body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
f793c3fd1b90376b5593ca6a130de772180119370b10b73aac9db29a09061af0
|
def deleteBucketObject(this, bucketName: str, key: str, versionId='null', region: str='', client=None, isTopAction=True):
'\n Delete specific object from the bucket.\n\n Could be used to delete specified bucket object version.\n '
if (not client):
client = this._getBotoClient('s3', region)
if isTopAction:
this.__confirmOperation('Bucket object deletion', '\n Bucket name: {}\n Object key: {}\n version id: {}\n '.format(bucketName, key, versionId))
client.delete_object(Bucket=bucketName, Key=key, VersionId=versionId)
|
Delete specific object from the bucket.
Could be used to delete specified bucket object version.
|
awshelper.py
|
deleteBucketObject
|
andreyess/AWS-helper
| 0 |
python
|
def deleteBucketObject(this, bucketName: str, key: str, versionId='null', region: str=, client=None, isTopAction=True):
'\n Delete specific object from the bucket.\n\n Could be used to delete specified bucket object version.\n '
if (not client):
client = this._getBotoClient('s3', region)
if isTopAction:
this.__confirmOperation('Bucket object deletion', '\n Bucket name: {}\n Object key: {}\n version id: {}\n '.format(bucketName, key, versionId))
client.delete_object(Bucket=bucketName, Key=key, VersionId=versionId)
|
def deleteBucketObject(this, bucketName: str, key: str, versionId='null', region: str=, client=None, isTopAction=True):
'\n Delete specific object from the bucket.\n\n Could be used to delete specified bucket object version.\n '
if (not client):
client = this._getBotoClient('s3', region)
if isTopAction:
this.__confirmOperation('Bucket object deletion', '\n Bucket name: {}\n Object key: {}\n version id: {}\n '.format(bucketName, key, versionId))
client.delete_object(Bucket=bucketName, Key=key, VersionId=versionId)<|docstring|>Delete specific object from the bucket.
Could be used to delete specified bucket object version.<|endoftext|>
|
9a92b410424793ef5b8b54c80fa94d2dbed28aadf3613a61737f11bad092fafa
|
def getS3BucketPolicies(this, bucketName: str, region: str='', client=None):
'\n Gets bucket policies.\n '
if (not client):
client = this._getBotoClient('s3', region)
bucketPolicy = client.get_bucket_policy(Bucket=bucketName)
return bucketPolicy
|
Gets bucket policies.
|
awshelper.py
|
getS3BucketPolicies
|
andreyess/AWS-helper
| 0 |
python
|
def getS3BucketPolicies(this, bucketName: str, region: str=, client=None):
'\n \n '
if (not client):
client = this._getBotoClient('s3', region)
bucketPolicy = client.get_bucket_policy(Bucket=bucketName)
return bucketPolicy
|
def getS3BucketPolicies(this, bucketName: str, region: str=, client=None):
'\n \n '
if (not client):
client = this._getBotoClient('s3', region)
bucketPolicy = client.get_bucket_policy(Bucket=bucketName)
return bucketPolicy<|docstring|>Gets bucket policies.<|endoftext|>
|
9c436a2b0bb2275cc6ebb69174b115ad33519a37c8cd56f736bf31c1f9ac391a
|
def listBucketObjects(this, bucketName: str, versioned: bool, excludePrefix=[], filterPrefix=[], region: str='', client=None):
'\n Lists bucket objects.\n\n Objects can be filtered by prefix using `excludePrefix` and `filterPrefix` parameters.\n '
if (not client):
client = this._getBotoClient('s3', region)
bucketObjects = []
if (not versioned):
response = client.list_objects(Bucket=bucketName, MaxKeys=256)
if ('Contents' in response):
for obj in response['Contents']:
bucketObjects.append({'Key': obj['Key']})
else:
response = client.list_object_versions(Bucket=bucketName, MaxKeys=256)
if ('DeleteMarkers' in response):
for obj in response['DeleteMarkers']:
bucketObjects.append({'Key': obj['Key'], 'VersionId': obj['VersionId']})
if ('Versions' in response):
for obj in response['Versions']:
bucketObjects.append({'Key': obj['Key'], 'VersionId': obj['VersionId']})
bucketObjects.sort(key=(lambda x: len(x['Key'])))
if len(excludePrefix):
bucketObjects = list(filter((lambda obj: (False in [obj['Key'].startswith(prefix) for prefix in excludePrefix])), bucketObjects))
if len(filterPrefix):
bucketObjects = list(filter((lambda obj: (True in [obj['Key'].startswith(prefix) for prefix in filterPrefix])), bucketObjects))
return bucketObjects
|
Lists bucket objects.
Objects can be filtered by prefix using `excludePrefix` and `filterPrefix` parameters.
|
awshelper.py
|
listBucketObjects
|
andreyess/AWS-helper
| 0 |
python
|
def listBucketObjects(this, bucketName: str, versioned: bool, excludePrefix=[], filterPrefix=[], region: str=, client=None):
'\n Lists bucket objects.\n\n Objects can be filtered by prefix using `excludePrefix` and `filterPrefix` parameters.\n '
if (not client):
client = this._getBotoClient('s3', region)
bucketObjects = []
if (not versioned):
response = client.list_objects(Bucket=bucketName, MaxKeys=256)
if ('Contents' in response):
for obj in response['Contents']:
bucketObjects.append({'Key': obj['Key']})
else:
response = client.list_object_versions(Bucket=bucketName, MaxKeys=256)
if ('DeleteMarkers' in response):
for obj in response['DeleteMarkers']:
bucketObjects.append({'Key': obj['Key'], 'VersionId': obj['VersionId']})
if ('Versions' in response):
for obj in response['Versions']:
bucketObjects.append({'Key': obj['Key'], 'VersionId': obj['VersionId']})
bucketObjects.sort(key=(lambda x: len(x['Key'])))
if len(excludePrefix):
bucketObjects = list(filter((lambda obj: (False in [obj['Key'].startswith(prefix) for prefix in excludePrefix])), bucketObjects))
if len(filterPrefix):
bucketObjects = list(filter((lambda obj: (True in [obj['Key'].startswith(prefix) for prefix in filterPrefix])), bucketObjects))
return bucketObjects
|
def listBucketObjects(this, bucketName: str, versioned: bool, excludePrefix=[], filterPrefix=[], region: str=, client=None):
'\n Lists bucket objects.\n\n Objects can be filtered by prefix using `excludePrefix` and `filterPrefix` parameters.\n '
if (not client):
client = this._getBotoClient('s3', region)
bucketObjects = []
if (not versioned):
response = client.list_objects(Bucket=bucketName, MaxKeys=256)
if ('Contents' in response):
for obj in response['Contents']:
bucketObjects.append({'Key': obj['Key']})
else:
response = client.list_object_versions(Bucket=bucketName, MaxKeys=256)
if ('DeleteMarkers' in response):
for obj in response['DeleteMarkers']:
bucketObjects.append({'Key': obj['Key'], 'VersionId': obj['VersionId']})
if ('Versions' in response):
for obj in response['Versions']:
bucketObjects.append({'Key': obj['Key'], 'VersionId': obj['VersionId']})
bucketObjects.sort(key=(lambda x: len(x['Key'])))
if len(excludePrefix):
bucketObjects = list(filter((lambda obj: (False in [obj['Key'].startswith(prefix) for prefix in excludePrefix])), bucketObjects))
if len(filterPrefix):
bucketObjects = list(filter((lambda obj: (True in [obj['Key'].startswith(prefix) for prefix in filterPrefix])), bucketObjects))
return bucketObjects<|docstring|>Lists bucket objects.
Objects can be filtered by prefix using `excludePrefix` and `filterPrefix` parameters.<|endoftext|>
|
216a40661f25d8a61b005d99658413a89536f872a8f5499e4df358919959e70f
|
def clearBucket(this, bucketName: str, bucketObjects=None, versioned: bool=None, maxDeleteCycles: int=5, excludePrefix=[], filterPrefix=[], region: str='', client=None, isTopAction=True):
'\n Clears bucket objects.\n \n If excludePrefix and filterPrefix are not specified - all objects will be deleted. Otherwise objects\n with prefixes from excludePrefix will be retained and objects with filterPrefix will be deleted.\n '
if (not client):
client = this._getBotoClient('s3', region)
if (versioned == None):
versioned = (client.get_bucket_versioning(Bucket=bucketName)['Status'] == 'Enabled')
if (not bucketObjects):
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client, excludePrefix=excludePrefix, filterPrefix=filterPrefix)
if isTopAction:
this.__confirmOperation('Bucket {} clear'.format(bucketName), '\n Versioned: {}\n Objects inside: {}\n '.format(versioned, len(bucketObjects)))
print('\n==============================\nDelete operation confirmed. Deleting bucket objects\n==============================')
deleteCyclesCounter = 0
while (len(bucketObjects) != 0):
for objectToDelete in bucketObjects:
if ('VersionId' in objectToDelete):
this.deleteBucketObject(bucketName, objectToDelete['Key'], versionId=objectToDelete['VersionId'], client=client, isTopAction=False)
else:
this.deleteBucketObject(bucketName, objectToDelete['Key'], client=client, isTopAction=False)
print('Bucket objects delete cycle was ended. Checking for existing objects...')
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client, excludePrefix=excludePrefix, filterPrefix=filterPrefix)
if (len(bucketObjects) != 0):
deleteCyclesCounter += 1
if (deleteCyclesCounter == maxDeleteCycles):
raise DeleteCyclesLimitReached()
else:
print('Here are more {} objects inside the bucket. Trying to delete them')
print('All bucket objects were deleted successfully!')
|
Clears bucket objects.
If excludePrefix and filterPrefix are not specified - all objects will be deleted. Otherwise objects
with prefixes from excludePrefix will be retained and objects with filterPrefix will be deleted.
|
awshelper.py
|
clearBucket
|
andreyess/AWS-helper
| 0 |
python
|
def clearBucket(this, bucketName: str, bucketObjects=None, versioned: bool=None, maxDeleteCycles: int=5, excludePrefix=[], filterPrefix=[], region: str=, client=None, isTopAction=True):
'\n Clears bucket objects.\n \n If excludePrefix and filterPrefix are not specified - all objects will be deleted. Otherwise objects\n with prefixes from excludePrefix will be retained and objects with filterPrefix will be deleted.\n '
if (not client):
client = this._getBotoClient('s3', region)
if (versioned == None):
versioned = (client.get_bucket_versioning(Bucket=bucketName)['Status'] == 'Enabled')
if (not bucketObjects):
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client, excludePrefix=excludePrefix, filterPrefix=filterPrefix)
if isTopAction:
this.__confirmOperation('Bucket {} clear'.format(bucketName), '\n Versioned: {}\n Objects inside: {}\n '.format(versioned, len(bucketObjects)))
print('\n==============================\nDelete operation confirmed. Deleting bucket objects\n==============================')
deleteCyclesCounter = 0
while (len(bucketObjects) != 0):
for objectToDelete in bucketObjects:
if ('VersionId' in objectToDelete):
this.deleteBucketObject(bucketName, objectToDelete['Key'], versionId=objectToDelete['VersionId'], client=client, isTopAction=False)
else:
this.deleteBucketObject(bucketName, objectToDelete['Key'], client=client, isTopAction=False)
print('Bucket objects delete cycle was ended. Checking for existing objects...')
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client, excludePrefix=excludePrefix, filterPrefix=filterPrefix)
if (len(bucketObjects) != 0):
deleteCyclesCounter += 1
if (deleteCyclesCounter == maxDeleteCycles):
raise DeleteCyclesLimitReached()
else:
print('Here are more {} objects inside the bucket. Trying to delete them')
print('All bucket objects were deleted successfully!')
|
def clearBucket(this, bucketName: str, bucketObjects=None, versioned: bool=None, maxDeleteCycles: int=5, excludePrefix=[], filterPrefix=[], region: str=, client=None, isTopAction=True):
'\n Clears bucket objects.\n \n If excludePrefix and filterPrefix are not specified - all objects will be deleted. Otherwise objects\n with prefixes from excludePrefix will be retained and objects with filterPrefix will be deleted.\n '
if (not client):
client = this._getBotoClient('s3', region)
if (versioned == None):
versioned = (client.get_bucket_versioning(Bucket=bucketName)['Status'] == 'Enabled')
if (not bucketObjects):
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client, excludePrefix=excludePrefix, filterPrefix=filterPrefix)
if isTopAction:
this.__confirmOperation('Bucket {} clear'.format(bucketName), '\n Versioned: {}\n Objects inside: {}\n '.format(versioned, len(bucketObjects)))
print('\n==============================\nDelete operation confirmed. Deleting bucket objects\n==============================')
deleteCyclesCounter = 0
while (len(bucketObjects) != 0):
for objectToDelete in bucketObjects:
if ('VersionId' in objectToDelete):
this.deleteBucketObject(bucketName, objectToDelete['Key'], versionId=objectToDelete['VersionId'], client=client, isTopAction=False)
else:
this.deleteBucketObject(bucketName, objectToDelete['Key'], client=client, isTopAction=False)
print('Bucket objects delete cycle was ended. Checking for existing objects...')
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client, excludePrefix=excludePrefix, filterPrefix=filterPrefix)
if (len(bucketObjects) != 0):
deleteCyclesCounter += 1
if (deleteCyclesCounter == maxDeleteCycles):
raise DeleteCyclesLimitReached()
else:
print('Here are more {} objects inside the bucket. Trying to delete them')
print('All bucket objects were deleted successfully!')<|docstring|>Clears bucket objects.
If excludePrefix and filterPrefix are not specified - all objects will be deleted. Otherwise objects
with prefixes from excludePrefix will be retained and objects with filterPrefix will be deleted.<|endoftext|>
|
bb4c5126910c189b8af20de4853e6346b7006e4b5d67acc32a70d1eafd6421be
|
def deleteBucket(this, bucketName: str, versioned: bool=None, maxDeleteCycles: int=5, region: str='', client=None, isTopAction=True):
'\n Deletes bucket with all objects inside.\n '
if (not client):
client = this._getBotoClient('s3', region)
if (versioned == None):
versioned = (client.get_bucket_versioning(Bucket=bucketName)['Status'] == 'Enabled')
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client)
if isTopAction:
this.__confirmOperation('Bucket {} deletion'.format(bucketName), '\n Versioned: {}\n Objects inside: {}\n '.format(versioned, len(bucketObjects)))
this.clearBucket(bucketName, bucketObjects, versioned, maxDeleteCycles, region, client, False)
print('Starting bucket delete operation.')
print(client.delete_bucket(Bucket=bucketName))
|
Deletes bucket with all objects inside.
|
awshelper.py
|
deleteBucket
|
andreyess/AWS-helper
| 0 |
python
|
def deleteBucket(this, bucketName: str, versioned: bool=None, maxDeleteCycles: int=5, region: str=, client=None, isTopAction=True):
'\n \n '
if (not client):
client = this._getBotoClient('s3', region)
if (versioned == None):
versioned = (client.get_bucket_versioning(Bucket=bucketName)['Status'] == 'Enabled')
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client)
if isTopAction:
this.__confirmOperation('Bucket {} deletion'.format(bucketName), '\n Versioned: {}\n Objects inside: {}\n '.format(versioned, len(bucketObjects)))
this.clearBucket(bucketName, bucketObjects, versioned, maxDeleteCycles, region, client, False)
print('Starting bucket delete operation.')
print(client.delete_bucket(Bucket=bucketName))
|
def deleteBucket(this, bucketName: str, versioned: bool=None, maxDeleteCycles: int=5, region: str=, client=None, isTopAction=True):
'\n \n '
if (not client):
client = this._getBotoClient('s3', region)
if (versioned == None):
versioned = (client.get_bucket_versioning(Bucket=bucketName)['Status'] == 'Enabled')
bucketObjects = this.listBucketObjects(bucketName, versioned, client=client)
if isTopAction:
this.__confirmOperation('Bucket {} deletion'.format(bucketName), '\n Versioned: {}\n Objects inside: {}\n '.format(versioned, len(bucketObjects)))
this.clearBucket(bucketName, bucketObjects, versioned, maxDeleteCycles, region, client, False)
print('Starting bucket delete operation.')
print(client.delete_bucket(Bucket=bucketName))<|docstring|>Deletes bucket with all objects inside.<|endoftext|>
|
fa4bdc4721d987ab0ce5b566881b5028842053a263fb8b681317899fb035214b
|
def ready(self):
'\n This function is called whenever the Part app is loaded.\n '
if canAppAccessDatabase():
self.update_trackable_status()
|
This function is called whenever the Part app is loaded.
|
InvenTree/part/apps.py
|
ready
|
killerfish/InvenTree
| 656 |
python
|
def ready(self):
'\n \n '
if canAppAccessDatabase():
self.update_trackable_status()
|
def ready(self):
'\n \n '
if canAppAccessDatabase():
self.update_trackable_status()<|docstring|>This function is called whenever the Part app is loaded.<|endoftext|>
|
b19e9f394e5e94f91bdae52246beb181726c4e6d33a4c23093dbc545aa35ce36
|
def update_trackable_status(self):
'\n Check for any instances where a trackable part is used in the BOM\n for a non-trackable part.\n\n In such a case, force the top-level part to be trackable too.\n '
from .models import BomItem
try:
items = BomItem.objects.filter(part__trackable=False, sub_part__trackable=True)
for item in items:
logger.info(f"Marking part '{item.part.name}' as trackable")
item.part.trackable = True
item.part.clean()
item.part.save()
except (OperationalError, ProgrammingError):
pass
|
Check for any instances where a trackable part is used in the BOM
for a non-trackable part.
In such a case, force the top-level part to be trackable too.
|
InvenTree/part/apps.py
|
update_trackable_status
|
killerfish/InvenTree
| 656 |
python
|
def update_trackable_status(self):
'\n Check for any instances where a trackable part is used in the BOM\n for a non-trackable part.\n\n In such a case, force the top-level part to be trackable too.\n '
from .models import BomItem
try:
items = BomItem.objects.filter(part__trackable=False, sub_part__trackable=True)
for item in items:
logger.info(f"Marking part '{item.part.name}' as trackable")
item.part.trackable = True
item.part.clean()
item.part.save()
except (OperationalError, ProgrammingError):
pass
|
def update_trackable_status(self):
'\n Check for any instances where a trackable part is used in the BOM\n for a non-trackable part.\n\n In such a case, force the top-level part to be trackable too.\n '
from .models import BomItem
try:
items = BomItem.objects.filter(part__trackable=False, sub_part__trackable=True)
for item in items:
logger.info(f"Marking part '{item.part.name}' as trackable")
item.part.trackable = True
item.part.clean()
item.part.save()
except (OperationalError, ProgrammingError):
pass<|docstring|>Check for any instances where a trackable part is used in the BOM
for a non-trackable part.
In such a case, force the top-level part to be trackable too.<|endoftext|>
|
241d683509d2f43d1a011c7beaf697e2a33540a946986fa2d5bae8866b00f92c
|
def adjust_learning_rate(optimizer, epoch):
'For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs'
lr = (0.025 * (1 + math.cos(((float(epoch) / 400) * math.pi))))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
|
For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs
|
main.py
|
adjust_learning_rate
|
LingYeAI/AdderNetCUDA
| 6 |
python
|
def adjust_learning_rate(optimizer, epoch):
lr = (0.025 * (1 + math.cos(((float(epoch) / 400) * math.pi))))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
|
def adjust_learning_rate(optimizer, epoch):
lr = (0.025 * (1 + math.cos(((float(epoch) / 400) * math.pi))))
for param_group in optimizer.param_groups:
param_group['lr'] = lr<|docstring|>For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs<|endoftext|>
|
86d31b9b7c5dfa1db76f9d823663fecac06e3e8205c2a0e02e7e1c5b4c427e13
|
async def apply(self):
'\n `coroutine`\n\n Add the two stacks to the carrier.\n\n --\n\n Return : None\n '
if (not self.triggered):
effect_checker = Effect_checker(self.carrier)
triple_ref = (await effect_checker.get_effect(6, self.client, self.ctx, self.carrier, self.team_a, self.team_b))
has_triple = (await effect_checker.get_buff(triple_ref))
if (has_triple != None):
has_triple.stack += 2
else:
triple_ref.stack = 2
self.carrier.bonus.append(triple_ref)
self.triggered = True
return
|
`coroutine`
Add the two stacks to the carrier.
--
Return : None
|
utility/cog/character/ability/passive/triple_pilots.py
|
apply
|
RvstFyth/discordballz
| 4 |
python
|
async def apply(self):
'\n `coroutine`\n\n Add the two stacks to the carrier.\n\n --\n\n Return : None\n '
if (not self.triggered):
effect_checker = Effect_checker(self.carrier)
triple_ref = (await effect_checker.get_effect(6, self.client, self.ctx, self.carrier, self.team_a, self.team_b))
has_triple = (await effect_checker.get_buff(triple_ref))
if (has_triple != None):
has_triple.stack += 2
else:
triple_ref.stack = 2
self.carrier.bonus.append(triple_ref)
self.triggered = True
return
|
async def apply(self):
'\n `coroutine`\n\n Add the two stacks to the carrier.\n\n --\n\n Return : None\n '
if (not self.triggered):
effect_checker = Effect_checker(self.carrier)
triple_ref = (await effect_checker.get_effect(6, self.client, self.ctx, self.carrier, self.team_a, self.team_b))
has_triple = (await effect_checker.get_buff(triple_ref))
if (has_triple != None):
has_triple.stack += 2
else:
triple_ref.stack = 2
self.carrier.bonus.append(triple_ref)
self.triggered = True
return<|docstring|>`coroutine`
Add the two stacks to the carrier.
--
Return : None<|endoftext|>
|
54606c50ba4687d07b91a44e6393bbc3d600d311ed8506f168bef1557753ae8a
|
def _limit(value, min_value, max_value):
'Limit value by min_value and max_value.'
if (value < min_value):
return min_value
if (value > max_value):
return max_value
return value
|
Limit value by min_value and max_value.
|
rocket.py
|
_limit
|
FrCln/SpaceGarbage
| 0 |
python
|
def _limit(value, min_value, max_value):
if (value < min_value):
return min_value
if (value > max_value):
return max_value
return value
|
def _limit(value, min_value, max_value):
if (value < min_value):
return min_value
if (value > max_value):
return max_value
return value<|docstring|>Limit value by min_value and max_value.<|endoftext|>
|
d2a3ff2e5153341126484ae76e77b210a17e7ed0dbf4aaf2ead8efe69a0f2ca6
|
def _apply_acceleration(speed, speed_limit, forward=True):
'Change speed β accelerate or brake β according to force direction.'
speed_limit = abs(speed_limit)
speed_fraction = (speed / speed_limit)
delta = (math.cos(speed_fraction) * 0.75)
if forward:
result_speed = (speed + delta)
else:
result_speed = (speed - delta)
result_speed = _limit(result_speed, (- speed_limit), speed_limit)
if (abs(result_speed) < 0.1):
result_speed = 0
return result_speed
|
Change speed β accelerate or brake β according to force direction.
|
rocket.py
|
_apply_acceleration
|
FrCln/SpaceGarbage
| 0 |
python
|
def _apply_acceleration(speed, speed_limit, forward=True):
speed_limit = abs(speed_limit)
speed_fraction = (speed / speed_limit)
delta = (math.cos(speed_fraction) * 0.75)
if forward:
result_speed = (speed + delta)
else:
result_speed = (speed - delta)
result_speed = _limit(result_speed, (- speed_limit), speed_limit)
if (abs(result_speed) < 0.1):
result_speed = 0
return result_speed
|
def _apply_acceleration(speed, speed_limit, forward=True):
speed_limit = abs(speed_limit)
speed_fraction = (speed / speed_limit)
delta = (math.cos(speed_fraction) * 0.75)
if forward:
result_speed = (speed + delta)
else:
result_speed = (speed - delta)
result_speed = _limit(result_speed, (- speed_limit), speed_limit)
if (abs(result_speed) < 0.1):
result_speed = 0
return result_speed<|docstring|>Change speed β accelerate or brake β according to force direction.<|endoftext|>
|
897d5fa139f54324200de4420ee85d2c5509adfeaae01eca2e6650ea648350c9
|
def update_speed(self, rows_direction, columns_direction, row_speed_limit=2, column_speed_limit=2, fading=0.9):
'Update speed smootly to make control handy for player. Return new speed value (row_speed, column_speed)\n\n rows_direction β is a force direction by rows axis. Possible values:\n -1 β if force pulls up\n 0 β if force has no effect\n 1 β if force pulls down\n columns_direction β is a force direction by colums axis. Possible values:\n -1 β if force pulls left\n 0 β if force has no effect\n 1 β if force pulls right\n '
if (rows_direction not in ((- 1), 0, 1)):
raise ValueError(f'Wrong rows_direction value {rows_direction}. Expects -1, 0 or 1.')
if (columns_direction not in ((- 1), 0, 1)):
raise ValueError(f'Wrong columns_direction value {columns_direction}. Expects -1, 0 or 1.')
if ((fading < 0) or (fading > 1)):
raise ValueError(f'Wrong fading value {fading}. Expects float between 0 and 1.')
self.row_speed *= fading
self.column_speed *= fading
(row_speed_limit, column_speed_limit) = (abs(row_speed_limit), abs(column_speed_limit))
if (rows_direction != 0):
self.row_speed = _apply_acceleration(self.row_speed, row_speed_limit, (rows_direction > 0))
if (columns_direction != 0):
self.column_speed = _apply_acceleration(self.column_speed, column_speed_limit, (columns_direction > 0))
|
Update speed smootly to make control handy for player. Return new speed value (row_speed, column_speed)
rows_direction β is a force direction by rows axis. Possible values:
-1 β if force pulls up
0 β if force has no effect
1 β if force pulls down
columns_direction β is a force direction by colums axis. Possible values:
-1 β if force pulls left
0 β if force has no effect
1 β if force pulls right
|
rocket.py
|
update_speed
|
FrCln/SpaceGarbage
| 0 |
python
|
def update_speed(self, rows_direction, columns_direction, row_speed_limit=2, column_speed_limit=2, fading=0.9):
'Update speed smootly to make control handy for player. Return new speed value (row_speed, column_speed)\n\n rows_direction β is a force direction by rows axis. Possible values:\n -1 β if force pulls up\n 0 β if force has no effect\n 1 β if force pulls down\n columns_direction β is a force direction by colums axis. Possible values:\n -1 β if force pulls left\n 0 β if force has no effect\n 1 β if force pulls right\n '
if (rows_direction not in ((- 1), 0, 1)):
raise ValueError(f'Wrong rows_direction value {rows_direction}. Expects -1, 0 or 1.')
if (columns_direction not in ((- 1), 0, 1)):
raise ValueError(f'Wrong columns_direction value {columns_direction}. Expects -1, 0 or 1.')
if ((fading < 0) or (fading > 1)):
raise ValueError(f'Wrong fading value {fading}. Expects float between 0 and 1.')
self.row_speed *= fading
self.column_speed *= fading
(row_speed_limit, column_speed_limit) = (abs(row_speed_limit), abs(column_speed_limit))
if (rows_direction != 0):
self.row_speed = _apply_acceleration(self.row_speed, row_speed_limit, (rows_direction > 0))
if (columns_direction != 0):
self.column_speed = _apply_acceleration(self.column_speed, column_speed_limit, (columns_direction > 0))
|
def update_speed(self, rows_direction, columns_direction, row_speed_limit=2, column_speed_limit=2, fading=0.9):
'Update speed smootly to make control handy for player. Return new speed value (row_speed, column_speed)\n\n rows_direction β is a force direction by rows axis. Possible values:\n -1 β if force pulls up\n 0 β if force has no effect\n 1 β if force pulls down\n columns_direction β is a force direction by colums axis. Possible values:\n -1 β if force pulls left\n 0 β if force has no effect\n 1 β if force pulls right\n '
if (rows_direction not in ((- 1), 0, 1)):
raise ValueError(f'Wrong rows_direction value {rows_direction}. Expects -1, 0 or 1.')
if (columns_direction not in ((- 1), 0, 1)):
raise ValueError(f'Wrong columns_direction value {columns_direction}. Expects -1, 0 or 1.')
if ((fading < 0) or (fading > 1)):
raise ValueError(f'Wrong fading value {fading}. Expects float between 0 and 1.')
self.row_speed *= fading
self.column_speed *= fading
(row_speed_limit, column_speed_limit) = (abs(row_speed_limit), abs(column_speed_limit))
if (rows_direction != 0):
self.row_speed = _apply_acceleration(self.row_speed, row_speed_limit, (rows_direction > 0))
if (columns_direction != 0):
self.column_speed = _apply_acceleration(self.column_speed, column_speed_limit, (columns_direction > 0))<|docstring|>Update speed smootly to make control handy for player. Return new speed value (row_speed, column_speed)
rows_direction β is a force direction by rows axis. Possible values:
-1 β if force pulls up
0 β if force has no effect
1 β if force pulls down
columns_direction β is a force direction by colums axis. Possible values:
-1 β if force pulls left
0 β if force has no effect
1 β if force pulls right<|endoftext|>
|
073c719a4a1ba4615a7b71fd2cc7f3feb1b5d0808fbc16fb2ca0cbb47d386eca
|
def __init__(__self__, *, api_id: pulumi.Input[str], issue_id: pulumi.Input[str], resource_group_name: pulumi.Input[str], service_name: pulumi.Input[str], text: pulumi.Input[str], user_id: pulumi.Input[str], comment_id: Optional[pulumi.Input[str]]=None, created_date: Optional[pulumi.Input[str]]=None):
'\n The set of arguments for constructing a ApiIssueComment resource.\n :param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[str] service_name: The name of the API Management service.\n :param pulumi.Input[str] text: Comment text.\n :param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.\n :param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.\n :param pulumi.Input[str] created_date: Date and time when the comment was created.\n '
pulumi.set(__self__, 'api_id', api_id)
pulumi.set(__self__, 'issue_id', issue_id)
pulumi.set(__self__, 'resource_group_name', resource_group_name)
pulumi.set(__self__, 'service_name', service_name)
pulumi.set(__self__, 'text', text)
pulumi.set(__self__, 'user_id', user_id)
if (comment_id is not None):
pulumi.set(__self__, 'comment_id', comment_id)
if (created_date is not None):
pulumi.set(__self__, 'created_date', created_date)
|
The set of arguments for constructing a ApiIssueComment resource.
:param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] resource_group_name: The name of the resource group.
:param pulumi.Input[str] service_name: The name of the API Management service.
:param pulumi.Input[str] text: Comment text.
:param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.
:param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.
:param pulumi.Input[str] created_date: Date and time when the comment was created.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
__init__
|
sebtelko/pulumi-azure-native
| 0 |
python
|
def __init__(__self__, *, api_id: pulumi.Input[str], issue_id: pulumi.Input[str], resource_group_name: pulumi.Input[str], service_name: pulumi.Input[str], text: pulumi.Input[str], user_id: pulumi.Input[str], comment_id: Optional[pulumi.Input[str]]=None, created_date: Optional[pulumi.Input[str]]=None):
'\n The set of arguments for constructing a ApiIssueComment resource.\n :param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[str] service_name: The name of the API Management service.\n :param pulumi.Input[str] text: Comment text.\n :param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.\n :param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.\n :param pulumi.Input[str] created_date: Date and time when the comment was created.\n '
pulumi.set(__self__, 'api_id', api_id)
pulumi.set(__self__, 'issue_id', issue_id)
pulumi.set(__self__, 'resource_group_name', resource_group_name)
pulumi.set(__self__, 'service_name', service_name)
pulumi.set(__self__, 'text', text)
pulumi.set(__self__, 'user_id', user_id)
if (comment_id is not None):
pulumi.set(__self__, 'comment_id', comment_id)
if (created_date is not None):
pulumi.set(__self__, 'created_date', created_date)
|
def __init__(__self__, *, api_id: pulumi.Input[str], issue_id: pulumi.Input[str], resource_group_name: pulumi.Input[str], service_name: pulumi.Input[str], text: pulumi.Input[str], user_id: pulumi.Input[str], comment_id: Optional[pulumi.Input[str]]=None, created_date: Optional[pulumi.Input[str]]=None):
'\n The set of arguments for constructing a ApiIssueComment resource.\n :param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[str] service_name: The name of the API Management service.\n :param pulumi.Input[str] text: Comment text.\n :param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.\n :param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.\n :param pulumi.Input[str] created_date: Date and time when the comment was created.\n '
pulumi.set(__self__, 'api_id', api_id)
pulumi.set(__self__, 'issue_id', issue_id)
pulumi.set(__self__, 'resource_group_name', resource_group_name)
pulumi.set(__self__, 'service_name', service_name)
pulumi.set(__self__, 'text', text)
pulumi.set(__self__, 'user_id', user_id)
if (comment_id is not None):
pulumi.set(__self__, 'comment_id', comment_id)
if (created_date is not None):
pulumi.set(__self__, 'created_date', created_date)<|docstring|>The set of arguments for constructing a ApiIssueComment resource.
:param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] resource_group_name: The name of the resource group.
:param pulumi.Input[str] service_name: The name of the API Management service.
:param pulumi.Input[str] text: Comment text.
:param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.
:param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.
:param pulumi.Input[str] created_date: Date and time when the comment was created.<|endoftext|>
|
b85278d86135053f5ac651832e8762a2b597fcca8bae828cc43d8415e7a48e81
|
@property
@pulumi.getter(name='apiId')
def api_id(self) -> pulumi.Input[str]:
'\n API identifier. Must be unique in the current API Management service instance.\n '
return pulumi.get(self, 'api_id')
|
API identifier. Must be unique in the current API Management service instance.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
api_id
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='apiId')
def api_id(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'api_id')
|
@property
@pulumi.getter(name='apiId')
def api_id(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'api_id')<|docstring|>API identifier. Must be unique in the current API Management service instance.<|endoftext|>
|
13f805f68fdb1b3adefd4a1da66f76a7072bf0d7e79fb90c6a196a60613e71b9
|
@property
@pulumi.getter(name='issueId')
def issue_id(self) -> pulumi.Input[str]:
'\n Issue identifier. Must be unique in the current API Management service instance.\n '
return pulumi.get(self, 'issue_id')
|
Issue identifier. Must be unique in the current API Management service instance.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
issue_id
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='issueId')
def issue_id(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'issue_id')
|
@property
@pulumi.getter(name='issueId')
def issue_id(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'issue_id')<|docstring|>Issue identifier. Must be unique in the current API Management service instance.<|endoftext|>
|
98eb6c85f4a5186d9d5e838be1c375ba32ee58272931f0c5f93ad28266f15668
|
@property
@pulumi.getter(name='resourceGroupName')
def resource_group_name(self) -> pulumi.Input[str]:
'\n The name of the resource group.\n '
return pulumi.get(self, 'resource_group_name')
|
The name of the resource group.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
resource_group_name
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='resourceGroupName')
def resource_group_name(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'resource_group_name')
|
@property
@pulumi.getter(name='resourceGroupName')
def resource_group_name(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'resource_group_name')<|docstring|>The name of the resource group.<|endoftext|>
|
615817b39307a427bb47510707432d6de22fdf19f2a828956f3ae4ce83d22a59
|
@property
@pulumi.getter(name='serviceName')
def service_name(self) -> pulumi.Input[str]:
'\n The name of the API Management service.\n '
return pulumi.get(self, 'service_name')
|
The name of the API Management service.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
service_name
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='serviceName')
def service_name(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'service_name')
|
@property
@pulumi.getter(name='serviceName')
def service_name(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'service_name')<|docstring|>The name of the API Management service.<|endoftext|>
|
6ddb3cd03078f2bb0516c5ddd3152d70ec4ad33e4a27ef98edceced0a8b47fdd
|
@property
@pulumi.getter
def text(self) -> pulumi.Input[str]:
'\n Comment text.\n '
return pulumi.get(self, 'text')
|
Comment text.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
text
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter
def text(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'text')
|
@property
@pulumi.getter
def text(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'text')<|docstring|>Comment text.<|endoftext|>
|
dcb7c7bc57b05572c8efa4dce19723b336c0c058243ce309035cd6191d4d2165
|
@property
@pulumi.getter(name='userId')
def user_id(self) -> pulumi.Input[str]:
'\n A resource identifier for the user who left the comment.\n '
return pulumi.get(self, 'user_id')
|
A resource identifier for the user who left the comment.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
user_id
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='userId')
def user_id(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'user_id')
|
@property
@pulumi.getter(name='userId')
def user_id(self) -> pulumi.Input[str]:
'\n \n '
return pulumi.get(self, 'user_id')<|docstring|>A resource identifier for the user who left the comment.<|endoftext|>
|
aa41f73bf368b44a9f9b06ecf2f640dc5d665234378066057f59048752066ef9
|
@property
@pulumi.getter(name='commentId')
def comment_id(self) -> Optional[pulumi.Input[str]]:
'\n Comment identifier within an Issue. Must be unique in the current Issue.\n '
return pulumi.get(self, 'comment_id')
|
Comment identifier within an Issue. Must be unique in the current Issue.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
comment_id
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='commentId')
def comment_id(self) -> Optional[pulumi.Input[str]]:
'\n \n '
return pulumi.get(self, 'comment_id')
|
@property
@pulumi.getter(name='commentId')
def comment_id(self) -> Optional[pulumi.Input[str]]:
'\n \n '
return pulumi.get(self, 'comment_id')<|docstring|>Comment identifier within an Issue. Must be unique in the current Issue.<|endoftext|>
|
666ae96459aaf15486862f751107a8f5f3399e154babec48593d71d0a8c51571
|
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> Optional[pulumi.Input[str]]:
'\n Date and time when the comment was created.\n '
return pulumi.get(self, 'created_date')
|
Date and time when the comment was created.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
created_date
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> Optional[pulumi.Input[str]]:
'\n \n '
return pulumi.get(self, 'created_date')
|
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> Optional[pulumi.Input[str]]:
'\n \n '
return pulumi.get(self, 'created_date')<|docstring|>Date and time when the comment was created.<|endoftext|>
|
8ef10d315a31695bd30ed2644d421c9ce9c4b9f2a448ef7b73621e1ec32870ea
|
@overload
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, api_id: Optional[pulumi.Input[str]]=None, comment_id: Optional[pulumi.Input[str]]=None, created_date: Optional[pulumi.Input[str]]=None, issue_id: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, service_name: Optional[pulumi.Input[str]]=None, text: Optional[pulumi.Input[str]]=None, user_id: Optional[pulumi.Input[str]]=None, __props__=None):
'\n Issue Comment Contract details.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.\n :param pulumi.Input[str] created_date: Date and time when the comment was created.\n :param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[str] service_name: The name of the API Management service.\n :param pulumi.Input[str] text: Comment text.\n :param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.\n '
...
|
Issue Comment Contract details.
:param str resource_name: The name of the resource.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.
:param pulumi.Input[str] created_date: Date and time when the comment was created.
:param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] resource_group_name: The name of the resource group.
:param pulumi.Input[str] service_name: The name of the API Management service.
:param pulumi.Input[str] text: Comment text.
:param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
__init__
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@overload
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, api_id: Optional[pulumi.Input[str]]=None, comment_id: Optional[pulumi.Input[str]]=None, created_date: Optional[pulumi.Input[str]]=None, issue_id: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, service_name: Optional[pulumi.Input[str]]=None, text: Optional[pulumi.Input[str]]=None, user_id: Optional[pulumi.Input[str]]=None, __props__=None):
'\n Issue Comment Contract details.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.\n :param pulumi.Input[str] created_date: Date and time when the comment was created.\n :param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[str] service_name: The name of the API Management service.\n :param pulumi.Input[str] text: Comment text.\n :param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.\n '
...
|
@overload
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, api_id: Optional[pulumi.Input[str]]=None, comment_id: Optional[pulumi.Input[str]]=None, created_date: Optional[pulumi.Input[str]]=None, issue_id: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, service_name: Optional[pulumi.Input[str]]=None, text: Optional[pulumi.Input[str]]=None, user_id: Optional[pulumi.Input[str]]=None, __props__=None):
'\n Issue Comment Contract details.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.\n :param pulumi.Input[str] created_date: Date and time when the comment was created.\n :param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.\n :param pulumi.Input[str] resource_group_name: The name of the resource group.\n :param pulumi.Input[str] service_name: The name of the API Management service.\n :param pulumi.Input[str] text: Comment text.\n :param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.\n '
...<|docstring|>Issue Comment Contract details.
:param str resource_name: The name of the resource.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[str] api_id: API identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] comment_id: Comment identifier within an Issue. Must be unique in the current Issue.
:param pulumi.Input[str] created_date: Date and time when the comment was created.
:param pulumi.Input[str] issue_id: Issue identifier. Must be unique in the current API Management service instance.
:param pulumi.Input[str] resource_group_name: The name of the resource group.
:param pulumi.Input[str] service_name: The name of the API Management service.
:param pulumi.Input[str] text: Comment text.
:param pulumi.Input[str] user_id: A resource identifier for the user who left the comment.<|endoftext|>
|
cd5d9a357356e1116e4b4e6427ecb226a4a9df38950ec5b09f2104cdc73f24d8
|
@overload
def __init__(__self__, resource_name: str, args: ApiIssueCommentArgs, opts: Optional[pulumi.ResourceOptions]=None):
"\n Issue Comment Contract details.\n\n :param str resource_name: The name of the resource.\n :param ApiIssueCommentArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
...
|
Issue Comment Contract details.
:param str resource_name: The name of the resource.
:param ApiIssueCommentArgs args: The arguments to use to populate this resource's properties.
:param pulumi.ResourceOptions opts: Options for the resource.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
__init__
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@overload
def __init__(__self__, resource_name: str, args: ApiIssueCommentArgs, opts: Optional[pulumi.ResourceOptions]=None):
"\n Issue Comment Contract details.\n\n :param str resource_name: The name of the resource.\n :param ApiIssueCommentArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
...
|
@overload
def __init__(__self__, resource_name: str, args: ApiIssueCommentArgs, opts: Optional[pulumi.ResourceOptions]=None):
"\n Issue Comment Contract details.\n\n :param str resource_name: The name of the resource.\n :param ApiIssueCommentArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
...<|docstring|>Issue Comment Contract details.
:param str resource_name: The name of the resource.
:param ApiIssueCommentArgs args: The arguments to use to populate this resource's properties.
