body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
c5f74a00aff7c990dab246ebc3bfc2d7bfb585611bce64bc0b1b0a42a7b7eb96
def delete_dns_record(self, fqdn, record_type): 'Removes an existing DNS record' existing_record = self.get_dns_record(fqdn, record_type) if existing_record: self._request('delete_dns_settings', {'record_id': existing_record['id']})
Removes an existing DNS record
kasserver/__init__.py
delete_dns_record
Lightweb-Media/kasserver
0
python
def delete_dns_record(self, fqdn, record_type): existing_record = self.get_dns_record(fqdn, record_type) if existing_record: self._request('delete_dns_settings', {'record_id': existing_record['id']})
def delete_dns_record(self, fqdn, record_type): existing_record = self.get_dns_record(fqdn, record_type) if existing_record: self._request('delete_dns_settings', {'record_id': existing_record['id']})<|docstring|>Removes an existing DNS record<|endoftext|>
f0857a70c9e778f75552447fdf932a2b8acc7e8721a40929e4e32985fc3e1f72
def list_account(self): 'Removes an existing DNS record' res = self._request('get_accounts', {}) print(res)
Removes an existing DNS record
kasserver/__init__.py
list_account
Lightweb-Media/kasserver
0
python
def list_account(self): res = self._request('get_accounts', {}) print(res)
def list_account(self): res = self._request('get_accounts', {}) print(res)<|docstring|>Removes an existing DNS record<|endoftext|>
43aa6aad880952c72e34033db12180fbb132dbade0c3d94bd748db8f07eeff73
def add_account(self): 'Removes an existing DNS record' res = self._request('get_accounts', {}) print(res)
Removes an existing DNS record
kasserver/__init__.py
add_account
Lightweb-Media/kasserver
0
python
def add_account(self): res = self._request('get_accounts', {}) print(res)
def add_account(self): res = self._request('get_accounts', {}) print(res)<|docstring|>Removes an existing DNS record<|endoftext|>
13eecc88b0f3bfccf22a7d2c45237460aa504d9d7cd22ca5e0a2dbca91359a2e
def add_subaccount(self, account_kas_password, account_ftp_password, hostname_art, hostname_part1, hostname_part2): 'add Subaccount' account_comment = 'test' hostname_art = 'subdomain' hostname_part2 = 'dev-wp.de' max_subdomain = 1 res = self._request('add_account', {'max_subdomain': max_subdomain, 'account_kas_password': account_kas_password, 'account_ftp_password': account_ftp_password, 'hostname_art': hostname_art, 'hostname_part1': hostname_part1, 'hostname_part2': hostname_part2, 'account_comment': account_comment}) print(res)
add Subaccount
kasserver/__init__.py
add_subaccount
Lightweb-Media/kasserver
0
python
def add_subaccount(self, account_kas_password, account_ftp_password, hostname_art, hostname_part1, hostname_part2): account_comment = 'test' hostname_art = 'subdomain' hostname_part2 = 'dev-wp.de' max_subdomain = 1 res = self._request('add_account', {'max_subdomain': max_subdomain, 'account_kas_password': account_kas_password, 'account_ftp_password': account_ftp_password, 'hostname_art': hostname_art, 'hostname_part1': hostname_part1, 'hostname_part2': hostname_part2, 'account_comment': account_comment}) print(res)
def add_subaccount(self, account_kas_password, account_ftp_password, hostname_art, hostname_part1, hostname_part2): account_comment = 'test' hostname_art = 'subdomain' hostname_part2 = 'dev-wp.de' max_subdomain = 1 res = self._request('add_account', {'max_subdomain': max_subdomain, 'account_kas_password': account_kas_password, 'account_ftp_password': account_ftp_password, 'hostname_art': hostname_art, 'hostname_part1': hostname_part1, 'hostname_part2': hostname_part2, 'account_comment': account_comment}) print(res)<|docstring|>add Subaccount<|endoftext|>
a486fa77a7a3b70fa338541163ae3046ed49c8a88532cd1205e340fbfbd67770
def make_mosaic_pb(vis_dataset, gcf_dataset, img_dataset, sel_parms, grid_parms, storage_parms): "\n The make_pb function currently supports rotationally symmetric airy disk primary beams. Primary beams can be generated for any number of dishes.\n The make_pb_parms['list_dish_diameters'] and make_pb_parms['list_blockage_diameters'] must be specified for each dish.\n \n Parameters\n ----------\n vis_dataset : xarray.core.dataset.Dataset\n Input visibility dataset.\n gcf_dataset : xarray.core.dataset.Dataset\n Input gridding convolution function dataset.\n img_dataset : xarray.core.dataset.Dataset\n Input image dataset. ()\n make_pb_parms : dictionary\n make_pb_parms['function'] : {'airy'}, default='airy'\n Only the airy disk function is currently supported.\n grid_parms['imsize'] : list of int, length = 2\n The image size (no padding).\n grid_parms['cell'] : list of number, length = 2, units = arcseconds\n The image cell size.\n make_pb_parms['list_dish_diameters'] : list of number\n The list of dish diameters.\n make_pb_parms['list_blockage_diameters'] = list of number\n The list of blockage diameters for each dish.\n make_pb_parms['pb_name'] = 'PB'\n The created PB name.\n storage_parms : dictionary\n storage_parms['to_disk'] : bool, default = False\n If true the dask graph is executed and saved to disk in the zarr format.\n storage_parms['append'] : bool, default = False\n If storage_parms['to_disk'] is True only the dask graph associated with the function is executed and the resulting data variables are saved to an existing zarr file on disk.\n Note that graphs on unrelated data to this function will not be executed or saved.\n storage_parms['outfile'] : str\n The zarr file to create or append to.\n storage_parms['chunks_on_disk'] : dict of int, default = {}\n The chunk size to use when writing to disk. This is ignored if storage_parms['append'] is True. The default will use the chunking of the input dataset.\n storage_parms['chunks_return'] : dict of int, default = {}\n The chunk size of the dataset that is returned. The default will use the chunking of the input dataset.\n storage_parms['graph_name'] : str\n The time to compute and save the data is stored in the attribute section of the dataset and storage_parms['graph_name'] is used in the label.\n storage_parms['compressor'] : numcodecs.blosc.Blosc,default=Blosc(cname='zstd', clevel=2, shuffle=0)\n The compression algorithm to use. Available compression algorithms can be found at https://numcodecs.readthedocs.io/en/stable/blosc.html.\n \n Returns\n -------\n img_xds : xarray.core.dataset.Dataset\n " print('######################### Start make_mosaic_pb #########################') from ngcasa._ngcasa_utils._store import _store from ngcasa._ngcasa_utils._check_parms import _check_storage_parms, _check_sel_parms, _check_existence_sel_parms from ._imaging_utils._check_imaging_parms import _check_grid_parms, _check_mosaic_pb_parms from ._imaging_utils._aperture_grid import _graph_aperture_grid import dask.array.fft as dafft import matplotlib.pylab as plt import numpy as np import dask.array as da import copy import xarray as xr from ._imaging_utils._remove_padding import _remove_padding from ._imaging_utils._normalize import _normalize _sel_parms = copy.deepcopy(sel_parms) _grid_parms = copy.deepcopy(grid_parms) _storage_parms = copy.deepcopy(storage_parms) assert _check_sel_parms(_sel_parms, {'pb': 'PB', 'weight_pb': 'WEIGHT_PB', 'weight_pb_sum_weight': 'WEIGHT_PB_SUM_WEIGHT'}), '######### ERROR: sel_parms checking failed' assert _check_grid_parms(_grid_parms), '######### ERROR: grid_parms checking failed' assert _check_storage_parms(_storage_parms, 'mosaic_pb.img.zarr', 'make_mosaic_pb'), '######### ERROR: storage_parms checking failed' _grid_parms['grid_weights'] = True _grid_parms['do_psf'] = False _grid_parms['oversampling'] = np.array(gcf_dataset.attrs['oversampling']) grids_and_sum_weights = _graph_aperture_grid(vis_dataset, gcf_dataset, _grid_parms, _sel_parms) weight_image = (_remove_padding(dafft.fftshift(dafft.ifft2(dafft.ifftshift(grids_and_sum_weights[0], axes=(0, 1)), axes=(0, 1)), axes=(0, 1)), _grid_parms['image_size']).real * (_grid_parms['image_size_padded'][0] * _grid_parms['image_size_padded'][1])) def correct_image(weight_image, sum_weights): sum_weights_copy = copy.deepcopy(sum_weights) sum_weights_copy[(sum_weights_copy == 0)] = 1 weight_image = (weight_image / sum_weights_copy[(None, None, :, :)]) return weight_image weight_image = da.map_blocks(correct_image, weight_image, grids_and_sum_weights[1], dtype=np.double) mosaic_primary_beam = da.sqrt(np.abs(weight_image)) if (_grid_parms['chan_mode'] == 'continuum'): freq_coords = [da.mean(vis_dataset.coords['chan'].values)] chan_width = da.from_array([da.mean(vis_dataset['chan_width'].data)], chunks=(1,)) imag_chan_chunk_size = 1 elif (_grid_parms['chan_mode'] == 'cube'): freq_coords = vis_dataset.coords['chan'].values chan_width = vis_dataset['chan_width'].data imag_chan_chunk_size = vis_dataset.DATA.chunks[2][0] chunks = vis_dataset.DATA.chunks n_imag_pol = chunks[3][0] image_dict = {} coords = {'d0': np.arange(_grid_parms['image_size'][0]), 'd1': np.arange(_grid_parms['image_size'][1]), 'chan': freq_coords, 'pol': np.arange(n_imag_pol), 'chan_width': ('chan', chan_width)} img_dataset = img_dataset.assign_coords(coords) img_dataset[_sel_parms['pb']] = xr.DataArray(mosaic_primary_beam, dims=['d0', 'd1', 'chan', 'pol']) img_dataset[_sel_parms['weight']] = xr.DataArray(weight_image, dims=['d0', 'd1', 'chan', 'pol']) img_dataset[_sel_parms['weight_pb_sum_weight']] = xr.DataArray(grids_and_sum_weights[1], dims=['chan', 'pol']) list_xarray_data_variables = [img_dataset[_sel_parms['pb']], img_dataset[_sel_parms['weight']]] return _store(img_dataset, list_xarray_data_variables, _storage_parms) '\n \n ## Add PB to img_dataset\n\n #coords = {\'d0\': np.arange(pb_parms[\'imsize\'][0]), \'d1\': np.arange(_pb_parms[\'imsize\'][1]),\n # \'chan\': freq_coords.compute(), \'pol\': pol,\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))}\n \n img_dataset[_pb_mosaic_parms[\'mosaic_weight_name\']] = xr.DataArray(weight_image, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset[_pb_mosaic_parms[\'mosaic_pb_name\']] = xr.DataArray(, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset = img_dataset.assign_coords({\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))})\n\n list_xarray_data_variables = [img_dataset[_pb_parms[\'pb_name\']]]\n return _store(img_dataset,list_xarray_data_variables,_storage_parms)\n\n\n\n from ngcasa._ngcasa_utils._store import _store\n from ngcasa._ngcasa_utils._check_parms import _check_storage_parms\n from ._imaging_utils._check_imaging_parms import _check_pb_parms\n import numpy as np\n import dask.array as da\n import copy, os\n import xarray as xr\n\n import matplotlib.pylab as plt\n\n _pb_parms = copy.deepcopy(pb_parms)\n _storage_parms = copy.deepcopy(storage_parms)\n\n assert(_check_pb_parms(img_dataset,_pb_parms)), "######### ERROR: user_imaging_weights_parms checking failed"\n assert(_check_storage_parms(_storage_parms,\'dataset.img.zarr\',\'make_pb\')), "######### ERROR: user_storage_parms checking failed"\n\n #parameter check\n #cube continuum check\n\n\n if _pb_parms[\'function\'] == \'airy\':\n from ._imaging_utils._make_pb_1d import _airy_disk\n pb_func = _airy_disk\n else:\n print(\'Only the airy function has been implemented\')\n\n _pb_parms[\'ipower\'] = 2\n _pb_parms[\'center_indx\'] = []\n\n\n chan_chunk_size = img_dataset.chan_width.chunks[0][0]\n freq_coords = da.from_array(img_dataset.coords[\'chan\'].values, chunks=(chan_chunk_size))\n\n pol = img_dataset.pol.values #don\'t want chunking here\n\n chunksize = (_pb_parms[\'imsize\'][0],_pb_parms[\'imsize\'][1]) + freq_coords.chunksize + (len(pol),) + (len(_pb_parms[\'list_dish_diameters\']),)\n\n pb = da.map_blocks(pb_func, freq_coords, pol, _pb_parms, chunks=chunksize ,new_axis=[0,1,3,4], dtype=np.double)\n\n ## Add PB to img_dataset\n\n coords = {\'d0\': np.arange(pb_parms[\'imsize\'][0]), \'d1\': np.arange(_pb_parms[\'imsize\'][1]),\n \'chan\': freq_coords.compute(), \'pol\': pol,\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))}\n\n\n img_dataset[_pb_parms[\'pb_name\']] = xr.DataArray(pb, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset = img_dataset.assign_coords({\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))})\n\n list_xarray_data_variables = [img_dataset[_pb_parms[\'pb_name\']]]\n return _store(img_dataset,list_xarray_data_variables,_storage_parms)\n '
The make_pb function currently supports rotationally symmetric airy disk primary beams. Primary beams can be generated for any number of dishes. The make_pb_parms['list_dish_diameters'] and make_pb_parms['list_blockage_diameters'] must be specified for each dish. Parameters ---------- vis_dataset : xarray.core.dataset.Dataset Input visibility dataset. gcf_dataset : xarray.core.dataset.Dataset Input gridding convolution function dataset. img_dataset : xarray.core.dataset.Dataset Input image dataset. () make_pb_parms : dictionary make_pb_parms['function'] : {'airy'}, default='airy' Only the airy disk function is currently supported. grid_parms['imsize'] : list of int, length = 2 The image size (no padding). grid_parms['cell'] : list of number, length = 2, units = arcseconds The image cell size. make_pb_parms['list_dish_diameters'] : list of number The list of dish diameters. make_pb_parms['list_blockage_diameters'] = list of number The list of blockage diameters for each dish. make_pb_parms['pb_name'] = 'PB' The created PB name. storage_parms : dictionary storage_parms['to_disk'] : bool, default = False If true the dask graph is executed and saved to disk in the zarr format. storage_parms['append'] : bool, default = False If storage_parms['to_disk'] is True only the dask graph associated with the function is executed and the resulting data variables are saved to an existing zarr file on disk. Note that graphs on unrelated data to this function will not be executed or saved. storage_parms['outfile'] : str The zarr file to create or append to. storage_parms['chunks_on_disk'] : dict of int, default = {} The chunk size to use when writing to disk. This is ignored if storage_parms['append'] is True. The default will use the chunking of the input dataset. storage_parms['chunks_return'] : dict of int, default = {} The chunk size of the dataset that is returned. The default will use the chunking of the input dataset. storage_parms['graph_name'] : str The time to compute and save the data is stored in the attribute section of the dataset and storage_parms['graph_name'] is used in the label. storage_parms['compressor'] : numcodecs.blosc.Blosc,default=Blosc(cname='zstd', clevel=2, shuffle=0) The compression algorithm to use. Available compression algorithms can be found at https://numcodecs.readthedocs.io/en/stable/blosc.html. Returns ------- img_xds : xarray.core.dataset.Dataset
ngcasa/imaging/make_mosaic_pb.py
make_mosaic_pb
FedeMPouzols/cngi_prototype
0
python
def make_mosaic_pb(vis_dataset, gcf_dataset, img_dataset, sel_parms, grid_parms, storage_parms): "\n The make_pb function currently supports rotationally symmetric airy disk primary beams. Primary beams can be generated for any number of dishes.\n The make_pb_parms['list_dish_diameters'] and make_pb_parms['list_blockage_diameters'] must be specified for each dish.\n \n Parameters\n ----------\n vis_dataset : xarray.core.dataset.Dataset\n Input visibility dataset.\n gcf_dataset : xarray.core.dataset.Dataset\n Input gridding convolution function dataset.\n img_dataset : xarray.core.dataset.Dataset\n Input image dataset. ()\n make_pb_parms : dictionary\n make_pb_parms['function'] : {'airy'}, default='airy'\n Only the airy disk function is currently supported.\n grid_parms['imsize'] : list of int, length = 2\n The image size (no padding).\n grid_parms['cell'] : list of number, length = 2, units = arcseconds\n The image cell size.\n make_pb_parms['list_dish_diameters'] : list of number\n The list of dish diameters.\n make_pb_parms['list_blockage_diameters'] = list of number\n The list of blockage diameters for each dish.\n make_pb_parms['pb_name'] = 'PB'\n The created PB name.\n storage_parms : dictionary\n storage_parms['to_disk'] : bool, default = False\n If true the dask graph is executed and saved to disk in the zarr format.\n storage_parms['append'] : bool, default = False\n If storage_parms['to_disk'] is True only the dask graph associated with the function is executed and the resulting data variables are saved to an existing zarr file on disk.\n Note that graphs on unrelated data to this function will not be executed or saved.\n storage_parms['outfile'] : str\n The zarr file to create or append to.\n storage_parms['chunks_on_disk'] : dict of int, default = {}\n The chunk size to use when writing to disk. This is ignored if storage_parms['append'] is True. The default will use the chunking of the input dataset.\n storage_parms['chunks_return'] : dict of int, default = {}\n The chunk size of the dataset that is returned. The default will use the chunking of the input dataset.\n storage_parms['graph_name'] : str\n The time to compute and save the data is stored in the attribute section of the dataset and storage_parms['graph_name'] is used in the label.\n storage_parms['compressor'] : numcodecs.blosc.Blosc,default=Blosc(cname='zstd', clevel=2, shuffle=0)\n The compression algorithm to use. Available compression algorithms can be found at https://numcodecs.readthedocs.io/en/stable/blosc.html.\n \n Returns\n -------\n img_xds : xarray.core.dataset.Dataset\n " print('######################### Start make_mosaic_pb #########################') from ngcasa._ngcasa_utils._store import _store from ngcasa._ngcasa_utils._check_parms import _check_storage_parms, _check_sel_parms, _check_existence_sel_parms from ._imaging_utils._check_imaging_parms import _check_grid_parms, _check_mosaic_pb_parms from ._imaging_utils._aperture_grid import _graph_aperture_grid import dask.array.fft as dafft import matplotlib.pylab as plt import numpy as np import dask.array as da import copy import xarray as xr from ._imaging_utils._remove_padding import _remove_padding from ._imaging_utils._normalize import _normalize _sel_parms = copy.deepcopy(sel_parms) _grid_parms = copy.deepcopy(grid_parms) _storage_parms = copy.deepcopy(storage_parms) assert _check_sel_parms(_sel_parms, {'pb': 'PB', 'weight_pb': 'WEIGHT_PB', 'weight_pb_sum_weight': 'WEIGHT_PB_SUM_WEIGHT'}), '######### ERROR: sel_parms checking failed' assert _check_grid_parms(_grid_parms), '######### ERROR: grid_parms checking failed' assert _check_storage_parms(_storage_parms, 'mosaic_pb.img.zarr', 'make_mosaic_pb'), '######### ERROR: storage_parms checking failed' _grid_parms['grid_weights'] = True _grid_parms['do_psf'] = False _grid_parms['oversampling'] = np.array(gcf_dataset.attrs['oversampling']) grids_and_sum_weights = _graph_aperture_grid(vis_dataset, gcf_dataset, _grid_parms, _sel_parms) weight_image = (_remove_padding(dafft.fftshift(dafft.ifft2(dafft.ifftshift(grids_and_sum_weights[0], axes=(0, 1)), axes=(0, 1)), axes=(0, 1)), _grid_parms['image_size']).real * (_grid_parms['image_size_padded'][0] * _grid_parms['image_size_padded'][1])) def correct_image(weight_image, sum_weights): sum_weights_copy = copy.deepcopy(sum_weights) sum_weights_copy[(sum_weights_copy == 0)] = 1 weight_image = (weight_image / sum_weights_copy[(None, None, :, :)]) return weight_image weight_image = da.map_blocks(correct_image, weight_image, grids_and_sum_weights[1], dtype=np.double) mosaic_primary_beam = da.sqrt(np.abs(weight_image)) if (_grid_parms['chan_mode'] == 'continuum'): freq_coords = [da.mean(vis_dataset.coords['chan'].values)] chan_width = da.from_array([da.mean(vis_dataset['chan_width'].data)], chunks=(1,)) imag_chan_chunk_size = 1 elif (_grid_parms['chan_mode'] == 'cube'): freq_coords = vis_dataset.coords['chan'].values chan_width = vis_dataset['chan_width'].data imag_chan_chunk_size = vis_dataset.DATA.chunks[2][0] chunks = vis_dataset.DATA.chunks n_imag_pol = chunks[3][0] image_dict = {} coords = {'d0': np.arange(_grid_parms['image_size'][0]), 'd1': np.arange(_grid_parms['image_size'][1]), 'chan': freq_coords, 'pol': np.arange(n_imag_pol), 'chan_width': ('chan', chan_width)} img_dataset = img_dataset.assign_coords(coords) img_dataset[_sel_parms['pb']] = xr.DataArray(mosaic_primary_beam, dims=['d0', 'd1', 'chan', 'pol']) img_dataset[_sel_parms['weight']] = xr.DataArray(weight_image, dims=['d0', 'd1', 'chan', 'pol']) img_dataset[_sel_parms['weight_pb_sum_weight']] = xr.DataArray(grids_and_sum_weights[1], dims=['chan', 'pol']) list_xarray_data_variables = [img_dataset[_sel_parms['pb']], img_dataset[_sel_parms['weight']]] return _store(img_dataset, list_xarray_data_variables, _storage_parms) '\n \n ## Add PB to img_dataset\n\n #coords = {\'d0\': np.arange(pb_parms[\'imsize\'][0]), \'d1\': np.arange(_pb_parms[\'imsize\'][1]),\n # \'chan\': freq_coords.compute(), \'pol\': pol,\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))}\n \n img_dataset[_pb_mosaic_parms[\'mosaic_weight_name\']] = xr.DataArray(weight_image, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset[_pb_mosaic_parms[\'mosaic_pb_name\']] = xr.DataArray(, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset = img_dataset.assign_coords({\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))})\n\n list_xarray_data_variables = [img_dataset[_pb_parms[\'pb_name\']]]\n return _store(img_dataset,list_xarray_data_variables,_storage_parms)\n\n\n\n from ngcasa._ngcasa_utils._store import _store\n from ngcasa._ngcasa_utils._check_parms import _check_storage_parms\n from ._imaging_utils._check_imaging_parms import _check_pb_parms\n import numpy as np\n import dask.array as da\n import copy, os\n import xarray as xr\n\n import matplotlib.pylab as plt\n\n _pb_parms = copy.deepcopy(pb_parms)\n _storage_parms = copy.deepcopy(storage_parms)\n\n assert(_check_pb_parms(img_dataset,_pb_parms)), "######### ERROR: user_imaging_weights_parms checking failed"\n assert(_check_storage_parms(_storage_parms,\'dataset.img.zarr\',\'make_pb\')), "######### ERROR: user_storage_parms checking failed"\n\n #parameter check\n #cube continuum check\n\n\n if _pb_parms[\'function\'] == \'airy\':\n from ._imaging_utils._make_pb_1d import _airy_disk\n pb_func = _airy_disk\n else:\n print(\'Only the airy function has been implemented\')\n\n _pb_parms[\'ipower\'] = 2\n _pb_parms[\'center_indx\'] = []\n\n\n chan_chunk_size = img_dataset.chan_width.chunks[0][0]\n freq_coords = da.from_array(img_dataset.coords[\'chan\'].values, chunks=(chan_chunk_size))\n\n pol = img_dataset.pol.values #don\'t want chunking here\n\n chunksize = (_pb_parms[\'imsize\'][0],_pb_parms[\'imsize\'][1]) + freq_coords.chunksize + (len(pol),) + (len(_pb_parms[\'list_dish_diameters\']),)\n\n pb = da.map_blocks(pb_func, freq_coords, pol, _pb_parms, chunks=chunksize ,new_axis=[0,1,3,4], dtype=np.double)\n\n ## Add PB to img_dataset\n\n coords = {\'d0\': np.arange(pb_parms[\'imsize\'][0]), \'d1\': np.arange(_pb_parms[\'imsize\'][1]),\n \'chan\': freq_coords.compute(), \'pol\': pol,\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))}\n\n\n img_dataset[_pb_parms[\'pb_name\']] = xr.DataArray(pb, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset = img_dataset.assign_coords({\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))})\n\n list_xarray_data_variables = [img_dataset[_pb_parms[\'pb_name\']]]\n return _store(img_dataset,list_xarray_data_variables,_storage_parms)\n '
def make_mosaic_pb(vis_dataset, gcf_dataset, img_dataset, sel_parms, grid_parms, storage_parms): "\n The make_pb function currently supports rotationally symmetric airy disk primary beams. Primary beams can be generated for any number of dishes.\n The make_pb_parms['list_dish_diameters'] and make_pb_parms['list_blockage_diameters'] must be specified for each dish.\n \n Parameters\n ----------\n vis_dataset : xarray.core.dataset.Dataset\n Input visibility dataset.\n gcf_dataset : xarray.core.dataset.Dataset\n Input gridding convolution function dataset.\n img_dataset : xarray.core.dataset.Dataset\n Input image dataset. ()\n make_pb_parms : dictionary\n make_pb_parms['function'] : {'airy'}, default='airy'\n Only the airy disk function is currently supported.\n grid_parms['imsize'] : list of int, length = 2\n The image size (no padding).\n grid_parms['cell'] : list of number, length = 2, units = arcseconds\n The image cell size.\n make_pb_parms['list_dish_diameters'] : list of number\n The list of dish diameters.\n make_pb_parms['list_blockage_diameters'] = list of number\n The list of blockage diameters for each dish.\n make_pb_parms['pb_name'] = 'PB'\n The created PB name.\n storage_parms : dictionary\n storage_parms['to_disk'] : bool, default = False\n If true the dask graph is executed and saved to disk in the zarr format.\n storage_parms['append'] : bool, default = False\n If storage_parms['to_disk'] is True only the dask graph associated with the function is executed and the resulting data variables are saved to an existing zarr file on disk.\n Note that graphs on unrelated data to this function will not be executed or saved.\n storage_parms['outfile'] : str\n The zarr file to create or append to.\n storage_parms['chunks_on_disk'] : dict of int, default = {}\n The chunk size to use when writing to disk. This is ignored if storage_parms['append'] is True. The default will use the chunking of the input dataset.\n storage_parms['chunks_return'] : dict of int, default = {}\n The chunk size of the dataset that is returned. The default will use the chunking of the input dataset.\n storage_parms['graph_name'] : str\n The time to compute and save the data is stored in the attribute section of the dataset and storage_parms['graph_name'] is used in the label.\n storage_parms['compressor'] : numcodecs.blosc.Blosc,default=Blosc(cname='zstd', clevel=2, shuffle=0)\n The compression algorithm to use. Available compression algorithms can be found at https://numcodecs.readthedocs.io/en/stable/blosc.html.\n \n Returns\n -------\n img_xds : xarray.core.dataset.Dataset\n " print('######################### Start make_mosaic_pb #########################') from ngcasa._ngcasa_utils._store import _store from ngcasa._ngcasa_utils._check_parms import _check_storage_parms, _check_sel_parms, _check_existence_sel_parms from ._imaging_utils._check_imaging_parms import _check_grid_parms, _check_mosaic_pb_parms from ._imaging_utils._aperture_grid import _graph_aperture_grid import dask.array.fft as dafft import matplotlib.pylab as plt import numpy as np import dask.array as da import copy import xarray as xr from ._imaging_utils._remove_padding import _remove_padding from ._imaging_utils._normalize import _normalize _sel_parms = copy.deepcopy(sel_parms) _grid_parms = copy.deepcopy(grid_parms) _storage_parms = copy.deepcopy(storage_parms) assert _check_sel_parms(_sel_parms, {'pb': 'PB', 'weight_pb': 'WEIGHT_PB', 'weight_pb_sum_weight': 'WEIGHT_PB_SUM_WEIGHT'}), '######### ERROR: sel_parms checking failed' assert _check_grid_parms(_grid_parms), '######### ERROR: grid_parms checking failed' assert _check_storage_parms(_storage_parms, 'mosaic_pb.img.zarr', 'make_mosaic_pb'), '######### ERROR: storage_parms checking failed' _grid_parms['grid_weights'] = True _grid_parms['do_psf'] = False _grid_parms['oversampling'] = np.array(gcf_dataset.attrs['oversampling']) grids_and_sum_weights = _graph_aperture_grid(vis_dataset, gcf_dataset, _grid_parms, _sel_parms) weight_image = (_remove_padding(dafft.fftshift(dafft.ifft2(dafft.ifftshift(grids_and_sum_weights[0], axes=(0, 1)), axes=(0, 1)), axes=(0, 1)), _grid_parms['image_size']).real * (_grid_parms['image_size_padded'][0] * _grid_parms['image_size_padded'][1])) def correct_image(weight_image, sum_weights): sum_weights_copy = copy.deepcopy(sum_weights) sum_weights_copy[(sum_weights_copy == 0)] = 1 weight_image = (weight_image / sum_weights_copy[(None, None, :, :)]) return weight_image weight_image = da.map_blocks(correct_image, weight_image, grids_and_sum_weights[1], dtype=np.double) mosaic_primary_beam = da.sqrt(np.abs(weight_image)) if (_grid_parms['chan_mode'] == 'continuum'): freq_coords = [da.mean(vis_dataset.coords['chan'].values)] chan_width = da.from_array([da.mean(vis_dataset['chan_width'].data)], chunks=(1,)) imag_chan_chunk_size = 1 elif (_grid_parms['chan_mode'] == 'cube'): freq_coords = vis_dataset.coords['chan'].values chan_width = vis_dataset['chan_width'].data imag_chan_chunk_size = vis_dataset.DATA.chunks[2][0] chunks = vis_dataset.DATA.chunks n_imag_pol = chunks[3][0] image_dict = {} coords = {'d0': np.arange(_grid_parms['image_size'][0]), 'd1': np.arange(_grid_parms['image_size'][1]), 'chan': freq_coords, 'pol': np.arange(n_imag_pol), 'chan_width': ('chan', chan_width)} img_dataset = img_dataset.assign_coords(coords) img_dataset[_sel_parms['pb']] = xr.DataArray(mosaic_primary_beam, dims=['d0', 'd1', 'chan', 'pol']) img_dataset[_sel_parms['weight']] = xr.DataArray(weight_image, dims=['d0', 'd1', 'chan', 'pol']) img_dataset[_sel_parms['weight_pb_sum_weight']] = xr.DataArray(grids_and_sum_weights[1], dims=['chan', 'pol']) list_xarray_data_variables = [img_dataset[_sel_parms['pb']], img_dataset[_sel_parms['weight']]] return _store(img_dataset, list_xarray_data_variables, _storage_parms) '\n \n ## Add PB to img_dataset\n\n #coords = {\'d0\': np.arange(pb_parms[\'imsize\'][0]), \'d1\': np.arange(_pb_parms[\'imsize\'][1]),\n # \'chan\': freq_coords.compute(), \'pol\': pol,\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))}\n \n img_dataset[_pb_mosaic_parms[\'mosaic_weight_name\']] = xr.DataArray(weight_image, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset[_pb_mosaic_parms[\'mosaic_pb_name\']] = xr.DataArray(, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset = img_dataset.assign_coords({\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))})\n\n list_xarray_data_variables = [img_dataset[_pb_parms[\'pb_name\']]]\n return _store(img_dataset,list_xarray_data_variables,_storage_parms)\n\n\n\n from ngcasa._ngcasa_utils._store import _store\n from ngcasa._ngcasa_utils._check_parms import _check_storage_parms\n from ._imaging_utils._check_imaging_parms import _check_pb_parms\n import numpy as np\n import dask.array as da\n import copy, os\n import xarray as xr\n\n import matplotlib.pylab as plt\n\n _pb_parms = copy.deepcopy(pb_parms)\n _storage_parms = copy.deepcopy(storage_parms)\n\n assert(_check_pb_parms(img_dataset,_pb_parms)), "######### ERROR: user_imaging_weights_parms checking failed"\n assert(_check_storage_parms(_storage_parms,\'dataset.img.zarr\',\'make_pb\')), "######### ERROR: user_storage_parms checking failed"\n\n #parameter check\n #cube continuum check\n\n\n if _pb_parms[\'function\'] == \'airy\':\n from ._imaging_utils._make_pb_1d import _airy_disk\n pb_func = _airy_disk\n else:\n print(\'Only the airy function has been implemented\')\n\n _pb_parms[\'ipower\'] = 2\n _pb_parms[\'center_indx\'] = []\n\n\n chan_chunk_size = img_dataset.chan_width.chunks[0][0]\n freq_coords = da.from_array(img_dataset.coords[\'chan\'].values, chunks=(chan_chunk_size))\n\n pol = img_dataset.pol.values #don\'t want chunking here\n\n chunksize = (_pb_parms[\'imsize\'][0],_pb_parms[\'imsize\'][1]) + freq_coords.chunksize + (len(pol),) + (len(_pb_parms[\'list_dish_diameters\']),)\n\n pb = da.map_blocks(pb_func, freq_coords, pol, _pb_parms, chunks=chunksize ,new_axis=[0,1,3,4], dtype=np.double)\n\n ## Add PB to img_dataset\n\n coords = {\'d0\': np.arange(pb_parms[\'imsize\'][0]), \'d1\': np.arange(_pb_parms[\'imsize\'][1]),\n \'chan\': freq_coords.compute(), \'pol\': pol,\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))}\n\n\n img_dataset[_pb_parms[\'pb_name\']] = xr.DataArray(pb, dims=[\'d0\', \'d1\', \'chan\', \'pol\',\'dish_type\'])\n img_dataset = img_dataset.assign_coords({\'dish_type\': np.arange(len(_pb_parms[\'list_dish_diameters\']))})\n\n list_xarray_data_variables = [img_dataset[_pb_parms[\'pb_name\']]]\n return _store(img_dataset,list_xarray_data_variables,_storage_parms)\n '<|docstring|>The make_pb function currently supports rotationally symmetric airy disk primary beams. Primary beams can be generated for any number of dishes. The make_pb_parms['list_dish_diameters'] and make_pb_parms['list_blockage_diameters'] must be specified for each dish. Parameters ---------- vis_dataset : xarray.core.dataset.Dataset Input visibility dataset. gcf_dataset : xarray.core.dataset.Dataset Input gridding convolution function dataset. img_dataset : xarray.core.dataset.Dataset Input image dataset. () make_pb_parms : dictionary make_pb_parms['function'] : {'airy'}, default='airy' Only the airy disk function is currently supported. grid_parms['imsize'] : list of int, length = 2 The image size (no padding). grid_parms['cell'] : list of number, length = 2, units = arcseconds The image cell size. make_pb_parms['list_dish_diameters'] : list of number The list of dish diameters. make_pb_parms['list_blockage_diameters'] = list of number The list of blockage diameters for each dish. make_pb_parms['pb_name'] = 'PB' The created PB name. storage_parms : dictionary storage_parms['to_disk'] : bool, default = False If true the dask graph is executed and saved to disk in the zarr format. storage_parms['append'] : bool, default = False If storage_parms['to_disk'] is True only the dask graph associated with the function is executed and the resulting data variables are saved to an existing zarr file on disk. Note that graphs on unrelated data to this function will not be executed or saved. storage_parms['outfile'] : str The zarr file to create or append to. storage_parms['chunks_on_disk'] : dict of int, default = {} The chunk size to use when writing to disk. This is ignored if storage_parms['append'] is True. The default will use the chunking of the input dataset. storage_parms['chunks_return'] : dict of int, default = {} The chunk size of the dataset that is returned. The default will use the chunking of the input dataset. storage_parms['graph_name'] : str The time to compute and save the data is stored in the attribute section of the dataset and storage_parms['graph_name'] is used in the label. storage_parms['compressor'] : numcodecs.blosc.Blosc,default=Blosc(cname='zstd', clevel=2, shuffle=0) The compression algorithm to use. Available compression algorithms can be found at https://numcodecs.readthedocs.io/en/stable/blosc.html. Returns ------- img_xds : xarray.core.dataset.Dataset<|endoftext|>
efde42e3e91b8db9404361fd209c250f7fe28bbebf8149566427ac8ce5075eeb
def __init__(self, initial_class_observations, perceptron_node=None, random_state=None): ' InactiveLearningNodePerceptron class constructor.' super().__init__(initial_class_observations) self.random_state = check_random_state(random_state) self.samples_seen = 0 if (perceptron_node is None): self.perceptron_weight = None else: self.perceptron_weight = deepcopy(perceptron_node.perceptron_weight) self.samples_seen = perceptron_node.samples_seen
InactiveLearningNodePerceptron class constructor.
