body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
68b7cb9992dba3bd90edc7cd1c50a6890357d88409b441b8598c9ea2905a55e7
@pytest.mark.parametrize('so', [2, 3, 4, 5]) def test_fd_indices(self, so): '\n Test that shifted derivative have Integer offset after indexification.\n ' grid = Grid((10,)) x = grid.dimensions[0] x0 = (x + (0.5 * x.spacing)) u = Function(name='u', grid=grid, space_order=so) dx = indexify(u.dx(x0=x0).evaluate) for f in retrieve_indexed(dx): assert (len(f.indices[0].atoms(Float)) == 0)
Test that shifted derivative have Integer offset after indexification.
tests/test_derivatives.py
test_fd_indices
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('so', [2, 3, 4, 5]) def test_fd_indices(self, so): '\n \n ' grid = Grid((10,)) x = grid.dimensions[0] x0 = (x + (0.5 * x.spacing)) u = Function(name='u', grid=grid, space_order=so) dx = indexify(u.dx(x0=x0).evaluate) for f in retrieve_indexed(dx): assert (len(f.indices[0].atoms(Float)) == 0)
@pytest.mark.parametrize('so', [2, 3, 4, 5]) def test_fd_indices(self, so): '\n \n ' grid = Grid((10,)) x = grid.dimensions[0] x0 = (x + (0.5 * x.spacing)) u = Function(name='u', grid=grid, space_order=so) dx = indexify(u.dx(x0=x0).evaluate) for f in retrieve_indexed(dx): assert (len(f.indices[0].atoms(Float)) == 0)<|docstring|>Test that shifted derivative have Integer offset after indexification.<|endoftext|>
71f61ff80801ce27fbf574bbae8fa455138ff8b4b51c4c7a7bde8b2dd5ca4fe8
@pytest.mark.parametrize('SymbolType, dim', [(Function, x), (Function, y), (TimeFunction, x), (TimeFunction, y), (TimeFunction, t)]) def test_stencil_derivative(self, SymbolType, dim): 'Test symbolic behaviour when expanding stencil derivatives' i = dim(self.grid) u = SymbolType(name='u', grid=self.grid) u.data[:] = 66.6 di = u.diff(i) dii = u.diff(i, i) assert (isinstance(di, Derivative) and isinstance(dii, Derivative)) s_di = di.as_finite_difference([(i - i.spacing), i]) s_dii = dii.as_finite_difference([(i - i.spacing), i, (i + i.spacing)]) assert ((len(s_di.args) == 2) and (len(s_dii.args) == 3)) u_di = s_di.args[0].args[1] u_dii = s_di.args[0].args[1] assert ((u_di.grid.shape == self.shape) and (u_dii.grid.shape == self.shape)) assert ((u_di.shape == u.shape) and (u_dii.shape == u.shape)) assert np.allclose(u_di.data, 66.6) assert np.allclose(u_dii.data, 66.6)
Test symbolic behaviour when expanding stencil derivatives
tests/test_derivatives.py
test_stencil_derivative
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('SymbolType, dim', [(Function, x), (Function, y), (TimeFunction, x), (TimeFunction, y), (TimeFunction, t)]) def test_stencil_derivative(self, SymbolType, dim): i = dim(self.grid) u = SymbolType(name='u', grid=self.grid) u.data[:] = 66.6 di = u.diff(i) dii = u.diff(i, i) assert (isinstance(di, Derivative) and isinstance(dii, Derivative)) s_di = di.as_finite_difference([(i - i.spacing), i]) s_dii = dii.as_finite_difference([(i - i.spacing), i, (i + i.spacing)]) assert ((len(s_di.args) == 2) and (len(s_dii.args) == 3)) u_di = s_di.args[0].args[1] u_dii = s_di.args[0].args[1] assert ((u_di.grid.shape == self.shape) and (u_dii.grid.shape == self.shape)) assert ((u_di.shape == u.shape) and (u_dii.shape == u.shape)) assert np.allclose(u_di.data, 66.6) assert np.allclose(u_dii.data, 66.6)
@pytest.mark.parametrize('SymbolType, dim', [(Function, x), (Function, y), (TimeFunction, x), (TimeFunction, y), (TimeFunction, t)]) def test_stencil_derivative(self, SymbolType, dim): i = dim(self.grid) u = SymbolType(name='u', grid=self.grid) u.data[:] = 66.6 di = u.diff(i) dii = u.diff(i, i) assert (isinstance(di, Derivative) and isinstance(dii, Derivative)) s_di = di.as_finite_difference([(i - i.spacing), i]) s_dii = dii.as_finite_difference([(i - i.spacing), i, (i + i.spacing)]) assert ((len(s_di.args) == 2) and (len(s_dii.args) == 3)) u_di = s_di.args[0].args[1] u_dii = s_di.args[0].args[1] assert ((u_di.grid.shape == self.shape) and (u_dii.grid.shape == self.shape)) assert ((u_di.shape == u.shape) and (u_dii.shape == u.shape)) assert np.allclose(u_di.data, 66.6) assert np.allclose(u_dii.data, 66.6)<|docstring|>Test symbolic behaviour when expanding stencil derivatives<|endoftext|>
d8670bbd20435c342075e455859b0ecadf578b874cc4f06174f1ef48e54fd960
@pytest.mark.parametrize('SymbolType, derivative, dim', [(Function, 'dx2', 3), (Function, 'dy2', 3), (TimeFunction, 'dx2', 3), (TimeFunction, 'dy2', 3), (TimeFunction, 'dt', 2)]) def test_preformed_derivatives(self, SymbolType, derivative, dim): 'Test the stencil expressions provided by devito objects' u = SymbolType(name='u', grid=self.grid, time_order=2, space_order=2) expr = getattr(u, derivative) assert (len(expr.evaluate.args) == dim)
Test the stencil expressions provided by devito objects
tests/test_derivatives.py
test_preformed_derivatives
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('SymbolType, derivative, dim', [(Function, 'dx2', 3), (Function, 'dy2', 3), (TimeFunction, 'dx2', 3), (TimeFunction, 'dy2', 3), (TimeFunction, 'dt', 2)]) def test_preformed_derivatives(self, SymbolType, derivative, dim): u = SymbolType(name='u', grid=self.grid, time_order=2, space_order=2) expr = getattr(u, derivative) assert (len(expr.evaluate.args) == dim)
@pytest.mark.parametrize('SymbolType, derivative, dim', [(Function, 'dx2', 3), (Function, 'dy2', 3), (TimeFunction, 'dx2', 3), (TimeFunction, 'dy2', 3), (TimeFunction, 'dt', 2)]) def test_preformed_derivatives(self, SymbolType, derivative, dim): u = SymbolType(name='u', grid=self.grid, time_order=2, space_order=2) expr = getattr(u, derivative) assert (len(expr.evaluate.args) == dim)<|docstring|>Test the stencil expressions provided by devito objects<|endoftext|>
c1ed21a70b0729f05c8184d6a80c4e6a57fcaf4dd89821fb1588d6c0525542fa
@pytest.mark.parametrize('derivative, dim', [('dx', x), ('dy', y), ('dz', z)]) @pytest.mark.parametrize('order', [1, 2, 4, 6, 8, 10, 12, 14, 16]) def test_derivatives_space(self, derivative, dim, order): 'Test first derivative expressions against native sympy' dim = dim(self.grid) u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order) expr = getattr(u, derivative).evaluate width = int((order / 2)) if (order <= 2): indices = [dim, (dim + dim.spacing)] else: indices = [(dim + (i * dim.spacing)) for i in range((- width), (width + 1))] s_expr = u.diff(dim).as_finite_difference(indices).evalf(_PRECISION) assert (simplify((expr - s_expr)) == 0) assert (type(expr) == EvalDerivative) expr1 = s_expr.func(*expr.args) assert (expr1 == s_expr)
Test first derivative expressions against native sympy
tests/test_derivatives.py
test_derivatives_space
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('derivative, dim', [('dx', x), ('dy', y), ('dz', z)]) @pytest.mark.parametrize('order', [1, 2, 4, 6, 8, 10, 12, 14, 16]) def test_derivatives_space(self, derivative, dim, order): dim = dim(self.grid) u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order) expr = getattr(u, derivative).evaluate width = int((order / 2)) if (order <= 2): indices = [dim, (dim + dim.spacing)] else: indices = [(dim + (i * dim.spacing)) for i in range((- width), (width + 1))] s_expr = u.diff(dim).as_finite_difference(indices).evalf(_PRECISION) assert (simplify((expr - s_expr)) == 0) assert (type(expr) == EvalDerivative) expr1 = s_expr.func(*expr.args) assert (expr1 == s_expr)
@pytest.mark.parametrize('derivative, dim', [('dx', x), ('dy', y), ('dz', z)]) @pytest.mark.parametrize('order', [1, 2, 4, 6, 8, 10, 12, 14, 16]) def test_derivatives_space(self, derivative, dim, order): dim = dim(self.grid) u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order) expr = getattr(u, derivative).evaluate width = int((order / 2)) if (order <= 2): indices = [dim, (dim + dim.spacing)] else: indices = [(dim + (i * dim.spacing)) for i in range((- width), (width + 1))] s_expr = u.diff(dim).as_finite_difference(indices).evalf(_PRECISION) assert (simplify((expr - s_expr)) == 0) assert (type(expr) == EvalDerivative) expr1 = s_expr.func(*expr.args) assert (expr1 == s_expr)<|docstring|>Test first derivative expressions against native sympy<|endoftext|>
221fe578d64b2e6227a1fa324912cbdc92cb729143a0bcab8557056223ffcd44
@pytest.mark.parametrize('derivative, dim', [('dx2', x), ('dy2', y), ('dz2', z)]) @pytest.mark.parametrize('order', [2, 4, 6, 8, 10, 12, 14, 16]) def test_second_derivatives_space(self, derivative, dim, order): '\n Test second derivative expressions against native sympy.\n ' dim = dim(self.grid) u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order) expr = getattr(u, derivative).evaluate width = int((order / 2)) indices = [(dim + (i * dim.spacing)) for i in range((- width), (width + 1))] s_expr = u.diff(dim, dim).as_finite_difference(indices).evalf(_PRECISION) assert (simplify((expr - s_expr)) == 0) assert (type(expr) == EvalDerivative) expr1 = s_expr.func(*expr.args) assert (expr1 == s_expr)
Test second derivative expressions against native sympy.
tests/test_derivatives.py
test_second_derivatives_space
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('derivative, dim', [('dx2', x), ('dy2', y), ('dz2', z)]) @pytest.mark.parametrize('order', [2, 4, 6, 8, 10, 12, 14, 16]) def test_second_derivatives_space(self, derivative, dim, order): '\n \n ' dim = dim(self.grid) u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order) expr = getattr(u, derivative).evaluate width = int((order / 2)) indices = [(dim + (i * dim.spacing)) for i in range((- width), (width + 1))] s_expr = u.diff(dim, dim).as_finite_difference(indices).evalf(_PRECISION) assert (simplify((expr - s_expr)) == 0) assert (type(expr) == EvalDerivative) expr1 = s_expr.func(*expr.args) assert (expr1 == s_expr)
@pytest.mark.parametrize('derivative, dim', [('dx2', x), ('dy2', y), ('dz2', z)]) @pytest.mark.parametrize('order', [2, 4, 6, 8, 10, 12, 14, 16]) def test_second_derivatives_space(self, derivative, dim, order): '\n \n ' dim = dim(self.grid) u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order) expr = getattr(u, derivative).evaluate width = int((order / 2)) indices = [(dim + (i * dim.spacing)) for i in range((- width), (width + 1))] s_expr = u.diff(dim, dim).as_finite_difference(indices).evalf(_PRECISION) assert (simplify((expr - s_expr)) == 0) assert (type(expr) == EvalDerivative) expr1 = s_expr.func(*expr.args) assert (expr1 == s_expr)<|docstring|>Test second derivative expressions against native sympy.<|endoftext|>
830c753f63a905185ef08ce0c9010dfba8df7c412b561c0032a0c37c694b02d2
@pytest.mark.parametrize('space_order', [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) @pytest.mark.parametrize('derivative', ['dx', 'dxl', 'dxr', 'dx2']) def test_fd_space(self, derivative, space_order): '\n This test compares the discrete finite-difference scheme against polynomials\n For a given order p, the finite difference scheme should\n be exact for polynomials of order p.\n ' nx = 100 xx = np.linspace((- 1), 1, nx) dx = (xx[1] - xx[0]) grid = Grid(shape=(nx,), dtype=np.float32) x = grid.dimensions[0] u = Function(name='u', grid=grid, space_order=space_order) du = Function(name='du', grid=grid, space_order=space_order) coeffs = np.ones((space_order,), dtype=np.float32) polynome = sum([(coeffs[i] * (x ** i)) for i in range(0, space_order)]) polyvalues = np.array([polynome.subs(x, xi) for xi in xx], np.float32) u.data[:] = polyvalues Dpolynome = (diff(diff(polynome)) if (derivative == 'dx2') else diff(polynome)) Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx], np.float32) u_deriv = getattr(u, derivative) stencil = Eq(du, u_deriv) op = Operator(stencil, subs={x.spacing: dx}) op.apply() space_border = space_order error = abs((du.data[space_border:(- space_border)] - Dpolyvalues[space_border:(- space_border)])) assert np.isclose(np.mean(error), 0.0, atol=0.001)
This test compares the discrete finite-difference scheme against polynomials For a given order p, the finite difference scheme should be exact for polynomials of order p.
tests/test_derivatives.py
test_fd_space
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('space_order', [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) @pytest.mark.parametrize('derivative', ['dx', 'dxl', 'dxr', 'dx2']) def test_fd_space(self, derivative, space_order): '\n This test compares the discrete finite-difference scheme against polynomials\n For a given order p, the finite difference scheme should\n be exact for polynomials of order p.\n ' nx = 100 xx = np.linspace((- 1), 1, nx) dx = (xx[1] - xx[0]) grid = Grid(shape=(nx,), dtype=np.float32) x = grid.dimensions[0] u = Function(name='u', grid=grid, space_order=space_order) du = Function(name='du', grid=grid, space_order=space_order) coeffs = np.ones((space_order,), dtype=np.float32) polynome = sum([(coeffs[i] * (x ** i)) for i in range(0, space_order)]) polyvalues = np.array([polynome.subs(x, xi) for xi in xx], np.float32) u.data[:] = polyvalues Dpolynome = (diff(diff(polynome)) if (derivative == 'dx2') else diff(polynome)) Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx], np.float32) u_deriv = getattr(u, derivative) stencil = Eq(du, u_deriv) op = Operator(stencil, subs={x.spacing: dx}) op.apply() space_border = space_order error = abs((du.data[space_border:(- space_border)] - Dpolyvalues[space_border:(- space_border)])) assert np.isclose(np.mean(error), 0.0, atol=0.001)
@pytest.mark.parametrize('space_order', [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) @pytest.mark.parametrize('derivative', ['dx', 'dxl', 'dxr', 'dx2']) def test_fd_space(self, derivative, space_order): '\n This test compares the discrete finite-difference scheme against polynomials\n For a given order p, the finite difference scheme should\n be exact for polynomials of order p.\n ' nx = 100 xx = np.linspace((- 1), 1, nx) dx = (xx[1] - xx[0]) grid = Grid(shape=(nx,), dtype=np.float32) x = grid.dimensions[0] u = Function(name='u', grid=grid, space_order=space_order) du = Function(name='du', grid=grid, space_order=space_order) coeffs = np.ones((space_order,), dtype=np.float32) polynome = sum([(coeffs[i] * (x ** i)) for i in range(0, space_order)]) polyvalues = np.array([polynome.subs(x, xi) for xi in xx], np.float32) u.data[:] = polyvalues Dpolynome = (diff(diff(polynome)) if (derivative == 'dx2') else diff(polynome)) Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx], np.float32) u_deriv = getattr(u, derivative) stencil = Eq(du, u_deriv) op = Operator(stencil, subs={x.spacing: dx}) op.apply() space_border = space_order error = abs((du.data[space_border:(- space_border)] - Dpolyvalues[space_border:(- space_border)])) assert np.isclose(np.mean(error), 0.0, atol=0.001)<|docstring|>This test compares the discrete finite-difference scheme against polynomials For a given order p, the finite difference scheme should be exact for polynomials of order p.<|endoftext|>
dd023cfefaf520be94d98f23a0ed1f46b080bfad0640f466f0f0ef94147477f0
@pytest.mark.parametrize('space_order', [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) @pytest.mark.parametrize('stagger', [centered, left, right]) def test_fd_space_staggered(self, space_order, stagger): '\n This test compares the discrete finite-difference scheme against polynomials\n For a given order p, the finite difference scheme should\n be exact for polynomials of order p\n ' nx = 101 xx = np.linspace((- 1), 1, nx) dx = (xx[1] - xx[0]) grid = Grid(shape=(nx,), dtype=np.float32) x = grid.dimensions[0] if (stagger == left): off = (- 0.5) side = (- x) xx2 = (xx + (off * dx)) elif (stagger == right): off = 0.5 side = x xx2 = (xx + (off * dx)) else: side = NODE xx2 = xx u = Function(name='u', grid=grid, space_order=space_order, staggered=side) du = Function(name='du', grid=grid, space_order=space_order, staggered=side) coeffs = np.ones(((space_order - 1),), dtype=np.float32) polynome = sum([(coeffs[i] * (x ** i)) for i in range(0, (space_order - 1))]) polyvalues = np.array([polynome.subs(x, xi) for xi in xx2], np.float32) u.data[:] = polyvalues Dpolynome = diff(polynome) Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx2], np.float32) stencil = Eq(du, u.dx) op = Operator(stencil, subs={x.spacing: dx}) op.apply() space_border = space_order error = abs((du.data[space_border:(- space_border)] - Dpolyvalues[space_border:(- space_border)])) assert np.isclose(np.mean(error), 0.0, atol=0.001)
This test compares the discrete finite-difference scheme against polynomials For a given order p, the finite difference scheme should be exact for polynomials of order p
tests/test_derivatives.py
test_fd_space_staggered
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('space_order', [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) @pytest.mark.parametrize('stagger', [centered, left, right]) def test_fd_space_staggered(self, space_order, stagger): '\n This test compares the discrete finite-difference scheme against polynomials\n For a given order p, the finite difference scheme should\n be exact for polynomials of order p\n ' nx = 101 xx = np.linspace((- 1), 1, nx) dx = (xx[1] - xx[0]) grid = Grid(shape=(nx,), dtype=np.float32) x = grid.dimensions[0] if (stagger == left): off = (- 0.5) side = (- x) xx2 = (xx + (off * dx)) elif (stagger == right): off = 0.5 side = x xx2 = (xx + (off * dx)) else: side = NODE xx2 = xx u = Function(name='u', grid=grid, space_order=space_order, staggered=side) du = Function(name='du', grid=grid, space_order=space_order, staggered=side) coeffs = np.ones(((space_order - 1),), dtype=np.float32) polynome = sum([(coeffs[i] * (x ** i)) for i in range(0, (space_order - 1))]) polyvalues = np.array([polynome.subs(x, xi) for xi in xx2], np.float32) u.data[:] = polyvalues Dpolynome = diff(polynome) Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx2], np.float32) stencil = Eq(du, u.dx) op = Operator(stencil, subs={x.spacing: dx}) op.apply() space_border = space_order error = abs((du.data[space_border:(- space_border)] - Dpolyvalues[space_border:(- space_border)])) assert np.isclose(np.mean(error), 0.0, atol=0.001)
@pytest.mark.parametrize('space_order', [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) @pytest.mark.parametrize('stagger', [centered, left, right]) def test_fd_space_staggered(self, space_order, stagger): '\n This test compares the discrete finite-difference scheme against polynomials\n For a given order p, the finite difference scheme should\n be exact for polynomials of order p\n ' nx = 101 xx = np.linspace((- 1), 1, nx) dx = (xx[1] - xx[0]) grid = Grid(shape=(nx,), dtype=np.float32) x = grid.dimensions[0] if (stagger == left): off = (- 0.5) side = (- x) xx2 = (xx + (off * dx)) elif (stagger == right): off = 0.5 side = x xx2 = (xx + (off * dx)) else: side = NODE xx2 = xx u = Function(name='u', grid=grid, space_order=space_order, staggered=side) du = Function(name='du', grid=grid, space_order=space_order, staggered=side) coeffs = np.ones(((space_order - 1),), dtype=np.float32) polynome = sum([(coeffs[i] * (x ** i)) for i in range(0, (space_order - 1))]) polyvalues = np.array([polynome.subs(x, xi) for xi in xx2], np.float32) u.data[:] = polyvalues Dpolynome = diff(polynome) Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx2], np.float32) stencil = Eq(du, u.dx) op = Operator(stencil, subs={x.spacing: dx}) op.apply() space_border = space_order error = abs((du.data[space_border:(- space_border)] - Dpolyvalues[space_border:(- space_border)])) assert np.isclose(np.mean(error), 0.0, atol=0.001)<|docstring|>This test compares the discrete finite-difference scheme against polynomials For a given order p, the finite difference scheme should be exact for polynomials of order p<|endoftext|>
c26b3c3620dcdfe22900ed0df8591cd84791d9532a3ae194855a588cc1da194f
def test_new_x0_eval_at(self): '\n Make sure that explicitly set x0 does not get overwritten by eval_at.\n ' grid = Grid((10,)) x = grid.dimensions[0] u = Function(name='u', grid=grid, space_order=2) v = Function(name='v', grid=grid, space_order=2) assert (u.dx(x0=(x - (x.spacing / 2)))._eval_at(v).x0 == {x: (x - (x.spacing / 2))})
Make sure that explicitly set x0 does not get overwritten by eval_at.
tests/test_derivatives.py
test_new_x0_eval_at
felipeaugustogudes/devito
204
python
def test_new_x0_eval_at(self): '\n \n ' grid = Grid((10,)) x = grid.dimensions[0] u = Function(name='u', grid=grid, space_order=2) v = Function(name='v', grid=grid, space_order=2) assert (u.dx(x0=(x - (x.spacing / 2)))._eval_at(v).x0 == {x: (x - (x.spacing / 2))})
def test_new_x0_eval_at(self): '\n \n ' grid = Grid((10,)) x = grid.dimensions[0] u = Function(name='u', grid=grid, space_order=2) v = Function(name='v', grid=grid, space_order=2) assert (u.dx(x0=(x - (x.spacing / 2)))._eval_at(v).x0 == {x: (x - (x.spacing / 2))})<|docstring|>Make sure that explicitly set x0 does not get overwritten by eval_at.<|endoftext|>
df8e2897b168f4dd74aa9fc8e3b1a44a69a01810b6d3dc363110efba3b6bff70
def test_subsampled_fd(self): '\n Test that the symbolic interface is working for space subsampled\n functions.\n ' nt = 19 grid = Grid(shape=(12, 12), extent=(11, 11)) u = TimeFunction(name='u', grid=grid, save=nt, space_order=2) assert (grid.time_dim in u.indices) dims = tuple([ConditionalDimension((d.name + 'sub'), parent=d, factor=2) for d in u.grid.dimensions]) grid2 = Grid((6, 6), dimensions=dims, extent=(10, 10)) u2 = TimeFunction(name='u2', grid=grid2, save=nt, space_order=1) for i in range(nt): for j in range(u2.data_with_halo.shape[2]): u2.data_with_halo[(i, :, j)] = np.arange(u2.data_with_halo.shape[2]) eqns = [Eq(u.forward, (u + 1.0)), Eq(u2.forward, u2.dx)] op = Operator(eqns) op.apply(time_M=(nt - 2)) assert np.allclose(u.data[(- 1)], (nt - 1)) assert np.allclose(u2.data[1], 0.5)
Test that the symbolic interface is working for space subsampled functions.
tests/test_derivatives.py
test_subsampled_fd
felipeaugustogudes/devito
204
python
def test_subsampled_fd(self): '\n Test that the symbolic interface is working for space subsampled\n functions.\n ' nt = 19 grid = Grid(shape=(12, 12), extent=(11, 11)) u = TimeFunction(name='u', grid=grid, save=nt, space_order=2) assert (grid.time_dim in u.indices) dims = tuple([ConditionalDimension((d.name + 'sub'), parent=d, factor=2) for d in u.grid.dimensions]) grid2 = Grid((6, 6), dimensions=dims, extent=(10, 10)) u2 = TimeFunction(name='u2', grid=grid2, save=nt, space_order=1) for i in range(nt): for j in range(u2.data_with_halo.shape[2]): u2.data_with_halo[(i, :, j)] = np.arange(u2.data_with_halo.shape[2]) eqns = [Eq(u.forward, (u + 1.0)), Eq(u2.forward, u2.dx)] op = Operator(eqns) op.apply(time_M=(nt - 2)) assert np.allclose(u.data[(- 1)], (nt - 1)) assert np.allclose(u2.data[1], 0.5)
def test_subsampled_fd(self): '\n Test that the symbolic interface is working for space subsampled\n functions.\n ' nt = 19 grid = Grid(shape=(12, 12), extent=(11, 11)) u = TimeFunction(name='u', grid=grid, save=nt, space_order=2) assert (grid.time_dim in u.indices) dims = tuple([ConditionalDimension((d.name + 'sub'), parent=d, factor=2) for d in u.grid.dimensions]) grid2 = Grid((6, 6), dimensions=dims, extent=(10, 10)) u2 = TimeFunction(name='u2', grid=grid2, save=nt, space_order=1) for i in range(nt): for j in range(u2.data_with_halo.shape[2]): u2.data_with_halo[(i, :, j)] = np.arange(u2.data_with_halo.shape[2]) eqns = [Eq(u.forward, (u + 1.0)), Eq(u2.forward, u2.dx)] op = Operator(eqns) op.apply(time_M=(nt - 2)) assert np.allclose(u.data[(- 1)], (nt - 1)) assert np.allclose(u2.data[1], 0.5)<|docstring|>Test that the symbolic interface is working for space subsampled functions.<|endoftext|>
908e58961bb5734e1d3e27562098aea949856664944d9e96f666ff9daedc478f
@pytest.mark.parametrize('so', [2, 5, 8]) def test_all_shortcuts(self, so): '\n Test that verify that all fd shortcuts are functional.\n ' grid = Grid(shape=(10, 10, 10)) f = Function(name='f', grid=grid, space_order=so) g = TimeFunction(name='g', grid=grid, space_order=so) for fd in f._fd: assert getattr(f, fd) for fd in g._fd: assert getattr(g, fd)
Test that verify that all fd shortcuts are functional.
