licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
4115
@testset "featuredgraph" begin V = 4 E = 5 vdim = 3 edim = 5 gdim = 7 pdim = 11 nf = rand(vdim, V) ef = rand(edim, E) gf = rand(gdim) pf = rand(pdim, V) @testset "features" begin adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] fg = FeaturedGraph(adjm; nf=nf, ef=ef ,gf=gf, pf=pf) @test has_graph(fg) @test has_node_feature(fg) @test has_edge_feature(fg) @test has_global_feature(fg) @test has_positional_feature(fg) @test graph(fg).S == adjm @test node_feature(fg) == nf @test edge_feature(fg) == ef @test global_feature(fg) == gf @test positional_feature(fg) == pf @test GraphSignals.nf_dims_repr(fg.nf) == vdim @test GraphSignals.ef_dims_repr(fg.ef) == edim @test GraphSignals.gf_dims_repr(fg.gf) == gdim @test GraphSignals.pf_dims_repr(fg.pf) == pdim fg2 = FeaturedGraph(fg) @test GraphSignals.adjacency_matrix(fg2) == adjm @test node_feature(fg2) == nf @test edge_feature(fg2) == ef @test global_feature(fg2) == gf new_nf = rand(vdim, V) new_fg = ConcreteFeaturedGraph(fg, nf=new_nf) @test node_feature(new_fg) == new_nf @test edge_feature(new_fg) == ef @test global_feature(new_fg) == gf @test positional_feature(new_fg) == pf # Test with transposed features nf_t = rand(V, vdim)' fg = FeaturedGraph(adjm; nf=nf_t) @test has_graph(fg) @test has_node_feature(fg) @test !has_edge_feature(fg) @test !has_global_feature(fg) @test !has_positional_feature(fg) @test graph(fg).S == adjm @test node_feature(fg) == nf_t @test isnothing(edge_feature(fg)) @test isnothing(global_feature(fg)) @test isnothing(positional_feature(fg)) end @testset "setting properties" begin adjm1 = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] adjm2 = [0 1 0 1; 1 0 1 1; 0 1 0 1; 1 1 1 0] fg = FeaturedGraph(adjm1; nf=nf, ef=ef, gf=gf, pf=pf) fg.graph.S .= adjm2 @test fg.graph.S == adjm2 @test_throws DimensionMismatch fg.graph = [0 1; 0 1] nf_ = rand(10, V) fg.nf = nf_ @test node_feature(fg) == nf_ @test_throws DimensionMismatch fg.nf = rand(10, 11) ef_ = rand(10, E) fg.ef = ef_ @test edge_feature(fg) == ef_ @test_throws DimensionMismatch fg.ef = rand(10, 11) pf_ = rand(10, V) fg.pf = pf_ @test positional_feature(fg) == pf_ @test_throws DimensionMismatch fg.pf = rand(10, 11) end @testset "graph properties" begin adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] fg = FeaturedGraph(adjm) @test vertices(fg) == 1:V @test edges(fg) isa GraphSignals.EdgeIter @test neighbors(fg) == [2, 3, 4, 1, 3, 1, 2, 4, 1, 3] @test incident_edges(fg) == fg |> graph |> GraphSignals.edgevals el = GraphSignals.to_namedtuple(fg) @test el.N == V @test el.E == E @test el.es == [1, 2, 4, 1, 3, 2, 3, 5, 4, 5] @test el.nbrs == [2, 3, 4, 1, 3, 1, 2, 4, 1, 3] @test el.xs == [1, 1, 1, 2, 2, 3, 3, 3, 4, 4] end @testset "generate coordinates" begin adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] fg = FeaturedGraph(adjm; nf=nf, pf=:auto) @test size(positional_feature(fg)) == (1, V) end @testset "random subgraph" begin adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] fg = FeaturedGraph(adjm) rand_subgraph = sample(fg, 3) @test rand_subgraph isa FeaturedSubgraph @test length(rand_subgraph.nodes) == 3 @test_throws ErrorException sample(fg, 5) end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
3155
@testset "graph" begin V = 6 @testset "undirected graph" begin E = 7 adjm = [0 1 0 1 0 1; 1 0 1 0 0 0; 0 1 0 1 1 0; 1 0 1 0 0 0; 0 0 1 0 1 0; 1 0 0 0 0 0] adjl = [ [2, 4, 6], [1, 3], [2, 4, 5], [1, 3], [3, 5], [1], ] @testset "constructor" begin ug = SimpleGraph(V) add_edge!(ug, 1, 2); add_edge!(ug, 1, 4); add_edge!(ug, 1, 6) add_edge!(ug, 2, 3); add_edge!(ug, 3, 4); add_edge!(ug, 3, 5) add_edge!(ug, 5, 5) wug = SimpleWeightedGraph(V) add_edge!(wug, 1, 2, 2); add_edge!(wug, 1, 4, 2); add_edge!(wug, 1, 6, 1) add_edge!(wug, 2, 3, 5); add_edge!(wug, 3, 4, 2); add_edge!(wug, 3, 5, 2) add_edge!(wug, 5, 5, 3) for g in [adjm, adjl, ug, wug] fg = FeaturedGraph(g) @test adjacency_list(fg) == adjl @test nv(fg) == V @test ne(fg) == E @test !is_directed(fg) @test has_edge(fg, 1, 2) @test neighbors(fg, 1) == adjl[1] end end @testset "conversions" begin for g in [adjm, adjl] @test adjacency_list(g) == adjl @test nv(g) == V @test ne(g) == E @test !is_directed(g) end end end @testset "directed graph" begin E = 6 adjm = [0 0 0 0 0 0; # asymmetric 0 0 0 0 0 0; 1 1 0 0 0 0; 0 0 1 0 0 0; 0 1 1 0 0 0; 1 0 0 0 0 0] adjl = Vector{Int64}[ [3, 6], [3, 5], [4, 5], [], [], [] ] @testset "constructor" begin dg = SimpleDiGraph(V) add_edge!(dg, 1, 3); add_edge!(dg, 2, 3); add_edge!(dg, 1, 6) add_edge!(dg, 2, 5); add_edge!(dg, 3, 4); add_edge!(dg, 3, 5) wdg = SimpleWeightedDiGraph(V) add_edge!(wdg, 1, 3, 2); add_edge!(wdg, 2, 3, 2); add_edge!(wdg, 1, 6, 1) add_edge!(wdg, 2, 5, -2); add_edge!(wdg, 3, 4, -2); add_edge!(wdg, 3, 5, -1) for g in [adjm, adjl, dg, wdg] fg = FeaturedGraph(g) @test adjacency_list(fg) == adjl @test nv(fg) == V @test ne(fg) == E @test is_directed(fg) @test has_edge(fg, 1, 3) @test neighbors(fg, 1) == adjl[1] end end end @testset "remove self loops" begin adjl = [ [1, 2, 3], [2, 3], [1, 2], ] adjl_noselfloops = [ [2, 3], [3], [1, 2], ] new_adjl = GraphSignals.remove_self_loops(adjl) @test new_adjl == adjl_noselfloops GraphSignals.remove_self_loops!(adjl) @test adjl == adjl_noselfloops end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
551
@testset "graphdomains" begin T = Float32 d = GraphSignals.NullDomain() @test isnothing(GraphSignals.domain(d)) @test isnothing(positional_feature(d)) @test !has_positional_feature(d) @test GraphSignals.pf_dims_repr(d) == 0 GraphSignals.check_num_nodes(0, d) pf = rand(T, 2, 3, 4) d = GraphSignals.NodeDomain(pf) @test GraphSignals.domain(d) == pf @test positional_feature(d) == pf @test has_positional_feature(d) @test GraphSignals.pf_dims_repr(d) == 2 GraphSignals.check_num_nodes(3, d) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1432
@testset "graphsignals" begin T = Float32 dim = 2 num = 3 batch_size = 4 s = GraphSignals.NullGraphSignal() @test isnothing(GraphSignals.signal(s)) @test isnothing(node_feature(s)) @test isnothing(node_feature(s)) @test isnothing(node_feature(s)) @test !has_node_feature(s) @test !has_edge_feature(s) @test !has_global_feature(s) @test GraphSignals.nf_dims_repr(s) == 0 @test GraphSignals.ef_dims_repr(s) == 0 @test GraphSignals.gf_dims_repr(s) == 0 GraphSignals.check_num_nodes(0, s) GraphSignals.check_num_edges(0, s) nf = rand(T, dim, num, batch_size) s = GraphSignals.NodeSignal(nf) @test GraphSignals.signal(s) == nf @test node_feature(s) == nf @test has_node_feature(s) @test GraphSignals.nf_dims_repr(s) == dim GraphSignals.check_num_nodes(3, s) # permutation equivariant ef = rand(T, dim, num, batch_size) s = GraphSignals.EdgeSignal(ef) @test GraphSignals.signal(s) == ef @test edge_feature(s) == ef @test has_edge_feature(s) @test GraphSignals.ef_dims_repr(s) == dim GraphSignals.check_num_edges(3, s) # permutation equivariant gf = rand(T, dim, batch_size) s = GraphSignals.GlobalSignal(gf) @test GraphSignals.signal(s) == gf @test global_feature(s) == gf @test has_global_feature(s) @test GraphSignals.gf_dims_repr(s) == dim # permutation invariant end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
9604
@testset "linalg" begin in_channel = 3 out_channel = 5 N = 6 adjs = Dict( :simple => [0. 1. 1. 0. 0. 0.; 1. 0. 1. 0. 1. 0.; 1. 1. 0. 1. 0. 1.; 0. 0. 1. 0. 0. 0.; 0. 1. 0. 0. 0. 0.; 0. 0. 1. 0. 0. 0.], :weight => [0. 2. 2. 0. 0. 0.; 2. 0. 1. 0. 2. 0.; 2. 1. 0. 5. 0. 2.; 0. 0. 5. 0. 0. 0.; 0. 2. 0. 0. 0. 0.; 0. 0. 2. 0. 0. 0.], ) degs = Dict( :simple => [2. 0. 0. 0. 0. 0.; 0. 3. 0. 0. 0. 0.; 0. 0. 4. 0. 0. 0.; 0. 0. 0. 1. 0. 0.; 0. 0. 0. 0. 1. 0.; 0. 0. 0. 0. 0. 1.], :weight => [4. 0. 0. 0. 0. 0.; 0. 5. 0. 0. 0. 0.; 0. 0. 10. 0. 0. 0.; 0. 0. 0. 5. 0. 0.; 0. 0. 0. 0. 2. 0.; 0. 0. 0. 0. 0. 2.] ) laps = Dict( :simple => [2. -1. -1. 0. 0. 0.; -1. 3. -1. 0. -1. 0.; -1. -1. 4. -1. 0. -1.; 0. 0. -1. 1. 0. 0.; 0. -1. 0. 0. 1. 0.; 0. 0. -1. 0. 0. 1.], :weight => [4. -2. -2. 0. 0. 0.; -2. 5. -1. 0. -2. 0.; -2. -1. 10. -5. 0. -2.; 0. 0. -5. 5. 0. 0.; 0. -2. 0. 0. 2. 0.; 0. 0. -2. 0. 0. 2.], ) norm_laps = Dict( :simple => [1. -1/sqrt(2*3) -1/sqrt(2*4) 0. 0. 0.; -1/sqrt(2*3) 1. -1/sqrt(3*4) 0. -1/sqrt(3) 0.; -1/sqrt(2*4) -1/sqrt(3*4) 1. -1/2 0. -1/2; 0. 0. -1/2 1. 0. 0.; 0. -1/sqrt(3) 0. 0. 1. 0.; 0. 0. -1/2 0. 0. 1.], :weight => [1. -2/sqrt(4*5) -2/sqrt(4*10) 0. 0. 0.; -2/sqrt(4*5) 1. -1/sqrt(5*10) 0. -2/sqrt(2*5) 0.; -2/sqrt(4*10) -1/sqrt(5*10) 1. -5/sqrt(5*10) 0. -2/sqrt(2*10); 0. 0. -5/sqrt(5*10) 1. 0. 0.; 0. -2/sqrt(2*5) 0. 0. 1. 0.; 0. 0. -2/sqrt(2*10) 0. 0. 1.] ) @testset "undirected graph" begin adjm = [0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0] deg = [2 0 0 0; 0 2 0 0; 0 0 2 0; 0 0 0 2] isd = [√2, √2, √2, √2] lap = [2 -1 0 -1; -1 2 -1 0; 0 -1 2 -1; -1 0 -1 2] norm_lap = [1. -.5 0. -.5; -.5 1. -.5 0.; 0. -.5 1. -.5; -.5 0. -.5 1.] scaled_lap = [0 -0.5 0 -0.5; -0.5 0 -0.5 -0; 0 -0.5 0 -0.5; -0.5 0 -0.5 0] rw_lap = [1 -.5 0 -.5; -.5 1 -.5 0; 0 -.5 1 -.5; -.5 0 -.5 1] ugs = Dict( :simple => SimpleGraph(N), :weight => SimpleWeightedGraph(N), ) add_edge!(ugs[:simple], 1, 2); add_edge!(ugs[:simple], 1, 3); add_edge!(ugs[:simple], 2, 3); add_edge!(ugs[:simple], 3, 4) add_edge!(ugs[:simple], 2, 5); add_edge!(ugs[:simple], 3, 6) add_edge!(ugs[:weight], 1, 2, 2); add_edge!(ugs[:weight], 1, 3, 2) add_edge!(ugs[:weight], 2, 3, 1); add_edge!(ugs[:weight], 3, 4, 5) add_edge!(ugs[:weight], 2, 5, 2); add_edge!(ugs[:weight], 3, 6, 2) fg = FeaturedGraph(adjm) @test matrixtype(fg) == :adjm @test repr(fg) == "FeaturedGraph:\n\tUndirected graph with (#V=4, #E=4) in adjacency matrix" @test GraphSignals.adjacency_matrix(adjm, Int64) === adjm for T in [Int8, Int16, Int32, Int64, Int128, Float16, Float32, Float64] for g in [adjm, sparse(adjm), fg] @test GraphSignals.degrees(g; dir=:both) == [2, 2, 2, 2] D = GraphSignals.degree_matrix(g, T, dir=:out) @test D == T.(deg) @test GraphSignals.degree_matrix(g, T; dir=:in) == D @test GraphSignals.degree_matrix(g, T; dir=:both) == D @test eltype(D) == T @test GraphSignals.adjacency_matrix(g) == adjm L = Graphs.laplacian_matrix(g, T) @test L == T.(lap) @test eltype(L) == T end for kind in [:simple, :weight] @test GraphSignals.degrees(ugs[kind], T, dir=:out) == T.(diag(degs[kind])) D = GraphSignals.degree_matrix(ugs[kind], T, dir=:out) @test D == T.(degs[kind]) @test GraphSignals.degree_matrix(ugs[kind], T; dir=:in) == D @test GraphSignals.degree_matrix(ugs[kind], T; dir=:both) == D @test eltype(D) == T @test Graphs.laplacian_matrix(ugs[kind], T) == T.(laps[kind]) end for g in [adjm, sparse(adjm)] SL = GraphSignals.signless_laplacian(g, T) @test SL == T.(adjm + deg) @test eltype(SL) == T end end fg = FeaturedGraph(Float64.(adjm)) @test matrixtype(fg) == :adjm for T in [Float16, Float32, Float64] for g in [adjm, sparse(adjm), fg] NA = GraphSignals.normalized_adjacency_matrix(g, T) @test NA ≈ T.(I - norm_lap) @test eltype(NA) == T NA = GraphSignals.normalized_adjacency_matrix(g, T, selfloop=true) @test eltype(NA) == T NL = GraphSignals.normalized_laplacian(g, T) @test NL ≈ T.(norm_lap) @test eltype(NL) == T SL = GraphSignals.scaled_laplacian(g, T) @test SL ≈ T.(scaled_lap) @test eltype(SL) == T end for kind in [:simple, :weight] NA = GraphSignals.normalized_adjacency_matrix(ugs[kind], T) @test NA ≈ T.(I - norm_laps[kind]) @test eltype(NA) == T NL = normalized_laplacian(ugs[kind], T) @test NL ≈ T.(norm_laps[kind]) @test eltype(NL) == T end RW = GraphSignals.random_walk_laplacian(adjm, T) @test RW == T.(rw_lap) @test eltype(RW) == T RW = GraphSignals.random_walk_laplacian(sparse(adjm), T) @test RW == T.(rw_lap) @test eltype(RW) == T end end @testset "directed" begin adjm = [0 2 0 3; 0 0 4 0; 2 0 0 1; 0 0 0 0] degs = Dict( :out => diagm(0=>[2, 2, 4, 4]), :in => diagm(0=>[5, 4, 3, 0]), :both => diagm(0=>[7, 6, 7, 4]), ) laps = Dict( :out => degs[:out] - adjm, :in => degs[:in] - adjm, :both => degs[:both] - adjm, ) norm_laps = Dict( :out => I - diagm(0=>[1/2, 1/2, 1/4, 1/4])*adjm, :in => I - diagm(0=>[1/5, 1/4, 1/3, 0])*adjm, ) sig_laps = Dict( :out => degs[:out] + adjm, :in => degs[:in] + adjm, :both => degs[:both] + adjm, ) rw_laps = Dict( :out => I - diagm(0=>[1/2, 1/2, 1/4, 1/4]) * adjm, :in => I - diagm(0=>[1/5, 1/4, 1/3, 0]) * adjm, :both => I - diagm(0=>[1/7, 1/6, 1/7, 1/4]) * adjm, ) dgs = Dict( :simple => SimpleDiGraph(N), :weight => SimpleWeightedDiGraph(N), ) add_edge!(dgs[:simple], 1, 3); add_edge!(dgs[:simple], 2, 3) add_edge!(dgs[:simple], 1, 6); add_edge!(dgs[:simple], 2, 5) add_edge!(dgs[:simple], 3, 4); add_edge!(dgs[:simple], 3, 5) add_edge!(dgs[:weight], 1, 3, 2); add_edge!(dgs[:weight], 2, 3, 2) add_edge!(dgs[:weight], 1, 6, 1); add_edge!(dgs[:weight], 2, 5, -2) add_edge!(dgs[:weight], 3, 4, -2); add_edge!(dgs[:weight], 3, 5, -1) for T in [Int8, Int16, Int32, Int64, Int128, Float16, Float32, Float64] for g in [adjm, sparse(adjm)] for dir in [:out, :in, :both] D = GraphSignals.degree_matrix(g, T, dir=dir) @test D == T.(degs[dir]) @test eltype(D) == T L = Graphs.laplacian_matrix(g, T, dir=dir) @test L == T.(laps[dir]) @test eltype(L) == T SL = GraphSignals.signless_laplacian(g, T, dir=dir) @test SL == T.(sig_laps[dir]) @test eltype(SL) == T end @test_throws ArgumentError GraphSignals.degree_matrix(g, dir=:other) end end for T in [Float32, Float64] for g in [adjm, sparse(adjm)] for dir in [:out, :in] L = normalized_laplacian(g, T, dir=dir) @test L == T.(norm_laps[dir]) @test eltype(L) == T end for dir in [:out, :in, :both] RW = GraphSignals.random_walk_laplacian(g, T, dir=dir) @test collect(RW) ≈ T.(rw_laps[dir]) @test eltype(RW) == T end end end end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1224
@testset "neighbor_graphs" begin T = Float32 V = 100 vdim = 10 batch_size = 10 k = 5 @testset "Euclidean distance" begin nf = rand(T, vdim, V) fg = kneighbors_graph(nf, k; include_self=false) @test fg isa FeaturedGraph @test nv(fg) == V @test ne(fg) == V*k @test node_feature(fg) == nf end @testset "Minkowski distance" begin nf = rand(T, vdim, V) fg = kneighbors_graph(nf, k, Minkowski(3); include_self=true) @test fg isa FeaturedGraph @test nv(fg) == V @test ne(fg) == V*k @test node_feature(fg) == nf end @testset "Jaccard distance" begin nf = rand(T[0, 1], vdim, V) fg = kneighbors_graph(nf, k, Jaccard(); include_self=true) @test fg isa FeaturedGraph @test nv(fg) == V @test ne(fg) == V*k @test node_feature(fg) == nf end @testset "batch" begin nf = rand(T, vdim, V, batch_size) fg = kneighbors_graph(nf, k; include_self=false) @test fg isa FeaturedGraph @test nv(fg) == V @test ne(fg) == V*k @test node_feature(fg) == reshape(mean(nf, dims=3), size(nf)[1:2]...) end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
286
@testset "positional" begin dims = (3, 4, 5) N = length(dims) A = rand(dims...) coord = GraphSignals.generate_grid(A) @test size(coord) == (N, dims...) coord = GraphSignals.generate_grid(A, with_batch=true) @test size(coord) == (N-1, dims[1:end-1]...) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
752
@testset "random" begin adjm = [0 1 0 1 1; # symmetric 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0] start = 1 fg = FeaturedGraph(adjm) @test random_walk(adjm, start) ⊆ [2, 4, 5] @test random_walk(fg, start) ⊆ [2, 4, 5] @test random_walk(adjm[:, start]) ⊆ [2, 4, 5] markov_chain = random_walk(fg, start, 5) @test length(markov_chain) == 5 @test Set(markov_chain) ⊆ collect(1:5) @test neighbor_sample(adjm, start) ⊆ [2, 4, 5] @test neighbor_sample(fg, start) ⊆ [2, 4, 5] @test neighbor_sample(adjm[:, start]) ⊆ [2, 4, 5] neighbors = neighbor_sample(fg, start, 5, replace=true) @test length(neighbors) == 5 @test Set(neighbors) ⊆ [2, 4, 5] end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
765
using GraphSignals using CUDA using Distances using Flux using FillArrays using Graphs using LinearAlgebra using MLUtils using NNlib using SimpleWeightedGraphs using SparseArrays using StatsBase using Test CUDA.allowscalar(false) include("test_utils.jl") cuda_tests = [ "cuda/linalg", "cuda/featuredgraph", "cuda/sparsematrix", "cuda/sparsegraph", "cuda/graphdomain", ] tests = [ "positional", "graph", "linalg", "sparsegraph", "graphdomain", "graphsignal", "featuredgraph", "subgraph", "random", "neighbor_graphs", "dataloader", "tokenizer", ] if CUDA.functional() append!(tests, cuda_tests) end @testset "GraphSignals.jl" begin for t in tests include("$(t).jl") end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
7822
@testset "SparseGraph" begin T = Float32 @testset "undirected graph" begin # undirected graph with self loop V = 5 E = 5 adjm = [0 1 0 1 1; 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0] adjl = Vector{Int64}[ [2, 4, 5], [1], [3], [1, 5], [1, 4] ] @testset "constructor" begin ug = SimpleGraph(V) add_edge!(ug, 1, 2); add_edge!(ug, 1, 4); add_edge!(ug, 1, 5) add_edge!(ug, 3, 3); add_edge!(ug, 4, 5) wug = SimpleWeightedGraph(V) add_edge!(wug, 1, 2, 2); add_edge!(wug, 1, 4, 2); add_edge!(wug, 1, 5, 1) add_edge!(wug, 3, 3, 5); add_edge!(wug, 4, 5, 2) for g in [adjm, adjl, ug, wug] sg = SparseGraph(g, false, T) @test (sg.S .!= 0) == adjm @test sg.edges == [1, 3, 4, 1, 2, 3, 5, 4, 5] @test sg.E == E @test eltype(sg) == T end end @testset "conversions" begin sg = SparseGraph(adjm, false, T) @test GraphSignals.adjacency_matrix(sg) == adjm @test collect(sg) == adjm @test SparseArrays.sparse(sg) == adjm @test adjacency_list(sg) == adjl end sg = SparseGraph(adjm, false, T) @test nv(sg) == V @test ne(sg) == E @test !Graphs.is_directed(sg) @test !Graphs.is_directed(typeof(sg)) @test repr(sg) == "SparseGraph{Float32}(#V=5, #E=5)" @test Graphs.has_self_loops(sg) @test !Graphs.has_self_loops(SparseGraph([0 1; 1 0], false, T)) @test !GraphSignals.has_all_self_loops(sg) @test GraphSignals.has_all_self_loops(SparseGraph([1 1; 1 1], false, T)) @test sg == SparseGraph(adjm, false, T) @test graph(sg) == sg @test Graphs.has_vertex(sg, 3) @test Graphs.vertices(sg) == 1:V @test Graphs.edgetype(sg) == typeof((1, 5)) @test Graphs.has_edge(sg, 1, 5) @test edge_index(sg, 1, 5) == 4 @test sg[1, 5] == 1 @test sg[CartesianIndex((1, 5))] == 1 @test length(edges(sg)) == 9 el = GraphSignals.to_namedtuple(sg) @test el.N == V @test el.E == E @test el.es == [1, 3, 4, 1, 2, 3, 5, 4, 5] @test el.nbrs == [2, 4, 5, 1, 3, 1, 5, 1, 4] @test el.xs == [1, 1, 1, 2, 3, 4, 4, 5, 5] @test GraphSignals.edgevals(sg) == sg.edges @test GraphSignals.edgevals(sg, 1) == sg.edges[1:3] @test GraphSignals.edgevals(sg, 1:2) == sg.edges[1:4] # graph without edges sg_no_edge = SparseGraph(zeros(V, V), false, T) es, nbrs, xs = collect(edges(sg_no_edge)) @test es == [] @test nbrs == [] @test xs == [] @test Graphs.neighbors(sg, 1) == adjl[1] @test Graphs.neighbors(sg, 3) == adjl[3] @test incident_edges(sg, 1) == [1, 3, 4] @test incident_edges(sg, 3) == [2] @test GraphSignals.dsts(sg) == [1, 3, 1, 1, 4] @test GraphSignals.srcs(sg) == [2, 3, 4, 5, 5] @test outneighbors(sg) == [[2, 4, 5], [1], [3], [1, 5], [1, 4]] @test inneighbors(sg) == [[2, 4, 5], [1], [3], [1, 5], [1, 4]] @testset "subgraph" begin nodes = [1, 2, 4, 5] ss = subgraph(sg, nodes) @test nv(ss) == length(nodes) @test_skip ne(ss) == 4 @test !Graphs.is_directed(ss) @test !Graphs.is_directed(typeof(ss)) @test eltype(sg) == T @test repr(ss) == "subgraph of SparseGraph{Float32}(#V=5, #E=5) with nodes=[1, 2, 4, 5]" @test !Graphs.has_self_loops(ss) @test !GraphSignals.has_all_self_loops(ss) @test sparse(ss) == [0 1 1 1; 1 0 0 0; 1 0 0 1; 1 0 1 0] @test !Graphs.has_vertex(ss, 3) @test Graphs.vertices(ss) == nodes @test Graphs.edgetype(ss) == typeof((1, 5)) @test Graphs.has_edge(ss, 1, 5) @test_skip edge_index(ss, 1, 5) == 4 @test_skip ss[1, 5] == 1 @test_skip ss[CartesianIndex((1, 5))] == 1 @test subgraph(ss, [1, 4, 5]) == subgraph(sg, [1, 4, 5]) end end @testset "directed graph" begin # directed graph with self loop V = 5 E = 7 adjm = [0 0 1 0 1; 1 0 0 0 0; 0 0 0 0 0; 0 0 1 1 1; 1 0 0 0 0] adjl = Vector{Int64}[ [2, 5], [], [1, 4], [4], [1, 4], ] @testset "constructor" begin dg = SimpleDiGraph(V) add_edge!(dg, 1, 2); add_edge!(dg, 1, 5); add_edge!(dg, 3, 1) add_edge!(dg, 3, 4); add_edge!(dg, 4, 4); add_edge!(dg, 5, 1) add_edge!(dg, 5, 4) wdg = SimpleWeightedDiGraph(V) add_edge!(wdg, 1, 2, 2); add_edge!(wdg, 1, 5, 2); add_edge!(wdg, 3, 1, 1) add_edge!(wdg, 3, 4, 5); add_edge!(wdg, 4, 4, 2); add_edge!(wdg, 5, 1, 2) add_edge!(wdg, 5, 4, 4) for g in [adjm, adjl, dg, wdg] sg = SparseGraph(g, true, T) @test (sg.S .!= 0) == adjm @test sg.edges == collect(1:7) @test sg.E == E @test eltype(sg) == T end end @testset "conversions" begin sg = SparseGraph(adjm, true, T) @test GraphSignals.adjacency_matrix(sg) == adjm @test collect(sg) == adjm @test SparseArrays.sparse(sg) == adjm @test adjacency_list(sg) == adjl end sg = SparseGraph(adjm, true, T) @test nv(sg) == V @test ne(sg) == E @test Graphs.is_directed(sg) @test Graphs.is_directed(typeof(sg)) @test repr(sg) == "SparseGraph{Float32}(#V=5, #E=7)" @test Graphs.has_self_loops(sg) @test !GraphSignals.has_all_self_loops(sg) @test sg == SparseGraph(adjm, true, T) @test Graphs.has_vertex(sg, 3) @test Graphs.vertices(sg) == 1:V @test Graphs.edgetype(sg) == typeof((3, 1)) @test Graphs.has_edge(sg, 3, 1) @test edge_index(sg, 3, 1) == 3 @test sg[1, 3] == 1 @test sg[CartesianIndex((1, 3))] == 1 @test length(edges(sg)) == E es, nbrs, xs = collect(edges(sg)) @test es == collect(1:7) @test nbrs == [2, 5, 1, 4, 4, 1, 4] @test xs == [1, 1, 3, 3, 4, 5, 5] @test GraphSignals.edgevals(sg) == sg.edges @test GraphSignals.edgevals(sg, 1) == sg.edges[1:2] @test GraphSignals.edgevals(sg, 1:2) == sg.edges[1:2] # graph without edges sg_no_edge = SparseGraph(zeros(V, V), true, T) es, nbrs, xs = collect(edges(sg_no_edge)) @test es == [] @test nbrs == [] @test xs == [] @test Graphs.neighbors(sg, 1) == adjl[1] @test Graphs.neighbors(sg, 2) == adjl[2] @test_throws ArgumentError Graphs.neighbors(sg, 2, dir=:none) @test incident_edges(sg, 1, dir=:out) == [1, 2] @test incident_edges(sg, 1, dir=:in) == [3, 6] @test sort!(incident_edges(sg, 1, dir=:both)) == [1, 2, 3, 6] @test_throws ArgumentError incident_edges(sg, 2, dir=:none) @test GraphSignals.dsts(sg) == [2, 5, 1, 4, 4, 1, 4] @test GraphSignals.srcs(sg) == [1, 1, 3, 3, 4, 5, 5] @test outneighbors(sg) == [[2, 5], [], [1, 4], [4], [1, 4]] @test inneighbors(sg) == [[3, 5], [1], [], [3, 4, 5], [1]] end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
4683
@testset "subgraph" begin T = Float64 V = 5 vdim = 3 nf = rand(vdim, V) gf = rand(7) nodes = [1,2,3,5] @testset "undirected graph" begin E = 5 ef = rand(5, E) adjm = T[0 1 0 1 0; # symmetric 1 0 1 0 0; 0 1 0 1 0; 1 0 1 0 0; 0 0 0 0 1] fg = FeaturedGraph(adjm, nf=nf, ef=ef, gf=gf) subg = FeaturedSubgraph(fg, nodes) @test graph(subg) === graph(fg) @test subgraph(fg, nodes) == subg @test is_directed(subg) == is_directed(fg) @test adjacency_matrix(subg) == view(adjm, nodes, nodes) @test adjacency_matrix(subg) isa SubArray @test node_feature(subg) == nf @test edge_feature(subg) == ef @test global_feature(subg) == gf new_nf = rand(vdim, V) new_subg = ConcreteFeaturedGraph(subg, nf=new_nf) @test node_feature(new_subg) == new_nf @test edge_feature(new_subg) == ef @test global_feature(new_subg) == gf @test vertices(subg) == nodes @test edges(subg) == [1,2,5] @test neighbors(subg) == [2, 4, 1, 3, 2, 4, 5] @test incident_edges(subg) == [1, 3, 1, 2, 2, 4, 5] @test GraphSignals.degrees(subg) == [2, 2, 2, 1] @test GraphSignals.degree_matrix(subg) == diagm([2, 2, 2, 1]) @test GraphSignals.normalized_adjacency_matrix(subg) ≈ [0 .5 0 0; .5 0 .5 0; 0 .5 0 0; 0 0 0 1] @test GraphSignals.laplacian_matrix(subg) == [2 -1 0 0; -1 2 -1 0; 0 -1 2 0; 0 0 0 0] @test GraphSignals.normalized_laplacian(subg) ≈ [1 -.5 0 0; -.5 1 -.5 0; 0 -.5 1 0; 0 0 0 0] @test GraphSignals.scaled_laplacian(subg) ≈ [0 -.5 0 0; -.5 0 -.5 0; 0 -.5 0 0; 0 0 0 -1] rand_subgraph = sample(subg, 3) @test rand_subgraph isa FeaturedSubgraph @test length(rand_subgraph.nodes) == 3 @test rand_subgraph.nodes ⊆ subg.nodes end @testset "directed graph" begin E = 16 ef = rand(5, E) adjm = [1 1 0 1 0; # asymmetric 1 1 1 0 0; 0 1 1 1 1; 1 0 1 1 0; 1 0 1 0 1] fg = FeaturedGraph(adjm, nf=nf, ef=ef, gf=gf) subg = FeaturedSubgraph(fg, nodes) @test graph(subg) === graph(fg) @test subgraph(fg, nodes) == subg @test is_directed(subg) == is_directed(fg) @test adjacency_matrix(subg) == view(adjm, nodes, nodes) @test adjacency_matrix(subg) isa SubArray @test node_feature(subg) == nf @test edge_feature(subg) == ef @test global_feature(subg) == gf @test vertices(subg) == nodes @test edges(subg) == [1,2,4,5,6,7,8,9,11,15,16] @test neighbors(subg) == [1, 2, 4, 5, 1, 2, 3, 2, 3, 4, 5, 3, 5] @test incident_edges(subg) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16] rand_subgraph = sample(subg, 3) @test rand_subgraph isa FeaturedSubgraph @test length(rand_subgraph.nodes) == 3 @test rand_subgraph.nodes ⊆ subg.nodes end @testset "mask" begin adj1 = [0 1 0 1; # symmetric 1 0 1 0; 0 1 0 1; 1 0 1 0] adj2 = [1 1 0 1 0; # asymmetric 1 1 1 0 0; 0 1 1 1 1; 1 0 1 1 0; 1 0 1 0 1] mask1 = [2, 3, 4] mask2 = [1, 2, 3, 4] fg1 = FeaturedGraph(adj1) fg2 = FeaturedGraph(adj2) gm1 = mask(fg1, mask1) gm2 = mask(fg2, mask2) @test subgraph(fg1, mask1) == gm1 @test subgraph(fg2, mask2) == gm2 @test adjacency_matrix(gm1) == [0 1 0; 1 0 1; 0 1 0] @test adjacency_matrix(gm2) == [1 1 0 1; 1 1 1 0; 0 1 1 1; 1 0 1 1] end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1504
# From FluxML/NNlib.jl/test/test_utils.jl using ChainRulesTestUtils using FiniteDifferences using Zygote function gradtest(f, xs...; atol=1e-6, rtol=1e-6, fkwargs=NamedTuple(), check_rrule=false, fdm=:central, check_broadcast=false, skip=false, broken=false) # TODO: revamp when https://github.com/JuliaDiff/ChainRulesTestUtils.jl/pull/166 # is merged if check_rrule test_rrule(f, xs...; fkwargs=fkwargs) end if check_broadcast length(fkwargs) > 0 && @warn("CHECK_BROADCAST: dropping keywords args") h = (xs...) -> sum(sin.(f.(xs...))) else h = (xs...) -> sum(sin.(f(xs...; fkwargs...))) end y_true = h(xs...) if fdm == :central fdm_obj = FiniteDifferences.central_fdm(5, 1) elseif fdm == :forward fdm_obj = FiniteDifferences.forward_fdm(5, 1) elseif fdm == :backward fdm_obj = FiniteDifferences.backward_fdm(5, 1) end # @show fdm fdm_obj gs_fd = FiniteDifferences.grad(fdm_obj, h, xs...) y_ad, pull = Zygote.pullback(h, xs...) gs_ad = pull(one(y_ad)) @test y_true ≈ y_ad atol=atol rtol=rtol for (g_ad, g_fd) in zip(gs_ad, gs_fd) if skip @test_skip g_ad ≈ g_fd atol=atol rtol=rtol elseif broken @test_broken g_ad ≈ g_fd atol=atol rtol=rtol else @test g_ad ≈ g_fd atol=atol rtol=rtol end end return true end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1088
@testset "tokenizer" begin V, E = 4, 5 batch_size = 10 adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] orthonormal = repeat(Matrix{Float64}(I(V)), outer=(1, 1, batch_size)) orf = GraphSignals.orthogonal_random_features(V, batch_size) @test NNlib.batched_mul(NNlib.batched_transpose(orf), orf) ≈ orthonormal orf = GraphSignals.orthogonal_random_features(adjm, batch_size) @test NNlib.batched_mul(NNlib.batched_transpose(orf), orf) ≈ orthonormal node_id = node_identifier(adjm, batch_size; method=GraphSignals.orthogonal_random_features) @test NNlib.batched_mul(NNlib.batched_transpose(node_id), node_id) ≈ orthonormal node_id = node_identifier(adjm, batch_size; method=GraphSignals.laplacian_matrix) @test NNlib.batched_mul(NNlib.batched_transpose(node_id), node_id) ≈ orthonormal @test GraphSignals.laplacian_matrix(adjm, batch_size) == node_id node_id, edge_id = identifiers(adjm, batch_size) @test size(node_id) == (2V, V, batch_size) @test size(edge_id) == (2V, 2E, batch_size) end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
1192
T = Float32 @testset "cuda/featuredgraph" begin @testset "undirected graph" begin # undirected graph with self loop V = 5 E = 5 nf = rand(10, V) adjm = T[0 1 0 1 1; 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0] fg = FeaturedGraph(adjm; directed=:undirected, nf=nf) |> gpu @test has_graph(fg) @test has_node_feature(fg) @test !has_edge_feature(fg) @test !has_global_feature(fg) @test graph(fg) isa SparseGraph @test node_feature(fg) isa CuMatrix{T} end @testset "directed graph" begin # directed graph with self loop V = 5 E = 7 nf = rand(10, V) adjm = T[0 0 1 0 1; 1 0 0 0 0; 0 0 0 0 0; 0 0 1 1 1; 1 0 0 0 0] fg = FeaturedGraph(adjm; directed=:directed, nf=nf) |> gpu @test has_graph(fg) @test has_node_feature(fg) @test !has_edge_feature(fg) @test !has_global_feature(fg) @test graph(fg) isa SparseGraph @test node_feature(fg) isa CuMatrix{T} end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
780
T = Float32 @testset "cuda/graphdomains" begin d = GraphSignals.NullDomain() |> gpu @test isnothing(GraphSignals.domain(d)) @test isnothing(positional_feature(d)) @test !has_positional_feature(d) pf = rand(T, 2, 3, 4) d = GraphSignals.NodeDomain(pf) |> gpu @test collect(GraphSignals.domain(d)) == pf @test collect(positional_feature(d)) == pf @test has_positional_feature(d) V = 5 nf = rand(10, V) pf = rand(10, V) adjm = T[0 1 0 1 1; 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0] fg = FeaturedGraph(adjm; nf=nf, pf=pf) |> gpu gs = gradient(x -> sum(positional_feature(FeaturedGraph(x))), fg)[1] @test :domain in keys(gs.pf) @test gs.pf.domain isa CuArray end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
6633
T = Float32 @testset "cuda/linalg" begin in_channel = 3 out_channel = 5 N = 6 adjs = Dict( :simple => [0. 1. 1. 0. 0. 0.; 1. 0. 1. 0. 1. 0.; 1. 1. 0. 1. 0. 1.; 0. 0. 1. 0. 0. 0.; 0. 1. 0. 0. 0. 0.; 0. 0. 1. 0. 0. 0.], :weight => [0. 2. 2. 0. 0. 0.; 2. 0. 1. 0. 2. 0.; 2. 1. 0. 5. 0. 2.; 0. 0. 5. 0. 0. 0.; 0. 2. 0. 0. 0. 0.; 0. 0. 2. 0. 0. 0.], ) degs = Dict( :simple => [2. 0. 0. 0. 0. 0.; 0. 3. 0. 0. 0. 0.; 0. 0. 4. 0. 0. 0.; 0. 0. 0. 1. 0. 0.; 0. 0. 0. 0. 1. 0.; 0. 0. 0. 0. 0. 1.], :weight => [4. 0. 0. 0. 0. 0.; 0. 5. 0. 0. 0. 0.; 0. 0. 10. 0. 0. 0.; 0. 0. 0. 5. 0. 0.; 0. 0. 0. 0. 2. 0.; 0. 0. 0. 0. 0. 2.] ) laps = Dict( :simple => [2. -1. -1. 0. 0. 0.; -1. 3. -1. 0. -1. 0.; -1. -1. 4. -1. 0. -1.; 0. 0. -1. 1. 0. 0.; 0. -1. 0. 0. 1. 0.; 0. 0. -1. 0. 0. 1.], :weight => [4. -2. -2. 0. 0. 0.; -2. 5. -1. 0. -2. 0.; -2. -1. 10. -5. 0. -2.; 0. 0. -5. 5. 0. 0.; 0. -2. 0. 0. 2. 0.; 0. 0. -2. 0. 0. 2.], ) norm_laps = Dict( :simple => [1. -1/sqrt(2*3) -1/sqrt(2*4) 0. 0. 0.; -1/sqrt(2*3) 1. -1/sqrt(3*4) 0. -1/sqrt(3) 0.; -1/sqrt(2*4) -1/sqrt(3*4) 1. -1/2 0. -1/2; 0. 0. -1/2 1. 0. 0.; 0. -1/sqrt(3) 0. 0. 1. 0.; 0. 0. -1/2 0. 0. 1.], :weight => [1. -2/sqrt(4*5) -2/sqrt(4*10) 0. 0. 0.; -2/sqrt(4*5) 1. -1/sqrt(5*10) 0. -2/sqrt(2*5) 0.; -2/sqrt(4*10) -1/sqrt(5*10) 1. -5/sqrt(5*10) 0. -2/sqrt(2*10); 0. 0. -5/sqrt(5*10) 1. 0. 0.; 0. -2/sqrt(2*5) 0. 0. 1. 0.; 0. 0. -2/sqrt(2*10) 0. 0. 1.] ) @testset "undirected graph" begin adjm = [0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0] deg = [2 0 0 0; 0 2 0 0; 0 0 2 0; 0 0 0 2] isd = [√2, √2, √2, √2] lap = [2 -1 0 -1; -1 2 -1 0; 0 -1 2 -1; -1 0 -1 2] norm_lap = [1. -.5 0. -.5; -.5 1. -.5 0.; 0. -.5 1. -.5; -.5 0. -.5 1.] scaled_lap = [0 -0.5 0 -0.5; -0.5 0 -0.5 -0; 0 -0.5 0 -0.5; -0.5 0 -0.5 0] rw_lap = [1 -.5 0 -.5; -.5 1 -.5 0; 0 -.5 1 -.5; -.5 0 -.5 1] @test GraphSignals.adjacency_matrix(adjm |> gpu, Int32) isa CuMatrix{Int32} @test GraphSignals.adjacency_matrix(adjm |> gpu) isa CuMatrix{Int64} fg = FeaturedGraph(T.(adjm)) |> gpu @test collect(GraphSignals.adjacency_matrix(fg)) == adjm @test collect(GraphSignals.degrees(fg; dir=:both)) == [2, 2, 2, 2] D = GraphSignals.degree_matrix(fg, T, dir=:out) @test collect(D) == T.(deg) @test GraphSignals.degree_matrix(fg, T; dir=:in) == D @test GraphSignals.degree_matrix(fg, T; dir=:both) == D @test eltype(D) == T L = Graphs.laplacian_matrix(fg, T) @test collect(L) == T.(lap) @test eltype(L) == T NA = GraphSignals.normalized_adjacency_matrix(fg, T) @test collect(NA) ≈ T.(I - norm_lap) @test eltype(NA) == T NA = GraphSignals.normalized_adjacency_matrix(fg, T, selfloop=true) @test eltype(NA) == T NL = GraphSignals.normalized_laplacian(fg, T) @test collect(NL) ≈ T.(norm_lap) @test eltype(NL) == T SL = GraphSignals.scaled_laplacian(fg, T) @test SL isa CuMatrix{T} @test collect(SL) ≈ T.(scaled_lap) @test eltype(SL) == T # RW = GraphSignals.random_walk_laplacian(fg, T) # @test RW == T.(rw_lap) # @test eltype(RW) == T end # @testset "directed" begin # adjm = [0 2 0 3; # 0 0 4 0; # 2 0 0 1; # 0 0 0 0] # degs = Dict( # :out => diagm(0=>[2, 2, 4, 4]), # :in => diagm(0=>[5, 4, 3, 0]), # :both => diagm(0=>[7, 6, 7, 4]), # ) # laps = Dict( # :out => degs[:out] - adjm, # :in => degs[:in] - adjm, # :both => degs[:both] - adjm, # ) # norm_laps = Dict( # :out => I - diagm(0=>[1/2, 1/2, 1/4, 1/4])*adjm, # :in => I - diagm(0=>[1/5, 1/4, 1/3, 0])*adjm, # ) # sig_laps = Dict( # :out => degs[:out] + adjm, # :in => degs[:in] + adjm, # :both => degs[:both] + adjm, # ) # rw_laps = Dict( # :out => I - diagm(0=>[1/2, 1/2, 1/4, 1/4]) * adjm, # :in => I - diagm(0=>[1/5, 1/4, 1/3, 0]) * adjm, # :both => I - diagm(0=>[1/7, 1/6, 1/7, 1/4]) * adjm, # ) # for g in [adjm, sparse(adjm)] # for dir in [:out, :in, :both] # D = GraphSignals.degree_matrix(g, T, dir=dir) # @test D == T.(degs[dir]) # @test eltype(D) == T # L = Graphs.laplacian_matrix(g, T, dir=dir) # @test L == T.(laps[dir]) # @test eltype(L) == T # SL = GraphSignals.signless_laplacian(g, T, dir=dir) # @test SL == T.(sig_laps[dir]) # @test eltype(SL) == T # end # @test_throws DomainError GraphSignals.degree_matrix(g, dir=:other) # end # for g in [adjm, sparse(adjm)] # for dir in [:out, :in] # L = normalized_laplacian(g, T, dir=dir) # @test L == T.(norm_laps[dir]) # @test eltype(L) == T # end # for dir in [:out, :in, :both] # RW = GraphSignals.random_walk_laplacian(g, T, dir=dir) # @test RW == T.(rw_laps[dir]) # @test eltype(RW) == T # end # end # end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
2225
T = Float32 @testset "cuda/sparsegraph" begin @testset "undirected graph" begin # undirected graph with self loop V = 5 E = 5 ef = cu(rand(10, E)) adjm = T[0 1 0 1 1; 1 0 0 0 0; 0 0 1 0 0; 1 0 0 0 1; 1 0 0 1 0] adjl = Vector{T}[ [2, 4, 5], [1], [3], [1, 5], [1, 4] ] sg = SparseGraph(adjm, false) |> gpu @test (collect(sg.S) .!= 0) == adjm @test sg.S isa CUSPARSE.CuSparseMatrixCSC{T} @test collect(sg.edges) == [1, 3, 4, 1, 2, 3, 5, 4, 5] @test sg.edges isa CuVector @test sg.E == E @test nv(sg) == V @test ne(sg) == E @test collect(neighbors(sg, 1)) == adjl[1] @test collect(neighbors(sg, 2)) == adjl[2] @test collect(GraphSignals.dsts(sg)) == [1, 3, 1, 1, 4] @test collect(GraphSignals.srcs(sg)) == [2, 3, 4, 5, 5] @test_throws ArgumentError GraphSignals.aggregate_index(sg, :edge, :in) @test random_walk(sg, 1) ⊆ [2, 4, 5] @test neighbor_sample(sg, 1) ⊆ [2, 4, 5] end @testset "directed graph" begin # directed graph with self loop V = 5 E = 7 ef = cu(rand(10, E)) adjm = T[0 0 1 0 1; 1 0 0 0 0; 0 0 0 0 0; 0 0 1 1 1; 1 0 0 0 0] adjl = Vector{T}[ [2, 5], [], [1, 4], [4], [1, 4], ] sg = SparseGraph(adjm, true) |> gpu @test (collect(sg.S) .!= 0) == adjm @test sg.S isa CUSPARSE.CuSparseMatrixCSC{T} @test collect(sg.edges) == collect(1:7) @test sg.edges isa CuVector @test sg.E == E @test nv(sg) == V @test ne(sg) == E @test collect(neighbors(sg, 1)) == adjl[1] @test collect(neighbors(sg, 3)) == adjl[3] @test Array(GraphSignals.dsts(sg)) == [2, 5, 1, 4, 4, 1, 4] @test Array(GraphSignals.srcs(sg)) == [1, 1, 3, 3, 4, 5, 5] @test random_walk(sg, 1) ⊆ [2, 5] @test neighbor_sample(sg, 1) ⊆ [2, 5] end end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
code
245
T = Float32 @testset "cuda/sparsematrix" begin adjm = cu(sparse( T[0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0])) @test collect(rowvals(adjm, 2)) == [1, 3] @test collect(nonzeros(adjm, 2)) == [1, 1] end
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
docs
5163
# Changelog All notable changes to this project will be documented in this file. ## [0.9.2] - update dependencies ## [0.9.1] - fix `GraphSignals.scaled_laplacian` on `CuArray` ## [0.9.0] - compatible to NNlib v0.9 - support Julia equals or greater than v1.9 ## [0.8.6] - update compat ## [0.8.5] - refactor and drop Adapt dependency ## [0.8.4] - improve performance on `orthogonal_random_features` by not collecting `qr.Q` ## [0.8.3] - update compat ## [0.8.2] - replace `tokenize` with `identifier` ## [0.8.1] - update docs ## [0.8.0] - support facilities for TokenGT: `node_identifier`, `tokenize` ## [0.7.3] - update doc ## [0.7.2] - fix naming issue ## [0.7.1] - fix check number functions ## [0.7.0] - add `NodeSignal`, `EdgeSignal` and `GlobalSignal` - drop inplace operations for `FeaturedGraph` - drop `parent` - drop `NullGraph` support ## [0.6.10] - fix gradient wrt `NodeDomain` for cuarray ## [0.6.9] - `FeaturedSubgraph` supports `DataLoader` ## [0.6.8] - update doc ## [0.6.7] - fix failed gradient while `FeaturedGraph` passed to cuda ## [0.6.6] - fix `getobs` ## [0.6.5] - `FeaturedGraph` supports `DataLoader`, `shuffleobs` and `splitobs` ## [0.6.4] - change `generate_coordinates` to `generate_grid` ## [0.6.3] - move `to_namedtuple` from GeometricFlux ## [0.6.2] - support positional encoding for `FeaturedGraph` - add `NodeDomain` and `NullDomain` ## [0.6.1] - support Functors v0.3 ## [0.6.0] - add positional features ## [0.5.2] - make `kneighbors_graph` non-differentiable and enable batch learning ## [0.5.1] - fix invalid `setfield!` for `CuSparseMatrixCSC` ## [0.5.0] - add `kneighbors_graph` - fix doc test and some bug ## [0.4.3] - Resolve conflict with StatsBase ## [0.4.2] - support `collect(edges(g))` for graph without edges ## [0.4.1] - add `has_all_self_loops` and `isneighbors` ## [0.4.0] - add `SparseSubgraph` - relax `FeaturedGraph` - drop support of `edge_scatter`, `neighbor_scatter`, `repeat_nodes` and `promote_graph` ## [0.3.13] - fix collect for edges ## [0.3.12] - update docs ## [0.3.11] - inplace normalized adjacency matrix - specify type for `FeaturedGraph` ## [0.3.10] - add `FeaturedSubgraph` for subgraphing `FeaturedGraph` ## [0.3.9] - add sample for generate random subgraph for `FeaturedGraph` and `FeaturedSubgraph` - drop `cpu_neighbors` and `cpu_incident_edges` - add `neighbors`, `incident_edges`, `repeat_nodes` for `FeaturedGraph` and `FeaturedSubgraph` - add `parent` for `FeaturedGraph` and `FeaturedSubgraph` - access features in `FeaturedSubgraph` change to `FeaturedGraph` ## [0.3.8] - bug fix for message-passing network ## [0.3.7] - correct edge direction for `has_edge` and `edge_index` - add `has_edge` for `FeaturedGraph` ## [0.3.6] - add random walk and neighbor sampling on graph - add `edges` and `neighbors` as API for `FeaturedGraph` - add `cpu_neighbors` - add `collect` and `sparse` for `SparseGraph` ## [0.3.5] - fix normalized_adjacency_matrix for FeaturedGraph ## [0.3.4] - correct degree_matrix with CuSparseMatrixCSC input - correct normalized adjacency matrix with self-loop - adjacency_matrix returns dense arrays ## [0.3.3] - add normalized adjacency matrix - migrate GraphLaplacians - migrate LightGraphs to Graphs ## [0.3.2] - migrate LightGraphs to Graphs ## [0.3.1] - change function name `check_num_node`, `check_num_edge` into `check_num_nodes`, `check_num_edges` ## [0.3.0] - `FeaturedGraph` use `SparseGraph` as core graph structure - `SparseGraph` support cuda for undirected graph and directed graph - make `FeaturedGraph` idempotent - make `FeaturedGraph` can be pass to gpu - add scatter for FeaturedGraph - update manual - drop `fetch_graph` ## [0.2.3] - Support gradient for neighbor_scatter and edge_scatter - Support CUDA up to v3.3 ## [0.2.2] - EdgeIndex support adjacency matrix and juliagraphs - add `neighbor_scatter` for scatter across neighbors ## [0.2.1] - Support CUDA up to v3.2 - FeaturedGraph checks feature dimensions in constructors and before setting property - add Base.show for FeaturedGraph - add EdgeIndex and edge_scatter for providing an indexing strucutre to message-passing - add GraphMask for masking FeaturedGraph ## [0.2.0] - Support Julia v1.6 and CUDA v2.6 only ## [0.1.13] - Support CUDA v2.6 - Support FillArrays v0.11 - Support Zygote v0.6 ## [0.1.12] - Dimension check should be done in layer but previous to computation ## [0.1.11] - Refactor checking feature dimensions - Support Julia v1.6 - Fix CuArray promotion ## [0.1.10] - Bug fix ## [0.1.9] - Add feature dimension check on constructor - Refactor FeaturedGraph constructor ## [0.1.8] - Accept transposed matrix as node feature - Refactor ## [0.1.7] - Support ne for adjacency list ## [0.1.6] - Support is_directed for FeaturedGraph - Fix test case - Bug fix ## [0.1.5] - Add ne for adjacency list ## [0.1.4] - Take off dimension check ## [0.1.3] - Bug fix ## [0.1.2] - Laplacian matrix can be contained in FeaturedGraph - Add dimensional check among graph, node and edge feature - Add ne for matrix - Add mask for FeaturedGraph - Add fetch_graph
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
docs
2330
# GraphSignals.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://yuehhua.github.io/GraphSignals.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://yuehhua.github.io/GraphSignals.jl/dev) [![Build Status](https://travis-ci.org/yuehhua/GraphSignals.jl.svg?branch=master)](https://travis-ci.org/yuehhua/GraphSignals.jl) [![coverage report](https://gitlab.com/JuliaGPU/GraphSignals.jl/badges/master/coverage.svg)](https://gitlab.com/JuliaGPU/GraphSignals.jl/commits/master) A generic graph representation for combining graph signals (or features) and graph topology (or graph structure). It supports the graph structure defined in JuliaGraphs packages (i.e. LightGraphs and SimpleWeightedGraphs) and compatible with APIs in JuliaGraphs packages. Graph signals are usually features, including node feautres, edge features and graph features. Features are contained in arrays and CuArrays are supported via CUDA.jl. ## Example ```julia julia> using GraphSignals, LightGraphs julia> N = 4 4 julia> ug = SimpleGraph(N) {4, 0} undirected simple Int64 graph julia> add_edge!(ug, 1, 2); add_edge!(ug, 1, 3); add_edge!(ug, 1, 4); julia> add_edge!(ug, 2, 3); add_edge!(ug, 3, 4); julia> fg = FeaturedGraph(ug) FeaturedGraph( Undirected graph with (#V=4, #E=5) in adjacency matrix, ) julia> N = 4 4 julia> E = 5 5 julia> nf = rand(3, N); julia> ef = rand(5, E); julia> gf = rand(7); julia> fg = FeaturedGraph(ug, nf=nf, ef=ef, gf=gf) FeaturedGraph( Undirected graph with (#V=4, #E=5) in adjacency matrix, Node feature: ℝ^3 <Matrix{Float64}>, Edge feature: ℝ^5 <Matrix{Float64}>, Global feature: ℝ^7 <Vector{Float64}>, ) julia> nf = rand(3, 7); julia> fg = FeaturedGraph(ug, nf=nf) ERROR: DimensionMismatch("number of nodes must match between graph (4) and node features (7)") ... ``` ## APIs ### Graph-related APIs * `graph` * `node_feature` * `edge_feature` * `global_feature` * `mask` * `has_graph` * `has_node_feature` * `has_edge_feature` * `has_global_feature` * `nv` * `ne` * `adjacency_list` * `is_directed` * `fetch_graph` ### Linear algebraic APIs * `adjacency_matrix` * `degrees` * `degree_matrix` * `inv_sqrt_degree_matrix` * `laplacian_matrix`, `laplacian_matrix!` * `normalized_laplacian`, `normalized_laplacian!` * `scaled_laplacian`, `scaled_laplacian!`
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
docs
2655
```@meta CurrentModule = GraphSignals ``` # GraphSignals GraphSignals is aim to provide a general data structure, which is composed of a graph and graph signals, in order to support a graph neural network library, specifically, GeometricFlux.jl. The concept of graph is used ubiquitously in several fields, including computer science, social science, biological science and neural science. GraphSignals provides graph signals attached to a graph as a whole for training or inference a graph neural network. Some characteristics of this package are listed: - Graph signals can be node features, edge features or global features, which are all general arrays. - Graph Laplacian and related matrices are supported to calculated from a general data structure. - Support graph representations from JuliaGraphs. ## Example `FeaturedGraph` supports various graph representations. It supports graph in adjacency matrix. ```julia julia> adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0]; julia> fg = FeaturedGraph(adjm) FeaturedGraph( Undirected graph with (#V=4, #E=5) in adjacency matrix, ) ``` It also supports graph in adjacency list. ```julia julia> adjl = [ [2, 3, 4], [1, 3], [1, 2, 4], [1, 3] ]; julia> fg = FeaturedGraph(adjl) FeaturedGraph( Undirected graph with (#V=4, #E=5) in adjacency matrix, ) ``` It supports `SimpleGraph` from LightGraphs and convert adjacency matrix into a Laplacian matrix as well. ```julia julia> using LightGraphs julia> N = 4 4 julia> ug = SimpleGraph(N) {4, 0} undirected simple Int64 graph julia> add_edge!(ug, 1, 2); add_edge!(ug, 1, 3); add_edge!(ug, 1, 4); julia> add_edge!(ug, 2, 3); add_edge!(ug, 3, 4); julia> fg = FeaturedGraph(ug) FeaturedGraph( Undirected graph with (#V=4, #E=5) in adjacency matrix, ) julia> laplacian_matrix!(fg) FeaturedGraph( Undirected graph with (#V=4, #E=5) in Laplacian matrix, ) ``` Features can be attached to it. ```julia julia> N = 4 4 julia> E = 5 5 julia> nf = rand(3, N); julia> ef = rand(5, E); julia> gf = rand(7); julia> fg = FeaturedGraph(ug, nf=nf, ef=ef, gf=gf) FeaturedGraph( Undirected graph with (#V=4, #E=5) in adjacency matrix, Node feature: ℝ^3 <Matrix{Float64}>, Edge feature: ℝ^5 <Matrix{Float64}>, Global feature: ℝ^7 <Vector{Float64}>, ) ``` If there are mismatched node features attached to it, a `DimensionMismatch` is throw out and hint user. ```julia julia> nf = rand(3, 7); julia> fg = FeaturedGraph(ug, nf=nf) ERROR: DimensionMismatch("number of nodes must match between graph (4) and node features (7)") ```
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
docs
4795
# FeaturedGraph ## Construct a FeaturedGraph and graph representations A `FeaturedGraph` is aimed to represent a composition of graph representation and graph signals. A graph representation is required to construct a `FeaturedGraph` object. Graph representation can be accepted in several forms: adjacency matrix, adjacency list or graph representation provided from JuliaGraphs. ```julia julia> adj = [0 1 1; 1 0 1; 1 1 0] 3×3 Matrix{Int64}: 0 1 1 1 0 1 1 1 0 julia> FeaturedGraph(adj) FeaturedGraph( Undirected graph with (#V=3, #E=3) in adjacency matrix, ) ``` Currently, `SimpleGraph` and `SimpleDiGraph` from LightGraphs.jl, `SimpleWeightedGraph` and `SimpleWeightedDiGraph` from SimpleWeightedGraphs.jl, as well as `MetaGraph` and `MetaDiGraph` from MetaGraphs.jl are supported. If a graph representation is not given, a `FeaturedGraph` object will be regarded as a `NullGraph`. A `NullGraph` object is just used as a special case of `FeaturedGraph` to represent a null object. ```julia julia> FeaturedGraph() NullGraph() ``` ### FeaturedGraph constructors ```@docs NullGraph() ``` ```@docs FeaturedGraph ``` ## Graph Signals Graph signals is a collection of any signals defined on a graph. Graph signals can be the signals related to vertex, edges or graph itself. If a vertex signal is given, it is recorded as a node feature in `FeaturedGraph`. A node feature is stored as the form of generic array, of which type is `AbstractArray`. A node feature can be indexed by the node index, which is the same index for given graph. Node features can be optionally given in construction of a `FeaturedGraph`. ```julia julia> fg = FeaturedGraph(adj, nf=rand(5, 3)) FeaturedGraph( Undirected graph with (#V=3, #E=3) in adjacency matrix, Node feature: ℝ^5 <Matrix{Float64}>, ) julia> has_node_feature(fg) true julia> node_feature(fg) 5×3 Matrix{Float64}: 0.534928 0.719566 0.952673 0.395465 0.268515 0.335446 0.79428 0.18623 0.454377 0.530675 0.402474 0.00920068 0.642556 0.719674 0.772497 ``` Users check node/edge/graph features are available by `has_node_feature`, `has_edge_feature` and `has_global_feature`, respectively, and fetch these features by `node_feature`, `edge_feature` and `global_feature`. ### Getter methods ```@docs graph ``` ```@docs node_feature ``` ```@docs edge_feature ``` ```@docs global_feature ``` ### Check methods ```@docs has_graph ``` ```@docs has_node_feature ``` ```@docs has_edge_feature ``` ```@docs has_global_feature ``` ## Graph properties `FeaturedGraph` is itself a graph, so we can query some graph properties from a `FeaturedGraph`. ``` julia> nv(fg) 3 julia> ne(fg) 3 julia> is_directed(fg) false ``` Users can query number of vertex and number of edge by `nv` and `ne`, respectively. `is_directed` checks if the underlying graph is a directed graph or not. ### Graph-related APIs ```@docs nv ``` ```@docs ne ``` ```@docs is_directed ``` ## Pass `FeaturedGraph` to CUDA Passing a `FeaturedGraph` to CUDA is easy. Just pipe a `FeaturedGraph` object to `gpu` provided by Flux. ``` julia> using Flux julia> fg = fg |> gpu FeaturedGraph( Undirected graph with (#V=3, #E=3) in adjacency matrix, Node feature: ℝ^5 <CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}>, ) ``` ## Linear algebra for `FeaturedGraph` `FeaturedGraph` supports the calculation of graph Laplacian matrix in inplace manner. ``` julia> fg = FeaturedGraph(adj, nf=rand(5, 3)) FeaturedGraph( Undirected graph with (#V=3, #E=3) in adjacency matrix, Node feature: ℝ^5 <Matrix{Float64}>, ) julia> laplacian_matrix!(fg) FeaturedGraph( Undirected graph with (#V=3, #E=3) in Laplacian matrix, Node feature: ℝ^5 <Matrix{Float64}>, ) julia> laplacian_matrix(fg) 3×3 SparseArrays.SparseMatrixCSC{Int64, Int64} with 9 stored entries: -2 1 1 1 -2 1 1 1 -2 ``` `laplacian_matrix!` mutates the adjacency matrix into a Laplacian matrix in a `FeaturedGraph` object and the Laplacian matrix can be fetched by `laplacian_matrix`. The Laplacian matrix is cached in a `FeaturedGraph` object and can be passed to a graph neural network model for training or inference. This way reduces the calculation overhead for Laplacian matrix during the training process. `FeaturedGraph` supports not only Laplacian matrix, but also normalized Laplacian matrix and scaled Laplacian matrix calculation. ### Inplaced linear algebraic APIs ```@docs laplacian_matrix! ``` ```@docs normalized_laplacian! ``` ```@docs scaled_laplacian! ``` ### Linear algebraic APIs Non-inplaced APIs returns a vector or a matrix directly. ```@docs adjacency_matrix ``` ```@docs degrees ``` ```@docs degree_matrix ``` ```@docs laplacian_matrix ``` ```@docs normalized_laplacian ``` ```@docs scaled_laplacian ```
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.9.2
6108a8e889648f0d3951d40b2eb47e9d79fb4516
docs
6645
