body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
1024fabdd769a3c2995a69b114aeae9e160aa2259286f48ec4dd92e47543d768
def arbitrage_opportunity(self, kask, ask, kbid, bid): 'Calculates arbitrage opportunity for specified bid and ask, and\n presents this opportunity to all observers.\n\n Keyword arguments:\n kask -- market in depths that contains the relevant asks\n ask -- lowest ask (in dict form along with amount)\n kbid -- market in depths that contains the relevant bids\n bid -- highest bid (in dict form along with amount)\n\n ' (profit, volume, buyprice, sellprice, weighted_buyprice, weighted_sellprice) = self.check_opportunity(kask, kbid) if ((volume == 0) or (buyprice == 0)): return perc = ((profit / (volume * buyprice)) * 100) for observer in self.observers: observer.opportunity(profit, volume, buyprice, kask, sellprice, kbid, perc, weighted_buyprice, weighted_sellprice)
Calculates arbitrage opportunity for specified bid and ask, and presents this opportunity to all observers. Keyword arguments: kask -- market in depths that contains the relevant asks ask -- lowest ask (in dict form along with amount) kbid -- market in depths that contains the relevant bids bid -- highest bid (in dict form along with amount)
arbitrage/arbitrer.py
arbitrage_opportunity
acontry/altcoin-arbitrage
7
python
def arbitrage_opportunity(self, kask, ask, kbid, bid): 'Calculates arbitrage opportunity for specified bid and ask, and\n presents this opportunity to all observers.\n\n Keyword arguments:\n kask -- market in depths that contains the relevant asks\n ask -- lowest ask (in dict form along with amount)\n kbid -- market in depths that contains the relevant bids\n bid -- highest bid (in dict form along with amount)\n\n ' (profit, volume, buyprice, sellprice, weighted_buyprice, weighted_sellprice) = self.check_opportunity(kask, kbid) if ((volume == 0) or (buyprice == 0)): return perc = ((profit / (volume * buyprice)) * 100) for observer in self.observers: observer.opportunity(profit, volume, buyprice, kask, sellprice, kbid, perc, weighted_buyprice, weighted_sellprice)
def arbitrage_opportunity(self, kask, ask, kbid, bid): 'Calculates arbitrage opportunity for specified bid and ask, and\n presents this opportunity to all observers.\n\n Keyword arguments:\n kask -- market in depths that contains the relevant asks\n ask -- lowest ask (in dict form along with amount)\n kbid -- market in depths that contains the relevant bids\n bid -- highest bid (in dict form along with amount)\n\n ' (profit, volume, buyprice, sellprice, weighted_buyprice, weighted_sellprice) = self.check_opportunity(kask, kbid) if ((volume == 0) or (buyprice == 0)): return perc = ((profit / (volume * buyprice)) * 100) for observer in self.observers: observer.opportunity(profit, volume, buyprice, kask, sellprice, kbid, perc, weighted_buyprice, weighted_sellprice)<|docstring|>Calculates arbitrage opportunity for specified bid and ask, and presents this opportunity to all observers. Keyword arguments: kask -- market in depths that contains the relevant asks ask -- lowest ask (in dict form along with amount) kbid -- market in depths that contains the relevant bids bid -- highest bid (in dict form along with amount)<|endoftext|>
fcdac7b25a237348cd78a7d9b5c6d73561abbb80ca328081956cea281ddcf15d
def tickers(self): 'Update markets and print tickers to verbose log.' for (market_name, market) in self.markets.items(): logging.verbose(((('ticker: ' + market.name) + ' - ') + str(market.get_ticker())))
Update markets and print tickers to verbose log.
arbitrage/arbitrer.py
tickers
acontry/altcoin-arbitrage
7
python
def tickers(self): for (market_name, market) in self.markets.items(): logging.verbose(((('ticker: ' + market.name) + ' - ') + str(market.get_ticker())))
def tickers(self): for (market_name, market) in self.markets.items(): logging.verbose(((('ticker: ' + market.name) + ' - ') + str(market.get_ticker())))<|docstring|>Update markets and print tickers to verbose log.<|endoftext|>
3393551721c0daba841faeef2001d3da9f2ea2a7d9139b78c2ddf0c7f65359a1
def loop(self): 'Main loop.' while True: self.update_depths() self.tickers() self.tick() time.sleep(config.refresh_rate)
Main loop.
arbitrage/arbitrer.py
loop
acontry/altcoin-arbitrage
7
python
def loop(self): while True: self.update_depths() self.tickers() self.tick() time.sleep(config.refresh_rate)
def loop(self): while True: self.update_depths() self.tickers() self.tick() time.sleep(config.refresh_rate)<|docstring|>Main loop.<|endoftext|>
e7d87cfe6e2f1525cfa2cd24954fd3d797ff7374f2ffc766f903a01f1ffa2562
def parseCommandLine(parser): 'Parse command line' parser.add_argument('--remove', '-r', action='store_true', dest='removeFlag', default=False, help='remove all diskimgr configuration files') args = parser.parse_args() return args
Parse command line
diskimgr/configure.py
parseCommandLine
bitsgalore/diskimgr
6
python
def parseCommandLine(parser): parser.add_argument('--remove', '-r', action='store_true', dest='removeFlag', default=False, help='remove all diskimgr configuration files') args = parser.parse_args() return args
def parseCommandLine(parser): parser.add_argument('--remove', '-r', action='store_true', dest='removeFlag', default=False, help='remove all diskimgr configuration files') args = parser.parse_args() return args<|docstring|>Parse command line<|endoftext|>
e8f46d09c2e2ad91e64859a206eac5cf592edecc16874fc2e2945b39088ad7c5
def errorExit(msg): 'Print error to stderr and exit' msgString = (('ERROR: ' + msg) + '\n') sys.stderr.write(msgString) sys.exit(1)
Print error to stderr and exit
diskimgr/configure.py
errorExit
bitsgalore/diskimgr
6
python
def errorExit(msg): msgString = (('ERROR: ' + msg) + '\n') sys.stderr.write(msgString) sys.exit(1)
def errorExit(msg): msgString = (('ERROR: ' + msg) + '\n') sys.stderr.write(msgString) sys.exit(1)<|docstring|>Print error to stderr and exit<|endoftext|>
56c3f7079f23b449849ecd5e7191b8702b96a3541d74767286a9e48a6993b440
def infoMessage(msg): 'Print message to stderr' msgString = (('INFO: ' + msg) + '\n') sys.stderr.write(msgString)
Print message to stderr
diskimgr/configure.py
infoMessage
bitsgalore/diskimgr
6
python
def infoMessage(msg): msgString = (('INFO: ' + msg) + '\n') sys.stderr.write(msgString)
def infoMessage(msg): msgString = (('INFO: ' + msg) + '\n') sys.stderr.write(msgString)<|docstring|>Print message to stderr<|endoftext|>
43e0d77fadc206079f1b259169d6827605dd97ea062010e9e879a141d5f4e1b2
def writeConfigFile(configRootDir, removeFlag): 'Create configuration file' configDir = os.path.join(configRootDir, 'diskimgr') if (not removeFlag): if (not os.path.isdir(configDir)): os.mkdir(configDir) fConfig = os.path.join(configDir, 'diskimgr.json') configSettings = {} configSettings['retries'] = '4' configSettings['checksumFileName'] = 'checksums.sha512' configSettings['logFileName'] = 'diskimgr.log' configSettings['metadataFileName'] = 'metadata.json' configSettings['blockSize'] = '512' configSettings['prefix'] = 'disc' configSettings['extension'] = 'img' configSettings['rescueDirectDiscMode'] = 'False' configSettings['autoRetry'] = 'False' configSettings['timeZone'] = 'Europe/Amsterdam' configSettings['defaultDir'] = '' if (not removeFlag): infoMessage(('writing configuration file ' + fConfig)) with io.open(fConfig, 'w', encoding='utf-8') as f: json.dump(configSettings, f, indent=4, sort_keys=True) else: if os.path.isfile(fConfig): infoMessage(('removing configuration file ' + fConfig)) os.remove(fConfig) if os.path.isdir(configDir): infoMessage(('removing configuration directory ' + configDir)) os.rmdir(configDir)
Create configuration file
diskimgr/configure.py
writeConfigFile
bitsgalore/diskimgr
6
python
def writeConfigFile(configRootDir, removeFlag): configDir = os.path.join(configRootDir, 'diskimgr') if (not removeFlag): if (not os.path.isdir(configDir)): os.mkdir(configDir) fConfig = os.path.join(configDir, 'diskimgr.json') configSettings = {} configSettings['retries'] = '4' configSettings['checksumFileName'] = 'checksums.sha512' configSettings['logFileName'] = 'diskimgr.log' configSettings['metadataFileName'] = 'metadata.json' configSettings['blockSize'] = '512' configSettings['prefix'] = 'disc' configSettings['extension'] = 'img' configSettings['rescueDirectDiscMode'] = 'False' configSettings['autoRetry'] = 'False' configSettings['timeZone'] = 'Europe/Amsterdam' configSettings['defaultDir'] = if (not removeFlag): infoMessage(('writing configuration file ' + fConfig)) with io.open(fConfig, 'w', encoding='utf-8') as f: json.dump(configSettings, f, indent=4, sort_keys=True) else: if os.path.isfile(fConfig): infoMessage(('removing configuration file ' + fConfig)) os.remove(fConfig) if os.path.isdir(configDir): infoMessage(('removing configuration directory ' + configDir)) os.rmdir(configDir)
def writeConfigFile(configRootDir, removeFlag): configDir = os.path.join(configRootDir, 'diskimgr') if (not removeFlag): if (not os.path.isdir(configDir)): os.mkdir(configDir) fConfig = os.path.join(configDir, 'diskimgr.json') configSettings = {} configSettings['retries'] = '4' configSettings['checksumFileName'] = 'checksums.sha512' configSettings['logFileName'] = 'diskimgr.log' configSettings['metadataFileName'] = 'metadata.json' configSettings['blockSize'] = '512' configSettings['prefix'] = 'disc' configSettings['extension'] = 'img' configSettings['rescueDirectDiscMode'] = 'False' configSettings['autoRetry'] = 'False' configSettings['timeZone'] = 'Europe/Amsterdam' configSettings['defaultDir'] = if (not removeFlag): infoMessage(('writing configuration file ' + fConfig)) with io.open(fConfig, 'w', encoding='utf-8') as f: json.dump(configSettings, f, indent=4, sort_keys=True) else: if os.path.isfile(fConfig): infoMessage(('removing configuration file ' + fConfig)) os.remove(fConfig) if os.path.isdir(configDir): infoMessage(('removing configuration directory ' + configDir)) os.rmdir(configDir)<|docstring|>Create configuration file<|endoftext|>
0c3b3137a09a340151d47a0337b5b0e1d2bca1a55878a6ee763e50d42b6123ab
def writeDesktopFiles(packageDir, applicationsDir, desktopDir, removeFlag): 'Creates desktop files in /usr/share/applications and on desktop' sudoUID = os.environ.get('SUDO_UID') sudoGID = os.environ.get('SUDO_GID') pathName = os.path.abspath(os.path.dirname(sys.argv[0])) iconFile = os.path.join(packageDir, 'icons', 'diskimgr.png') if (not os.path.isfile(iconFile)): msg = 'cannot find icon file' errorExit(msg) fApplications = os.path.join(applicationsDir, 'diskimgr.desktop') desktopList = [] desktopList.append('[Desktop Entry]') desktopList.append('Type=Application') desktopList.append('Encoding=UTF-8') desktopList.append('Name=diskimgr') desktopList.append('Comment=Simple optical media imaging and extraction tool') desktopList.append(('Exec=' + os.path.join(pathName, 'diskimgr'))) desktopList.append(('Icon=' + iconFile)) desktopList.append('Terminal=false') desktopList.append('Categories=Utility;System;GTK') if (not removeFlag): try: infoMessage(('creating desktop file ' + fApplications)) with io.open(fApplications, 'w', encoding='utf-8') as fA: for line in desktopList: fA.write((line + '\n')) except: msg = ('Failed to create ' + fApplications) errorExit(msg) elif os.path.isfile(fApplications): infoMessage(('removing desktop file ' + fApplications)) os.remove(fApplications)
Creates desktop files in /usr/share/applications and on desktop
diskimgr/configure.py
writeDesktopFiles
bitsgalore/diskimgr
6
python
def writeDesktopFiles(packageDir, applicationsDir, desktopDir, removeFlag): sudoUID = os.environ.get('SUDO_UID') sudoGID = os.environ.get('SUDO_GID') pathName = os.path.abspath(os.path.dirname(sys.argv[0])) iconFile = os.path.join(packageDir, 'icons', 'diskimgr.png') if (not os.path.isfile(iconFile)): msg = 'cannot find icon file' errorExit(msg) fApplications = os.path.join(applicationsDir, 'diskimgr.desktop') desktopList = [] desktopList.append('[Desktop Entry]') desktopList.append('Type=Application') desktopList.append('Encoding=UTF-8') desktopList.append('Name=diskimgr') desktopList.append('Comment=Simple optical media imaging and extraction tool') desktopList.append(('Exec=' + os.path.join(pathName, 'diskimgr'))) desktopList.append(('Icon=' + iconFile)) desktopList.append('Terminal=false') desktopList.append('Categories=Utility;System;GTK') if (not removeFlag): try: infoMessage(('creating desktop file ' + fApplications)) with io.open(fApplications, 'w', encoding='utf-8') as fA: for line in desktopList: fA.write((line + '\n')) except: msg = ('Failed to create ' + fApplications) errorExit(msg) elif os.path.isfile(fApplications): infoMessage(('removing desktop file ' + fApplications)) os.remove(fApplications)
def writeDesktopFiles(packageDir, applicationsDir, desktopDir, removeFlag): sudoUID = os.environ.get('SUDO_UID') sudoGID = os.environ.get('SUDO_GID') pathName = os.path.abspath(os.path.dirname(sys.argv[0])) iconFile = os.path.join(packageDir, 'icons', 'diskimgr.png') if (not os.path.isfile(iconFile)): msg = 'cannot find icon file' errorExit(msg) fApplications = os.path.join(applicationsDir, 'diskimgr.desktop') desktopList = [] desktopList.append('[Desktop Entry]') desktopList.append('Type=Application') desktopList.append('Encoding=UTF-8') desktopList.append('Name=diskimgr') desktopList.append('Comment=Simple optical media imaging and extraction tool') desktopList.append(('Exec=' + os.path.join(pathName, 'diskimgr'))) desktopList.append(('Icon=' + iconFile)) desktopList.append('Terminal=false') desktopList.append('Categories=Utility;System;GTK') if (not removeFlag): try: infoMessage(('creating desktop file ' + fApplications)) with io.open(fApplications, 'w', encoding='utf-8') as fA: for line in desktopList: fA.write((line + '\n')) except: msg = ('Failed to create ' + fApplications) errorExit(msg) elif os.path.isfile(fApplications): infoMessage(('removing desktop file ' + fApplications)) os.remove(fApplications)<|docstring|>Creates desktop files in /usr/share/applications and on desktop<|endoftext|>
8c53525ccdde6480e557df8b299376fb64864d790b30b6ac97e8b02b417007d9
def main(): '\n Creates the following items:\n - configuration directory diskimgr in ~/.config/ or /etc/\n - configuration file in configuration directory\n - desktop file in ~/.local/share/applications/ or /usr/share/applications\n If the --remove / -r switch is given the above items\n are removed (if they exist)\n ' parser = argparse.ArgumentParser(description='diskimgr configuration tool') args = parseCommandLine(parser) removeFlag = args.removeFlag sudoUser = os.environ.get('SUDO_USER') packageDir = os.path.dirname(os.path.abspath(__file__)) try: homeDir = os.path.normpath(('/home/' + sudoUser)) except TypeError: homeDir = os.path.normpath(os.path.expanduser('~')) if packageDir.startswith(homeDir): globalInstall = False configRootDir = os.path.join(homeDir, '.config/') applicationsDir = os.path.join(homeDir, '.local/share/applications/') else: globalInstall = True configRootDir = os.path.normpath('/etc/') applicationsDir = os.path.normpath('/usr/share/applications') desktopDir = os.path.join(homeDir, 'Desktop/') if (globalInstall and (sudoUser is None)): msg = 'this script must be run as root for a global installation' errorExit(msg) if (not os.access(configRootDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + configRootDir) errorExit(msg) if (not os.access(applicationsDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + applicationsDir) errorExit(msg) if (not os.access(desktopDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + desktopDir) errorExit(msg) writeConfigFile(configRootDir, removeFlag) writeDesktopFiles(packageDir, applicationsDir, desktopDir, removeFlag) infoMessage('diskimgr configuration completed successfully!')
Creates the following items: - configuration directory diskimgr in ~/.config/ or /etc/ - configuration file in configuration directory - desktop file in ~/.local/share/applications/ or /usr/share/applications If the --remove / -r switch is given the above items are removed (if they exist)
diskimgr/configure.py
main
bitsgalore/diskimgr
6
python
def main(): '\n Creates the following items:\n - configuration directory diskimgr in ~/.config/ or /etc/\n - configuration file in configuration directory\n - desktop file in ~/.local/share/applications/ or /usr/share/applications\n If the --remove / -r switch is given the above items\n are removed (if they exist)\n ' parser = argparse.ArgumentParser(description='diskimgr configuration tool') args = parseCommandLine(parser) removeFlag = args.removeFlag sudoUser = os.environ.get('SUDO_USER') packageDir = os.path.dirname(os.path.abspath(__file__)) try: homeDir = os.path.normpath(('/home/' + sudoUser)) except TypeError: homeDir = os.path.normpath(os.path.expanduser('~')) if packageDir.startswith(homeDir): globalInstall = False configRootDir = os.path.join(homeDir, '.config/') applicationsDir = os.path.join(homeDir, '.local/share/applications/') else: globalInstall = True configRootDir = os.path.normpath('/etc/') applicationsDir = os.path.normpath('/usr/share/applications') desktopDir = os.path.join(homeDir, 'Desktop/') if (globalInstall and (sudoUser is None)): msg = 'this script must be run as root for a global installation' errorExit(msg) if (not os.access(configRootDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + configRootDir) errorExit(msg) if (not os.access(applicationsDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + applicationsDir) errorExit(msg) if (not os.access(desktopDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + desktopDir) errorExit(msg) writeConfigFile(configRootDir, removeFlag) writeDesktopFiles(packageDir, applicationsDir, desktopDir, removeFlag) infoMessage('diskimgr configuration completed successfully!')