tests/test_derivatives.py
test_all_shortcuts
felipeaugustogudes/devito
204
python
@pytest.mark.parametrize('so', [2, 5, 8]) def test_all_shortcuts(self, so): '\n \n ' grid = Grid(shape=(10, 10, 10)) f = Function(name='f', grid=grid, space_order=so) g = TimeFunction(name='g', grid=grid, space_order=so) for fd in f._fd: assert getattr(f, fd) for fd in g._fd: assert getattr(g, fd)
@pytest.mark.parametrize('so', [2, 5, 8]) def test_all_shortcuts(self, so): '\n \n ' grid = Grid(shape=(10, 10, 10)) f = Function(name='f', grid=grid, space_order=so) g = TimeFunction(name='g', grid=grid, space_order=so) for fd in f._fd: assert getattr(f, fd) for fd in g._fd: assert getattr(g, fd)<|docstring|>Test that verify that all fd shortcuts are functional.<|endoftext|>
f1c690b3eb83afd810d6d3b9fc4bde537c26969c3a065e6c0b0d744933c17f1d
def __init__(self, resp, decode_type='utf-8'): '\n get data from ResultSet\n ' self._decode_type = decode_type self._resp = resp self._data_set_wrapper = None if (self._resp.data is not None): self._data_set_wrapper = DataSetWrapper(resp.data, self._decode_type)
get data from ResultSet
python/nebula2/data/ResultSet.py
__init__
taeb3/nebula-clients
15
python
def __init__(self, resp, decode_type='utf-8'): '\n \n ' self._decode_type = decode_type self._resp = resp self._data_set_wrapper = None if (self._resp.data is not None): self._data_set_wrapper = DataSetWrapper(resp.data, self._decode_type)
def __init__(self, resp, decode_type='utf-8'): '\n \n ' self._decode_type = decode_type self._resp = resp self._data_set_wrapper = None if (self._resp.data is not None): self._data_set_wrapper = DataSetWrapper(resp.data, self._decode_type)<|docstring|>get data from ResultSet<|endoftext|>
57d324efdf7d560826691846caef381f6068987464f1fd7ad8735aff5328590a
def latency(self): '\n unit us\n ' return self._resp.latency_in_us
unit us
python/nebula2/data/ResultSet.py
latency
taeb3/nebula-clients
15
python
def latency(self): '\n \n ' return self._resp.latency_in_us
def latency(self): '\n \n ' return self._resp.latency_in_us<|docstring|>unit us<|endoftext|>
be92a8129d8e910759ce91072a60d073408b9bb83d47230280cb221d01e52d5f
def keys(self): '\n get colNames\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_col_names()
get colNames
python/nebula2/data/ResultSet.py
keys
taeb3/nebula-clients
15
python
def keys(self): '\n \n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_col_names()
def keys(self): '\n \n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_col_names()<|docstring|>get colNames<|endoftext|>
e52423be80aa647a92495f1c19a51b7901d3a89fe2cda7f5578ff018ea70d045
def row_size(self): '\n get one row size\n ' if (self._data_set_wrapper is None): return 0 return len(self._data_set_wrapper.get_rows())
get one row size
python/nebula2/data/ResultSet.py
row_size
taeb3/nebula-clients
15
python
def row_size(self): '\n \n ' if (self._data_set_wrapper is None): return 0 return len(self._data_set_wrapper.get_rows())
def row_size(self): '\n \n ' if (self._data_set_wrapper is None): return 0 return len(self._data_set_wrapper.get_rows())<|docstring|>get one row size<|endoftext|>
d95d64110d217f5445e726ce9541cedfaa0cb7473b566e455e6cbde6a537e22f
def col_size(self): '\n get one col size\n ' if (self._data_set_wrapper is None): return 0 return len(self._data_set_wrapper.get_col_names())
get one col size
python/nebula2/data/ResultSet.py
col_size
taeb3/nebula-clients
15
python
def col_size(self): '\n \n ' if (self._data_set_wrapper is None): return 0 return len(self._data_set_wrapper.get_col_names())
def col_size(self): '\n \n ' if (self._data_set_wrapper is None): return 0 return len(self._data_set_wrapper.get_col_names())<|docstring|>get one col size<|endoftext|>
dbdc9cccb93da470c5c29f7fcac6f8e8f91e5705dde127b5c654a52c526736ac
def get_row_types(self): '\n Get row types\n :param empty\n :return: list<int>\n ttypes.Value.__EMPTY__ = 0\n ttypes.Value.NVAL = 1\n ttypes.Value.BVAL = 2\n ttypes.Value.IVAL = 3\n ttypes.Value.FVAL = 4\n ttypes.Value.SVAL = 5\n ttypes.Value.DVAL = 6\n ttypes.Value.TVAL = 7\n ttypes.Value.DTVAL = 8\n ttypes.Value.VVAL = 9\n ttypes.Value.EVAL = 10\n ttypes.Value.PVAL = 11\n ttypes.Value.LVAL = 12\n ttypes.Value.MVAL = 13\n ttypes.Value.UVAL = 14\n ttypes.Value.GVAL = 15\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_row_types()
Get row types :param empty :return: list<int> ttypes.Value.__EMPTY__ = 0 ttypes.Value.NVAL = 1 ttypes.Value.BVAL = 2 ttypes.Value.IVAL = 3 ttypes.Value.FVAL = 4 ttypes.Value.SVAL = 5 ttypes.Value.DVAL = 6 ttypes.Value.TVAL = 7 ttypes.Value.DTVAL = 8 ttypes.Value.VVAL = 9 ttypes.Value.EVAL = 10 ttypes.Value.PVAL = 11 ttypes.Value.LVAL = 12 ttypes.Value.MVAL = 13 ttypes.Value.UVAL = 14 ttypes.Value.GVAL = 15
python/nebula2/data/ResultSet.py
get_row_types
taeb3/nebula-clients
15
python
def get_row_types(self): '\n Get row types\n :param empty\n :return: list<int>\n ttypes.Value.__EMPTY__ = 0\n ttypes.Value.NVAL = 1\n ttypes.Value.BVAL = 2\n ttypes.Value.IVAL = 3\n ttypes.Value.FVAL = 4\n ttypes.Value.SVAL = 5\n ttypes.Value.DVAL = 6\n ttypes.Value.TVAL = 7\n ttypes.Value.DTVAL = 8\n ttypes.Value.VVAL = 9\n ttypes.Value.EVAL = 10\n ttypes.Value.PVAL = 11\n ttypes.Value.LVAL = 12\n ttypes.Value.MVAL = 13\n ttypes.Value.UVAL = 14\n ttypes.Value.GVAL = 15\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_row_types()
def get_row_types(self): '\n Get row types\n :param empty\n :return: list<int>\n ttypes.Value.__EMPTY__ = 0\n ttypes.Value.NVAL = 1\n ttypes.Value.BVAL = 2\n ttypes.Value.IVAL = 3\n ttypes.Value.FVAL = 4\n ttypes.Value.SVAL = 5\n ttypes.Value.DVAL = 6\n ttypes.Value.TVAL = 7\n ttypes.Value.DTVAL = 8\n ttypes.Value.VVAL = 9\n ttypes.Value.EVAL = 10\n ttypes.Value.PVAL = 11\n ttypes.Value.LVAL = 12\n ttypes.Value.MVAL = 13\n ttypes.Value.UVAL = 14\n ttypes.Value.GVAL = 15\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_row_types()<|docstring|>Get row types :param empty :return: list<int> ttypes.Value.__EMPTY__ = 0 ttypes.Value.NVAL = 1 ttypes.Value.BVAL = 2 ttypes.Value.IVAL = 3 ttypes.Value.FVAL = 4 ttypes.Value.SVAL = 5 ttypes.Value.DVAL = 6 ttypes.Value.TVAL = 7 ttypes.Value.DTVAL = 8 ttypes.Value.VVAL = 9 ttypes.Value.EVAL = 10 ttypes.Value.PVAL = 11 ttypes.Value.LVAL = 12 ttypes.Value.MVAL = 13 ttypes.Value.UVAL = 14 ttypes.Value.GVAL = 15<|endoftext|>
72dfcff4fb50374735105fcf6646d905a23a7f98130c8305ab9369227bbb691b
def row_values(self, row_index): '\n Get row values\n :param index: the Record index\n :return: list<ValueWrapper>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.row_values(row_index)
Get row values :param index: the Record index :return: list<ValueWrapper>
python/nebula2/data/ResultSet.py
row_values
taeb3/nebula-clients
15
python
def row_values(self, row_index): '\n Get row values\n :param index: the Record index\n :return: list<ValueWrapper>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.row_values(row_index)
def row_values(self, row_index): '\n Get row values\n :param index: the Record index\n :return: list<ValueWrapper>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.row_values(row_index)<|docstring|>Get row values :param index: the Record index :return: list<ValueWrapper><|endoftext|>
eb7d9d0fa1594eeb7f709256f06b6c9dc35924e432ff8b4994fb3e2910c20ed8
def column_values(self, key): '\n get column values\n :param key: the col name\n :return: list<ValueWrapper>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.column_values(key)
get column values :param key: the col name :return: list<ValueWrapper>
python/nebula2/data/ResultSet.py
column_values
taeb3/nebula-clients
15
python
def column_values(self, key): '\n get column values\n :param key: the col name\n :return: list<ValueWrapper>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.column_values(key)
def column_values(self, key): '\n get column values\n :param key: the col name\n :return: list<ValueWrapper>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.column_values(key)<|docstring|>get column values :param key: the col name :return: list<ValueWrapper><|endoftext|>
ff59138696e13017cfe5fc80a523f80ab96dab9826197512bbc47dbb33d924f8
def rows(self): '\n get all rows\n :param key: empty\n :return: list<Row>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_rows()
get all rows :param key: empty :return: list<Row>
python/nebula2/data/ResultSet.py
rows
taeb3/nebula-clients
15
python
def rows(self): '\n get all rows\n :param key: empty\n :return: list<Row>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_rows()
def rows(self): '\n get all rows\n :param key: empty\n :return: list<Row>\n ' if (self._data_set_wrapper is None): return [] return self._data_set_wrapper.get_rows()<|docstring|>get all rows :param key: empty :return: list<Row><|endoftext|>
ca9501c93273f4bcac82aa66d92c1399a86cb14e0a1cf9381d16243fd8b0a249
@pytest.fixture def clean_server(initialize_test_dir): '\n Put testing server in a defined state: only minimal metadata (instruments)\n and records present\n ' config = json.load(open(SERVER_CONFIG_YAML, 'r')) redproj = redcap.Project(config['api_url'], config['api_token'], lazy=True) default_datadict = pd.DataFrame(data=[(['record_id', 'my_first_instrument', 'text', 'Record ID'] + ([''] * 14))], columns=map_header_csv_to_json) redproj.import_metadata(default_datadict, format='csv') redproj = redcap.Project(config['api_url'], config['api_token'], lazy=False) default_records = pd.DataFrame(columns=['record_id', 'my_first_instrument_complete']) redproj.import_records(default_records, format='csv', return_format='json', overwrite='overwrite')
Put testing server in a defined state: only minimal metadata (instruments) and records present
redcap_bridge/test_redcap/test_server_interface.py
clean_server
killianrochet/DigLabTools
2
python
@pytest.fixture def clean_server(initialize_test_dir): '\n Put testing server in a defined state: only minimal metadata (instruments)\n and records present\n ' config = json.load(open(SERVER_CONFIG_YAML, 'r')) redproj = redcap.Project(config['api_url'], config['api_token'], lazy=True) default_datadict = pd.DataFrame(data=[(['record_id', 'my_first_instrument', 'text', 'Record ID'] + ([] * 14))], columns=map_header_csv_to_json) redproj.import_metadata(default_datadict, format='csv') redproj = redcap.Project(config['api_url'], config['api_token'], lazy=False) default_records = pd.DataFrame(columns=['record_id', 'my_first_instrument_complete']) redproj.import_records(default_records, format='csv', return_format='json', overwrite='overwrite')
@pytest.fixture def clean_server(initialize_test_dir): '\n Put testing server in a defined state: only minimal metadata (instruments)\n and records present\n ' config = json.load(open(SERVER_CONFIG_YAML, 'r')) redproj = redcap.Project(config['api_url'], config['api_token'], lazy=True) default_datadict = pd.DataFrame(data=[(['record_id', 'my_first_instrument', 'text', 'Record ID'] + ([] * 14))], columns=map_header_csv_to_json) redproj.import_metadata(default_datadict, format='csv') redproj = redcap.Project(config['api_url'], config['api_token'], lazy=False) default_records = pd.DataFrame(columns=['record_id', 'my_first_instrument_complete']) redproj.import_records(default_records, format='csv', return_format='json', overwrite='overwrite')<|docstring|>Put testing server in a defined state: only minimal metadata (instruments) and records present<|endoftext|>
032da9ff25c933bcb194df46adb74db4ac2fa56c3d0002e72f6060d87cb15e7a
def test_upload_datadict(clean_server, initialize_test_dir): '\n Test uploading a survey definition (datadict) csv to the server\n ' metadata_csv = ((test_directory / 'testfiles') / 'metadata.csv') res = upload_datadict(metadata_csv, SERVER_CONFIG_YAML) with open(metadata_csv) as f: lines = f.readlines() exp = (len(lines) - 1) assert (exp == res)
Test uploading a survey definition (datadict) csv to the server
redcap_bridge/test_redcap/test_server_interface.py
test_upload_datadict
killianrochet/DigLabTools
2
python
def test_upload_datadict(clean_server, initialize_test_dir): '\n \n ' metadata_csv = ((test_directory / 'testfiles') / 'metadata.csv') res = upload_datadict(metadata_csv, SERVER_CONFIG_YAML) with open(metadata_csv) as f: lines = f.readlines() exp = (len(lines) - 1) assert (exp == res)
def test_upload_datadict(clean_server, initialize_test_dir): '\n \n ' metadata_csv = ((test_directory / 'testfiles') / 'metadata.csv') res = upload_datadict(metadata_csv, SERVER_CONFIG_YAML) with open(metadata_csv) as f: lines = f.readlines() exp = (len(lines) - 1) assert (exp == res)<|docstring|>Test uploading a survey definition (datadict) csv to the server<|endoftext|>
3d467f9c5a79a2eea9eb58b382f5bbc085713643c8e8a33db26156828125a8ef
def test_upload_records(clean_server, initialize_test_dir): '\n Test upload of records to the server\n\n TODO: Finally this test should test the corresponding redcap_bridge\n `upload_records` method instead of pycap itself\n ' config = json.load(open(SERVER_CONFIG_YAML, 'r')) redproj = redcap.Project(config['api_url'], config['api_token'], lazy=False) upload_datadict(((test_directory / 'testfiles') / 'metadata.csv'), SERVER_CONFIG_YAML) uploaded_records = pd.read_csv(((test_directory / 'testfiles') / 'record.csv'), index_col=0, dtype='str') redproj.import_records(uploaded_records, format='csv', overwrite='overwrite')
Test upload of records to the server TODO: Finally this test should test the corresponding redcap_bridge `upload_records` method instead of pycap itself
redcap_bridge/test_redcap/test_server_interface.py
test_upload_records
killianrochet/DigLabTools
2
python
def test_upload_records(clean_server, initialize_test_dir): '\n Test upload of records to the server\n\n TODO: Finally this test should test the corresponding redcap_bridge\n `upload_records` method instead of pycap itself\n ' config = json.load(open(SERVER_CONFIG_YAML, 'r')) redproj = redcap.Project(config['api_url'], config['api_token'], lazy=False) upload_datadict(((test_directory / 'testfiles') / 'metadata.csv'), SERVER_CONFIG_YAML) uploaded_records = pd.read_csv(((test_directory / 'testfiles') / 'record.csv'), index_col=0, dtype='str') redproj.import_records(uploaded_records, format='csv', overwrite='overwrite')
def test_upload_records(clean_server, initialize_test_dir): '\n Test upload of records to the server\n\n TODO: Finally this test should test the corresponding redcap_bridge\n `upload_records` method instead of pycap itself\n ' config = json.load(open(SERVER_CONFIG_YAML, 'r')) redproj = redcap.Project(config['api_url'], config['api_token'], lazy=False) upload_datadict(((test_directory / 'testfiles') / 'metadata.csv'), SERVER_CONFIG_YAML) uploaded_records = pd.read_csv(((test_directory / 'testfiles') / 'record.csv'), index_col=0, dtype='str') redproj.import_records(uploaded_records, format='csv', overwrite='overwrite')<|docstring|>Test upload of records to the server TODO: Finally this test should test the corresponding redcap_bridge `upload_records` method instead of pycap itself<|endoftext|>
2df0251ee9c2e0ace78e54584455d40820d04be852fcb831d6ccf8d3029743ec
def test_download_records(clean_server, initialize_test_dir): '\n Download datadict from server and compare to previously uploaded datadict\n ' original_metadata_csv = ((test_directory / 'testfiles') / 'metadata.csv') upload_datadict(original_metadata_csv, SERVER_CONFIG_YAML) downloaded_metadata_csv = ((test_directory / 'testfiles') / 'metadata_downloaded.csv') download_datadict(downloaded_metadata_csv, SERVER_CONFIG_YAML) import csv original_reader = csv.reader(open(original_metadata_csv)) download_reader = csv.reader(open(downloaded_metadata_csv)) original_header = original_reader.__next__() downloaded_header = download_reader.__next__() for (oh, dh) in zip(original_header, downloaded_header): assert (map_header_csv_to_json[oh] == dh) for (oline, dline) in zip(original_reader, download_reader): assert (oline == dline)
Download datadict from server and compare to previously uploaded datadict
redcap_bridge/test_redcap/test_server_interface.py
test_download_records
killianrochet/DigLabTools
2
python
def test_download_records(clean_server, initialize_test_dir): '\n \n ' original_metadata_csv = ((test_directory / 'testfiles') / 'metadata.csv') upload_datadict(original_metadata_csv, SERVER_CONFIG_YAML) downloaded_metadata_csv = ((test_directory / 'testfiles') / 'metadata_downloaded.csv') download_datadict(downloaded_metadata_csv, SERVER_CONFIG_YAML) import csv original_reader = csv.reader(open(original_metadata_csv)) download_reader = csv.reader(open(downloaded_metadata_csv)) original_header = original_reader.__next__() downloaded_header = download_reader.__next__() for (oh, dh) in zip(original_header, downloaded_header): assert (map_header_csv_to_json[oh] == dh) for (oline, dline) in zip(original_reader, download_reader): assert (oline == dline)
def test_download_records(clean_server, initialize_test_dir): '\n \n ' original_metadata_csv = ((test_directory / 'testfiles') / 'metadata.csv') upload_datadict(original_metadata_csv, SERVER_CONFIG_YAML) downloaded_metadata_csv = ((test_directory / 'testfiles') / 'metadata_downloaded.csv') download_datadict(downloaded_metadata_csv, SERVER_CONFIG_YAML) import csv original_reader = csv.reader(open(original_metadata_csv)) download_reader = csv.reader(open(downloaded_metadata_csv)) original_header = original_reader.__next__() downloaded_header = download_reader.__next__() for (oh, dh) in zip(original_header, downloaded_header): assert (map_header_csv_to_json[oh] == dh) for (oline, dline) in zip(original_reader, download_reader): assert (oline == dline)<|docstring|>Download datadict from server and compare to previously uploaded datadict<|endoftext|>
02a30c0926f14ec92a4be728c45318a0a9b5dbd18b049df233716d4487465230
def get_initializer(initializer_seed=42.0): 'Creates a `tf.initializers.glorot_normal` with the given seed.\n Args:\n initializer_seed: int, initializer seed.\n Returns:\n GlorotNormal initializer with seed = `initializer_seed`.\n ' return tf.keras.initializers.GlorotNormal(seed=initializer_seed)
Creates a `tf.initializers.glorot_normal` with the given seed. Args: initializer_seed: int, initializer seed. Returns: GlorotNormal initializer with seed = `initializer_seed`.
models/vocoder.py
get_initializer
Z-yq/TensorflowTTS
50
python
def get_initializer(initializer_seed=42.0): 'Creates a `tf.initializers.glorot_normal` with the given seed.\n Args:\n initializer_seed: int, initializer seed.\n Returns:\n GlorotNormal initializer with seed = `initializer_seed`.\n ' return tf.keras.initializers.GlorotNormal(seed=initializer_seed)
def get_initializer(initializer_seed=42.0): 'Creates a `tf.initializers.glorot_normal` with the given seed.\n Args:\n initializer_seed: int, initializer seed.\n Returns:\n GlorotNormal initializer with seed = `initializer_seed`.\n ' return tf.keras.initializers.GlorotNormal(seed=initializer_seed)<|docstring|>Creates a `tf.initializers.glorot_normal` with the given seed. Args: initializer_seed: int, initializer seed. Returns: GlorotNormal initializer with seed = `initializer_seed`.<|endoftext|>
660092e7f31d61db19e83683c73551a2f17f721505f4625317b5b4dd8e155e2a
def __init__(self, input_feature='raw', num_mels=80, out_channels=80, kernel_size=7, filters=1024, use_bias=True, hop_size=0.016, sample_rate=8000, stack_kernel_size=3, stacks=5, nonlinear_activation='LeakyReLU', nonlinear_activation_params={'alpha': 0.2}, padding_type='REFLECT', use_final_nolinear_activation=True, is_weight_norm=False, initializer_seed=42, **kwargs): 'Init parameters for MelGAN Generator model.' if (input_feature == 'raw'): assert (out_channels == num_mels), 'out_channels must equal num_mels while input_feature is "raw"' hop_size = int((sample_rate * hop_size)) if (input_feature != 'raw'): upsample_scales = self.get_scales((hop_size // out_channels)) else: upsample_scales = ([1] * 3) self.out_channels = out_channels self.kernel_size = kernel_size self.num_mels = num_mels self.filters = filters self.use_bias = use_bias self.upsample_scales = upsample_scales self.stack_kernel_size = stack_kernel_size self.stacks = stacks self.nonlinear_activation = nonlinear_activation self.nonlinear_activation_params = nonlinear_activation_params self.padding_type = padding_type self.use_final_nolinear_activation = use_final_nolinear_activation self.is_weight_norm = is_weight_norm self.initializer_seed = initializer_seed
Init parameters for MelGAN Generator model.
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, input_feature='raw', num_mels=80, out_channels=80, kernel_size=7, filters=1024, use_bias=True, hop_size=0.016, sample_rate=8000, stack_kernel_size=3, stacks=5, nonlinear_activation='LeakyReLU', nonlinear_activation_params={'alpha': 0.2}, padding_type='REFLECT', use_final_nolinear_activation=True, is_weight_norm=False, initializer_seed=42, **kwargs): if (input_feature == 'raw'): assert (out_channels == num_mels), 'out_channels must equal num_mels while input_feature is "raw"' hop_size = int((sample_rate * hop_size)) if (input_feature != 'raw'): upsample_scales = self.get_scales((hop_size // out_channels)) else: upsample_scales = ([1] * 3) self.out_channels = out_channels self.kernel_size = kernel_size self.num_mels = num_mels self.filters = filters self.use_bias = use_bias self.upsample_scales = upsample_scales self.stack_kernel_size = stack_kernel_size self.stacks = stacks self.nonlinear_activation = nonlinear_activation self.nonlinear_activation_params = nonlinear_activation_params self.padding_type = padding_type self.use_final_nolinear_activation = use_final_nolinear_activation self.is_weight_norm = is_weight_norm self.initializer_seed = initializer_seed
def __init__(self, input_feature='raw', num_mels=80, out_channels=80, kernel_size=7, filters=1024, use_bias=True, hop_size=0.016, sample_rate=8000, stack_kernel_size=3, stacks=5, nonlinear_activation='LeakyReLU', nonlinear_activation_params={'alpha': 0.2}, padding_type='REFLECT', use_final_nolinear_activation=True, is_weight_norm=False, initializer_seed=42, **kwargs): if (input_feature == 'raw'): assert (out_channels == num_mels), 'out_channels must equal num_mels while input_feature is "raw"' hop_size = int((sample_rate * hop_size)) if (input_feature != 'raw'): upsample_scales = self.get_scales((hop_size // out_channels)) else: upsample_scales = ([1] * 3) self.out_channels = out_channels self.kernel_size = kernel_size self.num_mels = num_mels self.filters = filters self.use_bias = use_bias self.upsample_scales = upsample_scales self.stack_kernel_size = stack_kernel_size self.stacks = stacks self.nonlinear_activation = nonlinear_activation self.nonlinear_activation_params = nonlinear_activation_params self.padding_type = padding_type self.use_final_nolinear_activation = use_final_nolinear_activation self.is_weight_norm = is_weight_norm self.initializer_seed = initializer_seed<|docstring|>Init parameters for MelGAN Generator model.<|endoftext|>
93de186098f39a1bceabf428567ca8f0f90ca7705711df569f00f8f7350531ff
def __init__(self, dis_out_channels=1, dis_scales=3, dis_downsample_pooling='AveragePooling1D', dis_downsample_pooling_params={'pool_size': 4, 'strides': 2}, dis_kernel_sizes=[5, 3], dis_filters=32, dis_max_downsample_filters=1024, dis_use_bias=True, dis_downsample_scales=[2, 2, 2, 2], dis_nonlinear_activation='LeakyReLU', dis_nonlinear_activation_params={'alpha': 0.2}, dis_padding_type='REFLECT', dis_is_weight_norm=True, dis_initializer_seed=42, **kwargs): 'Init parameters for MelGAN Discriminator model.' self.out_channels = dis_out_channels self.scales = dis_scales self.downsample_pooling = dis_downsample_pooling self.downsample_pooling_params = dis_downsample_pooling_params self.kernel_sizes = dis_kernel_sizes self.filters = dis_filters self.max_downsample_filters = dis_max_downsample_filters self.use_bias = dis_use_bias self.downsample_scales = dis_downsample_scales self.nonlinear_activation = dis_nonlinear_activation self.nonlinear_activation_params = dis_nonlinear_activation_params self.padding_type = dis_padding_type self.is_weight_norm = dis_is_weight_norm self.initializer_seed = dis_initializer_seed
Init parameters for MelGAN Discriminator model.
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, dis_out_channels=1, dis_scales=3, dis_downsample_pooling='AveragePooling1D', dis_downsample_pooling_params={'pool_size': 4, 'strides': 2}, dis_kernel_sizes=[5, 3], dis_filters=32, dis_max_downsample_filters=1024, dis_use_bias=True, dis_downsample_scales=[2, 2, 2, 2], dis_nonlinear_activation='LeakyReLU', dis_nonlinear_activation_params={'alpha': 0.2}, dis_padding_type='REFLECT', dis_is_weight_norm=True, dis_initializer_seed=42, **kwargs): self.out_channels = dis_out_channels self.scales = dis_scales self.downsample_pooling = dis_downsample_pooling self.downsample_pooling_params = dis_downsample_pooling_params self.kernel_sizes = dis_kernel_sizes self.filters = dis_filters self.max_downsample_filters = dis_max_downsample_filters self.use_bias = dis_use_bias self.downsample_scales = dis_downsample_scales self.nonlinear_activation = dis_nonlinear_activation self.nonlinear_activation_params = dis_nonlinear_activation_params self.padding_type = dis_padding_type self.is_weight_norm = dis_is_weight_norm self.initializer_seed = dis_initializer_seed
def __init__(self, dis_out_channels=1, dis_scales=3, dis_downsample_pooling='AveragePooling1D', dis_downsample_pooling_params={'pool_size': 4, 'strides': 2}, dis_kernel_sizes=[5, 3], dis_filters=32, dis_max_downsample_filters=1024, dis_use_bias=True, dis_downsample_scales=[2, 2, 2, 2], dis_nonlinear_activation='LeakyReLU', dis_nonlinear_activation_params={'alpha': 0.2}, dis_padding_type='REFLECT', dis_is_weight_norm=True, dis_initializer_seed=42, **kwargs): self.out_channels = dis_out_channels self.scales = dis_scales self.downsample_pooling = dis_downsample_pooling self.downsample_pooling_params = dis_downsample_pooling_params self.kernel_sizes = dis_kernel_sizes self.filters = dis_filters self.max_downsample_filters = dis_max_downsample_filters self.use_bias = dis_use_bias self.downsample_scales = dis_downsample_scales self.nonlinear_activation = dis_nonlinear_activation self.nonlinear_activation_params = dis_nonlinear_activation_params self.padding_type = dis_padding_type self.is_weight_norm = dis_is_weight_norm self.initializer_seed = dis_initializer_seed<|docstring|>Init parameters for MelGAN Discriminator model.<|endoftext|>
6402d9fc5e9d175d6682df7898edc2885d829ac5958c18b8ee3307c50a64b625
def __init__(self, config, **kwargs): 'Initialize TFMelGANGenerator module.\n Args:\n config: config object of Melgan generator.\n ' super(TFMultiWindowGenerator, self).__init__(**kwargs) assert (config.filters >= np.prod(config.upsample_scales)) assert ((config.filters % (2 ** len(config.upsample_scales))) == 0) self.config = config layers = [] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='first_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='second_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed)), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='third_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] for (i, upsample_scale) in enumerate(config.upsample_scales): layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFConvTranspose1d(filters=(config.filters // (2 ** (i + 1))), kernel_size=(upsample_scale * 2), strides=upsample_scale, padding='same', is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='conv_transpose_._{}'.format(i))] for j in range(config.stacks): layers += [TFResidualStack(kernel_size=config.stack_kernel_size, filters=max((config.filters // (2 ** (i + 1))), 128), dilation_rate=(config.stack_kernel_size ** j), use_bias=config.use_bias, nonlinear_activation=config.nonlinear_activation, nonlinear_activation_params=config.nonlinear_activation_params, is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='residual_stack_._{}._._{}'.format(i, j))] self.fc = tf.keras.layers.Dense(config.filters) self.melgan_feature = tf.keras.Sequential(layers) self.reshape1 = tf.keras.layers.Reshape([(- 1), ((self.config.window * config.filters) // 2)]) self.reshape2 = tf.keras.layers.Reshape([(- 1), (self.config.window * config.filters)]) self.reshape = tf.keras.layers.Reshape([(- 1), 1]) self.out_layer1 = tf.keras.layers.Conv1D(filters=self.config.out_channels, kernel_size=7, strides=1, padding='causal') self.out_layer2 = tf.keras.layers.Dense(((self.config.window * self.config.out_channels) // 2)) self.out_layer3 = tf.keras.layers.Dense((self.config.window * self.config.out_channels)) self.out_c_score = tf.keras.layers.Conv1D(filters=3, kernel_size=41, padding='causal', activation='softmax')
Initialize TFMelGANGenerator module. Args: config: config object of Melgan generator.
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, config, **kwargs): 'Initialize TFMelGANGenerator module.\n Args:\n config: config object of Melgan generator.\n ' super(TFMultiWindowGenerator, self).__init__(**kwargs) assert (config.filters >= np.prod(config.upsample_scales)) assert ((config.filters % (2 ** len(config.upsample_scales))) == 0) self.config = config layers = [] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='first_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='second_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed)), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='third_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] for (i, upsample_scale) in enumerate(config.upsample_scales): layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFConvTranspose1d(filters=(config.filters // (2 ** (i + 1))), kernel_size=(upsample_scale * 2), strides=upsample_scale, padding='same', is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='conv_transpose_._{}'.format(i))] for j in range(config.stacks): layers += [TFResidualStack(kernel_size=config.stack_kernel_size, filters=max((config.filters // (2 ** (i + 1))), 128), dilation_rate=(config.stack_kernel_size ** j), use_bias=config.use_bias, nonlinear_activation=config.nonlinear_activation, nonlinear_activation_params=config.nonlinear_activation_params, is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='residual_stack_._{}._._{}'.format(i, j))] self.fc = tf.keras.layers.Dense(config.filters) self.melgan_feature = tf.keras.Sequential(layers) self.reshape1 = tf.keras.layers.Reshape([(- 1), ((self.config.window * config.filters) // 2)]) self.reshape2 = tf.keras.layers.Reshape([(- 1), (self.config.window * config.filters)]) self.reshape = tf.keras.layers.Reshape([(- 1), 1]) self.out_layer1 = tf.keras.layers.Conv1D(filters=self.config.out_channels, kernel_size=7, strides=1, padding='causal') self.out_layer2 = tf.keras.layers.Dense(((self.config.window * self.config.out_channels) // 2)) self.out_layer3 = tf.keras.layers.Dense((self.config.window * self.config.out_channels)) self.out_c_score = tf.keras.layers.Conv1D(filters=3, kernel_size=41, padding='causal', activation='softmax')
def __init__(self, config, **kwargs): 'Initialize TFMelGANGenerator module.\n Args:\n config: config object of Melgan generator.\n ' super(TFMultiWindowGenerator, self).__init__(**kwargs) assert (config.filters >= np.prod(config.upsample_scales)) assert ((config.filters % (2 ** len(config.upsample_scales))) == 0) self.config = config layers = [] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='first_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='second_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed)), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='third_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] for (i, upsample_scale) in enumerate(config.upsample_scales): layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFConvTranspose1d(filters=(config.filters // (2 ** (i + 1))), kernel_size=(upsample_scale * 2), strides=upsample_scale, padding='same', is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='conv_transpose_._{}'.format(i))] for j in range(config.stacks): layers += [TFResidualStack(kernel_size=config.stack_kernel_size, filters=max((config.filters // (2 ** (i + 1))), 128), dilation_rate=(config.stack_kernel_size ** j), use_bias=config.use_bias, nonlinear_activation=config.nonlinear_activation, nonlinear_activation_params=config.nonlinear_activation_params, is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='residual_stack_._{}._._{}'.format(i, j))] self.fc = tf.keras.layers.Dense(config.filters) self.melgan_feature = tf.keras.Sequential(layers) self.reshape1 = tf.keras.layers.Reshape([(- 1), ((self.config.window * config.filters) // 2)]) self.reshape2 = tf.keras.layers.Reshape([(- 1), (self.config.window * config.filters)]) self.reshape = tf.keras.layers.Reshape([(- 1), 1]) self.out_layer1 = tf.keras.layers.Conv1D(filters=self.config.out_channels, kernel_size=7, strides=1, padding='causal') self.out_layer2 = tf.keras.layers.Dense(((self.config.window * self.config.out_channels) // 2)) self.out_layer3 = tf.keras.layers.Dense((self.config.window * self.config.out_channels)) self.out_c_score = tf.keras.layers.Conv1D(filters=3, kernel_size=41, padding='causal', activation='softmax')<|docstring|>Initialize TFMelGANGenerator module. Args: config: config object of Melgan generator.<|endoftext|>
803195b0435414255c2631d2072f376c220f2e9e89c3f7f2eca22987e6717e51
def __init__(self, padding_size, padding_type='REFLECT', **kwargs): 'Initialize TFReflectionPad1d module.\n\n Args:\n padding_size (int)\n padding_type (str) ("CONSTANT", "REFLECT", or "SYMMETRIC". Default is "REFLECT")\n ' super().__init__(**kwargs) self.padding_size = padding_size self.padding_type = padding_type
Initialize TFReflectionPad1d module. Args: padding_size (int) padding_type (str) ("CONSTANT", "REFLECT", or "SYMMETRIC". Default is "REFLECT")
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, padding_size, padding_type='REFLECT', **kwargs): 'Initialize TFReflectionPad1d module.\n\n Args:\n padding_size (int)\n padding_type (str) ("CONSTANT", "REFLECT", or "SYMMETRIC". Default is "REFLECT")\n ' super().__init__(**kwargs) self.padding_size = padding_size self.padding_type = padding_type
def __init__(self, padding_size, padding_type='REFLECT', **kwargs): 'Initialize TFReflectionPad1d module.\n\n Args:\n padding_size (int)\n padding_type (str) ("CONSTANT", "REFLECT", or "SYMMETRIC". Default is "REFLECT")\n ' super().__init__(**kwargs) self.padding_size = padding_size self.padding_type = padding_type<|docstring|>Initialize TFReflectionPad1d module. Args: padding_size (int) padding_type (str) ("CONSTANT", "REFLECT", or "SYMMETRIC". Default is "REFLECT")<|endoftext|>
3c74acd0416578c7b33ffb759c5d99a85fa986326ccca7c8314d1167cfd1f99f
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Padded tensor (B, T + 2 * padding_size, C).\n ' return tf.pad(x, [[0, 0], [self.padding_size, self.padding_size], [0, 0]], self.padding_type)
Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Padded tensor (B, T + 2 * padding_size, C).
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Padded tensor (B, T + 2 * padding_size, C).\n ' return tf.pad(x, [[0, 0], [self.padding_size, self.padding_size], [0, 0]], self.padding_type)
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Padded tensor (B, T + 2 * padding_size, C).\n ' return tf.pad(x, [[0, 0], [self.padding_size, self.padding_size], [0, 0]], self.padding_type)<|docstring|>Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Padded tensor (B, T + 2 * padding_size, C).<|endoftext|>
9f117eb18f11adb35165e00fdb7d8f235e0fc492c962f0fa5b2a39fefc4591b2
def __init__(self, filters, kernel_size, strides, padding, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFConvTranspose1d( module.\n Args:\n filters (int): Number of filters.\n kernel_size (int): kernel size.\n strides (int): Stride width.\n padding (str): Padding type ("same" or "valid").\n ' super().__init__(**kwargs) self.conv1 = tf.keras.layers.Conv1D(filters=(filters * strides), kernel_size=kernel_size, padding='same', kernel_initializer=get_initializer(initializer_seed)) self.up = tf.keras.layers.Reshape([(- 1), filters]) self.conv2 = tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, padding='same', kernel_initializer=get_initializer(initializer_seed)) if is_weight_norm: self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)
Initialize TFConvTranspose1d( module. Args: filters (int): Number of filters. kernel_size (int): kernel size. strides (int): Stride width. padding (str): Padding type ("same" or "valid").
