licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
code
17027
push!(LOAD_PATH, "..") @static if ENV["JULIA_JUSTRELAX_BACKEND"] === "AMDGPU" using AMDGPU AMDGPU.allowscalar(true) elseif ENV["JULIA_JUSTRELAX_BACKEND"] === "CUDA" using CUDA CUDA.allowscalar(true) end using Test, Suppressor using GeoParams using JustRelax, JustRelax.JustRelax2D using ParallelStencil, ParallelStencil.FiniteDifferences2D const backend_JR = @static if ENV["JULIA_JUSTRELAX_BACKEND"] === "AMDGPU" @init_parallel_stencil(AMDGPU, Float64, 2) AMDGPUBackend elseif ENV["JULIA_JUSTRELAX_BACKEND"] === "CUDA" @init_parallel_stencil(CUDA, Float64, 2) CUDABackend else @init_parallel_stencil(Threads, Float64, 2) CPUBackend end using JustPIC, JustPIC._2D # Threads is the default backend, # to run on a CUDA GPU load CUDA.jl (i.e. "using CUDA") at the beginning of the script, # and to run on an AMD GPU load AMDGPU.jl (i.e. "using AMDGPU") at the beginning of the script. const backend = @static if ENV["JULIA_JUSTRELAX_BACKEND"] === "AMDGPU" JustPIC.AMDGPUBackend elseif ENV["JULIA_JUSTRELAX_BACKEND"] === "CUDA" CUDABackend else JustPIC.CPUBackend end import JustRelax.@cell # Load script dependencies using Printf, Statistics, LinearAlgebra, CellArrays, StaticArrays # ----------------------------------------------------------------------------------------- ## SET OF HELPER FUNCTIONS PARTICULAR FOR THIS SCRIPT -------------------------------- function copyinn_x!(A, B) @parallel function f_x(A, B) @all(A) = @inn_x(B) return nothing end @parallel f_x(A, B) end import ParallelStencil.INDICES const idx_j = INDICES[2] macro all_j(A) return esc(:($A[$idx_j])) end @parallel function init_P!(P, ρg, z) @all(P) = abs(@all(ρg) * @all_j(z)) * <(@all_j(z), 0.0) return nothing end function init_phases!(phases, particles, xc_anomaly, yc_anomaly, r_anomaly, sticky_air,top, bottom) ni = size(phases) @parallel_indices (i, j) function init_phases!( phases, px, py, index, xc_anomaly, yc_anomaly, r_anomaly, sticky_air, top, bottom ) @inbounds for ip in JustRelax.JustRelax.cellaxes(phases) # quick escape JustRelax.@cell(index[ip, i, j]) == 0 && continue x = JustRelax.@cell px[ip, i, j] y = -(JustRelax.@cell py[ip, i, j]) - sticky_air if top ≤ y ≤ bottom @cell phases[ip, i, j] = 1.0 # crust end # thermal anomaly - circular if ((x - xc_anomaly)^2 + (y + yc_anomaly)^2 ≤ r_anomaly^2) JustRelax.@cell phases[ip, i, j] = 2.0 end if y < top @cell phases[ip, i, j] = 3.0 end end return nothing end @parallel (@idx ni) init_phases!( phases, particles.coords..., particles.index, xc_anomaly, yc_anomaly, r_anomaly, sticky_air, top, bottom, ) end # Initial thermal profile @parallel_indices (i, j) function init_T!(T, y, sticky_air, top, bottom, dTdz, offset) depth = -y[j] - sticky_air if depth < top T[i + 1, j] = offset elseif top ≤ (depth) < bottom dTdZ = dTdz offset = offset T[i + 1, j] = (depth) * dTdZ + offset end return nothing end function circular_perturbation!(T, δT, xc_anomaly, yc_anomaly, r_anomaly, xvi, sticky_air) @parallel_indices (i, j) function _circular_perturbation!( T, δT, xc_anomaly, yc_anomaly, r_anomaly, x, y, sticky_air ) depth = -y[j] - sticky_air @inbounds if ((x[i] - xc_anomaly)^2 + (depth[j] + yc_anomaly)^2 ≤ r_anomaly^2) # T[i + 1, j] *= δT / 100 + 1 T[i + 1, j] = δT end return nothing end nx, ny = size(T) @parallel (1:(nx - 2), 1:ny) _circular_perturbation!( T, δT, xc_anomaly, yc_anomaly, r_anomaly, xvi..., sticky_air ) end function init_rheology(CharDim; is_compressible = false, steady_state=true) # plasticity setup do_DP = true # do_DP=false: Von Mises, do_DP=true: Drucker-Prager (friction angle) η_reg = 1.0e16Pa * s # regularisation "viscosity" for Drucker-Prager Coh = 10.0MPa # yield stress. If do_DP=true, τ_y stand for the cohesion: c*cos(ϕ) ϕ = 30.0 * do_DP # friction angle G0 = 6.0e11Pa # elastic shear modulus G_magma = 6.0e11Pa # elastic shear modulus perturbation soft_C = NonLinearSoftening(; ξ₀=ustrip(Coh), Δ=ustrip(Coh) / 2) # softening law pl = DruckerPrager_regularised(; C=Coh, ϕ=ϕ, η_vp=η_reg, Ψ=0.0, softening_C = soft_C) # plasticity if is_compressible == true el = SetConstantElasticity(; G=G0, ν=0.25) # elastic spring el_magma = SetConstantElasticity(; G=G_magma, ν=0.25)# elastic spring β_rock = 6.0e-11 β_magma = 6.0e-11 else el = SetConstantElasticity(; G=G0, ν=0.5) # elastic spring el_magma = SetConstantElasticity(; G=G_magma, ν=0.5) # elastic spring β_rock = inv(get_Kb(el)) β_magma = inv(get_Kb(el_magma)) end if steady_state == true creep_rock = LinearViscous(; η=1e23 * Pa * s) creep_magma = LinearViscous(; η=1e18 * Pa * s) creep_air = LinearViscous(; η=1e18 * Pa * s) else creep_rock = DislocationCreep(; A=1.67e-24, n=3.5, E=1.87e5, V=6e-6, r=0.0, R=8.3145) creep_magma = DislocationCreep(; A=1.67e-24, n=3.5, E=1.87e5, V=6e-6, r=0.0, R=8.3145) creep_air = LinearViscous(; η=1e18 * Pa * s) β_rock = 6.0e-11 β_magma = 6.0e-11 end g = 9.81m/s^2 rheology = ( #Name="UpperCrust" SetMaterialParams(; Phase = 1, Density = PT_Density(; ρ0=2650kg / m^3, α=3e-5 / K, T0=0.0C, β=β_rock / Pa), HeatCapacity = ConstantHeatCapacity(; Cp=1050J / kg / K), Conductivity = ConstantConductivity(; k=3.0Watt / K / m), LatentHeat = ConstantLatentHeat(; Q_L=350e3J / kg), ShearHeat = ConstantShearheating(1.0NoUnits), CompositeRheology = CompositeRheology((creep_rock, el, pl)), Melting = MeltingParam_Caricchi(), Gravity = ConstantGravity(; g=g), Elasticity = el, CharDim = CharDim, ), #Name="Magma" SetMaterialParams(; Phase = 1, Density = PT_Density(; ρ0=2650kg / m^3, T0=0.0C, β=β_magma / Pa), HeatCapacity = ConstantHeatCapacity(; Cp=1050J / kg / K), Conductivity = ConstantConductivity(; k=1.5Watt / K / m), LatentHeat = ConstantLatentHeat(; Q_L=350e3J / kg), ShearHeat = ConstantShearheating(0.0NoUnits), CompositeRheology = CompositeRheology((creep_magma, el_magma)), Melting = MeltingParam_Caricchi(), Gravity = ConstantGravity(; g=g), Elasticity = el_magma, CharDim = CharDim, ), #Name="Sticky Air" SetMaterialParams(; Phase = 1, Density = ConstantDensity(ρ=1kg/m^3,), HeatCapacity = ConstantHeatCapacity(; Cp=1000J / kg / K), Conductivity = ConstantConductivity(; k=15Watt / K / m), LatentHeat = ConstantLatentHeat(; Q_L=0.0J / kg), ShearHeat = ConstantShearheating(0.0NoUnits), CompositeRheology = CompositeRheology((creep_air,)), Gravity = ConstantGravity(; g=g), CharDim = CharDim, ), ) end function main2D(; nx=32, ny=32) init_mpi = JustRelax.MPI.Initialized() ? false : true igg = IGG(init_global_grid(nx, ny, 1; init_MPI = init_mpi)...) # Characteristic lengths CharDim = GEO_units(;length=12.5km, viscosity=1e21, temperature = 1e3C) #-------JustRelax parameters------------------------------------------------------------- # Domain setup for JustRelax sticky_air = nondimensionalize(1.5km, CharDim) # thickness of the sticky air layer ly = nondimensionalize(12.5km,CharDim) + sticky_air # domain length in y-direction lx = nondimensionalize(15.5km, CharDim) # domain length in x-direction li = lx, ly # domain length in x- and y-direction ni = nx, ny # number of grid points in x- and y-direction di = @. li / ni # grid step in x- and y-direction origin = nondimensionalize(0.0km,CharDim), -ly # origin coordinates of the domain grid = Geometry(ni, li; origin=origin) εbg = nondimensionalize(0.0 / s,CharDim) # background strain rate (; xci, xvi) = grid # nodes at the center and vertices of the cells #--------------------------------------------------------------------------------------- # Physical Parameters rheology = init_rheology(CharDim; is_compressible=true, steady_state=false) cutoff_visc = nondimensionalize((1e16Pa*s, 1e24Pa*s),CharDim) κ = (4 / (rheology[1].HeatCapacity[1].Cp * rheology[1].Density[1].ρ0)) dt = dt_diff = (0.5 * min(di...)^2 / κ / 2.01) # diffusive CFL timestep limiter # Initialize particles ------------------------------- nxcell, max_xcell, min_xcell = 20, 40, 15 particles = init_particles(backend, nxcell, max_xcell, min_xcell, xvi...) subgrid_arrays = SubgridDiffusionCellArrays(particles) # velocity grids grid_vx, grid_vy = velocity_grids(xci, xvi, di) # temperature pT, pPhases = init_cell_arrays(particles, Val(2)) particle_args = (pT, pPhases) # Circular temperature anomaly ----------------------- x_anomaly = lx * 0.5 y_anomaly = nondimensionalize(-5km,CharDim) # origin of the small thermal anomaly r_anomaly = nondimensionalize(1.5km, CharDim) # radius of perturbation anomaly = nondimensionalize((750 + 273)K, CharDim) # thermal perturbation (in K) init_phases!(pPhases, particles, x_anomaly, y_anomaly, r_anomaly, sticky_air, nondimensionalize(0.0km,CharDim), nondimensionalize(20km,CharDim)) phase_ratios = PhaseRatio(backend_JR, ni, length(rheology)) phase_ratios_center!(phase_ratios, particles, grid, pPhases) # Initialisation of thermal profile thermal = ThermalArrays(backend_JR, ni) # initialise thermal arrays and boundary conditions thermal_bc = TemperatureBoundaryConditions(; no_flux = (left=true, right=true, top=false, bot=false), ) @parallel (@idx ni .+ 1) init_T!( thermal.T, xvi[2], sticky_air, nondimensionalize(0e0km,CharDim), nondimensionalize(15km,CharDim), nondimensionalize((723 - 273)K,CharDim) / nondimensionalize(15km,CharDim), nondimensionalize(273K,CharDim) ) circular_perturbation!( thermal.T, anomaly, x_anomaly, y_anomaly, r_anomaly, xvi, sticky_air ) thermal_bcs!(thermal, thermal_bc) temperature2center!(thermal) # STOKES --------------------------------------------- # Allocate arrays needed for every Stokes problem stokes = StokesArrays(backend_JR, ni) # initialise stokes arrays with the defined regime pt_stokes = PTStokesCoeffs(li, di; ϵ = 1e-4, CFL = 1 / √2.1) # ---------------------------------------------------- args = (; T=thermal.Tc, P=stokes.P, dt=dt) pt_thermal = PTThermalCoeffs( backend_JR, rheology, phase_ratios, args, dt, ni, di, li; ϵ=1e-5, CFL=0.8 / √2.1 ) # Pure shear far-field boundary conditions stokes.V.Vx .= PTArray(backend_JR)([ εbg * (x - lx * 0.5) / (lx / 2) / 2 for x in xvi[1], _ in 1:(ny + 2) ]) stokes.V.Vy .= PTArray(backend_JR)([ (abs(y) - sticky_air) * εbg * (abs(y) > sticky_air) for _ in 1:(nx + 2), y in xvi[2] ]) flow_bcs = VelocityBoundaryConditions(; free_slip = (left=true, right=true, top=true, bot=true), free_surface = true, ) flow_bcs!(stokes, flow_bcs) compute_viscosity!(stokes, phase_ratios, args, rheology, cutoff_visc) ϕ = @zeros(ni...) compute_melt_fraction!( ϕ, phase_ratios.center, rheology, (T=thermal.Tc, P=stokes.P) ) # Buoyancy force ρg = @zeros(ni...), @zeros(ni...) # ρg[1] is the buoyancy force in the x direction, ρg[2] is the buoyancy force in the y direction for _ in 1:5 compute_ρg!(ρg[2], phase_ratios, rheology, (T=thermal.Tc, P=stokes.P)) @parallel init_P!(stokes.P, ρg[2], xci[2]) end # Arguments for functions args = (; T=thermal.Tc, P=stokes.P, dt=dt, ΔTc=thermal.ΔTc) @copy thermal.Told thermal.T # Time loop t, it = 0.0, 0 T_buffer = @zeros(ni.+1) Told_buffer = similar(T_buffer) dt₀ = similar(stokes.P) for (dst, src) in zip((T_buffer, Told_buffer), (thermal.T, thermal.Told)) copyinn_x!(dst, src) end grid2particle!(pT, xvi, T_buffer, particles) @copy stokes.P0 stokes.P thermal.Told .= thermal.T P_init = deepcopy(stokes.P) Tsurf = thermal.T[1, end] Tbot = thermal.T[1, 1] local ϕ, stokes, thermal while it < 1 # Update buoyancy and viscosity - args = (; T=thermal.Tc, P=stokes.P, dt=Inf, ΔTc=thermal.ΔTc) compute_ρg!(ρg[end], phase_ratios, rheology, (T=thermal.Tc, P=stokes.P)) compute_viscosity!(stokes, phase_ratios, args, rheology, cutoff_visc) # Stokes solver ----------------- solve!( stokes, pt_stokes, di, flow_bcs, ρg, phase_ratios, rheology, args, dt, igg; kwargs = (; iterMax = 100e3, free_surface = true, nout = 5e3, viscosity_cutoff = cutoff_visc, ) ) tensor_invariant!(stokes.ε) dt = compute_dt(stokes, di, dt_diff, igg) # -------------------------------- compute_shear_heating!( thermal, stokes, phase_ratios, rheology, # needs to be a tuple dt, ) # Thermal solver --------------- heatdiffusion_PT!( thermal, pt_thermal, thermal_bc, rheology, args, dt, di; kwargs =(; igg = igg, phase = phase_ratios, iterMax = 150e3, nout = 1e3, verbose = true, ) ) for (dst, src) in zip((T_buffer, Told_buffer), (thermal.T, thermal.Told)) copyinn_x!(dst, src) end subgrid_characteristic_time!( subgrid_arrays, particles, dt₀, phase_ratios, rheology, thermal, stokes, xci, di ) centroid2particle!(subgrid_arrays.dt₀, xci, dt₀, particles) subgrid_diffusion!( pT, T_buffer, thermal.ΔT[2:end-1, :], subgrid_arrays, particles, xvi, di, dt ) # ------------------------------ compute_melt_fraction!( ϕ, phase_ratios.center, rheology, (T=thermal.Tc, P=stokes.P) ) # Advection -------------------- # advect particles in space advection!(particles, RungeKutta2(), @velocity(stokes), (grid_vx, grid_vy), dt) # advect particles in memory move_particles!(particles, xvi, particle_args) # check if we need to inject particles inject_particles_phase!(particles, pPhases, (pT, ), (T_buffer,), xvi) # update phase ratios phase_ratios_center!(phase_ratios, particles, grid, pPhases) particle2grid!(T_buffer, pT, xvi, particles) @views T_buffer[:, end] .= Tsurf @views T_buffer[:, 1] .= Tbot @views thermal.T[2:end - 1, :] .= T_buffer thermal_bcs!(thermal, thermal_bc) temperature2center!(thermal) thermal.ΔT .= thermal.T .- thermal.Told vertex2center!(thermal.ΔTc, thermal.ΔT) @show it += 1 t += dt end finalize_global_grid() return ϕ, stokes, thermal end @testset "thermal stresses" begin @suppress begin ϕ, stokes, thermal = main2D(; nx=32, ny=32) nx_T, ny_T = size(thermal.T) @test Array(thermal.T)[nx_T >>> 1 + 1, ny_T >>> 1 + 1] ≈ 0.5369 rtol = 1e-2 @test Array(ϕ)[nx_T >>> 1 + 1, ny_T >>> 1 + 1] ≈ 9.351e-9 rtol = 1e-1 end end
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
code
2551
@static if ENV["JULIA_JUSTRELAX_BACKEND"] === "AMDGPU" using AMDGPU elseif ENV["JULIA_JUSTRELAX_BACKEND"] === "CUDA" using CUDA end using JustRelax, Test import JustRelax.JustRelax2D as JR2 import JustRelax.JustRelax3D as JR3 import JustRelax: AMDGPUBackendTrait, CUDABackendTrait const bk = JustRelax.backend const env_backend = ENV["JULIA_JUSTRELAX_BACKEND"] const DeviceTrait = @static if env_backend === "AMDGPU" AMDGPUBackendTrait elseif env_backend === "CUDA" CUDABackendTrait else CPUBackendTrait end const backend = @static if env_backend === "AMDGPU" AMDGPUBackend elseif env_backend === "CUDA" CUDABackend else CPUBackend end const myrand = @static if env_backend === "AMDGPU" AMDGPU.rand elseif env_backend === "CUDA" CUDA.rand else rand end A, M, V = @static if env_backend === "AMDGPU" ROCArray, ROCMatrix, ROCVector elseif env_backend === "CUDA" CuArray, CuMatrix, CuVector else Array, Matrix, Vector end @testset "Traits" begin # test generic arrays @test bk(A) === DeviceTrait() @test bk(M) === DeviceTrait() @test bk(V) === DeviceTrait() @test bk(myrand(2)) === DeviceTrait() @test bk(myrand(2,2)) === DeviceTrait() @test bk(myrand(2,2,2)) === DeviceTrait() # test PTArray if env_backend !== "AMDGPU" && env_backend !== "CUDA" @test PTArray() === A else @test true === true end @test PTArray(backend) === A @test_throws ArgumentError PTArray(bk(rand())) @test_throws ArgumentError PTArray(bk("potato")) @test_throws ArgumentError PTArray(backend, bk(rand())) # test error handling @test_throws ArgumentError bk(rand()) @test_throws ArgumentError bk("potato") # test JR structs ## 2D ni = 2, 2 stokes2 = JR2.StokesArrays(backend, ni) thermal2 = JR2.ThermalArrays(backend, ni) @test bk(stokes2.V) === DeviceTrait() @test bk(stokes2.τ) === DeviceTrait() @test bk(stokes2.R) === DeviceTrait() @test bk(stokes2.P) === DeviceTrait() @test bk(stokes2) === DeviceTrait() @test bk(thermal2) === DeviceTrait() ## 3D ni = 2, 2, 2 stokes3 = JR3.StokesArrays(backend, ni) thermal3 = JR3.ThermalArrays(backend, ni) @test bk(stokes3.V) === DeviceTrait() @test bk(stokes3.τ) === DeviceTrait() @test bk(stokes3.R) === DeviceTrait() @test bk(stokes3.P) === DeviceTrait() @test bk(stokes3) === DeviceTrait() @test bk(thermal3) === DeviceTrait() end
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
code
5867
@static if ENV["JULIA_JUSTRELAX_BACKEND"] === "AMDGPU" using AMDGPU elseif ENV["JULIA_JUSTRELAX_BACKEND"] === "CUDA" using CUDA end using JustRelax, Test import JustRelax.JustRelax2D as JR2 import JustRelax.JustRelax3D as JR3 const env_backend = ENV["JULIA_JUSTRELAX_BACKEND"] const backend = @static if env_backend === "AMDGPU" AMDGPUBackend elseif env_backend === "CUDA" CUDABackend else CPUBackend end const BackendArray = PTArray(backend) @testset "2D allocators" begin ni = nx, ny = (2, 2) stokes = JR2.StokesArrays(backend, ni) @test size(stokes.P) == ni @test size(stokes.P0) == ni @test size(stokes.∇V) == ni @test size(stokes.EII_pl) == ni @test typeof(stokes.P) <: BackendArray @test typeof(stokes.P0) <: BackendArray @test typeof(stokes.∇V) <: BackendArray @test stokes.V isa JustRelax.Velocity @test stokes.U isa JustRelax.Displacement @test stokes.ω isa JustRelax.Vorticity @test stokes.τ isa JustRelax.SymmetricTensor @test stokes.τ_o isa JustRelax.SymmetricTensor @test stokes.ε isa JustRelax.SymmetricTensor @test stokes.ε_pl isa JustRelax.SymmetricTensor @test typeof(stokes.EII_pl) <: BackendArray @test stokes.viscosity isa JustRelax.Viscosity @test stokes.R isa JustRelax.Residual R = stokes.R @test R isa JustRelax.Residual @test isnothing(R.Rz) @test size(R.Rx) == (nx-1, ny) @test size(R.Ry) == (nx, ny-1) @test size(R.RP) == ni @test typeof(R.Rx) <: BackendArray @test typeof(R.Ry) <: BackendArray @test typeof(R.RP) <: BackendArray @test_throws MethodError JR2.Residual(10.0, 10.0) visc = stokes.viscosity @test size(visc.η) == ni @test size(visc.η_vep) == ni @test size(visc.ητ) == ni @test typeof(visc.η) <: BackendArray @test typeof(visc.η_vep) <: BackendArray @test typeof(visc.ητ) <: BackendArray @test_throws MethodError JR2.Viscosity(10.0, 10.0) tensor = stokes.τ @test size(tensor.xx) == (nx, ny) @test size(tensor.yy) == (nx, ny) @test size(tensor.xy) == (nx + 1, ny + 1) @test size(tensor.xy_c) == (nx, ny) @test size(tensor.II) == (nx, ny) @test typeof(tensor.xx) <: BackendArray @test typeof(tensor.yy) <: BackendArray @test typeof(tensor.xy) <: BackendArray @test typeof(tensor.xy_c) <: BackendArray @test typeof(tensor.II) <: BackendArray @test_throws MethodError JR2.StokesArrays(backend, 10.0, 10.0) end @testset "2D Displacement" begin ni = nx, ny = (2, 2) stokes = JR2.StokesArrays(backend, ni) stokes.V.Vx .= 1.0 stokes.V.Vy .= 1.0 JR2.velocity2displacement!(stokes, 10) @test all(stokes.U.Ux.== 10) JR2.displacement2velocity!(stokes, 5) @test all(stokes.V.Vx.==2.0) end @testset "3D allocators" begin ni = nx, ny, nz = (2, 2, 2) stokes = JR3.StokesArrays(backend, ni) @test size(stokes.P) == ni @test size(stokes.P0) == ni @test size(stokes.∇V) == ni @test size(stokes.EII_pl) == ni @test typeof(stokes.P) <: BackendArray @test typeof(stokes.P0) <: BackendArray @test typeof(stokes.∇V) <: BackendArray @test stokes.V isa JustRelax.Velocity @test stokes.U isa JustRelax.Displacement @test stokes.ω isa JustRelax.Vorticity @test stokes.τ isa JustRelax.SymmetricTensor @test stokes.τ_o isa JustRelax.SymmetricTensor @test stokes.ε isa JustRelax.SymmetricTensor @test stokes.ε_pl isa JustRelax.SymmetricTensor @test typeof(stokes.EII_pl) <: BackendArray @test stokes.viscosity isa JustRelax.Viscosity @test stokes.R isa JustRelax.Residual R = stokes.R @test R isa JustRelax.Residual @test size(R.Rx) == (nx-1, ny, nz) @test size(R.Ry) == (nx, ny-1, nz) @test size(R.Rz) == (nx, ny, nz-1) @test size(R.RP) == ni @test typeof(R.Rx) <: BackendArray @test typeof(R.Ry) <: BackendArray @test typeof(R.Rz) <: BackendArray @test typeof(R.RP) <: BackendArray @test_throws MethodError JR3.Residual(1.0, 1.0, 1.0) visc = stokes.viscosity @test size(visc.η) == ni @test size(visc.η_vep) == ni @test size(visc.ητ) == ni @test typeof(visc.η) <: BackendArray @test typeof(visc.η_vep) <: BackendArray @test typeof(visc.ητ) <: BackendArray @test_throws MethodError JR3.Viscosity(1.0, 1.0, 1.0) tensor = stokes.τ @test size(tensor.xx) == ni @test size(tensor.yy) == ni @test size(tensor.xy) == (nx + 1, ny + 1, nz ) @test size(tensor.yz) == (nx , ny + 1, nz + 1) @test size(tensor.xz) == (nx + 1, ny , nz + 1) @test size(tensor.xy_c) == ni @test size(tensor.yz_c) == ni @test size(tensor.xz_c) == ni @test size(tensor.II) == ni @test typeof(tensor.xx) <: BackendArray @test typeof(tensor.yy) <: BackendArray @test typeof(tensor.xy) <: BackendArray @test typeof(tensor.yz) <: BackendArray @test typeof(tensor.xz) <: BackendArray @test typeof(tensor.xy_c) <: BackendArray @test typeof(tensor.yz_c) <: BackendArray @test typeof(tensor.xz_c) <: BackendArray @test typeof(tensor.II) <: BackendArray @test_throws MethodError JR3.StokesArrays(backend, 10.0, 10.0) end @testset "3D Displacement" begin ni = nx, ny, nz = (2, 2, 2) stokes = JR3.StokesArrays(backend, ni) stokes.V.Vx .= 1.0 stokes.V.Vy .= 1.0 stokes.V.Vz .= 1.0 JR3.velocity2displacement!(stokes, 10) @test all(stokes.U.Ux.==10.0) JR3.displacement2velocity!(stokes, 5) @test all(stokes.V.Vx.==2.0) end
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
979
# Authors [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl)'s development is coordinated by a group of *principal developers*, who are also its main contributors and who can be contacted in case of questions about [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl). In addition, there are *contributors* who have provided substantial additions or modifications. Together, these two groups form "The JustRelax.jl Authors". ## Principal Developers * [Albert de Montserrat](https://github.com/albert-de-montserrat), Institute for Geophysics, ETH Zurich, Switzerland * [Pascal Aellig](https://github.com/aelligp), Institute for Geosciences, Johannes Gutenberg University Mainz, Germany ## Contributors The following people contributed major additions or modifications to [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) and are listed in alphabetical order: * Sidney Beeler * Lukas Fuchs * Boris Kaus * Patrick Sanan * Hendrik Ranocha * Ludovic Räss
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
5362
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to [Albert de Montserrat](https://github.com/albert-de-montserrat), [Pascal Aellig](https://github.com/aelligp), or any other of the principal developers responsible for enforcement listed in [AUTHORS.md](AUTHORS.md). All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity). [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
2480
# Contributing [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) is an open-source project and we are very happy to accept contributions from the community. Please feel free to [open issues](https://github.com/PTsolvers/JustRelax.jl/issues/new) or submit patches (preferably as [pull requests](https://github.com/PTsolvers/JustRelax.jl/pulls)) any time. For planned larger contributions, it is often beneficial to get in contact with one of the principal developers first (see [AUTHORS.md](AUTHORS.md)). [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) and its contributions are licensed under the MIT license. As a contributor, you certify that all your contributions are in conformance with the *Developer Certificate of Origin (Version 1.1)*, which is reproduced below. ## Developer Certificate of Origin (Version 1.1) The following text was taken from [https://developercertificate.org](https://developercertificate.org): Developer Certificate of Origin Version 1.1 Copyright (C) 2004, 2006 The Linux Foundation and its contributors. 1 Letterman Drive Suite D4700 San Francisco, CA, 94129 Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Developer's Certificate of Origin 1.1 By making a contribution to this project, I certify that: (a) The contribution was created in whole or in part by me and I have the right to submit it under the open source license indicated in the file; or (b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate open source license and I have the right under that license to submit that work with modifications, whether created in whole or in part by me, under the same open source license (unless I am permitted to submit under a different license), as indicated in the file; or (c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not modified it. (d) I understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information I submit with it, including my sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open source license(s) involved.
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
4225
<h1> <img src="./docs/src/assets/logo.png" alt="JustRelax.jl" width="50"> JustRelax.jl </h1> [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://ptsolvers.github.io/JustRelax.jl/dev/) [![Ask us anything](https://img.shields.io/badge/Ask%20us-anything-1abc9c.svg)](https://github.com/PTsolvers/JustRelax.jl/discussions/) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10212422.svg)](https://doi.org/10.5281/zenodo.10212422) ![CI](https://github.com/PTSolvers/JustRelax.jl/actions/workflows/ci.yml/badge.svg) [![Build status](https://badge.buildkite.com/6b970b1066dc828a56a75bccc65a8bc896a8bb76012a61fe96.svg?branch=main)](https://buildkite.com/julialang/justrelax-dot-jl) [![codecov](https://codecov.io/gh/PTsolvers/JustRelax.jl/graph/badge.svg?token=4ZJO7ZGT8H)](https://codecov.io/gh/PTsolvers/JustRelax.jl) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) <p align="center"><img src="./docs/src/assets/logo.png" alt="JustRelax.jl" width="200"></p> :warning: This Package is still under active development - The API is still subject to change. - The benchmarks and miniapps are working and provide the user with an insight into the capabilities of the package. Need to solve a very large multi-physics problem on many GPUs in parallel? Just Relax! `JustRelax.jl` is a collection of accelerated iterative pseudo-transient solvers using MPI and multiple CPU or GPU backends. It's part of the [PTSolvers organisation](https://ptsolvers.github.io) and developed within the [GPU4GEO project](https://www.pasc-ch.org/projects/2021-2024/gpu4geo/). Current publications, outreach and news can be found on the [GPU4GEO website](https://ptsolvers.github.io/GPU4GEO/). The package relies on other packages as building blocks and parallelisation tools: * [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) * [ImplicitGlobalGrid.jl](https://github.com/omlins/ImplicitGlobalGrid.jl) * [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl) * [JustPIC.jl](https://github.com/JuliaGeodynamics/JustPIC.jl) The package serves several purposes: * It provides a collection of solvers to be used in quickly developing new applications * It provides some standardization so that application codes can - more easily handle local material properties through the use of [GeoParams.jl]((https://github.com/JuliaGeodynamics/GeoParams.jl)) - more easily switch between a pseudo-transient solver and another solvers (e.g. an explicit thermal solvers) * It provides a natural repository for contributions of new solvers for use by the larger community We provide several miniapps, each designed to solve a well-specified benchmark problem, in order to provide - examples of usage in high-performance computing - basis on which to build more full-featured application codes - cases for reference and performance tests ## Installation `JustRelax.jl` is a registered package and can be added as follows: ```julia using Pkg; Pkg.add("JustRelax") ``` However, as the API is changing and not every feature leads to a new release, one can also do `add JustRelax#main` which will clone the main branch of the repository. After installation, you can test the package by running the following commands: ```julia using JustRelax julia> ] pkg> test JustRelax ``` The test will take a while, so grab a :coffee: or :tea: ## Miniapps Available miniapps can be found in the [miniapps folder](miniapps) and will be updated regularly. The miniapps are designed to be simple and easy to understand, while still providing a good basis for more complex applications. The miniapps are designed to be run on a single node, but can be easily extended to run on multiple nodes using [ImplicitGlobalGrid.jl](https://github.com/omlins/ImplicitGlobalGrid.jl) and [MPI.jl](https://github.com/JuliaParallel/MPI.jl). ## Benchmarks Current (Blankenback2D, Stokes 2D-3D, thermal diffusion, thermal stress) and future benchmarks can be found in the [Benchmarks](miniapps/benchmarks). ## Funding The development of this package is supported by the [GPU4GEO](https://ptsolvers.github.io/GPU4GEO/) [PASC](https://www.pasc-ch.org) project.
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
1088
# Security Policy We take security issues seriously. We appreciate all efforts to responsibly disclose any security issues and will make every effort to acknowledge contributions. ## Supported Versions The current stable release following the interpretation of [semantic versioning (SemVer)](https://julialang.github.io/Pkg.jl/dev/compatibility/#Version-specifier-format-1) used in the Julia ecosystem is supported with security updates. ## Reporting a Vulnerability To report a security issue, please use the GitHub Security Advisory ["Report a Vulnerability"](https://github.com/PTsolvers/JustRelax.jl/security/advisories/new) tab. We will send a response indicating the next steps in handling your report. After the initial reply to your report, we will keep you informed of the progress towards a fix and full announcement, and may ask for additional information or guidance. Please report security bugs in third-party modules directly to the person or team maintaining the module. Public notifications of vulnerabilities will be shared in community channels such as Slack.