src/skmultiflow/trees/nodes/inactive_learning_node_perceptron.py
__init__
nuwangunasekara/scikit-multiflow
1
python
def __init__(self, initial_class_observations, perceptron_node=None, random_state=None): ' ' super().__init__(initial_class_observations) self.random_state = check_random_state(random_state) self.samples_seen = 0 if (perceptron_node is None): self.perceptron_weight = None else: self.perceptron_weight = deepcopy(perceptron_node.perceptron_weight) self.samples_seen = perceptron_node.samples_seen
def __init__(self, initial_class_observations, perceptron_node=None, random_state=None): ' ' super().__init__(initial_class_observations) self.random_state = check_random_state(random_state) self.samples_seen = 0 if (perceptron_node is None): self.perceptron_weight = None else: self.perceptron_weight = deepcopy(perceptron_node.perceptron_weight) self.samples_seen = perceptron_node.samples_seen<|docstring|>InactiveLearningNodePerceptron class constructor.<|endoftext|>
8f57458af0574e8dc3a619b539227743990278569b1e179703b60e2aaca37141
def learn_from_instance(self, X, y, weight, rht): 'Update the node with the provided instance.\n\n Parameters\n ----------\n X: numpy.ndarray of length equal to the number of features.\n Instance attributes for updating the node.\n y: double\n Instance target value.\n weight: float\n Instance weight.\n rht: HoeffdingTreeRegressor\n Regression Hoeffding Tree to update.\n\n ' if (self.perceptron_weight is None): self.perceptron_weight = self.random_state.uniform((- 1), 1, (len(X) + 1)) try: self._observed_class_distribution[0] += weight self._observed_class_distribution[1] += (y * weight) self._observed_class_distribution[2] += ((y * y) * weight) except KeyError: self._observed_class_distribution[0] = weight self._observed_class_distribution[1] = (y * weight) self._observed_class_distribution[2] = ((y * y) * weight) self.samples_seen = self._observed_class_distribution[0] if rht.learning_ratio_const: learning_ratio = rht.learning_ratio_perceptron else: learning_ratio = (rht.learning_ratio_perceptron / (1 + (self.samples_seen * rht.learning_ratio_decay))) for i in range(int(weight)): self.update_weights(X, y, learning_ratio, rht)
Update the node with the provided instance. Parameters ---------- X: numpy.ndarray of length equal to the number of features. Instance attributes for updating the node. y: double Instance target value. weight: float Instance weight. rht: HoeffdingTreeRegressor Regression Hoeffding Tree to update.
src/skmultiflow/trees/nodes/inactive_learning_node_perceptron.py
learn_from_instance
nuwangunasekara/scikit-multiflow
1
python
def learn_from_instance(self, X, y, weight, rht): 'Update the node with the provided instance.\n\n Parameters\n ----------\n X: numpy.ndarray of length equal to the number of features.\n Instance attributes for updating the node.\n y: double\n Instance target value.\n weight: float\n Instance weight.\n rht: HoeffdingTreeRegressor\n Regression Hoeffding Tree to update.\n\n ' if (self.perceptron_weight is None): self.perceptron_weight = self.random_state.uniform((- 1), 1, (len(X) + 1)) try: self._observed_class_distribution[0] += weight self._observed_class_distribution[1] += (y * weight) self._observed_class_distribution[2] += ((y * y) * weight) except KeyError: self._observed_class_distribution[0] = weight self._observed_class_distribution[1] = (y * weight) self._observed_class_distribution[2] = ((y * y) * weight) self.samples_seen = self._observed_class_distribution[0] if rht.learning_ratio_const: learning_ratio = rht.learning_ratio_perceptron else: learning_ratio = (rht.learning_ratio_perceptron / (1 + (self.samples_seen * rht.learning_ratio_decay))) for i in range(int(weight)): self.update_weights(X, y, learning_ratio, rht)
def learn_from_instance(self, X, y, weight, rht): 'Update the node with the provided instance.\n\n Parameters\n ----------\n X: numpy.ndarray of length equal to the number of features.\n Instance attributes for updating the node.\n y: double\n Instance target value.\n weight: float\n Instance weight.\n rht: HoeffdingTreeRegressor\n Regression Hoeffding Tree to update.\n\n ' if (self.perceptron_weight is None): self.perceptron_weight = self.random_state.uniform((- 1), 1, (len(X) + 1)) try: self._observed_class_distribution[0] += weight self._observed_class_distribution[1] += (y * weight) self._observed_class_distribution[2] += ((y * y) * weight) except KeyError: self._observed_class_distribution[0] = weight self._observed_class_distribution[1] = (y * weight) self._observed_class_distribution[2] = ((y * y) * weight) self.samples_seen = self._observed_class_distribution[0] if rht.learning_ratio_const: learning_ratio = rht.learning_ratio_perceptron else: learning_ratio = (rht.learning_ratio_perceptron / (1 + (self.samples_seen * rht.learning_ratio_decay))) for i in range(int(weight)): self.update_weights(X, y, learning_ratio, rht)<|docstring|>Update the node with the provided instance. Parameters ---------- X: numpy.ndarray of length equal to the number of features. Instance attributes for updating the node. y: double Instance target value. weight: float Instance weight. rht: HoeffdingTreeRegressor Regression Hoeffding Tree to update.<|endoftext|>
70569e63f39b524491d7eb20ea719e3cf40e10fdd2c26765f3ceeaece94f5687
def update_weights(self, X, y, learning_ratio, ht): '\n Update the perceptron weights\n Parameters\n ----------\n X: numpy.ndarray of length equal to the number of features.\n Instance attributes for updating the node.\n y: float\n Instance target value.\n learning_ratio: float\n perceptron learning ratio\n rht: HoeffdingTreeRegressor\n Regression Hoeffding Tree to update.\n ' normalized_sample = ht.normalize_sample(X) normalized_pred = np.dot(self.perceptron_weight, normalized_sample) normalized_target_value = ht.normalize_target_value(y) delta = (normalized_target_value - normalized_pred) self.perceptron_weight = (self.perceptron_weight + ((learning_ratio * delta) * normalized_sample)) self.perceptron_weight = (self.perceptron_weight / np.sum(np.abs(self.perceptron_weight)))
Update the perceptron weights Parameters ---------- X: numpy.ndarray of length equal to the number of features. Instance attributes for updating the node. y: float Instance target value. learning_ratio: float perceptron learning ratio rht: HoeffdingTreeRegressor Regression Hoeffding Tree to update.
src/skmultiflow/trees/nodes/inactive_learning_node_perceptron.py
update_weights
nuwangunasekara/scikit-multiflow
1
python
def update_weights(self, X, y, learning_ratio, ht): '\n Update the perceptron weights\n Parameters\n ----------\n X: numpy.ndarray of length equal to the number of features.\n Instance attributes for updating the node.\n y: float\n Instance target value.\n learning_ratio: float\n perceptron learning ratio\n rht: HoeffdingTreeRegressor\n Regression Hoeffding Tree to update.\n ' normalized_sample = ht.normalize_sample(X) normalized_pred = np.dot(self.perceptron_weight, normalized_sample) normalized_target_value = ht.normalize_target_value(y) delta = (normalized_target_value - normalized_pred) self.perceptron_weight = (self.perceptron_weight + ((learning_ratio * delta) * normalized_sample)) self.perceptron_weight = (self.perceptron_weight / np.sum(np.abs(self.perceptron_weight)))
def update_weights(self, X, y, learning_ratio, ht): '\n Update the perceptron weights\n Parameters\n ----------\n X: numpy.ndarray of length equal to the number of features.\n Instance attributes for updating the node.\n y: float\n Instance target value.\n learning_ratio: float\n perceptron learning ratio\n rht: HoeffdingTreeRegressor\n Regression Hoeffding Tree to update.\n ' normalized_sample = ht.normalize_sample(X) normalized_pred = np.dot(self.perceptron_weight, normalized_sample) normalized_target_value = ht.normalize_target_value(y) delta = (normalized_target_value - normalized_pred) self.perceptron_weight = (self.perceptron_weight + ((learning_ratio * delta) * normalized_sample)) self.perceptron_weight = (self.perceptron_weight / np.sum(np.abs(self.perceptron_weight)))<|docstring|>Update the perceptron weights Parameters ---------- X: numpy.ndarray of length equal to the number of features. Instance attributes for updating the node. y: float Instance target value. learning_ratio: float perceptron learning ratio rht: HoeffdingTreeRegressor Regression Hoeffding Tree to update.<|endoftext|>
6da412d4abdb9ed05efb6a533d48d9e24f74f0e679bd55e764a74684302b1f97
def __init__(self, piezas): 'Inicializador de clase Posiciones.\n \n Parameters\n ----------\n piezas : list of Piezas\n Piezas actuales dentro del tablero' self.bk = [] self.wh = [] for i in piezas: if (i.team == 'bk'): self.bk.append(i.posicion) else: self.wh.append(i.posicion)
Inicializador de clase Posiciones. Parameters ---------- piezas : list of Piezas Piezas actuales dentro del tablero
CLI/tablero.py
__init__
EnriqueMC557/POO_Ajedrez
0
python
def __init__(self, piezas): 'Inicializador de clase Posiciones.\n \n Parameters\n ----------\n piezas : list of Piezas\n Piezas actuales dentro del tablero' self.bk = [] self.wh = [] for i in piezas: if (i.team == 'bk'): self.bk.append(i.posicion) else: self.wh.append(i.posicion)
def __init__(self, piezas): 'Inicializador de clase Posiciones.\n \n Parameters\n ----------\n piezas : list of Piezas\n Piezas actuales dentro del tablero' self.bk = [] self.wh = [] for i in piezas: if (i.team == 'bk'): self.bk.append(i.posicion) else: self.wh.append(i.posicion)<|docstring|>Inicializador de clase Posiciones. Parameters ---------- piezas : list of Piezas Piezas actuales dentro del tablero<|endoftext|>
18f8302f087c51ebe9bae4a457a1537ebcb939c393a934b00ae489c5b832ed43
def __init__(self, piezas): 'Inicializador de clase Tablero.\n \n Parameteres\n ----------\n piezas : list of Piezas\n Piezas con las cuales se jugará ajedrez' self.fondo = np.array([[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]]) self.posiciones = Posiciones(piezas) self.mostrar(piezas)
Inicializador de clase Tablero. Parameteres ---------- piezas : list of Piezas Piezas con las cuales se jugará ajedrez
CLI/tablero.py
__init__
EnriqueMC557/POO_Ajedrez
0
python
def __init__(self, piezas): 'Inicializador de clase Tablero.\n \n Parameteres\n ----------\n piezas : list of Piezas\n Piezas con las cuales se jugará ajedrez' self.fondo = np.array([[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]]) self.posiciones = Posiciones(piezas) self.mostrar(piezas)
def __init__(self, piezas): 'Inicializador de clase Tablero.\n \n Parameteres\n ----------\n piezas : list of Piezas\n Piezas con las cuales se jugará ajedrez' self.fondo = np.array([[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]]) self.posiciones = Posiciones(piezas) self.mostrar(piezas)<|docstring|>Inicializador de clase Tablero. Parameteres ---------- piezas : list of Piezas Piezas con las cuales se jugará ajedrez<|endoftext|>
2b7f7ca94bab6267197436372c44e3549cbd980d6a251ad9aca360f03c405590
def mostrar(self, piezas): 'Método que permite realizar el despliegue del tablero con las piezas\n con las que se jugará ajedrez.\n \n Parameters\n ----------\n piezas : list of Piezas\n Piezas a desplegar en tablero' (fig, ax) = plt.subplots() ax.set_xticks(np.arange(8)) ax.set_xticklabels(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) ax.set_yticks(np.arange(8)) ax.set_yticklabels(['1', '2', '3', '4', '5', '6', '7', '8']) ax.imshow(self.fondo, cmap='binary', alpha=0.5) for i in piezas: if (i.team == 'wh'): plt.plot((i.posicion[0] - 1), (i.posicion[1] - 1), marker=i.marker, mfc='white', mec='silver', ls='', ms=15) else: plt.plot((i.posicion[0] - 1), (i.posicion[1] - 1), marker=i.marker, mfc='white', mec='black', ls='', ms=15) plt.show()
Método que permite realizar el despliegue del tablero con las piezas con las que se jugará ajedrez. Parameters ---------- piezas : list of Piezas Piezas a desplegar en tablero
CLI/tablero.py
mostrar
EnriqueMC557/POO_Ajedrez
0
python
def mostrar(self, piezas): 'Método que permite realizar el despliegue del tablero con las piezas\n con las que se jugará ajedrez.\n \n Parameters\n ----------\n piezas : list of Piezas\n Piezas a desplegar en tablero' (fig, ax) = plt.subplots() ax.set_xticks(np.arange(8)) ax.set_xticklabels(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) ax.set_yticks(np.arange(8)) ax.set_yticklabels(['1', '2', '3', '4', '5', '6', '7', '8']) ax.imshow(self.fondo, cmap='binary', alpha=0.5) for i in piezas: if (i.team == 'wh'): plt.plot((i.posicion[0] - 1), (i.posicion[1] - 1), marker=i.marker, mfc='white', mec='silver', ls=, ms=15) else: plt.plot((i.posicion[0] - 1), (i.posicion[1] - 1), marker=i.marker, mfc='white', mec='black', ls=, ms=15) plt.show()
def mostrar(self, piezas): 'Método que permite realizar el despliegue del tablero con las piezas\n con las que se jugará ajedrez.\n \n Parameters\n ----------\n piezas : list of Piezas\n Piezas a desplegar en tablero' (fig, ax) = plt.subplots() ax.set_xticks(np.arange(8)) ax.set_xticklabels(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) ax.set_yticks(np.arange(8)) ax.set_yticklabels(['1', '2', '3', '4', '5', '6', '7', '8']) ax.imshow(self.fondo, cmap='binary', alpha=0.5) for i in piezas: if (i.team == 'wh'): plt.plot((i.posicion[0] - 1), (i.posicion[1] - 1), marker=i.marker, mfc='white', mec='silver', ls=, ms=15) else: plt.plot((i.posicion[0] - 1), (i.posicion[1] - 1), marker=i.marker, mfc='white', mec='black', ls=, ms=15) plt.show()<|docstring|>Método que permite realizar el despliegue del tablero con las piezas con las que se jugará ajedrez. Parameters ---------- piezas : list of Piezas Piezas a desplegar en tablero<|endoftext|>
1869dcd6b1b1bbe08e6a6052afc16313923c05db6e1f4da2ab9aa2b26be3d3d4
def get_payload(self): '\n Function to access the payload information. If using a DB that\n supports JSON this function should be rewritten (to be transparent).\n :return: The JSON structure with the payload\n ' if (self.payload == ''): return {} return json.loads(self.payload)
Function to access the payload information. If using a DB that supports JSON this function should be rewritten (to be transparent). :return: The JSON structure with the payload
src/logs/models.py
get_payload
Lukahm/ontask
3
python
def get_payload(self): '\n Function to access the payload information. If using a DB that\n supports JSON this function should be rewritten (to be transparent).\n :return: The JSON structure with the payload\n ' if (self.payload == ): return {} return json.loads(self.payload)
def get_payload(self): '\n Function to access the payload information. If using a DB that\n supports JSON this function should be rewritten (to be transparent).\n :return: The JSON structure with the payload\n ' if (self.payload == ): return {} return json.loads(self.payload)<|docstring|>Function to access the payload information. If using a DB that supports JSON this function should be rewritten (to be transparent). :return: The JSON structure with the payload<|endoftext|>
4deb6a917eda95bbad0fc391601766df278e742656a81edf50b6aa64ddf1eaaf
def set_payload(self, payload): '\n Save the payload structure as text. If using a DB that supports JSON,\n this function should be rewritten.\n :return: Nothing.\n ' self.payload = json.dumps(payload)
Save the payload structure as text. If using a DB that supports JSON, this function should be rewritten. :return: Nothing.
src/logs/models.py
set_payload
Lukahm/ontask
3
python
def set_payload(self, payload): '\n Save the payload structure as text. If using a DB that supports JSON,\n this function should be rewritten.\n :return: Nothing.\n ' self.payload = json.dumps(payload)
def set_payload(self, payload): '\n Save the payload structure as text. If using a DB that supports JSON,\n this function should be rewritten.\n :return: Nothing.\n ' self.payload = json.dumps(payload)<|docstring|>Save the payload structure as text. If using a DB that supports JSON, this function should be rewritten. :return: Nothing.<|endoftext|>
491b458ea145eefc2f8e73484e13a03c4bd076336c583b1235f94062c2ca9666
def findMaterials(self, memo=None): "Yield all materials present.\n\n Parameters\n ----------\n memo : set, optional\n Set containing ids of previously visited materials. Don't\n pass unless you know what you're doing. If given, will\n be modified with :attr:`hydep.Material.id` of discovered\n materials\n\n Yields\n ------\n hydep.Material\n The first occurance of this material.\n\n " memo = (set() if (memo is None) else memo) for (_r, mat) in self: hid = id(mat) if (hid in memo): continue memo.add(hid) (yield mat)
Yield all materials present. Parameters ---------- memo : set, optional Set containing ids of previously visited materials. Don't pass unless you know what you're doing. If given, will be modified with :attr:`hydep.Material.id` of discovered materials Yields ------ hydep.Material The first occurance of this material.
src/hydep/pin.py
findMaterials
CORE-GATECH-GROUP/hydep
2
python
def findMaterials(self, memo=None): "Yield all materials present.\n\n Parameters\n ----------\n memo : set, optional\n Set containing ids of previously visited materials. Don't\n pass unless you know what you're doing. If given, will\n be modified with :attr:`hydep.Material.id` of discovered\n materials\n\n Yields\n ------\n hydep.Material\n The first occurance of this material.\n\n " memo = (set() if (memo is None) else memo) for (_r, mat) in self: hid = id(mat) if (hid in memo): continue memo.add(hid) (yield mat)
def findMaterials(self, memo=None): "Yield all materials present.\n\n Parameters\n ----------\n memo : set, optional\n Set containing ids of previously visited materials. Don't\n pass unless you know what you're doing. If given, will\n be modified with :attr:`hydep.Material.id` of discovered\n materials\n\n Yields\n ------\n hydep.Material\n The first occurance of this material.\n\n " memo = (set() if (memo is None) else memo) for (_r, mat) in self: hid = id(mat) if (hid in memo): continue memo.add(hid) (yield mat)<|docstring|>Yield all materials present. Parameters ---------- memo : set, optional Set containing ids of previously visited materials. Don't pass unless you know what you're doing. If given, will be modified with :attr:`hydep.Material.id` of discovered materials Yields ------ hydep.Material The first occurance of this material.<|endoftext|>
9aa434ff219bad60c08ea7543bc64a60d31f712a59aee06c1c36105cb6d264c7
def countBurnableMaterials(self, _memo=None): 'Count all occurances of burnable materials\n\n Useful prior to cloning new burnable materials, so\n that volumes can be properly scaled.\n\n Parameters\n ----------\n memo : dict of str to [hydep.BurnableMaterial, int], optional\n Previously visited universes will populate this as they\n traverse the geometry. Needed for internal use, and modified\n through the traversal. Keys indicate ids of universes\n as they are discovered and will be updated.\n\n Returns\n -------\n Mapping[str, [hydep.BurnableMaterial, int]]\n Map of unique hashable IDs for unique burnable materials to\n the material and the number of instances. Should only contain\n information on this specific instance.\n ' local = {} for (_r, mat) in self: if (not isinstance(mat, BurnableMaterial)): continue hid = mat.id repeat = local.get(hid) if (repeat is None): local[hid] = [mat, 1] else: repeat[1] += 1 return local
Count all occurances of burnable materials Useful prior to cloning new burnable materials, so that volumes can be properly scaled. Parameters ---------- memo : dict of str to [hydep.BurnableMaterial, int], optional Previously visited universes will populate this as they traverse the geometry. Needed for internal use, and modified through the traversal. Keys indicate ids of universes as they are discovered and will be updated. Returns ------- Mapping[str, [hydep.BurnableMaterial, int]] Map of unique hashable IDs for unique burnable materials to the material and the number of instances. Should only contain information on this specific instance.
src/hydep/pin.py
countBurnableMaterials
CORE-GATECH-GROUP/hydep
2
python
def countBurnableMaterials(self, _memo=None): 'Count all occurances of burnable materials\n\n Useful prior to cloning new burnable materials, so\n that volumes can be properly scaled.\n\n Parameters\n ----------\n memo : dict of str to [hydep.BurnableMaterial, int], optional\n Previously visited universes will populate this as they\n traverse the geometry. Needed for internal use, and modified\n through the traversal. Keys indicate ids of universes\n as they are discovered and will be updated.\n\n Returns\n -------\n Mapping[str, [hydep.BurnableMaterial, int]]\n Map of unique hashable IDs for unique burnable materials to\n the material and the number of instances. Should only contain\n information on this specific instance.\n ' local = {} for (_r, mat) in self: if (not isinstance(mat, BurnableMaterial)): continue hid = mat.id repeat = local.get(hid) if (repeat is None): local[hid] = [mat, 1] else: repeat[1] += 1 return local
def countBurnableMaterials(self, _memo=None): 'Count all occurances of burnable materials\n\n Useful prior to cloning new burnable materials, so\n that volumes can be properly scaled.\n\n Parameters\n ----------\n memo : dict of str to [hydep.BurnableMaterial, int], optional\n Previously visited universes will populate this as they\n traverse the geometry. Needed for internal use, and modified\n through the traversal. Keys indicate ids of universes\n as they are discovered and will be updated.\n\n Returns\n -------\n Mapping[str, [hydep.BurnableMaterial, int]]\n Map of unique hashable IDs for unique burnable materials to\n the material and the number of instances. Should only contain\n information on this specific instance.\n ' local = {} for (_r, mat) in self: if (not isinstance(mat, BurnableMaterial)): continue hid = mat.id repeat = local.get(hid) if (repeat is None): local[hid] = [mat, 1] else: repeat[1] += 1 return local<|docstring|>Count all occurances of burnable materials Useful prior to cloning new burnable materials, so that volumes can be properly scaled. Parameters ---------- memo : dict of str to [hydep.BurnableMaterial, int], optional Previously visited universes will populate this as they traverse the geometry. Needed for internal use, and modified through the traversal. Keys indicate ids of universes as they are discovered and will be updated. Returns ------- Mapping[str, [hydep.BurnableMaterial, int]] Map of unique hashable IDs for unique burnable materials to the material and the number of instances. Should only contain information on this specific instance.<|endoftext|>
fe6a79d5cbb2a101b268d195a7eea9c8afcc9a228c6acf1a702fd66cda99b749
def differentiateBurnableMaterials(self, memo=None): 'Create new burnable materials and potentially mimic this pin\n\n This routine is important to create unique burnable materials\n that can be depleted using spatially correct fluxes and\n reaction rates.\n\n This method digs through contained materials and creates unique\n :class:`hydep.BurnedMaterial` objects.This material itself may\n be cloned if the following conditions are met:\n\n 1. At least one contained material was cloned\n 2. This object has been encountered before\n\n If at least one contained universe was cloned but this\n is the first time encountering this universe, the\n modifications will be made in-place, and the original\n returned.\n\n Parameters\n ----------\n memo : set of str, optional\n Set containing unique ids of previously found universes.\n Needed for internal use and not necessary for most end\n users.\n\n Returns\n -------\n Pin\n Either the originating universe or a near clone, but with\n one or more underlying materials changed.\n\n ' memo = (set() if (memo is None) else memo) updates = {} for (index, (_r, mat)) in enumerate(self): if (not isinstance(mat, BurnableMaterial)): continue if (id(mat) in memo): mat = updates[index] = mat.copy() demangled = mat.name.split('_copy')[0] mat.name = f'{demangled}_copy{mat.id}' memo.add(id(mat)) if (not updates): memo.add(id(self)) return self outer = updates.pop(len(self.materials), self.outer) materials = [updates.get(ix, mat) for (ix, mat) in enumerate(self.materials)] if (id(self) not in memo): memo.add(id(self)) self.outer = outer self.materials = materials return self new = self.__class__(self.radii, materials, outer) if (self.name is not None): demangled = self.name.split('_copy')[0] new.name = f'{demangled}_copy{mat.id}' return new
Create new burnable materials and potentially mimic this pin This routine is important to create unique burnable materials that can be depleted using spatially correct fluxes and reaction rates. This method digs through contained materials and creates unique :class:`hydep.BurnedMaterial` objects.This material itself may be cloned if the following conditions are met: 1. At least one contained material was cloned 2. This object has been encountered before If at least one contained universe was cloned but this is the first time encountering this universe, the modifications will be made in-place, and the original returned. Parameters ---------- memo : set of str, optional Set containing unique ids of previously found universes. Needed for internal use and not necessary for most end users. Returns ------- Pin Either the originating universe or a near clone, but with one or more underlying materials changed.
