licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2251
using Documenter, Mera makedocs(modules = [Mera], sitename = "Mera.jl", doctest = false, clean = true, checkdocs = :all, format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true", sidebar_sitename = false), authors = "Manuel Behrendt", pages = Any[ "Home" => "index.md", "First Steps" => "00_multi_FirstSteps.md", "1-Data Inspection" => Any[ "Hydro" => "01_hydro_First_Inspection.md", "Particles" => "01_particles_First_Inspection.md", "Clumps" => "01_clumps_First_Inspection.md"], "2-Load by Selection" => Any[ "Hydro" => "02_hydro_Load_Selections.md", "Particles" => "02_particles_Load_Selections.md", "Clumps" => "02_clumps_Load_Selections.md"], "3-Get Subregions" => Any[ "Hydro" => "03_hydro_Get_Subregions/03_hydro_Get_Subregions.md", "Particles" => "03_particles_Get_Subregions/03_particles_Get_Subregions.md", "Clumps" => "03_clumps_Get_Subregions/03_clumps_Get_Subregions.md"], "4-Basic Calculations" => "04_multi_Basic_Calculations.md", "5-Mask/Filter/Meta" => "05_multi_Masking_Filtering/05_multi_Masking_Filtering.md", "6-Projection" => Any[ "Hydro" => "06_hydro_Projection/06_hydro_Projection.md", "Particles" => "06_particles_Projection/06_particles_Projection.md"], "7-MERA-Files" => "07_multi_Mera_Files.md", "8-Miscellaneous" => "Miscellaneous.md", "Examples" => "examples.md", "API Documentation" => "api.md" ] ) deploydocs(repo = "github.com/ManuelBehrendt/Mera.jl.git")
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
5107
__precompile__(true) module Mera # ================================================================== # Read/Save and process large AMR/particle data sets # of hydrodynamic simulations with Julia! # # Manuel Behrendt, since 2017 # Max-Planck-Institute for extraterrestrial Physics, Garching # Ludwig-Maximillians-University, Munich # # https://github.com/ManuelBehrendt/Mera.jl # # Credits: # The RAMSES-files reader are strongly influenced # by Romain Teyssier's amr2map.f90 and part2mapf.90 # ================================================================== # Julia libraries using Printf using Dates using Statistics using Pkg # external libraries using FortranFiles using JuliaDB using DataStructures using ElasticArrays using StructArrays using ProgressMeter using StatsBase using OnlineStats using ImageTransformations using JLD2, CodecZlib, CodecBzip2, CodecLz4 using TimerOutputs using WAV global verbose_mode = nothing global showprogress_mode = nothing export verbose_mode, verbose, showprogress_mode, showprogress, # data reader getunit, getinfo, createpath, gethydro, getgravity, getparticles, getclumps, # mera files savedata, loaddata, viewdata, infodata, convertdata, # data_overview printtime, usedmemory, viewfields, namelist, makefile, timerfile, patchfile, viewallfields, storageoverview, amroverview, dataoverview, checkoutputs, checksimulations, gettime, # basic calcs msum, center_of_mass, com, bulk_velocity, average_velocity, average_mweighted, getvar, getmass, getpositions, getvelocities, getextent, wstat, # projection, #slice, #profile, #remap, subregion, shellregion, # miscellaneous viewmodule, construct_datatype, createscales, humanize, bell, notifyme, #types ScalesType001, ScalesType, ArgumentsType, PhysicalUnitsType001, PhysicalUnitsType, GridInfoType, PartInfoType, FileNamesType, CompilationInfoType, InfoType, DescriptorType, DataSetType, ContainMassDataSetType, HydroPartType, HydroDataType, GravDataType, PartDataType, ClumpDataType, DataMapsType, HydroMapsType, PartMapsType, Histogram2DMapType, MaskType, MaskArrayType, MaskArrayAbstractType include("types.jl") include("types_old.jl") include("functions/miscellaneous.jl") include("functions/overview.jl") include("functions/basic_calc.jl") # Get variables/quantities include("functions/getvar.jl") include("functions/getvar_hydro.jl") include("functions/getvar_gravity.jl") include("functions/getvar_particles.jl") include("functions/getvar_clumps.jl") # ============================================ include("read_data/RAMSES/filepaths.jl") include("read_data/RAMSES/getinfo.jl") include("functions/viewfields.jl") include("functions/checks.jl") include("functions/prepranges.jl") include("read_data/RAMSES/prepvariablelist.jl") include("read_data/RAMSES/hilbert3d.jl") # Data reader include("read_data/RAMSES/gethydro.jl") include("read_data/RAMSES/reader_hydro.jl") include("read_data/RAMSES/getgravity.jl") include("read_data/RAMSES/reader_gravity.jl") include("read_data/RAMSES/getparticles.jl") include("read_data/RAMSES/reader_particles.jl") include("read_data/RAMSES/getclumps.jl") # ============================================ # Mera files # new: JLD2 format include("functions/data_save.jl") include("functions/data_load.jl") include("functions/data_view.jl") include("functions/data_info.jl") include("functions/data_convert.jl") # ============================================ # projection, slice include("functions/projection.jl") #include("functions/slice.jl") include("functions/projection_hydro.jl") include("functions/projection_particles.jl") # ============================================ # profile #include("functions/profile.jl") # ============================================ # Subregion include("functions/subregion.jl") include("functions/subregion_hydro.jl") include("functions/subregion_gravity.jl") include("functions/subregion_particles.jl") include("functions/subregion_clumps.jl") # ============================================ # Shellregion include("functions/shellregion.jl") include("functions/shellregion_hydro.jl") include("functions/shellregion_gravity.jl") include("functions/shellregion_particles.jl") include("functions/shellregion_clumps.jl") # ============================================ # Functions under development pkgdir = joinpath(@__DIR__, "dev/dev.jl") if isfile(pkgdir) include(pkgdir) end # ============================================ println() println( "*__ __ _______ ______ _______ ") println( "| |_| | | _ | | _ |") println( "| | ___| | || | |_| |") println( "| | |___| |_||_| |") println( "| | ___| __ | |") println( "| ||_|| | |___| | | | _ |") println( "|_| |_|_______|___| |_|__| |__|") println() end # module
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
13081
""" Mutable Struct: Contains the created scale factors from code to physical units """ mutable struct ScalesType001 # exported # length Mpc::Float64 kpc::Float64 pc::Float64 mpc::Float64 ly::Float64 Au::Float64 km::Float64 m::Float64 cm::Float64 mm::Float64 μm::Float64 # volume Mpc3::Float64 kpc3::Float64 pc3::Float64 mpc3::Float64 ly3::Float64 Au3::Float64 km3::Float64 m3::Float64 cm3::Float64 mm3::Float64 μm3::Float64 # density Msol_pc3::Float64 Msun_pc3::Float64 g_cm3::Float64 # surface Msol_pc2::Float64 Msun_pc2::Float64 g_cm2::Float64 # time Gyr::Float64 Myr::Float64 yr::Float64 s::Float64 ms::Float64 # mass Msol::Float64 Msun::Float64 Mearth::Float64 Mjupiter::Float64 g::Float64 # speed km_s::Float64 m_s::Float64 cm_s::Float64 nH::Float64 erg::Float64 g_cms2::Float64 T_mu::Float64 K_mu::Float64 T::Float64 K::Float64 Ba::Float64 g_cm_s2::Float64 p_kB::Float64 K_cm3::Float64 ScalesType001() = new() end """ Mutable Struct: Contains the physical constants in cgs units """ mutable struct PhysicalUnitsType001 # exported # in cgs units Au::Float64#cm: Astronomical unit Mpc::Float64 #cm: Parsec kpc::Float64 #cm: Parsec pc::Float64 #cm: Parsec mpc::Float64 #cm: MilliParsec ly::Float64 #cm: Light year Msol::Float64 #g: Solar mass Msun::Float64 #g: Sun mass Mearth::Float64 #g: Earth mass Mjupiter::Float64 #g: Jupiter mass Rsol::Float64 #cm: Solar radius Rsun::Float64 # Lsol = #erg s-2: Solar luminosity # Mearth = #g: Earh mass me::Float64 #g: electron mass mp::Float64 #g: proton mass mn::Float64 #g: neutron mass mH::Float64 #g: hydrogen mass amu::Float64 #g: atomic mass unit NA::Float64 # Avagadro's number c::Float64 #cm s-1: speed of light in a vacuum # h = #erg s: Planck constant # hbar = #erg s G::Float64 # cm3 g-1 g-2 Gravitational constant kB::Float64 #erg k-1 Boltzmann constant Gyr::Float64 #sec: defined as 365.25 days Myr::Float64 #sec: defined as 365.25 days yr::Float64 #sec: defined as 365.25 days PhysicalUnitsType001() = new() end mutable struct FileNamesType output::String info::String amr::String hydro::String hydro_descriptor::String gravity::String particles::String part_descriptor::String rt::String rt_descriptor::String rt_descriptor_v0::String clumps::String timer::String header::String namelist::String compilation::String makefile::String patchfile::String FileNamesType() = new() end """ Mutable Struct: Contains the collected information about grid """ mutable struct GridInfoType # exported ngridmax::Int nstep_coarse::Int nx::Int ny::Int nz::Int nlevelmax::Int nboundary::Int ngrid_current::Int bound_key::Array{Float64,1} cpu_read::Array{Bool,1} GridInfoType() = new() end """ Mutable Struct: Contains the collected information about particles """ mutable struct PartInfoType # exported eta_sn::Float64 age_sn::Float64 f_w::Float64 Npart::Int Ndm::Int Nstars::Int Nsinks::Int Ncloud::Int Ndebris::Int Nother::Int Nundefined::Int other_tracer1::Int debris_tracer::Int cloud_tracer::Int star_tracer::Int other_tracer2::Int gas_tracer::Int PartInfoType() = new() end """ Mutable Struct: Contains the collected information about the compilation of RAMSES """ mutable struct CompilationInfoType # exported compile_date::String patch_dir::String remote_repo::String local_branch::String last_commit::String CompilationInfoType() = new() end """ Mutable Struct: Contains the collected information about the descriptors """ mutable struct DescriptorType # exported hversion::Int hydro::Array{Symbol,1} htypes::Array{String,1} usehydro::Bool hydrofile::Bool pversion::Int particles::Array{Symbol,1} ptypes::Array{String,1} useparticles::Bool particlesfile::Bool gravity::Array{Symbol,1} usegravity::Bool gravityfile::Bool rtversion::Int rt::Dict{Any,Any} rtPhotonGroups::Dict{Any,Any} usert::Bool rtfile::Bool clumps::Array{Symbol,1} useclumps::Bool clumpsfile::Bool sinks::Array{Symbol,1} usesinks::Bool sinksfile::Bool DescriptorType() = new() end mutable struct FilesContentType makefile::Array{String,1} timerfile::Array{String,1} patchfile::Array{String,1} FilesContentType() = new() end """ Mutable Struct: Collected information about the selected simulation output """ mutable struct InfoType # exported output::Real path::String fnames::FileNamesType simcode::String mtime::DateTime ctime::DateTime ncpu::Int ndim::Int levelmin::Int levelmax::Int boxlen::Float64 time::Float64 aexp::Float64 H0::Float64 omega_m::Float64 omega_l::Float64 omega_k::Float64 omega_b::Float64 unit_l::Float64 unit_d::Float64 unit_m::Float64 unit_v::Float64 unit_t::Float64 gamma::Float64 hydro::Bool nvarh::Int # number of hydro variables nvarp::Int # number of particle variables nvarrt::Int # number of rt variables variable_list::Array{Symbol,1} # hydro variable list gravity_variable_list::Array{Symbol,1} particles_variable_list::Array{Symbol,1} rt_variable_list::Array{Symbol,1} clumps_variable_list::Array{Symbol,1} sinks_variable_list::Array{Symbol,1} descriptor::DescriptorType amr::Bool gravity::Bool particles::Bool rt::Bool clumps::Bool sinks::Bool namelist::Bool namelist_content::Dict{Any,Any} headerfile::Bool makefile::Bool files_content::FilesContentType timerfile::Bool compilationfile::Bool patchfile::Bool Narraysize::Int scale::ScalesType001 grid_info::GridInfoType part_info::PartInfoType compilation::CompilationInfoType constants::PhysicalUnitsType001 #overview::simulation_overview #cpu_overview::cpu_overview_type #boxcenter::Array{Float64,1} InfoType() = new() end mutable struct LevelType imin::Int imax::Int jmin::Int jmax::Int kmin::Int kmax::Int end """ Abstract Supertype of all the different dataset types > HydroPartType <: ContainMassDataSetType <: DataSetType """ abstract type DataSetType end # exported """ Abstract Supertype of all datasets that contain mass variables > HydroPartType <: ContainMassDataSetType <: DataSetType """ abstract type ContainMassDataSetType <: DataSetType end # exported """ Abstract Supertype of data-sets that contain hydro and particle data > HydroPartType <: ContainMassDataSetType <: DataSetType """ abstract type HydroPartType <: ContainMassDataSetType end # exported """ Mutable Struct: Contains hydro data and information about the selected simulation > HydroDataType <: HydroPartType """ mutable struct HydroDataType <: HydroPartType # exported data::JuliaDB.AbstractIndexedTable info::InfoType lmin::Int lmax::Int boxlen::Float64 ranges::Array{Float64,1} selected_hydrovars::Array{Int,1} used_descriptors::Dict{Any,Any} smallr::Float64 smallc::Float64 scale::ScalesType001 HydroDataType() = new() end # exported mutable struct GravDataType <: DataSetType data::JuliaDB.AbstractIndexedTable info::InfoType lmin::Int lmax::Int boxlen::Float64 ranges::Array{Float64,1} selected_gravvars::Array{Int,1} used_descriptors::Dict{Any,Any} scale::ScalesType001 GravDataType() = new() end """ Mutable Struct: Contains particle data and information about the selected simulation > PartDataType <: HydroPartType """ mutable struct PartDataType <: HydroPartType #exported data::JuliaDB.AbstractIndexedTable info::InfoType lmin::Int lmax::Int boxlen::Float64 ranges::Array{Float64,1} selected_partvars::Array{Symbol,1} used_descriptors::Dict{Any,Any} scale::ScalesType001 PartDataType() = new() end """ Mutable Struct: Contains clump data and information about the selected simulation > ClumpDataType <: ContainMassDataSetType """ mutable struct ClumpDataType <: ContainMassDataSetType # exported data info::InfoType boxlen::Float64 ranges::Array{Float64,1} selected_clumpvars::Array{Symbol,1} used_descriptors::Dict{Any,Any} scale::ScalesType001 ClumpDataType() = new() end """ Union Type: Mask-array that is of type Bool or BitArray MaskType = Union{Array{Bool,1},BitArray{1}} """ MaskType = Union{Array{Bool,1},BitArray{1}} # exported MaskArrayType = Union{ Array{Array{Bool,1},1}, Array{BitArray{1},1} } MaskArrayAbstractType = Union{ MaskArrayType, Array{AbstractArray{Bool,1},1} } # used for the combined center_of_mass function #HydroPartType = Union{HydroDataType, PartDataType} """ Mutable Struct: Contains the output statistics returned by wstat """ mutable struct WStatType mean::Float64 median::Float64 std::Float64 skewness::Float64 kurtosis::Float64 min::Float64 max::Float64 end """ Abstract Supertype of all the different dataset type maps HydroMapsType <: DataMapsType PartMapsType <: DataMapsType """ abstract type DataMapsType end # exported """ Mutable Struct: Contains the maps/units returned by the hydro-projection information about the selected simulation """ mutable struct HydroMapsType <: DataMapsType maps::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_unit::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_lmax::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_weight::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_mode::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} lmax_projected::Real lmin::Int lmax::Int ranges::Array{Float64,1} extent::Array{Float64,1} cextent::Array{Float64,1} ratio::Float64 effres::Int pixsize::Float64 boxlen::Float64 smallr::Float64 smallc::Float64 scale::ScalesType001 info::InfoType end """ Mutable Struct: Contains the maps/units returned by the particles-projection information about the selected simulation """ mutable struct PartMapsType <: DataMapsType maps::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_unit::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_lmax::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} maps_mode::DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} lmax_projected::Real lmin::Int lmax::Int ref_time::Real ranges::Array{Float64,1} extent::Array{Float64,1} cextent::Array{Float64,1} ratio::Float64 effres::Int pixsize::Float64 boxlen::Float64 scale::ScalesType001 info::InfoType end """ Mutable Struct: Contains the 2D histogram returned by the function: histogram2 and information about the selected simulation """ mutable struct Histogram2DMapType map::Array{Float64,2} closed::Symbol weight::Tuple{Symbol,Symbol} nbins::Array{Int,1} xrange::StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}} yrange::StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}} extent::Array{Float64,1} ratio::Float64 scale::ScalesType001 info::InfoType end """ Mutable Struct: Contains the existing simulation snapshots in a folder and a list of the empty output-folders """ mutable struct CheckOutputNumberType outputs::Array{Int,1} miss::Array{Int,1} path::String end """ Mutable Struct: Contains fields to use as arguments in functions """ Base.@kwdef mutable struct ArgumentsType pxsize::Union{Array{<:Any,1}, Missing} = missing res::Union{Real, Missing} = missing lmax::Union{Real, Missing} = missing xrange::Union{Array{<:Any,1}, Missing} = missing yrange::Union{Array{<:Any,1}, Missing} = missing zrange::Union{Array{<:Any,1}, Missing} = missing radius::Union{Array{<:Real,1}, Missing} = missing height::Union{Real, Missing} = missing direction::Union{Symbol, Missing} = missing plane::Union{Symbol, Missing} = missing plane_ranges::Union{Array{<:Any,1}, Missing} = missing thickness::Union{Real, Missing} = missing position::Union{Real, Missing} = missing center::Union{Array{<:Any,1}, Missing} = missing range_unit::Union{Symbol, Missing} = missing data_center::Union{Array{<:Any,1}, Missing} = missing data_center_unit::Union{Symbol, Missing} = missing verbose::Union{Bool, Missing} = missing show_progress::Union{Bool, Missing} = missing end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2358
""" Mutable Struct: Contains the created scale factors from code to physical units """ mutable struct ScalesType # exported # length Mpc::Float64 kpc::Float64 pc::Float64 mpc::Float64 ly::Float64 Au::Float64 km::Float64 m::Float64 cm::Float64 mm::Float64 μm::Float64 # volume Mpc3::Float64 kpc3::Float64 pc3::Float64 mpc3::Float64 ly3::Float64 Au3::Float64 km3::Float64 m3::Float64 cm3::Float64 mm3::Float64 μm3::Float64 # density Msol_pc3::Float64 g_cm3::Float64 # surface Msol_pc2::Float64 g_cm2::Float64 # time Gyr::Float64 Myr::Float64 yr::Float64 s::Float64 ms::Float64 # mass Msol::Float64 Mearth::Float64 Mjupiter::Float64 g::Float64 # speed km_s::Float64 m_s::Float64 cm_s::Float64 nH::Float64 erg::Float64 g_cms2::Float64 T_mu::Float64 Ba::Float64 ScalesType() = new() end """ Mutable Struct: Contains the physical constants in cgs units """ mutable struct PhysicalUnitsType # exported # in cgs units Au::Float64#cm: Astronomical unit Mpc::Float64 #cm: Parsec kpc::Float64 #cm: Parsec pc::Float64 #cm: Parsec mpc::Float64 #cm: MilliParsec ly::Float64 #cm: Light year Msol::Float64 #g: Solar mass Mearth::Float64 #g: Earth mass Mjupiter::Float64 #g: Jupiter mass Rsol::Float64 #cm: Solar radius # Lsol = #erg s-2: Solar luminosity # Mearth = #g: Earh mass me::Float64 #g: electron mass mp::Float64 #g: proton mass mn::Float64 #g: neutron mass mH::Float64 #g: hydrogen mass amu::Float64 #g: atomic mass unit NA::Float64 # Avagadro's number c::Float64 #cm s-1: speed of light in a vacuum # h = #erg s: Planck constant # hbar = #erg s G::Float64 # cm3 g-1 g-2 Gravitational constant kB::Float64 #erg k-1 Boltzmann constant Gyr::Float64 #sec: defined as 365.25 days Myr::Float64 #sec: defined as 365.25 days yr::Float64 #sec: defined as 365.25 days PhysicalUnitsType() = new() end #------------------ # prepare with rconvert to load also older data types JLD2.rconvert(::Type{ScalesType001}, nt::NamedTuple) = ScalesType001() JLD2.rconvert(::Type{PhysicalUnitsType001}, nt::NamedTuple) = PhysicalUnitsType001() #------------------
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
12460