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
1903
```@meta CurrentModule = JustRelax ```# JustRelax.jl Need to solve a very large multi-physics problem on many GPUs in parallel? Just Relax! [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) is a collection of accelerated iterative pseudo-transient solvers using MPI and multiple CPU or GPU backends. It's part of the [PTSolvers organisation](https://ptsolvers.github.io) and developed within the [GPU4GEO project](https://www.pasc-ch.org/projects/2021-2024/gpu4geo/). Current publications, outreach and news can be found on the [GPU4GEO website](https://ptsolvers.github.io/GPU4GEO/). The package relies on other packages as building blocks and parallelisation tools: * [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) - device agnostic parallel kernels * [ImplicitGlobalGrid.jl](https://github.com/omlins/ImplicitGlobalGrid.jl) - (GPU-aware) distributed parallelisation (MPI) * [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl) - Material physics * [JustPIC.jl](https://github.com/JuliaGeodynamics/JustPIC.jl) - Particle-in-cell advection The package serves several purposes: * It provides a collection of solvers to be used in prototyping new applications * It provides some standardization so that application codes can - more easily handle local material properties through the use of [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl) - more easily switch between a pseudo-transient solver and another solvers (e.g. an explicit thermal solvers) * It provides a natural repository for contributions of new solvers for use by the larger community We provide several miniapps, each designed to solve a well-specified benchmark problem, in order to provide - examples of usage in high-performance computing - basis on which to build more full-featured application codes - cases for reference and performance tests
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
12433
# Blankenbach benchmark Thermal convection benchmark from [Blankenbach et al., 1989](https://academic.oup.com/gji/article/98/1/23/622167) ## Initialize packages Load [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) necessary modules and define backend. ```julia using JustRelax, JustRelax.JustRelax2D, JustRelax.DataIO const backend_JR = CPUBackend ``` For this benchmark we will use particles to track the advection of the material phases and their information. For this, we will use [JustPIC.jl](https://github.com/JuliaGeodynamics/JustPIC.jl) ```julia using JustPIC, JustPIC._2D const backend = CPUBackend # Options: CPUBackend, CUDABackend, AMDGPUBackend ``` We will also use [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) to write some device-agnostic helper functions: ```julia using ParallelStencil @init_parallel_stencil(Threads, Float64, 2) #or (CUDA, Float64, 2) or (AMDGPU, Float64, 2) ``` and will use [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl/tree/main) to define and compute physical properties of the materials: ```julia using GeoParams ``` ## Script ### Model domain ```julia nx = ny = 51 # number of cells per dimension nit = 6e3 igg = IGG( init_global_grid(nx, ny, 1; init_MPI= true)... ) # initialize MPI grid ly = 1.0 # domain length in y lx = ly * ar # domain length in x ni = nx, ny # number of cells li = lx, ly # domain length in x- and y- di = @. li / ni # grid step in x- and -y origin = 0.0, 0.0 # origin coordinates grid = Geometry(ni, li; origin = origin) (; xci, xvi) = grid # nodes at the center and vertices of the cells dt = dt_diff = 0.9 * min(di...)^2 / 4.0 # diffusive CFL timestep limiter ``` ### Rheology ```julia rheology = ( SetMaterialParams(; Phase = 1, Density = PT_Density(; ρ0 = 1, α = 1, β = 0.0), HeatCapacity = ConstantHeatCapacity(; Cp = 1.0), Conductivity = ConstantConductivity(; k = 1.0), CompositeRheology = CompositeRheology((LinearViscous(; η = 1),)), RadioactiveHeat = ConstantRadioactiveHeat(0.0), Gravity = ConstantGravity(; g = 1e4), ), ) ``` ### Initialize particles ```julia nxcell = 24 # initial number of perticles per cell max_xcell = 35 # maximum number of perticles per cell min_xcell = 12 # minimum number of perticles per cell particles = init_particles( backend, nxcell, max_xcell, min_xcell, xvi..., di..., ni... ) # particles object subgrid_arrays = SubgridDiffusionCellArrays(particles) # arrays needed for subgrid diffusion # velocity grids grid_vx, grid_vy = velocity_grids(xci, xvi, di) # staggered velocity grids ``` and we want to keep track of the temperature `pT`, temperature of the previous time step `pT0`, and material phase `pPhase`: ```julia pT, pT0, pPhases = init_cell_arrays(particles, Val(3)) particle_args = (pT, pT0, pPhases) ``` ### Temperature anomaly ```julia xc_anomaly = 0.0 # origin of thermal anomaly yc_anomaly = 1 / 3 # origin of thermal anomaly r_anomaly = 0.1 / 2 # radius of perturbation ``` Helper function to initialize material phases with [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) ```julia function init_phases!(phases, particles) ni = size(phases) @parallel_indices (i, j) function init_phases!(phases, index) @inbounds for ip in JustRelax.cellaxes(phases) # quick escape if the ip-th element of the [i,j]-th cell is empty JustRelax.@cell(index[ip, i, j]) == 0 && continue # all particles have phase number = 1.0 JustRelax.@cell phases[ip, i, j] = 1.0 end return nothing end @parallel (@idx ni) init_phases!(phases, particles.index) end init_phases!(pPhases, particles, lx, yc_anomaly, r_anomaly) ``` or we can use the alternative one-liners ```julia @views pPhase.data[!isnan.(particles.index.data)] .= 1.0 ``` or ```julia map!(x -> isnan(x) ? NaN : 1.0, pPhase.data, particles.index.data) ``` and finally we need the phase ratios at the cell centers: ```julia phase_ratios = PhaseRatio(backend_JR, ni, length(rheology)) phase_ratios_center(phase_ratios, particles, grid, pPhases) ``` ### Stokes and heat diffusion arrays Stokes arrays object ```julia stokes = StokesArrays(backend_JR, ni) ``` and the correspondent heat diffusion one ```julia thermal = ThermalArrays(backend_JR, ni) ``` ### Initialize thermal profile and viscosity fields To initialize the thermal profile we use [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) again ```julia @parallel_indices (i, j) function init_T!(T, y) T[i, j] = 1 - y[j] return nothing end @parallel (@idx size(thermal.T)) init_T!(thermal.T, xvi[2]) # cell vertices @parallel (@idx size(thermal.Tc)) init_T!(thermal.Tc, xci[2]) # cell centers ``` and we define a rectangular thermal anomaly at $x \in [0, 0.05]$, $y \in [\frac{1}{3} - 0.05, \frac{1}{3} + 0.05]$ ```julia function rectangular_perturbation!(T, xc, yc, r, xvi) @parallel_indices (i, j) function _rectangular_perturbation!(T, xc, yc, r, x, y) @inbounds if ((x[i]-xc)^2 ≤ r^2) && ((y[j] - yc)^2 ≤ r^2) T[i, j] += .2 end return nothing end ni = size(T) @parallel (@idx ni) _rectangular_perturbation!(T, xc, yc, r, xvi...) return nothing end xc_anomaly = 0.0 # center of the thermal anomaly yc_anomaly = 1/3 # center of the thermal anomaly r_anomaly = 0.1/2 # half-width of the thermal anomaly rectangular_perturbation!(thermal.T, xc_anomaly, yc_anomaly, r_anomaly, xvi) ``` We initialize the buoyancy forces and viscosity ```julia ρg = @zeros(ni...), @zeros(ni...) η = @ones(ni...) args = (; T = thermal.Tc, P = stokes.P, dt = Inf) compute_ρg!(ρg[2], phase_ratios, rheology, args) compute_viscosity!(stokes, 1.0, phase_ratios, args, rheology, (-Inf, Inf)) ``` where `(-Inf, Inf)` is the viscosity cutoff. ### Boundary conditions ```julia flow_bcs = VelocityBoundaryConditions(; free_slip = (left = true, right=true, top=true, bot=true), ) thermal_bc = TemperatureBoundaryConditions(; no_flux = (left = true, right = true, top = false, bot = false), ) thermal_bcs!(thermal, thermal_bc) thermal.Told .= thermal.T ``` ### Pseuo-transient coefficients ```julia pt_stokes = PTStokesCoeffs(li, di; ϵ=1e-4, CFL = 1 / √2.1) pt_thermal = PTThermalCoeffs( backend_JR, rheology, phase_ratios, args, dt, ni, di, li; ϵ=1e-5, CFL = 1e-1 / √2.1 ) ``` ### Just before solving the problem... We need to allocate some arrays to be able to do the subgrid diffusion of the temperature field at the particles level: ```julia T_buffer = @zeros(ni.+1) # without the ghost nodes at the x-direction Told_buffer = similar(T_buffer) # without the ghost nodes at the x-direction dt₀ = similar(stokes.P) # subgrid diffusion time scale # copy temperature to buffer arrays for (dst, src) in zip((T_buffer, Told_buffer), (thermal.T, thermal.Told)) copyinn_x!(dst, src) end # interpolate temperatyre on the particles grid2particle!(pT, xvi, T_buffer, particles) pT0.data .= pT.data ``` where ```julia function copyinn_x!(A, B) @parallel function f_x(A, B) @all(A) = @inn_x(B) return nothing end @parallel f_x(A, B) end ``` In this benchmark we want to keep track of the time `trms`, the rms-velocity `Urms` $U_{rms} = \sqrt{\int_{\Omega} (V_x^2 + V_y^2 ) d\Omega}$ and the Nusselt number at the top of the model `Nu_top` $Nu_{top} = \int \frac{\partial T}{\partial x} dx$ And we will store their time history in the vectors: ```julia Urms = Float64[] Nu_top = Float64[] trms = Float64[] ``` We further need two buffer arrays where to interpolate the velocity field at the vertices of the grid cells ```julia # Buffer arrays to compute velocity rms Vx_v = @zeros(ni.+1...) Vy_v = @zeros(ni.+1...) ``` ### Advancing one time step 1. Solve stokes ```julia solve!( stokes, pt_stokes, di, flow_bcs, ρg, phase_ratios, rheology, args, Inf, igg; kwargs = (; iterMax = 150e3, nout = 200, viscosity_cutoff = (-Inf, Inf), verbose = true ) ) # calculate adaptive time step dt = compute_dt(stokes, di, dt_diff) ``` 2. Heat diffusion solver ```julia heatdiffusion_PT!( thermal, pt_thermal, thermal_bc, rheology, args, dt, di; kwargs = (; igg = igg, phase = phase_ratios, iterMax = 10e3, nout = 1e2, verbose = true, ) ) ``` 3. Subgrid diffusion at the particle level ```julia for (dst, src) in zip((T_buffer, Told_buffer), (thermal.T, thermal.Told)) copyinn_x!(dst, src) end subgrid_characteristic_time!( subgrid_arrays, particles, dt₀, phase_ratios, rheology, thermal, stokes, xci, di ) centroid2particle!(subgrid_arrays.dt₀, xci, dt₀, particles) subgrid_diffusion!( pT, T_buffer, thermal.ΔT[2:end-1, :], subgrid_arrays, particles, xvi, di, dt ) ``` 4. Advect particles ```julia # advect particles in space advection!(particles, RungeKutta2(), @velocity(stokes), (grid_vx, grid_vy), dt) # advect particles in memory move_particles!(particles, xvi, particle_args) # check if we need to inject particles inject_particles_phase!(particles, pPhases, (pT, ), (T_buffer, ), xvi) # update phase ratios phase_ratios_center(phase_ratios, particles, grid, pPhases) ``` 5. Interpolate `T` back to the grid ```julia # interpolate fields from particle to grid vertices particle2grid!(T_buffer, pT, xvi, particles) @views T_buffer[:, end] .= 0.0 @views T_buffer[:, 1] .= 1.0 @views thermal.T[2:end-1, :] .= T_buffer flow_bcs!(stokes, flow_bcs) # apply boundary conditions temperature2center!(thermal) ``` 6. Update buoyancy forces and viscosity ```julia args = (; T = thermal.Tc, P = stokes.P, dt=Inf) compute_viscosity!(stokes, 1.0, phase_ratios, args, rheology, (-Inf, Inf)) compute_ρg!(ρg[2], phase_ratios, rheology, args) ``` 7. Compute Nusselt number and rms-velocity ```julia # Nusselt number, Nu = ∫ ∂T/∂z dx Nu_it = sum( ((abs.(thermal.T[2:end-1,end] - thermal.T[2:end-1,end-1])) ./ di[2]) .*di[1]) push!(Nu_top, Nu_it) # Compute U rms # U₍ᵣₘₛ₎ = √ ∫∫ (vx²+vz²) dx dz Urms_it = let JustRelax.JustRelax2D.velocity2vertex!(Vx_v, Vy_v, stokes.V.Vx, stokes.V.Vy; ghost_nodes=true) @. Vx_v .= hypot.(Vx_v, Vy_v) # we reuse Vx_v to store the velocity magnitude sqrt(sum( Vx_v.^2 .* prod(di)) ) end push!(Urms, Urms_it) push!(trms, t) ``` ### Visualization We will use [Makie.jl](https://github.com/MakieOrg/Makie.jl) to visualize the results ```julia using GLMakie ``` ### Fields ```julia # Make particles plottable p = particles.coords ppx, ppy = p pxv = ppx.data[:] pyv = ppy.data[:] clr = pT.data[:] idxv = particles.index.data[:]; # Make Makie figure fig = Figure(size = (900, 900), title = "t = $t") ax1 = Axis(fig[1,1], aspect = ar, title = "T [K] (t=$(t/(1e6 * 3600 * 24 *365.25)) Myrs)") ax2 = Axis(fig[2,1], aspect = ar, title = "Vy [m/s]") ax3 = Axis(fig[1,3], aspect = ar, title = "Vx [m/s]") ax4 = Axis(fig[2,3], aspect = ar, title = "T [K]") # grid temperature h1 = heatmap!(ax1, xvi[1], xvi[2], Array(thermal.T[2:end-1,:]) , colormap=:lajolla, colorrange=(0, 1) ) # y-velocity h2 = heatmap!(ax2, xvi[1], xvi[2], Array(stokes.V.Vy) , colormap=:batlow) # x-velocity h3 = heatmap!(ax3, xvi[1], xvi[2], Array(stokes.V.Vx) , colormap=:batlow) # particles temperature h4 = scatter!(ax4, Array(pxv[idxv]), Array(pyv[idxv]), color=Array(clr[idxv]), colormap=:lajolla, colorrange=(0, 1), markersize=3) hidexdecorations!(ax1) hidexdecorations!(ax2) hidexdecorations!(ax3) Colorbar(fig[1,2], h1) Colorbar(fig[2,2], h2) Colorbar(fig[1,4], h3) Colorbar(fig[2,4], h4) linkaxes!(ax1, ax2, ax3, ax4) save(joinpath(figdir, "$(it).png"), fig) fig ``` ### Final model Temperature field ![Temperature](../assets/Blankenbach_Temp.png) And time history of the rms-velocity and Nusselt number ![time series](../assets/Blankenbach_Time_Series_V_Nu.png)
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
7175
# ShearBand benchmark Shear Band benchmark to test the visco-elasto-plastic rheology implementation in [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) ## Initialize packages Load [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) necessary modules and define backend. ```julia using JustRelax, JustRelax.JustRelax2D, JustRelax.DataIO const backend_JR = CPUBackend ``` We will also use [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) to write some device-agnostic helper functions: ```julia using ParallelStencil @init_parallel_stencil(Threads, Float64, 2) #or (CUDA, Float64, 2) or (AMDGPU, Float64, 2) ``` and will use [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl/tree/main) to define and compute physical properties of the materials: ```julia using GeoParams ``` ## Script ### Model domain ```julia nx = ny = 64 # number of cells per dimension igg = IGG( init_global_grid(nx, ny, 1; init_MPI= true)... ) # initialize MPI grid ly = 1.0 # domain length in y lx = ly # domain length in x ni = nx, ny # number of cells li = lx, ly # domain length in x- and y- di = @. li / ni # grid step in x- and -y origin = 0.0, 0.0 # origin coordinates grid = Geometry(ni, li; origin = origin) (; xci, xvi) = grid # nodes at the center and vertices of the cells dt = Inf ``` ### Physical properties using GeoParams ```julia τ_y = 1.6 # yield stress. If do_DP=true, τ_y stand for the cohesion: c*cos(ϕ) ϕ = 30 # friction angle C = τ_y # Cohesion η0 = 1.0 # viscosity G0 = 1.0 # elastic shear modulus Gi = G0/(6.0-4.0) # elastic shear modulus perturbation εbg = 1.0 # background strain-rate η_reg = 8e-3 # regularisation "viscosity" dt = η0/G0/4.0 # assumes Maxwell time of 4 el_bg = ConstantElasticity(; G=G0, Kb=4) el_inc = ConstantElasticity(; G=Gi, Kb=4) visc = LinearViscous(; η=η0) pl = DruckerPrager_regularised(; # non-regularized plasticity C = C, ϕ = ϕ, η_vp = η_reg, Ψ = 0 ) ``` ### Rheology ```julia rheology = ( # Low density phase SetMaterialParams(; Phase = 1, Density = ConstantDensity(; ρ = 0.0), Gravity = ConstantGravity(; g = 0.0), CompositeRheology = CompositeRheology((visc, el_bg, pl)), Elasticity = el_bg, ), # High density phase SetMaterialParams(; Density = ConstantDensity(; ρ = 0.0), Gravity = ConstantGravity(; g = 0.0), CompositeRheology = CompositeRheology((visc, el_inc, pl)), Elasticity = el_inc, ), ) ``` ### Phase anomaly Helper function to initialize material phases with [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) ```julia function init_phases!(phase_ratios, xci, radius) ni = size(phase_ratios.center) origin = 0.5, 0.5 @parallel_indices (i, j) function init_phases!(phases, xc, yc, o_x, o_y, radius) x, y = xc[i], yc[j] if ((x-o_x)^2 + (y-o_y)^2) > radius^2 JustRelax.@cell phases[1, i, j] = 1.0 JustRelax.@cell phases[2, i, j] = 0.0 else JustRelax.@cell phases[1, i, j] = 0.0 JustRelax.@cell phases[2, i, j] = 1.0 end return nothing end @parallel (@idx ni) init_phases!(phase_ratios.center, xci..., origin..., radius) end ``` and finally we need the phase ratios at the cell centers: ```julia phase_ratios = PhaseRatio(backend_JR, ni, length(rheology)) init_phases!(phase_ratios, xci, radius) ``` ### Stokes arrays Stokes arrays object ```julia stokes = StokesArrays(backend_JR, ni) ``` ### Initialize viscosity fields We initialize the buoyancy forces and viscosity ```julia ρg = @zeros(ni...), @zeros(ni...) η = @ones(ni...) args = (; T = thermal.Tc, P = stokes.P, dt = Inf) compute_ρg!(ρg[2], phase_ratios, rheology, args) compute_viscosity!(stokes, 1.0, phase_ratios, args, rheology, (-Inf, Inf)) ``` where `(-Inf, Inf)` is the viscosity cutoff. ### Boundary conditions ```julia flow_bcs = VelocityBoundaryConditions(; free_slip = (left = true, right = true, top = true, bot = true), no_slip = (left = false, right = false, top = false, bot=false), ) stokes.V.Vx .= PTArray(backend_JR)([ x*εbg for x in xvi[1], _ in 1:ny+2]) stokes.V.Vy .= PTArray(backend_JR)([-y*εbg for _ in 1:nx+2, y in xvi[2]]) flow_bcs!(stokes, flow_bcs) # apply boundary conditions update_halo!(@velocity(stokes)...) ``` ### Pseuo-transient coefficients ```julia pt_stokes = PTStokesCoeffs(li, di; ϵ=1e-4, CFL = 1 / √2.1) ``` ### Just before solving the problem... In this benchmark we want to keep track of τII, the total time `ttot`, and the analytical elastic solution `sol` ```julia solution(ε, t, G, η) = 2 * ε * η * (1 - exp(-G * t / η)) ``` and store their time history in the vectors: ```julia τII = Float64[] sol = Float64[] ttot = Float64[] ``` ### Advancing one time step 1. Solve stokes ```julia solve!( stokes, pt_stokes, di, flow_bcs, ρg, phase_ratios, rheology, args, dt, igg; kwargs = (; iterMax = 150e3, nout = 200, viscosity_cutoff = (-Inf, Inf), verbose = true ) ) ``` 2. calculate the second invariant and push to history vectors ```julia tensor_invariant!(stokes.ε) push!(τII, maximum(stokes.τ.xx)) it += 1 t += dt push!(sol, solution(εbg, t, G0, η0)) push!(ttot, t) ``` ## Visualization We will use [Makie.jl](https://github.com/MakieOrg/Makie.jl) to visualize the results ```julia using GLMakie ``` ## Fields ```julia # visualisation of high density inclusion th = 0:pi/50:3*pi; xunit = @. radius * cos(th) + 0.5; yunit = @. radius * sin(th) + 0.5; fig = Figure(size = (1600, 1600), title = "t = $t") ax1 = Axis(fig[1,1], aspect = 1, title = L"\tau_{II}", titlesize=35) ax2 = Axis(fig[2,1], aspect = 1, title = L"E_{II}", titlesize=35) ax3 = Axis(fig[1,2], aspect = 1, title = L"\log_{10}(\varepsilon_{II})", titlesize=35) ax4 = Axis(fig[2,2], aspect = 1) heatmap!(ax1, xci..., Array(stokes.τ.II) , colormap=:batlow) heatmap!(ax2, xci..., Array(log10.(stokes.EII_pl)) , colormap=:batlow) heatmap!(ax3, xci..., Array(log10.(stokes.ε.II)) , colormap=:batlow) lines!(ax2, xunit, yunit, color = :black, linewidth = 5) lines!(ax4, ttot, τII, color = :black) lines!(ax4, ttot, sol, color = :red) hidexdecorations!(ax1) hidexdecorations!(ax3) save(joinpath(figdir, "$(it).png"), fig) fig ``` ### Final model Shear Bands evolution in a 2D visco-elasto-plastic rheology model ![Shearbands](../assets/movies/DP_nx2058_2D.gif)
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
251
# Field advection ## Particles-in-Cell [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) relies on [JustPIC.jl](https://github.com/JuliaGeodynamics/JustPIC.jl) for advections of particles containing material information. ## Upwind ## WENO5
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
928
# Selecting the backend [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) supports three backends: the default CPU backend, and two GPU backends for Nvidia and AMD GPUs. The default CPU backend is selected upon loading JustRelax: ```julia using JustRelax ``` The GPU backends are implemented as extensions, and can be selected upon loading the appropriate GPU package before loading JustRelax. If running on Nvidia GPUs, use the [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl) package: ```julia using CUDA, JustRelax ``` and if running on AMD GPUs, use the [AMDGPU.jl](https://github.com/JuliaGPU/AMDGPU.jl) package: ```julia using AMDGPU, JustRelax ``` Two and three dimensional solvers are implemented in different submodules, which also need to be loaded. To access the two-dimensional module: ```julia using JustRelax.JustRelax2D ``` and for the three-dimensional module: ```julia using JustRelax.JustRelax3D ```
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
3538
# Flow boundary conditions Supported boundary conditions: 1. Free slip $\frac{\partial u_i}{\partial x_i} = 0$ at the boundary $\Gamma$ 2. No slip $u_i = 0$ at the boundary $\Gamma$ 3. Free surface $\sigma_z = 0 \rightarrow \tau_z = P$ at the top boundary ## Defining the boundary conditions We have two ways of defining the boundary condition formulations: - `VelocityBoundaryConditions`, and - `DisplacementBoundaryConditions`. The first one is used for the velocity-pressure formulation, and the second one is used for the displacement-pressure formulation. The flow boundary conditions can be switched on and off by setting them as `true` or `false` at the appropriate boundaries. Valid boundary names are `left` and `right`, `top` and `bot`, and for the 3D case, `front` and `back`. For example, if we want to have free free-slip in every single boundary in a 2D simulation, we need to instantiate `VelocityBoundaryConditions` or `DisplacementBoundaryConditions` as: ```julia bcs = VelocityBoundaryConditions(; no_slip = (left=false, right=false, top=false, bot=false), free_slip = (left=true, right=true, top=true, bot=true), free_surface = false ) bcs = DisplacementBoundaryConditions(; no_slip = (left=false, right=false, top=false, bot=false), free_slip = (left=true, right=true, top=true, bot=true), free_surface = false ) ``` The equivalent for the 3D case would be: ```julia bcs = VelocityBoundaryConditions(; no_slip = (left=false, right=false, top=false, bot=false, front=false, back=false), free_slip = (left=true, right=true, top=true, bot=true, front=true, back=true), free_surface = false ) bcs = DisplacementBoundaryConditions(; no_slip = (left=false, right=false, top=false, bot=false, front=false, back=false), free_slip = (left=true, right=true, top=true, bot=true, front=true, back=true), free_surface = false ) ``` ## Prescribing the velocity/displacement boundary conditions Normally, one would prescribe the velocity/displacement boundary conditions by setting the velocity/displacement field at the boundary through the application of a background strain rate `εbg`. Depending on the formulation, the velocity/displacement field is set as follows for the 2D case: ### Velocity formulation ```julia stokes.V.Vx .= PTArray(backend)([ x*εbg for x in xvi[1], _ in 1:ny+2]) # Velocity in x direction stokes.V.Vy .= PTArray(backend)([-y*εbg for _ in 1:nx+2, y in xvi[2]]) # Velocity in y direction ``` Make sure to apply the set velocity to the boundary conditions. You do this by calling the `flow_bcs!` function, ```julia flow_bcs!(stokes, flow_bcs) ``` and then applying the velocities to the halo ```julia update_halo!(@velocity(stokes)...) ``` ### Displacement formulation ```julia stokes.U.Ux .= PTArray(backend)([ x*εbg*lx*dt for x in xvi[1], _ in 1:ny+2]) # Displacement in x direction stokes.U.Uy .= PTArray(backend)([-y*εbg*ly*dt for _ in 1:nx+2, y in xvi[2]]) # Displacement in y direction flow_bcs!(stokes, flow_bcs) ``` Make sure to initialize the displacement according to the extent of your domain. Here, lx and ly are the domain lengths in the x and y directions, respectively. Also for the displacement formulation it is important that the displacement is converted to velocity before updating the halo. This can be done by calling the `displacement2velocity!` function. ```julia displacement2velocity!(stokes, dt) # convert displacement to velocity update_halo!(@velocity(stokes)...) ```
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
3737
# Pseudo-transient iterative method The pseudo-transient method consists in augmenting the right-hand-side of the target PDE with a pseudo-time derivative (where $\psi$ is the pseudo-time) of the primary variables. We then solve the resulting system of equations with an iterative method. The pseudo-time derivative is then gradually reduced, until the original PDE is solved and the changes in the primary variables are below a preset tolerance. ## Heat diffusion The pseudo-transient heat-diffusion equation is: $\widetilde{\rho}\frac{\partial T}{\partial \psi} + \rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (\kappa\nabla T) = -\nabla q$ We use a second order pseudo-transient scheme were continuation is also done on the flux, so that: $\widetilde{\theta}\frac{\partial q}{\partial \psi} + q = -\kappa\nabla T$ ## Stokes equations For example, the pseudo-transient formulation of the Stokes equations yields: $\widetilde{\rho}\frac{\partial \boldsymbol{u}}{\partial \psi} + \nabla\cdot\boldsymbol{\tau} - \nabla p = \boldsymbol{f}$ $\frac{1}{\widetilde{K}}\frac{\partial p}{\partial \psi} + \nabla\cdot\boldsymbol{v} = \beta \frac{\partial p}{\partial t} + \alpha \frac{\partial T}{\partial t}$ ## Constitutive equations A pseudo-transient continuation is also done on the constitutive law: $\frac{1}{2\widetilde{G}} \frac{\partial\boldsymbol{\tau}}{\partial\psi}+ \frac{1}{2G}\frac{D\boldsymbol{\tau}}{Dt} + \frac{\boldsymbol{\tau}}{2\eta} = \dot{\boldsymbol{\varepsilon}}$ where the wide tile denotes the effective damping coefficients and $\psi$ is the pseudo-time step. These are defined as in [Räss et al. (2022)](https://gmd.copernicus.org/articles/15/5757/2022/): $\widetilde{\rho} = Re\frac{\eta}{\widetilde{V}L}, \qquad \widetilde{G} = \frac{\widetilde{\rho} \widetilde{V}^2}{r+2}, \qquad \widetilde{K} = r \widetilde{G}$ and $\widetilde{V} = \sqrt{ \frac{\widetilde{K} +2\widetilde{G}}{\widetilde{\rho}}}, \qquad r = \frac{\widetilde{K}}{\widetilde{G}}, \qquad Re = \frac{\widetilde{\rho}\widetilde{V}L}{\eta}$ where the P-wave $\widetilde{V}=V_p$ is the characteristic velocity scale for Stokes, and $Re$ is the Reynolds number. ### Physical parameters | Symbol | Parameter | | :------------------------------- | :--------------------: | | $T$ | Temperature | | $q$ | Flux | | $\boldsymbol{\tau}$ | Deviatoric stress | | $\dot{\boldsymbol{\varepsilon}}$ | Deviatoric strain rate | | $\boldsymbol{u}$ | Velocity | | $\boldsymbol{f}$ | External forces | | $P$ | Pressure | | $\eta$ | Viscosity | | $\rho$ | Density | | $\beta$ | Compressibility | | $G$ | Shear modulus | | $\alpha$ | Thermal expansivity | | $C_p$ | Heat capacity | | $\kappa$ | Heat conductivity | ### Pseudo-transient parameters | Symbol | Parameter | | :------------------- | :---------------------------: | | $\psi$ | Pseudo time step | | $\widetilde{K}$ | Pseudo bulk modulus | | $\widetilde{G}$ | Pseudo shear modulus | | $\widetilde{V}$ | Characteristic velocity scale | | $\widetilde{\rho}$ | Pseudo density | | $\widetilde{\theta}$ | Relaxation time | | $Re$ | Reynolds number |
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
660
# Installation [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) is a registered package and can be added as follows: ```julia using Pkg; Pkg.add("JustRelax") ``` or ```julia-repl julia> ] (@v1.10) pkg> add JustRelax ``` !!! info "Install from a specific branch" However, as the API is changing and not every new feature leads to a new release, one can also clone the main branch of the repository: ```julia add JustRelax#main ``` After installation, you can test the package by running the following commands: ```julia-repl using JustRelax julia> ] (@v1.10) pkg> test JustRelax ``` The test will take a while, so grab a ☕️ or 🍵
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
163
# List of all functions Here an overview of all functions: ```@autodocs Modules = [JustRelax, JustRelax.JustRelax2D, JustRelax.JustRelax3D, JustRelax.DataIO] ```
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
228
# Material physics [JustRelax.jl](https://github.com/PTsolvers/JustRelax.jl) is fully integrated with [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl/tree/main) to perform all the material physics computations.
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
3239
# Using GeoParams.jl to define the rheology of the material phases We will use the same physical parameters as the ones defined in [Hummel et al 2024](https://doi.org/10.5194/se-15-567-2024). The thermal expansion coefficient $\alpha$ and heat capacity $C_p$ are the same for all the material phases ```julia α = 2.4e-5 # 1 / K Cp = 750 # J / kg K ``` The density of all the phases is constant, except for the oceanic lithosphere, which uses the pressure and temperature dependent equation of state $\rho = \rho_0 \left(1 - \alpha (T-T_0) - \beta (P-P_0) \right)$, where $\rho_0 = \rho (T=1475 \text{C}^{\circ})=3200 \text{kg/m}^3$.which corresponds to the `PT_Density` object from [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl): ```julia density_lithosphere = PT_Density(; ρ0=3.2e3, α = α, β = 0e0, T0 = 273+1474) ``` We will run the case where the rheology is given by a combination of dislocation and diffusion creep for wet olivine, ```julia using GeoParams.Dislocation using GeoParams.Diffusion disl_wet_olivine = SetDislocationCreep(Dislocation.wet_olivine1_Hirth_2003) diff_wet_olivine = SetDiffusionCreep(Diffusion.wet_olivine_Hirth_2003) ``` and where plastic failure is given by the formulation from [Duretz et al, 2021](https://doi.org/10.1029/2021GC009675) ```julia # non-regularized plasticity ϕ = asind(0.1) C = 1e6 # Pa plastic_model = DruckerPrager_regularised(; C = C, ϕ = ϕ, η_vp=η_reg, Ψ=0.0) ``` Finally we define the rheology objects of [GeoParams.jl](https://github.com/JuliaGeodynamics/GeoParams.jl) ```julia rheology = ( SetMaterialParams(; Name = "Asthenoshpere", Phase = 1, Density = ConstantDensity(; ρ=3.2e3), HeatCapacity = ConstantHeatCapacity(; Cp = Cp), Conductivity = ConstantConductivity(; k = 2.5), CompositeRheology = CompositeRheology( (LinearViscous(; η=1e20),)), Gravity = ConstantGravity(; g=9.81), ), SetMaterialParams(; Name = "Oceanic lithosphere", Phase = 2, Density = density_lithosphere, HeatCapacity = ConstantHeatCapacity(; Cp = Cp), Conductivity = ConstantConductivity(; k = 2.5), CompositeRheology = CompositeRheology( ( disl_wet_olivine, diff_wet_olivine, plastic_model, ) ), ), SetMaterialParams(; Name = "oceanic crust", Phase = 3, Density = ConstantDensity(; ρ=3.2e3), HeatCapacity = ConstantHeatCapacity(; Cp = Cp), Conductivity = ConstantConductivity(; k = 2.5), CompositeRheology = CompositeRheology( (LinearViscous(; η=1e20),)), ), SetMaterialParams(; Name = "StickyAir", Phase = 4, Density = ConstantDensity(; ρ=1), # water density HeatCapacity = ConstantHeatCapacity(; Cp = 1e34), Conductivity = ConstantConductivity(; k = 3), CompositeRheology = CompositeRheology((LinearViscous(; η=1e19),)), ), ) ```
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
3791
# Model setup As described in the original [paper](https://doi.org/10.5194/se-15-567-2024), the domain consists of a Cartesian box of $\Omega \in [0, 3000] \times [0, -660]$ km, with two 80 km thick oceanic plates over the asthenospheric mantle. We will use [GeophysicalModelGenerator.jl](https://github.com/JuliaGeodynamics/GeophysicalModelGenerator.jl) to generate the initial geometry, material phases, and thermal field of our models. We will start by defining the dimensions and resolution of our model, as well as initializing the `Grid2D` object and two arrays `Phases` and `Temp` that host the material phase (given by an integer) and the thermal field, respectively. ```julia nx, nz = 512, 218 # number of cells per dimension Tbot = 1474.0 # [Celsius] model_depth = 660 # [km] air_thickness = 10 # [km] Lx = 3000 # model length [km] x = range(0, Lx, nx); z = range(-model_depth, air_thickness, nz); Grid2D = CartData(xyz_grid(x,0,z)) Phases = zeros(Int64, nx, 1, nz); Temp = fill(Tbot, nx, 1, nz); ``` In this model we have four material phases with their respective phase numbers: | Material | Phase number | | :---------------- | :----------: | | asthenosphere | 0 | | oceanic lithosphere | 1 | | oceanic crust | 3 | | sticky air | 4 | We will start by initializing the model as asthenospheric mantle, with a thermal profile given by the half-space cooling model with an age of 80 Myrs. ```julia add_box!( Phases, Temp, Grid2D; xlim = (0, Lx), zlim = (-model_depth, 0.0), phase = LithosphericPhases(Layers=[], Phases=[0]), T = HalfspaceCoolingTemp(Tsurface=20, Tmantle=Tbot, Age=80,Adiabat=0.4) ) ``` ![](../../assets/Subduction2D_setup_4.png) Next we add a horizontal 80 km thick oceanic lithosphere. Note that we leave a 100 km buffer zone next to the vertical boundaries of the domain, to facilitate the sliding of the oceanic plates. ```julia add_box!( Phases, Temp, Grid2D; xlim = (100, Lx-100), # 100 km buffer zones on both sides zlim = (-model_depth, 0.0), phase = LithosphericPhases(Layers=[80], Phases=[1 0]), T = HalfspaceCoolingTemp(Tsurface=20, Tmantle=Tbot, Age=80, Adiabat=0.4) ) ``` ![](../../assets/Subduction2D_setup_2.png) As in the original paper, we add a 8km thick crust on top of the subducting oceanic plate. ```julia # Add right oceanic plate crust add_box!( Phases, Temp, Grid2D; xlim = (Lx-1430, Lx-200), zlim = (-model_depth, 0.0), Origin = nothing, StrikeAngle=0, DipAngle=0, phase = LithosphericPhases(Layers=[8 72], Phases=[2 1 0]), T = HalfspaceCoolingTemp(Tsurface=20, Tmantle=Tbot, Age=80, Adiabat=0.4) ) ``` ![](../../assets/Subduction2D_setup_3.png) And finally we add the subducting slab, with the trench located at 1430km from the right-hand-side boundary. ```julia add_box!( Phases, Temp, Grid2D; xlim = (Lx-1430, Lx-1430-250), zlim = (-80, 0.0), Origin = nothing, StrikeAngle=0, DipAngle=-30, phase = LithosphericPhases(Layers=[8 72], Phases=[2 1 0]), T = HalfspaceCoolingTemp(Tsurface=20, Tmantle=Tbot, Age=80, Adiabat=0.4) ) ``` ![](../../assets/Subduction2D_setup_4.png) ```julia surf = Grid2D.z.val .> 0.0 @views Temp[surf] .= 20.0 @views Phases[surf] .= 3 ``` ![](../../assets/Subduction2D_setup_5.png) ```julia li = (abs(last(x)-first(x)), abs(last(z)-first(z))) .* 1e3 # in meters origin = (x[1], z[1]) .* 1e3 # lower-left corner of the domain Phases = Phases[:,1,:] .+ 1 # +1 because Julia is 1-indexed Temp = Temp[:,1,:].+273 # in Kelvin ```
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.3.2
400eb2287ceaccfcb37bb7db095ecd914493ce75
docs
8204
# 2D subduction Model setups taken from [Hummel et al 2024](https://doi.org/10.5194/se-15-567-2024). # Model setup We will use [GeophysicalModelGenerator.jl](https://github.com/JuliaGeodynamics/GeophysicalModelGenerator.jl) to generate the initial geometry, material phases, and thermal field of our models. # Initialize packages Load JustRelax necessary modules and define backend. ```julia using CUDA # comment this out if you are not using CUDA; or load AMDGPU.jl if you are using an AMD GPU using JustRelax, JustRelax.JustRelax2D, JustRelax.DataIO const backend_JR = CUDABackend # Options: CPUBackend, CUDABackend, AMDGPUBackend ``` For this benchmark we will use particles to track the advection of the material phases and their information. For this, we will use [JustPIC.jl](https://github.com/JuliaGeodynamics/JustPIC.jl) ```julia using JustPIC, JustPIC._2D const backend = CUDABackend # Options: JustPIC.CPUBackend, CUDABackend, JustPIC.AMDGPUBackend ``` We will also use [ParallelStencil.jl](https://github.com/omlins/ParallelStencil.jl) to write some device-agnostic helper functions: ```julia using ParallelStencil @init_parallel_stencil(CUDA, Float64, 2) ``` ### Helper function We first define a helper function that will be useful later on ```julia function copyinn_x!(A, B) @parallel function f_x(A, B) @all(A) = @inn_x(B) return nothing end @parallel f_x(A, B) end ``` # Script ## Model domain ```julia nx, ny = 256, 128 # number of cells in x and y directions ni = nx, ny di = @. li / ni # grid steps grid = Geometry(ni, li; origin = origin) (; xci, xvi) = grid # nodes at the center and vertices of the cells ``` ## Physical properties using GeoParams For the rheology we will use the `rheology` object we created in the previous section. ## Initialize particles ```julia nxcell = 40 # initial number of particles per cell max_xcell = 60 # maximum number of particles per cell min_xcell = 20 # minimum number of particles per cell particles = init_particles( backend, nxcell, max_xcell, min_xcell, xvi... ) ) subgrid_arrays = SubgridDiffusionCellArrays(particles) # velocity staggered grids grid_vxi = velocity_grids(xci, xvi, di) ``` We will like to advect two fields, the temperature `pT` and the material phases of each particle `pPhases`. We will initialize these fields as `CellArray` objects: ```julia pPhases, pT = init_cell_arrays(particles, Val(2)) particle_args = (pT, pPhases) ``` # Assign particles phases anomaly Now we assign the material phases from the arrays we computed with help of [GeophysicalModelGenerator.jl](https://github.com/JuliaGeodynamics/GeophysicalModelGenerator.jl) ```julia phases_device = PTArray(backend)(phases_GMG) phase_ratios = PhaseRatio(backend, ni, length(rheology)) init_phases!(pPhases, phases_device, particles, xvi) phase_ratios_center!(phase_ratios, particles, grid, pPhases) ``` ## Temperature profile We need to copy the thermal field from the [GeophysicalModelGenerator.jl](https://github.com/JuliaGeodynamics/GeophysicalModelGenerator.jl) object to the `thermal` that contains all the arrays related to the thermal field. ```julia Ttop = 20 + 273 Tbot = maximum(T_GMG) thermal = ThermalArrays(backend, ni) @views thermal.T[2:end-1, :] .= PTArray(backend)(T_GMG) thermal_bc = TemperatureBoundaryConditions(; no_flux = (left = true, right = true, top = false, bot = false), ) thermal_bcs!(thermal, thermal_bc) @views thermal.T[:, end] .= Ttop @views thermal.T[:, 1] .= Tbot temperature2center!(thermal) ``` ## Stokes arrays Stokes arrays object ```julia stokes = StokesArrays(backend, ni) pt_stokes = PTStokesCoeffs(li, di; ϵ=1e-4, Re=3π, r=1e0, CFL = 1 / √2.1) # Re=3π, r=0.7 ``` ## Buoyancy forces and lithostatic pressure ```julia ρg = ntuple(_ -> @zeros(ni...), Val(2)) compute_ρg!(ρg[2], phase_ratios, rheology_augmented, (T=thermal.Tc, P=stokes.P)) stokes.P .= PTArray(backend)(reverse(cumsum(reverse((ρg[2]).* di[2], dims=2), dims=2), dims=2)) ``` ## Viscosity ```julia args0 = (T=thermal.Tc, P=stokes.P, dt = Inf) viscosity_cutoff = (1e17, 1e24) compute_viscosity!(stokes, phase_ratios, args0, rheology, viscosity_cutoff) ``` ## Boundary conditions We we will use free slip boundary conditions on all sides ```julia # Boundary conditions flow_bcs = VelocityBoundaryConditions(; free_slip = (left = true , right = true , top = true , bot = true), ) ``` ## Pseuo-transient coefficients ```julia pt_thermal = PTThermalCoeffs( backend, rheology_augmented, phase_ratios, args0, dt, ni, di, li; ϵ=1e-5, CFL=1e-3 / √3 ) ``` ## Just before solving the problem... Because we have ghost nodes on the thermal field `thermal.T`, we need to copy the thermal field to a buffer array without those ghost nodes, and interpolate the temperature to the particles. This is because [JustPIC.jl](https://github.com/JuliaGeodynamics/JustPIC.jl) does not support ghost nodes yet. ```julia T_buffer = @zeros(ni.+1) Told_buffer = similar(T_buffer) dt₀ = similar(stokes.P) for (dst, src) in zip((T_buffer, Told_buffer), (thermal.T, thermal.Told)) copyinn_x!(dst, src) end grid2particle!(pT, xvi, T_buffer, particles) ``` ## Advancing one time step 1. Interpolate fields from particle to grid vertices ```julia particle2grid!(T_buffer, pT, xvi, particles) @views T_buffer[:, end] .= Ttop @views T_buffer[:, 1] .= Tbot @views thermal.T[2:end-1, :] .= T_buffer thermal_bcs!(thermal, thermal_bc) temperature2center!(thermal) ``` 2. Solve stokes ```julia t_stokes = @elapsed begin out = solve!( stokes, pt_stokes, di, flow_bcs, ρg, phase_ratios, rheology_augmented, args, dt, igg; kwargs = ( iterMax = 150e3, nout = 1e3, viscosity_cutoff = viscosity_cutoff, free_surface = false, viscosity_relaxation = 1e-2 ) ); end println("Stokes solver time ") println(" Total time: $t_stokes s") println(" Time/iteration: $(t_stokes / out.iter) s") ``` 3. Update time step ```julia dt = compute_dt(stokes, di) * 0.8 ``` 4. Thermal solver and subgrid diffusion ```julia heatdiffusion_PT!( thermal, pt_thermal, thermal_bc, rheology_augmented, args, dt, di; kwargs = ( igg = igg, phase = phase_ratios, iterMax = 50e3, nout = 1e2, verbose = true, ) ) subgrid_characteristic_time!( subgrid_arrays, particles, dt₀, phase_ratios, rheology_augmented, thermal, stokes, xci, di ) centroid2particle!(subgrid_arrays.dt₀, xci, dt₀, particles) subgrid_diffusion!( pT, thermal.T, thermal.ΔT, subgrid_arrays, particles, xvi, di, dt ) ``` 5. Particles advection ```julia # advect particles in space advection!(particles, RungeKutta2(), @velocity(stokes), grid_vxi, dt) # advect particles in memory move_particles!(particles, xvi, particle_args) # check if we need to inject particles inject_particles_phase!(particles, pPhases, (pT, ), (T_buffer, ), xvi) # update phase ratios phase_ratios_center!(phase_ratios, particles, grid, pPhases) ``` 6. **Optional:** Save data as VTK to visualize it later with [ParaView](https://www.paraview.org/) ```julia Vx_v = @zeros(ni.+1...) Vy_v = @zeros(ni.+1...) velocity2vertex!(Vx_v, Vy_v, @velocity(stokes)...) # interpolate velocity from staggered grid to vertices data_v = (; # data @ vertices T = Array(T_buffer), τII = Array(stokes.τ.II), εII = Array(stokes.ε.II), Vx = Array(Vx_v), Vy = Array(Vy_v), ) data_c = (; # data @ centers P = Array(stokes.P), η = Array(stokes.viscosity.η_vep), ) velocity_v = ( # velocity vector field Array(Vx_v), Array(Vy_v), ) save_vtk( joinpath(@__DIR__, "vtk_" * lpad("$it", 6, "0")), xvi, xci, data_v, data_c, velocity_v ) ``` ### Final model Solution after 990 time steps ![](../../assets/Subduction2D_990.png)
JustRelax
https://github.com/PTsolvers/JustRelax.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
682
using LaserFields using Documenter DocMeta.setdocmeta!(LaserFields, :DocTestSetup, :(using LaserFields); recursive=true) makedocs(; modules=[LaserFields], authors="Johannes Feist <[email protected]> and contributors", repo="https://github.com/jfeist/LaserFields.jl/blob/{commit}{path}#{line}", sitename="LaserFields.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://jfeist.github.io/LaserFields.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/jfeist/LaserFields.jl", devbranch="main", )
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
362
module LaserFields using SpecialFunctions using DelimitedFiles using DataInterpolations export LaserField, LaserFieldCollection, make_laserfield export E_field, A_field, E_fourier, A_fourier export start_time, end_time, envelope, Teff include("constants.jl") include("typedef.jl") include("fielddefs.jl") include("make_field.jl") include("precompile.jl") end
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
655
const GAUSSIAN_TIME_CUTOFF_SIGMA = 3.5*sqrt(log(256)) const au_as = 1/24.188843265903884 # attosecond in a.u. const au_wcm2toel2 = 1/3.5094455205784296e16 # W/cm^2 in a.u. for electric field squared const au_wcm2 = 1.5536611487396207e-16 # W/cm^2 in a.u const au_m = 1/5.29177210903e-11 # m in a.u. const au_cm = 1/5.29177210903e-9 # cm in a.u. const au_nm = 1/5.29177210903e-2 # nm in a.u. const au_c = 137.0359990836958 # c (speed of light) in a.u. == 1/alpha const au_eV = 1/27.211386245935508 # eV in a.u. const au_m_He = 7294.299386612553 # m of He nucleus in a.u. const au_m_n = 1838.6836617324586 # m of neutron in a.u.
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
6713
macro _laserfield_struct(Name,args...) nfreefields = 5 defs = Any[] for arg in args if arg isa Symbol nfreefields += 1 push!(defs, :($(arg)::$(Symbol(:T,nfreefields)))) elseif arg isa Expr && arg.head == :(::) push!(defs, arg) else throw(ArgumentError("invalid argument to new_lf_field")) end end DerivT = :LaserField if Name isa Expr && Name.head == :(<:) DerivT = Name.args[2] Name = Name.args[1] end Ts = Symbol.(:T,1:nfreefields) esc(quote Base.@kwdef struct $(Name){$(Ts...)} <: $(DerivT) is_vecpot::Bool E0::T1 ω0::T2 t0::T3 ϕ0::T4 chirp::T5 $(defs...) end end) end # laser field with a Gaussian envelope with std dev σ @_laserfield_struct GaussianLaserField σ _envelope(lf::GaussianLaserField,tr) = (env = lf.E0 * exp(-tr^2/(2*lf.σ^2)); (env, -env * tr/lf.σ^2)) # F[exp(-z*t^2)] = exp(-w^2/4z)/sqrt(2z) (for real(z)>0) _envelope_fourier(lf::GaussianLaserField,ω) = (z = 0.5/lf.σ^2 - 1im*lf.chirp; lf.E0 * exp(-ω^2/4z) / sqrt(2z)) start_time(lf::GaussianLaserField) = lf.t0 - GAUSSIAN_TIME_CUTOFF_SIGMA*lf.σ end_time( lf::GaussianLaserField) = lf.t0 + GAUSSIAN_TIME_CUTOFF_SIGMA*lf.σ Teff(lf::GaussianLaserField,n_photon) = lf.σ * sqrt(π/n_photon) @_laserfield_struct SinExpLaserField T exponent "returns the result of the integral Int(exp(i*(a*t+b*t**2)),{t,-T/2,T/2}) / sqrt(2π)" function expiatbt2_intT(a,b,T) iszero(b) && return sqrt(2/π)/a * sin(a*T/2) t1 = inv(sqrt(complex(b))) # b might be negative zz1 = (1+1im)/4 * t1 # = (1+1im)/(2*sqrt(4b)) z34 = (-1+1im)/sqrt(8) * t1 # == (-1)**(3/4) / sqrt(4b) # the sign(b) is surprisingly not given by mathematica - not sure yet why it misses it, # but it's necessary for agreement with the numerical fourier transform sign(b) * (erf(z34*(a-b*T)) - erf(z34*(a+b*T))) * zz1 * cis(-a^2/4b) end function _envelope(lf::SinExpLaserField,tr) trel = tr/lf.T if abs(trel) > 0.5 (0., 0.) else lf.E0 .* (cospi(trel)^lf.exponent, -lf.exponent*π/lf.T * cospi(trel)^(lf.exponent-1) * sinpi(trel)) end end function _envelope_fourier(lf::SinExpLaserField,ω) isinteger(lf.exponent) || error("sin_exp fourier transform only implemented for integer exponents") # rewrite the _envelope as a sum of exponentials, which are easy to Fourier transform over a limited time interval # cos(πt/T)^n = 1/2^n (exp(iπt/T)+ exp(-iπt/T))^n = 1/2^n sum_k=0^n binomial(n,k) exp(i(n-2k)πt/T) n = Int(lf.exponent) wd = π/lf.T res = 0im for k = 0:n res += binomial(n,k) * expiatbt2_intT((n-2k)*wd - ω, lf.chirp, lf.T) end return lf.E0/2^n * res end start_time(lf::SinExpLaserField) = lf.t0 - lf.T/2 end_time( lf::SinExpLaserField) = lf.t0 + lf.T/2 Teff(lf::SinExpLaserField,n_photon) = lf.T * gamma(0.5 + n_photon*lf.exponent) / (sqrt(π)*gamma(1 + n_photon*lf.exponent)) abstract type FlatTopLaserField <: LaserField end @_laserfield_struct LinearFlatTopLaserField<:FlatTopLaserField Tflat Tramp @_laserfield_struct Linear2FlatTopLaserField<:FlatTopLaserField Tflat Tramp start_time(lf::FlatTopLaserField) = lf.t0 - lf.Tflat/2 - lf.Tramp end_time( lf::FlatTopLaserField) = lf.t0 + lf.Tflat/2 + lf.Tramp function _envelope(lf::FlatTopLaserField,tr) # for linear field, the peak time is the middle of the interval if abs(tr) > lf.Tflat/2 + lf.Tramp (0., 0.) elseif abs(tr) > lf.Tflat/2 trel = (lf.Tramp + lf.Tflat/2 - abs(tr))/lf.Tramp lf.E0 .* (ramponfunc(lf,trel), -sign(tr)*ramponfuncpr(lf,trel) / lf.Tramp) else (lf.E0, 0.) end end ramponfunc(::LinearFlatTopLaserField,trel) = trel ramponfuncpr(::LinearFlatTopLaserField,trel) = 1. ramponfunc(::Linear2FlatTopLaserField,trel) = sin(π/2*trel)^2 ramponfuncpr(::Linear2FlatTopLaserField,trel) = sin(π*trel) * π/2 function _envelope_fourier(lf::LinearFlatTopLaserField,ω) lf.chirp == 0 || error("Fourier transform of 'linear' field with chirp not implemented!") return lf.E0 * sqrt(8/π) * sinc(ω*lf.Tramp/2π) * sinc(ω*(lf.Tramp+lf.Tflat)/2π) * (lf.Tramp+lf.Tflat)/4 end function _envelope_fourier(lf::Linear2FlatTopLaserField,ω) lf.chirp == 0 || error("Fourier transform of 'linear2' field with chirp not implemented!") return lf.E0 * sqrt(2π^3) * cos(ω*lf.Tramp/2) * sinc(ω*(lf.Tramp+lf.Tflat)/2π) * (lf.Tramp+lf.Tflat)/ (2π^2 - 2*lf.Tramp^2*ω^2) end Teff(lf::LinearFlatTopLaserField,n_photon) = lf.Tflat + 2*lf.Tramp / (1+2*n_photon) Teff(lf::Linear2FlatTopLaserField,n_photon) = lf.Tflat + 2*lf.Tramp * gamma(0.5+2n_photon) / (sqrt(π)*gamma(1+2n_photon)) @_laserfield_struct InterpolatingLaserField duration datafile::String Efun Afun start_time end_time function InterpolatingLaserField(datafile; is_vecpot) # print('# Reading laser_field from file:', datafile) data = readdlm(datafile) ndims(data) == 2 && size(data,2) == 2 || error("Laser field datafile '$datafile' must contain two columns: time and field") tt, ff = eachcol(data) # print('# Number of data points found:', len(tt)) issorted(tt) || error("Laser field datafile '$datafile' must be sorted by time") # analyze the data we have read to guess some information about the field start_time = tt[1] end_time = tt[end] if is_vecpot Afun = CubicSpline(ff,tt) Efun = t -> -DataInterpolations.derivative(Afun,t) else Efun = CubicSpline(ff,tt) Afun = t -> -DataInterpolations.integral(Efun,start_time,t) end # guess the parameters of the field - note that this is just a simple estimation, not anything rigorous TX = Inf E0 = 0. Eprev = Efun(tt[1]) t0 = 0. lastzerocrossing = -Inf for t in LinRange(tt[1],tt[end],20*length(tt)) E = Efun(t) if abs(E) > E0 E0 = abs(E) t0 = t end if sign(E) != sign(Eprev) TX = min(TX,2*(t-lastzerocrossing)) lastzerocrossing = t # @show t, lastzerocrossing, TX Eprev = E end end ω0 = 2π / TX duration = tt[end] - tt[1] chirp = 0. ϕ0 = 0. InterpolatingLaserField(; is_vecpot,E0,ω0,t0,duration,chirp,ϕ0,datafile,Efun,Afun,start_time,end_time) end start_time(lf::InterpolatingLaserField) = lf.start_time end_time( lf::InterpolatingLaserField) = lf.end_time E_field(lf::InterpolatingLaserField,t) = (start_time(lf) <= t <= end_time(lf)) ? lf.Efun(t) : 0. A_field(lf::InterpolatingLaserField,t) = (start_time(lf) <= t <= end_time(lf)) ? lf.Afun(t) : 0.
