body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
0610bcfb1cc684b289e10e1eaa2b10fe536f7a82c20d131093a3e011c797a40c
@property def matrix(self) -> numpy.ndarray: 'Getter on the unitary matrix representing the circuit.\n\n Depending on the value of `cache_matrix` given at initialisation, this\n method will either return the cached matrix or compute it.\n\n :return: the unitary matrix representing the current quantum circuit.\n ' if self._cache_matrix: return self._matrix ret = numpy.identity((2 ** self._qubit_number)) for operation in self.operations: ret = (ret @ operation.matrix(self._qubit_number)) return ret
Getter on the unitary matrix representing the circuit. Depending on the value of `cache_matrix` given at initialisation, this method will either return the cached matrix or compute it. :return: the unitary matrix representing the current quantum circuit.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
matrix
nelimee/qtoolkit
3
python
@property def matrix(self) -> numpy.ndarray: 'Getter on the unitary matrix representing the circuit.\n\n Depending on the value of `cache_matrix` given at initialisation, this\n method will either return the cached matrix or compute it.\n\n :return: the unitary matrix representing the current quantum circuit.\n ' if self._cache_matrix: return self._matrix ret = numpy.identity((2 ** self._qubit_number)) for operation in self.operations: ret = (ret @ operation.matrix(self._qubit_number)) return ret
@property def matrix(self) -> numpy.ndarray: 'Getter on the unitary matrix representing the circuit.\n\n Depending on the value of `cache_matrix` given at initialisation, this\n method will either return the cached matrix or compute it.\n\n :return: the unitary matrix representing the current quantum circuit.\n ' if self._cache_matrix: return self._matrix ret = numpy.identity((2 ** self._qubit_number)) for operation in self.operations: ret = (ret @ operation.matrix(self._qubit_number)) return ret<|docstring|>Getter on the unitary matrix representing the circuit. Depending on the value of `cache_matrix` given at initialisation, this method will either return the cached matrix or compute it. :return: the unitary matrix representing the current quantum circuit.<|endoftext|>
0257b4863f2190a7a13a5edda80c49c3f6f539cf5d0e365a86adece525b62d9d
@property def qubit_number(self) -> int: 'Getter on the number of qubits of the current instance.' return self._qubit_number
Getter on the number of qubits of the current instance.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
qubit_number
nelimee/qtoolkit
3
python
@property def qubit_number(self) -> int: return self._qubit_number
@property def qubit_number(self) -> int: return self._qubit_number<|docstring|>Getter on the number of qubits of the current instance.<|endoftext|>
e9b95f9c26dcc027950d32139d08111682017468b6e32d798805a893a31dcc55
@property def size(self) -> int: 'Getter on the number of quantum gates in the current instance.' return (self._node_counter - self._qubit_number)
Getter on the number of quantum gates in the current instance.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
size
nelimee/qtoolkit
3
python
@property def size(self) -> int: return (self._node_counter - self._qubit_number)
@property def size(self) -> int: return (self._node_counter - self._qubit_number)<|docstring|>Getter on the number of quantum gates in the current instance.<|endoftext|>
774733d52b48eea0c433be9100b21e5a22a68f1cd1010c1c3ad54348ff904506
def __iadd__(self, other: 'QuantumCircuit') -> 'QuantumCircuit': 'Add all the operations contained in `other` to the current instance.\n\n :param other: the quantum circuit containing the operations to append\n to the current instance. `other` and the instance\n :py:meth:`~.__iadd__` is called on should have the same number of\n qubits.\n :return: The union of self and other.\n :raise RuntimeError: if `self` and `other` have a different number of\n qubits.\n ' if (self.qubit_number != other.qubit_number): raise RuntimeError(f'The number of qubits of the first circuit ({self.qubit_number}) does not match the number of qubits of the second circuit ({other.qubit_number}).') other_subgraph = other._graph.subgraph(range(other.qubit_number, other._node_counter)) self._graph = nx.disjoint_union(self._graph, other_subgraph) for qubit_index in range(self.qubit_number): old_neighbor = list(other._graph.neighbors(qubit_index)) if old_neighbor: new_neighbor = ((old_neighbor[0] - other.qubit_number) + self._node_counter) self._graph.add_edge(self._last_inserted_operations[qubit_index], new_neighbor) self._last_inserted_operations[qubit_index] = new_neighbor self._node_counter += (other._node_counter - other.qubit_number) if (self._cache_matrix and (other._matrix is not None)): self._matrix = (self.matrix @ other.matrix) return self
Add all the operations contained in `other` to the current instance. :param other: the quantum circuit containing the operations to append to the current instance. `other` and the instance :py:meth:`~.__iadd__` is called on should have the same number of qubits. :return: The union of self and other. :raise RuntimeError: if `self` and `other` have a different number of qubits.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
__iadd__
nelimee/qtoolkit
3
python
def __iadd__(self, other: 'QuantumCircuit') -> 'QuantumCircuit': 'Add all the operations contained in `other` to the current instance.\n\n :param other: the quantum circuit containing the operations to append\n to the current instance. `other` and the instance\n :py:meth:`~.__iadd__` is called on should have the same number of\n qubits.\n :return: The union of self and other.\n :raise RuntimeError: if `self` and `other` have a different number of\n qubits.\n ' if (self.qubit_number != other.qubit_number): raise RuntimeError(f'The number of qubits of the first circuit ({self.qubit_number}) does not match the number of qubits of the second circuit ({other.qubit_number}).') other_subgraph = other._graph.subgraph(range(other.qubit_number, other._node_counter)) self._graph = nx.disjoint_union(self._graph, other_subgraph) for qubit_index in range(self.qubit_number): old_neighbor = list(other._graph.neighbors(qubit_index)) if old_neighbor: new_neighbor = ((old_neighbor[0] - other.qubit_number) + self._node_counter) self._graph.add_edge(self._last_inserted_operations[qubit_index], new_neighbor) self._last_inserted_operations[qubit_index] = new_neighbor self._node_counter += (other._node_counter - other.qubit_number) if (self._cache_matrix and (other._matrix is not None)): self._matrix = (self.matrix @ other.matrix) return self
def __iadd__(self, other: 'QuantumCircuit') -> 'QuantumCircuit': 'Add all the operations contained in `other` to the current instance.\n\n :param other: the quantum circuit containing the operations to append\n to the current instance. `other` and the instance\n :py:meth:`~.__iadd__` is called on should have the same number of\n qubits.\n :return: The union of self and other.\n :raise RuntimeError: if `self` and `other` have a different number of\n qubits.\n ' if (self.qubit_number != other.qubit_number): raise RuntimeError(f'The number of qubits of the first circuit ({self.qubit_number}) does not match the number of qubits of the second circuit ({other.qubit_number}).') other_subgraph = other._graph.subgraph(range(other.qubit_number, other._node_counter)) self._graph = nx.disjoint_union(self._graph, other_subgraph) for qubit_index in range(self.qubit_number): old_neighbor = list(other._graph.neighbors(qubit_index)) if old_neighbor: new_neighbor = ((old_neighbor[0] - other.qubit_number) + self._node_counter) self._graph.add_edge(self._last_inserted_operations[qubit_index], new_neighbor) self._last_inserted_operations[qubit_index] = new_neighbor self._node_counter += (other._node_counter - other.qubit_number) if (self._cache_matrix and (other._matrix is not None)): self._matrix = (self.matrix @ other.matrix) return self<|docstring|>Add all the operations contained in `other` to the current instance. :param other: the quantum circuit containing the operations to append to the current instance. `other` and the instance :py:meth:`~.__iadd__` is called on should have the same number of qubits. :return: The union of self and other. :raise RuntimeError: if `self` and `other` have a different number of qubits.<|endoftext|>
cf41da4ab5d0c4ae8cd72f18d6e09d5e15d17c418881fc5c6aa5e8a66eef048c
def __matmul__(self: 'QuantumCircuit', other: 'QuantumCircuit') -> 'QuantumCircuit': "Wrapper around __iadd__ for the new '@' operator." cpy = copy.copy(self) return cpy.__iadd__(other)
Wrapper around __iadd__ for the new '@' operator.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
__matmul__
nelimee/qtoolkit
3
python
def __matmul__(self: 'QuantumCircuit', other: 'QuantumCircuit') -> 'QuantumCircuit': cpy = copy.copy(self) return cpy.__iadd__(other)
def __matmul__(self: 'QuantumCircuit', other: 'QuantumCircuit') -> 'QuantumCircuit': cpy = copy.copy(self) return cpy.__iadd__(other)<|docstring|>Wrapper around __iadd__ for the new '@' operator.<|endoftext|>
c27ccf6f7558bc4371da3a436fae77c65b1a988e927dff535bf6c6de08b5ebd0
def __copy__(self) -> 'QuantumCircuit': 'Override the default copy behaviour.' cpy = QuantumCircuit(self._qubit_number, cache_matrix=self._cache_matrix) if self.compressed: cpy._compressed_graph = copy.copy(self._compressed_graph) else: cpy._graph = self._graph.copy() cpy._node_counter = self._node_counter cpy._last_inserted_operations = self._last_inserted_operations.copy() if self._cache_matrix: cpy._matrix = self._matrix return cpy
Override the default copy behaviour.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
__copy__
nelimee/qtoolkit
3
python
def __copy__(self) -> 'QuantumCircuit': cpy = QuantumCircuit(self._qubit_number, cache_matrix=self._cache_matrix) if self.compressed: cpy._compressed_graph = copy.copy(self._compressed_graph) else: cpy._graph = self._graph.copy() cpy._node_counter = self._node_counter cpy._last_inserted_operations = self._last_inserted_operations.copy() if self._cache_matrix: cpy._matrix = self._matrix return cpy
def __copy__(self) -> 'QuantumCircuit': cpy = QuantumCircuit(self._qubit_number, cache_matrix=self._cache_matrix) if self.compressed: cpy._compressed_graph = copy.copy(self._compressed_graph) else: cpy._graph = self._graph.copy() cpy._node_counter = self._node_counter cpy._last_inserted_operations = self._last_inserted_operations.copy() if self._cache_matrix: cpy._matrix = self._matrix return cpy<|docstring|>Override the default copy behaviour.<|endoftext|>
51ff1d010b784b4373ae536792441e619ce50b8c070f715917ba64e87080835c
def compress(self) -> 'QuantumCircuit': 'Compress the instance to save some memory.\n\n This method is useful when a large number of small circuits needs to be\n stored in memory.\n\n .. warning:: Several methods of the :py:class:`~.QuantumCircuit` class\n will not work as expected (or will raise an exception) if called on\n a compressed circuit.\n ' if (not self.compressed): self._compressed_graph = CompressedMultiDiGraph(self._graph) del self._graph return self
Compress the instance to save some memory. This method is useful when a large number of small circuits needs to be stored in memory. .. warning:: Several methods of the :py:class:`~.QuantumCircuit` class will not work as expected (or will raise an exception) if called on a compressed circuit.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
compress
nelimee/qtoolkit
3
python
def compress(self) -> 'QuantumCircuit': 'Compress the instance to save some memory.\n\n This method is useful when a large number of small circuits needs to be\n stored in memory.\n\n .. warning:: Several methods of the :py:class:`~.QuantumCircuit` class\n will not work as expected (or will raise an exception) if called on\n a compressed circuit.\n ' if (not self.compressed): self._compressed_graph = CompressedMultiDiGraph(self._graph) del self._graph return self
def compress(self) -> 'QuantumCircuit': 'Compress the instance to save some memory.\n\n This method is useful when a large number of small circuits needs to be\n stored in memory.\n\n .. warning:: Several methods of the :py:class:`~.QuantumCircuit` class\n will not work as expected (or will raise an exception) if called on\n a compressed circuit.\n ' if (not self.compressed): self._compressed_graph = CompressedMultiDiGraph(self._graph) del self._graph return self<|docstring|>Compress the instance to save some memory. This method is useful when a large number of small circuits needs to be stored in memory. .. warning:: Several methods of the :py:class:`~.QuantumCircuit` class will not work as expected (or will raise an exception) if called on a compressed circuit.<|endoftext|>
b2e1a25da1ec72831b726066e0f1755959179af5c351961cfbce70c05be1304b
def uncompress(self) -> 'QuantumCircuit': 'Uncompress the instance.' if self.compressed: self._graph = self._compressed_graph.uncompress() del self._compressed_graph return self
Uncompress the instance.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
uncompress
nelimee/qtoolkit
3
python
def uncompress(self) -> 'QuantumCircuit': if self.compressed: self._graph = self._compressed_graph.uncompress() del self._compressed_graph return self
def uncompress(self) -> 'QuantumCircuit': if self.compressed: self._graph = self._compressed_graph.uncompress() del self._compressed_graph return self<|docstring|>Uncompress the instance.<|endoftext|>
872b37fa19e5b13707060d3e82cff7772843d342e3b5e5f88837110fa2838db5
@property def compressed(self) -> bool: 'Return True if the instance is compressed, else False.' return hasattr(self, '_compressed_graph')
Return True if the instance is compressed, else False.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
compressed
nelimee/qtoolkit
3
python
@property def compressed(self) -> bool: return hasattr(self, '_compressed_graph')
@property def compressed(self) -> bool: return hasattr(self, '_compressed_graph')<|docstring|>Return True if the instance is compressed, else False.<|endoftext|>
1b2f886d857aadb64f6d105368b563568670dbbc324062af18f683cfbe020923
def inverse(self) -> 'QuantumCircuit': 'Create the inverse of the instance it is called on.\n\n This method will create a new :py:class:`~.QuantumCircuit` and construct\n in this new circuit the inverse of `self`.\n ' inv = QuantumCircuit(self._qubit_number, cache_matrix=self._cache_matrix) for op in reversed(list(self.operations)): inv.add_operation(op.inverse()) return inv
Create the inverse of the instance it is called on. This method will create a new :py:class:`~.QuantumCircuit` and construct in this new circuit the inverse of `self`.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
inverse
nelimee/qtoolkit
3
python
def inverse(self) -> 'QuantumCircuit': 'Create the inverse of the instance it is called on.\n\n This method will create a new :py:class:`~.QuantumCircuit` and construct\n in this new circuit the inverse of `self`.\n ' inv = QuantumCircuit(self._qubit_number, cache_matrix=self._cache_matrix) for op in reversed(list(self.operations)): inv.add_operation(op.inverse()) return inv
def inverse(self) -> 'QuantumCircuit': 'Create the inverse of the instance it is called on.\n\n This method will create a new :py:class:`~.QuantumCircuit` and construct\n in this new circuit the inverse of `self`.\n ' inv = QuantumCircuit(self._qubit_number, cache_matrix=self._cache_matrix) for op in reversed(list(self.operations)): inv.add_operation(op.inverse()) return inv<|docstring|>Create the inverse of the instance it is called on. This method will create a new :py:class:`~.QuantumCircuit` and construct in this new circuit the inverse of `self`.<|endoftext|>
200c57401ffc4029e3d9f4f976e0f1050daf0d39f55919fa148fdc3a875c125d
def __str__(self) -> str: 'Textual representation of the circuit.\n\n The representation used is very similar to OpenQASM.\n ' return '\n'.join(('{Cs}{opname} {controls}{commaornot}{target}'.format(Cs=('C' * len(op.controls)), opname=op.gate.name, controls=','.join(map(str, op.controls)), commaornot=(', ' if op.controls else ''), target=op.target) for op in self.operations))
Textual representation of the circuit. The representation used is very similar to OpenQASM.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
__str__
nelimee/qtoolkit
3
python
def __str__(self) -> str: 'Textual representation of the circuit.\n\n The representation used is very similar to OpenQASM.\n ' return '\n'.join(('{Cs}{opname} {controls}{commaornot}{target}'.format(Cs=('C' * len(op.controls)), opname=op.gate.name, controls=','.join(map(str, op.controls)), commaornot=(', ' if op.controls else ), target=op.target) for op in self.operations))
def __str__(self) -> str: 'Textual representation of the circuit.\n\n The representation used is very similar to OpenQASM.\n ' return '\n'.join(('{Cs}{opname} {controls}{commaornot}{target}'.format(Cs=('C' * len(op.controls)), opname=op.gate.name, controls=','.join(map(str, op.controls)), commaornot=(', ' if op.controls else ), target=op.target) for op in self.operations))<|docstring|>Textual representation of the circuit. The representation used is very similar to OpenQASM.<|endoftext|>
3a6458962c7579cb462acddd7fbfee0a4677234f151c62ad935fdb61dfb48fdd
def __init__(self, graph: nx.MultiDiGraph=None) -> None: 'Initialise the :py:class:`~.CompressedMultiDiGraph` instance.\n\n Instances of :py:class:`~.CompressedMultiDiGraph` are just storing\n a :py:class:`networkx.MultiDiGraph` in a more memory efficient format.\n\n :param graph: The graph to compress.\n ' if (graph is None): self._qubit_number = 0 return node_number = len(graph.nodes) edge_number = len(graph.edges) if (node_number < (2 ** 8)): data_type = numpy.uint8 elif (node_number < (2 ** 16)): data_type = numpy.uint16 else: data_type = numpy.uint32 self._from_arr = numpy.zeros((edge_number,), dtype=data_type) self._to_arr = numpy.zeros((edge_number,), dtype=data_type) self._data_arr = numpy.zeros((edge_number,), dtype=data_type) for (idx, (u, v, qubit_id)) in enumerate(graph.edges): self._from_arr[idx] = u self._to_arr[idx] = v self._data_arr[idx] = qubit_id self._qubit_number = 0 self._is_op_node = numpy.zeros((node_number,), dtype=numpy.bool) self._operations = list() for (node_id, node_data) in graph.nodes.items(): if (node_data['type'] == 'op'): self._is_op_node[node_id] = True self._operations.append(node_data['op']) else: self._qubit_number += 1
Initialise the :py:class:`~.CompressedMultiDiGraph` instance. Instances of :py:class:`~.CompressedMultiDiGraph` are just storing a :py:class:`networkx.MultiDiGraph` in a more memory efficient format. :param graph: The graph to compress.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
__init__
nelimee/qtoolkit
3
python
def __init__(self, graph: nx.MultiDiGraph=None) -> None: 'Initialise the :py:class:`~.CompressedMultiDiGraph` instance.\n\n Instances of :py:class:`~.CompressedMultiDiGraph` are just storing\n a :py:class:`networkx.MultiDiGraph` in a more memory efficient format.\n\n :param graph: The graph to compress.\n ' if (graph is None): self._qubit_number = 0 return node_number = len(graph.nodes) edge_number = len(graph.edges) if (node_number < (2 ** 8)): data_type = numpy.uint8 elif (node_number < (2 ** 16)): data_type = numpy.uint16 else: data_type = numpy.uint32 self._from_arr = numpy.zeros((edge_number,), dtype=data_type) self._to_arr = numpy.zeros((edge_number,), dtype=data_type) self._data_arr = numpy.zeros((edge_number,), dtype=data_type) for (idx, (u, v, qubit_id)) in enumerate(graph.edges): self._from_arr[idx] = u self._to_arr[idx] = v self._data_arr[idx] = qubit_id self._qubit_number = 0 self._is_op_node = numpy.zeros((node_number,), dtype=numpy.bool) self._operations = list() for (node_id, node_data) in graph.nodes.items(): if (node_data['type'] == 'op'): self._is_op_node[node_id] = True self._operations.append(node_data['op']) else: self._qubit_number += 1
def __init__(self, graph: nx.MultiDiGraph=None) -> None: 'Initialise the :py:class:`~.CompressedMultiDiGraph` instance.\n\n Instances of :py:class:`~.CompressedMultiDiGraph` are just storing\n a :py:class:`networkx.MultiDiGraph` in a more memory efficient format.\n\n :param graph: The graph to compress.\n ' if (graph is None): self._qubit_number = 0 return node_number = len(graph.nodes) edge_number = len(graph.edges) if (node_number < (2 ** 8)): data_type = numpy.uint8 elif (node_number < (2 ** 16)): data_type = numpy.uint16 else: data_type = numpy.uint32 self._from_arr = numpy.zeros((edge_number,), dtype=data_type) self._to_arr = numpy.zeros((edge_number,), dtype=data_type) self._data_arr = numpy.zeros((edge_number,), dtype=data_type) for (idx, (u, v, qubit_id)) in enumerate(graph.edges): self._from_arr[idx] = u self._to_arr[idx] = v self._data_arr[idx] = qubit_id self._qubit_number = 0 self._is_op_node = numpy.zeros((node_number,), dtype=numpy.bool) self._operations = list() for (node_id, node_data) in graph.nodes.items(): if (node_data['type'] == 'op'): self._is_op_node[node_id] = True self._operations.append(node_data['op']) else: self._qubit_number += 1<|docstring|>Initialise the :py:class:`~.CompressedMultiDiGraph` instance. Instances of :py:class:`~.CompressedMultiDiGraph` are just storing a :py:class:`networkx.MultiDiGraph` in a more memory efficient format. :param graph: The graph to compress.<|endoftext|>
55f5f5c2c5b25ba82444dd1d219e0ba4339109a36675de887f8c6769af547b97
def __copy__(self) -> 'CompressedMultiDiGraph': 'Override the default copy behaviour.' cpy = CompressedMultiDiGraph() cpy._qubit_number = self._qubit_number cpy._from_arr = self._from_arr.copy() cpy._to_arr = self._to_arr.copy() cpy._data_arr = self._data_arr.copy() cpy._is_op_node = self._is_op_node.copy() cpy._operations = copy.copy(self._operations) return cpy
Override the default copy behaviour.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
__copy__
nelimee/qtoolkit
3
python
def __copy__(self) -> 'CompressedMultiDiGraph': cpy = CompressedMultiDiGraph() cpy._qubit_number = self._qubit_number cpy._from_arr = self._from_arr.copy() cpy._to_arr = self._to_arr.copy() cpy._data_arr = self._data_arr.copy() cpy._is_op_node = self._is_op_node.copy() cpy._operations = copy.copy(self._operations) return cpy
def __copy__(self) -> 'CompressedMultiDiGraph': cpy = CompressedMultiDiGraph() cpy._qubit_number = self._qubit_number cpy._from_arr = self._from_arr.copy() cpy._to_arr = self._to_arr.copy() cpy._data_arr = self._data_arr.copy() cpy._is_op_node = self._is_op_node.copy() cpy._operations = copy.copy(self._operations) return cpy<|docstring|>Override the default copy behaviour.<|endoftext|>
074d8bd6dfff8c55a34136a087cfd69ec057c38901b7c31bbbdd2dcec6771eca
def uncompress(self) -> nx.MultiDiGraph: 'Uncompress the stored :py:class:`networkx.MultiDiGraph`.\n\n :return: the uncompressed :py:class:`networkx.MultiDiGraph`.\n ' graph = nx.MultiDiGraph() if (self._qubit_number == 0): return graph for i in range(self._qubit_number): graph.add_node(i, type='input', key=i) for node_id in range(self._qubit_number, len(self._is_op_node)): graph.add_node(node_id, type='op', op=self._operations[(node_id - self._qubit_number)]) for (u, v, qubit_id) in zip(self._from_arr, self._to_arr, self._data_arr): graph.add_edge(u, v, key=qubit_id) return graph
Uncompress the stored :py:class:`networkx.MultiDiGraph`. :return: the uncompressed :py:class:`networkx.MultiDiGraph`.
qtoolkit/data_structures/quantum_circuit/quantum_circuit.py
uncompress
nelimee/qtoolkit
3
python
def uncompress(self) -> nx.MultiDiGraph: 'Uncompress the stored :py:class:`networkx.MultiDiGraph`.\n\n :return: the uncompressed :py:class:`networkx.MultiDiGraph`.\n ' graph = nx.MultiDiGraph() if (self._qubit_number == 0): return graph for i in range(self._qubit_number): graph.add_node(i, type='input', key=i) for node_id in range(self._qubit_number, len(self._is_op_node)): graph.add_node(node_id, type='op', op=self._operations[(node_id - self._qubit_number)]) for (u, v, qubit_id) in zip(self._from_arr, self._to_arr, self._data_arr): graph.add_edge(u, v, key=qubit_id) return graph
def uncompress(self) -> nx.MultiDiGraph: 'Uncompress the stored :py:class:`networkx.MultiDiGraph`.\n\n :return: the uncompressed :py:class:`networkx.MultiDiGraph`.\n ' graph = nx.MultiDiGraph() if (self._qubit_number == 0): return graph for i in range(self._qubit_number): graph.add_node(i, type='input', key=i) for node_id in range(self._qubit_number, len(self._is_op_node)): graph.add_node(node_id, type='op', op=self._operations[(node_id - self._qubit_number)]) for (u, v, qubit_id) in zip(self._from_arr, self._to_arr, self._data_arr): graph.add_edge(u, v, key=qubit_id) return graph<|docstring|>Uncompress the stored :py:class:`networkx.MultiDiGraph`. :return: the uncompressed :py:class:`networkx.MultiDiGraph`.<|endoftext|>
88d9100cf7e078f3ee7f36ff9a57d4aef7524715114f4ca5f3ac536886e7f4d6
def update(self): 'Refreshes the cached options data' self.options = self._get_options()
Refreshes the cached options data
src/bos/operators/utils/clients/bos/options.py
update
Cray-HPE/bos
1
python
def update(self): self.options = self._get_options()
def update(self): self.options = self._get_options()<|docstring|>Refreshes the cached options data<|endoftext|>
6e882b4b4b11d8d6da22746474a9eaba50a7ef7c6f71d3ffa75220e61eef7142
def _get_options(self): 'Retrieves the current options from the BOS api' session = requests_retry_session() try: response = session.get(ENDPOINT) response.raise_for_status() return json.loads(response.text) except (ConnectionError, MaxRetryError) as e: LOGGER.error('Unable to connect to BOS: {}'.format(e)) except HTTPError as e: LOGGER.error('Unexpected response from BOS: {}'.format(e)) except json.JSONDecodeError as e: LOGGER.error('Non-JSON response from BOS: {}'.format(e)) return {}
Retrieves the current options from the BOS api
src/bos/operators/utils/clients/bos/options.py
_get_options
Cray-HPE/bos
1
python
def _get_options(self): session = requests_retry_session() try: response = session.get(ENDPOINT) response.raise_for_status() return json.loads(response.text) except (ConnectionError, MaxRetryError) as e: LOGGER.error('Unable to connect to BOS: {}'.format(e)) except HTTPError as e: LOGGER.error('Unexpected response from BOS: {}'.format(e)) except json.JSONDecodeError as e: LOGGER.error('Non-JSON response from BOS: {}'.format(e)) return {}
def _get_options(self): session = requests_retry_session() try: response = session.get(ENDPOINT) response.raise_for_status() return json.loads(response.text) except (ConnectionError, MaxRetryError) as e: LOGGER.error('Unable to connect to BOS: {}'.format(e)) except HTTPError as e: LOGGER.error('Unexpected response from BOS: {}'.format(e)) except json.JSONDecodeError as e: LOGGER.error('Non-JSON response from BOS: {}'.format(e)) return {}<|docstring|>Retrieves the current options from the BOS api<|endoftext|>
a52197a75085feecf4ec0e4c51e528f1ce95e2d1130791a9898d07a0808bcff8
def __init__(self, path, entry=None, dependencies=None, devDependencies=None, peerDependencies=None): 'Initialize webpack bundle.' self.path = path self.entry = (entry or {}) self.dependencies = {'dependencies': (dependencies or {}), 'devDependencies': (devDependencies or {}), 'peerDependencies': (peerDependencies or {})}
Initialize webpack bundle.