src/hydep/pin.py
differentiateBurnableMaterials
CORE-GATECH-GROUP/hydep
2
python
def differentiateBurnableMaterials(self, memo=None): 'Create new burnable materials and potentially mimic this pin\n\n This routine is important to create unique burnable materials\n that can be depleted using spatially correct fluxes and\n reaction rates.\n\n This method digs through contained materials and creates unique\n :class:`hydep.BurnedMaterial` objects.This material itself may\n be cloned if the following conditions are met:\n\n 1. At least one contained material was cloned\n 2. This object has been encountered before\n\n If at least one contained universe was cloned but this\n is the first time encountering this universe, the\n modifications will be made in-place, and the original\n returned.\n\n Parameters\n ----------\n memo : set of str, optional\n Set containing unique ids of previously found universes.\n Needed for internal use and not necessary for most end\n users.\n\n Returns\n -------\n Pin\n Either the originating universe or a near clone, but with\n one or more underlying materials changed.\n\n ' memo = (set() if (memo is None) else memo) updates = {} for (index, (_r, mat)) in enumerate(self): if (not isinstance(mat, BurnableMaterial)): continue if (id(mat) in memo): mat = updates[index] = mat.copy() demangled = mat.name.split('_copy')[0] mat.name = f'{demangled}_copy{mat.id}' memo.add(id(mat)) if (not updates): memo.add(id(self)) return self outer = updates.pop(len(self.materials), self.outer) materials = [updates.get(ix, mat) for (ix, mat) in enumerate(self.materials)] if (id(self) not in memo): memo.add(id(self)) self.outer = outer self.materials = materials return self new = self.__class__(self.radii, materials, outer) if (self.name is not None): demangled = self.name.split('_copy')[0] new.name = f'{demangled}_copy{mat.id}' return new
def differentiateBurnableMaterials(self, memo=None): 'Create new burnable materials and potentially mimic this pin\n\n This routine is important to create unique burnable materials\n that can be depleted using spatially correct fluxes and\n reaction rates.\n\n This method digs through contained materials and creates unique\n :class:`hydep.BurnedMaterial` objects.This material itself may\n be cloned if the following conditions are met:\n\n 1. At least one contained material was cloned\n 2. This object has been encountered before\n\n If at least one contained universe was cloned but this\n is the first time encountering this universe, the\n modifications will be made in-place, and the original\n returned.\n\n Parameters\n ----------\n memo : set of str, optional\n Set containing unique ids of previously found universes.\n Needed for internal use and not necessary for most end\n users.\n\n Returns\n -------\n Pin\n Either the originating universe or a near clone, but with\n one or more underlying materials changed.\n\n ' memo = (set() if (memo is None) else memo) updates = {} for (index, (_r, mat)) in enumerate(self): if (not isinstance(mat, BurnableMaterial)): continue if (id(mat) in memo): mat = updates[index] = mat.copy() demangled = mat.name.split('_copy')[0] mat.name = f'{demangled}_copy{mat.id}' memo.add(id(mat)) if (not updates): memo.add(id(self)) return self outer = updates.pop(len(self.materials), self.outer) materials = [updates.get(ix, mat) for (ix, mat) in enumerate(self.materials)] if (id(self) not in memo): memo.add(id(self)) self.outer = outer self.materials = materials return self new = self.__class__(self.radii, materials, outer) if (self.name is not None): demangled = self.name.split('_copy')[0] new.name = f'{demangled}_copy{mat.id}' return new<|docstring|>Create new burnable materials and potentially mimic this pin This routine is important to create unique burnable materials that can be depleted using spatially correct fluxes and reaction rates. This method digs through contained materials and creates unique :class:`hydep.BurnedMaterial` objects.This material itself may be cloned if the following conditions are met: 1. At least one contained material was cloned 2. This object has been encountered before If at least one contained universe was cloned but this is the first time encountering this universe, the modifications will be made in-place, and the original returned. Parameters ---------- memo : set of str, optional Set containing unique ids of previously found universes. Needed for internal use and not necessary for most end users. Returns ------- Pin Either the originating universe or a near clone, but with one or more underlying materials changed.<|endoftext|>
d24bac0ce020ecbf38ee8bafda82714e13a461561c794409fb6fe0a1bf877a47
def radialComponentSelection(mesh, center, radius=1.0): '\n\tBuild component selection from a point and radial distance.\n\t@param mesh: Geometry to build component selection from.\n\t@type mesh: str\n\t@param center: Radial center to build selection from.\n\t@type center: str or list\n\t@param radius: Radial distance to build selection from.\n\t@type radius: float\n\t' if (not mc.objExists(mesh)): raise Exception((('Mesh object "' + mesh) + '" does not exist!!')) pt = glTools.utils.base.getMPoint(center) ptList = glTools.utils.base.getMPointArray(mesh) sel = [] for i in range(ptList.length()): dist = (pt - ptList[i]).length() if (dist <= radius): sel.append((((mesh + '.vtx[') + str(i)) + ']')) return sel
Build component selection from a point and radial distance. @param mesh: Geometry to build component selection from. @type mesh: str @param center: Radial center to build selection from. @type center: str or list @param radius: Radial distance to build selection from. @type radius: float
tools/volumeSelection.py
radialComponentSelection
obrakeo/glTools
165
python
def radialComponentSelection(mesh, center, radius=1.0): '\n\tBuild component selection from a point and radial distance.\n\t@param mesh: Geometry to build component selection from.\n\t@type mesh: str\n\t@param center: Radial center to build selection from.\n\t@type center: str or list\n\t@param radius: Radial distance to build selection from.\n\t@type radius: float\n\t' if (not mc.objExists(mesh)): raise Exception((('Mesh object "' + mesh) + '" does not exist!!')) pt = glTools.utils.base.getMPoint(center) ptList = glTools.utils.base.getMPointArray(mesh) sel = [] for i in range(ptList.length()): dist = (pt - ptList[i]).length() if (dist <= radius): sel.append((((mesh + '.vtx[') + str(i)) + ']')) return sel
def radialComponentSelection(mesh, center, radius=1.0): '\n\tBuild component selection from a point and radial distance.\n\t@param mesh: Geometry to build component selection from.\n\t@type mesh: str\n\t@param center: Radial center to build selection from.\n\t@type center: str or list\n\t@param radius: Radial distance to build selection from.\n\t@type radius: float\n\t' if (not mc.objExists(mesh)): raise Exception((('Mesh object "' + mesh) + '" does not exist!!')) pt = glTools.utils.base.getMPoint(center) ptList = glTools.utils.base.getMPointArray(mesh) sel = [] for i in range(ptList.length()): dist = (pt - ptList[i]).length() if (dist <= radius): sel.append((((mesh + '.vtx[') + str(i)) + ']')) return sel<|docstring|>Build component selection from a point and radial distance. @param mesh: Geometry to build component selection from. @type mesh: str @param center: Radial center to build selection from. @type center: str or list @param radius: Radial distance to build selection from. @type radius: float<|endoftext|>
928d3d3023f2c81631f9550bd2c2c63821bb5f9d7c47bc753ad58b8fd90bd95b
def volumeComponentSelection(mesh, volume): '\n\tBuild component selection from volume.\n\t@param mesh: Geometry to build component selection from.\n\t@type mesh: str\n\t@param volume: Volume shape to build component selection from.\n\t@type volume: str\n\t' if (not mc.objExists(mesh)): raise Exception((('Mesh object "' + mesh) + '" does not exist!!')) if (not mc.objExists(volume)): raise Exception((('Volume object "' + volume) + '" does not exist!!')) volumeShape = volume if (mc.objectType(volumeShape) == 'transform'): volumeShape = mc.listRelatives(volume, s=True, ni=True) if (not volumeShape): raise Exception((('Volume object "' + mesh) + '" does not exist!!')) else: volumeShape = volumeShape[0] volumeType = mc.objectType(volumeShape) nurbsToPolyConvert = None if (volumeType == 'nurbsSurface'): nurbsToPolyConvert = mc.nurbsToPoly(volumeShape, ch=0, f=1, pt=1, ft=0.01, mel=0.001, d=0.1) nurbsToPolyShape = mc.listRelatives(nurbsToPolyConvert, s=True, ni=True) volumeShape = nurbsToPolyShape[0] volumeFn = glTools.utils.mesh.getMeshFn(volume) volumeBBox = glTools.utils.base.getMBoundingBox(volume) pntList = glTools.utils.base.getMPointArray(mesh) sel = [] point = OpenMaya.MPoint() normal = OpenMaya.MVector() for i in range(pntList.length()): if (not volumeBBox.contains(pntList[i])): continue volumeFn.getClosestPointAndNormal(pntList[i], point, normal) dotVal = (normal * (point - pntList[i]).normal()) if (dotVal > 0.0): sel.append((((mesh + '.vtx[') + str(i)) + ']')) if nurbsToPolyConvert: mc.delete(nurbsToPolyConvert) return sel
Build component selection from volume. @param mesh: Geometry to build component selection from. @type mesh: str @param volume: Volume shape to build component selection from. @type volume: str
tools/volumeSelection.py
volumeComponentSelection
obrakeo/glTools
165
python
def volumeComponentSelection(mesh, volume): '\n\tBuild component selection from volume.\n\t@param mesh: Geometry to build component selection from.\n\t@type mesh: str\n\t@param volume: Volume shape to build component selection from.\n\t@type volume: str\n\t' if (not mc.objExists(mesh)): raise Exception((('Mesh object "' + mesh) + '" does not exist!!')) if (not mc.objExists(volume)): raise Exception((('Volume object "' + volume) + '" does not exist!!')) volumeShape = volume if (mc.objectType(volumeShape) == 'transform'): volumeShape = mc.listRelatives(volume, s=True, ni=True) if (not volumeShape): raise Exception((('Volume object "' + mesh) + '" does not exist!!')) else: volumeShape = volumeShape[0] volumeType = mc.objectType(volumeShape) nurbsToPolyConvert = None if (volumeType == 'nurbsSurface'): nurbsToPolyConvert = mc.nurbsToPoly(volumeShape, ch=0, f=1, pt=1, ft=0.01, mel=0.001, d=0.1) nurbsToPolyShape = mc.listRelatives(nurbsToPolyConvert, s=True, ni=True) volumeShape = nurbsToPolyShape[0] volumeFn = glTools.utils.mesh.getMeshFn(volume) volumeBBox = glTools.utils.base.getMBoundingBox(volume) pntList = glTools.utils.base.getMPointArray(mesh) sel = [] point = OpenMaya.MPoint() normal = OpenMaya.MVector() for i in range(pntList.length()): if (not volumeBBox.contains(pntList[i])): continue volumeFn.getClosestPointAndNormal(pntList[i], point, normal) dotVal = (normal * (point - pntList[i]).normal()) if (dotVal > 0.0): sel.append((((mesh + '.vtx[') + str(i)) + ']')) if nurbsToPolyConvert: mc.delete(nurbsToPolyConvert) return sel
def volumeComponentSelection(mesh, volume): '\n\tBuild component selection from volume.\n\t@param mesh: Geometry to build component selection from.\n\t@type mesh: str\n\t@param volume: Volume shape to build component selection from.\n\t@type volume: str\n\t' if (not mc.objExists(mesh)): raise Exception((('Mesh object "' + mesh) + '" does not exist!!')) if (not mc.objExists(volume)): raise Exception((('Volume object "' + volume) + '" does not exist!!')) volumeShape = volume if (mc.objectType(volumeShape) == 'transform'): volumeShape = mc.listRelatives(volume, s=True, ni=True) if (not volumeShape): raise Exception((('Volume object "' + mesh) + '" does not exist!!')) else: volumeShape = volumeShape[0] volumeType = mc.objectType(volumeShape) nurbsToPolyConvert = None if (volumeType == 'nurbsSurface'): nurbsToPolyConvert = mc.nurbsToPoly(volumeShape, ch=0, f=1, pt=1, ft=0.01, mel=0.001, d=0.1) nurbsToPolyShape = mc.listRelatives(nurbsToPolyConvert, s=True, ni=True) volumeShape = nurbsToPolyShape[0] volumeFn = glTools.utils.mesh.getMeshFn(volume) volumeBBox = glTools.utils.base.getMBoundingBox(volume) pntList = glTools.utils.base.getMPointArray(mesh) sel = [] point = OpenMaya.MPoint() normal = OpenMaya.MVector() for i in range(pntList.length()): if (not volumeBBox.contains(pntList[i])): continue volumeFn.getClosestPointAndNormal(pntList[i], point, normal) dotVal = (normal * (point - pntList[i]).normal()) if (dotVal > 0.0): sel.append((((mesh + '.vtx[') + str(i)) + ']')) if nurbsToPolyConvert: mc.delete(nurbsToPolyConvert) return sel<|docstring|>Build component selection from volume. @param mesh: Geometry to build component selection from. @type mesh: str @param volume: Volume shape to build component selection from. @type volume: str<|endoftext|>
d1ee2d3873c182d17455852ad710510cd370e65facc3948d86dde04c005f43df
def rand_par(par, cvar): 'This function adds gaussian noise to parameters (means) stored in a dictionary.\n Input\n par: dictionary of ODE parameters which constitute the means\n cvar: coeficient of variation of the distributon that each parameter will be sampled from (1 = 100% of the not noisy value).\n return\n dictionary with parameters sampled from gaussian around parameter means (inputs) or zero, if sampled value is negative\n ' temp = par.copy() for key in temp.keys(): temp[key] = (par[key] * (1 + (cvar * randn()))) if (temp[key] < 0): temp[key] = 0 return temp
This function adds gaussian noise to parameters (means) stored in a dictionary. Input par: dictionary of ODE parameters which constitute the means cvar: coeficient of variation of the distributon that each parameter will be sampled from (1 = 100% of the not noisy value). return dictionary with parameters sampled from gaussian around parameter means (inputs) or zero, if sampled value is negative
sparseodes/rec_to_ode.py
rand_par
maimanuel/sparseodes
0
python
def rand_par(par, cvar): 'This function adds gaussian noise to parameters (means) stored in a dictionary.\n Input\n par: dictionary of ODE parameters which constitute the means\n cvar: coeficient of variation of the distributon that each parameter will be sampled from (1 = 100% of the not noisy value).\n return\n dictionary with parameters sampled from gaussian around parameter means (inputs) or zero, if sampled value is negative\n ' temp = par.copy() for key in temp.keys(): temp[key] = (par[key] * (1 + (cvar * randn()))) if (temp[key] < 0): temp[key] = 0 return temp
def rand_par(par, cvar): 'This function adds gaussian noise to parameters (means) stored in a dictionary.\n Input\n par: dictionary of ODE parameters which constitute the means\n cvar: coeficient of variation of the distributon that each parameter will be sampled from (1 = 100% of the not noisy value).\n return\n dictionary with parameters sampled from gaussian around parameter means (inputs) or zero, if sampled value is negative\n ' temp = par.copy() for key in temp.keys(): temp[key] = (par[key] * (1 + (cvar * randn()))) if (temp[key] < 0): temp[key] = 0 return temp<|docstring|>This function adds gaussian noise to parameters (means) stored in a dictionary. Input par: dictionary of ODE parameters which constitute the means cvar: coeficient of variation of the distributon that each parameter will be sampled from (1 = 100% of the not noisy value). return dictionary with parameters sampled from gaussian around parameter means (inputs) or zero, if sampled value is negative<|endoftext|>
520dbdbc9c087a29b5cc06d3b0d25aa5b94fd42bdf16330ca28f66caac3204dd
def traj_solve(N, dt, model_der, mod_par, cvar): 'Solve N trajectories with time delta dt for model given in model_der with parameters mod_par\n and coefficient of variation cvar' t0 = 0 tend = 100 Nt = round(((tend - t0) / float(dt))) time = np.linspace(t0, tend, Nt) traj = np.full((N, len(time), 2), (- 3.0)) for i in range(N): rlvpar = rand_par(mod_par, cvar) yinit = (rand(2) * np.array([3, 0])) traj[(i, :, :)] = odeint(model_der, yinit, time, args=(rlvpar,)) return (traj, time)
Solve N trajectories with time delta dt for model given in model_der with parameters mod_par and coefficient of variation cvar
sparseodes/rec_to_ode.py
traj_solve
maimanuel/sparseodes
0
python
def traj_solve(N, dt, model_der, mod_par, cvar): 'Solve N trajectories with time delta dt for model given in model_der with parameters mod_par\n and coefficient of variation cvar' t0 = 0 tend = 100 Nt = round(((tend - t0) / float(dt))) time = np.linspace(t0, tend, Nt) traj = np.full((N, len(time), 2), (- 3.0)) for i in range(N): rlvpar = rand_par(mod_par, cvar) yinit = (rand(2) * np.array([3, 0])) traj[(i, :, :)] = odeint(model_der, yinit, time, args=(rlvpar,)) return (traj, time)
def traj_solve(N, dt, model_der, mod_par, cvar): 'Solve N trajectories with time delta dt for model given in model_der with parameters mod_par\n and coefficient of variation cvar' t0 = 0 tend = 100 Nt = round(((tend - t0) / float(dt))) time = np.linspace(t0, tend, Nt) traj = np.full((N, len(time), 2), (- 3.0)) for i in range(N): rlvpar = rand_par(mod_par, cvar) yinit = (rand(2) * np.array([3, 0])) traj[(i, :, :)] = odeint(model_der, yinit, time, args=(rlvpar,)) return (traj, time)<|docstring|>Solve N trajectories with time delta dt for model given in model_der with parameters mod_par and coefficient of variation cvar<|endoftext|>
04900a364064c6a08e072a6d69aba16c35cb7e84ab3aed0525a63038c0a973a2
def _init_gui(self): 'Initialize GUI.' self.setWindowTitle('Region Growing') xyz = self._model.get_cross_pos() self.source_combo = QComboBox() pointx_label = QLabel('Seed point x') self.pointx_edit = QLineEdit() self.pointx_edit.setText(str(xyz[0])) pointy_label = QLabel('Seed point y') self.pointy_edit = QLineEdit() self.pointy_edit.setText(str(xyz[1])) pointz_label = QLabel('Seed point z') self.pointz_edit = QLineEdit() self.pointz_edit.setText(str(xyz[2])) number_label = QLabel('Number of voxels') self.number_edit = QLineEdit() self.number_edit.setText('100') vol_list = self._model.getItemList() self.source_combo.addItems(vol_list) row = self._model.currentIndex().row() self.source_combo.setCurrentIndex(row) out_label = QLabel('Output volume name') self.out_edit = QLineEdit() grid_layout = QGridLayout() grid_layout.addWidget(pointx_label, 0, 0) grid_layout.addWidget(self.pointx_edit, 0, 1) grid_layout.addWidget(pointy_label, 1, 0) grid_layout.addWidget(self.pointy_edit, 1, 1) grid_layout.addWidget(pointz_label, 2, 0) grid_layout.addWidget(self.pointz_edit, 2, 1) grid_layout.addWidget(number_label, 3, 0) grid_layout.addWidget(self.number_edit, 3, 1) grid_layout.addWidget(out_label, 4, 0) grid_layout.addWidget(self.out_edit, 4, 1) self.run_button = QPushButton('Run') self.cancel_button = QPushButton('Cancel') hbox_layout = QHBoxLayout() hbox_layout.addWidget(self.run_button) hbox_layout.addWidget(self.cancel_button) vbox_layout = QVBoxLayout() vbox_layout.addLayout(grid_layout) vbox_layout.addLayout(hbox_layout) self.setLayout(vbox_layout) self._create_output()
Initialize GUI.
froi/widgets/growdialog.py
_init_gui
sunshineDrizzle/FreeROI
13
python
def _init_gui(self): self.setWindowTitle('Region Growing') xyz = self._model.get_cross_pos() self.source_combo = QComboBox() pointx_label = QLabel('Seed point x') self.pointx_edit = QLineEdit() self.pointx_edit.setText(str(xyz[0])) pointy_label = QLabel('Seed point y') self.pointy_edit = QLineEdit() self.pointy_edit.setText(str(xyz[1])) pointz_label = QLabel('Seed point z') self.pointz_edit = QLineEdit() self.pointz_edit.setText(str(xyz[2])) number_label = QLabel('Number of voxels') self.number_edit = QLineEdit() self.number_edit.setText('100') vol_list = self._model.getItemList() self.source_combo.addItems(vol_list) row = self._model.currentIndex().row() self.source_combo.setCurrentIndex(row) out_label = QLabel('Output volume name') self.out_edit = QLineEdit() grid_layout = QGridLayout() grid_layout.addWidget(pointx_label, 0, 0) grid_layout.addWidget(self.pointx_edit, 0, 1) grid_layout.addWidget(pointy_label, 1, 0) grid_layout.addWidget(self.pointy_edit, 1, 1) grid_layout.addWidget(pointz_label, 2, 0) grid_layout.addWidget(self.pointz_edit, 2, 1) grid_layout.addWidget(number_label, 3, 0) grid_layout.addWidget(self.number_edit, 3, 1) grid_layout.addWidget(out_label, 4, 0) grid_layout.addWidget(self.out_edit, 4, 1) self.run_button = QPushButton('Run') self.cancel_button = QPushButton('Cancel') hbox_layout = QHBoxLayout() hbox_layout.addWidget(self.run_button) hbox_layout.addWidget(self.cancel_button) vbox_layout = QVBoxLayout() vbox_layout.addLayout(grid_layout) vbox_layout.addLayout(hbox_layout) self.setLayout(vbox_layout) self._create_output()
def _init_gui(self): self.setWindowTitle('Region Growing') xyz = self._model.get_cross_pos() self.source_combo = QComboBox() pointx_label = QLabel('Seed point x') self.pointx_edit = QLineEdit() self.pointx_edit.setText(str(xyz[0])) pointy_label = QLabel('Seed point y') self.pointy_edit = QLineEdit() self.pointy_edit.setText(str(xyz[1])) pointz_label = QLabel('Seed point z') self.pointz_edit = QLineEdit() self.pointz_edit.setText(str(xyz[2])) number_label = QLabel('Number of voxels') self.number_edit = QLineEdit() self.number_edit.setText('100') vol_list = self._model.getItemList() self.source_combo.addItems(vol_list) row = self._model.currentIndex().row() self.source_combo.setCurrentIndex(row) out_label = QLabel('Output volume name') self.out_edit = QLineEdit() grid_layout = QGridLayout() grid_layout.addWidget(pointx_label, 0, 0) grid_layout.addWidget(self.pointx_edit, 0, 1) grid_layout.addWidget(pointy_label, 1, 0) grid_layout.addWidget(self.pointy_edit, 1, 1) grid_layout.addWidget(pointz_label, 2, 0) grid_layout.addWidget(self.pointz_edit, 2, 1) grid_layout.addWidget(number_label, 3, 0) grid_layout.addWidget(self.number_edit, 3, 1) grid_layout.addWidget(out_label, 4, 0) grid_layout.addWidget(self.out_edit, 4, 1) self.run_button = QPushButton('Run') self.cancel_button = QPushButton('Cancel') hbox_layout = QHBoxLayout() hbox_layout.addWidget(self.run_button) hbox_layout.addWidget(self.cancel_button) vbox_layout = QVBoxLayout() vbox_layout.addLayout(grid_layout) vbox_layout.addLayout(hbox_layout) self.setLayout(vbox_layout) self._create_output()<|docstring|>Initialize GUI.<|endoftext|>
0a51f2559b2d47d999523f1b03c6c73acb1a4800be3ab47bdf106f6f98b2386e
def _show_result(self, rg_result): "\n Add RG's result as tree items\n " data = np.zeros(self.vol_shape, np.uint8) label = 1 for r in rg_result: labeled_vertices = r.get_vertices() if np.any([data[_] for _ in labeled_vertices]): QMessageBox.warning(self, 'Warning', "Group{0}'s result has overlap with other groups".format((label - 1)), QMessageBox.Yes) for v in labeled_vertices: data[v] = label label += 1 name = ('rg_' + self.model.data(self.rg_qmodel_idx, Qt.DisplayRole)) if self.model.data(self.rg_qmodel_idx, (Qt.UserRole + 8)): map_idx = self.model.data(self.rg_qmodel_idx, (Qt.UserRole + 9)) name += ('_' + str(map_idx)) header = copy.deepcopy(self.model._data[0].get_header()) header.set_data_shape(self.vol_shape) self.model.addItem(data, colormap='blue', name=name, header=header)
Add RG's result as tree items
froi/widgets/growdialog.py
_show_result
sunshineDrizzle/FreeROI
13
python
def _show_result(self, rg_result): "\n \n " data = np.zeros(self.vol_shape, np.uint8) label = 1 for r in rg_result: labeled_vertices = r.get_vertices() if np.any([data[_] for _ in labeled_vertices]): QMessageBox.warning(self, 'Warning', "Group{0}'s result has overlap with other groups".format((label - 1)), QMessageBox.Yes) for v in labeled_vertices: data[v] = label label += 1 name = ('rg_' + self.model.data(self.rg_qmodel_idx, Qt.DisplayRole)) if self.model.data(self.rg_qmodel_idx, (Qt.UserRole + 8)): map_idx = self.model.data(self.rg_qmodel_idx, (Qt.UserRole + 9)) name += ('_' + str(map_idx)) header = copy.deepcopy(self.model._data[0].get_header()) header.set_data_shape(self.vol_shape) self.model.addItem(data, colormap='blue', name=name, header=header)
def _show_result(self, rg_result): "\n \n " data = np.zeros(self.vol_shape, np.uint8) label = 1 for r in rg_result: labeled_vertices = r.get_vertices() if np.any([data[_] for _ in labeled_vertices]): QMessageBox.warning(self, 'Warning', "Group{0}'s result has overlap with other groups".format((label - 1)), QMessageBox.Yes) for v in labeled_vertices: data[v] = label label += 1 name = ('rg_' + self.model.data(self.rg_qmodel_idx, Qt.DisplayRole)) if self.model.data(self.rg_qmodel_idx, (Qt.UserRole + 8)): map_idx = self.model.data(self.rg_qmodel_idx, (Qt.UserRole + 9)) name += ('_' + str(map_idx)) header = copy.deepcopy(self.model._data[0].get_header()) header.set_data_shape(self.vol_shape) self.model.addItem(data, colormap='blue', name=name, header=header)<|docstring|>Add RG's result as tree items<|endoftext|>
01138d27161a11898b1e4080c663e88175caeb26f1dc126a566917e6b149a479
def __init__(self, input_dim: int, output_dim: Optional[int]=None, dropout: float=0.2, activation: Hint[nn.Module]=nn.ReLU, composition: Hint[Composition]=None, qualifier_aggregation: Hint[QualifierAggregation]=None, qualifier_aggregation_kwargs: Optional[Mapping[(str, Any)]]=None, qualifier_composition: Hint[Composition]=None, use_bias: bool=True, message_weighting: Hint[MessageWeighting]=None, message_weighting_kwargs: Optional[Mapping[(str, Any)]]=None, edge_dropout: float=0.0): '\n Initialize the layer.\n\n :param input_dim:\n The input dimension (entity and relation representations).\n :param output_dim:\n The output dimension. Defaults to the input dimension.\n :param dropout:\n The dropout to apply to the updated entity representations from forward / backward edges (but not for\n self-loops).\n :param activation:\n The activation function to use.\n :param composition:\n The composition function to use for merging entity and relation representations to messages.\n :param qualifier_aggregation:\n The aggregation method to use for aggregation of multiple qualifier pair representations for a single edge.\n :param qualifier_aggregation_kwargs:\n Additional keyword-based arguments for the aggregation method.\n :param qualifier_composition:\n The composition function to use to combine entity and relation representations from a qualifier pair.\n :param use_bias:\n Whether to add a trainable bias.\n :param edge_dropout:\n An additional dropout on the edges (applied by randomly setting edge weights to zero).\n ' super().__init__() output_dim = (output_dim or input_dim) self.composition = composition_resolver.make(composition) self.qualifier_composition = composition_resolver.make(qualifier_composition) self.qualifier_aggregation = qualifier_aggregation_resolver.make(qualifier_aggregation, pos_kwargs=qualifier_aggregation_kwargs, input_dim=input_dim) message_weighting_kwargs = dict((message_weighting_kwargs or {})) if (message_weighting == message_weighting_resolver.normalize_cls(AttentionMessageWeighting)): message_weighting_kwargs.setdefault('output_dim', output_dim) self.message_weighting = message_weighting_resolver.make(message_weighting, pos_kwargs=message_weighting_kwargs) self.activation = activation_resolver.make(activation) self.dropout = nn.Dropout(dropout) self.batch_norm = nn.BatchNorm1d(output_dim) self.edge_dropout = nn.Dropout(edge_dropout) self.w_loop = get_parameter(input_dim, output_dim) self.w_in = get_parameter(input_dim, output_dim) self.w_out = get_parameter(input_dim, output_dim) self.w_rel = get_parameter(input_dim, output_dim) self.loop_rel = get_parameter(1, input_dim) self.bias = (get_parameter(output_dim, initializer_=nn.init.zeros_) if use_bias else None)
Initialize the layer. :param input_dim: The input dimension (entity and relation representations). :param output_dim: The output dimension. Defaults to the input dimension. :param dropout: The dropout to apply to the updated entity representations from forward / backward edges (but not for self-loops). :param activation: The activation function to use. :param composition: The composition function to use for merging entity and relation representations to messages. :param qualifier_aggregation: The aggregation method to use for aggregation of multiple qualifier pair representations for a single edge. :param qualifier_aggregation_kwargs: Additional keyword-based arguments for the aggregation method. :param qualifier_composition: The composition function to use to combine entity and relation representations from a qualifier pair. :param use_bias: Whether to add a trainable bias. :param edge_dropout: An additional dropout on the edges (applied by randomly setting edge weights to zero).
src/mphrqe/layer/gnn.py
__init__
DimitrisAlivas/StarQE
11
python
def __init__(self, input_dim: int, output_dim: Optional[int]=None, dropout: float=0.2, activation: Hint[nn.Module]=nn.ReLU, composition: Hint[Composition]=None, qualifier_aggregation: Hint[QualifierAggregation]=None, qualifier_aggregation_kwargs: Optional[Mapping[(str, Any)]]=None, qualifier_composition: Hint[Composition]=None, use_bias: bool=True, message_weighting: Hint[MessageWeighting]=None, message_weighting_kwargs: Optional[Mapping[(str, Any)]]=None, edge_dropout: float=0.0): '\n Initialize the layer.\n\n :param input_dim:\n The input dimension (entity and relation representations).\n :param output_dim:\n The output dimension. Defaults to the input dimension.\n :param dropout:\n The dropout to apply to the updated entity representations from forward / backward edges (but not for\n self-loops).\n :param activation:\n The activation function to use.\n :param composition:\n The composition function to use for merging entity and relation representations to messages.\n :param qualifier_aggregation:\n The aggregation method to use for aggregation of multiple qualifier pair representations for a single edge.\n :param qualifier_aggregation_kwargs:\n Additional keyword-based arguments for the aggregation method.\n :param qualifier_composition:\n The composition function to use to combine entity and relation representations from a qualifier pair.\n :param use_bias:\n Whether to add a trainable bias.\n :param edge_dropout:\n An additional dropout on the edges (applied by randomly setting edge weights to zero).\n ' super().__init__() output_dim = (output_dim or input_dim) self.composition = composition_resolver.make(composition) self.qualifier_composition = composition_resolver.make(qualifier_composition) self.qualifier_aggregation = qualifier_aggregation_resolver.make(qualifier_aggregation, pos_kwargs=qualifier_aggregation_kwargs, input_dim=input_dim) message_weighting_kwargs = dict((message_weighting_kwargs or {})) if (message_weighting == message_weighting_resolver.normalize_cls(AttentionMessageWeighting)): message_weighting_kwargs.setdefault('output_dim', output_dim) self.message_weighting = message_weighting_resolver.make(message_weighting, pos_kwargs=message_weighting_kwargs) self.activation = activation_resolver.make(activation) self.dropout = nn.Dropout(dropout) self.batch_norm = nn.BatchNorm1d(output_dim) self.edge_dropout = nn.Dropout(edge_dropout) self.w_loop = get_parameter(input_dim, output_dim) self.w_in = get_parameter(input_dim, output_dim) self.w_out = get_parameter(input_dim, output_dim) self.w_rel = get_parameter(input_dim, output_dim) self.loop_rel = get_parameter(1, input_dim) self.bias = (get_parameter(output_dim, initializer_=nn.init.zeros_) if use_bias else None)
def __init__(self, input_dim: int, output_dim: Optional[int]=None, dropout: float=0.2, activation: Hint[nn.Module]=nn.ReLU, composition: Hint[Composition]=None, qualifier_aggregation: Hint[QualifierAggregation]=None, qualifier_aggregation_kwargs: Optional[Mapping[(str, Any)]]=None, qualifier_composition: Hint[Composition]=None, use_bias: bool=True, message_weighting: Hint[MessageWeighting]=None, message_weighting_kwargs: Optional[Mapping[(str, Any)]]=None, edge_dropout: float=0.0): '\n Initialize the layer.\n\n :param input_dim:\n The input dimension (entity and relation representations).\n :param output_dim:\n The output dimension. Defaults to the input dimension.\n :param dropout:\n The dropout to apply to the updated entity representations from forward / backward edges (but not for\n self-loops).\n :param activation:\n The activation function to use.\n :param composition:\n The composition function to use for merging entity and relation representations to messages.\n :param qualifier_aggregation:\n The aggregation method to use for aggregation of multiple qualifier pair representations for a single edge.\n :param qualifier_aggregation_kwargs:\n Additional keyword-based arguments for the aggregation method.\n :param qualifier_composition:\n The composition function to use to combine entity and relation representations from a qualifier pair.\n :param use_bias:\n Whether to add a trainable bias.\n :param edge_dropout:\n An additional dropout on the edges (applied by randomly setting edge weights to zero).\n ' super().__init__() output_dim = (output_dim or input_dim) self.composition = composition_resolver.make(composition) self.qualifier_composition = composition_resolver.make(qualifier_composition) self.qualifier_aggregation = qualifier_aggregation_resolver.make(qualifier_aggregation, pos_kwargs=qualifier_aggregation_kwargs, input_dim=input_dim) message_weighting_kwargs = dict((message_weighting_kwargs or {})) if (message_weighting == message_weighting_resolver.normalize_cls(AttentionMessageWeighting)): message_weighting_kwargs.setdefault('output_dim', output_dim) self.message_weighting = message_weighting_resolver.make(message_weighting, pos_kwargs=message_weighting_kwargs) self.activation = activation_resolver.make(activation) self.dropout = nn.Dropout(dropout) self.batch_norm = nn.BatchNorm1d(output_dim) self.edge_dropout = nn.Dropout(edge_dropout) self.w_loop = get_parameter(input_dim, output_dim) self.w_in = get_parameter(input_dim, output_dim) self.w_out = get_parameter(input_dim, output_dim) self.w_rel = get_parameter(input_dim, output_dim) self.loop_rel = get_parameter(1, input_dim) self.bias = (get_parameter(output_dim, initializer_=nn.init.zeros_) if use_bias else None)<|docstring|>Initialize the layer. :param input_dim: The input dimension (entity and relation representations). :param output_dim: The output dimension. Defaults to the input dimension. :param dropout: The dropout to apply to the updated entity representations from forward / backward edges (but not for self-loops). :param activation: The activation function to use. :param composition: The composition function to use for merging entity and relation representations to messages. :param qualifier_aggregation: The aggregation method to use for aggregation of multiple qualifier pair representations for a single edge. :param qualifier_aggregation_kwargs: Additional keyword-based arguments for the aggregation method. :param qualifier_composition: The composition function to use to combine entity and relation representations from a qualifier pair. :param use_bias: Whether to add a trainable bias. :param edge_dropout: An additional dropout on the edges (applied by randomly setting edge weights to zero).<|endoftext|>
ed3ac2f7036270d5f5e6c1ef1077feeb1fff164d4cf99e198979d6628917a549
def propagate(self, x_e: torch.FloatTensor, x_r: FloatTensor, edge_index: LongTensor, edge_type: LongTensor, qualifier_index: torch.LongTensor, weight: nn.Parameter) -> torch.FloatTensor: '\n The real message passing.\n\n :param x_e: shape: (num_entities, input_dim)\n The entity representations.\n :param x_r: shape: (2 * num_relations, dim)\n The relation representations. This includes the relation representation for inverse relations, but does\n not include the self-loop relation (which is learned independently for each layer).\n :param edge_index: shape: (2, num_edges)\n The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created\n locally.\n :param edge_type: shape: (num_edges,)\n The edge type (=relation ID) for each edge.\n :param qualifier_index: shape: (3, num_qualifier_pairs)\n The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID).\n :param weight: shape: (input_dim, output_dim)\n The transformation weight.\n ' (i_qr, i_qe, i_e) = qualifier_index x_qr = x_r[i_qr] x_qe = x_e[i_qe] x_q = self.qualifier_composition(x_qe, x_qr) x_r = self.qualifier_aggregation(x_q, x_r[edge_type], edge_ids=i_e) (source, target) = edge_index m = (self.composition(x_e[source], x_r) @ weight) (m, message_weight) = self.message_weighting(edge_index=edge_index, message=m, x_e=x_e) message_weight = self.edge_dropout(message_weight) m = (m * message_weight.unsqueeze(dim=(- 1))) m = m.view(m.shape[0], (- 1)) return torch_scatter.scatter_add(src=m, index=target, dim=0, dim_size=x_e.shape[0])
The real message passing. :param x_e: shape: (num_entities, input_dim) The entity representations. :param x_r: shape: (2 * num_relations, dim) The relation representations. This includes the relation representation for inverse relations, but does not include the self-loop relation (which is learned independently for each layer). :param edge_index: shape: (2, num_edges) The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created locally. :param edge_type: shape: (num_edges,) The edge type (=relation ID) for each edge. :param qualifier_index: shape: (3, num_qualifier_pairs) The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID). :param weight: shape: (input_dim, output_dim) The transformation weight.