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
3799
"""Get a value from one of several possibly defined parameters, or a default value if none are defined. Makes sure that at most one of the options are specified, and that at least one is given if there is no default value. sample use: `x = @select_param args (x => args.x, x_squared => sqrt(x_squared), 0.)` This makes it possible to call a function with either `x`, `x_squared`, or neither, and in the last case, `x` is set to 0. """ macro select_param(nt,options) @assert options.head ∈ (:block,:tuple) params = [] default = nothing for arg in options.args if arg isa Expr && arg.head == :call ex = arg.args @assert ex[1] == :(=>) && length(ex) == 3 push!(params, ex[2] => ex[3]) elseif !(arg isa LineNumberNode) @assert isnothing(default) "Cannot have more than one default argument" default = arg end end parnamestr = join(first.(params),", ") checkexpr(head,par) = Expr(head, :(haskey($nt,$(QuoteNode(first(par))))), last(par)) ifexpr = currif = checkexpr(:if, params[1]) for par in params[2:end] push!(currif.args, checkexpr(:elseif, par)) currif = currif.args[end] end if isnothing(default) push!(currif.args, :(error("ERROR: You need to specify one out of: ($($parnamestr))!"))) else push!(currif.args, default) end esc(quote if sum(haskey.(Ref($nt),$(first.(params)))) > 1 error("ERROR: Cannot specify more than one out of: ($($parnamestr))\npassed arguments: $($nt)") end $ifexpr end) end # General function to make a laser field with the parameter conventions from fortran laserfields library make_laserfield(args...; kwargs...) = LaserField(args...; kwargs...) LaserField(d) = LaserField(; d...) function LaserField(; form::String, is_vecpot::Bool, pargs...) args = values(pargs) if form == "readin" return InterpolatingLaserField(args.datafile; is_vecpot=is_vecpot) end E0 = @select_param args (E0 => args.E0, intensity_Wcm2 => sqrt(args.intensity_Wcm2 * au_wcm2toel2)) ω0 = @select_param args (ω0 => args.ω0, omega => args.omega, lambda_nm => 2π*au_c / (args.lambda_nm * au_nm)) ϕ0 = @select_param args (ϕ0 => args.ϕ0, phase_pi => π*args.phase_pi, 0.) chirp = @select_param args begin chirp => args.chirp linear_chirp_rate_w0as => ω0 * args.linear_chirp_rate_w0as / au_as 0. end t0 = @select_param args (t0 => args.t0, peak_time => args.peak_time, peak_time_as => args.peak_time_as * au_as) duration = @select_param args (duration => args.duration, duration_as => args.duration_as * au_as) Tramp = @select_param args (Tramp => args.Tramp, rampon => args.rampon, rampon_as => args.rampon_as * au_as, 0.) kwargs = Dict(pairs((; is_vecpot, ϕ0, E0, ω0, t0, chirp))) if form in ("gaussian","gaussianF") # convert from FWHM of field to standard deviation of field kwargs[:σ] = duration / sqrt(log(256)) return GaussianLaserField(; kwargs...) elseif form in ("gaussian2","gaussianI") # convert from FWHM of intensity to standard deviation of field kwargs[:σ] = duration / sqrt(log(16)) return GaussianLaserField(; kwargs...) elseif form in ("sin2","sin4","sin_exp") kwargs[:T] = duration kwargs[:exponent] = form=="sin2" ? 2 : (form=="sin4" ? 4 : args.form_exponent) return SinExpLaserField(; kwargs...) elseif form in ("linear","linear2") kwargs[:Tflat] = duration kwargs[:Tramp] = Tramp lftype = form=="linear" ? LinearFlatTopLaserField : Linear2FlatTopLaserField return lftype(; kwargs...) else error("Unknown laser field form '$form'") end end
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
2026
using SnoopPrecompile @precompile_setup let general_args = (is_vecpot=true,E0=1.5,ω0=0.12,t0=500.,chirp=0.,ϕ0=0.8π) test_fields = [ GaussianLaserField(; general_args...,σ=100.), SinExpLaserField(; general_args...,T=800.,exponent=2), SinExpLaserField(; general_args...,T=800.,exponent=4), SinExpLaserField(; general_args...,T=800.,exponent=7), LinearFlatTopLaserField(; general_args...,Tflat=400.,Tramp=150), Linear2FlatTopLaserField(;general_args...,Tflat=400.,Tramp=150), ] lfc = LaserFieldCollection(test_fields) @precompile_all_calls begin ts = LinRange(0,1000,1001) for lf in (test_fields..., lfc) lf.(ts) A_field.(lf,ts) try envelope.(lf,ts) catch end end test_fields_fourier = filter(test_fields) do lf try E_fourier(lf,1.) return true catch return false end end ts = LinRange(0,10000,10001) ωs = LinRange(0,0.2,1001)[2:end] for lf in test_fields_fourier EF = E_fourier.(lf,ωs) AF = A_fourier.(lf,ωs) E = E_field.(lf,ts) A = A_field.(lf,ts) end lf = LaserField(form="gaussianI",is_vecpot=true,intensity_Wcm2=1e14,lambda_nm=45., peak_time_as=0,duration_as=1000.,ϕ0=0.3π,linear_chirp_rate_w0as=1e-4) ts = LinRange(-100,100,2001) A_field.(lf,ts) A_fourier.(lf,ωs) A_fourier.(lf,ωs) lf = make_laserfield(form="gaussianI", is_vecpot=true, phase_pi=1, duration_as=100., peak_time_as=400, intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) lf = GaussianLaserField(; is_vecpot=true, ϕ0=π, E0=1., ω0=1., t0=0., σ=1., chirp=0.) ts = start_time(lf):TX(lf)/100:end_time(lf) lf.(ts) end end
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
3402
abstract type LaserField end Base.Broadcast.broadcastable(lf::LaserField) = Ref(lf) TX(lf::LaserField) = 2π/lf.ω0 (lf::LaserField)(t) = E_field(lf,t) envelope(lf::LaserField,t) = _envelope(lf,t-lf.t0)[1] function E_field(lf::LaserField,t) tr = t - lf.t0 env, envpr = _envelope(lf,tr) ϕt = lf.ϕ0 + lf.ω0*tr + lf.chirp*tr^2 osc = sin(ϕt) if lf.is_vecpot # dϕ/dt = ω0 + 2 chirp tr oscpr = (lf.ω0 + 2lf.chirp*tr)*cos(ϕt) return -(env * oscpr + envpr * osc) / lf.ω0 else # describes electric field directly return env * osc end end function A_field(lf::LaserField,t) lf.is_vecpot || error("laser field is not given as a vector potential, cannot get A(t) analytically!") tr = t - lf.t0 env, _ = _envelope(lf,tr) osc = sin(lf.ϕ0 + lf.ω0*tr + lf.chirp*tr^2) # Divide out derivative of oscillation to ensure peak amplitude of E0 for electric field return env*osc / lf.ω0 end """Return the fourier transform of the envelope of the laser field. We write the whole pulse as f(t) = (env(t) exp(i*(phi0 + ω0*tr + chirp*tr^2)) + c.c. ) / 2im, where tr = t-tpeak For the fourier transform of the envelope, we include the chirp term exp(i chirp (t-tpeak)^2) in the envelope, so that its fourier transform is a complex function. However, for unchirped pulses, the result will be purely real.""" function _envelope_fourier end function E_fourier(lf::LaserField,ω) # analytically determine the fourier transform of the defined laser fields # determined as Int exp(-i*ω*t) E(t) dt # with tr = t-tpeak, the whole pulse is # f(t) = env(t) sin (phi0 + ω0*tr + chirp*tr^2) # = (env(t) exp(IU*(phi0 + ω0*tr + chirp*tr^2)) - c.c. ) / 2im # for the fourier transform, we include the chirp term exp(i chirp tr^2) in the envelope. # this part is transformed in lf_envelope_fourier. # exp(IU*phi0) is just a constant prefactor, and the linear phase ω0*tr just gives a shift in frequency, # F[f(t) exp(im ω0 t)](ω) = F[f(t)](ω-ω0) # complex conjugation of the transformed function gives complex conjugation + reversal of the argument in the transform, so # F[conjg(f(t) exp(im ω0 t))](ω) = conjg(F[f(t) exp(IU ω0 t)](-ω)) = conjg(F[f(t)](-ω-ω0)) ELFT = ( _envelope_fourier(lf, ω-lf.ω0) * cis(lf.ϕ0) - (_envelope_fourier(lf,-ω-lf.ω0) * cis(lf.ϕ0))') / 2im # the fourier transform of the part was determined as if it was centered around t=0 # shift in time now -- just adds a phase exp(-im*ω*t0), as F[f(t-a)] = exp(-im*ω*a) F[f(t)] ELFT *= cis(-ω*lf.t0) if lf.is_vecpot # if this laser field was defined as a vector potential, we need to multiply # with -im*ω to get the fourier transform of the electric field: # E = -dA/dt --> F[-dA/dt] = -iω F[A] # in addition, we need to take into account that A0 = E0 / lf.ω0 ELFT *= -1im * ω / lf.ω0 end return ELFT end A_fourier(lf::LaserField,ω) = E_fourier(lf,ω) / (-1im*ω) struct LaserFieldCollection{T} <: LaserField lfs::T end start_time(lf::LaserFieldCollection) = minimum(start_time, lf.lfs) end_time(lf::LaserFieldCollection) = maximum(end_time, lf.lfs) TX(lf::LaserFieldCollection) = minimum(TX, lf.lfs) for f in (:E_field, :A_field, :E_fourier, :A_fourier, :envelope) @eval $f(lf::LaserFieldCollection, t) = sum(Base.Fix2($f,t), lf.lfs) end
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
code
6028
using LaserFields using Test @testset "LaserFields.jl" begin using LaserFields using LaserFields: GaussianLaserField, SinExpLaserField, LinearFlatTopLaserField, Linear2FlatTopLaserField, InterpolatingLaserField general_args = (is_vecpot=true, E0=1.5, ω0=0.12, t0=500., chirp=0., ϕ0=0.8π) test_fields = [ GaussianLaserField(; general_args..., σ=100.), SinExpLaserField(; general_args..., T=800., exponent=2), SinExpLaserField(; general_args..., T=800., exponent=4), SinExpLaserField(; general_args..., T=800., exponent=7), LinearFlatTopLaserField(; general_args..., Tflat=400., Tramp=150), Linear2FlatTopLaserField(;general_args..., Tflat=400., Tramp=150), ] @testset "General arguments" for lf in test_fields @test lf.is_vecpot == true @test lf.E0 == 1.5 @test lf.ω0 == 0.12 @test lf.t0 == 500 @test lf.chirp == 0.0 @test lf.ϕ0 == 0.8π end @testset "LaserFieldCollection" begin lfc = LaserFieldCollection(test_fields) @test lfc isa LaserFieldCollection @test length(lfc.lfs) == 6 @test lfc(500.) == sum(lf(500.) for lf in test_fields) @test E_field(lfc, 300.) == sum(E_field(lf, 300.) for lf in test_fields) @test A_field(lfc, 300.) == sum(A_field(lf, 300.) for lf in test_fields) @test E_fourier(lfc, 1.) == sum(E_fourier(lf, 1.) for lf in test_fields) @test A_fourier(lfc, 1.) == sum(A_fourier(lf, 1.) for lf in test_fields) @test start_time(lfc) == minimum(start_time, test_fields) @test end_time(lfc) == maximum(end_time, test_fields) end @testset "read-in field vecpot" begin lf = InterpolatingLaserField("laserdat.dat", is_vecpot=true) @test lf.is_vecpot == true @test lf.E0 == 0.15985607526339093 @test lf.ω0 == 0.16132596121126513 @test lf.t0 == 353.37042585063125 @test lf.duration == 700.0 @test lf.ϕ0 == 0.0 @test lf.chirp == 0.0 @test lf.datafile == "laserdat.dat" @test start_time(lf) == 0.0 @test end_time(lf) == 700.0 end @testset "read-in field e-field" begin lf = InterpolatingLaserField("laserdat.dat", is_vecpot=false) @test lf.is_vecpot == false @test lf.E0 == 0.996830886761803 @test lf.ω0 == 0.16009446532415655 @test lf.t0 == 343.63364005991866 @test lf.duration == 700.0 @test lf.ϕ0 == 0.0 @test lf.chirp == 0.0 @test lf.datafile == "laserdat.dat" @test start_time(lf) == 0.0 @test end_time(lf) == 700.0 end @testset "LaserField" begin @testset "working" begin lf = LaserField(form="gaussianI", is_vecpot=true, phase_pi=1, duration_as=100., peak_time_as=400, intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) @test lf isa GaussianLaserField @test lf.is_vecpot == true @test lf.σ == 100. * LaserFields.au_as / sqrt(log(16.)) @test lf.t0 == 400. * LaserFields.au_as @test lf(lf.t0) == lf.E0 @test lf.ϕ0 ≈ π end @testset "overspecified parameters" begin @test_throws ErrorException LaserField(form="gaussianI", is_vecpot=true, phase_pi=0.5, duration=10., duration_as=100., peak_time_as=400, intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) @test_throws ErrorException LaserField(form="gaussianI", is_vecpot=true, phase_pi=0.5, duration_as=100., peak_time=0., peak_time_as=400, intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) @test_throws ErrorException LaserField(form="gaussianI", is_vecpot=true, phase_pi=0.5, duration_as=100., peak_time_as=400, E0=0.3, intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) end @testset "missing parameters" begin @test_throws ErrorException LaserField(form="gaussianI", is_vecpot=true, phase_pi=0.5, peak_time_as=400, intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) @test_throws ErrorException LaserField(form="gaussianI", is_vecpot=true, phase_pi=0.5, duration_as=100., intensity_Wcm2=1e14, lambda_nm=12., linear_chirp_rate_w0as=0.) @test_throws ErrorException LaserField(form="gaussianI", is_vecpot=true, phase_pi=0.5, duration_as=100., peak_time_as=400, lambda_nm=12., linear_chirp_rate_w0as=0.) end end @testset "Teff" begin refTs = Dict("gaussianI" => [ 1064.4670194312, 752.69184778925, 614.5703202121, 532.23350971561, 476.04412305096 ], "gaussianF" => [ 752.69184778925, 532.23350971561, 434.56684093796, 376.34592389463, 336.61402755334 ], "sin2" => [ 375, 273.4375, 225.5859375, 196.38061523438, 176.19705200195 ], "sin4" => [ 273.4375, 196.38061523438, 161.18025779724, 139.94993409142, 125.37068761958 ], "linear" => [ 1066.6666666667, 1040, 1028.5714285714, 1022.2222222222, 1018.1818181818 ], "linear2" => [ 1075, 1054.6875, 1045.1171875, 1039.2761230469, 1035.2394104004 ]) for (form, Teffs) in refTs for (n_photon, T) in enumerate(Teffs) lf = LaserField(form=form, is_vecpot=true, duration=1000., rampon=100., E0=1., omega=1., t0=0.) @test Teff(lf,n_photon) ≈ T end end end end
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
docs
2414
# LaserFields [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jfeist.github.io/LaserFields.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jfeist.github.io/LaserFields.jl/dev/) [![Build Status](https://github.com/jfeist/LaserFields.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/jfeist/LaserFields.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/jfeist/LaserFields.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/jfeist/LaserFields.jl) `LaserFields.jl` is a library to describe the time-dependent electric fields of a laser pulse. It implements the same pulse shapes and most of the features of the [laserfields library](https://github.com/jfeist/laserfields) written in Fortran. Please see the documentation of that library for the parameter meanings, conventions used, etc. In particular, the "main" constructor `LaserField(; kwargs...)` accepts the same parameters as the Fortran library parameter files as keyword arguments, and returns an instance of a subtype of the abstract base type `LaserField` depending on the parameters. E.g., to create a Gaussian pulse with a duration (defined as the FWHM of the intensity) of 6 fs, a wavelength of 800 nm, a peak intensity of 1e14 W/cm^2, and with the peak at time t=7fs, one should call ```julia lf = LaserField(form="gaussianI", is_vecpot=true, lambda_nm=800, intensity_Wcm2=1e16, duration_as=6000, peak_time_as=7000) ``` Given a `LaserField` instance `lf`, the functions `E_field(lf,t)`, `E_fourier(lf,ω)`, `A_field(lf,t)`, and `A_fourier(lf,ω)` can be used to obtain, respectively, the electric field as a function of time, its Fourier transform (implemented for most pulse shapes), the vector potential as a function of time, and its Fourier transform. Calling the instance as a function, `lf(t)` returns the electric field, i.e., is equivalent to `E_field(lf,t)`. The notebooks in the `examples` folder show some ways to use the library, including how to define a set of fields through a YAML configuration file. The "effective" duration of the pulse for n-photon processes can be obtained as `Teff(lf,n_photon)`, which is the integral over the pulse intensity envelope to the n-th power (i.e., electric field envelope to the (2n)th power) over the pulse, see, e.g., https://doi.org/10.1103/PhysRevA.77.043420 (Eq. 14).
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
0.1.4
76fae9f07d0a30cd8e979df6cfd538ee1e80a0b2
docs
189
```@meta CurrentModule = LaserFields ``` # LaserFields Documentation for [LaserFields](https://github.com/jfeist/LaserFields.jl). ```@index ``` ```@autodocs Modules = [LaserFields] ```
LaserFields
https://github.com/jfeist/LaserFields.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
505
using Documenter, NeuralNetDiffEq makedocs( sitename = "NeuralNetDiffEq.jl", authors="#", clean = true, doctest = false, modules = [NeuralNetDiffEq], format = Documenter.HTML(#analytics = "", assets = ["assets/favicon.ico"], canonical="#"), pages=[ "Home" => "index.md", "Tutorials" => Any[ ], ] ) deploydocs( repo = "github.com/SciML/NeuralNetDiffEq.jl.git"; push_preview = true )
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
2097
module NeuralNetDiffEq using Reexport, Statistics @reexport using DiffEqBase using Flux, Zygote, DiffEqSensitivity, ForwardDiff, Random, Distributions using DiffEqFlux, Adapt, CuArrays import Tracker, Optim abstract type NeuralNetDiffEqAlgorithm <: DiffEqBase.AbstractODEAlgorithm end struct TerminalPDEProblem{G,F,Mu,Sigma,X,T,P} <: DiffEqBase.DEProblem g::G f::F μ::Mu σ::Sigma X0::X tspan::Tuple{T,T} p::P TerminalPDEProblem(g,f,μ,σ,X0,tspan,p=nothing) = new{typeof(g),typeof(f), typeof(μ),typeof(σ), typeof(X0),eltype(tspan), typeof(p)}( g,f,μ,σ,X0,tspan,p) end Base.summary(prob::TerminalPDEProblem) = string(nameof(typeof(prob))) function Base.show(io::IO, A::TerminalPDEProblem) println(io,summary(A)) print(io,"timespan: ") show(io,A.tspan) end struct KolmogorovPDEProblem{ F, G, Phi, X , T , D ,P,U0, ND} <: DiffEqBase.DEProblem f::F g::G phi::Phi xspan::Tuple{X,X} tspan::Tuple{T,T} d::D p::P u0::U0 noise_rate_prototype::ND KolmogorovPDEProblem( f, g, phi , xspan , tspan , d, p=nothing, u0=0 , noise_rate_prototype= nothing) = new{typeof(f),typeof(g),typeof(phi),eltype(tspan),eltype(xspan),typeof(d),typeof(p),typeof(u0),typeof(noise_rate_prototype)}(f,g,phi,xspan,tspan,d,p,u0,noise_rate_prototype) end Base.summary(prob::KolmogorovPDEProblem) = string(nameof(typeof(prob))) function Base.show(io::IO, A::KolmogorovPDEProblem) println(io,summary(A)) print(io,"timespan: ") show(io,A.tspan) print(io,"xspan: ") show(io,A.xspan) println(io , "μ") show(io , A.f) println(io,"Sigma") show(io , A.g) end include("ode_solve.jl") include("pde_solve.jl") include("pde_solve_ns.jl") include("kolmogorov_solve.jl") include("stopping_solve.jl") export NNODE, TerminalPDEProblem, NNPDEHan, NNPDENS, KolmogorovPDEProblem, NNKolmogorov, NNStopping end # module
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
2429
struct NNKolmogorov{C,O,S,E} <: NeuralNetDiffEqAlgorithm chain::C opt::O sdealg::S ensemblealg::E end NNKolmogorov(chain ; opt=Flux.ADAM(0.1) , sdealg = EM() , ensemblealg = EnsembleThreads()) = NNKolmogorov(chain , opt , sdealg , ensemblealg) function DiffEqBase.solve( prob::Union{KolmogorovPDEProblem,SDEProblem}, alg::NNKolmogorov; abstol = 1f-6, verbose = false, maxiters = 300, trajectories = 1000, save_everystep = false, use_gpu = false, dt, dx, kwargs... ) tspan = prob.tspan sigma = prob.g μ = prob.f noise_rate_prototype = prob.noise_rate_prototype if prob isa SDEProblem xspan = prob.kwargs.data.xspan d = prob.kwargs.data.d u0 = prob.u0 phi(xi) = pdf(u0 , xi) else xspan = prob.xspan d = prob.d phi = prob.phi end ts = tspan[1]:dt:tspan[2] xs = xspan[1]:dx:xspan[2] N = size(ts) T = tspan[2] #hidden layer chain = alg.chain opt = alg.opt sdealg = alg.sdealg ensemblealg = alg.ensemblealg ps = Flux.params(chain) xi = rand(xs ,d ,trajectories) #Finding Solution to the SDE having initial condition xi. Y = Phi(S(X , T)) sdeproblem = SDEProblem(μ,sigma,xi,tspan,noise_rate_prototype = noise_rate_prototype) function prob_func(prob,i,repeat) SDEProblem(prob.f , prob.g , xi[: , i] , prob.tspan ,noise_rate_prototype = prob.noise_rate_prototype) end output_func(sol,i) = (sol[end],false) ensembleprob = EnsembleProblem(sdeproblem , prob_func = prob_func , output_func = output_func) sim = solve(ensembleprob, sdealg, ensemblealg , dt=dt, trajectories=trajectories,adaptive=false) x_sde = reshape([],d,0) # sol = solve(sdeproblem, sdealg ,dt=0.01 , save_everystep=false , kwargs...) # x_sde = sol[end] for u in sim.u x_sde = hcat(x_sde , u) end y = phi(x_sde) if use_gpu == true y = y |>gpu xi = xi |> gpu end data = Iterators.repeated((xi , y), maxiters) if use_gpu == true data = data |>gpu end #MSE Loss Function loss(x , y) =Flux.mse(chain(x), y) cb = function () l = loss(xi, y) verbose && println("Current loss is: $l") l < abstol && Flux.stop() end Flux.train!(loss, ps, data, opt; cb = cb) chainout = chain(xi) xi , chainout end #solve
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
2924
struct NNODE{C,O,P,K} <: NeuralNetDiffEqAlgorithm chain::C opt::O initθ::P autodiff::Bool kwargs::K end function NNODE(chain,opt=Optim.BFGS(),init_params = nothing;autodiff=false,kwargs...) if init_params === nothing if chain isa FastChain initθ = DiffEqFlux.initial_params(chain) else initθ,re = Flux.destructure(chain) end else initθ = init_params end NNODE(chain,opt,initθ,autodiff,kwargs) end function DiffEqBase.solve( prob::DiffEqBase.AbstractODEProblem, alg::NeuralNetDiffEqAlgorithm, args...; dt, timeseries_errors = true, save_everystep=true, adaptive=false, abstol = 1f-6, verbose = false, maxiters = 100) DiffEqBase.isinplace(prob) && error("Only out-of-place methods are allowed!") u0 = prob.u0 tspan = prob.tspan f = prob.f p = prob.p t0 = tspan[1] #hidden layer chain = alg.chain opt = alg.opt autodiff = alg.autodiff #train points generation ts = tspan[1]:dt:tspan[2] initθ = alg.initθ if chain isa FastChain #The phi trial solution if u0 isa Number phi = (t,θ) -> u0 + (t-tspan[1])*first(chain(adapt(typeof(θ),[t]),θ)) else phi = (t,θ) -> u0 + (t-tspan[1]) * chain(adapt(typeof(θ),[t]),θ) end else _,re = Flux.destructure(chain) #The phi trial solution if u0 isa Number phi = (t,θ) -> u0 + (t-tspan[1])*first(re(θ)(adapt(typeof(θ),[t]))) else phi = (t,θ) -> u0 + (t-tspan[1]) * re(θ)(adapt(typeof(θ),[t])) end end try phi(t0 , initθ) catch err if isa(err , DimensionMismatch) throw( throw(DimensionMismatch("Dimensions of the initial u0 and chain should match"))) else throw(err) end end if autodiff dfdx = (t,θ) -> ForwardDiff.derivative(t->phi(t,θ),t) else dfdx = (t,θ) -> (phi(t+sqrt(eps(t)),θ) - phi(t,θ))/sqrt(eps(t)) end function inner_loss(t,θ) sum(abs2,dfdx(t,θ) - f(phi(t,θ),p,t)) end loss(θ) = sum(abs2,inner_loss(t,θ) for t in ts) # sum(abs2,phi(tspan[1],θ) - u0) cb = function (p,l) verbose && println("Current loss is: $l") l < abstol end res = DiffEqFlux.sciml_train(loss, initθ, opt; cb = cb, maxiters=maxiters, alg.kwargs...) #solutions at timepoints if u0 isa Number u = [first(phi(t,res.minimizer)) for t in ts] else u = [phi(t,res.minimizer) for t in ts] end sol = DiffEqBase.build_solution(prob,alg,ts,u,calculate_error = false) DiffEqBase.has_analytic(prob.f) && DiffEqBase.calculate_solution_errors!(sol;timeseries_errors=true,dense_errors=false) sol end #solve
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
1417
struct NNPDEHan{C1,C2,O} <: NeuralNetDiffEqAlgorithm u0::C1 σᵀ∇u::C2 opt::O end NNPDEHan(u0,σᵀ∇u;opt=Flux.ADAM(0.1)) = NNPDEHan(u0,σᵀ∇u,opt) function DiffEqBase.solve( prob::TerminalPDEProblem, alg::NNPDEHan; abstol = 1f-6, verbose = false, maxiters = 300, save_everystep = false, dt, trajectories) X0 = prob.X0 ts = prob.tspan[1]:dt:prob.tspan[2] d = length(X0) g,f,μ,σ,p = prob.g,prob.f,prob.μ,prob.σ,prob.p data = Iterators.repeated((), maxiters) #hidden layer opt = alg.opt u0 = alg.u0 σᵀ∇u = alg.σᵀ∇u ps = Flux.params(u0, σᵀ∇u...) function sol() map(1:trajectories) do j u = u0(X0)[1] X = X0 for i in 1:length(ts)-1 t = ts[i] _σᵀ∇u = σᵀ∇u[i](X) dW = sqrt(dt)*randn(d) u = u - f(X, u, _σᵀ∇u, p, t)*dt + _σᵀ∇u'*dW X = X .+ μ(X,p,t)*dt .+ σ(X,p,t)*dW end X,u end end function loss() mean(sum(abs2,g(X) - u) for (X,u) in sol()) end iters = eltype(X0)[] cb = function () save_everystep && push!(iters, u0(X0)[1]) l = loss() verbose && println("Current loss is: $l") l < abstol && Flux.stop() end Flux.train!(loss, ps, data, opt; cb = cb) save_everystep ? iters : u0(X0)[1] end #pde_solve
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
2691
struct NNPDENS{C1,C2,O} <: NeuralNetDiffEqAlgorithm u0::C1 σᵀ∇u::C2 opt::O end NNPDENS(u0,σᵀ∇u;opt=Flux.ADAM(0.1)) = NNPDENS(u0,σᵀ∇u,opt) function DiffEqBase.solve( prob::TerminalPDEProblem, pdealg::NNPDENS; verbose = false, maxiters = 300, trajectories = 100, alg, pabstol = 1f-6, save_everystep = false, kwargs...) X0 = prob.X0 tspan = prob.tspan d = length(X0) g,f,μ,σ = prob.g,prob.f,prob.μ,prob.σ p = prob.p isa AbstractArray ? prob.p : Float32[] data = Iterators.repeated((), maxiters) #hidden layer opt = pdealg.opt u0 = pdealg.u0 σᵀ∇u = pdealg.σᵀ∇u p1,_re1 = Flux.destructure(u0) p2,_re2 = Flux.destructure(σᵀ∇u) p3 = [p1;p2;p] ps = Flux.params(p3) re1 = p -> _re1(p[1:length(p1)]) re2 = p -> _re2(p[(length(p1)+1):(length(p1)+length(p2))]) re3 = p -> p[(length(p1)+length(p2)+1):end] function F(h, p, t) u = h[end] X = h[1:end-1] _σᵀ∇u = re2(p)([X;t]) _p = re3(p) _f = -f(X, u, _σᵀ∇u, _p, t) vcat(μ(X,_p,t),[_f]) end function G(h, p, t) X = h[1:end-1] _p = re3(p) _σᵀ∇u = re2(p)([X;t])' vcat(σ(X,_p,t),_σᵀ∇u) end function F(h::Tracker.TrackedArray, p, t) u = h[end] X = h[1:end-1].data _σᵀ∇u = σᵀ∇u([X;t]) _f = -f(X, u, _σᵀ∇u, p, t) Tracker.collect(vcat(μ(X,p,t),[_f])) end function G(h::Tracker.TrackedArray, p, t) X = h[1:end-1].data _σᵀ∇u = σᵀ∇u([X;t])' Tracker.collect(vcat(σ(X,p,t),_σᵀ∇u)) end noise = zeros(Float32,d+1,d) prob = SDEProblem{false}(F, G, [X0;0f0], tspan, p3, noise_rate_prototype=noise) function neural_sde(init_cond) map(1:trajectories) do j #TODO add Ensemble Simulation predict_ans = Array(concrete_solve(prob, alg, init_cond, p3; save_everystep=false, sensealg=TrackerAdjoint(),kwargs...))[:,end] (X,u) = (predict_ans[1:(end-1)], predict_ans[end]) end end function predict_n_sde() _u0 = re1(p3)(X0) init_cond = [X0;_u0] neural_sde(init_cond) end function loss_n_sde() mean(sum(abs2, g(X) - u) for (X,u) in predict_n_sde()) end iters = eltype(X0)[] cb = function () save_everystep && push!(iters, u0(X0)[1]) l = loss_n_sde() verbose && println("Current loss is: $l") l < pabstol && Flux.stop() end Flux.train!(loss_n_sde, ps, data, opt; cb = cb) save_everystep ? iters : re1(p3)(X0)[1] end #pde_solve_ns
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
2387
struct NNStopping{C,O,S,E} <: NeuralNetDiffEqAlgorithm chain::C opt::O sdealg::S ensemblealg::E end NNStopping(chain ; opt=Flux.ADAM(0.1) , sdealg = EM() , ensemblealg = EnsembleThreads()) = NNStopping(chain , opt , sdealg , ensemblealg) function DiffEqBase.solve( prob::SDEProblem, alg::NNStopping; abstol = 1f-6, verbose = false, maxiters = 300, trajectories = 1000, save_everystep = false, dt, kwargs... ) tspan = prob.tspan sigma = prob.g μ = prob.f g = prob.kwargs.data.g u0 = prob.u0 ts = tspan[1]:dt:tspan[2] N = size(ts)[1] T = tspan[2] m = alg.chain opt = alg.opt sdealg = alg.sdealg ensemblealg = alg.ensemblealg prob = SDEProblem(μ,sigma,u0,tspan) ensembleprob = EnsembleProblem(prob) sim = solve(ensembleprob, sdealg, ensemblealg, dt=dt,trajectories=trajectories,adaptive=false) payoff = [] times = [] iter = 0 # for u in sim.u un = [] function Un(n , X ) if size(un)[1] >= n return un[n] else if(n == 1) ans = first(m(X[1])[1]) un = [ans] return ans else ans = max(first(m(X[n])[n]) , n + 1 - size(ts)[1])*(1 - sum(Un(i , X ) for i in 1:n-1)) un = vcat( un , ans) return ans end end end function loss() reward = 0.00 for u in sim.u X = u.u reward = reward + sum(Un(i , X )*g(ts[i] , X[i]) for i in 1 : size(ts)[1]) un = [] end return 10000 - reward end dataset = Iterators.repeated(() , maxiters) cb = function () l = loss() un = [] println("Current loss is: $l") end Flux.train!(loss, Flux.params(m), dataset, opt; cb = cb) Usum = 0 ti = 0 Xt = sim.u[1].u for i in 1:N un = [] Usum = Usum + Un(i , Xt) if Usum >= 1 - Un(i , Xt) ti = i break end end for u in sim.u X = u.u price = g(ts[ti] , X[ti]) payoff = vcat(payoff , price) times = vcat(times, ti) iter = iter + 1 # println("SUM : $sump") # println("TIME : $ti") end sum(payoff)/size(payoff)[1] end #solve
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
3390
using Test, Flux, StochasticDiffEq println("Kolmogorov Tests") using DiffEqDevTools , NeuralNetDiffEq using Distributions #Using SDEProblem for the Algorithm. # For a diract delta take u0 = Normal(0 , sigma) where sigma --> 0 u0 = Normal(1.00 , 1.00) xspan = (-2.0 , 6.0) tspan = (0.0 , 1.0) g(u , p , t) = 2.00 f(u , p , t) = -2.00 d = 1 sdealg = EM() prob = SDEProblem(f , g , u0 , (0.0 , 1.0) ; xspan = xspan , d = d) opt = Flux.ADAM(0.01) m = Chain(Dense(1, 5, elu),Dense(5, 5, elu) , Dense(5 , 5 , elu) , Dense(5 , 1)) ensemblealg = EnsembleThreads() sol = solve(prob, NNKolmogorov(m,opt , sdealg,ensemblealg) , verbose = true, dt = 0.01, abstol=1e-10, dx = 0.0001 , trajectories = 100000 , maxiters = 500) # using Plots # # x_val = collect(xs) # x_val= reshape(x_val , 1 , size(x_val)[1]) # y_val = m(x_val) # y_val = reshape(y_val , 800001 , 1) # x_val = collect(xs) # plot(x_val , y_val,linewidth=3,title="Solution to the linear ODE with a thick line", # xaxis="Time (t)",yaxis="u(t) (in μm)",label="My Thick Line!") # # plot(x_val , y_val) # plot!(x_val , analytical(x_val),linewidth=3,title="Solution to the linear ODE with a thick line", # xaxis="Time (t)",yaxis="u(t) (in μm)",label="My Thick Line!") # ## The solution is obtained taking the Fourier Transform. analytical(xi) = pdf.(Normal(3 , sqrt(1.0 + 5.00)) , xi) ##Validation xs = -5:0.00001:5 x_1 = rand(xs , 1 , 1000) err_l2 = Flux.mse(analytical(x_1) , m(x_1)) @test err_l2 < 0.01 ## ##Using the KolmogorovPDEProblem. function phi(xi) y = Float64[] for x in xi y = push!(y , 1.77*x -0.015*x^3) end y = reshape(y , size(xi)[1] , size(xi)[2] ) return y end xspan2 = (-6.0 , 6.0) tspan2 = (0.0 , 1.0) #f = mu and g = sigma g2(u , p , t) = 0.5*u f2(u , p , t) = 0.5*0.25*u d2 = 1 sdealg2 = EM() prob2 = KolmogorovPDEProblem(f2 , g2, phi , xspan2 , tspan2, d2) opt2 = Flux.ADAM(0.01) m2 = Chain(Dense(1, 16, elu) , Dense(16 , 32 , elu),Dense(32 , 16 , elu), Dense(16 , 1)) sol = solve(prob2, NeuralNetDiffEq.NNKolmogorov(m2,opt2 , sdealg2, ensemblealg), verbose = true, dt = 0.01, dx = 0.0001 , trajectories = 1000 , abstol=1e-6, maxiters = 300) function analytical2(xi) y = Float64[] a = 1.77*exp(0.5*(0.5)^2*1.0) b = -0.015*exp(0.5*(0.5*3)^2*1.0) for x in xi y = push!(y , a*x + b*x^3) end y = reshape(y , size(xi)[1] , size(xi)[2] ) return y end xs2 = -5.00:0.01:5.00 x_val2 = rand(xs2 , d2 , 50) errorl2 = Flux.mse(analytical2(x_val2) , m2(x_val2)) println("error_l2 = ", errorl2, "\n") @test errorl2 < 0.4 ##Non-Diagonal Test f_noise = (du,u,p,t) -> du.=1.01u g_noise = function (du,u,p,t) du[1,1] = 0.3u[1] du[1,2] = 0.6u[1] du[1,3] = 0.9u[1] du[1,4] = 0.12u[2] du[2,1] = 1.2u[1] du[2,2] = 0.2u[2] du[2,3] = 0.3u[2] du[2,4] = 1.8u[2] end Σ = [1.0 0.3 ; 0.3 1.0] uo3 = MvNormal([0.0 ; 0.0], Σ) sdealg3= EM() xspan3 = (-10.0 , 10.0) tspan3 = (0.0 , 1.0) d3 = 2 prob = SDEProblem(f_noise , g_noise , uo3 , (0.0 , 1.0) ; xspan = xspan3 , d = d3 , noise_rate_prototype=zeros(2,4)) opt = Flux.ADAM(0.01) m3 = Chain(Dense(d3, 32, elu) ,Dense(32 , 64 , elu), Dense(64 , 1)) sol3 = solve(prob, NeuralNetDiffEq.NNKolmogorov(m3,opt , sdealg3 , EnsembleThreads()), verbose = true, dt = 0.001, abstol=1e-6, dx = 0.001, trajectories = 1000,maxiters = 200) println("Non-Diagonal test working.")