""" #### Calculate the total mass of any ContainMassDataSetType: ```julia msum(dataobject::ContainMassDataSetType; unit::Symbol=:standard, mask::MaskType=[false]) return Float64 ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "ContainMassDataSetType" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units) :Msol, :Mearth, :Mjupiter, :g, :kg (of typye Symbol) ..etc. ; see for defined mass-scales viewfields(info.scale) - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) """ function msum(dataobject::ContainMassDataSetType, unit::Symbol; mask::MaskType=[false]) return msum(dataobject, unit=unit, mask=mask) end function msum(dataobject::ContainMassDataSetType; unit::Symbol=:standard, mask::MaskType=[false]) return sum( getvar(dataobject, :mass, unit=unit, mask=mask) ) end """ #### Calculate the center-of-mass of any ContainMassDataSetType: ```julia center_of_mass(dataobject::ContainMassDataSetType; unit::Symbol=:standard, mask::MaskType=[false]) return Tuple{Float64, Float64, Float64,} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "ContainMassDataSetType" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) """ function center_of_mass(dataobject::ContainMassDataSetType, unit::Symbol; mask::MaskType=[false]) return center_of_mass(dataobject, unit=unit, mask=mask) end function center_of_mass(dataobject::ContainMassDataSetType; unit::Symbol=:standard, mask::MaskType=[false]) selected_unit = getunit(dataobject.info, unit) return ( average_mweighted(dataobject, :x, mask=mask), average_mweighted(dataobject, :y, mask=mask), average_mweighted(dataobject, :z, mask=mask) ) .* selected_unit end """ #### Calculate the center-of-mass of any ContainMassDataSetType: ```julia com(dataobject::ContainMassDataSetType; unit::Symbol=:standard, mask::MaskType=[false]) return Tuple{Float64, Float64, Float64,} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "ContainMassDataSetType" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) """ function com(dataobject::ContainMassDataSetType, unit::Symbol; mask::MaskType=[false]) return center_of_mass(dataobject, unit, mask=mask) end function com(dataobject::ContainMassDataSetType; unit::Symbol=:standard, mask::MaskType=[false]) return center_of_mass(dataobject, unit=unit, mask=mask) end """ #### Calculate the joint center-of-mass of any HydroPartType: ```julia center_of_mass(dataobject::Array{HydroPartType,1}, unit::Symbol; mask::MaskArrayAbstractType=[[false],[false]]) return Tuple{Float64, Float64, Float64,} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "Array{HydroPartType,1}"" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`mask`:** needs to be of type MaskArrayAbstractType which contains two entries with supertype of Array{Bool,1} or BitArray{1} and the length of the database (rows) """ function center_of_mass(dataobject::Array{HydroPartType,1}, unit::Symbol; mask::MaskArrayAbstractType=[[false],[false]]) return center_of_mass(dataobject; unit=unit, mask=mask) end function center_of_mass(dataobject::Array{HydroPartType,1}; unit::Symbol=:standard, mask::MaskArrayAbstractType=[[false],[false]]) selected_unit = getunit(dataobject[1].info, unit) # assuming both datasets are from same simulation output if length(mask[1]) == 1 && length(mask[2]) == 1 m1 = getvar(dataobject[1], :mass) m1_sum = sum(m1) m2 = getvar(dataobject[2], :mass) m2_sum = sum(m2) m_sum = m1_sum + m2_sum x_weighted = (sum( getvar(dataobject[1], :x) .* m1 ) + sum( getvar(dataobject[2], :x) .* m2) ) / m_sum y_weighted = (sum( getvar(dataobject[1], :y) .* m1 ) + sum( getvar(dataobject[2], :y) .* m2) ) / m_sum z_weighted = (sum( getvar(dataobject[1], :z) .* m1 ) + sum( getvar(dataobject[2], :z) .* m2) ) / m_sum else m1 = getvar(dataobject[1], :mass)[mask[1]] m1_sum = sum(m1) m2 = getvar(dataobject[2], :mass)[mask[2]] m2_sum = sum(m2) m_sum = m1_sum + m2_sum x_weighted = (sum( getvar(dataobject[1], :x)[mask[1]] .* m1 ) + sum( getvar(dataobject[2], :x)[mask[2]] .* m2) ) / m_sum y_weighted = (sum( getvar(dataobject[1], :y)[mask[1]] .* m1 ) + sum( getvar(dataobject[2], :y)[mask[2]] .* m2) ) / m_sum z_weighted = (sum( getvar(dataobject[1], :z)[mask[1]] .* m1 ) + sum( getvar(dataobject[2], :z)[mask[2]] .* m2) ) / m_sum end return ( x_weighted, y_weighted, z_weighted ) .* selected_unit end """ #### Calculate the joint center-of-mass of any HydroPartType: ```julia com(dataobject::Array{HydroPartType,1}, unit::Symbol; mask::MaskArrayAbstractType=[[false],[false]]) return Tuple{Float64, Float64, Float64,} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "Array{HydroPartType,1}"" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`mask`:** needs to be of type MaskArrayAbstractType which contains two entries with supertype of Array{Bool,1} or BitArray{1} and the length of the database (rows) """ function com(dataobject::Array{HydroPartType,1}, unit::Symbol; mask::MaskArrayAbstractType=[[false],[false]]) return center_of_mass(dataobject, unit, mask=mask) end function com(dataobject::Array{HydroPartType,1}; unit::Symbol=:standard, mask::MaskArrayAbstractType=[[false],[false]]) return center_of_mass(dataobject, unit=unit, mask=mask) end function average_mweighted(dataobject::ContainMassDataSetType, var::Symbol; mask::MaskType=[false]) return sum( getvar(dataobject, var, mask=mask) .* getvar(dataobject, :mass, mask=mask) ) ./ sum( getvar(dataobject, :mass, mask=mask)) end """ #### Calculate the average velocity (w/o mass-weight) of any ContainMassDataSetType: ```julia bulk_velocity(dataobject::ContainMassDataSetType; unit::Symbol=:standard, weighting::Symbol=:mass, mask::MaskType=[false]) return Tuple{Float64, Float64, Float64,} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "ContainMassDataSetType" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units) :km_s, :m_s, :cm_s (of typye Symbol) ..etc. ; see for defined velocity-scales viewfields(info.scale) - **`weighting`:** use different weightings: :mass (default), :volume (hydro), :no - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) """ function bulk_velocity(dataobject::ContainMassDataSetType, unit::Symbol; weighting::Symbol=:mass, mask::MaskType=[false]) return bulk_velocity(dataobject, unit=unit, weighting=weighting, mask=mask) end function bulk_velocity(dataobject::ContainMassDataSetType; unit::Symbol=:standard, weighting::Symbol=:mass, mask::MaskType=[false]) selected_unit = getunit(dataobject.info, unit) if weighting == :mass return ( average_mweighted(dataobject, :vx, mask=mask), average_mweighted(dataobject, :vy, mask=mask), average_mweighted(dataobject, :vz, mask=mask) ) .* selected_unit elseif weighting == :volume && typeof(dataobject) == HydroDataType isamr = checkuniformgrid(dataobject, dataobject.lmax) if isamr return ( sum( getvar(dataobject, :vx, mask=mask) .* getvar(dataobject, :volume, mask=mask) ) ./ sum( getvar(dataobject, :volume, mask=mask) ), sum( getvar(dataobject, :vy, mask=mask) .* getvar(dataobject, :volume, mask=mask) ) ./ sum( getvar(dataobject, :volume, mask=mask) ), sum( getvar(dataobject, :vz, mask=mask) .* getvar(dataobject, :volume, mask=mask) ) ./ sum( getvar(dataobject, :volume, mask=mask) ) ) .* selected_unit else return ( mean( getvar(dataobject, :vx, mask=mask) ), mean( getvar(dataobject, :vy, mask=mask) ), mean( getvar(dataobject, :vz, mask=mask)) ) .* selected_unit end elseif weighting == :no # for AMR return ( mean( getvar(dataobject, :vx, mask=mask) ), mean( getvar(dataobject, :vy, mask=mask) ), mean( getvar(dataobject, :vz, mask=mask)) ) .* selected_unit end end """ #### Calculate the average velocity (w/o mass-weight) of any ContainMassDataSetType: ```julia average_velocity(dataobject::ContainMassDataSetType; unit::Symbol=:standard, weighting::Symbol=:mass, mask::MaskType=[false]) return Tuple{Float64, Float64, Float64,} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "ContainMassDataSetType" ##### Optional Keywords: - **`unit`:** the unit of the result (can be used w/o keyword): :standard (code units) :km_s, :m_s, :cm_s (of typye Symbol) ..etc. ; see for defined velocity-scales viewfields(info.scale) - **`weighting`:** use different weightings: :mass (default), :volume (hydro), :no - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) """ function average_velocity(dataobject::ContainMassDataSetType, unit::Symbol; weighting::Symbol=:mass, mask::MaskType=[false]) return bulk_velocity(dataobject, unit, weighting=weighting, mask=mask) end function average_velocity(dataobject::ContainMassDataSetType; unit::Symbol=:standard, weighting::Symbol=:mass, mask::MaskType=[false]) return bulk_velocity(dataobject, unit=unit, weighting=weighting, mask=mask) end """ #### Calculate statistical values w/o weighting of any Array: ```julia wstat(array::Array{<:Real,1}; weight::Array{<:Real,1}=[1.], mask::MaskType=[false]) WStatType(mean, median, std, skewness, kurtosis, min, max) ``` #### Arguments ##### Required: - **`array`:** Array needs to be of type: "<:Real" ##### Optional Keywords: - **`weight`:** Array needs to be of type: "<:Real" (can be used w/o keyword) - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the Array """ function wstat(array::Array{<:Real,1}, weight::Array{<:Real,1}; mask::MaskType=[false]) return wstat(array, weight=weight, mask=mask) end function wstat(array::Array{<:Real,1}; weight::Array{<:Real,1}=[1.], mask::MaskType=[false]) if length(mask) > 1 array=array[mask] if length(weight) > 1 weight=weight[mask] end end if length(weight)==1 mean_ = mean(array) median_ = median(array) std_ = std(array, mean=mean_) skewness_ = skewness(array, mean_) kurtosis_ = kurtosis(array, mean_) min_ = minimum(array) max_ = maximum(array) return WStatType(mean_, median_, std_, skewness_, kurtosis_, min_, max_) else length(weight) > 1 mean_ = mean( array, weights( weight )) median_ = median(array, weights( weight )) std_ = std(array, mean=mean_, weights( weight ), corrected=false) skewness_ = skewness(array, mean_) kurtosis_ = kurtosis(array, mean_) min_ = minimum(array) max_ = maximum(array) return WStatType(mean_, median_, std_, skewness_, kurtosis_, min_, max_) end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2349
function checkfortype(dataobject::InfoType, datatype::Symbol) if !dataobject.hydro && datatype==:hydro error("[Mera]: Simulation has no hydro files!") elseif !dataobject.amr && datatype==:amr error("[Mera]: Simulation has no amr files!") elseif !dataobject.gravity && datatype==:gravity error("[Mera]: Simulation has no gravity files!") elseif !dataobject.rt && datatype==:rt error("[Mera]: Simulation has no rt files!") elseif !dataobject.particles && datatype==:particles error("[Mera]: Simulation has no particle files!") elseif !dataobject.clumps && datatype==:clumps error("[Mera]: Simulation has no clump files!") elseif !dataobject.sinks && datatype==:sinks error("[Mera]: Simulation has no sink files!") end end function checklevelmax(dataobject::InfoType, lmax::Real) if dataobject.levelmax < lmax error("[Mera]: Simulation lmax=$(dataobject.levelmax) < your lmax=$lmax") elseif lmax < dataobject.levelmin error("[Mera]: Simulation lmin=$(dataobject.levelmin) > your lmin=$lmax") end end # use lmax in case user forces to load a uniform grid from amr data (lmax=levelmin) function checkuniformgrid(dataobject::InfoType, lmax::Real) isamr = true if lmax == dataobject.levelmin isamr = false end return isamr end function checkuniformgrid(dataobject::DataSetType, lmax::Real) isamr = true if lmax == dataobject.info.levelmin isamr = false end return isamr end # global verbose mode =========================== function checkverbose(verbose::Bool) if verbose_mode != nothing verbose = copy(verbose_mode) end return verbose end function verbose(mode::Union{Bool,Nothing}) global verbose_mode = mode @eval(Mera, verbose_mode) end function verbose() println("verbose_mode: ", verbose_mode) end # global showprogress mode =========================== function checkprogress(show_progress::Bool) if showprogress_mode != nothing show_progress = copy(showprogress_mode) end return show_progress end function showprogress(mode::Union{Bool,Nothing}) global showprogress_mode = mode @eval(Mera, showprogress_mode) end function showprogress() println("showprogress_mode: ", showprogress_mode) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
16054
""" #### Converts full simulation data into a compressed/uncompressed JLD2 format: - all existing datatypes are sequentially loaded and stored - supports :hydro, :particles, :hydro, :clumps - running number is taken from original RAMSES folders - use different compression methods - select a certain data range, smallr, smallc, lmax - add a string to describe the simulation - the individual loading and storing processes are timed and stored into the file (and more statistics) - toggle progressbar mode - toggle verbose mode ```julia function convertdata(output::Int; datatypes::Array{<:Any,1}=[missing], path::String="./", fpath::String="./", fname = "output_", compress::Any=nothing, comments::Any=nothing, lmax::Union{Int, Missing}=missing, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return statistics (dictionary) ``` #### Arguments ##### Required: - **`output`:** output number ##### Predefined/Optional Keywords: - **`datatypes`:** default -> all available (known) data is converted; pass an array with only selected datatypes, e.g.: datatypes=[:hydro, :particles] - **`fname`:** default name of the files "output_" and the running number is added. Change the string to apply a user-defined name. - **`compress`:** by default compression is activated. compress=false (deactivate). If necessary, choose between different compression types: LZ4FrameCompressor() (default), Bzip2Compressor(), ZlibCompressor(). Load the required package to choose the compression type and to see their parameters: CodecZlib, CodecBzip2 or CodecLz4 - **`comments`:** add a string that includes e.g. a description about your simulation - **`lmax`:** the maximum level to be read from the data - **`path`:** path to the RAMSES folders; default is local path. - **`fpath`:** path to the JLD23 file; default is local path. - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`smallr`:** set lower limit for density; zero means inactive - **`smallc`:** set lower limit for thermal pressure; zero means inactive - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of xrange, yrange, zrange, center, range_unit, verbose - **`verbose`:** print timestamp and further information on screen; default: true ### Defined Methods - function defined for different arguments - convertdata(output::Int64; ...) - convertdata(output::Int64, datatypes::Vector{Symbol}; ...) - convertdata(output::Int64, datatypes::Symbol; ...) """ function convertdata(output::Int, datatypes::Array{Symbol, 1}; path::String="./", fpath::String="./", fname = "output_", compress::Any=nothing, comments::Any=nothing, lmax::Union{Int, Missing}=missing, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return convertdata(output, datatypes=datatypes, path=path, fpath=fpath, fname = fname, compress=compress, comments=comments, lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, smallr=smallr, smallc=smallc, verbose=verbose, show_progress=show_progress, myargs=myargs ) end function convertdata(output::Int, datatypes::Symbol; path::String="./", fpath::String="./", fname = "output_", compress::Any=nothing, comments::Any=nothing, lmax::Union{Int, Missing}=missing, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return convertdata(output, datatypes=[datatypes], path=path, fpath=fpath, fname = fname, compress=compress, comments=comments, lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, smallr=smallr, smallc=smallc, verbose=verbose, show_progress=show_progress, myargs=myargs ) end function convertdata(output::Int; datatypes::Array{<:Any,1}=[missing], path::String="./", fpath::String="./", fname = "output_", compress::Any=nothing, comments::Any=nothing, lmax::Union{Int, Missing}=missing, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.lmax === missing) lmax = myargs.lmax end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end if !(myargs.show_progress === missing) show_progress = myargs.show_progress end verbose = checkverbose(verbose) show_progress = checkprogress(show_progress) printtime("",verbose) if length(datatypes) == 1 && datatypes[1] === missing || length(datatypes) == 0 || length(datatypes) == 1 && datatypes[1] == :all datatypes = [:hydro, :gravity, :particles, :clumps] else if !(:hydro in datatypes) && !(:gravity in datatypes) && !(:particles in datatypes) && !(:clumps in datatypes) error("unknown datatype(s) given...") end end if verbose println("Requested datatypes: ", datatypes) println() end memtot = 0. storage_tot = 0. overview = Dict() rw = Dict() mem = Dict() lt = TimerOutput() # timer for loading data wt = TimerOutput() # timer for writing data info = getinfo(output, path, verbose=false) if lmax === missing lmax = info.levelmax end si = storageoverview(info, verbose=false) #------------------ # convert given ranges and print overview on screen ranges = prepranges(info, range_unit, verbose, xrange, yrange, zrange, center) #------------------ # reading ============================= if verbose ctype = check_compression(compress, true) println() println("reading/writing lmax: ", lmax, " of ", info.levelmax) println("-----------------------------------") println("Compression: ", ctype) println("-----------------------------------") end first_amrflag = true first_flag = true if info.hydro && :hydro in datatypes if verbose println("- hydro") end @timeit lt "hydro" gas = gethydro(info, lmax=lmax, smallr=smallr, smallc=smallc, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=false, show_progress=show_progress) memtot += Base.summarysize(gas) storage_tot += si[:hydro] if first_amrflag storage_tot += si[:amr] first_amrflag = false end # write first_flag, fmode = JLD2flag(first_flag) @timeit wt "hydro" savedata(gas, path=fpath, fname=fname, fmode=fmode, compress=compress, comments=comments, verbose=false) # clear mem gas = 0. end if info.gravity && :gravity in datatypes if verbose println("- gravity") end @timeit lt "gravity" grav = getgravity(info, lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=false, show_progress=show_progress) memtot += Base.summarysize(grav) storage_tot += si[:gravity] if first_amrflag storage_tot += si[:amr] first_amrflag = false end # write first_flag, fmode = JLD2flag(first_flag) @timeit wt "gravity" savedata(grav, path=fpath, fname=fname, fmode=fmode, compress=compress, comments=comments, verbose=false) # clear mem grav = 0. end if info.particles && :particles in datatypes if verbose println("- particles") end @timeit lt "particles" part = getparticles(info, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=false, show_progress=show_progress) memtot += Base.summarysize(part) storage_tot += si[:particle] if first_amrflag storage_tot += si[:amr] first_amrflag = false end # write first_flag, fmode = JLD2flag(first_flag) @timeit wt "particles" savedata(part, path=fpath, fname=fname, fmode=fmode, compress=compress, comments=comments, verbose=false) # clear mem part = 0. end if info.clumps && :clumps in datatypes if verbose println("- clumps") end @timeit lt "clumps" clumps = getclumps(info, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=false) memtot += Base.summarysize(clumps) storage_tot += si[:clump] # write first_flag, fmode = JLD2flag(first_flag) @timeit wt "clumps" savedata(clumps, path=fpath, fname=fname, fmode=fmode, compress=compress, comments=comments, verbose=false) # clear mem clumps = 0. end # # # writing ============================= # if verbose # println() # println("writing:") # end # # # first_flag = true # if info.hydro && :hydro in datatypes # if verbose println("- hydro") end # first_flag, fmode = JLD2flag(first_flag) # @timeit wt "hydro" savedata(gas, path=fpath, fname=fname, fmode=fmode, verbose=false) # # end # # if info.gravity && :gravity in datatypes # if verbose println("- gravity") end # first_flag, fmode = JLD2flag(first_flag) # @timeit wt "gravity" savedata(grav, path=fpath, fname=fname, fmode=fmode, verbose=false) # # end # # if info.particles && :particles in datatypes # if verbose println("- particles") end # first_flag, fmode = JLD2flag(first_flag) # @timeit wt "particles" savedata(part, path=fpath, fname=fname, fmode=fmode, verbose=false) # # end # # if info.clumps && :clumps in datatypes # if verbose println("- clumps") end # first_flag, fmode = JLD2flag(first_flag) # @timeit wt "clumps" savedata(clumps, path=fpath, fname=fname, fmode=fmode, verbose=false) # end # return ============================= icpu= info.output filename = outputname(fname, icpu) * ".jld2" fullpath = checkpath(fpath, filename) s = filesize(fullpath) foldersize = si[:folder] mem["folder"] = [foldersize, "Bytes"] mem["selected"] = [storage_tot, "Bytes"] mem["used"] = [memtot, "Bytes"] mem["ondisc"] = [s, "Bytes"] if verbose fvalue, funit = humanize(Float64(foldersize), 3, "memory") ovalue, ounit = humanize(Float64(storage_tot), 3, "memory") mvalue, munit = humanize(Float64(memtot), 3, "memory") svalue, sunit = humanize(Float64(s), 3, "memory") println() println("Total datasize:") println("- total folder: ", fvalue, " ", funit) println("- selected: ", ovalue, " ", ounit) println("- used: ", mvalue, " ", munit) println("- new on disc: ", svalue, " ", sunit) end rw["reading"] = lt rw["writing"] = wt overview["TimerOutputs"] = rw overview["viewdata"] = viewdata(output, path=fpath, fname=fname, verbose=false) overview["size"] = mem jld2mode = "a+" # append jldopen(fullpath, jld2mode) do f f["convertstat"] = overview end return overview end function JLD2flag(first_flag::Bool) if first_flag fmode=:write first_flag=false else fmode=:append end return first_flag, fmode end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
