Defaults to the value in rcParam ``data.index_origin``. coords : dict of {str: array_like}, optional A dictionary containing the values that are used as index. The key is the name of the dimension, the values are the index values. dims : dict of {str: list of str}, optional A mapping from variables to a list of coordinate names for the variable. disable_glob : bool Don't use glob for string input. This means that all string input is assumed to be variable names (samples) or a path (data). save_warmup : bool Save warmup iterations into InferenceData object, if found in the input files. If not defined, use default defined by the rcParams. dtypes : dict or str A dictionary containing dtype information (int, float) for parameters. If input is a string, it is assumed to be a model code or path to model code file. Returns ------- InferenceData object<|endoftext|>
3c8044a03e0fe299f6e8a0107e99bbb79f72c723316c363d70184f7468886497
@requires('posterior_') def _parse_posterior(self): 'Read csv paths to list of ndarrays.' paths = self.posterior_ if isinstance(paths, str): paths = [paths] chain_data = [] columns = None for path in paths: output_data = _read_output(path) chain_data.append(output_data) if (columns is None): columns = output_data self.posterior = ([item['sample'] for item in chain_data], [item['sample_warmup'] for item in chain_data]) self.posterior_columns = columns['sample_columns'] self.sample_stats_columns = columns['sample_stats_columns'] attrs = {} for item in chain_data: for (key, value) in item['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) self.attrs = attrs
Read csv paths to list of ndarrays.
arviz/data/io_cmdstan.py
_parse_posterior
peterroelants/arviz
1,159
python
@requires('posterior_') def _parse_posterior(self): paths = self.posterior_ if isinstance(paths, str): paths = [paths] chain_data = [] columns = None for path in paths: output_data = _read_output(path) chain_data.append(output_data) if (columns is None): columns = output_data self.posterior = ([item['sample'] for item in chain_data], [item['sample_warmup'] for item in chain_data]) self.posterior_columns = columns['sample_columns'] self.sample_stats_columns = columns['sample_stats_columns'] attrs = {} for item in chain_data: for (key, value) in item['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) self.attrs = attrs
@requires('posterior_') def _parse_posterior(self): paths = self.posterior_ if isinstance(paths, str): paths = [paths] chain_data = [] columns = None for path in paths: output_data = _read_output(path) chain_data.append(output_data) if (columns is None): columns = output_data self.posterior = ([item['sample'] for item in chain_data], [item['sample_warmup'] for item in chain_data]) self.posterior_columns = columns['sample_columns'] self.sample_stats_columns = columns['sample_stats_columns'] attrs = {} for item in chain_data: for (key, value) in item['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) self.attrs = attrs<|docstring|>Read csv paths to list of ndarrays.<|endoftext|>
db32f2268981240615f38a256367a8891bd132d46f39815f7757128f98717e4d
@requires('prior_') def _parse_prior(self): 'Read csv paths to list of ndarrays.' paths = self.prior_ if isinstance(paths, str): paths = [paths] chain_data = [] columns = None for path in paths: output_data = _read_output(path) chain_data.append(output_data) if (columns is None): columns = output_data self.prior = ([item['sample'] for item in chain_data], [item['sample_warmup'] for item in chain_data]) self.prior_columns = columns['sample_columns'] self.sample_stats_prior_columns = columns['sample_stats_columns'] attrs = {} for item in chain_data: for (key, value) in item['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) self.attrs_prior = attrs
Read csv paths to list of ndarrays.
arviz/data/io_cmdstan.py
_parse_prior
peterroelants/arviz
1,159
python
@requires('prior_') def _parse_prior(self): paths = self.prior_ if isinstance(paths, str): paths = [paths] chain_data = [] columns = None for path in paths: output_data = _read_output(path) chain_data.append(output_data) if (columns is None): columns = output_data self.prior = ([item['sample'] for item in chain_data], [item['sample_warmup'] for item in chain_data]) self.prior_columns = columns['sample_columns'] self.sample_stats_prior_columns = columns['sample_stats_columns'] attrs = {} for item in chain_data: for (key, value) in item['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) self.attrs_prior = attrs
@requires('prior_') def _parse_prior(self): paths = self.prior_ if isinstance(paths, str): paths = [paths] chain_data = [] columns = None for path in paths: output_data = _read_output(path) chain_data.append(output_data) if (columns is None): columns = output_data self.prior = ([item['sample'] for item in chain_data], [item['sample_warmup'] for item in chain_data]) self.prior_columns = columns['sample_columns'] self.sample_stats_prior_columns = columns['sample_stats_columns'] attrs = {} for item in chain_data: for (key, value) in item['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) self.attrs_prior = attrs<|docstring|>Read csv paths to list of ndarrays.<|endoftext|>
f7fb10783911433b245bb63f57813d30b25b90eb8edc3b60a4c99b2cc88a7c31
@requires('posterior') def posterior_to_xarray(self): 'Extract posterior samples from output csv.' columns = self.posterior_columns posterior_predictive = self.posterior_predictive if ((posterior_predictive is None) or (isinstance(posterior_predictive, str) and posterior_predictive.lower().endswith('.csv'))): posterior_predictive = [] elif isinstance(posterior_predictive, str): posterior_predictive = [col for col in columns if (posterior_predictive == col.split('.')[0])] else: posterior_predictive = [col for col in columns if any(((item == col.split('.')[0]) for item in posterior_predictive))] predictions = self.predictions if ((predictions is None) or (isinstance(predictions, str) and predictions.lower().endswith('.csv'))): predictions = [] elif isinstance(predictions, str): predictions = [col for col in columns if (predictions == col.split('.')[0])] else: predictions = [col for col in columns if any(((item == col.split('.')[0]) for item in predictions))] log_likelihood = self.log_likelihood if ((log_likelihood is None) or (isinstance(log_likelihood, str) and log_likelihood.lower().endswith('.csv'))): log_likelihood = [] elif isinstance(log_likelihood, str): log_likelihood = [col for col in columns if (log_likelihood == col.split('.')[0])] else: log_likelihood = [col for col in columns if any(((item == col.split('.')[0]) for item in log_likelihood))] invalid_cols = ((posterior_predictive + predictions) + log_likelihood) valid_cols = {col: idx for (col, idx) in columns.items() if (col not in invalid_cols)} data = _unpack_ndarrays(self.posterior[0], valid_cols, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], valid_cols, self.dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=self.attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=self.attrs, index_origin=self.index_origin))
Extract posterior samples from output csv.
arviz/data/io_cmdstan.py
posterior_to_xarray
peterroelants/arviz
1,159
python
@requires('posterior') def posterior_to_xarray(self): columns = self.posterior_columns posterior_predictive = self.posterior_predictive if ((posterior_predictive is None) or (isinstance(posterior_predictive, str) and posterior_predictive.lower().endswith('.csv'))): posterior_predictive = [] elif isinstance(posterior_predictive, str): posterior_predictive = [col for col in columns if (posterior_predictive == col.split('.')[0])] else: posterior_predictive = [col for col in columns if any(((item == col.split('.')[0]) for item in posterior_predictive))] predictions = self.predictions if ((predictions is None) or (isinstance(predictions, str) and predictions.lower().endswith('.csv'))): predictions = [] elif isinstance(predictions, str): predictions = [col for col in columns if (predictions == col.split('.')[0])] else: predictions = [col for col in columns if any(((item == col.split('.')[0]) for item in predictions))] log_likelihood = self.log_likelihood if ((log_likelihood is None) or (isinstance(log_likelihood, str) and log_likelihood.lower().endswith('.csv'))): log_likelihood = [] elif isinstance(log_likelihood, str): log_likelihood = [col for col in columns if (log_likelihood == col.split('.')[0])] else: log_likelihood = [col for col in columns if any(((item == col.split('.')[0]) for item in log_likelihood))] invalid_cols = ((posterior_predictive + predictions) + log_likelihood) valid_cols = {col: idx for (col, idx) in columns.items() if (col not in invalid_cols)} data = _unpack_ndarrays(self.posterior[0], valid_cols, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], valid_cols, self.dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=self.attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=self.attrs, index_origin=self.index_origin))
@requires('posterior') def posterior_to_xarray(self): columns = self.posterior_columns posterior_predictive = self.posterior_predictive if ((posterior_predictive is None) or (isinstance(posterior_predictive, str) and posterior_predictive.lower().endswith('.csv'))): posterior_predictive = [] elif isinstance(posterior_predictive, str): posterior_predictive = [col for col in columns if (posterior_predictive == col.split('.')[0])] else: posterior_predictive = [col for col in columns if any(((item == col.split('.')[0]) for item in posterior_predictive))] predictions = self.predictions if ((predictions is None) or (isinstance(predictions, str) and predictions.lower().endswith('.csv'))): predictions = [] elif isinstance(predictions, str): predictions = [col for col in columns if (predictions == col.split('.')[0])] else: predictions = [col for col in columns if any(((item == col.split('.')[0]) for item in predictions))] log_likelihood = self.log_likelihood if ((log_likelihood is None) or (isinstance(log_likelihood, str) and log_likelihood.lower().endswith('.csv'))): log_likelihood = [] elif isinstance(log_likelihood, str): log_likelihood = [col for col in columns if (log_likelihood == col.split('.')[0])] else: log_likelihood = [col for col in columns if any(((item == col.split('.')[0]) for item in log_likelihood))] invalid_cols = ((posterior_predictive + predictions) + log_likelihood) valid_cols = {col: idx for (col, idx) in columns.items() if (col not in invalid_cols)} data = _unpack_ndarrays(self.posterior[0], valid_cols, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], valid_cols, self.dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=self.attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=self.attrs, index_origin=self.index_origin))<|docstring|>Extract posterior samples from output csv.<|endoftext|>
55c21975ddc1138b262ada3dc4a554e09a94521d63b8c0e698a869ece4abc1ed
@requires('posterior') @requires('sample_stats_columns') def sample_stats_to_xarray(self): 'Extract sample_stats from fit.' dtypes = {'diverging': bool, 'n_steps': np.int64, 'tree_depth': np.int64, **self.dtypes} rename_dict = {'divergent': 'diverging', 'n_leapfrog': 'n_steps', 'treedepth': 'tree_depth', 'stepsize': 'step_size', 'accept_stat': 'acceptance_rate'} columns_new = {} for (key, idx) in self.sample_stats_columns.items(): name = re.sub('__$', '', key) name = rename_dict.get(name, name) columns_new[name] = idx data = _unpack_ndarrays(self.posterior[0], columns_new, dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns_new, dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin))
Extract sample_stats from fit.
arviz/data/io_cmdstan.py
sample_stats_to_xarray
peterroelants/arviz
1,159
python
@requires('posterior') @requires('sample_stats_columns') def sample_stats_to_xarray(self): dtypes = {'diverging': bool, 'n_steps': np.int64, 'tree_depth': np.int64, **self.dtypes} rename_dict = {'divergent': 'diverging', 'n_leapfrog': 'n_steps', 'treedepth': 'tree_depth', 'stepsize': 'step_size', 'accept_stat': 'acceptance_rate'} columns_new = {} for (key, idx) in self.sample_stats_columns.items(): name = re.sub('__$', , key) name = rename_dict.get(name, name) columns_new[name] = idx data = _unpack_ndarrays(self.posterior[0], columns_new, dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns_new, dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin))
@requires('posterior') @requires('sample_stats_columns') def sample_stats_to_xarray(self): dtypes = {'diverging': bool, 'n_steps': np.int64, 'tree_depth': np.int64, **self.dtypes} rename_dict = {'divergent': 'diverging', 'n_leapfrog': 'n_steps', 'treedepth': 'tree_depth', 'stepsize': 'step_size', 'accept_stat': 'acceptance_rate'} columns_new = {} for (key, idx) in self.sample_stats_columns.items(): name = re.sub('__$', , key) name = rename_dict.get(name, name) columns_new[name] = idx data = _unpack_ndarrays(self.posterior[0], columns_new, dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns_new, dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin))<|docstring|>Extract sample_stats from fit.<|endoftext|>
ea95996106ef533ebbbd9c4d8be89962bc66bdb6699f8a0bf3e970d402b1caaa
@requires('posterior') @requires('posterior_predictive') def posterior_predictive_to_xarray(self): 'Convert posterior_predictive samples to xarray.' posterior_predictive = self.posterior_predictive if ((isinstance(posterior_predictive, (tuple, list)) and posterior_predictive[0].endswith('.csv')) or (isinstance(posterior_predictive, str) and posterior_predictive.endswith('.csv'))): if isinstance(posterior_predictive, str): posterior_predictive = [posterior_predictive] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in posterior_predictive: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(posterior_predictive, str): posterior_predictive = [posterior_predictive] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in posterior_predictive))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))
Convert posterior_predictive samples to xarray.
arviz/data/io_cmdstan.py
posterior_predictive_to_xarray
peterroelants/arviz
1,159
python
@requires('posterior') @requires('posterior_predictive') def posterior_predictive_to_xarray(self): posterior_predictive = self.posterior_predictive if ((isinstance(posterior_predictive, (tuple, list)) and posterior_predictive[0].endswith('.csv')) or (isinstance(posterior_predictive, str) and posterior_predictive.endswith('.csv'))): if isinstance(posterior_predictive, str): posterior_predictive = [posterior_predictive] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in posterior_predictive: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(posterior_predictive, str): posterior_predictive = [posterior_predictive] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in posterior_predictive))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))
@requires('posterior') @requires('posterior_predictive') def posterior_predictive_to_xarray(self): posterior_predictive = self.posterior_predictive if ((isinstance(posterior_predictive, (tuple, list)) and posterior_predictive[0].endswith('.csv')) or (isinstance(posterior_predictive, str) and posterior_predictive.endswith('.csv'))): if isinstance(posterior_predictive, str): posterior_predictive = [posterior_predictive] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in posterior_predictive: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(posterior_predictive, str): posterior_predictive = [posterior_predictive] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in posterior_predictive))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))<|docstring|>Convert posterior_predictive samples to xarray.<|endoftext|>
47b04e81d97824841e5c14fdc77c9caad6f3c9f8789a879ce397150ea5206930
@requires('posterior') @requires('predictions') def predictions_to_xarray(self): 'Convert out of sample predictions samples to xarray.' predictions = self.predictions if ((isinstance(predictions, (tuple, list)) and predictions[0].endswith('.csv')) or (isinstance(predictions, str) and predictions.endswith('.csv'))): if isinstance(predictions, str): predictions = [predictions] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in predictions: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(predictions, str): predictions = [predictions] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in predictions))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))
Convert out of sample predictions samples to xarray.
arviz/data/io_cmdstan.py
predictions_to_xarray
peterroelants/arviz
1,159
python
@requires('posterior') @requires('predictions') def predictions_to_xarray(self): predictions = self.predictions if ((isinstance(predictions, (tuple, list)) and predictions[0].endswith('.csv')) or (isinstance(predictions, str) and predictions.endswith('.csv'))): if isinstance(predictions, str): predictions = [predictions] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in predictions: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(predictions, str): predictions = [predictions] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in predictions))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))
@requires('posterior') @requires('predictions') def predictions_to_xarray(self): predictions = self.predictions if ((isinstance(predictions, (tuple, list)) and predictions[0].endswith('.csv')) or (isinstance(predictions, str) and predictions.endswith('.csv'))): if isinstance(predictions, str): predictions = [predictions] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in predictions: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(predictions, str): predictions = [predictions] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in predictions))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))<|docstring|>Convert out of sample predictions samples to xarray.<|endoftext|>
b52321d6149f894424dc62d1d7dfa0a798690523d2d2d02069b08a92d4e6ab0a
@requires('posterior') @requires('log_likelihood') def log_likelihood_to_xarray(self): 'Convert elementwise log_likelihood samples to xarray.' log_likelihood = self.log_likelihood if ((isinstance(log_likelihood, (tuple, list)) and log_likelihood[0].endswith('.csv')) or (isinstance(log_likelihood, str) and log_likelihood.endswith('.csv'))): if isinstance(log_likelihood, str): log_likelihood = [log_likelihood] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in log_likelihood: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(log_likelihood, str): log_likelihood = [log_likelihood] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in log_likelihood))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin, skip_event_dims=True), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin, skip_event_dims=True))
Convert elementwise log_likelihood samples to xarray.
arviz/data/io_cmdstan.py
log_likelihood_to_xarray
peterroelants/arviz
1,159
python
@requires('posterior') @requires('log_likelihood') def log_likelihood_to_xarray(self): log_likelihood = self.log_likelihood if ((isinstance(log_likelihood, (tuple, list)) and log_likelihood[0].endswith('.csv')) or (isinstance(log_likelihood, str) and log_likelihood.endswith('.csv'))): if isinstance(log_likelihood, str): log_likelihood = [log_likelihood] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in log_likelihood: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(log_likelihood, str): log_likelihood = [log_likelihood] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in log_likelihood))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin, skip_event_dims=True), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin, skip_event_dims=True))
@requires('posterior') @requires('log_likelihood') def log_likelihood_to_xarray(self): log_likelihood = self.log_likelihood if ((isinstance(log_likelihood, (tuple, list)) and log_likelihood[0].endswith('.csv')) or (isinstance(log_likelihood, str) and log_likelihood.endswith('.csv'))): if isinstance(log_likelihood, str): log_likelihood = [log_likelihood] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in log_likelihood: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(log_likelihood, str): log_likelihood = [log_likelihood] columns = {col: idx for (col, idx) in self.posterior_columns.items() if any(((item == col.split('.')[0]) for item in log_likelihood))} data = _unpack_ndarrays(self.posterior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin, skip_event_dims=True), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin, skip_event_dims=True))<|docstring|>Convert elementwise log_likelihood samples to xarray.<|endoftext|>
4b5dadc42180b604db2281dbac74c267f9dd108fd0311c00cac70a7b3e70508e
@requires('prior') def prior_to_xarray(self): 'Convert prior samples to xarray.' prior_predictive = self.prior_predictive columns = self.prior_columns if ((prior_predictive is None) or (isinstance(prior_predictive, str) and prior_predictive.lower().endswith('.csv'))): prior_predictive = [] elif isinstance(prior_predictive, str): prior_predictive = [col for col in columns if (prior_predictive == col.split('.')[0])] else: prior_predictive = [col for col in columns if any(((item == col.split('.')[0]) for item in prior_predictive))] invalid_cols = prior_predictive valid_cols = {col: idx for (col, idx) in columns.items() if (col not in invalid_cols)} data = _unpack_ndarrays(self.prior[0], valid_cols, self.dtypes) data_warmup = _unpack_ndarrays(self.prior[1], valid_cols, self.dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=self.attrs_prior, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=self.attrs_prior, index_origin=self.index_origin))
Convert prior samples to xarray.
arviz/data/io_cmdstan.py
prior_to_xarray
peterroelants/arviz
1,159
python
@requires('prior') def prior_to_xarray(self): prior_predictive = self.prior_predictive columns = self.prior_columns if ((prior_predictive is None) or (isinstance(prior_predictive, str) and prior_predictive.lower().endswith('.csv'))): prior_predictive = [] elif isinstance(prior_predictive, str): prior_predictive = [col for col in columns if (prior_predictive == col.split('.')[0])] else: prior_predictive = [col for col in columns if any(((item == col.split('.')[0]) for item in prior_predictive))] invalid_cols = prior_predictive valid_cols = {col: idx for (col, idx) in columns.items() if (col not in invalid_cols)} data = _unpack_ndarrays(self.prior[0], valid_cols, self.dtypes) data_warmup = _unpack_ndarrays(self.prior[1], valid_cols, self.dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=self.attrs_prior, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=self.attrs_prior, index_origin=self.index_origin))
@requires('prior') def prior_to_xarray(self): prior_predictive = self.prior_predictive columns = self.prior_columns if ((prior_predictive is None) or (isinstance(prior_predictive, str) and prior_predictive.lower().endswith('.csv'))): prior_predictive = [] elif isinstance(prior_predictive, str): prior_predictive = [col for col in columns if (prior_predictive == col.split('.')[0])] else: prior_predictive = [col for col in columns if any(((item == col.split('.')[0]) for item in prior_predictive))] invalid_cols = prior_predictive valid_cols = {col: idx for (col, idx) in columns.items() if (col not in invalid_cols)} data = _unpack_ndarrays(self.prior[0], valid_cols, self.dtypes) data_warmup = _unpack_ndarrays(self.prior[1], valid_cols, self.dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=self.attrs_prior, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=self.attrs_prior, index_origin=self.index_origin))<|docstring|>Convert prior samples to xarray.<|endoftext|>
19194b99c5d8a4fb6a6f37c7b1bba3e720c384d4c829825468e076f50de85b71
@requires('prior') @requires('sample_stats_prior_columns') def sample_stats_prior_to_xarray(self): 'Extract sample_stats from fit.' dtypes = {'diverging': bool, 'n_steps': np.int64, 'tree_depth': np.int64, **self.dtypes} rename_dict = {'divergent': 'diverging', 'n_leapfrog': 'n_steps', 'treedepth': 'tree_depth', 'stepsize': 'step_size', 'accept_stat': 'acceptance_rate'} columns_new = {} for (key, idx) in self.sample_stats_prior_columns.items(): name = re.sub('__$', '', key) name = rename_dict.get(name, name) columns_new[name] = idx data = _unpack_ndarrays(self.posterior[0], columns_new, dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns_new, dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin))
Extract sample_stats from fit.