:param pulumi.ResourceOptions opts: Options for the resource.<|endoftext|>
|
f927e34b043a5a72685439c3c51825952ce51a54f7fd8e9050ffa7501c5ad7b5
|
@staticmethod
def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'ApiIssueComment':
"\n Get an existing ApiIssueComment resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = ApiIssueCommentArgs.__new__(ApiIssueCommentArgs)
__props__.__dict__['created_date'] = None
__props__.__dict__['name'] = None
__props__.__dict__['text'] = None
__props__.__dict__['type'] = None
__props__.__dict__['user_id'] = None
return ApiIssueComment(resource_name, opts=opts, __props__=__props__)
|
Get an existing ApiIssueComment resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param pulumi.Input[str] id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
get
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@staticmethod
def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'ApiIssueComment':
"\n Get an existing ApiIssueComment resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = ApiIssueCommentArgs.__new__(ApiIssueCommentArgs)
__props__.__dict__['created_date'] = None
__props__.__dict__['name'] = None
__props__.__dict__['text'] = None
__props__.__dict__['type'] = None
__props__.__dict__['user_id'] = None
return ApiIssueComment(resource_name, opts=opts, __props__=__props__)
|
@staticmethod
def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'ApiIssueComment':
"\n Get an existing ApiIssueComment resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n "
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = ApiIssueCommentArgs.__new__(ApiIssueCommentArgs)
__props__.__dict__['created_date'] = None
__props__.__dict__['name'] = None
__props__.__dict__['text'] = None
__props__.__dict__['type'] = None
__props__.__dict__['user_id'] = None
return ApiIssueComment(resource_name, opts=opts, __props__=__props__)<|docstring|>Get an existing ApiIssueComment resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param pulumi.Input[str] id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource.<|endoftext|>
|
e0482040be06204e5dd870b0e522f699c312279a749d4e334bbc5062a97cfdae
|
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> pulumi.Output[Optional[str]]:
'\n Date and time when the comment was created.\n '
return pulumi.get(self, 'created_date')
|
Date and time when the comment was created.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
created_date
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'created_date')
|
@property
@pulumi.getter(name='createdDate')
def created_date(self) -> pulumi.Output[Optional[str]]:
'\n \n '
return pulumi.get(self, 'created_date')<|docstring|>Date and time when the comment was created.<|endoftext|>
|
a4e4e82a2a3c7ece9d2d421b2e96b6188500f00a67c0b68eb10f134111e2eec7
|
@property
@pulumi.getter
def name(self) -> pulumi.Output[str]:
'\n Resource name.\n '
return pulumi.get(self, 'name')
|
Resource name.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
name
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter
def name(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'name')
|
@property
@pulumi.getter
def name(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'name')<|docstring|>Resource name.<|endoftext|>
|
6c4f60f4c673d4f5283b2f8717c3da0cce107f77d3379185eeae199254548214
|
@property
@pulumi.getter
def text(self) -> pulumi.Output[str]:
'\n Comment text.\n '
return pulumi.get(self, 'text')
|
Comment text.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
text
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter
def text(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'text')
|
@property
@pulumi.getter
def text(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'text')<|docstring|>Comment text.<|endoftext|>
|
7577a949c3b104dffd92eabaca4fb5dd34600064a3ca0b7106de16c6d576a571
|
@property
@pulumi.getter
def type(self) -> pulumi.Output[str]:
'\n Resource type for API Management resource.\n '
return pulumi.get(self, 'type')
|
Resource type for API Management resource.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
type
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter
def type(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'type')
|
@property
@pulumi.getter
def type(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'type')<|docstring|>Resource type for API Management resource.<|endoftext|>
|
a390ccbb4a4b3d9a682a1032164fc9ec775c9289d0dc3525ab24aeca2ab7b003
|
@property
@pulumi.getter(name='userId')
def user_id(self) -> pulumi.Output[str]:
'\n A resource identifier for the user who left the comment.\n '
return pulumi.get(self, 'user_id')
|
A resource identifier for the user who left the comment.
|
sdk/python/pulumi_azure_native/apimanagement/v20210101preview/api_issue_comment.py
|
user_id
|
sebtelko/pulumi-azure-native
| 0 |
python
|
@property
@pulumi.getter(name='userId')
def user_id(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'user_id')
|
@property
@pulumi.getter(name='userId')
def user_id(self) -> pulumi.Output[str]:
'\n \n '
return pulumi.get(self, 'user_id')<|docstring|>A resource identifier for the user who left the comment.<|endoftext|>
|
5b4d6bcfac0efa0a9fc39a95c1a67e95c8d066b54738cf83f777b6ed02827b24
|
def create_prob_mtx(probs, c_pro, n_pro, pro_ls, output_dir):
'\n Organize the interaction probability from Ouroboros analysis to a\n dataframe\n '
print(f'Creating interaction probability matrix...')
prob_mtx = df(index=pro_ls, columns=pro_ls)
for i in range(len(probs)):
c_term = c_pro[i]
n_term = n_pro[i]
prob_mtx.loc[c_term][n_term] = probs[i]
prob_mtx.to_csv(path_or_buf=f'{output_dir}/int_prob_mtx.csv')
return prob_mtx
|
Organize the interaction probability from Ouroboros analysis to a
dataframe
|
code/int_prob.py
|
create_prob_mtx
|
yanwang271/PKSpop
| 2 |
python
|
def create_prob_mtx(probs, c_pro, n_pro, pro_ls, output_dir):
'\n Organize the interaction probability from Ouroboros analysis to a\n dataframe\n '
print(f'Creating interaction probability matrix...')
prob_mtx = df(index=pro_ls, columns=pro_ls)
for i in range(len(probs)):
c_term = c_pro[i]
n_term = n_pro[i]
prob_mtx.loc[c_term][n_term] = probs[i]
prob_mtx.to_csv(path_or_buf=f'{output_dir}/int_prob_mtx.csv')
return prob_mtx
|
def create_prob_mtx(probs, c_pro, n_pro, pro_ls, output_dir):
'\n Organize the interaction probability from Ouroboros analysis to a\n dataframe\n '
print(f'Creating interaction probability matrix...')
prob_mtx = df(index=pro_ls, columns=pro_ls)
for i in range(len(probs)):
c_term = c_pro[i]
n_term = n_pro[i]
prob_mtx.loc[c_term][n_term] = probs[i]
prob_mtx.to_csv(path_or_buf=f'{output_dir}/int_prob_mtx.csv')
return prob_mtx<|docstring|>Organize the interaction probability from Ouroboros analysis to a
dataframe<|endoftext|>
|
4c78e872c25da0decee014c423f212c9b39679f5a5e93ab3b0156cc5986a8cfc
|
def find_other_class(all_pro, class1_pro, start_end):
'\n Find the proteins that not belong to class 1\n '
other_class = []
for p in all_pro:
if ((p not in class1_pro) and (p not in start_end)):
other_class.append(p)
return other_class
|
Find the proteins that not belong to class 1
|
code/int_prob.py
|
find_other_class
|
yanwang271/PKSpop
| 2 |
python
|
def find_other_class(all_pro, class1_pro, start_end):
'\n \n '
other_class = []
for p in all_pro:
if ((p not in class1_pro) and (p not in start_end)):
other_class.append(p)
return other_class
|
def find_other_class(all_pro, class1_pro, start_end):
'\n \n '
other_class = []
for p in all_pro:
if ((p not in class1_pro) and (p not in start_end)):
other_class.append(p)
return other_class<|docstring|>Find the proteins that not belong to class 1<|endoftext|>
|
65ab5d8d5ae17029b4039a0748a53c84cf64204758e5c8c3e36a6996dc2c8b77
|
def __init__(self, data_path, batch_size, percent_train=0.8, pre_split_shuffle=True, **kwargs):
'Initialize.\n\n Args:\n data_path: The file path for the BraTS dataset\n batch_size (int): The batch size to use\n percent_train (float): The percentage of the data to use for training (Default=0.8)\n pre_split_shuffle (bool): True= shuffle the dataset before\n performing the train/validate split (Default=True)\n **kwargs: Additional arguments, passed to super init and load_from_nifti\n\n Returns:\n Data loader with BraTS data\n '
super().__init__(batch_size, **kwargs)
(X_train, y_train, X_valid, y_valid) = load_from_nifti(parent_dir=data_path, percent_train=percent_train, shuffle=pre_split_shuffle, **kwargs)
self.X_train = X_train
self.y_train = y_train
self.X_valid = X_valid
self.y_valid = y_valid
|
Initialize.
Args:
data_path: The file path for the BraTS dataset
batch_size (int): The batch size to use
percent_train (float): The percentage of the data to use for training (Default=0.8)
pre_split_shuffle (bool): True= shuffle the dataset before
performing the train/validate split (Default=True)
**kwargs: Additional arguments, passed to super init and load_from_nifti
Returns:
Data loader with BraTS data
|
openfl-workspace/tf_2dunet/src/tfbrats_inmemory.py
|
__init__
|
psfoley/openfl
| 297 |
python
|
def __init__(self, data_path, batch_size, percent_train=0.8, pre_split_shuffle=True, **kwargs):
'Initialize.\n\n Args:\n data_path: The file path for the BraTS dataset\n batch_size (int): The batch size to use\n percent_train (float): The percentage of the data to use for training (Default=0.8)\n pre_split_shuffle (bool): True= shuffle the dataset before\n performing the train/validate split (Default=True)\n **kwargs: Additional arguments, passed to super init and load_from_nifti\n\n Returns:\n Data loader with BraTS data\n '
super().__init__(batch_size, **kwargs)
(X_train, y_train, X_valid, y_valid) = load_from_nifti(parent_dir=data_path, percent_train=percent_train, shuffle=pre_split_shuffle, **kwargs)
self.X_train = X_train
self.y_train = y_train
self.X_valid = X_valid
self.y_valid = y_valid
|
def __init__(self, data_path, batch_size, percent_train=0.8, pre_split_shuffle=True, **kwargs):
'Initialize.\n\n Args:\n data_path: The file path for the BraTS dataset\n batch_size (int): The batch size to use\n percent_train (float): The percentage of the data to use for training (Default=0.8)\n pre_split_shuffle (bool): True= shuffle the dataset before\n performing the train/validate split (Default=True)\n **kwargs: Additional arguments, passed to super init and load_from_nifti\n\n Returns:\n Data loader with BraTS data\n '
super().__init__(batch_size, **kwargs)
(X_train, y_train, X_valid, y_valid) = load_from_nifti(parent_dir=data_path, percent_train=percent_train, shuffle=pre_split_shuffle, **kwargs)
self.X_train = X_train
self.y_train = y_train
self.X_valid = X_valid
self.y_valid = y_valid<|docstring|>Initialize.
Args:
data_path: The file path for the BraTS dataset
batch_size (int): The batch size to use
percent_train (float): The percentage of the data to use for training (Default=0.8)
pre_split_shuffle (bool): True= shuffle the dataset before
performing the train/validate split (Default=True)
**kwargs: Additional arguments, passed to super init and load_from_nifti
Returns:
Data loader with BraTS data<|endoftext|>
|
6f9494870d3a78af5e220b394d8b0fef552950acb1ec94dbbadc631be8902451
|
def gamma(a, *args, **kwds):
'\n Gamma and incomplete gamma functions.\n This is defined by the integral\n\n .. math::\n\n \\Gamma(a, z) = \\int_z^\\infty t^{a-1}e^{-t} dt\n\n EXAMPLES::\n\n Recall that `\\Gamma(n)` is `n-1` factorial::\n\n sage: gamma(11) == factorial(10)\n True\n sage: gamma(6)\n 120\n sage: gamma(1/2)\n sqrt(pi)\n sage: gamma(-4/3)\n gamma(-4/3)\n sage: gamma(-1)\n Infinity\n sage: gamma(0)\n Infinity\n\n ::\n\n sage: gamma_inc(3,2)\n gamma(3, 2)\n sage: gamma_inc(x,0)\n gamma(x)\n\n ::\n\n sage: gamma(5, hold=True)\n gamma(5)\n sage: gamma(x, 0, hold=True)\n gamma(x, 0)\n\n ::\n\n sage: gamma(CDF(0.5,14))\n -4.05370307804e-10 - 5.77329983455e-10*I\n sage: gamma(CDF(I))\n -0.154949828302 - 0.498015668118*I\n\n The gamma function only works with input that can be coerced to the\n Symbolic Ring::\n\n sage: Q.<i> = NumberField(x^2+1)\n sage: gamma(i)\n doctest:...: DeprecationWarning: Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.\n See http://trac.sagemath.org/7490 for details.\n -0.154949828301811 - 0.498015668118356*I\n\n We make an exception for elements of AA or QQbar, which cannot be\n coerced into symbolic expressions to allow this usage::\n\n sage: t = QQbar(sqrt(2)) + sqrt(3); t\n 3.146264369941973?\n sage: t.parent()\n Algebraic Field\n\n Symbolic functions convert the arguments to symbolic expressions if they\n are in QQbar or AA::\n\n sage: gamma(QQbar(I))\n -0.154949828301811 - 0.498015668118356*I\n '
if (not args):
return gamma1(a, **kwds)
if (len(args) > 1):
raise TypeError(('Symbolic function gamma takes at most 2 arguments (%s given)' % (len(args) + 1)))
return incomplete_gamma(a, args[0], **kwds)
|
Gamma and incomplete gamma functions.
This is defined by the integral
.. math::
\Gamma(a, z) = \int_z^\infty t^{a-1}e^{-t} dt
EXAMPLES::
Recall that `\Gamma(n)` is `n-1` factorial::
sage: gamma(11) == factorial(10)
True
sage: gamma(6)
120
sage: gamma(1/2)
sqrt(pi)
sage: gamma(-4/3)
gamma(-4/3)
sage: gamma(-1)
Infinity
sage: gamma(0)
Infinity
::
sage: gamma_inc(3,2)
gamma(3, 2)
sage: gamma_inc(x,0)
gamma(x)
::
sage: gamma(5, hold=True)
gamma(5)
sage: gamma(x, 0, hold=True)
gamma(x, 0)
::
sage: gamma(CDF(0.5,14))
-4.05370307804e-10 - 5.77329983455e-10*I
sage: gamma(CDF(I))
-0.154949828302 - 0.498015668118*I
The gamma function only works with input that can be coerced to the
Symbolic Ring::
sage: Q.<i> = NumberField(x^2+1)
sage: gamma(i)
doctest:...: DeprecationWarning: Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.
See http://trac.sagemath.org/7490 for details.
-0.154949828301811 - 0.498015668118356*I
We make an exception for elements of AA or QQbar, which cannot be
coerced into symbolic expressions to allow this usage::
sage: t = QQbar(sqrt(2)) + sqrt(3); t
3.146264369941973?
sage: t.parent()
Algebraic Field
Symbolic functions convert the arguments to symbolic expressions if they
are in QQbar or AA::
sage: gamma(QQbar(I))
-0.154949828301811 - 0.498015668118356*I
|
src/sage/functions/other.py
|
gamma
|
drvinceknight/sage
| 2 |
python
|
def gamma(a, *args, **kwds):
'\n Gamma and incomplete gamma functions.\n This is defined by the integral\n\n .. math::\n\n \\Gamma(a, z) = \\int_z^\\infty t^{a-1}e^{-t} dt\n\n EXAMPLES::\n\n Recall that `\\Gamma(n)` is `n-1` factorial::\n\n sage: gamma(11) == factorial(10)\n True\n sage: gamma(6)\n 120\n sage: gamma(1/2)\n sqrt(pi)\n sage: gamma(-4/3)\n gamma(-4/3)\n sage: gamma(-1)\n Infinity\n sage: gamma(0)\n Infinity\n\n ::\n\n sage: gamma_inc(3,2)\n gamma(3, 2)\n sage: gamma_inc(x,0)\n gamma(x)\n\n ::\n\n sage: gamma(5, hold=True)\n gamma(5)\n sage: gamma(x, 0, hold=True)\n gamma(x, 0)\n\n ::\n\n sage: gamma(CDF(0.5,14))\n -4.05370307804e-10 - 5.77329983455e-10*I\n sage: gamma(CDF(I))\n -0.154949828302 - 0.498015668118*I\n\n The gamma function only works with input that can be coerced to the\n Symbolic Ring::\n\n sage: Q.<i> = NumberField(x^2+1)\n sage: gamma(i)\n doctest:...: DeprecationWarning: Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.\n See http://trac.sagemath.org/7490 for details.\n -0.154949828301811 - 0.498015668118356*I\n\n We make an exception for elements of AA or QQbar, which cannot be\n coerced into symbolic expressions to allow this usage::\n\n sage: t = QQbar(sqrt(2)) + sqrt(3); t\n 3.146264369941973?\n sage: t.parent()\n Algebraic Field\n\n Symbolic functions convert the arguments to symbolic expressions if they\n are in QQbar or AA::\n\n sage: gamma(QQbar(I))\n -0.154949828301811 - 0.498015668118356*I\n '
if (not args):
return gamma1(a, **kwds)
if (len(args) > 1):
raise TypeError(('Symbolic function gamma takes at most 2 arguments (%s given)' % (len(args) + 1)))
return incomplete_gamma(a, args[0], **kwds)
|
def gamma(a, *args, **kwds):
'\n Gamma and incomplete gamma functions.\n This is defined by the integral\n\n .. math::\n\n \\Gamma(a, z) = \\int_z^\\infty t^{a-1}e^{-t} dt\n\n EXAMPLES::\n\n Recall that `\\Gamma(n)` is `n-1` factorial::\n\n sage: gamma(11) == factorial(10)\n True\n sage: gamma(6)\n 120\n sage: gamma(1/2)\n sqrt(pi)\n sage: gamma(-4/3)\n gamma(-4/3)\n sage: gamma(-1)\n Infinity\n sage: gamma(0)\n Infinity\n\n ::\n\n sage: gamma_inc(3,2)\n gamma(3, 2)\n sage: gamma_inc(x,0)\n gamma(x)\n\n ::\n\n sage: gamma(5, hold=True)\n gamma(5)\n sage: gamma(x, 0, hold=True)\n gamma(x, 0)\n\n ::\n\n sage: gamma(CDF(0.5,14))\n -4.05370307804e-10 - 5.77329983455e-10*I\n sage: gamma(CDF(I))\n -0.154949828302 - 0.498015668118*I\n\n The gamma function only works with input that can be coerced to the\n Symbolic Ring::\n\n sage: Q.<i> = NumberField(x^2+1)\n sage: gamma(i)\n doctest:...: DeprecationWarning: Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.\n See http://trac.sagemath.org/7490 for details.\n -0.154949828301811 - 0.498015668118356*I\n\n We make an exception for elements of AA or QQbar, which cannot be\n coerced into symbolic expressions to allow this usage::\n\n sage: t = QQbar(sqrt(2)) + sqrt(3); t\n 3.146264369941973?\n sage: t.parent()\n Algebraic Field\n\n Symbolic functions convert the arguments to symbolic expressions if they\n are in QQbar or AA::\n\n sage: gamma(QQbar(I))\n -0.154949828301811 - 0.498015668118356*I\n '
if (not args):
return gamma1(a, **kwds)
if (len(args) > 1):
raise TypeError(('Symbolic function gamma takes at most 2 arguments (%s given)' % (len(args) + 1)))
return incomplete_gamma(a, args[0], **kwds)<|docstring|>Gamma and incomplete gamma functions.
This is defined by the integral
.. math::
\Gamma(a, z) = \int_z^\infty t^{a-1}e^{-t} dt
EXAMPLES::
Recall that `\Gamma(n)` is `n-1` factorial::
sage: gamma(11) == factorial(10)
True
sage: gamma(6)
120
sage: gamma(1/2)
sqrt(pi)
sage: gamma(-4/3)
gamma(-4/3)
sage: gamma(-1)
Infinity
sage: gamma(0)
Infinity
::
sage: gamma_inc(3,2)
gamma(3, 2)
sage: gamma_inc(x,0)
gamma(x)
::
sage: gamma(5, hold=True)
gamma(5)
sage: gamma(x, 0, hold=True)
gamma(x, 0)
::
sage: gamma(CDF(0.5,14))
-4.05370307804e-10 - 5.77329983455e-10*I
sage: gamma(CDF(I))
-0.154949828302 - 0.498015668118*I
The gamma function only works with input that can be coerced to the
Symbolic Ring::
sage: Q.<i> = NumberField(x^2+1)
sage: gamma(i)
doctest:...: DeprecationWarning: Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.
See http://trac.sagemath.org/7490 for details.
-0.154949828301811 - 0.498015668118356*I
We make an exception for elements of AA or QQbar, which cannot be
coerced into symbolic expressions to allow this usage::
sage: t = QQbar(sqrt(2)) + sqrt(3); t
3.146264369941973?
sage: t.parent()
Algebraic Field
Symbolic functions convert the arguments to symbolic expressions if they
are in QQbar or AA::
sage: gamma(QQbar(I))
-0.154949828301811 - 0.498015668118356*I<|endoftext|>
|
642928b65346fc3971734526e6679fdebfe2a21909c66696e1c0af0fafcdaa92
|
def psi(x, *args, **kwds):
"\n The digamma function, `\\psi(x)`, is the logarithmic derivative of the\n gamma function.\n\n .. math::\n\n \\psi(x) = \\frac{d}{dx} \\log(\\Gamma(x)) = \\frac{\\Gamma'(x)}{\\Gamma(x)}\n\n We represent the `n`-th derivative of the digamma function with\n `\\psi(n, x)` or `psi(n, x)`.\n\n EXAMPLES::\n\n sage: psi(x)\n psi(x)\n sage: psi(.5)\n -1.96351002602142\n sage: psi(3)\n -euler_gamma + 3/2\n sage: psi(1, 5)\n 1/6*pi^2 - 205/144\n sage: psi(1, x)\n psi(1, x)\n sage: psi(1, x).derivative(x)\n psi(2, x)\n\n ::\n\n sage: psi(3, hold=True)\n psi(3)\n sage: psi(1, 5, hold=True)\n psi(1, 5)\n\n TESTS::\n\n sage: psi(2, x, 3)\n Traceback (most recent call last):\n ...\n TypeError: Symbolic function psi takes at most 2 arguments (3 given)\n "
if (not args):
return psi1(x, **kwds)
if (len(args) > 1):
raise TypeError(('Symbolic function psi takes at most 2 arguments (%s given)' % (len(args) + 1)))
return psi2(x, args[0], **kwds)
|
The digamma function, `\psi(x)`, is the logarithmic derivative of the
gamma function.
.. math::
\psi(x) = \frac{d}{dx} \log(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}
We represent the `n`-th derivative of the digamma function with
`\psi(n, x)` or `psi(n, x)`.
EXAMPLES::
sage: psi(x)
psi(x)
sage: psi(.5)
-1.96351002602142
sage: psi(3)
-euler_gamma + 3/2
sage: psi(1, 5)
1/6*pi^2 - 205/144
sage: psi(1, x)
psi(1, x)
sage: psi(1, x).derivative(x)
psi(2, x)
::
sage: psi(3, hold=True)
psi(3)
sage: psi(1, 5, hold=True)
psi(1, 5)
TESTS::
sage: psi(2, x, 3)
Traceback (most recent call last):
...
TypeError: Symbolic function psi takes at most 2 arguments (3 given)
|
src/sage/functions/other.py
|
psi
|
drvinceknight/sage
| 2 |
python
|
def psi(x, *args, **kwds):
"\n The digamma function, `\\psi(x)`, is the logarithmic derivative of the\n gamma function.\n\n .. math::\n\n \\psi(x) = \\frac{d}{dx} \\log(\\Gamma(x)) = \\frac{\\Gamma'(x)}{\\Gamma(x)}\n\n We represent the `n`-th derivative of the digamma function with\n `\\psi(n, x)` or `psi(n, x)`.\n\n EXAMPLES::\n\n sage: psi(x)\n psi(x)\n sage: psi(.5)\n -1.96351002602142\n sage: psi(3)\n -euler_gamma + 3/2\n sage: psi(1, 5)\n 1/6*pi^2 - 205/144\n sage: psi(1, x)\n psi(1, x)\n sage: psi(1, x).derivative(x)\n psi(2, x)\n\n ::\n\n sage: psi(3, hold=True)\n psi(3)\n sage: psi(1, 5, hold=True)\n psi(1, 5)\n\n TESTS::\n\n sage: psi(2, x, 3)\n Traceback (most recent call last):\n ...\n TypeError: Symbolic function psi takes at most 2 arguments (3 given)\n "
if (not args):
return psi1(x, **kwds)
if (len(args) > 1):
raise TypeError(('Symbolic function psi takes at most 2 arguments (%s given)' % (len(args) + 1)))
return psi2(x, args[0], **kwds)
|
def psi(x, *args, **kwds):
"\n The digamma function, `\\psi(x)`, is the logarithmic derivative of the\n gamma function.\n\n .. math::\n\n \\psi(x) = \\frac{d}{dx} \\log(\\Gamma(x)) = \\frac{\\Gamma'(x)}{\\Gamma(x)}\n\n We represent the `n`-th derivative of the digamma function with\n `\\psi(n, x)` or `psi(n, x)`.\n\n EXAMPLES::\n\n sage: psi(x)\n psi(x)\n sage: psi(.5)\n -1.96351002602142\n sage: psi(3)\n -euler_gamma + 3/2\n sage: psi(1, 5)\n 1/6*pi^2 - 205/144\n sage: psi(1, x)\n psi(1, x)\n sage: psi(1, x).derivative(x)\n psi(2, x)\n\n ::\n\n sage: psi(3, hold=True)\n psi(3)\n sage: psi(1, 5, hold=True)\n psi(1, 5)\n\n TESTS::\n\n sage: psi(2, x, 3)\n Traceback (most recent call last):\n ...\n TypeError: Symbolic function psi takes at most 2 arguments (3 given)\n "
if (not args):
return psi1(x, **kwds)
if (len(args) > 1):
raise TypeError(('Symbolic function psi takes at most 2 arguments (%s given)' % (len(args) + 1)))
return psi2(x, args[0], **kwds)<|docstring|>The digamma function, `\psi(x)`, is the logarithmic derivative of the
gamma function.
.. math::
\psi(x) = \frac{d}{dx} \log(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}
We represent the `n`-th derivative of the digamma function with
`\psi(n, x)` or `psi(n, x)`.
EXAMPLES::
sage: psi(x)
psi(x)
sage: psi(.5)
-1.96351002602142
sage: psi(3)
-euler_gamma + 3/2
sage: psi(1, 5)
1/6*pi^2 - 205/144
sage: psi(1, x)
psi(1, x)
sage: psi(1, x).derivative(x)
psi(2, x)
::
sage: psi(3, hold=True)
psi(3)
sage: psi(1, 5, hold=True)
psi(1, 5)
TESTS::
sage: psi(2, x, 3)
Traceback (most recent call last):
...
TypeError: Symbolic function psi takes at most 2 arguments (3 given)<|endoftext|>
|
15019e4c0e98bb162dde714ba811284f238d667e9c54d3301a303616f8edfe38
|
def _do_sqrt(x, prec=None, extend=True, all=False):
'\n Used internally to compute the square root of x.\n\n INPUT:\n\n - ``x`` - a number\n\n - ``prec`` - None (default) or a positive integer\n (bits of precision) If not None, then compute the square root\n numerically to prec bits of precision.\n\n - ``extend`` - bool (default: True); this is a place\n holder, and is always ignored since in the symbolic ring everything\n has a square root.\n\n - ``extend`` - bool (default: True); whether to extend\n the base ring to find roots. The extend parameter is ignored if\n prec is a positive integer.\n\n - ``all`` - bool (default: False); whether to return\n a list of all the square roots of x.\n\n\n EXAMPLES::\n\n sage: from sage.functions.other import _do_sqrt\n sage: _do_sqrt(3)\n sqrt(3)\n sage: _do_sqrt(3,prec=10)\n 1.7\n sage: _do_sqrt(3,prec=100)\n 1.7320508075688772935274463415\n sage: _do_sqrt(3,all=True)\n [sqrt(3), -sqrt(3)]\n\n Note that the extend parameter is ignored in the symbolic ring::\n\n sage: _do_sqrt(3,extend=False)\n sqrt(3)\n '
from sage.rings.all import RealField, ComplexField
if prec:
if (x >= 0):
return RealField(prec)(x).sqrt(all=all)
else:
return ComplexField(prec)(x).sqrt(all=all)
if (x == (- 1)):
from sage.symbolic.pynac import I
z = I
else:
z = (SR(x) ** one_half)
if all:
if z:
return [z, (- z)]
else:
return [z]
return z
|
Used internally to compute the square root of x.
INPUT:
- ``x`` - a number
- ``prec`` - None (default) or a positive integer
(bits of precision) If not None, then compute the square root
numerically to prec bits of precision.
- ``extend`` - bool (default: True); this is a place
holder, and is always ignored since in the symbolic ring everything
has a square root.
- ``extend`` - bool (default: True); whether to extend
the base ring to find roots. The extend parameter is ignored if
prec is a positive integer.
- ``all`` - bool (default: False); whether to return
a list of all the square roots of x.
EXAMPLES::
sage: from sage.functions.other import _do_sqrt
sage: _do_sqrt(3)
sqrt(3)
sage: _do_sqrt(3,prec=10)
1.7
sage: _do_sqrt(3,prec=100)
1.7320508075688772935274463415
sage: _do_sqrt(3,all=True)
[sqrt(3), -sqrt(3)]
Note that the extend parameter is ignored in the symbolic ring::
sage: _do_sqrt(3,extend=False)
sqrt(3)
|
src/sage/functions/other.py
|
_do_sqrt
|
drvinceknight/sage
| 2 |
python
|
def _do_sqrt(x, prec=None, extend=True, all=False):
'\n Used internally to compute the square root of x.\n\n INPUT:\n\n - ``x`` - a number\n\n - ``prec`` - None (default) or a positive integer\n (bits of precision) If not None, then compute the square root\n numerically to prec bits of precision.\n\n - ``extend`` - bool (default: True); this is a place\n holder, and is always ignored since in the symbolic ring everything\n has a square root.\n\n - ``extend`` - bool (default: True); whether to extend\n the base ring to find roots. The extend parameter is ignored if\n prec is a positive integer.\n\n - ``all`` - bool (default: False); whether to return\n a list of all the square roots of x.\n\n\n EXAMPLES::\n\n sage: from sage.functions.other import _do_sqrt\n sage: _do_sqrt(3)\n sqrt(3)\n sage: _do_sqrt(3,prec=10)\n 1.7\n sage: _do_sqrt(3,prec=100)\n 1.7320508075688772935274463415\n sage: _do_sqrt(3,all=True)\n [sqrt(3), -sqrt(3)]\n\n Note that the extend parameter is ignored in the symbolic ring::\n\n sage: _do_sqrt(3,extend=False)\n sqrt(3)\n '
from sage.rings.all import RealField, ComplexField
if prec:
if (x >= 0):
return RealField(prec)(x).sqrt(all=all)
else:
return ComplexField(prec)(x).sqrt(all=all)
if (x == (- 1)):
from sage.symbolic.pynac import I
z = I
else:
z = (SR(x) ** one_half)
if all:
if z:
return [z, (- z)]
else:
return [z]
return z
|
def _do_sqrt(x, prec=None, extend=True, all=False):
'\n Used internally to compute the square root of x.\n\n INPUT:\n\n - ``x`` - a number\n\n - ``prec`` - None (default) or a positive integer\n (bits of precision) If not None, then compute the square root\n numerically to prec bits of precision.\n\n - ``extend`` - bool (default: True); this is a place\n holder, and is always ignored since in the symbolic ring everything\n has a square root.\n\n - ``extend`` - bool (default: True); whether to extend\n the base ring to find roots. The extend parameter is ignored if\n prec is a positive integer.\n\n - ``all`` - bool (default: False); whether to return\n a list of all the square roots of x.\n\n\n EXAMPLES::\n\n sage: from sage.functions.other import _do_sqrt\n sage: _do_sqrt(3)\n sqrt(3)\n sage: _do_sqrt(3,prec=10)\n 1.7\n sage: _do_sqrt(3,prec=100)\n 1.7320508075688772935274463415\n sage: _do_sqrt(3,all=True)\n [sqrt(3), -sqrt(3)]\n\n Note that the extend parameter is ignored in the symbolic ring::\n\n sage: _do_sqrt(3,extend=False)\n sqrt(3)\n '
from sage.rings.all import RealField, ComplexField
if prec:
if (x >= 0):
return RealField(prec)(x).sqrt(all=all)
else:
return ComplexField(prec)(x).sqrt(all=all)
if (x == (- 1)):
from sage.symbolic.pynac import I
z = I
else:
z = (SR(x) ** one_half)
if all:
if z:
return [z, (- z)]
else:
return [z]
return z<|docstring|>Used internally to compute the square root of x.
INPUT:
- ``x`` - a number
- ``prec`` - None (default) or a positive integer
(bits of precision) If not None, then compute the square root
numerically to prec bits of precision.
- ``extend`` - bool (default: True); this is a place
holder, and is always ignored since in the symbolic ring everything
has a square root.
- ``extend`` - bool (default: True); whether to extend
the base ring to find roots. The extend parameter is ignored if
prec is a positive integer.
- ``all`` - bool (default: False); whether to return
a list of all the square roots of x.
EXAMPLES::
sage: from sage.functions.other import _do_sqrt
sage: _do_sqrt(3)
sqrt(3)
sage: _do_sqrt(3,prec=10)
1.7
sage: _do_sqrt(3,prec=100)
1.7320508075688772935274463415
sage: _do_sqrt(3,all=True)
[sqrt(3), -sqrt(3)]
Note that the extend parameter is ignored in the symbolic ring::
sage: _do_sqrt(3,extend=False)
sqrt(3)<|endoftext|>
|
5331cf1371c40af19cc6f8bea554cdfecb22a78ebff40bd104e582be8d5bacb4
|
def sqrt(x, *args, **kwds):
"\n INPUT:\n\n - ``x`` - a number\n\n - ``prec`` - integer (default: None): if None, returns\n an exact square root; otherwise returns a numerical square root if\n necessary, to the given bits of precision.\n\n - ``extend`` - bool (default: True); this is a place\n holder, and is always ignored or passed to the sqrt function for x,\n since in the symbolic ring everything has a square root.\n\n - ``all`` - bool (default: False); if True, return all\n square roots of self, instead of just one.\n\n EXAMPLES::\n\n sage: sqrt(-1)\n I\n sage: sqrt(2)\n sqrt(2)\n sage: sqrt(2)^2\n 2\n sage: sqrt(4)\n 2\n sage: sqrt(4,all=True)\n [2, -2]\n sage: sqrt(x^2)\n sqrt(x^2)\n sage: sqrt(2).n()\n 1.41421356237310\n\n To prevent automatic evaluation, one can use the ``hold`` parameter\n after coercing to the symbolic ring::\n\n sage: sqrt(SR(4),hold=True)\n sqrt(4)\n sage: sqrt(4,hold=True)\n Traceback (most recent call last):\n ...\n TypeError: _do_sqrt() got an unexpected keyword argument 'hold'\n\n This illustrates that the bug reported in #6171 has been fixed::\n\n sage: a = 1.1\n sage: a.sqrt(prec=100) # this is supposed to fail\n Traceback (most recent call last):\n ...\n TypeError: sqrt() got an unexpected keyword argument 'prec'\n sage: sqrt(a, prec=100)\n 1.0488088481701515469914535137\n sage: sqrt(4.00, prec=250)\n 2.0000000000000000000000000000000000000000000000000000000000000000000000000\n\n One can use numpy input as well::\n\n sage: import numpy\n sage: a = numpy.arange(2,5)\n sage: sqrt(a)\n array([ 1.41421356, 1.73205081, 2. ])\n "
if isinstance(x, float):
return math.sqrt(x)
elif (type(x).__module__ == 'numpy'):
from numpy import sqrt
return sqrt(x)
try:
return x.sqrt(*args, **kwds)
except (AttributeError, TypeError):
pass
return _do_sqrt(x, *args, **kwds)
|
INPUT:
- ``x`` - a number
- ``prec`` - integer (default: None): if None, returns
an exact square root; otherwise returns a numerical square root if
necessary, to the given bits of precision.
- ``extend`` - bool (default: True); this is a place
holder, and is always ignored or passed to the sqrt function for x,
since in the symbolic ring everything has a square root.
- ``all`` - bool (default: False); if True, return all
square roots of self, instead of just one.
EXAMPLES::
sage: sqrt(-1)
I
sage: sqrt(2)
sqrt(2)
sage: sqrt(2)^2
2
sage: sqrt(4)
2
sage: sqrt(4,all=True)
[2, -2]
sage: sqrt(x^2)
sqrt(x^2)
sage: sqrt(2).n()
1.41421356237310
To prevent automatic evaluation, one can use the ``hold`` parameter
after coercing to the symbolic ring::
sage: sqrt(SR(4),hold=True)
sqrt(4)
sage: sqrt(4,hold=True)
Traceback (most recent call last):
...
TypeError: _do_sqrt() got an unexpected keyword argument 'hold'
This illustrates that the bug reported in #6171 has been fixed::
sage: a = 1.1
sage: a.sqrt(prec=100) # this is supposed to fail
Traceback (most recent call last):
...
TypeError: sqrt() got an unexpected keyword argument 'prec'
sage: sqrt(a, prec=100)
1.0488088481701515469914535137
sage: sqrt(4.00, prec=250)
2.0000000000000000000000000000000000000000000000000000000000000000000000000
One can use numpy input as well::
sage: import numpy
sage: a = numpy.arange(2,5)
sage: sqrt(a)
array([ 1.41421356, 1.73205081, 2. ])
|
src/sage/functions/other.py
|
sqrt
|
drvinceknight/sage
| 2 |
python
|
def sqrt(x, *args, **kwds):
"\n INPUT:\n\n - ``x`` - a number\n\n - ``prec`` - integer (default: None): if None, returns\n an exact square root; otherwise returns a numerical square root if\n necessary, to the given bits of precision.\n\n - ``extend`` - bool (default: True); this is a place\n holder, and is always ignored or passed to the sqrt function for x,\n since in the symbolic ring everything has a square root.\n\n - ``all`` - bool (default: False); if True, return all\n square roots of self, instead of just one.\n\n EXAMPLES::\n\n sage: sqrt(-1)\n I\n sage: sqrt(2)\n sqrt(2)\n sage: sqrt(2)^2\n 2\n sage: sqrt(4)\n 2\n sage: sqrt(4,all=True)\n [2, -2]\n sage: sqrt(x^2)\n sqrt(x^2)\n sage: sqrt(2).n()\n 1.41421356237310\n\n To prevent automatic evaluation, one can use the ``hold`` parameter\n after coercing to the symbolic ring::\n\n sage: sqrt(SR(4),hold=True)\n sqrt(4)\n sage: sqrt(4,hold=True)\n Traceback (most recent call last):\n ...\n TypeError: _do_sqrt() got an unexpected keyword argument 'hold'\n\n This illustrates that the bug reported in #6171 has been fixed::\n\n sage: a = 1.1\n sage: a.sqrt(prec=100) # this is supposed to fail\n Traceback (most recent call last):\n ...\n TypeError: sqrt() got an unexpected keyword argument 'prec'\n sage: sqrt(a, prec=100)\n 1.0488088481701515469914535137\n sage: sqrt(4.00, prec=250)\n 2.0000000000000000000000000000000000000000000000000000000000000000000000000\n\n One can use numpy input as well::\n\n sage: import numpy\n sage: a = numpy.arange(2,5)\n sage: sqrt(a)\n array([ 1.41421356, 1.73205081, 2. ])\n "
if isinstance(x, float):
return math.sqrt(x)
elif (type(x).__module__ == 'numpy'):
from numpy import sqrt
return sqrt(x)
try:
return x.sqrt(*args, **kwds)
except (AttributeError, TypeError):
pass
return _do_sqrt(x, *args, **kwds)
|
def sqrt(x, *args, **kwds):
"\n INPUT:\n\n - ``x`` - a number\n\n - ``prec`` - integer (default: None): if None, returns\n an exact square root; otherwise returns a numerical square root if\n necessary, to the given bits of precision.\n\n - ``extend`` - bool (default: True); this is a place\n holder, and is always ignored or passed to the sqrt function for x,\n since in the symbolic ring everything has a square root.\n\n - ``all`` - bool (default: False); if True, return all\n square roots of self, instead of just one.\n\n EXAMPLES::\n\n sage: sqrt(-1)\n I\n sage: sqrt(2)\n sqrt(2)\n sage: sqrt(2)^2\n 2\n sage: sqrt(4)\n 2\n sage: sqrt(4,all=True)\n [2, -2]\n sage: sqrt(x^2)\n sqrt(x^2)\n sage: sqrt(2).n()\n 1.41421356237310\n\n To prevent automatic evaluation, one can use the ``hold`` parameter\n after coercing to the symbolic ring::\n\n sage: sqrt(SR(4),hold=True)\n sqrt(4)\n sage: sqrt(4,hold=True)\n Traceback (most recent call last):\n ...\n TypeError: _do_sqrt() got an unexpected keyword argument 'hold'\n\n This illustrates that the bug reported in #6171 has been fixed::\n\n sage: a = 1.1\n sage: a.sqrt(prec=100) # this is supposed to fail\n Traceback (most recent call last):\n ...\n TypeError: sqrt() got an unexpected keyword argument 'prec'\n sage: sqrt(a, prec=100)\n 1.0488088481701515469914535137\n sage: sqrt(4.00, prec=250)\n 2.0000000000000000000000000000000000000000000000000000000000000000000000000\n\n One can use numpy input as well::\n\n sage: import numpy\n sage: a = numpy.arange(2,5)\n sage: sqrt(a)\n array([ 1.41421356, 1.73205081, 2. ])\n "
if isinstance(x, float):
return math.sqrt(x)
elif (type(x).__module__ == 'numpy'):
from numpy import sqrt
return sqrt(x)
try:
return x.sqrt(*args, **kwds)
except (AttributeError, TypeError):
pass
return _do_sqrt(x, *args, **kwds)<|docstring|>INPUT:
- ``x`` - a number
- ``prec`` - integer (default: None): if None, returns
an exact square root; otherwise returns a numerical square root if
necessary, to the given bits of precision.
- ``extend`` - bool (default: True); this is a place
holder, and is always ignored or passed to the sqrt function for x,
since in the symbolic ring everything has a square root.
- ``all`` - bool (default: False); if True, return all
square roots of self, instead of just one.
EXAMPLES::
sage: sqrt(-1)
I
sage: sqrt(2)
sqrt(2)
sage: sqrt(2)^2
2
sage: sqrt(4)
2
sage: sqrt(4,all=True)
[2, -2]
sage: sqrt(x^2)
sqrt(x^2)
sage: sqrt(2).n()
1.41421356237310
To prevent automatic evaluation, one can use the ``hold`` parameter
after coercing to the symbolic ring::
sage: sqrt(SR(4),hold=True)
sqrt(4)
sage: sqrt(4,hold=True)
Traceback (most recent call last):
...
TypeError: _do_sqrt() got an unexpected keyword argument 'hold'
This illustrates that the bug reported in #6171 has been fixed::
sage: a = 1.1
sage: a.sqrt(prec=100) # this is supposed to fail
Traceback (most recent call last):
...
TypeError: sqrt() got an unexpected keyword argument 'prec'
sage: sqrt(a, prec=100)
1.0488088481701515469914535137
sage: sqrt(4.00, prec=250)
2.0000000000000000000000000000000000000000000000000000000000000000000000000
One can use numpy input as well::
sage: import numpy
sage: a = numpy.arange(2,5)
sage: sqrt(a)
array([ 1.41421356, 1.73205081, 2. ])<|endoftext|>
|
6b85d9f357bd4758fe55ca561f5d766ad8797ca94dec795c8346899b55a16de1
|
def __init__(self):
'\n See docstring for :meth:`Function_erf`.\n\n EXAMPLES::\n\n sage: erf(2)\n erf(2)\n '
BuiltinFunction.__init__(self, 'erf', latex_name='\\text{erf}')
|
See docstring for :meth:`Function_erf`.
EXAMPLES::
sage: erf(2)
erf(2)
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
'\n See docstring for :meth:`Function_erf`.\n\n EXAMPLES::\n\n sage: erf(2)\n erf(2)\n '
BuiltinFunction.__init__(self, 'erf', latex_name='\\text{erf}')
|
def __init__(self):
'\n See docstring for :meth:`Function_erf`.\n\n EXAMPLES::\n\n sage: erf(2)\n erf(2)\n '
BuiltinFunction.__init__(self, 'erf', latex_name='\\text{erf}')<|docstring|>See docstring for :meth:`Function_erf`.