4139
""" #### Get the simulation overview from RAMSES, saved in JLD2 == function getinfo ```julia infodata(output::Int; path::String="./", fname = "output_", datatype::Any=:nothing, verbose::Bool=true) return InfoType ``` #### Keyword Arguments - **`output`:** timestep number - **`path`:** the path to the output JLD2 file relative to the current folder or absolute path - **`fname`:** "output_"-> filename = "output_***.jld2" by default, can be changed to "myname***.jld2" - **`verbose:`:** informations are printed on the screen by default #### Examples ```julia # read simulation information from output `1` in current folder julia> info = infodata(1) # filename="output_00001.jld2" # read simulation information from output `420` in given folder (relative path to the current working folder) julia> info = infodata(420, path="../MySimFolder/") # or simply use julia> info = infodata(420, "../MySimFolder/") # get an overview of the returned field-names julia> propertynames(info) # a more detailed overview julia> viewfields(info) ... julia> viewallfields(info) ... julia> namelist(info) ... julia> makefile(info) ... julia> timerfile(info) ... julia> patchfile(info) ... ``` """ function infodata(output::Int, datatype::Symbol; path::String="./", fname = "output_", verbose::Bool=true) return infodata(output, path=path, fname=fname, datatype=datatype, verbose=verbose) end function infodata(output::Int, path::String, datatype::Symbol; fname = "output_", verbose::Bool=true) return infodata(output, path=path, fname=fname, datatype=datatype, verbose=verbose) end function infodata(output::Int, path::String; fname = "output_", datatype::Any=:nothing, verbose::Bool=true) return infodata(output, path=path, fname=fname, datatype=datatype, verbose=verbose) end function infodata(output::Int; path::String="./", fname = "output_", datatype::Any=:nothing, verbose::Bool=true) verbose = checkverbose(verbose) printtime("",verbose) filename = outputname(fname, output) * ".jld2" fpath = checkpath(path, filename) # get root-list with datatypes #filename = fpath * "L1_Zlib_0019.jld2" f = jldopen(fpath) froot = f.root_group fkeys = keys(froot.written_links) close(f) # check if request exists if datatype == :nothing find_dt_flag = true if "hydro" in fkeys && find_dt_flag dtype = "hydro" find_dt_flag = false end if "particles" in fkeys && find_dt_flag dtype = "particles" find_dt_flag = false end if "clumps" in fkeys && find_dt_flag dtype = "clumps" find_dt_flag = false end if "gravity" in fkeys && find_dt_flag dtype = "gravity" find_dt_flag = false end if find_dt_flag error("No datatype found...") end else if string(datatype) in fkeys dtype = string(datatype) else error("Datatype $datatype does not exist...") end end if verbose println("Use datatype: ", dtype) end inflink = string(dtype) * "/info" dataobject = JLD2.load(fpath, inflink, typemap=Dict("Mera.PhysicalUnitsType" => JLD2.Upgrade(PhysicalUnitsType001), "Mera.ScalesType" => JLD2.Upgrade(ScalesType001))) # update constants and scales dataobject.constants = Mera.createconstants() dataobject.scale = Mera.createscales(dataobject) printsimoverview(dataobject, verbose) # print overview on screen return dataobject end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
7876
""" #### Read stored simulation data into a dataobject: - supported datatypes: HydroDataType, PartDataType, GravDataType, ClumpDataType - select a certain data range (data is fully loaded; the selected subregion is returned) - toggle verbose mode ```julia function loaddata(output::Int; path::String="./", fname = "output_", datatype::Symbol, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return dataobject ``` #### Arguments ##### Required: - **`output`:** output number - **`datatype`:** :hydro, :particles, :gravity or :clumps ##### Predefined/Optional Keywords: - **`path`:** path to the file; default is local path. - **`fname`:** default name of the files "output_" and the running number is added. Change the string to apply a user-defined name. - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of xrange, yrange, zrange, center, range_unit, verbose - **`verbose`:** print timestamp and further information on screen; default: true ### Defined Methods - function defined for different arguments - loaddata(output::Int64; ...) # opens first datatype in the file - loaddata(output::Int64, datatype::Symbol; ...) - loaddata(output::Int64, path::String; ...) - loaddata(output::Int64, path::String, datatype::Symbol; ...) """ function loaddata(output::Int, datatype::Symbol; path::String="./", fname = "output_", xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return loaddata(output, path=path, fname=fname, datatype=datatype, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=verbose, myargs=myargs ) end function loaddata(output::Int, path::String, datatype::Symbol; fname = "output_", xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return loaddata(output, path=path, fname=fname, datatype=datatype, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=verbose, myargs=myargs ) end function loaddata(output::Int, path::String; fname = "output_", datatype::Symbol, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return loaddata(output, path=path, fname=fname, datatype=datatype, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=verbose, myargs=myargs ) end function loaddata(output::Int; path::String="./", fname = "output_", datatype::Symbol, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end printtime("",verbose) filename = outputname(fname, output) * ".jld2" fpath = checkpath(path, filename) if verbose println("Open Mera-file $filename:") println() end info = infodata(output, path=path, fname = fname, datatype=datatype, verbose=false) #------------------ # convert given ranges and print overview on screen ranges = prepranges(info, range_unit, verbose, xrange, yrange, zrange, center) #------------------ # get root-list with datatypes f = jldopen(fpath) froot = f.root_group fkeys = keys(froot.written_links) close(f) # todo: check if request exists dlink = string(datatype) * "/data" dataobject = JLD2.load(fpath, dlink, typemap=Dict("Mera.PhysicalUnitsType" => JLD2.Upgrade(PhysicalUnitsType001), "Mera.ScalesType" => JLD2.Upgrade(ScalesType001))) # update constants and scales dataobject.info.constants = Mera.createconstants() dataobject.info.scale = Mera.createscales(dataobject.info) dataobject.scale = dataobject.info.scale # filter selected data region dataobject = subregion(dataobject, :cuboid, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, verbose=false) printtablememory(dataobject, verbose) return dataobject end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
11225
""" #### Save loaded simulation data into a compressed/uncompressed JLD2 format: - write new file; add datatype to existing file - running number is taken from original RAMSES folders - use different compression methods - add a string to describe the simulation - toggle verbose mode ```julia function savedata( dataobject::DataSetType; path::String="./", fname = "output_", fmode::Any=nothing, dataformat::Symbol=:JLD2, compress::Any=nothing, comments::Any=nothing, merafile_version::Float64=1., verbose::Bool=true) return ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "HydroDataType", "PartDataType", "GravDataType", "ClumpDataType" - **`fmode`:** nothing is written/appended by default to avoid overwriting files by accident. Need: fmode=:write (new file or overwriting existing file); fmode=:append further datatype. (overwriting of existing datatypes is not possible) ##### Predefined/Optional Keywords: - **`path`:** path to save the file; default is local path. - **`fname`:** default name of the files "output_" and the running number is added. Change the string to apply a user-defined name. - **`dataformat`:** currently, only JLD2 can be selected. - **`compress`:** by default compression is activated. compress=false (deactivate). If necessary, choose between different compression types: LZ4FrameCompressor() (default), Bzip2Compressor(), ZlibCompressor(). Load the required package to choose the compression type and to see their parameters: CodecZlib, CodecBzip2 or CodecLz4 - **`comments`:** add a string that includes e.g. a description about your simulation - **`merafile_version`:** default: 1.; current only version - **`verbose`:** print timestamp and further information on screen; default: true ### Defined Methods - function defined for different arguments - savedata( dataobject::DataSetType; ...) # note: fmode needs to be given for action! - savedata( dataobject::DataSetType, fmode::Symbol; ...) - savedata( dataobject::DataSetType, path::String; ...) - savedata( dataobject::DataSetType, path::String, fmode::Symbol; ...) """ function savedata( dataobject::DataSetType, fmode::Symbol; path::String="./", fname = "output_", dataformat::Symbol=:JLD2, compress::Any=nothing, comments::Any=nothing, merafile_version::Float64=1., verbose::Bool=true) return savedata( dataobject, path=path, fname=fname, fmode=fmode, dataformat=dataformat, compress=compress, comments=comments, merafile_version=merafile_version, verbose=verbose) end function savedata( dataobject::DataSetType, path::String, fmode::Symbol; fname = "output_", dataformat::Symbol=:JLD2, compress::Any=nothing, comments::Any=nothing, merafile_version::Float64=1., verbose::Bool=true) return savedata( dataobject, path=path, fname=fname, fmode=fmode, dataformat=dataformat, compress=compress, comments=comments, merafile_version=merafile_version, verbose=verbose) end function savedata( dataobject::DataSetType, path::String; fname = "output_", fmode::Any=nothing, dataformat::Symbol=:JLD2, compress::Any=nothing, comments::Any=nothing, merafile_version::Float64=1., verbose::Bool=true) return savedata( dataobject, path=path, fname=fname, fmode=fmode, dataformat=dataformat, compress=compress, comments=comments, merafile_version=merafile_version, verbose=verbose) end function savedata( dataobject::DataSetType; path::String="./", fname = "output_", fmode::Any=nothing, dataformat::Symbol=:JLD2, compress::Any=nothing, comments::Any=nothing, merafile_version::Float64=1., verbose::Bool=true) verbose = checkverbose(verbose) printtime("",verbose) datatype, use_descriptor, descriptor_names = check_datasource(dataobject) icpu= dataobject.info.output filename = outputname(fname, icpu) * ".jld2" fpath = checkpath(path, filename) fexist, wdata, jld2mode = check_file_mode(fmode, datatype, path, filename, verbose) ctype = check_compression(compress, wdata) column_names = propertynames(dataobject.data.columns) if verbose println("Directory: ", dataobject.info.path ) println("-----------------------------------") println("merafile_version: ", merafile_version, " - Simulation code: ", dataobject.info.simcode) println("-----------------------------------") println("DataType: ", datatype, " - Data variables: ", column_names) if use_descriptor println("Descriptor: ", descriptor_names) end println("-----------------------------------") println("I/O mode: ", fmode, " - Compression: ", ctype) println("-----------------------------------") end if wdata jldopen(fpath, jld2mode; compress = ctype) do f #mygroup = JLD2.Group(f, string(datatype)) dt = string(datatype) #myinfgroup = JLD2.Group(mygroup, "information") df = "/information/" f[dt * df * "compression"] = ctype f[dt * df * "comments"] = comments f[dt * df * "versions/merafile_version"] = merafile_version f[dt * df * "versions/JLD2compatible_versions"] = JLD2.COMPATIBLE_VERSIONS pkg = Pkg.dependencies() check_pkg = ["Mera","JLD2", "CodecZlib", "CodecBzip2", "CodecLz4"] for i in keys(pkg) ipgk = pkg[i] if ipgk.name in check_pkg if ipgk.is_tracking_repo f[dt * df * "versions/" * ipgk.name] = [ipgk.version, ipgk.git_source] else f[dt * df * "versions/" * ipgk.name] = [ipgk.version] end if verbose if ipgk.is_tracking_repo println(ipgk.name, " ", ipgk.version, " ", ipgk.git_source) else println(ipgk.name, " ", ipgk.version) end end end end f[dt * df * "storage"] = storageoverview(dataobject.info, verbose=false) f[dt * df * "memory"] = usedmemory(dataobject, false) #mydatagroup = JLD2.Group(mygroup, "data") f[dt * "/data"] = dataobject f[dt * "/info"] = dataobject.info end end if verbose println("-----------------------------------") mem = usedmemory(dataobject, false) println("Memory size: ", round(mem[1], digits=3)," ", mem[2], " (uncompressed)") s = filesize(fpath) svalue, sunit = humanize(Float64(s), 3, "memory") if wdata println("Total file size: ", svalue, " ", sunit) end println("-----------------------------------") println() end return end function outputname(fname::String, icpu::Int) if icpu < 10 return string(fname, "0000", icpu) elseif icpu < 100 && icpu > 9 return string(fname, "000", icpu) elseif icpu < 1000 && icpu > 99 return string(fname, "00", icpu) elseif icpu < 10000 && icpu > 999 return string(fname, "0", icpu) elseif icpu < 100000 && icpu > 9999 return string(fname, icpu) end end function check_file_mode(fmode::Any, datatype::Symbol, fullpath::String, fname::String, verbose::Bool) if verbose println() end jld2mode = "" if fmode in [nothing] wdata = false else wdata = true if fmode == :write jld2mode = "w" elseif fmode == :append jld2mode = "a+" else error("Unknown fmode...") end end if !isfile(fullpath) && wdata && verbose println("Create file: ", fname) fexist = false elseif !wdata && !isfile(fullpath) && verbose println("Not existing file: ", fname) fexist = false else if verbose println("Existing file: ", fname) end fexist = true end return fexist, wdata, jld2mode end function check_compression(compress, wdata) if compress == nothing && wdata ctype = LZ4FrameCompressor() #ZlibCompressor(level=9) elseif typeof(compress) == ZlibCompressor && wdata ctype = compress elseif typeof(compress) == Bzip2Compressor && wdata ctype = compress elseif typeof(compress) == LZ4FrameCompressor && wdata ctype = compress elseif compress == false || !wdata ctype = :nothing end return ctype end function checkpath(path, filename) if path == "./" fpath = path * filename elseif path == "" || path == " " fpath = filename else if string(path[end]) == "/" fpath = path * filename else fpath = path * "/" * filename end end return fpath end function check_datasource(dataobject::DataSetType) if typeof(dataobject) == HydroDataType datatype = :hydro use_descriptor = dataobject.info.descriptor.usehydro descriptor_names = dataobject.info.descriptor.hydro elseif typeof(dataobject) == GravDataType datatype = :gravity use_descriptor = dataobject.info.descriptor.usegravity descriptor_names = dataobject.info.descriptor.gravity elseif typeof(dataobject) == PartDataType datatype = :particles use_descriptor = dataobject.info.descriptor.useparticles descriptor_names = dataobject.info.descriptor.particles elseif typeof(dataobject) == ClumpDataType datatype = :clumps use_descriptor = dataobject.info.descriptor.useclumps descriptor_names = dataobject.info.descriptor.clumps end return datatype, use_descriptor, descriptor_names end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
5075
""" #### Get overview of stored datatypes: - compression - versions of the used/loaded compression - MERA/MERA-file version - compressed/uncompressed data size - returns stored conversion statistics, when available (created by convertdata-function) ```julia function viewdata(output::Int; path::String="./", fname = "output_", showfull::Bool=false, verbose::Bool=true) return overview (dictionary) ``` #### Arguments ##### Required: - **`output`:** output number - **`datatype`:** :hydro, :particles, :gravity or :clumps ##### Predefined/Optional Keywords: - **`path`:** the path to the output JLD2 file relative to the current folder or absolute path - **`fname`:** "output_"-> filename = "output_***.jld2" by default, can be changed to "myname***.jld2" - **`showfull`:** shows the full data tree of the datafile - **`verbose:`:** informations are printed on the screen by default """ function viewdata(output::Int, path::String; fname = "output_", showfull::Bool=false, verbose::Bool=true) return viewdata(output, path=path, fname=fname, showfull=showfull, verbose=verbose) end # todo : simulation code # check known types function viewdata(output::Int; path::String="./", fname = "output_", showfull::Bool=false, verbose::Bool=true) verbose = checkverbose(verbose) printtime("",verbose) filename = outputname(fname, output) * ".jld2" fpath = checkpath(path, filename) if verbose println("Mera-file $filename contains:") println() end if showfull f = jldopen(fpath, "r"; ) printtoc(f) close(f) println() println() end # get root-list with datatypes #filename = fpath * "L1_Zlib_0019.jld2" f = jldopen(fpath) froot = f.root_group fkeys = keys(froot.written_links) close(f) # get information/versions-list of each datatype ikeys = Dict() # information keys vkeys = Dict() # versions keys for rname in fkeys if rname != "_types" && rname in string.([:hydro, :gravity, :particles, :clumps]) #println(rname) ilink = rname * "/information" ifk = JLD2.load(fpath, ilink) ikeys[rname] = keys(ifk) #println(ikeys[rname]) vlink = ilink * "/versions" vfk = JLD2.load(fpath, vlink) vkeys[rname] = keys(vfk) #println(vkeys[rname]) #println() end end # load information/versions into dictionary of each datatype viewoutput = Dict() convertstat = false for rname in fkeys if rname != "_types" && rname in string.([:hydro, :gravity, :particles, :clumps]) idata = Dict() vdata = Dict() for i in ikeys[rname] if i != "versions" ilink = rname * "/information/" * i idata[i] = JLD2.load(fpath, ilink) end end for v in vkeys[rname] vlink = rname * "/information/" * "versions/" * v vdata[v] = JLD2.load(fpath, vlink) end idata["versions"] = vdata viewoutput[rname] = idata elseif rname == "convertstat" convertstat = JLD2.load(fpath, rname) end end # print overview if verbose for i in keys(viewoutput) iroot = viewoutput[i] println("Datatype: ", i) println("merafile_version: ", iroot["versions"]["merafile_version"]) println("Compression: ", iroot["compression"]) for v in keys(iroot["versions"]) iversions = iroot["versions"][v] println(v, ": ", iversions) end println("-------------------------") mem = iroot["memory"] println("Memory: ", mem[1], " ", mem[2], " (uncompressed)") println() println() end end s = filesize(fpath) svalue, sunit = humanize(Float64(s), 3, "memory") viewoutput["FileSize"] = (svalue, sunit) if verbose println("-----------------------------------") if convertstat != false println("convert stat: true") else println("convert stat: false") end println("-----------------------------------") println("Total file size: ", svalue, " ", sunit) println("-----------------------------------") println() end if convertstat != false viewoutput["convertstat"] = convertstat end #close(file) return viewoutput end # function known_datatype(datatype::Symbol) # knowntypes = [:hydro, :gravity, :particles, :clumps] # if in(datatype, knowntypes) # return true # else # return false # end # end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
18908