src/mphrqe/layer/gnn.py
propagate
DimitrisAlivas/StarQE
11
python
def propagate(self, x_e: torch.FloatTensor, x_r: FloatTensor, edge_index: LongTensor, edge_type: LongTensor, qualifier_index: torch.LongTensor, weight: nn.Parameter) -> torch.FloatTensor: '\n The real message passing.\n\n :param x_e: shape: (num_entities, input_dim)\n The entity representations.\n :param x_r: shape: (2 * num_relations, dim)\n The relation representations. This includes the relation representation for inverse relations, but does\n not include the self-loop relation (which is learned independently for each layer).\n :param edge_index: shape: (2, num_edges)\n The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created\n locally.\n :param edge_type: shape: (num_edges,)\n The edge type (=relation ID) for each edge.\n :param qualifier_index: shape: (3, num_qualifier_pairs)\n The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID).\n :param weight: shape: (input_dim, output_dim)\n The transformation weight.\n ' (i_qr, i_qe, i_e) = qualifier_index x_qr = x_r[i_qr] x_qe = x_e[i_qe] x_q = self.qualifier_composition(x_qe, x_qr) x_r = self.qualifier_aggregation(x_q, x_r[edge_type], edge_ids=i_e) (source, target) = edge_index m = (self.composition(x_e[source], x_r) @ weight) (m, message_weight) = self.message_weighting(edge_index=edge_index, message=m, x_e=x_e) message_weight = self.edge_dropout(message_weight) m = (m * message_weight.unsqueeze(dim=(- 1))) m = m.view(m.shape[0], (- 1)) return torch_scatter.scatter_add(src=m, index=target, dim=0, dim_size=x_e.shape[0])
def propagate(self, x_e: torch.FloatTensor, x_r: FloatTensor, edge_index: LongTensor, edge_type: LongTensor, qualifier_index: torch.LongTensor, weight: nn.Parameter) -> torch.FloatTensor: '\n The real message passing.\n\n :param x_e: shape: (num_entities, input_dim)\n The entity representations.\n :param x_r: shape: (2 * num_relations, dim)\n The relation representations. This includes the relation representation for inverse relations, but does\n not include the self-loop relation (which is learned independently for each layer).\n :param edge_index: shape: (2, num_edges)\n The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created\n locally.\n :param edge_type: shape: (num_edges,)\n The edge type (=relation ID) for each edge.\n :param qualifier_index: shape: (3, num_qualifier_pairs)\n The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID).\n :param weight: shape: (input_dim, output_dim)\n The transformation weight.\n ' (i_qr, i_qe, i_e) = qualifier_index x_qr = x_r[i_qr] x_qe = x_e[i_qe] x_q = self.qualifier_composition(x_qe, x_qr) x_r = self.qualifier_aggregation(x_q, x_r[edge_type], edge_ids=i_e) (source, target) = edge_index m = (self.composition(x_e[source], x_r) @ weight) (m, message_weight) = self.message_weighting(edge_index=edge_index, message=m, x_e=x_e) message_weight = self.edge_dropout(message_weight) m = (m * message_weight.unsqueeze(dim=(- 1))) m = m.view(m.shape[0], (- 1)) return torch_scatter.scatter_add(src=m, index=target, dim=0, dim_size=x_e.shape[0])<|docstring|>The real message passing. :param x_e: shape: (num_entities, input_dim) The entity representations. :param x_r: shape: (2 * num_relations, dim) The relation representations. This includes the relation representation for inverse relations, but does not include the self-loop relation (which is learned independently for each layer). :param edge_index: shape: (2, num_edges) The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created locally. :param edge_type: shape: (num_edges,) The edge type (=relation ID) for each edge. :param qualifier_index: shape: (3, num_qualifier_pairs) The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID). :param weight: shape: (input_dim, output_dim) The transformation weight.<|endoftext|>
dbdcbf3dc3205720e90bad690f200ed65dce99dd4c3f0948dd9884c0ad0f0353
def forward(self, x_e: torch.FloatTensor, x_r: FloatTensor, edge_index: torch.LongTensor, edge_type: torch.LongTensor, qualifier_index: torch.LongTensor, entity_mask: Optional[torch.LongTensor]) -> Tuple[(FloatTensor, FloatTensor)]: '\n Forward pass through the convolution layer.\n\n :param x_e: shape: (num_entities, input_dim)\n The entity representations.\n :param x_r: shape: (2 * num_relations, dim)\n The relation representations. This includes the relation representation for inverse relations, but does\n not include the self-loop relation (which is learned independently for each layer).\n :param edge_index: shape: (2, num_edges)\n The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created\n locally.\n :param edge_type: shape: (num_edges,)\n The edge type (=relation ID) for each edge.\n :param qualifier_index: shape: (3, num_qualifier_pairs)\n The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID).\n :param entity_mask: shape (num_entities, )\n If provided, this entities x_e[entity_mask] will not be updated be updated by this message passing layer.\n\n :return:\n The updated entity and relation representations.\n ' assert (edge_type < (x_r.shape[0] // 2)).all() out = (((1 / 3) * self.composition(x_e, self.loop_rel)) @ self.w_loop) for (weight, edge_index_, edge_type_) in ((self.w_in, edge_index, edge_type), (self.w_out, edge_index.flip(0), (edge_type + (x_r.shape[0] // 2)))): out = (out + ((1 / 3) * self.dropout(self.propagate(x_e=x_e, x_r=x_r, edge_index=edge_index_, edge_type=edge_type_, qualifier_index=qualifier_index, weight=weight)))) if (self.bias is not None): out = (out + self.bias) out = self.batch_norm(out) out = self.activation(out) x_r = (x_r @ self.w_rel) if (entity_mask is not None): out[entity_mask] = x_e[entity_mask] return (out, x_r)
Forward pass through the convolution layer. :param x_e: shape: (num_entities, input_dim) The entity representations. :param x_r: shape: (2 * num_relations, dim) The relation representations. This includes the relation representation for inverse relations, but does not include the self-loop relation (which is learned independently for each layer). :param edge_index: shape: (2, num_edges) The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created locally. :param edge_type: shape: (num_edges,) The edge type (=relation ID) for each edge. :param qualifier_index: shape: (3, num_qualifier_pairs) The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID). :param entity_mask: shape (num_entities, ) If provided, this entities x_e[entity_mask] will not be updated be updated by this message passing layer. :return: The updated entity and relation representations.
src/mphrqe/layer/gnn.py
forward
DimitrisAlivas/StarQE
11
python
def forward(self, x_e: torch.FloatTensor, x_r: FloatTensor, edge_index: torch.LongTensor, edge_type: torch.LongTensor, qualifier_index: torch.LongTensor, entity_mask: Optional[torch.LongTensor]) -> Tuple[(FloatTensor, FloatTensor)]: '\n Forward pass through the convolution layer.\n\n :param x_e: shape: (num_entities, input_dim)\n The entity representations.\n :param x_r: shape: (2 * num_relations, dim)\n The relation representations. This includes the relation representation for inverse relations, but does\n not include the self-loop relation (which is learned independently for each layer).\n :param edge_index: shape: (2, num_edges)\n The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created\n locally.\n :param edge_type: shape: (num_edges,)\n The edge type (=relation ID) for each edge.\n :param qualifier_index: shape: (3, num_qualifier_pairs)\n The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID).\n :param entity_mask: shape (num_entities, )\n If provided, this entities x_e[entity_mask] will not be updated be updated by this message passing layer.\n\n :return:\n The updated entity and relation representations.\n ' assert (edge_type < (x_r.shape[0] // 2)).all() out = (((1 / 3) * self.composition(x_e, self.loop_rel)) @ self.w_loop) for (weight, edge_index_, edge_type_) in ((self.w_in, edge_index, edge_type), (self.w_out, edge_index.flip(0), (edge_type + (x_r.shape[0] // 2)))): out = (out + ((1 / 3) * self.dropout(self.propagate(x_e=x_e, x_r=x_r, edge_index=edge_index_, edge_type=edge_type_, qualifier_index=qualifier_index, weight=weight)))) if (self.bias is not None): out = (out + self.bias) out = self.batch_norm(out) out = self.activation(out) x_r = (x_r @ self.w_rel) if (entity_mask is not None): out[entity_mask] = x_e[entity_mask] return (out, x_r)
def forward(self, x_e: torch.FloatTensor, x_r: FloatTensor, edge_index: torch.LongTensor, edge_type: torch.LongTensor, qualifier_index: torch.LongTensor, entity_mask: Optional[torch.LongTensor]) -> Tuple[(FloatTensor, FloatTensor)]: '\n Forward pass through the convolution layer.\n\n :param x_e: shape: (num_entities, input_dim)\n The entity representations.\n :param x_r: shape: (2 * num_relations, dim)\n The relation representations. This includes the relation representation for inverse relations, but does\n not include the self-loop relation (which is learned independently for each layer).\n :param edge_index: shape: (2, num_edges)\n The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created\n locally.\n :param edge_type: shape: (num_edges,)\n The edge type (=relation ID) for each edge.\n :param qualifier_index: shape: (3, num_qualifier_pairs)\n The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID).\n :param entity_mask: shape (num_entities, )\n If provided, this entities x_e[entity_mask] will not be updated be updated by this message passing layer.\n\n :return:\n The updated entity and relation representations.\n ' assert (edge_type < (x_r.shape[0] // 2)).all() out = (((1 / 3) * self.composition(x_e, self.loop_rel)) @ self.w_loop) for (weight, edge_index_, edge_type_) in ((self.w_in, edge_index, edge_type), (self.w_out, edge_index.flip(0), (edge_type + (x_r.shape[0] // 2)))): out = (out + ((1 / 3) * self.dropout(self.propagate(x_e=x_e, x_r=x_r, edge_index=edge_index_, edge_type=edge_type_, qualifier_index=qualifier_index, weight=weight)))) if (self.bias is not None): out = (out + self.bias) out = self.batch_norm(out) out = self.activation(out) x_r = (x_r @ self.w_rel) if (entity_mask is not None): out[entity_mask] = x_e[entity_mask] return (out, x_r)<|docstring|>Forward pass through the convolution layer. :param x_e: shape: (num_entities, input_dim) The entity representations. :param x_r: shape: (2 * num_relations, dim) The relation representations. This includes the relation representation for inverse relations, but does not include the self-loop relation (which is learned independently for each layer). :param edge_index: shape: (2, num_edges) The edge index, pairs of source/target nodes. This does not include inverse edges, since they are created locally. :param edge_type: shape: (num_edges,) The edge type (=relation ID) for each edge. :param qualifier_index: shape: (3, num_qualifier_pairs) The qualifier index, triples of (qualifier-relation-ID, qualifier-entity-ID, edge-ID). :param entity_mask: shape (num_entities, ) If provided, this entities x_e[entity_mask] will not be updated be updated by this message passing layer. :return: The updated entity and relation representations.<|endoftext|>
91d056701c5449876995f9558423b36030529fe1176a3ecc946ee862e6ea720e
def dictfetchall(self, cursor): 'Returns all rows from a cursor as a dict' desc = cursor.description return [dict(zip([col[0] for col in desc], row)) for row in cursor.fetchall()]
Returns all rows from a cursor as a dict
core/reports/TitanProgressReport.py
dictfetchall
jilbertozamorasaa/panda-bigmon-core
3
python
def dictfetchall(self, cursor): desc = cursor.description return [dict(zip([col[0] for col in desc], row)) for row in cursor.fetchall()]
def dictfetchall(self, cursor): desc = cursor.description return [dict(zip([col[0] for col in desc], row)) for row in cursor.fetchall()]<|docstring|>Returns all rows from a cursor as a dict<|endoftext|>
a11666599677d6d5e9d0080d8bb4ac9c725303f214f2f3363820bab15804e933
@unpack_args def formulate(index, n2, gama, alphadB, z, P_p, P_s, TFWHM_p, TFWHM_s, spl_losses, betas, lamda_c, WDMS_pars, lamp, lams, num_cores, maxerr, ss, plots, N, nplot, master_index, filesaves, Df_band, fr, fopa): '------------------propagation paramaters------------------' dzstep = (z / nplot) dz_less = 100.0 int_fwm = sim_parameters(n2, 1, alphadB) int_fwm.general_options(maxerr, ss) int_fwm.propagation_parameters(N, z, nplot, dz_less) lamda = (lamp * 1e-09) '-----------------------------f-----------------------------' '---------------------Aeff-Qmatrixes-----------------------' M = Q_matrixes(int_fwm.nm, int_fwm.n2, lamda_c, gama) '----------------------------------------------------------' '---------------------Grid&window-----------------------' (P_p_bef, P_s_bef) = pre_fibre_init_power(WDMS_pars[0][0], WDMS_pars[0][1], lamp, P_p, P_s) (fv, where, f_centrals) = fv_creator(lamp, lams, lamda_c, int_fwm, betas, M, P_p_bef, P_s_bef, Df_band) print((fv[0][1] - fv[0][0])) (p_pos, s_pos, i_pos) = where sim_wind = sim_window(fv, lamda, f_centrals, lamda_c, int_fwm) '----------------------------------------------------------' '---------------------Loss-in-fibres-----------------------' slice_from_edge = ((sim_wind.fv[(- 1)] - sim_wind.fv[0]) / 100) loss = Loss(int_fwm, sim_wind, amax=0) int_fwm.alpha = loss.atten_func_full(fv) int_fwm.gama = np.array([(((((((- 1j) * n2) * 2) * M) * pi) * (1000000000000.0 * f_c)) / c) for f_c in f_centrals]) int_fwm.gama[0:2] = 0 int_fwm.gama[5:] = 0 '----------------------------------------------------------' '--------------------Dispersion----------------------------' Dop = dispersion_operator(betas, lamda_c, int_fwm, sim_wind) '----------------------------------------------------------' '---------------------Raman Factors------------------------' ram = Raman_factors(fr) ram.set_raman_band(sim_wind) '----------------------------------------------------------' '--------------------Noise---------------------------------' noise_obj = Noise(int_fwm, sim_wind) '----------------------------------------------------------' pulse_pos_dict_or = ('after propagation', 'pass WDM2', 'pass WDM1 on port2 (remove pump)', 'add more pump', 'out') keys = [(('loading_data/green_dot_fopo/pngs/' + str(i)) + str('.png')) for i in range(7)] D_pic = [plt.imread(i) for i in keys] '----------------Construct the integrator----------------' non_integrand = Integrand(int_fwm.gama, sim_wind.tsh, sim_wind.w_tiled, ss, ram, cython_tick=True, timer=False) '--------------------------------------------------------' '----------------------Formulate WDMS--------------------' if (WDMS_pars == 'signal_locked'): Omega = ((((2 * pi) * c) / (lamp * 1e-09)) - (((2 * pi) * c) / (lams * 1e-09))) omegai = ((((2 * pi) * c) / (lamp * 1e-09)) + Omega) lami = ((((1000000000.0 * 2) * pi) * c) / omegai) WDMS_pars = ([lamp, lams], [lami, lams], [lami, lamp], [lami, lams]) WDM_vec = [WDM(i[0], i[1], sim_wind.fv, c, fopa) for i in WDMS_pars] pm_fopa = Phase_modulation_FOPA(sim_wind.fv, where) pm_WDM1 = Phase_modulation_infase_WDM(P_s, where, WDM_vec[0]) '--------------------------------------------------------' '----------------------Formulate splicers--------------------' splicers_vec = [Splicer(loss=i) for i in spl_losses] '------------------------------------------------------------' (f_p, f_s) = (sim_wind.fv[(where[0][0], where[0][1])], sim_wind.fv[(where[1][0], where[1][1])]) ex = Plotter_saver(plots, filesaves, sim_wind.fv, sim_wind.t) ro = oscilate(sim_wind, int_fwm, noise_obj, TFWHM_p, TFWHM_s, index, master_index, P_p, P_s, f_p, f_s, p_pos, s_pos, splicers_vec, WDM_vec, Dop, non_integrand, D_pic, pulse_pos_dict_or, plots, ex, pm_fopa, pm_WDM1, fopa) return None
------------------propagation paramaters------------------
src/oscillator.py
formulate
Computational-Nonlinear-Optics-ORC/Single-mode-FOPO
3
python
@unpack_args def formulate(index, n2, gama, alphadB, z, P_p, P_s, TFWHM_p, TFWHM_s, spl_losses, betas, lamda_c, WDMS_pars, lamp, lams, num_cores, maxerr, ss, plots, N, nplot, master_index, filesaves, Df_band, fr, fopa): dzstep = (z / nplot) dz_less = 100.0 int_fwm = sim_parameters(n2, 1, alphadB) int_fwm.general_options(maxerr, ss) int_fwm.propagation_parameters(N, z, nplot, dz_less) lamda = (lamp * 1e-09) '-----------------------------f-----------------------------' '---------------------Aeff-Qmatrixes-----------------------' M = Q_matrixes(int_fwm.nm, int_fwm.n2, lamda_c, gama) '----------------------------------------------------------' '---------------------Grid&window-----------------------' (P_p_bef, P_s_bef) = pre_fibre_init_power(WDMS_pars[0][0], WDMS_pars[0][1], lamp, P_p, P_s) (fv, where, f_centrals) = fv_creator(lamp, lams, lamda_c, int_fwm, betas, M, P_p_bef, P_s_bef, Df_band) print((fv[0][1] - fv[0][0])) (p_pos, s_pos, i_pos) = where sim_wind = sim_window(fv, lamda, f_centrals, lamda_c, int_fwm) '----------------------------------------------------------' '---------------------Loss-in-fibres-----------------------' slice_from_edge = ((sim_wind.fv[(- 1)] - sim_wind.fv[0]) / 100) loss = Loss(int_fwm, sim_wind, amax=0) int_fwm.alpha = loss.atten_func_full(fv) int_fwm.gama = np.array([(((((((- 1j) * n2) * 2) * M) * pi) * (1000000000000.0 * f_c)) / c) for f_c in f_centrals]) int_fwm.gama[0:2] = 0 int_fwm.gama[5:] = 0 '----------------------------------------------------------' '--------------------Dispersion----------------------------' Dop = dispersion_operator(betas, lamda_c, int_fwm, sim_wind) '----------------------------------------------------------' '---------------------Raman Factors------------------------' ram = Raman_factors(fr) ram.set_raman_band(sim_wind) '----------------------------------------------------------' '--------------------Noise---------------------------------' noise_obj = Noise(int_fwm, sim_wind) '----------------------------------------------------------' pulse_pos_dict_or = ('after propagation', 'pass WDM2', 'pass WDM1 on port2 (remove pump)', 'add more pump', 'out') keys = [(('loading_data/green_dot_fopo/pngs/' + str(i)) + str('.png')) for i in range(7)] D_pic = [plt.imread(i) for i in keys] '----------------Construct the integrator----------------' non_integrand = Integrand(int_fwm.gama, sim_wind.tsh, sim_wind.w_tiled, ss, ram, cython_tick=True, timer=False) '--------------------------------------------------------' '----------------------Formulate WDMS--------------------' if (WDMS_pars == 'signal_locked'): Omega = ((((2 * pi) * c) / (lamp * 1e-09)) - (((2 * pi) * c) / (lams * 1e-09))) omegai = ((((2 * pi) * c) / (lamp * 1e-09)) + Omega) lami = ((((1000000000.0 * 2) * pi) * c) / omegai) WDMS_pars = ([lamp, lams], [lami, lams], [lami, lamp], [lami, lams]) WDM_vec = [WDM(i[0], i[1], sim_wind.fv, c, fopa) for i in WDMS_pars] pm_fopa = Phase_modulation_FOPA(sim_wind.fv, where) pm_WDM1 = Phase_modulation_infase_WDM(P_s, where, WDM_vec[0]) '--------------------------------------------------------' '----------------------Formulate splicers--------------------' splicers_vec = [Splicer(loss=i) for i in spl_losses] '------------------------------------------------------------' (f_p, f_s) = (sim_wind.fv[(where[0][0], where[0][1])], sim_wind.fv[(where[1][0], where[1][1])]) ex = Plotter_saver(plots, filesaves, sim_wind.fv, sim_wind.t) ro = oscilate(sim_wind, int_fwm, noise_obj, TFWHM_p, TFWHM_s, index, master_index, P_p, P_s, f_p, f_s, p_pos, s_pos, splicers_vec, WDM_vec, Dop, non_integrand, D_pic, pulse_pos_dict_or, plots, ex, pm_fopa, pm_WDM1, fopa) return None
@unpack_args def formulate(index, n2, gama, alphadB, z, P_p, P_s, TFWHM_p, TFWHM_s, spl_losses, betas, lamda_c, WDMS_pars, lamp, lams, num_cores, maxerr, ss, plots, N, nplot, master_index, filesaves, Df_band, fr, fopa): dzstep = (z / nplot) dz_less = 100.0 int_fwm = sim_parameters(n2, 1, alphadB) int_fwm.general_options(maxerr, ss) int_fwm.propagation_parameters(N, z, nplot, dz_less) lamda = (lamp * 1e-09) '-----------------------------f-----------------------------' '---------------------Aeff-Qmatrixes-----------------------' M = Q_matrixes(int_fwm.nm, int_fwm.n2, lamda_c, gama) '----------------------------------------------------------' '---------------------Grid&window-----------------------' (P_p_bef, P_s_bef) = pre_fibre_init_power(WDMS_pars[0][0], WDMS_pars[0][1], lamp, P_p, P_s) (fv, where, f_centrals) = fv_creator(lamp, lams, lamda_c, int_fwm, betas, M, P_p_bef, P_s_bef, Df_band) print((fv[0][1] - fv[0][0])) (p_pos, s_pos, i_pos) = where sim_wind = sim_window(fv, lamda, f_centrals, lamda_c, int_fwm) '----------------------------------------------------------' '---------------------Loss-in-fibres-----------------------' slice_from_edge = ((sim_wind.fv[(- 1)] - sim_wind.fv[0]) / 100) loss = Loss(int_fwm, sim_wind, amax=0) int_fwm.alpha = loss.atten_func_full(fv) int_fwm.gama = np.array([(((((((- 1j) * n2) * 2) * M) * pi) * (1000000000000.0 * f_c)) / c) for f_c in f_centrals]) int_fwm.gama[0:2] = 0 int_fwm.gama[5:] = 0 '----------------------------------------------------------' '--------------------Dispersion----------------------------' Dop = dispersion_operator(betas, lamda_c, int_fwm, sim_wind) '----------------------------------------------------------' '---------------------Raman Factors------------------------' ram = Raman_factors(fr) ram.set_raman_band(sim_wind) '----------------------------------------------------------' '--------------------Noise---------------------------------' noise_obj = Noise(int_fwm, sim_wind) '----------------------------------------------------------' pulse_pos_dict_or = ('after propagation', 'pass WDM2', 'pass WDM1 on port2 (remove pump)', 'add more pump', 'out') keys = [(('loading_data/green_dot_fopo/pngs/' + str(i)) + str('.png')) for i in range(7)] D_pic = [plt.imread(i) for i in keys] '----------------Construct the integrator----------------' non_integrand = Integrand(int_fwm.gama, sim_wind.tsh, sim_wind.w_tiled, ss, ram, cython_tick=True, timer=False) '--------------------------------------------------------' '----------------------Formulate WDMS--------------------' if (WDMS_pars == 'signal_locked'): Omega = ((((2 * pi) * c) / (lamp * 1e-09)) - (((2 * pi) * c) / (lams * 1e-09))) omegai = ((((2 * pi) * c) / (lamp * 1e-09)) + Omega) lami = ((((1000000000.0 * 2) * pi) * c) / omegai) WDMS_pars = ([lamp, lams], [lami, lams], [lami, lamp], [lami, lams]) WDM_vec = [WDM(i[0], i[1], sim_wind.fv, c, fopa) for i in WDMS_pars] pm_fopa = Phase_modulation_FOPA(sim_wind.fv, where) pm_WDM1 = Phase_modulation_infase_WDM(P_s, where, WDM_vec[0]) '--------------------------------------------------------' '----------------------Formulate splicers--------------------' splicers_vec = [Splicer(loss=i) for i in spl_losses] '------------------------------------------------------------' (f_p, f_s) = (sim_wind.fv[(where[0][0], where[0][1])], sim_wind.fv[(where[1][0], where[1][1])]) ex = Plotter_saver(plots, filesaves, sim_wind.fv, sim_wind.t) ro = oscilate(sim_wind, int_fwm, noise_obj, TFWHM_p, TFWHM_s, index, master_index, P_p, P_s, f_p, f_s, p_pos, s_pos, splicers_vec, WDM_vec, Dop, non_integrand, D_pic, pulse_pos_dict_or, plots, ex, pm_fopa, pm_WDM1, fopa) return None<|docstring|>------------------propagation paramaters------------------<|endoftext|>
b2429ed3b93e616c9fbaa6689a33d1960b3183a634429fb1930ec9b4244c43a6
def main(): '-----------------------------Stable parameters----------------------------' num_cores = arguments_determine(1) maxerr = 1e-13 ss = 1 Df_band_vec = [5, 5, 10, 20] fr = 0.18 plots = False filesaves = True complete = False nplot = 1 if (arguments_determine((- 1)) == 0): fopa = True else: fopa = False if ('mpi' in sys.argv): method = 'mpi' elif ('joblib' in sys.argv): method = 'joblib' else: method = 'single' '--------------------------------------------------------------------------' stable_dic = {'num_cores': num_cores, 'maxerr': maxerr, 'ss': ss, 'plots': plots, 'nplot': nplot, 'filesaves': filesaves, 'fr': fr, 'fopa': fopa} '------------------------Can be variable parameters------------------------' n2 = 2.5e-20 gama = 0.01 alphadB = 0 z = 18 wave_idx = 0 power_area_idx = 0 N = np.array([i for i in range(2, 13)]) P_p_vec = [[my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 4.4, 0.1), my_arange(4.5, 5, 0.05), my_arange(5.1, 8.1, 0.1), my_arange(8.2, 12, 0.1)]] Df_band = Df_band_vec[power_area_idx] P_p = P_p_vec[wave_idx][power_area_idx] P_p = [6] P_s = 0 TFWHM_p = 0 TFWHM_s = 0 spl_losses = [0, 0, 1.4] betas = (np.array([0, 0, 0, 0.06756, (- 0.0001002), 3.671e-07]) * 0.001) lamda_c = 1.05185e-06 WDMS_pars = ([1048.0, 1204.16], [927.7, 1204.16]) lamp_vec = [1046, 1047, 1048, 1049, 1050] lamp = [lamp_vec[wave_idx]] lams = ['lock' for i in range(len(lamp))] lamp = lamp_vec[wave_idx] lams = 'lock' var_dic = {'n2': n2, 'gama': gama, 'alphadB': alphadB, 'z': z, 'P_p': P_p, 'P_s': P_s, 'TFWHM_p': TFWHM_p, 'TFWHM_s': TFWHM_s, 'spl_losses': spl_losses, 'betas': betas, 'lamda_c': lamda_c, 'WDMS_pars': WDMS_pars, 'lamp': lamp, 'lams': lams, 'N': N, 'Df_band': Df_band} '--------------------------------------------------------------------------' outside_var_key = 'P_p' inside_var_key = 'N' inside_var = var_dic[inside_var_key] outside_var = var_dic[outside_var_key] del var_dic[outside_var_key] del var_dic[inside_var_key] '----------------------------Simulation------------------------------------' D_ins = [{'index': i, inside_var_key: insvar} for (i, insvar) in enumerate(inside_var)] large_dic = {**stable_dic, **var_dic} if (len(inside_var) < num_cores): num_cores = len(inside_var) profiler_bool = arguments_determine(0) for (kk, variable) in enumerate(outside_var): create_file_structure(kk) _temps = create_destroy(inside_var, str(kk)) _temps.prepare_folder() large_dic['lams'] = lams[kk] large_dic['master_index'] = kk large_dic[outside_var_key] = variable if profiler_bool: for i in range(len(D_ins)): formulate(**{**D_ins[i], **large_dic}) elif (method == 'mpi'): iterables = ({**D_ins[i], **large_dic} for i in range(len(D_ins))) with MPIPoolExecutor() as executor: A = executor.map(formulate, iterables) else: A = Parallel(n_jobs=num_cores)((delayed(formulate)(**{**D_ins[i], **large_dic}) for i in range(len(D_ins)))) _temps.cleanup_folder() print('\x07') return None
-----------------------------Stable parameters----------------------------
src/oscillator.py
main
Computational-Nonlinear-Optics-ORC/Single-mode-FOPO
3
python
def main(): num_cores = arguments_determine(1) maxerr = 1e-13 ss = 1 Df_band_vec = [5, 5, 10, 20] fr = 0.18 plots = False filesaves = True complete = False nplot = 1 if (arguments_determine((- 1)) == 0): fopa = True else: fopa = False if ('mpi' in sys.argv): method = 'mpi' elif ('joblib' in sys.argv): method = 'joblib' else: method = 'single' '--------------------------------------------------------------------------' stable_dic = {'num_cores': num_cores, 'maxerr': maxerr, 'ss': ss, 'plots': plots, 'nplot': nplot, 'filesaves': filesaves, 'fr': fr, 'fopa': fopa} '------------------------Can be variable parameters------------------------' n2 = 2.5e-20 gama = 0.01 alphadB = 0 z = 18 wave_idx = 0 power_area_idx = 0 N = np.array([i for i in range(2, 13)]) P_p_vec = [[my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 4.4, 0.1), my_arange(4.5, 5, 0.05), my_arange(5.1, 8.1, 0.1), my_arange(8.2, 12, 0.1)]] Df_band = Df_band_vec[power_area_idx] P_p = P_p_vec[wave_idx][power_area_idx] P_p = [6] P_s = 0 TFWHM_p = 0 TFWHM_s = 0 spl_losses = [0, 0, 1.4] betas = (np.array([0, 0, 0, 0.06756, (- 0.0001002), 3.671e-07]) * 0.001) lamda_c = 1.05185e-06 WDMS_pars = ([1048.0, 1204.16], [927.7, 1204.16]) lamp_vec = [1046, 1047, 1048, 1049, 1050] lamp = [lamp_vec[wave_idx]] lams = ['lock' for i in range(len(lamp))] lamp = lamp_vec[wave_idx] lams = 'lock' var_dic = {'n2': n2, 'gama': gama, 'alphadB': alphadB, 'z': z, 'P_p': P_p, 'P_s': P_s, 'TFWHM_p': TFWHM_p, 'TFWHM_s': TFWHM_s, 'spl_losses': spl_losses, 'betas': betas, 'lamda_c': lamda_c, 'WDMS_pars': WDMS_pars, 'lamp': lamp, 'lams': lams, 'N': N, 'Df_band': Df_band} '--------------------------------------------------------------------------' outside_var_key = 'P_p' inside_var_key = 'N' inside_var = var_dic[inside_var_key] outside_var = var_dic[outside_var_key] del var_dic[outside_var_key] del var_dic[inside_var_key] '----------------------------Simulation------------------------------------' D_ins = [{'index': i, inside_var_key: insvar} for (i, insvar) in enumerate(inside_var)] large_dic = {**stable_dic, **var_dic} if (len(inside_var) < num_cores): num_cores = len(inside_var) profiler_bool = arguments_determine(0) for (kk, variable) in enumerate(outside_var): create_file_structure(kk) _temps = create_destroy(inside_var, str(kk)) _temps.prepare_folder() large_dic['lams'] = lams[kk] large_dic['master_index'] = kk large_dic[outside_var_key] = variable if profiler_bool: for i in range(len(D_ins)): formulate(**{**D_ins[i], **large_dic}) elif (method == 'mpi'): iterables = ({**D_ins[i], **large_dic} for i in range(len(D_ins))) with MPIPoolExecutor() as executor: A = executor.map(formulate, iterables) else: A = Parallel(n_jobs=num_cores)((delayed(formulate)(**{**D_ins[i], **large_dic}) for i in range(len(D_ins)))) _temps.cleanup_folder() print('\x07') return None
def main(): num_cores = arguments_determine(1) maxerr = 1e-13 ss = 1 Df_band_vec = [5, 5, 10, 20] fr = 0.18 plots = False filesaves = True complete = False nplot = 1 if (arguments_determine((- 1)) == 0): fopa = True else: fopa = False if ('mpi' in sys.argv): method = 'mpi' elif ('joblib' in sys.argv): method = 'joblib' else: method = 'single' '--------------------------------------------------------------------------' stable_dic = {'num_cores': num_cores, 'maxerr': maxerr, 'ss': ss, 'plots': plots, 'nplot': nplot, 'filesaves': filesaves, 'fr': fr, 'fopa': fopa} '------------------------Can be variable parameters------------------------' n2 = 2.5e-20 gama = 0.01 alphadB = 0 z = 18 wave_idx = 0 power_area_idx = 0 N = np.array([i for i in range(2, 13)]) P_p_vec = [[my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 3.9, 0.1), my_arange(4, 4.5, 0.05), my_arange(4.6, 8.1, 0.1), my_arange(8.2, 12, 0.1)], [my_arange(3.5, 4.4, 0.1), my_arange(4.5, 5, 0.05), my_arange(5.1, 8.1, 0.1), my_arange(8.2, 12, 0.1)]] Df_band = Df_band_vec[power_area_idx] P_p = P_p_vec[wave_idx][power_area_idx] P_p = [6] P_s = 0 TFWHM_p = 0 TFWHM_s = 0 spl_losses = [0, 0, 1.4] betas = (np.array([0, 0, 0, 0.06756, (- 0.0001002), 3.671e-07]) * 0.001) lamda_c = 1.05185e-06 WDMS_pars = ([1048.0, 1204.16], [927.7, 1204.16]) lamp_vec = [1046, 1047, 1048, 1049, 1050] lamp = [lamp_vec[wave_idx]] lams = ['lock' for i in range(len(lamp))] lamp = lamp_vec[wave_idx] lams = 'lock' var_dic = {'n2': n2, 'gama': gama, 'alphadB': alphadB, 'z': z, 'P_p': P_p, 'P_s': P_s, 'TFWHM_p': TFWHM_p, 'TFWHM_s': TFWHM_s, 'spl_losses': spl_losses, 'betas': betas, 'lamda_c': lamda_c, 'WDMS_pars': WDMS_pars, 'lamp': lamp, 'lams': lams, 'N': N, 'Df_band': Df_band} '--------------------------------------------------------------------------' outside_var_key = 'P_p' inside_var_key = 'N' inside_var = var_dic[inside_var_key] outside_var = var_dic[outside_var_key] del var_dic[outside_var_key] del var_dic[inside_var_key] '----------------------------Simulation------------------------------------' D_ins = [{'index': i, inside_var_key: insvar} for (i, insvar) in enumerate(inside_var)] large_dic = {**stable_dic, **var_dic} if (len(inside_var) < num_cores): num_cores = len(inside_var) profiler_bool = arguments_determine(0) for (kk, variable) in enumerate(outside_var): create_file_structure(kk) _temps = create_destroy(inside_var, str(kk)) _temps.prepare_folder() large_dic['lams'] = lams[kk] large_dic['master_index'] = kk large_dic[outside_var_key] = variable if profiler_bool: for i in range(len(D_ins)): formulate(**{**D_ins[i], **large_dic}) elif (method == 'mpi'): iterables = ({**D_ins[i], **large_dic} for i in range(len(D_ins))) with MPIPoolExecutor() as executor: A = executor.map(formulate, iterables) else: A = Parallel(n_jobs=num_cores)((delayed(formulate)(**{**D_ins[i], **large_dic}) for i in range(len(D_ins)))) _temps.cleanup_folder() print('\x07') return None<|docstring|>-----------------------------Stable parameters----------------------------<|endoftext|>
8a7b539bb932ad2bf2c48e3e22a3a1695db3afba72f2d400fc4e107ae6144b81
def copy(ps_file_path: str, rat_file_path: str, user_domain: str, username: str, password: str, target: str) -> Tuple[(CommandLine, Callable[([str], None)])]: '\n Net use will mount a network share on this host\n\n Args:\n ps_file_path: The path to the psexec binary\n rat_file_path: The path to the ratremote computer\n username: The username remote share\n user_domain: The (Windows) domain of the user account\n password: (Optional) The password to be used\n target: The target host to run the file on\n Returns:\n The CommandLine and a parser\n ' args = [ps_file_path, '-accepteula', '-u', ((user_domain + '\\') + username), '-p', password, '-d', '-cv', rat_file_path, ('\\\\' + target)] return (CommandLine(args), parsers.psexec.copy)
Net use will mount a network share on this host Args: ps_file_path: The path to the psexec binary rat_file_path: The path to the ratremote computer username: The username remote share user_domain: The (Windows) domain of the user account password: (Optional) The password to be used target: The target host to run the file on Returns: The CommandLine and a parser
caldera/app/commands/psexec.py
copy
m4l1c3/caldera
3
python
def copy(ps_file_path: str, rat_file_path: str, user_domain: str, username: str, password: str, target: str) -> Tuple[(CommandLine, Callable[([str], None)])]: '\n Net use will mount a network share on this host\n\n Args:\n ps_file_path: The path to the psexec binary\n rat_file_path: The path to the ratremote computer\n username: The username remote share\n user_domain: The (Windows) domain of the user account\n password: (Optional) The password to be used\n target: The target host to run the file on\n Returns:\n The CommandLine and a parser\n ' args = [ps_file_path, '-accepteula', '-u', ((user_domain + '\\') + username), '-p', password, '-d', '-cv', rat_file_path, ('\\\\' + target)] return (CommandLine(args), parsers.psexec.copy)
def copy(ps_file_path: str, rat_file_path: str, user_domain: str, username: str, password: str, target: str) -> Tuple[(CommandLine, Callable[([str], None)])]: '\n Net use will mount a network share on this host\n\n Args:\n ps_file_path: The path to the psexec binary\n rat_file_path: The path to the ratremote computer\n username: The username remote share\n user_domain: The (Windows) domain of the user account\n password: (Optional) The password to be used\n target: The target host to run the file on\n Returns:\n The CommandLine and a parser\n ' args = [ps_file_path, '-accepteula', '-u', ((user_domain + '\\') + username), '-p', password, '-d', '-cv', rat_file_path, ('\\\\' + target)] return (CommandLine(args), parsers.psexec.copy)<|docstring|>Net use will mount a network share on this host Args: ps_file_path: The path to the psexec binary rat_file_path: The path to the ratremote computer username: The username remote share user_domain: The (Windows) domain of the user account password: (Optional) The password to be used target: The target host to run the file on Returns: The CommandLine and a parser<|endoftext|>
357a11adb50c38ebfc54870f2bc400ca0c43088da06eef9256be8ca87034d5e0
def __call__(self, audiodata): '\n Args:\n audiodata: numpy ndarray of audio data with shape (N,).\n\n Returns:\n numpy ndarray X with shape (N, M). For each step in (0...N-1), the\n array X[step, :] contains the M log(1 + magnitude) components where\n M is equal to (int(winlen * sample_rate) / 2 + 1).\n ' D = librosa.stft(audiodata, n_fft=self._n_fft, hop_length=self._hop_length, win_length=self._n_fft, window='hamming') (mag, _) = librosa.magphase(D) return np.log1p(mag).T
Args: audiodata: numpy ndarray of audio data with shape (N,). Returns: numpy ndarray X with shape (N, M). For each step in (0...N-1), the array X[step, :] contains the M log(1 + magnitude) components where M is equal to (int(winlen * sample_rate) / 2 + 1).
