body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
7a7074ad8dd9cd7f9bf1c8907db648b7f7c5bff6a8f3bec832b520d5e1202d1f
def add_tokentype_embeddings(self, num_tokentypes): 'Add token-type embedding. This function is provided so we can add\n token-type embeddings in case the pretrained model does not have it.\n This allows us to load the model normally and then add this embedding.\n ' if (self.tokentype_embeddings is not None): raise Exception('tokentype embeddings is already initialized') if (torch.distributed.get_rank() == 0): print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size) self.init_method(self.tokentype_embeddings.weight)
Add token-type embedding. This function is provided so we can add token-type embeddings in case the pretrained model does not have it. This allows us to load the model normally and then add this embedding.
megatron/model/transformer.py
add_tokentype_embeddings
fplk/gpt-neox
1
python
def add_tokentype_embeddings(self, num_tokentypes): 'Add token-type embedding. This function is provided so we can add\n token-type embeddings in case the pretrained model does not have it.\n This allows us to load the model normally and then add this embedding.\n ' if (self.tokentype_embeddings is not None): raise Exception('tokentype embeddings is already initialized') if (torch.distributed.get_rank() == 0): print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size) self.init_method(self.tokentype_embeddings.weight)
def add_tokentype_embeddings(self, num_tokentypes): 'Add token-type embedding. This function is provided so we can add\n token-type embeddings in case the pretrained model does not have it.\n This allows us to load the model normally and then add this embedding.\n ' if (self.tokentype_embeddings is not None): raise Exception('tokentype embeddings is already initialized') if (torch.distributed.get_rank() == 0): print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size) self.init_method(self.tokentype_embeddings.weight)<|docstring|>Add token-type embedding. This function is provided so we can add token-type embeddings in case the pretrained model does not have it. This allows us to load the model normally and then add this embedding.<|endoftext|>
59268cbcb89fbf12f7437079b53e2be36bd96db76c09bb11b8f37cd2606c34a0
def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): 'For easy load.' state_dict_ = {} state_dict_[self._word_embeddings_key] = self.word_embeddings.state_dict(destination, prefix, keep_vars) if (self.embedding_type == 'learned'): state_dict_[self._position_embeddings_key] = self.position_embeddings.state_dict(destination, prefix, keep_vars) if (self.num_tokentypes > 0): state_dict_[self._tokentype_embeddings_key] = self.tokentype_embeddings.state_dict(destination, prefix, keep_vars) return state_dict_
For easy load.
megatron/model/transformer.py
state_dict_for_save_checkpoint
fplk/gpt-neox
1
python
def state_dict_for_save_checkpoint(self, destination=None, prefix=, keep_vars=False): state_dict_ = {} state_dict_[self._word_embeddings_key] = self.word_embeddings.state_dict(destination, prefix, keep_vars) if (self.embedding_type == 'learned'): state_dict_[self._position_embeddings_key] = self.position_embeddings.state_dict(destination, prefix, keep_vars) if (self.num_tokentypes > 0): state_dict_[self._tokentype_embeddings_key] = self.tokentype_embeddings.state_dict(destination, prefix, keep_vars) return state_dict_
def state_dict_for_save_checkpoint(self, destination=None, prefix=, keep_vars=False): state_dict_ = {} state_dict_[self._word_embeddings_key] = self.word_embeddings.state_dict(destination, prefix, keep_vars) if (self.embedding_type == 'learned'): state_dict_[self._position_embeddings_key] = self.position_embeddings.state_dict(destination, prefix, keep_vars) if (self.num_tokentypes > 0): state_dict_[self._tokentype_embeddings_key] = self.tokentype_embeddings.state_dict(destination, prefix, keep_vars) return state_dict_<|docstring|>For easy load.<|endoftext|>
9bbb4b49ce5c73ff04126f05caf0f791688b52b892f38137823475b40246d755
def load_state_dict(self, state_dict, strict=True): 'Customized load.' if (self._word_embeddings_key in state_dict): state_dict_ = state_dict[self._word_embeddings_key] else: state_dict_ = {} for key in state_dict.keys(): if ('word_embeddings' in key): state_dict_[key.split('word_embeddings.')[1]] = state_dict[key] self.word_embeddings.load_state_dict(state_dict_, strict=strict) if (self.embedding_type == 'learned'): if (self._position_embeddings_key in state_dict): state_dict_ = state_dict[self._position_embeddings_key] else: state_dict_ = {} for key in state_dict.keys(): if ('position_embeddings' in key): state_dict_[key.split('position_embeddings.')[1]] = state_dict[key] self.position_embeddings.load_state_dict(state_dict_, strict=strict) if (self.num_tokentypes > 0): state_dict_ = {} if (self._tokentype_embeddings_key in state_dict): state_dict_ = state_dict[self._tokentype_embeddings_key] else: for key in state_dict.keys(): if ('tokentype_embeddings' in key): state_dict_[key.split('tokentype_embeddings.')[1]] = state_dict[key] if (len(state_dict_.keys()) > 0): self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict) else: print('***WARNING*** expected tokentype embeddings in the checkpoint but could not find it', flush=True)
Customized load.
megatron/model/transformer.py
load_state_dict
fplk/gpt-neox
1
python
def load_state_dict(self, state_dict, strict=True): if (self._word_embeddings_key in state_dict): state_dict_ = state_dict[self._word_embeddings_key] else: state_dict_ = {} for key in state_dict.keys(): if ('word_embeddings' in key): state_dict_[key.split('word_embeddings.')[1]] = state_dict[key] self.word_embeddings.load_state_dict(state_dict_, strict=strict) if (self.embedding_type == 'learned'): if (self._position_embeddings_key in state_dict): state_dict_ = state_dict[self._position_embeddings_key] else: state_dict_ = {} for key in state_dict.keys(): if ('position_embeddings' in key): state_dict_[key.split('position_embeddings.')[1]] = state_dict[key] self.position_embeddings.load_state_dict(state_dict_, strict=strict) if (self.num_tokentypes > 0): state_dict_ = {} if (self._tokentype_embeddings_key in state_dict): state_dict_ = state_dict[self._tokentype_embeddings_key] else: for key in state_dict.keys(): if ('tokentype_embeddings' in key): state_dict_[key.split('tokentype_embeddings.')[1]] = state_dict[key] if (len(state_dict_.keys()) > 0): self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict) else: print('***WARNING*** expected tokentype embeddings in the checkpoint but could not find it', flush=True)
def load_state_dict(self, state_dict, strict=True): if (self._word_embeddings_key in state_dict): state_dict_ = state_dict[self._word_embeddings_key] else: state_dict_ = {} for key in state_dict.keys(): if ('word_embeddings' in key): state_dict_[key.split('word_embeddings.')[1]] = state_dict[key] self.word_embeddings.load_state_dict(state_dict_, strict=strict) if (self.embedding_type == 'learned'): if (self._position_embeddings_key in state_dict): state_dict_ = state_dict[self._position_embeddings_key] else: state_dict_ = {} for key in state_dict.keys(): if ('position_embeddings' in key): state_dict_[key.split('position_embeddings.')[1]] = state_dict[key] self.position_embeddings.load_state_dict(state_dict_, strict=strict) if (self.num_tokentypes > 0): state_dict_ = {} if (self._tokentype_embeddings_key in state_dict): state_dict_ = state_dict[self._tokentype_embeddings_key] else: for key in state_dict.keys(): if ('tokentype_embeddings' in key): state_dict_[key.split('tokentype_embeddings.')[1]] = state_dict[key] if (len(state_dict_.keys()) > 0): self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict) else: print('***WARNING*** expected tokentype embeddings in the checkpoint but could not find it', flush=True)<|docstring|>Customized load.<|endoftext|>
b39c827e5b20ec0502ec56b04263620981e62cd5e9f7e4047e11115ce831ace0
@property def word_embeddings_weight(self): 'Easy accessory for the pipeline engine to tie embeddings across stages.' return self.word_embeddings.weight
Easy accessory for the pipeline engine to tie embeddings across stages.
megatron/model/transformer.py
word_embeddings_weight
fplk/gpt-neox
1
python
@property def word_embeddings_weight(self): return self.word_embeddings.weight
@property def word_embeddings_weight(self): return self.word_embeddings.weight<|docstring|>Easy accessory for the pipeline engine to tie embeddings across stages.<|endoftext|>
0e097fa6612f1cd330bb32b5953187225cb5e820ef40427240208cde5a1b4898
def create_workbook_from_dataframe(df): '\n 1. Create workbook from specified pandas.DataFrame\n 2. Adjust columns width to fit the text inside\n 3. Make the index column and the header row bold\n 4. Fill background color for the header row\n\n Other beautification MUST be done by usage side.\n ' workbook = Workbook() ws = workbook.active rows = dataframe_to_rows(df.reset_index(), index=False) col_widths = ([0] * (len(df.columns) + 1)) for (i, row) in enumerate(rows, 1): for (j, val) in enumerate(row, 1): if (type(val) is str): cell = ws.cell(row=i, column=j, value=val) col_widths[(j - 1)] = max([col_widths[(j - 1)], len(str(val))]) elif hasattr(val, 'sort'): cell = ws.cell(row=i, column=j, value=', '.join(list(map((lambda v: str(v)), list(val))))) col_widths[(j - 1)] = max([col_widths[(j - 1)], len(str(val))]) else: cell = ws.cell(row=i, column=j, value=val) col_widths[(j - 1)] = max([col_widths[(j - 1)], (len(str(val)) + 1)]) if ((i == 1) or (j == 1)): cell.font = Font(bold=True) if (i == 1): cell.fill = PatternFill('solid', fgColor=colors.YELLOW) for (i, w) in enumerate(col_widths): letter = get_column_letter((i + 1)) ws.column_dimensions[letter].width = w return workbook
1. Create workbook from specified pandas.DataFrame 2. Adjust columns width to fit the text inside 3. Make the index column and the header row bold 4. Fill background color for the header row Other beautification MUST be done by usage side.
dataviper/report/utils.py
create_workbook_from_dataframe
otiai10/dataviper
19
python
def create_workbook_from_dataframe(df): '\n 1. Create workbook from specified pandas.DataFrame\n 2. Adjust columns width to fit the text inside\n 3. Make the index column and the header row bold\n 4. Fill background color for the header row\n\n Other beautification MUST be done by usage side.\n ' workbook = Workbook() ws = workbook.active rows = dataframe_to_rows(df.reset_index(), index=False) col_widths = ([0] * (len(df.columns) + 1)) for (i, row) in enumerate(rows, 1): for (j, val) in enumerate(row, 1): if (type(val) is str): cell = ws.cell(row=i, column=j, value=val) col_widths[(j - 1)] = max([col_widths[(j - 1)], len(str(val))]) elif hasattr(val, 'sort'): cell = ws.cell(row=i, column=j, value=', '.join(list(map((lambda v: str(v)), list(val))))) col_widths[(j - 1)] = max([col_widths[(j - 1)], len(str(val))]) else: cell = ws.cell(row=i, column=j, value=val) col_widths[(j - 1)] = max([col_widths[(j - 1)], (len(str(val)) + 1)]) if ((i == 1) or (j == 1)): cell.font = Font(bold=True) if (i == 1): cell.fill = PatternFill('solid', fgColor=colors.YELLOW) for (i, w) in enumerate(col_widths): letter = get_column_letter((i + 1)) ws.column_dimensions[letter].width = w return workbook
def create_workbook_from_dataframe(df): '\n 1. Create workbook from specified pandas.DataFrame\n 2. Adjust columns width to fit the text inside\n 3. Make the index column and the header row bold\n 4. Fill background color for the header row\n\n Other beautification MUST be done by usage side.\n ' workbook = Workbook() ws = workbook.active rows = dataframe_to_rows(df.reset_index(), index=False) col_widths = ([0] * (len(df.columns) + 1)) for (i, row) in enumerate(rows, 1): for (j, val) in enumerate(row, 1): if (type(val) is str): cell = ws.cell(row=i, column=j, value=val) col_widths[(j - 1)] = max([col_widths[(j - 1)], len(str(val))]) elif hasattr(val, 'sort'): cell = ws.cell(row=i, column=j, value=', '.join(list(map((lambda v: str(v)), list(val))))) col_widths[(j - 1)] = max([col_widths[(j - 1)], len(str(val))]) else: cell = ws.cell(row=i, column=j, value=val) col_widths[(j - 1)] = max([col_widths[(j - 1)], (len(str(val)) + 1)]) if ((i == 1) or (j == 1)): cell.font = Font(bold=True) if (i == 1): cell.fill = PatternFill('solid', fgColor=colors.YELLOW) for (i, w) in enumerate(col_widths): letter = get_column_letter((i + 1)) ws.column_dimensions[letter].width = w return workbook<|docstring|>1. Create workbook from specified pandas.DataFrame 2. Adjust columns width to fit the text inside 3. Make the index column and the header row bold 4. Fill background color for the header row Other beautification MUST be done by usage side.<|endoftext|>
dd8f5b873f8869c2f2a02a03bb4c3e39d881660f5502025a53dec0315b365722
@property def TIMERWRAP(self): 'IGNORED: Only available in Epiphany-IV.' return self._get_nth_bit_of_register('CONFIG', 26)
IGNORED: Only available in Epiphany-IV.
revelation/machine.py
TIMERWRAP
futurecore/revelation
4
python
@property def TIMERWRAP(self): return self._get_nth_bit_of_register('CONFIG', 26)
@property def TIMERWRAP(self): return self._get_nth_bit_of_register('CONFIG', 26)<|docstring|>IGNORED: Only available in Epiphany-IV.<|endoftext|>
95eb6a75218aca2e33f7844d1f7033af5cfa048fb59ea674b0f3ddac7a6f700d
@TIMERWRAP.setter def TIMERWRAP(self, value): 'IGNORED: Only available in Epiphany-IV.' self._set_nth_bit_of_register('CONFIG', 26, value)
IGNORED: Only available in Epiphany-IV.
revelation/machine.py
TIMERWRAP
futurecore/revelation
4
python
@TIMERWRAP.setter def TIMERWRAP(self, value): self._set_nth_bit_of_register('CONFIG', 26, value)
@TIMERWRAP.setter def TIMERWRAP(self, value): self._set_nth_bit_of_register('CONFIG', 26, value)<|docstring|>IGNORED: Only available in Epiphany-IV.<|endoftext|>
f19ec6c7c1fc5e69de38b8d0462fbd623da5bd94e50dd5a66c46d6096a222fc7
def Run(args): 'Run the casectrl function as SPSS syntax' args = args[list(args.keys())[0]] oobj = Syntax([Template('DEMANDERDS', subc='', var='demanderds', ktype='varname'), Template('SUPPLIERDS', subc='', var='supplierds', ktype='varname'), Template('DS3', subc='', var='ds3', ktype='varname'), Template('BY', subc='', var='by', ktype='varname', islist=True), Template('FUZZ', subc='', var='fuzz', ktype='float', islist=True), Template('EXACTPRIORITY', subc='', var='exactpriority', ktype='bool'), Template('CUSTOMFUZZ', subc='', var='customfuzz', ktype='literal'), Template('GROUP', subc='', var='group', ktype='existingvarlist', islist=False), Template('SUPPLIERID', subc='', var='supplierid', ktype='varname'), Template('NEWDEMANDERIDVARS', subc='', var='matchslots', islist=True), Template('COPYTODEMANDER', subc='', ktype='varname', var='copytodemander', islist=True), Template('MATCHGROUPVAR', subc='', var='hashvar', ktype='varname'), Template('DRAWPOOLSIZE', subc='', var='drawpool', ktype='varname'), Template('DEMANDERID', subc='', var='demanderid', ktype='varname'), Template('SAMPLEWITHREPLACEMENT', subc='OPTIONS', var='samplewithreplacement', ktype='bool'), Template('MINIMIZEMEMORY', subc='OPTIONS', var='minimizememory', ktype='bool'), Template('SEED', subc='OPTIONS', var='seed', ktype='int', vallist=(((- (2 ** 31)) + 1), ((2 ** 31) - 1))), Template('SHUFFLE', subc='OPTIONS', var='shuffle', ktype='bool'), Template('LOGFILE', subc='OUTFILE', var='logfile', ktype='literal'), Template('ACCESSMODE', subc='OUTFILE', var='logaccessmode', ktype='str', vallist=('append', 'overwrite'))]) global _ try: _('---') except: def _(msg): return msg if ('HELP' in args): helper() else: processcmd(oobj, args, casecontrol, vardict=spssaux.VariableDict())
Run the casectrl function as SPSS syntax
src/FUZZY.py
Run
IBMPredictiveAnalytics/FUZZY
1
python
def Run(args): args = args[list(args.keys())[0]] oobj = Syntax([Template('DEMANDERDS', subc=, var='demanderds', ktype='varname'), Template('SUPPLIERDS', subc=, var='supplierds', ktype='varname'), Template('DS3', subc=, var='ds3', ktype='varname'), Template('BY', subc=, var='by', ktype='varname', islist=True), Template('FUZZ', subc=, var='fuzz', ktype='float', islist=True), Template('EXACTPRIORITY', subc=, var='exactpriority', ktype='bool'), Template('CUSTOMFUZZ', subc=, var='customfuzz', ktype='literal'), Template('GROUP', subc=, var='group', ktype='existingvarlist', islist=False), Template('SUPPLIERID', subc=, var='supplierid', ktype='varname'), Template('NEWDEMANDERIDVARS', subc=, var='matchslots', islist=True), Template('COPYTODEMANDER', subc=, ktype='varname', var='copytodemander', islist=True), Template('MATCHGROUPVAR', subc=, var='hashvar', ktype='varname'), Template('DRAWPOOLSIZE', subc=, var='drawpool', ktype='varname'), Template('DEMANDERID', subc=, var='demanderid', ktype='varname'), Template('SAMPLEWITHREPLACEMENT', subc='OPTIONS', var='samplewithreplacement', ktype='bool'), Template('MINIMIZEMEMORY', subc='OPTIONS', var='minimizememory', ktype='bool'), Template('SEED', subc='OPTIONS', var='seed', ktype='int', vallist=(((- (2 ** 31)) + 1), ((2 ** 31) - 1))), Template('SHUFFLE', subc='OPTIONS', var='shuffle', ktype='bool'), Template('LOGFILE', subc='OUTFILE', var='logfile', ktype='literal'), Template('ACCESSMODE', subc='OUTFILE', var='logaccessmode', ktype='str', vallist=('append', 'overwrite'))]) global _ try: _('---') except: def _(msg): return msg if ('HELP' in args): helper() else: processcmd(oobj, args, casecontrol, vardict=spssaux.VariableDict())
def Run(args): args = args[list(args.keys())[0]] oobj = Syntax([Template('DEMANDERDS', subc=, var='demanderds', ktype='varname'), Template('SUPPLIERDS', subc=, var='supplierds', ktype='varname'), Template('DS3', subc=, var='ds3', ktype='varname'), Template('BY', subc=, var='by', ktype='varname', islist=True), Template('FUZZ', subc=, var='fuzz', ktype='float', islist=True), Template('EXACTPRIORITY', subc=, var='exactpriority', ktype='bool'), Template('CUSTOMFUZZ', subc=, var='customfuzz', ktype='literal'), Template('GROUP', subc=, var='group', ktype='existingvarlist', islist=False), Template('SUPPLIERID', subc=, var='supplierid', ktype='varname'), Template('NEWDEMANDERIDVARS', subc=, var='matchslots', islist=True), Template('COPYTODEMANDER', subc=, ktype='varname', var='copytodemander', islist=True), Template('MATCHGROUPVAR', subc=, var='hashvar', ktype='varname'), Template('DRAWPOOLSIZE', subc=, var='drawpool', ktype='varname'), Template('DEMANDERID', subc=, var='demanderid', ktype='varname'), Template('SAMPLEWITHREPLACEMENT', subc='OPTIONS', var='samplewithreplacement', ktype='bool'), Template('MINIMIZEMEMORY', subc='OPTIONS', var='minimizememory', ktype='bool'), Template('SEED', subc='OPTIONS', var='seed', ktype='int', vallist=(((- (2 ** 31)) + 1), ((2 ** 31) - 1))), Template('SHUFFLE', subc='OPTIONS', var='shuffle', ktype='bool'), Template('LOGFILE', subc='OUTFILE', var='logfile', ktype='literal'), Template('ACCESSMODE', subc='OUTFILE', var='logaccessmode', ktype='str', vallist=('append', 'overwrite'))]) global _ try: _('---') except: def _(msg): return msg if ('HELP' in args): helper() else: processcmd(oobj, args, casecontrol, vardict=spssaux.VariableDict())<|docstring|>Run the casectrl function as SPSS syntax<|endoftext|>
7f5daba8857719f2f158c76d02c684f30333529bcf0ed6a915a07580d86887fd
def casecontrol(by, supplierid, matchslots, demanderds=None, supplierds=None, group=None, copytodemander=[], ds3=None, demanderid=None, samplewithreplacement=False, hashvar='matchgroup', seed=None, shuffle=False, minimizememory=True, fuzz=None, exactpriority=True, drawpool=None, customfuzz=None, logfile=None, logaccessmode='overwrite'): 'Find match for demanderds cases in supplierds and add identifiers to demanderds. Return unmatched count. \n \n demanderds is the dataset name of cases needing a match (demanders)\n supplierds is the dataset name of cases supplying matches (suppliers)\n ds3 is optional and will contain the supplierds cases used for matches.\n demanderid is optional. If specified, and ds3 is used, it will be appended to the supplier cases. It must have a name\n different from any variable in the supplier dataset.\n \n by is a variable or sequence of variable names used to determine a match. The variables must exist in both demanderds and supplierds.\n supplierid is the variable name of the ID variable in the supplier dataset.\n matchslots is the variable name or sequence of variable names for the ids of the matches\n \n copytodemander is an optional list of variables in supplierds to be added to demanderds. If this option is used, only a single\n matching case can be requested. Variable types must agree for variables that already exist in demanderds.\n samplewithreplacement, if true, samples with replacement; otherwise sampling is without replacement.\n hashvar is an optional variable name to contain the hash of the match variables and added to demanderds and ds3.\n If seed is not None, its value is used to initialize the generator for repeatability.\n If shuffle is True, the demander cases are matched in a random order; otherwise they are matched in case order.\n Since shuffling requires O(N) memory and will be slower, presorting the demander dataset by a random number is an alternative.\n If minimizememory is true, only one eligible case is assigned to eachdemander, and the available matches table is suppressed.\n If fuzz is not None, it must be a sequence of half-ranges, one per by variable. Use 0 for any nonnumeric variables.\n By default, with fuzzy matching, exact matches take priority when available except with minimizememory. \n Set exactpriority False to treat all equally.\n Minimize memory cannot be used with exactpriority.\n drawpool names a variable to be created in the demander ds whose value is the size of the pool for\n each case\n' global logger if (not (seed is None)): random.seed(seed) myenc = locale.getlocale()[1] by = spssaux._buildvarlist(by) matchslots = spssaux._buildvarlist(matchslots) nmatches = len(matchslots) if group: activedsname = spss.ActiveDataset() if (demanderds is None): demanderds = activedsname if (supplierds is None): supplierds = activedsname elif ((demanderds is None) or (supplierds is None)): raise ValueError(_('The required demander or supplier dataset name was not specified')) if ((demanderds == supplierds) and (not group)): raise ValueError(_('A group variable must be specified if the demander and supplier datasets are the same')) if (group and (demanderds != supplierds)): raise ValueError(_('A group variable cannot be used unless the demander and supplier datasets are the same')) if (group and copytodemander): raise ValueError(_('COPYTODEMANDER cannot be used with GROUP')) copytodemander = spssaux._buildvarlist(copytodemander) if ((nmatches > 1) and (len(copytodemander) > 0)): raise ValueError(_('Error: variables can only be copied to the demander dataset if only a single match is requested')) if ((len(set([v.lower() for v in matchslots])) != nmatches) or (nmatches == 0)): matchslots = ', '.join(matchslots) if (not isinstance(matchslots, str)): matchslots = str(matchslots, myenc) raise ValueError((_('Match id variable names are not unique or none was specified\n') + matchslots)) if ((fuzz is not None) and (len(fuzz) != len(by))): raise ValueError((_('List of fuzz values does not match list of BY variables. Fuzz: %s') % fuzz)) if (fuzz and exactpriority): if minimizememory: print('Fuzzy matching with exactpriority cannot be combined with minimizememory. Setting minimizememory to NO.') mimimizememory = False if (minimizememory and samplewithreplacement): print(_('Samping with replacement cannot be used with minimize memory. Using sampling without replacement')) samplewithreplacement = False nomatchcount = 0 with DataStep(): demanderdsx = spss.Dataset(demanderds) if (demanderds != supplierds): supplierds = spss.Dataset(supplierds) else: supplierds = demanderdsx demanderds = demanderdsx if drawpool: demanderds.varlist.append(drawpool) drawpoolindex = demanderds.varlist[drawpool].index else: drawpoolindex = None demanderds.varlist.append(hashvar) hashvarindex = demanderds.varlist[hashvar].index try: supplieridindex = supplierds.varlist[supplierid].index idtype = supplierds.varlist[supplierid].type except: if (not isinstance(supplierid, str)): supplierid = str(supplierid, myenc) raise ValueError((_('Supplier dataset id variable not found: %s') % supplierid)) for v in matchslots: demanderds.varlist.append(v, idtype) if ds3: dsextra = spss.Dataset(name=None) dsextraname = dsextra.name lends3 = createds3(supplierds, dsextra, hashvar, demanderds, demanderid, supplierid, myenc, group, drawpool) else: dsextra = None lends3 = 0 if (demanderid is not None): demanderidindex = demanderds.varlist[demanderid].index else: demanderidindex = None if group: groupindex = demanderds.varlist[group].index else: groupindex = None demandercopyindexes = [] suppliercopyindexes = [] copyvartypes = [] typeconflicts = [] if copytodemander: demandervars = set([v.name for v in demanderds.varlist]) svtype = 0 for sv in copytodemander: try: svtype = supplierds.varlist[sv].type except: if (not isinstance(sv, str)): sv = str(sv, myenc) raise ValueError((_('Supplier dataset variable not found: %s') % sv)) if (not (sv in demandervars)): demanderds.varlist.append(sv, svtype) elif (demanderds.varlist[sv].type != svtype): typeconflicts.append(sv) demandercopyindexes.append(demanderds.varlist[sv].index) suppliercopyindexes.append(supplierds.varlist[sv].index) copyvartypes.append(svtype) if typeconflicts: typeconflicts = ','.join(typeconflicts) if (not isinstance(typeconflicts, str)): typeconflicts = str(typeconflicts, myenc) raise ValueError((_('Error: supplier/demander type conflicts exist for variables: ') + typeconflicts)) matcher = Matcher(by, supplierid, demanderds, supplierds, nmatches, samplewithreplacement, minimizememory, fuzz, exactpriority, groupindex, customfuzz) demanderdscases = demanderds.cases supplierdscases = supplierds.cases demanderdssize = len(demanderdscases) supplierdssize = len(supplierdscases) logger = Logger(logfile=logfile, accessmode=logaccessmode) logger.info('Adding demanders') addcount = 0 for i in range(demanderdssize): if ((i % 5000) == 4999): logger.info(('Cumulative demanders added = %s' % addcount)) addcount += matcher.adddemander(demanderdscases[i]) logger.info(('Done adding demanders. Number added = %s' % addcount)) logger.info(('Adding suppliers. suppliersize = %s (for single dataset usage, this is the total casecount)' % supplierdssize)) addcount = 0 matchmaker = Matchmaker(demanderdscases, matcher, hashvarindex, supplierdscases, dsextra, demandercopyindexes, suppliercopyindexes, demanderidindex, drawpoolindex, supplieridindex, group) matcher.domatch = matchmaker.do for i in range(supplierdssize): if ((i % 1000) == 999): logger.info(('Cumulative potential suppliers processed = %s. Supplier adds = %s' % (i, addcount))) addcount += matcher.addsupplier(supplierdscases[i], i) logger.info(('Done adding suppliers. Number added: %s. A supplier may be added to more than one demander.' % addcount)) logger.info(('Making matches. Demandersize = %s' % demanderdssize)) if (not shuffle): for i in range(demanderdssize): if ((i % 1000) == 999): logger.info(('Cumulative matches = %s, nomatch Count = %s' % (i, nomatchcount))) nomatchcount += matchmaker.do(i) else: caselist = list(range(demanderdssize)) random.shuffle(caselist) for i in caselist: if ((i % 1000) == 999): logger.info(('Cumulative matches = %s, nomatch count = %s' % (i, nomatchcount))) nomatchcount += matchmaker.do(i) logger.info('Done matching. Displaying results') if ds3: spss.Submit(('DATASET ACTIVATE %(dsextraname)s.\n DATASET NAME %(ds3)s' % locals())) StartProcedure(_('Case-control matching'), 'SPSSINC CASECTRL') tbl = spss.BasePivotTable(_('Case Control Matching Statistics'), 'CASECTRLSTATS') tbl.SetDefaultFormatSpec(spss.FormatSpec.Count) rowlabels = [_('Exact Matches'), _('Fuzzy Matches'), _('Unmatched Including Missing Keys'), _('Unmatched with Valid Keys'), _('Sampling'), _('Log file'), _('Maximize Matching Performance')] cells = ((((matcher.counts + [nomatchcount]) + [((samplewithreplacement and _('with replacement')) or _('without replacement'))]) + [(((logfile is None) and _('none')) or logfile)]) + [((minimizememory and _('yes')) or _('no'))]) tbl.SimplePivotTable(rowdim=_('Match Type'), rowlabels=rowlabels, coldim='', collabels=[_('Count')], cells=cells) if fuzz: by.insert(0, _('Exact (All Variables)')) fuzz.insert(0, None) for i in range(len(fuzz)): if (matcher.tries[i] > 0.0): matcher.rejections[i] = ((float(matcher.rejections[i]) / matcher.tries[i]) * 100.0) tblvalues = [(fuzz[i], matcher.tries[i], matcher.rejections[i]) for i in range(len(fuzz))] collabels = [_('Value'), _('Fuzzy Match Tries'), _('Incremental Rejection Percentage')] caption = _('Tries is the number of match comparisons before drawing. Rejection percentage shows the match rejection rate. Rejections are attributed to the first variable in the BY list that causes rejection.') elif customfuzz: tblvalues = (len(by) * [None]) collabels = [_('Value')] caption = _(('Case distance computed from custom function: %s' % customfuzz)) else: tblvalues = (len(by) * [0]) collabels = [_('Value')] caption = '' fuzztbl = spss.BasePivotTable(_('Case Control Match Tolerances'), 'CASECTRLFUZZ', caption=caption) fuzztbl.SimplePivotTable(rowdim=_('Match Variables'), rowlabels=by, coldim='', collabels=collabels, cells=tblvalues) if (not minimizememory): matcher.freqs.showtable() spss.EndProcedure() logger.done() return nomatchcount
Find match for demanderds cases in supplierds and add identifiers to demanderds. Return unmatched count. demanderds is the dataset name of cases needing a match (demanders) supplierds is the dataset name of cases supplying matches (suppliers) ds3 is optional and will contain the supplierds cases used for matches. demanderid is optional. If specified, and ds3 is used, it will be appended to the supplier cases. It must have a name different from any variable in the supplier dataset. by is a variable or sequence of variable names used to determine a match. The variables must exist in both demanderds and supplierds. supplierid is the variable name of the ID variable in the supplier dataset. matchslots is the variable name or sequence of variable names for the ids of the matches copytodemander is an optional list of variables in supplierds to be added to demanderds. If this option is used, only a single matching case can be requested. Variable types must agree for variables that already exist in demanderds. samplewithreplacement, if true, samples with replacement; otherwise sampling is without replacement. hashvar is an optional variable name to contain the hash of the match variables and added to demanderds and ds3. If seed is not None, its value is used to initialize the generator for repeatability. If shuffle is True, the demander cases are matched in a random order; otherwise they are matched in case order. Since shuffling requires O(N) memory and will be slower, presorting the demander dataset by a random number is an alternative. If minimizememory is true, only one eligible case is assigned to eachdemander, and the available matches table is suppressed. If fuzz is not None, it must be a sequence of half-ranges, one per by variable. Use 0 for any nonnumeric variables. By default, with fuzzy matching, exact matches take priority when available except with minimizememory. Set exactpriority False to treat all equally. Minimize memory cannot be used with exactpriority. drawpool names a variable to be created in the demander ds whose value is the size of the pool for each case
src/FUZZY.py
casecontrol
IBMPredictiveAnalytics/FUZZY
1
python
def casecontrol(by, supplierid, matchslots, demanderds=None, supplierds=None, group=None, copytodemander=[], ds3=None, demanderid=None, samplewithreplacement=False, hashvar='matchgroup', seed=None, shuffle=False, minimizememory=True, fuzz=None, exactpriority=True, drawpool=None, customfuzz=None, logfile=None, logaccessmode='overwrite'): 'Find match for demanderds cases in supplierds and add identifiers to demanderds. Return unmatched count. \n \n demanderds is the dataset name of cases needing a match (demanders)\n supplierds is the dataset name of cases supplying matches (suppliers)\n ds3 is optional and will contain the supplierds cases used for matches.\n demanderid is optional. If specified, and ds3 is used, it will be appended to the supplier cases. It must have a name\n different from any variable in the supplier dataset.\n \n by is a variable or sequence of variable names used to determine a match. The variables must exist in both demanderds and supplierds.\n supplierid is the variable name of the ID variable in the supplier dataset.\n matchslots is the variable name or sequence of variable names for the ids of the matches\n \n copytodemander is an optional list of variables in supplierds to be added to demanderds. If this option is used, only a single\n matching case can be requested. Variable types must agree for variables that already exist in demanderds.\n samplewithreplacement, if true, samples with replacement; otherwise sampling is without replacement.\n hashvar is an optional variable name to contain the hash of the match variables and added to demanderds and ds3.\n If seed is not None, its value is used to initialize the generator for repeatability.\n If shuffle is True, the demander cases are matched in a random order; otherwise they are matched in case order.\n Since shuffling requires O(N) memory and will be slower, presorting the demander dataset by a random number is an alternative.\n If minimizememory is true, only one eligible case is assigned to eachdemander, and the available matches table is suppressed.\n If fuzz is not None, it must be a sequence of half-ranges, one per by variable. Use 0 for any nonnumeric variables.\n By default, with fuzzy matching, exact matches take priority when available except with minimizememory. \n Set exactpriority False to treat all equally.\n Minimize memory cannot be used with exactpriority.\n drawpool names a variable to be created in the demander ds whose value is the size of the pool for\n each case\n' global logger if (not (seed is None)): random.seed(seed) myenc = locale.getlocale()[1] by = spssaux._buildvarlist(by) matchslots = spssaux._buildvarlist(matchslots) nmatches = len(matchslots) if group: activedsname = spss.ActiveDataset() if (demanderds is None): demanderds = activedsname if (supplierds is None): supplierds = activedsname elif ((demanderds is None) or (supplierds is None)): raise ValueError(_('The required demander or supplier dataset name was not specified')) if ((demanderds == supplierds) and (not group)): raise ValueError(_('A group variable must be specified if the demander and supplier datasets are the same')) if (group and (demanderds != supplierds)): raise ValueError(_('A group variable cannot be used unless the demander and supplier datasets are the same')) if (group and copytodemander): raise ValueError(_('COPYTODEMANDER cannot be used with GROUP')) copytodemander = spssaux._buildvarlist(copytodemander) if ((nmatches > 1) and (len(copytodemander) > 0)): raise ValueError(_('Error: variables can only be copied to the demander dataset if only a single match is requested')) if ((len(set([v.lower() for v in matchslots])) != nmatches) or (nmatches == 0)): matchslots = ', '.join(matchslots) if (not isinstance(matchslots, str)): matchslots = str(matchslots, myenc) raise ValueError((_('Match id variable names are not unique or none was specified\n') + matchslots)) if ((fuzz is not None) and (len(fuzz) != len(by))): raise ValueError((_('List of fuzz values does not match list of BY variables. Fuzz: %s') % fuzz)) if (fuzz and exactpriority): if minimizememory: print('Fuzzy matching with exactpriority cannot be combined with minimizememory. Setting minimizememory to NO.') mimimizememory = False if (minimizememory and samplewithreplacement): print(_('Samping with replacement cannot be used with minimize memory. Using sampling without replacement')) samplewithreplacement = False nomatchcount = 0 with DataStep(): demanderdsx = spss.Dataset(demanderds) if (demanderds != supplierds): supplierds = spss.Dataset(supplierds) else: supplierds = demanderdsx demanderds = demanderdsx if drawpool: demanderds.varlist.append(drawpool) drawpoolindex = demanderds.varlist[drawpool].index else: drawpoolindex = None demanderds.varlist.append(hashvar) hashvarindex = demanderds.varlist[hashvar].index try: supplieridindex = supplierds.varlist[supplierid].index idtype = supplierds.varlist[supplierid].type except: if (not isinstance(supplierid, str)): supplierid = str(supplierid, myenc) raise ValueError((_('Supplier dataset id variable not found: %s') % supplierid)) for v in matchslots: demanderds.varlist.append(v, idtype) if ds3: dsextra = spss.Dataset(name=None) dsextraname = dsextra.name lends3 = createds3(supplierds, dsextra, hashvar, demanderds, demanderid, supplierid, myenc, group, drawpool) else: dsextra = None lends3 = 0 if (demanderid is not None): demanderidindex = demanderds.varlist[demanderid].index else: demanderidindex = None if group: groupindex = demanderds.varlist[group].index else: groupindex = None demandercopyindexes = [] suppliercopyindexes = [] copyvartypes = [] typeconflicts = [] if copytodemander: demandervars = set([v.name for v in demanderds.varlist]) svtype = 0 for sv in copytodemander: try: svtype = supplierds.varlist[sv].type except: if (not isinstance(sv, str)): sv = str(sv, myenc) raise ValueError((_('Supplier dataset variable not found: %s') % sv)) if (not (sv in demandervars)): demanderds.varlist.append(sv, svtype) elif (demanderds.varlist[sv].type != svtype): typeconflicts.append(sv) demandercopyindexes.append(demanderds.varlist[sv].index) suppliercopyindexes.append(supplierds.varlist[sv].index) copyvartypes.append(svtype) if typeconflicts: typeconflicts = ','.join(typeconflicts) if (not isinstance(typeconflicts, str)): typeconflicts = str(typeconflicts, myenc) raise ValueError((_('Error: supplier/demander type conflicts exist for variables: ') + typeconflicts)) matcher = Matcher(by, supplierid, demanderds, supplierds, nmatches, samplewithreplacement, minimizememory, fuzz, exactpriority, groupindex, customfuzz) demanderdscases = demanderds.cases supplierdscases = supplierds.cases demanderdssize = len(demanderdscases) supplierdssize = len(supplierdscases) logger = Logger(logfile=logfile, accessmode=logaccessmode) logger.info('Adding demanders') addcount = 0 for i in range(demanderdssize): if ((i % 5000) == 4999): logger.info(('Cumulative demanders added = %s' % addcount)) addcount += matcher.adddemander(demanderdscases[i]) logger.info(('Done adding demanders. Number added = %s' % addcount)) logger.info(('Adding suppliers. suppliersize = %s (for single dataset usage, this is the total casecount)' % supplierdssize)) addcount = 0 matchmaker = Matchmaker(demanderdscases, matcher, hashvarindex, supplierdscases, dsextra, demandercopyindexes, suppliercopyindexes, demanderidindex, drawpoolindex, supplieridindex, group) matcher.domatch = matchmaker.do for i in range(supplierdssize): if ((i % 1000) == 999): logger.info(('Cumulative potential suppliers processed = %s. Supplier adds = %s' % (i, addcount))) addcount += matcher.addsupplier(supplierdscases[i], i) logger.info(('Done adding suppliers. Number added: %s. A supplier may be added to more than one demander.' % addcount)) logger.info(('Making matches. Demandersize = %s' % demanderdssize)) if (not shuffle): for i in range(demanderdssize): if ((i % 1000) == 999): logger.info(('Cumulative matches = %s, nomatch Count = %s' % (i, nomatchcount))) nomatchcount += matchmaker.do(i) else: caselist = list(range(demanderdssize)) random.shuffle(caselist) for i in caselist: if ((i % 1000) == 999): logger.info(('Cumulative matches = %s, nomatch count = %s' % (i, nomatchcount))) nomatchcount += matchmaker.do(i) logger.info('Done matching. Displaying results') if ds3: spss.Submit(('DATASET ACTIVATE %(dsextraname)s.\n DATASET NAME %(ds3)s' % locals())) StartProcedure(_('Case-control matching'), 'SPSSINC CASECTRL') tbl = spss.BasePivotTable(_('Case Control Matching Statistics'), 'CASECTRLSTATS') tbl.SetDefaultFormatSpec(spss.FormatSpec.Count) rowlabels = [_('Exact Matches'), _('Fuzzy Matches'), _('Unmatched Including Missing Keys'), _('Unmatched with Valid Keys'), _('Sampling'), _('Log file'), _('Maximize Matching Performance')] cells = ((((matcher.counts + [nomatchcount]) + [((samplewithreplacement and _('with replacement')) or _('without replacement'))]) + [(((logfile is None) and _('none')) or logfile)]) + [((minimizememory and _('yes')) or _('no'))]) tbl.SimplePivotTable(rowdim=_('Match Type'), rowlabels=rowlabels, coldim=, collabels=[_('Count')], cells=cells) if fuzz: by.insert(0, _('Exact (All Variables)')) fuzz.insert(0, None) for i in range(len(fuzz)): if (matcher.tries[i] > 0.0): matcher.rejections[i] = ((float(matcher.rejections[i]) / matcher.tries[i]) * 100.0) tblvalues = [(fuzz[i], matcher.tries[i], matcher.rejections[i]) for i in range(len(fuzz))] collabels = [_('Value'), _('Fuzzy Match Tries'), _('Incremental Rejection Percentage')] caption = _('Tries is the number of match comparisons before drawing. Rejection percentage shows the match rejection rate. Rejections are attributed to the first variable in the BY list that causes rejection.') elif customfuzz: tblvalues = (len(by) * [None]) collabels = [_('Value')] caption = _(('Case distance computed from custom function: %s' % customfuzz)) else: tblvalues = (len(by) * [0]) collabels = [_('Value')] caption = fuzztbl = spss.BasePivotTable(_('Case Control Match Tolerances'), 'CASECTRLFUZZ', caption=caption) fuzztbl.SimplePivotTable(rowdim=_('Match Variables'), rowlabels=by, coldim=, collabels=collabels, cells=tblvalues) if (not minimizememory): matcher.freqs.showtable() spss.EndProcedure() logger.done() return nomatchcount
def casecontrol(by, supplierid, matchslots, demanderds=None, supplierds=None, group=None, copytodemander=[], ds3=None, demanderid=None, samplewithreplacement=False, hashvar='matchgroup', seed=None, shuffle=False, minimizememory=True, fuzz=None, exactpriority=True, drawpool=None, customfuzz=None, logfile=None, logaccessmode='overwrite'): 'Find match for demanderds cases in supplierds and add identifiers to demanderds. Return unmatched count. \n \n demanderds is the dataset name of cases needing a match (demanders)\n supplierds is the dataset name of cases supplying matches (suppliers)\n ds3 is optional and will contain the supplierds cases used for matches.\n demanderid is optional. If specified, and ds3 is used, it will be appended to the supplier cases. It must have a name\n different from any variable in the supplier dataset.\n \n by is a variable or sequence of variable names used to determine a match. The variables must exist in both demanderds and supplierds.\n supplierid is the variable name of the ID variable in the supplier dataset.\n matchslots is the variable name or sequence of variable names for the ids of the matches\n \n copytodemander is an optional list of variables in supplierds to be added to demanderds. If this option is used, only a single\n matching case can be requested. Variable types must agree for variables that already exist in demanderds.\n samplewithreplacement, if true, samples with replacement; otherwise sampling is without replacement.\n hashvar is an optional variable name to contain the hash of the match variables and added to demanderds and ds3.\n If seed is not None, its value is used to initialize the generator for repeatability.\n If shuffle is True, the demander cases are matched in a random order; otherwise they are matched in case order.\n Since shuffling requires O(N) memory and will be slower, presorting the demander dataset by a random number is an alternative.\n If minimizememory is true, only one eligible case is assigned to eachdemander, and the available matches table is suppressed.\n If fuzz is not None, it must be a sequence of half-ranges, one per by variable. Use 0 for any nonnumeric variables.\n By default, with fuzzy matching, exact matches take priority when available except with minimizememory. \n Set exactpriority False to treat all equally.\n Minimize memory cannot be used with exactpriority.\n drawpool names a variable to be created in the demander ds whose value is the size of the pool for\n each case\n' global logger if (not (seed is None)): random.seed(seed) myenc = locale.getlocale()[1] by = spssaux._buildvarlist(by) matchslots = spssaux._buildvarlist(matchslots) nmatches = len(matchslots) if group: activedsname = spss.ActiveDataset() if (demanderds is None): demanderds = activedsname if (supplierds is None): supplierds = activedsname elif ((demanderds is None) or (supplierds is None)): raise ValueError(_('The required demander or supplier dataset name was not specified')) if ((demanderds == supplierds) and (not group)): raise ValueError(_('A group variable must be specified if the demander and supplier datasets are the same')) if (group and (demanderds != supplierds)): raise ValueError(_('A group variable cannot be used unless the demander and supplier datasets are the same')) if (group and copytodemander): raise ValueError(_('COPYTODEMANDER cannot be used with GROUP')) copytodemander = spssaux._buildvarlist(copytodemander) if ((nmatches > 1) and (len(copytodemander) > 0)): raise ValueError(_('Error: variables can only be copied to the demander dataset if only a single match is requested')) if ((len(set([v.lower() for v in matchslots])) != nmatches) or (nmatches == 0)): matchslots = ', '.join(matchslots) if (not isinstance(matchslots, str)): matchslots = str(matchslots, myenc) raise ValueError((_('Match id variable names are not unique or none was specified\n') + matchslots)) if ((fuzz is not None) and (len(fuzz) != len(by))): raise ValueError((_('List of fuzz values does not match list of BY variables. Fuzz: %s') % fuzz)) if (fuzz and exactpriority): if minimizememory: print('Fuzzy matching with exactpriority cannot be combined with minimizememory. Setting minimizememory to NO.') mimimizememory = False if (minimizememory and samplewithreplacement): print(_('Samping with replacement cannot be used with minimize memory. Using sampling without replacement')) samplewithreplacement = False nomatchcount = 0 with DataStep(): demanderdsx = spss.Dataset(demanderds) if (demanderds != supplierds): supplierds = spss.Dataset(supplierds) else: supplierds = demanderdsx demanderds = demanderdsx if drawpool: demanderds.varlist.append(drawpool) drawpoolindex = demanderds.varlist[drawpool].index else: drawpoolindex = None demanderds.varlist.append(hashvar) hashvarindex = demanderds.varlist[hashvar].index try: supplieridindex = supplierds.varlist[supplierid].index idtype = supplierds.varlist[supplierid].type except: if (not isinstance(supplierid, str)): supplierid = str(supplierid, myenc) raise ValueError((_('Supplier dataset id variable not found: %s') % supplierid)) for v in matchslots: demanderds.varlist.append(v, idtype) if ds3: dsextra = spss.Dataset(name=None) dsextraname = dsextra.name lends3 = createds3(supplierds, dsextra, hashvar, demanderds, demanderid, supplierid, myenc, group, drawpool) else: dsextra = None lends3 = 0 if (demanderid is not None): demanderidindex = demanderds.varlist[demanderid].index else: demanderidindex = None if group: groupindex = demanderds.varlist[group].index else: groupindex = None demandercopyindexes = [] suppliercopyindexes = [] copyvartypes = [] typeconflicts = [] if copytodemander: demandervars = set([v.name for v in demanderds.varlist]) svtype = 0 for sv in copytodemander: try: svtype = supplierds.varlist[sv].type except: if (not isinstance(sv, str)): sv = str(sv, myenc) raise ValueError((_('Supplier dataset variable not found: %s') % sv)) if (not (sv in demandervars)): demanderds.varlist.append(sv, svtype) elif (demanderds.varlist[sv].type != svtype): typeconflicts.append(sv) demandercopyindexes.append(demanderds.varlist[sv].index) suppliercopyindexes.append(supplierds.varlist[sv].index) copyvartypes.append(svtype) if typeconflicts: typeconflicts = ','.join(typeconflicts) if (not isinstance(typeconflicts, str)): typeconflicts = str(typeconflicts, myenc) raise ValueError((_('Error: supplier/demander type conflicts exist for variables: ') + typeconflicts)) matcher = Matcher(by, supplierid, demanderds, supplierds, nmatches, samplewithreplacement, minimizememory, fuzz, exactpriority, groupindex, customfuzz) demanderdscases = demanderds.cases supplierdscases = supplierds.cases demanderdssize = len(demanderdscases) supplierdssize = len(supplierdscases) logger = Logger(logfile=logfile, accessmode=logaccessmode) logger.info('Adding demanders') addcount = 0 for i in range(demanderdssize): if ((i % 5000) == 4999): logger.info(('Cumulative demanders added = %s' % addcount)) addcount += matcher.adddemander(demanderdscases[i]) logger.info(('Done adding demanders. Number added = %s' % addcount)) logger.info(('Adding suppliers. suppliersize = %s (for single dataset usage, this is the total casecount)' % supplierdssize)) addcount = 0 matchmaker = Matchmaker(demanderdscases, matcher, hashvarindex, supplierdscases, dsextra, demandercopyindexes, suppliercopyindexes, demanderidindex, drawpoolindex, supplieridindex, group) matcher.domatch = matchmaker.do for i in range(supplierdssize): if ((i % 1000) == 999): logger.info(('Cumulative potential suppliers processed = %s. Supplier adds = %s' % (i, addcount))) addcount += matcher.addsupplier(supplierdscases[i], i) logger.info(('Done adding suppliers. Number added: %s. A supplier may be added to more than one demander.' % addcount)) logger.info(('Making matches. Demandersize = %s' % demanderdssize)) if (not shuffle): for i in range(demanderdssize): if ((i % 1000) == 999): logger.info(('Cumulative matches = %s, nomatch Count = %s' % (i, nomatchcount))) nomatchcount += matchmaker.do(i) else: caselist = list(range(demanderdssize)) random.shuffle(caselist) for i in caselist: if ((i % 1000) == 999): logger.info(('Cumulative matches = %s, nomatch count = %s' % (i, nomatchcount))) nomatchcount += matchmaker.do(i) logger.info('Done matching. Displaying results') if ds3: spss.Submit(('DATASET ACTIVATE %(dsextraname)s.\n DATASET NAME %(ds3)s' % locals())) StartProcedure(_('Case-control matching'), 'SPSSINC CASECTRL') tbl = spss.BasePivotTable(_('Case Control Matching Statistics'), 'CASECTRLSTATS') tbl.SetDefaultFormatSpec(spss.FormatSpec.Count) rowlabels = [_('Exact Matches'), _('Fuzzy Matches'), _('Unmatched Including Missing Keys'), _('Unmatched with Valid Keys'), _('Sampling'), _('Log file'), _('Maximize Matching Performance')] cells = ((((matcher.counts + [nomatchcount]) + [((samplewithreplacement and _('with replacement')) or _('without replacement'))]) + [(((logfile is None) and _('none')) or logfile)]) + [((minimizememory and _('yes')) or _('no'))]) tbl.SimplePivotTable(rowdim=_('Match Type'), rowlabels=rowlabels, coldim=, collabels=[_('Count')], cells=cells) if fuzz: by.insert(0, _('Exact (All Variables)')) fuzz.insert(0, None) for i in range(len(fuzz)): if (matcher.tries[i] > 0.0): matcher.rejections[i] = ((float(matcher.rejections[i]) / matcher.tries[i]) * 100.0) tblvalues = [(fuzz[i], matcher.tries[i], matcher.rejections[i]) for i in range(len(fuzz))] collabels = [_('Value'), _('Fuzzy Match Tries'), _('Incremental Rejection Percentage')] caption = _('Tries is the number of match comparisons before drawing. Rejection percentage shows the match rejection rate. Rejections are attributed to the first variable in the BY list that causes rejection.') elif customfuzz: tblvalues = (len(by) * [None]) collabels = [_('Value')] caption = _(('Case distance computed from custom function: %s' % customfuzz)) else: tblvalues = (len(by) * [0]) collabels = [_('Value')] caption = fuzztbl = spss.BasePivotTable(_('Case Control Match Tolerances'), 'CASECTRLFUZZ', caption=caption) fuzztbl.SimplePivotTable(rowdim=_('Match Variables'), rowlabels=by, coldim=, collabels=collabels, cells=tblvalues) if (not minimizememory): matcher.freqs.showtable() spss.EndProcedure() logger.done() return nomatchcount<|docstring|>Find match for demanderds cases in supplierds and add identifiers to demanderds. Return unmatched count. demanderds is the dataset name of cases needing a match (demanders) supplierds is the dataset name of cases supplying matches (suppliers) ds3 is optional and will contain the supplierds cases used for matches. demanderid is optional. If specified, and ds3 is used, it will be appended to the supplier cases. It must have a name different from any variable in the supplier dataset. by is a variable or sequence of variable names used to determine a match. The variables must exist in both demanderds and supplierds. supplierid is the variable name of the ID variable in the supplier dataset. matchslots is the variable name or sequence of variable names for the ids of the matches copytodemander is an optional list of variables in supplierds to be added to demanderds. If this option is used, only a single matching case can be requested. Variable types must agree for variables that already exist in demanderds. samplewithreplacement, if true, samples with replacement; otherwise sampling is without replacement. hashvar is an optional variable name to contain the hash of the match variables and added to demanderds and ds3. If seed is not None, its value is used to initialize the generator for repeatability. If shuffle is True, the demander cases are matched in a random order; otherwise they are matched in case order. Since shuffling requires O(N) memory and will be slower, presorting the demander dataset by a random number is an alternative. If minimizememory is true, only one eligible case is assigned to eachdemander, and the available matches table is suppressed. If fuzz is not None, it must be a sequence of half-ranges, one per by variable. Use 0 for any nonnumeric variables. By default, with fuzzy matching, exact matches take priority when available except with minimizememory. Set exactpriority False to treat all equally. Minimize memory cannot be used with exactpriority. drawpool names a variable to be created in the demander ds whose value is the size of the pool for each case<|endoftext|>
645446602808a1c266328c3ac028d40e8c408d4a3c68665b9328e2823f280aca
def createds3(dsin, dsout, hashvar, demanderds, demanderid, supplierid, myenc, group, drawpool): 'Create a new dataset by copying the variables in dsin to dsout. No cases are created.\n Return number of variables in dsout.\n \n dsin is the intput dataset; dsout is the output dataset.\n hashvar is the name of the hash variable.\n if demanderid is not None, its definition from demanderds is appended to dsout.\n If using group, the demanderid name is suffixed with "_", since it would always duplicate\n the supplierid name.' for v in dsin.varlist: if (v.name != drawpool): dsout.varlist.append(v.name, v.type) unicodemode = isinstance(dsout.varlist[0].name, str) if (unicodemode and (not isinstance(hashvar, str))): hashvar = str(hashvar, myenc) if ((demanderid is not None) and unicodemode and (not isinstance(demanderid, str))): demanderid = str(demanderid, myenc) if (hashvar not in [v.name for v in dsout.varlist]): dsout.varlist.append(hashvar, 0) if ((demanderid is not None) and (demanderid not in [v.name for v in dsout.varlist])): try: dsout.varlist.append(demanderid, demanderds.varlist[demanderid].type) except: if (not isinstance(demanderid, str)): demanderid = str(demanderid, myenc) raise ValueError((_('Demander id variable not found, or it duplicates a name in the supplier dataset: %s') % demanderid)) return len(dsout.varlist)
Create a new dataset by copying the variables in dsin to dsout. No cases are created. Return number of variables in dsout. dsin is the intput dataset; dsout is the output dataset. hashvar is the name of the hash variable. if demanderid is not None, its definition from demanderds is appended to dsout. If using group, the demanderid name is suffixed with "_", since it would always duplicate the supplierid name.
