body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
499972ec83124e553a0be0c0ecc9cedbd3c60f923306fbeff410501ece6397c4
def get_label_units(projected_file): "Input: Any file with a projected spatial reference\n Returns: list storing unit label for filenames, linear unit itself, and the spatial reference file\n Example return: ['m', 'Meters', *spatial_ref_object*]" spatial_ref = arcpy.Describe(projected_file).spatialReference unit = spatial_ref.linearUnitName if (unit == 'Meter'): u = 'm' else: u = 'ft' return [u, unit, spatial_ref]
Input: Any file with a projected spatial reference Returns: list storing unit label for filenames, linear unit itself, and the spatial reference file Example return: ['m', 'Meters', *spatial_ref_object*]
file_functions.py
get_label_units
xaviernogueira/gcs_gui
4
python
def get_label_units(projected_file): "Input: Any file with a projected spatial reference\n Returns: list storing unit label for filenames, linear unit itself, and the spatial reference file\n Example return: ['m', 'Meters', *spatial_ref_object*]" spatial_ref = arcpy.Describe(projected_file).spatialReference unit = spatial_ref.linearUnitName if (unit == 'Meter'): u = 'm' else: u = 'ft' return [u, unit, spatial_ref]
def get_label_units(projected_file): "Input: Any file with a projected spatial reference\n Returns: list storing unit label for filenames, linear unit itself, and the spatial reference file\n Example return: ['m', 'Meters', *spatial_ref_object*]" spatial_ref = arcpy.Describe(projected_file).spatialReference unit = spatial_ref.linearUnitName if (unit == 'Meter'): u = 'm' else: u = 'ft' return [u, unit, spatial_ref]<|docstring|>Input: Any file with a projected spatial reference Returns: list storing unit label for filenames, linear unit itself, and the spatial reference file Example return: ['m', 'Meters', *spatial_ref_object*]<|endoftext|>
341c2e60629fd5ede334cd49526818e01d2162700ca0b9dd4e0790ea78f53204
def get_data(self): "Return the object's matrix\n\n Parameters\n ----------\n self : ImportMatrixVal\n An ImportMatrixVal object\n\n Returns\n -------\n matrix: ndarray\n The object's matrix\n\n " return self.edit_matrix(self.value)
Return the object's matrix Parameters ---------- self : ImportMatrixVal An ImportMatrixVal object Returns ------- matrix: ndarray The object's matrix
pyleecan/Methods/Import/ImportMatrixVal/get_data.py
get_data
IrakozeFD/pyleecan
95
python
def get_data(self): "Return the object's matrix\n\n Parameters\n ----------\n self : ImportMatrixVal\n An ImportMatrixVal object\n\n Returns\n -------\n matrix: ndarray\n The object's matrix\n\n " return self.edit_matrix(self.value)
def get_data(self): "Return the object's matrix\n\n Parameters\n ----------\n self : ImportMatrixVal\n An ImportMatrixVal object\n\n Returns\n -------\n matrix: ndarray\n The object's matrix\n\n " return self.edit_matrix(self.value)<|docstring|>Return the object's matrix Parameters ---------- self : ImportMatrixVal An ImportMatrixVal object Returns ------- matrix: ndarray The object's matrix<|endoftext|>
7cfe0449b1fa24c86da86a4cbbf2631ab271c3c043f3883fdd26bc5206b6cc3b
def get_mean_std(self, type, mean_std_path): "\n 计算数据集的均值和标准差\n :param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'\n :param mean_std_path: 计算出来的均值和标准差存储的文件\n :return:\n " num_imgs = len(self.dataset[type]) for data in self.dataset[type]: img = data[0] for i in range(3): self.means[i] += img[(i, :, :)].mean() self.stdevs[i] += img[(i, :, :)].std() self.means = (np.asarray(self.means) / num_imgs) self.stdevs = (np.asarray(self.stdevs) / num_imgs) print('{} : normMean = {}'.format(type, self.means)) print('{} : normstdevs = {}'.format(type, self.stdevs)) with open(mean_std_path, 'wb') as f: pickle.dump(self.means, f) pickle.dump(self.stdevs, f) print('pickle done')
计算数据集的均值和标准差 :param type: 使用的是那个数据集的数据,有'train', 'test', 'testing' :param mean_std_path: 计算出来的均值和标准差存储的文件 :return:
MT-CNV/get_mean_std.py
get_mean_std
Wangzheaos/DARD-Net
0
python
def get_mean_std(self, type, mean_std_path): "\n 计算数据集的均值和标准差\n :param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'\n :param mean_std_path: 计算出来的均值和标准差存储的文件\n :return:\n " num_imgs = len(self.dataset[type]) for data in self.dataset[type]: img = data[0] for i in range(3): self.means[i] += img[(i, :, :)].mean() self.stdevs[i] += img[(i, :, :)].std() self.means = (np.asarray(self.means) / num_imgs) self.stdevs = (np.asarray(self.stdevs) / num_imgs) print('{} : normMean = {}'.format(type, self.means)) print('{} : normstdevs = {}'.format(type, self.stdevs)) with open(mean_std_path, 'wb') as f: pickle.dump(self.means, f) pickle.dump(self.stdevs, f) print('pickle done')
def get_mean_std(self, type, mean_std_path): "\n 计算数据集的均值和标准差\n :param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'\n :param mean_std_path: 计算出来的均值和标准差存储的文件\n :return:\n " num_imgs = len(self.dataset[type]) for data in self.dataset[type]: img = data[0] for i in range(3): self.means[i] += img[(i, :, :)].mean() self.stdevs[i] += img[(i, :, :)].std() self.means = (np.asarray(self.means) / num_imgs) self.stdevs = (np.asarray(self.stdevs) / num_imgs) print('{} : normMean = {}'.format(type, self.means)) print('{} : normstdevs = {}'.format(type, self.stdevs)) with open(mean_std_path, 'wb') as f: pickle.dump(self.means, f) pickle.dump(self.stdevs, f) print('pickle done')<|docstring|>计算数据集的均值和标准差 :param type: 使用的是那个数据集的数据,有'train', 'test', 'testing' :param mean_std_path: 计算出来的均值和标准差存储的文件 :return:<|endoftext|>
1263a0022ee8b5baccaa7d24cd33feeb2da52d6a90dbc098378c32edfb5fc223
def __init__(self, *args, **kwargs): 'Constructor which sets up variables used by tests.\n :param args: arguments.\n :param kwargs: keyword arguments.\n ' super(TestDoabTelescope, self).__init__(*args, **kwargs) self.project_id = os.getenv('TEST_GCP_PROJECT_ID') self.data_location = os.getenv('TEST_GCP_DATA_LOCATION') self.first_download_path = test_fixtures_folder('doab', 'doab1.csv') self.first_execution_date = pendulum.datetime(year=2021, month=2, day=1) self.second_download_path = test_fixtures_folder('doab', 'doab2.csv') self.second_execution_date = pendulum.datetime(year=2021, month=3, day=1)
Constructor which sets up variables used by tests. :param args: arguments. :param kwargs: keyword arguments.
oaebu_workflows/workflows/tests/test_doab_telescope.py
__init__
The-Academic-Observatory/oaebu-workflows
2
python
def __init__(self, *args, **kwargs): 'Constructor which sets up variables used by tests.\n :param args: arguments.\n :param kwargs: keyword arguments.\n ' super(TestDoabTelescope, self).__init__(*args, **kwargs) self.project_id = os.getenv('TEST_GCP_PROJECT_ID') self.data_location = os.getenv('TEST_GCP_DATA_LOCATION') self.first_download_path = test_fixtures_folder('doab', 'doab1.csv') self.first_execution_date = pendulum.datetime(year=2021, month=2, day=1) self.second_download_path = test_fixtures_folder('doab', 'doab2.csv') self.second_execution_date = pendulum.datetime(year=2021, month=3, day=1)
def __init__(self, *args, **kwargs): 'Constructor which sets up variables used by tests.\n :param args: arguments.\n :param kwargs: keyword arguments.\n ' super(TestDoabTelescope, self).__init__(*args, **kwargs) self.project_id = os.getenv('TEST_GCP_PROJECT_ID') self.data_location = os.getenv('TEST_GCP_DATA_LOCATION') self.first_download_path = test_fixtures_folder('doab', 'doab1.csv') self.first_execution_date = pendulum.datetime(year=2021, month=2, day=1) self.second_download_path = test_fixtures_folder('doab', 'doab2.csv') self.second_execution_date = pendulum.datetime(year=2021, month=3, day=1)<|docstring|>Constructor which sets up variables used by tests. :param args: arguments. :param kwargs: keyword arguments.<|endoftext|>
e385552b51f2a0076f298cbb5be7535374f10962b946ccdbc32ad229b7fde5cc
def test_dag_structure(self): 'Test that the DOAB DAG has the correct structure.\n :return: None\n ' dag = DoabTelescope().make_dag() self.assert_dag_structure({'check_dependencies': ['download'], 'download': ['upload_downloaded'], 'upload_downloaded': ['transform'], 'transform': ['upload_transformed'], 'upload_transformed': ['bq_load_partition'], 'bq_load_partition': ['bq_delete_old'], 'bq_delete_old': ['bq_append_new'], 'bq_append_new': ['cleanup'], 'cleanup': []}, dag)
Test that the DOAB DAG has the correct structure. :return: None
oaebu_workflows/workflows/tests/test_doab_telescope.py
test_dag_structure
The-Academic-Observatory/oaebu-workflows
2
python
def test_dag_structure(self): 'Test that the DOAB DAG has the correct structure.\n :return: None\n ' dag = DoabTelescope().make_dag() self.assert_dag_structure({'check_dependencies': ['download'], 'download': ['upload_downloaded'], 'upload_downloaded': ['transform'], 'transform': ['upload_transformed'], 'upload_transformed': ['bq_load_partition'], 'bq_load_partition': ['bq_delete_old'], 'bq_delete_old': ['bq_append_new'], 'bq_append_new': ['cleanup'], 'cleanup': []}, dag)
def test_dag_structure(self): 'Test that the DOAB DAG has the correct structure.\n :return: None\n ' dag = DoabTelescope().make_dag() self.assert_dag_structure({'check_dependencies': ['download'], 'download': ['upload_downloaded'], 'upload_downloaded': ['transform'], 'transform': ['upload_transformed'], 'upload_transformed': ['bq_load_partition'], 'bq_load_partition': ['bq_delete_old'], 'bq_delete_old': ['bq_append_new'], 'bq_append_new': ['cleanup'], 'cleanup': []}, dag)<|docstring|>Test that the DOAB DAG has the correct structure. :return: None<|endoftext|>
fb5e28297a5557010d62fed32e64c9bbfc6b1e7fb4b67eee0de4f895c264ae46
def test_dag_load(self): 'Test that the DOAB DAG can be loaded from a DAG bag.\n :return: None\n ' with ObservatoryEnvironment().create(): dag_file = os.path.join(module_file_path('oaebu_workflows.dags'), 'doab_telescope.py') self.assert_dag_load('doab', dag_file)
Test that the DOAB DAG can be loaded from a DAG bag. :return: None
oaebu_workflows/workflows/tests/test_doab_telescope.py
test_dag_load
The-Academic-Observatory/oaebu-workflows
2
python
def test_dag_load(self): 'Test that the DOAB DAG can be loaded from a DAG bag.\n :return: None\n ' with ObservatoryEnvironment().create(): dag_file = os.path.join(module_file_path('oaebu_workflows.dags'), 'doab_telescope.py') self.assert_dag_load('doab', dag_file)
def test_dag_load(self): 'Test that the DOAB DAG can be loaded from a DAG bag.\n :return: None\n ' with ObservatoryEnvironment().create(): dag_file = os.path.join(module_file_path('oaebu_workflows.dags'), 'doab_telescope.py') self.assert_dag_load('doab', dag_file)<|docstring|>Test that the DOAB DAG can be loaded from a DAG bag. :return: None<|endoftext|>
81935d7c2cc12d42a882bbaa07df08c9d76b2a0fcaf06bf319aeb3dc135ab4af
def test_telescope(self): 'Test the DOAB telescope end to end.\n :return: None.\n ' env = ObservatoryEnvironment(self.project_id, self.data_location) dataset_id = env.add_dataset() telescope = DoabTelescope(dataset_id=dataset_id) dag = telescope.make_dag() with env.create(): with env.create_dag_run(dag, self.first_execution_date) as m_dagrun: env.run_task(telescope.check_dependencies.__name__) (start_date, end_date, first_release) = telescope.get_release_info(execution_date=self.first_execution_date, dag_run=m_dagrun, dag=dag, next_execution_date=pendulum.datetime(2021, 3, 1)) release = DoabRelease(telescope.dag_id, start_date, end_date, first_release) with httpretty.enabled(): self.setup_mock_file_download(DoabTelescope.CSV_URL, self.first_download_path) env.run_task(telescope.download.__name__) self.assertEqual(1, len(release.download_files)) download_path = release.download_files[0] expected_file_hash = get_file_hash(file_path=self.first_download_path, algorithm='md5') self.assert_file_integrity(download_path, expected_file_hash, 'md5') env.run_task(telescope.upload_downloaded.__name__) self.assert_blob_integrity(env.download_bucket, blob_name(download_path), download_path) env.run_task(telescope.transform.__name__) self.assertEqual(1, len(release.transform_files)) transform_path = release.transform_files[0] expected_file_hash = '97a86394' self.assert_file_integrity(transform_path, expected_file_hash, 'gzip_crc') env.run_task(telescope.upload_transformed.__name__) self.assert_blob_integrity(env.transform_bucket, blob_name(transform_path), transform_path) ti = env.run_task(telescope.bq_load_partition.__name__) self.assertEqual(ti.state, 'skipped') with patch('observatory.platform.utils.gc_utils.bq_query_bytes_daily_limit_check'): ti = env.run_task(telescope.bq_delete_old.__name__) self.assertEqual(ti.state, 'skipped') env.run_task(telescope.bq_append_new.__name__) (main_table_id, partition_table_id) = table_ids_from_path(transform_path) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 4 self.assert_table_integrity(table_id, expected_rows) (download_folder, extract_folder, transform_folder) = (release.download_folder, release.extract_folder, release.transform_folder) env.run_task(telescope.cleanup.__name__) self.assert_cleanup(download_folder, extract_folder, transform_folder) with env.create_dag_run(dag, self.second_execution_date) as m_dag_run: env.run_task(telescope.check_dependencies.__name__) (start_date, end_date, first_release) = telescope.get_release_info(execution_date=self.second_execution_date, dag_run=m_dag_run, dag=dag, next_execution_date=pendulum.datetime(2021, 4, 1)) self.assertEqual((release.end_date + timedelta(days=1)), start_date) self.assertEqual((pendulum.today('UTC') - timedelta(days=1)), end_date) self.assertFalse(first_release) release = DoabRelease(telescope.dag_id, start_date, end_date, first_release) with httpretty.enabled(): self.setup_mock_file_download(DoabTelescope.CSV_URL, self.second_download_path) env.run_task(telescope.download.__name__) self.assertEqual(1, len(release.download_files)) download_path = release.download_files[0] expected_file_hash = get_file_hash(file_path=self.second_download_path, algorithm='md5') self.assert_file_integrity(download_path, expected_file_hash, 'md5') env.run_task(telescope.upload_downloaded.__name__) self.assert_blob_integrity(env.download_bucket, blob_name(download_path), download_path) env.run_task(telescope.transform.__name__) self.assertEqual(1, len(release.transform_files)) transform_path = release.transform_files[0] expected_file_hash = '19f6ba1e' self.assert_file_integrity(transform_path, expected_file_hash, 'gzip_crc') env.run_task(telescope.upload_transformed.__name__) self.assert_blob_integrity(env.transform_bucket, blob_name(transform_path), transform_path) env.run_task(telescope.bq_load_partition.__name__) (main_table_id, partition_table_id) = table_ids_from_path(transform_path) table_id = create_date_table_id(partition_table_id, release.end_date, bigquery.TimePartitioningType.DAY) table_id = f'{self.project_id}.{telescope.dataset_id}.{table_id}' expected_rows = 4 self.assert_table_integrity(table_id, expected_rows) with patch('observatory.platform.utils.gc_utils.bq_query_bytes_daily_limit_check'): env.run_task(telescope.bq_delete_old.__name__) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 3 self.assert_table_integrity(table_id, expected_rows) env.run_task(telescope.bq_append_new.__name__) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 7 self.assert_table_integrity(table_id, expected_rows) (download_folder, extract_folder, transform_folder) = (release.download_folder, release.extract_folder, release.transform_folder) env.run_task(telescope.cleanup.__name__) self.assert_cleanup(download_folder, extract_folder, transform_folder)
Test the DOAB telescope end to end. :return: None.
oaebu_workflows/workflows/tests/test_doab_telescope.py
test_telescope
The-Academic-Observatory/oaebu-workflows
2
python
def test_telescope(self): 'Test the DOAB telescope end to end.\n :return: None.\n ' env = ObservatoryEnvironment(self.project_id, self.data_location) dataset_id = env.add_dataset() telescope = DoabTelescope(dataset_id=dataset_id) dag = telescope.make_dag() with env.create(): with env.create_dag_run(dag, self.first_execution_date) as m_dagrun: env.run_task(telescope.check_dependencies.__name__) (start_date, end_date, first_release) = telescope.get_release_info(execution_date=self.first_execution_date, dag_run=m_dagrun, dag=dag, next_execution_date=pendulum.datetime(2021, 3, 1)) release = DoabRelease(telescope.dag_id, start_date, end_date, first_release) with httpretty.enabled(): self.setup_mock_file_download(DoabTelescope.CSV_URL, self.first_download_path) env.run_task(telescope.download.__name__) self.assertEqual(1, len(release.download_files)) download_path = release.download_files[0] expected_file_hash = get_file_hash(file_path=self.first_download_path, algorithm='md5') self.assert_file_integrity(download_path, expected_file_hash, 'md5') env.run_task(telescope.upload_downloaded.__name__) self.assert_blob_integrity(env.download_bucket, blob_name(download_path), download_path) env.run_task(telescope.transform.__name__) self.assertEqual(1, len(release.transform_files)) transform_path = release.transform_files[0] expected_file_hash = '97a86394' self.assert_file_integrity(transform_path, expected_file_hash, 'gzip_crc') env.run_task(telescope.upload_transformed.__name__) self.assert_blob_integrity(env.transform_bucket, blob_name(transform_path), transform_path) ti = env.run_task(telescope.bq_load_partition.__name__) self.assertEqual(ti.state, 'skipped') with patch('observatory.platform.utils.gc_utils.bq_query_bytes_daily_limit_check'): ti = env.run_task(telescope.bq_delete_old.__name__) self.assertEqual(ti.state, 'skipped') env.run_task(telescope.bq_append_new.__name__) (main_table_id, partition_table_id) = table_ids_from_path(transform_path) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 4 self.assert_table_integrity(table_id, expected_rows) (download_folder, extract_folder, transform_folder) = (release.download_folder, release.extract_folder, release.transform_folder) env.run_task(telescope.cleanup.__name__) self.assert_cleanup(download_folder, extract_folder, transform_folder) with env.create_dag_run(dag, self.second_execution_date) as m_dag_run: env.run_task(telescope.check_dependencies.__name__) (start_date, end_date, first_release) = telescope.get_release_info(execution_date=self.second_execution_date, dag_run=m_dag_run, dag=dag, next_execution_date=pendulum.datetime(2021, 4, 1)) self.assertEqual((release.end_date + timedelta(days=1)), start_date) self.assertEqual((pendulum.today('UTC') - timedelta(days=1)), end_date) self.assertFalse(first_release) release = DoabRelease(telescope.dag_id, start_date, end_date, first_release) with httpretty.enabled(): self.setup_mock_file_download(DoabTelescope.CSV_URL, self.second_download_path) env.run_task(telescope.download.__name__) self.assertEqual(1, len(release.download_files)) download_path = release.download_files[0] expected_file_hash = get_file_hash(file_path=self.second_download_path, algorithm='md5') self.assert_file_integrity(download_path, expected_file_hash, 'md5') env.run_task(telescope.upload_downloaded.__name__) self.assert_blob_integrity(env.download_bucket, blob_name(download_path), download_path) env.run_task(telescope.transform.__name__) self.assertEqual(1, len(release.transform_files)) transform_path = release.transform_files[0] expected_file_hash = '19f6ba1e' self.assert_file_integrity(transform_path, expected_file_hash, 'gzip_crc') env.run_task(telescope.upload_transformed.__name__) self.assert_blob_integrity(env.transform_bucket, blob_name(transform_path), transform_path) env.run_task(telescope.bq_load_partition.__name__) (main_table_id, partition_table_id) = table_ids_from_path(transform_path) table_id = create_date_table_id(partition_table_id, release.end_date, bigquery.TimePartitioningType.DAY) table_id = f'{self.project_id}.{telescope.dataset_id}.{table_id}' expected_rows = 4 self.assert_table_integrity(table_id, expected_rows) with patch('observatory.platform.utils.gc_utils.bq_query_bytes_daily_limit_check'): env.run_task(telescope.bq_delete_old.__name__) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 3 self.assert_table_integrity(table_id, expected_rows) env.run_task(telescope.bq_append_new.__name__) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 7 self.assert_table_integrity(table_id, expected_rows) (download_folder, extract_folder, transform_folder) = (release.download_folder, release.extract_folder, release.transform_folder) env.run_task(telescope.cleanup.__name__) self.assert_cleanup(download_folder, extract_folder, transform_folder)
def test_telescope(self): 'Test the DOAB telescope end to end.\n :return: None.\n ' env = ObservatoryEnvironment(self.project_id, self.data_location) dataset_id = env.add_dataset() telescope = DoabTelescope(dataset_id=dataset_id) dag = telescope.make_dag() with env.create(): with env.create_dag_run(dag, self.first_execution_date) as m_dagrun: env.run_task(telescope.check_dependencies.__name__) (start_date, end_date, first_release) = telescope.get_release_info(execution_date=self.first_execution_date, dag_run=m_dagrun, dag=dag, next_execution_date=pendulum.datetime(2021, 3, 1)) release = DoabRelease(telescope.dag_id, start_date, end_date, first_release) with httpretty.enabled(): self.setup_mock_file_download(DoabTelescope.CSV_URL, self.first_download_path) env.run_task(telescope.download.__name__) self.assertEqual(1, len(release.download_files)) download_path = release.download_files[0] expected_file_hash = get_file_hash(file_path=self.first_download_path, algorithm='md5') self.assert_file_integrity(download_path, expected_file_hash, 'md5') env.run_task(telescope.upload_downloaded.__name__) self.assert_blob_integrity(env.download_bucket, blob_name(download_path), download_path) env.run_task(telescope.transform.__name__) self.assertEqual(1, len(release.transform_files)) transform_path = release.transform_files[0] expected_file_hash = '97a86394' self.assert_file_integrity(transform_path, expected_file_hash, 'gzip_crc') env.run_task(telescope.upload_transformed.__name__) self.assert_blob_integrity(env.transform_bucket, blob_name(transform_path), transform_path) ti = env.run_task(telescope.bq_load_partition.__name__) self.assertEqual(ti.state, 'skipped') with patch('observatory.platform.utils.gc_utils.bq_query_bytes_daily_limit_check'): ti = env.run_task(telescope.bq_delete_old.__name__) self.assertEqual(ti.state, 'skipped') env.run_task(telescope.bq_append_new.__name__) (main_table_id, partition_table_id) = table_ids_from_path(transform_path) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 4 self.assert_table_integrity(table_id, expected_rows) (download_folder, extract_folder, transform_folder) = (release.download_folder, release.extract_folder, release.transform_folder) env.run_task(telescope.cleanup.__name__) self.assert_cleanup(download_folder, extract_folder, transform_folder) with env.create_dag_run(dag, self.second_execution_date) as m_dag_run: env.run_task(telescope.check_dependencies.__name__) (start_date, end_date, first_release) = telescope.get_release_info(execution_date=self.second_execution_date, dag_run=m_dag_run, dag=dag, next_execution_date=pendulum.datetime(2021, 4, 1)) self.assertEqual((release.end_date + timedelta(days=1)), start_date) self.assertEqual((pendulum.today('UTC') - timedelta(days=1)), end_date) self.assertFalse(first_release) release = DoabRelease(telescope.dag_id, start_date, end_date, first_release) with httpretty.enabled(): self.setup_mock_file_download(DoabTelescope.CSV_URL, self.second_download_path) env.run_task(telescope.download.__name__) self.assertEqual(1, len(release.download_files)) download_path = release.download_files[0] expected_file_hash = get_file_hash(file_path=self.second_download_path, algorithm='md5') self.assert_file_integrity(download_path, expected_file_hash, 'md5') env.run_task(telescope.upload_downloaded.__name__) self.assert_blob_integrity(env.download_bucket, blob_name(download_path), download_path) env.run_task(telescope.transform.__name__) self.assertEqual(1, len(release.transform_files)) transform_path = release.transform_files[0] expected_file_hash = '19f6ba1e' self.assert_file_integrity(transform_path, expected_file_hash, 'gzip_crc') env.run_task(telescope.upload_transformed.__name__) self.assert_blob_integrity(env.transform_bucket, blob_name(transform_path), transform_path) env.run_task(telescope.bq_load_partition.__name__) (main_table_id, partition_table_id) = table_ids_from_path(transform_path) table_id = create_date_table_id(partition_table_id, release.end_date, bigquery.TimePartitioningType.DAY) table_id = f'{self.project_id}.{telescope.dataset_id}.{table_id}' expected_rows = 4 self.assert_table_integrity(table_id, expected_rows) with patch('observatory.platform.utils.gc_utils.bq_query_bytes_daily_limit_check'): env.run_task(telescope.bq_delete_old.__name__) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 3 self.assert_table_integrity(table_id, expected_rows) env.run_task(telescope.bq_append_new.__name__) table_id = f'{self.project_id}.{telescope.dataset_id}.{main_table_id}' expected_rows = 7 self.assert_table_integrity(table_id, expected_rows) (download_folder, extract_folder, transform_folder) = (release.download_folder, release.extract_folder, release.transform_folder) env.run_task(telescope.cleanup.__name__) self.assert_cleanup(download_folder, extract_folder, transform_folder)<|docstring|>Test the DOAB telescope end to end. :return: None.<|endoftext|>
68dcb955c07c3025215c3fd59a4919773d0eea7e1dfa359d1eb30ac61f04d603
def test_airflow_vars(self): 'Cover case when airflow_vars is given.' telescope = DoabTelescope(airflow_vars=[AirflowVars.DOWNLOAD_BUCKET]) self.assertEqual(set(telescope.airflow_vars), {AirflowVars.DOWNLOAD_BUCKET, AirflowVars.TRANSFORM_BUCKET})
Cover case when airflow_vars is given.
oaebu_workflows/workflows/tests/test_doab_telescope.py
test_airflow_vars
The-Academic-Observatory/oaebu-workflows
2
python
def test_airflow_vars(self): telescope = DoabTelescope(airflow_vars=[AirflowVars.DOWNLOAD_BUCKET]) self.assertEqual(set(telescope.airflow_vars), {AirflowVars.DOWNLOAD_BUCKET, AirflowVars.TRANSFORM_BUCKET})
def test_airflow_vars(self): telescope = DoabTelescope(airflow_vars=[AirflowVars.DOWNLOAD_BUCKET]) self.assertEqual(set(telescope.airflow_vars), {AirflowVars.DOWNLOAD_BUCKET, AirflowVars.TRANSFORM_BUCKET})<|docstring|>Cover case when airflow_vars is given.<|endoftext|>
eaa039273c2a812fe1556e5b7df5722c2a817d8db2043dd6d383634adac08475
@patch('observatory.platform.utils.workflow_utils.Variable.get') def test_download(self, mock_variable_get): "Download release and check exception is raised when response is not 200 or csv is empty.\n\n :param mock_variable_get: Mock result of airflow's Variable.get() function\n :return:\n " start_date = pendulum.datetime(2020, 1, 1) end_date = pendulum.datetime(2020, 1, 31) release = DoabRelease('doab', start_date, end_date, False) with CliRunner().isolated_filesystem(): mock_variable_get.return_value = 'data' with httpretty.enabled(): httpretty.register_uri(httpretty.GET, DoabTelescope.CSV_URL, status=400) with self.assertRaises(AirflowException): release.download() with httpretty.enabled(): empty_csv = 'Column1,Column2' httpretty.register_uri(httpretty.GET, DoabTelescope.CSV_URL, body=empty_csv) with self.assertRaises(AirflowException): release.download()
Download release and check exception is raised when response is not 200 or csv is empty. :param mock_variable_get: Mock result of airflow's Variable.get() function :return:
oaebu_workflows/workflows/tests/test_doab_telescope.py
test_download
The-Academic-Observatory/oaebu-workflows
2
python
@patch('observatory.platform.utils.workflow_utils.Variable.get') def test_download(self, mock_variable_get): "Download release and check exception is raised when response is not 200 or csv is empty.\n\n :param mock_variable_get: Mock result of airflow's Variable.get() function\n :return:\n " start_date = pendulum.datetime(2020, 1, 1) end_date = pendulum.datetime(2020, 1, 31) release = DoabRelease('doab', start_date, end_date, False) with CliRunner().isolated_filesystem(): mock_variable_get.return_value = 'data' with httpretty.enabled(): httpretty.register_uri(httpretty.GET, DoabTelescope.CSV_URL, status=400) with self.assertRaises(AirflowException): release.download() with httpretty.enabled(): empty_csv = 'Column1,Column2' httpretty.register_uri(httpretty.GET, DoabTelescope.CSV_URL, body=empty_csv) with self.assertRaises(AirflowException): release.download()
@patch('observatory.platform.utils.workflow_utils.Variable.get') def test_download(self, mock_variable_get): "Download release and check exception is raised when response is not 200 or csv is empty.\n\n :param mock_variable_get: Mock result of airflow's Variable.get() function\n :return:\n " start_date = pendulum.datetime(2020, 1, 1) end_date = pendulum.datetime(2020, 1, 31) release = DoabRelease('doab', start_date, end_date, False) with CliRunner().isolated_filesystem(): mock_variable_get.return_value = 'data' with httpretty.enabled(): httpretty.register_uri(httpretty.GET, DoabTelescope.CSV_URL, status=400) with self.assertRaises(AirflowException): release.download() with httpretty.enabled(): empty_csv = 'Column1,Column2' httpretty.register_uri(httpretty.GET, DoabTelescope.CSV_URL, body=empty_csv) with self.assertRaises(AirflowException): release.download()<|docstring|>Download release and check exception is raised when response is not 200 or csv is empty. :param mock_variable_get: Mock result of airflow's Variable.get() function :return:<|endoftext|>
1f03ed0eab93ea4092337f8eaf32a4a095d864c68c7f2600d148ce18223e5f1b
def test_transform_dict(self): 'Check transform_dict handling of invalid case.' nested_fields = ['dc.subject.classification'] list_fields = ['dc.subject.classification', 'dc.date.issued', 'BITSTREAM ISBN'] test_dict = {'field1': [{'1': 'value1'}, '2'], 'field2': None, 'dc.subject.classification': 'value1||value2', 'dc.date.issued': '0000-01-01', 'BITSTREAM ISBN': '123-5521-4521'} transformed_dict = {'field1': [{'1': 'value1'}, '2'], 'dc': {'subject': {'classification': {'value': ['value1', 'value2']}}}, 'dc_date_issued': [], 'BITSTREAM_ISBN': ['12355214521']} result = transform_dict(test_dict, convert, nested_fields, list_fields) self.assertDictEqual(result, transformed_dict)
Check transform_dict handling of invalid case.