def main(): '\n Creates the following items:\n - configuration directory diskimgr in ~/.config/ or /etc/\n - configuration file in configuration directory\n - desktop file in ~/.local/share/applications/ or /usr/share/applications\n If the --remove / -r switch is given the above items\n are removed (if they exist)\n ' parser = argparse.ArgumentParser(description='diskimgr configuration tool') args = parseCommandLine(parser) removeFlag = args.removeFlag sudoUser = os.environ.get('SUDO_USER') packageDir = os.path.dirname(os.path.abspath(__file__)) try: homeDir = os.path.normpath(('/home/' + sudoUser)) except TypeError: homeDir = os.path.normpath(os.path.expanduser('~')) if packageDir.startswith(homeDir): globalInstall = False configRootDir = os.path.join(homeDir, '.config/') applicationsDir = os.path.join(homeDir, '.local/share/applications/') else: globalInstall = True configRootDir = os.path.normpath('/etc/') applicationsDir = os.path.normpath('/usr/share/applications') desktopDir = os.path.join(homeDir, 'Desktop/') if (globalInstall and (sudoUser is None)): msg = 'this script must be run as root for a global installation' errorExit(msg) if (not os.access(configRootDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + configRootDir) errorExit(msg) if (not os.access(applicationsDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + applicationsDir) errorExit(msg) if (not os.access(desktopDir, (os.W_OK | os.X_OK))): msg = ('cannot write to ' + desktopDir) errorExit(msg) writeConfigFile(configRootDir, removeFlag) writeDesktopFiles(packageDir, applicationsDir, desktopDir, removeFlag) infoMessage('diskimgr configuration completed successfully!')<|docstring|>Creates the following items: - configuration directory diskimgr in ~/.config/ or /etc/ - configuration file in configuration directory - desktop file in ~/.local/share/applications/ or /usr/share/applications If the --remove / -r switch is given the above items are removed (if they exist)<|endoftext|>
88ad0d71f15a2a8881930991b096aabac8f1eb9b5d77ac8d6e515f0cd746ba33
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' return self.minCutHelper(s, 0, (len(s) - 1))
:type s: str :rtype: int
leetcode.com/python/132_Palindrome_Partitioning_II.py
minCut
its-sushant/coding-interview-gym
713
python
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' return self.minCutHelper(s, 0, (len(s) - 1))
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' return self.minCutHelper(s, 0, (len(s) - 1))<|docstring|>:type s: str :rtype: int<|endoftext|>
d627d03482604cd2c91a331b47c07c8b06477d572e4d2ef3f7ab954b03d110eb
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' strLen = len(s) dpMinCuts = [[(- 1) for _ in range(strLen)] for _ in range(strLen)] dpIsPalingrome = [[(- 1) for _ in range(strLen)] for _ in range(strLen)] return self.minCutHelper(s, 0, (strLen - 1), dpMinCuts, dpIsPalingrome)
:type s: str :rtype: int
leetcode.com/python/132_Palindrome_Partitioning_II.py
minCut
its-sushant/coding-interview-gym
713
python
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' strLen = len(s) dpMinCuts = [[(- 1) for _ in range(strLen)] for _ in range(strLen)] dpIsPalingrome = [[(- 1) for _ in range(strLen)] for _ in range(strLen)] return self.minCutHelper(s, 0, (strLen - 1), dpMinCuts, dpIsPalingrome)
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' strLen = len(s) dpMinCuts = [[(- 1) for _ in range(strLen)] for _ in range(strLen)] dpIsPalingrome = [[(- 1) for _ in range(strLen)] for _ in range(strLen)] return self.minCutHelper(s, 0, (strLen - 1), dpMinCuts, dpIsPalingrome)<|docstring|>:type s: str :rtype: int<|endoftext|>
4896fb10d6949b832eb7ca86005bf63c95c00b156b2db194ca6aeab39932738e
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' strLen = len(s) dpIsPalingrome = [[False for _ in range(strLen)] for _ in range(strLen)] for i in range(strLen): dpIsPalingrome[i][i] = True for strIdx in range((strLen - 1), (- 1), (- 1)): for endIdx in range((strIdx + 1), strLen): if (s[strIdx] == s[endIdx]): if (((endIdx - strIdx) == 1) or dpIsPalingrome[(strIdx + 1)][(endIdx - 1)]): dpIsPalingrome[strIdx][endIdx] = True dpMinCuts = [0 for _ in range(strLen)] for strIdx in range((strLen - 1), (- 1), (- 1)): minCuts = strLen for endIdx in range((strLen - 1), (strIdx - 1), (- 1)): if dpIsPalingrome[strIdx][endIdx]: minCuts = (0 if (endIdx == (strLen - 1)) else min(minCuts, (1 + dpMinCuts[(endIdx + 1)]))) dpMinCuts[strIdx] = minCuts return dpMinCuts[0]
:type s: str :rtype: int
leetcode.com/python/132_Palindrome_Partitioning_II.py
minCut
its-sushant/coding-interview-gym
713
python
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' strLen = len(s) dpIsPalingrome = [[False for _ in range(strLen)] for _ in range(strLen)] for i in range(strLen): dpIsPalingrome[i][i] = True for strIdx in range((strLen - 1), (- 1), (- 1)): for endIdx in range((strIdx + 1), strLen): if (s[strIdx] == s[endIdx]): if (((endIdx - strIdx) == 1) or dpIsPalingrome[(strIdx + 1)][(endIdx - 1)]): dpIsPalingrome[strIdx][endIdx] = True dpMinCuts = [0 for _ in range(strLen)] for strIdx in range((strLen - 1), (- 1), (- 1)): minCuts = strLen for endIdx in range((strLen - 1), (strIdx - 1), (- 1)): if dpIsPalingrome[strIdx][endIdx]: minCuts = (0 if (endIdx == (strLen - 1)) else min(minCuts, (1 + dpMinCuts[(endIdx + 1)]))) dpMinCuts[strIdx] = minCuts return dpMinCuts[0]
def minCut(self, s): '\n :type s: str\n :rtype: int\n ' strLen = len(s) dpIsPalingrome = [[False for _ in range(strLen)] for _ in range(strLen)] for i in range(strLen): dpIsPalingrome[i][i] = True for strIdx in range((strLen - 1), (- 1), (- 1)): for endIdx in range((strIdx + 1), strLen): if (s[strIdx] == s[endIdx]): if (((endIdx - strIdx) == 1) or dpIsPalingrome[(strIdx + 1)][(endIdx - 1)]): dpIsPalingrome[strIdx][endIdx] = True dpMinCuts = [0 for _ in range(strLen)] for strIdx in range((strLen - 1), (- 1), (- 1)): minCuts = strLen for endIdx in range((strLen - 1), (strIdx - 1), (- 1)): if dpIsPalingrome[strIdx][endIdx]: minCuts = (0 if (endIdx == (strLen - 1)) else min(minCuts, (1 + dpMinCuts[(endIdx + 1)]))) dpMinCuts[strIdx] = minCuts return dpMinCuts[0]<|docstring|>:type s: str :rtype: int<|endoftext|>
ebb4a1428fe96fc782194d848c4d679b692eff05c0972bfe43cb032b1f9c7edd
def train_network(self): 'Train the network' if ((self.timeStep % 500) == 0): self.sess.run(self.target_replace_op) minibatch = random.sample(self.replayMemory, BATCH) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] next_state_batch = [data[3] for data in minibatch] q_target = [] readout_j1_batch = self.readout_t.eval(feed_dict={self.target_net_input: next_state_batch}) readout_j1_batch_for_action = self.readout_e.eval(feed_dict={self.eval_net_input: next_state_batch}) max_act4next = np.argmax(readout_j1_batch_for_action, axis=1) selected_q_next = readout_j1_batch[(range(len(max_act4next)), max_act4next)] for i in range(BATCH): terminal = minibatch[i][4] if terminal: q_target.append(reward_batch[i]) else: q_target.append((reward_batch[i] + (GAMMA * selected_q_next[i]))) (_, result) = self.sess.run([self.train_step, self.merged], feed_dict={self.q_target: q_target, self.action_input: action_batch, self.eval_net_input: state_batch}) if (((self.timeStep + 1) % 1000) == 0): self.writer.add_summary(result, global_step=(self.timeStep + 1))
Train the network
src/double_dqn.py
train_network
yanyongyu/FlappyBird
14
python
def train_network(self): if ((self.timeStep % 500) == 0): self.sess.run(self.target_replace_op) minibatch = random.sample(self.replayMemory, BATCH) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] next_state_batch = [data[3] for data in minibatch] q_target = [] readout_j1_batch = self.readout_t.eval(feed_dict={self.target_net_input: next_state_batch}) readout_j1_batch_for_action = self.readout_e.eval(feed_dict={self.eval_net_input: next_state_batch}) max_act4next = np.argmax(readout_j1_batch_for_action, axis=1) selected_q_next = readout_j1_batch[(range(len(max_act4next)), max_act4next)] for i in range(BATCH): terminal = minibatch[i][4] if terminal: q_target.append(reward_batch[i]) else: q_target.append((reward_batch[i] + (GAMMA * selected_q_next[i]))) (_, result) = self.sess.run([self.train_step, self.merged], feed_dict={self.q_target: q_target, self.action_input: action_batch, self.eval_net_input: state_batch}) if (((self.timeStep + 1) % 1000) == 0): self.writer.add_summary(result, global_step=(self.timeStep + 1))
def train_network(self): if ((self.timeStep % 500) == 0): self.sess.run(self.target_replace_op) minibatch = random.sample(self.replayMemory, BATCH) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] next_state_batch = [data[3] for data in minibatch] q_target = [] readout_j1_batch = self.readout_t.eval(feed_dict={self.target_net_input: next_state_batch}) readout_j1_batch_for_action = self.readout_e.eval(feed_dict={self.eval_net_input: next_state_batch}) max_act4next = np.argmax(readout_j1_batch_for_action, axis=1) selected_q_next = readout_j1_batch[(range(len(max_act4next)), max_act4next)] for i in range(BATCH): terminal = minibatch[i][4] if terminal: q_target.append(reward_batch[i]) else: q_target.append((reward_batch[i] + (GAMMA * selected_q_next[i]))) (_, result) = self.sess.run([self.train_step, self.merged], feed_dict={self.q_target: q_target, self.action_input: action_batch, self.eval_net_input: state_batch}) if (((self.timeStep + 1) % 1000) == 0): self.writer.add_summary(result, global_step=(self.timeStep + 1))<|docstring|>Train the network<|endoftext|>
c7aadd5f387e76fc6c3be541b36a5ee7e80fa7e787bf940783c486e81786cf0e
def de_shift_kernel(kernel, shift_x, shift_y, iterations=20): '\n de-shifts a shifted kernel to the center of a pixel. This is performed iteratively.\n\n The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the\n pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare\n their shifted version with the input kernel.\n\n :param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid\n :param shift_x: x-offset relative to the center of the pixel (sub-pixel shift)\n :param shift_y: y-offset relative to the center of the pixel (sub-pixel shift)\n :return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel\n ' (nx, ny) = np.shape(kernel) kernel_new = (np.zeros(((nx + 2), (ny + 2))) + ((((kernel[(0, 0)] + kernel[(0, (- 1))]) + kernel[((- 1), 0)]) + kernel[((- 1), (- 1))]) / 4.0)) kernel_new[(1:(- 1), 1:(- 1))] = kernel int_shift_x = int(round(shift_x)) frac_x_shift = (shift_x - int_shift_x) int_shift_y = int(round(shift_y)) frac_y_shift = (shift_y - int_shift_y) kernel_init = copy.deepcopy(kernel_new) kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [int_shift_y, int_shift_x], order=1)) kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1) norm = np.sum(kernel_init_shifted) for i in range(iterations): kernel_shifted_inv = interp.shift(kernel_new, [(- frac_y_shift), (- frac_x_shift)], order=1) delta = (kernel_init_shifted - (kernel_norm(kernel_shifted_inv) * norm)) kernel_new += (delta * 1.0) kernel_new = (kernel_norm(kernel_new) * norm) return kernel_new[(1:(- 1), 1:(- 1))]
de-shifts a shifted kernel to the center of a pixel. This is performed iteratively. The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare their shifted version with the input kernel. :param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid :param shift_x: x-offset relative to the center of the pixel (sub-pixel shift) :param shift_y: y-offset relative to the center of the pixel (sub-pixel shift) :return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel
lenstronomy/Util/kernel_util.py
de_shift_kernel
guoxiaowhu/lenstronomy
1
python
def de_shift_kernel(kernel, shift_x, shift_y, iterations=20): '\n de-shifts a shifted kernel to the center of a pixel. This is performed iteratively.\n\n The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the\n pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare\n their shifted version with the input kernel.\n\n :param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid\n :param shift_x: x-offset relative to the center of the pixel (sub-pixel shift)\n :param shift_y: y-offset relative to the center of the pixel (sub-pixel shift)\n :return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel\n ' (nx, ny) = np.shape(kernel) kernel_new = (np.zeros(((nx + 2), (ny + 2))) + ((((kernel[(0, 0)] + kernel[(0, (- 1))]) + kernel[((- 1), 0)]) + kernel[((- 1), (- 1))]) / 4.0)) kernel_new[(1:(- 1), 1:(- 1))] = kernel int_shift_x = int(round(shift_x)) frac_x_shift = (shift_x - int_shift_x) int_shift_y = int(round(shift_y)) frac_y_shift = (shift_y - int_shift_y) kernel_init = copy.deepcopy(kernel_new) kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [int_shift_y, int_shift_x], order=1)) kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1) norm = np.sum(kernel_init_shifted) for i in range(iterations): kernel_shifted_inv = interp.shift(kernel_new, [(- frac_y_shift), (- frac_x_shift)], order=1) delta = (kernel_init_shifted - (kernel_norm(kernel_shifted_inv) * norm)) kernel_new += (delta * 1.0) kernel_new = (kernel_norm(kernel_new) * norm) return kernel_new[(1:(- 1), 1:(- 1))]
def de_shift_kernel(kernel, shift_x, shift_y, iterations=20): '\n de-shifts a shifted kernel to the center of a pixel. This is performed iteratively.\n\n The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the\n pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare\n their shifted version with the input kernel.\n\n :param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid\n :param shift_x: x-offset relative to the center of the pixel (sub-pixel shift)\n :param shift_y: y-offset relative to the center of the pixel (sub-pixel shift)\n :return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel\n ' (nx, ny) = np.shape(kernel) kernel_new = (np.zeros(((nx + 2), (ny + 2))) + ((((kernel[(0, 0)] + kernel[(0, (- 1))]) + kernel[((- 1), 0)]) + kernel[((- 1), (- 1))]) / 4.0)) kernel_new[(1:(- 1), 1:(- 1))] = kernel int_shift_x = int(round(shift_x)) frac_x_shift = (shift_x - int_shift_x) int_shift_y = int(round(shift_y)) frac_y_shift = (shift_y - int_shift_y) kernel_init = copy.deepcopy(kernel_new) kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [int_shift_y, int_shift_x], order=1)) kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1) norm = np.sum(kernel_init_shifted) for i in range(iterations): kernel_shifted_inv = interp.shift(kernel_new, [(- frac_y_shift), (- frac_x_shift)], order=1) delta = (kernel_init_shifted - (kernel_norm(kernel_shifted_inv) * norm)) kernel_new += (delta * 1.0) kernel_new = (kernel_norm(kernel_new) * norm) return kernel_new[(1:(- 1), 1:(- 1))]<|docstring|>de-shifts a shifted kernel to the center of a pixel. This is performed iteratively. The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare their shifted version with the input kernel. :param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid :param shift_x: x-offset relative to the center of the pixel (sub-pixel shift) :param shift_y: y-offset relative to the center of the pixel (sub-pixel shift) :return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel<|endoftext|>
eeb6a1fe9a3e00428ed638761096ef75d4a255d60ea0c22eb94300c62a642556
def center_kernel(kernel, iterations=20): '\n given a kernel that might not be perfectly centered, this routine computes its light weighted center and then\n moves the center in an iterative process such that it is centered\n\n :param kernel: 2d array (odd numbers)\n :param iterations: int, number of iterations\n :return: centered kernel\n ' kernel = kernel_norm(kernel) (nx, ny) = np.shape(kernel) if ((nx % 2) == 0): raise ValueError('kernel needs odd number of pixels') (x_grid, y_grid) = util.make_grid(nx, deltapix=1, left_lower=False) x_w = np.sum((kernel * util.array2image(x_grid))) y_w = np.sum((kernel * util.array2image(y_grid))) kernel_centered = de_shift_kernel(kernel, shift_x=(- x_w), shift_y=(- y_w), iterations=iterations) return kernel_norm(kernel_centered)
given a kernel that might not be perfectly centered, this routine computes its light weighted center and then moves the center in an iterative process such that it is centered :param kernel: 2d array (odd numbers) :param iterations: int, number of iterations :return: centered kernel
lenstronomy/Util/kernel_util.py
center_kernel
guoxiaowhu/lenstronomy
1
python
def center_kernel(kernel, iterations=20): '\n given a kernel that might not be perfectly centered, this routine computes its light weighted center and then\n moves the center in an iterative process such that it is centered\n\n :param kernel: 2d array (odd numbers)\n :param iterations: int, number of iterations\n :return: centered kernel\n ' kernel = kernel_norm(kernel) (nx, ny) = np.shape(kernel) if ((nx % 2) == 0): raise ValueError('kernel needs odd number of pixels') (x_grid, y_grid) = util.make_grid(nx, deltapix=1, left_lower=False) x_w = np.sum((kernel * util.array2image(x_grid))) y_w = np.sum((kernel * util.array2image(y_grid))) kernel_centered = de_shift_kernel(kernel, shift_x=(- x_w), shift_y=(- y_w), iterations=iterations) return kernel_norm(kernel_centered)
def center_kernel(kernel, iterations=20): '\n given a kernel that might not be perfectly centered, this routine computes its light weighted center and then\n moves the center in an iterative process such that it is centered\n\n :param kernel: 2d array (odd numbers)\n :param iterations: int, number of iterations\n :return: centered kernel\n ' kernel = kernel_norm(kernel) (nx, ny) = np.shape(kernel) if ((nx % 2) == 0): raise ValueError('kernel needs odd number of pixels') (x_grid, y_grid) = util.make_grid(nx, deltapix=1, left_lower=False) x_w = np.sum((kernel * util.array2image(x_grid))) y_w = np.sum((kernel * util.array2image(y_grid))) kernel_centered = de_shift_kernel(kernel, shift_x=(- x_w), shift_y=(- y_w), iterations=iterations) return kernel_norm(kernel_centered)<|docstring|>given a kernel that might not be perfectly centered, this routine computes its light weighted center and then moves the center in an iterative process such that it is centered :param kernel: 2d array (odd numbers) :param iterations: int, number of iterations :return: centered kernel<|endoftext|>
b953adbe20505399a69f94688022d7446512d0236d7aeb5b074c9c87016a8ba8
def kernel_norm(kernel): '\n\n :param kernel:\n :return: normalisation of the psf kernel\n ' norm = np.sum(np.array(kernel)) kernel /= norm return kernel
:param kernel: :return: normalisation of the psf kernel
lenstronomy/Util/kernel_util.py
kernel_norm
guoxiaowhu/lenstronomy
1
python
def kernel_norm(kernel): '\n\n :param kernel:\n :return: normalisation of the psf kernel\n ' norm = np.sum(np.array(kernel)) kernel /= norm return kernel
def kernel_norm(kernel): '\n\n :param kernel:\n :return: normalisation of the psf kernel\n ' norm = np.sum(np.array(kernel)) kernel /= norm return kernel<|docstring|>:param kernel: :return: normalisation of the psf kernel<|endoftext|>
789fb386ee387bf5f28adcbf17afe838715d86f0e28bc05baa84a06b7a36cecc
def subgrid_kernel(kernel, subgrid_res, odd=False, num_iter=10): '\n creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an\n iterative approach\n\n :param kernel: initial kernel\n :param subgrid_res: subgrid resolution required\n :return: kernel with higher resolution (larger)\n ' subgrid_res = int(subgrid_res) if (subgrid_res == 1): return kernel (nx, ny) = np.shape(kernel) d_x = (1.0 / nx) x_in = np.linspace((d_x / 2), (1 - (d_x / 2)), nx) d_y = (1.0 / nx) y_in = np.linspace((d_y / 2), (1 - (d_y / 2)), ny) nx_new = (nx * subgrid_res) ny_new = (ny * subgrid_res) if (odd is True): if ((nx_new % 2) == 0): nx_new -= 1 if ((ny_new % 2) == 0): ny_new -= 1 d_x_new = (1.0 / nx_new) d_y_new = (1.0 / ny_new) x_out = np.linspace((d_x_new / 2.0), (1 - (d_x_new / 2.0)), nx_new) y_out = np.linspace((d_y_new / 2.0), (1 - (d_y_new / 2.0)), ny_new) kernel_input = copy.deepcopy(kernel) kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input, x_out, y_out) norm_subgrid = np.sum(kernel_subgrid) kernel_subgrid = kernel_norm(kernel_subgrid) for i in range(max(num_iter, 1)): if ((subgrid_res % 2) == 0): kernel_pixel = averaging_odd_kernel(kernel_subgrid, subgrid_res) else: kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) kernel_pixel = kernel_norm(kernel_pixel) delta = (kernel - kernel_pixel) delta_subgrid = (image_util.re_size_array(x_in, y_in, delta, x_out, y_out) / norm_subgrid) kernel_subgrid += delta_subgrid kernel_subgrid = kernel_norm(kernel_subgrid) return kernel_subgrid
creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an iterative approach :param kernel: initial kernel :param subgrid_res: subgrid resolution required :return: kernel with higher resolution (larger)
lenstronomy/Util/kernel_util.py
subgrid_kernel
guoxiaowhu/lenstronomy
1
python
def subgrid_kernel(kernel, subgrid_res, odd=False, num_iter=10): '\n creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an\n iterative approach\n\n :param kernel: initial kernel\n :param subgrid_res: subgrid resolution required\n :return: kernel with higher resolution (larger)\n ' subgrid_res = int(subgrid_res) if (subgrid_res == 1): return kernel (nx, ny) = np.shape(kernel) d_x = (1.0 / nx) x_in = np.linspace((d_x / 2), (1 - (d_x / 2)), nx) d_y = (1.0 / nx) y_in = np.linspace((d_y / 2), (1 - (d_y / 2)), ny) nx_new = (nx * subgrid_res) ny_new = (ny * subgrid_res) if (odd is True): if ((nx_new % 2) == 0): nx_new -= 1 if ((ny_new % 2) == 0): ny_new -= 1 d_x_new = (1.0 / nx_new) d_y_new = (1.0 / ny_new) x_out = np.linspace((d_x_new / 2.0), (1 - (d_x_new / 2.0)), nx_new) y_out = np.linspace((d_y_new / 2.0), (1 - (d_y_new / 2.0)), ny_new) kernel_input = copy.deepcopy(kernel) kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input, x_out, y_out) norm_subgrid = np.sum(kernel_subgrid) kernel_subgrid = kernel_norm(kernel_subgrid) for i in range(max(num_iter, 1)): if ((subgrid_res % 2) == 0): kernel_pixel = averaging_odd_kernel(kernel_subgrid, subgrid_res) else: kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) kernel_pixel = kernel_norm(kernel_pixel) delta = (kernel - kernel_pixel) delta_subgrid = (image_util.re_size_array(x_in, y_in, delta, x_out, y_out) / norm_subgrid) kernel_subgrid += delta_subgrid kernel_subgrid = kernel_norm(kernel_subgrid) return kernel_subgrid
def subgrid_kernel(kernel, subgrid_res, odd=False, num_iter=10): '\n creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an\n iterative approach\n\n :param kernel: initial kernel\n :param subgrid_res: subgrid resolution required\n :return: kernel with higher resolution (larger)\n ' subgrid_res = int(subgrid_res) if (subgrid_res == 1): return kernel (nx, ny) = np.shape(kernel) d_x = (1.0 / nx) x_in = np.linspace((d_x / 2), (1 - (d_x / 2)), nx) d_y = (1.0 / nx) y_in = np.linspace((d_y / 2), (1 - (d_y / 2)), ny) nx_new = (nx * subgrid_res) ny_new = (ny * subgrid_res) if (odd is True): if ((nx_new % 2) == 0): nx_new -= 1 if ((ny_new % 2) == 0): ny_new -= 1 d_x_new = (1.0 / nx_new) d_y_new = (1.0 / ny_new) x_out = np.linspace((d_x_new / 2.0), (1 - (d_x_new / 2.0)), nx_new) y_out = np.linspace((d_y_new / 2.0), (1 - (d_y_new / 2.0)), ny_new) kernel_input = copy.deepcopy(kernel) kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input, x_out, y_out) norm_subgrid = np.sum(kernel_subgrid) kernel_subgrid = kernel_norm(kernel_subgrid) for i in range(max(num_iter, 1)): if ((subgrid_res % 2) == 0): kernel_pixel = averaging_odd_kernel(kernel_subgrid, subgrid_res) else: kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) kernel_pixel = kernel_norm(kernel_pixel) delta = (kernel - kernel_pixel) delta_subgrid = (image_util.re_size_array(x_in, y_in, delta, x_out, y_out) / norm_subgrid) kernel_subgrid += delta_subgrid kernel_subgrid = kernel_norm(kernel_subgrid) return kernel_subgrid<|docstring|>creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an iterative approach :param kernel: initial kernel :param subgrid_res: subgrid resolution required :return: kernel with higher resolution (larger)<|endoftext|>
fcd0eac39d508c055b0b375f304730740ea79d0604d13e4593f1f038df0ded68