src/FUZZY.py
createds3
IBMPredictiveAnalytics/FUZZY
1
python
def createds3(dsin, dsout, hashvar, demanderds, demanderid, supplierid, myenc, group, drawpool): 'Create a new dataset by copying the variables in dsin to dsout. No cases are created.\n Return number of variables in dsout.\n \n dsin is the intput dataset; dsout is the output dataset.\n hashvar is the name of the hash variable.\n if demanderid is not None, its definition from demanderds is appended to dsout.\n If using group, the demanderid name is suffixed with "_", since it would always duplicate\n the supplierid name.' for v in dsin.varlist: if (v.name != drawpool): dsout.varlist.append(v.name, v.type) unicodemode = isinstance(dsout.varlist[0].name, str) if (unicodemode and (not isinstance(hashvar, str))): hashvar = str(hashvar, myenc) if ((demanderid is not None) and unicodemode and (not isinstance(demanderid, str))): demanderid = str(demanderid, myenc) if (hashvar not in [v.name for v in dsout.varlist]): dsout.varlist.append(hashvar, 0) if ((demanderid is not None) and (demanderid not in [v.name for v in dsout.varlist])): try: dsout.varlist.append(demanderid, demanderds.varlist[demanderid].type) except: if (not isinstance(demanderid, str)): demanderid = str(demanderid, myenc) raise ValueError((_('Demander id variable not found, or it duplicates a name in the supplier dataset: %s') % demanderid)) return len(dsout.varlist)
def createds3(dsin, dsout, hashvar, demanderds, demanderid, supplierid, myenc, group, drawpool): 'Create a new dataset by copying the variables in dsin to dsout. No cases are created.\n Return number of variables in dsout.\n \n dsin is the intput dataset; dsout is the output dataset.\n hashvar is the name of the hash variable.\n if demanderid is not None, its definition from demanderds is appended to dsout.\n If using group, the demanderid name is suffixed with "_", since it would always duplicate\n the supplierid name.' for v in dsin.varlist: if (v.name != drawpool): dsout.varlist.append(v.name, v.type) unicodemode = isinstance(dsout.varlist[0].name, str) if (unicodemode and (not isinstance(hashvar, str))): hashvar = str(hashvar, myenc) if ((demanderid is not None) and unicodemode and (not isinstance(demanderid, str))): demanderid = str(demanderid, myenc) if (hashvar not in [v.name for v in dsout.varlist]): dsout.varlist.append(hashvar, 0) if ((demanderid is not None) and (demanderid not in [v.name for v in dsout.varlist])): try: dsout.varlist.append(demanderid, demanderds.varlist[demanderid].type) except: if (not isinstance(demanderid, str)): demanderid = str(demanderid, myenc) raise ValueError((_('Demander id variable not found, or it duplicates a name in the supplier dataset: %s') % demanderid)) return len(dsout.varlist)<|docstring|>Create a new dataset by copying the variables in dsin to dsout. No cases are created. Return number of variables in dsout. dsin is the intput dataset; dsout is the output dataset. hashvar is the name of the hash variable. if demanderid is not None, its definition from demanderds is appended to dsout. If using group, the demanderid name is suffixed with "_", since it would always duplicate the supplierid name.<|endoftext|>
c8246cf9e2cf7d6454db7dc67cd63700da1b65daae7111ed59ddf7e7a39435eb
def diff(x, y): 'Return absolute difference between x and y, assumed to be of the same basic type\n \n if numeric and neither is missing (None), return ordinary absolute value\n if not numeric, return 0 if identical and not blank.\n Otherwise return BIG.' BIG = 1e+100 try: return abs((x - y)) except: if isinstance(x, str): x = x.rstrip() y = y.rstrip() if ((x == y) and (x != '')): return 0 return BIG
Return absolute difference between x and y, assumed to be of the same basic type if numeric and neither is missing (None), return ordinary absolute value if not numeric, return 0 if identical and not blank. Otherwise return BIG.
src/FUZZY.py
diff
IBMPredictiveAnalytics/FUZZY
1
python
def diff(x, y): 'Return absolute difference between x and y, assumed to be of the same basic type\n \n if numeric and neither is missing (None), return ordinary absolute value\n if not numeric, return 0 if identical and not blank.\n Otherwise return BIG.' BIG = 1e+100 try: return abs((x - y)) except: if isinstance(x, str): x = x.rstrip() y = y.rstrip() if ((x == y) and (x != )): return 0 return BIG
def diff(x, y): 'Return absolute difference between x and y, assumed to be of the same basic type\n \n if numeric and neither is missing (None), return ordinary absolute value\n if not numeric, return 0 if identical and not blank.\n Otherwise return BIG.' BIG = 1e+100 try: return abs((x - y)) except: if isinstance(x, str): x = x.rstrip() y = y.rstrip() if ((x == y) and (x != )): return 0 return BIG<|docstring|>Return absolute difference between x and y, assumed to be of the same basic type if numeric and neither is missing (None), return ordinary absolute value if not numeric, return 0 if identical and not blank. Otherwise return BIG.<|endoftext|>
21a0da29e50fd964e100d73ba5c30c42c6c07e1cb023c7b96a3c0d5bdbb5bf78
def attributesFromDict(d): 'build self attributes from a dictionary d.' self = d.pop('self') for (name, value) in d.items(): setattr(self, name, value)
build self attributes from a dictionary d.
src/FUZZY.py
attributesFromDict
IBMPredictiveAnalytics/FUZZY
1
python
def attributesFromDict(d): self = d.pop('self') for (name, value) in d.items(): setattr(self, name, value)
def attributesFromDict(d): self = d.pop('self') for (name, value) in d.items(): setattr(self, name, value)<|docstring|>build self attributes from a dictionary d.<|endoftext|>
cfce7fb824370a81757fbb9443228f34562548deedd67b3432ef3449bd79fedc
def StartProcedure(procname, omsid): 'Start a procedure\n \n procname is the name that will appear in the Viewer outline. It may be translated\n omsid is the OMS procedure identifier and should not be translated.\n \n Statistics versions prior to 19 support only a single term used for both purposes.\n For those versions, the omsid will be use for the procedure name.\n \n While the spss.StartProcedure function accepts the one argument, this function\n requires both.' try: spss.StartProcedure(procname, omsid) except TypeError: spss.StartProcedure(omsid)
Start a procedure procname is the name that will appear in the Viewer outline. It may be translated omsid is the OMS procedure identifier and should not be translated. Statistics versions prior to 19 support only a single term used for both purposes. For those versions, the omsid will be use for the procedure name. While the spss.StartProcedure function accepts the one argument, this function requires both.
src/FUZZY.py
StartProcedure
IBMPredictiveAnalytics/FUZZY
1
python
def StartProcedure(procname, omsid): 'Start a procedure\n \n procname is the name that will appear in the Viewer outline. It may be translated\n omsid is the OMS procedure identifier and should not be translated.\n \n Statistics versions prior to 19 support only a single term used for both purposes.\n For those versions, the omsid will be use for the procedure name.\n \n While the spss.StartProcedure function accepts the one argument, this function\n requires both.' try: spss.StartProcedure(procname, omsid) except TypeError: spss.StartProcedure(omsid)
def StartProcedure(procname, omsid): 'Start a procedure\n \n procname is the name that will appear in the Viewer outline. It may be translated\n omsid is the OMS procedure identifier and should not be translated.\n \n Statistics versions prior to 19 support only a single term used for both purposes.\n For those versions, the omsid will be use for the procedure name.\n \n While the spss.StartProcedure function accepts the one argument, this function\n requires both.' try: spss.StartProcedure(procname, omsid) except TypeError: spss.StartProcedure(omsid)<|docstring|>Start a procedure procname is the name that will appear in the Viewer outline. It may be translated omsid is the OMS procedure identifier and should not be translated. Statistics versions prior to 19 support only a single term used for both purposes. For those versions, the omsid will be use for the procedure name. While the spss.StartProcedure function accepts the one argument, this function requires both.<|endoftext|>
f692197808a41bb09ca0bfa49145b2b51b5b8b1db17d99778f1a2aa3d4138069
def helper(): 'open html help in default browser window\n \n The location is computed from the current module name' import webbrowser, os.path path = os.path.splitext(__file__)[0] helpspec = ((('file://' + path) + os.path.sep) + 'markdown.html') browser = webbrowser.get() if (not browser.open_new(helpspec)): print(('Help file not found:' + helpspec))
open html help in default browser window The location is computed from the current module name
src/FUZZY.py
helper
IBMPredictiveAnalytics/FUZZY
1
python
def helper(): 'open html help in default browser window\n \n The location is computed from the current module name' import webbrowser, os.path path = os.path.splitext(__file__)[0] helpspec = ((('file://' + path) + os.path.sep) + 'markdown.html') browser = webbrowser.get() if (not browser.open_new(helpspec)): print(('Help file not found:' + helpspec))
def helper(): 'open html help in default browser window\n \n The location is computed from the current module name' import webbrowser, os.path path = os.path.splitext(__file__)[0] helpspec = ((('file://' + path) + os.path.sep) + 'markdown.html') browser = webbrowser.get() if (not browser.open_new(helpspec)): print(('Help file not found:' + helpspec))<|docstring|>open html help in default browser window The location is computed from the current module name<|endoftext|>
e46de300c27015b6c9d2a40563ee5260bf62c4cf71b66ebcb97e62626334a2d9
def __enter__(self): 'initialization for with statement' try: spss.StartDataStep() except: spss.Submit('EXECUTE') spss.StartDataStep() return self
initialization for with statement
src/FUZZY.py
__enter__
IBMPredictiveAnalytics/FUZZY
1
python
def __enter__(self): try: spss.StartDataStep() except: spss.Submit('EXECUTE') spss.StartDataStep() return self
def __enter__(self): try: spss.StartDataStep() except: spss.Submit('EXECUTE') spss.StartDataStep() return self<|docstring|>initialization for with statement<|endoftext|>
1c1139895d08ee34d976001bce35d6243e67ac8aa44288b64a31249d24089dbf
def __init__(self, demanderdscases, matcher, hashvarindex, supplierdscases, ds3cases, demandercopyindexes, suppliercopyindexes, demanderidindex, drawpoolindex, supplieridindex, group): 'demanderdscases is the demander case to match.\n matcher is the Matcher object to use.\n hashvarindex is the variable index for the hash value variable. The matches are written to following contiguous variables.\n demandercopyindexes and suppliercopyindexes are case indexes for copying values from supplierds to demanderds\n Only one match is allowed if copying.\n If there is no match, values of existing variables are not changed.\n \n If ds3cases is not None, supplier dataset cases used are written to ds3cases\n if demanderidindex is not None and ds3 is being created, its value is copied to ds3.' attributesFromDict(locals())
demanderdscases is the demander case to match. matcher is the Matcher object to use. hashvarindex is the variable index for the hash value variable. The matches are written to following contiguous variables. demandercopyindexes and suppliercopyindexes are case indexes for copying values from supplierds to demanderds Only one match is allowed if copying. If there is no match, values of existing variables are not changed. If ds3cases is not None, supplier dataset cases used are written to ds3cases if demanderidindex is not None and ds3 is being created, its value is copied to ds3.
src/FUZZY.py
__init__
IBMPredictiveAnalytics/FUZZY
1
python
def __init__(self, demanderdscases, matcher, hashvarindex, supplierdscases, ds3cases, demandercopyindexes, suppliercopyindexes, demanderidindex, drawpoolindex, supplieridindex, group): 'demanderdscases is the demander case to match.\n matcher is the Matcher object to use.\n hashvarindex is the variable index for the hash value variable. The matches are written to following contiguous variables.\n demandercopyindexes and suppliercopyindexes are case indexes for copying values from supplierds to demanderds\n Only one match is allowed if copying.\n If there is no match, values of existing variables are not changed.\n \n If ds3cases is not None, supplier dataset cases used are written to ds3cases\n if demanderidindex is not None and ds3 is being created, its value is copied to ds3.' attributesFromDict(locals())
def __init__(self, demanderdscases, matcher, hashvarindex, supplierdscases, ds3cases, demandercopyindexes, suppliercopyindexes, demanderidindex, drawpoolindex, supplieridindex, group): 'demanderdscases is the demander case to match.\n matcher is the Matcher object to use.\n hashvarindex is the variable index for the hash value variable. The matches are written to following contiguous variables.\n demandercopyindexes and suppliercopyindexes are case indexes for copying values from supplierds to demanderds\n Only one match is allowed if copying.\n If there is no match, values of existing variables are not changed.\n \n If ds3cases is not None, supplier dataset cases used are written to ds3cases\n if demanderidindex is not None and ds3 is being created, its value is copied to ds3.' attributesFromDict(locals())<|docstring|>demanderdscases is the demander case to match. matcher is the Matcher object to use. hashvarindex is the variable index for the hash value variable. The matches are written to following contiguous variables. demandercopyindexes and suppliercopyindexes are case indexes for copying values from supplierds to demanderds Only one match is allowed if copying. If there is no match, values of existing variables are not changed. If ds3cases is not None, supplier dataset cases used are written to ds3cases if demanderidindex is not None and ds3 is being created, its value is copied to ds3.<|endoftext|>
a0197faa8a821a57da8780af1ca8417d1058a47715970d5bd2189a04fc47d5c2
def do(self, casenumber): 'draw match(es) for case casenumber and propagate values as required' if ((self.matcher.groupindex != None) and (self.demanderdscases[casenumber][self.matcher.groupindex] != 1)): return 0 (hash, matches, drawpoolsize) = self.matcher.draw(self.demanderdscases[casenumber], self.supplierdscases) self.demanderdscases[(casenumber, self.hashvarindex)] = hash if self.drawpoolindex: self.demanderdscases[(casenumber, self.drawpoolindex)] = drawpoolsize for m in range(len(matches)): casenum = matches[m][0] self.demanderdscases[(casenumber, ((self.hashvarindex + 1) + m))] = matches[m][1] if (casenum is not None): for (dv, sv) in zip(self.demandercopyindexes, self.suppliercopyindexes): self.demanderdscases[(casenumber, dv)] = self.supplierdscases[(casenum, sv)] if self.ds3cases: if (casenum is not None): self.ds3cases.cases.append(self.supplierdscases[casenum]) if self.group: self.ds3cases.cases[((- 1), (- 2))] = hash self.ds3cases.cases[((- 1), (- 1))] = self.demanderdscases[(casenumber, self.supplieridindex)] elif (self.demanderidindex is not None): self.ds3cases.cases[((- 1), (- 2))] = hash self.ds3cases.cases[((- 1), (- 1))] = self.demanderdscases[(casenumber, self.demanderidindex)] else: self.ds3cases.cases[((- 1), (- 1))] = hash if (hash is None): return 0 else: return matches.count((None, None))
draw match(es) for case casenumber and propagate values as required
src/FUZZY.py
do
IBMPredictiveAnalytics/FUZZY
1
python
def do(self, casenumber): if ((self.matcher.groupindex != None) and (self.demanderdscases[casenumber][self.matcher.groupindex] != 1)): return 0 (hash, matches, drawpoolsize) = self.matcher.draw(self.demanderdscases[casenumber], self.supplierdscases) self.demanderdscases[(casenumber, self.hashvarindex)] = hash if self.drawpoolindex: self.demanderdscases[(casenumber, self.drawpoolindex)] = drawpoolsize for m in range(len(matches)): casenum = matches[m][0] self.demanderdscases[(casenumber, ((self.hashvarindex + 1) + m))] = matches[m][1] if (casenum is not None): for (dv, sv) in zip(self.demandercopyindexes, self.suppliercopyindexes): self.demanderdscases[(casenumber, dv)] = self.supplierdscases[(casenum, sv)] if self.ds3cases: if (casenum is not None): self.ds3cases.cases.append(self.supplierdscases[casenum]) if self.group: self.ds3cases.cases[((- 1), (- 2))] = hash self.ds3cases.cases[((- 1), (- 1))] = self.demanderdscases[(casenumber, self.supplieridindex)] elif (self.demanderidindex is not None): self.ds3cases.cases[((- 1), (- 2))] = hash self.ds3cases.cases[((- 1), (- 1))] = self.demanderdscases[(casenumber, self.demanderidindex)] else: self.ds3cases.cases[((- 1), (- 1))] = hash if (hash is None): return 0 else: return matches.count((None, None))
def do(self, casenumber): if ((self.matcher.groupindex != None) and (self.demanderdscases[casenumber][self.matcher.groupindex] != 1)): return 0 (hash, matches, drawpoolsize) = self.matcher.draw(self.demanderdscases[casenumber], self.supplierdscases) self.demanderdscases[(casenumber, self.hashvarindex)] = hash if self.drawpoolindex: self.demanderdscases[(casenumber, self.drawpoolindex)] = drawpoolsize for m in range(len(matches)): casenum = matches[m][0] self.demanderdscases[(casenumber, ((self.hashvarindex + 1) + m))] = matches[m][1] if (casenum is not None): for (dv, sv) in zip(self.demandercopyindexes, self.suppliercopyindexes): self.demanderdscases[(casenumber, dv)] = self.supplierdscases[(casenum, sv)] if self.ds3cases: if (casenum is not None): self.ds3cases.cases.append(self.supplierdscases[casenum]) if self.group: self.ds3cases.cases[((- 1), (- 2))] = hash self.ds3cases.cases[((- 1), (- 1))] = self.demanderdscases[(casenumber, self.supplieridindex)] elif (self.demanderidindex is not None): self.ds3cases.cases[((- 1), (- 2))] = hash self.ds3cases.cases[((- 1), (- 1))] = self.demanderdscases[(casenumber, self.demanderidindex)] else: self.ds3cases.cases[((- 1), (- 1))] = hash if (hash is None): return 0 else: return matches.count((None, None))<|docstring|>draw match(es) for case casenumber and propagate values as required<|endoftext|>
5db057297f89f6aaae827f8a0e52b23d2d18f0c2ff8a33e99d9ae9e7b8187433
def __init__(self, by, supplierid, demanderds, supplierds, nmatches, samplewithreplacement, minimizememory, fuzz, exactpriority, groupindex, customfuzz): 'by is a variable or list of variables to match on.\n supplierid is the id variable name in the supplier dataset.\n demanderds and supplierds are the demander and supplier datasets.\n nmatches is the number of matches requested for each demander.\n samplewithreplacement indicates sampling with or without replacement.\n If minimizememory is True, an extra data pass is required but memory usage for the supplier set is reduced.\n fuzz is a sequence of fuzz factors, one for each by variable. If the variable is not numeric, fuzz must be None.\n If exactpriority, exact matches get preference over fuzzy matches when fuzzy matching allowed.\n \n A DataStep is expected to be active for this class.' 'The demander object is a dictionary whose keys are the hash of the by variable(s).\n The values are lists of matching suppliers with each list item being a duple (casenumber, idvalue)' self.demanders = {} self.demanderbys = {} self.demandercount = {} self.suppliercount = {} self.groupindex = groupindex self.demandervars = self.buildvars(demanderds, by) self.demanderscopy = set() self.suppliervars = self.buildvars(supplierds, by) self.samplewithreplacement = samplewithreplacement self.demanderds = demanderds self.supplierds = supplierds self.supplierid = self.buildvars(supplierds, [supplierid])[0] self.nmatches = nmatches self.minimizememory = minimizememory self.fuzz = fuzz if customfuzz: customparts = customfuzz.split('.') __import__(customparts[0]) self.customfuzz = getattr(sys.modules[customparts[0]], customparts[1]) else: self.customfuzz = None if fuzz: self.tries = dict(((i, 0) for i in range((len(fuzz) + 1)))) self.rejections = dict(((i, 0) for i in range((len(fuzz) + 1)))) elif customfuzz: self.tries = {0: 0} self.rejections = {0: 0} self.freqs = Freqs() self.exactpriority = exactpriority self.bys = {} self.exactcount = {} self.counts = [0, 0, 0] self.usedsuppliers = set()
by is a variable or list of variables to match on. supplierid is the id variable name in the supplier dataset. demanderds and supplierds are the demander and supplier datasets. nmatches is the number of matches requested for each demander. samplewithreplacement indicates sampling with or without replacement. If minimizememory is True, an extra data pass is required but memory usage for the supplier set is reduced. fuzz is a sequence of fuzz factors, one for each by variable. If the variable is not numeric, fuzz must be None. If exactpriority, exact matches get preference over fuzzy matches when fuzzy matching allowed. A DataStep is expected to be active for this class.
src/FUZZY.py
__init__
IBMPredictiveAnalytics/FUZZY
1
python
def __init__(self, by, supplierid, demanderds, supplierds, nmatches, samplewithreplacement, minimizememory, fuzz, exactpriority, groupindex, customfuzz): 'by is a variable or list of variables to match on.\n supplierid is the id variable name in the supplier dataset.\n demanderds and supplierds are the demander and supplier datasets.\n nmatches is the number of matches requested for each demander.\n samplewithreplacement indicates sampling with or without replacement.\n If minimizememory is True, an extra data pass is required but memory usage for the supplier set is reduced.\n fuzz is a sequence of fuzz factors, one for each by variable. If the variable is not numeric, fuzz must be None.\n If exactpriority, exact matches get preference over fuzzy matches when fuzzy matching allowed.\n \n A DataStep is expected to be active for this class.' 'The demander object is a dictionary whose keys are the hash of the by variable(s).\n The values are lists of matching suppliers with each list item being a duple (casenumber, idvalue)' self.demanders = {} self.demanderbys = {} self.demandercount = {} self.suppliercount = {} self.groupindex = groupindex self.demandervars = self.buildvars(demanderds, by) self.demanderscopy = set() self.suppliervars = self.buildvars(supplierds, by) self.samplewithreplacement = samplewithreplacement self.demanderds = demanderds self.supplierds = supplierds self.supplierid = self.buildvars(supplierds, [supplierid])[0] self.nmatches = nmatches self.minimizememory = minimizememory self.fuzz = fuzz if customfuzz: customparts = customfuzz.split('.') __import__(customparts[0]) self.customfuzz = getattr(sys.modules[customparts[0]], customparts[1]) else: self.customfuzz = None if fuzz: self.tries = dict(((i, 0) for i in range((len(fuzz) + 1)))) self.rejections = dict(((i, 0) for i in range((len(fuzz) + 1)))) elif customfuzz: self.tries = {0: 0} self.rejections = {0: 0} self.freqs = Freqs() self.exactpriority = exactpriority self.bys = {} self.exactcount = {} self.counts = [0, 0, 0] self.usedsuppliers = set()
def __init__(self, by, supplierid, demanderds, supplierds, nmatches, samplewithreplacement, minimizememory, fuzz, exactpriority, groupindex, customfuzz): 'by is a variable or list of variables to match on.\n supplierid is the id variable name in the supplier dataset.\n demanderds and supplierds are the demander and supplier datasets.\n nmatches is the number of matches requested for each demander.\n samplewithreplacement indicates sampling with or without replacement.\n If minimizememory is True, an extra data pass is required but memory usage for the supplier set is reduced.\n fuzz is a sequence of fuzz factors, one for each by variable. If the variable is not numeric, fuzz must be None.\n If exactpriority, exact matches get preference over fuzzy matches when fuzzy matching allowed.\n \n A DataStep is expected to be active for this class.' 'The demander object is a dictionary whose keys are the hash of the by variable(s).\n The values are lists of matching suppliers with each list item being a duple (casenumber, idvalue)' self.demanders = {} self.demanderbys = {} self.demandercount = {} self.suppliercount = {} self.groupindex = groupindex self.demandervars = self.buildvars(demanderds, by) self.demanderscopy = set() self.suppliervars = self.buildvars(supplierds, by) self.samplewithreplacement = samplewithreplacement self.demanderds = demanderds self.supplierds = supplierds self.supplierid = self.buildvars(supplierds, [supplierid])[0] self.nmatches = nmatches self.minimizememory = minimizememory self.fuzz = fuzz if customfuzz: customparts = customfuzz.split('.') __import__(customparts[0]) self.customfuzz = getattr(sys.modules[customparts[0]], customparts[1]) else: self.customfuzz = None if fuzz: self.tries = dict(((i, 0) for i in range((len(fuzz) + 1)))) self.rejections = dict(((i, 0) for i in range((len(fuzz) + 1)))) elif customfuzz: self.tries = {0: 0} self.rejections = {0: 0} self.freqs = Freqs() self.exactpriority = exactpriority self.bys = {} self.exactcount = {} self.counts = [0, 0, 0] self.usedsuppliers = set()<|docstring|>by is a variable or list of variables to match on. supplierid is the id variable name in the supplier dataset. demanderds and supplierds are the demander and supplier datasets. nmatches is the number of matches requested for each demander. samplewithreplacement indicates sampling with or without replacement. If minimizememory is True, an extra data pass is required but memory usage for the supplier set is reduced. fuzz is a sequence of fuzz factors, one for each by variable. If the variable is not numeric, fuzz must be None. If exactpriority, exact matches get preference over fuzzy matches when fuzzy matching allowed. A DataStep is expected to be active for this class.<|endoftext|>
67ec6fd8f38d13e18d1e30b7e31256b5dc0238f268c9d066f12867d6344ba605
def adddemander(self, case): 'Add a demander. Return 0 or 1 for whether added or not' if ((self.groupindex != None) and (case[self.groupindex] != 1)): return 0 (h, keyvalues) = self.hash(self.demandervars, case) if ((h is not None) and (not (h in self.demanders))): self.demanders[h] = [] if (self.fuzz or self.customfuzz): self.bys[h] = keyvalues if (self.minimizememory and (h is not None)): self.demandercount[h] = (self.demandercount.get(h, 0) + self.nmatches) self.demanderscopy.add(h) return 1
Add a demander. Return 0 or 1 for whether added or not
src/FUZZY.py
adddemander
IBMPredictiveAnalytics/FUZZY
1
python
def adddemander(self, case): if ((self.groupindex != None) and (case[self.groupindex] != 1)): return 0 (h, keyvalues) = self.hash(self.demandervars, case) if ((h is not None) and (not (h in self.demanders))): self.demanders[h] = [] if (self.fuzz or self.customfuzz): self.bys[h] = keyvalues if (self.minimizememory and (h is not None)): self.demandercount[h] = (self.demandercount.get(h, 0) + self.nmatches) self.demanderscopy.add(h) return 1
def adddemander(self, case): if ((self.groupindex != None) and (case[self.groupindex] != 1)): return 0 (h, keyvalues) = self.hash(self.demandervars, case) if ((h is not None) and (not (h in self.demanders))): self.demanders[h] = [] if (self.fuzz or self.customfuzz): self.bys[h] = keyvalues if (self.minimizememory and (h is not None)): self.demandercount[h] = (self.demandercount.get(h, 0) + self.nmatches) self.demanderscopy.add(h) return 1<|docstring|>Add a demander. Return 0 or 1 for whether added or not<|endoftext|>
2d4697138eeacee339af26deb96ba9a336923c68ce0882120ff453893a5a82c8
def addsupplier(self, case, casenum): 'Add a supplier. If no demander for this case, do nothing.\n \n case is the current supplier case, casenum is its case number saved for later use.\n' if ((self.groupindex != None) and (case[self.groupindex] != 0)): return 0 takecount = 0 hlist = [] if (not (self.fuzz or self.customfuzz)): (h, values) = self.hash(self.suppliervars, case) if (h in self.demanders): if (not self.minimizememory): self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 elif (len(self.demanders[h]) < (self.demandercount[h] * self.nmatches)): self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 else: if self.minimizememory: demanders = self.demanderscopy else: demanders = self.demanders for h in demanders: matchlevel = self.rehash(h, case) if (matchlevel == 0): continue if (not self.minimizememory): if (matchlevel == 2): self.demanders[h].insert(0, (casenum, case[self.supplierid])) self.exactcount[h] = (self.exactcount.get(h, 0) + 1) else: self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 else: shortfall = ((self.demandercount[h] * self.nmatches) - len(self.demanders[h])) if (shortfall == 1): demanders.remove(h) if (shortfall > 0): hlist.append(h) break if (len(hlist) > 0): winner = random.choice(hlist) self.demanders[winner].append((casenum, case[self.supplierid])) takecount = 1 return takecount
Add a supplier. If no demander for this case, do nothing. case is the current supplier case, casenum is its case number saved for later use.
src/FUZZY.py
addsupplier
IBMPredictiveAnalytics/FUZZY
1
python
def addsupplier(self, case, casenum): 'Add a supplier. If no demander for this case, do nothing.\n \n case is the current supplier case, casenum is its case number saved for later use.\n' if ((self.groupindex != None) and (case[self.groupindex] != 0)): return 0 takecount = 0 hlist = [] if (not (self.fuzz or self.customfuzz)): (h, values) = self.hash(self.suppliervars, case) if (h in self.demanders): if (not self.minimizememory): self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 elif (len(self.demanders[h]) < (self.demandercount[h] * self.nmatches)): self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 else: if self.minimizememory: demanders = self.demanderscopy else: demanders = self.demanders for h in demanders: matchlevel = self.rehash(h, case) if (matchlevel == 0): continue if (not self.minimizememory): if (matchlevel == 2): self.demanders[h].insert(0, (casenum, case[self.supplierid])) self.exactcount[h] = (self.exactcount.get(h, 0) + 1) else: self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 else: shortfall = ((self.demandercount[h] * self.nmatches) - len(self.demanders[h])) if (shortfall == 1): demanders.remove(h) if (shortfall > 0): hlist.append(h) break if (len(hlist) > 0): winner = random.choice(hlist) self.demanders[winner].append((casenum, case[self.supplierid])) takecount = 1 return takecount
def addsupplier(self, case, casenum): 'Add a supplier. If no demander for this case, do nothing.\n \n case is the current supplier case, casenum is its case number saved for later use.\n' if ((self.groupindex != None) and (case[self.groupindex] != 0)): return 0 takecount = 0 hlist = [] if (not (self.fuzz or self.customfuzz)): (h, values) = self.hash(self.suppliervars, case) if (h in self.demanders): if (not self.minimizememory): self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 elif (len(self.demanders[h]) < (self.demandercount[h] * self.nmatches)): self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 else: if self.minimizememory: demanders = self.demanderscopy else: demanders = self.demanders for h in demanders: matchlevel = self.rehash(h, case) if (matchlevel == 0): continue if (not self.minimizememory): if (matchlevel == 2): self.demanders[h].insert(0, (casenum, case[self.supplierid])) self.exactcount[h] = (self.exactcount.get(h, 0) + 1) else: self.demanders[h].append((casenum, case[self.supplierid])) takecount += 1 else: shortfall = ((self.demandercount[h] * self.nmatches) - len(self.demanders[h])) if (shortfall == 1): demanders.remove(h) if (shortfall > 0): hlist.append(h) break if (len(hlist) > 0): winner = random.choice(hlist) self.demanders[winner].append((casenum, case[self.supplierid])) takecount = 1 return takecount<|docstring|>Add a supplier. If no demander for this case, do nothing. case is the current supplier case, casenum is its case number saved for later use.<|endoftext|>
48c25307399e6d0dc2ced5071eb15a3299ea1932a7b6a36a19a9bb57b33cd659
def rehash(self, h, case): 'Test supplier case against demander case allowing for fuzzy matching.\n \n h is the current demander case hash\n case is the current supplier case\n return is \n - 0 if no match\n - 1 if fuzzy match\n - 2 if exact match\n ' (hh, values) = self.hash(self.suppliervars, case) self.tries[0] += 1 if (hh == h): return 2 else: self.rejections[0] += 1 dcase = self.bys[h] if self.customfuzz: result = self.customfuzz(dcase, [case[i] for i in self.suppliervars]) else: result = 1 for (i, fuzz) in enumerate(self.fuzz): self.tries[(i + 1)] += 1 if (not (diff(dcase[i], case[self.suppliervars[i]]) <= fuzz)): self.rejections[(i + 1)] += 1 result = 0 break return result
Test supplier case against demander case allowing for fuzzy matching. h is the current demander case hash case is the current supplier case return is - 0 if no match - 1 if fuzzy match - 2 if exact match
src/FUZZY.py
rehash
IBMPredictiveAnalytics/FUZZY
1
python
def rehash(self, h, case): 'Test supplier case against demander case allowing for fuzzy matching.\n \n h is the current demander case hash\n case is the current supplier case\n return is \n - 0 if no match\n - 1 if fuzzy match\n - 2 if exact match\n ' (hh, values) = self.hash(self.suppliervars, case) self.tries[0] += 1 if (hh == h): return 2 else: self.rejections[0] += 1 dcase = self.bys[h] if self.customfuzz: result = self.customfuzz(dcase, [case[i] for i in self.suppliervars]) else: result = 1 for (i, fuzz) in enumerate(self.fuzz): self.tries[(i + 1)] += 1 if (not (diff(dcase[i], case[self.suppliervars[i]]) <= fuzz)): self.rejections[(i + 1)] += 1 result = 0 break return result
def rehash(self, h, case): 'Test supplier case against demander case allowing for fuzzy matching.\n \n h is the current demander case hash\n case is the current supplier case\n return is \n - 0 if no match\n - 1 if fuzzy match\n - 2 if exact match\n ' (hh, values) = self.hash(self.suppliervars, case) self.tries[0] += 1 if (hh == h): return 2 else: self.rejections[0] += 1 dcase = self.bys[h] if self.customfuzz: result = self.customfuzz(dcase, [case[i] for i in self.suppliervars]) else: result = 1 for (i, fuzz) in enumerate(self.fuzz): self.tries[(i + 1)] += 1 if (not (diff(dcase[i], case[self.suppliervars[i]]) <= fuzz)): self.rejections[(i + 1)] += 1 result = 0 break return result<|docstring|>Test supplier case against demander case allowing for fuzzy matching. h is the current demander case hash case is the current supplier case return is - 0 if no match - 1 if fuzzy match - 2 if exact match<|endoftext|>
df5c772dbb813246c5582f91fb4d9766fb3ea8803b5083fde856deefa92ab3bb
def filteredlist(self, h): 'Return the list of potential suppliers\n \n h is the demander hash\n If samplewithreplacement is False, any suppliers already used are removed and the exactcount\n field is adjusted' thelist = self.demanders.get(h, ()) if self.samplewithreplacement: return thelist exactcount = self.exactcount.get(h, 0) lenthelist = len(thelist) for j in range(lenthelist, 0, (- 1)): i = (j - 1) (casenum, hh) = thelist[i] if (casenum in self.usedsuppliers): thelist.pop(i) if (i < exactcount): self.exactcount[h] -= 1 return thelist
Return the list of potential suppliers h is the demander hash If samplewithreplacement is False, any suppliers already used are removed and the exactcount field is adjusted
src/FUZZY.py
filteredlist
IBMPredictiveAnalytics/FUZZY
1
python
def filteredlist(self, h): 'Return the list of potential suppliers\n \n h is the demander hash\n If samplewithreplacement is False, any suppliers already used are removed and the exactcount\n field is adjusted' thelist = self.demanders.get(h, ()) if self.samplewithreplacement: return thelist exactcount = self.exactcount.get(h, 0) lenthelist = len(thelist) for j in range(lenthelist, 0, (- 1)): i = (j - 1) (casenum, hh) = thelist[i] if (casenum in self.usedsuppliers): thelist.pop(i) if (i < exactcount): self.exactcount[h] -= 1 return thelist
def filteredlist(self, h): 'Return the list of potential suppliers\n \n h is the demander hash\n If samplewithreplacement is False, any suppliers already used are removed and the exactcount\n field is adjusted' thelist = self.demanders.get(h, ()) if self.samplewithreplacement: return thelist exactcount = self.exactcount.get(h, 0) lenthelist = len(thelist) for j in range(lenthelist, 0, (- 1)): i = (j - 1) (casenum, hh) = thelist[i] if (casenum in self.usedsuppliers): thelist.pop(i) if (i < exactcount): self.exactcount[h] -= 1 return thelist<|docstring|>Return the list of potential suppliers h is the demander hash If samplewithreplacement is False, any suppliers already used are removed and the exactcount field is adjusted<|endoftext|>
d31cd87e68f248917a8964c60c7ccdae40035dc7b78cfe0fe831671485540ad6
def draw(self, case, supplierdscases): 'Try to draw matches for demander case case.\n \n Return a list of nmatches match ids preceded by the hash value. If no match is possible, None is returned for each.\n If the case is missing any match variable, no matches will be drawn.\n If using fuzzy matching and exact matches get priority, an exact match is first attempted and if not available, a fallback\n to a fuzzy match is attempted.\n ' if ((self.groupindex != None) and (case[self.groupindex] != 1)): return (None, [(None, None)], None) (h, values) = self.hash(self.demandervars, case) thelist = self.filteredlist(h) draws = [] listsize = len(thelist) initiallistsize = listsize self.freqs.accumulate(initiallistsize) for i in range(self.nmatches): if (listsize == 0): draws.append((None, None)) self.counts[2] += 1 else: if (self.fuzz and self.exactpriority): exactcount = self.exactcount.get(h, 0) if (exactcount > 0): choiceindex = (random.randint(1, exactcount) - 1) if self.samplewithreplacement: draws.append(thelist[choiceindex]) else: draws.append(thelist.pop(choiceindex)) self.usedsuppliers.add(draws[(- 1)][0]) self.exactcount[h] -= 1 listsize -= 1 self.counts[0] += 1 continue choiceindex = (random.randint(1, listsize) - 1) if self.samplewithreplacement: draws.append(thelist[choiceindex]) else: draws.append(thelist.pop(choiceindex)) self.usedsuppliers.add(draws[(- 1)][0]) listsize -= 1 (shash, svalues) = self.hash(self.suppliervars, supplierdscases[draws[(- 1)][0]]) if (shash == h): self.counts[0] += 1 else: self.counts[1] += 1 return (h, draws, initiallistsize)
Try to draw matches for demander case case. Return a list of nmatches match ids preceded by the hash value. If no match is possible, None is returned for each. If the case is missing any match variable, no matches will be drawn. If using fuzzy matching and exact matches get priority, an exact match is first attempted and if not available, a fallback to a fuzzy match is attempted.