arviz/data/io_cmdstan.py
sample_stats_prior_to_xarray
peterroelants/arviz
1,159
python
@requires('prior') @requires('sample_stats_prior_columns') def sample_stats_prior_to_xarray(self): dtypes = {'diverging': bool, 'n_steps': np.int64, 'tree_depth': np.int64, **self.dtypes} rename_dict = {'divergent': 'diverging', 'n_leapfrog': 'n_steps', 'treedepth': 'tree_depth', 'stepsize': 'step_size', 'accept_stat': 'acceptance_rate'} columns_new = {} for (key, idx) in self.sample_stats_prior_columns.items(): name = re.sub('__$', , key) name = rename_dict.get(name, name) columns_new[name] = idx data = _unpack_ndarrays(self.posterior[0], columns_new, dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns_new, dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin))
@requires('prior') @requires('sample_stats_prior_columns') def sample_stats_prior_to_xarray(self): dtypes = {'diverging': bool, 'n_steps': np.int64, 'tree_depth': np.int64, **self.dtypes} rename_dict = {'divergent': 'diverging', 'n_leapfrog': 'n_steps', 'treedepth': 'tree_depth', 'stepsize': 'step_size', 'accept_stat': 'acceptance_rate'} columns_new = {} for (key, idx) in self.sample_stats_prior_columns.items(): name = re.sub('__$', , key) name = rename_dict.get(name, name) columns_new[name] = idx data = _unpack_ndarrays(self.posterior[0], columns_new, dtypes) data_warmup = _unpack_ndarrays(self.posterior[1], columns_new, dtypes) return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs={item: key for (key, item) in rename_dict.items()}, index_origin=self.index_origin))<|docstring|>Extract sample_stats from fit.<|endoftext|>
73dde1a0c88fe45749f58d58748a1984422afc69fec024bef11aaacc286103fa
@requires('prior') @requires('prior_predictive') def prior_predictive_to_xarray(self): 'Convert prior_predictive samples to xarray.' prior_predictive = self.prior_predictive if ((isinstance(prior_predictive, (tuple, list)) and prior_predictive[0].endswith('.csv')) or (isinstance(prior_predictive, str) and prior_predictive.endswith('.csv'))): if isinstance(prior_predictive, str): prior_predictive = [prior_predictive] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in prior_predictive: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(prior_predictive, str): prior_predictive = [prior_predictive] columns = {col: idx for (col, idx) in self.prior_columns.items() if any(((item == col.split('.')[0]) for item in prior_predictive))} data = _unpack_ndarrays(self.prior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.prior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))
Convert prior_predictive samples to xarray.
arviz/data/io_cmdstan.py
prior_predictive_to_xarray
peterroelants/arviz
1,159
python
@requires('prior') @requires('prior_predictive') def prior_predictive_to_xarray(self): prior_predictive = self.prior_predictive if ((isinstance(prior_predictive, (tuple, list)) and prior_predictive[0].endswith('.csv')) or (isinstance(prior_predictive, str) and prior_predictive.endswith('.csv'))): if isinstance(prior_predictive, str): prior_predictive = [prior_predictive] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in prior_predictive: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(prior_predictive, str): prior_predictive = [prior_predictive] columns = {col: idx for (col, idx) in self.prior_columns.items() if any(((item == col.split('.')[0]) for item in prior_predictive))} data = _unpack_ndarrays(self.prior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.prior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))
@requires('prior') @requires('prior_predictive') def prior_predictive_to_xarray(self): prior_predictive = self.prior_predictive if ((isinstance(prior_predictive, (tuple, list)) and prior_predictive[0].endswith('.csv')) or (isinstance(prior_predictive, str) and prior_predictive.endswith('.csv'))): if isinstance(prior_predictive, str): prior_predictive = [prior_predictive] chain_data = [] chain_data_warmup = [] columns = None attrs = {} for path in prior_predictive: parsed_output = _read_output(path) chain_data.append(parsed_output['sample']) chain_data_warmup.append(parsed_output['sample_warmup']) if (columns is None): columns = parsed_output['sample_columns'] for (key, value) in parsed_output['configuration_info'].items(): if (key not in attrs): attrs[key] = [] attrs[key].append(value) data = _unpack_ndarrays(chain_data, columns, self.dtypes) data_warmup = _unpack_ndarrays(chain_data_warmup, columns, self.dtypes) else: if isinstance(prior_predictive, str): prior_predictive = [prior_predictive] columns = {col: idx for (col, idx) in self.prior_columns.items() if any(((item == col.split('.')[0]) for item in prior_predictive))} data = _unpack_ndarrays(self.prior[0], columns, self.dtypes) data_warmup = _unpack_ndarrays(self.prior[1], columns, self.dtypes) attrs = None return (dict_to_dataset(data, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin), dict_to_dataset(data_warmup, coords=self.coords, dims=self.dims, attrs=attrs, index_origin=self.index_origin))<|docstring|>Convert prior_predictive samples to xarray.<|endoftext|>
91542c2ec4e891dcffbbe80e908cc3c295df1b93a1d1ffb421979bbd47da8e6c
@requires('observed_data') def observed_data_to_xarray(self): 'Convert observed data to xarray.' observed_data_raw = _read_data(self.observed_data) variables = self.observed_data_var if isinstance(variables, str): variables = [variables] observed_data = {} for (key, vals) in observed_data_raw.items(): if ((variables is not None) and (key not in variables)): continue observed_data[key] = utils.one_de(vals) return dict_to_dataset(observed_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)
Convert observed data to xarray.
arviz/data/io_cmdstan.py
observed_data_to_xarray
peterroelants/arviz
1,159
python
@requires('observed_data') def observed_data_to_xarray(self): observed_data_raw = _read_data(self.observed_data) variables = self.observed_data_var if isinstance(variables, str): variables = [variables] observed_data = {} for (key, vals) in observed_data_raw.items(): if ((variables is not None) and (key not in variables)): continue observed_data[key] = utils.one_de(vals) return dict_to_dataset(observed_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)
@requires('observed_data') def observed_data_to_xarray(self): observed_data_raw = _read_data(self.observed_data) variables = self.observed_data_var if isinstance(variables, str): variables = [variables] observed_data = {} for (key, vals) in observed_data_raw.items(): if ((variables is not None) and (key not in variables)): continue observed_data[key] = utils.one_de(vals) return dict_to_dataset(observed_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)<|docstring|>Convert observed data to xarray.<|endoftext|>
508a061c72eb965e2828ead6bd8e0ff11b9afa4e82d37ff9e8f8a8bab3ae00ed
@requires('constant_data') def constant_data_to_xarray(self): 'Convert constant data to xarray.' constant_data_raw = _read_data(self.constant_data) variables = self.constant_data_var if isinstance(variables, str): variables = [variables] constant_data = {} for (key, vals) in constant_data_raw.items(): if ((variables is not None) and (key not in variables)): continue constant_data[key] = utils.one_de(vals) return dict_to_dataset(constant_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)
Convert constant data to xarray.
arviz/data/io_cmdstan.py
constant_data_to_xarray
peterroelants/arviz
1,159
python
@requires('constant_data') def constant_data_to_xarray(self): constant_data_raw = _read_data(self.constant_data) variables = self.constant_data_var if isinstance(variables, str): variables = [variables] constant_data = {} for (key, vals) in constant_data_raw.items(): if ((variables is not None) and (key not in variables)): continue constant_data[key] = utils.one_de(vals) return dict_to_dataset(constant_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)
@requires('constant_data') def constant_data_to_xarray(self): constant_data_raw = _read_data(self.constant_data) variables = self.constant_data_var if isinstance(variables, str): variables = [variables] constant_data = {} for (key, vals) in constant_data_raw.items(): if ((variables is not None) and (key not in variables)): continue constant_data[key] = utils.one_de(vals) return dict_to_dataset(constant_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)<|docstring|>Convert constant data to xarray.<|endoftext|>
22c6d625e9440cccae938712f3b68ae0ceebf24d5d0057f0ec7b2b30c7088372
@requires('predictions_constant_data') def predictions_constant_data_to_xarray(self): 'Convert predictions constant data to xarray.' predictions_constant_data_raw = _read_data(self.predictions_constant_data) variables = self.predictions_constant_data_var if isinstance(variables, str): variables = [variables] predictions_constant_data = {} for (key, vals) in predictions_constant_data_raw.items(): if ((variables is not None) and (key not in variables)): continue vals = utils.one_de(vals) predictions_constant_data[key] = utils.one_de(vals) return dict_to_dataset(predictions_constant_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)
Convert predictions constant data to xarray.
arviz/data/io_cmdstan.py
predictions_constant_data_to_xarray
peterroelants/arviz
1,159
python
@requires('predictions_constant_data') def predictions_constant_data_to_xarray(self): predictions_constant_data_raw = _read_data(self.predictions_constant_data) variables = self.predictions_constant_data_var if isinstance(variables, str): variables = [variables] predictions_constant_data = {} for (key, vals) in predictions_constant_data_raw.items(): if ((variables is not None) and (key not in variables)): continue vals = utils.one_de(vals) predictions_constant_data[key] = utils.one_de(vals) return dict_to_dataset(predictions_constant_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)
@requires('predictions_constant_data') def predictions_constant_data_to_xarray(self): predictions_constant_data_raw = _read_data(self.predictions_constant_data) variables = self.predictions_constant_data_var if isinstance(variables, str): variables = [variables] predictions_constant_data = {} for (key, vals) in predictions_constant_data_raw.items(): if ((variables is not None) and (key not in variables)): continue vals = utils.one_de(vals) predictions_constant_data[key] = utils.one_de(vals) return dict_to_dataset(predictions_constant_data, coords=self.coords, dims=self.dims, default_dims=[], index_origin=self.index_origin)<|docstring|>Convert predictions constant data to xarray.<|endoftext|>
833bfd240c4db4529af7e55f3ab52c658cce1d69b3cdd079e1cf9e1b80a82e03
def to_inference_data(self): 'Convert all available data to an InferenceData object.\n\n Note that if groups can not be created (i.e., there is no `output`, so\n the `posterior` and `sample_stats` can not be extracted), then the InferenceData\n will not have those groups.\n ' return InferenceData(save_warmup=self.save_warmup, **{'posterior': self.posterior_to_xarray(), 'sample_stats': self.sample_stats_to_xarray(), 'log_likelihood': self.log_likelihood_to_xarray(), 'posterior_predictive': self.posterior_predictive_to_xarray(), 'prior': self.prior_to_xarray(), 'sample_stats_prior': self.sample_stats_prior_to_xarray(), 'prior_predictive': self.prior_predictive_to_xarray(), 'observed_data': self.observed_data_to_xarray(), 'constant_data': self.constant_data_to_xarray(), 'predictions': self.predictions_to_xarray(), 'predictions_constant_data': self.predictions_constant_data_to_xarray()})
Convert all available data to an InferenceData object. Note that if groups can not be created (i.e., there is no `output`, so the `posterior` and `sample_stats` can not be extracted), then the InferenceData will not have those groups.
arviz/data/io_cmdstan.py
to_inference_data
peterroelants/arviz
1,159
python
def to_inference_data(self): 'Convert all available data to an InferenceData object.\n\n Note that if groups can not be created (i.e., there is no `output`, so\n the `posterior` and `sample_stats` can not be extracted), then the InferenceData\n will not have those groups.\n ' return InferenceData(save_warmup=self.save_warmup, **{'posterior': self.posterior_to_xarray(), 'sample_stats': self.sample_stats_to_xarray(), 'log_likelihood': self.log_likelihood_to_xarray(), 'posterior_predictive': self.posterior_predictive_to_xarray(), 'prior': self.prior_to_xarray(), 'sample_stats_prior': self.sample_stats_prior_to_xarray(), 'prior_predictive': self.prior_predictive_to_xarray(), 'observed_data': self.observed_data_to_xarray(), 'constant_data': self.constant_data_to_xarray(), 'predictions': self.predictions_to_xarray(), 'predictions_constant_data': self.predictions_constant_data_to_xarray()})
def to_inference_data(self): 'Convert all available data to an InferenceData object.\n\n Note that if groups can not be created (i.e., there is no `output`, so\n the `posterior` and `sample_stats` can not be extracted), then the InferenceData\n will not have those groups.\n ' return InferenceData(save_warmup=self.save_warmup, **{'posterior': self.posterior_to_xarray(), 'sample_stats': self.sample_stats_to_xarray(), 'log_likelihood': self.log_likelihood_to_xarray(), 'posterior_predictive': self.posterior_predictive_to_xarray(), 'prior': self.prior_to_xarray(), 'sample_stats_prior': self.sample_stats_prior_to_xarray(), 'prior_predictive': self.prior_predictive_to_xarray(), 'observed_data': self.observed_data_to_xarray(), 'constant_data': self.constant_data_to_xarray(), 'predictions': self.predictions_to_xarray(), 'predictions_constant_data': self.predictions_constant_data_to_xarray()})<|docstring|>Convert all available data to an InferenceData object. Note that if groups can not be created (i.e., there is no `output`, so the `posterior` and `sample_stats` can not be extracted), then the InferenceData will not have those groups.<|endoftext|>
7f874e196083d49b669e1d3d11c2a7403235769ccafa9d36ff788e8d3874f3f4
def get_env_var(key, as_type, env): 'Get the environment variable option.\n\n :param key: the config key requested\n :param as_type: the type we would like to convert it to\n :param env: environment variables to use\n :return:\n ' environ_key = ensure_str('VIRTUALENV_{}'.format(key.upper())) if env.get(environ_key): value = env[environ_key] try: source = 'env var {}'.format(ensure_text(environ_key)) as_type = convert(value, as_type, source) return (as_type, source) except Exception: pass
Get the environment variable option. :param key: the config key requested :param as_type: the type we would like to convert it to :param env: environment variables to use :return:
.venv/lib/python3.8/site-packages/virtualenv/config/env_var.py
get_env_var
RivtLib/replit01
3,522
python
def get_env_var(key, as_type, env): 'Get the environment variable option.\n\n :param key: the config key requested\n :param as_type: the type we would like to convert it to\n :param env: environment variables to use\n :return:\n ' environ_key = ensure_str('VIRTUALENV_{}'.format(key.upper())) if env.get(environ_key): value = env[environ_key] try: source = 'env var {}'.format(ensure_text(environ_key)) as_type = convert(value, as_type, source) return (as_type, source) except Exception: pass
def get_env_var(key, as_type, env): 'Get the environment variable option.\n\n :param key: the config key requested\n :param as_type: the type we would like to convert it to\n :param env: environment variables to use\n :return:\n ' environ_key = ensure_str('VIRTUALENV_{}'.format(key.upper())) if env.get(environ_key): value = env[environ_key] try: source = 'env var {}'.format(ensure_text(environ_key)) as_type = convert(value, as_type, source) return (as_type, source) except Exception: pass<|docstring|>Get the environment variable option. :param key: the config key requested :param as_type: the type we would like to convert it to :param env: environment variables to use :return:<|endoftext|>
482cf689cbd474eff83da7295bae1ccb1968a99958a6a4d7ce0cb0324a9bed2a
def on_hover(self, event): 'Altera o ícone do botão quando o cursor entra em sua área.\n\n Se o botão possuí texto de instrução, ele é exibido na barra\n inferior.\n ' if (self['state'] == 'normal'): self.configure(image=self.icon2) if (self.hover_text is not None): cetus.hover_box.configure(text=self.hover_text)
Altera o ícone do botão quando o cursor entra em sua área. Se o botão possuí texto de instrução, ele é exibido na barra inferior.
interface.py
on_hover
WilsonCazarre/ProjetoCetus
4
python
def on_hover(self, event): 'Altera o ícone do botão quando o cursor entra em sua área.\n\n Se o botão possuí texto de instrução, ele é exibido na barra\n inferior.\n ' if (self['state'] == 'normal'): self.configure(image=self.icon2) if (self.hover_text is not None): cetus.hover_box.configure(text=self.hover_text)
def on_hover(self, event): 'Altera o ícone do botão quando o cursor entra em sua área.\n\n Se o botão possuí texto de instrução, ele é exibido na barra\n inferior.\n ' if (self['state'] == 'normal'): self.configure(image=self.icon2) if (self.hover_text is not None): cetus.hover_box.configure(text=self.hover_text)<|docstring|>Altera o ícone do botão quando o cursor entra em sua área. Se o botão possuí texto de instrução, ele é exibido na barra inferior.<|endoftext|>
6a44cab7145bb5b5888036ce66346ebb8c2fe70b2b733e28539a367c1a8c66d9
def on_leave(self, event): 'Altera o ícone do botão quando o cursor saí da sua área.' if (self['state'] == 'normal'): self.configure(image=self.icon1) cetus.hover_box.configure(text=std.hover_texts['default'])
Altera o ícone do botão quando o cursor saí da sua área.
interface.py
on_leave
WilsonCazarre/ProjetoCetus
4
python
def on_leave(self, event): if (self['state'] == 'normal'): self.configure(image=self.icon1) cetus.hover_box.configure(text=std.hover_texts['default'])
def on_leave(self, event): if (self['state'] == 'normal'): self.configure(image=self.icon1) cetus.hover_box.configure(text=std.hover_texts['default'])<|docstring|>Altera o ícone do botão quando o cursor saí da sua área.<|endoftext|>
f7e3a3a3869a7f6ea80b6f8fc0b5ceb637b92961a370a0f4b63f85ca62006756
def on_frame_configure(self, event): 'Reset the scroll region to encompass the inner frame' self.canvas.configure(scrollregion=self.canvas.bbox('all'))
Reset the scroll region to encompass the inner frame
interface.py
on_frame_configure
WilsonCazarre/ProjetoCetus
4
python
def on_frame_configure(self, event): self.canvas.configure(scrollregion=self.canvas.bbox('all'))
def on_frame_configure(self, event): self.canvas.configure(scrollregion=self.canvas.bbox('all'))<|docstring|>Reset the scroll region to encompass the inner frame<|endoftext|>
e2139413e0f81daeb1cbd9e6c20e8d4ff59cfda8b43c6f24f68245ea9b5456e3
def check_if_is_connected(self): 'Função para verificar alterações na porta serial.\n\n Essa função roda em looping infinito no background da janela\n base.\n ' bt_connected = self.side_buttons['reconnect_icon'] if ((self._frame is not None) and arduino.is_connected): bt_connected.icon1 = self.connected_icon bt_connected.icon2 = self.connected_icon bt_connected.configure(image=self.connected_icon) elif arduino.waiting_update: bt_connected.icon1 = tk.PhotoImage(file=std.side_buttons_path['reconnect_icon']) bt_connected.icon2 = tk.PhotoImage(file=std.side_buttons_path['reconnect_highlight']) bt_connected.configure(image=bt_connected.icon1) arduino.waiting_update = False self.after(1000, self.check_if_is_connected)
Função para verificar alterações na porta serial. Essa função roda em looping infinito no background da janela base.