def averaging_odd_kernel(kernel_high_res, subgrid_res): '\n makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both\n meant to be centered.\n\n :param kernel_high_res:\n :param subgrid_res:\n :return:\n ' n_high = len(kernel_high_res) n_low = int(((n_high + 1) / subgrid_res)) kernel_low_res = np.zeros((n_low, n_low)) for i in range((subgrid_res - 1)): for j in range((subgrid_res - 1)): kernel_low_res += kernel_high_res[(i::subgrid_res, j::subgrid_res)] i = (subgrid_res - 1) for j in range((subgrid_res - 1)): kernel_low_res[(1:, :)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) kernel_low_res[(:(- 1), :)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) j = (subgrid_res - 1) for i in range((subgrid_res - 1)): kernel_low_res[(:, 1:)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) kernel_low_res[(:, :(- 1))] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) i = (subgrid_res - 1) j = (subgrid_res - 1) kernel_edge = kernel_high_res[(i::subgrid_res, j::subgrid_res)] kernel_low_res[(1:, 1:)] += (kernel_edge / 4) kernel_low_res[(:(- 1), 1:)] += (kernel_edge / 4) kernel_low_res[(1:, :(- 1))] += (kernel_edge / 4) kernel_low_res[(:(- 1), :(- 1))] += (kernel_edge / 4) return kernel_low_res
makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both meant to be centered. :param kernel_high_res: :param subgrid_res: :return:
lenstronomy/Util/kernel_util.py
averaging_odd_kernel
guoxiaowhu/lenstronomy
1
python
def averaging_odd_kernel(kernel_high_res, subgrid_res): '\n makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both\n meant to be centered.\n\n :param kernel_high_res:\n :param subgrid_res:\n :return:\n ' n_high = len(kernel_high_res) n_low = int(((n_high + 1) / subgrid_res)) kernel_low_res = np.zeros((n_low, n_low)) for i in range((subgrid_res - 1)): for j in range((subgrid_res - 1)): kernel_low_res += kernel_high_res[(i::subgrid_res, j::subgrid_res)] i = (subgrid_res - 1) for j in range((subgrid_res - 1)): kernel_low_res[(1:, :)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) kernel_low_res[(:(- 1), :)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) j = (subgrid_res - 1) for i in range((subgrid_res - 1)): kernel_low_res[(:, 1:)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) kernel_low_res[(:, :(- 1))] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) i = (subgrid_res - 1) j = (subgrid_res - 1) kernel_edge = kernel_high_res[(i::subgrid_res, j::subgrid_res)] kernel_low_res[(1:, 1:)] += (kernel_edge / 4) kernel_low_res[(:(- 1), 1:)] += (kernel_edge / 4) kernel_low_res[(1:, :(- 1))] += (kernel_edge / 4) kernel_low_res[(:(- 1), :(- 1))] += (kernel_edge / 4) return kernel_low_res
def averaging_odd_kernel(kernel_high_res, subgrid_res): '\n makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both\n meant to be centered.\n\n :param kernel_high_res:\n :param subgrid_res:\n :return:\n ' n_high = len(kernel_high_res) n_low = int(((n_high + 1) / subgrid_res)) kernel_low_res = np.zeros((n_low, n_low)) for i in range((subgrid_res - 1)): for j in range((subgrid_res - 1)): kernel_low_res += kernel_high_res[(i::subgrid_res, j::subgrid_res)] i = (subgrid_res - 1) for j in range((subgrid_res - 1)): kernel_low_res[(1:, :)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) kernel_low_res[(:(- 1), :)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) j = (subgrid_res - 1) for i in range((subgrid_res - 1)): kernel_low_res[(:, 1:)] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) kernel_low_res[(:, :(- 1))] += (kernel_high_res[(i::subgrid_res, j::subgrid_res)] / 2) i = (subgrid_res - 1) j = (subgrid_res - 1) kernel_edge = kernel_high_res[(i::subgrid_res, j::subgrid_res)] kernel_low_res[(1:, 1:)] += (kernel_edge / 4) kernel_low_res[(:(- 1), 1:)] += (kernel_edge / 4) kernel_low_res[(1:, :(- 1))] += (kernel_edge / 4) kernel_low_res[(:(- 1), :(- 1))] += (kernel_edge / 4) return kernel_low_res<|docstring|>makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both meant to be centered. :param kernel_high_res: :param subgrid_res: :return:<|endoftext|>
13fd8b799117b27c4ae4923f7b641864648f7feb82fae2de0e3a66d6ed3a188a
def kernel_pixelsize_change(kernel, deltaPix_in, deltaPix_out): '\n change the pixel size of a given kernel\n :param kernel:\n :param deltaPix_in:\n :param deltaPix_out:\n :return:\n ' numPix = len(kernel) numPix_new = int(round(((numPix * deltaPix_in) / deltaPix_out))) if ((numPix_new % 2) == 0): numPix_new -= 1 x_in = np.linspace((((- (numPix - 1)) / 2) * deltaPix_in), (((numPix - 1) / 2) * deltaPix_in), numPix) x_out = np.linspace((((- (numPix_new - 1)) / 2) * deltaPix_out), (((numPix_new - 1) / 2) * deltaPix_out), numPix_new) kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out) kernel_out = kernel_norm(kernel_out) return kernel_out
change the pixel size of a given kernel :param kernel: :param deltaPix_in: :param deltaPix_out: :return:
lenstronomy/Util/kernel_util.py
kernel_pixelsize_change
guoxiaowhu/lenstronomy
1
python
def kernel_pixelsize_change(kernel, deltaPix_in, deltaPix_out): '\n change the pixel size of a given kernel\n :param kernel:\n :param deltaPix_in:\n :param deltaPix_out:\n :return:\n ' numPix = len(kernel) numPix_new = int(round(((numPix * deltaPix_in) / deltaPix_out))) if ((numPix_new % 2) == 0): numPix_new -= 1 x_in = np.linspace((((- (numPix - 1)) / 2) * deltaPix_in), (((numPix - 1) / 2) * deltaPix_in), numPix) x_out = np.linspace((((- (numPix_new - 1)) / 2) * deltaPix_out), (((numPix_new - 1) / 2) * deltaPix_out), numPix_new) kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out) kernel_out = kernel_norm(kernel_out) return kernel_out
def kernel_pixelsize_change(kernel, deltaPix_in, deltaPix_out): '\n change the pixel size of a given kernel\n :param kernel:\n :param deltaPix_in:\n :param deltaPix_out:\n :return:\n ' numPix = len(kernel) numPix_new = int(round(((numPix * deltaPix_in) / deltaPix_out))) if ((numPix_new % 2) == 0): numPix_new -= 1 x_in = np.linspace((((- (numPix - 1)) / 2) * deltaPix_in), (((numPix - 1) / 2) * deltaPix_in), numPix) x_out = np.linspace((((- (numPix_new - 1)) / 2) * deltaPix_out), (((numPix_new - 1) / 2) * deltaPix_out), numPix_new) kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out) kernel_out = kernel_norm(kernel_out) return kernel_out<|docstring|>change the pixel size of a given kernel :param kernel: :param deltaPix_in: :param deltaPix_out: :return:<|endoftext|>
87e05f05b85ebe507521c4f42c0321d0acb26a4794d00628ae2fd55055e6a785
def cut_psf(psf_data, psf_size): '\n cut the psf properly\n :param psf_data: image of PSF\n :param psf_size: size of psf\n :return: re-sized and re-normalized PSF\n ' kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel
cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF
lenstronomy/Util/kernel_util.py
cut_psf
guoxiaowhu/lenstronomy
1
python
def cut_psf(psf_data, psf_size): '\n cut the psf properly\n :param psf_data: image of PSF\n :param psf_size: size of psf\n :return: re-sized and re-normalized PSF\n ' kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel
def cut_psf(psf_data, psf_size): '\n cut the psf properly\n :param psf_data: image of PSF\n :param psf_size: size of psf\n :return: re-sized and re-normalized PSF\n ' kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel<|docstring|>cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF<|endoftext|>
29e71d125dc4e0b48123fd40e74f05d4a3c8484d25425e8750b7eddd2b720aa5
def pixel_kernel(point_source_kernel, subgrid_res=7): '\n converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel\n\n :param point_source_kernel:\n :param subgrid_res:\n :return: convolution kernel for an extended pixel\n ' kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res) kernel_size = len(point_source_kernel) kernel_pixel = np.zeros(((kernel_size * subgrid_res), (kernel_size * subgrid_res))) for i in range(subgrid_res): k_x = int(((((kernel_size - 1) / 2) * subgrid_res) + i)) for j in range(subgrid_res): k_y = int(((((kernel_size - 1) / 2) * subgrid_res) + j)) kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_subgrid) kernel_pixel = util.averaging(kernel_pixel, numGrid=(kernel_size * subgrid_res), numPix=kernel_size) return kernel_norm(kernel_pixel)
converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel :param point_source_kernel: :param subgrid_res: :return: convolution kernel for an extended pixel
lenstronomy/Util/kernel_util.py
pixel_kernel
guoxiaowhu/lenstronomy
1
python
def pixel_kernel(point_source_kernel, subgrid_res=7): '\n converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel\n\n :param point_source_kernel:\n :param subgrid_res:\n :return: convolution kernel for an extended pixel\n ' kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res) kernel_size = len(point_source_kernel) kernel_pixel = np.zeros(((kernel_size * subgrid_res), (kernel_size * subgrid_res))) for i in range(subgrid_res): k_x = int(((((kernel_size - 1) / 2) * subgrid_res) + i)) for j in range(subgrid_res): k_y = int(((((kernel_size - 1) / 2) * subgrid_res) + j)) kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_subgrid) kernel_pixel = util.averaging(kernel_pixel, numGrid=(kernel_size * subgrid_res), numPix=kernel_size) return kernel_norm(kernel_pixel)
def pixel_kernel(point_source_kernel, subgrid_res=7): '\n converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel\n\n :param point_source_kernel:\n :param subgrid_res:\n :return: convolution kernel for an extended pixel\n ' kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res) kernel_size = len(point_source_kernel) kernel_pixel = np.zeros(((kernel_size * subgrid_res), (kernel_size * subgrid_res))) for i in range(subgrid_res): k_x = int(((((kernel_size - 1) / 2) * subgrid_res) + i)) for j in range(subgrid_res): k_y = int(((((kernel_size - 1) / 2) * subgrid_res) + j)) kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_subgrid) kernel_pixel = util.averaging(kernel_pixel, numGrid=(kernel_size * subgrid_res), numPix=kernel_size) return kernel_norm(kernel_pixel)<|docstring|>converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel :param point_source_kernel: :param subgrid_res: :return: convolution kernel for an extended pixel<|endoftext|>
f6708a193ab7f3763ed5907c46cc197cc60a297728356d19c151922c4b9c8c5f
def split_kernel(kernel, kernel_subgrid, subsampling_size, subgrid_res): '\n pixel kernel and subsampling kernel such that the convolution of both applied on an image can be\n performed, i.e. smaller subsampling PSF and hole in larger PSF\n\n :param kernel: PSF kernel of the size of the pixel\n :param kernel_subgrid: subsampled kernel\n :param subsampling_size: size of subsampling PSF in units of image pixels\n :return: pixel and subsampling kernel\n ' n = len(kernel) n_sub = len(kernel_subgrid) if ((subsampling_size % 2) == 0): subsampling_size += 1 if (subsampling_size > n): subsampling_size = n kernel_hole = copy.deepcopy(kernel) n_min = int((((n - 1) / 2) - ((subsampling_size - 1) / 2))) n_max = int(((((n - 1) / 2) + ((subsampling_size - 1) / 2)) + 1)) kernel_hole[(n_min:n_max, n_min:n_max)] = 0 n_min_sub = int((((n_sub - 1) / 2) - (((subsampling_size * subgrid_res) - 1) / 2))) n_max_sub = int(((((n_sub - 1) / 2) + (((subsampling_size * subgrid_res) - 1) / 2)) + 1)) kernel_subgrid_cut = kernel_subgrid[(n_min_sub:n_max_sub, n_min_sub:n_max_sub)] flux_subsampled = np.sum(kernel_subgrid_cut) flux_hole = np.sum(kernel_hole) if (flux_hole > 0): kernel_hole *= ((1.0 - flux_subsampled) / np.sum(kernel_hole)) else: kernel_subgrid_cut /= np.sum(kernel_subgrid_cut) return (kernel_hole, kernel_subgrid_cut)
pixel kernel and subsampling kernel such that the convolution of both applied on an image can be performed, i.e. smaller subsampling PSF and hole in larger PSF :param kernel: PSF kernel of the size of the pixel :param kernel_subgrid: subsampled kernel :param subsampling_size: size of subsampling PSF in units of image pixels :return: pixel and subsampling kernel
lenstronomy/Util/kernel_util.py
split_kernel
guoxiaowhu/lenstronomy
1
python
def split_kernel(kernel, kernel_subgrid, subsampling_size, subgrid_res): '\n pixel kernel and subsampling kernel such that the convolution of both applied on an image can be\n performed, i.e. smaller subsampling PSF and hole in larger PSF\n\n :param kernel: PSF kernel of the size of the pixel\n :param kernel_subgrid: subsampled kernel\n :param subsampling_size: size of subsampling PSF in units of image pixels\n :return: pixel and subsampling kernel\n ' n = len(kernel) n_sub = len(kernel_subgrid) if ((subsampling_size % 2) == 0): subsampling_size += 1 if (subsampling_size > n): subsampling_size = n kernel_hole = copy.deepcopy(kernel) n_min = int((((n - 1) / 2) - ((subsampling_size - 1) / 2))) n_max = int(((((n - 1) / 2) + ((subsampling_size - 1) / 2)) + 1)) kernel_hole[(n_min:n_max, n_min:n_max)] = 0 n_min_sub = int((((n_sub - 1) / 2) - (((subsampling_size * subgrid_res) - 1) / 2))) n_max_sub = int(((((n_sub - 1) / 2) + (((subsampling_size * subgrid_res) - 1) / 2)) + 1)) kernel_subgrid_cut = kernel_subgrid[(n_min_sub:n_max_sub, n_min_sub:n_max_sub)] flux_subsampled = np.sum(kernel_subgrid_cut) flux_hole = np.sum(kernel_hole) if (flux_hole > 0): kernel_hole *= ((1.0 - flux_subsampled) / np.sum(kernel_hole)) else: kernel_subgrid_cut /= np.sum(kernel_subgrid_cut) return (kernel_hole, kernel_subgrid_cut)
def split_kernel(kernel, kernel_subgrid, subsampling_size, subgrid_res): '\n pixel kernel and subsampling kernel such that the convolution of both applied on an image can be\n performed, i.e. smaller subsampling PSF and hole in larger PSF\n\n :param kernel: PSF kernel of the size of the pixel\n :param kernel_subgrid: subsampled kernel\n :param subsampling_size: size of subsampling PSF in units of image pixels\n :return: pixel and subsampling kernel\n ' n = len(kernel) n_sub = len(kernel_subgrid) if ((subsampling_size % 2) == 0): subsampling_size += 1 if (subsampling_size > n): subsampling_size = n kernel_hole = copy.deepcopy(kernel) n_min = int((((n - 1) / 2) - ((subsampling_size - 1) / 2))) n_max = int(((((n - 1) / 2) + ((subsampling_size - 1) / 2)) + 1)) kernel_hole[(n_min:n_max, n_min:n_max)] = 0 n_min_sub = int((((n_sub - 1) / 2) - (((subsampling_size * subgrid_res) - 1) / 2))) n_max_sub = int(((((n_sub - 1) / 2) + (((subsampling_size * subgrid_res) - 1) / 2)) + 1)) kernel_subgrid_cut = kernel_subgrid[(n_min_sub:n_max_sub, n_min_sub:n_max_sub)] flux_subsampled = np.sum(kernel_subgrid_cut) flux_hole = np.sum(kernel_hole) if (flux_hole > 0): kernel_hole *= ((1.0 - flux_subsampled) / np.sum(kernel_hole)) else: kernel_subgrid_cut /= np.sum(kernel_subgrid_cut) return (kernel_hole, kernel_subgrid_cut)<|docstring|>pixel kernel and subsampling kernel such that the convolution of both applied on an image can be performed, i.e. smaller subsampling PSF and hole in larger PSF :param kernel: PSF kernel of the size of the pixel :param kernel_subgrid: subsampled kernel :param subsampling_size: size of subsampling PSF in units of image pixels :return: pixel and subsampling kernel<|endoftext|>
ba29416de77c09d0342d62ba1500f2df1f73404555934f754ca01974d2bf04e2
def cutout_source(x_pos, y_pos, image, kernelsize, shift=True): '\n cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel\n :param x_pos:\n :param y_pos:\n :param image:\n :param kernelsize:\n :return:\n ' if ((kernelsize % 2) == 0): raise ValueError('even pixel number kernel size not supported!') x_int = int(round(x_pos)) y_int = int(round(y_pos)) n = len(image) d = ((kernelsize - 1) / 2) x_max = int(np.minimum(((x_int + d) + 1), n)) x_min = int(np.maximum((x_int - d), 0)) y_max = int(np.minimum(((y_int + d) + 1), n)) y_min = int(np.maximum((y_int - d), 0)) image_cut = copy.deepcopy(image[(y_min:y_max, x_min:x_max)]) shift_x = (x_int - x_pos) shift_y = (y_int - y_pos) if (shift is True): kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y, iterations=50) else: kernel_shift = image_cut kernel_final = np.zeros((kernelsize, kernelsize)) k_l2_x = int(((kernelsize - 1) / 2)) k_l2_y = int(((kernelsize - 1) / 2)) xk_min = np.maximum(0, ((- x_int) + k_l2_x)) yk_min = np.maximum(0, ((- y_int) + k_l2_y)) xk_max = np.minimum(kernelsize, (((- x_int) + k_l2_x) + n)) yk_max = np.minimum(kernelsize, (((- y_int) + k_l2_y) + n)) kernel_final[(yk_min:yk_max, xk_min:xk_max)] = kernel_shift return kernel_final
cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel :param x_pos: :param y_pos: :param image: :param kernelsize: :return:
lenstronomy/Util/kernel_util.py
cutout_source
guoxiaowhu/lenstronomy
1
python
def cutout_source(x_pos, y_pos, image, kernelsize, shift=True): '\n cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel\n :param x_pos:\n :param y_pos:\n :param image:\n :param kernelsize:\n :return:\n ' if ((kernelsize % 2) == 0): raise ValueError('even pixel number kernel size not supported!') x_int = int(round(x_pos)) y_int = int(round(y_pos)) n = len(image) d = ((kernelsize - 1) / 2) x_max = int(np.minimum(((x_int + d) + 1), n)) x_min = int(np.maximum((x_int - d), 0)) y_max = int(np.minimum(((y_int + d) + 1), n)) y_min = int(np.maximum((y_int - d), 0)) image_cut = copy.deepcopy(image[(y_min:y_max, x_min:x_max)]) shift_x = (x_int - x_pos) shift_y = (y_int - y_pos) if (shift is True): kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y, iterations=50) else: kernel_shift = image_cut kernel_final = np.zeros((kernelsize, kernelsize)) k_l2_x = int(((kernelsize - 1) / 2)) k_l2_y = int(((kernelsize - 1) / 2)) xk_min = np.maximum(0, ((- x_int) + k_l2_x)) yk_min = np.maximum(0, ((- y_int) + k_l2_y)) xk_max = np.minimum(kernelsize, (((- x_int) + k_l2_x) + n)) yk_max = np.minimum(kernelsize, (((- y_int) + k_l2_y) + n)) kernel_final[(yk_min:yk_max, xk_min:xk_max)] = kernel_shift return kernel_final
def cutout_source(x_pos, y_pos, image, kernelsize, shift=True): '\n cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel\n :param x_pos:\n :param y_pos:\n :param image:\n :param kernelsize:\n :return:\n ' if ((kernelsize % 2) == 0): raise ValueError('even pixel number kernel size not supported!') x_int = int(round(x_pos)) y_int = int(round(y_pos)) n = len(image) d = ((kernelsize - 1) / 2) x_max = int(np.minimum(((x_int + d) + 1), n)) x_min = int(np.maximum((x_int - d), 0)) y_max = int(np.minimum(((y_int + d) + 1), n)) y_min = int(np.maximum((y_int - d), 0)) image_cut = copy.deepcopy(image[(y_min:y_max, x_min:x_max)]) shift_x = (x_int - x_pos) shift_y = (y_int - y_pos) if (shift is True): kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y, iterations=50) else: kernel_shift = image_cut kernel_final = np.zeros((kernelsize, kernelsize)) k_l2_x = int(((kernelsize - 1) / 2)) k_l2_y = int(((kernelsize - 1) / 2)) xk_min = np.maximum(0, ((- x_int) + k_l2_x)) yk_min = np.maximum(0, ((- y_int) + k_l2_y)) xk_max = np.minimum(kernelsize, (((- x_int) + k_l2_x) + n)) yk_max = np.minimum(kernelsize, (((- y_int) + k_l2_y) + n)) kernel_final[(yk_min:yk_max, xk_min:xk_max)] = kernel_shift return kernel_final<|docstring|>cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel :param x_pos: :param y_pos: :param image: :param kernelsize: :return:<|endoftext|>
442a2bbe22ae7048f2ee11aab1b3ef9459c2e66c8fbd54bcbe9e2e59e3e13ce8
def fwhm_kernel(kernel): '\n computes the full width at half maximum of a (PSF) kernel\n :param kernel: (psf) kernel, 2d numpy array\n :return: fwhm in units of pixels\n ' n = len(kernel) if ((n % 2) == 0): raise ValueError('only works with odd number of pixels in kernel!') max_flux = kernel[(int(((n - 1) / 2)), int(((n - 1) / 2)))] I_2 = (max_flux / 2.0) I_r = kernel[(int(((n - 1) / 2)), int(((n - 1) / 2)):)] r = np.linspace(0, ((n - 1) / 2), int(((n + 1) / 2))) for i in range(1, len(r)): if (I_r[i] < I_2): fwhm_2 = (((I_2 - I_r[(i - 1)]) / (I_r[i] - I_r[(i - 1)])) + r[(i - 1)]) return (fwhm_2 * 2) raise ValueError('The kernel did not drop to half the max value - fwhm not determined!')
computes the full width at half maximum of a (PSF) kernel :param kernel: (psf) kernel, 2d numpy array :return: fwhm in units of pixels
lenstronomy/Util/kernel_util.py
fwhm_kernel
guoxiaowhu/lenstronomy
1
python
def fwhm_kernel(kernel): '\n computes the full width at half maximum of a (PSF) kernel\n :param kernel: (psf) kernel, 2d numpy array\n :return: fwhm in units of pixels\n ' n = len(kernel) if ((n % 2) == 0): raise ValueError('only works with odd number of pixels in kernel!') max_flux = kernel[(int(((n - 1) / 2)), int(((n - 1) / 2)))] I_2 = (max_flux / 2.0) I_r = kernel[(int(((n - 1) / 2)), int(((n - 1) / 2)):)] r = np.linspace(0, ((n - 1) / 2), int(((n + 1) / 2))) for i in range(1, len(r)): if (I_r[i] < I_2): fwhm_2 = (((I_2 - I_r[(i - 1)]) / (I_r[i] - I_r[(i - 1)])) + r[(i - 1)]) return (fwhm_2 * 2) raise ValueError('The kernel did not drop to half the max value - fwhm not determined!')
def fwhm_kernel(kernel): '\n computes the full width at half maximum of a (PSF) kernel\n :param kernel: (psf) kernel, 2d numpy array\n :return: fwhm in units of pixels\n ' n = len(kernel) if ((n % 2) == 0): raise ValueError('only works with odd number of pixels in kernel!') max_flux = kernel[(int(((n - 1) / 2)), int(((n - 1) / 2)))] I_2 = (max_flux / 2.0) I_r = kernel[(int(((n - 1) / 2)), int(((n - 1) / 2)):)] r = np.linspace(0, ((n - 1) / 2), int(((n + 1) / 2))) for i in range(1, len(r)): if (I_r[i] < I_2): fwhm_2 = (((I_2 - I_r[(i - 1)]) / (I_r[i] - I_r[(i - 1)])) + r[(i - 1)]) return (fwhm_2 * 2) raise ValueError('The kernel did not drop to half the max value - fwhm not determined!')<|docstring|>computes the full width at half maximum of a (PSF) kernel :param kernel: (psf) kernel, 2d numpy array :return: fwhm in units of pixels<|endoftext|>
aa3d1585a794a89d75a5d71fbbc211816a2ee2db07bdb7694f1671f04f49555d
def estimate_amp(data, x_pos, y_pos, psf_kernel): '\n estimates the amplitude of a point source located at x_pos, y_pos\n :param data:\n :param x_pos:\n :param y_pos:\n :param deltaPix:\n :return:\n ' (numPix_x, numPix_y) = np.shape(data) x_int = int(round((x_pos - 0.49999))) y_int = int(round((y_pos - 0.49999))) if ((x_int > 2) and (x_int < (numPix_x - 2)) and (y_int > 2) and (y_int < (numPix_y - 2))): mean_image = max(np.sum(data[((y_int - 2):(y_int + 3), (x_int - 2):(x_int + 3))]), 0) num = len(psf_kernel) center = int(((num - 0.5) / 2)) mean_kernel = np.sum(psf_kernel[((center - 2):(center + 3), (center - 2):(center + 3))]) amp_estimated = (mean_image / mean_kernel) else: amp_estimated = 0 return amp_estimated
estimates the amplitude of a point source located at x_pos, y_pos :param data: :param x_pos: :param y_pos: :param deltaPix: :return:
lenstronomy/Util/kernel_util.py
estimate_amp
guoxiaowhu/lenstronomy
1
python
def estimate_amp(data, x_pos, y_pos, psf_kernel): '\n estimates the amplitude of a point source located at x_pos, y_pos\n :param data:\n :param x_pos:\n :param y_pos:\n :param deltaPix:\n :return:\n ' (numPix_x, numPix_y) = np.shape(data) x_int = int(round((x_pos - 0.49999))) y_int = int(round((y_pos - 0.49999))) if ((x_int > 2) and (x_int < (numPix_x - 2)) and (y_int > 2) and (y_int < (numPix_y - 2))): mean_image = max(np.sum(data[((y_int - 2):(y_int + 3), (x_int - 2):(x_int + 3))]), 0) num = len(psf_kernel) center = int(((num - 0.5) / 2)) mean_kernel = np.sum(psf_kernel[((center - 2):(center + 3), (center - 2):(center + 3))]) amp_estimated = (mean_image / mean_kernel) else: amp_estimated = 0 return amp_estimated
def estimate_amp(data, x_pos, y_pos, psf_kernel): '\n estimates the amplitude of a point source located at x_pos, y_pos\n :param data:\n :param x_pos:\n :param y_pos:\n :param deltaPix:\n :return:\n ' (numPix_x, numPix_y) = np.shape(data) x_int = int(round((x_pos - 0.49999))) y_int = int(round((y_pos - 0.49999))) if ((x_int > 2) and (x_int < (numPix_x - 2)) and (y_int > 2) and (y_int < (numPix_y - 2))): mean_image = max(np.sum(data[((y_int - 2):(y_int + 3), (x_int - 2):(x_int + 3))]), 0) num = len(psf_kernel) center = int(((num - 0.5) / 2)) mean_kernel = np.sum(psf_kernel[((center - 2):(center + 3), (center - 2):(center + 3))]) amp_estimated = (mean_image / mean_kernel) else: amp_estimated = 0 return amp_estimated<|docstring|>estimates the amplitude of a point source located at x_pos, y_pos :param data: :param x_pos: :param y_pos: :param deltaPix: :return:<|endoftext|>
9630780d1404f8f51343fdbc64ff99c8993150f48c0370e2adfff6c881d20df7
@classmethod def canonicalize(cls): '\n Transforms the values in `city_name` and `county_name`\n to their canonicalized (uppercase, regulare spaced) form.\n ' for obj in cls.objects.all(): obj.city_name = canonicalize_string(obj.city_name) obj.county_name = canonicalize_string(obj.county_name) obj.save()
Transforms the values in `city_name` and `county_name` to their canonicalized (uppercase, regulare spaced) form.