others/edge/speech_recognition/pytorch/src/deepspeech/data/preprocess.py
__call__
nv-eric-hw/inference
49
python
def __call__(self, audiodata): '\n Args:\n audiodata: numpy ndarray of audio data with shape (N,).\n\n Returns:\n numpy ndarray X with shape (N, M). For each step in (0...N-1), the\n array X[step, :] contains the M log(1 + magnitude) components where\n M is equal to (int(winlen * sample_rate) / 2 + 1).\n ' D = librosa.stft(audiodata, n_fft=self._n_fft, hop_length=self._hop_length, win_length=self._n_fft, window='hamming') (mag, _) = librosa.magphase(D) return np.log1p(mag).T
def __call__(self, audiodata): '\n Args:\n audiodata: numpy ndarray of audio data with shape (N,).\n\n Returns:\n numpy ndarray X with shape (N, M). For each step in (0...N-1), the\n array X[step, :] contains the M log(1 + magnitude) components where\n M is equal to (int(winlen * sample_rate) / 2 + 1).\n ' D = librosa.stft(audiodata, n_fft=self._n_fft, hop_length=self._hop_length, win_length=self._n_fft, window='hamming') (mag, _) = librosa.magphase(D) return np.log1p(mag).T<|docstring|>Args: audiodata: numpy ndarray of audio data with shape (N,). Returns: numpy ndarray X with shape (N, M). For each step in (0...N-1), the array X[step, :] contains the M log(1 + magnitude) components where M is equal to (int(winlen * sample_rate) / 2 + 1).<|endoftext|>
ce0ebd19695fdd80d7bb584b8ada329e65dbc9fd7cf4c360804dea7b7f618c2c
def __call__(self, signal): '\n Args:\n signal: numpy ndarray with shape (steps, features).\n\n Returns:\n numpy ndarray with shape:\n (steps, features * (n_context + 1 + n_context))\n ' (steps, features) = signal.shape padding = np.zeros((self.n_context, features), dtype=signal.dtype) signal = np.concatenate((padding, signal, padding)) window_size = ((self.n_context + 1) + self.n_context) strided_signal = np.lib.stride_tricks.as_strided(signal, (steps, window_size, features), (signal.strides[0], signal.strides[0], signal.strides[1]), writeable=False) return strided_signal.reshape(steps, (- 1)).copy()
Args: signal: numpy ndarray with shape (steps, features). Returns: numpy ndarray with shape: (steps, features * (n_context + 1 + n_context))
others/edge/speech_recognition/pytorch/src/deepspeech/data/preprocess.py
__call__
nv-eric-hw/inference
49
python
def __call__(self, signal): '\n Args:\n signal: numpy ndarray with shape (steps, features).\n\n Returns:\n numpy ndarray with shape:\n (steps, features * (n_context + 1 + n_context))\n ' (steps, features) = signal.shape padding = np.zeros((self.n_context, features), dtype=signal.dtype) signal = np.concatenate((padding, signal, padding)) window_size = ((self.n_context + 1) + self.n_context) strided_signal = np.lib.stride_tricks.as_strided(signal, (steps, window_size, features), (signal.strides[0], signal.strides[0], signal.strides[1]), writeable=False) return strided_signal.reshape(steps, (- 1)).copy()
def __call__(self, signal): '\n Args:\n signal: numpy ndarray with shape (steps, features).\n\n Returns:\n numpy ndarray with shape:\n (steps, features * (n_context + 1 + n_context))\n ' (steps, features) = signal.shape padding = np.zeros((self.n_context, features), dtype=signal.dtype) signal = np.concatenate((padding, signal, padding)) window_size = ((self.n_context + 1) + self.n_context) strided_signal = np.lib.stride_tricks.as_strided(signal, (steps, window_size, features), (signal.strides[0], signal.strides[0], signal.strides[1]), writeable=False) return strided_signal.reshape(steps, (- 1)).copy()<|docstring|>Args: signal: numpy ndarray with shape (steps, features). Returns: numpy ndarray with shape: (steps, features * (n_context + 1 + n_context))<|endoftext|>
53a4863bd275689c13b7f6847de1607407f81ef83047f378a1d41922f8e8daa8
def __call__(self, tensor): '\n Args:\n tensor: numpy ndarray\n ' return ((tensor - tensor.mean()) / tensor.std())
Args: tensor: numpy ndarray
others/edge/speech_recognition/pytorch/src/deepspeech/data/preprocess.py
__call__
nv-eric-hw/inference
49
python
def __call__(self, tensor): '\n Args:\n tensor: numpy ndarray\n ' return ((tensor - tensor.mean()) / tensor.std())
def __call__(self, tensor): '\n Args:\n tensor: numpy ndarray\n ' return ((tensor - tensor.mean()) / tensor.std())<|docstring|>Args: tensor: numpy ndarray<|endoftext|>
bb8f60c68a27d356250cdf9c7a89de1954cc5aaf2437dabb1d05337e8aeb7c2f
def AllocateNextFabricIndex(self): ' Allocate the next un-used fabric index.\n ' nextFabricIndex = 1 while (nextFabricIndex in FabricAdmin.activeFabricIndexList): nextFabricIndex = (nextFabricIndex + 1) return nextFabricIndex
Allocate the next un-used fabric index.
src/controller/python/chip/FabricAdmin.py
AllocateNextFabricIndex
adamb-q/connectedhomeip
4
python
def AllocateNextFabricIndex(self): ' \n ' nextFabricIndex = 1 while (nextFabricIndex in FabricAdmin.activeFabricIndexList): nextFabricIndex = (nextFabricIndex + 1) return nextFabricIndex
def AllocateNextFabricIndex(self): ' \n ' nextFabricIndex = 1 while (nextFabricIndex in FabricAdmin.activeFabricIndexList): nextFabricIndex = (nextFabricIndex + 1) return nextFabricIndex<|docstring|>Allocate the next un-used fabric index.<|endoftext|>
9877440ad89d85df2aceb8cfc1fcd7c09b0c7627895ba1c73fad96ed32152c1f
def AllocateNextFabricId(self): ' Allocate the next un-used fabric ID.\n ' nextFabricId = 1 while (nextFabricId in FabricAdmin.activeFabricIdList): nextFabricId = (nextFabricId + 1) return nextFabricId
Allocate the next un-used fabric ID.
src/controller/python/chip/FabricAdmin.py
AllocateNextFabricId
adamb-q/connectedhomeip
4
python
def AllocateNextFabricId(self): ' \n ' nextFabricId = 1 while (nextFabricId in FabricAdmin.activeFabricIdList): nextFabricId = (nextFabricId + 1) return nextFabricId
def AllocateNextFabricId(self): ' \n ' nextFabricId = 1 while (nextFabricId in FabricAdmin.activeFabricIdList): nextFabricId = (nextFabricId + 1) return nextFabricId<|docstring|>Allocate the next un-used fabric ID.<|endoftext|>
fdf9c9085833f72e32dec67679bd0b059c805aec399f4181577c38e6a0f46f7a
def __init__(self, rcac: bytes=None, icac: bytes=None, fabricIndex: int=None, fabricId: int=None): ' Creates a valid FabricAdmin object with valid RCAC/ICAC, and registers itself as an OperationalCredentialsDelegate\n for other parts of the system (notably, DeviceController) to vend NOCs.\n\n rcac, icac: Specify the RCAC and ICAC to be used with this fabric (not-supported). If not specified, an RCAC and ICAC will\n be automatically generated.\n\n fabricIndex: Local fabric index to be associated with this fabric. If omitted, one will be automatically assigned.\n fabricId: Local fabric ID to be associated with this fabric. If omitted, one will be automatically assigned.\n ' if ((rcac is not None) or (icac is not None)): raise ValueError('Providing valid rcac/icac values is not supported right now!') if (fabricId is None): self._fabricId = self.AllocateNextFabricId() else: if (fabricId in FabricAdmin.activeFabricIdList): raise ValueError(f'FabricId {fabricId} is already being managed by an existing FabricAdmin object!') self._fabricId = fabricId if (fabricIndex is None): self._fabricIndex = self.AllocateNextFabricIndex() else: if (fabricIndex in FabricAdmin.activeFabricIndexList): raise ValueError(f'FabricIndex {fabricIndex} is already being managed by an existing FabricAdmin object!') self._fabricIndex = fabricIndex FabricAdmin.activeFabricIdList.add(self._fabricId) FabricAdmin.activeFabricIndexList.add(self._fabricIndex) print(f'New FabricAdmin: FabricId: {self._fabricId}({self._fabricIndex})') self._handle.pychip_OpCreds_InitializeDelegate.restype = c_void_p self.closure = builtins.chipStack.Call((lambda : self._handle.pychip_OpCreds_InitializeDelegate(ctypes.py_object(self), ctypes.c_uint32(self._fabricIndex)))) if (self.closure is None): raise ValueError('Encountered error initializing OpCreds adapter') try: adminList = builtins.chipStack.GetStorageManager().GetReplKey('fabricAdmins') except KeyError: adminList = {str(self._fabricIndex): {'fabricId': self._fabricId}} builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) adminList[str(self._fabricIndex)] = {'fabricId': self._fabricId} builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) self._isActive = True self.nextControllerId = 1 FabricAdmin.activeAdmins.add(self)
Creates a valid FabricAdmin object with valid RCAC/ICAC, and registers itself as an OperationalCredentialsDelegate for other parts of the system (notably, DeviceController) to vend NOCs. rcac, icac: Specify the RCAC and ICAC to be used with this fabric (not-supported). If not specified, an RCAC and ICAC will be automatically generated. fabricIndex: Local fabric index to be associated with this fabric. If omitted, one will be automatically assigned. fabricId: Local fabric ID to be associated with this fabric. If omitted, one will be automatically assigned.
src/controller/python/chip/FabricAdmin.py
__init__
adamb-q/connectedhomeip
4
python
def __init__(self, rcac: bytes=None, icac: bytes=None, fabricIndex: int=None, fabricId: int=None): ' Creates a valid FabricAdmin object with valid RCAC/ICAC, and registers itself as an OperationalCredentialsDelegate\n for other parts of the system (notably, DeviceController) to vend NOCs.\n\n rcac, icac: Specify the RCAC and ICAC to be used with this fabric (not-supported). If not specified, an RCAC and ICAC will\n be automatically generated.\n\n fabricIndex: Local fabric index to be associated with this fabric. If omitted, one will be automatically assigned.\n fabricId: Local fabric ID to be associated with this fabric. If omitted, one will be automatically assigned.\n ' if ((rcac is not None) or (icac is not None)): raise ValueError('Providing valid rcac/icac values is not supported right now!') if (fabricId is None): self._fabricId = self.AllocateNextFabricId() else: if (fabricId in FabricAdmin.activeFabricIdList): raise ValueError(f'FabricId {fabricId} is already being managed by an existing FabricAdmin object!') self._fabricId = fabricId if (fabricIndex is None): self._fabricIndex = self.AllocateNextFabricIndex() else: if (fabricIndex in FabricAdmin.activeFabricIndexList): raise ValueError(f'FabricIndex {fabricIndex} is already being managed by an existing FabricAdmin object!') self._fabricIndex = fabricIndex FabricAdmin.activeFabricIdList.add(self._fabricId) FabricAdmin.activeFabricIndexList.add(self._fabricIndex) print(f'New FabricAdmin: FabricId: {self._fabricId}({self._fabricIndex})') self._handle.pychip_OpCreds_InitializeDelegate.restype = c_void_p self.closure = builtins.chipStack.Call((lambda : self._handle.pychip_OpCreds_InitializeDelegate(ctypes.py_object(self), ctypes.c_uint32(self._fabricIndex)))) if (self.closure is None): raise ValueError('Encountered error initializing OpCreds adapter') try: adminList = builtins.chipStack.GetStorageManager().GetReplKey('fabricAdmins') except KeyError: adminList = {str(self._fabricIndex): {'fabricId': self._fabricId}} builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) adminList[str(self._fabricIndex)] = {'fabricId': self._fabricId} builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) self._isActive = True self.nextControllerId = 1 FabricAdmin.activeAdmins.add(self)
def __init__(self, rcac: bytes=None, icac: bytes=None, fabricIndex: int=None, fabricId: int=None): ' Creates a valid FabricAdmin object with valid RCAC/ICAC, and registers itself as an OperationalCredentialsDelegate\n for other parts of the system (notably, DeviceController) to vend NOCs.\n\n rcac, icac: Specify the RCAC and ICAC to be used with this fabric (not-supported). If not specified, an RCAC and ICAC will\n be automatically generated.\n\n fabricIndex: Local fabric index to be associated with this fabric. If omitted, one will be automatically assigned.\n fabricId: Local fabric ID to be associated with this fabric. If omitted, one will be automatically assigned.\n ' if ((rcac is not None) or (icac is not None)): raise ValueError('Providing valid rcac/icac values is not supported right now!') if (fabricId is None): self._fabricId = self.AllocateNextFabricId() else: if (fabricId in FabricAdmin.activeFabricIdList): raise ValueError(f'FabricId {fabricId} is already being managed by an existing FabricAdmin object!') self._fabricId = fabricId if (fabricIndex is None): self._fabricIndex = self.AllocateNextFabricIndex() else: if (fabricIndex in FabricAdmin.activeFabricIndexList): raise ValueError(f'FabricIndex {fabricIndex} is already being managed by an existing FabricAdmin object!') self._fabricIndex = fabricIndex FabricAdmin.activeFabricIdList.add(self._fabricId) FabricAdmin.activeFabricIndexList.add(self._fabricIndex) print(f'New FabricAdmin: FabricId: {self._fabricId}({self._fabricIndex})') self._handle.pychip_OpCreds_InitializeDelegate.restype = c_void_p self.closure = builtins.chipStack.Call((lambda : self._handle.pychip_OpCreds_InitializeDelegate(ctypes.py_object(self), ctypes.c_uint32(self._fabricIndex)))) if (self.closure is None): raise ValueError('Encountered error initializing OpCreds adapter') try: adminList = builtins.chipStack.GetStorageManager().GetReplKey('fabricAdmins') except KeyError: adminList = {str(self._fabricIndex): {'fabricId': self._fabricId}} builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) adminList[str(self._fabricIndex)] = {'fabricId': self._fabricId} builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) self._isActive = True self.nextControllerId = 1 FabricAdmin.activeAdmins.add(self)<|docstring|>Creates a valid FabricAdmin object with valid RCAC/ICAC, and registers itself as an OperationalCredentialsDelegate for other parts of the system (notably, DeviceController) to vend NOCs. rcac, icac: Specify the RCAC and ICAC to be used with this fabric (not-supported). If not specified, an RCAC and ICAC will be automatically generated. fabricIndex: Local fabric index to be associated with this fabric. If omitted, one will be automatically assigned. fabricId: Local fabric ID to be associated with this fabric. If omitted, one will be automatically assigned.<|endoftext|>
58b435e998f44fd6708da673710d1234b305581defc5382b437768eb7bd25e0e
def NewController(self, nodeId: int=None, paaTrustStorePath: str='', useTestCommissioner: bool=False): ' Vend a new controller on this fabric seeded with the right fabric details.\n ' if (not self._isActive): raise RuntimeError(f'FabricAdmin object was previously shutdown and is no longer valid!') if (nodeId is None): nodeId = self.nextControllerId self.nextControllerId = (self.nextControllerId + 1) print(f'Allocating new controller with FabricId: {self._fabricId}({self._fabricIndex}), NodeId: {nodeId}') controller = ChipDeviceCtrl.ChipDeviceController(self.closure, self._fabricId, self._fabricIndex, nodeId, paaTrustStorePath, useTestCommissioner) return controller
Vend a new controller on this fabric seeded with the right fabric details.
src/controller/python/chip/FabricAdmin.py
NewController
adamb-q/connectedhomeip
4
python
def NewController(self, nodeId: int=None, paaTrustStorePath: str=, useTestCommissioner: bool=False): ' \n ' if (not self._isActive): raise RuntimeError(f'FabricAdmin object was previously shutdown and is no longer valid!') if (nodeId is None): nodeId = self.nextControllerId self.nextControllerId = (self.nextControllerId + 1) print(f'Allocating new controller with FabricId: {self._fabricId}({self._fabricIndex}), NodeId: {nodeId}') controller = ChipDeviceCtrl.ChipDeviceController(self.closure, self._fabricId, self._fabricIndex, nodeId, paaTrustStorePath, useTestCommissioner) return controller
def NewController(self, nodeId: int=None, paaTrustStorePath: str=, useTestCommissioner: bool=False): ' \n ' if (not self._isActive): raise RuntimeError(f'FabricAdmin object was previously shutdown and is no longer valid!') if (nodeId is None): nodeId = self.nextControllerId self.nextControllerId = (self.nextControllerId + 1) print(f'Allocating new controller with FabricId: {self._fabricId}({self._fabricIndex}), NodeId: {nodeId}') controller = ChipDeviceCtrl.ChipDeviceController(self.closure, self._fabricId, self._fabricIndex, nodeId, paaTrustStorePath, useTestCommissioner) return controller<|docstring|>Vend a new controller on this fabric seeded with the right fabric details.<|endoftext|>
8c58f7bd3a76213356f866f7b2a63092d591c65830307b4ce826c1671794a9cf
def ShutdownAll(): ' Shuts down all active fabrics, but without deleting them from storage.\n ' activeAdmins = copy.copy(FabricAdmin.activeAdmins) for admin in activeAdmins: admin.Shutdown(False) FabricAdmin.activeAdmins.clear()
Shuts down all active fabrics, but without deleting them from storage.
src/controller/python/chip/FabricAdmin.py
ShutdownAll
adamb-q/connectedhomeip
4
python
def ShutdownAll(): ' \n ' activeAdmins = copy.copy(FabricAdmin.activeAdmins) for admin in activeAdmins: admin.Shutdown(False) FabricAdmin.activeAdmins.clear()
def ShutdownAll(): ' \n ' activeAdmins = copy.copy(FabricAdmin.activeAdmins) for admin in activeAdmins: admin.Shutdown(False) FabricAdmin.activeAdmins.clear()<|docstring|>Shuts down all active fabrics, but without deleting them from storage.<|endoftext|>
e41ba3a9af60d536288dbefd08173d30f974afceae2c96deac233c3e45c8bfd9
def Shutdown(self, deleteFromStorage: bool=True): " Shutdown this fabric and free up its resources. This is important since relying\n solely on the destructor will not guarantee relishining of C++-side resources.\n\n deleteFromStorage: Whether to delete this fabric's details from persistent storage.\n " if self._isActive: builtins.chipStack.Call((lambda : self._handle.pychip_OpCreds_FreeDelegate(ctypes.c_void_p(self.closure)))) FabricAdmin.activeFabricIdList.remove(self._fabricId) FabricAdmin.activeFabricIndexList.remove(self._fabricIndex) if deleteFromStorage: adminList = builtins.chipStack.GetStorageManager().GetReplKey('fabricAdmins') del adminList[str(self._fabricIndex)] if (len(adminList) == 0): adminList = None builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) FabricAdmin.activeAdmins.remove(self) self._isActive = False
Shutdown this fabric and free up its resources. This is important since relying solely on the destructor will not guarantee relishining of C++-side resources. deleteFromStorage: Whether to delete this fabric's details from persistent storage.
src/controller/python/chip/FabricAdmin.py
Shutdown
adamb-q/connectedhomeip
4
python
def Shutdown(self, deleteFromStorage: bool=True): " Shutdown this fabric and free up its resources. This is important since relying\n solely on the destructor will not guarantee relishining of C++-side resources.\n\n deleteFromStorage: Whether to delete this fabric's details from persistent storage.\n " if self._isActive: builtins.chipStack.Call((lambda : self._handle.pychip_OpCreds_FreeDelegate(ctypes.c_void_p(self.closure)))) FabricAdmin.activeFabricIdList.remove(self._fabricId) FabricAdmin.activeFabricIndexList.remove(self._fabricIndex) if deleteFromStorage: adminList = builtins.chipStack.GetStorageManager().GetReplKey('fabricAdmins') del adminList[str(self._fabricIndex)] if (len(adminList) == 0): adminList = None builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) FabricAdmin.activeAdmins.remove(self) self._isActive = False
def Shutdown(self, deleteFromStorage: bool=True): " Shutdown this fabric and free up its resources. This is important since relying\n solely on the destructor will not guarantee relishining of C++-side resources.\n\n deleteFromStorage: Whether to delete this fabric's details from persistent storage.\n " if self._isActive: builtins.chipStack.Call((lambda : self._handle.pychip_OpCreds_FreeDelegate(ctypes.c_void_p(self.closure)))) FabricAdmin.activeFabricIdList.remove(self._fabricId) FabricAdmin.activeFabricIndexList.remove(self._fabricIndex) if deleteFromStorage: adminList = builtins.chipStack.GetStorageManager().GetReplKey('fabricAdmins') del adminList[str(self._fabricIndex)] if (len(adminList) == 0): adminList = None builtins.chipStack.GetStorageManager().SetReplKey('fabricAdmins', adminList) FabricAdmin.activeAdmins.remove(self) self._isActive = False<|docstring|>Shutdown this fabric and free up its resources. This is important since relying solely on the destructor will not guarantee relishining of C++-side resources. deleteFromStorage: Whether to delete this fabric's details from persistent storage.<|endoftext|>
bad3c6cee652fa2aac746a704bc2929bc3ddd971bca0c3b66247b7578d5b41a5
def find_apple_crash_report_referenced_images(binary_images, threads): 'Given some binary images from an apple crash report and a thread\n list this returns a list of image UUIDs to load.\n ' image_map = {} for image in binary_images: image_map[image['image_addr']] = image['uuid'] to_load = set() for thread in threads: if ('backtrace' not in thread): continue for frame in thread['backtrace']['contents']: img_uuid = image_map.get(frame['object_addr']) if (img_uuid is not None): to_load.add(img_uuid) return list(to_load)
Given some binary images from an apple crash report and a thread list this returns a list of image UUIDs to load.
src/sentry/lang/native/utils.py
find_apple_crash_report_referenced_images
mitsuhiko/sentry
4
python
def find_apple_crash_report_referenced_images(binary_images, threads): 'Given some binary images from an apple crash report and a thread\n list this returns a list of image UUIDs to load.\n ' image_map = {} for image in binary_images: image_map[image['image_addr']] = image['uuid'] to_load = set() for thread in threads: if ('backtrace' not in thread): continue for frame in thread['backtrace']['contents']: img_uuid = image_map.get(frame['object_addr']) if (img_uuid is not None): to_load.add(img_uuid) return list(to_load)
def find_apple_crash_report_referenced_images(binary_images, threads): 'Given some binary images from an apple crash report and a thread\n list this returns a list of image UUIDs to load.\n ' image_map = {} for image in binary_images: image_map[image['image_addr']] = image['uuid'] to_load = set() for thread in threads: if ('backtrace' not in thread): continue for frame in thread['backtrace']['contents']: img_uuid = image_map.get(frame['object_addr']) if (img_uuid is not None): to_load.add(img_uuid) return list(to_load)<|docstring|>Given some binary images from an apple crash report and a thread list this returns a list of image UUIDs to load.<|endoftext|>
8f1166ed5b2a07a9b4632a5bd81479be8e7ea1f2855f9871cf1bab04c33e5cf9
def find_all_stacktraces(data): 'Given a data dictionary from an event this returns all\n relevant stacktraces in a list.\n ' rv = [] exc_container = data.get('sentry.interfaces.Exception') if exc_container: for exc in exc_container['values']: stacktrace = exc.get('stacktrace') if stacktrace: rv.append(stacktrace) stacktrace = data.get('sentry.interfaces.Stacktrace') if stacktrace: rv.append(stacktrace) threads = data.get('threads') if threads: for thread in threads['values']: stacktrace = thread.get('stacktrace') if stacktrace: rv.append(stacktrace) return rv
Given a data dictionary from an event this returns all relevant stacktraces in a list.
src/sentry/lang/native/utils.py
find_all_stacktraces
mitsuhiko/sentry
4
python
def find_all_stacktraces(data): 'Given a data dictionary from an event this returns all\n relevant stacktraces in a list.\n ' rv = [] exc_container = data.get('sentry.interfaces.Exception') if exc_container: for exc in exc_container['values']: stacktrace = exc.get('stacktrace') if stacktrace: rv.append(stacktrace) stacktrace = data.get('sentry.interfaces.Stacktrace') if stacktrace: rv.append(stacktrace) threads = data.get('threads') if threads: for thread in threads['values']: stacktrace = thread.get('stacktrace') if stacktrace: rv.append(stacktrace) return rv
def find_all_stacktraces(data): 'Given a data dictionary from an event this returns all\n relevant stacktraces in a list.\n ' rv = [] exc_container = data.get('sentry.interfaces.Exception') if exc_container: for exc in exc_container['values']: stacktrace = exc.get('stacktrace') if stacktrace: rv.append(stacktrace) stacktrace = data.get('sentry.interfaces.Stacktrace') if stacktrace: rv.append(stacktrace) threads = data.get('threads') if threads: for thread in threads['values']: stacktrace = thread.get('stacktrace') if stacktrace: rv.append(stacktrace) return rv<|docstring|>Given a data dictionary from an event this returns all relevant stacktraces in a list.<|endoftext|>
5fdf2a306f7337a4543b03c9b30d55b545c60f2136c8a2c897236365fd49170a
def shquote(s): 'Return a shell-escaped version of the string *s*.' if (not s): return "''" if (_find_unsafe(s) is None): return s return (("'" + s.replace("'", '\'"\'"\'')) + "'")
Return a shell-escaped version of the string *s*.
docker/contrail/contrail-database/my_init.py
shquote
kklimonda/kolla
0
python
def shquote(s): if (not s): return if (_find_unsafe(s) is None): return s return (("'" + s.replace("'", '\'"\'"\)) + "'")
def shquote(s): if (not s): return if (_find_unsafe(s) is None): return s return (("'" + s.replace("'", '\'"\'"\)) + "'")<|docstring|>Return a shell-escaped version of the string *s*.<|endoftext|>
857c4dfdec10c78d019943ce5419a0d7e3b89c52ea743559e651bb42f513e83f
def onedrive_clean(fn): ' Removes characters unsafe for OneDrive from string ' for unsupported_char in UNSUPPORTED_CHARACTERS: new_path = fn.translate({ord(unsupported_char): None}) return new_path
Removes characters unsafe for OneDrive from string
main.py
onedrive_clean
urbanblight/google2onedrive
0
python
def onedrive_clean(fn): ' ' for unsupported_char in UNSUPPORTED_CHARACTERS: new_path = fn.translate({ord(unsupported_char): None}) return new_path
def onedrive_clean(fn): ' ' for unsupported_char in UNSUPPORTED_CHARACTERS: new_path = fn.translate({ord(unsupported_char): None}) return new_path<|docstring|>Removes characters unsafe for OneDrive from string<|endoftext|>
d030b29938b3ba35d411618aa828f223d894a8b5943f67d4bb7483b80728ad20
def onedrive_safe(fn): ' Returns false for file names that unsafe for OneDrive ' for s in UNSUPPORTED_EXTENSIONS: if (s in fn): return False return True
Returns false for file names that unsafe for OneDrive
main.py
onedrive_safe
urbanblight/google2onedrive
0
python
def onedrive_safe(fn): ' ' for s in UNSUPPORTED_EXTENSIONS: if (s in fn): return False return True
def onedrive_safe(fn): ' ' for s in UNSUPPORTED_EXTENSIONS: if (s in fn): return False return True<|docstring|>Returns false for file names that unsafe for OneDrive<|endoftext|>
f06720190945c26396860e2a6e03fd18c952635b3448200f995028ce25597298
def loop_dir(local_path, onedrive_path, midstring=''): ' Recurses through dirs and copies ' for fn in os.listdir(local_path): if onedrive_safe(fn): src = os.path.join(local_path, fn) if (not os.path.isdir(src)): dst = ((onedrive_path + onedrive_clean(fn)) if (midstring == '') else (((onedrive_path + midstring) + '/') + onedrive_clean(fn))) logger.info('Copying to: {}'.format(dst)) os.makedirs(os.path.dirname(dst), exist_ok=True) shutil.copy(src, dst) else: logger.debug('Recursing directory: {}'.format({src})) loop_dir(src, onedrive_path, (fn if (midstring == '') else ((midstring + '/') + fn))) else: logger.debug('skipping GoogleDrive file: {}'.format(fn))
Recurses through dirs and copies
main.py
loop_dir
urbanblight/google2onedrive
0
python
def loop_dir(local_path, onedrive_path, midstring=): ' ' for fn in os.listdir(local_path): if onedrive_safe(fn): src = os.path.join(local_path, fn) if (not os.path.isdir(src)): dst = ((onedrive_path + onedrive_clean(fn)) if (midstring == ) else (((onedrive_path + midstring) + '/') + onedrive_clean(fn))) logger.info('Copying to: {}'.format(dst)) os.makedirs(os.path.dirname(dst), exist_ok=True) shutil.copy(src, dst) else: logger.debug('Recursing directory: {}'.format({src})) loop_dir(src, onedrive_path, (fn if (midstring == ) else ((midstring + '/') + fn))) else: logger.debug('skipping GoogleDrive file: {}'.format(fn))
def loop_dir(local_path, onedrive_path, midstring=): ' ' for fn in os.listdir(local_path): if onedrive_safe(fn): src = os.path.join(local_path, fn) if (not os.path.isdir(src)): dst = ((onedrive_path + onedrive_clean(fn)) if (midstring == ) else (((onedrive_path + midstring) + '/') + onedrive_clean(fn))) logger.info('Copying to: {}'.format(dst)) os.makedirs(os.path.dirname(dst), exist_ok=True) shutil.copy(src, dst) else: logger.debug('Recursing directory: {}'.format({src})) loop_dir(src, onedrive_path, (fn if (midstring == ) else ((midstring + '/') + fn))) else: logger.debug('skipping GoogleDrive file: {}'.format(fn))<|docstring|>Recurses through dirs and copies<|endoftext|>
de53bef66abad9393fb17218dec81204f07913fbb4777660c12863f0be79b687
def test_do_change_is_admin(self) -> None: '\n Ensures change_is_admin raises an AssertionError when invalid permissions\n are provided to it.\n ' user_profile = self.example_user('hamlet') do_change_is_admin(user_profile, True) do_change_is_admin(user_profile, True, permission='administer') with self.assertRaises(AssertionError): do_change_is_admin(user_profile, True, permission='totally-not-valid-perm')
Ensures change_is_admin raises an AssertionError when invalid permissions are provided to it.