function getvar() println("Predefined vars that can be calculated for each cell/particle:") println("----------------------------------------------------------------") println("=============================[gas]:=============================") println(" -all the non derived hydro vars-") println(":cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,...") println() println(" -derived hydro vars-") println(":x, :y, :z") println(":mass, :cellsize, :volume, :freefall_time") println(":cs, :mach, :jeanslength, :jeansnumber") println(":T, :Temp, :Temperature with p/rho") println() println(":h, :hx, :hy, :hz (specific angular momentum)") println() println("==========================[particles]:==========================") println(" -all the non derived particle vars-") println(":cpu, :level, :id, :family, :tag ") println(":x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal....") println() println(" -derived particle vars-") println(":age") println() println("===========================[gravity]:===========================") println(" -all the non derived gravity vars-") println(":cpu, :level, cx, cy, cz, :epot, :ax, :ay, :az") println() println(" -derived gravity vars-") println(":x, :y, :z") println(":cellsize, :volume") println() println("===========================[clumps]:===========================") println(":peak_x or :x, :peak_y or :y, :peak_z or :z") println(":v, :ekin,...") println() #println("===========================[sinks]:============================") println("=====================[gas or particles]:=======================") println(":v, :ekin") println() println("related to a given center:") println("---------------------------") println(":r_cylinder, :r_sphere (radial components)") println(":ϕ") # , :θ println(":vr_cylinder") #, vr_sphere (radial components)") println(":vϕ_cylinder") #", :vθ") #println(":l, :lx, :ly, :lz :lr, :lϕ, :lθ (angular momentum)") println("----------------------------------------------------------------") return end """ #### Get variables or derived quantities from the dataset: - overview the list of predefined quantities with: getinfo() - select variable(s) and their unit(s) - give the spatial center (with units) of the data within the box (relevant e.g. for radius dependency) - relate the coordinates to a direction (x,y,z) - pass a modified database - pass a mask to exclude elements (cells/particles/...) from the calculation ```julia getvar( dataobject::DataSetType, var::Symbol; filtered_db::JuliaDB.AbstractIndexedTable=JuliaDB.table([1]), center::Array{<:Any,1}=[0.,0.,0.], center_unit::Symbol=:standard, direction::Symbol=:z, unit::Symbol=:standard, mask::MaskType=[false], ref_time::Real=dataobject.info.time) return Array{Float64,1} ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" - **`var(s)`:** select a variable from the database or a predefined quantity (see field: info, function getvar(), dataobject.data) ##### Predefined/Optional Keywords: - **`filtered_db`:** pass a filtered or manipulated database together with the corresponding DataSetType object (required argument) - **`center`:** in units given by argument `center_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`center_unit`:** :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`direction`:** todo - **`unit(s)`:** return the variable in given units - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) - **`ref_time`:** reference zero-time for particle age calculation ### Defined Methods - function defined for different arguments - getvar( dataobject::DataSetType, var::Symbol; ...) # one given variable -> returns 1d array - getvar( dataobject::DataSetType, var::Symbol, unit::Symbol; ...) # one given variable with its unit -> returns 1d array - getvar( dataobject::DataSetType, vars::Array{Symbol,1}; ...) # several given variables -> array needed -> returns dictionary with 1d arrays - getvar( dataobject::DataSetType, vars::Array{Symbol,1}, units::Array{Symbol,1}; ...) # several given variables and their corresponding units -> both arrays -> returns dictionary with 1d arrays - getvar( dataobject::DataSetType, vars::Array{Symbol,1}, unit::Symbol; ...) # several given variables that have the same unit -> array for the variables and a single Symbol for the unit -> returns dictionary with 1d arrays #### Examples ```julia # read simulation information julia> info = getinfo(420) julia> gas = gethydro(info) # Example 1: get the mass for each cell of the hydro data (1dim array) mass1 = getvar(gas, :mass) # in [code units] mass = getvar(gas, :mass) * gas.scale.Msol # scale the result from code units to solar masses mass = getvar(gas, :mass, unit=:Msol) # unit calculation, provided by a keyword argument mass = getvar(gas, :mass, :Msol) # unit calculation provided by an argument # Example 2: get the mass and |v| (several variables) for each cell of the hydro data quantities = getvar(gas, [:mass, :v]) # in [code units] returns: Dict{Any,Any} with 2 entries: :mass => [8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8… :v => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 2.28274e-7, 2.… quantities = getvar(gas, [:mass, :v], units=[:Msol, :km_s]) # unit calculation, provided by a keyword argument quantities = getvar(gas, [:mass, :v], [:Msol, :km_s]) # unit calculation provided by an argument # Example 3: get several variables in the same units by providing a single argument quantities = getvar(gas, [:vx, :vy, :vz], :km_s) ... """ function getvar( dataobject::DataSetType, var::Symbol; filtered_db::JuliaDB.AbstractIndexedTable=JuliaDB.table([1]), center::Array{<:Any,1}=[0.,0.,0.], center_unit::Symbol=:standard, direction::Symbol=:z, unit::Symbol=:standard, mask::MaskType=[false], ref_time::Real=dataobject.info.time) center = center_in_standardnotation(dataobject.info, center, center_unit) # construct corresponding DataSetType from filtered database to use the calculations below if typeof(filtered_db) != IndexedTable{StructArrays.StructArray{Tuple{Int64},1,Tuple{Array{Int64,1}},Int64}} dataobject = construct_datatype(filtered_db, dataobject); end return get_data(dataobject, [var], [unit], direction, center, mask, ref_time ) end function getvar( dataobject::DataSetType, var::Symbol, unit::Symbol; filtered_db::JuliaDB.AbstractIndexedTable=JuliaDB.table([1]), center::Array{<:Any,1}=[0.,0.,0.], center_unit::Symbol=:standard, direction::Symbol=:z, mask::MaskType=[false], ref_time::Real=dataobject.info.time) center = center_in_standardnotation(dataobject.info, center, center_unit) # construct corresponding DataSetType from filtered database to use the calculations below if typeof(filtered_db) != IndexedTable{StructArrays.StructArray{Tuple{Int64},1,Tuple{Array{Int64,1}},Int64}} dataobject = construct_datatype(filtered_db, dataobject); end return get_data(dataobject, [var], [unit], direction, center, mask, ref_time ) end function getvar( dataobject::DataSetType, vars::Array{Symbol,1}, units::Array{Symbol,1}; filtered_db::JuliaDB.AbstractIndexedTable=JuliaDB.table([1]), center::Array{<:Any,1}=[0.,0.,0.], center_unit::Symbol=:standard, direction::Symbol=:z, mask::MaskType=[false], ref_time::Real=dataobject.info.time) center = center_in_standardnotation(dataobject.info, center, center_unit) # construct corresponding DataSetType from filtered database to use the calculations below if typeof(filtered_db) != IndexedTable{StructArrays.StructArray{Tuple{Int64},1,Tuple{Array{Int64,1}},Int64}} dataobject = construct_datatype(filtered_db, dataobject); end return get_data(dataobject, vars, units, direction, center, mask, ref_time ) end function getvar( dataobject::DataSetType, vars::Array{Symbol,1}, unit::Symbol; filtered_db::JuliaDB.AbstractIndexedTable=JuliaDB.table([1]), center::Array{<:Any,1}=[0.,0.,0.], center_unit::Symbol=:standard, direction::Symbol=:z, mask::MaskType=[false], ref_time::Real=dataobject.info.time) center = center_in_standardnotation(dataobject.info, center, center_unit) units = fill(unit, length(vars)) # use given unit for all variables # construct corresponding DataSetType from filtered database to use the calculations below if typeof(filtered_db) != IndexedTable{StructArrays.StructArray{Tuple{Int64},1,Tuple{Array{Int64,1}},Int64}} dataobject = construct_datatype(filtered_db, dataobject); end return get_data(dataobject, vars, units, direction, center, mask, ref_time ) end function getvar( dataobject::DataSetType, vars::Array{Symbol,1}; filtered_db::JuliaDB.AbstractIndexedTable=JuliaDB.table([1]), center::Array{<:Any,1}=[0.,0.,0.], center_unit::Symbol=:standard, direction::Symbol=:z, units::Array{Symbol,1}=[:standard], mask::MaskType=[false], ref_time::Real=dataobject.info.time) center = center_in_standardnotation(dataobject.info, center, center_unit) # construct corresponding DataSetType from filtered database to use the calculations below if typeof(filtered_db) != IndexedTable{StructArrays.StructArray{Tuple{Int64},1,Tuple{Array{Int64,1}},Int64}} dataobject = construct_datatype(filtered_db, dataobject); end #vars = unique(vars) return get_data(dataobject, vars, units, direction, center, mask, ref_time ) end function center_in_standardnotation(dataobject::InfoType, center::Array{<:Any,1}, center_unit::Symbol) # check for :bc, :boxcenter Ncenter = length(center) if Ncenter == 1 if in(:bc, center) || in(:boxcenter, center) bc = 0.5 center = [bc, bc, bc] end else for i = 1:Ncenter if center[i] == :bc || center[i] == :boxcenter bc = 0.5 center[i] = bc elseif center_unit != :standard center[i] = center[i] / dataobject.boxlen .* getunit(dataobject, center_unit) end end end return center end """ #### Get mass-array from the dataset (cells/particles/clumps/...): ```julia getmass(dataobject::HydroDataType) getmass(dataobject::PartDataType) getmass(dataobject::ClumpDataType) return Array{Float64,1} ``` """ function getmass(dataobject::HydroDataType;) lmax = dataobject.lmax boxlen = dataobject.boxlen isamr = checkuniformgrid(dataobject, lmax) #return select(dataobject.data, :rho) .* (dataobject.boxlen ./ 2. ^(select(dataobject.data, :level))).^3 if isamr return select( dataobject.data, (:rho, :level)=>p->p.rho * (boxlen / 2^p.level)^3 ) else # if uniform grid return select( dataobject.data, :rho=>p->p * (boxlen / 2^lmax)^3 ) end end function getmass(dataobject::PartDataType;) return getvar(dataobject, :mass) end function getmass(dataobject::ClumpDataType;) return getvar(dataobject, :mass) end """ #### Get the x,y,z positions from the dataset (cells/particles/clumps/...): ```julia getpositions( dataobject::DataSetType, unit::Symbol; direction::Symbol=:z, center::Array{<:Any,1}=[0., 0., 0.], center_unit::Symbol=:standard, mask::MaskType=[false]) return x, y, z ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" ##### Predefined/Optional Keywords: - **`center`:** in unit given by argument `center_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`center_unit`:** :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`direction`:** todo - **`unit`:** return the variables in given unit - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) ### Defined Methods - function defined for different arguments - getpositions( dataobject::DataSetType; ...) # one given dataobject - getpositions( dataobject::DataSetType, unit::Symbol; ...) # one given dataobject and position unit """ function getpositions( dataobject::DataSetType, unit::Symbol; direction::Symbol=:z, center::Array{<:Any,1}=[0., 0., 0.], center_unit::Symbol=:standard, mask::MaskType=[false]) positions = getvar(dataobject, [:x, :y, :z], center=center, center_unit=center_unit, direction=direction, units=[unit, unit, unit], mask=mask) return positions[:x], positions[:y], positions[:z] end function getpositions( dataobject::DataSetType; unit::Symbol=:standard, direction::Symbol=:z, center::Array{<:Any,1}=[0., 0., 0.], center_unit::Symbol=:standard, mask::MaskType=[false]) positions = getvar(dataobject, [:x, :y, :z], center=center, center_unit=center_unit, direction=direction, units=[unit, unit, unit], mask=mask) return positions[:x], positions[:y], positions[:z] end """ #### Get the vx,vy,vz velocities from the dataset (cells/particles/clumps/...): ```julia function getvelocities( dataobject::DataSetType, unit::Symbol; mask::MaskType=[false]) return vx, vy, vz ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" ##### Predefined/Optional Keywords: - **`unit`:** return the variables in given unit - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) ### Defined Methods - function defined for different arguments - getvelocities( dataobject::DataSetType; ...) # one given dataobject - getvelocities( dataobject::DataSetType, unit::Symbol; ...) # one given dataobject and velocity unit """ function getvelocities( dataobject::DataSetType, unit::Symbol; mask::MaskType=[false]) velocities = getvar(dataobject, [:vx, :vy, :vz], units=[unit, unit, unit], mask=mask) return velocities[:vx], velocities[:vy], velocities[:vz] end function getvelocities( dataobject::DataSetType; unit::Symbol=:standard, mask::MaskType=[false]) velocities = getvar(dataobject, [:vx, :vy, :vz], units=[unit, unit, unit], mask=mask) return velocities[:vx], velocities[:vy], velocities[:vz] end """ #### Get the extent of the dataset-domain: ```julia function getextent( dataobject::DataSetType; unit::Symbol=:standard, center::Array{<:Any,1}=[0., 0., 0.], center_unit::Symbol=:standard, direction::Symbol=:z) return (xmin, xmax), (ymin ,ymax ), (zmin ,zmax ) ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" ##### Predefined/Optional Keywords: - **`center`:** in unit given by argument `center_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`center_unit`:** :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`direction`:** todo - **`unit`:** return the variables in given unit ### Defined Methods - function defined for different arguments - getextent( dataobject::DataSetType; # one given variable - getextent( dataobject::DataSetType, unit::Symbol; ...) # one given variable with its unit """ function getextent( dataobject::DataSetType, unit::Symbol; center::Array{<:Any,1}=[0., 0., 0.], center_unit::Symbol=:standard, direction::Symbol=:z) return getextent( dataobject, center=center, center_unit=center_unit, direction=direction, unit=unit) end function getextent( dataobject::DataSetType; unit::Symbol=:standard, center::Array{<:Any,1}=[0., 0., 0.], center_unit::Symbol=:standard, direction::Symbol=:z) range = dataobject.ranges boxlen = dataobject.boxlen selected_unit = 1. # :standard conv = 1. # :standard, variable used to convert to standard units if center_unit != :standard selected_unit = getunit(dataobject.info, center_unit) conv = dataobject.boxlen * selected_unit end center = Mera.prepboxcenter(dataobject.info, center_unit, center) # code units center = center ./ conv selected_unit = getunit(dataobject.info, unit) xmin = ( range[1] - center[1] ) * boxlen * selected_unit xmax = ( range[2] - center[1] ) * boxlen * selected_unit ymin = ( range[3] - center[2] ) * boxlen * selected_unit ymax = ( range[4] - center[2] ) * boxlen * selected_unit zmin = ( range[5] - center[3] ) * boxlen * selected_unit zmax = ( range[6] - center[3] ) * boxlen * selected_unit if direction == :y xmin_buffer = xmin xmax_buffer = xmax xmin= zmin xmax= zmax zmin= ymin zmax= ymax ymin= xmin_buffer ymax= xmax_buffer elseif direction == :x xmin_buffer = xmin xmax_buffer = xmax xmin= zmin xmax= zmax zmin= xmin_buffer zmax= xmax_buffer end return (xmin, xmax), (ymin ,ymax ), (zmin ,zmax ) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
3145
function get_data(dataobject::ClumpDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}, direction::Symbol, center::Array{<:Any,1}, mask::MaskType, ref_time::Real) vars_dict = Dict() #vars = unique(vars) boxlen = dataobject.boxlen descriptor =[:x, :y, :z, :mass] if direction == :z apos = :peak_x bpos = :peak_y cpos = :peak_z avel = :vx bvel = :vy cvel = :vz elseif direction == :y apos = :peak_z bpos = :peak_x cpos = :peak_y avel = :vz bvel = :vx cvel = :vy elseif direction == :x apos = :peak_z bpos = :peak_y cpos = :peak_x avel = :vz bvel = :vy cvel = :vx end column_names = propertynames(dataobject.data.columns) for i in vars # quantities that are in the datatable if in(i, column_names) || in(i, descriptor)#|| occursin("var", string(i)) selected_unit = getunit(dataobject, i, vars, units) if i == :peak_x || i == :x vars_dict[i] = ( select(dataobject.data, apos) .- boxlen * center[1]) .* selected_unit elseif i == :peak_y || i == :y vars_dict[i] = ( select(dataobject.data, bpos) .- boxlen * center[2]) .* selected_unit elseif i == :peak_z || i == :z vars_dict[i] = ( select(dataobject.data, cpos) .- boxlen * center[3]) .* selected_unit elseif i == :vx vars_dict[i] = select(dataobject.data, avel) .* selected_unit elseif i == :vy vars_dict[i] = select(dataobject.data, bvel) .* selected_unit elseif i == :vz vars_dict[i] = select(dataobject.data, cvel) .* selected_unit elseif i == :mass vars_dict[i] = select(dataobject.data, :mass_cl) .* selected_unit else vars_dict[i] = select(dataobject.data, i) .* selected_unit end # quantities that are derived from the variables in the data table elseif i == :v selected_unit = getunit(dataobject, :v, vars, units) vars_dict[:v] = sqrt.(select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit elseif i == :ekin selected_unit = getunit(dataobject, :ekin, vars, units) vars_dict[:ekin] = 0.5 .* getvar(dataobject, vars=[:mass_cl]) .* (select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit end end if length(mask) > 1 for i in keys(vars_dict) vars_dict[i]=vars_dict[i][mask] end end if length(vars)==1 return vars_dict[vars[1]] else return vars_dict end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
4508
function get_data(dataobject::GravDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}, direction::Symbol, center::Array{<:Any,1}, mask::MaskType, ref_time::Real) boxlen = dataobject.boxlen lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) vars_dict = Dict() if direction == :z apos = :cx bpos = :cy cpos = :cz avel = :vx bvel = :vy cvel = :vz elseif direction == :y apos = :cz bpos = :cx cpos = :cy avel = :vz bvel = :vx cvel = :vy elseif direction == :x apos = :cz bpos = :cy cpos = :cx avel = :vz bvel = :vy cvel = :vx end column_names = propertynames(dataobject.data.columns) for i in vars # quantities that are in the datatable if in(i, column_names) selected_unit = getunit(dataobject, i, vars, units) if i == :cx if isamr vars_dict[i] = select(dataobject.data, apos) .- 2 .^getvar(dataobject, :level) .* center[1] else # if uniform grid vars_dict[i] = select(dataobject.data, apos) .- 2^lmax .* center[1] end elseif i == :cy if isamr vars_dict[i] = select(dataobject.data, bpos) .- 2 .^getvar(dataobject, :level) .* center[2] else # if uniform grid vars_dict[i] = select(dataobject.data, bpos) .- 2^lmax .* center[2] end elseif i == :cx if isamr vars_dict[i] = select(dataobject.data, cpos) .- 2 .^getvar(dataobject, :level) .* center[3] else # if uniform grid vars_dict[i] = select(dataobject.data, cpos) .- 2^lmax .* center[3] end else #if selected_unit != 1. #println(i) vars_dict[i] = select(dataobject.data, i) .* selected_unit #else #vars_dict[i] = select(dataobject.data, i) #end end # quantities that are derived from the variables in the data table elseif i == :cellsize selected_unit = getunit(dataobject, :cellsize, vars, units) if isamr vars_dict[:cellsize] = map(row-> dataobject.boxlen / 2^row.level * selected_unit , dataobject.data) else # if uniform grid vars_dict[:cellsize] = map(row-> dataobject.boxlen / 2^lmax * selected_unit , dataobject.data) end elseif i == :volume selected_unit = getunit(dataobject, :volume, vars, units) vars_dict[:volume] = convert(Array{Float64,1}, getvar(dataobject, :cellsize) .^3 .* selected_unit) elseif i == :x selected_unit = getunit(dataobject, :x, vars, units) if isamr vars_dict[:x] = (getvar(dataobject, apos) .* boxlen ./ 2 .^getvar(dataobject, :level) .- boxlen * center[1] ) .* selected_unit else # if uniform grid vars_dict[:x] = (getvar(dataobject, apos) .* boxlen ./ 2^lmax .- boxlen * center[1] ) .* selected_unit end elseif i == :y selected_unit = getunit(dataobject, :y, vars, units) if isamr vars_dict[:y] = (getvar(dataobject, bpos) .* boxlen ./ 2 .^getvar(dataobject, :level) .- boxlen * center[2] ) .* selected_unit else # if uniform grid vars_dict[:y] = (getvar(dataobject, bpos) .* boxlen ./ 2^lmax .- boxlen * center[2] ) .* selected_unit end elseif i == :z selected_unit = getunit(dataobject, :z, vars, units) if isamr vars_dict[:z] = (getvar(dataobject, cpos) .* boxlen ./ 2 .^getvar(dataobject, :level) .- boxlen * center[3] ) .* selected_unit else # if uniform grid vars_dict[:z] = (getvar(dataobject, cpos) .* boxlen ./ 2^lmax .- boxlen * center[3] ) .* selected_unit end end end if length(mask) > 1 for i in keys(vars_dict) vars_dict[i]=vars_dict[i][mask] end end if length(vars)==1 return vars_dict[vars[1]] else return vars_dict end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
13270