src/FUZZY.py
draw
IBMPredictiveAnalytics/FUZZY
1
python
def draw(self, case, supplierdscases): 'Try to draw matches for demander case case.\n \n Return a list of nmatches match ids preceded by the hash value. If no match is possible, None is returned for each.\n If the case is missing any match variable, no matches will be drawn.\n If using fuzzy matching and exact matches get priority, an exact match is first attempted and if not available, a fallback\n to a fuzzy match is attempted.\n ' if ((self.groupindex != None) and (case[self.groupindex] != 1)): return (None, [(None, None)], None) (h, values) = self.hash(self.demandervars, case) thelist = self.filteredlist(h) draws = [] listsize = len(thelist) initiallistsize = listsize self.freqs.accumulate(initiallistsize) for i in range(self.nmatches): if (listsize == 0): draws.append((None, None)) self.counts[2] += 1 else: if (self.fuzz and self.exactpriority): exactcount = self.exactcount.get(h, 0) if (exactcount > 0): choiceindex = (random.randint(1, exactcount) - 1) if self.samplewithreplacement: draws.append(thelist[choiceindex]) else: draws.append(thelist.pop(choiceindex)) self.usedsuppliers.add(draws[(- 1)][0]) self.exactcount[h] -= 1 listsize -= 1 self.counts[0] += 1 continue choiceindex = (random.randint(1, listsize) - 1) if self.samplewithreplacement: draws.append(thelist[choiceindex]) else: draws.append(thelist.pop(choiceindex)) self.usedsuppliers.add(draws[(- 1)][0]) listsize -= 1 (shash, svalues) = self.hash(self.suppliervars, supplierdscases[draws[(- 1)][0]]) if (shash == h): self.counts[0] += 1 else: self.counts[1] += 1 return (h, draws, initiallistsize)
def draw(self, case, supplierdscases): 'Try to draw matches for demander case case.\n \n Return a list of nmatches match ids preceded by the hash value. If no match is possible, None is returned for each.\n If the case is missing any match variable, no matches will be drawn.\n If using fuzzy matching and exact matches get priority, an exact match is first attempted and if not available, a fallback\n to a fuzzy match is attempted.\n ' if ((self.groupindex != None) and (case[self.groupindex] != 1)): return (None, [(None, None)], None) (h, values) = self.hash(self.demandervars, case) thelist = self.filteredlist(h) draws = [] listsize = len(thelist) initiallistsize = listsize self.freqs.accumulate(initiallistsize) for i in range(self.nmatches): if (listsize == 0): draws.append((None, None)) self.counts[2] += 1 else: if (self.fuzz and self.exactpriority): exactcount = self.exactcount.get(h, 0) if (exactcount > 0): choiceindex = (random.randint(1, exactcount) - 1) if self.samplewithreplacement: draws.append(thelist[choiceindex]) else: draws.append(thelist.pop(choiceindex)) self.usedsuppliers.add(draws[(- 1)][0]) self.exactcount[h] -= 1 listsize -= 1 self.counts[0] += 1 continue choiceindex = (random.randint(1, listsize) - 1) if self.samplewithreplacement: draws.append(thelist[choiceindex]) else: draws.append(thelist.pop(choiceindex)) self.usedsuppliers.add(draws[(- 1)][0]) listsize -= 1 (shash, svalues) = self.hash(self.suppliervars, supplierdscases[draws[(- 1)][0]]) if (shash == h): self.counts[0] += 1 else: self.counts[1] += 1 return (h, draws, initiallistsize)<|docstring|>Try to draw matches for demander case case. Return a list of nmatches match ids preceded by the hash value. If no match is possible, None is returned for each. If the case is missing any match variable, no matches will be drawn. If using fuzzy matching and exact matches get priority, an exact match is first attempted and if not available, a fallback to a fuzzy match is attempted.<|endoftext|>
05703a26a7ac8d38dd7cf48e0a8da355f6a00b790ffd87100771ff9cf375f344
def hash(self, indexes, case): 'Return a hash of the case according to the indexes in the indexes tuple and the key values.\n \n If any value in the index is None or, for strings, blank, the result is None, None\n indexes is the list of indexes into the case vector' keys = tuple([case[v] for v in indexes]) for v in keys: if isinstance(v, str): if (v.rstrip() == ''): return (None, None) elif (v is None): return (None, None) return (hash(keys), keys)
Return a hash of the case according to the indexes in the indexes tuple and the key values. If any value in the index is None or, for strings, blank, the result is None, None indexes is the list of indexes into the case vector
src/FUZZY.py
hash
IBMPredictiveAnalytics/FUZZY
1
python
def hash(self, indexes, case): 'Return a hash of the case according to the indexes in the indexes tuple and the key values.\n \n If any value in the index is None or, for strings, blank, the result is None, None\n indexes is the list of indexes into the case vector' keys = tuple([case[v] for v in indexes]) for v in keys: if isinstance(v, str): if (v.rstrip() == ): return (None, None) elif (v is None): return (None, None) return (hash(keys), keys)
def hash(self, indexes, case): 'Return a hash of the case according to the indexes in the indexes tuple and the key values.\n \n If any value in the index is None or, for strings, blank, the result is None, None\n indexes is the list of indexes into the case vector' keys = tuple([case[v] for v in indexes]) for v in keys: if isinstance(v, str): if (v.rstrip() == ): return (None, None) elif (v is None): return (None, None) return (hash(keys), keys)<|docstring|>Return a hash of the case according to the indexes in the indexes tuple and the key values. If any value in the index is None or, for strings, blank, the result is None, None indexes is the list of indexes into the case vector<|endoftext|>
96cf94ab33ddb12bff013b5ce2a4a1570f9c1e6f8da385af2253e28b618d8fd4
def buildvars(self, ds, by): 'return a tuple of variable indexes for by.\n \n ds is the dataset.\n by is a sequence of variables for matching' try: return tuple([ds.varlist[v].index for v in by]) except: raise ValueError((_('Undefined variable in BY list: %s') % v))
return a tuple of variable indexes for by. ds is the dataset. by is a sequence of variables for matching
src/FUZZY.py
buildvars
IBMPredictiveAnalytics/FUZZY
1
python
def buildvars(self, ds, by): 'return a tuple of variable indexes for by.\n \n ds is the dataset.\n by is a sequence of variables for matching' try: return tuple([ds.varlist[v].index for v in by]) except: raise ValueError((_('Undefined variable in BY list: %s') % v))
def buildvars(self, ds, by): 'return a tuple of variable indexes for by.\n \n ds is the dataset.\n by is a sequence of variables for matching' try: return tuple([ds.varlist[v].index for v in by]) except: raise ValueError((_('Undefined variable in BY list: %s') % v))<|docstring|>return a tuple of variable indexes for by. ds is the dataset. by is a sequence of variables for matching<|endoftext|>
618542bdb451665104b2baca717509c1d65cf97b8b2aaa7b2ba0c30cababe8a9
def __init__(self, logfile, accessmode): 'Enable logging\n \n logfile is the path and name for the log file or None\n accessmode is "overwrite" or "append" ' self.logfile = logfile if (logfile is not None): filemode = (((accessmode == 'overwrite') and 'w') or 'a') logging.basicConfig(filename=logfile, level=logging.INFO, filemode=filemode, format='%(asctime)s: %(message)s', datefmt='%H:%M:%S') logging.info(('Run started: %s' % time.asctime())) self.starttime = time.time()
Enable logging logfile is the path and name for the log file or None accessmode is "overwrite" or "append"
src/FUZZY.py
__init__
IBMPredictiveAnalytics/FUZZY
1
python
def __init__(self, logfile, accessmode): 'Enable logging\n \n logfile is the path and name for the log file or None\n accessmode is "overwrite" or "append" ' self.logfile = logfile if (logfile is not None): filemode = (((accessmode == 'overwrite') and 'w') or 'a') logging.basicConfig(filename=logfile, level=logging.INFO, filemode=filemode, format='%(asctime)s: %(message)s', datefmt='%H:%M:%S') logging.info(('Run started: %s' % time.asctime())) self.starttime = time.time()
def __init__(self, logfile, accessmode): 'Enable logging\n \n logfile is the path and name for the log file or None\n accessmode is "overwrite" or "append" ' self.logfile = logfile if (logfile is not None): filemode = (((accessmode == 'overwrite') and 'w') or 'a') logging.basicConfig(filename=logfile, level=logging.INFO, filemode=filemode, format='%(asctime)s: %(message)s', datefmt='%H:%M:%S') logging.info(('Run started: %s' % time.asctime())) self.starttime = time.time()<|docstring|>Enable logging logfile is the path and name for the log file or None accessmode is "overwrite" or "append"<|endoftext|>
cabd5b7566773f94bb99ee8efebc9ef09faddb5ef8f516f6dde41dacc846b403
def info(self, message): 'Add message to the log if logging' if self.logfile: logging.info(message)
Add message to the log if logging
src/FUZZY.py
info
IBMPredictiveAnalytics/FUZZY
1
python
def info(self, message): if self.logfile: logging.info(message)
def info(self, message): if self.logfile: logging.info(message)<|docstring|>Add message to the log if logging<|endoftext|>
06687d5b393256a7440690732cba09f1ce401b6fd9479156b9efd3e815486c55
def setup_package(): '\n Runs package setup\n ' setup(**INFO)
Runs package setup
setup.py
setup_package
vishalbelsare/uravu
19
python
def setup_package(): '\n \n ' setup(**INFO)
def setup_package(): '\n \n ' setup(**INFO)<|docstring|>Runs package setup<|endoftext|>
1e6623e8e5472d2976c876185406f141809b22725b817ff2aec479a7a51a2d76
def formula_str_to_dict(sumform: Union[(str, bytes)]) -> Dict[(str, str)]: '\n converts an atom name like C12 to the element symbol C\n Use this code to find the atoms while going through the character astream of a sumformula\n e.g. C12H6O3Mn7\n Find two-char atoms, them one-char, and see if numbers are in between.\n ' elements = [x.upper() for x in atoms] atlist = {} nums = [] try: sumform = sumform.upper().replace(' ', '').replace('\n', '').replace('\r', '') except AttributeError: print('Error in formula_str_to_dict') return atlist def isnumber(el): for x in el: if (x.isnumeric() or (x == '.')): nums.append(x) else: break while sumform: if (sumform[0:2] in elements): isnumber(sumform[2:]) atlist[sumform[0:2].capitalize()] = ''.join(nums) sumform = sumform[(2 + len(nums)):] nums.clear() elif (sumform[0] in elements): isnumber(sumform[1:]) atlist[sumform[0]] = ''.join(nums) sumform = sumform[(1 + len(nums)):] nums.clear() else: raise KeyError return atlist
converts an atom name like C12 to the element symbol C Use this code to find the atoms while going through the character astream of a sumformula e.g. C12H6O3Mn7 Find two-char atoms, them one-char, and see if numbers are in between.
tools/sumformula.py
formula_str_to_dict
dkratzert/FinalCif
13
python
def formula_str_to_dict(sumform: Union[(str, bytes)]) -> Dict[(str, str)]: '\n converts an atom name like C12 to the element symbol C\n Use this code to find the atoms while going through the character astream of a sumformula\n e.g. C12H6O3Mn7\n Find two-char atoms, them one-char, and see if numbers are in between.\n ' elements = [x.upper() for x in atoms] atlist = {} nums = [] try: sumform = sumform.upper().replace(' ', ).replace('\n', ).replace('\r', ) except AttributeError: print('Error in formula_str_to_dict') return atlist def isnumber(el): for x in el: if (x.isnumeric() or (x == '.')): nums.append(x) else: break while sumform: if (sumform[0:2] in elements): isnumber(sumform[2:]) atlist[sumform[0:2].capitalize()] = .join(nums) sumform = sumform[(2 + len(nums)):] nums.clear() elif (sumform[0] in elements): isnumber(sumform[1:]) atlist[sumform[0]] = .join(nums) sumform = sumform[(1 + len(nums)):] nums.clear() else: raise KeyError return atlist
def formula_str_to_dict(sumform: Union[(str, bytes)]) -> Dict[(str, str)]: '\n converts an atom name like C12 to the element symbol C\n Use this code to find the atoms while going through the character astream of a sumformula\n e.g. C12H6O3Mn7\n Find two-char atoms, them one-char, and see if numbers are in between.\n ' elements = [x.upper() for x in atoms] atlist = {} nums = [] try: sumform = sumform.upper().replace(' ', ).replace('\n', ).replace('\r', ) except AttributeError: print('Error in formula_str_to_dict') return atlist def isnumber(el): for x in el: if (x.isnumeric() or (x == '.')): nums.append(x) else: break while sumform: if (sumform[0:2] in elements): isnumber(sumform[2:]) atlist[sumform[0:2].capitalize()] = .join(nums) sumform = sumform[(2 + len(nums)):] nums.clear() elif (sumform[0] in elements): isnumber(sumform[1:]) atlist[sumform[0]] = .join(nums) sumform = sumform[(1 + len(nums)):] nums.clear() else: raise KeyError return atlist<|docstring|>converts an atom name like C12 to the element symbol C Use this code to find the atoms while going through the character astream of a sumformula e.g. C12H6O3Mn7 Find two-char atoms, them one-char, and see if numbers are in between.<|endoftext|>
c3b4cacfd6f1dcf0ecaeed101dcfb0f67d631af2f1c39418c597b62348dacd00
def sum_formula_to_html(sumform: Dict[(str, str)], break_after: int=99) -> str: '\n Makes html formatted sum formula from dictionary.\n ' if (not sumform): return '' l = ['<html><body>'] num = 0 for el in sumform: if ((sumform[el] == 0) or (sumform[el] == None)): continue try: times = round(float(sumform[el]), 1) except (TypeError, ValueError): times = 1 if ((num > 3) and ((num % break_after) == 0)): l.append('<br>') if (times == 1): l.append('{}'.format(el)) else: l.append('{}<sub>{:g}</sub>'.format(el, times)) num += 1 l.append('</body></html>') formula = ''.join(l) return formula
Makes html formatted sum formula from dictionary.
tools/sumformula.py
sum_formula_to_html
dkratzert/FinalCif
13
python
def sum_formula_to_html(sumform: Dict[(str, str)], break_after: int=99) -> str: '\n \n ' if (not sumform): return l = ['<html><body>'] num = 0 for el in sumform: if ((sumform[el] == 0) or (sumform[el] == None)): continue try: times = round(float(sumform[el]), 1) except (TypeError, ValueError): times = 1 if ((num > 3) and ((num % break_after) == 0)): l.append('<br>') if (times == 1): l.append('{}'.format(el)) else: l.append('{}<sub>{:g}</sub>'.format(el, times)) num += 1 l.append('</body></html>') formula = .join(l) return formula
def sum_formula_to_html(sumform: Dict[(str, str)], break_after: int=99) -> str: '\n \n ' if (not sumform): return l = ['<html><body>'] num = 0 for el in sumform: if ((sumform[el] == 0) or (sumform[el] == None)): continue try: times = round(float(sumform[el]), 1) except (TypeError, ValueError): times = 1 if ((num > 3) and ((num % break_after) == 0)): l.append('<br>') if (times == 1): l.append('{}'.format(el)) else: l.append('{}<sub>{:g}</sub>'.format(el, times)) num += 1 l.append('</body></html>') formula = .join(l) return formula<|docstring|>Makes html formatted sum formula from dictionary.<|endoftext|>
fcad6fa5cd38035a4ccad94f5b68e4af3dcc828553ae0131859df4dd62cc8a19
def reset_NGLsettings(): '\n Reset NGL settings to their default values as specified in the phil definition string\n ' NGLparams = NGLmaster_phil.fetch(source=libtbx.phil.parse(ngl_philstr)).extract()
Reset NGL settings to their default values as specified in the phil definition string
crys3d/hklview/jsview_3d.py
reset_NGLsettings
indu-in/cctbx_project1
2
python
def reset_NGLsettings(): '\n \n ' NGLparams = NGLmaster_phil.fetch(source=libtbx.phil.parse(ngl_philstr)).extract()
def reset_NGLsettings(): '\n \n ' NGLparams = NGLmaster_phil.fetch(source=libtbx.phil.parse(ngl_philstr)).extract()<|docstring|>Reset NGL settings to their default values as specified in the phil definition string<|endoftext|>
b87f14a301b171c15d607a7f40aceac53ab23ec49260d798cd13d7e9dec780f3
def NGLsettings(): '\n Get a global phil parameters object containing some NGL settings\n ' return NGLparams
Get a global phil parameters object containing some NGL settings
crys3d/hklview/jsview_3d.py
NGLsettings
indu-in/cctbx_project1
2
python
def NGLsettings(): '\n \n ' return NGLparams
def NGLsettings(): '\n \n ' return NGLparams<|docstring|>Get a global phil parameters object containing some NGL settings<|endoftext|>
08c5198a9c4085abf3c8b55b26611b18fc1d8d24a5f7b97d106997c52aee6a52
def AddVector(self, s1, s2, s3, t1, t2, t3, isreciprocal=True, label='', r=0, g=0, b=0, name=''): '\n Place vector from {s1, s2, s3] to [t1, t2, t3] with colour r,g,b and label\n If name=="" creation is deferred until AddVector is eventually called with name != ""\n These vectors are then joined in the same NGL representation\n ' uc = self.miller_array.unit_cell() vec1 = ((s1 * self.scene.renderscale), (s2 * self.scene.renderscale), (s3 * self.scene.renderscale)) vec2 = ((t1 * self.scene.renderscale), (t2 * self.scene.renderscale), (t3 * self.scene.renderscale)) if isreciprocal: vec1 = list((vec1 * matrix.sqr(uc.fractionalization_matrix()).transpose())) vec2 = list((vec2 * matrix.sqr(uc.fractionalization_matrix()).transpose())) svec1 = [vec1[0], vec1[1], vec1[2]] svec2 = [vec2[0], vec2[1], vec2[2]] else: vec1 = list((vec1 * matrix.sqr(uc.orthogonalization_matrix()))) vec2 = list((vec2 * matrix.sqr(uc.orthogonalization_matrix()))) vscale = 1.0 svec1 = [(vscale * vec1[0]), (vscale * vec1[1]), (vscale * vec1[2])] svec2 = [(vscale * vec2[0]), (vscale * vec2[1]), (vscale * vec2[2])] self.mprint(('cartesian vector is: %s to %s' % (str(roundoff(svec1)), str(roundoff(svec2)))), verbose=2) svec = [(svec2[0] - svec1[0]), (svec2[1] - svec1[1]), (svec2[2] - svec1[2])] xyvec = svec[:] xyvec[2] = 0.0 xyvecnorm = math.sqrt(((xyvec[0] * xyvec[0]) + (xyvec[1] * xyvec[1]))) if (xyvecnorm > 0.0): angle_x_xyvec = ((math.acos((xyvec[0] / xyvecnorm)) * 180.0) / math.pi) angle_y_xyvec = ((math.acos((xyvec[1] / xyvecnorm)) * 180.0) / math.pi) else: angle_x_xyvec = 90.0 angle_y_xyvec = 90.0 yzvec = svec[:] yzvec[0] = 0.0 yzvecnorm = math.sqrt(((yzvec[1] * yzvec[1]) + (yzvec[2] * yzvec[2]))) if (yzvecnorm > 0.0): angle_y_yzvec = ((math.acos((yzvec[1] / yzvecnorm)) * 180.0) / math.pi) angle_z_yzvec = ((math.acos((yzvec[2] / yzvecnorm)) * 180.0) / math.pi) else: angle_y_yzvec = 90.0 angle_z_yzvec = 90.0 svecnorm = math.sqrt((((svec[0] * svec[0]) + (svec[1] * svec[1])) + (svec[2] * svec[2]))) angle_x_svec = ((math.acos((svec[0] / svecnorm)) * 180.0) / math.pi) angle_y_svec = ((math.acos((svec[1] / svecnorm)) * 180.0) / math.pi) angle_z_svec = ((math.acos((svec[2] / svecnorm)) * 180.0) / math.pi) if (angle_y_svec > 90.0): angle_x_xyvec = (- angle_x_xyvec) self.mprint(('angles in xy plane to x,y axis are: %s, %s' % (angle_x_xyvec, angle_y_xyvec)), verbose=2) self.mprint(('angles in yz plane to y,z axis are: %s, %s' % (angle_y_yzvec, angle_z_yzvec)), verbose=2) self.mprint(('angles to x,y,z axis are: %s, %s, %s' % (angle_x_svec, angle_y_svec, angle_z_svec)), verbose=2) self.mprint(('deferred rendering vector from (%s, %s, %s) to (%s, %s, %s)' % (s1, s2, s3, t1, t2, t3)), verbose=2) self.AddToBrowserMsgQueue('AddVector', ('%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s' % tuple(((svec1 + svec2) + [r, g, b, label, name])))) return (angle_x_xyvec, angle_z_svec)
Place vector from {s1, s2, s3] to [t1, t2, t3] with colour r,g,b and label If name=="" creation is deferred until AddVector is eventually called with name != "" These vectors are then joined in the same NGL representation
crys3d/hklview/jsview_3d.py
AddVector
indu-in/cctbx_project1
2
python
def AddVector(self, s1, s2, s3, t1, t2, t3, isreciprocal=True, label=, r=0, g=0, b=0, name=): '\n Place vector from {s1, s2, s3] to [t1, t2, t3] with colour r,g,b and label\n If name== creation is deferred until AddVector is eventually called with name != \n These vectors are then joined in the same NGL representation\n ' uc = self.miller_array.unit_cell() vec1 = ((s1 * self.scene.renderscale), (s2 * self.scene.renderscale), (s3 * self.scene.renderscale)) vec2 = ((t1 * self.scene.renderscale), (t2 * self.scene.renderscale), (t3 * self.scene.renderscale)) if isreciprocal: vec1 = list((vec1 * matrix.sqr(uc.fractionalization_matrix()).transpose())) vec2 = list((vec2 * matrix.sqr(uc.fractionalization_matrix()).transpose())) svec1 = [vec1[0], vec1[1], vec1[2]] svec2 = [vec2[0], vec2[1], vec2[2]] else: vec1 = list((vec1 * matrix.sqr(uc.orthogonalization_matrix()))) vec2 = list((vec2 * matrix.sqr(uc.orthogonalization_matrix()))) vscale = 1.0 svec1 = [(vscale * vec1[0]), (vscale * vec1[1]), (vscale * vec1[2])] svec2 = [(vscale * vec2[0]), (vscale * vec2[1]), (vscale * vec2[2])] self.mprint(('cartesian vector is: %s to %s' % (str(roundoff(svec1)), str(roundoff(svec2)))), verbose=2) svec = [(svec2[0] - svec1[0]), (svec2[1] - svec1[1]), (svec2[2] - svec1[2])] xyvec = svec[:] xyvec[2] = 0.0 xyvecnorm = math.sqrt(((xyvec[0] * xyvec[0]) + (xyvec[1] * xyvec[1]))) if (xyvecnorm > 0.0): angle_x_xyvec = ((math.acos((xyvec[0] / xyvecnorm)) * 180.0) / math.pi) angle_y_xyvec = ((math.acos((xyvec[1] / xyvecnorm)) * 180.0) / math.pi) else: angle_x_xyvec = 90.0 angle_y_xyvec = 90.0 yzvec = svec[:] yzvec[0] = 0.0 yzvecnorm = math.sqrt(((yzvec[1] * yzvec[1]) + (yzvec[2] * yzvec[2]))) if (yzvecnorm > 0.0): angle_y_yzvec = ((math.acos((yzvec[1] / yzvecnorm)) * 180.0) / math.pi) angle_z_yzvec = ((math.acos((yzvec[2] / yzvecnorm)) * 180.0) / math.pi) else: angle_y_yzvec = 90.0 angle_z_yzvec = 90.0 svecnorm = math.sqrt((((svec[0] * svec[0]) + (svec[1] * svec[1])) + (svec[2] * svec[2]))) angle_x_svec = ((math.acos((svec[0] / svecnorm)) * 180.0) / math.pi) angle_y_svec = ((math.acos((svec[1] / svecnorm)) * 180.0) / math.pi) angle_z_svec = ((math.acos((svec[2] / svecnorm)) * 180.0) / math.pi) if (angle_y_svec > 90.0): angle_x_xyvec = (- angle_x_xyvec) self.mprint(('angles in xy plane to x,y axis are: %s, %s' % (angle_x_xyvec, angle_y_xyvec)), verbose=2) self.mprint(('angles in yz plane to y,z axis are: %s, %s' % (angle_y_yzvec, angle_z_yzvec)), verbose=2) self.mprint(('angles to x,y,z axis are: %s, %s, %s' % (angle_x_svec, angle_y_svec, angle_z_svec)), verbose=2) self.mprint(('deferred rendering vector from (%s, %s, %s) to (%s, %s, %s)' % (s1, s2, s3, t1, t2, t3)), verbose=2) self.AddToBrowserMsgQueue('AddVector', ('%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s' % tuple(((svec1 + svec2) + [r, g, b, label, name])))) return (angle_x_xyvec, angle_z_svec)
def AddVector(self, s1, s2, s3, t1, t2, t3, isreciprocal=True, label=, r=0, g=0, b=0, name=): '\n Place vector from {s1, s2, s3] to [t1, t2, t3] with colour r,g,b and label\n If name== creation is deferred until AddVector is eventually called with name != \n These vectors are then joined in the same NGL representation\n ' uc = self.miller_array.unit_cell() vec1 = ((s1 * self.scene.renderscale), (s2 * self.scene.renderscale), (s3 * self.scene.renderscale)) vec2 = ((t1 * self.scene.renderscale), (t2 * self.scene.renderscale), (t3 * self.scene.renderscale)) if isreciprocal: vec1 = list((vec1 * matrix.sqr(uc.fractionalization_matrix()).transpose())) vec2 = list((vec2 * matrix.sqr(uc.fractionalization_matrix()).transpose())) svec1 = [vec1[0], vec1[1], vec1[2]] svec2 = [vec2[0], vec2[1], vec2[2]] else: vec1 = list((vec1 * matrix.sqr(uc.orthogonalization_matrix()))) vec2 = list((vec2 * matrix.sqr(uc.orthogonalization_matrix()))) vscale = 1.0 svec1 = [(vscale * vec1[0]), (vscale * vec1[1]), (vscale * vec1[2])] svec2 = [(vscale * vec2[0]), (vscale * vec2[1]), (vscale * vec2[2])] self.mprint(('cartesian vector is: %s to %s' % (str(roundoff(svec1)), str(roundoff(svec2)))), verbose=2) svec = [(svec2[0] - svec1[0]), (svec2[1] - svec1[1]), (svec2[2] - svec1[2])] xyvec = svec[:] xyvec[2] = 0.0 xyvecnorm = math.sqrt(((xyvec[0] * xyvec[0]) + (xyvec[1] * xyvec[1]))) if (xyvecnorm > 0.0): angle_x_xyvec = ((math.acos((xyvec[0] / xyvecnorm)) * 180.0) / math.pi) angle_y_xyvec = ((math.acos((xyvec[1] / xyvecnorm)) * 180.0) / math.pi) else: angle_x_xyvec = 90.0 angle_y_xyvec = 90.0 yzvec = svec[:] yzvec[0] = 0.0 yzvecnorm = math.sqrt(((yzvec[1] * yzvec[1]) + (yzvec[2] * yzvec[2]))) if (yzvecnorm > 0.0): angle_y_yzvec = ((math.acos((yzvec[1] / yzvecnorm)) * 180.0) / math.pi) angle_z_yzvec = ((math.acos((yzvec[2] / yzvecnorm)) * 180.0) / math.pi) else: angle_y_yzvec = 90.0 angle_z_yzvec = 90.0 svecnorm = math.sqrt((((svec[0] * svec[0]) + (svec[1] * svec[1])) + (svec[2] * svec[2]))) angle_x_svec = ((math.acos((svec[0] / svecnorm)) * 180.0) / math.pi) angle_y_svec = ((math.acos((svec[1] / svecnorm)) * 180.0) / math.pi) angle_z_svec = ((math.acos((svec[2] / svecnorm)) * 180.0) / math.pi) if (angle_y_svec > 90.0): angle_x_xyvec = (- angle_x_xyvec) self.mprint(('angles in xy plane to x,y axis are: %s, %s' % (angle_x_xyvec, angle_y_xyvec)), verbose=2) self.mprint(('angles in yz plane to y,z axis are: %s, %s' % (angle_y_yzvec, angle_z_yzvec)), verbose=2) self.mprint(('angles to x,y,z axis are: %s, %s, %s' % (angle_x_svec, angle_y_svec, angle_z_svec)), verbose=2) self.mprint(('deferred rendering vector from (%s, %s, %s) to (%s, %s, %s)' % (s1, s2, s3, t1, t2, t3)), verbose=2) self.AddToBrowserMsgQueue('AddVector', ('%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s' % tuple(((svec1 + svec2) + [r, g, b, label, name])))) return (angle_x_xyvec, angle_z_svec)<|docstring|>Place vector from {s1, s2, s3] to [t1, t2, t3] with colour r,g,b and label If name=="" creation is deferred until AddVector is eventually called with name != "" These vectors are then joined in the same NGL representation<|endoftext|>
9eae436ac6a0e16e5868816f20144ac114521d76289d64d116ed8dff8c690024
def getParser(self): '\n setup my argument parser\n \n sets self.parser as a side effect\n \n Returns:\n ArgumentParser: the argument parser\n ' parser = ArgumentParser(formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-l', '--login', dest='login', action='store_true', help='login to source wiki for access permission') parser.add_argument('-s', '--source', dest='source', help='source wiki id', required=True) parser.add_argument('-p', '--pages', dest='pages', nargs='+', help='Names of the pages the action should be applied to') parser.add_argument('--wikiTextPath', dest='backupPath', help='Path to store/update the wiki entries', required=False) parser.add_argument('--listFile', dest='file_list', help='List of pages from which the data should be extracted', required=False) parser.add_argument('-t', '--template', dest='template', help='Select a template (entity) to user for rendering/filtering') parser.add_argument('-stdin', dest='stdin', action='store_true', help='Use the input from STD IN using pipes') parser.add_argument('--debug', dest='debug', action='store_true', default=False, help='Enable debug mode') self.parser = parser return parser
setup my argument parser sets self.parser as a side effect Returns: ArgumentParser: the argument parser
wikifile/cmdline.py
getParser
tholzheim/wikirender
0
python
def getParser(self): '\n setup my argument parser\n \n sets self.parser as a side effect\n \n Returns:\n ArgumentParser: the argument parser\n ' parser = ArgumentParser(formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-l', '--login', dest='login', action='store_true', help='login to source wiki for access permission') parser.add_argument('-s', '--source', dest='source', help='source wiki id', required=True) parser.add_argument('-p', '--pages', dest='pages', nargs='+', help='Names of the pages the action should be applied to') parser.add_argument('--wikiTextPath', dest='backupPath', help='Path to store/update the wiki entries', required=False) parser.add_argument('--listFile', dest='file_list', help='List of pages from which the data should be extracted', required=False) parser.add_argument('-t', '--template', dest='template', help='Select a template (entity) to user for rendering/filtering') parser.add_argument('-stdin', dest='stdin', action='store_true', help='Use the input from STD IN using pipes') parser.add_argument('--debug', dest='debug', action='store_true', default=False, help='Enable debug mode') self.parser = parser return parser
def getParser(self): '\n setup my argument parser\n \n sets self.parser as a side effect\n \n Returns:\n ArgumentParser: the argument parser\n ' parser = ArgumentParser(formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-l', '--login', dest='login', action='store_true', help='login to source wiki for access permission') parser.add_argument('-s', '--source', dest='source', help='source wiki id', required=True) parser.add_argument('-p', '--pages', dest='pages', nargs='+', help='Names of the pages the action should be applied to') parser.add_argument('--wikiTextPath', dest='backupPath', help='Path to store/update the wiki entries', required=False) parser.add_argument('--listFile', dest='file_list', help='List of pages from which the data should be extracted', required=False) parser.add_argument('-t', '--template', dest='template', help='Select a template (entity) to user for rendering/filtering') parser.add_argument('-stdin', dest='stdin', action='store_true', help='Use the input from STD IN using pipes') parser.add_argument('--debug', dest='debug', action='store_true', default=False, help='Enable debug mode') self.parser = parser return parser<|docstring|>setup my argument parser sets self.parser as a side effect Returns: ArgumentParser: the argument parser<|endoftext|>
a2256bf427f8952e5269f4b40bbec10d8aa5dbd99659597e54a989e0b8860155
def initLogging(self, args): '\n initialize the logging\n ' if args.debug: logging.basicConfig(level=logging.DEBUG, stream=sys.stdout) else: logging.basicConfig(stream=sys.stdout, level=logging.INFO)
initialize the logging
wikifile/cmdline.py
initLogging
tholzheim/wikirender
0
python
def initLogging(self, args): '\n \n ' if args.debug: logging.basicConfig(level=logging.DEBUG, stream=sys.stdout) else: logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def initLogging(self, args): '\n \n ' if args.debug: logging.basicConfig(level=logging.DEBUG, stream=sys.stdout) else: logging.basicConfig(stream=sys.stdout, level=logging.INFO)<|docstring|>initialize the logging<|endoftext|>
44feb95bc9d34370b43f0ee9724a4ca59be0a8b5e059901a740065c1788fde36
def getPageTitlesForArgs(self, args): '\n see also wikirestore in wikipush of py-3rdparty-mediawiki\n \n Args:\n args(): parsed arguments\n \n Returns:\n List of pageTitles as specified\n ' page_titles = args.pages stdIn = args.stdin file_list = args.file_list file_parameters = [args.stdin, args.pages, args.file_list] if ((len(file_parameters) - (file_parameters.count(None) + file_parameters.count(False))) > 1): logging.error('Multiple file selection options were used. Please use only one or none to select all files in the backup folder.') raise Exception('Invalid parameters') if stdIn: page_titles = sys.stdin.readlines() pageTitlesfix = [] for page in page_titles: pageTitlesfix.append(page) page_titles = pageTitlesfix elif (file_list is not None): f = open(file_list, 'r') allx = f.readlines() page_titles = [] for page in allx: page_titles.append(page) elif (page_titles is None): page_titles = CmdLineAble.getPageTitlesForWikiTextPath(args.backupPath) total = len(page_titles) logging.debug(f'extracting templates from {total} wikifiles.') return page_titles
see also wikirestore in wikipush of py-3rdparty-mediawiki Args: args(): parsed arguments Returns: List of pageTitles as specified
wikifile/cmdline.py
getPageTitlesForArgs
tholzheim/wikirender
0
python
def getPageTitlesForArgs(self, args): '\n see also wikirestore in wikipush of py-3rdparty-mediawiki\n \n Args:\n args(): parsed arguments\n \n Returns:\n List of pageTitles as specified\n ' page_titles = args.pages stdIn = args.stdin file_list = args.file_list file_parameters = [args.stdin, args.pages, args.file_list] if ((len(file_parameters) - (file_parameters.count(None) + file_parameters.count(False))) > 1): logging.error('Multiple file selection options were used. Please use only one or none to select all files in the backup folder.') raise Exception('Invalid parameters') if stdIn: page_titles = sys.stdin.readlines() pageTitlesfix = [] for page in page_titles: pageTitlesfix.append(page) page_titles = pageTitlesfix elif (file_list is not None): f = open(file_list, 'r') allx = f.readlines() page_titles = [] for page in allx: page_titles.append(page) elif (page_titles is None): page_titles = CmdLineAble.getPageTitlesForWikiTextPath(args.backupPath) total = len(page_titles) logging.debug(f'extracting templates from {total} wikifiles.') return page_titles
def getPageTitlesForArgs(self, args): '\n see also wikirestore in wikipush of py-3rdparty-mediawiki\n \n Args:\n args(): parsed arguments\n \n Returns:\n List of pageTitles as specified\n ' page_titles = args.pages stdIn = args.stdin file_list = args.file_list file_parameters = [args.stdin, args.pages, args.file_list] if ((len(file_parameters) - (file_parameters.count(None) + file_parameters.count(False))) > 1): logging.error('Multiple file selection options were used. Please use only one or none to select all files in the backup folder.') raise Exception('Invalid parameters') if stdIn: page_titles = sys.stdin.readlines() pageTitlesfix = [] for page in page_titles: pageTitlesfix.append(page) page_titles = pageTitlesfix elif (file_list is not None): f = open(file_list, 'r') allx = f.readlines() page_titles = [] for page in allx: page_titles.append(page) elif (page_titles is None): page_titles = CmdLineAble.getPageTitlesForWikiTextPath(args.backupPath) total = len(page_titles) logging.debug(f'extracting templates from {total} wikifiles.') return page_titles<|docstring|>see also wikirestore in wikipush of py-3rdparty-mediawiki Args: args(): parsed arguments Returns: List of pageTitles as specified<|endoftext|>
575db3f0253b2e3287c313d533ba34b0087c70729e2ccef88b1d52c18e1bf91e
@staticmethod def getPageTitlesForWikiTextPath(backup_path: str) -> list: '\n get the page titles for the given backupPath\n \n Args: \n backup_path(str): the path to the WikiText Files (e.g. created by wikibackup)\n \n Returns:\n list: a list of PageTitles\n ' page_titles = [] if backup_path: for (path, _subdirs, files) in os.walk(backup_path): for name in files: filename = os.path.join(path, name)[(len(backup_path) + 1):] if filename.endswith('.wiki'): page_titles.append(filename[:(- len('.wiki'))]) return page_titles
get the page titles for the given backupPath Args: backup_path(str): the path to the WikiText Files (e.g. created by wikibackup) Returns: list: a list of PageTitles
wikifile/cmdline.py
getPageTitlesForWikiTextPath
tholzheim/wikirender
0
python
@staticmethod def getPageTitlesForWikiTextPath(backup_path: str) -> list: '\n get the page titles for the given backupPath\n \n Args: \n backup_path(str): the path to the WikiText Files (e.g. created by wikibackup)\n \n Returns:\n list: a list of PageTitles\n ' page_titles = [] if backup_path: for (path, _subdirs, files) in os.walk(backup_path): for name in files: filename = os.path.join(path, name)[(len(backup_path) + 1):] if filename.endswith('.wiki'): page_titles.append(filename[:(- len('.wiki'))]) return page_titles
@staticmethod def getPageTitlesForWikiTextPath(backup_path: str) -> list: '\n get the page titles for the given backupPath\n \n Args: \n backup_path(str): the path to the WikiText Files (e.g. created by wikibackup)\n \n Returns:\n list: a list of PageTitles\n ' page_titles = [] if backup_path: for (path, _subdirs, files) in os.walk(backup_path): for name in files: filename = os.path.join(path, name)[(len(backup_path) + 1):] if filename.endswith('.wiki'): page_titles.append(filename[:(- len('.wiki'))]) return page_titles<|docstring|>get the page titles for the given backupPath Args: backup_path(str): the path to the WikiText Files (e.g. created by wikibackup) Returns: list: a list of PageTitles<|endoftext|>
2555f609189c9c07eabb45c4a275bb9fb8e88543638a086d579f19849504d18e
@classmethod def _parse_list(cls, data, sub_item=False): 'Parse a list of JSON objects into a result set of model instances.' results = ResultSet() data = (data or []) for obj in data: if obj: results.append(cls._parse(obj, sub_item=sub_item)) return results
Parse a list of JSON objects into a result set of model instances.
musixmatch/models.py
_parse_list
yakupadakli/python-musixmatch
3
python
@classmethod def _parse_list(cls, data, sub_item=False): results = ResultSet() data = (data or []) for obj in data: if obj: results.append(cls._parse(obj, sub_item=sub_item)) return results
@classmethod def _parse_list(cls, data, sub_item=False): results = ResultSet() data = (data or []) for obj in data: if obj: results.append(cls._parse(obj, sub_item=sub_item)) return results<|docstring|>Parse a list of JSON objects into a result set of model instances.<|endoftext|>
847970a9ef0781a994754c5c28d08c5cd0c32917af55dabe071b52490bdab1b1
def circles(self, x, y, s, c='b', vmin=None, vmax=None, **kwargs): "\n See https://gist.github.com/syrte/592a062c562cd2a98a83 \n\n Make a scatter plot of circles. \n Similar to plt.scatter, but the size of circles are in data scale.\n Parameters\n ----------\n x, y : scalar or array_like, shape (n, )\n Input data\n s : scalar or array_like, shape (n, ) \n Radius of circles.\n c : color or sequence of color, optional, default : 'b'\n `c` can be a single color format string, or a sequence of color\n specifications of length `N`, or a sequence of `N` numbers to be\n mapped to colors using the `cmap` and `norm` specified via kwargs.\n Note that `c` should not be a single numeric RGB or RGBA sequence \n because that is indistinguishable from an array of values\n to be colormapped. (If you insist, use `color` instead.) \n `c` can be a 2-D array in which the rows are RGB or RGBA, however. \n vmin, vmax : scalar, optional, default: None\n `vmin` and `vmax` are used in conjunction with `norm` to normalize\n luminance data. If either are `None`, the min and max of the\n color array is used.\n kwargs : `~matplotlib.collections.Collection` properties\n Eg. alpha, edgecolor(ec), facecolor(fc), linewidth(lw), linestyle(ls), \n norm, cmap, transform, etc.\n Returns\n -------\n paths : `~matplotlib.collections.PathCollection`\n Examples\n --------\n a = np.arange(11)\n circles(a, a, s=a*0.2, c=a, alpha=0.5, ec='none')\n plt.colorbar()\n License\n --------\n This code is under [The BSD 3-Clause License]\n (http://opensource.org/licenses/BSD-3-Clause)\n " if np.isscalar(c): kwargs.setdefault('color', c) c = None if ('fc' in kwargs): kwargs.setdefault('facecolor', kwargs.pop('fc')) if ('ec' in kwargs): kwargs.setdefault('edgecolor', kwargs.pop('ec')) if ('ls' in kwargs): kwargs.setdefault('linestyle', kwargs.pop('ls')) if ('lw' in kwargs): kwargs.setdefault('linewidth', kwargs.pop('lw')) zipped = np.broadcast(x, y, s) patches = [Circle((x_, y_), s_) for (x_, y_, s_) in zipped] collection = PatchCollection(patches, **kwargs) if (c is not None): c = np.broadcast_to(c, zipped.shape).ravel() collection.set_array(c) collection.set_clim(vmin, vmax) ax = plt.gca() ax.add_collection(collection) ax.autoscale_view() plt.draw_if_interactive() if (c is not None): plt.sci(collection) return collection
See https://gist.github.com/syrte/592a062c562cd2a98a83 Make a scatter plot of circles. Similar to plt.scatter, but the size of circles are in data scale. Parameters ---------- x, y : scalar or array_like, shape (n, ) Input data s : scalar or array_like, shape (n, ) Radius of circles. c : color or sequence of color, optional, default : 'b' `c` can be a single color format string, or a sequence of color specifications of length `N`, or a sequence of `N` numbers to be mapped to colors using the `cmap` and `norm` specified via kwargs. Note that `c` should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. (If you insist, use `color` instead.) `c` can be a 2-D array in which the rows are RGB or RGBA, however. vmin, vmax : scalar, optional, default: None `vmin` and `vmax` are used in conjunction with `norm` to normalize luminance data. If either are `None`, the min and max of the color array is used. kwargs : `~matplotlib.collections.Collection` properties Eg. alpha, edgecolor(ec), facecolor(fc), linewidth(lw), linestyle(ls), norm, cmap, transform, etc. Returns ------- paths : `~matplotlib.collections.PathCollection` Examples -------- a = np.arange(11) circles(a, a, s=a*0.2, c=a, alpha=0.5, ec='none') plt.colorbar() License -------- This code is under [The BSD 3-Clause License] (http://opensource.org/licenses/BSD-3-Clause)
bin/svg.py
circles
rheiland/pc4training
6
python
def circles(self, x, y, s, c='b', vmin=None, vmax=None, **kwargs): "\n See https://gist.github.com/syrte/592a062c562cd2a98a83 \n\n Make a scatter plot of circles. \n Similar to plt.scatter, but the size of circles are in data scale.\n Parameters\n ----------\n x, y : scalar or array_like, shape (n, )\n Input data\n s : scalar or array_like, shape (n, ) \n Radius of circles.\n c : color or sequence of color, optional, default : 'b'\n `c` can be a single color format string, or a sequence of color\n specifications of length `N`, or a sequence of `N` numbers to be\n mapped to colors using the `cmap` and `norm` specified via kwargs.\n Note that `c` should not be a single numeric RGB or RGBA sequence \n because that is indistinguishable from an array of values\n to be colormapped. (If you insist, use `color` instead.) \n `c` can be a 2-D array in which the rows are RGB or RGBA, however. \n vmin, vmax : scalar, optional, default: None\n `vmin` and `vmax` are used in conjunction with `norm` to normalize\n luminance data. If either are `None`, the min and max of the\n color array is used.\n kwargs : `~matplotlib.collections.Collection` properties\n Eg. alpha, edgecolor(ec), facecolor(fc), linewidth(lw), linestyle(ls), \n norm, cmap, transform, etc.\n Returns\n -------\n paths : `~matplotlib.collections.PathCollection`\n Examples\n --------\n a = np.arange(11)\n circles(a, a, s=a*0.2, c=a, alpha=0.5, ec='none')\n plt.colorbar()\n License\n --------\n This code is under [The BSD 3-Clause License]\n (http://opensource.org/licenses/BSD-3-Clause)\n " if np.isscalar(c): kwargs.setdefault('color', c) c = None if ('fc' in kwargs): kwargs.setdefault('facecolor', kwargs.pop('fc')) if ('ec' in kwargs): kwargs.setdefault('edgecolor', kwargs.pop('ec')) if ('ls' in kwargs): kwargs.setdefault('linestyle', kwargs.pop('ls')) if ('lw' in kwargs): kwargs.setdefault('linewidth', kwargs.pop('lw')) zipped = np.broadcast(x, y, s) patches = [Circle((x_, y_), s_) for (x_, y_, s_) in zipped] collection = PatchCollection(patches, **kwargs) if (c is not None): c = np.broadcast_to(c, zipped.shape).ravel() collection.set_array(c) collection.set_clim(vmin, vmax) ax = plt.gca() ax.add_collection(collection) ax.autoscale_view() plt.draw_if_interactive() if (c is not None): plt.sci(collection) return collection
def circles(self, x, y, s, c='b', vmin=None, vmax=None, **kwargs): "\n See https://gist.github.com/syrte/592a062c562cd2a98a83 \n\n Make a scatter plot of circles. \n Similar to plt.scatter, but the size of circles are in data scale.\n Parameters\n ----------\n x, y : scalar or array_like, shape (n, )\n Input data\n s : scalar or array_like, shape (n, ) \n Radius of circles.\n c : color or sequence of color, optional, default : 'b'\n `c` can be a single color format string, or a sequence of color\n specifications of length `N`, or a sequence of `N` numbers to be\n mapped to colors using the `cmap` and `norm` specified via kwargs.\n Note that `c` should not be a single numeric RGB or RGBA sequence \n because that is indistinguishable from an array of values\n to be colormapped. (If you insist, use `color` instead.) \n `c` can be a 2-D array in which the rows are RGB or RGBA, however. \n vmin, vmax : scalar, optional, default: None\n `vmin` and `vmax` are used in conjunction with `norm` to normalize\n luminance data. If either are `None`, the min and max of the\n color array is used.\n kwargs : `~matplotlib.collections.Collection` properties\n Eg. alpha, edgecolor(ec), facecolor(fc), linewidth(lw), linestyle(ls), \n norm, cmap, transform, etc.\n Returns\n -------\n paths : `~matplotlib.collections.PathCollection`\n Examples\n --------\n a = np.arange(11)\n circles(a, a, s=a*0.2, c=a, alpha=0.5, ec='none')\n plt.colorbar()\n License\n --------\n This code is under [The BSD 3-Clause License]\n (http://opensource.org/licenses/BSD-3-Clause)\n " if np.isscalar(c): kwargs.setdefault('color', c) c = None if ('fc' in kwargs): kwargs.setdefault('facecolor', kwargs.pop('fc')) if ('ec' in kwargs): kwargs.setdefault('edgecolor', kwargs.pop('ec')) if ('ls' in kwargs): kwargs.setdefault('linestyle', kwargs.pop('ls')) if ('lw' in kwargs): kwargs.setdefault('linewidth', kwargs.pop('lw')) zipped = np.broadcast(x, y, s) patches = [Circle((x_, y_), s_) for (x_, y_, s_) in zipped] collection = PatchCollection(patches, **kwargs) if (c is not None): c = np.broadcast_to(c, zipped.shape).ravel() collection.set_array(c) collection.set_clim(vmin, vmax) ax = plt.gca() ax.add_collection(collection) ax.autoscale_view() plt.draw_if_interactive() if (c is not None): plt.sci(collection) return collection<|docstring|>See https://gist.github.com/syrte/592a062c562cd2a98a83 Make a scatter plot of circles. Similar to plt.scatter, but the size of circles are in data scale. Parameters ---------- x, y : scalar or array_like, shape (n, ) Input data s : scalar or array_like, shape (n, ) Radius of circles. c : color or sequence of color, optional, default : 'b' `c` can be a single color format string, or a sequence of color specifications of length `N`, or a sequence of `N` numbers to be mapped to colors using the `cmap` and `norm` specified via kwargs. Note that `c` should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. (If you insist, use `color` instead.) `c` can be a 2-D array in which the rows are RGB or RGBA, however. vmin, vmax : scalar, optional, default: None `vmin` and `vmax` are used in conjunction with `norm` to normalize luminance data. If either are `None`, the min and max of the color array is used. kwargs : `~matplotlib.collections.Collection` properties Eg. alpha, edgecolor(ec), facecolor(fc), linewidth(lw), linestyle(ls), norm, cmap, transform, etc. Returns ------- paths : `~matplotlib.collections.PathCollection` Examples -------- a = np.arange(11) circles(a, a, s=a*0.2, c=a, alpha=0.5, ec='none') plt.colorbar() License -------- This code is under [The BSD 3-Clause License] (http://opensource.org/licenses/BSD-3-Clause)<|endoftext|>
92a4f0b6175ae722d0ea34b16cb9a5728a21ea91ba59135afbeba7d401d2dd6c
def compare_json(json1, json2): 'Compares two JSON values for equality' return JsonType.eq(json1, json2)
Compares two JSON values for equality
nmostesting/TestHelper.py
compare_json
AMWA-TV/nmos-testing
25
python
def compare_json(json1, json2): return JsonType.eq(json1, json2)
def compare_json(json1, json2): return JsonType.eq(json1, json2)<|docstring|>Compares two JSON values for equality<|endoftext|>
d69a9ee31ce6766fc36ad730e2077b3663980169ec14bfeadfdcd1124acce389
def get_default_ip(): "Get this machine's preferred IPv4 address" if (CONFIG.BIND_INTERFACE is None): default_gw = netifaces.gateways()['default'] if (netifaces.AF_INET in default_gw): preferred_interface = default_gw[netifaces.AF_INET][1] else: interfaces = netifaces.interfaces() preferred_interface = next((i for i in interfaces if (i != 'lo')), interfaces[0]) else: preferred_interface = CONFIG.BIND_INTERFACE return netifaces.ifaddresses(preferred_interface)[netifaces.AF_INET][0]['addr']
Get this machine's preferred IPv4 address
nmostesting/TestHelper.py
get_default_ip
AMWA-TV/nmos-testing
25
python
def get_default_ip(): if (CONFIG.BIND_INTERFACE is None): default_gw = netifaces.gateways()['default'] if (netifaces.AF_INET in default_gw): preferred_interface = default_gw[netifaces.AF_INET][1] else: interfaces = netifaces.interfaces() preferred_interface = next((i for i in interfaces if (i != 'lo')), interfaces[0]) else: preferred_interface = CONFIG.BIND_INTERFACE return netifaces.ifaddresses(preferred_interface)[netifaces.AF_INET][0]['addr']
def get_default_ip(): if (CONFIG.BIND_INTERFACE is None): default_gw = netifaces.gateways()['default'] if (netifaces.AF_INET in default_gw): preferred_interface = default_gw[netifaces.AF_INET][1] else: interfaces = netifaces.interfaces() preferred_interface = next((i for i in interfaces if (i != 'lo')), interfaces[0]) else: preferred_interface = CONFIG.BIND_INTERFACE return netifaces.ifaddresses(preferred_interface)[netifaces.AF_INET][0]['addr']<|docstring|>Get this machine's preferred IPv4 address<|endoftext|>
cfe4c762c237c54d02d8bb218e7dba31679aecb40215c4f5ba2945e758748ea7
def do_request(method, url, **kwargs): 'Perform a basic HTTP request with appropriate error handling' try: s = requests.Session() if (('headers' in kwargs) and (kwargs['headers'] is None)): del kwargs['headers'] if (CONFIG.ENABLE_AUTH and CONFIG.AUTH_TOKEN and ('headers' not in kwargs)): req = requests.Request(method, url, headers={'Authorization': ('Bearer ' + CONFIG.AUTH_TOKEN)}, **kwargs) else: req = requests.Request(method, url, **kwargs) prepped = s.prepare_request(req) settings = s.merge_environment_settings(prepped.url, {}, None, CONFIG.CERT_TRUST_ROOT_CA, None) response = s.send(prepped, timeout=CONFIG.HTTP_TIMEOUT, **settings) if prepped.url.startswith('https://'): if (not response.url.startswith('https://')): return (False, 'Redirect changed protocol') if (response.history is not None): for res in response.history: if (not res.url.startswith('https://')): return (False, 'Redirect changed protocol') return (True, response) except requests.exceptions.Timeout: return (False, 'Connection timeout') except requests.exceptions.TooManyRedirects: return (False, 'Too many redirects') except requests.exceptions.ConnectionError as e: return (False, str(e)) except requests.exceptions.RequestException as e: return (False, str(e))
Perform a basic HTTP request with appropriate error handling
nmostesting/TestHelper.py
do_request
AMWA-TV/nmos-testing
25
python
def do_request(method, url, **kwargs): try: s = requests.Session() if (('headers' in kwargs) and (kwargs['headers'] is None)): del kwargs['headers'] if (CONFIG.ENABLE_AUTH and CONFIG.AUTH_TOKEN and ('headers' not in kwargs)): req = requests.Request(method, url, headers={'Authorization': ('Bearer ' + CONFIG.AUTH_TOKEN)}, **kwargs) else: req = requests.Request(method, url, **kwargs) prepped = s.prepare_request(req) settings = s.merge_environment_settings(prepped.url, {}, None, CONFIG.CERT_TRUST_ROOT_CA, None) response = s.send(prepped, timeout=CONFIG.HTTP_TIMEOUT, **settings) if prepped.url.startswith('https://'): if (not response.url.startswith('https://')): return (False, 'Redirect changed protocol') if (response.history is not None): for res in response.history: if (not res.url.startswith('https://')): return (False, 'Redirect changed protocol') return (True, response) except requests.exceptions.Timeout: return (False, 'Connection timeout') except requests.exceptions.TooManyRedirects: return (False, 'Too many redirects') except requests.exceptions.ConnectionError as e: return (False, str(e)) except requests.exceptions.RequestException as e: return (False, str(e))
def do_request(method, url, **kwargs): try: s = requests.Session() if (('headers' in kwargs) and (kwargs['headers'] is None)): del kwargs['headers'] if (CONFIG.ENABLE_AUTH and CONFIG.AUTH_TOKEN and ('headers' not in kwargs)): req = requests.Request(method, url, headers={'Authorization': ('Bearer ' + CONFIG.AUTH_TOKEN)}, **kwargs) else: req = requests.Request(method, url, **kwargs) prepped = s.prepare_request(req) settings = s.merge_environment_settings(prepped.url, {}, None, CONFIG.CERT_TRUST_ROOT_CA, None) response = s.send(prepped, timeout=CONFIG.HTTP_TIMEOUT, **settings) if prepped.url.startswith('https://'): if (not response.url.startswith('https://')): return (False, 'Redirect changed protocol') if (response.history is not None): for res in response.history: if (not res.url.startswith('https://')): return (False, 'Redirect changed protocol') return (True, response) except requests.exceptions.Timeout: return (False, 'Connection timeout') except requests.exceptions.TooManyRedirects: return (False, 'Too many redirects') except requests.exceptions.ConnectionError as e: return (False, str(e)) except requests.exceptions.RequestException as e: return (False, str(e))<|docstring|>Perform a basic HTTP request with appropriate error handling<|endoftext|>
d3929844aae9e7b2f96300d9644c6df89ff00ad376684e0aebb976b9becc983c
def load_resolved_schema(spec_path, file_name=None, schema_obj=None, path_prefix=True): '\n Parses JSON as well as resolves any `$ref`s, including references to\n local files and remote (HTTP/S) files.\n ' assert (bool(file_name) != bool(schema_obj)) if path_prefix: spec_path = os.path.join(spec_path, 'APIs/schemas/') base_path = os.path.abspath(spec_path) if (not base_path.endswith('/')): base_path = (base_path + '/') if (os.name == 'nt'): base_uri_path = ('file:///' + base_path.replace('\\', '/')) else: base_uri_path = ('file://' + base_path) loader = jsonref.JsonLoader(cache_results=False) if file_name: json_file = str((Path(base_path) / file_name)) with open(json_file, 'r') as f: schema = jsonref.load(f, base_uri=base_uri_path, loader=loader, jsonschema=True) elif schema_obj: if has_jsonref(schema_obj): schema = jsonref.JsonRef.replace_refs(schema_obj, base_uri=base_uri_path, loader=loader, jsonschema=True) else: schema = schema_obj return schema
Parses JSON as well as resolves any `$ref`s, including references to local files and remote (HTTP/S) files.