# Sparse graph Strucutre ## The need of graph structure Graph convolution can be classified into spectral-based graph convolution and spatial-based graph convolution. Spectral-based graph convolution relys on the algebaric operations, including `+`, `-`, `*`, which are applied to features with graph structure. Spatial-based graph convolution relys on the indexing operations, since spatial-based graph convolution always indexes the neighbors of vertex. A graph structure can be use under two view point of a part of algebaric operations or an indexing structure. Message-passing neural network requires to access neighbor information for each vertex. Messages are passed from a vertex's neighbors to itself. A efficient indexing data structure is required to access incident edges or neighbor vertices from a specific vertex. ## `SparseGraph` SparseGraph is implemented with sparse matrix. It is built on top of built-in sparse matrix, `SparseMatrixCSC`. `SparseMatrixCSC` can be used as a regular matrix and performs algebaric operations with matrix or vectors. To benefit message-passing scheme, making a graph structure as an indexing structure is important. A well-designed indexing structure is made to leverage the sparse format of `SparseMatrixCSC`, which is in CSC format. CSC format stores sparse matrix in a highly compressed manner. Comparing to traditional COO format, CSC format compresses the column indices into column pointers. All values are stored in single vector. If we want to index the sparse matrix `A`, the row indices can be fetched by `rowvals[colptr[j]:(colptr[j+1]-1)]` and the non-zero values can be indexed by `nzvals[colptr[j]:(colptr[j+1]-1)]`. The edge indices are designed in the same manner `edges[colptr[j]:(colptr[j+1]-1)]`. This way matches the need of indexing neighbors of vertex. This makes neighbor indices or values close together. It takes ``O(1)`` to get negihbor indices, instead of searching neighbor in ``O(N)``. Thus, `SparseGraph` takes both advantages of both algebaric operations and indexing operations. ## Create `SparseGraph` `SparseGraph` accepts adjacency matrix, adjacency list, and almost all graphs defined in JuliaGraphs. ```julia julia> using GraphSignals, LightGraphs julia> ug = SimpleGraph(4) {4, 0} undirected simple Int64 graph julia> add_edge!(ug, 1, 2); add_edge!(ug, 1, 3); add_edge!(ug, 1, 4); julia> add_edge!(ug, 2, 3); add_edge!(ug, 3, 4); julia> sg = SparseGraph(ug) SparseGraph(#V=4, #E=5) ``` The indexed adjacency list is a list of list strucutre. The inner list consists of a series of tuples containing a vertex index and a edge index, respectively. ## Operate `SparseGraph` as graph It supports basic graph APIs for querying graph information, including number of vertices `nv` and number of edges `ne`. ```julia julia> is_directed(sg) false julia> nv(sg) 4 julia> ne(sg) 5 julia> eltype(sg) Int64 julia> has_vertex(sg, 3) true julia> has_edge(sg, 1, 2) true ``` We can compare two graph structure if they are equivalent or not. ```julia julia> adjm = [0 1 1 1; 1 0 1 0; 1 1 0 1; 1 0 1 0] 4×4 Matrix{Int64}: 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 julia> sg2 = SparseGraph(adjm, false) SparseGraph(#V=4, #E=5) julia> sg == sg2 true ``` We can also iterate over edges. ```julia julia> for (i, e) in edges(sg) println("edge index: ", i, ", edge: ", e) end edge index: 1, edge: (2, 1) edge index: 2, edge: (3, 1) edge index: 3, edge: (3, 2) edge index: 4, edge: (4, 1) edge index: 5, edge: (4, 3) ``` Edge index is the index for each edge. It is used to index edge features. ## Indexing operations To get neighbors of a specified vertex, `neighbors` is used by passing a `SparseGraph` object and a vertex index. A vector of neighbor vertex index is returned. ```julia julia> neighbors(sg, 1) 3-element view(::Vector{Int64}, 1:3) with eltype Int64: 2 3 4 ``` To get incident edges of a specified vertex, `incident_edges` can be used and it will return edge indices. ```julia julia> incident_edges(sg, 1) 3-element view(::Vector{Int64}, 1:3) with eltype Int64: 1 2 4 ``` An edge index can be fetched by querying an edge, for example, edge `(1, 2)` and edge `(2, 1)` refers to the same edge with index `1`. ```julia julia> edge_index(sg, 1, 2) 1 julia> edge_index(sg, 2, 1) 1 ``` One can have the opportunity to index the underlying sparse matrix. ```julia julia> sg[1, 2] 1 julia> sg[2, 1] 1 ``` ## Aggregate over neighbors In message-passing scheme, it is always to aggregate node features or edge feature from neighbors. For convention, `edge_scatter` and `neighbor_scatter` are used to apply aggregate operations over edge features or neighbor vertex features. The actual aggregation is supported by `scatter` operations. ```julia julia> nf = rand(10, 4); julia> neighbor_scatter(+, nf, sg) 10×4 Matrix{Float64}: 1.54937 1.03974 1.72926 1.03974 1.38554 0.775991 1.34106 0.775991 1.13192 0.424888 1.34657 0.424888 2.23452 1.63226 2.436 1.63226 0.815662 0.718865 1.25237 0.718865 2.35763 1.42174 2.26442 1.42174 1.94051 1.44812 1.71694 1.44812 1.83641 1.89104 1.80857 1.89104 2.43027 1.92217 2.37003 1.92217 1.58177 1.16149 1.87467 1.16149 ``` For example, `neighbor_scatter` aggregates node features `nf` via neighbors in graph `sg` by `+` operation. ```julia julia> ef = rand(9, 5); julia> edge_scatter(+, ef, sg) 9×4 Matrix{Float64}: 2.22577 0.967172 1.92781 1.92628 1.4842 1.20605 2.30014 0.849819 2.20728 1.01527 0.899094 1.35062 1.09119 0.589925 1.62597 1.51175 1.42288 1.63764 1.23445 0.693258 1.57561 0.926591 1.72599 0.690108 1.68402 0.544808 1.58687 1.70676 1.10908 1.0898 1.05256 0.508157 2.33764 1.26419 1.87927 1.11151 ``` Or, `edge_scatter` aggregates edge features `ef` via incident edges in graph `sg` by `+` operation. ## `SparseGraph` APIs ```@docs SparseGraph GraphSignals.neighbors incident_edges neighbor_scatter edge_scatter ``` ## Internals In the design of `SparseGraph`, it resolve the problem of indexing edge features. For a graph, edge is represented in `(i, j)` and edge features are considered as a matrix `ef` with edge number in its column. The problem is to unifiedly fetch corresponding edge feature `ef[:, k]` for edge `(i, j)` over directed and undirected graph. To resolve this issue, edge index is set to be the unique index for each edge. Further, `aggregate_index` is designed to generate indices for aggregating from neighbor nodes or incident edges. Conclusively, it provides the core operations needed in message-passing scheme.
GraphSignals
https://github.com/yuehhua/GraphSignals.jl.git
[ "MIT" ]
0.2.2
080ffb5dfb8237913a618a5b11bab85f3ef159d7
code
3239
module EndpointRanges import Base: +, -, *, /, ÷, % using Base: ViewIndex, tail, axes1 export ibegin, iend abstract type Endpoint end struct IBegin <: Endpoint end struct IEnd <: Endpoint end const ibegin = IBegin() const iend = IEnd() (::IBegin)(b::Integer, e::Integer) = b (::IEnd )(b::Integer, e::Integer) = e (::IBegin)(r::AbstractRange) = first(r) (::IEnd )(r::AbstractRange) = last(r) struct IndexFunction{F<:Function} <: Endpoint index::F end (f::IndexFunction)(r::AbstractRange) = f.index(r) for op in (:+, :-) @eval $op(x::Endpoint) = IndexFunction(r->x(r)) end for op in (:+, :-, :*, :/, :÷, :%) @eval $op(x::Endpoint, y::Endpoint) = IndexFunction(r->$op(x(r), y(r))) @eval $op(x::Endpoint, y::Number) = IndexFunction(r->$op(x(r), y)) @eval $op(x::Number, y::Endpoint) = IndexFunction(r->$op(x, y(r))) end # deliberately not <: AbstractUnitRange{Int} abstract type EndpointRange{T} end struct EndpointUnitRange{F<:Union{Int,Endpoint},L<:Union{Int,Endpoint}} <: EndpointRange{Int} start::F stop::L end struct EndpointStepRange{F<:Union{Int,Endpoint},L<:Union{Int,Endpoint}} <: EndpointRange{Int} start::F step::Int stop::L end (r::EndpointUnitRange)(s::AbstractRange) = r.start(s):r.stop(s) (r::EndpointUnitRange{Int,E})(s::AbstractRange) where {E<:Endpoint} = r.start:r.stop(s) (r::EndpointUnitRange{E,Int})(s::AbstractRange) where {E<:Endpoint} = r.start(s):r.stop (r::EndpointStepRange)(s::AbstractRange) = r.start(s):r.step:r.stop(s) (r::EndpointStepRange{Int,E})(s::AbstractRange) where {E<:Endpoint} = r.start:r.step:r.stop(s) (r::EndpointStepRange{E,Int})(s::AbstractRange) where {E<:Endpoint} = r.start(s):r.step:r.stop (::Colon)(start::Endpoint, stop::Endpoint) = EndpointUnitRange(start, stop) (::Colon)(start::Endpoint, stop::Int) = EndpointUnitRange(start, stop) (::Colon)(start::Int, stop::Endpoint) = EndpointUnitRange(start, stop) (::Colon)(start::Endpoint, step::Int, stop::Endpoint) = EndpointStepRange(start, step, stop) (::Colon)(start::Endpoint, step::Int, stop::Int) = EndpointStepRange(start, step, stop) (::Colon)(start::Int, step::Int, stop::Endpoint) = EndpointStepRange(start, step, stop) function Base.getindex(r::UnitRange, s::EndpointRange) getindex(r, newindex(axes1(r), s)) end function Base.getindex(r::AbstractUnitRange, s::EndpointRange) getindex(r, newindex(axes1(r), s)) end function Base.getindex(r::StepRange, s::EndpointRange) getindex(r, newindex(axes1(r), s)) end function Base.getindex(r::StepRangeLen, s::EndpointRange) getindex(r, newindex(axes1(r), s)) end function Base.getindex(r::LinRange, s::EndpointRange) getindex(r, newindex(axes1(r), s)) end @inline function Base.to_indices(A, inds, I::Tuple{Union{Endpoint, EndpointRange}, Vararg{Any}}) (newindex(inds[1], I[1]), to_indices(A, inds[2:end], Base.tail(I))...) end @inline newindices(indsA, inds) = (newindex(indsA[1], inds[1]), newindices(tail(indsA), tail(inds))...) newindices(::Tuple{}, ::Tuple{}) = () newindex(indA, i::Union{Real, AbstractArray, Colon}) = i newindex(indA, i::EndpointRange) = i(indA) newindex(indA, i::IBegin) = first(indA) newindex(indA, i::IEnd) = last(indA) newindex(indA, i::Endpoint) = i(indA) end # module
EndpointRanges
https://github.com/JuliaArrays/EndpointRanges.jl.git
[ "MIT" ]
0.2.2
080ffb5dfb8237913a618a5b11bab85f3ef159d7
code
1523
using EndpointRanges using Test @testset "One dimensional" begin r1 = -3:7 r2 = 2:5 @test ibegin(r1) == -3 @test ibegin(r2) == 2 @test iend(r1) == 7 @test iend(r2) == 5 @test (ibegin+3)(r1) == 0 @test (ibegin+2)(r2) == 4 @test (iend+3)(r1) == 10 @test (iend-2)(r2) == 3 for a in (1:20, range(1,step=2,length=20), 1.0:2.0:39.0, range(1,stop=100,length=20), collect(1:20), view(0:21, 2:21)) @test a[ibegin] == a[1] @test a[iend] == a[end] @test a[ibegin+1] == a[2] @test a[iend-1] == a[end-1] @test_throws BoundsError a[ibegin-1] @test_throws BoundsError a[iend+1] @test a[ibegin:20] == a[1:20] @test a[1:iend] == a[1:20] @test a[ibegin+2:iend-3] == a[3:17] @test a[ibegin+2:iend÷2] == a[3:10] @test a[2*ibegin+1:iend÷2] == a[3:10] @test a[1:(ibegin+iend)÷2] == a[1:10] @test view(a, 1:(ibegin+iend)÷2) == view(a, 1:10) @test view(a, ibegin+2:iend-3) == view(a, 3:17) end # issue #8 a = 1:9 @test a[ibegin] == 1 @test a[iend] == 9 # issue #10 @test a[ibegin:3:iend] == 1:3:7 end @testset "Multidimensional" begin # issue #3 A = reshape(1:12, (3, 4)) @test A[ibegin:2, 2:iend] == A[1:2, 2:4] A = reshape(1:20, 4, 5) @test A[2,ibegin] == 2 @test A[2,ibegin+1] == 6 @test A[3,iend-1] == 15 @test A[ibegin+1,iend-1] == 14 end
EndpointRanges
https://github.com/JuliaArrays/EndpointRanges.jl.git
[ "MIT" ]
0.2.2
080ffb5dfb8237913a618a5b11bab85f3ef159d7
docs
869
# EndpointRanges [![Build Status](https://travis-ci.org/JuliaArrays/EndpointRanges.jl.svg?branch=master)](https://travis-ci.org/JuliaArrays/EndpointRanges.jl) [![codecov.io](http://codecov.io/github/JuliaArrays/EndpointRanges.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaArrays/EndpointRanges.jl?branch=master) This Julia package makes it easier to index "unconventional" arrays (ones for which indexing does not necessarily start at 1), by defining constants `ibegin` and `iend` that stand for the beginning and end, respectively, of the indices range along any given dimension. # Usage ```jl using EndpointRanges a = 1:20 a[ibegin:iend] == a a[ibegin+3:iend-2] == a[4:18] a[1:(ibegin+iend)÷2] == a[1:10] ``` Note that, unlike `3:end` you can also pass such indices as arguments to a function: ``` view(a, ibegin+2:iend-3) == view(a, 3:17) ```
EndpointRanges
https://github.com/JuliaArrays/EndpointRanges.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
code
964
module MeshCatMechanisms export MechanismVisualizer, animate, MeshCatSink, setelement!, manipulate! # Re-export from MeshCat.jl export render, Triad, setanimation! # Re-export from MechanismGeometries.jl export VisualElement, Skeleton, URDFVisuals, visual_elements # Re-export from RigidBodyDynamics.jl export set_configuration!, Point3D using MeshCat using CoordinateTransformations using RigidBodyDynamics const rbd = RigidBodyDynamics using RigidBodyDynamics.Graphs: ancestors, edge_to_parent, source, vertices, root using Interpolations: interpolate, Gridded, Linear using LoopThrottle: @throttle using MechanismGeometries: visual_elements, VisualElement, Skeleton, URDFVisuals, AbstractGeometrySource, MeshFile using GeometryBasics: HyperSphere, Point include("visualizer.jl") include("animate.jl") include("ode_callback.jl") include("manipulate.jl") using .Manipulate end # module
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
code
2938
""" animate(vis::MechanismVisualizer, times::Vector{Float64}, configurations::Vector{Vector{Float64}}; fps::Float64=60, realtimerate::Float64=1.) Animate the given mechanism passing through a time-coded series of configurations by linearly interpolating the configuration vectors. """ function animate(vis::MechanismVisualizer, times::Vector{Float64}, configurations::AbstractVector{<:AbstractVector{Float64}}; fps::Float64 = 60., realtimerate::Float64 = 1.) @assert fps > 0 @assert 0 < realtimerate < Inf state = vis.state interpolated_configurations = interpolate((times,), configurations, Gridded(Linear())) t0, tf = first(times), last(times) framenum = 0 walltime0 = time() @throttle framenum while true t = min(tf, t0 + (time() - walltime0) * realtimerate) q = interpolated_configurations(t) set_configuration!(state, q) rbd.normalize_configuration!(state) _render_state!(vis) framenum += 1 t == tf && break end max_rate = fps end function MeshCat.Animation(mvis::MechanismVisualizer, times::AbstractVector{<:Real}, configurations::AbstractVector{<:AbstractVector{<:Real}}; fps::Integer=30) @assert axes(times) == axes(configurations) interpolated_configurations = interpolate((times,), configurations, Gridded(Linear())) animation = Animation() num_frames = floor(Int, (times[end] - first(times)) * fps) for frame in 0 : num_frames time = first(times) + frame / fps let mvis = mvis, interpolated_configurations = interpolated_configurations, time=time atframe(animation, frame) do set_configuration!(mvis, interpolated_configurations(time)) end end end return animation end MeshCat.setanimation!(mvis::MechanismVisualizer, args...; kw...) = setanimation!(visualizer(mvis), args...; kw...) function MeshCat.setanimation!(mvis::MechanismVisualizer, times::AbstractVector{<:Real}, configurations::AbstractVector{<:AbstractVector{<:Real}}; fps::Integer=30, play::Bool=true, repetitions::Integer=1) Base.depwarn(""" `setanimation!(mvis, times, configurations; ..)` is deprecated. Instead, you can construct an `Animation` and then call `setanimation!` with the result. For example, if you previously did: ``` setanimation!(mvis, times, configurations, fps=30, play=true) ``` You should now do: ``` animation = Animation(mvis, times, configurations, fps=25) setanimation!(mvis, animation, play=true) ``` """, :setanimation_t_q) animation = Animation(mvis, times, configurations, fps=fps) setanimation!(mvis, animation, play=play, repetitions=repetitions) end
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
code
2913
module Manipulate export manipulate! using MeshCatMechanisms using RigidBodyDynamics using RigidBodyDynamics: Bounds, position_bounds, lower, upper using InteractBase: slider, Widget, observe, vbox using OrderedCollections: OrderedDict function remove_infs(b::Bounds, default=Float64(π)) Bounds(isfinite(lower(b)) ? lower(b) : -default, isfinite(upper(b)) ? upper(b) : default) end slider_range(joint::Joint) = remove_infs.(position_bounds(joint)) function slider_range(joint::Joint{T, <: QuaternionFloating}) where {T} defaults = [1., 1, 1, 1, 10, 10, 10] remove_infs.(position_bounds(joint), defaults) end slider_labels(joint::Joint) = [string("q", i) for i in 1:num_positions(joint)] slider_labels(joint::Joint{T, <:QuaternionFloating}) where {T} = ["rw", "rx", "ry", "rz", "x", "y", "z"] function sliders(joint::Joint, values=clamp.(zeros(num_positions(joint)), position_bounds(joint)); bounds=slider_range(joint), labels=slider_labels(joint), resolution=0.01, prefix="") map(bounds, labels, values) do b, label, value num_steps = ceil(Int, (upper(b) - lower(b)) / resolution) r = range(lower(b), stop=upper(b), length=num_steps) slider(range(lower(b), stop=upper(b), length=num_steps), value=clamp(value, first(r), last(r)), label=string(prefix, label)) end end function combined_observable(joint::Joint, sliders::AbstractVector) map(observe.(sliders)...) do args... q = vcat(args...) normalize_configuration!(q, joint) q end end function widget(joint::Joint{T, <:Fixed}, args...) where T Widget{:rbd_joint}() end function widget(joint::Joint, initial_value=clamp.(zeros(num_positions(joint)), position_bounds(joint)); prefix=string(joint, '.')) s = sliders(joint, initial_value, prefix=prefix) keys = Symbol.(slider_labels(joint)) w = Widget{:rbd_joint}(OrderedDict(zip(keys, s))) w.output = combined_observable(joint, s) w.layout = x -> vbox(s...) w end function manipulate!(callback::Function, state::MechanismState) joint_list = joints(state.mechanism) widgets = widget.(joint_list, configuration.(state, joint_list)) keys = Symbol.(joint_list) w = Widget{:rbd_manipulator}(OrderedDict(zip(keys, widgets))) w.output = map(observe.(widgets)...) do signals... for i in 1:length(joint_list) if num_positions(joint_list[i]) > 0 set_configuration!(state, joint_list[i], signals[i]) end end callback(state) end w.layout = x -> vbox(widgets...) w end function manipulate!(callback::Function, vis::MechanismVisualizer) manipulate!(vis.state) do x set_configuration!(vis, configuration(x)) callback(x) end end manipulate!(vis::MechanismVisualizer) = manipulate!(x -> nothing, vis) end
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
code
770
mutable struct MeshCatSink{M <: MechanismState} <: rbd.OdeIntegrators.OdeResultsSink vis::MechanismVisualizer{M} min_wall_Δt::Float64 last_update_wall_time::Float64 function MeshCatSink(vis::MechanismVisualizer{M}; max_fps::Float64 = 60.) where {M <: MechanismState} new{M}(vis, 1 / max_fps, -Inf) end end function rbd.OdeIntegrators.initialize(sink::MeshCatSink, t, state) sink.last_update_wall_time = -Inf rbd.OdeIntegrators.process(sink, t, state) end function rbd.OdeIntegrators.process(sink::MeshCatSink, t, state) wall_Δt = time() - sink.last_update_wall_time if wall_Δt > sink.min_wall_Δt set_configuration!(sink.vis, configuration(state)) sink.last_update_wall_time = time() end nothing end
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
code
7342
struct MechanismVisualizer{M <: MechanismState, V <: AbstractVisualizer} state::M visualizer::V modcount::Int function MechanismVisualizer(state::M, vis::V) where {M <: MechanismState, V <: AbstractVisualizer} new{M, V}(state, vis, rbd.modcount(state.mechanism)) end end function MechanismVisualizer(state::MechanismState, source::AbstractGeometrySource=Skeleton(), vis::AbstractVisualizer=Visualizer()) vis = MechanismVisualizer(state, vis) setelement!(vis, source) vis end function setelement!(vis::MechanismVisualizer, source::AbstractGeometrySource) elements = visual_elements(mechanism(vis), source) _set_mechanism!(vis, elements) _render_state!(vis) end MechanismVisualizer(m::Mechanism, args...) = MechanismVisualizer(MechanismState{Float64}(m), args...) state(mvis::MechanismVisualizer) = mvis.state mechanism(mvis::MechanismVisualizer) = mvis.state.mechanism visualizer(mvis::MechanismVisualizer) = mvis.visualizer to_affine_map(tform::Transform3D) = AffineMap(rotation(tform), translation(tform)) function _set_mechanism!(mvis::MechanismVisualizer, elements::AbstractVector{<:VisualElement}) for (i, element) in enumerate(elements) setelement!(mvis, element, "geometry_$i") end end Base.getindex(mvis::MechanismVisualizer, x...) = getindex(mvis.visualizer, x...) # TODO: much of this information can be cached if this # method becomes a performance bottleneck. # We can probably just put `@memoize` from Memoize.jl right here. function Base.getindex(mvis::MechanismVisualizer, frame::CartesianFrame3D) body = rbd.body_fixed_frame_to_body(mechanism(mvis), frame) mvis[body][string(frame)] end function Base.getindex(mvis::MechanismVisualizer, body::RigidBody) path = _path(mechanism(mvis), body) mvis[path...] end """ setelement!(mvis::MechanismVisualizer, element::VisualElement, name::AbstractString="<element>") Attach the given visual element to the visualizer. The element's frame will determine how its geometry is attached to the scene tree, so that any other geometries attached to the same body will all move together. """ function setelement!(mvis::MechanismVisualizer, element::VisualElement, name::AbstractString="<element>") setelement!(mvis, element.frame, element.geometry, MeshLambertMaterial(color=element.color), name) settransform!(mvis[element.frame][name], element.transform) end """ setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, object::AbstractObject, name::AbstractString="<element>") Attach the given geometric object (geometry + material) to the visualizer at the given frame """ function setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, object::AbstractObject, name::AbstractString="<element>") body = rbd.body_fixed_frame_to_body(mechanism(mvis), frame) definition = rbd.frame_definition(body, frame) frame_vis = mvis[frame] settransform!(frame_vis, to_affine_map(definition)) setobject!(frame_vis[name], object) end """ setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, geometry::GeometryLike, name::AbstractString="<element>") Attach the given geometry to the visualizer at the given frame, using its default material. """ function setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, geometry::GeometryLike, name::AbstractString="<element>") setelement!(mvis, frame, Object(geometry), name) end """ setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, geometry::GeometryLike, material::AbstractMaterial, name::AbstractString="<element>") Construct an object with the given geometry and material and attach it to the visualizer """ function setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, geometry::GeometryLike, material::AbstractMaterial, name::AbstractString="<element>") setelement!(mvis, frame, Object(geometry, material), name) end function setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, geometry::MeshFile, material::AbstractMaterial, name::AbstractString="<element>") ext = lowercase(splitext(geometry.filename)[2]) # We load .dae files as MeshFileObject so that threejs can handle loading # their built-in primitives, materials, and textures. All other meshes are # loaded as MeshFileGeometry which uses MeshIO to load the mesh geometry in # Julia (but does not currently handle any materials or textures). if ext == ".dae" obj = MeshFileObject(geometry.filename) else obj = Object(MeshFileGeometry(geometry.filename), material) end setelement!(mvis, frame, obj, name) end # Special cases for visualizing frames and points """ setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, scale::Real=0.5, name::AbstractString="<element>") Add a Triad geometry with the given scale to the visualizer at the specified frame """ function setelement!(mvis::MechanismVisualizer, frame::CartesianFrame3D, scale::Real=0.5, name::AbstractString="<element>") setelement!(mvis, frame, Triad(scale), name) end """ setelement!(mvis::MechanismVisualizer, point::Point3D, radius::Real=0.05, name::AbstractString="<element>") Add a HyperSphere geometry with the given radius to the visualizer at the given point """ function setelement!(mvis::MechanismVisualizer, point::Point3D, radius::Real=0.05, name::AbstractString="<element>") setelement!(mvis, point.frame, HyperSphere(Point(point.v[1], point.v[2], point.v[3]), convert(eltype(point.v), radius)), name) end function _path(mechanism, body) body_ancestors = ancestors(body, mechanism.tree) path = string.(reverse(body_ancestors)) end function _render_state!(mvis::MechanismVisualizer, state::MechanismState=mvis.state) @assert mvis.state.mechanism === state.mechanism if rbd.modcount(state.mechanism) != mvis.modcount error("Mechanism has been modified after creating the visualizer. Please create a new MechanismVisualizer") end vis = mvis.visualizer tree = mechanism(mvis).tree # TODO: tree accessor? for body in vertices(tree) if body == root(tree) continue else parent = source(edge_to_parent(body, tree), tree) tform = relative_transform(state, default_frame(body), default_frame(parent)) settransform!(mvis[body], to_affine_map(tform)) end end end """ set_configuration!(mvis::MechanismVisualizer, args...) Set the configuration of the mechanism visualizer and re-render it. # Examples ```julia-repl julia> set_configuration!(vis, [1., 2., 3.]) ``` ```julia-repl julia> set_configuration!(vis, findjoint(robot, "shoulder"), 1.0) ``` """ function rbd.set_configuration!(mvis::MechanismVisualizer, args...) set_configuration!(mvis.state, args...) _render_state!(mvis) end rbd.configuration(mvis::MechanismVisualizer, args...) = configuration(mvis.state, args...) MeshCat.render(mvis::MechanismVisualizer, args...; kw...) = MeshCat.render(mvis.visualizer, args...; kw...) Base.open(mvis::MechanismVisualizer, args...; kw...) = open(mvis.visualizer, args...; kw...) Base.wait(mvis::MechanismVisualizer) = wait(mvis.visualizer) function Base.copyto!(mvis::MechanismVisualizer, state::Union{MechanismState, AbstractVector}) copyto!(mvis.state, state) _render_state!(mvis) end
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
code
4735
using Test using MeshCat using MeshCatMechanisms using RigidBodyDynamics using RigidBodyDynamics.OdeIntegrators using CoordinateTransformations: Translation using ValkyrieRobot using NBInclude using StaticArrays vis = Visualizer() @testset "MeshCatMechanisms" begin @testset "URDF mechanism" begin urdf = joinpath(@__DIR__, "urdf", "Acrobot.urdf") robot = parse_urdf(urdf, remove_fixed_tree_joints=false) mvis = MechanismVisualizer(robot, URDFVisuals(urdf), vis) if !haskey(ENV, "CI") open(mvis) wait(mvis) end set_configuration!(mvis, [0, -0.5]) set_configuration!(mvis, findjoint(robot, "shoulder"), 1.0) @test configuration(mvis) == [1.0, -0.5] @test configuration(mvis, findjoint(robot, "shoulder")) == [1.0] copyto!(mvis, [0.1, -0.6, 0.0, 0.0]) @test configuration(mvis) == [0.1, -0.6] setelement!(mvis, default_frame(bodies(robot)[end])) setelement!(mvis, Point3D(default_frame(bodies(robot)[3]), 0.2, 0.2, 0.2)) @testset "simulation and animation" begin state = MechanismState(robot, randn(2), randn(2)) t, q, v = simulate(state, 5.0); animate(mvis, t, q) animation = Animation(mvis, t, q) setanimation!(mvis, animation) end @testset "deprecated `setanimation!`" begin state = MechanismState(robot, randn(2), randn(2)) t, q, v = simulate(state, 5.0); animate(mvis, t, q) setanimation!(mvis, t, q) end end @testset "URDF with fixed joints" begin urdf = joinpath(@__DIR__, "urdf", "Acrobot_fixed.urdf") robot = parse_urdf(urdf) delete!(vis) mvis = MechanismVisualizer(robot, URDFVisuals(urdf), vis) set_configuration!(mvis, [0.5]) @testset "simulation and animation" begin state = MechanismState(robot, randn(1), randn(1)) t, q, v = simulate(state, 5.0); animate(mvis, t, q) setanimation!(mvis, Animation(mvis, t, q)) end end @testset "Valkyrie" begin val = Valkyrie(); delete!(vis) mvis = MechanismVisualizer( val.mechanism, URDFVisuals(ValkyrieRobot.urdfpath(), package_path=[ValkyrieRobot.packagepath()]), vis[:val_urdf]) end @testset "valkyrie inertias" begin val = Valkyrie(); mvis = MechanismVisualizer( val.mechanism, Skeleton(), vis[:val_inertia]) settransform!(vis[:val_inertia], Translation(0, 2, 0)) end @testset "visualization during simulation" begin urdf = joinpath(@__DIR__, "urdf", "Acrobot.urdf") robot = parse_urdf(urdf, remove_fixed_tree_joints=false) mvis = MechanismVisualizer(robot, URDFVisuals(urdf), vis[:acrobot][:robot]) settransform!(vis[:acrobot], Translation(0, -2, 0)) result = DynamicsResult{Float64}(robot) function damped_dynamics!(vd::AbstractArray, sd::AbstractArray, t, state) damping = 2. τ = -damping * velocity(state) dynamics!(result, state, τ) copyto!(vd, result.v̇) copyto!(sd, result.ṡ) nothing end state = MechanismState(robot, randn(2), randn(2)) integrator = MuntheKaasIntegrator(state, damped_dynamics!, runge_kutta_4(Float64), MeshCatSink(mvis)) integrate(integrator, 10., 1e-3, max_realtime_rate = 1.) end @testset "position bounds resolution" begin j = Joint("foo", Revolute(SVector(1., 0, 0))) RigidBodyDynamics.position_bounds(j) .= RigidBodyDynamics.Bounds(-1.234, 0.0) MeshCatMechanisms.Manipulate.sliders(j) MeshCatMechanisms.Manipulate.widget(j) end @testset "manipulation" begin delete!(vis) mechanism = rand_chain_mechanism(Float64, [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1:5]]...) mvis = MechanismVisualizer(mechanism) widget = manipulate!(mvis) end @testset "manipulation - negative bounds issue" begin mechanism = rand_chain_mechanism(Float64, Revolute{Float64}) joint = first(joints(mechanism)) joint.position_bounds .= RigidBodyDynamics.Bounds(-2.0, -1.0) mvis = MechanismVisualizer(mechanism) widget = manipulate!(mvis) end @testset "examples" begin dir = joinpath(@__DIR__, "..", "examples") for file in readdir(dir) base, ext = splitext(file) if ext == ".jl" @info "Running $file" include(joinpath(dir, file)) end end end end
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.9.0
b766636d31175340e542c833cff1895c2f3f41cc
docs
1774
# MeshCatMechanisms [![Build Status](https://github.com/JuliaRobotics/MeshCatMechanisms.jl/workflows/CI/badge.svg)](https://github.com/JuliaRobotics/MeshCatMechanisms.jl/actions?query=workflow%3ACI) [![codecov.io](http://codecov.io/github/JuliaRobotics/MeshCatMechanisms.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaRobotics/MeshCatMechanisms.jl?branch=master) MeshCatMechanisms.jl adds support for visualizing mechanisms and robots from [RigidBodyDynamics.jl](https://github.com/tkoolen/RigidBodyDynamics.jl) with [MeshCat.jl](https://github.com/rdeits/MeshCat.jl). All geometries are constructed using [MechanismGeometries.jl](https://github.com/rdeits/MechanismGeometries.jl). Features: * Parsing geometry directly from URDF files * Animation of robot trajectories from RigidBodyDynamics.jl simulations * Live rendering of simulation progress using the `OdeIntegrators.OdeResultsSink` interface * Interactive manipulation of the mechanism configuration using [InteractBase.jl](https://github.com/piever/InteractBase.jl) ## Related Projects MeshCatMechanisms.jl provides similar functionality to [RigidBodyTreeInspector.jl](https://github.com/rdeits/RigidBodyTreeInspector.jl), but is built on top of the lighter-weight MeshCat viewer instead of [DrakeVisualizer.jl](https://github.com/rdeits/DrakeVisualizer.jl). # Installation Stable release: ```julia Pkg.add("MeshCatMechanisms") ``` Latest and greatest: ```julia Pkg.add("MeshCatMechanisms") Pkg.clone("https://github.com/rdeits/MechanismGeometries.jl") Pkg.checkout("MeshCatMechanisms") Pkg.checkout("MeshCat") ``` # Usage See [examples/demo.ipynb](examples/demo.ipynb) # Examples ![](https://user-images.githubusercontent.com/591886/36703991-41b6991a-1b2c-11e8-8804-24c56ddd94cc.png)
MeshCatMechanisms
https://github.com/JuliaRobotics/MeshCatMechanisms.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
814
const _pkg_root = dirname(dirname(@__FILE__)) const _pkg_deps = joinpath(_pkg_root,"deps") const _pkg_assets = joinpath(_pkg_root,"assets") !isdir(_pkg_assets) && mkdir(_pkg_assets) deps = [ "https://use.fontawesome.com/releases/v5.0.7/js/all.js", "https://cdn.jsdelivr.net/gh/piever/[email protected]/highlight/prism.css", "https://cdn.jsdelivr.net/gh/piever/[email protected]/highlight/prism.js", "https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/11.1.0/nouislider.min.js", "https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/11.1.0/nouislider.min.css", "https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.9.0/katex.min.js", "https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.9.0/katex.min.css" ] for dep in deps download(dep, joinpath(_pkg_assets, splitdir(dep)[2])) end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
2514
module InteractBase using WebIO, OrderedCollections, Observables, CSSUtil, Colors, JSExpr import Observables: ObservablePair, AbstractObservable import JSExpr: JSString using Random using Dates using Base64: stringmime using JSON using Knockout using Knockout: js_lambda using Widgets import Widgets: observe, AbstractWidget, div, Widget, widget, widgettype, @layout!, components, input, spinbox, textbox, textarea, autocomplete, datepicker, timepicker, colorpicker, checkbox, toggle, filepicker, opendialog, savedialog, slider, rangeslider, rangepicker, button, dropdown, radiobuttons, checkboxes, toggles, togglebuttons, tabs, entry, latex, alert, highlight, notifications, confirm, togglecontent, tabulator, accordion, mask, tooltip!, wdglabel, slap_design!, @manipulate, manipulatelayout, triggeredby, onchange import Observables: throttle export observe, Widget, widget export @manipulate export filepicker, opendialog, savedialog, datepicker, timepicker, colorpicker, spinbox export autocomplete, input, dropdown, checkbox, textbox, textarea, button, toggle, togglecontent export slider, rangeslider, rangepicker export radiobuttons, togglebuttons, tabs, checkboxes, toggles export latex, alert, confirm, highlight, notifications, accordion, tabulator, mask export onchange export settheme!, resettheme!, gettheme, availablethemes, NativeHTML export slap_design! abstract type WidgetTheme<:Widgets.AbstractBackend; end struct NativeHTML<:WidgetTheme; end const font_awesome = joinpath(@__DIR__, "..", "assets", "all.js") const prism_js = joinpath(@__DIR__, "..", "assets", "prism.js") const prism_css = joinpath(@__DIR__, "..", "assets", "prism.css") const highlight_css = joinpath(@__DIR__, "..", "assets", "highlight.css") const nouislider_min_js = joinpath(@__DIR__, "..", "assets", "nouislider.min.js") const nouislider_min_css = joinpath(@__DIR__, "..", "assets", "nouislider.min.css") const style_css = joinpath(@__DIR__, "..", "assets", "style.css") include("classes.jl") include("backends.jl") include("utils.jl") include("input.jl") include("slider.jl") include("optioninput.jl") include("layout.jl") include("output.jl") include("modifiers.jl") function __init__() if Widgets.get_backend() === Widgets.DummyBackend() Widgets.set_backend!(NativeHTML()) end end end # module
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
915
libraries(::WidgetTheme) = [style_css] Base.@deprecate_binding backend Widgets.backends const themes = OrderedDict{Symbol, WidgetTheme}(:nativehtml => NativeHTML()) registertheme!(key::Union{Symbol, AbstractString}, val::WidgetTheme) = setindex!(themes, val, Symbol(key)) """ `settheme!(s::Union{Symbol, AbstractString})` Set theme of Interact globally. See `availablethemes()` to know what themes are currently available. """ function settheme!(s::Union{Symbol, AbstractString}) theme = get(themes, Symbol(s)) do error("Theme $s is not available.") end settheme!(theme) end settheme!(b::WidgetTheme) = isa(Widgets.get_backend(), WidgetTheme) && Widgets.set_backend!(b) gettheme() = isa(Widgets.get_backend(), WidgetTheme) ? Widgets.get_backend() : nothing availablethemes() = sort(collect(keys(themes))) resettheme!() = isa(Widgets.get_backend(), WidgetTheme) && Widgets.reset_backend!()
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
1942
mergeclasses(args...) = join(args, ' ') getclass(args...) = getclass(gettheme(), args...) function getclass(T::WidgetTheme, arg, typ...) length(typ) > 0 && last(typ) == "label" && return "" if arg == :input typ==() && return "input" typ[1] in ["checkbox", "radio"] && return "is-checkradio" typ[1]=="toggle" && return "switch" typ==("range",) && return "slider" typ==("range", "fullwidth") && return "slider is-fullwidth" typ==("rangeslider", "horizontal",) && return "rangeslider rangeslider-horizontal" typ==("rangeslider", "vertical",) && return "rangeslider rangeslider-vertical" if typ[1]=="file" typ[2:end]==() && return "file" typ[2:end]==("span",) && return "file-cta" typ[2:end]==("span", "icon") && return "file-icon" typ[2:end]==("span","label") && return "file-label" typ[2:end]==("icon",) && return "fas fa-upload" typ[2:end]==("label",) && return "file-label" typ[2:end]==("name",) && return "file-name" end return "input" elseif arg == :dropdown return typ == (true,) ? "select is-multiple" : "select" elseif arg == :button typ==("primary",) && return "is-primary" typ==("active",) && return "is-primary is-selected" typ==("fullwidth",) && return "is-fullwidth" return "is-medium button" elseif arg==:tab typ==("active",) && return "is-active" return "not-active" elseif arg == :textarea return "textarea" elseif arg==:wdglabel return "interact" elseif arg==:div return "field" elseif arg==:togglebuttons return "buttons has-addons is-centered" elseif arg==:tabs return "tabs" elseif arg==:radiobuttons return "field" elseif arg==:ijulia return "interactbulma" else return "" end end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
16517
_basename(v::AbstractArray) = basename.(v) _basename(::Nothing) = nothing _basename(v) = basename(v) """ `filepicker(label="Choose a file..."; multiple=false, accept="*")` Create a widget to select files. If `multiple=true` the observable will hold an array containing the paths of all selected files. Use `accept` to only accept some formats, e.g. `accept=".csv"` """ function filepicker(theme::WidgetTheme, lbl="Choose a file..."; attributes=PropDict(), label=lbl, className="", multiple=false, value=multiple ? String[] : "", kwargs...) (value isa AbstractObservable) || (value = Observable{Any}(value)) filename = Observable{Any}(_basename(value[])) if multiple onFileUpload = js"""function (data, e){ var files = e.target.files; var fileArray = Array.from(files); this.filename(fileArray.map(function (el) {return el.name;})); return this.path(fileArray.map(function (el) {return el.path;})); } """ else onFileUpload = js"""function(data, e) { var files = e.target.files; this.filename(files[0].name); return this.path(files[0].path); } """ end multiple && (attributes=merge(attributes, PropDict(:multiple => true))) attributes = merge(attributes, PropDict(:type => "file", :style => "display: none;", Symbol("data-bind") => "event: {change: onFileUpload}")) className = mergeclasses(getclass(theme, :input, "file"), className) template = dom"div[style=display:flex; align-items:center;]"( node(:label, className=getclass(theme, :input, "file", "label"))( node(:input; className=className, attributes=attributes, kwargs...), node(:span, node(:span, (node(:i, className = getclass(theme, :input, "file", "icon"))), className=getclass(theme, :input, "file", "span", "icon")), node(:span, label, className=getclass(theme, :input, "file", "span", "label")), className=getclass(theme, :input, "file", "span")) ), node(:span, attributes = Dict("data-bind" => " text: filename() == '' ? 'No file chosen' : filename()"), className = getclass(theme, :input, "file", "name")) ) observs = ["path" => value, "filename" => filename] ui = knockout(template, observs, methods = ["onFileUpload" => onFileUpload]) slap_design!(ui, theme) Widget{:filepicker}(observs, scope = ui, output = ui["path"], layout = node(:div, className = "field interact-widget")∘Widgets.scope) end """ `opendialog(; value = String[], label = "Open", icon = "far fa-folder-open", options...)` Creates an [Electron openDialog](https://electronjs.org/docs/api/dialog#dialogshowopendialogbrowserwindow-options-callback). `value` is the list of selected files or folders. `options` (given as keyword arguments) correspond to `options` of the Electron dialog. This widget will not work in the browser but only in an Electron window. ## Examples ```jldoctest julia> ui = InteractBase.opendialog(; properties = ["showHiddenFiles", "multiSelections"], filters = [(; name = "Text", extensions = ["txt", "md"])]); julia> ui[] 0-element Array{String,1} ``` """ opendialog(theme::WidgetTheme; value = String[], label = "Open", icon = "far fa-folder-open", kwargs...) = dialog(theme, js"showOpenDialog"; value = value, label = label, icon = icon, kwargs...) """ `savedialog(; value = String[], label = "Open", icon = "far fa-folder-open", options...)` Create an [Electron saveDialog](https://electronjs.org/docs/api/dialog#dialogshowsavedialogbrowserwindow-options-callback). `value` is the list of selected files or folders. `options` (given as keyword arguments) correspond to `options` of the Electron dialog. This widget will not work in the browser but only in an Electron window. ## Examples ```jldoctest julia> ui = InteractBase.savedialog(; properties = ["showHiddenFiles"], filters = [(; name = "Text", extensions = ["txt", "md"])]); julia> ui[] "" ``` """ savedialog(theme::WidgetTheme; value = "", label = "Save", icon = "far fa-save", kwargs...) = dialog(theme, js"showSaveDialog"; value = value, label = label, icon = icon, kwargs...) function dialog(theme::WidgetTheme, dialogtype; value, className = "", label = "dialog", icon = nothing, options...) (value isa AbstractObservable) || (value = Observable(value)) scp = Scope() setobservable!(scp, "output", value) clicks = Observable(scp, "clicks", 0) callback = @js function (val) $value[] = val end onimport(scp, js""" function () { const { dialog } = require('electron').remote; this.dialog = dialog; } """) onjs(clicks, js""" function (val) { console.log(this.dialog.$dialogtype($options, $callback)); } """) className = mergeclasses(getclass(theme, :button), className) content = if icon === nothing (label,) else iconNode = node(:span, node(:i, className = icon), className = "icon") (iconNode, node(:span, label)) end btn = node(:button, content..., events=Dict("click" => @js event -> ($clicks[] = $clicks[] + 1)), className = className) scp.dom = btn slap_design!(scp, theme) Widget{:dialog}([]; output = value, scope = scp, layout = Widgets.scope) end _parse(::Type{S}, x) where{S} = parse(S, x) function _parse(::Type{Dates.Time}, x) segments = split(x, ':') length(segments) >= 2 && all(!isempty, segments) || return nothing h, m = parse.(Int, segments) Dates.Time(h, m) end function _string(x::Dates.Time) h = Dates.hour(x) m = Dates.minute(x) string(lpad(h, 2, "0"), ":", lpad(m, 2, "0")) end _string(x::Dates.Date) = string(x) """ `datepicker(value::Union{Dates.Date, Observable, Nothing}=nothing)` Create a widget to select dates. """ function datepicker end """ `timepicker(value::Union{Dates.Time, Observable, Nothing}=nothing)` Create a widget to select times. """ function timepicker end for (func, typ, str, unit) in [(:timepicker, :(Dates.Time), "time", Dates.Second), (:datepicker, :(Dates.Date), "date", Dates.Day) ] @eval begin function $func(theme::WidgetTheme, val=nothing; value=val, kwargs...) (value isa AbstractObservable) || (value = Observable{Union{$typ, Nothing}}(value)) f = x -> x === nothing ? "" : _string(x) g = t -> _parse($typ, t) pair = ObservablePair(value, f=f, g=g) ui = input(theme, pair.second; typ=$str, kwargs...) Widget{$(Expr(:quote, func))}(ui, output = value) end function $func(theme::WidgetTheme, vals::AbstractRange, val=medianelement(vals); value=val, kwargs...) f = x -> x === nothing ? "" : _string(x) fs = x -> x === nothing ? "" : split(string(convert($unit, x)), ' ')[1] min, max = extrema(vals) $func(theme; value=value, min=f(min), max=f(max), step=fs(step(vals)), kwargs...) end end end """ `colorpicker(value::Union{Color, Observable}=colorant"#000000")` Create a widget to select colors. """ function colorpicker(theme::WidgetTheme, val=colorant"#000000"; value=val, kwargs...) (value isa AbstractObservable) || (value = Observable{Color}(value)) f = t -> "#"*hex(t) g = t -> parse(Colorant,t) pair = ObservablePair(value, f=f, g=g) ui = input(theme, pair.second; typ="color", kwargs...) Widget{:colorpicker}(ui, output = value) end """ `spinbox([range,] label=""; value=nothing)` Create a widget to select numbers with placeholder `label`. An optional `range` first argument specifies maximum and minimum value accepted as well as the step. Use `step="any"` to allow all decimal numbers. """ function spinbox(theme::WidgetTheme, label=""; value=nothing, placeholder=label, isinteger=nothing, kwargs...) isinteger === nothing || @warn "`isinteger` is deprecated" if !isa(value, AbstractObservable) T = something(isinteger, isa(value, Integer)) ? Int : Float64 value = Observable{Union{T, Nothing}}(value) end ui = input(theme, value; isnumeric=true, placeholder=placeholder, typ="number", kwargs...) Widget{:spinbox}(ui; output = value) end spinbox(theme::WidgetTheme, vals::AbstractRange, args...; value=first(vals), kwargs...) = spinbox(theme, args...; value=value, min=minimum(vals), max=maximum(vals), step=step(vals), kwargs...) """ `autocomplete(options, label=""; value="")` Create a textbox input with autocomplete options specified by `options`, with `value` as initial value and `label` as label. """ function autocomplete(::WidgetTheme, options, args...; attributes=PropDict(), kwargs...) (options isa AbstractObservable) || (options = Observable{Any}(options)) option_array = _js_array(options) s = gensym() attributes = merge(attributes, PropDict(:list => s)) t = textbox(args...; extra_obs=["options_js" => option_array], attributes=attributes, kwargs...) Widgets.scope(t).dom = node(:div, Widgets.scope(t).dom, node(:datalist, node(:option, attributes=Dict("data-bind"=>"value : key")); attributes = Dict("data-bind" => "foreach : options_js", "id" => s)) ) w = Widget{:autocomplete}(t) w[:options] = options w end """ `input(o; typ="text")` Create an HTML5 input element of type `type` (e.g. "text", "color", "number", "date") with `o` as initial value. """ @noinline function input(theme::WidgetTheme, o; extra_js=js"", extra_obs=[], label=nothing, typ="text", wdgtyp=typ, className="", style=Dict(), isnumeric=Knockout.isnumeric(o), computed=[], attributes=Dict(), bind="value", bindto="value", valueUpdate="input", changes=0, kwargs...) (o isa AbstractObservable) || (o = Observable(o)) (changes isa AbstractObservable) || (changes = Observable(changes)) data = Pair{String, Any}["changes" => changes, bindto => o] if isnumeric && bind == "value" bind = "numericValue" end append!(data, (string(key) => val for (key, val) in extra_obs)) countChanges = js_lambda("this.changes(this.changes()+1)") attrDict = merge( attributes, Dict(:type => typ, Symbol("data-bind") => "$bind: $bindto, valueUpdate: '$valueUpdate', event: {change: $countChanges}" ) ) className = mergeclasses(getclass(theme, :input, wdgtyp), className) template = node(:input; className=className, attributes=attrDict, style=style, kwargs...)() ui = knockout(template, data, extra_js; computed=computed) (label != nothing) && (ui.dom = flex_row(wdglabel(theme, label), ui.dom)) slap_design!(ui, theme) Widget{:input}(data, scope = ui, output = ui[bindto], layout = node(:div, className = "field interact-widget")∘Widgets.scope) end @noinline function input(theme::WidgetTheme; typ="text", kwargs...) if typ in ["checkbox", "radio"] o = false elseif typ in ["number", "range"] o = 0.0 else o = "" end input(theme, o; typ=typ, kwargs...) end """ `button(content... = "Press me!"; value=0)` A button. `content` goes inside the button. Note the button `content` supports a special `clicks` variable, that gets incremented by `1` with each click e.g.: `button("clicked {{clicks}} times")`. The `clicks` variable is initialized at `value=0`. Given a button `b`, `b["is-loading"]` defines whether the button is in a loading state (spinning wheel). Use `b["is-loading"][]=true` or `b["is-loading"][]=false` respectively to display or take away the spinner. """ function button(theme::WidgetTheme, content...; label = "Press me!", value = 0, style = Dict{String, Any}(), className = getclass(theme, :button, "primary"), attributes=Dict(), kwargs...) isempty(content) && (content = (label,)) (value isa AbstractObservable) || (value = Observable(value)) loading = Observable(false) className = "delete" in split(className, ' ') ? className : mergeclasses(getclass(theme, :button), className) countClicks = js_lambda("this.clicks(this.clicks()+1)") attrdict = merge( Dict("data-bind"=>"click: $countClicks, css: {'is-loading' : loading}"), attributes ) template = node(:button, content...; className=className, attributes=attrdict, style=style, kwargs...) button = knockout(template, ["clicks" => value, "loading" => loading]) slap_design!(button, theme) Widget{:button}(["is-loading" => loading], scope = button, output = value, layout = node(:div, className = "field interact-widget")∘Widgets.scope) end for wdg in [:toggle, :checkbox] @eval begin $wdg(theme::WidgetTheme, value, lbl::AbstractString=""; label=lbl, kwargs...) = $wdg(theme; value=value, label=label, kwargs...) $wdg(theme::WidgetTheme, label::AbstractString, val=false; value=val, kwargs...) = $wdg(theme; value=value, label=label, kwargs...) $wdg(theme::WidgetTheme, value::AbstractString, label::AbstractString; kwargs...) = error("value cannot be a string") function $wdg(theme::WidgetTheme; bind="checked", valueUpdate="change", value=false, label="", labelclass="", kwargs...) s = gensym() |> string (label isa Tuple) || (label = (label,)) widgettype = $(Expr(:quote, wdg)) wdgtyp = string(widgettype) labelclass = mergeclasses(getclass(theme, :input, wdgtyp, "label"), labelclass) ui = input(theme, value; bind=bind, typ="checkbox", valueUpdate="change", wdgtyp=wdgtyp, id=s, kwargs...) Widgets.scope(ui).dom = node(:div, className = "field interact-widget")(Widgets.scope(ui).dom, dom"label[className=$labelclass, for=$s]"(label...)) Widget{widgettype}(ui) end end end """ `checkbox(value::Union{Bool, AbstractObservable}=false; label)` A checkbox. e.g. `checkbox(label="be my friend?")` """ function checkbox end """ `toggle(value::Union{Bool, AbstractObservable}=false; label)` A toggle switch. e.g. `toggle(label="be my friend?")` """ function toggle end """ `textbox(hint=""; value="")` Create a text input area with an optional placeholder `hint` e.g. `textbox("enter number:")`. Use `typ=...` to specify the type of text. For example `typ="email"` or `typ="password"`. Use `multiline=true` to display a `textarea` spanning several lines. """ function textbox(theme::WidgetTheme, hint=""; multiline=false, placeholder=hint, value="", typ="text", kwargs...) multiline && return textarea(theme; placeholder=placeholder, value=value, kwargs...) Widget{:textbox}(input(theme, value; typ=typ, placeholder=placeholder, kwargs...)) end """ `textarea(hint=""; value="")` Create a textarea with an optional placeholder `hint` e.g. `textarea("enter number:")`. Use `rows=...` to specify how many rows to display """ function textarea(theme::WidgetTheme, hint=""; label=nothing, className="", placeholder=hint, value="", attributes=Dict(), style=Dict(), bind="value", valueUpdate = "input", kwargs...) (value isa AbstractObservable) || (value = Observable(value)) attrdict = convert(PropDict, attributes) attrdict[:placeholder] = placeholder attrdict["data-bind"] = "$bind: value, valueUpdate: '$valueUpdate'" className = mergeclasses(getclass(theme, :textarea), className) template = node(:textarea; className=className, attributes=attrdict, style=style, kwargs...) ui = knockout(template, ["value" => value]) (label != nothing) && (ui.dom = flex_row(wdglabel(theme, label), ui.dom)) slap_design!(ui, theme) Widget{:textarea}(scope = ui, output = ui["value"], layout = node(:div, className = "field interact-widget")∘Widgets.scope) end function wdglabel(theme::WidgetTheme, text; padt=5, padr=10, padb=0, padl=10, className="", style = Dict(), kwargs...) className = mergeclasses(getclass(theme, :wdglabel), className) padding = Dict(:padding=>"$(padt)px $(padr)px $(padb)px $(padl)px") node(:label, text; className=className, style = merge(padding, style), kwargs...) end function flex_row(a,b,c=dom"div"()) node( :div, node(:div, a, className = "interact-flex-row-left"), node(:div, b, className = "interact-flex-row-center"), node(:div, c, className = "interact-flex-row-right"), className = "interact-flex-row interact-widget" ) end flex_row(a) = node(:div, a, className = "interact-flex-row interact-widget")