EXAMPLES::
sage: erf(2)
erf(2)<|endoftext|>
|
52bad6edd3c629131530cf8b5e0c1843d7313a60cd3b3723e8c6eb2cea5264a5
|
def _eval_(self, x):
'\n EXAMPLES:\n\n Input is not an expression but is exact::\n\n sage: erf(0)\n 0\n sage: erf(1)\n erf(1)\n\n Input is not an expression and is not exact::\n\n sage: erf(0.0)\n 0.000000000000000\n\n Input is an expression but not a trivial zero::\n\n sage: erf(x)\n erf(x)\n\n Input is an expression which is trivially zero::\n\n sage: erf(SR(0))\n 0\n '
if (not isinstance(x, Expression)):
if is_inexact(x):
return self._evalf_(x, parent=s_parent(x))
elif (x == Integer(0)):
return Integer(0)
elif x.is_trivial_zero():
return x
return None
|
EXAMPLES:
Input is not an expression but is exact::
sage: erf(0)
0
sage: erf(1)
erf(1)
Input is not an expression and is not exact::
sage: erf(0.0)
0.000000000000000
Input is an expression but not a trivial zero::
sage: erf(x)
erf(x)
Input is an expression which is trivially zero::
sage: erf(SR(0))
0
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, x):
'\n EXAMPLES:\n\n Input is not an expression but is exact::\n\n sage: erf(0)\n 0\n sage: erf(1)\n erf(1)\n\n Input is not an expression and is not exact::\n\n sage: erf(0.0)\n 0.000000000000000\n\n Input is an expression but not a trivial zero::\n\n sage: erf(x)\n erf(x)\n\n Input is an expression which is trivially zero::\n\n sage: erf(SR(0))\n 0\n '
if (not isinstance(x, Expression)):
if is_inexact(x):
return self._evalf_(x, parent=s_parent(x))
elif (x == Integer(0)):
return Integer(0)
elif x.is_trivial_zero():
return x
return None
|
def _eval_(self, x):
'\n EXAMPLES:\n\n Input is not an expression but is exact::\n\n sage: erf(0)\n 0\n sage: erf(1)\n erf(1)\n\n Input is not an expression and is not exact::\n\n sage: erf(0.0)\n 0.000000000000000\n\n Input is an expression but not a trivial zero::\n\n sage: erf(x)\n erf(x)\n\n Input is an expression which is trivially zero::\n\n sage: erf(SR(0))\n 0\n '
if (not isinstance(x, Expression)):
if is_inexact(x):
return self._evalf_(x, parent=s_parent(x))
elif (x == Integer(0)):
return Integer(0)
elif x.is_trivial_zero():
return x
return None<|docstring|>EXAMPLES:
Input is not an expression but is exact::
sage: erf(0)
0
sage: erf(1)
erf(1)
Input is not an expression and is not exact::
sage: erf(0.0)
0.000000000000000
Input is an expression but not a trivial zero::
sage: erf(x)
erf(x)
Input is an expression which is trivially zero::
sage: erf(SR(0))
0<|endoftext|>
|
c29c43fa4a1c9529961481dc869c53afcfe9edf02e0ca4d0af758b7aab9f49ec
|
def _evalf_(self, x, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: erf(2).n()\n 0.995322265018953\n sage: erf(2).n(200)\n 0.99532226501895273416206925636725292861089179704006007673835\n sage: erf(pi - 1/2*I).n(100)\n 1.0000111669099367825726058952 + 1.6332655417638522934072124547e-6*I\n\n TESTS:\n\n Check that PARI/GP through the GP interface gives the same answer::\n\n sage: gp.set_real_precision(59) # random\n 38\n sage: print gp.eval("1 - erfc(1)"); print erf(1).n(200);\n 0.84270079294971486934122063508260925929606699796630290845994\n 0.84270079294971486934122063508260925929606699796630290845994\n\n Check that for an imaginary input, the output is also imaginary, see\n :trac:`13193`::\n\n sage: erf(3.0*I)\n 1629.99462260157*I\n sage: erf(33.0*I)\n 1.51286977510409e471*I\n '
R = (parent or s_parent(x))
import mpmath
return mpmath_utils.call(mpmath.erf, x, parent=R)
|
EXAMPLES::
sage: erf(2).n()
0.995322265018953
sage: erf(2).n(200)
0.99532226501895273416206925636725292861089179704006007673835
sage: erf(pi - 1/2*I).n(100)
1.0000111669099367825726058952 + 1.6332655417638522934072124547e-6*I
TESTS:
Check that PARI/GP through the GP interface gives the same answer::
sage: gp.set_real_precision(59) # random
38
sage: print gp.eval("1 - erfc(1)"); print erf(1).n(200);
0.84270079294971486934122063508260925929606699796630290845994
0.84270079294971486934122063508260925929606699796630290845994
Check that for an imaginary input, the output is also imaginary, see
:trac:`13193`::
sage: erf(3.0*I)
1629.99462260157*I
sage: erf(33.0*I)
1.51286977510409e471*I
|
src/sage/functions/other.py
|
_evalf_
|
drvinceknight/sage
| 2 |
python
|
def _evalf_(self, x, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: erf(2).n()\n 0.995322265018953\n sage: erf(2).n(200)\n 0.99532226501895273416206925636725292861089179704006007673835\n sage: erf(pi - 1/2*I).n(100)\n 1.0000111669099367825726058952 + 1.6332655417638522934072124547e-6*I\n\n TESTS:\n\n Check that PARI/GP through the GP interface gives the same answer::\n\n sage: gp.set_real_precision(59) # random\n 38\n sage: print gp.eval("1 - erfc(1)"); print erf(1).n(200);\n 0.84270079294971486934122063508260925929606699796630290845994\n 0.84270079294971486934122063508260925929606699796630290845994\n\n Check that for an imaginary input, the output is also imaginary, see\n :trac:`13193`::\n\n sage: erf(3.0*I)\n 1629.99462260157*I\n sage: erf(33.0*I)\n 1.51286977510409e471*I\n '
R = (parent or s_parent(x))
import mpmath
return mpmath_utils.call(mpmath.erf, x, parent=R)
|
def _evalf_(self, x, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: erf(2).n()\n 0.995322265018953\n sage: erf(2).n(200)\n 0.99532226501895273416206925636725292861089179704006007673835\n sage: erf(pi - 1/2*I).n(100)\n 1.0000111669099367825726058952 + 1.6332655417638522934072124547e-6*I\n\n TESTS:\n\n Check that PARI/GP through the GP interface gives the same answer::\n\n sage: gp.set_real_precision(59) # random\n 38\n sage: print gp.eval("1 - erfc(1)"); print erf(1).n(200);\n 0.84270079294971486934122063508260925929606699796630290845994\n 0.84270079294971486934122063508260925929606699796630290845994\n\n Check that for an imaginary input, the output is also imaginary, see\n :trac:`13193`::\n\n sage: erf(3.0*I)\n 1629.99462260157*I\n sage: erf(33.0*I)\n 1.51286977510409e471*I\n '
R = (parent or s_parent(x))
import mpmath
return mpmath_utils.call(mpmath.erf, x, parent=R)<|docstring|>EXAMPLES::
sage: erf(2).n()
0.995322265018953
sage: erf(2).n(200)
0.99532226501895273416206925636725292861089179704006007673835
sage: erf(pi - 1/2*I).n(100)
1.0000111669099367825726058952 + 1.6332655417638522934072124547e-6*I
TESTS:
Check that PARI/GP through the GP interface gives the same answer::
sage: gp.set_real_precision(59) # random
38
sage: print gp.eval("1 - erfc(1)"); print erf(1).n(200);
0.84270079294971486934122063508260925929606699796630290845994
0.84270079294971486934122063508260925929606699796630290845994
Check that for an imaginary input, the output is also imaginary, see
:trac:`13193`::
sage: erf(3.0*I)
1629.99462260157*I
sage: erf(33.0*I)
1.51286977510409e471*I<|endoftext|>
|
6fc6dd7722fc5524f791b73a2fdd57de22bc200ad3c800129b28fdc6ea15b693
|
def _derivative_(self, x, diff_param=None):
"\n Derivative of erf function\n\n EXAMPLES::\n\n sage: erf(x).diff(x)\n 2*e^(-x^2)/sqrt(pi)\n\n TESTS:\n\n Check if #8568 is fixed::\n\n sage: var('c,x')\n (c, x)\n sage: derivative(erf(c*x),x)\n 2*c*e^(-c^2*x^2)/sqrt(pi)\n sage: erf(c*x).diff(x)._maxima_init_()\n '((%pi)^(-1/2))*(_SAGE_VAR_c)*(exp(((_SAGE_VAR_c)^(2))*((_SAGE_VAR_x)^(2))*(-1)))*(2)'\n "
return ((2 * exp((- (x ** 2)))) / sqrt(pi))
|
Derivative of erf function
EXAMPLES::
sage: erf(x).diff(x)
2*e^(-x^2)/sqrt(pi)
TESTS:
Check if #8568 is fixed::
sage: var('c,x')
(c, x)
sage: derivative(erf(c*x),x)
2*c*e^(-c^2*x^2)/sqrt(pi)
sage: erf(c*x).diff(x)._maxima_init_()
'((%pi)^(-1/2))*(_SAGE_VAR_c)*(exp(((_SAGE_VAR_c)^(2))*((_SAGE_VAR_x)^(2))*(-1)))*(2)'
|
src/sage/functions/other.py
|
_derivative_
|
drvinceknight/sage
| 2 |
python
|
def _derivative_(self, x, diff_param=None):
"\n Derivative of erf function\n\n EXAMPLES::\n\n sage: erf(x).diff(x)\n 2*e^(-x^2)/sqrt(pi)\n\n TESTS:\n\n Check if #8568 is fixed::\n\n sage: var('c,x')\n (c, x)\n sage: derivative(erf(c*x),x)\n 2*c*e^(-c^2*x^2)/sqrt(pi)\n sage: erf(c*x).diff(x)._maxima_init_()\n '((%pi)^(-1/2))*(_SAGE_VAR_c)*(exp(((_SAGE_VAR_c)^(2))*((_SAGE_VAR_x)^(2))*(-1)))*(2)'\n "
return ((2 * exp((- (x ** 2)))) / sqrt(pi))
|
def _derivative_(self, x, diff_param=None):
"\n Derivative of erf function\n\n EXAMPLES::\n\n sage: erf(x).diff(x)\n 2*e^(-x^2)/sqrt(pi)\n\n TESTS:\n\n Check if #8568 is fixed::\n\n sage: var('c,x')\n (c, x)\n sage: derivative(erf(c*x),x)\n 2*c*e^(-c^2*x^2)/sqrt(pi)\n sage: erf(c*x).diff(x)._maxima_init_()\n '((%pi)^(-1/2))*(_SAGE_VAR_c)*(exp(((_SAGE_VAR_c)^(2))*((_SAGE_VAR_x)^(2))*(-1)))*(2)'\n "
return ((2 * exp((- (x ** 2)))) / sqrt(pi))<|docstring|>Derivative of erf function
EXAMPLES::
sage: erf(x).diff(x)
2*e^(-x^2)/sqrt(pi)
TESTS:
Check if #8568 is fixed::
sage: var('c,x')
(c, x)
sage: derivative(erf(c*x),x)
2*c*e^(-c^2*x^2)/sqrt(pi)
sage: erf(c*x).diff(x)._maxima_init_()
'((%pi)^(-1/2))*(_SAGE_VAR_c)*(exp(((_SAGE_VAR_c)^(2))*((_SAGE_VAR_x)^(2))*(-1)))*(2)'<|endoftext|>
|
d8f850471ac1e73f2865034ca15bd9d58b7eccb3e7d2b57f904a40c53c443e06
|
def __init__(self):
"\n The absolute value function.\n\n EXAMPLES::\n\n sage: var('x y')\n (x, y)\n sage: abs(x)\n abs(x)\n sage: abs(x^2 + y^2)\n abs(x^2 + y^2)\n sage: abs(-2)\n 2\n sage: sqrt(x^2)\n sqrt(x^2)\n sage: abs(sqrt(x))\n abs(sqrt(x))\n sage: complex(abs(3*I))\n (3+0j)\n\n sage: f = sage.functions.other.Function_abs()\n sage: latex(f)\n \\mathrm{abs}\n sage: latex(abs(x))\n {\\left| x \\right|}\n\n Test pickling::\n\n sage: loads(dumps(abs(x)))\n abs(x)\n "
GinacFunction.__init__(self, 'abs', latex_name='\\mathrm{abs}')
|
The absolute value function.
EXAMPLES::
sage: var('x y')
(x, y)
sage: abs(x)
abs(x)
sage: abs(x^2 + y^2)
abs(x^2 + y^2)
sage: abs(-2)
2
sage: sqrt(x^2)
sqrt(x^2)
sage: abs(sqrt(x))
abs(sqrt(x))
sage: complex(abs(3*I))
(3+0j)
sage: f = sage.functions.other.Function_abs()
sage: latex(f)
\mathrm{abs}
sage: latex(abs(x))
{\left| x \right|}
Test pickling::
sage: loads(dumps(abs(x)))
abs(x)
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n The absolute value function.\n\n EXAMPLES::\n\n sage: var('x y')\n (x, y)\n sage: abs(x)\n abs(x)\n sage: abs(x^2 + y^2)\n abs(x^2 + y^2)\n sage: abs(-2)\n 2\n sage: sqrt(x^2)\n sqrt(x^2)\n sage: abs(sqrt(x))\n abs(sqrt(x))\n sage: complex(abs(3*I))\n (3+0j)\n\n sage: f = sage.functions.other.Function_abs()\n sage: latex(f)\n \\mathrm{abs}\n sage: latex(abs(x))\n {\\left| x \\right|}\n\n Test pickling::\n\n sage: loads(dumps(abs(x)))\n abs(x)\n "
GinacFunction.__init__(self, 'abs', latex_name='\\mathrm{abs}')
|
def __init__(self):
"\n The absolute value function.\n\n EXAMPLES::\n\n sage: var('x y')\n (x, y)\n sage: abs(x)\n abs(x)\n sage: abs(x^2 + y^2)\n abs(x^2 + y^2)\n sage: abs(-2)\n 2\n sage: sqrt(x^2)\n sqrt(x^2)\n sage: abs(sqrt(x))\n abs(sqrt(x))\n sage: complex(abs(3*I))\n (3+0j)\n\n sage: f = sage.functions.other.Function_abs()\n sage: latex(f)\n \\mathrm{abs}\n sage: latex(abs(x))\n {\\left| x \\right|}\n\n Test pickling::\n\n sage: loads(dumps(abs(x)))\n abs(x)\n "
GinacFunction.__init__(self, 'abs', latex_name='\\mathrm{abs}')<|docstring|>The absolute value function.
EXAMPLES::
sage: var('x y')
(x, y)
sage: abs(x)
abs(x)
sage: abs(x^2 + y^2)
abs(x^2 + y^2)
sage: abs(-2)
2
sage: sqrt(x^2)
sqrt(x^2)
sage: abs(sqrt(x))
abs(sqrt(x))
sage: complex(abs(3*I))
(3+0j)
sage: f = sage.functions.other.Function_abs()
sage: latex(f)
\mathrm{abs}
sage: latex(abs(x))
{\left| x \right|}
Test pickling::
sage: loads(dumps(abs(x)))
abs(x)<|endoftext|>
|
6bb1b05284d68936f38ad09799bf52acfc39115eb90466d9c74b20753e91bff5
|
def __init__(self):
"\n The ceiling function.\n\n The ceiling of `x` is computed in the following manner.\n\n\n #. The ``x.ceil()`` method is called and returned if it\n is there. If it is not, then Sage checks if `x` is one of\n Python's native numeric data types. If so, then it calls and\n returns ``Integer(int(math.ceil(x)))``.\n\n #. Sage tries to convert `x` into a\n ``RealIntervalField`` with 53 bits of precision. Next,\n the ceilings of the endpoints are computed. If they are the same,\n then that value is returned. Otherwise, the precision of the\n ``RealIntervalField`` is increased until they do match\n up or it reaches ``maximum_bits`` of precision.\n\n #. If none of the above work, Sage returns a\n ``Expression`` object.\n\n\n EXAMPLES::\n\n sage: a = ceil(2/5 + x)\n sage: a\n ceil(x + 2/5)\n sage: a(x=4)\n 5\n sage: a(x=4.0)\n 5\n sage: ZZ(a(x=3))\n 4\n sage: a = ceil(x^3 + x + 5/2); a\n ceil(x^3 + x + 5/2)\n sage: a.simplify()\n ceil(x^3 + x + 1/2) + 2\n sage: a(x=2)\n 13\n\n ::\n\n sage: ceil(sin(8)/sin(2))\n 2\n\n ::\n\n sage: ceil(5.4)\n 6\n sage: type(ceil(5.4))\n <type 'sage.rings.integer.Integer'>\n\n ::\n\n sage: ceil(factorial(50)/exp(1))\n 11188719610782480504630258070757734324011354208865721592720336801\n sage: ceil(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000001\n sage: ceil(SR(10^50 - 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n\n sage: ceil(sec(e))\n -1\n\n sage: latex(ceil(x))\n \\left \\lceil x \\right \\rceil\n\n ::\n\n sage: import numpy\n sage: a = numpy.linspace(0,2,6)\n sage: ceil(a)\n array([ 0., 1., 1., 2., 2., 2.])\n\n Test pickling::\n\n sage: loads(dumps(ceil))\n ceil\n "
BuiltinFunction.__init__(self, 'ceil', conversions=dict(maxima='ceiling'))
|
The ceiling function.
The ceiling of `x` is computed in the following manner.
#. The ``x.ceil()`` method is called and returned if it
is there. If it is not, then Sage checks if `x` is one of
Python's native numeric data types. If so, then it calls and
returns ``Integer(int(math.ceil(x)))``.
#. Sage tries to convert `x` into a
``RealIntervalField`` with 53 bits of precision. Next,
the ceilings of the endpoints are computed. If they are the same,
then that value is returned. Otherwise, the precision of the
``RealIntervalField`` is increased until they do match
up or it reaches ``maximum_bits`` of precision.
#. If none of the above work, Sage returns a
``Expression`` object.
EXAMPLES::
sage: a = ceil(2/5 + x)
sage: a
ceil(x + 2/5)
sage: a(x=4)
5
sage: a(x=4.0)
5
sage: ZZ(a(x=3))
4
sage: a = ceil(x^3 + x + 5/2); a
ceil(x^3 + x + 5/2)
sage: a.simplify()
ceil(x^3 + x + 1/2) + 2
sage: a(x=2)
13
::
sage: ceil(sin(8)/sin(2))
2
::
sage: ceil(5.4)
6
sage: type(ceil(5.4))
<type 'sage.rings.integer.Integer'>
::
sage: ceil(factorial(50)/exp(1))
11188719610782480504630258070757734324011354208865721592720336801
sage: ceil(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000001
sage: ceil(SR(10^50 - 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: ceil(sec(e))
-1
sage: latex(ceil(x))
\left \lceil x \right \rceil
::
sage: import numpy
sage: a = numpy.linspace(0,2,6)
sage: ceil(a)
array([ 0., 1., 1., 2., 2., 2.])
Test pickling::
sage: loads(dumps(ceil))
ceil
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n The ceiling function.\n\n The ceiling of `x` is computed in the following manner.\n\n\n #. The ``x.ceil()`` method is called and returned if it\n is there. If it is not, then Sage checks if `x` is one of\n Python's native numeric data types. If so, then it calls and\n returns ``Integer(int(math.ceil(x)))``.\n\n #. Sage tries to convert `x` into a\n ``RealIntervalField`` with 53 bits of precision. Next,\n the ceilings of the endpoints are computed. If they are the same,\n then that value is returned. Otherwise, the precision of the\n ``RealIntervalField`` is increased until they do match\n up or it reaches ``maximum_bits`` of precision.\n\n #. If none of the above work, Sage returns a\n ``Expression`` object.\n\n\n EXAMPLES::\n\n sage: a = ceil(2/5 + x)\n sage: a\n ceil(x + 2/5)\n sage: a(x=4)\n 5\n sage: a(x=4.0)\n 5\n sage: ZZ(a(x=3))\n 4\n sage: a = ceil(x^3 + x + 5/2); a\n ceil(x^3 + x + 5/2)\n sage: a.simplify()\n ceil(x^3 + x + 1/2) + 2\n sage: a(x=2)\n 13\n\n ::\n\n sage: ceil(sin(8)/sin(2))\n 2\n\n ::\n\n sage: ceil(5.4)\n 6\n sage: type(ceil(5.4))\n <type 'sage.rings.integer.Integer'>\n\n ::\n\n sage: ceil(factorial(50)/exp(1))\n 11188719610782480504630258070757734324011354208865721592720336801\n sage: ceil(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000001\n sage: ceil(SR(10^50 - 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n\n sage: ceil(sec(e))\n -1\n\n sage: latex(ceil(x))\n \\left \\lceil x \\right \\rceil\n\n ::\n\n sage: import numpy\n sage: a = numpy.linspace(0,2,6)\n sage: ceil(a)\n array([ 0., 1., 1., 2., 2., 2.])\n\n Test pickling::\n\n sage: loads(dumps(ceil))\n ceil\n "
BuiltinFunction.__init__(self, 'ceil', conversions=dict(maxima='ceiling'))
|
def __init__(self):
"\n The ceiling function.\n\n The ceiling of `x` is computed in the following manner.\n\n\n #. The ``x.ceil()`` method is called and returned if it\n is there. If it is not, then Sage checks if `x` is one of\n Python's native numeric data types. If so, then it calls and\n returns ``Integer(int(math.ceil(x)))``.\n\n #. Sage tries to convert `x` into a\n ``RealIntervalField`` with 53 bits of precision. Next,\n the ceilings of the endpoints are computed. If they are the same,\n then that value is returned. Otherwise, the precision of the\n ``RealIntervalField`` is increased until they do match\n up or it reaches ``maximum_bits`` of precision.\n\n #. If none of the above work, Sage returns a\n ``Expression`` object.\n\n\n EXAMPLES::\n\n sage: a = ceil(2/5 + x)\n sage: a\n ceil(x + 2/5)\n sage: a(x=4)\n 5\n sage: a(x=4.0)\n 5\n sage: ZZ(a(x=3))\n 4\n sage: a = ceil(x^3 + x + 5/2); a\n ceil(x^3 + x + 5/2)\n sage: a.simplify()\n ceil(x^3 + x + 1/2) + 2\n sage: a(x=2)\n 13\n\n ::\n\n sage: ceil(sin(8)/sin(2))\n 2\n\n ::\n\n sage: ceil(5.4)\n 6\n sage: type(ceil(5.4))\n <type 'sage.rings.integer.Integer'>\n\n ::\n\n sage: ceil(factorial(50)/exp(1))\n 11188719610782480504630258070757734324011354208865721592720336801\n sage: ceil(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000001\n sage: ceil(SR(10^50 - 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n\n sage: ceil(sec(e))\n -1\n\n sage: latex(ceil(x))\n \\left \\lceil x \\right \\rceil\n\n ::\n\n sage: import numpy\n sage: a = numpy.linspace(0,2,6)\n sage: ceil(a)\n array([ 0., 1., 1., 2., 2., 2.])\n\n Test pickling::\n\n sage: loads(dumps(ceil))\n ceil\n "
BuiltinFunction.__init__(self, 'ceil', conversions=dict(maxima='ceiling'))<|docstring|>The ceiling function.
The ceiling of `x` is computed in the following manner.
#. The ``x.ceil()`` method is called and returned if it
is there. If it is not, then Sage checks if `x` is one of
Python's native numeric data types. If so, then it calls and
returns ``Integer(int(math.ceil(x)))``.
#. Sage tries to convert `x` into a
``RealIntervalField`` with 53 bits of precision. Next,
the ceilings of the endpoints are computed. If they are the same,
then that value is returned. Otherwise, the precision of the
``RealIntervalField`` is increased until they do match
up or it reaches ``maximum_bits`` of precision.
#. If none of the above work, Sage returns a
``Expression`` object.
EXAMPLES::
sage: a = ceil(2/5 + x)
sage: a
ceil(x + 2/5)
sage: a(x=4)
5
sage: a(x=4.0)
5
sage: ZZ(a(x=3))
4
sage: a = ceil(x^3 + x + 5/2); a
ceil(x^3 + x + 5/2)
sage: a.simplify()
ceil(x^3 + x + 1/2) + 2
sage: a(x=2)
13
::
sage: ceil(sin(8)/sin(2))
2
::
sage: ceil(5.4)
6
sage: type(ceil(5.4))
<type 'sage.rings.integer.Integer'>
::
sage: ceil(factorial(50)/exp(1))
11188719610782480504630258070757734324011354208865721592720336801
sage: ceil(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000001
sage: ceil(SR(10^50 - 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: ceil(sec(e))
-1
sage: latex(ceil(x))
\left \lceil x \right \rceil
::
sage: import numpy
sage: a = numpy.linspace(0,2,6)
sage: ceil(a)
array([ 0., 1., 1., 2., 2., 2.])
Test pickling::
sage: loads(dumps(ceil))
ceil<|endoftext|>
|
fab0fc461a37117548214fd6dc210d39412d289d9bea23cb075c3173bb6fc3e9
|
def _print_latex_(self, x):
'\n EXAMPLES::\n\n sage: latex(ceil(x)) # indirect doctest\n \\left \\lceil x \\right \\rceil\n '
return ('\\left \\lceil %s \\right \\rceil' % latex(x))
|
EXAMPLES::
sage: latex(ceil(x)) # indirect doctest
\left \lceil x \right \rceil
|
src/sage/functions/other.py
|
_print_latex_
|
drvinceknight/sage
| 2 |
python
|
def _print_latex_(self, x):
'\n EXAMPLES::\n\n sage: latex(ceil(x)) # indirect doctest\n \\left \\lceil x \\right \\rceil\n '
return ('\\left \\lceil %s \\right \\rceil' % latex(x))
|
def _print_latex_(self, x):
'\n EXAMPLES::\n\n sage: latex(ceil(x)) # indirect doctest\n \\left \\lceil x \\right \\rceil\n '
return ('\\left \\lceil %s \\right \\rceil' % latex(x))<|docstring|>EXAMPLES::
sage: latex(ceil(x)) # indirect doctest
\left \lceil x \right \rceil<|endoftext|>
|
3eed97377320e40a5957bcac09575544b40168e263cbe23fe384c29ca8bf2238
|
def __call__(self, x, maximum_bits=20000):
'\n Allows an object of this class to behave like a function. If\n ``ceil`` is an instance of this class, we can do ``ceil(n)`` to get\n the ceiling of ``n``.\n\n TESTS::\n\n sage: ceil(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000001\n sage: ceil(SR(10^50 - 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: ceil(int(10^50))\n 100000000000000000000000000000000000000000000000000\n '
try:
return x.ceil()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.ceil(x)))
elif (type(x).__module__ == 'numpy'):
import numpy
return numpy.ceil(x)
x_original = x
from sage.rings.all import RealIntervalField
bits = 53
try:
x_interval = RealIntervalField(bits)(x)
upper_ceil = x_interval.upper().ceil()
lower_ceil = x_interval.lower().ceil()
while ((upper_ceil != lower_ceil) and (bits < maximum_bits)):
bits += 100
x_interval = RealIntervalField(bits)(x)
upper_ceil = x_interval.upper().ceil()
lower_ceil = x_interval.lower().ceil()
if (bits < maximum_bits):
return lower_ceil
else:
try:
return ceil(SR(x).full_simplify().simplify_radical())
except ValueError:
pass
raise ValueError(('x (= %s) requires more than %s bits of precision to compute its ceiling' % (x, maximum_bits)))
except TypeError:
return BuiltinFunction.__call__(self, SR(x_original))
|
Allows an object of this class to behave like a function. If
``ceil`` is an instance of this class, we can do ``ceil(n)`` to get
the ceiling of ``n``.
TESTS::
sage: ceil(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000001
sage: ceil(SR(10^50 - 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: ceil(int(10^50))
100000000000000000000000000000000000000000000000000
|
src/sage/functions/other.py
|
__call__
|
drvinceknight/sage
| 2 |
python
|
def __call__(self, x, maximum_bits=20000):
'\n Allows an object of this class to behave like a function. If\n ``ceil`` is an instance of this class, we can do ``ceil(n)`` to get\n the ceiling of ``n``.\n\n TESTS::\n\n sage: ceil(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000001\n sage: ceil(SR(10^50 - 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: ceil(int(10^50))\n 100000000000000000000000000000000000000000000000000\n '
try:
return x.ceil()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.ceil(x)))
elif (type(x).__module__ == 'numpy'):
import numpy
return numpy.ceil(x)
x_original = x
from sage.rings.all import RealIntervalField
bits = 53
try:
x_interval = RealIntervalField(bits)(x)
upper_ceil = x_interval.upper().ceil()
lower_ceil = x_interval.lower().ceil()
while ((upper_ceil != lower_ceil) and (bits < maximum_bits)):
bits += 100
x_interval = RealIntervalField(bits)(x)
upper_ceil = x_interval.upper().ceil()
lower_ceil = x_interval.lower().ceil()
if (bits < maximum_bits):
return lower_ceil
else:
try:
return ceil(SR(x).full_simplify().simplify_radical())
except ValueError:
pass
raise ValueError(('x (= %s) requires more than %s bits of precision to compute its ceiling' % (x, maximum_bits)))
except TypeError:
return BuiltinFunction.__call__(self, SR(x_original))
|
def __call__(self, x, maximum_bits=20000):
'\n Allows an object of this class to behave like a function. If\n ``ceil`` is an instance of this class, we can do ``ceil(n)`` to get\n the ceiling of ``n``.\n\n TESTS::\n\n sage: ceil(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000001\n sage: ceil(SR(10^50 - 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: ceil(int(10^50))\n 100000000000000000000000000000000000000000000000000\n '
try:
return x.ceil()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.ceil(x)))
elif (type(x).__module__ == 'numpy'):
import numpy
return numpy.ceil(x)
x_original = x
from sage.rings.all import RealIntervalField
bits = 53
try:
x_interval = RealIntervalField(bits)(x)
upper_ceil = x_interval.upper().ceil()
lower_ceil = x_interval.lower().ceil()
while ((upper_ceil != lower_ceil) and (bits < maximum_bits)):
bits += 100
x_interval = RealIntervalField(bits)(x)
upper_ceil = x_interval.upper().ceil()
lower_ceil = x_interval.lower().ceil()
if (bits < maximum_bits):
return lower_ceil
else:
try:
return ceil(SR(x).full_simplify().simplify_radical())
except ValueError:
pass
raise ValueError(('x (= %s) requires more than %s bits of precision to compute its ceiling' % (x, maximum_bits)))
except TypeError:
return BuiltinFunction.__call__(self, SR(x_original))<|docstring|>Allows an object of this class to behave like a function. If
``ceil`` is an instance of this class, we can do ``ceil(n)`` to get
the ceiling of ``n``.
TESTS::
sage: ceil(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000001
sage: ceil(SR(10^50 - 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: ceil(int(10^50))
100000000000000000000000000000000000000000000000000<|endoftext|>
|
0213689006d5d4cb149213824eb84bd473448e27d638ca3cb63049ea0e196d1a
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: ceil(x).subs(x==7.5)\n 8\n sage: ceil(x)\n ceil(x)\n '
try:
return x.ceil()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.ceil(x)))
return None
|
EXAMPLES::
sage: ceil(x).subs(x==7.5)
8
sage: ceil(x)
ceil(x)
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: ceil(x).subs(x==7.5)\n 8\n sage: ceil(x)\n ceil(x)\n '
try:
return x.ceil()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.ceil(x)))
return None
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: ceil(x).subs(x==7.5)\n 8\n sage: ceil(x)\n ceil(x)\n '
try:
return x.ceil()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.ceil(x)))
return None<|docstring|>EXAMPLES::
sage: ceil(x).subs(x==7.5)
8
sage: ceil(x)
ceil(x)<|endoftext|>
|
8adefc2b2b29b2552d2d886104bc74aaab4f8e2d9c6e7a46bb328ea3f4811380
|
def __init__(self):
"\n The floor function.\n\n The floor of `x` is computed in the following manner.\n\n\n #. The ``x.floor()`` method is called and returned if\n it is there. If it is not, then Sage checks if `x` is one\n of Python's native numeric data types. If so, then it calls and\n returns ``Integer(int(math.floor(x)))``.\n\n #. Sage tries to convert `x` into a\n ``RealIntervalField`` with 53 bits of precision. Next,\n the floors of the endpoints are computed. If they are the same,\n then that value is returned. Otherwise, the precision of the\n ``RealIntervalField`` is increased until they do match\n up or it reaches ``maximum_bits`` of precision.\n\n #. If none of the above work, Sage returns a\n symbolic ``Expression`` object.\n\n\n EXAMPLES::\n\n sage: floor(5.4)\n 5\n sage: type(floor(5.4))\n <type 'sage.rings.integer.Integer'>\n sage: var('x')\n x\n sage: a = floor(5.4 + x); a\n floor(x + 5.40000000000000)\n sage: a.simplify()\n floor(x + 0.4) + 5\n sage: a(x=2)\n 7\n\n ::\n\n sage: floor(cos(8)/cos(2))\n 0\n\n ::\n\n sage: floor(factorial(50)/exp(1))\n 11188719610782480504630258070757734324011354208865721592720336800\n sage: floor(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: floor(SR(10^50 - 10^(-50)))\n 99999999999999999999999999999999999999999999999999\n sage: floor(int(10^50))\n 100000000000000000000000000000000000000000000000000\n\n ::\n\n sage: import numpy\n sage: a = numpy.linspace(0,2,6)\n sage: floor(a)\n array([ 0., 0., 0., 1., 1., 2.])\n\n Test pickling::\n\n sage: loads(dumps(floor))\n floor\n "
BuiltinFunction.__init__(self, 'floor')
|
The floor function.
The floor of `x` is computed in the following manner.
#. The ``x.floor()`` method is called and returned if
it is there. If it is not, then Sage checks if `x` is one
of Python's native numeric data types. If so, then it calls and
returns ``Integer(int(math.floor(x)))``.
#. Sage tries to convert `x` into a
``RealIntervalField`` with 53 bits of precision. Next,
the floors of the endpoints are computed. If they are the same,
then that value is returned. Otherwise, the precision of the
``RealIntervalField`` is increased until they do match
up or it reaches ``maximum_bits`` of precision.
#. If none of the above work, Sage returns a
symbolic ``Expression`` object.
EXAMPLES::
sage: floor(5.4)
5
sage: type(floor(5.4))
<type 'sage.rings.integer.Integer'>
sage: var('x')
x
sage: a = floor(5.4 + x); a
floor(x + 5.40000000000000)
sage: a.simplify()
floor(x + 0.4) + 5
sage: a(x=2)
7
::
sage: floor(cos(8)/cos(2))
0
::
sage: floor(factorial(50)/exp(1))
11188719610782480504630258070757734324011354208865721592720336800
sage: floor(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: floor(SR(10^50 - 10^(-50)))
99999999999999999999999999999999999999999999999999
sage: floor(int(10^50))
100000000000000000000000000000000000000000000000000
::
sage: import numpy
sage: a = numpy.linspace(0,2,6)
sage: floor(a)
array([ 0., 0., 0., 1., 1., 2.])
Test pickling::
sage: loads(dumps(floor))
floor
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n The floor function.\n\n The floor of `x` is computed in the following manner.\n\n\n #. The ``x.floor()`` method is called and returned if\n it is there. If it is not, then Sage checks if `x` is one\n of Python's native numeric data types. If so, then it calls and\n returns ``Integer(int(math.floor(x)))``.\n\n #. Sage tries to convert `x` into a\n ``RealIntervalField`` with 53 bits of precision. Next,\n the floors of the endpoints are computed. If they are the same,\n then that value is returned. Otherwise, the precision of the\n ``RealIntervalField`` is increased until they do match\n up or it reaches ``maximum_bits`` of precision.\n\n #. If none of the above work, Sage returns a\n symbolic ``Expression`` object.\n\n\n EXAMPLES::\n\n sage: floor(5.4)\n 5\n sage: type(floor(5.4))\n <type 'sage.rings.integer.Integer'>\n sage: var('x')\n x\n sage: a = floor(5.4 + x); a\n floor(x + 5.40000000000000)\n sage: a.simplify()\n floor(x + 0.4) + 5\n sage: a(x=2)\n 7\n\n ::\n\n sage: floor(cos(8)/cos(2))\n 0\n\n ::\n\n sage: floor(factorial(50)/exp(1))\n 11188719610782480504630258070757734324011354208865721592720336800\n sage: floor(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: floor(SR(10^50 - 10^(-50)))\n 99999999999999999999999999999999999999999999999999\n sage: floor(int(10^50))\n 100000000000000000000000000000000000000000000000000\n\n ::\n\n sage: import numpy\n sage: a = numpy.linspace(0,2,6)\n sage: floor(a)\n array([ 0., 0., 0., 1., 1., 2.])\n\n Test pickling::\n\n sage: loads(dumps(floor))\n floor\n "
BuiltinFunction.__init__(self, 'floor')
|
def __init__(self):
"\n The floor function.\n\n The floor of `x` is computed in the following manner.\n\n\n #. The ``x.floor()`` method is called and returned if\n it is there. If it is not, then Sage checks if `x` is one\n of Python's native numeric data types. If so, then it calls and\n returns ``Integer(int(math.floor(x)))``.\n\n #. Sage tries to convert `x` into a\n ``RealIntervalField`` with 53 bits of precision. Next,\n the floors of the endpoints are computed. If they are the same,\n then that value is returned. Otherwise, the precision of the\n ``RealIntervalField`` is increased until they do match\n up or it reaches ``maximum_bits`` of precision.\n\n #. If none of the above work, Sage returns a\n symbolic ``Expression`` object.\n\n\n EXAMPLES::\n\n sage: floor(5.4)\n 5\n sage: type(floor(5.4))\n <type 'sage.rings.integer.Integer'>\n sage: var('x')\n x\n sage: a = floor(5.4 + x); a\n floor(x + 5.40000000000000)\n sage: a.simplify()\n floor(x + 0.4) + 5\n sage: a(x=2)\n 7\n\n ::\n\n sage: floor(cos(8)/cos(2))\n 0\n\n ::\n\n sage: floor(factorial(50)/exp(1))\n 11188719610782480504630258070757734324011354208865721592720336800\n sage: floor(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: floor(SR(10^50 - 10^(-50)))\n 99999999999999999999999999999999999999999999999999\n sage: floor(int(10^50))\n 100000000000000000000000000000000000000000000000000\n\n ::\n\n sage: import numpy\n sage: a = numpy.linspace(0,2,6)\n sage: floor(a)\n array([ 0., 0., 0., 1., 1., 2.])\n\n Test pickling::\n\n sage: loads(dumps(floor))\n floor\n "
BuiltinFunction.__init__(self, 'floor')<|docstring|>The floor function.
The floor of `x` is computed in the following manner.
#. The ``x.floor()`` method is called and returned if
it is there. If it is not, then Sage checks if `x` is one
of Python's native numeric data types. If so, then it calls and
returns ``Integer(int(math.floor(x)))``.
#. Sage tries to convert `x` into a
``RealIntervalField`` with 53 bits of precision. Next,
the floors of the endpoints are computed. If they are the same,
then that value is returned. Otherwise, the precision of the
``RealIntervalField`` is increased until they do match
up or it reaches ``maximum_bits`` of precision.
#. If none of the above work, Sage returns a
symbolic ``Expression`` object.
EXAMPLES::
sage: floor(5.4)
5
sage: type(floor(5.4))
<type 'sage.rings.integer.Integer'>
sage: var('x')
x
sage: a = floor(5.4 + x); a
floor(x + 5.40000000000000)
sage: a.simplify()
floor(x + 0.4) + 5
sage: a(x=2)
7
::
sage: floor(cos(8)/cos(2))
0
::
sage: floor(factorial(50)/exp(1))
11188719610782480504630258070757734324011354208865721592720336800
sage: floor(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: floor(SR(10^50 - 10^(-50)))
99999999999999999999999999999999999999999999999999
sage: floor(int(10^50))
100000000000000000000000000000000000000000000000000
::
sage: import numpy
sage: a = numpy.linspace(0,2,6)
sage: floor(a)
array([ 0., 0., 0., 1., 1., 2.])
Test pickling::
sage: loads(dumps(floor))
floor<|endoftext|>
|
d973fad094f820554b000ab97331b35a995c38f495fb701022ed44063e8db312
|
def _print_latex_(self, x):
'\n EXAMPLES::\n\n sage: latex(floor(x))\n \\left \\lfloor x \\right \\rfloor\n '
return ('\\left \\lfloor %s \\right \\rfloor' % latex(x))
|
EXAMPLES::
sage: latex(floor(x))
\left \lfloor x \right \rfloor
|
src/sage/functions/other.py
|
_print_latex_
|
drvinceknight/sage
| 2 |
python
|
def _print_latex_(self, x):
'\n EXAMPLES::\n\n sage: latex(floor(x))\n \\left \\lfloor x \\right \\rfloor\n '
return ('\\left \\lfloor %s \\right \\rfloor' % latex(x))
|
def _print_latex_(self, x):
'\n EXAMPLES::\n\n sage: latex(floor(x))\n \\left \\lfloor x \\right \\rfloor\n '
return ('\\left \\lfloor %s \\right \\rfloor' % latex(x))<|docstring|>EXAMPLES::
sage: latex(floor(x))
\left \lfloor x \right \rfloor<|endoftext|>
|
0bead0ca8eabb278ed5c7af8c54369df3de9e4c2cdc65a9fa9c27b06eec59d2c
|
def __call__(self, x, maximum_bits=20000):
'\n Allows an object of this class to behave like a function. If\n ``floor`` is an instance of this class, we can do ``floor(n)`` to\n obtain the floor of ``n``.\n\n TESTS::\n\n sage: floor(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: floor(SR(10^50 - 10^(-50)))\n 99999999999999999999999999999999999999999999999999\n sage: floor(int(10^50))\n 100000000000000000000000000000000000000000000000000\n '
try:
return x.floor()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.floor(x)))
elif (type(x).__module__ == 'numpy'):
import numpy
return numpy.floor(x)
x_original = x
from sage.rings.all import RealIntervalField
bits = 53
try:
x_interval = RealIntervalField(bits)(x)
upper_floor = x_interval.upper().floor()
lower_floor = x_interval.lower().floor()
while ((upper_floor != lower_floor) and (bits < maximum_bits)):
bits += 100
x_interval = RealIntervalField(bits)(x)
upper_floor = x_interval.upper().floor()
lower_floor = x_interval.lower().floor()
if (bits < maximum_bits):
return lower_floor
else:
try:
return floor(SR(x).full_simplify().simplify_radical())
except ValueError:
pass
raise ValueError(('x (= %s) requires more than %s bits of precision to compute its floor' % (x, maximum_bits)))
except TypeError:
return BuiltinFunction.__call__(self, SR(x_original))
|
Allows an object of this class to behave like a function. If
``floor`` is an instance of this class, we can do ``floor(n)`` to
obtain the floor of ``n``.
TESTS::
sage: floor(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: floor(SR(10^50 - 10^(-50)))
99999999999999999999999999999999999999999999999999
sage: floor(int(10^50))
100000000000000000000000000000000000000000000000000
|
src/sage/functions/other.py
|
__call__
|
drvinceknight/sage
| 2 |
python
|
def __call__(self, x, maximum_bits=20000):
'\n Allows an object of this class to behave like a function. If\n ``floor`` is an instance of this class, we can do ``floor(n)`` to\n obtain the floor of ``n``.\n\n TESTS::\n\n sage: floor(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: floor(SR(10^50 - 10^(-50)))\n 99999999999999999999999999999999999999999999999999\n sage: floor(int(10^50))\n 100000000000000000000000000000000000000000000000000\n '
try:
return x.floor()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.floor(x)))
elif (type(x).__module__ == 'numpy'):
import numpy
return numpy.floor(x)
x_original = x
from sage.rings.all import RealIntervalField
bits = 53
try:
x_interval = RealIntervalField(bits)(x)
upper_floor = x_interval.upper().floor()
lower_floor = x_interval.lower().floor()
while ((upper_floor != lower_floor) and (bits < maximum_bits)):
bits += 100
x_interval = RealIntervalField(bits)(x)
upper_floor = x_interval.upper().floor()
lower_floor = x_interval.lower().floor()
if (bits < maximum_bits):
return lower_floor
else:
try:
return floor(SR(x).full_simplify().simplify_radical())
except ValueError:
pass
raise ValueError(('x (= %s) requires more than %s bits of precision to compute its floor' % (x, maximum_bits)))
except TypeError:
return BuiltinFunction.__call__(self, SR(x_original))
|
def __call__(self, x, maximum_bits=20000):
'\n Allows an object of this class to behave like a function. If\n ``floor`` is an instance of this class, we can do ``floor(n)`` to\n obtain the floor of ``n``.\n\n TESTS::\n\n sage: floor(SR(10^50 + 10^(-50)))\n 100000000000000000000000000000000000000000000000000\n sage: floor(SR(10^50 - 10^(-50)))\n 99999999999999999999999999999999999999999999999999\n sage: floor(int(10^50))\n 100000000000000000000000000000000000000000000000000\n '
try:
return x.floor()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.floor(x)))
elif (type(x).__module__ == 'numpy'):
import numpy
return numpy.floor(x)
x_original = x
from sage.rings.all import RealIntervalField
bits = 53
try:
x_interval = RealIntervalField(bits)(x)
upper_floor = x_interval.upper().floor()
lower_floor = x_interval.lower().floor()
while ((upper_floor != lower_floor) and (bits < maximum_bits)):
bits += 100
x_interval = RealIntervalField(bits)(x)
upper_floor = x_interval.upper().floor()
lower_floor = x_interval.lower().floor()
if (bits < maximum_bits):
return lower_floor
else:
try:
return floor(SR(x).full_simplify().simplify_radical())
except ValueError:
pass
raise ValueError(('x (= %s) requires more than %s bits of precision to compute its floor' % (x, maximum_bits)))
except TypeError:
return BuiltinFunction.__call__(self, SR(x_original))<|docstring|>Allows an object of this class to behave like a function. If
``floor`` is an instance of this class, we can do ``floor(n)`` to
obtain the floor of ``n``.