nmostesting/TestHelper.py
load_resolved_schema
AMWA-TV/nmos-testing
25
python
def load_resolved_schema(spec_path, file_name=None, schema_obj=None, path_prefix=True): '\n Parses JSON as well as resolves any `$ref`s, including references to\n local files and remote (HTTP/S) files.\n ' assert (bool(file_name) != bool(schema_obj)) if path_prefix: spec_path = os.path.join(spec_path, 'APIs/schemas/') base_path = os.path.abspath(spec_path) if (not base_path.endswith('/')): base_path = (base_path + '/') if (os.name == 'nt'): base_uri_path = ('file:///' + base_path.replace('\\', '/')) else: base_uri_path = ('file://' + base_path) loader = jsonref.JsonLoader(cache_results=False) if file_name: json_file = str((Path(base_path) / file_name)) with open(json_file, 'r') as f: schema = jsonref.load(f, base_uri=base_uri_path, loader=loader, jsonschema=True) elif schema_obj: if has_jsonref(schema_obj): schema = jsonref.JsonRef.replace_refs(schema_obj, base_uri=base_uri_path, loader=loader, jsonschema=True) else: schema = schema_obj return schema
def load_resolved_schema(spec_path, file_name=None, schema_obj=None, path_prefix=True): '\n Parses JSON as well as resolves any `$ref`s, including references to\n local files and remote (HTTP/S) files.\n ' assert (bool(file_name) != bool(schema_obj)) if path_prefix: spec_path = os.path.join(spec_path, 'APIs/schemas/') base_path = os.path.abspath(spec_path) if (not base_path.endswith('/')): base_path = (base_path + '/') if (os.name == 'nt'): base_uri_path = ('file:///' + base_path.replace('\\', '/')) else: base_uri_path = ('file://' + base_path) loader = jsonref.JsonLoader(cache_results=False) if file_name: json_file = str((Path(base_path) / file_name)) with open(json_file, 'r') as f: schema = jsonref.load(f, base_uri=base_uri_path, loader=loader, jsonschema=True) elif schema_obj: if has_jsonref(schema_obj): schema = jsonref.JsonRef.replace_refs(schema_obj, base_uri=base_uri_path, loader=loader, jsonschema=True) else: schema = schema_obj return schema<|docstring|>Parses JSON as well as resolves any `$ref`s, including references to local files and remote (HTTP/S) files.<|endoftext|>
491333cee8ee5c1bdfe69a37e5f0242ad74f7ea0b55cbd1b3497fa21e0e85909
def __init__(self, ws_href): '\n Initializer\n :param ws_href: websocket url (string)\n ' if (CONFIG.ENABLE_AUTH and CONFIG.AUTH_TOKEN and ('access_token' not in ws_href)): if ('?' in ws_href): ws_href += '&access_token={}'.format(CONFIG.AUTH_TOKEN) else: ws_href += '?access_token={}'.format(CONFIG.AUTH_TOKEN) threading.Thread.__init__(self, daemon=True) self.ws_href = ws_href try: self.ws = websocket.WebSocketApp(ws_href, on_message=self.on_message, on_close=self.on_close, on_open=self.on_open, on_error=self.on_error) except AttributeError: print(" * ERROR: You have the wrong Python websocket module installed. Please uninstall 'websocket' and install 'websocket-client'") raise self.messages = list() self.error_occurred = False self.connected = False self.error_message = ''
Initializer :param ws_href: websocket url (string)
nmostesting/TestHelper.py
__init__
AMWA-TV/nmos-testing
25
python
def __init__(self, ws_href): '\n Initializer\n :param ws_href: websocket url (string)\n ' if (CONFIG.ENABLE_AUTH and CONFIG.AUTH_TOKEN and ('access_token' not in ws_href)): if ('?' in ws_href): ws_href += '&access_token={}'.format(CONFIG.AUTH_TOKEN) else: ws_href += '?access_token={}'.format(CONFIG.AUTH_TOKEN) threading.Thread.__init__(self, daemon=True) self.ws_href = ws_href try: self.ws = websocket.WebSocketApp(ws_href, on_message=self.on_message, on_close=self.on_close, on_open=self.on_open, on_error=self.on_error) except AttributeError: print(" * ERROR: You have the wrong Python websocket module installed. Please uninstall 'websocket' and install 'websocket-client'") raise self.messages = list() self.error_occurred = False self.connected = False self.error_message =
def __init__(self, ws_href): '\n Initializer\n :param ws_href: websocket url (string)\n ' if (CONFIG.ENABLE_AUTH and CONFIG.AUTH_TOKEN and ('access_token' not in ws_href)): if ('?' in ws_href): ws_href += '&access_token={}'.format(CONFIG.AUTH_TOKEN) else: ws_href += '?access_token={}'.format(CONFIG.AUTH_TOKEN) threading.Thread.__init__(self, daemon=True) self.ws_href = ws_href try: self.ws = websocket.WebSocketApp(ws_href, on_message=self.on_message, on_close=self.on_close, on_open=self.on_open, on_error=self.on_error) except AttributeError: print(" * ERROR: You have the wrong Python websocket module installed. Please uninstall 'websocket' and install 'websocket-client'") raise self.messages = list() self.error_occurred = False self.connected = False self.error_message = <|docstring|>Initializer :param ws_href: websocket url (string)<|endoftext|>
edbc5e2219d2f788fd1a342585187ea39157023c4f067f411ef027e63e1b104a
def __init__(self, host, port, secure=False, username=None, password=None, topics=[]): '\n Initializer\n :param host: broker hostname (string)\n :param port: broker port (int)\n :param secure: use TLS (bool)\n :param username: broker username (string)\n :param password: broker password (string)\n :param topics: list of topics to subscribe to (list of string)\n ' self.host = host self.port = port self.error_occurred = False self.connected = False self.error_message = '' self.client = mqtt.Client(protocol=mqtt.MQTTv5) self.client.on_connect = (lambda client, userdata, flags, rc, properties=None: self.on_connect(flags, rc)) self.client.on_disconnect = (lambda client, userdata, rc: self.on_disconnect(rc)) self.client.on_message = (lambda client, userdata, msg: self.on_message(msg)) self.client.on_subscribe = (lambda client, userdata, mid, *args: self.on_subscribe(mid)) self.client.on_log = (lambda client, userdata, level, buf: self.on_log(level, buf)) if secure: self.client.tls_set(CONFIG.CERT_TRUST_ROOT_CA) if (username or password): self.client.username_pw_set(username, password) self.topics = topics self.pending_subs = set() self.messages = []
Initializer :param host: broker hostname (string) :param port: broker port (int) :param secure: use TLS (bool) :param username: broker username (string) :param password: broker password (string) :param topics: list of topics to subscribe to (list of string)
nmostesting/TestHelper.py
__init__
AMWA-TV/nmos-testing
25
python
def __init__(self, host, port, secure=False, username=None, password=None, topics=[]): '\n Initializer\n :param host: broker hostname (string)\n :param port: broker port (int)\n :param secure: use TLS (bool)\n :param username: broker username (string)\n :param password: broker password (string)\n :param topics: list of topics to subscribe to (list of string)\n ' self.host = host self.port = port self.error_occurred = False self.connected = False self.error_message = self.client = mqtt.Client(protocol=mqtt.MQTTv5) self.client.on_connect = (lambda client, userdata, flags, rc, properties=None: self.on_connect(flags, rc)) self.client.on_disconnect = (lambda client, userdata, rc: self.on_disconnect(rc)) self.client.on_message = (lambda client, userdata, msg: self.on_message(msg)) self.client.on_subscribe = (lambda client, userdata, mid, *args: self.on_subscribe(mid)) self.client.on_log = (lambda client, userdata, level, buf: self.on_log(level, buf)) if secure: self.client.tls_set(CONFIG.CERT_TRUST_ROOT_CA) if (username or password): self.client.username_pw_set(username, password) self.topics = topics self.pending_subs = set() self.messages = []
def __init__(self, host, port, secure=False, username=None, password=None, topics=[]): '\n Initializer\n :param host: broker hostname (string)\n :param port: broker port (int)\n :param secure: use TLS (bool)\n :param username: broker username (string)\n :param password: broker password (string)\n :param topics: list of topics to subscribe to (list of string)\n ' self.host = host self.port = port self.error_occurred = False self.connected = False self.error_message = self.client = mqtt.Client(protocol=mqtt.MQTTv5) self.client.on_connect = (lambda client, userdata, flags, rc, properties=None: self.on_connect(flags, rc)) self.client.on_disconnect = (lambda client, userdata, rc: self.on_disconnect(rc)) self.client.on_message = (lambda client, userdata, msg: self.on_message(msg)) self.client.on_subscribe = (lambda client, userdata, mid, *args: self.on_subscribe(mid)) self.client.on_log = (lambda client, userdata, level, buf: self.on_log(level, buf)) if secure: self.client.tls_set(CONFIG.CERT_TRUST_ROOT_CA) if (username or password): self.client.username_pw_set(username, password) self.topics = topics self.pending_subs = set() self.messages = []<|docstring|>Initializer :param host: broker hostname (string) :param port: broker port (int) :param secure: use TLS (bool) :param username: broker username (string) :param password: broker password (string) :param topics: list of topics to subscribe to (list of string)<|endoftext|>
f288167bbcd1096bc3c33168c88d43e35f66c4fc52c8341387977abd9fd5856f
def solve_board(board, timeout=2): '\n Returns result[0]=True/False(Solved/Unsolved)\n Returns result[1]=solved board/{"error", "invalid", "unsolved"}\n ' result = [] stop_it = Event() start = time.time() stuff_doing_thread = Thread(target=solve_board_1, args=(board, stop_it, result)) stuff_doing_thread.start() stuff_doing_thread.join(timeout=timeout) end = time.time() if ((not stop_it.is_set()) or ((result[0] == False) and (result[1] == 'error'))): start = time.time() status = solve_board_2(board) end = time.time() if (status == True): bas = '' for row in board: for element in row: bas += (str(element) + ' ') result.extend([True, bas]) else: result.extend([False, 'unsolved']) time_taken = str((end - start)) time_taken = time_taken[:min(6, len(time_taken))] return (result[0], result[1], time_taken)
Returns result[0]=True/False(Solved/Unsolved) Returns result[1]=solved board/{"error", "invalid", "unsolved"}
server/utility/masterSolver.py
solve_board
snehsagarajput/sudoku-solver-app
0
python
def solve_board(board, timeout=2): '\n Returns result[0]=True/False(Solved/Unsolved)\n Returns result[1]=solved board/{"error", "invalid", "unsolved"}\n ' result = [] stop_it = Event() start = time.time() stuff_doing_thread = Thread(target=solve_board_1, args=(board, stop_it, result)) stuff_doing_thread.start() stuff_doing_thread.join(timeout=timeout) end = time.time() if ((not stop_it.is_set()) or ((result[0] == False) and (result[1] == 'error'))): start = time.time() status = solve_board_2(board) end = time.time() if (status == True): bas = for row in board: for element in row: bas += (str(element) + ' ') result.extend([True, bas]) else: result.extend([False, 'unsolved']) time_taken = str((end - start)) time_taken = time_taken[:min(6, len(time_taken))] return (result[0], result[1], time_taken)
def solve_board(board, timeout=2): '\n Returns result[0]=True/False(Solved/Unsolved)\n Returns result[1]=solved board/{"error", "invalid", "unsolved"}\n ' result = [] stop_it = Event() start = time.time() stuff_doing_thread = Thread(target=solve_board_1, args=(board, stop_it, result)) stuff_doing_thread.start() stuff_doing_thread.join(timeout=timeout) end = time.time() if ((not stop_it.is_set()) or ((result[0] == False) and (result[1] == 'error'))): start = time.time() status = solve_board_2(board) end = time.time() if (status == True): bas = for row in board: for element in row: bas += (str(element) + ' ') result.extend([True, bas]) else: result.extend([False, 'unsolved']) time_taken = str((end - start)) time_taken = time_taken[:min(6, len(time_taken))] return (result[0], result[1], time_taken)<|docstring|>Returns result[0]=True/False(Solved/Unsolved) Returns result[1]=solved board/{"error", "invalid", "unsolved"}<|endoftext|>
84f397c78e4444f458e0464323a4484430f53977e9973e2d725f08af8f5ef282
def model_proto_to_bytes_and_metadata(model_proto): 'Convert the model protobuf to bytes and metadata.\n\n Args:\n model_proto: Protobuf of the model\n\n Returns:\n bytes_dict: Dictionary of the bytes contained in the model protobuf\n metadata_dict: Dictionary of the meta data in the model protobuf\n ' bytes_dict = {} metadata_dict = {} round_number = None for tensor_proto in model_proto.tensors: bytes_dict[tensor_proto.name] = tensor_proto.data_bytes metadata_dict[tensor_proto.name] = [{'int_to_float': proto.int_to_float, 'int_list': proto.int_list, 'bool_list': proto.bool_list} for proto in tensor_proto.transformer_metadata] if (round_number is None): round_number = tensor_proto.round_number else: assert (round_number == tensor_proto.round_number), f'Round numbers in model are inconsistent: {round_number} and {tensor_proto.round_number}' return (bytes_dict, metadata_dict, round_number)
Convert the model protobuf to bytes and metadata. Args: model_proto: Protobuf of the model Returns: bytes_dict: Dictionary of the bytes contained in the model protobuf metadata_dict: Dictionary of the meta data in the model protobuf
openfl/protocols/utils.py
model_proto_to_bytes_and_metadata
psfoley/openfl
297
python
def model_proto_to_bytes_and_metadata(model_proto): 'Convert the model protobuf to bytes and metadata.\n\n Args:\n model_proto: Protobuf of the model\n\n Returns:\n bytes_dict: Dictionary of the bytes contained in the model protobuf\n metadata_dict: Dictionary of the meta data in the model protobuf\n ' bytes_dict = {} metadata_dict = {} round_number = None for tensor_proto in model_proto.tensors: bytes_dict[tensor_proto.name] = tensor_proto.data_bytes metadata_dict[tensor_proto.name] = [{'int_to_float': proto.int_to_float, 'int_list': proto.int_list, 'bool_list': proto.bool_list} for proto in tensor_proto.transformer_metadata] if (round_number is None): round_number = tensor_proto.round_number else: assert (round_number == tensor_proto.round_number), f'Round numbers in model are inconsistent: {round_number} and {tensor_proto.round_number}' return (bytes_dict, metadata_dict, round_number)
def model_proto_to_bytes_and_metadata(model_proto): 'Convert the model protobuf to bytes and metadata.\n\n Args:\n model_proto: Protobuf of the model\n\n Returns:\n bytes_dict: Dictionary of the bytes contained in the model protobuf\n metadata_dict: Dictionary of the meta data in the model protobuf\n ' bytes_dict = {} metadata_dict = {} round_number = None for tensor_proto in model_proto.tensors: bytes_dict[tensor_proto.name] = tensor_proto.data_bytes metadata_dict[tensor_proto.name] = [{'int_to_float': proto.int_to_float, 'int_list': proto.int_list, 'bool_list': proto.bool_list} for proto in tensor_proto.transformer_metadata] if (round_number is None): round_number = tensor_proto.round_number else: assert (round_number == tensor_proto.round_number), f'Round numbers in model are inconsistent: {round_number} and {tensor_proto.round_number}' return (bytes_dict, metadata_dict, round_number)<|docstring|>Convert the model protobuf to bytes and metadata. Args: model_proto: Protobuf of the model Returns: bytes_dict: Dictionary of the bytes contained in the model protobuf metadata_dict: Dictionary of the meta data in the model protobuf<|endoftext|>
a43c36648434ec029c7bf552540259dd96f7a74d7da2ff5d78364586aef00cca
def bytes_and_metadata_to_model_proto(bytes_dict, model_id, model_version, is_delta, metadata_dict): 'Convert bytes and metadata to model protobuf.' model_header = ModelHeader(id=model_id, version=model_version, is_delta=is_delta) tensor_protos = [] for (key, data_bytes) in bytes_dict.items(): transformer_metadata = metadata_dict[key] metadata_protos = [] for metadata in transformer_metadata: if (metadata.get('int_to_float') is not None): int_to_float = metadata.get('int_to_float') else: int_to_float = {} if (metadata.get('int_list') is not None): int_list = metadata.get('int_list') else: int_list = [] if (metadata.get('bool_list') is not None): bool_list = metadata.get('bool_list') else: bool_list = [] metadata_protos.append(MetadataProto(int_to_float=int_to_float, int_list=int_list, bool_list=bool_list)) tensor_protos.append(TensorProto(name=key, data_bytes=data_bytes, transformer_metadata=metadata_protos)) return ModelProto(header=model_header, tensors=tensor_protos)
Convert bytes and metadata to model protobuf.
openfl/protocols/utils.py
bytes_and_metadata_to_model_proto
psfoley/openfl
297
python
def bytes_and_metadata_to_model_proto(bytes_dict, model_id, model_version, is_delta, metadata_dict): model_header = ModelHeader(id=model_id, version=model_version, is_delta=is_delta) tensor_protos = [] for (key, data_bytes) in bytes_dict.items(): transformer_metadata = metadata_dict[key] metadata_protos = [] for metadata in transformer_metadata: if (metadata.get('int_to_float') is not None): int_to_float = metadata.get('int_to_float') else: int_to_float = {} if (metadata.get('int_list') is not None): int_list = metadata.get('int_list') else: int_list = [] if (metadata.get('bool_list') is not None): bool_list = metadata.get('bool_list') else: bool_list = [] metadata_protos.append(MetadataProto(int_to_float=int_to_float, int_list=int_list, bool_list=bool_list)) tensor_protos.append(TensorProto(name=key, data_bytes=data_bytes, transformer_metadata=metadata_protos)) return ModelProto(header=model_header, tensors=tensor_protos)
def bytes_and_metadata_to_model_proto(bytes_dict, model_id, model_version, is_delta, metadata_dict): model_header = ModelHeader(id=model_id, version=model_version, is_delta=is_delta) tensor_protos = [] for (key, data_bytes) in bytes_dict.items(): transformer_metadata = metadata_dict[key] metadata_protos = [] for metadata in transformer_metadata: if (metadata.get('int_to_float') is not None): int_to_float = metadata.get('int_to_float') else: int_to_float = {} if (metadata.get('int_list') is not None): int_list = metadata.get('int_list') else: int_list = [] if (metadata.get('bool_list') is not None): bool_list = metadata.get('bool_list') else: bool_list = [] metadata_protos.append(MetadataProto(int_to_float=int_to_float, int_list=int_list, bool_list=bool_list)) tensor_protos.append(TensorProto(name=key, data_bytes=data_bytes, transformer_metadata=metadata_protos)) return ModelProto(header=model_header, tensors=tensor_protos)<|docstring|>Convert bytes and metadata to model protobuf.<|endoftext|>
ef30306781d5f7291c9641db0758e1013bea901df087e404b0a9b483171c11cd
def construct_named_tensor(tensor_key, nparray, transformer_metadata, lossless): 'Construct named tensor.' metadata_protos = [] for metadata in transformer_metadata: if (metadata.get('int_to_float') is not None): int_to_float = metadata.get('int_to_float') else: int_to_float = {} if (metadata.get('int_list') is not None): int_list = metadata.get('int_list') else: int_list = [] if (metadata.get('bool_list') is not None): bool_list = metadata.get('bool_list') else: bool_list = [] metadata_protos.append(MetadataProto(int_to_float=int_to_float, int_list=int_list, bool_list=bool_list)) (tensor_name, origin, round_number, report, tags) = tensor_key return NamedTensor(name=tensor_name, round_number=round_number, lossless=lossless, report=report, tags=tags, transformer_metadata=metadata_protos, data_bytes=nparray)
Construct named tensor.
openfl/protocols/utils.py
construct_named_tensor
psfoley/openfl
297
python
def construct_named_tensor(tensor_key, nparray, transformer_metadata, lossless): metadata_protos = [] for metadata in transformer_metadata: if (metadata.get('int_to_float') is not None): int_to_float = metadata.get('int_to_float') else: int_to_float = {} if (metadata.get('int_list') is not None): int_list = metadata.get('int_list') else: int_list = [] if (metadata.get('bool_list') is not None): bool_list = metadata.get('bool_list') else: bool_list = [] metadata_protos.append(MetadataProto(int_to_float=int_to_float, int_list=int_list, bool_list=bool_list)) (tensor_name, origin, round_number, report, tags) = tensor_key return NamedTensor(name=tensor_name, round_number=round_number, lossless=lossless, report=report, tags=tags, transformer_metadata=metadata_protos, data_bytes=nparray)
def construct_named_tensor(tensor_key, nparray, transformer_metadata, lossless): metadata_protos = [] for metadata in transformer_metadata: if (metadata.get('int_to_float') is not None): int_to_float = metadata.get('int_to_float') else: int_to_float = {} if (metadata.get('int_list') is not None): int_list = metadata.get('int_list') else: int_list = [] if (metadata.get('bool_list') is not None): bool_list = metadata.get('bool_list') else: bool_list = [] metadata_protos.append(MetadataProto(int_to_float=int_to_float, int_list=int_list, bool_list=bool_list)) (tensor_name, origin, round_number, report, tags) = tensor_key return NamedTensor(name=tensor_name, round_number=round_number, lossless=lossless, report=report, tags=tags, transformer_metadata=metadata_protos, data_bytes=nparray)<|docstring|>Construct named tensor.<|endoftext|>
85228e1575061c1f89de5f25d34aae76ace2a025f51e631f76359dcc8f787af8
def construct_proto(tensor_dict, model_id, model_version, is_delta, compression_pipeline): 'Construct proto.' bytes_dict = {} metadata_dict = {} for (key, array) in tensor_dict.items(): (bytes_dict[key], metadata_dict[key]) = compression_pipeline.forward(data=array) model_proto = bytes_and_metadata_to_model_proto(bytes_dict=bytes_dict, model_id=model_id, model_version=model_version, is_delta=is_delta, metadata_dict=metadata_dict) return model_proto
Construct proto.
openfl/protocols/utils.py
construct_proto
psfoley/openfl
297
python
def construct_proto(tensor_dict, model_id, model_version, is_delta, compression_pipeline): bytes_dict = {} metadata_dict = {} for (key, array) in tensor_dict.items(): (bytes_dict[key], metadata_dict[key]) = compression_pipeline.forward(data=array) model_proto = bytes_and_metadata_to_model_proto(bytes_dict=bytes_dict, model_id=model_id, model_version=model_version, is_delta=is_delta, metadata_dict=metadata_dict) return model_proto
def construct_proto(tensor_dict, model_id, model_version, is_delta, compression_pipeline): bytes_dict = {} metadata_dict = {} for (key, array) in tensor_dict.items(): (bytes_dict[key], metadata_dict[key]) = compression_pipeline.forward(data=array) model_proto = bytes_and_metadata_to_model_proto(bytes_dict=bytes_dict, model_id=model_id, model_version=model_version, is_delta=is_delta, metadata_dict=metadata_dict) return model_proto<|docstring|>Construct proto.<|endoftext|>
0b4477f9d73bf9fc2148ae5fda7bd0607a31129c29ba24e7224823ca2fd24391
def construct_model_proto(tensor_dict, round_number, tensor_pipe): 'Construct model proto from tensor dict.' named_tensors = [] for (key, nparray) in tensor_dict.items(): (bytes_data, transformer_metadata) = tensor_pipe.forward(data=nparray) tensor_key = TensorKey(key, 'agg', round_number, False, ('model',)) named_tensors.append(construct_named_tensor(tensor_key, bytes_data, transformer_metadata, lossless=True)) return ModelProto(tensors=named_tensors)
Construct model proto from tensor dict.
openfl/protocols/utils.py
construct_model_proto
psfoley/openfl
297
python
def construct_model_proto(tensor_dict, round_number, tensor_pipe): named_tensors = [] for (key, nparray) in tensor_dict.items(): (bytes_data, transformer_metadata) = tensor_pipe.forward(data=nparray) tensor_key = TensorKey(key, 'agg', round_number, False, ('model',)) named_tensors.append(construct_named_tensor(tensor_key, bytes_data, transformer_metadata, lossless=True)) return ModelProto(tensors=named_tensors)
def construct_model_proto(tensor_dict, round_number, tensor_pipe): named_tensors = [] for (key, nparray) in tensor_dict.items(): (bytes_data, transformer_metadata) = tensor_pipe.forward(data=nparray) tensor_key = TensorKey(key, 'agg', round_number, False, ('model',)) named_tensors.append(construct_named_tensor(tensor_key, bytes_data, transformer_metadata, lossless=True)) return ModelProto(tensors=named_tensors)<|docstring|>Construct model proto from tensor dict.<|endoftext|>
8323f1bbdc28649a61e1bdf49e437b5af47821f5db1e3f0584780ec81a2f7f2c
def deconstruct_model_proto(model_proto, compression_pipeline): 'Deconstruct model proto.' (bytes_dict, metadata_dict, round_number) = model_proto_to_bytes_and_metadata(model_proto) tensor_dict = {} for key in bytes_dict: tensor_dict[key] = compression_pipeline.backward(data=bytes_dict[key], transformer_metadata=metadata_dict[key]) return (tensor_dict, round_number)
Deconstruct model proto.
openfl/protocols/utils.py
deconstruct_model_proto
psfoley/openfl
297
python
def deconstruct_model_proto(model_proto, compression_pipeline): (bytes_dict, metadata_dict, round_number) = model_proto_to_bytes_and_metadata(model_proto) tensor_dict = {} for key in bytes_dict: tensor_dict[key] = compression_pipeline.backward(data=bytes_dict[key], transformer_metadata=metadata_dict[key]) return (tensor_dict, round_number)
def deconstruct_model_proto(model_proto, compression_pipeline): (bytes_dict, metadata_dict, round_number) = model_proto_to_bytes_and_metadata(model_proto) tensor_dict = {} for key in bytes_dict: tensor_dict[key] = compression_pipeline.backward(data=bytes_dict[key], transformer_metadata=metadata_dict[key]) return (tensor_dict, round_number)<|docstring|>Deconstruct model proto.<|endoftext|>
89e1e41addf46d16f5722706f113c9a1dacd42180b7832e01a73adba39913bea
def deconstruct_proto(model_proto, compression_pipeline): 'Deconstruct the protobuf.\n\n Args:\n model_proto: The protobuf of the model\n compression_pipeline: The compression pipeline object\n\n Returns:\n protobuf: A protobuf of the model\n ' (bytes_dict, metadata_dict) = model_proto_to_bytes_and_metadata(model_proto) tensor_dict = {} for key in bytes_dict: tensor_dict[key] = compression_pipeline.backward(data=bytes_dict[key], transformer_metadata=metadata_dict[key]) return tensor_dict
Deconstruct the protobuf. Args: model_proto: The protobuf of the model compression_pipeline: The compression pipeline object Returns: protobuf: A protobuf of the model
openfl/protocols/utils.py
deconstruct_proto
psfoley/openfl
297
python
def deconstruct_proto(model_proto, compression_pipeline): 'Deconstruct the protobuf.\n\n Args:\n model_proto: The protobuf of the model\n compression_pipeline: The compression pipeline object\n\n Returns:\n protobuf: A protobuf of the model\n ' (bytes_dict, metadata_dict) = model_proto_to_bytes_and_metadata(model_proto) tensor_dict = {} for key in bytes_dict: tensor_dict[key] = compression_pipeline.backward(data=bytes_dict[key], transformer_metadata=metadata_dict[key]) return tensor_dict
def deconstruct_proto(model_proto, compression_pipeline): 'Deconstruct the protobuf.\n\n Args:\n model_proto: The protobuf of the model\n compression_pipeline: The compression pipeline object\n\n Returns:\n protobuf: A protobuf of the model\n ' (bytes_dict, metadata_dict) = model_proto_to_bytes_and_metadata(model_proto) tensor_dict = {} for key in bytes_dict: tensor_dict[key] = compression_pipeline.backward(data=bytes_dict[key], transformer_metadata=metadata_dict[key]) return tensor_dict<|docstring|>Deconstruct the protobuf. Args: model_proto: The protobuf of the model compression_pipeline: The compression pipeline object Returns: protobuf: A protobuf of the model<|endoftext|>
ea782010d2da7acf04d06cabb0687f00a8d2e3717f0329d79f4f2ee92615fbe9
def load_proto(fpath): 'Load the protobuf.\n\n Args:\n fpath: The filepath for the protobuf\n\n Returns:\n protobuf: A protobuf of the model\n ' with open(fpath, 'rb') as f: loaded = f.read() model = ModelProto().FromString(loaded) return model
Load the protobuf. Args: fpath: The filepath for the protobuf Returns: protobuf: A protobuf of the model
openfl/protocols/utils.py
load_proto
psfoley/openfl
297
python
def load_proto(fpath): 'Load the protobuf.\n\n Args:\n fpath: The filepath for the protobuf\n\n Returns:\n protobuf: A protobuf of the model\n ' with open(fpath, 'rb') as f: loaded = f.read() model = ModelProto().FromString(loaded) return model
def load_proto(fpath): 'Load the protobuf.\n\n Args:\n fpath: The filepath for the protobuf\n\n Returns:\n protobuf: A protobuf of the model\n ' with open(fpath, 'rb') as f: loaded = f.read() model = ModelProto().FromString(loaded) return model<|docstring|>Load the protobuf. Args: fpath: The filepath for the protobuf Returns: protobuf: A protobuf of the model<|endoftext|>
53a418df8cfa50e29fe4d065bed40a7c77ff0670fad699212c103463daa64dd9
def dump_proto(model_proto, fpath): 'Dump the protobuf to a file.\n\n Args:\n model_proto: The protobuf of the model\n fpath: The filename to save the model protobuf\n\n ' s = model_proto.SerializeToString() with open(fpath, 'wb') as f: f.write(s)
Dump the protobuf to a file. Args: model_proto: The protobuf of the model fpath: The filename to save the model protobuf
openfl/protocols/utils.py
dump_proto
psfoley/openfl
297
python
def dump_proto(model_proto, fpath): 'Dump the protobuf to a file.\n\n Args:\n model_proto: The protobuf of the model\n fpath: The filename to save the model protobuf\n\n ' s = model_proto.SerializeToString() with open(fpath, 'wb') as f: f.write(s)
def dump_proto(model_proto, fpath): 'Dump the protobuf to a file.\n\n Args:\n model_proto: The protobuf of the model\n fpath: The filename to save the model protobuf\n\n ' s = model_proto.SerializeToString() with open(fpath, 'wb') as f: f.write(s)<|docstring|>Dump the protobuf to a file. Args: model_proto: The protobuf of the model fpath: The filename to save the model protobuf<|endoftext|>
e676dc30eada408139ab34756fce692fe2045cb8f2ffad3a3b57d472d351e5ea
def datastream_to_proto(proto, stream, logger=None): 'Convert the datastream to the protobuf.\n\n Args:\n model_proto: The protobuf of the model\n stream: The data stream from the remote connection\n logger: (Optional) The log object\n\n Returns:\n protobuf: A protobuf of the model\n ' npbytes = b'' for chunk in stream: npbytes += chunk.npbytes if (len(npbytes) > 0): proto.ParseFromString(npbytes) if (logger is not None): logger.debug(f'datastream_to_proto parsed a {type(proto)}.') return proto else: raise RuntimeError(f'Received empty stream message of type {type(proto)}')
Convert the datastream to the protobuf. Args: model_proto: The protobuf of the model stream: The data stream from the remote connection logger: (Optional) The log object Returns: protobuf: A protobuf of the model
openfl/protocols/utils.py
datastream_to_proto
psfoley/openfl
297
python
def datastream_to_proto(proto, stream, logger=None): 'Convert the datastream to the protobuf.\n\n Args:\n model_proto: The protobuf of the model\n stream: The data stream from the remote connection\n logger: (Optional) The log object\n\n Returns:\n protobuf: A protobuf of the model\n ' npbytes = b for chunk in stream: npbytes += chunk.npbytes if (len(npbytes) > 0): proto.ParseFromString(npbytes) if (logger is not None): logger.debug(f'datastream_to_proto parsed a {type(proto)}.') return proto else: raise RuntimeError(f'Received empty stream message of type {type(proto)}')
def datastream_to_proto(proto, stream, logger=None): 'Convert the datastream to the protobuf.\n\n Args:\n model_proto: The protobuf of the model\n stream: The data stream from the remote connection\n logger: (Optional) The log object\n\n Returns:\n protobuf: A protobuf of the model\n ' npbytes = b for chunk in stream: npbytes += chunk.npbytes if (len(npbytes) > 0): proto.ParseFromString(npbytes) if (logger is not None): logger.debug(f'datastream_to_proto parsed a {type(proto)}.') return proto else: raise RuntimeError(f'Received empty stream message of type {type(proto)}')<|docstring|>Convert the datastream to the protobuf. Args: model_proto: The protobuf of the model stream: The data stream from the remote connection logger: (Optional) The log object Returns: protobuf: A protobuf of the model<|endoftext|>
c9fc645a4fd77d546ab7351e7c205ba361951e7d0305241fe9f78ace48b131ed
def proto_to_datastream(proto, logger, max_buffer_size=((2 * 1024) * 1024)): 'Convert the protobuf to the datastream for the remote connection.\n\n Args:\n model_proto: The protobuf of the model\n logger: The log object\n max_buffer_size: The buffer size (Default= 2*1024*1024)\n Returns:\n reply: The message for the remote connection.\n ' npbytes = proto.SerializeToString() data_size = len(npbytes) buffer_size = (data_size if (max_buffer_size > data_size) else max_buffer_size) logger.debug(f'Setting stream chunks with size {buffer_size} for proto of type {type(proto)}') for i in range(0, data_size, buffer_size): chunk = npbytes[i:(i + buffer_size)] reply = DataStream(npbytes=chunk, size=len(chunk)) (yield reply)
Convert the protobuf to the datastream for the remote connection. Args: model_proto: The protobuf of the model logger: The log object max_buffer_size: The buffer size (Default= 2*1024*1024) Returns: reply: The message for the remote connection.
openfl/protocols/utils.py
proto_to_datastream
psfoley/openfl
297
python
def proto_to_datastream(proto, logger, max_buffer_size=((2 * 1024) * 1024)): 'Convert the protobuf to the datastream for the remote connection.\n\n Args:\n model_proto: The protobuf of the model\n logger: The log object\n max_buffer_size: The buffer size (Default= 2*1024*1024)\n Returns:\n reply: The message for the remote connection.\n ' npbytes = proto.SerializeToString() data_size = len(npbytes) buffer_size = (data_size if (max_buffer_size > data_size) else max_buffer_size) logger.debug(f'Setting stream chunks with size {buffer_size} for proto of type {type(proto)}') for i in range(0, data_size, buffer_size): chunk = npbytes[i:(i + buffer_size)] reply = DataStream(npbytes=chunk, size=len(chunk)) (yield reply)
def proto_to_datastream(proto, logger, max_buffer_size=((2 * 1024) * 1024)): 'Convert the protobuf to the datastream for the remote connection.\n\n Args:\n model_proto: The protobuf of the model\n logger: The log object\n max_buffer_size: The buffer size (Default= 2*1024*1024)\n Returns:\n reply: The message for the remote connection.\n ' npbytes = proto.SerializeToString() data_size = len(npbytes) buffer_size = (data_size if (max_buffer_size > data_size) else max_buffer_size) logger.debug(f'Setting stream chunks with size {buffer_size} for proto of type {type(proto)}') for i in range(0, data_size, buffer_size): chunk = npbytes[i:(i + buffer_size)] reply = DataStream(npbytes=chunk, size=len(chunk)) (yield reply)<|docstring|>Convert the protobuf to the datastream for the remote connection. Args: model_proto: The protobuf of the model logger: The log object max_buffer_size: The buffer size (Default= 2*1024*1024) Returns: reply: The message for the remote connection.<|endoftext|>
636b484bbb36cd2f514bce0d0b1c7b7e568321448347cfd9710bf96027ed63b9
def get_headers(context) -> dict: 'Get headers from context.' return {header[0]: header[1] for header in context.invocation_metadata()}
Get headers from context.
openfl/protocols/utils.py
get_headers
psfoley/openfl
297
python
def get_headers(context) -> dict: return {header[0]: header[1] for header in context.invocation_metadata()}
def get_headers(context) -> dict: return {header[0]: header[1] for header in context.invocation_metadata()}<|docstring|>Get headers from context.<|endoftext|>
ffaee16312bf89d6e1b908678a638f451cb8ac9bac27d107527dd278b158b59f
def _check_layout_validity(self): '\n Check the current layout is a valid one.\n ' self._visible_areas = [] if (self.ID is None): raise SpyderAPIError('A Layout must define an `ID` class attribute!') self.get_name() if (not self._areas): raise SpyderAPIError('A Layout must define add least one area!') default_areas = [] area_zero_zero = False for area in self._areas: default_areas.append(area['default']) if area['default']: self._default_area = area self._visible_areas.append(area['visible']) if (area_zero_zero and (area['row'] == 0) and (area['column'] == 0)): raise SpyderAPIError('Multiple areas defined their row and column as 0!') if ((area['row'] == 0) and (area['column'] == 0)): area_zero_zero = True if (not (set(area['hidden_plugin_ids']) <= set(area['plugin_ids']))): raise SpyderAPIError('At least 1 hidden plugin id is not being specified in the area plugin ids list!\n SpyderLayout: {}\n hidden_plugin_ids: {}\nplugin_ids: {}'.format(self.get_name(), area['hidden_plugin_ids'], area['plugin_ids'])) if (not any(self._visible_areas)): raise SpyderAPIError('At least 1 area must be `visible`') if (not any(default_areas)): raise SpyderAPIError('No area is the `default`!') if (default_areas.count(True) != 1): raise SpyderAPIError('Only 1 area can be the `default`!') if (not area_zero_zero): raise SpyderAPIError('1 area needs to be specified with row 0 and column 0!') self._check_area()
Check the current layout is a valid one.
spyder/plugins/layout/api.py
_check_layout_validity
mrclary/spyder
7,956
python
def _check_layout_validity(self): '\n \n ' self._visible_areas = [] if (self.ID is None): raise SpyderAPIError('A Layout must define an `ID` class attribute!') self.get_name() if (not self._areas): raise SpyderAPIError('A Layout must define add least one area!') default_areas = [] area_zero_zero = False for area in self._areas: default_areas.append(area['default']) if area['default']: self._default_area = area self._visible_areas.append(area['visible']) if (area_zero_zero and (area['row'] == 0) and (area['column'] == 0)): raise SpyderAPIError('Multiple areas defined their row and column as 0!') if ((area['row'] == 0) and (area['column'] == 0)): area_zero_zero = True if (not (set(area['hidden_plugin_ids']) <= set(area['plugin_ids']))): raise SpyderAPIError('At least 1 hidden plugin id is not being specified in the area plugin ids list!\n SpyderLayout: {}\n hidden_plugin_ids: {}\nplugin_ids: {}'.format(self.get_name(), area['hidden_plugin_ids'], area['plugin_ids'])) if (not any(self._visible_areas)): raise SpyderAPIError('At least 1 area must be `visible`') if (not any(default_areas)): raise SpyderAPIError('No area is the `default`!') if (default_areas.count(True) != 1): raise SpyderAPIError('Only 1 area can be the `default`!') if (not area_zero_zero): raise SpyderAPIError('1 area needs to be specified with row 0 and column 0!') self._check_area()
def _check_layout_validity(self): '\n \n ' self._visible_areas = [] if (self.ID is None): raise SpyderAPIError('A Layout must define an `ID` class attribute!') self.get_name() if (not self._areas): raise SpyderAPIError('A Layout must define add least one area!') default_areas = [] area_zero_zero = False for area in self._areas: default_areas.append(area['default']) if area['default']: self._default_area = area self._visible_areas.append(area['visible']) if (area_zero_zero and (area['row'] == 0) and (area['column'] == 0)): raise SpyderAPIError('Multiple areas defined their row and column as 0!') if ((area['row'] == 0) and (area['column'] == 0)): area_zero_zero = True if (not (set(area['hidden_plugin_ids']) <= set(area['plugin_ids']))): raise SpyderAPIError('At least 1 hidden plugin id is not being specified in the area plugin ids list!\n SpyderLayout: {}\n hidden_plugin_ids: {}\nplugin_ids: {}'.format(self.get_name(), area['hidden_plugin_ids'], area['plugin_ids'])) if (not any(self._visible_areas)): raise SpyderAPIError('At least 1 area must be `visible`') if (not any(default_areas)): raise SpyderAPIError('No area is the `default`!') if (default_areas.count(True) != 1): raise SpyderAPIError('Only 1 area can be the `default`!') if (not area_zero_zero): raise SpyderAPIError('1 area needs to be specified with row 0 and column 0!') self._check_area()<|docstring|>Check the current layout is a valid one.<|endoftext|>
615338e2fbc162e31925e7630f4f07ef09db269439524c30c6648bc3f578444b
def _check_area(self): '\n Check if the current layout added areas cover the entire rectangle.\n\n Rectangle given by the extreme points for the added areas.\n ' self._area_rects = [] height = (self._rows + 1) area_float_rects = [] delta = 0.0001 for (index, area) in enumerate(self._areas): rectf = QRectF() rectf.setLeft((area['column'] + delta)) rectf.setRight(((area['column'] + area['col_span']) - delta)) rectf.setTop(((height - area['row']) - delta)) rectf.setBottom((((height - area['row']) - area['row_span']) + delta)) rectf.index = index rectf.plugin_ids = area['plugin_ids'] area_float_rects.append(rectf) rect = QRectF() rect.setLeft(area['column']) rect.setRight((area['column'] + area['col_span'])) rect.setTop((height - area['row'])) rect.setBottom(((height - area['row']) - area['row_span'])) rect.index = index rect.plugin_ids = area['plugin_ids'] self._area_rects.append(rect) for rect_1 in area_float_rects: for rect_2 in area_float_rects: if (rect_1.index != rect_2.index): if rect_1.intersects(rect_2): raise SpyderAPIError('Area with plugins {0} is overlapping area with plugins {1}'.format(rect_1.plugin_ids, rect_2.plugin_ids)) total_area = 0 tops = [] rights = [] for (index, rect) in enumerate(self._area_rects): tops.append(rect.top()) rights.append(rect.right()) area = abs((rect.width() * rect.height())) total_area += area self._areas[index]['area'] = area if (total_area != (max(rights) * max(tops))): raise SpyderAPIError('Areas are not covering the entire section!\nEither an area is missing or col_span/row_span are not correctly set!')
Check if the current layout added areas cover the entire rectangle. Rectangle given by the extreme points for the added areas.
spyder/plugins/layout/api.py
_check_area
mrclary/spyder
7,956
python
def _check_area(self): '\n Check if the current layout added areas cover the entire rectangle.\n\n Rectangle given by the extreme points for the added areas.\n ' self._area_rects = [] height = (self._rows + 1) area_float_rects = [] delta = 0.0001 for (index, area) in enumerate(self._areas): rectf = QRectF() rectf.setLeft((area['column'] + delta)) rectf.setRight(((area['column'] + area['col_span']) - delta)) rectf.setTop(((height - area['row']) - delta)) rectf.setBottom((((height - area['row']) - area['row_span']) + delta)) rectf.index = index rectf.plugin_ids = area['plugin_ids'] area_float_rects.append(rectf) rect = QRectF() rect.setLeft(area['column']) rect.setRight((area['column'] + area['col_span'])) rect.setTop((height - area['row'])) rect.setBottom(((height - area['row']) - area['row_span'])) rect.index = index rect.plugin_ids = area['plugin_ids'] self._area_rects.append(rect) for rect_1 in area_float_rects: for rect_2 in area_float_rects: if (rect_1.index != rect_2.index): if rect_1.intersects(rect_2): raise SpyderAPIError('Area with plugins {0} is overlapping area with plugins {1}'.format(rect_1.plugin_ids, rect_2.plugin_ids)) total_area = 0 tops = [] rights = [] for (index, rect) in enumerate(self._area_rects): tops.append(rect.top()) rights.append(rect.right()) area = abs((rect.width() * rect.height())) total_area += area self._areas[index]['area'] = area if (total_area != (max(rights) * max(tops))): raise SpyderAPIError('Areas are not covering the entire section!\nEither an area is missing or col_span/row_span are not correctly set!')
def _check_area(self): '\n Check if the current layout added areas cover the entire rectangle.\n\n Rectangle given by the extreme points for the added areas.\n ' self._area_rects = [] height = (self._rows + 1) area_float_rects = [] delta = 0.0001 for (index, area) in enumerate(self._areas): rectf = QRectF() rectf.setLeft((area['column'] + delta)) rectf.setRight(((area['column'] + area['col_span']) - delta)) rectf.setTop(((height - area['row']) - delta)) rectf.setBottom((((height - area['row']) - area['row_span']) + delta)) rectf.index = index rectf.plugin_ids = area['plugin_ids'] area_float_rects.append(rectf) rect = QRectF() rect.setLeft(area['column']) rect.setRight((area['column'] + area['col_span'])) rect.setTop((height - area['row'])) rect.setBottom(((height - area['row']) - area['row_span'])) rect.index = index rect.plugin_ids = area['plugin_ids'] self._area_rects.append(rect) for rect_1 in area_float_rects: for rect_2 in area_float_rects: if (rect_1.index != rect_2.index): if rect_1.intersects(rect_2): raise SpyderAPIError('Area with plugins {0} is overlapping area with plugins {1}'.format(rect_1.plugin_ids, rect_2.plugin_ids)) total_area = 0 tops = [] rights = [] for (index, rect) in enumerate(self._area_rects): tops.append(rect.top()) rights.append(rect.right()) area = abs((rect.width() * rect.height())) total_area += area self._areas[index]['area'] = area if (total_area != (max(rights) * max(tops))): raise SpyderAPIError('Areas are not covering the entire section!\nEither an area is missing or col_span/row_span are not correctly set!')<|docstring|>Check if the current layout added areas cover the entire rectangle. Rectangle given by the extreme points for the added areas.<|endoftext|>
8fa71deb194f4ac338a2f97b9cd5f9bde7ae2ea0903b488c49d65b5f818be7a1
def get_name(self): '\n Return the layout localized name.\n\n Returns\n -------\n str\n Localized name of the layout.\n\n Notes\n -----\n This is a method to be able to update localization without a restart.\n ' raise NotImplementedError('A layout must define a `get_name` method!')