oaebu_workflows/workflows/tests/test_doab_telescope.py
test_transform_dict
The-Academic-Observatory/oaebu-workflows
2
python
def test_transform_dict(self): nested_fields = ['dc.subject.classification'] list_fields = ['dc.subject.classification', 'dc.date.issued', 'BITSTREAM ISBN'] test_dict = {'field1': [{'1': 'value1'}, '2'], 'field2': None, 'dc.subject.classification': 'value1||value2', 'dc.date.issued': '0000-01-01', 'BITSTREAM ISBN': '123-5521-4521'} transformed_dict = {'field1': [{'1': 'value1'}, '2'], 'dc': {'subject': {'classification': {'value': ['value1', 'value2']}}}, 'dc_date_issued': [], 'BITSTREAM_ISBN': ['12355214521']} result = transform_dict(test_dict, convert, nested_fields, list_fields) self.assertDictEqual(result, transformed_dict)
def test_transform_dict(self): nested_fields = ['dc.subject.classification'] list_fields = ['dc.subject.classification', 'dc.date.issued', 'BITSTREAM ISBN'] test_dict = {'field1': [{'1': 'value1'}, '2'], 'field2': None, 'dc.subject.classification': 'value1||value2', 'dc.date.issued': '0000-01-01', 'BITSTREAM ISBN': '123-5521-4521'} transformed_dict = {'field1': [{'1': 'value1'}, '2'], 'dc': {'subject': {'classification': {'value': ['value1', 'value2']}}}, 'dc_date_issued': [], 'BITSTREAM_ISBN': ['12355214521']} result = transform_dict(test_dict, convert, nested_fields, list_fields) self.assertDictEqual(result, transformed_dict)<|docstring|>Check transform_dict handling of invalid case.<|endoftext|>
4b44da72b93008c7167410ab110ed626b250fbc8173d2052555caa1d7df6ba91
@tf.autograph.experimental.do_not_convert def normalize_img(image, label): 'Normalizes images: `uint8` -> `float32`.' return ((tf.cast(image, tf.float32) / 255.0), label)
Normalizes images: `uint8` -> `float32`.
tests/test_custom_layers.py
normalize_img
saugatkandel/cvnn
38
python
@tf.autograph.experimental.do_not_convert def normalize_img(image, label): return ((tf.cast(image, tf.float32) / 255.0), label)
@tf.autograph.experimental.do_not_convert def normalize_img(image, label): return ((tf.cast(image, tf.float32) / 255.0), label)<|docstring|>Normalizes images: `uint8` -> `float32`.<|endoftext|>
843fd8c71699edfe2e506d4cff7bd9a9f4934c1340844bda682ba58004878be8
def pre_processing(self): '\n Process local run dictionary to create the run directory and input file.\n If clean_restart is True the clean_run method is called before the run.\n Call the :meth:`copy_source_dir` that manages the source folder,\n if provided.\n\n ' run_dir = self.run_options.get('run_dir', '.') input = self.run_options.get('input') name = self.run_options.get('name', 'default') skip = self.run_options.get('skip') clean_restart = self.run_options.get('clean_restart') verbose = self.run_options.get('verbose') self._ensure_run_directory() if (input is not None): input.write((os.path.join(run_dir, name) + '.in')) else: print('input not provided') if (not skip): if clean_restart: self.clean_run() elif verbose: print('run performed starting from existing results') self.copy_source_dir() return {}
Process local run dictionary to create the run directory and input file. If clean_restart is True the clean_run method is called before the run. Call the :meth:`copy_source_dir` that manages the source folder, if provided.
mppi/Calculators/QeCalculator.py
pre_processing
marcodalessandro76/MPPI
1
python
def pre_processing(self): '\n Process local run dictionary to create the run directory and input file.\n If clean_restart is True the clean_run method is called before the run.\n Call the :meth:`copy_source_dir` that manages the source folder,\n if provided.\n\n ' run_dir = self.run_options.get('run_dir', '.') input = self.run_options.get('input') name = self.run_options.get('name', 'default') skip = self.run_options.get('skip') clean_restart = self.run_options.get('clean_restart') verbose = self.run_options.get('verbose') self._ensure_run_directory() if (input is not None): input.write((os.path.join(run_dir, name) + '.in')) else: print('input not provided') if (not skip): if clean_restart: self.clean_run() elif verbose: print('run performed starting from existing results') self.copy_source_dir() return {}
def pre_processing(self): '\n Process local run dictionary to create the run directory and input file.\n If clean_restart is True the clean_run method is called before the run.\n Call the :meth:`copy_source_dir` that manages the source folder,\n if provided.\n\n ' run_dir = self.run_options.get('run_dir', '.') input = self.run_options.get('input') name = self.run_options.get('name', 'default') skip = self.run_options.get('skip') clean_restart = self.run_options.get('clean_restart') verbose = self.run_options.get('verbose') self._ensure_run_directory() if (input is not None): input.write((os.path.join(run_dir, name) + '.in')) else: print('input not provided') if (not skip): if clean_restart: self.clean_run() elif verbose: print('run performed starting from existing results') self.copy_source_dir() return {}<|docstring|>Process local run dictionary to create the run directory and input file. If clean_restart is True the clean_run method is called before the run. Call the :meth:`copy_source_dir` that manages the source folder, if provided.<|endoftext|>
2b3a09f24069ce792360d8d21010229479334ad267190f766ff7ff481dc87173
def process_run(self): '\n Method associated to the running of the executable. The method runs the computation\n and wait the end of the computation before passing to the :meth:`post_processing` method.\n\n ' to_run = self.is_to_run() if to_run: job = self.run_job() self.wait(job) return {}
Method associated to the running of the executable. The method runs the computation and wait the end of the computation before passing to the :meth:`post_processing` method.
mppi/Calculators/QeCalculator.py
process_run
marcodalessandro76/MPPI
1
python
def process_run(self): '\n Method associated to the running of the executable. The method runs the computation\n and wait the end of the computation before passing to the :meth:`post_processing` method.\n\n ' to_run = self.is_to_run() if to_run: job = self.run_job() self.wait(job) return {}
def process_run(self): '\n Method associated to the running of the executable. The method runs the computation\n and wait the end of the computation before passing to the :meth:`post_processing` method.\n\n ' to_run = self.is_to_run() if to_run: job = self.run_job() self.wait(job) return {}<|docstring|>Method associated to the running of the executable. The method runs the computation and wait the end of the computation before passing to the :meth:`post_processing` method.<|endoftext|>
85b3a4908558e6ad40a8349dd09a12e1f9c3938d0174397c3698c2899b5ab04d
def post_processing(self): '\n Return the name, including the path, of the data-file-schema.xml file. If the file is absent the\n method displays a warning.\n\n Return:\n :py:class:`string` : name, including the path, of the xml data-file-schema file\n\n ' input = self.run_options.get('input') prefix = input.get_prefix() out_dir = self._get_outdir_path() save_dir = (os.path.join(out_dir, prefix) + '.save') result = os.path.join(save_dir, 'data-file-schema.xml') if (not os.path.isfile(result)): print(('Expected file %s not found' % result)) print('\n Check if wait_end_run is False or the dry_run option is active.\n Otherwise a possible error has occured during the computation') return result
Return the name, including the path, of the data-file-schema.xml file. If the file is absent the method displays a warning. Return: :py:class:`string` : name, including the path, of the xml data-file-schema file
mppi/Calculators/QeCalculator.py
post_processing
marcodalessandro76/MPPI
1
python
def post_processing(self): '\n Return the name, including the path, of the data-file-schema.xml file. If the file is absent the\n method displays a warning.\n\n Return:\n :py:class:`string` : name, including the path, of the xml data-file-schema file\n\n ' input = self.run_options.get('input') prefix = input.get_prefix() out_dir = self._get_outdir_path() save_dir = (os.path.join(out_dir, prefix) + '.save') result = os.path.join(save_dir, 'data-file-schema.xml') if (not os.path.isfile(result)): print(('Expected file %s not found' % result)) print('\n Check if wait_end_run is False or the dry_run option is active.\n Otherwise a possible error has occured during the computation') return result
def post_processing(self): '\n Return the name, including the path, of the data-file-schema.xml file. If the file is absent the\n method displays a warning.\n\n Return:\n :py:class:`string` : name, including the path, of the xml data-file-schema file\n\n ' input = self.run_options.get('input') prefix = input.get_prefix() out_dir = self._get_outdir_path() save_dir = (os.path.join(out_dir, prefix) + '.save') result = os.path.join(save_dir, 'data-file-schema.xml') if (not os.path.isfile(result)): print(('Expected file %s not found' % result)) print('\n Check if wait_end_run is False or the dry_run option is active.\n Otherwise a possible error has occured during the computation') return result<|docstring|>Return the name, including the path, of the data-file-schema.xml file. If the file is absent the method displays a warning. Return: :py:class:`string` : name, including the path, of the xml data-file-schema file<|endoftext|>
094a9a5ab7a310504ceb6d9dcaee24b3a33d75b5d02805249ff3266246c5e0de
def is_to_run(self): '\n The method evaluates if the computation can be skipped. This is done by\n checking if the file $prefix.xml is already present in the out_dir.\n\n Return:\n :py:class:`bool` : the boolean is True if the computation needs to be run\n\n ' skip = self.run_options.get('skip') name = (self.run_options.get('name', 'default') + '.in') input = self.run_options['input'] prefix = input.get_prefix() out_dir = self._get_outdir_path() skipfile = (os.path.join(out_dir, prefix) + '.xml') verbose = self.run_options.get('verbose') if (not skip): return True elif os.path.isfile(skipfile): if verbose: print('Skip the run of the input file', name) return False else: return True
The method evaluates if the computation can be skipped. This is done by checking if the file $prefix.xml is already present in the out_dir. Return: :py:class:`bool` : the boolean is True if the computation needs to be run
mppi/Calculators/QeCalculator.py
is_to_run
marcodalessandro76/MPPI
1
python
def is_to_run(self): '\n The method evaluates if the computation can be skipped. This is done by\n checking if the file $prefix.xml is already present in the out_dir.\n\n Return:\n :py:class:`bool` : the boolean is True if the computation needs to be run\n\n ' skip = self.run_options.get('skip') name = (self.run_options.get('name', 'default') + '.in') input = self.run_options['input'] prefix = input.get_prefix() out_dir = self._get_outdir_path() skipfile = (os.path.join(out_dir, prefix) + '.xml') verbose = self.run_options.get('verbose') if (not skip): return True elif os.path.isfile(skipfile): if verbose: print('Skip the run of the input file', name) return False else: return True
def is_to_run(self): '\n The method evaluates if the computation can be skipped. This is done by\n checking if the file $prefix.xml is already present in the out_dir.\n\n Return:\n :py:class:`bool` : the boolean is True if the computation needs to be run\n\n ' skip = self.run_options.get('skip') name = (self.run_options.get('name', 'default') + '.in') input = self.run_options['input'] prefix = input.get_prefix() out_dir = self._get_outdir_path() skipfile = (os.path.join(out_dir, prefix) + '.xml') verbose = self.run_options.get('verbose') if (not skip): return True elif os.path.isfile(skipfile): if verbose: print('Skip the run of the input file', name) return False else: return True<|docstring|>The method evaluates if the computation can be skipped. This is done by checking if the file $prefix.xml is already present in the out_dir. Return: :py:class:`bool` : the boolean is True if the computation needs to be run<|endoftext|>
ba01690c4e5f332030fc8434051fc9b10a1d0e9b707d10d8ad8abd518a6844f1
def run_job(self): '\n Run the computation. The operations performed depend on the scheduler adopted.\n If the dry_run option is enabled the run is not performed but the slurm script\n is written on disk.\n\n Return:\n The type of the object depends on the chosen scheduler. For scheduler `direct`\n job is an instance of Popen, while for `slurm` scheduler job is the name of the\n slurm script.\n\n ' from subprocess import Popen run_dir = self.run_options.get('run_dir', '.') scheduler = self.run_options['scheduler'] dry_run = self.run_options.get('dry_run') verbose = self.run_options.get('verbose') if (scheduler == 'direct'): os.environ['OMP_NUM_THREADS'] = str(self.run_options['omp']) if (not dry_run): comm_str = ('cd %s ; %s' % (run_dir, self.run_command())) job = Popen(comm_str, shell=True) else: job = None if verbose: print('Dry_run option active. Computation not performed') elif (scheduler == 'slurm'): job = self.build_slurm_script() if (not dry_run): slurm_submit = ('cd %s ; sbatch %s.sh' % (run_dir, job)) if verbose: print('slurm submit: ', slurm_submit) slurm_run = Popen(slurm_submit, shell=True) elif verbose: print('Dry_run option active. Script not submitted') else: print('scheduler unknown') return job
Run the computation. The operations performed depend on the scheduler adopted. If the dry_run option is enabled the run is not performed but the slurm script is written on disk. Return: The type of the object depends on the chosen scheduler. For scheduler `direct` job is an instance of Popen, while for `slurm` scheduler job is the name of the slurm script.
mppi/Calculators/QeCalculator.py
run_job
marcodalessandro76/MPPI
1
python
def run_job(self): '\n Run the computation. The operations performed depend on the scheduler adopted.\n If the dry_run option is enabled the run is not performed but the slurm script\n is written on disk.\n\n Return:\n The type of the object depends on the chosen scheduler. For scheduler `direct`\n job is an instance of Popen, while for `slurm` scheduler job is the name of the\n slurm script.\n\n ' from subprocess import Popen run_dir = self.run_options.get('run_dir', '.') scheduler = self.run_options['scheduler'] dry_run = self.run_options.get('dry_run') verbose = self.run_options.get('verbose') if (scheduler == 'direct'): os.environ['OMP_NUM_THREADS'] = str(self.run_options['omp']) if (not dry_run): comm_str = ('cd %s ; %s' % (run_dir, self.run_command())) job = Popen(comm_str, shell=True) else: job = None if verbose: print('Dry_run option active. Computation not performed') elif (scheduler == 'slurm'): job = self.build_slurm_script() if (not dry_run): slurm_submit = ('cd %s ; sbatch %s.sh' % (run_dir, job)) if verbose: print('slurm submit: ', slurm_submit) slurm_run = Popen(slurm_submit, shell=True) elif verbose: print('Dry_run option active. Script not submitted') else: print('scheduler unknown') return job
def run_job(self): '\n Run the computation. The operations performed depend on the scheduler adopted.\n If the dry_run option is enabled the run is not performed but the slurm script\n is written on disk.\n\n Return:\n The type of the object depends on the chosen scheduler. For scheduler `direct`\n job is an instance of Popen, while for `slurm` scheduler job is the name of the\n slurm script.\n\n ' from subprocess import Popen run_dir = self.run_options.get('run_dir', '.') scheduler = self.run_options['scheduler'] dry_run = self.run_options.get('dry_run') verbose = self.run_options.get('verbose') if (scheduler == 'direct'): os.environ['OMP_NUM_THREADS'] = str(self.run_options['omp']) if (not dry_run): comm_str = ('cd %s ; %s' % (run_dir, self.run_command())) job = Popen(comm_str, shell=True) else: job = None if verbose: print('Dry_run option active. Computation not performed') elif (scheduler == 'slurm'): job = self.build_slurm_script() if (not dry_run): slurm_submit = ('cd %s ; sbatch %s.sh' % (run_dir, job)) if verbose: print('slurm submit: ', slurm_submit) slurm_run = Popen(slurm_submit, shell=True) elif verbose: print('Dry_run option active. Script not submitted') else: print('scheduler unknown') return job<|docstring|>Run the computation. The operations performed depend on the scheduler adopted. If the dry_run option is enabled the run is not performed but the slurm script is written on disk. Return: The type of the object depends on the chosen scheduler. For scheduler `direct` job is an instance of Popen, while for `slurm` scheduler job is the name of the slurm script.<|endoftext|>
9292f58debf3be8ec0aa6d5a644672372f9830b2cd679782806068c28f47ed05
def wait(self, job): '\n Wait the end of the job. If the dry_run option is enabled or wait_end_run is False\n the check is not performed.\n\n Args:\n jobs : The reference to the job to be executed. If the scheduler is `direct`\n jobs is an instance of Popen of the :py:class:subprocess package. If the\n scheduler is `slurm` jobs is a string with the name of the slurm script\n\n ' import time dry_run = self.run_options.get('dry_run') wait_end_run = self.run_options.get('wait_end_run') name = self.run_options.get('name', 'default') verbose = self.run_options.get('verbose') delay = 1 if ((wait_end_run is True) and (dry_run is False)): message_written = False while (not self.run_ended(job)): if (not message_written): if verbose: print(('computation %s is running...' % name)) message_written = True time.sleep(delay) if verbose: print(('computation %s ended' % name)) elif verbose: print('The wait_end_run is False or the dry_run option is active. The calculator proceedes to the postprocessing')
Wait the end of the job. If the dry_run option is enabled or wait_end_run is False the check is not performed. Args: jobs : The reference to the job to be executed. If the scheduler is `direct` jobs is an instance of Popen of the :py:class:subprocess package. If the scheduler is `slurm` jobs is a string with the name of the slurm script
mppi/Calculators/QeCalculator.py
wait
marcodalessandro76/MPPI
1
python
def wait(self, job): '\n Wait the end of the job. If the dry_run option is enabled or wait_end_run is False\n the check is not performed.\n\n Args:\n jobs : The reference to the job to be executed. If the scheduler is `direct`\n jobs is an instance of Popen of the :py:class:subprocess package. If the\n scheduler is `slurm` jobs is a string with the name of the slurm script\n\n ' import time dry_run = self.run_options.get('dry_run') wait_end_run = self.run_options.get('wait_end_run') name = self.run_options.get('name', 'default') verbose = self.run_options.get('verbose') delay = 1 if ((wait_end_run is True) and (dry_run is False)): message_written = False while (not self.run_ended(job)): if (not message_written): if verbose: print(('computation %s is running...' % name)) message_written = True time.sleep(delay) if verbose: print(('computation %s ended' % name)) elif verbose: print('The wait_end_run is False or the dry_run option is active. The calculator proceedes to the postprocessing')
def wait(self, job): '\n Wait the end of the job. If the dry_run option is enabled or wait_end_run is False\n the check is not performed.\n\n Args:\n jobs : The reference to the job to be executed. If the scheduler is `direct`\n jobs is an instance of Popen of the :py:class:subprocess package. If the\n scheduler is `slurm` jobs is a string with the name of the slurm script\n\n ' import time dry_run = self.run_options.get('dry_run') wait_end_run = self.run_options.get('wait_end_run') name = self.run_options.get('name', 'default') verbose = self.run_options.get('verbose') delay = 1 if ((wait_end_run is True) and (dry_run is False)): message_written = False while (not self.run_ended(job)): if (not message_written): if verbose: print(('computation %s is running...' % name)) message_written = True time.sleep(delay) if verbose: print(('computation %s ended' % name)) elif verbose: print('The wait_end_run is False or the dry_run option is active. The calculator proceedes to the postprocessing')<|docstring|>Wait the end of the job. If the dry_run option is enabled or wait_end_run is False the check is not performed. Args: jobs : The reference to the job to be executed. If the scheduler is `direct` jobs is an instance of Popen of the :py:class:subprocess package. If the scheduler is `slurm` jobs is a string with the name of the slurm script<|endoftext|>
5eb786942340997fb2766659cdcaa4081c6d8278174ba4e11b33ad3b7ab26787
def build_slurm_script(self): '\n Create the slurm script associated to the run.\n\n Return:\n :py:class:`string`: string with the name of the slurm script\n\n ' omp = self.run_options.get('omp') mpi = self.run_options.get('mpi') input = self.run_options.get('input') prefix = input.get_prefix() out_dir = input.get_outdir() name = self.run_options.get('name', 'default') run_dir = self.run_options.get('run_dir', '.') out_dir_path = self._get_outdir_path() save_dir = (os.path.join(out_dir_path, prefix) + '.save') job = ('job_' + name) sbatch_options = self.run_options.get('sbatch_options') activate_BeeOND = self.run_options.get('activate_BeeOND') comm_str = self.run_command() lines = [] lines.append('#!/bin/bash') lines.append(('#SBATCH --ntasks=%s ### Number of tasks (MPI processes)' % mpi)) lines.append(('#SBATCH --cpus-per-task=%s ### Number of threads per task (OMP threads)' % omp)) for option in sbatch_options: lines.append(('#SBATCH %s' % option)) lines.append(('#SBATCH --output=%s.out' % job)) lines.append('') lines.append('export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK') lines.append(('export OUT_DIR=%s' % out_dir)) lines.append(('export BEEOND_DIR=%s' % self.BeeOND_dir)) lines.append(('export OUT_DIR_PATH=%s' % out_dir_path)) lines.append(('export SAVE_DIR=%s' % save_dir)) lines.append('') lines.append('echo "Cluster name $SLURM_CLUSTER_NAME"') lines.append('echo "Job name $SLURM_JOB_NAME "') lines.append('echo "Job id $SLURM_JOB_ID"') lines.append('echo "Job nodelist $SLURM_JOB_NODELIST"') lines.append('echo "Number of nodes $SLURM_JOB_NUM_NODES"') lines.append('echo "Number of mpi $SLURM_NTASKS"') lines.append('echo "Number of threads per task $SLURM_CPUS_PER_TASK"') lines.append('echo "OUT_DIR input parameter is $OUT_DIR"') lines.append('echo "BEEOND_DIR path is $BEEOND_DIR"') lines.append('echo "OUT_DIR path is $OUT_DIR_PATH"') lines.append('echo "SAVE_DIR path is $SAVE_DIR"') lines.append('echo " "') lines.append('') if activate_BeeOND: lines.append('echo "THe BeeOND option is activated. The I/O is performed in $BEEOND_DIR"') lines.append('if [ ! -d $BEEOND_DIR ]; then') lines.append('echo "$BEEOND_DIR not found!"') lines.append('exit') lines.append('fi') lines.append('echo " "') lines.append('') lines.append('echo "Change the outdir key of the input from $OUT_DIR to $BEEOND_DIR"') lines.append(('sed -i "/outdir/s:%s:%s:" %s.in' % (out_dir, self.BeeOND_dir, name))) lines.append('echo " "') lines.append('') if os.path.isdir(save_dir): lines.append('echo "found SAVE_DIR folder $SAVE_DIR. Copy the SAVE_DIR in the $BEEOND_DIR folder"') lines.append('echo "rsync -azv $SAVE_DIR $BEEOND_DIR"') lines.append('rsync -azv $SAVE_DIR $BEEOND_DIR') lines.append('echo " "') lines.append('') lines.append(('echo "execute : %s"' % comm_str)) lines.append(comm_str) lines.append('echo " "') lines.append('') if activate_BeeOND: lines.append('echo "Change the outdir key of the input to its original value $OUT_DIR"') lines.append(('sed -i "/outdir/s:%s:%s:" %s.in' % (self.BeeOND_dir, out_dir, name))) lines.append('echo "rsync -azv $BEEOND_DIR/ $OUT_DIR_PATH"') lines.append('rsync -azv $BEEOND_DIR/ $OUT_DIR_PATH') lines.append('echo " "') lines.append('') lines.append('echo "JOB_DONE"') f = open(os.path.join(run_dir, (job + '.sh')), 'w') f.write('\n'.join(lines)) f.close() return job
Create the slurm script associated to the run. Return: :py:class:`string`: string with the name of the slurm script
mppi/Calculators/QeCalculator.py
build_slurm_script
marcodalessandro76/MPPI
1
python
def build_slurm_script(self): '\n Create the slurm script associated to the run.\n\n Return:\n :py:class:`string`: string with the name of the slurm script\n\n ' omp = self.run_options.get('omp') mpi = self.run_options.get('mpi') input = self.run_options.get('input') prefix = input.get_prefix() out_dir = input.get_outdir() name = self.run_options.get('name', 'default') run_dir = self.run_options.get('run_dir', '.') out_dir_path = self._get_outdir_path() save_dir = (os.path.join(out_dir_path, prefix) + '.save') job = ('job_' + name) sbatch_options = self.run_options.get('sbatch_options') activate_BeeOND = self.run_options.get('activate_BeeOND') comm_str = self.run_command() lines = [] lines.append('#!/bin/bash') lines.append(('#SBATCH --ntasks=%s ### Number of tasks (MPI processes)' % mpi)) lines.append(('#SBATCH --cpus-per-task=%s ### Number of threads per task (OMP threads)' % omp)) for option in sbatch_options: lines.append(('#SBATCH %s' % option)) lines.append(('#SBATCH --output=%s.out' % job)) lines.append() lines.append('export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK') lines.append(('export OUT_DIR=%s' % out_dir)) lines.append(('export BEEOND_DIR=%s' % self.BeeOND_dir)) lines.append(('export OUT_DIR_PATH=%s' % out_dir_path)) lines.append(('export SAVE_DIR=%s' % save_dir)) lines.append() lines.append('echo "Cluster name $SLURM_CLUSTER_NAME"') lines.append('echo "Job name $SLURM_JOB_NAME "') lines.append('echo "Job id $SLURM_JOB_ID"') lines.append('echo "Job nodelist $SLURM_JOB_NODELIST"') lines.append('echo "Number of nodes $SLURM_JOB_NUM_NODES"') lines.append('echo "Number of mpi $SLURM_NTASKS"') lines.append('echo "Number of threads per task $SLURM_CPUS_PER_TASK"') lines.append('echo "OUT_DIR input parameter is $OUT_DIR"') lines.append('echo "BEEOND_DIR path is $BEEOND_DIR"') lines.append('echo "OUT_DIR path is $OUT_DIR_PATH"') lines.append('echo "SAVE_DIR path is $SAVE_DIR"') lines.append('echo " "') lines.append() if activate_BeeOND: lines.append('echo "THe BeeOND option is activated. The I/O is performed in $BEEOND_DIR"') lines.append('if [ ! -d $BEEOND_DIR ]; then') lines.append('echo "$BEEOND_DIR not found!"') lines.append('exit') lines.append('fi') lines.append('echo " "') lines.append() lines.append('echo "Change the outdir key of the input from $OUT_DIR to $BEEOND_DIR"') lines.append(('sed -i "/outdir/s:%s:%s:" %s.in' % (out_dir, self.BeeOND_dir, name))) lines.append('echo " "') lines.append() if os.path.isdir(save_dir): lines.append('echo "found SAVE_DIR folder $SAVE_DIR. Copy the SAVE_DIR in the $BEEOND_DIR folder"') lines.append('echo "rsync -azv $SAVE_DIR $BEEOND_DIR"') lines.append('rsync -azv $SAVE_DIR $BEEOND_DIR') lines.append('echo " "') lines.append() lines.append(('echo "execute : %s"' % comm_str)) lines.append(comm_str) lines.append('echo " "') lines.append() if activate_BeeOND: lines.append('echo "Change the outdir key of the input to its original value $OUT_DIR"') lines.append(('sed -i "/outdir/s:%s:%s:" %s.in' % (self.BeeOND_dir, out_dir, name))) lines.append('echo "rsync -azv $BEEOND_DIR/ $OUT_DIR_PATH"') lines.append('rsync -azv $BEEOND_DIR/ $OUT_DIR_PATH') lines.append('echo " "') lines.append() lines.append('echo "JOB_DONE"') f = open(os.path.join(run_dir, (job + '.sh')), 'w') f.write('\n'.join(lines)) f.close() return job
def build_slurm_script(self): '\n Create the slurm script associated to the run.\n\n Return:\n :py:class:`string`: string with the name of the slurm script\n\n ' omp = self.run_options.get('omp') mpi = self.run_options.get('mpi') input = self.run_options.get('input') prefix = input.get_prefix() out_dir = input.get_outdir() name = self.run_options.get('name', 'default') run_dir = self.run_options.get('run_dir', '.') out_dir_path = self._get_outdir_path() save_dir = (os.path.join(out_dir_path, prefix) + '.save') job = ('job_' + name) sbatch_options = self.run_options.get('sbatch_options') activate_BeeOND = self.run_options.get('activate_BeeOND') comm_str = self.run_command() lines = [] lines.append('#!/bin/bash') lines.append(('#SBATCH --ntasks=%s ### Number of tasks (MPI processes)' % mpi)) lines.append(('#SBATCH --cpus-per-task=%s ### Number of threads per task (OMP threads)' % omp)) for option in sbatch_options: lines.append(('#SBATCH %s' % option)) lines.append(('#SBATCH --output=%s.out' % job)) lines.append() lines.append('export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK') lines.append(('export OUT_DIR=%s' % out_dir)) lines.append(('export BEEOND_DIR=%s' % self.BeeOND_dir)) lines.append(('export OUT_DIR_PATH=%s' % out_dir_path)) lines.append(('export SAVE_DIR=%s' % save_dir)) lines.append() lines.append('echo "Cluster name $SLURM_CLUSTER_NAME"') lines.append('echo "Job name $SLURM_JOB_NAME "') lines.append('echo "Job id $SLURM_JOB_ID"') lines.append('echo "Job nodelist $SLURM_JOB_NODELIST"') lines.append('echo "Number of nodes $SLURM_JOB_NUM_NODES"') lines.append('echo "Number of mpi $SLURM_NTASKS"') lines.append('echo "Number of threads per task $SLURM_CPUS_PER_TASK"') lines.append('echo "OUT_DIR input parameter is $OUT_DIR"') lines.append('echo "BEEOND_DIR path is $BEEOND_DIR"') lines.append('echo "OUT_DIR path is $OUT_DIR_PATH"') lines.append('echo "SAVE_DIR path is $SAVE_DIR"') lines.append('echo " "') lines.append() if activate_BeeOND: lines.append('echo "THe BeeOND option is activated. The I/O is performed in $BEEOND_DIR"') lines.append('if [ ! -d $BEEOND_DIR ]; then') lines.append('echo "$BEEOND_DIR not found!"') lines.append('exit') lines.append('fi') lines.append('echo " "') lines.append() lines.append('echo "Change the outdir key of the input from $OUT_DIR to $BEEOND_DIR"') lines.append(('sed -i "/outdir/s:%s:%s:" %s.in' % (out_dir, self.BeeOND_dir, name))) lines.append('echo " "') lines.append() if os.path.isdir(save_dir): lines.append('echo "found SAVE_DIR folder $SAVE_DIR. Copy the SAVE_DIR in the $BEEOND_DIR folder"') lines.append('echo "rsync -azv $SAVE_DIR $BEEOND_DIR"') lines.append('rsync -azv $SAVE_DIR $BEEOND_DIR') lines.append('echo " "') lines.append() lines.append(('echo "execute : %s"' % comm_str)) lines.append(comm_str) lines.append('echo " "') lines.append() if activate_BeeOND: lines.append('echo "Change the outdir key of the input to its original value $OUT_DIR"') lines.append(('sed -i "/outdir/s:%s:%s:" %s.in' % (self.BeeOND_dir, out_dir, name))) lines.append('echo "rsync -azv $BEEOND_DIR/ $OUT_DIR_PATH"') lines.append('rsync -azv $BEEOND_DIR/ $OUT_DIR_PATH') lines.append('echo " "') lines.append() lines.append('echo "JOB_DONE"') f = open(os.path.join(run_dir, (job + '.sh')), 'w') f.write('\n'.join(lines)) f.close() return job<|docstring|>Create the slurm script associated to the run. Return: :py:class:`string`: string with the name of the slurm script<|endoftext|>
54ab9d8a6fb39364b3ef17da81f802182018b26801280e70dd463d60c72fe701
def run_command(self): '\n Define the run command used to run the computation.\n\n Return:\n :py:class:`string` : command that runs the computation\n\n ' executable = self.run_options.get('executable') mpi = self.run_options.get('mpi') mpi_run = self.run_options.get('mpi_run') run_dir = self.run_options.get('run_dir', '.') name = self.run_options.get('name', 'default') verbose = self.run_options.get('verbose') command = ((((mpi_run + ' ') + str(mpi)) + ' ') + executable) input_name = (name + '.in') output_name = (name + '.log') comm_str = (command + (' -inp %s > %s' % (input_name, output_name))) if verbose: print(('run command: %s' % comm_str)) return comm_str
Define the run command used to run the computation. Return: :py:class:`string` : command that runs the computation
mppi/Calculators/QeCalculator.py
run_command
marcodalessandro76/MPPI
1
python
def run_command(self): '\n Define the run command used to run the computation.\n\n Return:\n :py:class:`string` : command that runs the computation\n\n ' executable = self.run_options.get('executable') mpi = self.run_options.get('mpi') mpi_run = self.run_options.get('mpi_run') run_dir = self.run_options.get('run_dir', '.') name = self.run_options.get('name', 'default') verbose = self.run_options.get('verbose') command = ((((mpi_run + ' ') + str(mpi)) + ' ') + executable) input_name = (name + '.in') output_name = (name + '.log') comm_str = (command + (' -inp %s > %s' % (input_name, output_name))) if verbose: print(('run command: %s' % comm_str)) return comm_str
def run_command(self): '\n Define the run command used to run the computation.\n\n Return:\n :py:class:`string` : command that runs the computation\n\n ' executable = self.run_options.get('executable') mpi = self.run_options.get('mpi') mpi_run = self.run_options.get('mpi_run') run_dir = self.run_options.get('run_dir', '.') name = self.run_options.get('name', 'default') verbose = self.run_options.get('verbose') command = ((((mpi_run + ' ') + str(mpi)) + ' ') + executable) input_name = (name + '.in') output_name = (name + '.log') comm_str = (command + (' -inp %s > %s' % (input_name, output_name))) if verbose: print(('run command: %s' % comm_str)) return comm_str<|docstring|>Define the run command used to run the computation. Return: :py:class:`string` : command that runs the computation<|endoftext|>
09a849d9d3fe58c7a5a53a6a447a58363d4e837e95e703f1185330ac5cf2f9bb
def run_ended(self, job): '\n Check the status of the running job.\n\n Args:\n job : reference to the actual job. job is an istance of Popen for `direct` scheduler\n or a string for `slurm` scheduler\n\n Return:\n :py:class:`bool`: return True if the computation is ended and False if it is running\n\n ' scheduler = self.run_options.get('scheduler') run_dir = self.run_options.get('run_dir', '.') if (scheduler == 'direct'): if (job.poll() is not None): is_ended = True else: is_ended = False if (scheduler == 'slurm'): job_out = os.path.join(run_dir, (job + '.out')) if (not os.path.isfile(job_out)): is_ended = False else: with open(job_out, 'r') as f: last_line = f.read().splitlines()[(- 1)] if (last_line == 'JOB_DONE'): is_ended = True else: is_ended = False return is_ended
Check the status of the running job. Args: job : reference to the actual job. job is an istance of Popen for `direct` scheduler or a string for `slurm` scheduler Return: :py:class:`bool`: return True if the computation is ended and False if it is running
mppi/Calculators/QeCalculator.py
run_ended
marcodalessandro76/MPPI
1
python
def run_ended(self, job): '\n Check the status of the running job.\n\n Args:\n job : reference to the actual job. job is an istance of Popen for `direct` scheduler\n or a string for `slurm` scheduler\n\n Return:\n :py:class:`bool`: return True if the computation is ended and False if it is running\n\n ' scheduler = self.run_options.get('scheduler') run_dir = self.run_options.get('run_dir', '.') if (scheduler == 'direct'): if (job.poll() is not None): is_ended = True else: is_ended = False if (scheduler == 'slurm'): job_out = os.path.join(run_dir, (job + '.out')) if (not os.path.isfile(job_out)): is_ended = False else: with open(job_out, 'r') as f: last_line = f.read().splitlines()[(- 1)] if (last_line == 'JOB_DONE'): is_ended = True else: is_ended = False return is_ended
def run_ended(self, job): '\n Check the status of the running job.\n\n Args:\n job : reference to the actual job. job is an istance of Popen for `direct` scheduler\n or a string for `slurm` scheduler\n\n Return:\n :py:class:`bool`: return True if the computation is ended and False if it is running\n\n ' scheduler = self.run_options.get('scheduler') run_dir = self.run_options.get('run_dir', '.') if (scheduler == 'direct'): if (job.poll() is not None): is_ended = True else: is_ended = False if (scheduler == 'slurm'): job_out = os.path.join(run_dir, (job + '.out')) if (not os.path.isfile(job_out)): is_ended = False else: with open(job_out, 'r') as f: last_line = f.read().splitlines()[(- 1)] if (last_line == 'JOB_DONE'): is_ended = True else: is_ended = False return is_ended<|docstring|>Check the status of the running job. Args: job : reference to the actual job. job is an istance of Popen for `direct` scheduler or a string for `slurm` scheduler Return: :py:class:`bool`: return True if the computation is ended and False if it is running<|endoftext|>
24f0acb7e754888ac84c0dbb1fce6977a6bd0b3fb2ce1876e90efc8950a5b608
def clean_run(self): '\n Clean the run before performing the computation. Delete the $name.log and\n the job_$name.out file, located in the `run_dir`, and the $prefix.xml file\n and the $prefix.save folder located in the `out_dir`. Finally, if the\n `out_dir` is empty it is deleted.\n\n ' run_dir = self.run_options.get('run_dir', '.') name = self.run_options.get('name', 'default') input = self.run_options.get('input') verbose = self.run_options.get('verbose') prefix = input.get_prefix() out_dir = self._get_outdir_path() logfile = (os.path.join(run_dir, name) + '.log') job_out = os.path.join(run_dir, (('job_' + name) + '.out')) xmlfile = (os.path.join(out_dir, prefix) + '.xml') save_dir = (os.path.join(out_dir, prefix) + '.save') if os.path.isfile(logfile): if verbose: print('delete log file:', logfile) os.system(('rm %s' % logfile)) if os.path.isfile(job_out): if verbose: print('delete job_out script:', job_out) os.system(('rm %s' % job_out)) if os.path.isfile(xmlfile): if verbose: print('delete xml file:', xmlfile) os.system(('rm %s' % xmlfile)) if os.path.isdir(save_dir): if verbose: print('delete folder:', save_dir) os.system(('rm -r %s' % save_dir)) if (os.path.isdir(out_dir) and (not os.listdir(out_dir))): if verbose: print('delete the out_dir:', out_dir) os.system(('rm -r %s' % out_dir))
Clean the run before performing the computation. Delete the $name.log and the job_$name.out file, located in the `run_dir`, and the $prefix.xml file and the $prefix.save folder located in the `out_dir`. Finally, if the `out_dir` is empty it is deleted.