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, filters, kernel_size, strides, padding, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFConvTranspose1d( module.\n Args:\n filters (int): Number of filters.\n kernel_size (int): kernel size.\n strides (int): Stride width.\n padding (str): Padding type ("same" or "valid").\n ' super().__init__(**kwargs) self.conv1 = tf.keras.layers.Conv1D(filters=(filters * strides), kernel_size=kernel_size, padding='same', kernel_initializer=get_initializer(initializer_seed)) self.up = tf.keras.layers.Reshape([(- 1), filters]) self.conv2 = tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, padding='same', kernel_initializer=get_initializer(initializer_seed)) if is_weight_norm: self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)
def __init__(self, filters, kernel_size, strides, padding, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFConvTranspose1d( module.\n Args:\n filters (int): Number of filters.\n kernel_size (int): kernel size.\n strides (int): Stride width.\n padding (str): Padding type ("same" or "valid").\n ' super().__init__(**kwargs) self.conv1 = tf.keras.layers.Conv1D(filters=(filters * strides), kernel_size=kernel_size, padding='same', kernel_initializer=get_initializer(initializer_seed)) self.up = tf.keras.layers.Reshape([(- 1), filters]) self.conv2 = tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, padding='same', kernel_initializer=get_initializer(initializer_seed)) if is_weight_norm: self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)<|docstring|>Initialize TFConvTranspose1d( module. Args: filters (int): Number of filters. kernel_size (int): kernel size. strides (int): Stride width. padding (str): Padding type ("same" or "valid").<|endoftext|>
691d7e7cc461e055cb8042bc8c75f254f20014cc70e76563c97ef1adda19cb8c
def call(self, x): "Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T', C').\n " x = self.conv1(x) x = self.up(x) x = self.conv2(x) return x
Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Output tensor (B, T', C').
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, x): "Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T', C').\n " x = self.conv1(x) x = self.up(x) x = self.conv2(x) return x
def call(self, x): "Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T', C').\n " x = self.conv1(x) x = self.up(x) x = self.conv2(x) return x<|docstring|>Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Output tensor (B, T', C').<|endoftext|>
9509d1d6ce8e2c226ece017ebcc44bfaa6fc576fa21d47387f6c045df5d69022
def __init__(self, filters, kernel_size, strides, padding, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFConvTranspose1d( module.\n Args:\n filters (int): Number of filters.\n kernel_size (int): kernel size.\n strides (int): Stride width.\n padding (str): Padding type ("same" or "valid").\n ' super().__init__(**kwargs) self.conv1d_transpose = tf.keras.layers.Conv2DTranspose(filters=filters, kernel_size=(kernel_size, 1), strides=(strides, 1), padding='same', kernel_initializer=get_initializer(initializer_seed)) if is_weight_norm: self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)
Initialize TFConvTranspose1d( module. Args: filters (int): Number of filters. kernel_size (int): kernel size. strides (int): Stride width. padding (str): Padding type ("same" or "valid").
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, filters, kernel_size, strides, padding, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFConvTranspose1d( module.\n Args:\n filters (int): Number of filters.\n kernel_size (int): kernel size.\n strides (int): Stride width.\n padding (str): Padding type ("same" or "valid").\n ' super().__init__(**kwargs) self.conv1d_transpose = tf.keras.layers.Conv2DTranspose(filters=filters, kernel_size=(kernel_size, 1), strides=(strides, 1), padding='same', kernel_initializer=get_initializer(initializer_seed)) if is_weight_norm: self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)
def __init__(self, filters, kernel_size, strides, padding, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFConvTranspose1d( module.\n Args:\n filters (int): Number of filters.\n kernel_size (int): kernel size.\n strides (int): Stride width.\n padding (str): Padding type ("same" or "valid").\n ' super().__init__(**kwargs) self.conv1d_transpose = tf.keras.layers.Conv2DTranspose(filters=filters, kernel_size=(kernel_size, 1), strides=(strides, 1), padding='same', kernel_initializer=get_initializer(initializer_seed)) if is_weight_norm: self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)<|docstring|>Initialize TFConvTranspose1d( module. Args: filters (int): Number of filters. kernel_size (int): kernel size. strides (int): Stride width. padding (str): Padding type ("same" or "valid").<|endoftext|>
2f78426e3294b86e62c7c3c33e393c7e880c3b5d7e9c9e2b0b9e5effd813318a
def call(self, x): "Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T', C').\n " x = tf.expand_dims(x, 2) x = self.conv1d_transpose(x) x = tf.squeeze(x, 2) return x
Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Output tensor (B, T', C').
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, x): "Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T', C').\n " x = tf.expand_dims(x, 2) x = self.conv1d_transpose(x) x = tf.squeeze(x, 2) return x
def call(self, x): "Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T', C').\n " x = tf.expand_dims(x, 2) x = self.conv1d_transpose(x) x = tf.squeeze(x, 2) return x<|docstring|>Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Output tensor (B, T', C').<|endoftext|>
74fceb30e50580e804dae3aee79796b4460d1feb1db41bc9fb9ddb19d87e68b2
def __init__(self, kernel_size, filters, dilation_rate, use_bias, nonlinear_activation, nonlinear_activation_params, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFResidualStack module.\n Args:\n kernel_size (int): Kernel size.\n filters (int): Number of filters.\n dilation_rate (int): Dilation rate.\n use_bias (bool): Whether to add bias parameter in convolution layers.\n nonlinear_activation (str): Activation function module name.\n nonlinear_activation_params (dict): Hyperparameters for activation function.\n ' super().__init__(**kwargs) self.blocks = [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), TFReflectionPad1d((((kernel_size - 1) // 2) * dilation_rate)), tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, dilation_rate=dilation_rate, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed)), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), tf.keras.layers.Conv1D(filters=filters, kernel_size=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] self.shortcut = tf.keras.layers.Conv1D(filters=filters, kernel_size=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed), name='shortcut') if is_weight_norm: self._apply_weightnorm(self.blocks) self.shortcut = WeightNormalization(self.shortcut)
Initialize TFResidualStack module. Args: kernel_size (int): Kernel size. filters (int): Number of filters. dilation_rate (int): Dilation rate. use_bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function.
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, kernel_size, filters, dilation_rate, use_bias, nonlinear_activation, nonlinear_activation_params, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFResidualStack module.\n Args:\n kernel_size (int): Kernel size.\n filters (int): Number of filters.\n dilation_rate (int): Dilation rate.\n use_bias (bool): Whether to add bias parameter in convolution layers.\n nonlinear_activation (str): Activation function module name.\n nonlinear_activation_params (dict): Hyperparameters for activation function.\n ' super().__init__(**kwargs) self.blocks = [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), TFReflectionPad1d((((kernel_size - 1) // 2) * dilation_rate)), tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, dilation_rate=dilation_rate, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed)), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), tf.keras.layers.Conv1D(filters=filters, kernel_size=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] self.shortcut = tf.keras.layers.Conv1D(filters=filters, kernel_size=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed), name='shortcut') if is_weight_norm: self._apply_weightnorm(self.blocks) self.shortcut = WeightNormalization(self.shortcut)
def __init__(self, kernel_size, filters, dilation_rate, use_bias, nonlinear_activation, nonlinear_activation_params, is_weight_norm, initializer_seed, **kwargs): 'Initialize TFResidualStack module.\n Args:\n kernel_size (int): Kernel size.\n filters (int): Number of filters.\n dilation_rate (int): Dilation rate.\n use_bias (bool): Whether to add bias parameter in convolution layers.\n nonlinear_activation (str): Activation function module name.\n nonlinear_activation_params (dict): Hyperparameters for activation function.\n ' super().__init__(**kwargs) self.blocks = [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), TFReflectionPad1d((((kernel_size - 1) // 2) * dilation_rate)), tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, dilation_rate=dilation_rate, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed)), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), tf.keras.layers.Conv1D(filters=filters, kernel_size=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] self.shortcut = tf.keras.layers.Conv1D(filters=filters, kernel_size=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed), name='shortcut') if is_weight_norm: self._apply_weightnorm(self.blocks) self.shortcut = WeightNormalization(self.shortcut)<|docstring|>Initialize TFResidualStack module. Args: kernel_size (int): Kernel size. filters (int): Number of filters. dilation_rate (int): Dilation rate. use_bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function.<|endoftext|>
2f0cdfbd573989b4098e69c95b18d98b87f0d0306b9b278286c32df281b4c6b9
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T, C).\n ' _x = tf.identity(x) for layer in self.blocks: _x = layer(_x) shortcut = self.shortcut(x) return (shortcut + _x)
Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Output tensor (B, T, C).
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T, C).\n ' _x = tf.identity(x) for layer in self.blocks: _x = layer(_x) shortcut = self.shortcut(x) return (shortcut + _x)
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input tensor (B, T, C).\n Returns:\n Tensor: Output tensor (B, T, C).\n ' _x = tf.identity(x) for layer in self.blocks: _x = layer(_x) shortcut = self.shortcut(x) return (shortcut + _x)<|docstring|>Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C). Returns: Tensor: Output tensor (B, T, C).<|endoftext|>
d0da2c60d96978f7c2dad3d4ff81ea33ae5d6a007e1f929dd3216fe7bb6ff62f
def __init__(self, config, **kwargs): 'Initialize TFMelGANGenerator module.\n Args:\n config: config object of Melgan generator.\n ' super().__init__(**kwargs) assert (config.filters >= np.prod(config.upsample_scales)) assert ((config.filters % (2 ** len(config.upsample_scales))) == 0) self.config = config layers = [] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='first_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='second_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed)), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='third_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] for (i, upsample_scale) in enumerate(config.upsample_scales): layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFConvTranspose1d(filters=(config.filters // (2 ** (i + 1))), kernel_size=(upsample_scale * 2), strides=upsample_scale, padding='same', is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='conv_transpose_._{}'.format(i))] for j in range(config.stacks): layers += [TFResidualStack(kernel_size=config.stack_kernel_size, filters=(config.filters // (2 ** (i + 1))), dilation_rate=(config.stack_kernel_size ** j), use_bias=config.use_bias, nonlinear_activation=config.nonlinear_activation, nonlinear_activation_params=config.nonlinear_activation_params, is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='residual_stack_._{}._._{}'.format(i, j))] layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='last_reflect_padding'), tf.keras.layers.Conv1D(filters=config.out_channels, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] if config.use_final_nolinear_activation: layers += [tf.keras.layers.Activation('tanh')] layers += [tf.keras.layers.Reshape([(- 1), 1])] if (config.is_weight_norm is True): self._apply_weightnorm(layers) self.melgan = tf.keras.models.Sequential(layers)
Initialize TFMelGANGenerator module. Args: config: config object of Melgan generator.
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, config, **kwargs): 'Initialize TFMelGANGenerator module.\n Args:\n config: config object of Melgan generator.\n ' super().__init__(**kwargs) assert (config.filters >= np.prod(config.upsample_scales)) assert ((config.filters % (2 ** len(config.upsample_scales))) == 0) self.config = config layers = [] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='first_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='second_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed)), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='third_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] for (i, upsample_scale) in enumerate(config.upsample_scales): layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFConvTranspose1d(filters=(config.filters // (2 ** (i + 1))), kernel_size=(upsample_scale * 2), strides=upsample_scale, padding='same', is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='conv_transpose_._{}'.format(i))] for j in range(config.stacks): layers += [TFResidualStack(kernel_size=config.stack_kernel_size, filters=(config.filters // (2 ** (i + 1))), dilation_rate=(config.stack_kernel_size ** j), use_bias=config.use_bias, nonlinear_activation=config.nonlinear_activation, nonlinear_activation_params=config.nonlinear_activation_params, is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='residual_stack_._{}._._{}'.format(i, j))] layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='last_reflect_padding'), tf.keras.layers.Conv1D(filters=config.out_channels, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] if config.use_final_nolinear_activation: layers += [tf.keras.layers.Activation('tanh')] layers += [tf.keras.layers.Reshape([(- 1), 1])] if (config.is_weight_norm is True): self._apply_weightnorm(layers) self.melgan = tf.keras.models.Sequential(layers)
def __init__(self, config, **kwargs): 'Initialize TFMelGANGenerator module.\n Args:\n config: config object of Melgan generator.\n ' super().__init__(**kwargs) assert (config.filters >= np.prod(config.upsample_scales)) assert ((config.filters % (2 ** len(config.upsample_scales))) == 0) self.config = config layers = [] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='first_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] layers += [TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='second_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed)), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='third_reflect_padding'), tf.keras.layers.Conv1D(filters=config.filters, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] for (i, upsample_scale) in enumerate(config.upsample_scales): layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFConvTranspose1d(filters=(config.filters // (2 ** (i + 1))), kernel_size=(upsample_scale * 2), strides=upsample_scale, padding='same', is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='conv_transpose_._{}'.format(i))] for j in range(config.stacks): layers += [TFResidualStack(kernel_size=config.stack_kernel_size, filters=(config.filters // (2 ** (i + 1))), dilation_rate=(config.stack_kernel_size ** j), use_bias=config.use_bias, nonlinear_activation=config.nonlinear_activation, nonlinear_activation_params=config.nonlinear_activation_params, is_weight_norm=config.is_weight_norm, initializer_seed=config.initializer_seed, name='residual_stack_._{}._._{}'.format(i, j))] layers += [getattr(tf.keras.layers, config.nonlinear_activation)(**config.nonlinear_activation_params), TFReflectionPad1d(((config.kernel_size - 1) // 2), padding_type=config.padding_type, name='last_reflect_padding'), tf.keras.layers.Conv1D(filters=config.out_channels, kernel_size=config.kernel_size, use_bias=config.use_bias, kernel_initializer=get_initializer(config.initializer_seed))] if config.use_final_nolinear_activation: layers += [tf.keras.layers.Activation('tanh')] layers += [tf.keras.layers.Reshape([(- 1), 1])] if (config.is_weight_norm is True): self._apply_weightnorm(layers) self.melgan = tf.keras.models.Sequential(layers)<|docstring|>Initialize TFMelGANGenerator module. Args: config: config object of Melgan generator.<|endoftext|>
e3a7259182e338768cf6c5e1a2e8bb8732eb17a4f91884941493a70b7a100c35
def call(self, c): 'Calculate forward propagation.\n Args:\n c (Tensor): Input tensor (B, T, channels)\n Returns:\n Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)\n ' x = self.melgan(c) return x
Calculate forward propagation. Args: c (Tensor): Input tensor (B, T, channels) Returns: Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, c): 'Calculate forward propagation.\n Args:\n c (Tensor): Input tensor (B, T, channels)\n Returns:\n Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)\n ' x = self.melgan(c) return x
def call(self, c): 'Calculate forward propagation.\n Args:\n c (Tensor): Input tensor (B, T, channels)\n Returns:\n Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)\n ' x = self.melgan(c) return x<|docstring|>Calculate forward propagation. Args: c (Tensor): Input tensor (B, T, channels) Returns: Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)<|endoftext|>
36a1508b4e78dc956475e9d9382c04c17231fcebb859226662049026d1f8fb57
def _build(self): 'Build model by passing fake input.' fake_mels = tf.random.uniform(shape=[1, 200, self.config.num_mels], dtype=tf.float32) self(fake_mels)
Build model by passing fake input.
models/vocoder.py
_build
Z-yq/TensorflowTTS
50
python
def _build(self): fake_mels = tf.random.uniform(shape=[1, 200, self.config.num_mels], dtype=tf.float32) self(fake_mels)
def _build(self): fake_mels = tf.random.uniform(shape=[1, 200, self.config.num_mels], dtype=tf.float32) self(fake_mels)<|docstring|>Build model by passing fake input.<|endoftext|>
93c53d9b7c0cb009fac236dbc5781c870177e574aff22bf986c9fa0153567939
def __init__(self, config, **kwargs): 'Initilize MelGAN discriminator module.\n Args:\n out_channels (int): Number of output channels.\n kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer,\n and the first and the second kernel sizes will be used for the last two layers.\n For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15.\n the last two layers\' kernel size will be 5 and 3, respectively.\n filters (int): Initial number of filters for conv layer.\n max_downsample_filters (int): Maximum number of filters for downsampling layers.\n use_bias (bool): Whether to add bias parameter in convolution layers.\n downsample_scales (list): List of downsampling scales.\n nonlinear_activation (str): Activation function module name.\n nonlinear_activation_params (dict): Hyperparameters for activation function.\n padding_type (str): Padding type (support only "REFLECT", "CONSTANT", "SYMMETRIC")\n ' super().__init__(**kwargs) out_channels = config.out_channels kernel_sizes = config.kernel_sizes filters = config.filters max_downsample_filters = config.max_downsample_filters use_bias = config.use_bias downsample_scales = config.downsample_scales nonlinear_activation = config.nonlinear_activation nonlinear_activation_params = config.nonlinear_activation_params padding_type = config.padding_type is_weight_norm = config.is_weight_norm initializer_seed = config.initializer_seed assert (len(kernel_sizes) == 2) assert ((kernel_sizes[0] % 2) == 1) assert ((kernel_sizes[1] % 2) == 1) discriminator = [TFReflectionPad1d(((np.prod(kernel_sizes) - 1) // 2), padding_type=padding_type), tf.keras.layers.Conv1D(filters=filters, kernel_size=int(np.prod(kernel_sizes)), use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed)), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] in_chs = filters for downsample_scale in downsample_scales: out_chs = min((in_chs * downsample_scale), max_downsample_filters) discriminator += [tf.keras.layers.Conv1D(out_chs, ((downsample_scale * 10) + 1), downsample_scale, padding='same', kernel_initializer=get_initializer(initializer_seed))] discriminator += [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] in_chs = out_chs out_chs = min((in_chs * 2), max_downsample_filters) discriminator += [tf.keras.layers.Conv1D(filters=out_chs, kernel_size=kernel_sizes[0], padding='same', use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] discriminator += [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] discriminator += [tf.keras.layers.Conv1D(filters=out_channels, kernel_size=kernel_sizes[1], padding='same', use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] if (is_weight_norm is True): self._apply_weightnorm(discriminator) self.disciminator = discriminator
Initilize MelGAN discriminator module. Args: out_channels (int): Number of output channels. kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer, and the first and the second kernel sizes will be used for the last two layers. For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15. the last two layers' kernel size will be 5 and 3, respectively. filters (int): Initial number of filters for conv layer. max_downsample_filters (int): Maximum number of filters for downsampling layers. use_bias (bool): Whether to add bias parameter in convolution layers. downsample_scales (list): List of downsampling scales. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. padding_type (str): Padding type (support only "REFLECT", "CONSTANT", "SYMMETRIC")
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, config, **kwargs): 'Initilize MelGAN discriminator module.\n Args:\n out_channels (int): Number of output channels.\n kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer,\n and the first and the second kernel sizes will be used for the last two layers.\n For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15.\n the last two layers\' kernel size will be 5 and 3, respectively.\n filters (int): Initial number of filters for conv layer.\n max_downsample_filters (int): Maximum number of filters for downsampling layers.\n use_bias (bool): Whether to add bias parameter in convolution layers.\n downsample_scales (list): List of downsampling scales.\n nonlinear_activation (str): Activation function module name.\n nonlinear_activation_params (dict): Hyperparameters for activation function.\n padding_type (str): Padding type (support only "REFLECT", "CONSTANT", "SYMMETRIC")\n ' super().__init__(**kwargs) out_channels = config.out_channels kernel_sizes = config.kernel_sizes filters = config.filters max_downsample_filters = config.max_downsample_filters use_bias = config.use_bias downsample_scales = config.downsample_scales nonlinear_activation = config.nonlinear_activation nonlinear_activation_params = config.nonlinear_activation_params padding_type = config.padding_type is_weight_norm = config.is_weight_norm initializer_seed = config.initializer_seed assert (len(kernel_sizes) == 2) assert ((kernel_sizes[0] % 2) == 1) assert ((kernel_sizes[1] % 2) == 1) discriminator = [TFReflectionPad1d(((np.prod(kernel_sizes) - 1) // 2), padding_type=padding_type), tf.keras.layers.Conv1D(filters=filters, kernel_size=int(np.prod(kernel_sizes)), use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed)), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] in_chs = filters for downsample_scale in downsample_scales: out_chs = min((in_chs * downsample_scale), max_downsample_filters) discriminator += [tf.keras.layers.Conv1D(out_chs, ((downsample_scale * 10) + 1), downsample_scale, padding='same', kernel_initializer=get_initializer(initializer_seed))] discriminator += [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] in_chs = out_chs out_chs = min((in_chs * 2), max_downsample_filters) discriminator += [tf.keras.layers.Conv1D(filters=out_chs, kernel_size=kernel_sizes[0], padding='same', use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] discriminator += [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] discriminator += [tf.keras.layers.Conv1D(filters=out_channels, kernel_size=kernel_sizes[1], padding='same', use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] if (is_weight_norm is True): self._apply_weightnorm(discriminator) self.disciminator = discriminator
def __init__(self, config, **kwargs): 'Initilize MelGAN discriminator module.\n Args:\n out_channels (int): Number of output channels.\n kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer,\n and the first and the second kernel sizes will be used for the last two layers.\n For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15.\n the last two layers\' kernel size will be 5 and 3, respectively.\n filters (int): Initial number of filters for conv layer.\n max_downsample_filters (int): Maximum number of filters for downsampling layers.\n use_bias (bool): Whether to add bias parameter in convolution layers.\n downsample_scales (list): List of downsampling scales.\n nonlinear_activation (str): Activation function module name.\n nonlinear_activation_params (dict): Hyperparameters for activation function.\n padding_type (str): Padding type (support only "REFLECT", "CONSTANT", "SYMMETRIC")\n ' super().__init__(**kwargs) out_channels = config.out_channels kernel_sizes = config.kernel_sizes filters = config.filters max_downsample_filters = config.max_downsample_filters use_bias = config.use_bias downsample_scales = config.downsample_scales nonlinear_activation = config.nonlinear_activation nonlinear_activation_params = config.nonlinear_activation_params padding_type = config.padding_type is_weight_norm = config.is_weight_norm initializer_seed = config.initializer_seed assert (len(kernel_sizes) == 2) assert ((kernel_sizes[0] % 2) == 1) assert ((kernel_sizes[1] % 2) == 1) discriminator = [TFReflectionPad1d(((np.prod(kernel_sizes) - 1) // 2), padding_type=padding_type), tf.keras.layers.Conv1D(filters=filters, kernel_size=int(np.prod(kernel_sizes)), use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed)), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] in_chs = filters for downsample_scale in downsample_scales: out_chs = min((in_chs * downsample_scale), max_downsample_filters) discriminator += [tf.keras.layers.Conv1D(out_chs, ((downsample_scale * 10) + 1), downsample_scale, padding='same', kernel_initializer=get_initializer(initializer_seed))] discriminator += [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] in_chs = out_chs out_chs = min((in_chs * 2), max_downsample_filters) discriminator += [tf.keras.layers.Conv1D(filters=out_chs, kernel_size=kernel_sizes[0], padding='same', use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] discriminator += [getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params)] discriminator += [tf.keras.layers.Conv1D(filters=out_channels, kernel_size=kernel_sizes[1], padding='same', use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed))] if (is_weight_norm is True): self._apply_weightnorm(discriminator) self.disciminator = discriminator<|docstring|>Initilize MelGAN discriminator module. Args: out_channels (int): Number of output channels. kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer, and the first and the second kernel sizes will be used for the last two layers. For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15. the last two layers' kernel size will be 5 and 3, respectively. filters (int): Initial number of filters for conv layer. max_downsample_filters (int): Maximum number of filters for downsampling layers. use_bias (bool): Whether to add bias parameter in convolution layers. downsample_scales (list): List of downsampling scales. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. padding_type (str): Padding type (support only "REFLECT", "CONSTANT", "SYMMETRIC")<|endoftext|>
796bc2613de6b78bcd83230888b6f93c5a060f94ab32c1058b5d10ea3294c59d
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input noise signal (B, T, 1).\n Returns:\n List: List of output tensors of each layer.\n ' outs = [] for f in self.disciminator: x = f(x) outs += [x] return outs
Calculate forward propagation. Args: x (Tensor): Input noise signal (B, T, 1). Returns: List: List of output tensors of each layer.
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input noise signal (B, T, 1).\n Returns:\n List: List of output tensors of each layer.\n ' outs = [] for f in self.disciminator: x = f(x) outs += [x] return outs
def call(self, x): 'Calculate forward propagation.\n Args:\n x (Tensor): Input noise signal (B, T, 1).\n Returns:\n List: List of output tensors of each layer.\n ' outs = [] for f in self.disciminator: x = f(x) outs += [x] return outs<|docstring|>Calculate forward propagation. Args: x (Tensor): Input noise signal (B, T, 1). Returns: List: List of output tensors of each layer.<|endoftext|>
e5cac4a78b385e2092aa71b4757f9954a813ecfff7a3be9124ade776535cc1c2
def _apply_weightnorm(self, list_layers): 'Try apply weightnorm for all layer in list_layers.' for i in range(len(list_layers)): try: layer_name = list_layers[i].name.lower() if (('conv1d' in layer_name) or ('dense' in layer_name)): list_layers[i] = WeightNormalization(list_layers[i]) except Exception: pass
Try apply weightnorm for all layer in list_layers.
models/vocoder.py
_apply_weightnorm
Z-yq/TensorflowTTS
50
python
def _apply_weightnorm(self, list_layers): for i in range(len(list_layers)): try: layer_name = list_layers[i].name.lower() if (('conv1d' in layer_name) or ('dense' in layer_name)): list_layers[i] = WeightNormalization(list_layers[i]) except Exception: pass
def _apply_weightnorm(self, list_layers): for i in range(len(list_layers)): try: layer_name = list_layers[i].name.lower() if (('conv1d' in layer_name) or ('dense' in layer_name)): list_layers[i] = WeightNormalization(list_layers[i]) except Exception: pass<|docstring|>Try apply weightnorm for all layer in list_layers.<|endoftext|>
373b8e6833fec62ab4abd4a6c617bd7e2c55b36cbcf67a96ddec278ae32d1a05
def __init__(self, config, **kwargs): 'Initilize MelGAN multi-scale discriminator module.\n Args:\n config: config object for melgan discriminator\n ' super().__init__(**kwargs) self.discriminator = [] for i in range(config.scales): self.discriminator += [TFMelGANDiscriminator(config, name='melgan_discriminator_scale_._{}'.format(i))] self.pooling = getattr(tf.keras.layers, config.downsample_pooling)(**config.downsample_pooling_params)
Initilize MelGAN multi-scale discriminator module. Args: config: config object for melgan discriminator
models/vocoder.py
__init__
Z-yq/TensorflowTTS
50
python
def __init__(self, config, **kwargs): 'Initilize MelGAN multi-scale discriminator module.\n Args:\n config: config object for melgan discriminator\n ' super().__init__(**kwargs) self.discriminator = [] for i in range(config.scales): self.discriminator += [TFMelGANDiscriminator(config, name='melgan_discriminator_scale_._{}'.format(i))] self.pooling = getattr(tf.keras.layers, config.downsample_pooling)(**config.downsample_pooling_params)
def __init__(self, config, **kwargs): 'Initilize MelGAN multi-scale discriminator module.\n Args:\n config: config object for melgan discriminator\n ' super().__init__(**kwargs) self.discriminator = [] for i in range(config.scales): self.discriminator += [TFMelGANDiscriminator(config, name='melgan_discriminator_scale_._{}'.format(i))] self.pooling = getattr(tf.keras.layers, config.downsample_pooling)(**config.downsample_pooling_params)<|docstring|>Initilize MelGAN multi-scale discriminator module. Args: config: config object for melgan discriminator<|endoftext|>
65ef2866cb628a43624ab4d7c3f626c9a47bc52ed4710d01106a445b24841dd0
def _build(self): 'Build model by passing fake input.' fake_mels = tf.random.uniform(shape=[1, 1600, 1], dtype=tf.float32) self(fake_mels)
Build model by passing fake input.
models/vocoder.py
_build
Z-yq/TensorflowTTS
50
python
def _build(self): fake_mels = tf.random.uniform(shape=[1, 1600, 1], dtype=tf.float32) self(fake_mels)
def _build(self): fake_mels = tf.random.uniform(shape=[1, 1600, 1], dtype=tf.float32) self(fake_mels)<|docstring|>Build model by passing fake input.<|endoftext|>
74fb52f2007d2435f6d941d67d62a6c43ed2ab9990cfcb55358ff31034966f81
def call(self, x, **kwargs): 'Calculate forward propagation.\n Args:\n x (Tensor): Input noise signal (B, T, 1).\n Returns:\n List: List of list of each discriminator outputs, which consists of each layer output tensors.\n ' outs = [] for f in self.discriminator: outs += [f(x)] x = self.pooling(x) return outs
Calculate forward propagation. Args: x (Tensor): Input noise signal (B, T, 1). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors.
models/vocoder.py
call
Z-yq/TensorflowTTS
50
python
def call(self, x, **kwargs): 'Calculate forward propagation.\n Args:\n x (Tensor): Input noise signal (B, T, 1).\n Returns:\n List: List of list of each discriminator outputs, which consists of each layer output tensors.\n ' outs = [] for f in self.discriminator: outs += [f(x)] x = self.pooling(x) return outs
def call(self, x, **kwargs): 'Calculate forward propagation.\n Args:\n x (Tensor): Input noise signal (B, T, 1).\n Returns:\n List: List of list of each discriminator outputs, which consists of each layer output tensors.\n ' outs = [] for f in self.discriminator: outs += [f(x)] x = self.pooling(x) return outs<|docstring|>Calculate forward propagation. Args: x (Tensor): Input noise signal (B, T, 1). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors.<|endoftext|>
09d61b03c772775aef96c65e23e71702efa41355f4bbeb4f101c9ab6f2820646
def handleGenericPacket(self, event): 'Decode the usbmuxd header.' muxHeader = Struct.Group(None, Struct.UInt32BE('protocol'), Struct.UInt32BE('length')) data = muxHeader.decode(event.data) description = 'iPhone usbmuxd: ' if (muxHeader.length is None): description += 'ERROR' else: self.remainingLength = (muxHeader.length - event.datalen) description += ('proto=%s len=0x%04x' % (self.ipProto[muxHeader.protocol], muxHeader.length)) if self.remainingLength: description += (' (0x%04x remaining)' % self.remainingLength) event.pushDecoded(description) if (self.ipProto[muxHeader.protocol] == 'TCP'): self.handleTCP(event, data, (muxHeader.length - 8))
Decode the usbmuxd header.
