File size: 16,097 Bytes
7c23da9
 
 
 
cd4d367
7c23da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
001352b
7c23da9
2954102
 
 
 
b615d10
 
 
 
f4fc7e9
6951d33
7c23da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6951d33
7c23da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954102
 
 
 
e417aa0
2954102
 
9e6d8d6
 
 
 
 
 
 
80c77f9
 
 
 
 
 
 
7c23da9
 
 
 
 
f7e0826
7c23da9
001352b
 
 
 
 
 
 
bad90d6
f504e2e
bad90d6
 
 
f504e2e
bad90d6
b615d10
 
 
 
 
 
 
7c23da9
 
 
 
 
 
 
 
 
 
 
2954102
 
 
 
e417aa0
2954102
 
9e6d8d6
 
 
 
 
 
 
80c77f9
 
 
 
 
 
 
7c23da9
 
 
 
 
1b46590
7c23da9
001352b
 
 
 
 
 
 
f504e2e
 
 
 
 
 
 
b615d10
6aec7d7
b615d10
 
 
 
 
7c23da9
 
 
 
05199ad
7c23da9
 
 
 
b615d10
 
7c23da9
 
2954102
 
 
 
f8d386e
b615d10
 
 
 
 
 
 
 
5aaad9b
b615d10
001352b
 
 
 
05199ad
7c23da9
 
 
 
 
 
 
80c77f9
 
 
 
 
 
 
 
 
7c23da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""The TweetTemporalShift benchmark."""
import json
import datasets

_VERSION = "1.1.4"
_TWEET_TEMPORAL_DESCRIPTION = """"""
_TWEET_TEMPORAL_CITATION = """"""
_TWEET_TOPIC_DESCRIPTION = """
TweetTopic is a multi-label twitter topic classification task, where each example consists of a tweet 
and a set of topics. One tweet can be associated with multiple topics, and the training/validation tweets are taken 
from September 2019 to August 2020, while the test tweets are taken from September 2020 to August 2021.
Following the original work, we evaluate with macro F1 score."""
_TWEET_TOPIC_CITATION = """\
@inproceedings{antypas-etal-2022-twitter,
    title = "{T}witter Topic Classification",
    author = "Antypas, Dimosthenis  and
      Ushio, Asahi  and
      Camacho-Collados, Jose  and
      Silva, Vitor  and
      Neves, Leonardo  and
      Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2022.coling-1.299",
    pages = "3386--3400",
    abstract = "Social media platforms host discussions about a wide variety of topics that arise everyday. Making sense of all the content and organising it into categories is an arduous task. A common way to deal with this issue is relying on topic modeling, but topics discovered using this technique are difficult to interpret and can differ from corpus to corpus. In this paper, we present a new task based on tweet topic classification and release two associated datasets. Given a wide range of topics covering the most important discussion points in social media, we provide training and testing data from recent time periods that can be used to evaluate tweet classification models. Moreover, we perform a quantitative evaluation and analysis of current general- and domain-specific language models on the task, which provide more insights on the challenges and nature of the task.",
}
"""
_TWEET_NER7_DESCRIPTION = """
TweetNER is a named-entity recognition dataset on Twitter. The training/validation tweets are taken 
from September 2019 to August 2020, while the test tweets are taken from September 2020 to August 2021.
Following the original work, we evaluate with span F1 score.
"""
_TWEET_NER7_CITATION = """\
@inproceedings{ushio-etal-2022-named,
    title = "Named Entity Recognition in {T}witter: A Dataset and Analysis on Short-Term Temporal Shifts",
    author = "Ushio, Asahi  and
      Barbieri, Francesco  and
      Sousa, Vitor  and
      Neves, Leonardo  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = nov,
    year = "2022",
    address = "Online only",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.aacl-main.25",
    pages = "309--319",
    abstract = "Recent progress in language model pre-training has led to important improvements in Named Entity Recognition (NER). Nonetheless, this progress has been mainly tested in well-formatted documents such as news, Wikipedia, or scientific articles. In social media the landscape is different, in which it adds another layer of complexity due to its noisy and dynamic nature. In this paper, we focus on NER in Twitter, one of the largest social media platforms, and construct a new NER dataset, TweetNER7, which contains seven entity types annotated over 11,382 tweets from September 2019 to August 2021. The dataset was constructed by carefully distributing the tweets over time and taking representative trends as a basis. Along with the dataset, we provide a set of language model baselines and perform an analysis on the language model performance on the task, especially analyzing the impact of different time periods. In particular, we focus on three important temporal aspects in our analysis: short-term degradation of NER models over time, strategies to fine-tune a language model over different periods, and self-labeling as an alternative to lack of recently-labeled data. TweetNER7 is released publicly (https://huggingface.co/datasets/tner/tweetner7) along with the models fine-tuned on it (NER models have been integrated into TweetNLP and can be found at https://github.com/asahi417/tner/tree/master/examples/tweetner7{\_}paper).",
}
"""
_TWEET_NERD_DESCRIPTION = """TBA"""
_TWEET_NERD_CITATION = """\
@article{mishra2022tweetnerd,
  title={TweetNERD--End to End Entity Linking Benchmark for Tweets},
  author={Mishra, Shubhanshu and Saini, Aman and Makki, Raheleh and Mehta, Sneha and Haghighi, Aria and Mollahosseini, Ali},
  journal={arXiv preprint arXiv:2210.08129},
  year={2022}
}
"""
_TWEET_SENTIMENT_DESCRIPTION = """TBA"""
_TWEET_SENTIMENT_CITATION = """\
TBA
"""
_TWEET_HATE_DESCRIPTION = """TBA"""
_TWEET_HATE_CITATION = """\
TBA
"""
_TWEET_EMOJI_DESCRIPTION = """TBA"""
_TWEET_EMOJI_CITATION = """\
TBA
"""
_ROOT_URL = "https://huggingface.co/datasets/tweettemposhift/tweet_temporal_shift/resolve/main/data"