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
2097
using Test, Flux, Optim println("NNODE Tests") using DiffEqDevTools , NeuralNetDiffEq using Random Random.seed!(100) # Run a solve on scalars linear = (u,p,t) -> cos(2pi*t) tspan = (0.0f0, 1.0f0) u0 = 0.0f0 prob = ODEProblem(linear, u0 ,tspan) chain = Flux.Chain(Dense(1,5,σ),Dense(5,1)) opt = Flux.ADAM(0.1, (0.9, 0.95)) sol = solve(prob, NeuralNetDiffEq.NNODE(chain,opt), dt=1/20f0, verbose = true, abstol=1e-10, maxiters = 200) opt = BFGS() sol = solve(prob, NeuralNetDiffEq.NNODE(chain,opt), dt=1/20f0, verbose = true, abstol=1e-10, maxiters = 200) # Run a solve on vectors linear = (u,p,t) -> [cos(2pi*t)] tspan = (0.0f0, 1.0f0) u0 = [0.0f0] prob = ODEProblem(linear, u0 ,tspan) chain = Flux.Chain(Dense(1,5,σ),Dense(5,1)) opt = BFGS() sol = solve(prob, NeuralNetDiffEq.NNODE(chain,opt), dt=1/20f0, abstol=1e-10, verbose = true, maxiters=200) #Example 1 linear = (u,p,t) -> @. t^3 + 2*t + (t^2)*((1+3*(t^2))/(1+t+(t^3))) - u*(t + ((1+3*(t^2))/(1+t+t^3))) linear_analytic = (u0,p,t) -> [exp(-(t^2)/2)/(1+t+t^3) + t^2] prob = ODEProblem(ODEFunction(linear,analytic=linear_analytic),[1f0],(0.0f0,1.0f0)) chain = Flux.Chain(Dense(1,128,σ),Dense(128,1)) opt = ADAM(0.01) sol = solve(prob,NeuralNetDiffEq.NNODE(chain,opt),verbose = true, dt=1/5f0, maxiters=200) @test sol.errors[:l2] < 0.5 #= dts = 1f0 ./ 2f0 .^ (6:-1:2) sim = test_convergence(dts, prob, NeuralNetDiffEq.NNODE(chain, opt)) @test abs(sim.𝒪est[:l2]) < 0.1 @test minimum(sim.errors[:l2]) < 0.5 =# #Example 2 linear = (u,p,t) -> -u/5 + exp(-t/5).*cos(t) linear_analytic = (u0,p,t) -> exp(-t/5)*(u0 + sin(t)) prob = ODEProblem(ODEFunction(linear,analytic=linear_analytic),0.0f0,(0.0f0,1.0f0)) chain = Flux.Chain(Dense(1,5,σ),Dense(5,1)) opt = ADAM(0.01) sol = solve(prob,NeuralNetDiffEq.NNODE(chain,opt),verbose = true, dt=1/5f0) @test sol.errors[:l2] < 0.5 #= dts = 1f0 ./ 2f0 .^ (6:-1:2) sim = test_convergence(dts, prob, NeuralNetDiffEq.NNODE(chain, opt)) @test abs(sim.𝒪est[:l2]) < 0.5 @test minimum(sim.errors[:l2]) < 0.1 =#
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
7816
using Flux, Zygote, LinearAlgebra, Statistics println("NNPDEHAN_tests") using Test, NeuralNetDiffEq # one-dimensional heat equation x0 = [11.0f0] # initial points tspan = (0.0f0,5.0f0) dt = 0.5 # time step time_steps = div(tspan[2]-tspan[1],dt) d = 1 # number of dimensions m = 10 # number of trajectories (batch size) g(X) = sum(X.^2) # terminal condition f(X,u,σᵀ∇u,p,t) = 0.0 # function from solved equation μ_f(X,p,t) = 0.0 σ_f(X,p,t) = 1.0 prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hidden layer size opt = Flux.ADAM(0.005) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = [Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) for i in 1:time_steps] alg = NNPDEHan(u0, σᵀ∇u, opt = opt) ans = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 200, dt=dt, trajectories=m) u_analytical(x,t) = sum(x.^2) .+ d*t analytical_ans = u_analytical(x0, tspan[end]) error_l2 = sqrt((ans-analytical_ans)^2/ans^2) println("one-dimensional heat equation") # println("numerical = ", ans) # println("analytical = " ,analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 0.1 # high-dimensional heat equation d = 30 # number of dimensions x0 = fill(8.0f0,d) tspan = (0.0f0,2.0f0) dt = 0.5 time_steps = div(tspan[2]-tspan[1],dt) m = 30 # number of trajectories (batch size) g(X) = sum(X.^2) f(X,u,σᵀ∇u,p,t) = 0.0 μ_f(X,p,t) = 0.0 σ_f(X,p,t) = 1.0 prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hidden layer size #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = [Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) for i in 1:time_steps] alg = NNPDEHan(u0, σᵀ∇u, opt = opt) ans = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 150, dt=dt, trajectories=m) u_analytical(x,t) = sum(x.^2) .+ d*t analytical_ans = u_analytical(x0, tspan[end]) error_l2 = sqrt((ans - analytical_ans)^2/ans^2) println("high-dimensional heat equation") # println("numerical = ", ans) # println("analytical = " ,analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 #Black-Scholes-Barenblatt equation d = 30 # number of dimensions x0 = repeat([1.0f0, 0.5f0], div(d,2)) tspan = (0.0f0,1.0f0) dt = 0.25 time_steps = div(tspan[2]-tspan[1],dt) m = 30 # number of trajectories (batch size) r = 0.05 sigma = 0.4 f(X,u,σᵀ∇u,p,t) = r * (u .- sum(X.*σᵀ∇u)) g(X) = sum(X.^2) μ_f(X,p,t) = 0.0 σ_f(X,p,t) = Diagonal(sigma*X) prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hide layer size opt = Flux.ADAM(0.001) u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) σᵀ∇u = [Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) for i in 1:time_steps] alg = NNPDEHan(u0, σᵀ∇u, opt = opt) ans = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 150, dt=dt, trajectories=m) u_analytical(x, t) = exp((r + sigma^2).*(tspan[end] .- tspan[1])).*sum(x.^2) analytical_ans = u_analytical(x0, tspan[1]) error_l2 = sqrt((ans .- analytical_ans)^2/ans^2) println("Black Scholes Barenblatt equation") # println("numerical ans= ", ans) # println("analytical ans = " , analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 # Allen-Cahn Equation d = 10 # number of dimensions x0 = fill(0.0f0,d) tspan = (0.3f0,0.6f0) dt = 0.015 # time step time_steps = div(tspan[2]-tspan[1], dt) m = 20 # number of trajectories (batch size) g(X) = 1.0 / (2.0 + 0.4*sum(X.^2)) f(X,u,σᵀ∇u,p,t) = u .- u.^3 μ_f(X,p,t) = 0.0 σ_f(X,p,t) = 1.0 prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hidden layer size opt = Flux.ADAM(5^-4) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = [Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) for i in 1 : time_steps] alg = NNPDEHan(u0, σᵀ∇u, opt = opt) ans = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 150, dt=dt, trajectories=m) prob_ans = 0.30879 error_l2 = sqrt((ans - prob_ans)^2/ans^2) println("Allen-Cahn equation") # println("numerical = ", ans) # println("prob_ans = " , prob_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 #Hamilton Jacobi Bellman Equation d = 20 # number of dimensions x0 = fill(0.0f0,d) tspan = (0.0f0, 1.0f0) dt = 0.2 ts = tspan[1]:dt:tspan[2] time_steps = length(ts)-1 m = 20 # number of trajectories (batch size) λ = 1.0f0 g(X) = log(0.5 + 0.5*sum(X.^2)) f(X,u,σᵀ∇u,p,t) = -λ*sum(σᵀ∇u.^2) μ_f(X,p,t) = 0.0 σ_f(X,p,t) = sqrt(2) prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 12 + d #hidden layer size opt = Flux.ADAM(0.03) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = [Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) for i in 1 : time_steps] alg = NNPDEHan(u0, σᵀ∇u, opt = opt) ans = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 150, dt=dt, trajectories=m) T = tspan[2] MC = 10^5 W() = randn(d,1) u_analytical(x, t) = -(1/λ)*log(mean(exp(-λ*g(x .+ sqrt(2.0)*abs.(T-t).*W())) for _ = 1:MC)) analytical_ans = u_analytical(x0, tspan[1]) error_l2 = sqrt((ans - analytical_ans)^2/ans^2) println("Hamilton Jacobi Bellman Equation") # println("numerical = ", ans) # println("analytical = " , analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.5 # Nonlinear Black-Scholes Equation with Default Risk d = 20 # number of dimensions x0 = fill(100.0f0,d) tspan = (0.0f0,1.0f0) dt = 0.125 # time step m = 20 # number of trajectories (batch size) time_steps = div(tspan[2]-tspan[1],dt) g(X) = minimum(X) δ = 2.0f0/3 R = 0.02f0 f(X,u,σᵀ∇u,p,t) = -(1 - δ)*Q(u)*u - R*u vh = 50.0f0 vl = 70.0f0 γh = 0.2f0 γl = 0.02f0 function Q(u) Q = 0 if u < vh Q = γh elseif u >= vl Q = γl else #if u >= vh && u < vl Q = ((γh - γl) / (vh - vl)) * (u - vh) + γh end end µc = 0.02f0 σc = 0.2f0 μ_f(X,p,t) = µc*X #Vector d x 1 σ_f(X,p,t) = σc*Diagonal(X) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hidden layer size opt = Flux.ADAM(0.008) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) σᵀ∇u = [Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) for i in 1:time_steps] alg = NNPDEHan(u0, σᵀ∇u, opt = opt) ans = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 100, dt=dt, trajectories=m) prob_ans = 57.3 #60.781 error_l2 = sqrt((ans - prob_ans)^2/ans^2) println("Nonlinear Black-Scholes Equation with Default Risk") # println("numerical = ", ans) # println("prob_ans = " , prob_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
8135
using Flux, Zygote, StochasticDiffEq using LinearAlgebra, Statistics println("NNPDENS_tests") using Test, NeuralNetDiffEq println("one-dimensional heat equation") x0 = Float32[11.] # initial points tspan = (0.0f0,5.0f0) dt = 0.5 # time step d = 1 # number of dimensions m = 10 # number of trajectories (batch size) g(X) = sum(X.^2) # terminal condition f(X,u,σᵀ∇u,p,t) = Float32(0.0) μ_f(X,p,t) = zero(X) #Vector d x 1 σ_f(X,p,t) = Diagonal(ones(Float32,d)) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hidden layer size opt = Flux.ADAM(0.005) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ans = solve(prob, pdealg, verbose=true, maxiters=200, trajectories=m, alg=EM(), dt=dt, pabstol = 1f-6) u_analytical(x,t) = sum(x.^2) .+ d*t analytical_ans = u_analytical(x0, tspan[end]) error_l2 = sqrt((ans-analytical_ans)^2/ans^2) println("one-dimensional heat equation") # println("numerical = ", ans) # println("analytical = " ,analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 0.1 println("high-dimensional heat equation") d = 50 # number of dimensions x0 = fill(8.0f0,d) tspan = (0.0f0,2.0f0) dt = 0.5 m = 50 # number of trajectories (batch size) g(X) = sum(X.^2) f(X,u,σᵀ∇u,p,t) = Float32(0.0) μ_f(X,p,t) = zero(X) #Vector d x 1 σ_f(X,p,t) = Diagonal(ones(Float32,d)) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hidden layer size #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ans = solve(prob, pdealg, verbose=true, maxiters=150, trajectories=m, alg=EM(), dt=dt, pabstol = 1f-6) u_analytical(x,t) = sum(x.^2) .+ d*t analytical_ans = u_analytical(x0, tspan[end]) error_l2 = sqrt((ans - analytical_ans)^2/ans^2) println("high-dimensional heat equation") # println("numerical = ", ans) # println("analytical = " ,analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 println("Black-Scholes-Barenblatt equation") d = 30 # number of dimensions x0 = repeat([1.0f0, 0.5f0], div(d,2)) tspan = (0.0f0,1.0f0) dt = 0.2 m = 30 # number of trajectories (batch size) r = 0.05f0 sigma = 0.4f0 f(X,u,σᵀ∇u,p,t) = r * (u - sum(X.*σᵀ∇u)) g(X) = sum(X.^2) μ_f(X,p,t) = zero(X) #Vector d x 1 σ_f(X,p,t) = Diagonal(sigma*X) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 10 + d #hide layer size opt = Flux.ADAM(0.001) u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ans = solve(prob, pdealg, verbose=true, maxiters=150, trajectories=m, alg=EM(), dt=dt, pabstol = 1f-6) u_analytical(x, t) = exp((r + sigma^2).*(tspan[end] .- tspan[1])).*sum(x.^2) analytical_ans = u_analytical(x0, tspan[1]) error_l2 = sqrt((ans .- analytical_ans)^2/ans^2) println("Black Scholes Barenblatt equation") # println("numerical ans= ", ans) # println("analytical ans = " , analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 # Allen-Cahn Equation d = 10 # number of dimensions x0 = fill(0.0f0,d) tspan = (0.3f0,0.6f0) dt = 0.015 # time step m = 20 # number of trajectories (batch size) g(X) = 1.0 / (2.0 + 0.4*sum(X.^2)) f(X,u,σᵀ∇u,p,t) = u .- u.^3 μ_f(X,p,t) = zero(X) #Vector d x 1 σ_f(X,p,t) = Diagonal(ones(Float32,d)) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 20 + d #hidden layer size opt = Flux.ADAM(5^-3) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ans = solve(prob, pdealg, verbose=true, maxiters=150, trajectories=m, alg=EM(), dt=dt, pabstol = 1f-6) prob_ans = 0.30879 error_l2 = sqrt((ans - prob_ans)^2/ans^2) println("Allen-Cahn equation") # println("numerical = ", ans) # println("prob_ans = " , prob_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 # Hamilton Jacobi Bellman Equation d = 30 # number of dimensions x0 = fill(0.0f0,d) tspan = (0.0f0, 1.0f0) dt = 0.2 m = 30 # number of trajectories (batch size) λ = 1.0f0 # g(X) = log(0.5f0 + 0.5f0*sum(X.^2)) f(X,u,σᵀ∇u,p,t) = -λ*sum(σᵀ∇u.^2) μ_f(X,p,t) = zero(X) #Vector d x 1 λ σ_f(X,p,t) = Diagonal(sqrt(2.0f0)*ones(Float32,d)) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 256 #hidden layer size opt = Flux.ADAM(0.1) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) @time ans = solve(prob, pdealg, verbose=true, maxiters=150, trajectories=m, alg=EM(), dt=dt, pabstol = 1f-4) T = tspan[2] MC = 10^5 W() = randn(d,1) u_analytical(x, t) = -(1/λ)*log(mean(exp(-λ*g(x .+ sqrt(2.0)*abs.(T-t).*W())) for _ = 1:MC)) analytical_ans = u_analytical(x0, tspan[1]) error_l2 = sqrt((ans - analytical_ans)^2/ans^2) println("Hamilton Jacobi Bellman Equation") # println("numerical = ", ans) # println("analytical = " , analytical_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0 # Nonlinear Black-Scholes Equation with Default Risk d = 20 # number of dimensions x0 = fill(100.0f0,d) tspan = (0.0f0,1.0f0) dt = 0.125 # time step m = 20 # number of trajectories (batch size) g(X) = minimum(X) δ = 2.0f0/3 R = 0.02f0 f(X,u,σᵀ∇u,p,t) = -(1 - δ)*Q(u)*u - R*u vh = 50.0f0 vl = 70.0f0 γh = 0.2f0 γl = 0.02f0 function Q(u) Q = 0 if u < vh Q = γh elseif u >= vl Q = γl else #if u >= vh && u < vl Q = ((γh - γl) / (vh - vl)) * (u - vh) + γh end end µc = 0.02f0 σc = 0.2f0 μ_f(X,p,t) = µc*X #Vector d x 1 σ_f(X,p,t) = σc*Diagonal(X) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, x0, tspan) hls = 256 #hidden layer size opt = Flux.ADAM(0.008) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) @time ans = solve(prob, pdealg, verbose=true, maxiters=100, trajectories=m, alg=EM(), dt=dt, pabstol = 1f-6) prob_ans = 57.3 error_l2 = sqrt((ans - prob_ans)^2/ans^2) println("Nonlinear Black-Scholes Equation with Default Risk") # println("numerical = ", ans) # println("prob_ans = " , prob_ans) println("error_l2 = ", error_l2, "\n") @test error_l2 < 1.0
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
1325
using Test, Flux , StochasticDiffEq , LinearAlgebra println("Optimal Stopping Time Test") using NeuralNetDiffEq d = 1 r = 0.04f0 beta = 0.2f0 T = 1 u0 = fill(80.00 , d , 1) sdealg = EM() ensemblealg = EnsembleThreads() f(du,u,p,t) = (du .= r*u) sigma(du,u,p,t) = (du .= Diagonal(beta*u)) tspan = (0.0 , 1.0) N = 50 dt = tspan[2]/49 K = 100.00 function g(t , x) return exp(-r*t)*(max(K - maximum(x) , 0)) end prob = SDEProblem(f , sigma , u0 , tspan ; g = g) opt = Flux.ADAM(0.1) m = Chain(Dense(d , 5, tanh), Dense(5, 16 , tanh) , Dense(16 , N ), softmax) sol = solve(prob, NeuralNetDiffEq.NNStopping( m, opt , sdealg , ensemblealg), verbose = true, dt = dt, abstol=1e-6, maxiters = 20 , trajectories = 200) ##Analytical Binomial Tree approach for American Options function BinomialTreeAM1D(S0 , N , r , beta) V = zeros(N+1) dT = T/N u = exp(beta*sqrt(dT)) d = 1/u S_T = [S0*(u^j)* (d^(N-j)) for j in 0:N] a = exp(r*dT) p = (a - d)/(u - d) q = 1.0 - p V = [max(K - x , 0) for x in S_T] for i in N-1:-1:0 V[1:end-1] = exp(-r*dT).*(p*V[2:end] + q*V[1:end-1]) S_T = S_T*u V = [max(K - S_T[i] , V[i]) for i in 1:size(S_T)[1]] end return V[1] end real_sol = BinomialTreeAM1D(u0[1] , N , r , beta) error = abs(sol - real_sol) @test error < 0.5
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
code
868
using SafeTestsets const GROUP = get(ENV, "GROUP", "All") const is_APPVEYOR = Sys.iswindows() && haskey(ENV,"APPVEYOR") const is_TRAVIS = haskey(ENV,"TRAVIS") @time begin if GROUP == "All" || GROUP == "NNODE" @time @safetestset "NNODE" begin include("NNODE_tests.jl") end end if !is_APPVEYOR && (GROUP == "All" || GROUP == "NNPDEHan") @time @safetestset "NNPDEHan" begin include("NNPDEHan_tests.jl") end end if GROUP == "All" || GROUP == "NNPDENS" @time @safetestset "NNPDENS" begin include("NNPDENS_tests.jl") end end if GROUP == "All" || GROUP == "NNKOLMOGOROV" @time @safetestset "NNKolmogorov" begin include("NNKolmogorov_tests.jl") end end if GROUP == "All" || GROUP == "NNSTOPPINGTIME" @time @safetestset "NNStopping" begin include("Stopping_tests.jl") end end if !is_APPVEYOR && GROUP == "GPU" end end
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
docs
10182
# NeuralNetDiffEq [![Join the chat at https://gitter.im/JuliaDiffEq/Lobby](https://badges.gitter.im/JuliaDiffEq/Lobby.svg)](https://gitter.im/JuliaDiffEq/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Build Status](https://travis-ci.org/SciML/NeuralNetDiffEq.jl.svg?branch=master)](https://travis-ci.org/SciML/NeuralNetDiffEq.jl) [![Build status](https://ci.appveyor.com/api/projects/status/v0eop301bx105av4?svg=true)](https://ci.appveyor.com/project/ChrisRackauckas/neuralnetdiffeq-jl) [![Coverage Status](https://coveralls.io/repos/JuliaDiffEq/NeuralNetDiffEq.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/JuliaDiffEq/NeuralNetDiffEq.jl?branch=master) [![codecov.io](http://codecov.io/github/JuliaDiffEq/NeuralNetDiffEq.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaDiffEq/NeuralNetDiffEq.jl?branch=master) The repository is for the development of neural network solvers of differential equations such as physics-informed neural networks (PINNs) and deep BSDE solvers. It utilizes techniques like deep neural networks and neural stochastic differential equations to make it practical to solve high dimensional PDEs efficiently through the likes of scientific machine learning (SciML). # Examples ## DeepBSDE Solver ## Solving a 100 dimensional Hamilton-Jacobi-Bellman Equation In this example we will solve a Hamilton-Jacobi-Bellman equation of 100 dimensions. The Hamilton-Jacobi-Bellman equation is the solution to a stochastic optimal control problem. Here, we choose to solve the classical Linear Quadratic Gaussian (LQG) control problem of 100 dimensions, which is governed by the SDE `dX_t = 2sqrt(λ)c_t dt + sqrt(2)dW_t` where `c_t` is a control process. The solution to the optimal control is given by a PDE of the form: ![HJB](https://user-images.githubusercontent.com/1814174/63213366-b1817b80-c0d9-11e9-99b2-c8c08b86d2d5.PNG) with terminating condition `g(X) = log(0.5f0 + 0.5f0*sum(X.^2))`. To solve it using the `TerminalPDEProblem`, we write: ```julia d = 100 # number of dimensions X0 = fill(0.0f0,d) # initial value of stochastic control process tspan = (0.0f0, 1.0f0) λ = 1.0f0 g(X) = log(0.5f0 + 0.5f0*sum(X.^2)) f(X,u,σᵀ∇u,p,t) = -λ*sum(σᵀ∇u.^2) μ_f(X,p,t) = zero(X) #Vector d x 1 λ σ_f(X,p,t) = Diagonal(sqrt(2.0f0)*ones(Float32,d)) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, X0, tspan) ``` As described in the API docs, we now need to define our `NNPDENS` algorithm by giving it the Flux.jl chains we want it to use for the neural networks. `u0` needs to be a `d` dimensional -> 1 dimensional chain, while `σᵀ∇u` needs to be `d+1` dimensional to `d` dimensions. Thus we define the following: ```julia hls = 10 + d #hidden layer size opt = Flux.ADAM(0.01) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ``` And now we solve the PDE. Here we say we want to solve the underlying neural SDE using the Euler-Maruyama SDE solver with our chosen `dt=0.2`, do at most 100 iterations of the optimizer, 100 SDE solves per loss evaluation (for averaging), and stop if the loss ever goes below `1f-2`. ```julia @time ans = solve(prob, pdealg, verbose=true, maxiters=100, trajectories=100, alg=EM(), dt=0.2, pabstol = 1f-2) ``` ## Solving the 100 dimensional Black-Scholes-Barenblatt Equation In this example we will solve a Black-Scholes-Barenblatt equation of 100 dimensions. The Black-Scholes-Barenblatt equation is a nonlinear extension to the Black-Scholes equation which models uncertain volatility and interest rates derived from the Black-Scholes equation. This model results in a nonlinear PDE whose dimension is the number of assets in the portfolio. To solve it using the `TerminalPDEProblem`, we write: ```julia d = 100 # number of dimensions X0 = repeat([1.0f0, 0.5f0], div(d,2)) # initial value of stochastic state tspan = (0.0f0,1.0f0) r = 0.05f0 sigma = 0.4f0 f(X,u,σᵀ∇u,p,t) = r * (u - sum(X.*σᵀ∇u)) g(X) = sum(X.^2) μ_f(X,p,t) = zero(X) #Vector d x 1 σ_f(X,p,t) = Diagonal(sigma*X) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, X0, tspan) ``` As described in the API docs, we now need to define our `NNPDENS` algorithm by giving it the Flux.jl chains we want it to use for the neural networks. `u0` needs to be a `d` dimensional -> 1 dimensional chain, while `σᵀ∇u` needs to be `d+1` dimensional to `d` dimensions. Thus we define the following: ```julia hls = 10 + d #hide layer size opt = Flux.ADAM(0.001) u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ``` And now we solve the PDE. Here we say we want to solve the underlying neural SDE using the Euler-Maruyama SDE solver with our chosen `dt=0.2`, do at most 150 iterations of the optimizer, 100 SDE solves per loss evaluation (for averaging), and stop if the loss ever goes below `1f-6`. ```julia ans = solve(prob, pdealg, verbose=true, maxiters=150, trajectories=100, alg=EM(), dt=0.2, pabstol = 1f-6) ``` # API Documentation ## Solving High Dimensional PDEs with Neural Networks To solve high dimensional PDEs, first one should describe the PDE in terms of the `TerminalPDEProblem` with constructor: ```julia TerminalPDEProblem(g,f,μ_f,σ_f,X0,tspan,p=nothing) ``` which describes the semilinear parabolic PDE of the form: ![](https://user-images.githubusercontent.com/1814174/63212617-48980480-c0d5-11e9-9fec-0776117464c7.PNG) with terminating condition `u(tspan[2],x) = g(x)`. These methods solve the PDE in reverse, satisfying the terminal equation and giving a point estimate at `u(tspan[1],X0)`. The dimensionality of the PDE is determined by the choice of `X0`, which is the initial stochastic state. To solve this PDE problem, there exists two algorithms: - `NNPDENS(u0,σᵀ∇u;opt=Flux.ADAM(0.1))`: Uses a neural stochastic differential equation which is then solved by the methods available in DifferentialEquations.jl The `alg` keyword is required for specifying the SDE solver algorithm that will be used on the internal SDE. All of the other keyword arguments are passed to the SDE solver. - `NNPDEHan(u0,σᵀ∇u;opt=Flux.ADAM(0.1))`: Uses the stochastic RNN algorithm [from Han](https://www.pnas.org/content/115/34/8505). Only applicable when `μ_f` and `σ_f` result in a non-stiff SDE where low order non-adaptive time stepping is applicable. Here, `u0` is a Flux.jl chain with `d` dimensional input and 1 dimensional output. For `NNPDEHan`, `σᵀ∇u` is an array of `M` chains with `d` dimensional input and `d` dimensional output, where `M` is the total number of timesteps. For `NNPDENS` it is a `d+1` dimensional input (where the final value is time) and `d` dimensional output. `opt` is a Flux.jl optimizer. Each of these methods has a special keyword argument `pabstol` which specifies an absolute tolerance on the PDE's solution, and will exit early if the loss reaches this value. Its defualt value is `1f-6`. ## Solving ODEs with Neural Networks For ODEs, [see the DifferentialEquations.jl documentation](http://docs.juliadiffeq.org/dev/solvers/ode_solve#NeuralNetDiffEq.jl-1) for the `nnode(chain,opt=ADAM(0.1))` algorithm, which takes in a Flux.jl chain and optimizer to solve an ODE. This method is not particularly efficient, but is parallel. It is based on the work of: [Lagaris, Isaac E., Aristidis Likas, and Dimitrios I. Fotiadis. "Artificial neural networks for solving ordinary and partial differential equations." IEEE Transactions on Neural Networks 9, no. 5 (1998): 987-1000.](https://arxiv.org/pdf/physics/9705023.pdf) ## Solving Kolmogorov Equations with Neural Networks A Kolmogorov PDE is of the form : ![](https://raw.githubusercontent.com/ashutosh-b-b/Kolmogorv-Equations-Notebook/master/KolmogorovPDEImages/KolmogorovPDE.png) Considering S be a solution process to the SDE: ![](https://raw.githubusercontent.com/ashutosh-b-b/Kolmogorv-Equations-Notebook/master/KolmogorovPDEImages/StochasticP.png) then the solution to the Kolmogorov PDE is given as: ![](https://raw.githubusercontent.com/ashutosh-b-b/Kolmogorv-Equations-Notebook/master/KolmogorovPDEImages/Solution.png) A Kolmogorov PDE Problem can be defined using a `SDEProblem`: ```julia SDEProblem(μ,σ,u0,tspan,xspan,d) ``` Here `u0` is the initial distribution of x. Here we define `u(0,x)` as the probability density function of `u0`.`μ` and `σ` are obtained from the SDE for the stochastic process above. `d` represents the dimenstions of `x`. `u0` can be defined using `Distributions.jl`. Another was of defining a KolmogorovPDE is using the `KolmogorovPDEProblem`. ```julia KolmogorovPDEProblem(μ,σ,phi,tspan,xspan,d) ``` Here `phi` is the initial condition on u(t,x) when t = 0. `μ` and `σ` are obtained from the SDE for the stochastic process above. `d` represents the dimenstions of `x`. To solve this problem use, - `NNKolmogorov(chain, opt , sdealg)`: Uses a neural network to realise a regression function which is the solution for the linear Kolmogorov Equation. Here, `chain` is a Flux.jl chain with `d` dimensional input and 1 dimensional output.`opt` is a Flux.jl optimizer. And `sdealg` is a high-order algorithm to calculate the solution for the SDE, which is used to define the learning data for the problem. Its default value is the classic Euler-Maruyama algorithm. ## Related Packages - [ReservoirComputing.jl](https://github.com/MartinuzziFrancesco/ReservoirComputing.jl) has an implementation of the [Echo State Network method](https://arxiv.org/pdf/1710.07313.pdf) for learning the attractor properties of a chaotic system.
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
1.6.0
9c7d79b65a2e24e658d58b4cfe254ecfd58b660a
docs
10042
# NeuralNetDiffEq The repository is for the development of neural network solvers of differential equations such as physics-informed neural networks (PINNs) and deep BSDE solvers. It utilizes techniques like deep neural networks and neural stochastic differential equations to make it practical to solve high dimensional PDEs efficiently through the likes of scientific machine learning (SciML). # Examples ## DeepBSDE Solver ## Solving a 100 dimensional Hamilton-Jacobi-Bellman Equation In this example we will solve a Hamilton-Jacobi-Bellman equation of 100 dimensions. The Hamilton-Jacobi-Bellman equation is the solution to a stochastic optimal control problem. Here, we choose to solve the classical Linear Quadratic Gaussian (LQG) control problem of 100 dimensions, which is governed by the SDE `dX_t = 2sqrt(λ)c_t dt + sqrt(2)dW_t` where `c_t` is a control process. The solution to the optimal control is given by a PDE of the form: ![HJB](https://user-images.githubusercontent.com/1814174/63213366-b1817b80-c0d9-11e9-99b2-c8c08b86d2d5.PNG) with terminating condition `g(X) = log(0.5f0 + 0.5f0*sum(X.^2))`. To solve it using the `TerminalPDEProblem`, we write: ```julia d = 100 # number of dimensions X0 = fill(0.0f0,d) # initial value of stochastic control process tspan = (0.0f0, 1.0f0) λ = 1.0f0 g(X) = log(0.5f0 + 0.5f0*sum(X.^2)) f(X,u,σᵀ∇u,p,t) = -λ*sum(σᵀ∇u.^2) μ_f(X,p,t) = zero(X) #Vector d x 1 λ σ_f(X,p,t) = Diagonal(sqrt(2.0f0)*ones(Float32,d)) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, X0, tspan) ``` As described in the API docs, we now need to define our `NNPDENS` algorithm by giving it the Flux.jl chains we want it to use for the neural networks. `u0` needs to be a `d` dimensional -> 1 dimensional chain, while `σᵀ∇u` needs to be `d+1` dimensional to `d` dimensions. Thus we define the following: ```julia hls = 10 + d #hidden layer size opt = Flux.ADAM(0.01) #optimizer #sub-neural network approximating solutions at the desired point u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) # sub-neural network approximating the spatial gradients at time point σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ``` And now we solve the PDE. Here we say we want to solve the underlying neural SDE using the Euler-Maruyama SDE solver with our chosen `dt=0.2`, do at most 100 iterations of the optimizer, 100 SDE solves per loss evaluation (for averaging), and stop if the loss ever goes below `1f-2`. ```julia @time ans = solve(prob, pdealg, verbose=true, maxiters=100, trajectories=100, alg=EM(), dt=0.2, pabstol = 1f-2) ``` ## Solving the 100 dimensional Black-Scholes-Barenblatt Equation In this example we will solve a Black-Scholes-Barenblatt equation of 100 dimensions. The Black-Scholes-Barenblatt equation is a nonlinear extension to the Black-Scholes equation which models uncertain volatility and interest rates derived from the Black-Scholes equation. This model results in a nonlinear PDE whose dimension is the number of assets in the portfolio. To solve it using the `TerminalPDEProblem`, we write: ```julia d = 100 # number of dimensions X0 = repeat([1.0f0, 0.5f0], div(d,2)) # initial value of stochastic state tspan = (0.0f0,1.0f0) r = 0.05f0 sigma = 0.4f0 f(X,u,σᵀ∇u,p,t) = r * (u - sum(X.*σᵀ∇u)) g(X) = sum(X.^2) μ_f(X,p,t) = zero(X) #Vector d x 1 σ_f(X,p,t) = Diagonal(sigma*X) #Matrix d x d prob = TerminalPDEProblem(g, f, μ_f, σ_f, X0, tspan) ``` As described in the API docs, we now need to define our `NNPDENS` algorithm by giving it the Flux.jl chains we want it to use for the neural networks. `u0` needs to be a `d` dimensional -> 1 dimensional chain, while `σᵀ∇u` needs to be `d+1` dimensional to `d` dimensions. Thus we define the following: ```julia hls = 10 + d #hide layer size opt = Flux.ADAM(0.001) u0 = Flux.Chain(Dense(d,hls,relu), Dense(hls,hls,relu), Dense(hls,1)) σᵀ∇u = Flux.Chain(Dense(d+1,hls,relu), Dense(hls,hls,relu), Dense(hls,hls,relu), Dense(hls,d)) pdealg = NNPDENS(u0, σᵀ∇u, opt=opt) ``` And now we solve the PDE. Here we say we want to solve the underlying neural SDE using the Euler-Maruyama SDE solver with our chosen `dt=0.2`, do at most 150 iterations of the optimizer, 100 SDE solves per loss evaluation (for averaging), and stop if the loss ever goes below `1f-6`. ```julia ans = solve(prob, pdealg, verbose=true, maxiters=150, trajectories=100, alg=EM(), dt=0.2, pabstol = 1f-6) ``` # API Documentation ## Solving High Dimensional PDEs with Neural Networks To solve high dimensional PDEs, first one should describe the PDE in terms of the `TerminalPDEProblem` with constructor: ```julia TerminalPDEProblem(g,f,μ_f,σ_f,X0,tspan,p=nothing) ``` which describes the semilinear parabolic PDE of the form: ![](https://user-images.githubusercontent.com/1814174/63212617-48980480-c0d5-11e9-9fec-0776117464c7.PNG) with terminating condition `u(tspan[2],x) = g(x)`. These methods solve the PDE in reverse, satisfying the terminal equation and giving a point estimate at `u(tspan[1],X0)`. The dimensionality of the PDE is determined by the choice of `X0`, which is the initial stochastic state. To solve this PDE problem, there exists two algorithms: - `NNPDENS(u0,σᵀ∇u;opt=Flux.ADAM(0.1))`: Uses a neural stochastic differential equation which is then solved by the methods available in DifferentialEquations.jl The `alg` keyword is required for specifying the SDE solver algorithm that will be used on the internal SDE. All of the other keyword arguments are passed to the SDE solver. - `NNPDEHan(u0,σᵀ∇u;opt=Flux.ADAM(0.1))`: Uses the stochastic RNN algorithm [from Han](https://www.pnas.org/content/115/34/8505). Only applicable when `μ_f` and `σ_f` result in a non-stiff SDE where low order non-adaptive time stepping is applicable. Here, `u0` is a Flux.jl chain with `d` dimensional input and 1 dimensional output. For `NNPDEHan`, `σᵀ∇u` is an array of `M` chains with `d` dimensional input and `d` dimensional output, where `M` is the total number of timesteps. For `NNPDENS` it is a `d+1` dimensional input (where the final value is time) and `d` dimensional output. `opt` is a Flux.jl optimizer. Each of these methods has a special keyword argument `pabstol` which specifies an absolute tolerance on the PDE's solution, and will exit early if the loss reaches this value. Its defualt value is `1f-6`. ## Solving ODEs with Neural Networks For ODEs, [see the DifferentialEquations.jl documentation](http://docs.juliadiffeq.org/dev/solvers/ode_solve#NeuralNetDiffEq.jl-1) for the `nnode(chain,opt=ADAM(0.1))` algorithm, which takes in a Flux.jl chain and optimizer to solve an ODE. This method is not particularly efficient, but is parallel. It is based on the work of: [Lagaris, Isaac E., Aristidis Likas, and Dimitrios I. Fotiadis. "Artificial neural networks for solving ordinary and partial differential equations." IEEE Transactions on Neural Networks 9, no. 5 (1998): 987-1000.](https://arxiv.org/pdf/physics/9705023.pdf) ## Solving Kolmogorov Equations with Neural Networks A Kolmogorov PDE is of the form : ![](https://raw.githubusercontent.com/ashutosh-b-b/Kolmogorv-Equations-Notebook/master/KolmogorovPDEImages/KolmogorovPDE.png) Considering S be a solution process to the SDE: ![](https://raw.githubusercontent.com/ashutosh-b-b/Kolmogorv-Equations-Notebook/master/KolmogorovPDEImages/StochasticP.png) then the solution to the Kolmogorov PDE is given as: ![](https://raw.githubusercontent.com/ashutosh-b-b/Kolmogorv-Equations-Notebook/master/KolmogorovPDEImages/Solution.png) A Kolmogorov PDE Problem can be defined using a `SDEProblem`: ```julia SDEProblem(μ,σ,u0,tspan,xspan,d) ``` Here `u0` is the initial distribution of x. Here we define `u(0,x)` as the probability density function of `u0`.`μ` and `σ` are obtained from the SDE for the stochastic process above. `d` represents the dimenstions of `x`. `u0` can be defined using `Distributions.jl`. Another was of defining a KolmogorovPDE is using the `KolmogorovPDEProblem`. ```julia KolmogorovPDEProblem(μ,σ,phi,tspan,xspan,d) ``` Here `phi` is the initial condition on u(t,x) when t = 0. `μ` and `σ` are obtained from the SDE for the stochastic process above. `d` represents the dimenstions of `x`. To solve this problem use, - `NNKolmogorov(chain, opt , sdealg)`: Uses a neural network to realise a regression function which is the solution for the linear Kolmogorov Equation. Here, `chain` is a Flux.jl chain with `d` dimensional input and 1 dimensional output.`opt` is a Flux.jl optimizer. And `sdealg` is a high-order algorithm to calculate the solution for the SDE, which is used to define the learning data for the problem. Its default value is the classic Euler-Maruyama algorithm. ## Related Packages - [ReservoirComputing.jl](https://github.com/MartinuzziFrancesco/ReservoirComputing.jl) has an implementation of the [Echo State Network method](https://arxiv.org/pdf/1710.07313.pdf) for learning the attractor properties of a chaotic system. ## Citation If you use NeuralNetDiffEq.jl or are influenced by it's ideas for expanding it, please cite: ``` @article{DifferentialEquations.jl-2017, author = {Rackauckas, Christopher and Nie, Qing}, doi = {10.5334/jors.151}, journal = {The Journal of Open Research Software}, keywords = {Applied Mathematics}, note = {Exported from https://app.dimensions.ai on 2019/05/05}, number = {1}, pages = {}, title = {DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia}, url = {https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/}, volume = {5}, year = {2017} } ```
NeuralNetDiffEq
https://github.com/SciML/NeuralNetDiffEq.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
7452
module BasicPOMCP #= Current constraints: - action space discrete - action space same for all states, histories - no built-in support for history-dependent rollouts (this could be added though) - initial n and initial v are 0 =# using POMDPs using Parameters using ParticleFilters using CPUTime using Colors using Random using Printf using POMDPLinter: @POMDP_require, @show_requirements using POMDPTools import POMDPs: action, solve, updater import POMDPLinter using MCTS import MCTS: convert_estimator, estimate_value, node_tag, tooltip_tag, default_action using D3Trees export POMCPSolver, POMCPPlanner, action, solve, updater, NoDecision, AllSamplesTerminal, ExceptionRethrow, ReportWhenUsed, default_action, BeliefNode, LeafNodeBelief, AbstractPOMCPSolver, PORollout, FORollout, RolloutEstimator, FOValue, D3Tree, node_tag, tooltip_tag, # deprecated AOHistoryBelief abstract type AbstractPOMCPSolver <: Solver end """ POMCPSolver(#=keyword arguments=#) Partially Observable Monte Carlo Planning Solver. ## Keyword Arguments - `max_depth::Int` Rollouts and tree expension will stop when this depth is reached. default: `20` - `c::Float64` UCB exploration constant - specifies how much the solver should explore. default: `1.0` - `tree_queries::Int` Number of iterations during each action() call. default: `1000` - `max_time::Float64` Maximum time for planning in each action() call. default: `Inf` - `tree_in_info::Bool` If `true`, returns the tree in the info dict when action_info is called. default: `false` - `estimate_value::Any` Function, object, or number used to estimate the value at the leaf nodes. default: `RolloutEstimator(RandomSolver(rng))` - If this is a function `f`, `f(pomdp, s, h::BeliefNode, steps)` will be called to estimate the value. - If this is an object `o`, `estimate_value(o, pomdp, s, h::BeliefNode, steps)` will be called. - If this is a number, the value will be set to that number Note: In many cases, the simplest way to estimate the value is to do a rollout on the fully observable MDP with a policy that is a function of the state. To do this, use `FORollout(policy)`. - `default_action::Any` Function, action, or Policy used to determine the action if POMCP fails with exception `ex`. default: `ExceptionRethrow()` - If this is a Function `f`, `f(pomdp, belief, ex)` will be called. - If this is a Policy `p`, `action(p, belief)` will be called. - If it is an object `a`, `default_action(a, pomdp, belief, ex)` will be called, and if this method is not implemented, `a` will be returned directly. - `rng::AbstractRNG` Random number generator. default: `Random.GLOBAL_RNG` """ @with_kw mutable struct POMCPSolver <: AbstractPOMCPSolver max_depth::Int = 20 c::Float64 = 1.0 tree_queries::Int = 1000 max_time::Float64 = Inf tree_in_info::Bool = false default_action::Any = ExceptionRethrow() rng::AbstractRNG = Random.GLOBAL_RNG estimate_value::Any = RolloutEstimator(RandomSolver(rng)) end struct POMCPTree{A,O} # for each observation-terminated history total_n::Vector{Int} # total number of visits for an observation node children::Vector{Vector{Int}} # indices of each of the children o_labels::Vector{O} # actual observation corresponding to this observation node o_lookup::Dict{Tuple{Int, O}, Int} # mapping from (action node index, observation) to an observation node index # for each action-terminated history n::Vector{Int} # number of visits for an action node v::Vector{Float64} # value estimate for an action node a_labels::Vector{A} # actual action corresponding to this action node end function POMCPTree(pomdp::POMDP, b, sz::Int=1000) acts = collect(actions(pomdp, b)) A = actiontype(pomdp) O = obstype(pomdp) sz = min(100_000, sz) return POMCPTree{A,O}(sizehint!(Int[0], sz), sizehint!(Vector{Int}[collect(1:length(acts))], sz), sizehint!(Array{O}(undef, 1), sz), sizehint!(Dict{Tuple{Int,O},Int}(), sz), sizehint!(zeros(Int, length(acts)), sz), sizehint!(zeros(Float64, length(acts)), sz), sizehint!(acts, sz) ) end struct LeafNodeBelief{H, S} <: AbstractParticleBelief{S} hist::H sp::S end POMDPs.currentobs(h::LeafNodeBelief) = h.hist[end].o POMDPs.history(h::LeafNodeBelief) = h.hist # particle belief interface ParticleFilters.n_particles(b::LeafNodeBelief) = 1 ParticleFilters.particles(b::LeafNodeBelief) = (b.sp,) ParticleFilters.weights(b::LeafNodeBelief) = (1.0,) ParticleFilters.weighted_particles(b::LeafNodeBelief) = (b.sp=>1.0,) ParticleFilters.weight_sum(b::LeafNodeBelief) = 1.0 ParticleFilters.weight(b::LeafNodeBelief, i) = i == 1 ? 1.0 : 0.0 function ParticleFilters.particle(b::LeafNodeBelief, i) @assert i == 1 return b.sp end POMDPs.mean(b::LeafNodeBelief) = b.sp POMDPs.mode(b::LeafNodeBelief) = b.sp POMDPs.support(b::LeafNodeBelief) = (b.sp,) POMDPs.pdf(b::LeafNodeBelief{<:Any, S}, s::S) where S = float(s == b.sp) POMDPs.rand(rng::AbstractRNG, s::Random.SamplerTrivial{<:LeafNodeBelief}) = s[].sp # old deprecated name const AOHistoryBelief = LeafNodeBelief function insert_obs_node!(t::POMCPTree, pomdp::POMDP, ha::Int, sp, o) acts = actions(pomdp, LeafNodeBelief(tuple((a=t.a_labels[ha], o=o)), sp)) push!(t.total_n, 0) push!(t.children, sizehint!(Int[], length(acts))) push!(t.o_labels, o) hao = length(t.total_n) t.o_lookup[(ha, o)] = hao for a in acts n = insert_action_node!(t, hao, a) push!(t.children[hao], n) end return hao end function insert_action_node!(t::POMCPTree, h::Int, a) push!(t.n, 0) push!(t.v, 0.0) push!(t.a_labels, a) return length(t.n) end abstract type BeliefNode <: AbstractStateNode end struct POMCPObsNode{A,O} <: BeliefNode tree::POMCPTree{A,O} node::Int end mutable struct POMCPPlanner{P, SE, RNG} <: Policy solver::POMCPSolver problem::P solved_estimator::SE rng::RNG _best_node_mem::Vector{Int} _tree::Union{Nothing, Any} end function POMCPPlanner(solver::POMCPSolver, pomdp::POMDP) se = convert_estimator(solver.estimate_value, solver, pomdp) return POMCPPlanner(solver, pomdp, se, solver.rng, Int[], nothing) end Random.seed!(p::POMCPPlanner, seed) = Random.seed!(p.rng, seed) function updater(p::POMCPPlanner) P = typeof(p.problem) S = statetype(P) A = actiontype(P) O = obstype(P) return UnweightedParticleFilter(p.problem, p.solver.tree_queries, rng=p.rng) # XXX It would be better to automatically use an SIRParticleFilter if possible # if !@implemented ParticleFilters.obs_weight(::P, ::S, ::A, ::S, ::O) # return UnweightedParticleFilter(p.problem, p.solver.tree_queries, rng=p.rng) # end # return SIRParticleFilter(p.problem, p.solver.tree_queries, rng=p.rng) end include("solver.jl") include("exceptions.jl") include("rollout.jl") include("visualization.jl") include("requirements_info.jl") end # module