usaspending_api/references/models/ref_city_county_code.py
canonicalize
mikiec84/usaspending-api
0
python
@classmethod def canonicalize(cls): '\n Transforms the values in `city_name` and `county_name`\n to their canonicalized (uppercase, regulare spaced) form.\n ' for obj in cls.objects.all(): obj.city_name = canonicalize_string(obj.city_name) obj.county_name = canonicalize_string(obj.county_name) obj.save()
@classmethod def canonicalize(cls): '\n Transforms the values in `city_name` and `county_name`\n to their canonicalized (uppercase, regulare spaced) form.\n ' for obj in cls.objects.all(): obj.city_name = canonicalize_string(obj.city_name) obj.county_name = canonicalize_string(obj.county_name) obj.save()<|docstring|>Transforms the values in `city_name` and `county_name` to their canonicalized (uppercase, regulare spaced) form.<|endoftext|>
88cdbbc3cf067af41c151990a7795b3370ab4d7c3bbfdd83c2dcc7f8c3561297
def upper_repl(match): ' Convert mask-special tokens to real special tokens ' return ((' [' + match.group(1).upper().replace('-', '_')) + '] ')
Convert mask-special tokens to real special tokens
app/utils/preprocessing.py
upper_repl
m3hrdadfi/wiki-summary
16
python
def upper_repl(match): ' ' return ((' [' + match.group(1).upper().replace('-', '_')) + '] ')
def upper_repl(match): ' ' return ((' [' + match.group(1).upper().replace('-', '_')) + '] ')<|docstring|>Convert mask-special tokens to real special tokens<|endoftext|>
307696b89b216b2ccaf2eaf670591d2274c26767383c1564aafd44cf0785d8b6
def convert_emoji_to_text(text, delimiters=('[', ']')): ' Convert emojis to something readable by the vocab and model ' text = emoji.demojize(text, delimiters=delimiters) return text
Convert emojis to something readable by the vocab and model
app/utils/preprocessing.py
convert_emoji_to_text
m3hrdadfi/wiki-summary
16
python
def convert_emoji_to_text(text, delimiters=('[', ']')): ' ' text = emoji.demojize(text, delimiters=delimiters) return text
def convert_emoji_to_text(text, delimiters=('[', ']')): ' ' text = emoji.demojize(text, delimiters=delimiters) return text<|docstring|>Convert emojis to something readable by the vocab and model<|endoftext|>
ca216aeba88275fa66919caa305af2cd26f33120314e5b523cb950dcd1b34981
def clean_html(raw_html): ' Remove all html tags ' cleaner = re.compile('<.*?>') cleaned = re.sub(cleaner, '', raw_html) return cleaned
Remove all html tags
app/utils/preprocessing.py
clean_html
m3hrdadfi/wiki-summary
16
python
def clean_html(raw_html): ' ' cleaner = re.compile('<.*?>') cleaned = re.sub(cleaner, , raw_html) return cleaned
def clean_html(raw_html): ' ' cleaner = re.compile('<.*?>') cleaned = re.sub(cleaner, , raw_html) return cleaned<|docstring|>Remove all html tags<|endoftext|>
042169fa14586b4d8873102a97a4646176940f1fead2c26b6c5e10d6a8958c5e
def clean_text(raw_text, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url='', replace_with_email='', replace_with_phone_number='', replace_with_number='', replace_with_digit='0', replace_with_currency_symbol=''): ' Preprocessing and normalization the text a the low level ' cleaned = clean(raw_text, fix_unicode=fix_unicode, to_ascii=to_ascii, lower=lower, no_line_breaks=no_line_breaks, no_urls=no_urls, no_emails=no_emails, no_phone_numbers=no_phone_numbers, no_numbers=no_numbers, no_digits=no_digits, no_currency_symbols=no_currency_symbols, no_punct=no_punct, replace_with_url=replace_with_url, replace_with_email=replace_with_email, replace_with_phone_number=replace_with_phone_number, replace_with_number=replace_with_number, replace_with_digit=replace_with_digit, replace_with_currency_symbol=replace_with_currency_symbol) return cleaned
Preprocessing and normalization the text a the low level
app/utils/preprocessing.py
clean_text
m3hrdadfi/wiki-summary
16
python
def clean_text(raw_text, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url=, replace_with_email=, replace_with_phone_number=, replace_with_number=, replace_with_digit='0', replace_with_currency_symbol=): ' ' cleaned = clean(raw_text, fix_unicode=fix_unicode, to_ascii=to_ascii, lower=lower, no_line_breaks=no_line_breaks, no_urls=no_urls, no_emails=no_emails, no_phone_numbers=no_phone_numbers, no_numbers=no_numbers, no_digits=no_digits, no_currency_symbols=no_currency_symbols, no_punct=no_punct, replace_with_url=replace_with_url, replace_with_email=replace_with_email, replace_with_phone_number=replace_with_phone_number, replace_with_number=replace_with_number, replace_with_digit=replace_with_digit, replace_with_currency_symbol=replace_with_currency_symbol) return cleaned
def clean_text(raw_text, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url=, replace_with_email=, replace_with_phone_number=, replace_with_number=, replace_with_digit='0', replace_with_currency_symbol=): ' ' cleaned = clean(raw_text, fix_unicode=fix_unicode, to_ascii=to_ascii, lower=lower, no_line_breaks=no_line_breaks, no_urls=no_urls, no_emails=no_emails, no_phone_numbers=no_phone_numbers, no_numbers=no_numbers, no_digits=no_digits, no_currency_symbols=no_currency_symbols, no_punct=no_punct, replace_with_url=replace_with_url, replace_with_email=replace_with_email, replace_with_phone_number=replace_with_phone_number, replace_with_number=replace_with_number, replace_with_digit=replace_with_digit, replace_with_currency_symbol=replace_with_currency_symbol) return cleaned<|docstring|>Preprocessing and normalization the text a the low level<|endoftext|>
7c79a80b040434f9b8cf073b342aca639616346087e30ab2a73ab139e80c0f84
def cleaning(text, default_cleaning=True, normalize_cleaning=True, half_space_cleaning=True, html_cleaning=True, emoji_convert=False, username_cleaning=True, hashtag_cleaning=True, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url='', replace_with_email='', replace_with_phone_number='', replace_with_number='', replace_with_digit='0', replace_with_currency_symbol=''): ' A hierarchy of normalization and preprocessing ' text = text.strip() if username_cleaning: text = re.sub('\\@[\\w.-_]+', ' ', text) if hashtag_cleaning: text = text.replace('#', ' ') text = text.replace('_', ' ') if emoji_convert: text = emoji.emojize(text) text = convert_emoji_to_text(text) if default_cleaning: text = clean_text(text, fix_unicode, to_ascii, lower, no_line_breaks, no_urls, no_emails, no_phone_numbers, no_numbers, no_digits, no_currency_symbols, no_punct, replace_with_url, replace_with_email, replace_with_phone_number, replace_with_number, replace_with_digit, replace_with_currency_symbol) if html_cleaning: text = clean_html(text) if normalize_cleaning: text = normalizer.normalize(text) weird_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰Ⓜ-🉑🤦-🤷𐀀-\U0010ffff\u200d♀-♂☀-⭕⏏⏩⌚〰️\u2069\u2066–\u2068\u2067]+', flags=re.UNICODE) text = weird_pattern.sub('', text) text = re.sub('#', '', text) if emoji_convert: text = re.sub('\\[(\\w.+)\\]', upper_repl, text) if half_space_cleaning: text = text.replace('\u200c', ' ') return text
A hierarchy of normalization and preprocessing
app/utils/preprocessing.py
cleaning
m3hrdadfi/wiki-summary
16
python
def cleaning(text, default_cleaning=True, normalize_cleaning=True, half_space_cleaning=True, html_cleaning=True, emoji_convert=False, username_cleaning=True, hashtag_cleaning=True, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url=, replace_with_email=, replace_with_phone_number=, replace_with_number=, replace_with_digit='0', replace_with_currency_symbol=): ' ' text = text.strip() if username_cleaning: text = re.sub('\\@[\\w.-_]+', ' ', text) if hashtag_cleaning: text = text.replace('#', ' ') text = text.replace('_', ' ') if emoji_convert: text = emoji.emojize(text) text = convert_emoji_to_text(text) if default_cleaning: text = clean_text(text, fix_unicode, to_ascii, lower, no_line_breaks, no_urls, no_emails, no_phone_numbers, no_numbers, no_digits, no_currency_symbols, no_punct, replace_with_url, replace_with_email, replace_with_phone_number, replace_with_number, replace_with_digit, replace_with_currency_symbol) if html_cleaning: text = clean_html(text) if normalize_cleaning: text = normalizer.normalize(text) weird_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰Ⓜ-🉑🤦-🤷𐀀-\U0010ffff\u200d♀-♂☀-⭕⏏⏩⌚〰️\u2069\u2066–\u2068\u2067]+', flags=re.UNICODE) text = weird_pattern.sub(, text) text = re.sub('#', , text) if emoji_convert: text = re.sub('\\[(\\w.+)\\]', upper_repl, text) if half_space_cleaning: text = text.replace('\u200c', ' ') return text
def cleaning(text, default_cleaning=True, normalize_cleaning=True, half_space_cleaning=True, html_cleaning=True, emoji_convert=False, username_cleaning=True, hashtag_cleaning=True, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url=, replace_with_email=, replace_with_phone_number=, replace_with_number=, replace_with_digit='0', replace_with_currency_symbol=): ' ' text = text.strip() if username_cleaning: text = re.sub('\\@[\\w.-_]+', ' ', text) if hashtag_cleaning: text = text.replace('#', ' ') text = text.replace('_', ' ') if emoji_convert: text = emoji.emojize(text) text = convert_emoji_to_text(text) if default_cleaning: text = clean_text(text, fix_unicode, to_ascii, lower, no_line_breaks, no_urls, no_emails, no_phone_numbers, no_numbers, no_digits, no_currency_symbols, no_punct, replace_with_url, replace_with_email, replace_with_phone_number, replace_with_number, replace_with_digit, replace_with_currency_symbol) if html_cleaning: text = clean_html(text) if normalize_cleaning: text = normalizer.normalize(text) weird_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰Ⓜ-🉑🤦-🤷𐀀-\U0010ffff\u200d♀-♂☀-⭕⏏⏩⌚〰️\u2069\u2066–\u2068\u2067]+', flags=re.UNICODE) text = weird_pattern.sub(, text) text = re.sub('#', , text) if emoji_convert: text = re.sub('\\[(\\w.+)\\]', upper_repl, text) if half_space_cleaning: text = text.replace('\u200c', ' ') return text<|docstring|>A hierarchy of normalization and preprocessing<|endoftext|>
4c994bec01de6f9f7cf07bc87bc03c403f1b3a4eed1124c8353c84697bd672ce
def setUp(self): 'Runs before each test.' pass
Runs before each test.
test/test_resources.py
setUp
mrmap-community/gprlp_metadata_search
3
python
def setUp(self): pass
def setUp(self): pass<|docstring|>Runs before each test.<|endoftext|>
a6c0a5f5395acf2fd08845f919fae36649d7d2db8b1f4d0e0889ae34f5ace4ea
def tearDown(self): 'Runs after each test.' pass
Runs after each test.
test/test_resources.py
tearDown
mrmap-community/gprlp_metadata_search
3
python
def tearDown(self): pass
def tearDown(self): pass<|docstring|>Runs after each test.<|endoftext|>
bc3032a3600ca28158e8d61c541593467359434fb835b68523e409f8a8fc4ec2
def test_icon_png(self): 'Test we can click OK.' path = ':/plugins/GeoportalRlpMetadataSearch/icon.png' icon = QIcon(path) self.assertFalse(icon.isNull())
Test we can click OK.
test/test_resources.py
test_icon_png
mrmap-community/gprlp_metadata_search
3
python
def test_icon_png(self): path = ':/plugins/GeoportalRlpMetadataSearch/icon.png' icon = QIcon(path) self.assertFalse(icon.isNull())
def test_icon_png(self): path = ':/plugins/GeoportalRlpMetadataSearch/icon.png' icon = QIcon(path) self.assertFalse(icon.isNull())<|docstring|>Test we can click OK.<|endoftext|>
43efa472e6db54f91a05760642ebe0c3c4ca5ccf4481fdc9b782ec62bb5a5782
def parse_search_url(url): 'Parses a search URL.' config = {} url = urlparse.urlparse(url) path = url.path[1:] path = path.split('?', 2)[0] if (url.scheme in SEARCH_SCHEMES): config['ENGINE'] = SEARCH_SCHEMES[url.scheme] if (url.scheme in USES_URL): config['URL'] = urlparse.urlunparse((('http',) + url[1:])) if (url.scheme in USES_INDEX): if path.endswith('/'): path = path[:(- 1)] split = path.rsplit('/', 1) if (len(split) > 1): path = split[:(- 1)] index = split[(- 1)] else: path = '' index = split[0] config.update({'URL': urlparse.urlunparse((((('http',) + url[1:2]) + (path,)) + url[3:])), 'INDEX_NAME': index}) if (url.scheme in USES_PATH): config.update({'PATH': path}) return config
Parses a search URL.
confy/search.py
parse_search_url
MechanisM/django-confy
28
python
def parse_search_url(url): config = {} url = urlparse.urlparse(url) path = url.path[1:] path = path.split('?', 2)[0] if (url.scheme in SEARCH_SCHEMES): config['ENGINE'] = SEARCH_SCHEMES[url.scheme] if (url.scheme in USES_URL): config['URL'] = urlparse.urlunparse((('http',) + url[1:])) if (url.scheme in USES_INDEX): if path.endswith('/'): path = path[:(- 1)] split = path.rsplit('/', 1) if (len(split) > 1): path = split[:(- 1)] index = split[(- 1)] else: path = index = split[0] config.update({'URL': urlparse.urlunparse((((('http',) + url[1:2]) + (path,)) + url[3:])), 'INDEX_NAME': index}) if (url.scheme in USES_PATH): config.update({'PATH': path}) return config
def parse_search_url(url): config = {} url = urlparse.urlparse(url) path = url.path[1:] path = path.split('?', 2)[0] if (url.scheme in SEARCH_SCHEMES): config['ENGINE'] = SEARCH_SCHEMES[url.scheme] if (url.scheme in USES_URL): config['URL'] = urlparse.urlunparse((('http',) + url[1:])) if (url.scheme in USES_INDEX): if path.endswith('/'): path = path[:(- 1)] split = path.rsplit('/', 1) if (len(split) > 1): path = split[:(- 1)] index = split[(- 1)] else: path = index = split[0] config.update({'URL': urlparse.urlunparse((((('http',) + url[1:2]) + (path,)) + url[3:])), 'INDEX_NAME': index}) if (url.scheme in USES_PATH): config.update({'PATH': path}) return config<|docstring|>Parses a search URL.<|endoftext|>
6c38c99eeb41669a50a2c12b7cedd4cc6dc3be6ca67438acff9b9235a42ecef3
def config(name='SEARCH_URL', default='simple://'): 'Returns configured SEARCH dictionary from SEARCH_URL' config = {} s = env(name, default) if s: config = parse_search_url(s) return config
Returns configured SEARCH dictionary from SEARCH_URL
confy/search.py
config
MechanisM/django-confy
28
python
def config(name='SEARCH_URL', default='simple://'): config = {} s = env(name, default) if s: config = parse_search_url(s) return config
def config(name='SEARCH_URL', default='simple://'): config = {} s = env(name, default) if s: config = parse_search_url(s) return config<|docstring|>Returns configured SEARCH dictionary from SEARCH_URL<|endoftext|>
f7132e980acf5c82c91c523c5d6f379ece85043671589b20e0165735ed6bd081
def init(): 'parse arguments, validate input, set variables' parser = argparse.ArgumentParser(prog='python3 report.py') list_of_output_formats = ['csv', 'json'] parser.add_argument('-o', '--output_format', required=True, help='Output format', default='csv', choices=list_of_output_formats) parser.add_argument('-f', '--file', required=False, help='Output file name') parser.add_argument('-a', '--account_id', required=True, help='IBM Cloud account id') parser.add_argument('-d', '--billing_date', required=True, help='Billing date in format yyyy-MM') parser.add_argument('-t', '--report_type', required=True, help='Billing date in format yyyy-MM') parser.add_argument('-g', '--group_by', required=True, help='Billing date in format yyyy-MM') args = parser.parse_args() global OUTPUT_FORMAT OUTPUT_FORMAT = args.output_format global ACCOUNT_ID ACCOUNT_ID = args.account_id global BILLING_DATE BILLING_DATE = args.billing_date global REPORT_TYPE REPORT_TYPE = args.report_type global GROUP_BY GROUP_BY = args.group_by global OUTPUT_FILE_NAME now = datetime.now() date_time = now.strftime('%Y%m%dT%H%M%S%f') OUTPUT_FILE_NAME = 'cost-report_{}_by-{}-{}.{}'.format(BILLING_DATE, GROUP_BY, date_time, OUTPUT_FORMAT) print('Running Cost Report with Output format: {}, Output file: {}, Account id: {}, Billing date: {}, Report type: {}, Group by: {}'.format(OUTPUT_FORMAT, OUTPUT_FILE_NAME, ACCOUNT_ID, BILLING_DATE, REPORT_TYPE, GROUP_BY))
parse arguments, validate input, set variables
billing/report.py
init
remkohdev/ibm_cloud_automation
0
python
def init(): parser = argparse.ArgumentParser(prog='python3 report.py') list_of_output_formats = ['csv', 'json'] parser.add_argument('-o', '--output_format', required=True, help='Output format', default='csv', choices=list_of_output_formats) parser.add_argument('-f', '--file', required=False, help='Output file name') parser.add_argument('-a', '--account_id', required=True, help='IBM Cloud account id') parser.add_argument('-d', '--billing_date', required=True, help='Billing date in format yyyy-MM') parser.add_argument('-t', '--report_type', required=True, help='Billing date in format yyyy-MM') parser.add_argument('-g', '--group_by', required=True, help='Billing date in format yyyy-MM') args = parser.parse_args() global OUTPUT_FORMAT OUTPUT_FORMAT = args.output_format global ACCOUNT_ID ACCOUNT_ID = args.account_id global BILLING_DATE BILLING_DATE = args.billing_date global REPORT_TYPE REPORT_TYPE = args.report_type global GROUP_BY GROUP_BY = args.group_by global OUTPUT_FILE_NAME now = datetime.now() date_time = now.strftime('%Y%m%dT%H%M%S%f') OUTPUT_FILE_NAME = 'cost-report_{}_by-{}-{}.{}'.format(BILLING_DATE, GROUP_BY, date_time, OUTPUT_FORMAT) print('Running Cost Report with Output format: {}, Output file: {}, Account id: {}, Billing date: {}, Report type: {}, Group by: {}'.format(OUTPUT_FORMAT, OUTPUT_FILE_NAME, ACCOUNT_ID, BILLING_DATE, REPORT_TYPE, GROUP_BY))
def init(): parser = argparse.ArgumentParser(prog='python3 report.py') list_of_output_formats = ['csv', 'json'] parser.add_argument('-o', '--output_format', required=True, help='Output format', default='csv', choices=list_of_output_formats) parser.add_argument('-f', '--file', required=False, help='Output file name') parser.add_argument('-a', '--account_id', required=True, help='IBM Cloud account id') parser.add_argument('-d', '--billing_date', required=True, help='Billing date in format yyyy-MM') parser.add_argument('-t', '--report_type', required=True, help='Billing date in format yyyy-MM') parser.add_argument('-g', '--group_by', required=True, help='Billing date in format yyyy-MM') args = parser.parse_args() global OUTPUT_FORMAT OUTPUT_FORMAT = args.output_format global ACCOUNT_ID ACCOUNT_ID = args.account_id global BILLING_DATE BILLING_DATE = args.billing_date global REPORT_TYPE REPORT_TYPE = args.report_type global GROUP_BY GROUP_BY = args.group_by global OUTPUT_FILE_NAME now = datetime.now() date_time = now.strftime('%Y%m%dT%H%M%S%f') OUTPUT_FILE_NAME = 'cost-report_{}_by-{}-{}.{}'.format(BILLING_DATE, GROUP_BY, date_time, OUTPUT_FORMAT) print('Running Cost Report with Output format: {}, Output file: {}, Account id: {}, Billing date: {}, Report type: {}, Group by: {}'.format(OUTPUT_FORMAT, OUTPUT_FILE_NAME, ACCOUNT_ID, BILLING_DATE, REPORT_TYPE, GROUP_BY))<|docstring|>parse arguments, validate input, set variables<|endoftext|>
8158eaea87b4f8aecdd38ddc0feae1acbe9e606b9820ed64ca0e77f00994f596
def get_access_token(): 'GET /access_token' url = 'https://iam.cloud.ibm.com/identity/token' payload = {'apikey': IBM_CLOUD_APIKEY, 'response_type': 'cloud_iam', 'grant_type': 'urn:ibm:params:oauth:grant-type:apikey'} headers = {'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} response = requests.request('POST', url, headers=headers, data=payload) access_token = response.json()['access_token'] return access_token
GET /access_token
billing/report.py
get_access_token
remkohdev/ibm_cloud_automation
0
python
def get_access_token(): url = 'https://iam.cloud.ibm.com/identity/token' payload = {'apikey': IBM_CLOUD_APIKEY, 'response_type': 'cloud_iam', 'grant_type': 'urn:ibm:params:oauth:grant-type:apikey'} headers = {'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} response = requests.request('POST', url, headers=headers, data=payload) access_token = response.json()['access_token'] return access_token
def get_access_token(): url = 'https://iam.cloud.ibm.com/identity/token' payload = {'apikey': IBM_CLOUD_APIKEY, 'response_type': 'cloud_iam', 'grant_type': 'urn:ibm:params:oauth:grant-type:apikey'} headers = {'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} response = requests.request('POST', url, headers=headers, data=payload) access_token = response.json()['access_token'] return access_token<|docstring|>GET /access_token<|endoftext|>
ccdbe331f027a110186cd5b982de8648cae82be8ddb620549ad117b395bc4605
def create_report_resources(): 'Cost per Resource' report_lines = [] report_header = ['resource_id', 'resource_name', 'resource_billable_cost'] report_lines.append(report_header) resources = get_resources() nr_of_resources = len(resources) for resource in resources: r_id = resource['resource_id'] r_name = resource['resource_name'] r_billable_cost = resource['billable_cost'] cost_line_item = [r_id, r_name, r_billable_cost] report_lines.append(cost_line_item) return report_lines
Cost per Resource
billing/report.py
create_report_resources
remkohdev/ibm_cloud_automation
0
python
def create_report_resources(): report_lines = [] report_header = ['resource_id', 'resource_name', 'resource_billable_cost'] report_lines.append(report_header) resources = get_resources() nr_of_resources = len(resources) for resource in resources: r_id = resource['resource_id'] r_name = resource['resource_name'] r_billable_cost = resource['billable_cost'] cost_line_item = [r_id, r_name, r_billable_cost] report_lines.append(cost_line_item) return report_lines
def create_report_resources(): report_lines = [] report_header = ['resource_id', 'resource_name', 'resource_billable_cost'] report_lines.append(report_header) resources = get_resources() nr_of_resources = len(resources) for resource in resources: r_id = resource['resource_id'] r_name = resource['resource_name'] r_billable_cost = resource['billable_cost'] cost_line_item = [r_id, r_name, r_billable_cost] report_lines.append(cost_line_item) return report_lines<|docstring|>Cost per Resource<|endoftext|>
377781162e8bf90ba09f5b5963c2c767765fa1a0b3ed7fbcf751414a4be2b3d3
def create_report_groupby_resourcegroup(): 'Cost per ResourceGroup' report_lines = [] report_header = ['rg_id', 'rg_name', 'nr_of_resources', 'total_cost'] report_lines.append(report_header) resourcegroups = get_resourcegroups() for resourcegroup in resourcegroups: rg_name = resourcegroup['name'] rg_id = resourcegroup['id'] resources = get_resources_for_resourcegroup(rg_id) nr_of_resources = len(resources) total_cost = summarize_costs_for_resources(rg_id, rg_name, resources) cost_line_item = [rg_id, rg_name, nr_of_resources, total_cost] report_lines.append(cost_line_item) return report_lines
Cost per ResourceGroup
billing/report.py
create_report_groupby_resourcegroup
remkohdev/ibm_cloud_automation
0
python
def create_report_groupby_resourcegroup(): report_lines = [] report_header = ['rg_id', 'rg_name', 'nr_of_resources', 'total_cost'] report_lines.append(report_header) resourcegroups = get_resourcegroups() for resourcegroup in resourcegroups: rg_name = resourcegroup['name'] rg_id = resourcegroup['id'] resources = get_resources_for_resourcegroup(rg_id) nr_of_resources = len(resources) total_cost = summarize_costs_for_resources(rg_id, rg_name, resources) cost_line_item = [rg_id, rg_name, nr_of_resources, total_cost] report_lines.append(cost_line_item) return report_lines
def create_report_groupby_resourcegroup(): report_lines = [] report_header = ['rg_id', 'rg_name', 'nr_of_resources', 'total_cost'] report_lines.append(report_header) resourcegroups = get_resourcegroups() for resourcegroup in resourcegroups: rg_name = resourcegroup['name'] rg_id = resourcegroup['id'] resources = get_resources_for_resourcegroup(rg_id) nr_of_resources = len(resources) total_cost = summarize_costs_for_resources(rg_id, rg_name, resources) cost_line_item = [rg_id, rg_name, nr_of_resources, total_cost] report_lines.append(cost_line_item) return report_lines<|docstring|>Cost per ResourceGroup<|endoftext|>
23c9972d83833bca9469aea890c5189d5fb666c8e3accced16a21661b3d11de7
def get_resources(): 'Get usage for all the resources and plans in an account for a given month' access_token = get_access_token() url1 = 'https://billing.cloud.ibm.com/v4/accounts/%s/usage/%s?_names=1' url2 = (url1 % (ACCOUNT_ID, BILLING_DATE)) headers1 = {'Authorization': access_token, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url2, headers=headers1, data=payload) resources = response.json()['resources'] return resources
Get usage for all the resources and plans in an account for a given month
billing/report.py
get_resources
remkohdev/ibm_cloud_automation
0
python
def get_resources(): access_token = get_access_token() url1 = 'https://billing.cloud.ibm.com/v4/accounts/%s/usage/%s?_names=1' url2 = (url1 % (ACCOUNT_ID, BILLING_DATE)) headers1 = {'Authorization': access_token, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url2, headers=headers1, data=payload) resources = response.json()['resources'] return resources
def get_resources(): access_token = get_access_token() url1 = 'https://billing.cloud.ibm.com/v4/accounts/%s/usage/%s?_names=1' url2 = (url1 % (ACCOUNT_ID, BILLING_DATE)) headers1 = {'Authorization': access_token, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url2, headers=headers1, data=payload) resources = response.json()['resources'] return resources<|docstring|>Get usage for all the resources and plans in an account for a given month<|endoftext|>
a92c9197acbab641024b9bea7021a85951fa994897a7616bbc4055bb3dbb10bc
def get_resources_for_resourcegroup(rg_id): 'Get resource instance usage in a resource group' access_token = get_access_token() RESOURCE_GROUP_ID = rg_id url1 = 'https://billing.cloud.ibm.com/v4/accounts/%s/resource_groups/%s/resource_instances/usage/%s?_names=1' url2 = (url1 % (ACCOUNT_ID, RESOURCE_GROUP_ID, BILLING_DATE)) headers1 = {'Authorization': access_token, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url2, headers=headers1, data=payload) resources = response.json()['resources'] return resources
Get resource instance usage in a resource group
billing/report.py
get_resources_for_resourcegroup
remkohdev/ibm_cloud_automation
0
python
def get_resources_for_resourcegroup(rg_id): access_token = get_access_token() RESOURCE_GROUP_ID = rg_id url1 = 'https://billing.cloud.ibm.com/v4/accounts/%s/resource_groups/%s/resource_instances/usage/%s?_names=1' url2 = (url1 % (ACCOUNT_ID, RESOURCE_GROUP_ID, BILLING_DATE)) headers1 = {'Authorization': access_token, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url2, headers=headers1, data=payload) resources = response.json()['resources'] return resources
def get_resources_for_resourcegroup(rg_id): access_token = get_access_token() RESOURCE_GROUP_ID = rg_id url1 = 'https://billing.cloud.ibm.com/v4/accounts/%s/resource_groups/%s/resource_instances/usage/%s?_names=1' url2 = (url1 % (ACCOUNT_ID, RESOURCE_GROUP_ID, BILLING_DATE)) headers1 = {'Authorization': access_token, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url2, headers=headers1, data=payload) resources = response.json()['resources'] return resources<|docstring|>Get resource instance usage in a resource group<|endoftext|>
4de2ce18fd0d7d062a33c8b8e15e090af9f6e9f4d63b458a4fd8cadbdebba90a
def get_resourcegroups(): 'GET /resourcegroups' access_token = get_access_token() authorization_header = ('Bearer %s' % access_token) url1 = 'https://resource-controller.cloud.ibm.com/v2/resource_groups/' headers1 = {'Authorization': authorization_header, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url1, headers=headers1, data=payload) resource_groups = response.json()['resources'] return resource_groups
GET /resourcegroups
billing/report.py
get_resourcegroups
remkohdev/ibm_cloud_automation
0
python
def get_resourcegroups(): access_token = get_access_token() authorization_header = ('Bearer %s' % access_token) url1 = 'https://resource-controller.cloud.ibm.com/v2/resource_groups/' headers1 = {'Authorization': authorization_header, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url1, headers=headers1, data=payload) resource_groups = response.json()['resources'] return resource_groups