function get_data( dataobject::HydroDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}, direction::Symbol, center::Array{<:Any,1}, mask::MaskType, ref_time::Real) boxlen = dataobject.boxlen lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) vars_dict = Dict() #vars = unique(vars) if direction == :z apos = :cx bpos = :cy cpos = :cz avel = :vx bvel = :vy cvel = :vz elseif direction == :y apos = :cz bpos = :cx cpos = :cy avel = :vz bvel = :vx cvel = :vy elseif direction == :x apos = :cz bpos = :cy cpos = :cx avel = :vz bvel = :vy cvel = :vx end column_names = propertynames(dataobject.data.columns) for i in vars # quantities that are in the datatable if in(i, column_names) selected_unit = getunit(dataobject, i, vars, units) if i == :cx if isamr vars_dict[i] = select(dataobject.data, apos) .- 2 .^getvar(dataobject, :level) .* center[1] else # if uniform grid vars_dict[i] = select(dataobject.data, apos) .- 2^lmax .* center[1] end elseif i == :cy if isamr vars_dict[i] = select(dataobject.data, bpos) .- 2 .^getvar(dataobject, :level) .* center[2] else # if uniform grid vars_dict[i] = select(dataobject.data, bpos) .- 2^lmax .* center[2] end elseif i == :cx if isamr vars_dict[i] = select(dataobject.data, cpos) .- 2 .^getvar(dataobject, :level) .* center[3] else # if uniform grid vars_dict[i] = select(dataobject.data, cpos) .- 2^lmax .* center[3] end else #if selected_unit != 1. #println(i) vars_dict[i] = select(dataobject.data, i) .* selected_unit #else #vars_dict[i] = select(dataobject.data, i) #end end # quantities that are derived from the variables in the data table elseif i == :cellsize selected_unit = getunit(dataobject, :cellsize, vars, units) if isamr vars_dict[:cellsize] = map(row-> dataobject.boxlen / 2^row.level * selected_unit , dataobject.data) else # if uniform grid vars_dict[:cellsize] = map(row-> dataobject.boxlen / 2^lmax * selected_unit , dataobject.data) end elseif i == :volume selected_unit = getunit(dataobject, :volume, vars, units) vars_dict[:volume] = convert(Array{Float64,1}, getvar(dataobject, :cellsize) .^3 .* selected_unit) elseif i == :jeanslength selected_unit = getunit(dataobject, :jeanslength, vars, units) vars_dict[:jeanslength] = getvar(dataobject, :cs, unit=:cm_s) .* sqrt(3. * pi / (32. * dataobject.info.constants.G)) ./ sqrt.( getvar(dataobject, :rho, unit=:g_cm3) ) ./ dataobject.info.scale.cm .* selected_unit elseif i == :jeansnumber selected_unit = getunit(dataobject, :jeansnumber, vars, units) vars_dict[:jeansnumber] = getvar(dataobject, :jeanslength) ./ getvar(dataobject, :cellsize) ./ selected_unit elseif i == :freefall_time selected_unit = getunit(dataobject, :freefall_time, vars, units) vars_dict[:freefall_time] = sqrt.( 3. * pi / (32. * dataobject.info.constants.G) ./ getvar(dataobject, :rho, unit=:g_cm3) ) .* selected_unit elseif i == :mass selected_unit = getunit(dataobject, :mass, vars, units) vars_dict[:mass] = getmass(dataobject) .* selected_unit elseif i == :cs selected_unit = getunit(dataobject, :cs, vars, units) vars_dict[:cs] = sqrt.( dataobject.info.gamma .* select( dataobject.data, :p) ./ select( dataobject.data, :rho) ) .* selected_unit elseif i == :T || i == :Temp || i == :Temperature selected_unit = getunit(dataobject, i, vars, units) vars_dict[i] = select( dataobject.data, :p) ./ select( dataobject.data, :rho) .* selected_unit elseif i == :vx2 selected_unit = getunit(dataobject, :vx2, vars, units) vars_dict[:vx2] = select(dataobject.data, :vx).^2 .* selected_unit.^2 elseif i == :vy2 selected_unit = getunit(dataobject, :vy2, vars, units) vars_dict[:vy2] = select(dataobject.data, :vy).^2 .* selected_unit.^2 elseif i == :vz2 selected_unit = getunit(dataobject, :vz2, vars, units) vars_dict[:vz2] = select(dataobject.data, :vz).^2 .* selected_unit.^2 elseif i == :v selected_unit = getunit(dataobject, :v, vars, units) vars_dict[:v] = sqrt.(select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit elseif i == :v2 selected_unit = getunit(dataobject, :v2, vars, units) vars_dict[:v2] = (select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit .^2 elseif i == :vϕ_cylinder x = getvar(dataobject, :x, center=center) y = getvar(dataobject, :y, center=center) vx = getvar(dataobject, :vx) vy = getvar(dataobject, :vy) # vϕ = omega x radius # vϕ = |(x*vy - y*vx) / (x^2 + y^2)| * sqrt(x^2 + y^2) # vϕ = |x*vy - y*vx| / sqrt(x^2 + y^2) selected_unit = getunit(dataobject, :vϕ_cylinder, vars, units) aval = @. x * vy - y * vx # without abs to get direction bval = @. (x^2 + y^2)^(-0.5) vϕ_cylinder = @. aval .* bval .* selected_unit vϕ_cylinder[isnan.(vϕ_cylinder)] .= 0. # overwrite NaN due to radius = 0 vars_dict[:vϕ_cylinder] = vϕ_cylinder elseif i == :vϕ_cylinder2 selected_unit = getunit(dataobject, :vϕ_cylinder2, vars, units) vars_dict[:vϕ_cylinder2] = (getvar(dataobject, :vϕ_cylinder, center=center) .* selected_unit).^2 elseif i == :vz2 vz = getvar(dataobject, :vz) selected_unit = getunit(dataobject, :vz2, vars, units) vars_dict[:vz2] = (vz .* selected_unit ).^2 elseif i == :vr_cylinder x = getvar(dataobject, :x, center=center) y = getvar(dataobject, :y, center=center) vx = getvar(dataobject, :vx) vy = getvar(dataobject, :vy) selected_unit = getunit(dataobject, :vr_cylinder, vars, units) vr = @. (x * vx + y * vy) * (x^2 + y^2)^(-0.5) * selected_unit vr[isnan.(vr)] .= 0 # overwrite NaN due to radius = 0 vars_dict[:vr_cylinder] = vr elseif i == :vr_cylinder2 selected_unit = getunit(dataobject, :vr_cylinder2, vars, units) vars_dict[:vr_cylinder2] = (getvar(dataobject, :vr_cylinder, center=center) .* selected_unit).^2 elseif i == :x selected_unit = getunit(dataobject, :x, vars, units) if isamr vars_dict[:x] = (getvar(dataobject, apos) .* boxlen ./ 2 .^getvar(dataobject, :level) .- boxlen * center[1] ) .* selected_unit else # if uniform grid vars_dict[:x] = (getvar(dataobject, apos) .* boxlen ./ 2^lmax .- boxlen * center[1] ) .* selected_unit end elseif i == :y selected_unit = getunit(dataobject, :y, vars, units) if isamr vars_dict[:y] = (getvar(dataobject, bpos) .* boxlen ./ 2 .^getvar(dataobject, :level) .- boxlen * center[2] ) .* selected_unit else # if uniform grid vars_dict[:y] = (getvar(dataobject, bpos) .* boxlen ./ 2^lmax .- boxlen * center[2] ) .* selected_unit end elseif i == :z selected_unit = getunit(dataobject, :z, vars, units) if isamr vars_dict[:z] = (getvar(dataobject, cpos) .* boxlen ./ 2 .^getvar(dataobject, :level) .- boxlen * center[3] ) .* selected_unit else # if uniform grid vars_dict[:z] = (getvar(dataobject, cpos) .* boxlen ./ 2^lmax .- boxlen * center[3] ) .* selected_unit end elseif i == :hx # specific angular momentum # y * vz - z * vy selected_unit = getunit(dataobject, :hx, vars, units) ypos = getvar(dataobject, :y, center=center) zpos = getvar(dataobject, :z, center=center) vy = getvar(dataobject, :vy, center=center) vz = getvar(dataobject, :vz, center=center) vars_dict[:hx] = (ypos .* vz .- zpos .* vy) .* selected_unit elseif i == :hy # specific angular momentum # z * vx - x * vz selected_unit = getunit(dataobject, :hy, vars, units) xpos = getvar(dataobject, :x, center=center) zpos = getvar(dataobject, :z, center=center) vx = getvar(dataobject, :vx, center=center) vz = getvar(dataobject, :vz, center=center) vars_dict[:hy] = (zpos .* vx .- xpos .* vz) .* selected_unit elseif i == :hz # specific angular momentum # x * vy - y * vx selected_unit = getunit(dataobject, :hz, vars, units) xpos = getvar(dataobject, :x, center=center) ypos = getvar(dataobject, :y, center=center) vx = getvar(dataobject, :vx, center=center) vy = getvar(dataobject, :vy, center=center) vars_dict[:hz] = (xpos .* vy .- ypos .* vx) .* selected_unit elseif i == :h # specific angular momentum selected_unit = getunit(dataobject, :h, vars, units) hx = getvar(dataobject, :hx, center=center) hy = getvar(dataobject, :hy, center=center) hz = getvar(dataobject, :hz, center=center) vars_dict[:h] = sqrt.(hx .^2 .+ hy .^2 .+ hz .^2) .* selected_unit elseif i == :mach #thermal; no unit needed vars_dict[:mach] = getvar(dataobject, :v) ./ getvar(dataobject, :cs) elseif i == :ekin selected_unit = getunit(dataobject, :ekin, vars, units) vars_dict[:ekin] = 0.5 .* getmass(dataobject) .* getvar(dataobject, :v).^2 .* selected_unit elseif i == :r_cylinder selected_unit = getunit(dataobject, :r_cylinder, vars, units) if isamr vars_dict[:r_cylinder] = convert(Array{Float64,1}, select( dataobject.data, (apos, bpos, :level)=>p-> selected_unit * sqrt( (p[apos] * boxlen / 2^p.level - boxlen * center[1] )^2 + (p[bpos] * boxlen / 2^p.level - boxlen * center[2] )^2 ) ) ) else # if uniform grid vars_dict[:r_cylinder] = convert(Array{Float64,1}, select( dataobject.data, (apos, bpos)=>p-> selected_unit * sqrt( (p[apos] * boxlen / 2^lmax - boxlen * center[1] )^2 + (p[bpos] * boxlen / 2^lmax - boxlen * center[2] )^2 ) ) ) end elseif i == :r_sphere selected_unit = getunit(dataobject, :r_sphere, vars, units) if isamr vars_dict[:r_sphere] = select( dataobject.data, (apos, bpos, cpos, :level)=>p-> selected_unit * sqrt( (p[apos] * boxlen / 2^p.level - boxlen * center[1] )^2 + (p[bpos] * boxlen / 2^p.level - boxlen * center[2] )^2 + (p[cpos] * boxlen / 2^p.level - boxlen * center[3] )^2 ) ) else # if uniform grid vars_dict[:r_sphere] = select( dataobject.data, (apos, bpos, cpos)=>p-> selected_unit * sqrt( (p[apos] * boxlen / 2^lmax - boxlen * center[1] )^2 + (p[bpos] * boxlen / 2^lmax - boxlen * center[2] )^2 + (p[cpos] * boxlen / 2^lmax - boxlen * center[3] )^2 ) ) end end end if length(mask) > 1 for i in keys(vars_dict) vars_dict[i]=vars_dict[i][mask] end end if length(vars)==1 return vars_dict[vars[1]] else return vars_dict end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
6390
function get_data(dataobject::PartDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}, direction::Symbol, center::Array{<:Any,1}, mask::MaskType, ref_time::Real) vars_dict = Dict() #vars = unique(vars) boxlen = dataobject.boxlen if direction == :z apos = :x bpos = :y cpos = :z avel = :vx bvel = :vy cvel = :vz elseif direction == :y apos = :z bpos = :x cpos = :y avel = :vz bvel = :vx cvel = :vy elseif direction == :x apos = :z bpos = :y cpos = :x avel = :vz bvel = :vy cvel = :vx end column_names = propertynames(dataobject.data.columns) for i in vars # quantities that are in the datatable if in(i, column_names) selected_unit = getunit(dataobject, i, vars, units) if i == :x #selected_unit = (dataobject, :x, vars, units) vars_dict[:x] = (select(dataobject.data, apos) .- boxlen * center[1] ) .* selected_unit elseif i == :y #selected_unit = (dataobject, :y, vars, units) vars_dict[:y] = (select(dataobject.data, bpos) .- boxlen * center[2] ) .* selected_unit elseif i == :z #selected_unit = (dataobject, :z, vars, units) vars_dict[:z] = (select(dataobject.data, cpos) .- boxlen * center[3] ) .* selected_unit else vars_dict[i] = select(dataobject.data, i) .* selected_unit end # quantities that are derived from the variables in the data table elseif i == :vx2 selected_unit = getunit(dataobject, :vx2, vars, units) vars_dict[:vx2] = (getvar(dataobject, :vx) .* selected_unit ) .^2 elseif i == :vy2 selected_unit = getunit(dataobject, :vy2, vars, units) vars_dict[:vy2] = (getvar(dataobject, :vy) .* selected_unit ) .^2 elseif i == :v selected_unit = getunit(dataobject, :v, vars, units) vars_dict[:v] = sqrt.(select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit elseif i == :v2 selected_unit = getunit(dataobject, :v2, vars, units) vars_dict[:v2] = (select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit .^2 elseif i == :vϕ_cylinder x = getvar(dataobject, :x, center=center) y = getvar(dataobject, :y, center=center) vx = getvar(dataobject, :vx) vy = getvar(dataobject, :vy) # vϕ = omega x radius # vϕ = |(x*vy - y*vx) / (x^2 + y^2)| * sqrt(x^2 + y^2) # vϕ = |x*vy - y*vx| / sqrt(x^2 + y^2) selected_unit = getunit(dataobject, :vϕ_cylinder, vars, units) aval = @. x * vy - y * vx # without abs to get direction bval = @. (x^2 + y^2)^(-0.5) vϕ_cylinder = @. aval .* bval .* selected_unit vϕ_cylinder[isnan.(vϕ_cylinder)] .= 0. # overwrite NaN due to radius = 0 vars_dict[:vϕ_cylinder] = vϕ_cylinder elseif i == :vϕ_cylinder2 selected_unit = getunit(dataobject, :vϕ_cylinder2, vars, units) vars_dict[:vϕ_cylinder2] = (getvar(dataobject, :vϕ_cylinder, center=center) .* selected_unit).^2 elseif i == :vr_cylinder x = getvar(dataobject, :x, center=center) y = getvar(dataobject, :y, center=center) vx = getvar(dataobject, :vx) vy = getvar(dataobject, :vy) selected_unit = getunit(dataobject, :vr_cylinder, vars, units) vr = @. (x * vx + y * vy) * (x^2 + y^2)^(-0.5) * selected_unit vr[isnan.(vr)] .= 0 # overwrite NaN due to radius = 0 vars_dict[:vr_cylinder] = vr elseif i == :vz2 vz = getvar(dataobject, :vz) selected_unit = getunit(dataobject, :vz2, vars, units) vars_dict[:vz2] = (vz .* selected_unit ).^2 elseif i == :vr_cylinder2 selected_unit = getunit(dataobject, :vr_cylinder2, vars, units) vars_dict[:vr_cylinder2] = (getvar(dataobject, :vr_cylinder, center=center) .* selected_unit).^2 elseif i == :r_cylinder selected_unit = getunit(dataobject, :r_cylinder, vars, units) vars_dict[:r_cylinder] = select( dataobject.data, (apos, bpos)=>p-> selected_unit * sqrt( (p[apos] - center[1] * boxlen )^2 + (p[bpos] - center[2] * boxlen )^2 ) ) elseif i == :r_sphere selected_unit = getunit(dataobject, :r_sphere, vars, units) vars_dict[:r_sphere] = select( dataobject.data, (apos, bpos, cpos)=>p-> selected_unit * sqrt( (p[apos] - center[1] * boxlen )^2 + (p[bpos] - center[2] * boxlen )^2 + (p[cpos] - center[3] * boxlen )^2 ) ) elseif i == :ekin selected_unit = getunit(dataobject, :ekin, vars, units) vars_dict[:ekin] = 0.5 .* getvar(dataobject, :mass) .* (select(dataobject.data, :vx).^2 .+ select(dataobject.data, :vy).^2 .+ select(dataobject.data, :vz).^2 ) .* selected_unit elseif i == :age selected_unit = getunit(dataobject, :age, vars, units) vars_dict[:age] = ( ref_time .- getvar(dataobject, :birth) ) .* selected_unit end end for i in keys(vars_dict) vars_dict[i][isnan.(vars_dict[i])] .= 0 end if length(mask) > 1 for i in keys(vars_dict) vars_dict[i]=vars_dict[i][mask] end end if length(vars)==1 return vars_dict[vars[1]] else return vars_dict end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
15766
function createconstants!(dataobject::InfoType) dataobject.constants = createconstants() return dataobject end function createconstants() #--------------------------------------------------- # define constants in cgs units #--------------------------------------------------- # Sources: # http://www.astro.wisc.edu/~dolan/constants.html # IAU # RAMSES constants = PhysicalUnitsType001() #zeros(Float64, 17)...) constants.Au = 149597870700e-13 # [cm] Astronomical unit -> from IAU constants.pc = 3.08567758128e18 # [cm] Parsec -> from IAU constants.kpc = constants.pc * 1e3 constants.Mpc = constants.pc * 1e6 constants.mpc = constants.pc * 1e-3 constants.ly = 9.4607304725808e17 # [cm] Light year -> from IAU constants.Msol = 1.9891e33 # [g] Solar mass -> from IAU constants.Msun = constants.Msol constants.Rsol = 6.96e10 #cm: Solar radius constants.Rsun = constants.Rsol # Lsol = #erg s-2: Solar luminosity constants.Mearth = 5.9722e27 # [g] Earth mass -> from IAU constants.Mjupiter = 1.89813e30 # [g] Jupiter -> from IAU constants.me = 9.1093897e-28 #g: electron mass constants.mp = 1.6726231e-24 #g: proton mass constants.mn = 1.6749286e-24 #g: neutron mass constants.mH = 1.66e-24 # [g] H-Atom mass -> from RAMSES constants.amu = 1.6605402e-24 #g: atomic mass unit constants.NA = 6.0221367e23 # Avagadro's number constants.c = 2.99792458e10 #cm s-1: speed of light in a vacuum # h = #erg s: Planck constant # hbar = #erg s constants.G = 6.67259e-8 # cm3 g-1 s-2 Gravitational constant constants.kB = 1.3806200e-16 # [cm2 g s-2 K-1] Boltzmann constant -> cooling_module.f90 RAMSES constants.yr = 3.15576e7 # [s] Year -> from IAU constants.Myr = constants.yr *1e6 constants.Gyr = constants.yr *1e9 return constants end """ ### Create an object with predefined scale factors from code to pysical units ```julia function createscales!(dataobject::InfoType) return ScalesType001 ``` """ function createscales!(dataobject::InfoType) dataobject.scale = createscales(dataobject) return dataobject end # create scales-field from existing InfoType function createscales(dataobject::InfoType) unit_l = dataobject.unit_l unit_d = dataobject.unit_d unit_t = dataobject.unit_t unit_m = dataobject.unit_m constants = dataobject.constants return createscales(unit_l, unit_d, unit_t, unit_m, constants) end function createscales(unit_l::Float64, unit_d::Float64, unit_t::Float64, unit_m::Float64, constants::PhysicalUnitsType001) #Initialize scale-object scale = ScalesType001() #zeros(Float64, 32)...) # Conversion factors from user units to astronomical units mH = constants.mH # [g] H-Atom mass -> from RAMSES kB = constants.kB # [cm2 g s-2 K-1] = [erg K-1] Boltzmann constant -> cooling_module.f90 RAMSES #Mpc = constants.pc /1e6 # [cm] MegaParsec -> from IAU #kpc = constants.pc /1e3 # [cm] KiloParsec -> from IAU pc = constants.pc # [cm] Parsec -> from IAU #mpc = constants.pc *1e3 # [cm] MilliParsec -> from IAU Au = constants.Au # [cm] Astronomical unit -> from IAU ly = constants.ly # [cm] Light year -> from IAU Msol = constants.Msol # [g] Solar mass -> from IAU Mearth = constants.Mearth # [g] Earth mass -> from IAU Mjupiter= constants.Mjupiter # [g] Jupiter -> from IAU #Gyr = constants.yr /1e9 # [s] GigaYear -> from IAU #Myr = constants.yr /1e6 # [s] MegaYear -> from IAU yr = constants.yr # [s] Year -> from IAU X_frac = 0.76 # Hydrogen fraction by mass -> cooling_module.f90 RAMSES μ = 1/X_frac # mean molecular weight scale.Mpc = unit_l / pc / 1e6 scale.kpc = unit_l / pc / 1e3 scale.pc = unit_l / pc scale.mpc = unit_l / pc * 1e3 scale.ly = unit_l / ly scale.Au = unit_l / Au scale.km = unit_l / 1.0e5 scale.m = unit_l / 1.0e2 scale.cm = unit_l scale.mm = unit_l * 10. scale.μm = unit_l * 1e4 scale.Mpc3 = scale.Mpc^3 scale.kpc3 = scale.kpc^3 scale.pc3 = scale.pc^3 scale.mpc3 = scale.mpc^3 scale.ly3 = scale.ly^3 scale.Au3 = scale.Au^3 scale.km3 = scale.km^3 scale.m3 = scale.m^3 scale.cm3 = scale.cm^3 scale.mm3 = scale.mm^3 scale.μm3 = scale.μm^3 scale.Msol_pc3 = unit_d * pc^3 / Msol scale.Msun_pc3 = scale.Msol_pc3 scale.g_cm3 = unit_d scale.Msol_pc2 = unit_d * unit_l * pc^2 / Msol scale.Msun_pc2 = scale.Msol_pc2 scale.g_cm2 = unit_d * unit_l scale.Gyr = unit_t / yr / 1e9 scale.Myr = unit_t / yr / 1e6 scale.yr = unit_t / yr scale.s = unit_t scale.ms = unit_t * 1e3 scale.Msol = unit_d * unit_l^3 / Msol scale.Msun = scale.Msol scale.Mearth = unit_d * unit_l^3 / Mearth scale.Mjupiter = unit_d * unit_l^3 / Mjupiter scale.g = unit_d * unit_l^3 scale.km_s = unit_l / unit_t / 1e5 scale.m_s = unit_l / unit_t / 1e2 scale.cm_s = unit_l / unit_t scale.nH = X_frac / mH * unit_d # Hydrogen number density in [H/cc] scale.erg = unit_m * (unit_l / unit_t)^2 # [g (cm/s)^2] scale.g_cms2 = unit_m / (unit_l * unit_t^2) scale.T_mu = mH / kB * (unit_l / unit_t)^2 # T/mu [Kelvin] scale.K_mu = scale.T_mu scale.T = scale.T_mu * μ # T [Kelvin] scale.K = scale.T scale.Ba = unit_m / unit_l / unit_t^2 # Barye (pressure) [cm-1 g s-2] scale.g_cm_s2 = scale.Ba scale.p_kB = scale.g_cm_s2 / kB # [K cm-3] scale.K_cm3 = scale.p_kB # p/kB return scale end """ ### Get a list of all exported Mera types and functions: ```julia function viewmodule(modulename::Module) ``` """ function viewmodule(modulename::Module) println() printstyled("[Mera]: Get a list of all exported Mera types and functions:\n", bold=true, color=:normal) printstyled("===============================================================\n", bold=true, color=:normal) module_list = names(modulename, all=false,imported= true) show(IOContext(stdout), "text/plain", module_list ) return module_list end """ ### Convert a value to human-readable astrophysical units and round to ndigits (pass the value in code units and the quantity specification (length, time) ) ```julia function humanize(value::Float64, scale::ScalesType001, ndigits::Int, quantity::String) return value, value_unit ``` """ function humanize(value::Float64, scale::ScalesType001, ndigits::Int, quantity::String) if quantity == "" round(value, digits=ndigits) elseif value == 0 value_buffer = 0. value_unit = "x" return round(value_buffer, digits=ndigits), value_unit else if quantity == "length" sign_buffer = sign(value) value_buffer = value * scale.Mpc * sign_buffer value_unit = "Mpc" if value_buffer <= 1. value_buffer = value * scale.kpc * sign_buffer value_unit = "kpc" if value_buffer <= 1. value_buffer = value * scale.pc * sign_buffer value_unit = "pc" if value_buffer <= 1. value_buffer = value * scale.mpc * sign_buffer value_unit = "mpc" #if value_buffer < 1. #todo check # value_buffer = value * scale.au # value_unit = "au" if value_buffer <= .1 value_buffer = value * scale.cm * sign_buffer value_unit = "cm" if value_buffer <= .1 value_buffer = value * scale.