class TweetTemporalShiftConfig(datasets.BuilderConfig):
    """BuilderConfig for TweetTemporalShift."""

    def __init__(self, features, data_url, citation, label_classes=("False", "True"), **kwargs):
        """BuilderConfig for TweetTemporalShift.

        Args:
          features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
          data_url: `string`, url to download the zip file from.
          citation: `string`, citation for the data set.
          url: `string`, url for information about the data set.
          label_classes: `list[string]`, the list of classes for the label if the
            label is present as a string. Non-string labels will be cast to either
            "False" or "True".
          **kwargs: keyword arguments forwarded to super.
        """
        super(TweetTemporalShiftConfig, self).__init__(version=datasets.Version(_VERSION), **kwargs)
        self.features = features
        self.label_classes = label_classes
        self.data_url = data_url
        self.citation = citation


class TweetTemporalShift(datasets.GeneratorBasedBuilder):
    """The TweetTemporalShift benchmark."""

    BUILDER_CONFIGS = [
        TweetTemporalShiftConfig(
            name="topic_temporal",
            description=_TWEET_TOPIC_DESCRIPTION,
            citation=_TWEET_TOPIC_CITATION,
            features=["text", "gold_label_list", "date"],
            data_url=f"{_ROOT_URL}/tweet_topic",
        ),
        TweetTemporalShiftConfig(
            name="hate_temporal",
            description=_TWEET_HATE_DESCRIPTION,
            citation=_TWEET_HATE_CITATION,
            features=["text", "gold_label_binary", "date", "id"],
            data_url=f"{_ROOT_URL}/tweet_hate",
        ),
        TweetTemporalShiftConfig(
            name="hate_balance_temporal",
            description=_TWEET_HATE_DESCRIPTION,
            citation=_TWEET_HATE_CITATION,
            features=["text", "gold_label_binary", "date", "id"],
            data_url=f"{_ROOT_URL}/tweet_hate_balance",
        ),
        TweetTemporalShiftConfig(
            name="ner_temporal",
            description=_TWEET_NER7_DESCRIPTION,
            citation=_TWEET_NER7_CITATION,
            features=["text", "text_tokenized", "gold_label_sequence", "date"],
            data_url=f"{_ROOT_URL}/tweet_ner",
        ),
        TweetTemporalShiftConfig(
            name="nerd_temporal",
            description=_TWEET_NERD_DESCRIPTION,
            citation=_TWEET_NERD_CITATION,
            features=["gold_label_binary", "target", "text", "definition", "text_start", "text_end", "date"],
            data_url=f"{_ROOT_URL}/tweet_nerd_new",
        ),
        TweetTemporalShiftConfig(
            name="sentiment_temporal",
            description=_TWEET_SENTIMENT_DESCRIPTION,
            citation=_TWEET_SENTIMENT_CITATION,
            features=["gold_label_binary", "text", "date"],
            data_url=f"{_ROOT_URL}/tweet_sentiment",
        ),
        TweetTemporalShiftConfig(
            name="sentiment_small_temporal",
            description=_TWEET_SENTIMENT_DESCRIPTION,
            citation=_TWEET_SENTIMENT_CITATION,
            features=["gold_label_binary", "text", "date"],
            data_url=f"{_ROOT_URL}/tweet_sentiment_small",
        ),
        TweetTemporalShiftConfig(
            name="emoji_temporal",
            description=_TWEET_EMOJI_DESCRIPTION,
            citation=_TWEET_EMOJI_CITATION,
            features=["text", "date", "gold_label"],
            data_url=f"{_ROOT_URL}/tweet_emoji",
        ),
    ]
    for s in range(3):
        for i in range(4):
            BUILDER_CONFIGS += [
                TweetTemporalShiftConfig(
                    name=f"topic_random{i}_seed{s}",
                    description=_TWEET_TOPIC_DESCRIPTION,
                    citation=_TWEET_TOPIC_CITATION,
                    features=["text", "gold_label_list", "date"],
                    data_url=f"{_ROOT_URL}/tweet_topic_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"hate_random{i}_seed{s}",
                    description=_TWEET_HATE_DESCRIPTION,
                    citation=_TWEET_HATE_CITATION,
                    features=["text", "gold_label_binary", "date", "id"],
                    data_url=f"{_ROOT_URL}/tweet_hate_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"hate_balance_random{i}_seed{s}",
                    description=_TWEET_HATE_DESCRIPTION,
                    citation=_TWEET_HATE_CITATION,
                    features=["text", "gold_label_binary", "date", "id"],
                    data_url=f"{_ROOT_URL}/tweet_hate_balance_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"ner_random{i}_seed{s}",
                    description=_TWEET_NER7_DESCRIPTION,
                    citation=_TWEET_NER7_CITATION,
                    features=["text", "text_tokenized", "gold_label_sequence", "date"],
                    data_url=f"{_ROOT_URL}/tweet_ner_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"nerd_random{i}_seed{s}",
                    description=_TWEET_NERD_DESCRIPTION,
                    citation=_TWEET_NERD_CITATION,
                    features=["gold_label_binary", "target", "text", "definition", "text_start", "text_end", "date"],
                    data_url=f"{_ROOT_URL}/tweet_nerd_new_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"sentiment_random{i}_seed{s}",
                    description=_TWEET_SENTIMENT_DESCRIPTION,
                    citation=_TWEET_SENTIMENT_CITATION,
                    features=["gold_label_binary", "text", "date"],
                    data_url=f"{_ROOT_URL}/tweet_sentiment_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"sentiment_small_random{i}_seed{s}",
                    description=_TWEET_SENTIMENT_DESCRIPTION,
                    citation=_TWEET_SENTIMENT_CITATION,
                    features=["gold_label_binary", "text", "date"],
                    data_url=f"{_ROOT_URL}/tweet_sentiment_small_test{i}_seed{s}",
                ),
                TweetTemporalShiftConfig(
                    name=f"emoji_random{i}_seed{s}",
                    description=_TWEET_EMOJI_DESCRIPTION,
                    citation=_TWEET_EMOJI_CITATION,
                    features=["text", "date", "gold_label"],
                    data_url=f"{_ROOT_URL}/tweet_emoji_test{i}_seed{s}",
                ),
            ]