TESTS::
sage: floor(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000000
sage: floor(SR(10^50 - 10^(-50)))
99999999999999999999999999999999999999999999999999
sage: floor(int(10^50))
100000000000000000000000000000000000000000000000000<|endoftext|>
|
9ad90d1932ac45ec4493225ec8d9cc10ad907e9fc37b638b73913197137ac094
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: floor(x).subs(x==7.5)\n 7\n sage: floor(x)\n floor(x)\n '
try:
return x.floor()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.floor(x)))
return None
|
EXAMPLES::
sage: floor(x).subs(x==7.5)
7
sage: floor(x)
floor(x)
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: floor(x).subs(x==7.5)\n 7\n sage: floor(x)\n floor(x)\n '
try:
return x.floor()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.floor(x)))
return None
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: floor(x).subs(x==7.5)\n 7\n sage: floor(x)\n floor(x)\n '
try:
return x.floor()
except AttributeError:
if isinstance(x, (int, long)):
return Integer(x)
elif isinstance(x, (float, complex)):
return Integer(int(math.floor(x)))
return None<|docstring|>EXAMPLES::
sage: floor(x).subs(x==7.5)
7
sage: floor(x)
floor(x)<|endoftext|>
|
8d6ad702090f61f87ff8cd6734c19baebbc46b8be69d2d1e541b2e523adf8d47
|
def __init__(self):
"\n The Gamma function. This is defined by\n\n .. math::\n\n \\Gamma(z) = \\int_0^\\infty t^{z-1}e^{-t} dt\n\n for complex input `z` with real part greater than zero, and by\n analytic continuation on the rest of the complex plane (except\n for negative integers, which are poles).\n\n It is computed by various libraries within Sage, depending on\n the input type.\n\n EXAMPLES::\n\n sage: from sage.functions.other import gamma1\n sage: gamma1(CDF(0.5,14))\n -4.05370307804e-10 - 5.77329983455e-10*I\n sage: gamma1(CDF(I))\n -0.154949828302 - 0.498015668118*I\n\n Recall that `\\Gamma(n)` is `n-1` factorial::\n\n sage: gamma1(11) == factorial(10)\n True\n sage: gamma1(6)\n 120\n sage: gamma1(1/2)\n sqrt(pi)\n sage: gamma1(-1)\n Infinity\n sage: gamma1(I)\n gamma(I)\n sage: gamma1(x/2)(x=5)\n 3/4*sqrt(pi)\n\n sage: gamma1(float(6)) # For ARM: rel tol 3e-16\n 120.0\n sage: gamma1(x)\n gamma(x)\n\n ::\n\n sage: gamma1(pi)\n gamma(pi)\n sage: gamma1(i)\n gamma(I)\n sage: gamma1(i).n()\n -0.154949828301811 - 0.498015668118356*I\n sage: gamma1(int(5))\n 24\n\n ::\n\n sage: conjugate(gamma(x))\n gamma(conjugate(x))\n\n ::\n\n sage: plot(gamma1(x),(x,1,5))\n\n To prevent automatic evaluation use the ``hold`` argument::\n\n sage: gamma1(1/2,hold=True)\n gamma(1/2)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: gamma1(1/2,hold=True).simplify()\n sqrt(pi)\n\n TESTS:\n\n We verify that we can convert this function to Maxima and\n convert back to Sage::\n\n sage: z = var('z')\n sage: maxima(gamma1(z)).sage()\n gamma(z)\n sage: latex(gamma1(z))\n \\Gamma\\left(z\\right)\n\n Test that Trac ticket 5556 is fixed::\n\n sage: gamma1(3/4)\n gamma(3/4)\n\n sage: gamma1(3/4).n(100)\n 1.2254167024651776451290983034\n\n Check that negative integer input works::\n\n sage: (-1).gamma()\n Infinity\n sage: (-1.).gamma()\n NaN\n sage: CC(-1).gamma()\n Infinity\n sage: RDF(-1).gamma()\n NaN\n sage: CDF(-1).gamma()\n Infinity\n\n Check if #8297 is fixed::\n\n sage: latex(gamma(1/4))\n \\Gamma\\left(\\frac{1}{4}\\right)\n\n Test pickling::\n\n sage: loads(dumps(gamma(x)))\n gamma(x)\n "
GinacFunction.__init__(self, 'gamma', latex_name='\\Gamma', ginac_name='tgamma', conversions={'mathematica': 'Gamma', 'maple': 'GAMMA'})
|
The Gamma function. This is defined by
.. math::
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t} dt
for complex input `z` with real part greater than zero, and by
analytic continuation on the rest of the complex plane (except
for negative integers, which are poles).
It is computed by various libraries within Sage, depending on
the input type.
EXAMPLES::
sage: from sage.functions.other import gamma1
sage: gamma1(CDF(0.5,14))
-4.05370307804e-10 - 5.77329983455e-10*I
sage: gamma1(CDF(I))
-0.154949828302 - 0.498015668118*I
Recall that `\Gamma(n)` is `n-1` factorial::
sage: gamma1(11) == factorial(10)
True
sage: gamma1(6)
120
sage: gamma1(1/2)
sqrt(pi)
sage: gamma1(-1)
Infinity
sage: gamma1(I)
gamma(I)
sage: gamma1(x/2)(x=5)
3/4*sqrt(pi)
sage: gamma1(float(6)) # For ARM: rel tol 3e-16
120.0
sage: gamma1(x)
gamma(x)
::
sage: gamma1(pi)
gamma(pi)
sage: gamma1(i)
gamma(I)
sage: gamma1(i).n()
-0.154949828301811 - 0.498015668118356*I
sage: gamma1(int(5))
24
::
sage: conjugate(gamma(x))
gamma(conjugate(x))
::
sage: plot(gamma1(x),(x,1,5))
To prevent automatic evaluation use the ``hold`` argument::
sage: gamma1(1/2,hold=True)
gamma(1/2)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: gamma1(1/2,hold=True).simplify()
sqrt(pi)
TESTS:
We verify that we can convert this function to Maxima and
convert back to Sage::
sage: z = var('z')
sage: maxima(gamma1(z)).sage()
gamma(z)
sage: latex(gamma1(z))
\Gamma\left(z\right)
Test that Trac ticket 5556 is fixed::
sage: gamma1(3/4)
gamma(3/4)
sage: gamma1(3/4).n(100)
1.2254167024651776451290983034
Check that negative integer input works::
sage: (-1).gamma()
Infinity
sage: (-1.).gamma()
NaN
sage: CC(-1).gamma()
Infinity
sage: RDF(-1).gamma()
NaN
sage: CDF(-1).gamma()
Infinity
Check if #8297 is fixed::
sage: latex(gamma(1/4))
\Gamma\left(\frac{1}{4}\right)
Test pickling::
sage: loads(dumps(gamma(x)))
gamma(x)
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n The Gamma function. This is defined by\n\n .. math::\n\n \\Gamma(z) = \\int_0^\\infty t^{z-1}e^{-t} dt\n\n for complex input `z` with real part greater than zero, and by\n analytic continuation on the rest of the complex plane (except\n for negative integers, which are poles).\n\n It is computed by various libraries within Sage, depending on\n the input type.\n\n EXAMPLES::\n\n sage: from sage.functions.other import gamma1\n sage: gamma1(CDF(0.5,14))\n -4.05370307804e-10 - 5.77329983455e-10*I\n sage: gamma1(CDF(I))\n -0.154949828302 - 0.498015668118*I\n\n Recall that `\\Gamma(n)` is `n-1` factorial::\n\n sage: gamma1(11) == factorial(10)\n True\n sage: gamma1(6)\n 120\n sage: gamma1(1/2)\n sqrt(pi)\n sage: gamma1(-1)\n Infinity\n sage: gamma1(I)\n gamma(I)\n sage: gamma1(x/2)(x=5)\n 3/4*sqrt(pi)\n\n sage: gamma1(float(6)) # For ARM: rel tol 3e-16\n 120.0\n sage: gamma1(x)\n gamma(x)\n\n ::\n\n sage: gamma1(pi)\n gamma(pi)\n sage: gamma1(i)\n gamma(I)\n sage: gamma1(i).n()\n -0.154949828301811 - 0.498015668118356*I\n sage: gamma1(int(5))\n 24\n\n ::\n\n sage: conjugate(gamma(x))\n gamma(conjugate(x))\n\n ::\n\n sage: plot(gamma1(x),(x,1,5))\n\n To prevent automatic evaluation use the ``hold`` argument::\n\n sage: gamma1(1/2,hold=True)\n gamma(1/2)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: gamma1(1/2,hold=True).simplify()\n sqrt(pi)\n\n TESTS:\n\n We verify that we can convert this function to Maxima and\n convert back to Sage::\n\n sage: z = var('z')\n sage: maxima(gamma1(z)).sage()\n gamma(z)\n sage: latex(gamma1(z))\n \\Gamma\\left(z\\right)\n\n Test that Trac ticket 5556 is fixed::\n\n sage: gamma1(3/4)\n gamma(3/4)\n\n sage: gamma1(3/4).n(100)\n 1.2254167024651776451290983034\n\n Check that negative integer input works::\n\n sage: (-1).gamma()\n Infinity\n sage: (-1.).gamma()\n NaN\n sage: CC(-1).gamma()\n Infinity\n sage: RDF(-1).gamma()\n NaN\n sage: CDF(-1).gamma()\n Infinity\n\n Check if #8297 is fixed::\n\n sage: latex(gamma(1/4))\n \\Gamma\\left(\\frac{1}{4}\\right)\n\n Test pickling::\n\n sage: loads(dumps(gamma(x)))\n gamma(x)\n "
GinacFunction.__init__(self, 'gamma', latex_name='\\Gamma', ginac_name='tgamma', conversions={'mathematica': 'Gamma', 'maple': 'GAMMA'})
|
def __init__(self):
"\n The Gamma function. This is defined by\n\n .. math::\n\n \\Gamma(z) = \\int_0^\\infty t^{z-1}e^{-t} dt\n\n for complex input `z` with real part greater than zero, and by\n analytic continuation on the rest of the complex plane (except\n for negative integers, which are poles).\n\n It is computed by various libraries within Sage, depending on\n the input type.\n\n EXAMPLES::\n\n sage: from sage.functions.other import gamma1\n sage: gamma1(CDF(0.5,14))\n -4.05370307804e-10 - 5.77329983455e-10*I\n sage: gamma1(CDF(I))\n -0.154949828302 - 0.498015668118*I\n\n Recall that `\\Gamma(n)` is `n-1` factorial::\n\n sage: gamma1(11) == factorial(10)\n True\n sage: gamma1(6)\n 120\n sage: gamma1(1/2)\n sqrt(pi)\n sage: gamma1(-1)\n Infinity\n sage: gamma1(I)\n gamma(I)\n sage: gamma1(x/2)(x=5)\n 3/4*sqrt(pi)\n\n sage: gamma1(float(6)) # For ARM: rel tol 3e-16\n 120.0\n sage: gamma1(x)\n gamma(x)\n\n ::\n\n sage: gamma1(pi)\n gamma(pi)\n sage: gamma1(i)\n gamma(I)\n sage: gamma1(i).n()\n -0.154949828301811 - 0.498015668118356*I\n sage: gamma1(int(5))\n 24\n\n ::\n\n sage: conjugate(gamma(x))\n gamma(conjugate(x))\n\n ::\n\n sage: plot(gamma1(x),(x,1,5))\n\n To prevent automatic evaluation use the ``hold`` argument::\n\n sage: gamma1(1/2,hold=True)\n gamma(1/2)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: gamma1(1/2,hold=True).simplify()\n sqrt(pi)\n\n TESTS:\n\n We verify that we can convert this function to Maxima and\n convert back to Sage::\n\n sage: z = var('z')\n sage: maxima(gamma1(z)).sage()\n gamma(z)\n sage: latex(gamma1(z))\n \\Gamma\\left(z\\right)\n\n Test that Trac ticket 5556 is fixed::\n\n sage: gamma1(3/4)\n gamma(3/4)\n\n sage: gamma1(3/4).n(100)\n 1.2254167024651776451290983034\n\n Check that negative integer input works::\n\n sage: (-1).gamma()\n Infinity\n sage: (-1.).gamma()\n NaN\n sage: CC(-1).gamma()\n Infinity\n sage: RDF(-1).gamma()\n NaN\n sage: CDF(-1).gamma()\n Infinity\n\n Check if #8297 is fixed::\n\n sage: latex(gamma(1/4))\n \\Gamma\\left(\\frac{1}{4}\\right)\n\n Test pickling::\n\n sage: loads(dumps(gamma(x)))\n gamma(x)\n "
GinacFunction.__init__(self, 'gamma', latex_name='\\Gamma', ginac_name='tgamma', conversions={'mathematica': 'Gamma', 'maple': 'GAMMA'})<|docstring|>The Gamma function. This is defined by
.. math::
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t} dt
for complex input `z` with real part greater than zero, and by
analytic continuation on the rest of the complex plane (except
for negative integers, which are poles).
It is computed by various libraries within Sage, depending on
the input type.
EXAMPLES::
sage: from sage.functions.other import gamma1
sage: gamma1(CDF(0.5,14))
-4.05370307804e-10 - 5.77329983455e-10*I
sage: gamma1(CDF(I))
-0.154949828302 - 0.498015668118*I
Recall that `\Gamma(n)` is `n-1` factorial::
sage: gamma1(11) == factorial(10)
True
sage: gamma1(6)
120
sage: gamma1(1/2)
sqrt(pi)
sage: gamma1(-1)
Infinity
sage: gamma1(I)
gamma(I)
sage: gamma1(x/2)(x=5)
3/4*sqrt(pi)
sage: gamma1(float(6)) # For ARM: rel tol 3e-16
120.0
sage: gamma1(x)
gamma(x)
::
sage: gamma1(pi)
gamma(pi)
sage: gamma1(i)
gamma(I)
sage: gamma1(i).n()
-0.154949828301811 - 0.498015668118356*I
sage: gamma1(int(5))
24
::
sage: conjugate(gamma(x))
gamma(conjugate(x))
::
sage: plot(gamma1(x),(x,1,5))
To prevent automatic evaluation use the ``hold`` argument::
sage: gamma1(1/2,hold=True)
gamma(1/2)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: gamma1(1/2,hold=True).simplify()
sqrt(pi)
TESTS:
We verify that we can convert this function to Maxima and
convert back to Sage::
sage: z = var('z')
sage: maxima(gamma1(z)).sage()
gamma(z)
sage: latex(gamma1(z))
\Gamma\left(z\right)
Test that Trac ticket 5556 is fixed::
sage: gamma1(3/4)
gamma(3/4)
sage: gamma1(3/4).n(100)
1.2254167024651776451290983034
Check that negative integer input works::
sage: (-1).gamma()
Infinity
sage: (-1.).gamma()
NaN
sage: CC(-1).gamma()
Infinity
sage: RDF(-1).gamma()
NaN
sage: CDF(-1).gamma()
Infinity
Check if #8297 is fixed::
sage: latex(gamma(1/4))
\Gamma\left(\frac{1}{4}\right)
Test pickling::
sage: loads(dumps(gamma(x)))
gamma(x)<|endoftext|>
|
c4fbf6f9b399c1d10cd37f1991323fbac4d012ccb18624195fe56f47e4448328
|
def __call__(self, x, prec=None, coerce=True, hold=False):
'\n Note that the ``prec`` argument is deprecated. The precision for\n the result is deduced from the precision of the input. Convert\n the input to a higher precision explicitly if a result with higher\n precision is desired.::\n\n sage: t = gamma(RealField(100)(2.5)); t\n 1.3293403881791370204736256125\n sage: t.prec()\n 100\n\n sage: gamma(6, prec=53)\n doctest:...: DeprecationWarning: The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.\n See http://trac.sagemath.org/7490 for details.\n 120.000000000000\n\n TESTS::\n\n sage: gamma(pi,prec=100)\n 2.2880377953400324179595889091\n\n sage: gamma(3/4,prec=100)\n 1.2254167024651776451290983034\n '
if (prec is not None):
from sage.misc.superseded import deprecation
deprecation(7490, 'The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.')
import mpmath
return mpmath_utils.call(mpmath.gamma, x, prec=prec)
try:
res = GinacFunction.__call__(self, x, coerce=coerce, hold=hold)
except TypeError as err:
if (not str(err).startswith('cannot coerce')):
raise
from sage.misc.superseded import deprecation
deprecation(7490, 'Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.')
parent = (RR if (prec is None) else RealField(prec))
try:
x = parent(x)
except (ValueError, TypeError):
x = parent.complex_field()(x)
res = GinacFunction.__call__(self, x, coerce=coerce, hold=hold)
return res
|
Note that the ``prec`` argument is deprecated. The precision for
the result is deduced from the precision of the input. Convert
the input to a higher precision explicitly if a result with higher
precision is desired.::
sage: t = gamma(RealField(100)(2.5)); t
1.3293403881791370204736256125
sage: t.prec()
100
sage: gamma(6, prec=53)
doctest:...: DeprecationWarning: The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.
See http://trac.sagemath.org/7490 for details.
120.000000000000
TESTS::
sage: gamma(pi,prec=100)
2.2880377953400324179595889091
sage: gamma(3/4,prec=100)
1.2254167024651776451290983034
|
src/sage/functions/other.py
|
__call__
|
drvinceknight/sage
| 2 |
python
|
def __call__(self, x, prec=None, coerce=True, hold=False):
'\n Note that the ``prec`` argument is deprecated. The precision for\n the result is deduced from the precision of the input. Convert\n the input to a higher precision explicitly if a result with higher\n precision is desired.::\n\n sage: t = gamma(RealField(100)(2.5)); t\n 1.3293403881791370204736256125\n sage: t.prec()\n 100\n\n sage: gamma(6, prec=53)\n doctest:...: DeprecationWarning: The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.\n See http://trac.sagemath.org/7490 for details.\n 120.000000000000\n\n TESTS::\n\n sage: gamma(pi,prec=100)\n 2.2880377953400324179595889091\n\n sage: gamma(3/4,prec=100)\n 1.2254167024651776451290983034\n '
if (prec is not None):
from sage.misc.superseded import deprecation
deprecation(7490, 'The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.')
import mpmath
return mpmath_utils.call(mpmath.gamma, x, prec=prec)
try:
res = GinacFunction.__call__(self, x, coerce=coerce, hold=hold)
except TypeError as err:
if (not str(err).startswith('cannot coerce')):
raise
from sage.misc.superseded import deprecation
deprecation(7490, 'Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.')
parent = (RR if (prec is None) else RealField(prec))
try:
x = parent(x)
except (ValueError, TypeError):
x = parent.complex_field()(x)
res = GinacFunction.__call__(self, x, coerce=coerce, hold=hold)
return res
|
def __call__(self, x, prec=None, coerce=True, hold=False):
'\n Note that the ``prec`` argument is deprecated. The precision for\n the result is deduced from the precision of the input. Convert\n the input to a higher precision explicitly if a result with higher\n precision is desired.::\n\n sage: t = gamma(RealField(100)(2.5)); t\n 1.3293403881791370204736256125\n sage: t.prec()\n 100\n\n sage: gamma(6, prec=53)\n doctest:...: DeprecationWarning: The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.\n See http://trac.sagemath.org/7490 for details.\n 120.000000000000\n\n TESTS::\n\n sage: gamma(pi,prec=100)\n 2.2880377953400324179595889091\n\n sage: gamma(3/4,prec=100)\n 1.2254167024651776451290983034\n '
if (prec is not None):
from sage.misc.superseded import deprecation
deprecation(7490, 'The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.')
import mpmath
return mpmath_utils.call(mpmath.gamma, x, prec=prec)
try:
res = GinacFunction.__call__(self, x, coerce=coerce, hold=hold)
except TypeError as err:
if (not str(err).startswith('cannot coerce')):
raise
from sage.misc.superseded import deprecation
deprecation(7490, 'Calling symbolic functions with arguments that cannot be coerced into symbolic expressions is deprecated.')
parent = (RR if (prec is None) else RealField(prec))
try:
x = parent(x)
except (ValueError, TypeError):
x = parent.complex_field()(x)
res = GinacFunction.__call__(self, x, coerce=coerce, hold=hold)
return res<|docstring|>Note that the ``prec`` argument is deprecated. The precision for
the result is deduced from the precision of the input. Convert
the input to a higher precision explicitly if a result with higher
precision is desired.::
sage: t = gamma(RealField(100)(2.5)); t
1.3293403881791370204736256125
sage: t.prec()
100
sage: gamma(6, prec=53)
doctest:...: DeprecationWarning: The prec keyword argument is deprecated. Explicitly set the precision of the input, for example gamma(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., gamma(1).n(300), instead.
See http://trac.sagemath.org/7490 for details.
120.000000000000
TESTS::
sage: gamma(pi,prec=100)
2.2880377953400324179595889091
sage: gamma(3/4,prec=100)
1.2254167024651776451290983034<|endoftext|>
|
171a86fe1cbcac70aa8cbbd970537b6d02065a09eefd3872fd45b518676bc999
|
def __init__(self):
"\n The principal branch of the logarithm of Gamma function.\n Gamma is defined for complex input `z` with real part greater\n than zero, and by analytic continuation on the rest of the\n complex plane (except for negative integers, which are poles).\n\n It is computed by the `log_gamma` function for the number type,\n or by `lgamma` in Ginac, failing that.\n\n EXAMPLES:\n\n Numerical evaluation happens when appropriate, to the\n appropriate accuracy (see #10072)::\n\n sage: log_gamma(6)\n log(120)\n sage: log_gamma(6.)\n 4.78749174278205\n sage: log_gamma(6).n()\n 4.78749174278205\n sage: log_gamma(RealField(100)(6))\n 4.7874917427820459942477009345\n sage: log_gamma(2.4+i)\n -0.0308566579348816 + 0.693427705955790*I\n sage: log_gamma(-3.1)\n 0.400311696703985\n\n Symbolic input works (see #10075)::\n\n sage: log_gamma(3*x)\n log_gamma(3*x)\n sage: log_gamma(3+i)\n log_gamma(I + 3)\n sage: log_gamma(3+i+x)\n log_gamma(x + I + 3)\n\n To get evaluation of input for which gamma\n is negative and the ceiling is even, we must\n explicitly make the input complex. This is\n a known issue, see #12521::\n\n sage: log_gamma(-2.1)\n NaN\n sage: log_gamma(CC(-2.1))\n 1.53171380819509 + 3.14159265358979*I\n\n In order to prevent evaluation, use the `hold` argument;\n to evaluate a held expression, use the `n()` numerical\n evaluation method::\n\n sage: log_gamma(SR(5),hold=True)\n log_gamma(5)\n sage: log_gamma(SR(5),hold=True).n()\n 3.17805383034795\n\n TESTS::\n\n sage: log_gamma(-2.1+i)\n -1.90373724496982 - 0.901638463592247*I\n sage: log_gamma(pari(6))\n 4.78749174278205\n sage: log_gamma(CC(6))\n 4.78749174278205\n sage: log_gamma(CC(-2.5))\n -0.0562437164976740 + 3.14159265358979*I\n\n ``conjugate(log_gamma(x))==log_gamma(conjugate(x))`` unless on the branch\n cut, which runs along the negative real axis.::\n\n sage: conjugate(log_gamma(x))\n conjugate(log_gamma(x))\n sage: var('y', domain='positive')\n y\n sage: conjugate(log_gamma(y))\n log_gamma(y)\n sage: conjugate(log_gamma(y+I))\n conjugate(log_gamma(y + I))\n sage: log_gamma(-2)\n +Infinity\n sage: conjugate(log_gamma(-2))\n +Infinity\n "
GinacFunction.__init__(self, 'log_gamma', latex_name='\\log\\Gamma', conversions={'mathematica': 'LogGamma', 'maxima': 'log_gamma'})
|
The principal branch of the logarithm of Gamma function.
Gamma is defined for complex input `z` with real part greater
than zero, and by analytic continuation on the rest of the
complex plane (except for negative integers, which are poles).
It is computed by the `log_gamma` function for the number type,
or by `lgamma` in Ginac, failing that.
EXAMPLES:
Numerical evaluation happens when appropriate, to the
appropriate accuracy (see #10072)::
sage: log_gamma(6)
log(120)
sage: log_gamma(6.)
4.78749174278205
sage: log_gamma(6).n()
4.78749174278205
sage: log_gamma(RealField(100)(6))
4.7874917427820459942477009345
sage: log_gamma(2.4+i)
-0.0308566579348816 + 0.693427705955790*I
sage: log_gamma(-3.1)
0.400311696703985
Symbolic input works (see #10075)::
sage: log_gamma(3*x)
log_gamma(3*x)
sage: log_gamma(3+i)
log_gamma(I + 3)
sage: log_gamma(3+i+x)
log_gamma(x + I + 3)
To get evaluation of input for which gamma
is negative and the ceiling is even, we must
explicitly make the input complex. This is
a known issue, see #12521::
sage: log_gamma(-2.1)
NaN
sage: log_gamma(CC(-2.1))
1.53171380819509 + 3.14159265358979*I
In order to prevent evaluation, use the `hold` argument;
to evaluate a held expression, use the `n()` numerical
evaluation method::
sage: log_gamma(SR(5),hold=True)
log_gamma(5)
sage: log_gamma(SR(5),hold=True).n()
3.17805383034795
TESTS::
sage: log_gamma(-2.1+i)
-1.90373724496982 - 0.901638463592247*I
sage: log_gamma(pari(6))
4.78749174278205
sage: log_gamma(CC(6))
4.78749174278205
sage: log_gamma(CC(-2.5))
-0.0562437164976740 + 3.14159265358979*I
``conjugate(log_gamma(x))==log_gamma(conjugate(x))`` unless on the branch
cut, which runs along the negative real axis.::
sage: conjugate(log_gamma(x))
conjugate(log_gamma(x))
sage: var('y', domain='positive')
y
sage: conjugate(log_gamma(y))
log_gamma(y)
sage: conjugate(log_gamma(y+I))
conjugate(log_gamma(y + I))
sage: log_gamma(-2)
+Infinity
sage: conjugate(log_gamma(-2))
+Infinity
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n The principal branch of the logarithm of Gamma function.\n Gamma is defined for complex input `z` with real part greater\n than zero, and by analytic continuation on the rest of the\n complex plane (except for negative integers, which are poles).\n\n It is computed by the `log_gamma` function for the number type,\n or by `lgamma` in Ginac, failing that.\n\n EXAMPLES:\n\n Numerical evaluation happens when appropriate, to the\n appropriate accuracy (see #10072)::\n\n sage: log_gamma(6)\n log(120)\n sage: log_gamma(6.)\n 4.78749174278205\n sage: log_gamma(6).n()\n 4.78749174278205\n sage: log_gamma(RealField(100)(6))\n 4.7874917427820459942477009345\n sage: log_gamma(2.4+i)\n -0.0308566579348816 + 0.693427705955790*I\n sage: log_gamma(-3.1)\n 0.400311696703985\n\n Symbolic input works (see #10075)::\n\n sage: log_gamma(3*x)\n log_gamma(3*x)\n sage: log_gamma(3+i)\n log_gamma(I + 3)\n sage: log_gamma(3+i+x)\n log_gamma(x + I + 3)\n\n To get evaluation of input for which gamma\n is negative and the ceiling is even, we must\n explicitly make the input complex. This is\n a known issue, see #12521::\n\n sage: log_gamma(-2.1)\n NaN\n sage: log_gamma(CC(-2.1))\n 1.53171380819509 + 3.14159265358979*I\n\n In order to prevent evaluation, use the `hold` argument;\n to evaluate a held expression, use the `n()` numerical\n evaluation method::\n\n sage: log_gamma(SR(5),hold=True)\n log_gamma(5)\n sage: log_gamma(SR(5),hold=True).n()\n 3.17805383034795\n\n TESTS::\n\n sage: log_gamma(-2.1+i)\n -1.90373724496982 - 0.901638463592247*I\n sage: log_gamma(pari(6))\n 4.78749174278205\n sage: log_gamma(CC(6))\n 4.78749174278205\n sage: log_gamma(CC(-2.5))\n -0.0562437164976740 + 3.14159265358979*I\n\n ``conjugate(log_gamma(x))==log_gamma(conjugate(x))`` unless on the branch\n cut, which runs along the negative real axis.::\n\n sage: conjugate(log_gamma(x))\n conjugate(log_gamma(x))\n sage: var('y', domain='positive')\n y\n sage: conjugate(log_gamma(y))\n log_gamma(y)\n sage: conjugate(log_gamma(y+I))\n conjugate(log_gamma(y + I))\n sage: log_gamma(-2)\n +Infinity\n sage: conjugate(log_gamma(-2))\n +Infinity\n "
GinacFunction.__init__(self, 'log_gamma', latex_name='\\log\\Gamma', conversions={'mathematica': 'LogGamma', 'maxima': 'log_gamma'})
|
def __init__(self):
"\n The principal branch of the logarithm of Gamma function.\n Gamma is defined for complex input `z` with real part greater\n than zero, and by analytic continuation on the rest of the\n complex plane (except for negative integers, which are poles).\n\n It is computed by the `log_gamma` function for the number type,\n or by `lgamma` in Ginac, failing that.\n\n EXAMPLES:\n\n Numerical evaluation happens when appropriate, to the\n appropriate accuracy (see #10072)::\n\n sage: log_gamma(6)\n log(120)\n sage: log_gamma(6.)\n 4.78749174278205\n sage: log_gamma(6).n()\n 4.78749174278205\n sage: log_gamma(RealField(100)(6))\n 4.7874917427820459942477009345\n sage: log_gamma(2.4+i)\n -0.0308566579348816 + 0.693427705955790*I\n sage: log_gamma(-3.1)\n 0.400311696703985\n\n Symbolic input works (see #10075)::\n\n sage: log_gamma(3*x)\n log_gamma(3*x)\n sage: log_gamma(3+i)\n log_gamma(I + 3)\n sage: log_gamma(3+i+x)\n log_gamma(x + I + 3)\n\n To get evaluation of input for which gamma\n is negative and the ceiling is even, we must\n explicitly make the input complex. This is\n a known issue, see #12521::\n\n sage: log_gamma(-2.1)\n NaN\n sage: log_gamma(CC(-2.1))\n 1.53171380819509 + 3.14159265358979*I\n\n In order to prevent evaluation, use the `hold` argument;\n to evaluate a held expression, use the `n()` numerical\n evaluation method::\n\n sage: log_gamma(SR(5),hold=True)\n log_gamma(5)\n sage: log_gamma(SR(5),hold=True).n()\n 3.17805383034795\n\n TESTS::\n\n sage: log_gamma(-2.1+i)\n -1.90373724496982 - 0.901638463592247*I\n sage: log_gamma(pari(6))\n 4.78749174278205\n sage: log_gamma(CC(6))\n 4.78749174278205\n sage: log_gamma(CC(-2.5))\n -0.0562437164976740 + 3.14159265358979*I\n\n ``conjugate(log_gamma(x))==log_gamma(conjugate(x))`` unless on the branch\n cut, which runs along the negative real axis.::\n\n sage: conjugate(log_gamma(x))\n conjugate(log_gamma(x))\n sage: var('y', domain='positive')\n y\n sage: conjugate(log_gamma(y))\n log_gamma(y)\n sage: conjugate(log_gamma(y+I))\n conjugate(log_gamma(y + I))\n sage: log_gamma(-2)\n +Infinity\n sage: conjugate(log_gamma(-2))\n +Infinity\n "
GinacFunction.__init__(self, 'log_gamma', latex_name='\\log\\Gamma', conversions={'mathematica': 'LogGamma', 'maxima': 'log_gamma'})<|docstring|>The principal branch of the logarithm of Gamma function.
Gamma is defined for complex input `z` with real part greater
than zero, and by analytic continuation on the rest of the
complex plane (except for negative integers, which are poles).
It is computed by the `log_gamma` function for the number type,
or by `lgamma` in Ginac, failing that.
EXAMPLES:
Numerical evaluation happens when appropriate, to the
appropriate accuracy (see #10072)::
sage: log_gamma(6)
log(120)
sage: log_gamma(6.)
4.78749174278205
sage: log_gamma(6).n()
4.78749174278205
sage: log_gamma(RealField(100)(6))
4.7874917427820459942477009345
sage: log_gamma(2.4+i)
-0.0308566579348816 + 0.693427705955790*I
sage: log_gamma(-3.1)
0.400311696703985
Symbolic input works (see #10075)::
sage: log_gamma(3*x)
log_gamma(3*x)
sage: log_gamma(3+i)
log_gamma(I + 3)
sage: log_gamma(3+i+x)
log_gamma(x + I + 3)
To get evaluation of input for which gamma
is negative and the ceiling is even, we must
explicitly make the input complex. This is
a known issue, see #12521::
sage: log_gamma(-2.1)
NaN
sage: log_gamma(CC(-2.1))
1.53171380819509 + 3.14159265358979*I
In order to prevent evaluation, use the `hold` argument;
to evaluate a held expression, use the `n()` numerical
evaluation method::
sage: log_gamma(SR(5),hold=True)
log_gamma(5)
sage: log_gamma(SR(5),hold=True).n()
3.17805383034795
TESTS::
sage: log_gamma(-2.1+i)
-1.90373724496982 - 0.901638463592247*I
sage: log_gamma(pari(6))
4.78749174278205
sage: log_gamma(CC(6))
4.78749174278205
sage: log_gamma(CC(-2.5))
-0.0562437164976740 + 3.14159265358979*I
``conjugate(log_gamma(x))==log_gamma(conjugate(x))`` unless on the branch
cut, which runs along the negative real axis.::
sage: conjugate(log_gamma(x))
conjugate(log_gamma(x))
sage: var('y', domain='positive')
y
sage: conjugate(log_gamma(y))
log_gamma(y)
sage: conjugate(log_gamma(y+I))
conjugate(log_gamma(y + I))
sage: log_gamma(-2)
+Infinity
sage: conjugate(log_gamma(-2))
+Infinity<|endoftext|>
|
c4506698b96ff4ffb932b8bd9e0f9c831a07717d255db93e349a1cb3adc65be2
|
def __init__(self):
'\n The incomplete gamma function.\n\n EXAMPLES::\n\n sage: gamma_inc(CDF(0,1), 3)\n 0.00320857499337 + 0.0124061858119*I\n sage: gamma_inc(RDF(1), 3)\n 0.0497870683679\n sage: gamma_inc(3,2)\n gamma(3, 2)\n sage: gamma_inc(x,0)\n gamma(x)\n sage: latex(gamma_inc(3,2))\n \\Gamma\\left(3, 2\\right)\n sage: loads(dumps((gamma_inc(3,2))))\n gamma(3, 2)\n sage: i = ComplexField(30).0; gamma_inc(2, 1 + i)\n 0.70709210 - 0.42035364*I\n sage: gamma_inc(2., 5)\n 0.0404276819945128\n '
BuiltinFunction.__init__(self, 'gamma', nargs=2, latex_name='\\Gamma', conversions={'maxima': 'gamma_incomplete', 'mathematica': 'Gamma', 'maple': 'GAMMA'})
|
The incomplete gamma function.
EXAMPLES::
sage: gamma_inc(CDF(0,1), 3)
0.00320857499337 + 0.0124061858119*I
sage: gamma_inc(RDF(1), 3)
0.0497870683679
sage: gamma_inc(3,2)
gamma(3, 2)
sage: gamma_inc(x,0)
gamma(x)
sage: latex(gamma_inc(3,2))
\Gamma\left(3, 2\right)
sage: loads(dumps((gamma_inc(3,2))))
gamma(3, 2)
sage: i = ComplexField(30).0; gamma_inc(2, 1 + i)
0.70709210 - 0.42035364*I
sage: gamma_inc(2., 5)
0.0404276819945128
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
'\n The incomplete gamma function.\n\n EXAMPLES::\n\n sage: gamma_inc(CDF(0,1), 3)\n 0.00320857499337 + 0.0124061858119*I\n sage: gamma_inc(RDF(1), 3)\n 0.0497870683679\n sage: gamma_inc(3,2)\n gamma(3, 2)\n sage: gamma_inc(x,0)\n gamma(x)\n sage: latex(gamma_inc(3,2))\n \\Gamma\\left(3, 2\\right)\n sage: loads(dumps((gamma_inc(3,2))))\n gamma(3, 2)\n sage: i = ComplexField(30).0; gamma_inc(2, 1 + i)\n 0.70709210 - 0.42035364*I\n sage: gamma_inc(2., 5)\n 0.0404276819945128\n '
BuiltinFunction.__init__(self, 'gamma', nargs=2, latex_name='\\Gamma', conversions={'maxima': 'gamma_incomplete', 'mathematica': 'Gamma', 'maple': 'GAMMA'})
|
def __init__(self):
'\n The incomplete gamma function.\n\n EXAMPLES::\n\n sage: gamma_inc(CDF(0,1), 3)\n 0.00320857499337 + 0.0124061858119*I\n sage: gamma_inc(RDF(1), 3)\n 0.0497870683679\n sage: gamma_inc(3,2)\n gamma(3, 2)\n sage: gamma_inc(x,0)\n gamma(x)\n sage: latex(gamma_inc(3,2))\n \\Gamma\\left(3, 2\\right)\n sage: loads(dumps((gamma_inc(3,2))))\n gamma(3, 2)\n sage: i = ComplexField(30).0; gamma_inc(2, 1 + i)\n 0.70709210 - 0.42035364*I\n sage: gamma_inc(2., 5)\n 0.0404276819945128\n '
BuiltinFunction.__init__(self, 'gamma', nargs=2, latex_name='\\Gamma', conversions={'maxima': 'gamma_incomplete', 'mathematica': 'Gamma', 'maple': 'GAMMA'})<|docstring|>The incomplete gamma function.
EXAMPLES::
sage: gamma_inc(CDF(0,1), 3)
0.00320857499337 + 0.0124061858119*I
sage: gamma_inc(RDF(1), 3)
0.0497870683679
sage: gamma_inc(3,2)
gamma(3, 2)
sage: gamma_inc(x,0)
gamma(x)
sage: latex(gamma_inc(3,2))
\Gamma\left(3, 2\right)
sage: loads(dumps((gamma_inc(3,2))))
gamma(3, 2)
sage: i = ComplexField(30).0; gamma_inc(2, 1 + i)
0.70709210 - 0.42035364*I
sage: gamma_inc(2., 5)
0.0404276819945128<|endoftext|>
|
637ab00a86776e5d06f11f7bb7c2ebe364130046981ff42908d34a91a7c659dc
|
def _eval_(self, x, y):
'\n EXAMPLES::\n\n sage: gamma_inc(2.,0)\n 1.00000000000000\n sage: gamma_inc(2,0)\n 1\n sage: gamma_inc(1/2,2)\n -sqrt(pi)*(erf(sqrt(2)) - 1)\n sage: gamma_inc(1/2,1)\n -sqrt(pi)*(erf(1) - 1)\n sage: gamma_inc(1/2,0)\n sqrt(pi)\n sage: gamma_inc(x,0)\n gamma(x)\n sage: gamma_inc(1,2)\n e^(-2)\n sage: gamma_inc(0,2)\n -Ei(-2)\n '
if ((not isinstance(x, Expression)) and (not isinstance(y, Expression)) and (is_inexact(x) or is_inexact(y))):
(x, y) = coercion_model.canonical_coercion(x, y)
return self._evalf_(x, y, s_parent(x))
if (y == 0):
return gamma(x)
if (x == 1):
return exp((- y))
if (x == 0):
return (- Ei((- y)))
if (x == (Rational(1) / 2)):
return (sqrt(pi) * (1 - erf(sqrt(y))))
return None
|
EXAMPLES::
sage: gamma_inc(2.,0)
1.00000000000000
sage: gamma_inc(2,0)
1
sage: gamma_inc(1/2,2)
-sqrt(pi)*(erf(sqrt(2)) - 1)
sage: gamma_inc(1/2,1)
-sqrt(pi)*(erf(1) - 1)
sage: gamma_inc(1/2,0)
sqrt(pi)
sage: gamma_inc(x,0)
gamma(x)
sage: gamma_inc(1,2)
e^(-2)
sage: gamma_inc(0,2)
-Ei(-2)
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, x, y):
'\n EXAMPLES::\n\n sage: gamma_inc(2.,0)\n 1.00000000000000\n sage: gamma_inc(2,0)\n 1\n sage: gamma_inc(1/2,2)\n -sqrt(pi)*(erf(sqrt(2)) - 1)\n sage: gamma_inc(1/2,1)\n -sqrt(pi)*(erf(1) - 1)\n sage: gamma_inc(1/2,0)\n sqrt(pi)\n sage: gamma_inc(x,0)\n gamma(x)\n sage: gamma_inc(1,2)\n e^(-2)\n sage: gamma_inc(0,2)\n -Ei(-2)\n '
if ((not isinstance(x, Expression)) and (not isinstance(y, Expression)) and (is_inexact(x) or is_inexact(y))):
(x, y) = coercion_model.canonical_coercion(x, y)
return self._evalf_(x, y, s_parent(x))
if (y == 0):
return gamma(x)
if (x == 1):
return exp((- y))
if (x == 0):
return (- Ei((- y)))
if (x == (Rational(1) / 2)):
return (sqrt(pi) * (1 - erf(sqrt(y))))
return None
|
def _eval_(self, x, y):
'\n EXAMPLES::\n\n sage: gamma_inc(2.,0)\n 1.00000000000000\n sage: gamma_inc(2,0)\n 1\n sage: gamma_inc(1/2,2)\n -sqrt(pi)*(erf(sqrt(2)) - 1)\n sage: gamma_inc(1/2,1)\n -sqrt(pi)*(erf(1) - 1)\n sage: gamma_inc(1/2,0)\n sqrt(pi)\n sage: gamma_inc(x,0)\n gamma(x)\n sage: gamma_inc(1,2)\n e^(-2)\n sage: gamma_inc(0,2)\n -Ei(-2)\n '
if ((not isinstance(x, Expression)) and (not isinstance(y, Expression)) and (is_inexact(x) or is_inexact(y))):
(x, y) = coercion_model.canonical_coercion(x, y)
return self._evalf_(x, y, s_parent(x))
if (y == 0):
return gamma(x)
if (x == 1):
return exp((- y))
if (x == 0):
return (- Ei((- y)))
if (x == (Rational(1) / 2)):
return (sqrt(pi) * (1 - erf(sqrt(y))))
return None<|docstring|>EXAMPLES::
sage: gamma_inc(2.,0)
1.00000000000000
sage: gamma_inc(2,0)
1
sage: gamma_inc(1/2,2)
-sqrt(pi)*(erf(sqrt(2)) - 1)
sage: gamma_inc(1/2,1)
-sqrt(pi)*(erf(1) - 1)
sage: gamma_inc(1/2,0)
sqrt(pi)
sage: gamma_inc(x,0)
gamma(x)
sage: gamma_inc(1,2)
e^(-2)
sage: gamma_inc(0,2)
-Ei(-2)<|endoftext|>
|
2f1208cb38e666ac9331613ab124be4e22de1dd51e568af54bfe22f89a3aebf4
|
def _evalf_(self, x, y, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: gamma_inc(0,2)\n -Ei(-2)\n sage: gamma_inc(0,2.)\n 0.0489005107080611\n sage: gamma_inc(3,2).n()\n 1.35335283236613\n '
try:
return x.gamma_inc(y)
except AttributeError:
if (not is_ComplexNumber(x)):
if is_ComplexNumber(y):
C = y.parent()
else:
C = ComplexField()
x = C(x)
return x.gamma_inc(y)
|
EXAMPLES::
sage: gamma_inc(0,2)
-Ei(-2)
sage: gamma_inc(0,2.)
0.0489005107080611
sage: gamma_inc(3,2).n()
1.35335283236613
|
src/sage/functions/other.py
|
_evalf_
|
drvinceknight/sage
| 2 |
python
|
def _evalf_(self, x, y, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: gamma_inc(0,2)\n -Ei(-2)\n sage: gamma_inc(0,2.)\n 0.0489005107080611\n sage: gamma_inc(3,2).n()\n 1.35335283236613\n '
try:
return x.gamma_inc(y)
except AttributeError:
if (not is_ComplexNumber(x)):
if is_ComplexNumber(y):
C = y.parent()
else:
C = ComplexField()
x = C(x)
return x.gamma_inc(y)
|
def _evalf_(self, x, y, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: gamma_inc(0,2)\n -Ei(-2)\n sage: gamma_inc(0,2.)\n 0.0489005107080611\n sage: gamma_inc(3,2).n()\n 1.35335283236613\n '
try:
return x.gamma_inc(y)
except AttributeError:
if (not is_ComplexNumber(x)):
if is_ComplexNumber(y):
C = y.parent()
else:
C = ComplexField()
x = C(x)
return x.gamma_inc(y)<|docstring|>EXAMPLES::
sage: gamma_inc(0,2)
-Ei(-2)
sage: gamma_inc(0,2.)