pywebpack/bundle.py
__init__
ntarocco/pywebpack
0
python
def __init__(self, path, entry=None, dependencies=None, devDependencies=None, peerDependencies=None): self.path = path self.entry = (entry or {}) self.dependencies = {'dependencies': (dependencies or {}), 'devDependencies': (devDependencies or {}), 'peerDependencies': (peerDependencies or {})}
def __init__(self, path, entry=None, dependencies=None, devDependencies=None, peerDependencies=None): self.path = path self.entry = (entry or {}) self.dependencies = {'dependencies': (dependencies or {}), 'devDependencies': (devDependencies or {}), 'peerDependencies': (peerDependencies or {})}<|docstring|>Initialize webpack bundle.<|endoftext|>
dc5a440fe0f2d370514c4971d1046bb1769800f4db0ad7a7077d30617f2d05a0
def format_recipient(user: User): '\n Format a user as a recipient\n\n Args:\n user (User): the user\n\n Returns:\n str:\n the formatted recipient\n ' return formataddr((f'{user.first_name} {user.last_name}', user.email))
Format a user as a recipient Args: user (User): the user Returns: str: the formatted recipient
src/mitol/mail/defaults.py
format_recipient
mitodl/ol-django
1
python
def format_recipient(user: User): '\n Format a user as a recipient\n\n Args:\n user (User): the user\n\n Returns:\n str:\n the formatted recipient\n ' return formataddr((f'{user.first_name} {user.last_name}', user.email))
def format_recipient(user: User): '\n Format a user as a recipient\n\n Args:\n user (User): the user\n\n Returns:\n str:\n the formatted recipient\n ' return formataddr((f'{user.first_name} {user.last_name}', user.email))<|docstring|>Format a user as a recipient Args: user (User): the user Returns: str: the formatted recipient<|endoftext|>
f28f5378babb0b05e31cd4d51d10c483025bd55f7f21c7fac59f0a62efd75a0b
def can_email_user(user: User): '\n Returns True if the user has an email address\n\n Args:\n user (User): user to check\n\n Returns:\n bool: True if we can email this user\n ' return bool(user.email)
Returns True if the user has an email address Args: user (User): user to check Returns: bool: True if we can email this user
src/mitol/mail/defaults.py
can_email_user
mitodl/ol-django
1
python
def can_email_user(user: User): '\n Returns True if the user has an email address\n\n Args:\n user (User): user to check\n\n Returns:\n bool: True if we can email this user\n ' return bool(user.email)
def can_email_user(user: User): '\n Returns True if the user has an email address\n\n Args:\n user (User): user to check\n\n Returns:\n bool: True if we can email this user\n ' return bool(user.email)<|docstring|>Returns True if the user has an email address Args: user (User): user to check Returns: bool: True if we can email this user<|endoftext|>
aad32ec10e3fd5813fba27b71291ce8016d30a629139d2d96e35c8e550cccad0
def make_quadrants(parent, yp): ' make quadrant buttons ' parent.quadbtns = QButtonGroup(parent) for b in range(9): btn = QuadButton(b, (' ' + str((b + 1))), parent) parent.quadbtns.addButton(btn, b) parent.l0.addWidget(btn, (yp + parent.quadbtns.button(b).ypos), (5 + parent.quadbtns.button(b).xpos), 1, 1) btn.setEnabled(True) b += 1 parent.quadbtns.setExclusive(True)
make quadrant buttons
cellpose/gui/guiparts.py
make_quadrants
thccheung/cellpose
0
python
def make_quadrants(parent, yp): ' ' parent.quadbtns = QButtonGroup(parent) for b in range(9): btn = QuadButton(b, (' ' + str((b + 1))), parent) parent.quadbtns.addButton(btn, b) parent.l0.addWidget(btn, (yp + parent.quadbtns.button(b).ypos), (5 + parent.quadbtns.button(b).xpos), 1, 1) btn.setEnabled(True) b += 1 parent.quadbtns.setExclusive(True)
def make_quadrants(parent, yp): ' ' parent.quadbtns = QButtonGroup(parent) for b in range(9): btn = QuadButton(b, (' ' + str((b + 1))), parent) parent.quadbtns.addButton(btn, b) parent.l0.addWidget(btn, (yp + parent.quadbtns.button(b).ypos), (5 + parent.quadbtns.button(b).xpos), 1, 1) btn.setEnabled(True) b += 1 parent.quadbtns.setExclusive(True)<|docstring|>make quadrant buttons<|endoftext|>
3ecbb5b133234213e5fc118842629e1c98ac59fb8bd44ea9306039ad5d6c7f61
def keyPressEvent(self, ev): '\n This routine should capture key presses in the current view box.\n The following events are implemented:\n +/= : moves forward in the zooming stack (if it exists)\n - : moves backward in the zooming stack (if it exists)\n\n ' ev.accept() if (ev.text() == '-'): self.scaleBy([1.1, 1.1]) elif (ev.text() in ['+', '=']): self.scaleBy([0.9, 0.9]) else: ev.ignore()
This routine should capture key presses in the current view box. The following events are implemented: +/= : moves forward in the zooming stack (if it exists) - : moves backward in the zooming stack (if it exists)
cellpose/gui/guiparts.py
keyPressEvent
thccheung/cellpose
0
python
def keyPressEvent(self, ev): '\n This routine should capture key presses in the current view box.\n The following events are implemented:\n +/= : moves forward in the zooming stack (if it exists)\n - : moves backward in the zooming stack (if it exists)\n\n ' ev.accept() if (ev.text() == '-'): self.scaleBy([1.1, 1.1]) elif (ev.text() in ['+', '=']): self.scaleBy([0.9, 0.9]) else: ev.ignore()
def keyPressEvent(self, ev): '\n This routine should capture key presses in the current view box.\n The following events are implemented:\n +/= : moves forward in the zooming stack (if it exists)\n - : moves backward in the zooming stack (if it exists)\n\n ' ev.accept() if (ev.text() == '-'): self.scaleBy([1.1, 1.1]) elif (ev.text() in ['+', '=']): self.scaleBy([0.9, 0.9]) else: ev.ignore()<|docstring|>This routine should capture key presses in the current view box. The following events are implemented: +/= : moves forward in the zooming stack (if it exists) - : moves backward in the zooming stack (if it exists)<|endoftext|>
f57ac177a7acd94ac7f71ee124bf67b0e9967cb6ff426578881fd83e6e4c8049
def test_format_paragraphs(monkeypatch): 'Try to dedent and reformat a paragraph.' lorem_before = '\n Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum\n vehicula aliquam felis sed iaculis.\n\n Integer vulputate dui vulputate metus pulvinar volutpat. Nullam\n eu elementum libero.\n ' lorem_width35 = 'Lorem ipsum dolor sit amet,\nconsectetur adipiscing elit.\nVestibulum vehicula aliquam\nfelis sed iaculis.\n\nInteger vulputate dui\nvulputate metus pulvinar\nvolutpat. Nullam eu elementum\nlibero.\n' with monkeypatch.context() as monkey: monkey.setenv('COLUMNS', '35') formatted = fmt.format_paragraphs(lorem_before) assert (formatted == lorem_width35)
Try to dedent and reformat a paragraph.
tests/fmt_test.py
test_format_paragraphs
harkabeeparolus/csv2xlsx
2
python
def test_format_paragraphs(monkeypatch): lorem_before = '\n Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum\n vehicula aliquam felis sed iaculis.\n\n Integer vulputate dui vulputate metus pulvinar volutpat. Nullam\n eu elementum libero.\n ' lorem_width35 = 'Lorem ipsum dolor sit amet,\nconsectetur adipiscing elit.\nVestibulum vehicula aliquam\nfelis sed iaculis.\n\nInteger vulputate dui\nvulputate metus pulvinar\nvolutpat. Nullam eu elementum\nlibero.\n' with monkeypatch.context() as monkey: monkey.setenv('COLUMNS', '35') formatted = fmt.format_paragraphs(lorem_before) assert (formatted == lorem_width35)
def test_format_paragraphs(monkeypatch): lorem_before = '\n Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum\n vehicula aliquam felis sed iaculis.\n\n Integer vulputate dui vulputate metus pulvinar volutpat. Nullam\n eu elementum libero.\n ' lorem_width35 = 'Lorem ipsum dolor sit amet,\nconsectetur adipiscing elit.\nVestibulum vehicula aliquam\nfelis sed iaculis.\n\nInteger vulputate dui\nvulputate metus pulvinar\nvolutpat. Nullam eu elementum\nlibero.\n' with monkeypatch.context() as monkey: monkey.setenv('COLUMNS', '35') formatted = fmt.format_paragraphs(lorem_before) assert (formatted == lorem_width35)<|docstring|>Try to dedent and reformat a paragraph.<|endoftext|>
5f539ff9780a4abcbdcc983bfb6cc0767e5dc6afe5a8ff90ae4d96612fb3e353
def test_newlines(): 'Make sure we strip and reapply newlines correctly.' assert (fmt.format_paragraphs('\n\nfoo bar') == 'foo bar') assert (fmt.format_paragraphs('\n\nfoo bar baz\n\n') == 'foo bar baz\n')
Make sure we strip and reapply newlines correctly.
tests/fmt_test.py
test_newlines
harkabeeparolus/csv2xlsx
2
python
def test_newlines(): assert (fmt.format_paragraphs('\n\nfoo bar') == 'foo bar') assert (fmt.format_paragraphs('\n\nfoo bar baz\n\n') == 'foo bar baz\n')
def test_newlines(): assert (fmt.format_paragraphs('\n\nfoo bar') == 'foo bar') assert (fmt.format_paragraphs('\n\nfoo bar baz\n\n') == 'foo bar baz\n')<|docstring|>Make sure we strip and reapply newlines correctly.<|endoftext|>
74c69b013b1749d646636bef999270ef7cf0842acacb2b784462f2d3a7f8a8a4
def IoU(box, boxes): 'Compute IoU between detect box and gt boxes\n\n Parameters:\n ----------\n box: numpy array , shape (5, ): x1, y1, x2, y2, score\n input box\n boxes: numpy array, shape (n, 4): x1, y1, x2, y2\n input ground truth boxes\n\n Returns:\n -------\n ovr: numpy.array, shape (n, )\n IoU\n ' box_area = ((box[2] - box[0]) * (box[3] - box[1])) area = ((boxes[(:, 2)] - boxes[(:, 0)]) * (boxes[(:, 3)] - boxes[(:, 1)])) xx1 = np.maximum(box[0], boxes[(:, 0)]) yy1 = np.maximum(box[1], boxes[(:, 1)]) xx2 = np.minimum(box[2], boxes[(:, 2)]) yy2 = np.minimum(box[3], boxes[(:, 3)]) w = np.maximum(0, (xx2 - xx1)) h = np.maximum(0, (yy2 - yy1)) inter = (w * h) ovr = np.true_divide(inter, ((box_area + area) - inter)) return ovr
Compute IoU between detect box and gt boxes Parameters: ---------- box: numpy array , shape (5, ): x1, y1, x2, y2, score input box boxes: numpy array, shape (n, 4): x1, y1, x2, y2 input ground truth boxes Returns: ------- ovr: numpy.array, shape (n, ) IoU
2019ML_Lab/Lab4/mtcnn_pytorch/tools/utils.py
IoU
Pangxiaox/Machine-Learning-Lab
0
python
def IoU(box, boxes): 'Compute IoU between detect box and gt boxes\n\n Parameters:\n ----------\n box: numpy array , shape (5, ): x1, y1, x2, y2, score\n input box\n boxes: numpy array, shape (n, 4): x1, y1, x2, y2\n input ground truth boxes\n\n Returns:\n -------\n ovr: numpy.array, shape (n, )\n IoU\n ' box_area = ((box[2] - box[0]) * (box[3] - box[1])) area = ((boxes[(:, 2)] - boxes[(:, 0)]) * (boxes[(:, 3)] - boxes[(:, 1)])) xx1 = np.maximum(box[0], boxes[(:, 0)]) yy1 = np.maximum(box[1], boxes[(:, 1)]) xx2 = np.minimum(box[2], boxes[(:, 2)]) yy2 = np.minimum(box[3], boxes[(:, 3)]) w = np.maximum(0, (xx2 - xx1)) h = np.maximum(0, (yy2 - yy1)) inter = (w * h) ovr = np.true_divide(inter, ((box_area + area) - inter)) return ovr
def IoU(box, boxes): 'Compute IoU between detect box and gt boxes\n\n Parameters:\n ----------\n box: numpy array , shape (5, ): x1, y1, x2, y2, score\n input box\n boxes: numpy array, shape (n, 4): x1, y1, x2, y2\n input ground truth boxes\n\n Returns:\n -------\n ovr: numpy.array, shape (n, )\n IoU\n ' box_area = ((box[2] - box[0]) * (box[3] - box[1])) area = ((boxes[(:, 2)] - boxes[(:, 0)]) * (boxes[(:, 3)] - boxes[(:, 1)])) xx1 = np.maximum(box[0], boxes[(:, 0)]) yy1 = np.maximum(box[1], boxes[(:, 1)]) xx2 = np.minimum(box[2], boxes[(:, 2)]) yy2 = np.minimum(box[3], boxes[(:, 3)]) w = np.maximum(0, (xx2 - xx1)) h = np.maximum(0, (yy2 - yy1)) inter = (w * h) ovr = np.true_divide(inter, ((box_area + area) - inter)) return ovr<|docstring|>Compute IoU between detect box and gt boxes Parameters: ---------- box: numpy array , shape (5, ): x1, y1, x2, y2, score input box boxes: numpy array, shape (n, 4): x1, y1, x2, y2 input ground truth boxes Returns: ------- ovr: numpy.array, shape (n, ) IoU<|endoftext|>
fdba06e088f170877c7bbac4f87be3b2fd094f8720c4ce852dbb4927a7401864
def convert_to_square(bbox): ' Convert bbox to a square which it can include the bbox\n Parameters:\n bbox: numpy array, shape n x 5\n \n returns:\n square box\n ' square_bbox = bbox.copy() h = (bbox[(:, 3)] - bbox[(:, 1)]) w = (bbox[(:, 2)] - bbox[(:, 0)]) max_side = np.maximum(h, w) square_bbox[(:, 0)] = ((bbox[(:, 0)] + (w * 0.5)) - (max_side * 0.5)) square_bbox[(:, 1)] = ((bbox[(:, 1)] + (h * 0.5)) - (max_side * 0.5)) square_bbox[(:, 2)] = (square_bbox[(:, 0)] + max_side) square_bbox[(:, 3)] = (square_bbox[(:, 1)] + max_side) return square_bbox
Convert bbox to a square which it can include the bbox Parameters: bbox: numpy array, shape n x 5 returns: square box
2019ML_Lab/Lab4/mtcnn_pytorch/tools/utils.py
convert_to_square
Pangxiaox/Machine-Learning-Lab
0
python
def convert_to_square(bbox): ' Convert bbox to a square which it can include the bbox\n Parameters:\n bbox: numpy array, shape n x 5\n \n returns:\n square box\n ' square_bbox = bbox.copy() h = (bbox[(:, 3)] - bbox[(:, 1)]) w = (bbox[(:, 2)] - bbox[(:, 0)]) max_side = np.maximum(h, w) square_bbox[(:, 0)] = ((bbox[(:, 0)] + (w * 0.5)) - (max_side * 0.5)) square_bbox[(:, 1)] = ((bbox[(:, 1)] + (h * 0.5)) - (max_side * 0.5)) square_bbox[(:, 2)] = (square_bbox[(:, 0)] + max_side) square_bbox[(:, 3)] = (square_bbox[(:, 1)] + max_side) return square_bbox
def convert_to_square(bbox): ' Convert bbox to a square which it can include the bbox\n Parameters:\n bbox: numpy array, shape n x 5\n \n returns:\n square box\n ' square_bbox = bbox.copy() h = (bbox[(:, 3)] - bbox[(:, 1)]) w = (bbox[(:, 2)] - bbox[(:, 0)]) max_side = np.maximum(h, w) square_bbox[(:, 0)] = ((bbox[(:, 0)] + (w * 0.5)) - (max_side * 0.5)) square_bbox[(:, 1)] = ((bbox[(:, 1)] + (h * 0.5)) - (max_side * 0.5)) square_bbox[(:, 2)] = (square_bbox[(:, 0)] + max_side) square_bbox[(:, 3)] = (square_bbox[(:, 1)] + max_side) return square_bbox<|docstring|>Convert bbox to a square which it can include the bbox Parameters: bbox: numpy array, shape n x 5 returns: square box<|endoftext|>
a698253545c12e086abab2d749055ee86eac3220a704955b438ae39bee04697a
def nms(dets, thresh, mode='Union'): ' greedily select bboxes with high confidence,if an box overlap with the highest score box > thres, rule it out\n \n params:\n dets: [[x1, y1, x2, y2, score]]\n thresh: retain overlap <= thresh\n return:\n indexes to keep\n ' x1 = dets[(:, 0)] y1 = dets[(:, 1)] x2 = dets[(:, 2)] y2 = dets[(:, 3)] scores = dets[(:, 4)] areas = ((x2 - x1) * (y2 - y1)) order = scores.argsort()[::(- 1)] keep = [] while (order.size > 0): i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, (xx2 - xx1)) h = np.maximum(0.0, (yy2 - yy1)) inter = (w * h) inter = (w * h) if (mode == 'Union'): ovr = (inter / ((areas[i] + areas[order[1:]]) - inter)) elif (mode == 'Minimum'): ovr = (inter / np.minimum(areas[i], areas[order[1:]])) inds = np.where((ovr <= thresh))[0] order = order[(inds + 1)] return keep
greedily select bboxes with high confidence,if an box overlap with the highest score box > thres, rule it out params: dets: [[x1, y1, x2, y2, score]] thresh: retain overlap <= thresh return: indexes to keep
2019ML_Lab/Lab4/mtcnn_pytorch/tools/utils.py
nms
Pangxiaox/Machine-Learning-Lab
0
python
def nms(dets, thresh, mode='Union'): ' greedily select bboxes with high confidence,if an box overlap with the highest score box > thres, rule it out\n \n params:\n dets: [[x1, y1, x2, y2, score]]\n thresh: retain overlap <= thresh\n return:\n indexes to keep\n ' x1 = dets[(:, 0)] y1 = dets[(:, 1)] x2 = dets[(:, 2)] y2 = dets[(:, 3)] scores = dets[(:, 4)] areas = ((x2 - x1) * (y2 - y1)) order = scores.argsort()[::(- 1)] keep = [] while (order.size > 0): i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, (xx2 - xx1)) h = np.maximum(0.0, (yy2 - yy1)) inter = (w * h) inter = (w * h) if (mode == 'Union'): ovr = (inter / ((areas[i] + areas[order[1:]]) - inter)) elif (mode == 'Minimum'): ovr = (inter / np.minimum(areas[i], areas[order[1:]])) inds = np.where((ovr <= thresh))[0] order = order[(inds + 1)] return keep
def nms(dets, thresh, mode='Union'): ' greedily select bboxes with high confidence,if an box overlap with the highest score box > thres, rule it out\n \n params:\n dets: [[x1, y1, x2, y2, score]]\n thresh: retain overlap <= thresh\n return:\n indexes to keep\n ' x1 = dets[(:, 0)] y1 = dets[(:, 1)] x2 = dets[(:, 2)] y2 = dets[(:, 3)] scores = dets[(:, 4)] areas = ((x2 - x1) * (y2 - y1)) order = scores.argsort()[::(- 1)] keep = [] while (order.size > 0): i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, (xx2 - xx1)) h = np.maximum(0.0, (yy2 - yy1)) inter = (w * h) inter = (w * h) if (mode == 'Union'): ovr = (inter / ((areas[i] + areas[order[1:]]) - inter)) elif (mode == 'Minimum'): ovr = (inter / np.minimum(areas[i], areas[order[1:]])) inds = np.where((ovr <= thresh))[0] order = order[(inds + 1)] return keep<|docstring|>greedily select bboxes with high confidence,if an box overlap with the highest score box > thres, rule it out params: dets: [[x1, y1, x2, y2, score]] thresh: retain overlap <= thresh return: indexes to keep<|endoftext|>
def8b996ba9eba493186504392e3f70b7d8efdb24d3ca26faacdf08d7dab0ec7
def reset(self): '\n reset all parameters\n ' self.val = 0 self.avg = 0 self.sum = 0 self.count = 0
reset all parameters
2019ML_Lab/Lab4/mtcnn_pytorch/tools/utils.py
reset
Pangxiaox/Machine-Learning-Lab
0
python
def reset(self): '\n \n ' self.val = 0 self.avg = 0 self.sum = 0 self.count = 0
def reset(self): '\n \n ' self.val = 0 self.avg = 0 self.sum = 0 self.count = 0<|docstring|>reset all parameters<|endoftext|>
039b628903e395200b54c974945c96beee3e71efbb0e6f6432b56d28d567911a
def update(self, val, n=1): '\n update parameters\n ' self.val = val self.sum += (val * n) self.count += n self.avg = (self.sum / self.count)
update parameters
2019ML_Lab/Lab4/mtcnn_pytorch/tools/utils.py
update
Pangxiaox/Machine-Learning-Lab
0
python
def update(self, val, n=1): '\n \n ' self.val = val self.sum += (val * n) self.count += n self.avg = (self.sum / self.count)
def update(self, val, n=1): '\n \n ' self.val = val self.sum += (val * n) self.count += n self.avg = (self.sum / self.count)<|docstring|>update parameters<|endoftext|>
eca78088ef8ee496b4a021fc4015849eb040c372c0ea2f0d2b1f11995d021a19
def tanh_op(node, ctx=None): 'Calculate tanh of a matrix elementwisely.\n\n Parameters:\n ----\n node : Node\n Input variable.\n\n Returns:\n ----\n A new Node instance created by Op.\n\n ' return TanhOp(node, ctx=ctx)
Calculate tanh of a matrix elementwisely. Parameters: ---- node : Node Input variable. Returns: ---- A new Node instance created by Op.