VUsbTools/Decoders/iPhone.py
handleGenericPacket
scanlime/vusb-analyzer
34
python
def handleGenericPacket(self, event): muxHeader = Struct.Group(None, Struct.UInt32BE('protocol'), Struct.UInt32BE('length')) data = muxHeader.decode(event.data) description = 'iPhone usbmuxd: ' if (muxHeader.length is None): description += 'ERROR' else: self.remainingLength = (muxHeader.length - event.datalen) description += ('proto=%s len=0x%04x' % (self.ipProto[muxHeader.protocol], muxHeader.length)) if self.remainingLength: description += (' (0x%04x remaining)' % self.remainingLength) event.pushDecoded(description) if (self.ipProto[muxHeader.protocol] == 'TCP'): self.handleTCP(event, data, (muxHeader.length - 8))
def handleGenericPacket(self, event): muxHeader = Struct.Group(None, Struct.UInt32BE('protocol'), Struct.UInt32BE('length')) data = muxHeader.decode(event.data) description = 'iPhone usbmuxd: ' if (muxHeader.length is None): description += 'ERROR' else: self.remainingLength = (muxHeader.length - event.datalen) description += ('proto=%s len=0x%04x' % (self.ipProto[muxHeader.protocol], muxHeader.length)) if self.remainingLength: description += (' (0x%04x remaining)' % self.remainingLength) event.pushDecoded(description) if (self.ipProto[muxHeader.protocol] == 'TCP'): self.handleTCP(event, data, (muxHeader.length - 8))<|docstring|>Decode the usbmuxd header.<|endoftext|>
c79b03757304c085c164d9ce29f055d33d868f6ac1da8105fa406811f5b77a98
def handleTCP(self, event, data, datalen): 'Decode an IPPROTO_TCP packet header, and log the payload.' datalen -= 20 tcpHeader = Struct.Group(None, Struct.UInt16BEHex('source'), Struct.UInt16BEHex('dest'), Struct.UInt32BE('seq'), Struct.UInt32BE('ack_seq'), Struct.UInt16BEHex('flags'), Struct.UInt16BE('window'), Struct.UInt16BEHex('checksum'), Struct.UInt16BEHex('urg_ptr')) data = tcpHeader.decode(data) event.pushDecoded(('iPhone TCP [%s -> %s] len=0x%04x' % (self.portNumbers[tcpHeader.source], self.portNumbers[tcpHeader.dest], datalen))) event.appendDecoded(('\nTCP Header:\n%s' % str(tcpHeader))) event.appendDecoded(('\nTCP Payload:\n%s' % Types.hexDump(data))) for port in (tcpHeader.source, tcpHeader.dest): fn = getattr(self, ('port_%s' % self.portNumbers[port]), None) if fn: fn(event, data, datalen)
Decode an IPPROTO_TCP packet header, and log the payload.
VUsbTools/Decoders/iPhone.py
handleTCP
scanlime/vusb-analyzer
34
python
def handleTCP(self, event, data, datalen): datalen -= 20 tcpHeader = Struct.Group(None, Struct.UInt16BEHex('source'), Struct.UInt16BEHex('dest'), Struct.UInt32BE('seq'), Struct.UInt32BE('ack_seq'), Struct.UInt16BEHex('flags'), Struct.UInt16BE('window'), Struct.UInt16BEHex('checksum'), Struct.UInt16BEHex('urg_ptr')) data = tcpHeader.decode(data) event.pushDecoded(('iPhone TCP [%s -> %s] len=0x%04x' % (self.portNumbers[tcpHeader.source], self.portNumbers[tcpHeader.dest], datalen))) event.appendDecoded(('\nTCP Header:\n%s' % str(tcpHeader))) event.appendDecoded(('\nTCP Payload:\n%s' % Types.hexDump(data))) for port in (tcpHeader.source, tcpHeader.dest): fn = getattr(self, ('port_%s' % self.portNumbers[port]), None) if fn: fn(event, data, datalen)
def handleTCP(self, event, data, datalen): datalen -= 20 tcpHeader = Struct.Group(None, Struct.UInt16BEHex('source'), Struct.UInt16BEHex('dest'), Struct.UInt32BE('seq'), Struct.UInt32BE('ack_seq'), Struct.UInt16BEHex('flags'), Struct.UInt16BE('window'), Struct.UInt16BEHex('checksum'), Struct.UInt16BEHex('urg_ptr')) data = tcpHeader.decode(data) event.pushDecoded(('iPhone TCP [%s -> %s] len=0x%04x' % (self.portNumbers[tcpHeader.source], self.portNumbers[tcpHeader.dest], datalen))) event.appendDecoded(('\nTCP Header:\n%s' % str(tcpHeader))) event.appendDecoded(('\nTCP Payload:\n%s' % Types.hexDump(data))) for port in (tcpHeader.source, tcpHeader.dest): fn = getattr(self, ('port_%s' % self.portNumbers[port]), None) if fn: fn(event, data, datalen)<|docstring|>Decode an IPPROTO_TCP packet header, and log the payload.<|endoftext|>
e13701137a6002151667b7141652ca6e61f96fc2f62ad89c357b4f4df7726e28
def port_lockdownd(self, event, data, datalen): 'Handle lockdownd packets. These form a stream, which may or\n may not line up with the underlying USB packets. Each\n lockdownd packet is an XML plist, prefixed with a 32-bit\n length.\n ' summary = [] self.lockdownBuffer += data if (datalen == 0): return elif (datalen != len(data)): self.lockdownBuffer = '' summary.append('ERROR, incomplete log!') elif ((len(self.lockdownBuffer) >= 10) and (self.lockdownBuffer[0] == '\x00') and isascii(self.lockdownBuffer[1:])): summary.append(('Message, %r' % self.lockdownBuffer[1:])) elif ((len(self.lockdownBuffer) >= 10) and (self.lockdownBuffer[4:9] != '<?xml')): self.lockdownBuffer = '' summary.append('UNRECOGNIZED (SSL encrypted?)') else: while (len(self.lockdownBuffer) >= 4): length = struct.unpack('>I', self.lockdownBuffer[:4])[0] if (len(self.lockdownBuffer) < (length + 4)): break packet = self.lockdownBuffer[4:(length + 4)] self.lockdownBuffer = self.lockdownBuffer[(length + 4):] event.appendDecoded(('\nComplete lockdownd packet:\n%s' % Types.hexDump(packet))) kvFull = [] kvAbbrev = [] for (k, v) in plistlib.readPlistFromString(packet).items(): kvFull.append((' %s = %s' % (k, v))) if isinstance(v, plistlib.Data): v = '(data)' elif isinstance(v, dict): v = '(dict)' kvAbbrev.append(('%s=%s' % (k, v))) event.appendDecoded(('\nDecoded plist:\n%s' % '\n'.join(kvFull))) summary.append(('{%s}' % ' '.join(kvAbbrev))) event.pushDecoded(('lockdownd: %s' % (' '.join(summary) or 'fragment')))
Handle lockdownd packets. These form a stream, which may or may not line up with the underlying USB packets. Each lockdownd packet is an XML plist, prefixed with a 32-bit length.
VUsbTools/Decoders/iPhone.py
port_lockdownd
scanlime/vusb-analyzer
34
python
def port_lockdownd(self, event, data, datalen): 'Handle lockdownd packets. These form a stream, which may or\n may not line up with the underlying USB packets. Each\n lockdownd packet is an XML plist, prefixed with a 32-bit\n length.\n ' summary = [] self.lockdownBuffer += data if (datalen == 0): return elif (datalen != len(data)): self.lockdownBuffer = summary.append('ERROR, incomplete log!') elif ((len(self.lockdownBuffer) >= 10) and (self.lockdownBuffer[0] == '\x00') and isascii(self.lockdownBuffer[1:])): summary.append(('Message, %r' % self.lockdownBuffer[1:])) elif ((len(self.lockdownBuffer) >= 10) and (self.lockdownBuffer[4:9] != '<?xml')): self.lockdownBuffer = summary.append('UNRECOGNIZED (SSL encrypted?)') else: while (len(self.lockdownBuffer) >= 4): length = struct.unpack('>I', self.lockdownBuffer[:4])[0] if (len(self.lockdownBuffer) < (length + 4)): break packet = self.lockdownBuffer[4:(length + 4)] self.lockdownBuffer = self.lockdownBuffer[(length + 4):] event.appendDecoded(('\nComplete lockdownd packet:\n%s' % Types.hexDump(packet))) kvFull = [] kvAbbrev = [] for (k, v) in plistlib.readPlistFromString(packet).items(): kvFull.append((' %s = %s' % (k, v))) if isinstance(v, plistlib.Data): v = '(data)' elif isinstance(v, dict): v = '(dict)' kvAbbrev.append(('%s=%s' % (k, v))) event.appendDecoded(('\nDecoded plist:\n%s' % '\n'.join(kvFull))) summary.append(('{%s}' % ' '.join(kvAbbrev))) event.pushDecoded(('lockdownd: %s' % (' '.join(summary) or 'fragment')))
def port_lockdownd(self, event, data, datalen): 'Handle lockdownd packets. These form a stream, which may or\n may not line up with the underlying USB packets. Each\n lockdownd packet is an XML plist, prefixed with a 32-bit\n length.\n ' summary = [] self.lockdownBuffer += data if (datalen == 0): return elif (datalen != len(data)): self.lockdownBuffer = summary.append('ERROR, incomplete log!') elif ((len(self.lockdownBuffer) >= 10) and (self.lockdownBuffer[0] == '\x00') and isascii(self.lockdownBuffer[1:])): summary.append(('Message, %r' % self.lockdownBuffer[1:])) elif ((len(self.lockdownBuffer) >= 10) and (self.lockdownBuffer[4:9] != '<?xml')): self.lockdownBuffer = summary.append('UNRECOGNIZED (SSL encrypted?)') else: while (len(self.lockdownBuffer) >= 4): length = struct.unpack('>I', self.lockdownBuffer[:4])[0] if (len(self.lockdownBuffer) < (length + 4)): break packet = self.lockdownBuffer[4:(length + 4)] self.lockdownBuffer = self.lockdownBuffer[(length + 4):] event.appendDecoded(('\nComplete lockdownd packet:\n%s' % Types.hexDump(packet))) kvFull = [] kvAbbrev = [] for (k, v) in plistlib.readPlistFromString(packet).items(): kvFull.append((' %s = %s' % (k, v))) if isinstance(v, plistlib.Data): v = '(data)' elif isinstance(v, dict): v = '(dict)' kvAbbrev.append(('%s=%s' % (k, v))) event.appendDecoded(('\nDecoded plist:\n%s' % '\n'.join(kvFull))) summary.append(('{%s}' % ' '.join(kvAbbrev))) event.pushDecoded(('lockdownd: %s' % (' '.join(summary) or 'fragment')))<|docstring|>Handle lockdownd packets. These form a stream, which may or may not line up with the underlying USB packets. Each lockdownd packet is an XML plist, prefixed with a 32-bit length.<|endoftext|>
2fdc6082a405d51e536295ed0d43afb4aba8307410ec0387ea9cf42367548218
def fetch_n_load_dataset(dataset_url=DATASET_URL, dataset_path=DATASET_PATH): '\n\t\tFetches and load dataset.\n\n\t\t:param dataset_url: The dataset url\n\t\t:type dataset_url: { The URl of dataset as variable}\n\t\t:param dataset_path: The dataset path\n\t\t:type dataset_path: { PATH details for the dataset as the var}\n\n\t\t:returns: The file at a particular file location .\n\t\t:rtype: { return_type of this function is the file path }\n\t\t' if (not os.path.isdir(dataset_path)): os.makedirs(dataset_path) tgz_path = os.path.join(dataset_path, tgz_path) csv_path = os.path.join(dataset_path, 'FuelConsumptionCo2.csv') return pd.read_csv(csv_path)
Fetches and load dataset. :param dataset_url: The dataset url :type dataset_url: { The URl of dataset as variable} :param dataset_path: The dataset path :type dataset_path: { PATH details for the dataset as the var} :returns: The file at a particular file location . :rtype: { return_type of this function is the file path }
LinearRegression.py
fetch_n_load_dataset
ausaafnabi/Machine-Learning-Projects
1
python
def fetch_n_load_dataset(dataset_url=DATASET_URL, dataset_path=DATASET_PATH): '\n\t\tFetches and load dataset.\n\n\t\t:param dataset_url: The dataset url\n\t\t:type dataset_url: { The URl of dataset as variable}\n\t\t:param dataset_path: The dataset path\n\t\t:type dataset_path: { PATH details for the dataset as the var}\n\n\t\t:returns: The file at a particular file location .\n\t\t:rtype: { return_type of this function is the file path }\n\t\t' if (not os.path.isdir(dataset_path)): os.makedirs(dataset_path) tgz_path = os.path.join(dataset_path, tgz_path) csv_path = os.path.join(dataset_path, 'FuelConsumptionCo2.csv') return pd.read_csv(csv_path)
def fetch_n_load_dataset(dataset_url=DATASET_URL, dataset_path=DATASET_PATH): '\n\t\tFetches and load dataset.\n\n\t\t:param dataset_url: The dataset url\n\t\t:type dataset_url: { The URl of dataset as variable}\n\t\t:param dataset_path: The dataset path\n\t\t:type dataset_path: { PATH details for the dataset as the var}\n\n\t\t:returns: The file at a particular file location .\n\t\t:rtype: { return_type of this function is the file path }\n\t\t' if (not os.path.isdir(dataset_path)): os.makedirs(dataset_path) tgz_path = os.path.join(dataset_path, tgz_path) csv_path = os.path.join(dataset_path, 'FuelConsumptionCo2.csv') return pd.read_csv(csv_path)<|docstring|>Fetches and load dataset. :param dataset_url: The dataset url :type dataset_url: { The URl of dataset as variable} :param dataset_path: The dataset path :type dataset_path: { PATH details for the dataset as the var} :returns: The file at a particular file location . :rtype: { return_type of this function is the file path }<|endoftext|>
71c239b3a0fa008c3442212829368e4c7db9892b2632a4bd9578e5e7bc454029
def scan_resource_conf(self, conf): '\n Looks for ViewerProtocolPolicy configuration at cloudfront distributions:\n https://www.terraform.io/docs/providers/aws/r/cloudfront_distribution.html#viewer_protocol_policy\n :param conf: cloudfront configuration\n :return: <CheckResult>\n ' if ('default_cache_behavior' in conf.keys()): self.evaluated_keys = ['default_cache_behavior/[0]/viewer_protocol_policy'] if isinstance(conf['default_cache_behavior'][0], dict): default_viewer_policy = conf['default_cache_behavior'][0]['viewer_protocol_policy'] if (default_viewer_policy and (default_viewer_policy[0] == 'allow-all')): return CheckResult.FAILED if ('ordered_cache_behavior' in conf.keys()): for behavior in conf['ordered_cache_behavior']: if isinstance(behavior, dict): if (behavior['viewer_protocol_policy'][0] == 'allow-all'): self.evaluated_keys = [f"ordered_cache_behavior/[{conf['ordered_cache_behavior'].index(behavior)}]/viewer_protocol_policy"] return CheckResult.FAILED return CheckResult.PASSED
Looks for ViewerProtocolPolicy configuration at cloudfront distributions: https://www.terraform.io/docs/providers/aws/r/cloudfront_distribution.html#viewer_protocol_policy :param conf: cloudfront configuration :return: <CheckResult>
checkov/terraform/checks/resource/aws/CloudfrontDistributionEncryption.py
scan_resource_conf
tophersmith/checkov
4,013
python
def scan_resource_conf(self, conf): '\n Looks for ViewerProtocolPolicy configuration at cloudfront distributions:\n https://www.terraform.io/docs/providers/aws/r/cloudfront_distribution.html#viewer_protocol_policy\n :param conf: cloudfront configuration\n :return: <CheckResult>\n ' if ('default_cache_behavior' in conf.keys()): self.evaluated_keys = ['default_cache_behavior/[0]/viewer_protocol_policy'] if isinstance(conf['default_cache_behavior'][0], dict): default_viewer_policy = conf['default_cache_behavior'][0]['viewer_protocol_policy'] if (default_viewer_policy and (default_viewer_policy[0] == 'allow-all')): return CheckResult.FAILED if ('ordered_cache_behavior' in conf.keys()): for behavior in conf['ordered_cache_behavior']: if isinstance(behavior, dict): if (behavior['viewer_protocol_policy'][0] == 'allow-all'): self.evaluated_keys = [f"ordered_cache_behavior/[{conf['ordered_cache_behavior'].index(behavior)}]/viewer_protocol_policy"] return CheckResult.FAILED return CheckResult.PASSED
def scan_resource_conf(self, conf): '\n Looks for ViewerProtocolPolicy configuration at cloudfront distributions:\n https://www.terraform.io/docs/providers/aws/r/cloudfront_distribution.html#viewer_protocol_policy\n :param conf: cloudfront configuration\n :return: <CheckResult>\n ' if ('default_cache_behavior' in conf.keys()): self.evaluated_keys = ['default_cache_behavior/[0]/viewer_protocol_policy'] if isinstance(conf['default_cache_behavior'][0], dict): default_viewer_policy = conf['default_cache_behavior'][0]['viewer_protocol_policy'] if (default_viewer_policy and (default_viewer_policy[0] == 'allow-all')): return CheckResult.FAILED if ('ordered_cache_behavior' in conf.keys()): for behavior in conf['ordered_cache_behavior']: if isinstance(behavior, dict): if (behavior['viewer_protocol_policy'][0] == 'allow-all'): self.evaluated_keys = [f"ordered_cache_behavior/[{conf['ordered_cache_behavior'].index(behavior)}]/viewer_protocol_policy"] return CheckResult.FAILED return CheckResult.PASSED<|docstring|>Looks for ViewerProtocolPolicy configuration at cloudfront distributions: https://www.terraform.io/docs/providers/aws/r/cloudfront_distribution.html#viewer_protocol_policy :param conf: cloudfront configuration :return: <CheckResult><|endoftext|>
d676db0ec5935629d8e8b3d14155458bf02ab48b72993550adb7d6fa661539ce
@alias(func_alias='ext', _type='COMMON') def run(): '\n extension\n\n Lists installed extensions.\n ' loaded_ext = gget('webshell.loaded_ext', namespace='webshell') print() if isinstance(loaded_ext, list): print(color.magenta('Extension ---> \n')) for line in loaded_ext: print(color.cyan((' * ' + line))) else: print(color.red('Unknown...')) print()
extension Lists installed extensions.
doughnuts/webshell_plugins/extension.py
run
MorouU/Doughnuts
5
python
@alias(func_alias='ext', _type='COMMON') def run(): '\n extension\n\n Lists installed extensions.\n ' loaded_ext = gget('webshell.loaded_ext', namespace='webshell') print() if isinstance(loaded_ext, list): print(color.magenta('Extension ---> \n')) for line in loaded_ext: print(color.cyan((' * ' + line))) else: print(color.red('Unknown...')) print()
@alias(func_alias='ext', _type='COMMON') def run(): '\n extension\n\n Lists installed extensions.\n ' loaded_ext = gget('webshell.loaded_ext', namespace='webshell') print() if isinstance(loaded_ext, list): print(color.magenta('Extension ---> \n')) for line in loaded_ext: print(color.cyan((' * ' + line))) else: print(color.red('Unknown...')) print()<|docstring|>extension Lists installed extensions.<|endoftext|>
611932430ecac333e3cbeef981d8780e2218e7b4647b2e6fdf2550eb5e18f7fc
def chunks(l, n): '\n Yield successive n-sized chunks from l.\n ' for i in range(0, len(l), n): (yield l[i:(i + n)])
Yield successive n-sized chunks from l.
source/training/dataset.py
chunks
Hunter8moon/h8m2
0
python
def chunks(l, n): '\n \n ' for i in range(0, len(l), n): (yield l[i:(i + n)])
def chunks(l, n): '\n \n ' for i in range(0, len(l), n): (yield l[i:(i + n)])<|docstring|>Yield successive n-sized chunks from l.<|endoftext|>
bf8162e9e4531f101e38eb6a9a5896f4eb85f210f85e61ddc69734a9a55c23d8
def load_batch(self, files, batch_size, augment=True): '\n Returns an random sample of images of length batch_size from the filenames.\n ' batch_size = min(batch_size, len(files)) files = random.sample(files, batch_size) w = self.shape[0] h = self.shape[1] images = [] for file in files: img = ImageUtil.file_to_array(file, w, h, augment=augment) images.append(img) images = np.array(images) return images
Returns an random sample of images of length batch_size from the filenames.
source/training/dataset.py
load_batch
Hunter8moon/h8m2
0
python
def load_batch(self, files, batch_size, augment=True): '\n \n ' batch_size = min(batch_size, len(files)) files = random.sample(files, batch_size) w = self.shape[0] h = self.shape[1] images = [] for file in files: img = ImageUtil.file_to_array(file, w, h, augment=augment) images.append(img) images = np.array(images) return images
def load_batch(self, files, batch_size, augment=True): '\n \n ' batch_size = min(batch_size, len(files)) files = random.sample(files, batch_size) w = self.shape[0] h = self.shape[1] images = [] for file in files: img = ImageUtil.file_to_array(file, w, h, augment=augment) images.append(img) images = np.array(images) return images<|docstring|>Returns an random sample of images of length batch_size from the filenames.<|endoftext|>
dd1642c0c8acca829fe85c98273a19fc9844959a698306df3ef168198a4bcb89
def partition_files(self, batch_size): '\n Shuffles the files and partitions them into chunks of length batch_size.\n Returns a list of pairs (a_files, b_files).\n ' random.shuffle(self.files_trainA) random.shuffle(self.files_trainB) a_files = chunks(self.files_trainA, batch_size) b_files = chunks(self.files_trainB, batch_size) return list(zip(a_files, b_files))
Shuffles the files and partitions them into chunks of length batch_size. Returns a list of pairs (a_files, b_files).
source/training/dataset.py
partition_files
Hunter8moon/h8m2
0
python
def partition_files(self, batch_size): '\n Shuffles the files and partitions them into chunks of length batch_size.\n Returns a list of pairs (a_files, b_files).\n ' random.shuffle(self.files_trainA) random.shuffle(self.files_trainB) a_files = chunks(self.files_trainA, batch_size) b_files = chunks(self.files_trainB, batch_size) return list(zip(a_files, b_files))
def partition_files(self, batch_size): '\n Shuffles the files and partitions them into chunks of length batch_size.\n Returns a list of pairs (a_files, b_files).\n ' random.shuffle(self.files_trainA) random.shuffle(self.files_trainB) a_files = chunks(self.files_trainA, batch_size) b_files = chunks(self.files_trainB, batch_size) return list(zip(a_files, b_files))<|docstring|>Shuffles the files and partitions them into chunks of length batch_size. Returns a list of pairs (a_files, b_files).<|endoftext|>
7ef05c291c9cf26464156a485d25990005dfdaf27b51cece4387f15b37d3ff74
def get_ordering(self, request): '\n Returns a sequence defining the default ordering for results in the\n list view.\n ' if (not self.ordering): return (self.sort_order_field,) elif (self.sort_order_field not in self.ordering): return ((self.sort_order_field,) + tuple(self.ordering)) return self.ordering
Returns a sequence defining the default ordering for results in the list view.
wagtailorderable/modeladmin/mixins.py
get_ordering
kausaltech/wagtail-orderable
0
python
def get_ordering(self, request): '\n Returns a sequence defining the default ordering for results in the\n list view.\n ' if (not self.ordering): return (self.sort_order_field,) elif (self.sort_order_field not in self.ordering): return ((self.sort_order_field,) + tuple(self.ordering)) return self.ordering
def get_ordering(self, request): '\n Returns a sequence defining the default ordering for results in the\n list view.\n ' if (not self.ordering): return (self.sort_order_field,) elif (self.sort_order_field not in self.ordering): return ((self.sort_order_field,) + tuple(self.ordering)) return self.ordering<|docstring|>Returns a sequence defining the default ordering for results in the list view.<|endoftext|>
f60aa2f14d5870303f02b9c3cebef139946093a0e6b8d1eac0ea67f212031a1e
def get_list_display(self, request): 'Add `index_order` as the first column to results' list_display = list(super().get_list_display(request)) if (self.sort_order_field in list_display): list_display.remove(self.sort_order_field) return ('index_order', *list_display)
Add `index_order` as the first column to results
wagtailorderable/modeladmin/mixins.py
get_list_display
kausaltech/wagtail-orderable
0
python
def get_list_display(self, request): list_display = list(super().get_list_display(request)) if (self.sort_order_field in list_display): list_display.remove(self.sort_order_field) return ('index_order', *list_display)
def get_list_display(self, request): list_display = list(super().get_list_display(request)) if (self.sort_order_field in list_display): list_display.remove(self.sort_order_field) return ('index_order', *list_display)<|docstring|>Add `index_order` as the first column to results<|endoftext|>
cd3279f0fbe6e8bb0cb93d283f8beb6901df5bb178a90097e2cdcdc05d5e4ff5
def get_list_display_add_buttons(self, request): "\n If `list_display_add_buttons` isn't set, ensure the buttons are not\n added to the `index_order` column.\n " col_field_name = super(OrderableMixin, self).get_list_display_add_buttons(request) if (col_field_name == 'index_order'): list_display = self.get_list_display(request) return list_display[1] return col_field_name
If `list_display_add_buttons` isn't set, ensure the buttons are not added to the `index_order` column.
wagtailorderable/modeladmin/mixins.py
get_list_display_add_buttons
kausaltech/wagtail-orderable
0
python
def get_list_display_add_buttons(self, request): "\n If `list_display_add_buttons` isn't set, ensure the buttons are not\n added to the `index_order` column.\n " col_field_name = super(OrderableMixin, self).get_list_display_add_buttons(request) if (col_field_name == 'index_order'): list_display = self.get_list_display(request) return list_display[1] return col_field_name
def get_list_display_add_buttons(self, request): "\n If `list_display_add_buttons` isn't set, ensure the buttons are not\n added to the `index_order` column.\n " col_field_name = super(OrderableMixin, self).get_list_display_add_buttons(request) if (col_field_name == 'index_order'): list_display = self.get_list_display(request) return list_display[1] return col_field_name<|docstring|>If `list_display_add_buttons` isn't set, ensure the buttons are not added to the `index_order` column.<|endoftext|>
be630a51176d170e7127fa8000c716e8002f0e79865fea3a117fe4d91b0f6a80
def get_extra_attrs_for_field_col(self, obj, field_name): '\n Add data attributes to the `index_order` column that can be picked\n up via JS. The width attribute helps the column remain at a fixed size\n while dragging and the title is used for generating a success message\n on completion reorder completion.\n ' attrs = super(OrderableMixin, self).get_extra_attrs_for_field_col(obj, field_name) if (field_name == 'index_order'): attrs.update({'data-title': obj.__str__(), 'width': 20}) return attrs
Add data attributes to the `index_order` column that can be picked up via JS. The width attribute helps the column remain at a fixed size while dragging and the title is used for generating a success message on completion reorder completion.
wagtailorderable/modeladmin/mixins.py
get_extra_attrs_for_field_col
kausaltech/wagtail-orderable
0
python
def get_extra_attrs_for_field_col(self, obj, field_name): '\n Add data attributes to the `index_order` column that can be picked\n up via JS. The width attribute helps the column remain at a fixed size\n while dragging and the title is used for generating a success message\n on completion reorder completion.\n ' attrs = super(OrderableMixin, self).get_extra_attrs_for_field_col(obj, field_name) if (field_name == 'index_order'): attrs.update({'data-title': obj.__str__(), 'width': 20}) return attrs
def get_extra_attrs_for_field_col(self, obj, field_name): '\n Add data attributes to the `index_order` column that can be picked\n up via JS. The width attribute helps the column remain at a fixed size\n while dragging and the title is used for generating a success message\n on completion reorder completion.\n ' attrs = super(OrderableMixin, self).get_extra_attrs_for_field_col(obj, field_name) if (field_name == 'index_order'): attrs.update({'data-title': obj.__str__(), 'width': 20}) return attrs<|docstring|>Add data attributes to the `index_order` column that can be picked up via JS. The width attribute helps the column remain at a fixed size while dragging and the title is used for generating a success message on completion reorder completion.<|endoftext|>
3d53ef704ef4cd928d84476226e234b9527ee30517493130538af82ee17bcb67
def get_extra_class_names_for_field_col(self, obj, field_name): '\n Add the `visible-on-drag` class to certain columns\n ' classnames = super(OrderableMixin, self).get_extra_class_names_for_field_col(obj, field_name) if (field_name in ('index_order', self.list_display[0], 'admin_thumb', (self.list_display_add_buttons or ''))): classnames.append('visible-on-drag') return classnames
Add the `visible-on-drag` class to certain columns
wagtailorderable/modeladmin/mixins.py
get_extra_class_names_for_field_col
kausaltech/wagtail-orderable
0
python
def get_extra_class_names_for_field_col(self, obj, field_name): '\n \n ' classnames = super(OrderableMixin, self).get_extra_class_names_for_field_col(obj, field_name) if (field_name in ('index_order', self.list_display[0], 'admin_thumb', (self.list_display_add_buttons or ))): classnames.append('visible-on-drag') return classnames
def get_extra_class_names_for_field_col(self, obj, field_name): '\n \n ' classnames = super(OrderableMixin, self).get_extra_class_names_for_field_col(obj, field_name) if (field_name in ('index_order', self.list_display[0], 'admin_thumb', (self.list_display_add_buttons or ))): classnames.append('visible-on-drag') return classnames<|docstring|>Add the `visible-on-drag` class to certain columns<|endoftext|>
87045f84fcd43c0393c65fd76954d0b1639d58042f9b012300790b747c804571
@transaction.atomic def reorder_view(self, request, instance_pk): '\n Very simple view functionality for updating the `sort_order` values\n for objects after a row has been dragged to a new position.\n ' self.fix_duplicate_positions(request) obj_to_move = get_object_or_404(self.model, pk=instance_pk) if (not self.permission_helper.user_can_edit_obj(request.user, obj_to_move)): raise PermissionDenied old_position = (getattr(obj_to_move, self.sort_order_field) or 0) (after_position, after) = self._get_position(request.GET.get('after')) (before_position, before) = self._get_position(request.GET.get('before')) if after: position = (after_position or 0) response = (_('"%s" moved after "%s"') % (obj_to_move, after)) elif before: position = (before_position or 0) response = (_('"%s" moved before "%s"') % (obj_to_move, before)) else: return HttpResponseBadRequest((_('"%s" not moved') % obj_to_move)) qs = self.get_filtered_queryset(request) signal_kwargs = {'sender': self.__class__, 'queryset': qs} if (position < old_position): if (position == after_position): position += 1 qs = qs.filter(**{('%s__lt' % self.sort_order_field): old_position, ('%s__gte' % self.sort_order_field): position}) update_value = (F(self.sort_order_field) + 1) signal_kwargs.update({'from_order': position, 'to_position': (old_position + 1)}) elif (position > old_position): if (position == before_position): position -= 1 qs = qs.filter(**{('%s__gt' % self.sort_order_field): old_position, ('%s__lte' % self.sort_order_field): position}) update_value = (F(self.sort_order_field) - 1) signal_kwargs.update({'from_order': (old_position - 1), 'to_position': position}) pre_reorder.send(**signal_kwargs) qs.update(**{self.sort_order_field: update_value}) self.model.objects.filter(pk=obj_to_move.pk).update(**{self.sort_order_field: position}) post_reorder.send(**signal_kwargs) return HttpResponse(response)
Very simple view functionality for updating the `sort_order` values for objects after a row has been dragged to a new position.
