File size: 16,097 Bytes
7c23da9 cd4d367 7c23da9 001352b 7c23da9 2954102 b615d10 f4fc7e9 6951d33 7c23da9 6951d33 7c23da9 2954102 e417aa0 2954102 9e6d8d6 80c77f9 7c23da9 f7e0826 7c23da9 001352b bad90d6 f504e2e bad90d6 f504e2e bad90d6 b615d10 7c23da9 2954102 e417aa0 2954102 9e6d8d6 80c77f9 7c23da9 1b46590 7c23da9 001352b f504e2e b615d10 6aec7d7 b615d10 7c23da9 05199ad 7c23da9 b615d10 7c23da9 2954102 f8d386e b615d10 5aaad9b b615d10 001352b 05199ad 7c23da9 80c77f9 7c23da9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
"""The TweetTemporalShift benchmark."""
import json
import datasets
_VERSION = "1.1.4"
_TWEET_TEMPORAL_DESCRIPTION = """"""
_TWEET_TEMPORAL_CITATION = """"""
_TWEET_TOPIC_DESCRIPTION = """
TweetTopic is a multi-label twitter topic classification task, where each example consists of a tweet
and a set of topics. One tweet can be associated with multiple topics, and the training/validation tweets are taken
from September 2019 to August 2020, while the test tweets are taken from September 2020 to August 2021.
Following the original work, we evaluate with macro F1 score."""
_TWEET_TOPIC_CITATION = """\
@inproceedings{antypas-etal-2022-twitter,
title = "{T}witter Topic Classification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Silva, Vitor and
Neves, Leonardo and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.299",
pages = "3386--3400",
abstract = "Social media platforms host discussions about a wide variety of topics that arise everyday. Making sense of all the content and organising it into categories is an arduous task. A common way to deal with this issue is relying on topic modeling, but topics discovered using this technique are difficult to interpret and can differ from corpus to corpus. In this paper, we present a new task based on tweet topic classification and release two associated datasets. Given a wide range of topics covering the most important discussion points in social media, we provide training and testing data from recent time periods that can be used to evaluate tweet classification models. Moreover, we perform a quantitative evaluation and analysis of current general- and domain-specific language models on the task, which provide more insights on the challenges and nature of the task.",
}
"""
_TWEET_NER7_DESCRIPTION = """
TweetNER is a named-entity recognition dataset on Twitter. The training/validation tweets are taken
from September 2019 to August 2020, while the test tweets are taken from September 2020 to August 2021.
Following the original work, we evaluate with span F1 score.
"""
_TWEET_NER7_CITATION = """\
@inproceedings{ushio-etal-2022-named,
title = "Named Entity Recognition in {T}witter: A Dataset and Analysis on Short-Term Temporal Shifts",
author = "Ushio, Asahi and
Barbieri, Francesco and
Sousa, Vitor and
Neves, Leonardo and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.25",
pages = "309--319",
abstract = "Recent progress in language model pre-training has led to important improvements in Named Entity Recognition (NER). Nonetheless, this progress has been mainly tested in well-formatted documents such as news, Wikipedia, or scientific articles. In social media the landscape is different, in which it adds another layer of complexity due to its noisy and dynamic nature. In this paper, we focus on NER in Twitter, one of the largest social media platforms, and construct a new NER dataset, TweetNER7, which contains seven entity types annotated over 11,382 tweets from September 2019 to August 2021. The dataset was constructed by carefully distributing the tweets over time and taking representative trends as a basis. Along with the dataset, we provide a set of language model baselines and perform an analysis on the language model performance on the task, especially analyzing the impact of different time periods. In particular, we focus on three important temporal aspects in our analysis: short-term degradation of NER models over time, strategies to fine-tune a language model over different periods, and self-labeling as an alternative to lack of recently-labeled data. TweetNER7 is released publicly (https://huggingface.co/datasets/tner/tweetner7) along with the models fine-tuned on it (NER models have been integrated into TweetNLP and can be found at https://github.com/asahi417/tner/tree/master/examples/tweetner7{\_}paper).",
}
"""
_TWEET_NERD_DESCRIPTION = """TBA"""
_TWEET_NERD_CITATION = """\
@article{mishra2022tweetnerd,
title={TweetNERD--End to End Entity Linking Benchmark for Tweets},
author={Mishra, Shubhanshu and Saini, Aman and Makki, Raheleh and Mehta, Sneha and Haghighi, Aria and Mollahosseini, Ali},
journal={arXiv preprint arXiv:2210.08129},
year={2022}
}
"""
_TWEET_SENTIMENT_DESCRIPTION = """TBA"""
_TWEET_SENTIMENT_CITATION = """\
TBA
"""
_TWEET_HATE_DESCRIPTION = """TBA"""
_TWEET_HATE_CITATION = """\
TBA
"""
_TWEET_EMOJI_DESCRIPTION = """TBA"""
_TWEET_EMOJI_CITATION = """\
TBA
"""
_ROOT_URL = "https://huggingface.co/datasets/tweettemposhift/tweet_temporal_shift/resolve/main/data"
class TweetTemporalShiftConfig(datasets.BuilderConfig):
"""BuilderConfig for TweetTemporalShift."""