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
426
center(w) = flex_row(w) center(w::Widget) = w center(w::Widget{:toggle}) = flex_row(w) manipulatelayout(::WidgetTheme) = t -> node(:div, map(center, values(components(t)))..., map(center, t.output)) function widget(::WidgetTheme, x::Observable; label = nothing) if label === nothing x else Widget{:observable}(["label" => label], output = x, layout = t -> flex_row(t["label"], t.output)) end end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
655
""" `tooltip!(wdg::AbstractWidget, tooltip; className = "")` Experimental. Add a tooltip to widget wdg. `tooltip` is the text that will be shown and `className` can be used to customize the tooltip, for example `is-tooltip-bottom` or `is-tooltip-danger`. """ function tooltip!(wdg::AbstractWidget, args...; kwargs...) tooltip!(node(wdg)::Node, args...; kwargs...) return wdg end function tooltip!(n::Node, tooltip; className = "") d = props(n) get!(d, :attributes, Dict{String, Any}) get!(d, :className, "") d[:attributes]["data-tooltip"] = tooltip d[:className] = mergeclasses(d[:className], className, "tooltip") n end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
15797
struct Automatic; end const automatic = Automatic() function _js_array(x::AbstractDict; process=string, placeholder=nothing) v = OrderedDict[OrderedDict("key" => key, "val" => i, "id" => "id"*randstring()) for (i, (key, val)) in enumerate(x)] placeholder !== nothing && pushfirst!(v, OrderedDict("key" => placeholder, "val" => 0, "id" => "id"*randstring())) return v end function _js_array(x::AbstractArray; process=string, placeholder=nothing) v = OrderedDict[OrderedDict("key" => process(val), "val" => i, "id" => "id"*randstring()) for (i, val) in enumerate(x)] placeholder !== nothing && pushfirst!(v, OrderedDict("key" => placeholder, "val" => 0, "id" => "id"*randstring())) return v end function _js_array(o::AbstractObservable; process=string, placeholder=nothing) map(t -> _js_array(t; process=process, placeholder=placeholder), o) end struct Vals2Idxs{T} <: AbstractVector{T} vals::Vector{T} vals2idxs::Dict{T, Int} function Vals2Idxs(v::AbstractArray{T}) where {T} vals = convert(Vector{T}, v) idxs = 1:length(vals) vals2idxs = Dict{T, Int}(zip(vals, idxs)) new{T}(vals, vals2idxs) end end Vals2Idxs(v::AbstractDict) = Vals2Idxs(collect(values(v))) Base.parent(d::Vals2Idxs) = d.vals Base.get(d::Vals2Idxs, key, default = 0) = get(d.vals2idxs, key, default) Base.get(d::Vals2Idxs, key::Integer, default = 0) = get(d.vals2idxs, key, default) getmany(d::Vals2Idxs{T}, key::AbstractArray{<:T}, default = 0) where {T} = filter(t -> t!= 0, map(x -> get(d, x), key)) Base.getindex(d::Vals2Idxs, x::Int) = get(d.vals, x, nothing) Base.size(d::Vals2Idxs) = size(d.vals) function valueindexpair(value, vals2idxs, args...; multiple = false, rev = false) _get = multiple ? getmany : get f = x -> _get(vals2idxs[], x) g = x -> getindex(vals2idxs[], x) p = ObservablePair(value, args..., f=f, g=g) on(vals2idxs) do x p.links[rev+1].f(p[rev+1][]) end p end function initvalueindex(value, index, vals2idxs; multiple = false, default = multiple ? eltype(vals2idxs[])[] : first(vals2idxs[]), rev = false) if value === automatic value = (index === nothing) ? default : vals2idxs[][Observables.to_value(index)] end (value isa AbstractObservable) || (value = Observable{Any}(value)) if index === nothing p = valueindexpair(value, vals2idxs; multiple = multiple, rev = rev) index = p.second else (index isa AbstractObservable) || (index = Observable{Any}(index)) p = valueindexpair(value, vals2idxs, index; multiple = multiple, rev = rev) end return p end """ ``` dropdown(options::AbstractDict; value = first(values(options)), label = nothing, multiple = false) ``` A dropdown menu whose item labels are the keys of options. If `multiple=true` the observable will hold an array containing the values of all selected items e.g. `dropdown(OrderedDict("good"=>1, "better"=>2, "amazing"=>9001))` `dropdown(values::AbstractArray; kwargs...)` `dropdown` with labels `string.(values)` see `dropdown(options::AbstractDict; ...)` for more details """ dropdown(T::WidgetTheme, options; kwargs...) = dropdown(T::WidgetTheme, Observable{Any}(options); kwargs...) """ ``` dropdown(options::AbstractObservable; value = first(values(options[])), label = nothing, multiple = false) ``` A dropdown menu whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = dropdown(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ function dropdown(theme::WidgetTheme, options::AbstractObservable; attributes=PropDict(), placeholder = nothing, label = nothing, multiple = false, value = automatic, index = nothing, className = "", style = PropDict(), div_select = nothing, kwargs...) div_select !== nothing && warn("`div_select` keyword is deprecated", once=true) multiple && (attributes[:multiple] = true) vals2idxs = map(Vals2Idxs, options) p = initvalueindex(value, index, vals2idxs, multiple = multiple) value, index = p.first, p.second bind = multiple ? "selectedOptions" : "value" option_array = _js_array(options, placeholder=placeholder) disablePlaceholder = js""" function(option, item) { ko.applyBindingsToNode(option, {disable: item.val == 0}, item); } """ attrDict = merge( Dict(Symbol("data-bind") => "options : options_js, $bind : index, optionsText: 'key', optionsValue: 'val', valueAllowUnset: true, optionsAfterRender: disablePlaceholder"), attributes ) className = mergeclasses(getclass(theme, :dropdown, multiple), className) div_select === nothing && (div_select = node(:div, className = className)) template = node(:select; attributes = attrDict, kwargs...)() |> div_select label != nothing && (template = vbox(label, template)) ui = knockout(template, ["index" => index, "options_js" => option_array]; methods = ["disablePlaceholder" => disablePlaceholder]) slap_design!(ui, theme) Widget{:dropdown}(["options"=>options, "index" => ui["index"]], scope = ui, output = value, layout = node(:div, className = "field interact-widget")∘Widgets.scope) end multiselect(theme::WidgetTheme, options; kwargs...) = multiselect(theme, Observable{Any}(options); kwargs...) function multiselect(theme::WidgetTheme, options::AbstractObservable; container=node(:div, className=:field), wrap=identity, label = nothing, typ="radio", wdgtyp=typ, stack=true, skip=1em, hskip=skip, vskip=skip, value = automatic, index = nothing, kwargs...) vals2idxs = map(Vals2Idxs, options) p = initvalueindex(value, index, vals2idxs, multiple = (typ != "radio")) value, index = p.first, p.second s = gensym() option_array = _js_array(options) entry = wrap(InteractBase.entry(s; typ=typ, wdgtyp=wdgtyp, stack=stack, kwargs...)) (entry isa Tuple )|| (entry = (entry,)) template = container(attributes = Dict("data-bind" => "foreach : options_js"))( entry... ) ui = knockout(template, ["index" => index, "options_js" => option_array]) if (label != nothing) ui.dom = stack ? vbox(label, CSSUtil.vskip(vskip), ui.dom) : hbox(label, CSSUtil.hskip(hskip), ui.dom) end slap_design!(ui, theme) Widget{:radiobuttons}(["options"=>options, "index" => ui["index"]], scope = ui, output = value, layout = node(:div, className = "field interact-widget")∘Widgets.scope) end function entry(theme::WidgetTheme, s; className="", typ="radio", wdgtyp=typ, stack=(typ!="radio"), kwargs...) className = mergeclasses(getclass(theme, :input, wdgtyp), className) f = stack ? node(:div, className="field") : tuple f( node(:input, className = className, attributes = Dict("name" => s, "type" => typ, "data-bind" => "checked : \$root.index, checkedValue: val, attr : {id : id}"))(), node(:label, attributes = Dict("data-bind" => "text : key, attr : {for : id}")) ) end """ ``` radiobuttons(options::AbstractDict; value::Union{T, Observable} = first(values(options))) ``` e.g. `radiobuttons(OrderedDict("good"=>1, "better"=>2, "amazing"=>9001))` `radiobuttons(values::AbstractArray; kwargs...)` `radiobuttons` with labels `string.(values)` see `radiobuttons(options::AbstractDict; ...)` for more details ``` radiobuttons(options::AbstractObservable; kwargs...) ``` Radio buttons whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = radiobuttons(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ radiobuttons(theme::WidgetTheme, vals; kwargs...) = multiselect(theme, vals; kwargs...) """ ``` checkboxes(options::AbstractDict; value = valtype(options)[] ``` A list of checkboxes whose item labels are the keys of options. The observable will hold an array containing the values of all selected items, e.g. `checkboxes(OrderedDict("good"=>1, "better"=>2, "amazing"=>9001))` `checkboxes(values::AbstractArray; kwargs...)` `checkboxes` with labels `string.(values)` see `checkboxes(options::AbstractDict; ...)` for more details ``` checkboxes(options::AbstractObservable; kwargs...) ``` Checkboxes whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = checkboxes(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` To create checkboxes that are already checked off when shown, one can use the `value` keyword: ```julia options = ["a", "b", "c"] value = ["a", "c"] checkboxes(options, value = value) ``` The boxes "a" and "c" will be checked off when the checkboxes widget is shown. Both `options` and `value` can be Observables. """ checkboxes(theme::WidgetTheme, options; kwargs...) = Widget{:checkboxes}(multiselect(theme, options; typ="checkbox", kwargs...)) """ ``` toggles(options::AbstractDict; value = first(values(options))) ``` A list of toggle switches whose item labels are the keys of options. Tthe observable will hold an array containing the values of all selected items, e.g. `toggles(OrderedDict("good"=>1, "better"=>2, "amazing"=>9001))` `toggles(values::AbstractArray; kwargs...)` `toggles` with labels `string.(values)` see `toggles(options::AbstractDict; ...)` for more details ``` toggles(options::AbstractObservable; kwargs...) ``` Toggles whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = toggles(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ toggles(theme::WidgetTheme, options; kwargs...) = Widget{:toggles}(multiselect(theme, options; typ="checkbox", wdgtyp="toggle", kwargs...)) for wdg in [:togglebuttons, :tabs] @eval $wdg(theme::WidgetTheme, options; kwargs...) = $wdg(theme, Observable(options); kwargs...) end """ `togglebuttons(options::AbstractDict; value::Union{T, Observable}, multiple=false)` Creates a set of toggle buttons whose labels are the keys of options. Set `multiple=true` to allow multiple (or zero) active buttons at the same time. `togglebuttons(values::AbstractArray; kwargs...)` `togglebuttons` with labels `string.(values)` see `togglebuttons(options::AbstractDict; ...)` for more details ``` togglebuttons(options::AbstractObservable; kwargs...) ``` Togglebuttons whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = togglebuttons(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ function togglebuttons(theme::WidgetTheme, options::AbstractObservable; className = "", activeclass = getclass(theme, :button, "active"), multiple = false, index = nothing, value = automatic, container = node(:div, className = getclass(theme, :togglebuttons)), wrap=identity, label = nothing, readout = false, vskip = 1em, kwargs...) vals2idxs = map(Vals2Idxs, options) p = initvalueindex(value, index, vals2idxs; multiple = multiple) value, index = p.first, p.second className = mergeclasses("interact-widget", getclass(theme, :button), className) updateMethod = multiple ? js""" function (val) { var id = this.index.indexOf(val); id > -1 ? this.index.splice(id, 1) : this.index.push(val); } """ : js"function (val) {this.index(val)}" active = multiple ? "\$root.index().includes(val)" : "\$root.index() == val" updateSelected = js_lambda("\$root.update(val)") btn = node(:span, node(:label, attributes = Dict("data-bind" => "text : key")), attributes=Dict("data-bind"=> "click: $updateSelected, css: {'$activeclass' : $active, '$className' : true}"), ) option_array = _js_array(options) template = container(attributes = "data-bind" => "foreach : options_js")(wrap(btn)) label != nothing && (template = flex_row(wdglabel(theme, label), template)) ui = knockout(template, ["index" => index, "options_js" => option_array], methods = Dict("update" => updateMethod)) slap_design!(ui, theme) w = Widget{:togglebuttons}(["options"=>options, "index" => ui["index"], "vals2idxs" => vals2idxs]; scope = ui, output = value, layout = t -> div(Widgets.scope(t), className = "interact-widget")) if readout w[:display] = mask(map(parent, vals2idxs); index = index) w.layout = t -> div(Widgets.scope(t), CSSUtil.vskip(vskip), t[:display], className = "interact-widget") end w end """ `tabs(options::AbstractDict; value::Union{T, Observable})` Creates a set of tabs whose labels are the keys of options. The label can be a link. `tabs(values::AbstractArray; kwargs...)` `tabs` with labels `values` see `tabs(options::AbstractDict; ...)` for more details ``` tabs(options::AbstractObservable; kwargs...) ``` Tabs whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = tabs(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ function tabs(theme::WidgetTheme, options::AbstractObservable; className = "", activeclass = getclass(theme, :tab, "active"), index = nothing, value = automatic, container=node(:div, className = getclass(theme, :tabs)), wrap=identity, label = nothing, readout = false, vskip = 1em, kwargs...) vals2idxs = map(Vals2Idxs, options) p = initvalueindex(value, index, vals2idxs; default = first(vals2idxs[])) value, index = p.first, p.second className = mergeclasses("interact-widget", getclass(theme, :tab), className) updateSelected = js_lambda("\$root.index(val)") tab = node(:li, wrap(node(:a, attributes = Dict("data-bind" => "text: key"))), attributes=Dict("data-bind"=> "click: $updateSelected, css: {'$activeclass' : \$root.index() == val, '$className' : true}"), ) option_array = _js_array(options) template = container( node(:ul, attributes = "data-bind" => "foreach : options_js")(tab) ) label != nothing && (template = flex_row(wdglabel(theme, label), template)) ui = knockout(template, ["index" => index, "options_js" => option_array]) slap_design!(ui, theme) w = Widget{:tabs}(["options"=>options, "index" => ui["index"], "vals2idxs" => vals2idxs]; scope = ui, output = value, layout = t -> div(Widgets.scope(t), className = "interact-widget")) if readout w[:display] = mask(map(parent, vals2idxs); index = index) w.layout = t -> div(Widgets.scope(t), CSSUtil.vskip(vskip), t[:display], className = "interact-widget") end w end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
12103
using WebIO, JSExpr const katex_min_js = joinpath(@__DIR__, "..", "assets", "katex.min.js") const katex_min_css = joinpath(@__DIR__, "..", "assets", "katex.min.css") """ `latex(txt)` Render `txt` in LaTeX using KaTeX. Backslashes need to be escaped: `latex("\\\\sum_{i=1}^{\\\\infty} e^i")` """ function latex(theme::WidgetTheme, txt) (txt isa AbstractObservable) || (txt = Observable(txt)) w = Scope(imports=[ katex_min_js, katex_min_css ]) w["value"] = txt onimport(w, @js function (k) this.k = k this.container = this.dom.querySelector("#container") k.render($(txt[]), this.container) end) onjs(w["value"], @js (txt) -> this.k.render(txt, this.container)) w.dom = dom"div#container"() Widget{:latex}(scope = w, output = w["value"], layout = node(:div, className = "interact-widget")∘Widgets.scope) end """ `alert(text="")` Creates a `Widget{:alert}`. To cause it to trigger an alert, do: ```julia wdg = alert("Error!") wdg() ``` Calling `wdg` with a string will set the alert message to that string before triggering the alert: ```julia wdg = alert("Error!") wdg("New error message!") ``` For the javascript to work, the widget needs to be part of the UI, even though it is not visible. """ function alert(theme::WidgetTheme, text = ""; value = text) value isa AbstractObservable || (value = Observable(value)) scp = WebIO.Scope() setobservable!(scp, "text", value) onjs( scp["text"], js"""function (value) { alert(value); }""" ) Widget{:alert}(["text" => value]; scope = scp, layout = t -> node(:div, Widgets.scope(t), style = Dict("display" => "none"))) end (wdg::Widget{:alert})(text = wdg["text"][]) = (wdg["text"][] = text; return) """ `confirm([f,] text="")` Creates a `Widget{:confirm}`. To cause it to trigger a confirmation dialogue, do: ```julia wdg = confirm([f,] "Are you sure you want to unsubscribe?") wdg() ``` `observe(wdg)` is a `Observable{Bool}` and is set to `true` if the user clicks on "OK" in the dialogue, or to false if the user closes the dialogue or clicks on "Cancel". When `observe(wdg)` is set, the function `f` will be called with that value. Calling `wdg` with a string and/or a function will set the confirmation message and/or the callback function: ```julia wdg = confirm("Are you sure you want to unsubscribe?") wdg("File exists, overwrite?") do x x ? print("Overwriting") : print("Aborting") end ``` For the javascript to work, the widget needs to be part of the UI, even though it is not visible. """ function confirm(theme::WidgetTheme, fct::Function = x -> nothing, text::AbstractString = "") text isa AbstractObservable || (text = Observable(text)) scp = WebIO.Scope() setobservable!(scp, "text", text) value = Observable(scp, "value", false) onjs( scp["text"], @js function (txt) $value[] = confirm(txt) end ) wdg = Widget{:confirm}(["text" => text, "function" => fct]; scope = scp, output = value, layout = t -> node(:div, Widgets.scope(t), style = Dict("visible" => false))) on(x -> wdg["function"](x), value) wdg end confirm(theme::WidgetTheme, text::AbstractString, fct::Function = x -> nothing) = confirm(theme, fct, text) function (wdg::Widget{:confirm})(fct::Function = wdg["function"], text::AbstractString = wdg["text"][]) wdg["function"] = fct wdg["text"][] = text return end (wdg::Widget{:confirm})(text::AbstractString, fct::Function = wdg["function"]) = wdg(fct, text) """ `highlight(txt; language = "julia")` `language` syntax highlighting for `txt`. """ function highlight(theme::WidgetTheme, txt; language = "julia") (txt isa AbstractObservable) || (txt = Observable(txt)) s = "code"*randstring(16) w = Scope(imports = [ highlight_css, prism_js, prism_css, ]) w["value"] = txt w.dom = node( :div, node( :pre, node(:code, className = "language-$language", attributes = Dict("id"=>s)) ), className = "content" ) onimport(w, js""" function (p) { var code = document.getElementById($s); code.innerHTML = $(txt[]); Prism.highlightElement(code); } """ ) onjs(w["value"], js""" function (val){ var code = document.getElementById($s); code.innerHTML = val Prism.highlightElement(code) } """) Widget{:highlight}(scope = w, output = w["value"], layout = node(:div, className = "interact-widget")∘Widgets.scope) end """ `notifications(v=[]; layout = node(:div))` Display elements of `v` inside notification boxes that can be closed with a close button. The elements are laid out according to `layout`. `observe` on this widget returns the observable of the list of elements that have not been deleted. """ function notifications(theme::WidgetTheme, v=[]; container = node(:div), wrap = identity, layout = (v...)->container((wrap(el) for el in v)...), className = "") scope = Scope() output = Observable{Any}(v) to_delete = Observable(scope, "to_delete", 0) on(to_delete) do ind v = output[] deleteat!(v, ind) output[] = v end className = mergeclasses(className, "notification") list = map(output) do t function create_item(ind, el) btn = node(:button, className = "delete", events = Dict("click" => @js event -> $to_delete[] = $ind)) node(:div, btn, el, className = className) end [create_item(ind, el) for (ind, el) in enumerate(t)] end scope.dom = map(v -> layout(v...), list) slap_design!(scope, theme) Widget{:notifications}([:list => list]; output = output, scope = scope, layout = _ -> node(:div, scope, className="interact-widget")) end """ `accordion(options; multiple = true)` Display `options` in an `accordion` menu. `options` is an `AbstractDict` whose keys represent the labels and whose values represent what is shown in each entry. `options` can be an `Observable`, in which case the `accordion` updates as soon as `options` changes. """ function accordion(theme::WidgetTheme, options::Observable; multiple = true, value = nothing, index = value, key = automatic) vals2idxs = map(Vals2Idxs∘collect∘_keys, options) p = initvalueindex(key, index, vals2idxs, rev = true, multiple = multiple) key, index = p.first, p.second option_array = map(x -> [OrderedDict("label" => key, "i" => i, "content" => stringmime(MIME"text/html"(), WebIO.render(val))) for (i, (key, val)) in enumerate(x)], options) onClick = multiple ? js"function (i) {this.index.indexOf(i) > -1 ? this.index.remove(i) : this.index.push(i)}" : js"function (i) {this.index(i)}" isactive = multiple ? "\$root.index.indexOf(i) > -1" : "\$root.index() == i" updateSelected = js_lambda("\$root.onClick(i)") template = dom"section.accordions"(attributes = Dict("data-bind" => "foreach: options_js"), node(:article, className="accordion", attributes = Dict("data-bind" => "css: {'is-active' : $isactive}", ))( dom"div.accordion-header.toggle"(dom"p"(attributes = Dict("data-bind" => "html: label")), attributes = Dict("data-bind" => "click: $updateSelected")), dom"div.accordion-body"(dom"div.accordion-content"(attributes = Dict("data-bind" => "html: content"))) ) ) scp = knockout(template, ["index" => index, "options_js" => option_array], methods = Dict("onClick" => onClick)) slap_design!(scp, theme) Widget{:accordion}(["index" => index, "key" => key, "options" => options]; scope = scp, output = index, layout = node(:div, className = "interact-widget")∘Widgets.scope) end accordion(theme::WidgetTheme, options; kwargs...) = accordion(theme, Observable{Any}(options); kwargs...) """ `togglecontent(content, value::Union{Bool, Observable}=false; label)` A toggle switch that, when activated, displays `content` e.g. `togglecontent(checkbox("Yes, I am sure"), false, label="Are you sure?")` """ function togglecontent(theme::WidgetTheme, content, args...; skip = 0em, vskip = skip, kwargs...) btn = toggle(theme, args...; kwargs...) Widgets.scope(btn).dom = node(:div, Widgets.scope(btn).dom, node(:div, content, attributes = Dict("data-bind" => "visible: value") ), className = "interact-widget", style = Dict("display" => "flex", "flex-direction"=>"column") ) Widget{:togglecontent}(btn) end """ `mask(options; index, key)` Only display the `index`-th element of `options`. If `options` is a `AbstractDict`, it is possible to specify which option to show using `key`. `options` can be a `Observable`, in which case `mask` updates automatically. Use `index=0` or `key = nothing` to not have any selected option. ## Examples ```julia wdg = mask(OrderedDict("plot" => plot(rand(10)), "scatter" => scatter(rand(10))), index = 1) wdg = mask(OrderedDict("plot" => plot(rand(10)), "scatter" => scatter(rand(10))), key = "plot") ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ function mask(theme::WidgetTheme, options; value = nothing, index = value, key = automatic, multiple = false) options isa AbstractObservable || (options = Observable{Any}(options)) vals2idxs = map(Vals2Idxs∘collect∘_keys, options) p = initvalueindex(key, index, vals2idxs, rev = true, multiple = multiple) key, index = p.first, p.second ui = map(options) do val v = _values(val) nodes = (node(:div, el, attributes = Dict("data-bind" => "visible: index() == $i")) for (i, el) in enumerate(v)) knockout(node(:div, nodes...), ["index" => index]) end Widget{:mask}(["index" => index, "key" => key, "options" => options]; output = index, layout = t -> ui) end """ `tabulator(options::AbstractDict; index, key)` Creates a set of toggle buttons whose labels are the keys of options. Displays the value of the selected option underneath. Use `index::Int` to select which should be the index of the initial option, or `key::String`. The output is the selected `index`. Use `index=0` to not have any selected option. ## Examples ```julia tabulator(OrderedDict("plot" => plot(rand(10)), "scatter" => scatter(rand(10))), index = 1) tabulator(OrderedDict("plot" => plot(rand(10)), "scatter" => scatter(rand(10))), key = "plot") ``` `tabulator(values::AbstractArray; kwargs...)` `tabulator` with labels `values` see `tabulator(options::AbstractDict; ...)` for more details ``` tabulator(options::Observable; navbar=tabs, kwargs...) ``` Tabulator whose `options` are a given `Observable`. Set the `Observable` to some other value to update the options in real time. Defaults to `navbar=tabs`: use `navbar=togglebuttons` to have buttons instead of tabs. ## Examples ```julia options = Observable(["a", "b", "c"]) wdg = tabulator(options) options[] = ["c", "d", "e"] ``` Note that the `options` can be modified from the widget directly: ```julia wdg[:options][] = ["c", "d", "e"] ``` """ function tabulator(theme::WidgetTheme, options; navbar = tabs, skip = 1em, vskip = skip, value = nothing, index = value, key = automatic, kwargs...) options isa AbstractObservable || (options = Observable{Any}(options)) vals2idxs = map(Vals2Idxs∘collect∘_keys, options) p = initvalueindex(key, index, vals2idxs, rev = true) key, index = p.first, p.second d = map(t -> OrderedDict(zip(parent(t), 1:length(parent(t)))), vals2idxs) buttons = navbar(theme, d; index = index, readout = false, kwargs...) content = mask(theme, options; index = index) layout = t -> div(t[:navbar], CSSUtil.vskip(vskip), t[:content], className = "interact-widget") Widget{:tabulator}(["index" => index, "key" => key, "navbar" => buttons, "content" => content, "options" => options]; output = index, layout = layout) end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
8578
_length(v::AbstractArray) = length(v) _length(::Any) = 1 _map(f, v::AbstractArray) = map(f, v) _map(f, v) = f(v) function _searchsortedfirst(vals, t) rev = first(vals) > last(vals) searchsortedfirst(vals, t, rev = rev) end function format(x) io = IOBuffer() show(IOContext(io, :compact => true), x) String(take!(io)) end for func in [:rangeslider, :slider] @eval begin function $func(theme::WidgetTheme, vals::AbstractArray, formatted_vals = format.(vec(vals)); value = medianelement(vals), kwargs...) T = Observables.to_value(value) isa Vector ? Vector{eltype(vals)} : eltype(vals) value isa AbstractObservable || (value = Observable{T}(value)) vals = vec(vals) indices = axes(vals)[1] f = x -> _map(t -> _searchsortedfirst(vals, t), x) g = x -> vals[Int.(x)] index = ObservablePair(value, f = f, g = g).second wdg = Widget($func(theme, indices, formatted_vals; value = index, kwargs...), output = value) wdg["value"] = value wdg end end end """ ``` function slider(vals::AbstractArray; value=medianelement(vals), label=nothing, readout=true, kwargs...) ``` Creates a slider widget which can take on the values in `vals`, and updates observable `value` when the slider is changed. """ function slider(theme::WidgetTheme, vals::AbstractUnitRange{<:Integer}, formatted_vals = format.(vals); className=getclass(theme, :input, "range", "fullwidth"), readout=true, label=nothing, value=medianelement(vals), orientation = "horizontal", attributes = Dict(), kwargs...) min, max = extrema(vals) orientation = string(orientation) attributes = merge(attributes, Dict("orient" => orientation)) (value isa AbstractObservable) || (value = convert(eltype(vals), value)) format = js""" function(){ return this.formatted_vals()[parseInt(this.index())-($min)]; } """ ui = input(theme, value; bindto="index", attributes=attributes, extra_obs = ["formatted_vals" => formatted_vals], computed = ["formatted_val" => format], typ="range", min=min, max=max, step=1, className=className, kwargs...) if (label != nothing) || readout if orientation != "vertical" Widgets.scope(ui).dom = readout ? flex_row(wdglabel(theme, label), Widgets.scope(ui).dom, node(:p, attributes = Dict("data-bind" => "text: formatted_val"))) : flex_row(wdglabel(theme, label), Widgets.scope(ui).dom) else readout && (label = vbox(label, node(:p, attributes = Dict("data-bind" => "text: formatted_val")))) Widgets.scope(ui).dom = hbox(wdglabel(theme, label), dom"div[style=flex-shrink:1]"(Widgets.scope(ui).dom)) end end Widget{:slider}(ui) end """ ``` function rangeslider(vals::AbstractArray; value=medianelement(vals), label=nothing, readout=true, orientation="horizontal", direction="ltr", kwargs...) ``` Creates a slider widget which can take on the values in `vals` and accepts several "handles". Pass a vector to `value` with two values if you want to select a range. Use the `orientation="vertical"` keyword argument to create a vertical slider. By default the slider is top-to-botom and left-to-right, but this can be changed using the `direction="rtl"` keyword argument. """ function rangeslider(theme::WidgetTheme, vals::AbstractUnitRange{<:Integer}, formatted_vals = format.(vals); style = Dict(), label = nothing, value = medianelement(vals), orientation = "horizontal", readout = true, className = "is-primary", direction="ltr") T = Observables.to_value(value) isa Vector ? Vector{eltype(vals)} : eltype(vals) value isa AbstractObservable || (value = Observable{T}(value)) index = value orientation = string(orientation) direction = string(direction) preprocess = T<:Vector ? js"unencoded.map(Math.round)" : js"Math.round(unencoded[0])" scp = Scope(imports = vcat([nouislider_min_js, nouislider_min_css], libraries(theme))) setobservable!(scp, "index", index) fromJS = Observable(scp, "fromJS", false) changes = Observable(scp, "changes", 0) connect = _length(index[]) > 1 ? js"true" : js"[true, false]" min, max = extrema(vals) s = step(vals) id = "slider"*randstring() start = JSExpr.@js $index[] updateValue = JSExpr.@js function updateValue(values, handle, unencoded, tap, positions) $fromJS[] = true $index[] = $preprocess end updateCount = JSExpr.@js function updateCount(values, handle, unencoded, tap, positions) $changes[] = $changes[]+1 end tooltips = JSString("[" * join(fill(readout, _length(value[])), ", ") * "]") onimport(scp, js""" function (noUiSlider) { var vals = JSON.parse($(JSON.json(formatted_vals))); $updateValue $updateCount var slider = document.getElementById($id); noUiSlider.create(slider, { start: $start, step: 1, tooltips: $tooltips, connect: $connect, orientation: $orientation, direction: $direction, format: { to: function ( value ) { var ind = Math.round(value-($min)); return ind + 1 > vals.length ? vals[vals.length - 1] : vals[ind]; }, from: function ( value ) { return parseInt(value); } }, range: { 'min': ($min), 'max': ($max) },}) slider.noUiSlider.on("slide", updateValue); slider.noUiSlider.on("change", updateCount); } """) slap_design!(scp, theme) onjs(index, @js function (val) if !$fromJS[] document.getElementById($id).noUiSlider.set(Array.isArray(val) ? val : [val]) end $fromJS[] = false end) style = Dict{String, Any}(string(key) => val for (key, val) in style) haskey(style, "flex-grow") || (style["flex-grow"] = "1") !haskey(style, "height") && orientation == "vertical" && (style["height"] = "20em") scp.dom = node(:div, style = style, attributes = Dict("id" => id)) layout = function (t) if orientation != "vertical" sld = t.scope sld = label !== nothing ? flex_row(label, sld) : sld sld = readout ? vbox(vskip(3em), sld) : sld sld = div(sld, className = "field rangeslider rangeslider-horizontal interact-widget $className") else sld = t.scope sld = readout ? hbox(hskip(6em), sld) : sld sld = label !== nothing ? vbox(label, sld) : sld sld = div(sld, className = "field rangeslider rangeslider-vertical interact-widget $className") end sld end Widget{:rangeslider}(["index" => index, "changes" => changes]; scope = scp, output = value, layout = layout) end """ ``` function rangepicker(vals::AbstractArray; value=[extrema(vals)...], label=nothing, readout=true, kwargs...) ``` A multihandle slider with a set of spinboxes, one per handle. """ function rangepicker(theme::WidgetTheme, vals::AbstractRange{S}; value = [extrema(vals)...], readout = false, className = "is-primary") where {S} T = Observables.to_value(value) isa Vector ? Vector{eltype(vals)} : eltype(vals) value isa AbstractObservable || (value = Observable{T}(value)) wdg = Widget{:rangepicker}(output = value) if !(T<:Vector) wdg["input"] = input(S, theme, vals, value=value) else function newinput(i) f = t -> t[i] g = t -> (s = copy(value[]); s[i] = t; s) new_val = ObservablePair(value, f=f, g=g).second input(S, theme, vals, value = new_val) end for i in eachindex(value[]) wdg["input$i"] = newinput(i) end end inputs = t -> (val for (key, val) in components(t) if occursin(r"slider|input", string(key))) wdg.layout = t -> div(inputs(t)..., className = "interact-widget") wdg["slider"] = rangeslider(theme, vals; value = value, readout = readout, className = className) wdg["changes"] = map(+, (val["changes"] for val in inputs(wdg))...) return wdg end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
1121
import WebIO: camel2kebab # Get median elements of ranges, used for initialising sliders. # Differs from median(r) in that it always returns an element of the range medianidx(r) = (1+length(r)) ÷ 2 medianelement(r::AbstractArray) = r[medianidx(r)] medianval(r::AbstractDict) = medianelement(collect(values(r))) medianelement(r::AbstractDict) = medianval(r) _values(r::AbstractArray) = r _values(r::AbstractDict) = values(r) _keys(r::AbstractArray) = 1:length(r) _keys(r::AbstractDict) = keys(r) inverse_dict(d::AbstractDict) = Dict(zip(values(d), keys(d))) const Propkey = Union{Symbol, String} const PropDict = Dict{Propkey, Any} function slap_design!(w::Scope, args) for arg in args import!(w, arg) end w end slap_design!(w::Scope, args::AbstractString...) = slap_design!(w::Scope, args) slap_design!(w::Scope, args::WidgetTheme = gettheme()) = slap_design!(w::Scope, libraries(args)) slap_design!(n::Node, args...) = slap_design!(Scope()(n), args...) slap_design!(w::Widget, args...) = (slap_design!(scope(w), args...); w) isijulia() = isdefined(Main, :IJulia) && Main.IJulia.inited
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
293
using Random using InteractBase, Observables, OrderedCollections, Colors, WebIO, CSSUtil using Widgets using Dates import InteractBase: widgettype import Widgets: components using Test include("test_observables.jl") include("test_theme.jl") include("test_deps.jl") include("test_dialog.jl")
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
706
font_awesome = joinpath(@__DIR__, "..", "assets", "all.js") prism_js = joinpath(@__DIR__, "..", "assets", "prism.js") prism_css = joinpath(@__DIR__, "..", "assets", "prism.css") highlight_css = joinpath(@__DIR__, "..", "assets", "highlight.css") nouislider_min_js = joinpath(@__DIR__, "..", "assets", "nouislider.min.js") nouislider_min_css = joinpath(@__DIR__, "..", "assets", "nouislider.min.css") style_css = joinpath(@__DIR__, "..", "assets", "style.css") @testset "deps" begin @test isfile(font_awesome) @test isfile(prism_js) @test isfile(prism_css) @test isfile(highlight_css) @test isfile(nouislider_min_js) @test isfile(nouislider_min_css) @test isfile(style_css) end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
153
using InteractBase using Test @testset "Dialog" begin @test InteractBase.opendialog() isa Widget @test InteractBase.savedialog() isa Widget end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
10576
@testset "input" begin a = InteractBase.input() @test widgettype(a) == :input @test observe(a)[] == "" a = InteractBase.input(typ = "number"); @test observe(a)[] == 0 s = Observable{Any}(12) a = InteractBase.input(s, typ = "number"); @test observe(a)[] == s[] @test widgettype(input(Bool)) == :toggle @test widgettype(input(Dates.Date)) == :datepicker @test widgettype(input(Dates.Time)) == :timepicker @test widgettype(input(Color)) == :colorpicker @test widgettype(input(String)) == :textbox @test widgettype(input(Int)) == :spinbox @test widgettype(widget(true)) == :toggle @test widgettype(widget(Dates.Date(Dates.now()))) == :datepicker @test widgettype(widget(Dates.Time(Dates.now()))) == :timepicker @test widgettype(widget(colorant"red")) == :colorpicker @test widgettype(widget("")) == :textbox @test widgettype(widget(1)) == :spinbox @test widgettype(widget(1:100)) == :slider @test widgettype(widget(["a", "b", "c"])) == :togglebuttons end @testset "input widgets" begin a = filepicker() @test widgettype(a) == :filepicker @test a["filename"][] == "" @test a["path"][] == "" a["path"][] = "/home/Jack/documents/test.csv" @test a["path"][] == observe(a)[] == "/home/Jack/documents/test.csv" a = datepicker(value = Dates.Date(01,01,01)) b = datepicker(Dates.Date(01,01,01)) @test observe(a)[] == observe(b)[] == Dates.Date(01,01,01) @test widgettype(a) == :datepicker a = colorpicker(value = colorant"red") b = colorpicker(colorant"red") @test observe(a)[] == observe(b)[] == colorant"red" @test widgettype(a) == :colorpicker a = spinbox(label = "") @test widgettype(a) == :spinbox @test observe(a)[] == nothing a = textbox(); @test widgettype(a) == :textbox @test observe(a)[] == "" s = "asd" a = textbox(value = s); @test observe(a)[] == "asd" a = textarea(label = "test"); @test widgettype(a) == :textarea @test observe(a)[] == "" s = "asd" a = textarea(value = s); @test observe(a)[] == "asd" a = autocomplete(["aa", "bb", "cc"], value = "a"); @test widgettype(a) == :autocomplete @test observe(a)[] == "a" a = button("Press me!", value = 12) @test widgettype(a) == :button @test observe(a)[] == 12 a = toggle(label = "Agreed") @test widgettype(a) == :toggle @test observe(a)[] == false s = Observable(true) a = toggle(s, label = "Agreed") @test observe(a)[] == true a = togglecontent(checkbox("Yes, I am sure"), "Are you sure?") @test widgettype(a) == :togglecontent @test observe(a)[] == false s = Observable(true) a = togglecontent(checkbox("Yes, I am sure"), "Are you sure?", value = s) @test observe(a)[] == true v = slider([0, 12, 22], value = 12) @test widgettype(v) == :slider @test observe(v)[] == 12 @test v["index"][] == 2 # v["internalvalue"][] = 3 # @test observe(v)[] == 22 end @testset "slider" begin @test isfile(InteractBase.nouislider_min_js) @test isfile(InteractBase.nouislider_min_css) w = Dates.Date("2000-11-11") : Day(1) : Dates.Date("2000-12-12") s = InteractBase.rangeslider(w, value = [w[10], w[20]]) @test observe(s)[] == [w[10], w[20]] @test observe(s["index"])[] == [10, 20] observe(s["index"])[] = [13, 14] sleep(0.1) @test observe(s)[] == [w[13], w[14]] w = 1:5:500 s = InteractBase.rangepicker(w, value = [w[10], w[20]]) @test collect(keys(components(s))) == [:input1, :input2, :slider, :changes] @test observe(s)[] == [w[10], w[20]] == observe(s["slider"])[] @test observe(s["slider"])[] == [w[10], w[20]] observe(s["slider"])[] = [w[13], w[14]] sleep(0.1) @test observe(s)[] == [w[13], w[14]] @test observe(s["input1"])[] == w[13] @test observe(s["input2"])[] == w[14] end @testset "options" begin a = dropdown(["a", "b", "c"]) @test widgettype(a) == :dropdown @test observe(a)[] == "a" a = dropdown(OrderedDict("a" => 1, "b" => 2, "c" => 3)) @test observe(a)[] == 1 a = dropdown(OrderedDict("a" => 1, "b" => 3, "c" => 4), value = 3) @test observe(a)[] == 3 @test observe(a, "index")[] == 2 v = [0.1, 0.2, 1.2] a = dropdown(OrderedDict("a" => 1, "b" => 3, "c" => v), value = v) @test observe(a)[] == v @test observe(a, "index")[] == 3 v = [0.1, 0.2, 1.2] a = dropdown(OrderedDict("a" => 1, "b" => 3, "c" => v), value = [3, v], multiple = true) @test observe(a)[] == [3, v] @test observe(a, "index")[] == [2, 3] a = togglebuttons(["a", "b", "c"]) @test widgettype(a) == :togglebuttons @test observe(a)[] == "a" a = togglebuttons(OrderedDict("a" => 1, "b" => 2, "c"=>3)) @test observe(a)[] == 1 a = togglebuttons(OrderedDict("a" => 1, "b" => 2, "c" => 4), value = 4) @test observe(a)[] == 4 a = radiobuttons(["a", "b", "c"]) @test widgettype(a) == :radiobuttons @test observe(a)[] == "a" a = radiobuttons(OrderedDict("a" => 1, "b" => 2, "c" => 3)) @test observe(a)[] == 1 a = radiobuttons(OrderedDict("a" => 1, "b" => 2, "c" => 3), value = 3, label = "Test") @test observe(a)[] == 3 end @testset "ijulia" begin @test !InteractBase.isijulia() end @testset "widget" begin s = slider(1:100, value = 12) w = InteractBase.Widget{:test}(components(s), scope = Widgets.scope(s), output = Observable(1)) @test observe(w)[] == 1 @test widgettype(s) == :slider @test widgettype(w) == :test @test w["index"][] == 12 w = Widget(w, output = scope(s)["index"]) @test observe(w)[] == 12 w = InteractBase.widget(Observable(1)) @test w isa Observable end @testset "manipulate" begin ui = @manipulate for r = 0:.05:1, g = 0:.05:1, b = 0:.05:1 RGB(r,g,b) end @test observe(ui)[] == RGB(0.5, 0.5, 0.5) observe(ui, :r)[] = 0.1 sleep(0.1) @test observe(ui)[] == RGB(0.1, 0.5, 0.5) ui = @manipulate throttle = 1 for r = 0:.05:1, g = 0:.05:1, b = 0:.05:1 RGB(r,g,b) end observe(ui, :r)[] = 0.1 sleep(0.1) observe(ui, :r)[] = 0.3 sleep(0.1) observe(ui, :g)[] = 0.1 sleep(0.1) observe(ui, :g)[] = 0.3 sleep(0.1) observe(ui, :b)[] = 0.1 sleep(0.1) observe(ui, :b)[] = 0.3 sleep(0.1) @test observe(ui)[] != RGB(0.3, 0.3, 0.3) sleep(1.5) @test observe(ui)[] == RGB(0.3, 0.3, 0.3) end @testset "output" begin @test isfile(InteractBase.katex_min_js) @test isfile(InteractBase.katex_min_css) l = Observable("\\sum_{i=1}^{\\infty} e^i") a = latex(l) @test widgettype(a) == :latex @test observe(a)[] == l[] l[] == "\\sum_{i=1}^{12} e^i" @test observe(a)[] == l[] @test isfile(joinpath(dirname(@__FILE__), "..", "assets", "prism.js")) @test isfile(joinpath(dirname(@__FILE__), "..", "assets", "prism.css")) l = Observable("1+1+exp(2)") a = highlight(l) @test widgettype(a) == :highlight @test observe(a)[] == l[] l[] == "1-1" @test observe(a)[] == l[] l = Observable("1+1+exp(2)") a = widget(Val(:highlight), l) @test widgettype(a) == :highlight @test observe(a)[] == l[] l[] == "1-1" @test observe(a)[] == l[] a = alert() a("Error!") @test a["text"] isa Observable @test a["text"][] == "Error!" a = widget(Val(:alert), "Error 2!") a() @test a["text"] isa Observable @test a["text"][] == "Error 2!" a = confirm() a("Error!") @test a["text"] isa Observable @test a["text"][] == "Error!" @test observe(a)[] == false @test a["function"](1) === nothing a = widget(Val(:confirm), "Error 2!") a() @test a["text"] isa Observable @test a["text"][] == "Error 2!" @test observe(a)[] == false v = Any["A"] f = notifications(v) sleep(0.1) @test observe(f)[] == v list = children(f.scope.dom[])[1] @test begin Widgets.scope(f)[:to_delete][] = 1 sleep(0.1) observe(f)[] == [] end v = OrderedDict("a" => checkbox(), "b" => 12) wdg = InteractBase.accordion(v, multiple = true) sleep(0.1) @test observe(wdg)[] == Int[] @test observe(wdg["options"])[] == v observe(wdg)[] = [1] sleep(0.1) @test observe(wdg)[] == [1] observe(wdg["options"])[] = OrderedDict("a" => 12) sleep(0.1) @test observe(wdg)[] == [1] v = OrderedDict("a" => checkbox(), "b" => 12) wdg = InteractBase.accordion(v, multiple = false) sleep(0.1) @test observe(wdg)[] == 1 @test observe(wdg["options"])[] == v observe(wdg)[] = 2 sleep(0.1) @test observe(wdg)[] == 2 observe(wdg["options"])[] = OrderedDict("a" => 12) sleep(0.1) @test observe(wdg)[] == 2 a = tabulator(OrderedDict("a" => 1.1, "b" => 1.2, "c" => 1.3)) @test a[:navbar] isa InteractBase.Widget{:tabs} @test a[:navbar][:index][] == 1 @test observe(a, :navbar)[] == 1 observe(a)[] = 2 sleep(0.1) @test a[:navbar][:index][] == 2 @test observe(a, :navbar)[] == 2 @test observe(a, "key")[] == "b" a = tabulator(OrderedDict("a" => 1.1, "b" => 1.2, "c" => 1.3), value = 0) @test a[:navbar][:index][] == 0 @test observe(a, :key)[] == nothing v = OrderedDict("a" => checkbox(), "b" => 12) wdg = InteractBase.mask(v, multiple = true) sleep(0.1) @test observe(wdg)[] == Int[] @test observe(wdg["options"])[] == v observe(wdg)[] = [1] sleep(0.1) @test observe(wdg)[] == [1] observe(wdg["options"])[] = OrderedDict("a" => 12) sleep(0.1) @test observe(wdg)[] == [1] v = OrderedDict("a" => checkbox(), "b" => 12) wdg = InteractBase.mask(v; multiple = false) sleep(0.1) @test observe(wdg)[] == 1 @test observe(wdg["options"])[] == v observe(wdg)[] = 2 sleep(0.1) @test observe(wdg)[] == 2 observe(wdg["options"])[] = OrderedDict("a" => 12) sleep(0.1) @test observe(wdg)[] == 2 end @testset "node" begin @test InteractBase.node("a", "b") isa Node @test InteractBase.div("a", "b") isa Node end @testset "onchange" begin value = Observable(50) changes = Observable(0) s0 = slider(1:100, value = value, changes = changes) s1 = onchange(s0) onrelease = InteractBase.triggeredby(s0, s0[:changes]) @test onrelease[] == 50 == s1[] s0[] = 12 sleep(0.1) @test onrelease[] == 50 == s1[] s0[:changes][] += 1 sleep(0.1) @test onrelease[] == 12 == s1[][] @test changes[] == 1 end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
509
struct MyTheme<:InteractBase.WidgetTheme; end InteractBase.registertheme!(:mytheme, MyTheme()) @testset "theme" begin @test gettheme() == NativeHTML() settheme!(MyTheme()) @test gettheme() == MyTheme() resettheme!() @test gettheme() == NativeHTML() settheme!("mytheme") @test gettheme() == MyTheme() settheme!(:nativehtml) @test gettheme() == NativeHTML() @test availablethemes() == [:mytheme, :nativehtml] @test_throws ErrorException settheme!("not a theme") end
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
code
2746
using Interact, Blink, Colors w = Window() #--- f = filepicker(label = "Upload"); body!(w, f) observe(f) #--- f = filepicker(multiple = true, accept = ".csv"); display(f) observe(f) #--- s = InteractBase.input("Write here") body!(w, s) observe(s) #--- s = textbox("Write here", value = "A", className="is-danger") body!(w, s) observe(s) #--- s = autocomplete(["Opt 1", "Option 2", "Opt 3"], "Write here") body!(w, s) observe(s) opentools(w) #--- v = Observable(RGB(1,0,0)) s = colorpicker(v) body!(w, s) observe(s) #--- s1 = slider(1:20, style = Dict("width"=>"400px")) sobs = observe(s1) body!(w, vbox(s1, sobs)); #--- s1 = slider(vcat(0, exp10.(range(-2, stop = 2, length = 50))), label = "Log slider") sobs = observe(s1) body!(w, vbox(s1, sobs)); #--- button1 = button("button one {{clicks}}") num_clicks = observe(button1) button2 = button("button two {{clicks}}", value = num_clicks) body!(w, hbox(button1, button2, num_clicks)); #--- body!(w, button(label = "Press!")) #--- v = checkbox(label = "Agree") body!(w, v) observe(v) #--- v = toggle(true, "Agree", className="is-danger") body!(w, v) observe(v) #--- v = checkboxes(["A", "B", "C"]); body!(w, v) observe(v) #--- v = toggles(["A", "B", "C"], className="is-danger"); body!(w, v) observe(v) #--- width, height = 700, 300 colors = ["black", "gray", "silver", "maroon", "red", "olive", "yellow", "green", "lime", "teal", "aqua", "navy", "blue", "purple", "fuchsia"] _color(i) = colors[i%length(colors)+1] ui = @manipulate for nsamples in 1:200, sample_step in slider(0.01:0.01:1.0, value=0.1, label="sample step"), phase in slider(0:0.1:2pi, value=0.0, label="phase"), radii in 0.1:0.1:60, show_image in true, s in Observable(true) cxs_unscaled = [i*sample_step + phase for i in 1:nsamples] cys = sin.(cxs_unscaled) .* height/3 .+ height/2 cxs = cxs_unscaled .* width/4pi show_image ? dom"svg:svg[width=$width, height=$height]"( (dom"svg:circle[cx=$(cxs[i]), cy=$(cys[i]), r=$radii, fill=$(_color(i))]"() for i in 1:nsamples)... ) : dom"div"("Nothing to see here") end body!(w, ui) opentools(w) #--- using Plots, DataStructures x = y = 0:0.1:30 freqs = OrderedDict(zip(["pi/4", "π/2", "3π/4", "π"], [π/4, π/2, 3π/4, π])) mp = @manipulate for freq1 in freqs, freq2 in slider(0.01:0.1:4π; label="freq2") y = @. sin(freq1*x) * sin(freq2*x) plot(x, y) end body!(w, mp) #--- s = dropdown(["a1", "a2nt", "a3"], label = "test") body!(w, s) observe(s) #--- s = togglebuttons(["a1", "a2nt", "a3"], label = "x"); body!(w, s) observe(s) #--- s = radiobuttons(["a1", "a2nt", "a3"]); display(s) observe(s) #--- # IJulia ui = s display(ui); # Mux using Mux WebIO.webio_serve(page("/", req -> ui)) #---
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
docs
2775
# News ## Version 0.7 ### Breaking - Output widgets with options (`tabulator`, `accordion` and `mask`) can be set with `key` or `index` and have as value the `index` of the elemenet(s) that are displayed - Option widgets now try to preserve value as much as possible when reset. ### Bugfixes - Fixed `checkboxes` - Fixed `filepicker` initialization ## Version 0.6 ### Breaking - Deprecated `showvalue` in favor of `readout` to see the output of a slider. - Removed obsolete `Vue` methods (`props2kwargs` and `kwargs2vueprops`) ### Features - Added `notifications` widget to display a set of notifications that can be closed. - Added `highlight` widget to display Julia syntax highlighted code - Added `alert` and `confirm` widget to display javascript alerts and confirmation dialogues. - `label` now appears above a `dropdown` and not below it - Implemented `placeholder` for `dropdown`: a "zeroth" disabled option that appears when value does not match anything - Added experimental `rangeslider`, a slider with multiple handles, and `rangepicker` - Added experimental `accordion` and `tooltip!`, to wrap the [accordion](https://wikiki.github.io/components/accordion/) and [tooltip](https://wikiki.github.io/elements/tooltip/) Bulma extension ## Version 0.5 ### Breaking - Deprecated `tabulator(keys, vals)` in favor of `tabulator(OrderedDict(zip(keys, vals)))` - In `togglebuttons(options, value = x)` `x` should now be one of the values of `options`, rather than one index from `1` to `length(options)`, consistently with all other option widgets - `style` can no longer be passed as a string but should be passed as a dictionary, i.e. `style=Dict("text-align" => "center", "width" => "100px")` - `class` can no longer be used, instead one should use the DOM property `className`, i.e. `textbox(className="is-danger")` - The `outer` keyword no longer exists, to modify a `WebIO.Scope` `s` simply change its DOM, i.e. `s.dom = ...` ### Features - Observables of widgets can be used in conjunction with `observe`, meaning, if `wdg = Observable(dropdown(["a", "b", "c"]))`, then `observe(wdg)` is an observable that holds the selected value of the dropdown. This is useful when creating a widget from some observable using `map`, for example `options = Observable(["a", "b", "c"]); wdg = map(dropdown, options)` - Option widgets now store their options as observable, it can be accessed with `observe(wdg, "options")` and modified with `observe(wdg, "options")[] = ["d", "e", "f"]` ### Bugfixes - Option widgets now accept `OrderedDict` with strings as keys and any Julia value as values - For any widget, changing the Julia observable also updates the visual widget (the javascript value), even for cases where the Julia type has no javascript equivalent
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
docs
818
# InteractBase [![CI](https://github.com/JuliaGizmos/InteractBase.jl/workflows/CI/badge.svg?branch=master)](https://github.com/JuliaGizmos/InteractBase.jl/actions?query=workflow%3ACI+branch%3Amaster) [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://JuliaGizmos.github.io/Interact.jl/latest) [![codecov.io](http://codecov.io/github/JuliaGizmos/InteractBase.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaGizmos/InteractBase.jl?branch=master) This package is a developer target and it includes the implementation of [Interact](https://github.com/JuliaGizmos/Interact.jl) widgets. The user-facing package is [Interact](https://github.com/JuliaGizmos/Interact.jl) See [the API reference](https://juliagizmos.github.io/Interact.jl/latest/widgets.html) to see which widgets are implemented.