μm * sign_buffer value_unit = "μm" end end #end end end end value_buffer = value_buffer * sign_buffer end if quantity == "time" sign_buffer = sign(value) value_buffer = value * scale.Gyr * sign_buffer value_unit = "Gyr" if value_buffer <= 1. value_buffer = value * scale.Myr * sign_buffer value_unit = "Myr" if value_buffer <= .1 value_buffer = value * scale.yr * sign_buffer value_unit = "yr" if value_buffer <= 1. value_buffer = value * scale.s * sign_buffer value_unit = "s" if value_buffer <= 1. value_buffer = value * scale.ms * sign_buffer value_unit = "ms" end end end end value_buffer = value_buffer * sign_buffer end return round(value_buffer, digits=ndigits), value_unit end end function humanize(value::Float64, ndigits::Int, quantity::String) if quantity == "" round(value, digits=ndigits) else if quantity == "memory" value_buffer = value value_unit = "Bytes" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "KB" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "MB" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "GB" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "TB" end end end end end return round(value_buffer, digits=ndigits), value_unit end end #todo: define file type? function skiplines(file, nlines::Int) for i=1:nlines read(file) end return end function getunit(dataobject, quantity::Symbol, vars::Array{Symbol,1}, units::Array{Symbol,1}; uname::Bool=false) idx = findall(x->x==quantity, vars) if length(idx) >= 1 idx = idx[1] if length(units) >= idx unit = units[idx] else unit = :standard end else unit = :standard end if unit == :standard if uname == false return 1. else return 1., unit end else if uname == false return getfield(dataobject.info.scale, unit) else return getfield(dataobject.info.scale, unit), unit end end end function getunit(dataobject::InfoType, unit::Symbol; uname::Bool=false) if unit == :standard if uname == false return 1. else return 1., unit end else if uname == false return getfield(dataobject.scale, unit) else return getfield(dataobject.scale, unit), unit end end end """ ### Create a New DataSetType from a Filtered Data Table ```julia function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::HydroDataType) return HydroDataType function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::PartDataType) return PartDataType function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::ClumpDataType) return ClumpDataType function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::GravDataType) return GravDataType ``` ### Example ```julia # read simulation information julia> info = getinfo(420) julia> gas = gethydro(info) # filter and create a new` data table julia> density = 3. /gas.scale.Msol_pc3 julia> filtered_db = @filter gas.data :rho >= density # construct a new HydroDataType # (comparable to the object "gas" but only with filtered data) julia> gas_new = construct_datatype(filtered_db, gas) ``` """ function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::HydroDataType) hydrodata = HydroDataType() hydrodata.data = data hydrodata.info = dataobject.info hydrodata.lmin = dataobject.lmin hydrodata.lmax = dataobject.lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = dataobject.ranges hydrodata.selected_hydrovars = dataobject.selected_hydrovars hydrodata.used_descriptors = dataobject.used_descriptors hydrodata.smallr = dataobject.smallr hydrodata.smallc = dataobject.smallc hydrodata.scale = dataobject.scale return hydrodata end function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::PartDataType) partdata = PartDataType() partdata.data = data partdata.info = dataobject.info partdata.lmin = dataobject.lmin partdata.lmax = dataobject.lmax partdata.boxlen = dataobject.boxlen partdata.ranges = dataobject.ranges partdata.selected_partvars = dataobject.selected_partvars partdata.used_descriptors = dataobject.used_descriptors partdata.scale = dataobject.scale return partdata end function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::GravDataType) gravitydata = GravDataType() gravitydata.data = data gravitydata.info = dataobject.info gravitydata.lmin = dataobject.lmin gravitydata.lmax = dataobject.lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = dataobject.ranges gravitydata.selected_gravvars = dataobject.selected_gravvars gravitydata.used_descriptors = dataobject.used_descriptors gravitydata.scale = dataobject.scale return gravitydata end function construct_datatype(data::JuliaDB.AbstractIndexedTable, dataobject::ClumpDataType) clumpdata = ClumpDataType() clumpdata.data = data clumpdata.info = dataobject.info clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = dataobject.ranges clumpdata.selected_clumpvars = dataobject.selected_clumpvars clumpdata.used_descriptors = dataobject.used_descriptors clumpdata.scale = dataobject.scale return clumpdata end """ ### Get a notification sound, e.g., when your calculations are finished. This may not apply when working remotely on a server: ```julia julia> bell() ``` """ function bell() # Sound folder sounddir = joinpath(@__DIR__, "../sounds/") y, fs = wavread(sounddir * "strum.wav") wavplay(y, fs) return end """ ### Get an email notification, e.g., when your calculations are finished. Mandatory: - the email client "mail" needs to be installed - put a file with the name "email.txt" in your home folder that contains your email address in the first line ```julia julia> notifyme() ``` or: ```julia julia> notifyme("Calculation 1 finished!") ``` """ function notifyme(msg::String) return notifyme(msg=msg) end function notifyme(;msg="done!") f = open(homedir() * "/email.txt") email = read(f, String) close(f) email = strip(email, '\n') email = filter(x -> !isspace(x), email) run(pipeline(`echo "$msg"`, `mail -s "MERA" $email`)); return end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
30454
""" ### print a Mera timestamp on the screen if the global variable: verbose_mode == true ```julia function printtime(text::String="", verbose::Bool=verbose_mode) ``` """ function printtime(text::String="", verbose::Bool=verbose_mode) if verbose printstyled( "[Mera]: $text",now(), "\n", bold=true, color=:normal) println() end end function printtablememory(data, verbose::Bool) if verbose arg_value, arg_unit = usedmemory(data, false) println("Memory used for data table :", arg_value, " ", arg_unit) println("-------------------------------------------------------") println() end end """ ### Get the memory that is used for an object in human-readable units ```julia function usedmemory(object, verbose::Bool=true) return value, unit ``` """ function usedmemory(object, verbose::Bool=true) obj_value = Base.summarysize(object) return usedmemory(obj_value, verbose) end function usedmemory(obj_value::Real, verbose::Bool=true) value_buffer = obj_value value_unit = "Bytes" if obj_value > 1000. value_buffer = obj_value / 1024. value_unit = "KB" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "MB" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "GB" if value_buffer > 1000. value_buffer = value_buffer / 1024. value_unit = "TB" end end end end if verbose == true println("Memory used: ", round(value_buffer, digits=3), " ", value_unit) end return value_buffer, value_unit end """ #### Print overview of the used storage per file type for a given timestep ```julia function storageoverview(dataobject::InfoType, verbose::Bool=true) function storageoverview(dataobject::InfoType; verbose::Bool=true) return dictionary in bytes ``` """ function storageoverview(dataobject::InfoType, verbose::Bool) return storageoverview(dataobject, verbose=verbose) end function storageoverview(dataobject::InfoType; verbose::Bool=true) # todo simplyfy to single function calls verbose = checkverbose(verbose) dictoutput = Dict() output = dataobject.output if verbose printstyled("Overview of the used disc space for output: [$output]\n", bold=true, color=:normal) printstyled("------------------------------------------------------\n", bold=true, color=:normal) end #path = dataobject.path #fnames = createpath(output, path) #println(fnames) fnames = dataobject.fnames all_files = readdir(fnames.output) folder = filesize.( fnames.output .* "/" .* all_files) folder_size = sum( folder ) folder_mean = mean( folder ) folder_value, folder_unit = usedmemory(folder_size, false) folder_meanvalue, folder_meanunit = usedmemory(folder_mean, false) if verbose println( "Folder: ", round(folder_value,digits=2), " ", folder_unit, " \t<", round(folder_meanvalue, digits=2), " ", folder_meanunit,">/file" ) end amr_files = all_files[ occursin.( "amr", all_files) ] amr = filesize.( fnames.output .* "/" .* amr_files ) amr_size = sum( amr ) amr_mean = mean( amr ) amr_value, amr_unit = usedmemory(amr_size, false) amr_meanvalue, amr_meanunit = usedmemory(amr_mean, false) if verbose println( "AMR-Files: ", round(amr_value, digits=2), " ", amr_unit, " \t<", round(amr_meanvalue, digits=2), " ", amr_meanunit,">/file" ) end if dataobject.hydro hydro_files = all_files[ occursin.( "hydro", all_files) ] hydro = filesize.( fnames.output .* "/" .* hydro_files ) hydro_size = sum( hydro ) hydro_mean = mean( hydro ) hydro_value, hydro_unit = usedmemory(hydro_size, false) hydro_meanvalue, hydro_meanunit = usedmemory(hydro_mean, false) if verbose println( "Hydro-Files: ", round(hydro_value, digits=2), " ", hydro_unit, " \t<", round(hydro_meanvalue, digits=2), " ", hydro_meanunit,">/file" ) end else hydro_size = 0. end if dataobject.gravity gravity_files = all_files[ occursin.( "grav", all_files) ] gravity = filesize.(fnames.output .* "/" .* gravity_files ) gravity_size = sum( gravity ) gravity_mean = mean( gravity ) gravity_value, gravity_unit = usedmemory(gravity_size, false) gravity_meanvalue, gravity_meanunit = usedmemory(gravity_mean, false) if verbose println( "Gravity-Files: ", round(gravity_value, digits=2), " ", gravity_unit, " \t<", round(gravity_meanvalue, digits=2), " ", gravity_meanunit,">/file" ) end else gravity_size = 0. end if dataobject.particles particle_files = all_files[ occursin.( "part", all_files) ] particle = filesize.( fnames.output .* "/" .* particle_files ) particle_size = sum( particle ) particle_mean = mean( particle ) particle_value, particle_unit = usedmemory(particle_size, false) particle_meanvalue, particle_meanunit = usedmemory(particle_mean, false) if verbose println( "Particle-Files: ", round(particle_value, digits=2)," ", particle_unit," \t<", round(particle_meanvalue, digits=2)," ", particle_meanunit,">/file" ) end else particle_size = 0. end if dataobject.clumps clump_files = all_files[ occursin.( "clump", all_files) ] clump = filesize.( fnames.output .* "/" .* clump_files ) clump_size = sum( clump ) clump_mean = mean( clump ) clump_value, clump_unit = usedmemory(clump_size, false) clump_meanvalue, clump_meanunit = usedmemory(clump_mean, false) if verbose println( "Clump-Files: ", round(clump_value, digits=2), " ", clump_unit, " \t<", round(clump_meanvalue, digits=2), " ", clump_meanunit,">/file" ) end else clump_size = 0. end if dataobject.rt rt_files = all_files[ occursin.( "rt", all_files) ] rt = filesize.( fnames.output .* "/" .* rt_files ) rt_size = sum( rt ) rt_mean = mean( rt ) rt_value, rt_unit = usedmemory(rt_size, false) rt_meanvalue, rt_meanunit = usedmemory(rt_mean, false) if verbose println( "RT-Files: ", round(rt_value, digits=2), " ", rt_unit, " \t<", round(rt_meanvalue, digits=2), " ", rt_meanunit,">/file" ) end else rt_size = 0. end # todo: check for sink files if dataobject.sinks sink_files = all_files[ occursin.( "sink", all_files) ] sink = filesize.( fnames.output .* "/" .* sink_files ) sink_size = sum( sink ) sink_mean = mean( sink ) sink_value, sink_unit = usedmemory(sink_size, false) sink_meanvalue, sink_meanunit = usedmemory(sink_mean, false) if verbose println( "Sink-Files: ", round(sink_value, digits=2), " ", sink_unit, " \t<", round(sink_meanvalue, digits=2), " ", sink_meanunit,">/file" ) end else sink_size = 0. end if verbose println() println() println("mtime: ", dataobject.mtime) println("ctime: ", dataobject.ctime) end # prepare output dictoutput[:folder] = folder_size dictoutput[:amr] = amr_size dictoutput[:hydro] = hydro_size dictoutput[:gravity] = gravity_size dictoutput[:particle] = particle_size dictoutput[:clump] = clump_size dictoutput[:rt] = rt_size dictoutput[:sink] = sink_size return dictoutput end """ ### Get the number of cells and/or the CPUs per level ```julia function overview_amr(dataobject::HydroDataType, verbose::Bool=true) function overview_amr(dataobject::HydroDataType; verbose::Bool=true) return a JuliaDB table ``` """ function amroverview(dataobject::HydroDataType, verbose::Bool) amroverview(dataobject, verbose=verbose) end function amroverview(dataobject::HydroDataType; verbose::Bool=true) checkforAMR(dataobject) verbose = checkverbose(verbose) # check if cpu column exists fn = propertynames(dataobject.data.columns) cpu_col = false Ncols = 2 if in(Symbol("cpu"), fn) cpu_col = true Ncols = 3 end cells = zeros(Int, dataobject.lmax - dataobject.lmin + 1, Ncols) cellsize = zeros(Float64, dataobject.lmax - dataobject.lmin + 1,1) if verbose println("Counting...") end @showprogress 1 "" for ilevel=dataobject.lmin:dataobject.lmax if cpu_col cpus_ilevel = length( unique( select( filter(p->p.level==ilevel, select(dataobject.data, (:level, :cpu) ) ), :cpu) ) ) cells[Int(ilevel-dataobject.lmin+1),3] = cpus_ilevel end cells[Int(ilevel-dataobject.lmin+1),1] = ilevel cellsize[Int(ilevel-dataobject.lmin+1)] = dataobject.boxlen / 2^ilevel end cells_per_level = fit!(CountMap(Int), select(dataobject.data, (:level)) ) #Nlevels = length(cells_per_level.value.keys) #for ilevel=1:(dataobject.lmax-dataobject.lmin) #if ilevel <= Nlevels for (ilevel,j) in enumerate(cells_per_level.value.keys) cells[j-dataobject.lmin+1,2] = cells_per_level.value.vals[ilevel] #else # cells[ilevel,2] = 0. end #end if cpu_col amr_hydro_table = table(cells[:,1], cells[:,2], cellsize[:], cells[:,3], names=[:level, :cells, :cellsize, :cpus]) else amr_hydro_table = table(cells[:,1], cells[:,2], cellsize[:], names=[:level, :cells, :cellsize]) end return amr_hydro_table end """ ### Get the number of cells and/or the CPUs per level ```julia function overview_amr(dataobject::GravDataType, verbose::Bool=true) function overview_amr(dataobject::GravDataType; verbose::Bool=true) return a JuliaDB table ``` """ function amroverview(dataobject::GravDataType, verbose::Bool) amroverview(dataobject, verbose=verbose) end function amroverview(dataobject::GravDataType; verbose::Bool=true) checkforAMR(dataobject) verbose = checkverbose(verbose) # check if cpu column exists fn = propertynames(dataobject.data.columns) cpu_col = false Ncols = 2 if in(Symbol("cpu"), fn) cpu_col = true Ncols = 3 end cells = zeros(Int, dataobject.lmax - dataobject.lmin + 1, Ncols) cellsize = zeros(Float64, dataobject.lmax - dataobject.lmin + 1,1) if verbose println("Counting...") end @showprogress 1 "" for ilevel=dataobject.lmin:dataobject.lmax if cpu_col cpus_ilevel = length( unique( select( filter(p->p.level==ilevel, select(dataobject.data, (:level, :cpu) ) ), :cpu) ) ) cells[Int(ilevel-dataobject.lmin+1),3] = cpus_ilevel end cells[Int(ilevel-dataobject.lmin+1),1] = ilevel cellsize[Int(ilevel-dataobject.lmin+1)] = dataobject.boxlen / 2^ilevel end cells_per_level = fit!(CountMap(Int), select(dataobject.data, (:level)) ) #Nlevels = length(cells_per_level.value.keys) #for ilevel=1:(dataobject.lmax-dataobject.lmin) #if ilevel <= Nlevels for (ilevel,j) in enumerate(cells_per_level.value.keys) cells[j-dataobject.lmin+1,2] = cells_per_level.value.vals[ilevel] #else # cells[ilevel,2] = 0. end #end if cpu_col amr_grav_table = table(cells[:,1], cells[:,2], cellsize[:], cells[:,3], names=[:level, :cells, :cellsize, :cpus]) else amr_grav_table = table(cells[:,1], cells[:,2], cellsize[:], names=[:level, :cells, :cellsize]) end return amr_grav_table end """ ### Get the number of particles and/or the CPUs per level ```julia function overview_amr(dataobject::PartDataType, verbose::Bool=true) function overview_amr(dataobject::PartDataType; verbose::Bool=true) return a JuliaDB table ``` """ function amroverview(dataobject::PartDataType, verbose::Bool) amroverview(dataobject, verbose=verbose) end function amroverview(dataobject::PartDataType; verbose::Bool=true) checkforAMR(dataobject) verbose = checkverbose(verbose) # check if cpu column exists fn = propertynames(dataobject.data.columns) cpu_col = false Ncols = 2 if in(Symbol("cpu"), fn) cpu_col = true Ncols = 3 end parts = zeros(Int, dataobject.lmax - dataobject.lmin + 1, Ncols) part_tot = 0 part_masstot = 0 if verbose println("Counting...") end @showprogress 1 "" for ilevel=dataobject.lmin:dataobject.lmax if cpu_col cpus_ilevel = length( unique( select( filter(p->p.level==ilevel, select(dataobject.data, (:level, :cpu) ) ), :cpu) ) ) parts[Int(ilevel-dataobject.lmin+1),3] = cpus_ilevel end parts[Int(ilevel-dataobject.lmin+1),1] = ilevel end part_per_level = fit!(CountMap(Int32), select(dataobject.data, (:level)) ) Nlevels = length(part_per_level.value.keys) for ilevel=1:Nlevels if ilevel <= Nlevels parts[ilevel,2] = part_per_level.value.vals[ilevel] else parts[ilevel,2] = 0. end end if cpu_col amr_part_table = table(parts[:,1], parts[:,2], parts[:,3], names=[:level, :particles, :cpus]) else amr_part_table = table(parts[:,1], parts[:,2], names=[:level, :particles]) end return amr_part_table end function checkforAMR(dataobject::DataSetType) if dataobject.lmax == dataobject.lmin error("[Mera]: Works only with AMR data!") end end """ ### Get the mass and min/max value of each variable in the database per level ```julia function dataoverview(dataobject::HydroDataType, verbose::Bool=true) function dataoverview(dataobject::HydroDataType; verbose::Bool=true) return a JuliaDB table ``` """ function dataoverview(dataobject::HydroDataType, verbose::Bool) return dataoverview(dataobject, verbose=verbose) end function dataoverview(dataobject::HydroDataType; verbose::Bool=true) verbose = checkverbose(verbose) nvarh = dataobject.info.nvarh lmin = dataobject.lmin lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) cells_tot = 0 cells_masstot = 0 density_var = :rho skip_vars = [:cpu, :level, :cx, :cy, :cz] if dataobject.info.descriptor.usehydro == true if haskey(dataobject.used_descriptors, 1) density_var = dataobject.used_descriptors[1] end end names_constr = [Symbol("level")] fn = propertynames(dataobject.data.columns) for i in fn if !in(i, skip_vars) if i == density_var append!(names_constr, [Symbol("mass")] ) end append!(names_constr, [Symbol("$(i)_min")] ) append!(names_constr, [Symbol("$(i)_max")] ) end end cells = Array{Any,2}(undef, (dataobject.lmax - dataobject.lmin + 1,length(names_constr) ) ) if verbose println("Calculating...") end @showprogress 1 "" for ilevel=lmin:lmax cell_iterator = 1 if isamr filtered_level = filter(p->p.level==ilevel, dataobject.data ) else # if uniform grid filtered_level = dataobject.data end cells[Int(ilevel-lmin+1),cell_iterator] = ilevel cell_iterator= cell_iterator + 1 for ifn in fn if !in(ifn, skip_vars) if ifn == density_var cells_msum = sum(select(filtered_level , density_var)) * (dataobject.boxlen / 2^ilevel)^3 #todo: introduce humanize for mass #cells_masstot = cells_masstot + cells_msum cells[Int(ilevel-lmin+1),cell_iterator] = cells_msum cell_iterator= cell_iterator + 1 if length(select(filtered_level, density_var)) != 0 rho_minmax = reduce((min, max), filtered_level, select=density_var) rhomin= rho_minmax.min rhomax= rho_minmax.max else rhomin= 0. rhomax= 0. end cells[Int(ilevel-lmin+1),cell_iterator] = rhomin cell_iterator= cell_iterator + 1 cells[Int(ilevel-lmin+1),cell_iterator] = rhomax cell_iterator= cell_iterator + 1 else if length(select(filtered_level, ifn)) != 0 value_minmax = reduce((min, max), filtered_level, select=ifn) valuemin = value_minmax.min valuemax = value_minmax.max else valuemin = 0. valuemax = 0. end cells[Int(ilevel-lmin+1),cell_iterator] = valuemin cell_iterator= cell_iterator + 1 cells[Int(ilevel-lmin+1),cell_iterator] = valuemax cell_iterator= cell_iterator + 1 end end end end hydro_overview_table = table( [cells[:, i ] for i = 1:length(names_constr)]..., names=[names_constr...] ) return hydro_overview_table end """ todo: needs to be tested ### Get the total epot and min/max value of each variable in the database per level ```julia function dataoverview(dataobject::GravDataType, verbose::Bool=true) function dataoverview(dataobject::GravDataType; verbose::Bool=true) return a JuliaDB table ``` """ function dataoverview(dataobject::GravDataType, verbose::Bool) return dataoverview(dataobject, verbose=verbose) end function dataoverview(dataobject::GravDataType; verbose::Bool=true) verbose = checkverbose(verbose) nvarh = length(dataobject.info.gravity_variable_list) lmin = dataobject.lmin lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) cells_tot = 0 cells_masstot = 0 epot_var = :epot skip_vars = [:cpu, :level, :cx, :cy, :cz] if dataobject.info.descriptor.usegravity == true if haskey(dataobject.used_descriptors, 1) density_var = dataobject.used_descriptors[1] end end names_constr = [Symbol("level")] fn = propertynames(dataobject.data.columns) for i in fn if !in(i, skip_vars) if i == epot_var append!(names_constr, [Symbol("epot_tot")] ) end append!(names_constr, [Symbol("$(i)_min")] ) append!