def get_resourcegroups(): access_token = get_access_token() authorization_header = ('Bearer %s' % access_token) url1 = 'https://resource-controller.cloud.ibm.com/v2/resource_groups/' headers1 = {'Authorization': authorization_header, 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': 'iam_apikey'} response = requests.get(url=url1, headers=headers1, data=payload) resource_groups = response.json()['resources'] return resource_groups<|docstring|>GET /resourcegroups<|endoftext|>
eae7b97946fce64e781ac3607bf715f2aa5fcfa89d32379ea849213daea48872
def summarize_costs_for_resources(rg_id, rg_name, resources): 'summarize costs' total_cost = float(0) for resource in resources: for use in resource['usage']: cost = float(use['cost']) total_cost += cost return total_cost
summarize costs
billing/report.py
summarize_costs_for_resources
remkohdev/ibm_cloud_automation
0
python
def summarize_costs_for_resources(rg_id, rg_name, resources): total_cost = float(0) for resource in resources: for use in resource['usage']: cost = float(use['cost']) total_cost += cost return total_cost
def summarize_costs_for_resources(rg_id, rg_name, resources): total_cost = float(0) for resource in resources: for use in resource['usage']: cost = float(use['cost']) total_cost += cost return total_cost<|docstring|>summarize costs<|endoftext|>
bd10359fdd05d8feb34b7cf480360c6b9ff3ae6fc580823a34cda768c2b3f64e
def write_to_file(report_lines): 'write to file' print('----->write to file') if (OUTPUT_FORMAT == 'json'): with open(OUTPUT_FILE_NAME, 'w') as fp: json.dump(report_lines, fp) elif (OUTPUT_FORMAT == 'csv'): df = pd.read_json(json.dumps(report_lines)) df.to_csv(OUTPUT_FILE_NAME) else: with open(OUTPUT_FILE_NAME, 'w') as fp: json.dump(report_lines, fp)
write to file
billing/report.py
write_to_file
remkohdev/ibm_cloud_automation
0
python
def write_to_file(report_lines): print('----->') if (OUTPUT_FORMAT == 'json'): with open(OUTPUT_FILE_NAME, 'w') as fp: json.dump(report_lines, fp) elif (OUTPUT_FORMAT == 'csv'): df = pd.read_json(json.dumps(report_lines)) df.to_csv(OUTPUT_FILE_NAME) else: with open(OUTPUT_FILE_NAME, 'w') as fp: json.dump(report_lines, fp)
def write_to_file(report_lines): print('----->') if (OUTPUT_FORMAT == 'json'): with open(OUTPUT_FILE_NAME, 'w') as fp: json.dump(report_lines, fp) elif (OUTPUT_FORMAT == 'csv'): df = pd.read_json(json.dumps(report_lines)) df.to_csv(OUTPUT_FILE_NAME) else: with open(OUTPUT_FILE_NAME, 'w') as fp: json.dump(report_lines, fp)<|docstring|>write to file<|endoftext|>
9e40b74e4ff828ceeb3c1cc572dd6521ed17887054639705fda546fdc9416d6b
@abstractmethod async def upload_tails_file(self, context: InjectionContext, revo_reg_def_id: str, tails_file_path: str) -> (bool, str): 'Upload tails file to tails server.\n\n Args:\n revo_reg_def_id: The Revocation registry definition ID\n tails_file: The path to the tails file to upload\n '
Upload tails file to tails server. Args: revo_reg_def_id: The Revocation registry definition ID tails_file: The path to the tails file to upload
aries_cloudagent/tails/base.py
upload_tails_file
baegjae/aries-cloudagent-python
1
python
@abstractmethod async def upload_tails_file(self, context: InjectionContext, revo_reg_def_id: str, tails_file_path: str) -> (bool, str): 'Upload tails file to tails server.\n\n Args:\n revo_reg_def_id: The Revocation registry definition ID\n tails_file: The path to the tails file to upload\n '
@abstractmethod async def upload_tails_file(self, context: InjectionContext, revo_reg_def_id: str, tails_file_path: str) -> (bool, str): 'Upload tails file to tails server.\n\n Args:\n revo_reg_def_id: The Revocation registry definition ID\n tails_file: The path to the tails file to upload\n '<|docstring|>Upload tails file to tails server. Args: revo_reg_def_id: The Revocation registry definition ID tails_file: The path to the tails file to upload<|endoftext|>
1540c15cd42cbd1792ed7b693f2ee7abb3285f5d1bb9921138cd7f038469ff1d
@raises(ValueError) def test_dense_transitive_closure_faults_nonzerodiagonal(): ' Test Closure: Dense for non-zero diagonal ' Dtmp = D.copy() Dtmp[0][0] = 1 transitive_closure(Dtmp, kind='metric', verbose=True)
Test Closure: Dense for non-zero diagonal
tests/test_closure.py
test_dense_transitive_closure_faults_nonzerodiagonal
rionbr/distanceclosure
9
python
@raises(ValueError) def test_dense_transitive_closure_faults_nonzerodiagonal(): ' ' Dtmp = D.copy() Dtmp[0][0] = 1 transitive_closure(Dtmp, kind='metric', verbose=True)
@raises(ValueError) def test_dense_transitive_closure_faults_nonzerodiagonal(): ' ' Dtmp = D.copy() Dtmp[0][0] = 1 transitive_closure(Dtmp, kind='metric', verbose=True)<|docstring|>Test Closure: Dense for non-zero diagonal<|endoftext|>
0a3da7b606a3f2b060a595d5dd84d181b48c9cbeef2a58f2c6701aef37a555b5
def test_dense_transitive_closure_metric(): ' Test Closure: Dense Transitive Closure (Metric) ' Cm = transitive_closure(D, kind='metric', algorithm='dense', verbose=True) assert np.isclose(Cm, Cm_true).all()
Test Closure: Dense Transitive Closure (Metric)
tests/test_closure.py
test_dense_transitive_closure_metric
rionbr/distanceclosure
9
python
def test_dense_transitive_closure_metric(): ' ' Cm = transitive_closure(D, kind='metric', algorithm='dense', verbose=True) assert np.isclose(Cm, Cm_true).all()
def test_dense_transitive_closure_metric(): ' ' Cm = transitive_closure(D, kind='metric', algorithm='dense', verbose=True) assert np.isclose(Cm, Cm_true).all()<|docstring|>Test Closure: Dense Transitive Closure (Metric)<|endoftext|>
76f5953d0accdc2c38e74fe7066dc894e112b1edb6623bbc82a0e3284127ab71
def test_dense_transitive_closure_ultrametric(): ' Test Closure: Dense Transitive Closure (Ultrametric) ' Cu = transitive_closure(D, kind='ultrametric', algorithm='dense') assert np.isclose(Cu, Cu_true).all()
Test Closure: Dense Transitive Closure (Ultrametric)
tests/test_closure.py
test_dense_transitive_closure_ultrametric
rionbr/distanceclosure
9
python
def test_dense_transitive_closure_ultrametric(): ' ' Cu = transitive_closure(D, kind='ultrametric', algorithm='dense') assert np.isclose(Cu, Cu_true).all()
def test_dense_transitive_closure_ultrametric(): ' ' Cu = transitive_closure(D, kind='ultrametric', algorithm='dense') assert np.isclose(Cu, Cu_true).all()<|docstring|>Test Closure: Dense Transitive Closure (Ultrametric)<|endoftext|>
017c1702694c2e03e767812c0f9f5d4363c4e92f2879f423274b910cff414998
def test_dense_backbone(): ' Test Closure: Dense Backbone return ' Cm = transitive_closure(D, kind='metric', algorithm='dense') Bm = backbone(D, Cm) assert np.isclose(Bm, Bm_true).all()
Test Closure: Dense Backbone return
tests/test_closure.py
test_dense_backbone
rionbr/distanceclosure
9
python
def test_dense_backbone(): ' ' Cm = transitive_closure(D, kind='metric', algorithm='dense') Bm = backbone(D, Cm) assert np.isclose(Bm, Bm_true).all()
def test_dense_backbone(): ' ' Cm = transitive_closure(D, kind='metric', algorithm='dense') Bm = backbone(D, Cm) assert np.isclose(Bm, Bm_true).all()<|docstring|>Test Closure: Dense Backbone return<|endoftext|>
ea606b9c4b4b63571e12a16509635ebcea34dece59c8db18384935b050f962ad
def test_dijkstra_vs_dense_transitive_closure_metric(): ' Test Closure: Dijkstra vs Dense metric comparison ' C_Dense_um = transitive_closure(D, kind='metric', algorithm='dense') C_Djisktra_um = transitive_closure(D, kind='metric', algorithm='dijkstra') assert (C_Dense_um == C_Djisktra_um.A).all()
Test Closure: Dijkstra vs Dense metric comparison
tests/test_closure.py
test_dijkstra_vs_dense_transitive_closure_metric
rionbr/distanceclosure
9
python
def test_dijkstra_vs_dense_transitive_closure_metric(): ' ' C_Dense_um = transitive_closure(D, kind='metric', algorithm='dense') C_Djisktra_um = transitive_closure(D, kind='metric', algorithm='dijkstra') assert (C_Dense_um == C_Djisktra_um.A).all()
def test_dijkstra_vs_dense_transitive_closure_metric(): ' ' C_Dense_um = transitive_closure(D, kind='metric', algorithm='dense') C_Djisktra_um = transitive_closure(D, kind='metric', algorithm='dijkstra') assert (C_Dense_um == C_Djisktra_um.A).all()<|docstring|>Test Closure: Dijkstra vs Dense metric comparison<|endoftext|>
5c60d131555e4897a358d1ce742c9246ddf3b7e5a8b023373bd64523a6e53cfa
def test_dijkstra_vs_dense_transitive_closure_ultrametric(): ' Test Closure: Dijkstra vs Dense ultrametric comparison ' C_Dense_um = transitive_closure(D, kind='ultrametric', algorithm='dense') C_Djisktra_um = transitive_closure(D_sparse, kind='ultrametric', algorithm='dijkstra') assert (C_Dense_um == C_Djisktra_um.A).all()
Test Closure: Dijkstra vs Dense ultrametric comparison
tests/test_closure.py
test_dijkstra_vs_dense_transitive_closure_ultrametric
rionbr/distanceclosure
9
python
def test_dijkstra_vs_dense_transitive_closure_ultrametric(): ' ' C_Dense_um = transitive_closure(D, kind='ultrametric', algorithm='dense') C_Djisktra_um = transitive_closure(D_sparse, kind='ultrametric', algorithm='dijkstra') assert (C_Dense_um == C_Djisktra_um.A).all()
def test_dijkstra_vs_dense_transitive_closure_ultrametric(): ' ' C_Dense_um = transitive_closure(D, kind='ultrametric', algorithm='dense') C_Djisktra_um = transitive_closure(D_sparse, kind='ultrametric', algorithm='dijkstra') assert (C_Dense_um == C_Djisktra_um.A).all()<|docstring|>Test Closure: Dijkstra vs Dense ultrametric comparison<|endoftext|>
60538ee0538a257c3c4a4a26478c57a2e6924aa23be229952e95f4849729e98b
def test_dijkstra_vs_dense_backbone(): ' Test Closure: Dijkstra vs Dense backbone return ' C_Dense_m = transitive_closure(D, kind='metric', algorithm='dense') B_Dense_m = backbone(D, C_Dense_m) C_Djisktra_m = transitive_closure(D_sparse, kind='metric', algorithm='dijkstra') B_Djisktra_m = backbone(D_sparse, C_Djisktra_m) B_Djisktra_m = B_Djisktra_m.A np.fill_diagonal(B_Djisktra_m, (- 1)) assert (B_Dense_m == B_Djisktra_m).all()
Test Closure: Dijkstra vs Dense backbone return
tests/test_closure.py
test_dijkstra_vs_dense_backbone
rionbr/distanceclosure
9
python
def test_dijkstra_vs_dense_backbone(): ' ' C_Dense_m = transitive_closure(D, kind='metric', algorithm='dense') B_Dense_m = backbone(D, C_Dense_m) C_Djisktra_m = transitive_closure(D_sparse, kind='metric', algorithm='dijkstra') B_Djisktra_m = backbone(D_sparse, C_Djisktra_m) B_Djisktra_m = B_Djisktra_m.A np.fill_diagonal(B_Djisktra_m, (- 1)) assert (B_Dense_m == B_Djisktra_m).all()
def test_dijkstra_vs_dense_backbone(): ' ' C_Dense_m = transitive_closure(D, kind='metric', algorithm='dense') B_Dense_m = backbone(D, C_Dense_m) C_Djisktra_m = transitive_closure(D_sparse, kind='metric', algorithm='dijkstra') B_Djisktra_m = backbone(D_sparse, C_Djisktra_m) B_Djisktra_m = B_Djisktra_m.A np.fill_diagonal(B_Djisktra_m, (- 1)) assert (B_Dense_m == B_Djisktra_m).all()<|docstring|>Test Closure: Dijkstra vs Dense backbone return<|endoftext|>
4a6c0319ca15c6daef592f377dbea52c680fee199fa1bfa230be81a28c8fdd1d
def load_dataset(name): "\n Loads a multi-label classification dataset.\n\n Parameters\n ----------\n name : string\n Name of the dataset. Currently only 'yeast' is available.\n " if (name == 'yeast'): data = fetch_mldata('yeast') X = data.data y = data.target.toarray().astype(np.int).T return (X, y) else: raise Exception('No such dataset')
Loads a multi-label classification dataset. Parameters ---------- name : string Name of the dataset. Currently only 'yeast' is available.
skml/datasets/load_datasets.py
load_dataset
ChristianSch/skml
5
python
def load_dataset(name): "\n Loads a multi-label classification dataset.\n\n Parameters\n ----------\n name : string\n Name of the dataset. Currently only 'yeast' is available.\n " if (name == 'yeast'): data = fetch_mldata('yeast') X = data.data y = data.target.toarray().astype(np.int).T return (X, y) else: raise Exception('No such dataset')
def load_dataset(name): "\n Loads a multi-label classification dataset.\n\n Parameters\n ----------\n name : string\n Name of the dataset. Currently only 'yeast' is available.\n " if (name == 'yeast'): data = fetch_mldata('yeast') X = data.data y = data.target.toarray().astype(np.int).T return (X, y) else: raise Exception('No such dataset')<|docstring|>Loads a multi-label classification dataset. Parameters ---------- name : string Name of the dataset. Currently only 'yeast' is available.<|endoftext|>
00505ffd06f4613e4e8072d9220674d17e5f3dd2819e78d0d91e982111d384a4
def interactions_getter(manager_router): '\n Gets the slash command processor using `Client.slasher` of an ``_EventHandlerManagerRouter``.\n \n Parameters\n ----------\n manager_router : ``_EventHandlerManagerRouter``\n The caller manager router.\n \n Returns\n -------\n handlers : `list` of ``Slasher``\n ' handlers = [] for client in manager_router.parent.clients: manager = getattr(client, 'interactions', None) if (manager is None): continue handler = manager.parent if isinstance(handler, Slasher): handlers.append(handler) return handlers
Gets the slash command processor using `Client.slasher` of an ``_EventHandlerManagerRouter``. Parameters ---------- manager_router : ``_EventHandlerManagerRouter`` The caller manager router. Returns ------- handlers : `list` of ``Slasher``
hata/ext/slash/client_wrapper_extension.py
interactions_getter
WizzyBots/hata
0
python
def interactions_getter(manager_router): '\n Gets the slash command processor using `Client.slasher` of an ``_EventHandlerManagerRouter``.\n \n Parameters\n ----------\n manager_router : ``_EventHandlerManagerRouter``\n The caller manager router.\n \n Returns\n -------\n handlers : `list` of ``Slasher``\n ' handlers = [] for client in manager_router.parent.clients: manager = getattr(client, 'interactions', None) if (manager is None): continue handler = manager.parent if isinstance(handler, Slasher): handlers.append(handler) return handlers
def interactions_getter(manager_router): '\n Gets the slash command processor using `Client.slasher` of an ``_EventHandlerManagerRouter``.\n \n Parameters\n ----------\n manager_router : ``_EventHandlerManagerRouter``\n The caller manager router.\n \n Returns\n -------\n handlers : `list` of ``Slasher``\n ' handlers = [] for client in manager_router.parent.clients: manager = getattr(client, 'interactions', None) if (manager is None): continue handler = manager.parent if isinstance(handler, Slasher): handlers.append(handler) return handlers<|docstring|>Gets the slash command processor using `Client.slasher` of an ``_EventHandlerManagerRouter``. Parameters ---------- manager_router : ``_EventHandlerManagerRouter`` The caller manager router. Returns ------- handlers : `list` of ``Slasher``<|endoftext|>
cd9e714c5619662fa356a92a0f13f1fa5694b8b05d7b2d3758a5a96a75de7d0f
def from_class_constructor(klass): '\n Creates a slash command from the given class.\n \n Parameters\n ----------\n klass : `type`\n The class to create a slash command from.\n \n Returns\n -------\n self : ``SlasherApplicationCommand``, ``Router``\n \n Raises\n ------\n BaseException\n Any exception raised by the respective ``SlasherApplicationCommand`` constructor.\n ' return SlasherApplicationCommand.from_class(klass)
Creates a slash command from the given class. Parameters ---------- klass : `type` The class to create a slash command from. Returns ------- self : ``SlasherApplicationCommand``, ``Router`` Raises ------ BaseException Any exception raised by the respective ``SlasherApplicationCommand`` constructor.
hata/ext/slash/client_wrapper_extension.py
from_class_constructor
WizzyBots/hata
0
python
def from_class_constructor(klass): '\n Creates a slash command from the given class.\n \n Parameters\n ----------\n klass : `type`\n The class to create a slash command from.\n \n Returns\n -------\n self : ``SlasherApplicationCommand``, ``Router``\n \n Raises\n ------\n BaseException\n Any exception raised by the respective ``SlasherApplicationCommand`` constructor.\n ' return SlasherApplicationCommand.from_class(klass)
def from_class_constructor(klass): '\n Creates a slash command from the given class.\n \n Parameters\n ----------\n klass : `type`\n The class to create a slash command from.\n \n Returns\n -------\n self : ``SlasherApplicationCommand``, ``Router``\n \n Raises\n ------\n BaseException\n Any exception raised by the respective ``SlasherApplicationCommand`` constructor.\n ' return SlasherApplicationCommand.from_class(klass)<|docstring|>Creates a slash command from the given class. Parameters ---------- klass : `type` The class to create a slash command from. Returns ------- self : ``SlasherApplicationCommand``, ``Router`` Raises ------ BaseException Any exception raised by the respective ``SlasherApplicationCommand`` constructor.<|endoftext|>
264f5e49ca7071f299d6171280b0117b4829322fd342a14db4cace846d01bde6
@property def interactions(self): '\n Returns a ``_EventHandlerManagerRouter``, with what slash commands can be added to more clients at the\n same time.\n \n Returns\n -------\n event_handler_manager_router : ``_EventHandlerManagerRouter``\n ' return _EventHandlerManagerRouter(self, interactions_getter, from_class_constructor)
Returns a ``_EventHandlerManagerRouter``, with what slash commands can be added to more clients at the same time. Returns ------- event_handler_manager_router : ``_EventHandlerManagerRouter``
hata/ext/slash/client_wrapper_extension.py
interactions
WizzyBots/hata
0
python
@property def interactions(self): '\n Returns a ``_EventHandlerManagerRouter``, with what slash commands can be added to more clients at the\n same time.\n \n Returns\n -------\n event_handler_manager_router : ``_EventHandlerManagerRouter``\n ' return _EventHandlerManagerRouter(self, interactions_getter, from_class_constructor)
@property def interactions(self): '\n Returns a ``_EventHandlerManagerRouter``, with what slash commands can be added to more clients at the\n same time.\n \n Returns\n -------\n event_handler_manager_router : ``_EventHandlerManagerRouter``\n ' return _EventHandlerManagerRouter(self, interactions_getter, from_class_constructor)<|docstring|>Returns a ``_EventHandlerManagerRouter``, with what slash commands can be added to more clients at the same time. Returns ------- event_handler_manager_router : ``_EventHandlerManagerRouter``<|endoftext|>
4cad09131b7a57108b58ee18b049363aeffb446187ab172c7df624c9bb713e8a
@defer.inlineCallbacks def filter_events_for_clients(self, user_tuples, events, event_id_to_state): ' Returns dict of user_id -> list of events that user is allowed to\n see.\n\n :param (str, bool) user_tuples: (user id, is_peeking) for each\n user to be checked. is_peeking should be true if:\n * the user is not currently a member of the room, and:\n * the user has not been a member of the room since the given\n events\n ' forgotten = (yield defer.gatherResults([self.store.who_forgot_in_room(room_id) for room_id in frozenset((e.room_id for e in events))], consumeErrors=True)) event_id_forgotten = frozenset((row['event_id'] for rows in forgotten for row in rows)) def allowed(event, user_id, is_peeking): state = event_id_to_state[event.event_id] visibility_event = state.get((EventTypes.RoomHistoryVisibility, ''), None) if visibility_event: visibility = visibility_event.content.get('history_visibility', 'shared') else: visibility = 'shared' if (visibility not in VISIBILITY_PRIORITY): visibility = 'shared' if (visibility == 'world_readable'): return True if (event.type == EventTypes.RoomHistoryVisibility): prev_content = event.unsigned.get('prev_content', {}) prev_visibility = prev_content.get('history_visibility', None) if (prev_visibility not in VISIBILITY_PRIORITY): prev_visibility = 'shared' new_priority = VISIBILITY_PRIORITY.index(visibility) old_priority = VISIBILITY_PRIORITY.index(prev_visibility) if (old_priority < new_priority): visibility = prev_visibility membership_event = state.get((EventTypes.Member, user_id), None) if membership_event: if (membership_event.event_id in event_id_forgotten): membership = None else: membership = membership_event.membership else: membership = None if (membership == Membership.JOIN): return True if (visibility == 'joined'): return False elif (visibility == 'invited'): return (membership == Membership.INVITE) else: return (not is_peeking) defer.returnValue({user_id: [event for event in events if allowed(event, user_id, is_peeking)] for (user_id, is_peeking) in user_tuples})
Returns dict of user_id -> list of events that user is allowed to see. :param (str, bool) user_tuples: (user id, is_peeking) for each user to be checked. is_peeking should be true if: * the user is not currently a member of the room, and: * the user has not been a member of the room since the given events
synapse/handlers/_base.py
filter_events_for_clients
negzi/synapse
0
python
@defer.inlineCallbacks def filter_events_for_clients(self, user_tuples, events, event_id_to_state): ' Returns dict of user_id -> list of events that user is allowed to\n see.\n\n :param (str, bool) user_tuples: (user id, is_peeking) for each\n user to be checked. is_peeking should be true if:\n * the user is not currently a member of the room, and:\n * the user has not been a member of the room since the given\n events\n ' forgotten = (yield defer.gatherResults([self.store.who_forgot_in_room(room_id) for room_id in frozenset((e.room_id for e in events))], consumeErrors=True)) event_id_forgotten = frozenset((row['event_id'] for rows in forgotten for row in rows)) def allowed(event, user_id, is_peeking): state = event_id_to_state[event.event_id] visibility_event = state.get((EventTypes.RoomHistoryVisibility, ), None) if visibility_event: visibility = visibility_event.content.get('history_visibility', 'shared') else: visibility = 'shared' if (visibility not in VISIBILITY_PRIORITY): visibility = 'shared' if (visibility == 'world_readable'): return True if (event.type == EventTypes.RoomHistoryVisibility): prev_content = event.unsigned.get('prev_content', {}) prev_visibility = prev_content.get('history_visibility', None) if (prev_visibility not in VISIBILITY_PRIORITY): prev_visibility = 'shared' new_priority = VISIBILITY_PRIORITY.index(visibility) old_priority = VISIBILITY_PRIORITY.index(prev_visibility) if (old_priority < new_priority): visibility = prev_visibility membership_event = state.get((EventTypes.Member, user_id), None) if membership_event: if (membership_event.event_id in event_id_forgotten): membership = None else: membership = membership_event.membership else: membership = None if (membership == Membership.JOIN): return True if (visibility == 'joined'): return False elif (visibility == 'invited'): return (membership == Membership.INVITE) else: return (not is_peeking) defer.returnValue({user_id: [event for event in events if allowed(event, user_id, is_peeking)] for (user_id, is_peeking) in user_tuples})
@defer.inlineCallbacks def filter_events_for_clients(self, user_tuples, events, event_id_to_state): ' Returns dict of user_id -> list of events that user is allowed to\n see.\n\n :param (str, bool) user_tuples: (user id, is_peeking) for each\n user to be checked. is_peeking should be true if:\n * the user is not currently a member of the room, and:\n * the user has not been a member of the room since the given\n events\n ' forgotten = (yield defer.gatherResults([self.store.who_forgot_in_room(room_id) for room_id in frozenset((e.room_id for e in events))], consumeErrors=True)) event_id_forgotten = frozenset((row['event_id'] for rows in forgotten for row in rows)) def allowed(event, user_id, is_peeking): state = event_id_to_state[event.event_id] visibility_event = state.get((EventTypes.RoomHistoryVisibility, ), None) if visibility_event: visibility = visibility_event.content.get('history_visibility', 'shared') else: visibility = 'shared' if (visibility not in VISIBILITY_PRIORITY): visibility = 'shared' if (visibility == 'world_readable'): return True if (event.type == EventTypes.RoomHistoryVisibility): prev_content = event.unsigned.get('prev_content', {}) prev_visibility = prev_content.get('history_visibility', None) if (prev_visibility not in VISIBILITY_PRIORITY): prev_visibility = 'shared' new_priority = VISIBILITY_PRIORITY.index(visibility) old_priority = VISIBILITY_PRIORITY.index(prev_visibility) if (old_priority < new_priority): visibility = prev_visibility membership_event = state.get((EventTypes.Member, user_id), None) if membership_event: if (membership_event.event_id in event_id_forgotten): membership = None else: membership = membership_event.membership else: membership = None if (membership == Membership.JOIN): return True if (visibility == 'joined'): return False elif (visibility == 'invited'): return (membership == Membership.INVITE) else: return (not is_peeking) defer.returnValue({user_id: [event for event in events if allowed(event, user_id, is_peeking)] for (user_id, is_peeking) in user_tuples})<|docstring|>Returns dict of user_id -> list of events that user is allowed to see. :param (str, bool) user_tuples: (user id, is_peeking) for each user to be checked. is_peeking should be true if: * the user is not currently a member of the room, and: * the user has not been a member of the room since the given events<|endoftext|>
b72a4ab27b9654994dd560226ac6a5f7ed91a4acfd3c6590be63440138442912
@defer.inlineCallbacks def _filter_events_for_client(self, user_id, events, is_peeking=False): '\n Check which events a user is allowed to see\n\n :param str user_id: user id to be checked\n :param [synapse.events.EventBase] events: list of events to be checked\n :param bool is_peeking should be True if:\n * the user is not currently a member of the room, and:\n * the user has not been a member of the room since the given\n events\n :rtype [synapse.events.EventBase]\n ' types = ((EventTypes.RoomHistoryVisibility, ''), (EventTypes.Member, user_id)) event_id_to_state = (yield self.store.get_state_for_events(frozenset((e.event_id for e in events)), types=types)) res = (yield self.filter_events_for_clients([(user_id, is_peeking)], events, event_id_to_state)) defer.returnValue(res.get(user_id, []))
Check which events a user is allowed to see :param str user_id: user id to be checked :param [synapse.events.EventBase] events: list of events to be checked :param bool is_peeking should be True if: * the user is not currently a member of the room, and: * the user has not been a member of the room since the given events :rtype [synapse.events.EventBase]
synapse/handlers/_base.py
_filter_events_for_client
negzi/synapse
0
python
@defer.inlineCallbacks def _filter_events_for_client(self, user_id, events, is_peeking=False): '\n Check which events a user is allowed to see\n\n :param str user_id: user id to be checked\n :param [synapse.events.EventBase] events: list of events to be checked\n :param bool is_peeking should be True if:\n * the user is not currently a member of the room, and:\n * the user has not been a member of the room since the given\n events\n :rtype [synapse.events.EventBase]\n ' types = ((EventTypes.RoomHistoryVisibility, ), (EventTypes.Member, user_id)) event_id_to_state = (yield self.store.get_state_for_events(frozenset((e.event_id for e in events)), types=types)) res = (yield self.filter_events_for_clients([(user_id, is_peeking)], events, event_id_to_state)) defer.returnValue(res.get(user_id, []))
@defer.inlineCallbacks def _filter_events_for_client(self, user_id, events, is_peeking=False): '\n Check which events a user is allowed to see\n\n :param str user_id: user id to be checked\n :param [synapse.events.EventBase] events: list of events to be checked\n :param bool is_peeking should be True if:\n * the user is not currently a member of the room, and:\n * the user has not been a member of the room since the given\n events\n :rtype [synapse.events.EventBase]\n ' types = ((EventTypes.RoomHistoryVisibility, ), (EventTypes.Member, user_id)) event_id_to_state = (yield self.store.get_state_for_events(frozenset((e.event_id for e in events)), types=types)) res = (yield self.filter_events_for_clients([(user_id, is_peeking)], events, event_id_to_state)) defer.returnValue(res.get(user_id, []))<|docstring|>Check which events a user is allowed to see :param str user_id: user id to be checked :param [synapse.events.EventBase] events: list of events to be checked :param bool is_peeking should be True if: * the user is not currently a member of the room, and: * the user has not been a member of the room since the given events :rtype [synapse.events.EventBase]<|endoftext|>