mppi/Calculators/QeCalculator.py
clean_run
marcodalessandro76/MPPI
1
python
def clean_run(self): '\n Clean the run before performing the computation. Delete the $name.log and\n the job_$name.out file, located in the `run_dir`, and the $prefix.xml file\n and the $prefix.save folder located in the `out_dir`. Finally, if the\n `out_dir` is empty it is deleted.\n\n ' run_dir = self.run_options.get('run_dir', '.') name = self.run_options.get('name', 'default') input = self.run_options.get('input') verbose = self.run_options.get('verbose') prefix = input.get_prefix() out_dir = self._get_outdir_path() logfile = (os.path.join(run_dir, name) + '.log') job_out = os.path.join(run_dir, (('job_' + name) + '.out')) xmlfile = (os.path.join(out_dir, prefix) + '.xml') save_dir = (os.path.join(out_dir, prefix) + '.save') if os.path.isfile(logfile): if verbose: print('delete log file:', logfile) os.system(('rm %s' % logfile)) if os.path.isfile(job_out): if verbose: print('delete job_out script:', job_out) os.system(('rm %s' % job_out)) if os.path.isfile(xmlfile): if verbose: print('delete xml file:', xmlfile) os.system(('rm %s' % xmlfile)) if os.path.isdir(save_dir): if verbose: print('delete folder:', save_dir) os.system(('rm -r %s' % save_dir)) if (os.path.isdir(out_dir) and (not os.listdir(out_dir))): if verbose: print('delete the out_dir:', out_dir) os.system(('rm -r %s' % out_dir))
def clean_run(self): '\n Clean the run before performing the computation. Delete the $name.log and\n the job_$name.out file, located in the `run_dir`, and the $prefix.xml file\n and the $prefix.save folder located in the `out_dir`. Finally, if the\n `out_dir` is empty it is deleted.\n\n ' run_dir = self.run_options.get('run_dir', '.') name = self.run_options.get('name', 'default') input = self.run_options.get('input') verbose = self.run_options.get('verbose') prefix = input.get_prefix() out_dir = self._get_outdir_path() logfile = (os.path.join(run_dir, name) + '.log') job_out = os.path.join(run_dir, (('job_' + name) + '.out')) xmlfile = (os.path.join(out_dir, prefix) + '.xml') save_dir = (os.path.join(out_dir, prefix) + '.save') if os.path.isfile(logfile): if verbose: print('delete log file:', logfile) os.system(('rm %s' % logfile)) if os.path.isfile(job_out): if verbose: print('delete job_out script:', job_out) os.system(('rm %s' % job_out)) if os.path.isfile(xmlfile): if verbose: print('delete xml file:', xmlfile) os.system(('rm %s' % xmlfile)) if os.path.isdir(save_dir): if verbose: print('delete folder:', save_dir) os.system(('rm -r %s' % save_dir)) if (os.path.isdir(out_dir) and (not os.listdir(out_dir))): if verbose: print('delete the out_dir:', out_dir) os.system(('rm -r %s' % out_dir))<|docstring|>Clean the run before performing the computation. Delete the $name.log and the job_$name.out file, located in the `run_dir`, and the $prefix.xml file and the $prefix.save folder located in the `out_dir`. Finally, if the `out_dir` is empty it is deleted.<|endoftext|>
66bb41622780f11d9648e57a668d3aab7dfcc26c3b3fffbdbace9f6777bc058f
def _ensure_run_directory(self): '\n Create the run_dir, if it does not exists\n\n ' run_dir = self.run_options.get('run_dir', '.') verbose = self.run_options.get('verbose') if (not os.path.exists(run_dir)): os.makedirs(run_dir) if verbose: print(("create the run_dir folder : '%s'" % run_dir))
Create the run_dir, if it does not exists
mppi/Calculators/QeCalculator.py
_ensure_run_directory
marcodalessandro76/MPPI
1
python
def _ensure_run_directory(self): '\n \n\n ' run_dir = self.run_options.get('run_dir', '.') verbose = self.run_options.get('verbose') if (not os.path.exists(run_dir)): os.makedirs(run_dir) if verbose: print(("create the run_dir folder : '%s'" % run_dir))
def _ensure_run_directory(self): '\n \n\n ' run_dir = self.run_options.get('run_dir', '.') verbose = self.run_options.get('verbose') if (not os.path.exists(run_dir)): os.makedirs(run_dir) if verbose: print(("create the run_dir folder : '%s'" % run_dir))<|docstring|>Create the run_dir, if it does not exists<|endoftext|>
a3f82c9434a510dff709de819ee92a7d1fc8fe6471cff173dc7102236c11bc6c
def copy_source_dir(self): '\n Copy the source_dir (if provided) in the out_dir and atttibute to the copied folder\n the name $prefix.save.\n\n Args:\n source_dir: the name of the source_dir (tipically it is the .save folder\n of the scf calculation that contains the wave-functions of the ground state).\n\n ' from shutil import copytree source_dir = self.run_options.get('source_dir', None) input = self.run_options.get('input') prefix = input.get_prefix() out_dir = self._get_outdir_path() verbose = self.run_options.get('verbose') if (source_dir is not None): dest_dir = (os.path.join(out_dir, prefix) + '.save') if (not os.path.isdir(dest_dir)): if verbose: print(('copy source_dir %s in the %s' % (source_dir, dest_dir))) copytree(source_dir, dest_dir) elif verbose: print(('The folder %s already exists. Source_dir % s not copied' % (dest_dir, source_dir)))
Copy the source_dir (if provided) in the out_dir and atttibute to the copied folder the name $prefix.save. Args: source_dir: the name of the source_dir (tipically it is the .save folder of the scf calculation that contains the wave-functions of the ground state).
mppi/Calculators/QeCalculator.py
copy_source_dir
marcodalessandro76/MPPI
1
python
def copy_source_dir(self): '\n Copy the source_dir (if provided) in the out_dir and atttibute to the copied folder\n the name $prefix.save.\n\n Args:\n source_dir: the name of the source_dir (tipically it is the .save folder\n of the scf calculation that contains the wave-functions of the ground state).\n\n ' from shutil import copytree source_dir = self.run_options.get('source_dir', None) input = self.run_options.get('input') prefix = input.get_prefix() out_dir = self._get_outdir_path() verbose = self.run_options.get('verbose') if (source_dir is not None): dest_dir = (os.path.join(out_dir, prefix) + '.save') if (not os.path.isdir(dest_dir)): if verbose: print(('copy source_dir %s in the %s' % (source_dir, dest_dir))) copytree(source_dir, dest_dir) elif verbose: print(('The folder %s already exists. Source_dir % s not copied' % (dest_dir, source_dir)))
def copy_source_dir(self): '\n Copy the source_dir (if provided) in the out_dir and atttibute to the copied folder\n the name $prefix.save.\n\n Args:\n source_dir: the name of the source_dir (tipically it is the .save folder\n of the scf calculation that contains the wave-functions of the ground state).\n\n ' from shutil import copytree source_dir = self.run_options.get('source_dir', None) input = self.run_options.get('input') prefix = input.get_prefix() out_dir = self._get_outdir_path() verbose = self.run_options.get('verbose') if (source_dir is not None): dest_dir = (os.path.join(out_dir, prefix) + '.save') if (not os.path.isdir(dest_dir)): if verbose: print(('copy source_dir %s in the %s' % (source_dir, dest_dir))) copytree(source_dir, dest_dir) elif verbose: print(('The folder %s already exists. Source_dir % s not copied' % (dest_dir, source_dir)))<|docstring|>Copy the source_dir (if provided) in the out_dir and atttibute to the copied folder the name $prefix.save. Args: source_dir: the name of the source_dir (tipically it is the .save folder of the scf calculation that contains the wave-functions of the ground state).<|endoftext|>
bee6690e79aa4383dbbc710d3f22540b8522eb90f3e3b54b095689ddb7f9091b
def _get_outdir_path(self): '\n Get the absolute out_dir path. The path is built using the ``outdir`` parameter\n of the input file. If ``outdir`` is provided as a relative address the path starts\n from the ``run_dir`` of the calculator.\n\n ' run_dir = self.run_options.get('run_dir', '.') input = self.run_options.get('input') out_dir = input.get_outdir() if os.path.isabs(out_dir): return out_dir else: return os.path.abspath(os.path.join(run_dir, out_dir))
Get the absolute out_dir path. The path is built using the ``outdir`` parameter of the input file. If ``outdir`` is provided as a relative address the path starts from the ``run_dir`` of the calculator.
mppi/Calculators/QeCalculator.py
_get_outdir_path
marcodalessandro76/MPPI
1
python
def _get_outdir_path(self): '\n Get the absolute out_dir path. The path is built using the ``outdir`` parameter\n of the input file. If ``outdir`` is provided as a relative address the path starts\n from the ``run_dir`` of the calculator.\n\n ' run_dir = self.run_options.get('run_dir', '.') input = self.run_options.get('input') out_dir = input.get_outdir() if os.path.isabs(out_dir): return out_dir else: return os.path.abspath(os.path.join(run_dir, out_dir))
def _get_outdir_path(self): '\n Get the absolute out_dir path. The path is built using the ``outdir`` parameter\n of the input file. If ``outdir`` is provided as a relative address the path starts\n from the ``run_dir`` of the calculator.\n\n ' run_dir = self.run_options.get('run_dir', '.') input = self.run_options.get('input') out_dir = input.get_outdir() if os.path.isabs(out_dir): return out_dir else: return os.path.abspath(os.path.join(run_dir, out_dir))<|docstring|>Get the absolute out_dir path. The path is built using the ``outdir`` parameter of the input file. If ``outdir`` is provided as a relative address the path starts from the ``run_dir`` of the calculator.<|endoftext|>
07362466ba0333f06fd56fdc177e23c57dbd3f0554c927564d49eec13ac724ce
def addTrace(tracer, entity, signalName): '\n Add a signal to a tracer\n ' signal = '{0}.{1}'.format(entity.name, signalName) filename = '{0}-{1}'.format(entity.name, signalName) tracer.add(signal, filename)
Add a signal to a tracer
python/dynamic_graph/sot/torque_control/talos/create_entities_utils_talos.py
addTrace
nim65s/talos-torque-control
3
python
def addTrace(tracer, entity, signalName): '\n \n ' signal = '{0}.{1}'.format(entity.name, signalName) filename = '{0}-{1}'.format(entity.name, signalName) tracer.add(signal, filename)
def addTrace(tracer, entity, signalName): '\n \n ' signal = '{0}.{1}'.format(entity.name, signalName) filename = '{0}-{1}'.format(entity.name, signalName) tracer.add(signal, filename)<|docstring|>Add a signal to a tracer<|endoftext|>
60f81fa3ecda277a4cf7c81cfd2559ff151cf12fda40955968f525604fb32790
def needs_loop(func): "\n A safeguard decorator for methods that require a live event loop.\n Inner function is needed to capture the instance reference -\n when needs_loop() is executed, there is no instance yet (hence no 'self')\n " @wraps(func) def wrapper(*args, **kwargs): self = args[0] if (not self.loop.is_running()): raise Exception('Cannot submit task to a stopped loop.') return func(*args, **kwargs) return wrapper
A safeguard decorator for methods that require a live event loop. Inner function is needed to capture the instance reference - when needs_loop() is executed, there is no instance yet (hence no 'self')
sshexec.py
needs_loop
bshakur8/asyncssh-pool
0
python
def needs_loop(func): "\n A safeguard decorator for methods that require a live event loop.\n Inner function is needed to capture the instance reference -\n when needs_loop() is executed, there is no instance yet (hence no 'self')\n " @wraps(func) def wrapper(*args, **kwargs): self = args[0] if (not self.loop.is_running()): raise Exception('Cannot submit task to a stopped loop.') return func(*args, **kwargs) return wrapper
def needs_loop(func): "\n A safeguard decorator for methods that require a live event loop.\n Inner function is needed to capture the instance reference -\n when needs_loop() is executed, there is no instance yet (hence no 'self')\n " @wraps(func) def wrapper(*args, **kwargs): self = args[0] if (not self.loop.is_running()): raise Exception('Cannot submit task to a stopped loop.') return func(*args, **kwargs) return wrapper<|docstring|>A safeguard decorator for methods that require a live event loop. Inner function is needed to capture the instance reference - when needs_loop() is executed, there is no instance yet (hence no 'self')<|endoftext|>
8abb1ef82cbdf185b69f6742cdab381e2ece0a9e3dde1a73ee7b7fdb28140261
def log_debug(*args, **kwargs): '\n By default - outputs nothing. Uncomment one of the lines below as needed.\n ' pass
By default - outputs nothing. Uncomment one of the lines below as needed.
sshexec.py
log_debug
bshakur8/asyncssh-pool
0
python
def log_debug(*args, **kwargs): '\n \n ' pass
def log_debug(*args, **kwargs): '\n \n ' pass<|docstring|>By default - outputs nothing. Uncomment one of the lines below as needed.<|endoftext|>
e3da9cd2cd8cbbf96fc9014db96b67d84a95cd8e3ca552c9f08d4f25495e2c65
def __init__(self, hostname=None, username=None, password=None, port=22): '\n :param hostname: str, IP to server to run the command on\n :param username: str, username\n :param password: str, password\n :param port: int, SSH Port (Default 22)\n ' self.hostname = hostname self.username = username self.password = password self.port = port
:param hostname: str, IP to server to run the command on :param username: str, username :param password: str, password :param port: int, SSH Port (Default 22)
sshexec.py
__init__
bshakur8/asyncssh-pool
0
python
def __init__(self, hostname=None, username=None, password=None, port=22): '\n :param hostname: str, IP to server to run the command on\n :param username: str, username\n :param password: str, password\n :param port: int, SSH Port (Default 22)\n ' self.hostname = hostname self.username = username self.password = password self.port = port
def __init__(self, hostname=None, username=None, password=None, port=22): '\n :param hostname: str, IP to server to run the command on\n :param username: str, username\n :param password: str, password\n :param port: int, SSH Port (Default 22)\n ' self.hostname = hostname self.username = username self.password = password self.port = port<|docstring|>:param hostname: str, IP to server to run the command on :param username: str, username :param password: str, password :param port: int, SSH Port (Default 22)<|endoftext|>
86baa899f9f4d53c9b9e7f8728f3555c02f3302b4c4fcc4518aa5d2a28d69191
def __init__(self, cmd_string=None, timeout=None, response=None, has_banner=False, **kwargs): '\n :param cmd_string: str, Command to run\n :param timeout: int, Timeout for the command\n :param response: str, Response to answer in case on interactive command\n :param has_banner: bool, True iff command has banner before getting the result\n :param kwargs: kwargs\n ' super().__init__(**kwargs) self.has_banner = has_banner self.cmd_string = cmd_string self.timeout = timeout self.response = response
:param cmd_string: str, Command to run :param timeout: int, Timeout for the command :param response: str, Response to answer in case on interactive command :param has_banner: bool, True iff command has banner before getting the result :param kwargs: kwargs
sshexec.py
__init__
bshakur8/asyncssh-pool
0
python
def __init__(self, cmd_string=None, timeout=None, response=None, has_banner=False, **kwargs): '\n :param cmd_string: str, Command to run\n :param timeout: int, Timeout for the command\n :param response: str, Response to answer in case on interactive command\n :param has_banner: bool, True iff command has banner before getting the result\n :param kwargs: kwargs\n ' super().__init__(**kwargs) self.has_banner = has_banner self.cmd_string = cmd_string self.timeout = timeout self.response = response
def __init__(self, cmd_string=None, timeout=None, response=None, has_banner=False, **kwargs): '\n :param cmd_string: str, Command to run\n :param timeout: int, Timeout for the command\n :param response: str, Response to answer in case on interactive command\n :param has_banner: bool, True iff command has banner before getting the result\n :param kwargs: kwargs\n ' super().__init__(**kwargs) self.has_banner = has_banner self.cmd_string = cmd_string self.timeout = timeout self.response = response<|docstring|>:param cmd_string: str, Command to run :param timeout: int, Timeout for the command :param response: str, Response to answer in case on interactive command :param has_banner: bool, True iff command has banner before getting the result :param kwargs: kwargs<|endoftext|>
b4230fda59c29e5bfc2070e0aecf8a5ed8f6f8550850d578d3bfdee29ba0dbb6
def __init__(self, *, stdout=None, stderr=None, rc=None, cmd_string=None, timed_out=False): '\n :param stdout: str, output stream\n :param stderr: str, stderr\n :param rc: int, RC\n :param cmd_string: str, Sent command\n :param timed_out: bool, True iff command was timed out\n ' self.stdout = stdout self.stderr = stderr self.rc = rc self.cmd = cmd_string self.timed_out = timed_out
:param stdout: str, output stream :param stderr: str, stderr :param rc: int, RC :param cmd_string: str, Sent command :param timed_out: bool, True iff command was timed out
sshexec.py
__init__
bshakur8/asyncssh-pool
0
python
def __init__(self, *, stdout=None, stderr=None, rc=None, cmd_string=None, timed_out=False): '\n :param stdout: str, output stream\n :param stderr: str, stderr\n :param rc: int, RC\n :param cmd_string: str, Sent command\n :param timed_out: bool, True iff command was timed out\n ' self.stdout = stdout self.stderr = stderr self.rc = rc self.cmd = cmd_string self.timed_out = timed_out
def __init__(self, *, stdout=None, stderr=None, rc=None, cmd_string=None, timed_out=False): '\n :param stdout: str, output stream\n :param stderr: str, stderr\n :param rc: int, RC\n :param cmd_string: str, Sent command\n :param timed_out: bool, True iff command was timed out\n ' self.stdout = stdout self.stderr = stderr self.rc = rc self.cmd = cmd_string self.timed_out = timed_out<|docstring|>:param stdout: str, output stream :param stderr: str, stderr :param rc: int, RC :param cmd_string: str, Sent command :param timed_out: bool, True iff command was timed out<|endoftext|>
27c585ff8c13c291277949ec85198645c77470dc6076a6562ce76b7642ba4cf7
def __init__(self, connection, client, semaphore): '\n :param connection: Connection object\n :param client: Client object\n :param semaphore: Semaphore\n ' self.connection = connection self.client = client self.semaphore = semaphore
:param connection: Connection object :param client: Client object :param semaphore: Semaphore
sshexec.py
__init__
bshakur8/asyncssh-pool
0
python
def __init__(self, connection, client, semaphore): '\n :param connection: Connection object\n :param client: Client object\n :param semaphore: Semaphore\n ' self.connection = connection self.client = client self.semaphore = semaphore
def __init__(self, connection, client, semaphore): '\n :param connection: Connection object\n :param client: Client object\n :param semaphore: Semaphore\n ' self.connection = connection self.client = client self.semaphore = semaphore<|docstring|>:param connection: Connection object :param client: Client object :param semaphore: Semaphore<|endoftext|>
9ab2bf656df21f69a9d40b1fb0b6d968fc4e069fdb91899bf09d3d88f9ef82d7
def connection_made(self, connection: asyncssh.SSHClientConnection): '\n Function that runs after a connection was made\n\n :param connection: Connection was made\n :type connection: asyncssh.SSHClientConnection\n :return: None\n ' self.host = connection._host log_debug('Made TCP connection to: {}'.format(self.host))
Function that runs after a connection was made :param connection: Connection was made :type connection: asyncssh.SSHClientConnection :return: None
sshexec.py
connection_made
bshakur8/asyncssh-pool
0
python
def connection_made(self, connection: asyncssh.SSHClientConnection): '\n Function that runs after a connection was made\n\n :param connection: Connection was made\n :type connection: asyncssh.SSHClientConnection\n :return: None\n ' self.host = connection._host log_debug('Made TCP connection to: {}'.format(self.host))
def connection_made(self, connection: asyncssh.SSHClientConnection): '\n Function that runs after a connection was made\n\n :param connection: Connection was made\n :type connection: asyncssh.SSHClientConnection\n :return: None\n ' self.host = connection._host log_debug('Made TCP connection to: {}'.format(self.host))<|docstring|>Function that runs after a connection was made :param connection: Connection was made :type connection: asyncssh.SSHClientConnection :return: None<|endoftext|>
60930508bbdc5e0d3ca6bdeda03f150ac9f0a37ee9fff997c215dd4cff5b5cb2
def connection_lost(self, exc: Exception): '\n Function that runs after a connection was lost\n\n :param exc: Exception thrown after lost connection\n :type exc: Exception\n :return: Noneloglog\n ' log_debug('Lost connection to: {}, reason: {}'.format(self.host, exc)) self.connected = False
Function that runs after a connection was lost :param exc: Exception thrown after lost connection :type exc: Exception :return: Noneloglog
sshexec.py
connection_lost
bshakur8/asyncssh-pool
0
python
def connection_lost(self, exc: Exception): '\n Function that runs after a connection was lost\n\n :param exc: Exception thrown after lost connection\n :type exc: Exception\n :return: Noneloglog\n ' log_debug('Lost connection to: {}, reason: {}'.format(self.host, exc)) self.connected = False
def connection_lost(self, exc: Exception): '\n Function that runs after a connection was lost\n\n :param exc: Exception thrown after lost connection\n :type exc: Exception\n :return: Noneloglog\n ' log_debug('Lost connection to: {}, reason: {}'.format(self.host, exc)) self.connected = False<|docstring|>Function that runs after a connection was lost :param exc: Exception thrown after lost connection :type exc: Exception :return: Noneloglog<|endoftext|>
ead5b4bb1fbda26bb2764ecd966d8e506cc8deb59eabaa0f349416ad4b1004dd
def auth_completed(self): '\n Function that after authentication was completed\n\n :return: None\n ' self.connected = True log_debug('Connected to : {}'.format(self.host))
Function that after authentication was completed :return: None
sshexec.py
auth_completed
bshakur8/asyncssh-pool
0
python
def auth_completed(self): '\n Function that after authentication was completed\n\n :return: None\n ' self.connected = True log_debug('Connected to : {}'.format(self.host))
def auth_completed(self): '\n Function that after authentication was completed\n\n :return: None\n ' self.connected = True log_debug('Connected to : {}'.format(self.host))<|docstring|>Function that after authentication was completed :return: None<|endoftext|>
188eba935abf66a47d0cadf5878cf9e08e72d72ba3895b5690fbdfa9c5829f6d
def run(self): '\n These actions take place on the event loop thread\n not on the main (calling) thread\n ' self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) asyncio.BaseEventLoop.set_debug(self.loop, enabled=self.debug_flag) self.coro_conn_locks = defaultdict(partial(asyncio.Lock, loop=self.loop)) self.loop.call_soon(self.is_running.set) self.loop.run_forever()
These actions take place on the event loop thread not on the main (calling) thread
sshexec.py
run
bshakur8/asyncssh-pool
0
python
def run(self): '\n These actions take place on the event loop thread\n not on the main (calling) thread\n ' self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) asyncio.BaseEventLoop.set_debug(self.loop, enabled=self.debug_flag) self.coro_conn_locks = defaultdict(partial(asyncio.Lock, loop=self.loop)) self.loop.call_soon(self.is_running.set) self.loop.run_forever()
def run(self): '\n These actions take place on the event loop thread\n not on the main (calling) thread\n ' self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) asyncio.BaseEventLoop.set_debug(self.loop, enabled=self.debug_flag) self.coro_conn_locks = defaultdict(partial(asyncio.Lock, loop=self.loop)) self.loop.call_soon(self.is_running.set) self.loop.run_forever()<|docstring|>These actions take place on the event loop thread not on the main (calling) thread<|endoftext|>
e335a3d6ba60830e00ef8d787473a4cdebdff8236754c65764d137fc755814af
def stop(self): ' Stop SSHExec ' log_debug('Stopping {}'.format(self.name)) self.is_running.clear() self.loop.call_soon_threadsafe(self.loop.stop)
Stop SSHExec
sshexec.py
stop
bshakur8/asyncssh-pool
0
python
def stop(self): ' ' log_debug('Stopping {}'.format(self.name)) self.is_running.clear() self.loop.call_soon_threadsafe(self.loop.stop)
def stop(self): ' ' log_debug('Stopping {}'.format(self.name)) self.is_running.clear() self.loop.call_soon_threadsafe(self.loop.stop)<|docstring|>Stop SSHExec<|endoftext|>
b30c2e8f53adcda9bd8705d42b20364d5375840e6cf9850fc85c9d9c51241add
@needs_loop def sftp(self, auth_info: AuthInfo): '\n An sftp_proxy factory, each sftp_proxy instance has the connection\n credentials and the event loop thread (self above)\n baked into __getattr__ on instantiation.\n This allows the OSL layer to provide the credentials in\n a way that is transparent to the test writer who only needs to\n provide the arguments that are specific to the sftp method he wants\n to execute.\n Verification of required sftp parameters/correct sftp method name\n is performed inside __getattr__, before forwarding the actual\n execution to the event loop so that param/name related exceptions\n are raised in the calling thread and not in the event loop thread.\n ' class SFTPProxy(object): @staticmethod def __getattr__(sftp_method_name: str): def sftp_proxy_cmd(**kwargs): sftp_method_obj = getattr(asyncssh.SFTPClient, sftp_method_name) param_val_pairs = {param_name: kwargs[param_name] for param_name in signature(sftp_method_obj).parameters if (param_name in kwargs)} sftp_func = partial(sftp_method_obj, **param_val_pairs) asftp_cmd = self.async_sftp_cmd(sftp_func, auth_info) fut = asyncio.run_coroutine_threadsafe(asftp_cmd, loop=self.loop) return fut.result(timeout=DEFAULT_SFTP_TIMEOUT) return sftp_proxy_cmd return SFTPProxy()
An sftp_proxy factory, each sftp_proxy instance has the connection credentials and the event loop thread (self above) baked into __getattr__ on instantiation. This allows the OSL layer to provide the credentials in a way that is transparent to the test writer who only needs to provide the arguments that are specific to the sftp method he wants to execute. Verification of required sftp parameters/correct sftp method name is performed inside __getattr__, before forwarding the actual execution to the event loop so that param/name related exceptions are raised in the calling thread and not in the event loop thread.