wagtailorderable/modeladmin/mixins.py
reorder_view
kausaltech/wagtail-orderable
0
python
@transaction.atomic def reorder_view(self, request, instance_pk): '\n Very simple view functionality for updating the `sort_order` values\n for objects after a row has been dragged to a new position.\n ' self.fix_duplicate_positions(request) obj_to_move = get_object_or_404(self.model, pk=instance_pk) if (not self.permission_helper.user_can_edit_obj(request.user, obj_to_move)): raise PermissionDenied old_position = (getattr(obj_to_move, self.sort_order_field) or 0) (after_position, after) = self._get_position(request.GET.get('after')) (before_position, before) = self._get_position(request.GET.get('before')) if after: position = (after_position or 0) response = (_('"%s" moved after "%s"') % (obj_to_move, after)) elif before: position = (before_position or 0) response = (_('"%s" moved before "%s"') % (obj_to_move, before)) else: return HttpResponseBadRequest((_('"%s" not moved') % obj_to_move)) qs = self.get_filtered_queryset(request) signal_kwargs = {'sender': self.__class__, 'queryset': qs} if (position < old_position): if (position == after_position): position += 1 qs = qs.filter(**{('%s__lt' % self.sort_order_field): old_position, ('%s__gte' % self.sort_order_field): position}) update_value = (F(self.sort_order_field) + 1) signal_kwargs.update({'from_order': position, 'to_position': (old_position + 1)}) elif (position > old_position): if (position == before_position): position -= 1 qs = qs.filter(**{('%s__gt' % self.sort_order_field): old_position, ('%s__lte' % self.sort_order_field): position}) update_value = (F(self.sort_order_field) - 1) signal_kwargs.update({'from_order': (old_position - 1), 'to_position': position}) pre_reorder.send(**signal_kwargs) qs.update(**{self.sort_order_field: update_value}) self.model.objects.filter(pk=obj_to_move.pk).update(**{self.sort_order_field: position}) post_reorder.send(**signal_kwargs) return HttpResponse(response)
@transaction.atomic def reorder_view(self, request, instance_pk): '\n Very simple view functionality for updating the `sort_order` values\n for objects after a row has been dragged to a new position.\n ' self.fix_duplicate_positions(request) obj_to_move = get_object_or_404(self.model, pk=instance_pk) if (not self.permission_helper.user_can_edit_obj(request.user, obj_to_move)): raise PermissionDenied old_position = (getattr(obj_to_move, self.sort_order_field) or 0) (after_position, after) = self._get_position(request.GET.get('after')) (before_position, before) = self._get_position(request.GET.get('before')) if after: position = (after_position or 0) response = (_('"%s" moved after "%s"') % (obj_to_move, after)) elif before: position = (before_position or 0) response = (_('"%s" moved before "%s"') % (obj_to_move, before)) else: return HttpResponseBadRequest((_('"%s" not moved') % obj_to_move)) qs = self.get_filtered_queryset(request) signal_kwargs = {'sender': self.__class__, 'queryset': qs} if (position < old_position): if (position == after_position): position += 1 qs = qs.filter(**{('%s__lt' % self.sort_order_field): old_position, ('%s__gte' % self.sort_order_field): position}) update_value = (F(self.sort_order_field) + 1) signal_kwargs.update({'from_order': position, 'to_position': (old_position + 1)}) elif (position > old_position): if (position == before_position): position -= 1 qs = qs.filter(**{('%s__gt' % self.sort_order_field): old_position, ('%s__lte' % self.sort_order_field): position}) update_value = (F(self.sort_order_field) - 1) signal_kwargs.update({'from_order': (old_position - 1), 'to_position': position}) pre_reorder.send(**signal_kwargs) qs.update(**{self.sort_order_field: update_value}) self.model.objects.filter(pk=obj_to_move.pk).update(**{self.sort_order_field: position}) post_reorder.send(**signal_kwargs) return HttpResponse(response)<|docstring|>Very simple view functionality for updating the `sort_order` values for objects after a row has been dragged to a new position.<|endoftext|>
32124167380a0274196e726465aca24171406c576fb601137f24bdcd20aba070
@transaction.atomic def fix_duplicate_positions(self, request): '\n Low level function which updates each element to have sequential sort_order values\n if the database contains any duplicate values (gaps are ok).\n ' qs = self.get_filtered_queryset(request) first_duplicate = qs.values('order').annotate(index_order_count=Count(self.sort_order_field)).filter(index_order_count__gt=1).order_by('order').first() if (not first_duplicate): return lookups = {('%s__gte' % self.sort_order_field): first_duplicate[self.sort_order_field]} to_reorder = qs.filter(**lookups).order_by(self.sort_order_field).values_list('pk', self.sort_order_field)[1:] field = self.model._meta.get_field(self.sort_order_field) when_statements = [] pks = [] bulk_update_qs = self.get_filtered_queryset(request) new_order = first_duplicate['index_order_count'] for (pk, current_order) in to_reorder: new_order += 1 if (current_order > new_order): new_order = (current_order + 1) continue if (current_order == new_order): continue pks.append(pk) when_statements.append(When(pk=pk, then=Value(new_order, output_field=field))) case_statement = Case(*when_statements, output_field=field) if connections[bulk_update_qs.db].features.requires_casted_case_in_updates: case_statement = Cast(case_statement, output_field=field) pre_reorder.send(sender=self.__class__, from_order=(first_duplicate['index_order_count'] + 1), to_order=new_order, queryset=bulk_update_qs) bulk_update_qs.filter(pk__in=pks).update(**{self.sort_order_field: case_statement}) post_reorder.send(sender=self.__class__, from_order=(first_duplicate['index_order_count'] + 1), to_order=new_order, queryset=bulk_update_qs)
Low level function which updates each element to have sequential sort_order values if the database contains any duplicate values (gaps are ok).
wagtailorderable/modeladmin/mixins.py
fix_duplicate_positions
kausaltech/wagtail-orderable
0
python
@transaction.atomic def fix_duplicate_positions(self, request): '\n Low level function which updates each element to have sequential sort_order values\n if the database contains any duplicate values (gaps are ok).\n ' qs = self.get_filtered_queryset(request) first_duplicate = qs.values('order').annotate(index_order_count=Count(self.sort_order_field)).filter(index_order_count__gt=1).order_by('order').first() if (not first_duplicate): return lookups = {('%s__gte' % self.sort_order_field): first_duplicate[self.sort_order_field]} to_reorder = qs.filter(**lookups).order_by(self.sort_order_field).values_list('pk', self.sort_order_field)[1:] field = self.model._meta.get_field(self.sort_order_field) when_statements = [] pks = [] bulk_update_qs = self.get_filtered_queryset(request) new_order = first_duplicate['index_order_count'] for (pk, current_order) in to_reorder: new_order += 1 if (current_order > new_order): new_order = (current_order + 1) continue if (current_order == new_order): continue pks.append(pk) when_statements.append(When(pk=pk, then=Value(new_order, output_field=field))) case_statement = Case(*when_statements, output_field=field) if connections[bulk_update_qs.db].features.requires_casted_case_in_updates: case_statement = Cast(case_statement, output_field=field) pre_reorder.send(sender=self.__class__, from_order=(first_duplicate['index_order_count'] + 1), to_order=new_order, queryset=bulk_update_qs) bulk_update_qs.filter(pk__in=pks).update(**{self.sort_order_field: case_statement}) post_reorder.send(sender=self.__class__, from_order=(first_duplicate['index_order_count'] + 1), to_order=new_order, queryset=bulk_update_qs)
@transaction.atomic def fix_duplicate_positions(self, request): '\n Low level function which updates each element to have sequential sort_order values\n if the database contains any duplicate values (gaps are ok).\n ' qs = self.get_filtered_queryset(request) first_duplicate = qs.values('order').annotate(index_order_count=Count(self.sort_order_field)).filter(index_order_count__gt=1).order_by('order').first() if (not first_duplicate): return lookups = {('%s__gte' % self.sort_order_field): first_duplicate[self.sort_order_field]} to_reorder = qs.filter(**lookups).order_by(self.sort_order_field).values_list('pk', self.sort_order_field)[1:] field = self.model._meta.get_field(self.sort_order_field) when_statements = [] pks = [] bulk_update_qs = self.get_filtered_queryset(request) new_order = first_duplicate['index_order_count'] for (pk, current_order) in to_reorder: new_order += 1 if (current_order > new_order): new_order = (current_order + 1) continue if (current_order == new_order): continue pks.append(pk) when_statements.append(When(pk=pk, then=Value(new_order, output_field=field))) case_statement = Case(*when_statements, output_field=field) if connections[bulk_update_qs.db].features.requires_casted_case_in_updates: case_statement = Cast(case_statement, output_field=field) pre_reorder.send(sender=self.__class__, from_order=(first_duplicate['index_order_count'] + 1), to_order=new_order, queryset=bulk_update_qs) bulk_update_qs.filter(pk__in=pks).update(**{self.sort_order_field: case_statement}) post_reorder.send(sender=self.__class__, from_order=(first_duplicate['index_order_count'] + 1), to_order=new_order, queryset=bulk_update_qs)<|docstring|>Low level function which updates each element to have sequential sort_order values if the database contains any duplicate values (gaps are ok).<|endoftext|>
87472880a7e61a1e0112d4ab35f38e1747e1a82abeaded2240ff5b8703d3b67b
def index_order(self, obj): 'Content for the `index_order` column' return mark_safe(('<div class="handle icon icon-grip text-replace ui-sortable-handle">%s</div>' % _('Drag')))
Content for the `index_order` column
wagtailorderable/modeladmin/mixins.py
index_order
kausaltech/wagtail-orderable
0
python
def index_order(self, obj): return mark_safe(('<div class="handle icon icon-grip text-replace ui-sortable-handle">%s</div>' % _('Drag')))
def index_order(self, obj): return mark_safe(('<div class="handle icon icon-grip text-replace ui-sortable-handle">%s</div>' % _('Drag')))<|docstring|>Content for the `index_order` column<|endoftext|>
c3c719bfcf41952c12ef412bcc154150c851d82eb6408e6ff70e4c7e63224b2e
def all_but(candidates: List[int], *used: int) -> List[int]: 'Return items in candidates that are not in used.' leftovers = set(candidates).difference(used) if (not leftovers): raise NoChoices() return [c for c in candidates if (c in leftovers)]
Return items in candidates that are not in used.
python/kenken.py
all_but
drewcsillag/chooser
0
python
def all_but(candidates: List[int], *used: int) -> List[int]: leftovers = set(candidates).difference(used) if (not leftovers): raise NoChoices() return [c for c in candidates if (c in leftovers)]
def all_but(candidates: List[int], *used: int) -> List[int]: leftovers = set(candidates).difference(used) if (not leftovers): raise NoChoices() return [c for c in candidates if (c in leftovers)]<|docstring|>Return items in candidates that are not in used.<|endoftext|>
15daa36e98dab129c93cc27b806209c5a29a58eb75b5c6d2ed58346031a0c078
def add_choice(row: List[int], c: Chooser, *used: int) -> None: 'Choose a item from [1-4] excluding ones that have been used already)\n and append it to row.' row.append(c.choose(all_but(ONE_TO_FOUR, *used)))
Choose a item from [1-4] excluding ones that have been used already) and append it to row.
python/kenken.py
add_choice
drewcsillag/chooser
0
python
def add_choice(row: List[int], c: Chooser, *used: int) -> None: 'Choose a item from [1-4] excluding ones that have been used already)\n and append it to row.' row.append(c.choose(all_but(ONE_TO_FOUR, *used)))
def add_choice(row: List[int], c: Chooser, *used: int) -> None: 'Choose a item from [1-4] excluding ones that have been used already)\n and append it to row.' row.append(c.choose(all_but(ONE_TO_FOUR, *used)))<|docstring|>Choose a item from [1-4] excluding ones that have been used already) and append it to row.<|endoftext|>
825292fa4c7072257a4bcdb38f5a6af04f9184bd0e94b33f63043ca2e52883c5
@property def pty(self): ' The :class:`deployer.pseudo_terminal.Pty` of this console. ' return self._pty
The :class:`deployer.pseudo_terminal.Pty` of this console.
deployer/console.py
pty
nikhilrane1992/python-deployer
39
python
@property def pty(self): ' ' return self._pty
@property def pty(self): ' ' return self._pty<|docstring|>The :class:`deployer.pseudo_terminal.Pty` of this console.<|endoftext|>
3e7c85b96180ff205ef07f100e246966cdfbe728eaabde5fae6bcd09e67fbcc2
@property def is_interactive(self): "\n When ``False`` don't ask for input and choose the default options when\n possible.\n " return self._pty.interactive
When ``False`` don't ask for input and choose the default options when possible.
deployer/console.py
is_interactive
nikhilrane1992/python-deployer
39
python
@property def is_interactive(self): "\n When ``False`` don't ask for input and choose the default options when\n possible.\n " return self._pty.interactive
@property def is_interactive(self): "\n When ``False`` don't ask for input and choose the default options when\n possible.\n " return self._pty.interactive<|docstring|>When ``False`` don't ask for input and choose the default options when possible.<|endoftext|>
9f6fd69d410f74fe6b7b5a201144b47d929c7f2490b7bcb3ec97e2cec464882f
def input(self, label, is_password=False, answers=None, default=None): '\n Ask for plain text input. (Similar to raw_input.)\n\n :param is_password: Show stars instead of the actual user input.\n :type is_password: bool\n :param answers: A list of the accepted answers or None.\n :param default: Default answer.\n ' stdin = self._pty.stdin stdout = self._pty.stdout def print_question(): answers_str = ((' [%s]' % ','.join(answers)) if answers else '') default_str = ((' (default=%s)' % default) if (default is not None) else '') stdout.write(colored((' %s%s%s: ' % (label, answers_str, default_str)), 'cyan')) stdout.flush() def read_answer(): value = '' print_question() while True: c = stdin.read(1) if ((c in ('\r', '\n')) and (value or default)): stdout.write('\r\n') break elif ((c == '\x7f') and value): stdout.write('\x08 \x08') value = value[:(- 1)] elif (ord(c) in range(32, 127)): stdout.write(colored(('*' if is_password else c), attrs=['bold'])) value += c elif (c == '\x03'): raise NoInput stdout.flush() if ((not value) and (default is not None)): return default else: return value with std.raw_mode(stdin): while True: if self._pty.interactive: value = read_answer() elif (default is not None): print_question() stdout.write(('[non interactive] %r\r\n' % default)) stdout.flush() value = default else: value = read_answer() if ((not answers) or (value in answers)): return value else: stdout.write('Invalid answer.\r\n') stdout.flush()
Ask for plain text input. (Similar to raw_input.) :param is_password: Show stars instead of the actual user input. :type is_password: bool :param answers: A list of the accepted answers or None. :param default: Default answer.
deployer/console.py
input
nikhilrane1992/python-deployer
39
python
def input(self, label, is_password=False, answers=None, default=None): '\n Ask for plain text input. (Similar to raw_input.)\n\n :param is_password: Show stars instead of the actual user input.\n :type is_password: bool\n :param answers: A list of the accepted answers or None.\n :param default: Default answer.\n ' stdin = self._pty.stdin stdout = self._pty.stdout def print_question(): answers_str = ((' [%s]' % ','.join(answers)) if answers else ) default_str = ((' (default=%s)' % default) if (default is not None) else ) stdout.write(colored((' %s%s%s: ' % (label, answers_str, default_str)), 'cyan')) stdout.flush() def read_answer(): value = print_question() while True: c = stdin.read(1) if ((c in ('\r', '\n')) and (value or default)): stdout.write('\r\n') break elif ((c == '\x7f') and value): stdout.write('\x08 \x08') value = value[:(- 1)] elif (ord(c) in range(32, 127)): stdout.write(colored(('*' if is_password else c), attrs=['bold'])) value += c elif (c == '\x03'): raise NoInput stdout.flush() if ((not value) and (default is not None)): return default else: return value with std.raw_mode(stdin): while True: if self._pty.interactive: value = read_answer() elif (default is not None): print_question() stdout.write(('[non interactive] %r\r\n' % default)) stdout.flush() value = default else: value = read_answer() if ((not answers) or (value in answers)): return value else: stdout.write('Invalid answer.\r\n') stdout.flush()
def input(self, label, is_password=False, answers=None, default=None): '\n Ask for plain text input. (Similar to raw_input.)\n\n :param is_password: Show stars instead of the actual user input.\n :type is_password: bool\n :param answers: A list of the accepted answers or None.\n :param default: Default answer.\n ' stdin = self._pty.stdin stdout = self._pty.stdout def print_question(): answers_str = ((' [%s]' % ','.join(answers)) if answers else ) default_str = ((' (default=%s)' % default) if (default is not None) else ) stdout.write(colored((' %s%s%s: ' % (label, answers_str, default_str)), 'cyan')) stdout.flush() def read_answer(): value = print_question() while True: c = stdin.read(1) if ((c in ('\r', '\n')) and (value or default)): stdout.write('\r\n') break elif ((c == '\x7f') and value): stdout.write('\x08 \x08') value = value[:(- 1)] elif (ord(c) in range(32, 127)): stdout.write(colored(('*' if is_password else c), attrs=['bold'])) value += c elif (c == '\x03'): raise NoInput stdout.flush() if ((not value) and (default is not None)): return default else: return value with std.raw_mode(stdin): while True: if self._pty.interactive: value = read_answer() elif (default is not None): print_question() stdout.write(('[non interactive] %r\r\n' % default)) stdout.flush() value = default else: value = read_answer() if ((not answers) or (value in answers)): return value else: stdout.write('Invalid answer.\r\n') stdout.flush()<|docstring|>Ask for plain text input. (Similar to raw_input.) :param is_password: Show stars instead of the actual user input. :type is_password: bool :param answers: A list of the accepted answers or None. :param default: Default answer.<|endoftext|>
3e39be3ee0f8a5891931c0466de0859bc625fe58e062de5d24926ee9d04b988d
def choice(self, question, options, allow_random=False, default=None): "\n :param options: List of (name, value) tuples.\n :type options: list\n :param allow_random: If ``True``, the default option becomes 'choose random'.\n :type allow_random: bool\n " if (len(options) == 0): raise NoInput('No options given.') if (allow_random and (default is not None)): raise Exception("Please don't provide allow_random and default parameter at the same time.") options = sorted(options, key=(lambda i: i[0])) while True: self._pty.stdout.write(colored((' %s\n' % question), 'cyan')) self.lesspipe((('%10i %s' % ((i + 1), tuple_[0])) for (i, tuple_) in enumerate(options))) if allow_random: default = 'random' elif (default is not None): try: default = ([o[1] for o in options].index(default) + 1) except ValueError: raise Exception('The default value does not appear in the options list.') result = self.input(question, default=('random' if allow_random else default)) if (allow_random and (result == 'random')): return random.choice(options)[1] else: try: result = int(result) if (1 <= result <= len(options)): return options[(result - 1)][1] except ValueError: pass self.warning('Invalid input')
:param options: List of (name, value) tuples. :type options: list :param allow_random: If ``True``, the default option becomes 'choose random'. :type allow_random: bool
deployer/console.py
choice
nikhilrane1992/python-deployer
39
python
def choice(self, question, options, allow_random=False, default=None): "\n :param options: List of (name, value) tuples.\n :type options: list\n :param allow_random: If ``True``, the default option becomes 'choose random'.\n :type allow_random: bool\n " if (len(options) == 0): raise NoInput('No options given.') if (allow_random and (default is not None)): raise Exception("Please don't provide allow_random and default parameter at the same time.") options = sorted(options, key=(lambda i: i[0])) while True: self._pty.stdout.write(colored((' %s\n' % question), 'cyan')) self.lesspipe((('%10i %s' % ((i + 1), tuple_[0])) for (i, tuple_) in enumerate(options))) if allow_random: default = 'random' elif (default is not None): try: default = ([o[1] for o in options].index(default) + 1) except ValueError: raise Exception('The default value does not appear in the options list.') result = self.input(question, default=('random' if allow_random else default)) if (allow_random and (result == 'random')): return random.choice(options)[1] else: try: result = int(result) if (1 <= result <= len(options)): return options[(result - 1)][1] except ValueError: pass self.warning('Invalid input')
def choice(self, question, options, allow_random=False, default=None): "\n :param options: List of (name, value) tuples.\n :type options: list\n :param allow_random: If ``True``, the default option becomes 'choose random'.\n :type allow_random: bool\n " if (len(options) == 0): raise NoInput('No options given.') if (allow_random and (default is not None)): raise Exception("Please don't provide allow_random and default parameter at the same time.") options = sorted(options, key=(lambda i: i[0])) while True: self._pty.stdout.write(colored((' %s\n' % question), 'cyan')) self.lesspipe((('%10i %s' % ((i + 1), tuple_[0])) for (i, tuple_) in enumerate(options))) if allow_random: default = 'random' elif (default is not None): try: default = ([o[1] for o in options].index(default) + 1) except ValueError: raise Exception('The default value does not appear in the options list.') result = self.input(question, default=('random' if allow_random else default)) if (allow_random and (result == 'random')): return random.choice(options)[1] else: try: result = int(result) if (1 <= result <= len(options)): return options[(result - 1)][1] except ValueError: pass self.warning('Invalid input')<|docstring|>:param options: List of (name, value) tuples. :type options: list :param allow_random: If ``True``, the default option becomes 'choose random'. :type allow_random: bool<|endoftext|>
01fc1ca29f05a0ddc100c5f15513d0f16883f19e866d53c6e9439cca6e8fff1f
def confirm(self, question, default=None): "\n Print this yes/no question, and return ``True`` when the user answers\n 'Yes'.\n " answer = 'invalid' if (default is not None): assert isinstance(default, bool) default = ('y' if default else 'n') while (answer not in ('yes', 'no', 'y', 'n')): answer = self.input((question + ' [y/n]'), default=default) return (answer in ('yes', 'y'))
Print this yes/no question, and return ``True`` when the user answers 'Yes'.
deployer/console.py
confirm
nikhilrane1992/python-deployer
39
python
def confirm(self, question, default=None): "\n Print this yes/no question, and return ``True`` when the user answers\n 'Yes'.\n " answer = 'invalid' if (default is not None): assert isinstance(default, bool) default = ('y' if default else 'n') while (answer not in ('yes', 'no', 'y', 'n')): answer = self.input((question + ' [y/n]'), default=default) return (answer in ('yes', 'y'))
def confirm(self, question, default=None): "\n Print this yes/no question, and return ``True`` when the user answers\n 'Yes'.\n " answer = 'invalid' if (default is not None): assert isinstance(default, bool) default = ('y' if default else 'n') while (answer not in ('yes', 'no', 'y', 'n')): answer = self.input((question + ' [y/n]'), default=default) return (answer in ('yes', 'y'))<|docstring|>Print this yes/no question, and return ``True`` when the user answers 'Yes'.<|endoftext|>
ca954a558acfd423e00b1696c31fbd22bbaf29d3308509f79026e8fa118489cb
def select_node(self, root_node, prompt='Select a node', filter=None): '\n Show autocompletion for node selection.\n ' from deployer.cli import ExitCLILoop, Handler, HandlerType, CLInterface class NodeHandler(Handler): def __init__(self, node): self.node = node @property def is_leaf(self): return ((not filter) or filter(self.node)) @property def handler_type(self): class NodeType(HandlerType): color = self.node.get_group().color return NodeType() def complete_subhandlers(self, part): for (name, subnode) in self.node.get_subnodes(): if name.startswith(part): (yield (name, NodeHandler(subnode))) def get_subhandler(self, name): if self.node.has_subnode(name): subnode = self.node.get_subnode(name) return NodeHandler(subnode) def __call__(self, context): raise ExitCLILoop(self.node) root_handler = NodeHandler(root_node) class Shell(CLInterface): @property def prompt(self): return colored(('\n%s > ' % prompt), 'cyan') not_found_message = 'Node not found...' not_a_leaf_message = 'Not a valid node...' node_result = Shell(self._pty, root_handler).cmdloop() if (not node_result): raise NoInput return self.select_node_isolation(node_result)
Show autocompletion for node selection.
deployer/console.py
select_node
nikhilrane1992/python-deployer
39
python
def select_node(self, root_node, prompt='Select a node', filter=None): '\n \n ' from deployer.cli import ExitCLILoop, Handler, HandlerType, CLInterface class NodeHandler(Handler): def __init__(self, node): self.node = node @property def is_leaf(self): return ((not filter) or filter(self.node)) @property def handler_type(self): class NodeType(HandlerType): color = self.node.get_group().color return NodeType() def complete_subhandlers(self, part): for (name, subnode) in self.node.get_subnodes(): if name.startswith(part): (yield (name, NodeHandler(subnode))) def get_subhandler(self, name): if self.node.has_subnode(name): subnode = self.node.get_subnode(name) return NodeHandler(subnode) def __call__(self, context): raise ExitCLILoop(self.node) root_handler = NodeHandler(root_node) class Shell(CLInterface): @property def prompt(self): return colored(('\n%s > ' % prompt), 'cyan') not_found_message = 'Node not found...' not_a_leaf_message = 'Not a valid node...' node_result = Shell(self._pty, root_handler).cmdloop() if (not node_result): raise NoInput return self.select_node_isolation(node_result)
def select_node(self, root_node, prompt='Select a node', filter=None): '\n \n ' from deployer.cli import ExitCLILoop, Handler, HandlerType, CLInterface class NodeHandler(Handler): def __init__(self, node): self.node = node @property def is_leaf(self): return ((not filter) or filter(self.node)) @property def handler_type(self): class NodeType(HandlerType): color = self.node.get_group().color return NodeType() def complete_subhandlers(self, part): for (name, subnode) in self.node.get_subnodes(): if name.startswith(part): (yield (name, NodeHandler(subnode))) def get_subhandler(self, name): if self.node.has_subnode(name): subnode = self.node.get_subnode(name) return NodeHandler(subnode) def __call__(self, context): raise ExitCLILoop(self.node) root_handler = NodeHandler(root_node) class Shell(CLInterface): @property def prompt(self): return colored(('\n%s > ' % prompt), 'cyan') not_found_message = 'Node not found...' not_a_leaf_message = 'Not a valid node...' node_result = Shell(self._pty, root_handler).cmdloop() if (not node_result): raise NoInput return self.select_node_isolation(node_result)<|docstring|>Show autocompletion for node selection.<|endoftext|>
8928c003a1d65781f01e9e331487ae67ef66fe41ae46b2f9921cbccbe0614a85
def select_node_isolation(self, node): '\n Ask for a host, from a list of hosts.\n ' from deployer.inspection import Inspector from deployer.node import IsolationIdentifierType options = [(' '.join([('%s (%s)' % (h.slug, h.address)) for h in hosts]), node) for (hosts, node) in Inspector(node).iter_isolations(identifier_type=IsolationIdentifierType.HOST_TUPLES)] if (len(options) > 1): return self.choice('Choose a host', options, allow_random=True) else: return options[0][1]
Ask for a host, from a list of hosts.
deployer/console.py
select_node_isolation
nikhilrane1992/python-deployer
39
python
def select_node_isolation(self, node): '\n \n ' from deployer.inspection import Inspector from deployer.node import IsolationIdentifierType options = [(' '.join([('%s (%s)' % (h.slug, h.address)) for h in hosts]), node) for (hosts, node) in Inspector(node).iter_isolations(identifier_type=IsolationIdentifierType.HOST_TUPLES)] if (len(options) > 1): return self.choice('Choose a host', options, allow_random=True) else: return options[0][1]
def select_node_isolation(self, node): '\n \n ' from deployer.inspection import Inspector from deployer.node import IsolationIdentifierType options = [(' '.join([('%s (%s)' % (h.slug, h.address)) for h in hosts]), node) for (hosts, node) in Inspector(node).iter_isolations(identifier_type=IsolationIdentifierType.HOST_TUPLES)] if (len(options) > 1): return self.choice('Choose a host', options, allow_random=True) else: return options[0][1]<|docstring|>Ask for a host, from a list of hosts.<|endoftext|>
1e93e074e41c5dc34362293bdca960f2076c55dad5bbcfd695d6cd1e5a59062e
def lesspipe(self, line_iterator): '\n Paginator for output. This will print one page at a time. When the user\n presses a key, the next page is printed. ``Ctrl-c`` or ``q`` will quit\n the paginator.\n\n :param line_iterator: A generator function that yields lines (without\n trailing newline)\n ' stdin = self._pty.stdin stdout = self._pty.stdout height = (self._pty.get_size()[0] - 1) with std.raw_mode(stdin): lines = 0 for l in line_iterator: stdout.write(l) stdout.write('\r\n') lines += 1 if (lines == height): stdout.write(colored(' Press enter to continue...', 'cyan')) stdout.flush() try: c = stdin.read(1) if (c in ('\x03', 'q')): stdout.write('\r\n') stdout.flush() return except IOError: pass stdout.write('\x1b[40D\x1b[K') lines = 0 stdout.flush()
Paginator for output. This will print one page at a time. When the user presses a key, the next page is printed. ``Ctrl-c`` or ``q`` will quit the paginator. :param line_iterator: A generator function that yields lines (without trailing newline)
deployer/console.py
lesspipe
nikhilrane1992/python-deployer
39
python
def lesspipe(self, line_iterator): '\n Paginator for output. This will print one page at a time. When the user\n presses a key, the next page is printed. ``Ctrl-c`` or ``q`` will quit\n the paginator.\n\n :param line_iterator: A generator function that yields lines (without\n trailing newline)\n ' stdin = self._pty.stdin stdout = self._pty.stdout height = (self._pty.get_size()[0] - 1) with std.raw_mode(stdin): lines = 0 for l in line_iterator: stdout.write(l) stdout.write('\r\n') lines += 1 if (lines == height): stdout.write(colored(' Press enter to continue...', 'cyan')) stdout.flush() try: c = stdin.read(1) if (c in ('\x03', 'q')): stdout.write('\r\n') stdout.flush() return except IOError: pass stdout.write('\x1b[40D\x1b[K') lines = 0 stdout.flush()
def lesspipe(self, line_iterator): '\n Paginator for output. This will print one page at a time. When the user\n presses a key, the next page is printed. ``Ctrl-c`` or ``q`` will quit\n the paginator.\n\n :param line_iterator: A generator function that yields lines (without\n trailing newline)\n ' stdin = self._pty.stdin stdout = self._pty.stdout height = (self._pty.get_size()[0] - 1) with std.raw_mode(stdin): lines = 0 for l in line_iterator: stdout.write(l) stdout.write('\r\n') lines += 1 if (lines == height): stdout.write(colored(' Press enter to continue...', 'cyan')) stdout.flush() try: c = stdin.read(1) if (c in ('\x03', 'q')): stdout.write('\r\n') stdout.flush() return except IOError: pass stdout.write('\x1b[40D\x1b[K') lines = 0 stdout.flush()<|docstring|>Paginator for output. This will print one page at a time. When the user presses a key, the next page is printed. ``Ctrl-c`` or ``q`` will quit the paginator. :param line_iterator: A generator function that yields lines (without trailing newline)<|endoftext|>
280e9e879f72a7c102957e2e608cd32b9fd0bf96ee0e8da30f82c082bf48f08c
def in_columns(self, item_iterator, margin_left=0): '\n :param item_iterator: An iterable, which yields either ``basestring``\n instances, or (colored_item, length) tuples.\n ' def get_length(item): return (len(item) if isinstance(item, basestring) else item[1]) def get_text(item): return (item if isinstance(item, basestring) else item[0]) all_items = list(item_iterator) if (not all_items): return max_length = (max(map(get_length, all_items)) + 1) term_width = (self._pty.get_size()[1] - margin_left) words_per_line = max((term_width / max_length), 1) margin = (' ' * margin_left) line = [margin] for (i, j) in enumerate(all_items): line.append(get_text(j)) if (((i + 1) % words_per_line) == 0): (yield ''.join(line)) line = [margin] else: line.append((' ' * (max_length - get_length(j)))) (yield ''.join(line))
:param item_iterator: An iterable, which yields either ``basestring`` instances, or (colored_item, length) tuples.