0.0489005107080611
sage: gamma_inc(3,2).n()
1.35335283236613<|endoftext|>
|
b337bcc39c0db01fbfe610a55478717c5c3124675bcd74dac24b6ae764d6d8f5
|
def __init__(self):
"\n The digamma function, `\\psi(x)`, is the logarithmic derivative of the\n gamma function.\n\n .. math::\n\n \\psi(x) = \\frac{d}{dx} \\log(\\Gamma(x)) = \\frac{\\Gamma'(x)}{\\Gamma(x)}\n\n EXAMPLES::\n\n sage: from sage.functions.other import psi1\n sage: psi1(x)\n psi(x)\n sage: psi1(x).derivative(x)\n psi(1, x)\n\n ::\n\n sage: psi1(3)\n -euler_gamma + 3/2\n\n ::\n\n sage: psi(.5)\n -1.96351002602142\n sage: psi(RealField(100)(.5))\n -1.9635100260214234794409763330\n\n TESTS::\n\n sage: latex(psi1(x))\n \\psi\\left(x\\right)\n sage: loads(dumps(psi1(x)+1))\n psi(x) + 1\n\n sage: t = psi1(x); t\n psi(x)\n sage: t.subs(x=.2)\n -5.28903989659219\n "
GinacFunction.__init__(self, 'psi', nargs=1, latex_name='\\psi', conversions=dict(maxima='psi[0]', mathematica='PolyGamma'))
|
The digamma function, `\psi(x)`, is the logarithmic derivative of the
gamma function.
.. math::
\psi(x) = \frac{d}{dx} \log(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}
EXAMPLES::
sage: from sage.functions.other import psi1
sage: psi1(x)
psi(x)
sage: psi1(x).derivative(x)
psi(1, x)
::
sage: psi1(3)
-euler_gamma + 3/2
::
sage: psi(.5)
-1.96351002602142
sage: psi(RealField(100)(.5))
-1.9635100260214234794409763330
TESTS::
sage: latex(psi1(x))
\psi\left(x\right)
sage: loads(dumps(psi1(x)+1))
psi(x) + 1
sage: t = psi1(x); t
psi(x)
sage: t.subs(x=.2)
-5.28903989659219
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n The digamma function, `\\psi(x)`, is the logarithmic derivative of the\n gamma function.\n\n .. math::\n\n \\psi(x) = \\frac{d}{dx} \\log(\\Gamma(x)) = \\frac{\\Gamma'(x)}{\\Gamma(x)}\n\n EXAMPLES::\n\n sage: from sage.functions.other import psi1\n sage: psi1(x)\n psi(x)\n sage: psi1(x).derivative(x)\n psi(1, x)\n\n ::\n\n sage: psi1(3)\n -euler_gamma + 3/2\n\n ::\n\n sage: psi(.5)\n -1.96351002602142\n sage: psi(RealField(100)(.5))\n -1.9635100260214234794409763330\n\n TESTS::\n\n sage: latex(psi1(x))\n \\psi\\left(x\\right)\n sage: loads(dumps(psi1(x)+1))\n psi(x) + 1\n\n sage: t = psi1(x); t\n psi(x)\n sage: t.subs(x=.2)\n -5.28903989659219\n "
GinacFunction.__init__(self, 'psi', nargs=1, latex_name='\\psi', conversions=dict(maxima='psi[0]', mathematica='PolyGamma'))
|
def __init__(self):
"\n The digamma function, `\\psi(x)`, is the logarithmic derivative of the\n gamma function.\n\n .. math::\n\n \\psi(x) = \\frac{d}{dx} \\log(\\Gamma(x)) = \\frac{\\Gamma'(x)}{\\Gamma(x)}\n\n EXAMPLES::\n\n sage: from sage.functions.other import psi1\n sage: psi1(x)\n psi(x)\n sage: psi1(x).derivative(x)\n psi(1, x)\n\n ::\n\n sage: psi1(3)\n -euler_gamma + 3/2\n\n ::\n\n sage: psi(.5)\n -1.96351002602142\n sage: psi(RealField(100)(.5))\n -1.9635100260214234794409763330\n\n TESTS::\n\n sage: latex(psi1(x))\n \\psi\\left(x\\right)\n sage: loads(dumps(psi1(x)+1))\n psi(x) + 1\n\n sage: t = psi1(x); t\n psi(x)\n sage: t.subs(x=.2)\n -5.28903989659219\n "
GinacFunction.__init__(self, 'psi', nargs=1, latex_name='\\psi', conversions=dict(maxima='psi[0]', mathematica='PolyGamma'))<|docstring|>The digamma function, `\psi(x)`, is the logarithmic derivative of the
gamma function.
.. math::
\psi(x) = \frac{d}{dx} \log(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}
EXAMPLES::
sage: from sage.functions.other import psi1
sage: psi1(x)
psi(x)
sage: psi1(x).derivative(x)
psi(1, x)
::
sage: psi1(3)
-euler_gamma + 3/2
::
sage: psi(.5)
-1.96351002602142
sage: psi(RealField(100)(.5))
-1.9635100260214234794409763330
TESTS::
sage: latex(psi1(x))
\psi\left(x\right)
sage: loads(dumps(psi1(x)+1))
psi(x) + 1
sage: t = psi1(x); t
psi(x)
sage: t.subs(x=.2)
-5.28903989659219<|endoftext|>
|
e31417cb0ecc57a6cabd11a765ebf0d2b76f7a3afa7d7d6286bf892ae6d12a0c
|
def __init__(self):
"\n Derivatives of the digamma function `\\psi(x)`. T\n\n EXAMPLES::\n\n sage: from sage.functions.other import psi2\n sage: psi2(2, x)\n psi(2, x)\n sage: psi2(2, x).derivative(x)\n psi(3, x)\n sage: n = var('n')\n sage: psi2(n, x).derivative(x)\n psi(n + 1, x)\n\n ::\n\n sage: psi2(0, x)\n psi(x)\n sage: psi2(-1, x)\n log(gamma(x))\n sage: psi2(3, 1)\n 1/15*pi^4\n\n ::\n\n sage: psi2(2, .5).n()\n -16.8287966442343\n sage: psi2(2, .5).n(100)\n -16.828796644234319995596334261\n\n Tests::\n\n sage: psi2(n, x).derivative(n)\n Traceback (most recent call last):\n ...\n RuntimeError: cannot diff psi(n,x) with respect to n\n\n sage: latex(psi2(2,x))\n \\psi\\left(2, x\\right)\n sage: loads(dumps(psi2(2,x)+1))\n psi(2, x) + 1\n "
GinacFunction.__init__(self, 'psi', nargs=2, latex_name='\\psi', conversions=dict(mathematica='PolyGamma'))
|
Derivatives of the digamma function `\psi(x)`. T
EXAMPLES::
sage: from sage.functions.other import psi2
sage: psi2(2, x)
psi(2, x)
sage: psi2(2, x).derivative(x)
psi(3, x)
sage: n = var('n')
sage: psi2(n, x).derivative(x)
psi(n + 1, x)
::
sage: psi2(0, x)
psi(x)
sage: psi2(-1, x)
log(gamma(x))
sage: psi2(3, 1)
1/15*pi^4
::
sage: psi2(2, .5).n()
-16.8287966442343
sage: psi2(2, .5).n(100)
-16.828796644234319995596334261
Tests::
sage: psi2(n, x).derivative(n)
Traceback (most recent call last):
...
RuntimeError: cannot diff psi(n,x) with respect to n
sage: latex(psi2(2,x))
\psi\left(2, x\right)
sage: loads(dumps(psi2(2,x)+1))
psi(2, x) + 1
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n Derivatives of the digamma function `\\psi(x)`. T\n\n EXAMPLES::\n\n sage: from sage.functions.other import psi2\n sage: psi2(2, x)\n psi(2, x)\n sage: psi2(2, x).derivative(x)\n psi(3, x)\n sage: n = var('n')\n sage: psi2(n, x).derivative(x)\n psi(n + 1, x)\n\n ::\n\n sage: psi2(0, x)\n psi(x)\n sage: psi2(-1, x)\n log(gamma(x))\n sage: psi2(3, 1)\n 1/15*pi^4\n\n ::\n\n sage: psi2(2, .5).n()\n -16.8287966442343\n sage: psi2(2, .5).n(100)\n -16.828796644234319995596334261\n\n Tests::\n\n sage: psi2(n, x).derivative(n)\n Traceback (most recent call last):\n ...\n RuntimeError: cannot diff psi(n,x) with respect to n\n\n sage: latex(psi2(2,x))\n \\psi\\left(2, x\\right)\n sage: loads(dumps(psi2(2,x)+1))\n psi(2, x) + 1\n "
GinacFunction.__init__(self, 'psi', nargs=2, latex_name='\\psi', conversions=dict(mathematica='PolyGamma'))
|
def __init__(self):
"\n Derivatives of the digamma function `\\psi(x)`. T\n\n EXAMPLES::\n\n sage: from sage.functions.other import psi2\n sage: psi2(2, x)\n psi(2, x)\n sage: psi2(2, x).derivative(x)\n psi(3, x)\n sage: n = var('n')\n sage: psi2(n, x).derivative(x)\n psi(n + 1, x)\n\n ::\n\n sage: psi2(0, x)\n psi(x)\n sage: psi2(-1, x)\n log(gamma(x))\n sage: psi2(3, 1)\n 1/15*pi^4\n\n ::\n\n sage: psi2(2, .5).n()\n -16.8287966442343\n sage: psi2(2, .5).n(100)\n -16.828796644234319995596334261\n\n Tests::\n\n sage: psi2(n, x).derivative(n)\n Traceback (most recent call last):\n ...\n RuntimeError: cannot diff psi(n,x) with respect to n\n\n sage: latex(psi2(2,x))\n \\psi\\left(2, x\\right)\n sage: loads(dumps(psi2(2,x)+1))\n psi(2, x) + 1\n "
GinacFunction.__init__(self, 'psi', nargs=2, latex_name='\\psi', conversions=dict(mathematica='PolyGamma'))<|docstring|>Derivatives of the digamma function `\psi(x)`. T
EXAMPLES::
sage: from sage.functions.other import psi2
sage: psi2(2, x)
psi(2, x)
sage: psi2(2, x).derivative(x)
psi(3, x)
sage: n = var('n')
sage: psi2(n, x).derivative(x)
psi(n + 1, x)
::
sage: psi2(0, x)
psi(x)
sage: psi2(-1, x)
log(gamma(x))
sage: psi2(3, 1)
1/15*pi^4
::
sage: psi2(2, .5).n()
-16.8287966442343
sage: psi2(2, .5).n(100)
-16.828796644234319995596334261
Tests::
sage: psi2(n, x).derivative(n)
Traceback (most recent call last):
...
RuntimeError: cannot diff psi(n,x) with respect to n
sage: latex(psi2(2,x))
\psi\left(2, x\right)
sage: loads(dumps(psi2(2,x)+1))
psi(2, x) + 1<|endoftext|>
|
5f723f75a04e460531ea0cf2d431a8ceecfee28eeb2f0c1a0443c3952e92f80c
|
def _maxima_init_evaled_(self, *args):
'\n EXAMPLES:\n\n These are indirect doctests for this function.::\n\n sage: from sage.functions.other import psi2\n sage: psi2(2, x)._maxima_()\n psi[2](_SAGE_VAR_x)\n sage: psi2(4, x)._maxima_()\n psi[4](_SAGE_VAR_x)\n '
args_maxima = []
for a in args:
if isinstance(a, str):
args_maxima.append(a)
elif hasattr(a, '_maxima_init_'):
args_maxima.append(a._maxima_init_())
else:
args_maxima.append(str(a))
(n, x) = args_maxima
return ('psi[%s](%s)' % (n, x))
|
EXAMPLES:
These are indirect doctests for this function.::
sage: from sage.functions.other import psi2
sage: psi2(2, x)._maxima_()
psi[2](_SAGE_VAR_x)
sage: psi2(4, x)._maxima_()
psi[4](_SAGE_VAR_x)
|
src/sage/functions/other.py
|
_maxima_init_evaled_
|
drvinceknight/sage
| 2 |
python
|
def _maxima_init_evaled_(self, *args):
'\n EXAMPLES:\n\n These are indirect doctests for this function.::\n\n sage: from sage.functions.other import psi2\n sage: psi2(2, x)._maxima_()\n psi[2](_SAGE_VAR_x)\n sage: psi2(4, x)._maxima_()\n psi[4](_SAGE_VAR_x)\n '
args_maxima = []
for a in args:
if isinstance(a, str):
args_maxima.append(a)
elif hasattr(a, '_maxima_init_'):
args_maxima.append(a._maxima_init_())
else:
args_maxima.append(str(a))
(n, x) = args_maxima
return ('psi[%s](%s)' % (n, x))
|
def _maxima_init_evaled_(self, *args):
'\n EXAMPLES:\n\n These are indirect doctests for this function.::\n\n sage: from sage.functions.other import psi2\n sage: psi2(2, x)._maxima_()\n psi[2](_SAGE_VAR_x)\n sage: psi2(4, x)._maxima_()\n psi[4](_SAGE_VAR_x)\n '
args_maxima = []
for a in args:
if isinstance(a, str):
args_maxima.append(a)
elif hasattr(a, '_maxima_init_'):
args_maxima.append(a._maxima_init_())
else:
args_maxima.append(str(a))
(n, x) = args_maxima
return ('psi[%s](%s)' % (n, x))<|docstring|>EXAMPLES:
These are indirect doctests for this function.::
sage: from sage.functions.other import psi2
sage: psi2(2, x)._maxima_()
psi[2](_SAGE_VAR_x)
sage: psi2(4, x)._maxima_()
psi[4](_SAGE_VAR_x)<|endoftext|>
|
934f665fd4a6f5e560945d12228f2685d0ec0e2b54fa6748549863d40fef2712
|
def __init__(self):
"\n Returns the factorial of `n`.\n\n INPUT:\n\n - ``n`` - any complex argument (except negative\n integers) or any symbolic expression\n\n\n OUTPUT: an integer or symbolic expression\n\n EXAMPLES::\n\n sage: x = var('x')\n sage: factorial(0)\n 1\n sage: factorial(4)\n 24\n sage: factorial(10)\n 3628800\n sage: factorial(6) == 6*5*4*3*2\n True\n sage: f = factorial(x + factorial(x)); f\n factorial(x + factorial(x))\n sage: f(x=3)\n 362880\n sage: factorial(x)^2\n factorial(x)^2\n\n To prevent automatic evaluation use the ``hold`` argument::\n\n sage: factorial(5,hold=True)\n factorial(5)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: factorial(5,hold=True).simplify()\n 120\n\n We can also give input other than nonnegative integers. For\n other nonnegative numbers, the :func:`gamma` function is used::\n\n sage: factorial(1/2)\n 1/2*sqrt(pi)\n sage: factorial(3/4)\n gamma(7/4)\n sage: factorial(2.3)\n 2.68343738195577\n\n But negative input always fails::\n\n sage: factorial(-32)\n Traceback (most recent call last):\n ...\n ValueError: factorial -- self = (-32) must be nonnegative\n\n TESTS:\n\n We verify that we can convert this function to Maxima and\n bring it back into Sage.::\n\n sage: z = var('z')\n sage: factorial._maxima_init_()\n 'factorial'\n sage: maxima(factorial(z))\n factorial(_SAGE_VAR_z)\n sage: _.sage()\n factorial(z)\n sage: k = var('k')\n sage: factorial(k)\n factorial(k)\n\n sage: factorial(3.14)\n 7.173269190187...\n\n Test latex typesetting::\n\n sage: latex(factorial(x))\n x!\n sage: latex(factorial(2*x))\n \\left(2 \\, x\\right)!\n sage: latex(factorial(sin(x)))\n \\sin\\left(x\\right)!\n sage: latex(factorial(sqrt(x+1)))\n \\left(\\sqrt{x + 1}\\right)!\n sage: latex(factorial(sqrt(x)))\n \\sqrt{x}!\n sage: latex(factorial(x^(2/3)))\n \\left(x^{\\frac{2}{3}}\\right)!\n\n sage: latex(factorial)\n {\\rm factorial}\n\n Check that #11539 is fixed::\n\n sage: (factorial(x) == 0).simplify()\n factorial(x) == 0\n sage: maxima(factorial(x) == 0).sage()\n factorial(x) == 0\n sage: y = var('y')\n sage: (factorial(x) == y).solve(x)\n [factorial(x) == y]\n\n Test pickling::\n\n sage: loads(dumps(factorial))\n factorial\n "
GinacFunction.__init__(self, 'factorial', latex_name='{\\rm factorial}', conversions=dict(maxima='factorial', mathematica='Factorial'))
|
Returns the factorial of `n`.
INPUT:
- ``n`` - any complex argument (except negative
integers) or any symbolic expression
OUTPUT: an integer or symbolic expression
EXAMPLES::
sage: x = var('x')
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(6) == 6*5*4*3*2
True
sage: f = factorial(x + factorial(x)); f
factorial(x + factorial(x))
sage: f(x=3)
362880
sage: factorial(x)^2
factorial(x)^2
To prevent automatic evaluation use the ``hold`` argument::
sage: factorial(5,hold=True)
factorial(5)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: factorial(5,hold=True).simplify()
120
We can also give input other than nonnegative integers. For
other nonnegative numbers, the :func:`gamma` function is used::
sage: factorial(1/2)
1/2*sqrt(pi)
sage: factorial(3/4)
gamma(7/4)
sage: factorial(2.3)
2.68343738195577
But negative input always fails::
sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial -- self = (-32) must be nonnegative
TESTS:
We verify that we can convert this function to Maxima and
bring it back into Sage.::
sage: z = var('z')
sage: factorial._maxima_init_()
'factorial'
sage: maxima(factorial(z))
factorial(_SAGE_VAR_z)
sage: _.sage()
factorial(z)
sage: k = var('k')
sage: factorial(k)
factorial(k)
sage: factorial(3.14)
7.173269190187...
Test latex typesetting::
sage: latex(factorial(x))
x!
sage: latex(factorial(2*x))
\left(2 \, x\right)!
sage: latex(factorial(sin(x)))
\sin\left(x\right)!
sage: latex(factorial(sqrt(x+1)))
\left(\sqrt{x + 1}\right)!
sage: latex(factorial(sqrt(x)))
\sqrt{x}!
sage: latex(factorial(x^(2/3)))
\left(x^{\frac{2}{3}}\right)!
sage: latex(factorial)
{\rm factorial}
Check that #11539 is fixed::
sage: (factorial(x) == 0).simplify()
factorial(x) == 0
sage: maxima(factorial(x) == 0).sage()
factorial(x) == 0
sage: y = var('y')
sage: (factorial(x) == y).solve(x)
[factorial(x) == y]
Test pickling::
sage: loads(dumps(factorial))
factorial
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n Returns the factorial of `n`.\n\n INPUT:\n\n - ``n`` - any complex argument (except negative\n integers) or any symbolic expression\n\n\n OUTPUT: an integer or symbolic expression\n\n EXAMPLES::\n\n sage: x = var('x')\n sage: factorial(0)\n 1\n sage: factorial(4)\n 24\n sage: factorial(10)\n 3628800\n sage: factorial(6) == 6*5*4*3*2\n True\n sage: f = factorial(x + factorial(x)); f\n factorial(x + factorial(x))\n sage: f(x=3)\n 362880\n sage: factorial(x)^2\n factorial(x)^2\n\n To prevent automatic evaluation use the ``hold`` argument::\n\n sage: factorial(5,hold=True)\n factorial(5)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: factorial(5,hold=True).simplify()\n 120\n\n We can also give input other than nonnegative integers. For\n other nonnegative numbers, the :func:`gamma` function is used::\n\n sage: factorial(1/2)\n 1/2*sqrt(pi)\n sage: factorial(3/4)\n gamma(7/4)\n sage: factorial(2.3)\n 2.68343738195577\n\n But negative input always fails::\n\n sage: factorial(-32)\n Traceback (most recent call last):\n ...\n ValueError: factorial -- self = (-32) must be nonnegative\n\n TESTS:\n\n We verify that we can convert this function to Maxima and\n bring it back into Sage.::\n\n sage: z = var('z')\n sage: factorial._maxima_init_()\n 'factorial'\n sage: maxima(factorial(z))\n factorial(_SAGE_VAR_z)\n sage: _.sage()\n factorial(z)\n sage: k = var('k')\n sage: factorial(k)\n factorial(k)\n\n sage: factorial(3.14)\n 7.173269190187...\n\n Test latex typesetting::\n\n sage: latex(factorial(x))\n x!\n sage: latex(factorial(2*x))\n \\left(2 \\, x\\right)!\n sage: latex(factorial(sin(x)))\n \\sin\\left(x\\right)!\n sage: latex(factorial(sqrt(x+1)))\n \\left(\\sqrt{x + 1}\\right)!\n sage: latex(factorial(sqrt(x)))\n \\sqrt{x}!\n sage: latex(factorial(x^(2/3)))\n \\left(x^{\\frac{2}{3}}\\right)!\n\n sage: latex(factorial)\n {\\rm factorial}\n\n Check that #11539 is fixed::\n\n sage: (factorial(x) == 0).simplify()\n factorial(x) == 0\n sage: maxima(factorial(x) == 0).sage()\n factorial(x) == 0\n sage: y = var('y')\n sage: (factorial(x) == y).solve(x)\n [factorial(x) == y]\n\n Test pickling::\n\n sage: loads(dumps(factorial))\n factorial\n "
GinacFunction.__init__(self, 'factorial', latex_name='{\\rm factorial}', conversions=dict(maxima='factorial', mathematica='Factorial'))
|
def __init__(self):
"\n Returns the factorial of `n`.\n\n INPUT:\n\n - ``n`` - any complex argument (except negative\n integers) or any symbolic expression\n\n\n OUTPUT: an integer or symbolic expression\n\n EXAMPLES::\n\n sage: x = var('x')\n sage: factorial(0)\n 1\n sage: factorial(4)\n 24\n sage: factorial(10)\n 3628800\n sage: factorial(6) == 6*5*4*3*2\n True\n sage: f = factorial(x + factorial(x)); f\n factorial(x + factorial(x))\n sage: f(x=3)\n 362880\n sage: factorial(x)^2\n factorial(x)^2\n\n To prevent automatic evaluation use the ``hold`` argument::\n\n sage: factorial(5,hold=True)\n factorial(5)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: factorial(5,hold=True).simplify()\n 120\n\n We can also give input other than nonnegative integers. For\n other nonnegative numbers, the :func:`gamma` function is used::\n\n sage: factorial(1/2)\n 1/2*sqrt(pi)\n sage: factorial(3/4)\n gamma(7/4)\n sage: factorial(2.3)\n 2.68343738195577\n\n But negative input always fails::\n\n sage: factorial(-32)\n Traceback (most recent call last):\n ...\n ValueError: factorial -- self = (-32) must be nonnegative\n\n TESTS:\n\n We verify that we can convert this function to Maxima and\n bring it back into Sage.::\n\n sage: z = var('z')\n sage: factorial._maxima_init_()\n 'factorial'\n sage: maxima(factorial(z))\n factorial(_SAGE_VAR_z)\n sage: _.sage()\n factorial(z)\n sage: k = var('k')\n sage: factorial(k)\n factorial(k)\n\n sage: factorial(3.14)\n 7.173269190187...\n\n Test latex typesetting::\n\n sage: latex(factorial(x))\n x!\n sage: latex(factorial(2*x))\n \\left(2 \\, x\\right)!\n sage: latex(factorial(sin(x)))\n \\sin\\left(x\\right)!\n sage: latex(factorial(sqrt(x+1)))\n \\left(\\sqrt{x + 1}\\right)!\n sage: latex(factorial(sqrt(x)))\n \\sqrt{x}!\n sage: latex(factorial(x^(2/3)))\n \\left(x^{\\frac{2}{3}}\\right)!\n\n sage: latex(factorial)\n {\\rm factorial}\n\n Check that #11539 is fixed::\n\n sage: (factorial(x) == 0).simplify()\n factorial(x) == 0\n sage: maxima(factorial(x) == 0).sage()\n factorial(x) == 0\n sage: y = var('y')\n sage: (factorial(x) == y).solve(x)\n [factorial(x) == y]\n\n Test pickling::\n\n sage: loads(dumps(factorial))\n factorial\n "
GinacFunction.__init__(self, 'factorial', latex_name='{\\rm factorial}', conversions=dict(maxima='factorial', mathematica='Factorial'))<|docstring|>Returns the factorial of `n`.
INPUT:
- ``n`` - any complex argument (except negative
integers) or any symbolic expression
OUTPUT: an integer or symbolic expression
EXAMPLES::
sage: x = var('x')
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(6) == 6*5*4*3*2
True
sage: f = factorial(x + factorial(x)); f
factorial(x + factorial(x))
sage: f(x=3)
362880
sage: factorial(x)^2
factorial(x)^2
To prevent automatic evaluation use the ``hold`` argument::
sage: factorial(5,hold=True)
factorial(5)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: factorial(5,hold=True).simplify()
120
We can also give input other than nonnegative integers. For
other nonnegative numbers, the :func:`gamma` function is used::
sage: factorial(1/2)
1/2*sqrt(pi)
sage: factorial(3/4)
gamma(7/4)
sage: factorial(2.3)
2.68343738195577
But negative input always fails::
sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial -- self = (-32) must be nonnegative
TESTS:
We verify that we can convert this function to Maxima and
bring it back into Sage.::
sage: z = var('z')
sage: factorial._maxima_init_()
'factorial'
sage: maxima(factorial(z))
factorial(_SAGE_VAR_z)
sage: _.sage()
factorial(z)
sage: k = var('k')
sage: factorial(k)
factorial(k)
sage: factorial(3.14)
7.173269190187...
Test latex typesetting::
sage: latex(factorial(x))
x!
sage: latex(factorial(2*x))
\left(2 \, x\right)!
sage: latex(factorial(sin(x)))
\sin\left(x\right)!
sage: latex(factorial(sqrt(x+1)))
\left(\sqrt{x + 1}\right)!
sage: latex(factorial(sqrt(x)))
\sqrt{x}!
sage: latex(factorial(x^(2/3)))
\left(x^{\frac{2}{3}}\right)!
sage: latex(factorial)
{\rm factorial}
Check that #11539 is fixed::
sage: (factorial(x) == 0).simplify()
factorial(x) == 0
sage: maxima(factorial(x) == 0).sage()
factorial(x) == 0
sage: y = var('y')
sage: (factorial(x) == y).solve(x)
[factorial(x) == y]
Test pickling::
sage: loads(dumps(factorial))
factorial<|endoftext|>
|
85db1b7ab7f5acbe40b2ad5d424f3313495bbb52b76447a8957048260ce266d5
|
def _eval_(self, x):
"\n Evaluate the factorial function.\n\n Note that this method overrides the eval method defined in GiNaC\n which calls numeric evaluation on all numeric input. We preserve\n exact results if the input is a rational number.\n\n EXAMPLES::\n\n sage: k = var('k')\n sage: k.factorial()\n factorial(k)\n sage: SR(1/2).factorial()\n 1/2*sqrt(pi)\n sage: SR(3/4).factorial()\n gamma(7/4)\n sage: SR(5).factorial()\n 120\n sage: SR(3245908723049857203948572398475r).factorial()\n factorial(3245908723049857203948572398475L)\n sage: SR(3245908723049857203948572398475).factorial()\n factorial(3245908723049857203948572398475)\n "
if isinstance(x, Rational):
return gamma((x + 1))
elif (isinstance(x, (Integer, int)) or ((not isinstance(x, Expression)) and is_inexact(x))):
return py_factorial_py(x)
return None
|
Evaluate the factorial function.
Note that this method overrides the eval method defined in GiNaC
which calls numeric evaluation on all numeric input. We preserve
exact results if the input is a rational number.
EXAMPLES::
sage: k = var('k')
sage: k.factorial()
factorial(k)
sage: SR(1/2).factorial()
1/2*sqrt(pi)
sage: SR(3/4).factorial()
gamma(7/4)
sage: SR(5).factorial()
120
sage: SR(3245908723049857203948572398475r).factorial()
factorial(3245908723049857203948572398475L)
sage: SR(3245908723049857203948572398475).factorial()
factorial(3245908723049857203948572398475)
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, x):
"\n Evaluate the factorial function.\n\n Note that this method overrides the eval method defined in GiNaC\n which calls numeric evaluation on all numeric input. We preserve\n exact results if the input is a rational number.\n\n EXAMPLES::\n\n sage: k = var('k')\n sage: k.factorial()\n factorial(k)\n sage: SR(1/2).factorial()\n 1/2*sqrt(pi)\n sage: SR(3/4).factorial()\n gamma(7/4)\n sage: SR(5).factorial()\n 120\n sage: SR(3245908723049857203948572398475r).factorial()\n factorial(3245908723049857203948572398475L)\n sage: SR(3245908723049857203948572398475).factorial()\n factorial(3245908723049857203948572398475)\n "
if isinstance(x, Rational):
return gamma((x + 1))
elif (isinstance(x, (Integer, int)) or ((not isinstance(x, Expression)) and is_inexact(x))):
return py_factorial_py(x)
return None
|
def _eval_(self, x):
"\n Evaluate the factorial function.\n\n Note that this method overrides the eval method defined in GiNaC\n which calls numeric evaluation on all numeric input. We preserve\n exact results if the input is a rational number.\n\n EXAMPLES::\n\n sage: k = var('k')\n sage: k.factorial()\n factorial(k)\n sage: SR(1/2).factorial()\n 1/2*sqrt(pi)\n sage: SR(3/4).factorial()\n gamma(7/4)\n sage: SR(5).factorial()\n 120\n sage: SR(3245908723049857203948572398475r).factorial()\n factorial(3245908723049857203948572398475L)\n sage: SR(3245908723049857203948572398475).factorial()\n factorial(3245908723049857203948572398475)\n "
if isinstance(x, Rational):
return gamma((x + 1))
elif (isinstance(x, (Integer, int)) or ((not isinstance(x, Expression)) and is_inexact(x))):
return py_factorial_py(x)
return None<|docstring|>Evaluate the factorial function.
Note that this method overrides the eval method defined in GiNaC
which calls numeric evaluation on all numeric input. We preserve
exact results if the input is a rational number.
EXAMPLES::
sage: k = var('k')
sage: k.factorial()
factorial(k)
sage: SR(1/2).factorial()
1/2*sqrt(pi)
sage: SR(3/4).factorial()
gamma(7/4)
sage: SR(5).factorial()
120
sage: SR(3245908723049857203948572398475r).factorial()
factorial(3245908723049857203948572398475L)
sage: SR(3245908723049857203948572398475).factorial()
factorial(3245908723049857203948572398475)<|endoftext|>
|
bb5fe163b43d178d32df53af3e31fa668f839cf545e2fc9010a993a763a1d6d3
|
def __init__(self):
"\n Return the binomial coefficient\n\n .. math::\n\n \\binom{x}{m} = x (x-1) \\cdots (x-m+1) / m!\n\n\n which is defined for `m \\in \\ZZ` and any\n `x`. We extend this definition to include cases when\n `x-m` is an integer but `m` is not by\n\n .. math::\n\n \\binom{x}{m}= \\binom{x}{x-m}\n\n If `m < 0`, return `0`.\n\n INPUT:\n\n - ``x``, ``m`` - numbers or symbolic expressions. Either ``m``\n or ``x-m`` must be an integer, else the output is symbolic.\n\n OUTPUT: number or symbolic expression (if input is symbolic)\n\n EXAMPLES::\n\n sage: binomial(5,2)\n 10\n sage: binomial(2,0)\n 1\n sage: binomial(1/2, 0)\n 1\n sage: binomial(3,-1)\n 0\n sage: binomial(20,10)\n 184756\n sage: binomial(-2, 5)\n -6\n sage: binomial(RealField()('2.5'), 2)\n 1.87500000000000\n sage: n=var('n'); binomial(n,2)\n 1/2*(n - 1)*n\n sage: n=var('n'); binomial(n,n)\n 1\n sage: n=var('n'); binomial(n,n-1)\n n\n sage: binomial(2^100, 2^100)\n 1\n\n ::\n\n sage: k, i = var('k,i')\n sage: binomial(k,i)\n binomial(k, i)\n\n We can use a ``hold`` parameter to prevent automatic evaluation::\n\n sage: SR(5).binomial(3, hold=True)\n binomial(5, 3)\n sage: SR(5).binomial(3, hold=True).simplify()\n 10\n\n TESTS: We verify that we can convert this function to Maxima and\n bring it back into Sage.\n\n ::\n\n sage: n,k = var('n,k')\n sage: maxima(binomial(n,k))\n binomial(_SAGE_VAR_n,_SAGE_VAR_k)\n sage: _.sage()\n binomial(n, k)\n sage: binomial._maxima_init_()\n 'binomial'\n\n Test pickling::\n\n sage: loads(dumps(binomial(n,k)))\n binomial(n, k)\n "
GinacFunction.__init__(self, 'binomial', nargs=2, conversions=dict(maxima='binomial', mathematica='Binomial'))
|
Return the binomial coefficient
.. math::
\binom{x}{m} = x (x-1) \cdots (x-m+1) / m!
which is defined for `m \in \ZZ` and any
`x`. We extend this definition to include cases when
`x-m` is an integer but `m` is not by
.. math::
\binom{x}{m}= \binom{x}{x-m}
If `m < 0`, return `0`.
INPUT:
- ``x``, ``m`` - numbers or symbolic expressions. Either ``m``
or ``x-m`` must be an integer, else the output is symbolic.
OUTPUT: number or symbolic expression (if input is symbolic)
EXAMPLES::
sage: binomial(5,2)
10
sage: binomial(2,0)
1
sage: binomial(1/2, 0)
1
sage: binomial(3,-1)
0
sage: binomial(20,10)
184756
sage: binomial(-2, 5)
-6
sage: binomial(RealField()('2.5'), 2)
1.87500000000000
sage: n=var('n'); binomial(n,2)
1/2*(n - 1)*n
sage: n=var('n'); binomial(n,n)
1
sage: n=var('n'); binomial(n,n-1)
n
sage: binomial(2^100, 2^100)
1
::
sage: k, i = var('k,i')
sage: binomial(k,i)
binomial(k, i)
We can use a ``hold`` parameter to prevent automatic evaluation::
sage: SR(5).binomial(3, hold=True)
binomial(5, 3)
sage: SR(5).binomial(3, hold=True).simplify()
10
TESTS: We verify that we can convert this function to Maxima and
bring it back into Sage.
::
sage: n,k = var('n,k')
sage: maxima(binomial(n,k))
binomial(_SAGE_VAR_n,_SAGE_VAR_k)
sage: _.sage()
binomial(n, k)
sage: binomial._maxima_init_()
'binomial'
Test pickling::
sage: loads(dumps(binomial(n,k)))
binomial(n, k)
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n Return the binomial coefficient\n\n .. math::\n\n \\binom{x}{m} = x (x-1) \\cdots (x-m+1) / m!\n\n\n which is defined for `m \\in \\ZZ` and any\n `x`. We extend this definition to include cases when\n `x-m` is an integer but `m` is not by\n\n .. math::\n\n \\binom{x}{m}= \\binom{x}{x-m}\n\n If `m < 0`, return `0`.\n\n INPUT:\n\n - ``x``, ``m`` - numbers or symbolic expressions. Either ``m``\n or ``x-m`` must be an integer, else the output is symbolic.\n\n OUTPUT: number or symbolic expression (if input is symbolic)\n\n EXAMPLES::\n\n sage: binomial(5,2)\n 10\n sage: binomial(2,0)\n 1\n sage: binomial(1/2, 0)\n 1\n sage: binomial(3,-1)\n 0\n sage: binomial(20,10)\n 184756\n sage: binomial(-2, 5)\n -6\n sage: binomial(RealField()('2.5'), 2)\n 1.87500000000000\n sage: n=var('n'); binomial(n,2)\n 1/2*(n - 1)*n\n sage: n=var('n'); binomial(n,n)\n 1\n sage: n=var('n'); binomial(n,n-1)\n n\n sage: binomial(2^100, 2^100)\n 1\n\n ::\n\n sage: k, i = var('k,i')\n sage: binomial(k,i)\n binomial(k, i)\n\n We can use a ``hold`` parameter to prevent automatic evaluation::\n\n sage: SR(5).binomial(3, hold=True)\n binomial(5, 3)\n sage: SR(5).binomial(3, hold=True).simplify()\n 10\n\n TESTS: We verify that we can convert this function to Maxima and\n bring it back into Sage.\n\n ::\n\n sage: n,k = var('n,k')\n sage: maxima(binomial(n,k))\n binomial(_SAGE_VAR_n,_SAGE_VAR_k)\n sage: _.sage()\n binomial(n, k)\n sage: binomial._maxima_init_()\n 'binomial'\n\n Test pickling::\n\n sage: loads(dumps(binomial(n,k)))\n binomial(n, k)\n "
GinacFunction.__init__(self, 'binomial', nargs=2, conversions=dict(maxima='binomial', mathematica='Binomial'))
|
def __init__(self):
"\n Return the binomial coefficient\n\n .. math::\n\n \\binom{x}{m} = x (x-1) \\cdots (x-m+1) / m!\n\n\n which is defined for `m \\in \\ZZ` and any\n `x`. We extend this definition to include cases when\n `x-m` is an integer but `m` is not by\n\n .. math::\n\n \\binom{x}{m}= \\binom{x}{x-m}\n\n If `m < 0`, return `0`.\n\n INPUT:\n\n - ``x``, ``m`` - numbers or symbolic expressions. Either ``m``\n or ``x-m`` must be an integer, else the output is symbolic.\n\n OUTPUT: number or symbolic expression (if input is symbolic)\n\n EXAMPLES::\n\n sage: binomial(5,2)\n 10\n sage: binomial(2,0)\n 1\n sage: binomial(1/2, 0)\n 1\n sage: binomial(3,-1)\n 0\n sage: binomial(20,10)\n 184756\n sage: binomial(-2, 5)\n -6\n sage: binomial(RealField()('2.5'), 2)\n 1.87500000000000\n sage: n=var('n'); binomial(n,2)\n 1/2*(n - 1)*n\n sage: n=var('n'); binomial(n,n)\n 1\n sage: n=var('n'); binomial(n,n-1)\n n\n sage: binomial(2^100, 2^100)\n 1\n\n ::\n\n sage: k, i = var('k,i')\n sage: binomial(k,i)\n binomial(k, i)\n\n We can use a ``hold`` parameter to prevent automatic evaluation::\n\n sage: SR(5).binomial(3, hold=True)\n binomial(5, 3)\n sage: SR(5).binomial(3, hold=True).simplify()\n 10\n\n TESTS: We verify that we can convert this function to Maxima and\n bring it back into Sage.\n\n ::\n\n sage: n,k = var('n,k')\n sage: maxima(binomial(n,k))\n binomial(_SAGE_VAR_n,_SAGE_VAR_k)\n sage: _.sage()\n binomial(n, k)\n sage: binomial._maxima_init_()\n 'binomial'\n\n Test pickling::\n\n sage: loads(dumps(binomial(n,k)))\n binomial(n, k)\n "
GinacFunction.__init__(self, 'binomial', nargs=2, conversions=dict(maxima='binomial', mathematica='Binomial'))<|docstring|>Return the binomial coefficient
.. math::
\binom{x}{m} = x (x-1) \cdots (x-m+1) / m!
which is defined for `m \in \ZZ` and any
`x`. We extend this definition to include cases when
`x-m` is an integer but `m` is not by
.. math::
\binom{x}{m}= \binom{x}{x-m}
If `m < 0`, return `0`.
INPUT:
- ``x``, ``m`` - numbers or symbolic expressions. Either ``m``
or ``x-m`` must be an integer, else the output is symbolic.
OUTPUT: number or symbolic expression (if input is symbolic)
EXAMPLES::
sage: binomial(5,2)
10
sage: binomial(2,0)
1
sage: binomial(1/2, 0)
1
sage: binomial(3,-1)
0
sage: binomial(20,10)
184756
sage: binomial(-2, 5)
-6
sage: binomial(RealField()('2.5'), 2)
1.87500000000000
sage: n=var('n'); binomial(n,2)
1/2*(n - 1)*n
sage: n=var('n'); binomial(n,n)
1
sage: n=var('n'); binomial(n,n-1)
n
sage: binomial(2^100, 2^100)
1
::
sage: k, i = var('k,i')
sage: binomial(k,i)
binomial(k, i)
We can use a ``hold`` parameter to prevent automatic evaluation::
sage: SR(5).binomial(3, hold=True)
binomial(5, 3)
sage: SR(5).binomial(3, hold=True).simplify()
10
TESTS: We verify that we can convert this function to Maxima and
bring it back into Sage.
::
sage: n,k = var('n,k')
sage: maxima(binomial(n,k))
binomial(_SAGE_VAR_n,_SAGE_VAR_k)
sage: _.sage()
binomial(n, k)
sage: binomial._maxima_init_()
'binomial'
Test pickling::
sage: loads(dumps(binomial(n,k)))
binomial(n, k)<|endoftext|>
|
7be0c68ed8156a2d355c92330c68700465953e77f6c9994e0d8c8c1d7d3f6664
|
def _binomial_sym(self, n, k):
'\n Expand the binomial formula symbolically when the second argument\n is an integer.\n\n EXAMPLES::\n\n sage: binomial._binomial_sym(x, 3)\n 1/6*(x - 1)*(x - 2)*x\n sage: binomial._binomial_sym(x, x)\n Traceback (most recent call last):\n ...\n ValueError: second argument must be an integer\n sage: binomial._binomial_sym(x, SR(3))\n 1/6*(x - 1)*(x - 2)*x\n\n sage: binomial._binomial_sym(x, 0r)\n 1\n sage: binomial._binomial_sym(x, -1)\n 0\n '
if isinstance(k, Expression):
if k.is_integer():
k = k.pyobject()
else:
raise ValueError('second argument must be an integer')
if (k < 0):
return s_parent(k)(0)
if (k == 0):
return s_parent(k)(1)
if (k == 1):
return n
from sage.misc.misc import prod
return (prod([(n - i) for i in xrange(k)]) / factorial(k))
|
Expand the binomial formula symbolically when the second argument
is an integer.
EXAMPLES::
sage: binomial._binomial_sym(x, 3)
1/6*(x - 1)*(x - 2)*x
sage: binomial._binomial_sym(x, x)
Traceback (most recent call last):
...
ValueError: second argument must be an integer
sage: binomial._binomial_sym(x, SR(3))
1/6*(x - 1)*(x - 2)*x
sage: binomial._binomial_sym(x, 0r)
1
sage: binomial._binomial_sym(x, -1)
0
|
src/sage/functions/other.py
|
_binomial_sym
|
drvinceknight/sage
| 2 |
python
|
def _binomial_sym(self, n, k):
'\n Expand the binomial formula symbolically when the second argument\n is an integer.\n\n EXAMPLES::\n\n sage: binomial._binomial_sym(x, 3)\n 1/6*(x - 1)*(x - 2)*x\n sage: binomial._binomial_sym(x, x)\n Traceback (most recent call last):\n ...\n ValueError: second argument must be an integer\n sage: binomial._binomial_sym(x, SR(3))\n 1/6*(x - 1)*(x - 2)*x\n\n sage: binomial._binomial_sym(x, 0r)\n 1\n sage: binomial._binomial_sym(x, -1)\n 0\n '
if isinstance(k, Expression):
if k.is_integer():
k = k.pyobject()
else:
raise ValueError('second argument must be an integer')
if (k < 0):
return s_parent(k)(0)
if (k == 0):
return s_parent(k)(1)
if (k == 1):
return n
from sage.misc.misc import prod
return (prod([(n - i) for i in xrange(k)]) / factorial(k))
|
def _binomial_sym(self, n, k):
'\n Expand the binomial formula symbolically when the second argument\n is an integer.\n\n EXAMPLES::\n\n sage: binomial._binomial_sym(x, 3)\n 1/6*(x - 1)*(x - 2)*x\n sage: binomial._binomial_sym(x, x)\n Traceback (most recent call last):\n ...\n ValueError: second argument must be an integer\n sage: binomial._binomial_sym(x, SR(3))\n 1/6*(x - 1)*(x - 2)*x\n\n sage: binomial._binomial_sym(x, 0r)\n 1\n sage: binomial._binomial_sym(x, -1)\n 0\n '
if isinstance(k, Expression):
if k.is_integer():
k = k.pyobject()
else:
raise ValueError('second argument must be an integer')
if (k < 0):
return s_parent(k)(0)
if (k == 0):
return s_parent(k)(1)
if (k == 1):
return n
from sage.misc.misc import prod
return (prod([(n - i) for i in xrange(k)]) / factorial(k))<|docstring|>Expand the binomial formula symbolically when the second argument
is an integer.