def __init__(self, features, data_url, citation, label_classes=("False", "True"), **kwargs):
"""BuilderConfig for TweetTemporalShift.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
"False" or "True".
**kwargs: keyword arguments forwarded to super.
"""
super(TweetTemporalShiftConfig, self).__init__(version=datasets.Version(_VERSION), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
class TweetTemporalShift(datasets.GeneratorBasedBuilder):
"""The TweetTemporalShift benchmark."""
BUILDER_CONFIGS = [
TweetTemporalShiftConfig(
name="topic_temporal",
description=_TWEET_TOPIC_DESCRIPTION,
citation=_TWEET_TOPIC_CITATION,
features=["text", "gold_label_list", "date"],
data_url=f"{_ROOT_URL}/tweet_topic",
),
TweetTemporalShiftConfig(
name="hate_temporal",
description=_TWEET_HATE_DESCRIPTION,
citation=_TWEET_HATE_CITATION,
features=["text", "gold_label_binary", "date", "id"],
data_url=f"{_ROOT_URL}/tweet_hate",
),
TweetTemporalShiftConfig(
name="hate_balance_temporal",
description=_TWEET_HATE_DESCRIPTION,
citation=_TWEET_HATE_CITATION,
features=["text", "gold_label_binary", "date", "id"],
data_url=f"{_ROOT_URL}/tweet_hate_balance",
),
TweetTemporalShiftConfig(
name="ner_temporal",
description=_TWEET_NER7_DESCRIPTION,
citation=_TWEET_NER7_CITATION,
features=["text", "text_tokenized", "gold_label_sequence", "date"],
data_url=f"{_ROOT_URL}/tweet_ner",
),
TweetTemporalShiftConfig(
name="nerd_temporal",
description=_TWEET_NERD_DESCRIPTION,
citation=_TWEET_NERD_CITATION,
features=["gold_label_binary", "target", "text", "definition", "text_start", "text_end", "date"],
data_url=f"{_ROOT_URL}/tweet_nerd_new",
),
TweetTemporalShiftConfig(
name="sentiment_temporal",
description=_TWEET_SENTIMENT_DESCRIPTION,
citation=_TWEET_SENTIMENT_CITATION,
features=["gold_label_binary", "text", "date"],
data_url=f"{_ROOT_URL}/tweet_sentiment",
),
TweetTemporalShiftConfig(
name="sentiment_small_temporal",
description=_TWEET_SENTIMENT_DESCRIPTION,
citation=_TWEET_SENTIMENT_CITATION,
features=["gold_label_binary", "text", "date"],
data_url=f"{_ROOT_URL}/tweet_sentiment_small",
),
TweetTemporalShiftConfig(
name="emoji_temporal",
description=_TWEET_EMOJI_DESCRIPTION,
citation=_TWEET_EMOJI_CITATION,
features=["text", "date", "gold_label"],
data_url=f"{_ROOT_URL}/tweet_emoji",
),
]
for s in range(3):
for i in range(4):
BUILDER_CONFIGS += [
TweetTemporalShiftConfig(
name=f"topic_random{i}_seed{s}",
description=_TWEET_TOPIC_DESCRIPTION,
citation=_TWEET_TOPIC_CITATION,
features=["text", "gold_label_list", "date"],
data_url=f"{_ROOT_URL}/tweet_topic_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"hate_random{i}_seed{s}",
description=_TWEET_HATE_DESCRIPTION,
citation=_TWEET_HATE_CITATION,
features=["text", "gold_label_binary", "date", "id"],
data_url=f"{_ROOT_URL}/tweet_hate_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"hate_balance_random{i}_seed{s}",
description=_TWEET_HATE_DESCRIPTION,
citation=_TWEET_HATE_CITATION,
features=["text", "gold_label_binary", "date", "id"],
data_url=f"{_ROOT_URL}/tweet_hate_balance_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"ner_random{i}_seed{s}",
description=_TWEET_NER7_DESCRIPTION,
citation=_TWEET_NER7_CITATION,
features=["text", "text_tokenized", "gold_label_sequence", "date"],
data_url=f"{_ROOT_URL}/tweet_ner_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"nerd_random{i}_seed{s}",
description=_TWEET_NERD_DESCRIPTION,
citation=_TWEET_NERD_CITATION,
features=["gold_label_binary", "target", "text", "definition", "text_start", "text_end", "date"],
data_url=f"{_ROOT_URL}/tweet_nerd_new_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"sentiment_random{i}_seed{s}",