python/hetu/gpu_ops/Tanh.py
tanh_op
HugoZHL/Hetu
0
python
def tanh_op(node, ctx=None): 'Calculate tanh of a matrix elementwisely.\n\n Parameters:\n ----\n node : Node\n Input variable.\n\n Returns:\n ----\n A new Node instance created by Op.\n\n ' return TanhOp(node, ctx=ctx)
def tanh_op(node, ctx=None): 'Calculate tanh of a matrix elementwisely.\n\n Parameters:\n ----\n node : Node\n Input variable.\n\n Returns:\n ----\n A new Node instance created by Op.\n\n ' return TanhOp(node, ctx=ctx)<|docstring|>Calculate tanh of a matrix elementwisely. Parameters: ---- node : Node Input variable. Returns: ---- A new Node instance created by Op.<|endoftext|>
c27833acef7d356dd5f5c5d24d03c3b2f9c499a52d959b2b631fdf0eee236749
@staticmethod def is_url(location): ' Checks if provided path is a URL ' return bool(urllib.parse.urlparse(location).netloc)
Checks if provided path is a URL
dogen/tools.py
is_url
jboss-dockerfiles/dogen
14
python
@staticmethod def is_url(location): ' ' return bool(urllib.parse.urlparse(location).netloc)
@staticmethod def is_url(location): ' ' return bool(urllib.parse.urlparse(location).netloc)<|docstring|>Checks if provided path is a URL<|endoftext|>
929bdc4699c47aed7326127335fb510d76a639567ea7f846b7ee1985c330aa62
def initialize(self, opt): '\n :param opt:\n :return:\n ' self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)
:param opt: :return:
data/single_dataset.py
initialize
CaptainEven/MyEnlightenGAN
1
python
def initialize(self, opt): '\n :param opt:\n :return:\n ' self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)
def initialize(self, opt): '\n :param opt:\n :return:\n ' self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)<|docstring|>:param opt: :return:<|endoftext|>
6212d420de85fc3326c7128f3fb61c6c2b09b96f7c916a21b6cd9daedd9b1ed0
def __getitem__(self, idx): '\n :param idx:\n :return:\n ' A_path = self.A_paths[idx] A_img = Image.open(A_path).convert('RGB') A_size = A_img.size A_size = A_size = (((A_size[0] // 16) * 16), ((A_size[1] // 16) * 16)) A_img = A_img.resize(A_size, Image.BICUBIC) A_img = self.transform(A_img) return {'A': A_img, 'A_paths': A_path}
:param idx: :return:
data/single_dataset.py
__getitem__
CaptainEven/MyEnlightenGAN
1
python
def __getitem__(self, idx): '\n :param idx:\n :return:\n ' A_path = self.A_paths[idx] A_img = Image.open(A_path).convert('RGB') A_size = A_img.size A_size = A_size = (((A_size[0] // 16) * 16), ((A_size[1] // 16) * 16)) A_img = A_img.resize(A_size, Image.BICUBIC) A_img = self.transform(A_img) return {'A': A_img, 'A_paths': A_path}
def __getitem__(self, idx): '\n :param idx:\n :return:\n ' A_path = self.A_paths[idx] A_img = Image.open(A_path).convert('RGB') A_size = A_img.size A_size = A_size = (((A_size[0] // 16) * 16), ((A_size[1] // 16) * 16)) A_img = A_img.resize(A_size, Image.BICUBIC) A_img = self.transform(A_img) return {'A': A_img, 'A_paths': A_path}<|docstring|>:param idx: :return:<|endoftext|>
095fa3151f0311206c329e89016956fe31c7f4930fa71d4e9721d7ff58b78213
def __init__(self, jsondict=None, strict=True): ' Initialize all valid properties.\n \n :raises: FHIRValidationError on validation errors, unless strict is False\n :param dict jsondict: A JSON dictionary to use for initialization\n :param bool strict: If True (the default), invalid variables will raise a TypeError\n ' self.account = None ' Account to place this charge.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.bodysite = None ' Anatomical location, if relevant.\n List of `CodeableConcept` items (represented as `dict` in JSON). ' self.code = None ' A code that identifies the charge, like a billing code.\n Type `CodeableConcept` (represented as `dict` in JSON). ' self.context = None ' Encounter / Episode associated with event.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.costCenter = None ' Organization that has ownership of the (potential, future) revenue.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.definitionCanonical = None ' Resource defining the code of this ChargeItem.\n List of `str` items. ' self.definitionUri = None ' Defining information about the code of this charge item.\n List of `str` items. ' self.enteredDate = None ' Date the charge item was entered.\n Type `FHIRDate` (represented as `str` in JSON). ' self.enterer = None ' Individual who was entering.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.factorOverride = None ' Factor overriding the associated rules.\n Type `float`. ' self.identifier = None ' Business Identifier for item.\n List of `Identifier` items (represented as `dict` in JSON). ' self.note = None ' Comments made about the ChargeItem.\n List of `Annotation` items (represented as `dict` in JSON). ' self.occurrenceDateTime = None ' When the charged service was applied.\n Type `FHIRDate` (represented as `str` in JSON). ' self.occurrencePeriod = None ' When the charged service was applied.\n Type `Period` (represented as `dict` in JSON). ' self.occurrenceTiming = None ' When the charged service was applied.\n Type `Timing` (represented as `dict` in JSON). ' self.overrideReason = None ' Reason for overriding the list price/factor.\n Type `str`. ' self.partOf = None ' Part of referenced ChargeItem.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.performer = None ' Who performed charged service.\n List of `ChargeItemPerformer` items (represented as `dict` in JSON). ' self.performingOrganization = None ' Organization providing the charged service.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.priceOverride = None ' Price overriding the associated rules.\n Type `Money` (represented as `dict` in JSON). ' self.productCodeableConcept = None ' Product charged.\n Type `CodeableConcept` (represented as `dict` in JSON). ' self.productReference = None ' Product charged.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.quantity = None ' Quantity of which the charge item has been serviced.\n Type `Quantity` (represented as `dict` in JSON). ' self.reason = None ' Why was the charged service rendered?.\n List of `CodeableConcept` items (represented as `dict` in JSON). ' self.requestingOrganization = None ' Organization requesting the charged service.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.service = None ' Which rendered service is being charged?.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.status = None ' planned | billable | not-billable | aborted | billed | entered-in-\n error | unknown.\n Type `str`. ' self.subject = None ' Individual service was done for/to.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.supportingInformation = None ' Further information supporting this charge.\n List of `FHIRReference` items (represented as `dict` in JSON). ' super(ChargeItem, self).__init__(jsondict=jsondict, strict=strict)
Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError
fhirclient/models/chargeitem.py
__init__
zeel-dev/client-py
418
python
def __init__(self, jsondict=None, strict=True): ' Initialize all valid properties.\n \n :raises: FHIRValidationError on validation errors, unless strict is False\n :param dict jsondict: A JSON dictionary to use for initialization\n :param bool strict: If True (the default), invalid variables will raise a TypeError\n ' self.account = None ' Account to place this charge.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.bodysite = None ' Anatomical location, if relevant.\n List of `CodeableConcept` items (represented as `dict` in JSON). ' self.code = None ' A code that identifies the charge, like a billing code.\n Type `CodeableConcept` (represented as `dict` in JSON). ' self.context = None ' Encounter / Episode associated with event.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.costCenter = None ' Organization that has ownership of the (potential, future) revenue.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.definitionCanonical = None ' Resource defining the code of this ChargeItem.\n List of `str` items. ' self.definitionUri = None ' Defining information about the code of this charge item.\n List of `str` items. ' self.enteredDate = None ' Date the charge item was entered.\n Type `FHIRDate` (represented as `str` in JSON). ' self.enterer = None ' Individual who was entering.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.factorOverride = None ' Factor overriding the associated rules.\n Type `float`. ' self.identifier = None ' Business Identifier for item.\n List of `Identifier` items (represented as `dict` in JSON). ' self.note = None ' Comments made about the ChargeItem.\n List of `Annotation` items (represented as `dict` in JSON). ' self.occurrenceDateTime = None ' When the charged service was applied.\n Type `FHIRDate` (represented as `str` in JSON). ' self.occurrencePeriod = None ' When the charged service was applied.\n Type `Period` (represented as `dict` in JSON). ' self.occurrenceTiming = None ' When the charged service was applied.\n Type `Timing` (represented as `dict` in JSON). ' self.overrideReason = None ' Reason for overriding the list price/factor.\n Type `str`. ' self.partOf = None ' Part of referenced ChargeItem.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.performer = None ' Who performed charged service.\n List of `ChargeItemPerformer` items (represented as `dict` in JSON). ' self.performingOrganization = None ' Organization providing the charged service.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.priceOverride = None ' Price overriding the associated rules.\n Type `Money` (represented as `dict` in JSON). ' self.productCodeableConcept = None ' Product charged.\n Type `CodeableConcept` (represented as `dict` in JSON). ' self.productReference = None ' Product charged.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.quantity = None ' Quantity of which the charge item has been serviced.\n Type `Quantity` (represented as `dict` in JSON). ' self.reason = None ' Why was the charged service rendered?.\n List of `CodeableConcept` items (represented as `dict` in JSON). ' self.requestingOrganization = None ' Organization requesting the charged service.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.service = None ' Which rendered service is being charged?.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.status = None ' planned | billable | not-billable | aborted | billed | entered-in-\n error | unknown.\n Type `str`. ' self.subject = None ' Individual service was done for/to.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.supportingInformation = None ' Further information supporting this charge.\n List of `FHIRReference` items (represented as `dict` in JSON). ' super(ChargeItem, self).__init__(jsondict=jsondict, strict=strict)
def __init__(self, jsondict=None, strict=True): ' Initialize all valid properties.\n \n :raises: FHIRValidationError on validation errors, unless strict is False\n :param dict jsondict: A JSON dictionary to use for initialization\n :param bool strict: If True (the default), invalid variables will raise a TypeError\n ' self.account = None ' Account to place this charge.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.bodysite = None ' Anatomical location, if relevant.\n List of `CodeableConcept` items (represented as `dict` in JSON). ' self.code = None ' A code that identifies the charge, like a billing code.\n Type `CodeableConcept` (represented as `dict` in JSON). ' self.context = None ' Encounter / Episode associated with event.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.costCenter = None ' Organization that has ownership of the (potential, future) revenue.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.definitionCanonical = None ' Resource defining the code of this ChargeItem.\n List of `str` items. ' self.definitionUri = None ' Defining information about the code of this charge item.\n List of `str` items. ' self.enteredDate = None ' Date the charge item was entered.\n Type `FHIRDate` (represented as `str` in JSON). ' self.enterer = None ' Individual who was entering.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.factorOverride = None ' Factor overriding the associated rules.\n Type `float`. ' self.identifier = None ' Business Identifier for item.\n List of `Identifier` items (represented as `dict` in JSON). ' self.note = None ' Comments made about the ChargeItem.\n List of `Annotation` items (represented as `dict` in JSON). ' self.occurrenceDateTime = None ' When the charged service was applied.\n Type `FHIRDate` (represented as `str` in JSON). ' self.occurrencePeriod = None ' When the charged service was applied.\n Type `Period` (represented as `dict` in JSON). ' self.occurrenceTiming = None ' When the charged service was applied.\n Type `Timing` (represented as `dict` in JSON). ' self.overrideReason = None ' Reason for overriding the list price/factor.\n Type `str`. ' self.partOf = None ' Part of referenced ChargeItem.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.performer = None ' Who performed charged service.\n List of `ChargeItemPerformer` items (represented as `dict` in JSON). ' self.performingOrganization = None ' Organization providing the charged service.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.priceOverride = None ' Price overriding the associated rules.\n Type `Money` (represented as `dict` in JSON). ' self.productCodeableConcept = None ' Product charged.\n Type `CodeableConcept` (represented as `dict` in JSON). ' self.productReference = None ' Product charged.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.quantity = None ' Quantity of which the charge item has been serviced.\n Type `Quantity` (represented as `dict` in JSON). ' self.reason = None ' Why was the charged service rendered?.\n List of `CodeableConcept` items (represented as `dict` in JSON). ' self.requestingOrganization = None ' Organization requesting the charged service.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.service = None ' Which rendered service is being charged?.\n List of `FHIRReference` items (represented as `dict` in JSON). ' self.status = None ' planned | billable | not-billable | aborted | billed | entered-in-\n error | unknown.\n Type `str`. ' self.subject = None ' Individual service was done for/to.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.supportingInformation = None ' Further information supporting this charge.\n List of `FHIRReference` items (represented as `dict` in JSON). ' super(ChargeItem, self).__init__(jsondict=jsondict, strict=strict)<|docstring|>Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError<|endoftext|>
847a9cdec91f636ebf80546cf2eacf3ce917080453493aa09924fde6ee882e8d
def __init__(self, jsondict=None, strict=True): ' Initialize all valid properties.\n \n :raises: FHIRValidationError on validation errors, unless strict is False\n :param dict jsondict: A JSON dictionary to use for initialization\n :param bool strict: If True (the default), invalid variables will raise a TypeError\n ' self.actor = None ' Individual who was performing.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.function = None ' What type of performance was done.\n Type `CodeableConcept` (represented as `dict` in JSON). ' super(ChargeItemPerformer, self).__init__(jsondict=jsondict, strict=strict)
Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError
fhirclient/models/chargeitem.py
__init__
zeel-dev/client-py
418
python
def __init__(self, jsondict=None, strict=True): ' Initialize all valid properties.\n \n :raises: FHIRValidationError on validation errors, unless strict is False\n :param dict jsondict: A JSON dictionary to use for initialization\n :param bool strict: If True (the default), invalid variables will raise a TypeError\n ' self.actor = None ' Individual who was performing.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.function = None ' What type of performance was done.\n Type `CodeableConcept` (represented as `dict` in JSON). ' super(ChargeItemPerformer, self).__init__(jsondict=jsondict, strict=strict)
def __init__(self, jsondict=None, strict=True): ' Initialize all valid properties.\n \n :raises: FHIRValidationError on validation errors, unless strict is False\n :param dict jsondict: A JSON dictionary to use for initialization\n :param bool strict: If True (the default), invalid variables will raise a TypeError\n ' self.actor = None ' Individual who was performing.\n Type `FHIRReference` (represented as `dict` in JSON). ' self.function = None ' What type of performance was done.\n Type `CodeableConcept` (represented as `dict` in JSON). ' super(ChargeItemPerformer, self).__init__(jsondict=jsondict, strict=strict)<|docstring|>Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError<|endoftext|>
1fe821bcfdc966135f20ea72f2666c7fe55bbd1a9676b752c7c4aa1b361c5d44
@operation def service(service, running=True, restarted=False, reloaded=False, command=None, enabled=None, state=None, host=None): '\n Manage the state of BSD init services.\n\n + service: name of the service to manage\n + running: whether the service should be running\n + restarted: whether the service should be restarted\n + reloaded: whether the service should be reloaded\n + command: custom command to pass like: ``/etc/rc.d/<service> <command>``\n + enabled: whether this service should be enabled/disabled on boot\n ' status_argument = 'status' if (host.get_fact(Os) == 'OpenBSD'): status_argument = 'check' (yield handle_service_control(host, service, RcdStatus, 'test -e /etc/rc.d/{0} && /etc/rc.d/{0} {1} || /usr/local/etc/rc.d/{0} {1}', running, restarted, reloaded, command, status_argument=status_argument)) if isinstance(enabled, bool): (yield files.line('/etc/rc.conf.local', '^{0}_enable='.format(service), replace='{0}_enable="YES"'.format(service), present=enabled, state=state, host=host))
Manage the state of BSD init services. + service: name of the service to manage + running: whether the service should be running + restarted: whether the service should be restarted + reloaded: whether the service should be reloaded + command: custom command to pass like: ``/etc/rc.d/<service> <command>`` + enabled: whether this service should be enabled/disabled on boot
pyinfra/operations/bsdinit.py
service
GerardoGR/pyinfra
1,532
python
@operation def service(service, running=True, restarted=False, reloaded=False, command=None, enabled=None, state=None, host=None): '\n Manage the state of BSD init services.\n\n + service: name of the service to manage\n + running: whether the service should be running\n + restarted: whether the service should be restarted\n + reloaded: whether the service should be reloaded\n + command: custom command to pass like: ``/etc/rc.d/<service> <command>``\n + enabled: whether this service should be enabled/disabled on boot\n ' status_argument = 'status' if (host.get_fact(Os) == 'OpenBSD'): status_argument = 'check' (yield handle_service_control(host, service, RcdStatus, 'test -e /etc/rc.d/{0} && /etc/rc.d/{0} {1} || /usr/local/etc/rc.d/{0} {1}', running, restarted, reloaded, command, status_argument=status_argument)) if isinstance(enabled, bool): (yield files.line('/etc/rc.conf.local', '^{0}_enable='.format(service), replace='{0}_enable="YES"'.format(service), present=enabled, state=state, host=host))
@operation def service(service, running=True, restarted=False, reloaded=False, command=None, enabled=None, state=None, host=None): '\n Manage the state of BSD init services.\n\n + service: name of the service to manage\n + running: whether the service should be running\n + restarted: whether the service should be restarted\n + reloaded: whether the service should be reloaded\n + command: custom command to pass like: ``/etc/rc.d/<service> <command>``\n + enabled: whether this service should be enabled/disabled on boot\n ' status_argument = 'status' if (host.get_fact(Os) == 'OpenBSD'): status_argument = 'check' (yield handle_service_control(host, service, RcdStatus, 'test -e /etc/rc.d/{0} && /etc/rc.d/{0} {1} || /usr/local/etc/rc.d/{0} {1}', running, restarted, reloaded, command, status_argument=status_argument)) if isinstance(enabled, bool): (yield files.line('/etc/rc.conf.local', '^{0}_enable='.format(service), replace='{0}_enable="YES"'.format(service), present=enabled, state=state, host=host))<|docstring|>Manage the state of BSD init services. + service: name of the service to manage + running: whether the service should be running + restarted: whether the service should be restarted + reloaded: whether the service should be reloaded + command: custom command to pass like: ``/etc/rc.d/<service> <command>`` + enabled: whether this service should be enabled/disabled on boot<|endoftext|>
f9576351d53dd3b49d2054d65dbd41c9c9a8df2d77fdf0ff2804868e353074c4
def fit(self, df: pd.DataFrame) -> BasePreprocessor: 'Fits the Preprocessor and creates required attributes\n ' df_wide = self._prepare_wide(df) self.wide_crossed_cols = df_wide.columns.tolist() if self.already_dummies: dummy_cols = [c for c in self.wide_crossed_cols if (c not in self.already_dummies)] self.one_hot_enc.fit(df_wide[dummy_cols]) else: self.one_hot_enc.fit(df_wide[self.wide_crossed_cols]) return self
Fits the Preprocessor and creates required attributes
pytorch_widedeep/preprocessing/_preprocessors.py
fit
yuanzhiKe/pytorch-widedeep
0
python
def fit(self, df: pd.DataFrame) -> BasePreprocessor: '\n ' df_wide = self._prepare_wide(df) self.wide_crossed_cols = df_wide.columns.tolist() if self.already_dummies: dummy_cols = [c for c in self.wide_crossed_cols if (c not in self.already_dummies)] self.one_hot_enc.fit(df_wide[dummy_cols]) else: self.one_hot_enc.fit(df_wide[self.wide_crossed_cols]) return self
def fit(self, df: pd.DataFrame) -> BasePreprocessor: '\n ' df_wide = self._prepare_wide(df) self.wide_crossed_cols = df_wide.columns.tolist() if self.already_dummies: dummy_cols = [c for c in self.wide_crossed_cols if (c not in self.already_dummies)] self.one_hot_enc.fit(df_wide[dummy_cols]) else: self.one_hot_enc.fit(df_wide[self.wide_crossed_cols]) return self<|docstring|>Fits the Preprocessor and creates required attributes<|endoftext|>
d622cd9ed55b3b179421dd2db7762f960453d0fe9bc8544d180b662e1e90f222
def transform(self, df: pd.DataFrame) -> Union[(sparse_matrix, np.ndarray)]: 'Returns the processed dataframe as a one hot encoded dense or\n sparse matrix\n ' try: self.one_hot_enc.categories_ except: raise NotFittedError("This WidePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") df_wide = self._prepare_wide(df) if self.already_dummies: X_oh_1 = df_wide[self.already_dummies].values dummy_cols = [c for c in self.wide_crossed_cols if (c not in self.already_dummies)] X_oh_2 = self.one_hot_enc.transform(df_wide[dummy_cols]) return np.hstack((X_oh_1, X_oh_2)) else: return self.one_hot_enc.transform(df_wide[self.wide_crossed_cols])
Returns the processed dataframe as a one hot encoded dense or sparse matrix
pytorch_widedeep/preprocessing/_preprocessors.py
transform
yuanzhiKe/pytorch-widedeep
0
python
def transform(self, df: pd.DataFrame) -> Union[(sparse_matrix, np.ndarray)]: 'Returns the processed dataframe as a one hot encoded dense or\n sparse matrix\n ' try: self.one_hot_enc.categories_ except: raise NotFittedError("This WidePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") df_wide = self._prepare_wide(df) if self.already_dummies: X_oh_1 = df_wide[self.already_dummies].values dummy_cols = [c for c in self.wide_crossed_cols if (c not in self.already_dummies)] X_oh_2 = self.one_hot_enc.transform(df_wide[dummy_cols]) return np.hstack((X_oh_1, X_oh_2)) else: return self.one_hot_enc.transform(df_wide[self.wide_crossed_cols])
def transform(self, df: pd.DataFrame) -> Union[(sparse_matrix, np.ndarray)]: 'Returns the processed dataframe as a one hot encoded dense or\n sparse matrix\n ' try: self.one_hot_enc.categories_ except: raise NotFittedError("This WidePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") df_wide = self._prepare_wide(df) if self.already_dummies: X_oh_1 = df_wide[self.already_dummies].values dummy_cols = [c for c in self.wide_crossed_cols if (c not in self.already_dummies)] X_oh_2 = self.one_hot_enc.transform(df_wide[dummy_cols]) return np.hstack((X_oh_1, X_oh_2)) else: return self.one_hot_enc.transform(df_wide[self.wide_crossed_cols])<|docstring|>Returns the processed dataframe as a one hot encoded dense or sparse matrix<|endoftext|>
c9f300c1cb98163dc005fbee55ccbbcbdbec8c5c2fc575a6898bd7bcd35e5abb
def fit_transform(self, df: pd.DataFrame) -> Union[(sparse_matrix, np.ndarray)]: 'Combines ``fit`` and ``transform``\n ' return self.fit(df).transform(df)
Combines ``fit`` and ``transform``
pytorch_widedeep/preprocessing/_preprocessors.py
fit_transform
yuanzhiKe/pytorch-widedeep
0
python
def fit_transform(self, df: pd.DataFrame) -> Union[(sparse_matrix, np.ndarray)]: '\n ' return self.fit(df).transform(df)
def fit_transform(self, df: pd.DataFrame) -> Union[(sparse_matrix, np.ndarray)]: '\n ' return self.fit(df).transform(df)<|docstring|>Combines ``fit`` and ``transform``<|endoftext|>
fd128eaa5aed0912078a6c977af729508f8ef1a6187eb99d2d9a33a780da25cc
def fit(self, df: pd.DataFrame) -> BasePreprocessor: 'Fits the Preprocessor and creates required attributes\n ' if (self.embed_cols is not None): df_emb = self._prepare_embed(df) self.label_encoder = LabelEncoder(df_emb.columns.tolist()).fit(df_emb) self.embeddings_input: List = [] for (k, v) in self.label_encoder.encoding_dict.items(): self.embeddings_input.append((k, len(v), self.embed_dim[k])) if (self.continuous_cols is not None): df_cont = self._prepare_continuous(df) if self.scale: df_std = df_cont[self.standardize_cols] self.scaler = StandardScaler().fit(df_std.values) else: warnings.warn('Continuous columns will not be normalised') return self
Fits the Preprocessor and creates required attributes
pytorch_widedeep/preprocessing/_preprocessors.py
fit
yuanzhiKe/pytorch-widedeep
0
python
def fit(self, df: pd.DataFrame) -> BasePreprocessor: '\n ' if (self.embed_cols is not None): df_emb = self._prepare_embed(df) self.label_encoder = LabelEncoder(df_emb.columns.tolist()).fit(df_emb) self.embeddings_input: List = [] for (k, v) in self.label_encoder.encoding_dict.items(): self.embeddings_input.append((k, len(v), self.embed_dim[k])) if (self.continuous_cols is not None): df_cont = self._prepare_continuous(df) if self.scale: df_std = df_cont[self.standardize_cols] self.scaler = StandardScaler().fit(df_std.values) else: warnings.warn('Continuous columns will not be normalised') return self
def fit(self, df: pd.DataFrame) -> BasePreprocessor: '\n ' if (self.embed_cols is not None): df_emb = self._prepare_embed(df) self.label_encoder = LabelEncoder(df_emb.columns.tolist()).fit(df_emb) self.embeddings_input: List = [] for (k, v) in self.label_encoder.encoding_dict.items(): self.embeddings_input.append((k, len(v), self.embed_dim[k])) if (self.continuous_cols is not None): df_cont = self._prepare_continuous(df) if self.scale: df_std = df_cont[self.standardize_cols] self.scaler = StandardScaler().fit(df_std.values) else: warnings.warn('Continuous columns will not be normalised') return self<|docstring|>Fits the Preprocessor and creates required attributes<|endoftext|>
533decfb86cd3316bf3805eb98fe5820153e6c7819d5da548fc380f27fd0270b
def transform(self, df: pd.DataFrame) -> np.ndarray: 'Returns the processed ``dataframe`` as a np.ndarray\n ' if (self.embed_cols is not None): df_emb = self._prepare_embed(df) df_emb = self.label_encoder.transform(df_emb) if (self.continuous_cols is not None): df_cont = self._prepare_continuous(df) if self.scale: try: self.scaler.mean_ except: raise NotFittedError("This DensePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") df_std = df_cont[self.standardize_cols] df_cont[self.standardize_cols] = self.scaler.transform(df_std.values) try: df_deep = pd.concat([df_emb, df_cont], axis=1) except: try: df_deep = df_emb.copy() except: df_deep = df_cont.copy() self.deep_column_idx = {k: v for (v, k) in enumerate(df_deep.columns)} return df_deep.values
Returns the processed ``dataframe`` as a np.ndarray
pytorch_widedeep/preprocessing/_preprocessors.py
transform
yuanzhiKe/pytorch-widedeep
0
python
def transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' if (self.embed_cols is not None): df_emb = self._prepare_embed(df) df_emb = self.label_encoder.transform(df_emb) if (self.continuous_cols is not None): df_cont = self._prepare_continuous(df) if self.scale: try: self.scaler.mean_ except: raise NotFittedError("This DensePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") df_std = df_cont[self.standardize_cols] df_cont[self.standardize_cols] = self.scaler.transform(df_std.values) try: df_deep = pd.concat([df_emb, df_cont], axis=1) except: try: df_deep = df_emb.copy() except: df_deep = df_cont.copy() self.deep_column_idx = {k: v for (v, k) in enumerate(df_deep.columns)} return df_deep.values
def transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' if (self.embed_cols is not None): df_emb = self._prepare_embed(df) df_emb = self.label_encoder.transform(df_emb) if (self.continuous_cols is not None): df_cont = self._prepare_continuous(df) if self.scale: try: self.scaler.mean_ except: raise NotFittedError("This DensePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") df_std = df_cont[self.standardize_cols] df_cont[self.standardize_cols] = self.scaler.transform(df_std.values) try: df_deep = pd.concat([df_emb, df_cont], axis=1) except: try: df_deep = df_emb.copy() except: df_deep = df_cont.copy() self.deep_column_idx = {k: v for (v, k) in enumerate(df_deep.columns)} return df_deep.values<|docstring|>Returns the processed ``dataframe`` as a np.ndarray<|endoftext|>
be67c3e0099774cc65a775f8efe523a449b776a890c45aacc304d9aa877efa3c
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: 'Combines ``fit`` and ``transform``\n ' return self.fit(df).transform(df)
Combines ``fit`` and ``transform``
pytorch_widedeep/preprocessing/_preprocessors.py
fit_transform
yuanzhiKe/pytorch-widedeep
0
python
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' return self.fit(df).transform(df)
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' return self.fit(df).transform(df)<|docstring|>Combines ``fit`` and ``transform``<|endoftext|>
610d95ea75cd9add03d73ce89cd4261b720b02b9761e5923dae8b0a7a3319207
def fit(self, df: pd.DataFrame) -> BasePreprocessor: 'Builds the vocabulary\n ' texts = df[self.text_col].tolist() tokens = get_texts(texts) self.vocab = Vocab.create(tokens, max_vocab=self.max_vocab, min_freq=self.min_freq) if self.verbose: print('The vocabulary contains {} tokens'.format(len(self.vocab.stoi))) return self
Builds the vocabulary
pytorch_widedeep/preprocessing/_preprocessors.py
fit
yuanzhiKe/pytorch-widedeep
0
python
def fit(self, df: pd.DataFrame) -> BasePreprocessor: '\n ' texts = df[self.text_col].tolist() tokens = get_texts(texts) self.vocab = Vocab.create(tokens, max_vocab=self.max_vocab, min_freq=self.min_freq) if self.verbose: print('The vocabulary contains {} tokens'.format(len(self.vocab.stoi))) return self
def fit(self, df: pd.DataFrame) -> BasePreprocessor: '\n ' texts = df[self.text_col].tolist() tokens = get_texts(texts) self.vocab = Vocab.create(tokens, max_vocab=self.max_vocab, min_freq=self.min_freq) if self.verbose: print('The vocabulary contains {} tokens'.format(len(self.vocab.stoi))) return self<|docstring|>Builds the vocabulary<|endoftext|>
02ce5a10526618adf2b5d5a2141cb7611861cbb896f7ad738560db23fa0ad262
def transform(self, df: pd.DataFrame) -> np.ndarray: 'Returns the padded, `numericalised` sequences\n ' try: self.vocab except: raise NotFittedError("This TextPreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") texts = df[self.text_col].tolist() self.tokens = get_texts(texts) sequences = [self.vocab.numericalize(t) for t in self.tokens] padded_seq = np.array([pad_sequences(s, maxlen=self.maxlen) for s in sequences]) if (self.word_vectors_path is not None): self.embedding_matrix = build_embeddings_matrix(self.vocab, self.word_vectors_path, self.min_freq) return padded_seq
Returns the padded, `numericalised` sequences
pytorch_widedeep/preprocessing/_preprocessors.py
transform
yuanzhiKe/pytorch-widedeep
0
python
def transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' try: self.vocab except: raise NotFittedError("This TextPreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") texts = df[self.text_col].tolist() self.tokens = get_texts(texts) sequences = [self.vocab.numericalize(t) for t in self.tokens] padded_seq = np.array([pad_sequences(s, maxlen=self.maxlen) for s in sequences]) if (self.word_vectors_path is not None): self.embedding_matrix = build_embeddings_matrix(self.vocab, self.word_vectors_path, self.min_freq) return padded_seq
def transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' try: self.vocab except: raise NotFittedError("This TextPreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") texts = df[self.text_col].tolist() self.tokens = get_texts(texts) sequences = [self.vocab.numericalize(t) for t in self.tokens] padded_seq = np.array([pad_sequences(s, maxlen=self.maxlen) for s in sequences]) if (self.word_vectors_path is not None): self.embedding_matrix = build_embeddings_matrix(self.vocab, self.word_vectors_path, self.min_freq) return padded_seq<|docstring|>Returns the padded, `numericalised` sequences<|endoftext|>
be67c3e0099774cc65a775f8efe523a449b776a890c45aacc304d9aa877efa3c
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: 'Combines ``fit`` and ``transform``\n ' return self.fit(df).transform(df)
Combines ``fit`` and ``transform``
pytorch_widedeep/preprocessing/_preprocessors.py
fit_transform
yuanzhiKe/pytorch-widedeep
0
python
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' return self.fit(df).transform(df)
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' return self.fit(df).transform(df)<|docstring|>Combines ``fit`` and ``transform``<|endoftext|>
49256f5193ee528358348a2db5e0a253d72c398b1428f885a72b7c488aff5077
def fit(self, df: pd.DataFrame) -> BasePreprocessor: 'Simply instantiates the Preprocessors\n :obj:`AspectAwarePreprocessor`` and :obj:`SimplePreprocessor` for image\n resizing.\n\n See\n :class:`pytorch_widedeep.utils.image_utils.AspectAwarePreprocessor`\n and :class:`pytorch_widedeep.utils.image_utils.SimplePreprocessor`.\n\n ' self.aap = AspectAwarePreprocessor(self.width, self.height) self.spp = SimplePreprocessor(self.width, self.height) self._compute_normalising_metrics = True return self
Simply instantiates the Preprocessors :obj:`AspectAwarePreprocessor`` and :obj:`SimplePreprocessor` for image resizing. See :class:`pytorch_widedeep.utils.image_utils.AspectAwarePreprocessor` and :class:`pytorch_widedeep.utils.image_utils.SimplePreprocessor`.