EXAMPLES::
sage: binomial._binomial_sym(x, 3)
1/6*(x - 1)*(x - 2)*x
sage: binomial._binomial_sym(x, x)
Traceback (most recent call last):
...
ValueError: second argument must be an integer
sage: binomial._binomial_sym(x, SR(3))
1/6*(x - 1)*(x - 2)*x
sage: binomial._binomial_sym(x, 0r)
1
sage: binomial._binomial_sym(x, -1)
0<|endoftext|>
|
71a2b9462c12fd755d22e9407b3e47321ba68173ab498ad1e01940d29c7fb0f7
|
def _eval_(self, n, k):
"\n EXAMPLES::\n\n sage: binomial._eval_(5, 3)\n 10\n sage: type(binomial._eval_(5, 3))\n <type 'sage.rings.integer.Integer'>\n sage: type(binomial._eval_(5., 3))\n <type 'sage.rings.real_mpfr.RealNumber'>\n sage: binomial._eval_(x, 3)\n 1/6*(x - 1)*(x - 2)*x\n sage: binomial._eval_(x, x-2)\n 1/2*(x - 1)*x\n sage: n = var('n')\n sage: binomial._eval_(x, n) is None\n True\n "
if (not isinstance(k, Expression)):
if (not isinstance(n, Expression)):
(n, k) = coercion_model.canonical_coercion(n, k)
return self._evalf_(n, k, s_parent(n))
if (k in ZZ):
return self._binomial_sym(n, k)
if ((n - k) in ZZ):
return self._binomial_sym(n, (n - k))
return None
|
EXAMPLES::
sage: binomial._eval_(5, 3)
10
sage: type(binomial._eval_(5, 3))
<type 'sage.rings.integer.Integer'>
sage: type(binomial._eval_(5., 3))
<type 'sage.rings.real_mpfr.RealNumber'>
sage: binomial._eval_(x, 3)
1/6*(x - 1)*(x - 2)*x
sage: binomial._eval_(x, x-2)
1/2*(x - 1)*x
sage: n = var('n')
sage: binomial._eval_(x, n) is None
True
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, n, k):
"\n EXAMPLES::\n\n sage: binomial._eval_(5, 3)\n 10\n sage: type(binomial._eval_(5, 3))\n <type 'sage.rings.integer.Integer'>\n sage: type(binomial._eval_(5., 3))\n <type 'sage.rings.real_mpfr.RealNumber'>\n sage: binomial._eval_(x, 3)\n 1/6*(x - 1)*(x - 2)*x\n sage: binomial._eval_(x, x-2)\n 1/2*(x - 1)*x\n sage: n = var('n')\n sage: binomial._eval_(x, n) is None\n True\n "
if (not isinstance(k, Expression)):
if (not isinstance(n, Expression)):
(n, k) = coercion_model.canonical_coercion(n, k)
return self._evalf_(n, k, s_parent(n))
if (k in ZZ):
return self._binomial_sym(n, k)
if ((n - k) in ZZ):
return self._binomial_sym(n, (n - k))
return None
|
def _eval_(self, n, k):
"\n EXAMPLES::\n\n sage: binomial._eval_(5, 3)\n 10\n sage: type(binomial._eval_(5, 3))\n <type 'sage.rings.integer.Integer'>\n sage: type(binomial._eval_(5., 3))\n <type 'sage.rings.real_mpfr.RealNumber'>\n sage: binomial._eval_(x, 3)\n 1/6*(x - 1)*(x - 2)*x\n sage: binomial._eval_(x, x-2)\n 1/2*(x - 1)*x\n sage: n = var('n')\n sage: binomial._eval_(x, n) is None\n True\n "
if (not isinstance(k, Expression)):
if (not isinstance(n, Expression)):
(n, k) = coercion_model.canonical_coercion(n, k)
return self._evalf_(n, k, s_parent(n))
if (k in ZZ):
return self._binomial_sym(n, k)
if ((n - k) in ZZ):
return self._binomial_sym(n, (n - k))
return None<|docstring|>EXAMPLES::
sage: binomial._eval_(5, 3)
10
sage: type(binomial._eval_(5, 3))
<type 'sage.rings.integer.Integer'>
sage: type(binomial._eval_(5., 3))
<type 'sage.rings.real_mpfr.RealNumber'>
sage: binomial._eval_(x, 3)
1/6*(x - 1)*(x - 2)*x
sage: binomial._eval_(x, x-2)
1/2*(x - 1)*x
sage: n = var('n')
sage: binomial._eval_(x, n) is None
True<|endoftext|>
|
9a938ea4b498c00b8cc07b4ba49931dc5be7a014f4594c0c11e893ebe39e1519
|
def _evalf_(self, n, k, parent=None, algorithm=None):
"\n EXAMPLES::\n\n sage: binomial._evalf_(5.r, 3)\n 10.0\n sage: type(binomial._evalf_(5.r, 3))\n <type 'float'>\n sage: binomial._evalf_(1/2,1/1)\n 1/2\n sage: binomial._evalf_(10^20+1/1,10^20)\n 100000000000000000001\n sage: binomial._evalf_(SR(10**7),10**7)\n 1\n sage: binomial._evalf_(3/2,SR(1/1))\n 3/2\n "
return sage.rings.arith.binomial(n, k)
|
EXAMPLES::
sage: binomial._evalf_(5.r, 3)
10.0
sage: type(binomial._evalf_(5.r, 3))
<type 'float'>
sage: binomial._evalf_(1/2,1/1)
1/2
sage: binomial._evalf_(10^20+1/1,10^20)
100000000000000000001
sage: binomial._evalf_(SR(10**7),10**7)
1
sage: binomial._evalf_(3/2,SR(1/1))
3/2
|
src/sage/functions/other.py
|
_evalf_
|
drvinceknight/sage
| 2 |
python
|
def _evalf_(self, n, k, parent=None, algorithm=None):
"\n EXAMPLES::\n\n sage: binomial._evalf_(5.r, 3)\n 10.0\n sage: type(binomial._evalf_(5.r, 3))\n <type 'float'>\n sage: binomial._evalf_(1/2,1/1)\n 1/2\n sage: binomial._evalf_(10^20+1/1,10^20)\n 100000000000000000001\n sage: binomial._evalf_(SR(10**7),10**7)\n 1\n sage: binomial._evalf_(3/2,SR(1/1))\n 3/2\n "
return sage.rings.arith.binomial(n, k)
|
def _evalf_(self, n, k, parent=None, algorithm=None):
"\n EXAMPLES::\n\n sage: binomial._evalf_(5.r, 3)\n 10.0\n sage: type(binomial._evalf_(5.r, 3))\n <type 'float'>\n sage: binomial._evalf_(1/2,1/1)\n 1/2\n sage: binomial._evalf_(10^20+1/1,10^20)\n 100000000000000000001\n sage: binomial._evalf_(SR(10**7),10**7)\n 1\n sage: binomial._evalf_(3/2,SR(1/1))\n 3/2\n "
return sage.rings.arith.binomial(n, k)<|docstring|>EXAMPLES::
sage: binomial._evalf_(5.r, 3)
10.0
sage: type(binomial._evalf_(5.r, 3))
<type 'float'>
sage: binomial._evalf_(1/2,1/1)
1/2
sage: binomial._evalf_(10^20+1/1,10^20)
100000000000000000001
sage: binomial._evalf_(SR(10**7),10**7)
1
sage: binomial._evalf_(3/2,SR(1/1))
3/2<|endoftext|>
|
e6cb1496a62799cf3214e2b37db74add92cb7e1763f7cc4e60616f82e8de6bab
|
def __init__(self):
'\n Return the beta function. This is defined by\n\n .. math::\n\n B(p,q) = \\int_0^1 t^{p-1}(1-t)^{1-q} dt\n\n for complex or symbolic input `p` and `q`.\n Note that the order of inputs does not matter: `B(p,q)=B(q,p)`.\n\n GiNaC is used to compute `B(p,q)`. However, complex inputs\n are not yet handled in general. When GiNaC raises an error on\n such inputs, we raise a NotImplementedError.\n\n If either input is 1, GiNaC returns the reciprocal of the\n other. In other cases, GiNaC uses one of the following\n formulas:\n\n .. math::\n\n B(p,q) = \\Gamma(p)\\Gamma(q)/\\Gamma(p+q)\n\n or\n\n .. math::\n\n B(p,q) = (-1)^q B(1-p-q, q).\n\n\n For numerical inputs, GiNaC uses the formula\n\n .. math::\n\n B(p,q) = \\exp[\\log\\Gamma(p)+\\log\\Gamma(q)-\\log\\Gamma(p+q)]\n\n\n INPUT:\n\n - ``p`` - number or symbolic expression\n\n - ``q`` - number or symbolic expression\n\n\n OUTPUT: number or symbolic expression (if input is symbolic)\n\n EXAMPLES::\n\n sage: beta(3,2)\n 1/12\n sage: beta(3,1)\n 1/3\n sage: beta(1/2,1/2)\n beta(1/2, 1/2)\n sage: beta(-1,1)\n -1\n sage: beta(-1/2,-1/2)\n 0\n sage: beta(x/2,3)\n beta(3, 1/2*x)\n sage: beta(.5,.5)\n 3.14159265358979\n sage: beta(1,2.0+I)\n 0.400000000000000 - 0.200000000000000*I\n sage: beta(3,x+I)\n beta(3, x + I)\n\n Note that the order of arguments does not matter::\n\n sage: beta(1/2,3*x)\n beta(1/2, 3*x)\n\n The result is symbolic if exact input is given::\n\n sage: beta(2,1+5*I)\n beta(2, 5*I + 1)\n sage: beta(2, 2.)\n 0.166666666666667\n sage: beta(I, 2.)\n -0.500000000000000 - 0.500000000000000*I\n sage: beta(2., 2)\n 0.166666666666667\n sage: beta(2., I)\n -0.500000000000000 - 0.500000000000000*I\n\n Test pickling::\n\n sage: loads(dumps(beta))\n beta\n '
GinacFunction.__init__(self, 'beta', nargs=2, conversions=dict(maxima='beta', mathematica='Beta'))
|
Return the beta function. This is defined by
.. math::
B(p,q) = \int_0^1 t^{p-1}(1-t)^{1-q} dt
for complex or symbolic input `p` and `q`.
Note that the order of inputs does not matter: `B(p,q)=B(q,p)`.
GiNaC is used to compute `B(p,q)`. However, complex inputs
are not yet handled in general. When GiNaC raises an error on
such inputs, we raise a NotImplementedError.
If either input is 1, GiNaC returns the reciprocal of the
other. In other cases, GiNaC uses one of the following
formulas:
.. math::
B(p,q) = \Gamma(p)\Gamma(q)/\Gamma(p+q)
or
.. math::
B(p,q) = (-1)^q B(1-p-q, q).
For numerical inputs, GiNaC uses the formula
.. math::
B(p,q) = \exp[\log\Gamma(p)+\log\Gamma(q)-\log\Gamma(p+q)]
INPUT:
- ``p`` - number or symbolic expression
- ``q`` - number or symbolic expression
OUTPUT: number or symbolic expression (if input is symbolic)
EXAMPLES::
sage: beta(3,2)
1/12
sage: beta(3,1)
1/3
sage: beta(1/2,1/2)
beta(1/2, 1/2)
sage: beta(-1,1)
-1
sage: beta(-1/2,-1/2)
0
sage: beta(x/2,3)
beta(3, 1/2*x)
sage: beta(.5,.5)
3.14159265358979
sage: beta(1,2.0+I)
0.400000000000000 - 0.200000000000000*I
sage: beta(3,x+I)
beta(3, x + I)
Note that the order of arguments does not matter::
sage: beta(1/2,3*x)
beta(1/2, 3*x)
The result is symbolic if exact input is given::
sage: beta(2,1+5*I)
beta(2, 5*I + 1)
sage: beta(2, 2.)
0.166666666666667
sage: beta(I, 2.)
-0.500000000000000 - 0.500000000000000*I
sage: beta(2., 2)
0.166666666666667
sage: beta(2., I)
-0.500000000000000 - 0.500000000000000*I
Test pickling::
sage: loads(dumps(beta))
beta
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
'\n Return the beta function. This is defined by\n\n .. math::\n\n B(p,q) = \\int_0^1 t^{p-1}(1-t)^{1-q} dt\n\n for complex or symbolic input `p` and `q`.\n Note that the order of inputs does not matter: `B(p,q)=B(q,p)`.\n\n GiNaC is used to compute `B(p,q)`. However, complex inputs\n are not yet handled in general. When GiNaC raises an error on\n such inputs, we raise a NotImplementedError.\n\n If either input is 1, GiNaC returns the reciprocal of the\n other. In other cases, GiNaC uses one of the following\n formulas:\n\n .. math::\n\n B(p,q) = \\Gamma(p)\\Gamma(q)/\\Gamma(p+q)\n\n or\n\n .. math::\n\n B(p,q) = (-1)^q B(1-p-q, q).\n\n\n For numerical inputs, GiNaC uses the formula\n\n .. math::\n\n B(p,q) = \\exp[\\log\\Gamma(p)+\\log\\Gamma(q)-\\log\\Gamma(p+q)]\n\n\n INPUT:\n\n - ``p`` - number or symbolic expression\n\n - ``q`` - number or symbolic expression\n\n\n OUTPUT: number or symbolic expression (if input is symbolic)\n\n EXAMPLES::\n\n sage: beta(3,2)\n 1/12\n sage: beta(3,1)\n 1/3\n sage: beta(1/2,1/2)\n beta(1/2, 1/2)\n sage: beta(-1,1)\n -1\n sage: beta(-1/2,-1/2)\n 0\n sage: beta(x/2,3)\n beta(3, 1/2*x)\n sage: beta(.5,.5)\n 3.14159265358979\n sage: beta(1,2.0+I)\n 0.400000000000000 - 0.200000000000000*I\n sage: beta(3,x+I)\n beta(3, x + I)\n\n Note that the order of arguments does not matter::\n\n sage: beta(1/2,3*x)\n beta(1/2, 3*x)\n\n The result is symbolic if exact input is given::\n\n sage: beta(2,1+5*I)\n beta(2, 5*I + 1)\n sage: beta(2, 2.)\n 0.166666666666667\n sage: beta(I, 2.)\n -0.500000000000000 - 0.500000000000000*I\n sage: beta(2., 2)\n 0.166666666666667\n sage: beta(2., I)\n -0.500000000000000 - 0.500000000000000*I\n\n Test pickling::\n\n sage: loads(dumps(beta))\n beta\n '
GinacFunction.__init__(self, 'beta', nargs=2, conversions=dict(maxima='beta', mathematica='Beta'))
|
def __init__(self):
'\n Return the beta function. This is defined by\n\n .. math::\n\n B(p,q) = \\int_0^1 t^{p-1}(1-t)^{1-q} dt\n\n for complex or symbolic input `p` and `q`.\n Note that the order of inputs does not matter: `B(p,q)=B(q,p)`.\n\n GiNaC is used to compute `B(p,q)`. However, complex inputs\n are not yet handled in general. When GiNaC raises an error on\n such inputs, we raise a NotImplementedError.\n\n If either input is 1, GiNaC returns the reciprocal of the\n other. In other cases, GiNaC uses one of the following\n formulas:\n\n .. math::\n\n B(p,q) = \\Gamma(p)\\Gamma(q)/\\Gamma(p+q)\n\n or\n\n .. math::\n\n B(p,q) = (-1)^q B(1-p-q, q).\n\n\n For numerical inputs, GiNaC uses the formula\n\n .. math::\n\n B(p,q) = \\exp[\\log\\Gamma(p)+\\log\\Gamma(q)-\\log\\Gamma(p+q)]\n\n\n INPUT:\n\n - ``p`` - number or symbolic expression\n\n - ``q`` - number or symbolic expression\n\n\n OUTPUT: number or symbolic expression (if input is symbolic)\n\n EXAMPLES::\n\n sage: beta(3,2)\n 1/12\n sage: beta(3,1)\n 1/3\n sage: beta(1/2,1/2)\n beta(1/2, 1/2)\n sage: beta(-1,1)\n -1\n sage: beta(-1/2,-1/2)\n 0\n sage: beta(x/2,3)\n beta(3, 1/2*x)\n sage: beta(.5,.5)\n 3.14159265358979\n sage: beta(1,2.0+I)\n 0.400000000000000 - 0.200000000000000*I\n sage: beta(3,x+I)\n beta(3, x + I)\n\n Note that the order of arguments does not matter::\n\n sage: beta(1/2,3*x)\n beta(1/2, 3*x)\n\n The result is symbolic if exact input is given::\n\n sage: beta(2,1+5*I)\n beta(2, 5*I + 1)\n sage: beta(2, 2.)\n 0.166666666666667\n sage: beta(I, 2.)\n -0.500000000000000 - 0.500000000000000*I\n sage: beta(2., 2)\n 0.166666666666667\n sage: beta(2., I)\n -0.500000000000000 - 0.500000000000000*I\n\n Test pickling::\n\n sage: loads(dumps(beta))\n beta\n '
GinacFunction.__init__(self, 'beta', nargs=2, conversions=dict(maxima='beta', mathematica='Beta'))<|docstring|>Return the beta function. This is defined by
.. math::
B(p,q) = \int_0^1 t^{p-1}(1-t)^{1-q} dt
for complex or symbolic input `p` and `q`.
Note that the order of inputs does not matter: `B(p,q)=B(q,p)`.
GiNaC is used to compute `B(p,q)`. However, complex inputs
are not yet handled in general. When GiNaC raises an error on
such inputs, we raise a NotImplementedError.
If either input is 1, GiNaC returns the reciprocal of the
other. In other cases, GiNaC uses one of the following
formulas:
.. math::
B(p,q) = \Gamma(p)\Gamma(q)/\Gamma(p+q)
or
.. math::
B(p,q) = (-1)^q B(1-p-q, q).
For numerical inputs, GiNaC uses the formula
.. math::
B(p,q) = \exp[\log\Gamma(p)+\log\Gamma(q)-\log\Gamma(p+q)]
INPUT:
- ``p`` - number or symbolic expression
- ``q`` - number or symbolic expression
OUTPUT: number or symbolic expression (if input is symbolic)
EXAMPLES::
sage: beta(3,2)
1/12
sage: beta(3,1)
1/3
sage: beta(1/2,1/2)
beta(1/2, 1/2)
sage: beta(-1,1)
-1
sage: beta(-1/2,-1/2)
0
sage: beta(x/2,3)
beta(3, 1/2*x)
sage: beta(.5,.5)
3.14159265358979
sage: beta(1,2.0+I)
0.400000000000000 - 0.200000000000000*I
sage: beta(3,x+I)
beta(3, x + I)
Note that the order of arguments does not matter::
sage: beta(1/2,3*x)
beta(1/2, 3*x)
The result is symbolic if exact input is given::
sage: beta(2,1+5*I)
beta(2, 5*I + 1)
sage: beta(2, 2.)
0.166666666666667
sage: beta(I, 2.)
-0.500000000000000 - 0.500000000000000*I
sage: beta(2., 2)
0.166666666666667
sage: beta(2., I)
-0.500000000000000 - 0.500000000000000*I
Test pickling::
sage: loads(dumps(beta))
beta<|endoftext|>
|
a42a164081fedb91da8c4961cd41b6a10ec1c49c3a248af3537c8b79676dca36
|
def __init__(self):
'\n The argument function for complex numbers.\n\n EXAMPLES::\n\n sage: arg(3+i)\n arctan(1/3)\n sage: arg(-1+i)\n 3/4*pi\n sage: arg(2+2*i)\n 1/4*pi\n sage: arg(2+x)\n arg(x + 2)\n sage: arg(2.0+i+x)\n arg(x + 2.00000000000000 + 1.00000000000000*I)\n sage: arg(-3)\n pi\n sage: arg(3)\n 0\n sage: arg(0)\n 0\n sage: latex(arg(x))\n {\\rm arg}\\left(x\\right)\n sage: maxima(arg(x))\n atan2(0,_SAGE_VAR_x)\n sage: maxima(arg(2+i))\n atan(1/2)\n sage: maxima(arg(sqrt(2)+i))\n atan(1/sqrt(2))\n sage: arg(2+i)\n arctan(1/2)\n sage: arg(sqrt(2)+i)\n arg(sqrt(2) + I)\n sage: arg(sqrt(2)+i).simplify()\n arctan(1/2*sqrt(2))\n\n TESTS::\n\n sage: arg(0.0)\n 0.000000000000000\n sage: arg(3.0)\n 0.000000000000000\n sage: arg(-2.5)\n 3.14159265358979\n sage: arg(2.0+3*i)\n 0.982793723247329\n '
BuiltinFunction.__init__(self, 'arg', conversions=dict(maxima='carg', mathematica='Arg'))
|
The argument function for complex numbers.
EXAMPLES::
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i+x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
pi
sage: arg(3)
0
sage: arg(0)
0
sage: latex(arg(x))
{\rm arg}\left(x\right)
sage: maxima(arg(x))
atan2(0,_SAGE_VAR_x)
sage: maxima(arg(2+i))
atan(1/2)
sage: maxima(arg(sqrt(2)+i))
atan(1/sqrt(2))
sage: arg(2+i)
arctan(1/2)
sage: arg(sqrt(2)+i)
arg(sqrt(2) + I)
sage: arg(sqrt(2)+i).simplify()
arctan(1/2*sqrt(2))
TESTS::
sage: arg(0.0)
0.000000000000000
sage: arg(3.0)
0.000000000000000
sage: arg(-2.5)
3.14159265358979
sage: arg(2.0+3*i)
0.982793723247329
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
'\n The argument function for complex numbers.\n\n EXAMPLES::\n\n sage: arg(3+i)\n arctan(1/3)\n sage: arg(-1+i)\n 3/4*pi\n sage: arg(2+2*i)\n 1/4*pi\n sage: arg(2+x)\n arg(x + 2)\n sage: arg(2.0+i+x)\n arg(x + 2.00000000000000 + 1.00000000000000*I)\n sage: arg(-3)\n pi\n sage: arg(3)\n 0\n sage: arg(0)\n 0\n sage: latex(arg(x))\n {\\rm arg}\\left(x\\right)\n sage: maxima(arg(x))\n atan2(0,_SAGE_VAR_x)\n sage: maxima(arg(2+i))\n atan(1/2)\n sage: maxima(arg(sqrt(2)+i))\n atan(1/sqrt(2))\n sage: arg(2+i)\n arctan(1/2)\n sage: arg(sqrt(2)+i)\n arg(sqrt(2) + I)\n sage: arg(sqrt(2)+i).simplify()\n arctan(1/2*sqrt(2))\n\n TESTS::\n\n sage: arg(0.0)\n 0.000000000000000\n sage: arg(3.0)\n 0.000000000000000\n sage: arg(-2.5)\n 3.14159265358979\n sage: arg(2.0+3*i)\n 0.982793723247329\n '
BuiltinFunction.__init__(self, 'arg', conversions=dict(maxima='carg', mathematica='Arg'))
|
def __init__(self):
'\n The argument function for complex numbers.\n\n EXAMPLES::\n\n sage: arg(3+i)\n arctan(1/3)\n sage: arg(-1+i)\n 3/4*pi\n sage: arg(2+2*i)\n 1/4*pi\n sage: arg(2+x)\n arg(x + 2)\n sage: arg(2.0+i+x)\n arg(x + 2.00000000000000 + 1.00000000000000*I)\n sage: arg(-3)\n pi\n sage: arg(3)\n 0\n sage: arg(0)\n 0\n sage: latex(arg(x))\n {\\rm arg}\\left(x\\right)\n sage: maxima(arg(x))\n atan2(0,_SAGE_VAR_x)\n sage: maxima(arg(2+i))\n atan(1/2)\n sage: maxima(arg(sqrt(2)+i))\n atan(1/sqrt(2))\n sage: arg(2+i)\n arctan(1/2)\n sage: arg(sqrt(2)+i)\n arg(sqrt(2) + I)\n sage: arg(sqrt(2)+i).simplify()\n arctan(1/2*sqrt(2))\n\n TESTS::\n\n sage: arg(0.0)\n 0.000000000000000\n sage: arg(3.0)\n 0.000000000000000\n sage: arg(-2.5)\n 3.14159265358979\n sage: arg(2.0+3*i)\n 0.982793723247329\n '
BuiltinFunction.__init__(self, 'arg', conversions=dict(maxima='carg', mathematica='Arg'))<|docstring|>The argument function for complex numbers.
EXAMPLES::
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i+x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
pi
sage: arg(3)
0
sage: arg(0)
0
sage: latex(arg(x))
{\rm arg}\left(x\right)
sage: maxima(arg(x))
atan2(0,_SAGE_VAR_x)
sage: maxima(arg(2+i))
atan(1/2)
sage: maxima(arg(sqrt(2)+i))
atan(1/sqrt(2))
sage: arg(2+i)
arctan(1/2)
sage: arg(sqrt(2)+i)
arg(sqrt(2) + I)
sage: arg(sqrt(2)+i).simplify()
arctan(1/2*sqrt(2))
TESTS::
sage: arg(0.0)
0.000000000000000
sage: arg(3.0)
0.000000000000000
sage: arg(-2.5)
3.14159265358979
sage: arg(2.0+3*i)
0.982793723247329<|endoftext|>
|
ab4fa236a9aca7e064f5db3490d9ddcab2c71f5993dc1a9cbcb468192f6e2f9a
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: arg(3+i)\n arctan(1/3)\n sage: arg(-1+i)\n 3/4*pi\n sage: arg(2+2*i)\n 1/4*pi\n sage: arg(2+x)\n arg(x + 2)\n sage: arg(2.0+i+x)\n arg(x + 2.00000000000000 + 1.00000000000000*I)\n sage: arg(-3)\n pi\n sage: arg(3)\n 0\n sage: arg(0)\n 0\n sage: arg(sqrt(2)+i)\n arg(sqrt(2) + I)\n\n '
if (not isinstance(x, Expression)):
if (s_parent(x)(0) == x):
return s_parent(x)(0)
elif is_inexact(x):
return self._evalf_(x, s_parent(x))
else:
return arctan2(imag_part(x), real_part(x))
else:
return None
|
EXAMPLES::
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i+x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
pi
sage: arg(3)
0
sage: arg(0)
0
sage: arg(sqrt(2)+i)
arg(sqrt(2) + I)
|
src/sage/functions/other.py
|
_eval_
|
drvinceknight/sage
| 2 |
python
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: arg(3+i)\n arctan(1/3)\n sage: arg(-1+i)\n 3/4*pi\n sage: arg(2+2*i)\n 1/4*pi\n sage: arg(2+x)\n arg(x + 2)\n sage: arg(2.0+i+x)\n arg(x + 2.00000000000000 + 1.00000000000000*I)\n sage: arg(-3)\n pi\n sage: arg(3)\n 0\n sage: arg(0)\n 0\n sage: arg(sqrt(2)+i)\n arg(sqrt(2) + I)\n\n '
if (not isinstance(x, Expression)):
if (s_parent(x)(0) == x):
return s_parent(x)(0)
elif is_inexact(x):
return self._evalf_(x, s_parent(x))
else:
return arctan2(imag_part(x), real_part(x))
else:
return None
|
def _eval_(self, x):
'\n EXAMPLES::\n\n sage: arg(3+i)\n arctan(1/3)\n sage: arg(-1+i)\n 3/4*pi\n sage: arg(2+2*i)\n 1/4*pi\n sage: arg(2+x)\n arg(x + 2)\n sage: arg(2.0+i+x)\n arg(x + 2.00000000000000 + 1.00000000000000*I)\n sage: arg(-3)\n pi\n sage: arg(3)\n 0\n sage: arg(0)\n 0\n sage: arg(sqrt(2)+i)\n arg(sqrt(2) + I)\n\n '
if (not isinstance(x, Expression)):
if (s_parent(x)(0) == x):
return s_parent(x)(0)
elif is_inexact(x):
return self._evalf_(x, s_parent(x))
else:
return arctan2(imag_part(x), real_part(x))
else:
return None<|docstring|>EXAMPLES::
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i+x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
pi
sage: arg(3)
0
sage: arg(0)
0
sage: arg(sqrt(2)+i)
arg(sqrt(2) + I)<|endoftext|>
|
a81382eb56f2ae8335f6b3f76716ccbc93197d8c73d2f5ce45b3e9779eaf02c1
|
def _evalf_(self, x, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: arg(0.0)\n 0.000000000000000\n sage: arg(3.0)\n 0.000000000000000\n sage: arg(3.00000000000000000000000000)\n 0.00000000000000000000000000\n sage: arg(3.00000000000000000000000000).prec()\n 90\n sage: arg(ComplexIntervalField(90)(3)).prec()\n 90\n sage: arg(ComplexIntervalField(90)(3)).parent()\n Real Interval Field with 90 bits of precision\n sage: arg(3.0r)\n 0.0\n sage: arg(RDF(3))\n 0.0\n sage: arg(RDF(3)).parent()\n Real Double Field\n sage: arg(-2.5)\n 3.14159265358979\n sage: arg(2.0+3*i)\n 0.982793723247329\n\n TESTS:\n\n Make sure that the ``_evalf_`` method works when it receives a\n keyword argument ``parent`` :trac:`12289`::\n\n sage: arg(5+I, hold=True).n()\n 0.197395559849881\n '
try:
return x.arg()
except AttributeError:
pass
if (parent is None):
parent = s_parent(x)
try:
parent = parent.complex_field()
except AttributeError:
from sage.rings.complex_field import ComplexField
try:
parent = ComplexField(x.prec())
except AttributeError:
parent = ComplexField()
return parent(x).arg()
|
EXAMPLES::
sage: arg(0.0)
0.000000000000000
sage: arg(3.0)
0.000000000000000
sage: arg(3.00000000000000000000000000)
0.00000000000000000000000000
sage: arg(3.00000000000000000000000000).prec()
90
sage: arg(ComplexIntervalField(90)(3)).prec()
90
sage: arg(ComplexIntervalField(90)(3)).parent()
Real Interval Field with 90 bits of precision
sage: arg(3.0r)
0.0
sage: arg(RDF(3))
0.0
sage: arg(RDF(3)).parent()
Real Double Field
sage: arg(-2.5)
3.14159265358979
sage: arg(2.0+3*i)
0.982793723247329
TESTS:
Make sure that the ``_evalf_`` method works when it receives a
keyword argument ``parent`` :trac:`12289`::
sage: arg(5+I, hold=True).n()
0.197395559849881
|
src/sage/functions/other.py
|
_evalf_
|
drvinceknight/sage
| 2 |
python
|
def _evalf_(self, x, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: arg(0.0)\n 0.000000000000000\n sage: arg(3.0)\n 0.000000000000000\n sage: arg(3.00000000000000000000000000)\n 0.00000000000000000000000000\n sage: arg(3.00000000000000000000000000).prec()\n 90\n sage: arg(ComplexIntervalField(90)(3)).prec()\n 90\n sage: arg(ComplexIntervalField(90)(3)).parent()\n Real Interval Field with 90 bits of precision\n sage: arg(3.0r)\n 0.0\n sage: arg(RDF(3))\n 0.0\n sage: arg(RDF(3)).parent()\n Real Double Field\n sage: arg(-2.5)\n 3.14159265358979\n sage: arg(2.0+3*i)\n 0.982793723247329\n\n TESTS:\n\n Make sure that the ``_evalf_`` method works when it receives a\n keyword argument ``parent`` :trac:`12289`::\n\n sage: arg(5+I, hold=True).n()\n 0.197395559849881\n '
try:
return x.arg()
except AttributeError:
pass
if (parent is None):
parent = s_parent(x)
try:
parent = parent.complex_field()
except AttributeError:
from sage.rings.complex_field import ComplexField
try:
parent = ComplexField(x.prec())
except AttributeError:
parent = ComplexField()
return parent(x).arg()
|
def _evalf_(self, x, parent=None, algorithm=None):
'\n EXAMPLES::\n\n sage: arg(0.0)\n 0.000000000000000\n sage: arg(3.0)\n 0.000000000000000\n sage: arg(3.00000000000000000000000000)\n 0.00000000000000000000000000\n sage: arg(3.00000000000000000000000000).prec()\n 90\n sage: arg(ComplexIntervalField(90)(3)).prec()\n 90\n sage: arg(ComplexIntervalField(90)(3)).parent()\n Real Interval Field with 90 bits of precision\n sage: arg(3.0r)\n 0.0\n sage: arg(RDF(3))\n 0.0\n sage: arg(RDF(3)).parent()\n Real Double Field\n sage: arg(-2.5)\n 3.14159265358979\n sage: arg(2.0+3*i)\n 0.982793723247329\n\n TESTS:\n\n Make sure that the ``_evalf_`` method works when it receives a\n keyword argument ``parent`` :trac:`12289`::\n\n sage: arg(5+I, hold=True).n()\n 0.197395559849881\n '
try:
return x.arg()
except AttributeError:
pass
if (parent is None):
parent = s_parent(x)
try:
parent = parent.complex_field()
except AttributeError:
from sage.rings.complex_field import ComplexField
try:
parent = ComplexField(x.prec())
except AttributeError:
parent = ComplexField()
return parent(x).arg()<|docstring|>EXAMPLES::
sage: arg(0.0)
0.000000000000000
sage: arg(3.0)
0.000000000000000
sage: arg(3.00000000000000000000000000)
0.00000000000000000000000000
sage: arg(3.00000000000000000000000000).prec()
90
sage: arg(ComplexIntervalField(90)(3)).prec()
90
sage: arg(ComplexIntervalField(90)(3)).parent()
Real Interval Field with 90 bits of precision
sage: arg(3.0r)
0.0
sage: arg(RDF(3))
0.0
sage: arg(RDF(3)).parent()
Real Double Field
sage: arg(-2.5)
3.14159265358979
sage: arg(2.0+3*i)
0.982793723247329
TESTS:
Make sure that the ``_evalf_`` method works when it receives a
keyword argument ``parent`` :trac:`12289`::
sage: arg(5+I, hold=True).n()
0.197395559849881<|endoftext|>
|
61a01c6a45c47e129e42995af3d1f664b4719ff884c5c481b17276c7aa2ab4ff
|
def __init__(self):
"\n Returns the real part of the (possibly complex) input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: real_part(I,hold=True)\n real_part(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: real_part(I,hold=True).simplify()\n 0\n\n EXAMPLES::\n\n sage: z = 1+2*I\n sage: real(z)\n 1\n sage: real(5/3)\n 5/3\n sage: a = 2.5\n sage: real(a)\n 2.50000000000000\n sage: type(real(a))\n <type 'sage.rings.real_mpfr.RealLiteral'>\n sage: real(1.0r)\n 1.0\n sage: real(complex(3, 4))\n 3.0\n\n TESTS::\n\n sage: loads(dumps(real_part))\n real_part\n\n Check if #6401 is fixed::\n\n sage: latex(x.real())\n \\Re \\left( x \\right)\n\n sage: f(x) = function('f',x)\n sage: latex( f(x).real())\n \\Re \\left( f\\left(x\\right) \\right)\n "
GinacFunction.__init__(self, 'real_part', conversions=dict(maxima='realpart'))
|
Returns the real part of the (possibly complex) input.
It is possible to prevent automatic evaluation using the
``hold`` parameter::
sage: real_part(I,hold=True)
real_part(I)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: real_part(I,hold=True).simplify()
0
EXAMPLES::
sage: z = 1+2*I
sage: real(z)
1
sage: real(5/3)
5/3
sage: a = 2.5
sage: real(a)
2.50000000000000
sage: type(real(a))
<type 'sage.rings.real_mpfr.RealLiteral'>
sage: real(1.0r)
1.0
sage: real(complex(3, 4))
3.0
TESTS::
sage: loads(dumps(real_part))
real_part
Check if #6401 is fixed::
sage: latex(x.real())
\Re \left( x \right)
sage: f(x) = function('f',x)
sage: latex( f(x).real())
\Re \left( f\left(x\right) \right)
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n Returns the real part of the (possibly complex) input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: real_part(I,hold=True)\n real_part(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: real_part(I,hold=True).simplify()\n 0\n\n EXAMPLES::\n\n sage: z = 1+2*I\n sage: real(z)\n 1\n sage: real(5/3)\n 5/3\n sage: a = 2.5\n sage: real(a)\n 2.50000000000000\n sage: type(real(a))\n <type 'sage.rings.real_mpfr.RealLiteral'>\n sage: real(1.0r)\n 1.0\n sage: real(complex(3, 4))\n 3.0\n\n TESTS::\n\n sage: loads(dumps(real_part))\n real_part\n\n Check if #6401 is fixed::\n\n sage: latex(x.real())\n \\Re \\left( x \\right)\n\n sage: f(x) = function('f',x)\n sage: latex( f(x).real())\n \\Re \\left( f\\left(x\\right) \\right)\n "
GinacFunction.__init__(self, 'real_part', conversions=dict(maxima='realpart'))
|
def __init__(self):
"\n Returns the real part of the (possibly complex) input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: real_part(I,hold=True)\n real_part(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: real_part(I,hold=True).simplify()\n 0\n\n EXAMPLES::\n\n sage: z = 1+2*I\n sage: real(z)\n 1\n sage: real(5/3)\n 5/3\n sage: a = 2.5\n sage: real(a)\n 2.50000000000000\n sage: type(real(a))\n <type 'sage.rings.real_mpfr.RealLiteral'>\n sage: real(1.0r)\n 1.0\n sage: real(complex(3, 4))\n 3.0\n\n TESTS::\n\n sage: loads(dumps(real_part))\n real_part\n\n Check if #6401 is fixed::\n\n sage: latex(x.real())\n \\Re \\left( x \\right)\n\n sage: f(x) = function('f',x)\n sage: latex( f(x).real())\n \\Re \\left( f\\left(x\\right) \\right)\n "
GinacFunction.__init__(self, 'real_part', conversions=dict(maxima='realpart'))<|docstring|>Returns the real part of the (possibly complex) input.
It is possible to prevent automatic evaluation using the
``hold`` parameter::
sage: real_part(I,hold=True)
real_part(I)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: real_part(I,hold=True).simplify()
0
EXAMPLES::
sage: z = 1+2*I
sage: real(z)
1
sage: real(5/3)
5/3
sage: a = 2.5
sage: real(a)
2.50000000000000
sage: type(real(a))
<type 'sage.rings.real_mpfr.RealLiteral'>
sage: real(1.0r)
1.0
sage: real(complex(3, 4))
3.0
TESTS::
sage: loads(dumps(real_part))
real_part
Check if #6401 is fixed::
sage: latex(x.real())
\Re \left( x \right)
sage: f(x) = function('f',x)
sage: latex( f(x).real())
\Re \left( f\left(x\right) \right)<|endoftext|>
|
702ab631d7dfe8b0433d3c68b23183f4f0039473acd06793f2105b68c030a792
|
def __call__(self, x, **kwargs):
"\n TESTS::\n\n sage: type(real(complex(3, 4)))\n <type 'float'>\n "
if isinstance(x, complex):
return x.real
else:
return GinacFunction.__call__(self, x, **kwargs)
|
TESTS::
sage: type(real(complex(3, 4)))
<type 'float'>
|
src/sage/functions/other.py
|
__call__
|
drvinceknight/sage
| 2 |
python
|
def __call__(self, x, **kwargs):
"\n TESTS::\n\n sage: type(real(complex(3, 4)))\n <type 'float'>\n "
if isinstance(x, complex):
return x.real
else:
return GinacFunction.__call__(self, x, **kwargs)
|
def __call__(self, x, **kwargs):
"\n TESTS::\n\n sage: type(real(complex(3, 4)))\n <type 'float'>\n "
if isinstance(x, complex):
return x.real
else:
return GinacFunction.__call__(self, x, **kwargs)<|docstring|>TESTS::
sage: type(real(complex(3, 4)))
<type 'float'><|endoftext|>
|
73356c0867c3fc265f5d81fed4e9660406766fd99c48a58419cb8c64baaa42a0
|
def _eval_numpy_(self, x):
'\n EXAMPLES::\n\n sage: import numpy\n sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)\n sage: real_part(a)\n array([ 1., -2.])\n '
import numpy
return numpy.real(x)
|
EXAMPLES::
sage: import numpy
sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)
sage: real_part(a)
array([ 1., -2.])
|
src/sage/functions/other.py
|
_eval_numpy_
|
drvinceknight/sage
| 2 |
python
|
def _eval_numpy_(self, x):
'\n EXAMPLES::\n\n sage: import numpy\n sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)\n sage: real_part(a)\n array([ 1., -2.])\n '
import numpy
return numpy.real(x)
|
def _eval_numpy_(self, x):
'\n EXAMPLES::\n\n sage: import numpy\n sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)\n sage: real_part(a)\n array([ 1., -2.])\n '
import numpy
return numpy.real(x)<|docstring|>EXAMPLES::
sage: import numpy
sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)
sage: real_part(a)
array([ 1., -2.])<|endoftext|>
|
80f4172a026b45ef6380b224c1753f0deb1a8edc9a49f84ea1b7553b26ebcaa8
|
def __init__(self):
"\n Returns the imaginary part of the (possibly complex) input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: imag_part(I,hold=True)\n imag_part(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: imag_part(I,hold=True).simplify()\n 1\n\n TESTS::\n\n sage: z = 1+2*I\n sage: imaginary(z)\n 2\n sage: imag(z)\n 2\n sage: imag(complex(3, 4))\n 4.0\n sage: loads(dumps(imag_part))\n imag_part\n\n Check if #6401 is fixed::\n\n sage: latex(x.imag())\n \\Im \\left( x \\right)\n\n sage: f(x) = function('f',x)\n sage: latex( f(x).imag())\n \\Im \\left( f\\left(x\\right) \\right)\n "
GinacFunction.__init__(self, 'imag_part', conversions=dict(maxima='imagpart'))
|
Returns the imaginary part of the (possibly complex) input.
It is possible to prevent automatic evaluation using the
``hold`` parameter::
sage: imag_part(I,hold=True)
imag_part(I)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: imag_part(I,hold=True).simplify()
1
TESTS::
sage: z = 1+2*I
sage: imaginary(z)
2
sage: imag(z)
2
sage: imag(complex(3, 4))
4.0
sage: loads(dumps(imag_part))
imag_part
Check if #6401 is fixed::
sage: latex(x.imag())
\Im \left( x \right)
sage: f(x) = function('f',x)
sage: latex( f(x).imag())
\Im \left( f\left(x\right) \right)
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n Returns the imaginary part of the (possibly complex) input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: imag_part(I,hold=True)\n imag_part(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: imag_part(I,hold=True).simplify()\n 1\n\n TESTS::\n\n sage: z = 1+2*I\n sage: imaginary(z)\n 2\n sage: imag(z)\n 2\n sage: imag(complex(3, 4))\n 4.0\n sage: loads(dumps(imag_part))\n imag_part\n\n Check if #6401 is fixed::\n\n sage: latex(x.imag())\n \\Im \\left( x \\right)\n\n sage: f(x) = function('f',x)\n sage: latex( f(x).imag())\n \\Im \\left( f\\left(x\\right) \\right)\n "
GinacFunction.__init__(self, 'imag_part', conversions=dict(maxima='imagpart'))
|
def __init__(self):
"\n Returns the imaginary part of the (possibly complex) input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: imag_part(I,hold=True)\n imag_part(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: imag_part(I,hold=True).simplify()\n 1\n\n TESTS::\n\n sage: z = 1+2*I\n sage: imaginary(z)\n 2\n sage: imag(z)\n 2\n sage: imag(complex(3, 4))\n 4.0\n sage: loads(dumps(imag_part))\n imag_part\n\n Check if #6401 is fixed::\n\n sage: latex(x.imag())\n \\Im \\left( x \\right)\n\n sage: f(x) = function('f',x)\n sage: latex( f(x).imag())\n \\Im \\left( f\\left(x\\right) \\right)\n "
GinacFunction.__init__(self, 'imag_part', conversions=dict(maxima='imagpart'))<|docstring|>Returns the imaginary part of the (possibly complex) input.