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
657
abstract type NoDecision <: Exception end Base.showerror(io::IO, nd::NoDecision) = print(io, """ Planner failed to choose an action because the following exception was thrown: $nd To specify an action for this case, use the default_action solver parameter. """) struct AllSamplesTerminal <: NoDecision belief end Base.showerror(io::IO, ast::AllSamplesTerminal) = print(io, """ Planner failed to choose an action because all states sampled from the belief were terminal. To see the belief, catch this exception as ex and see ex.belief. To specify an action for this case, use the default_action solver parameter. """)
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
1758
function POMDPLinter.requirements_info(solver::AbstractPOMCPSolver, problem::POMDP) println(""" Since POMCP is an online solver, most of the computation occurs in `action(planner, state)`. In order to view the requirements for this function, please, supply an initial beleif to `requirements_info`, e.g. @requirements_info $(typeof(solver))() $(typeof(problem))() initialstate(pomdp) """) end function POMDPLinter.requirements_info(solver::AbstractPOMCPSolver, problem::POMDP, b) policy = solve(solver, problem) requirements_info(policy, b) end POMDPLinter.requirements_info(policy::POMCPPlanner, b) = @show_requirements action(policy, b) @POMDP_require action(p::POMCPPlanner, b) begin tree = POMCPTree(p.problem, b, p.solver.tree_queries) @subreq search(p, b, tree) end @POMDP_require search(p::POMCPPlanner, b, t::POMCPTree) begin P = typeof(p.problem) @req rand(::typeof(p.rng), ::typeof(b)) s = rand(p.rng, b) @req isterminal(::P, ::statetype(P)) @subreq simulate(p, s, POMCPObsNode(t, 1), p.solver.max_depth) end @POMDP_require simulate(p::POMCPPlanner, s, hnode::POMCPObsNode, steps::Int) begin P = typeof(p.problem) S = statetype(P) A = actiontype(P) O = obstype(P) @req gen(::P, ::S, ::A, ::typeof(p.rng)) @req isequal(::O, ::O) @req hash(::O) # from insert_obs_node! @req actions(::P) AS = typeof(actions(p.problem)) @req length(::AS) @subreq estimate_value(p.solved_estimator, p.problem, s, hnode, steps) @req discount(::P) end @POMDP_require estimate_value(f::Function, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) begin @req f(::typeof(pomdp), ::typeof(start_state), ::typeof(h), ::typeof(steps)) end
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
4313
struct PORollout solver::Union{POMDPs.Solver,POMDPs.Policy,Function} updater::POMDPs.Updater end struct SolvedPORollout{P<:POMDPs.Policy,U<:POMDPs.Updater,RNG<:AbstractRNG} policy::P updater::U rng::RNG end struct FORollout # fully observable rollout solver::Union{POMDPs.Solver,POMDPs.Policy} end struct SolvedFORollout{P<:POMDPs.Policy,RNG<:AbstractRNG} policy::P rng::RNG end struct FOValue solver::Union{POMDPs.Solver, POMDPs.Policy} end struct SolvedFOValue{P<:POMDPs.Policy} policy::P end """ estimate_value(estimator, problem::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) Return an initial unbiased estimate of the value at belief node h. By default this runs a rollout simulation """ function estimate_value end estimate_value(f::Function, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) = f(pomdp, start_state, h, steps) estimate_value(n::Number, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) = convert(Float64, n) function estimate_value(estimator::Union{SolvedPORollout,SolvedFORollout}, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) rollout(estimator, pomdp, start_state, h, steps) end @POMDP_require estimate_value(estimator::Union{SolvedPORollout,SolvedFORollout}, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) begin @subreq rollout(estimator, pomdp, start_state, h, steps) end function estimate_value(estimator::SolvedFOValue, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) POMDPs.value(estimator.policy, start_state) end function convert_estimator(ev::RolloutEstimator, solver, pomdp) policy = MCTS.convert_to_policy(ev.solver, pomdp) SolvedPORollout(policy, updater(policy), solver.rng) end function convert_estimator(ev::PORollout, solver, pomdp) policy = MCTS.convert_to_policy(ev.solver, pomdp) SolvedPORollout(policy, ev.updater, solver.rng) end function convert_estimator(est::FORollout, solver, pomdp) policy = MCTS.convert_to_policy(est.solver, UnderlyingMDP(pomdp)) SolvedFORollout(policy, solver.rng) end function convert_estimator(est::FOValue, solver, pomdp::POMDPs.POMDP) policy = MCTS.convert_to_policy(est.solver, UnderlyingMDP(pomdp)) SolvedFOValue(policy) end """ Perform a rollout simulation to estimate the value. """ function rollout(est::SolvedPORollout, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) b = extract_belief(est.updater, h) sim = RolloutSimulator(est.rng, steps) return POMDPs.simulate(sim, pomdp, est.policy, est.updater, b, start_state) end @POMDP_require rollout(est::SolvedPORollout, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) begin @req extract_belief(::typeof(est.updater), ::typeof(h)) b = extract_belief(est.updater, h) sim = RolloutSimulator(est.rng, steps) @subreq POMDPs.simulate(sim, pomdp, est.policy, est.updater, b, start_state) end function rollout(est::SolvedFORollout, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) sim = RolloutSimulator(est.rng, steps) return POMDPs.simulate(sim, pomdp, est.policy, start_state) end @POMDP_require rollout(est::SolvedFORollout, pomdp::POMDPs.POMDP, start_state, h::BeliefNode, steps::Int) begin sim = RolloutSimulator(est.rng, steps) @subreq POMDPs.simulate(sim, pomdp, est.policy, start_state) end """ extract_belief(rollout_updater::POMDPs.Updater, node::BeliefNode) Return a belief compatible with the `rollout_updater` from the belief in `node`. When a rollout simulation is started, this function is used to create the initial belief (compatible with `rollout_updater`) based on the appropriate `BeliefNode` at the edge of the tree. By overriding this, a belief can be constructed based on the entire tree or entire observation-action history. """ function extract_belief end # some defaults are provided extract_belief(::NothingUpdater, node::BeliefNode) = nothing function extract_belief(::PreviousObservationUpdater, node::BeliefNode) if node.node==1 && !isdefined(node.tree.o_labels, node.node) missing else node.tree.o_labels[node.node] end end
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
3162
function POMDPTools.action_info(p::POMCPPlanner, b; tree_in_info=false) local a::actiontype(p.problem) info = Dict{Symbol, Any}() try tree = POMCPTree(p.problem, b, p.solver.tree_queries) a = search(p, b, tree, info) p._tree = tree if p.solver.tree_in_info || tree_in_info info[:tree] = tree end catch ex # Note: this might not be type stable, but it shouldn't matter too much here a = convert(actiontype(p.problem), default_action(p.solver.default_action, p.problem, b, ex)) info[:exception] = ex end return a, info end action(p::POMCPPlanner, b) = first(action_info(p, b)) function search(p::POMCPPlanner, b, t::POMCPTree, info::Dict) all_terminal = true nquery = 0 start_us = CPUtime_us() for i in 1:p.solver.tree_queries nquery += 1 if CPUtime_us() - start_us >= 1e6*p.solver.max_time break end s = rand(p.rng, b) if !POMDPs.isterminal(p.problem, s) simulate(p, s, POMCPObsNode(t, 1), p.solver.max_depth) all_terminal = false end end info[:search_time_us] = CPUtime_us() - start_us info[:tree_queries] = nquery if all_terminal throw(AllSamplesTerminal(b)) end h = 1 best_node = first(t.children[h]) best_v = t.v[best_node] @assert !isnan(best_v) for node in t.children[h][2:end] if t.v[node] >= best_v best_v = t.v[node] best_node = node end end return t.a_labels[best_node] end solve(solver::POMCPSolver, pomdp::POMDP) = POMCPPlanner(solver, pomdp) function simulate(p::POMCPPlanner, s, hnode::POMCPObsNode, steps::Int) if steps == 0 || isterminal(p.problem, s) return 0.0 end t = hnode.tree h = hnode.node ltn = log(t.total_n[h]) best_nodes = empty!(p._best_node_mem) best_criterion_val = -Inf for node in t.children[h] n = t.n[node] if n == 0 && ltn <= 0.0 criterion_value = t.v[node] elseif n == 0 && t.v[node] == -Inf criterion_value = Inf else criterion_value = t.v[node] + p.solver.c*sqrt(ltn/n) end if criterion_value > best_criterion_val best_criterion_val = criterion_value empty!(best_nodes) push!(best_nodes, node) elseif criterion_value == best_criterion_val push!(best_nodes, node) end end ha = rand(p.rng, best_nodes) a = t.a_labels[ha] sp, o, r = @gen(:sp, :o, :r)(p.problem, s, a, p.rng) hao = get(t.o_lookup, (ha, o), 0) if hao == 0 hao = insert_obs_node!(t, p.problem, ha, sp, o) v = estimate_value(p.solved_estimator, p.problem, sp, POMCPObsNode(t, hao), steps-1) R = r + discount(p.problem)*v else R = r + discount(p.problem)*simulate(p, sp, POMCPObsNode(t, hao), steps-1) end t.total_n[h] += 1 t.n[ha] += 1 t.v[ha] += (R-t.v[ha])/t.n[ha] return R end
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
3083
function D3Trees.D3Tree(p::POMCPPlanner; title="POMCP Tree", kwargs...) @warn(""" D3Tree(planner::POMCPPlanner) is deprecated and may be removed in the future. Instead, please use a, info = action_info(planner, b) D3Tree(info[:tree]) Or, you can get this info from a POMDPTools History info = first(ainfo_hist(hist)) D3Tree(info[:tree]) """) if p._tree == nothing error("POMCPPlanner has not constructed a tree yet, run `action(planner, belief)` first to construct the tree.") end return D3Tree(p._tree; title=title, kwargs...) end function D3Trees.D3Tree(t::POMCPTree; title="POMCP Tree", kwargs...) lenb = length(t.total_n) lenba = length(t.n) len = lenb + lenba children = Vector{Vector{Int}}(undef, len) text = Vector{String}(undef, len) tt = fill("", len) link_style = fill("", len) style = fill("", len) ba_children = [Set{Int}() for i in 1:lenba] for (ha_o, c) in t.o_lookup ha, o = ha_o push!(ba_children[ha], c) end min_V = minimum(t.v) max_V = maximum(t.v) for b in 1:lenb children[b] = t.children[b] .+ lenb text[b] = @sprintf(""" o: %s N: %-10d""", b==1 ? "<root>" : node_tag(t.o_labels[b]), t.total_n[b] ) tt[b] = """ o: $(b==1 ? "<root>" : node_tag(t.o_labels[b])) N: $(t.total_n[b]) $(length(t.children[b])) children """ link_width = max(1.0, 20.0*sqrt(t.total_n[b]/t.total_n[1])) link_style[b] = "stroke-width:$link_width" end for ba in 1:lenba children[ba+lenb] = collect(ba_children[ba]) text[ba+lenb] = @sprintf(""" a: %s N: %-7d\nV: %-10.3g""", node_tag(t.a_labels[ba]), t.n[ba], t.v[ba]) tt[ba+lenb] = """ a: $(tooltip_tag(t.a_labels[ba])) N: $(t.n[ba]) V: $(t.v[ba]) $(length(ba_children[ba])) children """ link_width = max(1.0, 20.0*sqrt(t.n[ba]/t.total_n[1])) link_style[ba+lenb] = "stroke-width:$link_width" rel_V = (t.v[ba]-min_V)/(max_V-min_V) if isnan(rel_V) color = colorant"gray" else color = weighted_color_mean(rel_V, colorant"green", colorant"red") end style[ba+lenb] = "stroke:#$(hex(color))" end return D3Tree(children; text=text, tooltip=tt, style=style, link_style=link_style, title=title, kwargs... ) end Base.show(io::IO, mime::MIME"text/html", t::POMCPTree) = show(io, mime, D3Tree(t)) Base.show(io::IO, mime::MIME"text/plain", t::POMCPTree) = show(io, mime, D3Tree(t))
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
code
5964
using BasicPOMCP using Test using POMDPs using POMDPModels using NBInclude using D3Trees using Random using POMDPTools using POMDPLinter: @requirements_info, @show_requirements, requirements_info using ParticleFilters: n_particles, particles, particle, weights, weighted_particles, weight_sum, weight import POMDPs: transition, observation, reward, discount, initialstate, updater, states, actions, observations struct ConstObsPOMDP <: POMDP{Bool, Symbol, Bool} end updater(problem::ConstObsPOMDP) = DiscreteUpdater(problem) initialstate(::ConstObsPOMDP) = BoolDistribution(0.0) transition(p::ConstObsPOMDP, s::Bool, a::Symbol) = BoolDistribution(0.0) observation(p::ConstObsPOMDP, a::Symbol, sp::Bool) = BoolDistribution(1.0) reward(p::ConstObsPOMDP, s::Bool, a::Symbol, sp::Bool) = 1. discount(p::ConstObsPOMDP) = 0.9 states(p::ConstObsPOMDP) = (true, false) actions(p::ConstObsPOMDP) = (:the_only_action,) observations(p::ConstObsPOMDP) = (true, false) @testset "POMDPTools" begin pomdp = BabyPOMDP() test_solver(POMCPSolver(), BabyPOMDP()) end; @testset "type stability" begin pomdp = BabyPOMDP() solver = POMCPSolver(rng = MersenneTwister(1)) planner = solve(solver, pomdp) b = initialstate(pomdp) tree = BasicPOMCP.POMCPTree(pomdp, b, solver.tree_queries) node = BasicPOMCP.POMCPObsNode(tree, 1) r = @inferred BasicPOMCP.simulate(planner, rand(MersenneTwister(1), initialstate(pomdp)), node, 20) end; @testset "belief dependent actions" begin pomdp = ConstObsPOMDP() function POMDPs.actions(m::ConstObsPOMDP, b::LeafNodeBelief) @test currentobs(b) == true @test history(b)[end].o == true @test history(b)[end].a == :the_only_action @test mean(b) == 0.0 @test mode(b) == 0.0 @test only(support(b)) == false @test pdf(b, false) == 1.0 @test pdf(b, true) == 0.0 @test rand(b) == false @test n_particles(b) == 1 @test only(particles(b)) == false @test only(weights(b)) == 1.0 @test only(weighted_particles(b)) == (false => 1.0) @test weight_sum(b) == 1.0 @test weight(b, 1) == 1.0 @test particle(b, 1) == false # old type name - this can be removed when upgrading versions @test b isa AOHistoryBelief return actions(m) end solver = POMCPSolver(rng = MersenneTwister(1)) planner = solve(solver, pomdp) b = initialstate(pomdp) tree = BasicPOMCP.POMCPTree(pomdp, b, solver.tree_queries) node = BasicPOMCP.POMCPObsNode(tree, 1) @inferred BasicPOMCP.simulate(planner, rand(MersenneTwister(1), initialstate(pomdp)), node, 20) end; @testset "simulation" begin pomdp = BabyPOMDP() solver = POMCPSolver(rng = MersenneTwister(1)) planner = solve(solver, pomdp) solver = POMCPSolver(max_time=0.1, tree_queries=typemax(Int), rng = MersenneTwister(1)) planner = solve(solver, pomdp) b = initialstate(pomdp) a, info = action_info(planner, b) println("time below should be about 0.1 seconds") etime = @elapsed a, info = action_info(planner, b) @show etime @test etime < 0.2 @show info[:search_time_us] sim = HistoryRecorder(max_steps=10) simulate(sim, pomdp, planner, updater(pomdp)) end; @testset "d3t" begin pomdp = BabyPOMDP() solver = POMCPSolver(max_time=0.1, tree_queries=typemax(Int), rng = MersenneTwister(1)) planner = solve(solver, pomdp) b = initialstate(pomdp) a, info = action_info(planner, b, tree_in_info=true) d3t = D3Tree(info[:tree], title="test tree") # inchrome(d3t) show(stdout, MIME("text/plain"), d3t) solver = POMCPSolver(max_time=0.1, tree_queries=typemax(Int), rng=MersenneTwister(1), tree_in_info=true) planner = solve(solver, pomdp) a, info = action_info(planner, b) d3t = D3Tree(info[:tree], title="test tree (tree_in_info solver option)") end; @testset "Minimal_Example" begin @nbinclude(joinpath(dirname(@__FILE__), "..", "notebooks", "Minimal_Example.ipynb")) end; @testset "consistency" begin # test consistency when rng is specified pomdp = BabyPOMDP() solver = POMCPSolver(rng = MersenneTwister(1)) planner = solve(solver, pomdp) hist1 = simulate(HistoryRecorder(max_steps=1000, rng=MersenneTwister(3)), pomdp, planner) solver = POMCPSolver(rng = MersenneTwister(1)) planner = solve(solver, pomdp) hist2 = simulate(HistoryRecorder(max_steps=1000, rng=MersenneTwister(3)), pomdp, planner) @test discounted_reward(hist1) == discounted_reward(hist2) end; @testset "requires" begin # REQUIREMENTS solver = POMCPSolver() pomdp = TigerPOMDP() println("============== @requirements_info with only solver:") requirements_info(solver) println("============== @requirements_info with solver and pomdp:") requirements_info(solver, pomdp) @show_requirements POMDPs.solve(solver, pomdp) end; @testset "errors" begin struct TerminalPOMDP <: POMDP{Int, Int, Int} end POMDPs.isterminal(::TerminalPOMDP, s) = true POMDPs.actions(::TerminalPOMDP) = [1,2,3] solver = POMCPSolver() planner = solve(solver, TerminalPOMDP()) @test_throws AllSamplesTerminal action(planner, Deterministic(1)) let ex = nothing try action(planner, Deterministic(1)) catch ex end @test sprint(showerror, ex) == """ Planner failed to choose an action because all states sampled from the belief were terminal. To see the belief, catch this exception as ex and see ex.belief. To specify an action for this case, use the default_action solver parameter. """ end end @testset "FORollout" begin struct TestMDPSolver1 <: Solver end POMDPs.solve(::TestMDPSolver1, m::MDP) = FunctionPolicy(s->first(actions(m))) solver = POMCPSolver(estimate_value=FORollout(TestMDPSolver1())) m = BabyPOMDP() planner = solve(solver, m) @test action(planner, initialstate(m)) in actions(m) end
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.3.11
6bd8e6c1eb1c9fe993907c6eb1e9df02b8b23b04
docs
5621
# BasicPOMCP [![CI](https://github.com/JuliaPOMDP/BasicPOMCP.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/JuliaPOMDP/BasicPOMCP.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/JuliaPOMDP/BasicPOMCP.jl/branch/master/graph/badge.svg?token=NdfHG2MJPY)](https://codecov.io/gh/JuliaPOMDP/BasicPOMCP.jl) This package implements the PO-UCT online tree search algorithm for [POMDPs.jl](https://github.com/JuliaPOMDP/POMDPs.jl). PO-UCT is the most useful component of the POMCP algorithm described in \[1\]. The other component of POMCP, re-use of particles in the tree for belief updates, is not implemented for reasons described in the [Belief Update](#belief-update) section below. > \[1\] Silver, D., & Veness, J. (2010). Monte-Carlo Planning in Large POMDPs. In *Advances in neural information processing systems* (pp. 2164–2172). Retrieved from http://discovery.ucl.ac.uk/1347369/ Problems should be specified using the [POMDPs.jl](https://github.com/JuliaPOMDP/POMDPs.jl) interface. For more information, see the [POMDPs.jl documentation](http://juliapomdp.github.io/POMDPs.jl/latest/). This package replaces the deprecated [POMCP.jl package](https://github.com/JuliaPOMDP/POMCP.jl). It has fewer features, but is much simpler. ![POMCP Tree](img/tree.png) ## Installation ```julia using Pkg Pkg.add("BasicPOMCP") ``` ## Usage ```julia using POMDPs, POMDPModels, POMDPSimulators, BasicPOMCP pomdp = TigerPOMDP() solver = POMCPSolver() planner = solve(solver, pomdp) for (s, a, o) in stepthrough(pomdp, planner, "s,a,o", max_steps=10) println("State was $s,") println("action $a was taken,") println("and observation $o was received.\n") end ``` A minimal example showing how to implement a problem for the solver to use is here: https://github.com/JuliaPOMDP/BasicPOMCP.jl/blob/master/notebooks/Minimal_Example.ipynb ## Solver Options Solver options are set with keyword arguments to the `BasicPOMCP` constructor. The options are described in the docstring which can be accessed with `?POMCPSolver`. The output of `?POMCPSolver` is printed below, but may not be up to date. > POMCPSolver(#=keyword arguments=#) > > Partially Observable Monte Carlo Planning Solver. > > ## Keyword Arguments > > - `max_depth::Int` > Rollouts and tree expension will stop when this depth is reached. > default: `20` > > - `c::Float64` > UCB exploration constant - specifies how much the solver should explore. > default: `1.0` > > - `tree_queries::Int` > Number of iterations during each action() call. > default: `1000` > > - `max_time::Float64` > Maximum time for planning in each action() call. > default: `Inf` > > - `tree_in_info::Bool` > If `true`, returns the tree in the info dict when action_info is called. > default: `false` > > - `estimate_value::Any` > Function, object, or number used to estimate the value at the leaf nodes. > default: `RolloutEstimator(RandomSolver(rng))` > - If this is a function `f`, `f(pomdp, s, h::BeliefNode, steps)` will be called to estimate the value. > - If this is an object `o`, `estimate_value(o, pomdp, s, h::BeliefNode, steps)` will be called. > - If this is a number, the value will be set to that number > Note: In many cases, the simplest way to estimate the value is to do a rollout on the fully observable MDP with a policy that is a function of the state. To do this, use `FORollout(policy)`. > > - `default_action::Any` > Function, action, or Policy used to determine the action if POMCP fails with exception `ex`. > default: `ExceptionRethrow()` > - If this is a Function `f`, `f(pomdp, belief, ex)` will be called. > - If this is a Policy `p`, `action(p, belief)` will be called. > - If it is an object `a`, `default_action(a, pomdp, belief, ex)` will be called, and if this method is not implemented, `a` will be returned directly. > > - `rng::AbstractRNG` > Random number generator. > default: `Random.GLOBAL_RNG` ## Belief Update This solver does not reuse decision-making simulations for the belief update as in the original Silver and Veness paper. We have found that unweighted particle filtering approach to be unuseful in practice because 1. The number of particles that comprise the next belief is small because only the particles in the branch corresponding to the actual action and observation can be used, 2. Even in the Silver and Veness paper, domain-specific particle reinvigoration must be used, and 3. The computation time required to run a standard weighted particle filter is small compared to the amount of time needed to plan with POMCP, so reusing the simulations gives minimal benefit. Instead, a custom belief updater, or an updater from [ParticleFilters.jl](https://github.com/JuliaPOMDP/ParticleFilters.jl) should be used. ## Tree Visualization The search tree can be visualized with [D3Trees.jl](https://github.com/sisl/D3Trees.jl) after running the `action_info()` as in the example below. **Note: tree_in_info must be set to true either as a solver option or as a keyword argument to action_info() for this to work** (it is disabled by default because it can use a lot of memory). ```julia using POMDPs using BasicPOMCP using POMDPModels using POMDPTools using D3Trees using Random pomdp = BabyPOMDP() solver = POMCPSolver(tree_queries=1000, c=10.0, rng=MersenneTwister(1)) planner = solve(solver, pomdp) a, info = action_info(planner, initialstate(pomdp), tree_in_info=true) inchrome(D3Tree(info[:tree], init_expand=3)) ``` This should produce the image at the top of the README.
BasicPOMCP
https://github.com/JuliaPOMDP/BasicPOMCP.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
389
using Documenter using FFTA makedocs( sitename = "FFTA", format = Documenter.HTML(), pages = ["Development Tools" => "dev.md"], modules = [FFTA] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. deploydocs( repo = "github.com/dannys4/FFTA.jl.git" )
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
1280
module FFTA using Primes, DocStringExtensions, Reexport, MuladdMacro, LinearAlgebra @reexport using AbstractFFTs import AbstractFFTs: Plan include("callgraph.jl") include("algos.jl") include("plan.jl") #= function fft(x::AbstractMatrix{T}) where {T <: Real} M,N = size(x) y1 = similar(x, Complex{T}) y2 = similar(x, Complex{T}) g1 = CallGraph{Complex{T}}(size(x,1)) g2 = CallGraph{Complex{T}}(size(x,2)) for k in 1:N @views fft!(y1[:,k], x[:,k], 1, 1, FFT_FORWARD, g1[1].type, g1, 1) end for k in 1:M @views fft!(y2[k,:], y1[k,:], 1, 1, FFT_FORWARD, g2[1].type, g2, 1) end y2 end function bfft(x::AbstractVector{T}) where {T <: Real} y = similar(x, Complex{T}) g = CallGraph{Complex{T}}(length(x)) fft!(y, x, 1, 1, FFT_BACKWARD, g[1].type, g, 1) y end function bfft(x::AbstractMatrix{T}) where {T <: Real} M,N = size(x) y1 = similar(x, Complex{T}) y2 = similar(x, Complex{T}) g1 = CallGraph{Complex{T}}(size(x,1)) g2 = CallGraph{Complex{T}}(size(x,2)) for k in 1:N @views fft!(y1[:,k], x[:,k], 1, 1, FFT_BACKWARD, g1[1].type, g1, 1) end for k in 1:M @views fft!(y2[k,:], y1[k,:], 1, 1, FFT_BACKWARD, g2[1].type, g2, 1) end y2 end =# end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
11040
fft!(::AbstractVector{T}, ::AbstractVector{T}, ::Int, ::Int, ::Direction, ::AbstractFFTType, ::CallGraph{T}, ::Int) where {T} = nothing @inline function direction_sign(d::Direction) Int(d) end function (g::CallGraph{T})(out::AbstractVector{T}, in::AbstractVector{U}, start_out::Int, start_in::Int, v::Direction, t::AbstractFFTType, idx::Int) where {T,U} fft!(out, in, start_out, start_in, v, t, g, idx) end """ $(TYPEDSIGNATURES) Cooley-Tukey composite FFT, with a pre-computed call graph # Arguments `out`: Output vector `in`: Input vector `start_out`: Index of the first element of the output vector `start_in`: Index of the first element of the input vector `d`: Direction of the transform `g`: Call graph for this transform `idx`: Index of the current transform in the call graph """ function fft!(out::AbstractVector{T}, in::AbstractVector{U}, start_out::Int, start_in::Int, d::Direction, ::CompositeFFT, g::CallGraph{T}, idx::Int) where {T,U} root = g[idx] left_idx = idx + root.left right_idx = idx + root.right left = g[left_idx] right = g[right_idx] N = root.sz N1 = left.sz N2 = right.sz s_in = root.s_in s_out = root.s_out w1 = convert(T, cispi(direction_sign(d)*2/N)) wj1 = one(T) tmp = g.workspace[idx] @inbounds for j1 in 0:N1-1 wk2 = wj1 g(tmp, in, N2*j1+1, start_in + j1*s_in, d, right.type, right_idx) j1 > 0 && @inbounds for k2 in 1:N2-1 tmp[N2*j1 + k2 + 1] *= wk2 wk2 *= wj1 end wj1 *= w1 end @inbounds for k2 in 0:N2-1 g(out, tmp, start_out + k2*s_out, k2+1, d, left.type, left_idx) end end """ $(TYPEDSIGNATURES) Discrete Fourier Transform, O(N^2) algorithm, in place. # Arguments `out`: Output vector `in`: Input vector `N`: Size of the transform `start_out`: Index of the first element of the output vector `stride_out`: Stride of the output vector `start_in`: Index of the first element of the input vector `stride_in`: Stride of the input vector `d`: Direction of the transform """ function fft_dft!(out::AbstractVector{T}, in::AbstractVector{T}, N::Int, start_out::Int, stride_out::Int, start_in::Int, stride_in::Int, d::Direction) where {T} tmp = in[start_in] @inbounds for j in 1:N-1 tmp += in[start_in + j*stride_in] end out[start_out] = tmp wk = wkn = w = convert(T, cispi(direction_sign(d)*2/N)) @inbounds for d in 1:N-1 tmp = in[start_in] @inbounds for k in 1:N-1 tmp += wkn*in[start_in + k*stride_in] wkn *= wk end out[start_out + d*stride_out] = tmp wk *= w wkn = wk end end function fft_dft!(out::AbstractVector{Complex{T}}, in::AbstractVector{T}, N::Int, start_out::Int, stride_out::Int, start_in::Int, stride_in::Int, d::Direction) where {T<:Real} halfN = N÷2 wk = wkn = w = convert(Complex{T}, cispi(direction_sign(d)*2/N)) tmpBegin = tmpHalf = in[start_in] @inbounds for j in 1:N-1 tmpBegin += in[start_in + stride_in*j] iseven(j) ? tmpHalf += in[start_in + stride_in*j] : tmpHalf -= in[start_in + stride_in*j] end out[start_out] = convert(Complex{T}, tmpBegin) iseven(N) && (out[start_out + stride_out*halfN] = convert(Complex{T}, tmpHalf)) @inbounds for d in 1:halfN tmp = in[start_in] @inbounds for k in 1:N-1 tmp += wkn*in[start_in + k*stride_in] wkn *= wk end out[start_out + d*stride_out] = tmp wk *= w wkn = wk end @inbounds for k in halfN+1:N-1 out[start_out + stride_out*k] = conj(out[start_out + stride_out*(N-k)]) end end function fft!(out::AbstractVector{T}, in::AbstractVector{U}, start_out::Int, start_in::Int, d::Direction, ::DFT, g::CallGraph{T}, idx::Int) where {T,U} root = g[idx] fft_dft!(out, in, root.sz, start_out, root.s_out, start_in, root.s_in, d) end """ $(TYPEDSIGNATURES) Power of 2 FFT, in place # Arguments `out`: Output vector `in`: Input vector `N`: Size of the transform `start_out`: Index of the first element of the output vector `stride_out`: Stride of the output vector `start_in`: Index of the first element of the input vector `stride_in`: Stride of the input vector `d`: Direction of the transform """ function fft_pow2!(out::AbstractVector{T}, in::AbstractVector{U}, N::Int, start_out::Int, stride_out::Int, start_in::Int, stride_in::Int, d::Direction) where {T, U} if N == 2 out[start_out] = in[start_in] + in[start_in + stride_in] out[start_out + stride_out] = in[start_in] - in[start_in + stride_in] return end m = N ÷ 2 fft_pow2!(out, in, m, start_out , stride_out, start_in , stride_in*2, d) fft_pow2!(out, in, m, start_out + m*stride_out, stride_out, start_in + stride_in, stride_in*2, d) w1 = convert(T, cispi(direction_sign(d)*2/N)) wj = one(T) @inbounds for j in 0:m-1 j1_out = start_out + j*stride_out j2_out = start_out + (j+m)*stride_out out_j = out[j1_out] out[j1_out] = out_j + wj*out[j2_out] out[j2_out] = out_j - wj*out[j2_out] wj *= w1 end end function fft!(out::AbstractVector{T}, in::AbstractVector{U}, start_out::Int, start_in::Int, d::Direction, ::Pow2FFT, g::CallGraph{T}, idx::Int) where {T,U} root = g[idx] N = root.sz s_in = root.s_in s_out = root.s_out fft_pow2!(out, in, N, start_out, s_out, start_in, s_in, d) end """ $(TYPEDSIGNATURES) Power of 4 FFT, in place # Arguments `out`: Output vector `in`: Input vector `N`: Size of the transform `start_out`: Index of the first element of the output vector `stride_out`: Stride of the output vector `start_in`: Index of the first element of the input vector `stride_in`: Stride of the input vector `d`: Direction of the transform """ function fft_pow4!(out::AbstractVector{T}, in::AbstractVector{U}, N::Int, start_out::Int, stride_out::Int, start_in::Int, stride_in::Int, d::Direction) where {T, U} ds = direction_sign(d) plusi = ds*1im minusi = ds*-1im if N == 4 out[start_out + 0] = in[start_in] + in[start_in + stride_in] + in[start_in + 2*stride_in] + in[start_in + 3*stride_in] out[start_out + stride_out] = in[start_in] + in[start_in + stride_in]*plusi - in[start_in + 2*stride_in] + in[start_in + 3*stride_in]*minusi out[start_out + 2*stride_out] = in[start_in] - in[start_in + stride_in] + in[start_in + 2*stride_in] - in[start_in + 3*stride_in] out[start_out + 3*stride_out] = in[start_in] + in[start_in + stride_in]*minusi - in[start_in + 2*stride_in] + in[start_in + 3*stride_in]*plusi return end m = N ÷ 4 @muladd fft_pow4!(out, in, m, start_out , stride_out, start_in , stride_in*4, d) @muladd fft_pow4!(out, in, m, start_out + m*stride_out, stride_out, start_in + stride_in, stride_in*4, d) @muladd fft_pow4!(out, in, m, start_out + 2*m*stride_out, stride_out, start_in + 2*stride_in, stride_in*4, d) @muladd fft_pow4!(out, in, m, start_out + 3*m*stride_out, stride_out, start_in + 3*stride_in, stride_in*4, d) w1 = convert(T, cispi(direction_sign(d)*2/N)) wj = one(T) w1 = convert(T, cispi(ds*2/N)) w2 = convert(T, cispi(ds*4/N)) w3 = convert(T, cispi(ds*6/N)) wk1 = wk2 = wk3 = one(T) @inbounds for k in 0:m-1 @muladd k0 = start_out + k*stride_out @muladd k1 = start_out + (k+m)*stride_out @muladd k2 = start_out + (k+2*m)*stride_out @muladd k3 = start_out + (k+3*m)*stride_out y_k0, y_k1, y_k2, y_k3 = out[k0], out[k1], out[k2], out[k3] @muladd out[k0] = (y_k0 + y_k2*wk2) + (y_k1*wk1 + y_k3*wk2) @muladd out[k1] = (y_k0 - y_k2*wk2) + (y_k1*wk1 - y_k3*wk3) * plusi @muladd out[k2] = (y_k0 + y_k2*wk2) - (y_k1*wk1 + y_k3*wk3) @muladd out[k3] = (y_k0 - y_k2*wk2) + (y_k1*wk1 - y_k3*wk3) * minusi wk1 *= w1 wk2 *= w2 wk3 *= w3 end end function fft!(out::AbstractVector{T}, in::AbstractVector{U}, start_out::Int, start_in::Int, d::Direction, ::Pow4FFT, g::CallGraph{T}, idx::Int) where {T,U} root = g[idx] N = root.sz s_in = root.s_in s_out = root.s_out fft_pow4!(out, in, N, start_out, s_out, start_in, s_in, d) end """ $(TYPEDSIGNATURES) Power of 3 FFT, in place # Arguments out: Output vector in: Input vector N: Size of the transform start_out: Index of the first element of the output vector stride_out: Stride of the output vector start_in: Index of the first element of the input vector stride_in: Stride of the input vector d: Direction of the transform plus120: Depending on direction, perform either ±120° rotation minus120: Depending on direction, perform either ∓120° rotation """ function fft_pow3!(out::AbstractVector{T}, in::AbstractVector{U}, N::Int, start_out::Int, stride_out::Int, start_in::Int, stride_in::Int, d::Direction, plus120::T, minus120::T) where {T, U} if N == 3 @muladd out[start_out + 0] = in[start_in] + in[start_in + stride_in] + in[start_in + 2*stride_in] @muladd out[start_out + stride_out] = in[start_in] + in[start_in + stride_in]*plus120 + in[start_in + 2*stride_in]*minus120 @muladd out[start_out + 2*stride_out] = in[start_in] + in[start_in + stride_in]*minus120 + in[start_in + 2*stride_in]*plus120 return end # Size of subproblem Nprime = N ÷ 3 ds = direction_sign(d) # Dividing into subproblems fft_pow3!(out, in, Nprime, start_out, stride_out, start_in, stride_in*3, d, plus120, minus120) fft_pow3!(out, in, Nprime, start_out + Nprime*stride_out, stride_out, start_in + stride_in, stride_in*3, d, plus120, minus120) fft_pow3!(out, in, Nprime, start_out + 2*Nprime*stride_out, stride_out, start_in + 2*stride_in, stride_in*3, d, plus120, minus120) w1 = convert(T, cispi(ds*2/N)) w2 = convert(T, cispi(ds*4/N)) wk1 = wk2 = one(T) for k in 0:Nprime-1 @muladd k0 = start_out + k*stride_out @muladd k1 = start_out + (k+Nprime)*stride_out @muladd k2 = start_out + (k+2*Nprime)*stride_out y_k0, y_k1, y_k2 = out[k0], out[k1], out[k2] @muladd out[k0] = y_k0 + y_k1*wk1 + y_k2*wk2 @muladd out[k1] = y_k0 + y_k1*wk1*plus120 + y_k2*wk2*minus120 @muladd out[k2] = y_k0 + y_k1*wk1*minus120 + y_k2*wk2*plus120 wk1 *= w1 wk2 *= w2 end end function fft!(out::AbstractVector{T}, in::AbstractVector{U}, start_out::Int, start_in::Int, d::Direction, ::Pow3FFT, g::CallGraph{T}, idx::Int) where {T,U} root = g[idx] N = root.sz s_in = root.s_in s_out = root.s_out p_120 = convert(T, cispi(2/3)) m_120 = convert(T, cispi(4/3)) if d == FFT_FORWARD fft_pow3!(out, in, N, start_out, s_out, start_in, s_in, d, m_120, p_120) else fft_pow3!(out, in, N, start_out, s_out, start_in, s_in, d, p_120, m_120) end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
3624
@enum Direction FFT_FORWARD=-1 FFT_BACKWARD=1 @enum Pow24 POW2=2 POW4=1 abstract type AbstractFFTType end # Represents a Composite Cooley-Tukey FFT struct CompositeFFT <: AbstractFFTType end # Represents a Radix-2 Cooley-Tukey FFT struct Pow2FFT <: AbstractFFTType end # Represents a Radix-3 Cooley-Tukey FFT struct Pow3FFT <: AbstractFFTType end # Represents a Radix-4 Cooley-Tukey FFT struct Pow4FFT <: AbstractFFTType end # Represents an O(N²) DFT struct DFT <: AbstractFFTType end """ $(TYPEDSIGNATURES) Node of a call graph # Arguments `left`: Offset to the left child node `right`: Offset to the right child node `type`: Object representing the type of FFT `sz`: Size of this FFT """ struct CallGraphNode left::Int right::Int type::AbstractFFTType sz::Int s_in::Int s_out::Int end """ $(TYPEDSIGNATURES) Object representing a graph of FFT Calls # Arguments `nodes`: Nodes keeping track of the graph `workspace`: Preallocated Workspace """ struct CallGraph{T<:Complex} nodes::Vector{CallGraphNode} workspace::Vector{Vector{T}} end # Get the node in the graph at index i Base.getindex(g::CallGraph{T}, i::Int) where {T} = g.nodes[i] """ $(TYPEDSIGNATURES) Check if `N` is a power of `base` """ function _ispow(N, base) while N % base == 0 N = N/base end return N == 1 end """ $(TYPEDSIGNATURES) Check if `N` is a power of 2 or 4 """ function _ispow24(N::Int) N < 1 && return nothing while N & 0b11 == 0 N >>= 2 end return N < 3 ? Pow24(N) : nothing end """ $(TYPEDSIGNATURES) Recursively instantiate a set of `CallGraphNode`s # Arguments `nodes`: A vector (which gets expanded) of `CallGraphNode`s `N`: The size of the FFT `workspace`: A vector (which gets expanded) of preallocated workspaces `s_in`: The stride of the input `s_out`: The stride of the output """ function CallGraphNode!(nodes::Vector{CallGraphNode}, N::Int, workspace::Vector{Vector{T}}, s_in::Int, s_out::Int)::Int where {T} if iseven(N) pow = _ispow24(N) if !isnothing(pow) push!(workspace, T[]) push!(nodes, CallGraphNode(0, 0, pow == POW2 ? Pow2FFT() : Pow4FFT(), N, s_in, s_out)) return 1 end end if N % 3 == 0 if _ispow(N, 3) push!(workspace, T[]) push!(nodes, CallGraphNode(0, 0, Pow3FFT(), N, s_in, s_out)) return 1 end end if isprime(N) push!(workspace, T[]) push!(nodes, CallGraphNode(0,0, DFT(),N, s_in, s_out)) return 1 end Ns = [first(x) for x in collect(factor(N)) for _ in 1:last(x)] if Ns[1] == 2 N1 = prod(Ns[Ns .== 2]) elseif Ns[1] == 3 N1 = prod(Ns[Ns .== 3]) else # Greedy search for closest factor of N to sqrt(N) Nsqrt = sqrt(N) N_cp = cumprod(Ns[end:-1:1])[end:-1:1] N_prox = abs.(N_cp .- Nsqrt) _,N1_idx = findmin(N_prox) N1 = N_cp[N1_idx] end N2 = N ÷ N1 push!(nodes, CallGraphNode(0,0,DFT(),N,s_in,s_out)) sz = length(nodes) push!(workspace, Vector{T}(undef, N)) left_len = CallGraphNode!(nodes, N1, workspace, N2, N2*s_out) right_len = CallGraphNode!(nodes, N2, workspace, N1*s_in, 1) nodes[sz] = CallGraphNode(1, 1 + left_len, CompositeFFT(), N, s_in, s_out) return 1 + left_len + right_len end """ $(TYPEDSIGNATURES) Instantiate a CallGraph from a number `N` """ function CallGraph{T}(N::Int) where {T} nodes = CallGraphNode[] workspace = Vector{Vector{T}}() CallGraphNode!(nodes, N, workspace, 1, 1) CallGraph(nodes, workspace) end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