pytorch_widedeep/preprocessing/_preprocessors.py
fit
yuanzhiKe/pytorch-widedeep
0
python
def fit(self, df: pd.DataFrame) -> BasePreprocessor: 'Simply instantiates the Preprocessors\n :obj:`AspectAwarePreprocessor`` and :obj:`SimplePreprocessor` for image\n resizing.\n\n See\n :class:`pytorch_widedeep.utils.image_utils.AspectAwarePreprocessor`\n and :class:`pytorch_widedeep.utils.image_utils.SimplePreprocessor`.\n\n ' self.aap = AspectAwarePreprocessor(self.width, self.height) self.spp = SimplePreprocessor(self.width, self.height) self._compute_normalising_metrics = True return self
def fit(self, df: pd.DataFrame) -> BasePreprocessor: 'Simply instantiates the Preprocessors\n :obj:`AspectAwarePreprocessor`` and :obj:`SimplePreprocessor` for image\n resizing.\n\n See\n :class:`pytorch_widedeep.utils.image_utils.AspectAwarePreprocessor`\n and :class:`pytorch_widedeep.utils.image_utils.SimplePreprocessor`.\n\n ' self.aap = AspectAwarePreprocessor(self.width, self.height) self.spp = SimplePreprocessor(self.width, self.height) self._compute_normalising_metrics = True return self<|docstring|>Simply instantiates the Preprocessors :obj:`AspectAwarePreprocessor`` and :obj:`SimplePreprocessor` for image resizing. See :class:`pytorch_widedeep.utils.image_utils.AspectAwarePreprocessor` and :class:`pytorch_widedeep.utils.image_utils.SimplePreprocessor`.<|endoftext|>
ede9a5589c7f5b11d6a0b6fe87e8b8f48baa0d06d590724f369259efbfebcccf
def transform(self, df: pd.DataFrame) -> np.ndarray: 'Resizes the images to the input height and width.\n ' try: self.aap except: raise NotFittedError("This ImagePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") image_list = df[self.img_col].tolist() if self.verbose: print('Reading Images from {}'.format(self.img_path)) imgs = [cv2.imread('/'.join([self.img_path, img])) for img in image_list] aspect = [(im.shape[0], im.shape[1]) for im in imgs] aspect_r = [(a[0] / a[1]) for a in aspect] diff_idx = [i for (i, r) in enumerate(aspect_r) if (r != 1.0)] if self.verbose: print('Resizing') resized_imgs = [] for (i, img) in tqdm(enumerate(imgs), total=len(imgs), disable=(self.verbose != 1)): if (i in diff_idx): resized_imgs.append(self.aap.preprocess(img)) else: resized_imgs.append(self.spp.preprocess(img)) if self._compute_normalising_metrics: if self.verbose: print('Computing normalisation metrics') (mean_R, mean_G, mean_B) = ([], [], []) (std_R, std_G, std_B) = ([], [], []) for rsz_img in resized_imgs: ((mean_b, mean_g, mean_r), (std_b, std_g, std_r)) = cv2.meanStdDev(rsz_img) mean_R.append(mean_r) mean_G.append(mean_g) mean_B.append(mean_b) std_R.append(std_r) std_G.append(std_g) std_B.append(std_b) self.normalise_metrics = dict(mean={'R': (np.mean(mean_R) / 255.0), 'G': (np.mean(mean_G) / 255.0), 'B': (np.mean(mean_B) / 255.0)}, std={'R': (np.mean(std_R) / 255.0), 'G': (np.mean(std_G) / 255.0), 'B': (np.mean(std_B) / 255.0)}) self._compute_normalising_metrics = False return np.asarray(resized_imgs)
Resizes the images to the input height and width.
pytorch_widedeep/preprocessing/_preprocessors.py
transform
yuanzhiKe/pytorch-widedeep
0
python
def transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' try: self.aap except: raise NotFittedError("This ImagePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") image_list = df[self.img_col].tolist() if self.verbose: print('Reading Images from {}'.format(self.img_path)) imgs = [cv2.imread('/'.join([self.img_path, img])) for img in image_list] aspect = [(im.shape[0], im.shape[1]) for im in imgs] aspect_r = [(a[0] / a[1]) for a in aspect] diff_idx = [i for (i, r) in enumerate(aspect_r) if (r != 1.0)] if self.verbose: print('Resizing') resized_imgs = [] for (i, img) in tqdm(enumerate(imgs), total=len(imgs), disable=(self.verbose != 1)): if (i in diff_idx): resized_imgs.append(self.aap.preprocess(img)) else: resized_imgs.append(self.spp.preprocess(img)) if self._compute_normalising_metrics: if self.verbose: print('Computing normalisation metrics') (mean_R, mean_G, mean_B) = ([], [], []) (std_R, std_G, std_B) = ([], [], []) for rsz_img in resized_imgs: ((mean_b, mean_g, mean_r), (std_b, std_g, std_r)) = cv2.meanStdDev(rsz_img) mean_R.append(mean_r) mean_G.append(mean_g) mean_B.append(mean_b) std_R.append(std_r) std_G.append(std_g) std_B.append(std_b) self.normalise_metrics = dict(mean={'R': (np.mean(mean_R) / 255.0), 'G': (np.mean(mean_G) / 255.0), 'B': (np.mean(mean_B) / 255.0)}, std={'R': (np.mean(std_R) / 255.0), 'G': (np.mean(std_G) / 255.0), 'B': (np.mean(std_B) / 255.0)}) self._compute_normalising_metrics = False return np.asarray(resized_imgs)
def transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' try: self.aap except: raise NotFittedError("This ImagePreprocessor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.") image_list = df[self.img_col].tolist() if self.verbose: print('Reading Images from {}'.format(self.img_path)) imgs = [cv2.imread('/'.join([self.img_path, img])) for img in image_list] aspect = [(im.shape[0], im.shape[1]) for im in imgs] aspect_r = [(a[0] / a[1]) for a in aspect] diff_idx = [i for (i, r) in enumerate(aspect_r) if (r != 1.0)] if self.verbose: print('Resizing') resized_imgs = [] for (i, img) in tqdm(enumerate(imgs), total=len(imgs), disable=(self.verbose != 1)): if (i in diff_idx): resized_imgs.append(self.aap.preprocess(img)) else: resized_imgs.append(self.spp.preprocess(img)) if self._compute_normalising_metrics: if self.verbose: print('Computing normalisation metrics') (mean_R, mean_G, mean_B) = ([], [], []) (std_R, std_G, std_B) = ([], [], []) for rsz_img in resized_imgs: ((mean_b, mean_g, mean_r), (std_b, std_g, std_r)) = cv2.meanStdDev(rsz_img) mean_R.append(mean_r) mean_G.append(mean_g) mean_B.append(mean_b) std_R.append(std_r) std_G.append(std_g) std_B.append(std_b) self.normalise_metrics = dict(mean={'R': (np.mean(mean_R) / 255.0), 'G': (np.mean(mean_G) / 255.0), 'B': (np.mean(mean_B) / 255.0)}, std={'R': (np.mean(std_R) / 255.0), 'G': (np.mean(std_G) / 255.0), 'B': (np.mean(std_B) / 255.0)}) self._compute_normalising_metrics = False return np.asarray(resized_imgs)<|docstring|>Resizes the images to the input height and width.<|endoftext|>
be67c3e0099774cc65a775f8efe523a449b776a890c45aacc304d9aa877efa3c
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: 'Combines ``fit`` and ``transform``\n ' return self.fit(df).transform(df)
Combines ``fit`` and ``transform``
pytorch_widedeep/preprocessing/_preprocessors.py
fit_transform
yuanzhiKe/pytorch-widedeep
0
python
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' return self.fit(df).transform(df)
def fit_transform(self, df: pd.DataFrame) -> np.ndarray: '\n ' return self.fit(df).transform(df)<|docstring|>Combines ``fit`` and ``transform``<|endoftext|>
46f8be63e47f10c2849b485790f71585e584083eeeee3d74f7b97fb42a2ad80a
def storeimages(destination_path='C:\\spotlight'): '\tUsage : storeimages( destination_path ) -> None\n\t\tStore the cached Microsoft Spotlight Images in the computer to the \n\t\tdestination specified.\n\t\tParams -\n\t\t\tdestination_path : \n\t\t\t\tPath of the folder where Images will be saved.\n\t\t\t\tdefault value : "C:\\spotlight"\n\t\t\t\tIf the provided path does not represent an existing \n\t\t\t\tdirectory,then a new directory will be created with same \n\t\t\t\tpath, If possible.\n\t\tErrors:\n\t\t\tValueError : \n\t\t\tIf the given path represents an already existing file and not \n\t\t\ta directory.\t\t\t\t\n\t' import os, hashlib from PIL import Image folder = os.path.join(os.getenv('userprofile'), 'AppData\\Local\\Packages\\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\\LocalState\\Assets') name = '' if (not os.path.exists(destination_path)): os.mkdir(destination_path) if (not os.path.isdir(destination_path)): raise ValueError('Given path cannot be used as a directory!') files = os.listdir(destination_path) for file in os.listdir(folder): try: img = Image.open(os.path.join(folder, file)) if ((img.height == 1080) and (img.width == 1920)): f = open(os.path.join(folder, file), 'rb') name = (hashlib.md5(f.read()).hexdigest() + '.jpeg') f.close() if (name not in files): img.save(os.path.join(destination_path, name)) files.append(name) img.close() except OSError: continue
Usage : storeimages( destination_path ) -> None Store the cached Microsoft Spotlight Images in the computer to the destination specified. Params - destination_path : Path of the folder where Images will be saved. default value : "C:\spotlight" If the provided path does not represent an existing directory,then a new directory will be created with same path, If possible. Errors: ValueError : If the given path represents an already existing file and not a directory.
spotlightpy/spotlight.py
storeimages
neil-vqa/spotlightpy
0
python
def storeimages(destination_path='C:\\spotlight'): '\tUsage : storeimages( destination_path ) -> None\n\t\tStore the cached Microsoft Spotlight Images in the computer to the \n\t\tdestination specified.\n\t\tParams -\n\t\t\tdestination_path : \n\t\t\t\tPath of the folder where Images will be saved.\n\t\t\t\tdefault value : "C:\\spotlight"\n\t\t\t\tIf the provided path does not represent an existing \n\t\t\t\tdirectory,then a new directory will be created with same \n\t\t\t\tpath, If possible.\n\t\tErrors:\n\t\t\tValueError : \n\t\t\tIf the given path represents an already existing file and not \n\t\t\ta directory.\t\t\t\t\n\t' import os, hashlib from PIL import Image folder = os.path.join(os.getenv('userprofile'), 'AppData\\Local\\Packages\\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\\LocalState\\Assets') name = if (not os.path.exists(destination_path)): os.mkdir(destination_path) if (not os.path.isdir(destination_path)): raise ValueError('Given path cannot be used as a directory!') files = os.listdir(destination_path) for file in os.listdir(folder): try: img = Image.open(os.path.join(folder, file)) if ((img.height == 1080) and (img.width == 1920)): f = open(os.path.join(folder, file), 'rb') name = (hashlib.md5(f.read()).hexdigest() + '.jpeg') f.close() if (name not in files): img.save(os.path.join(destination_path, name)) files.append(name) img.close() except OSError: continue
def storeimages(destination_path='C:\\spotlight'): '\tUsage : storeimages( destination_path ) -> None\n\t\tStore the cached Microsoft Spotlight Images in the computer to the \n\t\tdestination specified.\n\t\tParams -\n\t\t\tdestination_path : \n\t\t\t\tPath of the folder where Images will be saved.\n\t\t\t\tdefault value : "C:\\spotlight"\n\t\t\t\tIf the provided path does not represent an existing \n\t\t\t\tdirectory,then a new directory will be created with same \n\t\t\t\tpath, If possible.\n\t\tErrors:\n\t\t\tValueError : \n\t\t\tIf the given path represents an already existing file and not \n\t\t\ta directory.\t\t\t\t\n\t' import os, hashlib from PIL import Image folder = os.path.join(os.getenv('userprofile'), 'AppData\\Local\\Packages\\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\\LocalState\\Assets') name = if (not os.path.exists(destination_path)): os.mkdir(destination_path) if (not os.path.isdir(destination_path)): raise ValueError('Given path cannot be used as a directory!') files = os.listdir(destination_path) for file in os.listdir(folder): try: img = Image.open(os.path.join(folder, file)) if ((img.height == 1080) and (img.width == 1920)): f = open(os.path.join(folder, file), 'rb') name = (hashlib.md5(f.read()).hexdigest() + '.jpeg') f.close() if (name not in files): img.save(os.path.join(destination_path, name)) files.append(name) img.close() except OSError: continue<|docstring|>Usage : storeimages( destination_path ) -> None Store the cached Microsoft Spotlight Images in the computer to the destination specified. Params - destination_path : Path of the folder where Images will be saved. default value : "C:\spotlight" If the provided path does not represent an existing directory,then a new directory will be created with same path, If possible. Errors: ValueError : If the given path represents an already existing file and not a directory.<|endoftext|>
be9d8a66fbf5e71cd060d51a5588c60cc551067be512bd3157a31237558f46e7
def getimages(): '\tUsage : getimages(None) -> list(PIL.Image)\n\t\treturn a list of PIL.Image.Image objects where each object is\n\t\ta Microsoft Spotlight JPEG image of resolution 1920x1080.\t\t\n\t' import os from PIL import Image folder = os.path.join(os.getenv('userprofile'), 'AppData\\Local\\Packages\\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\\LocalState\\Assets') images = [] for file in os.listdir(folder): img = Image.open(os.path.join(folder, file)) if ((img.height == 1080) and (img.width == 1920)): images.append(img) img.close() return images
Usage : getimages(None) -> list(PIL.Image) return a list of PIL.Image.Image objects where each object is a Microsoft Spotlight JPEG image of resolution 1920x1080.
spotlightpy/spotlight.py
getimages
neil-vqa/spotlightpy
0
python
def getimages(): '\tUsage : getimages(None) -> list(PIL.Image)\n\t\treturn a list of PIL.Image.Image objects where each object is\n\t\ta Microsoft Spotlight JPEG image of resolution 1920x1080.\t\t\n\t' import os from PIL import Image folder = os.path.join(os.getenv('userprofile'), 'AppData\\Local\\Packages\\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\\LocalState\\Assets') images = [] for file in os.listdir(folder): img = Image.open(os.path.join(folder, file)) if ((img.height == 1080) and (img.width == 1920)): images.append(img) img.close() return images
def getimages(): '\tUsage : getimages(None) -> list(PIL.Image)\n\t\treturn a list of PIL.Image.Image objects where each object is\n\t\ta Microsoft Spotlight JPEG image of resolution 1920x1080.\t\t\n\t' import os from PIL import Image folder = os.path.join(os.getenv('userprofile'), 'AppData\\Local\\Packages\\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\\LocalState\\Assets') images = [] for file in os.listdir(folder): img = Image.open(os.path.join(folder, file)) if ((img.height == 1080) and (img.width == 1920)): images.append(img) img.close() return images<|docstring|>Usage : getimages(None) -> list(PIL.Image) return a list of PIL.Image.Image objects where each object is a Microsoft Spotlight JPEG image of resolution 1920x1080.<|endoftext|>
55738cb54bd738c2899cf857dabf77f3eb79e743575ab00ece2ce54cc9387f3d
@patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True, return_value=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True, return_value=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system(self, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when all checks pass\n\n Assert that the function returns True\n ' test_return = check_system(quit_if_error=True) m_enforce_root.assert_called_once_with() m_check_kernel_modules.assert_called_once_with() m_check_docker_version.assert_called_once_with(False) m_check_etcd_version.assert_called_once_with() for check in test_return: self.assertTrue(check)
Test for check_system when all checks pass Assert that the function returns True
calicoctl/tests/unit/checksystem_test.py
test_check_system
tomdee/calico-containers
0
python
@patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True, return_value=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True, return_value=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system(self, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when all checks pass\n\n Assert that the function returns True\n ' test_return = check_system(quit_if_error=True) m_enforce_root.assert_called_once_with() m_check_kernel_modules.assert_called_once_with() m_check_docker_version.assert_called_once_with(False) m_check_etcd_version.assert_called_once_with() for check in test_return: self.assertTrue(check)
@patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True, return_value=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True, return_value=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system(self, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when all checks pass\n\n Assert that the function returns True\n ' test_return = check_system(quit_if_error=True) m_enforce_root.assert_called_once_with() m_check_kernel_modules.assert_called_once_with() m_check_docker_version.assert_called_once_with(False) m_check_etcd_version.assert_called_once_with() for check in test_return: self.assertTrue(check)<|docstring|>Test for check_system when all checks pass Assert that the function returns True<|endoftext|>
3dc036e63f27f0c6e322c61a3e41ffa1c55c027798de56a7ae5a735e2feef6ee
@parameterized.expand([(True, False), (False, True)]) @patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system_bad_state_do_not_quit(self, kernel_status, docker_version_status, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when one of the system checks fails\n\n This test does not quit if there is an error -\n Assert that the function returns False\n\n :param kernel_status: return_value for _check_modules\n :param docker_version_status: return_value for _check_docker_version\n ' m_check_kernel_modules.return_value = kernel_status m_check_docker_version.return_value = docker_version_status test_return = check_system(quit_if_error=False) self.assertIn(False, test_return)
Test for check_system when one of the system checks fails This test does not quit if there is an error - Assert that the function returns False :param kernel_status: return_value for _check_modules :param docker_version_status: return_value for _check_docker_version
calicoctl/tests/unit/checksystem_test.py
test_check_system_bad_state_do_not_quit
tomdee/calico-containers
0
python
@parameterized.expand([(True, False), (False, True)]) @patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system_bad_state_do_not_quit(self, kernel_status, docker_version_status, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when one of the system checks fails\n\n This test does not quit if there is an error -\n Assert that the function returns False\n\n :param kernel_status: return_value for _check_modules\n :param docker_version_status: return_value for _check_docker_version\n ' m_check_kernel_modules.return_value = kernel_status m_check_docker_version.return_value = docker_version_status test_return = check_system(quit_if_error=False) self.assertIn(False, test_return)
@parameterized.expand([(True, False), (False, True)]) @patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system_bad_state_do_not_quit(self, kernel_status, docker_version_status, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when one of the system checks fails\n\n This test does not quit if there is an error -\n Assert that the function returns False\n\n :param kernel_status: return_value for _check_modules\n :param docker_version_status: return_value for _check_docker_version\n ' m_check_kernel_modules.return_value = kernel_status m_check_docker_version.return_value = docker_version_status test_return = check_system(quit_if_error=False) self.assertIn(False, test_return)<|docstring|>Test for check_system when one of the system checks fails This test does not quit if there is an error - Assert that the function returns False :param kernel_status: return_value for _check_modules :param docker_version_status: return_value for _check_docker_version<|endoftext|>
dd85b3e6783f307464c43ca8b58cd3e4e1bde8985e6261513f111549d3dcf40f
@parameterized.expand([(True, False), (False, True)]) @patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system_bad_state_quit(self, kernel_status, docker_version_status, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when one of the system checks fails\n\n This test exits if there is a detected error -\n Assert that the system exits\n\n :param kernel_status: return_value for _check_modules patch\n :param docker_version_status: return_value for _check_docker_version patch\n ' m_check_kernel_modules.return_value = kernel_status m_check_docker_version.return_value = docker_version_status self.assertRaises(SystemExit, check_system, quit_if_error=True)
Test for check_system when one of the system checks fails This test exits if there is a detected error - Assert that the system exits :param kernel_status: return_value for _check_modules patch :param docker_version_status: return_value for _check_docker_version patch
calicoctl/tests/unit/checksystem_test.py
test_check_system_bad_state_quit
tomdee/calico-containers
0
python
@parameterized.expand([(True, False), (False, True)]) @patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system_bad_state_quit(self, kernel_status, docker_version_status, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when one of the system checks fails\n\n This test exits if there is a detected error -\n Assert that the system exits\n\n :param kernel_status: return_value for _check_modules patch\n :param docker_version_status: return_value for _check_docker_version patch\n ' m_check_kernel_modules.return_value = kernel_status m_check_docker_version.return_value = docker_version_status self.assertRaises(SystemExit, check_system, quit_if_error=True)
@parameterized.expand([(True, False), (False, True)]) @patch('calico_ctl.checksystem.enforce_root', autospec=True) @patch('calico_ctl.checksystem._check_modules', autospec=True) @patch('calico_ctl.checksystem._check_docker_version', autospec=True) @patch('calico_ctl.checksystem._check_etcd_version', autospec=True, return_value=True) def test_check_system_bad_state_quit(self, kernel_status, docker_version_status, m_check_etcd_version, m_check_docker_version, m_check_kernel_modules, m_enforce_root): '\n Test for check_system when one of the system checks fails\n\n This test exits if there is a detected error -\n Assert that the system exits\n\n :param kernel_status: return_value for _check_modules patch\n :param docker_version_status: return_value for _check_docker_version patch\n ' m_check_kernel_modules.return_value = kernel_status m_check_docker_version.return_value = docker_version_status self.assertRaises(SystemExit, check_system, quit_if_error=True)<|docstring|>Test for check_system when one of the system checks fails This test exits if there is a detected error - Assert that the system exits :param kernel_status: return_value for _check_modules patch :param docker_version_status: return_value for _check_docker_version patch<|endoftext|>
c0e29d427012ca30978cfd0f01261f9d2a11722454079b2382c00ddb2a06d89a
@parameterized.expand([(['mod_one', 'mod_four'], True), (['mod_four', 'mod_five'], True), (['mod_invalid'], False), (['mod_one', 'mod_invalid'], False), (['mod_four', 'mod_invalid'], False)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True, return_value='version') def test_check_modules_double_open(self, requirements, expected_return, m_get_version, m_stderr, m_open): 'Test _check_module for different requirements (opening 2 files)\n Use parameterized requirements to test a variety of states in which\n modules may or not be found. Check the number of calls to open().\n Numbered modules exist within the mocked files and should be valid.\n check_modules should return False if searching for the invalid module.\n ' m_file = Mock() m_file.readlines.side_effect = [['/mod_one.ko', '/mod_two.ko', '/mod_three.ko'], ['/mod_four.ko', '/mod_five.ko']] m_open.return_value = m_file with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() self.assertEquals(return_val, expected_return) m_open.assert_has_calls([call('/lib/modules/version/modules.dep'), call().readlines(), call('/lib/modules/version/modules.builtin'), call().readlines()])
Test _check_module for different requirements (opening 2 files) Use parameterized requirements to test a variety of states in which modules may or not be found. Check the number of calls to open(). Numbered modules exist within the mocked files and should be valid. check_modules should return False if searching for the invalid module.
calicoctl/tests/unit/checksystem_test.py
test_check_modules_double_open
tomdee/calico-containers
0
python
@parameterized.expand([(['mod_one', 'mod_four'], True), (['mod_four', 'mod_five'], True), (['mod_invalid'], False), (['mod_one', 'mod_invalid'], False), (['mod_four', 'mod_invalid'], False)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True, return_value='version') def test_check_modules_double_open(self, requirements, expected_return, m_get_version, m_stderr, m_open): 'Test _check_module for different requirements (opening 2 files)\n Use parameterized requirements to test a variety of states in which\n modules may or not be found. Check the number of calls to open().\n Numbered modules exist within the mocked files and should be valid.\n check_modules should return False if searching for the invalid module.\n ' m_file = Mock() m_file.readlines.side_effect = [['/mod_one.ko', '/mod_two.ko', '/mod_three.ko'], ['/mod_four.ko', '/mod_five.ko']] m_open.return_value = m_file with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() self.assertEquals(return_val, expected_return) m_open.assert_has_calls([call('/lib/modules/version/modules.dep'), call().readlines(), call('/lib/modules/version/modules.builtin'), call().readlines()])
@parameterized.expand([(['mod_one', 'mod_four'], True), (['mod_four', 'mod_five'], True), (['mod_invalid'], False), (['mod_one', 'mod_invalid'], False), (['mod_four', 'mod_invalid'], False)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True, return_value='version') def test_check_modules_double_open(self, requirements, expected_return, m_get_version, m_stderr, m_open): 'Test _check_module for different requirements (opening 2 files)\n Use parameterized requirements to test a variety of states in which\n modules may or not be found. Check the number of calls to open().\n Numbered modules exist within the mocked files and should be valid.\n check_modules should return False if searching for the invalid module.\n ' m_file = Mock() m_file.readlines.side_effect = [['/mod_one.ko', '/mod_two.ko', '/mod_three.ko'], ['/mod_four.ko', '/mod_five.ko']] m_open.return_value = m_file with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() self.assertEquals(return_val, expected_return) m_open.assert_has_calls([call('/lib/modules/version/modules.dep'), call().readlines(), call('/lib/modules/version/modules.builtin'), call().readlines()])<|docstring|>Test _check_module for different requirements (opening 2 files) Use parameterized requirements to test a variety of states in which modules may or not be found. Check the number of calls to open(). Numbered modules exist within the mocked files and should be valid. check_modules should return False if searching for the invalid module.<|endoftext|>
af3794bc188960ee351917e2ed11b048053061bcfdcbd4c9b2890a6dcdaa1c37
@parameterized.expand([(['mod_one', 'mod_two'], True), (['mod_three'], True)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True, return_value='version') def test_check_modules_single_open(self, requirements, expected_return, m_get_version, m_stderr, m_open): 'Test _check_module for different requirements (opening 1 file)\n Use parameterized requirements to test a variety of states in which\n modules may or not be found. Check the number of calls to open().\n Numbered modules exist within the mocked file and should be valid.\n ' m_file = Mock() m_file.readlines.return_value = ['/mod_one.ko', '/mod_two.ko', '/mod_three.ko'] m_open.return_value = m_file with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() m_open.assert_called_once_with('/lib/modules/version/modules.dep') self.assertEquals(return_val, expected_return)
Test _check_module for different requirements (opening 1 file) Use parameterized requirements to test a variety of states in which modules may or not be found. Check the number of calls to open(). Numbered modules exist within the mocked file and should be valid.
calicoctl/tests/unit/checksystem_test.py
test_check_modules_single_open
tomdee/calico-containers
0
python
@parameterized.expand([(['mod_one', 'mod_two'], True), (['mod_three'], True)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True, return_value='version') def test_check_modules_single_open(self, requirements, expected_return, m_get_version, m_stderr, m_open): 'Test _check_module for different requirements (opening 1 file)\n Use parameterized requirements to test a variety of states in which\n modules may or not be found. Check the number of calls to open().\n Numbered modules exist within the mocked file and should be valid.\n ' m_file = Mock() m_file.readlines.return_value = ['/mod_one.ko', '/mod_two.ko', '/mod_three.ko'] m_open.return_value = m_file with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() m_open.assert_called_once_with('/lib/modules/version/modules.dep') self.assertEquals(return_val, expected_return)
@parameterized.expand([(['mod_one', 'mod_two'], True), (['mod_three'], True)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True, return_value='version') def test_check_modules_single_open(self, requirements, expected_return, m_get_version, m_stderr, m_open): 'Test _check_module for different requirements (opening 1 file)\n Use parameterized requirements to test a variety of states in which\n modules may or not be found. Check the number of calls to open().\n Numbered modules exist within the mocked file and should be valid.\n ' m_file = Mock() m_file.readlines.return_value = ['/mod_one.ko', '/mod_two.ko', '/mod_three.ko'] m_open.return_value = m_file with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() m_open.assert_called_once_with('/lib/modules/version/modules.dep') self.assertEquals(return_val, expected_return)<|docstring|>Test _check_module for different requirements (opening 1 file) Use parameterized requirements to test a variety of states in which modules may or not be found. Check the number of calls to open(). Numbered modules exist within the mocked file and should be valid.<|endoftext|>
a131ef28057e771b6c9cf9ae96518dbc07db53c1a1f30000bfa19bb2f7504307
@parameterized.expand([(['mod_one', 'mod_two'], True), (['mod_three', 'mod_invalid'], False)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True) def test_check_modules_lsmod(self, requirements, expected_return, m_check_out, m_stderr, m_open): 'Test _check_module using lsmod\n Cause failure on file open and check_system should\n find modules in lsmod output.\n ' m_open.side_effect = CalledProcessError m_check_out.return_value = 'mod_one\n mod_two\n mod_three\n' with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() self.assertEquals(return_val, expected_return)
Test _check_module using lsmod Cause failure on file open and check_system should find modules in lsmod output.