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "MIT" ]
0.10.10
aa5daeff326db0a9126a225b58ca04ae12f57259
docs
1108
--- name: Bug report about: Create a report to help us improve --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior. **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Version info (please complete the following information):** - include the output of `versioninfo()` and `Pkg.status()` - how are you deploying the widgets? Jupyter Notebook/Lab, Juno, Blink or Mux? **Before opening an issue** - make sure you are on the latest release of InteractBase and try rebuilding it with `Pkg.build("InteractBase")` **If widgets do not appear** - test that your WebIO is correctly installed. Make sure you're on latest release and rebuild it with `Pkg.build("WebIO")` - try a simple code to produce a slider: `using WebIO; display(Node(:input, attributes = Dict("type" => "range")))` - if this doesn't produce a slider, your WebIO is not installed correctly and you may wish to open an issue at WebIO rather than here,
InteractBase
https://github.com/JuliaGizmos/InteractBase.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
1016
using Documenter, ModelConstructors makedocs(modules = [ModelConstructors], clean = false, format = Documenter.HTML(), sitename = "ModelConstructors.jl", authors = "FRBNY-DSGE", linkcheck = false, strict = false, pages = Any[ "Home" => "index.md", "Model Design" => "model_design.md", "Creating Models" => "example_model.md", "Implementation Details" => "implementation_details.md", "Contributing to ModelConstructors.jl" => "contributing.md", "License" => "license.md" ], doctest = false # for now ) deploydocs( repo = "github.com/FRBNY-DSGE/ModelConstructors.jl.git", target = "build", deps = nothing, devbranch = "main", branch = "gh-pages", make = nothing )
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
2825
using ModelConstructors, FileIO, Random, SMC ### Estimate a single factor CAPM model # R_{it} = α_i + β_i R_{Mt} + ϵ_{it}, i = 1,...,N; t = 1,...,T # where R_{Mt} is the excess return on a market index in time period t, # and ϵ_{it} is an i.i.d. normally distributed mean zero shock with variance σ_i^2 ### Construct a generic model and populate it with parameters capm = GenericModel() fn = dirname(@__FILE__) capm <= Setting(:dataroot, "$(fn)/../save/input_data/") capm <= Setting(:saveroot, "$(fn)/../save/") capm <= parameter(:α1, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) capm <= parameter(:β1, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) capm <= parameter(:σ1, 1., (1e-5, 1e5), (1e-5, 1e5), SquareRoot(), Uniform(0, 1e3), fixed = false) capm <= parameter(:α2, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) capm <= parameter(:β2, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) capm <= parameter(:σ2, 1., (1e-5, 1e5), (1e-5, 1e5), SquareRoot(), Uniform(0, 1e3), fixed = false) capm <= parameter(:α3, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) capm <= parameter(:β3, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) capm <= parameter(:σ3, 1., (1e-5, 1e5), (1e-5, 1e5), SquareRoot(), Uniform(0, 1e3), fixed = false) ### Estimate with SMC ## Get data N = 3 # number of asset returns lik_data = load("../../../save/input_data/capm.jld2", "lik_data") market_data = load("../../../save/input_data/capm.jld2", "market_data") ## Construct likelihood function: # likelihood function is just R_{it} ∼ N(α_i + β_i R_{Mt}, σ_i) # parameters to estimate are α_i, β_i, σ_i # data is a time series of individual factor returns # use S&P 500 data and a returns on a couple stocks. To get into returns, # just take the log of the prices and regress those on each other. function likelihood_fnct(p, d) # we assume the ordering of (α_i, β_i, σ_i) Σ = zeros(N,N) α = Vector{Float64}(undef,N) β = Vector{Float64}(undef,N) for i in 1:N α[i] = p[i * 3 - 2] β[i] = p[i * 3 - 1] Σ[i,i] = p[i * 3]^2 end det_Σ = det(Σ) inv_Σ = inv(Σ) term1 = -N / 2 * log(2 * π) - 1 /2 * log(det_Σ) logprob = 0. errors = d .- α .- β .* market_data for t in 1:size(d,2) logprob += term1 - 1/2 * dot(errors, inv_Σ * errors) end return logprob end Random.seed!(1793) println("Starting to estimate CAPM with SMC . . .") @everywhere using SMC, OrderedCollections smc(likelihood_fnct, capm.parameters, lik_data)
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
3452
isdefined(Base, :__precompile__) && __precompile__(false) module ModelConstructors using DataFrames, Dates, Distributed, Distributions using ForwardDiff, Nullables, Printf, Random using LinearAlgebra, OrderedCollections, SpecialFunctions import Base.isempty, Base.<, Base.min, Base.max, Base.length import Distributions.log2π, Distributions.params, Distributions.mean, Distributions.std import Distributions.pdf, Distributions.logpdf, Distributions.Distribution import Distributions.rand, Distributions.Matrixvariate, Distributions.LinearAlgebra import LinearAlgebra.rank import SpecialFunctions.gamma import UnPack: unpack export # distributions_ext.jl BetaAlt, GammaAlt, RootInverseGamma, DegenerateMvNormal, DegenerateDiagMvTDist, MatrixNormal, <=, logpdf, init_deg_mvnormal, # settings.jl Setting, get_setting, # observables.jl Observable, PseudoObservable, check_mnemonics, # defaults.jl default_settings!, default_test_settings!, # abstractmodel.jl AbstractModel, description, n_states, n_states_augmented, n_shocks_exogenous, n_shocks_expectational, n_equilibrium_conditions, n_observables, n_parameters, n_parameters_regime_switching, n_parameters_steady_states, n_parameters_free, n_pseudo_observables, get_dict, get_key, spec, subspec, saveroot, dataroot, data_vintage, data_id, cond_vintage, logpath, workpath, rawpath, tablespath, figurespath, inpath, filestring_base, workpath, rawpath, tablespath, figurespath, logpath, savepath, inpath, filestring, # parameters.jl parameter, parameter_ad, Transform, NullablePrior, AbstractParameter, Parameter, ParameterVector, ScaledParameter, UnscaledParameter, SteadyStateParameter, SteadyStateParameterGrid, transform_to_real_line, transform_to_model_space, differentiate_transform_to_real_line, differentiate_transform_to_model_space, update, update!, transform_to_model_space, transform_to_real_line, Interval, ParamBoundsError, Untransformed, SquareRoot, moments, prior, # distributions_ext.jl Uniform, Exponential, Normal, BetaAlt, GammaAlt, RootInverseGamma, pdf, logpdf, rand, DegenerateMvNormal, rank, length, DgenerateDiagMvTDist, mean, std, MatrixNormal, size, params, truncmean, AbstractVectorParameter, VectorParameter, VectorParameterVector, ScaledVectorParameter, UnscaledVectorParameter, Untransformed, # regimes.jl set_regime_val!, regime_val, set_regime_prior!, regime_prior, set_regime_fixed!, regime_fixed, set_regime_valuebounds!, regime_valuebounds, toggle_regime!, # statistics.jl prior, posterior, posterior!, # util.jl info_print, warn_print, println, print, @test_matrix_approx_eq, @test_matrix_eq2, # Generic Model GenericModel, # Linear Regression LinearRegression const VERBOSITY = Dict(:none => 0, :low => 1, :high => 2) include("parameters.jl") include("distributions_ext.jl") include("abstractmodel.jl") include("settings.jl") include("observables.jl") include("defaults.jl") include("statistics.jl") include("util.jl") include("regimes.jl") include("generic_model.jl") include("linear_regression.jl") end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
16095
abstract type AbstractModel{T} end function Base.show(io::IO, m::AbstractModel) @printf io "Model \n" @printf io "no. parameters: %i\n" n_parameters(m) @printf io "description:\n %s\n" description(m) end @inline function Base.getindex(m::AbstractModel, i::Integer) if i <= (j = length(m.parameters)) return m.parameters[i] else return m.steady_state[i-j] end end # Need to define like this so as to disable bounds checking @inline function Base.getindex(m::AbstractModel, k::Symbol) i = m.keys[k] @inbounds if i <= (j = length(m.parameters)) return m.parameters[i] else return m.steady_state[i-j] end end @inline function Base.setindex!(m::AbstractModel, value::Number, i::Integer) if i <= (j = length(m.parameters)) param = m.parameters[i] param.value = value if isa(param, ScaledParameter) param.scaledvalue = param.scaling(value) end return param else steady_state_param = m.steady_state[i-j] steady_state_param.value = value return steady_state_param end end Base.setindex!(m::AbstractModel, value::Array, k::Symbol) = Base.setindex!(m, value, m.keys[k]) @inline function Base.setindex!(m::AbstractModel, value::Array, i::Integer) if i <= (j = length(m.parameters)) param = m.parameters[i] param.value = value if isa(param, ScaledParameter) param.scaledvalue = param.scaling(value) end return param else steady_state_param = m.steady_state[i-j] steady_state_param.value = value return steady_state_param end end """ ``` setindex!(m::AbstractModel, param::AbstractParameter, i::Integer) ``` If `i`<length(m.parameters), overwrites m.parameters[i] with param. Otherwise, overwrites m.steady_state[i-length(m.parameters). """ @inline function Base.setindex!(m::AbstractModel, param::AbstractParameter, i::Integer) if i <= (j = length(m.parameters)) m.parameters[i] = param else m.steady_state[i-j] = param end return param end Base.setindex!(m::AbstractModel, value, k::Symbol) = Base.setindex!(m, value, m.keys[k]) """ ``` (<=)(m::AbstractModel{T}, p::AbstractParameter{T}) where T ``` Syntax for adding a parameter to a model: m <= parameter. NOTE: If `p` is added to `m` and length(m.steady_state) > 0, `keys(m)` will not generate the index of `p` in `m.parameters`. """ function (<=)(m::AbstractModel{T}, p::AbstractParameter{T}) where T if !in(p.key, keys(m.keys)) new_param_index = length(m.keys) + 1 # grow parameters and add the parameter push!(m.parameters, p) # add parameter location to dict setindex!(m.keys, new_param_index, p.key) else # overwrite the previous parameter with the new one setindex!(m, p, p.key) end end """ ``` (<=)(m::AbstractModel{T}, ssp::Union{SteadyStateParameter,SteadyStateParameterArray}) where {T} ``` Add a new steady-state value to the model by appending `ssp` to the `m.steady_state` and adding `ssp.key` to `m.keys`. """ function (<=)(m::AbstractModel{T}, ssp::Union{SteadyStateParameter, SteadyStateParameterArray}) where {T} if !in(ssp.key, keys(m.keys)) new_param_index = length(m.keys) + 1 # append ssp to steady_state vector push!(m.steady_state, ssp) # add parameter location to dict setindex!(m.keys, new_param_index, ssp.key) else # overwrite the previous parameter with the new one setindex!(m, ssp, ssp.key) end end """ ``` (<=)(m::AbstractModel{T}, ssp::SteadyStateParameterGrid) where {T} ``` Add a new steady-state value to the model by appending `ssp` to the `m.steady_state` and adding `ssp.key` to `m.keys`. """ function (<=)(m::AbstractModel{T}, ssp::SteadyStateParameterGrid) where {T} if !in(ssp.key, keys(m.keys)) new_param_index = length(m.keys) + 1 # append ssp to steady_state vector push!(m.steady_state, ssp) # add parameter location to dict setindex!(m.keys, new_param_index, ssp.key) else # overwrite the previous parameter with the new one setindex!(m, ssp, ssp.key) end end Distributions.logpdf(m::AbstractModel) = logpdf(m.parameters) Distributions.pdf(m::AbstractModel) = exp(logpdf(m)) # Convenience functions n_states(m::AbstractModel) = length(m.endogenous_states) n_states_augmented(m::AbstractModel) = n_states(m) + length(m.endogenous_states_augmented) n_shocks_exogenous(m::AbstractModel) = length(m.exogenous_shocks) n_shocks_expectational(m::AbstractModel) = length(m.expected_shocks) n_observables(m::AbstractModel) = length(m.observables) n_pseudo_observables(m::AbstractModel) = length(m.pseudo_observables) n_equilibrium_conditions(m::AbstractModel) = length(m.equilibrium_conditions) n_parameters(m::AbstractModel) = length(m.parameters) n_parameters_steady_state(m::AbstractModel) = length(m.steady_state) n_parameters_free(m::AbstractModel) = length(get_free_para_inds(m.parameters; regime_switching = true)) function n_parameters_regime_switching(m::AbstractModel) return n_parameters_regime_switching(m.parameters) end function get_fixed_para_inds(parameters::ParameterVector; regime_switching::Bool = false, toggle::Bool = true) if regime_switching if toggle toggle_regime!(parameters, 1) end reg_fixed = [θ.fixed for θ in parameters] # it is assumed all regimes are toggled to regime 1 for θ in parameters if !isempty(θ.regimes) # this parameter has regimes if haskey(θ.regimes, :fixed) push!(reg_fixed, [regime_fixed(θ, i) for i in 2:length(θ.regimes[:value])]...) elseif θ.fixed # since regimes[:fixed] is non-existent but θ.fixed is true, # it is assumed all regimes are fixed. push!(reg_fixed, trues(length(θ.regimes[:value]) - 1)...) else # All regimes are not fixed push!(reg_fixed, falses(length(θ.regimes[:value]) - 1)...) end end end return findall(reg_fixed) else return findall([θ.fixed for θ in parameters]) end end function get_free_para_inds(parameters::ParameterVector; regime_switching::Bool = false, toggle::Bool = true) if regime_switching if toggle toggle_regime!(parameters, 1) end reg_free = [!θ.fixed for θ in parameters] # it is assumed all regimes are toggled to regime 1 for θ in parameters if !isempty(θ.regimes) # this parameter has regimes if haskey(θ.regimes, :fixed) push!(reg_free, [!regime_fixed(θ, i) for i in 2:length(θ.regimes[:value])]...) elseif θ.fixed # since regimes[:fixed] is non-existent but θ.fixed is true, # it is assumed all regimes are fixed. push!(reg_free, falses(length(θ.regimes[:value]) - 1)...) else # All regimes are not fixed push!(reg_free, trues(length(θ.regimes[:value]) - 1)...) end end end return findall(reg_free) else return findall([!θ.fixed for θ in parameters]) end end """ ``` get_dict(m, class, index) ``` """ function get_dict(m::AbstractModel, class::Symbol) if class == :states m.endogenous_states elseif class == :obs m.observables elseif class == :pseudo m.pseudo_observables elseif class in [:shocks, :stdshocks] m.exogenous_shocks else throw(ArgumentError("Invalid class: $class. Must be :states, :obs, :pseudo, :shocks, or :stdshocks")) end end """ ``` get_key(m, class, index) ``` Returns the name of the state (`class = :states`), observable (`:obs`), pseudo-observable (`:pseudo`), or shock (`:shocks` or `:stdshocks`) corresponding to the given `index`. """ function get_key(m::AbstractModel, class::Symbol, index::Int) dict = get_dict(m, class) out = Base.filter(key -> dict[key] == index, collect(keys(dict))) if length(out) == 0 error("Key corresponding to index $index not found for class: $class") elseif length(out) > 1 error("Multiple keys corresponding to index $index found for class: $class") else return out[1] end end # Interface for I/O settings spec(m::AbstractModel) = m.spec subspec(m::AbstractModel) = m.subspec saveroot(m::AbstractModel) = get_setting(m, :saveroot) dataroot(m::AbstractModel) = get_setting(m, :dataroot) # Interface for data data_vintage(m::AbstractModel) = get_setting(m, :data_vintage) data_id(m::AbstractModel) = get_setting(m, :data_id) #= Build paths to where input/output/results data are stored. Description: Creates the proper directory structure for input and output files, treating the DSGE/save directory as the root of a savepath directory subtree. Specifically, the following structure is implemented: dataroot/ savepathroot/ output_data/<spec>/<subspec>/log/ output_data/<spec>/<subspec>/<out_type>/raw/ output_data/<spec>/<subspec>/<out_type>/work/ output_data/<spec>/<subspec>/<out_type>/tables/ output_data/<spec>/<subspec>/<out_type>/figures/ Note: we refer to the savepathroot/output_data/<spec>/<subspec>/ directory as saveroot. =# # """ # ``` # logpath(model) # ``` # Returns path to log file. Path built as # ``` # <output root>/output_data/<spec>/<subspec>/log/log_<filestring>.log # ``` # """ # function logpath(m::AbstractModel) # return savepath(m, "log", "log.log") # end strs = [:work, :raw, :tables, :figures, :log] fns = [Symbol(x, "path") for x in strs] for (str, fn) in zip(strs, fns) @eval begin # First eval function function $fn(m::AbstractModel, out_type::String, file_name::String = "", filestring_addl::Vector{String}=Vector{String}()) return savepath(m, out_type, $(string(str)), file_name, filestring_addl) end # Then, add docstring to it @doc $( """ ``` $fn(m::AbstractModel, out_type::String, file_name::String="", filestring_addl::Vector{String}=Vector{String}()) ``` Returns path to specific $str output file, creating containing directory as needed. If `file_name` not specified, creates and returns path to containing directory only. Path built as ``` <output root>/output_data/<spec>/<subspec>/<out_type>/$str/<file_name>_<filestring>.<ext> ``` """ ) $fn end end # Not exposed to user. Actually create path and insert model string to file name. function savepath(m::AbstractModel, out_type::String, sub_type::String, file_name::String = "", filestring_addl::Vector{String} = Vector{String}()) # Containing directory dir = String(joinpath(saveroot(m), "output_data", spec(m), subspec(m), out_type, sub_type)) if !isempty(file_name) base = filestring_base(m) return savepath(dir, file_name, base, filestring_addl) else return dir end end function savepath(dir::String, file_name::String = "", filestring_base::Vector{String} = Vector{String}(), filestring_addl::Vector{String} = Vector{String}()) if !isdir(dir) mkpath(dir) end if !isempty(file_name) (base, ext) = splitext(file_name) myfilestring = filestring(filestring_base, filestring_addl) file_name_detail = base * myfilestring * ext return joinpath(dir, file_name_detail) else return dir end end # Input data handled slightly differently, because it is not model-specific. """ ``` inpath(m::AbstractModel, in_type::T, file_name::T="") where T<:String ``` Returns path to specific input data file, creating containing directory as needed. If `file_name` not specified, creates and returns path to containing directory only. Valid `in_type` includes: * `\"raw\"`: raw input series * `\"data\"`: transformed data in model units * `\"cond\"`: conditional data - nowcasts for the current forecast quarter, or related * `\"user\"`: user-supplied data for starting parameter vector, hessian, or related * `\"scenarios\"`: alternative scenarios Path built as ``` <data root>/<in_type>/<file_name> ``` """ function inpath(m::AbstractModel, in_type::String, file_name::String="") path = dataroot(m) # Normal cases. if in_type in ["raw", "data", "cond", "scenarios"] path = joinpath(path, in_type) # User-provided inputs. May treat this differently in the future. elseif in_type == "user" path = joinpath(path, "user") else error("Invalid in_type: ", in_type) end # Containing dir if !isdir(path) mkpath(path) end # If file_name provided, return full path if !isempty(file_name) path = joinpath(path, file_name) end return path end function filestring_base(m::AbstractModel) if !m.testing base = Vector{String}() for (skey, sval) in m.settings if sval.print push!(base, to_filestring(sval)) end end return base else return ["test"] end end filestring(m::AbstractModel) = filestring(m, Vector{String}(undef, 0)) filestring(m::AbstractModel, d::String) = filestring(m, [String(d)]) function filestring(m::AbstractModel, d::Vector{String}) base = filestring_base(m) return filestring(base, d) end function filestring(base::Vector{String}, d::Vector{String}) filestrings = vcat(base, d) sort!(filestrings) return "_" * join(filestrings, "_") end function filestring(d::Vector{String}) sort!(d) return "_" * join(d, "_") end """ ``` rand(d::Union{DegenerateMvNormal,MvNormal}, m::AbstractModel; cc::AbstractFloat = 1.0) ``` Generate a draw from `d` with variance optionally scaled by `cc^2`. """ function rand(d::Union{DegenerateMvNormal,MvNormal}, m::AbstractModel; cc::AbstractFloat = 1.0) return d.μ + cc*d.σ*randn(m.rng, length(d)) end """ ``` rand(d::Union{DegenerateMvNormal,MvNormal}, rng::MersenneTwister; cc::AbstractFloat = 1.0) ``` Generate a draw from `d` with variance optionally scaled by `cc^2`. """ function rand(d::Union{DegenerateMvNormal,MvNormal}, rng::MersenneTwister; cc::AbstractFloat = 1.0) return d.μ + cc*d.σ*randn(rng, length(d)) end """ `rand_prior(m::AbstractModel; ndraws::Int = 100_000)` Draw a random sample from the model's prior distribution. """ function rand_prior(m::AbstractModel; ndraws::Int = 100_000) T = typeof(m.parameters[1].value) npara = length(m.parameters) priorsim = Array{T}(undef, ndraws, npara) for i in 1:ndraws priodraw = Array{T}(undef, npara) # Parameter draws per particle for j in 1:length(m.parameters) priodraw[j] = if !m.parameters[j].fixed prio = rand(m.parameters[j].prior.value) # Resample until all prior draws are within the value bounds while !(m.parameters[j].valuebounds[1] < prio < m.parameters[j].valuebounds[2]) prio = rand(m.parameters[j].prior.value) end prio else m.parameters[j].value end end priorsim[i,:] = priodraw' end priorsim end @inline unpack(m::AbstractModel, ::Val{k}) where {k} = isa(m[k], ScaledParameter) ? m[k].scaledvalue : m[k].value function parameters2namedtuple(m::AbstractModel) return parameters2namedtuple(get_parameters(m)) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
1908
""" ``` default_settings!(m::AbstractModel) ``` Default Settings are constructed, initialized and added to `m.settings`. """ function default_settings!(m::AbstractModel) settings = m.settings # I/O File locations saveroot = normpath(joinpath(dirname(@__FILE__), "..","save")) datapath = normpath(joinpath(dirname(@__FILE__), "..","save","input_data")) settings[:saveroot] = Setting(:saveroot, saveroot, "Root of data directory structure") settings[:dataroot] = Setting(:dataroot, datapath, "Input data directory path") # Data settings for released and conditional data. Default behavior is to set vintage # of data to today's date. vint = Dates.format(now(), "yyyymmdd") settings[:data_vintage] = Setting(:data_vintage, vint, true, "vint", "Data vintage") settings[:data_id] = Setting(:data_id, 3, "Dataset identifier") return settings end """ ``` default_test_settings!(m::AbstractModel) ``` The following Settings are constructed, initialized and added to `m.test_settings`. Their purposes are identical to those in `m.settings`, but these values are used to test package. ### I/O Locations and identifiers - `saveroot::Setting{String}`: A temporary directory in /tmp/ - `dataroot::Setting{String}`: dsgeroot/test/reference/ - `data_vintage::Setting{String}`: \"_REF\" """ function default_test_settings!(m::AbstractModel) test = m.test_settings # I/O dataroot = normpath(joinpath(dirname(@__FILE__), "..", "test", "reference", "input_data")) saveroot = mktempdir() # General test[:saveroot] = Setting(:saveroot, saveroot, "Where to write files when in test mode") test[:dataroot] = Setting(:dataroot, dataroot, "Location of input files when in test mode" ) test[:data_vintage] = Setting(:data_vintage, "REF", true, "vint", "Reference data identifier") return test end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
10508
#= This file defines additional functions to return objects of type Distribution. This is necessary because we specify prior distributions wrt mean and SD (for beta and gamma-distributed parameters) and ν and σ (for inverse gamma-distributed parameters). Note these functions are NOT new methods for the Distributions.Beta, etc. functions, but rather new functions with the same names. =# """ ``` BetaAlt(μ::T, σ::T) where {T<:Real} ``` Given μ and σ, calculate α and β and return a Distributions.Beta Distribution object. ### Arguments `μ`: The mean of the desired distribution `σ`: The standard deviation of the desired distribution """ function BetaAlt(μ::T, σ::T) where {T<:Real} α = (1-μ) * μ^2 / σ^2 - μ β = α * (1/μ - 1) return Distributions.Beta(α, β) end """ ``` GammaAlt(μ::T, σ::T) where {T<:Real} ``` Given μ and σ, calculate α and β and return a Distributions.Gamma object. ### Arguments `μ`: The mean of the desired distribution `σ`: The standard deviation of the desired distribution """ function GammaAlt(μ::T, σ::T) where {T<:Real} β = σ^2 / μ α = μ / β return Distributions.Gamma(α, β) end """ ``` mutable struct RootInverseGamma <: Distribution{Univariate, Continuous} ``` If x ~ RootInverseGamma(ν, τ), then x² ~ ScaledInverseChiSquared(ν, τ²) x² ~ InverseGamma(ν/2, ντ²/2) x has mode τ and ν degrees of freedom. """ mutable struct RootInverseGamma <: Distribution{Univariate, Continuous} ν::Float64 τ::Float64 end Distributions.params(d::RootInverseGamma) = (d.ν, d.τ) """ ``` Distributions.pdf(d::RootInverseGamma, x::T) where {T<:Real} ``` Compute the pdf of a RootInverseGamma distribution at x. """ function Distributions.pdf(d::RootInverseGamma, x::T) where {T<:Real} (ν, τ) = params(d) return 2 * (ν*τ^2/2)^(ν/2) * exp((-ν*τ^2)/(2x^2)) / gamma(ν/2) / x^(ν+1) end """ ``` Distributions.logpdf(d::RootInverseGamma, x::T) where {T<:Real} ``` Compute the log pdf of a RootInverseGamma distribution at x. """ function Distributions.logpdf(d::RootInverseGamma, x::T) where {T<:Real} (ν, τ) = params(d) return log(2) - log(gamma(ν/2)) + (ν/2)*log(ν*τ^2/2) - ((ν+1)/2)*log(x^2) - ν*τ^2/(2x^2) end """ ``` Distributions.rand(d::RootInverseGamma; cc::T = 1.0) where T <: AbstractFloat ``` Generate a draw from the RootInverseGamma distribution `d`. """ function Distributions.rand(d::RootInverseGamma; cc::T = 1.0) where T<:AbstractFloat return sqrt(d.ν * d.τ^2 / sum(randn(round(Int,d.ν)).^2)) end """ ``` DegenerateMvNormal <: Distribution{Multivariate, Continuous} ``` The `DegenerateMvNormal` mutable struct implements a degenerate multivariate normal distribution. The covariance matrix may not be full rank (hence degenerate). See [Multivariate normal distribution - Degenerate case](en.wikipedia.org/wiki/Multivariate_normal_distribution#Degenerate_case). """ mutable struct DegenerateMvNormal <: Distribution{Multivariate, Continuous} μ::Vector # mean σ::Matrix # standard deviation σ_inv::Matrix # inverse of variance-covariance matrix λ_vals::Vector # eigenvalues of σ end """ ``` DegenerateMvNormal(μ::Vector, σ::Matrix) ``` Constructor for DegenerateMvNormal type. """ function DegenerateMvNormal(μ::Vector, σ::Matrix) return DegenerateMvNormal(μ, σ, Matrix{eltype(μ)}(undef,0,0), Vector{eltype(μ)}(undef,0)) end """ ``` function init_deg_mvnormal(μ::Vector, σ::Matrix) ``` Initializes fields for DegenerateMvNormal type. """ function init_deg_mvnormal(μ::Vector, σ::Matrix) U, λ_vals, Vt = svd(σ) λ_inv = [λ > 1e-6 ? 1/λ : 0.0 for λ in λ_vals] σ_inv = Vt' * Diagonal(λ_inv) * U' return DegenerateMvNormal(μ, σ, σ_inv, λ_vals) end """ ``` Distributions.logpdf(d::DegenerateMvNormal) ``` Method bypasses Distributions package implementation of logpdf so as to minimize numerical error. """ function Distributions.logpdf(d::DegenerateMvNormal, x::Vector{T}) where T<:Real # Occurs if one initialized a DegenerateMvNormal w/o storing inverted covariance matrix if isempty(d.σ_inv) d.σ_inv = inv(d.σ) λ_all, _ = eigen(d.σ) d.λ_vals = filter(x -> x>1e-6, λ_all) end return -(length(d.μ) * log2π + sum(log.(d.λ_vals)) + ((x .- d.μ)'*d.σ_inv*(x .- d.μ))) / 2.0 end """ ``` rank(d::DegenerateMvNormal) ``` Returns the rank of `d.σ`. """ function LinearAlgebra.rank(d::DegenerateMvNormal) return rank(d.σ) end """ ``` length(d::DegenerateMvNormal) ``` Returns the dimension of `d`. """ Base.length(d::DegenerateMvNormal) = length(d.μ) """ ``` Distributions.rand(d::DegenerateMvNormal; cc::T = 1.0) where T<:AbstractFloat ``` Generate a draw from `d` with variance optionally scaled by `cc^2`. """ function Distributions.rand(d::DegenerateMvNormal; cc::T = 1.0) where T<:AbstractFloat return d.μ + cc*d.σ*randn(length(d)) end """ ``` Distributions.rand(d::DegenerateMvNormal, n::Int) ``` Generate `n` draws from `d`. This returns a matrix of size `(length(d), n)`, where each column is a sample. """ function Distributions.rand(d::DegenerateMvNormal, n::Int) return d.μ .+ d.σ*randn(length(d), n) end """ ``` DegenerateDiagMvTDist <: Distribution{Multivariate, Continuous} ``` The `DegenerateDiagMvTDist` mutable struct implements a degenerate multivariate Student's t distribution, where the covariance matrix is diagonal. The covariance matrix may not be full rank (hence degenerate). """ mutable struct DegenerateDiagMvTDist <: Distribution{Multivariate, Continuous} μ::Vector # mean σ::Matrix # standard deviation ν::Int # degrees of freedom function DegenerateDiagMvTDist(μ::Vector, σ::Matrix, ν::Int) ν > 0 ? nothing : error("Degrees of freedom (ν) must be positive") isdiag(σ^2) ? nothing : error("Covariance matrix (σ^2) must be diagonal") return new(μ, σ, ν) end end """ ``` LinearAlgebra.rank(d::DegenerateDiagMvTDist) ``` Returns the rank of `d.σ`. """ function rank(d::DegenerateDiagMvTDist) return rank(d.σ) end """ ``` length(d::DegenerateDiagMvTDist) ``` Returns the dimension of `d`. """ Base.length(d::DegenerateDiagMvTDist) = length(d.μ) """ ``` Distributions.rand(d::DegenerateDiagMvTDist) ``` Generate a draw from `d`. """ function Distributions.rand(d::DegenerateDiagMvTDist) return d.μ + d.σ*rand(TDist(d.ν), length(d)) end """ ``` Distributions.rand(d::DegenerateDiagMvTDist, n::Int) ``` Generate `n` draws from `d`. This returns a matrix of size `(length(d), n)`, where each column is a sample. """ function Distributions.rand(d::DegenerateDiagMvTDist, n::Int) return d.μ .+ d.σ*rand(TDist(d.ν), length(d), n) end # Compute the mean μ and standard deviation σ of a RootInverseGamma object. # A Root Inverse Gamma / Nagasaki Scaled Chi2 Distribution's mean and standard deviation # can be computed as follows: # μ = √(β) * Γ(α - 0.5) / Γ(α) # σ = √(β / (α - 1) - μ²) # where α = ν/2 and β = τ²*ν/2. function mean(dist::RootInverseGamma) α = dist.ν/2 β = dist.τ^2 * dist.ν/2 μ = β^(.5) * gamma(α - 0.5) / gamma(α) return μ end function std(dist::RootInverseGamma) μ = mean(dist) α = dist.ν/2 β = dist.τ^2 * dist.ν/2 σ = (β / (α - 1) - μ^2)^(0.5) return σ end """ ``` MatrixNormal <: Distribution{Matrixvariate, Continuous} ``` The `MatrixNormal` mutable struct implements a matrixvariate normal distribution. Note that the matrix must be square. See [Matrix normal distribution - Degenerate case](en.wikipedia.org/wiki/Matrix_normal_distribution). """ mutable struct MatrixNormal <: Distribution{Matrixvariate, Continuous} μ::Matrix # mean U::Matrix # row variance V::Matrix # col variance U_sqrt::Matrix # cholesky of U V_sqrt::Matrix # choleksy of V U_inv::Matrix # inverse of U V_inv::Matrix # inverse of V function MatrixNormal(μ::Matrix, U::Matrix, V::Matrix) size(μ,1) == size(U,1) || error("μ and U must have the same number of rows") size(μ,2) == size(V,1) || error("μ and V must have the same number of columns") isposdef(U) || error("U is not a positive definite matrix") isposdef(V) || error("V is not a positive definite matrix") U_sqrt = Matrix(chol(U)) V_sqrt = Matrix(chol(V)) U_inv = inv(U) V_inv = inv(V) return new(μ, U, V, U_sqrt, V_sqrt, U_inv, V_inv) end function MatrixNormal(μ::Matrix, Σ::Matrix) size(μ) == size(Σ) || error("μ and Σ must be the same size") isposdef(Σ) || error("Σ is not a positive definite matrix") Σ_sqrt = Matrix(chol(U)) Σ_inv = inv(U) return new(μ, Σ, Σ, Σ_sqrt, Σ_sqrt, Σ_inv, Σ_inv) end end """ ``` size(d::MatrixNormal) ``` Returns the dimension of `d`. """ Base.size(d::MatrixNormal) = size(d.μ) """ ``` Distributions.rand(d::MatrixNormal) ``` Generate a draw from `d`. """ function Distributions.rand(d::MatrixNormal) return d.μ + d.U_sqrt*randn(size(d.μ))*d.V_sqrt' end function mean(d::MatrixNormal) return d.μ end Distributions.params(d::MatrixNormal) = d.μ, d.U, d.V """ ``` Distributions.pdf(d::MatrixNormal, x::Matrix) ``` Compute the pdf of a MatrixNormal distribution at x. """ function Distributions.pdf(d::MatrixNormal, x::Matrix) μ, U, V = params(d) n, p = size(μ) U_inv = d.U_inv V_inv = d.V_inv return exp(-.5*trace(V_inv * (x-μ)' * U_inv * (x-μ))) / ((2π)^(n*p/2) * det(U)^(p/2) * det(V)^(n/2)) end """ ``` Distributions.logpdf(d::MatrixNormal, x::Matrix) ``` Compute the logpdf of a MatrixNormal distribution at x. """ function Distributions.logpdf(d::MatrixNormal, x::Matrix) μ, U, V = params(d) n, p = size(μ) U_inv = d.U_inv V_inv = d.V_inv return -.5*trace(V_inv * (x-μ)' * U_inv * (x-μ)) - log((2π)^(n*p/2) * det(U)^(p/2) * det(V)^(n/2)) end """ ``` truncmean(Dist::Truncated) ``` Computes the mean of truncated continuous and discrete distributions. Written by person in this [comment](https://github.com/JuliaStats/Distributions.jl/issues/709). Thanks, dude! """ function truncmean(Dist::Truncated) F(x) = x*pdf(Dist,x) y = 0.0; if typeof(Dist) <: ContinuousDistribution # Continuous distribution y = quadgk(F, Dist.lower, Dist.upper)[1] else # Discrete distriubtion x = ceil(Dist.lower) q_max = 1 - 1E-9; x_max = min(Dist.upper, quantile(Dist.untruncated, q_max)) while x < x_max y += F(x) x += 1 end end return y end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
1732
mutable struct GenericModel{T} <: AbstractModel{T} parameters::ParameterVector{T} steady_state::ParameterVector{T} keys::Dict{Symbol, Int} endogenous_states::Dict{Symbol,Int} # these fields used to create matrices in the exogenous_shocks::Dict{Symbol,Int} # measurement and equilibrium condition equations. observables::Dict{Symbol,Int} # pseudo_observables::Dict{Symbol,Int} # spec::String subspec::String settings::Dict{Symbol, Setting} test_settings::Dict{Symbol, Setting} rng::MersenneTwister testing::Bool observable_mappings::Dict{Symbol, Observable} pseudo_observable_mappings::Dict{Symbol, PseudoObservable} end function GenericModel(spec::String = "", subspec::String = ""; custom_settings::Dict{Symbol, Setting} = Dict{Symbol, Setting}(), testing = false) settings = Dict{Symbol, Setting}() test_settings = Dict{Symbol, Setting}() rng = MersenneTwister(0) m = GenericModel{Float64}( Vector{AbstractParameter{Float64}}(), Vector{AbstractParameter{Float64}}(), Dict{Symbol, Int}(), Dict{Symbol, Int}(), Dict{Symbol, Int}(), Dict{Symbol, Int}(), Dict{Symbol, Int}(), spec, subspec, settings, test_settings, rng, testing, Dict{Symbol, Observable}(), Dict{Symbol, PseudoObservable}()) model_settings!(m) default_test_settings!(m) for custom_setting in values(custom_settings) m <= custom_setting end return m end description(m::GenericModel) = "A generic model: You can put parameters, states, shocks, observables, pseudo-observables, spec, subpsec, settings inside of me." function model_settings!(m::GenericModel) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
1724
mutable struct LinearRegression{T} <: AbstractModel{T} parameters::ParameterVector{T} keys::Dict{Symbol, Int} spec::String subspec::String settings::Dict{Symbol, Setting} test_settings::Dict{Symbol, Setting} rng::MersenneTwister testing::Bool end description(m::LinearRegression) = "LinearRegression model." function LinearRegression(spec::String="", subspec::String="ss0"; custom_settings::Dict{Symbol, Setting} = Dict{Symbol, Setting}(), testing = false) settings = Dict{Symbol,Setting}() test_settings = Dict{Symbol,Setting}() rng = MersenneTwister(0) m = LinearRegression{Float64}( Vector{AbstractParameter{Float64}}(), Dict{Symbol, Int}(), spec, subspec, settings, test_settings, rng, testing) default_settings!(m) default_test_settings!(m) for custom_setting in values(custom_settings) m <= custom_setting end init_parameters!(m) return m end """ ``` init_parameters!(m::LinearRegression) ``` Initializes the model's parameters, as well as empty values for the steady-state parameters (in preparation for `steadystate!(m)` being called to initialize those). """ function init_parameters!(m::LinearRegression) m <= parameter(:α, 1., (-1e3, 1e3), (-1e3, 1e3), Untransformed(), Normal(0., 1.0), fixed = false) m <= parameter(:β, 1., (-1e3, 1e3), (-1e3, 1e3), Untransformed(), Normal(0., 1.0), fixed = false) m <= parameter(:σ, 1., (0., 1e3), (1e-3, 1e3), Untransformed(), Normal(1., 1.0), fixed = false) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
2140
""" ``` mutable struct Observable ``` ### Fields - `key::Symbol` - `input_series::Vector{Symbol}`: vector of mnemonics, each in the form `:MNEMONIC__SOURCE` (e.g. `:GDP__FRED`). This vector is parsed to determine source (e.g. per-capita consumption gets population and consumption). - `fwd_transform::Function`: Extracts appropriate `input_series` from a DataFrame of levels, and transforms data to model units (for example, computes per-capita growth rates from levels). - `rev_transform::Function`: Transforms a series from model units into observable units. May take kwargs. - `name::String`: e.g. \"Real GDP growth\" - `longname::String`: e.g. \"Real GDP growth per capita\" """ mutable struct Observable key input_series::Vector{Symbol} # (vector of Mnemonics, e.g. GDPC1@FRED) # parse this to determine source # (eg consumption per cap gets population and consumption) fwd_transform::Function # corresponds to data_transforms field. # Operates on dataframe of levels, that has every data series # requested by any observable rev_transform::Function # corresponds to getyp, or getyp4q. May take kwargs (untransformed, # 1q transforms, 4q transforms, levels/growth rates, etc) name::String longname::String end """ ``` mutable struct PseudoObservable ``` ### Fields - `key::Symbol` - `name::String`: e.g. \"Flexible Output Growth\" - `longname::String`: e.g. \"Output that would prevail in a flexible-price economy\" - `rev_transform::Function`: Transforms a series from model units into observable units. May take kwargs. """ mutable struct PseudoObservable key::Symbol name::String longname::String rev_transform::Function end function PseudoObservable(k::Symbol) PseudoObservable(k, "", "", identity) end function check_mnemonics(levels::DataFrame, mnemonics::Symbol) for mnemonic in mnemonics @assert in(mnemonic, names(levels)) "Dataframe is missing $(mnemonic)" end end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
63633
import Base: <= Interval{T} = Tuple{T,T} """ ``` Transform ``` Subtypes of the abstract Transform type indicate how a `Parameter`'s value is transformed from model space (which can be bounded to a limited section of the real line) to the entire real line (which is necessary for mode-finding using csminwel). The transformation is performed by the `transform_to_real_line` function, and is reversed by the `transform_to_model_space` function. """ abstract type Transform end struct Untransformed <: Transform end struct SquareRoot <: Transform end struct Exponential <: Transform end Base.show(io::IO, t::Untransformed) = @printf io "x -> x\n" Base.show(io::IO, t::SquareRoot) = @printf io "x -> (a+b)/2 + (b-a)/2*c*x/sqrt(1 + c^2 * x^2)\n" Base.show(io::IO, t::Exponential) = @printf io "x -> b + (1/c) * log(x-a)\n" """ ``` AbstractParameter{T<:Number} ``` The AbstractParameter type is the common supertype of all model parameters, including steady-state values. Its subtype structure is as follows: -`AbstractParameter{T<:Number}`: The common abstract supertype for all parameters. -`Parameter{S<:Real,T<:Number, U<:Transform}`: The abstract supertype for parameters that are directly estimated. -`UnscaledParameter{S<:Real, T<:Number, U:<Transform}`: Concrete type for parameters that do not need to be scaled for equilibrium conditions. -`ScaledParameter{S<:Real, T<:Number, U:<Transform}`: Concrete type for parameters that are scaled for equilibrium conditions. -`SteadyStateParameter{T<:Number}`: Concrete type for steady-state parameters. """ abstract type AbstractParameter{T<:Number} end abstract type AbstractVectorParameter{V<:Vector, T<:Number} end #abstract type AbstractArrayParameter{A<:Array} end """ ``` Parameter{ S<:Real, T<:Number, U<:Transform} <: AbstractParameter{T} ``` The Parameter type is the common supertype of time-invariant, non-steady-state model parameters. It has 2 subtypes, `UnscaledParameter` and `ScaledParameter`. `ScaledParameter`s are parameters whose values are scaled when used in the model's equilibrium conditions. The scaled value is stored for convenience, and updated when the parameter's value is updated. The Parameter type has separate `T` and `S` types to allow for automatic differentiation, which will make the type of `S` a Dual type. By specifying this difference, while we cannot enforce `T` and `S` to always sensibly match each others types, we can avoid the issue of having to recast the types of fields with type `T` to be Duals as well. """ abstract type Parameter{T,U<:Transform} <: AbstractParameter{T} end abstract type ParameterAD{S<:Real,T,U} <: Parameter{T,U} end abstract type VectorParameter{V,T,U<:Transform} <: AbstractVectorParameter{V,T} end #abstract type ArrayParameter{A,U<:Transform} <: AbstractArrayParameter{A} end # ParameterVector is a wrapper for a vector # that takes any subtype of AbstractParameter, but it is not # an "abstract" type since we are not intending # to define subtypes of ParameterVector. ParameterVector{T} = Vector{AbstractParameter{T}} VectorParameterVector{V,T} = Vector{AbstractVectorParameter{V,T}} #ArrayParameterVector{A} = Vector{AbstractArrayParameter{A}} NullablePriorUnivariate = Nullables.Nullable{ContinuousUnivariateDistribution} NullablePriorMultivariate = Nullables.Nullable{ContinuousMultivariateDistribution} """ ``` UnscaledParameter{S<:Real,T<:Number,U<:Transform} <: Parameter{S,T,U} ``` Time-invariant model parameter whose value is used as-is in the model's equilibrium conditions. #### Fields - `key::Symbol`: Parameter name. For maximum clarity, `key` should conform to the guidelines established in the DSGE Style Guide. - `value::S`: Parameter value. Initialized in model space (guaranteed to be between `valuebounds`), but can be transformed between model space and the real line via calls to `transform_to_real_line` and `transform_to_model_space`. - `valuebounds::Interval{T}`: Bounds for the parameter's value in model space. - `transform_parameterization::Interval{T}`: Parameters used to transform `value` between model space and the real line. - `transform::U`: Transformation used to transform `value` between model space and real line. - `prior::NullablePrior`: Prior distribution for parameter value. - `fixed::Bool`: Indicates whether the parameter's value is fixed rather than estimated. - `regimes::Dict{Symbol,OrderedDict{Int64,Any}}`: Dictionary for holding information when there are multiple regimes for parameter values - `description::String`: A short description of the parameter's economic significance. - `tex_label::String`: String for printing the parameter name to LaTeX. """ mutable struct UnscaledParameterAD{S,T,U} <: ParameterAD{S,T,U} # New parameter type for Autodiff key::Symbol value::S # parameter value in model space valuebounds::Interval{T} # bounds of parameter value transform_parameterization::Interval{T} # parameters for transformation transform::U # transformation between model space and real line for optimization prior::NullablePriorUnivariate # prior distribution fixed::Bool # is this parameter fixed at some value? regimes::Dict{Symbol,OrderedDict{Int64,Any}} description::String tex_label::String # LaTeX label for printing end mutable struct UnscaledParameter{T,U} <: Parameter{T,U} # Old parameter type key::Symbol value::T # parameter value in model space valuebounds::Interval{T} # bounds of parameter value transform_parameterization::Interval{T} # parameters for transformation transform::U # transformation between model space and real line for optimization prior::NullablePriorUnivariate # prior distribution fixed::Bool # is this parameter fixed at some value? regimes::Dict{Symbol,OrderedDict{Int64,Any}} description::String tex_label::String # LaTeX label for printing end mutable struct UnscaledVectorParameter{V,T,U} <: VectorParameter{V,T,U} key::Symbol value::V # parameter value in model space valuebounds::Interval{T} # bounds of parameter value transform_parameterization::Interval{T} # parameters for transformation transform::U # transformation between model space and real line for optimization prior::NullablePriorMultivariate # prior distribution fixed::Bool # is this parameter fixed at some value? regimes::Dict{Symbol,OrderedDict{Int64,Any}} description::String tex_label::String # LaTeX label for printing end """ ``` ScaledParameter{S,T,U} <: Parameter{S,T,U} ``` Time-invariant model parameter whose value is scaled for use in the model's equilibrium conditions. #### Fields - `key::Symbol`: Parameter name. For maximum clarity, `key` should conform to the guidelines established in the DSGE Style Guide. - `value::T`: The parameter's unscaled value. Initialized in model space (guaranteed to be between `valuebounds`), but can be transformed between model space and the real line via calls to `transform_to_real_line` and `transform_to_model_space`. - `scaledvalue::T`: Parameter value scaled for use in `eqcond.jl` - `valuebounds::Interval{T}`: Bounds for the parameter's value in model space. - `transform_parameterization::Interval{T}`: Parameters used to transform `value` between model space and the real line. - `transform::U`: The transformation used to convert `value` between model space and the real line, for use in optimization. - `prior::NullablePrior`: Prior distribution for parameter value. - `fixed::Bool`: Indicates whether the parameter's value is fixed rather than estimated. - `scaling::Function`: Function used to scale parameter value for use in equilibrium conditions. - `regimes::Dict{Symbol,OrderedDict{Int64,Any}}`: Dictionary for holding information when there are multiple regimes for parameter values - `description::String`: A short description of the parameter's economic significance. - `tex_label::String`: String for printing parameter name to LaTeX. """ mutable struct ScaledParameterAD{S,T,U} <: ParameterAD{S,T,U} key::Symbol value::S scaledvalue::S valuebounds::Interval{T} transform_parameterization::Interval{T} transform::U prior::NullablePriorUnivariate fixed::Bool scaling::Function regimes::Dict{Symbol,OrderedDict{Int64,Any}} description::String tex_label::String end mutable struct ScaledParameter{T,U} <: Parameter{T,U} key::Symbol value::T #S scaledvalue::T #S valuebounds::Interval{T} transform_parameterization::Interval{T} transform::U prior::NullablePriorUnivariate fixed::Bool scaling::Function regimes::Dict{Symbol,OrderedDict{Int64,Any}} description::String tex_label::String end mutable struct ScaledVectorParameter{V,T,U} <: VectorParameter{V,T,U} key::Symbol value::V scaledvalue::V valuebounds::Interval{T} transform_parameterization::Interval{T} transform::U prior::NullablePriorMultivariate fixed::Bool scaling::Function regimes::Dict{Symbol,OrderedDict{Int64,Any}} description::String tex_label::String end """ ``` SteadyStateParameter{T} <: AbstractParameter{T} ``` Steady-state model parameter whose value depends upon the value of other (non-steady-state) `Parameter`s. `SteadyStateParameter`s must be constructed and added to an instance of a model object `m` after all other model `Parameter`s have been defined. Once added to `m`, `SteadyStateParameter`s are stored in `m.steady_state`. Their values are calculated and set by `steadystate!(m)`, rather than being estimated directly. `SteadyStateParameter`s do not require transformations from the model space to the real line or scalings for use in equilibrium conditions. #### Fields - `key::Symbol`: Parameter name. Should conform to the guidelines established in the DSGE Style Guide. - `value::T`: The parameter's steady-state value. - `description::String`: Short description of the parameter's economic significance. - `tex_label::String`: String for printing parameter name to LaTeX. """ mutable struct SteadyStateParameter{T} <: AbstractParameter{T} key::Symbol value::T description::String tex_label::String end """ ``` SteadyStateValueGrid{T} <: AbstractParameter{T} ``` Steady-state model parameter grid (for heterogeneous agent models) whose value is calculated by an iterative procedure. `SteadyStateParameterGrid`s must be constructed and added to an instance of a model object `m` after all other model `Parameter`s have been defined. Once added to `m`, `SteadyStateParameterGrid`s are stored in `m.steady_state`. Their values are calculated and set by `steadystate!(m)`, rather than being estimated directly. `SteadyStateParameter`s do not require transformations from the model space to the real line or scalings for use in equilibrium conditions. #### Fields - `key::Symbol`: Parameter name. Should conform to the guidelines established in the DSGE Style Guide. - `value::Array{T}`: The parameter's steady-state value grid. - `description::String`: Short description of the parameter's economic significance. - `tex_label::String`: String for printing parameter name to LaTeX. """ mutable struct SteadyStateParameterGrid{T} <: AbstractParameter{T} key::Symbol value::Array{T} description::String tex_label::String end function SteadyStateParameterGrid(key::Symbol, value::Array{T}; description::String = "No description available", tex_label::String = "") where {T<:Number} return SteadyStateParameterGrid{T}(key, value, description, tex_label) end """ ``` SteadyStateParameterArray{T} <: AbstractParameter{T} ``` Steady-state model parameter whose value is an Array and depends upon the value of other (non-steady-state) `Parameter`s. `SteadyStateParameterArray`s must be constructed and added to an instance of a model object `m` after all other model `Parameter`s have been defined. Once added to `m`, `SteadyStateParameterArray`s are stored in `m.steady_state`. Their values are calculated and set by `steadystate!