sshexec.py
sftp
bshakur8/asyncssh-pool
0
python
@needs_loop def sftp(self, auth_info: AuthInfo): '\n An sftp_proxy factory, each sftp_proxy instance has the connection\n credentials and the event loop thread (self above)\n baked into __getattr__ on instantiation.\n This allows the OSL layer to provide the credentials in\n a way that is transparent to the test writer who only needs to\n provide the arguments that are specific to the sftp method he wants\n to execute.\n Verification of required sftp parameters/correct sftp method name\n is performed inside __getattr__, before forwarding the actual\n execution to the event loop so that param/name related exceptions\n are raised in the calling thread and not in the event loop thread.\n ' class SFTPProxy(object): @staticmethod def __getattr__(sftp_method_name: str): def sftp_proxy_cmd(**kwargs): sftp_method_obj = getattr(asyncssh.SFTPClient, sftp_method_name) param_val_pairs = {param_name: kwargs[param_name] for param_name in signature(sftp_method_obj).parameters if (param_name in kwargs)} sftp_func = partial(sftp_method_obj, **param_val_pairs) asftp_cmd = self.async_sftp_cmd(sftp_func, auth_info) fut = asyncio.run_coroutine_threadsafe(asftp_cmd, loop=self.loop) return fut.result(timeout=DEFAULT_SFTP_TIMEOUT) return sftp_proxy_cmd return SFTPProxy()
@needs_loop def sftp(self, auth_info: AuthInfo): '\n An sftp_proxy factory, each sftp_proxy instance has the connection\n credentials and the event loop thread (self above)\n baked into __getattr__ on instantiation.\n This allows the OSL layer to provide the credentials in\n a way that is transparent to the test writer who only needs to\n provide the arguments that are specific to the sftp method he wants\n to execute.\n Verification of required sftp parameters/correct sftp method name\n is performed inside __getattr__, before forwarding the actual\n execution to the event loop so that param/name related exceptions\n are raised in the calling thread and not in the event loop thread.\n ' class SFTPProxy(object): @staticmethod def __getattr__(sftp_method_name: str): def sftp_proxy_cmd(**kwargs): sftp_method_obj = getattr(asyncssh.SFTPClient, sftp_method_name) param_val_pairs = {param_name: kwargs[param_name] for param_name in signature(sftp_method_obj).parameters if (param_name in kwargs)} sftp_func = partial(sftp_method_obj, **param_val_pairs) asftp_cmd = self.async_sftp_cmd(sftp_func, auth_info) fut = asyncio.run_coroutine_threadsafe(asftp_cmd, loop=self.loop) return fut.result(timeout=DEFAULT_SFTP_TIMEOUT) return sftp_proxy_cmd return SFTPProxy()<|docstring|>An sftp_proxy factory, each sftp_proxy instance has the connection credentials and the event loop thread (self above) baked into __getattr__ on instantiation. This allows the OSL layer to provide the credentials in a way that is transparent to the test writer who only needs to provide the arguments that are specific to the sftp method he wants to execute. Verification of required sftp parameters/correct sftp method name is performed inside __getattr__, before forwarding the actual execution to the event loop so that param/name related exceptions are raised in the calling thread and not in the event loop thread.<|endoftext|>
51040d40efbe139f2e9011c6b0634b0f44ccab1bf415429668c20458bcd9e8db
def is_connected(self, auth_info: AuthInfo, timeout: int=5) -> bool: '\n :param auth_info: Authentication information\n :type auth_info: AuthInfo\n :param timeout: Command timeout\n :type timeout: int\n :return: True iff connection is alive and server is connected\n :rtype bool\n ' async def heartbeat(): cmd = 'echo {}'.format(auth_info.hostname) with (await self.get_connection(auth_info)) as conn_info: return (await self.execute_ssh(conn_info.connection, cmd)) try: '\n Get connection to hostname ( create if needed) and then attempt\n to run a dummy command. Dummy is needed because sometimes the SSH daemon will open\n a connection but till not have enough resources to to execute incoming commands.\n ' log_debug('heartbeat {}'.format(auth_info.hostname)) asyncio.run_coroutine_threadsafe(heartbeat(), loop=self.loop).result(timeout=timeout) return True except Exception: return False
:param auth_info: Authentication information :type auth_info: AuthInfo :param timeout: Command timeout :type timeout: int :return: True iff connection is alive and server is connected :rtype bool
sshexec.py
is_connected
bshakur8/asyncssh-pool
0
python
def is_connected(self, auth_info: AuthInfo, timeout: int=5) -> bool: '\n :param auth_info: Authentication information\n :type auth_info: AuthInfo\n :param timeout: Command timeout\n :type timeout: int\n :return: True iff connection is alive and server is connected\n :rtype bool\n ' async def heartbeat(): cmd = 'echo {}'.format(auth_info.hostname) with (await self.get_connection(auth_info)) as conn_info: return (await self.execute_ssh(conn_info.connection, cmd)) try: '\n Get connection to hostname ( create if needed) and then attempt\n to run a dummy command. Dummy is needed because sometimes the SSH daemon will open\n a connection but till not have enough resources to to execute incoming commands.\n ' log_debug('heartbeat {}'.format(auth_info.hostname)) asyncio.run_coroutine_threadsafe(heartbeat(), loop=self.loop).result(timeout=timeout) return True except Exception: return False
def is_connected(self, auth_info: AuthInfo, timeout: int=5) -> bool: '\n :param auth_info: Authentication information\n :type auth_info: AuthInfo\n :param timeout: Command timeout\n :type timeout: int\n :return: True iff connection is alive and server is connected\n :rtype bool\n ' async def heartbeat(): cmd = 'echo {}'.format(auth_info.hostname) with (await self.get_connection(auth_info)) as conn_info: return (await self.execute_ssh(conn_info.connection, cmd)) try: '\n Get connection to hostname ( create if needed) and then attempt\n to run a dummy command. Dummy is needed because sometimes the SSH daemon will open\n a connection but till not have enough resources to to execute incoming commands.\n ' log_debug('heartbeat {}'.format(auth_info.hostname)) asyncio.run_coroutine_threadsafe(heartbeat(), loop=self.loop).result(timeout=timeout) return True except Exception: return False<|docstring|>:param auth_info: Authentication information :type auth_info: AuthInfo :param timeout: Command timeout :type timeout: int :return: True iff connection is alive and server is connected :rtype bool<|endoftext|>
2d75de5ccab197fd2d009040515b3602b1f700e4e8d5bcc0d170f3225f7d9221
async def get_connection(self, auth_info: AuthInfo) -> AsyncConnInfo: '\n Get the connection of the given authentication info\n\n :param auth_info: AuthInfo, Authentication information object\n :return: AsyncConnInfo, Saved connection\n ' hostname = auth_info.hostname log_debug('Requested connection to {}'.format(hostname)) async with self.coro_conn_locks[hostname]: log_debug('\t\t {} Entered lock for {}'.format(threading.currentThread().name, hostname)) "\n A thread level lock is not needed since get_conn can only be called\n by the thread in which the event loop is running.\n A coroutine-level lock is needed because we await on create_connection\n If the lock was not here, then it would be possible for multiple coroutines to\n attempt to create a connection to the same hostname simultaneously.\n coro_conn_locks is a defaultdict but we don't need to worry about thread safety -\n only the thread in which the SSHExec loop is running can access it.\n " if ((hostname not in self.conn_dict) or (not self.conn_dict[hostname].client.connected)): create_conn_params = dict(host=hostname, username=auth_info.username, password=auth_info.password, port=auth_info.port, known_hosts=None) (conn, conn_client) = (await asyncssh.create_connection(SSHClient, **create_conn_params)) access_semaphore = asyncio.Semaphore(value=self.connections_per_host, loop=self.loop) self.conn_dict[hostname] = AsyncConnInfo(conn, conn_client, access_semaphore) log_debug('\t Created connection to {}'.format(hostname)) log_debug('\t\t exited lock for {}'.format(hostname)) log_debug('Returned cached connection to {}'.format(hostname)) return self.conn_dict[hostname]
Get the connection of the given authentication info :param auth_info: AuthInfo, Authentication information object :return: AsyncConnInfo, Saved connection
sshexec.py
get_connection
bshakur8/asyncssh-pool
0
python
async def get_connection(self, auth_info: AuthInfo) -> AsyncConnInfo: '\n Get the connection of the given authentication info\n\n :param auth_info: AuthInfo, Authentication information object\n :return: AsyncConnInfo, Saved connection\n ' hostname = auth_info.hostname log_debug('Requested connection to {}'.format(hostname)) async with self.coro_conn_locks[hostname]: log_debug('\t\t {} Entered lock for {}'.format(threading.currentThread().name, hostname)) "\n A thread level lock is not needed since get_conn can only be called\n by the thread in which the event loop is running.\n A coroutine-level lock is needed because we await on create_connection\n If the lock was not here, then it would be possible for multiple coroutines to\n attempt to create a connection to the same hostname simultaneously.\n coro_conn_locks is a defaultdict but we don't need to worry about thread safety -\n only the thread in which the SSHExec loop is running can access it.\n " if ((hostname not in self.conn_dict) or (not self.conn_dict[hostname].client.connected)): create_conn_params = dict(host=hostname, username=auth_info.username, password=auth_info.password, port=auth_info.port, known_hosts=None) (conn, conn_client) = (await asyncssh.create_connection(SSHClient, **create_conn_params)) access_semaphore = asyncio.Semaphore(value=self.connections_per_host, loop=self.loop) self.conn_dict[hostname] = AsyncConnInfo(conn, conn_client, access_semaphore) log_debug('\t Created connection to {}'.format(hostname)) log_debug('\t\t exited lock for {}'.format(hostname)) log_debug('Returned cached connection to {}'.format(hostname)) return self.conn_dict[hostname]
async def get_connection(self, auth_info: AuthInfo) -> AsyncConnInfo: '\n Get the connection of the given authentication info\n\n :param auth_info: AuthInfo, Authentication information object\n :return: AsyncConnInfo, Saved connection\n ' hostname = auth_info.hostname log_debug('Requested connection to {}'.format(hostname)) async with self.coro_conn_locks[hostname]: log_debug('\t\t {} Entered lock for {}'.format(threading.currentThread().name, hostname)) "\n A thread level lock is not needed since get_conn can only be called\n by the thread in which the event loop is running.\n A coroutine-level lock is needed because we await on create_connection\n If the lock was not here, then it would be possible for multiple coroutines to\n attempt to create a connection to the same hostname simultaneously.\n coro_conn_locks is a defaultdict but we don't need to worry about thread safety -\n only the thread in which the SSHExec loop is running can access it.\n " if ((hostname not in self.conn_dict) or (not self.conn_dict[hostname].client.connected)): create_conn_params = dict(host=hostname, username=auth_info.username, password=auth_info.password, port=auth_info.port, known_hosts=None) (conn, conn_client) = (await asyncssh.create_connection(SSHClient, **create_conn_params)) access_semaphore = asyncio.Semaphore(value=self.connections_per_host, loop=self.loop) self.conn_dict[hostname] = AsyncConnInfo(conn, conn_client, access_semaphore) log_debug('\t Created connection to {}'.format(hostname)) log_debug('\t\t exited lock for {}'.format(hostname)) log_debug('Returned cached connection to {}'.format(hostname)) return self.conn_dict[hostname]<|docstring|>Get the connection of the given authentication info :param auth_info: AuthInfo, Authentication information object :return: AsyncConnInfo, Saved connection<|endoftext|>
2720c9a98848e016a5a93a0c2f87dad48a511363964e456660fd9b0f5adc0c6a
async def async_send_cmd(self, cmd_info: CmdInfo) -> ResultInfo: '\n Send the given command asynchronously\n\n :param cmd_info: Command Info object\n :type cmd_info: CmdInfo\n :return: Result inform ation\n :type: ResultInfo\n ' conn_info = (await self.get_connection(cmd_info)) async with conn_info.semaphore: return (await self.execute_ssh(conn_info.connection, cmd_info.cmd_string, response=cmd_info.response))
Send the given command asynchronously :param cmd_info: Command Info object :type cmd_info: CmdInfo :return: Result inform ation :type: ResultInfo
sshexec.py
async_send_cmd
bshakur8/asyncssh-pool
0
python
async def async_send_cmd(self, cmd_info: CmdInfo) -> ResultInfo: '\n Send the given command asynchronously\n\n :param cmd_info: Command Info object\n :type cmd_info: CmdInfo\n :return: Result inform ation\n :type: ResultInfo\n ' conn_info = (await self.get_connection(cmd_info)) async with conn_info.semaphore: return (await self.execute_ssh(conn_info.connection, cmd_info.cmd_string, response=cmd_info.response))
async def async_send_cmd(self, cmd_info: CmdInfo) -> ResultInfo: '\n Send the given command asynchronously\n\n :param cmd_info: Command Info object\n :type cmd_info: CmdInfo\n :return: Result inform ation\n :type: ResultInfo\n ' conn_info = (await self.get_connection(cmd_info)) async with conn_info.semaphore: return (await self.execute_ssh(conn_info.connection, cmd_info.cmd_string, response=cmd_info.response))<|docstring|>Send the given command asynchronously :param cmd_info: Command Info object :type cmd_info: CmdInfo :return: Result inform ation :type: ResultInfo<|endoftext|>
c190c8bc216aba2cc6728e088bd71c4e6b12d05bd002e324b5c93ec0f0a49944
@needs_loop def send_cmd(self, cmd: CmdInfo) -> ResultInfo: '\n Function to call when sending a command\n\n :param cmd: str, Command to run\n :return: ResultInfo, Result information\n :raise OSError: Failure in sending the command\n ' log_debug('Executing {}'.format(cmd.cmd_string)) "\n run_coroutine_threadsafe returns a concurrent.futures.future (not an asyncio.future).\n This means that the calling thread will wait for the result, unlike asyncio.future\n which raises an exception if the result is not yet available.\n Note that async_send_cmd(cmd) does not execute anything yet - it's only\n a coro object and will only be executed when the loop schedules it.\n " '\n Event loop batch mode is disabled for this version,\n threadpool is used instead.\n ----\n Place the future in the currently active parallel context,\n do not wait for it to finish\n if self.in_batch_mode:\n self.thread_local.batch_commands[-1].append(FutureInfo(cmd, fut))\n return fut\n else:\n ----\n ' fut = asyncio.run_coroutine_threadsafe(self.async_send_cmd(cmd), loop=self.loop) try: if (cmd.timeout is not None): cmd.timeout = max(cmd.timeout, DEFAULT_SSH_TIMEOUT) return fut.result(timeout=cmd.timeout) except Exception as e: log_debug('{} occured when executing future {}, cancelling it'.format(type(e), fut)) raise OSError(e)
Function to call when sending a command :param cmd: str, Command to run :return: ResultInfo, Result information :raise OSError: Failure in sending the command
sshexec.py
send_cmd
bshakur8/asyncssh-pool
0
python
@needs_loop def send_cmd(self, cmd: CmdInfo) -> ResultInfo: '\n Function to call when sending a command\n\n :param cmd: str, Command to run\n :return: ResultInfo, Result information\n :raise OSError: Failure in sending the command\n ' log_debug('Executing {}'.format(cmd.cmd_string)) "\n run_coroutine_threadsafe returns a concurrent.futures.future (not an asyncio.future).\n This means that the calling thread will wait for the result, unlike asyncio.future\n which raises an exception if the result is not yet available.\n Note that async_send_cmd(cmd) does not execute anything yet - it's only\n a coro object and will only be executed when the loop schedules it.\n " '\n Event loop batch mode is disabled for this version,\n threadpool is used instead.\n ----\n Place the future in the currently active parallel context,\n do not wait for it to finish\n if self.in_batch_mode:\n self.thread_local.batch_commands[-1].append(FutureInfo(cmd, fut))\n return fut\n else:\n ----\n ' fut = asyncio.run_coroutine_threadsafe(self.async_send_cmd(cmd), loop=self.loop) try: if (cmd.timeout is not None): cmd.timeout = max(cmd.timeout, DEFAULT_SSH_TIMEOUT) return fut.result(timeout=cmd.timeout) except Exception as e: log_debug('{} occured when executing future {}, cancelling it'.format(type(e), fut)) raise OSError(e)
@needs_loop def send_cmd(self, cmd: CmdInfo) -> ResultInfo: '\n Function to call when sending a command\n\n :param cmd: str, Command to run\n :return: ResultInfo, Result information\n :raise OSError: Failure in sending the command\n ' log_debug('Executing {}'.format(cmd.cmd_string)) "\n run_coroutine_threadsafe returns a concurrent.futures.future (not an asyncio.future).\n This means that the calling thread will wait for the result, unlike asyncio.future\n which raises an exception if the result is not yet available.\n Note that async_send_cmd(cmd) does not execute anything yet - it's only\n a coro object and will only be executed when the loop schedules it.\n " '\n Event loop batch mode is disabled for this version,\n threadpool is used instead.\n ----\n Place the future in the currently active parallel context,\n do not wait for it to finish\n if self.in_batch_mode:\n self.thread_local.batch_commands[-1].append(FutureInfo(cmd, fut))\n return fut\n else:\n ----\n ' fut = asyncio.run_coroutine_threadsafe(self.async_send_cmd(cmd), loop=self.loop) try: if (cmd.timeout is not None): cmd.timeout = max(cmd.timeout, DEFAULT_SSH_TIMEOUT) return fut.result(timeout=cmd.timeout) except Exception as e: log_debug('{} occured when executing future {}, cancelling it'.format(type(e), fut)) raise OSError(e)<|docstring|>Function to call when sending a command :param cmd: str, Command to run :return: ResultInfo, Result information :raise OSError: Failure in sending the command<|endoftext|>
8c0e71a2eaf5488951e65a71a7d38b45e65a6e033eb4d397c021a1a7381861fb
async def execute_ssh(self, conn: asyncssh.SSHClientConnection, cmd_string: str, response: str=None) -> ResultInfo: '\n The atomic function that runs the given command on the giving connection\n\n :param conn: Connection to run the command on\n :type conn: asyncssh.SSHClientConnection\n :param cmd_string: Command to run\n :type cmd_string: str\n :param response:\n :return:\n ' std_output = err_output = None log_debug('Executing {}:{}'.format(conn._host, cmd_string)) try: (stdin, stdout, stderr) = (await conn.open_session()) try: (await asyncio.wait_for(stdout.read(), timeout=1, loop=self.loop).result()) except Exception: response = '' stdin.write((cmd_string + '\n')) if (';' in response): list_response = response.split(';') for response in list_response: if (not response): continue stdin.write((response + '\n')) stdin.write_eof() std_output = (await stdout.readline()) err_output = (await stderr.readline()) (await stdout.channel.wait_closed()) (await stdin.channel.wait_closed()) (await stderr.channel.wait_closed()) rc = stdout.channel.get_exit_status() else: if response: stdin.write((response + '\n')) stdin.write_eof() std_output = (await stdout.read()) err_output = (await stderr.read()) (await stdout.channel.wait_closed()) (await stdin.channel.wait_closed()) (await stderr.channel.wait_closed()) rc = stdout.channel.get_exit_status() except Exception as e: log_debug(f'Error executing command: {cmd_string}, {type(e)}: {e}') raise OSError(e) return ResultInfo(stdout=std_output, stderr=err_output, rc=rc, cmd_string=cmd_string)
The atomic function that runs the given command on the giving connection :param conn: Connection to run the command on :type conn: asyncssh.SSHClientConnection :param cmd_string: Command to run :type cmd_string: str :param response: :return:
sshexec.py
execute_ssh
bshakur8/asyncssh-pool
0
python
async def execute_ssh(self, conn: asyncssh.SSHClientConnection, cmd_string: str, response: str=None) -> ResultInfo: '\n The atomic function that runs the given command on the giving connection\n\n :param conn: Connection to run the command on\n :type conn: asyncssh.SSHClientConnection\n :param cmd_string: Command to run\n :type cmd_string: str\n :param response:\n :return:\n ' std_output = err_output = None log_debug('Executing {}:{}'.format(conn._host, cmd_string)) try: (stdin, stdout, stderr) = (await conn.open_session()) try: (await asyncio.wait_for(stdout.read(), timeout=1, loop=self.loop).result()) except Exception: response = stdin.write((cmd_string + '\n')) if (';' in response): list_response = response.split(';') for response in list_response: if (not response): continue stdin.write((response + '\n')) stdin.write_eof() std_output = (await stdout.readline()) err_output = (await stderr.readline()) (await stdout.channel.wait_closed()) (await stdin.channel.wait_closed()) (await stderr.channel.wait_closed()) rc = stdout.channel.get_exit_status() else: if response: stdin.write((response + '\n')) stdin.write_eof() std_output = (await stdout.read()) err_output = (await stderr.read()) (await stdout.channel.wait_closed()) (await stdin.channel.wait_closed()) (await stderr.channel.wait_closed()) rc = stdout.channel.get_exit_status() except Exception as e: log_debug(f'Error executing command: {cmd_string}, {type(e)}: {e}') raise OSError(e) return ResultInfo(stdout=std_output, stderr=err_output, rc=rc, cmd_string=cmd_string)
async def execute_ssh(self, conn: asyncssh.SSHClientConnection, cmd_string: str, response: str=None) -> ResultInfo: '\n The atomic function that runs the given command on the giving connection\n\n :param conn: Connection to run the command on\n :type conn: asyncssh.SSHClientConnection\n :param cmd_string: Command to run\n :type cmd_string: str\n :param response:\n :return:\n ' std_output = err_output = None log_debug('Executing {}:{}'.format(conn._host, cmd_string)) try: (stdin, stdout, stderr) = (await conn.open_session()) try: (await asyncio.wait_for(stdout.read(), timeout=1, loop=self.loop).result()) except Exception: response = stdin.write((cmd_string + '\n')) if (';' in response): list_response = response.split(';') for response in list_response: if (not response): continue stdin.write((response + '\n')) stdin.write_eof() std_output = (await stdout.readline()) err_output = (await stderr.readline()) (await stdout.channel.wait_closed()) (await stdin.channel.wait_closed()) (await stderr.channel.wait_closed()) rc = stdout.channel.get_exit_status() else: if response: stdin.write((response + '\n')) stdin.write_eof() std_output = (await stdout.read()) err_output = (await stderr.read()) (await stdout.channel.wait_closed()) (await stdin.channel.wait_closed()) (await stderr.channel.wait_closed()) rc = stdout.channel.get_exit_status() except Exception as e: log_debug(f'Error executing command: {cmd_string}, {type(e)}: {e}') raise OSError(e) return ResultInfo(stdout=std_output, stderr=err_output, rc=rc, cmd_string=cmd_string)<|docstring|>The atomic function that runs the given command on the giving connection :param conn: Connection to run the command on :type conn: asyncssh.SSHClientConnection :param cmd_string: Command to run :type cmd_string: str :param response: :return:<|endoftext|>
6864920066143d08c21eae9e2e2989630b6149969de709f36fcdd1e114984501
def iter_manifests(): 'Iterate over all available manifests.' manifests = [json.loads(fil.read_text()) for fil in component_dir.glob('*/manifest.json')] return sorted(manifests, key=(lambda man: man['domain']))
Iterate over all available manifests.
script/hassfest/manifest_helper.py
iter_manifests
cristian-vescan/core
30,023
python
def iter_manifests(): manifests = [json.loads(fil.read_text()) for fil in component_dir.glob('*/manifest.json')] return sorted(manifests, key=(lambda man: man['domain']))
def iter_manifests(): manifests = [json.loads(fil.read_text()) for fil in component_dir.glob('*/manifest.json')] return sorted(manifests, key=(lambda man: man['domain']))<|docstring|>Iterate over all available manifests.<|endoftext|>
26e0bc7b7a89183966fe39babb4de8e725fb2cc667838f899dd2d33be4c357c0
def __init__(self, accumulation_steps=1, accumulation_type='mean', learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs): 'Construct a new SGD optimizer.\n Args:\n accumulation_steps: An integer. Update gradient in every accumulation steps.\n learning_rate: A Tensor or a floating point value. The learning rate.\n beta_1: A float value or a constant float tensor. The exponential decay\n rate for the 1st moment estimates.\n beta_2: A float value or a constant float tensor. The exponential decay\n rate for the 2nd moment estimates.\n epsilon: A small constant for numerical stability. This epsilon is\n "epsilon hat" in the Kingma and Ba paper (in the formula just before\n Section 2.1), not the epsilon in Algorithm 1 of the paper.\n amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from\n the paper "On the Convergence of Adam and beyond".\n name: Optional name for the operations created when applying gradients.\n Defaults to "Adam". @compatibility(eager) When eager execution is\n enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be\n a callable that takes no arguments and returns the actual value to use.\n This can be useful for changing these values across different\n invocations of optimizer functions. @end_compatibility\n **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,\n `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip\n gradients by value, `decay` is included for backward compatibility to\n allow time inverse decay of learning rate. `lr` is included for backward\n compatibility, recommended to use `learning_rate` instead.\n ' super(SGDAccumulated, self).__init__(name, **kwargs) self._set_hyper('accumulation_steps', tf.cast(accumulation_steps, tf.int32)) self._set_hyper('learning_rate', kwargs.get('lr', learning_rate)) self._set_hyper('decay', self._initial_decay) self._momentum = False if (isinstance(momentum, tf.Tensor) or callable(momentum) or (momentum > 0)): self._momentum = True if (isinstance(momentum, (int, float)) and ((momentum < 0) or (momentum > 1))): raise ValueError('`momentum` must be between [0, 1].') self._set_hyper('momentum', momentum) self.nesterov = nesterov self._accumulation_type = accumulation_type
Construct a new SGD optimizer. Args: accumulation_steps: An integer. Update gradient in every accumulation steps. learning_rate: A Tensor or a floating point value. The learning rate. beta_1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta_2: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". name: Optional name for the operations created when applying gradients. Defaults to "Adam". @compatibility(eager) When eager execution is enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use `learning_rate` instead.
optimization/sgd_accum.py
__init__
vishnubanna/TFAggregatedTraining
0
python
def __init__(self, accumulation_steps=1, accumulation_type='mean', learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs): 'Construct a new SGD optimizer.\n Args:\n accumulation_steps: An integer. Update gradient in every accumulation steps.\n learning_rate: A Tensor or a floating point value. The learning rate.\n beta_1: A float value or a constant float tensor. The exponential decay\n rate for the 1st moment estimates.\n beta_2: A float value or a constant float tensor. The exponential decay\n rate for the 2nd moment estimates.\n epsilon: A small constant for numerical stability. This epsilon is\n "epsilon hat" in the Kingma and Ba paper (in the formula just before\n Section 2.1), not the epsilon in Algorithm 1 of the paper.\n amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from\n the paper "On the Convergence of Adam and beyond".\n name: Optional name for the operations created when applying gradients.\n Defaults to "Adam". @compatibility(eager) When eager execution is\n enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be\n a callable that takes no arguments and returns the actual value to use.\n This can be useful for changing these values across different\n invocations of optimizer functions. @end_compatibility\n **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,\n `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip\n gradients by value, `decay` is included for backward compatibility to\n allow time inverse decay of learning rate. `lr` is included for backward\n compatibility, recommended to use `learning_rate` instead.\n ' super(SGDAccumulated, self).__init__(name, **kwargs) self._set_hyper('accumulation_steps', tf.cast(accumulation_steps, tf.int32)) self._set_hyper('learning_rate', kwargs.get('lr', learning_rate)) self._set_hyper('decay', self._initial_decay) self._momentum = False if (isinstance(momentum, tf.Tensor) or callable(momentum) or (momentum > 0)): self._momentum = True if (isinstance(momentum, (int, float)) and ((momentum < 0) or (momentum > 1))): raise ValueError('`momentum` must be between [0, 1].') self._set_hyper('momentum', momentum) self.nesterov = nesterov self._accumulation_type = accumulation_type
def __init__(self, accumulation_steps=1, accumulation_type='mean', learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs): 'Construct a new SGD optimizer.\n Args:\n accumulation_steps: An integer. Update gradient in every accumulation steps.\n learning_rate: A Tensor or a floating point value. The learning rate.\n beta_1: A float value or a constant float tensor. The exponential decay\n rate for the 1st moment estimates.\n beta_2: A float value or a constant float tensor. The exponential decay\n rate for the 2nd moment estimates.\n epsilon: A small constant for numerical stability. This epsilon is\n "epsilon hat" in the Kingma and Ba paper (in the formula just before\n Section 2.1), not the epsilon in Algorithm 1 of the paper.\n amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from\n the paper "On the Convergence of Adam and beyond".\n name: Optional name for the operations created when applying gradients.\n Defaults to "Adam". @compatibility(eager) When eager execution is\n enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be\n a callable that takes no arguments and returns the actual value to use.\n This can be useful for changing these values across different\n invocations of optimizer functions. @end_compatibility\n **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,\n `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip\n gradients by value, `decay` is included for backward compatibility to\n allow time inverse decay of learning rate. `lr` is included for backward\n compatibility, recommended to use `learning_rate` instead.\n ' super(SGDAccumulated, self).__init__(name, **kwargs) self._set_hyper('accumulation_steps', tf.cast(accumulation_steps, tf.int32)) self._set_hyper('learning_rate', kwargs.get('lr', learning_rate)) self._set_hyper('decay', self._initial_decay) self._momentum = False if (isinstance(momentum, tf.Tensor) or callable(momentum) or (momentum > 0)): self._momentum = True if (isinstance(momentum, (int, float)) and ((momentum < 0) or (momentum > 1))): raise ValueError('`momentum` must be between [0, 1].') self._set_hyper('momentum', momentum) self.nesterov = nesterov self._accumulation_type = accumulation_type<|docstring|>Construct a new SGD optimizer. Args: accumulation_steps: An integer. Update gradient in every accumulation steps. learning_rate: A Tensor or a floating point value. The learning rate. beta_1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta_2: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". name: Optional name for the operations created when applying gradients. Defaults to "Adam". @compatibility(eager) When eager execution is enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use `learning_rate` instead.<|endoftext|>
c1a4d137ec0c39462b0b272377bf15cdb32461eb38956eec20177abb27f59072
@pytest.mark.parametrize('comparators', [('first_name', 'second_name'), ('first_name', 1), (1, 'first_name')]) def test_non_literal(assert_errors, parse_ast_tree, simple_conditions, comparators, default_options): 'Testing that comparisons work well.' tree = parse_ast_tree(simple_conditions.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
Testing that comparisons work well.