calicoctl/tests/unit/checksystem_test.py
test_check_modules_lsmod
tomdee/calico-containers
0
python
@parameterized.expand([(['mod_one', 'mod_two'], True), (['mod_three', 'mod_invalid'], False)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True) def test_check_modules_lsmod(self, requirements, expected_return, m_check_out, m_stderr, m_open): 'Test _check_module using lsmod\n Cause failure on file open and check_system should\n find modules in lsmod output.\n ' m_open.side_effect = CalledProcessError m_check_out.return_value = 'mod_one\n mod_two\n mod_three\n' with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() self.assertEquals(return_val, expected_return)
@parameterized.expand([(['mod_one', 'mod_two'], True), (['mod_three', 'mod_invalid'], False)]) @patch('__builtin__.open', autospec=True) @patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True) def test_check_modules_lsmod(self, requirements, expected_return, m_check_out, m_stderr, m_open): 'Test _check_module using lsmod\n Cause failure on file open and check_system should\n find modules in lsmod output.\n ' m_open.side_effect = CalledProcessError m_check_out.return_value = 'mod_one\n mod_two\n mod_three\n' with patch('calico_ctl.checksystem.REQUIRED_MODULES', requirements): return_val = _check_modules() self.assertEquals(return_val, expected_return)<|docstring|>Test _check_module using lsmod Cause failure on file open and check_system should find modules in lsmod output.<|endoftext|>
7b3a309968b6084ef1c3ec5648deeba8a6aa437770cfe0e5ed9e4533a8cb7604
@patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True) def test_check_modules_error(self, m_check_out, m_stderr): 'Test _check_module lsmod failure\n All check_output calls raise an error, meaning check_system\n should return false.\n ' m_check_out.side_effect = CalledProcessError return_val = _check_modules() self.assertFalse(return_val)
Test _check_module lsmod failure All check_output calls raise an error, meaning check_system should return false.
calicoctl/tests/unit/checksystem_test.py
test_check_modules_error
tomdee/calico-containers
0
python
@patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True) def test_check_modules_error(self, m_check_out, m_stderr): 'Test _check_module lsmod failure\n All check_output calls raise an error, meaning check_system\n should return false.\n ' m_check_out.side_effect = CalledProcessError return_val = _check_modules() self.assertFalse(return_val)
@patch('sys.stderr', autospec=True) @patch('calico_ctl.checksystem.check_output', autospec=True) def test_check_modules_error(self, m_check_out, m_stderr): 'Test _check_module lsmod failure\n All check_output calls raise an error, meaning check_system\n should return false.\n ' m_check_out.side_effect = CalledProcessError return_val = _check_modules() self.assertFalse(return_val)<|docstring|>Test _check_module lsmod failure All check_output calls raise an error, meaning check_system should return false.<|endoftext|>
f335f55f327072aaf32ebc31de26e17be5eb5c1930b9cbeb3a1e6bbc4aedbbcc
def get_attributes(self) -> Dict[(str, Any)]: '\n Returns:\n Dict[str, Any]: A map of template attributes needed to render a graphviz graph.\n ' if (not self.classes): self.classes = ComponentMeta.get_class_instances() if (not self.module_methods): self.module_methods = ComponentMeta.get_module_method_instances() if (not self.decorators): self.decorators = ComponentMeta.get_decorator_instances() attrs = {'graph': self.graph_attributes, 'classes': [], 'module_methods': [], 'decorators': [], 'subpackages': {}} for node in self.classes: attrs['classes'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) for node in self.module_methods: attrs['module_methods'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) for node in self.decorators: attrs['decorators'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) return attrs
Returns: Dict[str, Any]: A map of template attributes needed to render a graphviz graph.
pyviz/renderers/dot.py
get_attributes
KCarretto/pyviz
1
python
def get_attributes(self) -> Dict[(str, Any)]: '\n Returns:\n Dict[str, Any]: A map of template attributes needed to render a graphviz graph.\n ' if (not self.classes): self.classes = ComponentMeta.get_class_instances() if (not self.module_methods): self.module_methods = ComponentMeta.get_module_method_instances() if (not self.decorators): self.decorators = ComponentMeta.get_decorator_instances() attrs = {'graph': self.graph_attributes, 'classes': [], 'module_methods': [], 'decorators': [], 'subpackages': {}} for node in self.classes: attrs['classes'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) for node in self.module_methods: attrs['module_methods'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) for node in self.decorators: attrs['decorators'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) return attrs
def get_attributes(self) -> Dict[(str, Any)]: '\n Returns:\n Dict[str, Any]: A map of template attributes needed to render a graphviz graph.\n ' if (not self.classes): self.classes = ComponentMeta.get_class_instances() if (not self.module_methods): self.module_methods = ComponentMeta.get_module_method_instances() if (not self.decorators): self.decorators = ComponentMeta.get_decorator_instances() attrs = {'graph': self.graph_attributes, 'classes': [], 'module_methods': [], 'decorators': [], 'subpackages': {}} for node in self.classes: attrs['classes'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) for node in self.module_methods: attrs['module_methods'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) for node in self.decorators: attrs['decorators'].append(asdict(node)) if node.subpackage: if (not attrs['subpackages'].get(node.subpackage)): attrs['subpackages'][node.subpackage] = [] attrs['subpackages'][node.subpackage].append(node.name) return attrs<|docstring|>Returns: Dict[str, Any]: A map of template attributes needed to render a graphviz graph.<|endoftext|>
00b18fd42ee2d452ca71613484a73488d1e3da11d4495ddfc28488c2166737cb
@app.route('/') def index(): ' Root URL response ' return ('Reminder: return some useful information in json format about the service here', status.HTTP_200_OK)
Root URL response
service/routes.py
index
LLmaomao2020/customers
5
python
@app.route('/') def index(): ' ' return ('Reminder: return some useful information in json format about the service here', status.HTTP_200_OK)
@app.route('/') def index(): ' ' return ('Reminder: return some useful information in json format about the service here', status.HTTP_200_OK)<|docstring|>Root URL response<|endoftext|>
8b4bb6b6a27280fca065ccfd2e7dd49169575be1bacca9794269d0288f0b7279
def init_db(): ' Initialies the SQLAlchemy app ' global app YourResourceModel.init_db(app)
Initialies the SQLAlchemy app
service/routes.py
init_db
LLmaomao2020/customers
5
python
def init_db(): ' ' global app YourResourceModel.init_db(app)
def init_db(): ' ' global app YourResourceModel.init_db(app)<|docstring|>Initialies the SQLAlchemy app<|endoftext|>
618da51b1a41f212205f9c4970a80db5a8f9725e75a7d40fdff0f4db52f33a7a
def lnlike_ellflatpriormarginalized(F_obs, F_obs_var, F_mod): '\n Fit linear model to one Gaussian data set (formulation 3)\n\n Parameters\n ----------\n F_obs, F_obs_var : ndarray (nobj, ..., n_pix_y)\n data and data variances\n F_mod : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n ellML : ndarray (nobj, ndim)\n Best fit MAP parameters\n\n ' FOT = tf.reduce_sum(((F_mod * F_obs) / F_obs_var), axis=(- 1)) FOO = tf.reduce_sum((tf.square(F_obs) / F_obs_var), axis=(- 1)) FTT = tf.reduce_sum((tf.square(F_mod) / F_obs_var), axis=(- 1)) LogSigma_det = tf.reduce_sum(tf.math.log(F_obs_var), axis=(- 1)) Chi2 = (FOO - tf.multiply(tf.divide(FOT, FTT), FOT)) LogDenom = (LogSigma_det + tf.math.log(FTT)) LnMarglike = (((- 0.5) * Chi2) - (0.5 * LogDenom)) ellML = (FOT / FTT) return (LnMarglike, ellML)
Fit linear model to one Gaussian data set (formulation 3) Parameters ---------- F_obs, F_obs_var : ndarray (nobj, ..., n_pix_y) data and data variances F_mod : ndarray (..., n_components, n_pix_y) design matrix of linear model Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit ellML : ndarray (nobj, ndim) Best fit MAP parameters
gasp/marginallikelihoods_tf.py
lnlike_ellflatpriormarginalized
ixkael/gasp
0
python
def lnlike_ellflatpriormarginalized(F_obs, F_obs_var, F_mod): '\n Fit linear model to one Gaussian data set (formulation 3)\n\n Parameters\n ----------\n F_obs, F_obs_var : ndarray (nobj, ..., n_pix_y)\n data and data variances\n F_mod : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n ellML : ndarray (nobj, ndim)\n Best fit MAP parameters\n\n ' FOT = tf.reduce_sum(((F_mod * F_obs) / F_obs_var), axis=(- 1)) FOO = tf.reduce_sum((tf.square(F_obs) / F_obs_var), axis=(- 1)) FTT = tf.reduce_sum((tf.square(F_mod) / F_obs_var), axis=(- 1)) LogSigma_det = tf.reduce_sum(tf.math.log(F_obs_var), axis=(- 1)) Chi2 = (FOO - tf.multiply(tf.divide(FOT, FTT), FOT)) LogDenom = (LogSigma_det + tf.math.log(FTT)) LnMarglike = (((- 0.5) * Chi2) - (0.5 * LogDenom)) ellML = (FOT / FTT) return (LnMarglike, ellML)
def lnlike_ellflatpriormarginalized(F_obs, F_obs_var, F_mod): '\n Fit linear model to one Gaussian data set (formulation 3)\n\n Parameters\n ----------\n F_obs, F_obs_var : ndarray (nobj, ..., n_pix_y)\n data and data variances\n F_mod : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n ellML : ndarray (nobj, ndim)\n Best fit MAP parameters\n\n ' FOT = tf.reduce_sum(((F_mod * F_obs) / F_obs_var), axis=(- 1)) FOO = tf.reduce_sum((tf.square(F_obs) / F_obs_var), axis=(- 1)) FTT = tf.reduce_sum((tf.square(F_mod) / F_obs_var), axis=(- 1)) LogSigma_det = tf.reduce_sum(tf.math.log(F_obs_var), axis=(- 1)) Chi2 = (FOO - tf.multiply(tf.divide(FOT, FTT), FOT)) LogDenom = (LogSigma_det + tf.math.log(FTT)) LnMarglike = (((- 0.5) * Chi2) - (0.5 * LogDenom)) ellML = (FOT / FTT) return (LnMarglike, ellML)<|docstring|>Fit linear model to one Gaussian data set (formulation 3) Parameters ---------- F_obs, F_obs_var : ndarray (nobj, ..., n_pix_y) data and data variances F_mod : ndarray (..., n_components, n_pix_y) design matrix of linear model Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit ellML : ndarray (nobj, ndim) Best fit MAP parameters<|endoftext|>
475d6f77709472eab71e4c700b69b068130fc906a5483585bf1313fe10f33d2d
def lnlike_ellflatpriormarginalized_multiple(y, yinvvar, mods): '\n Fit linear model to one Gaussian data set (formulation 1)\n\n Parameters\n ----------\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' eta = tf.reduce_sum((mods * (y * yinvvar)[(..., None, :)]), axis=(- 1)) H = tf.matmul(mods, tf.transpose((mods * yinvvar[(..., None, :)]), [0, 1, 3, 2])) mu = tf.linalg.solve(H, eta[(..., None)])[(..., 0)] etaHinveta = tf.reduce_sum((eta * mu), axis=(- 1)) yyvarinvy = tf.reduce_sum(((y * y) * yinvvar), axis=(- 1)) dets = (tf.linalg.logdet(H) - tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) scalar = (tf.cast((tf.shape(mods)[(- 1)] - tf.shape(mods)[(- 2)]), T) * log2pi) LnMarglike = ((- 0.5) * (((scalar + dets) + yyvarinvy) - etaHinveta)) covar = tf.linalg.inv(H) return (LnMarglike, mu, covar)
Fit linear model to one Gaussian data set (formulation 1) Parameters ---------- y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance
gasp/marginallikelihoods_tf.py
lnlike_ellflatpriormarginalized_multiple
ixkael/gasp
0
python
def lnlike_ellflatpriormarginalized_multiple(y, yinvvar, mods): '\n Fit linear model to one Gaussian data set (formulation 1)\n\n Parameters\n ----------\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' eta = tf.reduce_sum((mods * (y * yinvvar)[(..., None, :)]), axis=(- 1)) H = tf.matmul(mods, tf.transpose((mods * yinvvar[(..., None, :)]), [0, 1, 3, 2])) mu = tf.linalg.solve(H, eta[(..., None)])[(..., 0)] etaHinveta = tf.reduce_sum((eta * mu), axis=(- 1)) yyvarinvy = tf.reduce_sum(((y * y) * yinvvar), axis=(- 1)) dets = (tf.linalg.logdet(H) - tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) scalar = (tf.cast((tf.shape(mods)[(- 1)] - tf.shape(mods)[(- 2)]), T) * log2pi) LnMarglike = ((- 0.5) * (((scalar + dets) + yyvarinvy) - etaHinveta)) covar = tf.linalg.inv(H) return (LnMarglike, mu, covar)
def lnlike_ellflatpriormarginalized_multiple(y, yinvvar, mods): '\n Fit linear model to one Gaussian data set (formulation 1)\n\n Parameters\n ----------\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' eta = tf.reduce_sum((mods * (y * yinvvar)[(..., None, :)]), axis=(- 1)) H = tf.matmul(mods, tf.transpose((mods * yinvvar[(..., None, :)]), [0, 1, 3, 2])) mu = tf.linalg.solve(H, eta[(..., None)])[(..., 0)] etaHinveta = tf.reduce_sum((eta * mu), axis=(- 1)) yyvarinvy = tf.reduce_sum(((y * y) * yinvvar), axis=(- 1)) dets = (tf.linalg.logdet(H) - tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) scalar = (tf.cast((tf.shape(mods)[(- 1)] - tf.shape(mods)[(- 2)]), T) * log2pi) LnMarglike = ((- 0.5) * (((scalar + dets) + yyvarinvy) - etaHinveta)) covar = tf.linalg.inv(H) return (LnMarglike, mu, covar)<|docstring|>Fit linear model to one Gaussian data set (formulation 1) Parameters ---------- y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance<|endoftext|>
6faf38ef8d774ce86ea807a475b1cf3cbd4799245ff4e8dff89bd978889dfbd1
def logmarglike_onetransfergaussian(y, yinvvar, M_T): '\n Fit linear model to one Gaussian data set (formulation 2)\n\n Parameters\n ----------\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' nt = tf.cast(tf.shape(M_T)[(- 2)], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) M = tf.transpose(M_T, [0, 2, 1]) Hbar = tf.matmul(M_T, (M * yinvvar[(..., :, None)])) etabar = tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1)) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) xi1 = ((- 0.5) * (((ny * log2pi) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) - tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)
Fit linear model to one Gaussian data set (formulation 2) Parameters ---------- y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance
gasp/marginallikelihoods_tf.py
logmarglike_onetransfergaussian
ixkael/gasp
0
python
def logmarglike_onetransfergaussian(y, yinvvar, M_T): '\n Fit linear model to one Gaussian data set (formulation 2)\n\n Parameters\n ----------\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' nt = tf.cast(tf.shape(M_T)[(- 2)], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) M = tf.transpose(M_T, [0, 2, 1]) Hbar = tf.matmul(M_T, (M * yinvvar[(..., :, None)])) etabar = tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1)) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) xi1 = ((- 0.5) * (((ny * log2pi) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) - tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)
def logmarglike_onetransfergaussian(y, yinvvar, M_T): '\n Fit linear model to one Gaussian data set (formulation 2)\n\n Parameters\n ----------\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' nt = tf.cast(tf.shape(M_T)[(- 2)], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) M = tf.transpose(M_T, [0, 2, 1]) Hbar = tf.matmul(M_T, (M * yinvvar[(..., :, None)])) etabar = tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1)) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) xi1 = ((- 0.5) * (((ny * log2pi) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) - tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)<|docstring|>Fit linear model to one Gaussian data set (formulation 2) Parameters ---------- y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance<|endoftext|>
2167540f9ce177b3363f11adf9f7e54403a11af7091857c9b1484e04f20ea994
def logmarglike_twotransfergaussians(ells, y, yinvvar, M_T, z, zinvvar, R_T, perm=[0, 2, 1]): '\n Fit linear model to two Gaussian data sets\n\n Parameters\n ----------\n ells : ndarray (nobj, )\n scaling between the data: y = ell * z\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n z, zinvvar : ndarray (nobj, ..., n_pix_z)\n data and data inverse variances for z\n R_T : ndarray (..., n_components, n_pix_z)\n design matrix of linear model for z\n perm : list\n permutation to get M and R from R_T and M_T\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' log2pi = tf.cast(tf.math.log((2.0 * np.pi)), T) nt = tf.cast(tf.shape(M_T)[(- 2)], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) nz = tf.cast(tf.math.count_nonzero(tf.where((zinvvar > 0))), T) M = tf.transpose(M_T, perm) R = tf.transpose(R_T, perm) Hbar = (((ells[(..., None, None)] ** 2) * tf.matmul(R_T, (R * zinvvar[(..., :, None)]))) + tf.matmul(M_T, (M * yinvvar[(..., :, None)]))) etabar = ((ells[(..., None)] * tf.reduce_sum((R_T * (z * zinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1))) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) logdetH = (tf.reduce_sum(tf.where((zinvvar > 0), tf.math.log(zinvvar), (zinvvar * 0)), axis=(- 1)) + tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) xi1 = ((- 0.5) * (((((ny + nz) * log2pi) - logdetH) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) + tf.reduce_sum(((z * z) * zinvvar), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)
Fit linear model to two Gaussian data sets Parameters ---------- ells : ndarray (nobj, ) scaling between the data: y = ell * z y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model z, zinvvar : ndarray (nobj, ..., n_pix_z) data and data inverse variances for z R_T : ndarray (..., n_components, n_pix_z) design matrix of linear model for z perm : list permutation to get M and R from R_T and M_T Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance
gasp/marginallikelihoods_tf.py
logmarglike_twotransfergaussians
ixkael/gasp
0
python
def logmarglike_twotransfergaussians(ells, y, yinvvar, M_T, z, zinvvar, R_T, perm=[0, 2, 1]): '\n Fit linear model to two Gaussian data sets\n\n Parameters\n ----------\n ells : ndarray (nobj, )\n scaling between the data: y = ell * z\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n z, zinvvar : ndarray (nobj, ..., n_pix_z)\n data and data inverse variances for z\n R_T : ndarray (..., n_components, n_pix_z)\n design matrix of linear model for z\n perm : list\n permutation to get M and R from R_T and M_T\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' log2pi = tf.cast(tf.math.log((2.0 * np.pi)), T) nt = tf.cast(tf.shape(M_T)[(- 2)], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) nz = tf.cast(tf.math.count_nonzero(tf.where((zinvvar > 0))), T) M = tf.transpose(M_T, perm) R = tf.transpose(R_T, perm) Hbar = (((ells[(..., None, None)] ** 2) * tf.matmul(R_T, (R * zinvvar[(..., :, None)]))) + tf.matmul(M_T, (M * yinvvar[(..., :, None)]))) etabar = ((ells[(..., None)] * tf.reduce_sum((R_T * (z * zinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1))) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) logdetH = (tf.reduce_sum(tf.where((zinvvar > 0), tf.math.log(zinvvar), (zinvvar * 0)), axis=(- 1)) + tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) xi1 = ((- 0.5) * (((((ny + nz) * log2pi) - logdetH) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) + tf.reduce_sum(((z * z) * zinvvar), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)
def logmarglike_twotransfergaussians(ells, y, yinvvar, M_T, z, zinvvar, R_T, perm=[0, 2, 1]): '\n Fit linear model to two Gaussian data sets\n\n Parameters\n ----------\n ells : ndarray (nobj, )\n scaling between the data: y = ell * z\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n z, zinvvar : ndarray (nobj, ..., n_pix_z)\n data and data inverse variances for z\n R_T : ndarray (..., n_components, n_pix_z)\n design matrix of linear model for z\n perm : list\n permutation to get M and R from R_T and M_T\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' log2pi = tf.cast(tf.math.log((2.0 * np.pi)), T) nt = tf.cast(tf.shape(M_T)[(- 2)], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) nz = tf.cast(tf.math.count_nonzero(tf.where((zinvvar > 0))), T) M = tf.transpose(M_T, perm) R = tf.transpose(R_T, perm) Hbar = (((ells[(..., None, None)] ** 2) * tf.matmul(R_T, (R * zinvvar[(..., :, None)]))) + tf.matmul(M_T, (M * yinvvar[(..., :, None)]))) etabar = ((ells[(..., None)] * tf.reduce_sum((R_T * (z * zinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1))) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) logdetH = (tf.reduce_sum(tf.where((zinvvar > 0), tf.math.log(zinvvar), (zinvvar * 0)), axis=(- 1)) + tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) xi1 = ((- 0.5) * (((((ny + nz) * log2pi) - logdetH) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) + tf.reduce_sum(((z * z) * zinvvar), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)<|docstring|>Fit linear model to two Gaussian data sets Parameters ---------- ells : ndarray (nobj, ) scaling between the data: y = ell * z y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model z, zinvvar : ndarray (nobj, ..., n_pix_z) data and data inverse variances for z R_T : ndarray (..., n_components, n_pix_z) design matrix of linear model for z perm : list permutation to get M and R from R_T and M_T Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance<|endoftext|>
13d9054af39119912d2697c6fd139de375cdf6003b527a61fa2d6331dbfd81de
def logmarglike_threetransfergaussians(ells, y, yinvvar, M_T, z, zinvvar, R_T, mu, muinvvar): '\n Fit linear model to three Gaussian data sets\n\n Parameters\n ----------\n ells : ndarray (nobj, )\n scaling between the data: y = ell * z\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n z, zinvvar : ndarray (nobj, ..., n_pix_z)\n data and data variances for y\n R_T : ndarray (..., n_components, n_pix_z)\n design matrix of linear model for z\n mu, muinvvar : ndarray ( ..., n_components)\n data and data variances for y\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' log2pi = tf.cast(tf.math.log((2.0 * np.pi)), T) nt = tf.cast(tf.shape(M_T)[(- 2)], T) nobj = tf.cast(tf.shape(y)[0], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) nz = tf.cast(tf.math.count_nonzero(tf.where((zinvvar > 0))), T) nm = tf.cast(tf.math.count_nonzero(tf.where((muinvvar > 0))), T) M = tf.transpose(M_T, [0, 2, 1]) R = tf.transpose(R_T, [0, 2, 1]) Hbar = ((((ells[(:, None, None)] ** 2) * tf.matmul(R_T, (R * zinvvar[(..., :, None)]))) + tf.matmul(M_T, (M * yinvvar[(..., :, None)]))) + ((tf.eye(nt, dtype=T)[(None, :, :)] * tf.ones((nobj, 1, 1), dtype=T)) * muinvvar[(..., :, None)])) etabar = (((ells[(:, None)] * tf.reduce_sum((R_T * (z * zinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((mu * muinvvar)[(..., None, :)], axis=(- 1))) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) logdetH = ((tf.reduce_sum(tf.where((zinvvar > 0), tf.math.log(zinvvar), (zinvvar * 0)), axis=(- 1)) + tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) + tf.reduce_sum(tf.where((muinvvar > 0), tf.math.log(muinvvar), (muinvvar * 0)), axis=(- 1))) xi1 = ((- 0.5) * (((((((ny + nz) + nm) * log2pi) - logdetH) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) + tf.reduce_sum(((z * z) * zinvvar), axis=(- 1))) + tf.reduce_sum(((mu * mu) * muinvvar), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)
Fit linear model to three Gaussian data sets Parameters ---------- ells : ndarray (nobj, ) scaling between the data: y = ell * z y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model z, zinvvar : ndarray (nobj, ..., n_pix_z) data and data variances for y R_T : ndarray (..., n_components, n_pix_z) design matrix of linear model for z mu, muinvvar : ndarray ( ..., n_components) data and data variances for y Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance
gasp/marginallikelihoods_tf.py
logmarglike_threetransfergaussians
ixkael/gasp
0
python
def logmarglike_threetransfergaussians(ells, y, yinvvar, M_T, z, zinvvar, R_T, mu, muinvvar): '\n Fit linear model to three Gaussian data sets\n\n Parameters\n ----------\n ells : ndarray (nobj, )\n scaling between the data: y = ell * z\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n z, zinvvar : ndarray (nobj, ..., n_pix_z)\n data and data variances for y\n R_T : ndarray (..., n_components, n_pix_z)\n design matrix of linear model for z\n mu, muinvvar : ndarray ( ..., n_components)\n data and data variances for y\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' log2pi = tf.cast(tf.math.log((2.0 * np.pi)), T) nt = tf.cast(tf.shape(M_T)[(- 2)], T) nobj = tf.cast(tf.shape(y)[0], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) nz = tf.cast(tf.math.count_nonzero(tf.where((zinvvar > 0))), T) nm = tf.cast(tf.math.count_nonzero(tf.where((muinvvar > 0))), T) M = tf.transpose(M_T, [0, 2, 1]) R = tf.transpose(R_T, [0, 2, 1]) Hbar = ((((ells[(:, None, None)] ** 2) * tf.matmul(R_T, (R * zinvvar[(..., :, None)]))) + tf.matmul(M_T, (M * yinvvar[(..., :, None)]))) + ((tf.eye(nt, dtype=T)[(None, :, :)] * tf.ones((nobj, 1, 1), dtype=T)) * muinvvar[(..., :, None)])) etabar = (((ells[(:, None)] * tf.reduce_sum((R_T * (z * zinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((mu * muinvvar)[(..., None, :)], axis=(- 1))) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) logdetH = ((tf.reduce_sum(tf.where((zinvvar > 0), tf.math.log(zinvvar), (zinvvar * 0)), axis=(- 1)) + tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) + tf.reduce_sum(tf.where((muinvvar > 0), tf.math.log(muinvvar), (muinvvar * 0)), axis=(- 1))) xi1 = ((- 0.5) * (((((((ny + nz) + nm) * log2pi) - logdetH) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) + tf.reduce_sum(((z * z) * zinvvar), axis=(- 1))) + tf.reduce_sum(((mu * mu) * muinvvar), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)
def logmarglike_threetransfergaussians(ells, y, yinvvar, M_T, z, zinvvar, R_T, mu, muinvvar): '\n Fit linear model to three Gaussian data sets\n\n Parameters\n ----------\n ells : ndarray (nobj, )\n scaling between the data: y = ell * z\n y, yinvvar : ndarray (nobj, ..., n_pix_y)\n data and data inverse variances\n M_T : ndarray (..., n_components, n_pix_y)\n design matrix of linear model\n z, zinvvar : ndarray (nobj, ..., n_pix_z)\n data and data variances for y\n R_T : ndarray (..., n_components, n_pix_z)\n design matrix of linear model for z\n mu, muinvvar : ndarray ( ..., n_components)\n data and data variances for y\n\n Returns\n -------\n logfml : ndarray (nobj, )\n log likelihood values with parameters marginalised and at best fit\n theta_map : ndarray (nobj, ndim)\n Best fit MAP parameters\n theta_cov : ndarray (nobj, ndim, ndim)\n Parameter covariance\n\n ' log2pi = tf.cast(tf.math.log((2.0 * np.pi)), T) nt = tf.cast(tf.shape(M_T)[(- 2)], T) nobj = tf.cast(tf.shape(y)[0], T) ny = tf.cast(tf.math.count_nonzero(tf.where((yinvvar > 0))), T) nz = tf.cast(tf.math.count_nonzero(tf.where((zinvvar > 0))), T) nm = tf.cast(tf.math.count_nonzero(tf.where((muinvvar > 0))), T) M = tf.transpose(M_T, [0, 2, 1]) R = tf.transpose(R_T, [0, 2, 1]) Hbar = ((((ells[(:, None, None)] ** 2) * tf.matmul(R_T, (R * zinvvar[(..., :, None)]))) + tf.matmul(M_T, (M * yinvvar[(..., :, None)]))) + ((tf.eye(nt, dtype=T)[(None, :, :)] * tf.ones((nobj, 1, 1), dtype=T)) * muinvvar[(..., :, None)])) etabar = (((ells[(:, None)] * tf.reduce_sum((R_T * (z * zinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((M_T * (y * yinvvar)[(..., None, :)]), axis=(- 1))) + tf.reduce_sum((mu * muinvvar)[(..., None, :)], axis=(- 1))) theta_map = tf.linalg.solve(Hbar, etabar[(..., None)])[(..., 0)] theta_cov = tf.linalg.inv(Hbar) logdetH = ((tf.reduce_sum(tf.where((zinvvar > 0), tf.math.log(zinvvar), (zinvvar * 0)), axis=(- 1)) + tf.reduce_sum(tf.where((yinvvar > 0), tf.math.log(yinvvar), (yinvvar * 0)), axis=(- 1))) + tf.reduce_sum(tf.where((muinvvar > 0), tf.math.log(muinvvar), (muinvvar * 0)), axis=(- 1))) xi1 = ((- 0.5) * (((((((ny + nz) + nm) * log2pi) - logdetH) + tf.reduce_sum(((y * y) * yinvvar), axis=(- 1))) + tf.reduce_sum(((z * z) * zinvvar), axis=(- 1))) + tf.reduce_sum(((mu * mu) * muinvvar), axis=(- 1)))) logdetHbar = tf.linalg.logdet(Hbar) xi2 = ((- 0.5) * (((nt * log2pi) - logdetHbar) + tf.reduce_sum((etabar * theta_map), axis=(- 1)))) logfml = (xi1 - xi2) return (logfml, theta_map, theta_cov)<|docstring|>Fit linear model to three Gaussian data sets Parameters ---------- ells : ndarray (nobj, ) scaling between the data: y = ell * z y, yinvvar : ndarray (nobj, ..., n_pix_y) data and data inverse variances M_T : ndarray (..., n_components, n_pix_y) design matrix of linear model z, zinvvar : ndarray (nobj, ..., n_pix_z) data and data variances for y R_T : ndarray (..., n_components, n_pix_z) design matrix of linear model for z mu, muinvvar : ndarray ( ..., n_components) data and data variances for y Returns ------- logfml : ndarray (nobj, ) log likelihood values with parameters marginalised and at best fit theta_map : ndarray (nobj, ndim) Best fit MAP parameters theta_cov : ndarray (nobj, ndim, ndim) Parameter covariance<|endoftext|>
e2413d408f4db57745dc0ffb096c2f93004db1649b3130a95347b35f9f1746d4
def _main(): 'Main function.\n ' args = _parse_input_arguments() (mesh, point_data, field_data) = meshplex.read(args.filename, timestep=args.timestep) num_nodes = len(mesh.node_coords) if (not (args.mu is None)): mu = args.mu print(('Using mu=%g from command line.' % mu)) elif ('mu' in field_data): mu = field_data['mu'] else: raise ValueError('Parameter mu not found in file. Please provide on command line.') if (not (args.g is None)): g = args.g print(('Using g=%g from command line.' % g)) elif ('g' in field_data): g = field_data['g'] else: raise ValueError('Parameter g not found in file. Please provide on command line.') nls_modeleval = nme.NlsModelEvaluator(mesh=mesh, V=point_data['V'], A=point_data['A'], preconditioner_type='exact', num_amg_cycles=1) psi0 = (point_data['psi'][(:, 0)] + (1j * point_data['psi'][(:, 1)])) if args.bordering: x0 = np.empty((num_nodes + 1), dtype=complex) x0[0:num_nodes] = psi0 x0[(- 1)] = 0.0 modeleval = bme.BorderedModelEvaluator(nls_modeleval) else: x0 = psi0 modeleval = nls_modeleval if (not args.series): (eigenvals, X) = _compute_eigenvalues(args.operator, args.eigenvalue_type, args.num_eigenvalues, None, x0[(:, None)], modeleval, mu, g) print('The following eigenvalues were computed:') print(sorted(eigenvals)) print('Residuals:') for k in range(len(eigenvals)): z = (X[(0::2, k)] + (1j * X[(1::2, k)])) z /= np.sqrt(modeleval.inner_product(z, z)) y0 = (modeleval.get_jacobian(x0, mu, g) * z) print(np.linalg.norm((y0 - (eigenvals[k] * z)))) print('Storing corresponding eigenstates...', end=' ') k = 0 for k in range(len(eigenvals)): filename = ('eigen%d.vtu' % k) z = (X[(0::2, k)] + (1j * X[(1::2, k)])) z /= np.sqrt(modeleval.inner_product(z, z)) mesh.write(filename, point_data={'psi': point_data['psi'], 'A': point_data['A'], 'V': point_data['V'], 'eigen': z}, field_data={'g': g, 'mu': mu, 'eigenvalue': eigenvals[k]}) print('done.') else: X = np.ones((len(mesh.node_coords), 1)) steps = 51 mus = np.linspace(0.0, 0.5, steps) eigenvals_list = [] for mu in mus: modeleval.set_parameter(mu) (eigenvals, X) = _compute_eigenvalues(args.operator, args.eigenvalue_type, args.num_eigenvalues, X[(:, 0)], modeleval, mu, g) eigenvals_list.append(eigenvals) _plot_eigenvalue_series(mus, eigenvals_list) pp.title(('%s eigenvalues of %s' % (args.eigenvalue_type, args.operator))) pp.xlabel('$\\mu$') pp.show() return
Main function.