deployer/console.py
in_columns
nikhilrane1992/python-deployer
39
python
def in_columns(self, item_iterator, margin_left=0): '\n :param item_iterator: An iterable, which yields either ``basestring``\n instances, or (colored_item, length) tuples.\n ' def get_length(item): return (len(item) if isinstance(item, basestring) else item[1]) def get_text(item): return (item if isinstance(item, basestring) else item[0]) all_items = list(item_iterator) if (not all_items): return max_length = (max(map(get_length, all_items)) + 1) term_width = (self._pty.get_size()[1] - margin_left) words_per_line = max((term_width / max_length), 1) margin = (' ' * margin_left) line = [margin] for (i, j) in enumerate(all_items): line.append(get_text(j)) if (((i + 1) % words_per_line) == 0): (yield .join(line)) line = [margin] else: line.append((' ' * (max_length - get_length(j)))) (yield .join(line))
def in_columns(self, item_iterator, margin_left=0): '\n :param item_iterator: An iterable, which yields either ``basestring``\n instances, or (colored_item, length) tuples.\n ' def get_length(item): return (len(item) if isinstance(item, basestring) else item[1]) def get_text(item): return (item if isinstance(item, basestring) else item[0]) all_items = list(item_iterator) if (not all_items): return max_length = (max(map(get_length, all_items)) + 1) term_width = (self._pty.get_size()[1] - margin_left) words_per_line = max((term_width / max_length), 1) margin = (' ' * margin_left) line = [margin] for (i, j) in enumerate(all_items): line.append(get_text(j)) if (((i + 1) % words_per_line) == 0): (yield .join(line)) line = [margin] else: line.append((' ' * (max_length - get_length(j)))) (yield .join(line))<|docstring|>:param item_iterator: An iterable, which yields either ``basestring`` instances, or (colored_item, length) tuples.<|endoftext|>
e1db62528c18a7a7e767181bcf3500ed9fcc92415e5884afcd9ebb42541160ca
def warning(self, text): '\n Print a warning.\n ' stdout = self._pty.stdout stdout.write(colored('*** ', 'yellow')) stdout.write(colored('WARNING: ', 'red')) stdout.write(colored(text, 'red', attrs=['bold'])) stdout.write(colored(' ***\n', 'yellow')) stdout.flush()
Print a warning.
deployer/console.py
warning
nikhilrane1992/python-deployer
39
python
def warning(self, text): '\n \n ' stdout = self._pty.stdout stdout.write(colored('*** ', 'yellow')) stdout.write(colored('WARNING: ', 'red')) stdout.write(colored(text, 'red', attrs=['bold'])) stdout.write(colored(' ***\n', 'yellow')) stdout.flush()
def warning(self, text): '\n \n ' stdout = self._pty.stdout stdout.write(colored('*** ', 'yellow')) stdout.write(colored('WARNING: ', 'red')) stdout.write(colored(text, 'red', attrs=['bold'])) stdout.write(colored(' ***\n', 'yellow')) stdout.flush()<|docstring|>Print a warning.<|endoftext|>
32611680ae64bc631b77e4a1ee5e8c3b1d7f32b3b54fb8526c55e927b52dc197
def progress_bar(self, message, expected=None, clear_on_finish=False, format_str=None): "\n Display a progress bar. This returns a Python context manager.\n Call the next() method to increase the counter.\n\n ::\n\n with console.progress_bar('Looking for nodes') as p:\n for i in range(0, 1000):\n p.next()\n ...\n\n :returns: :class:`ProgressBar` instance.\n :param message: Text label of the progress bar.\n " return ProgressBar(self._pty, message, expected=expected, clear_on_finish=clear_on_finish, format_str=format_str)
Display a progress bar. This returns a Python context manager. Call the next() method to increase the counter. :: with console.progress_bar('Looking for nodes') as p: for i in range(0, 1000): p.next() ... :returns: :class:`ProgressBar` instance. :param message: Text label of the progress bar.
deployer/console.py
progress_bar
nikhilrane1992/python-deployer
39
python
def progress_bar(self, message, expected=None, clear_on_finish=False, format_str=None): "\n Display a progress bar. This returns a Python context manager.\n Call the next() method to increase the counter.\n\n ::\n\n with console.progress_bar('Looking for nodes') as p:\n for i in range(0, 1000):\n p.next()\n ...\n\n :returns: :class:`ProgressBar` instance.\n :param message: Text label of the progress bar.\n " return ProgressBar(self._pty, message, expected=expected, clear_on_finish=clear_on_finish, format_str=format_str)
def progress_bar(self, message, expected=None, clear_on_finish=False, format_str=None): "\n Display a progress bar. This returns a Python context manager.\n Call the next() method to increase the counter.\n\n ::\n\n with console.progress_bar('Looking for nodes') as p:\n for i in range(0, 1000):\n p.next()\n ...\n\n :returns: :class:`ProgressBar` instance.\n :param message: Text label of the progress bar.\n " return ProgressBar(self._pty, message, expected=expected, clear_on_finish=clear_on_finish, format_str=format_str)<|docstring|>Display a progress bar. This returns a Python context manager. Call the next() method to increase the counter. :: with console.progress_bar('Looking for nodes') as p: for i in range(0, 1000): p.next() ... :returns: :class:`ProgressBar` instance. :param message: Text label of the progress bar.<|endoftext|>
943021c75eadd70864d0b13009f8b8015d9776aeb396174c405bae47a8933a7f
def progress_bar_with_steps(self, message, steps, format_str=None): '\n Display a progress bar with steps.\n\n ::\n\n steps = ProgressBarSteps({\n 1: "Resolving address",\n 2: "Create transport",\n 3: "Get remote key",\n 4: "Authenticating" })\n\n with console.progress_bar_with_steps(\'Connecting to SSH server\', steps=steps) as p:\n ...\n p.set_progress(1)\n ...\n p.set_progress(2)\n ...\n\n :param steps: :class:`ProgressBarSteps` instance.\n :param message: Text label of the progress bar.\n ' return ProgressBar(self._pty, message, steps=steps, format_str=format_str)
Display a progress bar with steps. :: steps = ProgressBarSteps({ 1: "Resolving address", 2: "Create transport", 3: "Get remote key", 4: "Authenticating" }) with console.progress_bar_with_steps('Connecting to SSH server', steps=steps) as p: ... p.set_progress(1) ... p.set_progress(2) ... :param steps: :class:`ProgressBarSteps` instance. :param message: Text label of the progress bar.
deployer/console.py
progress_bar_with_steps
nikhilrane1992/python-deployer
39
python
def progress_bar_with_steps(self, message, steps, format_str=None): '\n Display a progress bar with steps.\n\n ::\n\n steps = ProgressBarSteps({\n 1: "Resolving address",\n 2: "Create transport",\n 3: "Get remote key",\n 4: "Authenticating" })\n\n with console.progress_bar_with_steps(\'Connecting to SSH server\', steps=steps) as p:\n ...\n p.set_progress(1)\n ...\n p.set_progress(2)\n ...\n\n :param steps: :class:`ProgressBarSteps` instance.\n :param message: Text label of the progress bar.\n ' return ProgressBar(self._pty, message, steps=steps, format_str=format_str)
def progress_bar_with_steps(self, message, steps, format_str=None): '\n Display a progress bar with steps.\n\n ::\n\n steps = ProgressBarSteps({\n 1: "Resolving address",\n 2: "Create transport",\n 3: "Get remote key",\n 4: "Authenticating" })\n\n with console.progress_bar_with_steps(\'Connecting to SSH server\', steps=steps) as p:\n ...\n p.set_progress(1)\n ...\n p.set_progress(2)\n ...\n\n :param steps: :class:`ProgressBarSteps` instance.\n :param message: Text label of the progress bar.\n ' return ProgressBar(self._pty, message, steps=steps, format_str=format_str)<|docstring|>Display a progress bar with steps. :: steps = ProgressBarSteps({ 1: "Resolving address", 2: "Create transport", 3: "Get remote key", 4: "Authenticating" }) with console.progress_bar_with_steps('Connecting to SSH server', steps=steps) as p: ... p.set_progress(1) ... p.set_progress(2) ... :param steps: :class:`ProgressBarSteps` instance. :param message: Text label of the progress bar.<|endoftext|>
9578c27d84ffa11e5ef3de644431c9888ac4f8afa2f80bf2f73d059a96eedab1
def next(self): '\n Increment progress bar counter.\n ' self.set_progress((self.counter + 1), rewrite=False)
Increment progress bar counter.
deployer/console.py
next
nikhilrane1992/python-deployer
39
python
def next(self): '\n \n ' self.set_progress((self.counter + 1), rewrite=False)
def next(self): '\n \n ' self.set_progress((self.counter + 1), rewrite=False)<|docstring|>Increment progress bar counter.<|endoftext|>
613234cfbdd1208273432f608763be8c839fb79c307838675be4fc965864d18b
def set_progress(self, value, rewrite=True): '\n Set counter to this value.\n\n :param rewrite: Always redraw the progress bar.\n :type rewrite: bool\n ' self.counter = value delta = (((datetime.now() - self._last_print).microseconds / 1000) / 1000.0) if (rewrite or (delta > self.interval)): self._print() self._last_print = datetime.now()
Set counter to this value. :param rewrite: Always redraw the progress bar. :type rewrite: bool
deployer/console.py
set_progress
nikhilrane1992/python-deployer
39
python
def set_progress(self, value, rewrite=True): '\n Set counter to this value.\n\n :param rewrite: Always redraw the progress bar.\n :type rewrite: bool\n ' self.counter = value delta = (((datetime.now() - self._last_print).microseconds / 1000) / 1000.0) if (rewrite or (delta > self.interval)): self._print() self._last_print = datetime.now()
def set_progress(self, value, rewrite=True): '\n Set counter to this value.\n\n :param rewrite: Always redraw the progress bar.\n :type rewrite: bool\n ' self.counter = value delta = (((datetime.now() - self._last_print).microseconds / 1000) / 1000.0) if (rewrite or (delta > self.interval)): self._print() self._last_print = datetime.now()<|docstring|>Set counter to this value. :param rewrite: Always redraw the progress bar. :type rewrite: bool<|endoftext|>
cbf462601754f46041265c3833c14a8a823b6f5cb8d3f4af609875f2a02fa2fe
@expectedFlakeyLinux('llvm.org/pr19310') @expectedFailureFreeBSD('llvm.org/pr19310') @skipIfRemote @dwarf_test def test_attach_continue_interrupt_detach(self): 'Test attach/continue/interrupt/detach' self.buildDwarf() self.process_attach_continue_interrupt_detach()
Test attach/continue/interrupt/detach
3.7.0/lldb-3.7.0.src/test/functionalities/attach_resume/TestAttachResume.py
test_attach_continue_interrupt_detach
androm3da/clang_sles
3
python
@expectedFlakeyLinux('llvm.org/pr19310') @expectedFailureFreeBSD('llvm.org/pr19310') @skipIfRemote @dwarf_test def test_attach_continue_interrupt_detach(self): self.buildDwarf() self.process_attach_continue_interrupt_detach()
@expectedFlakeyLinux('llvm.org/pr19310') @expectedFailureFreeBSD('llvm.org/pr19310') @skipIfRemote @dwarf_test def test_attach_continue_interrupt_detach(self): self.buildDwarf() self.process_attach_continue_interrupt_detach()<|docstring|>Test attach/continue/interrupt/detach<|endoftext|>
e4f25eb652f4257762914a4034286d0027966d707074ac20d6e668a8613dee26
@expectedFlakeyLinux('llvm.org/pr19478') @skipIfRemote def process_attach_continue_interrupt_detach(self): 'Test attach/continue/interrupt/detach' exe = os.path.join(os.getcwd(), exe_name) popen = self.spawnSubprocess(exe) self.addTearDownHook(self.cleanupSubprocesses) self.runCmd(('process attach -p ' + str(popen.pid))) self._state = 0 def process_events(): event = lldb.SBEvent() while self.dbg.GetListener().GetNextEvent(event): self._state = lldb.SBProcess.GetStateFromEvent(event) def wait_for_state(s, timeout=5): t = 0 period = 0.1 while (self._state != s): process_events() time.sleep(period) t += period if (t > timeout): return False return True self.setAsync(True) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('process interrupt') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after interrupt') self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('process interrupt') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after interrupt') self.runCmd(('br set -f main.cpp -l %u' % line_number('main.cpp', '// Set breakpoint here'))) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after breakpoint') self.expect('br list', 'Breakpoint not hit', patterns=['hit count = [1-9]']) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('detach') self.assertTrue(wait_for_state(lldb.eStateDetached), 'Process not detached after detach')
Test attach/continue/interrupt/detach
3.7.0/lldb-3.7.0.src/test/functionalities/attach_resume/TestAttachResume.py
process_attach_continue_interrupt_detach
androm3da/clang_sles
3
python
@expectedFlakeyLinux('llvm.org/pr19478') @skipIfRemote def process_attach_continue_interrupt_detach(self): exe = os.path.join(os.getcwd(), exe_name) popen = self.spawnSubprocess(exe) self.addTearDownHook(self.cleanupSubprocesses) self.runCmd(('process attach -p ' + str(popen.pid))) self._state = 0 def process_events(): event = lldb.SBEvent() while self.dbg.GetListener().GetNextEvent(event): self._state = lldb.SBProcess.GetStateFromEvent(event) def wait_for_state(s, timeout=5): t = 0 period = 0.1 while (self._state != s): process_events() time.sleep(period) t += period if (t > timeout): return False return True self.setAsync(True) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('process interrupt') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after interrupt') self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('process interrupt') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after interrupt') self.runCmd(('br set -f main.cpp -l %u' % line_number('main.cpp', '// Set breakpoint here'))) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after breakpoint') self.expect('br list', 'Breakpoint not hit', patterns=['hit count = [1-9]']) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('detach') self.assertTrue(wait_for_state(lldb.eStateDetached), 'Process not detached after detach')
@expectedFlakeyLinux('llvm.org/pr19478') @skipIfRemote def process_attach_continue_interrupt_detach(self): exe = os.path.join(os.getcwd(), exe_name) popen = self.spawnSubprocess(exe) self.addTearDownHook(self.cleanupSubprocesses) self.runCmd(('process attach -p ' + str(popen.pid))) self._state = 0 def process_events(): event = lldb.SBEvent() while self.dbg.GetListener().GetNextEvent(event): self._state = lldb.SBProcess.GetStateFromEvent(event) def wait_for_state(s, timeout=5): t = 0 period = 0.1 while (self._state != s): process_events() time.sleep(period) t += period if (t > timeout): return False return True self.setAsync(True) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('process interrupt') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after interrupt') self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('process interrupt') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after interrupt') self.runCmd(('br set -f main.cpp -l %u' % line_number('main.cpp', '// Set breakpoint here'))) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.assertTrue(wait_for_state(lldb.eStateStopped), 'Process not stopped after breakpoint') self.expect('br list', 'Breakpoint not hit', patterns=['hit count = [1-9]']) self.runCmd('c') self.assertTrue(wait_for_state(lldb.eStateRunning), 'Process not running after continue') self.runCmd('detach') self.assertTrue(wait_for_state(lldb.eStateDetached), 'Process not detached after detach')<|docstring|>Test attach/continue/interrupt/detach<|endoftext|>
eda25b0741b257ef1b45142f7211967bc15f2f3fe5134e6577cf5d0fdfce4908
def read(*paths): 'Build a file path from *paths* and return the contents.' with open(os.path.join(*paths), 'r') as f: return f.read()
Build a file path from *paths* and return the contents.
setup.py
read
tmr232/rage
0
python
def read(*paths): with open(os.path.join(*paths), 'r') as f: return f.read()
def read(*paths): with open(os.path.join(*paths), 'r') as f: return f.read()<|docstring|>Build a file path from *paths* and return the contents.<|endoftext|>
5de948b68a571a37544dca591707dca99e050882fca83d7484a26f31e4a1a975
def format_eval_input_for_neg(user_item_dict, neg_user_list): 'Eval input data for negative samples' user_list = [] item_list = [] label_list = [] for user_id in neg_user_list: cur_item_list = user_item_dict[user_id] l_cur_item_list = len(cur_item_list) for i in range(l_cur_item_list): user_list.append(user_id) item_list.append(cur_item_list[i]) label_list.append(0) return (dsnp.reshape(Tensor(user_list), ((- 1), 1, 1)), dsnp.reshape(Tensor(item_list), ((- 1), 1, 1)), dsnp.reshape(Tensor(label_list), ((- 1), 1, 1)))
Eval input data for negative samples
papers/DiffNet++/eval.py
format_eval_input_for_neg
mindspore-ai/contrib
2
python
def format_eval_input_for_neg(user_item_dict, neg_user_list): user_list = [] item_list = [] label_list = [] for user_id in neg_user_list: cur_item_list = user_item_dict[user_id] l_cur_item_list = len(cur_item_list) for i in range(l_cur_item_list): user_list.append(user_id) item_list.append(cur_item_list[i]) label_list.append(0) return (dsnp.reshape(Tensor(user_list), ((- 1), 1, 1)), dsnp.reshape(Tensor(item_list), ((- 1), 1, 1)), dsnp.reshape(Tensor(label_list), ((- 1), 1, 1)))
def format_eval_input_for_neg(user_item_dict, neg_user_list): user_list = [] item_list = [] label_list = [] for user_id in neg_user_list: cur_item_list = user_item_dict[user_id] l_cur_item_list = len(cur_item_list) for i in range(l_cur_item_list): user_list.append(user_id) item_list.append(cur_item_list[i]) label_list.append(0) return (dsnp.reshape(Tensor(user_list), ((- 1), 1, 1)), dsnp.reshape(Tensor(item_list), ((- 1), 1, 1)), dsnp.reshape(Tensor(label_list), ((- 1), 1, 1)))<|docstring|>Eval input data for negative samples<|endoftext|>
c646d2caf41ea9c2a68d742face4917597ef455f3c37bae008a6254d06bfef7f
def get_hr_ndcg(index_dict, pos_prediction_input, neg_prediction_input, topk): 'Get Hit HR and NDCG results' hr_list = [] ndcg_list = [] for idx in range(len(eval_user_list)): user = eval_user_list[idx] cur_user_pos_prediction = pos_prediction_input.asnumpy()[index_dict[user]] cur_user_neg_prediction = neg_prediction_input.asnumpy()[idx] positive_length = len(cur_user_pos_prediction) target_length = min(topk, positive_length) total_prediction = np.concatenate([cur_user_pos_prediction, cur_user_neg_prediction]) sort_index = np.argsort(total_prediction) sort_index = sort_index[::(- 1)] user_hr_list = [] user_ndcg_list = [] for i in range(topk): ranking = sort_index[i] if (ranking < positive_length): user_hr_list.append(Metrics.Gethr()) user_ndcg_list.append(Metrics.Getdcg(i)) idcg = Metrics.Getidcg(target_length) tmp_hr = (np.sum(user_hr_list) / target_length) tmp_ndcg = (np.sum(user_ndcg_list) / idcg) hr_list.append(tmp_hr) ndcg_list.append(tmp_ndcg) return (np.mean(hr_list), np.mean(ndcg_list))
Get Hit HR and NDCG results
papers/DiffNet++/eval.py
get_hr_ndcg
mindspore-ai/contrib
2
python
def get_hr_ndcg(index_dict, pos_prediction_input, neg_prediction_input, topk): hr_list = [] ndcg_list = [] for idx in range(len(eval_user_list)): user = eval_user_list[idx] cur_user_pos_prediction = pos_prediction_input.asnumpy()[index_dict[user]] cur_user_neg_prediction = neg_prediction_input.asnumpy()[idx] positive_length = len(cur_user_pos_prediction) target_length = min(topk, positive_length) total_prediction = np.concatenate([cur_user_pos_prediction, cur_user_neg_prediction]) sort_index = np.argsort(total_prediction) sort_index = sort_index[::(- 1)] user_hr_list = [] user_ndcg_list = [] for i in range(topk): ranking = sort_index[i] if (ranking < positive_length): user_hr_list.append(Metrics.Gethr()) user_ndcg_list.append(Metrics.Getdcg(i)) idcg = Metrics.Getidcg(target_length) tmp_hr = (np.sum(user_hr_list) / target_length) tmp_ndcg = (np.sum(user_ndcg_list) / idcg) hr_list.append(tmp_hr) ndcg_list.append(tmp_ndcg) return (np.mean(hr_list), np.mean(ndcg_list))
def get_hr_ndcg(index_dict, pos_prediction_input, neg_prediction_input, topk): hr_list = [] ndcg_list = [] for idx in range(len(eval_user_list)): user = eval_user_list[idx] cur_user_pos_prediction = pos_prediction_input.asnumpy()[index_dict[user]] cur_user_neg_prediction = neg_prediction_input.asnumpy()[idx] positive_length = len(cur_user_pos_prediction) target_length = min(topk, positive_length) total_prediction = np.concatenate([cur_user_pos_prediction, cur_user_neg_prediction]) sort_index = np.argsort(total_prediction) sort_index = sort_index[::(- 1)] user_hr_list = [] user_ndcg_list = [] for i in range(topk): ranking = sort_index[i] if (ranking < positive_length): user_hr_list.append(Metrics.Gethr()) user_ndcg_list.append(Metrics.Getdcg(i)) idcg = Metrics.Getidcg(target_length) tmp_hr = (np.sum(user_hr_list) / target_length) tmp_ndcg = (np.sum(user_ndcg_list) / idcg) hr_list.append(tmp_hr) ndcg_list.append(tmp_ndcg) return (np.mean(hr_list), np.mean(ndcg_list))<|docstring|>Get Hit HR and NDCG results<|endoftext|>
e963a051f138f5219d02a94742eeecc77525a3d4c58334ac7436133a4d586c1e
def __init__(self, env: gym.Env, env_info: ConfigDict, hyper_params: ConfigDict, learner_cfg: ConfigDict, log_cfg: ConfigDict, is_test: bool, load_from: str, is_render: bool, render_after: int, is_log: bool, save_period: int, episode_num: int, max_episode_steps: int, interim_test_num: int): 'Initialize.' Agent.__init__(self, env, env_info, log_cfg, is_test, load_from, is_render, render_after, is_log, save_period, episode_num, max_episode_steps, interim_test_num) self.curr_state = np.zeros((1,)) self.total_step = 0 self.episode_step = 0 self.i_episode = 0 self.hyper_params = hyper_params self.learner_cfg = learner_cfg self._initialize()
Initialize.
rl_algorithms/sac/agent.py
__init__
medipixel/rl_algorithms
466
python
def __init__(self, env: gym.Env, env_info: ConfigDict, hyper_params: ConfigDict, learner_cfg: ConfigDict, log_cfg: ConfigDict, is_test: bool, load_from: str, is_render: bool, render_after: int, is_log: bool, save_period: int, episode_num: int, max_episode_steps: int, interim_test_num: int): Agent.__init__(self, env, env_info, log_cfg, is_test, load_from, is_render, render_after, is_log, save_period, episode_num, max_episode_steps, interim_test_num) self.curr_state = np.zeros((1,)) self.total_step = 0 self.episode_step = 0 self.i_episode = 0 self.hyper_params = hyper_params self.learner_cfg = learner_cfg self._initialize()
def __init__(self, env: gym.Env, env_info: ConfigDict, hyper_params: ConfigDict, learner_cfg: ConfigDict, log_cfg: ConfigDict, is_test: bool, load_from: str, is_render: bool, render_after: int, is_log: bool, save_period: int, episode_num: int, max_episode_steps: int, interim_test_num: int): Agent.__init__(self, env, env_info, log_cfg, is_test, load_from, is_render, render_after, is_log, save_period, episode_num, max_episode_steps, interim_test_num) self.curr_state = np.zeros((1,)) self.total_step = 0 self.episode_step = 0 self.i_episode = 0 self.hyper_params = hyper_params self.learner_cfg = learner_cfg self._initialize()<|docstring|>Initialize.<|endoftext|>
96b8933dc2cd7e948a0ae77577341fd71d199feccfafc74f4e5787af76bc454d
def _initialize(self): 'Initialize non-common things.' if (not self.is_test): self.memory = ReplayBuffer(self.hyper_params.buffer_size, self.hyper_params.batch_size) build_args = dict(hyper_params=self.hyper_params, log_cfg=self.log_cfg, env_name=self.env_info.name, state_size=self.env_info.observation_space.shape, output_size=self.env_info.action_space.shape[0], is_test=self.is_test, load_from=self.load_from) self.learner = build_learner(self.learner_cfg, build_args)
Initialize non-common things.
rl_algorithms/sac/agent.py
_initialize
medipixel/rl_algorithms
466
python
def _initialize(self): if (not self.is_test): self.memory = ReplayBuffer(self.hyper_params.buffer_size, self.hyper_params.batch_size) build_args = dict(hyper_params=self.hyper_params, log_cfg=self.log_cfg, env_name=self.env_info.name, state_size=self.env_info.observation_space.shape, output_size=self.env_info.action_space.shape[0], is_test=self.is_test, load_from=self.load_from) self.learner = build_learner(self.learner_cfg, build_args)
def _initialize(self): if (not self.is_test): self.memory = ReplayBuffer(self.hyper_params.buffer_size, self.hyper_params.batch_size) build_args = dict(hyper_params=self.hyper_params, log_cfg=self.log_cfg, env_name=self.env_info.name, state_size=self.env_info.observation_space.shape, output_size=self.env_info.action_space.shape[0], is_test=self.is_test, load_from=self.load_from) self.learner = build_learner(self.learner_cfg, build_args)<|docstring|>Initialize non-common things.<|endoftext|>
456f6b36428f25a3f20c97051c0af04a6c4a1bad7f56b00d11b07c64a68ed675
def select_action(self, state: np.ndarray) -> np.ndarray: 'Select an action from the input space.' self.curr_state = state state = self._preprocess_state(state) if ((self.total_step < self.hyper_params.initial_random_action) and (not self.is_test)): return np.array(self.env.action_space.sample()) with torch.no_grad(): if self.is_test: (_, _, _, selected_action, _) = self.learner.actor(state) else: (selected_action, _, _, _, _) = self.learner.actor(state) return selected_action.detach().cpu().numpy()
Select an action from the input space.
rl_algorithms/sac/agent.py
select_action
medipixel/rl_algorithms
466
python
def select_action(self, state: np.ndarray) -> np.ndarray: self.curr_state = state state = self._preprocess_state(state) if ((self.total_step < self.hyper_params.initial_random_action) and (not self.is_test)): return np.array(self.env.action_space.sample()) with torch.no_grad(): if self.is_test: (_, _, _, selected_action, _) = self.learner.actor(state) else: (selected_action, _, _, _, _) = self.learner.actor(state) return selected_action.detach().cpu().numpy()
def select_action(self, state: np.ndarray) -> np.ndarray: self.curr_state = state state = self._preprocess_state(state) if ((self.total_step < self.hyper_params.initial_random_action) and (not self.is_test)): return np.array(self.env.action_space.sample()) with torch.no_grad(): if self.is_test: (_, _, _, selected_action, _) = self.learner.actor(state) else: (selected_action, _, _, _, _) = self.learner.actor(state) return selected_action.detach().cpu().numpy()<|docstring|>Select an action from the input space.<|endoftext|>
5352d92f1a55278bfb3cacd123e57e84c1b7c688ceb4592c8d7d56726842d5f6
def _preprocess_state(self, state: np.ndarray) -> torch.Tensor: 'Preprocess state so that actor selects an action.' state = numpy2floattensor(state, self.learner.device) return state
Preprocess state so that actor selects an action.
rl_algorithms/sac/agent.py
_preprocess_state
medipixel/rl_algorithms
466
python
def _preprocess_state(self, state: np.ndarray) -> torch.Tensor: state = numpy2floattensor(state, self.learner.device) return state
def _preprocess_state(self, state: np.ndarray) -> torch.Tensor: state = numpy2floattensor(state, self.learner.device) return state<|docstring|>Preprocess state so that actor selects an action.<|endoftext|>
2d51bf532ab79d8a5dfebc39f654c4ee249c974ad2cc9f2aadd53cddb88c9118
def step(self, action: np.ndarray) -> Tuple[(np.ndarray, np.float64, bool, dict)]: 'Take an action and return the response of the env.' (next_state, reward, done, info) = self.env.step(action) if (not self.is_test): done_bool = (False if (self.episode_step == self.max_episode_steps) else done) transition = (self.curr_state, action, reward, next_state, done_bool) self._add_transition_to_memory(transition) return (next_state, reward, done, info)
Take an action and return the response of the env.
rl_algorithms/sac/agent.py
step
medipixel/rl_algorithms
466
python
def step(self, action: np.ndarray) -> Tuple[(np.ndarray, np.float64, bool, dict)]: (next_state, reward, done, info) = self.env.step(action) if (not self.is_test): done_bool = (False if (self.episode_step == self.max_episode_steps) else done) transition = (self.curr_state, action, reward, next_state, done_bool) self._add_transition_to_memory(transition) return (next_state, reward, done, info)
def step(self, action: np.ndarray) -> Tuple[(np.ndarray, np.float64, bool, dict)]: (next_state, reward, done, info) = self.env.step(action) if (not self.is_test): done_bool = (False if (self.episode_step == self.max_episode_steps) else done) transition = (self.curr_state, action, reward, next_state, done_bool) self._add_transition_to_memory(transition) return (next_state, reward, done, info)<|docstring|>Take an action and return the response of the env.<|endoftext|>
b20c1b8a71e34f4b76f54985c26f43f0a638f622756b7fa1e0dae32e0bafeaf5
def _add_transition_to_memory(self, transition: Tuple[(np.ndarray, ...)]): 'Add 1 step and n step transitions to memory.' self.memory.add(transition)
Add 1 step and n step transitions to memory.
rl_algorithms/sac/agent.py
_add_transition_to_memory
medipixel/rl_algorithms
466
python
def _add_transition_to_memory(self, transition: Tuple[(np.ndarray, ...)]): self.memory.add(transition)
def _add_transition_to_memory(self, transition: Tuple[(np.ndarray, ...)]): self.memory.add(transition)<|docstring|>Add 1 step and n step transitions to memory.<|endoftext|>
ae9f4e3a7f353bc1e8354dccadb0644c163c10adee16bddabb48e7155a4bb205
def write_log(self, log_value: tuple): 'Write log about loss and score' (i, loss, score, policy_update_freq, avg_time_cost) = log_value total_loss = loss.sum() print(('[INFO] episode %d, episode_step %d, total step %d, total score: %d\ntotal loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f vf_loss: %.3f alpha_loss: %.3f (spent %.6f sec/step)\n' % (i, self.episode_step, self.total_step, score, total_loss, (loss[0] * policy_update_freq), loss[1], loss[2], loss[3], loss[4], avg_time_cost))) if self.is_log: wandb.log({'score': score, 'total loss': total_loss, 'actor loss': (loss[0] * policy_update_freq), 'qf_1 loss': loss[1], 'qf_2 loss': loss[2], 'vf loss': loss[3], 'alpha loss': loss[4], 'time per each step': avg_time_cost})
Write log about loss and score
rl_algorithms/sac/agent.py
write_log
medipixel/rl_algorithms
466
python
def write_log(self, log_value: tuple): (i, loss, score, policy_update_freq, avg_time_cost) = log_value total_loss = loss.sum() print(('[INFO] episode %d, episode_step %d, total step %d, total score: %d\ntotal loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f vf_loss: %.3f alpha_loss: %.3f (spent %.6f sec/step)\n' % (i, self.episode_step, self.total_step, score, total_loss, (loss[0] * policy_update_freq), loss[1], loss[2], loss[3], loss[4], avg_time_cost))) if self.is_log: wandb.log({'score': score, 'total loss': total_loss, 'actor loss': (loss[0] * policy_update_freq), 'qf_1 loss': loss[1], 'qf_2 loss': loss[2], 'vf loss': loss[3], 'alpha loss': loss[4], 'time per each step': avg_time_cost})
def write_log(self, log_value: tuple): (i, loss, score, policy_update_freq, avg_time_cost) = log_value total_loss = loss.sum() print(('[INFO] episode %d, episode_step %d, total step %d, total score: %d\ntotal loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f vf_loss: %.3f alpha_loss: %.3f (spent %.6f sec/step)\n' % (i, self.episode_step, self.total_step, score, total_loss, (loss[0] * policy_update_freq), loss[1], loss[2], loss[3], loss[4], avg_time_cost))) if self.is_log: wandb.log({'score': score, 'total loss': total_loss, 'actor loss': (loss[0] * policy_update_freq), 'qf_1 loss': loss[1], 'qf_2 loss': loss[2], 'vf loss': loss[3], 'alpha loss': loss[4], 'time per each step': avg_time_cost})<|docstring|>Write log about loss and score<|endoftext|>
6bb5763ea77c03354ec87c6ab391d97d32a0c8b8a9b39926249cb8e12c1e76d8
def pretrain(self): 'Pretraining steps.' pass
Pretraining steps.