interface.py
check_if_is_connected
WilsonCazarre/ProjetoCetus
4
python
def check_if_is_connected(self): 'Função para verificar alterações na porta serial.\n\n Essa função roda em looping infinito no background da janela\n base.\n ' bt_connected = self.side_buttons['reconnect_icon'] if ((self._frame is not None) and arduino.is_connected): bt_connected.icon1 = self.connected_icon bt_connected.icon2 = self.connected_icon bt_connected.configure(image=self.connected_icon) elif arduino.waiting_update: bt_connected.icon1 = tk.PhotoImage(file=std.side_buttons_path['reconnect_icon']) bt_connected.icon2 = tk.PhotoImage(file=std.side_buttons_path['reconnect_highlight']) bt_connected.configure(image=bt_connected.icon1) arduino.waiting_update = False self.after(1000, self.check_if_is_connected)
def check_if_is_connected(self): 'Função para verificar alterações na porta serial.\n\n Essa função roda em looping infinito no background da janela\n base.\n ' bt_connected = self.side_buttons['reconnect_icon'] if ((self._frame is not None) and arduino.is_connected): bt_connected.icon1 = self.connected_icon bt_connected.icon2 = self.connected_icon bt_connected.configure(image=self.connected_icon) elif arduino.waiting_update: bt_connected.icon1 = tk.PhotoImage(file=std.side_buttons_path['reconnect_icon']) bt_connected.icon2 = tk.PhotoImage(file=std.side_buttons_path['reconnect_highlight']) bt_connected.configure(image=bt_connected.icon1) arduino.waiting_update = False self.after(1000, self.check_if_is_connected)<|docstring|>Função para verificar alterações na porta serial. Essa função roda em looping infinito no background da janela base.<|endoftext|>
9992634413209baca739b74b41af91631f1e14ebb9df9fa824ef2d2a33308ef3
def close_window(self): 'Função para sobrescrever o protocolo padrão ao fechar a janela.\n\n O programa salva todos os experimentos em arquivo externo e depois\n destrói a janela principal encerrando o programa.\n ' fc.save_pickle_file(std.EXP_PATH, fc.experiments) if arduino.is_connected: arduino.is_running = False arduino.is_connected = False arduino.serial_device.close() print('Closing serial port.') self.destroy()
Função para sobrescrever o protocolo padrão ao fechar a janela. O programa salva todos os experimentos em arquivo externo e depois destrói a janela principal encerrando o programa.
interface.py
close_window
WilsonCazarre/ProjetoCetus
4
python
def close_window(self): 'Função para sobrescrever o protocolo padrão ao fechar a janela.\n\n O programa salva todos os experimentos em arquivo externo e depois\n destrói a janela principal encerrando o programa.\n ' fc.save_pickle_file(std.EXP_PATH, fc.experiments) if arduino.is_connected: arduino.is_running = False arduino.is_connected = False arduino.serial_device.close() print('Closing serial port.') self.destroy()
def close_window(self): 'Função para sobrescrever o protocolo padrão ao fechar a janela.\n\n O programa salva todos os experimentos em arquivo externo e depois\n destrói a janela principal encerrando o programa.\n ' fc.save_pickle_file(std.EXP_PATH, fc.experiments) if arduino.is_connected: arduino.is_running = False arduino.is_connected = False arduino.serial_device.close() print('Closing serial port.') self.destroy()<|docstring|>Função para sobrescrever o protocolo padrão ao fechar a janela. O programa salva todos os experimentos em arquivo externo e depois destrói a janela principal encerrando o programa.<|endoftext|>
07fb34fcf7dedb4472ddb154b4fae11c7411a2c10391edf08424e0588d2d5742
def switch_frame(self, new_frame, *args, **kwargs): 'Função para trocar o conteúdo exibido pela na janela.\n\n :param new_frame: nova classe ou subclasse da tk.Frame a ser\n exibida.\n ' new_frame = new_frame(self, *args, **kwargs) if (self._frame is not None): self._frame.destroy() self._frame = new_frame self._frame.pack() self._frame.create_widgets()
Função para trocar o conteúdo exibido pela na janela. :param new_frame: nova classe ou subclasse da tk.Frame a ser exibida.
interface.py
switch_frame
WilsonCazarre/ProjetoCetus
4
python
def switch_frame(self, new_frame, *args, **kwargs): 'Função para trocar o conteúdo exibido pela na janela.\n\n :param new_frame: nova classe ou subclasse da tk.Frame a ser\n exibida.\n ' new_frame = new_frame(self, *args, **kwargs) if (self._frame is not None): self._frame.destroy() self._frame = new_frame self._frame.pack() self._frame.create_widgets()
def switch_frame(self, new_frame, *args, **kwargs): 'Função para trocar o conteúdo exibido pela na janela.\n\n :param new_frame: nova classe ou subclasse da tk.Frame a ser\n exibida.\n ' new_frame = new_frame(self, *args, **kwargs) if (self._frame is not None): self._frame.destroy() self._frame = new_frame self._frame.pack() self._frame.create_widgets()<|docstring|>Função para trocar o conteúdo exibido pela na janela. :param new_frame: nova classe ou subclasse da tk.Frame a ser exibida.<|endoftext|>
ad0493348c58cd0f4ca058c579084e8be7e50578606ad2a9f92305bda479cff7
def _widgets(self): 'Cria os widgets específicos da janela.\n\n Esses widgets são colocados em outro método pois eles não podem\n herdados pelas outras janelas. O método é sobrescrito em cada\n nova sub-classe.\n ' self.logo = tk.PhotoImage(file=std.LOGO_IMAGE_PATH) self.logo_bg = tk.Label(master=self, image=self.logo, bg=std.BG) self.logo_bg.place(x=550, y=200) self.buttons_frame = tk.Frame(master=self, width=850, height=120, bg=std.BG, bd=0, highlightcolor=std.BD, highlightbackground=std.BD, highlightthickness=std.BD_WIDTH) self.buttons_frame.place(anchor='n', rely=0.3, relx=0.5, y=35) self.buttons_frame.pack_propagate(False) self.buttons = {} for but in std.cetuspcr_buttons_path: if ('_icon' in but): self.path_slice = but.split('_') self.b_name = self.path_slice[0] self.path1 = std.cetuspcr_buttons_path[but] self.path2 = std.cetuspcr_buttons_path[f'{self.path_slice[0]}_highlight'] self.new_button = AnimatedButton(master=self.buttons_frame, image1=self.path1, image2=self.path2, activebackground=std.BG, width=75, bd=0, bg=std.BG, highlightthickness=0, hover_text=std.hover_texts[self.b_name]) self.buttons[but] = self.new_button self.buttons[but].pack(side='right', padx=8) self.buttons['confirm_icon'].configure(command=self.handle_confirm_button) self.buttons['add_icon'].configure(command=self.handle_new_button) self.buttons['delete_icon'].configure(command=self.handle_delete_button) self.experiment_combo = ttk.Combobox(master=self.buttons_frame, width=35, font=(std.FONT_TITLE, 17)) self.experiment_combo.place(rely=0.55, relx=0.02, anchor='w', bordermode='inside') self.experiment_combo_title = tk.Label(master=self, font=(std.FONT_TITLE, 22, 'bold'), text='Selecione o experimento:', fg=std.TEXTS_COLOR, bg=std.BG) self.experiment_combo_title.place(in_=self.experiment_combo, anchor='sw', bordermode='outside') self.show_experiments()
Cria os widgets específicos da janela. Esses widgets são colocados em outro método pois eles não podem herdados pelas outras janelas. O método é sobrescrito em cada nova sub-classe.
interface.py
_widgets
WilsonCazarre/ProjetoCetus
4
python
def _widgets(self): 'Cria os widgets específicos da janela.\n\n Esses widgets são colocados em outro método pois eles não podem\n herdados pelas outras janelas. O método é sobrescrito em cada\n nova sub-classe.\n ' self.logo = tk.PhotoImage(file=std.LOGO_IMAGE_PATH) self.logo_bg = tk.Label(master=self, image=self.logo, bg=std.BG) self.logo_bg.place(x=550, y=200) self.buttons_frame = tk.Frame(master=self, width=850, height=120, bg=std.BG, bd=0, highlightcolor=std.BD, highlightbackground=std.BD, highlightthickness=std.BD_WIDTH) self.buttons_frame.place(anchor='n', rely=0.3, relx=0.5, y=35) self.buttons_frame.pack_propagate(False) self.buttons = {} for but in std.cetuspcr_buttons_path: if ('_icon' in but): self.path_slice = but.split('_') self.b_name = self.path_slice[0] self.path1 = std.cetuspcr_buttons_path[but] self.path2 = std.cetuspcr_buttons_path[f'{self.path_slice[0]}_highlight'] self.new_button = AnimatedButton(master=self.buttons_frame, image1=self.path1, image2=self.path2, activebackground=std.BG, width=75, bd=0, bg=std.BG, highlightthickness=0, hover_text=std.hover_texts[self.b_name]) self.buttons[but] = self.new_button self.buttons[but].pack(side='right', padx=8) self.buttons['confirm_icon'].configure(command=self.handle_confirm_button) self.buttons['add_icon'].configure(command=self.handle_new_button) self.buttons['delete_icon'].configure(command=self.handle_delete_button) self.experiment_combo = ttk.Combobox(master=self.buttons_frame, width=35, font=(std.FONT_TITLE, 17)) self.experiment_combo.place(rely=0.55, relx=0.02, anchor='w', bordermode='inside') self.experiment_combo_title = tk.Label(master=self, font=(std.FONT_TITLE, 22, 'bold'), text='Selecione o experimento:', fg=std.TEXTS_COLOR, bg=std.BG) self.experiment_combo_title.place(in_=self.experiment_combo, anchor='sw', bordermode='outside') self.show_experiments()
def _widgets(self): 'Cria os widgets específicos da janela.\n\n Esses widgets são colocados em outro método pois eles não podem\n herdados pelas outras janelas. O método é sobrescrito em cada\n nova sub-classe.\n ' self.logo = tk.PhotoImage(file=std.LOGO_IMAGE_PATH) self.logo_bg = tk.Label(master=self, image=self.logo, bg=std.BG) self.logo_bg.place(x=550, y=200) self.buttons_frame = tk.Frame(master=self, width=850, height=120, bg=std.BG, bd=0, highlightcolor=std.BD, highlightbackground=std.BD, highlightthickness=std.BD_WIDTH) self.buttons_frame.place(anchor='n', rely=0.3, relx=0.5, y=35) self.buttons_frame.pack_propagate(False) self.buttons = {} for but in std.cetuspcr_buttons_path: if ('_icon' in but): self.path_slice = but.split('_') self.b_name = self.path_slice[0] self.path1 = std.cetuspcr_buttons_path[but] self.path2 = std.cetuspcr_buttons_path[f'{self.path_slice[0]}_highlight'] self.new_button = AnimatedButton(master=self.buttons_frame, image1=self.path1, image2=self.path2, activebackground=std.BG, width=75, bd=0, bg=std.BG, highlightthickness=0, hover_text=std.hover_texts[self.b_name]) self.buttons[but] = self.new_button self.buttons[but].pack(side='right', padx=8) self.buttons['confirm_icon'].configure(command=self.handle_confirm_button) self.buttons['add_icon'].configure(command=self.handle_new_button) self.buttons['delete_icon'].configure(command=self.handle_delete_button) self.experiment_combo = ttk.Combobox(master=self.buttons_frame, width=35, font=(std.FONT_TITLE, 17)) self.experiment_combo.place(rely=0.55, relx=0.02, anchor='w', bordermode='inside') self.experiment_combo_title = tk.Label(master=self, font=(std.FONT_TITLE, 22, 'bold'), text='Selecione o experimento:', fg=std.TEXTS_COLOR, bg=std.BG) self.experiment_combo_title.place(in_=self.experiment_combo, anchor='sw', bordermode='outside') self.show_experiments()<|docstring|>Cria os widgets específicos da janela. Esses widgets são colocados em outro método pois eles não podem herdados pelas outras janelas. O método é sobrescrito em cada nova sub-classe.<|endoftext|>
5c0464b9ef6d3ac56bdc6e1ec0bd8c4652f5fa6464a74d1f69e6d1ebd8c0cb51
def show_experiments(self): 'Abre o arquivo com os experimentos salvos e os exibe na\n self.experiment_combo(ttk.Combobox).\n ' fc.experiments = fc.open_pickle_file(std.EXP_PATH) values = [] for exp in fc.experiments: values.append(exp.name) self.experiment_combo.configure(values=values)
Abre o arquivo com os experimentos salvos e os exibe na self.experiment_combo(ttk.Combobox).
interface.py
show_experiments
WilsonCazarre/ProjetoCetus
4
python
def show_experiments(self): 'Abre o arquivo com os experimentos salvos e os exibe na\n self.experiment_combo(ttk.Combobox).\n ' fc.experiments = fc.open_pickle_file(std.EXP_PATH) values = [] for exp in fc.experiments: values.append(exp.name) self.experiment_combo.configure(values=values)
def show_experiments(self): 'Abre o arquivo com os experimentos salvos e os exibe na\n self.experiment_combo(ttk.Combobox).\n ' fc.experiments = fc.open_pickle_file(std.EXP_PATH) values = [] for exp in fc.experiments: values.append(exp.name) self.experiment_combo.configure(values=values)<|docstring|>Abre o arquivo com os experimentos salvos e os exibe na self.experiment_combo(ttk.Combobox).<|endoftext|>
3df4e3aa24fb31342f6c96217ac94c4067226ca04a71c58aaff2337e049598f3
def get_queryset(self): 'Return objects for the current authenticated user only' assigned_only = bool(int(self.request.query_params.get('assigned_only', default=0))) queryset = self.queryset if assigned_only: queryset = queryset.filter(recipe__isnull=False) return queryset.filter(user=self.request.user).order_by('-name').distinct()
Return objects for the current authenticated user only
app/recipe/views.py
get_queryset
onkarsherkar/recipe-app-api
0
python
def get_queryset(self): assigned_only = bool(int(self.request.query_params.get('assigned_only', default=0))) queryset = self.queryset if assigned_only: queryset = queryset.filter(recipe__isnull=False) return queryset.filter(user=self.request.user).order_by('-name').distinct()
def get_queryset(self): assigned_only = bool(int(self.request.query_params.get('assigned_only', default=0))) queryset = self.queryset if assigned_only: queryset = queryset.filter(recipe__isnull=False) return queryset.filter(user=self.request.user).order_by('-name').distinct()<|docstring|>Return objects for the current authenticated user only<|endoftext|>
4614e6098a91c946ef3b6113794b48c8674af7ef2345225dfb785d7e5f0e7d05
def perform_create(self, serializer): 'Create a new Object' serializer.save(user=self.request.user)
Create a new Object
app/recipe/views.py
perform_create
onkarsherkar/recipe-app-api
0
python
def perform_create(self, serializer): serializer.save(user=self.request.user)
def perform_create(self, serializer): serializer.save(user=self.request.user)<|docstring|>Create a new Object<|endoftext|>
43ee8889f6fb0929156361cb8a022ac11c0959d1e39d8013680e6519157f7968
def _param_to_ints(self, qs): 'convert a list of string IDs to a list of integers' return [int(str_id) for str_id in qs.split(',')]
convert a list of string IDs to a list of integers
app/recipe/views.py
_param_to_ints
onkarsherkar/recipe-app-api
0
python
def _param_to_ints(self, qs): return [int(str_id) for str_id in qs.split(',')]
def _param_to_ints(self, qs): return [int(str_id) for str_id in qs.split(',')]<|docstring|>convert a list of string IDs to a list of integers<|endoftext|>
0eba2c1a87b2b1fb00b98a4dcf59965c7bb785c0f2585f36379ec89d12de137b
def get_queryset(self): 'Retrieve the recipe for the authenticated user' tags = self.request.query_params.get('tags') ingredients = self.request.query_params.get('ingredients') queryset = self.queryset if tags: tags_ids = self._param_to_ints(tags) queryset = queryset.filter(tags__id__in=tags_ids) if ingredients: ingredients_ids = self._param_to_ints(ingredients) queryset = queryset.filter(ingredients__id__in=ingredients_ids) return queryset.filter(user=self.request.user)
Retrieve the recipe for the authenticated user
app/recipe/views.py
get_queryset
onkarsherkar/recipe-app-api
0
python
def get_queryset(self): tags = self.request.query_params.get('tags') ingredients = self.request.query_params.get('ingredients') queryset = self.queryset if tags: tags_ids = self._param_to_ints(tags) queryset = queryset.filter(tags__id__in=tags_ids) if ingredients: ingredients_ids = self._param_to_ints(ingredients) queryset = queryset.filter(ingredients__id__in=ingredients_ids) return queryset.filter(user=self.request.user)
def get_queryset(self): tags = self.request.query_params.get('tags') ingredients = self.request.query_params.get('ingredients') queryset = self.queryset if tags: tags_ids = self._param_to_ints(tags) queryset = queryset.filter(tags__id__in=tags_ids) if ingredients: ingredients_ids = self._param_to_ints(ingredients) queryset = queryset.filter(ingredients__id__in=ingredients_ids) return queryset.filter(user=self.request.user)<|docstring|>Retrieve the recipe for the authenticated user<|endoftext|>
4076ebdb8163f12e4981ec551f41f541f35d49980d69979b22d7f50c69ee952a
def get_serializer_class(self): 'Return appropriate serializer class' if (self.action == 'retrieve'): return serializers.RecipeDetailSerializer elif (self.action == 'upload_image'): return serializers.RecipeImageSerializer return self.serializer_class
Return appropriate serializer class
app/recipe/views.py
get_serializer_class
onkarsherkar/recipe-app-api
0
python
def get_serializer_class(self): if (self.action == 'retrieve'): return serializers.RecipeDetailSerializer elif (self.action == 'upload_image'): return serializers.RecipeImageSerializer return self.serializer_class
def get_serializer_class(self): if (self.action == 'retrieve'): return serializers.RecipeDetailSerializer elif (self.action == 'upload_image'): return serializers.RecipeImageSerializer return self.serializer_class<|docstring|>Return appropriate serializer class<|endoftext|>
d9c56ac6020b53f2f41470e33de11252372f020d8db53e0f37ef44ed4b72f8ae
def perform_create(self, serializer): 'Create a new recipe' serializer.save(user=self.request.user)
Create a new recipe
app/recipe/views.py
perform_create
onkarsherkar/recipe-app-api
0
python
def perform_create(self, serializer): serializer.save(user=self.request.user)
def perform_create(self, serializer): serializer.save(user=self.request.user)<|docstring|>Create a new recipe<|endoftext|>
f09740e6bec14005c600593daad2394d6da0b8718ed67cae7484d7db9e783913
@action(methods=['POST'], detail=True, url_path='upload-image') def upload_image(self, request, pk=None): 'Upload an image to a recipe' recipe = self.get_object() serializer = self.get_serializer(recipe, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
Upload an image to a recipe
app/recipe/views.py
upload_image
onkarsherkar/recipe-app-api
0
python
@action(methods=['POST'], detail=True, url_path='upload-image') def upload_image(self, request, pk=None): recipe = self.get_object() serializer = self.get_serializer(recipe, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
@action(methods=['POST'], detail=True, url_path='upload-image') def upload_image(self, request, pk=None): recipe = self.get_object() serializer = self.get_serializer(recipe, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)<|docstring|>Upload an image to a recipe<|endoftext|>
a9cafc969fd01d94825b509d84d491751c6129ce178cce639586ed96c1ae4ea0
def action(self, req, body, tenant_id, id): "\n Handles requests that modify existing instances in some manner. Actions\n could include 'resize', 'restart'\n :param req: http request object\n :param body: deserialized body of the request as a dict\n :param tenant_id: the tenant id for whom owns the instance\n :param id: instance id\n " LOG.debug("instance action req : '%s'\n\n", req) if (not body): raise exception.BadRequest(_('Invalid request body.')) context = req.environ[wsgi.CONTEXT_KEY] _actions = {'restart': self._action_restart, 'resize': self._action_resize, 'promote_to_replica_source': self._action_promote_to_replica_source, 'eject_replica_source': self._action_eject_replica_source, 'reset_status': self._action_reset_status} selected_action = None action_name = None for key in body: if (key in _actions): selected_action = _actions[key] action_name = key LOG.info('Performing %(action_name)s action against instance %(instance_id)s for tenant %(tenant_id)s, body: %(body)s', {'action_name': action_name, 'instance_id': id, 'tenant_id': tenant_id, 'body': body}) needs_server = True if (action_name in ['reset_status']): needs_server = False instance = models.Instance.load(context, id, needs_server=needs_server) return selected_action(context, req, instance, body)
Handles requests that modify existing instances in some manner. Actions could include 'resize', 'restart' :param req: http request object :param body: deserialized body of the request as a dict :param tenant_id: the tenant id for whom owns the instance :param id: instance id
trove/instance/service.py
action
viettelidc-oss/trove
1
python
def action(self, req, body, tenant_id, id): "\n Handles requests that modify existing instances in some manner. Actions\n could include 'resize', 'restart'\n :param req: http request object\n :param body: deserialized body of the request as a dict\n :param tenant_id: the tenant id for whom owns the instance\n :param id: instance id\n " LOG.debug("instance action req : '%s'\n\n", req) if (not body): raise exception.BadRequest(_('Invalid request body.')) context = req.environ[wsgi.CONTEXT_KEY] _actions = {'restart': self._action_restart, 'resize': self._action_resize, 'promote_to_replica_source': self._action_promote_to_replica_source, 'eject_replica_source': self._action_eject_replica_source, 'reset_status': self._action_reset_status} selected_action = None action_name = None for key in body: if (key in _actions): selected_action = _actions[key] action_name = key LOG.info('Performing %(action_name)s action against instance %(instance_id)s for tenant %(tenant_id)s, body: %(body)s', {'action_name': action_name, 'instance_id': id, 'tenant_id': tenant_id, 'body': body}) needs_server = True if (action_name in ['reset_status']): needs_server = False instance = models.Instance.load(context, id, needs_server=needs_server) return selected_action(context, req, instance, body)
def action(self, req, body, tenant_id, id): "\n Handles requests that modify existing instances in some manner. Actions\n could include 'resize', 'restart'\n :param req: http request object\n :param body: deserialized body of the request as a dict\n :param tenant_id: the tenant id for whom owns the instance\n :param id: instance id\n " LOG.debug("instance action req : '%s'\n\n", req) if (not body): raise exception.BadRequest(_('Invalid request body.')) context = req.environ[wsgi.CONTEXT_KEY] _actions = {'restart': self._action_restart, 'resize': self._action_resize, 'promote_to_replica_source': self._action_promote_to_replica_source, 'eject_replica_source': self._action_eject_replica_source, 'reset_status': self._action_reset_status} selected_action = None action_name = None for key in body: if (key in _actions): selected_action = _actions[key] action_name = key LOG.info('Performing %(action_name)s action against instance %(instance_id)s for tenant %(tenant_id)s, body: %(body)s', {'action_name': action_name, 'instance_id': id, 'tenant_id': tenant_id, 'body': body}) needs_server = True if (action_name in ['reset_status']): needs_server = False instance = models.Instance.load(context, id, needs_server=needs_server) return selected_action(context, req, instance, body)<|docstring|>Handles requests that modify existing instances in some manner. Actions could include 'resize', 'restart' :param req: http request object :param body: deserialized body of the request as a dict :param tenant_id: the tenant id for whom owns the instance :param id: instance id<|endoftext|>
8e172bd4cb5589a6dcc1c3936294c7168c6ed1874bf913c9d6ed9dd83b9f363a
def _action_resize(self, context, req, instance, body): '\n Handles 2 cases\n 1. resize volume\n body only contains {volume: {size: x}}\n 2. resize instance\n body only contains {flavorRef: http.../2}\n\n If the body has both we will throw back an error.\n ' options = {'volume': self._action_resize_volume, 'flavorRef': self._action_resize_flavor} selected_option = None args = None for key in options: if (key in body['resize']): selected_option = options[key] args = body['resize'][key] break return selected_option(context, req, instance, args)
Handles 2 cases 1. resize volume body only contains {volume: {size: x}} 2. resize instance body only contains {flavorRef: http.../2} If the body has both we will throw back an error.