tools/operator_eigenvalues.py
_main
nschloe/pynosh
8
python
def _main(): '\n ' args = _parse_input_arguments() (mesh, point_data, field_data) = meshplex.read(args.filename, timestep=args.timestep) num_nodes = len(mesh.node_coords) if (not (args.mu is None)): mu = args.mu print(('Using mu=%g from command line.' % mu)) elif ('mu' in field_data): mu = field_data['mu'] else: raise ValueError('Parameter mu not found in file. Please provide on command line.') if (not (args.g is None)): g = args.g print(('Using g=%g from command line.' % g)) elif ('g' in field_data): g = field_data['g'] else: raise ValueError('Parameter g not found in file. Please provide on command line.') nls_modeleval = nme.NlsModelEvaluator(mesh=mesh, V=point_data['V'], A=point_data['A'], preconditioner_type='exact', num_amg_cycles=1) psi0 = (point_data['psi'][(:, 0)] + (1j * point_data['psi'][(:, 1)])) if args.bordering: x0 = np.empty((num_nodes + 1), dtype=complex) x0[0:num_nodes] = psi0 x0[(- 1)] = 0.0 modeleval = bme.BorderedModelEvaluator(nls_modeleval) else: x0 = psi0 modeleval = nls_modeleval if (not args.series): (eigenvals, X) = _compute_eigenvalues(args.operator, args.eigenvalue_type, args.num_eigenvalues, None, x0[(:, None)], modeleval, mu, g) print('The following eigenvalues were computed:') print(sorted(eigenvals)) print('Residuals:') for k in range(len(eigenvals)): z = (X[(0::2, k)] + (1j * X[(1::2, k)])) z /= np.sqrt(modeleval.inner_product(z, z)) y0 = (modeleval.get_jacobian(x0, mu, g) * z) print(np.linalg.norm((y0 - (eigenvals[k] * z)))) print('Storing corresponding eigenstates...', end=' ') k = 0 for k in range(len(eigenvals)): filename = ('eigen%d.vtu' % k) z = (X[(0::2, k)] + (1j * X[(1::2, k)])) z /= np.sqrt(modeleval.inner_product(z, z)) mesh.write(filename, point_data={'psi': point_data['psi'], 'A': point_data['A'], 'V': point_data['V'], 'eigen': z}, field_data={'g': g, 'mu': mu, 'eigenvalue': eigenvals[k]}) print('done.') else: X = np.ones((len(mesh.node_coords), 1)) steps = 51 mus = np.linspace(0.0, 0.5, steps) eigenvals_list = [] for mu in mus: modeleval.set_parameter(mu) (eigenvals, X) = _compute_eigenvalues(args.operator, args.eigenvalue_type, args.num_eigenvalues, X[(:, 0)], modeleval, mu, g) eigenvals_list.append(eigenvals) _plot_eigenvalue_series(mus, eigenvals_list) pp.title(('%s eigenvalues of %s' % (args.eigenvalue_type, args.operator))) pp.xlabel('$\\mu$') pp.show() return
def _main(): '\n ' args = _parse_input_arguments() (mesh, point_data, field_data) = meshplex.read(args.filename, timestep=args.timestep) num_nodes = len(mesh.node_coords) if (not (args.mu is None)): mu = args.mu print(('Using mu=%g from command line.' % mu)) elif ('mu' in field_data): mu = field_data['mu'] else: raise ValueError('Parameter mu not found in file. Please provide on command line.') if (not (args.g is None)): g = args.g print(('Using g=%g from command line.' % g)) elif ('g' in field_data): g = field_data['g'] else: raise ValueError('Parameter g not found in file. Please provide on command line.') nls_modeleval = nme.NlsModelEvaluator(mesh=mesh, V=point_data['V'], A=point_data['A'], preconditioner_type='exact', num_amg_cycles=1) psi0 = (point_data['psi'][(:, 0)] + (1j * point_data['psi'][(:, 1)])) if args.bordering: x0 = np.empty((num_nodes + 1), dtype=complex) x0[0:num_nodes] = psi0 x0[(- 1)] = 0.0 modeleval = bme.BorderedModelEvaluator(nls_modeleval) else: x0 = psi0 modeleval = nls_modeleval if (not args.series): (eigenvals, X) = _compute_eigenvalues(args.operator, args.eigenvalue_type, args.num_eigenvalues, None, x0[(:, None)], modeleval, mu, g) print('The following eigenvalues were computed:') print(sorted(eigenvals)) print('Residuals:') for k in range(len(eigenvals)): z = (X[(0::2, k)] + (1j * X[(1::2, k)])) z /= np.sqrt(modeleval.inner_product(z, z)) y0 = (modeleval.get_jacobian(x0, mu, g) * z) print(np.linalg.norm((y0 - (eigenvals[k] * z)))) print('Storing corresponding eigenstates...', end=' ') k = 0 for k in range(len(eigenvals)): filename = ('eigen%d.vtu' % k) z = (X[(0::2, k)] + (1j * X[(1::2, k)])) z /= np.sqrt(modeleval.inner_product(z, z)) mesh.write(filename, point_data={'psi': point_data['psi'], 'A': point_data['A'], 'V': point_data['V'], 'eigen': z}, field_data={'g': g, 'mu': mu, 'eigenvalue': eigenvals[k]}) print('done.') else: X = np.ones((len(mesh.node_coords), 1)) steps = 51 mus = np.linspace(0.0, 0.5, steps) eigenvals_list = [] for mu in mus: modeleval.set_parameter(mu) (eigenvals, X) = _compute_eigenvalues(args.operator, args.eigenvalue_type, args.num_eigenvalues, X[(:, 0)], modeleval, mu, g) eigenvals_list.append(eigenvals) _plot_eigenvalue_series(mus, eigenvals_list) pp.title(('%s eigenvalues of %s' % (args.eigenvalue_type, args.operator))) pp.xlabel('$\\mu$') pp.show() return<|docstring|>Main function.<|endoftext|>
47cef6ed1f8bfea33b59f6478d4548f1675d13664d61fd9b3590fdefb256a51e
def _complex2real(op): 'For a given complex-valued operator C^n -> C^n, returns the\n corresponding real-valued operator R^{2n} -> R^{2n}.' def _jacobian_wrap_apply(x): z = (x[0::2] + (1j * x[1::2])) z_out = (op * z) x_out = np.empty(x.shape) x_out[0::2] = z_out.real x_out[1::2] = z_out.imag return x_out return LinearOperator(((2 * op.shape[0]), (2 * op.shape[1])), _jacobian_wrap_apply, dtype=float)
For a given complex-valued operator C^n -> C^n, returns the corresponding real-valued operator R^{2n} -> R^{2n}.
tools/operator_eigenvalues.py
_complex2real
nschloe/pynosh
8
python
def _complex2real(op): 'For a given complex-valued operator C^n -> C^n, returns the\n corresponding real-valued operator R^{2n} -> R^{2n}.' def _jacobian_wrap_apply(x): z = (x[0::2] + (1j * x[1::2])) z_out = (op * z) x_out = np.empty(x.shape) x_out[0::2] = z_out.real x_out[1::2] = z_out.imag return x_out return LinearOperator(((2 * op.shape[0]), (2 * op.shape[1])), _jacobian_wrap_apply, dtype=float)
def _complex2real(op): 'For a given complex-valued operator C^n -> C^n, returns the\n corresponding real-valued operator R^{2n} -> R^{2n}.' def _jacobian_wrap_apply(x): z = (x[0::2] + (1j * x[1::2])) z_out = (op * z) x_out = np.empty(x.shape) x_out[0::2] = z_out.real x_out[1::2] = z_out.imag return x_out return LinearOperator(((2 * op.shape[0]), (2 * op.shape[1])), _jacobian_wrap_apply, dtype=float)<|docstring|>For a given complex-valued operator C^n -> C^n, returns the corresponding real-valued operator R^{2n} -> R^{2n}.<|endoftext|>
36f58c77b4d0faafdb12ea0de9ef8115767a317dae7e06644fa4fd27ecd55c93
def _plot_eigenvalue_series(x, eigenvals_list): "Plotting series of eigenvalues can be hard to make visually appealing.\n The reason for this is that at each data point, the values are mostly\n ordered in some way, not respecting previous calculations. When two\n eigenvalues 'cross' -- and this notion doesn't actually exist -- then the\n colors of the two crossing parts change.\n This function tries to take care of this by guessing which are the\n corresponding values by linear extrapolation.\n " def _linear_extrapolation(x0, x1, Y0, Y1, x2): 'Linear extrapolation of the data sets (x0,Y0), (x1,Y1) to x2.\n ' return (((((Y1 - Y0) * x2) + (x1 * Y0)) - (Y1 * x0)) / (x1 - x0)) def _permutation_match(y, y2): 'Returns the permutation of y that best matches y2.\n ' n = len(y2) assert (len(y) == n) y_new = np.empty(n) y_masked = np.ma.array(y, mask=np.zeros(n, dtype=bool)) for k in range(n): min_index = np.argmin(abs((y_masked - y2[k]))) y_new[k] = y_masked[min_index] y_masked.mask[min_index] = True return y_new len_list = len(eigenvals_list) num_eigenvalues = len(eigenvals_list[0]) reordered_eigenvalues = np.zeros((num_eigenvalues, len_list), dtype=float) reordered_eigenvalues[(:, 0)] = eigenvals_list[0] eigenvals_extrapolation = reordered_eigenvalues[(:, 0)] for (k, eigenvalues) in enumerate(eigenvals_list[1:]): reordered_eigenvalues[(:, (k + 1))] = _permutation_match(eigenvalues, eigenvals_extrapolation) if ((k + 2) < len(x)): eigenvals_extrapolation = _linear_extrapolation(x[k], x[(k + 1)], reordered_eigenvalues[(:, k)], reordered_eigenvalues[(:, (k + 1))], x[(k + 2)]) for k in range(num_eigenvalues): pp.plot(x, reordered_eigenvalues[(k, :)], '-x') return
Plotting series of eigenvalues can be hard to make visually appealing. The reason for this is that at each data point, the values are mostly ordered in some way, not respecting previous calculations. When two eigenvalues 'cross' -- and this notion doesn't actually exist -- then the colors of the two crossing parts change. This function tries to take care of this by guessing which are the corresponding values by linear extrapolation.
tools/operator_eigenvalues.py
_plot_eigenvalue_series
nschloe/pynosh
8
python
def _plot_eigenvalue_series(x, eigenvals_list): "Plotting series of eigenvalues can be hard to make visually appealing.\n The reason for this is that at each data point, the values are mostly\n ordered in some way, not respecting previous calculations. When two\n eigenvalues 'cross' -- and this notion doesn't actually exist -- then the\n colors of the two crossing parts change.\n This function tries to take care of this by guessing which are the\n corresponding values by linear extrapolation.\n " def _linear_extrapolation(x0, x1, Y0, Y1, x2): 'Linear extrapolation of the data sets (x0,Y0), (x1,Y1) to x2.\n ' return (((((Y1 - Y0) * x2) + (x1 * Y0)) - (Y1 * x0)) / (x1 - x0)) def _permutation_match(y, y2): 'Returns the permutation of y that best matches y2.\n ' n = len(y2) assert (len(y) == n) y_new = np.empty(n) y_masked = np.ma.array(y, mask=np.zeros(n, dtype=bool)) for k in range(n): min_index = np.argmin(abs((y_masked - y2[k]))) y_new[k] = y_masked[min_index] y_masked.mask[min_index] = True return y_new len_list = len(eigenvals_list) num_eigenvalues = len(eigenvals_list[0]) reordered_eigenvalues = np.zeros((num_eigenvalues, len_list), dtype=float) reordered_eigenvalues[(:, 0)] = eigenvals_list[0] eigenvals_extrapolation = reordered_eigenvalues[(:, 0)] for (k, eigenvalues) in enumerate(eigenvals_list[1:]): reordered_eigenvalues[(:, (k + 1))] = _permutation_match(eigenvalues, eigenvals_extrapolation) if ((k + 2) < len(x)): eigenvals_extrapolation = _linear_extrapolation(x[k], x[(k + 1)], reordered_eigenvalues[(:, k)], reordered_eigenvalues[(:, (k + 1))], x[(k + 2)]) for k in range(num_eigenvalues): pp.plot(x, reordered_eigenvalues[(k, :)], '-x') return
def _plot_eigenvalue_series(x, eigenvals_list): "Plotting series of eigenvalues can be hard to make visually appealing.\n The reason for this is that at each data point, the values are mostly\n ordered in some way, not respecting previous calculations. When two\n eigenvalues 'cross' -- and this notion doesn't actually exist -- then the\n colors of the two crossing parts change.\n This function tries to take care of this by guessing which are the\n corresponding values by linear extrapolation.\n " def _linear_extrapolation(x0, x1, Y0, Y1, x2): 'Linear extrapolation of the data sets (x0,Y0), (x1,Y1) to x2.\n ' return (((((Y1 - Y0) * x2) + (x1 * Y0)) - (Y1 * x0)) / (x1 - x0)) def _permutation_match(y, y2): 'Returns the permutation of y that best matches y2.\n ' n = len(y2) assert (len(y) == n) y_new = np.empty(n) y_masked = np.ma.array(y, mask=np.zeros(n, dtype=bool)) for k in range(n): min_index = np.argmin(abs((y_masked - y2[k]))) y_new[k] = y_masked[min_index] y_masked.mask[min_index] = True return y_new len_list = len(eigenvals_list) num_eigenvalues = len(eigenvals_list[0]) reordered_eigenvalues = np.zeros((num_eigenvalues, len_list), dtype=float) reordered_eigenvalues[(:, 0)] = eigenvals_list[0] eigenvals_extrapolation = reordered_eigenvalues[(:, 0)] for (k, eigenvalues) in enumerate(eigenvals_list[1:]): reordered_eigenvalues[(:, (k + 1))] = _permutation_match(eigenvalues, eigenvals_extrapolation) if ((k + 2) < len(x)): eigenvals_extrapolation = _linear_extrapolation(x[k], x[(k + 1)], reordered_eigenvalues[(:, k)], reordered_eigenvalues[(:, (k + 1))], x[(k + 2)]) for k in range(num_eigenvalues): pp.plot(x, reordered_eigenvalues[(k, :)], '-x') return<|docstring|>Plotting series of eigenvalues can be hard to make visually appealing. The reason for this is that at each data point, the values are mostly ordered in some way, not respecting previous calculations. When two eigenvalues 'cross' -- and this notion doesn't actually exist -- then the colors of the two crossing parts change. This function tries to take care of this by guessing which are the corresponding values by linear extrapolation.<|endoftext|>
a7219372387fe792de429e597e200bba02eb6cdd9e1aa7e0a83aebacbb747512
def _parse_input_arguments(): 'Parse input arguments.\n ' import argparse parser = argparse.ArgumentParser(description='Compute a few eigenvalues of a specified operator.') parser.add_argument('filename', metavar='FILE', type=str, help='ExodusII file containing the geometry and initial state') parser.add_argument('--timestep', '-t', metavar='TIMESTEP', dest='timestep', type=int, default=0, help='read a particular time step (default: 0)') parser.add_argument('--operator', '-o', metavar='OPERATOR', required=True, choices=['k', 'p', 'j', 'pj'], help='operator to compute the eigenvalues of (default: k)') parser.add_argument('--numeigenvalues', '-k', dest='num_eigenvalues', type=int, default=6, help='the number of eigenvalues to compute (default: 6)') parser.add_argument('--series', '-s', dest='series', action='store_true', default=False, help='compute a series of eigenvalues for different mu (default: False)') parser.add_argument('--type', '-y', dest='eigenvalue_type', default='SM', choices=['SM', 'LM'], help='the type of eigenvalues to compute (default: SM (smallest magnitude))') parser.add_argument('--mu', '-m', dest='mu', type=float, help='magnetic vector potential multiplier') parser.add_argument('--g', '-g', dest='g', type=float, help='coupling parameter') parser.add_argument('--bordering', '-b', default=False, action='store_true', help='use the bordered formulation to counter the nullspace (default: false)') args = parser.parse_args() return args
Parse input arguments.
tools/operator_eigenvalues.py
_parse_input_arguments
nschloe/pynosh
8
python
def _parse_input_arguments(): '\n ' import argparse parser = argparse.ArgumentParser(description='Compute a few eigenvalues of a specified operator.') parser.add_argument('filename', metavar='FILE', type=str, help='ExodusII file containing the geometry and initial state') parser.add_argument('--timestep', '-t', metavar='TIMESTEP', dest='timestep', type=int, default=0, help='read a particular time step (default: 0)') parser.add_argument('--operator', '-o', metavar='OPERATOR', required=True, choices=['k', 'p', 'j', 'pj'], help='operator to compute the eigenvalues of (default: k)') parser.add_argument('--numeigenvalues', '-k', dest='num_eigenvalues', type=int, default=6, help='the number of eigenvalues to compute (default: 6)') parser.add_argument('--series', '-s', dest='series', action='store_true', default=False, help='compute a series of eigenvalues for different mu (default: False)') parser.add_argument('--type', '-y', dest='eigenvalue_type', default='SM', choices=['SM', 'LM'], help='the type of eigenvalues to compute (default: SM (smallest magnitude))') parser.add_argument('--mu', '-m', dest='mu', type=float, help='magnetic vector potential multiplier') parser.add_argument('--g', '-g', dest='g', type=float, help='coupling parameter') parser.add_argument('--bordering', '-b', default=False, action='store_true', help='use the bordered formulation to counter the nullspace (default: false)') args = parser.parse_args() return args
def _parse_input_arguments(): '\n ' import argparse parser = argparse.ArgumentParser(description='Compute a few eigenvalues of a specified operator.') parser.add_argument('filename', metavar='FILE', type=str, help='ExodusII file containing the geometry and initial state') parser.add_argument('--timestep', '-t', metavar='TIMESTEP', dest='timestep', type=int, default=0, help='read a particular time step (default: 0)') parser.add_argument('--operator', '-o', metavar='OPERATOR', required=True, choices=['k', 'p', 'j', 'pj'], help='operator to compute the eigenvalues of (default: k)') parser.add_argument('--numeigenvalues', '-k', dest='num_eigenvalues', type=int, default=6, help='the number of eigenvalues to compute (default: 6)') parser.add_argument('--series', '-s', dest='series', action='store_true', default=False, help='compute a series of eigenvalues for different mu (default: False)') parser.add_argument('--type', '-y', dest='eigenvalue_type', default='SM', choices=['SM', 'LM'], help='the type of eigenvalues to compute (default: SM (smallest magnitude))') parser.add_argument('--mu', '-m', dest='mu', type=float, help='magnetic vector potential multiplier') parser.add_argument('--g', '-g', dest='g', type=float, help='coupling parameter') parser.add_argument('--bordering', '-b', default=False, action='store_true', help='use the bordered formulation to counter the nullspace (default: false)') args = parser.parse_args() return args<|docstring|>Parse input arguments.<|endoftext|>
0838b41445fa350740aa13640ad60a62805c457ecb97f1c51aab2d4b2f405467
def _linear_extrapolation(x0, x1, Y0, Y1, x2): 'Linear extrapolation of the data sets (x0,Y0), (x1,Y1) to x2.\n ' return (((((Y1 - Y0) * x2) + (x1 * Y0)) - (Y1 * x0)) / (x1 - x0))
Linear extrapolation of the data sets (x0,Y0), (x1,Y1) to x2.
tools/operator_eigenvalues.py
_linear_extrapolation
nschloe/pynosh
8
python
def _linear_extrapolation(x0, x1, Y0, Y1, x2): '\n ' return (((((Y1 - Y0) * x2) + (x1 * Y0)) - (Y1 * x0)) / (x1 - x0))
def _linear_extrapolation(x0, x1, Y0, Y1, x2): '\n ' return (((((Y1 - Y0) * x2) + (x1 * Y0)) - (Y1 * x0)) / (x1 - x0))<|docstring|>Linear extrapolation of the data sets (x0,Y0), (x1,Y1) to x2.<|endoftext|>
bb4fb144b4a7900c45b191f3ff69804d3116e7907485ac1b350fc00eda5a866e
def _permutation_match(y, y2): 'Returns the permutation of y that best matches y2.\n ' n = len(y2) assert (len(y) == n) y_new = np.empty(n) y_masked = np.ma.array(y, mask=np.zeros(n, dtype=bool)) for k in range(n): min_index = np.argmin(abs((y_masked - y2[k]))) y_new[k] = y_masked[min_index] y_masked.mask[min_index] = True return y_new
Returns the permutation of y that best matches y2.