zerver/tests/test_users.py
test_do_change_is_admin
stableapple/zulip
1
python
def test_do_change_is_admin(self) -> None: '\n Ensures change_is_admin raises an AssertionError when invalid permissions\n are provided to it.\n ' user_profile = self.example_user('hamlet') do_change_is_admin(user_profile, True) do_change_is_admin(user_profile, True, permission='administer') with self.assertRaises(AssertionError): do_change_is_admin(user_profile, True, permission='totally-not-valid-perm')
def test_do_change_is_admin(self) -> None: '\n Ensures change_is_admin raises an AssertionError when invalid permissions\n are provided to it.\n ' user_profile = self.example_user('hamlet') do_change_is_admin(user_profile, True) do_change_is_admin(user_profile, True, permission='administer') with self.assertRaises(AssertionError): do_change_is_admin(user_profile, True, permission='totally-not-valid-perm')<|docstring|>Ensures change_is_admin raises an AssertionError when invalid permissions are provided to it.<|endoftext|>
7e35c87caed6514c0ef6df54748af419c90e1347845775110f5442c98d85f029
def test_cache_behavior(self) -> None: 'Tests whether fetching a user object the normal way, with\n `get_user`, makes 1 cache query and 1 database query.\n ' realm = get_realm('zulip') email = self.example_email('hamlet') with queries_captured() as queries: with simulated_empty_cache() as cache_queries: user_profile = get_user(email, realm) self.assert_length(queries, 1) self.assert_length(cache_queries, 1) self.assertEqual(user_profile.email, email)
Tests whether fetching a user object the normal way, with `get_user`, makes 1 cache query and 1 database query.
zerver/tests/test_users.py
test_cache_behavior
stableapple/zulip
1
python
def test_cache_behavior(self) -> None: 'Tests whether fetching a user object the normal way, with\n `get_user`, makes 1 cache query and 1 database query.\n ' realm = get_realm('zulip') email = self.example_email('hamlet') with queries_captured() as queries: with simulated_empty_cache() as cache_queries: user_profile = get_user(email, realm) self.assert_length(queries, 1) self.assert_length(cache_queries, 1) self.assertEqual(user_profile.email, email)
def test_cache_behavior(self) -> None: 'Tests whether fetching a user object the normal way, with\n `get_user`, makes 1 cache query and 1 database query.\n ' realm = get_realm('zulip') email = self.example_email('hamlet') with queries_captured() as queries: with simulated_empty_cache() as cache_queries: user_profile = get_user(email, realm) self.assert_length(queries, 1) self.assert_length(cache_queries, 1) self.assertEqual(user_profile.email, email)<|docstring|>Tests whether fetching a user object the normal way, with `get_user`, makes 1 cache query and 1 database query.<|endoftext|>
42ad6b50020403976c0d4515108b98c90e335b261283323d0321497bb9cb1b6a
def test_api_get_empty_profile(self) -> None: '\n Ensure GET /users/me returns a max message id and returns successfully\n ' json = self.common_get_profile('othello') self.assertEqual(json['pointer'], (- 1))
Ensure GET /users/me returns a max message id and returns successfully
zerver/tests/test_users.py
test_api_get_empty_profile
stableapple/zulip
1
python
def test_api_get_empty_profile(self) -> None: '\n \n ' json = self.common_get_profile('othello') self.assertEqual(json['pointer'], (- 1))
def test_api_get_empty_profile(self) -> None: '\n \n ' json = self.common_get_profile('othello') self.assertEqual(json['pointer'], (- 1))<|docstring|>Ensure GET /users/me returns a max message id and returns successfully<|endoftext|>
f542679d2a4af55c9e56d979b8e45a3ba21a6b5a321923227dd4df4d0816b54b
def test_profile_with_pointer(self) -> None: '\n Ensure GET /users/me returns a proper pointer id after the pointer is updated\n ' id1 = self.send_stream_message(self.example_email('othello'), 'Verona') id2 = self.send_stream_message(self.example_email('othello'), 'Verona') json = self.common_get_profile('hamlet') self.common_update_pointer(self.example_email('hamlet'), id2) json = self.common_get_profile('hamlet') self.assertEqual(json['pointer'], id2) self.common_update_pointer(self.example_email('hamlet'), id1) json = self.common_get_profile('hamlet') self.assertEqual(json['pointer'], id2) result = self.client_post('/json/users/me/pointer', {'pointer': 99999999}) self.assert_json_error(result, 'Invalid message ID')
Ensure GET /users/me returns a proper pointer id after the pointer is updated
zerver/tests/test_users.py
test_profile_with_pointer
stableapple/zulip
1
python
def test_profile_with_pointer(self) -> None: '\n \n ' id1 = self.send_stream_message(self.example_email('othello'), 'Verona') id2 = self.send_stream_message(self.example_email('othello'), 'Verona') json = self.common_get_profile('hamlet') self.common_update_pointer(self.example_email('hamlet'), id2) json = self.common_get_profile('hamlet') self.assertEqual(json['pointer'], id2) self.common_update_pointer(self.example_email('hamlet'), id1) json = self.common_get_profile('hamlet') self.assertEqual(json['pointer'], id2) result = self.client_post('/json/users/me/pointer', {'pointer': 99999999}) self.assert_json_error(result, 'Invalid message ID')
def test_profile_with_pointer(self) -> None: '\n \n ' id1 = self.send_stream_message(self.example_email('othello'), 'Verona') id2 = self.send_stream_message(self.example_email('othello'), 'Verona') json = self.common_get_profile('hamlet') self.common_update_pointer(self.example_email('hamlet'), id2) json = self.common_get_profile('hamlet') self.assertEqual(json['pointer'], id2) self.common_update_pointer(self.example_email('hamlet'), id1) json = self.common_get_profile('hamlet') self.assertEqual(json['pointer'], id2) result = self.client_post('/json/users/me/pointer', {'pointer': 99999999}) self.assert_json_error(result, 'Invalid message ID')<|docstring|>Ensure GET /users/me returns a proper pointer id after the pointer is updated<|endoftext|>
bda52d9c4ca655b6978d5871c0d73a57544043fd795a4a620f8b0bd95388d7ce
@property def all_observation_spaces_equal(self) -> bool: 'Check if observation spaces equal.\n\n # Returns\n\n True if all Tasks that can be sampled by this sampler have the\n same observation space. Otherwise False.\n ' return True
Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False.
allenact_plugins/manipulathor_plugin/manipulathor_task_samplers.py
all_observation_spaces_equal
brandontrabucco/allenact
187
python
@property def all_observation_spaces_equal(self) -> bool: 'Check if observation spaces equal.\n\n # Returns\n\n True if all Tasks that can be sampled by this sampler have the\n same observation space. Otherwise False.\n ' return True
@property def all_observation_spaces_equal(self) -> bool: 'Check if observation spaces equal.\n\n # Returns\n\n True if all Tasks that can be sampled by this sampler have the\n same observation space. Otherwise False.\n ' return True<|docstring|>Check if observation spaces equal. # Returns True if all Tasks that can be sampled by this sampler have the same observation space. Otherwise False.<|endoftext|>
bd38d19b167661dd17cd04217b0bfda4be0017700dba97efaf89aa7efbda83e2
@property def length(self) -> Union[(int, float)]: "Length.\n\n # Returns\n\n Number of total tasks remaining that can be sampled. Can be float('inf').\n " return ((self.total_unique - self.sampler_index) if (self.sampler_mode != 'train') else (float('inf') if (self.max_tasks is None) else self.max_tasks))
Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf').
allenact_plugins/manipulathor_plugin/manipulathor_task_samplers.py
length
brandontrabucco/allenact
187
python
@property def length(self) -> Union[(int, float)]: "Length.\n\n # Returns\n\n Number of total tasks remaining that can be sampled. Can be float('inf').\n " return ((self.total_unique - self.sampler_index) if (self.sampler_mode != 'train') else (float('inf') if (self.max_tasks is None) else self.max_tasks))
@property def length(self) -> Union[(int, float)]: "Length.\n\n # Returns\n\n Number of total tasks remaining that can be sampled. Can be float('inf').\n " return ((self.total_unique - self.sampler_index) if (self.sampler_mode != 'train') else (float('inf') if (self.max_tasks is None) else self.max_tasks))<|docstring|>Length. # Returns Number of total tasks remaining that can be sampled. Can be float('inf').<|endoftext|>
273528f57283ebd9b796e77777b6c0165485c00e5a5700f6ed51f745c9cf8d53
def fetch_parquet_dts(): 'Computes dates for which Parquet files need to be created\n ' ret = [] pfxDT = datetime(2020, 1, 1) utcNow = datetime.utcnow() dts = [] while ((pfxDT + timedelta(days=1, hours=8, minutes=10)) < utcNow): dts.append(pfxDT) pfxDT += timedelta(days=1) with DBConn() as conn: exD = dbtables.PqDates.select_existing_pqdates(conn) for dt in dts: if (dt.date() not in exD): ret.append(dt) return ret
Computes dates for which Parquet files need to be created
airtasks/spk_writeparquets.py
fetch_parquet_dts
alxga/awstest
0
python
def fetch_parquet_dts(): '\n ' ret = [] pfxDT = datetime(2020, 1, 1) utcNow = datetime.utcnow() dts = [] while ((pfxDT + timedelta(days=1, hours=8, minutes=10)) < utcNow): dts.append(pfxDT) pfxDT += timedelta(days=1) with DBConn() as conn: exD = dbtables.PqDates.select_existing_pqdates(conn) for dt in dts: if (dt.date() not in exD): ret.append(dt) return ret
def fetch_parquet_dts(): '\n ' ret = [] pfxDT = datetime(2020, 1, 1) utcNow = datetime.utcnow() dts = [] while ((pfxDT + timedelta(days=1, hours=8, minutes=10)) < utcNow): dts.append(pfxDT) pfxDT += timedelta(days=1) with DBConn() as conn: exD = dbtables.PqDates.select_existing_pqdates(conn) for dt in dts: if (dt.date() not in exD): ret.append(dt) return ret<|docstring|>Computes dates for which Parquet files need to be created<|endoftext|>
c1d05ce0abb359054ad35ca8e3c757efbabc72d8b68d21d3956df57a1a169a76
def fetch_keys_for_date(dt): 'Retrieves Protobuf files S3 keys for a Parquet date\n\n Args:\n dt: target Parquet file date\n ' with DBConn() as conn: dt1 = datetime(dt.year, dt.month, dt.day, 8) dt2 = (dt1 + timedelta(days=1)) return dbtables.VehPosPb.select_protobuf_keys_between_dates(conn, dt1, dt2)
Retrieves Protobuf files S3 keys for a Parquet date Args: dt: target Parquet file date
airtasks/spk_writeparquets.py
fetch_keys_for_date
alxga/awstest
0
python
def fetch_keys_for_date(dt): 'Retrieves Protobuf files S3 keys for a Parquet date\n\n Args:\n dt: target Parquet file date\n ' with DBConn() as conn: dt1 = datetime(dt.year, dt.month, dt.day, 8) dt2 = (dt1 + timedelta(days=1)) return dbtables.VehPosPb.select_protobuf_keys_between_dates(conn, dt1, dt2)
def fetch_keys_for_date(dt): 'Retrieves Protobuf files S3 keys for a Parquet date\n\n Args:\n dt: target Parquet file date\n ' with DBConn() as conn: dt1 = datetime(dt.year, dt.month, dt.day, 8) dt2 = (dt1 + timedelta(days=1)) return dbtables.VehPosPb.select_protobuf_keys_between_dates(conn, dt1, dt2)<|docstring|>Retrieves Protobuf files S3 keys for a Parquet date Args: dt: target Parquet file date<|endoftext|>
7cef10a41a57c25a8cf90532ea7b8d3b80993c83ee9c1e0ae0e876475d7c5d87
def run(spark): 'Updates Parquet files in S3 and the PqDate table\n\n Args:\n spark: Spark Session object\n ' log = utils.get_logger() with DBConnCommonQueries() as conn: dbtables.create_if_not_exists(conn, dbtables.PqDates) targetDates = fetch_parquet_dts() for targetDate in targetDates: keys = fetch_keys_for_date(targetDate) log.info('Got %d keys of %s', len(keys), str(targetDate)) if (len(keys) > 0): rddKeys = spark.sparkContext.parallelize(keys).map((lambda x: (x, x))).partitionBy(Settings.NumPartitions).map((lambda x: x[0])) rddVP = rddKeys.flatMap(dbtables.VehPos.build_df_tuples_from_pb).map((lambda tpl: ((tpl[1], tpl[3]), tpl))).reduceByKey((lambda x, y: x)).map((lambda x: x[1])) schema = StructType([StructField('RouteId', StringType(), True), StructField('DT', TimestampType(), False), StructField('VehicleId', StringType(), False), StructField('TripId', StringType(), False), StructField('Lat', DoubleType(), False), StructField('Lon', DoubleType(), False), StructField('Status', IntegerType(), True), StructField('StopSeq', IntegerType(), True), StructField('StopId', StringType(), True)]) dfVP = spark.createDataFrame(rddVP, schema) log.info('Created dataframe for %d keys of %s', len(keys), str(targetDate)) pqKey = targetDate.strftime('%Y%m%d') pqKey = '/'.join(['parquet', ('VP-' + pqKey)]) pqKey = ('s3a://alxga-insde/%s' % pqKey) dfVP.write.format('parquet').mode('overwrite').save(pqKey) log.info('Written to Parquet %d keys of %s', len(keys), str(targetDate)) numRecs = dfVP.count() else: numRecs = 0 with DBConn() as conn: dbtables.PqDates.insert_values(conn, targetDate, len(keys), numRecs) conn.commit()
Updates Parquet files in S3 and the PqDate table Args: spark: Spark Session object
airtasks/spk_writeparquets.py
run
alxga/awstest
0
python
def run(spark): 'Updates Parquet files in S3 and the PqDate table\n\n Args:\n spark: Spark Session object\n ' log = utils.get_logger() with DBConnCommonQueries() as conn: dbtables.create_if_not_exists(conn, dbtables.PqDates) targetDates = fetch_parquet_dts() for targetDate in targetDates: keys = fetch_keys_for_date(targetDate) log.info('Got %d keys of %s', len(keys), str(targetDate)) if (len(keys) > 0): rddKeys = spark.sparkContext.parallelize(keys).map((lambda x: (x, x))).partitionBy(Settings.NumPartitions).map((lambda x: x[0])) rddVP = rddKeys.flatMap(dbtables.VehPos.build_df_tuples_from_pb).map((lambda tpl: ((tpl[1], tpl[3]), tpl))).reduceByKey((lambda x, y: x)).map((lambda x: x[1])) schema = StructType([StructField('RouteId', StringType(), True), StructField('DT', TimestampType(), False), StructField('VehicleId', StringType(), False), StructField('TripId', StringType(), False), StructField('Lat', DoubleType(), False), StructField('Lon', DoubleType(), False), StructField('Status', IntegerType(), True), StructField('StopSeq', IntegerType(), True), StructField('StopId', StringType(), True)]) dfVP = spark.createDataFrame(rddVP, schema) log.info('Created dataframe for %d keys of %s', len(keys), str(targetDate)) pqKey = targetDate.strftime('%Y%m%d') pqKey = '/'.join(['parquet', ('VP-' + pqKey)]) pqKey = ('s3a://alxga-insde/%s' % pqKey) dfVP.write.format('parquet').mode('overwrite').save(pqKey) log.info('Written to Parquet %d keys of %s', len(keys), str(targetDate)) numRecs = dfVP.count() else: numRecs = 0 with DBConn() as conn: dbtables.PqDates.insert_values(conn, targetDate, len(keys), numRecs) conn.commit()
def run(spark): 'Updates Parquet files in S3 and the PqDate table\n\n Args:\n spark: Spark Session object\n ' log = utils.get_logger() with DBConnCommonQueries() as conn: dbtables.create_if_not_exists(conn, dbtables.PqDates) targetDates = fetch_parquet_dts() for targetDate in targetDates: keys = fetch_keys_for_date(targetDate) log.info('Got %d keys of %s', len(keys), str(targetDate)) if (len(keys) > 0): rddKeys = spark.sparkContext.parallelize(keys).map((lambda x: (x, x))).partitionBy(Settings.NumPartitions).map((lambda x: x[0])) rddVP = rddKeys.flatMap(dbtables.VehPos.build_df_tuples_from_pb).map((lambda tpl: ((tpl[1], tpl[3]), tpl))).reduceByKey((lambda x, y: x)).map((lambda x: x[1])) schema = StructType([StructField('RouteId', StringType(), True), StructField('DT', TimestampType(), False), StructField('VehicleId', StringType(), False), StructField('TripId', StringType(), False), StructField('Lat', DoubleType(), False), StructField('Lon', DoubleType(), False), StructField('Status', IntegerType(), True), StructField('StopSeq', IntegerType(), True), StructField('StopId', StringType(), True)]) dfVP = spark.createDataFrame(rddVP, schema) log.info('Created dataframe for %d keys of %s', len(keys), str(targetDate)) pqKey = targetDate.strftime('%Y%m%d') pqKey = '/'.join(['parquet', ('VP-' + pqKey)]) pqKey = ('s3a://alxga-insde/%s' % pqKey) dfVP.write.format('parquet').mode('overwrite').save(pqKey) log.info('Written to Parquet %d keys of %s', len(keys), str(targetDate)) numRecs = dfVP.count() else: numRecs = 0 with DBConn() as conn: dbtables.PqDates.insert_values(conn, targetDate, len(keys), numRecs) conn.commit()<|docstring|>Updates Parquet files in S3 and the PqDate table Args: spark: Spark Session object<|endoftext|>
ddaf39228c112b501128d0ff277f0fea5f0d22bf06ba48e54155863829e877f9
@admin.route('/admin') @login_required def tables() -> str: 'Main blog' tbls = db.metadata.tables.keys() return render_template('account/admin.html', tables=tbls, title='Admin')
Main blog
routes/admin.py
tables
barretobrock/bobrock.dev
0
python
@admin.route('/admin') @login_required def tables() -> str: tbls = db.metadata.tables.keys() return render_template('account/admin.html', tables=tbls, title='Admin')
@admin.route('/admin') @login_required def tables() -> str: tbls = db.metadata.tables.keys() return render_template('account/admin.html', tables=tbls, title='Admin')<|docstring|>Main blog<|endoftext|>
e3ae645847f97b82fcca03fa436d5b8a781b9350d21e5a8e8be8667c2a6777c9
def test_write_sensitivity_file(tmp_path): '\n Write sensitivity file containing default sensitivities and ensure\n that sensitivities in files match the original ones.\n ' nedts_ref = DEFAULT_SENSITIVITIES sensitivity_file = (tmp_path / 'sensitivities.txt') write_sensitivity_file(sensors.GMI, sensitivity_file, nedts=nedts_ref) nedts = np.loadtxt(sensitivity_file) assert np.all(np.isclose(nedts_ref, nedts))
Write sensitivity file containing default sensitivities and ensure that sensitivities in files match the original ones.
test/test_legacy.py
test_write_sensitivity_file
simonpf/gprof_nn
1
python
def test_write_sensitivity_file(tmp_path): '\n Write sensitivity file containing default sensitivities and ensure\n that sensitivities in files match the original ones.\n ' nedts_ref = DEFAULT_SENSITIVITIES sensitivity_file = (tmp_path / 'sensitivities.txt') write_sensitivity_file(sensors.GMI, sensitivity_file, nedts=nedts_ref) nedts = np.loadtxt(sensitivity_file) assert np.all(np.isclose(nedts_ref, nedts))
def test_write_sensitivity_file(tmp_path): '\n Write sensitivity file containing default sensitivities and ensure\n that sensitivities in files match the original ones.\n ' nedts_ref = DEFAULT_SENSITIVITIES sensitivity_file = (tmp_path / 'sensitivities.txt') write_sensitivity_file(sensors.GMI, sensitivity_file, nedts=nedts_ref) nedts = np.loadtxt(sensitivity_file) assert np.all(np.isclose(nedts_ref, nedts))<|docstring|>Write sensitivity file containing default sensitivities and ensure that sensitivities in files match the original ones.<|endoftext|>
d026b4c5b14495882d4ec81e419743094e941b876d38d51e8d2299c349461c28
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_training_data(): '\n Test running the legacy GPROF algorithm on training data.\n ' path = Path(__file__).parent input_file = ((DATA_PATH / 'gmi') / 'gprof_nn_gmi_era5.nc') results = run_gprof_training_data(sensors.GMI, 'ERA5', input_file, 'STANDARD', False) assert ('surface_precip' in results.variables) assert ('surface_precip_true' in results.variables)
Test running the legacy GPROF algorithm on training data.
test/test_legacy.py
test_run_gprof_training_data
simonpf/gprof_nn
1
python
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_training_data(): '\n \n ' path = Path(__file__).parent input_file = ((DATA_PATH / 'gmi') / 'gprof_nn_gmi_era5.nc') results = run_gprof_training_data(sensors.GMI, 'ERA5', input_file, 'STANDARD', False) assert ('surface_precip' in results.variables) assert ('surface_precip_true' in results.variables)
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_training_data(): '\n \n ' path = Path(__file__).parent input_file = ((DATA_PATH / 'gmi') / 'gprof_nn_gmi_era5.nc') results = run_gprof_training_data(sensors.GMI, 'ERA5', input_file, 'STANDARD', False) assert ('surface_precip' in results.variables) assert ('surface_precip_true' in results.variables)<|docstring|>Test running the legacy GPROF algorithm on training data.<|endoftext|>
d5d4efc7685671149f5581b996b5efb3d78aa02bddfb30df7c90d665852063fc
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_training_data_preserve_structure(): '\n Test running the legacy GPROF algorithm on training data while\n preserving the spatial structure.\n ' input_file = ((DATA_PATH / 'gmi') / 'gprof_nn_gmi_era5.nc') results = run_gprof_training_data(sensors.GMI, 'ERA5', input_file, 'STANDARD', False, preserve_structure=True) assert ('surface_precip' in results.variables) assert ('surface_precip_true' in results.variables)
Test running the legacy GPROF algorithm on training data while preserving the spatial structure.
test/test_legacy.py
test_run_gprof_training_data_preserve_structure
simonpf/gprof_nn
1
python
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_training_data_preserve_structure(): '\n Test running the legacy GPROF algorithm on training data while\n preserving the spatial structure.\n ' input_file = ((DATA_PATH / 'gmi') / 'gprof_nn_gmi_era5.nc') results = run_gprof_training_data(sensors.GMI, 'ERA5', input_file, 'STANDARD', False, preserve_structure=True) assert ('surface_precip' in results.variables) assert ('surface_precip_true' in results.variables)
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_training_data_preserve_structure(): '\n Test running the legacy GPROF algorithm on training data while\n preserving the spatial structure.\n ' input_file = ((DATA_PATH / 'gmi') / 'gprof_nn_gmi_era5.nc') results = run_gprof_training_data(sensors.GMI, 'ERA5', input_file, 'STANDARD', False, preserve_structure=True) assert ('surface_precip' in results.variables) assert ('surface_precip_true' in results.variables)<|docstring|>Test running the legacy GPROF algorithm on training data while preserving the spatial structure.<|endoftext|>
c3bf5ae2bd05ad351a87d63b86642c5a3024f35e919c33d1ad2920c92f8b058d
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_standard(): '\n Test running legacy GPROF on a preprocessor input file.\n ' input_file = (((DATA_PATH / 'gmi') / 'pp') / 'GMIERA5_190101_027510.pp') results = run_gprof_standard(sensors.GMI, 'ERA5', input_file, 'STANDARD', False) assert ('surface_precip' in results.variables)
Test running legacy GPROF on a preprocessor input file.
test/test_legacy.py
test_run_gprof_standard
simonpf/gprof_nn
1
python
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_standard(): '\n \n ' input_file = (((DATA_PATH / 'gmi') / 'pp') / 'GMIERA5_190101_027510.pp') results = run_gprof_standard(sensors.GMI, 'ERA5', input_file, 'STANDARD', False) assert ('surface_precip' in results.variables)
@pytest.mark.skipif((not HAS_GPROF), reason='GPROF executable missing.') def test_run_gprof_standard(): '\n \n ' input_file = (((DATA_PATH / 'gmi') / 'pp') / 'GMIERA5_190101_027510.pp') results = run_gprof_standard(sensors.GMI, 'ERA5', input_file, 'STANDARD', False) assert ('surface_precip' in results.variables)<|docstring|>Test running legacy GPROF on a preprocessor input file.<|endoftext|>
1bede5cb009e13743ad29f357b02e86eaaf3295594b9e6f0620d837441e34cea
def get(self, title): ' This function return a book searched by the title\n\n Args:\n title (str): Title of the book.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.title == title)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
This function return a book searched by the title Args: title (str): Title of the book.
import-tool/database.py
get
andygarcia86/python-read-opf-files
1
python
def get(self, title): ' This function return a book searched by the title\n\n Args:\n title (str): Title of the book.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.title == title)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
def get(self, title): ' This function return a book searched by the title\n\n Args:\n title (str): Title of the book.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.title == title)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()<|docstring|>This function return a book searched by the title Args: title (str): Title of the book.<|endoftext|>
08e3e9bd7009d71758a30b551c4be4932b1aa7b595e97f8752bba063b7a7aefa
def put(self, author_id, title, description, language): ' This function save a new book record in the database\n\n Args:\n title (str): Title of the book.\n description (str): Small description of the book.\n language (str): Language is written the book.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(author_id=author_id, title=title, description=description, language=language) connection.execute(query)
This function save a new book record in the database Args: title (str): Title of the book. description (str): Small description of the book. language (str): Language is written the book.
import-tool/database.py
put
andygarcia86/python-read-opf-files
1
python
def put(self, author_id, title, description, language): ' This function save a new book record in the database\n\n Args:\n title (str): Title of the book.\n description (str): Small description of the book.\n language (str): Language is written the book.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(author_id=author_id, title=title, description=description, language=language) connection.execute(query)
def put(self, author_id, title, description, language): ' This function save a new book record in the database\n\n Args:\n title (str): Title of the book.\n description (str): Small description of the book.\n language (str): Language is written the book.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(author_id=author_id, title=title, description=description, language=language) connection.execute(query)<|docstring|>This function save a new book record in the database Args: title (str): Title of the book. description (str): Small description of the book. language (str): Language is written the book.<|endoftext|>
8573696ffa2b3f8b4a51207f17102be0fd22f86042de9d914b17fe8aefb4783d
def get(self, name): ' This function search for a Author by a given name\n\n Args:\n name (str): Name of the author.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.name == name)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
This function search for a Author by a given name Args: name (str): Name of the author.
import-tool/database.py
get
andygarcia86/python-read-opf-files
1
python
def get(self, name): ' This function search for a Author by a given name\n\n Args:\n name (str): Name of the author.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.name == name)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
def get(self, name): ' This function search for a Author by a given name\n\n Args:\n name (str): Name of the author.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.name == name)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()<|docstring|>This function search for a Author by a given name Args: name (str): Name of the author.<|endoftext|>
f4533844e4ffcdd82c3d2b1ad4d49c3bf551c64d539bc68fa35b4e8ab9a3413f
def put(self, name): ' This function save a new author record in the database\n\n Args:\n name (str): Name of the author.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(name=name) result = connection.execute(query) return result.lastrowid
This function save a new author record in the database Args: name (str): Name of the author.
import-tool/database.py
put
andygarcia86/python-read-opf-files
1
python
def put(self, name): ' This function save a new author record in the database\n\n Args:\n name (str): Name of the author.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(name=name) result = connection.execute(query) return result.lastrowid
def put(self, name): ' This function save a new author record in the database\n\n Args:\n name (str): Name of the author.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(name=name) result = connection.execute(query) return result.lastrowid<|docstring|>This function save a new author record in the database Args: name (str): Name of the author.<|endoftext|>
b28cdbbdcaa495697cf6f964989b543cdf02f889bc603ca962a87e7afde959d3
def get(self, name): ' This function search for a Subject by a given name\n\n Args:\n name (str): Name of the subject.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.name == name)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
This function search for a Subject by a given name Args: name (str): Name of the subject.
import-tool/database.py
get
andygarcia86/python-read-opf-files
1
python
def get(self, name): ' This function search for a Subject by a given name\n\n Args:\n name (str): Name of the subject.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.name == name)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
def get(self, name): ' This function search for a Subject by a given name\n\n Args:\n name (str): Name of the subject.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where((table.c.name == name)) ResultProxy = connection.execute(query) return ResultProxy.fetchone()<|docstring|>This function search for a Subject by a given name Args: name (str): Name of the subject.<|endoftext|>
6c3d0a000011f0f58e0eb8a0c4b8d1abe6543697c6737be1b324d0d815b33f09
def put(self, name): ' This function save a new subject record in the database\n\n Args:\n name (str): Name of the subject.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(name=name) connection.execute(query)
This function save a new subject record in the database Args: name (str): Name of the subject.
import-tool/database.py
put
andygarcia86/python-read-opf-files
1
python
def put(self, name): ' This function save a new subject record in the database\n\n Args:\n name (str): Name of the subject.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(name=name) connection.execute(query)
def put(self, name): ' This function save a new subject record in the database\n\n Args:\n name (str): Name of the subject.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(name=name) connection.execute(query)<|docstring|>This function save a new subject record in the database Args: name (str): Name of the subject.<|endoftext|>
94b047872cdc08cd6223f1bf55fab0d1c545c620689008ad58513da1c9c1d7fe
def get(self, book_id, subject_id): ' This function search for a Book Subject relationship by the two keys\n\n Args:\n book_id (int): Book id.\n subject_id (int): Subject id.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where(((table.c.book_id == book_id) and (table.c.subject_id == subject_id))) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
This function search for a Book Subject relationship by the two keys Args: book_id (int): Book id. subject_id (int): Subject id.
import-tool/database.py
get
andygarcia86/python-read-opf-files
1
python
def get(self, book_id, subject_id): ' This function search for a Book Subject relationship by the two keys\n\n Args:\n book_id (int): Book id.\n subject_id (int): Subject id.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where(((table.c.book_id == book_id) and (table.c.subject_id == subject_id))) ResultProxy = connection.execute(query) return ResultProxy.fetchone()
def get(self, book_id, subject_id): ' This function search for a Book Subject relationship by the two keys\n\n Args:\n book_id (int): Book id.\n subject_id (int): Subject id.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = db.select([table]).where(((table.c.book_id == book_id) and (table.c.subject_id == subject_id))) ResultProxy = connection.execute(query) return ResultProxy.fetchone()<|docstring|>This function search for a Book Subject relationship by the two keys Args: book_id (int): Book id. subject_id (int): Subject id.<|endoftext|>
9302426e6549cae72790ca3570bb35b8d176ac593e51b86ddba7e5803474fbef
def put(self, book_id, subject_id): ' This function saves a new book subject record in the database, making a relationship between a book and a subject\n\n Args:\n book_id (int): Book id.\n subject_id (int): Subject id.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(book_id=book_id, subject_id=subject_id) connection.execute(query)
This function saves a new book subject record in the database, making a relationship between a book and a subject Args: book_id (int): Book id. subject_id (int): Subject id.