description=_TWEET_SENTIMENT_DESCRIPTION,
citation=_TWEET_SENTIMENT_CITATION,
features=["gold_label_binary", "text", "date"],
data_url=f"{_ROOT_URL}/tweet_sentiment_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"sentiment_small_random{i}_seed{s}",
description=_TWEET_SENTIMENT_DESCRIPTION,
citation=_TWEET_SENTIMENT_CITATION,
features=["gold_label_binary", "text", "date"],
data_url=f"{_ROOT_URL}/tweet_sentiment_small_test{i}_seed{s}",
),
TweetTemporalShiftConfig(
name=f"emoji_random{i}_seed{s}",
description=_TWEET_EMOJI_DESCRIPTION,
citation=_TWEET_EMOJI_CITATION,
features=["text", "date", "gold_label"],
data_url=f"{_ROOT_URL}/tweet_emoji_test{i}_seed{s}",
),
]
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
if "topic" in self.config.name:
names = [
"arts_&_culture", "business_&_entrepreneurs", "celebrity_&_pop_culture", "diaries_&_daily_life",
"family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
"learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
"science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"
]
features["gold_label_list"] = datasets.Sequence(
datasets.features.ClassLabel(names=names))
elif "hate" in self.config.name:
features["text"] = datasets.Value("string")
features["gold_label_binary"] = datasets.Value("int32")
features["date"] = datasets.Value("string")
features["id"] = datasets.Value("string")
elif "emoji" in self.config.name:
features["text"] = datasets.Value("string")
features["date"] = datasets.Value("string")
url_map = "https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji/map.txt"
dl_manager = datasets.utils.download_manager.DownloadManager()
with open(dl_manager.download(url_map)) as f:
label_classes = f.readlines()
label_classes = [x.strip('\n') for x in label_classes]
label_classes = [x for n, x in enumerate(label_classes) if n != 68]
features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
elif "sentiment" in self.config.name:
features["text"] = datasets.Value("string")
features["gold_label_binary"] = datasets.Value("int32")
features["date"] = datasets.Value("string")
elif "nerd" in self.config.name:
features["target"] = datasets.Value("string")
features["text"] = datasets.Value("string")
features["definition"] = datasets.Value("string")
features["text_start"] = datasets.Value("int32")
features["text_end"] = datasets.Value("int32")
features["gold_label_binary"] = datasets.Value("int32")
features["date"] = datasets.Value("string")
elif "ner" in self.config.name:
names = [
"B-corporation", "B-creative_work", "B-event", "B-group", "B-location", "B-person", "B-product",
"I-corporation", "I-creative_work", "I-event", "I-group", "I-location", "I-person", "I-product", "O"]
features["gold_label_sequence"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
features["entities"] = datasets.features.Sequence(
{"entity": datasets.Value("string"), "type": datasets.Value("string")}
)
return datasets.DatasetInfo(
description=_TWEET_TEMPORAL_DESCRIPTION + "\n" + self.config.description,
features=datasets.Features(features),
citation=self.config.citation + "\n" + _TWEET_TEMPORAL_CITATION,
)
def _split_generators(self, dl_manager):
splits = ["train", "test", "validation"]
if "temporal" in self.config.name:
splits += ["test_1", "test_2", "test_3", "test_4"]
downloaded_file = dl_manager.download_and_extract(
{s: f"{self.config.data_url}/{s}.jsonl" for s in splits})
return [datasets.SplitGenerator(name=s, gen_kwargs={"filepath": downloaded_file[s]}) for s in splits]
def _generate_examples(self, filepath):
_key = 0
with open(filepath, encoding="utf-8") as f:
_list = [i for i in f.read().split("\n") if len(i) > 0]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1
|