5936
import Base: * import LinearAlgebra: mul! abstract type FFTAPlan{T,N} <: Plan{T} end struct FFTAInvPlan{T,N} <: FFTAPlan{T,N} end struct FFTAPlan_cx{T,N} <: FFTAPlan{T,N} callgraph::NTuple{N, CallGraph{T}} region::Union{Int,AbstractVector{<:Int}} dir::Direction pinv::FFTAInvPlan{T} end struct FFTAPlan_re{T,N} <: FFTAPlan{T,N} callgraph::NTuple{N, CallGraph{T}} region::Union{Int,AbstractVector{<:Int}} dir::Direction pinv::FFTAInvPlan{T} flen::Int end function AbstractFFTs.plan_fft(x::AbstractArray{T}, region; kwargs...)::FFTAPlan_cx{T} where {T <: Complex} N = length(region) @assert N <= 2 "Only supports vectors and matrices" if N == 1 g = CallGraph{T}(size(x,region[])) pinv = FFTAInvPlan{T,N}() return FFTAPlan_cx{T,N}((g,), region, FFT_FORWARD, pinv) else sort!(region) g1 = CallGraph{T}(size(x,region[1])) g2 = CallGraph{T}(size(x,region[2])) pinv = FFTAInvPlan{T,N}() return FFTAPlan_cx{T,N}((g1,g2), region, FFT_FORWARD, pinv) end end function AbstractFFTs.plan_bfft(x::AbstractArray{T}, region; kwargs...)::FFTAPlan_cx{T} where {T <: Complex} N = length(region) @assert N <= 2 "Only supports vectors and matrices" if N == 1 g = CallGraph{T}(size(x,region[])) pinv = FFTAInvPlan{T,N}() return FFTAPlan_cx{T,N}((g,), region, FFT_BACKWARD, pinv) else sort!(region) g1 = CallGraph{T}(size(x,region[1])) g2 = CallGraph{T}(size(x,region[2])) pinv = FFTAInvPlan{T,N}() return FFTAPlan_cx{T,N}((g1,g2), region, FFT_BACKWARD, pinv) end end function AbstractFFTs.plan_rfft(x::AbstractArray{T}, region; kwargs...)::FFTAPlan_re{Complex{T}} where {T <: Real} N = length(region) @assert N <= 2 "Only supports vectors and matrices" if N == 1 g = CallGraph{Complex{T}}(size(x,region[])) pinv = FFTAInvPlan{Complex{T},N}() return FFTAPlan_re{Complex{T},N}(tuple(g), region, FFT_FORWARD, pinv, size(x,region[])) else sort!(region) g1 = CallGraph{Complex{T}}(size(x,region[1])) g2 = CallGraph{Complex{T}}(size(x,region[2])) pinv = FFTAInvPlan{Complex{T},N}() return FFTAPlan_re{Complex{T},N}(tuple(g1,g2), region, FFT_FORWARD, pinv, size(x,region[1])) end end function AbstractFFTs.plan_brfft(x::AbstractArray{T}, len, region; kwargs...)::FFTAPlan_re{T} where {T} N = length(region) @assert N <= 2 "Only supports vectors and matrices" if N == 1 g = CallGraph{T}(len) pinv = FFTAInvPlan{T,N}() return FFTAPlan_re{T,N}((g,), region, FFT_BACKWARD, pinv, len) else sort!(region) g1 = CallGraph{T}(len) g2 = CallGraph{T}(size(x,region[2])) pinv = FFTAInvPlan{T,N}() return FFTAPlan_re{T,N}((g1,g2), region, FFT_BACKWARD, pinv, len) end end function AbstractFFTs.plan_bfft(p::FFTAPlan_cx{T,N}) where {T,N} return FFTAPlan_cx{T,N}(p.callgraph, p.region, -p.dir, p.pinv) end function AbstractFFTs.plan_brfft(p::FFTAPlan_re{T,N}) where {T,N} return FFTAPlan_re{T,N}(p.callgraph, p.region, -p.dir, p.pinv, p.flen) end function LinearAlgebra.mul!(y::AbstractVector{U}, p::FFTAPlan{T,1}, x::AbstractVector{T}) where {T,U} fft!(y, x, 1, 1, p.dir, p.callgraph[1][1].type, p.callgraph[1], 1) end function LinearAlgebra.mul!(y::AbstractArray{U,N}, p::FFTAPlan{T,1}, x::AbstractArray{T,N}) where {T,U,N} Rpre = CartesianIndices(size(x)[1:p.region-1]) Rpost = CartesianIndices(size(x)[p.region+1:end]) for Ipre in Rpre for Ipost in Rpost @views fft!(y[Ipre,:,Ipost], x[Ipre,:,Ipost], 1, 1, p.dir, p.callgraph[1][1].type, p.callgraph[1], 1) end end end function LinearAlgebra.mul!(y::AbstractArray{U,N}, p::FFTAPlan{T,2}, x::AbstractArray{T,N}) where {T,U,N} R1 = CartesianIndices(size(x)[1:p.region[1]-1]) R2 = CartesianIndices(size(x)[p.region[1]+1:p.region[2]-1]) R3 = CartesianIndices(size(x)[p.region[2]+1:end]) y_tmp = similar(y, axes(y)[p.region]) rows,cols = size(x)[p.region] for I1 in R1 for I2 in R2 for I3 in R3 for k in 1:cols @views fft!(y_tmp[:,k], x[I1,:,I2,k,I3], 1, 1, p.dir, p.callgraph[1][1].type, p.callgraph[1], 1) end for k in 1:rows @views fft!(y[I1,k,I2,:,I3], y_tmp[k,:], 1, 1, p.dir, p.callgraph[2][1].type, p.callgraph[2], 1) end end end end end function *(p::FFTAPlan{T,1}, x::AbstractVector{T}) where {T<:Union{Real,Complex}} y = similar(x, T <: Real ? Complex{T} : T) LinearAlgebra.mul!(y, p, x) y end function *(p::FFTAPlan{T,N1}, x::AbstractArray{T,N2}) where {T<:Union{Real, Complex}, N1, N2} y = similar(x, T <: Real ? Complex{T} : T) LinearAlgebra.mul!(y, p, x) y end function *(p::FFTAPlan_re{T,1}, x::AbstractVector{T}) where {T<:Union{Real, Complex}} if p.dir == FFT_FORWARD y = similar(x, T <: Real ? Complex{T} : T) LinearAlgebra.mul!(y, p, x) return y[1:end÷2 + 1] else x_tmp = similar(x, p.flen) x_tmp[1:end÷2 + 1] .= x x_tmp[end÷2 + 2:end] .= iseven(p.flen) ? conj.(x[end-1:-1:2]) : conj.(x[end:-1:2]) y = similar(x_tmp) LinearAlgebra.mul!(y, p, x_tmp) return y end end function *(p::FFTAPlan_re{T,N}, x::AbstractArray{T,2}) where {T<:Union{Real, Complex}, N} if p.dir == FFT_FORWARD y = similar(x, T <: Real ? Complex{T} : T) LinearAlgebra.mul!(y, p, x) return y[1:end÷2 + 1,:] else x_tmp = similar(x, p.flen, size(x)[2]) x_tmp[1:end÷2 + 1,:] .= x x_tmp[end÷2 + 2:end,:] .= iseven(p.flen) ? conj.(x[end-1:-1:2,:]) : conj.(x[end:-1:2,:]) y = similar(x_tmp) LinearAlgebra.mul!(y, p, x_tmp) return y end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
1493
using Test, Random function padnum(m,x) digs = floor(Int, log10(m)) digs_x = floor(Int, log10(x)) v = fill(' ', digs-digs_x) for d in digits(x)[end:-1:1] push!(v, '0' + d) end String(v) end Random.seed!(1) @testset verbose = true "FFTA" begin @testset verbose = true "1D" begin @testset verbose = false "Complex" begin include("onedim/complex_forward.jl") include("onedim/complex_backward.jl") x = rand(ComplexF64, 100) y = fft(x) x2 = bfft(y)/length(x) @test x ≈ x2 atol=1e-12 end @testset verbose = false "Real" begin include("onedim/real_forward.jl") include("onedim/real_backward.jl") x = rand(Float64, 100) y = fft(x) x2 = bfft(y)/length(x) @test x ≈ x2 atol=1e-12 end end @testset verbose = false "2D" begin @testset verbose = true "Complex" begin include("twodim/complex_forward.jl") include("twodim/complex_backward.jl") x = rand(ComplexF64, 100, 100) y = fft(x) x2 = bfft(y)/length(x) @test x ≈ x2 end @testset verbose = true "Real" begin include("twodim/real_forward.jl") include("twodim/real_backward.jl") x = rand(Float64, 100, 100) y = fft(x) x2 = bfft(y)/length(x) @test x ≈ x2 end end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
242
using FFTA, Test test_nums = [8, 11, 15, 16, 27, 100] @testset "backward" begin for N in test_nums x = ones(ComplexF64, N) y = bfft(x) y_ref = 0*y y_ref[1] = N @test y ≈ y_ref atol=1e-12 end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
256
using FFTA, Test test_nums = [8, 11, 15, 16, 27, 100] @testset verbose = true " forward" begin for N in test_nums x = ones(ComplexF64, N) y = fft(x) y_ref = 0*y y_ref[1] = N @test y ≈ y_ref atol=1e-12 end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
362
using FFTA, Test, LinearAlgebra test_nums = [8, 11, 15, 16, 27, 100] @testset "backward" begin for N in test_nums x = ones(Float64, N) y = brfft(x, 2*(N-1)) y_ref = 0*y y_ref[1] = 2*(N-1) if !isapprox(y_ref, y, atol=1e-12) println(norm(y_ref - y)) end @test y_ref ≈ y atol=1e-12 end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
255
using FFTA, Test test_nums = [8, 11, 15, 16, 27, 100] @testset verbose = true " forward" begin for N in test_nums x = ones(Float64, N) y = rfft(x) y_ref = 0*y y_ref[1] = N @test y ≈ y_ref atol=1e-12 end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
242
using FFTA, Test test_nums = [8, 11, 15, 16, 27, 100] @testset "backward" begin for N in test_nums x = ones(ComplexF64, N, N) y = bfft(x) y_ref = 0*y y_ref[1] = length(x) @test y ≈ y_ref end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
241
using FFTA, Test test_nums = [8, 11, 15, 16, 27, 100] @testset " forward" begin for N in test_nums x = ones(ComplexF64, N, N) y = fft(x) y_ref = 0*y y_ref[1] = length(x) @test y ≈ y_ref end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
239
using FFTA, Test test_nums = [8] @testset "backward" begin for N in test_nums x = ones(Float64, N, N) y = brfft(x, 2(N-1)) y_ref = 0*y y_ref[1] = N*(2(N-1)) @test y_ref ≈ y atol=1e-12 end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
code
240
using FFTA, Test test_nums = [8, 11, 15, 16, 27, 100] @testset " forward" begin for N in test_nums x = ones(Float64, N, N) y = rfft(x) y_ref = 0*y y_ref[1] = length(x) @test y ≈ y_ref end end
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
docs
3317
# FFTA: Fastest Fourier Transform in my Apartment ## A library by Danny Sharp [![Github Action CI](https://github.com/dannys4/FFTA.jl/workflows/CI/badge.svg)](https://github.com/dannys4/FFTA.jl/actions) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://dannys4.github.io/FFTA.jl/stable/) [![codecov](https://codecov.io/gh/dannys4/FFTA.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/dannys4/FFTA.jl) This is a *pure Julia* implementation of FFTs, with the goal that this could supplant other FFTs for applications that require odd Julia objects. Currently this supports `AbstractArray{T,N}` where `N` in `{1,2}` (i.e. `AbstractVector` and `AbstractMatrix`). If you're looking for more performance, checkout `FFTW.jl`. Regardless of `T`, `one(::Type{T})` must be defined. Additionally, if `T<:Real`, then `convert(::Type{T}, Float64)` has to be defined. Otherwise, `convert(::Type{T},ComplexF64)` must be defined. Some ideas outside the feature requests in Issues: - Make the code more readable - Use `StaticArrays` for the workspace in small cases - Strictly generate code for certain cases - Create a SIMD type for Complex numbers - E-Graphs for the call-graph - Other performance left on the table.... Interface: - `fft(x::AbstractVector)`-- Forward FFT - `fft(x::AbstractMatrix})`-- Forward FFT - `bfft(x::AbstractVector})`-- Backward FFT (unscaled inverse FFT) - `bfft(x::AbstractMatrix})`-- Backward FFT (unscaled inverse FFT) NOTE: Currently, my C++ code is actually faster than this, so "Fastest Fourier Transform in my Apartment" is a bit of a misnomer. ## Why use this? There's a lot of FFT packages out there, no doubt. Many are great. Some, like mine, are "good enough". Many aren't so great. As far as I know, though, very few are as generic as FFTA. Does that matter? Yes. One of the main draws of Julia is the fact that a lot of functions "just work" with types from other packages. FFTA aims to abide by this philosophy. For example, have you ever wanted to generate what an FFT looks like symbolically? Well, now you can. ```julia using FFTA, Symbolics N = 16 @variables x_a[1:N]::Complex x = collect(x_a) y = simplify.(fft(x)) ``` Now, if you have a signal afterward that you want to substitute in, you can call `map(y_el -> substitute(y_el, Dict(x .=> signal)), y)`. Make no mistake-- it's almost certainly more efficient to just plug your type into `FFTA.fft` than using substitution. But this is an example of how `FFTA` integrates wonderfully and gracefully with the Julia ecosystem. If you want high precision FFTs, use `Complex{BigFloat}`. If you want to use an `SVector` from `StaticArrays` because your data is small, then use that! If you want to use `SizedArray{Complex{BigFloat}}`, be my guest. These are opportunities that won't be provided to you in almost any other package out there. As of this commit, you can do ```julia julia> import FFTA, FFTW julia> N = 64 julia> @btime FFTA.fft(x) setup=(x = @SVector rand(N)); 698.611 ns (8 allocations: 2.11 KiB) julia> @btime FFTW.fft(x) setup=(x = @SVector rand(N)); 5.433 μs (34 allocations: 4.70 KiB) ``` It's painfully obvious that this example is cherry-picked. Nonetheless, the user can finally take the speedups so much of the Julia community has worked so hard on and propogate them into the FFT.
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
docs
205
# Development Documentation Here is the documentation for key parts of the development side of the package. ```@docs CallGraphNode CallGraph CallGraphNode! fft! fft_dft! fft_pow2! fft_pow3! fft_pow4! ```
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
0.2.4
a1f6c69af58d058e5f5a21256ccc390f547042f0
docs
59
# FFTA.jl Documentation for FFTA.jl ```@docs fft bfft ```
FFTA
https://github.com/dannys4/FFTA.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
code
212
using Pkg, Revise Pkg.activate(".") using PlotlyJS, PlotlyGeometries fig = plot() fig.plot.layout = blank_layout() display(fig) add_ref_axes!(fig, [0, 0, 0], [2, 1, 1]) add_arrows!(fig, [0, 0, 0], [1, 0, 0], 1)
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
code
1029
using PlotlyJS using PlotlyGeometries # create a simple cuboid (random color) c1 = cuboids([0, 0, 0], [1, 2, 3]; opc=0.2) # translate the cube gtrans!(c1, [2, 4, 6]) # rotate cube (rotation according to axis) grot!(c1, 45, [0, 0, 1]) # create fig with PlotlyJS (use blank_layout() to easily create a blank layout) fig = plot(c1, blank_layout()) # add reference axes add_ref_axes!(fig, [0, 0, 0], 1) # show figure display(fig) # create ellipsoid e1 = ellipsoids([0, 5, 0], [3, 1, 1], "purple"; opc=0.1) # rotate ellipsoid (Tait–Bryan angles) grot!(e1, [10, 20, 30]) # add elipsoid to figure addtraces!(fig, e1) # create sphere s1 = spheres([3, -2, 0], 2, "coral"; opc=0.1) addtraces!(fig, s1) # add line l1 = lines([2, 4, 6], [0, 5, 0], "orange"; style="dash") addtraces!(fig, l1) # add arrow and text add_arrows!(fig, [2, 4, 8], [0, 0, -1], 1/4, "black") add_text!(fig, [2, 4, 8.5], "this is a cube") add_arrows!(fig, [0, 6, 2], [0, -1, -1], 1/4, "black") add_text!(fig, [0, 6, 2.5], "this is an ellipsoid")
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
code
784
using PlotlyJS using PlotlyGeometries # create two triangles pts = [] push!(pts, [0, 0, 0]) push!(pts, [0, 1, 0]) push!(pts, [1, 0, 0]) p1 = polygons(pts, "aqua"; opc=0.5) for p in pts p[3] += 1 end p2 = polygons(pts, "aqua"; opc=0.5) fig = plot([p1, p2], blank_layout()) display(fig) add_ref_axes!(fig) # create a set of rectangles pts = [] # first side push!(pts, [0, 0, 0]) push!(pts, [1, 0, 0]) push!(pts, [1, 0, 1]) push!(pts, [0, 0, 1]) # second side push!(pts, [0, 0, 0]) push!(pts, [0, 1, 0]) push!(pts, [0, 1, 1]) push!(pts, [0, 0, 1]) # third side push!(pts, [0, 1, 0]) push!(pts, [1, 0, 0]) push!(pts, [0, 1, 1]) push!(pts, [1, 0, 1]) p3 = polygons(pts, 4, "yellow"; opc=0.5) addtraces!(fig, p3) for n = 0:360 set_view!(fig, n, 90) sleep(0.1) end
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
code
303
module PlotlyGeometries using PlotlyJS using Combinatorics using LinearAlgebra using BatchAssign export cuboids, cubes, squares, ellipsoids, spheres, lines, polygons, grot!, gtrans!, sort_pts, sort_pts!, add_ref_axes!, add_arrows!, add_text!, blank_layout, set_view! include("api.jl") end
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
code
26963
""" cuboids(origin::Vector{<:Real}, dimension::Vector{<:Real}, color::String=""; opc::Real=1) Creates a 3D box mesh centered at the given origin with specified dimensions and color. # Arguments - `origin::Vector{<:Real}`: A vector of three Reals specifying the center of the box. - `dimension::Vector{<:Real}`: A vector of three Reals specifying the dimensions (width, height, depth) of the box. - `color::String`: A string specifying the color of the box. # Keywords - `opc`: (optional) A Real specifying the opacity of the box. Default is 1. """ function cuboids(origin::Vector{<:Real}, dimension::Vector{<:Real}, color::String=""; opc::Real=1) @assert length(origin) == 3 @assert length(dimension) == 3 if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end x1 = origin[1] - dimension[1] / 2 x2 = origin[1] + dimension[1] / 2 y1 = origin[2] - dimension[2] / 2 y2 = origin[2] + dimension[2] / 2 z1 = origin[3] - dimension[3] / 2 z2 = origin[3] + dimension[3] / 2 x = [x1, x1, x2, x2, x1, x1, x2, x2] y = [y1, y2, y2, y1, y1, y2, y2, y1] z = [z1, z1, z1, z1, z2, z2, z2, z2] i = [7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2] j = [3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3] k = [0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6] return mesh3d(x=x, y=y, z=z, i=i, j=j, k=k, flatshading=true, color=color, opacity=opc, lighting=attr( diffuse=0.1, specular=1.2, roughness=1.0, ), ) end """ cubes(origin::Vector{<:Real}, side::Real, color::String=""; opc::Real=1) Creates a 3D cube mesh centered at the given origin with specified dimensions and color. # Arguments - `origin::Vector{<:Real}`: A vector of three Reals specifying the center of the cube. - `side::Real`: Side length of the cube. - `color::String`: A string specifying the color of the cube. # Keywords - `opc`: (optional) A Real specifying the opacity of the cube. Default is 1. """ function cubes(origin::Vector{<:Real}, side::Real, color::String=""; opc::Real=1) @assert length(origin) == 3 @assert side > 0 return cuboids(origin, [side, side, side], color; opc=opc) end """ squares(origin::Vector{<:Real}, side::Real, color::String="", mode::String="z"; opc::Real=1) Creates a 2D square mesh centered at the given origin with the specified side length and color. # Arguments - `origin::Vector{<:Real}`: A vector of three Reals specifying the center of the square. - `side::Real`: A Real specifying the side length of the square. - `color::String`: A string specifying the color of the square. - `mode`::String: (optional) A string specifying the orientation of the square ("x", "y", or "z"). Default is "z". # Keywords - `opc`: (optional) A Real specifying the opacity of the square. Default is 1. """ function squares(origin::Vector{<:Real}, side::Real, color::String="", mode::String="z"; opc::Real=1) @assert length(origin) == 3 if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end if mode == "x" x = [origin[1], origin[1], origin[1], origin[1]] y = [origin[2] - side / 2, origin[2] + side / 2, origin[2] + side / 2, origin[2] - side / 2] z = [origin[3] - side / 2, origin[3] - side / 2, origin[3] + side / 2, origin[3] + side / 2] i = [0, 2] j = [1, 3] k = [2, 0] elseif mode == "y" x = [origin[1] - side / 2, origin[1] - side / 2, origin[1] + side / 2, origin[1] + side / 2] y = [origin[2], origin[2], origin[2], origin[2]] z = [origin[3] - side / 2, origin[3] + side / 2, origin[3] + side / 2, origin[3] - side / 2] i = [0, 2] j = [1, 3] k = [2, 0] else x = [origin[1] - side / 2, origin[1] - side / 2, origin[1] + side / 2, origin[1] + side / 2] y = [origin[2] - side / 2, origin[2] + side / 2, origin[2] + side / 2, origin[2] - side / 2] z = [origin[3], origin[3], origin[3], origin[3]] i = [0, 2] j = [1, 3] k = [2, 0] end return mesh3d(x=x, y=y, z=z, i=i, j=j, k=k, color=color, opacity=opc, lighting=attr( diffuse=0.1, specular=1.2, roughness=1.0 ), ) end """ ellipsoids(origin::Vector{<:Real}, par::Vector{<:Real}, color::String=""; opc::Real=1, tres=61, pres=31, ah::Real=0) Creates a 3D ellipsoid mesh. # Arguments - `origin::Vector{<:Real}`: The center of the ellipsoid. - `par::Vector{<:Real}`: Parameters of the ellipsoid (a, b, c). - `color::String`: The color of the ellipsoid. # Keywords - `opc`: The opacity of the ellipsoid. Default is 1. - `tres`: The resolution of the mesh grid (theta). Default is 61. - `pres`: The resolution of the mesh grid (phi). Default is 31. - `ah`: alphahull value. Default is 0. """ function ellipsoids(origin::Vector{<:Real}, par::Vector{<:Real}, color::String=""; opc::Real=1, tres=61, pres=31, ah::Real=0) @assert length(origin) == 3 @assert length(par) == 3 @assert all(par .> 0) @assert tres > 0 @assert pres > 0 if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end phi = LinRange(0, 360, pres) tht = LinRange(0, 180, tres) x = sind.(tht) .* cosd.(phi') .* par[1] .+ origin[1] y = sind.(tht) .* sind.(phi') .* par[2] .+ origin[2] z = cosd.(tht * ones(length(phi))') .* par[3] .+ origin[3] x = x[:] y = y[:] z = z[:] return mesh3d(x=x, y=y, z=z, alphahull=ah, flatshading=true, color=color, opacity=opc, lighting=attr( diffuse=0.1, specular=2.0, roughness=0.5 ), ) end """ spheres(origin::Vector{<:Real}, r::Real, color::String=""; opc::Real=1, tres=60, pres=30, ah::Real=0) Creates a 3D sphere mesh. # Arguments - `origin::Vector{<:Real}`: The center of the ellipsoid. - `r::Real`: Radius of the sphere. - `color::String`: The color of the ellipsoid. # Keywords - `opc`: The opacity of the ellipsoid. Default is 1. - `tres`: The resolution of the mesh grid (theta). Default is 60. - `pres`: The resolution of the mesh grid (phi). Default is 30. - `ah`: alphahull value. Default is 0. """ function spheres(origin::Vector{<:Real}, r::Real, color::String=""; opc::Real=1, tres=60, pres=30, ah::Real=0) @assert length(origin) == 3 @assert r > 0 if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end return ellipsoids(origin, [r, r, r], color; opc=opc, tres=tres, pres=pres, ah=ah) end """ lines(pt1::Vector{<:Real}, pt2::Vector{<:Real}, color::String; opc::Real=1, style="") Creates a 3D line between two points. # Arguments - `pt1::Vector{<:Real}`: Starting point of the line. - `pt2::Vector{<:Real}`: Ending point of the line. - `color::String`: The color of the line. # Keywords - `opc`: The opacity of the line. Default is 1. - `style`: The line style (e.g., "solid", "dash"). Default is "". """ function lines(pt1::Vector{<:Real}, pt2::Vector{<:Real}, color::String=""; opc::Real=1, style="") @assert length(pt1) == 3 @assert length(pt2) == 3 if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end x = [pt1[1], pt2[1]] y = [pt1[2], pt2[2]] z = [pt1[3], pt2[3]] return scatter3d(x=x, y=y, z=z, mode="lines", line=attr( color=color, dash=style, ), showlegend=false, flatshading=true, opacity=opc, ) end """ polygons(pts::Vector, color::String; opc::Real=1, ah::Real=0) Creates a polygon mesh from a set of points (form around the mid point of the set of points). # Arguments - `pts::::Vector`: List of points defining the polygon. - `color::String`: The color of the polygon. # Keywords - `opc`: The opacity of the polygon. Default is 1. - `ah`: alphahull value. Default is 0. """ function polygons(pts::Vector, color::String=""; opc::Real=1, ah::Real=0) @assert all(length.(pts) .== 3) if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end for vec in pts for num in vec @assert isreal(num) end end N = length(pts) pts_copy = sort_pts(pts) @all x y z = [] for i in eachindex(pts_copy) push!(x, pts_copy[i][1]) push!(y, pts_copy[i][2]) push!(z, pts_copy[i][3]) end mid = zeros(3) for n in eachindex(pts_copy) for m in 1:3 mid[m] += pts_copy[n][m] end end mid .= mid ./ N push!(x, mid[1]) push!(y, mid[2]) push!(z, mid[3]) a = 0:1:length(pts) i = [] j = [] k = [] for n = 0:length(a)-2 push!(i, a[mod(n + 0, length(a) - 1)+1]) push!(j, a[mod(n + 1, length(a) - 1)+1]) push!(k, a[end]) end return mesh3d(x=x, y=y, z=z, i=i, j=j, k=k, alphahull=ah, color=color, opacity=opc, lighting=attr( diffuse=0.1, specular=1.2, roughness=1.0 ), ) end """ polygons(pts::Vector, ng::Int, color::String; opc::Real=1, ah::Real=0) Creates a group of polygons from a set of points and a specified number of vertices per polygon. # Arguments - `pts::Vector`: List of points defining the mesh. - `ng::Int`: Number of vertices per polygon. - `color::String`: The color of the mesh. # Keywords - `opc`: The opacity of the mesh. Default is 1. - `ah`: alphahull value. """ function polygons(pts::Vector, ng::Int, color::String=""; opc::Real=1, ah::Real=0) @assert all(length.(pts) .== 3) if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end for vec in pts for num in vec @assert isreal(num) end end @assert ng > 0 N = length(pts) @all x y z i j k = [] Ng = floor(Int, N / ng) for p = 1:Ng ptsg = [] for m = 1:ng push!(ptsg, pts[(p-1)*ng+m]) end sort_pts!(ptsg) for i in eachindex(ptsg) push!(x, ptsg[i][1]) push!(y, ptsg[i][2]) push!(z, ptsg[i][3]) end mid = zeros(3) for n in eachindex(ptsg) for m in 1:3 mid[m] += ptsg[n][m] end end mid .= mid ./ ng push!(x, mid[1]) push!(y, mid[2]) push!(z, mid[3]) a = 0:1:length(ptsg) for n = 0:length(a)-2 push!(i, a[mod(n + 0, length(a) - 1)+1] + (p - 1) * (ng + 1)) push!(j, a[mod(n + 1, length(a) - 1)+1] + (p - 1) * (ng + 1)) push!(k, a[end] + (p - 1) * (ng + 1)) end end return mesh3d(x=x, y=y, z=z, i=i, j=j, k=k, alphahull=ah, color=color, opacity=opc, lighting=attr( diffuse=0.1, specular=1.2, roughness=1.0 ), ) end """ gtrans!(geo::GenericTrace, dis::Vector{<:Real}) Translates a 3D geometry by a specified displacement vector. # Arguments - `geo::GenericTrace`: The geometry to translate. - `dis::Vector{<:Real}`: A vector of three Reals specifying the translation distances for the x, y, and z axes. """ function gtrans!(geo::GenericTrace, dis::Vector{<:Real}) @inbounds for n in eachindex(geo.x) geo.x[n] += dis[1] geo.y[n] += dis[2] geo.z[n] += dis[3] end end """ grot!(geo::GenericTrace, rotang::Vector{<:Real}, center::Vector{<:Real}=[0]) Rotates a 3D geometry around a specified center point. (Tait–Bryan rotation) # Arguments - `geo::GenericTrace`: The 3D geometry to be rotated, which must have `x`, `y`, and `z` coordinates. - `rotang::Vector{<:Real}`: A vector of three Tait–Bryan rotation angles in degrees for rotations around the x, y, and z axes respectively. - `center::Vector{<:Real}`: The center point of rotation. Default is `[0]`, which means the rotation center will be set at the geometric center of the object. """ function grot!(geo::GenericTrace, rotang::Vector{<:Real}, center::Vector{<:Real}=[0]) @assert length(rotang) == 3 alpha = rotang[1] beta = rotang[2] gama = rotang[3] Rx = [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)] Ry = [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)] Rz = [cosd(gama) -sind(gama) 0; sind(gama) cosd(gama) 0; 0 0 1] R = Rz * Ry * Rx pos = [] for n in eachindex(geo.x) push!(pos, [geo.x[n], geo.y[n], geo.z[n]]) end if center == [0] # rotation center set at the geometry center center = sum(pos) ./ length(pos) else @assert length(center) == 3 end @inbounds for n in eachindex(geo.x) vec = R * (pos[n] - center) geo.x[n] = vec[1] + center[1] geo.y[n] = vec[2] + center[2] geo.z[n] = vec[3] + center[3] end end """ grot!(geo::GenericTrace, ang::Real, axis::Vector{<:Real}, origin::Vector{<:Real}=[0]) Rotates the geometry by the specified angle `ang` around the axis `axis` and origin `origin`. # Arguments - `geo::GenericTrace`: The geometry to be rotated. - `ang::Real`: The rotation angle. - `axis::Vector{<:Real}`: The rotation axis. - `origin::Vector{<:Real}=[0]`: The rotation origin. Defaults to the center of the geometry if not specified. """ function grot!(geo::GenericTrace, ang::Real, axis::Vector{<:Real}, origin::Vector{<:Real}=[0]) @assert length(axis) == 3 pos = [] for n in eachindex(geo.x) push!(pos, [geo.x[n], geo.y[n], geo.z[n]]) end axis_norm = axis ./ norm(axis) vrot = similar(pos) if origin == [0] # rotation center set at the geometry center origin = sum(pos) ./ length(pos) else @assert length(origin) == 3 end v = similar(origin) for n in eachindex(vrot) v .= (pos[n] .- origin) vrot[n] = cosd(ang) * v + sind(ang) * cross(axis_norm, v) + (1 - cosd(ang)) * dot(axis_norm, v) * axis_norm pos[n] = vrot[n] .+ origin end geo.x = getindex.(pos, 1) geo.y = getindex.(pos, 2) geo.z = getindex.(pos, 3) end """ sort_pts(pts::Vector) Sorts points in place based on their angular position relative to the centroid. # Arguments - `pts::Vector`: List of points to be sorted. """ function sort_pts(pts::Vector) @assert all(length.(pts) .== 3) N = length(pts) ang = zeros(length(pts)) mid = zeros(3) for n in eachindex(pts) for m in 1:3 mid[m] += pts[n][m] end end mid .= mid ./ N c = collect(combinations(1:N, 3)) thtr = 0 phir = 0 vec = similar(mid) for n in eachindex(c) vec .= cross(pts[c[n][2]] .- pts[c[n][1]], pts[c[n][3]] .- pts[c[n][1]]) if norm(vec) == 0 continue else vec .= vec ./ norm(vec) thtr = acosd(vec[3]) phir = atand(vec[2], vec[1]) break end end Ry = [ cosd(thtr) 0 -sind(thtr); 0 1 0; sind(thtr) 0 cosd(thtr) ] Rz = [ cosd(phir) sind(phir) 0; -sind(phir) cosd(phir) 0; 0 0 1 ] R = Ry * Rz pts_rot = similar(pts) mid_rot = R * mid for n in eachindex(pts) pts_rot[n] = R * pts[n] ang[n] = atan(pts_rot[n][2] - mid_rot[2], pts_rot[n][1] - mid_rot[1]) end pts_rot .= pts[sortperm(ang)] return pts_rot end """ sort_pts!(pts::Vector) Sorts points in place based on their angular position relative to the centroid. # Arguments - `pts::Vector`: List of points to be sorted. """ function sort_pts!(pts::Vector) @assert all(length.(pts) .== 3) N = length(pts) ang = zeros(length(pts)) mid = zeros(3) for n in eachindex(pts) for m in 1:3 mid[m] += pts[n][m] end end mid .= mid ./ N c = collect(combinations(1:N, 3)) thtr = 0 phir = 0 vec = similar(mid) for n in eachindex(c) vec .= cross(pts[c[n][2]] .- pts[c[n][1]], pts[c[n][3]] .- pts[c[n][1]]) if norm(vec) == 0 continue else vec .= vec ./ norm(vec) thtr = acosd(vec[3]) phir = atand(vec[2], vec[1]) break end end Ry = [ cosd(thtr) 0 -sind(thtr); 0 1 0; sind(thtr) 0 cosd(thtr) ] Rz = [ cosd(phir) sind(phir) 0; -sind(phir) cosd(phir) 0; 0 0 1 ] R = Ry * Rz pts_rot = similar(pts) mid_rot = R * mid for n in eachindex(pts) pts_rot[n] = R * pts[n] ang[n] = atan(pts_rot[n][2] - mid_rot[2], pts_rot[n][1] - mid_rot[1]) end pts .= pts[sortperm(ang)] return nothing end """ add_ref_axes!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}=[0, 0, 0], r::Real=1) Adds reference axes (x, y, z) to a plot. # Arguments - `plt::PlotlyJS.SyncPlot`: The plot to which the axes will be added. - `origin::Vector{<:Real}`: The origin point of the axes. - `r::Real`: The length of the reference axes. """ function add_ref_axes!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}=[0, 0, 0], r::Real=1) @assert length(origin) == 3 @assert r > 0 cx = cone(x=[r + origin[1]], y=[origin[2]], z=[origin[3]], u=[r / 10], v=[0], w=[0], colorscale=[[0, "red"], [1, "red"]], showscale=false) cy = cone(x=[origin[1]], y=[r + origin[2]], z=[origin[3]], u=[0], v=[r / 10], w=[0], colorscale=[[0, "green"], [1, "green"]], showscale=false) cz = cone(x=[origin[1]], y=[origin[2]], z=[r + origin[3]], u=[0], v=[0], w=[r / 10], colorscale=[[0, "blue"], [1, "blue"]], showscale=false) lx = scatter3d(x=[origin[1], r + origin[1]], y=[origin[2], origin[2]], z=[origin[3], origin[3]], line=attr(color="red"), mode="lines", showlegend=false) ly = scatter3d(x=[origin[1], origin[1]], y=[origin[2], r + origin[2]], z=[origin[3], origin[3]], line=attr(color="green"), mode="lines", showlegend=false) lz = scatter3d(x=[origin[1], origin[1]], y=[origin[2], origin[2]], z=[origin[3], r + origin[3]], line=attr(color="blue"), mode="lines", showlegend=false) addtraces!(plt, cx) addtraces!(plt, cy) addtraces!(plt, cz) addtraces!(plt, lx) addtraces!(plt, ly) addtraces!(plt, lz) relayout!(plt, scene=attr( annotations=[ attr( showarrow=false, x=origin[1] + 1.1 * r, y=origin[2], z=origin[3], text="x", font=attr(color="red") ), attr( showarrow=false, x=origin[1], y=origin[2] + 1.1 * r, z=origin[3], text="y", font=attr(color="green") ), attr( showarrow=false, x=origin[1], y=origin[2], z=origin[3] + 1.1 * r, text="z", font=attr(color="blue") ), ] )) return nothing end """ add_ref_axes!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, r::Vector{<:Real}) Adds reference axes (x, y, z) to a plot. # Arguments - `plt::PlotlyJS.SyncPlot`: The plot to which the axes will be added. - `origin::Vector{<:Real}`: The origin point of the axes. - `r::Vector{<:Real}`: The lengths of the reference axes. """ function add_ref_axes!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, r::Vector{<:Real}) @assert length(origin) == 3 @assert length(r) == 3 @assert all(r .> 0) csize = minimum([r[1] / 10, r[2] / 10, r[3] / 10]) cx = cone(x=[r[1] + origin[1]], y=[origin[2]], z=[origin[3]], u=[csize], v=[0], w=[0], colorscale=[[0, "red"], [1, "red"]], showscale=false) cy = cone(x=[origin[1]], y=[r[2] + origin[2]], z=[origin[3]], u=[0], v=[csize], w=[0], colorscale=[[0, "green"], [1, "green"]], showscale=false) cz = cone(x=[origin[1]], y=[origin[2]], z=[r[3] + origin[3]], u=[0], v=[0], w=[csize], colorscale=[[0, "blue"], [1, "blue"]], showscale=false) lx = scatter3d(x=[origin[1], r[1] + origin[1]], y=[origin[2], origin[2]], z=[origin[3], origin[3]], line=attr(color="red"), mode="lines", showlegend=false) ly = scatter3d(x=[origin[1], origin[1]], y=[origin[2], r[2] + origin[2]], z=[origin[3], origin[3]], line=attr(color="green"), mode="lines", showlegend=false) lz = scatter3d(x=[origin[1], origin[1]], y=[origin[2], origin[2]], z=[origin[3], r[3] + origin[3]], line=attr(color="blue"), mode="lines", showlegend=false) addtraces!(plt, cx) addtraces!(plt, cy) addtraces!(plt, cz) addtraces!(plt, lx) addtraces!(plt, ly) addtraces!(plt, lz) relayout!(plt, scene=attr( annotations=[ attr( showarrow=false, x=origin[1] + 1.1 * r[1], y=origin[2], z=origin[3], text="x", font=attr(color="red") ), attr( showarrow=false, x=origin[1], y=origin[2] + 1.1 * r[2], z=origin[3], text="y", font=attr(color="green") ), attr( showarrow=false, x=origin[1], y=origin[2], z=origin[3] + 1.1 * r[3], text="z", font=attr(color="blue") ), ] )) return nothing end """ add_arrows!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, dir::Vector{<:Real}, len::Real=1.0, color::String=""; opc::Real=1, endpoint::Bool=true, asize::Real=len) Creates a 3D arrow starting from a point and pointing in a given direction. # Arguments - `plt::PlotlyJS.SyncPlot`: The plot to which the axes will be added. - `origin::Vector{<:Real}`: The starting point of the arrow. - `dir::Vector{<:Real}`: The direction vector of the arrow. - `len::Real`: length of the arrow - `color::String`: The color of the arrow. # Keywords - `opc`: The opacity of the arrow. Default is 1. - `asize` Size factor of the arrow cone. Default is `len`. """ function add_arrows!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, dir::Vector{<:Real}, len::Real=1.0, color::String=""; opc::Real=1, endpoint::Bool=true, asize::Real=len) @assert length(origin) == 3 @assert length(dir) == 3 @assert len > 0 @assert asize > 0 if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end dir_norm = dir / norm(dir) * len if endpoint == true c = cone(x=[origin[1] + dir_norm[1]], y=[origin[2] + dir_norm[2]], z=[origin[3] + dir_norm[3]], u=[dir_norm[1]/len*asize], v=[dir_norm[2]]/len*asize, w=[dir_norm[3]/len*asize], colorscale=[[0, color], [1, color]], opacity=opc, showscale=false) l = scatter3d(x=[origin[1], origin[1] + dir_norm[1]], y=[origin[2], origin[2] + dir_norm[2]], z=[origin[3], origin[3] + dir_norm[3]], line=attr(color=color, width=2 *dir_norm), mode="lines", opacity=opc, showlegend=false) else # origin at center c = cone(x=[origin[1] + dir_norm[1] / 2], y=[origin[2] + dir_norm[2] / 2], z=[origin[3] + dir_norm[3] / 2], u=[dir_norm[1]/len*asize], v=[dir_norm[2]/len*asize], w=[dir_norm[3]/len*asize], colorscale=[[0, color], [1, color]], opacity=opc, showscale=false) l = scatter3d(x=[origin[1] - dir_norm[1] / 2, origin[1] + dir_norm[1] / 2], y=[origin[2] - dir_norm[2] / 2, origin[2] + dir_norm[2] / 2], z=[origin[3] - dir_norm[3] / 2, origin[3] + dir_norm[3] / 2], line=attr(color=color, width=2 * dir_norm), mode="lines", opacity=opc, showlegend=false) end addtraces!(plt, c) addtraces!(plt, l) return nothing end """ add_text!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, text::String, color::String="") Add text to plot. # Arguments - plt::PlotlyJS.SyncPlot: Plot to add text. - origin::Vector{<:Real}: origin of the text. - text::String:: text to be added. - color::String=: color of the text. """ function add_text!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, text::String, color::String="") if color == "" @all r g b = round(Int, rand() * 255) color = "rgb($r, $g, $b)" end addtraces!(plt, scatter3d(x=[origin[1]], y=[origin[2]], z=[origin[3]], mode="text", text=[text], textposition="middle center", textfont=attr( color=color, ), showlegend=false, )) return nothing end """ blank_layout() Return blank layout. """ function blank_layout() layout = Layout( scene=attr( xaxis=attr( visible=false, showgrid=false ), yaxis=attr( visible=false, showgrid=false ), zaxis=attr( visible=false, showgrid=false ), aspectmode="data", ), ) return layout end """ set_view!(plt::PlotlyJS.SyncPlot, az::Real, el::Real, r::Real=1) Set az/el (deg) view of the plot. # Arguments - plt::PlotlyJS.SyncPlot: plot to be modified. - az::Real: az value. - el::Real: el value. - r::Real=1: distance. """ function set_view!(plt::PlotlyJS.SyncPlot, az::Real, el::Real, r::Real=1.25 * sqrt(3)) if el == 90 el -= 0.01 elseif el == -90 el += 0.01 end x = r * cosd(el) * cosd(az) y = r * cosd(el) * sind(az) z = r * sind(el) plt.plot.layout.scene_camera = attr(eye=attr(x=1.25, y=1.25, z=1.25)) plt.plot.layout.scene_camera[:eye][:x] = x plt.plot.layout.scene_camera[:eye][:y] = y plt.plot.layout.scene_camera[:eye][:z] = z react!(plt, plt.plot.data, plt.plot.layout) return nothing end
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
code
120
using PlotlyGeometries using PlotlyJS using Test @testset "PlotlyGeometries.jl" begin # Write your tests here. end
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
docs
1292
# PlotlyGeometries.jl [![Build Status](https://github.com/akjake616/PlotlyGeometries.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/akjake616/PlotlyGeometries.jl/actions/workflows/CI.yml) `PlotlyGeometries.jl` is a Julia package designed for creating and manipulating 3D geometrical shapes and visualizations using [`PlotlyJS.jl`](https://github.com/JuliaPlots/PlotlyJS.jl). This package provides a variety of functions to easily generate and customize 3D shapes like boxes, spheres, ellipsoids, lines, and arrows, as well as utility functions for transformations and visual enhancements.I hope this package will be useful for those trying to create better illustrations for their academic research using Julia :wink: <p align="center"> <img alt="PlotlyGeometries.jl" src="./media/illus.gif" width="50%" height="auto" /> </p> ## Installation To install `PlotlyGeometries.jl`, use the following command in the Julia REPL: ```julia using Pkg Pkg.add("PlotlyGeometries") ``` ## Learn by Examples Please refer to the examples to get familiar with some basic usages: - `ex_basics.jl`: Some basic geometry creation/transformation stuff. - `ex_polygons.jl`: Use polygons to build geometries. ## Usage Please refer to the [user manual](./docs/MANUAL.md) in the docs folder.