Return the layout localized name. Returns ------- str Localized name of the layout. Notes ----- This is a method to be able to update localization without a restart.
spyder/plugins/layout/api.py
get_name
mrclary/spyder
7,956
python
def get_name(self): '\n Return the layout localized name.\n\n Returns\n -------\n str\n Localized name of the layout.\n\n Notes\n -----\n This is a method to be able to update localization without a restart.\n ' raise NotImplementedError('A layout must define a `get_name` method!')
def get_name(self): '\n Return the layout localized name.\n\n Returns\n -------\n str\n Localized name of the layout.\n\n Notes\n -----\n This is a method to be able to update localization without a restart.\n ' raise NotImplementedError('A layout must define a `get_name` method!')<|docstring|>Return the layout localized name. Returns ------- str Localized name of the layout. Notes ----- This is a method to be able to update localization without a restart.<|endoftext|>
03d656d6aac34e82ec5ddb38110a577cdab77ff5fe1718283a82ea1bc0339c2a
def add_area(self, plugin_ids, row, column, row_span=1, col_span=1, default=False, visible=True, hidden_plugin_ids=[]): '\n Add a new area and `plugin_ids` that will populate it to the layout.\n\n The area will start at row, column spanning row_pan rows and\n column_span columns.\n\n Parameters\n ----------\n plugin_ids: list\n List of plugin ids that will be in the area\n row: int\n Initial row where the area starts\n column: int\n Initial column where the area starts\n row_span: int, optional\n Number of rows that the area covers\n col_span: int, optional\n Number of columns the area covers\n default: bool, optiona\n Defines an area as the default one, i.e all other plugins that where\n not passed in the `plugins_ids` will be added to the default area.\n By default is False.\n visible: bool, optional\n Defines if the area is visible when setting up the layout.\n Default is True.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' if (self._default_added and default): raise SpyderAPIError('A default location has already been defined!') self._plugin_ids += plugin_ids self._rows = max(row, self._rows) self._cols = max(column, self._cols) self._default_added = default self._column_stretchs[column] = 1 self._row_stretchs[row] = 1 self._areas.append(dict(plugin_ids=plugin_ids, row=row, column=column, row_span=row_span, col_span=col_span, default=default, visible=visible, hidden_plugin_ids=hidden_plugin_ids))
Add a new area and `plugin_ids` that will populate it to the layout. The area will start at row, column spanning row_pan rows and column_span columns. Parameters ---------- plugin_ids: list List of plugin ids that will be in the area row: int Initial row where the area starts column: int Initial column where the area starts row_span: int, optional Number of rows that the area covers col_span: int, optional Number of columns the area covers default: bool, optiona Defines an area as the default one, i.e all other plugins that where not passed in the `plugins_ids` will be added to the default area. By default is False. visible: bool, optional Defines if the area is visible when setting up the layout. Default is True. Notes ----- See: https://doc.qt.io/qt-5/qgridlayout.html
spyder/plugins/layout/api.py
add_area
mrclary/spyder
7,956
python
def add_area(self, plugin_ids, row, column, row_span=1, col_span=1, default=False, visible=True, hidden_plugin_ids=[]): '\n Add a new area and `plugin_ids` that will populate it to the layout.\n\n The area will start at row, column spanning row_pan rows and\n column_span columns.\n\n Parameters\n ----------\n plugin_ids: list\n List of plugin ids that will be in the area\n row: int\n Initial row where the area starts\n column: int\n Initial column where the area starts\n row_span: int, optional\n Number of rows that the area covers\n col_span: int, optional\n Number of columns the area covers\n default: bool, optiona\n Defines an area as the default one, i.e all other plugins that where\n not passed in the `plugins_ids` will be added to the default area.\n By default is False.\n visible: bool, optional\n Defines if the area is visible when setting up the layout.\n Default is True.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' if (self._default_added and default): raise SpyderAPIError('A default location has already been defined!') self._plugin_ids += plugin_ids self._rows = max(row, self._rows) self._cols = max(column, self._cols) self._default_added = default self._column_stretchs[column] = 1 self._row_stretchs[row] = 1 self._areas.append(dict(plugin_ids=plugin_ids, row=row, column=column, row_span=row_span, col_span=col_span, default=default, visible=visible, hidden_plugin_ids=hidden_plugin_ids))
def add_area(self, plugin_ids, row, column, row_span=1, col_span=1, default=False, visible=True, hidden_plugin_ids=[]): '\n Add a new area and `plugin_ids` that will populate it to the layout.\n\n The area will start at row, column spanning row_pan rows and\n column_span columns.\n\n Parameters\n ----------\n plugin_ids: list\n List of plugin ids that will be in the area\n row: int\n Initial row where the area starts\n column: int\n Initial column where the area starts\n row_span: int, optional\n Number of rows that the area covers\n col_span: int, optional\n Number of columns the area covers\n default: bool, optiona\n Defines an area as the default one, i.e all other plugins that where\n not passed in the `plugins_ids` will be added to the default area.\n By default is False.\n visible: bool, optional\n Defines if the area is visible when setting up the layout.\n Default is True.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' if (self._default_added and default): raise SpyderAPIError('A default location has already been defined!') self._plugin_ids += plugin_ids self._rows = max(row, self._rows) self._cols = max(column, self._cols) self._default_added = default self._column_stretchs[column] = 1 self._row_stretchs[row] = 1 self._areas.append(dict(plugin_ids=plugin_ids, row=row, column=column, row_span=row_span, col_span=col_span, default=default, visible=visible, hidden_plugin_ids=hidden_plugin_ids))<|docstring|>Add a new area and `plugin_ids` that will populate it to the layout. The area will start at row, column spanning row_pan rows and column_span columns. Parameters ---------- plugin_ids: list List of plugin ids that will be in the area row: int Initial row where the area starts column: int Initial column where the area starts row_span: int, optional Number of rows that the area covers col_span: int, optional Number of columns the area covers default: bool, optiona Defines an area as the default one, i.e all other plugins that where not passed in the `plugins_ids` will be added to the default area. By default is False. visible: bool, optional Defines if the area is visible when setting up the layout. Default is True. Notes ----- See: https://doc.qt.io/qt-5/qgridlayout.html<|endoftext|>
3fe18845f471aa9e94d776be69444d939e5ec7c49762dabcb647bbaac42e10a3
def set_column_stretch(self, column, stretch): '\n Set the factor of column to stretch.\n\n The stretch factor is relative to the other columns in this grid.\n Columns with a higher stretch factor take more of the available space.\n\n Parameters\n ----------\n column: int\n The column number. The first column is number 0.\n stretch: int\n Column stretch factor.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' self._column_stretchs[column] = stretch
Set the factor of column to stretch. The stretch factor is relative to the other columns in this grid. Columns with a higher stretch factor take more of the available space. Parameters ---------- column: int The column number. The first column is number 0. stretch: int Column stretch factor. Notes ----- See: https://doc.qt.io/qt-5/qgridlayout.html
spyder/plugins/layout/api.py
set_column_stretch
mrclary/spyder
7,956
python
def set_column_stretch(self, column, stretch): '\n Set the factor of column to stretch.\n\n The stretch factor is relative to the other columns in this grid.\n Columns with a higher stretch factor take more of the available space.\n\n Parameters\n ----------\n column: int\n The column number. The first column is number 0.\n stretch: int\n Column stretch factor.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' self._column_stretchs[column] = stretch
def set_column_stretch(self, column, stretch): '\n Set the factor of column to stretch.\n\n The stretch factor is relative to the other columns in this grid.\n Columns with a higher stretch factor take more of the available space.\n\n Parameters\n ----------\n column: int\n The column number. The first column is number 0.\n stretch: int\n Column stretch factor.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' self._column_stretchs[column] = stretch<|docstring|>Set the factor of column to stretch. The stretch factor is relative to the other columns in this grid. Columns with a higher stretch factor take more of the available space. Parameters ---------- column: int The column number. The first column is number 0. stretch: int Column stretch factor. Notes ----- See: https://doc.qt.io/qt-5/qgridlayout.html<|endoftext|>
8f3906457f1caa10f7699b6c7d27324a1c0508ca083ef7fdc77f37d40867bb29
def set_row_stretch(self, row, stretch): '\n Set the factor of row to stretch.\n\n The stretch factor is relative to the other rows in this grid.\n Rows with a higher stretch factor take more of the available space.\n\n Parameters\n ----------\n row: int\n The row number. The first row is number 0.\n stretch: int\n Row stretch factor.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' self._row_stretchs[row] = stretch
Set the factor of row to stretch. The stretch factor is relative to the other rows in this grid. Rows with a higher stretch factor take more of the available space. Parameters ---------- row: int The row number. The first row is number 0. stretch: int Row stretch factor. Notes ----- See: https://doc.qt.io/qt-5/qgridlayout.html
spyder/plugins/layout/api.py
set_row_stretch
mrclary/spyder
7,956
python
def set_row_stretch(self, row, stretch): '\n Set the factor of row to stretch.\n\n The stretch factor is relative to the other rows in this grid.\n Rows with a higher stretch factor take more of the available space.\n\n Parameters\n ----------\n row: int\n The row number. The first row is number 0.\n stretch: int\n Row stretch factor.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' self._row_stretchs[row] = stretch
def set_row_stretch(self, row, stretch): '\n Set the factor of row to stretch.\n\n The stretch factor is relative to the other rows in this grid.\n Rows with a higher stretch factor take more of the available space.\n\n Parameters\n ----------\n row: int\n The row number. The first row is number 0.\n stretch: int\n Row stretch factor.\n\n Notes\n -----\n See: https://doc.qt.io/qt-5/qgridlayout.html\n ' self._row_stretchs[row] = stretch<|docstring|>Set the factor of row to stretch. The stretch factor is relative to the other rows in this grid. Rows with a higher stretch factor take more of the available space. Parameters ---------- row: int The row number. The first row is number 0. stretch: int Row stretch factor. Notes ----- See: https://doc.qt.io/qt-5/qgridlayout.html<|endoftext|>
d2ebb9a0e5f41a0b574a74f824a7a536be56a3850cbb696708e32c74d434e06f
def preview_layout(self, show_hidden_areas=False): '\n Show the layout with placeholder texts using a QWidget.\n ' from spyder.utils.qthelpers import qapplication app = qapplication() widget = QWidget() layout = QGridLayout() for area in self._areas: label = QPlainTextEdit() label.setReadOnly(True) label.setPlainText('\n'.join(area['plugin_ids'])) if (area['visible'] or show_hidden_areas): layout.addWidget(label, area['row'], area['column'], area['row_span'], area['col_span']) if area['default']: label.setStyleSheet('QPlainTextEdit {background-color: #ff0000;}') if (not area['visible']): label.setStyleSheet('QPlainTextEdit {background-color: #eeeeee;}') for (row, stretch) in self._row_stretchs.items(): layout.setRowStretch(row, stretch) for (col, stretch) in self._column_stretchs.items(): layout.setColumnStretch(col, stretch) widget.setLayout(layout) widget.showMaximized() app.exec_()
Show the layout with placeholder texts using a QWidget.
spyder/plugins/layout/api.py
preview_layout
mrclary/spyder
7,956
python
def preview_layout(self, show_hidden_areas=False): '\n \n ' from spyder.utils.qthelpers import qapplication app = qapplication() widget = QWidget() layout = QGridLayout() for area in self._areas: label = QPlainTextEdit() label.setReadOnly(True) label.setPlainText('\n'.join(area['plugin_ids'])) if (area['visible'] or show_hidden_areas): layout.addWidget(label, area['row'], area['column'], area['row_span'], area['col_span']) if area['default']: label.setStyleSheet('QPlainTextEdit {background-color: #ff0000;}') if (not area['visible']): label.setStyleSheet('QPlainTextEdit {background-color: #eeeeee;}') for (row, stretch) in self._row_stretchs.items(): layout.setRowStretch(row, stretch) for (col, stretch) in self._column_stretchs.items(): layout.setColumnStretch(col, stretch) widget.setLayout(layout) widget.showMaximized() app.exec_()
def preview_layout(self, show_hidden_areas=False): '\n \n ' from spyder.utils.qthelpers import qapplication app = qapplication() widget = QWidget() layout = QGridLayout() for area in self._areas: label = QPlainTextEdit() label.setReadOnly(True) label.setPlainText('\n'.join(area['plugin_ids'])) if (area['visible'] or show_hidden_areas): layout.addWidget(label, area['row'], area['column'], area['row_span'], area['col_span']) if area['default']: label.setStyleSheet('QPlainTextEdit {background-color: #ff0000;}') if (not area['visible']): label.setStyleSheet('QPlainTextEdit {background-color: #eeeeee;}') for (row, stretch) in self._row_stretchs.items(): layout.setRowStretch(row, stretch) for (col, stretch) in self._column_stretchs.items(): layout.setColumnStretch(col, stretch) widget.setLayout(layout) widget.showMaximized() app.exec_()<|docstring|>Show the layout with placeholder texts using a QWidget.<|endoftext|>
cae21d7ac17fa34d4b45a59f17b47a9fe3c1a31d4c57a5d02c2d1e4bd702fc3d
def set_main_window_layout(self, main_window, dockable_plugins): '\n Set the given mainwindow layout.\n\n First validate the current layout definition, then clear the mainwindow\n current layout and finally calculate and set the new layout.\n ' all_plugin_ids = [] for plugin in dockable_plugins: all_plugin_ids.append(plugin.NAME) plugin.toggle_view(False) patched_default_area = copy.deepcopy(self._default_area) unassgined_plugin_ids = list((set(self._plugin_ids) ^ set(all_plugin_ids))) patched_default_area['plugin_ids'] += unassgined_plugin_ids patched_default_area['hidden_plugin_ids'] += unassgined_plugin_ids patched_areas = [(patched_default_area if area['default'] else area) for area in self._areas] docks = {} for area in patched_areas: current_area = area plugin_id = current_area['plugin_ids'][0] plugin = main_window.get_plugin(plugin_id, error=False) if plugin: dock = plugin.dockwidget docks[(current_area['row'], current_area['column'])] = dock dock.area = area['area'] dock.col_span = area['col_span'] dock.row_span = area['row_span'] plugin.toggle_view(area['visible']) layout_data = [] direction = Qt.Horizontal for row in range(0, (self._rows + 1)): dock = None for col in range(0, (self._cols + 1)): key = (row, col) if (key in docks): if (dock is None): dock = docks[key] else: layout_data.append(((1 / docks[key].area), key, dock, docks[key], direction)) dock = docks[key] main_window.addDockWidget(Qt.LeftDockWidgetArea, dock, direction) direction = Qt.Vertical for col in range(0, (self._cols + 1)): dock = None for row in range(0, (self._rows + 1)): key = (row, col) if (key in docks): if (dock is None): dock = docks[key] else: layout_data.append(((1 / docks[key].area), key, dock, docks[key], direction)) dock = docks[key] sorted_data = sorted(layout_data, key=(lambda x: (x[0], x[1]))) for (area, key, first, second, direction) in sorted_data: main_window.splitDockWidget(first, second, direction) plugins_to_tabify = [] for area in patched_areas: area_visible = area['visible'] base_plugin = main_window.get_plugin(area['plugin_ids'][0], error=False) if base_plugin: plugin_ids = area['plugin_ids'][1:] hidden_plugin_ids = area['hidden_plugin_ids'] for plugin_id in plugin_ids: current_plugin = main_window.get_plugin(plugin_id, error=False) if current_plugin: if ((plugin_id in unassgined_plugin_ids) and hasattr(current_plugin, 'TABIFY')): plugins_to_tabify.append((current_plugin, base_plugin)) else: main_window.tabify_plugins(base_plugin, current_plugin) if (plugin_id not in hidden_plugin_ids): current_plugin.toggle_view(area_visible) else: current_plugin.toggle_view(False) if area['visible']: base_plugin.dockwidget.show() base_plugin.dockwidget.raise_() for (plugin, base_plugin) in plugins_to_tabify: if (not main_window.tabify_plugin(plugin)): main_window.tabify_plugins(base_plugin, plugin) current_plugin.toggle_view(False) column_docks = [] column_stretches = [] for (key, dock) in docks.items(): for (col, stretch) in self._column_stretchs.items(): if ((key[1] == col) and (dock.col_span == 1)): column_docks.append(dock) column_stretches.append(stretch) row_docks = [] row_stretches = [] for (key, dock) in docks.items(): for (row, stretch) in self._row_stretchs.items(): if ((key[0] == row) and (dock.row_span == 1)): row_docks.append(dock) row_stretches.append(stretch) main_window.showMaximized() main_window.resizeDocks(column_docks, column_stretches, Qt.Horizontal) main_window.resizeDocks(row_docks, row_stretches, Qt.Vertical)
Set the given mainwindow layout. First validate the current layout definition, then clear the mainwindow current layout and finally calculate and set the new layout.
spyder/plugins/layout/api.py
set_main_window_layout
mrclary/spyder
7,956
python
def set_main_window_layout(self, main_window, dockable_plugins): '\n Set the given mainwindow layout.\n\n First validate the current layout definition, then clear the mainwindow\n current layout and finally calculate and set the new layout.\n ' all_plugin_ids = [] for plugin in dockable_plugins: all_plugin_ids.append(plugin.NAME) plugin.toggle_view(False) patched_default_area = copy.deepcopy(self._default_area) unassgined_plugin_ids = list((set(self._plugin_ids) ^ set(all_plugin_ids))) patched_default_area['plugin_ids'] += unassgined_plugin_ids patched_default_area['hidden_plugin_ids'] += unassgined_plugin_ids patched_areas = [(patched_default_area if area['default'] else area) for area in self._areas] docks = {} for area in patched_areas: current_area = area plugin_id = current_area['plugin_ids'][0] plugin = main_window.get_plugin(plugin_id, error=False) if plugin: dock = plugin.dockwidget docks[(current_area['row'], current_area['column'])] = dock dock.area = area['area'] dock.col_span = area['col_span'] dock.row_span = area['row_span'] plugin.toggle_view(area['visible']) layout_data = [] direction = Qt.Horizontal for row in range(0, (self._rows + 1)): dock = None for col in range(0, (self._cols + 1)): key = (row, col) if (key in docks): if (dock is None): dock = docks[key] else: layout_data.append(((1 / docks[key].area), key, dock, docks[key], direction)) dock = docks[key] main_window.addDockWidget(Qt.LeftDockWidgetArea, dock, direction) direction = Qt.Vertical for col in range(0, (self._cols + 1)): dock = None for row in range(0, (self._rows + 1)): key = (row, col) if (key in docks): if (dock is None): dock = docks[key] else: layout_data.append(((1 / docks[key].area), key, dock, docks[key], direction)) dock = docks[key] sorted_data = sorted(layout_data, key=(lambda x: (x[0], x[1]))) for (area, key, first, second, direction) in sorted_data: main_window.splitDockWidget(first, second, direction) plugins_to_tabify = [] for area in patched_areas: area_visible = area['visible'] base_plugin = main_window.get_plugin(area['plugin_ids'][0], error=False) if base_plugin: plugin_ids = area['plugin_ids'][1:] hidden_plugin_ids = area['hidden_plugin_ids'] for plugin_id in plugin_ids: current_plugin = main_window.get_plugin(plugin_id, error=False) if current_plugin: if ((plugin_id in unassgined_plugin_ids) and hasattr(current_plugin, 'TABIFY')): plugins_to_tabify.append((current_plugin, base_plugin)) else: main_window.tabify_plugins(base_plugin, current_plugin) if (plugin_id not in hidden_plugin_ids): current_plugin.toggle_view(area_visible) else: current_plugin.toggle_view(False) if area['visible']: base_plugin.dockwidget.show() base_plugin.dockwidget.raise_() for (plugin, base_plugin) in plugins_to_tabify: if (not main_window.tabify_plugin(plugin)): main_window.tabify_plugins(base_plugin, plugin) current_plugin.toggle_view(False) column_docks = [] column_stretches = [] for (key, dock) in docks.items(): for (col, stretch) in self._column_stretchs.items(): if ((key[1] == col) and (dock.col_span == 1)): column_docks.append(dock) column_stretches.append(stretch) row_docks = [] row_stretches = [] for (key, dock) in docks.items(): for (row, stretch) in self._row_stretchs.items(): if ((key[0] == row) and (dock.row_span == 1)): row_docks.append(dock) row_stretches.append(stretch) main_window.showMaximized() main_window.resizeDocks(column_docks, column_stretches, Qt.Horizontal) main_window.resizeDocks(row_docks, row_stretches, Qt.Vertical)
def set_main_window_layout(self, main_window, dockable_plugins): '\n Set the given mainwindow layout.\n\n First validate the current layout definition, then clear the mainwindow\n current layout and finally calculate and set the new layout.\n ' all_plugin_ids = [] for plugin in dockable_plugins: all_plugin_ids.append(plugin.NAME) plugin.toggle_view(False) patched_default_area = copy.deepcopy(self._default_area) unassgined_plugin_ids = list((set(self._plugin_ids) ^ set(all_plugin_ids))) patched_default_area['plugin_ids'] += unassgined_plugin_ids patched_default_area['hidden_plugin_ids'] += unassgined_plugin_ids patched_areas = [(patched_default_area if area['default'] else area) for area in self._areas] docks = {} for area in patched_areas: current_area = area plugin_id = current_area['plugin_ids'][0] plugin = main_window.get_plugin(plugin_id, error=False) if plugin: dock = plugin.dockwidget docks[(current_area['row'], current_area['column'])] = dock dock.area = area['area'] dock.col_span = area['col_span'] dock.row_span = area['row_span'] plugin.toggle_view(area['visible']) layout_data = [] direction = Qt.Horizontal for row in range(0, (self._rows + 1)): dock = None for col in range(0, (self._cols + 1)): key = (row, col) if (key in docks): if (dock is None): dock = docks[key] else: layout_data.append(((1 / docks[key].area), key, dock, docks[key], direction)) dock = docks[key] main_window.addDockWidget(Qt.LeftDockWidgetArea, dock, direction) direction = Qt.Vertical for col in range(0, (self._cols + 1)): dock = None for row in range(0, (self._rows + 1)): key = (row, col) if (key in docks): if (dock is None): dock = docks[key] else: layout_data.append(((1 / docks[key].area), key, dock, docks[key], direction)) dock = docks[key] sorted_data = sorted(layout_data, key=(lambda x: (x[0], x[1]))) for (area, key, first, second, direction) in sorted_data: main_window.splitDockWidget(first, second, direction) plugins_to_tabify = [] for area in patched_areas: area_visible = area['visible'] base_plugin = main_window.get_plugin(area['plugin_ids'][0], error=False) if base_plugin: plugin_ids = area['plugin_ids'][1:] hidden_plugin_ids = area['hidden_plugin_ids'] for plugin_id in plugin_ids: current_plugin = main_window.get_plugin(plugin_id, error=False) if current_plugin: if ((plugin_id in unassgined_plugin_ids) and hasattr(current_plugin, 'TABIFY')): plugins_to_tabify.append((current_plugin, base_plugin)) else: main_window.tabify_plugins(base_plugin, current_plugin) if (plugin_id not in hidden_plugin_ids): current_plugin.toggle_view(area_visible) else: current_plugin.toggle_view(False) if area['visible']: base_plugin.dockwidget.show() base_plugin.dockwidget.raise_() for (plugin, base_plugin) in plugins_to_tabify: if (not main_window.tabify_plugin(plugin)): main_window.tabify_plugins(base_plugin, plugin) current_plugin.toggle_view(False) column_docks = [] column_stretches = [] for (key, dock) in docks.items(): for (col, stretch) in self._column_stretchs.items(): if ((key[1] == col) and (dock.col_span == 1)): column_docks.append(dock) column_stretches.append(stretch) row_docks = [] row_stretches = [] for (key, dock) in docks.items(): for (row, stretch) in self._row_stretchs.items(): if ((key[0] == row) and (dock.row_span == 1)): row_docks.append(dock) row_stretches.append(stretch) main_window.showMaximized() main_window.resizeDocks(column_docks, column_stretches, Qt.Horizontal) main_window.resizeDocks(row_docks, row_stretches, Qt.Vertical)<|docstring|>Set the given mainwindow layout. First validate the current layout definition, then clear the mainwindow current layout and finally calculate and set the new layout.<|endoftext|>
270362003de44c4a2c9a0fb76bdbc5b5e2e2358ed101bbf70f2cd9fc053182b7
def load_vgg(sess, vgg_path): '\n Load Pretrained VGG Model into TensorFlow.\n :param sess: TensorFlow Session\n :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"\n :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)\n ' vgg_tag = 'vgg16' vgg_input_tensor_name = 'image_input:0' vgg_keep_prob_tensor_name = 'keep_prob:0' vgg_layer3_out_tensor_name = 'layer3_out:0' vgg_layer4_out_tensor_name = 'layer4_out:0' vgg_layer7_out_tensor_name = 'layer7_out:0' tf.save_model.loader.load(sess, [vgg_tag], vgg_path) graph = tf.get_default_graph() image_input = graph.get_tensor_by_name(vgg_input_tensor_name) keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name) layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name) layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name) layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name) return (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
Load Pretrained VGG Model into TensorFlow. :param sess: TensorFlow Session :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb" :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
main.py
load_vgg
shjzhao/CarND-Semantic-Segmentation
0
python
def load_vgg(sess, vgg_path): '\n Load Pretrained VGG Model into TensorFlow.\n :param sess: TensorFlow Session\n :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"\n :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)\n ' vgg_tag = 'vgg16' vgg_input_tensor_name = 'image_input:0' vgg_keep_prob_tensor_name = 'keep_prob:0' vgg_layer3_out_tensor_name = 'layer3_out:0' vgg_layer4_out_tensor_name = 'layer4_out:0' vgg_layer7_out_tensor_name = 'layer7_out:0' tf.save_model.loader.load(sess, [vgg_tag], vgg_path) graph = tf.get_default_graph() image_input = graph.get_tensor_by_name(vgg_input_tensor_name) keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name) layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name) layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name) layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name) return (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
def load_vgg(sess, vgg_path): '\n Load Pretrained VGG Model into TensorFlow.\n :param sess: TensorFlow Session\n :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"\n :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)\n ' vgg_tag = 'vgg16' vgg_input_tensor_name = 'image_input:0' vgg_keep_prob_tensor_name = 'keep_prob:0' vgg_layer3_out_tensor_name = 'layer3_out:0' vgg_layer4_out_tensor_name = 'layer4_out:0' vgg_layer7_out_tensor_name = 'layer7_out:0' tf.save_model.loader.load(sess, [vgg_tag], vgg_path) graph = tf.get_default_graph() image_input = graph.get_tensor_by_name(vgg_input_tensor_name) keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name) layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name) layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name) layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name) return (image_input, keep_prob, layer3_out, layer4_out, layer7_out)<|docstring|>Load Pretrained VGG Model into TensorFlow. :param sess: TensorFlow Session :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb" :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)<|endoftext|>
26d87776437348743cd8553866b79740b4df912e99e3f45be1883e8948523895
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): '\n Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.\n :param vgg_layer3_out: TF Tensor for VGG Layer 3 output\n :param vgg_layer4_out: TF Tensor for VGG Layer 4 output\n :param vgg_layer7_out: TF Tensor for VGG Layer 7 output\n :param num_classes: Number of classes to classify\n :return: The Tensor for the last layer of output\n ' vgg_layer7_conv = tf.layers.conv2d(vgg_layer7_out, num_classes, 1, padding='same', kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer7_upsample = tf.layers.conv2d_transpose(vgg_layer7_conv, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer4_conv = tf.layers.conv2d(vgg_layer4_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) layer4 = tf.add(vgg_layer7_upsample, vgg_layer4_conv) layer3 = tf.layers.conv2d_transpose(layer4, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer3_conv = tf.layers.conv2d(vgg_layer3_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) layer3 = tf.add(layer3, vgg_layer3_conv) output = tf.layers.conv2d_transpose(layer3, num_classes, 16, strides=(8, 8), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) return output
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers. :param vgg_layer3_out: TF Tensor for VGG Layer 3 output :param vgg_layer4_out: TF Tensor for VGG Layer 4 output :param vgg_layer7_out: TF Tensor for VGG Layer 7 output :param num_classes: Number of classes to classify :return: The Tensor for the last layer of output
main.py
layers
shjzhao/CarND-Semantic-Segmentation
0
python
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): '\n Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.\n :param vgg_layer3_out: TF Tensor for VGG Layer 3 output\n :param vgg_layer4_out: TF Tensor for VGG Layer 4 output\n :param vgg_layer7_out: TF Tensor for VGG Layer 7 output\n :param num_classes: Number of classes to classify\n :return: The Tensor for the last layer of output\n ' vgg_layer7_conv = tf.layers.conv2d(vgg_layer7_out, num_classes, 1, padding='same', kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer7_upsample = tf.layers.conv2d_transpose(vgg_layer7_conv, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer4_conv = tf.layers.conv2d(vgg_layer4_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) layer4 = tf.add(vgg_layer7_upsample, vgg_layer4_conv) layer3 = tf.layers.conv2d_transpose(layer4, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer3_conv = tf.layers.conv2d(vgg_layer3_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) layer3 = tf.add(layer3, vgg_layer3_conv) output = tf.layers.conv2d_transpose(layer3, num_classes, 16, strides=(8, 8), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) return output
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): '\n Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.\n :param vgg_layer3_out: TF Tensor for VGG Layer 3 output\n :param vgg_layer4_out: TF Tensor for VGG Layer 4 output\n :param vgg_layer7_out: TF Tensor for VGG Layer 7 output\n :param num_classes: Number of classes to classify\n :return: The Tensor for the last layer of output\n ' vgg_layer7_conv = tf.layers.conv2d(vgg_layer7_out, num_classes, 1, padding='same', kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer7_upsample = tf.layers.conv2d_transpose(vgg_layer7_conv, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer4_conv = tf.layers.conv2d(vgg_layer4_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) layer4 = tf.add(vgg_layer7_upsample, vgg_layer4_conv) layer3 = tf.layers.conv2d_transpose(layer4, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) vgg_layer3_conv = tf.layers.conv2d(vgg_layer3_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) layer3 = tf.add(layer3, vgg_layer3_conv) output = tf.layers.conv2d_transpose(layer3, num_classes, 16, strides=(8, 8), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) return output<|docstring|>Create the layers for a fully convolutional network. Build skip-layers using the vgg layers. :param vgg_layer3_out: TF Tensor for VGG Layer 3 output :param vgg_layer4_out: TF Tensor for VGG Layer 4 output :param vgg_layer7_out: TF Tensor for VGG Layer 7 output :param num_classes: Number of classes to classify :return: The Tensor for the last layer of output<|endoftext|>
d3a03ff600f4c40c0ab5aa87d6147004db40e073bb2926d3d7fc4018bd7f3e36
def optimize(nn_last_layer, correct_label, learning_rate, num_classes): '\n Build the TensorFLow loss and optimizer operations.\n :param nn_last_layer: TF Tensor of the last layer in the neural network\n :param correct_label: TF Placeholder for the correct label image\n :param learning_rate: TF Placeholder for the learning rate\n :param num_classes: Number of classes to classify\n :return: Tuple of (logits, train_op, cross_entropy_loss)\n ' logit = tf.reshape(nn_last_layer, ((- 1), num_classes)) label = tf.reshape(correct_label, ((- 1), num_classes)) cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=label)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(cross_entropy_loss) return (logit, train_op, cross_entropy_loss)
Build the TensorFLow loss and optimizer operations. :param nn_last_layer: TF Tensor of the last layer in the neural network :param correct_label: TF Placeholder for the correct label image :param learning_rate: TF Placeholder for the learning rate :param num_classes: Number of classes to classify :return: Tuple of (logits, train_op, cross_entropy_loss)
main.py
optimize
shjzhao/CarND-Semantic-Segmentation
0
python
def optimize(nn_last_layer, correct_label, learning_rate, num_classes): '\n Build the TensorFLow loss and optimizer operations.\n :param nn_last_layer: TF Tensor of the last layer in the neural network\n :param correct_label: TF Placeholder for the correct label image\n :param learning_rate: TF Placeholder for the learning rate\n :param num_classes: Number of classes to classify\n :return: Tuple of (logits, train_op, cross_entropy_loss)\n ' logit = tf.reshape(nn_last_layer, ((- 1), num_classes)) label = tf.reshape(correct_label, ((- 1), num_classes)) cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=label)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(cross_entropy_loss) return (logit, train_op, cross_entropy_loss)
def optimize(nn_last_layer, correct_label, learning_rate, num_classes): '\n Build the TensorFLow loss and optimizer operations.\n :param nn_last_layer: TF Tensor of the last layer in the neural network\n :param correct_label: TF Placeholder for the correct label image\n :param learning_rate: TF Placeholder for the learning rate\n :param num_classes: Number of classes to classify\n :return: Tuple of (logits, train_op, cross_entropy_loss)\n ' logit = tf.reshape(nn_last_layer, ((- 1), num_classes)) label = tf.reshape(correct_label, ((- 1), num_classes)) cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=label)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(cross_entropy_loss) return (logit, train_op, cross_entropy_loss)<|docstring|>Build the TensorFLow loss and optimizer operations. :param nn_last_layer: TF Tensor of the last layer in the neural network :param correct_label: TF Placeholder for the correct label image :param learning_rate: TF Placeholder for the learning rate :param num_classes: Number of classes to classify :return: Tuple of (logits, train_op, cross_entropy_loss)<|endoftext|>
b2fc68ff07b9e01714b8b6fd5807532c8947d4f7e5b85b00d0035f6aa6b600d7
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate): '\n Train neural network and print out the loss during training.\n :param sess: TF Session\n :param epochs: Number of epochs\n :param batch_size: Batch size\n :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)\n :param train_op: TF Operation to train the neural network\n :param cross_entropy_loss: TF Tensor for the amount of loss\n :param input_image: TF Placeholder for input images\n :param correct_label: TF Placeholder for label images\n :param keep_prob: TF Placeholder for dropout keep probability\n :param learning_rate: TF Placeholder for learning rate\n ' sess.run(tf.global_variables_initializer()) tf.logging.info('Training begin...') for i in range(epochs): tf.logging.info('EPOCH {} training ...'.format((i + 1))) for (image, label) in get_batches_fn(batch_size): (_, loss) = sess.run([train_op, cross_entropy_loss], feed_dict={input_image: image, correct_label: label, keep_prob: 0.5, learning_rate: 0.001}) tf.logging.info('Loss: = {:.3f}'.format(loss))
Train neural network and print out the loss during training. :param sess: TF Session :param epochs: Number of epochs :param batch_size: Batch size :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) :param train_op: TF Operation to train the neural network :param cross_entropy_loss: TF Tensor for the amount of loss :param input_image: TF Placeholder for input images :param correct_label: TF Placeholder for label images :param keep_prob: TF Placeholder for dropout keep probability :param learning_rate: TF Placeholder for learning rate
main.py
train_nn
shjzhao/CarND-Semantic-Segmentation
0
python
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate): '\n Train neural network and print out the loss during training.\n :param sess: TF Session\n :param epochs: Number of epochs\n :param batch_size: Batch size\n :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)\n :param train_op: TF Operation to train the neural network\n :param cross_entropy_loss: TF Tensor for the amount of loss\n :param input_image: TF Placeholder for input images\n :param correct_label: TF Placeholder for label images\n :param keep_prob: TF Placeholder for dropout keep probability\n :param learning_rate: TF Placeholder for learning rate\n ' sess.run(tf.global_variables_initializer()) tf.logging.info('Training begin...') for i in range(epochs): tf.logging.info('EPOCH {} training ...'.format((i + 1))) for (image, label) in get_batches_fn(batch_size): (_, loss) = sess.run([train_op, cross_entropy_loss], feed_dict={input_image: image, correct_label: label, keep_prob: 0.5, learning_rate: 0.001}) tf.logging.info('Loss: = {:.3f}'.format(loss))
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate): '\n Train neural network and print out the loss during training.\n :param sess: TF Session\n :param epochs: Number of epochs\n :param batch_size: Batch size\n :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)\n :param train_op: TF Operation to train the neural network\n :param cross_entropy_loss: TF Tensor for the amount of loss\n :param input_image: TF Placeholder for input images\n :param correct_label: TF Placeholder for label images\n :param keep_prob: TF Placeholder for dropout keep probability\n :param learning_rate: TF Placeholder for learning rate\n ' sess.run(tf.global_variables_initializer()) tf.logging.info('Training begin...') for i in range(epochs): tf.logging.info('EPOCH {} training ...'.format((i + 1))) for (image, label) in get_batches_fn(batch_size): (_, loss) = sess.run([train_op, cross_entropy_loss], feed_dict={input_image: image, correct_label: label, keep_prob: 0.5, learning_rate: 0.001}) tf.logging.info('Loss: = {:.3f}'.format(loss))<|docstring|>Train neural network and print out the loss during training. :param sess: TF Session :param epochs: Number of epochs :param batch_size: Batch size :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) :param train_op: TF Operation to train the neural network :param cross_entropy_loss: TF Tensor for the amount of loss :param input_image: TF Placeholder for input images :param correct_label: TF Placeholder for label images :param keep_prob: TF Placeholder for dropout keep probability :param learning_rate: TF Placeholder for learning rate<|endoftext|>
e2929b4a8e23faee04357a1951bf0d8311cf6f0eefaaa7d686e12436bab8fbd8
def batch_callfunction_decode(endpoint, datalist, outtypes, height=None, needidx=False): '\n datalist: [contract_address, funcname(arg_type_list), encoded_arguments]\n outtypes: list of [return values\' type list]\n Example:\n data = batch_callfunction_decode(H, [[addr, "symbol()", ""] for addr in addrs], [["string"]])\n Depends on eth_abi package\n ' import eth_abi if (not height): height = 'latest' if (not isinstance(outtypes[0], list)): outtypes = ([outtypes] * len(datalist)) data = batch_callfunction(endpoint, datalist, height) res = [] for (i, item) in data: if (not item): res.append((i, None)) else: if (outtypes[i] == ['hex']): d = int(item, 16) else: d = eth_abi.decode_abi(outtypes[i], bd(item)) if (len(d) == 1): d = d[0] res.append((i, d)) if needidx: return res else: return [i[1] for i in res]
datalist: [contract_address, funcname(arg_type_list), encoded_arguments] outtypes: list of [return values' type list] Example: data = batch_callfunction_decode(H, [[addr, "symbol()", ""] for addr in addrs], [["string"]]) Depends on eth_abi package
base.py
batch_callfunction_decode
zjuchenyuan/whalerank
8
python
def batch_callfunction_decode(endpoint, datalist, outtypes, height=None, needidx=False): '\n datalist: [contract_address, funcname(arg_type_list), encoded_arguments]\n outtypes: list of [return values\' type list]\n Example:\n data = batch_callfunction_decode(H, [[addr, "symbol()", ] for addr in addrs], [["string"]])\n Depends on eth_abi package\n ' import eth_abi if (not height): height = 'latest' if (not isinstance(outtypes[0], list)): outtypes = ([outtypes] * len(datalist)) data = batch_callfunction(endpoint, datalist, height) res = [] for (i, item) in data: if (not item): res.append((i, None)) else: if (outtypes[i] == ['hex']): d = int(item, 16) else: d = eth_abi.decode_abi(outtypes[i], bd(item)) if (len(d) == 1): d = d[0] res.append((i, d)) if needidx: return res else: return [i[1] for i in res]
def batch_callfunction_decode(endpoint, datalist, outtypes, height=None, needidx=False): '\n datalist: [contract_address, funcname(arg_type_list), encoded_arguments]\n outtypes: list of [return values\' type list]\n Example:\n data = batch_callfunction_decode(H, [[addr, "symbol()", ] for addr in addrs], [["string"]])\n Depends on eth_abi package\n ' import eth_abi if (not height): height = 'latest' if (not isinstance(outtypes[0], list)): outtypes = ([outtypes] * len(datalist)) data = batch_callfunction(endpoint, datalist, height) res = [] for (i, item) in data: if (not item): res.append((i, None)) else: if (outtypes[i] == ['hex']): d = int(item, 16) else: d = eth_abi.decode_abi(outtypes[i], bd(item)) if (len(d) == 1): d = d[0] res.append((i, d)) if needidx: return res else: return [i[1] for i in res]<|docstring|>datalist: [contract_address, funcname(arg_type_list), encoded_arguments] outtypes: list of [return values' type list] Example: data = batch_callfunction_decode(H, [[addr, "symbol()", ""] for addr in addrs], [["string"]]) Depends on eth_abi package<|endoftext|>
576aa94f48b79a8abc854078ec16f2a571285fb4b06e82745cf3cbe3b03d22f8
def create_evaluate_ops(task_prefix: str, data_format: str, input_paths: List[str], prediction_path: str, metric_fn_and_keys: Tuple[(T, Iterable[str])], validate_fn: T, batch_prediction_job_id: Optional[str]=None, region: Optional[str]=None, project_id: Optional[str]=None, dataflow_options: Optional[Dict]=None, model_uri: Optional[str]=None, model_name: Optional[str]=None, version_name: Optional[str]=None, dag: Optional[DAG]=None, py_interpreter='python3'): '\n Creates Operators needed for model evaluation and returns.\n\n It gets prediction over inputs via Cloud ML Engine BatchPrediction API by\n calling MLEngineBatchPredictionOperator, then summarize and validate\n the result via Cloud Dataflow using DataFlowPythonOperator.\n\n For details and pricing about Batch prediction, please refer to the website\n https://cloud.google.com/ml-engine/docs/how-tos/batch-predict\n and for Cloud Dataflow, https://cloud.google.com/dataflow/docs/\n\n It returns three chained operators for prediction, summary, and validation,\n named as ``<prefix>-prediction``, ``<prefix>-summary``, and ``<prefix>-validation``,\n respectively.\n (``<prefix>`` should contain only alphanumeric characters or hyphen.)\n\n The upstream and downstream can be set accordingly like:\n\n .. code-block:: python\n\n pred, _, val = create_evaluate_ops(...)\n pred.set_upstream(upstream_op)\n ...\n downstream_op.set_upstream(val)\n\n Callers will provide two python callables, metric_fn and validate_fn, in\n order to customize the evaluation behavior as they wish.\n\n - metric_fn receives a dictionary per instance derived from json in the\n batch prediction result. The keys might vary depending on the model.\n It should return a tuple of metrics.\n - validation_fn receives a dictionary of the averaged metrics that metric_fn\n generated over all instances.\n The key/value of the dictionary matches to what\'s given by\n metric_fn_and_keys arg.\n The dictionary contains an additional metric, \'count\' to represent the\n total number of instances received for evaluation.\n The function would raise an exception to mark the task as failed, in a\n case the validation result is not okay to proceed (i.e. to set the trained\n version as default).\n\n Typical examples are like this:\n\n .. code-block:: python\n\n def get_metric_fn_and_keys():\n import math # imports should be outside of the metric_fn below.\n\n def error_and_squared_error(inst):\n label = float(inst["input_label"])\n classes = float(inst["classes"]) # 0 or 1\n err = abs(classes - label)\n squared_err = math.pow(classes - label, 2)\n return (err, squared_err) # returns a tuple.\n\n return error_and_squared_error, ["err", "mse"] # key order must match.\n\n\n def validate_err_and_count(summary):\n if summary["err"] > 0.2:\n raise ValueError("Too high err>0.2; summary=%s" % summary)\n if summary["mse"] > 0.05:\n raise ValueError("Too high mse>0.05; summary=%s" % summary)\n if summary["count"] < 1000:\n raise ValueError("Too few instances<1000; summary=%s" % summary)\n return summary\n\n For the details on the other BatchPrediction-related arguments (project_id,\n job_id, region, data_format, input_paths, prediction_path, model_uri),\n please refer to MLEngineBatchPredictionOperator too.\n\n :param task_prefix: a prefix for the tasks. Only alphanumeric characters and\n hyphen are allowed (no underscores), since this will be used as dataflow\n job name, which doesn\'t allow other characters.\n :type task_prefix: str\n\n :param data_format: either of \'TEXT\', \'TF_RECORD\', \'TF_RECORD_GZIP\'\n :type data_format: str\n\n :param input_paths: a list of input paths to be sent to BatchPrediction.\n :type input_paths: list[str]\n\n :param prediction_path: GCS path to put the prediction results in.\n :type prediction_path: str\n\n :param metric_fn_and_keys: a tuple of metric_fn and metric_keys:\n\n - metric_fn is a function that accepts a dictionary (for an instance),\n and returns a tuple of metric(s) that it calculates.\n\n - metric_keys is a list of strings to denote the key of each metric.\n :type metric_fn_and_keys: tuple of a function and a list[str]\n\n :param validate_fn: a function to validate whether the averaged metric(s) is\n good enough to push the model.\n :type validate_fn: function\n\n :param batch_prediction_job_id: the id to use for the Cloud ML Batch\n prediction job. Passed directly to the MLEngineBatchPredictionOperator as\n the job_id argument.\n :type batch_prediction_job_id: str\n\n :param project_id: the Google Cloud project id in which to execute\n Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`\'s\n `default_args[\'project_id\']` will be used.\n :type project_id: str\n\n :param region: the Google Cloud region in which to execute Cloud ML\n Batch Prediction and Dataflow jobs. If None, then the `dag`\'s\n `default_args[\'region\']` will be used.\n :type region: str\n\n :param dataflow_options: options to run Dataflow jobs. If None, then the\n `dag`\'s `default_args[\'dataflow_default_options\']` will be used.\n :type dataflow_options: dictionary\n\n :param model_uri: GCS path of the model exported by Tensorflow using\n ``tensorflow.estimator.export_savedmodel()``. It cannot be used with\n model_name or version_name below. See MLEngineBatchPredictionOperator for\n more detail.\n :type model_uri: str\n\n :param model_name: Used to indicate a model to use for prediction. Can be\n used in combination with version_name, but cannot be used together with\n model_uri. See MLEngineBatchPredictionOperator for more detail. If None,\n then the `dag`\'s `default_args[\'model_name\']` will be used.\n :type model_name: str\n\n :param version_name: Used to indicate a model version to use for prediction,\n in combination with model_name. Cannot be used together with model_uri.\n See MLEngineBatchPredictionOperator for more detail. If None, then the\n `dag`\'s `default_args[\'version_name\']` will be used.\n :type version_name: str\n\n :param dag: The `DAG` to use for all Operators.\n :type dag: airflow.models.DAG\n\n :param py_interpreter: Python version of the beam pipeline.\n If None, this defaults to the python3.\n To track python versions supported by beam and related\n issues check: https://issues.apache.org/jira/browse/BEAM-1251\n :type py_interpreter: str\n\n :returns: a tuple of three operators, (prediction, summary, validation)\n :rtype: tuple(DataFlowPythonOperator, DataFlowPythonOperator,\n PythonOperator)\n ' batch_prediction_job_id = (batch_prediction_job_id or '') dataflow_options = (dataflow_options or {}) region = (region or '') if (not re.match('^[a-zA-Z][-A-Za-z0-9]*$', task_prefix)): raise AirflowException(('Malformed task_id for DataFlowPythonOperator (only alphanumeric and hyphens are allowed but got: ' + task_prefix)) (metric_fn, metric_keys) = metric_fn_and_keys if (not callable(metric_fn)): raise AirflowException('`metric_fn` param must be callable.') if (not callable(validate_fn)): raise AirflowException('`validate_fn` param must be callable.') if ((dag is not None) and (dag.default_args is not None)): default_args = dag.default_args project_id = (project_id or default_args.get('project_id')) region = (region or default_args['region']) model_name = (model_name or default_args.get('model_name')) version_name = (version_name or default_args.get('version_name')) dataflow_options = (dataflow_options or default_args.get('dataflow_default_options')) evaluate_prediction = MLEngineStartBatchPredictionJobOperator(task_id=(task_prefix + '-prediction'), project_id=project_id, job_id=batch_prediction_job_id, region=region, data_format=data_format, input_paths=input_paths, output_path=prediction_path, uri=model_uri, model_name=model_name, version_name=version_name, dag=dag) metric_fn_encoded = base64.b64encode(dill.dumps(metric_fn, recurse=True)).decode() evaluate_summary = BeamRunPythonPipelineOperator(task_id=(task_prefix + '-summary'), py_file=os.path.join(os.path.dirname(__file__), 'mlengine_prediction_summary.py'), default_pipeline_options=dataflow_options, pipeline_options={'prediction_path': prediction_path, 'metric_fn_encoded': metric_fn_encoded, 'metric_keys': ','.join(metric_keys)}, py_interpreter=py_interpreter, py_requirements=['apache-beam[gcp]>=2.14.0'], dag=dag) evaluate_summary.set_upstream(evaluate_prediction) def apply_validate_fn(*args, templates_dict, **kwargs): prediction_path = templates_dict['prediction_path'] (scheme, bucket, obj, _, _) = urlsplit(prediction_path) if ((scheme != 'gs') or (not bucket) or (not obj)): raise ValueError(f'Wrong format prediction_path: {prediction_path}') summary = os.path.join(obj.strip('/'), 'prediction.summary.json') gcs_hook = GCSHook() summary = json.loads(gcs_hook.download(bucket, summary)) return validate_fn(summary) evaluate_validation = PythonOperator(task_id=(task_prefix + '-validation'), python_callable=apply_validate_fn, templates_dict={'prediction_path': prediction_path}, dag=dag) evaluate_validation.set_upstream(evaluate_summary) return (evaluate_prediction, evaluate_summary, evaluate_validation)