(m)`, rather than being estimated directly. `SteadyStateParameterArray`s do not require transformations from the model space to the real line or scalings for use in equilibrium conditions. #### Fields - `key::Symbol`: Parameter name. Should conform to the guidelines established in the DSGE Style Guide. - `value::Array{T}`: The parameter's steady-state values. - `description::String`: Short description of the parameter's economic significance. - `tex_label::String`: String for printing parameter name to LaTeX. """ mutable struct SteadyStateParameterArray{T} <: AbstractParameter{T} key::Symbol value::Array{T} description::String tex_label::String end """ ``` SteadyStateParameterArray{T<:Number}(key::Symbol, value::Array{T}; description::String = "", tex_label::String = "") ``` SteadyStateParameter constructor with optional `description` and `tex_label` arguments. """ function SteadyStateParameterArray(key::Symbol, value::Array{T}; description::String = "No description available", tex_label::String = "") where {T<:Number} return SteadyStateParameterArray(key, value, description, tex_label) end # TypeError: non-boolean (BitArray{1}) used in boolean context # gets thrown when we print the value. function Base.show(io::IO, p::SteadyStateParameterArray{T}) where {T} @printf io "%s\n" typeof(p) @printf io "(:%s)\n%s\n" p.key p.description @printf io "LaTeX label: %s\n" p.tex_label @printf io "-----------------------------\n" @printf io "value: [%+6f,...,%+6f]\n" p.value[1] p.value[end] end hasprior(p::Union{Parameter, ParameterAD, VectorParameter}) = !isnull(p.prior) NullableOrPriorUnivariate = Union{NullablePriorUnivariate, ContinuousUnivariateDistribution} NullableOrPriorMultivariate = Union{NullablePriorMultivariate, ContinuousMultivariateDistribution} # We want to use value field from UnscaledParameters and # SteadyStateParameters in computation, so we alias their union here. UnscaledOrSteadyState = Union{UnscaledParameter, SteadyStateParameter} """ ``` ParamBoundsError <: Exception ``` A `ParamBoundsError` is thrown upon an attempt to assign a parameter value that is not between `valuebounds`. """ mutable struct ParamBoundsError <: Exception msg::String end ParamBoundsError() = ParamBoundsError("Value not between valuebounds") Base.showerror(io::IO, ex::ParamBoundsError) = print(io, ex.msg) """ ``` parameter{S,T,U<:Transform}(key::Symbol, value::S, valuebounds = (value,value), transform_parameterization = (value,value), transform = Untransformed(), prior = NullablePrior(); fixed = true, scaling::Function = identity, description = "", tex_label::String = "") ``` By default, returns a fixed `UnscaledParameter` object with key `key` and value `value`. If `scaling` is given, a `ScaledParameter` object is returned. """ function parameter(key::Symbol, value::Union{T, V}, #value::Union{S,V}, valuebounds::Interval{T} = (value,value), transform_parameterization::Interval{T} = (value,value), transform::U = Untransformed(), prior::Union{NullableOrPriorUnivariate, NullableOrPriorMultivariate} = NullablePriorUnivariate(); fixed::Bool = true, scaling::Function = identity, regimes::Dict{Symbol,OrderedDict{Int64,Any}} = Dict{Symbol,OrderedDict{Int64,Any}}(), description::String = "No description available.", tex_label::String = "") where {V<:Vector, T <: Real, U <:Transform} #{V<:Vector, S<:Real, T <: Float64, U <:Transform} # If fixed=true, force bounds to match and leave prior as null. We need to define new # variable names here because of lexical scoping. valuebounds_new = valuebounds transform_parameterization_new = transform_parameterization transform_new = transform U_new = U prior_new = prior if fixed # value[1] because need to deal with case in which value is a vector (but if only Float, [1] just takes the Float transform_parameterization_new = (value[1],value[1]) # value is transformed already transform_new = Untransformed() # fixed priors should stay untransformed U_new = Untransformed if isa(transform, Untransformed) valuebounds_new = (value[1],value[1]) end else transform_parameterization_new = transform_parameterization end # ensure that we have a Nullable{Distribution}, if not construct one prior_new = if isa(prior_new, NullableOrPriorUnivariate) !isa(prior_new,NullablePriorUnivariate) ? NullablePriorUnivariate(prior_new) : prior_new elseif isa(prior_new, NullableOrPriorMultivariate) !isa(prior_new,NullablePriorMultivariate) ? NullablePriorMultivariate(prior_new) : prior_new else @error "Must be a PriorOrNullable or PriorOrNullableMultivariate" end if scaling == identity if typeof(value) <: Number #Real return UnscaledParameter{T,U_new}(key, value, valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, regimes, description, tex_label) #S elseif typeof(value) <: Vector return UnscaledVectorParameter{V,T,U_new}(key, value, valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, regimes, description, tex_label) else @error "Type of value not yet supported" end else if typeof(value) <: Number #Real return ScaledParameter{T,U_new}(key, value, scaling(value), valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, scaling, regimes, description, tex_label) elseif typeof(value) <: Vector return ScaledVectorParameter{V,T,U_new}(key, value, scaling(value), valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, scaling, regimes, description, tex_label) end end end function parameter(key::Symbol, value::Union{T1, V}, #value::Union{S,V}, valuebounds::Interval{T2} = (value,value), transform_parameterization::Interval{T3} = (value,value), transform::U = Untransformed(), prior::Union{NullableOrPriorUnivariate, NullableOrPriorMultivariate} = NullablePriorUnivariate(); fixed::Bool = true, scaling::Function = identity, regimes::Dict{Symbol,OrderedDict{Int64,Any}} = Dict{Symbol,OrderedDict{Int64,Any}}(), description::String = "No description available.", tex_label::String = "") where {V<:Vector, T1 <: Real, T2 <: Real, T3 <: Real, U <:Transform} warn_str = "The element types of the fields `value` ($(typeof(value))), `valuebounds` ($(eltype(valuebounds))), " * "and `transform_parameterization` ($(eltype(transform_parameterization))) do not match. " * "Attempting to convert all types to the same type as `value`. Note that the element type for the prior " * "distribution should also be $(typeof(value))." @warn warn_str valuebounds_new = (convert(T1, valuebounds[1]), convert(T1, valuebounds[2])) transform_parameterization_new = (convert(T1, transform_parameterization[1]), convert(T1, transform_parameterization[2])) return parameter(key, value, valuebounds_new, transform_parameterization_new, transform, prior; fixed = fixed, scaling = scaling, regimes = regimes, description = description, tex_label = tex_label) end function parameter_ad(key::Symbol, value::Union{S,V}, valuebounds::Interval{T} = (value,value), transform_parameterization::Interval{T} = (value,value), transform::U = Untransformed(), prior::Union{NullableOrPriorUnivariate, NullableOrPriorMultivariate} = NullablePriorUnivariate(); fixed::Bool = true, scaling::Function = identity, regimes::Dict{Symbol,OrderedDict{Int64,Any}} = Dict{Symbol,OrderedDict{Int64,Any}}(), description::String = "No description available.", tex_label::String = "") where {V<:Vector, S<:Real, T <: Float64, U <:Transform} # If fixed=true, force bounds to match and leave prior as null. We need to define new # variable names here because of lexical scoping. valuebounds_new = valuebounds transform_parameterization_new = transform_parameterization transform_new = transform U_new = U prior_new = prior if fixed # value[1] because need to deal with case in which value is a vector (but if only Float, [1] just takes the Float transform_parameterization_new = (value[1],value[1]) # value is transformed already transform_new = Untransformed() # fixed priors should stay untransformed U_new = Untransformed if isa(transform, Untransformed) valuebounds_new = (value[1],value[1]) end else transform_parameterization_new = transform_parameterization end # ensure that we have a Nullable{Distribution}, if not construct one prior_new = if isa(prior_new, NullableOrPriorUnivariate) !isa(prior_new,NullablePriorUnivariate) ? NullablePriorUnivariate(prior_new) : prior_new elseif isa(prior_new, NullableOrPriorMultivariate) !isa(prior_new,NullablePriorMultivariate) ? NullablePriorMultivariate(prior_new) : prior_new else @error "Must be a PriorOrNullable or PriorOrNullableMultivariate" end if scaling == identity if typeof(value) <: Real return UnscaledParameterAD{S,T,U_new}(key, value, valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, regimes, description, tex_label) #S elseif typeof(value) <: Vector return UnscaledVectorParameter{V,T,U_new}(key, value, valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, regimes, description, tex_label) else @error "Type of value not yet supported" end else if typeof(value) <: Real return ScaledParameterAD{S,T,U_new}(key, value, scaling(value), valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, scaling, regimes, description, tex_label) elseif typeof(value) <: Vector return ScaledVectorParameter{V,T,U_new}(key, value, scaling(value), valuebounds_new, transform_parameterization_new, transform_new, prior_new, fixed, scaling, regimes, description, tex_label) end end end function parameter(key::Symbol, prior::Union{ContinuousUnivariateDistribution, ContinuousMultivariateDistribution}; fixed::Bool = false, description::String = "No description available", tex_label::String = "") val = length(prior) > 1 ? repeat([NaN], length(prior)) : NaN return parameter(key, val, (NaN, NaN), (NaN, NaN), Untransformed(), prior, fixed = fixed, scaling = identity, description = description, tex_label = tex_label) end """ ``` SteadyStateParameter(key::Symbol, value::T; description::String = "", tex_label::String = "") where {T <: Number} ``` SteadyStateParameter constructor with optional `description` and `tex_label` arguments. """ function SteadyStateParameter(key::Symbol, value::T; description::String = "No description available", tex_label::String = "") where {T <: Number} return SteadyStateParameter(key, value, description, tex_label) end """ ``` parameter(p::UnscaledParameter{S,T,U}, newvalue::S) where {S<:Real,T<:Number,U<:Transform} ``` Returns an UnscaledParameter with value field equal to `newvalue`. If `p` is a fixed parameter, it is returned unchanged. """ function parameter(p::UnscaledParameter{T,U}, newvalue::T) where {T <: Number, U <: Transform} p.fixed && return p # if the parameter is fixed, don't change its value a,b = p.valuebounds if !(a <= newvalue <= b) throw(ParamBoundsError("New value of $(string(p.key)) ($(newvalue)) is out of bounds ($(p.valuebounds))")) end UnscaledParameter{T,U}(p.key, newvalue, p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.regimes, p.description, p.tex_label) end function parameter_ad(p::UnscaledParameterAD{S,T,U}, newvalue::Snew; change_value_type::Bool = false) where {S<:Real, Snew<:Real, T <: Number, U <: Transform} p.fixed && return p # if the parameter is fixed, don't change its value if !change_value_type && (typeof(p.value) != typeof(newvalue)) error("Type of newvalue $(newvalue) does not match the type of the current value for parameter $(string(p.key)). Set keyword change_value_type = true if you want to overwrite the type of the parameter value.") end a,b = p.valuebounds if !(a <= newvalue <= b) throw(ParamBoundsError("New value of $(string(p.key)) ($(newvalue)) is out of bounds ($(p.valuebounds))")) end if change_value_type UnscaledParameterAD{Snew,T,U}(p.key, newvalue, p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.regimes, p.description, p.tex_label) else UnscaledParameterAD{S,T,U}(p.key, newvalue, p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.regimes, p.description, p.tex_label) end end function parameter(p::UnscaledVectorParameter{V,T,U}, newvalue::V) where {V <: Vector, T <: Number, U <: Transform} p.fixed && return p # if the parameter is fixed, don't change its value a,b = p.valuebounds if !all(a .<= newvalue .<= b) throw(ParamBoundsError("New value of $(string(p.key)) ($(newvalue)) is out of bounds ($(p.valuebounds))")) end UnscaledVectorParameter{V,T,U}(p.key, newvalue, p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.regimes, p.description, p.tex_label) end """ ``` parameter(p::ScaledParameter{S,T,U}, newvalue::S) where {S<:Real, T<:Number,U<:Transform} ``` Returns a ScaledParameter with value field equal to `newvalue` and scaledvalue field equal to `p.scaling(newvalue)`. If `p` is a fixed parameter, it is returned unchanged. """ function parameter(p::ScaledParameter{T,U}, newvalue::T) where {T <: Number, U <: Transform} #S:<Real, Snew:< Real p.fixed && return p # if the parameter is fixed, don't change its value a,b = p.valuebounds if !(a <= newvalue <= b) throw(ParamBoundsError("New value of $(string(p.key)) ($(newvalue)) is out of bounds ($(p.valuebounds))")) end ScaledParameter{T,U}(p.key, newvalue, p.scaling(newvalue), p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.scaling, p.regimes, p.description, p.tex_label) end function parameter_ad(p::ScaledParameterAD{S,T,U}, newvalue::Snew; change_value_type::Bool = false) where {S<:Real, Snew<:Real, T<:Number, U<:Transform} p.fixed && return p # if the parameter is fixed, don't change its value if !change_value_type && (typeof(p.value) != typeof(newvalue)) error("Type of newvalue $(newvalue) does not match value of parameter $(string(p.key)).") end a,b = p.valuebounds if !(a <= newvalue <= b) throw(ParamBoundsError("New value of $(string(p.key)) ($(newvalue)) is out of bounds ($(p.valuebounds))")) end if change_value_type ScaledParameterAD{Snew,T,U}(p.key, newvalue, p.scaling(newvalue), p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.scaling, p.regimes, p.description, p.tex_label) else ScaledParameterAD{S,T,U}(p.key, newvalue, p.scaling(newvalue), p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.scaling, p.regimes, p.description, p.tex_label) end end function parameter(p::ScaledVectorParameter{V,T,U}, newvalue::V) where {V <: Vector, T <: Number, U <: Transform} p.fixed && return p # if the parameter is fixed, don't change its value a,b = p.valuebounds if !all(a .<= newvalue .<= b) throw(ParamBoundsError("New value of $(string(p.key)) ($(newvalue)) is out of bounds ($(p.valuebounds))")) end ScaledVectorParameter{V,T,U}(p.key, newvalue, p.scaling.(newvalue), p.valuebounds, p.transform_parameterization, p.transform, p.prior, p.fixed, p.scaling, p.regimes, p.description, p.tex_label) end function Base.show(io::IO, p::Parameter{T,U}) where {T, U} #S,T,U @printf io "%s\n" typeof(p) @printf io "(:%s)\n%s\n" p.key p.description @printf io "LaTeX label: %s\n" p.tex_label @printf io "-----------------------------\n" #@printf io "real value: %+6f\n" transform_to_real_line(p) @printf io "unscaled, untransformed value: %+6f\n" p.value isa(p,ScaledParameter) && @printf "scaled, untransformed value: %+6f\n" p.scaledvalue #!isa(U(),Untransformed) && @printf io "transformed value: %+6f\n" p.value if hasprior(p) @printf io "prior distribution:\n\t%s\n" get(p.prior) else @printf io "prior distribution:\n\t%s\n" "no prior" end @printf io "transformation for csminwel:\n\t%s" U() @printf io "parameter is %s\n" p.fixed ? "fixed" : "not fixed" end function Base.show(io::IO, p::ParameterAD{S,T,U}) where {S,T,U} @printf io "%s\n" typeof(p) @printf io "(:%s)\n%s\n" p.key p.description @printf io "LaTeX label: %s\n" p.tex_label @printf io "-----------------------------\n" #@printf io "real value: %+6f\n" transform_to_real_line(p) @printf io "unscaled, untransformed value: %+6f\n" p.value isa(p,ScaledParameter) && @printf "scaled, untransformed value: %+6f\n" p.scaledvalue #!isa(U(),Untransformed) && @printf io "transformed value: %+6f\n" p.value if hasprior(p) @printf io "prior distribution:\n\t%s\n" get(p.prior) else @printf io "prior distribution:\n\t%s\n" "no prior" end @printf io "transformation for csminwel:\n\t%s" U() @printf io "parameter is %s\n" p.fixed ? "fixed" : "not fixed" end function Base.show(io::IO, p::VectorParameter{V,T,U}) where {V,T, U} @printf io "%s\n" typeof(p) @printf io "(:%s)\n%s\n" p.key p.description @printf io "LaTeX label: %s\n" p.tex_label @printf io "-----------------------------\n" #@printf io "real value: %+6f\n" transform_to_real_line(p) join([@printf io "%+6f\n" x for x in p.value], ", ") #isa(p,ScaledParameter) && @printf "scaled, untransformed value: %+6f\n" p.scaledvalue #!isa(U(),Untransformed) && @printf io "transformed value: %+6f\n" p.value if hasprior(p) @printf io "prior distribution:\n\t%s\n" get(p.prior) else @printf io "prior distribution:\n\t%s\n" "no prior" end @printf io "transformation for csminwel:\n\t%s" U() @printf io "parameter is %s\n" p.fixed ? "fixed" : "not fixed" end function Base.show(io::IO, p::SteadyStateParameter{T}) where {T} @printf io "%s\n" typeof(p) @printf io "(:%s)\n%s\n" p.key p.description @printf io "LaTeX label: %s\n" p.tex_label @printf io "-----------------------------\n" @printf io "value: %+6f\n" p.value end function Base.show(io::IO, p::SteadyStateParameterGrid{T}) where {T} @printf io "%s\n" typeof(p) @printf io "(:%s)\n%s\n" p.key p.description @printf io "LaTeX label: %s\n" p.tex_label @printf io "-----------------------------\n" @printf io "value: [%f,...,%f]" p.value[1] p.value[end] end """ ``` transform_to_model_space{S<:Real,T<:Number, U<:Transform}(p::Parameter{S,T,U}, x::S) ``` Transforms `x` from the real line to lie between `p.valuebounds` without updating `p.value`. The transformations are defined as follows, where (a,b) = p.transform_parameterization and c a scalar (default=1): - Untransformed: `x` - SquareRoot: `(a+b)/2 + (b-a)/2 * c * x/sqrt(1 + c^2 * x^2)` - Exponential: `a + exp(c*(x-b))` """ transform_to_model_space(p::ParameterAD{S,<:Number,Untransformed}, x::S) where S = x function transform_to_model_space(p::ParameterAD{S,<:Number,SquareRoot}, x::S) where S (a,b), c = p.transform_parameterization, one(S) (a+b)/2 + (b-a)/2*c*x/sqrt(1 + c^2 * x^2) end transform_to_model_space(p::Parameter{T,Untransformed}, x::T) where T = x function transform_to_model_space(p::Parameter{T,SquareRoot}, x::T) where T (a,b), c = p.transform_parameterization, one(T) (a+b)/2 + (b-a)/2*c*x/sqrt(1 + c^2 * x^2) end function transform_to_model_space(p::ParameterAD{S,<:Number,Exponential}, x::S) where S (a,b), c = p.transform_parameterization, one(S) a + exp(c*(x-b)) end function transform_to_model_space(p::Parameter{T,Exponential}, x::T) where T (a,b), c = p.transform_parameterization, one(T) a + exp(c*(x-b)) end @inline function transform_to_model_space(pvec::ParameterVector{T}, values::Vector{T}; regime_switching::Bool = false) where T if regime_switching # Transform values in the first regime output = similar(values) plen = length(pvec) map!(transform_to_model_space, output, pvec, values[1:plen]) # Now transform values in the second regime and on i = 0 for p in pvec if !isempty(p.regimes) for (k, v) in p.regimes[:value] if k != 1 # Skip the first regime. i += 1 # `values` stores regime values (after the first regime) beside each other. output[plen + i] = transform_to_model_space(p, values[plen + i]) end end end end return output else return map(transform_to_model_space, pvec, values) end end @inline function transform_to_model_space(pvec::ParameterVector, values::Vector{S}; regime_switching::Bool = false) where S if regime_switching # Transform values in the first regime output = similar(values) plen = length(pvec) map!(transform_to_model_space, output, pvec, values[1:plen]) # Now transform values in the second regime and on i = 0 for p in pvec if !isempty(p.regimes) for (k, v) in p.regimes[:value] if k != 1 # Skip the first regime. i += 1 # `values` stores regime values (after the first regime) beside each other. output[plen + i] = transform_to_model_space(p, values[plen + i]) end end end end return output else return map(transform_to_model_space, pvec, values) end end """ ``` differentiate_transform_to_model_space{S<:Real,T<:Number, U<:Transform}(p::Parameter{S,T,U}, x::S) ``` Differentiates the transform of `x` from the real line to lie between `p.valuebounds` The transformations are defined as follows, where (a,b) = p.transform_parameterization and c a scalar (default=1): - Untransformed: `x` - SquareRoot: `(a+b)/2 + (b-a)/2 * c * x/sqrt(1 + c^2 * x^2)` - Exponential: `a + exp(c*(x-b))` Their gradients are therefore - Untransformed: `1` - SquareRoot: `(b-a)/2 * c / (1 + c^2 * x^2)^(3/2)` - Exponential: `c * exp(c*(x-b))` """ differentiate_transform_to_model_space(p::ParameterAD{S,<:Number,Untransformed}, x::S) where S = one(S) function differentiate_transform_to_model_space(p::ParameterAD{S,<:Number,SquareRoot}, x::S) where S (a,b), c = p.transform_parameterization, one(S) (b-a)/2 * c / (1 + c^2 * x^2)^(3/2) end function differentiate_transform_to_model_space(p::ParameterAD{S,<:Number,Exponential}, x::S) where S (a,b), c = p.transform_parameterization, one(S) c * exp(c*(x-b)) end differentiate_transform_to_model_space(pvec::ParameterVector, values::Vector{S}) where S = map(differentiate_transform_to_model_space, pvec, values) """ ``` transform_to_real_line(p::Parameter{S,T,U}, x::S = p.value) where {S<:Real, T<:Number, U<:Transform} ``` Transforms `p.value` from model space (between `p.valuebounds`) to the real line, without updating `p.value`. The transformations are defined as follows, where (a,b) = p.transform_parameterization, c a scalar (default=1), and x = p.value: - Untransformed: x - SquareRoot: (1/c)*cx/sqrt(1 - cx^2), where cx = 2 * (x - (a+b)/2)/(b-a) - Exponential: b + (1 / c) * log(x-a) """ transform_to_real_line(p::ParameterAD{S,<:Number,Untransformed}, x::S = p.value) where S = x function transform_to_real_line(p::ParameterAD{S,<:Number,SquareRoot}, x::S = p.value) where S (a,b), c = p.transform_parameterization, one(S) cx = 2. * (x - (a+b)/2.)/(b-a) if cx^2 >1 println("Parameter is: $(p.key)") println("a is $a") println("b is $b") println("x is $x") println("cx is $cx") error("invalid paramter value") end (1/c)*cx/sqrt(1 - cx^2) end function transform_to_real_line(p::ParameterAD{S,<:Number,Exponential}, x::S = p.value) where S (a,b),c = p.transform_parameterization,one(S) b + (1 ./ c) * log(x-a) end transform_to_real_line(pvec::ParameterVector, values::Vector{S}) where S = map(transform_to_real_line, pvec, values) transform_to_real_line(pvec::ParameterVector{S}) where S = map(transform_to_real_line, pvec) transform_to_real_line(p::Parameter{T,Untransformed}, x::T = p.value) where T = x function transform_to_real_line(p::Parameter{T,SquareRoot}, x::T = p.value) where T (a,b), c = p.transform_parameterization, one(T) cx = 2. * (x - (a+b)/2.)/(b-a) if cx^2 >1 println("Parameter is: $(p.key)") println("a is $a") println("b is $b") println("x is $x") println("cx is $cx") error("invalid paramter value") end (1/c)*cx/sqrt(1 - cx^2) end function transform_to_real_line(p::Parameter{T,Exponential}, x::T = p.value) where T (a,b),c = p.transform_parameterization,one(T) b + (1 ./ c) * log(x-a) end @inline function transform_to_real_line(pvec::ParameterVector{T}, values::Vector{T}; regime_switching::Bool = false) where T if regime_switching # Transform values in the first regime output = similar(values) plen = length(pvec) map!(transform_to_real_line, output, pvec, values[1:plen]) # Now transform values in the second regime and on i = 0 for p in pvec if !isempty(p.regimes) for (k, v) in p.regimes[:value] if k != 1 # Skip the first regime. i += 1 # `values` stores regime values (after the first regime) beside each other. output[plen + i] = transform_to_real_line(p, values[plen + i]) end end end end return output else map(transform_to_real_line, pvec, values) end end @inline function transform_to_real_line(pvec::ParameterVector{T}; regime_switching::Bool = false) where T if regime_switching values = get_values(pvec) # regime-switching parameters returned by default # Transform values in the first regime plen = length(pvec) # since values is not passed, we can mutate values directly to avoid extra allocations map!(transform_to_real_line, (@view values[1:plen]), pvec, values[1:plen]) # Now transform values in the second regime and on i = 0 for p in pvec if !isempty(p.regimes) for (k, v) in p.regimes[:value] if k != 1 # Skip the first regime. i += 1 # `values` stores regime values (after the first regime) beside each other. values[plen + i] = transform_to_real_line(p, values[plen + i]) end end end end return values else map(transform_to_real_line, pvec) end end """ ``` differentiate_transform_to_real_line{S<:Real,T<:Number, U<:Transform}(p::Parameter{S,T,U}, x::S) ``` Differentiates the transform of `x` from the model space lying between `p.valuebounds` to the real line. The transformations are defined as follows, where (a,b) = p.transform_parameterization and c a scalar (default=1): - Untransformed: x - SquareRoot: (1/c)*cx/sqrt(1 - cx^2), where cx = 2 * (x - (a+b)/2)/(b-a) - Exponential: b + (1 / c) * log(x-a) Their gradients are therefore - Untransformed: `1` - SquareRoot: `(1/c) * (1 / ( 1 - cx^2)^(-3/2)) * (2/(b-a))` - Exponential: `1 / (c * (x - a))` """ differentiate_transform_to_real_line(p::ParameterAD{S,<:Number,Untransformed}, x::S) where S = one(S) function differentiate_transform_to_real_line(p::ParameterAD{S,<:Number,SquareRoot}, x::S) where S (a,b), c = p.transform_parameterization, one(S) cx = 2 * (x - (a+b)/2)/(b-a) (1/c) * (1 / (1 - cx^2)^(-3/2)) * (2/(b-a)) end function differentiate_transform_to_real_line(p::ParameterAD{S,<:Number,Exponential}, x::S) where S (a,b), c = p.transform_parameterization, one(S) 1 / (c * (x - a)) end differentiate_transform_to_real_line(pvec::ParameterVector, values::Vector{S}) where S = map(differentiate_transform_to_real_line, pvec, values) differentiate_transform_to_real_line(pvec::ParameterVector{S}) where S = map(differentiate_transform_to_real_line, pvec) # define operators to work on parameters Base.convert(::Type{T}, p::UnscaledParameter) where {T<:Real} = convert(T,p.value) Base.convert(::Type{T}, p::UnscaledVectorParameter) where {T <: Vector} = convert(T,p.value) Base.convert(::Type{T}, p::ScaledParameter) where {T<:Real} = convert(T,p.scaledvalue) Base.convert(::Type{T}, p::ScaledVectorParameter) where {T <: Vector} = convert(T,p.scaledvalue) Base.convert(::Type{T}, p::SteadyStateParameter) where {T<:Real} = convert(T,p.value) Base.convert(::Type{ForwardDiff.Dual{T,V,N}}, p::UnscaledParameter) where {T,V,N} = convert(V,p.value) Base.convert(::Type{ForwardDiff.Dual{T,V,N}}, p::ScaledParameter) where {T,V,N} = convert(V,p.scaledvalue) Base.promote_rule(::Type{AbstractParameter{T}}, ::Type{U}) where {T<:Real, U<:Number} = promote_rule(T,U) Base.promote_rule(::Type{AbstractVectorParameter{T}}, ::Type{U}) where {T<:Vector, U<:Vector} = promote_rule(T,U) # Define scalar operators on parameters for op in (:(Base.:+), :(Base.:-), :(Base.:*), :(Base.:/), :(Base.:^)) @eval ($op)(p::UnscaledOrSteadyState, q::UnscaledOrSteadyState) = ($op)(p.value, q.value) @eval ($op)(p::UnscaledOrSteadyState, x::Integer) = ($op)(p.value, x) @eval ($op)(p::UnscaledOrSteadyState, x::Number) = ($op)(p.value, x) @eval ($op)(x::Number, p::UnscaledOrSteadyState) = ($op)(x, p.value) @eval ($op)(p::ScaledParameter, q::ScaledParameter) = ($op)(p.scaledvalue, q.scaledvalue) @eval ($op)(p::ScaledParameter, x::Integer) = ($op)(p.scaledvalue, x) @eval ($op)(p::ScaledParameter, x::Number) = ($op)(p.scaledvalue, x) @eval ($op)(x::Number, p::ScaledParameter) = ($op)(x, p.scaledvalue) @eval ($op)(p::ScaledParameter, q::UnscaledOrSteadyState) = ($op)(p.scaledvalue, q.value) @eval ($op)(p::UnscaledOrSteadyState, q::ScaledParameter) = ($op)(p.value, q.scaledvalue) end for op in (:(Base.:+), :(Base.:-), :(Base.:*), :(Base.:/), :(Base.:^)) @eval ($op)(p::UnscaledVectorParameter, q::UnscaledVectorParameter) = ($op)(p.value, q.value) #@eval ($op)(p::UnscaledOrSteadyState, q::UnscaledOrSteadyState) = ($op)(p.value, q.value) @eval ($op)(p::UnscaledVectorParameter, x::Integer) = ($op)(p.value, x) #@eval ($op)(p::UnscaledOrSteadyState, x::Integer) = ($op)(p.value, x) @eval ($op)(p::UnscaledVectorParameter, x::Number) = ($op)(p.value, x) #@eval ($op)(p::UnscaledOrSteadyState, x::Number) = ($op)(p.value, x) #@eval ($op)(x::Number, p::UnscaledOrSteadyState) = ($op)(x, p.value) @eval ($op)(p::ScaledVectorParameter, q::ScaledVectorParameter) = ($op)(p.scaledvalue, q.scaledvalue) @eval ($op)(p::ScaledVectorParameter, x::Integer) = ($op)(p.scaledvalue, x) @eval ($op)(p::ScaledVectorParameter, x::Number) = ($op)(p.scaledvalue, x) @eval ($op)(x::Number, p::ScaledVectorParameter) = ($op)(x, p.scaledvalue) @eval ($op)(p::ScaledVectorParameter, q::UnscaledOrSteadyState) = ($op)(p.scaledvalue, q.value) #@eval ($op)(p::UnscaledOrSteadyState, q::ScaledVectorParameter) = ($op)(p.value, q.scaledvalue) end # Define scalar functional mappings and comparisons for f in (:(Base.exp), :(Base.log), :(Base.transpose), :(Base.:-), :(Base.:<), :(Base.:>), :(Base.:<=), :(Base.:>=)) @eval ($f)(p::UnscaledOrSteadyState) = ($f)(p.value) @eval ($f)(p::ScaledParameter) = ($f)(p.scaledvalue) if f != :(Base.:-) @eval ($f)(p::UnscaledOrSteadyState, x::Number) = ($f)(p.value, x) @eval ($f)(p::ScaledParameter, x::Number) = ($f)(p.scaledvalue, x) end end # Define scalar functional mappings and comparisons for f in (:(Base.exp), :(Base.log), :(Base.transpose), :(Base.:-), :(Base.:<), :(Base.:>), :(Base.:<=), :(Base.:>=)) @eval ($f)(p::UnscaledOrSteadyState) = ($f)(p.value) @eval ($f)(p::ScaledParameterAD) = ($f)(p.scaledvalue) if f != :(Base.:-) @eval ($f)(p::UnscaledOrSteadyState, x::Number) = ($f)(p.value, x) @eval ($f)(p::ScaledParameterAD, x::Number) = ($f)(p.scaledvalue, x) end end # Define scalar operators on grids for op in (:(Base.:+), :(Base.:-), :(Base.:*), :(Base.:/)) @eval ($op)(g::SteadyStateParameterGrid, x::Integer) = ($op)(g.value, x) @eval ($op)(g::SteadyStateParameterGrid, x::Number) = ($op)(g.value, x) @eval ($op)(x::Integer, g::SteadyStateParameterGrid) = ($op)(x, g.value) @eval ($op)(x::Number, g::SteadyStateParameterGrid) = ($op)(x, g.value) end # Define vectorized arithmetic for Unscaled or Steady-State Parameters for op in (:(Base.:+), :(Base.:-), :(Base.:*), :(Base.:/)) @eval ($op)(p::UnscaledOrSteadyState, x::Vector) = ($op)(p.value, x) @eval ($op)(p::UnscaledOrSteadyState, x::Matrix) = ($op)(p.value, x) @eval ($op)(x::Vector, p::UnscaledOrSteadyState) = ($op)(x, p.value) @eval ($op)(x::Matrix, p::UnscaledOrSteadyState) = ($op)(x, p.value) end # Overload length, iterate to broadcast works properly Base.length(p::Parameter) = length(p.value) Base.iterate(p::Parameter, state=1) = state > length(p.value) ? nothing : (state, state+1) """ ``` update!(pvec::ParameterVector, values::Vector{S}; change_value_type::Bool = false) where S ``` Update all parameters in `pvec` that are not fixed with `values`. Length of `values` must equal length of `pvec`. Function optimized for speed. """ function update!(pvec::ParameterVector, values::Vector{T}; change_value_type::Bool = false) where T # this function is optimised for speed # @assert length(values) == length(pvec) "Length of input vector (=$(length(values))) must match length of parameter vector (=$(length(pvec)))" if change_value_type tmp = if eltype(pvec) <: ParameterAD (x,y) -> parameter_ad(x, y; change_value_type = change_value_type) else (x,y) -> parameter(x, y; change_value_type = change_value_type) end map!(tmp, pvec, pvec, values) else if eltype(pvec) <: ParameterAD map!(parameter_ad, pvec, pvec, values[1:length(pvec)]) else map!(parameter, pvec, pvec, values[1:length(pvec)]) end # It is assumed that, if regime-switching, the regimes are toggled to regime 1 before calling update! # If length of values (Floats) is longer than of parameters (Parameters), put the extra stuff into regimes fields # in the following order. Say α, β, γ are parameters, where β has 3 regimes and γ has 4 regimes. # For elements in values after the first `length(pvec)`, values[length(pvec) + 1] is the second regime value of β, # values[length(pvec) + 2] is the third regime value of β, values[length(pvec) + 3] is the second regime of γ, # values[length(pvec) + 4] is the third regime of γ, and values[length(pvec) + 5] is the fourth regime of γ. if length(values) > length(pvec) i = length(pvec) for para in pvec if haskey(para.regimes, :value) for key in keys(para.regimes[:value]) if key == 1 set_regime_val!(para, key, para.value) else # Note that set_regime_val! handles what to do if para is fixed, enforce valuebounds, etc. i += 1 set_regime_val!(para, key, values[i]) end end end end end end end """ ``` update!(pvec::ParameterVector, values::Vector{S}, indices::BitArray{1}; change_value_type::Bool = false) where S ``` Updates a subset of parameters in `pvec` specified by indices. Assumes `values` is sorted in the same order as the parameters in `pvec`, ignoring parameters that are to be left unchanged. However, `update!` will not overwrite fixed parameters, even if `indices` has a true in an index corresponding to a fixed parameter. # Examples ```jldoctest julia> pvec = ParameterVector{Float64}(undef, 3); julia> pvec[1] = parameter(:a, 1., (0., 3.), (0., 3.), fixed = false); julia> pvec[2] = parameter(:b, 1.); julia> pvec[3] = parameter(:c, 1., (0., 3.), (0., 3.), fixed = false); julia> values = [2., 2.]; julia> update!(pvec, values, [true, false, true]); julia> map(x -> x.value, pvec) 3-element Array{Float64,1}: 2.0 1.0 2.0 ``` ```jldoctest julia> pvec = ParameterVector{Float64}(undef, 3); julia> pvec[1] = parameter(:a, 1.); julia> pvec[2] = parameter(:b, 1.); julia> pvec[3] = parameter(:c, 1.); julia> values = [2., 2.]; julia> update!(pvec, values, [true, false, true]); julia> map(x -> x.value, pvec) 3-element Array{Float64,1}: 1.0 1.0 1.0 ``` """ function update!(pvec::ParameterVector, values::AbstractVector{S}, indices::BitArray{1}; change_value_type::Bool = false) where S # Are you changing all indices? Or a subset? if all(indices) current_vals = values else @assert count(indices) == length(values) "Length of input vector (=$(length(values))) must match number of values in parameter vector that `indices` specified to be changed (=$(count(indices)))" # Infer whether we need to declare current_vals as a Vector{<:Real} # (e.g. if values are ForwardDiff.Dual types) # or if current_vals can be a smaller memory type (e.g. Float64) try eltype(values)::AbstractFloat current_vals = Vector{eltype(values)}([x.value for x in pvec]) catch current_vals = Vector{Real}([x.value for x in pvec]) end current_vals[indices] .= values end update!(pvec, current_vals; change_value_type = change_value_type) end """ ``` update(pvec::ParameterVector, values::Vector{S}) where S ``` Returns a copy of `pvec` where non-fixed parameter values are updated to `values`. `pvec` remains unchanged. Length of `values` must equal length of `pvec`. We define the non-mutating version like this because we need the type stability of map! """ function update(pvec::ParameterVector, values::Vector{S}) where S tmp = copy(pvec) update!(tmp, values) return tmp end Distributions.pdf(p::AbstractParameter) = exp(logpdf(p)) # we want the unscaled value for ScaledParameters function Distributions.logpdf(p::Parameter{T,U}) where {T, U} if haskey(p.regimes, :value) # regime-switching values free_para_regimes = if haskey(p.regimes, :fixed) # Figure out which regimes findall(.!values(p.regimes[:fixed])) # are not fixed. Note p.regimes[:fixed] is an OrderedDict else 1:length(p.regimes[:value]) end if isnothing(free_para_regimes) # Regimes can't all be fixed error("All regimes are fixed. The log prior cannot be evaluated for Parameter $(p.key)") end if haskey(p.regimes, :prior) # does prior also regime switch? return sum([logpdf(get(regime_prior(p, i)), regime_val(p, i)) for i in free_para_regimes]) else _prior = get(p.prior) return sum([logpdf(_prior, regime_val(p, i)) for i in free_para_regimes]) end else # no regime-switching values return logpdf(get(p.prior), p.value) end end # this function is optimised for speed function Distributions.logpdf(pvec::ParameterVector{T}) where T x = zero(T) @inbounds for i = 1:length(pvec) if hasprior(pvec[i]) x += logpdf(pvec[i]) end end x end # calculate logpdf at new values, without needing to allocate a temporary array with update function Distributions.logpdf(pvec::ParameterVector, values::Vector{S}) where S @assert length(values) == length(pvec) "Length of input vector (=$(length(values))) must match length of parameter vector (=$(length(pvec)))" x = zero(S) @inbounds for i = 1:length(pvec) if hasprior(pvec[i]) x += logpdf(parameter(pvec[i], values[i])) end end x end Distributions.pdf(pvec::ParameterVector{T}) where T = exp(logpdf(pvec)) Distributions.pdf(pvec::ParameterVector, values::Vector{S}) where S = exp(logpdf(pvec, values)) """ ``` Distributions.rand(p::Vector{AbstractParameter{Float64}}; regime_switching::Bool = false, toggle::Bool = true) ``` Generate a draw from the prior of each parameter in `p`. """ function Distributions.rand(p::Vector{AbstractParameter{Float64}}; regime_switching::Bool = false, toggle::Bool = true) if regime_switching return rand_regime_switching(p; toggle = toggle) else draw = zeros(length(p)) for (i, para) in enumerate(p) draw[i] = if para.fixed para.value else # Resample until all prior draws are within the value bounds prio = rand(para.prior.value) while !(para.valuebounds[1] < prio < para.valuebounds[2]) prio = rand(para.prior.value) end prio end end return draw end end """ ``` rand_regime_switching(p::Vector{AbstractParameter{Float64}}; toggle::Bool = true) ``` Generate a draw from the prior of each parameter in `p`. """ function rand_regime_switching(p::Vector{AbstractParameter{Float64}}; toggle::Bool = true) draw = zeros(length(p)) # Handle the regime 1 values for (i, para) in enumerate(p) draw[i] = if para.fixed # It is assumed regimes are toggled to regime 1, so para.fixed = regimes[:fixed][1] if haskey(regimes, :fixed) para.value elseif (haskey(para.regimes, :prior) ? haskey(para.regimes[:prior], 1) : false) # Resample until all prior draws are within the value bounds prio = rand(regime_prior(para, 1).value) while !(para.valuebounds[1] < prio < para.valuebounds[2]) prio = rand(regime_prior(para, 1).value) end prio else # Resample until all prior draws are within the value bounds prio = rand(para.prior.value) while !(para.valuebounds[1] < prio < para.valuebounds[2]) prio = rand(para.prior.value) end prio end end for para in p if haskey(para.regimes, :value) for regime in keys(para.regimes[:value]) if regime != 1 one_draw = if (haskey(para.regimes, :fixed) ? regime_fixed(para, regime) : para.fixed) # regimes are toggled to regime 1, so need to examine para.regimes[:fixed]. # If it doesn't exist and `para.fixed = true`, then we assume all regimes are fixed. regime_val(para, regime) elseif (haskey(para.regimes, :prior) ? haskey(para.regimes[:prior], regime) : false) # regime-switching in prior # Resample until all prior draws are within the value bounds prio = rand(regime_prior(para, regime).value) lowerbound, upperbound = haskey(para.regimes, :valuebounds) ? regime_valuebounds(para, regime) : para.valuebounds while !(lowerbound < prio < upperbound) prio = rand(regime_prior(para, regime).value) end prio else # just use para.prior for prior draws # Resample until all prior draws are within the value bounds prio = rand(para.prior.value) lowerbound, upperbound = haskey(para.regimes, :valuebounds) ? regime_valuebounds(para, regime) : para.valuebounds while !(lowerbound < prio < upperbound) prio = rand(para.prior.value) end prio end push!(draw, one_draw) end end end end return draw end """ ``` Distributions.rand(p::Vector{AbstractParameter{Float64}}, n::Int; regime_switching::Bool = false, toggle::Bool = true) ``` Generate `n` draws from the priors of each parameter in `p`.This returns a matrix of size `(length(p),n)`, where each column is a sample. To sample from `p` when it has regime-switching, set `regime_switching = true`. The `toggle` keyword is only relevant for regime-switching sampling. Please see `?ModelConstructors.rand_regime_switching`. """ function Distributions.rand(p::Vector{AbstractParameter{Float64}}, n::Int; regime_switching::Bool = false, toggle::Bool = true) priorsim = regime_switching ? zeros(length(rand_regime_switching(p)), n) : zeros(length(p), n) for i in 1:n if regime_switching priorsim[:, i] = rand_regime_switching(p) else priorsim[:, i] = rand(p) end end return priorsim end """ ``` moments(θ::Parameter) ``` If θ's prior is a `RootInverseGamma`, τ and ν. Otherwise, returns the mean and standard deviation of the prior. If θ is fixed, returns `(θ.value, 0.0)`. """ function moments(θ::Parameter) if θ.fixed return θ.value, 0.0 else prior = get(θ.prior) if isa(prior, RootInverseGamma) return prior.τ, prior.ν else return mean(prior), std(prior) end end end function describe_prior(param::Parameter) if param.fixed return "fixed at " * string(param.value) elseif !param.fixed && !isnull(param.prior) (prior_mean, prior_std) = moments(param) prior_dist = string(typeof(get(param.prior))) prior_dist = replace(prior_dist, "Distributions." => "") prior_dist = replace(prior_dist, "DSGE." => "") prior_dist = replace(prior_dist, "{Float64}" => "") mom1, mom2 = if isa(prior, RootInverseGamma) "tau", "nu" else "mu", "sigma" end return prior_dist * "(" * mom1 * "=" * string(round(prior_mean, digits=4)) * ", " * mom2 * "=" * string(round(prior_std, digits=4)) * ")" else error("Parameter must either be fixed or have non-null prior: " * string(param.key)) end end """ ``` function n_parameters_regime_switching(p::ParameterVector) ``` calculates the total number of parameters in `p` across all regimes. """ function n_parameters_regime_switching(p::ParameterVector) base_num = length(p) for para in p if !isempty(para.regimes) if haskey(para.regimes, :value) base_num += length(para.regimes[:value]) - 1 # first regime is already counted end end end return base_num end """ ``` parameters2namedtuple(m) ``` returns the parameters of `m` as a `NamedTuple`. The input `m` can be either an `AbstractVector{<: AbstractParameter}` or an `AbstractModel`. """ function parameters2namedtuple(pvec::AbstractVector{S}) where {S <: AbstractParameter} tuple_names = Tuple(p.key for p in pvec) tuple_vals = [(isa(p, ScaledParameter) ? p.scaledvalue : p.value) for p in pvec] return NamedTuple{tuple_names}(tuple_vals) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
16881