rl_algorithms/sac/agent.py
pretrain
medipixel/rl_algorithms
466
python
def pretrain(self): pass
def pretrain(self): pass<|docstring|>Pretraining steps.<|endoftext|>
c9b7511e125c38bf1db22ab43bb200d3f35d06e3fd957d84eb3b5a36bc638b67
def train(self): 'Train the agent.' if self.is_log: self.set_wandb() self.pretrain() for self.i_episode in range(1, (self.episode_num + 1)): state = self.env.reset() done = False score = 0 self.episode_step = 0 loss_episode = list() t_begin = time.time() while (not done): if (self.is_render and (self.i_episode >= self.render_after)): self.env.render() action = self.select_action(state) (next_state, reward, done, _) = self.step(action) self.total_step += 1 self.episode_step += 1 state = next_state score += reward if (len(self.memory) >= self.hyper_params.batch_size): for _ in range(self.hyper_params.multiple_update): experience = self.memory.sample() experience = numpy2floattensor(experience, self.learner.device) loss = self.learner.update_model(experience) loss_episode.append(loss) t_end = time.time() avg_time_cost = ((t_end - t_begin) / self.episode_step) if loss_episode: avg_loss = np.vstack(loss_episode).mean(axis=0) log_value = (self.i_episode, avg_loss, score, self.hyper_params.policy_update_freq, avg_time_cost) self.write_log(log_value) if ((self.i_episode % self.save_period) == 0): self.learner.save_params(self.i_episode) self.interim_test() self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
Train the agent.
rl_algorithms/sac/agent.py
train
medipixel/rl_algorithms
466
python
def train(self): if self.is_log: self.set_wandb() self.pretrain() for self.i_episode in range(1, (self.episode_num + 1)): state = self.env.reset() done = False score = 0 self.episode_step = 0 loss_episode = list() t_begin = time.time() while (not done): if (self.is_render and (self.i_episode >= self.render_after)): self.env.render() action = self.select_action(state) (next_state, reward, done, _) = self.step(action) self.total_step += 1 self.episode_step += 1 state = next_state score += reward if (len(self.memory) >= self.hyper_params.batch_size): for _ in range(self.hyper_params.multiple_update): experience = self.memory.sample() experience = numpy2floattensor(experience, self.learner.device) loss = self.learner.update_model(experience) loss_episode.append(loss) t_end = time.time() avg_time_cost = ((t_end - t_begin) / self.episode_step) if loss_episode: avg_loss = np.vstack(loss_episode).mean(axis=0) log_value = (self.i_episode, avg_loss, score, self.hyper_params.policy_update_freq, avg_time_cost) self.write_log(log_value) if ((self.i_episode % self.save_period) == 0): self.learner.save_params(self.i_episode) self.interim_test() self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
def train(self): if self.is_log: self.set_wandb() self.pretrain() for self.i_episode in range(1, (self.episode_num + 1)): state = self.env.reset() done = False score = 0 self.episode_step = 0 loss_episode = list() t_begin = time.time() while (not done): if (self.is_render and (self.i_episode >= self.render_after)): self.env.render() action = self.select_action(state) (next_state, reward, done, _) = self.step(action) self.total_step += 1 self.episode_step += 1 state = next_state score += reward if (len(self.memory) >= self.hyper_params.batch_size): for _ in range(self.hyper_params.multiple_update): experience = self.memory.sample() experience = numpy2floattensor(experience, self.learner.device) loss = self.learner.update_model(experience) loss_episode.append(loss) t_end = time.time() avg_time_cost = ((t_end - t_begin) / self.episode_step) if loss_episode: avg_loss = np.vstack(loss_episode).mean(axis=0) log_value = (self.i_episode, avg_loss, score, self.hyper_params.policy_update_freq, avg_time_cost) self.write_log(log_value) if ((self.i_episode % self.save_period) == 0): self.learner.save_params(self.i_episode) self.interim_test() self.env.close() self.learner.save_params(self.i_episode) self.interim_test()<|docstring|>Train the agent.<|endoftext|>
7f444e7dda666ab4bef5e94045a542baa396872201124ab2d245d1ffeacf26ec
def residual(self, q0, qend, dt, fSDC, feval, **kwargs): 'Return the residual of *fSDC*.' f = np.empty(((self.nnodes,) + feval.shape), dtype=fSDC.dtype) ff = f.reshape((self.nnodes, feval.size)) for m in range(self.nnodes): f[m] = fSDC[(0, m)] for p in range(1, fSDC.shape[0]): f[m] += fSDC[(p, m)] int_ff = (dt * np.dot(self.smat, ff)) int_f = int_ff.reshape((((self.nnodes - 1),) + feval.shape)) tot_f = np.zeros(feval.shape, dtype=fSDC.dtype) for m in range((self.nnodes - 1)): tot_f += int_f[(m, :)] return ((q0 + tot_f) - qend)
Return the residual of *fSDC*.
pfasst/sdc.py
residual
memmett/PyPFASST
6
python
def residual(self, q0, qend, dt, fSDC, feval, **kwargs): f = np.empty(((self.nnodes,) + feval.shape), dtype=fSDC.dtype) ff = f.reshape((self.nnodes, feval.size)) for m in range(self.nnodes): f[m] = fSDC[(0, m)] for p in range(1, fSDC.shape[0]): f[m] += fSDC[(p, m)] int_ff = (dt * np.dot(self.smat, ff)) int_f = int_ff.reshape((((self.nnodes - 1),) + feval.shape)) tot_f = np.zeros(feval.shape, dtype=fSDC.dtype) for m in range((self.nnodes - 1)): tot_f += int_f[(m, :)] return ((q0 + tot_f) - qend)
def residual(self, q0, qend, dt, fSDC, feval, **kwargs): f = np.empty(((self.nnodes,) + feval.shape), dtype=fSDC.dtype) ff = f.reshape((self.nnodes, feval.size)) for m in range(self.nnodes): f[m] = fSDC[(0, m)] for p in range(1, fSDC.shape[0]): f[m] += fSDC[(p, m)] int_ff = (dt * np.dot(self.smat, ff)) int_f = int_ff.reshape((((self.nnodes - 1),) + feval.shape)) tot_f = np.zeros(feval.shape, dtype=fSDC.dtype) for m in range((self.nnodes - 1)): tot_f += int_f[(m, :)] return ((q0 + tot_f) - qend)<|docstring|>Return the residual of *fSDC*.<|endoftext|>
62ee179388b21eae9d3133877ba356ff19baa259d36efaf97abaf16be9b8a8aa
def sweep(self, *args, **kwargs): 'Perform one SDC sweep.\n\n **This method should be overridden.**\n ' raise NotImplementedError()
Perform one SDC sweep. **This method should be overridden.**
pfasst/sdc.py
sweep
memmett/PyPFASST
6
python
def sweep(self, *args, **kwargs): 'Perform one SDC sweep.\n\n **This method should be overridden.**\n ' raise NotImplementedError()
def sweep(self, *args, **kwargs): 'Perform one SDC sweep.\n\n **This method should be overridden.**\n ' raise NotImplementedError()<|docstring|>Perform one SDC sweep. **This method should be overridden.**<|endoftext|>
2c12485e6f7ff5dcb5383738ed083811b533c6cc073b9145bd4a9aa7c4f391f9
def evaluate(self, *args, **kwargs): 'Evaluate.\n\n **This method should be overridden.**\n ' raise NotImplementedError()
Evaluate. **This method should be overridden.**
pfasst/sdc.py
evaluate
memmett/PyPFASST
6
python
def evaluate(self, *args, **kwargs): 'Evaluate.\n\n **This method should be overridden.**\n ' raise NotImplementedError()
def evaluate(self, *args, **kwargs): 'Evaluate.\n\n **This method should be overridden.**\n ' raise NotImplementedError()<|docstring|>Evaluate. **This method should be overridden.**<|endoftext|>
4e0500c796638303615cb161a4a4421f2bfab391c91f4eaec3f5128942ff5f0a
def MakePupil(D_eval, side_len, N): '\n Create a pupil at the receiver plane to evaluate the structure function that accounts for receiver sampling effects\n\n :param D_eval: the diameter of the pupil in meters\n :param side_len: the sidelength of the receiver plane in meters\n :param N: the number of discrete intervals at the receiver\n :return: a pupil function that can be used to mask the receiver plane to the desirec aperture\n ' boundary1 = (- (side_len / 2)) boundary2 = (side_len / 2) A = np.linspace(boundary1, boundary2, N) A = np.array(([A] * N)) base = np.linspace(boundary1, boundary2, N) set_ones = np.ones(N) B = np.array(([set_ones] * N)) for i in range(0, len(base)): B[i] = (B[i] * base[i]) A = A.reshape(N, N) B = B.reshape(N, N) x_coord = (A ** 2) y_coord = (B ** 2) rad_dist = np.sqrt((x_coord + y_coord)) mask = [] for row in rad_dist: for val in row: if (val < D_eval): mask.append(1.0) elif (val > D_eval): mask.append(0.0) elif (val == D_eval): mask.append(0.5) mask = np.array([mask]) mask = mask.reshape(N, N) return mask
Create a pupil at the receiver plane to evaluate the structure function that accounts for receiver sampling effects :param D_eval: the diameter of the pupil in meters :param side_len: the sidelength of the receiver plane in meters :param N: the number of discrete intervals at the receiver :return: a pupil function that can be used to mask the receiver plane to the desirec aperture
sim_evaluation_module.py
MakePupil
gregbad/WavePy
0
python
def MakePupil(D_eval, side_len, N): '\n Create a pupil at the receiver plane to evaluate the structure function that accounts for receiver sampling effects\n\n :param D_eval: the diameter of the pupil in meters\n :param side_len: the sidelength of the receiver plane in meters\n :param N: the number of discrete intervals at the receiver\n :return: a pupil function that can be used to mask the receiver plane to the desirec aperture\n ' boundary1 = (- (side_len / 2)) boundary2 = (side_len / 2) A = np.linspace(boundary1, boundary2, N) A = np.array(([A] * N)) base = np.linspace(boundary1, boundary2, N) set_ones = np.ones(N) B = np.array(([set_ones] * N)) for i in range(0, len(base)): B[i] = (B[i] * base[i]) A = A.reshape(N, N) B = B.reshape(N, N) x_coord = (A ** 2) y_coord = (B ** 2) rad_dist = np.sqrt((x_coord + y_coord)) mask = [] for row in rad_dist: for val in row: if (val < D_eval): mask.append(1.0) elif (val > D_eval): mask.append(0.0) elif (val == D_eval): mask.append(0.5) mask = np.array([mask]) mask = mask.reshape(N, N) return mask
def MakePupil(D_eval, side_len, N): '\n Create a pupil at the receiver plane to evaluate the structure function that accounts for receiver sampling effects\n\n :param D_eval: the diameter of the pupil in meters\n :param side_len: the sidelength of the receiver plane in meters\n :param N: the number of discrete intervals at the receiver\n :return: a pupil function that can be used to mask the receiver plane to the desirec aperture\n ' boundary1 = (- (side_len / 2)) boundary2 = (side_len / 2) A = np.linspace(boundary1, boundary2, N) A = np.array(([A] * N)) base = np.linspace(boundary1, boundary2, N) set_ones = np.ones(N) B = np.array(([set_ones] * N)) for i in range(0, len(base)): B[i] = (B[i] * base[i]) A = A.reshape(N, N) B = B.reshape(N, N) x_coord = (A ** 2) y_coord = (B ** 2) rad_dist = np.sqrt((x_coord + y_coord)) mask = [] for row in rad_dist: for val in row: if (val < D_eval): mask.append(1.0) elif (val > D_eval): mask.append(0.0) elif (val == D_eval): mask.append(0.5) mask = np.array([mask]) mask = mask.reshape(N, N) return mask<|docstring|>Create a pupil at the receiver plane to evaluate the structure function that accounts for receiver sampling effects :param D_eval: the diameter of the pupil in meters :param side_len: the sidelength of the receiver plane in meters :param N: the number of discrete intervals at the receiver :return: a pupil function that can be used to mask the receiver plane to the desirec aperture<|endoftext|>
2f7033f5322177e0d9ed63edefb680a31f9231cd6daf9d425ea7ac7eb3032bed
def structure_function_over_time(report_filename, sim_result_directory, D_receiver_pupil=None): '\n Evaluate the accuracy of the turbulence simulation by computing the structure function at the receiver plane using\n a mutual coherence function approach. Note: This will only be accurate over many different simulations and some\n disagreement should be expected over a single turbulence simulation\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n :param D_receiver_pupil: the receiver pupil diametre in meters for cropping purposes\n :return:\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] Rdx = sim_dict['Receiver Rdx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] delta_f = (1 / (N * Rdx)) side_len = (N * Rdx) if (D_receiver_pupil is None): D_receiver_pupil = (r0 * 5.0) aperture_mask = MakePupil(D_receiver_pupil, side_len, N) (fig, ax) = plt.subplots(figsize=(9, 6)) color = cm.jet(np.linspace(0, 1, tsteps)) mesh_spacing = np.arange(0, N) (X, Y) = np.meshgrid(mesh_spacing, mesh_spacing) r = np.hypot((X - (N / 2)), (Y - (N / 2))) r[(int((N / 2)), int((N / 2)))] = 0 rbin = ((N * r) / r.max()).astype(np.int) bin_sampling = (((r.max() * Rdx) * np.arange(1, (rbin.max() + 1))) / rbin.max()) bin_sampling_cutoff = 0 where_within_ap = 0 mcf_sum = 0 D_sim_array = [] for t in range(0, tsteps): fname_turbsim_t = (((sim_result_directory + '_turbsim_t') + '{:04d}'.format(t)) + '.npy') turbsim_t = np.load(fname_turbsim_t) U_r = (np.fft.fftshift(np.fft.fft2(np.fft.fftshift((turbsim_t * aperture_mask)))) * (Rdx ** 2.0)) U_r_autocorr = (np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift((np.conj(U_r) * U_r)))) * ((delta_f * N) ** 2.0)) maskcorr = (np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift((abs(np.fft.ifftshift(np.fft.fft2(np.fft.ifftshift(aperture_mask)))) * (Rdx ** 2.0))))) * ((N * delta_f) ** 2.0)) plt.imshow(np.abs(U_r_autocorr)) plt.show() plt.imshow(np.abs(maskcorr)) plt.show() c = ((U_r_autocorr / maskcorr) * aperture_mask) D_r_t = ((- 2) * np.log((np.abs(c) / np.abs(c[(int((N / 2)), int((N / 2)))])))) mcf_sum = (mcf_sum + c) D_1d = scipy.ndimage.mean(D_r_t, labels=rbin, index=np.arange(1, (rbin.max() + 1))) where_within_ap = (bin_sampling <= D_receiver_pupil) bin_sampling_cutoff = bin_sampling[where_within_ap] D_1d_cutoff = D_1d[where_within_ap] D_sim_array.append(D_1d_cutoff) MCF_sim = (np.abs(mcf_sum) / np.abs(mcf_sum[(int((N / 2)), int((N / 2)))])) D_sim_avg = ((- 2) * np.log((np.abs(MCF_sim) / np.abs(MCF_sim[(int((N / 2)), int((N / 2)))])))) D_sim_1d = scipy.ndimage.mean(D_sim_avg, labels=rbin, index=np.arange(1, (rbin.max() + 1))) D_sim_1d_cutoff = D_sim_1d[where_within_ap] ax.plot((bin_sampling_cutoff / r0), D_sim_1d_cutoff, 'red', label='Sim Average MCF') D_sim_array = np.asarray(D_sim_array) average_D = np.average(D_sim_array, axis=0) max_D = np.max(D_sim_array, axis=0) min_D = np.min(D_sim_array, axis=0) ax.plot((bin_sampling_cutoff / r0), min_D, 'g--', label='Sample Lower Bound') ax.plot((bin_sampling_cutoff / r0), max_D, 'k--', label='Sample Upper Bound') ax.plot((bin_sampling_cutoff / r0), average_D, 'b', label='Sample MCF Average') D_kolmog = (6.88 * ((bin_sampling_cutoff / r0) ** (5.0 / 3.0))) k0 = ((2 * np.pi) / L0) D_mVK = ((((7.75 * (r0 ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_cutoff ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_cutoff ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) ax.plot((bin_sampling_cutoff / r0), D_mVK, 'orange', label='MvK (theoretical)') ax.legend() ax.set_xlabel('$\\Delta r$/$r_0$') ax.set_ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()
Evaluate the accuracy of the turbulence simulation by computing the structure function at the receiver plane using a mutual coherence function approach. Note: This will only be accurate over many different simulations and some disagreement should be expected over a single turbulence simulation :param report_filename: the filename including path for the output report of the turbulence simulation :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have been written out :param D_receiver_pupil: the receiver pupil diametre in meters for cropping purposes :return:
sim_evaluation_module.py
structure_function_over_time
gregbad/WavePy
0
python
def structure_function_over_time(report_filename, sim_result_directory, D_receiver_pupil=None): '\n Evaluate the accuracy of the turbulence simulation by computing the structure function at the receiver plane using\n a mutual coherence function approach. Note: This will only be accurate over many different simulations and some\n disagreement should be expected over a single turbulence simulation\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n :param D_receiver_pupil: the receiver pupil diametre in meters for cropping purposes\n :return:\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] Rdx = sim_dict['Receiver Rdx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] delta_f = (1 / (N * Rdx)) side_len = (N * Rdx) if (D_receiver_pupil is None): D_receiver_pupil = (r0 * 5.0) aperture_mask = MakePupil(D_receiver_pupil, side_len, N) (fig, ax) = plt.subplots(figsize=(9, 6)) color = cm.jet(np.linspace(0, 1, tsteps)) mesh_spacing = np.arange(0, N) (X, Y) = np.meshgrid(mesh_spacing, mesh_spacing) r = np.hypot((X - (N / 2)), (Y - (N / 2))) r[(int((N / 2)), int((N / 2)))] = 0 rbin = ((N * r) / r.max()).astype(np.int) bin_sampling = (((r.max() * Rdx) * np.arange(1, (rbin.max() + 1))) / rbin.max()) bin_sampling_cutoff = 0 where_within_ap = 0 mcf_sum = 0 D_sim_array = [] for t in range(0, tsteps): fname_turbsim_t = (((sim_result_directory + '_turbsim_t') + '{:04d}'.format(t)) + '.npy') turbsim_t = np.load(fname_turbsim_t) U_r = (np.fft.fftshift(np.fft.fft2(np.fft.fftshift((turbsim_t * aperture_mask)))) * (Rdx ** 2.0)) U_r_autocorr = (np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift((np.conj(U_r) * U_r)))) * ((delta_f * N) ** 2.0)) maskcorr = (np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift((abs(np.fft.ifftshift(np.fft.fft2(np.fft.ifftshift(aperture_mask)))) * (Rdx ** 2.0))))) * ((N * delta_f) ** 2.0)) plt.imshow(np.abs(U_r_autocorr)) plt.show() plt.imshow(np.abs(maskcorr)) plt.show() c = ((U_r_autocorr / maskcorr) * aperture_mask) D_r_t = ((- 2) * np.log((np.abs(c) / np.abs(c[(int((N / 2)), int((N / 2)))])))) mcf_sum = (mcf_sum + c) D_1d = scipy.ndimage.mean(D_r_t, labels=rbin, index=np.arange(1, (rbin.max() + 1))) where_within_ap = (bin_sampling <= D_receiver_pupil) bin_sampling_cutoff = bin_sampling[where_within_ap] D_1d_cutoff = D_1d[where_within_ap] D_sim_array.append(D_1d_cutoff) MCF_sim = (np.abs(mcf_sum) / np.abs(mcf_sum[(int((N / 2)), int((N / 2)))])) D_sim_avg = ((- 2) * np.log((np.abs(MCF_sim) / np.abs(MCF_sim[(int((N / 2)), int((N / 2)))])))) D_sim_1d = scipy.ndimage.mean(D_sim_avg, labels=rbin, index=np.arange(1, (rbin.max() + 1))) D_sim_1d_cutoff = D_sim_1d[where_within_ap] ax.plot((bin_sampling_cutoff / r0), D_sim_1d_cutoff, 'red', label='Sim Average MCF') D_sim_array = np.asarray(D_sim_array) average_D = np.average(D_sim_array, axis=0) max_D = np.max(D_sim_array, axis=0) min_D = np.min(D_sim_array, axis=0) ax.plot((bin_sampling_cutoff / r0), min_D, 'g--', label='Sample Lower Bound') ax.plot((bin_sampling_cutoff / r0), max_D, 'k--', label='Sample Upper Bound') ax.plot((bin_sampling_cutoff / r0), average_D, 'b', label='Sample MCF Average') D_kolmog = (6.88 * ((bin_sampling_cutoff / r0) ** (5.0 / 3.0))) k0 = ((2 * np.pi) / L0) D_mVK = ((((7.75 * (r0 ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_cutoff ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_cutoff ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) ax.plot((bin_sampling_cutoff / r0), D_mVK, 'orange', label='MvK (theoretical)') ax.legend() ax.set_xlabel('$\\Delta r$/$r_0$') ax.set_ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()
def structure_function_over_time(report_filename, sim_result_directory, D_receiver_pupil=None): '\n Evaluate the accuracy of the turbulence simulation by computing the structure function at the receiver plane using\n a mutual coherence function approach. Note: This will only be accurate over many different simulations and some\n disagreement should be expected over a single turbulence simulation\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n :param D_receiver_pupil: the receiver pupil diametre in meters for cropping purposes\n :return:\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] Rdx = sim_dict['Receiver Rdx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] delta_f = (1 / (N * Rdx)) side_len = (N * Rdx) if (D_receiver_pupil is None): D_receiver_pupil = (r0 * 5.0) aperture_mask = MakePupil(D_receiver_pupil, side_len, N) (fig, ax) = plt.subplots(figsize=(9, 6)) color = cm.jet(np.linspace(0, 1, tsteps)) mesh_spacing = np.arange(0, N) (X, Y) = np.meshgrid(mesh_spacing, mesh_spacing) r = np.hypot((X - (N / 2)), (Y - (N / 2))) r[(int((N / 2)), int((N / 2)))] = 0 rbin = ((N * r) / r.max()).astype(np.int) bin_sampling = (((r.max() * Rdx) * np.arange(1, (rbin.max() + 1))) / rbin.max()) bin_sampling_cutoff = 0 where_within_ap = 0 mcf_sum = 0 D_sim_array = [] for t in range(0, tsteps): fname_turbsim_t = (((sim_result_directory + '_turbsim_t') + '{:04d}'.format(t)) + '.npy') turbsim_t = np.load(fname_turbsim_t) U_r = (np.fft.fftshift(np.fft.fft2(np.fft.fftshift((turbsim_t * aperture_mask)))) * (Rdx ** 2.0)) U_r_autocorr = (np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift((np.conj(U_r) * U_r)))) * ((delta_f * N) ** 2.0)) maskcorr = (np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift((abs(np.fft.ifftshift(np.fft.fft2(np.fft.ifftshift(aperture_mask)))) * (Rdx ** 2.0))))) * ((N * delta_f) ** 2.0)) plt.imshow(np.abs(U_r_autocorr)) plt.show() plt.imshow(np.abs(maskcorr)) plt.show() c = ((U_r_autocorr / maskcorr) * aperture_mask) D_r_t = ((- 2) * np.log((np.abs(c) / np.abs(c[(int((N / 2)), int((N / 2)))])))) mcf_sum = (mcf_sum + c) D_1d = scipy.ndimage.mean(D_r_t, labels=rbin, index=np.arange(1, (rbin.max() + 1))) where_within_ap = (bin_sampling <= D_receiver_pupil) bin_sampling_cutoff = bin_sampling[where_within_ap] D_1d_cutoff = D_1d[where_within_ap] D_sim_array.append(D_1d_cutoff) MCF_sim = (np.abs(mcf_sum) / np.abs(mcf_sum[(int((N / 2)), int((N / 2)))])) D_sim_avg = ((- 2) * np.log((np.abs(MCF_sim) / np.abs(MCF_sim[(int((N / 2)), int((N / 2)))])))) D_sim_1d = scipy.ndimage.mean(D_sim_avg, labels=rbin, index=np.arange(1, (rbin.max() + 1))) D_sim_1d_cutoff = D_sim_1d[where_within_ap] ax.plot((bin_sampling_cutoff / r0), D_sim_1d_cutoff, 'red', label='Sim Average MCF') D_sim_array = np.asarray(D_sim_array) average_D = np.average(D_sim_array, axis=0) max_D = np.max(D_sim_array, axis=0) min_D = np.min(D_sim_array, axis=0) ax.plot((bin_sampling_cutoff / r0), min_D, 'g--', label='Sample Lower Bound') ax.plot((bin_sampling_cutoff / r0), max_D, 'k--', label='Sample Upper Bound') ax.plot((bin_sampling_cutoff / r0), average_D, 'b', label='Sample MCF Average') D_kolmog = (6.88 * ((bin_sampling_cutoff / r0) ** (5.0 / 3.0))) k0 = ((2 * np.pi) / L0) D_mVK = ((((7.75 * (r0 ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_cutoff ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_cutoff ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) ax.plot((bin_sampling_cutoff / r0), D_mVK, 'orange', label='MvK (theoretical)') ax.legend() ax.set_xlabel('$\\Delta r$/$r_0$') ax.set_ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()<|docstring|>Evaluate the accuracy of the turbulence simulation by computing the structure function at the receiver plane using a mutual coherence function approach. Note: This will only be accurate over many different simulations and some disagreement should be expected over a single turbulence simulation :param report_filename: the filename including path for the output report of the turbulence simulation :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have been written out :param D_receiver_pupil: the receiver pupil diametre in meters for cropping purposes :return:<|endoftext|>
78b19657c31d8fcff1490169bc2ab19f6aefdf448d314558e705f1ceea623b30
def evaluate_phase_structure_function_accuracy(input_N, input_dx, input_cn2, num_screen_draws=20, input_propdist=3000.0, input_wave=1e-06, input_num_subharmonics=5, input_L0=1000.0, input_n_screen_sim=4): '\n Generate many different phase screens for a simulation setup and compare the statistical structure funciton of the\n phase screen to theoretical fits for a\n\n :param input_N: N for the simulation\n :param input_dx: sampling at the source plane for the simulation\n :param input_cn2: the turbulence of the simulation\n :param num_screen_draws: the number of random screens draws for computing statistics\n :param input_propdist: the propagation distance of the simulation\n :param input_wave: the wavelength in meters for sim\n :param input_num_subharmonics: the number of subharmonics for low frequency screen draws\n :param input_L0: the outer scale of the simulation\n :param input_n_screen_sim: the number of screens used in the simulation for propagating a beam\n :return:\n ' sim = wp.wavepy(N=input_N, L0=input_L0, dx=input_dx, Rdx=input_dx, Cn2=input_cn2, PropDist=input_propdist, NumScr=input_n_screen_sim, W0=5, SideLen=(input_N * input_dx), wvl=input_wave) r0_scrn_sim = sim.r0scrn sum_Dr = 0 for nscr in range(0, num_screen_draws): phz_hi = sim.PhaseScreen(input_dx) phz_lo = sim.SubHarmonicComp(input_num_subharmonics, input_dx) (fig, ax) = plt.subplots(1, 3) ax[0].imshow(phz_hi) ax[1].imshow(phz_lo) ax[2].imshow((phz_lo + phz_hi)) plt.show() phz = (phz_lo + phz_hi) D_bos = sim.StructFunc(phz) sum_Dr = (sum_Dr + D_bos) D_r_avg = (sum_Dr / num_screen_draws) x = np.arange((- int((input_N / 2))), int((input_N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((X * input_dx) ** 2) + ((Y * input_dx) ** 2))) R[(int((input_N / 2)), int((input_N / 2)))] = 0 rbin = ((input_N * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) cutoff_aperture = (((input_N * input_dx) / 4) / 2) where_within_aperture = (bin_sampling < cutoff_aperture) bin_sampling_aperture = bin_sampling[(bin_sampling < cutoff_aperture)] D_avg_1d = scipy.ndimage.mean(D_r_avg, labels=rbin, index=np.arange(0, (rbin.max() + 1))) D_avg_1d_cutoff = D_avg_1d[where_within_aperture] k0 = ((2 * np.pi) / input_L0) l0 = 0.001 D_mVK_2d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (R ** 2.0)) * ((1 / ((1 + ((2.03 * (R ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_2d = (6.88 * ((R / r0_scrn_sim) ** (5 / 3))) D_mVK_1d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_aperture ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_aperture ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_1d = (6.88 * ((bin_sampling_aperture / r0_scrn_sim) ** (5 / 3))) plt.plot(bin_sampling_aperture, D_avg_1d_cutoff, 'r', label='Simulation') plt.plot(bin_sampling_aperture, D_mVK_1d, 'k--', label='MvK') plt.plot(bin_sampling_aperture, D_Kolm_1d, 'b--', label='Kolmogorov') plt.legend() plt.xlabel('$\\Delta r$ [meters]') plt.ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()
Generate many different phase screens for a simulation setup and compare the statistical structure funciton of the phase screen to theoretical fits for a :param input_N: N for the simulation :param input_dx: sampling at the source plane for the simulation :param input_cn2: the turbulence of the simulation :param num_screen_draws: the number of random screens draws for computing statistics :param input_propdist: the propagation distance of the simulation :param input_wave: the wavelength in meters for sim :param input_num_subharmonics: the number of subharmonics for low frequency screen draws :param input_L0: the outer scale of the simulation :param input_n_screen_sim: the number of screens used in the simulation for propagating a beam :return:
sim_evaluation_module.py
evaluate_phase_structure_function_accuracy
gregbad/WavePy
0
python
def evaluate_phase_structure_function_accuracy(input_N, input_dx, input_cn2, num_screen_draws=20, input_propdist=3000.0, input_wave=1e-06, input_num_subharmonics=5, input_L0=1000.0, input_n_screen_sim=4): '\n Generate many different phase screens for a simulation setup and compare the statistical structure funciton of the\n phase screen to theoretical fits for a\n\n :param input_N: N for the simulation\n :param input_dx: sampling at the source plane for the simulation\n :param input_cn2: the turbulence of the simulation\n :param num_screen_draws: the number of random screens draws for computing statistics\n :param input_propdist: the propagation distance of the simulation\n :param input_wave: the wavelength in meters for sim\n :param input_num_subharmonics: the number of subharmonics for low frequency screen draws\n :param input_L0: the outer scale of the simulation\n :param input_n_screen_sim: the number of screens used in the simulation for propagating a beam\n :return:\n ' sim = wp.wavepy(N=input_N, L0=input_L0, dx=input_dx, Rdx=input_dx, Cn2=input_cn2, PropDist=input_propdist, NumScr=input_n_screen_sim, W0=5, SideLen=(input_N * input_dx), wvl=input_wave) r0_scrn_sim = sim.r0scrn sum_Dr = 0 for nscr in range(0, num_screen_draws): phz_hi = sim.PhaseScreen(input_dx) phz_lo = sim.SubHarmonicComp(input_num_subharmonics, input_dx) (fig, ax) = plt.subplots(1, 3) ax[0].imshow(phz_hi) ax[1].imshow(phz_lo) ax[2].imshow((phz_lo + phz_hi)) plt.show() phz = (phz_lo + phz_hi) D_bos = sim.StructFunc(phz) sum_Dr = (sum_Dr + D_bos) D_r_avg = (sum_Dr / num_screen_draws) x = np.arange((- int((input_N / 2))), int((input_N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((X * input_dx) ** 2) + ((Y * input_dx) ** 2))) R[(int((input_N / 2)), int((input_N / 2)))] = 0 rbin = ((input_N * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) cutoff_aperture = (((input_N * input_dx) / 4) / 2) where_within_aperture = (bin_sampling < cutoff_aperture) bin_sampling_aperture = bin_sampling[(bin_sampling < cutoff_aperture)] D_avg_1d = scipy.ndimage.mean(D_r_avg, labels=rbin, index=np.arange(0, (rbin.max() + 1))) D_avg_1d_cutoff = D_avg_1d[where_within_aperture] k0 = ((2 * np.pi) / input_L0) l0 = 0.001 D_mVK_2d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (R ** 2.0)) * ((1 / ((1 + ((2.03 * (R ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_2d = (6.88 * ((R / r0_scrn_sim) ** (5 / 3))) D_mVK_1d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_aperture ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_aperture ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_1d = (6.88 * ((bin_sampling_aperture / r0_scrn_sim) ** (5 / 3))) plt.plot(bin_sampling_aperture, D_avg_1d_cutoff, 'r', label='Simulation') plt.plot(bin_sampling_aperture, D_mVK_1d, 'k--', label='MvK') plt.plot(bin_sampling_aperture, D_Kolm_1d, 'b--', label='Kolmogorov') plt.legend() plt.xlabel('$\\Delta r$ [meters]') plt.ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()