Creates Operators needed for model evaluation and returns. It gets prediction over inputs via Cloud ML Engine BatchPrediction API by calling MLEngineBatchPredictionOperator, then summarize and validate the result via Cloud Dataflow using DataFlowPythonOperator. For details and pricing about Batch prediction, please refer to the website https://cloud.google.com/ml-engine/docs/how-tos/batch-predict and for Cloud Dataflow, https://cloud.google.com/dataflow/docs/ It returns three chained operators for prediction, summary, and validation, named as ``<prefix>-prediction``, ``<prefix>-summary``, and ``<prefix>-validation``, respectively. (``<prefix>`` should contain only alphanumeric characters or hyphen.) The upstream and downstream can be set accordingly like: .. code-block:: python pred, _, val = create_evaluate_ops(...) pred.set_upstream(upstream_op) ... downstream_op.set_upstream(val) Callers will provide two python callables, metric_fn and validate_fn, in order to customize the evaluation behavior as they wish. - metric_fn receives a dictionary per instance derived from json in the batch prediction result. The keys might vary depending on the model. It should return a tuple of metrics. - validation_fn receives a dictionary of the averaged metrics that metric_fn generated over all instances. The key/value of the dictionary matches to what's given by metric_fn_and_keys arg. The dictionary contains an additional metric, 'count' to represent the total number of instances received for evaluation. The function would raise an exception to mark the task as failed, in a case the validation result is not okay to proceed (i.e. to set the trained version as default). Typical examples are like this: .. code-block:: python def get_metric_fn_and_keys(): import math # imports should be outside of the metric_fn below. def error_and_squared_error(inst): label = float(inst["input_label"]) classes = float(inst["classes"]) # 0 or 1 err = abs(classes - label) squared_err = math.pow(classes - label, 2) return (err, squared_err) # returns a tuple. return error_and_squared_error, ["err", "mse"] # key order must match. def validate_err_and_count(summary): if summary["err"] > 0.2: raise ValueError("Too high err>0.2; summary=%s" % summary) if summary["mse"] > 0.05: raise ValueError("Too high mse>0.05; summary=%s" % summary) if summary["count"] < 1000: raise ValueError("Too few instances<1000; summary=%s" % summary) return summary For the details on the other BatchPrediction-related arguments (project_id, job_id, region, data_format, input_paths, prediction_path, model_uri), please refer to MLEngineBatchPredictionOperator too. :param task_prefix: a prefix for the tasks. Only alphanumeric characters and hyphen are allowed (no underscores), since this will be used as dataflow job name, which doesn't allow other characters. :type task_prefix: str :param data_format: either of 'TEXT', 'TF_RECORD', 'TF_RECORD_GZIP' :type data_format: str :param input_paths: a list of input paths to be sent to BatchPrediction. :type input_paths: list[str] :param prediction_path: GCS path to put the prediction results in. :type prediction_path: str :param metric_fn_and_keys: a tuple of metric_fn and metric_keys: - metric_fn is a function that accepts a dictionary (for an instance), and returns a tuple of metric(s) that it calculates. - metric_keys is a list of strings to denote the key of each metric. :type metric_fn_and_keys: tuple of a function and a list[str] :param validate_fn: a function to validate whether the averaged metric(s) is good enough to push the model. :type validate_fn: function :param batch_prediction_job_id: the id to use for the Cloud ML Batch prediction job. Passed directly to the MLEngineBatchPredictionOperator as the job_id argument. :type batch_prediction_job_id: str :param project_id: the Google Cloud project id in which to execute Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`'s `default_args['project_id']` will be used. :type project_id: str :param region: the Google Cloud region in which to execute Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`'s `default_args['region']` will be used. :type region: str :param dataflow_options: options to run Dataflow jobs. If None, then the `dag`'s `default_args['dataflow_default_options']` will be used. :type dataflow_options: dictionary :param model_uri: GCS path of the model exported by Tensorflow using ``tensorflow.estimator.export_savedmodel()``. It cannot be used with model_name or version_name below. See MLEngineBatchPredictionOperator for more detail. :type model_uri: str :param model_name: Used to indicate a model to use for prediction. Can be used in combination with version_name, but cannot be used together with model_uri. See MLEngineBatchPredictionOperator for more detail. If None, then the `dag`'s `default_args['model_name']` will be used. :type model_name: str :param version_name: Used to indicate a model version to use for prediction, in combination with model_name. Cannot be used together with model_uri. See MLEngineBatchPredictionOperator for more detail. If None, then the `dag`'s `default_args['version_name']` will be used. :type version_name: str :param dag: The `DAG` to use for all Operators. :type dag: airflow.models.DAG :param py_interpreter: Python version of the beam pipeline. If None, this defaults to the python3. To track python versions supported by beam and related issues check: https://issues.apache.org/jira/browse/BEAM-1251 :type py_interpreter: str :returns: a tuple of three operators, (prediction, summary, validation) :rtype: tuple(DataFlowPythonOperator, DataFlowPythonOperator, PythonOperator)
airflow/providers/google/cloud/utils/mlengine_operator_utils.py
create_evaluate_ops
jiantao01/airflow
15,947
python
def create_evaluate_ops(task_prefix: str, data_format: str, input_paths: List[str], prediction_path: str, metric_fn_and_keys: Tuple[(T, Iterable[str])], validate_fn: T, batch_prediction_job_id: Optional[str]=None, region: Optional[str]=None, project_id: Optional[str]=None, dataflow_options: Optional[Dict]=None, model_uri: Optional[str]=None, model_name: Optional[str]=None, version_name: Optional[str]=None, dag: Optional[DAG]=None, py_interpreter='python3'): '\n Creates Operators needed for model evaluation and returns.\n\n It gets prediction over inputs via Cloud ML Engine BatchPrediction API by\n calling MLEngineBatchPredictionOperator, then summarize and validate\n the result via Cloud Dataflow using DataFlowPythonOperator.\n\n For details and pricing about Batch prediction, please refer to the website\n https://cloud.google.com/ml-engine/docs/how-tos/batch-predict\n and for Cloud Dataflow, https://cloud.google.com/dataflow/docs/\n\n It returns three chained operators for prediction, summary, and validation,\n named as ``<prefix>-prediction``, ``<prefix>-summary``, and ``<prefix>-validation``,\n respectively.\n (``<prefix>`` should contain only alphanumeric characters or hyphen.)\n\n The upstream and downstream can be set accordingly like:\n\n .. code-block:: python\n\n pred, _, val = create_evaluate_ops(...)\n pred.set_upstream(upstream_op)\n ...\n downstream_op.set_upstream(val)\n\n Callers will provide two python callables, metric_fn and validate_fn, in\n order to customize the evaluation behavior as they wish.\n\n - metric_fn receives a dictionary per instance derived from json in the\n batch prediction result. The keys might vary depending on the model.\n It should return a tuple of metrics.\n - validation_fn receives a dictionary of the averaged metrics that metric_fn\n generated over all instances.\n The key/value of the dictionary matches to what\'s given by\n metric_fn_and_keys arg.\n The dictionary contains an additional metric, \'count\' to represent the\n total number of instances received for evaluation.\n The function would raise an exception to mark the task as failed, in a\n case the validation result is not okay to proceed (i.e. to set the trained\n version as default).\n\n Typical examples are like this:\n\n .. code-block:: python\n\n def get_metric_fn_and_keys():\n import math # imports should be outside of the metric_fn below.\n\n def error_and_squared_error(inst):\n label = float(inst["input_label"])\n classes = float(inst["classes"]) # 0 or 1\n err = abs(classes - label)\n squared_err = math.pow(classes - label, 2)\n return (err, squared_err) # returns a tuple.\n\n return error_and_squared_error, ["err", "mse"] # key order must match.\n\n\n def validate_err_and_count(summary):\n if summary["err"] > 0.2:\n raise ValueError("Too high err>0.2; summary=%s" % summary)\n if summary["mse"] > 0.05:\n raise ValueError("Too high mse>0.05; summary=%s" % summary)\n if summary["count"] < 1000:\n raise ValueError("Too few instances<1000; summary=%s" % summary)\n return summary\n\n For the details on the other BatchPrediction-related arguments (project_id,\n job_id, region, data_format, input_paths, prediction_path, model_uri),\n please refer to MLEngineBatchPredictionOperator too.\n\n :param task_prefix: a prefix for the tasks. Only alphanumeric characters and\n hyphen are allowed (no underscores), since this will be used as dataflow\n job name, which doesn\'t allow other characters.\n :type task_prefix: str\n\n :param data_format: either of \'TEXT\', \'TF_RECORD\', \'TF_RECORD_GZIP\'\n :type data_format: str\n\n :param input_paths: a list of input paths to be sent to BatchPrediction.\n :type input_paths: list[str]\n\n :param prediction_path: GCS path to put the prediction results in.\n :type prediction_path: str\n\n :param metric_fn_and_keys: a tuple of metric_fn and metric_keys:\n\n - metric_fn is a function that accepts a dictionary (for an instance),\n and returns a tuple of metric(s) that it calculates.\n\n - metric_keys is a list of strings to denote the key of each metric.\n :type metric_fn_and_keys: tuple of a function and a list[str]\n\n :param validate_fn: a function to validate whether the averaged metric(s) is\n good enough to push the model.\n :type validate_fn: function\n\n :param batch_prediction_job_id: the id to use for the Cloud ML Batch\n prediction job. Passed directly to the MLEngineBatchPredictionOperator as\n the job_id argument.\n :type batch_prediction_job_id: str\n\n :param project_id: the Google Cloud project id in which to execute\n Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`\'s\n `default_args[\'project_id\']` will be used.\n :type project_id: str\n\n :param region: the Google Cloud region in which to execute Cloud ML\n Batch Prediction and Dataflow jobs. If None, then the `dag`\'s\n `default_args[\'region\']` will be used.\n :type region: str\n\n :param dataflow_options: options to run Dataflow jobs. If None, then the\n `dag`\'s `default_args[\'dataflow_default_options\']` will be used.\n :type dataflow_options: dictionary\n\n :param model_uri: GCS path of the model exported by Tensorflow using\n ``tensorflow.estimator.export_savedmodel()``. It cannot be used with\n model_name or version_name below. See MLEngineBatchPredictionOperator for\n more detail.\n :type model_uri: str\n\n :param model_name: Used to indicate a model to use for prediction. Can be\n used in combination with version_name, but cannot be used together with\n model_uri. See MLEngineBatchPredictionOperator for more detail. If None,\n then the `dag`\'s `default_args[\'model_name\']` will be used.\n :type model_name: str\n\n :param version_name: Used to indicate a model version to use for prediction,\n in combination with model_name. Cannot be used together with model_uri.\n See MLEngineBatchPredictionOperator for more detail. If None, then the\n `dag`\'s `default_args[\'version_name\']` will be used.\n :type version_name: str\n\n :param dag: The `DAG` to use for all Operators.\n :type dag: airflow.models.DAG\n\n :param py_interpreter: Python version of the beam pipeline.\n If None, this defaults to the python3.\n To track python versions supported by beam and related\n issues check: https://issues.apache.org/jira/browse/BEAM-1251\n :type py_interpreter: str\n\n :returns: a tuple of three operators, (prediction, summary, validation)\n :rtype: tuple(DataFlowPythonOperator, DataFlowPythonOperator,\n PythonOperator)\n ' batch_prediction_job_id = (batch_prediction_job_id or ) dataflow_options = (dataflow_options or {}) region = (region or ) if (not re.match('^[a-zA-Z][-A-Za-z0-9]*$', task_prefix)): raise AirflowException(('Malformed task_id for DataFlowPythonOperator (only alphanumeric and hyphens are allowed but got: ' + task_prefix)) (metric_fn, metric_keys) = metric_fn_and_keys if (not callable(metric_fn)): raise AirflowException('`metric_fn` param must be callable.') if (not callable(validate_fn)): raise AirflowException('`validate_fn` param must be callable.') if ((dag is not None) and (dag.default_args is not None)): default_args = dag.default_args project_id = (project_id or default_args.get('project_id')) region = (region or default_args['region']) model_name = (model_name or default_args.get('model_name')) version_name = (version_name or default_args.get('version_name')) dataflow_options = (dataflow_options or default_args.get('dataflow_default_options')) evaluate_prediction = MLEngineStartBatchPredictionJobOperator(task_id=(task_prefix + '-prediction'), project_id=project_id, job_id=batch_prediction_job_id, region=region, data_format=data_format, input_paths=input_paths, output_path=prediction_path, uri=model_uri, model_name=model_name, version_name=version_name, dag=dag) metric_fn_encoded = base64.b64encode(dill.dumps(metric_fn, recurse=True)).decode() evaluate_summary = BeamRunPythonPipelineOperator(task_id=(task_prefix + '-summary'), py_file=os.path.join(os.path.dirname(__file__), 'mlengine_prediction_summary.py'), default_pipeline_options=dataflow_options, pipeline_options={'prediction_path': prediction_path, 'metric_fn_encoded': metric_fn_encoded, 'metric_keys': ','.join(metric_keys)}, py_interpreter=py_interpreter, py_requirements=['apache-beam[gcp]>=2.14.0'], dag=dag) evaluate_summary.set_upstream(evaluate_prediction) def apply_validate_fn(*args, templates_dict, **kwargs): prediction_path = templates_dict['prediction_path'] (scheme, bucket, obj, _, _) = urlsplit(prediction_path) if ((scheme != 'gs') or (not bucket) or (not obj)): raise ValueError(f'Wrong format prediction_path: {prediction_path}') summary = os.path.join(obj.strip('/'), 'prediction.summary.json') gcs_hook = GCSHook() summary = json.loads(gcs_hook.download(bucket, summary)) return validate_fn(summary) evaluate_validation = PythonOperator(task_id=(task_prefix + '-validation'), python_callable=apply_validate_fn, templates_dict={'prediction_path': prediction_path}, dag=dag) evaluate_validation.set_upstream(evaluate_summary) return (evaluate_prediction, evaluate_summary, evaluate_validation)
def create_evaluate_ops(task_prefix: str, data_format: str, input_paths: List[str], prediction_path: str, metric_fn_and_keys: Tuple[(T, Iterable[str])], validate_fn: T, batch_prediction_job_id: Optional[str]=None, region: Optional[str]=None, project_id: Optional[str]=None, dataflow_options: Optional[Dict]=None, model_uri: Optional[str]=None, model_name: Optional[str]=None, version_name: Optional[str]=None, dag: Optional[DAG]=None, py_interpreter='python3'): '\n Creates Operators needed for model evaluation and returns.\n\n It gets prediction over inputs via Cloud ML Engine BatchPrediction API by\n calling MLEngineBatchPredictionOperator, then summarize and validate\n the result via Cloud Dataflow using DataFlowPythonOperator.\n\n For details and pricing about Batch prediction, please refer to the website\n https://cloud.google.com/ml-engine/docs/how-tos/batch-predict\n and for Cloud Dataflow, https://cloud.google.com/dataflow/docs/\n\n It returns three chained operators for prediction, summary, and validation,\n named as ``<prefix>-prediction``, ``<prefix>-summary``, and ``<prefix>-validation``,\n respectively.\n (``<prefix>`` should contain only alphanumeric characters or hyphen.)\n\n The upstream and downstream can be set accordingly like:\n\n .. code-block:: python\n\n pred, _, val = create_evaluate_ops(...)\n pred.set_upstream(upstream_op)\n ...\n downstream_op.set_upstream(val)\n\n Callers will provide two python callables, metric_fn and validate_fn, in\n order to customize the evaluation behavior as they wish.\n\n - metric_fn receives a dictionary per instance derived from json in the\n batch prediction result. The keys might vary depending on the model.\n It should return a tuple of metrics.\n - validation_fn receives a dictionary of the averaged metrics that metric_fn\n generated over all instances.\n The key/value of the dictionary matches to what\'s given by\n metric_fn_and_keys arg.\n The dictionary contains an additional metric, \'count\' to represent the\n total number of instances received for evaluation.\n The function would raise an exception to mark the task as failed, in a\n case the validation result is not okay to proceed (i.e. to set the trained\n version as default).\n\n Typical examples are like this:\n\n .. code-block:: python\n\n def get_metric_fn_and_keys():\n import math # imports should be outside of the metric_fn below.\n\n def error_and_squared_error(inst):\n label = float(inst["input_label"])\n classes = float(inst["classes"]) # 0 or 1\n err = abs(classes - label)\n squared_err = math.pow(classes - label, 2)\n return (err, squared_err) # returns a tuple.\n\n return error_and_squared_error, ["err", "mse"] # key order must match.\n\n\n def validate_err_and_count(summary):\n if summary["err"] > 0.2:\n raise ValueError("Too high err>0.2; summary=%s" % summary)\n if summary["mse"] > 0.05:\n raise ValueError("Too high mse>0.05; summary=%s" % summary)\n if summary["count"] < 1000:\n raise ValueError("Too few instances<1000; summary=%s" % summary)\n return summary\n\n For the details on the other BatchPrediction-related arguments (project_id,\n job_id, region, data_format, input_paths, prediction_path, model_uri),\n please refer to MLEngineBatchPredictionOperator too.\n\n :param task_prefix: a prefix for the tasks. Only alphanumeric characters and\n hyphen are allowed (no underscores), since this will be used as dataflow\n job name, which doesn\'t allow other characters.\n :type task_prefix: str\n\n :param data_format: either of \'TEXT\', \'TF_RECORD\', \'TF_RECORD_GZIP\'\n :type data_format: str\n\n :param input_paths: a list of input paths to be sent to BatchPrediction.\n :type input_paths: list[str]\n\n :param prediction_path: GCS path to put the prediction results in.\n :type prediction_path: str\n\n :param metric_fn_and_keys: a tuple of metric_fn and metric_keys:\n\n - metric_fn is a function that accepts a dictionary (for an instance),\n and returns a tuple of metric(s) that it calculates.\n\n - metric_keys is a list of strings to denote the key of each metric.\n :type metric_fn_and_keys: tuple of a function and a list[str]\n\n :param validate_fn: a function to validate whether the averaged metric(s) is\n good enough to push the model.\n :type validate_fn: function\n\n :param batch_prediction_job_id: the id to use for the Cloud ML Batch\n prediction job. Passed directly to the MLEngineBatchPredictionOperator as\n the job_id argument.\n :type batch_prediction_job_id: str\n\n :param project_id: the Google Cloud project id in which to execute\n Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`\'s\n `default_args[\'project_id\']` will be used.\n :type project_id: str\n\n :param region: the Google Cloud region in which to execute Cloud ML\n Batch Prediction and Dataflow jobs. If None, then the `dag`\'s\n `default_args[\'region\']` will be used.\n :type region: str\n\n :param dataflow_options: options to run Dataflow jobs. If None, then the\n `dag`\'s `default_args[\'dataflow_default_options\']` will be used.\n :type dataflow_options: dictionary\n\n :param model_uri: GCS path of the model exported by Tensorflow using\n ``tensorflow.estimator.export_savedmodel()``. It cannot be used with\n model_name or version_name below. See MLEngineBatchPredictionOperator for\n more detail.\n :type model_uri: str\n\n :param model_name: Used to indicate a model to use for prediction. Can be\n used in combination with version_name, but cannot be used together with\n model_uri. See MLEngineBatchPredictionOperator for more detail. If None,\n then the `dag`\'s `default_args[\'model_name\']` will be used.\n :type model_name: str\n\n :param version_name: Used to indicate a model version to use for prediction,\n in combination with model_name. Cannot be used together with model_uri.\n See MLEngineBatchPredictionOperator for more detail. If None, then the\n `dag`\'s `default_args[\'version_name\']` will be used.\n :type version_name: str\n\n :param dag: The `DAG` to use for all Operators.\n :type dag: airflow.models.DAG\n\n :param py_interpreter: Python version of the beam pipeline.\n If None, this defaults to the python3.\n To track python versions supported by beam and related\n issues check: https://issues.apache.org/jira/browse/BEAM-1251\n :type py_interpreter: str\n\n :returns: a tuple of three operators, (prediction, summary, validation)\n :rtype: tuple(DataFlowPythonOperator, DataFlowPythonOperator,\n PythonOperator)\n ' batch_prediction_job_id = (batch_prediction_job_id or ) dataflow_options = (dataflow_options or {}) region = (region or ) if (not re.match('^[a-zA-Z][-A-Za-z0-9]*$', task_prefix)): raise AirflowException(('Malformed task_id for DataFlowPythonOperator (only alphanumeric and hyphens are allowed but got: ' + task_prefix)) (metric_fn, metric_keys) = metric_fn_and_keys if (not callable(metric_fn)): raise AirflowException('`metric_fn` param must be callable.') if (not callable(validate_fn)): raise AirflowException('`validate_fn` param must be callable.') if ((dag is not None) and (dag.default_args is not None)): default_args = dag.default_args project_id = (project_id or default_args.get('project_id')) region = (region or default_args['region']) model_name = (model_name or default_args.get('model_name')) version_name = (version_name or default_args.get('version_name')) dataflow_options = (dataflow_options or default_args.get('dataflow_default_options')) evaluate_prediction = MLEngineStartBatchPredictionJobOperator(task_id=(task_prefix + '-prediction'), project_id=project_id, job_id=batch_prediction_job_id, region=region, data_format=data_format, input_paths=input_paths, output_path=prediction_path, uri=model_uri, model_name=model_name, version_name=version_name, dag=dag) metric_fn_encoded = base64.b64encode(dill.dumps(metric_fn, recurse=True)).decode() evaluate_summary = BeamRunPythonPipelineOperator(task_id=(task_prefix + '-summary'), py_file=os.path.join(os.path.dirname(__file__), 'mlengine_prediction_summary.py'), default_pipeline_options=dataflow_options, pipeline_options={'prediction_path': prediction_path, 'metric_fn_encoded': metric_fn_encoded, 'metric_keys': ','.join(metric_keys)}, py_interpreter=py_interpreter, py_requirements=['apache-beam[gcp]>=2.14.0'], dag=dag) evaluate_summary.set_upstream(evaluate_prediction) def apply_validate_fn(*args, templates_dict, **kwargs): prediction_path = templates_dict['prediction_path'] (scheme, bucket, obj, _, _) = urlsplit(prediction_path) if ((scheme != 'gs') or (not bucket) or (not obj)): raise ValueError(f'Wrong format prediction_path: {prediction_path}') summary = os.path.join(obj.strip('/'), 'prediction.summary.json') gcs_hook = GCSHook() summary = json.loads(gcs_hook.download(bucket, summary)) return validate_fn(summary) evaluate_validation = PythonOperator(task_id=(task_prefix + '-validation'), python_callable=apply_validate_fn, templates_dict={'prediction_path': prediction_path}, dag=dag) evaluate_validation.set_upstream(evaluate_summary) return (evaluate_prediction, evaluate_summary, evaluate_validation)<|docstring|>Creates Operators needed for model evaluation and returns. It gets prediction over inputs via Cloud ML Engine BatchPrediction API by calling MLEngineBatchPredictionOperator, then summarize and validate the result via Cloud Dataflow using DataFlowPythonOperator. For details and pricing about Batch prediction, please refer to the website https://cloud.google.com/ml-engine/docs/how-tos/batch-predict and for Cloud Dataflow, https://cloud.google.com/dataflow/docs/ It returns three chained operators for prediction, summary, and validation, named as ``<prefix>-prediction``, ``<prefix>-summary``, and ``<prefix>-validation``, respectively. (``<prefix>`` should contain only alphanumeric characters or hyphen.) The upstream and downstream can be set accordingly like: .. code-block:: python pred, _, val = create_evaluate_ops(...) pred.set_upstream(upstream_op) ... downstream_op.set_upstream(val) Callers will provide two python callables, metric_fn and validate_fn, in order to customize the evaluation behavior as they wish. - metric_fn receives a dictionary per instance derived from json in the batch prediction result. The keys might vary depending on the model. It should return a tuple of metrics. - validation_fn receives a dictionary of the averaged metrics that metric_fn generated over all instances. The key/value of the dictionary matches to what's given by metric_fn_and_keys arg. The dictionary contains an additional metric, 'count' to represent the total number of instances received for evaluation. The function would raise an exception to mark the task as failed, in a case the validation result is not okay to proceed (i.e. to set the trained version as default). Typical examples are like this: .. code-block:: python def get_metric_fn_and_keys(): import math # imports should be outside of the metric_fn below. def error_and_squared_error(inst): label = float(inst["input_label"]) classes = float(inst["classes"]) # 0 or 1 err = abs(classes - label) squared_err = math.pow(classes - label, 2) return (err, squared_err) # returns a tuple. return error_and_squared_error, ["err", "mse"] # key order must match. def validate_err_and_count(summary): if summary["err"] > 0.2: raise ValueError("Too high err>0.2; summary=%s" % summary) if summary["mse"] > 0.05: raise ValueError("Too high mse>0.05; summary=%s" % summary) if summary["count"] < 1000: raise ValueError("Too few instances<1000; summary=%s" % summary) return summary For the details on the other BatchPrediction-related arguments (project_id, job_id, region, data_format, input_paths, prediction_path, model_uri), please refer to MLEngineBatchPredictionOperator too. :param task_prefix: a prefix for the tasks. Only alphanumeric characters and hyphen are allowed (no underscores), since this will be used as dataflow job name, which doesn't allow other characters. :type task_prefix: str :param data_format: either of 'TEXT', 'TF_RECORD', 'TF_RECORD_GZIP' :type data_format: str :param input_paths: a list of input paths to be sent to BatchPrediction. :type input_paths: list[str] :param prediction_path: GCS path to put the prediction results in. :type prediction_path: str :param metric_fn_and_keys: a tuple of metric_fn and metric_keys: - metric_fn is a function that accepts a dictionary (for an instance), and returns a tuple of metric(s) that it calculates. - metric_keys is a list of strings to denote the key of each metric. :type metric_fn_and_keys: tuple of a function and a list[str] :param validate_fn: a function to validate whether the averaged metric(s) is good enough to push the model. :type validate_fn: function :param batch_prediction_job_id: the id to use for the Cloud ML Batch prediction job. Passed directly to the MLEngineBatchPredictionOperator as the job_id argument. :type batch_prediction_job_id: str :param project_id: the Google Cloud project id in which to execute Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`'s `default_args['project_id']` will be used. :type project_id: str :param region: the Google Cloud region in which to execute Cloud ML Batch Prediction and Dataflow jobs. If None, then the `dag`'s `default_args['region']` will be used. :type region: str :param dataflow_options: options to run Dataflow jobs. If None, then the `dag`'s `default_args['dataflow_default_options']` will be used. :type dataflow_options: dictionary :param model_uri: GCS path of the model exported by Tensorflow using ``tensorflow.estimator.export_savedmodel()``. It cannot be used with model_name or version_name below. See MLEngineBatchPredictionOperator for more detail. :type model_uri: str :param model_name: Used to indicate a model to use for prediction. Can be used in combination with version_name, but cannot be used together with model_uri. See MLEngineBatchPredictionOperator for more detail. If None, then the `dag`'s `default_args['model_name']` will be used. :type model_name: str :param version_name: Used to indicate a model version to use for prediction, in combination with model_name. Cannot be used together with model_uri. See MLEngineBatchPredictionOperator for more detail. If None, then the `dag`'s `default_args['version_name']` will be used. :type version_name: str :param dag: The `DAG` to use for all Operators. :type dag: airflow.models.DAG :param py_interpreter: Python version of the beam pipeline. If None, this defaults to the python3. To track python versions supported by beam and related issues check: https://issues.apache.org/jira/browse/BEAM-1251 :type py_interpreter: str :returns: a tuple of three operators, (prediction, summary, validation) :rtype: tuple(DataFlowPythonOperator, DataFlowPythonOperator, PythonOperator)<|endoftext|>
15bcfc2cc3821aea0e935d2e7e02de83dc20dbbe00680e988b03d026bf45e0b8
def u_net(shape, nb_filters=64, conv_size=3, initialization='glorot_uniform', depth=4, inc_rate=2.0, activation='relu', dropout=0, output_channels=5, batchnorm=False, maxpool=True, upconv=True, pretrain=0, sigma_noise=0): 'U-Net model.\n\n Standard U-Net model, plus optional gaussian noise.\n Note that the dimensions of the input images should be\n multiples of 16.\n\n Arguments:\n shape: image shape, in the format (nb_channels, x_size, y_size).\n nb_filters : initial number of filters in the convolutional layer.\n depth : The depth of the U-net, i.e. the number of contracting steps before expansion begins\n inc_rate : the multiplier for number of filters per layer\n conv_size : size of convolution.\n initialization: initialization of the convolutional layers.\n activation: activation of the convolutional layers.\n sigma_noise: standard deviation of the gaussian noise layer. If equal to zero, this layer is deactivated.\n output_channels: number of output channels.\n drop: dropout rate\n\n Returns:\n U-Net model - it still needs to be compiled.\n\n Reference:\n U-Net: Convolutional Networks for Biomedical Image Segmentation\n Olaf Ronneberger, Philipp Fischer, Thomas Brox\n MICCAI 2015\n\n Credits:\n The starting point for the code of this function comes from:\n https://github.com/jocicmarko/ultrasound-nerve-segmentation\n by Marko Jocic\n ' i = Input(shape, name='input_layer') o = level_block(i, nb_filters, conv_size, initialization, depth, inc_rate, activation, dropout, batchnorm, maxpool, upconv) if (sigma_noise > 0): o = GaussianNoise(sigma_noise, name='GaussianNoise_preout')(o) o = Conv2D(output_channels, 1, activation='softmax', name='conv_out')(o) if (pretrain > 0): pretrained_model = keras.applications.vgg19.VGG19(include_top=False, weights='imagenet', input_tensor=None, input_shape=shape, pooling='max') w = [] pretrain_layers = ['block{}_conv{}'.format(block, layer) for block in range(1, (pretrain + 1)) for layer in range(1, 3)] for n in pretrain_layers: w.append(pretrained_model.get_layer(name=n).get_weights()) del pretrained_model new_model = Model(inputs=i, outputs=o) for (i, n) in enumerate(pretrain_layers): new_model.get_layer(name=n).set_weights(w[i]) return new_model return Model(inputs=i, outputs=o)
U-Net model. Standard U-Net model, plus optional gaussian noise. Note that the dimensions of the input images should be multiples of 16. Arguments: shape: image shape, in the format (nb_channels, x_size, y_size). nb_filters : initial number of filters in the convolutional layer. depth : The depth of the U-net, i.e. the number of contracting steps before expansion begins inc_rate : the multiplier for number of filters per layer conv_size : size of convolution. initialization: initialization of the convolutional layers. activation: activation of the convolutional layers. sigma_noise: standard deviation of the gaussian noise layer. If equal to zero, this layer is deactivated. output_channels: number of output channels. drop: dropout rate Returns: U-Net model - it still needs to be compiled. Reference: U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015 Credits: The starting point for the code of this function comes from: https://github.com/jocicmarko/ultrasound-nerve-segmentation by Marko Jocic
src/mmciad/utils/.ipynb_checkpoints/u_net-checkpoint.py
u_net
bjtho08/mmciad
0
python
def u_net(shape, nb_filters=64, conv_size=3, initialization='glorot_uniform', depth=4, inc_rate=2.0, activation='relu', dropout=0, output_channels=5, batchnorm=False, maxpool=True, upconv=True, pretrain=0, sigma_noise=0): 'U-Net model.\n\n Standard U-Net model, plus optional gaussian noise.\n Note that the dimensions of the input images should be\n multiples of 16.\n\n Arguments:\n shape: image shape, in the format (nb_channels, x_size, y_size).\n nb_filters : initial number of filters in the convolutional layer.\n depth : The depth of the U-net, i.e. the number of contracting steps before expansion begins\n inc_rate : the multiplier for number of filters per layer\n conv_size : size of convolution.\n initialization: initialization of the convolutional layers.\n activation: activation of the convolutional layers.\n sigma_noise: standard deviation of the gaussian noise layer. If equal to zero, this layer is deactivated.\n output_channels: number of output channels.\n drop: dropout rate\n\n Returns:\n U-Net model - it still needs to be compiled.\n\n Reference:\n U-Net: Convolutional Networks for Biomedical Image Segmentation\n Olaf Ronneberger, Philipp Fischer, Thomas Brox\n MICCAI 2015\n\n Credits:\n The starting point for the code of this function comes from:\n https://github.com/jocicmarko/ultrasound-nerve-segmentation\n by Marko Jocic\n ' i = Input(shape, name='input_layer') o = level_block(i, nb_filters, conv_size, initialization, depth, inc_rate, activation, dropout, batchnorm, maxpool, upconv) if (sigma_noise > 0): o = GaussianNoise(sigma_noise, name='GaussianNoise_preout')(o) o = Conv2D(output_channels, 1, activation='softmax', name='conv_out')(o) if (pretrain > 0): pretrained_model = keras.applications.vgg19.VGG19(include_top=False, weights='imagenet', input_tensor=None, input_shape=shape, pooling='max') w = [] pretrain_layers = ['block{}_conv{}'.format(block, layer) for block in range(1, (pretrain + 1)) for layer in range(1, 3)] for n in pretrain_layers: w.append(pretrained_model.get_layer(name=n).get_weights()) del pretrained_model new_model = Model(inputs=i, outputs=o) for (i, n) in enumerate(pretrain_layers): new_model.get_layer(name=n).set_weights(w[i]) return new_model return Model(inputs=i, outputs=o)
def u_net(shape, nb_filters=64, conv_size=3, initialization='glorot_uniform', depth=4, inc_rate=2.0, activation='relu', dropout=0, output_channels=5, batchnorm=False, maxpool=True, upconv=True, pretrain=0, sigma_noise=0): 'U-Net model.\n\n Standard U-Net model, plus optional gaussian noise.\n Note that the dimensions of the input images should be\n multiples of 16.\n\n Arguments:\n shape: image shape, in the format (nb_channels, x_size, y_size).\n nb_filters : initial number of filters in the convolutional layer.\n depth : The depth of the U-net, i.e. the number of contracting steps before expansion begins\n inc_rate : the multiplier for number of filters per layer\n conv_size : size of convolution.\n initialization: initialization of the convolutional layers.\n activation: activation of the convolutional layers.\n sigma_noise: standard deviation of the gaussian noise layer. If equal to zero, this layer is deactivated.\n output_channels: number of output channels.\n drop: dropout rate\n\n Returns:\n U-Net model - it still needs to be compiled.\n\n Reference:\n U-Net: Convolutional Networks for Biomedical Image Segmentation\n Olaf Ronneberger, Philipp Fischer, Thomas Brox\n MICCAI 2015\n\n Credits:\n The starting point for the code of this function comes from:\n https://github.com/jocicmarko/ultrasound-nerve-segmentation\n by Marko Jocic\n ' i = Input(shape, name='input_layer') o = level_block(i, nb_filters, conv_size, initialization, depth, inc_rate, activation, dropout, batchnorm, maxpool, upconv) if (sigma_noise > 0): o = GaussianNoise(sigma_noise, name='GaussianNoise_preout')(o) o = Conv2D(output_channels, 1, activation='softmax', name='conv_out')(o) if (pretrain > 0): pretrained_model = keras.applications.vgg19.VGG19(include_top=False, weights='imagenet', input_tensor=None, input_shape=shape, pooling='max') w = [] pretrain_layers = ['block{}_conv{}'.format(block, layer) for block in range(1, (pretrain + 1)) for layer in range(1, 3)] for n in pretrain_layers: w.append(pretrained_model.get_layer(name=n).get_weights()) del pretrained_model new_model = Model(inputs=i, outputs=o) for (i, n) in enumerate(pretrain_layers): new_model.get_layer(name=n).set_weights(w[i]) return new_model return Model(inputs=i, outputs=o)<|docstring|>U-Net model. Standard U-Net model, plus optional gaussian noise. Note that the dimensions of the input images should be multiples of 16. Arguments: shape: image shape, in the format (nb_channels, x_size, y_size). nb_filters : initial number of filters in the convolutional layer. depth : The depth of the U-net, i.e. the number of contracting steps before expansion begins inc_rate : the multiplier for number of filters per layer conv_size : size of convolution. initialization: initialization of the convolutional layers. activation: activation of the convolutional layers. sigma_noise: standard deviation of the gaussian noise layer. If equal to zero, this layer is deactivated. output_channels: number of output channels. drop: dropout rate Returns: U-Net model - it still needs to be compiled. Reference: U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015 Credits: The starting point for the code of this function comes from: https://github.com/jocicmarko/ultrasound-nerve-segmentation by Marko Jocic<|endoftext|>
6692f569c3dd07567059d4a1ab16f4cfad49898169ba646861c1620dbe38569c
def test_extra_tokens(): 'Extra tokens should persist between multiple calls of the same renderer,\n but be reset if initiating a new renderer.\n ' output_nomath = {'type': 'Document', 'front_matter': None, 'link_definitions': {}, 'footnotes': {}, 'footref_order': [], 'children': [{'type': 'Paragraph', 'children': [{'type': 'RawText', 'content': '$b$', 'position': None}], 'position': {'line_start': 1, 'line_end': 1, 'uri': None, 'data': {}}}]} output_math = {'type': 'Document', 'front_matter': None, 'link_definitions': {}, 'footnotes': {}, 'footref_order': [], 'children': [{'type': 'Paragraph', 'children': [{'type': 'Math', 'content': '$b$'}], 'position': {'line_start': 1, 'line_end': 1, 'uri': None, 'data': {}}}]} with JsonRenderer() as render: output = render.render(Document.read(['$b$']), as_string=False) print(output) assert (output == output_nomath) renderer = JsonRenderer(parse_context=ParseContext(find_spans=LaTeXRenderer.default_span_tokens)) with renderer as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_math) with renderer as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_math) with JsonRenderer() as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_nomath)
Extra tokens should persist between multiple calls of the same renderer, but be reset if initiating a new renderer.
test/test_renderers/test_json_renderer.py
test_extra_tokens
executablebooks/mistletoe-ebp
2
python
def test_extra_tokens(): 'Extra tokens should persist between multiple calls of the same renderer,\n but be reset if initiating a new renderer.\n ' output_nomath = {'type': 'Document', 'front_matter': None, 'link_definitions': {}, 'footnotes': {}, 'footref_order': [], 'children': [{'type': 'Paragraph', 'children': [{'type': 'RawText', 'content': '$b$', 'position': None}], 'position': {'line_start': 1, 'line_end': 1, 'uri': None, 'data': {}}}]} output_math = {'type': 'Document', 'front_matter': None, 'link_definitions': {}, 'footnotes': {}, 'footref_order': [], 'children': [{'type': 'Paragraph', 'children': [{'type': 'Math', 'content': '$b$'}], 'position': {'line_start': 1, 'line_end': 1, 'uri': None, 'data': {}}}]} with JsonRenderer() as render: output = render.render(Document.read(['$b$']), as_string=False) print(output) assert (output == output_nomath) renderer = JsonRenderer(parse_context=ParseContext(find_spans=LaTeXRenderer.default_span_tokens)) with renderer as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_math) with renderer as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_math) with JsonRenderer() as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_nomath)
def test_extra_tokens(): 'Extra tokens should persist between multiple calls of the same renderer,\n but be reset if initiating a new renderer.\n ' output_nomath = {'type': 'Document', 'front_matter': None, 'link_definitions': {}, 'footnotes': {}, 'footref_order': [], 'children': [{'type': 'Paragraph', 'children': [{'type': 'RawText', 'content': '$b$', 'position': None}], 'position': {'line_start': 1, 'line_end': 1, 'uri': None, 'data': {}}}]} output_math = {'type': 'Document', 'front_matter': None, 'link_definitions': {}, 'footnotes': {}, 'footref_order': [], 'children': [{'type': 'Paragraph', 'children': [{'type': 'Math', 'content': '$b$'}], 'position': {'line_start': 1, 'line_end': 1, 'uri': None, 'data': {}}}]} with JsonRenderer() as render: output = render.render(Document.read(['$b$']), as_string=False) print(output) assert (output == output_nomath) renderer = JsonRenderer(parse_context=ParseContext(find_spans=LaTeXRenderer.default_span_tokens)) with renderer as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_math) with renderer as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_math) with JsonRenderer() as render: output = render.render(Document.read(['$b$']), as_string=False) assert (output == output_nomath)<|docstring|>Extra tokens should persist between multiple calls of the same renderer, but be reset if initiating a new renderer.<|endoftext|>
0a37bde166b5c31d2bd497149b373fb702fb03fb0b8c88c33aaafb15b6ff39e9
def __init__(self): '\n Normalizer constructor. Initializes constants that will be used for\n data transformation.\n ' self.train_min = 0 self.train_max = 0 self.centering_shift_constant = 0 self.zero_shift_constant = (10 ** (- 6))
Normalizer constructor. Initializes constants that will be used for data transformation.
emulator/normalization.py
__init__
hutchresearch/deep_climate_emulator
7
python
def __init__(self): '\n Normalizer constructor. Initializes constants that will be used for\n data transformation.\n ' self.train_min = 0 self.train_max = 0 self.centering_shift_constant = 0 self.zero_shift_constant = (10 ** (- 6))
def __init__(self): '\n Normalizer constructor. Initializes constants that will be used for\n data transformation.\n ' self.train_min = 0 self.train_max = 0 self.centering_shift_constant = 0 self.zero_shift_constant = (10 ** (- 6))<|docstring|>Normalizer constructor. Initializes constants that will be used for data transformation.<|endoftext|>
c38ea8adce9e5ba9e12696e8c3f142c353dcb3fb79f59f659fec76b6469fd60f
def transform(self, data, train_len, copy=True): '\n Applies log transformation and scales values b/t -1 and 1.\n\n Args:\n data (ndarray): Collection of data points\n train_len (int): Length of the training set\n copy (bool): If true, creates a copy of th data array\n\n Returns:\n (ndarray): Array of normalized data points\n ' if copy: data = deepcopy(data) data += self.zero_shift_constant data = np.log2(data) self.train_min = data[:train_len].min() data -= self.train_min self.train_max = data[:train_len].max() data /= self.train_max data *= 2 self.centering_shift_constant = ((data.max() - data.min()) / 2) data -= self.centering_shift_constant return data
Applies log transformation and scales values b/t -1 and 1. Args: data (ndarray): Collection of data points train_len (int): Length of the training set copy (bool): If true, creates a copy of th data array Returns: (ndarray): Array of normalized data points
emulator/normalization.py
transform
hutchresearch/deep_climate_emulator
7
python
def transform(self, data, train_len, copy=True): '\n Applies log transformation and scales values b/t -1 and 1.\n\n Args:\n data (ndarray): Collection of data points\n train_len (int): Length of the training set\n copy (bool): If true, creates a copy of th data array\n\n Returns:\n (ndarray): Array of normalized data points\n ' if copy: data = deepcopy(data) data += self.zero_shift_constant data = np.log2(data) self.train_min = data[:train_len].min() data -= self.train_min self.train_max = data[:train_len].max() data /= self.train_max data *= 2 self.centering_shift_constant = ((data.max() - data.min()) / 2) data -= self.centering_shift_constant return data
def transform(self, data, train_len, copy=True): '\n Applies log transformation and scales values b/t -1 and 1.\n\n Args:\n data (ndarray): Collection of data points\n train_len (int): Length of the training set\n copy (bool): If true, creates a copy of th data array\n\n Returns:\n (ndarray): Array of normalized data points\n ' if copy: data = deepcopy(data) data += self.zero_shift_constant data = np.log2(data) self.train_min = data[:train_len].min() data -= self.train_min self.train_max = data[:train_len].max() data /= self.train_max data *= 2 self.centering_shift_constant = ((data.max() - data.min()) / 2) data -= self.centering_shift_constant return data<|docstring|>Applies log transformation and scales values b/t -1 and 1. Args: data (ndarray): Collection of data points train_len (int): Length of the training set copy (bool): If true, creates a copy of th data array Returns: (ndarray): Array of normalized data points<|endoftext|>
c267337f56db49551d1c654b320b83eff71e8577a44f5d39bf4575ef77716ca0
def inverse_transform(self, data): '\n Applies the inverse transformation.\n\n Args:\n data (ndarray): Collection of data points\n\n Returns:\n (ndarray): Array of denormalized data points\n ' data += self.centering_shift_constant data /= 2 data *= self.train_max data += self.train_min data = np.power(2, data) data -= self.zero_shift_constant return data
Applies the inverse transformation. Args: data (ndarray): Collection of data points Returns: (ndarray): Array of denormalized data points
emulator/normalization.py
inverse_transform
hutchresearch/deep_climate_emulator
7
python
def inverse_transform(self, data): '\n Applies the inverse transformation.\n\n Args:\n data (ndarray): Collection of data points\n\n Returns:\n (ndarray): Array of denormalized data points\n ' data += self.centering_shift_constant data /= 2 data *= self.train_max data += self.train_min data = np.power(2, data) data -= self.zero_shift_constant return data
def inverse_transform(self, data): '\n Applies the inverse transformation.\n\n Args:\n data (ndarray): Collection of data points\n\n Returns:\n (ndarray): Array of denormalized data points\n ' data += self.centering_shift_constant data /= 2 data *= self.train_max data += self.train_min data = np.power(2, data) data -= self.zero_shift_constant return data<|docstring|>Applies the inverse transformation. Args: data (ndarray): Collection of data points Returns: (ndarray): Array of denormalized data points<|endoftext|>
0052d0133402a3ea96564147cfcd63164f192e47880cb1379cfdde03f1f36491
@build_hypothesis.command('glycopeptide-fa', short_help='Build glycopeptide search spaces with a FASTA file of proteins') @click.pass_context @glycopeptide_hypothesis_common_options @click.argument('fasta-file', type=click.Path(exists=True), doc_help='A file containing protein sequences in FASTA format') @database_connection @click.option('-e', '--enzyme', default=['trypsin'], multiple=True, help=('The proteolytic enzyme to use during digestion. May be specified multiple times, generating a co-digestion. May specify an enzyme name or a regular expression describing the cleavage pattern. Recognized enzyme names are: ' + ', '.join(sorted(enzyme_rules)))) @click.option('-m', '--missed-cleavages', type=int, default=1, help='The number of missed proteolytic cleavage sites permitted') @click.option('-c', '--constant-modification', multiple=True, help='Peptide modification rule which will be applied constantly') @click.option('-v', '--variable-modification', multiple=True, help='Peptide modification rule which will be applied variablely') @click.option('-V', '--max-variable-modifications', type=int, default=4, required=False, help='The maximum number of variable modifications that can be applied to a single peptide') @click.option('-y', '--semispecific-digest', is_flag=True, help='Apply a semispecific enzyme digest permitting one peptide terminal to be non-specific') @click.option('-R', '--reverse', default=False, is_flag=True, help='Reverse protein sequences') @click.option('--dry-run', default=False, is_flag=True, help='Do not save glycopeptides', cls=HiddenOption) @click.option('-F', '--not-full-crossproduct', is_flag=True, help='Do not produce full crossproduct. For when the search space is too large to enumerate, store, and load.') @click.option('--retain-all-peptides', is_flag=True, default=False, help='Do not require a glycosylation site when saving base peptides') def glycopeptide_fa(context, fasta_file, database_connection, enzyme, missed_cleavages, occupied_glycosites, name, constant_modification, variable_modification, processes, glycan_source, glycan_source_type, glycan_source_identifier=None, semispecific_digest=False, reverse=False, dry_run=False, peptide_length_range=(5, 60), not_full_crossproduct=False, max_variable_modifications=4, retain_all_peptides=False): 'Constructs a glycopeptide hypothesis from a FASTA file of proteins and a\n collection of glycans.\n ' if reverse: task_type = ReversingMultipleProcessFastaGlycopeptideHypothesisSerializer click.secho('Using ReversingMultipleProcessFastaGlycopeptideHypothesisSerializer', fg='yellow') elif dry_run: task_type = NonSavingMultipleProcessFastaGlycopeptideHypothesisSerializer click.secho('Using NonSavingMultipleProcessFastaGlycopeptideHypothesisSerializer', fg='yellow') else: task_type = MultipleProcessFastaGlycopeptideHypothesisSerializer validate_modifications(context, (constant_modification + variable_modification)) validate_glycan_source(context, database_connection, glycan_source, glycan_source_type, glycan_source_identifier) processes = min(multiprocessing.cpu_count(), processes) if (name is not None): name = validate_glycopeptide_hypothesis_name(context, database_connection, name) click.secho(('Building Glycopeptide Hypothesis %s' % name), fg='cyan') mt = RestrictedModificationTable(None, constant_modification, variable_modification) constant_modification = [mt[c] for c in constant_modification] variable_modification = [mt[c] for c in variable_modification] glycan_hypothesis_id = _glycan_hypothesis_builders[glycan_source_type](database_connection, glycan_source, name, glycan_source_identifier) builder = task_type(fasta_file, database_connection, glycan_hypothesis_id=glycan_hypothesis_id, protease=enzyme, constant_modifications=constant_modification, variable_modifications=variable_modification, max_missed_cleavages=missed_cleavages, max_glycosylation_events=occupied_glycosites, hypothesis_name=name, semispecific=semispecific_digest, n_processes=processes, full_cross_product=(not not_full_crossproduct), max_variable_modifications=max_variable_modifications, peptide_length_range=peptide_length_range, require_glycosylation_sites=(not retain_all_peptides)) builder.display_header() builder.start() return builder.hypothesis_id
Constructs a glycopeptide hypothesis from a FASTA file of proteins and a collection of glycans.