tests/test_visitors/test_ast/test_comparisons/test_literal.py
test_non_literal
phoolish-philomath/wemake-python-styleguide
0
python
@pytest.mark.parametrize('comparators', [('first_name', 'second_name'), ('first_name', 1), (1, 'first_name')]) def test_non_literal(assert_errors, parse_ast_tree, simple_conditions, comparators, default_options): tree = parse_ast_tree(simple_conditions.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
@pytest.mark.parametrize('comparators', [('first_name', 'second_name'), ('first_name', 1), (1, 'first_name')]) def test_non_literal(assert_errors, parse_ast_tree, simple_conditions, comparators, default_options): tree = parse_ast_tree(simple_conditions.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])<|docstring|>Testing that comparisons work well.<|endoftext|>
6bb1aa43588edfd364f42fb33784437efb248db782055cd4d6ca318a9dcfeaa9
@pytest.mark.parametrize('comparators', [(1, 2), ('"string1"', '"string2"'), ('[1, 2, 3]', '(1, 2, 3)'), ('{"key": 1}', '{"a", "b"}')]) def test_literal(assert_errors, parse_ast_tree, simple_conditions, comparators, default_options): 'Testing that violations are when using literal comparisons.' tree = parse_ast_tree(simple_conditions.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])
Testing that violations are when using literal comparisons.
tests/test_visitors/test_ast/test_comparisons/test_literal.py
test_literal
phoolish-philomath/wemake-python-styleguide
0
python
@pytest.mark.parametrize('comparators', [(1, 2), ('"string1"', '"string2"'), ('[1, 2, 3]', '(1, 2, 3)'), ('{"key": 1}', '{"a", "b"}')]) def test_literal(assert_errors, parse_ast_tree, simple_conditions, comparators, default_options): tree = parse_ast_tree(simple_conditions.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])
@pytest.mark.parametrize('comparators', [(1, 2), ('"string1"', '"string2"'), ('[1, 2, 3]', '(1, 2, 3)'), ('{"key": 1}', '{"a", "b"}')]) def test_literal(assert_errors, parse_ast_tree, simple_conditions, comparators, default_options): tree = parse_ast_tree(simple_conditions.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])<|docstring|>Testing that violations are when using literal comparisons.<|endoftext|>
55e187e79d341742ad5464d1331da1ce47545954f0ce2c28310dca7a3b4b41ac
@pytest.mark.parametrize('code', [if_with_chained_comparisons1, if_with_chained_comparisons3]) @pytest.mark.parametrize('comparators', [(1, 'first_name'), (1, 1)]) def test_literal_special1(assert_errors, parse_ast_tree, code, comparators, default_options): 'Testing that special cases do work and raise warnings.' tree = parse_ast_tree(code.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])
Testing that special cases do work and raise warnings.
tests/test_visitors/test_ast/test_comparisons/test_literal.py
test_literal_special1
phoolish-philomath/wemake-python-styleguide
0
python
@pytest.mark.parametrize('code', [if_with_chained_comparisons1, if_with_chained_comparisons3]) @pytest.mark.parametrize('comparators', [(1, 'first_name'), (1, 1)]) def test_literal_special1(assert_errors, parse_ast_tree, code, comparators, default_options): tree = parse_ast_tree(code.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])
@pytest.mark.parametrize('code', [if_with_chained_comparisons1, if_with_chained_comparisons3]) @pytest.mark.parametrize('comparators', [(1, 'first_name'), (1, 1)]) def test_literal_special1(assert_errors, parse_ast_tree, code, comparators, default_options): tree = parse_ast_tree(code.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])<|docstring|>Testing that special cases do work and raise warnings.<|endoftext|>
2cb6c951cc0c5729c321e48728e628d627c7bc1bc907adafab93061194ee6502
@pytest.mark.parametrize('code', [if_with_chained_comparisons2, if_with_chained_comparisons3]) @pytest.mark.parametrize('comparators', [('first_name', 1), (1, 1)]) def test_literal_special2(assert_errors, parse_ast_tree, code, comparators, default_options): 'Testing that special cases do work and raise warnings.' tree = parse_ast_tree(code.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])
Testing that special cases do work and raise warnings.
tests/test_visitors/test_ast/test_comparisons/test_literal.py
test_literal_special2
phoolish-philomath/wemake-python-styleguide
0
python
@pytest.mark.parametrize('code', [if_with_chained_comparisons2, if_with_chained_comparisons3]) @pytest.mark.parametrize('comparators', [('first_name', 1), (1, 1)]) def test_literal_special2(assert_errors, parse_ast_tree, code, comparators, default_options): tree = parse_ast_tree(code.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])
@pytest.mark.parametrize('code', [if_with_chained_comparisons2, if_with_chained_comparisons3]) @pytest.mark.parametrize('comparators', [('first_name', 1), (1, 1)]) def test_literal_special2(assert_errors, parse_ast_tree, code, comparators, default_options): tree = parse_ast_tree(code.format(*comparators)) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConstantComparisonViolation])<|docstring|>Testing that special cases do work and raise warnings.<|endoftext|>
00b8d598d759e5af4c3f4e1126ac12fc647a32365306d38d0d55c964c84babed
@pytest.mark.parametrize('code', [if_with_chained_comparisons1, if_with_chained_comparisons2, if_with_chained_comparisons3]) def test_literal_special_without_errors(assert_errors, parse_ast_tree, code, default_options): 'Testing that special cases do work and do not raise warnings.' tree = parse_ast_tree(code.format('first_name', 'second_name')) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
Testing that special cases do work and do not raise warnings.
tests/test_visitors/test_ast/test_comparisons/test_literal.py
test_literal_special_without_errors
phoolish-philomath/wemake-python-styleguide
0
python
@pytest.mark.parametrize('code', [if_with_chained_comparisons1, if_with_chained_comparisons2, if_with_chained_comparisons3]) def test_literal_special_without_errors(assert_errors, parse_ast_tree, code, default_options): tree = parse_ast_tree(code.format('first_name', 'second_name')) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
@pytest.mark.parametrize('code', [if_with_chained_comparisons1, if_with_chained_comparisons2, if_with_chained_comparisons3]) def test_literal_special_without_errors(assert_errors, parse_ast_tree, code, default_options): tree = parse_ast_tree(code.format('first_name', 'second_name')) visitor = ComparisonSanityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])<|docstring|>Testing that special cases do work and do not raise warnings.<|endoftext|>
f47f92ba4658762d4c8ce01de4eb71b8e6c856dc00c925083c23ac287c069b46
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs): '\n labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):\n Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,\n num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See\n :obj:`input_ids` above)\n ' return_dict = (return_dict if (return_dict is not None) else self.config.use_return_dict) (batch_size, num_choices) = (input_ids.shape[:2] if (input_ids is not None) else inputs_embeds.shape[:2]) flat_input_ids = (input_ids.view((- 1), input_ids.size((- 1))) if (input_ids is not None) else None) flat_position_ids = (position_ids.view((- 1), position_ids.size((- 1))) if (position_ids is not None) else None) flat_token_type_ids = (token_type_ids.view((- 1), token_type_ids.size((- 1))) if (token_type_ids is not None) else None) flat_attention_mask = (attention_mask.view((- 1), attention_mask.size((- 1))) if (attention_mask is not None) else None) flat_inputs_embeds = (inputs_embeds.view((- 1), inputs_embeds.size((- 2)), inputs_embeds.size((- 1))) if (inputs_embeds is not None) else None) past_key_values = self.get_prompt(batch_size=(batch_size * num_choices)) prefix_attention_mask = torch.ones((batch_size * num_choices), self.pre_seq_len).to(self.roberta.device) flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1) outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, past_key_values=past_key_values) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view((- 1), num_choices) loss = None if (labels is not None): loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if (not return_dict): output = ((reshaped_logits,) + outputs[2:]) return (((loss,) + output) if (loss is not None) else output) return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above)
model/multiple_choice.py
forward
guanzhchen/PETuning
10
python
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs): '\n labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):\n Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,\n num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See\n :obj:`input_ids` above)\n ' return_dict = (return_dict if (return_dict is not None) else self.config.use_return_dict) (batch_size, num_choices) = (input_ids.shape[:2] if (input_ids is not None) else inputs_embeds.shape[:2]) flat_input_ids = (input_ids.view((- 1), input_ids.size((- 1))) if (input_ids is not None) else None) flat_position_ids = (position_ids.view((- 1), position_ids.size((- 1))) if (position_ids is not None) else None) flat_token_type_ids = (token_type_ids.view((- 1), token_type_ids.size((- 1))) if (token_type_ids is not None) else None) flat_attention_mask = (attention_mask.view((- 1), attention_mask.size((- 1))) if (attention_mask is not None) else None) flat_inputs_embeds = (inputs_embeds.view((- 1), inputs_embeds.size((- 2)), inputs_embeds.size((- 1))) if (inputs_embeds is not None) else None) past_key_values = self.get_prompt(batch_size=(batch_size * num_choices)) prefix_attention_mask = torch.ones((batch_size * num_choices), self.pre_seq_len).to(self.roberta.device) flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1) outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, past_key_values=past_key_values) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view((- 1), num_choices) loss = None if (labels is not None): loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if (not return_dict): output = ((reshaped_logits,) + outputs[2:]) return (((loss,) + output) if (loss is not None) else output) return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs): '\n labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):\n Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,\n num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See\n :obj:`input_ids` above)\n ' return_dict = (return_dict if (return_dict is not None) else self.config.use_return_dict) (batch_size, num_choices) = (input_ids.shape[:2] if (input_ids is not None) else inputs_embeds.shape[:2]) flat_input_ids = (input_ids.view((- 1), input_ids.size((- 1))) if (input_ids is not None) else None) flat_position_ids = (position_ids.view((- 1), position_ids.size((- 1))) if (position_ids is not None) else None) flat_token_type_ids = (token_type_ids.view((- 1), token_type_ids.size((- 1))) if (token_type_ids is not None) else None) flat_attention_mask = (attention_mask.view((- 1), attention_mask.size((- 1))) if (attention_mask is not None) else None) flat_inputs_embeds = (inputs_embeds.view((- 1), inputs_embeds.size((- 2)), inputs_embeds.size((- 1))) if (inputs_embeds is not None) else None) past_key_values = self.get_prompt(batch_size=(batch_size * num_choices)) prefix_attention_mask = torch.ones((batch_size * num_choices), self.pre_seq_len).to(self.roberta.device) flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1) outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, past_key_values=past_key_values) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view((- 1), num_choices) loss = None if (labels is not None): loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if (not return_dict): output = ((reshaped_logits,) + outputs[2:]) return (((loss,) + output) if (loss is not None) else output) return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)<|docstring|>labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above)<|endoftext|>
5830274b49c986a3e69f5810bbc6f48936df488f7e8bc8e6a856080809d3f063
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs): '\n labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):\n Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,\n num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See\n :obj:`input_ids` above)\n ' return_dict = (return_dict if (return_dict is not None) else self.config.use_return_dict) (batch_size, num_choices) = (input_ids.shape[:2] if (input_ids is not None) else inputs_embeds.shape[:2]) flat_input_ids = (input_ids.view((- 1), input_ids.size((- 1))) if (input_ids is not None) else None) flat_position_ids = (position_ids.view((- 1), position_ids.size((- 1))) if (position_ids is not None) else None) flat_token_type_ids = (token_type_ids.view((- 1), token_type_ids.size((- 1))) if (token_type_ids is not None) else None) flat_attention_mask = (attention_mask.view((- 1), attention_mask.size((- 1))) if (attention_mask is not None) else None) flat_inputs_embeds = (inputs_embeds.view((- 1), inputs_embeds.size((- 2)), inputs_embeds.size((- 1))) if (inputs_embeds is not None) else None) outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view((- 1), num_choices) loss = None if (labels is not None): loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if (not return_dict): output = ((reshaped_logits,) + outputs[2:]) return (((loss,) + output) if (loss is not None) else output) return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above)
model/multiple_choice.py
forward
guanzhchen/PETuning
10
python
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs): '\n labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):\n Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,\n num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See\n :obj:`input_ids` above)\n ' return_dict = (return_dict if (return_dict is not None) else self.config.use_return_dict) (batch_size, num_choices) = (input_ids.shape[:2] if (input_ids is not None) else inputs_embeds.shape[:2]) flat_input_ids = (input_ids.view((- 1), input_ids.size((- 1))) if (input_ids is not None) else None) flat_position_ids = (position_ids.view((- 1), position_ids.size((- 1))) if (position_ids is not None) else None) flat_token_type_ids = (token_type_ids.view((- 1), token_type_ids.size((- 1))) if (token_type_ids is not None) else None) flat_attention_mask = (attention_mask.view((- 1), attention_mask.size((- 1))) if (attention_mask is not None) else None) flat_inputs_embeds = (inputs_embeds.view((- 1), inputs_embeds.size((- 2)), inputs_embeds.size((- 1))) if (inputs_embeds is not None) else None) outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view((- 1), num_choices) loss = None if (labels is not None): loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if (not return_dict): output = ((reshaped_logits,) + outputs[2:]) return (((loss,) + output) if (loss is not None) else output) return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs): '\n labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):\n Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,\n num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See\n :obj:`input_ids` above)\n ' return_dict = (return_dict if (return_dict is not None) else self.config.use_return_dict) (batch_size, num_choices) = (input_ids.shape[:2] if (input_ids is not None) else inputs_embeds.shape[:2]) flat_input_ids = (input_ids.view((- 1), input_ids.size((- 1))) if (input_ids is not None) else None) flat_position_ids = (position_ids.view((- 1), position_ids.size((- 1))) if (position_ids is not None) else None) flat_token_type_ids = (token_type_ids.view((- 1), token_type_ids.size((- 1))) if (token_type_ids is not None) else None) flat_attention_mask = (attention_mask.view((- 1), attention_mask.size((- 1))) if (attention_mask is not None) else None) flat_inputs_embeds = (inputs_embeds.view((- 1), inputs_embeds.size((- 2)), inputs_embeds.size((- 1))) if (inputs_embeds is not None) else None) outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view((- 1), num_choices) loss = None if (labels is not None): loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if (not return_dict): output = ((reshaped_logits,) + outputs[2:]) return (((loss,) + output) if (loss is not None) else output) return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)<|docstring|>labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above)<|endoftext|>
3b8fc6846dc7a33ad042f465f616308ecfc4574f2d4c32c0de9d8cd943e9c101
def test_latest_pages_build(self): 'Test the ability to retrieve the latest pages build for a repo.' self.basic_login() cassette_name = self.cassette_name('latest_pages_build') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) latest_build = repository.latest_pages_build() assert isinstance(latest_build, github3.repos.pages.PagesBuild)
Test the ability to retrieve the latest pages build for a repo.
tests/integration/test_repos_pages.py
test_latest_pages_build
seveas/github3.py
1
python
def test_latest_pages_build(self): self.basic_login() cassette_name = self.cassette_name('latest_pages_build') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) latest_build = repository.latest_pages_build() assert isinstance(latest_build, github3.repos.pages.PagesBuild)
def test_latest_pages_build(self): self.basic_login() cassette_name = self.cassette_name('latest_pages_build') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) latest_build = repository.latest_pages_build() assert isinstance(latest_build, github3.repos.pages.PagesBuild)<|docstring|>Test the ability to retrieve the latest pages build for a repo.<|endoftext|>
0cba7f7ee148021d81b50134b4e86b9722166133ebfb965e6f287c89e4624803
def test_pages(self): "\n Test the ability to retrieve information about a repository's pages.\n " self.basic_login() cassette_name = self.cassette_name('pages') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) pages_info = repository.pages() assert isinstance(pages_info, github3.repos.pages.PagesInfo)
Test the ability to retrieve information about a repository's pages.
tests/integration/test_repos_pages.py
test_pages
seveas/github3.py
1
python
def test_pages(self): "\n \n " self.basic_login() cassette_name = self.cassette_name('pages') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) pages_info = repository.pages() assert isinstance(pages_info, github3.repos.pages.PagesInfo)
def test_pages(self): "\n \n " self.basic_login() cassette_name = self.cassette_name('pages') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) pages_info = repository.pages() assert isinstance(pages_info, github3.repos.pages.PagesInfo)<|docstring|>Test the ability to retrieve information about a repository's pages.<|endoftext|>
45fc0defe7cb4dc987cd47bf101002d73a3b6e0db1fd272c995b7fb5c680d5f9
def test_iter_pages_builds(self): 'Test the ability to list the pages builds.' self.basic_login() cassette_name = self.cassette_name('pages_builds') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) for build in repository.iter_pages_builds(): assert isinstance(build, github3.repos.pages.PagesBuild)
Test the ability to list the pages builds.
tests/integration/test_repos_pages.py
test_iter_pages_builds
seveas/github3.py
1
python
def test_iter_pages_builds(self): self.basic_login() cassette_name = self.cassette_name('pages_builds') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) for build in repository.iter_pages_builds(): assert isinstance(build, github3.repos.pages.PagesBuild)
def test_iter_pages_builds(self): self.basic_login() cassette_name = self.cassette_name('pages_builds') with self.recorder.use_cassette(cassette_name): repository = self.gh.repository('sigmavirus24', 'github3.py') assert (repository is not None) for build in repository.iter_pages_builds(): assert isinstance(build, github3.repos.pages.PagesBuild)<|docstring|>Test the ability to list the pages builds.<|endoftext|>
084ded5550200dc4ece0b4fb72e8e254a0bb8d1773c8668bde5762e96ec76048
def __init__(self, bottomLeft, topRight): '\n :param bottomLeft: {lngMin, latMin}\n :param topRight: {lngMax, latMax}\n ' self.lngMin = bottomLeft[0] self.lngMax = topRight[0] self.latMin = bottomLeft[1] self.latMax = topRight[1] print('minimum longitude in network: ', self.lngMin) print('maximum longitude in network: ', self.lngMax) print('minimum latitude in network: ', self.latMin) print('maximum latitude in network: ', self.latMax) self.matchedReq = set() self.matchedTax = set()
:param bottomLeft: {lngMin, latMin} :param topRight: {lngMax, latMax}
DispatchingLogic_demo.py
__init__
bsmsnd/AMoD
0
python
def __init__(self, bottomLeft, topRight): '\n :param bottomLeft: {lngMin, latMin}\n :param topRight: {lngMax, latMax}\n ' self.lngMin = bottomLeft[0] self.lngMax = topRight[0] self.latMin = bottomLeft[1] self.latMax = topRight[1] print('minimum longitude in network: ', self.lngMin) print('maximum longitude in network: ', self.lngMax) print('minimum latitude in network: ', self.latMin) print('maximum latitude in network: ', self.latMax) self.matchedReq = set() self.matchedTax = set()
def __init__(self, bottomLeft, topRight): '\n :param bottomLeft: {lngMin, latMin}\n :param topRight: {lngMax, latMax}\n ' self.lngMin = bottomLeft[0] self.lngMax = topRight[0] self.latMin = bottomLeft[1] self.latMax = topRight[1] print('minimum longitude in network: ', self.lngMin) print('maximum longitude in network: ', self.lngMax) print('minimum latitude in network: ', self.latMin) print('maximum latitude in network: ', self.latMax) self.matchedReq = set() self.matchedTax = set()<|docstring|>:param bottomLeft: {lngMin, latMin} :param topRight: {lngMax, latMax}<|endoftext|>
3f9809aeacb4fc34e7b8a981c80cf58c3a2e875e21b77b9a43f2e19e9ed37ac7
def getRandomRebalanceLocation(self): '\n ATTENTION: AMoDeus internally uses the convention (longitude, latitude) for a WGS:84 pair, not the other way\n around as in some other cases.\n ' return [random.uniform(self.lngMin, self.lngMax), random.uniform(self.latMin, self.latMax)]
ATTENTION: AMoDeus internally uses the convention (longitude, latitude) for a WGS:84 pair, not the other way around as in some other cases.
DispatchingLogic_demo.py
getRandomRebalanceLocation
bsmsnd/AMoD
0
python
def getRandomRebalanceLocation(self): '\n ATTENTION: AMoDeus internally uses the convention (longitude, latitude) for a WGS:84 pair, not the other way\n around as in some other cases.\n ' return [random.uniform(self.lngMin, self.lngMax), random.uniform(self.latMin, self.latMax)]
def getRandomRebalanceLocation(self): '\n ATTENTION: AMoDeus internally uses the convention (longitude, latitude) for a WGS:84 pair, not the other way\n around as in some other cases.\n ' return [random.uniform(self.lngMin, self.lngMax), random.uniform(self.latMin, self.latMax)]<|docstring|>ATTENTION: AMoDeus internally uses the convention (longitude, latitude) for a WGS:84 pair, not the other way around as in some other cases.<|endoftext|>
1174a8742b4e600cc6b04e0f22732f5575cd4a892ff9fa08b2818b683c5a6e43
def find_best_single_site_proposer(self, node: RVIdentifier): '\n Finds the best proposer for a node which is\n SingleSiteUniformMetropolisHastingsProposer for\n SingleSiteUniformMetropolisHastings\n\n :param node: the node for which to return a proposer\n :returns: a proposer for the node\n ' return self.proposer_
Finds the best proposer for a node which is SingleSiteUniformMetropolisHastingsProposer for SingleSiteUniformMetropolisHastings :param node: the node for which to return a proposer :returns: a proposer for the node
src/beanmachine/ppl/legacy/inference/single_site_uniform_mh.py
find_best_single_site_proposer
michaeltingley/beanmachine-1
1
python
def find_best_single_site_proposer(self, node: RVIdentifier): '\n Finds the best proposer for a node which is\n SingleSiteUniformMetropolisHastingsProposer for\n SingleSiteUniformMetropolisHastings\n\n :param node: the node for which to return a proposer\n :returns: a proposer for the node\n ' return self.proposer_
def find_best_single_site_proposer(self, node: RVIdentifier): '\n Finds the best proposer for a node which is\n SingleSiteUniformMetropolisHastingsProposer for\n SingleSiteUniformMetropolisHastings\n\n :param node: the node for which to return a proposer\n :returns: a proposer for the node\n ' return self.proposer_<|docstring|>Finds the best proposer for a node which is SingleSiteUniformMetropolisHastingsProposer for SingleSiteUniformMetropolisHastings :param node: the node for which to return a proposer :returns: a proposer for the node<|endoftext|>
bf01606025efe3cafd8cc619b57d5d2cb3e720339a07cc7814f039fc00d13314
def parse_arguments(): 'Parse training arguments' parser = argparse.ArgumentParser() parser.add_argument('--trn-text-path', type=str, metavar='PATH', required=True, help='path to the training text file') parser.add_argument('--trn-feat-path', type=str, metavar='PATH', required=True, help='path to the instance feature matrix (CSR matrix, nr_insts * nr_features)') parser.add_argument('--trn-label-path', type=str, required=True, metavar='PATH', help='path to the training label matrix (CSR matrix, nr_insts * nr_labels)') parser.add_argument('--model-dir', type=str, required=True, metavar='PATH', help='the output directory where the models will be saved.') parser.add_argument('--tst-text-path', type=str, metavar='PATH', default='', help='path to the test text file') parser.add_argument('--tst-feat-path', type=str, metavar='PATH', default='', help='path to the test instance feature matrix') parser.add_argument('--tst-label-path', type=str, metavar='PATH', default='', help='path to the file of the test label matrix') parser.add_argument('--code-path', type=str, default='', metavar='PATH', help='path to the clustering file (CSR matrix, nr_insts * nr_labels)') parser.add_argument('--label-feat-path', type=str, default='', metavar='PATH', help='path to the CSR npz or Row-majored npy file of the label feature matrix (nr_labels * nr_label_feats)') parser.add_argument('--nr-splits', type=int, default=32, metavar='INT', help='number of splits used to construct hierarchy (a power of 2 is recommended)') parser.add_argument('--min-codes', type=int, default=None, metavar='INT', help='minimal number of codes, default None to use nr-splits') parser.add_argument('--indexer', choices=Indexer.indexer_dict.keys(), default='hierarchicalkmeans', metavar='STR', help=f"Indexer algorithm (default hierarchicalkmeans). Available choices are {', '.join(Indexer.indexer_dict.keys())}") parser.add_argument('--max-leaf-size', type=int, default=100, metavar='INT', help='The max size of the leaf nodes of hierarchical 2-means clustering. Default 100.') parser.add_argument('--imbalanced-ratio', type=float, default=0.0, metavar='FLOAT', help='Value between 0.0 and 0.5 (inclusive). Indicates how relaxed the balancedness constraint of 2-means can be. Specifically, if an iteration of 2-means is clustering L labels, the size of the output 2 clusters will be within approx imbalanced_ratio * 2 * L of each other. (default 0.0)') parser.add_argument('--imbalanced-depth', type=int, default=100, metavar='INT', help='After hierarchical 2-means clustering has reached this depth, it will continue clustering as if --imbalanced-ratio is set to 0.0. (default 100)') parser.add_argument('--no-spherical', action='store_true', default=False, help='Do not l2-normalize cluster centers while clustering') parser.add_argument('--max-iter', type=int, default=20, metavar='INT', help='max iterations for indexer (default 20)') parser.add_argument('--max-match-clusters', type=int, default=(- 1), metavar='INT', help='max number of clusters on which to train matcher; if <0, set to number of leaf clusters. Default -1') parser.add_argument('--no-fine-tune', action='store_true', help='whether do fine-tune on loaded/downloaded transformers') parser.add_argument('--model-shortcut', type=str, metavar='STR', default='bert-base-uncased', help='pre-trained transformer model name shortcut for download (default bert-base-uncased)') parser.add_argument('--init-model-dir', type=str, metavar='PATH', default='', help='path to load existing TransformerMatcher checkpoint from disk, overrides model-shortcut') parser.add_argument('-b', '--beam-size', type=int, default=10, metavar='INT', help='the default size of beam search used in the prediction') parser.add_argument('--only-topk', default=20, metavar='INT', type=int, help='the default number of top labels used in the prediction') parser.add_argument('-pp', '--post-processor', type=str, choices=PostProcessor.valid_list(), default='noop', metavar='STR', help='the default post processor used in the prediction') parser.add_argument('-ns', '--negative-sampling', type=str, choices=['tfn', 'man', 'tfn+man'], default='tfn', metavar='STR', help='Negative Sampling Schemes') parser.add_argument('--ensemble-method', type=str, choices=['concat-only', 'transformer-only', 'average', 'rank_average', 'round_robin'], default='transformer-only', metavar='STR', help='ensemble method for transformer/concat prediction ensemble') parser.add_argument('-t', '--threshold', type=float, default=0.1, metavar='VAL', help='threshold to sparsify the model weights (default 0.1)') parser.add_argument('--loss-function', type=str, choices=TransformerMatcher.LOSS_FUNCTION_TYPES.keys(), default='squared-hinge', metavar='STR', help='loss function type for transformer training') parser.add_argument('--cache-dir', default='', metavar='PATH', type=str, help='dir to store the pre-trained models downloaded from s3') parser.add_argument('--saved-trn-pt', default='', metavar='PATH', type=str, help='dir to save/load tokenized train tensor') parser.add_argument('--saved-val-pt', default='', metavar='PATH', type=str, help='dir to save/load tokenized validation tensor') parser.add_argument('--truncate-length', default=128, metavar='INT', type=int, help='if given, truncate input text to this length, else use longest input length as truncate-length.') parser.add_argument('--hidden-dropout-prob', default=0.1, metavar='VAL', type=float, help='hidden dropout prob in deep transformer models.') parser.add_argument('--batch-size', default=32, metavar='INT', type=int, help='batch size per GPU.') parser.add_argument('--gradient-accumulation-steps', type=int, metavar='INT', default=1, help='number of updates steps to accumulate before performing a backward/update pass.') parser.add_argument('--learning-rate', default=0.0001, metavar='VAL', type=float, help='maximum learning rate for Adam.') parser.add_argument('--weight-decay', default=0.0, metavar='VAL', type=float, help='weight decay rate for regularization') parser.add_argument('--adam-epsilon', default=1e-08, metavar='VAL', type=float, help='epsilon for Adam optimizer.') parser.add_argument('--max-grad-norm', default=1.0, metavar='VAL', type=float, help='max gradient norm.') parser.add_argument('--num-train-epochs', default=5.0, metavar='INT', type=int, help='total number of training epochs to perform for each sub-task.') parser.add_argument('--max-steps', default=(- 1), metavar='INT', type=int, help='if > 0: set total number of training steps to perform for each sub-task. Overrides num-train-epochs.') parser.add_argument('--steps-scale', nargs='+', type=float, default=None, metavar='FLOAT', help='scale number of transformer fine-tuning steps for each layer. Default None to ignore') parser.add_argument('--max-no-improve-cnt', type=int, default=(- 1), metavar='INT', help='if > 0, training will stop when this number of validation steps result in no improvment. Default -1 to ignore') parser.add_argument('--lr-schedule', default='linear', metavar='STR', type=str, choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'], help='learning rate schedule for transformer fine-tuning. See transformers.SchedulerType for details') parser.add_argument('--warmup-steps', default=0, metavar='INT', type=int, help='Linear warmup over warmup-steps.') parser.add_argument('--logging-steps', type=int, metavar='INT', default=50, help='log training information every NUM updates steps.') parser.add_argument('--save-steps', type=int, metavar='INT', default=100, help='save checkpoint every NUM updates steps.') parser.add_argument('--max-active-matching-labels', default=None, metavar='INT', type=int, help='max number of active matching labels, will subsample from existing negative samples if necessary. Default None to ignore.') parser.add_argument('--max-num-labels-in-gpu', default=65536, metavar='INT', type=int, help='Upper limit on labels to put output layer in GPU. Default 65536') parser.add_argument('--save-emb-dir', default='', metavar='PATH', type=str, help='dir to save instance embeddings.') parser.add_argument('--disable-gpu', action='store_true', help="disable CUDA training even if it's available") parser.add_argument('--bootstrap-method', type=str, default='linear', choices=['linear', 'inherit', None], help='initialization method for the text_model weights. Ignored if None is given. Default linear') parser.add_argument('--batch-gen-workers', type=int, metavar='INT', default=4, help='number of CPUs to use for batch generation') parser.add_argument('--seed', type=int, metavar='INT', default=0, help='random seed for initialization') parser.add_argument('--verbose-level', type=int, choices=logging_util.log_levels.keys(), default=2, metavar='INT', help=f"the verbose level, {', '.join([((str(k) + ' for ') + logging.getLevelName(v)) for (k, v) in logging_util.log_levels.items()])}. Default 2") return parser
Parse training arguments
pecos/xmc/xtransformer/train.py
parse_arguments
Xabilahu/pecos
2
python