""" ``` set_regime_val!(p::Parameter{S}, i::Int, v::S; override_bounds::Bool = false) where S <: Real set_regime_val!(p::Parameter{S}, model_regime::Int, v::S, d::AbstractDict{Int, Int}; override_bounds::Bool = false) where S <: Real ``` sets the value in regime `i` of `p` to be `v`. By default, we enforce the bounds that are currently in `p`, but the bounds can be ignoerd by setting `override_bounds = true`. The second method allows the user to pass a dictionary to permit the case where there may be differences between the regimes of a regime-switching model and the regimes for the parameters. For example, aside from regime-switching in parameters, the model may also include other forms of regime-switching. To allow estimation of regime-switching parameters in such a model, the dictionary `d` maps each "model" regime to a "parameter" regime. In this way, the second method specifies which "parameter" regime should be used at a given "model" regime. """ function set_regime_val!(p::Parameter{S}, i::Int, v::S; override_bounds::Bool = false) where S <: Real if !haskey(p.regimes, :value) p.regimes[:value] = OrderedDict{Int,S}() end # First check if fixed and enforce valuebounds so # `set_regime_val!` mirrors `parameter(p::Parameter, newvalue::S)` functionality if haskey(p.regimes, :fixed) ? regime_fixed(p, i) : false if haskey(p.regimes[:value], i) return p.regimes[:value][i] else # If it doesn't exist yet, then we want to set the value for this regime p.regimes[:value][i] = v p.regimes[:valuebounds][i] = (v, v) end elseif (haskey(p.regimes, :valuebounds) ? ((regime_valuebounds(p, i)[1] <= v <= regime_valuebounds(p, i)[2]) || override_bounds) : false) p.regimes[:value][i] = v elseif (p.valuebounds[1] <= v <= p.valuebounds[2]) || override_bounds p.regimes[:value][i] = v elseif p.fixed # When parameters are initialized as non-regime-switching and fixed, # the valuebounds is automatically set to (p.value, p.value). # Unless valuebounds are set to regime-switching, it is not possible # to add extra regimes without using `override_bounds = true` (unless using the same value). # Note that the rest of ModelConstructors.jl assumes that if `p.fixed = true` # and haskey(p.regimes, :fixed) is false, then all regimes (if any) are also fixed. throw(ParamBoundsError("Parameter $(p.key) is fixed. Regimes cannot be added unless " * "keyword `override_bounds` is set to `true`.")) else throw(ParamBoundsError("New value of $(string(p.key)) ($(v)) is out of bounds ($(p.valuebounds))")) end return v end function set_regime_val!(p::Parameter{S}, model_regime::Int, v::S, d::AbstractDict{Int, Int}; override_bounds::Bool = false) where S <: Real return set_regime_val!(p, d[model_regime], v; override_bounds = override_bounds) end """ ``` regime_val(p::Parameter{S}, i::Int) where S <: Real regime_val(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real ``` returns the value of `p` in regime `i` for the first method and the value of `p` in regime `d[model_regime` for the second. """ function regime_val(p::Parameter{S}, i::Int) where S <: Real if !haskey(p.regimes, :value) || !haskey(p.regimes[:value], i) @error "regime_val(), Input Error: No regime $(i)" end return p.regimes[:value][i] end regime_val(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real = regime_val(p, d[model_regime]) """ ``` set_regime_prior!(p::Parameter{S}, i::Int, v) set_regime_prior!(p::Parameter{S}, model_regime::Int, v, d::AbstractDict{Int, Int}) ``` sets the prior in regime `i` of `p` to be `v`. The type of `v` can be a `NullablePriorUnivariate`, `NullablePriorMultivariate`, `ContinuousUnivariateDistribution`, or `ContinuousMultivariateDistribution'. The second method allows the user to pass a dictionary to permit the case where there may be differences between the regimes of a regime-switching model and the regimes for the parameters. For example, aside from regime-switching in parameters, the model may also include other forms of regime-switching. To allow estimation of regime-switching parameters in such a model, the dictionary `d` maps each "model" regime to a "parameter" regime. In this way, the second method specifies which "parameter" regime should be used at a given "model" regime. """ function set_regime_prior!(p::Parameter, i::Int, v::S) where {S <: Union{NullablePriorUnivariate, NullablePriorMultivariate}} if !haskey(p.regimes, :prior) p.regimes[:prior] = OrderedDict{Int, Union{NullablePriorUnivariate, NullablePriorMultivariate}}() end p.regimes[:prior][i] = v return v end function set_regime_prior!(p::Parameter, i::Int, v::S) where S <: ContinuousUnivariateDistribution return set_regime_prior!(p, i, NullablePriorUnivariate(v)) end function set_regime_prior!(p::Parameter, i::Int, v::S) where S <: ContinuousMultivariateDistribution return set_regime_prior!(p, i, NullablePriorMultivariate(v)) end function set_regime_prior!(p::Parameter, model_regime::Int, v::S, d::AbstractDict{Int, Int}) where {S <: Union{NullablePriorUnivariate, NullablePriorMultivariate}} return set_regime_prior!(p, d[model_regime], v) end function set_regime_prior!(p::Parameter, model_regime::Int, v::S, d::AbstractDict{Int, Int}) where S <: ContinuousUnivariateDistribution return set_regime_prior!(p, model_regime, NullablePriorUnivariate(v), d) end function set_regime_prior!(p::Parameter, model_regime::Int, v::S, d::AbstractDict{Int, Int}) where S <: ContinuousMultivariateDistribution return set_regime_prior!(p, model_regime, NullablePriorMultivariate(v), d) end """ ``` regime_prior(p::Parameter{S}, i::Int) where S <: Real regime_prior(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real ``` returns the prior of `p` in regime `i` for the first method and the prior of `p` in regime `d[model_regime]` for the second. """ function regime_prior(p::Parameter{S}, i::Int) where S <: Real if !haskey(p.regimes, :prior) || !haskey(p.regimes[:prior], i) @error "regime_prior(), Input Error: No regime $(i)" end return p.regimes[:prior][i] end regime_prior(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real = regime_prior(p, d[model_regime]) """ ``` set_regime_fixed!(p::Parameter{S}, i::Int, v::S; update_valuebounds::Interval = (NaN, NaN)) ``` sets whether `p` is fixed in regime `i` of `p`. Set update_valuebounds to true to set the valuebounds to match the fixed value. The second method allows the user to pass a dictionary to permit the case where there may be differences between the regimes of a regime-switching model and the regimes for the parameters. For example, aside from regime-switching in parameters, the model may also include other forms of regime-switching. To allow estimation of regime-switching parameters in such a model, the dictionary `d` maps each "model" regime to a "parameter" regime. In this way, the second method specifies which "parameter" regime should be used at a given "model" regime. """ function set_regime_fixed!(p::Parameter{S1}, i::Int, v::S; update_valuebounds::Interval{S1} = (NaN, NaN)) where {S <: Bool, S1 <: Real} if !haskey(p.regimes, :fixed) p.regimes[:fixed] = OrderedDict{Int, Bool}() end p.regimes[:fixed][i] = v if !haskey(p.regimes, :valuebounds) p.regimes[:valuebounds] = OrderedDict{Int, typeof(p.value)}() end if isnan(update_valuebounds[1]) || isnan(update_valuebounds[2]) # Do nothing unless `v` is true (fixed in regime `i`) or # !haskey(p.regimes[:valuebounds], i) (no value for regime `i` for valuebounds dict) if v if (haskey(p.regimes, :value) ? haskey(p.regimes[:value], i) : false) # Regime is fixed, so valuebounds should be set to (value, value), if it exists p.regimes[:valuebounds][i] = (regime_val(p, i), regime_val(p, i)) else error("Regime $(i) for parameter $(p.key) does not have a value. Set the value " * "using `set_regime_val!` before making it a fixed value with `set_regime_fixed!`.") end elseif !haskey(p.regimes[:valuebounds], i) # If valuebounds is nonexistent in regime i, initialize to p.valuebounds p.regimes[:valuebounds][i] = p.valuebounds end else # Otherwise update the valuebounds. Note that there is no check that p.regimes[:value][i] lies inside the valuebounds p.regimes[:valuebounds][i] = update_valuebounds end return v end function set_regime_fixed!(p::Parameter, model_regime::Int, v::S, d::AbstractDict{Int, Int}; update_valuebounds::Interval{S1} = (NaN, NaN)) where {S <: Bool, S1 <: Real} set_regime_fixed!(p, d[model_regime], v; update_valuebounds = update_valuebounds) end """ ``` regime_fixed(p::Parameter{S}, i::Int) where S <: Real regime_fixed(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real ``` returns whether `p` is fixed in regime `i` for the first method and whether true `p` is fixed in regime `d[model_regime]` for the second method. """ function regime_fixed(p::Parameter{S}, i::Int) where S <: Real if !haskey(p.regimes, :fixed) || !haskey(p.regimes[:fixed], i) @error "regime_fixed(), Input Error: No regime $(i)" end return p.regimes[:fixed][i] end regime_fixed(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real = regime_fixed(p, d[model_regime]) """ ``` set_regime_valuebounds!(p::Parameter{S}, i::Int, v::S) ``` sets valuebounds for `p` in regime `i` to `v`. The second method allows the user to pass a dictionary to permit the case where there may be differences between the regimes of a regime-switching model and the regimes for the parameters. For example, aside from regime-switching in parameters, the model may also include other forms of regime-switching. To allow estimation of regime-switching parameters in such a model, the dictionary `d` maps each "model" regime to a "parameter" regime. In this way, the second method specifies which "parameter" regime should be used at a given "model" regime. """ function set_regime_valuebounds!(p::Parameter, i::Int, v::Interval{S}) where {S <: Real} if !haskey(p.regimes, :valuebounds) p.regimes[:valuebounds] = OrderedDict{Int, typeof(p.value)}() end p.regimes[:valuebounds][i] = v return v end function set_regime_valuebounds!(p::Parameter, model_regime::Int, v::Interval{S}, d::AbstractDict{Int, Int}) where {S <: Real} set_regime_valuebounds!(p, d[model_regime], v) end """ ``` regime_valuebounds(p::Parameter{S}, i::Int) where S <: Real regime_valuebounds(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real ``` returns the `valuebounds` of `p` in regime `i` for the first method and the `valuebounds` of `p` in regime `d[model_regime]` for the second method. """ function regime_valuebounds(p::Parameter{S}, i::Int) where S <: Real if !haskey(p.regimes, :valuebounds) || !haskey(p.regimes[:valuebounds], i) @error "regime_valuebounds(), Input Error: No regime $(i)" end return p.regimes[:valuebounds][i] end regime_valuebounds(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real = regime_valuebounds(p, d[model_regime]) """ ``` toggle_regime!(p::Parameter{S}, i::Int) where S <: Real toggle_regime!(pvec::ParameterVector{S}, i::Int) where S <: Real toggle_regime!(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real toggle_regime!(pvec::ParameterVector{S}, model_regime::Int, d::AbstractDict{Symbol, <: AbstractDict{Int, Int}}) where S <: Real toggle_regime!(pvec::ParameterVector{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real ``` changes the fields of `p` to regime `i`. For example, if ``` p.regimes[:value] = OrderedDict{Int, Any}(1 => 1, 2 => 3) ``` then `toggle_regime!(p, 1)` will cause `p.value = 1` and `toggle_regime!(p, 2)` will cause `p.value = 3`. The third method allows the user to pass a dictionary to permit the case where there may be differences between the regimes of a regime-switching model and the regimes for the parameters. For example, aside from regime-switching in parameters, the model may also include other forms of regime-switching. To allow estimation of regime-switching parameters in such a model, the dictionary `d` maps each "model" regime to a "parameter" regime. In this way, the second method specifies which "parameter" regime should be used at a given "model" regime. The fourth method extends the third to a ParameterVector, with the possibility that each parameter may have different mappings to the model regimes. Each key of `d` corresponds to the key of a parameter, and each value of `d` is the mapping for model regimes to the parameter regimes of `p.key`. The fifth method is similar to the fourth but assumes any regime-switching parameter has the same mapping from model regimes to parameter regimes, hence the use of a common dictionary. """ function toggle_regime!(p::Parameter{S}, i::Int) where S <: Real if !isempty(p.regimes) for field in [:value, :valuebounds, :transform_parameterization, :transform, :prior, :fixed] if haskey(p.regimes, field) && haskey(p.regimes[field], i) if field == :value p.value = p.regimes[field][i] elseif field == :valuebounds p.valuebounds = p.regimes[field][i] elseif field == :transform_parameterization p.transform_parameterization = p.regimes[field][i] elseif field == :transform p.transform = p.regimes[field][i] elseif field == :prior p.prior = p.regimes[field][i] elseif field == :fixed p.fixed = p.regimes[field][i] end elseif haskey(p.regimes, field) && !haskey(p.regimes[field], i) error("Regime $i for field $field not found") end end end end function toggle_regime!(pvec::ParameterVector{S}, i::Int) where {S <: Real} for p in pvec toggle_regime!(p, i) end end toggle_regime!(p::Parameter{S}, model_regime::Int, d::AbstractDict{Int, Int}) where S <: Real = toggle_regime!(p, d[model_regime]) function toggle_regime!(pvec::ParameterVector{S}, model_regime::Int, d::AbstractDict{Symbol, <: AbstractDict{Int, Int}}) where S <: Real for p in pvec toggle_regime!(p, model_regime, d[p.key]) end end toggle_regime!(pvec::ParameterVector{S}, model_regime::Int, d::AbstractDict{Int, Int}) where {S <: Real} = toggle_regime!(pvec, d[model_regime]) """ ``` get_values(pvec::ParameterVector{S}; regime_switching::Bool = true) where {S <: Real} ``` constructs a vector of the underlying values in a `ParameterVector`, including if there are regime-switching values. """ function get_values(pvec::ParameterVector{S}; regime_switching::Bool = true) where {S <: Real} if regime_switching # Check if regime switching occurs np_reg = n_parameters_regime_switching(pvec) np = length(pvec) if np == np_reg # No regime-switching vals = [x.value for x in pvec.parameters] else vals = Vector{S}(undef, np_reg) # An initial pass to find regime 1 values for i in 1:np if isempty(pvec[i].regimes) vals[i] = pvec[i].value elseif haskey(pvec[i].regimes, :value) vals[i] = pvec[i].regimes[:value][1] end end # A second loop to add in the extra regimes ct = np # a counter to assist us for i in 1:np if !isempty(pvec[i].regimes) if haskey(pvec[i].regimes, :value) for j in 1:length(pvec[i].regimes[:value]) if j > 1 ct += 1 vals[ct] = pvec[i].regimes[:value][j] end end end end end end else # Regime switching doesn't occur, so just directly map vals = [x.value for x in pvec] end return vals end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
4132
""" ``` Setting{T} ``` The `Setting` type is an interface for computational settings that affect how the code runs without affecting the mathematical definition of the model. It also provides support for non-conflicting file names for output of 2 models that differ only in the values of their computational settings. ### Fields - `key::Symbol`: Name of setting - `value::T`: Value of setting - `print::Bool`: Indicates whether to append this setting's code and value to output file names. If true, output file names will include a suffix of the form `_code1=val1_code2=val2` etc. where codes are listed in alphabetical order. - `code::String`: string to print to output file suffixes when `print=true`. - `description::String`: Short description of what the setting is used for. """ mutable struct Setting{T} key::Symbol # name of setting value::T # whatever the setting is print::Bool # whether or not to add this setting to the print code::String # what gets printed to the print description::String # description of what the setting is for end # for printing codes to filename string Base.convert(::Type{T}, s::Setting{U}) where {T<:Number, U<:Number} = convert(T, s.value) Base.convert(::Type{String}, s::Setting{String}) = convert(String, s.value) Base.promote_rule(::Type{Setting{T}}, ::Type{U}) where {T<:Number,U<:Number} = promote_rule(T,U) Base.promote_rule(::Type{Setting{String}}, ::Type{String}) = String # promote_rule(String, String) Base.promote_rule(::Type{Setting{Bool}}, ::Type{Bool}) = Bool #promote_rule(Bool, Bool) Base.string(s::Setting{String}) = string(s.value) to_filestring(s::Setting) = string(s.code) * "=" * string(s.value) # key, value constructor Setting(key, value) = Setting(key, value, false, "", "") Setting(key, value, description) = Setting(key, value, false, "", description) function Base.show(io::IO, s::Setting) @printf io "%s: %s" s.key s.value end """ ``` (<=)(m::AbstractModel, s::Setting) ``` Syntax for adding a setting to a model/overwriting a setting via `m <= Setting(...)` """ function (<=)(m::AbstractModel, s::Setting) if !m.testing setting_field_name = :settings else setting_field_name = :test_settings end if !haskey(getfield(m, setting_field_name), s.key) || isa(s.value, Function) getfield(m, setting_field_name)[s.key] = s else update!(getfield(m, setting_field_name)[s.key], s) end end """ ``` update!(a::Setting, b::Setting) ``` Update `a` with the fields of `b` if: - The `key` field is updated if `a.key == b.key` - The `print` boolean and `code` string are overwritten if `a.print` is false and `b.print` is true, or `a.print` is true, `b.print` is false, and b.code is non-empty. - The `description` field is updated if `b.description` is nonempty """ function update!(a::Setting, b::Setting) # Make sure Setting a can appropriately be updated by b. if a.key ≠ b.key return end a.value = b.value # b overrides the print boolean of a if: # - a.print is false and b.print is true. # - a.print is true, b.print is false, and b.code is non-empty. # We must be able to tell if b was created via a constructor like `Setting(:key, # value)`, in which case the print, code, and description values are set to defaults. We # do not overwrite if we can't determine whether or not those fields are just the # defaults. if (a.print == false && b.print == true) || (a.print == true && b.print == false && !isempty(b.code)) a.print = b.print end if !isempty(b.code) && b.code ≠ a.code a.code = b.code end if !isempty(b.description) && b.description ≠ a.description a.description = b.description end end """ ``` get_setting(m::AbstractModel, setting::Symbol) ``` Returns the value of the setting """ function get_setting(m::AbstractModel, s::Symbol) if m.testing && in(s, keys(m.test_settings)) return m.test_settings[s].value else return m.settings[s].value end end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
3222
""" `prior(parameters::ParameterVector{T}) where {T<:Number}` Calculates log joint prior density of m.parameters. """ function prior(parameters::ParameterVector{T}) where {T<:Number} free_params = Base.filter(x -> !_filter_all_fixed_para(x), parameters) logpdfs = map(logpdf, free_params) return sum(logpdfs) end _filter_all_fixed_para(p::Parameter) = haskey(p.regimes, :fixed) ? all(values(p.regimes[:fixed])) : p.fixed """ ``` posterior(loglikelihood::Function, parameters::ParameterVector, data::AbstractArray; ϕ_smc::Float64 = 1.) ``` Calculates and returns the log of the posterior distribution for `m.parameters`: ``` log posterior = log likelihood + log prior + const log Pr(Θ|data) = log Pr(data|Θ) + log Pr(Θ) + const ``` ### Arguments - `loglikelihood`: Function which takes vector of parameters and data, and outputs the log-loglikelihood of a parameters given data. - `parameters`: Vector of parameters whose likelihood is to be evaluated - `data`: Matrix of data for observables ### Optional Arguments - `φ_smc`: a tempering factor to change the relative weighting of the prior and the likelihood when calculating the posterior. It is used primarily in SMC. """ function posterior(loglikelihood::Function, parameters::ParameterVector, data::AbstractArray; ϕ_smc::Float64 = 1.) like = loglikelihood(parameters, data) post = ϕ_smc * like + prior(parameters) return post end """ ``` posterior!(loglikelihood::Function, parameters::ParameterVector, para_draw::Vector{T}, data::Matrix{T}; sampler::Bool = false, catch_errors::Bool = false, φ_smc = 1) where {T<:AbstractFloat} ``` Evaluates the log posterior density at `parameters`. ### Arguments - `loglikelihood`: a function which takes vector of parameters and data, and outputs the log-loglikelihood of a parameters given data. - `para_draw`: New values for the model parameters - `data`: Matrix of input data for observables ### Optional Arguments - `sampler`: Whether metropolis_hastings or smc is the caller. If `sampler=true`, the log likelihood and the transition matrices for the zero-lower-bound period are also returned. - `catch_errors`: Whether to catch errors of type `GensysError` or `ParamBoundsError` If `sampler = true`, both should always be caught. - `φ_smc`: a tempering factor to change the relative weighting of the prior and the likelihood when calculating the posterior. It is used primarily in SMC. """ function posterior!(loglikelihood::Function, parameters::ParameterVector, para_draw::Vector{T}, data::Matrix{T}; sampler::Bool = false, catch_errors::Bool = false, ϕ_smc::Float64 = 1.) where {T<:AbstractFloat} catch_errors = catch_errors | sampler if sampler try update!(parameters, para_draw) catch err if isa(err, ParamBoundsError) return -Inf else throw(err) end end else update!(parameters, para_draw) end return posterior(loglikelihood, parameters, data; ϕ_smc = ϕ_smc) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
6533
""" ``` sendto(p::Int; args...) ``` Function to send data from master process to particular worker, p. Code from ChrisRackauckas, avavailable at: https://github.com/ChrisRackauckas/ParallelDataTransfer.jl/blob/master/src/ParallelDataTransfer.jl. """ function sendto(p::Int; args...) for (nm, val) in args @spawnat(p, Core.eval(Main, Expr(:(=), nm, val))) end end """ ``` sendto(ps::AbstractVector{Int}; args...) ``` Function to send data from master process to list of workers. Code from ChrisRackauckas, available at: https://github.com/ChrisRackauckas/ParallelDataTransfer.jl/blob/master/src/ParallelDataTransfer.jl. """ function sendto(ps::AbstractVector{Int}; args...) for p in ps sendto(p; args...) end end """ ``` abbrev_symbol(s::Symbol, n::Int=4) ``` Abbreviate the symbol `s` to an `n`-character string. """ function abbrev_symbol(s::Symbol, n::Int=4) str = string(s) if length(str) ≤ n return str else return str[1:n] end end function sorted_list_insert!(v::Vector{T}, x::T) where T insert_index = 1 for val in v if x<val break else insert_index += 1 end end insert!(v,insert_index,x) end """ ``` quarter_range(t0::Date, t1::Date) ``` Returns a vector of `Dates`, consisting of the last days of each quarter between `t0` and `t1`, inclusive. """ function quarter_range(t0::Date, t1::Date) dr = t0:Day(1):t1 return Base.filter(d -> Dates.lastdayofquarter(d) == d, dr) end """ ``` detexify(s::String) detexify(s::Symbol) ``` Remove Unicode characters from the string `s`, replacing them with ASCII equivalents. For example, `detexify(\"π\")` returns `\"pi\"`. """ function detexify(s::String) s = replace(s, "α" => "alpha") s = replace(s, "β" => "beta") s = replace(s, "γ" => "gamma") s = replace(s, "δ" => "delta") s = replace(s, "ϵ" => "epsilon") s = replace(s, "ε" => "epsilon") s = replace(s, "ζ" => "zeta") s = replace(s, "η" => "eta") s = replace(s, "θ" => "theta") s = replace(s, "ι" => "iota") s = replace(s, "κ" => "kappa") s = replace(s, "λ" => "lambda") s = replace(s, "μ" => "mu") s = replace(s, "ν" => "nu") s = replace(s, "ξ" => "xi") s = replace(s, "π" => "pi") s = replace(s, "ρ" => "rho") s = replace(s, "ϱ" => "rho") s = replace(s, "σ" => "sigma") s = replace(s, "ς" => "sigma") s = replace(s, "τ" => "tau") s = replace(s, "υ" => "upsilon") s = replace(s, "ϕ" => "phi") s = replace(s, "φ" => "phi") s = replace(s, "χ" => "chi") s = replace(s, "ψ" => "psi") s = replace(s, "ω" => "omega") s = replace(s, "Α" => "Alpha") s = replace(s, "Β" => "Beta") s = replace(s, "Γ" => "Gamma") s = replace(s, "Δ" => "Delta") s = replace(s, "Ε" => "Epsilon") s = replace(s, "Ζ" => "Zeta") s = replace(s, "Η" => "Eta") s = replace(s, "Θ" => "Theta") s = replace(s, "Ι" => "Iota") s = replace(s, "Κ" => "Kappa") s = replace(s, "Λ" => "Lambda") s = replace(s, "Μ" => "Mu") s = replace(s, "Ν" => "Nu") s = replace(s, "Ξ" => "Xi") s = replace(s, "Π" => "Pi") s = replace(s, "Ρ" => "Rho") s = replace(s, "Σ" => "Sigma") s = replace(s, "Τ" => "Tau") s = replace(s, "Υ" => "Upsilon") s = replace(s, "Φ" => "Phi") s = replace(s, "Χ" => "Chi") s = replace(s, "Ψ" => "Psi") s = replace(s, "Ω" => "Omega") s = replace(s, "′" => "'") return s end function detexify(s::Symbol) Symbol(detexify(string(s))) end dispfns = [:print, :println] for disp in dispfns @eval begin function Base.$disp(verbose::Symbol, min::Symbol, xs...) if VERBOSITY[verbose] >= VERBOSITY[min] $disp(xs...) end end end end function info_print(verbose::Symbol, min::Symbol, x::String) if VERBOSITY[verbose] >= VERBOSITY[min] @info(x) end end function warn_print(verbose::Symbol, min::Symbol, x::String) if VERBOSITY[verbose] >= VERBOSITY[min] @warn(x) end end ## Testing functions function test_matrix_eq2(expect::AbstractArray, actual::AbstractArray, expstr::String, actstr::String, ϵ_abs::Float64 = 1e-6, ϵ_rel::Float64 = 1e-2) where {T<:AbstractFloat} if length(expect) ≠ length(actual) error("lengths of ", expstr, " and ", actstr, " do not match: ", "\n ", expstr, " (length $(length(expect))) = ", expect, "\n ", actstr, " (length $(length(actual))) = ", actual) end # Absolute difference filter abs_diff = abs.(actual .- expect) .> ϵ_abs n_abs_diff = sum(skipmissing(abs_diff)) # Relative difference filter rel_diff = 100*abs.((actual .- expect) ./ expect) .> ϵ_rel n_rel_diff = sum(skipmissing(rel_diff)) # Element is only problematic if it fails *both* tests. mixed_diff = abs_diff .& rel_diff n_mixed_diff = sum(skipmissing(mixed_diff)) if n_mixed_diff ≠ 0 sdiff = string("|a - b| <= ", ϵ_abs, " or |a - b|/|b| <= ", ϵ_rel, "%,", " ∀ a ∈ ", actstr, ",", " ∀ b ∈ ",expstr) @warn "assertion failed:\n", " ", sdiff, "\n$(n_abs_diff) entries fail absolute equality filter", "\n$(n_rel_diff) entries fail relative equality filter", "\n$(n_mixed_diff) entries fail both equality filters\n" return false end return true end """ @test_matrix_approx_eq(a, b) Test two matrices of floating point numbers `a` and `b` for approximate equality. """ macro test_matrix_approx_eq(a,b) :(test_matrix_eq2($(esc(a)),$(esc(b)),$(string(a)),$(string(b)))) end """ @test_matrix_approx_eq_eps(a, b, ϵ_abs, ϵ_rel) Test two matrices of floating point numbers `a` and `b` for equality taking in account a margin of absolute tolerance given by `ϵ_abs` and a margin of relative tolerance given by `ϵ_rel` (in comparison to `b`). """ macro test_matrix_approx_eq_eps(a,b,c,d) :(test_matrix_eq2($(esc(a)),$(esc(b)),$(string(a)),$(string(b)),$(esc(c)),$(esc(d)))) end """ Sparse identity matrix - since deprecated in 0.7 """ function speye(n::Integer) return SparseMatrixCSC{Float64}(I, n, n) end """ Sparse identity matrix - since deprecated in 0.7 """ function speye(T::Type, n::Integer) return SparseMatrixCSC{T}(I, n, n) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
419
using Test, ModelConstructors, UnPack m = GenericModel() m <= parameter(:a, 1., (0., 1.), (0., 1.), Untransformed(), fixed = false) m <= parameter(:b, 1., (0., 1.), (0., 1.), Untransformed(), fixed = false, scaling = x -> x / 100.) @testset "UnPack works with AbstractModel" begin @unpack a, b = m @test a == 1. @test b == 1e-2 @unpack a = m @unpack b = m @test a == 1. @test b == 1e-2 end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
899
import Distributions.I Random.seed!(22) i, j, k = 3, 60, 200 U = rand(InverseWishart(i + 2, Matrix(1.0I, i, i))) V = rand(InverseWishart(j + 2, Matrix(1.0I, j, j))) Q = rand(InverseWishart(k + 2, Matrix(1.0I, k, k))) m = randn(i) n = randn(j) o = randn(k) σ = 2.0rand() σ² = σ ^ 2 q = MvNormal(m, σ² * U) r = MvNormal(n, σ² * V) s = MvNormal(o, σ² * Q) qᴰ = DegenerateMvNormal(m, σ² * U) rᴰ = DegenerateMvNormal(n, σ² * V) sᴰ = DegenerateMvNormal(o, σ² * Q) @testset "Test logpdf of DegenerateMvNormal at mean" begin @test logpdf(q, q.μ) ≈ logpdf(qᴰ, qᴰ.μ) @test logpdf(r, r.μ) ≈ logpdf(rᴰ, rᴰ.μ) @test logpdf(s, s.μ) ≈ logpdf(sᴰ, sᴰ.μ) end x = rand(i) y = rand(j) z = rand(k) @testset "Test logpdf of DegenerateMvNormal at random location" begin @test logpdf(q, x) ≈ logpdf(qᴰ, x) @test logpdf(r, y) ≈ logpdf(rᴰ, y) @test logpdf(s, z) ≈ logpdf(sᴰ, z) end nothing
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
8909
using Test, ModelConstructors, Distributions, Dates, Nullables @testset "Ensure transformations to the real line/model space are valid" begin for T in subtypes(Transform) global u = parameter(:σ_pist, 2.5230, (1e-8, 5.), (1e-8, 5.), T(), fixed=false) @test ( transform_to_real_line(u) |> x -> transform_to_model_space(u,x) ) == u.value if !isa(T,Type{ModelConstructors.Untransformed}) # check transform_to_real_line and transform_to_model_space to different things if T is not ModelConstructors.Untransformed @test transform_to_real_line(u,u.value) != transform_to_model_space(u,u.value) end end end tomodel_answers = zeros(3) toreal_answers = zeros(3) a = 1e-8; b = 5.; c = 1. x = 2.5230 cx = 2 * (x - (a+b)/2)/(b-a) toreal_answers[1] = 1. / (c * (x - a)) toreal_answers[2] = (1/c) * (1. / (1. - cx^2)^(-3/2)) * (2/(b-a)) toreal_answers[3] = 1. x = transform_to_real_line(parameter(:σ_pist, 2.5230, (1e-8, 5.), (1e-8, 5.), ModelConstructors.Exponential(), fixed=false)) tomodel_answers[1] = c * exp(c * (x - b)) x = transform_to_real_line(parameter(:σ_pist, 2.5230, (1e-8, 5.), (1e-8, 5.), ModelConstructors.SquareRoot(), fixed=false)) tomodel_answers[2] = (b - a) / 2 * c / (1 + c^2 * x^2)^(3/2) tomodel_answers[3] = 1. @testset "Ensure derivatives of transformations to the real line/model space are valid" begin for (i,T) in enumerate(subtypes(Transform)) global u = parameter_ad(:σ_pist, 2.5230, (1e-8, 5.), (1e-8, 5.), T(), fixed=false) @test differentiate_transform_to_real_line(u, u.value) == toreal_answers[i] global x = transform_to_real_line(u) @test differentiate_transform_to_model_space(u,x) == tomodel_answers[i] if !isa(T,Type{ModelConstructors.Untransformed}) # check transform_to_real_line and transform_to_model_space to different things if T is not ModelConstructors.Untransformed @test differentiate_transform_to_real_line(u,u.value) != differentiate_transform_to_model_space(u,u.value) end end end @testset "Check type conversion for `value`, `valuebounds`, and `transform_parameterization`" begin @info "The following warning is expected" u1 = parameter(:σ_pist, 2.5230, (1, 5), (Float32(1), Float32(5)), Untransformed()) u2 = parameter(:σ_pist, 2.5230, (1., 5.), (1., 5.), Untransformed()) @test u1.value == u2.value @test u1.valuebounds == u2.valuebounds @test u1.transform_parameterization == u2.transform_parameterization @test typeof(u1.value) == typeof(u2.value) @test eltype(u1.valuebounds) == eltype(u2.valuebounds) @test eltype(u1.transform_parameterization) == eltype(u2.transform_parameterization) end # probability N = 10^2 u = parameter(:bloop, 2.5230, (1e-8, 5.), (1e-8, 5.), ModelConstructors.SquareRoot(); fixed = true) v = parameter(:cat, 2.5230, (1e-8, 5.), (1e-8, 5.), ModelConstructors.Exponential(), Gamma(2.00, 0.1)) pvec = ParameterVector{Float64}(undef, N) for i in 1:length(pvec) global pvec[i] = (i%2 == 0) ? u : v end @testset "Check logpdf/pdf function approximations" begin @test logpdf(pvec) ≈ 50*logpdf(v) @test pdf(pvec) ≈ exp(50*logpdf(v)) end updated = ModelConstructors.update(pvec, ones(length(pvec))) ModelConstructors.update!(pvec, ones(length(pvec))) @testset "Check if update! preserves dimensions and values" begin @test all(updated .== pvec) @test logpdf(pvec) == logpdf(updated) end # test we only update non-fixed parameters @testset "Ensure only non-fixed parameters are updated" begin for p in pvec if p.fixed @test p.value == 2.5230 elseif isa(p, Parameter) @test p.value == one(Float64) end end end # vector of new values must be the same length @testset "Ensure update! enforces the same length of the parameter vector being updated" begin @test_throws BoundsError ModelConstructors.update!(pvec, ones(length(pvec)-1)) end @testset "Ensure parameters being updated are of the same type." begin for w in [parameter_ad(:moop, 3.0, fixed=false), parameter_ad(:moop, 3.0; scaling = log, fixed=false)] # new values must be of the same type @test_throws ErrorException parameter_ad(w, one(Int)) # new value is out of bounds @test_throws ParamBoundsError parameter_ad(w, -1.) end end @testset "Ensure parameter value types can be changed when forced by keyword." begin for w in [parameter_ad(:moop, 1.0, fixed=false), parameter_ad(:moop, 1.0; scaling = log, fixed=false)] # new values must be of the same type @test typeof(parameter_ad(w, one(Int); change_value_type = true).value) == Int end end # Tests moved from DSGE.jl core.jl # UnscaledParameter, fixed=false α = parameter(:α, 0.1596, (1e-5, 0.999), (1e-5, 0.999), ModelConstructors.SquareRoot(), Normal(0.30, 0.05), fixed=false) @testset "Test non-fixed UnscaledParameter" begin @test isa(α, UnscaledParameter) @test α.key == :α @test isa(α.prior.value, Normal) @test α.prior.value.μ == 0.3 @test α.description == "No description available." @test α.tex_label == "" @test isa(α.transform, ModelConstructors.SquareRoot) end # UnscaledParameter, fixed = true α_fixed = parameter(:α_fixed, 0.1596, (1e-5, 0.999), (1e-5, 0.999), ModelConstructors.Untransformed(), Normal(0.30, 0.05), fixed=true) @testset "Test fixed UnscaledParameter" begin @test α_fixed.transform_parameterization == (0.1596,0.1596) @test isa(α_fixed.transform, ModelConstructors.Untransformed) end # UnscaledParameter, fixed = true, transform should be overwritten given fixed α_fixed = parameter(:α_fixed, 0.1596, (1e-5, 0.999), (1e-5, 0.999), ModelConstructors.SquareRoot(), Normal(0.30, 0.05), fixed=true) @testset "Test fixed UnscaledParameter, ensuring transform is overwritten" begin @test isa(α_fixed.transform, ModelConstructors.Untransformed) end # Fixed UnscaledParameter, minimal constructor δ = parameter(:δ, 0.025) @testset "Test fixed UnscaledParameter minimal constructor" begin @test δ.fixed @test δ.transform_parameterization == (0.025, 0.025) @test δ.valuebounds == (0.025, 0.025) end # Scaled parameter β = parameter(:β, 0.1402, (1e-5, 10.), (1e-5, 10.), ModelConstructors.Exponential(), GammaAlt(0.25, 0.1), fixed=false, scaling = x -> (1 + x/100)\1, description="β: Discount rate.", tex_label="\\beta ") @testset "Test ScaledParameter constructor" begin @test isa(β, ScaledParameter) @test isa(β.prior.value, Gamma) @test isa(β.transform, ModelConstructors.Exponential) end # Invalid transform @testset "Ensure error thrown on invalid transform" begin @test_throws UndefVarError α_bad = parameter(:α, 0.1596, (1e-5, 0.999), (1e-5, 0.999), InvalidTransform(), Normal(0.30, 0.05), fixed=false) end # Arithmetic with parameters @testset "Check arithmetic with parameters" begin @test promote_type(AbstractParameter{Float64}, Float16) == Float64 @test promote_type(AbstractParameter{Float64}, Int8) == Float64 ## @test promote_rule(AbstractParameter{Float64}, Float16) == Float64 ## @test promote_rule(AbstractParameter{Float64}, Int8) == Float64 @test δ + δ == 0.05 @test δ^2 == 0.025^2 @test -δ == -0.025 @test log(δ) == log(0.025) end # transform_to_real_line and transform_to_model_space cx = 2 * (α - 1/2) @testset "Check parameter transformations for optimization" begin @test abs(transform_to_real_line(α) - cx / sqrt(1 - cx^2)) < .001 @test transform_to_real_line(δ) == 0.025 end # Check parameters can be declared as vectors @testset "Test vector-valued parameters" begin p = parameter(:test, ones(5), (0.0, 5.), (0., 5.0), Untransformed(), MvNormal(ones(5), ones(5)), fixed = false, scaling = x -> x/2) @test all(ones(5) ./ 2 .== parameter(p, ones(5)).scaledvalue) end # Check we can update only specific parameter values in a ParameterVector @testset "Test updating specific values of a ParameterVector" begin # Check you can overwrite values which are unfixed global pvec = ParameterVector{Float64}(undef, 3) pvec[1] = parameter(:a, 1., (0., 3.), (0., 3.), fixed = false) pvec[2] = parameter(:b, 1.) pvec[3] = parameter(:c, 1., (0., 3.), (0., 3.), fixed = false) global vals = [2., 2.] update!(pvec, vals, BitArray([true, false, true])) @test map(x -> x.value, pvec) == [2., 1., 2.] # Check that overwriting fixed parameter values does not work, even if you pass # the BitArray telling update! to change the values. pvec[1] = parameter(:a, 1.) pvec[2] = parameter(:b, 1.) pvec[3] = parameter(:c, 1.) global vals = [2., 2.] update!(pvec, vals, BitArray([true, false, true])) @test map(x -> x.value, pvec) == [1., 1., 1.] end nothing
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
383
m = GenericModel() # model paths. all this should work without errors m.testing = true addl_strings = ["foo=bar", "hat=head", "city=newyork"] @testset "Check proper model paths" begin for fn in [:rawpath, :workpath, :tablespath, :figurespath] @eval $(fn)(m, "test") @eval $(fn)(m, "test", "temp") @eval $(fn)(m, "test", "temp", addl_strings) end end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
7879
using Test, ModelConstructors # CURRENTLY ONLY TESTS VALUE, PRIOR, FIXED, AND VALUEBOUNDS SWITCHING, NO REGIME SWITCHING IN OTHER CASES # ALSO TESTS IF TRANSFORMS WORK CORRECTLY WITH REGIME-SWITCHING @info "The following error 'get_regime_val(), Input Error: No regime 3' is expected." @testset "Regime switching with parameters" begin u = parameter(:bloop, 2.5230, (1e-8, 5.), (1e-8, 5.), ModelConstructors.SquareRoot(); fixed = false) ModelConstructors.set_regime_val!(u, 1, 2.5230) @test_throws ParamBoundsError ModelConstructors.set_regime_val!(u, 2, 0.) ModelConstructors.set_regime_val!(u, 2, 0.; override_bounds = true) uvec = ParameterVector{Float64}(undef, 2) uvec[1] = u uvec[2] = u # Test set_regime_val! and regime_val @test !isempty(u.regimes) @test u.regimes[:value][1] == 2.5230 @test u.regimes[:value][2] == 0. @test u.value == 2.5230 @test ModelConstructors.regime_val(u, 1) == 2.5230 @test ModelConstructors.regime_val(u, 2) == 0. @test_throws KeyError ModelConstructors.regime_val(u, 3) ModelConstructors.toggle_regime!(u, 2) @test u.value == 0. @test ModelConstructors.regime_val(u, 1) == 2.5230 @test ModelConstructors.regime_val(u, 2) == 0. ModelConstructors.toggle_regime!(u, 1) @test u.value == 2.5230 @test ModelConstructors.regime_val(u, 1) == 2.5230 @test ModelConstructors.regime_val(u, 2) == 0. # Test get_values and toggling regimes @test n_parameters_regime_switching(uvec) == 4 ModelConstructors.toggle_regime!(u, 1) @test ModelConstructors.get_values(uvec; regime_switching = false) == [2.5230, 2.5230] @test ModelConstructors.get_values(uvec) == [2.5230, 2.5230, 0., 0.] # Test set_regime_prior! and regime_prior ModelConstructors.set_regime_prior!(u, 1, Uniform(0., 5.)) ModelConstructors.set_regime_prior!(u, 2, Normal(0., 1.)) @test get(ModelConstructors.regime_prior(u, 1)) == Uniform(0., 5.) @test get(ModelConstructors.regime_prior(u, 2)) == Normal(0., 1.) # Test set_regime_fixed! and regime_fixed @test !haskey(u.regimes, :valuebounds) ModelConstructors.set_regime_fixed!(u, 1, true) @test haskey(u.regimes, :valuebounds) ModelConstructors.set_regime_fixed!(u, 2, false) @show u.regimes[:value] @test_throws ErrorException ModelConstructors.set_regime_fixed!(u, 3, true) @test ModelConstructors.regime_fixed(u, 1) @test !ModelConstructors.regime_fixed(u, 2) @test ModelConstructors.regime_valuebounds(u, 1) == (2.5230, 2.5230) @test ModelConstructors.regime_valuebounds(u, 2) == (1e-8, 5.) # test regime-switching value bounds ModelConstructors.set_regime_valuebounds!(u, 1, (1e-6, 5.)) ModelConstructors.set_regime_valuebounds!(u, 2, (1e-7, 5.)) @test ModelConstructors.regime_valuebounds(u, 1) == (1e-6, 5.) @test ModelConstructors.regime_valuebounds(u, 2) == (1e-7, 5.) # test set_regime_fixed w/update_valuebounds ModelConstructors.set_regime_fixed!(u, 1, true; update_valuebounds = (10., 11.)) ModelConstructors.set_regime_fixed!(u, 2, false; update_valuebounds = (10., 11.)) @test u.regimes[:valuebounds][1] == (10., 11.) @test u.regimes[:valuebounds][2] == (10., 11.) # test transform_to_real_line ModelConstructors.toggle_regime!(uvec, 1) set_regime_val!(uvec[1], 2, 1.; override_bounds = true) # break the valuebounds for now set_regime_val!(uvec[2], 2, 1.; override_bounds = true) values = ModelConstructors.get_values(uvec) real_vals_true = similar(values) real_vals_true[1] = ModelConstructors.transform_to_real_line(uvec[1], uvec[1].regimes[:value][1]) real_vals_true[2] = ModelConstructors.transform_to_real_line(uvec[2], uvec[2].regimes[:value][1]) real_vals_true[3] = ModelConstructors.transform_to_real_line(uvec[1], uvec[1].regimes[:value][2]) real_vals_true[4] = ModelConstructors.transform_to_real_line(uvec[2], uvec[2].regimes[:value][2]) real_vals1 = transform_to_real_line(uvec; regime_switching = true) real_vals2 = transform_to_real_line(uvec, values; regime_switching = true) @test real_vals1 == real_vals2 == real_vals_true # test transform_to_model_space model_vals = transform_to_model_space(uvec, real_vals1; regime_switching = true) @test model_vals == values end @testset "Regime switching with parameters when model regimes are different" begin u = parameter(:bloop, 2.5230, (1e-8, 5.), (1e-8, 5.), ModelConstructors.SquareRoot(); fixed = false) ModelConstructors.set_regime_val!(u, 1, 2.5230) d = Dict(2 => 1, 3 => 2, 4 => 3) @test_throws ParamBoundsError ModelConstructors.set_regime_val!(u, 3, 0., d) ModelConstructors.set_regime_val!(u, 3, 0., d; override_bounds = true) uvec = ParameterVector{Float64}(undef, 2) uvec[1] = u uvec[2] = u # Test set_regime_val! and regime_val @test !isempty(u.regimes) @test u.regimes[:value][1] == 2.5230 @test u.regimes[:value][2] == 0. @test u.value == 2.5230 @test ModelConstructors.regime_val(u, 2, d) == 2.5230 @test ModelConstructors.regime_val(u, 3, d) == 0. @test_throws KeyError ModelConstructors.regime_val(u, 4, d) ModelConstructors.toggle_regime!(u, 3, d) @test u.value == 0. @test ModelConstructors.regime_val(u, 2, d) == 2.5230 @test ModelConstructors.regime_val(u, 3, d) == 0. ModelConstructors.toggle_regime!(u, 2, d) @test u.value == 2.5230 @test ModelConstructors.regime_val(u, 2, d) == 2.5230 @test ModelConstructors.regime_val(u, 3, d) == 0. # Test get_values and toggling regimes @test n_parameters_regime_switching(uvec) == 4 ModelConstructors.toggle_regime!(u, 2, d) @test ModelConstructors.get_values(uvec; regime_switching = false) == [2.5230, 2.5230] @test ModelConstructors.get_values(uvec) == [2.5230, 2.5230, 0., 0.] # Test set_regime_prior! and regime_prior ModelConstructors.set_regime_prior!(u, 2, Uniform(0., 5.), d) ModelConstructors.set_regime_prior!(u, 3, Normal(0., 1.), d) @test get(ModelConstructors.regime_prior(u, 1)) == Uniform(0., 5.) @test get(ModelConstructors.regime_prior(u, 2)) == Normal(0., 1.) @test get(ModelConstructors.regime_prior(u, 2, d)) == Uniform(0., 5.) @test get(ModelConstructors.regime_prior(u, 3, d)) == Normal(0., 1.) # Test set_regime_fixed! and regime_fixed ModelConstructors.set_regime_fixed!(u, 2, true, d) ModelConstructors.set_regime_fixed!(u, 3, false, d) @test_throws ErrorException ModelConstructors.set_regime_fixed!(u, 4, true, d) @test ModelConstructors.regime_fixed(u, 1) @test !ModelConstructors.regime_fixed(u, 2) @test ModelConstructors.regime_fixed(u, 2, d) @test !ModelConstructors.regime_fixed(u, 3, d) @test ModelConstructors.regime_valuebounds(u, 2, d) == (2.5230, 2.5230) @test ModelConstructors.regime_valuebounds(u, 3, d) == (1e-8, 5.) # test regime-switching value bounds ModelConstructors.set_regime_valuebounds!(u, 2, (1e-6, 5.), d) ModelConstructors.set_regime_valuebounds!(u, 3, (1e-7, 5.), d) ModelConstructors.set_regime_valuebounds!(u, 4, (1e-8, 5.), d) @test ModelConstructors.regime_valuebounds(u, 1) == ModelConstructors.regime_valuebounds(u, 2, d) == (1e-6, 5.) @test ModelConstructors.regime_valuebounds(u, 2) == ModelConstructors.regime_valuebounds(u, 3, d) == (1e-7, 5.) @test ModelConstructors.regime_valuebounds(u, 3) == ModelConstructors.regime_valuebounds(u, 4, d) == (1e-8, 5.) # test set_regime_fixed w/update_valuebounds ModelConstructors.set_regime_fixed!(u, 2, true, d; update_valuebounds = (10., 11.)) ModelConstructors.set_regime_fixed!(u, 3, false, d; update_valuebounds = (10., 11.)) @test u.regimes[:valuebounds][1] == (10., 11.) @test u.regimes[:valuebounds][2] == (10., 11.) end nothing
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
430
using Test using ModelConstructors using Distributions, InteractiveUtils using Nullables, Printf, Random my_tests = [ "parameters", "distributions_ext", "settings", "statistics", "paths", "regimes", "abstractmodel" ] for test in my_tests test_file = string("$test.jl") @printf " * %s\n" test_file include(test_file) end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
1976
m = GenericModel() settings = Dict{Symbol, Setting}() # settings - boolean, string, and number. adding to model. overwriting. filestrings. testing/not testing. m <= Setting(:n_mh_blocks, 22) # short constructor n_mh_blocks = m.settings[:n_mh_blocks] m <= Setting(:reoptimize, false) reoptimize = m.settings[:reoptimize] m <= Setting(:data_vintage, "REF", true, "vint", "Date of data") # full constructor vint = m.settings[:data_vintage] @testset "Check settings corresponding to parameters" begin @test promote_rule(Setting{Float64}, Float16) == Float64 @test promote_rule(Setting{Bool}, Bool) == Bool @test promote_rule(Setting{String}, String) == String @test convert(Int64, n_mh_blocks) == 22 @test convert(String, vint) == "REF" @test get_setting(m, :n_mh_blocks) == m.settings[:n_mh_blocks].value m.testing = true m <= m.settings[:n_mh_blocks] @test get_setting(m, :n_mh_blocks) == m.test_settings[:n_mh_blocks].value @test ModelConstructors.filestring(m) == "_test" m.testing = false m <= Setting(:n_mh_blocks, 5, true, "mhbk", "Number of blocks for Metropolis-Hastings") @test m.settings[:n_mh_blocks].value == 5 @test occursin(r"^\s*_mhbk=5_vint=REF", ModelConstructors.filestring(m)) ModelConstructors.filestring(m, "key=val") ModelConstructors.filestring(m, ["key=val", "foo=bar"]) m.testing = true # Overwriting settings global a = gensym() # unlikely to clash global b = gensym() m <= Setting(a, 0, true, "abcd", "a") m <= Setting(a, 1) @test m.test_settings[a].value == 1 @test m.test_settings[a].print == true @test m.test_settings[a].code == "abcd" @test m.test_settings[a].description == "a" m <= Setting(b, 2, false, "", "b") m <= Setting(b, 3, true, "abcd", "b1") @test m.test_settings[b].value == 3 @test m.test_settings[b].print == true @test m.test_settings[b].code == "abcd" @test m.test_settings[b].description == "b1" end
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
code
4399
using ModelConstructors, Test, Random @testset "Prior computation" begin p = ParameterVector{Float64}(undef, 3) p[1] = ModelConstructors.parameter(:a, 0.1, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.5, 1.); fixed = false) p[2] = ModelConstructors.parameter(:b, 0., (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.5, 1.); fixed = true) p[3] = ModelConstructors.parameter(:c, 0.4, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.25, 1.); fixed = false) @test ModelConstructors.prior(p) == logpdf(p[1]) + logpdf(p[3]) end @testset "Posterior computation" begin p = ParameterVector{Float64}(undef, 3) p[1] = ModelConstructors.parameter(:a, 0.1, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.5, 1.); fixed = false) p[2] = ModelConstructors.parameter(:b, 0., (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.5, 1.); fixed = true) p[3] = ModelConstructors.parameter(:c, 0.4, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.25, 1.); fixed = false) loglh = (x, data) -> 2. data = rand(2,2) @test posterior(loglh, p, data, ϕ_smc = 3.104) == 2. * 3.104 + ModelConstructors.prior(p) oldvals = map(x -> x.value, p) oldpost = 2. * 3.104 + ModelConstructors.prior(p) @test posterior!(loglh, p, oldvals, data, ϕ_smc = 3.104) == oldpost newvals = copy(oldvals) newvals[1] += 0.4 # moves value to the mean newvals[3] -= 0.15 # moves value to the mean @test posterior!(loglh, p, newvals, data, ϕ_smc = 3.104) > oldpost end @testset "Prior computation, updating, and sampling with regime-switching" begin p = ParameterVector{Float64}(undef, 3) p[1] = ModelConstructors.parameter(:a, 0.1, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.5, 1.); fixed = false) p[2] = ModelConstructors.parameter(:b, 0., (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.5, 1.); fixed = true) p[3] = ModelConstructors.parameter(:c, 0.4, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.25, 1.); fixed = false) p3copy = ModelConstructors.parameter(:c, 0.5, (0., 1.), (0., 1.), ModelConstructors.Untransformed(), Normal(0.25, 1.); fixed = false) # Set up parameter switching set_regime_val!(p[1], 1, 0.1) # test prior switching set_regime_val!(p[1], 2, 0.2) set_regime_val!(p[1], 3, 0.3) set_regime_prior!(p[1], 1, Normal(0.5, 1.)) set_regime_prior!(p[1], 2, Normal(0.2, 1.)) set_regime_prior!(p[1], 3, Normal(0.2, 1.)) set_regime_val!(p[2], 1, 0.1; override_bounds = true) set_regime_val!(p[2], 2, 0.2; override_bounds = true) set_regime_fixed!(p[2], 1, true) set_regime_fixed!(p[2], 2, true) @test set_regime_val!(p[2], 2, 0.2) == 0.2 # trying to reset a fixed value won't do anything @test regime_val(p[2], 2) == 0.2 set_regime_val!(p[3], 1, 0.4) set_regime_val!(p[3], 2, 0.5; override_bounds = true) set_regime_fixed!(p[3], 1, true) set_regime_fixed!(p[3], 2, false) @test !ModelConstructors._filter_all_fixed_para(p[1]) @test ModelConstructors._filter_all_fixed_para(p[2]) @test !ModelConstructors._filter_all_fixed_para(p[3]) set_regime_fixed!(p[3], 2, true) @test ModelConstructors._filter_all_fixed_para(p[3]) set_regime_fixed!(p[3], 2, false) set_regime_valuebounds!(p[3], 2, (0., 1.)) # set_regime_fixed!(p[3], 2, true) will change the valuebounds @test prior(p) == sum([logpdf(p[1]), logpdf(p3copy)]) p_in = [0.2, 0.1, 0.5, 0.3, 0.9, 0.2, 0.6] toggle_regime!(p, 1) update!(p, p_in) p_out = [0.2, 0.1, 0.4, 0.3, 0.9, 0.2, 0.6] @test ModelConstructors.get_values(p) == p_out @test regime_val(p[1], 1) == 0.2 @test regime_val(p[1], 2) == 0.3 @test regime_val(p[1], 3) == 0.9 Random.seed!(1793) out1 = ModelConstructors.rand_regime_switching(p; toggle = true) Random.seed!(1793) for para in p toggle_regime!(para, 1) end out2 = rand(p; regime_switching = true, toggle = false) update!(p, out1) @test out1 == out2 @test regime_val(p[1], 1) == out1[1] @test regime_val(p[1], 2) == out1[4] @test regime_val(p[1], 3) == out1[5] @test regime_val(p[2], 1) == 0.1 @test regime_val(p[2], 2) == 0.2 @test regime_val(p[3], 1) == 0.4 @test regime_val(p[3], 2) == out1[end] end nothing
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
2249
# ModelConstructors.jl v0.2.4 - Extend `transform_to_model_space` and `transform_to_real_line` for regime-switching parameters. # ModelConstructors.jl v0.2.3 - Move methods for computing free and fixed indices of parameters from SMC.jl to ModelConstructors.jl # ModelConstructors.jl v0.2.2 - Try to convert types to match rather than throwing a `MethodError` immediately when calling `parameter`. # ModelConstructors.jl v0.2.1 - Raise compat bounds for some packages # ModelConstructors.jl v0.2.0 - Restrict Julia version to at least 1.0 - Add @unpack macro for accessing parameters of a model - Extend regime-switching to allow switching in `prior`, `fixed`, and `valuebounds` fields. - Allow difference between the notion of "model regimes" and "parameter regimes" by specifying a dictionary which maps model regimes to parameter regimes. # ModelConstructors.jl v0.1.12 Release Notes - Update compatibility bounds - Fix bugs in examples # ModelConstructors.jl v0.1.11 Release Notes - Fix bugs in v0.1.10 # ModelConstructors.jl v0.1.10 Release Notes - Add random sampling with regime switching in Parameter types # ModelConstructors.jl v0.1.9 Release Notes - Implement regime switching in Parameter types. # ModelConstructors.jl v0.1.8 Release Notes - Add back New Parameter types that work with both Autodiff functionality and allow backwards compatibility # ModelConstructors.jl v0.1.7 Release Notes - Temporarily revert back to old Parameter types to fix SMC.jl tests and allow full backwards compatibility to old Parameters # ModelConstructors.jl v0.1.6 Release Notes - Resolve package compatibility issues, so as to be backwards-compatible with Julia 0.7. # ModelConstructors.jl v0.1.5 Release Notes Update tests - Generalize to permit Real types (e.g. allows integration for ForwardDiff) - Gradients of parameter transformations - Fix package loading for v1.1 - Add function to initialize DegenerateMvNormal object (needed in the DSGE.jl package) # ModelConstructors.jl v0.1.4 Release Notes Update tests Bug fixes and cleanup # ModelConstructors.jl v0.1.3 Release Notes Bug fixes and cleanup # ModelConstructors.jl v0.1.2 Release Notes Bug fixes and cleanup # ModelConstructors.jl v0.1.1 Release Notes Bug fixes and cleanup
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
3583
# ModelConstructors.jl ![Build Status](https://github.com/FRBNY-DSGE/ModelConstructors.jl/workflows/build/badge.svg?branch=main) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://frbny-dsge.github.io/ModelConstructors.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://frbny-dsge.github.io/ModelConstructors.jl/latest) [![codecov](https://codecov.io/gh/FRBNY-DSGE/ModelConstructors.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/FRBNY-DSGE/ModelConstructors.jl) This package contains the building blocks of model objects, such as `Parameter`, `Observable`, `Setting`, and `State` types. You may define any custom model, so long as it has parameters. The model object is used in both [DSGE.jl](https://github.com/FRBNY-DSGE/DSGE.jl) and [SMC.jl](https://github.com/FRBNY-DSGE/SMC.jl). See `/docs/examples` for examples of how to construct your custom model, then use [SMC.jl](https://github.com/FRBNY-DSGE/SMC.jl) to estimate it (available for any type of model) and [DSGE.jl](https://github.com/FRBNY-DSGE/DSGE.jl) to construct forecasts, shock decompositions, impulse responses, etc. (available for DSGE models). ## Installation `ModelConstructors.jl` is a registered Julia package in the [`General`](https://github.com/JuliaRegistries/General) registry. To install, open your Julia REPL, type `]` (enter package manager), and run ```julia pkg> add ModelConstructors ``` ## Versioning `ModelConstructors.jl` is compatible with Julia `v1.x`. To use `ModelConstructors.jl` with Julia 0.7, please use tag `v0.1.12` or lower. ## Precompilation The `ModelConstructors.jl` package is not precompiled by default because when running code in parallel, we want to re-compile the copy of `ModelConstructors.jl` on each processor to guarantee the right version of the code is being used. If users do not anticipate using parallelism, then users ought to change the first line of `src/ModelConstructors.jl` from ``` isdefined(Base, :__precompile__) && __precompile__(false) ``` to ``` isdefined(Base, :__precompile__) && __precompile__(true) ``` ## Disclaimer Copyright Federal Reserve Bank of New York. You may reproduce, use, modify, make derivative works of, and distribute and this code in whole or in part so long as you keep this notice in the documentation associated with any distributed works. Neither the name of the Federal Reserve Bank of New York (FRBNY) nor the names of any of the authors may be used to endorse or promote works derived from this code without prior written permission. Portions of the code attributed to third parties are subject to applicable third party licenses and rights. By your use of this code you accept this license and any applicable third party license. THIS CODE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT ANY WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, EXCEPT TO THE EXTENT THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. FRBNY IS NOT, UNDER ANY CIRCUMSTANCES, LIABLE TO YOU FOR DAMAGES OF ANY KIND ARISING OUT OF OR IN CONNECTION WITH USE OF OR INABILITY TO USE THE CODE, INCLUDING, BUT NOT LIMITED TO DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, SPECIAL OR EXEMPLARY DAMAGES, WHETHER BASED ON BREACH OF CONTRACT, BREACH OF WARRANTY, TORT OR OTHER LEGAL OR EQUITABLE THEORY, EVEN IF FRBNY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR LOSS AND REGARDLESS OF WHETHER SUCH DAMAGES OR LOSS IS FORESEEABLE.