trove/instance/service.py
_action_resize
viettelidc-oss/trove
1
python
def _action_resize(self, context, req, instance, body): '\n Handles 2 cases\n 1. resize volume\n body only contains {volume: {size: x}}\n 2. resize instance\n body only contains {flavorRef: http.../2}\n\n If the body has both we will throw back an error.\n ' options = {'volume': self._action_resize_volume, 'flavorRef': self._action_resize_flavor} selected_option = None args = None for key in options: if (key in body['resize']): selected_option = options[key] args = body['resize'][key] break return selected_option(context, req, instance, args)
def _action_resize(self, context, req, instance, body): '\n Handles 2 cases\n 1. resize volume\n body only contains {volume: {size: x}}\n 2. resize instance\n body only contains {flavorRef: http.../2}\n\n If the body has both we will throw back an error.\n ' options = {'volume': self._action_resize_volume, 'flavorRef': self._action_resize_flavor} selected_option = None args = None for key in options: if (key in body['resize']): selected_option = options[key] args = body['resize'][key] break return selected_option(context, req, instance, args)<|docstring|>Handles 2 cases 1. resize volume body only contains {volume: {size: x}} 2. resize instance body only contains {flavorRef: http.../2} If the body has both we will throw back an error.<|endoftext|>
e96cb357a0255c8bd7ceca9505777447d748292f877350917962704347ff9f72
def index(self, req, tenant_id): 'Return all instances.' LOG.info("Listing database instances for tenant '%s'", tenant_id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] policy.authorize_on_tenant(context, 'instance:index') instances = self._get_instances(req, instance_view=views.InstanceView) return wsgi.Result(instances, 200)
Return all instances.
trove/instance/service.py
index
viettelidc-oss/trove
1
python
def index(self, req, tenant_id): LOG.info("Listing database instances for tenant '%s'", tenant_id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] policy.authorize_on_tenant(context, 'instance:index') instances = self._get_instances(req, instance_view=views.InstanceView) return wsgi.Result(instances, 200)
def index(self, req, tenant_id): LOG.info("Listing database instances for tenant '%s'", tenant_id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] policy.authorize_on_tenant(context, 'instance:index') instances = self._get_instances(req, instance_view=views.InstanceView) return wsgi.Result(instances, 200)<|docstring|>Return all instances.<|endoftext|>
ad45e1d5dac2278831f072b25d4e9e50056df8b9ee628c6b8740025e779b34af
def detail(self, req, tenant_id): 'Return all instances with details.' LOG.info("Listing database instances with details for tenant '%s'", tenant_id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] policy.authorize_on_tenant(context, 'instance:detail') instances = self._get_instances(req, instance_view=views.InstanceDetailView) return wsgi.Result(instances, 200)
Return all instances with details.
trove/instance/service.py
detail
viettelidc-oss/trove
1
python
def detail(self, req, tenant_id): LOG.info("Listing database instances with details for tenant '%s'", tenant_id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] policy.authorize_on_tenant(context, 'instance:detail') instances = self._get_instances(req, instance_view=views.InstanceDetailView) return wsgi.Result(instances, 200)
def detail(self, req, tenant_id): LOG.info("Listing database instances with details for tenant '%s'", tenant_id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] policy.authorize_on_tenant(context, 'instance:detail') instances = self._get_instances(req, instance_view=views.InstanceDetailView) return wsgi.Result(instances, 200)<|docstring|>Return all instances with details.<|endoftext|>
c4613f9cf069e9677f9bd4893623ddacfd7a97d3ee5e64b6a57fdeadc1db8fa4
def backups(self, req, tenant_id, id): 'Return all backups for the specified instance.' LOG.info("Listing backups for instance '%s'", id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'backups', instance) (backups, marker) = backup_model.list_for_instance(context, id) view = backup_views.BackupViews(backups) paged = pagination.SimplePaginatedDataView(req.url, 'backups', view, marker) return wsgi.Result(paged.data(), 200)
Return all backups for the specified instance.
trove/instance/service.py
backups
viettelidc-oss/trove
1
python
def backups(self, req, tenant_id, id): LOG.info("Listing backups for instance '%s'", id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'backups', instance) (backups, marker) = backup_model.list_for_instance(context, id) view = backup_views.BackupViews(backups) paged = pagination.SimplePaginatedDataView(req.url, 'backups', view, marker) return wsgi.Result(paged.data(), 200)
def backups(self, req, tenant_id, id): LOG.info("Listing backups for instance '%s'", id) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'backups', instance) (backups, marker) = backup_model.list_for_instance(context, id) view = backup_views.BackupViews(backups) paged = pagination.SimplePaginatedDataView(req.url, 'backups', view, marker) return wsgi.Result(paged.data(), 200)<|docstring|>Return all backups for the specified instance.<|endoftext|>
271782027c1f025c7be45801593cd5d0199261e999de9f7560f46e3685f2510b
def show(self, req, tenant_id, id): 'Return a single instance.' LOG.info("Showing database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] server = models.load_instance_with_info(models.DetailInstance, context, id) self.authorize_instance_action(context, 'show', server) return wsgi.Result(views.InstanceDetailView(server, req=req).data(), 200)
Return a single instance.
trove/instance/service.py
show
viettelidc-oss/trove
1
python
def show(self, req, tenant_id, id): LOG.info("Showing database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] server = models.load_instance_with_info(models.DetailInstance, context, id) self.authorize_instance_action(context, 'show', server) return wsgi.Result(views.InstanceDetailView(server, req=req).data(), 200)
def show(self, req, tenant_id, id): LOG.info("Showing database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] server = models.load_instance_with_info(models.DetailInstance, context, id) self.authorize_instance_action(context, 'show', server) return wsgi.Result(views.InstanceDetailView(server, req=req).data(), 200)<|docstring|>Return a single instance.<|endoftext|>
c8f937a456c1356e37853c33e928a9b8db287b6e672454df9c52585ca1694748
def delete(self, req, tenant_id, id): 'Delete a single instance.' LOG.info("Deleting database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] instance = models.load_any_instance(context, id) self.authorize_instance_action(context, 'delete', instance) context.notification = notification.DBaaSInstanceDelete(context, request=req) with StartNotification(context, instance_id=instance.id): marker = 'foo' while marker: (instance_modules, marker) = module_models.InstanceModules.load(context, instance_id=id) for instance_module in instance_modules: instance_module = module_models.InstanceModule.load(context, instance_module['instance_id'], instance_module['module_id']) module_models.InstanceModule.delete(context, instance_module) instance.delete() return wsgi.Result(None, 202)
Delete a single instance.
trove/instance/service.py
delete
viettelidc-oss/trove
1
python
def delete(self, req, tenant_id, id): LOG.info("Deleting database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] instance = models.load_any_instance(context, id) self.authorize_instance_action(context, 'delete', instance) context.notification = notification.DBaaSInstanceDelete(context, request=req) with StartNotification(context, instance_id=instance.id): marker = 'foo' while marker: (instance_modules, marker) = module_models.InstanceModules.load(context, instance_id=id) for instance_module in instance_modules: instance_module = module_models.InstanceModule.load(context, instance_module['instance_id'], instance_module['module_id']) module_models.InstanceModule.delete(context, instance_module) instance.delete() return wsgi.Result(None, 202)
def delete(self, req, tenant_id, id): LOG.info("Deleting database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug("req : '%s'\n\n", req) context = req.environ[wsgi.CONTEXT_KEY] instance = models.load_any_instance(context, id) self.authorize_instance_action(context, 'delete', instance) context.notification = notification.DBaaSInstanceDelete(context, request=req) with StartNotification(context, instance_id=instance.id): marker = 'foo' while marker: (instance_modules, marker) = module_models.InstanceModules.load(context, instance_id=id) for instance_module in instance_modules: instance_module = module_models.InstanceModule.load(context, instance_module['instance_id'], instance_module['module_id']) module_models.InstanceModule.delete(context, instance_module) instance.delete() return wsgi.Result(None, 202)<|docstring|>Delete a single instance.<|endoftext|>
612d4c61e983e8eed109a72deaca62c48556dff94bc346d6c402684276bc7afb
def update(self, req, id, body, tenant_id): 'Updates the instance to attach/detach configuration.' LOG.info("Updating database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug('req: %s', req) LOG.debug('body: %s', body) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'update', instance) args = {} args['configuration_id'] = self._configuration_parse(context, body) self._modify_instance(context, req, instance, **args) return wsgi.Result(None, 202)
Updates the instance to attach/detach configuration.
trove/instance/service.py
update
viettelidc-oss/trove
1
python
def update(self, req, id, body, tenant_id): LOG.info("Updating database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug('req: %s', req) LOG.debug('body: %s', body) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'update', instance) args = {} args['configuration_id'] = self._configuration_parse(context, body) self._modify_instance(context, req, instance, **args) return wsgi.Result(None, 202)
def update(self, req, id, body, tenant_id): LOG.info("Updating database instance '%(instance_id)s' for tenant '%(tenant_id)s'", {'instance_id': id, 'tenant_id': tenant_id}) LOG.debug('req: %s', req) LOG.debug('body: %s', body) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'update', instance) args = {} args['configuration_id'] = self._configuration_parse(context, body) self._modify_instance(context, req, instance, **args) return wsgi.Result(None, 202)<|docstring|>Updates the instance to attach/detach configuration.<|endoftext|>
1cfdc30123157fc0f10c183ccbca46d01bbd7f4e66e5608a769657310facb669
def edit(self, req, id, body, tenant_id): '\n Updates the instance to set or unset one or more attributes.\n ' LOG.info('Editing instance for tenant id %s.', tenant_id) LOG.debug('req: %s', strutils.mask_password(req)) LOG.debug('body: %s', strutils.mask_password(body)) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'edit', instance) args = {} args['detach_replica'] = (('replica_of' in body['instance']) or ('slave_of' in body['instance'])) if ('name' in body['instance']): args['name'] = body['instance']['name'] if ('configuration' in body['instance']): args['configuration_id'] = self._configuration_parse(context, body) if ('datastore_version' in body['instance']): args['datastore_version'] = body['instance'].get('datastore_version') self._modify_instance(context, req, instance, **args) return wsgi.Result(None, 202)
Updates the instance to set or unset one or more attributes.
trove/instance/service.py
edit
viettelidc-oss/trove
1
python
def edit(self, req, id, body, tenant_id): '\n \n ' LOG.info('Editing instance for tenant id %s.', tenant_id) LOG.debug('req: %s', strutils.mask_password(req)) LOG.debug('body: %s', strutils.mask_password(body)) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'edit', instance) args = {} args['detach_replica'] = (('replica_of' in body['instance']) or ('slave_of' in body['instance'])) if ('name' in body['instance']): args['name'] = body['instance']['name'] if ('configuration' in body['instance']): args['configuration_id'] = self._configuration_parse(context, body) if ('datastore_version' in body['instance']): args['datastore_version'] = body['instance'].get('datastore_version') self._modify_instance(context, req, instance, **args) return wsgi.Result(None, 202)
def edit(self, req, id, body, tenant_id): '\n \n ' LOG.info('Editing instance for tenant id %s.', tenant_id) LOG.debug('req: %s', strutils.mask_password(req)) LOG.debug('body: %s', strutils.mask_password(body)) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'edit', instance) args = {} args['detach_replica'] = (('replica_of' in body['instance']) or ('slave_of' in body['instance'])) if ('name' in body['instance']): args['name'] = body['instance']['name'] if ('configuration' in body['instance']): args['configuration_id'] = self._configuration_parse(context, body) if ('datastore_version' in body['instance']): args['datastore_version'] = body['instance'].get('datastore_version') self._modify_instance(context, req, instance, **args) return wsgi.Result(None, 202)<|docstring|>Updates the instance to set or unset one or more attributes.<|endoftext|>
629e4f73cc10200441da2fdec5f703a49110f88fd82dd5d0ad70c271b9a24841
def configuration(self, req, tenant_id, id): '\n Returns the default configuration template applied to the instance.\n ' LOG.info('Getting default configuration for instance %s', id) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'configuration', instance) LOG.debug('Server: %s', instance) config = instance.get_default_configuration_template() LOG.debug('Default config for instance %(instance_id)s is %(config)s', {'instance_id': id, 'config': config}) return wsgi.Result(views.DefaultConfigurationView(config).data(), 200)
Returns the default configuration template applied to the instance.
trove/instance/service.py
configuration
viettelidc-oss/trove
1
python
def configuration(self, req, tenant_id, id): '\n \n ' LOG.info('Getting default configuration for instance %s', id) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'configuration', instance) LOG.debug('Server: %s', instance) config = instance.get_default_configuration_template() LOG.debug('Default config for instance %(instance_id)s is %(config)s', {'instance_id': id, 'config': config}) return wsgi.Result(views.DefaultConfigurationView(config).data(), 200)
def configuration(self, req, tenant_id, id): '\n \n ' LOG.info('Getting default configuration for instance %s', id) context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) self.authorize_instance_action(context, 'configuration', instance) LOG.debug('Server: %s', instance) config = instance.get_default_configuration_template() LOG.debug('Default config for instance %(instance_id)s is %(config)s', {'instance_id': id, 'config': config}) return wsgi.Result(views.DefaultConfigurationView(config).data(), 200)<|docstring|>Returns the default configuration template applied to the instance.<|endoftext|>
44aac48af8474d601904ab990bebdd8813f7e6e67d2edcad9611a9f594585dfe
def guest_log_list(self, req, tenant_id, id): 'Return all information about all logs for an instance.' LOG.debug('Listing logs for tenant %s', tenant_id) context = req.environ[wsgi.CONTEXT_KEY] try: backup_model.verify_swift_auth_token(context) except exception.SwiftNotFound: raise exception.LogsNotAvailable() instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'guest_log_list', instance) client = clients.create_guest_client(context, id) guest_log_list = client.guest_log_list() return wsgi.Result({'logs': guest_log_list}, 200)
Return all information about all logs for an instance.
trove/instance/service.py
guest_log_list
viettelidc-oss/trove
1
python
def guest_log_list(self, req, tenant_id, id): LOG.debug('Listing logs for tenant %s', tenant_id) context = req.environ[wsgi.CONTEXT_KEY] try: backup_model.verify_swift_auth_token(context) except exception.SwiftNotFound: raise exception.LogsNotAvailable() instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'guest_log_list', instance) client = clients.create_guest_client(context, id) guest_log_list = client.guest_log_list() return wsgi.Result({'logs': guest_log_list}, 200)
def guest_log_list(self, req, tenant_id, id): LOG.debug('Listing logs for tenant %s', tenant_id) context = req.environ[wsgi.CONTEXT_KEY] try: backup_model.verify_swift_auth_token(context) except exception.SwiftNotFound: raise exception.LogsNotAvailable() instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'guest_log_list', instance) client = clients.create_guest_client(context, id) guest_log_list = client.guest_log_list() return wsgi.Result({'logs': guest_log_list}, 200)<|docstring|>Return all information about all logs for an instance.<|endoftext|>
51ffe4f5d669299761cc1e33bdd4e85e94262ec25bd03bf4d898e13e9fed7fc7
def guest_log_action(self, req, body, tenant_id, id): 'Processes a guest log.' LOG.info('Processing log for tenant %s', tenant_id) context = req.environ[wsgi.CONTEXT_KEY] try: backup_model.verify_swift_auth_token(context) except exception.SwiftNotFound: raise exception.LogsNotAvailable() instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) log_name = body['name'] enable = body.get('enable', None) disable = body.get('disable', None) publish = body.get('publish', None) discard = body.get('discard', None) if (enable and disable): raise exception.BadRequest(_('Cannot enable and disable log.')) client = clients.create_guest_client(context, id) guest_log = client.guest_log_action(log_name, enable, disable, publish, discard) return wsgi.Result({'log': guest_log}, 200)
Processes a guest log.
trove/instance/service.py
guest_log_action
viettelidc-oss/trove
1
python
def guest_log_action(self, req, body, tenant_id, id): LOG.info('Processing log for tenant %s', tenant_id) context = req.environ[wsgi.CONTEXT_KEY] try: backup_model.verify_swift_auth_token(context) except exception.SwiftNotFound: raise exception.LogsNotAvailable() instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) log_name = body['name'] enable = body.get('enable', None) disable = body.get('disable', None) publish = body.get('publish', None) discard = body.get('discard', None) if (enable and disable): raise exception.BadRequest(_('Cannot enable and disable log.')) client = clients.create_guest_client(context, id) guest_log = client.guest_log_action(log_name, enable, disable, publish, discard) return wsgi.Result({'log': guest_log}, 200)
def guest_log_action(self, req, body, tenant_id, id): LOG.info('Processing log for tenant %s', tenant_id) context = req.environ[wsgi.CONTEXT_KEY] try: backup_model.verify_swift_auth_token(context) except exception.SwiftNotFound: raise exception.LogsNotAvailable() instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) log_name = body['name'] enable = body.get('enable', None) disable = body.get('disable', None) publish = body.get('publish', None) discard = body.get('discard', None) if (enable and disable): raise exception.BadRequest(_('Cannot enable and disable log.')) client = clients.create_guest_client(context, id) guest_log = client.guest_log_action(log_name, enable, disable, publish, discard) return wsgi.Result({'log': guest_log}, 200)<|docstring|>Processes a guest log.<|endoftext|>
461038183d839ea51070dcbd0e8824a2e3e64a2953dd0e91ed606fdafaf51e74
def module_list(self, req, tenant_id, id): 'Return information about modules on an instance.' context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_list', instance) from_guest = bool(req.GET.get('from_guest', '').lower()) include_contents = bool(req.GET.get('include_contents', '').lower()) if from_guest: return self._module_list_guest(context, id, include_contents=include_contents) else: return self._module_list(context, id, include_contents=include_contents)
Return information about modules on an instance.