tools/operator_eigenvalues.py
_permutation_match
nschloe/pynosh
8
python
def _permutation_match(y, y2): '\n ' n = len(y2) assert (len(y) == n) y_new = np.empty(n) y_masked = np.ma.array(y, mask=np.zeros(n, dtype=bool)) for k in range(n): min_index = np.argmin(abs((y_masked - y2[k]))) y_new[k] = y_masked[min_index] y_masked.mask[min_index] = True return y_new
def _permutation_match(y, y2): '\n ' n = len(y2) assert (len(y) == n) y_new = np.empty(n) y_masked = np.ma.array(y, mask=np.zeros(n, dtype=bool)) for k in range(n): min_index = np.argmin(abs((y_masked - y2[k]))) y_new[k] = y_masked[min_index] y_masked.mask[min_index] = True return y_new<|docstring|>Returns the permutation of y that best matches y2.<|endoftext|>
e4fb7c2d8984f3012ee2592d077f96a3f3614eb1a436f5531fdfd7a3cc2d558e
def test_wikipedia_example1(self): 'Test of Wikipedia example\n\n The example for the following QR decomposition is taken from\n http://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram.E2.80.93Schmidt_process\n ' A = np.array([[12, (- 51), 4], [6, 167, (- 68)], [(- 4), 24, (- 41)]], dtype=np.float64) (Q, R) = qr_decomposition.gram_schmidt_process(A) Q_desired = np.array([[0.8571, (- 0.3943), (- 0.3314)], [0.4286, 0.9029, 0.0343], [(- 0.2857), 0.1714, (- 0.9429)]], dtype=np.float64) R_desired = np.array([[14, 21, (- 14)], [0, 175, (- 70)], [0, 0, 35]], dtype=np.float64) npt.assert_almost_equal(Q, Q_desired, 4) npt.assert_almost_equal(R, R_desired, 4)
Test of Wikipedia example The example for the following QR decomposition is taken from http://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram.E2.80.93Schmidt_process
qr_decomposition/tests/test_gram_schmidt_process.py
test_wikipedia_example1
QGravityGRGW/qr_decomposition
20
python
def test_wikipedia_example1(self): 'Test of Wikipedia example\n\n The example for the following QR decomposition is taken from\n http://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram.E2.80.93Schmidt_process\n ' A = np.array([[12, (- 51), 4], [6, 167, (- 68)], [(- 4), 24, (- 41)]], dtype=np.float64) (Q, R) = qr_decomposition.gram_schmidt_process(A) Q_desired = np.array([[0.8571, (- 0.3943), (- 0.3314)], [0.4286, 0.9029, 0.0343], [(- 0.2857), 0.1714, (- 0.9429)]], dtype=np.float64) R_desired = np.array([[14, 21, (- 14)], [0, 175, (- 70)], [0, 0, 35]], dtype=np.float64) npt.assert_almost_equal(Q, Q_desired, 4) npt.assert_almost_equal(R, R_desired, 4)
def test_wikipedia_example1(self): 'Test of Wikipedia example\n\n The example for the following QR decomposition is taken from\n http://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram.E2.80.93Schmidt_process\n ' A = np.array([[12, (- 51), 4], [6, 167, (- 68)], [(- 4), 24, (- 41)]], dtype=np.float64) (Q, R) = qr_decomposition.gram_schmidt_process(A) Q_desired = np.array([[0.8571, (- 0.3943), (- 0.3314)], [0.4286, 0.9029, 0.0343], [(- 0.2857), 0.1714, (- 0.9429)]], dtype=np.float64) R_desired = np.array([[14, 21, (- 14)], [0, 175, (- 70)], [0, 0, 35]], dtype=np.float64) npt.assert_almost_equal(Q, Q_desired, 4) npt.assert_almost_equal(R, R_desired, 4)<|docstring|>Test of Wikipedia example The example for the following QR decomposition is taken from http://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram.E2.80.93Schmidt_process<|endoftext|>
ded2612ee281b46d88cb20806cd42af6d6013ad119d175066ae1bb94ac040af5
def f(x): '\n Quadratic function.\n ' return ((x ** 2) + 5)
Quadratic function.
f.py
f
brandaogbs/mf
0
python
def f(x): '\n \n ' return ((x ** 2) + 5)
def f(x): '\n \n ' return ((x ** 2) + 5)<|docstring|>Quadratic function.<|endoftext|>
fc711b75b735df2507b20a656a28cd0dcf7eceab6d1af50bea16d8072fb8fe8f
def df(x): '\n Derivative of `f` with respect to `x`.\n ' return (2 * x)
Derivative of `f` with respect to `x`.
f.py
df
brandaogbs/mf
0
python
def df(x): '\n \n ' return (2 * x)
def df(x): '\n \n ' return (2 * x)<|docstring|>Derivative of `f` with respect to `x`.<|endoftext|>
b68a14e0b9ad24d85a9b96beb22804ce322722944b73f030704e3d7e74a10c80
def error(self, arg, get=False): 'Short summary.\n\n Parameters\n ----------\n arg : str\n String to print\n get : bool\n If true, returns a string with the formated string\n\n Returns\n -------\n str\n If get = true, returns a string with the formated string\n\n ' if (not get): print((Fore.RED + '[ERROR]: {}'.format(arg))) print(Style.RESET_ALL) exit((- 1)) else: return '[ERROR]: {}'.format(arg)
Short summary. Parameters ---------- arg : str String to print get : bool If true, returns a string with the formated string Returns ------- str If get = true, returns a string with the formated string
FunTOTP/interface.py
error
Z33DD/FunTOTP
3
python
def error(self, arg, get=False): 'Short summary.\n\n Parameters\n ----------\n arg : str\n String to print\n get : bool\n If true, returns a string with the formated string\n\n Returns\n -------\n str\n If get = true, returns a string with the formated string\n\n ' if (not get): print((Fore.RED + '[ERROR]: {}'.format(arg))) print(Style.RESET_ALL) exit((- 1)) else: return '[ERROR]: {}'.format(arg)
def error(self, arg, get=False): 'Short summary.\n\n Parameters\n ----------\n arg : str\n String to print\n get : bool\n If true, returns a string with the formated string\n\n Returns\n -------\n str\n If get = true, returns a string with the formated string\n\n ' if (not get): print((Fore.RED + '[ERROR]: {}'.format(arg))) print(Style.RESET_ALL) exit((- 1)) else: return '[ERROR]: {}'.format(arg)<|docstring|>Short summary. Parameters ---------- arg : str String to print get : bool If true, returns a string with the formated string Returns ------- str If get = true, returns a string with the formated string<|endoftext|>
e9a091ce9029bed43111222c48721571f5eceff97dd54ba7f412fceb746a4f25
def register_task(name): "\n New tasks can be added to fairseq with the\n :func:`~fairseq.tasks.register_task` function decorator.\n\n For example::\n\n @register_task('classification')\n class ClassificationTask(FairseqTask):\n (...)\n\n .. note::\n\n All Tasks must implement the :class:`~fairseq.tasks.FairseqTask`\n interface.\n\n Please see the\n\n Args:\n name (str): the name of the task\n " def register_task_cls(cls): if (name in TASK_REGISTRY): raise ValueError('Cannot register duplicate task ({})'.format(name)) if (not issubclass(cls, FairseqTask)): raise ValueError('Task ({}: {}) must extend FairseqTask'.format(name, cls.__name__)) if (cls.__name__ in TASK_CLASS_NAMES): raise ValueError('Cannot register task with duplicate class name ({})'.format(cls.__name__)) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) return cls return register_task_cls
New tasks can be added to fairseq with the :func:`~fairseq.tasks.register_task` function decorator. For example:: @register_task('classification') class ClassificationTask(FairseqTask): (...) .. note:: All Tasks must implement the :class:`~fairseq.tasks.FairseqTask` interface. Please see the Args: name (str): the name of the task
infoxlm/fairseq/fairseq/tasks/__init__.py
register_task
codenet/unilm
5,129
python
def register_task(name): "\n New tasks can be added to fairseq with the\n :func:`~fairseq.tasks.register_task` function decorator.\n\n For example::\n\n @register_task('classification')\n class ClassificationTask(FairseqTask):\n (...)\n\n .. note::\n\n All Tasks must implement the :class:`~fairseq.tasks.FairseqTask`\n interface.\n\n Please see the\n\n Args:\n name (str): the name of the task\n " def register_task_cls(cls): if (name in TASK_REGISTRY): raise ValueError('Cannot register duplicate task ({})'.format(name)) if (not issubclass(cls, FairseqTask)): raise ValueError('Task ({}: {}) must extend FairseqTask'.format(name, cls.__name__)) if (cls.__name__ in TASK_CLASS_NAMES): raise ValueError('Cannot register task with duplicate class name ({})'.format(cls.__name__)) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) return cls return register_task_cls
def register_task(name): "\n New tasks can be added to fairseq with the\n :func:`~fairseq.tasks.register_task` function decorator.\n\n For example::\n\n @register_task('classification')\n class ClassificationTask(FairseqTask):\n (...)\n\n .. note::\n\n All Tasks must implement the :class:`~fairseq.tasks.FairseqTask`\n interface.\n\n Please see the\n\n Args:\n name (str): the name of the task\n " def register_task_cls(cls): if (name in TASK_REGISTRY): raise ValueError('Cannot register duplicate task ({})'.format(name)) if (not issubclass(cls, FairseqTask)): raise ValueError('Task ({}: {}) must extend FairseqTask'.format(name, cls.__name__)) if (cls.__name__ in TASK_CLASS_NAMES): raise ValueError('Cannot register task with duplicate class name ({})'.format(cls.__name__)) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) return cls return register_task_cls<|docstring|>New tasks can be added to fairseq with the :func:`~fairseq.tasks.register_task` function decorator. For example:: @register_task('classification') class ClassificationTask(FairseqTask): (...) .. note:: All Tasks must implement the :class:`~fairseq.tasks.FairseqTask` interface. Please see the Args: name (str): the name of the task<|endoftext|>
b1914ccf6e455bcfd89a950b3d36ee5ba929bbebe9bb57873ca98bb18c52d1ed
def get_coordinate(record: TreasureTuple) -> str: '\n :param record: tuple - a (treasure, coordinate) pair.\n :return: str - the extracted map coordinate.\n ' return record[1]
:param record: tuple - a (treasure, coordinate) pair. :return: str - the extracted map coordinate.
problems/exercism/tisbury-treasure-hunt/tuples.py
get_coordinate
JayMonari/py-personal
0
python
def get_coordinate(record: TreasureTuple) -> str: '\n :param record: tuple - a (treasure, coordinate) pair.\n :return: str - the extracted map coordinate.\n ' return record[1]
def get_coordinate(record: TreasureTuple) -> str: '\n :param record: tuple - a (treasure, coordinate) pair.\n :return: str - the extracted map coordinate.\n ' return record[1]<|docstring|>:param record: tuple - a (treasure, coordinate) pair. :return: str - the extracted map coordinate.<|endoftext|>
98a9ff500e4ad3751e121bed226968ea3347415100343470d018e4db0a49dbd3
def convert_coordinate(coordinate: str) -> Tuple[(str, str)]: '\n :param coordinate: str - a string map coordinate\n :return: tuple - the string coordinate seperated into its individual components.\n ' return (coordinate[0], coordinate[1])
:param coordinate: str - a string map coordinate :return: tuple - the string coordinate seperated into its individual components.
problems/exercism/tisbury-treasure-hunt/tuples.py
convert_coordinate
JayMonari/py-personal
0
python
def convert_coordinate(coordinate: str) -> Tuple[(str, str)]: '\n :param coordinate: str - a string map coordinate\n :return: tuple - the string coordinate seperated into its individual components.\n ' return (coordinate[0], coordinate[1])
def convert_coordinate(coordinate: str) -> Tuple[(str, str)]: '\n :param coordinate: str - a string map coordinate\n :return: tuple - the string coordinate seperated into its individual components.\n ' return (coordinate[0], coordinate[1])<|docstring|>:param coordinate: str - a string map coordinate :return: tuple - the string coordinate seperated into its individual components.<|endoftext|>
3d0f9473c5bd4ccc978c08cfdc330a605ef1b091b56d6658bfdf9cf0e760f946
def compare_records(azara_record: TreasureTuple, rui_record: LocationTuple) -> bool: '\n :param azara_record: tuple - a (treasure, coordinate) pair.\n :param rui_record: tuple - a (location, coordinate, quadrant) trio.\n :return: bool - True if coordinates match, False otherwise.\n ' return (azara_record[1] == ''.join(rui_record[1]))
:param azara_record: tuple - a (treasure, coordinate) pair. :param rui_record: tuple - a (location, coordinate, quadrant) trio. :return: bool - True if coordinates match, False otherwise.
problems/exercism/tisbury-treasure-hunt/tuples.py
compare_records
JayMonari/py-personal
0
python
def compare_records(azara_record: TreasureTuple, rui_record: LocationTuple) -> bool: '\n :param azara_record: tuple - a (treasure, coordinate) pair.\n :param rui_record: tuple - a (location, coordinate, quadrant) trio.\n :return: bool - True if coordinates match, False otherwise.\n ' return (azara_record[1] == .join(rui_record[1]))
def compare_records(azara_record: TreasureTuple, rui_record: LocationTuple) -> bool: '\n :param azara_record: tuple - a (treasure, coordinate) pair.\n :param rui_record: tuple - a (location, coordinate, quadrant) trio.\n :return: bool - True if coordinates match, False otherwise.\n ' return (azara_record[1] == .join(rui_record[1]))<|docstring|>:param azara_record: tuple - a (treasure, coordinate) pair. :param rui_record: tuple - a (location, coordinate, quadrant) trio. :return: bool - True if coordinates match, False otherwise.<|endoftext|>
131acadf18eff80eb9c6f088d3cff340438ce80f629444fdf4e8e3602e315e8e
def create_record(azara_record: TreasureTuple, rui_record: LocationTuple) -> MaybeRecord: '\n :param azara_record: tuple - a (treasure, coordinate) pair.\n :param rui_record: tuple - a (location, coordinate, quadrant) trio.\n :return: tuple - combined record, or "not a match" if the records are incompatible.\n ' if (not compare_records(azara_record, rui_record)): return 'not a match' return (*azara_record, *rui_record)
:param azara_record: tuple - a (treasure, coordinate) pair. :param rui_record: tuple - a (location, coordinate, quadrant) trio. :return: tuple - combined record, or "not a match" if the records are incompatible.
problems/exercism/tisbury-treasure-hunt/tuples.py
create_record
JayMonari/py-personal
0
python
def create_record(azara_record: TreasureTuple, rui_record: LocationTuple) -> MaybeRecord: '\n :param azara_record: tuple - a (treasure, coordinate) pair.\n :param rui_record: tuple - a (location, coordinate, quadrant) trio.\n :return: tuple - combined record, or "not a match" if the records are incompatible.\n ' if (not compare_records(azara_record, rui_record)): return 'not a match' return (*azara_record, *rui_record)
def create_record(azara_record: TreasureTuple, rui_record: LocationTuple) -> MaybeRecord: '\n :param azara_record: tuple - a (treasure, coordinate) pair.\n :param rui_record: tuple - a (location, coordinate, quadrant) trio.\n :return: tuple - combined record, or "not a match" if the records are incompatible.\n ' if (not compare_records(azara_record, rui_record)): return 'not a match' return (*azara_record, *rui_record)<|docstring|>:param azara_record: tuple - a (treasure, coordinate) pair. :param rui_record: tuple - a (location, coordinate, quadrant) trio. :return: tuple - combined record, or "not a match" if the records are incompatible.<|endoftext|>
0d0ddcbe21f79670af5ff4a0100273747164b26f5a73bb17fa2a64ff02e3d311
def clean_up(combined_record: CombinedRecord) -> str: '\n :param combined_record_group: tuple of tuples - everything from both participants.\n :return: tuple of tuples - everything "cleaned", with excess coordinates and information removed.\n ' report: List[str] = [] for tup in combined_record: cleaned = tuple((val for (i, val) in enumerate(tup) if (i != 1))) report.append(str(cleaned)) return ('\n'.join(report) + '\n')
:param combined_record_group: tuple of tuples - everything from both participants. :return: tuple of tuples - everything "cleaned", with excess coordinates and information removed.
problems/exercism/tisbury-treasure-hunt/tuples.py
clean_up
JayMonari/py-personal
0
python
def clean_up(combined_record: CombinedRecord) -> str: '\n :param combined_record_group: tuple of tuples - everything from both participants.\n :return: tuple of tuples - everything "cleaned", with excess coordinates and information removed.\n ' report: List[str] = [] for tup in combined_record: cleaned = tuple((val for (i, val) in enumerate(tup) if (i != 1))) report.append(str(cleaned)) return ('\n'.join(report) + '\n')
def clean_up(combined_record: CombinedRecord) -> str: '\n :param combined_record_group: tuple of tuples - everything from both participants.\n :return: tuple of tuples - everything "cleaned", with excess coordinates and information removed.\n ' report: List[str] = [] for tup in combined_record: cleaned = tuple((val for (i, val) in enumerate(tup) if (i != 1))) report.append(str(cleaned)) return ('\n'.join(report) + '\n')<|docstring|>:param combined_record_group: tuple of tuples - everything from both participants. :return: tuple of tuples - everything "cleaned", with excess coordinates and information removed.<|endoftext|>
d3d446c0fb9f1d61852afe6a3c037d529d5c6438f32ee95c4fd2c712296b0c3c
def __init__(self, delete_zip_file=False): '\n\n Parameters\n ----------\n delete_zip_file : bool, optional\n Whether to delete the zip file, value from True or False, by default False\n ' self.delete_zip_file = delete_zip_file
Parameters ---------- delete_zip_file : bool, optional Whether to delete the zip file, value from True or False, by default False
qlib/tests/data.py
__init__
jinniuai/qlib
8,637
python
def __init__(self, delete_zip_file=False): '\n\n Parameters\n ----------\n delete_zip_file : bool, optional\n Whether to delete the zip file, value from True or False, by default False\n ' self.delete_zip_file = delete_zip_file
def __init__(self, delete_zip_file=False): '\n\n Parameters\n ----------\n delete_zip_file : bool, optional\n Whether to delete the zip file, value from True or False, by default False\n ' self.delete_zip_file = delete_zip_file<|docstring|>Parameters ---------- delete_zip_file : bool, optional Whether to delete the zip file, value from True or False, by default False<|endoftext|>
6f8163942514c4c1e64ecde6880b33c4bde707123fd0eee3741c2d532a97f8cb
def qlib_data(self, name='qlib_data', target_dir='~/.qlib/qlib_data/cn_data', version=None, interval='1d', region='cn', delete_old=True, exists_skip=False): 'download cn qlib data from remote\n\n Parameters\n ----------\n target_dir: str\n data save directory\n name: str\n dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data\n version: str\n data version, value from [v1, ...], by default None(use script to specify version)\n interval: str\n data freq, value from [1d], by default 1d\n region: str\n data region, value from [cn, us], by default cn\n delete_old: bool\n delete an existing directory, by default True\n exists_skip: bool\n exists skip, by default False\n\n Examples\n ---------\n # get 1d data\n python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn\n\n # get 1min data\n python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn\n -------\n\n ' if (exists_skip and exists_qlib_data(target_dir)): logger.warning(f'''Data already exists: {target_dir}, the data download will be skipped If downloading is required: `exists_skip=False` or `change target_dir`''') return qlib_version = '.'.join(re.findall('(\\d+)\\.+', qlib.__version__)) def _get_file_name(v): return self.QLIB_DATA_NAME.format(dataset_name=name, region=region.lower(), interval=interval.lower(), qlib_version=v) file_name = _get_file_name(qlib_version) if (not self.check_dataset(file_name, version)): file_name = _get_file_name('latest') self._download_data(file_name.lower(), target_dir, delete_old, dataset_version=version)
download cn qlib data from remote Parameters ---------- target_dir: str data save directory name: str dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data version: str data version, value from [v1, ...], by default None(use script to specify version) interval: str data freq, value from [1d], by default 1d region: str data region, value from [cn, us], by default cn delete_old: bool delete an existing directory, by default True exists_skip: bool exists skip, by default False Examples --------- # get 1d data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn # get 1min data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn -------
qlib/tests/data.py
qlib_data
jinniuai/qlib
8,637
python
def qlib_data(self, name='qlib_data', target_dir='~/.qlib/qlib_data/cn_data', version=None, interval='1d', region='cn', delete_old=True, exists_skip=False): 'download cn qlib data from remote\n\n Parameters\n ----------\n target_dir: str\n data save directory\n name: str\n dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data\n version: str\n data version, value from [v1, ...], by default None(use script to specify version)\n interval: str\n data freq, value from [1d], by default 1d\n region: str\n data region, value from [cn, us], by default cn\n delete_old: bool\n delete an existing directory, by default True\n exists_skip: bool\n exists skip, by default False\n\n Examples\n ---------\n # get 1d data\n python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn\n\n # get 1min data\n python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn\n -------\n\n ' if (exists_skip and exists_qlib_data(target_dir)): logger.warning(f'Data already exists: {target_dir}, the data download will be skipped If downloading is required: `exists_skip=False` or `change target_dir`') return qlib_version = '.'.join(re.findall('(\\d+)\\.+', qlib.__version__)) def _get_file_name(v): return self.QLIB_DATA_NAME.format(dataset_name=name, region=region.lower(), interval=interval.lower(), qlib_version=v) file_name = _get_file_name(qlib_version) if (not self.check_dataset(file_name, version)): file_name = _get_file_name('latest') self._download_data(file_name.lower(), target_dir, delete_old, dataset_version=version)
def qlib_data(self, name='qlib_data', target_dir='~/.qlib/qlib_data/cn_data', version=None, interval='1d', region='cn', delete_old=True, exists_skip=False): 'download cn qlib data from remote\n\n Parameters\n ----------\n target_dir: str\n data save directory\n name: str\n dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data\n version: str\n data version, value from [v1, ...], by default None(use script to specify version)\n interval: str\n data freq, value from [1d], by default 1d\n region: str\n data region, value from [cn, us], by default cn\n delete_old: bool\n delete an existing directory, by default True\n exists_skip: bool\n exists skip, by default False\n\n Examples\n ---------\n # get 1d data\n python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn\n\n # get 1min data\n python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn\n -------\n\n ' if (exists_skip and exists_qlib_data(target_dir)): logger.warning(f'Data already exists: {target_dir}, the data download will be skipped If downloading is required: `exists_skip=False` or `change target_dir`') return qlib_version = '.'.join(re.findall('(\\d+)\\.+', qlib.__version__)) def _get_file_name(v): return self.QLIB_DATA_NAME.format(dataset_name=name, region=region.lower(), interval=interval.lower(), qlib_version=v) file_name = _get_file_name(qlib_version) if (not self.check_dataset(file_name, version)): file_name = _get_file_name('latest') self._download_data(file_name.lower(), target_dir, delete_old, dataset_version=version)<|docstring|>download cn qlib data from remote Parameters ---------- target_dir: str data save directory name: str dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data version: str data version, value from [v1, ...], by default None(use script to specify version) interval: str data freq, value from [1d], by default 1d region: str data region, value from [cn, us], by default cn delete_old: bool delete an existing directory, by default True exists_skip: bool exists skip, by default False Examples --------- # get 1d data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn # get 1min data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn -------<|endoftext|>
c38b222afa1d55a769584e968faae77d2e92abc9075528a4e8d2dbf32a46aaf9
def csv_data_cn(self, target_dir='~/.qlib/csv_data/cn_data'): 'download cn csv data from remote\n\n Parameters\n ----------\n target_dir: str\n data save directory\n\n Examples\n ---------\n python get_data.py csv_data_cn --target_dir ~/.qlib/csv_data/cn_data\n -------\n\n ' file_name = 'csv_data_cn.zip' self._download_data(file_name, target_dir)
download cn csv data from remote Parameters ---------- target_dir: str data save directory Examples --------- python get_data.py csv_data_cn --target_dir ~/.qlib/csv_data/cn_data -------
qlib/tests/data.py
csv_data_cn
jinniuai/qlib
8,637
python
def csv_data_cn(self, target_dir='~/.qlib/csv_data/cn_data'): 'download cn csv data from remote\n\n Parameters\n ----------\n target_dir: str\n data save directory\n\n Examples\n ---------\n python get_data.py csv_data_cn --target_dir ~/.qlib/csv_data/cn_data\n -------\n\n ' file_name = 'csv_data_cn.zip' self._download_data(file_name, target_dir)
def csv_data_cn(self, target_dir='~/.qlib/csv_data/cn_data'): 'download cn csv data from remote\n\n Parameters\n ----------\n target_dir: str\n data save directory\n\n Examples\n ---------\n python get_data.py csv_data_cn --target_dir ~/.qlib/csv_data/cn_data\n -------\n\n ' file_name = 'csv_data_cn.zip' self._download_data(file_name, target_dir)<|docstring|>download cn csv data from remote Parameters ---------- target_dir: str data save directory Examples --------- python get_data.py csv_data_cn --target_dir ~/.qlib/csv_data/cn_data -------<|endoftext|>
62a7e257d9fa2390846d8bbfd8c6c77196b48aa07c4a025c522a6cce97bd408c
@mod.capture(rule=f'{alt_digits}') def digit(m) -> str: 'One digit' return int(digits_map[m[0]])
One digit
base/number_cardinals.py
digit
gimpf/talon-conf
5
python
@mod.capture(rule=f'{alt_digits}') def digit(m) -> str: return int(digits_map[m[0]])
@mod.capture(rule=f'{alt_digits}') def digit(m) -> str: return int(digits_map[m[0]])<|docstring|>One digit<|endoftext|>
993c9765a989caa3cf1d8c65d3827cb760559d07f0f1e1d6badc4faf0f1e929b
@mod.capture(rule=f'<number_small> [{alt_scales} ([and] (<number_small> | {alt_scales} | <number_small> {alt_scales}))*]') def number_scaled(m) -> str: 'Returns a series of numbers as a string' return fuse_num(fuse_scale(fuse_num(fuse_scale(list(m), 3))))[0]
Returns a series of numbers as a string
base/number_cardinals.py
number_scaled
gimpf/talon-conf
5
python
@mod.capture(rule=f'<number_small> [{alt_scales} ([and] (<number_small> | {alt_scales} | <number_small> {alt_scales}))*]') def number_scaled(m) -> str: return fuse_num(fuse_scale(fuse_num(fuse_scale(list(m), 3))))[0]
@mod.capture(rule=f'<number_small> [{alt_scales} ([and] (<number_small> | {alt_scales} | <number_small> {alt_scales}))*]') def number_scaled(m) -> str: return fuse_num(fuse_scale(fuse_num(fuse_scale(list(m), 3))))[0]<|docstring|>Returns a series of numbers as a string<|endoftext|>
610bdaeed3d7ff19f0ba4dc70ba5c3335cc28b690f4343b46c7b39d8532d660a
def __init__(self, pl_module: LightningModule): "\n Wraps the user's LightningModule and redirects the forward call to the appropriate\n method, either ``training_step``, ``validation_step`` or ``test_step``.\n If the LightningModule is in none of the states `training`, `testing` or `validation`,\n the inputs will be redirected to the\n :meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method.\n Inheriting classes may also modify the inputs or outputs of forward.\n\n Args:\n pl_module: the model to wrap\n " super().__init__() self.module = pl_module
Wraps the user's LightningModule and redirects the forward call to the appropriate method, either ``training_step``, ``validation_step`` or ``test_step``. If the LightningModule is in none of the states `training`, `testing` or `validation`, the inputs will be redirected to the :meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method. Inheriting classes may also modify the inputs or outputs of forward. Args: pl_module: the model to wrap
pytorch_lightning/overrides/base.py
__init__
neighthan/pytorch-lightning
3
python
def __init__(self, pl_module: LightningModule): "\n Wraps the user's LightningModule and redirects the forward call to the appropriate\n method, either ``training_step``, ``validation_step`` or ``test_step``.\n If the LightningModule is in none of the states `training`, `testing` or `validation`,\n the inputs will be redirected to the\n :meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method.\n Inheriting classes may also modify the inputs or outputs of forward.\n\n Args:\n pl_module: the model to wrap\n " super().__init__() self.module = pl_module
def __init__(self, pl_module: LightningModule): "\n Wraps the user's LightningModule and redirects the forward call to the appropriate\n method, either ``training_step``, ``validation_step`` or ``test_step``.\n If the LightningModule is in none of the states `training`, `testing` or `validation`,\n the inputs will be redirected to the\n :meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method.\n Inheriting classes may also modify the inputs or outputs of forward.\n\n Args:\n pl_module: the model to wrap\n " super().__init__() self.module = pl_module<|docstring|>Wraps the user's LightningModule and redirects the forward call to the appropriate method, either ``training_step``, ``validation_step`` or ``test_step``. If the LightningModule is in none of the states `training`, `testing` or `validation`, the inputs will be redirected to the :meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method. Inheriting classes may also modify the inputs or outputs of forward. Args: pl_module: the model to wrap<|endoftext|>
be61f6239ffbb29be4a6b04fbbb5a47126cb76adafa354d123b3f9a8b89d7753
@swiftTest @skipUnlessDarwin def test(self): "Test that the default runtime library path can be recovered even if\n paths weren't serialized." self.build() log = self.getBuildArtifact('types.log') command_result = lldb.SBCommandReturnObject() interpreter = self.dbg.GetCommandInterpreter() interpreter.HandleCommand(('log enable lldb types -f ' + log), command_result) (target, process, thread, bkpt) = lldbutil.run_to_name_breakpoint(self, 'main') self.expect('p 1') logfile = open(log, 'r') in_expr_log = 0 found = 0 for line in logfile: if line.startswith(' SwiftASTContextForExpressions::LogConfiguration(SwiftASTContext'): in_expr_log += 1 if (in_expr_log and ('Runtime library paths' in line) and ('2 items' in line)): found += 1 self.assertEqual(in_expr_log, 1) self.assertEqual(found, 1)
Test that the default runtime library path can be recovered even if paths weren't serialized.