It is possible to prevent automatic evaluation using the
``hold`` parameter::
sage: imag_part(I,hold=True)
imag_part(I)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: imag_part(I,hold=True).simplify()
1
TESTS::
sage: z = 1+2*I
sage: imaginary(z)
2
sage: imag(z)
2
sage: imag(complex(3, 4))
4.0
sage: loads(dumps(imag_part))
imag_part
Check if #6401 is fixed::
sage: latex(x.imag())
\Im \left( x \right)
sage: f(x) = function('f',x)
sage: latex( f(x).imag())
\Im \left( f\left(x\right) \right)<|endoftext|>
|
63474507d20e16ef6009294699b40b184cdd4f4e2ddf29f19bac98e78a183b81
|
def __call__(self, x, **kwargs):
"\n TESTS::\n\n sage: type(imag(complex(3, 4)))\n <type 'float'>\n "
if isinstance(x, complex):
return x.imag
else:
return GinacFunction.__call__(self, x, **kwargs)
|
TESTS::
sage: type(imag(complex(3, 4)))
<type 'float'>
|
src/sage/functions/other.py
|
__call__
|
drvinceknight/sage
| 2 |
python
|
def __call__(self, x, **kwargs):
"\n TESTS::\n\n sage: type(imag(complex(3, 4)))\n <type 'float'>\n "
if isinstance(x, complex):
return x.imag
else:
return GinacFunction.__call__(self, x, **kwargs)
|
def __call__(self, x, **kwargs):
"\n TESTS::\n\n sage: type(imag(complex(3, 4)))\n <type 'float'>\n "
if isinstance(x, complex):
return x.imag
else:
return GinacFunction.__call__(self, x, **kwargs)<|docstring|>TESTS::
sage: type(imag(complex(3, 4)))
<type 'float'><|endoftext|>
|
4b2b3ed23ca64be99573b32da30f90246c8b3538a1b1b5376176eb3466a1d527
|
def _eval_numpy_(self, x):
'\n EXAMPLES::\n\n sage: import numpy\n sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)\n sage: imag_part(a)\n array([ 2., -3.])\n '
import numpy
return numpy.imag(x)
|
EXAMPLES::
sage: import numpy
sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)
sage: imag_part(a)
array([ 2., -3.])
|
src/sage/functions/other.py
|
_eval_numpy_
|
drvinceknight/sage
| 2 |
python
|
def _eval_numpy_(self, x):
'\n EXAMPLES::\n\n sage: import numpy\n sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)\n sage: imag_part(a)\n array([ 2., -3.])\n '
import numpy
return numpy.imag(x)
|
def _eval_numpy_(self, x):
'\n EXAMPLES::\n\n sage: import numpy\n sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)\n sage: imag_part(a)\n array([ 2., -3.])\n '
import numpy
return numpy.imag(x)<|docstring|>EXAMPLES::
sage: import numpy
sage: a = numpy.array([1+2*I, -2-3*I], dtype=numpy.complex)
sage: imag_part(a)
array([ 2., -3.])<|endoftext|>
|
f736b8f4ab1fabbb3f212bb13b398e1d1f9c4719e6bb71b1d2d25933c6629f74
|
def __init__(self):
"\n Returns the complex conjugate of the input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: conjugate(I,hold=True)\n conjugate(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: conjugate(I,hold=True).simplify()\n -I\n\n TESTS::\n\n sage: x,y = var('x,y')\n sage: x.conjugate()\n conjugate(x)\n sage: latex(conjugate(x))\n \\overline{x}\n sage: f = function('f')\n sage: latex(f(x).conjugate())\n \\overline{f\\left(x\\right)}\n sage: f = function('psi',x,y)\n sage: latex(f.conjugate())\n \\overline{\\psi\\left(x, y\\right)}\n sage: x.conjugate().conjugate()\n x\n sage: x.conjugate().operator()\n conjugate\n sage: x.conjugate().operator() == conjugate\n True\n\n Check if #8755 is fixed::\n\n sage: conjugate(sqrt(-3))\n conjugate(sqrt(-3))\n sage: conjugate(sqrt(3))\n sqrt(3)\n sage: conjugate(sqrt(x))\n conjugate(sqrt(x))\n sage: conjugate(x^2)\n conjugate(x)^2\n sage: var('y',domain='positive')\n y\n sage: conjugate(sqrt(y))\n sqrt(y)\n\n Check if #10964 is fixed::\n\n sage: z= I*sqrt(-3); z\n I*sqrt(-3)\n sage: conjugate(z)\n -I*conjugate(sqrt(-3))\n sage: var('a')\n a\n sage: conjugate(a*sqrt(-2)*sqrt(-3))\n conjugate(sqrt(-2))*conjugate(sqrt(-3))*conjugate(a)\n\n Test pickling::\n\n sage: loads(dumps(conjugate))\n conjugate\n "
GinacFunction.__init__(self, 'conjugate')
|
Returns the complex conjugate of the input.
It is possible to prevent automatic evaluation using the
``hold`` parameter::
sage: conjugate(I,hold=True)
conjugate(I)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: conjugate(I,hold=True).simplify()
-I
TESTS::
sage: x,y = var('x,y')
sage: x.conjugate()
conjugate(x)
sage: latex(conjugate(x))
\overline{x}
sage: f = function('f')
sage: latex(f(x).conjugate())
\overline{f\left(x\right)}
sage: f = function('psi',x,y)
sage: latex(f.conjugate())
\overline{\psi\left(x, y\right)}
sage: x.conjugate().conjugate()
x
sage: x.conjugate().operator()
conjugate
sage: x.conjugate().operator() == conjugate
True
Check if #8755 is fixed::
sage: conjugate(sqrt(-3))
conjugate(sqrt(-3))
sage: conjugate(sqrt(3))
sqrt(3)
sage: conjugate(sqrt(x))
conjugate(sqrt(x))
sage: conjugate(x^2)
conjugate(x)^2
sage: var('y',domain='positive')
y
sage: conjugate(sqrt(y))
sqrt(y)
Check if #10964 is fixed::
sage: z= I*sqrt(-3); z
I*sqrt(-3)
sage: conjugate(z)
-I*conjugate(sqrt(-3))
sage: var('a')
a
sage: conjugate(a*sqrt(-2)*sqrt(-3))
conjugate(sqrt(-2))*conjugate(sqrt(-3))*conjugate(a)
Test pickling::
sage: loads(dumps(conjugate))
conjugate
|
src/sage/functions/other.py
|
__init__
|
drvinceknight/sage
| 2 |
python
|
def __init__(self):
"\n Returns the complex conjugate of the input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: conjugate(I,hold=True)\n conjugate(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: conjugate(I,hold=True).simplify()\n -I\n\n TESTS::\n\n sage: x,y = var('x,y')\n sage: x.conjugate()\n conjugate(x)\n sage: latex(conjugate(x))\n \\overline{x}\n sage: f = function('f')\n sage: latex(f(x).conjugate())\n \\overline{f\\left(x\\right)}\n sage: f = function('psi',x,y)\n sage: latex(f.conjugate())\n \\overline{\\psi\\left(x, y\\right)}\n sage: x.conjugate().conjugate()\n x\n sage: x.conjugate().operator()\n conjugate\n sage: x.conjugate().operator() == conjugate\n True\n\n Check if #8755 is fixed::\n\n sage: conjugate(sqrt(-3))\n conjugate(sqrt(-3))\n sage: conjugate(sqrt(3))\n sqrt(3)\n sage: conjugate(sqrt(x))\n conjugate(sqrt(x))\n sage: conjugate(x^2)\n conjugate(x)^2\n sage: var('y',domain='positive')\n y\n sage: conjugate(sqrt(y))\n sqrt(y)\n\n Check if #10964 is fixed::\n\n sage: z= I*sqrt(-3); z\n I*sqrt(-3)\n sage: conjugate(z)\n -I*conjugate(sqrt(-3))\n sage: var('a')\n a\n sage: conjugate(a*sqrt(-2)*sqrt(-3))\n conjugate(sqrt(-2))*conjugate(sqrt(-3))*conjugate(a)\n\n Test pickling::\n\n sage: loads(dumps(conjugate))\n conjugate\n "
GinacFunction.__init__(self, 'conjugate')
|
def __init__(self):
"\n Returns the complex conjugate of the input.\n\n It is possible to prevent automatic evaluation using the\n ``hold`` parameter::\n\n sage: conjugate(I,hold=True)\n conjugate(I)\n\n To then evaluate again, we currently must use Maxima via\n :meth:`sage.symbolic.expression.Expression.simplify`::\n\n sage: conjugate(I,hold=True).simplify()\n -I\n\n TESTS::\n\n sage: x,y = var('x,y')\n sage: x.conjugate()\n conjugate(x)\n sage: latex(conjugate(x))\n \\overline{x}\n sage: f = function('f')\n sage: latex(f(x).conjugate())\n \\overline{f\\left(x\\right)}\n sage: f = function('psi',x,y)\n sage: latex(f.conjugate())\n \\overline{\\psi\\left(x, y\\right)}\n sage: x.conjugate().conjugate()\n x\n sage: x.conjugate().operator()\n conjugate\n sage: x.conjugate().operator() == conjugate\n True\n\n Check if #8755 is fixed::\n\n sage: conjugate(sqrt(-3))\n conjugate(sqrt(-3))\n sage: conjugate(sqrt(3))\n sqrt(3)\n sage: conjugate(sqrt(x))\n conjugate(sqrt(x))\n sage: conjugate(x^2)\n conjugate(x)^2\n sage: var('y',domain='positive')\n y\n sage: conjugate(sqrt(y))\n sqrt(y)\n\n Check if #10964 is fixed::\n\n sage: z= I*sqrt(-3); z\n I*sqrt(-3)\n sage: conjugate(z)\n -I*conjugate(sqrt(-3))\n sage: var('a')\n a\n sage: conjugate(a*sqrt(-2)*sqrt(-3))\n conjugate(sqrt(-2))*conjugate(sqrt(-3))*conjugate(a)\n\n Test pickling::\n\n sage: loads(dumps(conjugate))\n conjugate\n "
GinacFunction.__init__(self, 'conjugate')<|docstring|>Returns the complex conjugate of the input.
It is possible to prevent automatic evaluation using the
``hold`` parameter::
sage: conjugate(I,hold=True)
conjugate(I)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: conjugate(I,hold=True).simplify()
-I
TESTS::
sage: x,y = var('x,y')
sage: x.conjugate()
conjugate(x)
sage: latex(conjugate(x))
\overline{x}
sage: f = function('f')
sage: latex(f(x).conjugate())
\overline{f\left(x\right)}
sage: f = function('psi',x,y)
sage: latex(f.conjugate())
\overline{\psi\left(x, y\right)}
sage: x.conjugate().conjugate()
x
sage: x.conjugate().operator()
conjugate
sage: x.conjugate().operator() == conjugate
True
Check if #8755 is fixed::
sage: conjugate(sqrt(-3))
conjugate(sqrt(-3))
sage: conjugate(sqrt(3))
sqrt(3)
sage: conjugate(sqrt(x))
conjugate(sqrt(x))
sage: conjugate(x^2)
conjugate(x)^2
sage: var('y',domain='positive')
y
sage: conjugate(sqrt(y))
sqrt(y)
Check if #10964 is fixed::
sage: z= I*sqrt(-3); z
I*sqrt(-3)
sage: conjugate(z)
-I*conjugate(sqrt(-3))
sage: var('a')
a
sage: conjugate(a*sqrt(-2)*sqrt(-3))
conjugate(sqrt(-2))*conjugate(sqrt(-3))*conjugate(a)
Test pickling::
sage: loads(dumps(conjugate))
conjugate<|endoftext|>
|
54718ff523a6564405254348d1d6e70caad6670ab08a5f01b88608e68d61fe27
|
def process(self, notes):
'Process `notes`, which is a dict of {title: Note} representing all of the Notes loaded by BearNotes. Do not make any changes to the Note contents, because they might be overwritten if the contents need to be fetched from Bear. Instead, save the changes, and return a dict of {Note: changed (True/False)}, or None if no changes will be made.'
raise NotImplementedError('Subclasses must implement process()')
|
Process `notes`, which is a dict of {title: Note} representing all of the Notes loaded by BearNotes. Do not make any changes to the Note contents, because they might be overwritten if the contents need to be fetched from Bear. Instead, save the changes, and return a dict of {Note: changed (True/False)}, or None if no changes will be made.
|
processors/notes_processor.py
|
process
|
anjiro/bearutils
| 13 |
python
|
def process(self, notes):
raise NotImplementedError('Subclasses must implement process()')
|
def process(self, notes):
raise NotImplementedError('Subclasses must implement process()')<|docstring|>Process `notes`, which is a dict of {title: Note} representing all of the Notes loaded by BearNotes. Do not make any changes to the Note contents, because they might be overwritten if the contents need to be fetched from Bear. Instead, save the changes, and return a dict of {Note: changed (True/False)}, or None if no changes will be made.<|endoftext|>
|
feb2b8e5e7cc86aff86e5e67bfcd377d4eb1244cc07b0b3dbaba70ea77052ba4
|
def render(self, note):
'This will be called once for each Note that process() indicates has changed. Return the new contents of the note.'
raise NotImplementedError('Subclasses must implement render()')
|
This will be called once for each Note that process() indicates has changed. Return the new contents of the note.
|
processors/notes_processor.py
|
render
|
anjiro/bearutils
| 13 |
python
|
def render(self, note):
raise NotImplementedError('Subclasses must implement render()')
|
def render(self, note):
raise NotImplementedError('Subclasses must implement render()')<|docstring|>This will be called once for each Note that process() indicates has changed. Return the new contents of the note.<|endoftext|>
|
76fb6c88d5d12e06094ffbc528498dba4c64f835a025b4166261614afdc8de70
|
def findCircleNum(self, M):
'\n :type M: List[List[int]]\n :rtype: int\n '
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n
def find_set(self, x):
if (self.set[x] != x):
self.set[x] = self.find_set(self.set[x])
return self.set[x]
def union_set(self, x, y):
(x_root, y_root) = map(self.find_set, (x, y))
if (x_root != y_root):
self.set[min(x_root, y_root)] = max(x_root, y_root)
self.count -= 1
circles = UnionFind(len(M))
for i in xrange(len(M)):
for j in xrange(len(M)):
if (M[i][j] and (i != j)):
circles.union_set(i, j)
return circles.count
|
:type M: List[List[int]]
:rtype: int
|
Python/friend-circles.py
|
findCircleNum
|
donaldcao/LeetCode-Solutions
| 3,269 |
python
|
def findCircleNum(self, M):
'\n :type M: List[List[int]]\n :rtype: int\n '
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n
def find_set(self, x):
if (self.set[x] != x):
self.set[x] = self.find_set(self.set[x])
return self.set[x]
def union_set(self, x, y):
(x_root, y_root) = map(self.find_set, (x, y))
if (x_root != y_root):
self.set[min(x_root, y_root)] = max(x_root, y_root)
self.count -= 1
circles = UnionFind(len(M))
for i in xrange(len(M)):
for j in xrange(len(M)):
if (M[i][j] and (i != j)):
circles.union_set(i, j)
return circles.count
|
def findCircleNum(self, M):
'\n :type M: List[List[int]]\n :rtype: int\n '
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n
def find_set(self, x):
if (self.set[x] != x):
self.set[x] = self.find_set(self.set[x])
return self.set[x]
def union_set(self, x, y):
(x_root, y_root) = map(self.find_set, (x, y))
if (x_root != y_root):
self.set[min(x_root, y_root)] = max(x_root, y_root)
self.count -= 1
circles = UnionFind(len(M))
for i in xrange(len(M)):
for j in xrange(len(M)):
if (M[i][j] and (i != j)):
circles.union_set(i, j)
return circles.count<|docstring|>:type M: List[List[int]]
:rtype: int<|endoftext|>
|
9b18c36fe92e7ce72fb50979e3a693739f69c8c8b408c5a8987794243b211405
|
def save_model(model, dir, filename, weights_only=False):
'\n Save Keras model\n :param model:\n :param dir:\n :param filename:\n :param weights_only:\n :return:\n '
if (not os.path.exists(dir)):
os.makedirs(dir)
filepath = os.path.join(dir, filename)
if weights_only:
model.save_weights(filepath)
print(('Model weights were saved to: ' + filepath))
else:
model.save(filepath)
print(('Model was saved to: ' + filepath))
|
Save Keras model
:param model:
:param dir:
:param filename:
:param weights_only:
:return:
|
utils.py
|
save_model
|
shizhan1992/distributional-robustness
| 0 |
python
|
def save_model(model, dir, filename, weights_only=False):
'\n Save Keras model\n :param model:\n :param dir:\n :param filename:\n :param weights_only:\n :return:\n '
if (not os.path.exists(dir)):
os.makedirs(dir)
filepath = os.path.join(dir, filename)
if weights_only:
model.save_weights(filepath)
print(('Model weights were saved to: ' + filepath))
else:
model.save(filepath)
print(('Model was saved to: ' + filepath))
|
def save_model(model, dir, filename, weights_only=False):
'\n Save Keras model\n :param model:\n :param dir:\n :param filename:\n :param weights_only:\n :return:\n '
if (not os.path.exists(dir)):
os.makedirs(dir)
filepath = os.path.join(dir, filename)
if weights_only:
model.save_weights(filepath)
print(('Model weights were saved to: ' + filepath))
else:
model.save(filepath)
print(('Model was saved to: ' + filepath))<|docstring|>Save Keras model
:param model:
:param dir:
:param filename:
:param weights_only:
:return:<|endoftext|>
|
14fe853d89c884379df2db1f6a4771785eaa9c7136f34647b5d87786cccf6509
|
def load_model(directory, filename, weights_only=False, model=None):
'\n Loads Keras model\n :param directory:\n :param filename:\n :return:\n '
if weights_only:
assert (model is not None)
filepath = os.path.join(directory, filename)
assert os.path.exists(filepath)
if weights_only:
result = model.load_weights(filepath)
print(result)
return model.load_weights(filepath)
else:
return tensorflow.python.keras.models.load_model(filepath)
|
Loads Keras model
:param directory:
:param filename:
:return:
|
utils.py
|
load_model
|
shizhan1992/distributional-robustness
| 0 |
python
|
def load_model(directory, filename, weights_only=False, model=None):
'\n Loads Keras model\n :param directory:\n :param filename:\n :return:\n '
if weights_only:
assert (model is not None)
filepath = os.path.join(directory, filename)
assert os.path.exists(filepath)
if weights_only:
result = model.load_weights(filepath)
print(result)
return model.load_weights(filepath)
else:
return tensorflow.python.keras.models.load_model(filepath)
|
def load_model(directory, filename, weights_only=False, model=None):
'\n Loads Keras model\n :param directory:\n :param filename:\n :return:\n '
if weights_only:
assert (model is not None)
filepath = os.path.join(directory, filename)
assert os.path.exists(filepath)
if weights_only:
result = model.load_weights(filepath)
print(result)
return model.load_weights(filepath)
else:
return tensorflow.python.keras.models.load_model(filepath)<|docstring|>Loads Keras model
:param directory:
:param filename:
:return:<|endoftext|>
|
4dd024f98b94d05c74d17086f08e5da7ff7fe79e5c03257940aa5d16c4184976
|
def batch_indices(batch_nb, data_length, batch_size):
'\n This helper function computes a batch start and end index\n :param batch_nb: the batch number\n :param data_length: the total length of the data being parsed by batches\n :param batch_size: the number of inputs in each batch\n :return: pair of (start, end) indices\n '
start = int((batch_nb * batch_size))
end = int(((batch_nb + 1) * batch_size))
if (end > data_length):
shift = (end - data_length)
start -= shift
end -= shift
return (start, end)
|
This helper function computes a batch start and end index
:param batch_nb: the batch number
:param data_length: the total length of the data being parsed by batches
:param batch_size: the number of inputs in each batch
:return: pair of (start, end) indices
|
utils.py
|
batch_indices
|
shizhan1992/distributional-robustness
| 0 |
python
|
def batch_indices(batch_nb, data_length, batch_size):
'\n This helper function computes a batch start and end index\n :param batch_nb: the batch number\n :param data_length: the total length of the data being parsed by batches\n :param batch_size: the number of inputs in each batch\n :return: pair of (start, end) indices\n '
start = int((batch_nb * batch_size))
end = int(((batch_nb + 1) * batch_size))
if (end > data_length):
shift = (end - data_length)
start -= shift
end -= shift
return (start, end)
|
def batch_indices(batch_nb, data_length, batch_size):
'\n This helper function computes a batch start and end index\n :param batch_nb: the batch number\n :param data_length: the total length of the data being parsed by batches\n :param batch_size: the number of inputs in each batch\n :return: pair of (start, end) indices\n '
start = int((batch_nb * batch_size))
end = int(((batch_nb + 1) * batch_size))
if (end > data_length):
shift = (end - data_length)
start -= shift
end -= shift
return (start, end)<|docstring|>This helper function computes a batch start and end index
:param batch_nb: the batch number
:param data_length: the total length of the data being parsed by batches
:param batch_size: the number of inputs in each batch
:return: pair of (start, end) indices<|endoftext|>
|
7bd526999695f436cc5df2f43d9eb3601cccb4fc075af13271de904b9dbd4ea1
|
def other_classes(nb_classes, class_ind):
'\n Heper function that returns a list of class indices without one class\n :param nb_classes: number of classes in total\n :param class_ind: the class index to be omitted\n :return: list of class indices without one class\n '
other_classes_list = list(range(nb_classes))
other_classes_list.remove(class_ind)
return other_classes_list
|
Heper function that returns a list of class indices without one class
:param nb_classes: number of classes in total
:param class_ind: the class index to be omitted
:return: list of class indices without one class
|
utils.py
|
other_classes
|
shizhan1992/distributional-robustness
| 0 |
python
|
def other_classes(nb_classes, class_ind):
'\n Heper function that returns a list of class indices without one class\n :param nb_classes: number of classes in total\n :param class_ind: the class index to be omitted\n :return: list of class indices without one class\n '
other_classes_list = list(range(nb_classes))
other_classes_list.remove(class_ind)
return other_classes_list
|
def other_classes(nb_classes, class_ind):
'\n Heper function that returns a list of class indices without one class\n :param nb_classes: number of classes in total\n :param class_ind: the class index to be omitted\n :return: list of class indices without one class\n '
other_classes_list = list(range(nb_classes))
other_classes_list.remove(class_ind)
return other_classes_list<|docstring|>Heper function that returns a list of class indices without one class
:param nb_classes: number of classes in total
:param class_ind: the class index to be omitted
:return: list of class indices without one class<|endoftext|>
|
bc2bb11e3f00c51d234554d00a08169ac194bdb1574f44b513fd5f6f9290fbd1
|
def random_targets(gt, nb_classes):
'\n Take in the correct labels for each sample and randomly choose target\n labels from the others\n :param gt: the correct labels\n :param nb_classes: The number of classes for this model\n :return: A numpy array holding the randomly-selected target classes\n '
if (len(gt.shape) > 1):
gt = np.argmax(gt, axis=1)
result = np.zeros(gt.shape)
for class_ind in range(nb_classes):
in_cl = (gt == class_ind)
result[in_cl] = np.random.choice(other_classes(nb_classes, class_ind))
return to_categorical(np.asarray(result), nb_classes)
|
Take in the correct labels for each sample and randomly choose target
labels from the others
:param gt: the correct labels
:param nb_classes: The number of classes for this model
:return: A numpy array holding the randomly-selected target classes
|
utils.py
|
random_targets
|
shizhan1992/distributional-robustness
| 0 |
python
|
def random_targets(gt, nb_classes):
'\n Take in the correct labels for each sample and randomly choose target\n labels from the others\n :param gt: the correct labels\n :param nb_classes: The number of classes for this model\n :return: A numpy array holding the randomly-selected target classes\n '
if (len(gt.shape) > 1):
gt = np.argmax(gt, axis=1)
result = np.zeros(gt.shape)
for class_ind in range(nb_classes):
in_cl = (gt == class_ind)
result[in_cl] = np.random.choice(other_classes(nb_classes, class_ind))
return to_categorical(np.asarray(result), nb_classes)
|
def random_targets(gt, nb_classes):
'\n Take in the correct labels for each sample and randomly choose target\n labels from the others\n :param gt: the correct labels\n :param nb_classes: The number of classes for this model\n :return: A numpy array holding the randomly-selected target classes\n '
if (len(gt.shape) > 1):
gt = np.argmax(gt, axis=1)
result = np.zeros(gt.shape)
for class_ind in range(nb_classes):
in_cl = (gt == class_ind)
result[in_cl] = np.random.choice(other_classes(nb_classes, class_ind))
return to_categorical(np.asarray(result), nb_classes)<|docstring|>Take in the correct labels for each sample and randomly choose target
labels from the others
:param gt: the correct labels
:param nb_classes: The number of classes for this model
:return: A numpy array holding the randomly-selected target classes<|endoftext|>
|
f1b20d6a81d488fa4003ef86a20632d1ad97200592d90d695acd3ed2bd96cb40
|
def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28, reg_scale=0.1, channels=1, nb_filters=64, nb_classes=10, activation='none', name='cnn'):
'\n Defines a CNN model using Keras sequential model\n :param logits: If set to False, returns a Keras model, otherwise will also\n return logits tensor\n :param input_ph: The TensorFlow tensor for the input\n (needed if returning logits)\n ("ph" stands for placeholder but it need not actually be a\n placeholder)\n :param img_rows: number of row in the image\n :param img_cols: number of columns in the image\n :param channels: number of color channels (e.g., 1 for MNIST)\n :param nb_filters: number of convolutional filters per layer\n :param nb_classes: the number of output classes\n :return:\n '
model = Sequential(name=name)
input_shape = (img_rows, img_cols, channels)
input_shape1 = ([1] + list(input_shape))
output_shape = [1, ceil((img_rows / 2)), ceil((img_cols / 2)), nb_filters]
layer_one_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='same', input_shape=input_shape1, output_shape=output_shape, weight_name='conv1')
input_shape1 = output_shape
output_shape = [1, ceil(((input_shape1[1] - ((6 - 1) * 1)) / 2)), ceil(((input_shape1[1] - ((6 - 1) * 1)) / 2)), (nb_filters * 2)]
layer_two_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='valid', input_shape=input_shape1, output_shape=output_shape, weight_name='conv2')
input_shape1 = output_shape
output_shape = [1, ceil(((input_shape1[1] - ((5 - 1) * 1)) / 1)), ceil(((input_shape1[1] - ((5 - 1) * 1)) / 1)), (nb_filters * 2)]
layer_three_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='valid', input_shape=input_shape1, output_shape=output_shape, weight_name='conv3')
layers = [Conv2D(filters=nb_filters, kernel_size=(8, 8), strides=(2, 2), padding='same', input_shape=input_shape, name='conv1', kernel_regularizer=layer_one_reg), Activation(activation), Conv2D(filters=(nb_filters * 2), kernel_size=(6, 6), strides=(2, 2), padding='valid', name='conv2', kernel_regularizer=layer_two_reg), Activation(activation), Conv2D(filters=(nb_filters * 2), kernel_size=(5, 5), strides=(1, 1), padding='valid', name='conv3', kernel_regularizer=layer_three_reg), Activation(activation), Flatten(), Dense(nb_classes, name='dense1', kernel_regularizer=spectral_regularizer(scale=reg_scale, weight_name='dense', conv=False))]
for layer in layers:
model.add(layer)
if logits:
logits_tensor = model(input_ph)
if logits:
return (model, logits_tensor)
else:
return model
|
Defines a CNN model using Keras sequential model
:param logits: If set to False, returns a Keras model, otherwise will also
return logits tensor
:param input_ph: The TensorFlow tensor for the input
(needed if returning logits)
("ph" stands for placeholder but it need not actually be a
placeholder)
:param img_rows: number of row in the image
:param img_cols: number of columns in the image
:param channels: number of color channels (e.g., 1 for MNIST)
:param nb_filters: number of convolutional filters per layer
:param nb_classes: the number of output classes
:return:
|
utils.py
|
cnn_model
|
shizhan1992/distributional-robustness
| 0 |
python
|
def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28, reg_scale=0.1, channels=1, nb_filters=64, nb_classes=10, activation='none', name='cnn'):
'\n Defines a CNN model using Keras sequential model\n :param logits: If set to False, returns a Keras model, otherwise will also\n return logits tensor\n :param input_ph: The TensorFlow tensor for the input\n (needed if returning logits)\n ("ph" stands for placeholder but it need not actually be a\n placeholder)\n :param img_rows: number of row in the image\n :param img_cols: number of columns in the image\n :param channels: number of color channels (e.g., 1 for MNIST)\n :param nb_filters: number of convolutional filters per layer\n :param nb_classes: the number of output classes\n :return:\n '
model = Sequential(name=name)
input_shape = (img_rows, img_cols, channels)
input_shape1 = ([1] + list(input_shape))
output_shape = [1, ceil((img_rows / 2)), ceil((img_cols / 2)), nb_filters]
layer_one_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='same', input_shape=input_shape1, output_shape=output_shape, weight_name='conv1')
input_shape1 = output_shape
output_shape = [1, ceil(((input_shape1[1] - ((6 - 1) * 1)) / 2)), ceil(((input_shape1[1] - ((6 - 1) * 1)) / 2)), (nb_filters * 2)]
layer_two_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='valid', input_shape=input_shape1, output_shape=output_shape, weight_name='conv2')
input_shape1 = output_shape
output_shape = [1, ceil(((input_shape1[1] - ((5 - 1) * 1)) / 1)), ceil(((input_shape1[1] - ((5 - 1) * 1)) / 1)), (nb_filters * 2)]
layer_three_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='valid', input_shape=input_shape1, output_shape=output_shape, weight_name='conv3')
layers = [Conv2D(filters=nb_filters, kernel_size=(8, 8), strides=(2, 2), padding='same', input_shape=input_shape, name='conv1', kernel_regularizer=layer_one_reg), Activation(activation), Conv2D(filters=(nb_filters * 2), kernel_size=(6, 6), strides=(2, 2), padding='valid', name='conv2', kernel_regularizer=layer_two_reg), Activation(activation), Conv2D(filters=(nb_filters * 2), kernel_size=(5, 5), strides=(1, 1), padding='valid', name='conv3', kernel_regularizer=layer_three_reg), Activation(activation), Flatten(), Dense(nb_classes, name='dense1', kernel_regularizer=spectral_regularizer(scale=reg_scale, weight_name='dense', conv=False))]
for layer in layers:
model.add(layer)
if logits:
logits_tensor = model(input_ph)
if logits:
return (model, logits_tensor)
else:
return model
|
def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28, reg_scale=0.1, channels=1, nb_filters=64, nb_classes=10, activation='none', name='cnn'):
'\n Defines a CNN model using Keras sequential model\n :param logits: If set to False, returns a Keras model, otherwise will also\n return logits tensor\n :param input_ph: The TensorFlow tensor for the input\n (needed if returning logits)\n ("ph" stands for placeholder but it need not actually be a\n placeholder)\n :param img_rows: number of row in the image\n :param img_cols: number of columns in the image\n :param channels: number of color channels (e.g., 1 for MNIST)\n :param nb_filters: number of convolutional filters per layer\n :param nb_classes: the number of output classes\n :return:\n '
model = Sequential(name=name)
input_shape = (img_rows, img_cols, channels)
input_shape1 = ([1] + list(input_shape))
output_shape = [1, ceil((img_rows / 2)), ceil((img_cols / 2)), nb_filters]
layer_one_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='same', input_shape=input_shape1, output_shape=output_shape, weight_name='conv1')
input_shape1 = output_shape
output_shape = [1, ceil(((input_shape1[1] - ((6 - 1) * 1)) / 2)), ceil(((input_shape1[1] - ((6 - 1) * 1)) / 2)), (nb_filters * 2)]
layer_two_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='valid', input_shape=input_shape1, output_shape=output_shape, weight_name='conv2')
input_shape1 = output_shape
output_shape = [1, ceil(((input_shape1[1] - ((5 - 1) * 1)) / 1)), ceil(((input_shape1[1] - ((5 - 1) * 1)) / 1)), (nb_filters * 2)]
layer_three_reg = spectral_regularizer(scale=reg_scale, strides=2, padding='valid', input_shape=input_shape1, output_shape=output_shape, weight_name='conv3')
layers = [Conv2D(filters=nb_filters, kernel_size=(8, 8), strides=(2, 2), padding='same', input_shape=input_shape, name='conv1', kernel_regularizer=layer_one_reg), Activation(activation), Conv2D(filters=(nb_filters * 2), kernel_size=(6, 6), strides=(2, 2), padding='valid', name='conv2', kernel_regularizer=layer_two_reg), Activation(activation), Conv2D(filters=(nb_filters * 2), kernel_size=(5, 5), strides=(1, 1), padding='valid', name='conv3', kernel_regularizer=layer_three_reg), Activation(activation), Flatten(), Dense(nb_classes, name='dense1', kernel_regularizer=spectral_regularizer(scale=reg_scale, weight_name='dense', conv=False))]
for layer in layers:
model.add(layer)
if logits:
logits_tensor = model(input_ph)
if logits:
return (model, logits_tensor)
else:
return model<|docstring|>Defines a CNN model using Keras sequential model
:param logits: If set to False, returns a Keras model, otherwise will also
return logits tensor
:param input_ph: The TensorFlow tensor for the input
(needed if returning logits)
("ph" stands for placeholder but it need not actually be a
placeholder)
:param img_rows: number of row in the image
:param img_cols: number of columns in the image
:param channels: number of color channels (e.g., 1 for MNIST)
:param nb_filters: number of convolutional filters per layer
:param nb_classes: the number of output classes
:return:<|endoftext|>
|
e52d09e5f26f08beaffc13360f5676607d10c8b5333a313039afd6f9ff9c00b2
|
def spectral_regularizer(scale=0.5, strides=None, padding=None, input_shape=None, output_shape=None, num_iter=10, weight_name=None, method='power', conv=True, scope=None):
'Returns a function that can be used to apply spectral norm regularization to weights.\n Args:\n scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.\n scope: An optional scope name.\n method: method to compute spectral norm: svd or power iteration (default)\n Returns:\n A function with signature `spectral_norm(weights)` that apply spectral norm regularization.\n Raises:\n ValueError: If scale is negative or if scale is not a float.\n '
if (scale < 0.0):
raise ValueError(('Setting a scale less than 0 on a regularizer: %g' % scale))
if (scale == 0.0):
logging.info('Scale of 0 disables regularizer.')
return (lambda _: None)
def spectral_norm(weights, name=None):
'Applies spectral_norm regularization to weights.'
with ops.name_scope(scope, 'spectral_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
if (method == 'power'):
if conv:
s = power_iterate_conv(weights=weights, strides=strides, padding=padding.upper(), input_shape=input_shape, output_shape=output_shape, num_iter=num_iter, weight_name=weight_name)
else:
s = power_iterate(weights=weights, num_iter=num_iter, weight_name=weight_name)
return standard_ops.multiply(my_scale, s, name=name)
else:
return standard_ops.multiply(my_scale, standard_ops.svd(weights, compute_uv=False)[(..., 0)], name=name)
return spectral_norm
|
Returns a function that can be used to apply spectral norm regularization to weights.
Args:
scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
scope: An optional scope name.
method: method to compute spectral norm: svd or power iteration (default)
Returns:
A function with signature `spectral_norm(weights)` that apply spectral norm regularization.
Raises:
ValueError: If scale is negative or if scale is not a float.
|
utils.py
|
spectral_regularizer
|
shizhan1992/distributional-robustness
| 0 |
python
|
def spectral_regularizer(scale=0.5, strides=None, padding=None, input_shape=None, output_shape=None, num_iter=10, weight_name=None, method='power', conv=True, scope=None):
'Returns a function that can be used to apply spectral norm regularization to weights.\n Args:\n scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.\n scope: An optional scope name.\n method: method to compute spectral norm: svd or power iteration (default)\n Returns:\n A function with signature `spectral_norm(weights)` that apply spectral norm regularization.\n Raises:\n ValueError: If scale is negative or if scale is not a float.\n '
if (scale < 0.0):
raise ValueError(('Setting a scale less than 0 on a regularizer: %g' % scale))
if (scale == 0.0):
logging.info('Scale of 0 disables regularizer.')
return (lambda _: None)
def spectral_norm(weights, name=None):
'Applies spectral_norm regularization to weights.'
with ops.name_scope(scope, 'spectral_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
if (method == 'power'):
if conv:
s = power_iterate_conv(weights=weights, strides=strides, padding=padding.upper(), input_shape=input_shape, output_shape=output_shape, num_iter=num_iter, weight_name=weight_name)
else:
s = power_iterate(weights=weights, num_iter=num_iter, weight_name=weight_name)
return standard_ops.multiply(my_scale, s, name=name)
else:
return standard_ops.multiply(my_scale, standard_ops.svd(weights, compute_uv=False)[(..., 0)], name=name)
return spectral_norm
|
def spectral_regularizer(scale=0.5, strides=None, padding=None, input_shape=None, output_shape=None, num_iter=10, weight_name=None, method='power', conv=True, scope=None):
'Returns a function that can be used to apply spectral norm regularization to weights.\n Args:\n scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.\n scope: An optional scope name.\n method: method to compute spectral norm: svd or power iteration (default)\n Returns:\n A function with signature `spectral_norm(weights)` that apply spectral norm regularization.\n Raises:\n ValueError: If scale is negative or if scale is not a float.\n '
if (scale < 0.0):
raise ValueError(('Setting a scale less than 0 on a regularizer: %g' % scale))
if (scale == 0.0):
logging.info('Scale of 0 disables regularizer.')
return (lambda _: None)
def spectral_norm(weights, name=None):
'Applies spectral_norm regularization to weights.'
with ops.name_scope(scope, 'spectral_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
if (method == 'power'):
if conv:
s = power_iterate_conv(weights=weights, strides=strides, padding=padding.upper(), input_shape=input_shape, output_shape=output_shape, num_iter=num_iter, weight_name=weight_name)
else:
s = power_iterate(weights=weights, num_iter=num_iter, weight_name=weight_name)
return standard_ops.multiply(my_scale, s, name=name)
else:
return standard_ops.multiply(my_scale, standard_ops.svd(weights, compute_uv=False)[(..., 0)], name=name)
return spectral_norm<|docstring|>Returns a function that can be used to apply spectral norm regularization to weights.
Args:
scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
scope: An optional scope name.
method: method to compute spectral norm: svd or power iteration (default)
Returns:
A function with signature `spectral_norm(weights)` that apply spectral norm regularization.
Raises:
ValueError: If scale is negative or if scale is not a float.<|endoftext|>
|
7763c9963687951b57d1bc41a86ffeae28ec7cdd57645f85ed799d6183d112da
|
def power_iterate_conv(weights, strides, padding, input_shape, output_shape, num_iter, weight_name, u=None):
'Perform power iteration for a convolutional layer.'
strides = [1, strides, strides, 1]
with tf.name_scope(None, default_name='power_iteration_conv'):
with tf.variable_scope(weight_name, reuse=tf.AUTO_REUSE):
u_var = tf.get_variable('u_conv', ([1] + list(output_shape[1:])), initializer=tf.random_normal_initializer(), trainable=False)
u = u_var
v = None
for _ in range(num_iter):
v = tf.nn.conv2d_transpose(u, weights, ([1] + list(input_shape[1:])), strides, padding)
v /= tf.sqrt(tf.maximum((2 * tf.nn.l2_loss(v)), 1e-12))
u = tf.nn.conv2d(v, weights, strides, padding)
u /= tf.sqrt(tf.maximum((2 * tf.nn.l2_loss(u)), 1e-12))
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.assign(u_var, u))
return tf.reduce_sum((u * tf.nn.conv2d(v, weights, strides, padding)))
|
Perform power iteration for a convolutional layer.
|
utils.py
|
power_iterate_conv
|
shizhan1992/distributional-robustness
| 0 |
python
|
def power_iterate_conv(weights, strides, padding, input_shape, output_shape, num_iter, weight_name, u=None):
strides = [1, strides, strides, 1]
with tf.name_scope(None, default_name='power_iteration_conv'):
with tf.variable_scope(weight_name, reuse=tf.AUTO_REUSE):
u_var = tf.get_variable('u_conv', ([1] + list(output_shape[1:])), initializer=tf.random_normal_initializer(), trainable=False)
u = u_var
v = None
for _ in range(num_iter):
v = tf.nn.conv2d_transpose(u, weights, ([1] + list(input_shape[1:])), strides, padding)
v /= tf.sqrt(tf.maximum((2 * tf.nn.l2_loss(v)), 1e-12))
u = tf.nn.conv2d(v, weights, strides, padding)
u /= tf.sqrt(tf.maximum((2 * tf.nn.l2_loss(u)), 1e-12))
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.assign(u_var, u))
return tf.reduce_sum((u * tf.nn.conv2d(v, weights, strides, padding)))
|
def power_iterate_conv(weights, strides, padding, input_shape, output_shape, num_iter, weight_name, u=None):
strides = [1, strides, strides, 1]
with tf.name_scope(None, default_name='power_iteration_conv'):
with tf.variable_scope(weight_name, reuse=tf.AUTO_REUSE):
u_var = tf.get_variable('u_conv', ([1] + list(output_shape[1:])), initializer=tf.random_normal_initializer(), trainable=False)
u = u_var
v = None
for _ in range(num_iter):
v = tf.nn.conv2d_transpose(u, weights, ([1] + list(input_shape[1:])), strides, padding)
v /= tf.sqrt(tf.maximum((2 * tf.nn.l2_loss(v)), 1e-12))
u = tf.nn.conv2d(v, weights, strides, padding)
u /= tf.sqrt(tf.maximum((2 * tf.nn.l2_loss(u)), 1e-12))
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.assign(u_var, u))
return tf.reduce_sum((u * tf.nn.conv2d(v, weights, strides, padding)))<|docstring|>Perform power iteration for a convolutional layer.<|endoftext|>
|
3697943f8165fc95153707f9e14b7ed7515bc2c62b29417b4a04c4bb6a2f65d3
|
def power_iterate(weights, num_iter, weight_name):
'Perform power iteration for a dense layer.'
with tf.name_scope(None, default_name='power_iteration'):
w_shape = weights.shape.as_list()
w = tf.reshape(weights, [(- 1), w_shape[(- 1)]])
with tf.variable_scope(weight_name, reuse=tf.AUTO_REUSE):
u_var = tf.get_variable('u', [1, w_shape[(- 1)]], initializer=tf.truncated_normal_initializer(), trainable=False)
u = u_var
v = None
for i in range(num_iter):
v = tf.matmul(u, tf.transpose(w))
v /= ((tf.reduce_sum((v ** 2)) ** 0.5) + 1e-12)
u = tf.matmul(v, w)
u /= ((tf.reduce_sum((u ** 2)) ** 0.5) + 1e-12)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.assign(u_var, u))
sigma = tf.reduce_sum((tf.matmul(v, w) * tf.transpose(u)))
return sigma
|
Perform power iteration for a dense layer.
|
utils.py
|
power_iterate
|
shizhan1992/distributional-robustness
| 0 |
python
|
def power_iterate(weights, num_iter, weight_name):
with tf.name_scope(None, default_name='power_iteration'):
w_shape = weights.shape.as_list()
w = tf.reshape(weights, [(- 1), w_shape[(- 1)]])
with tf.variable_scope(weight_name, reuse=tf.AUTO_REUSE):
u_var = tf.get_variable('u', [1, w_shape[(- 1)]], initializer=tf.truncated_normal_initializer(), trainable=False)
u = u_var
v = None
for i in range(num_iter):
v = tf.matmul(u, tf.transpose(w))
v /= ((tf.reduce_sum((v ** 2)) ** 0.5) + 1e-12)
u = tf.matmul(v, w)
u /= ((tf.reduce_sum((u ** 2)) ** 0.5) + 1e-12)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.assign(u_var, u))
sigma = tf.reduce_sum((tf.matmul(v, w) * tf.transpose(u)))
return sigma
|
def power_iterate(weights, num_iter, weight_name):
with tf.name_scope(None, default_name='power_iteration'):
w_shape = weights.shape.as_list()
w = tf.reshape(weights, [(- 1), w_shape[(- 1)]])
with tf.variable_scope(weight_name, reuse=tf.AUTO_REUSE):
u_var = tf.get_variable('u', [1, w_shape[(- 1)]], initializer=tf.truncated_normal_initializer(), trainable=False)
u = u_var
v = None
for i in range(num_iter):
v = tf.matmul(u, tf.transpose(w))
v /= ((tf.reduce_sum((v ** 2)) ** 0.5) + 1e-12)
u = tf.matmul(v, w)
u /= ((tf.reduce_sum((u ** 2)) ** 0.5) + 1e-12)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.assign(u_var, u))
sigma = tf.reduce_sum((tf.matmul(v, w) * tf.transpose(u)))
return sigma<|docstring|>Perform power iteration for a dense layer.<|endoftext|>
|
300108e6b6d905c933453aec62e9eb8c66408b7845f820638e5831177ef047e4
|
def spectral_norm(weights, name=None):
'Applies spectral_norm regularization to weights.'