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
383
# Model Constructors [![Build Status](https://travis-ci.org/FRBNY-DSGE/ModelConstructors.jl.svg)](https://travis-ci.org/FRBNY-DSGE/ModelConstructors.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://FRBNY-DSGE.github.io/ModelConstructors.jl/stable) [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://FRBNY-DSGE.github.io/ModelConstructors.jl/latest)
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
6825
# [Contributing to ModelConstructors.jl](@id contributing) ## Notes for ModelConstructors.jl Contributors We may add more features to this package as new use cases emerge. As these steps are under development, we would welcome improvements to the existing code from the community. Some examples could be: - Performance improvements - Features of certain models that our code cannot implement - Expanding the regime switching functionality of `Parameter` types. - Other general improvements - Adding documentation/test coverage - Adding existing notable models into the docs/examples directory. ### Git Recommendations For Pull Requests These are adapted from JuliaLang. - Avoid working from the `main` branch of your fork, creating a new branch will make it easier if ModelConstructor's `main` changes and you need to update your pull request. - Try to [squash](http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html) together small commits that make repeated changes to the same section of code so your pull request is easier to review, and Julia's history won't have any broken intermediate commits. A reasonable number of separate well-factored commits is fine, especially for larger changes. - If any conflicts arise due to changes in ModelConstructors's `main`, prefer updating your pull request branch with `git rebase` versus `git merge` or `git pull`, since the latter will introduce merge commits that clutter the git history with noise that makes your changes more difficult to review. - Descriptive commit messages are good. - Using `git add -p` or `git add -i` can be useful to avoid accidentally committing unrelated changes. - GitHub does not send notifications when you push a new commit to a pull request, so please add a comment to the pull request thread to let reviewers know when you've made changes. - When linking to specific lines of code in discussion of an issue or pull request, hit the `y` key while viewing code on GitHub to reload the page with a URL that includes the specific version that you're viewing. That way any lines of code that you refer to will still make sense in the future, even if the content of the file changes. - Whitespace can be automatically removed from existing commits with `git rebase`. - To remove whitespace for the previous commit, run `git rebase --whitespace=fix HEAD~1`. - To remove whitespace relative to the `main` branch, run `git rebase --whitespace=fix main`. ## ModelConstructors Julia Style Guide ### Intro This document lists Julia coding recommendations consistent with best practices in the software development community. The recommendations are based on guidelines for other languages collected from a number of sources and on personal experience. These guidelines are written with the New York Fed DSGE code in mind. All pull requests submitted should follow these general style guidelines. ### Naming conventions Emphasize readability! Our goal is for the code to mimic the mathematical notation used in New York Fed DSGE papers as closely as possible. - The names of variables should document their meaning or use. Variables with a large scope should have especially meaningful names. Variables with a small scope can have short names. - Exhibit consistency with the existing codebase. - Modules and type names in UpperCamelCase - Variable names in snake_case. Variable names should be in lower case, using underscores to separate parts of a compound variable name. For example, `steady_state` and `equilibrium_conditions` are two fields in the `Model990()` object that follow this convention. Also notice that, though the words could be shortened, they are spelled out for maximum clarity. - The prefix `n_` should be used for variables representing the number of objects (e.g. `n_parameters` or `n_anticipated_shocks`) use the suffix `s` as is natural in spoken language. - Negative Boolean variable names should be avoided. A problem arises when such a name is used in conjunction with the logical negation operator as this results in a double negative. It is not immediately apparent what `!isNotFound` means. Use `isFound`. Avoid `isNotFound`. - Named constants can be all uppercase using underscore to separate words: `MAX_ITERATIONS` - Naming mathematical objects Variables with mathematical significance should use unicode characters and imitate LaTeX syntax. For example, ρ should be used to name the autocorrelation coefficient in an AR(1) process, and σ should be used to name standard deviation. Parameters in the text should keep the same symbol in the code (e.g. α in the code is the same α as in [this paper](http://www.newyorkfed.org/research/staff_reports/sr647.html), and takes on it usual significance as the capital share in a Cobb-Douglas output function. - General conventions - Underscores can and should be used when the variable refers to a mathematical object that has a subscript. (In this case, we are imitating LaTeX syntax.) For example, $r_m$ in LaTeX should be represented by the variable `r_m`. - If the mathematical object has multiple subscripts, for example $x_{i,j}$, simply concatenate the subscripts: `x_ij`. - If the object has superscripts as well as subscripts, for example $y^f_t$, separate the superscripts with an underscore and place them first: `y_f_t`. - For compatibility with existing code, variables with numeric subscripts should exclude the underscore: `G0`, `ψ1`. - Matrices that have mathematical significance (e.g. the matrices of the transition and measurement equations) should be upper case, as they are in mathematical notation, and can repeat the letter to avoid collisions: `TTT` or `QQ`. - Symbols such as overbars (which indicate mean values) and tildes (which indicate log-deviations from the steady state) are written using a 3- or 4-letter abbreviation immediately after the variable they modify: `kbar_t`, `ztil` (z tilde). - Stars indicating steady-state variables are included as subscripts: `π_star_t` - Suffixes - Time: Consistent with the previous bullet points, the suffix `_t` as in `x_t` signifies the value of `x` at time `t`. The suffix `_t1` signifies the value of `x` at time `t-1`. - Shocks: The suffix `_sh` refers to a model shock. - Prefixes - The prefix `eq_` refers to an equilibrium condition. - The prefix `obs_` refers to an observable. - The prefix `E` refers to the expectation operator. - The prefix `I` refers to the indicator operator. - Observables with the prefix `g` refer to growth rates. ### Code Formatting Guidelines - Indent 4 spaces - Wrap lines at 92 characters - Use whitespace to enhance readability - No trailing whitespace
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
3770
# Creating Models ```@meta CurrentModule = ModelConstructors ``` The ModelConstructors.jl provides several two models as well as example scripts that show how to estimate a model. - A generic model `GenericModel` designed as a template for user-defined models and for users who only needs functionality to estimate parameters. - An example of a `LinearRegression` model with minimal fields. To see examples of more complex models, we recommend looking at the source code of models in [DSGE.jl](https://github.com/FRBNY-DSGE/DSGE.jl). These models use most, if not all, of the fields of `GenericModel`. ## `GenericModel` ### Template for New Models The idea of `GenericModel` is that it should have most fields required to define a generic mathematical model. For most purposes, it will have more fields than needed. If a user wants to create their own model but are not familiar with the process of defining a new model type, then we recommend that the user copy the source code of `GenericModel` into a new file and editing that file. Referencing the source code of models in [DSGE.jl](https://github.com/FRBNY-DSGE/DSGE.jl) will be useful. ### [Estimating CAPM](@id estim-capm) Some users only need the ability to estimate parameters. `GenericModel` provides a convenient way to do that since it includes functionality to choose settings and observables. The script estimate_capm.jl in the examples/factor_model folder in docs shows how to use `GenericModel` in this way. We can write ```julia capm = GenericModel() capm <= parameter(:α, 0., (-1e5, 1e5), (-1e5, 1e5), Untransformed(), Normal(0, 1e3), fixed = false) # add in more parameters... ``` This code instantiates a `GenericModel` object and adds a parameter called `α`, which takes a default value of `0.` and is assigned a normal prior with mean zero and variance 1000. The two `(-1e5, 1e5)` intervals specify the bounds of the parameter before and after transformation. The `Untransformed()` call indicates that we do not transform the parameter, hence why the bounds are the same. For more details on parameters, see the [The `Parameter` type](@ref). The example script then constructs a likelihood function. To use [SMC.jl](https://github.com/FRBNY-DSGE/SMC.jl), the likelihood function needs to take two arguments: parameters and data. Using `GenericModel` makes this simple because we just use `capm.parameters` as the parameters provided as inputs to the likelihood function. Finally, we just call `smc(likelihood_fnct, capm.parameters, data)` to estimate the parameters of the CAPM model we have defined! ## `LinearRegression` The `LinearRegression` type is an example of a model type that does not need to use all the fields provided in `GenericModel` when estimating. For comparison, the type definition for `GenericModel` is ```julia mutable struct GenericModel{T} <: AbstractModel{T} parameters::ParameterVector{T} steady_state::ParameterVector{T} keys::Dict{Symbol, Int} endogenous_states::Dict{Symbol,Int} exogenous_shocks::Dict{Symbol,Int} observables::Dict{Symbol,Int} pseudo_observables::Dict{Symbol,Int} spec::String subspec::String settings::Dict{Symbol, Setting} test_settings::Dict{Symbol, Setting} rng::MersenneTwister testing::Bool observable_mappings::Dict{Symbol, Observable} pseudo_observable_mappings::Dict{Symbol, PseudoObservable} ``` while the type definition for `LinearRegression` is only ```julia mutable struct LinearRegression{T} <: AbstractModel{T} parameters::ParameterVector{T} keys::Dict{Symbol, Int} spec::String subspec::String settings::Dict{Symbol, Setting} test_settings::Dict{Symbol, Setting} rng::MersenneTwister testing::Bool end ```
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
11172
# Implementation Details ```@meta CurrentModule = ModelConstructors ``` This section describes important functions and implementation features in greater detail. Additional documentation can also be found in function documentation or in-line. This section focuses on what the code does and why. Docstrings and the code itself (including comments) provide detailed information regarding *how* these basic procedures are implemented. ## The `AbstractModel` Type The `AbstractModel` type provides a common interface for all model objects, which greatly facilitates the implementation of new model specifications. Any concrete subtype of `AbstractModel` can be passed to any function defined for `AbstractModel`, provided that the concrete type has the fields that the function expects to be available. If a user wants to define a new subclass of models, say regression models, then the user could create a new `AbstractRegressionModel` type as a subtype of `AbstractModel`. Functions defined for `AbstractRegressionModel` would only apply to concrete subtypes of `AbstractRegressionModel`, but functions defined for `AbstractModel` will still work on these concrete subtypes. ## The `AbstractParameter` Type The `AbstractParameter` type implements our notion of a model parameter: a time-invariant, unobserved value that has significance in the model, e.g. for likelihood computation and estimation. Though all parameters are time-invariant, they can have different features. Some parameters are scaled for use when solving the model[^1] and constructing the model's measurement equations[^2]. During optimization, parameters may be transformed from model space to the real line via one of three different transformations: `Untransformed`, `SquareRoot`, and `Exponential`. These transformations are also defined as types, and require additional information for each parameter. Typically, we have two "hyperparameters" for these transformations, `a`, and `b`. - `Untransformed`: `a` and `b` do nothing - `SquareRoot`: `a` and `b` specify the bounds the parameter takes, i.e. ``x\in (a, b)`` - `Exponential`: `a` and `b` are the parameters in the transformation ``a + exp(x - b)`` In some models, steady state values might be relevant parameters. They are typically functions of other parameters, so they do not need to be estimated directly. While parameters are "time-invariant", we do allow regime switching. As an example, suppose that we have a linear regression with data from time periods $t = 1,\dots, T$, where $T > 4$, and in $t = 3$, the intercept of the regression is assumed to change values because of a structural break in the time series. We can model the intercept as a parameter with regime-switching. The parameter has one value in periods $t = 1, 2$ and a different value in periods $t = 3,\dots, T$. Currently, only regime-switching in the values of the parameter has been tested, but we have implemented regime switching in all the features. For example, you may want a different prior in each regime. See [Regime-Switching Interface](@ref) for documentation on the interface for regime-switching parameters. The various requirements on parameters are nicely addressed using a parameterized type hierarchy. - `AbstractParameter{T<:Number}`: The common abstract supertype for all parameters. - `Parameter{T<:Number, U<:Transform}`: The abstract supertype for parameters that are directly estimated. - `UnscaledParameter{T<:Number, U:<Transform}`: Concrete type for parameters that do not need to be scaled for equilibrium conditions. - `ScaledParameter{T<:Number, U:<Transform}`: Concrete type for parameters that are scaled for equilibrium conditions. - `SteadyStateParameter{T<:Number}`: Concrete type for steady-state parameters. All `Parameter`s have the fields defined in `UnscaledParameter`: ```@docs UnscaledParameter ``` `ScaledParameters` also have the following fields: - `scaledvalue::T`: Parameter value scaled for use in `eqcond.jl` - `scaling::Function`: Function used to scale parameter value for use in equilibrium conditions. *Note:* Though not strictly necessary, defining a scaling with the parameter object allows for much a much cleaner definition of the equilibrium conditions. Because the values of `SteadyStateParameter`s are directly computed as a function of `ScaledParameter`s and `UnscaledParameter`s, they only require 4 fields: ```@docs SteadyStateParameter ``` ## The `Observable` and `PseudoObservable` Types We similarly encapsulate information about observables and pseudo-observables (unobserved linear combinations of states, e.g. the output gap) into the `Observable` and `PseudoObservable` types. Each type has identifier fields `key`, `name`, and `longname`. Most importantly, both `Observable`s and `PseudoObservable`s include the information needed for transformations to and from model units. For `Observable`s, these are the `input_series`, `fwd_transform`, and `rev_transform` fields. "Forward transformations" are applied to transform the raw input data series specified in `input_series` to model units. The model is estimated and forecasted in model units, and then we apply "reverse transformations" to get human-readable units before computing means and bands or plotting. Pseudo-observables are not observed, so they do not have `input_series` or `fwd_transform`s, but they may however have `rev_transform`s. As an example, the `:obs_gdp` `Observable` uses as `input_series` aggregate nominal GDP in levels, the GDP price index, and population in levels, all from FRED.[^3] These series are `fwd_transform`ed to get quarter-over-quarter log growth rates of per-capita real GDP, which are the `Observable`'s model units. The reverse transformation then converts `:obs_gdp` into annualized quarter-over-quarter percent changes of *aggregate* real GDP. ```@docs Observable PseudoObservable ``` ## Model Settings The `Setting` type implements computational settings that affect how the code runs without affecting the mathematical definition of the model. Depending on the model, these may include flags (e.g. whether or not to recompute the Hessian), parameterization for the Metropolis-Hastings algorithm (e.g. number of times to draw from the posterior distribution), and the vintage of data being used (`Setting` is a parametric type - a `Setting{T<:Any}`, so Booleans, Numbers, and Strings can all be turned into `Setting`s). If settings exist for a model type, then they should be stored centrally in the `settings` dictionary within the model object. Why implement a `Setting` type when we could put their values directly into the source code or dictionary? The most obvious answer is that the parametric type allows us to implement a single interface for all `Setting`s (Booleans, Strings, etc.), so that when we access a particular setting during the estimation and forecast steps, we don't have to think about the setting's type. `Setting`s play an important role in addition to providing useful abstraction. Estimating and forecasting the New York Fed DSGE model takes many hours of computation time and creates a lot of output files. It is useful to be able to compare model output from two different models whose settings differ slightly (for example, consider two identical models that use different vintages of data as input). A central feature of the `Setting` type is a mechanism that generates unique, meaningful filenames when code is executed with different settings. Specifically, when a setting takes on a non-default value, a user-defined setting code (along with the setting's value) are appended to all output files generated during execution. The `Setting{T<:Any}` type is defined as follows: ```@docs Setting ``` We provide two functions `default_settings!` and `default_test_settings!` to initialize settings that most models can have. The settings are - save root - input data root - vintage of data to be used - dataset id To update the value of an existing function, the user has two options. First, the user may use the `<=` syntax. However, for this to work properly, it is essential that the setting's `key` field be exactly the same as that of an existing entry in `m.settings`. Otherwise, an additional entry will be added to `m.settings` and the old setting will be the one accessed from other all routines. A potentially safer, though clunkier, option is to use the [`update!`](@ref) method. ## Type Interfaces ### `Parameter` Interface ```@autodocs Modules = [ModelConstructors] Pages = ["parameters.jl"] Order = [:function] ``` ### Regime-Switching Interface To implement regime-switching, we add a field to `Parameter` types called `regimes::Dict{Symbol, OrderedDict{Int, Any}}`. The keys of the top level dictionary are the names of the other fields in a `Parameter` type, e.g. `:value`. Each key then points to an `OrderedDict`, whose keys are the numbers of different regimes and values are the corresponding values for each regime. The field `regimes` functions as a "storage" of information. When a `Parameter` type interacts with another object in Julia, e.g. `p + 1.`, where `p` is a `Parameter`, what actually happens is `p.value + 1.`. Only the current fields of `p` will be used when interacting with other objects. To use a different value (or different fields) from another regime, the user needs to tell the parameter to switch regimes the `toggle_regime!` function (see below). By default, the `regimes` field is empty (see the documentation of the `parameter` function in [`Parameter` Interface](@ref)). To add values, either pass in the dictionary as a keyword to `parameter` or use `set_regime_val!`. Note that the latter function is not exported. *Note that regimes must be sorted in order* because we store the regimes as an `OrderedDict`, and `OrderedDict` objects are sorted by insertion order. ```@autodocs Modules = [ModelConstructors] Pages = ["regimes.jl"] Order = [:function] ``` ### `Setting` Interface ```@autodocs Modules = [ModelConstructors] Pages = ["settings.jl"] Order = [:function] ``` rng::MersenneTwister testing::Bool observable_mappings::Dict{Symbol, Observable} pseudo_observable_mappings::Dict{Symbol, PseudoObservable} [^1]: By solving the model, we mean a mapping from parameters to some objects of interest. In a state space model, solving the model is a mapping from parameters to a state transition function. By constructing [^2]: In the context of a state space model, a measurement equation is mapping from states to observable data. [^3]: In [DSGE.jl](https://github.com/FRBNY-DSGE/DSGE.jl), we implement a `load_data` function that parses `input_series` to retrieve data from FRED. To take full advantage of the `Observable` type, users may want to write their own `load_data` function. For example, it may be convenient to write a `load_data` function that parses `input_series` to select column(s) from saved CSV files and combines them into a single data frame.
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
1064
# ModelConstructors ```@meta CurrentModule = ModelConstructors ``` The *ModelConstructors.jl* package implements a generic mathematical model object. A model of any type can be defined as long as it has parameters. Moreover, this package contains the building blocks of model objects used for both Dynamic Stochastic General Equilibrium models ([DSGE.jl](https://github.com/FRBNY-DSGE/DSGE.jl)) and Sequential Monte Carlo ([SMC.jl](https://github.com/FRBNY-DSGE/SMC.jl)). The Parameter, Observable, Setting, State, etc. types are included. ## Table of Contents ```@contents Pages = [ "model_design.md", "example_model.md", "implementation_details.md", "contributing.md", "license.md" ] ``` ## Acknowledgements Developers of this package at the [New York Fed](https://www.newyorkfed.org/research) include * [William Chen](https://github.com/chenwilliam77) * [Shlok Goyal](https://github.com/ShlokG) * [Alissa Johnson](https://github.com/alissarjohnson) * [Ethan Matlin](https://github.com/ethanmatlin) * [Reca Sarfati](https://github.com/rsarfati)
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "BSD-3-Clause" ]
0.2.4
7e6c55714cc0609e6cce3eedece3190799384bf5
docs
1462
# Model Design *ModelConstructors.jl* is an object-oriented approach to working with mathematical models. This approach takes advantage of Julia's type system, multiple dispatch, package-handling mechanism, and other features. A single model object centralizes all information about the model's parameters, states, equilibrium conditions, and settings in a single data structure. The model object also keeps track of file locations for all I/O operations. The most minimal model only needs to have parameters, but a generic model may have one or more of the following objects: - **Parameters**: Have values, bounds, fixed-or-not status, priors, and regime switching. An instance of the `AbstractParameter` type houses all information about a given parameter in a single data structure. See [The `AbstractParameter` Type](@ref). - **Settings**: Provide a general way to choose settings that affect how a model is manipulated. See [The `Setting` Type](@ref). - **Observables and Pseudo-Observables**: Mapping of names to indices, as well as information necessary for transformations. See [The `Observable` and `PseudoObservable` Types](@ref). These are enough to define a generic model. *Everything else* is essentially a function of these basics. For example, estimating a model requires two more steps: defining likelihood function and selecting an estimation routine. See [Estimating CAPM](@ref estim-capm) for an example estimation using SMC.
ModelConstructors
https://github.com/FRBNY-DSGE/ModelConstructors.jl.git
[ "MIT" ]
1.0.1
915df0ee2a8278941ca076c855c0ca305e4b192d
code
792
# push!(LOAD_PATH,"../src/") using Documenter using McmcHermes import Pkg; Pkg.add("Distributions") import Pkg; Pkg.add("Plots") import Pkg; Pkg.add("LaTeXStrings") import Pkg; Pkg.add("DataFrames") import Pkg; Pkg.add("ProgressMeter") import Pkg; Pkg.add("PairPlots") import Pkg; Pkg.add("CairoMakie") using Distributions, Plots, LaTeXStrings, DataFrames, ProgressMeter using PairPlots, CairoMakie makedocs( sitename="McmcHermes", format=Documenter.HTML(; prettyurls = get(ENV, "CI", nothing) == "true"), modules=[McmcHermes] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. deploydocs( repo="github.com/stevenalfonso/McmcHermes.jl.git", )#
McmcHermes
https://github.com/stevenalfonso/McmcHermes.jl.git
[ "MIT" ]
1.0.1
915df0ee2a8278941ca076c855c0ca305e4b192d
code
4169
module McmcHermes using Distributions export one_mcmc, run_mcmc, get_flat_chain, gelman_rubin_diagnostic, sampler """ one_mcmc(log_prob, data, parameters, n_iter, a) Returns one chain with dimension of (n_iter, 1, n_dim) """ function one_mcmc(log_prob::Function, data::Vector, parameters::Vector, n_iter::Int64, a::Float64) x = ones(( n_iter, length(parameters) )) x[1,:] = [parameters][1] new_parameters = zeros(length(parameters)) for i in 2:n_iter # Propose new parameters for j in 1:length(parameters) new_parameters[j] = x[i-1,j] + a * randn(1)[1] end present = log_prob(data, parameters) future = log_prob(data, new_parameters) # Accept or reject the proposed parameters alpha = min( exp(future - present), 1.0) if rand() < alpha for k in 1:length(parameters) x[i,k] = new_parameters[k] end else x[i,:] = x[i-1,:] end end return x[:,:,:] end """ run_mcmc(log_prob, data, seed, n_iter, n_walkers, n_dim, a) Returns chains with dimension of (n_iter, n_walkers, n_dim) """ function run_mcmc(log_prob::Function, data::Vector, seed::Matrix, n_iter::Int64, n_walkers::Int64, n_dim::Int64; a::Float64=0.1) println("Running chains...") mcmc_chains = ones(( n_iter, n_dim, n_walkers )) start_time = time_ns() Threads.@threads for walkers in 1:n_walkers one_chain = one_mcmc(log_prob, data, seed[walkers,:], n_iter, a) mcmc_chains[:,:,walkers] = one_chain end elapsed_time = (time_ns() - start_time) / 1_000_000_000 # Convert to seconds if elapsed_time < 60 println("Time elapsed running mcmc: $(elapsed_time) seconds.") elseif (elapsed_time >= 60) && (elapsed_time < 3600) println("Time elapsed running mcmc: $(elapsed_time / 60) minutes.") else println("Time elapsed running mcmc: $(elapsed_time / 3600) hours.") end chains = permutedims(mcmc_chains, [1, 3, 2]) return chains end """ get_flat_chain(array, burn_in, thin) Returns the stored chain of MCMC samples. """ function get_flat_chain(array::Array; burn_in::Int=1, thin::Int=1) l = ones(( size([i for i in 1:size(array)[1] if i%thin==0])[1], size(array)[2], size(array)[3] )) ind = 0 for (index, value) in enumerate(1:size(array)[1]) if mod(index, thin) == 0 ind += 1 l[ind,:,:] = array[index,:,:] end end l_thin = reshape( l, (size(l)[1] * size(l)[2], size(l)[3] ) ) return l_thin[burn_in:end,:] end """ gelman_rubin_diagnostic(chains) Get the Gelman Rubin convergence diagnostic of the chains. Returns the Gelman-Rubin number. """ function gelman_rubin_diagnostic(chains) s_j = var(chains, dims=2) # within chain variance W = mean(s_j) theta = mean(chains, dims=2) # chain mean theta_j = mean(theta, dims=1) # grand mean M, N = size(chains)[1], size(chains)[2] B = N / (M - 1) * sum((theta_j .- theta).^2) # between chain variance var_theta = (N - 1) / N * W + B / N R_hat = sqrt(var_theta / W) # Gelma-Rubin statistic return R_hat end """ sampler(pdf, n_samples, intervals, params) Get n_samples samples from a 1D Probability Density Distribution given some parameters. The interval works for the range of samples. """ function sampler(pdf::Function, n_samples::Number, interval::Vector, params::Vector) #states = [] states = ones(n_samples) current = rand(Uniform(interval[1], interval[2]), 1)[1] for i in 1:n_samples #push!(states, current) states[i] = current movement = rand(Uniform(interval[1], interval[2]), 1)[1] current_prob = pdf(current, params) movement_prob = pdf(movement, params) alpha = min(movement_prob / current_prob, 1.0) if rand() < alpha current = movement end end return states end end # module McmcHermes
McmcHermes
https://github.com/stevenalfonso/McmcHermes.jl.git
[ "MIT" ]
1.0.1
915df0ee2a8278941ca076c855c0ca305e4b192d
code
1524
using McmcHermes using Test @testset "McmcHermes.jl" begin # Write your tests here. using Distributions mu, sigma = 10, 2 l_b, u_b = 0, 20 d = truncated(Normal(mu, sigma), l_b, u_b) N = 1000 data = rand(d, N) function log_likelihood(X::Vector, parameters::Vector) mu, sigma = parameters[1], parameters[2] y = 1 ./ (sqrt(2 * pi) .* sigma) .* exp.( -0.5 * ((X .- mu)./sigma).^2 ) return sum(log.(y)) end function log_prior(parameters::Vector) mu, sigma = parameters[1], parameters[2] if 5.0 < mu < 15.0 && 0.0 < sigma < 4.0 return 0.0 end return -Inf end function log_probability(X::Vector, parameters::Vector) lp = log_prior(parameters) if !isfinite(lp) return -Inf end return lp + log_likelihood(X, parameters) end mu, sigma = 10, 2 initparams = Vector{Float64}([mu, sigma]) n_iter, n_walkers = 100, 50 n_dim, a = 2, 0.02 seed = rand(n_walkers, n_dim) * 1e-4 .+ transpose(initparams) chain_tests = McmcHermes.run_mcmc(log_probability, data, seed, n_iter, n_walkers, n_dim, a=a) @test typeof(chain_tests) == Array{Float64, 3} println(size(chain_tests)) g_r = McmcHermes.gelman_rubin_diagnostic(chain_tests) @test typeof(g_r) == Float64 flat_chains = McmcHermes.get_flat_chain(chain_tests, burn_in=10, thin=10) @test typeof(flat_chains) == Matrix{Float64} println(size(flat_chains)) end
McmcHermes
https://github.com/stevenalfonso/McmcHermes.jl.git
[ "MIT" ]
1.0.1
915df0ee2a8278941ca076c855c0ca305e4b192d
docs
1099
[![Runtests](https://github.com/stevenalfonso/McmcHermes.jl/actions/workflows/Runtests.yml/badge.svg)](https://github.com/stevenalfonso/McmcHermes.jl/actions/workflows/Runtests.yml) [![Documentation](https://github.com/stevenalfonso/McmcHermes.jl/actions/workflows/documentation.yml/badge.svg)](https://github.com/stevenalfonso/McmcHermes.jl/actions/workflows/documentation.yml) [![CI](https://github.com/stevenalfonso/McmcHermes.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/stevenalfonso/McmcHermes.jl/actions/workflows/CI.yml) # McmcHermes.jl <div align="center"> <img src="./docs/src/assets/logo.png" alt="logo" width="200"/> </div> McmcHermes is a pure-Julia implementation of [Metropolis Hasting Algorithm](https://en.wikipedia.org/wiki/Metropolis–Hastings_algorithm) under an MIT license. McmcHermes will help you if you want to estimate model parameters or sample a probability density distribution. ## Installation ```julia using Pkg Pkg.add("McmcHermes") ``` Some examples and basic usage are in the [documentation](https://stevenalfonso.github.io/McmcHermes.jl/dev/).
McmcHermes
https://github.com/stevenalfonso/McmcHermes.jl.git
[ "MIT" ]
1.0.1
915df0ee2a8278941ca076c855c0ca305e4b192d
docs
4540
# McmcHermes.jl *A documentation for the McmcHermes package.* McmcHermes is a pure-Julia implementation of [Metropolis Hasting Algorithm](https://en.wikipedia.org/wiki/Metropolis–Hastings_algorithm) under an MIT license. McmcHermes will help you if you want to estimate model parameters or sample a probability density distribution. ```@contents ``` ## Installation ```julia using Pkg Pkg.add("McmcHermes") ``` ## Basic Usage !!! note This guide assumes that you already have define your likelihood, prior and the logarithm of the posterior probability as in the example below. ### Sampling If you want to draw samples from two Gaussian distributions, you would do something like: ```julia function pdf(X::Number, params::Vector) s1, s2, mu1, mu2 = params[1], params[2], params[3], params[4] return 1 / (sqrt(2 * pi) * s1) * exp( -0.5*((X - mu1)/s1)^2 ) + 1 / (sqrt(2 * pi) * s2) * exp( -0.5*((X - mu2)/s2)^2 ) end function gaussian_function(X::Vector, params::Vector) x_values = collect(range(minimum(X), maximum(X), length=length(X))) s1, s2, mu1, mu2 = params[1], params[2], params[3], params[4] return 0.5 ./ (sqrt(2 * pi) .* s1) .* exp.(-0.5*((x_values .- mu1)./s1).^2) .+ 0.5 ./ (sqrt(2 * pi) .* s2) .* exp.(-0.5*((x_values .- mu2)./s2).^2) end using McmcHermes params = [3, 1.5, -5, 5] interval = [-20, 20] sampling = McmcHermes.sampler(pdf, 10000, interval, params) x_values = Vector{Float64}(range(interval[1], interval[2], 100)) histogram(sampling, xlabel=L"samples", ylabel=L"p(x)", xguidefontsize=12, color=:gray, yguidefontsize=12, normalize=:pdf, show=true, label="samples") plot!(x_values, gaussian_function(x_values, params), lw=3, size=(500,400), label="Function", lc=:orange, show=true) ``` ![samples](./assets/samples.png) ### Parameter estimation To estimate parameters $\mu$ and $\sigma$ from a gaussian distribution. First, you need some data ```julia using Distributions, Plots, LaTeXStrings, DataFrames mu, sigma = 10, 2 # truths l_b, u_b = 0, 20 d = Truncated(Normal(mu, sigma), l_b, u_b) N = 10000 data = rand(d, N) histogram(data, legend=false, size=(400,400), xlabel=L"data", show=true, normalize=:pdf, ylabel=L"p(x)", xguidefontsize=12, color=:gray, yguidefontsize=12) ``` ![data](./assets/hist.png) Now, define likelihood and prior ```julia function log_likelihood(X::Vector, parameters::Vector) mu, sigma = parameters[1], parameters[2] y = 1 ./ (sqrt(2 * pi) .* sigma) .* exp.( -0.5 * ((X .- mu)./sigma).^2 ) return sum(log.(y)) end function log_prior(parameters::Vector) mu, sigma = parameters[1], parameters[2] if 5.0 < mu < 15.0 && 0.0 < sigma < 4.0 return 0.0 end return -Inf end function log_probability(X::Vector, parameters::Vector) lp = log_prior(parameters) if !isfinite(lp) return -Inf end return lp + log_likelihood(X, parameters) end ``` Then, define the number of walkers, iterations, dimension of the parameter space and the initial guess. ```julia using McmcHermes mu, sigma = 10, 2 initparams = Vector{Float64}([mu, sigma]) n_iter, n_walkers = 5000, 30 n_dim = 2 seed = rand(n_walkers, n_dim) * 1e-4 .+ transpose(initparams) chains = McmcHermes.run_mcmc(log_probability, data, seed, n_iter, n_walkers, n_dim, a=0.01) println(size(chains)) # (5000, 30, 2) ``` The convergence of the chains can be validated by the Gelman-Rubin's diagnostic: ```julia println("Gelman Rubin Diagnostic: ", McmcHermes.get_gelman_rubin(chains)) # 1.0206366055 ``` Finally, plot the chains. ```julia labels = Tuple([L"\mu", L"\sigma"]) x = 1:size(chains)[1] p = [] for ind in 1:n_dim push!(p, plot(x, [chains[:,i,ind] for i in 1:size(chains)[2]], legend=false, lc=:black, lw=1, ylabel=labels[ind], alpha = 0.1, xticks=false)) end plot(p[1], p[2], layout = (2,1)) plot!(size=(600,200), xlims = (0, size(chains)[1]), show=true) ``` ![chains](./assets/chains.png) Chains can also be plotted in a corner. To do so, get the flat chain ```julia flat_chains = McmcHermes.get_flat_chain(chains, burn_in=100, thin=10) println(size(flat_chains)) # (14901, 2) mean_posterior = quantile(flat_chains[:, 1], 0.5) # 10.0273672 std_posterior = quantile(flat_chains[:, 2], 0.5) # 1.9998453 using PairPlots, CairoMakie table = (; x=flat_chains[:,1], y=flat_chains[:,2],) fig = pairplot(table, labels = Dict(:x => L"\mu", :y => L"\sigma")) ``` ![corner](./assets/corner.png) *Develop by [J. Alfonso](https://github.com/stevenalfonso).* ```@index ``` ```@autodocs Modules = [McmcHermes] ```
McmcHermes
https://github.com/stevenalfonso/McmcHermes.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
4796
module OpenQuantumBase using DocStringExtensions import LinearAlgebra: mul!, lmul!, axpy!, ishermitian, Hermitian, eigen, eigen!, tr, diag, Diagonal, norm, I, Bidiagonal, qr, diagm import StaticArrays: SMatrix, MMatrix import SparseArrays: sparse, issparse, spzeros, SparseMatrixCSC import LinearAlgebra.BLAS: her!, gemm! import QuadGK: quadgk!, quadgk """ $(TYPEDEF) This is a supertype for Hamiltonians with elements of type `T`. Any object of a subtype of `AbstractHamiltonian` should implement two methods corresponding to the call signatures `H(t)` and `H(du, u, p, t)`. `H(t)`: This method, when called with a single argument `t`, should return the value of the Hamiltonian at time `t`. `H(du, u, p, t)`: This method should update the `du` object in-place according to the evolution equation ``du += -i H(t) u`` when ``u`` is a vector, or ``du += -i [H(t), u]`` when ``u`` is a matrix. Here, `u` is the state vector or density matrix, `p` contains parameters for the ODE solver, and `t` is the current time. """ abstract type AbstractHamiltonian{T<:Number} end """ $(TYPEDEF) Base for types defining Hamiltonians using dense matrices. """ abstract type AbstractDenseHamiltonian{T<:Number} <: AbstractHamiltonian{T} end """ $(TYPEDEF) Base for types defining Hamiltonians using sparse matrices. """ abstract type AbstractSparseHamiltonian{T<:Number} <: AbstractHamiltonian{T} end """ $(TYPEDEF) Base for types defining quantum annealing process. """ abstract type AbstractAnnealing{constant_hamiltonian} end """ $(TYPEDEF) Base for types defining system bath coupling operators in open quantum system models. """ abstract type AbstractCouplings end """ $(TYPEDEF) Base for types defining bath object. """ abstract type AbstractBath end """ $(TYPEDEF) """ abstract type AbstractLiouvillian end include("lobpcg.jl") include("base_util.jl") include("unit_util.jl") include("math_util.jl") include("matrix_util.jl") include("interpolation.jl") include("dev_tools.jl") include("coupling/coupling.jl") include("coupling/interaction.jl") include("bath/bath_util.jl") include("bath/ohmic.jl") include("bath/hybrid_ohmic.jl") include("bath/spin_fluc.jl") include("bath/custom.jl") include("integration/cpvagk.jl") include("integration/ext_util.jl") include("hamiltonian/hamiltonian_base.jl") include("hamiltonian/interface.jl") include("hamiltonian/dense_hamiltonian.jl") include("hamiltonian/sparse_hamiltonian.jl") include("hamiltonian/static_array_hamiltonian.jl") include("hamiltonian/adiabatic_frame_hamiltonian.jl") include("hamiltonian/interp_hamiltonian.jl") include("hamiltonian/custom_hamiltonian.jl") include("annealing/annealing_type.jl") include("annealing/displays.jl") include("opensys/opensys_util.jl") include("opensys/diffeq_liouvillian.jl") include("opensys/redfield.jl") include("opensys/davies.jl") include("opensys/cgme.jl") include("opensys/lindblad.jl") include("opensys/stochastic.jl") include("opensys/trajectory_jump.jl") include("projection/projection.jl") export SparseHamiltonian, DenseHamiltonian, AdiabaticFrameHamiltonian, InterpDenseHamiltonian, InterpSparseHamiltonian, CustomDenseHamiltonian, Hamiltonian, ConstantHamiltonian export rotate, isconstant, isdimensionlesstime export eigen_decomp, haml_eigs export temperature_2_β, temperature_2_freq, β_2_temperature, freq_2_temperature export σx, σz, σy, σi, σ, ⊗, PauliVec, spσx, spσz, spσi, spσy, σ₊, σ₋, bloch_to_state, creation_operator, annihilation_operator, number_operator export q_translate, standard_driver, local_field_term, two_local_term, single_clause, q_translate_state, collective_operator, hamming_weight_operator export check_positivity, check_unitary, check_density_matrix, partial_trace, matrix_decompose, low_level_matrix, fidelity, inst_population, gibbs_state, purity, check_pure_state, find_degenerate export haar_unitary export construct_interpolations, gradient, log_uniform export hamiltonian_from_function, evaluate, issparse, get_cache, update_cache!, update_vectorized_cache! export ConstantCouplings, TimeDependentCoupling, TimeDependentCouplings, CustomCouplings, collective_coupling, Interaction, InteractionSet export Annealing, ODEParams, set_u0!, Evolution export Lindblad, EnsembleFluctuator, DiffEqLiouvillian export Ohmic, OhmicBath, CustomBath, CorrelatedBath, ULEBath, HybridOhmic, HybridOhmicBath export correlation, polaron_correlation, γ, S, spectrum, info_freq export τ_B, τ_SB, coarse_grain_timescale export InplaceUnitary, EᵨEnsemble, sample_state_vector export ProjectedSystem, project_to_lowlevel, get_dθ, concatenate # APIs for test and developement tools, may move to a different repo latter export random_ising, alt_sec_chain, build_example_hamiltonian end # module OpenQuantumBase
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
3200
macro CSI_str(str) return :(string("\x1b[", $(esc(str)), "m")) end const TYPE_COLOR = CSI"36" const NO_COLOR = CSI"0" """ function unit_scale(u) Determine the value of ``1/ħ``. Return ``2π`` if `u` is `:h`; and return 1 if `u` is `:ħ`. """ function unit_scale(u) if u == :h return 2π elseif u == :ħ return 1 else throw(ArgumentError("The unit can only be :h or :ħ.")) end end """ function allequal(x; rtol = 1e-6, atol = 1e-6) Check if all elements in `x` are equal upto an absolute error tolerance `atol` and relative error tolerance `rtol`. """ @inline function allequal(x; rtol=1e-6, atol=1e-6) length(x) < 2 && return true e1 = x[1] i = 2 @inbounds for i = 2:length(x) isapprox(x[i], e1, rtol=rtol, atol=atol) || return false end return true end function numargs(f) numparam = maximum([num_types_in_tuple(m.sig) for m in methods(f)]) return (numparam - 1) # -1 in v0.5 since it adds f as the first parameter end function num_types_in_tuple(sig) length(sig.parameters) end function num_types_in_tuple(sig::UnionAll) length(Base.unwrap_unionall(sig).parameters) end """ $(TYPEDEF) A statistical ensemble that is equivalent to a density matrix ρ. # Fields $(FIELDS) """ struct EᵨEnsemble "The weights for each state vector" ω::Vector "The states vectors in the ensemble" vec::Vector function EᵨEnsemble(ω::Vector, vec::Vector) if !(eltype(ω) <: Number && all((x) -> x >= 0, ω)) throw(ArgumentError("Weights vector ω must be 1-d array of positive numbers.")) end if !(eltype(vec) <: Vector) throw(ArgumentError("vec must be 1-d array of vectors.")) end new(ω, vec) end end sample_state_vector(Eᵨ::EᵨEnsemble) = sample(Eᵨ.vec, Weights(Eᵨ.ω)) """ $(TYPEDEF) A container for a matrix whose elements are the same function. Getting any indices of this type returns the same function. $(FIELDS) """ struct SingleFunctionMatrix "Internal function" fun::Any end @inline Base.getindex(F::SingleFunctionMatrix, ind...) = F.fun """ $(SIGNATURES) Convert bloch sphere angle `θ` and `ϕ` to the corresponding state vector according to ``cos(θ/2)|0⟩+exp(iϕ)sin(θ/2)|1⟩``. """ function bloch_to_state(θ::Real, ϕ::Real) if !(0<=θ<=π) throw(ArgumentError("θ is out of range 0≤θ≤π.")) end if !(0<=ϕ<=2π) throw(ArgumentError("ϕ is out of range 0≤ϕ≤2π.")) end cos(θ / 2) * PauliVec[3][1] + exp(1.0im * ϕ) * sin(θ / 2) * PauliVec[3][2] end """ $(SIGNATURES) Split a Pauli expression (a string like "-0.1X1X2+Z1") into a list of substrings that represent each Pauli clause. Each substring contains three parts: the sign; the prefix; and the Pauli string. # Example ```julia-repl julia> split_pauli_expression("-0.1X1X2+Z2") 2-element Vector{Any}: SubString{String}["-", "0.1", "X1X2"] SubString{String}["+", "", "Z2"] ``` """ function split_pauli_expression(p_str) p_str = filter((x)->!isspace(x), p_str) re_str = r"(\+|-|^)([0-9im.]*|^)([XYZ0-9]+)" res = [] for m in eachmatch(re_str, p_str) push!(res, [m[1], m[2], m[3]]) end res end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
4895
# All functions here are for development purpose """ $(SIGNATURES) Construct the matrix of a random 2D Ising lattice ``∑ᵢⱼJᵢⱼZᵢZⱼ``, where ``Jᵢⱼ``s are uniformly distributed between [-1, 1). Generate sparse matrix when `sp` is set to true. """ function random_ising(num_qubits::Integer; sp=false) J = Vector{Float64}() idx = Vector{Vector{Int64}}() for i ∈ 1:num_qubits for j ∈ i+1:num_qubits push!(J, 2 * rand() - 1) push!(idx, [i, j]) end end two_local_term(J, idx, num_qubits, sp=sp) end """ $(SIGNATURES) Construct the matrix of the alternating sectors chain model described in (https://www.nature.com/articles/s41467-018-05239-9#Sec1). Generate sparse matrix when `sp` is set to true. """ function alt_sec_chain(w1, w2, n, num_qubits; sp=false) J = Vector{Float64}() idx = Vector{Vector{Int64}}() for i in 1:num_qubits-1 push!(J, isodd(ceil(Int, i / n)) ? w1 : w2) push!(idx, [i, i + 1]) end two_local_term(J, idx, num_qubits, sp=sp) end function build_example_hamiltonian(num_qubits; sp=false) A = (s) -> (1 - s) B = (s) -> s if num_qubits == 1 sp ? SparseHamiltonian([A, B], [spσx, spσz]) : DenseHamiltonian([A, B], [σx, σz]) elseif num_qubits == 4 Hd = -standard_driver(4, sp=sp) Hp = -q_translate("ZIII+IZII+IIZI+IIIZ", sp=sp) sp ? SparseHamiltonian([A, B], [Hd, Hp]) : DenseHamiltonian([A, B], [Hd, Hp]) end end """ $(SIGNATURES) Find the unique gap values upto `sigdigits` number of significant digits. """ function find_unique_gap(w::AbstractVector{T}; digits::Integer=8, sigdigits::Integer=8) where {T<:Real} w_matrix = w' .- w w_matrix = round.(w_matrix, digits = digits) w_matrix = round.(w_matrix, sigdigits=sigdigits) uniq_w = unique(w_matrix) uniq_w = sort(uniq_w[findall((x) -> x > 0, uniq_w)]) indices = [] for uw in uniq_w push!(indices, findall((x) -> x == uw, w_matrix)) end uniq_w, indices, findall((x) -> x == 0, w_matrix) end """ $(SIGNATURES) The function calculates the derivative of the density matrix obtained by applying the Davies generators on the density matric `ρ``. This function is for test purpose only. """ function ame_update_test(ops, ρ, w, v, γ, S) l = length(w) uniq_w, positive_indices, zero_indices = find_unique_gap(w) cs = [v' * c * v for c in ops] ρ = v' * ρ * v dρ = zeros(ComplexF64, l, l) Hₗₛ = zeros(ComplexF64, l, l) for (w, idx) in zip(uniq_w, positive_indices) g₊ = γ(w) g₋ = γ(-w) a = [x.I[1] for x in idx] b = [x.I[2] for x in idx] for c in cs L₊ = sparse(a, b, c[a+(b.-1)*l], l, l) L₋ = sparse(b, a, c[b+(a.-1)*l], l, l) LL₊ = L₊' * L₊ LL₋ = L₋' * L₋ dρ += g₊ * (L₊ * ρ * L₊' - 0.5 * (LL₊ * ρ + ρ * LL₊)) + g₋ * (L₋ * ρ * L₋' - 0.5 * (LL₋ * ρ + ρ * LL₋)) Hₗₛ += S(w) * LL₊ + S(-w) * LL₋ end end g0 = γ(0) a = [x.I[1] for x in zero_indices] b = [x.I[2] for x in zero_indices] for c in cs L = sparse(a, b, c[a+(b.-1)*l], l, l) LL = L' * L dρ += g0 * (L * ρ * L' - 0.5 * (LL * ρ + ρ * LL)) Hₗₛ += S(0) * LL end dρ -= 1.0im * (Hₗₛ * ρ - ρ * Hₗₛ) v * dρ * v' end """ $(SIGNATURES) The function calculates the effective Hamiltonian for the AME quantum trajectories. It is for test purpose only. """ function ame_trajectory_Heff_test(ops, w, v, γ, S) l = length(w) d = size(v, 1) uniq_w, positive_indices, zero_indices = find_unique_gap(w) cs = [v' * c * v for c in ops] H_eff = zeros(ComplexF64, d, d) for (w, idx) in zip(uniq_w, positive_indices) g₊ = γ(w) g₋ = γ(-w) a = [x.I[1] for x in idx] b = [x.I[2] for x in idx] for c in cs L₊ = sparse(a, b, c[a+(b.-1)*l], l, l) L₋ = sparse(b, a, c[b+(a.-1)*l], l, l) LL₊ = v * L₊' * L₊ * v' LL₋ = v * L₋' * L₋ * v' H_eff += S(w) * LL₊ + S(-w) * LL₋ - 0.5im * g₊ * LL₊ - 0.5im * g₋ * LL₋ end end g0 = γ(0) a = [x.I[1] for x in zero_indices] b = [x.I[2] for x in zero_indices] for c in cs L = sparse(a, b, c[a+(b.-1)*l], l, l) LL = v * L' * L * v' H_eff += S(0) * LL - 0.5im * g0 * LL end H_eff end """ $(SIGNATURES) The function calculates dρ for one-sided AME. It is for test purpose only. """ function onesided_ame_update_test(ops, ρ, w, v, γ, S) l = size(v, 1) ω_ba = transpose(w) .- w Γ = 0.5 * γ.(ω_ba) + 1.0im * S.(ω_ba) res = zeros(ComplexF64, l, l) for op in ops L = v * (Γ .* (v' * op * v)) * v' K = L * ρ * op - op * L * ρ res += K + K' end res end function vectorized_commutator(A) iden = one(A) iden⊗A - transpose(A)⊗iden end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
4880