trove/instance/service.py
module_list
viettelidc-oss/trove
1
python
def module_list(self, req, tenant_id, id): context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_list', instance) from_guest = bool(req.GET.get('from_guest', ).lower()) include_contents = bool(req.GET.get('include_contents', ).lower()) if from_guest: return self._module_list_guest(context, id, include_contents=include_contents) else: return self._module_list(context, id, include_contents=include_contents)
def module_list(self, req, tenant_id, id): context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_list', instance) from_guest = bool(req.GET.get('from_guest', ).lower()) include_contents = bool(req.GET.get('include_contents', ).lower()) if from_guest: return self._module_list_guest(context, id, include_contents=include_contents) else: return self._module_list(context, id, include_contents=include_contents)<|docstring|>Return information about modules on an instance.<|endoftext|>
92d2d7102966924162bc926a217c6544f46f5d4b9a4e42096cdfe762adf5aff0
def _module_list_guest(self, context, id, include_contents): 'Return information about modules on an instance.' client = clients.create_guest_client(context, id) result_list = client.module_list(include_contents) return wsgi.Result({'modules': result_list}, 200)
Return information about modules on an instance.
trove/instance/service.py
_module_list_guest
viettelidc-oss/trove
1
python
def _module_list_guest(self, context, id, include_contents): client = clients.create_guest_client(context, id) result_list = client.module_list(include_contents) return wsgi.Result({'modules': result_list}, 200)
def _module_list_guest(self, context, id, include_contents): client = clients.create_guest_client(context, id) result_list = client.module_list(include_contents) return wsgi.Result({'modules': result_list}, 200)<|docstring|>Return information about modules on an instance.<|endoftext|>
7e78ffb6307c1f4ba317f2203ecd169f08c32e8c37b3a85554368fc54566c8b6
def _module_list(self, context, id, include_contents): 'Return information about instance modules.' client = clients.create_guest_client(context, id) result_list = client.module_list(include_contents) return wsgi.Result({'modules': result_list}, 200)
Return information about instance modules.
trove/instance/service.py
_module_list
viettelidc-oss/trove
1
python
def _module_list(self, context, id, include_contents): client = clients.create_guest_client(context, id) result_list = client.module_list(include_contents) return wsgi.Result({'modules': result_list}, 200)
def _module_list(self, context, id, include_contents): client = clients.create_guest_client(context, id) result_list = client.module_list(include_contents) return wsgi.Result({'modules': result_list}, 200)<|docstring|>Return information about instance modules.<|endoftext|>
9ea4c7dcfabcb6e871ab502fcde5f1b1df3ed00b13a49adeeb1409c4c1d567a0
def module_apply(self, req, body, tenant_id, id): 'Apply modules to an instance.' context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_apply', instance) module_ids = [mod['id'] for mod in body.get('modules', [])] modules = module_models.Modules.load_by_ids(context, module_ids) module_models.Modules.validate(modules, instance.datastore.id, instance.datastore_version.id) module_list = module_views.convert_modules_to_list(modules) client = clients.create_guest_client(context, id) result_list = client.module_apply(module_list) models.Instance.add_instance_modules(context, id, modules) return wsgi.Result({'modules': result_list}, 200)
Apply modules to an instance.
trove/instance/service.py
module_apply
viettelidc-oss/trove
1
python
def module_apply(self, req, body, tenant_id, id): context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_apply', instance) module_ids = [mod['id'] for mod in body.get('modules', [])] modules = module_models.Modules.load_by_ids(context, module_ids) module_models.Modules.validate(modules, instance.datastore.id, instance.datastore_version.id) module_list = module_views.convert_modules_to_list(modules) client = clients.create_guest_client(context, id) result_list = client.module_apply(module_list) models.Instance.add_instance_modules(context, id, modules) return wsgi.Result({'modules': result_list}, 200)
def module_apply(self, req, body, tenant_id, id): context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_apply', instance) module_ids = [mod['id'] for mod in body.get('modules', [])] modules = module_models.Modules.load_by_ids(context, module_ids) module_models.Modules.validate(modules, instance.datastore.id, instance.datastore_version.id) module_list = module_views.convert_modules_to_list(modules) client = clients.create_guest_client(context, id) result_list = client.module_apply(module_list) models.Instance.add_instance_modules(context, id, modules) return wsgi.Result({'modules': result_list}, 200)<|docstring|>Apply modules to an instance.<|endoftext|>
9817211df3fd3597230f84ac1be57cecfd2aa896f6762e66b54083ced0f8eed6
def module_remove(self, req, tenant_id, id, module_id): 'Remove module from an instance.' context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_remove', instance) module = module_models.Module.load(context, module_id) module_info = module_views.DetailedModuleView(module).data() client = clients.create_guest_client(context, id) client.module_remove(module_info) instance_modules = module_models.InstanceModules.load_all(context, instance_id=id, module_id=module_id) for instance_module in instance_modules: module_models.InstanceModule.delete(context, instance_module) LOG.debug('Deleted IM record %(instance_module_id)s (instance %(id)s, module %(module_id)s).', {'instance_module_id': instance_module.id, 'id': id, 'module_id': module_id}) return wsgi.Result(None, 200)
Remove module from an instance.
trove/instance/service.py
module_remove
viettelidc-oss/trove
1
python
def module_remove(self, req, tenant_id, id, module_id): context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_remove', instance) module = module_models.Module.load(context, module_id) module_info = module_views.DetailedModuleView(module).data() client = clients.create_guest_client(context, id) client.module_remove(module_info) instance_modules = module_models.InstanceModules.load_all(context, instance_id=id, module_id=module_id) for instance_module in instance_modules: module_models.InstanceModule.delete(context, instance_module) LOG.debug('Deleted IM record %(instance_module_id)s (instance %(id)s, module %(module_id)s).', {'instance_module_id': instance_module.id, 'id': id, 'module_id': module_id}) return wsgi.Result(None, 200)
def module_remove(self, req, tenant_id, id, module_id): context = req.environ[wsgi.CONTEXT_KEY] instance = models.Instance.load(context, id) if (not instance): raise exception.NotFound(uuid=id) self.authorize_instance_action(context, 'module_remove', instance) module = module_models.Module.load(context, module_id) module_info = module_views.DetailedModuleView(module).data() client = clients.create_guest_client(context, id) client.module_remove(module_info) instance_modules = module_models.InstanceModules.load_all(context, instance_id=id, module_id=module_id) for instance_module in instance_modules: module_models.InstanceModule.delete(context, instance_module) LOG.debug('Deleted IM record %(instance_module_id)s (instance %(id)s, module %(module_id)s).', {'instance_module_id': instance_module.id, 'id': id, 'module_id': module_id}) return wsgi.Result(None, 200)<|docstring|>Remove module from an instance.<|endoftext|>
3fba101d8bcbb3aaf6b952e60cfeb3152bcf17dd2881aa3460d27ca42928bded
def get_current_position(self, entity_id): '\n overwrite it to provide your real position\n\n :param entity_id:\n ' pass
overwrite it to provide your real position :param entity_id:
zvt/trader/account.py
get_current_position
Zuojinfang/zvt
2
python
def get_current_position(self, entity_id): '\n overwrite it to provide your real position\n\n :param entity_id:\n ' pass
def get_current_position(self, entity_id): '\n overwrite it to provide your real position\n\n :param entity_id:\n ' pass<|docstring|>overwrite it to provide your real position :param entity_id:<|endoftext|>
ad026c75c9277f6b8b681f0de613b1ac43f79417f903643370611323bfd9fcad
def persist_account(self, timestamp): '\n save the account to db,we do this after closing time every day\n\n :param timestamp:\n :type timestamp:\n ' the_id = '{}_{}'.format(self.trader_name, to_time_str(timestamp, TIME_FORMAT_ISO8601)) for position in self.account.positions: position.id = '{}_{}_{}'.format(self.trader_name, position.entity_id, to_time_str(timestamp, TIME_FORMAT_ISO8601)) position.timestamp = to_pd_timestamp(timestamp) position.account_stats_id = the_id self.account.id = the_id self.logger.info('persist_account:{}'.format(account_stats_schema.dump(self.account))) self.session.add(self.account) self.session.commit()
save the account to db,we do this after closing time every day :param timestamp: :type timestamp:
zvt/trader/account.py
persist_account
Zuojinfang/zvt
2
python
def persist_account(self, timestamp): '\n save the account to db,we do this after closing time every day\n\n :param timestamp:\n :type timestamp:\n ' the_id = '{}_{}'.format(self.trader_name, to_time_str(timestamp, TIME_FORMAT_ISO8601)) for position in self.account.positions: position.id = '{}_{}_{}'.format(self.trader_name, position.entity_id, to_time_str(timestamp, TIME_FORMAT_ISO8601)) position.timestamp = to_pd_timestamp(timestamp) position.account_stats_id = the_id self.account.id = the_id self.logger.info('persist_account:{}'.format(account_stats_schema.dump(self.account))) self.session.add(self.account) self.session.commit()
def persist_account(self, timestamp): '\n save the account to db,we do this after closing time every day\n\n :param timestamp:\n :type timestamp:\n ' the_id = '{}_{}'.format(self.trader_name, to_time_str(timestamp, TIME_FORMAT_ISO8601)) for position in self.account.positions: position.id = '{}_{}_{}'.format(self.trader_name, position.entity_id, to_time_str(timestamp, TIME_FORMAT_ISO8601)) position.timestamp = to_pd_timestamp(timestamp) position.account_stats_id = the_id self.account.id = the_id self.logger.info('persist_account:{}'.format(account_stats_schema.dump(self.account))) self.session.add(self.account) self.session.commit()<|docstring|>save the account to db,we do this after closing time every day :param timestamp: :type timestamp:<|endoftext|>
9d9158cc32c94407c24c931448da2f3d615e50b805eed839a5eea3ea2c55cf66
def get_current_position(self, entity_id) -> Position: '\n get current position to decide whether order could make\n\n :param entity_id:\n :type entity_id: str\n :return:\n :rtype: None\n ' for position in self.account.positions: if (position.entity_id == entity_id): return position return None
get current position to decide whether order could make :param entity_id: :type entity_id: str :return: :rtype: None
zvt/trader/account.py
get_current_position
Zuojinfang/zvt
2
python
def get_current_position(self, entity_id) -> Position: '\n get current position to decide whether order could make\n\n :param entity_id:\n :type entity_id: str\n :return:\n :rtype: None\n ' for position in self.account.positions: if (position.entity_id == entity_id): return position return None
def get_current_position(self, entity_id) -> Position: '\n get current position to decide whether order could make\n\n :param entity_id:\n :type entity_id: str\n :return:\n :rtype: None\n ' for position in self.account.positions: if (position.entity_id == entity_id): return position return None<|docstring|>get current position to decide whether order could make :param entity_id: :type entity_id: str :return: :rtype: None<|endoftext|>
5e897f320ad669cd5c946f1e86b8924dc0d8e3fbcecf27d1b921c15aca9bd641
def update_position(self, current_position, order_amount, current_price, order_type, timestamp): '\n\n :param timestamp:\n :type timestamp:\n :param current_position:\n :type current_position: Position\n :param order_amount:\n :type order_amount:\n :param current_price:\n :type current_price:\n :param order_type:\n :type order_type:\n ' if (order_type == ORDER_TYPE_LONG): need_money = ((order_amount * current_price) * ((1 + self.slippage) + self.buy_cost)) if (self.account.cash < need_money): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.account.cash -= need_money long_amount = (current_position.long_amount + order_amount) current_position.average_long_price = (((current_position.average_long_price * current_position.long_amount) + (current_price * order_amount)) / long_amount) current_position.long_amount = long_amount if (current_position.trading_t == 0): current_position.available_long += order_amount elif (order_type == ORDER_TYPE_SHORT): need_money = ((order_amount * current_price) * ((1 + self.slippage) + self.buy_cost)) if (self.account.cash < need_money): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.account.cash -= need_money short_amount = (current_position.short_amount + order_amount) current_position.average_short_price = (((current_position.average_short_price * current_position.short_amount) + (current_price * order_amount)) / short_amount) current_position.short_amount = short_amount if (current_position.trading_t == 0): current_position.available_short += order_amount elif (order_type == ORDER_TYPE_CLOSE_LONG): self.account.cash += ((order_amount * current_price) * ((1 - self.slippage) - self.sell_cost)) current_position.available_long -= order_amount current_position.long_amount -= order_amount elif (order_type == ORDER_TYPE_CLOSE_SHORT): self.account.cash += (2 * (order_amount * current_position.average_short_price)) self.account.cash -= ((order_amount * current_price) * ((1 + self.slippage) + self.sell_cost)) current_position.available_short -= order_amount current_position.short_amount -= order_amount order_id = '{}_{}_{}_{}'.format(self.trader_name, order_type, current_position.entity_id, to_time_str(timestamp, TIME_FORMAT_ISO8601)) order = Order(id=order_id, timestamp=to_pd_timestamp(timestamp), trader_name=self.trader_name, entity_id=current_position.entity_id, order_price=current_price, order_amount=order_amount, order_type=order_type, level=self.level.value, status='success') self.session.add(order) self.session.commit()
:param timestamp: :type timestamp: :param current_position: :type current_position: Position :param order_amount: :type order_amount: :param current_price: :type current_price: :param order_type: :type order_type:
zvt/trader/account.py
update_position
Zuojinfang/zvt
2
python
def update_position(self, current_position, order_amount, current_price, order_type, timestamp): '\n\n :param timestamp:\n :type timestamp:\n :param current_position:\n :type current_position: Position\n :param order_amount:\n :type order_amount:\n :param current_price:\n :type current_price:\n :param order_type:\n :type order_type:\n ' if (order_type == ORDER_TYPE_LONG): need_money = ((order_amount * current_price) * ((1 + self.slippage) + self.buy_cost)) if (self.account.cash < need_money): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.account.cash -= need_money long_amount = (current_position.long_amount + order_amount) current_position.average_long_price = (((current_position.average_long_price * current_position.long_amount) + (current_price * order_amount)) / long_amount) current_position.long_amount = long_amount if (current_position.trading_t == 0): current_position.available_long += order_amount elif (order_type == ORDER_TYPE_SHORT): need_money = ((order_amount * current_price) * ((1 + self.slippage) + self.buy_cost)) if (self.account.cash < need_money): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.account.cash -= need_money short_amount = (current_position.short_amount + order_amount) current_position.average_short_price = (((current_position.average_short_price * current_position.short_amount) + (current_price * order_amount)) / short_amount) current_position.short_amount = short_amount if (current_position.trading_t == 0): current_position.available_short += order_amount elif (order_type == ORDER_TYPE_CLOSE_LONG): self.account.cash += ((order_amount * current_price) * ((1 - self.slippage) - self.sell_cost)) current_position.available_long -= order_amount current_position.long_amount -= order_amount elif (order_type == ORDER_TYPE_CLOSE_SHORT): self.account.cash += (2 * (order_amount * current_position.average_short_price)) self.account.cash -= ((order_amount * current_price) * ((1 + self.slippage) + self.sell_cost)) current_position.available_short -= order_amount current_position.short_amount -= order_amount order_id = '{}_{}_{}_{}'.format(self.trader_name, order_type, current_position.entity_id, to_time_str(timestamp, TIME_FORMAT_ISO8601)) order = Order(id=order_id, timestamp=to_pd_timestamp(timestamp), trader_name=self.trader_name, entity_id=current_position.entity_id, order_price=current_price, order_amount=order_amount, order_type=order_type, level=self.level.value, status='success') self.session.add(order) self.session.commit()
def update_position(self, current_position, order_amount, current_price, order_type, timestamp): '\n\n :param timestamp:\n :type timestamp:\n :param current_position:\n :type current_position: Position\n :param order_amount:\n :type order_amount:\n :param current_price:\n :type current_price:\n :param order_type:\n :type order_type:\n ' if (order_type == ORDER_TYPE_LONG): need_money = ((order_amount * current_price) * ((1 + self.slippage) + self.buy_cost)) if (self.account.cash < need_money): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.account.cash -= need_money long_amount = (current_position.long_amount + order_amount) current_position.average_long_price = (((current_position.average_long_price * current_position.long_amount) + (current_price * order_amount)) / long_amount) current_position.long_amount = long_amount if (current_position.trading_t == 0): current_position.available_long += order_amount elif (order_type == ORDER_TYPE_SHORT): need_money = ((order_amount * current_price) * ((1 + self.slippage) + self.buy_cost)) if (self.account.cash < need_money): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.account.cash -= need_money short_amount = (current_position.short_amount + order_amount) current_position.average_short_price = (((current_position.average_short_price * current_position.short_amount) + (current_price * order_amount)) / short_amount) current_position.short_amount = short_amount if (current_position.trading_t == 0): current_position.available_short += order_amount elif (order_type == ORDER_TYPE_CLOSE_LONG): self.account.cash += ((order_amount * current_price) * ((1 - self.slippage) - self.sell_cost)) current_position.available_long -= order_amount current_position.long_amount -= order_amount elif (order_type == ORDER_TYPE_CLOSE_SHORT): self.account.cash += (2 * (order_amount * current_position.average_short_price)) self.account.cash -= ((order_amount * current_price) * ((1 + self.slippage) + self.sell_cost)) current_position.available_short -= order_amount current_position.short_amount -= order_amount order_id = '{}_{}_{}_{}'.format(self.trader_name, order_type, current_position.entity_id, to_time_str(timestamp, TIME_FORMAT_ISO8601)) order = Order(id=order_id, timestamp=to_pd_timestamp(timestamp), trader_name=self.trader_name, entity_id=current_position.entity_id, order_price=current_price, order_amount=order_amount, order_type=order_type, level=self.level.value, status='success') self.session.add(order) self.session.commit()<|docstring|>:param timestamp: :type timestamp: :param current_position: :type current_position: Position :param order_amount: :type order_amount: :param current_price: :type current_price: :param order_type: :type order_type:<|endoftext|>
c7d3f2b5b6337765858e67339f0e0f1a3054a5a221538618d5e3658f6d08bba6
def order(self, entity_id, current_price, current_timestamp, order_amount=0, order_pct=1.0, order_price=0, order_type=ORDER_TYPE_LONG, order_money=0): '\n 下单\n\n Parameters\n ----------\n entity_id : str\n 交易标的id\n\n current_price : float\n 当前价格\n\n current_timestamp: timestamp\n 下单的时间\n\n order_amount : int\n 数量\n\n order_pct : float\n 使用可用现金(仓位)的百分比,0.0-1.0\n\n order_price : float\n 用于限价交易\n\n order_type : {ORDER_TYPE_LONG,ORDER_TYPE_SHORT,ORDER_TYPE_CLOSE_LONG,ORDER_TYPE_CLOSE_SHORT}\n 交易类型\n\n Returns\n\n ' if (order_price == 0): current_position = self.get_current_position(entity_id=entity_id) if (not current_position): trading_t = self.entity_schema.get_trading_t() current_position = Position(trader_name=self.trader_name, entity_id=entity_id, long_amount=0, available_long=0, average_long_price=0, short_amount=0, available_short=0, average_short_price=0, profit=0, value=0, trading_t=trading_t) self.account.positions.append(current_position) if (order_money > 0): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') if (order_money > self.account.cash): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() cost = (current_price * ((1 + self.slippage) + self.buy_cost)) order_amount = (order_money // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') if (order_money > self.account.cash): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() cost = (current_price * ((1 + self.slippage) + self.buy_cost)) order_amount = (order_money // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise InvalidOrderParamError('close long/short not support order_money') elif (order_amount > 0): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_CLOSE_LONG): if (current_position.available_long >= order_amount): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise NotEnoughPositionError() elif (order_type == ORDER_TYPE_CLOSE_SHORT): if (current_position.available_short >= order_amount): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise Exception('not enough position') elif (0 < order_pct <= 1): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') cost = (current_price * ((1 + self.slippage) + self.buy_cost)) want_pay = (self.account.cash * order_pct) order_amount = (want_pay // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') cost = (current_price * ((1 + self.slippage) + self.buy_cost)) want_pay = (self.account.cash * order_pct) order_amount = (want_pay // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_CLOSE_LONG): if (current_position.available_long > 0): if (order_pct == 1.0): order_amount = current_position.available_long else: order_amount = math.floor((current_position.available_long * order_pct)) if (order_amount != 0): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: self.logger.warning(f'{entity_id} available_long:{current_position.available_long} order_pct:{order_pct} order_amount:{order_amount}') else: raise NotEnoughPositionError() elif (order_type == ORDER_TYPE_CLOSE_SHORT): if (current_position.available_short > 0): if (order_pct == 1.0): order_amount = current_position.available_short else: order_amount = math.floor((current_position.available_short * order_pct)) if (order_amount != 0): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: self.logger.warning(f'{entity_id} available_long:{current_position.available_long} order_pct:{order_pct} order_amount:{order_amount}') else: raise Exception('not enough position')