(names_constr, [Symbol("$(i)_max")] ) end end cells = Array{Any,2}(undef, (dataobject.lmax - dataobject.lmin + 1,length(names_constr) ) ) if verbose println("Calculating...") end @showprogress 1 "" for ilevel=lmin:lmax cell_iterator = 1 if isamr filtered_level = filter(p->p.level==ilevel, dataobject.data ) else # if uniform grid filtered_level = dataobject.data end cells[Int(ilevel-lmin+1),cell_iterator] = ilevel cell_iterator= cell_iterator + 1 for ifn in fn if !in(ifn, skip_vars) if ifn == epot_var cells_msum = sum(select(filtered_level , epot_var)) #todo: introduce humanize for mass #cells_masstot = cells_masstot + cells_msum cells[Int(ilevel-lmin+1),cell_iterator] = cells_msum cell_iterator= cell_iterator + 1 if length(select(filtered_level, epot_var)) != 0 epot_minmax = reduce((min, max), filtered_level, select=epot_var) epotmin= epot_minmax.min epotmax= epot_minmax.max else epotmin= 0. epotmax= 0. end cells[Int(ilevel-lmin+1),cell_iterator] = epotmin cell_iterator= cell_iterator + 1 cells[Int(ilevel-lmin+1),cell_iterator] = epotmax cell_iterator= cell_iterator + 1 else if length(select(filtered_level, ifn)) != 0 value_minmax = reduce((min, max), filtered_level, select=ifn) valuemin = value_minmax.min valuemax = value_minmax.max else valuemin = 0. valuemax = 0. end cells[Int(ilevel-lmin+1),cell_iterator] = valuemin cell_iterator= cell_iterator + 1 cells[Int(ilevel-lmin+1),cell_iterator] = valuemax cell_iterator= cell_iterator + 1 end end end end grav_overview_table = table( [cells[:, i ] for i = 1:length(names_constr)]..., names=[names_constr...] ) return grav_overview_table end """ ### Get the extrema of each variable in the database ```julia function dataoverview(dataobject::ClumpDataType) return a JuliaDB table ``` """ function dataoverview(dataobject::ClumpDataType) fn = propertynames(dataobject.data.columns) s = Series(Extrema()) Ncolumns = length(fn) values = Array{Any}(undef, Ncolumns+1, 2) values[1,1] = "min" values[1,2] = "max" for i = 1:Ncolumns a = reduce(s, dataobject.data; select = fn[i]) values[i+1, 1] = a.stats[1].min values[i+1, 2] = a.stats[1].max end column_names = [Symbol("extrema")] append!(column_names, fn ) clump_overview_table = table( [values[k, : ] for k = 1:(Ncolumns+1) ]...,names=collect(column_names) ) return clump_overview_table end """ ### Get the min/max value of each variable in the database per level ```julia function dataoverview(dataobject::PartDataType, verbose::Bool=true) function dataoverview(dataobject::PartDataType; verbose::Bool=true) return a JuliaDB table ``` """ function dataoverview(dataobject::PartDataType, verbose::Bool) return dataoverview(dataobject, verbose=verbose) end function dataoverview(dataobject::PartDataType; verbose::Bool=true) verbose = checkverbose(verbose) lmin = dataobject.lmin lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) parts_tot = 0 parts_masstot = 0 skip_vars = [:cpu, :level] fn = propertynames(dataobject.data.columns) #fn = convert(Array{String,1}, fn) #todo delte names_constr = [Symbol("level")] if verbose println("Calculating...") end for i in fn if !in(i, skip_vars) append!(names_constr, [Symbol("$(i)_min")] ) append!(names_constr, [Symbol("$(i)_max")] ) end end parts = Array{Any,2}(undef, (dataobject.lmax - dataobject.lmin + 1,length(names_constr) ) ) #@showprogress 1 "Searching..." for ilevel=lmin:lmax part_iterator = 1 if isamr filtered_level = filter(p->p.level==ilevel, dataobject.data ) else # if uniform grid filtered_level = dataobject.data end parts[Int(ilevel-lmin+1),part_iterator] = ilevel part_iterator= part_iterator + 1 for ifn in fn if !in(ifn, skip_vars) if length(select(filtered_level, ifn)) != 0 value_minmax = reduce((min, max), filtered_level, select=ifn) valuemin = value_minmax.min valuemax = value_minmax.max else valuemin = 0. valuemax = 0. end parts[Int(ilevel-lmin+1),part_iterator] = valuemin part_iterator= part_iterator + 1 parts[Int(ilevel-lmin+1),part_iterator] = valuemax part_iterator= part_iterator + 1 end end end particle_overview_table = table( [parts[:, i ] for i = 1:length(names_constr)]..., names=[names_constr...] ) return particle_overview_table end """ #### Get the existing simulation snapshots in a given folder - returns field `outputs` with Array{Int,1} containing the output-numbers of the existing simulations - returns field `miss` with Array{Int,1} containing the output-numbers of empty simulation folders - returns field `path` as String ```julia checkoutputs(path::String="./"; verbose::Bool=true) return CheckOutputNumberType ``` #### Examples ```julia # Example 1: # look in current folder julia> N = checkoutputs(); julia> N.outputs julia> N.miss julia> N.path # Example 2: # look in given path # without any keyword julia>N = checkoutputs("simulation001"); ``` """ function checkoutputs(path::String="./"; verbose::Bool=true) verbose = checkverbose(verbose) if path == "" || path == " " path="./" end folder = readdir(path) # filter "output_" - names ftrue = occursin.("output_", folder) folder = folder[ftrue] # create full path to supposed folders output_path = joinpath.(path,folder) # filter real folders folder = folder[isdir.(output_path)] # get existing output numbers missing_outputs = Int[] existing_outputs = Int[] Nfolders = length(folder) if Nfolders > 0 Noutputs_string = [folder[x][8:end] for x in 1:Nfolders] Noutputs = parse.(Int, Noutputs_string) # find missing output numbers maxoutput = maximum(Noutputs) #expected_outputs = 1:maxoutput for Nout in Noutputs fnames = createpath(Nout, path) isinfofile = isfile(fnames.info) if isinfofile append!(existing_outputs, Nout) else append!(missing_outputs, Nout) end end end if verbose N_exist = length(existing_outputs) if N_exist !=0 Min_exist = minimum(existing_outputs) Max_exist = maximum(existing_outputs) N_miss = length(missing_outputs) println( "Outputs - existing: $N_exist betw. $Min_exist:$Max_exist - missing: $N_miss") else println( "Outputs - 0") end println() end return CheckOutputNumberType(existing_outputs, missing_outputs, path) end """ #### List the existing simulation snapshots in a given folder - returns a Dictonary with existing simulations and their folder names with: - field `outputs` with Array{Int,1} containing the output-numbers of the existing simulations - field `miss` with Array{Int,1} containing the output-numbers of empty simulation folders - field `path` as String ```julia checksimulations(path::String="./"; verbose::Bool=true, filternames=String[]) return Dict with named Tuple: simulation name and N=CheckOutputNumberType ``` """ function checksimulations(path::String="./"; verbose::Bool=true, filternames=String[]) verbose = checkverbose(verbose) fulldirpaths=filter(isdir,readdir(path,join=true)) dirnames=basename.(fulldirpaths) # filter folders filter!(e->e ≠ ".ipynb_checkpoints",dirnames) if length(filternames) != 0 for ifnames in filternames filter!(e->e ≠ ifnames,dirnames) end end # check folders for simulation outputs sims = Dict() namesize = 0 for (i, idir) in enumerate(dirnames) ipath = joinpath(path, idir) N = checkoutputs(ipath, verbose=false) if length(N.outputs) !=0 || length(N.miss) !=0 sims[i] = (name=idir, N=N) if length(idir) > namesize namesize = length(idir) end end end if verbose if length(sims) != 0 for i = 1:length(sims) isim = sims[i] N_exist = length(isim.N.outputs) Min_exist = minimum(isim.N.outputs) Max_exist = maximum(isim.N.outputs) N_miss = length(isim.N.miss) lname = length(isim.name) namediff = namesize-lname emptyspace = "" if namediff > 0 for i = 1: namediff emptyspace *= " " end end println("Sim $i \t", isim.name, emptyspace, "\t - Outputs - existing: $N_exist betw. $Min_exist:$Max_exist - missing: $N_miss") end else println("no simulation data found" ) end println() end return sims end """ #### Get physical time in selected units returns Float ```julia gettime(output::Real; path::String="./", unit::Symbol=:standard) gettime(dataobject::DataSetType; unit::Symbol=:standard) gettime(dataobject::InfoType, unit::Symbol=:standard) return time ``` #### Arguments Function 1 ##### Required: - **`output`:** give the output-number of the simulation ##### Predefined/Optional Keywords: - **`path`:** the path to the output folder relative to the current folder or absolute path - **`unit`:** return the variable in given unit #### Arguments Function 2 ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" ##### Predefined/Optional Keywords: - **`unit`:** return the variable in given unit #### Arguments Function 3 ##### Required: - **`dataobject`:** needs to be of type: "InfoType" ##### Predefined/Optional Keywords: - **`unit`:** return the variable in given unit """ function gettime(output::Real, path::String, unit::Symbol;) return gettime(output, path=path, unit=unit) end function gettime(output::Real, path::String; unit::Symbol=:standard) return gettime(output, path=path, unit=unit) end function gettime(output::Real; path::String="./", unit::Symbol=:standard) info = getinfo(output, path, verbose=false) return info.time * getunit(info, unit) end function gettime(dataobject::DataSetType, unit::Symbol;) return gettime(dataobject, unit=unit) end function gettime(dataobject::DataSetType; unit::Symbol=:standard) return dataobject.info.time * getunit(dataobject.info, unit) end function gettime(dataobject::InfoType, unit::Symbol;) return gettime(dataobject, unit=unit) end function gettime(dataobject::InfoType; unit::Symbol=:standard) return dataobject.time * getunit(dataobject, unit) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
22332
""" cuboid ranges convert given ranges and print overview on screen used for gethydro, getparticles, getgravity, getclumps..., subregions... """ function prepranges( dataobject::InfoType, range_unit::Symbol, verbose::Bool, xrangem::Array{<:Any,1}, yrangem::Array{<:Any,1}, zrangem::Array{<:Any,1}, center::Array{<:Any,1}; dataranges::Array{<:Real,1}=[0.,1., 0.,1., 0.,1.] ) xrange = zeros(Float64,2) yrange = zeros(Float64,2) zrange = zeros(Float64,2) selected_unit = 1. # :standard conv = 1. # :standard, variable used to convert to standard units if range_unit != :standard selected_unit = getunit(dataobject, range_unit) conv = dataobject.boxlen * selected_unit end center = prepboxcenter(dataobject, range_unit, center) # assign ranges to selected data range or missing ranges = full box if xrangem[1] === missing xmin = dataranges[1] else xrange[1]=xrangem[1] xmin = (xrange[1] + center[1]) / conv end if xrangem[2] === missing xmax = dataranges[2] else xrange[2]=xrangem[2] xmax = (xrange[2] + center[1]) / conv end if yrangem[1] === missing ymin = dataranges[3] else yrange[1]=yrangem[1] ymin = (yrange[1] + center[2]) / conv end if yrangem[2] === missing ymax = dataranges[4] else yrange[2] = yrangem[2] ymax = (yrange[2] + center[2]) / conv end if zrangem[1] === missing zmin = dataranges[5] else zrange[1] = zrangem[1] zmin = (zrange[1] + center[3]) / conv end if zrangem[2] === missing zmax = dataranges[6] else zrange[2]=zrangem[2] zmax = (zrange[2] + center[3]) / conv end center = center ./ conv # ensure that min-var is minimum and max-var is maximum of each dimension if xmin > xmax error("[Mera]: xmin > xmax") end if ymin > ymax error("[Mera]: ymin > ymax") end if zmin > zmax error("[Mera]: zmin > zmax") end if xmax < xmin error("[Mera]: xmax < xmin") end if ymax < ymin error("[Mera]: ymax < ymin") end if zmax < zmin error("[Mera]: zmax < zmin") end # ensure that ranges are inside the box xmin = maximum( [xmin, dataranges[1]] ) ymin = maximum( [ymin, dataranges[3]] ) zmin = maximum( [zmin, dataranges[5]] ) xmax = minimum( [xmax, dataranges[2]] ) ymax = minimum( [ymax, dataranges[4]] ) zmax = minimum( [zmax, dataranges[6]] ) if verbose if center != [0., 0., 0.] print("center: $(round.(center, digits=7)) ") center_val1, center_unit1= humanize(center[1] * dataobject.boxlen , dataobject.scale, 3, "length") center_val2, center_unit2= humanize(center[2] * dataobject.boxlen , dataobject.scale, 3, "length") center_val3, center_unit3= humanize(center[3] * dataobject.boxlen , dataobject.scale, 3, "length") if center_val1 == 0. center_unit1 = xmax_unit end if center_val2 == 0. center_unit2 = xmax_unit end if center_val3 == 0. center_unit3 = xmax_unit end print("==> [$center_val1 [$center_unit1] :: $center_val2 [$center_unit2] :: $center_val3 [$center_unit3]]\n") println() end #println("domain \t \t \t \thuman-readable units") println("domain:") print("xmin::xmax: $(round(xmin, digits=7)) :: $(round(xmax, digits=7)) \t") xmin_val, xmin_unit = humanize(xmin * dataobject.boxlen, dataobject.scale, 3, "length") xmax_val, xmax_unit = humanize(xmax * dataobject.boxlen, dataobject.scale, 3, "length") if xmin_val == 0. xmin_unit = xmax_unit end print("==> $xmin_val [$xmin_unit] :: $xmax_val [$xmax_unit]\n") print("ymin::ymax: $(round(ymin, digits=7)) :: $(round(ymax, digits=7)) \t") ymin_val, ymin_unit = humanize(ymin * dataobject.boxlen, dataobject.scale, 3, "length") ymax_val, ymax_unit = humanize(ymax * dataobject.boxlen, dataobject.scale, 3, "length") if ymin_val == 0. ymin_unit = xmax_unit end print("==> $ymin_val [$ymin_unit] :: $ymax_val [$ymax_unit]\n") print("zmin::zmax: $(round(zmin, digits=7)) :: $(round(zmax, digits=7)) \t") zmin_val, zmin_unit = humanize(zmin * dataobject.boxlen, dataobject.scale, 3, "length") zmax_val, zmax_unit = humanize(zmax * dataobject.boxlen, dataobject.scale, 3, "length") if zmin_val == 0. zmin_unit = xmax_unit end print("==> $zmin_val [$zmin_unit] :: $zmax_val [$zmax_unit]\n") println() end ranges = [xmin, xmax, ymin, ymax, zmin, zmax] return ranges end """ cylinder ranges (height != 0.), sphere ranges (height==0.) convert given ranges + radius and print overview on screen used for subregions... """ function prepranges( dataobject::InfoType, center::Array{<:Any,1}, radius::Real, height::Real, range_unit::Symbol, verbose::Bool) center = prepboxcenter(dataobject, range_unit, center) selected_unit = 1. if range_unit == :standard xmin = -radius + center[1] xmax = radius + center[1] ymin = -radius + center[2] ymax = radius + center[2] if height != 0. zmin = - height + center[3] zmax = height + center[3] else zmin = - radius + center[3] zmax = radius + center[3] end # given center relative to the data range in units: cell centers #todo else selected_unit = getunit(dataobject, range_unit) xmin = (-radius + center[1]) * selected_unit /dataobject.boxlen xmax = ( radius + center[1]) * selected_unit /dataobject.boxlen ymin = (-radius + center[2]) * selected_unit /dataobject.boxlen ymax = ( radius + center[2]) * selected_unit /dataobject.boxlen if height != 0. zmin = ( -height + center[3]) * selected_unit /dataobject.boxlen zmax = ( height + center[3]) * selected_unit /dataobject.boxlen else zmin = ( -radius + center[3]) * selected_unit /dataobject.boxlen zmax = ( radius + center[3]) * selected_unit /dataobject.boxlen end # given center relative to the data range in units: cell centers cx_shift = center[1] * selected_unit /dataobject.boxlen cy_shift = center[2] * selected_unit /dataobject.boxlen cz_shift = center[3] * selected_unit /dataobject.boxlen radius_shift = radius * selected_unit /dataobject.boxlen if height != 0. height_shift = height * selected_unit /dataobject.boxlen end center = center / (dataobject.boxlen * selected_unit ) end if verbose if center != [0., 0., 0.] print("center: $(round.(center,digits=7)) ") center_val1, center_unit1= humanize(center[1] * dataobject.boxlen , dataobject.scale, 3, "length") center_val2, center_unit2= humanize(center[2] * dataobject.boxlen , dataobject.scale, 3, "length") center_val3, center_unit3= humanize(center[3] * dataobject.boxlen , dataobject.scale, 3, "length") if center_val1 == 0. center_unit1 = xmax_unit end if center_val2 == 0. center_unit2 = xmax_unit end if center_val3 == 0. center_unit3 = xmax_unit end print("==> [$center_val1 [$center_unit1] :: $center_val2 [$center_unit2] :: $center_val3 [$center_unit3]]\n") println() end #println("domain \t \t \t \thuman-readable units") println("domain:") print("xmin::xmax: $(round(xmin,digits=7)) :: $(round(xmax,digits=7)) \t") xmin_val, xmin_unit = humanize(xmin * dataobject.boxlen , dataobject.scale, 3, "length") xmax_val, xmax_unit = humanize(xmax * dataobject.boxlen, dataobject.scale, 3, "length") if xmin_val == 0. xmin_unit = xmax_unit end print("==> $xmin_val [$xmin_unit] :: $xmax_val [$xmax_unit]\n") print("ymin::ymax: $(round(ymin,digits=7)) :: $(round(ymax,digits=7)) \t") ymin_val, ymin_unit = humanize(ymin * dataobject.boxlen, dataobject.scale, 3, "length") ymax_val, ymax_unit = humanize(ymax * dataobject.boxlen, dataobject.scale, 3, "length") if ymin_val == 0. ymin_unit = xmax_unit end print("==> $ymin_val [$ymin_unit] :: $ymax_val [$ymax_unit]\n") print("zmin::zmax: $(round(zmin,digits=7)) :: $(round(zmax,digits=7)) \t") zmin_val, zmin_unit = humanize(zmin * dataobject.boxlen, dataobject.scale, 3, "length") zmax_val, zmax_unit = humanize(zmax * dataobject.boxlen, dataobject.scale, 3, "length") if zmin_val == 0. zmin_unit = xmax_unit end print("==> $zmin_val [$zmin_unit] :: $zmax_val [$zmax_unit]\n") println() R_val, R_unit = humanize(radius_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Radius: $R_val [$R_unit]") if height != 0. h_val, h_unit = humanize(height_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Height: $h_val [$h_unit]") end end # if xmin < 0. || ymin < 0. || zmin < 0. || xmax > 1. || ymax > 1. || zmax > 1. # error("[Mera]: Given range(s) outside of box!") # end ranges = [xmin, xmax, ymin, ymax, zmin, zmax] if height != 0. return ranges, cx_shift, cy_shift, cz_shift, radius_shift, height_shift else return ranges, cx_shift, cy_shift, cz_shift, radius_shift end end """ cylindrical shell ranges convert given ranges + radius and print overview on screen used for shellregions... """ function prep_cylindrical_shellranges( dataobject::InfoType, center::Array{<:Any,1}, radius_in::Real, radius_out::Real, height::Real, range_unit::Symbol, verbose::Bool) center = prepboxcenter(dataobject, range_unit, center) selected_unit = 1. if range_unit == :standard xmin = -radius_out + center[1] xmax = radius_out + center[1] ymin = -radius_out + center[2] ymax = radius_out + center[2] zmin = - height + center[3] zmax = height + center[3] # given center relative to the data range in units: cell centers #todo else selected_unit = getunit(dataobject, range_unit) xmin = (-radius_out + center[1]) * selected_unit /dataobject.boxlen xmax = ( radius_out + center[1]) * selected_unit /dataobject.boxlen ymin = (-radius_out + center[2]) * selected_unit /dataobject.boxlen ymax = ( radius_out + center[2]) * selected_unit /dataobject.boxlen zmin = ( -height + center[3]) * selected_unit /dataobject.boxlen zmax = ( height + center[3]) * selected_unit /dataobject.boxlen # given center relative to the data range in units: cell centers cx_shift = center[1] * selected_unit /dataobject.boxlen cy_shift = center[2] * selected_unit /dataobject.boxlen cz_shift = center[3] * selected_unit /dataobject.boxlen radius_in_shift = radius_in * selected_unit /dataobject.boxlen radius_out_shift = radius_out * selected_unit /dataobject.boxlen height_shift = height * selected_unit /dataobject.boxlen center = center / (dataobject.boxlen * selected_unit ) end if verbose if center != [0., 0., 0.] print("center: $(round.