import Interpolations: interpolate, BSpline, Quadratic, Line, OnGrid, scale, gradient1, extrapolate, Linear, Gridded, NoInterp, Cubic, Constant, Flat """ $(SIGNATURES) Construct interpolation of N-D array `y` along its last dimension on grid `x`. `method` specifies the interpolation algorithm, which can be either "BSpline" or "Gridded". If `x` is an `AbstractRange`, the default method is "BSpline", otherwise the default `method` is "Gridded". `order` is the interpolation order. If `x` is `AbstractRange`, the default order is 2, otherwise the default order is 1. `extrapolation` specifies the extrapolation methods, which defines what happens if you try to index into the interpolation object with coordinates outside of its bounds in any dimension. The implemented extrapolation methods are "line", "flat", or you can pass a constant to be used as a "fill" value returned for any out-of-bounds evaluation. The default value is 0. """ function construct_interpolations( x::AbstractRange{S}, y::AbstractArray{T,N}; method="BSpline", order=2, extrapolation=0, ) where {S <: Real,T <: Number,N} method = interp_tuple(N, method, order) itp = interpolate(y, method) itp = extrapolate(itp, extrap_method(extrapolation)) index = interp_index(x, size(y)) scale(itp, index...) end function construct_interpolations( x::AbstractArray{S}, y::AbstractArray{T,N}; method="Gridded", order=1, extrapolation=0, ) where {S <: Real,T <: Number,N} if lowercase(method) == "bspline" Δ = diff(x) if allequal(Δ) x = range(x[1], x[end], length=length(x)) return construct_interpolations( x, y, method=method, order=order, extrapolation=extrapolation, ) else @warn "The grid is not uniform. Using grided linear interpolation." method = "Gridded" end end method = interp_tuple(N, method, order) index = interp_index(x, size(y)) itp = interpolate(index, y, method) extrapolate(itp, extrap_method(extrapolation)) end function construct_interpolations( x::AbstractRange{S}, y::AbstractArray{W,1}; method="BSpline", order=2, extrapolation=0, ) where {S <: Real,W <: AbstractArray} y = cat(y...; dims=ndims(y[1]) + 1) construct_interpolations( x, y, method=method, order=order, extrapolation=extrapolation, ) end """ $(SIGNATURES) Construct interpolation of a nested array. If `x` is an `AbstractRange`, the nested array will be converted into multi-dimensional array for interpolation. Otherwise only "Gridded" method and `order` 1 is supported. """ function construct_interpolations( x::AbstractArray{S,1}, y::AbstractArray{W,1}; method="Gridded", order=1, extrapolation=0, ) where {S <: Real,W <: AbstractArray} itp = interpolate((x,), y, interp_method(method, order)) extrapolate(itp, extrap_method(extrapolation)) end function interp_index(x, s) res = [] for i = 1:(length(s) - 1) push!(res, 1:s[i]) end push!(res, x) (res...,) end function interp_tuple(N, method, order) res = [] for i = 1:(N - 1) push!(res, NoInterp()) end interp_term = interp_method(method, order) push!(res, interp_term) (res...,) end function interp_method(method, order::Integer; boundary=Line(OnGrid())) if lowercase(method) == "bspline" if order == 0 res = BSpline(Constant()) elseif order == 1 res = BSpline(Linear()) elseif order == 2 res = BSpline(Quadratic(boundary)) elseif order == 3 res = BSpline(Cubic(boundary)) else throw(ArgumentError("Order $order for method $method is not implemented.")) end elseif lowercase(method) == "gridded" if order == 0 res = Gridded(Constant()) elseif order == 1 res = Gridded(Linear()) else throw(ArgumentError("Oder $order for method $method is not implemented.")) end elseif lowercase(method) == "none" res = NoInterp() else throw(ArgumentError("Method $method is invalid.")) end res end function extrap_method(method::String) if lowercase(method) == "line" Line() elseif lowercase(method) == "flat" Flat() else throw(ArgumentError("Extrapolation method: $method is not supported.")) end end extrap_method(method::Number) = method """ $(SIGNATURES) Calculate the gradient of `itp` at `s`. """ function gradient(itp, s::Number) gradient1(itp, s) end function gradient(itp, s::AbstractArray) [gradient1(itp, x) for x in s] end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
19936
# Adapted from the DFTK.jl (https://github.com/JuliaMolSim/DFTK.jl) # implementation. # Implementation of the LOBPCG algorithm, seeking optimal performance # and stability (it should be very, very hard to break, even at tight # tolerance criteria). The code is not 100% optimized yet, but the # most time-consuming parts (BLAS3 and matvecs) should be OK. The # implementation follows the scheme of Hetmaniuk & Lehoucq (see also # the refinements in Duersch et. al.), with the following # modifications: # - Cholesky factorizations are used instead of the eigenvalue # decomposition of Stathopolous & Wu for the orthogonalization. # Cholesky orthogonalization is fast but has an unwarranted bad # reputation: when applied twice to a matrix X with κ(X) <~ # sqrt(1/ε), where ε is the machine epsilon, it will produce a set # of very orthogonal vectors, just as the eigendecomposition-based # method. It can fail when κ >~ sqrt(1/ε), but that can be fixed by # shifting the overlap matrix. This is very reliable while being # much faster than eigendecompositions. # - Termination criteria for the orthogonalization are based on cheap # estimates instead of costly explicit checks. # - The default tolerances are very tight, yielding a very stable # algorithm. This can be tweaked (see keyword ortho_tol) to # compromise on stability for less Cholesky factorizations. # - Implicit product updates (reuse of matvecs) are performed whenever # it is safe to do so, ie only with orthogonal transformations. An # exception is the B matrix reuse, which seems to be OK even with very # badly conditioned B matrices. The code is easy to modify if this is # not the case. # - The locking is performed carefully to ensure minimal impact on the # other eigenvectors (which is not the case in many - all ? - other # implementations) ## TODO micro-optimization of buffer reuse ## TODO write a version that doesn't assume that B is well-conditionned, and doesn't reuse B applications at all ## TODO it seems there is a lack of orthogonalization immediately after locking, maybe investigate this to save on some choleskys ## TODO debug orthogonalizations when A=I # TODO Use @debug for this # vprintln(args...) = println(args...) # Uncomment for output vprintln(args...) = nothing using LinearAlgebra import LinearAlgebra: BlasFloat import Base: * import Base.size, Base.adjoint, Base.Array import StaticArrays: @SArray, StaticArray """ Simple wrapper to represent a matrix formed by the concatenation of column blocks: it is mostly equivalent to hcat, but doesn't allocate the full matrix. LazyHcat only supports a few multiplication routines: furthermore, a multiplication involving this structure will always yield a plain array (and not a LazyHcat structure). LazyHcat is a lightweight subset of BlockArrays.jl's functionalities, but has the advantage to be able to store GPU Arrays (BlockArrays is heavily built on Julia's CPU Array). """ struct LazyHcat{T<:Number,D<:Tuple} <: AbstractMatrix{T} blocks::D end function LazyHcat(arrays::AbstractArray...) @assert length(arrays) != 0 n_ref = size(arrays[1], 1) @assert all(size.(arrays, 1) .== n_ref) T = promote_type(map(eltype, arrays)...) LazyHcat{T,typeof(arrays)}(arrays) end function Base.size(A::LazyHcat) n = size(A.blocks[1], 1) m = sum(size(block, 2) for block in A.blocks) (n, m) end Base.Array(A::LazyHcat) = hcat(A.blocks...) Base.adjoint(A::LazyHcat) = Adjoint(A) @views function Base.:*(Aadj::Adjoint{T,<:LazyHcat}, B::LazyHcat) where {T} A = Aadj.parent rows = size(A)[2] cols = size(B)[2] ret = similar(A.blocks[1], rows, cols) orow = 0 # row offset for blA in A.blocks ocol = 0 # column offset for blB in B.blocks ret[orow.+(1:size(blA, 2)), ocol.+(1:size(blB, 2))] .= blA' * blB ocol += size(blB, 2) end orow += size(blA, 2) end ret end Base.:*(Aadj::Adjoint{T,<:LazyHcat}, B::AbstractMatrix) where {T} = Aadj * LazyHcat(B) @views function *(Ablock::LazyHcat, B::AbstractMatrix) res = Ablock.blocks[1] * B[1:size(Ablock.blocks[1], 2), :] # First multiplication offset = size(Ablock.blocks[1], 2) for block in Ablock.blocks[2:end] mul!(res, block, B[offset.+(1:size(block, 2)), :], 1, 1) offset += size(block, 2) end res end function LinearAlgebra.mul!(res::AbstractMatrix, Ablock::LazyHcat, B::AbstractVecOrMat, α::Number, β::Number) mul!(res, Ablock * B, I, α, β) end # Perform a Rayleigh-Ritz for the N first eigenvectors. function rayleigh_ritz(X, AX, N) XAX = X' * AX @assert !any(isnan, XAX) rayleigh_ritz(Hermitian(XAX), N) end @views function rayleigh_ritz(XAX::Hermitian, N) # Fallback: Use whatever is the default dense eigensolver. # Note: GenericLinearAlgebra uses a QR-based algorithm, which is pretty safe in terms # of keeping the vectors orthogonal values, vectors = eigen(XAX) vectors[:, 1:N], values[1:N] end @views function rayleigh_ritz(XAX::Hermitian{<:BlasFloat,<:Array}, N) # LAPACK sysevr (the Julia default dense eigensolver) can actually return eigenvectors # that are significantly non-orthogonal (1e-4 in Float32 in some tests) here, # presumably because it tries hard to make them eigenvectors in the presence # of small gaps. Since we care more about them being orthogonal # than about them being eigenvectors, re-orthogonalize. # TODO To avoid orthogonalization: Use syevd, # which does a much better job, see https://github.com/JuliaLang/julia/pull/49262 # and https://github.com/JuliaLang/julia/pull/49355 values, vectors = eigen(XAX) v = vectors[:, 1:N] ortho!(v) v, values[1:N] end # B-orthogonalize X (in place) using only one B apply. # This uses an unstable method which is only OK if X is already # orthogonal (not B-orthogonal) and B is relatively well-conditioned # (which implies that X'BX is relatively well-conditioned, and # therefore that it is safe to cholesky it and reuse the B apply) function B_ortho!(X, BX) O = Hermitian(X' * BX) U = cholesky(O).U @assert !any(isnan, U) rdiv!(X, U) rdiv!(BX, U) end normest(M) = maximum(abs.(diag(M))) + norm(M - Diagonal(diag(M))) # Orthogonalizes X to tol # Returns the new X, the number of Cholesky factorizations algorithm, and the # growth factor by which small perturbations of X can have been # magnified function ortho!(X::AbstractArray{T}; tol=2eps(real(T))) where {T} local R # # Uncomment for "gold standard" # U,S,V = svd(X) # return U*V', 1, 1 growth_factor = one(real(T)) success = false nchol = 0 while true O = Hermitian(X'X) try R = cholesky(O).U nchol += 1 success = true catch err @assert isa(err, PosDefException) vprintln("fail") # see https://arxiv.org/pdf/1809.11085.pdf for a nice analysis # We are not being very clever here; but this should very rarely happen # so it should be OK α = 100 nbad = 0 while true O += α * eps(real(T)) * norm(X)^2 * I α *= 10 try R = cholesky(O).U nchol += 1 break catch err @assert isa(err, PosDefException) end nbad += 1 if nbad > 10 error("Cholesky shifting is failing badly, this should never happen") end end success = false end invR = inv(R) @assert !any(isnan, invR) rmul!(X, invR) # we do not use X/R because we use invR next # We would like growth_factor *= opnorm(inv(R)) but it's too # expensive, so we use an upper bound which is sharp enough to # be close to 1 when R is close to I, which we need for the # outer loop to terminate # ||invR|| = ||D + E|| ≤ ||D|| + ||E|| ≤ ||D|| + ||E||_F, # where ||.|| is the 2-norm and ||.||_F the Frobenius norminvR = normest(invR) growth_factor *= norminvR # condR = 1/LAPACK.trcon!('I', 'U', 'N', Array(R)) condR = normest(R) * norminvR # in practice this seems to be an OK estimate vprintln("Ortho(X) success? $success ", eps(real(T)) * condR^2, " < $tol") # a good a posteriori error is that X'X - I is eps()*κ(R)^2; # in practice this seems to be sometimes very overconservative success && eps(real(T)) * condR^2 < tol && break nchol > 10 && error("Ortho(X) is failing badly, this should never happen") end # @assert norm(X'X - I) < tol (; X, nchol, growth_factor) end # Randomize the columns of X if the norm is below tol function drop!(X::AbstractArray{T}, tol=2eps(real(T))) where {T} dropped = Int[] for i = 1:size(X, 2) n = norm(@views X[:, i]) if n <= tol X[:, i] = randn(T, size(X, 1)) push!(dropped, i) end end dropped end # Find X that is orthogonal, and B-orthogonal to Y, up to a tolerance tol. function ortho!(X::AbstractArray{T}, Y, BY; tol=2eps(real(T))) where {T} # normalize to try to cheaply improve conditioning Threads.@threads for i = 1:size(X, 2) n = norm(@views X[:, i]) @views X[:, i] ./= n end niter = 1 ninners = zeros(Int, 0) while true BYX = BY' * X mul!(X, Y, BYX, -1, 1) # X -= Y*BY'X # If the orthogonalization has produced results below 2eps, we drop them # This is to be able to orthogonalize eg [1;0] against [e^iθ;0], # as can happen in extreme cases in the ortho!(cP, cX) dropped = drop!(X) if dropped != [] X[:, dropped] .-= Y * (BY' * X[:, dropped]) end if norm(BYX) < tol && niter > 1 push!(ninners, 0) break end X, ninner, growth_factor = ortho!(X; tol) push!(ninners, ninner) # norm(BY'X) < tol && break should be the proper check, but # usually unnecessarily costly. Instead, we predict the error # according to the growth factor of the orthogonalization. # Assuming BY'Y = 0 to machine precision, after the # Y-orthogonalization, BY'X is O(eps), so BY'X will be bounded # by O(eps * growth_factor). # If we're at a fixed point, growth_factor is 1 and if tol > # eps(), the loop will terminate, even if BY'Y != 0 growth_factor * eps(real(T)) < tol && break niter > 10 && error("Ortho(X,Y) is failing badly, this should never happen") niter += 1 end vprintln("ortho choleskys: ", ninners) # get how many Choleskys are performed # @assert (norm(BY'X)) < tol # @assert (norm(X'X-I)) < tol X end function final_retval(X, AX, resid_history, niter, n_matvec) λ = real(diag(X' * AX)) residuals = AX .- X * Diagonal(λ) (; λ, X, residual_norms=[norm(residuals[:, i]) for i in 1:size(residuals, 2)], residual_history=resid_history[:, 1:niter+1], n_matvec) end ### The algorithm is Xn+1 = rayleigh_ritz(hcat(Xn, A*Xn, Xn-Xn-1)) ### We follow the strategy of Hetmaniuk and Lehoucq, and maintain a B-orthonormal basis Y = (X,R,P) ### After each rayleigh_ritz step, the B-orthonormal X and P are deduced by an orthogonal rotation from Y ### R is then recomputed, and orthonormalized explicitly wrt BX and BP ### We reuse applications of A/B when it is safe to do so, ie only with orthogonal transformations function LOBPCG(A, X, B=I, precon=I, tol=1e-10, maxiter=100; miniter=1, ortho_tol=2eps(real(eltype(X))), n_conv_check=nothing, display_progress=false) N, M = size(X) # If N is too small, we will likely get in trouble error_message(verb) = "The eigenproblem is too small, and the iterative " * "eigensolver $verb fail; increase the number of " * "degrees of freedom, or use a dense eigensolver." N > 3M || error(error_message("will")) N >= 3M + 5 || @warn error_message("might") n_conv_check === nothing && (n_conv_check = M) resid_history = zeros(real(eltype(X)), M, maxiter + 1) # B-orthogonalize X X = ortho!(copy(X), tol=ortho_tol)[1] if B != I BX = similar(X) BX = mul!(BX, B, X) B_ortho!(X, BX) end n_matvec = M # Count number of matrix-vector products AX = similar(X) AX = mul!(AX, A, X) @assert !any(isnan, AX) # full_X/AX/BX will always store the full (including locked) X. # X/AX/BX only point to the active part P = zero(X) AP = zero(X) R = zero(X) AR = zero(X) if B != I BR = zero(X) # BX was already computed BP = zero(X) else # The B arrays are just pointers to the same data BR = R BX = X BP = P end nlocked = 0 niter = 0 # the first iteration is fake λs = @views [(X[:, n]' * AX[:, n]) / (X[:, n]'BX[:, n]) for n = 1:M] λs = oftype(X[:, 1], λs) # Offload to GPU if needed new_X = X new_AX = AX new_BX = BX full_X = X full_AX = AX full_BX = BX while true if niter > 0 # first iteration is just to compute the residuals (no X update) ### Perform the Rayleigh-Ritz mul!(AR, A, R) n_matvec += size(R, 2) # Form Rayleigh-Ritz subspace if niter > 1 Y = LazyHcat(X, R, P) AY = LazyHcat(AX, AR, AP) BY = LazyHcat(BX, BR, BP) # data shared with (X, R, P) in non-general case else Y = LazyHcat(X, R) AY = LazyHcat(AX, AR) BY = LazyHcat(BX, BR) # data shared with (X, R) in non-general case end cX, λs = rayleigh_ritz(Y, AY, M - nlocked) # Update X. By contrast to some other implementations, we # wait on updating P because we have to know which vectors # to lock (and therefore the residuals) before computing P # only for the unlocked vectors. This results in better convergence. new_X = Y * cX new_AX = AY * cX # no accuracy loss, since cX orthogonal new_BX = (B == I) ? new_X : BY * cX end ### Compute new residuals begin new_R = new_AX .- new_BX .* λs' @views for i = 1:size(X, 2) resid_history[i+nlocked, niter+1] = norm(new_R[:, i]) end end vprintln(niter, " ", resid_history[:, niter+1]) # it is actually a good question of knowing when to # precondition. Here seems sensible, but it could plausibly be # done before or after if precon !== I begin precondprep!(precon, X) # update preconditioner if needed; defaults to noop ldiv!(precon, new_R) end end ### Compute number of locked vectors prev_nlocked = nlocked if niter ≥ miniter # No locking if below miniter for i = nlocked+1:M if resid_history[i, niter+1] < tol nlocked += 1 vprintln("locked $nlocked") else # We lock in order, assuming that the lowest # eigenvectors converge first; might be tricky otherwise break end end end if display_progress println("Iter $niter, converged $(nlocked)/$(n_conv_check), resid ", norm(resid_history[1:n_conv_check, niter+1])) end if nlocked >= n_conv_check # Converged! X .= new_X # Update the part of X which is still active AX .= new_AX return final_retval(full_X, full_AX, resid_history, niter, n_matvec) end newly_locked = nlocked - prev_nlocked active = newly_locked+1:size(X, 2) # newly active vectors if niter > 0 ### compute P = Y*cP only for the newly active vectors Xn_indices = newly_locked+1:M-prev_nlocked # TODO understand this for a potential save of an # orthogonalization, see Hetmaniuk & Lehoucq, and Duersch et. al. # cP = copy(cX) # cP[Xn_indices,:] .= 0 lenXn = length(Xn_indices) e = zeros_like(X, size(cX, 1), M - prev_nlocked) lower_diag = one(similar(X, lenXn, lenXn)) # e has zeros everywhere except on one of its lower diagonal e[Xn_indices[1]:last(Xn_indices), 1:lenXn] = lower_diag cP = cX .- e cP = cP[:, Xn_indices] # orthogonalize against all Xn (including newly locked) ortho!(cP, cX, cX, tol=ortho_tol) # Get new P new_P = Y * cP new_AP = AY * cP if B != I new_BP = BY * cP else new_BP = new_P end end # Update all X, even newly locked X .= new_X AX .= new_AX if B != I BX .= new_BX end # Quick sanity check for i = 1:size(X, 2) @views if abs(BX[:, i]'X[:, i] - 1) >= sqrt(eps(real(eltype(X)))) error("LOBPCG is badly failing to keep the vectors normalized; this should never happen") end end # Restrict all views to active @views begin X = X[:, active] AX = AX[:, active] BX = BX[:, active] R = new_R[:, active] AR = AR[:, active] BR = BR[:, active] P = P[:, active] AP = AP[:, active] BP = BP[:, active] λs = λs[active] end # Update newly active P if niter > 0 P .= new_P AP .= new_AP if B != I BP .= new_BP end end # Orthogonalize R wrt all X, newly active P if niter > 0 Z = LazyHcat(full_X, P) BZ = LazyHcat(full_BX, BP) # data shared with (full_X, P) in non-general case else Z = full_X BZ = full_BX end ortho!(R, Z, BZ; tol=ortho_tol) if B != I mul!(BR, B, R) B_ortho!(R, BR) end niter < maxiter || break niter = niter + 1 end final_retval(full_X, full_AX, resid_history, maxiter, n_matvec) end function lobpcg_hyper(A, X0; maxiter=100, prec=nothing, tol=20size(A, 2) * eps(real(eltype(A))), largest=false, n_conv_check=nothing, kwargs...) prec === nothing && (prec = I) @assert !largest "Only seeking the smallest eigenpairs is implemented." result = LOBPCG(A, X0, I, prec, tol, maxiter; n_conv_check, kwargs...) n_conv_check === nothing && (n_conv_check = size(X0, 2)) converged = maximum(result.residual_norms[1:n_conv_check]) < tol iterations = size(result.residual_history, 2) - 1 merge(result, (; iterations, converged)) end """ Create an array of same "array type" as X filled with zeros, minimizing the number of allocations. This unifies CPU and GPU code, as the output will always be on the same device as the input. """ function zeros_like(X::AbstractArray, T::Type=eltype(X), dims::Integer...=size(X)...) Z = similar(X, T, dims...) Z .= zero(T) Z end zeros_like(X::AbstractArray, dims::Integer...) = zeros_like(X, eltype(X), dims...) zeros_like(X::Array, T::Type=eltype(X), dims::Integer...=size(X)...) = zeros(T, dims...) zeros_like(X::StaticArray, T::Type=eltype(X), dims::Integer...=size(X)...) = @SArray zeros(T, dims...)
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
9886
import LinearAlgebra: kron, eigmin const σx = [0.0 + 0.0im 1; 1 0] const σy = [0.0 + 0.0im -1.0im; 1.0im 0] const σz = [1.0 + 0.0im 0; 0 -1] const σi = [1.0 + 0.0im 0; 0 1] const σ₋ = [0.0im 0;1 0] const σ₊ = [0.0im 1;0 0] const σ = [σx, σy, σz, σi] xvec = [[1.0 + 0.0im, 1.0] / sqrt(2), [1.0 + 0.0im, -1.0] / sqrt(2)] yvec = [[1.0, 1.0im] / sqrt(2), [1.0, -1.0im] / sqrt(2)] zvec = [[1.0 + 0.0im, 0], [0, 1.0 + 0.0im]] const spσz = sparse(σz) const spσx = sparse(σx) const spσy = sparse(σy) const spσi = sparse(I, 2, 2) """ PauliVec A constant that holds the eigenvectors of the Pauli matrices. Indices 1, 2 and 3 corresponds to the eigenvectors of ``σ_x``, ``σ_y`` and ``σ_z``. # Examples ```julia-repl julia> σx*PauliVec[1][1] == PauliVec[1][1] true ``` """ const PauliVec = [xvec, yvec, zvec] """ ⊗(A, B) Calculate the tensor product of `A` and `B`. # Examples ```julia-repl julia> σx⊗σz 4×4 Array{Complex{Float64},2}: 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -1.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -1.0+0.0im 0.0+0.0im -0.0+0.0im ``` """ ⊗ = kron """ $(SIGNATURES) Decompse matrix `mat` onto matrix basis `basis` # Examples ```julia-repl julia> matrix_decompose(1.0*σx+2.0*σy+3.0*σz, [σx,σy,σz]) 3-element Array{Complex{Float64},1}: 1.0 + 0.0im 2.0 + 0.0im 3.0 + 0.0im ``` """ function matrix_decompose(mat::AbstractMatrix, basis::Vector{<:AbstractMatrix}) dim = size(basis[1])[1] [tr(mat * b) / dim for b in basis] end """ check_positivity(m) Check if matrix `m` is positive. Return `true` is the minimum eigenvalue of `m` is greater than or equal to 0. """ function check_positivity(m::AbstractMatrix) if !ishermitian(m) @warn "Input fails the numerical test for Hermitian matrix. Use the upper triangle to construct a new Hermitian matrix." d = Hermitian(m) else d = m end eigmin(d) >= 0 end """ gibbs_state(h, β) Calculate the Gibbs state of the matrix `h` at temperature `T` (mK). # Examples ```julia-repl julia> gibbs_state(σz, 10) 2×2 Array{Complex{Float64},2}: 0.178338+0.0im 0.0+0.0im 0.0+0.0im 0.821662+0.0im ``` """ function gibbs_state(h, T) β = temperature_2_β(T) Z = 0.0 w, v = eigen(Hermitian(h)) res = zeros(eltype(v), size(h)) for (i, E) in enumerate(w) t = exp(-β * E) vi = @view v[:, i] res += t * vi * vi' Z += t end res / Z end """ low_level_matrix(M, lvl) Calculate the matrix `M` projected to lower energy subspace containing `lvl` energy lvl. # Examples ```julia-repl julia> low_level_matrix(σx⊗σx, 2) 4×4 Array{Complex{Float64},2}: -0.5+0.0im 0.0+0.0im 0.0+0.0im 0.5+0.0im 0.0+0.0im -0.5+0.0im 0.5+0.0im 0.0+0.0im 0.0+0.0im 0.5+0.0im -0.5+0.0im 0.0+0.0im 0.5+0.0im 0.0+0.0im 0.0+0.0im -0.5+0.0im ``` """ function low_level_matrix(M, lvl) if lvl > size(M, 1) @warn "Subspace dimension bigger than total dimension." return M else w, v = eigen(Hermitian(M)) res = zeros(eltype(v), size(M)) for i in range(1, stop = lvl) vi = @view v[:, i] res += w[i] * vi * vi' end return res end end """ $(SIGNATURES) Test if `𝐔` is a unitary matrix. The function checks how close both `` 𝐔𝐔^† `` and `` 𝐔^†𝐔 `` are to `` I ``, with relative and absolute error given by `rtol`, `atol`. # Examples ```julia-repl julia> check_unitary(exp(-1.0im*5*0.5*σx)) true ``` """ function check_unitary(𝐔::AbstractMatrix; rtol = 1e-6, atol = 1e-8) a1 = isapprox( 𝐔 * 𝐔', Matrix{eltype(𝐔)}(I, size(𝐔)), rtol = rtol, atol = atol, ) a2 = isapprox( 𝐔' * 𝐔, Matrix{eltype(𝐔)}(I, size(𝐔)), rtol = rtol, atol = atol, ) a1 && a2 end """ $(SIGNATURES) Generate a log-uniformly distributed array with `num` elements between `a` and `b`. The base of log is `base` with default value 10. """ function log_uniform(a, b, num; base = 10) loga = log(base, a) logb = log(base, b) 10 .^ range(loga, logb, length = num) end """ $(SIGNATURES) Calculate the partial trace of the density matrix `ρ`, assuming all the subsystems are qubits. `qubit_2_keep` denotes the indices whose corresponding qubits are not traced out. # Examples ```julia-repl julia> ρ1 = [0.4 0.2; 0.2 0.6]; ρ2 = [0.5 0; 0 0.5]; julia> partial_trace(ρ1⊗ρ2, [1]) 2×2 Array{Float64,2}: 0.4 0.2 0.2 0.6 ``` """ function partial_trace(ρ::Matrix, qubit_2_keep::AbstractVector{Int}) num = Int(log2(size(ρ, 1))) partial_trace(ρ, [2 for i in 1:num], qubit_2_keep) end """ $(SIGNATURES) Calculate the partial trace of the density matrix `ρ`. Assume `ρ` is in the tensor space of ``ℋ₁⊗ℋ₂⊗…``, `sys_dim` is an array of the corresponding sub-system dimensions. `dim_2_keep` is an array of the indices whose corresponding subsystems are not traced out. # Examples ```julia-repl julia> ρ1 = [0.4 0.2; 0.2 0.6]; ρ2 = [0.5 0; 0 0.5]; julia> partial_trace(ρ1⊗ρ2, [2, 2], [1]) 2×2 Array{Float64,2}: 0.4 0.2 0.2 0.6 ``` """ partial_trace(ρ::AbstractMatrix, sys_dim::AbstractVector{<:Integer}, dim_2_keep::Integer) = partial_trace(ρ,sys_dim,[dim_2_keep]) function partial_trace(ρ::AbstractMatrix, sys_dim::AbstractVector{<:Integer}, dim_2_keep::AbstractVector{<:Integer}) size(ρ, 1) != size(ρ, 2) && throw(ArgumentError("ρ is not a square matrix.")) prod(sys_dim) != size(ρ, 1) && throw(ArgumentError("System dimensions do not multiply to density matrix dimension.")) N = length(sys_dim) iden = CartesianIndex(ones(Int, 2*N)...) sys_dim = reverse(sys_dim) ρ = reshape(ρ, sys_dim..., sys_dim...) dim_2_keep = N .+ 1 .- dim_2_keep dim_2_trace = [i for i in 1:N if !(i in dim_2_keep)] re_dim = copy(sys_dim) re_dim[dim_2_trace] .= 1 tr_dim = copy(sys_dim) tr_dim[dim_2_keep] .= 1 res = zeros(eltype(ρ), re_dim..., re_dim...) for I in CartesianIndices(size(res)) for k in CartesianIndices((tr_dim...,)) delta = CartesianIndex(k, k) res[I] += ρ[I + delta - iden] end end reshape(res, sys_dim[dim_2_keep]..., sys_dim[dim_2_keep]...) end """ $(SIGNATURES) Calculate the indices of the degenerate values in list `w`. `w` must be sorted in ascending order. If the `digits` keyword argument is provided, it rounds the energies to the specified number of digits after the decimal place (or before if negative), in base 10. The default value is 8. # Examples ```julia-repl julia> w = [1,1,1,2,3,4,4,5] julia> find_degenerate(w) 2-element Array{Array{Int64,1},1}: [1, 2, 3] [6, 7] ``` """ function find_degenerate(w; digits::Integer=8) w = round.(w, digits = digits) res = [] tmp = [] flag = true for i in 2:length(w) if w[i] == w[i-1] && flag push!(tmp, i-1, i) flag = false elseif w[i] == w[i-1] push!(tmp, i) elseif !flag push!(res, tmp) tmp = [] flag = true end end isempty(tmp) ? nothing : push!(res, tmp) res end """ $(SIGNATURES) Calculate the fidelity between two density matrices `ρ` and `σ`: ``Tr[\\sqrt{\\sqrt{ρ}σ\\sqrt{ρ}}]²``. # Examples ```julia-repl julia> ρ = PauliVec[1][1]*PauliVec[1][1]' julia> σ = PauliVec[3][1]*PauliVec[3][1]' julia> fidelity(ρ, σ) 0.49999999999999944 ``` """ function fidelity(ρ, σ) if !check_density_matrix(ρ) || !check_density_matrix(σ) throw(ArgumentError("Inputs are not valid density matrices.")) end temp = sqrt(ρ) real(tr(sqrt(temp * σ * temp))^2) end """ $(SIGNATURES) Check whether matrix `ρ` is a valid density matrix. `atol` and `rtol` is the absolute and relative error tolerance to use when checking `ρ` ≈ 1. # Examples ```julia-repl julia> check_density_matrix(σx) false julia> check_density_matrix(σi/2) true ``` """ function check_density_matrix(ρ; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps()) ishermitian(ρ) && (eigmin(ρ) >= 0) && isapprox(tr(ρ), 1, atol=atol, rtol=rtol) end """ $(SIGNATURES) Calculate the purity of density matrix `ρ`: ``tr(ρ²)``. This function does not check whether `ρ` is a valid density matrix. """ function purity(ρ) tr(ρ*ρ) end """ $(SIGNATURES) Check whether the input `ρ` is a pure state: ``tr(ρ²)≈1``. This function will first check if `ρ` is a valid density matrix. `atol` and `rtol` are the corresponding absolute and relative error tolerance used for float point number comparison. The default values are `atol = 0` and `rtol = atol>0 ? 0 : √eps`. """ function check_pure_state(ρ; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps()) check_density_matrix(ρ) && isapprox(purity(ρ), 1, atol=atol, rtol=rtol) end """ $(SIGNATURES) Generate a Haar random unitary matrix of dimension `(dim, dim)` using the QR decomposition method. # Arguments - `dim::Int`: the dimension of the matrix. # Returns - A Haar random unitary matrix of size `(dim, dim)`. # Details A Haar random unitary matrix is a matrix whose entries are complex numbers of modulus 1, chosen randomly with respect to the Haar measure on the unitary group U(dim). This implementation uses the QR decomposition method, where a complex Gaussian matrix of size `(dim, dim)` is generated, and then it is QR decomposed into the product of an orthogonal matrix and an upper triangular matrix with positive diagonal entries. The diagonal entries are then normalized by their absolute values to obtain the unitary matrix. # Examples ```julia julia> haar_unitary(3) 3×3 Matrix{ComplexF64}: 0.407398+0.544041im 0.799456-0.213793im -0.439273+0.396871im -0.690274-0.288499im 0.347444+0.446328im 0.426262+0.505472im 0.437266-0.497024im -0.067918-0.582238im 0.695026+0.186022im ``` """ function haar_unitary(dim) M = randn(dim,dim)+im*randn(dim, dim) q,r = qr(M) L = diag(r) L=L./abs.(L) q*diagm(0=>L) end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
11079
import LinearAlgebra: normalize """ q_translate(h::String; sp = false) Convert a string `h` representing multi-qubits Pauli matrices summation into its numerical form. Generate sparse matrix when `sp` is set to true. # Examples ```julia-repl julia> q_translate("X+2.0Z") 2×2 Array{Complex{Float64},2}: 2.0+0.0im 1.0+0.0im 1.0+0.0im -2.0+0.0im ``` """ function q_translate(h::String; sp = false) # define operator map to replace [XYZI] with corresponding Pauli matrices function operator_map(x) if sp == false σ_tag = "σ" else σ_tag = "spσ" end res = "" for i in range(1, length = length(x) - 1) res = res * σ_tag * lowercase(x[i]) * "⊗" end res = res * σ_tag * lowercase(x[end]) end h_str = replace(h, r"[XYZI]+" => operator_map) eval(Meta.parse(h_str)) end """ single_clause(ops::Vector{String}, q_ind, weight, num_qubit; sp=false) Construct a single clause of the multi-qubits Hamiltonian. `ops` is a list of Pauli operator names which appear in this clause. `q_ind` is the list of indices corresponding to the Pauli matrices in `ops`. `weight` is the constant factor of this clause. `num_qubit` is the total number of qubits. A sparse matrix can be construct by setting `sp` to `true`. The following example construct a clause of `` Z_1 I Z_3/2 ``. # Examples ```julia-repl julia> single_clause(["z", "z"], [1, 3], 0.5, 3) 8×8 Array{Complex{Float64},2}: 0.5+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.5+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im 0.5+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.5+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.5+0.0im -0.0+0.0im -0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im 0.5-0.0im -0.0+0.0im 0.0-0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im -0.5+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im 0.0-0.0im -0.0+0.0im 0.5-0.0im ``` """ function single_clause(ops::Vector{String}, q_ind, weight, num_qubit; sp = false) if sp == false σ_tag = "σ" i_tag = σi else σ_tag = "spσ" i_tag = spσi end res = weight for i = 1:num_qubit idx = findfirst((x) -> x == i, q_ind) if !isnothing(idx) op2 = eval(Meta.parse(σ_tag * lowercase(ops[idx]))) res = res ⊗ op2 else res = res ⊗ i_tag end end res end """ single_clause(ops::Vector{T}, q_ind, weight, num_qubit; sp=false) where T<:AbstractMatrix Construct a single clause of the multi-qubits Hamiltonian. `ops` is a list of single-qubit operators that appear in this clause. The sparse identity matrix is used once `sp` is set to `true`. The following example construct a clause of `` Z_1 I Z_3/2 ``. # Examples ```julia-repl julia> single_clause([σz, σz], [1, 3], 0.5, 3) 8×8 Array{Complex{Float64},2}: 0.5+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.5+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im 0.5+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.5+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.5+0.0im -0.0+0.0im -0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im 0.5-0.0im -0.0+0.0im 0.0-0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im -0.5+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im 0.0-0.0im -0.0+0.0im 0.5-0.0im ``` """ function single_clause(ops::Vector{T}, q_ind, weight, num_qubit; sp = false) where T<:AbstractMatrix i_tag = sp == false ? σi : spσi res = weight for i = 1:num_qubit idx = findfirst((x) -> x == i, q_ind) if !isnothing(idx) res = res ⊗ ops[idx] else res = res ⊗ i_tag end end res end """ collective_operator(op, num_qubit; sp=false) Construct the collective operator for a system of `num_qubit` qubits. `op` is the name of the collective Pauli matrix. For example, the following code construct an `` IZ + ZI `` matrix. Generate sparse matrix when `sp` is set to true. # Examples ```julia-repl julia> collective_operator("z", 2) 4×4 Array{Complex{Float64},2}: 2.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -2.0+0.0im ``` """ function collective_operator(op, num_qubit; sp = false) op_name = uppercase(op) res = "" for idx = 1:num_qubit res = res * "I"^(idx - 1) * op_name * "I"^(num_qubit - idx) * "+" end q_translate(res[1:end-1]; sp = sp) end """ standard_driver(num_qubit; sp=false) Construct the standard driver Hamiltonian for a system of `num_qubit` qubits. For example, a two qubits standard driver matrix is `` IX + XI ``. Generate sparse matrix when `sp` is set to true. """ function standard_driver(num_qubit; sp = false) res = "" for idx = 1:num_qubit res = res * "I"^(idx - 1) * "X" * "I"^(num_qubit - idx) * "+" end q_translate(res[1:end-1], sp = sp) end """ hamming_weight_operator(num_qubit::Int64, op::String; sp=false) Construct the Hamming weight operator for system of size `num_qubit`. The type of the Hamming weight operator is specified by op: "x", "y" or "z". Generate sparse matrix when `sp` is set to true. # Examples ```julia-repl julia> hamming_weight_operator(2,"z") 4×4 Array{Complex{Float64},2}: 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 2.0+0.0im ``` """ function hamming_weight_operator(num_qubit::Int64, op::String; sp = false) 0.5 * (num_qubit * I - collective_operator(op, num_qubit = num_qubit, sp = sp)) end """ local_field_term(h, idx, num_qubit; sp=false) Construct local Hamiltonian of the form ``∑hᵢσᵢᶻ``. `idx` is the index of all local field terms and `h` is a list of the corresponding weights. `num_qubit` is the total number of qubits. Generate sparse matrix when `sp` is set to true. # Examples ```julia-repl julia> local_field_term([1.0, 0.5], [1, 2], 2) == σz⊗σi+0.5σi⊗σz true ``` """ function local_field_term(h, idx, num_qubit; sp = false) res = single_clause(["z"], [idx[1]], h[1], num_qubit, sp = sp) for i = 2:length(idx) res += single_clause(["z"], [idx[i]], h[i], num_qubit, sp = sp) end res end """ two_local_term(j, idx, num_qubit; sp=false) Construct local Hamiltonian of the form ``∑Jᵢⱼσᵢᶻσⱼᶻ``. `idx` is the index of all two local terms and `j` is a list of the corresponding weights. `num_qubit` is the total number of qubits. Generate sparse matrix when `sp` is set to true. # Examples ```julia-repl julia> two_local_term([1.0, 0.5], [[1,2], [1,3]], 3) == σz⊗σz⊗σi + 0.5σz⊗σi⊗σz true ``` """ function two_local_term(j, idx, num_qubit; sp = false) res = single_clause(["z", "z"], idx[1], j[1], num_qubit, sp = sp) for i = 2:length(idx) res += single_clause(["z", "z"], idx[i], j[i], num_qubit, sp = sp) end res end """ q_translate_state(h::String; normal=false) Convert a string representation of quantum state to a vector. The keyword argument `normal` indicates whether to normalize the output vector. (Currently only '0' and '1' are supported) # Examples Single term: ```julia-repl julia> q_translate_state("001") 8-element Array{Complex{Float64},1}: 0.0 + 0.0im 1.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im ``` Multiple terms: ```julia-repl julia> q_translate_state("(101)+(001)", normal=true) 8-element Array{Complex{Float64},1}: 0.0 + 0.0im 0.7071067811865475 + 0.0im 0.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im 0.7071067811865475 + 0.0im 0.0 + 0.0im 0.0 + 0.0im ``` """ function q_translate_state(h::String; normal = false) # TODO: add "+", "-" into the symbol list if occursin("(", h) || occursin(")", h) h_str = replace( h, r"\(([01]+)\)" => (x) -> begin res = "" for i in range(2, length = length(x) - 3) res = res * "PauliVec[3]" * "[" * string(parse(Int, x[i]) + 1) * "]" * "⊗" end res = res * "PauliVec[3]" * "[" * string(parse(Int, x[end-1]) + 1) * "]" end, ) else h_str = replace( h, r"[01]+" => (x) -> begin res = "" for i in range(1, length = length(x) - 1) res = res * "PauliVec[3]" * "[" * string(parse(Int, x[i]) + 1) * "]" * "⊗" end res = res * "PauliVec[3]" * "[" * string(parse(Int, x[end]) + 1) * "]" end, ) end res = eval(Meta.parse(h_str)) if normal == true normalize(res) else res end end """ $(SIGNATURES) Return the creation operator truncated at `num_levels`. # Examples ```julia-repl julia> creation_operator(3) 3×3 LinearAlgebra.Bidiagonal{Float64, Vector{Float64}}: 0.0 ⋅ ⋅ 1.0 0.0 ⋅ ⋅ 1.41421 0.0 ``` """ creation_operator(num_levels::Int) = Bidiagonal(zeros(num_levels), sqrt.(1:num_levels-1), :L) """ $(SIGNATURES) Return the annihilation operator truncated at `num_levels`. # Examples ```julia-repl julia> annihilation_operator(3) 3×3 LinearAlgebra.Bidiagonal{Float64, Vector{Float64}}: 0.0 1.0 ⋅ ⋅ 0.0 1.41421 ⋅ ⋅ 0.0 ``` """ annihilation_operator(num_levels::Int) = Bidiagonal(zeros(num_levels), sqrt.(1:num_levels-1), :U); """ $(SIGNATURES) Return the number operator truncated at `num_levels`. # Examples ```julia-repl julia> number_operator(3) 3×3 LinearAlgebra.Diagonal{Int64, UnitRange{Int64}}: 0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 2 ``` """ number_operator(num_levels::Int) = Diagonal(0:num_levels-1)
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
775
ħ = 1.054571800e-34 Planck = 6.626070040e-34 Boltzmann = 1.38064852e-23 _h = 6.62607004 _k = 1.38064852 """ temperature_2_β(T) Convert physical temperature `T` in mK to thermodynamic `β` in the unit of inverse angular frequency, that is to say ``β = ħ/kT``. """ function temperature_2_β(T) 5*_h/_k/pi/T end """ temperature_2_freq(T) Convert temperature from mK to GHz. """ function temperature_2_freq(T) _k/_h/10*T end """ β_2_temperature(β) Convert thermodynamic `β` in the unit of inverse angular frequency to physical temperature `T` in GHz. """ function β_2_temperature(β) 5*_h/_k/pi/β end """ freq_2_temperature(freq) Convert frequency in GHz to temperature in mK. """ function freq_2_temperature(freq) 10 * freq * _h / _k end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
2094
""" $(TYPEDEF) `Annealing` type defines the evolution of a time-dependent Hamiltonian in both closed-system and open-system settings. It is called `Annealing` because HOQST started as a toolbox for quantum annealing. # Fields $(FIELDS) """ mutable struct Annealing{constant_hamiltonian} <: AbstractAnnealing{constant_hamiltonian} "Hamiltonian for the annealing." H "Initial state for the annealing." u0 "Function of annealing parameter s wrt to t" annealing_parameter::Any "A system bath interaction set." interactions::Union{InteractionSet,Nothing} end Evolution = Annealing function Annealing( H::AbstractHamiltonian{T}, u0; coupling=nothing, bath=nothing, interactions=nothing, annealing_parameter=(tf, t) -> t / tf ) where {T} if !isnothing(coupling) && !isnothing(bath) if !isnothing(interactions) throw(ArgumentError("Both interactions and coupling/bath are specified. Please merge coupling/bath into interactions.")) end interactions = InteractionSet(Interaction(coupling, bath)) end H = (T <: Complex) ? H : convert(Complex, H) Annealing{isconstant(H)}(H, u0, annealing_parameter, interactions) end set_u0!(A::Annealing, u0) = A.u0 = u0 set_annealing_parameter!(A::Annealing, param) = A.annealing_parameter = param """ $(TYPEDEF) The `ODEParams` struct represents a complete set of parameters for an Ordinary Differential Equation (ODE), including the Liouville operator, total evolution time, an annealing parameter function, and an object storing accepted keyword arguments for subroutines. # Fields $(FIELDS) """ struct ODEParams "Liouville operator" L::Any "Total evolution time" tf::Real "Function to convert physical time to annealing parameter" annealing_parameter::Function "Keyword arguments for subroutines" accepted_kwargs::Any end # TODO: filter the keyword argument ODEParams(L, tf::Real, annealing_param; kwargs...) = ODEParams(L, tf, annealing_param, kwargs) (P::ODEParams)(t::Real) = P.annealing_parameter(P.tf, t)
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
970
Base.summary(annealing::AbstractAnnealing) = string( TYPE_COLOR, nameof(typeof(annealing)), NO_COLOR, " with ", TYPE_COLOR, typeof(annealing.H), NO_COLOR, " and u0 ", TYPE_COLOR, typeof(annealing.u0), NO_COLOR, ) function Base.show(io::IO, A::AbstractAnnealing) println(io, summary(A)) print(io, "u0 size: ") show(io, size(A.u0)) end Base.summary(interaction::Interaction) = string( TYPE_COLOR, nameof(typeof(interaction)), NO_COLOR, ) function Base.show(io::IO, I::Interaction) print(io, summary(I)) print(io, " with ") show(io, I.coupling) println(io) print(io, "and bath: ") show(io, I.bath) end Base.summary(interactions::InteractionSet) = string( TYPE_COLOR, nameof(typeof(interactions)), NO_COLOR, ) function Base.show(io::IO, I::InteractionSet) print(io, summary(I)) print(io, " with ") show(io, length(I)) print(io, " interactions") end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
3665
""" $(TYPEDEF) Base for types defining stochastic bath object. """ abstract type StochasticBath <: AbstractBath end build_correlation(bath::AbstractBath) = SingleFunctionMatrix((t₁, t₂) -> correlation(t₁ - t₂, bath)) build_spectrum(bath::AbstractBath) = (ω) -> spectrum(ω, bath) """ $(SIGNATURES) Calculate the Lamb shift of `bath`. All the keyword arguments of `quadgk` function is supported. """ S(w, bath::AbstractBath; kwargs...) = lambshift(w, (ω) -> spectrum(ω, bath); kwargs...) """ $(SIGNATURES) Calculate spectral density ``γ(ω)`` of `bath`. """ γ(ω, bath::AbstractBath) = spectrum(ω, bath) function build_lambshift(ω_range::AbstractVector, turn_on::Bool, bath::AbstractBath, lambshift_kwargs::Dict) if turn_on == true if isempty(ω_range) S_loc = (ω) -> S(ω, bath; lambshift_kwargs...) else s_list = [S(ω, bath; lambshift_kwargs...) for ω in ω_range] S_loc = construct_interpolations(ω_range, s_list) end else S_loc = (ω) -> 0.0 end S_loc end # This function is for compatibility purpose build_lambshift(ω_range::AbstractVector, turn_on::Bool, bath::AbstractBath, ::Nothing) = build_lambshift(ω_range, turn_on, bath, Dict()) """ $(SIGNATURES) Calculate the two point correlation function ``C(t1, t2)`` of `bath`. Fall back to `correlation(t1-t2, bath)` unless otherwise defined. """ @inline correlation(t1, t2, bath::AbstractBath) = correlation(t1 - t2, bath) """ $(SIGNATURES) Calculate the bath time scale ``τ_{SB}`` from the bath correlation function `cfun`. ``τ_{SB}`` is defined as ``1/τ_{SB}=∫_0^∞ |C(τ)|dτ``. The upper limit of the integration can be modified using keyword `lim`. `atol` and `rtol` are the absolute and relative error tolerance of the integration. """ function τ_SB(cfun; lim=Inf, rtol=sqrt(eps()), atol=0) res, err = quadgk((x) -> abs(cfun(x)), 0, lim, rtol=rtol, atol=atol) 1 / res, err / abs2(res) end """ $(SIGNATURES) Calculate the bath time scale ``τ_{SB}`` for the `bath` object. """ τ_SB(bath::AbstractBath; lim=Inf, rtol=sqrt(eps()), atol=0) = τ_SB((t) -> correlation(t, bath), lim=lim, rtol=rtol, atol=atol) """ $(SIGNATURES) Calculate the bath time scale ``τ_B`` from the correlation function `cfun`. ``τ_B`` is defined as ``τ_B/τ_{SB} = ∫_0^T τ|C(τ)|dτ``. The upper limit of the integration ``T`` is specified by `lim`. `τsb` is the other bath time scale ``1/τ_{SB}=∫_0^∞ |C(τ)|dτ``. `atol` and `rtol` are the absolute and relative error tolerance for the integration. """ function τ_B(cfun, lim, τsb; rtol=sqrt(eps()), atol=0) res, err = quadgk((x) -> x * abs(cfun(x)), 0, lim, rtol=rtol, atol=atol) res * τsb, err * τsb end """ $(SIGNATURES) Calculate the bath time scale ``τ_B`` for the `bath` object. """ τ_B(bath::AbstractBath, lim, τsb; rtol=sqrt(eps()), atol=0) = τ_B((t) -> correlation(t, bath), lim, τsb; rtol=rtol, atol=atol) function coarse_grain_timescale(cfun, lim; rtol=sqrt(eps()), atol=0) τsb, err_sb = τ_SB(cfun, rtol=rtol, atol=atol) τb, err_b = τ_B(cfun, lim, τsb, rtol=rtol, atol=atol) sqrt(τsb * τb / 5), (err_sb * τb + τsb * err_b) / 10 / sqrt(τsb * τb / 5) end """ $(SIGNATURES) Calculate the optimal coarse grain time scale ``T_a=√{τ_{SB}τ_B/5}`` for a total evolution time `lim`. `atol` and `rtol` are the absolute and relative error for the integration. """ function coarse_grain_timescale( bath::AbstractBath, lim; rtol=sqrt(eps()), atol=0 ) τsb, err_sb = τ_SB(bath, rtol=rtol, atol=atol) τb, err_b = τ_B(bath, lim, τsb, rtol=rtol, atol=atol) sqrt(τsb * τb / 5), (err_sb * τb + τsb * err_b) / 10 / sqrt(τsb * τb / 5) end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git
[ "MIT" ]
0.7.9
fb083fe83f74926e63328d412d6d37838142c524
code
3135
""" $(TYPEDEF) An custum bath object defined by the two-point correlation function and the corresponding spectrum. $(FIELDS) """ mutable struct CustomBath{lambshift} <: AbstractBath "correlation function" cfun::Any "spectrum" γ::Any "lambshift S function" lamb::Any end function CustomBath(; correlation=nothing, spectrum=nothing, lambshift=nothing) correlation === nothing ? @warn("Correlation not specified. Certain solvers may not work for this bath object.") : nothing spectrum === nothing ? @warn("Spectrum not specified. Certain solvers may not work for this bath object.") : nothing lamb = lambshift === nothing ? false : true CustomBath{lamb}(correlation, spectrum, lambshift) end correlation(τ, bath::CustomBath) = bath.cfun(τ) spectrum(ω, bath::CustomBath) = bath.γ(ω) S(w, bath::CustomBath{true}; kwargs...) = bath.lamb(w; kwargs...) function build_correlation(bath::CustomBath) isnothing(bath.cfun) && error("Correlation function is not specified.") if numargs(bath.cfun) == 1 SingleFunctionMatrix((t₁, t₂) -> bath.cfun(t₁ - t₂)) else SingleFunctionMatrix(bath.cfun) end end build_spectrum(bath::CustomBath) = isnothing(bath.γ) ? error("Noise spectrum is not specified.") : bath.γ """ $(TYPEDEF) `CorrelatedBath` defines a correlated bath type by the matrices of its two-point correlation functions and corresponding spectrums. $(FIELDS) """ mutable struct CorrelatedBath <: AbstractBath "correlation function" cfun::Any "spectrum" γ::Any "bath correlator idx" inds::Any end CorrelatedBath(inds; correlation=nothing, spectrum=nothing) = CorrelatedBath(correlation, spectrum, inds) build_correlation(bath::CorrelatedBath) = isnothing(bath.cfun) ? throw(ArgumentError("Correlation function is not specified.")) : bath.cfun build_spectrum(bath::CorrelatedBath) = isnothing(bath.γ) ? error("Spectrum is not specified.") : bath.γ build_inds(bath::CorrelatedBath) = bath.inds function build_lambshift(ω_range::AbstractVector, turn_on::Bool, bath::CorrelatedBath, lambshift_kwargs::Dict) gamma = build_spectrum(bath) l = size(gamma) if turn_on == true if isempty(ω_range) S_loc = Array{Function,2}(undef, l) for i in eachindex(gamma) S_loc[i] = (w) -> lambshift(w, gamma[i]; lambshift_kwargs...) end else S_loc = Array{Any,2}(undef, l) for i in eachindex(gamma) s_list = [lambshift(ω, gamma[i]; lambshift_kwargs...) for ω in ω_range] S_loc[i] = construct_interpolations(ω_range, s_list) end end else S_loc = Array{Function,2}(undef, size(gamma)) S_loc .= (ω) -> 0.0 end S_loc end """ $(TYPEDEF) A bath object to hold jump correlator of ULE. $(FIELDS) """ struct ULEBath <: AbstractBath "correlation function" cfun::Any end function build_jump_correlation(bath::ULEBath) if numargs(bath.cfun) == 1 SingleFunctionMatrix((t₁, t₂) -> bath.cfun(t₁ - t₂)) else SingleFunctionMatrix(bath.cfun) end end
OpenQuantumBase
https://github.com/USCqserver/OpenQuantumBase.jl.git