4a78f1032e9214a15ae63bc862097094949c30e4281782a5163784070f5338a5
def run(self): ' Main loop through all subjects ' ... explored_subjects = self._load() explored_adj = len(explored_subjects) for (idx, subject) in enumerate(filter((lambda x: (x not in explored_subjects)), all_subjects)): ... course_info = cfg.GENERAL.CL_COLUMNS.copy() ... logger.info(f"Selected Subject {course_info['Department_Abbreviation']} - {int((((idx + explored_adj) / len(all_subjects)) * 100))}% complete") self.process_subject(course_info) ... if self.args.save: explored_subjects = np.append(explored_subjects, code) self._save(dict_list=self.subject_course_info, explored_subjects=explored_subjects) return explored_subjects
Main loop through all subjects
code/WEBSCRAPER PYTHON/courseScrapers/template.py
run
chidinzerem/chidinzerem.github.io
0
python
def run(self): ' ' ... explored_subjects = self._load() explored_adj = len(explored_subjects) for (idx, subject) in enumerate(filter((lambda x: (x not in explored_subjects)), all_subjects)): ... course_info = cfg.GENERAL.CL_COLUMNS.copy() ... logger.info(f"Selected Subject {course_info['Department_Abbreviation']} - {int((((idx + explored_adj) / len(all_subjects)) * 100))}% complete") self.process_subject(course_info) ... if self.args.save: explored_subjects = np.append(explored_subjects, code) self._save(dict_list=self.subject_course_info, explored_subjects=explored_subjects) return explored_subjects
def run(self): ' ' ... explored_subjects = self._load() explored_adj = len(explored_subjects) for (idx, subject) in enumerate(filter((lambda x: (x not in explored_subjects)), all_subjects)): ... course_info = cfg.GENERAL.CL_COLUMNS.copy() ... logger.info(f"Selected Subject {course_info['Department_Abbreviation']} - {int((((idx + explored_adj) / len(all_subjects)) * 100))}% complete") self.process_subject(course_info) ... if self.args.save: explored_subjects = np.append(explored_subjects, code) self._save(dict_list=self.subject_course_info, explored_subjects=explored_subjects) return explored_subjects<|docstring|>Main loop through all subjects<|endoftext|>
5a6f851bae70eee626a56b50520cee31963f60af4318cfef456ad11ab3c5af1c
def process_subject(self, template_course_info, *args, **kwargs): ' Secondary loop through all courses in subject ' all_courses = self.locate() for course in all_courses: ... course_info = template_course_info.copy() ... self.process_course(course_info)
Secondary loop through all courses in subject
code/WEBSCRAPER PYTHON/courseScrapers/template.py
process_subject
chidinzerem/chidinzerem.github.io
0
python
def process_subject(self, template_course_info, *args, **kwargs): ' ' all_courses = self.locate() for course in all_courses: ... course_info = template_course_info.copy() ... self.process_course(course_info)
def process_subject(self, template_course_info, *args, **kwargs): ' ' all_courses = self.locate() for course in all_courses: ... course_info = template_course_info.copy() ... self.process_course(course_info)<|docstring|>Secondary loop through all courses in subject<|endoftext|>
aed87c30693741a59619fc9583ff8a9e4a5768511395b289ef6e653f235e5ab3
def process_course(self, template_course_info, *args, **kwargs): ' Third loop through all sections in course ' all_sections = self.locate() for section in all_sections: ... course_info = template_course_info.copy() ... self.subject_course_info.append(course_info)
Third loop through all sections in course
code/WEBSCRAPER PYTHON/courseScrapers/template.py
process_course
chidinzerem/chidinzerem.github.io
0
python
def process_course(self, template_course_info, *args, **kwargs): ' ' all_sections = self.locate() for section in all_sections: ... course_info = template_course_info.copy() ... self.subject_course_info.append(course_info)
def process_course(self, template_course_info, *args, **kwargs): ' ' all_sections = self.locate() for section in all_sections: ... course_info = template_course_info.copy() ... self.subject_course_info.append(course_info)<|docstring|>Third loop through all sections in course<|endoftext|>
d1e8d3167de081da87783ec9f19cb5ea24be2710a9b6de3ccac1aa4587d0b7e3
def run_with_dependencies(global_context, cmd_name, cmd_argv, run_node, top_node, package): 'Run the given command, including its dependencies as defined in the\n global_context.' deps = global_context.retrieve_dependencies(cmd_name) for dep_cmd_name in deps: dep_cmd_argv = global_context.retrieve_command_argv(dep_cmd_name) resolve_and_run_command(global_context, dep_cmd_name, dep_cmd_argv, run_node, package) resolve_and_run_command(global_context, cmd_name, cmd_argv, run_node, package)
Run the given command, including its dependencies as defined in the global_context.
bento/commands/wrapper_utils.py
run_with_dependencies
cournape/Bento
55
python
def run_with_dependencies(global_context, cmd_name, cmd_argv, run_node, top_node, package): 'Run the given command, including its dependencies as defined in the\n global_context.' deps = global_context.retrieve_dependencies(cmd_name) for dep_cmd_name in deps: dep_cmd_argv = global_context.retrieve_command_argv(dep_cmd_name) resolve_and_run_command(global_context, dep_cmd_name, dep_cmd_argv, run_node, package) resolve_and_run_command(global_context, cmd_name, cmd_argv, run_node, package)
def run_with_dependencies(global_context, cmd_name, cmd_argv, run_node, top_node, package): 'Run the given command, including its dependencies as defined in the\n global_context.' deps = global_context.retrieve_dependencies(cmd_name) for dep_cmd_name in deps: dep_cmd_argv = global_context.retrieve_command_argv(dep_cmd_name) resolve_and_run_command(global_context, dep_cmd_name, dep_cmd_argv, run_node, package) resolve_and_run_command(global_context, cmd_name, cmd_argv, run_node, package)<|docstring|>Run the given command, including its dependencies as defined in the global_context.<|endoftext|>
1cc70c42c0e58a30060803630874011130bcb25fdefe82c1c629368dab43a4b3
def resolve_and_run_command(global_context, cmd_name, cmd_argv, run_node, package): 'Run the given Command instance inside its context, including any hook\n and/or override.' cmd = global_context.retrieve_command(cmd_name) context_klass = global_context.retrieve_command_context(cmd_name) options_context = global_context.retrieve_options_context(cmd_name) context = context_klass(global_context, cmd_argv, options_context, package, run_node) pre_hooks = global_context.retrieve_pre_hooks(cmd_name) post_hooks = global_context.retrieve_post_hooks(cmd_name) run_command_in_context(context, cmd, pre_hooks, post_hooks) return (cmd, context)
Run the given Command instance inside its context, including any hook and/or override.
bento/commands/wrapper_utils.py
resolve_and_run_command
cournape/Bento
55
python
def resolve_and_run_command(global_context, cmd_name, cmd_argv, run_node, package): 'Run the given Command instance inside its context, including any hook\n and/or override.' cmd = global_context.retrieve_command(cmd_name) context_klass = global_context.retrieve_command_context(cmd_name) options_context = global_context.retrieve_options_context(cmd_name) context = context_klass(global_context, cmd_argv, options_context, package, run_node) pre_hooks = global_context.retrieve_pre_hooks(cmd_name) post_hooks = global_context.retrieve_post_hooks(cmd_name) run_command_in_context(context, cmd, pre_hooks, post_hooks) return (cmd, context)
def resolve_and_run_command(global_context, cmd_name, cmd_argv, run_node, package): 'Run the given Command instance inside its context, including any hook\n and/or override.' cmd = global_context.retrieve_command(cmd_name) context_klass = global_context.retrieve_command_context(cmd_name) options_context = global_context.retrieve_options_context(cmd_name) context = context_klass(global_context, cmd_argv, options_context, package, run_node) pre_hooks = global_context.retrieve_pre_hooks(cmd_name) post_hooks = global_context.retrieve_post_hooks(cmd_name) run_command_in_context(context, cmd, pre_hooks, post_hooks) return (cmd, context)<|docstring|>Run the given Command instance inside its context, including any hook and/or override.<|endoftext|>
6b21f746219919821640c4bd26986ba9064be23958748c18f596f6df07449d72
def run_command_in_context(context, cmd, pre_hooks=None, post_hooks=None): 'Run the given command instance with the hooks within its context. ' if (pre_hooks is None): pre_hooks = [] if (post_hooks is None): post_hooks = [] top_node = context.top_node cmd_funcs = [(cmd.run, top_node.abspath())] def _run_hooks(hooks): for hook in hooks: local_node = top_node.find_dir(relpath(hook.local_dir, top_node.abspath())) context.pre_recurse(local_node) try: hook(context) finally: context.post_recurse() context.init() try: cmd.init(context) _run_hooks(pre_hooks) context.configure() while cmd_funcs: (cmd_func, local_dir) = cmd_funcs.pop(0) local_node = top_node.find_dir(relpath(local_dir, top_node.abspath())) context.pre_recurse(local_node) try: cmd_func(context) finally: context.post_recurse() _run_hooks(post_hooks) cmd.finish(context) finally: context.finish() return (cmd, context)
Run the given command instance with the hooks within its context.
bento/commands/wrapper_utils.py
run_command_in_context
cournape/Bento
55
python
def run_command_in_context(context, cmd, pre_hooks=None, post_hooks=None): ' ' if (pre_hooks is None): pre_hooks = [] if (post_hooks is None): post_hooks = [] top_node = context.top_node cmd_funcs = [(cmd.run, top_node.abspath())] def _run_hooks(hooks): for hook in hooks: local_node = top_node.find_dir(relpath(hook.local_dir, top_node.abspath())) context.pre_recurse(local_node) try: hook(context) finally: context.post_recurse() context.init() try: cmd.init(context) _run_hooks(pre_hooks) context.configure() while cmd_funcs: (cmd_func, local_dir) = cmd_funcs.pop(0) local_node = top_node.find_dir(relpath(local_dir, top_node.abspath())) context.pre_recurse(local_node) try: cmd_func(context) finally: context.post_recurse() _run_hooks(post_hooks) cmd.finish(context) finally: context.finish() return (cmd, context)
def run_command_in_context(context, cmd, pre_hooks=None, post_hooks=None): ' ' if (pre_hooks is None): pre_hooks = [] if (post_hooks is None): post_hooks = [] top_node = context.top_node cmd_funcs = [(cmd.run, top_node.abspath())] def _run_hooks(hooks): for hook in hooks: local_node = top_node.find_dir(relpath(hook.local_dir, top_node.abspath())) context.pre_recurse(local_node) try: hook(context) finally: context.post_recurse() context.init() try: cmd.init(context) _run_hooks(pre_hooks) context.configure() while cmd_funcs: (cmd_func, local_dir) = cmd_funcs.pop(0) local_node = top_node.find_dir(relpath(local_dir, top_node.abspath())) context.pre_recurse(local_node) try: cmd_func(context) finally: context.post_recurse() _run_hooks(post_hooks) cmd.finish(context) finally: context.finish() return (cmd, context)<|docstring|>Run the given command instance with the hooks within its context.<|endoftext|>
d17a5c14489389616d51b9b494e23c0bbf32ad1f7dbe16c2f35f3d7522a9f85f
def netmiko_commit(task: Task, **kwargs: Any) -> Result: '\n Execute Netmiko commit method\n\n Arguments:\n kwargs: Additional arguments to pass to method.\n\n Returns:\n :obj: `nornir.core.task.Result`:\n * result (``str``): String showing the CLI output from the commit operation\n ' conn = task.host.get_connection('netmiko', task.nornir.config) result = conn.commit(**kwargs) return Result(host=task.host, result=result, changed=True)
Execute Netmiko commit method Arguments: kwargs: Additional arguments to pass to method. Returns: :obj: `nornir.core.task.Result`: * result (``str``): String showing the CLI output from the commit operation
venv/Lib/site-packages/nornir/plugins/tasks/networking/netmiko_commit.py
netmiko_commit
melihteke/ebook_study
1
python
def netmiko_commit(task: Task, **kwargs: Any) -> Result: '\n Execute Netmiko commit method\n\n Arguments:\n kwargs: Additional arguments to pass to method.\n\n Returns:\n :obj: `nornir.core.task.Result`:\n * result (``str``): String showing the CLI output from the commit operation\n ' conn = task.host.get_connection('netmiko', task.nornir.config) result = conn.commit(**kwargs) return Result(host=task.host, result=result, changed=True)
def netmiko_commit(task: Task, **kwargs: Any) -> Result: '\n Execute Netmiko commit method\n\n Arguments:\n kwargs: Additional arguments to pass to method.\n\n Returns:\n :obj: `nornir.core.task.Result`:\n * result (``str``): String showing the CLI output from the commit operation\n ' conn = task.host.get_connection('netmiko', task.nornir.config) result = conn.commit(**kwargs) return Result(host=task.host, result=result, changed=True)<|docstring|>Execute Netmiko commit method Arguments: kwargs: Additional arguments to pass to method. Returns: :obj: `nornir.core.task.Result`: * result (``str``): String showing the CLI output from the commit operation<|endoftext|>
c3a3fbee82f0b03450d2579930aca93c680ffee613e19fcdc6fdd384ff95334e
def test_create_file(self): 'Test the creation of a simple XlsxWriter file.' filename = self.got_filename workbook = Workbook(filename) worksheet = workbook.add_worksheet() format = workbook.add_format({'align': 'center'}) worksheet.set_selection('A4') worksheet.merge_range('A1:A2', 'col1', format) worksheet.merge_range('B1:B2', 'col2', format) worksheet.merge_range('C1:C2', 'col3', format) worksheet.merge_range('D1:D2', 'col4', format) workbook.close() (got, exp) = _compare_xlsx_files(self.got_filename, self.exp_filename, self.ignore_files, self.ignore_elements) self.assertEqual(got, exp)
Test the creation of a simple XlsxWriter file.
xlsxwriter/test/comparison/test_merge_cells01.py
test_create_file
sontek/XlsxWriter
1
python
def test_create_file(self): filename = self.got_filename workbook = Workbook(filename) worksheet = workbook.add_worksheet() format = workbook.add_format({'align': 'center'}) worksheet.set_selection('A4') worksheet.merge_range('A1:A2', 'col1', format) worksheet.merge_range('B1:B2', 'col2', format) worksheet.merge_range('C1:C2', 'col3', format) worksheet.merge_range('D1:D2', 'col4', format) workbook.close() (got, exp) = _compare_xlsx_files(self.got_filename, self.exp_filename, self.ignore_files, self.ignore_elements) self.assertEqual(got, exp)
def test_create_file(self): filename = self.got_filename workbook = Workbook(filename) worksheet = workbook.add_worksheet() format = workbook.add_format({'align': 'center'}) worksheet.set_selection('A4') worksheet.merge_range('A1:A2', 'col1', format) worksheet.merge_range('B1:B2', 'col2', format) worksheet.merge_range('C1:C2', 'col3', format) worksheet.merge_range('D1:D2', 'col4', format) workbook.close() (got, exp) = _compare_xlsx_files(self.got_filename, self.exp_filename, self.ignore_files, self.ignore_elements) self.assertEqual(got, exp)<|docstring|>Test the creation of a simple XlsxWriter file.<|endoftext|>
d501474b75da844cf76d30a60fb4e1dc0cc728d9e706c924a278fb5f9acac689
def init(args): " Initialize wit work folders.\n Args: None\n Raises: OSError in case folder creation is failing.\n Return: None\n Assumption - if folders exists don't do anything.\n " wit = WitRepo(os.getcwd()) wit_dir = wit.wit_dir subfolders = ('images', 'staging_area') make_folders(wit_dir, subfolders) wit.create_active_branch_file()
Initialize wit work folders. Args: None Raises: OSError in case folder creation is failing. Return: None Assumption - if folders exists don't do anything.
wit.py
init
ron-huberfeld/wit
0
python
def init(args): " Initialize wit work folders.\n Args: None\n Raises: OSError in case folder creation is failing.\n Return: None\n Assumption - if folders exists don't do anything.\n " wit = WitRepo(os.getcwd()) wit_dir = wit.wit_dir subfolders = ('images', 'staging_area') make_folders(wit_dir, subfolders) wit.create_active_branch_file()
def init(args): " Initialize wit work folders.\n Args: None\n Raises: OSError in case folder creation is failing.\n Return: None\n Assumption - if folders exists don't do anything.\n " wit = WitRepo(os.getcwd()) wit_dir = wit.wit_dir subfolders = ('images', 'staging_area') make_folders(wit_dir, subfolders) wit.create_active_branch_file()<|docstring|>Initialize wit work folders. Args: None Raises: OSError in case folder creation is failing. Return: None Assumption - if folders exists don't do anything.<|endoftext|>
b6dd4e950857c2d5d798574b36cdb0fb23876f90197ee4da8417ac3d5bd3d9d0
def merge_override_tree(sourceRoot, destRoot): ' Updates destination and override existing files.\n Args:\n sourceRoot: source root folder of files to copy\n destRoot: Destination root folder for files to be created\n ' for (path, _, files) in os.walk(sourceRoot): relPath = os.path.relpath(path, sourceRoot) destPath = os.path.join(destRoot, relPath) if (not os.path.exists(destPath)): try: os.makedirs(destPath) except OSError as err: raise err for file in files: destFile = os.path.join(destPath, file) srcFile = os.path.join(path, file) shutil.copy(srcFile, destFile)
Updates destination and override existing files. Args: sourceRoot: source root folder of files to copy destRoot: Destination root folder for files to be created
wit.py
merge_override_tree
ron-huberfeld/wit
0
python
def merge_override_tree(sourceRoot, destRoot): ' Updates destination and override existing files.\n Args:\n sourceRoot: source root folder of files to copy\n destRoot: Destination root folder for files to be created\n ' for (path, _, files) in os.walk(sourceRoot): relPath = os.path.relpath(path, sourceRoot) destPath = os.path.join(destRoot, relPath) if (not os.path.exists(destPath)): try: os.makedirs(destPath) except OSError as err: raise err for file in files: destFile = os.path.join(destPath, file) srcFile = os.path.join(path, file) shutil.copy(srcFile, destFile)
def merge_override_tree(sourceRoot, destRoot): ' Updates destination and override existing files.\n Args:\n sourceRoot: source root folder of files to copy\n destRoot: Destination root folder for files to be created\n ' for (path, _, files) in os.walk(sourceRoot): relPath = os.path.relpath(path, sourceRoot) destPath = os.path.join(destRoot, relPath) if (not os.path.exists(destPath)): try: os.makedirs(destPath) except OSError as err: raise err for file in files: destFile = os.path.join(destPath, file) srcFile = os.path.join(path, file) shutil.copy(srcFile, destFile)<|docstring|>Updates destination and override existing files. Args: sourceRoot: source root folder of files to copy destRoot: Destination root folder for files to be created<|endoftext|>
c95c328b5642d04279f1037c48967b022aeeacdd4c16a35c1eb0bc0345e8e63a
def get_actual_commit_id_from_input(self, checkout_input): " Parsing checkout input to actual commit_id\n Args: checkout_input - could be either branch name (including 'master' branch) or commit id\n Raises: WitException if references files does not exist or if commit id folder was not found\n Return: valid commit id\n " if (checkout_input in self.get_branches()): if (not os.path.exists(self.wit_references_file)): raise WitException('Cannot read reference file.') actual_commit_id = self.get_references_file_data().get(checkout_input) self.create_active_branch_file(checkout_input) else: actual_commit_id = checkout_input self.create_active_branch_file('') logging.warning('==> checkout {}'.format(actual_commit_id)) if (not self.is_commit_id_exist(actual_commit_id)): raise WitException('Commit ID was not found: {}'.format(actual_commit_id)) return actual_commit_id
Parsing checkout input to actual commit_id Args: checkout_input - could be either branch name (including 'master' branch) or commit id Raises: WitException if references files does not exist or if commit id folder was not found Return: valid commit id
wit.py
get_actual_commit_id_from_input
ron-huberfeld/wit
0
python
def get_actual_commit_id_from_input(self, checkout_input): " Parsing checkout input to actual commit_id\n Args: checkout_input - could be either branch name (including 'master' branch) or commit id\n Raises: WitException if references files does not exist or if commit id folder was not found\n Return: valid commit id\n " if (checkout_input in self.get_branches()): if (not os.path.exists(self.wit_references_file)): raise WitException('Cannot read reference file.') actual_commit_id = self.get_references_file_data().get(checkout_input) self.create_active_branch_file(checkout_input) else: actual_commit_id = checkout_input self.create_active_branch_file() logging.warning('==> checkout {}'.format(actual_commit_id)) if (not self.is_commit_id_exist(actual_commit_id)): raise WitException('Commit ID was not found: {}'.format(actual_commit_id)) return actual_commit_id
def get_actual_commit_id_from_input(self, checkout_input): " Parsing checkout input to actual commit_id\n Args: checkout_input - could be either branch name (including 'master' branch) or commit id\n Raises: WitException if references files does not exist or if commit id folder was not found\n Return: valid commit id\n " if (checkout_input in self.get_branches()): if (not os.path.exists(self.wit_references_file)): raise WitException('Cannot read reference file.') actual_commit_id = self.get_references_file_data().get(checkout_input) self.create_active_branch_file(checkout_input) else: actual_commit_id = checkout_input self.create_active_branch_file() logging.warning('==> checkout {}'.format(actual_commit_id)) if (not self.is_commit_id_exist(actual_commit_id)): raise WitException('Commit ID was not found: {}'.format(actual_commit_id)) return actual_commit_id<|docstring|>Parsing checkout input to actual commit_id Args: checkout_input - could be either branch name (including 'master' branch) or commit id Raises: WitException if references files does not exist or if commit id folder was not found Return: valid commit id<|endoftext|>
832df081d6cf985b6f051a1ba0192cb4a013c8455153830e790de1b4b97c5c8a
def recipe_image_file_path(instance, filename): 'Generate file path for new recipe image' ext = filename.split('.')[(- 1)] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('uploads/recipe/', filename)
Generate file path for new recipe image
app/core/models.py
recipe_image_file_path
ProgramSKAN/Django-Recipe-RESTAPI
0
python
def recipe_image_file_path(instance, filename): ext = filename.split('.')[(- 1)] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('uploads/recipe/', filename)
def recipe_image_file_path(instance, filename): ext = filename.split('.')[(- 1)] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('uploads/recipe/', filename)<|docstring|>Generate file path for new recipe image<|endoftext|>
7a3bb410433bdf91b91207ef9cdd28b0bf0669a1ae70130ce836098b9f445bd7
def create_user(self, email, password=None, **extra_fields): 'Creates and saves a new user' if (not email): raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user
Creates and saves a new user
app/core/models.py
create_user
ProgramSKAN/Django-Recipe-RESTAPI
0
python
def create_user(self, email, password=None, **extra_fields): if (not email): raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user
def create_user(self, email, password=None, **extra_fields): if (not email): raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user<|docstring|>Creates and saves a new user<|endoftext|>
14eb8cceff0e27f3f873699ca769b5c26b4f0fe95657ab4d52479db1c4df573c
def create_superuser(self, email, password): 'creates and saves as super user' user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user
creates and saves as super user
app/core/models.py
create_superuser
ProgramSKAN/Django-Recipe-RESTAPI
0
python
def create_superuser(self, email, password): user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user
def create_superuser(self, email, password): user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user<|docstring|>creates and saves as super user<|endoftext|>
c381dd26d1ca4dbad5c4d63c0296209b8bda3c296833a157a609f80194d98c75
def source_saved_handler(sender, instance, **kwargs): '\n Post save signal handler for Source model.\n It sends new Source data to kafka\n ' message = {'source_id': instance.source_id, 'name': instance.name, 'profile': {'code': instance.profile.code, 'version': instance.profile.version, 'payload': instance.profile.payload}} sender = create_sender(create_broker_parameters_from_settings()) if sender.send(KAFKA_SOURCE_NOTIFICATION_TOPIC, message): logger.info('Souce notified correctly')
Post save signal handler for Source model. It sends new Source data to kafka
hgw_backend/hgw_backend/signals.py
source_saved_handler
crs4/health-gateway
5
python
def source_saved_handler(sender, instance, **kwargs): '\n Post save signal handler for Source model.\n It sends new Source data to kafka\n ' message = {'source_id': instance.source_id, 'name': instance.name, 'profile': {'code': instance.profile.code, 'version': instance.profile.version, 'payload': instance.profile.payload}} sender = create_sender(create_broker_parameters_from_settings()) if sender.send(KAFKA_SOURCE_NOTIFICATION_TOPIC, message): logger.info('Souce notified correctly')
def source_saved_handler(sender, instance, **kwargs): '\n Post save signal handler for Source model.\n It sends new Source data to kafka\n ' message = {'source_id': instance.source_id, 'name': instance.name, 'profile': {'code': instance.profile.code, 'version': instance.profile.version, 'payload': instance.profile.payload}} sender = create_sender(create_broker_parameters_from_settings()) if sender.send(KAFKA_SOURCE_NOTIFICATION_TOPIC, message): logger.info('Souce notified correctly')<|docstring|>Post save signal handler for Source model. It sends new Source data to kafka<|endoftext|>
9d6506853ca9e057aa3398758d1d195f499bf86ecf8ffdea4c5497e4f9a706fc
def connector_created_handler(connector, **kwargs): '\n Handler for signal create_connector. It notifies the correct operation\n ' message = {'channel_id': connector['channel_id']} sender = create_sender(create_broker_parameters_from_settings()) if sender.send(KAFKA_CONNECTOR_NOTIFICATION_TOPIC, message): logger.info('Connector notified correctly')
Handler for signal create_connector. It notifies the correct operation
hgw_backend/hgw_backend/signals.py
connector_created_handler
crs4/health-gateway
5
python
def connector_created_handler(connector, **kwargs): '\n \n ' message = {'channel_id': connector['channel_id']} sender = create_sender(create_broker_parameters_from_settings()) if sender.send(KAFKA_CONNECTOR_NOTIFICATION_TOPIC, message): logger.info('Connector notified correctly')
def connector_created_handler(connector, **kwargs): '\n \n ' message = {'channel_id': connector['channel_id']} sender = create_sender(create_broker_parameters_from_settings()) if sender.send(KAFKA_CONNECTOR_NOTIFICATION_TOPIC, message): logger.info('Connector notified correctly')<|docstring|>Handler for signal create_connector. It notifies the correct operation<|endoftext|>
ca04e8823cd2e589d2aabbe244a9e86e69bda017947c9a67ec8d13db616d1a12
def get_default_hyperparameters_by_modeltype(model_type): '\n Select the default parameters for each model\n\n Args:\n model_type (str): Model identifier.\n\n Returns:\n dict: Default hyper parameters for model.\n\n ' model_dict = {'mlp_eg': DEFAULT_HYPER_PARAM_ENERGY_GRADS, 'mlp_e': DEFAULT_HYPER_PARAM_ENERGY, 'mlp_g2': DEFAULT_HYPER_PARAM_GRADS2, 'mlp_nac': DEFAULT_HYPER_PARAM_NAC, 'mlp_nac2': DEFAULT_HYPER_PARAM_NAC} return model_dict[model_type]
Select the default parameters for each model Args: model_type (str): Model identifier. Returns: dict: Default hyper parameters for model.