下单 Parameters ---------- entity_id : str 交易标的id current_price : float 当前价格 current_timestamp: timestamp 下单的时间 order_amount : int 数量 order_pct : float 使用可用现金(仓位)的百分比,0.0-1.0 order_price : float 用于限价交易 order_type : {ORDER_TYPE_LONG,ORDER_TYPE_SHORT,ORDER_TYPE_CLOSE_LONG,ORDER_TYPE_CLOSE_SHORT} 交易类型 Returns
zvt/trader/account.py
order
Zuojinfang/zvt
2
python
def order(self, entity_id, current_price, current_timestamp, order_amount=0, order_pct=1.0, order_price=0, order_type=ORDER_TYPE_LONG, order_money=0): '\n 下单\n\n Parameters\n ----------\n entity_id : str\n 交易标的id\n\n current_price : float\n 当前价格\n\n current_timestamp: timestamp\n 下单的时间\n\n order_amount : int\n 数量\n\n order_pct : float\n 使用可用现金(仓位)的百分比,0.0-1.0\n\n order_price : float\n 用于限价交易\n\n order_type : {ORDER_TYPE_LONG,ORDER_TYPE_SHORT,ORDER_TYPE_CLOSE_LONG,ORDER_TYPE_CLOSE_SHORT}\n 交易类型\n\n Returns\n\n ' if (order_price == 0): current_position = self.get_current_position(entity_id=entity_id) if (not current_position): trading_t = self.entity_schema.get_trading_t() current_position = Position(trader_name=self.trader_name, entity_id=entity_id, long_amount=0, available_long=0, average_long_price=0, short_amount=0, available_short=0, average_short_price=0, profit=0, value=0, trading_t=trading_t) self.account.positions.append(current_position) if (order_money > 0): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') if (order_money > self.account.cash): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() cost = (current_price * ((1 + self.slippage) + self.buy_cost)) order_amount = (order_money // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') if (order_money > self.account.cash): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() cost = (current_price * ((1 + self.slippage) + self.buy_cost)) order_amount = (order_money // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise InvalidOrderParamError('close long/short not support order_money') elif (order_amount > 0): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_CLOSE_LONG): if (current_position.available_long >= order_amount): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise NotEnoughPositionError() elif (order_type == ORDER_TYPE_CLOSE_SHORT): if (current_position.available_short >= order_amount): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise Exception('not enough position') elif (0 < order_pct <= 1): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') cost = (current_price * ((1 + self.slippage) + self.buy_cost)) want_pay = (self.account.cash * order_pct) order_amount = (want_pay // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') cost = (current_price * ((1 + self.slippage) + self.buy_cost)) want_pay = (self.account.cash * order_pct) order_amount = (want_pay // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_CLOSE_LONG): if (current_position.available_long > 0): if (order_pct == 1.0): order_amount = current_position.available_long else: order_amount = math.floor((current_position.available_long * order_pct)) if (order_amount != 0): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: self.logger.warning(f'{entity_id} available_long:{current_position.available_long} order_pct:{order_pct} order_amount:{order_amount}') else: raise NotEnoughPositionError() elif (order_type == ORDER_TYPE_CLOSE_SHORT): if (current_position.available_short > 0): if (order_pct == 1.0): order_amount = current_position.available_short else: order_amount = math.floor((current_position.available_short * order_pct)) if (order_amount != 0): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: self.logger.warning(f'{entity_id} available_long:{current_position.available_long} order_pct:{order_pct} order_amount:{order_amount}') else: raise Exception('not enough position')
def order(self, entity_id, current_price, current_timestamp, order_amount=0, order_pct=1.0, order_price=0, order_type=ORDER_TYPE_LONG, order_money=0): '\n 下单\n\n Parameters\n ----------\n entity_id : str\n 交易标的id\n\n current_price : float\n 当前价格\n\n current_timestamp: timestamp\n 下单的时间\n\n order_amount : int\n 数量\n\n order_pct : float\n 使用可用现金(仓位)的百分比,0.0-1.0\n\n order_price : float\n 用于限价交易\n\n order_type : {ORDER_TYPE_LONG,ORDER_TYPE_SHORT,ORDER_TYPE_CLOSE_LONG,ORDER_TYPE_CLOSE_SHORT}\n 交易类型\n\n Returns\n\n ' if (order_price == 0): current_position = self.get_current_position(entity_id=entity_id) if (not current_position): trading_t = self.entity_schema.get_trading_t() current_position = Position(trader_name=self.trader_name, entity_id=entity_id, long_amount=0, available_long=0, average_long_price=0, short_amount=0, available_short=0, average_short_price=0, profit=0, value=0, trading_t=trading_t) self.account.positions.append(current_position) if (order_money > 0): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') if (order_money > self.account.cash): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() cost = (current_price * ((1 + self.slippage) + self.buy_cost)) order_amount = (order_money // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') if (order_money > self.account.cash): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() cost = (current_price * ((1 + self.slippage) + self.buy_cost)) order_amount = (order_money // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise InvalidOrderParamError('close long/short not support order_money') elif (order_amount > 0): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_CLOSE_LONG): if (current_position.available_long >= order_amount): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise NotEnoughPositionError() elif (order_type == ORDER_TYPE_CLOSE_SHORT): if (current_position.available_short >= order_amount): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: raise Exception('not enough position') elif (0 < order_pct <= 1): if (order_type == ORDER_TYPE_LONG): if (current_position.short_amount > 0): raise InvalidOrderError('close the short position before open long') cost = (current_price * ((1 + self.slippage) + self.buy_cost)) want_pay = (self.account.cash * order_pct) order_amount = (want_pay // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_SHORT): if (current_position.long_amount > 0): raise InvalidOrderError('close the long position before open short') cost = (current_price * ((1 + self.slippage) + self.buy_cost)) want_pay = (self.account.cash * order_pct) order_amount = (want_pay // cost) if (order_amount < 100): if self.rich_mode: self.input_money() else: raise NotEnoughMoneyError() self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) elif (order_type == ORDER_TYPE_CLOSE_LONG): if (current_position.available_long > 0): if (order_pct == 1.0): order_amount = current_position.available_long else: order_amount = math.floor((current_position.available_long * order_pct)) if (order_amount != 0): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: self.logger.warning(f'{entity_id} available_long:{current_position.available_long} order_pct:{order_pct} order_amount:{order_amount}') else: raise NotEnoughPositionError() elif (order_type == ORDER_TYPE_CLOSE_SHORT): if (current_position.available_short > 0): if (order_pct == 1.0): order_amount = current_position.available_short else: order_amount = math.floor((current_position.available_short * order_pct)) if (order_amount != 0): self.update_position(current_position, order_amount, current_price, order_type, current_timestamp) else: self.logger.warning(f'{entity_id} available_long:{current_position.available_long} order_pct:{order_pct} order_amount:{order_amount}') else: raise Exception('not enough position')<|docstring|>下单 Parameters ---------- entity_id : str 交易标的id current_price : float 当前价格 current_timestamp: timestamp 下单的时间 order_amount : int 数量 order_pct : float 使用可用现金(仓位)的百分比,0.0-1.0 order_price : float 用于限价交易 order_type : {ORDER_TYPE_LONG,ORDER_TYPE_SHORT,ORDER_TYPE_CLOSE_LONG,ORDER_TYPE_CLOSE_SHORT} 交易类型 Returns<|endoftext|>
766f81a6e78e20ff5b96c803cf7ca38432d0616d6a4d9761085876a42c0254bc
def is_in_onnx_export() -> bool: 'Returns whether it is in the middle of ONNX export.' return GLOBALS.in_onnx_export
Returns whether it is in the middle of ONNX export.
torch/onnx/utils.py
is_in_onnx_export
TristanLaan/pytorch
0
python
def is_in_onnx_export() -> bool: return GLOBALS.in_onnx_export
def is_in_onnx_export() -> bool: return GLOBALS.in_onnx_export<|docstring|>Returns whether it is in the middle of ONNX export.<|endoftext|>
e9666d55d9a0583d46754f73c453d4df937eecc04e15cf6e67c921daa7e003a5
def warn_on_static_input_change(input_states): "Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph.\n\n We accept dictionaries and strings as ONNX inputs, but they should be only for\n configuration use. we detect here if these inputs are modified, and if so we warn\n the user that the changes won't take effect in the traced ONNX graph.\n " for (input, traced_input) in zip(input_states[0], input_states[1]): if isinstance(input, dict): if (list(input.keys()) != list(traced_input.keys())): warning = 'We detected that you are modifying a dictionary that is an input to your model. Note that dictionaries are allowed as inputs in ONNX but they should be handled with care. Usages of dictionaries is not recommended, and should not be used except for configuration use. Also note that the order and values of the keys must remain the same. ' warnings.warn(warning) elif isinstance(input, str): if (input != traced_input): warning = 'The model seems to have string inputs/outputs. Note that strings will not appear as inputs/outputs of the ONNX graph. ' warnings.warn(warning)
Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph. We accept dictionaries and strings as ONNX inputs, but they should be only for configuration use. we detect here if these inputs are modified, and if so we warn the user that the changes won't take effect in the traced ONNX graph.
torch/onnx/utils.py
warn_on_static_input_change
TristanLaan/pytorch
0
python
def warn_on_static_input_change(input_states): "Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph.\n\n We accept dictionaries and strings as ONNX inputs, but they should be only for\n configuration use. we detect here if these inputs are modified, and if so we warn\n the user that the changes won't take effect in the traced ONNX graph.\n " for (input, traced_input) in zip(input_states[0], input_states[1]): if isinstance(input, dict): if (list(input.keys()) != list(traced_input.keys())): warning = 'We detected that you are modifying a dictionary that is an input to your model. Note that dictionaries are allowed as inputs in ONNX but they should be handled with care. Usages of dictionaries is not recommended, and should not be used except for configuration use. Also note that the order and values of the keys must remain the same. ' warnings.warn(warning) elif isinstance(input, str): if (input != traced_input): warning = 'The model seems to have string inputs/outputs. Note that strings will not appear as inputs/outputs of the ONNX graph. ' warnings.warn(warning)
def warn_on_static_input_change(input_states): "Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph.\n\n We accept dictionaries and strings as ONNX inputs, but they should be only for\n configuration use. we detect here if these inputs are modified, and if so we warn\n the user that the changes won't take effect in the traced ONNX graph.\n " for (input, traced_input) in zip(input_states[0], input_states[1]): if isinstance(input, dict): if (list(input.keys()) != list(traced_input.keys())): warning = 'We detected that you are modifying a dictionary that is an input to your model. Note that dictionaries are allowed as inputs in ONNX but they should be handled with care. Usages of dictionaries is not recommended, and should not be used except for configuration use. Also note that the order and values of the keys must remain the same. ' warnings.warn(warning) elif isinstance(input, str): if (input != traced_input): warning = 'The model seems to have string inputs/outputs. Note that strings will not appear as inputs/outputs of the ONNX graph. ' warnings.warn(warning)<|docstring|>Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph. We accept dictionaries and strings as ONNX inputs, but they should be only for configuration use. we detect here if these inputs are modified, and if so we warn the user that the changes won't take effect in the traced ONNX graph.<|endoftext|>
511e4e88763853e66e6fa6199d06ba16cd04f1cc598bebf2845d55e119493c1c
def _resolve_args_by_export_type(arg_name, arg_value, operator_export_type): 'Resolves the arguments that are ignored when export_type != operator_export_type.ONNX.' if ((operator_export_type is not operator_export_type.ONNX) and _C_onnx._CAFFE2_ATEN_FALLBACK): if (arg_value is True): warnings.warn(f"'{arg_name}' can be set to True only when 'operator_export_type' is `ONNX`. Since 'operator_export_type' is not set to 'ONNX', '{arg_name}' argument will be ignored.") arg_value = False return arg_value
Resolves the arguments that are ignored when export_type != operator_export_type.ONNX.
torch/onnx/utils.py
_resolve_args_by_export_type
TristanLaan/pytorch
0
python
def _resolve_args_by_export_type(arg_name, arg_value, operator_export_type): if ((operator_export_type is not operator_export_type.ONNX) and _C_onnx._CAFFE2_ATEN_FALLBACK): if (arg_value is True): warnings.warn(f"'{arg_name}' can be set to True only when 'operator_export_type' is `ONNX`. Since 'operator_export_type' is not set to 'ONNX', '{arg_name}' argument will be ignored.") arg_value = False return arg_value
def _resolve_args_by_export_type(arg_name, arg_value, operator_export_type): if ((operator_export_type is not operator_export_type.ONNX) and _C_onnx._CAFFE2_ATEN_FALLBACK): if (arg_value is True): warnings.warn(f"'{arg_name}' can be set to True only when 'operator_export_type' is `ONNX`. Since 'operator_export_type' is not set to 'ONNX', '{arg_name}' argument will be ignored.") arg_value = False return arg_value<|docstring|>Resolves the arguments that are ignored when export_type != operator_export_type.ONNX.<|endoftext|>
22e990228d6da3650a0570e5f988e21565f1cef89a6ae2ce65c85d77b2ce6c8c
def _decide_keep_init_as_input(keep_initializers_as_inputs: Optional[bool], operator_export_type: _C_onnx.OperatorExportTypes, opset_version: int): 'Decides whether the initializers in the graph should be listed as ONNX graph inputs.\n\n This method encapsulates the logic to decide whether the initializers in the graph\n should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4).\n If keep_initializers_as_inputs is not specified (None), then we decide whether to keep\n initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type\n is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other\n export types keep initializers as input (val_keep_init_as_ip=True).\n If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8,\n in which case it must be ignored because for opset version <= 8, all initializers MUST be\n part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True.\n\n Special handling is needed for opset version 8 or lower, because irrespective\n of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3\n semantics, i.e. all initializers must be listed as ONNX graph input.\n ' if (opset_version < 9): if (keep_initializers_as_inputs is False): warnings.warn("Setting 'keep_initializers_as_inputs=False' for opset version8 or lower would lead to an invalid ONNX graph. Therefore, 'keep_initializers_as_inputs=False' is ignored during export.Exported model will have initializers as graph inputs (compliant to ONNX IR v3).") return True val_keep_init_as_ip = (True if (keep_initializers_as_inputs is None) else keep_initializers_as_inputs) if ((keep_initializers_as_inputs is None) and (operator_export_type is _C_onnx.OperatorExportTypes.ONNX)): val_keep_init_as_ip = False return val_keep_init_as_ip
Decides whether the initializers in the graph should be listed as ONNX graph inputs. This method encapsulates the logic to decide whether the initializers in the graph should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4). If keep_initializers_as_inputs is not specified (None), then we decide whether to keep initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other export types keep initializers as input (val_keep_init_as_ip=True). If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8, in which case it must be ignored because for opset version <= 8, all initializers MUST be part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True. Special handling is needed for opset version 8 or lower, because irrespective of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3 semantics, i.e. all initializers must be listed as ONNX graph input.
torch/onnx/utils.py
_decide_keep_init_as_input
TristanLaan/pytorch
0
python
def _decide_keep_init_as_input(keep_initializers_as_inputs: Optional[bool], operator_export_type: _C_onnx.OperatorExportTypes, opset_version: int): 'Decides whether the initializers in the graph should be listed as ONNX graph inputs.\n\n This method encapsulates the logic to decide whether the initializers in the graph\n should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4).\n If keep_initializers_as_inputs is not specified (None), then we decide whether to keep\n initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type\n is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other\n export types keep initializers as input (val_keep_init_as_ip=True).\n If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8,\n in which case it must be ignored because for opset version <= 8, all initializers MUST be\n part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True.\n\n Special handling is needed for opset version 8 or lower, because irrespective\n of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3\n semantics, i.e. all initializers must be listed as ONNX graph input.\n ' if (opset_version < 9): if (keep_initializers_as_inputs is False): warnings.warn("Setting 'keep_initializers_as_inputs=False' for opset version8 or lower would lead to an invalid ONNX graph. Therefore, 'keep_initializers_as_inputs=False' is ignored during export.Exported model will have initializers as graph inputs (compliant to ONNX IR v3).") return True val_keep_init_as_ip = (True if (keep_initializers_as_inputs is None) else keep_initializers_as_inputs) if ((keep_initializers_as_inputs is None) and (operator_export_type is _C_onnx.OperatorExportTypes.ONNX)): val_keep_init_as_ip = False return val_keep_init_as_ip
def _decide_keep_init_as_input(keep_initializers_as_inputs: Optional[bool], operator_export_type: _C_onnx.OperatorExportTypes, opset_version: int): 'Decides whether the initializers in the graph should be listed as ONNX graph inputs.\n\n This method encapsulates the logic to decide whether the initializers in the graph\n should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4).\n If keep_initializers_as_inputs is not specified (None), then we decide whether to keep\n initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type\n is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other\n export types keep initializers as input (val_keep_init_as_ip=True).\n If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8,\n in which case it must be ignored because for opset version <= 8, all initializers MUST be\n part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True.\n\n Special handling is needed for opset version 8 or lower, because irrespective\n of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3\n semantics, i.e. all initializers must be listed as ONNX graph input.\n ' if (opset_version < 9): if (keep_initializers_as_inputs is False): warnings.warn("Setting 'keep_initializers_as_inputs=False' for opset version8 or lower would lead to an invalid ONNX graph. Therefore, 'keep_initializers_as_inputs=False' is ignored during export.Exported model will have initializers as graph inputs (compliant to ONNX IR v3).") return True val_keep_init_as_ip = (True if (keep_initializers_as_inputs is None) else keep_initializers_as_inputs) if ((keep_initializers_as_inputs is None) and (operator_export_type is _C_onnx.OperatorExportTypes.ONNX)): val_keep_init_as_ip = False return val_keep_init_as_ip<|docstring|>Decides whether the initializers in the graph should be listed as ONNX graph inputs. This method encapsulates the logic to decide whether the initializers in the graph should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4). If keep_initializers_as_inputs is not specified (None), then we decide whether to keep initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other export types keep initializers as input (val_keep_init_as_ip=True). If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8, in which case it must be ignored because for opset version <= 8, all initializers MUST be part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True. Special handling is needed for opset version 8 or lower, because irrespective of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3 semantics, i.e. all initializers must be listed as ONNX graph input.<|endoftext|>
5d8739c87a007eb9b086d7ed3e23790536d23a3fa7561791fde18e5edbb519f1
def _check_flatten_did_not_remove(original, jit_flattened): 'torch.jit._flatten removes None. Check if it did so in this case.' def flatten(x): if isinstance(x, (list, tuple)): for inner in x: (yield from flatten(inner)) elif isinstance(x, dict): for inner in x.values(): (yield from flatten(inner)) else: (yield x) flattened_with_none = list(flatten(original)) num_none = (len(flattened_with_none) - len(jit_flattened)) assert (num_none >= 0) if num_none: raise ValueError(f"args contained {num_none} None's after flattening. When exporting a ScriptModule or ScriptFunction, no args may be None because that breaks type propagation.")
torch.jit._flatten removes None. Check if it did so in this case.
torch/onnx/utils.py
_check_flatten_did_not_remove
TristanLaan/pytorch
0
python
def _check_flatten_did_not_remove(original, jit_flattened): def flatten(x): if isinstance(x, (list, tuple)): for inner in x: (yield from flatten(inner)) elif isinstance(x, dict): for inner in x.values(): (yield from flatten(inner)) else: (yield x) flattened_with_none = list(flatten(original)) num_none = (len(flattened_with_none) - len(jit_flattened)) assert (num_none >= 0) if num_none: raise ValueError(f"args contained {num_none} None's after flattening. When exporting a ScriptModule or ScriptFunction, no args may be None because that breaks type propagation.")