def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--trn-text-path', type=str, metavar='PATH', required=True, help='path to the training text file') parser.add_argument('--trn-feat-path', type=str, metavar='PATH', required=True, help='path to the instance feature matrix (CSR matrix, nr_insts * nr_features)') parser.add_argument('--trn-label-path', type=str, required=True, metavar='PATH', help='path to the training label matrix (CSR matrix, nr_insts * nr_labels)') parser.add_argument('--model-dir', type=str, required=True, metavar='PATH', help='the output directory where the models will be saved.') parser.add_argument('--tst-text-path', type=str, metavar='PATH', default=, help='path to the test text file') parser.add_argument('--tst-feat-path', type=str, metavar='PATH', default=, help='path to the test instance feature matrix') parser.add_argument('--tst-label-path', type=str, metavar='PATH', default=, help='path to the file of the test label matrix') parser.add_argument('--code-path', type=str, default=, metavar='PATH', help='path to the clustering file (CSR matrix, nr_insts * nr_labels)') parser.add_argument('--label-feat-path', type=str, default=, metavar='PATH', help='path to the CSR npz or Row-majored npy file of the label feature matrix (nr_labels * nr_label_feats)') parser.add_argument('--nr-splits', type=int, default=32, metavar='INT', help='number of splits used to construct hierarchy (a power of 2 is recommended)') parser.add_argument('--min-codes', type=int, default=None, metavar='INT', help='minimal number of codes, default None to use nr-splits') parser.add_argument('--indexer', choices=Indexer.indexer_dict.keys(), default='hierarchicalkmeans', metavar='STR', help=f"Indexer algorithm (default hierarchicalkmeans). Available choices are {', '.join(Indexer.indexer_dict.keys())}") parser.add_argument('--max-leaf-size', type=int, default=100, metavar='INT', help='The max size of the leaf nodes of hierarchical 2-means clustering. Default 100.') parser.add_argument('--imbalanced-ratio', type=float, default=0.0, metavar='FLOAT', help='Value between 0.0 and 0.5 (inclusive). Indicates how relaxed the balancedness constraint of 2-means can be. Specifically, if an iteration of 2-means is clustering L labels, the size of the output 2 clusters will be within approx imbalanced_ratio * 2 * L of each other. (default 0.0)') parser.add_argument('--imbalanced-depth', type=int, default=100, metavar='INT', help='After hierarchical 2-means clustering has reached this depth, it will continue clustering as if --imbalanced-ratio is set to 0.0. (default 100)') parser.add_argument('--no-spherical', action='store_true', default=False, help='Do not l2-normalize cluster centers while clustering') parser.add_argument('--max-iter', type=int, default=20, metavar='INT', help='max iterations for indexer (default 20)') parser.add_argument('--max-match-clusters', type=int, default=(- 1), metavar='INT', help='max number of clusters on which to train matcher; if <0, set to number of leaf clusters. Default -1') parser.add_argument('--no-fine-tune', action='store_true', help='whether do fine-tune on loaded/downloaded transformers') parser.add_argument('--model-shortcut', type=str, metavar='STR', default='bert-base-uncased', help='pre-trained transformer model name shortcut for download (default bert-base-uncased)') parser.add_argument('--init-model-dir', type=str, metavar='PATH', default=, help='path to load existing TransformerMatcher checkpoint from disk, overrides model-shortcut') parser.add_argument('-b', '--beam-size', type=int, default=10, metavar='INT', help='the default size of beam search used in the prediction') parser.add_argument('--only-topk', default=20, metavar='INT', type=int, help='the default number of top labels used in the prediction') parser.add_argument('-pp', '--post-processor', type=str, choices=PostProcessor.valid_list(), default='noop', metavar='STR', help='the default post processor used in the prediction') parser.add_argument('-ns', '--negative-sampling', type=str, choices=['tfn', 'man', 'tfn+man'], default='tfn', metavar='STR', help='Negative Sampling Schemes') parser.add_argument('--ensemble-method', type=str, choices=['concat-only', 'transformer-only', 'average', 'rank_average', 'round_robin'], default='transformer-only', metavar='STR', help='ensemble method for transformer/concat prediction ensemble') parser.add_argument('-t', '--threshold', type=float, default=0.1, metavar='VAL', help='threshold to sparsify the model weights (default 0.1)') parser.add_argument('--loss-function', type=str, choices=TransformerMatcher.LOSS_FUNCTION_TYPES.keys(), default='squared-hinge', metavar='STR', help='loss function type for transformer training') parser.add_argument('--cache-dir', default=, metavar='PATH', type=str, help='dir to store the pre-trained models downloaded from s3') parser.add_argument('--saved-trn-pt', default=, metavar='PATH', type=str, help='dir to save/load tokenized train tensor') parser.add_argument('--saved-val-pt', default=, metavar='PATH', type=str, help='dir to save/load tokenized validation tensor') parser.add_argument('--truncate-length', default=128, metavar='INT', type=int, help='if given, truncate input text to this length, else use longest input length as truncate-length.') parser.add_argument('--hidden-dropout-prob', default=0.1, metavar='VAL', type=float, help='hidden dropout prob in deep transformer models.') parser.add_argument('--batch-size', default=32, metavar='INT', type=int, help='batch size per GPU.') parser.add_argument('--gradient-accumulation-steps', type=int, metavar='INT', default=1, help='number of updates steps to accumulate before performing a backward/update pass.') parser.add_argument('--learning-rate', default=0.0001, metavar='VAL', type=float, help='maximum learning rate for Adam.') parser.add_argument('--weight-decay', default=0.0, metavar='VAL', type=float, help='weight decay rate for regularization') parser.add_argument('--adam-epsilon', default=1e-08, metavar='VAL', type=float, help='epsilon for Adam optimizer.') parser.add_argument('--max-grad-norm', default=1.0, metavar='VAL', type=float, help='max gradient norm.') parser.add_argument('--num-train-epochs', default=5.0, metavar='INT', type=int, help='total number of training epochs to perform for each sub-task.') parser.add_argument('--max-steps', default=(- 1), metavar='INT', type=int, help='if > 0: set total number of training steps to perform for each sub-task. Overrides num-train-epochs.') parser.add_argument('--steps-scale', nargs='+', type=float, default=None, metavar='FLOAT', help='scale number of transformer fine-tuning steps for each layer. Default None to ignore') parser.add_argument('--max-no-improve-cnt', type=int, default=(- 1), metavar='INT', help='if > 0, training will stop when this number of validation steps result in no improvment. Default -1 to ignore') parser.add_argument('--lr-schedule', default='linear', metavar='STR', type=str, choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'], help='learning rate schedule for transformer fine-tuning. See transformers.SchedulerType for details') parser.add_argument('--warmup-steps', default=0, metavar='INT', type=int, help='Linear warmup over warmup-steps.') parser.add_argument('--logging-steps', type=int, metavar='INT', default=50, help='log training information every NUM updates steps.') parser.add_argument('--save-steps', type=int, metavar='INT', default=100, help='save checkpoint every NUM updates steps.') parser.add_argument('--max-active-matching-labels', default=None, metavar='INT', type=int, help='max number of active matching labels, will subsample from existing negative samples if necessary. Default None to ignore.') parser.add_argument('--max-num-labels-in-gpu', default=65536, metavar='INT', type=int, help='Upper limit on labels to put output layer in GPU. Default 65536') parser.add_argument('--save-emb-dir', default=, metavar='PATH', type=str, help='dir to save instance embeddings.') parser.add_argument('--disable-gpu', action='store_true', help="disable CUDA training even if it's available") parser.add_argument('--bootstrap-method', type=str, default='linear', choices=['linear', 'inherit', None], help='initialization method for the text_model weights. Ignored if None is given. Default linear') parser.add_argument('--batch-gen-workers', type=int, metavar='INT', default=4, help='number of CPUs to use for batch generation') parser.add_argument('--seed', type=int, metavar='INT', default=0, help='random seed for initialization') parser.add_argument('--verbose-level', type=int, choices=logging_util.log_levels.keys(), default=2, metavar='INT', help=f"the verbose level, {', '.join([((str(k) + ' for ') + logging.getLevelName(v)) for (k, v) in logging_util.log_levels.items()])}. Default 2") return parser
def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--trn-text-path', type=str, metavar='PATH', required=True, help='path to the training text file') parser.add_argument('--trn-feat-path', type=str, metavar='PATH', required=True, help='path to the instance feature matrix (CSR matrix, nr_insts * nr_features)') parser.add_argument('--trn-label-path', type=str, required=True, metavar='PATH', help='path to the training label matrix (CSR matrix, nr_insts * nr_labels)') parser.add_argument('--model-dir', type=str, required=True, metavar='PATH', help='the output directory where the models will be saved.') parser.add_argument('--tst-text-path', type=str, metavar='PATH', default=, help='path to the test text file') parser.add_argument('--tst-feat-path', type=str, metavar='PATH', default=, help='path to the test instance feature matrix') parser.add_argument('--tst-label-path', type=str, metavar='PATH', default=, help='path to the file of the test label matrix') parser.add_argument('--code-path', type=str, default=, metavar='PATH', help='path to the clustering file (CSR matrix, nr_insts * nr_labels)') parser.add_argument('--label-feat-path', type=str, default=, metavar='PATH', help='path to the CSR npz or Row-majored npy file of the label feature matrix (nr_labels * nr_label_feats)') parser.add_argument('--nr-splits', type=int, default=32, metavar='INT', help='number of splits used to construct hierarchy (a power of 2 is recommended)') parser.add_argument('--min-codes', type=int, default=None, metavar='INT', help='minimal number of codes, default None to use nr-splits') parser.add_argument('--indexer', choices=Indexer.indexer_dict.keys(), default='hierarchicalkmeans', metavar='STR', help=f"Indexer algorithm (default hierarchicalkmeans). Available choices are {', '.join(Indexer.indexer_dict.keys())}") parser.add_argument('--max-leaf-size', type=int, default=100, metavar='INT', help='The max size of the leaf nodes of hierarchical 2-means clustering. Default 100.') parser.add_argument('--imbalanced-ratio', type=float, default=0.0, metavar='FLOAT', help='Value between 0.0 and 0.5 (inclusive). Indicates how relaxed the balancedness constraint of 2-means can be. Specifically, if an iteration of 2-means is clustering L labels, the size of the output 2 clusters will be within approx imbalanced_ratio * 2 * L of each other. (default 0.0)') parser.add_argument('--imbalanced-depth', type=int, default=100, metavar='INT', help='After hierarchical 2-means clustering has reached this depth, it will continue clustering as if --imbalanced-ratio is set to 0.0. (default 100)') parser.add_argument('--no-spherical', action='store_true', default=False, help='Do not l2-normalize cluster centers while clustering') parser.add_argument('--max-iter', type=int, default=20, metavar='INT', help='max iterations for indexer (default 20)') parser.add_argument('--max-match-clusters', type=int, default=(- 1), metavar='INT', help='max number of clusters on which to train matcher; if <0, set to number of leaf clusters. Default -1') parser.add_argument('--no-fine-tune', action='store_true', help='whether do fine-tune on loaded/downloaded transformers') parser.add_argument('--model-shortcut', type=str, metavar='STR', default='bert-base-uncased', help='pre-trained transformer model name shortcut for download (default bert-base-uncased)') parser.add_argument('--init-model-dir', type=str, metavar='PATH', default=, help='path to load existing TransformerMatcher checkpoint from disk, overrides model-shortcut') parser.add_argument('-b', '--beam-size', type=int, default=10, metavar='INT', help='the default size of beam search used in the prediction') parser.add_argument('--only-topk', default=20, metavar='INT', type=int, help='the default number of top labels used in the prediction') parser.add_argument('-pp', '--post-processor', type=str, choices=PostProcessor.valid_list(), default='noop', metavar='STR', help='the default post processor used in the prediction') parser.add_argument('-ns', '--negative-sampling', type=str, choices=['tfn', 'man', 'tfn+man'], default='tfn', metavar='STR', help='Negative Sampling Schemes') parser.add_argument('--ensemble-method', type=str, choices=['concat-only', 'transformer-only', 'average', 'rank_average', 'round_robin'], default='transformer-only', metavar='STR', help='ensemble method for transformer/concat prediction ensemble') parser.add_argument('-t', '--threshold', type=float, default=0.1, metavar='VAL', help='threshold to sparsify the model weights (default 0.1)') parser.add_argument('--loss-function', type=str, choices=TransformerMatcher.LOSS_FUNCTION_TYPES.keys(), default='squared-hinge', metavar='STR', help='loss function type for transformer training') parser.add_argument('--cache-dir', default=, metavar='PATH', type=str, help='dir to store the pre-trained models downloaded from s3') parser.add_argument('--saved-trn-pt', default=, metavar='PATH', type=str, help='dir to save/load tokenized train tensor') parser.add_argument('--saved-val-pt', default=, metavar='PATH', type=str, help='dir to save/load tokenized validation tensor') parser.add_argument('--truncate-length', default=128, metavar='INT', type=int, help='if given, truncate input text to this length, else use longest input length as truncate-length.') parser.add_argument('--hidden-dropout-prob', default=0.1, metavar='VAL', type=float, help='hidden dropout prob in deep transformer models.') parser.add_argument('--batch-size', default=32, metavar='INT', type=int, help='batch size per GPU.') parser.add_argument('--gradient-accumulation-steps', type=int, metavar='INT', default=1, help='number of updates steps to accumulate before performing a backward/update pass.') parser.add_argument('--learning-rate', default=0.0001, metavar='VAL', type=float, help='maximum learning rate for Adam.') parser.add_argument('--weight-decay', default=0.0, metavar='VAL', type=float, help='weight decay rate for regularization') parser.add_argument('--adam-epsilon', default=1e-08, metavar='VAL', type=float, help='epsilon for Adam optimizer.') parser.add_argument('--max-grad-norm', default=1.0, metavar='VAL', type=float, help='max gradient norm.') parser.add_argument('--num-train-epochs', default=5.0, metavar='INT', type=int, help='total number of training epochs to perform for each sub-task.') parser.add_argument('--max-steps', default=(- 1), metavar='INT', type=int, help='if > 0: set total number of training steps to perform for each sub-task. Overrides num-train-epochs.') parser.add_argument('--steps-scale', nargs='+', type=float, default=None, metavar='FLOAT', help='scale number of transformer fine-tuning steps for each layer. Default None to ignore') parser.add_argument('--max-no-improve-cnt', type=int, default=(- 1), metavar='INT', help='if > 0, training will stop when this number of validation steps result in no improvment. Default -1 to ignore') parser.add_argument('--lr-schedule', default='linear', metavar='STR', type=str, choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'], help='learning rate schedule for transformer fine-tuning. See transformers.SchedulerType for details') parser.add_argument('--warmup-steps', default=0, metavar='INT', type=int, help='Linear warmup over warmup-steps.') parser.add_argument('--logging-steps', type=int, metavar='INT', default=50, help='log training information every NUM updates steps.') parser.add_argument('--save-steps', type=int, metavar='INT', default=100, help='save checkpoint every NUM updates steps.') parser.add_argument('--max-active-matching-labels', default=None, metavar='INT', type=int, help='max number of active matching labels, will subsample from existing negative samples if necessary. Default None to ignore.') parser.add_argument('--max-num-labels-in-gpu', default=65536, metavar='INT', type=int, help='Upper limit on labels to put output layer in GPU. Default 65536') parser.add_argument('--save-emb-dir', default=, metavar='PATH', type=str, help='dir to save instance embeddings.') parser.add_argument('--disable-gpu', action='store_true', help="disable CUDA training even if it's available") parser.add_argument('--bootstrap-method', type=str, default='linear', choices=['linear', 'inherit', None], help='initialization method for the text_model weights. Ignored if None is given. Default linear') parser.add_argument('--batch-gen-workers', type=int, metavar='INT', default=4, help='number of CPUs to use for batch generation') parser.add_argument('--seed', type=int, metavar='INT', default=0, help='random seed for initialization') parser.add_argument('--verbose-level', type=int, choices=logging_util.log_levels.keys(), default=2, metavar='INT', help=f"the verbose level, {', '.join([((str(k) + ' for ') + logging.getLevelName(v)) for (k, v) in logging_util.log_levels.items()])}. Default 2") return parser<|docstring|>Parse training arguments<|endoftext|>
29734b70af423b06dfa2957f699829898bd8f0ff986c4a5e55a9cc5b5325dc74
def do_train(args): 'Train and save X-Transformer model.\n\n Args:\n args (argparse.Namespace): Command line arguments parsed by `parser.parse_args()`\n ' torch_util.set_seed(args.seed) LOGGER.info('Setting random seed {}'.format(args.seed)) X_trn = smat_util.load_matrix(args.trn_feat_path, dtype=np.float32) LOGGER.info('Loaded training feature matrix with shape={}'.format(X_trn.shape)) Y_trn = smat_util.load_matrix(args.trn_label_path, dtype=np.float32) LOGGER.info('Loaded training label matrix with shape={}'.format(Y_trn.shape)) if args.tst_feat_path: X_tst = smat_util.load_matrix(args.tst_feat_path, dtype=np.float32) LOGGER.info('Loaded test feature matrix with shape={}'.format(X_tst.shape)) else: X_tst = None if args.tst_label_path: Y_tst = smat_util.load_matrix(args.tst_label_path, dtype=np.float32) LOGGER.info('Loaded test label matrix with shape={}'.format(Y_tst.shape)) else: Y_tst = None (_, trn_corpus) = Preprocessor.load_data_from_file(args.trn_text_path, label_text_path=None, text_pos=0) LOGGER.info('Loaded {} training sequences'.format(len(trn_corpus))) if args.tst_text_path: (_, tst_corpus) = Preprocessor.load_data_from_file(args.tst_text_path, label_text_path=None, text_pos=0) LOGGER.info('Loaded {} test sequences'.format(len(tst_corpus))) else: tst_corpus = None if os.path.exists(args.code_path): cluster_chain = ClusterChain.from_partial_chain(smat_util.load_matrix(args.code_path), min_codes=args.min_codes, nr_splits=args.nr_splits) LOGGER.info('Loaded from code-path: {}'.format(args.code_path)) else: if os.path.isfile(args.label_feat_path): label_feat = smat_util.load_matrix(args.label_feat_path, dtype=np.float32) LOGGER.info('Loaded label feature matrix shape={}, from {}'.format(label_feat.shape, args.label_feat_path)) else: label_feat = LabelEmbeddingFactory.pifa(Y_trn, X_trn) if args.label_feat_path: smat_util.save_matrix(args.label_feat_path, label_feat) LOGGER.info('Created label feature matrix with shape={}, saved to {}'.format(label_feat.shape, args.label_feat_path)) cluster_chain = Indexer.gen(label_feat, args.indexer, nr_splits=args.nr_splits, min_codes=args.min_codes, max_leaf_size=args.max_leaf_size, imbalanced_depth=args.imbalanced_depth, imbalanced_ratio=args.imbalanced_ratio, seed=args.seed, max_iter=args.max_iter, spherical=(not args.no_spherical)) del label_feat gc.collect() if args.code_path: cluster_chain.save(args.code_path) LOGGER.info('Created clustering chain, saved to {}'.format(args.code_path)) LOGGER.info('Constructed clustering chain for ranker: {}'.format([cc.shape for cc in cluster_chain])) nr_leaf_clusters = cluster_chain[(- 1)].shape[1] if (args.max_match_clusters < 0): args.max_match_clusters = nr_leaf_clusters if (args.max_match_clusters < cluster_chain[(- 1)].shape[0]): args.ranker_level = (len(cluster_chain) - next((level for (level, C) in enumerate(cluster_chain[:]) if (C.shape[1] >= args.max_match_clusters)))) LOGGER.info('Apply matcher at ranker-level {} with nr_labels={}'.format(args.ranker_level, cluster_chain[(- args.ranker_level)].shape[1])) else: args.ranker_level = 0 LOGGER.info('Apply matcher at ranker-level 0 with nr_labels={}'.format(cluster_chain[(- 1)].shape[0])) trn_prob = MLProblemWithText(trn_corpus, X_trn, Y_trn) if all(((v is not None) for v in [tst_corpus, X_tst, Y_tst])): val_prob = MLProblemWithText(tst_corpus, X_tst, Y_tst) else: val_prob = None if (not args.saved_trn_pt): temp_trn_pt_dir = tempfile.TemporaryDirectory() args.saved_trn_pt = f'{temp_trn_pt_dir.name}/X_trn.pt' if (not args.saved_val_pt): temp_val_pt_dir = tempfile.TemporaryDirectory() args.saved_val_pt = f'{temp_val_pt_dir.name}/X_val.pt' args.neg_mining_chain = args.negative_sampling train_params = XTransformer.TrainParams.from_dict(vars(args), recursive=True) pred_params = XTransformer.PredParams.from_dict(vars(args), recursive=True) xtf = XTransformer.train(trn_prob, cluster_chain, val_prob=val_prob, train_params=train_params, pred_params=pred_params, beam_size=args.beam_size, steps_scale=args.steps_scale) xtf.save(args.model_dir)
Train and save X-Transformer model. Args: args (argparse.Namespace): Command line arguments parsed by `parser.parse_args()`
pecos/xmc/xtransformer/train.py
do_train
Xabilahu/pecos
2
python
def do_train(args): 'Train and save X-Transformer model.\n\n Args:\n args (argparse.Namespace): Command line arguments parsed by `parser.parse_args()`\n ' torch_util.set_seed(args.seed) LOGGER.info('Setting random seed {}'.format(args.seed)) X_trn = smat_util.load_matrix(args.trn_feat_path, dtype=np.float32) LOGGER.info('Loaded training feature matrix with shape={}'.format(X_trn.shape)) Y_trn = smat_util.load_matrix(args.trn_label_path, dtype=np.float32) LOGGER.info('Loaded training label matrix with shape={}'.format(Y_trn.shape)) if args.tst_feat_path: X_tst = smat_util.load_matrix(args.tst_feat_path, dtype=np.float32) LOGGER.info('Loaded test feature matrix with shape={}'.format(X_tst.shape)) else: X_tst = None if args.tst_label_path: Y_tst = smat_util.load_matrix(args.tst_label_path, dtype=np.float32) LOGGER.info('Loaded test label matrix with shape={}'.format(Y_tst.shape)) else: Y_tst = None (_, trn_corpus) = Preprocessor.load_data_from_file(args.trn_text_path, label_text_path=None, text_pos=0) LOGGER.info('Loaded {} training sequences'.format(len(trn_corpus))) if args.tst_text_path: (_, tst_corpus) = Preprocessor.load_data_from_file(args.tst_text_path, label_text_path=None, text_pos=0) LOGGER.info('Loaded {} test sequences'.format(len(tst_corpus))) else: tst_corpus = None if os.path.exists(args.code_path): cluster_chain = ClusterChain.from_partial_chain(smat_util.load_matrix(args.code_path), min_codes=args.min_codes, nr_splits=args.nr_splits) LOGGER.info('Loaded from code-path: {}'.format(args.code_path)) else: if os.path.isfile(args.label_feat_path): label_feat = smat_util.load_matrix(args.label_feat_path, dtype=np.float32) LOGGER.info('Loaded label feature matrix shape={}, from {}'.format(label_feat.shape, args.label_feat_path)) else: label_feat = LabelEmbeddingFactory.pifa(Y_trn, X_trn) if args.label_feat_path: smat_util.save_matrix(args.label_feat_path, label_feat) LOGGER.info('Created label feature matrix with shape={}, saved to {}'.format(label_feat.shape, args.label_feat_path)) cluster_chain = Indexer.gen(label_feat, args.indexer, nr_splits=args.nr_splits, min_codes=args.min_codes, max_leaf_size=args.max_leaf_size, imbalanced_depth=args.imbalanced_depth, imbalanced_ratio=args.imbalanced_ratio, seed=args.seed, max_iter=args.max_iter, spherical=(not args.no_spherical)) del label_feat gc.collect() if args.code_path: cluster_chain.save(args.code_path) LOGGER.info('Created clustering chain, saved to {}'.format(args.code_path)) LOGGER.info('Constructed clustering chain for ranker: {}'.format([cc.shape for cc in cluster_chain])) nr_leaf_clusters = cluster_chain[(- 1)].shape[1] if (args.max_match_clusters < 0): args.max_match_clusters = nr_leaf_clusters if (args.max_match_clusters < cluster_chain[(- 1)].shape[0]): args.ranker_level = (len(cluster_chain) - next((level for (level, C) in enumerate(cluster_chain[:]) if (C.shape[1] >= args.max_match_clusters)))) LOGGER.info('Apply matcher at ranker-level {} with nr_labels={}'.format(args.ranker_level, cluster_chain[(- args.ranker_level)].shape[1])) else: args.ranker_level = 0 LOGGER.info('Apply matcher at ranker-level 0 with nr_labels={}'.format(cluster_chain[(- 1)].shape[0])) trn_prob = MLProblemWithText(trn_corpus, X_trn, Y_trn) if all(((v is not None) for v in [tst_corpus, X_tst, Y_tst])): val_prob = MLProblemWithText(tst_corpus, X_tst, Y_tst) else: val_prob = None if (not args.saved_trn_pt): temp_trn_pt_dir = tempfile.TemporaryDirectory() args.saved_trn_pt = f'{temp_trn_pt_dir.name}/X_trn.pt' if (not args.saved_val_pt): temp_val_pt_dir = tempfile.TemporaryDirectory() args.saved_val_pt = f'{temp_val_pt_dir.name}/X_val.pt' args.neg_mining_chain = args.negative_sampling train_params = XTransformer.TrainParams.from_dict(vars(args), recursive=True) pred_params = XTransformer.PredParams.from_dict(vars(args), recursive=True) xtf = XTransformer.train(trn_prob, cluster_chain, val_prob=val_prob, train_params=train_params, pred_params=pred_params, beam_size=args.beam_size, steps_scale=args.steps_scale) xtf.save(args.model_dir)
def do_train(args): 'Train and save X-Transformer model.\n\n Args:\n args (argparse.Namespace): Command line arguments parsed by `parser.parse_args()`\n ' torch_util.set_seed(args.seed) LOGGER.info('Setting random seed {}'.format(args.seed)) X_trn = smat_util.load_matrix(args.trn_feat_path, dtype=np.float32) LOGGER.info('Loaded training feature matrix with shape={}'.format(X_trn.shape)) Y_trn = smat_util.load_matrix(args.trn_label_path, dtype=np.float32) LOGGER.info('Loaded training label matrix with shape={}'.format(Y_trn.shape)) if args.tst_feat_path: X_tst = smat_util.load_matrix(args.tst_feat_path, dtype=np.float32) LOGGER.info('Loaded test feature matrix with shape={}'.format(X_tst.shape)) else: X_tst = None if args.tst_label_path: Y_tst = smat_util.load_matrix(args.tst_label_path, dtype=np.float32) LOGGER.info('Loaded test label matrix with shape={}'.format(Y_tst.shape)) else: Y_tst = None (_, trn_corpus) = Preprocessor.load_data_from_file(args.trn_text_path, label_text_path=None, text_pos=0) LOGGER.info('Loaded {} training sequences'.format(len(trn_corpus))) if args.tst_text_path: (_, tst_corpus) = Preprocessor.load_data_from_file(args.tst_text_path, label_text_path=None, text_pos=0) LOGGER.info('Loaded {} test sequences'.format(len(tst_corpus))) else: tst_corpus = None if os.path.exists(args.code_path): cluster_chain = ClusterChain.from_partial_chain(smat_util.load_matrix(args.code_path), min_codes=args.min_codes, nr_splits=args.nr_splits) LOGGER.info('Loaded from code-path: {}'.format(args.code_path)) else: if os.path.isfile(args.label_feat_path): label_feat = smat_util.load_matrix(args.label_feat_path, dtype=np.float32) LOGGER.info('Loaded label feature matrix shape={}, from {}'.format(label_feat.shape, args.label_feat_path)) else: label_feat = LabelEmbeddingFactory.pifa(Y_trn, X_trn) if args.label_feat_path: smat_util.save_matrix(args.label_feat_path, label_feat) LOGGER.info('Created label feature matrix with shape={}, saved to {}'.format(label_feat.shape, args.label_feat_path)) cluster_chain = Indexer.gen(label_feat, args.indexer, nr_splits=args.nr_splits, min_codes=args.min_codes, max_leaf_size=args.max_leaf_size, imbalanced_depth=args.imbalanced_depth, imbalanced_ratio=args.imbalanced_ratio, seed=args.seed, max_iter=args.max_iter, spherical=(not args.no_spherical)) del label_feat gc.collect() if args.code_path: cluster_chain.save(args.code_path) LOGGER.info('Created clustering chain, saved to {}'.format(args.code_path)) LOGGER.info('Constructed clustering chain for ranker: {}'.format([cc.shape for cc in cluster_chain])) nr_leaf_clusters = cluster_chain[(- 1)].shape[1] if (args.max_match_clusters < 0): args.max_match_clusters = nr_leaf_clusters if (args.max_match_clusters < cluster_chain[(- 1)].shape[0]): args.ranker_level = (len(cluster_chain) - next((level for (level, C) in enumerate(cluster_chain[:]) if (C.shape[1] >= args.max_match_clusters)))) LOGGER.info('Apply matcher at ranker-level {} with nr_labels={}'.format(args.ranker_level, cluster_chain[(- args.ranker_level)].shape[1])) else: args.ranker_level = 0 LOGGER.info('Apply matcher at ranker-level 0 with nr_labels={}'.format(cluster_chain[(- 1)].shape[0])) trn_prob = MLProblemWithText(trn_corpus, X_trn, Y_trn) if all(((v is not None) for v in [tst_corpus, X_tst, Y_tst])): val_prob = MLProblemWithText(tst_corpus, X_tst, Y_tst) else: val_prob = None if (not args.saved_trn_pt): temp_trn_pt_dir = tempfile.TemporaryDirectory() args.saved_trn_pt = f'{temp_trn_pt_dir.name}/X_trn.pt' if (not args.saved_val_pt): temp_val_pt_dir = tempfile.TemporaryDirectory() args.saved_val_pt = f'{temp_val_pt_dir.name}/X_val.pt' args.neg_mining_chain = args.negative_sampling train_params = XTransformer.TrainParams.from_dict(vars(args), recursive=True) pred_params = XTransformer.PredParams.from_dict(vars(args), recursive=True) xtf = XTransformer.train(trn_prob, cluster_chain, val_prob=val_prob, train_params=train_params, pred_params=pred_params, beam_size=args.beam_size, steps_scale=args.steps_scale) xtf.save(args.model_dir)<|docstring|>Train and save X-Transformer model. Args: args (argparse.Namespace): Command line arguments parsed by `parser.parse_args()`<|endoftext|>
5c46df3f633fd3cd8f312bb55a44e717ce9dba824132cd8102b21cc9b7428800
def test_output_contract(self): '\n Test that the output complies to the established protocol\n that is used by the IaC pipeline and cf-name-check.\n\n Output should look like:\n {\n "valid": "true", # NOTE: this is a string and NOT a boolean\n "reason": ""\n "failed_rules": [] # Optional\n }\n ' event = {'stack_template_url': 'https://fake/bucket/key'} mock_created_s3_adapter_object = Mock() mock_created_s3_adapter_object.download_template_to_dictionary.return_value = {'Resources': {'sg': {'Type': 'AWS::EC2::SecurityGroup', 'Properties': {'GroupDescription': 'some_group_desc', 'SecurityGroupIngress': {'CidrIp': '10.1.2.3/32', 'FromPort': 34, 'ToPort': 36, 'IpProtocol': 'tcp'}, 'VpcId': 'vpc-9f8e9dfa'}}}} mock_s3_adapter = Mock(return_value=mock_created_s3_adapter_object) with patch('cfripper.main.S3Adapter', new=mock_s3_adapter): from cfripper.main import handler event_result = handler(event, None) assert (event_result['valid'] == 'true') assert isinstance(event_result['reason'], str) assert isinstance(event_result.get('failed_rules'), list)
Test that the output complies to the established protocol that is used by the IaC pipeline and cf-name-check. Output should look like: { "valid": "true", # NOTE: this is a string and NOT a boolean "reason": "" "failed_rules": [] # Optional }
tests/test_main.py
test_output_contract
ocrawford555/cfripper
0
python
def test_output_contract(self): '\n Test that the output complies to the established protocol\n that is used by the IaC pipeline and cf-name-check.\n\n Output should look like:\n {\n "valid": "true", # NOTE: this is a string and NOT a boolean\n "reason": \n "failed_rules": [] # Optional\n }\n ' event = {'stack_template_url': 'https://fake/bucket/key'} mock_created_s3_adapter_object = Mock() mock_created_s3_adapter_object.download_template_to_dictionary.return_value = {'Resources': {'sg': {'Type': 'AWS::EC2::SecurityGroup', 'Properties': {'GroupDescription': 'some_group_desc', 'SecurityGroupIngress': {'CidrIp': '10.1.2.3/32', 'FromPort': 34, 'ToPort': 36, 'IpProtocol': 'tcp'}, 'VpcId': 'vpc-9f8e9dfa'}}}} mock_s3_adapter = Mock(return_value=mock_created_s3_adapter_object) with patch('cfripper.main.S3Adapter', new=mock_s3_adapter): from cfripper.main import handler event_result = handler(event, None) assert (event_result['valid'] == 'true') assert isinstance(event_result['reason'], str) assert isinstance(event_result.get('failed_rules'), list)
def test_output_contract(self): '\n Test that the output complies to the established protocol\n that is used by the IaC pipeline and cf-name-check.\n\n Output should look like:\n {\n "valid": "true", # NOTE: this is a string and NOT a boolean\n "reason": \n "failed_rules": [] # Optional\n }\n ' event = {'stack_template_url': 'https://fake/bucket/key'} mock_created_s3_adapter_object = Mock() mock_created_s3_adapter_object.download_template_to_dictionary.return_value = {'Resources': {'sg': {'Type': 'AWS::EC2::SecurityGroup', 'Properties': {'GroupDescription': 'some_group_desc', 'SecurityGroupIngress': {'CidrIp': '10.1.2.3/32', 'FromPort': 34, 'ToPort': 36, 'IpProtocol': 'tcp'}, 'VpcId': 'vpc-9f8e9dfa'}}}} mock_s3_adapter = Mock(return_value=mock_created_s3_adapter_object) with patch('cfripper.main.S3Adapter', new=mock_s3_adapter): from cfripper.main import handler event_result = handler(event, None) assert (event_result['valid'] == 'true') assert isinstance(event_result['reason'], str) assert isinstance(event_result.get('failed_rules'), list)<|docstring|>Test that the output complies to the established protocol that is used by the IaC pipeline and cf-name-check. Output should look like: { "valid": "true", # NOTE: this is a string and NOT a boolean "reason": "" "failed_rules": [] # Optional }<|endoftext|>
9a43782cc4712cc3dcf7985adf03bcc41c4e154af36300b85f07e9531341ee04
def MakeAlignment(SequenceAsStrings: str): '\n\n This is used to find out which translation window sequence is most similar\n to a reference protein sequence.\n Bio.Align.PairwiseAligner somehow failed to achieve this.\n\n ' (MainSequence, QuerySequence) = sorted(SequenceAsStrings, key=(lambda s: (- len(s)))) FragmentSize = 3 FragmentCount = 50 MatchedFragments = 0 if (len(QuerySequence) < FragmentSize): return 0 for w in range(FragmentCount): PossibleIndexes = range(max((len(QuerySequence) - FragmentSize), 3)) F = random.choice(PossibleIndexes) J = (F + FragmentSize) MatchedFragments += (QuerySequence[F:J] in MainSequence) return MatchedFragments
This is used to find out which translation window sequence is most similar to a reference protein sequence. Bio.Align.PairwiseAligner somehow failed to achieve this.