import-tool/database.py
put
andygarcia86/python-read-opf-files
1
python
def put(self, book_id, subject_id): ' This function saves a new book subject record in the database, making a relationship between a book and a subject\n\n Args:\n book_id (int): Book id.\n subject_id (int): Subject id.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(book_id=book_id, subject_id=subject_id) connection.execute(query)
def put(self, book_id, subject_id): ' This function saves a new book subject record in the database, making a relationship between a book and a subject\n\n Args:\n book_id (int): Book id.\n subject_id (int): Subject id.\n ' engine = db.create_engine(self.uri) connection = engine.connect() metadata = db.MetaData() table = db.Table(self.__table_name, metadata, autoload=True, autoload_with=engine) query = table.insert().values(book_id=book_id, subject_id=subject_id) connection.execute(query)<|docstring|>This function saves a new book subject record in the database, making a relationship between a book and a subject Args: book_id (int): Book id. subject_id (int): Subject id.<|endoftext|>
e018b7799baabf7b7d08284b7d70f6868dcb9bf88294d69fc673d2ceb63b869b
def listen(self, key=None, backlog=128): 'Create and start listening on socket.\n\n Call before forking worker processes.\n\n Raises Exception if this has already been called.\n ' info = socket.getaddrinfo(self.host, self.port, socket.AF_UNSPEC, socket.SOCK_STREAM)[0] try: self.socket = eventlet.listen(info[(- 1)], family=info[0], backlog=backlog) except EnvironmentError: LOG.error(_LE('Could not bind to %(host)s:%(port)s'), {'host': self.host, 'port': self.port}) raise LOG.info(_LI('Starting %(arg0)s on %(host)s:%(port)s'), {'arg0': sys.argv[0], 'host': self.host, 'port': self.port})
Create and start listening on socket. Call before forking worker processes. Raises Exception if this has already been called.
sidserver/common/environment/eventlet_server.py
listen
UTSA-ICS/sidserver
0
python
def listen(self, key=None, backlog=128): 'Create and start listening on socket.\n\n Call before forking worker processes.\n\n Raises Exception if this has already been called.\n ' info = socket.getaddrinfo(self.host, self.port, socket.AF_UNSPEC, socket.SOCK_STREAM)[0] try: self.socket = eventlet.listen(info[(- 1)], family=info[0], backlog=backlog) except EnvironmentError: LOG.error(_LE('Could not bind to %(host)s:%(port)s'), {'host': self.host, 'port': self.port}) raise LOG.info(_LI('Starting %(arg0)s on %(host)s:%(port)s'), {'arg0': sys.argv[0], 'host': self.host, 'port': self.port})
def listen(self, key=None, backlog=128): 'Create and start listening on socket.\n\n Call before forking worker processes.\n\n Raises Exception if this has already been called.\n ' info = socket.getaddrinfo(self.host, self.port, socket.AF_UNSPEC, socket.SOCK_STREAM)[0] try: self.socket = eventlet.listen(info[(- 1)], family=info[0], backlog=backlog) except EnvironmentError: LOG.error(_LE('Could not bind to %(host)s:%(port)s'), {'host': self.host, 'port': self.port}) raise LOG.info(_LI('Starting %(arg0)s on %(host)s:%(port)s'), {'arg0': sys.argv[0], 'host': self.host, 'port': self.port})<|docstring|>Create and start listening on socket. Call before forking worker processes. Raises Exception if this has already been called.<|endoftext|>
a8b76a2a49a822f10eeb2bcadacbdc3fb5204e84b8ef8d0f5c1e3ff405ae8d8b
def start(self, key=None, backlog=128): 'Run a WSGI server with the given application.' if (self.socket is None): self.listen(key=key, backlog=backlog) dup_socket = self.socket.dup() if key: self.socket_info[key] = self.socket.getsockname() if self.do_ssl: if self.cert_required: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE dup_socket = eventlet.wrap_ssl(dup_socket, certfile=self.certfile, keyfile=self.keyfile, server_side=True, cert_reqs=cert_reqs, ca_certs=self.ca_certs) if self.keepalive: dup_socket.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if (self.keepidle is not None): dup_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, self.keepidle) self.greenthread = self.pool.spawn(self._run, self.application, dup_socket)
Run a WSGI server with the given application.
sidserver/common/environment/eventlet_server.py
start
UTSA-ICS/sidserver
0
python
def start(self, key=None, backlog=128): if (self.socket is None): self.listen(key=key, backlog=backlog) dup_socket = self.socket.dup() if key: self.socket_info[key] = self.socket.getsockname() if self.do_ssl: if self.cert_required: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE dup_socket = eventlet.wrap_ssl(dup_socket, certfile=self.certfile, keyfile=self.keyfile, server_side=True, cert_reqs=cert_reqs, ca_certs=self.ca_certs) if self.keepalive: dup_socket.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if (self.keepidle is not None): dup_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, self.keepidle) self.greenthread = self.pool.spawn(self._run, self.application, dup_socket)
def start(self, key=None, backlog=128): if (self.socket is None): self.listen(key=key, backlog=backlog) dup_socket = self.socket.dup() if key: self.socket_info[key] = self.socket.getsockname() if self.do_ssl: if self.cert_required: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE dup_socket = eventlet.wrap_ssl(dup_socket, certfile=self.certfile, keyfile=self.keyfile, server_side=True, cert_reqs=cert_reqs, ca_certs=self.ca_certs) if self.keepalive: dup_socket.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if (self.keepidle is not None): dup_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, self.keepidle) self.greenthread = self.pool.spawn(self._run, self.application, dup_socket)<|docstring|>Run a WSGI server with the given application.<|endoftext|>
01ebe88ad051a04b2cbc8889236106f2e347addbe8b39a2614f0e1716398b24d
def wait(self): 'Wait until all servers have completed running.' try: self.pool.waitall() except KeyboardInterrupt: pass except greenlet.GreenletExit: pass
Wait until all servers have completed running.
sidserver/common/environment/eventlet_server.py
wait
UTSA-ICS/sidserver
0
python
def wait(self): try: self.pool.waitall() except KeyboardInterrupt: pass except greenlet.GreenletExit: pass
def wait(self): try: self.pool.waitall() except KeyboardInterrupt: pass except greenlet.GreenletExit: pass<|docstring|>Wait until all servers have completed running.<|endoftext|>
fd375b9ed5c9d86e112137a097ba3bbbd56a5a607c8fd706038fa43a1d89213a
def reset(self): 'Required by the service interface.\n\n The service interface is used by the launcher when receiving a\n SIGHUP. The service interface is defined in\n sidserver.openstack.common.service.Service.\n\n Keystone does not need to do anything here.\n ' pass
Required by the service interface. The service interface is used by the launcher when receiving a SIGHUP. The service interface is defined in sidserver.openstack.common.service.Service. Keystone does not need to do anything here.
sidserver/common/environment/eventlet_server.py
reset
UTSA-ICS/sidserver
0
python
def reset(self): 'Required by the service interface.\n\n The service interface is used by the launcher when receiving a\n SIGHUP. The service interface is defined in\n sidserver.openstack.common.service.Service.\n\n Keystone does not need to do anything here.\n ' pass
def reset(self): 'Required by the service interface.\n\n The service interface is used by the launcher when receiving a\n SIGHUP. The service interface is defined in\n sidserver.openstack.common.service.Service.\n\n Keystone does not need to do anything here.\n ' pass<|docstring|>Required by the service interface. The service interface is used by the launcher when receiving a SIGHUP. The service interface is defined in sidserver.openstack.common.service.Service. Keystone does not need to do anything here.<|endoftext|>
15428b677f33ee698b6851c41c9c6bca1498088492d41644256a631b4285d6f5
def _run(self, application, socket): 'Start a WSGI server with a new green thread pool.' logger = log.getLogger('eventlet.wsgi.server') socket_timeout = (CONF.eventlet_server.client_socket_timeout or None) try: eventlet.wsgi.server(socket, application, log=EventletFilteringLogger(logger), debug=False, keepalive=CONF.eventlet_server.wsgi_keep_alive, socket_timeout=socket_timeout) except greenlet.GreenletExit: pass except Exception: LOG.exception(_LE('Server error')) raise
Start a WSGI server with a new green thread pool.
sidserver/common/environment/eventlet_server.py
_run
UTSA-ICS/sidserver
0
python
def _run(self, application, socket): logger = log.getLogger('eventlet.wsgi.server') socket_timeout = (CONF.eventlet_server.client_socket_timeout or None) try: eventlet.wsgi.server(socket, application, log=EventletFilteringLogger(logger), debug=False, keepalive=CONF.eventlet_server.wsgi_keep_alive, socket_timeout=socket_timeout) except greenlet.GreenletExit: pass except Exception: LOG.exception(_LE('Server error')) raise
def _run(self, application, socket): logger = log.getLogger('eventlet.wsgi.server') socket_timeout = (CONF.eventlet_server.client_socket_timeout or None) try: eventlet.wsgi.server(socket, application, log=EventletFilteringLogger(logger), debug=False, keepalive=CONF.eventlet_server.wsgi_keep_alive, socket_timeout=socket_timeout) except greenlet.GreenletExit: pass except Exception: LOG.exception(_LE('Server error')) raise<|docstring|>Start a WSGI server with a new green thread pool.<|endoftext|>
260c4b9a754a75e57b6dce3a71cb037844387a6004c55782ba4560d939a4f3a5
def _check_settings(self): ' Check we have all the required settings defined. ' if (not self.FTP_HOST): raise StorageError(('%s storage requires DBBACKUP_FTP_HOST to be defined in settings.' % self.name))
Check we have all the required settings defined.
dbbackup/storage/ftp_storage.py
_check_settings
UbuntuEvangelist/django-dbbackup
0
python
def _check_settings(self): ' ' if (not self.FTP_HOST): raise StorageError(('%s storage requires DBBACKUP_FTP_HOST to be defined in settings.' % self.name))
def _check_settings(self): ' ' if (not self.FTP_HOST): raise StorageError(('%s storage requires DBBACKUP_FTP_HOST to be defined in settings.' % self.name))<|docstring|>Check we have all the required settings defined.<|endoftext|>
ec0299799adfc3eca3fad73797efaba78826c68794c58271741d2c5f09de717d
def delete_file(self, filepath): ' Delete the specified filepath. ' self.ftp.delete(filepath)
Delete the specified filepath.
dbbackup/storage/ftp_storage.py
delete_file
UbuntuEvangelist/django-dbbackup
0
python
def delete_file(self, filepath): ' ' self.ftp.delete(filepath)
def delete_file(self, filepath): ' ' self.ftp.delete(filepath)<|docstring|>Delete the specified filepath.<|endoftext|>
fda3e75a8f869b7b13ea9ef7b3ca92d213d7cfaa4a11b84db098675d0719bcd0
def list_directory(self, raw=False): ' List all stored backups for the specified. ' return sorted(self.ftp.nlst(self.FTP_PATH))
List all stored backups for the specified.
dbbackup/storage/ftp_storage.py
list_directory
UbuntuEvangelist/django-dbbackup
0
python
def list_directory(self, raw=False): ' ' return sorted(self.ftp.nlst(self.FTP_PATH))
def list_directory(self, raw=False): ' ' return sorted(self.ftp.nlst(self.FTP_PATH))<|docstring|>List all stored backups for the specified.<|endoftext|>
4eb9882aaa0603fd246ed0290efa353b1809ed844bbecaa276cce56b170be8bd
def write_file(self, filehandle, filename): ' Write the specified file. ' filehandle.seek(0) backuppath = os.path.join(self.FTP_PATH, filename) self.ftp.storbinary(('STOR ' + backuppath), filehandle)
Write the specified file.
dbbackup/storage/ftp_storage.py
write_file
UbuntuEvangelist/django-dbbackup
0
python
def write_file(self, filehandle, filename): ' ' filehandle.seek(0) backuppath = os.path.join(self.FTP_PATH, filename) self.ftp.storbinary(('STOR ' + backuppath), filehandle)
def write_file(self, filehandle, filename): ' ' filehandle.seek(0) backuppath = os.path.join(self.FTP_PATH, filename) self.ftp.storbinary(('STOR ' + backuppath), filehandle)<|docstring|>Write the specified file.<|endoftext|>
9db39f3099ddc6ae68c1f9d3a7e67bef884de415460c01cb20350224832deac9
def read_file(self, filepath): " Read the specified file and return it's handle. " outputfile = tempfile.SpooledTemporaryFile(max_size=dbbackup_settings.TMP_FILE_MAX_SIZE, dir=dbbackup_settings.TMP_DIR) self.ftp.retrbinary(('RETR ' + filepath), outputfile.write) return outputfile
Read the specified file and return it's handle.
dbbackup/storage/ftp_storage.py
read_file
UbuntuEvangelist/django-dbbackup
0
python
def read_file(self, filepath): " " outputfile = tempfile.SpooledTemporaryFile(max_size=dbbackup_settings.TMP_FILE_MAX_SIZE, dir=dbbackup_settings.TMP_DIR) self.ftp.retrbinary(('RETR ' + filepath), outputfile.write) return outputfile
def read_file(self, filepath): " " outputfile = tempfile.SpooledTemporaryFile(max_size=dbbackup_settings.TMP_FILE_MAX_SIZE, dir=dbbackup_settings.TMP_DIR) self.ftp.retrbinary(('RETR ' + filepath), outputfile.write) return outputfile<|docstring|>Read the specified file and return it's handle.<|endoftext|>
f37116f11d6ceaf4cf14eddc107c575559e9a6038a44b306e4b3f2bb9ad70502
@distributed_trace def list(self, resource_group_name: str, network_manager_name: str, top: Optional[int]=None, skip_token: Optional[str]=None, **kwargs: Any) -> AsyncIterable['_models.SecurityConfigurationListResult']: 'Lists all the network manager security user configurations in a network manager, in a paginated\n format.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param top: An optional query parameter which specifies the maximum number of records to be\n returned by the server.\n :type top: int\n :param skip_token: SkipToken is only used if a previous operation returned a partial result. If\n a previous response contains a nextLink element, the value of the nextLink element will include\n a skipToken parameter that specifies a starting point to use for subsequent calls.\n :type skip_token: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either SecurityConfigurationListResult or the result of\n cls(response)\n :rtype:\n ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfigurationListResult]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if (not next_link): request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, top=top, skip_token=skip_token, template_url=self.list.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, top=top, skip_token=skip_token, template_url=next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = 'GET' return request async def extract_data(pipeline_response): deserialized = self._deserialize('SecurityConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), AsyncList(list_of_elem)) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data)
Lists all the network manager security user configurations in a network manager, in a paginated format. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param top: An optional query parameter which specifies the maximum number of records to be returned by the server. :type top: int :param skip_token: SkipToken is only used if a previous operation returned a partial result. If a previous response contains a nextLink element, the value of the nextLink element will include a skipToken parameter that specifies a starting point to use for subsequent calls. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SecurityConfigurationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError
src/network-manager/azext_network_manager/vendored_sdks/aio/operations/_security_user_configurations_operations.py
list
hsrivast/azure-cli-extensions
1
python
@distributed_trace def list(self, resource_group_name: str, network_manager_name: str, top: Optional[int]=None, skip_token: Optional[str]=None, **kwargs: Any) -> AsyncIterable['_models.SecurityConfigurationListResult']: 'Lists all the network manager security user configurations in a network manager, in a paginated\n format.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param top: An optional query parameter which specifies the maximum number of records to be\n returned by the server.\n :type top: int\n :param skip_token: SkipToken is only used if a previous operation returned a partial result. If\n a previous response contains a nextLink element, the value of the nextLink element will include\n a skipToken parameter that specifies a starting point to use for subsequent calls.\n :type skip_token: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either SecurityConfigurationListResult or the result of\n cls(response)\n :rtype:\n ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfigurationListResult]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if (not next_link): request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, top=top, skip_token=skip_token, template_url=self.list.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, top=top, skip_token=skip_token, template_url=next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = 'GET' return request async def extract_data(pipeline_response): deserialized = self._deserialize('SecurityConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), AsyncList(list_of_elem)) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data)
@distributed_trace def list(self, resource_group_name: str, network_manager_name: str, top: Optional[int]=None, skip_token: Optional[str]=None, **kwargs: Any) -> AsyncIterable['_models.SecurityConfigurationListResult']: 'Lists all the network manager security user configurations in a network manager, in a paginated\n format.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param top: An optional query parameter which specifies the maximum number of records to be\n returned by the server.\n :type top: int\n :param skip_token: SkipToken is only used if a previous operation returned a partial result. If\n a previous response contains a nextLink element, the value of the nextLink element will include\n a skipToken parameter that specifies a starting point to use for subsequent calls.\n :type skip_token: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either SecurityConfigurationListResult or the result of\n cls(response)\n :rtype:\n ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfigurationListResult]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if (not next_link): request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, top=top, skip_token=skip_token, template_url=self.list.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, top=top, skip_token=skip_token, template_url=next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = 'GET' return request async def extract_data(pipeline_response): deserialized = self._deserialize('SecurityConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), AsyncList(list_of_elem)) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data)<|docstring|>Lists all the network manager security user configurations in a network manager, in a paginated format. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param top: An optional query parameter which specifies the maximum number of records to be returned by the server. :type top: int :param skip_token: SkipToken is only used if a previous operation returned a partial result. If a previous response contains a nextLink element, the value of the nextLink element will include a skipToken parameter that specifies a starting point to use for subsequent calls. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SecurityConfigurationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError<|endoftext|>
f028357ecc246c0f72d67370f4ea3e35d31e8a23f35fde596d5b1660cddff7aa
@distributed_trace_async async def get(self, resource_group_name: str, network_manager_name: str, configuration_name: str, **kwargs: Any) -> '_models.SecurityConfiguration': 'Retrieves a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: SecurityConfiguration, or the result of cls(response)\n :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) request = build_get_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, template_url=self.get.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
Retrieves a network manager security user configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param configuration_name: The name of the network manager Security Configuration. :type configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SecurityConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration :raises: ~azure.core.exceptions.HttpResponseError
src/network-manager/azext_network_manager/vendored_sdks/aio/operations/_security_user_configurations_operations.py
get
hsrivast/azure-cli-extensions
1
python
@distributed_trace_async async def get(self, resource_group_name: str, network_manager_name: str, configuration_name: str, **kwargs: Any) -> '_models.SecurityConfiguration': 'Retrieves a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: SecurityConfiguration, or the result of cls(response)\n :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) request = build_get_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, template_url=self.get.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
@distributed_trace_async async def get(self, resource_group_name: str, network_manager_name: str, configuration_name: str, **kwargs: Any) -> '_models.SecurityConfiguration': 'Retrieves a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: SecurityConfiguration, or the result of cls(response)\n :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) request = build_get_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, template_url=self.get.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized<|docstring|>Retrieves a network manager security user configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param configuration_name: The name of the network manager Security Configuration. :type configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SecurityConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration :raises: ~azure.core.exceptions.HttpResponseError<|endoftext|>
ab76dbd03dff344ccc8d2ccda344783f792d9e520b5b0dc330cb6768999b3eaf
@distributed_trace_async async def create_or_update(self, resource_group_name: str, network_manager_name: str, configuration_name: str, security_user_configuration: '_models.SecurityConfiguration', **kwargs: Any) -> '_models.SecurityConfiguration': 'Creates or updates a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :param security_user_configuration: The security user configuration to create or update.\n :type security_user_configuration:\n ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: SecurityConfiguration, or the result of cls(response)\n :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', 'application/json') _json = self._serialize.body(security_user_configuration, 'SecurityConfiguration') request = build_create_or_update_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200, 201]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if (response.status_code == 200): deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if (response.status_code == 201): deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
Creates or updates a network manager security user configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param configuration_name: The name of the network manager Security Configuration. :type configuration_name: str :param security_user_configuration: The security user configuration to create or update. :type security_user_configuration: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration :keyword callable cls: A custom type or function that will be passed the direct response :return: SecurityConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration :raises: ~azure.core.exceptions.HttpResponseError
src/network-manager/azext_network_manager/vendored_sdks/aio/operations/_security_user_configurations_operations.py
create_or_update
hsrivast/azure-cli-extensions
1
python
@distributed_trace_async async def create_or_update(self, resource_group_name: str, network_manager_name: str, configuration_name: str, security_user_configuration: '_models.SecurityConfiguration', **kwargs: Any) -> '_models.SecurityConfiguration': 'Creates or updates a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :param security_user_configuration: The security user configuration to create or update.\n :type security_user_configuration:\n ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: SecurityConfiguration, or the result of cls(response)\n :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', 'application/json') _json = self._serialize.body(security_user_configuration, 'SecurityConfiguration') request = build_create_or_update_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200, 201]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if (response.status_code == 200): deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if (response.status_code == 201): deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
@distributed_trace_async async def create_or_update(self, resource_group_name: str, network_manager_name: str, configuration_name: str, security_user_configuration: '_models.SecurityConfiguration', **kwargs: Any) -> '_models.SecurityConfiguration': 'Creates or updates a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :param security_user_configuration: The security user configuration to create or update.\n :type security_user_configuration:\n ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: SecurityConfiguration, or the result of cls(response)\n :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', 'application/json') _json = self._serialize.body(security_user_configuration, 'SecurityConfiguration') request = build_create_or_update_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200, 201]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if (response.status_code == 200): deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if (response.status_code == 201): deserialized = self._deserialize('SecurityConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized<|docstring|>Creates or updates a network manager security user configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param configuration_name: The name of the network manager Security Configuration. :type configuration_name: str :param security_user_configuration: The security user configuration to create or update. :type security_user_configuration: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration :keyword callable cls: A custom type or function that will be passed the direct response :return: SecurityConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_05_01_preview.models.SecurityConfiguration :raises: ~azure.core.exceptions.HttpResponseError<|endoftext|>
709810d41d45a4b5fd0b2f927248f3ce9b30e91eac33dbfa04c1332189b2a981
@distributed_trace_async async def delete(self, resource_group_name: str, network_manager_name: str, configuration_name: str, force: Optional[bool]=None, recursive: Optional[bool]=None, **kwargs: Any) -> None: 'Deletes a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :param force: Deletes the resource even if it is part of a deployed configuration. If the\n configuration has been deployed, the service will do a cleanup deployment in the background,\n prior to the delete.\n :type force: bool\n :param recursive: Deletes the resource recursively. When present in a security configuration\n delete, all rule collections and rules within the configuration will be deleted. When present\n in a rule collection delete, all rules within the collection will be deleted.\n :type recursive: bool\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: None, or the result of cls(response)\n :rtype: None\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) request = build_delete_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, force=force, recursive=recursive, template_url=self.delete.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200, 204]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {})
Deletes a network manager security user configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param configuration_name: The name of the network manager Security Configuration. :type configuration_name: str :param force: Deletes the resource even if it is part of a deployed configuration. If the configuration has been deployed, the service will do a cleanup deployment in the background, prior to the delete. :type force: bool :param recursive: Deletes the resource recursively. When present in a security configuration delete, all rule collections and rules within the configuration will be deleted. When present in a rule collection delete, all rules within the collection will be deleted. :type recursive: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError
src/network-manager/azext_network_manager/vendored_sdks/aio/operations/_security_user_configurations_operations.py
delete
hsrivast/azure-cli-extensions
1
python
@distributed_trace_async async def delete(self, resource_group_name: str, network_manager_name: str, configuration_name: str, force: Optional[bool]=None, recursive: Optional[bool]=None, **kwargs: Any) -> None: 'Deletes a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :param force: Deletes the resource even if it is part of a deployed configuration. If the\n configuration has been deployed, the service will do a cleanup deployment in the background,\n prior to the delete.\n :type force: bool\n :param recursive: Deletes the resource recursively. When present in a security configuration\n delete, all rule collections and rules within the configuration will be deleted. When present\n in a rule collection delete, all rules within the collection will be deleted.\n :type recursive: bool\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: None, or the result of cls(response)\n :rtype: None\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) request = build_delete_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, force=force, recursive=recursive, template_url=self.delete.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200, 204]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {})
@distributed_trace_async async def delete(self, resource_group_name: str, network_manager_name: str, configuration_name: str, force: Optional[bool]=None, recursive: Optional[bool]=None, **kwargs: Any) -> None: 'Deletes a network manager security user configuration.\n\n :param resource_group_name: The name of the resource group.\n :type resource_group_name: str\n :param network_manager_name: The name of the network manager.\n :type network_manager_name: str\n :param configuration_name: The name of the network manager Security Configuration.\n :type configuration_name: str\n :param force: Deletes the resource even if it is part of a deployed configuration. If the\n configuration has been deployed, the service will do a cleanup deployment in the background,\n prior to the delete.\n :type force: bool\n :param recursive: Deletes the resource recursively. When present in a security configuration\n delete, all rule collections and rules within the configuration will be deleted. When present\n in a rule collection delete, all rules within the collection will be deleted.\n :type recursive: bool\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: None, or the result of cls(response)\n :rtype: None\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) request = build_delete_request(subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, network_manager_name=network_manager_name, configuration_name=configuration_name, force=force, recursive=recursive, template_url=self.delete.metadata['url']) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200, 204]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {})<|docstring|>Deletes a network manager security user configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_manager_name: The name of the network manager. :type network_manager_name: str :param configuration_name: The name of the network manager Security Configuration. :type configuration_name: str :param force: Deletes the resource even if it is part of a deployed configuration. If the configuration has been deployed, the service will do a cleanup deployment in the background, prior to the delete. :type force: bool :param recursive: Deletes the resource recursively. When present in a security configuration delete, all rule collections and rules within the configuration will be deleted. When present in a rule collection delete, all rules within the collection will be deleted. :type recursive: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError<|endoftext|>
2a4285a771ac3cbcdbcff163a773157b72f5bc4f9c47814059c484a31d502612
def feature_template_df(no_of_rxns_thres): 'Creates a template dataframe\n containing all the feature columns' feature_data_columns = [] for n in range(no_of_rxns_thres): smarts = (('Rxn' + str((n + 1))) + '_SMARTS') rxn_delta_g = (('Rxn' + str((n + 1))) + '_DeltaG') rxn_rule_score = (('Rxn' + str((n + 1))) + '_Rule_Score') feature_data_columns.extend([smarts, rxn_delta_g, rxn_rule_score]) feature_data_columns.extend(['Pathway_Delta_G', 'Pathway_Flux', 'Pathway_Score', 'Round1']) feature_data = pd_DataFrame(columns=feature_data_columns, index=None) return feature_data
Creates a template dataframe containing all the feature columns
rptools/rpscore/rpScore.py
feature_template_df
brsynth/rpTools
4
python
def feature_template_df(no_of_rxns_thres): 'Creates a template dataframe\n containing all the feature columns' feature_data_columns = [] for n in range(no_of_rxns_thres): smarts = (('Rxn' + str((n + 1))) + '_SMARTS') rxn_delta_g = (('Rxn' + str((n + 1))) + '_DeltaG') rxn_rule_score = (('Rxn' + str((n + 1))) + '_Rule_Score') feature_data_columns.extend([smarts, rxn_delta_g, rxn_rule_score]) feature_data_columns.extend(['Pathway_Delta_G', 'Pathway_Flux', 'Pathway_Score', 'Round1']) feature_data = pd_DataFrame(columns=feature_data_columns, index=None) return feature_data
def feature_template_df(no_of_rxns_thres): 'Creates a template dataframe\n containing all the feature columns' feature_data_columns = [] for n in range(no_of_rxns_thres): smarts = (('Rxn' + str((n + 1))) + '_SMARTS') rxn_delta_g = (('Rxn' + str((n + 1))) + '_DeltaG') rxn_rule_score = (('Rxn' + str((n + 1))) + '_Rule_Score') feature_data_columns.extend([smarts, rxn_delta_g, rxn_rule_score]) feature_data_columns.extend(['Pathway_Delta_G', 'Pathway_Flux', 'Pathway_Score', 'Round1']) feature_data = pd_DataFrame(columns=feature_data_columns, index=None) return feature_data<|docstring|>Creates a template dataframe containing all the feature columns<|endoftext|>
f9759a72c22247ad9db18771b7f36232bc35453e665d8f2ac5224b403723b628
def loop(i, temp, data): 'Returns the indices of all the reactions\n for a pathway in the dataset' temp_list = [] break_index = None flag = True j = 1 for index in range(i, len(data)): if ((temp == data.loc[(index, 'Pathway Name')]) and (data.loc[(index, 'Reaction')] == ('RP' + str(j)))): j = (j + 1) temp_list.append(index) if ((index + 1) == len(data)): flag = False else: break_index = index break return (temp_list, break_index, flag)
Returns the indices of all the reactions for a pathway in the dataset
rptools/rpscore/rpScore.py
loop
brsynth/rpTools
4
python
def loop(i, temp, data): 'Returns the indices of all the reactions\n for a pathway in the dataset' temp_list = [] break_index = None flag = True j = 1 for index in range(i, len(data)): if ((temp == data.loc[(index, 'Pathway Name')]) and (data.loc[(index, 'Reaction')] == ('RP' + str(j)))): j = (j + 1) temp_list.append(index) if ((index + 1) == len(data)): flag = False else: break_index = index break return (temp_list, break_index, flag)