def _check_flatten_did_not_remove(original, jit_flattened): def flatten(x): if isinstance(x, (list, tuple)): for inner in x: (yield from flatten(inner)) elif isinstance(x, dict): for inner in x.values(): (yield from flatten(inner)) else: (yield x) flattened_with_none = list(flatten(original)) num_none = (len(flattened_with_none) - len(jit_flattened)) assert (num_none >= 0) if num_none: raise ValueError(f"args contained {num_none} None's after flattening. When exporting a ScriptModule or ScriptFunction, no args may be None because that breaks type propagation.")<|docstring|>torch.jit._flatten removes None. Check if it did so in this case.<|endoftext|>
8274118750c10da0bfdfc7f745c52899d0f4f4fb3758c1cff060dc5ebb8a2e40
def _pre_trace_quant_model(model, args): 'Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return\n original model.\n\n This is due to https://github.com/pytorch/pytorch/issues/75761.\n ' if (any((hasattr(m, '_packed_params') for m in getattr(model, 'modules', (lambda : []))())) or any((getattr(arg, 'is_quantized', False) for arg in args))): return torch.jit.trace(model, args) return model
Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return original model. This is due to https://github.com/pytorch/pytorch/issues/75761.
torch/onnx/utils.py
_pre_trace_quant_model
TristanLaan/pytorch
0
python
def _pre_trace_quant_model(model, args): 'Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return\n original model.\n\n This is due to https://github.com/pytorch/pytorch/issues/75761.\n ' if (any((hasattr(m, '_packed_params') for m in getattr(model, 'modules', (lambda : []))())) or any((getattr(arg, 'is_quantized', False) for arg in args))): return torch.jit.trace(model, args) return model
def _pre_trace_quant_model(model, args): 'Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return\n original model.\n\n This is due to https://github.com/pytorch/pytorch/issues/75761.\n ' if (any((hasattr(m, '_packed_params') for m in getattr(model, 'modules', (lambda : []))())) or any((getattr(arg, 'is_quantized', False) for arg in args))): return torch.jit.trace(model, args) return model<|docstring|>Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return original model. This is due to https://github.com/pytorch/pytorch/issues/75761.<|endoftext|>
d8715c2b7eccc056606c48fc19befc5cfa2fd01822d34d2eda38b2366369bde9
def _assign_onnx_node_name(graph, node_names): 'Takes in ONNX graph, and mapping from _C.Node to node name in exported ONNX ModelProto.\n\n Returns:\n graph (_C.Graph): A TorchScript IR Graph with ONNX nodes, where each _C.Node gets its name\n in exported ONNX ModelProto assigned as attribute ``onnx_name``.\n ' def n_fn(n, b_fn, node_names): for b in n.blocks(): b_fn(b, node_names) if (n in node_names): n.s_('onnx_name', node_names[n]) def b_fn(b, node_names): for n in b.nodes(): n_fn(n, b_fn, node_names) b_fn(graph, node_names) return graph
Takes in ONNX graph, and mapping from _C.Node to node name in exported ONNX ModelProto. Returns: graph (_C.Graph): A TorchScript IR Graph with ONNX nodes, where each _C.Node gets its name in exported ONNX ModelProto assigned as attribute ``onnx_name``.
torch/onnx/utils.py
_assign_onnx_node_name
TristanLaan/pytorch
0
python
def _assign_onnx_node_name(graph, node_names): 'Takes in ONNX graph, and mapping from _C.Node to node name in exported ONNX ModelProto.\n\n Returns:\n graph (_C.Graph): A TorchScript IR Graph with ONNX nodes, where each _C.Node gets its name\n in exported ONNX ModelProto assigned as attribute ``onnx_name``.\n ' def n_fn(n, b_fn, node_names): for b in n.blocks(): b_fn(b, node_names) if (n in node_names): n.s_('onnx_name', node_names[n]) def b_fn(b, node_names): for n in b.nodes(): n_fn(n, b_fn, node_names) b_fn(graph, node_names) return graph
def _assign_onnx_node_name(graph, node_names): 'Takes in ONNX graph, and mapping from _C.Node to node name in exported ONNX ModelProto.\n\n Returns:\n graph (_C.Graph): A TorchScript IR Graph with ONNX nodes, where each _C.Node gets its name\n in exported ONNX ModelProto assigned as attribute ``onnx_name``.\n ' def n_fn(n, b_fn, node_names): for b in n.blocks(): b_fn(b, node_names) if (n in node_names): n.s_('onnx_name', node_names[n]) def b_fn(b, node_names): for n in b.nodes(): n_fn(n, b_fn, node_names) b_fn(graph, node_names) return graph<|docstring|>Takes in ONNX graph, and mapping from _C.Node to node name in exported ONNX ModelProto. Returns: graph (_C.Graph): A TorchScript IR Graph with ONNX nodes, where each _C.Node gets its name in exported ONNX ModelProto assigned as attribute ``onnx_name``.<|endoftext|>
06aa333a8a0add9055dab928911d9a14a2a84a07a3053801dd78d7fba353183e
def _model_to_graph(model, args, verbose=False, input_names=None, output_names=None, operator_export_type=_C_onnx.OperatorExportTypes.ONNX, do_constant_folding=True, _disable_torch_constant_prop=False, fixed_batch_size=False, training=None, dynamic_axes=None) -> Tuple[(_C.Graph, Dict[(str, torch.Tensor)], Optional[Union[(torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor])]])]: 'Converts model into an ONNX graph.\n\n Returns:\n graph: A TorchScript IR Graph with ONNX nodes.\n params_dict: Dict from input param name to param value.\n torch_out: The output tensors resulting from the trace of ``model``.\n If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`,\n this will be None, since we are not doing any tracing.\n ' if isinstance(args, (torch.Tensor, int, float, bool)): args = (args,) model = _pre_trace_quant_model(model, args) (graph, params, torch_out, module) = _create_jit_graph(model, args) params_dict = _get_named_param_dict(graph, params) try: graph = _optimize_graph(graph, operator_export_type, _disable_torch_constant_prop=_disable_torch_constant_prop, fixed_batch_size=fixed_batch_size, params_dict=params_dict, dynamic_axes=dynamic_axes, input_names=input_names, module=module) except Exception as e: torch.onnx.log('Torch IR graph at exception: ', graph) raise is_script = isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)) if is_script: example_outputs = _get_example_outputs(model, args) example_outputs_final = () for example_output in example_outputs: example_outputs_final += unpack_quantized_tensor(example_output) (out_vars, desc) = torch.jit._flatten(example_outputs_final) _C._jit_pass_onnx_assign_output_shape(graph, out_vars, desc, GLOBALS.onnx_shape_inference, is_script) else: if (not isinstance(torch_out, (list, tuple))): output_wrapped = [torch_out] else: output_wrapped = torch_out (output_tensors, out_desc) = _C._jit_flatten(tuple(output_wrapped)) if (not any((getattr(out, 'is_quantized', False) for out in output_tensors))): _C._jit_pass_onnx_assign_output_shape(graph, output_tensors, out_desc, GLOBALS.onnx_shape_inference, is_script) _set_input_and_output_names(graph, input_names, output_names) params_dict = _get_named_param_dict(graph, params) if ((training is None) or (training == _C_onnx.TrainingMode.EVAL)): params_dict = _C._jit_pass_onnx_eval_peephole(graph, params_dict) if (do_constant_folding and (GLOBALS.export_onnx_opset_version in _constants.onnx_constant_folding_opsets)): params_dict = _C._jit_pass_onnx_constant_fold(graph, params_dict, GLOBALS.export_onnx_opset_version) _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) if GLOBALS.onnx_shape_inference: _C._jit_pass_onnx_graph_shape_type_inference(graph, params_dict, GLOBALS.export_onnx_opset_version) params_dict = _C._jit_pass_onnx_eliminate_unused_items(graph, params_dict) if (GLOBALS.export_onnx_opset_version < 9): _C._jit_pass_onnx_cast_all_constant_to_floating(graph) params_dict = _C._jit_pass_filter_non_tensor_arguments(params_dict) _C._jit_decay_packed_param_input_types(graph) _apply_friendly_debug_names(graph, params_dict) return (graph, params_dict, torch_out)
Converts model into an ONNX graph. Returns: graph: A TorchScript IR Graph with ONNX nodes. params_dict: Dict from input param name to param value. torch_out: The output tensors resulting from the trace of ``model``. If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`, this will be None, since we are not doing any tracing.
torch/onnx/utils.py
_model_to_graph
TristanLaan/pytorch
0
python
def _model_to_graph(model, args, verbose=False, input_names=None, output_names=None, operator_export_type=_C_onnx.OperatorExportTypes.ONNX, do_constant_folding=True, _disable_torch_constant_prop=False, fixed_batch_size=False, training=None, dynamic_axes=None) -> Tuple[(_C.Graph, Dict[(str, torch.Tensor)], Optional[Union[(torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor])]])]: 'Converts model into an ONNX graph.\n\n Returns:\n graph: A TorchScript IR Graph with ONNX nodes.\n params_dict: Dict from input param name to param value.\n torch_out: The output tensors resulting from the trace of ``model``.\n If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`,\n this will be None, since we are not doing any tracing.\n ' if isinstance(args, (torch.Tensor, int, float, bool)): args = (args,) model = _pre_trace_quant_model(model, args) (graph, params, torch_out, module) = _create_jit_graph(model, args) params_dict = _get_named_param_dict(graph, params) try: graph = _optimize_graph(graph, operator_export_type, _disable_torch_constant_prop=_disable_torch_constant_prop, fixed_batch_size=fixed_batch_size, params_dict=params_dict, dynamic_axes=dynamic_axes, input_names=input_names, module=module) except Exception as e: torch.onnx.log('Torch IR graph at exception: ', graph) raise is_script = isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)) if is_script: example_outputs = _get_example_outputs(model, args) example_outputs_final = () for example_output in example_outputs: example_outputs_final += unpack_quantized_tensor(example_output) (out_vars, desc) = torch.jit._flatten(example_outputs_final) _C._jit_pass_onnx_assign_output_shape(graph, out_vars, desc, GLOBALS.onnx_shape_inference, is_script) else: if (not isinstance(torch_out, (list, tuple))): output_wrapped = [torch_out] else: output_wrapped = torch_out (output_tensors, out_desc) = _C._jit_flatten(tuple(output_wrapped)) if (not any((getattr(out, 'is_quantized', False) for out in output_tensors))): _C._jit_pass_onnx_assign_output_shape(graph, output_tensors, out_desc, GLOBALS.onnx_shape_inference, is_script) _set_input_and_output_names(graph, input_names, output_names) params_dict = _get_named_param_dict(graph, params) if ((training is None) or (training == _C_onnx.TrainingMode.EVAL)): params_dict = _C._jit_pass_onnx_eval_peephole(graph, params_dict) if (do_constant_folding and (GLOBALS.export_onnx_opset_version in _constants.onnx_constant_folding_opsets)): params_dict = _C._jit_pass_onnx_constant_fold(graph, params_dict, GLOBALS.export_onnx_opset_version) _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) if GLOBALS.onnx_shape_inference: _C._jit_pass_onnx_graph_shape_type_inference(graph, params_dict, GLOBALS.export_onnx_opset_version) params_dict = _C._jit_pass_onnx_eliminate_unused_items(graph, params_dict) if (GLOBALS.export_onnx_opset_version < 9): _C._jit_pass_onnx_cast_all_constant_to_floating(graph) params_dict = _C._jit_pass_filter_non_tensor_arguments(params_dict) _C._jit_decay_packed_param_input_types(graph) _apply_friendly_debug_names(graph, params_dict) return (graph, params_dict, torch_out)
def _model_to_graph(model, args, verbose=False, input_names=None, output_names=None, operator_export_type=_C_onnx.OperatorExportTypes.ONNX, do_constant_folding=True, _disable_torch_constant_prop=False, fixed_batch_size=False, training=None, dynamic_axes=None) -> Tuple[(_C.Graph, Dict[(str, torch.Tensor)], Optional[Union[(torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor])]])]: 'Converts model into an ONNX graph.\n\n Returns:\n graph: A TorchScript IR Graph with ONNX nodes.\n params_dict: Dict from input param name to param value.\n torch_out: The output tensors resulting from the trace of ``model``.\n If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`,\n this will be None, since we are not doing any tracing.\n ' if isinstance(args, (torch.Tensor, int, float, bool)): args = (args,) model = _pre_trace_quant_model(model, args) (graph, params, torch_out, module) = _create_jit_graph(model, args) params_dict = _get_named_param_dict(graph, params) try: graph = _optimize_graph(graph, operator_export_type, _disable_torch_constant_prop=_disable_torch_constant_prop, fixed_batch_size=fixed_batch_size, params_dict=params_dict, dynamic_axes=dynamic_axes, input_names=input_names, module=module) except Exception as e: torch.onnx.log('Torch IR graph at exception: ', graph) raise is_script = isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)) if is_script: example_outputs = _get_example_outputs(model, args) example_outputs_final = () for example_output in example_outputs: example_outputs_final += unpack_quantized_tensor(example_output) (out_vars, desc) = torch.jit._flatten(example_outputs_final) _C._jit_pass_onnx_assign_output_shape(graph, out_vars, desc, GLOBALS.onnx_shape_inference, is_script) else: if (not isinstance(torch_out, (list, tuple))): output_wrapped = [torch_out] else: output_wrapped = torch_out (output_tensors, out_desc) = _C._jit_flatten(tuple(output_wrapped)) if (not any((getattr(out, 'is_quantized', False) for out in output_tensors))): _C._jit_pass_onnx_assign_output_shape(graph, output_tensors, out_desc, GLOBALS.onnx_shape_inference, is_script) _set_input_and_output_names(graph, input_names, output_names) params_dict = _get_named_param_dict(graph, params) if ((training is None) or (training == _C_onnx.TrainingMode.EVAL)): params_dict = _C._jit_pass_onnx_eval_peephole(graph, params_dict) if (do_constant_folding and (GLOBALS.export_onnx_opset_version in _constants.onnx_constant_folding_opsets)): params_dict = _C._jit_pass_onnx_constant_fold(graph, params_dict, GLOBALS.export_onnx_opset_version) _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) if GLOBALS.onnx_shape_inference: _C._jit_pass_onnx_graph_shape_type_inference(graph, params_dict, GLOBALS.export_onnx_opset_version) params_dict = _C._jit_pass_onnx_eliminate_unused_items(graph, params_dict) if (GLOBALS.export_onnx_opset_version < 9): _C._jit_pass_onnx_cast_all_constant_to_floating(graph) params_dict = _C._jit_pass_filter_non_tensor_arguments(params_dict) _C._jit_decay_packed_param_input_types(graph) _apply_friendly_debug_names(graph, params_dict) return (graph, params_dict, torch_out)<|docstring|>Converts model into an ONNX graph. Returns: graph: A TorchScript IR Graph with ONNX nodes. params_dict: Dict from input param name to param value. torch_out: The output tensors resulting from the trace of ``model``. If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`, this will be None, since we are not doing any tracing.<|endoftext|>
3b3d6c4e5ef67eca5b1f0a366a51733b6cfeee23af2181d790779b22225bde28
def unconvertible_ops(model, args, training=_C_onnx.TrainingMode.EVAL, opset_version=None): '\n Converts the model with operator_export_type set to\n torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH once in order to get a list of\n all the ops that are not supported/implemented by the exporter.\n\n Args:\n model: Same as corresponding arg to torch.onnx.export.\n args: Same as corresponding arg to torch.onnx.export.\n training: Same as corresponding arg to torch.onnx.export.\n opset_version: Same as corresponding arg to torch.onnx.export.\n\n Returns:\n Tuple[torch._C.Graph, List[str]], where the list includes the names\n of the unconvertible ops.\n ' opset_version = (opset_version or _constants.onnx_default_opset) symbolic_helper._set_opset_version(opset_version) with exporter_context(model, training, False): args = _decide_input_format(model, args) (graph, params_dict, torch_out) = _model_to_graph(model, args, operator_export_type=_C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH) unsupported_ops = list() supported_namespaces = ('onnx', 'prim', 'quantized') for node in graph.nodes(): if (node.kind().split(':')[0] not in supported_namespaces): unsupported_ops.append(node.kind()) return (graph, unsupported_ops)
Converts the model with operator_export_type set to torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH once in order to get a list of all the ops that are not supported/implemented by the exporter. Args: model: Same as corresponding arg to torch.onnx.export. args: Same as corresponding arg to torch.onnx.export. training: Same as corresponding arg to torch.onnx.export. opset_version: Same as corresponding arg to torch.onnx.export. Returns: Tuple[torch._C.Graph, List[str]], where the list includes the names of the unconvertible ops.
torch/onnx/utils.py
unconvertible_ops
TristanLaan/pytorch
0
python
def unconvertible_ops(model, args, training=_C_onnx.TrainingMode.EVAL, opset_version=None): '\n Converts the model with operator_export_type set to\n torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH once in order to get a list of\n all the ops that are not supported/implemented by the exporter.\n\n Args:\n model: Same as corresponding arg to torch.onnx.export.\n args: Same as corresponding arg to torch.onnx.export.\n training: Same as corresponding arg to torch.onnx.export.\n opset_version: Same as corresponding arg to torch.onnx.export.\n\n Returns:\n Tuple[torch._C.Graph, List[str]], where the list includes the names\n of the unconvertible ops.\n ' opset_version = (opset_version or _constants.onnx_default_opset) symbolic_helper._set_opset_version(opset_version) with exporter_context(model, training, False): args = _decide_input_format(model, args) (graph, params_dict, torch_out) = _model_to_graph(model, args, operator_export_type=_C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH) unsupported_ops = list() supported_namespaces = ('onnx', 'prim', 'quantized') for node in graph.nodes(): if (node.kind().split(':')[0] not in supported_namespaces): unsupported_ops.append(node.kind()) return (graph, unsupported_ops)
def unconvertible_ops(model, args, training=_C_onnx.TrainingMode.EVAL, opset_version=None): '\n Converts the model with operator_export_type set to\n torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH once in order to get a list of\n all the ops that are not supported/implemented by the exporter.\n\n Args:\n model: Same as corresponding arg to torch.onnx.export.\n args: Same as corresponding arg to torch.onnx.export.\n training: Same as corresponding arg to torch.onnx.export.\n opset_version: Same as corresponding arg to torch.onnx.export.\n\n Returns:\n Tuple[torch._C.Graph, List[str]], where the list includes the names\n of the unconvertible ops.\n ' opset_version = (opset_version or _constants.onnx_default_opset) symbolic_helper._set_opset_version(opset_version) with exporter_context(model, training, False): args = _decide_input_format(model, args) (graph, params_dict, torch_out) = _model_to_graph(model, args, operator_export_type=_C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH) unsupported_ops = list() supported_namespaces = ('onnx', 'prim', 'quantized') for node in graph.nodes(): if (node.kind().split(':')[0] not in supported_namespaces): unsupported_ops.append(node.kind()) return (graph, unsupported_ops)<|docstring|>Converts the model with operator_export_type set to torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH once in order to get a list of all the ops that are not supported/implemented by the exporter. Args: model: Same as corresponding arg to torch.onnx.export. args: Same as corresponding arg to torch.onnx.export. training: Same as corresponding arg to torch.onnx.export. opset_version: Same as corresponding arg to torch.onnx.export. Returns: Tuple[torch._C.Graph, List[str]], where the list includes the names of the unconvertible ops.<|endoftext|>
1f6233c13f1f8131b216da839bb474e7a0949ec2989739ead1a0262ecdfbb443
def _run_symbolic_method(g, op_name, symbolic_fn, args): '\n This trampoline function gets invoked for every symbolic method\n call from C++.\n ' try: return symbolic_fn(g, *args) except TypeError as e: e.args = (f'{e.args[0]} (occurred when translating {op_name})',) raise
This trampoline function gets invoked for every symbolic method call from C++.