lldb/test/API/lang/swift/runtime_library_path/TestSwiftRuntimeLibraryPath.py
test
cbjeukendrup/llvm-project
605
python
@swiftTest @skipUnlessDarwin def test(self): "Test that the default runtime library path can be recovered even if\n paths weren't serialized." self.build() log = self.getBuildArtifact('types.log') command_result = lldb.SBCommandReturnObject() interpreter = self.dbg.GetCommandInterpreter() interpreter.HandleCommand(('log enable lldb types -f ' + log), command_result) (target, process, thread, bkpt) = lldbutil.run_to_name_breakpoint(self, 'main') self.expect('p 1') logfile = open(log, 'r') in_expr_log = 0 found = 0 for line in logfile: if line.startswith(' SwiftASTContextForExpressions::LogConfiguration(SwiftASTContext'): in_expr_log += 1 if (in_expr_log and ('Runtime library paths' in line) and ('2 items' in line)): found += 1 self.assertEqual(in_expr_log, 1) self.assertEqual(found, 1)
@swiftTest @skipUnlessDarwin def test(self): "Test that the default runtime library path can be recovered even if\n paths weren't serialized." self.build() log = self.getBuildArtifact('types.log') command_result = lldb.SBCommandReturnObject() interpreter = self.dbg.GetCommandInterpreter() interpreter.HandleCommand(('log enable lldb types -f ' + log), command_result) (target, process, thread, bkpt) = lldbutil.run_to_name_breakpoint(self, 'main') self.expect('p 1') logfile = open(log, 'r') in_expr_log = 0 found = 0 for line in logfile: if line.startswith(' SwiftASTContextForExpressions::LogConfiguration(SwiftASTContext'): in_expr_log += 1 if (in_expr_log and ('Runtime library paths' in line) and ('2 items' in line)): found += 1 self.assertEqual(in_expr_log, 1) self.assertEqual(found, 1)<|docstring|>Test that the default runtime library path can be recovered even if paths weren't serialized.<|endoftext|>
d56edde8dc3c249155398f0b6f28b9f0a7c082cb6b341f391dc90b528d7e1fef
def init_logger(filename): 'Initializes logger' logging.basicConfig(filename=os.path.basename(filename).replace('.py', '.log'), filemode='w', level=logging.INFO) stderr_logger = logging.StreamHandler() stderr_logger.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) logging.getLogger().addHandler(stderr_logger) return
Initializes logger
file_functions.py
init_logger
xaviernogueira/gcs_gui
4
python
def init_logger(filename): logging.basicConfig(filename=os.path.basename(filename).replace('.py', '.log'), filemode='w', level=logging.INFO) stderr_logger = logging.StreamHandler() stderr_logger.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) logging.getLogger().addHandler(stderr_logger) return
def init_logger(filename): logging.basicConfig(filename=os.path.basename(filename).replace('.py', '.log'), filemode='w', level=logging.INFO) stderr_logger = logging.StreamHandler() stderr_logger.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) logging.getLogger().addHandler(stderr_logger) return<|docstring|>Initializes logger<|endoftext|>
77a465cdbea985d7f19b2113732ee62d332a7939b085f4b75083bbd6b8117f2e
def cmd(command): 'Executes command prompt command' try: res = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except: msg = ('Command failed: %s' % command) logger.error(msg) raise Exception(msg) msg = res.communicate()[1] msg_str = str(msg, 'utf-8') if (('http://lastools.org/LICENSE.txt' not in msg_str) and (len(msg_str) > 0)): logger.info(msg) return
Executes command prompt command
file_functions.py
cmd
xaviernogueira/gcs_gui
4
python
def cmd(command): try: res = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except: msg = ('Command failed: %s' % command) logger.error(msg) raise Exception(msg) msg = res.communicate()[1] msg_str = str(msg, 'utf-8') if (('http://lastools.org/LICENSE.txt' not in msg_str) and (len(msg_str) > 0)): logger.info(msg) return
def cmd(command): try: res = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except: msg = ('Command failed: %s' % command) logger.error(msg) raise Exception(msg) msg = res.communicate()[1] msg_str = str(msg, 'utf-8') if (('http://lastools.org/LICENSE.txt' not in msg_str) and (len(msg_str) > 0)): logger.info(msg) return<|docstring|>Executes command prompt command<|endoftext|>
56f88d6ebeba2a38ba40eadb16b051c65c7865e4415343ae55010b7f5abb0ede
def browse(root, entry, select='file', ftypes=[('All files', '*')]): 'GUI button command: opens browser window and adds selected file/folder to entry' if (select == 'file'): filename = filedialog.askopenfilename(parent=root, title='Choose a file', filetypes=ftypes) if (filename != None): entry.delete(0, END) entry.insert(END, filename) elif (select == 'files'): files = filedialog.askopenfilenames(parent=root, title='Choose files', filetypes=ftypes) l = root.tk.splitlist(files) entry.delete(0, END) entry.insert(END, l) elif (select == 'folder'): dirname = filedialog.askdirectory(parent=root, initialdir=entry.get(), title='Choose a directory') if (len(dirname) > 0): entry.delete(0, END) entry.insert(END, (dirname + '/'))
GUI button command: opens browser window and adds selected file/folder to entry
file_functions.py
browse
xaviernogueira/gcs_gui
4
python
def browse(root, entry, select='file', ftypes=[('All files', '*')]): if (select == 'file'): filename = filedialog.askopenfilename(parent=root, title='Choose a file', filetypes=ftypes) if (filename != None): entry.delete(0, END) entry.insert(END, filename) elif (select == 'files'): files = filedialog.askopenfilenames(parent=root, title='Choose files', filetypes=ftypes) l = root.tk.splitlist(files) entry.delete(0, END) entry.insert(END, l) elif (select == 'folder'): dirname = filedialog.askdirectory(parent=root, initialdir=entry.get(), title='Choose a directory') if (len(dirname) > 0): entry.delete(0, END) entry.insert(END, (dirname + '/'))
def browse(root, entry, select='file', ftypes=[('All files', '*')]): if (select == 'file'): filename = filedialog.askopenfilename(parent=root, title='Choose a file', filetypes=ftypes) if (filename != None): entry.delete(0, END) entry.insert(END, filename) elif (select == 'files'): files = filedialog.askopenfilenames(parent=root, title='Choose files', filetypes=ftypes) l = root.tk.splitlist(files) entry.delete(0, END) entry.insert(END, l) elif (select == 'folder'): dirname = filedialog.askdirectory(parent=root, initialdir=entry.get(), title='Choose a directory') if (len(dirname) > 0): entry.delete(0, END) entry.insert(END, (dirname + '/'))<|docstring|>GUI button command: opens browser window and adds selected file/folder to entry<|endoftext|>
2a7246594d46e55c6d909f2401cbfad07a0de0338bf2b491f5f4a2b84952c6cd
def err_info(func): 'Wrapper to show error message when a command fails' def wrapper(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.info(e) return wrapper
Wrapper to show error message when a command fails
file_functions.py
err_info
xaviernogueira/gcs_gui
4
python
def err_info(func): def wrapper(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.info(e) return wrapper
def err_info(func): def wrapper(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.info(e) return wrapper<|docstring|>Wrapper to show error message when a command fails<|endoftext|>
ca54c94decff15985f24a55094d6794eb14149dbd83935243cc1123b59d30be1
def check_use(filepath): 'Checks if a file or list of files is in use by another process\n If the file cannot be opened or there is an associated .lock file, it throws an exception.\n ' if (type(filepath) == list): for f in filepath: check_use(f) return file_object = None if os.path.exists(filepath): try: buffer_size = 8 file_object = open(filepath, 'a', buffer_size) if file_object: for filename in os.listdir(os.path.dirname(filepath)): if (filename.startswith(os.path.basename(filepath)) and filename.endswith('.lock')): logger.error(('%s is open in another program. Close the file and try again.' % filepath)) raise Exception(('%s is open in another program. Close the file and try again.' % filepath)) except IOError: logger.error(('%s is open in another program. Close the file and try again.' % filepath)) raise Exception(('%s is open in another program. Close the file and try again.' % filepath)) finally: if file_object: file_object.close() return
Checks if a file or list of files is in use by another process If the file cannot be opened or there is an associated .lock file, it throws an exception.
file_functions.py
check_use
xaviernogueira/gcs_gui
4
python
def check_use(filepath): 'Checks if a file or list of files is in use by another process\n If the file cannot be opened or there is an associated .lock file, it throws an exception.\n ' if (type(filepath) == list): for f in filepath: check_use(f) return file_object = None if os.path.exists(filepath): try: buffer_size = 8 file_object = open(filepath, 'a', buffer_size) if file_object: for filename in os.listdir(os.path.dirname(filepath)): if (filename.startswith(os.path.basename(filepath)) and filename.endswith('.lock')): logger.error(('%s is open in another program. Close the file and try again.' % filepath)) raise Exception(('%s is open in another program. Close the file and try again.' % filepath)) except IOError: logger.error(('%s is open in another program. Close the file and try again.' % filepath)) raise Exception(('%s is open in another program. Close the file and try again.' % filepath)) finally: if file_object: file_object.close() return
def check_use(filepath): 'Checks if a file or list of files is in use by another process\n If the file cannot be opened or there is an associated .lock file, it throws an exception.\n ' if (type(filepath) == list): for f in filepath: check_use(f) return file_object = None if os.path.exists(filepath): try: buffer_size = 8 file_object = open(filepath, 'a', buffer_size) if file_object: for filename in os.listdir(os.path.dirname(filepath)): if (filename.startswith(os.path.basename(filepath)) and filename.endswith('.lock')): logger.error(('%s is open in another program. Close the file and try again.' % filepath)) raise Exception(('%s is open in another program. Close the file and try again.' % filepath)) except IOError: logger.error(('%s is open in another program. Close the file and try again.' % filepath)) raise Exception(('%s is open in another program. Close the file and try again.' % filepath)) finally: if file_object: file_object.close() return<|docstring|>Checks if a file or list of files is in use by another process If the file cannot be opened or there is an associated .lock file, it throws an exception.<|endoftext|>
dc4d944784b88a9fd9cbdbbb97eac1c559a2a84b95c0f359e1260e31cde1d839
def split_list(l, break_pts): 'returns list l split up into sublists at break point indices' l_0 = len(l) sl = [] if (len(break_pts) == 0): return [l] else: for brk in break_pts: delta_l = (l_0 - len(l)) sl.append(l[:(brk - delta_l)]) l = l[(brk - delta_l):] sl.append(l) return sl
returns list l split up into sublists at break point indices
file_functions.py
split_list
xaviernogueira/gcs_gui
4
python
def split_list(l, break_pts): l_0 = len(l) sl = [] if (len(break_pts) == 0): return [l] else: for brk in break_pts: delta_l = (l_0 - len(l)) sl.append(l[:(brk - delta_l)]) l = l[(brk - delta_l):] sl.append(l) return sl
def split_list(l, break_pts): l_0 = len(l) sl = [] if (len(break_pts) == 0): return [l] else: for brk in break_pts: delta_l = (l_0 - len(l)) sl.append(l[:(brk - delta_l)]) l = l[(brk - delta_l):] sl.append(l) return sl<|docstring|>returns list l split up into sublists at break point indices<|endoftext|>
71e7cde15bc3d3c1e11ce67253428523ab5bc6aa96b884ab4fc77acb88185706
def split_reaches(l, new_reach_pts): 'splits l into sections where new_reach_pts contains the starting indices for each slice' new_reach_pts = sorted(new_reach_pts) sl = [l[i1:i2] for (i1, i2) in zip(new_reach_pts, new_reach_pts[1:])] last_index = new_reach_pts[(- 1)] sl.append(l[last_index:]) return sl
splits l into sections where new_reach_pts contains the starting indices for each slice
file_functions.py
split_reaches
xaviernogueira/gcs_gui
4
python
def split_reaches(l, new_reach_pts): new_reach_pts = sorted(new_reach_pts) sl = [l[i1:i2] for (i1, i2) in zip(new_reach_pts, new_reach_pts[1:])] last_index = new_reach_pts[(- 1)] sl.append(l[last_index:]) return sl
def split_reaches(l, new_reach_pts): new_reach_pts = sorted(new_reach_pts) sl = [l[i1:i2] for (i1, i2) in zip(new_reach_pts, new_reach_pts[1:])] last_index = new_reach_pts[(- 1)] sl.append(l[last_index:]) return sl<|docstring|>splits l into sections where new_reach_pts contains the starting indices for each slice<|endoftext|>
e6db2b0e70d9bbbed1c4a27ded8b3c244e3bd025b6720f5c2265d6a62e1fe42d
def tif_to_poly(tif): 'Converts .tif raster to a single polygon covering area that is not null' ras = arcpy.Raster(tif) int_raster = arcpy.sa.Con((arcpy.sa.IsNull(ras) == False), 1) poly = arcpy.RasterToPolygon_conversion(int_raster, tif.replace('.tif', '.shp'), 'NO_SIMPLIFY') return poly.getOutput(0)
Converts .tif raster to a single polygon covering area that is not null
file_functions.py
tif_to_poly
xaviernogueira/gcs_gui
4
python
def tif_to_poly(tif): ras = arcpy.Raster(tif) int_raster = arcpy.sa.Con((arcpy.sa.IsNull(ras) == False), 1) poly = arcpy.RasterToPolygon_conversion(int_raster, tif.replace('.tif', '.shp'), 'NO_SIMPLIFY') return poly.getOutput(0)
def tif_to_poly(tif): ras = arcpy.Raster(tif) int_raster = arcpy.sa.Con((arcpy.sa.IsNull(ras) == False), 1) poly = arcpy.RasterToPolygon_conversion(int_raster, tif.replace('.tif', '.shp'), 'NO_SIMPLIFY') return poly.getOutput(0)<|docstring|>Converts .tif raster to a single polygon covering area that is not null<|endoftext|>
42cdd579a1b35cd047a020902b348f1a84971693e9de114a60881b61c5d823f8
def tableToCSV(input_table, csv_filepath, fld_to_remove_override=[], keep_fields=[]): 'Returns the file path of a csv containing the attributes table of a shapefile or other table' fld_list = arcpy.ListFields(input_table) fld_names = [str(fld.name) for fld in fld_list] if (len(fld_to_remove_override) > 0): for field in fld_to_remove_override: try: fld_names.remove(field) except: ("Can't delete field: %s" % field) elif (len(keep_fields) > 0): fld_names = [i for i in fld_names if (i in keep_fields)] with open(csv_filepath, 'w', newline='') as csv_file: writer = csv.writer(csv_file) writer.writerow(fld_names) with arcpy.da.SearchCursor(input_table, fld_names) as cursor: for row in cursor: writer.writerow(row) print((csv_filepath + ' CREATED')) csv_file.close() return csv_filepath
Returns the file path of a csv containing the attributes table of a shapefile or other table
file_functions.py
tableToCSV
xaviernogueira/gcs_gui
4
python
def tableToCSV(input_table, csv_filepath, fld_to_remove_override=[], keep_fields=[]): fld_list = arcpy.ListFields(input_table) fld_names = [str(fld.name) for fld in fld_list] if (len(fld_to_remove_override) > 0): for field in fld_to_remove_override: try: fld_names.remove(field) except: ("Can't delete field: %s" % field) elif (len(keep_fields) > 0): fld_names = [i for i in fld_names if (i in keep_fields)] with open(csv_filepath, 'w', newline=) as csv_file: writer = csv.writer(csv_file) writer.writerow(fld_names) with arcpy.da.SearchCursor(input_table, fld_names) as cursor: for row in cursor: writer.writerow(row) print((csv_filepath + ' CREATED')) csv_file.close() return csv_filepath
def tableToCSV(input_table, csv_filepath, fld_to_remove_override=[], keep_fields=[]): fld_list = arcpy.ListFields(input_table) fld_names = [str(fld.name) for fld in fld_list] if (len(fld_to_remove_override) > 0): for field in fld_to_remove_override: try: fld_names.remove(field) except: ("Can't delete field: %s" % field) elif (len(keep_fields) > 0): fld_names = [i for i in fld_names if (i in keep_fields)] with open(csv_filepath, 'w', newline=) as csv_file: writer = csv.writer(csv_file) writer.writerow(fld_names) with arcpy.da.SearchCursor(input_table, fld_names) as cursor: for row in cursor: writer.writerow(row) print((csv_filepath + ' CREATED')) csv_file.close() return csv_filepath<|docstring|>Returns the file path of a csv containing the attributes table of a shapefile or other table<|endoftext|>
35d69dae6774023de7c926f75692e79395faa990ddb0338df2c5a8ae08267803
def delete_gis_files(file_loc): 'This function accepts a GIS file location (eg. \\shapefile.shp) and deletes the file as well\n as any other related file (eg. shapefile.prj, shapefile.cpg). This function supports .tif, .shp, and .dbf' suffix = file_loc[(- 4):] prefix = file_loc[:(- 4)] if (suffix == '.shp'): suf_list = ['.shp', '.cpg', '.dbf', '.prj', '.sbn', '.sbx', '.shp.xlm', '.shx'] elif (suffix == '.tif'): suf_list = ['.tif', '.tif.aux.xml', '.tfw', '.tif.ovr', '.tif.vat.cpg', '.tif.vat.dbf'] elif (suffix == '.dbf'): suf_list = ['.dbf', '.cpg', '.dbf.xml'] elif (suffix == '.csv'): suf_list = ['.csv'] counter = 0 for suf in suf_list: file = (prefix + suf) if os.path.exists(file): try: os.remove(file) except: print(("Couldn't delete %s" % file)) else: counter += 1 print(('Couldnt find %s files sub-files. Not normally and issue but if overwrite errors raise this could be the culprit!' % counter))
This function accepts a GIS file location (eg. \shapefile.shp) and deletes the file as well as any other related file (eg. shapefile.prj, shapefile.cpg). This function supports .tif, .shp, and .dbf
file_functions.py
delete_gis_files
xaviernogueira/gcs_gui
4
python
def delete_gis_files(file_loc): 'This function accepts a GIS file location (eg. \\shapefile.shp) and deletes the file as well\n as any other related file (eg. shapefile.prj, shapefile.cpg). This function supports .tif, .shp, and .dbf' suffix = file_loc[(- 4):] prefix = file_loc[:(- 4)] if (suffix == '.shp'): suf_list = ['.shp', '.cpg', '.dbf', '.prj', '.sbn', '.sbx', '.shp.xlm', '.shx'] elif (suffix == '.tif'): suf_list = ['.tif', '.tif.aux.xml', '.tfw', '.tif.ovr', '.tif.vat.cpg', '.tif.vat.dbf'] elif (suffix == '.dbf'): suf_list = ['.dbf', '.cpg', '.dbf.xml'] elif (suffix == '.csv'): suf_list = ['.csv'] counter = 0 for suf in suf_list: file = (prefix + suf) if os.path.exists(file): try: os.remove(file) except: print(("Couldn't delete %s" % file)) else: counter += 1 print(('Couldnt find %s files sub-files. Not normally and issue but if overwrite errors raise this could be the culprit!' % counter))
def delete_gis_files(file_loc): 'This function accepts a GIS file location (eg. \\shapefile.shp) and deletes the file as well\n as any other related file (eg. shapefile.prj, shapefile.cpg). This function supports .tif, .shp, and .dbf' suffix = file_loc[(- 4):] prefix = file_loc[:(- 4)] if (suffix == '.shp'): suf_list = ['.shp', '.cpg', '.dbf', '.prj', '.sbn', '.sbx', '.shp.xlm', '.shx'] elif (suffix == '.tif'): suf_list = ['.tif', '.tif.aux.xml', '.tfw', '.tif.ovr', '.tif.vat.cpg', '.tif.vat.dbf'] elif (suffix == '.dbf'): suf_list = ['.dbf', '.cpg', '.dbf.xml'] elif (suffix == '.csv'): suf_list = ['.csv'] counter = 0 for suf in suf_list: file = (prefix + suf) if os.path.exists(file): try: os.remove(file) except: print(("Couldn't delete %s" % file)) else: counter += 1 print(('Couldnt find %s files sub-files. Not normally and issue but if overwrite errors raise this could be the culprit!' % counter))<|docstring|>This function accepts a GIS file location (eg. \shapefile.shp) and deletes the file as well as any other related file (eg. shapefile.prj, shapefile.cpg). This function supports .tif, .shp, and .dbf<|endoftext|>
f37fa65a537ac58553304e29b280acea2313e10d1f13136de0e59a0dec18f8a0
def find_suffix(csv_location): 'This function takes a csv table location and finds the suffix unaffected by stage.\n Ex: C://documents//2p3ft_gcs_table.csv would return ft_gcs_table as a string' base = os.path.basename(csv_location) if (str.isnumeric(base[0]) == True): index = 0 base_snip = base[0] while ((base_snip != 'f') and (base_snip != 'm')): index += 1 base_snip = base[index] suffix = str(base[index:]) else: print('csv filename not suitable. Please have stage height and units in name at the start of the filename. Ex: 2p3ft_gcs_table.csv or 1m_gcs_table.csv') return suffix
This function takes a csv table location and finds the suffix unaffected by stage. Ex: C://documents//2p3ft_gcs_table.csv would return ft_gcs_table as a string
file_functions.py
find_suffix
xaviernogueira/gcs_gui
4
python
def find_suffix(csv_location): 'This function takes a csv table location and finds the suffix unaffected by stage.\n Ex: C://documents//2p3ft_gcs_table.csv would return ft_gcs_table as a string' base = os.path.basename(csv_location) if (str.isnumeric(base[0]) == True): index = 0 base_snip = base[0] while ((base_snip != 'f') and (base_snip != 'm')): index += 1 base_snip = base[index] suffix = str(base[index:]) else: print('csv filename not suitable. Please have stage height and units in name at the start of the filename. Ex: 2p3ft_gcs_table.csv or 1m_gcs_table.csv') return suffix
def find_suffix(csv_location): 'This function takes a csv table location and finds the suffix unaffected by stage.\n Ex: C://documents//2p3ft_gcs_table.csv would return ft_gcs_table as a string' base = os.path.basename(csv_location) if (str.isnumeric(base[0]) == True): index = 0 base_snip = base[0] while ((base_snip != 'f') and (base_snip != 'm')): index += 1 base_snip = base[index] suffix = str(base[index:]) else: print('csv filename not suitable. Please have stage height and units in name at the start of the filename. Ex: 2p3ft_gcs_table.csv or 1m_gcs_table.csv') return suffix<|docstring|>This function takes a csv table location and finds the suffix unaffected by stage. Ex: C://documents//2p3ft_gcs_table.csv would return ft_gcs_table as a string<|endoftext|>
2a521ae4034a418f2b02b823d67350219ff0ca8faeb527bd9ce3a54d3719aafe
def float_keyz_format(z): 'This function takes a float key z argument and retrusn its equivalent formatted string.\n ex: 5.3 -> 5p3, or 10.0 -> 10p0' z_str = '' if ((z >= 10.0) and isinstance(z, float)): z_str = ((str(z)[0:2] + 'p') + str(z)[3]) elif ((z < 10.0) and isinstance(z, float)): z_str = ((str(z)[0] + 'p') + str(z)[2]) elif isinstance(z, int): z_str = (str(z) + 'p0') try: return z_str except (z_str == ''): print('Key z list parameters not valid. Please fill list with int or float.')
This function takes a float key z argument and retrusn its equivalent formatted string. ex: 5.3 -> 5p3, or 10.0 -> 10p0
file_functions.py
float_keyz_format
xaviernogueira/gcs_gui
4
python
def float_keyz_format(z): 'This function takes a float key z argument and retrusn its equivalent formatted string.\n ex: 5.3 -> 5p3, or 10.0 -> 10p0' z_str = if ((z >= 10.0) and isinstance(z, float)): z_str = ((str(z)[0:2] + 'p') + str(z)[3]) elif ((z < 10.0) and isinstance(z, float)): z_str = ((str(z)[0] + 'p') + str(z)[2]) elif isinstance(z, int): z_str = (str(z) + 'p0') try: return z_str except (z_str == ): print('Key z list parameters not valid. Please fill list with int or float.')
def float_keyz_format(z): 'This function takes a float key z argument and retrusn its equivalent formatted string.\n ex: 5.3 -> 5p3, or 10.0 -> 10p0' z_str = if ((z >= 10.0) and isinstance(z, float)): z_str = ((str(z)[0:2] + 'p') + str(z)[3]) elif ((z < 10.0) and isinstance(z, float)): z_str = ((str(z)[0] + 'p') + str(z)[2]) elif isinstance(z, int): z_str = (str(z) + 'p0') try: return z_str except (z_str == ): print('Key z list parameters not valid. Please fill list with int or float.')<|docstring|>This function takes a float key z argument and retrusn its equivalent formatted string. ex: 5.3 -> 5p3, or 10.0 -> 10p0<|endoftext|>
92a8dd79c1b7b11611cb1366e077d3af028e1b6a0df80bb4f93f9cd29aa0769f
def string_to_list(string, format=''): 'Splits a string at each comma and produces a list. format parameter allows the type of the output to\n be designated' if (string != ''): str_split = string.split(',') if (format == 'int'): out_list = [int(i) for i in str_split] elif (format == 'float'): out_list = [float(i) for i in str_split] else: out_list = [] return out_list
Splits a string at each comma and produces a list. format parameter allows the type of the output to be designated
file_functions.py
string_to_list
xaviernogueira/gcs_gui
4
python
def string_to_list(string, format=): 'Splits a string at each comma and produces a list. format parameter allows the type of the output to\n be designated' if (string != ): str_split = string.split(',') if (format == 'int'): out_list = [int(i) for i in str_split] elif (format == 'float'): out_list = [float(i) for i in str_split] else: out_list = [] return out_list
def string_to_list(string, format=): 'Splits a string at each comma and produces a list. format parameter allows the type of the output to\n be designated' if (string != ): str_split = string.split(',') if (format == 'int'): out_list = [int(i) for i in str_split] elif (format == 'float'): out_list = [float(i) for i in str_split] else: out_list = [] return out_list<|docstring|>Splits a string at each comma and produces a list. format parameter allows the type of the output to be designated<|endoftext|>