straintables/Executable/Protein.py
MakeAlignment
Gab0/linkageMapper
0
python
def MakeAlignment(SequenceAsStrings: str): '\n\n This is used to find out which translation window sequence is most similar\n to a reference protein sequence.\n Bio.Align.PairwiseAligner somehow failed to achieve this.\n\n ' (MainSequence, QuerySequence) = sorted(SequenceAsStrings, key=(lambda s: (- len(s)))) FragmentSize = 3 FragmentCount = 50 MatchedFragments = 0 if (len(QuerySequence) < FragmentSize): return 0 for w in range(FragmentCount): PossibleIndexes = range(max((len(QuerySequence) - FragmentSize), 3)) F = random.choice(PossibleIndexes) J = (F + FragmentSize) MatchedFragments += (QuerySequence[F:J] in MainSequence) return MatchedFragments
def MakeAlignment(SequenceAsStrings: str): '\n\n This is used to find out which translation window sequence is most similar\n to a reference protein sequence.\n Bio.Align.PairwiseAligner somehow failed to achieve this.\n\n ' (MainSequence, QuerySequence) = sorted(SequenceAsStrings, key=(lambda s: (- len(s)))) FragmentSize = 3 FragmentCount = 50 MatchedFragments = 0 if (len(QuerySequence) < FragmentSize): return 0 for w in range(FragmentCount): PossibleIndexes = range(max((len(QuerySequence) - FragmentSize), 3)) F = random.choice(PossibleIndexes) J = (F + FragmentSize) MatchedFragments += (QuerySequence[F:J] in MainSequence) return MatchedFragments<|docstring|>This is used to find out which translation window sequence is most similar to a reference protein sequence. Bio.Align.PairwiseAligner somehow failed to achieve this.<|endoftext|>
c091130c8febefb1799df0a6e33cb12d7ba126b5a8a4b327f095a99077d9d657
def establish_scp_conn(self): 'Establish the secure copy connection.' self.scp_conn = paramiko.SSHClient() self.scp_conn.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.scp_conn.connect(hostname=self.ssh_ctl_chan.host, port=self.ssh_ctl_chan.port, username=self.ssh_ctl_chan.username, password=self.ssh_ctl_chan.password, key_filename=self.ssh_ctl_chan.key_file, look_for_keys=self.ssh_ctl_chan.use_keys, allow_agent=self.ssh_ctl_chan.allow_agent, timeout=self.ssh_ctl_chan.timeout) self.scp_client = scp.SCPClient(self.scp_conn.get_transport())
Establish the secure copy connection.
netmiko/scp_handler.py
establish_scp_conn
r2r-dev/netmiko
1
python
def establish_scp_conn(self): self.scp_conn = paramiko.SSHClient() self.scp_conn.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.scp_conn.connect(hostname=self.ssh_ctl_chan.host, port=self.ssh_ctl_chan.port, username=self.ssh_ctl_chan.username, password=self.ssh_ctl_chan.password, key_filename=self.ssh_ctl_chan.key_file, look_for_keys=self.ssh_ctl_chan.use_keys, allow_agent=self.ssh_ctl_chan.allow_agent, timeout=self.ssh_ctl_chan.timeout) self.scp_client = scp.SCPClient(self.scp_conn.get_transport())
def establish_scp_conn(self): self.scp_conn = paramiko.SSHClient() self.scp_conn.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.scp_conn.connect(hostname=self.ssh_ctl_chan.host, port=self.ssh_ctl_chan.port, username=self.ssh_ctl_chan.username, password=self.ssh_ctl_chan.password, key_filename=self.ssh_ctl_chan.key_file, look_for_keys=self.ssh_ctl_chan.use_keys, allow_agent=self.ssh_ctl_chan.allow_agent, timeout=self.ssh_ctl_chan.timeout) self.scp_client = scp.SCPClient(self.scp_conn.get_transport())<|docstring|>Establish the secure copy connection.<|endoftext|>
3e84399cb9dc5ffb96159aa1368ca0a480fb17a3bf09a6587a338ca66a0f24b9
def scp_transfer_file(self, source_file, dest_file): 'Put file using SCP (for backwards compatibility).' self.scp_client.put(source_file, dest_file)
Put file using SCP (for backwards compatibility).
netmiko/scp_handler.py
scp_transfer_file
r2r-dev/netmiko
1
python
def scp_transfer_file(self, source_file, dest_file): self.scp_client.put(source_file, dest_file)
def scp_transfer_file(self, source_file, dest_file): self.scp_client.put(source_file, dest_file)<|docstring|>Put file using SCP (for backwards compatibility).<|endoftext|>
4f712963f8773efd4e1ed97977fc859528c07da52d928f186e6806ca28f21ec4
def scp_get_file(self, source_file, dest_file): 'Get file using SCP.' self.scp_client.get(source_file, dest_file)
Get file using SCP.
netmiko/scp_handler.py
scp_get_file
r2r-dev/netmiko
1
python
def scp_get_file(self, source_file, dest_file): self.scp_client.get(source_file, dest_file)
def scp_get_file(self, source_file, dest_file): self.scp_client.get(source_file, dest_file)<|docstring|>Get file using SCP.<|endoftext|>
efecdb7cc4f7788405ffcbf1ecddcc69dcfa32bf0961d740b31b0df296cd9c88
def scp_put_file(self, source_file, dest_file): 'Put file using SCP.' self.scp_client.put(source_file, dest_file)
Put file using SCP.
netmiko/scp_handler.py
scp_put_file
r2r-dev/netmiko
1
python
def scp_put_file(self, source_file, dest_file): self.scp_client.put(source_file, dest_file)
def scp_put_file(self, source_file, dest_file): self.scp_client.put(source_file, dest_file)<|docstring|>Put file using SCP.<|endoftext|>
4476a83513937c8bde9c52a8805646e95dfd7720701434dbe0690adfefad22e5
def close(self): 'Close the SCP connection.' self.scp_conn.close()
Close the SCP connection.
netmiko/scp_handler.py
close
r2r-dev/netmiko
1
python
def close(self): self.scp_conn.close()
def close(self): self.scp_conn.close()<|docstring|>Close the SCP connection.<|endoftext|>
81e8f9804d4d076bbb2d2ab04952ed78fb69f9c9d9e2b2eb14599da2363e5f20
def __enter__(self): 'Context manager setup' self.establish_scp_conn() return self
Context manager setup
netmiko/scp_handler.py
__enter__
r2r-dev/netmiko
1
python
def __enter__(self): self.establish_scp_conn() return self
def __enter__(self): self.establish_scp_conn() return self<|docstring|>Context manager setup<|endoftext|>
8f9a0909d4b57f3d9c465ba79f1a9d3bdca5287b2373298b35432d7440829345
def __exit__(self, exc_type, exc_value, traceback): 'Context manager cleanup.' self.close_scp_chan() if (exc_type is not None): raise exc_type(exc_value)
Context manager cleanup.
netmiko/scp_handler.py
__exit__
r2r-dev/netmiko
1
python
def __exit__(self, exc_type, exc_value, traceback): self.close_scp_chan() if (exc_type is not None): raise exc_type(exc_value)
def __exit__(self, exc_type, exc_value, traceback): self.close_scp_chan() if (exc_type is not None): raise exc_type(exc_value)<|docstring|>Context manager cleanup.<|endoftext|>
ab10f3ad6fb8fe94f5320b73a7c8109fc9791404638c462be3e12283a36b21f6
def establish_scp_conn(self): 'Establish SCP connection.' self.scp_conn = SCPConn(self.ssh_ctl_chan)
Establish SCP connection.
netmiko/scp_handler.py
establish_scp_conn
r2r-dev/netmiko
1
python
def establish_scp_conn(self): self.scp_conn = SCPConn(self.ssh_ctl_chan)
def establish_scp_conn(self): self.scp_conn = SCPConn(self.ssh_ctl_chan)<|docstring|>Establish SCP connection.<|endoftext|>
7a5f732ff85492538b7a89927169bbff6f3ead96c71174b99795144ebdc6057a
def close_scp_chan(self): 'Close the SCP connection to the remote network device.' self.scp_conn.close() self.scp_conn = None
Close the SCP connection to the remote network device.
netmiko/scp_handler.py
close_scp_chan
r2r-dev/netmiko
1
python
def close_scp_chan(self): self.scp_conn.close() self.scp_conn = None
def close_scp_chan(self): self.scp_conn.close() self.scp_conn = None<|docstring|>Close the SCP connection to the remote network device.<|endoftext|>
5bd18951f827cb53bbba69b56e374f2ab03978dc3101c3f9e6460377d76cf10d
def remote_space_available(self, search_pattern='bytes total \\((.*) bytes free\\)'): 'Return space available on remote device.' remote_cmd = 'dir {0}'.format(self.file_system) remote_output = self.ssh_ctl_chan.send_command_expect(remote_cmd) match = re.search(search_pattern, remote_output) return int(match.group(1))
Return space available on remote device.
netmiko/scp_handler.py
remote_space_available
r2r-dev/netmiko
1
python
def remote_space_available(self, search_pattern='bytes total \\((.*) bytes free\\)'): remote_cmd = 'dir {0}'.format(self.file_system) remote_output = self.ssh_ctl_chan.send_command_expect(remote_cmd) match = re.search(search_pattern, remote_output) return int(match.group(1))
def remote_space_available(self, search_pattern='bytes total \\((.*) bytes free\\)'): remote_cmd = 'dir {0}'.format(self.file_system) remote_output = self.ssh_ctl_chan.send_command_expect(remote_cmd) match = re.search(search_pattern, remote_output) return int(match.group(1))<|docstring|>Return space available on remote device.<|endoftext|>
60808f83bfa025a61b6890a6b80db2138b0de2d587aac90c3f4b3f9fdb87c5bb
def local_space_available(self): 'Return space available on local filesystem.' destination_stats = os.statvfs('.') return (destination_stats.f_bsize * destination_stats.f_bavail)
Return space available on local filesystem.
netmiko/scp_handler.py
local_space_available
r2r-dev/netmiko
1
python
def local_space_available(self): destination_stats = os.statvfs('.') return (destination_stats.f_bsize * destination_stats.f_bavail)
def local_space_available(self): destination_stats = os.statvfs('.') return (destination_stats.f_bsize * destination_stats.f_bavail)<|docstring|>Return space available on local filesystem.<|endoftext|>
618ee1cf8c06800de07789601d927594a172ad84c39a2bc51572e4ba2b3b97f3
def verify_space_available(self, search_pattern='bytes total \\((.*) bytes free\\)'): 'Verify sufficient space is available on destination file system (return boolean).' if (self.direction == 'put'): space_avail = self.remote_space_available(search_pattern=search_pattern) elif (self.direction == 'get'): space_avail = self.local_space_available() if (space_avail > self.file_size): return True return False
Verify sufficient space is available on destination file system (return boolean).
netmiko/scp_handler.py
verify_space_available
r2r-dev/netmiko
1
python
def verify_space_available(self, search_pattern='bytes total \\((.*) bytes free\\)'): if (self.direction == 'put'): space_avail = self.remote_space_available(search_pattern=search_pattern) elif (self.direction == 'get'): space_avail = self.local_space_available() if (space_avail > self.file_size): return True return False
def verify_space_available(self, search_pattern='bytes total \\((.*) bytes free\\)'): if (self.direction == 'put'): space_avail = self.remote_space_available(search_pattern=search_pattern) elif (self.direction == 'get'): space_avail = self.local_space_available() if (space_avail > self.file_size): return True return False<|docstring|>Verify sufficient space is available on destination file system (return boolean).<|endoftext|>
68449950ac807a5fce7bd07dcae6c16c7c5abafa5ac4234476073abc7f593f28
def check_file_exists(self, remote_cmd=''): 'Check if the dest_file already exists on the file system (return boolean).' if (self.direction == 'put'): if (not remote_cmd): remote_cmd = 'dir {0}/{1}'.format(self.file_system, self.dest_file) remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) search_string = 'Directory of .*{0}'.format(self.dest_file) if ('Error opening' in remote_out): return False elif re.search(search_string, remote_out): return True else: raise ValueError('Unexpected output from check_file_exists') elif (self.direction == 'get'): return os.path.exists(self.dest_file)
Check if the dest_file already exists on the file system (return boolean).
netmiko/scp_handler.py
check_file_exists
r2r-dev/netmiko
1
python
def check_file_exists(self, remote_cmd=): if (self.direction == 'put'): if (not remote_cmd): remote_cmd = 'dir {0}/{1}'.format(self.file_system, self.dest_file) remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) search_string = 'Directory of .*{0}'.format(self.dest_file) if ('Error opening' in remote_out): return False elif re.search(search_string, remote_out): return True else: raise ValueError('Unexpected output from check_file_exists') elif (self.direction == 'get'): return os.path.exists(self.dest_file)
def check_file_exists(self, remote_cmd=): if (self.direction == 'put'): if (not remote_cmd): remote_cmd = 'dir {0}/{1}'.format(self.file_system, self.dest_file) remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) search_string = 'Directory of .*{0}'.format(self.dest_file) if ('Error opening' in remote_out): return False elif re.search(search_string, remote_out): return True else: raise ValueError('Unexpected output from check_file_exists') elif (self.direction == 'get'): return os.path.exists(self.dest_file)<|docstring|>Check if the dest_file already exists on the file system (return boolean).<|endoftext|>
c0d0a2d5ad284dbea61149933640691e7c4c1ad1fb344dece51aadb33e062b59
def remote_file_size(self, remote_cmd='', remote_file=None): 'Get the file size of the remote file.' if (remote_file is None): remote_file = self.dest_file if (not remote_cmd): remote_cmd = 'dir {0}/{1}'.format(self.file_system, remote_file) remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) remote_out = re.split('Directory of .*', remote_out) remote_out = ''.join(remote_out) escape_file_name = re.escape(remote_file) pattern = '.*({0}).*'.format(escape_file_name) match = re.search(pattern, remote_out) if match: line = match.group(0) file_size = line.split()[2] if ('Error opening' in remote_out): raise IOError('Unable to find file on remote system') else: return int(file_size)
Get the file size of the remote file.
netmiko/scp_handler.py
remote_file_size
r2r-dev/netmiko
1
python
def remote_file_size(self, remote_cmd=, remote_file=None): if (remote_file is None): remote_file = self.dest_file if (not remote_cmd): remote_cmd = 'dir {0}/{1}'.format(self.file_system, remote_file) remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) remote_out = re.split('Directory of .*', remote_out) remote_out = .join(remote_out) escape_file_name = re.escape(remote_file) pattern = '.*({0}).*'.format(escape_file_name) match = re.search(pattern, remote_out) if match: line = match.group(0) file_size = line.split()[2] if ('Error opening' in remote_out): raise IOError('Unable to find file on remote system') else: return int(file_size)
def remote_file_size(self, remote_cmd=, remote_file=None): if (remote_file is None): remote_file = self.dest_file if (not remote_cmd): remote_cmd = 'dir {0}/{1}'.format(self.file_system, remote_file) remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) remote_out = re.split('Directory of .*', remote_out) remote_out = .join(remote_out) escape_file_name = re.escape(remote_file) pattern = '.*({0}).*'.format(escape_file_name) match = re.search(pattern, remote_out) if match: line = match.group(0) file_size = line.split()[2] if ('Error opening' in remote_out): raise IOError('Unable to find file on remote system') else: return int(file_size)<|docstring|>Get the file size of the remote file.<|endoftext|>
695deeebeff9150dd575590b0cfa79f5cc80a94d65d51dcc9f39dd6f4317f5f7
def file_md5(self, file_name): 'Compute MD5 hash of file.' with open(file_name, 'rb') as f: file_contents = f.read() file_hash = hashlib.md5(file_contents).hexdigest() return file_hash
Compute MD5 hash of file.
netmiko/scp_handler.py
file_md5
r2r-dev/netmiko
1
python
def file_md5(self, file_name): with open(file_name, 'rb') as f: file_contents = f.read() file_hash = hashlib.md5(file_contents).hexdigest() return file_hash
def file_md5(self, file_name): with open(file_name, 'rb') as f: file_contents = f.read() file_hash = hashlib.md5(file_contents).hexdigest() return file_hash<|docstring|>Compute MD5 hash of file.<|endoftext|>
0b0f61711124ab7d9914b53b1360e2aab4d968fc517f9100841d73ae9c4911fd
@staticmethod def process_md5(md5_output, pattern='= (.*)'): '\n Process the string to retrieve the MD5 hash\n\n Output from Cisco IOS (ASA is similar)\n .MD5 of flash:file_name Done!\n verify /md5 (flash:file_name) = 410db2a7015eaa42b1fe71f1bf3d59a2\n ' match = re.search(pattern, md5_output) if match: return match.group(1) else: raise ValueError('Invalid output from MD5 command: {0}'.format(md5_output))
Process the string to retrieve the MD5 hash Output from Cisco IOS (ASA is similar) .MD5 of flash:file_name Done! verify /md5 (flash:file_name) = 410db2a7015eaa42b1fe71f1bf3d59a2
netmiko/scp_handler.py
process_md5
r2r-dev/netmiko
1
python
@staticmethod def process_md5(md5_output, pattern='= (.*)'): '\n Process the string to retrieve the MD5 hash\n\n Output from Cisco IOS (ASA is similar)\n .MD5 of flash:file_name Done!\n verify /md5 (flash:file_name) = 410db2a7015eaa42b1fe71f1bf3d59a2\n ' match = re.search(pattern, md5_output) if match: return match.group(1) else: raise ValueError('Invalid output from MD5 command: {0}'.format(md5_output))
@staticmethod def process_md5(md5_output, pattern='= (.*)'): '\n Process the string to retrieve the MD5 hash\n\n Output from Cisco IOS (ASA is similar)\n .MD5 of flash:file_name Done!\n verify /md5 (flash:file_name) = 410db2a7015eaa42b1fe71f1bf3d59a2\n ' match = re.search(pattern, md5_output) if match: return match.group(1) else: raise ValueError('Invalid output from MD5 command: {0}'.format(md5_output))<|docstring|>Process the string to retrieve the MD5 hash Output from Cisco IOS (ASA is similar) .MD5 of flash:file_name Done! verify /md5 (flash:file_name) = 410db2a7015eaa42b1fe71f1bf3d59a2<|endoftext|>
10a04cba62a654df2c1f4223b87a40889113bae5d3205c4dd42487c9e4f9afda
def compare_md5(self, base_cmd='verify /md5'): 'Compare md5 of file on network device to md5 of local file' if (self.direction == 'put'): remote_md5 = self.remote_md5(base_cmd=base_cmd) print(remote_md5) print(self.source_md5) return (self.source_md5 == remote_md5) elif (self.direction == 'get'): local_md5 = self.file_md5(self.dest_file) return (self.source_md5 == local_md5)
Compare md5 of file on network device to md5 of local file
netmiko/scp_handler.py
compare_md5
r2r-dev/netmiko
1
python
def compare_md5(self, base_cmd='verify /md5'): if (self.direction == 'put'): remote_md5 = self.remote_md5(base_cmd=base_cmd) print(remote_md5) print(self.source_md5) return (self.source_md5 == remote_md5) elif (self.direction == 'get'): local_md5 = self.file_md5(self.dest_file) return (self.source_md5 == local_md5)
def compare_md5(self, base_cmd='verify /md5'): if (self.direction == 'put'): remote_md5 = self.remote_md5(base_cmd=base_cmd) print(remote_md5) print(self.source_md5) return (self.source_md5 == remote_md5) elif (self.direction == 'get'): local_md5 = self.file_md5(self.dest_file) return (self.source_md5 == local_md5)<|docstring|>Compare md5 of file on network device to md5 of local file<|endoftext|>
2fa935813428b2a6bd780b860087bc8c96dffcb12ecfe37b7068cec03c8de13a
def remote_md5(self, base_cmd='verify /md5', remote_file=None): '\n Calculate remote MD5 and return the checksum.\n\n This command can be CPU intensive on the remote device.\n ' if (remote_file is None): remote_file = self.dest_file remote_md5_cmd = '{0} {1}{2}'.format(base_cmd, self.file_system, remote_file) dest_md5 = self.ssh_ctl_chan.send_command_expect(remote_md5_cmd, delay_factor=3.0) print(dest_md5) dest_md5 = self.process_md5(dest_md5) return dest_md5
Calculate remote MD5 and return the checksum. This command can be CPU intensive on the remote device.
netmiko/scp_handler.py
remote_md5
r2r-dev/netmiko
1
python
def remote_md5(self, base_cmd='verify /md5', remote_file=None): '\n Calculate remote MD5 and return the checksum.\n\n This command can be CPU intensive on the remote device.\n ' if (remote_file is None): remote_file = self.dest_file remote_md5_cmd = '{0} {1}{2}'.format(base_cmd, self.file_system, remote_file) dest_md5 = self.ssh_ctl_chan.send_command_expect(remote_md5_cmd, delay_factor=3.0) print(dest_md5) dest_md5 = self.process_md5(dest_md5) return dest_md5
def remote_md5(self, base_cmd='verify /md5', remote_file=None): '\n Calculate remote MD5 and return the checksum.\n\n This command can be CPU intensive on the remote device.\n ' if (remote_file is None): remote_file = self.dest_file remote_md5_cmd = '{0} {1}{2}'.format(base_cmd, self.file_system, remote_file) dest_md5 = self.ssh_ctl_chan.send_command_expect(remote_md5_cmd, delay_factor=3.0) print(dest_md5) dest_md5 = self.process_md5(dest_md5) return dest_md5<|docstring|>Calculate remote MD5 and return the checksum. This command can be CPU intensive on the remote device.<|endoftext|>
ba59b72c1b5e780f7df0a234743446298dba4723dd2f604ecf92c24a3e1a3f83
def transfer_file(self): 'SCP transfer file.' if (self.direction == 'put'): self.put_file() elif (self.direction == 'get'): self.get_file()
SCP transfer file.
netmiko/scp_handler.py
transfer_file
r2r-dev/netmiko
1
python
def transfer_file(self): if (self.direction == 'put'): self.put_file() elif (self.direction == 'get'): self.get_file()
def transfer_file(self): if (self.direction == 'put'): self.put_file() elif (self.direction == 'get'): self.get_file()<|docstring|>SCP transfer file.<|endoftext|>
3738853de3c310e260c2322a0acb56df4192096caf5d7ce7614f973207664e0e
def get_file(self): 'SCP copy the file from the remote device to local system.' self.scp_conn.scp_get_file(self.source_file, self.dest_file) self.scp_conn.close()
SCP copy the file from the remote device to local system.
netmiko/scp_handler.py
get_file
r2r-dev/netmiko
1
python
def get_file(self): self.scp_conn.scp_get_file(self.source_file, self.dest_file) self.scp_conn.close()
def get_file(self): self.scp_conn.scp_get_file(self.source_file, self.dest_file) self.scp_conn.close()<|docstring|>SCP copy the file from the remote device to local system.<|endoftext|>
4cfcf3d2b0c870b0b215bee2263bf048a885342234e47c2ebb291fd5ff7e588e
def put_file(self): 'SCP copy the file from the local system to the remote device.' destination = '{0}{1}'.format(self.file_system, self.dest_file) if (':' not in destination): raise ValueError('Invalid destination file system specified') self.scp_conn.scp_transfer_file(self.source_file, destination) self.scp_conn.close()
SCP copy the file from the local system to the remote device.
netmiko/scp_handler.py
put_file
r2r-dev/netmiko
1
python
def put_file(self): destination = '{0}{1}'.format(self.file_system, self.dest_file) if (':' not in destination): raise ValueError('Invalid destination file system specified') self.scp_conn.scp_transfer_file(self.source_file, destination) self.scp_conn.close()
def put_file(self): destination = '{0}{1}'.format(self.file_system, self.dest_file) if (':' not in destination): raise ValueError('Invalid destination file system specified') self.scp_conn.scp_transfer_file(self.source_file, destination) self.scp_conn.close()<|docstring|>SCP copy the file from the local system to the remote device.<|endoftext|>
9fbd8ef9d6c194fec503715cb85f220f094c39ff6f2851b05e6641fa4175a932
def verify_file(self): 'Verify the file has been transferred correctly.' return self.compare_md5()
Verify the file has been transferred correctly.