torch/onnx/utils.py
_run_symbolic_method
TristanLaan/pytorch
0
python
def _run_symbolic_method(g, op_name, symbolic_fn, args): '\n This trampoline function gets invoked for every symbolic method\n call from C++.\n ' try: return symbolic_fn(g, *args) except TypeError as e: e.args = (f'{e.args[0]} (occurred when translating {op_name})',) raise
def _run_symbolic_method(g, op_name, symbolic_fn, args): '\n This trampoline function gets invoked for every symbolic method\n call from C++.\n ' try: return symbolic_fn(g, *args) except TypeError as e: e.args = (f'{e.args[0]} (occurred when translating {op_name})',) raise<|docstring|>This trampoline function gets invoked for every symbolic method call from C++.<|endoftext|>
38ca1403031d500f8a17e070eb67ede22699e6d92abf5e6090bc7a8617d982e6
def _find_symbolic_in_registry(domain: str, op_name: str, opset_version: int, operator_export_type: _C_onnx.OperatorExportTypes) -> Optional[Callable]: 'Looks up for the symbolic function in the registry.\n\n Args:\n domain: The domain of the symbolic function.\n op_name: The name of the op.\n opset_version: Currect opset used.\n operator_export_type: An enum in _C_onnx.OperatorExportTypes.\n\n Returns:\n The symbolic function if found, None otherwise.\n ' if (not symbolic_registry.is_registered_op(op_name, domain, opset_version)): if (operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH): return None return symbolic_registry.get_registered_op(op_name, domain, opset_version)
Looks up for the symbolic function in the registry. Args: domain: The domain of the symbolic function. op_name: The name of the op. opset_version: Currect opset used. operator_export_type: An enum in _C_onnx.OperatorExportTypes. Returns: The symbolic function if found, None otherwise.
torch/onnx/utils.py
_find_symbolic_in_registry
TristanLaan/pytorch
0
python
def _find_symbolic_in_registry(domain: str, op_name: str, opset_version: int, operator_export_type: _C_onnx.OperatorExportTypes) -> Optional[Callable]: 'Looks up for the symbolic function in the registry.\n\n Args:\n domain: The domain of the symbolic function.\n op_name: The name of the op.\n opset_version: Currect opset used.\n operator_export_type: An enum in _C_onnx.OperatorExportTypes.\n\n Returns:\n The symbolic function if found, None otherwise.\n ' if (not symbolic_registry.is_registered_op(op_name, domain, opset_version)): if (operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH): return None return symbolic_registry.get_registered_op(op_name, domain, opset_version)
def _find_symbolic_in_registry(domain: str, op_name: str, opset_version: int, operator_export_type: _C_onnx.OperatorExportTypes) -> Optional[Callable]: 'Looks up for the symbolic function in the registry.\n\n Args:\n domain: The domain of the symbolic function.\n op_name: The name of the op.\n opset_version: Currect opset used.\n operator_export_type: An enum in _C_onnx.OperatorExportTypes.\n\n Returns:\n The symbolic function if found, None otherwise.\n ' if (not symbolic_registry.is_registered_op(op_name, domain, opset_version)): if (operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH): return None return symbolic_registry.get_registered_op(op_name, domain, opset_version)<|docstring|>Looks up for the symbolic function in the registry. Args: domain: The domain of the symbolic function. op_name: The name of the op. opset_version: Currect opset used. operator_export_type: An enum in _C_onnx.OperatorExportTypes. Returns: The symbolic function if found, None otherwise.<|endoftext|>
439dda34d6ca3d428c5ab7f4efd9c55f7941c66447065305cc822642ed09ed1c
def _need_symbolic_context(symbolic_fn) -> bool: 'Checks if the first argument to symbolic_fn is annotated as type `torch.onnx.SymbolicContext`.' params = tuple(inspect.signature(symbolic_fn).parameters.values()) if (not params): return False first_param_name = params[0].name type_hints = typing.get_type_hints(symbolic_fn) if (first_param_name not in type_hints): return False param_type = type_hints[first_param_name] return issubclass(param_type, _exporter_states.SymbolicContext)
Checks if the first argument to symbolic_fn is annotated as type `torch.onnx.SymbolicContext`.
torch/onnx/utils.py
_need_symbolic_context
TristanLaan/pytorch
0
python
def _need_symbolic_context(symbolic_fn) -> bool: params = tuple(inspect.signature(symbolic_fn).parameters.values()) if (not params): return False first_param_name = params[0].name type_hints = typing.get_type_hints(symbolic_fn) if (first_param_name not in type_hints): return False param_type = type_hints[first_param_name] return issubclass(param_type, _exporter_states.SymbolicContext)
def _need_symbolic_context(symbolic_fn) -> bool: params = tuple(inspect.signature(symbolic_fn).parameters.values()) if (not params): return False first_param_name = params[0].name type_hints = typing.get_type_hints(symbolic_fn) if (first_param_name not in type_hints): return False param_type = type_hints[first_param_name] return issubclass(param_type, _exporter_states.SymbolicContext)<|docstring|>Checks if the first argument to symbolic_fn is annotated as type `torch.onnx.SymbolicContext`.<|endoftext|>
3c8222f0bedaad05d730f9278202005be6d40be3d4fa0f8138bb4ab1cbd3db3f
def _run_symbolic_function(g: _C.Graph, block: _C.Block, n: _C.Node, inputs: Any, env: Dict[(_C.Value, _C.Value)], operator_export_type=_C_onnx.OperatorExportTypes.ONNX) -> Optional[Union[(_C.Value, Tuple[(_C.Value, ...)])]]: 'Runs a symbolic function.\n\n The function is used in C++ to export the node to ONNX.\n\n Returns:\n A single or a tuple of Values.\n None when the node gets cloned as is into the new graph.\n ' opset_version = GLOBALS.export_onnx_opset_version symbolic_helper.is_caffe2_aten_fallback = symbolic_helper.is_caffe2_aten_fallback if n.kind().endswith('_'): ns_op_name = n.kind()[:(- 1)] else: ns_op_name = n.kind() (ns, op_name) = ns_op_name.split('::') try: symbolic_registry.register_version('', opset_version) if (symbolic_helper.is_caffe2_aten_fallback() and (opset_version == 9)): symbolic_caffe2.register_quantized_ops('caffe2', opset_version) if (ns == 'aten'): domain = '' elif ((ns == 'quantized') and symbolic_helper.is_caffe2_aten_fallback()): domain = 'caffe2' else: domain = ns if symbolic_registry.is_registered_op(op_name, domain, opset_version): symbolic_fn = _find_symbolic_in_registry(domain, op_name, opset_version, operator_export_type) assert (symbolic_fn is not None) attrs = {k: n[k] for k in n.attributeNames()} if _need_symbolic_context(symbolic_fn): ctx = _exporter_states.SymbolicContext(_params_dict, env, n, block) return symbolic_fn(ctx, g, *inputs, **attrs) if (op_name == 'PythonOp'): inputs = (n, *inputs) return symbolic_fn(g, *inputs, **attrs) elif (ns == 'onnx'): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} return g.op(op_name, *inputs, **attrs, outputs=n.outputsSize()) elif _should_aten_fallback(ns, op_name, opset_version, operator_export_type): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} outputs = n.outputsSize() attrs['outputs'] = outputs return g.at(op_name, *inputs, overload_name=_get_aten_op_overload_name(n), **attrs) else: raise errors.UnsupportedOperatorError(domain, op_name, opset_version, symbolic_registry.get_op_supported_version(op_name, domain, opset_version)) except RuntimeError: if (operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH): return None elif ((operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) and (not symbolic_helper.is_caffe2_aten_fallback())): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} return g.at(op_name, *inputs, overload_name=_get_aten_op_overload_name(n), **attrs) raise except TypeError as e: e.args = (f'''{e.args[0]} (Occurred when translating {op_name}).''',) raise
Runs a symbolic function. The function is used in C++ to export the node to ONNX. Returns: A single or a tuple of Values. None when the node gets cloned as is into the new graph.
torch/onnx/utils.py
_run_symbolic_function
TristanLaan/pytorch
0
python
def _run_symbolic_function(g: _C.Graph, block: _C.Block, n: _C.Node, inputs: Any, env: Dict[(_C.Value, _C.Value)], operator_export_type=_C_onnx.OperatorExportTypes.ONNX) -> Optional[Union[(_C.Value, Tuple[(_C.Value, ...)])]]: 'Runs a symbolic function.\n\n The function is used in C++ to export the node to ONNX.\n\n Returns:\n A single or a tuple of Values.\n None when the node gets cloned as is into the new graph.\n ' opset_version = GLOBALS.export_onnx_opset_version symbolic_helper.is_caffe2_aten_fallback = symbolic_helper.is_caffe2_aten_fallback if n.kind().endswith('_'): ns_op_name = n.kind()[:(- 1)] else: ns_op_name = n.kind() (ns, op_name) = ns_op_name.split('::') try: symbolic_registry.register_version(, opset_version) if (symbolic_helper.is_caffe2_aten_fallback() and (opset_version == 9)): symbolic_caffe2.register_quantized_ops('caffe2', opset_version) if (ns == 'aten'): domain = elif ((ns == 'quantized') and symbolic_helper.is_caffe2_aten_fallback()): domain = 'caffe2' else: domain = ns if symbolic_registry.is_registered_op(op_name, domain, opset_version): symbolic_fn = _find_symbolic_in_registry(domain, op_name, opset_version, operator_export_type) assert (symbolic_fn is not None) attrs = {k: n[k] for k in n.attributeNames()} if _need_symbolic_context(symbolic_fn): ctx = _exporter_states.SymbolicContext(_params_dict, env, n, block) return symbolic_fn(ctx, g, *inputs, **attrs) if (op_name == 'PythonOp'): inputs = (n, *inputs) return symbolic_fn(g, *inputs, **attrs) elif (ns == 'onnx'): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} return g.op(op_name, *inputs, **attrs, outputs=n.outputsSize()) elif _should_aten_fallback(ns, op_name, opset_version, operator_export_type): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} outputs = n.outputsSize() attrs['outputs'] = outputs return g.at(op_name, *inputs, overload_name=_get_aten_op_overload_name(n), **attrs) else: raise errors.UnsupportedOperatorError(domain, op_name, opset_version, symbolic_registry.get_op_supported_version(op_name, domain, opset_version)) except RuntimeError: if (operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH): return None elif ((operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) and (not symbolic_helper.is_caffe2_aten_fallback())): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} return g.at(op_name, *inputs, overload_name=_get_aten_op_overload_name(n), **attrs) raise except TypeError as e: e.args = (f'{e.args[0]} (Occurred when translating {op_name}).',) raise
def _run_symbolic_function(g: _C.Graph, block: _C.Block, n: _C.Node, inputs: Any, env: Dict[(_C.Value, _C.Value)], operator_export_type=_C_onnx.OperatorExportTypes.ONNX) -> Optional[Union[(_C.Value, Tuple[(_C.Value, ...)])]]: 'Runs a symbolic function.\n\n The function is used in C++ to export the node to ONNX.\n\n Returns:\n A single or a tuple of Values.\n None when the node gets cloned as is into the new graph.\n ' opset_version = GLOBALS.export_onnx_opset_version symbolic_helper.is_caffe2_aten_fallback = symbolic_helper.is_caffe2_aten_fallback if n.kind().endswith('_'): ns_op_name = n.kind()[:(- 1)] else: ns_op_name = n.kind() (ns, op_name) = ns_op_name.split('::') try: symbolic_registry.register_version(, opset_version) if (symbolic_helper.is_caffe2_aten_fallback() and (opset_version == 9)): symbolic_caffe2.register_quantized_ops('caffe2', opset_version) if (ns == 'aten'): domain = elif ((ns == 'quantized') and symbolic_helper.is_caffe2_aten_fallback()): domain = 'caffe2' else: domain = ns if symbolic_registry.is_registered_op(op_name, domain, opset_version): symbolic_fn = _find_symbolic_in_registry(domain, op_name, opset_version, operator_export_type) assert (symbolic_fn is not None) attrs = {k: n[k] for k in n.attributeNames()} if _need_symbolic_context(symbolic_fn): ctx = _exporter_states.SymbolicContext(_params_dict, env, n, block) return symbolic_fn(ctx, g, *inputs, **attrs) if (op_name == 'PythonOp'): inputs = (n, *inputs) return symbolic_fn(g, *inputs, **attrs) elif (ns == 'onnx'): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} return g.op(op_name, *inputs, **attrs, outputs=n.outputsSize()) elif _should_aten_fallback(ns, op_name, opset_version, operator_export_type): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} outputs = n.outputsSize() attrs['outputs'] = outputs return g.at(op_name, *inputs, overload_name=_get_aten_op_overload_name(n), **attrs) else: raise errors.UnsupportedOperatorError(domain, op_name, opset_version, symbolic_registry.get_op_supported_version(op_name, domain, opset_version)) except RuntimeError: if (operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH): return None elif ((operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) and (not symbolic_helper.is_caffe2_aten_fallback())): attrs = {((k + '_') + n.kindOf(k)[0]): n[k] for k in n.attributeNames()} return g.at(op_name, *inputs, overload_name=_get_aten_op_overload_name(n), **attrs) raise except TypeError as e: e.args = (f'{e.args[0]} (Occurred when translating {op_name}).',) raise<|docstring|>Runs a symbolic function. The function is used in C++ to export the node to ONNX. Returns: A single or a tuple of Values. None when the node gets cloned as is into the new graph.<|endoftext|>
3e2156b707239fbc5b83a71f404910df2edd3deea9d2c49544a83d829652765e
def register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version): 'Registers a symbolic function for a custom operator.\n\n When the user registers symbolic for custom/contrib ops,\n it is highly recommended to add shape inference for that operator via setType API,\n otherwise the exported graph may have incorrect shape inference in some extreme cases.\n An example of setType is `test_aten_embedding_2` in `test_operators.py`.\n ' (ns, op_name) = get_ns_op_name_from_custom_op(symbolic_name) for version in itertools.chain(_constants.onnx_stable_opsets, [_constants.onnx_main_opset]): if (version >= opset_version): symbolic_registry.register_op(op_name, symbolic_fn, ns, version)
Registers a symbolic function for a custom operator. When the user registers symbolic for custom/contrib ops, it is highly recommended to add shape inference for that operator via setType API, otherwise the exported graph may have incorrect shape inference in some extreme cases. An example of setType is `test_aten_embedding_2` in `test_operators.py`.
torch/onnx/utils.py
register_custom_op_symbolic
TristanLaan/pytorch
0
python
def register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version): 'Registers a symbolic function for a custom operator.\n\n When the user registers symbolic for custom/contrib ops,\n it is highly recommended to add shape inference for that operator via setType API,\n otherwise the exported graph may have incorrect shape inference in some extreme cases.\n An example of setType is `test_aten_embedding_2` in `test_operators.py`.\n ' (ns, op_name) = get_ns_op_name_from_custom_op(symbolic_name) for version in itertools.chain(_constants.onnx_stable_opsets, [_constants.onnx_main_opset]): if (version >= opset_version): symbolic_registry.register_op(op_name, symbolic_fn, ns, version)
def register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version): 'Registers a symbolic function for a custom operator.\n\n When the user registers symbolic for custom/contrib ops,\n it is highly recommended to add shape inference for that operator via setType API,\n otherwise the exported graph may have incorrect shape inference in some extreme cases.\n An example of setType is `test_aten_embedding_2` in `test_operators.py`.\n ' (ns, op_name) = get_ns_op_name_from_custom_op(symbolic_name) for version in itertools.chain(_constants.onnx_stable_opsets, [_constants.onnx_main_opset]): if (version >= opset_version): symbolic_registry.register_op(op_name, symbolic_fn, ns, version)<|docstring|>Registers a symbolic function for a custom operator. When the user registers symbolic for custom/contrib ops, it is highly recommended to add shape inference for that operator via setType API, otherwise the exported graph may have incorrect shape inference in some extreme cases. An example of setType is `test_aten_embedding_2` in `test_operators.py`.<|endoftext|>
6a1c0167a073e0046d9f22b0dcbd542d4622fa91a96613d874b01429353614e1
def _validate_dynamic_axes(dynamic_axes, model, input_names, output_names): 'Ensures dynamic axes argument is follows the expected format.' if (len(dynamic_axes) == 0): return if hasattr(model, 'graph'): if ((input_names is None) or (len(input_names) == 0)): input_names = [x.debugName() for x in model.graph.inputs()] if ((output_names is None) or (len(output_names) == 0)): output_names = [y.debugName() for y in model.graph.outputs()] valid_names = set(((input_names or []) + (output_names or []))) for (key, value) in dynamic_axes.items(): if (key not in valid_names): warnings.warn(f'Provided key {key} for dynamic axes is not a valid input/output name') if isinstance(value, list): warnings.warn(f'No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input {key}') value_dict = {} for (i, x) in enumerate(value): if (not isinstance(x, int)): raise ValueError('The type of axis index is expected to be an integer') if (x in value_dict): warnings.warn(f'Duplicate dynamic axis index {x} was provided for input {key}.') else: value_dict[x] = ((str(key) + '_dynamic_axes_') + str((i + 1))) dynamic_axes[key] = value_dict
Ensures dynamic axes argument is follows the expected format.
torch/onnx/utils.py
_validate_dynamic_axes
TristanLaan/pytorch
0
python
def _validate_dynamic_axes(dynamic_axes, model, input_names, output_names): if (len(dynamic_axes) == 0): return if hasattr(model, 'graph'): if ((input_names is None) or (len(input_names) == 0)): input_names = [x.debugName() for x in model.graph.inputs()] if ((output_names is None) or (len(output_names) == 0)): output_names = [y.debugName() for y in model.graph.outputs()] valid_names = set(((input_names or []) + (output_names or []))) for (key, value) in dynamic_axes.items(): if (key not in valid_names): warnings.warn(f'Provided key {key} for dynamic axes is not a valid input/output name') if isinstance(value, list): warnings.warn(f'No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input {key}') value_dict = {} for (i, x) in enumerate(value): if (not isinstance(x, int)): raise ValueError('The type of axis index is expected to be an integer') if (x in value_dict): warnings.warn(f'Duplicate dynamic axis index {x} was provided for input {key}.') else: value_dict[x] = ((str(key) + '_dynamic_axes_') + str((i + 1))) dynamic_axes[key] = value_dict
def _validate_dynamic_axes(dynamic_axes, model, input_names, output_names): if (len(dynamic_axes) == 0): return if hasattr(model, 'graph'): if ((input_names is None) or (len(input_names) == 0)): input_names = [x.debugName() for x in model.graph.inputs()] if ((output_names is None) or (len(output_names) == 0)): output_names = [y.debugName() for y in model.graph.outputs()] valid_names = set(((input_names or []) + (output_names or []))) for (key, value) in dynamic_axes.items(): if (key not in valid_names): warnings.warn(f'Provided key {key} for dynamic axes is not a valid input/output name') if isinstance(value, list): warnings.warn(f'No names were found for specified dynamic axes of provided input.Automatically generated names will be applied to each dynamic axes of input {key}') value_dict = {} for (i, x) in enumerate(value): if (not isinstance(x, int)): raise ValueError('The type of axis index is expected to be an integer') if (x in value_dict): warnings.warn(f'Duplicate dynamic axis index {x} was provided for input {key}.') else: value_dict[x] = ((str(key) + '_dynamic_axes_') + str((i + 1))) dynamic_axes[key] = value_dict<|docstring|>Ensures dynamic axes argument is follows the expected format.<|endoftext|>
a8629ea98abd09c708cd028336e8291c8d49bfe88c8fdcbf062dbfd26ab1d6e5
def show_mesh_ipython_nb(self): '\n Show the mesh by plotting the mesh points.\n matplotlib.pyplot.plot is not used\n because this method is used image inline ipython notebook.\n ' list_values_y = ([0] * len(self.mesh)) plt.scatter(self.mesh, list_values_y)
Show the mesh by plotting the mesh points. matplotlib.pyplot.plot is not used because this method is used image inline ipython notebook.
shocktube1dcalc/generator_mesh.py
show_mesh_ipython_nb
yezhengkai/shocktube1dcalc
2
python
def show_mesh_ipython_nb(self): '\n Show the mesh by plotting the mesh points.\n matplotlib.pyplot.plot is not used\n because this method is used image inline ipython notebook.\n ' list_values_y = ([0] * len(self.mesh)) plt.scatter(self.mesh, list_values_y)
def show_mesh_ipython_nb(self): '\n Show the mesh by plotting the mesh points.\n matplotlib.pyplot.plot is not used\n because this method is used image inline ipython notebook.\n ' list_values_y = ([0] * len(self.mesh)) plt.scatter(self.mesh, list_values_y)<|docstring|>Show the mesh by plotting the mesh points. matplotlib.pyplot.plot is not used because this method is used image inline ipython notebook.<|endoftext|>