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
2.2.1
139a0771a670243a80e7903d04f620dd14cc8377
docs
8492
# Manual for PlotlyGeometries.jl ## Overview This manual contains the API provided by `PlotlyGeometries.jl`. Outputs of the functionalities are mostly traces to be added on Plotly plots. In order to use this module, `PlotlyJS.jl` should be installed first. ## API ### Geometry Creation #### cuboids ```julia cuboids(origin::Vector{<:Real}, dimension::Vector{<:Real}, color::String=""; opc::Real=1) ``` Creates a 3D box mesh centered at the given origin with specified dimensions and color. ##### Arguments - `origin::Vector{<:Real}`: A vector of three Reals specifying the center of the box. - `dimension::Vector{<:Real}`: A vector of three Reals specifying the dimensions (width, height, depth) of the box. - `color::String`: A string specifying the color of the box. ##### Keywords - `opc`: (optional) A Real specifying the opacity of the box. Default is 1. #### cubes ```julia cubes(origin::Vector{<:Real}, side::Real, color::String=""; opc::Real=1) ``` Creates a 3D cube mesh centered at the given origin with specified dimensions and color. ##### Arguments - `origin::Vector{<:Real}`: A vector of three Reals specifying the center of the cube. - `side::Real`: Side length of the cube. - `color::String`: A string specifying the color of the cube. ##### Keywords - `opc`: (optional) A Real specifying the opacity of the cube. Default is 1. ___ #### squares ```julia squares(origin::Vector{<:Real}, side::Real, color::String="", mode::String="z"; opc::Real=1) ``` Creates a 2D square mesh centered at the given origin with the specified side length and color. ##### Arguments - `origin::Vector{<:Real}`: A vector of three Reals specifying the center of the square. - `side::Real`: A Real specifying the side length of the square. - `color::String`: A string specifying the color of the square. - `mode`::String: (optional) A string specifying the orientation of the square ("x", "y", or "z"). Default is "z". ##### Keywords - `opc`: (optional) A Real specifying the opacity of the square. Default is 1. ___ #### ellipsoids ```julia ellipsoids(origin::Vector{<:Real}, par::Vector{<:Real}, color::String=""; opc::Real=1, tres=61, pres=31, ah::Real=0) ``` Creates a 3D ellipsoid mesh. ##### Arguments - `origin::Vector{<:Real}`: The center of the ellipsoid. - `par::Vector{<:Real}`: Parameters of the ellipsoid (a, b, c). - `color::String`: The color of the ellipsoid. ##### Keywords - `opc`: The opacity of the ellipsoid. Default is 1. - `tres`: The resolution of the mesh grid (theta). Default is 61. - `pres`: The resolution of the mesh grid (phi). Default is 31. - `ah`: alphahull value. Default is 0. ___ #### spheres ```julia spheres(origin::Vector{<:Real}, r::Real, color::String=""; opc::Real=1, tres=60, pres=30, ah::Real=0) ``` Creates a 3D sphere mesh. ##### Arguments - `origin::Vector{<:Real}`: The center of the ellipsoid. - `r::Real`: Radius of the sphere. - `color::String`: The color of the ellipsoid. ##### Keywords - `opc`: The opacity of the ellipsoid. Default is 1. - `tres`: The resolution of the mesh grid (theta). Default is 60. - `pres`: The resolution of the mesh grid (phi). Default is 30. - `ah`: alphahull value. Default is 0. ___ #### lines ```julia lines(pt1::Vector{<:Real}, pt2::Vector{<:Real}, color::String; opc::Real=1, style="") ``` Creates a 3D line between two points. ##### Arguments - `pt1::Vector{<:Real}`: Starting point of the line. - `pt2::Vector{<:Real}`: Ending point of the line. - `color::String`: The color of the line. ##### Keywords - `opc`: The opacity of the line. Default is 1. - `style`: The line style (e.g., "solid", "dash"). Default is "". ___ #### polygons ```julia polygons(pts::Vector, color::String; opc::Real=1, ah::Real=0) ``` Creates a polygon mesh from a set of points (form around the mid point of the set of points). ##### Arguments - `pts::::Vector`: List of points defining the polygon. - `color::String`: The color of the polygon. ##### Keywords - `opc`: The opacity of the polygon. Default is 1. - `ah`: alphahull value. Default is 0. ```julia polygons(pts::Vector, ng::Int, color::String; opc::Real=1, ah::Real=0) ``` Creates a group of polygons from a set of points and a specified number of vertices per polygon. ##### Arguments - `pts::Vector`: List of points defining the mesh. - `ng::Int`: Number of vertices per polygon. - `color::String`: The color of the mesh. ##### Keywords - `opc`: The opacity of the mesh. Default is 1. - `ah`: alphahull value. ___ ### Geometry Manipulation #### translation ```julia gtrans!(geo::GenericTrace, dis::Vector{<:Real}) ``` Translates a 3D geometry by a specified displacement vector. ##### Arguments - `geo::GenericTrace`: The geometry to translate. - `dis::Vector{<:Real}`: A vector of three Reals specifying the translation distances for the x, y, and z axes. ___ #### rotation (according to Tait–Bryan angle) ```julia grot!(geo::GenericTrace, rotang::Vector{<:Real}, center::Vector{<:Real}=[0]) ``` Rotates a 3D geometry around a specified center point. (Tait–Bryan rotation) ##### Arguments - `geo::GenericTrace`: The 3D geometry to be rotated, which must have `x`, `y`, and `z` coordinates. - `rotang::Vector{<:Real}`: A vector of three Tait–Bryan rotation angles in degrees for rotations around the x, y, and z axes respectively. - `center::Vector{<:Real}`: The center point of rotation. Default is `[0]`, which means the rotation center will be set at the geometric center of the object. ___ #### rotation (according to axis) ```julia grot!(geo::GenericTrace, ang::Real, axis::Vector{<:Real}, origin::Vector{<:Real}=[0]) ``` Rotates the geometry by the specified angle `ang` around the axis `axis` and origin `origin`. ##### Arguments - `geo::GenericTrace`: The geometry to be rotated. - `ang::Real`: The rotation angle. - `axis::Vector{<:Real}`: The rotation axis. - `origin::Vector{<:Real}=[0]`: The rotation origin. Defaults to the center of the geometry if not specified. ___ ### Additional Features #### sort points ```julia sort_pts(pts::Vector) ``` Sorts points based on their angular position relative to the centroid. ##### Arguments - `pts::Vector`: List of points to be sorted. ___ #### inplace sort points ```julia sort_pts!(pts::Vector) ``` Sorts points in place based on their angular position relative to the centroid. ##### Arguments - `pts::Vector`: List of points to be sorted. ___ #### add reference axis ```julia add_ref_axes!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}=[0, 0, 0], r::Real=1) ``` Adds reference axes (x, y, z) to a plot. ##### Arguments - `plt::PlotlyJS.SyncPlot`: The plot to which the axes will be added. - `origin::Vector{<:Real}`: The origin point of the axes. - `r::Real`: The length of the reference axes. ___ ```julia add_ref_axes!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, r::Vector{<:Real}) ``` Adds reference axes (x, y, z) to a plot. ##### Arguments - `plt::PlotlyJS.SyncPlot`: The plot to which the axes will be added. - `origin::Vector{<:Real}`: The origin point of the axes. - `r::Vector{<:Real}`: The lengths of the reference axes. ___ #### add arrows ```julia add_arrows!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, dir::Vector{<:Real}, len::Real=1.0, color::String=""; opc::Real=1, endpoint::Bool=true, asize::Real=len) ``` Creates a 3D arrow starting from a point and pointing in a given direction. ##### Arguments - `plt::PlotlyJS.SyncPlot`: The plot to which the axes will be added. - `origin::Vector{<:Real}`: The starting point of the arrow. - `dir::Vector{<:Real}`: The direction vector of the arrow. - `len::Real`: length of the arrow - `color::String`: The color of the arrow. ##### Keywords - `opc`: The opacity of the arrow. Default is 1. - `asize` Size factor of the arrow cone. Default is `len`. ___ #### add texts ```julia add_text!(plt::PlotlyJS.SyncPlot, origin::Vector{<:Real}, text::String, color::String="") ``` Add text to plot. ##### Arguments - plt::PlotlyJS.SyncPlot: Plot to add text. - origin::Vector{<:Real}: origin of the text. - text::String:: text to be added. - color::String=: color of the text. ___ #### blank layout ```julia blank_layout() ``` Return blank layout for easy use. ___ #### set view angle ```julia set_view!(plt::PlotlyJS.SyncPlot, az::Real, el::Real, r::Real=1.25 * sqrt(3)) ``` Set az/el (deg) view of the plot. ##### Arguments - plt::PlotlyJS.SyncPlot: plot to be modified. - az::Real: az value. - el::Real: el value. - r::Real=1: distance. ___
PlotlyGeometries
https://github.com/akjake616/PlotlyGeometries.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
699
using GraphSignals using Documenter makedocs(; modules=[GraphSignals], authors="Yueh-Hua Tu", repo="https://github.com/yuehhua/GraphSignals.jl/blob/{commit}{path}#L{line}", sitename="GraphSignals.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://yuehhua.github.io/GraphSignals.jl/stable", assets=String[], ), pages=[ "Home" => "index.md", "Manual" => [ "FeaturedGraph" => "manual/featuredgraph.md", "Sparse graph strucutre" => "manual/sparsegraph.md" ] ], ) deploydocs(repo="github.com/yuehhua/GraphSignals.jl")
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
195
module GraphSignalsCUDAExt using SparseArrays using CUDA, CUDA.CUSPARSE using GraphSignals include("linalg.jl") include("sparsematrix.jl") include("sparsegraph.jl") include("random.jl") end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
667
function GraphSignals.adjacency_matrix(adj::CuSparseMatrixCSC{T}, ::Type{S}) where {T,S} GraphSignals._dim_check(adj) return CuMatrix{S}(collect(adj)) end function GraphSignals.adjacency_matrix(adj::CuSparseMatrixCSC) GraphSignals._dim_check(adj) return CuMatrix(adj) end function GraphSignals.adjacency_matrix(adj::CuMatrix{T}, ::Type{S}) where {T,S} GraphSignals._dim_check(adj) return CuMatrix{S}(adj) end function GraphSignals.adjacency_matrix(adj::CuMatrix) GraphSignals._dim_check(adj) return adj end degrees(adj::CuSparseMatrixCSC, ::Type{T}=eltype(adj); dir::Symbol=:out) where {T} = degrees(CuMatrix{T}(adj); dir=dir)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
359
GraphSignals.random_walk(sg::GraphSignals.SparseGraph{B,T}, start::Int, n::Int=1) where {B,T<:CuSparseMatrixCSC} = random_walk(collect(sg.S), start, n) GraphSignals.neighbor_sample(sg::GraphSignals.SparseGraph{B,T}, start::Int, n::Int=1; replace::Bool=false) where {B,T<:CuSparseMatrixCSC} = neighbor_sample(collect(sg.S), start, n; replace=replace)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
385
function GraphSignals.SparseGraph(A::CuSparseMatrixCSC{Tv}, edges::AnyCuVector{Ti}, directed::Bool) where {Tv,Ti} E = maximum(edges) return SparseGraph{directed,typeof(A),typeof(edges),typeof(E)}(A, edges, E) end GraphSignals.SparseGraph(A::CuSparseMatrixCSC, directed::Bool, ::Type{T}=eltype(A)) where {T} = SparseGraph(A, order_edges(A, directed=directed), directed, T)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1570
sparsecsc(A::AnyCuMatrix) = CuSparseMatrixCSC(A) SparseArrays.rowvals(S::CuSparseMatrixCSC, col::Integer) = rowvals(S)[SparseArrays.getcolptr(S, col)] SparseArrays.rowvals(S::CuSparseMatrixCSC, I::UnitRange) = rowvals(S)[SparseArrays.getcolptr(S, I)] GraphSignals.rowvalview(S::CuSparseMatrixCSC, col::Integer) = view(rowvals(S), SparseArrays.getcolptr(S, col)) GraphSignals.rowvalview(S::CuSparseMatrixCSC, I::UnitRange) = view(rowvals(S), SparseArrays.getcolptr(S, I)) # TODO: @allowscalar should be removed. SparseArrays.getcolptr(S::CuSparseMatrixCSC, col::Integer) = CUDA.@allowscalar S.colPtr[col]:(S.colPtr[col+1]-1) SparseArrays.nonzeros(S::CuSparseMatrixCSC, col::Integer) = GraphSignals._nonzeros(S, col) SparseArrays.nonzeros(S::CuSparseMatrixCSC, I::UnitRange) = GraphSignals._nonzeros(S, I) SparseArrays.nzvalview(S::CuSparseMatrixCSC, col::Integer) = _nzvalview(S, col) SparseArrays.nzvalview(S::CuSparseMatrixCSC, I::UnitRange) = _nzvalview(S, I) GraphSignals.colvals(S::CuSparseMatrixCSC; upper_traingle::Bool=false) = GraphSignals.colvals(S, size(S, 2); upper_traingle=upper_traingle) GraphSignals.colvals(S::CuSparseMatrixCSC, n::Int; upper_traingle::Bool=false) = GraphSignals._colvals(S, n; upper_traingle=upper_traingle) GraphSignals.get_csc_index(S::CuSparseMatrixCSC, i::Integer, j::Integer) = _get_csc_index(S, i, j) GraphSignals.order_edges(S::CuSparseMatrixCSC; directed::Bool=false) = _order_edges(S; directed=directed) GraphSignals.order_edges!(edges, S::CuSparseMatrixCSC, ::Val{false}) = _order_edges!(edges, S, Val(false))
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
2648
module GraphSignals using LinearAlgebra using SparseArrays using ChainRulesCore using ChainRulesCore: @non_differentiable using Distances using FillArrays using Functors: @functor using Graphs, SimpleWeightedGraphs using Graphs: AbstractGraph, AbstractSimpleGraph using MLUtils using SimpleWeightedGraphs: AbstractSimpleWeightedGraph using StatsBase using NNlib using NearestNeighbors import Graphs: adjacency_matrix, laplacian_matrix @static if !isdefined(Base, :get_extension) using Requires function __init__() @require CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" include("../ext/GraphSignalsCUDAExt.jl") end end export # featuredgraph AbstractFeaturedGraph, NullGraph, FeaturedGraph, ConcreteFeaturedGraph, graph, matrixtype, node_feature, edge_feature, global_feature, has_graph, has_node_feature, has_edge_feature, has_global_feature, # graph adjacency_list, # sparsegraph AbstractSparseGraph, SparseGraph, SparseSubgraph, incident_edges, edge_index, # graphdomains positional_feature, has_positional_feature, # linalg laplacian_matrix, normalized_laplacian, scaled_laplacian, laplacian_matrix!, normalized_laplacian!, scaled_laplacian!, # subgraph FeaturedSubgraph, subgraph, mask, # random random_walk, neighbor_sample, # neighbor_graphs kneighbors_graph, # tokenizer node_identifier, identifiers include("positional.jl") include("graph.jl") include("linalg.jl") include("sparsematrix.jl") include("sparsegraph.jl") include("graphdomain.jl") include("graphsignal.jl") include("featuredgraph.jl") include("neighbor_graphs.jl") include("subgraph.jl") include("random.jl") include("dataloader.jl") include("tokenizer.jl") # Non-differentiables @non_differentiable nv(x...) @non_differentiable ne(x...) @non_differentiable GraphSignals.to_namedtuple(x...) @non_differentiable adjacency_list(x...) @non_differentiable GraphSignals.adjacency_matrix(x...) @non_differentiable is_directed(x...) @non_differentiable has_graph(x...) @non_differentiable has_node_feature(x...) @non_differentiable has_edge_feature(x...) @non_differentiable has_global_feature(x...) @non_differentiable SparseGraph(x...) @non_differentiable neighbors(x...) @non_differentiable incident_edges(x...) @non_differentiable order_edges(x...) @non_differentiable aggregate_index(x...) @non_differentiable kneighbors_graph(x...) @non_differentiable GraphSignals.orthogonal_random_features(x...) @non_differentiable GraphSignals.laplacian_matrix(x...) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1491
function MLUtils.numobs(fg::AbstractFeaturedGraph) obs_size = 0 if has_node_feature(fg) nf_obs_size = numobs(node_feature(fg)) obs_size = check_obs_size(obs_size, nf_obs_size, "node features") end if has_edge_feature(fg) ef_obs_size = numobs(edge_feature(fg)) obs_size = check_obs_size(obs_size, ef_obs_size, "edge features") end if has_global_feature(fg) gf_obs_size = numobs(global_feature(fg)) obs_size = check_obs_size(obs_size, gf_obs_size, "global features") end if has_positional_feature(fg) pf_obs_size = numobs(positional_feature(fg)) obs_size = check_obs_size(obs_size, pf_obs_size, "positional features") end return obs_size end function check_obs_size(obs_size, feat_obs_size, feat::String) if obs_size != 0 msg = "inconsistent number of observation between $feat ($feat_obs_size) and others ($obs_size)" @assert obs_size == feat_obs_size msg end return feat_obs_size end function MLUtils.getobs(fg::AbstractFeaturedGraph, idx) nf = has_node_feature(fg) ? getobs(node_feature(fg), idx) : node_feature(fg) ef = has_edge_feature(fg) ? getobs(edge_feature(fg), idx) : edge_feature(fg) gf = has_global_feature(fg) ? getobs(global_feature(fg), idx) : global_feature(fg) pf = has_positional_feature(fg) ? getobs(positional_feature(fg), idx) : positional_feature(fg) return ConcreteFeaturedGraph(fg, nf=nf, ef=ef, gf=gf, pf=pf) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
13037
const MATRIX_TYPES = [:adjm, :normedadjm, :laplacian, :normalized, :scaled] const DIRECTEDS = [:auto, :directed, :undirected] _string(s::Symbol) = ":$(s)" abstract type AbstractFeaturedGraph end """ FeaturedGraph(g, [mt]; directed=:auto, nf, ef, gf, pf=nothing, T, N, E, with_batch=false) A type representing a graph structure and storing also arrays that contain features associated to nodes, edges, and the whole graph. A `FeaturedGraph` can be constructed out of different objects `g` representing the connections inside the graph. When constructed from another featured graph `fg`, the internal graph representation is preserved and shared. # Arguments - `g`: Data representing the graph topology. Possible type are - An adjacency matrix. - An adjacency list. - A Graphs' graph, i.e. `SimpleGraph`, `SimpleDiGraph` from Graphs, or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` from SimpleWeightedGraphs. - An `AbstractFeaturedGraph` object. - `mt::Symbol`: Matrix type for `g` in matrix form. if `graph` is in matrix form, `mt` is recorded as one of `:adjm`, `:normedadjm`, `:laplacian`, `:normalized` or `:scaled`. - `directed`: It specify that direction of a graph. It can be `:auto`, `:directed` and `:undirected`. Default value is `:auto`, which infers direction automatically. - `nf`: Node features. - `ef`: Edge features. - `gf`: Global features. - `pf`: Positional features. If `nothing` is given, positional encoding is turned off. If an array is given, positional encoding is assigned as given array. If `:auto` is given, positional encoding is generated automatically for node features and `with_batch` is considered. - `T`: It specifies the element type of graph. Default value is the element type of `g`. - `N`: Number of nodes for `g`. - `E`: Number of edges for `g`. - `with_batch::Bool`: Consider last dimension of all features as batch dimension. # Usage ``` using GraphSignals, CUDA # Construct from adjacency list representation g = [[2,3], [1,4,5], [1], [2,5], [2,4]] fg = FeaturedGraph(g) # Number of nodes and edges nv(fg) # 5 ne(fg) # 10 # From a Graphs' graph fg = FeaturedGraph(erdos_renyi(100, 20)) # Copy featured graph while also adding node features fg = FeaturedGraph(fg, nf=rand(100, 5)) # Send to gpu fg = fg |> cu ``` See also [`graph`](@ref), [`node_feature`](@ref), [`edge_feature`](@ref), and [`global_feature`](@ref). """ mutable struct FeaturedGraph{T,Tn<:AbstractGraphSignal,Te<:AbstractGraphSignal,Tg<:AbstractGraphSignal,Tp<:AbstractGraphDomain} <: AbstractFeaturedGraph graph::T nf::Tn ef::Te gf::Tg pf::Tp matrix_type::Symbol function FeaturedGraph(graph::SparseGraph, nf, ef, gf, pf, mt::Symbol) check_matrix_type(mt) check_features(graph, nf, ef, pf) nf = NodeSignal(nf) ef = EdgeSignal(ef) gf = GlobalSignal(gf) pf = NodeDomain(pf) new{typeof(graph),typeof(nf),typeof(ef),typeof(gf),typeof(pf)}(graph, nf, ef, gf, pf, mt) end function FeaturedGraph{T,Tn,Te,Tg,Tp}(graph, nf, ef, gf, pf, mt ) where {T,Tn,Te,Tg,Tp} check_matrix_type(mt) check_features(graph, nf, ef, pf) graph = T(graph) nf = NodeSignal(Tn(nf)) ef = EdgeSignal(Te(ef)) gf = GlobalSignal(Tg(gf)) pf = NodeDomain(Tp(pf)) new{T,typeof(nf),typeof(ef),typeof(gf),typeof(pf)}(graph, nf, ef, gf, pf, mt) end end @functor FeaturedGraph function FeaturedGraph(graph, mat_type::Symbol; directed::Symbol=:auto, T=eltype(graph), N=nv(graph), E=ne(graph), nf=nothing, ef=nothing, gf=nothing, pf=nothing, with_batch::Bool=false) @assert directed ∈ DIRECTEDS "directed must be one of $(join(_string.(DIRECTEDS), ", ", " or "))" dir = (directed == :auto) ? is_directed(graph) : directed == :directed if pf == :auto A = nf[1, ntuple(i -> Colon(), length(size(nf))-1)...] pf = generate_grid(A, with_batch=with_batch) end nf = NodeSignal(nf) ef = EdgeSignal(ef) gf = GlobalSignal(gf) pf = NodeDomain(pf) return FeaturedGraph(SparseGraph(graph, dir, T), nf, ef, gf, pf, mat_type) end ## Graph from JuliaGraphs FeaturedGraph(graph::AbstractGraph; kwargs...) = FeaturedGraph(graph, :adjm; T=Float32, kwargs...) ## Graph in adjacency list FeaturedGraph(graph::AbstractVector{T}; ET=eltype(graph[1]), kwargs...) where {T<:AbstractVector} = FeaturedGraph(graph, :adjm; T=ET, kwargs...) ## Graph in adjacency matrix FeaturedGraph(graph::AbstractMatrix{T}; N=nv(graph), nf=nothing, kwargs...) where T = FeaturedGraph(graph, :adjm; N=N, nf=nf, kwargs...) function FeaturedGraph(fg::FeaturedGraph; nf=node_feature(fg), ef=edge_feature(fg), gf=global_feature(fg), pf=positional_feature(fg)) nf = NodeSignal(nf) ef = EdgeSignal(ef) gf = GlobalSignal(gf) pf = NodeDomain(pf) return FeaturedGraph(graph(fg), nf, ef, gf, pf, matrixtype(fg)) end """ ConcreteFeaturedGraph(fg; nf=node_feature(fg), ef=edge_feature(fg), gf=global_feature(fg), pf=positional_feature(fg)) This is a syntax sugar for construction for `FeaturedGraph` and `FeaturedSubgraph` object. It is an idempotent operation, which gives the same type of object as inputs. It wraps input `fg` again but reconfigures with `kwargs`. # Arguments - `fg`: `FeaturedGraph` and `FeaturedSubgraph` object. - `nf`: Node features. - `ef`: Edge features. - `gf`: Global features. - `pf`: Positional features. # Usage ```jldoctest julia> using GraphSignals julia> adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0]; julia> nf = rand(10, 4); julia> fg = FeaturedGraph(adjm; nf=nf) FeaturedGraph: Undirected graph with (#V=4, #E=5) in adjacency matrix Node feature: ℝ^10 <Matrix{Float64}> julia> ConcreteFeaturedGraph(fg, nf=rand(7, 4)) FeaturedGraph: Undirected graph with (#V=4, #E=5) in adjacency matrix Node feature: ℝ^7 <Matrix{Float64}> ``` """ ConcreteFeaturedGraph(fg::FeaturedGraph; kwargs...) = FeaturedGraph(fg; kwargs...) ## dimensional checks function check_num_nodes(graph_nv::Real, N::Real) msg = "number of nodes must match between graph ($graph_nv) and features ($N)" graph_nv == N || throw(DimensionMismatch(msg)) end function check_num_edges(graph_ne::Real, E::Real) msg = "number of edges must match between graph ($graph_ne) and features ($E)" graph_ne == E || throw(DimensionMismatch(msg)) end # generic fallback check_num_nodes(graph_nv::Real, feat) = check_num_nodes(graph_nv, size(feat, 2)) check_num_edges(graph_ne::Real, feat) = check_num_edges(graph_ne, size(feat, 2)) check_num_nodes(g, feat) = check_num_nodes(nv(g), feat) check_num_edges(g, feat) = check_num_edges(ne(g), feat) function check_matrix_type(mt::Symbol) errmsg = "matrix_type must be one of $(join(_string.(MATRIX_TYPES), ", ", " or "))" mt ∈ MATRIX_TYPES || throw(ArgumentError(errmsg)) end function check_features(graph, nf, ef, pf) check_num_edges(ne(graph), ef) check_num_nodes(nv(graph), nf) check_num_nodes(nv(graph), pf) return end ## show function Base.show(io::IO, fg::FeaturedGraph) direct = is_directed(fg) ? "Directed" : "Undirected" println(io, "FeaturedGraph:") print(io, "\t", direct, " graph with (#V=", nv(fg), ", #E=", ne(fg), ") in ", matrixrepr(fg)) has_node_feature(fg) && print(io, "\n\tNode feature:\tℝ^", nf_dims_repr(fg.nf), " <", typeof(fg.nf), ">") has_edge_feature(fg) && print(io, "\n\tEdge feature:\tℝ^", ef_dims_repr(fg.ef), " <", typeof(fg.ef), ">") has_global_feature(fg) && print(io, "\n\tGlobal feature:\tℝ^", gf_dims_repr(fg.gf), " <", typeof(fg.gf), ">") has_positional_feature(fg) && print(io, "\n\tPositional feature:\tℝ^", pf_dims_repr(fg.pf), " <", typeof(fg.pf), ">") end matrixrepr(fg::FeaturedGraph) = matrixrepr(Val(matrixtype(fg))) matrixrepr(::Val{:adjm}) = "adjacency matrix" matrixrepr(::Val{:normedadjm}) = "normalized adjacency matrix" matrixrepr(::Val{:laplacian}) = "Laplacian matrix" matrixrepr(::Val{:normalized}) = "normalized Laplacian" matrixrepr(::Val{:scaled}) = "scaled Laplacian" ## Accessing matrixtype(fg::FeaturedGraph) = fg.matrix_type Graphs.is_directed(fg::AbstractFeaturedGraph) = is_directed(graph(fg)) function Base.setproperty!(fg::FeaturedGraph, prop::Symbol, x) if prop == :graph check_num_nodes(x, fg.nf) check_num_edges(x, fg.ef) check_num_nodes(x, fg.pf) elseif prop == :nf x = NodeSignal(x) check_num_nodes(fg.graph, x) elseif prop == :ef x = EdgeSignal(x) check_num_edges(fg.graph, x) elseif prop == :gf x = GlobalSignal(x) elseif prop == :pf x = NodeDomain(x) check_num_nodes(fg.graph, x) end setfield!(fg, prop, x) end """ graph(fg) Get referenced graph in `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ graph(fg::FeaturedGraph) = fg.graph """ node_feature(fg) Get node feature attached to `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ node_feature(fg::FeaturedGraph) = node_feature(fg.nf) """ edge_feature(fg) Get edge feature attached to `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ edge_feature(fg::FeaturedGraph) = edge_feature(fg.ef) """ global_feature(fg) Get global feature attached to `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ global_feature(fg::FeaturedGraph) = global_feature(fg.gf) """ positional_feature(fg) Get positional feature attached to `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ positional_feature(fg::FeaturedGraph) = positional_feature(fg.pf) """ has_graph(fg) Check if `graph` is available or not for `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ has_graph(fg::FeaturedGraph) = fg.graph != Fill(0., (0,0)) """ has_node_feature(::AbstractFeaturedGraph) Check if `node_feature` is available or not for `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ has_node_feature(fg::FeaturedGraph) = has_node_feature(fg.nf) """ has_edge_feature(::AbstractFeaturedGraph) Check if `edge_feature` is available or not for `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ has_edge_feature(fg::FeaturedGraph) = has_edge_feature(fg.ef) """ has_global_feature(::AbstractFeaturedGraph) Check if `global_feature` is available or not for `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ has_global_feature(fg::FeaturedGraph) = has_global_feature(fg.gf) """ has_positional_feature(::AbstractFeaturedGraph) Check if `positional_feature` is available or not for `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ has_positional_feature(fg::FeaturedGraph) = has_positional_feature(fg.pf) ## Graph property """ nv(fg) Get node number of graph in `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ Graphs.nv(fg::FeaturedGraph) = nv(graph(fg)) """ ne(fg) Get edge number of in `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ Graphs.ne(fg::FeaturedGraph) = ne(graph(fg)) to_namedtuple(fg::AbstractFeaturedGraph) = to_namedtuple(graph(fg)) Graphs.vertices(fg::FeaturedGraph) = vertices(graph(fg)) """ edges(fg) Returns an iterator over an edge list for graph in `fg`. # Arguments - `fg::FeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ Graphs.edges(fg::FeaturedGraph) = edges(graph(fg)) Graphs.neighbors(fg::FeaturedGraph; dir::Symbol=:out) = neighbors(graph(fg); dir=dir) Graphs.neighbors(fg::FeaturedGraph, i::Integer; dir::Symbol=:out) = neighbors(graph(fg), i, dir=dir) Graphs.has_edge(fg::FeaturedGraph, i::Integer, j::Integer) = has_edge(graph(fg), i, j) incident_edges(fg::FeaturedGraph) = incident_edges(graph(fg)) ## Graph representations """ adjacency_list(fg) Get adjacency list of graph in `fg`. # Arguments - `fg::AbstractFeaturedGraph`: A concrete object of `AbstractFeaturedGraph` type. """ adjacency_list(fg::FeaturedGraph) = adjacency_list(graph(fg)) adjacency_matrix(fg::FeaturedGraph, ::Type{T}=eltype(graph(fg))) where {T} = adjacency_matrix(graph(fg), T) degrees(fg::AbstractFeaturedGraph, ::Type{T}=eltype(graph(fg)); dir::Symbol=:out) where {T} = degrees(graph(fg), T; dir=dir) ## sample StatsBase.sample(fg::AbstractFeaturedGraph, n::Int) = subgraph(fg, sample(vertices(fg), n; replace=false))
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
2041
""" adjacency_list(adj) Transform a adjacency matrix into a adjacency list. """ function adjacency_list(adj::AbstractMatrix{T}) where {T} n = size(adj,1) @assert n == size(adj,2) "adjacency matrix is not a square matrix." A = (adj .!= zero(T)) if !issymmetric(adj) A = A .| A' end indecies = collect(1:n) ne = Vector{Int}[indecies[view(A, :, i)] for i = 1:n] return ne end adjacency_list(adj::AbstractVector{<:AbstractVector{<:Integer}}) = adj GraphSignals.nv(g::AbstractMatrix) = size(g, 1) GraphSignals.nv(g::AbstractVector{T}) where {T<:AbstractVector} = size(g, 1) function GraphSignals.ne(g::AbstractMatrix, directed::Bool=is_directed(g)) g = Matrix(g) .!= 0 if directed return sum(g) else return div(sum(g) + sum(diag(g)), 2) end end function GraphSignals.ne(g::AbstractVector{T}, directed::Bool=is_directed(g)) where {T<:AbstractVector} if directed return sum(length, g) else e = 0 for i in 1:length(g) for j in g[i] if i ≤ j e += 1 end end end return e end end GraphSignals.is_directed(g::AbstractMatrix) = !issymmetric(Matrix(g)) function GraphSignals.is_directed(g::AbstractVector{T}) where {T<:AbstractVector} edges = Set{Tuple{Int64,Int64}}() for (i, js) in enumerate(g) for j in Set(js) if i != j e = (i,j) if e in edges pop!(edges, e) else push!(edges, (j,i)) end end end end !isempty(edges) end function remove_self_loops!(adj::AbstractVector{<:AbstractVector{<:Integer}}) N = nv(adj) for i in 1:N deleteat!(adj[i], adj[i] .== i) end return adj end function remove_self_loops(adj::AbstractVector{T}) where {T<:AbstractVector{<:Integer}} N = nv(adj) new_adj = T[adj[i][adj[i] .!= i] for i in 1:N] return new_adj end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
718
abstract type AbstractGraphDomain end struct NullDomain <: AbstractGraphDomain end domain(::NullDomain) = nothing positional_feature(::NullDomain) = nothing has_positional_feature(::NullDomain) = false pf_dims_repr(::NullDomain) = 0 check_num_nodes(graph_nv::Real, ::NullDomain) = nothing struct NodeDomain{T} <: AbstractGraphDomain domain::T end @functor NodeDomain NodeDomain(::Nothing) = NullDomain() NodeDomain(d::AbstractGraphDomain) = d domain(d::NodeDomain) = d.domain positional_feature(d::NodeDomain) = d.domain has_positional_feature(::NodeDomain) = true pf_dims_repr(d::NodeDomain) = size(d.domain, 1) check_num_nodes(graph_nv::Real, d::NodeDomain) = check_num_nodes(graph_nv, size(d.domain, 2))
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1934
abstract type AbstractGraphSignal end struct NullGraphSignal <: AbstractGraphSignal end signal(::NullGraphSignal) = nothing node_feature(::NullGraphSignal) = nothing edge_feature(::NullGraphSignal) = nothing global_feature(::NullGraphSignal) = nothing has_node_feature(::NullGraphSignal) = false has_edge_feature(::NullGraphSignal) = false has_global_feature(::NullGraphSignal) = false nf_dims_repr(::NullGraphSignal) = 0 ef_dims_repr(::NullGraphSignal) = 0 gf_dims_repr(::NullGraphSignal) = 0 check_num_nodes(graph_nv::Real, ::NullGraphSignal) = nothing check_num_edges(graph_nv::Real, ::NullGraphSignal) = nothing struct NodeSignal{T} <: AbstractGraphSignal signal::T end @functor NodeSignal NodeSignal(::Nothing) = NullGraphSignal() NodeSignal(::NullGraphSignal) = NullGraphSignal() NodeSignal(s::NodeSignal) = s signal(s::NodeSignal) = s.signal node_feature(s::NodeSignal) = s.signal has_node_feature(::NodeSignal) = true nf_dims_repr(s::NodeSignal) = size(s.signal, 1) check_num_nodes(graph_nv::Real, s::NodeSignal) = check_num_nodes(graph_nv, size(s.signal, 2)) struct EdgeSignal{T} <: AbstractGraphSignal signal::T end @functor EdgeSignal EdgeSignal(::Nothing) = NullGraphSignal() EdgeSignal(::NullGraphSignal) = NullGraphSignal() EdgeSignal(s::EdgeSignal) = s signal(s::EdgeSignal) = s.signal edge_feature(s::EdgeSignal) = s.signal has_edge_feature(::EdgeSignal) = true ef_dims_repr(s::EdgeSignal) = size(s.signal, 1) check_num_edges(graph_ne::Real, s::EdgeSignal) = check_num_edges(graph_ne, size(s.signal, 2)) struct GlobalSignal{T} <: AbstractGraphSignal signal::T end @functor GlobalSignal GlobalSignal(::Nothing) = NullGraphSignal() GlobalSignal(::NullGraphSignal) = NullGraphSignal() GlobalSignal(s::GlobalSignal) = s signal(s::GlobalSignal) = s.signal global_feature(s::GlobalSignal) = s.signal has_global_feature(::GlobalSignal) = true gf_dims_repr(s::GlobalSignal) = size(s.signal, 1)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
9132