def evaluate_phase_structure_function_accuracy(input_N, input_dx, input_cn2, num_screen_draws=20, input_propdist=3000.0, input_wave=1e-06, input_num_subharmonics=5, input_L0=1000.0, input_n_screen_sim=4): '\n Generate many different phase screens for a simulation setup and compare the statistical structure funciton of the\n phase screen to theoretical fits for a\n\n :param input_N: N for the simulation\n :param input_dx: sampling at the source plane for the simulation\n :param input_cn2: the turbulence of the simulation\n :param num_screen_draws: the number of random screens draws for computing statistics\n :param input_propdist: the propagation distance of the simulation\n :param input_wave: the wavelength in meters for sim\n :param input_num_subharmonics: the number of subharmonics for low frequency screen draws\n :param input_L0: the outer scale of the simulation\n :param input_n_screen_sim: the number of screens used in the simulation for propagating a beam\n :return:\n ' sim = wp.wavepy(N=input_N, L0=input_L0, dx=input_dx, Rdx=input_dx, Cn2=input_cn2, PropDist=input_propdist, NumScr=input_n_screen_sim, W0=5, SideLen=(input_N * input_dx), wvl=input_wave) r0_scrn_sim = sim.r0scrn sum_Dr = 0 for nscr in range(0, num_screen_draws): phz_hi = sim.PhaseScreen(input_dx) phz_lo = sim.SubHarmonicComp(input_num_subharmonics, input_dx) (fig, ax) = plt.subplots(1, 3) ax[0].imshow(phz_hi) ax[1].imshow(phz_lo) ax[2].imshow((phz_lo + phz_hi)) plt.show() phz = (phz_lo + phz_hi) D_bos = sim.StructFunc(phz) sum_Dr = (sum_Dr + D_bos) D_r_avg = (sum_Dr / num_screen_draws) x = np.arange((- int((input_N / 2))), int((input_N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((X * input_dx) ** 2) + ((Y * input_dx) ** 2))) R[(int((input_N / 2)), int((input_N / 2)))] = 0 rbin = ((input_N * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) cutoff_aperture = (((input_N * input_dx) / 4) / 2) where_within_aperture = (bin_sampling < cutoff_aperture) bin_sampling_aperture = bin_sampling[(bin_sampling < cutoff_aperture)] D_avg_1d = scipy.ndimage.mean(D_r_avg, labels=rbin, index=np.arange(0, (rbin.max() + 1))) D_avg_1d_cutoff = D_avg_1d[where_within_aperture] k0 = ((2 * np.pi) / input_L0) l0 = 0.001 D_mVK_2d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (R ** 2.0)) * ((1 / ((1 + ((2.03 * (R ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_2d = (6.88 * ((R / r0_scrn_sim) ** (5 / 3))) D_mVK_1d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_aperture ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_aperture ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_1d = (6.88 * ((bin_sampling_aperture / r0_scrn_sim) ** (5 / 3))) plt.plot(bin_sampling_aperture, D_avg_1d_cutoff, 'r', label='Simulation') plt.plot(bin_sampling_aperture, D_mVK_1d, 'k--', label='MvK') plt.plot(bin_sampling_aperture, D_Kolm_1d, 'b--', label='Kolmogorov') plt.legend() plt.xlabel('$\\Delta r$ [meters]') plt.ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()<|docstring|>Generate many different phase screens for a simulation setup and compare the statistical structure funciton of the phase screen to theoretical fits for a :param input_N: N for the simulation :param input_dx: sampling at the source plane for the simulation :param input_cn2: the turbulence of the simulation :param num_screen_draws: the number of random screens draws for computing statistics :param input_propdist: the propagation distance of the simulation :param input_wave: the wavelength in meters for sim :param input_num_subharmonics: the number of subharmonics for low frequency screen draws :param input_L0: the outer scale of the simulation :param input_n_screen_sim: the number of screens used in the simulation for propagating a beam :return:<|endoftext|>
ecacab65c84f9c685e1600a94b708a9939134358119111aae8d83f70132ae00f
def evaluate_phase_structure_function_accuracy_postprocess(report_filename, sim_result_directory): '\n Evaluate the phase structure function accuracy on a series of phase screens that were generated for the purpose of\n running a turbulence time series simulation\n\n Note: I have never had much confidence in this metric, as the scaling of the phase screens greatly affects the\n accuracy of the results\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n\n :return: no return at the moment, just display plots\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] dx = sim_dict['Source dx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] cn2 = float(sim_dict['Cn2']) wave = float(sim_dict['wavelength']) propdist = sim_dict['Propagation Dist'] nscreens = sim_dict['Num Screens'] Rdx = sim_dict['Receiver Rdx'] sim = wp.wavepy(N=N, L0=L0, dx=dx, Rdx=Rdx, Cn2=cn2, PropDist=propdist, NumScr=nscreens, W0=5, SideLen=(N * dx), wvl=wave) r0_scrn_sim = sim.r0scrn delta_f = (1 / (N * dx)) dzProps = (np.ones((nscreens + 2)) * (propdist / nscreens)) dzProps[0:2] = (0.5 * (propdist / nscreens)) dzProps[nscreens:(nscreens + 2)] = (0.5 * (propdist / nscreens)) PropLocs = np.zeros((nscreens + 3)) for zval in range(0, (nscreens + 2)): PropLocs[(zval + 1)] = (PropLocs[zval] + dzProps[zval]) ScrnLoc = np.concatenate((PropLocs[1:nscreens], np.array([PropLocs[(nscreens + 1)]])), axis=0) FracPropDist = (PropLocs / propdist) dx_phase_screens = (((Rdx - dx) * FracPropDist) + dx) cutoff_aperture = ((N * dx) / 4) for nscr in range(0, nscreens): dx_scr = dx_phase_screens[nscr] sum_Dr = 0 for t in range(0, tsteps): fname_scr_draw = (((((sim_result_directory + '_scr') + str(nscr)) + '_t') + '{:04d}'.format(t)) + '.npy') scr_draw = np.load(fname_scr_draw) D_bos = sim.StructFunc(scr_draw) sum_Dr = (sum_Dr + D_bos) D_r_avg = (sum_Dr / tsteps) x = np.arange((- int((N / 2))), int((N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((X * dx_scr) ** 2) + ((Y * dx_scr) ** 2))) R[(int((N / 2)), int((N / 2)))] = 0 rbin = ((N * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) where_within_aperture = (bin_sampling < cutoff_aperture) bin_sampling_aperture = bin_sampling[(bin_sampling < cutoff_aperture)] D_avg_1d = scipy.ndimage.maximum(D_r_avg, labels=rbin, index=np.arange(0, (rbin.max() + 1))) D_avg_1d_cutoff = D_avg_1d[where_within_aperture] k0 = ((2 * np.pi) / L0) l0 = 0.001 D_mVK_2d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (R ** 2.0)) * ((1 / ((1 + ((2.03 * (R ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_2d = (6.88 * ((R / r0_scrn_sim) ** (5 / 3))) D_mVK_1d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_aperture ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_aperture ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_1d = (6.88 * ((bin_sampling_aperture / r0_scrn_sim) ** (5 / 3))) plt.plot(bin_sampling_aperture, D_avg_1d_cutoff, 'r', label='Simulation') plt.plot(bin_sampling_aperture, D_mVK_1d, 'k--', label='MvK') plt.plot(bin_sampling_aperture, D_Kolm_1d, 'b--', label='Kolmogorov') plt.legend() plt.xlabel('$\\Delta r$ [meters]') plt.ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()
Evaluate the phase structure function accuracy on a series of phase screens that were generated for the purpose of running a turbulence time series simulation Note: I have never had much confidence in this metric, as the scaling of the phase screens greatly affects the accuracy of the results :param report_filename: the filename including path for the output report of the turbulence simulation :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have been written out :return: no return at the moment, just display plots
sim_evaluation_module.py
evaluate_phase_structure_function_accuracy_postprocess
gregbad/WavePy
0
python
def evaluate_phase_structure_function_accuracy_postprocess(report_filename, sim_result_directory): '\n Evaluate the phase structure function accuracy on a series of phase screens that were generated for the purpose of\n running a turbulence time series simulation\n\n Note: I have never had much confidence in this metric, as the scaling of the phase screens greatly affects the\n accuracy of the results\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n\n :return: no return at the moment, just display plots\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] dx = sim_dict['Source dx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] cn2 = float(sim_dict['Cn2']) wave = float(sim_dict['wavelength']) propdist = sim_dict['Propagation Dist'] nscreens = sim_dict['Num Screens'] Rdx = sim_dict['Receiver Rdx'] sim = wp.wavepy(N=N, L0=L0, dx=dx, Rdx=Rdx, Cn2=cn2, PropDist=propdist, NumScr=nscreens, W0=5, SideLen=(N * dx), wvl=wave) r0_scrn_sim = sim.r0scrn delta_f = (1 / (N * dx)) dzProps = (np.ones((nscreens + 2)) * (propdist / nscreens)) dzProps[0:2] = (0.5 * (propdist / nscreens)) dzProps[nscreens:(nscreens + 2)] = (0.5 * (propdist / nscreens)) PropLocs = np.zeros((nscreens + 3)) for zval in range(0, (nscreens + 2)): PropLocs[(zval + 1)] = (PropLocs[zval] + dzProps[zval]) ScrnLoc = np.concatenate((PropLocs[1:nscreens], np.array([PropLocs[(nscreens + 1)]])), axis=0) FracPropDist = (PropLocs / propdist) dx_phase_screens = (((Rdx - dx) * FracPropDist) + dx) cutoff_aperture = ((N * dx) / 4) for nscr in range(0, nscreens): dx_scr = dx_phase_screens[nscr] sum_Dr = 0 for t in range(0, tsteps): fname_scr_draw = (((((sim_result_directory + '_scr') + str(nscr)) + '_t') + '{:04d}'.format(t)) + '.npy') scr_draw = np.load(fname_scr_draw) D_bos = sim.StructFunc(scr_draw) sum_Dr = (sum_Dr + D_bos) D_r_avg = (sum_Dr / tsteps) x = np.arange((- int((N / 2))), int((N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((X * dx_scr) ** 2) + ((Y * dx_scr) ** 2))) R[(int((N / 2)), int((N / 2)))] = 0 rbin = ((N * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) where_within_aperture = (bin_sampling < cutoff_aperture) bin_sampling_aperture = bin_sampling[(bin_sampling < cutoff_aperture)] D_avg_1d = scipy.ndimage.maximum(D_r_avg, labels=rbin, index=np.arange(0, (rbin.max() + 1))) D_avg_1d_cutoff = D_avg_1d[where_within_aperture] k0 = ((2 * np.pi) / L0) l0 = 0.001 D_mVK_2d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (R ** 2.0)) * ((1 / ((1 + ((2.03 * (R ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_2d = (6.88 * ((R / r0_scrn_sim) ** (5 / 3))) D_mVK_1d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_aperture ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_aperture ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_1d = (6.88 * ((bin_sampling_aperture / r0_scrn_sim) ** (5 / 3))) plt.plot(bin_sampling_aperture, D_avg_1d_cutoff, 'r', label='Simulation') plt.plot(bin_sampling_aperture, D_mVK_1d, 'k--', label='MvK') plt.plot(bin_sampling_aperture, D_Kolm_1d, 'b--', label='Kolmogorov') plt.legend() plt.xlabel('$\\Delta r$ [meters]') plt.ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()
def evaluate_phase_structure_function_accuracy_postprocess(report_filename, sim_result_directory): '\n Evaluate the phase structure function accuracy on a series of phase screens that were generated for the purpose of\n running a turbulence time series simulation\n\n Note: I have never had much confidence in this metric, as the scaling of the phase screens greatly affects the\n accuracy of the results\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n\n :return: no return at the moment, just display plots\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] dx = sim_dict['Source dx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] cn2 = float(sim_dict['Cn2']) wave = float(sim_dict['wavelength']) propdist = sim_dict['Propagation Dist'] nscreens = sim_dict['Num Screens'] Rdx = sim_dict['Receiver Rdx'] sim = wp.wavepy(N=N, L0=L0, dx=dx, Rdx=Rdx, Cn2=cn2, PropDist=propdist, NumScr=nscreens, W0=5, SideLen=(N * dx), wvl=wave) r0_scrn_sim = sim.r0scrn delta_f = (1 / (N * dx)) dzProps = (np.ones((nscreens + 2)) * (propdist / nscreens)) dzProps[0:2] = (0.5 * (propdist / nscreens)) dzProps[nscreens:(nscreens + 2)] = (0.5 * (propdist / nscreens)) PropLocs = np.zeros((nscreens + 3)) for zval in range(0, (nscreens + 2)): PropLocs[(zval + 1)] = (PropLocs[zval] + dzProps[zval]) ScrnLoc = np.concatenate((PropLocs[1:nscreens], np.array([PropLocs[(nscreens + 1)]])), axis=0) FracPropDist = (PropLocs / propdist) dx_phase_screens = (((Rdx - dx) * FracPropDist) + dx) cutoff_aperture = ((N * dx) / 4) for nscr in range(0, nscreens): dx_scr = dx_phase_screens[nscr] sum_Dr = 0 for t in range(0, tsteps): fname_scr_draw = (((((sim_result_directory + '_scr') + str(nscr)) + '_t') + '{:04d}'.format(t)) + '.npy') scr_draw = np.load(fname_scr_draw) D_bos = sim.StructFunc(scr_draw) sum_Dr = (sum_Dr + D_bos) D_r_avg = (sum_Dr / tsteps) x = np.arange((- int((N / 2))), int((N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((X * dx_scr) ** 2) + ((Y * dx_scr) ** 2))) R[(int((N / 2)), int((N / 2)))] = 0 rbin = ((N * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) where_within_aperture = (bin_sampling < cutoff_aperture) bin_sampling_aperture = bin_sampling[(bin_sampling < cutoff_aperture)] D_avg_1d = scipy.ndimage.maximum(D_r_avg, labels=rbin, index=np.arange(0, (rbin.max() + 1))) D_avg_1d_cutoff = D_avg_1d[where_within_aperture] k0 = ((2 * np.pi) / L0) l0 = 0.001 D_mVK_2d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (R ** 2.0)) * ((1 / ((1 + ((2.03 * (R ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_2d = (6.88 * ((R / r0_scrn_sim) ** (5 / 3))) D_mVK_1d = ((((7.75 * (r0_scrn_sim ** ((- 5.0) / 3.0))) * (l0 ** ((- 1.0) / 3.0))) * (bin_sampling_aperture ** 2.0)) * ((1 / ((1 + ((2.03 * (bin_sampling_aperture ** 2.0)) / (l0 ** 2.0))) ** (1.0 / 6.0))) - (0.72 * ((k0 * l0) ** (1.0 / 3.0))))) D_Kolm_1d = (6.88 * ((bin_sampling_aperture / r0_scrn_sim) ** (5 / 3))) plt.plot(bin_sampling_aperture, D_avg_1d_cutoff, 'r', label='Simulation') plt.plot(bin_sampling_aperture, D_mVK_1d, 'k--', label='MvK') plt.plot(bin_sampling_aperture, D_Kolm_1d, 'b--', label='Kolmogorov') plt.legend() plt.xlabel('$\\Delta r$ [meters]') plt.ylabel('$D_\\Phi$(|$\\Delta r$|) [rad$^2$]') plt.show()<|docstring|>Evaluate the phase structure function accuracy on a series of phase screens that were generated for the purpose of running a turbulence time series simulation Note: I have never had much confidence in this metric, as the scaling of the phase screens greatly affects the accuracy of the results :param report_filename: the filename including path for the output report of the turbulence simulation :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have been written out :return: no return at the moment, just display plots<|endoftext|>
aa1538f259affa829662a9a4cfc8d9ca62fa873cd48a07f7d7c2365b77205d28
def evaluate_PSD_accuracy(report_filename, sim_result_directory, min_max_freq=[1, 100], nsamples_psd=250): '\n Evaluate the PSD of a series of phase screens from a turbulence evolved simulation\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n :param min_max_freq: the minimum and maximum frequencies to include in the output plots\n :param nsamples_psd: the number of samples over which to bin when averaging the radial PSD\n :return: no return at the moment, just display plots\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] dx = sim_dict['Source dx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] cn2 = float(sim_dict['Cn2']) wave = float(sim_dict['wavelength']) propdist = sim_dict['Propagation Dist'] nscreens = sim_dict['Num Screens'] a = int((N / 2)) nx = np.arange(0, a) deltaf = (1 / (N * dx)) k = ((2 * np.pi) / wave) r0scrn = ((((0.423 * (k ** 2)) * cn2) * (propdist / nscreens)) ** ((- 3.0) / 5.0)) x = np.arange((- int((N / 2))), int((N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((((X * 2) * np.pi) * deltaf) ** 2) + ((((Y * 2) * np.pi) * deltaf) ** 2))) R[(int((N / 2)), int((N / 2)))] = 0 rbin = ((nsamples_psd * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) f_sampling = ((bin_sampling / 2.0) / np.pi) min_freq = min_max_freq[0] max_freq = min_max_freq[1] freq_bound_indices = np.logical_and((f_sampling > min_freq), (f_sampling < max_freq)) bin_sampling_bounds = bin_sampling[freq_bound_indices] for scr_idx in range(0, nscreens): (fig, ax) = plt.subplots(figsize=(7, 5)) for t in range(0, tsteps): fname_scr_draw = (((((sim_result_directory + '_scr') + str(scr_idx)) + '_t') + '{:04d}'.format(t)) + '.npy') scr_draw = np.load(fname_scr_draw) h = np.hamming(N) ham2d = np.outer(h, h) noise_gain = (np.sum((ham2d ** 2.0)) / (N ** 2)) coherent_gain = (np.sum(ham2d) / (N ** 2)) fbin = (1 / (N * dx)) scale_factor = ((noise_gain * (fbin ** 2.0)) / (coherent_gain ** 3.0)) fft_ph = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(((scr_draw * ham2d) / (N ** 2))))) PSD_emp_2 = ((np.abs(fft_ph) ** 2.0) / scale_factor) PSD_avg_2 = scipy.ndimage.mean(PSD_emp_2, labels=rbin, index=np.arange(0, (rbin.max() + 1))) PSD_avg_2_bounds = PSD_avg_2[freq_bound_indices] ax.scatter(((bin_sampling_bounds / 2) / np.pi), PSD_avg_2_bounds, c='b', alpha=0.2) K0 = ((2 * np.pi) / L0) PSD_theor = ((0.49 * (r0scrn ** ((- 5) / 3))) * (((bin_sampling_bounds ** 2) + (K0 ** 2.0)) ** ((- 11) / 6))) ax.plot(((bin_sampling_bounds / 2) / np.pi), PSD_theor, 'red', label='theory') ax.set_xlim([min_freq, max_freq]) ax.set_yscale('log') ax.set_xscale('log') ax.legend() ax.set_title(('Screen #' + str(scr_idx))) ax.set_xlabel('spatial frequency [1/m]') ax.set_ylabel('PSD(f)') plt.show()
Evaluate the PSD of a series of phase screens from a turbulence evolved simulation :param report_filename: the filename including path for the output report of the turbulence simulation :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have been written out :param min_max_freq: the minimum and maximum frequencies to include in the output plots :param nsamples_psd: the number of samples over which to bin when averaging the radial PSD :return: no return at the moment, just display plots
sim_evaluation_module.py
evaluate_PSD_accuracy
gregbad/WavePy
0
python
def evaluate_PSD_accuracy(report_filename, sim_result_directory, min_max_freq=[1, 100], nsamples_psd=250): '\n Evaluate the PSD of a series of phase screens from a turbulence evolved simulation\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n :param min_max_freq: the minimum and maximum frequencies to include in the output plots\n :param nsamples_psd: the number of samples over which to bin when averaging the radial PSD\n :return: no return at the moment, just display plots\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] dx = sim_dict['Source dx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] cn2 = float(sim_dict['Cn2']) wave = float(sim_dict['wavelength']) propdist = sim_dict['Propagation Dist'] nscreens = sim_dict['Num Screens'] a = int((N / 2)) nx = np.arange(0, a) deltaf = (1 / (N * dx)) k = ((2 * np.pi) / wave) r0scrn = ((((0.423 * (k ** 2)) * cn2) * (propdist / nscreens)) ** ((- 3.0) / 5.0)) x = np.arange((- int((N / 2))), int((N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((((X * 2) * np.pi) * deltaf) ** 2) + ((((Y * 2) * np.pi) * deltaf) ** 2))) R[(int((N / 2)), int((N / 2)))] = 0 rbin = ((nsamples_psd * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) f_sampling = ((bin_sampling / 2.0) / np.pi) min_freq = min_max_freq[0] max_freq = min_max_freq[1] freq_bound_indices = np.logical_and((f_sampling > min_freq), (f_sampling < max_freq)) bin_sampling_bounds = bin_sampling[freq_bound_indices] for scr_idx in range(0, nscreens): (fig, ax) = plt.subplots(figsize=(7, 5)) for t in range(0, tsteps): fname_scr_draw = (((((sim_result_directory + '_scr') + str(scr_idx)) + '_t') + '{:04d}'.format(t)) + '.npy') scr_draw = np.load(fname_scr_draw) h = np.hamming(N) ham2d = np.outer(h, h) noise_gain = (np.sum((ham2d ** 2.0)) / (N ** 2)) coherent_gain = (np.sum(ham2d) / (N ** 2)) fbin = (1 / (N * dx)) scale_factor = ((noise_gain * (fbin ** 2.0)) / (coherent_gain ** 3.0)) fft_ph = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(((scr_draw * ham2d) / (N ** 2))))) PSD_emp_2 = ((np.abs(fft_ph) ** 2.0) / scale_factor) PSD_avg_2 = scipy.ndimage.mean(PSD_emp_2, labels=rbin, index=np.arange(0, (rbin.max() + 1))) PSD_avg_2_bounds = PSD_avg_2[freq_bound_indices] ax.scatter(((bin_sampling_bounds / 2) / np.pi), PSD_avg_2_bounds, c='b', alpha=0.2) K0 = ((2 * np.pi) / L0) PSD_theor = ((0.49 * (r0scrn ** ((- 5) / 3))) * (((bin_sampling_bounds ** 2) + (K0 ** 2.0)) ** ((- 11) / 6))) ax.plot(((bin_sampling_bounds / 2) / np.pi), PSD_theor, 'red', label='theory') ax.set_xlim([min_freq, max_freq]) ax.set_yscale('log') ax.set_xscale('log') ax.legend() ax.set_title(('Screen #' + str(scr_idx))) ax.set_xlabel('spatial frequency [1/m]') ax.set_ylabel('PSD(f)') plt.show()
def evaluate_PSD_accuracy(report_filename, sim_result_directory, min_max_freq=[1, 100], nsamples_psd=250): '\n Evaluate the PSD of a series of phase screens from a turbulence evolved simulation\n\n :param report_filename: the filename including path for the output report of the turbulence simulation\n :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have\n been written out\n :param min_max_freq: the minimum and maximum frequencies to include in the output plots\n :param nsamples_psd: the number of samples over which to bin when averaging the radial PSD\n :return: no return at the moment, just display plots\n ' with open(report_filename, 'r') as f: sim_dict = yaml.load(f) tsteps = sim_dict['Timesteps'] dx = sim_dict['Source dx'] N = sim_dict['N'] r0 = sim_dict['r0'] L0 = sim_dict['L0'] l0 = sim_dict['l0'] cn2 = float(sim_dict['Cn2']) wave = float(sim_dict['wavelength']) propdist = sim_dict['Propagation Dist'] nscreens = sim_dict['Num Screens'] a = int((N / 2)) nx = np.arange(0, a) deltaf = (1 / (N * dx)) k = ((2 * np.pi) / wave) r0scrn = ((((0.423 * (k ** 2)) * cn2) * (propdist / nscreens)) ** ((- 3.0) / 5.0)) x = np.arange((- int((N / 2))), int((N / 2))) (X, Y) = np.meshgrid(x, x) R = np.sqrt((((((X * 2) * np.pi) * deltaf) ** 2) + ((((Y * 2) * np.pi) * deltaf) ** 2))) R[(int((N / 2)), int((N / 2)))] = 0 rbin = ((nsamples_psd * R) / R.max()).astype(np.int) bin_sampling = ((R.max() * np.arange(0, (rbin.max() + 1))) / rbin.max()) f_sampling = ((bin_sampling / 2.0) / np.pi) min_freq = min_max_freq[0] max_freq = min_max_freq[1] freq_bound_indices = np.logical_and((f_sampling > min_freq), (f_sampling < max_freq)) bin_sampling_bounds = bin_sampling[freq_bound_indices] for scr_idx in range(0, nscreens): (fig, ax) = plt.subplots(figsize=(7, 5)) for t in range(0, tsteps): fname_scr_draw = (((((sim_result_directory + '_scr') + str(scr_idx)) + '_t') + '{:04d}'.format(t)) + '.npy') scr_draw = np.load(fname_scr_draw) h = np.hamming(N) ham2d = np.outer(h, h) noise_gain = (np.sum((ham2d ** 2.0)) / (N ** 2)) coherent_gain = (np.sum(ham2d) / (N ** 2)) fbin = (1 / (N * dx)) scale_factor = ((noise_gain * (fbin ** 2.0)) / (coherent_gain ** 3.0)) fft_ph = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(((scr_draw * ham2d) / (N ** 2))))) PSD_emp_2 = ((np.abs(fft_ph) ** 2.0) / scale_factor) PSD_avg_2 = scipy.ndimage.mean(PSD_emp_2, labels=rbin, index=np.arange(0, (rbin.max() + 1))) PSD_avg_2_bounds = PSD_avg_2[freq_bound_indices] ax.scatter(((bin_sampling_bounds / 2) / np.pi), PSD_avg_2_bounds, c='b', alpha=0.2) K0 = ((2 * np.pi) / L0) PSD_theor = ((0.49 * (r0scrn ** ((- 5) / 3))) * (((bin_sampling_bounds ** 2) + (K0 ** 2.0)) ** ((- 11) / 6))) ax.plot(((bin_sampling_bounds / 2) / np.pi), PSD_theor, 'red', label='theory') ax.set_xlim([min_freq, max_freq]) ax.set_yscale('log') ax.set_xscale('log') ax.legend() ax.set_title(('Screen #' + str(scr_idx))) ax.set_xlabel('spatial frequency [1/m]') ax.set_ylabel('PSD(f)') plt.show()<|docstring|>Evaluate the PSD of a series of phase screens from a turbulence evolved simulation :param report_filename: the filename including path for the output report of the turbulence simulation :param sim_result_directory: the directory in which the turbulence output simulation files over the timesteps have been written out :param min_max_freq: the minimum and maximum frequencies to include in the output plots :param nsamples_psd: the number of samples over which to bin when averaging the radial PSD :return: no return at the moment, just display plots<|endoftext|>
29a3eff471c0e6b16b2b27e6bee7a82058707b2d4375be530a997564bfeb9606
@pytest.mark.serial def test_delete_zone_success(shared_zone_test_context): '\n Test deleting a zone\n ' client = shared_zone_test_context.ok_vinyldns_client result_zone = None try: zone_name = f'one-time{shared_zone_test_context.partition_id}' zone = {'name': zone_name, 'email': '[email protected]', 'adminGroupId': shared_zone_test_context.ok_group['id'], 'connection': {'name': 'vinyldns.', 'keyName': VinylDNSTestContext.dns_key_name, 'key': VinylDNSTestContext.dns_key, 'primaryServer': VinylDNSTestContext.name_server_ip}, 'transferConnection': {'name': 'vinyldns.', 'keyName': VinylDNSTestContext.dns_key_name, 'key': VinylDNSTestContext.dns_key, 'primaryServer': VinylDNSTestContext.name_server_ip}} result = client.create_zone(zone, status=202) result_zone = result['zone'] client.wait_until_zone_active(result_zone['id']) client.delete_zone(result_zone['id'], status=202) client.wait_until_zone_deleted(result_zone['id']) client.get_zone(result_zone['id'], status=404) result_zone = None finally: if result_zone: client.abandon_zones([result_zone['id']], status=202)
Test deleting a zone
modules/api/src/test/functional/tests/zones/delete_zone_test.py
test_delete_zone_success
Jay07GIT/vinyldns
0
python
@pytest.mark.serial def test_delete_zone_success(shared_zone_test_context): '\n \n ' client = shared_zone_test_context.ok_vinyldns_client result_zone = None try: zone_name = f'one-time{shared_zone_test_context.partition_id}' zone = {'name': zone_name, 'email': '[email protected]', 'adminGroupId': shared_zone_test_context.ok_group['id'], 'connection': {'name': 'vinyldns.', 'keyName': VinylDNSTestContext.dns_key_name, 'key': VinylDNSTestContext.dns_key, 'primaryServer': VinylDNSTestContext.name_server_ip}, 'transferConnection': {'name': 'vinyldns.', 'keyName': VinylDNSTestContext.dns_key_name, 'key': VinylDNSTestContext.dns_key, 'primaryServer': VinylDNSTestContext.name_server_ip}} result = client.create_zone(zone, status=202) result_zone = result['zone'] client.wait_until_zone_active(result_zone['id']) client.delete_zone(result_zone['id'], status=202) client.wait_until_zone_deleted(result_zone['id']) client.get_zone(result_zone['id'], status=404) result_zone = None finally: if result_zone: client.abandon_zones([result_zone['id']], status=202)
@pytest.mark.serial def test_delete_zone_success(shared_zone_test_context): '\n \n ' client = shared_zone_test_context.ok_vinyldns_client result_zone = None try: zone_name = f'one-time{shared_zone_test_context.partition_id}' zone = {'name': zone_name, 'email': '[email protected]', 'adminGroupId': shared_zone_test_context.ok_group['id'], 'connection': {'name': 'vinyldns.', 'keyName': VinylDNSTestContext.dns_key_name, 'key': VinylDNSTestContext.dns_key, 'primaryServer': VinylDNSTestContext.name_server_ip}, 'transferConnection': {'name': 'vinyldns.', 'keyName': VinylDNSTestContext.dns_key_name, 'key': VinylDNSTestContext.dns_key, 'primaryServer': VinylDNSTestContext.name_server_ip}} result = client.create_zone(zone, status=202) result_zone = result['zone'] client.wait_until_zone_active(result_zone['id']) client.delete_zone(result_zone['id'], status=202) client.wait_until_zone_deleted(result_zone['id']) client.get_zone(result_zone['id'], status=404) result_zone = None finally: if result_zone: client.abandon_zones([result_zone['id']], status=202)<|docstring|>Test deleting a zone<|endoftext|>