PyRAI2MD/Machine_Learning/pyNNsMD/nn_pes_src/selection.py
get_default_hyperparameters_by_modeltype
lopez-lab/PyRAI2MD
12
python
def get_default_hyperparameters_by_modeltype(model_type): '\n Select the default parameters for each model\n\n Args:\n model_type (str): Model identifier.\n\n Returns:\n dict: Default hyper parameters for model.\n\n ' model_dict = {'mlp_eg': DEFAULT_HYPER_PARAM_ENERGY_GRADS, 'mlp_e': DEFAULT_HYPER_PARAM_ENERGY, 'mlp_g2': DEFAULT_HYPER_PARAM_GRADS2, 'mlp_nac': DEFAULT_HYPER_PARAM_NAC, 'mlp_nac2': DEFAULT_HYPER_PARAM_NAC} return model_dict[model_type]
def get_default_hyperparameters_by_modeltype(model_type): '\n Select the default parameters for each model\n\n Args:\n model_type (str): Model identifier.\n\n Returns:\n dict: Default hyper parameters for model.\n\n ' model_dict = {'mlp_eg': DEFAULT_HYPER_PARAM_ENERGY_GRADS, 'mlp_e': DEFAULT_HYPER_PARAM_ENERGY, 'mlp_g2': DEFAULT_HYPER_PARAM_GRADS2, 'mlp_nac': DEFAULT_HYPER_PARAM_NAC, 'mlp_nac2': DEFAULT_HYPER_PARAM_NAC} return model_dict[model_type]<|docstring|>Select the default parameters for each model Args: model_type (str): Model identifier. Returns: dict: Default hyper parameters for model.<|endoftext|>
2a72705791c3d80304bc0a3eab50ad677f4a865a8201d60759559af3963bbe45
def get_path_for_fit_script(model_type): '\n Interface to find the path of training scripts.\n\n For now they are expected to be in the same folder-system as calling .py script.\n\n Args:\n model_type (str): Name of the model.\n\n Returns:\n filepath (str): Filepath pointing to training scripts.\n\n ' filepath = os.path.abspath(os.path.dirname(__file__)) fit_script = {'mlp_eg': 'training_mlp_eg.py', 'mlp_nac': 'training_mlp_nac.py', 'mlp_nac2': 'training_mlp_nac2.py', 'mlp_e': 'training_mlp_e.py', 'mlp_g2': 'training_mlp_g2.py'} outpath = os.path.join(filepath, 'training', fit_script[model_type]) return outpath
Interface to find the path of training scripts. For now they are expected to be in the same folder-system as calling .py script. Args: model_type (str): Name of the model. Returns: filepath (str): Filepath pointing to training scripts.
PyRAI2MD/Machine_Learning/pyNNsMD/nn_pes_src/selection.py
get_path_for_fit_script
lopez-lab/PyRAI2MD
12
python
def get_path_for_fit_script(model_type): '\n Interface to find the path of training scripts.\n\n For now they are expected to be in the same folder-system as calling .py script.\n\n Args:\n model_type (str): Name of the model.\n\n Returns:\n filepath (str): Filepath pointing to training scripts.\n\n ' filepath = os.path.abspath(os.path.dirname(__file__)) fit_script = {'mlp_eg': 'training_mlp_eg.py', 'mlp_nac': 'training_mlp_nac.py', 'mlp_nac2': 'training_mlp_nac2.py', 'mlp_e': 'training_mlp_e.py', 'mlp_g2': 'training_mlp_g2.py'} outpath = os.path.join(filepath, 'training', fit_script[model_type]) return outpath
def get_path_for_fit_script(model_type): '\n Interface to find the path of training scripts.\n\n For now they are expected to be in the same folder-system as calling .py script.\n\n Args:\n model_type (str): Name of the model.\n\n Returns:\n filepath (str): Filepath pointing to training scripts.\n\n ' filepath = os.path.abspath(os.path.dirname(__file__)) fit_script = {'mlp_eg': 'training_mlp_eg.py', 'mlp_nac': 'training_mlp_nac.py', 'mlp_nac2': 'training_mlp_nac2.py', 'mlp_e': 'training_mlp_e.py', 'mlp_g2': 'training_mlp_g2.py'} outpath = os.path.join(filepath, 'training', fit_script[model_type]) return outpath<|docstring|>Interface to find the path of training scripts. For now they are expected to be in the same folder-system as calling .py script. Args: model_type (str): Name of the model. Returns: filepath (str): Filepath pointing to training scripts.<|endoftext|>
591619f4218b7c94914140ac1ebb2f1ed2fdf6d33255e570112e876054358b1f
def get_default_scaler(model_type): '\n Get default values for scaler in and output for each model.\n\n Args:\n model_type (str): Model identifier.\n\n Returns:\n Dict: Scaling dictionary.\n\n ' if (model_type == 'mlp_e'): return EnergyStandardScaler() elif (model_type == 'mlp_eg'): return EnergyGradientStandardScaler() elif ((model_type == 'mlp_nac') or (model_type == 'mlp_nac2')): return NACStandardScaler() elif (model_type == 'mlp_g2'): return GradientStandardScaler() else: print('Error: Unknown model type', model_type) raise TypeError(f'Error: Unknown model type for default scaler {model_type}')
Get default values for scaler in and output for each model. Args: model_type (str): Model identifier. Returns: Dict: Scaling dictionary.
PyRAI2MD/Machine_Learning/pyNNsMD/nn_pes_src/selection.py
get_default_scaler
lopez-lab/PyRAI2MD
12
python
def get_default_scaler(model_type): '\n Get default values for scaler in and output for each model.\n\n Args:\n model_type (str): Model identifier.\n\n Returns:\n Dict: Scaling dictionary.\n\n ' if (model_type == 'mlp_e'): return EnergyStandardScaler() elif (model_type == 'mlp_eg'): return EnergyGradientStandardScaler() elif ((model_type == 'mlp_nac') or (model_type == 'mlp_nac2')): return NACStandardScaler() elif (model_type == 'mlp_g2'): return GradientStandardScaler() else: print('Error: Unknown model type', model_type) raise TypeError(f'Error: Unknown model type for default scaler {model_type}')
def get_default_scaler(model_type): '\n Get default values for scaler in and output for each model.\n\n Args:\n model_type (str): Model identifier.\n\n Returns:\n Dict: Scaling dictionary.\n\n ' if (model_type == 'mlp_e'): return EnergyStandardScaler() elif (model_type == 'mlp_eg'): return EnergyGradientStandardScaler() elif ((model_type == 'mlp_nac') or (model_type == 'mlp_nac2')): return NACStandardScaler() elif (model_type == 'mlp_g2'): return GradientStandardScaler() else: print('Error: Unknown model type', model_type) raise TypeError(f'Error: Unknown model type for default scaler {model_type}')<|docstring|>Get default values for scaler in and output for each model. Args: model_type (str): Model identifier. Returns: Dict: Scaling dictionary.<|endoftext|>
e40b1139e3458582392f73dd317f5a2bce628540bfc8aff7d4bf72bb270b7cf2
def get_model_by_type(model_type, hyper): '\n Find the implemented model by its string identifier.\n\n Args:\n model_type (str): Model type.\n hyper (dict): Dict with hyper parameters.\n\n Returns:\n tf.keras.model: Defult initialized tf.keras.model.\n\n ' if (model_type == 'mlp_nac'): return NACModel(**hyper) elif (model_type == 'mlp_nac2'): return NACModel2(**hyper) elif (model_type == 'mlp_eg'): return EnergyGradientModel(**hyper) elif (model_type == 'mlp_e'): return EnergyModel(**hyper) elif (model_type == 'mlp_g2'): return GradientModel2(**hyper) else: print('Error: Unknown model type', model_type) raise TypeError(f'Error: Unknown model type forn{model_type}')
Find the implemented model by its string identifier. Args: model_type (str): Model type. hyper (dict): Dict with hyper parameters. Returns: tf.keras.model: Defult initialized tf.keras.model.
PyRAI2MD/Machine_Learning/pyNNsMD/nn_pes_src/selection.py
get_model_by_type
lopez-lab/PyRAI2MD
12
python
def get_model_by_type(model_type, hyper): '\n Find the implemented model by its string identifier.\n\n Args:\n model_type (str): Model type.\n hyper (dict): Dict with hyper parameters.\n\n Returns:\n tf.keras.model: Defult initialized tf.keras.model.\n\n ' if (model_type == 'mlp_nac'): return NACModel(**hyper) elif (model_type == 'mlp_nac2'): return NACModel2(**hyper) elif (model_type == 'mlp_eg'): return EnergyGradientModel(**hyper) elif (model_type == 'mlp_e'): return EnergyModel(**hyper) elif (model_type == 'mlp_g2'): return GradientModel2(**hyper) else: print('Error: Unknown model type', model_type) raise TypeError(f'Error: Unknown model type forn{model_type}')
def get_model_by_type(model_type, hyper): '\n Find the implemented model by its string identifier.\n\n Args:\n model_type (str): Model type.\n hyper (dict): Dict with hyper parameters.\n\n Returns:\n tf.keras.model: Defult initialized tf.keras.model.\n\n ' if (model_type == 'mlp_nac'): return NACModel(**hyper) elif (model_type == 'mlp_nac2'): return NACModel2(**hyper) elif (model_type == 'mlp_eg'): return EnergyGradientModel(**hyper) elif (model_type == 'mlp_e'): return EnergyModel(**hyper) elif (model_type == 'mlp_g2'): return GradientModel2(**hyper) else: print('Error: Unknown model type', model_type) raise TypeError(f'Error: Unknown model type forn{model_type}')<|docstring|>Find the implemented model by its string identifier. Args: model_type (str): Model type. hyper (dict): Dict with hyper parameters. Returns: tf.keras.model: Defult initialized tf.keras.model.<|endoftext|>
fbe59713998f41552fad1fae03fcee40546afe1d33f6c0f989736a393ecc6a63
def create_account(u_name, password, account_details): '\n function to create new user account\n ' new_user = User(u_name, password, account_details) return new_user
function to create new user account
run.py
create_account
Ko3ch/pass-locker
0
python
def create_account(u_name, password, account_details): '\n \n ' new_user = User(u_name, password, account_details) return new_user
def create_account(u_name, password, account_details): '\n \n ' new_user = User(u_name, password, account_details) return new_user<|docstring|>function to create new user account<|endoftext|>
60e16635ee1eb60c7136946674d6e02881f808966c4905884e7762d12683b0fd
def save_account(user): '\n function to save users\n ' user.add_user()
function to save users
run.py
save_account
Ko3ch/pass-locker
0
python
def save_account(user): '\n \n ' user.add_user()
def save_account(user): '\n \n ' user.add_user()<|docstring|>function to save users<|endoftext|>
1d22d47f7cf437fa24f015935e5d7188ce7ffa0e7d1132cf064150fa0c089a08
def check_account(user_name): '\n function to check if account exists\n ' return User.user_exists(user_name)
function to check if account exists
run.py
check_account
Ko3ch/pass-locker
0
python
def check_account(user_name): '\n \n ' return User.user_exists(user_name)
def check_account(user_name): '\n \n ' return User.user_exists(user_name)<|docstring|>function to check if account exists<|endoftext|>
ba47c7c3e4d07921ebd1cdb89cdc1e20d482034b0003f379e1b2aa9fd56bf173
def find_account(acc_name): '\n find account by user_name\n ' return Credentials.find_account_by_acc_name(acc_name)
find account by user_name
run.py
find_account
Ko3ch/pass-locker
0
python
def find_account(acc_name): '\n \n ' return Credentials.find_account_by_acc_name(acc_name)
def find_account(acc_name): '\n \n ' return Credentials.find_account_by_acc_name(acc_name)<|docstring|>find account by user_name<|endoftext|>
de45296b469bc09de71cd90664858f4a3c92574dc56c4dd515bc07e48d8a11db
def all_users(): '\n function to get all users\n ' return User.display_users()
function to get all users
run.py
all_users
Ko3ch/pass-locker
0
python
def all_users(): '\n \n ' return User.display_users()
def all_users(): '\n \n ' return User.display_users()<|docstring|>function to get all users<|endoftext|>
103b222a6089fedc5f8dfada7a4f99349fc4d07efe4cc7cf9b256b681794c8e1
def create_user_credentials(account_name, account_password): '\n function to create new credentials for a user\n ' new_user_credentials = Credentials(account_name, account_password) return new_user_credentials
function to create new credentials for a user
run.py
create_user_credentials
Ko3ch/pass-locker
0
python
def create_user_credentials(account_name, account_password): '\n \n ' new_user_credentials = Credentials(account_name, account_password) return new_user_credentials
def create_user_credentials(account_name, account_password): '\n \n ' new_user_credentials = Credentials(account_name, account_password) return new_user_credentials<|docstring|>function to create new credentials for a user<|endoftext|>
ee1f1293d7fd28754ae17061bc4f3a7366ba3ed24ac590ea6436a59ec5a00558
def save_account_credentials(user, credentials): '\n function to add user accounts details\n ' credentials.save_acc_details() user.add_user_credentials()
function to add user accounts details
run.py
save_account_credentials
Ko3ch/pass-locker
0
python
def save_account_credentials(user, credentials): '\n \n ' credentials.save_acc_details() user.add_user_credentials()
def save_account_credentials(user, credentials): '\n \n ' credentials.save_acc_details() user.add_user_credentials()<|docstring|>function to add user accounts details<|endoftext|>
1ed4a5ce75de7121dbd904ad16a0688b0124aeb8196c6de1d442bfcc24a19e6f
def delete_credentials(credentials): '\n function to delete a users account credentials\n ' credentials.delete_acc_details()
function to delete a users account credentials
run.py
delete_credentials
Ko3ch/pass-locker
0
python
def delete_credentials(credentials): '\n \n ' credentials.delete_acc_details()
def delete_credentials(credentials): '\n \n ' credentials.delete_acc_details()<|docstring|>function to delete a users account credentials<|endoftext|>
91b63c666545ab22d7df8c9290d180ae92fa8b03681dc8caec440cf3f966b7c3
def display_credentials(): '\n function tha returns all accounts saved by a user\n ' return Credentials.view_accounts()
function tha returns all accounts saved by a user
run.py
display_credentials
Ko3ch/pass-locker
0
python
def display_credentials(): '\n \n ' return Credentials.view_accounts()
def display_credentials(): '\n \n ' return Credentials.view_accounts()<|docstring|>function tha returns all accounts saved by a user<|endoftext|>
8fd6f84b6a3666dd20561cccbed2cd317346961240aac75c3feb656bf4144f36
def create_uci_labels(): "\n Creates the labels for the universal chess interface into an array and returns them\n This returns all the possible 'Queen moves' and 'Knight move' for each square plus the promotion\n of a pawn to either a rook, knight, bishop or queen from rank 7 or higher\n :return:\n " labels_array = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] numbers = ['1', '2', '3', '4', '5', '6', '7', '8'] promoted_to = ['q', 'r', 'b', 'n'] for l1 in range(8): for n1 in range(8): destinations = (((([(t, n1) for t in range(8)] + [(l1, t) for t in range(8)]) + [((l1 + t), (n1 + t)) for t in range((- 7), 8)]) + [((l1 + t), (n1 - t)) for t in range((- 7), 8)]) + [((l1 + a), (n1 + b)) for (a, b) in [((- 2), (- 1)), ((- 1), (- 2)), ((- 2), 1), (1, (- 2)), (2, (- 1)), ((- 1), 2), (2, 1), (1, 2)]]) for (l2, n2) in destinations: if (((l1, n1) != (l2, n2)) and (l2 in range(8)) and (n2 in range(8))): move = (((letters[l1] + numbers[n1]) + letters[l2]) + numbers[n2]) labels_array.append(move) for l1 in range(8): l = letters[l1] for p in promoted_to: labels_array.append(((((l + '2') + l) + '1') + p)) labels_array.append(((((l + '7') + l) + '8') + p)) if (l1 > 0): l_l = letters[(l1 - 1)] labels_array.append(((((l + '2') + l_l) + '1') + p)) labels_array.append(((((l + '7') + l_l) + '8') + p)) if (l1 < 7): l_r = letters[(l1 + 1)] labels_array.append(((((l + '2') + l_r) + '1') + p)) labels_array.append(((((l + '7') + l_r) + '8') + p)) return labels_array
Creates the labels for the universal chess interface into an array and returns them This returns all the possible 'Queen moves' and 'Knight move' for each square plus the promotion of a pawn to either a rook, knight, bishop or queen from rank 7 or higher :return:
enas/src/chess/pgn_tensors_utils.py
create_uci_labels
LothairKizardjian/EfficientNeuralSearch
0
python
def create_uci_labels(): "\n Creates the labels for the universal chess interface into an array and returns them\n This returns all the possible 'Queen moves' and 'Knight move' for each square plus the promotion\n of a pawn to either a rook, knight, bishop or queen from rank 7 or higher\n :return:\n " labels_array = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] numbers = ['1', '2', '3', '4', '5', '6', '7', '8'] promoted_to = ['q', 'r', 'b', 'n'] for l1 in range(8): for n1 in range(8): destinations = (((([(t, n1) for t in range(8)] + [(l1, t) for t in range(8)]) + [((l1 + t), (n1 + t)) for t in range((- 7), 8)]) + [((l1 + t), (n1 - t)) for t in range((- 7), 8)]) + [((l1 + a), (n1 + b)) for (a, b) in [((- 2), (- 1)), ((- 1), (- 2)), ((- 2), 1), (1, (- 2)), (2, (- 1)), ((- 1), 2), (2, 1), (1, 2)]]) for (l2, n2) in destinations: if (((l1, n1) != (l2, n2)) and (l2 in range(8)) and (n2 in range(8))): move = (((letters[l1] + numbers[n1]) + letters[l2]) + numbers[n2]) labels_array.append(move) for l1 in range(8): l = letters[l1] for p in promoted_to: labels_array.append(((((l + '2') + l) + '1') + p)) labels_array.append(((((l + '7') + l) + '8') + p)) if (l1 > 0): l_l = letters[(l1 - 1)] labels_array.append(((((l + '2') + l_l) + '1') + p)) labels_array.append(((((l + '7') + l_l) + '8') + p)) if (l1 < 7): l_r = letters[(l1 + 1)] labels_array.append(((((l + '2') + l_r) + '1') + p)) labels_array.append(((((l + '7') + l_r) + '8') + p)) return labels_array
def create_uci_labels(): "\n Creates the labels for the universal chess interface into an array and returns them\n This returns all the possible 'Queen moves' and 'Knight move' for each square plus the promotion\n of a pawn to either a rook, knight, bishop or queen from rank 7 or higher\n :return:\n " labels_array = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] numbers = ['1', '2', '3', '4', '5', '6', '7', '8'] promoted_to = ['q', 'r', 'b', 'n'] for l1 in range(8): for n1 in range(8): destinations = (((([(t, n1) for t in range(8)] + [(l1, t) for t in range(8)]) + [((l1 + t), (n1 + t)) for t in range((- 7), 8)]) + [((l1 + t), (n1 - t)) for t in range((- 7), 8)]) + [((l1 + a), (n1 + b)) for (a, b) in [((- 2), (- 1)), ((- 1), (- 2)), ((- 2), 1), (1, (- 2)), (2, (- 1)), ((- 1), 2), (2, 1), (1, 2)]]) for (l2, n2) in destinations: if (((l1, n1) != (l2, n2)) and (l2 in range(8)) and (n2 in range(8))): move = (((letters[l1] + numbers[n1]) + letters[l2]) + numbers[n2]) labels_array.append(move) for l1 in range(8): l = letters[l1] for p in promoted_to: labels_array.append(((((l + '2') + l) + '1') + p)) labels_array.append(((((l + '7') + l) + '8') + p)) if (l1 > 0): l_l = letters[(l1 - 1)] labels_array.append(((((l + '2') + l_l) + '1') + p)) labels_array.append(((((l + '7') + l_l) + '8') + p)) if (l1 < 7): l_r = letters[(l1 + 1)] labels_array.append(((((l + '2') + l_r) + '1') + p)) labels_array.append(((((l + '7') + l_r) + '8') + p)) return labels_array<|docstring|>Creates the labels for the universal chess interface into an array and returns them This returns all the possible 'Queen moves' and 'Knight move' for each square plus the promotion of a pawn to either a rook, knight, bishop or queen from rank 7 or higher :return:<|endoftext|>
1ceedb42b47c0d46a655c661fe52a2733af6ca6059f67c1ac3367caf8c7359e0
def flipped_uci_labels(): '\n Seems to somehow transform the labels used for describing the universal chess interface format, putting\n them into a returned list.\n :return:\n ' def repl(x): return ''.join([(str((9 - int(a))) if a.isdigit() else a) for a in x]) return [repl(x) for x in create_uci_labels()]
Seems to somehow transform the labels used for describing the universal chess interface format, putting them into a returned list. :return:
enas/src/chess/pgn_tensors_utils.py
flipped_uci_labels
LothairKizardjian/EfficientNeuralSearch
0
python
def flipped_uci_labels(): '\n Seems to somehow transform the labels used for describing the universal chess interface format, putting\n them into a returned list.\n :return:\n ' def repl(x): return .join([(str((9 - int(a))) if a.isdigit() else a) for a in x]) return [repl(x) for x in create_uci_labels()]
def flipped_uci_labels(): '\n Seems to somehow transform the labels used for describing the universal chess interface format, putting\n them into a returned list.\n :return:\n ' def repl(x): return .join([(str((9 - int(a))) if a.isdigit() else a) for a in x]) return [repl(x) for x in create_uci_labels()]<|docstring|>Seems to somehow transform the labels used for describing the universal chess interface format, putting them into a returned list. :return:<|endoftext|>
fa0e244ecde759eaad820e00de505d00dd2e4e6437cb06c339f4af4cdd3e35b5
def get_screenshot_as_file(self): '\n 截屏保存\n :return: 返回路径\n ' pic_name = ((str.split(str(time.time()), '.')[0] + str.split(str(time.time()), '.')[1]) + '.png') screent_path = os.path.join(SCREENSHOTDIR, pic_name) self.driver.get_screenshot_as_file(screent_path) return screent_path
截屏保存 :return: 返回路径
base/factory/webdriveroperator.py
get_screenshot_as_file
handerbaby/AutoRunWebUI
1
python
def get_screenshot_as_file(self): '\n 截屏保存\n :return: 返回路径\n ' pic_name = ((str.split(str(time.time()), '.')[0] + str.split(str(time.time()), '.')[1]) + '.png') screent_path = os.path.join(SCREENSHOTDIR, pic_name) self.driver.get_screenshot_as_file(screent_path) return screent_path
def get_screenshot_as_file(self): '\n 截屏保存\n :return: 返回路径\n ' pic_name = ((str.split(str(time.time()), '.')[0] + str.split(str(time.time()), '.')[1]) + '.png') screent_path = os.path.join(SCREENSHOTDIR, pic_name) self.driver.get_screenshot_as_file(screent_path) return screent_path<|docstring|>截屏保存 :return: 返回路径<|endoftext|>
2f826602c7b7fddf8ab6dbdfc96515c6ccd4199bdd70da13d235d0ba770b3471
def web_implicitly_wait(self, **kwargs): '\n 隐式等待\n :param kwargs:\n :return:\n ' try: s = kwargs['time'] except KeyError: s = 10 try: self.driver.implicitly_wait(s) except NoSuchElementException: return (False, '隐式等待设置失败') return (True, '隐式等待设置成功')
隐式等待 :param kwargs: :return:
base/factory/webdriveroperator.py
web_implicitly_wait
handerbaby/AutoRunWebUI
1
python
def web_implicitly_wait(self, **kwargs): '\n 隐式等待\n :param kwargs:\n :return:\n ' try: s = kwargs['time'] except KeyError: s = 10 try: self.driver.implicitly_wait(s) except NoSuchElementException: return (False, '隐式等待设置失败') return (True, '隐式等待设置成功')
def web_implicitly_wait(self, **kwargs): '\n 隐式等待\n :param kwargs:\n :return:\n ' try: s = kwargs['time'] except KeyError: s = 10 try: self.driver.implicitly_wait(s) except NoSuchElementException: return (False, '隐式等待设置失败') return (True, '隐式等待设置成功')<|docstring|>隐式等待 :param kwargs: :return:<|endoftext|>
d98d2f6c837d64965c21ab58f524f452b628ea9ef4ae0c604a276e540bbf5d81
def web_element_wait(self, **kwargs): '\n 等待元素可见\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] except KeyError: return (False, '未传需要等待元素的定位参数') try: s = kwargs['time'] if (s is None): s = 30 except KeyError: s = 30 try: if (type == 'id'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.ID, locator))) elif (type == 'name'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.NAME, locator))) elif (type == 'class'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.CLASS_NAME, locator))) elif (type == 'xpath'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.XPATH, locator))) elif (type == 'css'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.CSS_SELECTOR, locator))) else: return (False, (('不能识别元素元素[' + type) + ']')) except TimeoutException: screenshot_path = self.get_screenshot_as_file() return (False, (((('元素[' + locator) + ']等待出现失败,已截图[') + screenshot_path) + '].')) return (True, (('元素[' + locator) + ']等待出现成功'))