function adjacency_matrix(adj::AbstractMatrix{T}, ::Type{S}) where {T,S} _dim_check(adj) return Matrix{S}(adj) end function adjacency_matrix(adj::AbstractMatrix) _dim_check(adj) return Array(adj) end adjacency_matrix(adj::Matrix{T}, ::Type{T}) where {T} = adjacency_matrix(adj) function adjacency_matrix(adj::Matrix) _dim_check(adj) return adj end function _dim_check(adj) m, n = size(adj) (m == n) || throw(DimensionMismatch("adjacency matrix is not a square matrix: ($m, $n)")) end """ degrees(g, [T=eltype(g)]; dir=:out) Degree of each vertex. Return a vector which contains the degree of each vertex in graph `g`. # Arguments - `g`: should be a adjacency matrix, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: result element type of degree vector; default is the element type of `g` (optional). - `dir`: direction of degree; should be `:in`, `:out`, or `:both` (optional). # Examples ```jldoctest julia> using GraphSignals julia> m = [0 1 1; 1 0 0; 1 0 0]; julia> GraphSignals.degrees(m) 3-element Vector{Int64}: 2 1 1 ``` """ function degrees(g, ::Type{T}=eltype(g); dir::Symbol=:out) where {T} adj = adjacency_matrix(g, T) if issymmetric(adj) d = vec(sum(adj, dims=1)) else if dir == :out d = vec(sum(adj, dims=1)) elseif dir == :in d = vec(sum(adj, dims=2)) elseif dir == :both d = vec(sum(adj, dims=1)) + vec(sum(adj, dims=2)) else throw(ArgumentError("dir only accept :in, :out or :both, but got $(dir).")) end end return T.(d) end """ degree_matrix(g, [T=eltype(g)]; dir=:out, squared=false, inverse=false) Degree matrix of graph `g`. Return a matrix which contains degrees of each vertex in its diagonal. The values other than diagonal are zeros. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `dir::Symbol`: The way to calculate degree of a graph `g` regards its directions. Should be `:in`, `:out`, or `:both`. - `squared::Bool`: To return a squared degree vector or not. - `inverse::Bool`: To return a inverse degree vector or not. # Examples ```jldoctest julia> using GraphSignals julia> m = [0 1 1; 1 0 0; 1 0 0]; julia> GraphSignals.degree_matrix(m) 3×3 LinearAlgebra.Diagonal{Int64, Vector{Int64}}: 2 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 ``` """ function degree_matrix(g, ::Type{T}=eltype(g); dir::Symbol=:out, squared::Bool=false, inverse::Bool=false) where {T} d = degrees(g, T, dir=dir) squared && (d .= sqrt.(d)) inverse && (d .= safe_inv.(d)) return Diagonal(T.(d)) end safe_inv(x::T) where {T} = ifelse(iszero(x), zero(T), inv(x)) @doc raw""" normalized_adjacency_matrix(g, [T=float(eltype(g))]; selfloop=false) Normalized adjacency matrix of graph `g`, defined as ```math D^{-\frac{1}{2}} \tilde{A} D^{-\frac{1}{2}} ``` where ``D`` is degree matrix and ``\tilde{A}`` is adjacency matrix w/o self loop from `g`. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `selfloop`: Adding self loop to ``\tilde{A}`` or not. """ function normalized_adjacency_matrix(g, ::Type{T}=float(eltype(g)); selfloop::Bool=false) where {T} adj = adjacency_matrix(g, T) selfloop && (adj += I) inv_sqrtD = degree_matrix(g, T, dir=:both, squared=true, inverse=true) return inv_sqrtD * adj * inv_sqrtD end """ laplacian_matrix(g, [T=eltype(g)]; dir=:out) Laplacian matrix of graph `g`, defined as ```math D - A ``` where ``D`` is degree matrix and ``A`` is adjacency matrix from `g`. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `dir::Symbol`: The way to calculate degree of a graph `g` regards its directions. Should be `:in`, `:out`, or `:both`. """ Graphs.laplacian_matrix(g, ::Type{T}=eltype(g); dir::Symbol=:out) where {T} = degree_matrix(g, T, dir=dir) - adjacency_matrix(g, T) @doc raw""" normalized_laplacian(g, [T=float(eltype(g))]; dir=:both, selfloop=false) Normalized Laplacian matrix of graph `g`, defined as ```math I - D^{-\frac{1}{2}} \tilde{A} D^{-\frac{1}{2}} ``` where ``D`` is degree matrix and ``\tilde{A}`` is adjacency matrix w/o self loop from `g`. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `dir::Symbol`: The way to calculate degree of a graph `g` regards its directions. Should be `:in`, `:out`, or `:both`. - `selfloop::Bool`: Adding self loop to ``\tilde{A}`` or not. """ function normalized_laplacian(g, ::Type{T}=float(eltype(g)); dir::Symbol=:both, selfloop::Bool=false) where {T} L = adjacency_matrix(g, T) if dir == :both selfloop && (L += I) inv_sqrtD = degree_matrix(g, T, dir=:both, squared=true, inverse=true) L .= I - inv_sqrtD * L * inv_sqrtD else inv_D = degree_matrix(g, T, dir=dir, inverse=true) L .= I - inv_D * L end return L end @doc raw""" scaled_laplacian(g, [T=float(eltype(g))]) Scaled Laplacien matrix of graph `g`, defined as ```math \hat{L} = \frac{2}{\lambda_{max}} \tilde{L} - I ``` where ``\tilde{L}`` is the normalized Laplacian matrix. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. """ function scaled_laplacian(g, ::Type{T}=float(eltype(g))) where {T} adj = adjacency_matrix(g, T) # @assert issymmetric(adj) "scaled_laplacian only works with symmetric matrices" E = eigen(Symmetric(Array(adj))).values return T(2. / maximum(E)) .* normalized_laplacian(adj, T) - I end """ transition_matrix(g, [T=float(eltype(g))]; dir=:out) Transition matrix of performing random walk over graph `g`, defined as ```math D^{-1} A ``` where ``D`` is degree matrix and ``A`` is adjacency matrix from `g`. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `dir::Symbol`: The way to calculate degree of a graph `g` regards its directions. Should be `:in`, `:out`, or `:both`. """ function transition_matrix(g, ::Type{T}=float(eltype(g)); dir::Symbol=:out) where {T} inv_D = degree_matrix(g, T; dir=dir, inverse=true) A = adjacency_matrix(g, T) return inv_D * A end """ random_walk_laplacian(g, [T=float(eltype(g))]; dir=:out) Random walk normalized Laplacian matrix of graph `g`, defined as ```math I - D^{-1} A ``` where ``D`` is degree matrix and ``A`` is adjacency matrix from `g`. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `dir::Symbol`: The way to calculate degree of a graph `g` regards its directions. Should be `:in`, `:out`, or `:both`. """ random_walk_laplacian(g, ::Type{T}=float(eltype(g)); dir::Symbol=:out) where {T} = SparseMatrixCSC(I - transition_matrix(g, T, dir=dir)) """ signless_laplacian(g, [T=eltype(g)]; dir=:out) Signless Laplacian matrix of graph `g`, defined as ```math D + A ``` where ``D`` is degree matrix and ``A`` is adjacency matrix from `g`. # Arguments - `g`: Should be a adjacency matrix, `FeaturedGraph`, `SimpleGraph`, `SimpleDiGraph` (from Graphs) or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` (from SimpleWeightedGraphs). - `T`: The element type of result degree vector. The default type is the element type of `g`. - `dir::Symbol`: The way to calculate degree of a graph `g` regards its directions. Should be `:in`, `:out`, or `:both`. """ signless_laplacian(g, ::Type{T}=eltype(g); dir::Symbol=:out) where {T} = degree_matrix(g, T, dir=dir) + adjacency_matrix(g, T)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
2322
""" kneighbors_graph(X, k, metric; include_self=false, weighted=false) kneighbors_graph(X, k; include_self=false, weighted=false) Generate `k`-nearest neighborhood (kNN) graph from their node features. It returns a `FeaturedGraph` object, which contains a kNN graph and node features `X`. # Arguments - `X::AbstractMatrix`: The feature matrix for each node with size `(feat_dim, num_nodes)`. - `k`: Number of nearest neighbor for each node in kNN graph. - `metric::Metric`: Distance metric to measure distance between any two nodes. It aceepts distance objects from Distances. - `include_self::Bool`: Whether distance from node to itself is included in nearest neighbor. - `weighted::Bool`: Whether distance could be the edge weight in kNN graph. # Usage ```jldoctest julia> using GraphSignals, Distances julia> nf = rand(Float32, 10, 1024); julia> fg = kneighbors_graph(nf, 5) FeaturedGraph: Directed graph with (#V=1024, #E=5120) in adjacency matrix Node feature: ℝ^10 <Matrix{Float32}> julia> fg = kneighbors_graph(nf, 5, Cityblock()) FeaturedGraph: Directed graph with (#V=1024, #E=5120) in adjacency matrix Node feature: ℝ^10 <Matrix{Float32}> julia> nf = rand(Float32[0, 1], 10, 1024); julia> fg = kneighbors_graph(nf, 5, Jaccard(); include_self=true) FeaturedGraph: Directed graph with (#V=1024, #E=5120) in adjacency matrix Node feature: ℝ^10 <Matrix{Float32}> ``` """ function kneighbors_graph(X::AbstractMatrix, k::Int, metric::Metric; include_self=false, weighted=false) searchtree = NearestNeighbors.BallTree(X, metric) search_k = include_self ? k : k+1 idxs, dists = NearestNeighbors.knn(searchtree, X, search_k, false) include_self || remove_self_loops!(idxs) if weighted N = length(idxs) g = SimpleWeightedGraph(N) for i in 1:N for j in 1:k add_edge!(g, i, idxs[i][j], dists[i][j]) end end else g = idxs end return FeaturedGraph(g, nf=X) end function kneighbors_graph(X::AbstractArray{T,3}, k::Int, metric::Metric; kwargs...) where {T} X = reshape(mean(X, dims=3), size(X)[1:2]...) return kneighbors_graph(X, k, metric; kwargs...) end kneighbors_graph(X::AbstractArray, k::Int; kwargs...) = kneighbors_graph(X, k, Euclidean(); kwargs...)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1003
""" generate_grid(A, with_batch=false) Returns grid coordinates for tensor `A`. # Arguments - `A::AbstractArray`: The tensor to reference to. - `with_batch::Bool`: Whether to consider last dimension as batch. If `with_batch=true`, the last dimension is not consider as a component of coordinates. # Usage ```jldoctest julia> using GraphSignals julia> A = rand(3, 4, 5); julia> coord = GraphSignals.generate_grid(A); julia> size(coord) (3, 3, 4, 5) julia> coord = GraphSignals.generate_grid(A, with_batch=true); julia> size(coord) (2, 3, 4) ``` """ function generate_grid(A::AbstractArray; with_batch::Bool=false) dims = with_batch ? size(A)[1:end-1] : size(A) N = length(dims) colons = ntuple(i -> Colon(), N) coord = similar(A, N, dims...) for i in 1:N ones = ntuple(x -> 1, i-1) coord[i, colons...] .= reshape(1:dims[i], ones..., :) end return coord end @deprecate generate_coordinates(A, with_batch=false) generate_grid(A, with_batch=false)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
2899
""" random_walk(g, start, n=1) Draw random walk samples from a given graph `g`. The weights for each edge on graph are considered to be proportional to the transition probability. # Arguments - `g`: Data representing the graph topology. Possible type are - An adjacency matrix. - An `FeaturedGraph` or `SparseGraph` object. - `start::Int`: A start point for a random walk on graph `g`. - `n::Int`: Number of random walk steps. # Usage ```julia julia> using GraphSignals julia> adjm = [0 1 0 1 1; 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0]; julia> fg = FeaturedGraph(adjm); julia> random_walk(adjm, 1) 1-element Vector{Int64}: 5 julia> random_walk(fg, 1, 3) 3-element Vector{Int64}: 5 4 4 julia> using Flux julia> fg = fg |> gpu; julia> random_walk(fg, 4, 3) 3-element Vector{Int64}: 1 1 1 ``` See also [`neighbor_sample`](@ref) """ random_walk(A::AbstractMatrix, start::Int, n::Int=1) = [sample(1:size(A, 1), Weights(view(A, :, start))) for _ in 1:n] random_walk(x::AbstractVector, n::Int=1) = [sample(1:length(x), Weights(x)) for _ in 1:n] random_walk(sg::SparseGraph, start::Int, n::Int=1) = random_walk(sg.S, start, n) random_walk(fg::FeaturedGraph, start::Int, n::Int=1) = random_walk(graph(fg), start, n) """ neighbor_sample(g, start, n=1; replace=false) Draw random samples from neighbors from a given graph `g`. The weights for each edge on graph are considered to be proportional to the transition probability. # Arguments - `g`: Data representing the graph topology. Possible type are - An adjacency matrix. - An `FeaturedGraph` or `SparseGraph` object. - `start::Int`: A vertex for a random neighbor sampling on graph `g`. - `n::Int`: Number of random neighbor sampling. - `replace::Bool`: Sample with replacement or not. # Usage ```julia julia> using GraphSignals julia> adjm = [0 1 0 1 1; 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0]; julia> fg = FeaturedGraph(adjm); julia> neighbor_sample(adjm, 1) 1-element Vector{Int64}: 4 julia> neighbor_sample(fg, 1, 3) 3-element Vector{Int64}: 5 4 2 julia> using Flux julia> fg = fg |> gpu; julia> neighbor_sample(fg, 4, 3, replace=true) 3-element Vector{Int64}: 1 5 5 ``` See also [`random_walk`](@ref) """ neighbor_sample(A::AbstractMatrix, start::Int, n::Int=1; replace::Bool=false) = sample(1:size(A, 1), Weights(view(A, :, start)), n; replace=replace) neighbor_sample(x::AbstractVector, n::Int=1; replace::Bool=false) = sample(1:length(x), Weights(x), n; replace=replace) neighbor_sample(sg::SparseGraph, start::Int, n::Int=1; replace::Bool=false) = neighbor_sample(sg.S, start, n; replace=replace) neighbor_sample(fg::FeaturedGraph, start::Int, n::Int=1; replace::Bool=false) = neighbor_sample(graph(fg), start, n; replace=replace)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
11771
abstract type AbstractSparseGraph <: AbstractGraph{Int} end """ SparseGraph(A, directed, [T]) A sparse graph structure represents by sparse matrix. A directed graph is represented by a sparse matrix, of which column index as source node index and row index as sink node index. # Arguments - `A`: Adjacency matrix. - `directed`: If this is a directed graph or not. - `T`: Element type for `SparseGraph`. """ struct SparseGraph{D,M,V,T} <: AbstractSparseGraph S::M edges::V E::T end function SparseGraph{D}(A::AbstractMatrix{Tv}, edges::AbstractVector{Ti}, E::Integer) where {D,Tv,Ti} @assert size(A, 1) == size(A, 2) "A must be a square matrix." return SparseGraph{D,typeof(A),typeof(edges),typeof(E)}(A, edges, E) end function SparseGraph( A::AbstractMatrix{Tv}, edges::AbstractVector{Ti}, directed::Bool, ::Type{T}=eltype(A) ) where {Tv,Ti,T} E = length(unique(edges)) spA = (Tv === T) ? SparseMatrixCSC{Tv,Ti}(A) : SparseMatrixCSC{T,Ti}(A) return SparseGraph{directed}(spA, edges, E) end SparseGraph(A::SparseMatrixCSC, directed::Bool, ::Type{T}=eltype(A)) where {T} = SparseGraph(A, order_edges(A, directed=directed), directed, T) SparseGraph(A::AbstractMatrix, directed::Bool, ::Type{T}=eltype(A)) where {T} = SparseGraph(sparsecsc(A), directed, T) function SparseGraph( adjl::AbstractVector{T}, directed::Bool, ::Type{Te}=eltype(eltype(adjl)) ) where {T<:AbstractVector,Te} n = length(adjl) colptr, rowval, nzval = to_csc(adjl) spA = SparseMatrixCSC(n, n, UInt32.(colptr), UInt32.(rowval), Te.(nzval)) return SparseGraph(spA, directed) end SparseGraph(g::G, directed::Bool=is_directed(G), ::Type{T}=eltype(g)) where {G<:AbstractSimpleGraph,T} = SparseGraph(g.fadjlist, directed, T) SparseGraph(g::G, directed::Bool=is_directed(G), ::Type{T}=eltype(g)) where {G<:AbstractSimpleWeightedGraph,T} = SparseGraph(SimpleWeightedGraphs.weights(g)', directed, T) function to_csc(adjl::AbstractVector{T}) where {T<:AbstractVector} ET = eltype(adjl[1]) colptr = ET[1, ] rowval = ET[] for nbs in adjl r = sort!(unique(nbs)) push!(colptr, colptr[end] + length(r)) append!(rowval, r) end nzval = ones(ET, length(rowval)) return colptr, rowval, nzval end @functor SparseGraph{true} @functor SparseGraph{false} struct SparseSubgraph{G<:AbstractSparseGraph,T} <: AbstractSparseGraph sg::G nodes::T end @functor SparseSubgraph SparseArrays.sparse(sg::SparseGraph) = sg.S SparseArrays.sparse(ss::SparseSubgraph) = sparse(ss.sg)[ss.nodes, ss.nodes] Base.collect(sg::AbstractSparseGraph) = collect(sparse(sg)) Base.show(io::IO, sg::SparseGraph) = print(io, "SparseGraph{", eltype(sg), "}(#V=", nv(sg), ", #E=", ne(sg), ")") Base.show(io::IO, ss::SparseSubgraph) = print(io, "subgraph of ", ss.sg, " with nodes=$(ss.nodes)") Graphs.nv(sg::SparseGraph) = size(sparse(sg), 1) Graphs.nv(ss::SparseSubgraph) = length(ss.nodes) Graphs.ne(sg::SparseGraph) = sg.E # Graphs.ne(ss::SparseSubgraph) = Graphs.is_directed(::SparseGraph{G}) where {G} = G Graphs.is_directed(::Type{<:SparseGraph{G}}) where {G} = G Graphs.is_directed(ss::SparseSubgraph) = is_directed(ss.sg) Graphs.is_directed(::Type{<:SparseSubgraph{G}}) where {G} = is_directed(G) function Graphs.has_self_loops(sg::AbstractSparseGraph) for i in vertices(sg) isneighbor(graph(sg), i, i) && return true end return false end function has_all_self_loops(sg::AbstractSparseGraph) for i in vertices(sg) isneighbor(graph(sg), i, i) || return false end return true end Base.eltype(sg::SparseGraph) = eltype(sparse(sg)) Base.eltype(ss::SparseSubgraph) = eltype(ss.sg) Graphs.has_vertex(sg::SparseGraph, i::Integer) = 1 <= i <= nv(sg) Graphs.has_vertex(ss::SparseSubgraph, i::Integer) = (i in ss.nodes) Graphs.vertices(sg::SparseGraph) = 1:nv(sg) Graphs.vertices(ss::SparseSubgraph) = ss.nodes Graphs.edgetype(::AbstractSparseGraph) = Tuple{Int, Int} Graphs.has_edge(sg::SparseGraph, i::Integer, j::Integer) = j ∈ outneighbors(sg, i) Graphs.has_edge(ss::SparseSubgraph, i::Integer, j::Integer) = (i in ss.nodes && j in ss.nodes && has_edge(ss.sg, i, j)) Base.:(==)(sg1::SparseGraph, sg2::SparseGraph) = sg1.E == sg2.E && sg1.edges == sg2.edges && sg1.S == sg2.S Base.:(==)(ss1::SparseSubgraph, ss2::SparseSubgraph) = ss1.nodes == ss2.nodes && ss1.sg == ss2.sg graph(sg::SparseGraph) = sg graph(ss::SparseSubgraph) = ss.sg subgraph(sg::AbstractSparseGraph, nodes::AbstractVector) = SparseSubgraph(graph(sg), nodes) function to_namedtuple(sg::SparseGraph) es, nbrs, xs = collect(edges(sg)) return (N=nv(sg), E=ne(sg), es=es, nbrs=nbrs, xs=xs) end edgevals(sg::SparseGraph) = sg.edges edgevals(sg::SparseGraph, col::Integer) = view(sg.edges, SparseArrays.getcolptr(sparse(sg), col)) edgevals(sg::SparseGraph, I::UnitRange) = view(sg.edges, SparseArrays.getcolptr(sparse(sg), I)) """ neighbors(sg, i) Return the neighbors of vertex `i` in sparse graph `sg`. # Arguments - `sg::SparseGraph`: sparse graph to query. - `i`: vertex index. """ Graphs.neighbors(sg::SparseGraph{false}; dir::Symbol=:out) = rowvals(sparse(sg)) Graphs.neighbors(sg::SparseGraph{false}, i::Integer; dir::Symbol=:out) = outneighbors(sg, i) function Graphs.neighbors(sg::SparseGraph{true}, i::Integer; dir::Symbol=:out) if dir == :out return outneighbors(sg, i) elseif dir == :in return inneighbors(sg, i) elseif dir == :both return unique!(append!(inneighbors(sg, i), outneighbors(sg, i))) else throw(ArgumentError("dir must be one of [:out, :in, :both].")) end end Graphs.outneighbors(sg::SparseGraph) = map(i -> outneighbors(sg, i), vertices(sg)) Graphs.outneighbors(sg::SparseGraph, i::Integer) = rowvalview(sparse(sg), i) Graphs.inneighbors(sg::SparseGraph) = map(i -> inneighbors(sg, i), vertices(sg)) function Graphs.inneighbors(sg::SparseGraph, i::Integer) mask = map(j -> isneighbor(sg, i, j), vertices(sg)) return findall(mask) end function noutneighbors(sg::SparseGraph, i) Base.depwarn("noutneighbors will be deprecated in the next release.", :noutneighbors) return length(SparseArrays.getcolptr(SparseMatrixCSC(sparse(sg)), i)) end isneighbor(sg::SparseGraph, j, i) = any(j .== outneighbors(sg, i)) """ dsts(sg::SparseGraph) Returns all the destination vertex of each edge from graph `sg`. For undirected graph, the same edge is considered once only. """ dsts(sg::SparseGraph{true}) = rowvals(sparse(sg)) """ srcs(sg::SparseGraph) Returns all the source vertex of each edge from graph `sg`. For undirected graph, the same edge is considered once only. """ srcs(sg::SparseGraph{true}) = colvals(sparse(sg)) function dsts(sg::SparseGraph{false}) # For undirected graph, upper traingle of matrix is considered only. S = sparse(sg) res = Int[] for j in vertices(sg) r = rowvalview(S, j) r = view(r, r .≤ j) append!(res, r) end return res end srcs(sg::SparseGraph{false}) = colvals(sparse(sg), upper_traingle=true) """ incident_edges(sg, i) Return the edges incident to vertex `i` in sparse graph `sg`. # Arguments - `sg::SparseGraph`: sparse graph to query. - `i`: vertex index. """ incident_edges(sg::SparseGraph{false}) = edgevals(sg) incident_edges(sg::SparseGraph{false}, i) = edgevals(sg, i) function incident_edges(sg::SparseGraph{true}, i; dir=:out) if dir == :out return incident_outedges(sg, i) elseif dir == :in return incident_inedges(sg, i) elseif dir == :both return append!(incident_inedges(sg, i), incident_outedges(sg, i)) else throw(ArgumentError("dir must be one of [:out, :in, :both].")) end end incident_outedges(sg::SparseGraph{true}, i) = edgevals(sg, i) function incident_inedges(sg::SparseGraph{true,M,V}, i) where {M,V} inedges = V() for j in vertices(sg) mask = isneighbor(sg, i, j) edges = edgevals(sg, j) append!(inedges, edges[findall(mask)]) end return inedges end Base.getindex(sg::SparseGraph, ind...) = getindex(sparse(sg), ind...) # Base.getindex(ss::SparseSubgraph, ind...) = edge_index(sg::SparseGraph, i, j) = sg.edges[get_csc_index(sparse(sg), j, i)] # edge_index(ss::SparseSubgraph, i, j) = """ Transform a CSC-based edge index `edges[eidx]` into a regular cartesian index `A[i, j]`. """ function get_cartesian_index(sg::SparseGraph, eidx::Int) r = rowvals(sparse(sg)) idx = findfirst(x -> x == eidx, edgevals(sg)) i = r[idx] j = 1 while idx > noutneighbors(sg, 1:j) j += 1 end return (i, j) end """ aggregate_index(sg; direction=:undirected, kind=:edge) Generate index structure for scatter operation. # Arguments - `sg::SparseGraph`: The reference graph. - `direction::Symbol`: The direction of an edge to be choose to aggregate. It must be one of `:inward` and `:outward`. - `kind::Symbol`: To aggregate feature upon edge or vertex. It must be one of `:edge` and `:vertex`. """ function aggregate_index(sg::SparseGraph, kind::Symbol=:edge, direction::Symbol=:outward) if !(kind in [:edge, :vertex]) throw(ArgumentError("kind must be one of :edge or :vertex.")) end if !(direction in [:inward, :outward]) throw(ArgumentError("direction must be one of :outward or :inward.")) end return aggregate_index(sg, Val(kind), Val(direction)) end @deprecate aggregate_index(sg::SparseGraph{true}, ::Val{:edge}, ::Val{:inward}) dsts(sg) @deprecate aggregate_index(sg::SparseGraph{true}, ::Val{:edge}, ::Val{:outward}) srcs(sg) @deprecate aggregate_index(sg::SparseGraph{false}, ::Val{:edge}, ::Val{:inward}) dsts(sg) @deprecate aggregate_index(sg::SparseGraph{false}, ::Val{:edge}, ::Val{:outward}) srcs(sg) @deprecate aggregate_index(sg::SparseGraph{true}, ::Val{:vertex}, ::Val{:inward}) outneighbors(sg) @deprecate aggregate_index(sg::SparseGraph{true}, ::Val{:vertex}, ::Val{:outward}) inneighbors(sg) @deprecate aggregate_index(sg::SparseGraph{false}, ::Val{:vertex}, ::Val{:inward}) outneighbors(sg) @deprecate aggregate_index(sg::SparseGraph{false}, ::Val{:vertex}, ::Val{:outward}) inneighbors(sg) ## Graph representations adjacency_list(sg::SparseGraph) = map(j -> outneighbors(sg, j), vertices(sg)) adjacency_matrix(sg::AbstractSparseGraph, T::DataType=eltype(sg)) = adjacency_matrix(sparse(sg), T) degrees(sg::SparseGraph, T::DataType=eltype(sg); dir::Symbol=:out) = degrees(sparse(sg), T; dir=dir) ## Edge iterator struct EdgeIter{G,S} sg::G start::S function EdgeIter(sg::SparseGraph) if ne(sg) == 0 start = (0, (0, 0)) else S = SparseMatrixCSC(sparse(sg)) j = 1 while 1 > length(SparseArrays.getcolptr(S, 1:j)) j += 1 end i = rowvals(S)[1] e = collect(edgevals(sg))[1] start = (e, (i, j)) end return new{typeof(sg),typeof(start)}(sg, start) end end graph(iter::EdgeIter) = iter.sg Graphs.edges(sg::SparseGraph) = EdgeIter(sg) Base.length(iter::EdgeIter) = nnz(sparse(graph(iter))) function Base.iterate(iter::EdgeIter, (el, i)=(iter.start, 1)) next_i = i + 1 if next_i <= ne(graph(iter)) car_idx = get_cartesian_index(graph(iter), next_i) next_el = (next_i, car_idx) return (el, (next_el, next_i)) elseif next_i == ne(graph(iter)) + 1 next_el = (0, (0, 0)) return (el, (next_el, next_i)) else return nothing end end function Base.collect(iter::EdgeIter) g = graph(iter) return edgevals(g), rowvals(sparse(g)), colvals(sparse(g)) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
3964
sparsecsc(A::AbstractMatrix) = sparse(A) SparseArrays.getcolptr(S::SparseMatrixCSC, col::Integer) = S.colptr[col]:(S.colptr[col+1]-1) SparseArrays.getcolptr(S::SparseMatrixCSC, I::UnitRange) = S.colptr[I.start]:(S.colptr[I.stop+1]-1) SparseArrays.rowvals(S::SparseMatrixCSC, col::Integer) = _rowvals(S, col) SparseArrays.rowvals(S::SparseMatrixCSC, I::UnitRange) = _rowvals(S, I) rowvalview(S::SparseMatrixCSC, col::Integer) = _rowvalview(S, col) rowvalview(S::SparseMatrixCSC, I::UnitRange) = _rowvalview(S, I) _rowvals(S, col) = rowvals(S)[SparseArrays.getcolptr(S, col)] _rowvalview(S, col) = view(rowvals(S), SparseArrays.getcolptr(S, col)) SparseArrays.nonzeros(S::SparseMatrixCSC, col::Integer) = _nonzeros(S, col) SparseArrays.nonzeros(S::SparseMatrixCSC, I::UnitRange) = _nonzeros(S, I) SparseArrays.nzvalview(S::SparseMatrixCSC, col::Integer) = _nzvalview(S, col) SparseArrays.nzvalview(S::SparseMatrixCSC, I::UnitRange) = _nzvalview(S, I) _nonzeros(S, col) = nonzeros(S)[SparseArrays.getcolptr(S, col)] _nzvalview(S, col) = view(nonzeros(S), SparseArrays.getcolptr(S, col)) """ colvals(S, [n]; upper_traingle=false) Returns column indices of nonzero values in a sparse array `S`. Nonzero values are count up to column `n`. If `n` is not specified, all nonzero values are considered. # Arguments - `S::SparseCSC`: Sparse array, which can be `SparseMatrixCSC` or `CuSparseMatrixCSC`. - `n::Int`: Maximum columns to count nonzero values. - `upper_traingle::Bool`: To count nonzero values in upper traingle only or not. """ colvals(S::SparseMatrixCSC; upper_traingle::Bool=false) = colvals(S, size(S, 2); upper_traingle=upper_traingle) colvals(S::SparseMatrixCSC, n::Int; upper_traingle::Bool=false) = _colvals(S, n; upper_traingle=upper_traingle) function _colvals(S, n::Int; upper_traingle::Bool=false) if upper_traingle ls = [count(rowvalview(S, j) .≤ j) for j in 1:n] pushfirst!(ls, 1) cumsum!(ls, ls) l = ls[end]-1 else colptr = collect(SparseArrays.getcolptr(S)) ls = view(colptr, 2:(n+1)) - view(colptr, 1:n) pushfirst!(ls, 1) cumsum!(ls, ls) l = length(rowvals(S)) end return _fill_colvals(rowvals(S), ls, l, n) end function _fill_colvals(tmpl::AbstractVector, ls, l::Int, n::Int) res = similar(tmpl, l) for j in 1:n fill!(view(res, ls[j]:(ls[j+1]-1)), j) end return res end """ Transform a regular cartesian index `A[i, j]` into a CSC-compatible index `spA.nzval[idx]`. """ get_csc_index(S::SparseMatrixCSC, i::Integer, j::Integer) = _get_csc_index(S, i, j) function _get_csc_index(S, i::Integer, j::Integer) idx1 = SparseArrays.getcolptr(S, j) row = view(rowvals(S), idx1) idx2 = findfirst(x -> x == i, row) return idx1[idx2] end """ Order the edges in a graph by giving a unique integer to each edge. """ order_edges(S::SparseMatrixCSC; directed::Bool=false) = _order_edges(S; directed=directed) _order_edges(S::SparseMatrixCSC; directed::Bool=false) = _order_edges!(similar(rowvals(S)), S, Val(directed)) order_edges!(edges, S::SparseMatrixCSC, ::Val{false}) = _order_edges!(edges, S, Val(false)) order_edges!(edges, S, ::Val{true}) = _order_edges!(edges, S, Val(true)) function _order_edges!(edges, S, ::Val{false}) @assert issymmetric(S) "Matrix of undirected graph must be symmetric." k = 1 for j in axes(S, 2) idx1 = SparseArrays.getcolptr(S, j) row = rowvalview(S, j) for idx2 in 1:length(row) idx = idx1[idx2] i = row[idx2] if i < j # upper triangle edges[idx] = k edges[get_csc_index(S, j, i)] = k k += 1 elseif i == j # diagonal edges[idx] = k k += 1 end end end return edges end function _order_edges!(edges::T, S, ::Val{true}) where {T} edges .= T(1:length(edges)) edges end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
4234
""" FeaturedSubgraph(fg, nodes) Construct a lightweight subgraph over a `FeaturedGraph`. # Arguments - `fg::AbstractFeaturedGraph`: A base featured graph to construct a subgraph. - `nodes::AbstractVector`: It specifies nodes to be reserved from `fg`. # Usage ``` julia> using GraphSignals julia> g = [[2,3], [1,4,5], [1], [2,5], [2,4]]; julia> fg = FeaturedGraph(g) FeaturedGraph: Undirected graph with (#V=5, #E=5) in adjacency matrix julia> subgraph(fg, [1,2,3]) FeaturedGraph: Undirected graph with (#V=5, #E=5) in adjacency matrix Subgraph: nodes([1, 2, 3]) ``` See also [`subgraph`](@ref) for syntax sugar. """ struct FeaturedSubgraph{G<:AbstractFeaturedGraph,T} <: AbstractFeaturedGraph fg::G nodes::T end @functor FeaturedSubgraph ConcreteFeaturedGraph(fsg::FeaturedSubgraph; nf=node_feature(fsg.fg), ef=edge_feature(fsg.fg), gf=global_feature(fsg.fg), pf=positional_feature(fsg.fg), nodes=fsg.nodes) = FeaturedSubgraph( ConcreteFeaturedGraph(fsg.fg; nf=nf, ef=ef, gf=gf, pf=pf), nodes ) """ subgraph(fg, nodes) Returns a subgraph of type `FeaturedSubgraph` from a given featured graph `fg`. It constructs a subgraph by reserving `nodes` in a graph. # Arguments - `fg::AbstractFeaturedGraph`: A base featured graph to construct a subgraph. - `nodes::AbstractVector`: It specifies nodes to be reserved from `fg`. """ subgraph(fg::AbstractFeaturedGraph, nodes::AbstractVector) = FeaturedSubgraph(fg, nodes) subgraph(fsg::FeaturedSubgraph, nodes::AbstractVector) = FeaturedSubgraph(fsg.fg, nodes) ## show Base.show(io::IO, fsg::FeaturedSubgraph) = print(io, fsg.fg, "\n\tSubgraph:\tnodes(", fsg.nodes, ")") graph(fsg::FeaturedSubgraph) = graph(fsg.fg) Graphs.vertices(fsg::FeaturedSubgraph) = fsg.nodes function Graphs.edges(fsg::FeaturedSubgraph) sg = graph(fsg.fg) S = SparseMatrixCSC(sparse(sg)) nodes = collect(fsg.nodes) sel = map(x -> x in nodes, colvals(S)) sel .&= map(x -> x in nodes, rowvals(S)) return sort!(unique!(collect(edgevals(sg))[sel])) end Graphs.adjacency_matrix(fsg::FeaturedSubgraph) = view(adjacency_matrix(fsg.fg), fsg.nodes, fsg.nodes) has_node_feature(fsg::FeaturedSubgraph) = has_node_feature(fsg.fg) node_feature(fsg::FeaturedSubgraph) = node_feature(fsg.fg) has_edge_feature(fsg::FeaturedSubgraph) = has_edge_feature(fsg.fg) edge_feature(fsg::FeaturedSubgraph) = edge_feature(fsg.fg) has_global_feature(fsg::FeaturedSubgraph) = has_global_feature(fsg.fg) global_feature(fsg::FeaturedSubgraph) = global_feature(fsg.fg) has_positional_feature(fsg::FeaturedSubgraph) = has_positional_feature(fsg.fg) positional_feature(fsg::FeaturedSubgraph) = positional_feature(fsg.fg) Graphs.neighbors(fsg::FeaturedSubgraph) = mapreduce(i -> neighbors(graph(fsg), i), vcat, fsg.nodes) incident_edges(fsg::FeaturedSubgraph) = mapreduce(i -> incident_edges(graph(fsg), i), vcat, fsg.nodes) repeat_nodes(fsg::FeaturedSubgraph) = mapreduce(i -> repeat_nodes(graph(fsg), i), vcat, fsg.nodes) ## Linear algebra degrees(fsg::FeaturedSubgraph, T::DataType=eltype(graph(fsg.fg)); dir::Symbol=:out) = degrees(fsg.fg, T; dir=dir)[fsg.nodes] degree_matrix(fsg::FeaturedSubgraph, T::DataType=eltype(graph(fsg.fg)); dir::Symbol=:out) = degree_matrix(fsg.fg, T; dir=dir)[fsg.nodes, fsg.nodes] normalized_adjacency_matrix(fsg::FeaturedSubgraph, T::DataType=eltype(graph(fsg.fg)); selfloop::Bool=false) = normalized_adjacency_matrix(fsg.fg, T; selfloop=selfloop)[fsg.nodes, fsg.nodes] laplacian_matrix(fsg::FeaturedSubgraph, T::DataType=eltype(graph(fsg.fg)); dir::Symbol=:out) = laplacian_matrix(fsg.fg, T; dir=dir)[fsg.nodes, fsg.nodes] normalized_laplacian(fsg::FeaturedSubgraph, T::DataType=eltype(graph(fsg.fg)); dir::Symbol=:both, selfloop::Bool=false) = normalized_laplacian(fsg.fg, T; selfloop=selfloop)[fsg.nodes, fsg.nodes] scaled_laplacian(fsg::FeaturedSubgraph, T::DataType=eltype(graph(fsg.fg))) = scaled_laplacian(fsg.fg, T)[fsg.nodes, fsg.nodes] """ mask(fg, m) A syntax sugar for masking graph. Returns a `FeaturedSubgraph`. """ mask(fg::AbstractFeaturedGraph, m::AbstractVector) = subgraph(fg, m)
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
4136
orthogonal_random_features(nvertex::Int, dims::Vararg{Int}) = orthogonal_random_features(Float32, nvertex, dims...) orthogonal_random_features(::Type{T}, g, dims::Vararg{Int}) where {T} = orthogonal_random_features(T, nv(g), dims...) orthogonal_random_features(g, dims::Vararg{Int}) = orthogonal_random_features(float(eltype(g)), nv(g), dims...) function orthogonal_random_features(::Type{T}, nvertex::Int, dims::Vararg{Int}) where {T} N = length(dims) + 2 orf = Array{T,N}(undef, nvertex, nvertex, dims...) for cidx in CartesianIndices(dims) G = randn(T, nvertex, nvertex) A = qr(G) copyto!(view(orf, :, :, cidx), A.Q) end return orf end function laplacian_matrix(::Type{T}, g, dims::Vararg{Int}) where {T} L = laplacian_matrix(g, T) U = eigvecs(L) return repeat(U, outer=(1, 1, dims...)) end laplacian_matrix(g, dims::Vararg{Int}) = laplacian_matrix(float(eltype(g)), g, dims...) """ node_identifier([T], g, dims...; method=GraphSignals.orthogonal_random_features) Constructing node identifier for a graph `g` with additional dimensions `dims`. # Arguments - `T`: Element type of returning objects. - `g`: Data representing the graph topology. Possible type are - An adjacency matrix. - An adjacency list. - A Graphs' graph, i.e. `SimpleGraph`, `SimpleDiGraph` from Graphs, or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` from SimpleWeightedGraphs. - An `AbstractFeaturedGraph` object. - `dims`: Additional dimensions desired following after first two dimensions. - `method`: Available methods are `GraphSignals.orthogonal_random_features` and `GraphSignals.laplacian_matrix`. # Usage ```jldoctest julia> using GraphSignals julia> adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0]; julia> batch_size = 10 10 julia> node_id = node_identifier(adjm, batch_size; method=GraphSignals.orthogonal_random_features); julia> size(node_id) (4, 4, 10) ``` See also [`identifiers`](@ref) for node/edge identifiers. """ node_identifier(::Type{T}, g, dims...; method=orthogonal_random_features) where {T} = method(T, g, dims...) node_identifier(g, dims...; method=orthogonal_random_features) = method(float(eltype(g)), g, dims...) """ identifiers([T], g, dims...; method=orthogonal_random_features) Returns node identifier and edge identifier. # Arguments - `T`: Element type of returning objects. - `g`: Data representing the graph topology. Possible type are - An adjacency matrix. - An adjacency list. - A Graphs' graph, i.e. `SimpleGraph`, `SimpleDiGraph` from Graphs, or `SimpleWeightedGraph`, `SimpleWeightedDiGraph` from SimpleWeightedGraphs. - An `AbstractFeaturedGraph` object. - `dims`: Additional dimensions desired following after first two dimensions. - `method`: Available methods are `GraphSignals.orthogonal_random_features` and `GraphSignals.laplacian_matrix`. # Usage ```jldoctest julia> using GraphSignals julia> V, E = 4, 5 (4, 5) julia> batch_size = 10 10 julia> adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0]; julia> node_id, edge_token = identifiers(adjm, batch_size); julia> size(node_id) (8, 4, 10) julia> size(edge_id) (8, 10, 10) ``` See also [`node_identifier`](@ref) for generating node identifier only. """ function identifiers(::Type{T}, g, dims...; method=orthogonal_random_features) where {T} fg = FeaturedGraph(g) node_id = node_identifier(T, g, dims...; method=method) node_token = vcat(node_id, node_id) el = to_namedtuple(fg) xs_id = NNlib.gather(node_id, batched_index(el.xs, size(node_id)[end])) nbr_id = NNlib.gather(node_id, batched_index(el.nbrs, size(node_id)[end])) edge_token = vcat(xs_id, nbr_id) return node_token, edge_token end identifiers(g, dims...; method=orthogonal_random_features) = identifiers(float(eltype(g)), g, dims...; method=method) function batched_index(idx::AbstractVector, batch_size::Integer) b = copyto!(similar(idx, 1, batch_size), collect(1:batch_size)) return tuple.(idx, b) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
3911
@testset "dataloader" begin vdim = 3 edim = 5 gdim = 7 pdim = 11 V = 4 E = 5 obs_size = 100 batch_size = 10 nf = rand(vdim, V, obs_size) ef = rand(edim, E, obs_size) gf = rand(gdim, obs_size) pf = rand(pdim, V, obs_size) y = rand(30, obs_size) adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] @testset "numobs, getobs" begin fg = FeaturedGraph(adjm; nf=nf, ef=ef, gf=gf, pf=pf) @test numobs(fg) == obs_size @test getobs(fg) == fg for idx in (2, 2:5, [1, 3, 5]) idxed_fg = getobs(fg, idx) @test graph(idxed_fg) == graph(fg) @test node_feature(idxed_fg) == node_feature(fg)[:, :, idx] @test edge_feature(idxed_fg) == edge_feature(fg)[:, :, idx] @test global_feature(idxed_fg) == global_feature(fg)[:, idx] @test positional_feature(idxed_fg) == positional_feature(fg)[:, :, idx] end fg = FeaturedGraph(adjm; nf=nf, ef=ef) @test numobs(fg) == obs_size @test getobs(fg) == fg for idx in (2, 2:5, [1, 3, 5]) idxed_fg = getobs(fg, idx) @test graph(idxed_fg) == graph(fg) @test node_feature(idxed_fg) == node_feature(fg)[:, :, idx] @test edge_feature(idxed_fg) == edge_feature(fg)[:, :, idx] @test global_feature(idxed_fg) == global_feature(fg) @test positional_feature(idxed_fg) == positional_feature(fg) end fg = subgraph(FeaturedGraph(adjm; nf=nf, ef=ef), [1, 3, 4, 5]) @test numobs(fg) == obs_size @test getobs(fg) == fg for idx in (2, 2:5, [1, 3, 5]) idxed_fg = getobs(fg, idx) @test graph(idxed_fg) == graph(fg) @test node_feature(idxed_fg) == node_feature(fg)[:, :, idx] @test edge_feature(idxed_fg) == edge_feature(fg)[:, :, idx] @test global_feature(idxed_fg) == global_feature(fg) @test positional_feature(idxed_fg) == positional_feature(fg) end end @testset "shuffleobs" begin fg = FeaturedGraph(adjm; nf=nf, ef=ef, gf=gf, pf=pf) shuffled_obs = shuffleobs(fg) @test shuffled_obs isa MLUtils.ObsView @test shuffled_obs.data isa FeaturedGraph end @testset "splitobs" begin fg = FeaturedGraph(adjm; nf=nf, ef=ef, gf=gf, pf=pf) train, test = splitobs(fg, at=0.7) @test train isa MLUtils.ObsView @test test isa MLUtils.ObsView @test length(train) == 0.7 * obs_size @test length(test) == 0.3 * obs_size end @testset "DataLoader" begin fg = FeaturedGraph(adjm; nf=nf, ef=ef, gf=gf, pf=pf) loader = DataLoader((fg, y), batchsize = batch_size) @test length(loader) == obs_size ÷ batch_size obs, next = iterate(loader) batched_x, batched_y = obs @test batched_x isa FeaturedGraph @test node_feature(batched_x) == node_feature(fg)[:, :, 1:batch_size] @test edge_feature(batched_x) == edge_feature(fg)[:, :, 1:batch_size] @test global_feature(batched_x) == global_feature(fg)[:, 1:batch_size] @test positional_feature(batched_x) == positional_feature(fg)[:, :, 1:batch_size] @test batched_y == y[:, 1:batch_size] obs, next = iterate(loader, next) batched_x, batched_y = obs @test batched_x isa FeaturedGraph @test node_feature(batched_x) == node_feature(fg)[:, :, (batch_size+1):2batch_size] @test edge_feature(batched_x) == edge_feature(fg)[:, :, (batch_size+1):2batch_size] @test global_feature(batched_x) == global_feature(fg)[:, (batch_size+1):2batch_size] @test positional_feature(batched_x) == positional_feature(fg)[:, :, (batch_size+1):2batch_size] @test batched_y == y[:, (batch_size+1):2batch_size] end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git