netmiko/scp_handler.py
verify_file
r2r-dev/netmiko
1
python
def verify_file(self): return self.compare_md5()
def verify_file(self): return self.compare_md5()<|docstring|>Verify the file has been transferred correctly.<|endoftext|>
93940ca9417f272ee50e309eaec8f58dc76ae9d0c77a5178eb1b533118e33a7d
def enable_scp(self, cmd=None): '\n Enable SCP on remote device.\n\n Defaults to Cisco IOS command\n ' if (cmd is None): cmd = ['ip scp server enable'] elif (not hasattr(cmd, '__iter__')): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd)
Enable SCP on remote device. Defaults to Cisco IOS command
netmiko/scp_handler.py
enable_scp
r2r-dev/netmiko
1
python
def enable_scp(self, cmd=None): '\n Enable SCP on remote device.\n\n Defaults to Cisco IOS command\n ' if (cmd is None): cmd = ['ip scp server enable'] elif (not hasattr(cmd, '__iter__')): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd)
def enable_scp(self, cmd=None): '\n Enable SCP on remote device.\n\n Defaults to Cisco IOS command\n ' if (cmd is None): cmd = ['ip scp server enable'] elif (not hasattr(cmd, '__iter__')): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd)<|docstring|>Enable SCP on remote device. Defaults to Cisco IOS command<|endoftext|>
49eb585aa9a0d44a3d15fab1a587b74d5f03a2ae006195d50e9fa613d99dd0cc
def disable_scp(self, cmd=None): '\n Disable SCP on remote device.\n\n Defaults to Cisco IOS command\n ' if (cmd is None): cmd = ['no ip scp server enable'] elif (not hasattr(cmd, '__iter__')): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd)
Disable SCP on remote device. Defaults to Cisco IOS command
netmiko/scp_handler.py
disable_scp
r2r-dev/netmiko
1
python
def disable_scp(self, cmd=None): '\n Disable SCP on remote device.\n\n Defaults to Cisco IOS command\n ' if (cmd is None): cmd = ['no ip scp server enable'] elif (not hasattr(cmd, '__iter__')): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd)
def disable_scp(self, cmd=None): '\n Disable SCP on remote device.\n\n Defaults to Cisco IOS command\n ' if (cmd is None): cmd = ['no ip scp server enable'] elif (not hasattr(cmd, '__iter__')): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd)<|docstring|>Disable SCP on remote device. Defaults to Cisco IOS command<|endoftext|>
b969b2724300e8370bf2cb84b6157ea652ac0542a2ed4b7a62e31db647ee9d86
@staticmethod def _tcl_newline_rationalize(tcl_string): '\n When using put inside a TCL {} section the newline is considered a new TCL\n statement and causes a missing curly-brace message. Convert "\n" to "\r". TCL\n will convert the "\r" to a "\n" i.e. you will see a "\n" inside the file on the\n Cisco IOS device.\n ' NEWLINE = '\\n' CARRIAGE_RETURN = '\\r' tmp_string = re.sub(NEWLINE, CARRIAGE_RETURN, tcl_string) if re.search('[{}]', tmp_string): msg = 'Curly brace detected in string; TCL requires this be escaped.' raise ValueError(msg) return tmp_string
When using put inside a TCL {} section the newline is considered a new TCL statement and causes a missing curly-brace message. Convert " " to " ". TCL will convert the " " to a " " i.e. you will see a " " inside the file on the Cisco IOS device.
netmiko/scp_handler.py
_tcl_newline_rationalize
r2r-dev/netmiko
1
python
@staticmethod def _tcl_newline_rationalize(tcl_string): '\n When using put inside a TCL {} section the newline is considered a new TCL\n statement and causes a missing curly-brace message. Convert "\n" to "\r". TCL\n will convert the "\r" to a "\n" i.e. you will see a "\n" inside the file on the\n Cisco IOS device.\n ' NEWLINE = '\\n' CARRIAGE_RETURN = '\\r' tmp_string = re.sub(NEWLINE, CARRIAGE_RETURN, tcl_string) if re.search('[{}]', tmp_string): msg = 'Curly brace detected in string; TCL requires this be escaped.' raise ValueError(msg) return tmp_string
@staticmethod def _tcl_newline_rationalize(tcl_string): '\n When using put inside a TCL {} section the newline is considered a new TCL\n statement and causes a missing curly-brace message. Convert "\n" to "\r". TCL\n will convert the "\r" to a "\n" i.e. you will see a "\n" inside the file on the\n Cisco IOS device.\n ' NEWLINE = '\\n' CARRIAGE_RETURN = '\\r' tmp_string = re.sub(NEWLINE, CARRIAGE_RETURN, tcl_string) if re.search('[{}]', tmp_string): msg = 'Curly brace detected in string; TCL requires this be escaped.' raise ValueError(msg) return tmp_string<|docstring|>When using put inside a TCL {} section the newline is considered a new TCL statement and causes a missing curly-brace message. Convert " " to " ". TCL will convert the " " to a " " i.e. you will see a " " inside the file on the Cisco IOS device.<|endoftext|>
5458e595bc893a874975c78d94b3e6113f990c7293237a42401e1ac2287848b8
def file_md5(self, file_name): 'Compute MD5 hash of file.' file_contents = self._read_file(file_name) file_contents = (file_contents + '\n') file_contents = file_contents.encode('UTF-8') return hashlib.md5(file_contents).hexdigest()
Compute MD5 hash of file.
netmiko/scp_handler.py
file_md5
r2r-dev/netmiko
1
python
def file_md5(self, file_name): file_contents = self._read_file(file_name) file_contents = (file_contents + '\n') file_contents = file_contents.encode('UTF-8') return hashlib.md5(file_contents).hexdigest()
def file_md5(self, file_name): file_contents = self._read_file(file_name) file_contents = (file_contents + '\n') file_contents = file_contents.encode('UTF-8') return hashlib.md5(file_contents).hexdigest()<|docstring|>Compute MD5 hash of file.<|endoftext|>
f0ed6674461f2c075faa351b0012f21ef3d08a653f85c313d74ebdedcfe8ce41
@staticmethod def empty_table(): '\n Delete all content from this table. Use carefully !\n ' CoexpressionClusterSimilarity.query.delete()
Delete all content from this table. Use carefully !
conekt/models/relationships/cluster_similarity.py
empty_table
legumeinfo/CoNekT
14
python
@staticmethod def empty_table(): '\n \n ' CoexpressionClusterSimilarity.query.delete()
@staticmethod def empty_table(): '\n \n ' CoexpressionClusterSimilarity.query.delete()<|docstring|>Delete all content from this table. Use carefully !<|endoftext|>
ebab4e26424d221bfba3c0e888566c9b1004c2bfc6e1e2bcdfc807375ccc853a
def get_time_factors(td): '\n Get different time factor such as days, hours, minutes and seconds\n :param td: timedelta\n :return: tuple(days, hours, minutes, seconds)\n ' if (not td): return (0, 0, 0, 0) return (td.days, (td.seconds // 3600), ((td.seconds // 60) % 60), (td.seconds % 60))
Get different time factor such as days, hours, minutes and seconds :param td: timedelta :return: tuple(days, hours, minutes, seconds)
bluebottle/utils/widgets.py
get_time_factors
terrameijar/bluebottle
10
python
def get_time_factors(td): '\n Get different time factor such as days, hours, minutes and seconds\n :param td: timedelta\n :return: tuple(days, hours, minutes, seconds)\n ' if (not td): return (0, 0, 0, 0) return (td.days, (td.seconds // 3600), ((td.seconds // 60) % 60), (td.seconds % 60))
def get_time_factors(td): '\n Get different time factor such as days, hours, minutes and seconds\n :param td: timedelta\n :return: tuple(days, hours, minutes, seconds)\n ' if (not td): return (0, 0, 0, 0) return (td.days, (td.seconds // 3600), ((td.seconds // 60) % 60), (td.seconds % 60))<|docstring|>Get different time factor such as days, hours, minutes and seconds :param td: timedelta :return: tuple(days, hours, minutes, seconds)<|endoftext|>
ddf9fc66d2ac1355bc9ed47af40f08c39fe5609c1f4875969dd1eaa573935a96
def bounded_ed(a, b, currentDistance, lowerBound, insert_table, delete_table, replace_table, table, i): '\n Edit distance - but bounded.\n ' global j j += 1 n = len(a) m = len(b) if (a == b): return currentDistance if (currentDistance >= lowerBound): return lowerBound if (n == 0): return (m + currentDistance) if (m == 0): return (n + currentDistance) if (a[(- 1)] == b[(- 1)]): return bounded_ed(a[:(- 1)], b[:(- 1)], currentDistance, lowerBound, insert_table, delete_table, replace_table, table, i) else: insertionBranch = bounded_ed(a[:(n - 1)], b, (currentDistance + 1), lowerBound, insert_table, delete_table, replace_table, table, i) deletionBranch = bounded_ed(a, b[:(m - 1)], (currentDistance + 1), min(insertionBranch, lowerBound), insert_table, delete_table, replace_table, table, i) replaceBranch = bounded_ed(a[:(n - 1)], b[:(m - 1)], (currentDistance + 1), min(insertionBranch, deletionBranch, lowerBound), insert_table, delete_table, replace_table, table, i) "\n as we need to find what branch will minimize our cost,\n we need to store that operation before calling next recursion\n that's what is done here\n " if (min(insertionBranch, deletionBranch, replaceBranch) == insertionBranch): table[currentDistance] = 1 insert_table[currentDistance] = 1 elif (min(insertionBranch, deletionBranch, replaceBranch) == deletionBranch): delete_table[currentDistance] = 1 table[currentDistance] = 2 elif (min(insertionBranch, deletionBranch, replaceBranch) == replaceBranch): replace_table[currentDistance] = 1 table[currentDistance] = 3 return min(insertionBranch, deletionBranch, replaceBranch)
Edit distance - but bounded.
branch_and_bound.py
bounded_ed
alaabenfatma/Edit_Distance
0
python
def bounded_ed(a, b, currentDistance, lowerBound, insert_table, delete_table, replace_table, table, i): '\n \n ' global j j += 1 n = len(a) m = len(b) if (a == b): return currentDistance if (currentDistance >= lowerBound): return lowerBound if (n == 0): return (m + currentDistance) if (m == 0): return (n + currentDistance) if (a[(- 1)] == b[(- 1)]): return bounded_ed(a[:(- 1)], b[:(- 1)], currentDistance, lowerBound, insert_table, delete_table, replace_table, table, i) else: insertionBranch = bounded_ed(a[:(n - 1)], b, (currentDistance + 1), lowerBound, insert_table, delete_table, replace_table, table, i) deletionBranch = bounded_ed(a, b[:(m - 1)], (currentDistance + 1), min(insertionBranch, lowerBound), insert_table, delete_table, replace_table, table, i) replaceBranch = bounded_ed(a[:(n - 1)], b[:(m - 1)], (currentDistance + 1), min(insertionBranch, deletionBranch, lowerBound), insert_table, delete_table, replace_table, table, i) "\n as we need to find what branch will minimize our cost,\n we need to store that operation before calling next recursion\n that's what is done here\n " if (min(insertionBranch, deletionBranch, replaceBranch) == insertionBranch): table[currentDistance] = 1 insert_table[currentDistance] = 1 elif (min(insertionBranch, deletionBranch, replaceBranch) == deletionBranch): delete_table[currentDistance] = 1 table[currentDistance] = 2 elif (min(insertionBranch, deletionBranch, replaceBranch) == replaceBranch): replace_table[currentDistance] = 1 table[currentDistance] = 3 return min(insertionBranch, deletionBranch, replaceBranch)
def bounded_ed(a, b, currentDistance, lowerBound, insert_table, delete_table, replace_table, table, i): '\n \n ' global j j += 1 n = len(a) m = len(b) if (a == b): return currentDistance if (currentDistance >= lowerBound): return lowerBound if (n == 0): return (m + currentDistance) if (m == 0): return (n + currentDistance) if (a[(- 1)] == b[(- 1)]): return bounded_ed(a[:(- 1)], b[:(- 1)], currentDistance, lowerBound, insert_table, delete_table, replace_table, table, i) else: insertionBranch = bounded_ed(a[:(n - 1)], b, (currentDistance + 1), lowerBound, insert_table, delete_table, replace_table, table, i) deletionBranch = bounded_ed(a, b[:(m - 1)], (currentDistance + 1), min(insertionBranch, lowerBound), insert_table, delete_table, replace_table, table, i) replaceBranch = bounded_ed(a[:(n - 1)], b[:(m - 1)], (currentDistance + 1), min(insertionBranch, deletionBranch, lowerBound), insert_table, delete_table, replace_table, table, i) "\n as we need to find what branch will minimize our cost,\n we need to store that operation before calling next recursion\n that's what is done here\n " if (min(insertionBranch, deletionBranch, replaceBranch) == insertionBranch): table[currentDistance] = 1 insert_table[currentDistance] = 1 elif (min(insertionBranch, deletionBranch, replaceBranch) == deletionBranch): delete_table[currentDistance] = 1 table[currentDistance] = 2 elif (min(insertionBranch, deletionBranch, replaceBranch) == replaceBranch): replace_table[currentDistance] = 1 table[currentDistance] = 3 return min(insertionBranch, deletionBranch, replaceBranch)<|docstring|>Edit distance - but bounded.<|endoftext|>
f40b8690c5f25edfe80958f96b01bc67b5d1caf56c483602ad0fb51f35d35d20
def get_displays(): ' Get display information and return width and height of desktop.\n\n :return: (tuple) width, height\n ' all_displays = EnumDisplayMonitors(None) (w, h) = (0, 0) for display in all_displays: r = display[2] w = (r[2] if (r[2] > w) else w) h = (r[3] if (r[3] > h) else h) return (w, h)
Get display information and return width and height of desktop. :return: (tuple) width, height
pyWindowPositionSaver.py
get_displays
syncon303/pyWindowPositionSaver
0
python
def get_displays(): ' Get display information and return width and height of desktop.\n\n :return: (tuple) width, height\n ' all_displays = EnumDisplayMonitors(None) (w, h) = (0, 0) for display in all_displays: r = display[2] w = (r[2] if (r[2] > w) else w) h = (r[3] if (r[3] > h) else h) return (w, h)
def get_displays(): ' Get display information and return width and height of desktop.\n\n :return: (tuple) width, height\n ' all_displays = EnumDisplayMonitors(None) (w, h) = (0, 0) for display in all_displays: r = display[2] w = (r[2] if (r[2] > w) else w) h = (r[3] if (r[3] > h) else h) return (w, h)<|docstring|>Get display information and return width and height of desktop. :return: (tuple) width, height<|endoftext|>
409e6d92525baa61deb2a9d7909c1f04a76319565e1444a924e5745f1d4b5558
def test_returns_200_on_existing_bundle_id(self): '`ApplicationBundleDetailView` return `OK` for existing bundle\n\n create an `ApplicationBundle`,\n try to access `ApplicationBundleDetailView` using `id`\n assert that 200 OK is returned\n ' self.be_apubdef_user() with self.assertLogs('project.services.logging_service', logging.INFO) as logs: result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=self.a_pubdef_bundle.id))) self.assertEqual(result.status_code, 200) assertInLogsCount(logs, {'app_bundle_opened': self.a_pubdef_bundle.submissions.count()})
`ApplicationBundleDetailView` return `OK` for existing bundle create an `ApplicationBundle`, try to access `ApplicationBundleDetailView` using `id` assert that 200 OK is returned
intake/tests/views/test_admin_views.py
test_returns_200_on_existing_bundle_id
dane-king/intake
51
python
def test_returns_200_on_existing_bundle_id(self): '`ApplicationBundleDetailView` return `OK` for existing bundle\n\n create an `ApplicationBundle`,\n try to access `ApplicationBundleDetailView` using `id`\n assert that 200 OK is returned\n ' self.be_apubdef_user() with self.assertLogs('project.services.logging_service', logging.INFO) as logs: result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=self.a_pubdef_bundle.id))) self.assertEqual(result.status_code, 200) assertInLogsCount(logs, {'app_bundle_opened': self.a_pubdef_bundle.submissions.count()})
def test_returns_200_on_existing_bundle_id(self): '`ApplicationBundleDetailView` return `OK` for existing bundle\n\n create an `ApplicationBundle`,\n try to access `ApplicationBundleDetailView` using `id`\n assert that 200 OK is returned\n ' self.be_apubdef_user() with self.assertLogs('project.services.logging_service', logging.INFO) as logs: result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=self.a_pubdef_bundle.id))) self.assertEqual(result.status_code, 200) assertInLogsCount(logs, {'app_bundle_opened': self.a_pubdef_bundle.submissions.count()})<|docstring|>`ApplicationBundleDetailView` return `OK` for existing bundle create an `ApplicationBundle`, try to access `ApplicationBundleDetailView` using `id` assert that 200 OK is returned<|endoftext|>
8a175b193103ed2df263a0f0e8c3ea1efbe3355e5fa78b52909c8334f25eff24
def test_returns_404_on_nonexisting_bundle_id(self): 'ApplicationBundleDetailView return 404 if not found\n\n with no existing `ApplicationBundle`\n try to access `ApplicationBundleDetailView` using a made up `id`\n assert that 404 is returned\n ' self.be_ccpubdef_user() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=20909872435))) self.assertEqual(result.status_code, 404)
ApplicationBundleDetailView return 404 if not found with no existing `ApplicationBundle` try to access `ApplicationBundleDetailView` using a made up `id` assert that 404 is returned
intake/tests/views/test_admin_views.py
test_returns_404_on_nonexisting_bundle_id
dane-king/intake
51
python
def test_returns_404_on_nonexisting_bundle_id(self): 'ApplicationBundleDetailView return 404 if not found\n\n with no existing `ApplicationBundle`\n try to access `ApplicationBundleDetailView` using a made up `id`\n assert that 404 is returned\n ' self.be_ccpubdef_user() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=20909872435))) self.assertEqual(result.status_code, 404)
def test_returns_404_on_nonexisting_bundle_id(self): 'ApplicationBundleDetailView return 404 if not found\n\n with no existing `ApplicationBundle`\n try to access `ApplicationBundleDetailView` using a made up `id`\n assert that 404 is returned\n ' self.be_ccpubdef_user() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=20909872435))) self.assertEqual(result.status_code, 404)<|docstring|>ApplicationBundleDetailView return 404 if not found with no existing `ApplicationBundle` try to access `ApplicationBundleDetailView` using a made up `id` assert that 404 is returned<|endoftext|>
b8182b08df47a5fbf995422e414878e50f359b0f4bcc689c80b3588960ee2431
def test_user_from_wrong_org_is_redirected_to_profile(self): 'ApplicationBundleDetailView redirects unpermitted users\n\n with existing `ApplicationBundle`\n try to access `ApplicationBundleDetailView` as a user from another org\n assert that redirects to `ApplicationIdex`\n ' self.be_sfpubdef_user() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=self.a_pubdef_bundle.id))) self.assertRedirects(result, reverse('user_accounts-profile'), fetch_redirect_response=False)
ApplicationBundleDetailView redirects unpermitted users with existing `ApplicationBundle` try to access `ApplicationBundleDetailView` as a user from another org assert that redirects to `ApplicationIdex`
intake/tests/views/test_admin_views.py
test_user_from_wrong_org_is_redirected_to_profile
dane-king/intake
51
python
def test_user_from_wrong_org_is_redirected_to_profile(self): 'ApplicationBundleDetailView redirects unpermitted users\n\n with existing `ApplicationBundle`\n try to access `ApplicationBundleDetailView` as a user from another org\n assert that redirects to `ApplicationIdex`\n ' self.be_sfpubdef_user() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=self.a_pubdef_bundle.id))) self.assertRedirects(result, reverse('user_accounts-profile'), fetch_redirect_response=False)
def test_user_from_wrong_org_is_redirected_to_profile(self): 'ApplicationBundleDetailView redirects unpermitted users\n\n with existing `ApplicationBundle`\n try to access `ApplicationBundleDetailView` as a user from another org\n assert that redirects to `ApplicationIdex`\n ' self.be_sfpubdef_user() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=self.a_pubdef_bundle.id))) self.assertRedirects(result, reverse('user_accounts-profile'), fetch_redirect_response=False)<|docstring|>ApplicationBundleDetailView redirects unpermitted users with existing `ApplicationBundle` try to access `ApplicationBundleDetailView` as a user from another org assert that redirects to `ApplicationIdex`<|endoftext|>
8867ee5e5908184b51a0d242cdf3e5cda717f452ec9b3b9976500177c341264a
def test_has_pdf_bundle_url_if_needed(self): 'ApplicationBundleDetailView return pdf url if needed\n\n create an `ApplicationBundle` that needs a pdf\n try to access `ApplicationBundleDetailView` using `id`\n assert that the url for `FilledPDFBundle` is in the template.\n ' self.be_sfpubdef_user() mock_pdf = SimpleUploadedFile('a.pdf', b'things', content_type='application/pdf') bundle = BundlesService.create_bundle_from_submissions(organization=self.sf_pubdef, submissions=self.sf_pubdef_submissions, bundled_pdf=mock_pdf) url = bundle.get_pdf_bundle_url() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=bundle.id))) self.assertContains(result, url)
ApplicationBundleDetailView return pdf url if needed create an `ApplicationBundle` that needs a pdf try to access `ApplicationBundleDetailView` using `id` assert that the url for `FilledPDFBundle` is in the template.
intake/tests/views/test_admin_views.py
test_has_pdf_bundle_url_if_needed
dane-king/intake
51
python
def test_has_pdf_bundle_url_if_needed(self): 'ApplicationBundleDetailView return pdf url if needed\n\n create an `ApplicationBundle` that needs a pdf\n try to access `ApplicationBundleDetailView` using `id`\n assert that the url for `FilledPDFBundle` is in the template.\n ' self.be_sfpubdef_user() mock_pdf = SimpleUploadedFile('a.pdf', b'things', content_type='application/pdf') bundle = BundlesService.create_bundle_from_submissions(organization=self.sf_pubdef, submissions=self.sf_pubdef_submissions, bundled_pdf=mock_pdf) url = bundle.get_pdf_bundle_url() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=bundle.id))) self.assertContains(result, url)
def test_has_pdf_bundle_url_if_needed(self): 'ApplicationBundleDetailView return pdf url if needed\n\n create an `ApplicationBundle` that needs a pdf\n try to access `ApplicationBundleDetailView` using `id`\n assert that the url for `FilledPDFBundle` is in the template.\n ' self.be_sfpubdef_user() mock_pdf = SimpleUploadedFile('a.pdf', b'things', content_type='application/pdf') bundle = BundlesService.create_bundle_from_submissions(organization=self.sf_pubdef, submissions=self.sf_pubdef_submissions, bundled_pdf=mock_pdf) url = bundle.get_pdf_bundle_url() result = self.client.get(reverse('intake-app_bundle_detail', kwargs=dict(bundle_id=bundle.id))) self.assertContains(result, url)<|docstring|>ApplicationBundleDetailView return pdf url if needed create an `ApplicationBundle` that needs a pdf try to access `ApplicationBundleDetailView` using `id` assert that the url for `FilledPDFBundle` is in the template.<|endoftext|>
a91941e5120e1e56e0e624bbcf239c39ccdc4d70309bc44be8f151f734e01abe
def simplify_dataset_name(dataset_name): 'In a couple of cases (BraTS and MURA) the dataset name is not quite correct\n because of a mistake made earlier in the pipeline. \n This function transforms the dataset names into a more readable format.\n\n Args:\n dataset_name (string): name of dataset to simplify\n\n Returns:\n string: simplified dataset name\n ' if ('BraTS20' in dataset_name): return 'BraTS20' elif ('study' in dataset_name): return 'MURA' else: return dataset_name
In a couple of cases (BraTS and MURA) the dataset name is not quite correct because of a mistake made earlier in the pipeline. This function transforms the dataset names into a more readable format. Args: dataset_name (string): name of dataset to simplify Returns: string: simplified dataset name
src/test/visualise_test_results.py
simplify_dataset_name
cdmacfadyen/classify-modality
1
python
def simplify_dataset_name(dataset_name): 'In a couple of cases (BraTS and MURA) the dataset name is not quite correct\n because of a mistake made earlier in the pipeline. \n This function transforms the dataset names into a more readable format.\n\n Args:\n dataset_name (string): name of dataset to simplify\n\n Returns:\n string: simplified dataset name\n ' if ('BraTS20' in dataset_name): return 'BraTS20' elif ('study' in dataset_name): return 'MURA' else: return dataset_name
def simplify_dataset_name(dataset_name): 'In a couple of cases (BraTS and MURA) the dataset name is not quite correct\n because of a mistake made earlier in the pipeline. \n This function transforms the dataset names into a more readable format.\n\n Args:\n dataset_name (string): name of dataset to simplify\n\n Returns:\n string: simplified dataset name\n ' if ('BraTS20' in dataset_name): return 'BraTS20' elif ('study' in dataset_name): return 'MURA' else: return dataset_name<|docstring|>In a couple of cases (BraTS and MURA) the dataset name is not quite correct because of a mistake made earlier in the pipeline. This function transforms the dataset names into a more readable format. Args: dataset_name (string): name of dataset to simplify Returns: string: simplified dataset name<|endoftext|>
6a39a54ca50f35e4bc9f3250cc888656fcea6ef3dd37f98803d96de8a17637d1
@block def ram_instance(self, porta, portb, clock): '\n porta: RamPort32 instance, port A\n portb: RamPort32 instance port B\n ' i_a = port_instance(self.ram, porta) i_b = port_instance(self.ram, portb) return instances()
porta: RamPort32 instance, port A portb: RamPort32 instance port B
uncore/ram_dp.py
ram_instance
bonfireprocessor/bonfire-core
0
python
@block def ram_instance(self, porta, portb, clock): '\n porta: RamPort32 instance, port A\n portb: RamPort32 instance port B\n ' i_a = port_instance(self.ram, porta) i_b = port_instance(self.ram, portb) return instances()
@block def ram_instance(self, porta, portb, clock): '\n porta: RamPort32 instance, port A\n portb: RamPort32 instance port B\n ' i_a = port_instance(self.ram, porta) i_b = port_instance(self.ram, portb) return instances()<|docstring|>porta: RamPort32 instance, port A portb: RamPort32 instance port B<|endoftext|>
a865e41ea855d4b74e7b1acaa4d438302e913938247efb6dbca56b5b331de154
@block def ram_instance_dbus(self, db_a, db_b, clock): '\n db_a: dbus instance, port A\n db_b: dbus instance port B\n \n ' porta = RamPort32(self.adrwidth, db_a.readOnly) portb = RamPort32(self.adrwidth, db_b.readOnly) p1 = dbusToRamPort(db_a, porta, clock, db_a.readOnly) p2 = dbusToRamPort(db_b, portb, clock, db_b.readOnly) ram = self.ram_instance(porta, portb, clock) return instances()
db_a: dbus instance, port A db_b: dbus instance port B
uncore/ram_dp.py
ram_instance_dbus
bonfireprocessor/bonfire-core
0
python
@block def ram_instance_dbus(self, db_a, db_b, clock): '\n db_a: dbus instance, port A\n db_b: dbus instance port B\n \n ' porta = RamPort32(self.adrwidth, db_a.readOnly) portb = RamPort32(self.adrwidth, db_b.readOnly) p1 = dbusToRamPort(db_a, porta, clock, db_a.readOnly) p2 = dbusToRamPort(db_b, portb, clock, db_b.readOnly) ram = self.ram_instance(porta, portb, clock) return instances()
@block def ram_instance_dbus(self, db_a, db_b, clock): '\n db_a: dbus instance, port A\n db_b: dbus instance port B\n \n ' porta = RamPort32(self.adrwidth, db_a.readOnly) portb = RamPort32(self.adrwidth, db_b.readOnly) p1 = dbusToRamPort(db_a, porta, clock, db_a.readOnly) p2 = dbusToRamPort(db_b, portb, clock, db_b.readOnly) ram = self.ram_instance(porta, portb, clock) return instances()<|docstring|>db_a: dbus instance, port A db_b: dbus instance port B<|endoftext|>
31b76f119b828510a39c96ab8e1d1aff00a35778dfd2ccd4a00579cc579c376d
def _get_coef_(self, pipeline: Pipeline=None) -> np.array: '\n Interface function to get `coef\\_` from classifier used in the pipeline specified\n this might be useful if we switch the classifier, most of them already have a `coef\\_` attribute\n\n\n :param pipeline: pipeline from which the classifier should be used\n :return: `coef\\_` for feature weight report\n ' if (not pipeline): pipeline = self.pipeline clf = pipeline.named_steps['clf'] if hasattr(clf, 'coef_'): return_weights = clf.coef_ else: weights = np.array([c.base_estimator.coef_[0] for c in clf.calibrated_classifiers_]) return_weights = np.median(weights, axis=0) return return_weights
Interface function to get `coef\_` from classifier used in the pipeline specified this might be useful if we switch the classifier, most of them already have a `coef\_` attribute :param pipeline: pipeline from which the classifier should be used :return: `coef\_` for feature weight report
phenotrex/ml/clf/svm.py
_get_coef_
univieCUBE/PICA2
2
python
def _get_coef_(self, pipeline: Pipeline=None) -> np.array: '\n Interface function to get `coef\\_` from classifier used in the pipeline specified\n this might be useful if we switch the classifier, most of them already have a `coef\\_` attribute\n\n\n :param pipeline: pipeline from which the classifier should be used\n :return: `coef\\_` for feature weight report\n ' if (not pipeline): pipeline = self.pipeline clf = pipeline.named_steps['clf'] if hasattr(clf, 'coef_'): return_weights = clf.coef_ else: weights = np.array([c.base_estimator.coef_[0] for c in clf.calibrated_classifiers_]) return_weights = np.median(weights, axis=0) return return_weights
def _get_coef_(self, pipeline: Pipeline=None) -> np.array: '\n Interface function to get `coef\\_` from classifier used in the pipeline specified\n this might be useful if we switch the classifier, most of them already have a `coef\\_` attribute\n\n\n :param pipeline: pipeline from which the classifier should be used\n :return: `coef\\_` for feature weight report\n ' if (not pipeline): pipeline = self.pipeline clf = pipeline.named_steps['clf'] if hasattr(clf, 'coef_'): return_weights = clf.coef_ else: weights = np.array([c.base_estimator.coef_[0] for c in clf.calibrated_classifiers_]) return_weights = np.median(weights, axis=0) return return_weights<|docstring|>Interface function to get `coef\_` from classifier used in the pipeline specified this might be useful if we switch the classifier, most of them already have a `coef\_` attribute :param pipeline: pipeline from which the classifier should be used :return: `coef\_` for feature weight report<|endoftext|>
aafe26afd26937b7da0c6a93dfed0455deb3c276372d05233c17a0b1cf0a4287
def get_feature_weights(self) -> Dict: '\n Extract the weights for features from pipeline.\n\n :return: sorted Dict of feature name: weight\n ' if (self.trait_name is None): self.logger.error('Pipeline is not fitted. Cannot retrieve weights.') return {} names = self.pipeline.named_steps['vec'].get_feature_names() weights = self._get_coef_() sorted_weights = {f: w for (f, w) in sorted(zip(names, weights), key=(lambda kv: abs(kv[1])), reverse=True)} return sorted_weights
Extract the weights for features from pipeline. :return: sorted Dict of feature name: weight
phenotrex/ml/clf/svm.py
get_feature_weights
univieCUBE/PICA2
2
python
def get_feature_weights(self) -> Dict: '\n Extract the weights for features from pipeline.\n\n :return: sorted Dict of feature name: weight\n ' if (self.trait_name is None): self.logger.error('Pipeline is not fitted. Cannot retrieve weights.') return {} names = self.pipeline.named_steps['vec'].get_feature_names() weights = self._get_coef_() sorted_weights = {f: w for (f, w) in sorted(zip(names, weights), key=(lambda kv: abs(kv[1])), reverse=True)} return sorted_weights
def get_feature_weights(self) -> Dict: '\n Extract the weights for features from pipeline.\n\n :return: sorted Dict of feature name: weight\n ' if (self.trait_name is None): self.logger.error('Pipeline is not fitted. Cannot retrieve weights.') return {} names = self.pipeline.named_steps['vec'].get_feature_names() weights = self._get_coef_() sorted_weights = {f: w for (f, w) in sorted(zip(names, weights), key=(lambda kv: abs(kv[1])), reverse=True)} return sorted_weights<|docstring|>Extract the weights for features from pipeline. :return: sorted Dict of feature name: weight<|endoftext|>