glycan_profiling/cli/build_db.py
glycopeptide_fa
mobiusklein/glycresoft
4
python
@build_hypothesis.command('glycopeptide-fa', short_help='Build glycopeptide search spaces with a FASTA file of proteins') @click.pass_context @glycopeptide_hypothesis_common_options @click.argument('fasta-file', type=click.Path(exists=True), doc_help='A file containing protein sequences in FASTA format') @database_connection @click.option('-e', '--enzyme', default=['trypsin'], multiple=True, help=('The proteolytic enzyme to use during digestion. May be specified multiple times, generating a co-digestion. May specify an enzyme name or a regular expression describing the cleavage pattern. Recognized enzyme names are: ' + ', '.join(sorted(enzyme_rules)))) @click.option('-m', '--missed-cleavages', type=int, default=1, help='The number of missed proteolytic cleavage sites permitted') @click.option('-c', '--constant-modification', multiple=True, help='Peptide modification rule which will be applied constantly') @click.option('-v', '--variable-modification', multiple=True, help='Peptide modification rule which will be applied variablely') @click.option('-V', '--max-variable-modifications', type=int, default=4, required=False, help='The maximum number of variable modifications that can be applied to a single peptide') @click.option('-y', '--semispecific-digest', is_flag=True, help='Apply a semispecific enzyme digest permitting one peptide terminal to be non-specific') @click.option('-R', '--reverse', default=False, is_flag=True, help='Reverse protein sequences') @click.option('--dry-run', default=False, is_flag=True, help='Do not save glycopeptides', cls=HiddenOption) @click.option('-F', '--not-full-crossproduct', is_flag=True, help='Do not produce full crossproduct. For when the search space is too large to enumerate, store, and load.') @click.option('--retain-all-peptides', is_flag=True, default=False, help='Do not require a glycosylation site when saving base peptides') def glycopeptide_fa(context, fasta_file, database_connection, enzyme, missed_cleavages, occupied_glycosites, name, constant_modification, variable_modification, processes, glycan_source, glycan_source_type, glycan_source_identifier=None, semispecific_digest=False, reverse=False, dry_run=False, peptide_length_range=(5, 60), not_full_crossproduct=False, max_variable_modifications=4, retain_all_peptides=False): 'Constructs a glycopeptide hypothesis from a FASTA file of proteins and a\n collection of glycans.\n ' if reverse: task_type = ReversingMultipleProcessFastaGlycopeptideHypothesisSerializer click.secho('Using ReversingMultipleProcessFastaGlycopeptideHypothesisSerializer', fg='yellow') elif dry_run: task_type = NonSavingMultipleProcessFastaGlycopeptideHypothesisSerializer click.secho('Using NonSavingMultipleProcessFastaGlycopeptideHypothesisSerializer', fg='yellow') else: task_type = MultipleProcessFastaGlycopeptideHypothesisSerializer validate_modifications(context, (constant_modification + variable_modification)) validate_glycan_source(context, database_connection, glycan_source, glycan_source_type, glycan_source_identifier) processes = min(multiprocessing.cpu_count(), processes) if (name is not None): name = validate_glycopeptide_hypothesis_name(context, database_connection, name) click.secho(('Building Glycopeptide Hypothesis %s' % name), fg='cyan') mt = RestrictedModificationTable(None, constant_modification, variable_modification) constant_modification = [mt[c] for c in constant_modification] variable_modification = [mt[c] for c in variable_modification] glycan_hypothesis_id = _glycan_hypothesis_builders[glycan_source_type](database_connection, glycan_source, name, glycan_source_identifier) builder = task_type(fasta_file, database_connection, glycan_hypothesis_id=glycan_hypothesis_id, protease=enzyme, constant_modifications=constant_modification, variable_modifications=variable_modification, max_missed_cleavages=missed_cleavages, max_glycosylation_events=occupied_glycosites, hypothesis_name=name, semispecific=semispecific_digest, n_processes=processes, full_cross_product=(not not_full_crossproduct), max_variable_modifications=max_variable_modifications, peptide_length_range=peptide_length_range, require_glycosylation_sites=(not retain_all_peptides)) builder.display_header() builder.start() return builder.hypothesis_id
@build_hypothesis.command('glycopeptide-fa', short_help='Build glycopeptide search spaces with a FASTA file of proteins') @click.pass_context @glycopeptide_hypothesis_common_options @click.argument('fasta-file', type=click.Path(exists=True), doc_help='A file containing protein sequences in FASTA format') @database_connection @click.option('-e', '--enzyme', default=['trypsin'], multiple=True, help=('The proteolytic enzyme to use during digestion. May be specified multiple times, generating a co-digestion. May specify an enzyme name or a regular expression describing the cleavage pattern. Recognized enzyme names are: ' + ', '.join(sorted(enzyme_rules)))) @click.option('-m', '--missed-cleavages', type=int, default=1, help='The number of missed proteolytic cleavage sites permitted') @click.option('-c', '--constant-modification', multiple=True, help='Peptide modification rule which will be applied constantly') @click.option('-v', '--variable-modification', multiple=True, help='Peptide modification rule which will be applied variablely') @click.option('-V', '--max-variable-modifications', type=int, default=4, required=False, help='The maximum number of variable modifications that can be applied to a single peptide') @click.option('-y', '--semispecific-digest', is_flag=True, help='Apply a semispecific enzyme digest permitting one peptide terminal to be non-specific') @click.option('-R', '--reverse', default=False, is_flag=True, help='Reverse protein sequences') @click.option('--dry-run', default=False, is_flag=True, help='Do not save glycopeptides', cls=HiddenOption) @click.option('-F', '--not-full-crossproduct', is_flag=True, help='Do not produce full crossproduct. For when the search space is too large to enumerate, store, and load.') @click.option('--retain-all-peptides', is_flag=True, default=False, help='Do not require a glycosylation site when saving base peptides') def glycopeptide_fa(context, fasta_file, database_connection, enzyme, missed_cleavages, occupied_glycosites, name, constant_modification, variable_modification, processes, glycan_source, glycan_source_type, glycan_source_identifier=None, semispecific_digest=False, reverse=False, dry_run=False, peptide_length_range=(5, 60), not_full_crossproduct=False, max_variable_modifications=4, retain_all_peptides=False): 'Constructs a glycopeptide hypothesis from a FASTA file of proteins and a\n collection of glycans.\n ' if reverse: task_type = ReversingMultipleProcessFastaGlycopeptideHypothesisSerializer click.secho('Using ReversingMultipleProcessFastaGlycopeptideHypothesisSerializer', fg='yellow') elif dry_run: task_type = NonSavingMultipleProcessFastaGlycopeptideHypothesisSerializer click.secho('Using NonSavingMultipleProcessFastaGlycopeptideHypothesisSerializer', fg='yellow') else: task_type = MultipleProcessFastaGlycopeptideHypothesisSerializer validate_modifications(context, (constant_modification + variable_modification)) validate_glycan_source(context, database_connection, glycan_source, glycan_source_type, glycan_source_identifier) processes = min(multiprocessing.cpu_count(), processes) if (name is not None): name = validate_glycopeptide_hypothesis_name(context, database_connection, name) click.secho(('Building Glycopeptide Hypothesis %s' % name), fg='cyan') mt = RestrictedModificationTable(None, constant_modification, variable_modification) constant_modification = [mt[c] for c in constant_modification] variable_modification = [mt[c] for c in variable_modification] glycan_hypothesis_id = _glycan_hypothesis_builders[glycan_source_type](database_connection, glycan_source, name, glycan_source_identifier) builder = task_type(fasta_file, database_connection, glycan_hypothesis_id=glycan_hypothesis_id, protease=enzyme, constant_modifications=constant_modification, variable_modifications=variable_modification, max_missed_cleavages=missed_cleavages, max_glycosylation_events=occupied_glycosites, hypothesis_name=name, semispecific=semispecific_digest, n_processes=processes, full_cross_product=(not not_full_crossproduct), max_variable_modifications=max_variable_modifications, peptide_length_range=peptide_length_range, require_glycosylation_sites=(not retain_all_peptides)) builder.display_header() builder.start() return builder.hypothesis_id<|docstring|>Constructs a glycopeptide hypothesis from a FASTA file of proteins and a collection of glycans.<|endoftext|>
2b032f1394a2cc9b437b1028149203064c499d99f6f3beb5091ae68c01b0294d
@build_hypothesis.command('glycopeptide-mzid', short_help='Build a glycopeptide search space with an mzIdentML file') @click.pass_context @click.argument('mzid-file', type=click.Path(exists=True)) @database_connection @glycopeptide_hypothesis_common_options @click.option('-t', '--target-protein', multiple=True, help='Specifies the name of a protein to include in the hypothesis. May be used many times.') @click.option('-r', '--target-protein-re', multiple=True, help='Specifies a regular expression to select proteins to be included by name. May be used many times.') @click.option('-R', '--reference-fasta', default=None, required=False, help='When the full sequence for each protein is not embedded in the mzIdentML file and the FASTA file used is not local.') def glycopeptide_mzid(context, mzid_file, database_connection, name, occupied_glycosites, target_protein, target_protein_re, processes, glycan_source, glycan_source_type, glycan_source_identifier, reference_fasta, peptide_length_range=(5, 60)): 'Constructs a glycopeptide hypothesis from a MzIdentML file of proteins and a\n collection of glycans.\n ' proteins = validate_mzid_proteins(context, mzid_file, target_protein, target_protein_re) validate_glycan_source(context, database_connection, glycan_source, glycan_source_type, glycan_source_identifier) processes = min(multiprocessing.cpu_count(), processes) if (name is not None): name = validate_glycopeptide_hypothesis_name(context, database_connection, name) click.secho(('Building Glycopeptide Hypothesis %s' % name), fg='cyan') glycan_hypothesis_id = _glycan_hypothesis_builders[glycan_source_type](database_connection, glycan_source, name, glycan_source_identifier) builder = MultipleProcessMzIdentMLGlycopeptideHypothesisSerializer(mzid_file, database_connection, glycan_hypothesis_id=glycan_hypothesis_id, hypothesis_name=name, target_proteins=proteins, max_glycosylation_events=occupied_glycosites, reference_fasta=reference_fasta, n_processes=processes, peptide_length_range=peptide_length_range) builder.display_header() builder.start() return builder.hypothesis_id
Constructs a glycopeptide hypothesis from a MzIdentML file of proteins and a collection of glycans.
glycan_profiling/cli/build_db.py
glycopeptide_mzid
mobiusklein/glycresoft
4
python
@build_hypothesis.command('glycopeptide-mzid', short_help='Build a glycopeptide search space with an mzIdentML file') @click.pass_context @click.argument('mzid-file', type=click.Path(exists=True)) @database_connection @glycopeptide_hypothesis_common_options @click.option('-t', '--target-protein', multiple=True, help='Specifies the name of a protein to include in the hypothesis. May be used many times.') @click.option('-r', '--target-protein-re', multiple=True, help='Specifies a regular expression to select proteins to be included by name. May be used many times.') @click.option('-R', '--reference-fasta', default=None, required=False, help='When the full sequence for each protein is not embedded in the mzIdentML file and the FASTA file used is not local.') def glycopeptide_mzid(context, mzid_file, database_connection, name, occupied_glycosites, target_protein, target_protein_re, processes, glycan_source, glycan_source_type, glycan_source_identifier, reference_fasta, peptide_length_range=(5, 60)): 'Constructs a glycopeptide hypothesis from a MzIdentML file of proteins and a\n collection of glycans.\n ' proteins = validate_mzid_proteins(context, mzid_file, target_protein, target_protein_re) validate_glycan_source(context, database_connection, glycan_source, glycan_source_type, glycan_source_identifier) processes = min(multiprocessing.cpu_count(), processes) if (name is not None): name = validate_glycopeptide_hypothesis_name(context, database_connection, name) click.secho(('Building Glycopeptide Hypothesis %s' % name), fg='cyan') glycan_hypothesis_id = _glycan_hypothesis_builders[glycan_source_type](database_connection, glycan_source, name, glycan_source_identifier) builder = MultipleProcessMzIdentMLGlycopeptideHypothesisSerializer(mzid_file, database_connection, glycan_hypothesis_id=glycan_hypothesis_id, hypothesis_name=name, target_proteins=proteins, max_glycosylation_events=occupied_glycosites, reference_fasta=reference_fasta, n_processes=processes, peptide_length_range=peptide_length_range) builder.display_header() builder.start() return builder.hypothesis_id
@build_hypothesis.command('glycopeptide-mzid', short_help='Build a glycopeptide search space with an mzIdentML file') @click.pass_context @click.argument('mzid-file', type=click.Path(exists=True)) @database_connection @glycopeptide_hypothesis_common_options @click.option('-t', '--target-protein', multiple=True, help='Specifies the name of a protein to include in the hypothesis. May be used many times.') @click.option('-r', '--target-protein-re', multiple=True, help='Specifies a regular expression to select proteins to be included by name. May be used many times.') @click.option('-R', '--reference-fasta', default=None, required=False, help='When the full sequence for each protein is not embedded in the mzIdentML file and the FASTA file used is not local.') def glycopeptide_mzid(context, mzid_file, database_connection, name, occupied_glycosites, target_protein, target_protein_re, processes, glycan_source, glycan_source_type, glycan_source_identifier, reference_fasta, peptide_length_range=(5, 60)): 'Constructs a glycopeptide hypothesis from a MzIdentML file of proteins and a\n collection of glycans.\n ' proteins = validate_mzid_proteins(context, mzid_file, target_protein, target_protein_re) validate_glycan_source(context, database_connection, glycan_source, glycan_source_type, glycan_source_identifier) processes = min(multiprocessing.cpu_count(), processes) if (name is not None): name = validate_glycopeptide_hypothesis_name(context, database_connection, name) click.secho(('Building Glycopeptide Hypothesis %s' % name), fg='cyan') glycan_hypothesis_id = _glycan_hypothesis_builders[glycan_source_type](database_connection, glycan_source, name, glycan_source_identifier) builder = MultipleProcessMzIdentMLGlycopeptideHypothesisSerializer(mzid_file, database_connection, glycan_hypothesis_id=glycan_hypothesis_id, hypothesis_name=name, target_proteins=proteins, max_glycosylation_events=occupied_glycosites, reference_fasta=reference_fasta, n_processes=processes, peptide_length_range=peptide_length_range) builder.display_header() builder.start() return builder.hypothesis_id<|docstring|>Constructs a glycopeptide hypothesis from a MzIdentML file of proteins and a collection of glycans.<|endoftext|>
b179783fc55d718ed19c7eb5291e200dd1c6d96441f237dc4b1a5c71a0b5bf3e
def __init__(self, module: str, count: Union[(int, str)]='25000', verbose: bool=True, lazy: bool=True, python: bool=True, jupyter: bool=True) -> None: 'Create a Module instance that can be used to find\n which sections of a Python module are most frequently used.\n\n This class exposes the following methods::\n\n usage()\n nested_usage()\n repositories()\n plot()\n n_uses()\n n_files()\n n_repositories()\n\n ..\n TODO: Alert users of `alert`, output `limitHit`\n TODO: Something with percentages?\n TODO: Info on just one object, e.g.\n >>> module.use("nltk.tokenize")\n "802 occurrences out of 83530 (0.96%)"\n TODO: Biggest repositories relying on some subsection.\n Perhaps an extension to `repositories()`?\n Add this to n_uses, n_files and n_repositories, too\n\n :param module: The name of a Python module of which to find\n the frequently used objects, e.g. `"nltk"`.\n :type module: str\n :param count: The maximum number of times an import of `module`\n should be fetched. Roughly equivalent to the number of fetched\n files. Either an integer, a string representing an integer,\n or "all", defaults to "25000".\n :type count: Union[int, str], optional\n :param verbose: If True, set the logging level to INFO, otherwise to\n WARNING. True implies that there is some data printed to sys.out,\n while False makes the class quiet. Defaults to True.\n :type verbose: bool, optional\n :param lazy: If True, waits with fetching and parsing the data to when\n the data is required. Defaults to True.\n :type lazy: bool, optional\n ' self.module = module self.count = count self.timeout = '10s' self.verbose = verbose languages = [] if python: languages.append('Python') if jupyter: languages.append('Jupyter Notebook') self.languages = tuple(languages) if verbose: logger.setLevel(logging.INFO) else: logger.setLevel(logging.WARNING) if (not lazy): self.data
Create a Module instance that can be used to find which sections of a Python module are most frequently used. This class exposes the following methods:: usage() nested_usage() repositories() plot() n_uses() n_files() n_repositories() .. TODO: Alert users of `alert`, output `limitHit` TODO: Something with percentages? TODO: Info on just one object, e.g. >>> module.use("nltk.tokenize") "802 occurrences out of 83530 (0.96%)" TODO: Biggest repositories relying on some subsection. Perhaps an extension to `repositories()`? Add this to n_uses, n_files and n_repositories, too :param module: The name of a Python module of which to find the frequently used objects, e.g. `"nltk"`. :type module: str :param count: The maximum number of times an import of `module` should be fetched. Roughly equivalent to the number of fetched files. Either an integer, a string representing an integer, or "all", defaults to "25000". :type count: Union[int, str], optional :param verbose: If True, set the logging level to INFO, otherwise to WARNING. True implies that there is some data printed to sys.out, while False makes the class quiet. Defaults to True. :type verbose: bool, optional :param lazy: If True, waits with fetching and parsing the data to when the data is required. Defaults to True. :type lazy: bool, optional
module_dependencies/module/module.py
__init__
tomaarsen/module_dependencies
1
python
def __init__(self, module: str, count: Union[(int, str)]='25000', verbose: bool=True, lazy: bool=True, python: bool=True, jupyter: bool=True) -> None: 'Create a Module instance that can be used to find\n which sections of a Python module are most frequently used.\n\n This class exposes the following methods::\n\n usage()\n nested_usage()\n repositories()\n plot()\n n_uses()\n n_files()\n n_repositories()\n\n ..\n TODO: Alert users of `alert`, output `limitHit`\n TODO: Something with percentages?\n TODO: Info on just one object, e.g.\n >>> module.use("nltk.tokenize")\n "802 occurrences out of 83530 (0.96%)"\n TODO: Biggest repositories relying on some subsection.\n Perhaps an extension to `repositories()`?\n Add this to n_uses, n_files and n_repositories, too\n\n :param module: The name of a Python module of which to find\n the frequently used objects, e.g. `"nltk"`.\n :type module: str\n :param count: The maximum number of times an import of `module`\n should be fetched. Roughly equivalent to the number of fetched\n files. Either an integer, a string representing an integer,\n or "all", defaults to "25000".\n :type count: Union[int, str], optional\n :param verbose: If True, set the logging level to INFO, otherwise to\n WARNING. True implies that there is some data printed to sys.out,\n while False makes the class quiet. Defaults to True.\n :type verbose: bool, optional\n :param lazy: If True, waits with fetching and parsing the data to when\n the data is required. Defaults to True.\n :type lazy: bool, optional\n ' self.module = module self.count = count self.timeout = '10s' self.verbose = verbose languages = [] if python: languages.append('Python') if jupyter: languages.append('Jupyter Notebook') self.languages = tuple(languages) if verbose: logger.setLevel(logging.INFO) else: logger.setLevel(logging.WARNING) if (not lazy): self.data
def __init__(self, module: str, count: Union[(int, str)]='25000', verbose: bool=True, lazy: bool=True, python: bool=True, jupyter: bool=True) -> None: 'Create a Module instance that can be used to find\n which sections of a Python module are most frequently used.\n\n This class exposes the following methods::\n\n usage()\n nested_usage()\n repositories()\n plot()\n n_uses()\n n_files()\n n_repositories()\n\n ..\n TODO: Alert users of `alert`, output `limitHit`\n TODO: Something with percentages?\n TODO: Info on just one object, e.g.\n >>> module.use("nltk.tokenize")\n "802 occurrences out of 83530 (0.96%)"\n TODO: Biggest repositories relying on some subsection.\n Perhaps an extension to `repositories()`?\n Add this to n_uses, n_files and n_repositories, too\n\n :param module: The name of a Python module of which to find\n the frequently used objects, e.g. `"nltk"`.\n :type module: str\n :param count: The maximum number of times an import of `module`\n should be fetched. Roughly equivalent to the number of fetched\n files. Either an integer, a string representing an integer,\n or "all", defaults to "25000".\n :type count: Union[int, str], optional\n :param verbose: If True, set the logging level to INFO, otherwise to\n WARNING. True implies that there is some data printed to sys.out,\n while False makes the class quiet. Defaults to True.\n :type verbose: bool, optional\n :param lazy: If True, waits with fetching and parsing the data to when\n the data is required. Defaults to True.\n :type lazy: bool, optional\n ' self.module = module self.count = count self.timeout = '10s' self.verbose = verbose languages = [] if python: languages.append('Python') if jupyter: languages.append('Jupyter Notebook') self.languages = tuple(languages) if verbose: logger.setLevel(logging.INFO) else: logger.setLevel(logging.WARNING) if (not lazy): self.data<|docstring|>Create a Module instance that can be used to find which sections of a Python module are most frequently used. This class exposes the following methods:: usage() nested_usage() repositories() plot() n_uses() n_files() n_repositories() .. TODO: Alert users of `alert`, output `limitHit` TODO: Something with percentages? TODO: Info on just one object, e.g. >>> module.use("nltk.tokenize") "802 occurrences out of 83530 (0.96%)" TODO: Biggest repositories relying on some subsection. Perhaps an extension to `repositories()`? Add this to n_uses, n_files and n_repositories, too :param module: The name of a Python module of which to find the frequently used objects, e.g. `"nltk"`. :type module: str :param count: The maximum number of times an import of `module` should be fetched. Roughly equivalent to the number of fetched files. Either an integer, a string representing an integer, or "all", defaults to "25000". :type count: Union[int, str], optional :param verbose: If True, set the logging level to INFO, otherwise to WARNING. True implies that there is some data printed to sys.out, while False makes the class quiet. Defaults to True. :type verbose: bool, optional :param lazy: If True, waits with fetching and parsing the data to when the data is required. Defaults to True. :type lazy: bool, optional<|endoftext|>
95bc5b04e19937393e0c42106a56ba9ab30dff4d9d372ef4c943fad3ee0baac7
@cached_property def data(self) -> Dict: 'Cached property of a Module, containing the parsed data from\n the SourceGraph API. This property lazily loads the data once upon request,\n and then parses it using `Source(...).dependencies()`.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count=3)\n >>> pprint(module.data, depth=1)\n {\n \'alert\': None,\n \'cloning\': [],\n \'elapsedMilliseconds\': 573,\n \'limitHit\': True,\n \'matchCount\': 3,\n \'missing\': [],\n \'repositoriesCount\': 1,\n \'results\': [...],\n \'timedout\': []\n }\n\n :return: The cached, parsed SourceGraph API data.\n :rtype: Dict\n ' return ModuleSession().fetch_and_parse(self.module, self.count, self.timeout, self.verbose, self.languages)
Cached property of a Module, containing the parsed data from the SourceGraph API. This property lazily loads the data once upon request, and then parses it using `Source(...).dependencies()`. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count=3) >>> pprint(module.data, depth=1) { 'alert': None, 'cloning': [], 'elapsedMilliseconds': 573, 'limitHit': True, 'matchCount': 3, 'missing': [], 'repositoriesCount': 1, 'results': [...], 'timedout': [] } :return: The cached, parsed SourceGraph API data. :rtype: Dict
module_dependencies/module/module.py
data
tomaarsen/module_dependencies
1
python
@cached_property def data(self) -> Dict: 'Cached property of a Module, containing the parsed data from\n the SourceGraph API. This property lazily loads the data once upon request,\n and then parses it using `Source(...).dependencies()`.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count=3)\n >>> pprint(module.data, depth=1)\n {\n \'alert\': None,\n \'cloning\': [],\n \'elapsedMilliseconds\': 573,\n \'limitHit\': True,\n \'matchCount\': 3,\n \'missing\': [],\n \'repositoriesCount\': 1,\n \'results\': [...],\n \'timedout\': []\n }\n\n :return: The cached, parsed SourceGraph API data.\n :rtype: Dict\n ' return ModuleSession().fetch_and_parse(self.module, self.count, self.timeout, self.verbose, self.languages)
@cached_property def data(self) -> Dict: 'Cached property of a Module, containing the parsed data from\n the SourceGraph API. This property lazily loads the data once upon request,\n and then parses it using `Source(...).dependencies()`.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count=3)\n >>> pprint(module.data, depth=1)\n {\n \'alert\': None,\n \'cloning\': [],\n \'elapsedMilliseconds\': 573,\n \'limitHit\': True,\n \'matchCount\': 3,\n \'missing\': [],\n \'repositoriesCount\': 1,\n \'results\': [...],\n \'timedout\': []\n }\n\n :return: The cached, parsed SourceGraph API data.\n :rtype: Dict\n ' return ModuleSession().fetch_and_parse(self.module, self.count, self.timeout, self.verbose, self.languages)<|docstring|>Cached property of a Module, containing the parsed data from the SourceGraph API. This property lazily loads the data once upon request, and then parses it using `Source(...).dependencies()`. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count=3) >>> pprint(module.data, depth=1) { 'alert': None, 'cloning': [], 'elapsedMilliseconds': 573, 'limitHit': True, 'matchCount': 3, 'missing': [], 'repositoriesCount': 1, 'results': [...], 'timedout': [] } :return: The cached, parsed SourceGraph API data. :rtype: Dict<|endoftext|>
557f3a71e5cd63f92ff75773117e182706d60f8e04f85119a7c097d9b63fa50f
@staticmethod def is_subsection_of(var_one: Tuple[str], var_two: Tuple[str]) -> bool: "Check whether `var_one` is a subsection of `var_two`. This means\n that `var_two` can be created by inserting strings into the tuple of\n `var_one`. For example, `var_two` as `('nltk', 'tokenize', 'word_tokenize')`\n can be created by inserting `'tokenize'` into a `var_one` as\n `('nltk', 'word_tokenize')`, so this function returns True.\n\n :param var_one: Tuple of strings representing the path to a Python\n object, e.g. `('nltk', 'word_tokenize')`.\n :type var_one: Tuple[str]\n :param var_two: Tuple of strings representing the path to a Python\n object, e.g. `('nltk', 'tokenize', 'word_tokenize')`.\n :type var_two: Tuple[str]\n :return: True if `var_one` is a subsection of `var_two`.\n :rtype: bool\n " try: i = 0 for section in var_two: if (section == var_one[i]): i += 1 except IndexError: return True return (i == len(var_one))
Check whether `var_one` is a subsection of `var_two`. This means that `var_two` can be created by inserting strings into the tuple of `var_one`. For example, `var_two` as `('nltk', 'tokenize', 'word_tokenize')` can be created by inserting `'tokenize'` into a `var_one` as `('nltk', 'word_tokenize')`, so this function returns True. :param var_one: Tuple of strings representing the path to a Python object, e.g. `('nltk', 'word_tokenize')`. :type var_one: Tuple[str] :param var_two: Tuple of strings representing the path to a Python object, e.g. `('nltk', 'tokenize', 'word_tokenize')`. :type var_two: Tuple[str] :return: True if `var_one` is a subsection of `var_two`. :rtype: bool
module_dependencies/module/module.py
is_subsection_of
tomaarsen/module_dependencies
1
python
@staticmethod def is_subsection_of(var_one: Tuple[str], var_two: Tuple[str]) -> bool: "Check whether `var_one` is a subsection of `var_two`. This means\n that `var_two` can be created by inserting strings into the tuple of\n `var_one`. For example, `var_two` as `('nltk', 'tokenize', 'word_tokenize')`\n can be created by inserting `'tokenize'` into a `var_one` as\n `('nltk', 'word_tokenize')`, so this function returns True.\n\n :param var_one: Tuple of strings representing the path to a Python\n object, e.g. `('nltk', 'word_tokenize')`.\n :type var_one: Tuple[str]\n :param var_two: Tuple of strings representing the path to a Python\n object, e.g. `('nltk', 'tokenize', 'word_tokenize')`.\n :type var_two: Tuple[str]\n :return: True if `var_one` is a subsection of `var_two`.\n :rtype: bool\n " try: i = 0 for section in var_two: if (section == var_one[i]): i += 1 except IndexError: return True return (i == len(var_one))
@staticmethod def is_subsection_of(var_one: Tuple[str], var_two: Tuple[str]) -> bool: "Check whether `var_one` is a subsection of `var_two`. This means\n that `var_two` can be created by inserting strings into the tuple of\n `var_one`. For example, `var_two` as `('nltk', 'tokenize', 'word_tokenize')`\n can be created by inserting `'tokenize'` into a `var_one` as\n `('nltk', 'word_tokenize')`, so this function returns True.\n\n :param var_one: Tuple of strings representing the path to a Python\n object, e.g. `('nltk', 'word_tokenize')`.\n :type var_one: Tuple[str]\n :param var_two: Tuple of strings representing the path to a Python\n object, e.g. `('nltk', 'tokenize', 'word_tokenize')`.\n :type var_two: Tuple[str]\n :return: True if `var_one` is a subsection of `var_two`.\n :rtype: bool\n " try: i = 0 for section in var_two: if (section == var_one[i]): i += 1 except IndexError: return True return (i == len(var_one))<|docstring|>Check whether `var_one` is a subsection of `var_two`. This means that `var_two` can be created by inserting strings into the tuple of `var_one`. For example, `var_two` as `('nltk', 'tokenize', 'word_tokenize')` can be created by inserting `'tokenize'` into a `var_one` as `('nltk', 'word_tokenize')`, so this function returns True. :param var_one: Tuple of strings representing the path to a Python object, e.g. `('nltk', 'word_tokenize')`. :type var_one: Tuple[str] :param var_two: Tuple of strings representing the path to a Python object, e.g. `('nltk', 'tokenize', 'word_tokenize')`. :type var_two: Tuple[str] :return: True if `var_one` is a subsection of `var_two`. :rtype: bool<|endoftext|>
cc9e6d2ef6404de0ed28d692b5c88962b7102e082eeb48eddf92795a8c45feaf
@lru_cache(maxsize=1) def usage(self, merge: bool=True, cumulative: bool=False) -> List[Tuple[(str, int)]]: 'Get a list of object-occurrence tuples, sorted by most to least frequent.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.usage()\n [(\'nltk.metrics.distance.edit_distance\', 2),\n (\'nltk.tokenize.sent_tokenize\', 1),\n (\'nltk.tokenize.treebank.TreebankWordDetokenizer\', 1)]\n\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :return: A list of object-occurrence tuples, sorted by most to least frequent.\n :rtype: List[Tuple[str, int]]\n ' def merge_one(usage: List[Tuple[(Tuple[str], int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of similar tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially\n combinable objects.\n\n :param usage: A list of tuples, where the first element is a tuple\n of strings that represent a path to a Python object, e.g.\n `(\'nltk\', \'word_tokenize\')`, and the second element is how\n often that Python object occurs in a large collection of code.\n Each path in the tuple ends in the same token, and thus could\n refer to the same object.\n :type usage: List[Tuple[Tuple[str], int]]\n :return: `usage`, but the first element of each tuple is detokenized,\n i.e. converted back to a string, and paths that refer to the\n same element are merged.\n :rtype: List[Tuple[str, int]]\n ' merged = {} for (obj, occ) in sorted(usage, key=(lambda x: len(x[0])), reverse=True): options = [(o_key, o_occ) for (o_key, o_occ) in merged.items() if (Module.is_subsection_of(obj, o_key) and (o_occ > 1))] if options: key = max(options, key=(lambda x: x[1]))[0] merged[key] += occ else: merged[obj] = occ return [(detokenize(obj), occ) for (obj, occ) in merged.items()] def merge_all(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`.\n\n :param usage: A list of tuples, where the first element of\n each tuple is a string representing a path to a Python object,\n e.g. `"nltk.word_tokenize"`, and the second element of each\n tuple is the occurrence of that object in a large collection\n of code.\n :type usage: List[Tuple[str, int]]\n :return: `usage`, but with some merged tuples.\n :rtype: List[Tuple[str, int]]\n ' grouped = defaultdict(list) for (obj, occ) in usage: obj_tok = tokenize(obj) grouped[obj_tok[(- 1)]].append((obj_tok, occ)) merged = [] for group in grouped.values(): merged.extend(merge_one(group)) return sorted(merged, key=(lambda x: x[1]), reverse=True) def cumulate(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: usage = defaultdict((lambda : 0), {tokenize(obj): occ for (obj, occ) in usage}) for (tok_obj, occ) in usage.copy().items(): for i in range(1, len(tok_obj)): usage[tok_obj[:i]] += occ usage = [(detokenize(tok_obj), occ) for (tok_obj, occ) in usage.items()] return sorted(usage, key=(lambda x: x[1]), reverse=True) counter = Counter((use for result in self.data['results'] for use in result['file']['dependencies'])) usage = counter.most_common() if merge: usage = merge_all(usage) if cumulative: usage = cumulate(usage) return usage
Get a list of object-occurrence tuples, sorted by most to least frequent. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="3") >>> module.usage() [('nltk.metrics.distance.edit_distance', 2), ('nltk.tokenize.sent_tokenize', 1), ('nltk.tokenize.treebank.TreebankWordDetokenizer', 1)] :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"` into `"nltk.tokenize.word_tokenize"`. May give incorrect results for projects with "compat" folders, as the merging tends to prefer longer paths, e.g. `"tensorflow.float32"` will become `"tensorflow.compat.v1.dtypes.float32"` as opposed to just `"tensorflow.dtypes.float32"`. Defaults to True. :type merge: bool :return: A list of object-occurrence tuples, sorted by most to least frequent. :rtype: List[Tuple[str, int]]
module_dependencies/module/module.py
usage
tomaarsen/module_dependencies
1
python
@lru_cache(maxsize=1) def usage(self, merge: bool=True, cumulative: bool=False) -> List[Tuple[(str, int)]]: 'Get a list of object-occurrence tuples, sorted by most to least frequent.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.usage()\n [(\'nltk.metrics.distance.edit_distance\', 2),\n (\'nltk.tokenize.sent_tokenize\', 1),\n (\'nltk.tokenize.treebank.TreebankWordDetokenizer\', 1)]\n\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :return: A list of object-occurrence tuples, sorted by most to least frequent.\n :rtype: List[Tuple[str, int]]\n ' def merge_one(usage: List[Tuple[(Tuple[str], int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of similar tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially\n combinable objects.\n\n :param usage: A list of tuples, where the first element is a tuple\n of strings that represent a path to a Python object, e.g.\n `(\'nltk\', \'word_tokenize\')`, and the second element is how\n often that Python object occurs in a large collection of code.\n Each path in the tuple ends in the same token, and thus could\n refer to the same object.\n :type usage: List[Tuple[Tuple[str], int]]\n :return: `usage`, but the first element of each tuple is detokenized,\n i.e. converted back to a string, and paths that refer to the\n same element are merged.\n :rtype: List[Tuple[str, int]]\n ' merged = {} for (obj, occ) in sorted(usage, key=(lambda x: len(x[0])), reverse=True): options = [(o_key, o_occ) for (o_key, o_occ) in merged.items() if (Module.is_subsection_of(obj, o_key) and (o_occ > 1))] if options: key = max(options, key=(lambda x: x[1]))[0] merged[key] += occ else: merged[obj] = occ return [(detokenize(obj), occ) for (obj, occ) in merged.items()] def merge_all(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`.\n\n :param usage: A list of tuples, where the first element of\n each tuple is a string representing a path to a Python object,\n e.g. `"nltk.word_tokenize"`, and the second element of each\n tuple is the occurrence of that object in a large collection\n of code.\n :type usage: List[Tuple[str, int]]\n :return: `usage`, but with some merged tuples.\n :rtype: List[Tuple[str, int]]\n ' grouped = defaultdict(list) for (obj, occ) in usage: obj_tok = tokenize(obj) grouped[obj_tok[(- 1)]].append((obj_tok, occ)) merged = [] for group in grouped.values(): merged.extend(merge_one(group)) return sorted(merged, key=(lambda x: x[1]), reverse=True) def cumulate(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: usage = defaultdict((lambda : 0), {tokenize(obj): occ for (obj, occ) in usage}) for (tok_obj, occ) in usage.copy().items(): for i in range(1, len(tok_obj)): usage[tok_obj[:i]] += occ usage = [(detokenize(tok_obj), occ) for (tok_obj, occ) in usage.items()] return sorted(usage, key=(lambda x: x[1]), reverse=True) counter = Counter((use for result in self.data['results'] for use in result['file']['dependencies'])) usage = counter.most_common() if merge: usage = merge_all(usage) if cumulative: usage = cumulate(usage) return usage
@lru_cache(maxsize=1) def usage(self, merge: bool=True, cumulative: bool=False) -> List[Tuple[(str, int)]]: 'Get a list of object-occurrence tuples, sorted by most to least frequent.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.usage()\n [(\'nltk.metrics.distance.edit_distance\', 2),\n (\'nltk.tokenize.sent_tokenize\', 1),\n (\'nltk.tokenize.treebank.TreebankWordDetokenizer\', 1)]\n\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :return: A list of object-occurrence tuples, sorted by most to least frequent.\n :rtype: List[Tuple[str, int]]\n ' def merge_one(usage: List[Tuple[(Tuple[str], int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of similar tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially\n combinable objects.\n\n :param usage: A list of tuples, where the first element is a tuple\n of strings that represent a path to a Python object, e.g.\n `(\'nltk\', \'word_tokenize\')`, and the second element is how\n often that Python object occurs in a large collection of code.\n Each path in the tuple ends in the same token, and thus could\n refer to the same object.\n :type usage: List[Tuple[Tuple[str], int]]\n :return: `usage`, but the first element of each tuple is detokenized,\n i.e. converted back to a string, and paths that refer to the\n same element are merged.\n :rtype: List[Tuple[str, int]]\n ' merged = {} for (obj, occ) in sorted(usage, key=(lambda x: len(x[0])), reverse=True): options = [(o_key, o_occ) for (o_key, o_occ) in merged.items() if (Module.is_subsection_of(obj, o_key) and (o_occ > 1))] if options: key = max(options, key=(lambda x: x[1]))[0] merged[key] += occ else: merged[obj] = occ return [(detokenize(obj), occ) for (obj, occ) in merged.items()] def merge_all(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`.\n\n :param usage: A list of tuples, where the first element of\n each tuple is a string representing a path to a Python object,\n e.g. `"nltk.word_tokenize"`, and the second element of each\n tuple is the occurrence of that object in a large collection\n of code.\n :type usage: List[Tuple[str, int]]\n :return: `usage`, but with some merged tuples.\n :rtype: List[Tuple[str, int]]\n ' grouped = defaultdict(list) for (obj, occ) in usage: obj_tok = tokenize(obj) grouped[obj_tok[(- 1)]].append((obj_tok, occ)) merged = [] for group in grouped.values(): merged.extend(merge_one(group)) return sorted(merged, key=(lambda x: x[1]), reverse=True) def cumulate(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: usage = defaultdict((lambda : 0), {tokenize(obj): occ for (obj, occ) in usage}) for (tok_obj, occ) in usage.copy().items(): for i in range(1, len(tok_obj)): usage[tok_obj[:i]] += occ usage = [(detokenize(tok_obj), occ) for (tok_obj, occ) in usage.items()] return sorted(usage, key=(lambda x: x[1]), reverse=True) counter = Counter((use for result in self.data['results'] for use in result['file']['dependencies'])) usage = counter.most_common() if merge: usage = merge_all(usage) if cumulative: usage = cumulate(usage) return usage<|docstring|>Get a list of object-occurrence tuples, sorted by most to least frequent. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="3") >>> module.usage() [('nltk.metrics.distance.edit_distance', 2), ('nltk.tokenize.sent_tokenize', 1), ('nltk.tokenize.treebank.TreebankWordDetokenizer', 1)] :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"` into `"nltk.tokenize.word_tokenize"`. May give incorrect results for projects with "compat" folders, as the merging tends to prefer longer paths, e.g. `"tensorflow.float32"` will become `"tensorflow.compat.v1.dtypes.float32"` as opposed to just `"tensorflow.dtypes.float32"`. Defaults to True. :type merge: bool :return: A list of object-occurrence tuples, sorted by most to least frequent. :rtype: List[Tuple[str, int]]<|endoftext|>
69e3e7c46fe1df772ddbd0b6615e962a289b29e8ed65beff796dce6f3582c119
@lru_cache(maxsize=1) def nested_usage(self, full_name: bool=False, merge: bool=True, cumulative: bool=True) -> Dict[(str, Union[(Dict, int)])]: 'Get a (recursive) dictionary of objects mapped to occurrence of that object,\n and the object\'s children.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.nested_usage()\n {\n "nltk": {\n "occurrences": 4,\n "corpus": {\n "occurrences": 2,\n "stopwords": {\n "occurrences": 2,\n "words": {\n "occurrences": 2\n }\n }\n },\n "tokenize": {\n "occurrences": 2,\n "sent_tokenize": {\n "occurrences": 1\n },\n "treebank": {\n "occurrences": 1,\n "TreebankWordDetokenizer": {\n "occurrences": 1\n }\n }\n }\n }\n }\n\n TODO: Optimize this by relying on usage() better for cumulative\n\n :param full_name: Whether each dictionary key should be the full path,\n e.g. `"nltk.tokenize"`, rather than just the right-most section.\n Defaults to False.\n :type full_name: bool\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :param cumulative: Whether to include usage counts of e.g.\n `"nltk.tokenize.word_tokenize"` into `"nltk.tokenize"` and\n `"nltk"` as well. Defaults to True.\n :param cumulative: bool\n :return: A dictionary mapping objects to how often that object occurred\n in the parsed source code.\n :rtype: Dict[str, Union[Dict, int]]\n ' def recursive_add(nested: Dict, obj_tup: List[str], occurrence: int, prefix: str=''): if (not obj_tup): return head = obj_tup[0] if (full_name and prefix): head = ((prefix + '.') + head) if (head not in nested): nested[head] = {'occurrences': (occurrence if (cumulative or (len(obj_tup) == 1)) else 0)} elif (cumulative or (len(obj_tup) == 1)): nested[head]['occurrences'] += occurrence recursive_add(nested[head], obj_tup[1:], occurrence, prefix=head) nested = {} for (obj, occurrence) in self.usage(merge=merge): obj_tup = tokenize(obj) recursive_add(nested, obj_tup, occurrence) return nested
Get a (recursive) dictionary of objects mapped to occurrence of that object, and the object's children. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="3") >>> module.nested_usage() { "nltk": { "occurrences": 4, "corpus": { "occurrences": 2, "stopwords": { "occurrences": 2, "words": { "occurrences": 2 } } }, "tokenize": { "occurrences": 2, "sent_tokenize": { "occurrences": 1 }, "treebank": { "occurrences": 1, "TreebankWordDetokenizer": { "occurrences": 1 } } } } } TODO: Optimize this by relying on usage() better for cumulative :param full_name: Whether each dictionary key should be the full path, e.g. `"nltk.tokenize"`, rather than just the right-most section. Defaults to False. :type full_name: bool :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"` into `"nltk.tokenize.word_tokenize"`. May give incorrect results for projects with "compat" folders, as the merging tends to prefer longer paths, e.g. `"tensorflow.float32"` will become `"tensorflow.compat.v1.dtypes.float32"` as opposed to just `"tensorflow.dtypes.float32"`. Defaults to True. :type merge: bool :param cumulative: Whether to include usage counts of e.g. `"nltk.tokenize.word_tokenize"` into `"nltk.tokenize"` and `"nltk"` as well. Defaults to True. :param cumulative: bool :return: A dictionary mapping objects to how often that object occurred in the parsed source code. :rtype: Dict[str, Union[Dict, int]]
module_dependencies/module/module.py
nested_usage
tomaarsen/module_dependencies
1
python
@lru_cache(maxsize=1) def nested_usage(self, full_name: bool=False, merge: bool=True, cumulative: bool=True) -> Dict[(str, Union[(Dict, int)])]: 'Get a (recursive) dictionary of objects mapped to occurrence of that object,\n and the object\'s children.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.nested_usage()\n {\n "nltk": {\n "occurrences": 4,\n "corpus": {\n "occurrences": 2,\n "stopwords": {\n "occurrences": 2,\n "words": {\n "occurrences": 2\n }\n }\n },\n "tokenize": {\n "occurrences": 2,\n "sent_tokenize": {\n "occurrences": 1\n },\n "treebank": {\n "occurrences": 1,\n "TreebankWordDetokenizer": {\n "occurrences": 1\n }\n }\n }\n }\n }\n\n TODO: Optimize this by relying on usage() better for cumulative\n\n :param full_name: Whether each dictionary key should be the full path,\n e.g. `"nltk.tokenize"`, rather than just the right-most section.\n Defaults to False.\n :type full_name: bool\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :param cumulative: Whether to include usage counts of e.g.\n `"nltk.tokenize.word_tokenize"` into `"nltk.tokenize"` and\n `"nltk"` as well. Defaults to True.\n :param cumulative: bool\n :return: A dictionary mapping objects to how often that object occurred\n in the parsed source code.\n :rtype: Dict[str, Union[Dict, int]]\n ' def recursive_add(nested: Dict, obj_tup: List[str], occurrence: int, prefix: str=): if (not obj_tup): return head = obj_tup[0] if (full_name and prefix): head = ((prefix + '.') + head) if (head not in nested): nested[head] = {'occurrences': (occurrence if (cumulative or (len(obj_tup) == 1)) else 0)} elif (cumulative or (len(obj_tup) == 1)): nested[head]['occurrences'] += occurrence recursive_add(nested[head], obj_tup[1:], occurrence, prefix=head) nested = {} for (obj, occurrence) in self.usage(merge=merge): obj_tup = tokenize(obj) recursive_add(nested, obj_tup, occurrence) return nested
@lru_cache(maxsize=1) def nested_usage(self, full_name: bool=False, merge: bool=True, cumulative: bool=True) -> Dict[(str, Union[(Dict, int)])]: 'Get a (recursive) dictionary of objects mapped to occurrence of that object,\n and the object\'s children.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.nested_usage()\n {\n "nltk": {\n "occurrences": 4,\n "corpus": {\n "occurrences": 2,\n "stopwords": {\n "occurrences": 2,\n "words": {\n "occurrences": 2\n }\n }\n },\n "tokenize": {\n "occurrences": 2,\n "sent_tokenize": {\n "occurrences": 1\n },\n "treebank": {\n "occurrences": 1,\n "TreebankWordDetokenizer": {\n "occurrences": 1\n }\n }\n }\n }\n }\n\n TODO: Optimize this by relying on usage() better for cumulative\n\n :param full_name: Whether each dictionary key should be the full path,\n e.g. `"nltk.tokenize"`, rather than just the right-most section.\n Defaults to False.\n :type full_name: bool\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :param cumulative: Whether to include usage counts of e.g.\n `"nltk.tokenize.word_tokenize"` into `"nltk.tokenize"` and\n `"nltk"` as well. Defaults to True.\n :param cumulative: bool\n :return: A dictionary mapping objects to how often that object occurred\n in the parsed source code.\n :rtype: Dict[str, Union[Dict, int]]\n ' def recursive_add(nested: Dict, obj_tup: List[str], occurrence: int, prefix: str=): if (not obj_tup): return head = obj_tup[0] if (full_name and prefix): head = ((prefix + '.') + head) if (head not in nested): nested[head] = {'occurrences': (occurrence if (cumulative or (len(obj_tup) == 1)) else 0)} elif (cumulative or (len(obj_tup) == 1)): nested[head]['occurrences'] += occurrence recursive_add(nested[head], obj_tup[1:], occurrence, prefix=head) nested = {} for (obj, occurrence) in self.usage(merge=merge): obj_tup = tokenize(obj) recursive_add(nested, obj_tup, occurrence) return nested<|docstring|>Get a (recursive) dictionary of objects mapped to occurrence of that object, and the object's children. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="3") >>> module.nested_usage() { "nltk": { "occurrences": 4, "corpus": { "occurrences": 2, "stopwords": { "occurrences": 2, "words": { "occurrences": 2 } } }, "tokenize": { "occurrences": 2, "sent_tokenize": { "occurrences": 1 }, "treebank": { "occurrences": 1, "TreebankWordDetokenizer": { "occurrences": 1 } } } } } TODO: Optimize this by relying on usage() better for cumulative :param full_name: Whether each dictionary key should be the full path, e.g. `"nltk.tokenize"`, rather than just the right-most section. Defaults to False. :type full_name: bool :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"` into `"nltk.tokenize.word_tokenize"`. May give incorrect results for projects with "compat" folders, as the merging tends to prefer longer paths, e.g. `"tensorflow.float32"` will become `"tensorflow.compat.v1.dtypes.float32"` as opposed to just `"tensorflow.dtypes.float32"`. Defaults to True. :type merge: bool :param cumulative: Whether to include usage counts of e.g. `"nltk.tokenize.word_tokenize"` into `"nltk.tokenize"` and `"nltk"` as well. Defaults to True. :param cumulative: bool :return: A dictionary mapping objects to how often that object occurred in the parsed source code. :rtype: Dict[str, Union[Dict, int]]<|endoftext|>