with ops.name_scope(scope, 'spectral_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
if (method == 'power'):
if conv:
s = power_iterate_conv(weights=weights, strides=strides, padding=padding.upper(), input_shape=input_shape, output_shape=output_shape, num_iter=num_iter, weight_name=weight_name)
else:
s = power_iterate(weights=weights, num_iter=num_iter, weight_name=weight_name)
return standard_ops.multiply(my_scale, s, name=name)
else:
return standard_ops.multiply(my_scale, standard_ops.svd(weights, compute_uv=False)[(..., 0)], name=name)
|
Applies spectral_norm regularization to weights.
|
utils.py
|
spectral_norm
|
shizhan1992/distributional-robustness
| 0 |
python
|
def spectral_norm(weights, name=None):
with ops.name_scope(scope, 'spectral_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
if (method == 'power'):
if conv:
s = power_iterate_conv(weights=weights, strides=strides, padding=padding.upper(), input_shape=input_shape, output_shape=output_shape, num_iter=num_iter, weight_name=weight_name)
else:
s = power_iterate(weights=weights, num_iter=num_iter, weight_name=weight_name)
return standard_ops.multiply(my_scale, s, name=name)
else:
return standard_ops.multiply(my_scale, standard_ops.svd(weights, compute_uv=False)[(..., 0)], name=name)
|
def spectral_norm(weights, name=None):
with ops.name_scope(scope, 'spectral_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
if (method == 'power'):
if conv:
s = power_iterate_conv(weights=weights, strides=strides, padding=padding.upper(), input_shape=input_shape, output_shape=output_shape, num_iter=num_iter, weight_name=weight_name)
else:
s = power_iterate(weights=weights, num_iter=num_iter, weight_name=weight_name)
return standard_ops.multiply(my_scale, s, name=name)
else:
return standard_ops.multiply(my_scale, standard_ops.svd(weights, compute_uv=False)[(..., 0)], name=name)<|docstring|>Applies spectral_norm regularization to weights.<|endoftext|>
|
096e2b0330b958cc8f6a0d8caeca22f984c5642cb0ad2b2c76dbb6ace4fc0756
|
@contextmanager
def Logs():
'ClickHouse and ODBC driver logs context manager.\n '
class _Logs():
def __init__(self, *args):
self.logs = args
def read(self, timeout=None):
for l in self.logs:
l.readlines(timeout=timeout)
if (not settings.debug):
(yield None)
else:
with Shell(name='clickhouse-server.log') as bash0, Shell(name='odbc-driver-trace.log') as bash1, Shell(name='odbc-driver-w-trace.log') as bash2, Shell(name='odbc-manager-trace.log') as bash3:
bash1(f'touch {odbc_driver_trace_log_path}')
bash2(f'touch {odbc_driver_w_trace_log_path}')
bash3(f'touch {odbc_manager_trace_log_path}')
with bash0(f'tail -f {clickhouse_log_path}', asyncronous=True, name='') as clickhouse_log, bash1(f'tail -f {odbc_driver_trace_log_path}', asyncronous=True, name='') as odbc_driver_log, bash2(f'tail -f {odbc_driver_w_trace_log_path}', asyncronous=True, name='') as odbc_driver_w_log, bash3(f'tail -f {odbc_manager_trace_log_path}', asyncronous=True, name='') as odbc_manager_log:
logs = _Logs(clickhouse_log, odbc_driver_log, odbc_driver_w_log, odbc_manager_log)
logs.read()
(yield logs)
|
ClickHouse and ODBC driver logs context manager.
|
test/parameterized/utils/utils.py
|
Logs
|
MinimaJack/clickhouse-odbc
| 122 |
python
|
@contextmanager
def Logs():
'\n '
class _Logs():
def __init__(self, *args):
self.logs = args
def read(self, timeout=None):
for l in self.logs:
l.readlines(timeout=timeout)
if (not settings.debug):
(yield None)
else:
with Shell(name='clickhouse-server.log') as bash0, Shell(name='odbc-driver-trace.log') as bash1, Shell(name='odbc-driver-w-trace.log') as bash2, Shell(name='odbc-manager-trace.log') as bash3:
bash1(f'touch {odbc_driver_trace_log_path}')
bash2(f'touch {odbc_driver_w_trace_log_path}')
bash3(f'touch {odbc_manager_trace_log_path}')
with bash0(f'tail -f {clickhouse_log_path}', asyncronous=True, name=) as clickhouse_log, bash1(f'tail -f {odbc_driver_trace_log_path}', asyncronous=True, name=) as odbc_driver_log, bash2(f'tail -f {odbc_driver_w_trace_log_path}', asyncronous=True, name=) as odbc_driver_w_log, bash3(f'tail -f {odbc_manager_trace_log_path}', asyncronous=True, name=) as odbc_manager_log:
logs = _Logs(clickhouse_log, odbc_driver_log, odbc_driver_w_log, odbc_manager_log)
logs.read()
(yield logs)
|
@contextmanager
def Logs():
'\n '
class _Logs():
def __init__(self, *args):
self.logs = args
def read(self, timeout=None):
for l in self.logs:
l.readlines(timeout=timeout)
if (not settings.debug):
(yield None)
else:
with Shell(name='clickhouse-server.log') as bash0, Shell(name='odbc-driver-trace.log') as bash1, Shell(name='odbc-driver-w-trace.log') as bash2, Shell(name='odbc-manager-trace.log') as bash3:
bash1(f'touch {odbc_driver_trace_log_path}')
bash2(f'touch {odbc_driver_w_trace_log_path}')
bash3(f'touch {odbc_manager_trace_log_path}')
with bash0(f'tail -f {clickhouse_log_path}', asyncronous=True, name=) as clickhouse_log, bash1(f'tail -f {odbc_driver_trace_log_path}', asyncronous=True, name=) as odbc_driver_log, bash2(f'tail -f {odbc_driver_w_trace_log_path}', asyncronous=True, name=) as odbc_driver_w_log, bash3(f'tail -f {odbc_manager_trace_log_path}', asyncronous=True, name=) as odbc_manager_log:
logs = _Logs(clickhouse_log, odbc_driver_log, odbc_driver_w_log, odbc_manager_log)
logs.read()
(yield logs)<|docstring|>ClickHouse and ODBC driver logs context manager.<|endoftext|>
|
8e455440d40300145cc5399087d5d95c0dc77ff3fed3e02aa0f52b20449f94cd
|
@contextmanager
def PyODBCConnection(encoding='utf-8', logs=None):
'PyODBC connector context manager.\n '
dsn = os.getenv('DSN', 'ClickHouse DSN (ANSI)')
note(f'Using DNS={dsn}')
connection = pyodbc.connect(f'DSN={dsn};')
try:
class _Connection():
def __init__(self, connection, encoding, logs=None):
self.connection = connection
self.logs = logs
self.encoding = encoding
self.connection.setencoding(encoding=self.encoding)
if self.logs:
self.logs.read()
def query(self, q, params=[], fetch=True):
try:
note(f'query: {q}')
cursor = self.connection.cursor()
cursor.execute(q, *params)
if fetch:
rows = cursor.fetchall()
for row in rows:
note(row)
return rows
except pyodbc.Error as exc:
exception()
fail(str(exc))
finally:
if (self.logs and settings.debug):
time.sleep(0.5)
self.logs.read(timeout=0.1)
(yield _Connection(connection, encoding, logs=logs))
finally:
connection.close()
|
PyODBC connector context manager.
|
test/parameterized/utils/utils.py
|
PyODBCConnection
|
MinimaJack/clickhouse-odbc
| 122 |
python
|
@contextmanager
def PyODBCConnection(encoding='utf-8', logs=None):
'\n '
dsn = os.getenv('DSN', 'ClickHouse DSN (ANSI)')
note(f'Using DNS={dsn}')
connection = pyodbc.connect(f'DSN={dsn};')
try:
class _Connection():
def __init__(self, connection, encoding, logs=None):
self.connection = connection
self.logs = logs
self.encoding = encoding
self.connection.setencoding(encoding=self.encoding)
if self.logs:
self.logs.read()
def query(self, q, params=[], fetch=True):
try:
note(f'query: {q}')
cursor = self.connection.cursor()
cursor.execute(q, *params)
if fetch:
rows = cursor.fetchall()
for row in rows:
note(row)
return rows
except pyodbc.Error as exc:
exception()
fail(str(exc))
finally:
if (self.logs and settings.debug):
time.sleep(0.5)
self.logs.read(timeout=0.1)
(yield _Connection(connection, encoding, logs=logs))
finally:
connection.close()
|
@contextmanager
def PyODBCConnection(encoding='utf-8', logs=None):
'\n '
dsn = os.getenv('DSN', 'ClickHouse DSN (ANSI)')
note(f'Using DNS={dsn}')
connection = pyodbc.connect(f'DSN={dsn};')
try:
class _Connection():
def __init__(self, connection, encoding, logs=None):
self.connection = connection
self.logs = logs
self.encoding = encoding
self.connection.setencoding(encoding=self.encoding)
if self.logs:
self.logs.read()
def query(self, q, params=[], fetch=True):
try:
note(f'query: {q}')
cursor = self.connection.cursor()
cursor.execute(q, *params)
if fetch:
rows = cursor.fetchall()
for row in rows:
note(row)
return rows
except pyodbc.Error as exc:
exception()
fail(str(exc))
finally:
if (self.logs and settings.debug):
time.sleep(0.5)
self.logs.read(timeout=0.1)
(yield _Connection(connection, encoding, logs=logs))
finally:
connection.close()<|docstring|>PyODBC connector context manager.<|endoftext|>
|
9e07b9728d72b46b116df234eddb3d2c621df330aefbc1df76db97ac3cf38c15
|
def extend_pandas():
"\n extends pandas by exposing methods to be used like:\n df.sharpe(), df.best('day'), ...\n "
from pandas.core.base import PandasObject as _po
_po.compsum = stats.compsum
_po.comp = stats.comp
_po.expected_return = stats.expected_return
_po.geometric_mean = stats.geometric_mean
_po.ghpr = stats.ghpr
_po.outliers = stats.outliers
_po.remove_outliers = stats.remove_outliers
_po.best = stats.best
_po.worst = stats.worst
_po.consecutive_wins = stats.consecutive_wins
_po.consecutive_losses = stats.consecutive_losses
_po.exposure = stats.exposure
_po.win_rate = stats.win_rate
_po.avg_return = stats.avg_return
_po.avg_win = stats.avg_win
_po.avg_loss = stats.avg_loss
_po.volatility = stats.volatility
_po.implied_volatility = stats.implied_volatility
_po.sharpe = stats.sharpe
_po.sortino = stats.sortino
_po.cagr = stats.cagr
_po.rar = stats.rar
_po.skew = stats.skew
_po.kurtosis = stats.kurtosis
_po.calmar = stats.calmar
_po.ulcer_index = stats.ulcer_index
_po.ulcer_performance_index = stats.ulcer_performance_index
_po.upi = stats.upi
_po.risk_of_ruin = stats.risk_of_ruin
_po.ror = stats.ror
_po.value_at_risk = stats.value_at_risk
_po.var = stats.var
_po.conditional_value_at_risk = stats.conditional_value_at_risk
_po.cvar = stats.cvar
_po.expected_shortfall = stats.expected_shortfall
_po.tail_ratio = stats.tail_ratio
_po.payoff_ratio = stats.payoff_ratio
_po.win_loss_ratio = stats.win_loss_ratio
_po.profit_ratio = stats.profit_ratio
_po.profit_factor = stats.profit_factor
_po.gain_to_pain_ratio = stats.gain_to_pain_ratio
_po.cpc_index = stats.cpc_index
_po.common_sense_ratio = stats.common_sense_ratio
_po.outlier_win_ratio = stats.outlier_win_ratio
_po.outlier_loss_ratio = stats.outlier_loss_ratio
_po.recovery_factor = stats.recovery_factor
_po.risk_return_ratio = stats.risk_return_ratio
_po.max_drawdown = stats.max_drawdown
_po.to_drawdown_series = stats.to_drawdown_series
_po.kelly_criterion = stats.kelly_criterion
_po.monthly_returns = stats.monthly_returns
_po.pct_rank = stats.pct_rank
_po.to_returns = utils.to_returns
_po.to_prices = utils.to_prices
_po.to_log_returns = utils.to_log_returns
_po.log_returns = utils.log_returns
_po.exponential_stdev = utils.exponential_stdev
_po.rebase = utils.rebase
_po.aggregate_returns = utils.aggregate_returns
_po.to_excess_returns = utils.to_excess_returns
_po.multi_shift = utils.multi_shift
_po.curr_month = utils._pandas_current_month
_po.date = utils._pandas_date
_po.r_squared = stats.r_squared
_po.r2 = stats.r2
_po.information_ratio = stats.information_ratio
_po.greeks = stats.greeks
_po.rolling_greeks = stats.rolling_greeks
_po.compare = stats.compare
_po.plot_snapshot = plots.snapshot
_po.plot_earnings = plots.earnings
_po.plot_daily_returns = plots.daily_returns
_po.plot_distribution = plots.distribution
_po.plot_drawdown = plots.drawdown
_po.plot_drawdowns_periods = plots.drawdowns_periods
_po.plot_histogram = plots.histogram
_po.plot_log_returns = plots.log_returns
_po.plot_returns = plots.returns
_po.plot_rolling_beta = plots.rolling_beta
_po.plot_rolling_sharpe = plots.rolling_sharpe
_po.plot_rolling_sortino = plots.rolling_sortino
_po.plot_rolling_volatility = plots.rolling_volatility
_po.plot_yearly_returns = plots.yearly_returns
_po.plot_monthly_heatmap = plots.monthly_heatmap
_po.metrics = reports.metrics
|
extends pandas by exposing methods to be used like:
df.sharpe(), df.best('day'), ...
|
quantstats/__init__.py
|
extend_pandas
|
hilsds/quantstats
| 1 |
python
|
def extend_pandas():
"\n extends pandas by exposing methods to be used like:\n df.sharpe(), df.best('day'), ...\n "
from pandas.core.base import PandasObject as _po
_po.compsum = stats.compsum
_po.comp = stats.comp
_po.expected_return = stats.expected_return
_po.geometric_mean = stats.geometric_mean
_po.ghpr = stats.ghpr
_po.outliers = stats.outliers
_po.remove_outliers = stats.remove_outliers
_po.best = stats.best
_po.worst = stats.worst
_po.consecutive_wins = stats.consecutive_wins
_po.consecutive_losses = stats.consecutive_losses
_po.exposure = stats.exposure
_po.win_rate = stats.win_rate
_po.avg_return = stats.avg_return
_po.avg_win = stats.avg_win
_po.avg_loss = stats.avg_loss
_po.volatility = stats.volatility
_po.implied_volatility = stats.implied_volatility
_po.sharpe = stats.sharpe
_po.sortino = stats.sortino
_po.cagr = stats.cagr
_po.rar = stats.rar
_po.skew = stats.skew
_po.kurtosis = stats.kurtosis
_po.calmar = stats.calmar
_po.ulcer_index = stats.ulcer_index
_po.ulcer_performance_index = stats.ulcer_performance_index
_po.upi = stats.upi
_po.risk_of_ruin = stats.risk_of_ruin
_po.ror = stats.ror
_po.value_at_risk = stats.value_at_risk
_po.var = stats.var
_po.conditional_value_at_risk = stats.conditional_value_at_risk
_po.cvar = stats.cvar
_po.expected_shortfall = stats.expected_shortfall
_po.tail_ratio = stats.tail_ratio
_po.payoff_ratio = stats.payoff_ratio
_po.win_loss_ratio = stats.win_loss_ratio
_po.profit_ratio = stats.profit_ratio
_po.profit_factor = stats.profit_factor
_po.gain_to_pain_ratio = stats.gain_to_pain_ratio
_po.cpc_index = stats.cpc_index
_po.common_sense_ratio = stats.common_sense_ratio
_po.outlier_win_ratio = stats.outlier_win_ratio
_po.outlier_loss_ratio = stats.outlier_loss_ratio
_po.recovery_factor = stats.recovery_factor
_po.risk_return_ratio = stats.risk_return_ratio
_po.max_drawdown = stats.max_drawdown
_po.to_drawdown_series = stats.to_drawdown_series
_po.kelly_criterion = stats.kelly_criterion
_po.monthly_returns = stats.monthly_returns
_po.pct_rank = stats.pct_rank
_po.to_returns = utils.to_returns
_po.to_prices = utils.to_prices
_po.to_log_returns = utils.to_log_returns
_po.log_returns = utils.log_returns
_po.exponential_stdev = utils.exponential_stdev
_po.rebase = utils.rebase
_po.aggregate_returns = utils.aggregate_returns
_po.to_excess_returns = utils.to_excess_returns
_po.multi_shift = utils.multi_shift
_po.curr_month = utils._pandas_current_month
_po.date = utils._pandas_date
_po.r_squared = stats.r_squared
_po.r2 = stats.r2
_po.information_ratio = stats.information_ratio
_po.greeks = stats.greeks
_po.rolling_greeks = stats.rolling_greeks
_po.compare = stats.compare
_po.plot_snapshot = plots.snapshot
_po.plot_earnings = plots.earnings
_po.plot_daily_returns = plots.daily_returns
_po.plot_distribution = plots.distribution
_po.plot_drawdown = plots.drawdown
_po.plot_drawdowns_periods = plots.drawdowns_periods
_po.plot_histogram = plots.histogram
_po.plot_log_returns = plots.log_returns
_po.plot_returns = plots.returns
_po.plot_rolling_beta = plots.rolling_beta
_po.plot_rolling_sharpe = plots.rolling_sharpe
_po.plot_rolling_sortino = plots.rolling_sortino
_po.plot_rolling_volatility = plots.rolling_volatility
_po.plot_yearly_returns = plots.yearly_returns
_po.plot_monthly_heatmap = plots.monthly_heatmap
_po.metrics = reports.metrics
|
def extend_pandas():
"\n extends pandas by exposing methods to be used like:\n df.sharpe(), df.best('day'), ...\n "
from pandas.core.base import PandasObject as _po
_po.compsum = stats.compsum
_po.comp = stats.comp
_po.expected_return = stats.expected_return
_po.geometric_mean = stats.geometric_mean
_po.ghpr = stats.ghpr
_po.outliers = stats.outliers
_po.remove_outliers = stats.remove_outliers
_po.best = stats.best
_po.worst = stats.worst
_po.consecutive_wins = stats.consecutive_wins
_po.consecutive_losses = stats.consecutive_losses
_po.exposure = stats.exposure
_po.win_rate = stats.win_rate
_po.avg_return = stats.avg_return
_po.avg_win = stats.avg_win
_po.avg_loss = stats.avg_loss
_po.volatility = stats.volatility
_po.implied_volatility = stats.implied_volatility
_po.sharpe = stats.sharpe
_po.sortino = stats.sortino
_po.cagr = stats.cagr
_po.rar = stats.rar
_po.skew = stats.skew
_po.kurtosis = stats.kurtosis
_po.calmar = stats.calmar
_po.ulcer_index = stats.ulcer_index
_po.ulcer_performance_index = stats.ulcer_performance_index
_po.upi = stats.upi
_po.risk_of_ruin = stats.risk_of_ruin
_po.ror = stats.ror
_po.value_at_risk = stats.value_at_risk
_po.var = stats.var
_po.conditional_value_at_risk = stats.conditional_value_at_risk
_po.cvar = stats.cvar
_po.expected_shortfall = stats.expected_shortfall
_po.tail_ratio = stats.tail_ratio
_po.payoff_ratio = stats.payoff_ratio
_po.win_loss_ratio = stats.win_loss_ratio
_po.profit_ratio = stats.profit_ratio
_po.profit_factor = stats.profit_factor
_po.gain_to_pain_ratio = stats.gain_to_pain_ratio
_po.cpc_index = stats.cpc_index
_po.common_sense_ratio = stats.common_sense_ratio
_po.outlier_win_ratio = stats.outlier_win_ratio
_po.outlier_loss_ratio = stats.outlier_loss_ratio
_po.recovery_factor = stats.recovery_factor
_po.risk_return_ratio = stats.risk_return_ratio
_po.max_drawdown = stats.max_drawdown
_po.to_drawdown_series = stats.to_drawdown_series
_po.kelly_criterion = stats.kelly_criterion
_po.monthly_returns = stats.monthly_returns
_po.pct_rank = stats.pct_rank
_po.to_returns = utils.to_returns
_po.to_prices = utils.to_prices
_po.to_log_returns = utils.to_log_returns
_po.log_returns = utils.log_returns
_po.exponential_stdev = utils.exponential_stdev
_po.rebase = utils.rebase
_po.aggregate_returns = utils.aggregate_returns
_po.to_excess_returns = utils.to_excess_returns
_po.multi_shift = utils.multi_shift
_po.curr_month = utils._pandas_current_month
_po.date = utils._pandas_date
_po.r_squared = stats.r_squared
_po.r2 = stats.r2
_po.information_ratio = stats.information_ratio
_po.greeks = stats.greeks
_po.rolling_greeks = stats.rolling_greeks
_po.compare = stats.compare
_po.plot_snapshot = plots.snapshot
_po.plot_earnings = plots.earnings
_po.plot_daily_returns = plots.daily_returns
_po.plot_distribution = plots.distribution
_po.plot_drawdown = plots.drawdown
_po.plot_drawdowns_periods = plots.drawdowns_periods
_po.plot_histogram = plots.histogram
_po.plot_log_returns = plots.log_returns
_po.plot_returns = plots.returns
_po.plot_rolling_beta = plots.rolling_beta
_po.plot_rolling_sharpe = plots.rolling_sharpe
_po.plot_rolling_sortino = plots.rolling_sortino
_po.plot_rolling_volatility = plots.rolling_volatility
_po.plot_yearly_returns = plots.yearly_returns
_po.plot_monthly_heatmap = plots.monthly_heatmap
_po.metrics = reports.metrics<|docstring|>extends pandas by exposing methods to be used like:
df.sharpe(), df.best('day'), ...<|endoftext|>
|
e1b301d4a313a6664926b3fd86c8a2b1151cd5797f9e0f8e9525354b60526c8f
|
def authorize():
'\n docorator for authorize\n @parameter inSecurity: bool indicating whether incomming security need to check\n '
def validate(func, self, *args, **kwargs):
' function that calls authrozing function'
isAuthEnabled = True
isPkiEnabled = False
authPassed = False
try:
appGlobal = config['pylons.app_globals']
isAuthEnabled = configutil.getConfigAsBool('basicauth.local')
isPkiEnabled = (appGlobal.encryptedtokens and configutil.getConfigAsBool('pkiauth_enabled'))
except BaseException as excep:
LOG.error(('Error loading auth config %s - %s' % (str(excep), traceback.format_exc(2))))
if isAuthEnabled:
if (('Authorization' not in request.headers) and ('authorization' not in request.headers)):
return invalidAuthHandler('Authorization header missing', {})
message = None
result = {}
if (not isPkiEnabled):
token = ('%s:%s' % (configutil.getConfig('username.local'), configutil.getConfig('password.local')))
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
message = 'Please provide valid username and password'
result['scheme'] = 'base'
if (not authPassed):
token = appGlobal.authztoken
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
if isPkiEnabled:
result['scheme'] = 'pki'
user = (request.headers['AuthorizationUser'] if ('AuthorizationUser' in request.headers) else 'agent')
pubKey = ('%s.cert' % user)
if (pubKey in appGlobal.encryptedtokens):
message = appGlobal.encryptedtokens[pubKey]
result['key'] = appGlobal.encryptedtokens[pubKey]
else:
message = ('Unknown AuthroizationUser %s' % user)
return invalidAuthHandler(message, result)
return func(self, *args, **kwargs)
return decorator(validate)
|
docorator for authorize
@parameter inSecurity: bool indicating whether incomming security need to check
|
agent/agent/lib/security/agentauth.py
|
authorize
|
isabella232/cronus-agent
| 7 |
python
|
def authorize():
'\n docorator for authorize\n @parameter inSecurity: bool indicating whether incomming security need to check\n '
def validate(func, self, *args, **kwargs):
' function that calls authrozing function'
isAuthEnabled = True
isPkiEnabled = False
authPassed = False
try:
appGlobal = config['pylons.app_globals']
isAuthEnabled = configutil.getConfigAsBool('basicauth.local')
isPkiEnabled = (appGlobal.encryptedtokens and configutil.getConfigAsBool('pkiauth_enabled'))
except BaseException as excep:
LOG.error(('Error loading auth config %s - %s' % (str(excep), traceback.format_exc(2))))
if isAuthEnabled:
if (('Authorization' not in request.headers) and ('authorization' not in request.headers)):
return invalidAuthHandler('Authorization header missing', {})
message = None
result = {}
if (not isPkiEnabled):
token = ('%s:%s' % (configutil.getConfig('username.local'), configutil.getConfig('password.local')))
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
message = 'Please provide valid username and password'
result['scheme'] = 'base'
if (not authPassed):
token = appGlobal.authztoken
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
if isPkiEnabled:
result['scheme'] = 'pki'
user = (request.headers['AuthorizationUser'] if ('AuthorizationUser' in request.headers) else 'agent')
pubKey = ('%s.cert' % user)
if (pubKey in appGlobal.encryptedtokens):
message = appGlobal.encryptedtokens[pubKey]
result['key'] = appGlobal.encryptedtokens[pubKey]
else:
message = ('Unknown AuthroizationUser %s' % user)
return invalidAuthHandler(message, result)
return func(self, *args, **kwargs)
return decorator(validate)
|
def authorize():
'\n docorator for authorize\n @parameter inSecurity: bool indicating whether incomming security need to check\n '
def validate(func, self, *args, **kwargs):
' function that calls authrozing function'
isAuthEnabled = True
isPkiEnabled = False
authPassed = False
try:
appGlobal = config['pylons.app_globals']
isAuthEnabled = configutil.getConfigAsBool('basicauth.local')
isPkiEnabled = (appGlobal.encryptedtokens and configutil.getConfigAsBool('pkiauth_enabled'))
except BaseException as excep:
LOG.error(('Error loading auth config %s - %s' % (str(excep), traceback.format_exc(2))))
if isAuthEnabled:
if (('Authorization' not in request.headers) and ('authorization' not in request.headers)):
return invalidAuthHandler('Authorization header missing', {})
message = None
result = {}
if (not isPkiEnabled):
token = ('%s:%s' % (configutil.getConfig('username.local'), configutil.getConfig('password.local')))
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
message = 'Please provide valid username and password'
result['scheme'] = 'base'
if (not authPassed):
token = appGlobal.authztoken
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
if isPkiEnabled:
result['scheme'] = 'pki'
user = (request.headers['AuthorizationUser'] if ('AuthorizationUser' in request.headers) else 'agent')
pubKey = ('%s.cert' % user)
if (pubKey in appGlobal.encryptedtokens):
message = appGlobal.encryptedtokens[pubKey]
result['key'] = appGlobal.encryptedtokens[pubKey]
else:
message = ('Unknown AuthroizationUser %s' % user)
return invalidAuthHandler(message, result)
return func(self, *args, **kwargs)
return decorator(validate)<|docstring|>docorator for authorize
@parameter inSecurity: bool indicating whether incomming security need to check<|endoftext|>
|
6c720f6ba30e05f4dd532ac97e4f084bb1efddcecc903c487c17a7a62ad066a6
|
def isAuthenticated(token):
' check whether user name and password are right '
message = 'Please provide valid username and password'
inHeader = None
try:
if ('authorization' in request.headers):
inHeader = request.headers['authorization']
elif ('Authorization' in request.headers):
inHeader = request.headers['Authorization']
if (inHeader is not None):
base64string = base64.encodestring(token)[:(- 1)]
match = re.match('\\s*Basic\\s*(?P<auth>\\S*)$', inHeader)
if ((match is not None) and (match.group('auth') == base64string)):
return True
raise UnauthorizedException(((message + ' Header:') + str(request.headers)))
except:
raise UnauthorizedException(((message + ' Header:') + str(request.headers)))
|
check whether user name and password are right
|
agent/agent/lib/security/agentauth.py
|
isAuthenticated
|
isabella232/cronus-agent
| 7 |
python
|
def isAuthenticated(token):
' '
message = 'Please provide valid username and password'
inHeader = None
try:
if ('authorization' in request.headers):
inHeader = request.headers['authorization']
elif ('Authorization' in request.headers):
inHeader = request.headers['Authorization']
if (inHeader is not None):
base64string = base64.encodestring(token)[:(- 1)]
match = re.match('\\s*Basic\\s*(?P<auth>\\S*)$', inHeader)
if ((match is not None) and (match.group('auth') == base64string)):
return True
raise UnauthorizedException(((message + ' Header:') + str(request.headers)))
except:
raise UnauthorizedException(((message + ' Header:') + str(request.headers)))
|
def isAuthenticated(token):
' '
message = 'Please provide valid username and password'
inHeader = None
try:
if ('authorization' in request.headers):
inHeader = request.headers['authorization']
elif ('Authorization' in request.headers):
inHeader = request.headers['Authorization']
if (inHeader is not None):
base64string = base64.encodestring(token)[:(- 1)]
match = re.match('\\s*Basic\\s*(?P<auth>\\S*)$', inHeader)
if ((match is not None) and (match.group('auth') == base64string)):
return True
raise UnauthorizedException(((message + ' Header:') + str(request.headers)))
except:
raise UnauthorizedException(((message + ' Header:') + str(request.headers)))<|docstring|>check whether user name and password are right<|endoftext|>
|
e8adb93a256100768d3e1c9a3545dad32fd0f37722eb3fa4216e7c435cfb47af
|
def buildTokenCache(authztoken):
' build in memory cache for security tokens '
appGlobal = config['pylons.app_globals']
pubKeyDir = os.path.join(manifestutil.manifestPath('agent'), 'agent', 'cronus', 'keys')
LOG.info(('key directory %s' % pubKeyDir))
if os.path.exists(pubKeyDir):
try:
import pki
from M2Crypto import X509
pubKeyFiles = [f for f in os.listdir(pubKeyDir) if re.match('.*\\.cert', f)]
LOG.info(('key files %s' % pubKeyFiles))
for pubKeyFile in pubKeyFiles:
certf = open(os.path.join(pubKeyDir, pubKeyFile), 'r')
ca_cert_content = certf.read()
certf.close()
cert = X509.load_cert_string(ca_cert_content)
encryptedToken = pki.encrypt(cert.get_pubkey(), authztoken)
appGlobal.encryptedtokens[pubKeyFile] = encryptedToken
LOG.info(('token %s=%s' % (pubKeyFile, encryptedToken)))
except BaseException as excep:
LOG.error(('Error loading pki keys %s - %s' % (str(excep), traceback.format_exc(2))))
|
build in memory cache for security tokens
|
agent/agent/lib/security/agentauth.py
|
buildTokenCache
|
isabella232/cronus-agent
| 7 |
python
|
def buildTokenCache(authztoken):
' '
appGlobal = config['pylons.app_globals']
pubKeyDir = os.path.join(manifestutil.manifestPath('agent'), 'agent', 'cronus', 'keys')
LOG.info(('key directory %s' % pubKeyDir))
if os.path.exists(pubKeyDir):
try:
import pki
from M2Crypto import X509
pubKeyFiles = [f for f in os.listdir(pubKeyDir) if re.match('.*\\.cert', f)]
LOG.info(('key files %s' % pubKeyFiles))
for pubKeyFile in pubKeyFiles:
certf = open(os.path.join(pubKeyDir, pubKeyFile), 'r')
ca_cert_content = certf.read()
certf.close()
cert = X509.load_cert_string(ca_cert_content)
encryptedToken = pki.encrypt(cert.get_pubkey(), authztoken)
appGlobal.encryptedtokens[pubKeyFile] = encryptedToken
LOG.info(('token %s=%s' % (pubKeyFile, encryptedToken)))
except BaseException as excep:
LOG.error(('Error loading pki keys %s - %s' % (str(excep), traceback.format_exc(2))))
|
def buildTokenCache(authztoken):
' '
appGlobal = config['pylons.app_globals']
pubKeyDir = os.path.join(manifestutil.manifestPath('agent'), 'agent', 'cronus', 'keys')
LOG.info(('key directory %s' % pubKeyDir))
if os.path.exists(pubKeyDir):
try:
import pki
from M2Crypto import X509
pubKeyFiles = [f for f in os.listdir(pubKeyDir) if re.match('.*\\.cert', f)]
LOG.info(('key files %s' % pubKeyFiles))
for pubKeyFile in pubKeyFiles:
certf = open(os.path.join(pubKeyDir, pubKeyFile), 'r')
ca_cert_content = certf.read()
certf.close()
cert = X509.load_cert_string(ca_cert_content)
encryptedToken = pki.encrypt(cert.get_pubkey(), authztoken)
appGlobal.encryptedtokens[pubKeyFile] = encryptedToken
LOG.info(('token %s=%s' % (pubKeyFile, encryptedToken)))
except BaseException as excep:
LOG.error(('Error loading pki keys %s - %s' % (str(excep), traceback.format_exc(2))))<|docstring|>build in memory cache for security tokens<|endoftext|>
|
ec29ff40ccb3cf25327cecf182617eef09954ca2c571b810182a6297fdbce9e9
|
def validate(func, self, *args, **kwargs):
' function that calls authrozing function'
isAuthEnabled = True
isPkiEnabled = False
authPassed = False
try:
appGlobal = config['pylons.app_globals']
isAuthEnabled = configutil.getConfigAsBool('basicauth.local')
isPkiEnabled = (appGlobal.encryptedtokens and configutil.getConfigAsBool('pkiauth_enabled'))
except BaseException as excep:
LOG.error(('Error loading auth config %s - %s' % (str(excep), traceback.format_exc(2))))
if isAuthEnabled:
if (('Authorization' not in request.headers) and ('authorization' not in request.headers)):
return invalidAuthHandler('Authorization header missing', {})
message = None
result = {}
if (not isPkiEnabled):
token = ('%s:%s' % (configutil.getConfig('username.local'), configutil.getConfig('password.local')))
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
message = 'Please provide valid username and password'
result['scheme'] = 'base'
if (not authPassed):
token = appGlobal.authztoken
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
if isPkiEnabled:
result['scheme'] = 'pki'
user = (request.headers['AuthorizationUser'] if ('AuthorizationUser' in request.headers) else 'agent')
pubKey = ('%s.cert' % user)
if (pubKey in appGlobal.encryptedtokens):
message = appGlobal.encryptedtokens[pubKey]
result['key'] = appGlobal.encryptedtokens[pubKey]
else:
message = ('Unknown AuthroizationUser %s' % user)
return invalidAuthHandler(message, result)
return func(self, *args, **kwargs)
|
function that calls authrozing function
|
agent/agent/lib/security/agentauth.py
|
validate
|
isabella232/cronus-agent
| 7 |
python
|
def validate(func, self, *args, **kwargs):
' '
isAuthEnabled = True
isPkiEnabled = False
authPassed = False
try:
appGlobal = config['pylons.app_globals']
isAuthEnabled = configutil.getConfigAsBool('basicauth.local')
isPkiEnabled = (appGlobal.encryptedtokens and configutil.getConfigAsBool('pkiauth_enabled'))
except BaseException as excep:
LOG.error(('Error loading auth config %s - %s' % (str(excep), traceback.format_exc(2))))
if isAuthEnabled:
if (('Authorization' not in request.headers) and ('authorization' not in request.headers)):
return invalidAuthHandler('Authorization header missing', {})
message = None
result = {}
if (not isPkiEnabled):
token = ('%s:%s' % (configutil.getConfig('username.local'), configutil.getConfig('password.local')))
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
message = 'Please provide valid username and password'
result['scheme'] = 'base'
if (not authPassed):
token = appGlobal.authztoken
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
if isPkiEnabled:
result['scheme'] = 'pki'
user = (request.headers['AuthorizationUser'] if ('AuthorizationUser' in request.headers) else 'agent')
pubKey = ('%s.cert' % user)
if (pubKey in appGlobal.encryptedtokens):
message = appGlobal.encryptedtokens[pubKey]
result['key'] = appGlobal.encryptedtokens[pubKey]
else:
message = ('Unknown AuthroizationUser %s' % user)
return invalidAuthHandler(message, result)
return func(self, *args, **kwargs)
|
def validate(func, self, *args, **kwargs):
' '
isAuthEnabled = True
isPkiEnabled = False
authPassed = False
try:
appGlobal = config['pylons.app_globals']
isAuthEnabled = configutil.getConfigAsBool('basicauth.local')
isPkiEnabled = (appGlobal.encryptedtokens and configutil.getConfigAsBool('pkiauth_enabled'))
except BaseException as excep:
LOG.error(('Error loading auth config %s - %s' % (str(excep), traceback.format_exc(2))))
if isAuthEnabled:
if (('Authorization' not in request.headers) and ('authorization' not in request.headers)):
return invalidAuthHandler('Authorization header missing', {})
message = None
result = {}
if (not isPkiEnabled):
token = ('%s:%s' % (configutil.getConfig('username.local'), configutil.getConfig('password.local')))
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
message = 'Please provide valid username and password'
result['scheme'] = 'base'
if (not authPassed):
token = appGlobal.authztoken
try:
isAuthenticated(token)
authPassed = True
except UnauthorizedException:
if isPkiEnabled:
result['scheme'] = 'pki'
user = (request.headers['AuthorizationUser'] if ('AuthorizationUser' in request.headers) else 'agent')
pubKey = ('%s.cert' % user)
if (pubKey in appGlobal.encryptedtokens):
message = appGlobal.encryptedtokens[pubKey]
result['key'] = appGlobal.encryptedtokens[pubKey]
else:
message = ('Unknown AuthroizationUser %s' % user)
return invalidAuthHandler(message, result)
return func(self, *args, **kwargs)<|docstring|>function that calls authrozing function<|endoftext|>
|
d1b7fa33477651e998f94f22a32044736ba25bd70e11f32a508bb9c4553ede17
|
def test_name(self):
'\n Tests the outputting of the correct name if assigned one.\n '
field = models.CharField(max_length=65)
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, None)
field.set_attributes_from_name('is_awesome_test')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, 'is_awesome_test')
field = models.ForeignKey('some_fake.ModelName')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, None)
field.set_attributes_from_name('author')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, 'author')
|
Tests the outputting of the correct name if assigned one.
|
tests/field_deconstruction/tests.py
|
test_name
|
pegler/django
| 1 |
python
|
def test_name(self):
'\n \n '
field = models.CharField(max_length=65)
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, None)
field.set_attributes_from_name('is_awesome_test')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, 'is_awesome_test')
field = models.ForeignKey('some_fake.ModelName')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, None)
field.set_attributes_from_name('author')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, 'author')
|
def test_name(self):
'\n \n '
field = models.CharField(max_length=65)
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, None)
field.set_attributes_from_name('is_awesome_test')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, 'is_awesome_test')
field = models.ForeignKey('some_fake.ModelName')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, None)
field.set_attributes_from_name('author')
(name, path, args, kwargs) = field.deconstruct()
self.assertEqual(name, 'author')<|docstring|>Tests the outputting of the correct name if assigned one.<|endoftext|>
|
fa505aacba718aafc1f3222b01fbd22dc5673e444786694fed688bd6edf45884
|
@staticmethod
def _split_fqdn(fqdn):
'Split a FQDN into record_name and zone_name values'
if (not fqdn):
raise ValueError('Error: No valid FQDN given.')
split_dns = fqdn.rstrip('.').rsplit('.', 2)
return (''.join(split_dns[:(- 2)]), ('.'.join(split_dns[(- 2):]) + '.'))
|
Split a FQDN into record_name and zone_name values
|
kasserver/__init__.py
|
_split_fqdn
|
Lightweb-Media/kasserver
| 0 |
python
|
@staticmethod
def _split_fqdn(fqdn):
if (not fqdn):
raise ValueError('Error: No valid FQDN given.')
split_dns = fqdn.rstrip('.').rsplit('.', 2)
return (.join(split_dns[:(- 2)]), ('.'.join(split_dns[(- 2):]) + '.'))
|
@staticmethod
def _split_fqdn(fqdn):
if (not fqdn):
raise ValueError('Error: No valid FQDN given.')
split_dns = fqdn.rstrip('.').rsplit('.', 2)
return (.join(split_dns[:(- 2)]), ('.'.join(split_dns[(- 2):]) + '.'))<|docstring|>Split a FQDN into record_name and zone_name values<|endoftext|>
|
971aaf168ac25b02db098186bff77ffe1f1399e5ea04648164128feec2e6a265
|
def get_dns_records(self, fqdn):
'Get list of DNS records.'
(_, zone_name) = self._split_fqdn(fqdn)
res = self._request('get_dns_settings', {'zone_host': zone_name})
items = res[1]['value']['item'][2]['value']['_value_1']
result = []
for item in items:
result.append({i['key'].split('_', 1)[(- 1)]: i['value'] for i in item['item']})
return result
|
Get list of DNS records.
|
kasserver/__init__.py
|
get_dns_records
|
Lightweb-Media/kasserver
| 0 |
python
|
def get_dns_records(self, fqdn):
(_, zone_name) = self._split_fqdn(fqdn)
res = self._request('get_dns_settings', {'zone_host': zone_name})
items = res[1]['value']['item'][2]['value']['_value_1']
result = []
for item in items:
result.append({i['key'].split('_', 1)[(- 1)]: i['value'] for i in item['item']})
return result
|
def get_dns_records(self, fqdn):
(_, zone_name) = self._split_fqdn(fqdn)
res = self._request('get_dns_settings', {'zone_host': zone_name})
items = res[1]['value']['item'][2]['value']['_value_1']
result = []
for item in items:
result.append({i['key'].split('_', 1)[(- 1)]: i['value'] for i in item['item']})
return result<|docstring|>Get list of DNS records.<|endoftext|>
|
1f55944a4daadeaff40cea4d416e37a82cccef9d7f5db1aa390a39628a5c96d2
|
def get_dns_record(self, fqdn, record_type):
'Get a specific DNS record for a FQDN and type'
(record_name, zone_name) = self._split_fqdn(fqdn)
result = self.get_dns_records(zone_name)
for item in result:
if ((item['name'] == record_name) and (item['type'] == record_type)):
return item
return None
|
Get a specific DNS record for a FQDN and type
|
kasserver/__init__.py
|
get_dns_record
|
Lightweb-Media/kasserver
| 0 |
python
|
def get_dns_record(self, fqdn, record_type):
(record_name, zone_name) = self._split_fqdn(fqdn)
result = self.get_dns_records(zone_name)
for item in result:
if ((item['name'] == record_name) and (item['type'] == record_type)):
return item
return None
|
def get_dns_record(self, fqdn, record_type):
(record_name, zone_name) = self._split_fqdn(fqdn)
result = self.get_dns_records(zone_name)
for item in result:
if ((item['name'] == record_name) and (item['type'] == record_type)):
return item
return None<|docstring|>Get a specific DNS record for a FQDN and type<|endoftext|>
|
e24c5ea817cfd13ea6b85bc2ee8b9e3677314c73a4fda98676187a429e422e95
|
def add_dns_record(self, fqdn, record_type, record_data, record_aux=None):
'Add or update an DNS record'
(record_name, zone_name) = self._split_fqdn(fqdn)
params = {'zone_host': zone_name, 'record_name': record_name, 'record_type': record_type, 'record_data': record_data, 'record_aux': (record_aux if record_aux else '0')}
existing_record = self.get_dns_record(fqdn, record_type)
if existing_record:
params['record_id'] = existing_record['id']
self._request('update_dns_settings', params)
else:
self._request('add_dns_settings', params)
|
Add or update an DNS record
|
kasserver/__init__.py
|
add_dns_record
|
Lightweb-Media/kasserver
| 0 |
python
|
def add_dns_record(self, fqdn, record_type, record_data, record_aux=None):
(record_name, zone_name) = self._split_fqdn(fqdn)
params = {'zone_host': zone_name, 'record_name': record_name, 'record_type': record_type, 'record_data': record_data, 'record_aux': (record_aux if record_aux else '0')}
existing_record = self.get_dns_record(fqdn, record_type)
if existing_record:
params['record_id'] = existing_record['id']
self._request('update_dns_settings', params)
else:
self._request('add_dns_settings', params)
|
def add_dns_record(self, fqdn, record_type, record_data, record_aux=None):
(record_name, zone_name) = self._split_fqdn(fqdn)
params = {'zone_host': zone_name, 'record_name': record_name, 'record_type': record_type, 'record_data': record_data, 'record_aux': (record_aux if record_aux else '0')}
existing_record = self.get_dns_record(fqdn, record_type)
if existing_record:
params['record_id'] = existing_record['id']
self._request('update_dns_settings', params)
else:
self._request('add_dns_settings', params)<|docstring|>Add or update an DNS record<|endoftext|>
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.