def loop(i, temp, data): 'Returns the indices of all the reactions\n for a pathway in the dataset' temp_list = [] break_index = None flag = True j = 1 for index in range(i, len(data)): if ((temp == data.loc[(index, 'Pathway Name')]) and (data.loc[(index, 'Reaction')] == ('RP' + str(j)))): j = (j + 1) temp_list.append(index) if ((index + 1) == len(data)): flag = False else: break_index = index break return (temp_list, break_index, flag)<|docstring|>Returns the indices of all the reactions for a pathway in the dataset<|endoftext|>
fbcaebf9771e32f55f492abcf2441d02d8f98657de66770b07283c9717e4e30b
def pathways_index_list(data): 'Returns the indices of all the reactions\n for each of the pathways in dataset' pathways_index_list = [] i = 0 flag = True while flag: temp = data.loc[(i, 'Pathway Name')] (temp_list, i, flag) = loop(i, temp, data) pathways_index_list.append(temp_list) return pathways_index_list
Returns the indices of all the reactions for each of the pathways in dataset
rptools/rpscore/rpScore.py
pathways_index_list
brsynth/rpTools
4
python
def pathways_index_list(data): 'Returns the indices of all the reactions\n for each of the pathways in dataset' pathways_index_list = [] i = 0 flag = True while flag: temp = data.loc[(i, 'Pathway Name')] (temp_list, i, flag) = loop(i, temp, data) pathways_index_list.append(temp_list) return pathways_index_list
def pathways_index_list(data): 'Returns the indices of all the reactions\n for each of the pathways in dataset' pathways_index_list = [] i = 0 flag = True while flag: temp = data.loc[(i, 'Pathway Name')] (temp_list, i, flag) = loop(i, temp, data) pathways_index_list.append(temp_list) return pathways_index_list<|docstring|>Returns the indices of all the reactions for each of the pathways in dataset<|endoftext|>
f44cd1513abc7e87df0503e850073a778e78915ff8573b7b07d3c502725050bd
def transform_into_pathway_features(data, scores, flag, no_of_rxns_thres): 'Generates the dataframe containing\n all the features.\n data and scores ate the 2 inputs files\n The reactions are represented in SMILES' df = feature_template_df(no_of_rxns_thres) pathways_list = pathways_index_list(data) drop_list = [] print('Transforming into pathway features...') for (count_p, rxn_list) in tqdm(enumerate(pathways_list)): if (len(rxn_list) > 10): drop_list.append(count_p) continue for (n, index) in enumerate(rxn_list): smarts = (('Rxn' + str((n + 1))) + '_SMARTS') rxn_delta_g = (('Rxn' + str((n + 1))) + '_DeltaG') rxn_rule_score = (('Rxn' + str((n + 1))) + '_Rule_Score') df.loc[(count_p, smarts)] = data.loc[(index, 'Reaction Rule')] df.loc[(count_p, rxn_delta_g)] = data.loc[(index, 'Normalised dfG_prime_m')] df.loc[(count_p, rxn_rule_score)] = data.loc[(index, 'Rule Score')] df.loc[(count_p, 'Pathway_Delta_G')] = scores.loc[(count_p, 'dfG_prime_m')] df.loc[(count_p, 'Pathway_Flux')] = float(scores.loc[(count_p, 'FBA Flux')].split(';')[1]) df.loc[(count_p, 'Pathway_Score')] = scores.loc[(count_p, 'Global Score')] df.loc[(count_p, 'Lit')] = scores.loc[(count_p, 'Lit')] df.loc[(count_p, 'Round1')] = scores.loc[(count_p, 'Round1')] df = df.drop(drop_list) df = df.fillna(0) if flag: df = df[(~ (df.Round1 < 0))] df['Round1'][(df['Round1'] > 0)] = 1 df['Round1_OR'] = df['Round1'] df = shuffle(df, random_state=42).reset_index(drop=True) for row in range(len(df)): if (df.loc[(row, 'Lit')] == 1): df.loc[(row, 'Round1_OR')] = 1 else: df['Round1_OR'] = df['Round1'] return df
Generates the dataframe containing all the features. data and scores ate the 2 inputs files The reactions are represented in SMILES
rptools/rpscore/rpScore.py
transform_into_pathway_features
brsynth/rpTools
4
python
def transform_into_pathway_features(data, scores, flag, no_of_rxns_thres): 'Generates the dataframe containing\n all the features.\n data and scores ate the 2 inputs files\n The reactions are represented in SMILES' df = feature_template_df(no_of_rxns_thres) pathways_list = pathways_index_list(data) drop_list = [] print('Transforming into pathway features...') for (count_p, rxn_list) in tqdm(enumerate(pathways_list)): if (len(rxn_list) > 10): drop_list.append(count_p) continue for (n, index) in enumerate(rxn_list): smarts = (('Rxn' + str((n + 1))) + '_SMARTS') rxn_delta_g = (('Rxn' + str((n + 1))) + '_DeltaG') rxn_rule_score = (('Rxn' + str((n + 1))) + '_Rule_Score') df.loc[(count_p, smarts)] = data.loc[(index, 'Reaction Rule')] df.loc[(count_p, rxn_delta_g)] = data.loc[(index, 'Normalised dfG_prime_m')] df.loc[(count_p, rxn_rule_score)] = data.loc[(index, 'Rule Score')] df.loc[(count_p, 'Pathway_Delta_G')] = scores.loc[(count_p, 'dfG_prime_m')] df.loc[(count_p, 'Pathway_Flux')] = float(scores.loc[(count_p, 'FBA Flux')].split(';')[1]) df.loc[(count_p, 'Pathway_Score')] = scores.loc[(count_p, 'Global Score')] df.loc[(count_p, 'Lit')] = scores.loc[(count_p, 'Lit')] df.loc[(count_p, 'Round1')] = scores.loc[(count_p, 'Round1')] df = df.drop(drop_list) df = df.fillna(0) if flag: df = df[(~ (df.Round1 < 0))] df['Round1'][(df['Round1'] > 0)] = 1 df['Round1_OR'] = df['Round1'] df = shuffle(df, random_state=42).reset_index(drop=True) for row in range(len(df)): if (df.loc[(row, 'Lit')] == 1): df.loc[(row, 'Round1_OR')] = 1 else: df['Round1_OR'] = df['Round1'] return df
def transform_into_pathway_features(data, scores, flag, no_of_rxns_thres): 'Generates the dataframe containing\n all the features.\n data and scores ate the 2 inputs files\n The reactions are represented in SMILES' df = feature_template_df(no_of_rxns_thres) pathways_list = pathways_index_list(data) drop_list = [] print('Transforming into pathway features...') for (count_p, rxn_list) in tqdm(enumerate(pathways_list)): if (len(rxn_list) > 10): drop_list.append(count_p) continue for (n, index) in enumerate(rxn_list): smarts = (('Rxn' + str((n + 1))) + '_SMARTS') rxn_delta_g = (('Rxn' + str((n + 1))) + '_DeltaG') rxn_rule_score = (('Rxn' + str((n + 1))) + '_Rule_Score') df.loc[(count_p, smarts)] = data.loc[(index, 'Reaction Rule')] df.loc[(count_p, rxn_delta_g)] = data.loc[(index, 'Normalised dfG_prime_m')] df.loc[(count_p, rxn_rule_score)] = data.loc[(index, 'Rule Score')] df.loc[(count_p, 'Pathway_Delta_G')] = scores.loc[(count_p, 'dfG_prime_m')] df.loc[(count_p, 'Pathway_Flux')] = float(scores.loc[(count_p, 'FBA Flux')].split(';')[1]) df.loc[(count_p, 'Pathway_Score')] = scores.loc[(count_p, 'Global Score')] df.loc[(count_p, 'Lit')] = scores.loc[(count_p, 'Lit')] df.loc[(count_p, 'Round1')] = scores.loc[(count_p, 'Round1')] df = df.drop(drop_list) df = df.fillna(0) if flag: df = df[(~ (df.Round1 < 0))] df['Round1'][(df['Round1'] > 0)] = 1 df['Round1_OR'] = df['Round1'] df = shuffle(df, random_state=42).reset_index(drop=True) for row in range(len(df)): if (df.loc[(row, 'Lit')] == 1): df.loc[(row, 'Round1_OR')] = 1 else: df['Round1_OR'] = df['Round1'] return df<|docstring|>Generates the dataframe containing all the features. data and scores ate the 2 inputs files The reactions are represented in SMILES<|endoftext|>
5e783be91aa23557e1639a57c543dfe9465ad9cd719c61446e3331813827e717
def features_encoding(df, flag): 'Creates a HDF5 file containing\n all the features\n Rnx features are encoded in fingerprints' no_of_rxns = 10 fp_len = 4096 rxn_len = (fp_len + 2) pathway_len = 3 y_len = 1 if (flag == 'train'): sys_exit('Encoding feature for training data not available file data_train.h5 must be present in models folder') print('Encodining features for the Test set......') f = h5py_File(NamedTemporaryFile(delete=True), 'w') number = (((rxn_len * no_of_rxns) + pathway_len) + y_len) dset = f.create_dataset('data', (0, number), dtype='i2', maxshape=(None, number), compression='gzip') for row in tqdm(range(len(df))): pathway_rxns = np.array([]).reshape(0, (rxn_len * no_of_rxns)) rxns_list = [] for rxn_no_ in range(no_of_rxns): rxn_smiles_index = (rxn_no_ * 3) rxn_dg_index = (((rxn_no_ + 1) * 3) - 2) rxn_rule_score_index = (((rxn_no_ + 1) * 3) - 1) if (str(df.iloc[(row, rxn_smiles_index)]) != '0'): rxn_smiles = df.iloc[(row, rxn_smiles_index)] rxn_smiles_list = rxn_smiles.split('>>') if (len(rxn_smiles_list) == 2): sub_smiles = rxn_smiles_list[0] sub_m = Chem.MolFromSmiles(sub_smiles) sub_fp = AllChem.GetMorganFingerprintAsBitVect(sub_m, 2, nBits=2048) sub_arr = np.array([]) DataStructs.ConvertToNumpyArray(sub_fp, sub_arr) sub_fp = sub_arr.reshape(1, (- 1)) pro_smiles = rxn_smiles_list[1] pro_m = Chem.MolFromSmiles(pro_smiles) pro_fp = AllChem.GetMorganFingerprintAsBitVect(pro_m, 2, nBits=2048) pro_arr = np.zeros((1,)) DataStructs.ConvertToNumpyArray(pro_fp, pro_arr) pro_fp = pro_arr.reshape(1, (- 1)) rxn_fp = np.concatenate([sub_fp, pro_fp]).reshape(1, (- 1)) elif (len(rxn_smiles_list) < 2): pro_smiles = rxn_smiles_list[0] pro_m = Chem.MolFromSmiles(pro_smiles) pro_fp = AllChem.GetMorganFingerprintAsBitVect(pro_m, 2, nBits=fp_len) pro_arr = np.zeros((1,)) DataStructs.ConvertToNumpyArray(pro_fp, pro_arr) rxn_fp = pro_arr.reshape(1, (- 1)) else: print('There is a problem with the number of components in the reaction') else: rxn_fp = np.zeros(fp_len).reshape(1, (- 1)) rxn_dg = df.iloc[(row, rxn_dg_index)].reshape(1, (- 1)) rxn_rule_score = df.iloc[(row, rxn_rule_score_index)].reshape(1, (- 1)) rxns_list.extend([rxn_fp, rxn_dg, rxn_rule_score]) pathway_rxns = np.concatenate(rxns_list, axis=1).reshape(1, (- 1)) pathway_dg = df.loc[(row, 'Pathway_Delta_G')].reshape(1, (- 1)) pathway_flux = df.loc[(row, 'Pathway_Flux')].reshape(1, (- 1)) pathway_score = df.loc[(row, 'Pathway_Score')].reshape(1, (- 1)) pathway_y = df.loc[(row, 'Round1_OR')].reshape(1, (- 1)) feature = np.concatenate((pathway_rxns, pathway_dg, pathway_flux, pathway_score, pathway_y), axis=1) dset.resize((dset.shape[0] + feature.shape[0]), axis=0) dset[(- feature.shape[0]):] = feature return dset
Creates a HDF5 file containing all the features Rnx features are encoded in fingerprints
rptools/rpscore/rpScore.py
features_encoding
brsynth/rpTools
4
python
def features_encoding(df, flag): 'Creates a HDF5 file containing\n all the features\n Rnx features are encoded in fingerprints' no_of_rxns = 10 fp_len = 4096 rxn_len = (fp_len + 2) pathway_len = 3 y_len = 1 if (flag == 'train'): sys_exit('Encoding feature for training data not available file data_train.h5 must be present in models folder') print('Encodining features for the Test set......') f = h5py_File(NamedTemporaryFile(delete=True), 'w') number = (((rxn_len * no_of_rxns) + pathway_len) + y_len) dset = f.create_dataset('data', (0, number), dtype='i2', maxshape=(None, number), compression='gzip') for row in tqdm(range(len(df))): pathway_rxns = np.array([]).reshape(0, (rxn_len * no_of_rxns)) rxns_list = [] for rxn_no_ in range(no_of_rxns): rxn_smiles_index = (rxn_no_ * 3) rxn_dg_index = (((rxn_no_ + 1) * 3) - 2) rxn_rule_score_index = (((rxn_no_ + 1) * 3) - 1) if (str(df.iloc[(row, rxn_smiles_index)]) != '0'): rxn_smiles = df.iloc[(row, rxn_smiles_index)] rxn_smiles_list = rxn_smiles.split('>>') if (len(rxn_smiles_list) == 2): sub_smiles = rxn_smiles_list[0] sub_m = Chem.MolFromSmiles(sub_smiles) sub_fp = AllChem.GetMorganFingerprintAsBitVect(sub_m, 2, nBits=2048) sub_arr = np.array([]) DataStructs.ConvertToNumpyArray(sub_fp, sub_arr) sub_fp = sub_arr.reshape(1, (- 1)) pro_smiles = rxn_smiles_list[1] pro_m = Chem.MolFromSmiles(pro_smiles) pro_fp = AllChem.GetMorganFingerprintAsBitVect(pro_m, 2, nBits=2048) pro_arr = np.zeros((1,)) DataStructs.ConvertToNumpyArray(pro_fp, pro_arr) pro_fp = pro_arr.reshape(1, (- 1)) rxn_fp = np.concatenate([sub_fp, pro_fp]).reshape(1, (- 1)) elif (len(rxn_smiles_list) < 2): pro_smiles = rxn_smiles_list[0] pro_m = Chem.MolFromSmiles(pro_smiles) pro_fp = AllChem.GetMorganFingerprintAsBitVect(pro_m, 2, nBits=fp_len) pro_arr = np.zeros((1,)) DataStructs.ConvertToNumpyArray(pro_fp, pro_arr) rxn_fp = pro_arr.reshape(1, (- 1)) else: print('There is a problem with the number of components in the reaction') else: rxn_fp = np.zeros(fp_len).reshape(1, (- 1)) rxn_dg = df.iloc[(row, rxn_dg_index)].reshape(1, (- 1)) rxn_rule_score = df.iloc[(row, rxn_rule_score_index)].reshape(1, (- 1)) rxns_list.extend([rxn_fp, rxn_dg, rxn_rule_score]) pathway_rxns = np.concatenate(rxns_list, axis=1).reshape(1, (- 1)) pathway_dg = df.loc[(row, 'Pathway_Delta_G')].reshape(1, (- 1)) pathway_flux = df.loc[(row, 'Pathway_Flux')].reshape(1, (- 1)) pathway_score = df.loc[(row, 'Pathway_Score')].reshape(1, (- 1)) pathway_y = df.loc[(row, 'Round1_OR')].reshape(1, (- 1)) feature = np.concatenate((pathway_rxns, pathway_dg, pathway_flux, pathway_score, pathway_y), axis=1) dset.resize((dset.shape[0] + feature.shape[0]), axis=0) dset[(- feature.shape[0]):] = feature return dset
def features_encoding(df, flag): 'Creates a HDF5 file containing\n all the features\n Rnx features are encoded in fingerprints' no_of_rxns = 10 fp_len = 4096 rxn_len = (fp_len + 2) pathway_len = 3 y_len = 1 if (flag == 'train'): sys_exit('Encoding feature for training data not available file data_train.h5 must be present in models folder') print('Encodining features for the Test set......') f = h5py_File(NamedTemporaryFile(delete=True), 'w') number = (((rxn_len * no_of_rxns) + pathway_len) + y_len) dset = f.create_dataset('data', (0, number), dtype='i2', maxshape=(None, number), compression='gzip') for row in tqdm(range(len(df))): pathway_rxns = np.array([]).reshape(0, (rxn_len * no_of_rxns)) rxns_list = [] for rxn_no_ in range(no_of_rxns): rxn_smiles_index = (rxn_no_ * 3) rxn_dg_index = (((rxn_no_ + 1) * 3) - 2) rxn_rule_score_index = (((rxn_no_ + 1) * 3) - 1) if (str(df.iloc[(row, rxn_smiles_index)]) != '0'): rxn_smiles = df.iloc[(row, rxn_smiles_index)] rxn_smiles_list = rxn_smiles.split('>>') if (len(rxn_smiles_list) == 2): sub_smiles = rxn_smiles_list[0] sub_m = Chem.MolFromSmiles(sub_smiles) sub_fp = AllChem.GetMorganFingerprintAsBitVect(sub_m, 2, nBits=2048) sub_arr = np.array([]) DataStructs.ConvertToNumpyArray(sub_fp, sub_arr) sub_fp = sub_arr.reshape(1, (- 1)) pro_smiles = rxn_smiles_list[1] pro_m = Chem.MolFromSmiles(pro_smiles) pro_fp = AllChem.GetMorganFingerprintAsBitVect(pro_m, 2, nBits=2048) pro_arr = np.zeros((1,)) DataStructs.ConvertToNumpyArray(pro_fp, pro_arr) pro_fp = pro_arr.reshape(1, (- 1)) rxn_fp = np.concatenate([sub_fp, pro_fp]).reshape(1, (- 1)) elif (len(rxn_smiles_list) < 2): pro_smiles = rxn_smiles_list[0] pro_m = Chem.MolFromSmiles(pro_smiles) pro_fp = AllChem.GetMorganFingerprintAsBitVect(pro_m, 2, nBits=fp_len) pro_arr = np.zeros((1,)) DataStructs.ConvertToNumpyArray(pro_fp, pro_arr) rxn_fp = pro_arr.reshape(1, (- 1)) else: print('There is a problem with the number of components in the reaction') else: rxn_fp = np.zeros(fp_len).reshape(1, (- 1)) rxn_dg = df.iloc[(row, rxn_dg_index)].reshape(1, (- 1)) rxn_rule_score = df.iloc[(row, rxn_rule_score_index)].reshape(1, (- 1)) rxns_list.extend([rxn_fp, rxn_dg, rxn_rule_score]) pathway_rxns = np.concatenate(rxns_list, axis=1).reshape(1, (- 1)) pathway_dg = df.loc[(row, 'Pathway_Delta_G')].reshape(1, (- 1)) pathway_flux = df.loc[(row, 'Pathway_Flux')].reshape(1, (- 1)) pathway_score = df.loc[(row, 'Pathway_Score')].reshape(1, (- 1)) pathway_y = df.loc[(row, 'Round1_OR')].reshape(1, (- 1)) feature = np.concatenate((pathway_rxns, pathway_dg, pathway_flux, pathway_score, pathway_y), axis=1) dset.resize((dset.shape[0] + feature.shape[0]), axis=0) dset[(- feature.shape[0]):] = feature return dset<|docstring|>Creates a HDF5 file containing all the features Rnx features are encoded in fingerprints<|endoftext|>
62461e38a6ff41a7e5f41d950ec670cddb95ae3166eecd309a5492fa05aed3e5
def transform_to_matrix(dset, model_file): "'Transforms the prediction dataset into\n an appropriate matrix which is suitable for\n XGBoost" X_test = dset[(:, :(- 1))] Y_test = dset[(:, (- 1))] if (not os_path.exists(model_file)): sys_exit(f'{model_file} not found') else: trained_model = pickle_load(open(model_file, 'rb')) dset_matrix = DMatrix(X_test, label=Y_test) trained_model_score = trained_model.predict(dset_matrix) trained_model_score_1 = trained_model_score[(:, 1)].reshape((- 1), 1) X_test = np.concatenate((X_test, trained_model_score_1), axis=1) dset_matrix = DMatrix(X_test) return dset_matrix
'Transforms the prediction dataset into an appropriate matrix which is suitable for XGBoost
rptools/rpscore/rpScore.py
transform_to_matrix
brsynth/rpTools
4
python
def transform_to_matrix(dset, model_file): "'Transforms the prediction dataset into\n an appropriate matrix which is suitable for\n XGBoost" X_test = dset[(:, :(- 1))] Y_test = dset[(:, (- 1))] if (not os_path.exists(model_file)): sys_exit(f'{model_file} not found') else: trained_model = pickle_load(open(model_file, 'rb')) dset_matrix = DMatrix(X_test, label=Y_test) trained_model_score = trained_model.predict(dset_matrix) trained_model_score_1 = trained_model_score[(:, 1)].reshape((- 1), 1) X_test = np.concatenate((X_test, trained_model_score_1), axis=1) dset_matrix = DMatrix(X_test) return dset_matrix
def transform_to_matrix(dset, model_file): "'Transforms the prediction dataset into\n an appropriate matrix which is suitable for\n XGBoost" X_test = dset[(:, :(- 1))] Y_test = dset[(:, (- 1))] if (not os_path.exists(model_file)): sys_exit(f'{model_file} not found') else: trained_model = pickle_load(open(model_file, 'rb')) dset_matrix = DMatrix(X_test, label=Y_test) trained_model_score = trained_model.predict(dset_matrix) trained_model_score_1 = trained_model_score[(:, 1)].reshape((- 1), 1) X_test = np.concatenate((X_test, trained_model_score_1), axis=1) dset_matrix = DMatrix(X_test) return dset_matrix<|docstring|>'Transforms the prediction dataset into an appropriate matrix which is suitable for XGBoost<|endoftext|>
a76cded193f75f48b51490bd006db2026fa8affdff13f8c49cb6e5983205c33f
def log_entrance_exit(func): '\n Decorator to log the entrance and exit of method calls.\n\n Args:\n func: The function to be wrapped.\n\n Returns:\n Wrapped function.\n\n ' @functools.wraps(func) def wrapper(*args, **kwargs): logger.info('Entering %s', func.__name__) t0 = timer() try: f_result = func(*args, **kwargs) except Exception: logger.exception('Unhandled exception occurred.') raise logger.info('Exiting %s [%s]', func.__name__, '{0:.4f}s'.format((timer() - t0))) return f_result return wrapper
Decorator to log the entrance and exit of method calls. Args: func: The function to be wrapped. Returns: Wrapped function.
helios/utilities/logging_utils.py
log_entrance_exit
harris-helios/helios-sdk-python
3
python
def log_entrance_exit(func): '\n Decorator to log the entrance and exit of method calls.\n\n Args:\n func: The function to be wrapped.\n\n Returns:\n Wrapped function.\n\n ' @functools.wraps(func) def wrapper(*args, **kwargs): logger.info('Entering %s', func.__name__) t0 = timer() try: f_result = func(*args, **kwargs) except Exception: logger.exception('Unhandled exception occurred.') raise logger.info('Exiting %s [%s]', func.__name__, '{0:.4f}s'.format((timer() - t0))) return f_result return wrapper
def log_entrance_exit(func): '\n Decorator to log the entrance and exit of method calls.\n\n Args:\n func: The function to be wrapped.\n\n Returns:\n Wrapped function.\n\n ' @functools.wraps(func) def wrapper(*args, **kwargs): logger.info('Entering %s', func.__name__) t0 = timer() try: f_result = func(*args, **kwargs) except Exception: logger.exception('Unhandled exception occurred.') raise logger.info('Exiting %s [%s]', func.__name__, '{0:.4f}s'.format((timer() - t0))) return f_result return wrapper<|docstring|>Decorator to log the entrance and exit of method calls. Args: func: The function to be wrapped. Returns: Wrapped function.<|endoftext|>
f14f5150508151543cadf42963327329ef83e73e44fce59731859e5e069e4606
@property def BgpEvpnJoinSynchIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76.BgpEvpnJoinSynchIgmp): An instance of the BgpEvpnJoinSynchIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76 import BgpEvpnJoinSynchIgmp if (self._properties.get('BgpEvpnJoinSynchIgmp', None) is not None): return self._properties.get('BgpEvpnJoinSynchIgmp') else: return BgpEvpnJoinSynchIgmp(self)._select()
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76.BgpEvpnJoinSynchIgmp): An instance of the BgpEvpnJoinSynchIgmp class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BgpEvpnJoinSynchIgmp
OpenIxia/ixnetwork_restpy
20
python
@property def BgpEvpnJoinSynchIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76.BgpEvpnJoinSynchIgmp): An instance of the BgpEvpnJoinSynchIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76 import BgpEvpnJoinSynchIgmp if (self._properties.get('BgpEvpnJoinSynchIgmp', None) is not None): return self._properties.get('BgpEvpnJoinSynchIgmp') else: return BgpEvpnJoinSynchIgmp(self)._select()
@property def BgpEvpnJoinSynchIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76.BgpEvpnJoinSynchIgmp): An instance of the BgpEvpnJoinSynchIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76 import BgpEvpnJoinSynchIgmp if (self._properties.get('BgpEvpnJoinSynchIgmp', None) is not None): return self._properties.get('BgpEvpnJoinSynchIgmp') else: return BgpEvpnJoinSynchIgmp(self)._select()<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchigmp_f89f38fca85b1442229391afe5b95e76.BgpEvpnJoinSynchIgmp): An instance of the BgpEvpnJoinSynchIgmp class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
05746c732b6cde40884317f59fd23ff7bbeee6bfe9a7235050aad0aa680dd6b6
@property def BgpEvpnJoinSynchMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d.BgpEvpnJoinSynchMld): An instance of the BgpEvpnJoinSynchMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d import BgpEvpnJoinSynchMld if (self._properties.get('BgpEvpnJoinSynchMld', None) is not None): return self._properties.get('BgpEvpnJoinSynchMld') else: return BgpEvpnJoinSynchMld(self)._select()
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d.BgpEvpnJoinSynchMld): An instance of the BgpEvpnJoinSynchMld class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BgpEvpnJoinSynchMld
OpenIxia/ixnetwork_restpy
20
python
@property def BgpEvpnJoinSynchMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d.BgpEvpnJoinSynchMld): An instance of the BgpEvpnJoinSynchMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d import BgpEvpnJoinSynchMld if (self._properties.get('BgpEvpnJoinSynchMld', None) is not None): return self._properties.get('BgpEvpnJoinSynchMld') else: return BgpEvpnJoinSynchMld(self)._select()
@property def BgpEvpnJoinSynchMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d.BgpEvpnJoinSynchMld): An instance of the BgpEvpnJoinSynchMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d import BgpEvpnJoinSynchMld if (self._properties.get('BgpEvpnJoinSynchMld', None) is not None): return self._properties.get('BgpEvpnJoinSynchMld') else: return BgpEvpnJoinSynchMld(self)._select()<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnjoinsynchmld_4f5a831aa8e923cbdbff69a4f078837d.BgpEvpnJoinSynchMld): An instance of the BgpEvpnJoinSynchMld class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
d43ec4f2fffd99f8e6ff1503f5d5c89a34f66e0487f9d813378c9a335855b14b
@property def BgpEvpnLeaveSynchIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e.BgpEvpnLeaveSynchIgmp): An instance of the BgpEvpnLeaveSynchIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e import BgpEvpnLeaveSynchIgmp if (self._properties.get('BgpEvpnLeaveSynchIgmp', None) is not None): return self._properties.get('BgpEvpnLeaveSynchIgmp') else: return BgpEvpnLeaveSynchIgmp(self)._select()
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e.BgpEvpnLeaveSynchIgmp): An instance of the BgpEvpnLeaveSynchIgmp class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BgpEvpnLeaveSynchIgmp
OpenIxia/ixnetwork_restpy
20
python
@property def BgpEvpnLeaveSynchIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e.BgpEvpnLeaveSynchIgmp): An instance of the BgpEvpnLeaveSynchIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e import BgpEvpnLeaveSynchIgmp if (self._properties.get('BgpEvpnLeaveSynchIgmp', None) is not None): return self._properties.get('BgpEvpnLeaveSynchIgmp') else: return BgpEvpnLeaveSynchIgmp(self)._select()
@property def BgpEvpnLeaveSynchIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e.BgpEvpnLeaveSynchIgmp): An instance of the BgpEvpnLeaveSynchIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e import BgpEvpnLeaveSynchIgmp if (self._properties.get('BgpEvpnLeaveSynchIgmp', None) is not None): return self._properties.get('BgpEvpnLeaveSynchIgmp') else: return BgpEvpnLeaveSynchIgmp(self)._select()<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchigmp_411f258090ec14c0d716cabc5159977e.BgpEvpnLeaveSynchIgmp): An instance of the BgpEvpnLeaveSynchIgmp class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
62bc6b0a7e41d09f163ddf52c00324b931db761bcabdf22007a022e23c0d1459
@property def BgpEvpnLeaveSynchMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a.BgpEvpnLeaveSynchMld): An instance of the BgpEvpnLeaveSynchMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a import BgpEvpnLeaveSynchMld if (self._properties.get('BgpEvpnLeaveSynchMld', None) is not None): return self._properties.get('BgpEvpnLeaveSynchMld') else: return BgpEvpnLeaveSynchMld(self)._select()
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a.BgpEvpnLeaveSynchMld): An instance of the BgpEvpnLeaveSynchMld class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BgpEvpnLeaveSynchMld
OpenIxia/ixnetwork_restpy
20
python
@property def BgpEvpnLeaveSynchMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a.BgpEvpnLeaveSynchMld): An instance of the BgpEvpnLeaveSynchMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a import BgpEvpnLeaveSynchMld if (self._properties.get('BgpEvpnLeaveSynchMld', None) is not None): return self._properties.get('BgpEvpnLeaveSynchMld') else: return BgpEvpnLeaveSynchMld(self)._select()
@property def BgpEvpnLeaveSynchMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a.BgpEvpnLeaveSynchMld): An instance of the BgpEvpnLeaveSynchMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a import BgpEvpnLeaveSynchMld if (self._properties.get('BgpEvpnLeaveSynchMld', None) is not None): return self._properties.get('BgpEvpnLeaveSynchMld') else: return BgpEvpnLeaveSynchMld(self)._select()<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnleavesynchmld_226fbb8fe75f87a6460aecae872f059a.BgpEvpnLeaveSynchMld): An instance of the BgpEvpnLeaveSynchMld class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
d0e73b24f58316f44f530687fb953e2521d3f2954fb6055f168d659793c7c456
@property def BgpEvpnSmetIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb.BgpEvpnSmetIgmp): An instance of the BgpEvpnSmetIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb import BgpEvpnSmetIgmp if (self._properties.get('BgpEvpnSmetIgmp', None) is not None): return self._properties.get('BgpEvpnSmetIgmp') else: return BgpEvpnSmetIgmp(self)._select()
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb.BgpEvpnSmetIgmp): An instance of the BgpEvpnSmetIgmp class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BgpEvpnSmetIgmp
OpenIxia/ixnetwork_restpy
20
python
@property def BgpEvpnSmetIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb.BgpEvpnSmetIgmp): An instance of the BgpEvpnSmetIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb import BgpEvpnSmetIgmp if (self._properties.get('BgpEvpnSmetIgmp', None) is not None): return self._properties.get('BgpEvpnSmetIgmp') else: return BgpEvpnSmetIgmp(self)._select()
@property def BgpEvpnSmetIgmp(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb.BgpEvpnSmetIgmp): An instance of the BgpEvpnSmetIgmp class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb import BgpEvpnSmetIgmp if (self._properties.get('BgpEvpnSmetIgmp', None) is not None): return self._properties.get('BgpEvpnSmetIgmp') else: return BgpEvpnSmetIgmp(self)._select()<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetigmp_68fa5fa63ce581945025c1253038bccb.BgpEvpnSmetIgmp): An instance of the BgpEvpnSmetIgmp class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
f757abc68ee1b2bea661e37e0fc13e76e89c41dff215d1b64d3808924b968d41
@property def BgpEvpnSmetMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a.BgpEvpnSmetMld): An instance of the BgpEvpnSmetMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a import BgpEvpnSmetMld if (self._properties.get('BgpEvpnSmetMld', None) is not None): return self._properties.get('BgpEvpnSmetMld') else: return BgpEvpnSmetMld(self)._select()
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a.BgpEvpnSmetMld): An instance of the BgpEvpnSmetMld class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BgpEvpnSmetMld
OpenIxia/ixnetwork_restpy
20
python
@property def BgpEvpnSmetMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a.BgpEvpnSmetMld): An instance of the BgpEvpnSmetMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a import BgpEvpnSmetMld if (self._properties.get('BgpEvpnSmetMld', None) is not None): return self._properties.get('BgpEvpnSmetMld') else: return BgpEvpnSmetMld(self)._select()
@property def BgpEvpnSmetMld(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a.BgpEvpnSmetMld): An instance of the BgpEvpnSmetMld class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a import BgpEvpnSmetMld if (self._properties.get('BgpEvpnSmetMld', None) is not None): return self._properties.get('BgpEvpnSmetMld') else: return BgpEvpnSmetMld(self)._select()<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpevpnsmetmld_8d81cf97f583ad4547c03c6110c5168a.BgpEvpnSmetMld): An instance of the BgpEvpnSmetMld class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
1bbef29c3b6d51d665284224202ab8559f679173129132becb1a91f30b75a1f3
@property def PnTLVList(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57.PnTLVList): An instance of the PnTLVList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57 import PnTLVList if (self._properties.get('PnTLVList', None) is not None): return self._properties.get('PnTLVList') else: return PnTLVList(self)
Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57.PnTLVList): An instance of the PnTLVList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
PnTLVList
OpenIxia/ixnetwork_restpy
20
python
@property def PnTLVList(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57.PnTLVList): An instance of the PnTLVList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57 import PnTLVList if (self._properties.get('PnTLVList', None) is not None): return self._properties.get('PnTLVList') else: return PnTLVList(self)
@property def PnTLVList(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57.PnTLVList): An instance of the PnTLVList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57 import PnTLVList if (self._properties.get('PnTLVList', None) is not None): return self._properties.get('PnTLVList') else: return PnTLVList(self)<|docstring|>Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.pntlvlist_f29efa99695d122f75b5efd68698cd57.PnTLVList): An instance of the PnTLVList class Raises ------ - ServerError: The server has encountered an uncategorized error condition<|endoftext|>
d85ced5ab7c85250a140f0b4979ab964269eba02450abae5203a254082cda050
@property def Active(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): Activate/Deactivate Configuration.\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))
Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): Activate/Deactivate Configuration.
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
Active
OpenIxia/ixnetwork_restpy
20
python
@property def Active(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): Activate/Deactivate Configuration.\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))
@property def Active(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): Activate/Deactivate Configuration.\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))<|docstring|>Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): Activate/Deactivate Configuration.<|endoftext|>
948509925c0d2d8b2999abf271c815ec2dfc487cd3a5cccd07dc78ad61b285b7
@property def AdRouteLabel(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AD Route Label\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdRouteLabel']))
Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): AD Route Label
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
AdRouteLabel
OpenIxia/ixnetwork_restpy
20
python
@property def AdRouteLabel(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AD Route Label\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdRouteLabel']))
@property def AdRouteLabel(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AD Route Label\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdRouteLabel']))<|docstring|>Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): AD Route Label<|endoftext|>
00f4e6f5c40e77357230924b21b9c31264b210da6daa62c22bfee9565a16201f
@property def AsNumber2Bytes(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AS 2-Bytes\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsNumber2Bytes']))
Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): AS 2-Bytes
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
AsNumber2Bytes
OpenIxia/ixnetwork_restpy
20
python
@property def AsNumber2Bytes(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AS 2-Bytes\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsNumber2Bytes']))
@property def AsNumber2Bytes(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AS 2-Bytes\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsNumber2Bytes']))<|docstring|>Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): AS 2-Bytes<|endoftext|>
bc890691b0d77455ef58d7eea42a0cc019dcc5c8f4809408303c7b6a31a1a797
@property def AsNumber4Bytes(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AS 4-Bytes\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsNumber4Bytes']))
Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): AS 4-Bytes
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
AsNumber4Bytes
OpenIxia/ixnetwork_restpy
20
python
@property def AsNumber4Bytes(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AS 4-Bytes\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsNumber4Bytes']))
@property def AsNumber4Bytes(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): AS 4-Bytes\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsNumber4Bytes']))<|docstring|>Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): AS 4-Bytes<|endoftext|>
f303ae99832c8ebf588b375be279679fb68d85cacc6b99d4e16394b92b1be4ff
@property def BVlanId(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN ID\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BVlanId']))
Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN ID
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BVlanId
OpenIxia/ixnetwork_restpy
20
python
@property def BVlanId(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN ID\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BVlanId']))
@property def BVlanId(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN ID\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BVlanId']))<|docstring|>Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN ID<|endoftext|>
c0161e16efe7391776cc06b96ec427e39cf7ab1bec9ebb9011e9779618bd08f0
@property def BVlanPriority(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN Priority\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BVlanPriority']))
Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN Priority
ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/broadcastdomainv4_ada8e5062c0947bde8a3de0fc7b9d534.py
BVlanPriority
OpenIxia/ixnetwork_restpy
20
python
@property def BVlanPriority(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN Priority\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BVlanPriority']))
@property def BVlanPriority(self): '\n Returns\n -------\n - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN Priority\n ' from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BVlanPriority']))<|docstring|>Returns ------- - obj(ixnetwork_restpy.multivalue.Multivalue): B VLAN Priority<|endoftext|>