    def _info(self):
        features = {feature: datasets.Value("string") for feature in self.config.features}
        if "topic" in self.config.name:
            names = [
                "arts_&_culture", "business_&_entrepreneurs", "celebrity_&_pop_culture", "diaries_&_daily_life",
                "family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
                "learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
                "science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"
            ]
            features["gold_label_list"] = datasets.Sequence(
                datasets.features.ClassLabel(names=names))
        elif "hate" in self.config.name:
            features["text"] = datasets.Value("string")
            features["gold_label_binary"] = datasets.Value("int32")
            features["date"] = datasets.Value("string")
            features["id"] = datasets.Value("string")
        elif "emoji" in self.config.name:
            features["text"] = datasets.Value("string")
            features["date"] = datasets.Value("string")
            url_map = "https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji/map.txt"
            dl_manager = datasets.utils.download_manager.DownloadManager()
            with open(dl_manager.download(url_map)) as f:
                label_classes = f.readlines()
            label_classes = [x.strip('\n') for x in label_classes]
            label_classes = [x for n, x in enumerate(label_classes) if n != 68]
            features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
        elif "sentiment" in self.config.name:
            features["text"] = datasets.Value("string")
            features["gold_label_binary"] = datasets.Value("int32")
            features["date"] = datasets.Value("string")
        elif "nerd" in self.config.name:
            features["target"] = datasets.Value("string")
            features["text"] = datasets.Value("string")
            features["definition"] = datasets.Value("string")
            features["text_start"] = datasets.Value("int32")
            features["text_end"] = datasets.Value("int32")
            features["gold_label_binary"] = datasets.Value("int32")
            features["date"] = datasets.Value("string")
        elif "ner" in self.config.name:
            names = [
                "B-corporation", "B-creative_work", "B-event", "B-group", "B-location", "B-person", "B-product",
                "I-corporation", "I-creative_work", "I-event", "I-group", "I-location", "I-person", "I-product", "O"]
            features["gold_label_sequence"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
            features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
            features["entities"] = datasets.features.Sequence(
                {"entity": datasets.Value("string"), "type": datasets.Value("string")}
            )
        return datasets.DatasetInfo(
            description=_TWEET_TEMPORAL_DESCRIPTION + "\n" + self.config.description,
            features=datasets.Features(features),
            citation=self.config.citation + "\n" + _TWEET_TEMPORAL_CITATION,
        )

    def _split_generators(self, dl_manager):
        splits = ["train", "test", "validation"]
        if "temporal" in self.config.name:
            splits += ["test_1", "test_2", "test_3", "test_4"]
        downloaded_file = dl_manager.download_and_extract(
            {s: f"{self.config.data_url}/{s}.jsonl" for s in splits})
        return [datasets.SplitGenerator(name=s, gen_kwargs={"filepath": downloaded_file[s]}) for s in splits]

    def _generate_examples(self, filepath):
        _key = 0
        with open(filepath, encoding="utf-8") as f:
            _list = [i for i in f.read().split("\n") if len(i) > 0]
            for i in _list:
                data = json.loads(i)
                yield _key, data
                _key += 1