等待元素可见 :param kwargs: :return:
base/factory/webdriveroperator.py
web_element_wait
handerbaby/AutoRunWebUI
1
python
def web_element_wait(self, **kwargs): '\n 等待元素可见\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] except KeyError: return (False, '未传需要等待元素的定位参数') try: s = kwargs['time'] if (s is None): s = 30 except KeyError: s = 30 try: if (type == 'id'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.ID, locator))) elif (type == 'name'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.NAME, locator))) elif (type == 'class'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.CLASS_NAME, locator))) elif (type == 'xpath'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.XPATH, locator))) elif (type == 'css'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.CSS_SELECTOR, locator))) else: return (False, (('不能识别元素元素[' + type) + ']')) except TimeoutException: screenshot_path = self.get_screenshot_as_file() return (False, (((('元素[' + locator) + ']等待出现失败,已截图[') + screenshot_path) + '].')) return (True, (('元素[' + locator) + ']等待出现成功'))
def web_element_wait(self, **kwargs): '\n 等待元素可见\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] except KeyError: return (False, '未传需要等待元素的定位参数') try: s = kwargs['time'] if (s is None): s = 30 except KeyError: s = 30 try: if (type == 'id'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.ID, locator))) elif (type == 'name'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.NAME, locator))) elif (type == 'class'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.CLASS_NAME, locator))) elif (type == 'xpath'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.XPATH, locator))) elif (type == 'css'): WebDriverWait(self.driver, s, 0.5).until(EC.visibility_of_element_located((By.CSS_SELECTOR, locator))) else: return (False, (('不能识别元素元素[' + type) + ']')) except TimeoutException: screenshot_path = self.get_screenshot_as_file() return (False, (((('元素[' + locator) + ']等待出现失败,已截图[') + screenshot_path) + '].')) return (True, (('元素[' + locator) + ']等待出现成功'))<|docstring|>等待元素可见 :param kwargs: :return:<|endoftext|>
a2eff4ebe12af714256fa1aa3242f1bfc682cda9465cfac3d0574f56989130e5
def element_input(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] text = kwargs['input'] except KeyError: return (False, '缺少参数') try: index = kwargs['index'] except KeyError: index = 0 (isOk, result) = self.element_find(type, locator, index) if (not isOk): return (isOk, result) elem = result try: elem.send_keys(text) except Exception: screenshot_path = self.get_screenshot_as_file() return (False, (((((('元素[' + locator) + ']输入[') + text) + ']失败,已截图[') + screenshot_path) + '].')) return (True, (((('元素[' + locator) + ']输入[') + text) + ']成功'))
:param kwargs: :return:
base/factory/webdriveroperator.py
element_input
handerbaby/AutoRunWebUI
1
python
def element_input(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] text = kwargs['input'] except KeyError: return (False, '缺少参数') try: index = kwargs['index'] except KeyError: index = 0 (isOk, result) = self.element_find(type, locator, index) if (not isOk): return (isOk, result) elem = result try: elem.send_keys(text) except Exception: screenshot_path = self.get_screenshot_as_file() return (False, (((((('元素[' + locator) + ']输入[') + text) + ']失败,已截图[') + screenshot_path) + '].')) return (True, (((('元素[' + locator) + ']输入[') + text) + ']成功'))
def element_input(self, **kwargs): '\n\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] text = kwargs['input'] except KeyError: return (False, '缺少参数') try: index = kwargs['index'] except KeyError: index = 0 (isOk, result) = self.element_find(type, locator, index) if (not isOk): return (isOk, result) elem = result try: elem.send_keys(text) except Exception: screenshot_path = self.get_screenshot_as_file() return (False, (((((('元素[' + locator) + ']输入[') + text) + ']失败,已截图[') + screenshot_path) + '].')) return (True, (((('元素[' + locator) + ']输入[') + text) + ']成功'))<|docstring|>:param kwargs: :return:<|endoftext|>
1919b6f81ce7f95bc0ed427681960a5ef057e8d2ebb590d05829ecba45f989ed
def element_find(self, type, locator, index=None): '\n 定位元素\n :param type:\n :param locator:\n :param index:\n :return:\n ' time.sleep(1) if (index is None): index = 0 type = str.lower(type) try: if (type == 'id'): elem = self.driver.find_elements(by=By.ID, value=locator)[index] elif (type == 'name'): elem = self.driver.find_elements(by=By.NAME, value=locator)[index] elif (type == 'class'): elem = self.driver.find_elements(by=By.CLASS_NAME, value=locator)[index] elif (type == 'xpath'): elem = self.driver.find_elements(by=By.XPATH, value=locator)[index] elif (type == 'css'): elem = self.driver.find_elements(by=By.CSS_SELECTOR, value=locator)[index] else: return (False, (('不能识别元素元素[' + type) + ']')) except Exception as e: screenshot_path = self.get_screenshot_as_file() return (False, (((('获取元素[' + type) + ']失败,已截图[') + screenshot_path) + '].')) return (True, elem)
定位元素 :param type: :param locator: :param index: :return:
base/factory/webdriveroperator.py
element_find
handerbaby/AutoRunWebUI
1
python
def element_find(self, type, locator, index=None): '\n 定位元素\n :param type:\n :param locator:\n :param index:\n :return:\n ' time.sleep(1) if (index is None): index = 0 type = str.lower(type) try: if (type == 'id'): elem = self.driver.find_elements(by=By.ID, value=locator)[index] elif (type == 'name'): elem = self.driver.find_elements(by=By.NAME, value=locator)[index] elif (type == 'class'): elem = self.driver.find_elements(by=By.CLASS_NAME, value=locator)[index] elif (type == 'xpath'): elem = self.driver.find_elements(by=By.XPATH, value=locator)[index] elif (type == 'css'): elem = self.driver.find_elements(by=By.CSS_SELECTOR, value=locator)[index] else: return (False, (('不能识别元素元素[' + type) + ']')) except Exception as e: screenshot_path = self.get_screenshot_as_file() return (False, (((('获取元素[' + type) + ']失败,已截图[') + screenshot_path) + '].')) return (True, elem)
def element_find(self, type, locator, index=None): '\n 定位元素\n :param type:\n :param locator:\n :param index:\n :return:\n ' time.sleep(1) if (index is None): index = 0 type = str.lower(type) try: if (type == 'id'): elem = self.driver.find_elements(by=By.ID, value=locator)[index] elif (type == 'name'): elem = self.driver.find_elements(by=By.NAME, value=locator)[index] elif (type == 'class'): elem = self.driver.find_elements(by=By.CLASS_NAME, value=locator)[index] elif (type == 'xpath'): elem = self.driver.find_elements(by=By.XPATH, value=locator)[index] elif (type == 'css'): elem = self.driver.find_elements(by=By.CSS_SELECTOR, value=locator)[index] else: return (False, (('不能识别元素元素[' + type) + ']')) except Exception as e: screenshot_path = self.get_screenshot_as_file() return (False, (((('获取元素[' + type) + ']失败,已截图[') + screenshot_path) + '].')) return (True, elem)<|docstring|>定位元素 :param type: :param locator: :param index: :return:<|endoftext|>
5fabc3f93ea1e9da2b7a965e4e33eb5167dcdac1d1de999d99ec85170af694b7
def element_click(self, **kwargs): '\n 点击元素\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] except KeyError: return (False, '缺少参数') try: index = kwargs['index'] except KeyError: index = 0 (isOk, result) = self.element_find(type, locator, index) if (not isOk): return (isOk, result) elem = result try: elem.click() except Exception: screenshot_path = self.get_screenshot_as_file() return (False, (((('元素[' + locator) + ']点击失败,已截图[') + screenshot_path) + '].')) return (True, (('元素[' + locator) + ']点击成功'))
点击元素 :param kwargs: :return:
base/factory/webdriveroperator.py
element_click
handerbaby/AutoRunWebUI
1
python
def element_click(self, **kwargs): '\n 点击元素\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] except KeyError: return (False, '缺少参数') try: index = kwargs['index'] except KeyError: index = 0 (isOk, result) = self.element_find(type, locator, index) if (not isOk): return (isOk, result) elem = result try: elem.click() except Exception: screenshot_path = self.get_screenshot_as_file() return (False, (((('元素[' + locator) + ']点击失败,已截图[') + screenshot_path) + '].')) return (True, (('元素[' + locator) + ']点击成功'))
def element_click(self, **kwargs): '\n 点击元素\n :param kwargs:\n :return:\n ' try: type = kwargs['type'] locator = kwargs['locator'] except KeyError: return (False, '缺少参数') try: index = kwargs['index'] except KeyError: index = 0 (isOk, result) = self.element_find(type, locator, index) if (not isOk): return (isOk, result) elem = result try: elem.click() except Exception: screenshot_path = self.get_screenshot_as_file() return (False, (((('元素[' + locator) + ']点击失败,已截图[') + screenshot_path) + '].')) return (True, (('元素[' + locator) + ']点击成功'))<|docstring|>点击元素 :param kwargs: :return:<|endoftext|>
dbbd14fd86fb254b5c44befa42144903800cbb9525cf18eef28431c3017ad937
def parse_arguments(argv): 'Parse command line arguments\n Args:\n argv (list): list of command line arguments including program name\n Returns:\n The parsed arguments as returned by argparse.ArgumentParser\n ' parser = argparse.ArgumentParser(description='Preprocessing') parser.add_argument('--bucket', type=str, help='GCS bucket where preprocessed data is saved', default='<your-bucket-name>') parser.add_argument('--cutoff_year', type=str, help='Cutoff year for the stock data', default='2010') parser.add_argument('--kfp', dest='kfp', action='store_true', help='Kubeflow pipelines flag') (args, _) = parser.parse_known_args(args=argv[1:]) return args
Parse command line arguments Args: argv (list): list of command line arguments including program name Returns: The parsed arguments as returned by argparse.ArgumentParser
financial_time_series/tensorflow_model/run_preprocess.py
parse_arguments
eedorenko/examples
1,165
python
def parse_arguments(argv): 'Parse command line arguments\n Args:\n argv (list): list of command line arguments including program name\n Returns:\n The parsed arguments as returned by argparse.ArgumentParser\n ' parser = argparse.ArgumentParser(description='Preprocessing') parser.add_argument('--bucket', type=str, help='GCS bucket where preprocessed data is saved', default='<your-bucket-name>') parser.add_argument('--cutoff_year', type=str, help='Cutoff year for the stock data', default='2010') parser.add_argument('--kfp', dest='kfp', action='store_true', help='Kubeflow pipelines flag') (args, _) = parser.parse_known_args(args=argv[1:]) return args
def parse_arguments(argv): 'Parse command line arguments\n Args:\n argv (list): list of command line arguments including program name\n Returns:\n The parsed arguments as returned by argparse.ArgumentParser\n ' parser = argparse.ArgumentParser(description='Preprocessing') parser.add_argument('--bucket', type=str, help='GCS bucket where preprocessed data is saved', default='<your-bucket-name>') parser.add_argument('--cutoff_year', type=str, help='Cutoff year for the stock data', default='2010') parser.add_argument('--kfp', dest='kfp', action='store_true', help='Kubeflow pipelines flag') (args, _) = parser.parse_known_args(args=argv[1:]) return args<|docstring|>Parse command line arguments Args: argv (list): list of command line arguments including program name Returns: The parsed arguments as returned by argparse.ArgumentParser<|endoftext|>
3231c390f9477dc078a236cccca155ae7f6566cc2d6ffc0e9af3e607f36eb3a6
def run_preprocess(argv=None): 'Runs the retrieval and preprocessing of the data.\n\n Args:\n args: args that are passed when submitting the training\n\n Returns:\n\n ' logging.info('starting preprocessing of data..') args = parse_arguments((sys.argv if (argv is None) else argv)) tickers = ['snp', 'nyse', 'djia', 'nikkei', 'hangseng', 'ftse', 'dax', 'aord'] closing_data = preprocess.load_data(tickers, args.cutoff_year) time_series = preprocess.preprocess_data(closing_data) logging.info('preprocessing of data complete..') logging.info('starting uploading of the preprocessed data on GCS..') temp_folder = 'data' if (not os.path.exists(temp_folder)): os.mkdir(temp_folder) file_path = os.path.join(temp_folder, 'data_{}.csv'.format(args.cutoff_year)) time_series.to_csv(file_path, index=False) storage_helper.upload_to_storage(args.bucket, temp_folder) shutil.rmtree(temp_folder) if args.kfp: with open('/blob_path.txt', 'w') as output_file: output_file.write(file_path) logging.info('upload of the preprocessed data on GCS completed..')
Runs the retrieval and preprocessing of the data. Args: args: args that are passed when submitting the training Returns:
financial_time_series/tensorflow_model/run_preprocess.py
run_preprocess
eedorenko/examples
1,165
python
def run_preprocess(argv=None): 'Runs the retrieval and preprocessing of the data.\n\n Args:\n args: args that are passed when submitting the training\n\n Returns:\n\n ' logging.info('starting preprocessing of data..') args = parse_arguments((sys.argv if (argv is None) else argv)) tickers = ['snp', 'nyse', 'djia', 'nikkei', 'hangseng', 'ftse', 'dax', 'aord'] closing_data = preprocess.load_data(tickers, args.cutoff_year) time_series = preprocess.preprocess_data(closing_data) logging.info('preprocessing of data complete..') logging.info('starting uploading of the preprocessed data on GCS..') temp_folder = 'data' if (not os.path.exists(temp_folder)): os.mkdir(temp_folder) file_path = os.path.join(temp_folder, 'data_{}.csv'.format(args.cutoff_year)) time_series.to_csv(file_path, index=False) storage_helper.upload_to_storage(args.bucket, temp_folder) shutil.rmtree(temp_folder) if args.kfp: with open('/blob_path.txt', 'w') as output_file: output_file.write(file_path) logging.info('upload of the preprocessed data on GCS completed..')
def run_preprocess(argv=None): 'Runs the retrieval and preprocessing of the data.\n\n Args:\n args: args that are passed when submitting the training\n\n Returns:\n\n ' logging.info('starting preprocessing of data..') args = parse_arguments((sys.argv if (argv is None) else argv)) tickers = ['snp', 'nyse', 'djia', 'nikkei', 'hangseng', 'ftse', 'dax', 'aord'] closing_data = preprocess.load_data(tickers, args.cutoff_year) time_series = preprocess.preprocess_data(closing_data) logging.info('preprocessing of data complete..') logging.info('starting uploading of the preprocessed data on GCS..') temp_folder = 'data' if (not os.path.exists(temp_folder)): os.mkdir(temp_folder) file_path = os.path.join(temp_folder, 'data_{}.csv'.format(args.cutoff_year)) time_series.to_csv(file_path, index=False) storage_helper.upload_to_storage(args.bucket, temp_folder) shutil.rmtree(temp_folder) if args.kfp: with open('/blob_path.txt', 'w') as output_file: output_file.write(file_path) logging.info('upload of the preprocessed data on GCS completed..')<|docstring|>Runs the retrieval and preprocessing of the data. Args: args: args that are passed when submitting the training Returns:<|endoftext|>
d2287833f8ec04e30ea3101c530d5dd1b0001f5a6f4e885883d902bd56c698b3
def __init__(__self__, *, vpc_peering_connection_id: pulumi.Input[str], accepter: Optional[pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs']]=None, auto_accept: Optional[pulumi.Input[bool]]=None, requester: Optional[pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs']]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, tags_all: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None): "\n The set of arguments for constructing a VpcPeeringConnectionAccepter resource.\n :param pulumi.Input[str] vpc_peering_connection_id: The VPC Peering Connection ID to manage.\n :param pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs'] accepter: A configuration block that describes [VPC Peering Connection]\n (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the accepter VPC.\n :param pulumi.Input[bool] auto_accept: Whether or not to accept the peering request. Defaults to `false`.\n :param pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs'] requester: A configuration block that describes [VPC Peering Connection]\n (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the requester VPC.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider .\n " pulumi.set(__self__, 'vpc_peering_connection_id', vpc_peering_connection_id) if (accepter is not None): pulumi.set(__self__, 'accepter', accepter) if (auto_accept is not None): pulumi.set(__self__, 'auto_accept', auto_accept) if (requester is not None): pulumi.set(__self__, 'requester', requester) if (tags is not None): pulumi.set(__self__, 'tags', tags) if (tags_all is not None): pulumi.set(__self__, 'tags_all', tags_all)
The set of arguments for constructing a VpcPeeringConnectionAccepter resource. :param pulumi.Input[str] vpc_peering_connection_id: The VPC Peering Connection ID to manage. :param pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs'] accepter: A configuration block that describes [VPC Peering Connection] (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the accepter VPC. :param pulumi.Input[bool] auto_accept: Whether or not to accept the peering request. Defaults to `false`. :param pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs'] requester: A configuration block that describes [VPC Peering Connection] (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the requester VPC. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider .
sdk/python/pulumi_aws/ec2/vpc_peering_connection_accepter.py
__init__
rapzo/pulumi-aws
260
python
def __init__(__self__, *, vpc_peering_connection_id: pulumi.Input[str], accepter: Optional[pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs']]=None, auto_accept: Optional[pulumi.Input[bool]]=None, requester: Optional[pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs']]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, tags_all: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None): "\n The set of arguments for constructing a VpcPeeringConnectionAccepter resource.\n :param pulumi.Input[str] vpc_peering_connection_id: The VPC Peering Connection ID to manage.\n :param pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs'] accepter: A configuration block that describes [VPC Peering Connection]\n (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the accepter VPC.\n :param pulumi.Input[bool] auto_accept: Whether or not to accept the peering request. Defaults to `false`.\n :param pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs'] requester: A configuration block that describes [VPC Peering Connection]\n (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the requester VPC.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider .\n " pulumi.set(__self__, 'vpc_peering_connection_id', vpc_peering_connection_id) if (accepter is not None): pulumi.set(__self__, 'accepter', accepter) if (auto_accept is not None): pulumi.set(__self__, 'auto_accept', auto_accept) if (requester is not None): pulumi.set(__self__, 'requester', requester) if (tags is not None): pulumi.set(__self__, 'tags', tags) if (tags_all is not None): pulumi.set(__self__, 'tags_all', tags_all)
def __init__(__self__, *, vpc_peering_connection_id: pulumi.Input[str], accepter: Optional[pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs']]=None, auto_accept: Optional[pulumi.Input[bool]]=None, requester: Optional[pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs']]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, tags_all: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None): "\n The set of arguments for constructing a VpcPeeringConnectionAccepter resource.\n :param pulumi.Input[str] vpc_peering_connection_id: The VPC Peering Connection ID to manage.\n :param pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs'] accepter: A configuration block that describes [VPC Peering Connection]\n (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the accepter VPC.\n :param pulumi.Input[bool] auto_accept: Whether or not to accept the peering request. Defaults to `false`.\n :param pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs'] requester: A configuration block that describes [VPC Peering Connection]\n (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the requester VPC.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider .\n " pulumi.set(__self__, 'vpc_peering_connection_id', vpc_peering_connection_id) if (accepter is not None): pulumi.set(__self__, 'accepter', accepter) if (auto_accept is not None): pulumi.set(__self__, 'auto_accept', auto_accept) if (requester is not None): pulumi.set(__self__, 'requester', requester) if (tags is not None): pulumi.set(__self__, 'tags', tags) if (tags_all is not None): pulumi.set(__self__, 'tags_all', tags_all)<|docstring|>The set of arguments for constructing a VpcPeeringConnectionAccepter resource. :param pulumi.Input[str] vpc_peering_connection_id: The VPC Peering Connection ID to manage. :param pulumi.Input['VpcPeeringConnectionAccepterAccepterArgs'] accepter: A configuration block that describes [VPC Peering Connection] (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the accepter VPC. :param pulumi.Input[bool] auto_accept: Whether or not to accept the peering request. Defaults to `false`. :param pulumi.Input['VpcPeeringConnectionAccepterRequesterArgs'] requester: A configuration block that describes [VPC Peering Connection] (https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html) options set for the requester VPC. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider .<|endoftext|>
2bd9e4aa1afa40896e005c92e946a5de37557d6c5acb4a9cbe1a032b47003cff
@property @pulumi.getter(name='vpcPeeringConnectionId') def vpc_peering_connection_id(self) -> pulumi.Input[str]: '\n The VPC Peering Connection ID to manage.\n ' return pulumi.get(self, 'vpc_peering_connection_id')
The VPC Peering Connection ID to manage.
sdk/python/pulumi_aws/ec2/vpc_peering_connection_accepter.py
vpc_peering_connection_id
rapzo/pulumi-aws
260
python
@property @pulumi.getter(name='vpcPeeringConnectionId') def vpc_peering_connection_id(self) -> pulumi.Input[str]: '\n \n ' return pulumi.get(self, 'vpc_peering_connection_id')
@property @pulumi.getter(name='vpcPeeringConnectionId') def vpc_peering_connection_id(self) -> pulumi.Input[str]: '\n \n ' return pulumi.get(self, 'vpc_peering_connection_id')<|docstring|>The VPC Peering Connection ID to manage.<|endoftext|>