db056e542814a6f1172378cbf40fd1912bc1d57d0e89a8d1f1ea506001bab1d5
@lru_cache(maxsize=1) def repositories(self, obj: str='') -> Dict[(str, Dict[(str, Any)])]: 'Return a mapping of repository names to repository information\n that were fetched and parsed. Contains "description", "stars", "isFork" keys,\n plus a list of "files" with "name", "path", "url", "dependencies" and\n "parse_error" fields. The "parse_error" field lists the error that was\n encountered when attempting to parse the file, e.g. "SyntaxError".\n This might happen when a Python 2 file was fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.repositories()\n {\n "github.com/codelucas/newspaper": {\n "description": "News, full-text, and article metadata extraction in Python 3. Advanced docs:",\n "stars": 11224,\n "isFork": false,\n "files": [\n {\n "name": "download_corpora.py",\n "path": "download_corpora.py",\n "url": "/github.com/codelucas/newspaper/-/blob/download_corpora.py",\n "dependencies": [\n "nltk.download"\n ],\n "parse_error": null\n },\n {\n "name": "nlp.py",\n "path": "newspaper/nlp.py",\n "url": "/github.com/codelucas/newspaper/-/blob/newspaper/nlp.py",\n "dependencies": [\n "nltk.data.load"\n ],\n "parse_error": null\n },\n {\n "name": "text.py",\n "path": "newspaper/text.py",\n "url": "/github.com/codelucas/newspaper/-/blob/newspaper/text.py",\n "dependencies": [\n "nltk.stem.isri.ISRIStemmer",\n "nltk.tokenize.wordpunct_tokenize"\n ],\n "parse_error": null\n }\n ]\n }\n }\n\n :return: A mapping of repositories\n :rtype: Dict[str, Dict[str, Any]]\n ' if obj: tok_obj = tokenize(obj) objects = {potential_obj for (potential_obj, _) in self.usage(merge=False, cumulative=True) if Module.is_subsection_of(tok_obj, tokenize(potential_obj))} if (not objects): warnings.warn(f'No instance of {obj!r} was found in the fetched files!', stacklevel=2) projects = {} for result in self.data['results']: if ((not obj) or set(result['file']['dependencies']).intersection(objects)): name = result['repository']['name'] del result['repository']['name'] if (name in projects): projects[name]['files'].append(result['file']) else: projects[name] = {**result['repository'], 'files': [result['file']]} return dict(sorted(projects.items(), key=(lambda project: project[1]['stars']), reverse=True))
Return a mapping of repository names to repository information that were fetched and parsed. Contains "description", "stars", "isFork" keys, plus a list of "files" with "name", "path", "url", "dependencies" and "parse_error" fields. The "parse_error" field lists the error that was encountered when attempting to parse the file, e.g. "SyntaxError". This might happen when a Python 2 file was fetched. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="3") >>> module.repositories() { "github.com/codelucas/newspaper": { "description": "News, full-text, and article metadata extraction in Python 3. Advanced docs:", "stars": 11224, "isFork": false, "files": [ { "name": "download_corpora.py", "path": "download_corpora.py", "url": "/github.com/codelucas/newspaper/-/blob/download_corpora.py", "dependencies": [ "nltk.download" ], "parse_error": null }, { "name": "nlp.py", "path": "newspaper/nlp.py", "url": "/github.com/codelucas/newspaper/-/blob/newspaper/nlp.py", "dependencies": [ "nltk.data.load" ], "parse_error": null }, { "name": "text.py", "path": "newspaper/text.py", "url": "/github.com/codelucas/newspaper/-/blob/newspaper/text.py", "dependencies": [ "nltk.stem.isri.ISRIStemmer", "nltk.tokenize.wordpunct_tokenize" ], "parse_error": null } ] } } :return: A mapping of repositories :rtype: Dict[str, Dict[str, Any]]
module_dependencies/module/module.py
repositories
tomaarsen/module_dependencies
1
python
@lru_cache(maxsize=1) def repositories(self, obj: str=) -> Dict[(str, Dict[(str, Any)])]: 'Return a mapping of repository names to repository information\n that were fetched and parsed. Contains "description", "stars", "isFork" keys,\n plus a list of "files" with "name", "path", "url", "dependencies" and\n "parse_error" fields. The "parse_error" field lists the error that was\n encountered when attempting to parse the file, e.g. "SyntaxError".\n This might happen when a Python 2 file was fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.repositories()\n {\n "github.com/codelucas/newspaper": {\n "description": "News, full-text, and article metadata extraction in Python 3. Advanced docs:",\n "stars": 11224,\n "isFork": false,\n "files": [\n {\n "name": "download_corpora.py",\n "path": "download_corpora.py",\n "url": "/github.com/codelucas/newspaper/-/blob/download_corpora.py",\n "dependencies": [\n "nltk.download"\n ],\n "parse_error": null\n },\n {\n "name": "nlp.py",\n "path": "newspaper/nlp.py",\n "url": "/github.com/codelucas/newspaper/-/blob/newspaper/nlp.py",\n "dependencies": [\n "nltk.data.load"\n ],\n "parse_error": null\n },\n {\n "name": "text.py",\n "path": "newspaper/text.py",\n "url": "/github.com/codelucas/newspaper/-/blob/newspaper/text.py",\n "dependencies": [\n "nltk.stem.isri.ISRIStemmer",\n "nltk.tokenize.wordpunct_tokenize"\n ],\n "parse_error": null\n }\n ]\n }\n }\n\n :return: A mapping of repositories\n :rtype: Dict[str, Dict[str, Any]]\n ' if obj: tok_obj = tokenize(obj) objects = {potential_obj for (potential_obj, _) in self.usage(merge=False, cumulative=True) if Module.is_subsection_of(tok_obj, tokenize(potential_obj))} if (not objects): warnings.warn(f'No instance of {obj!r} was found in the fetched files!', stacklevel=2) projects = {} for result in self.data['results']: if ((not obj) or set(result['file']['dependencies']).intersection(objects)): name = result['repository']['name'] del result['repository']['name'] if (name in projects): projects[name]['files'].append(result['file']) else: projects[name] = {**result['repository'], 'files': [result['file']]} return dict(sorted(projects.items(), key=(lambda project: project[1]['stars']), reverse=True))
@lru_cache(maxsize=1) def repositories(self, obj: str=) -> Dict[(str, Dict[(str, Any)])]: 'Return a mapping of repository names to repository information\n that were fetched and parsed. Contains "description", "stars", "isFork" keys,\n plus a list of "files" with "name", "path", "url", "dependencies" and\n "parse_error" fields. The "parse_error" field lists the error that was\n encountered when attempting to parse the file, e.g. "SyntaxError".\n This might happen when a Python 2 file was fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="3")\n >>> module.repositories()\n {\n "github.com/codelucas/newspaper": {\n "description": "News, full-text, and article metadata extraction in Python 3. Advanced docs:",\n "stars": 11224,\n "isFork": false,\n "files": [\n {\n "name": "download_corpora.py",\n "path": "download_corpora.py",\n "url": "/github.com/codelucas/newspaper/-/blob/download_corpora.py",\n "dependencies": [\n "nltk.download"\n ],\n "parse_error": null\n },\n {\n "name": "nlp.py",\n "path": "newspaper/nlp.py",\n "url": "/github.com/codelucas/newspaper/-/blob/newspaper/nlp.py",\n "dependencies": [\n "nltk.data.load"\n ],\n "parse_error": null\n },\n {\n "name": "text.py",\n "path": "newspaper/text.py",\n "url": "/github.com/codelucas/newspaper/-/blob/newspaper/text.py",\n "dependencies": [\n "nltk.stem.isri.ISRIStemmer",\n "nltk.tokenize.wordpunct_tokenize"\n ],\n "parse_error": null\n }\n ]\n }\n }\n\n :return: A mapping of repositories\n :rtype: Dict[str, Dict[str, Any]]\n ' if obj: tok_obj = tokenize(obj) objects = {potential_obj for (potential_obj, _) in self.usage(merge=False, cumulative=True) if Module.is_subsection_of(tok_obj, tokenize(potential_obj))} if (not objects): warnings.warn(f'No instance of {obj!r} was found in the fetched files!', stacklevel=2) projects = {} for result in self.data['results']: if ((not obj) or set(result['file']['dependencies']).intersection(objects)): name = result['repository']['name'] del result['repository']['name'] if (name in projects): projects[name]['files'].append(result['file']) else: projects[name] = {**result['repository'], 'files': [result['file']]} return dict(sorted(projects.items(), key=(lambda project: project[1]['stars']), reverse=True))<|docstring|>Return a mapping of repository names to repository information that were fetched and parsed. Contains "description", "stars", "isFork" keys, plus a list of "files" with "name", "path", "url", "dependencies" and "parse_error" fields. The "parse_error" field lists the error that was encountered when attempting to parse the file, e.g. "SyntaxError". This might happen when a Python 2 file was fetched. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="3") >>> module.repositories() { "github.com/codelucas/newspaper": { "description": "News, full-text, and article metadata extraction in Python 3. Advanced docs:", "stars": 11224, "isFork": false, "files": [ { "name": "download_corpora.py", "path": "download_corpora.py", "url": "/github.com/codelucas/newspaper/-/blob/download_corpora.py", "dependencies": [ "nltk.download" ], "parse_error": null }, { "name": "nlp.py", "path": "newspaper/nlp.py", "url": "/github.com/codelucas/newspaper/-/blob/newspaper/nlp.py", "dependencies": [ "nltk.data.load" ], "parse_error": null }, { "name": "text.py", "path": "newspaper/text.py", "url": "/github.com/codelucas/newspaper/-/blob/newspaper/text.py", "dependencies": [ "nltk.stem.isri.ISRIStemmer", "nltk.tokenize.wordpunct_tokenize" ], "parse_error": null } ] } } :return: A mapping of repositories :rtype: Dict[str, Dict[str, Any]]<|endoftext|>
0e55608a60109cd5488d9df978a7ef158a828deebfdcc494e877929a84ce9d82
def plot(self, merge: bool=True, threshold: int=0, limit: int=(- 1), max_depth: int=4, transparant: bool=False, show: bool=True) -> None: 'Display a plotly Sunburst plot showing the frequency of use\n of different sections of this module.\n\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :rtype: None\n ' import plotly.graph_objects as go def get_value(nested_dict: Dict, tok_obj: Tuple[str]) -> int: 'Recursively apply elements from `tok_obj` as keys in `nested_dict`,\n and then gather the `occurrences`.\n\n :param nested_dict: A dictionary with nested usages, generally taken\n from the `nested_usage` method.\n :type nested_dict: Dict\n :param tok_obj: A tuple of strings representing a path to a Python path.\n :type tok_obj: Tuple[str]\n :return: The occurrence of the object represented by `tok_obj`\n in `nested_dict`.\n :rtype: int\n ' if (not tok_obj): return nested_dict['occurrences'] return get_value(nested_dict[tok_obj[0]], tok_obj[1:]) usage = self.usage(merge=merge) nested_usage = self.nested_usage(merge=merge) objects = set() for (obj, _) in usage: tok_obj = tokenize(obj) objects |= {(detokenize(tok_obj[:i]), tok_obj[:i]) for i in range(1, (len(tok_obj) + 1))} full_objects = [{'obj': obj, 'tok': tok_obj, 'val': get_value(nested_usage, tok_obj)} for (obj, tok_obj) in objects] if threshold: full_objects = [fobj for fobj in full_objects if (fobj['val'] > threshold)] if (limit > 0): sorted_fobjs = sorted(full_objects, key=(lambda fobj: fobj['val']), reverse=True) limit_value = sorted_fobjs[limit]['val'] full_objects = [fobj for fobj in full_objects if (fobj['val'] >= limit_value)] parameters = {'ids': [fobj['obj'] for fobj in full_objects], 'labels': [fobj['tok'][(- 1)] for fobj in full_objects], 'parents': [detokenize(fobj['tok'][:(- 1)]) for fobj in full_objects], 'values': [fobj['val'] for fobj in full_objects]} if show: fig = go.Figure(go.Sunburst(**parameters, branchvalues='total', insidetextorientation='radial', maxdepth=max_depth), layout=go.Layout(paper_bgcolor=('rgba(0,0,0,0)' if transparant else None), margin={'t': 0, 'l': 0, 'r': 0, 'b': 0})) fig.show() else: return parameters
Display a plotly Sunburst plot showing the frequency of use of different sections of this module. :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"` into `"nltk.tokenize.word_tokenize"`. May give incorrect results for projects with "compat" folders, as the merging tends to prefer longer paths, e.g. `"tensorflow.float32"` will become `"tensorflow.compat.v1.dtypes.float32"` as opposed to just `"tensorflow.dtypes.float32"`. Defaults to True. :type merge: bool :rtype: None
module_dependencies/module/module.py
plot
tomaarsen/module_dependencies
1
python
def plot(self, merge: bool=True, threshold: int=0, limit: int=(- 1), max_depth: int=4, transparant: bool=False, show: bool=True) -> None: 'Display a plotly Sunburst plot showing the frequency of use\n of different sections of this module.\n\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :rtype: None\n ' import plotly.graph_objects as go def get_value(nested_dict: Dict, tok_obj: Tuple[str]) -> int: 'Recursively apply elements from `tok_obj` as keys in `nested_dict`,\n and then gather the `occurrences`.\n\n :param nested_dict: A dictionary with nested usages, generally taken\n from the `nested_usage` method.\n :type nested_dict: Dict\n :param tok_obj: A tuple of strings representing a path to a Python path.\n :type tok_obj: Tuple[str]\n :return: The occurrence of the object represented by `tok_obj`\n in `nested_dict`.\n :rtype: int\n ' if (not tok_obj): return nested_dict['occurrences'] return get_value(nested_dict[tok_obj[0]], tok_obj[1:]) usage = self.usage(merge=merge) nested_usage = self.nested_usage(merge=merge) objects = set() for (obj, _) in usage: tok_obj = tokenize(obj) objects |= {(detokenize(tok_obj[:i]), tok_obj[:i]) for i in range(1, (len(tok_obj) + 1))} full_objects = [{'obj': obj, 'tok': tok_obj, 'val': get_value(nested_usage, tok_obj)} for (obj, tok_obj) in objects] if threshold: full_objects = [fobj for fobj in full_objects if (fobj['val'] > threshold)] if (limit > 0): sorted_fobjs = sorted(full_objects, key=(lambda fobj: fobj['val']), reverse=True) limit_value = sorted_fobjs[limit]['val'] full_objects = [fobj for fobj in full_objects if (fobj['val'] >= limit_value)] parameters = {'ids': [fobj['obj'] for fobj in full_objects], 'labels': [fobj['tok'][(- 1)] for fobj in full_objects], 'parents': [detokenize(fobj['tok'][:(- 1)]) for fobj in full_objects], 'values': [fobj['val'] for fobj in full_objects]} if show: fig = go.Figure(go.Sunburst(**parameters, branchvalues='total', insidetextorientation='radial', maxdepth=max_depth), layout=go.Layout(paper_bgcolor=('rgba(0,0,0,0)' if transparant else None), margin={'t': 0, 'l': 0, 'r': 0, 'b': 0})) fig.show() else: return parameters
def plot(self, merge: bool=True, threshold: int=0, limit: int=(- 1), max_depth: int=4, transparant: bool=False, show: bool=True) -> None: 'Display a plotly Sunburst plot showing the frequency of use\n of different sections of this module.\n\n :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"`\n into `"nltk.tokenize.word_tokenize"`. May give incorrect results\n for projects with "compat" folders, as the merging tends to prefer\n longer paths, e.g. `"tensorflow.float32"` will become\n `"tensorflow.compat.v1.dtypes.float32"` as opposed to just\n `"tensorflow.dtypes.float32"`. Defaults to True.\n :type merge: bool\n :rtype: None\n ' import plotly.graph_objects as go def get_value(nested_dict: Dict, tok_obj: Tuple[str]) -> int: 'Recursively apply elements from `tok_obj` as keys in `nested_dict`,\n and then gather the `occurrences`.\n\n :param nested_dict: A dictionary with nested usages, generally taken\n from the `nested_usage` method.\n :type nested_dict: Dict\n :param tok_obj: A tuple of strings representing a path to a Python path.\n :type tok_obj: Tuple[str]\n :return: The occurrence of the object represented by `tok_obj`\n in `nested_dict`.\n :rtype: int\n ' if (not tok_obj): return nested_dict['occurrences'] return get_value(nested_dict[tok_obj[0]], tok_obj[1:]) usage = self.usage(merge=merge) nested_usage = self.nested_usage(merge=merge) objects = set() for (obj, _) in usage: tok_obj = tokenize(obj) objects |= {(detokenize(tok_obj[:i]), tok_obj[:i]) for i in range(1, (len(tok_obj) + 1))} full_objects = [{'obj': obj, 'tok': tok_obj, 'val': get_value(nested_usage, tok_obj)} for (obj, tok_obj) in objects] if threshold: full_objects = [fobj for fobj in full_objects if (fobj['val'] > threshold)] if (limit > 0): sorted_fobjs = sorted(full_objects, key=(lambda fobj: fobj['val']), reverse=True) limit_value = sorted_fobjs[limit]['val'] full_objects = [fobj for fobj in full_objects if (fobj['val'] >= limit_value)] parameters = {'ids': [fobj['obj'] for fobj in full_objects], 'labels': [fobj['tok'][(- 1)] for fobj in full_objects], 'parents': [detokenize(fobj['tok'][:(- 1)]) for fobj in full_objects], 'values': [fobj['val'] for fobj in full_objects]} if show: fig = go.Figure(go.Sunburst(**parameters, branchvalues='total', insidetextorientation='radial', maxdepth=max_depth), layout=go.Layout(paper_bgcolor=('rgba(0,0,0,0)' if transparant else None), margin={'t': 0, 'l': 0, 'r': 0, 'b': 0})) fig.show() else: return parameters<|docstring|>Display a plotly Sunburst plot showing the frequency of use of different sections of this module. :param merge: Whether to attempt to merge e.g. `"nltk.word_tokenize"` into `"nltk.tokenize.word_tokenize"`. May give incorrect results for projects with "compat" folders, as the merging tends to prefer longer paths, e.g. `"tensorflow.float32"` will become `"tensorflow.compat.v1.dtypes.float32"` as opposed to just `"tensorflow.dtypes.float32"`. Defaults to True. :type merge: bool :rtype: None<|endoftext|>
a48510399b575dcd5f622909af873a5e6bdbcc1109f8512c66572067202a3786
def n_uses(self, obj: str='') -> int: 'Return the number of uses of the module.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_uses()\n 137\n\n :return: The number of uses, i.e. the number of times\n `self.module` was used in the fetched files.\n :rtype: int\n ' if obj: tok_obj = tokenize(obj) objects = {potential_obj for (potential_obj, _) in self.usage(merge=False, cumulative=True) if Module.is_subsection_of(tok_obj, tokenize(potential_obj))} usages = defaultdict((lambda : 0), self.usage(merge=False, cumulative=False)) return sum((usages[potential_obj] for potential_obj in objects)) return sum((occ for (_, occ) in self.usage(merge=False, cumulative=False)))
Return the number of uses of the module. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="100") >>> module.n_uses() 137 :return: The number of uses, i.e. the number of times `self.module` was used in the fetched files. :rtype: int
module_dependencies/module/module.py
n_uses
tomaarsen/module_dependencies
1
python
def n_uses(self, obj: str=) -> int: 'Return the number of uses of the module.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_uses()\n 137\n\n :return: The number of uses, i.e. the number of times\n `self.module` was used in the fetched files.\n :rtype: int\n ' if obj: tok_obj = tokenize(obj) objects = {potential_obj for (potential_obj, _) in self.usage(merge=False, cumulative=True) if Module.is_subsection_of(tok_obj, tokenize(potential_obj))} usages = defaultdict((lambda : 0), self.usage(merge=False, cumulative=False)) return sum((usages[potential_obj] for potential_obj in objects)) return sum((occ for (_, occ) in self.usage(merge=False, cumulative=False)))
def n_uses(self, obj: str=) -> int: 'Return the number of uses of the module.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_uses()\n 137\n\n :return: The number of uses, i.e. the number of times\n `self.module` was used in the fetched files.\n :rtype: int\n ' if obj: tok_obj = tokenize(obj) objects = {potential_obj for (potential_obj, _) in self.usage(merge=False, cumulative=True) if Module.is_subsection_of(tok_obj, tokenize(potential_obj))} usages = defaultdict((lambda : 0), self.usage(merge=False, cumulative=False)) return sum((usages[potential_obj] for potential_obj in objects)) return sum((occ for (_, occ) in self.usage(merge=False, cumulative=False)))<|docstring|>Return the number of uses of the module. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="100") >>> module.n_uses() 137 :return: The number of uses, i.e. the number of times `self.module` was used in the fetched files. :rtype: int<|endoftext|>
dfbc89bdb9602e97f0d427b7a63ece89132d5a4210a1c029afee6cb1d0d25cf6
def n_files(self) -> int: 'Return the number of files fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_files()\n 100\n\n :return: The number of fetched files in which `self.module` was\n imported. Generally equivalent or similar to `count` if it\n was provided.\n :rtype: int\n ' return len(self.data['results'])
Return the number of files fetched. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="100") >>> module.n_files() 100 :return: The number of fetched files in which `self.module` was imported. Generally equivalent or similar to `count` if it was provided. :rtype: int
module_dependencies/module/module.py
n_files
tomaarsen/module_dependencies
1
python
def n_files(self) -> int: 'Return the number of files fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_files()\n 100\n\n :return: The number of fetched files in which `self.module` was\n imported. Generally equivalent or similar to `count` if it\n was provided.\n :rtype: int\n ' return len(self.data['results'])
def n_files(self) -> int: 'Return the number of files fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_files()\n 100\n\n :return: The number of fetched files in which `self.module` was\n imported. Generally equivalent or similar to `count` if it\n was provided.\n :rtype: int\n ' return len(self.data['results'])<|docstring|>Return the number of files fetched. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="100") >>> module.n_files() 100 :return: The number of fetched files in which `self.module` was imported. Generally equivalent or similar to `count` if it was provided. :rtype: int<|endoftext|>
bc241538afb8265833c153c9a0127d7a4196482719cfedc7d99b5c23f5906d6c
def n_repositories(self) -> int: 'Return the number of repositories fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_repositories()\n 52\n\n TODO: Exclude errorred code\n\n :return: The number of fetched repositories in which `self.module`\n was imported.\n :rtype: int\n ' return self.data['repositoriesCount']
Return the number of repositories fetched. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="100") >>> module.n_repositories() 52 TODO: Exclude errorred code :return: The number of fetched repositories in which `self.module` was imported. :rtype: int
module_dependencies/module/module.py
n_repositories
tomaarsen/module_dependencies
1
python
def n_repositories(self) -> int: 'Return the number of repositories fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_repositories()\n 52\n\n TODO: Exclude errorred code\n\n :return: The number of fetched repositories in which `self.module`\n was imported.\n :rtype: int\n ' return self.data['repositoriesCount']
def n_repositories(self) -> int: 'Return the number of repositories fetched.\n\n Example usage::\n\n >>> from module_dependencies import Module\n >>> module = Module("nltk", count="100")\n >>> module.n_repositories()\n 52\n\n TODO: Exclude errorred code\n\n :return: The number of fetched repositories in which `self.module`\n was imported.\n :rtype: int\n ' return self.data['repositoriesCount']<|docstring|>Return the number of repositories fetched. Example usage:: >>> from module_dependencies import Module >>> module = Module("nltk", count="100") >>> module.n_repositories() 52 TODO: Exclude errorred code :return: The number of fetched repositories in which `self.module` was imported. :rtype: int<|endoftext|>
54be0f20c0f26950da46f1be257835128adcd4ec3be5f15352e1e2e6aa28e8d9
def merge_one(usage: List[Tuple[(Tuple[str], int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of similar tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially\n combinable objects.\n\n :param usage: A list of tuples, where the first element is a tuple\n of strings that represent a path to a Python object, e.g.\n `(\'nltk\', \'word_tokenize\')`, and the second element is how\n often that Python object occurs in a large collection of code.\n Each path in the tuple ends in the same token, and thus could\n refer to the same object.\n :type usage: List[Tuple[Tuple[str], int]]\n :return: `usage`, but the first element of each tuple is detokenized,\n i.e. converted back to a string, and paths that refer to the\n same element are merged.\n :rtype: List[Tuple[str, int]]\n ' merged = {} for (obj, occ) in sorted(usage, key=(lambda x: len(x[0])), reverse=True): options = [(o_key, o_occ) for (o_key, o_occ) in merged.items() if (Module.is_subsection_of(obj, o_key) and (o_occ > 1))] if options: key = max(options, key=(lambda x: x[1]))[0] merged[key] += occ else: merged[obj] = occ return [(detokenize(obj), occ) for (obj, occ) in merged.items()]
Merge a list of similar tuples, combining on "paths" that likely refer to the same object, e.g. `"nltk.word_tokenize"` and `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially combinable objects. :param usage: A list of tuples, where the first element is a tuple of strings that represent a path to a Python object, e.g. `('nltk', 'word_tokenize')`, and the second element is how often that Python object occurs in a large collection of code. Each path in the tuple ends in the same token, and thus could refer to the same object. :type usage: List[Tuple[Tuple[str], int]] :return: `usage`, but the first element of each tuple is detokenized, i.e. converted back to a string, and paths that refer to the same element are merged. :rtype: List[Tuple[str, int]]
module_dependencies/module/module.py
merge_one
tomaarsen/module_dependencies
1
python
def merge_one(usage: List[Tuple[(Tuple[str], int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of similar tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially\n combinable objects.\n\n :param usage: A list of tuples, where the first element is a tuple\n of strings that represent a path to a Python object, e.g.\n `(\'nltk\', \'word_tokenize\')`, and the second element is how\n often that Python object occurs in a large collection of code.\n Each path in the tuple ends in the same token, and thus could\n refer to the same object.\n :type usage: List[Tuple[Tuple[str], int]]\n :return: `usage`, but the first element of each tuple is detokenized,\n i.e. converted back to a string, and paths that refer to the\n same element are merged.\n :rtype: List[Tuple[str, int]]\n ' merged = {} for (obj, occ) in sorted(usage, key=(lambda x: len(x[0])), reverse=True): options = [(o_key, o_occ) for (o_key, o_occ) in merged.items() if (Module.is_subsection_of(obj, o_key) and (o_occ > 1))] if options: key = max(options, key=(lambda x: x[1]))[0] merged[key] += occ else: merged[obj] = occ return [(detokenize(obj), occ) for (obj, occ) in merged.items()]
def merge_one(usage: List[Tuple[(Tuple[str], int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of similar tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially\n combinable objects.\n\n :param usage: A list of tuples, where the first element is a tuple\n of strings that represent a path to a Python object, e.g.\n `(\'nltk\', \'word_tokenize\')`, and the second element is how\n often that Python object occurs in a large collection of code.\n Each path in the tuple ends in the same token, and thus could\n refer to the same object.\n :type usage: List[Tuple[Tuple[str], int]]\n :return: `usage`, but the first element of each tuple is detokenized,\n i.e. converted back to a string, and paths that refer to the\n same element are merged.\n :rtype: List[Tuple[str, int]]\n ' merged = {} for (obj, occ) in sorted(usage, key=(lambda x: len(x[0])), reverse=True): options = [(o_key, o_occ) for (o_key, o_occ) in merged.items() if (Module.is_subsection_of(obj, o_key) and (o_occ > 1))] if options: key = max(options, key=(lambda x: x[1]))[0] merged[key] += occ else: merged[obj] = occ return [(detokenize(obj), occ) for (obj, occ) in merged.items()]<|docstring|>Merge a list of similar tuples, combining on "paths" that likely refer to the same object, e.g. `"nltk.word_tokenize"` and `"nltk.tokenize.word_tokenize"`. `usage` is a list of potentially combinable objects. :param usage: A list of tuples, where the first element is a tuple of strings that represent a path to a Python object, e.g. `('nltk', 'word_tokenize')`, and the second element is how often that Python object occurs in a large collection of code. Each path in the tuple ends in the same token, and thus could refer to the same object. :type usage: List[Tuple[Tuple[str], int]] :return: `usage`, but the first element of each tuple is detokenized, i.e. converted back to a string, and paths that refer to the same element are merged. :rtype: List[Tuple[str, int]]<|endoftext|>
d041e8bb052a2c85d51cf5eb2bc0c8e0348fac0dc37ed88ba88708f039857959
def merge_all(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`.\n\n :param usage: A list of tuples, where the first element of\n each tuple is a string representing a path to a Python object,\n e.g. `"nltk.word_tokenize"`, and the second element of each\n tuple is the occurrence of that object in a large collection\n of code.\n :type usage: List[Tuple[str, int]]\n :return: `usage`, but with some merged tuples.\n :rtype: List[Tuple[str, int]]\n ' grouped = defaultdict(list) for (obj, occ) in usage: obj_tok = tokenize(obj) grouped[obj_tok[(- 1)]].append((obj_tok, occ)) merged = [] for group in grouped.values(): merged.extend(merge_one(group)) return sorted(merged, key=(lambda x: x[1]), reverse=True)
Merge a list of tuples, combining on "paths" that likely refer to the same object, e.g. `"nltk.word_tokenize"` and `"nltk.tokenize.word_tokenize"`. :param usage: A list of tuples, where the first element of each tuple is a string representing a path to a Python object, e.g. `"nltk.word_tokenize"`, and the second element of each tuple is the occurrence of that object in a large collection of code. :type usage: List[Tuple[str, int]] :return: `usage`, but with some merged tuples. :rtype: List[Tuple[str, int]]
module_dependencies/module/module.py
merge_all
tomaarsen/module_dependencies
1
python
def merge_all(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`.\n\n :param usage: A list of tuples, where the first element of\n each tuple is a string representing a path to a Python object,\n e.g. `"nltk.word_tokenize"`, and the second element of each\n tuple is the occurrence of that object in a large collection\n of code.\n :type usage: List[Tuple[str, int]]\n :return: `usage`, but with some merged tuples.\n :rtype: List[Tuple[str, int]]\n ' grouped = defaultdict(list) for (obj, occ) in usage: obj_tok = tokenize(obj) grouped[obj_tok[(- 1)]].append((obj_tok, occ)) merged = [] for group in grouped.values(): merged.extend(merge_one(group)) return sorted(merged, key=(lambda x: x[1]), reverse=True)
def merge_all(usage: List[Tuple[(str, int)]]) -> List[Tuple[(str, int)]]: 'Merge a list of tuples, combining on "paths" that likely\n refer to the same object, e.g. `"nltk.word_tokenize"` and\n `"nltk.tokenize.word_tokenize"`.\n\n :param usage: A list of tuples, where the first element of\n each tuple is a string representing a path to a Python object,\n e.g. `"nltk.word_tokenize"`, and the second element of each\n tuple is the occurrence of that object in a large collection\n of code.\n :type usage: List[Tuple[str, int]]\n :return: `usage`, but with some merged tuples.\n :rtype: List[Tuple[str, int]]\n ' grouped = defaultdict(list) for (obj, occ) in usage: obj_tok = tokenize(obj) grouped[obj_tok[(- 1)]].append((obj_tok, occ)) merged = [] for group in grouped.values(): merged.extend(merge_one(group)) return sorted(merged, key=(lambda x: x[1]), reverse=True)<|docstring|>Merge a list of tuples, combining on "paths" that likely refer to the same object, e.g. `"nltk.word_tokenize"` and `"nltk.tokenize.word_tokenize"`. :param usage: A list of tuples, where the first element of each tuple is a string representing a path to a Python object, e.g. `"nltk.word_tokenize"`, and the second element of each tuple is the occurrence of that object in a large collection of code. :type usage: List[Tuple[str, int]] :return: `usage`, but with some merged tuples. :rtype: List[Tuple[str, int]]<|endoftext|>
0131b89d52a9f99db3c305f28ec94b05fea9841c218ff6d737d83c896b16471c
def get_value(nested_dict: Dict, tok_obj: Tuple[str]) -> int: 'Recursively apply elements from `tok_obj` as keys in `nested_dict`,\n and then gather the `occurrences`.\n\n :param nested_dict: A dictionary with nested usages, generally taken\n from the `nested_usage` method.\n :type nested_dict: Dict\n :param tok_obj: A tuple of strings representing a path to a Python path.\n :type tok_obj: Tuple[str]\n :return: The occurrence of the object represented by `tok_obj`\n in `nested_dict`.\n :rtype: int\n ' if (not tok_obj): return nested_dict['occurrences'] return get_value(nested_dict[tok_obj[0]], tok_obj[1:])
Recursively apply elements from `tok_obj` as keys in `nested_dict`, and then gather the `occurrences`. :param nested_dict: A dictionary with nested usages, generally taken from the `nested_usage` method. :type nested_dict: Dict :param tok_obj: A tuple of strings representing a path to a Python path. :type tok_obj: Tuple[str] :return: The occurrence of the object represented by `tok_obj` in `nested_dict`. :rtype: int
module_dependencies/module/module.py
get_value
tomaarsen/module_dependencies
1
python
def get_value(nested_dict: Dict, tok_obj: Tuple[str]) -> int: 'Recursively apply elements from `tok_obj` as keys in `nested_dict`,\n and then gather the `occurrences`.\n\n :param nested_dict: A dictionary with nested usages, generally taken\n from the `nested_usage` method.\n :type nested_dict: Dict\n :param tok_obj: A tuple of strings representing a path to a Python path.\n :type tok_obj: Tuple[str]\n :return: The occurrence of the object represented by `tok_obj`\n in `nested_dict`.\n :rtype: int\n ' if (not tok_obj): return nested_dict['occurrences'] return get_value(nested_dict[tok_obj[0]], tok_obj[1:])
def get_value(nested_dict: Dict, tok_obj: Tuple[str]) -> int: 'Recursively apply elements from `tok_obj` as keys in `nested_dict`,\n and then gather the `occurrences`.\n\n :param nested_dict: A dictionary with nested usages, generally taken\n from the `nested_usage` method.\n :type nested_dict: Dict\n :param tok_obj: A tuple of strings representing a path to a Python path.\n :type tok_obj: Tuple[str]\n :return: The occurrence of the object represented by `tok_obj`\n in `nested_dict`.\n :rtype: int\n ' if (not tok_obj): return nested_dict['occurrences'] return get_value(nested_dict[tok_obj[0]], tok_obj[1:])<|docstring|>Recursively apply elements from `tok_obj` as keys in `nested_dict`, and then gather the `occurrences`. :param nested_dict: A dictionary with nested usages, generally taken from the `nested_usage` method. :type nested_dict: Dict :param tok_obj: A tuple of strings representing a path to a Python path. :type tok_obj: Tuple[str] :return: The occurrence of the object represented by `tok_obj` in `nested_dict`. :rtype: int<|endoftext|>
d7fb2cb6eec4c7540dd8af04b6f5c445f86e765a64973fe9be3d5b449e5d33e4
def test_tddft_iter_lda(self): ' Compute polarization with LDA TDDFT ' from timeit import default_timer as timer dname = os.path.dirname(os.path.abspath(__file__)) td = tddft_iter(label='water', cd=dname, jcutoff=7, iter_broadening=0.01, xc_code='LDA,PZ', level=0) omegas = (np.linspace(0.0, 2.0, 150) + (1j * td.eps)) pxx = (- td.comp_polariz_inter_xx(omegas).imag) data = np.array([(omegas.real * 27.2114), pxx]) np.savetxt('water.tddft_iter_lda.omega.inter.pxx.txt', data.T, fmt=['%f', '%f']) data_ref = np.loadtxt((dname + '/water.tddft_iter_lda.omega.inter.pxx.txt-ref')) self.assertTrue(np.allclose(data_ref, data.T, rtol=1.0, atol=1e-05))
Compute polarization with LDA TDDFT
pyscf/nao/test/test_0034_tddft_iter_lda_nao.py
test_tddft_iter_lda
mfkasim1/pyscf
3
python
def test_tddft_iter_lda(self): ' ' from timeit import default_timer as timer dname = os.path.dirname(os.path.abspath(__file__)) td = tddft_iter(label='water', cd=dname, jcutoff=7, iter_broadening=0.01, xc_code='LDA,PZ', level=0) omegas = (np.linspace(0.0, 2.0, 150) + (1j * td.eps)) pxx = (- td.comp_polariz_inter_xx(omegas).imag) data = np.array([(omegas.real * 27.2114), pxx]) np.savetxt('water.tddft_iter_lda.omega.inter.pxx.txt', data.T, fmt=['%f', '%f']) data_ref = np.loadtxt((dname + '/water.tddft_iter_lda.omega.inter.pxx.txt-ref')) self.assertTrue(np.allclose(data_ref, data.T, rtol=1.0, atol=1e-05))
def test_tddft_iter_lda(self): ' ' from timeit import default_timer as timer dname = os.path.dirname(os.path.abspath(__file__)) td = tddft_iter(label='water', cd=dname, jcutoff=7, iter_broadening=0.01, xc_code='LDA,PZ', level=0) omegas = (np.linspace(0.0, 2.0, 150) + (1j * td.eps)) pxx = (- td.comp_polariz_inter_xx(omegas).imag) data = np.array([(omegas.real * 27.2114), pxx]) np.savetxt('water.tddft_iter_lda.omega.inter.pxx.txt', data.T, fmt=['%f', '%f']) data_ref = np.loadtxt((dname + '/water.tddft_iter_lda.omega.inter.pxx.txt-ref')) self.assertTrue(np.allclose(data_ref, data.T, rtol=1.0, atol=1e-05))<|docstring|>Compute polarization with LDA TDDFT<|endoftext|>
f7ba3fc467b684fb2e3be9d235e7c369344f541761096e7c24f519f53baaafda
@staticmethod def random_agent(observation, configuration): 'Agent for taking a random action.' del observation return random.randrange(configuration.banditCount)
Agent for taking a random action.
idea01/bots.py
random_agent
RobRomijnders/santa20
0
python
@staticmethod def random_agent(observation, configuration): del observation return random.randrange(configuration.banditCount)
@staticmethod def random_agent(observation, configuration): del observation return random.randrange(configuration.banditCount)<|docstring|>Agent for taking a random action.<|endoftext|>
202474d18428954253c129c202689a53f423387176694943bbedf5d7f2274f47
def random_agent_limit(self, observation, configuration): 'Agent for taking a random action within a limit.' del observation return random.randrange(int((configuration.banditCount * self.limit)))
Agent for taking a random action within a limit.
idea01/bots.py
random_agent_limit
RobRomijnders/santa20
0
python
def random_agent_limit(self, observation, configuration): del observation return random.randrange(int((configuration.banditCount * self.limit)))
def random_agent_limit(self, observation, configuration): del observation return random.randrange(int((configuration.banditCount * self.limit)))<|docstring|>Agent for taking a random action within a limit.<|endoftext|>
6c9af06b89fb54720528298a5d5e2f639b6cd7fa9cf7d0e87b51f794450234b0
def random_agent_constant(self, observation, configuration): 'Just returns the same value over and over again.' del observation return int((configuration.banditCount * self.limit))
Just returns the same value over and over again.
idea01/bots.py
random_agent_constant
RobRomijnders/santa20
0
python
def random_agent_constant(self, observation, configuration): del observation return int((configuration.banditCount * self.limit))
def random_agent_constant(self, observation, configuration): del observation return int((configuration.banditCount * self.limit))<|docstring|>Just returns the same value over and over again.<|endoftext|>
9452a3deabbb5cfcd2c6ec682856c7144429f5f545bab06a0817c23853984c10
def thompson_sampling_agent(self, observation, configuration): 'Agent that uses Thompson sampling.' if (len(self.counts) == 0): for i in range(configuration.banditCount): self.counts[i] = self.prior if (len(observation.lastActions) > 0): self.rewards.append(observation.reward) self.opponent_picks.append(oppo_action(observation.lastActions, self.actions[(- 1)])) reward_t2 = (self.rewards[(- 2)] if (len(self.rewards) >= 2) else 0) reward_t1 = (self.rewards[(- 1)] if (len(self.rewards) > 0) else 0) self.counts[self.actions[(- 1)]] = {'n': (self.counts[self.actions[(- 1)]]['n'] + 1), 'h': (self.counts[self.actions[(- 1)]]['h'] + (reward_t1 - reward_t2))} action = random.randrange(configuration.banditCount) if (observation.step > 1): action = oppo_action(observation.lastActions, self.actions[(- 1)]) if (observation.step > 10): pvals = np.array([np.random.beta(d['n'], max(0, d['h'])) for d in self.counts.values()]) pvals = (pvals / pvals.sum()) action = int(np.random.choice(list(range(len(self.counts))), p=(pvals / pvals.sum()))) self.actions.append(action) return action
Agent that uses Thompson sampling.
idea01/bots.py
thompson_sampling_agent
RobRomijnders/santa20
0
python
def thompson_sampling_agent(self, observation, configuration): if (len(self.counts) == 0): for i in range(configuration.banditCount): self.counts[i] = self.prior if (len(observation.lastActions) > 0): self.rewards.append(observation.reward) self.opponent_picks.append(oppo_action(observation.lastActions, self.actions[(- 1)])) reward_t2 = (self.rewards[(- 2)] if (len(self.rewards) >= 2) else 0) reward_t1 = (self.rewards[(- 1)] if (len(self.rewards) > 0) else 0) self.counts[self.actions[(- 1)]] = {'n': (self.counts[self.actions[(- 1)]]['n'] + 1), 'h': (self.counts[self.actions[(- 1)]]['h'] + (reward_t1 - reward_t2))} action = random.randrange(configuration.banditCount) if (observation.step > 1): action = oppo_action(observation.lastActions, self.actions[(- 1)]) if (observation.step > 10): pvals = np.array([np.random.beta(d['n'], max(0, d['h'])) for d in self.counts.values()]) pvals = (pvals / pvals.sum()) action = int(np.random.choice(list(range(len(self.counts))), p=(pvals / pvals.sum()))) self.actions.append(action) return action
def thompson_sampling_agent(self, observation, configuration): if (len(self.counts) == 0): for i in range(configuration.banditCount): self.counts[i] = self.prior if (len(observation.lastActions) > 0): self.rewards.append(observation.reward) self.opponent_picks.append(oppo_action(observation.lastActions, self.actions[(- 1)])) reward_t2 = (self.rewards[(- 2)] if (len(self.rewards) >= 2) else 0) reward_t1 = (self.rewards[(- 1)] if (len(self.rewards) > 0) else 0) self.counts[self.actions[(- 1)]] = {'n': (self.counts[self.actions[(- 1)]]['n'] + 1), 'h': (self.counts[self.actions[(- 1)]]['h'] + (reward_t1 - reward_t2))} action = random.randrange(configuration.banditCount) if (observation.step > 1): action = oppo_action(observation.lastActions, self.actions[(- 1)]) if (observation.step > 10): pvals = np.array([np.random.beta(d['n'], max(0, d['h'])) for d in self.counts.values()]) pvals = (pvals / pvals.sum()) action = int(np.random.choice(list(range(len(self.counts))), p=(pvals / pvals.sum()))) self.actions.append(action) return action<|docstring|>Agent that uses Thompson sampling.<|endoftext|>
3af7e3729f51a7e8dead6fe31ad236229c6e779ebd4abe688410ca7929b3c014
def init_markets(self, markets): 'Initialize markets by importing public market classes.' self.market_names = markets for market_name in markets: exec(('import public_markets.' + market_name.lower())) market = eval((((('public_markets.' + market_name.lower()) + '.') + market_name) + '()')) self.markets[market_name] = market
Initialize markets by importing public market classes.
arbitrage/arbitrer.py
init_markets
acontry/altcoin-arbitrage
7
python
def init_markets(self, markets): self.market_names = markets for market_name in markets: exec(('import public_markets.' + market_name.lower())) market = eval((((('public_markets.' + market_name.lower()) + '.') + market_name) + '()')) self.markets[market_name] = market
def init_markets(self, markets): self.market_names = markets for market_name in markets: exec(('import public_markets.' + market_name.lower())) market = eval((((('public_markets.' + market_name.lower()) + '.') + market_name) + '()')) self.markets[market_name] = market<|docstring|>Initialize markets by importing public market classes.<|endoftext|>
12c3461c077e117f361afd5a518db468bea6367895a86d87be6fa2e7a5365478
def init_observers(self, _observers): 'Initialize observers by importing observer classes.' self.observer_names = _observers for observer_name in _observers: exec(('import observers.' + observer_name.lower())) observer = eval((((('observers.' + observer_name.lower()) + '.') + observer_name) + '()')) self.observers.append(observer)
Initialize observers by importing observer classes.
arbitrage/arbitrer.py
init_observers
acontry/altcoin-arbitrage
7
python
def init_observers(self, _observers): self.observer_names = _observers for observer_name in _observers: exec(('import observers.' + observer_name.lower())) observer = eval((((('observers.' + observer_name.lower()) + '.') + observer_name) + '()')) self.observers.append(observer)
def init_observers(self, _observers): self.observer_names = _observers for observer_name in _observers: exec(('import observers.' + observer_name.lower())) observer = eval((((('observers.' + observer_name.lower()) + '.') + observer_name) + '()')) self.observers.append(observer)<|docstring|>Initialize observers by importing observer classes.<|endoftext|>
c5d5ced5b3aa13ba2eb79bdc5fa8a692730d15c2a5a33055f770bd33296b0bfd
def check_opportunity(self, kask, kbid): 'Replacement for arbitrage_depth_opportunity machinery. Returns the\n profit, volume, buy price, sell price, weighted buy/sell prices for a\n potential arbitrage opportunity. Only considers the best bid/ask prices\n and does not go into the depth like the more complicated method.' buy_price = self.depths[kask]['asks'][0]['price'] sell_price = self.depths[kbid]['bids'][0]['price'] ask_vol = self.depths[kask]['asks'][0]['amount'] bid_vol = self.depths[kbid]['bids'][0]['amount'] trade_vol = min(ask_vol, bid_vol) buy_fee = self.markets[kask].fees['buy']['fee'] sell_fee = self.markets[kbid].fees['sell']['fee'] profit = (trade_vol * (((1 - sell_fee) * sell_price) - ((1 + buy_fee) * buy_price))) return (profit, trade_vol, buy_price, sell_price, buy_price, sell_price)
Replacement for arbitrage_depth_opportunity machinery. Returns the profit, volume, buy price, sell price, weighted buy/sell prices for a potential arbitrage opportunity. Only considers the best bid/ask prices and does not go into the depth like the more complicated method.
arbitrage/arbitrer.py
check_opportunity
acontry/altcoin-arbitrage
7
python
def check_opportunity(self, kask, kbid): 'Replacement for arbitrage_depth_opportunity machinery. Returns the\n profit, volume, buy price, sell price, weighted buy/sell prices for a\n potential arbitrage opportunity. Only considers the best bid/ask prices\n and does not go into the depth like the more complicated method.' buy_price = self.depths[kask]['asks'][0]['price'] sell_price = self.depths[kbid]['bids'][0]['price'] ask_vol = self.depths[kask]['asks'][0]['amount'] bid_vol = self.depths[kbid]['bids'][0]['amount'] trade_vol = min(ask_vol, bid_vol) buy_fee = self.markets[kask].fees['buy']['fee'] sell_fee = self.markets[kbid].fees['sell']['fee'] profit = (trade_vol * (((1 - sell_fee) * sell_price) - ((1 + buy_fee) * buy_price))) return (profit, trade_vol, buy_price, sell_price, buy_price, sell_price)
def check_opportunity(self, kask, kbid): 'Replacement for arbitrage_depth_opportunity machinery. Returns the\n profit, volume, buy price, sell price, weighted buy/sell prices for a\n potential arbitrage opportunity. Only considers the best bid/ask prices\n and does not go into the depth like the more complicated method.' buy_price = self.depths[kask]['asks'][0]['price'] sell_price = self.depths[kbid]['bids'][0]['price'] ask_vol = self.depths[kask]['asks'][0]['amount'] bid_vol = self.depths[kbid]['bids'][0]['amount'] trade_vol = min(ask_vol, bid_vol) buy_fee = self.markets[kask].fees['buy']['fee'] sell_fee = self.markets[kbid].fees['sell']['fee'] profit = (trade_vol * (((1 - sell_fee) * sell_price) - ((1 + buy_fee) * buy_price))) return (profit, trade_vol, buy_price, sell_price, buy_price, sell_price)<|docstring|>Replacement for arbitrage_depth_opportunity machinery. Returns the profit, volume, buy price, sell price, weighted buy/sell prices for a potential arbitrage opportunity. Only considers the best bid/ask prices and does not go into the depth like the more complicated method.<|endoftext|>