(center,digits=7)) ") center_val1, center_unit1= humanize(center[1] * dataobject.boxlen , dataobject.scale, 3, "length") center_val2, center_unit2= humanize(center[2] * dataobject.boxlen , dataobject.scale, 3, "length") center_val3, center_unit3= humanize(center[3] * dataobject.boxlen , dataobject.scale, 3, "length") if center_val1 == 0. center_unit1 = xmax_unit end if center_val2 == 0. center_unit2 = xmax_unit end if center_val3 == 0. center_unit3 = xmax_unit end print("==> [$center_val1 [$center_unit1] :: $center_val2 [$center_unit2] :: $center_val3 [$center_unit3]]\n") println() end #println("domain \t \t \t \thuman-readable units") println("domain:") print("xmin::xmax: $(round(xmin,digits=7)) :: $(round(xmax,digits=7)) \t") xmin_val, xmin_unit = humanize(xmin * dataobject.boxlen , dataobject.scale, 3, "length") xmax_val, xmax_unit = humanize(xmax * dataobject.boxlen, dataobject.scale, 3, "length") if xmin_val == 0. xmin_unit = xmax_unit end print("==> $xmin_val [$xmin_unit] :: $xmax_val [$xmax_unit]\n") print("ymin::ymax: $(round(ymin,digits=7)) :: $(round(ymax,digits=7)) \t") ymin_val, ymin_unit = humanize(ymin * dataobject.boxlen, dataobject.scale, 3, "length") ymax_val, ymax_unit = humanize(ymax * dataobject.boxlen, dataobject.scale, 3, "length") if ymin_val == 0. ymin_unit = xmax_unit end print("==> $ymin_val [$ymin_unit] :: $ymax_val [$ymax_unit]\n") print("zmin::zmax: $(round(zmin,digits=7)) :: $(round(zmax,digits=7)) \t") zmin_val, zmin_unit = humanize(zmin * dataobject.boxlen, dataobject.scale, 3, "length") zmax_val, zmax_unit = humanize(zmax * dataobject.boxlen, dataobject.scale, 3, "length") if zmin_val == 0. zmin_unit = xmax_unit end print("==> $zmin_val [$zmin_unit] :: $zmax_val [$zmax_unit]\n") println() Rin_val, Rin_unit = humanize(radius_in_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Inner radius: $Rin_val [$Rin_unit]") Rout_val, Rout_unit = humanize(radius_out_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Outer radius: $Rout_val [$Rout_unit]") radius_diff_shift = radius_out_shift - radius_in_shift Rdiff_val, Rdiff_unit = humanize(radius_diff_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Radius diff: $Rdiff_val [$Rdiff_unit]") h_val, h_unit = humanize(height_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Height: $h_val [$h_unit]") end # if xmin < 0. || ymin < 0. || zmin < 0. || xmax > 1. || ymax > 1. || zmax > 1. # error("[Mera]: Given range(s) outside of box!") # end ranges = [xmin, xmax, ymin, ymax, zmin, zmax] return ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift, height_shift end """ spherical shell ranges convert given ranges + radius and print overview on screen used for shellregions... """ function prep_spherical_shellranges( dataobject::InfoType, center::Array{<:Any,1}, radius_in::Real, radius_out::Real, range_unit::Symbol, verbose::Bool) center = prepboxcenter(dataobject, range_unit, center) selected_unit = 1. if range_unit == :standard xmin = -radius_out + center[1] xmax = radius_out + center[1] ymin = -radius_out + center[2] ymax = radius_out + center[2] zmin = - radius_out + center[3] zmax = radius_out + center[3] # given center relative to the data range in units: cell centers #todo else selected_unit = getunit(dataobject, range_unit) xmin = (-radius_out + center[1]) * selected_unit /dataobject.boxlen xmax = ( radius_out + center[1]) * selected_unit /dataobject.boxlen ymin = (-radius_out + center[2]) * selected_unit /dataobject.boxlen ymax = ( radius_out + center[2]) * selected_unit /dataobject.boxlen zmin = ( -radius_out + center[3]) * selected_unit /dataobject.boxlen zmax = ( radius_out + center[3]) * selected_unit /dataobject.boxlen # given center relative to the data range in units: cell centers cx_shift = center[1] * selected_unit /dataobject.boxlen cy_shift = center[2] * selected_unit /dataobject.boxlen cz_shift = center[3] * selected_unit /dataobject.boxlen radius_in_shift = radius_in * selected_unit /dataobject.boxlen radius_out_shift = radius_out * selected_unit /dataobject.boxlen center = center / (dataobject.boxlen * selected_unit ) end if verbose if center != [0., 0., 0.] print("center: $(round.(center,digits=7)) ") center_val1, center_unit1= humanize(center[1] * dataobject.boxlen , dataobject.scale, 3, "length") center_val2, center_unit2= humanize(center[2] * dataobject.boxlen , dataobject.scale, 3, "length") center_val3, center_unit3= humanize(center[3] * dataobject.boxlen , dataobject.scale, 3, "length") if center_val1 == 0. center_unit1 = xmax_unit end if center_val2 == 0. center_unit2 = xmax_unit end if center_val3 == 0. center_unit3 = xmax_unit end print("==> [$center_val1 [$center_unit1] :: $center_val2 [$center_unit2] :: $center_val3 [$center_unit3]]\n") println() end #println("domain \t \t \t \thuman-readable units") println("domain:") print("xmin::xmax: $(round(xmin,digits=7)) :: $(round(xmax,digits=7)) \t") xmin_val, xmin_unit = humanize(xmin * dataobject.boxlen , dataobject.scale, 3, "length") xmax_val, xmax_unit = humanize(xmax * dataobject.boxlen, dataobject.scale, 3, "length") if xmin_val == 0. xmin_unit = xmax_unit end print("==> $xmin_val [$xmin_unit] :: $xmax_val [$xmax_unit]\n") print("ymin::ymax: $(round(ymin,digits=7)) :: $(round(ymax,digits=7)) \t") ymin_val, ymin_unit = humanize(ymin * dataobject.boxlen, dataobject.scale, 3, "length") ymax_val, ymax_unit = humanize(ymax * dataobject.boxlen, dataobject.scale, 3, "length") if ymin_val == 0. ymin_unit = xmax_unit end print("==> $ymin_val [$ymin_unit] :: $ymax_val [$ymax_unit]\n") print("zmin::zmax: $(round(zmin,digits=7)) :: $(round(zmax,digits=7)) \t") zmin_val, zmin_unit = humanize(zmin * dataobject.boxlen, dataobject.scale, 3, "length") zmax_val, zmax_unit = humanize(zmax * dataobject.boxlen, dataobject.scale, 3, "length") if zmin_val == 0. zmin_unit = xmax_unit end print("==> $zmin_val [$zmin_unit] :: $zmax_val [$zmax_unit]\n") println() Rin_val, Rin_unit = humanize(radius_in_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Inner radius: $Rin_val [$Rin_unit]") Rout_val, Rout_unit = humanize(radius_out_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Outer radius: $Rout_val [$Rout_unit]") radius_diff_shift = radius_out_shift - radius_in_shift Rdiff_val, Rdiff_unit = humanize(radius_diff_shift * dataobject.boxlen, dataobject.scale, 3, "length") println("Radius diff: $Rdiff_val [$Rdiff_unit]") end # if xmin < 0. || ymin < 0. || zmin < 0. || xmax > 1. || ymax > 1. || zmax > 1. # error("[Mera]: Given range(s) outside of box!") # end ranges = [xmin, xmax, ymin, ymax, zmin, zmax] return ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift end function prepboxcenter(dataobject::InfoType, range_unit::Symbol, center::Array{<:Any,1}) selected_unit = 1. if range_unit != :standard selected_unit = getunit(dataobject, range_unit) end # check for :bc, :boxcenter Ncenter = length(center) if Ncenter == 1 if in(:bc, center) || in(:boxcenter, center) if range_unit == :standard bc = 0.5 else bc = dataobject.boxlen * 0.5 * selected_unit # use range_unit end centerm = [bc, bc, bc] end else centerm = zeros(Float64, length(center)) for i = 1:Ncenter if center[i] == :bc || center[i] == :boxcenter if range_unit == :standard bc =0.5 else bc = dataobject.boxlen * 0.5 * selected_unit # use range_unit end centerm[i] = bc else centerm[i] = center[i] end end end return centerm end function prepboxcenter(dataobject::InfoType, selected_unit::Real, centerm::Any) Nc = length(centerm) center = zeros(Float64, Nc) if centerm == :bc || centerm == :boxcenter center = dataobject.boxlen * 0.5 * selected_unit else center = centerm ./ dataobject.boxlen .* selected_unit end return center end function prepdatacenter(dataobject::InfoType, center::Array{<:Any,1}, range_unit::Symbol, data_centerm::Array{<:Any,1}, data_center_unit::Symbol) center = center_in_standardnotation(dataobject, center, range_unit) selected_unit = 1. if data_center_unit != :standard selected_unit = getunit(dataobject, data_center_unit) end Ndc = length(center) data_center = zeros(Float64, Ndc) if Ndc == 3 if data_centerm[1] === missing data_center[1] = center[1] else data_center[1] = prepboxcenter(dataobject, selected_unit, data_centerm[1]) end if data_centerm[2] === missing data_center[2] = center[2] else data_center[2] = prepboxcenter(dataobject, selected_unit, data_centerm[2]) end if data_centerm[3] === missing data_center[3] = center[3] else data_center[3] = prepboxcenter(dataobject, selected_unit, data_centerm[3]) end elseif Ndc == 1 data_center[1] = data_center[2] = data_center[3] = prepboxcenter(dataobject, selected_unit, data_centerm[1]) end return data_center end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2438
function projection() println("Predefined vars for projections:") println("------------------------------------------------") println("=====================[gas]:=====================") println(" -all the non derived hydro vars-") println(":cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,...") println("further possibilities: :rho, :density, :ρ") println(" -derived hydro vars-") println(":x, :y, :z") println(":sd or :Σ or :surfacedensity") println(":mass, :cellsize, :freefall_time") println(":cs, :mach, :jeanslength, :jeansnumber") println(":t, :Temp, :Temperature with p/rho") println() println("==================[particles]:==================") println(" all the non derived vars:") println(":cpu, :level, :id, :family, :tag ") println(":x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal....") println() println(" -derived particle vars-") println(":age") println() println("==============[gas or particles]:===============") println(":v, :ekin") println("squared => :vx2, :vy2, :vz2") println("velocity dispersion => σx, σy, σz, σ") println() println("related to a given center:") println("---------------------------") println(":vr_cylinder, vr_sphere (radial components)") println(":vϕ_cylinder, :vθ") println("squared => :vr_cylinder2, :vϕ_cylinder2") println("velocity dispersion => σr_cylinder, σϕ_cylinder ") #println(":l, :lx, :ly, :lz :lr, :lϕ, :lθ") println() println("2d maps (not projected) => :r_cylinder, :ϕ") #println(":r_cylinder") #, :r_sphere") #println(":ϕ") # :θ println() println("------------------------------------------------") println() return end # check if only variables from ranglecheck are selected function checkformaps(selected_vars::Array{Symbol,1}, reference_vars::Array{Symbol,1}) Nvars = length(selected_vars) cw = 0 for iw in selected_vars if in(iw,reference_vars) cw +=1 end end Ndiff = Nvars-cw return Ndiff != 0 end # function checkformaps(dataobject::DataMapsType, reference_vars::Array{Symbol,1}) # Nvars =0 # cw = 0 # for iw in keys(dataobject.maps) # Nvars +=1 # if in(iw,reference_vars) # cw +=1 # end # end # Ndiff = Nvars-cw # return Ndiff != 0 # end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
38765
""" #### Project variables or derived quantities from the **hydro-dataset**: - projection to an arbitrary large grid: give pixelnumber for each dimension = res - overview the list of predefined quantities with: projection() - select variable(s) and their unit(s) - limit to a maximum range - select a coarser grid than the maximum resolution of the loaded data (maps with both resolutions are created) - give the spatial center (with units) of the data within the box (relevant e.g. for radius dependency) - relate the coordinates to a direction (x,y,z) - select arbitrary weighting: mass (default), volume weighting, etc. - pass a mask to exclude elements (cells) from the calculation - toggle verbose mode - toggle progress bar - pass a struct with arguments (myargs) ```julia projection( dataobject::HydroDataType, vars::Array{Symbol,1}; units::Array{Symbol,1}=[:standard], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask::Union{Vector{Bool}, MaskType}=[false], direction::Symbol=:z, weighting::Array{<:Any,1}=[:mass, missing], mode::Symbol=:standard, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return HydroMapsType ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "HydroDataType" - **`var(s)`:** select a variable from the database or a predefined quantity (see field: info, function projection(), dataobject.data) ##### Predefined/Optional Keywords: - **`unit(s)`:** return the variable in given units - **`pxsize``:** creates maps with the given pixel size in physical/code units (dominates over: res, lmax) : pxsize=[physical size (Number), physical unit (Symbol)] - **`res`** create maps with the given pixel number for each deminsion; if res not given by user -> lmax is selected; (pixel number is related to the full boxsize) - **`lmax`:** create maps with 2^lmax pixels for each dimension - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`weighting`:** select between `:mass` weighting (default) and any other pre-defined quantity, e.g. `:volume`. Pass an array with the weighting=[quantity (Symbol), physical unit (Symbol)] - **`data_center`:** to calculate the data relative to the data_center; in units given by argument `data_center_unit`; by default the argument data_center = center ; - **`data_center_unit`:** :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`direction`:** select between: :x, :y, :z - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) - **`mode`:** :standard (default) handles projections other than surface density. mode=:standard (default) -> weighted average; mode=:sum sums-up the weighted quantities in projection direction. - **`show_progress`:** print progress bar on screen - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of lmax, xrange, yrange, zrange, center, range_unit, verbose, show_progress ### Defined Methods - function defined for different arguments - projection( dataobject::HydroDataType, var::Symbol; ...) # one given variable - projection( dataobject::HydroDataType, var::Symbol, unit::Symbol; ...) # one given variable with its unit - projection( dataobject::HydroDataType, vars::Array{Symbol,1}; ...) # several given variables -> array needed - projection( dataobject::HydroDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}; ...) # several given variables and their corresponding units -> both arrays - projection( dataobject::HydroDataType, vars::Array{Symbol,1}, unit::Symbol; ...) # several given variables that have the same unit -> array for the variables and a single Symbol for the unit #### Examples ... """ function projection( dataobject::HydroDataType, var::Symbol; unit::Symbol=:standard, lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask::Union{Vector{Bool}, MaskType}=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Array{<:Any,1}=[:mass, missing], mode::Symbol=:standard, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return projection(dataobject, [var], units=[unit], lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, mode=mode, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, verbose=verbose, show_progress=show_progress, myargs=myargs ) end function projection( dataobject::HydroDataType, var::Symbol, unit::Symbol; lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask::Union{Vector{Bool}, MaskType}=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Array{<:Any,1}=[:mass, missing], mode::Symbol=:standard, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return projection(dataobject, [var], units=[unit], lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, mode=mode, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::HydroDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}; lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask::Union{Vector{Bool}, MaskType}=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Array{<:Any,1}=[:mass, missing], mode::Symbol=:standard, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return projection(dataobject, vars, units=units, lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, mode=mode, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::HydroDataType, vars::Array{Symbol,1}, unit::Symbol; lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask::Union{Vector{Bool}, MaskType}=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Array{<:Any,1}=[:mass, missing], mode::Symbol=:standard, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return projection(dataobject, vars, units=fill(unit, length(vars)), lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, mode=mode, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::HydroDataType, vars::Array{Symbol,1}; units::Array{Symbol,1}=[:standard], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask::Union{Vector{Bool}, MaskType}=[false], direction::Symbol=:z, weighting::Array{<:Any,1}=[:mass, missing], mode::Symbol=:standard, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.pxsize === missing) pxsize = myargs.pxsize end if !(myargs.res === missing) res = myargs.res end if !(myargs.lmax === missing) lmax = myargs.lmax end if !(myargs.direction === missing) direction = myargs.direction end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.data_center === missing) data_center = myargs.data_center end if !(myargs.data_center_unit === missing) data_center_unit = myargs.data_center_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end if !(myargs.show_progress === missing) show_progress = myargs.show_progress end verbose = Mera.checkverbose(verbose) show_progress = Mera.checkprogress(show_progress) printtime("", verbose) lmin = dataobject.lmin #lmax = dataobject.lmax simlmax=dataobject.lmax #simlmax=lmax ##Nlevel = simlmax-lmin boxlen = dataobject.boxlen if res === missing res = 2^lmax end if !(pxsize[1] === missing) px_unit = 1. # :standard if length(pxsize) != 1 if !(pxsize[2] === missing) if pxsize[2] != :standard px_unit = getunit(dataobject.info, pxsize[2]) end end end px_scale = pxsize[1] / px_unit res = boxlen/px_scale end res = ceil(Int, res) # be sure to have Integer if !(weighting[1] === missing) weight_scale = 1. # :standard if length(weighting) != 1 if !(weighting[2] === missing) if weighting[2] != :standard weight_scale = getunit(dataobject.info, weighting[2]) end end end end #ranges = [xrange[1],xrange[1],yrange[1],yrange[1],zrange[1],zrange[1]] scale = dataobject.scale nvarh = dataobject.info.nvarh lmax_projected = lmax isamr = Mera.checkuniformgrid(dataobject, dataobject.lmax) selected_vars = deepcopy(vars) #unique(vars) #sd_names = [:sd, :Σ, :surfacedensity] density_names = [:density, :rho, :ρ] rcheck = [:r_cylinder, :r_sphere] anglecheck = [:ϕ] σcheck = [:σx, :σy, :σz, :σ, :σr_cylinder, :σϕ_cylinder] σ_to_v = SortedDict( :σx => [:vx, :vx2], :σy => [:vy, :vy2], :σz => [:vz, :vz2], :σ => [:v, :v2], :σr_cylinder => [:vr_cylinder, :vr_cylinder2], :σϕ_cylinder => [:vϕ_cylinder, :vϕ_cylinder2] ) # checks to use maps instead of projections notonly_ranglecheck_vars = check_for_maps(selected_vars, rcheck, anglecheck, σcheck, σ_to_v) selected_vars = check_need_rho(dataobject, selected_vars, weighting[1], notonly_ranglecheck_vars) # convert given ranges and print overview on screen ranges = Mera.prepranges(dataobject.info,range_unit, verbose, xrange, yrange, zrange, center, dataranges=dataobject.ranges) data_centerm = Mera.prepdatacenter(dataobject.info, center, range_unit, data_center, data_center_unit) if verbose println("Selected var(s)=$(tuple(selected_vars...)) ") println("Weighting = :", weighting[1]) println() end x_coord, y_coord, z_coord, extent, extent_center, ratio , length1, length2, length1_center, length2_center, rangez = prep_maps(direction, data_centerm, res, boxlen, ranges, selected_vars) pixsize = dataobject.boxlen / res # in code units if verbose println("Effective resolution: $res^2") println("Map size: $length1 x $length2") px_val, px_unit = humanize(pixsize, dataobject.scale, 3, "length") pxmin_val, pxmin_unit = humanize(boxlen/2^dataobject.lmax, dataobject.scale, 3, "length") println("Pixel size: $px_val [$px_unit]") println("Simulation min.: $pxmin_val [$pxmin_unit]") println() end skipmask = check_mask(dataobject, mask, verbose) # prepare data # ================================= maps = SortedDict( ) maps_unit = SortedDict( ) maps_weight = SortedDict( ) maps_mode = SortedDict( ) if notonly_ranglecheck_vars newmap_w = zeros(Float64, (length1, length2) ) data_dict, xval, yval, leveldata, weightval, maps = prep_data(dataobject, x_coord, y_coord, z_coord, mask, ranges, weighting[1], res, selected_vars, maps, center, range_unit, anglecheck, rcheck, σcheck, skipmask, rangez, length1, length2, isamr, simlmax) closed=:left if show_progress p = 1 # show updates else p = simlmax+2 # do not show updates end #if show_progress p = Progress(simlmax-lmin) end @showprogress p for level = lmin:simlmax #@showprogress 1 "" #println() #println("level: ", level) mask_level = leveldata .== level new_level_range1, new_level_range2, length_level1, length_level2 = prep_level_range(direction, level, ranges) # bin data on current level grid and resize map fcorrect = (2^level / res) ^ 2 map_weight = hist2d_weight(xval,yval, [new_level_range1,new_level_range2], mask_level, weightval, isamr) .* weight_scale newmap_w += imresize(map_weight, (length1, length2)) .* fcorrect for ivar in keys(data_dict) if ivar == :sd || ivar == :mass #if ivar == :mass println(ivar) end map = hist2d_weight(xval,yval, [new_level_range1,new_level_range2], mask_level, data_dict[ivar], isamr) else map = hist2d_data(xval,yval, [new_level_range1,new_level_range2], mask_level, weightval, data_dict[ivar], isamr) .* weight_scale end maps[ivar] += imresize(map, (length1, length2)) .* fcorrect end #if show_progress next!(p, showvalues = [(:Level, level )]) end # ProgressMeter end #for level # velocity dispersion maps for ivar in selected_vars if in(ivar, σcheck) selected_unit, unit_name= getunit(dataobject, ivar, selected_vars, units, uname=true) selected_v = σ_to_v[ivar] # revert weighting if mode == :standard iv = maps[selected_v[1]] = maps[selected_v[1]] ./newmap_w iv2 = maps[selected_v[2]] = maps[selected_v[2]] ./newmap_w elseif mode == :sum iv = maps[selected_v[1]] = maps[selected_v[1]] iv2 = maps[selected_v[2]] = maps[selected_v[2]] end delete!(data_dict, selected_v[1]) delete!(data_dict, selected_v[2]) # create vdisp map maps[ivar] = sqrt.( iv2 .- iv .^2 ) .* selected_unit maps_unit[ivar] = unit_name maps_weight[ivar] = weighting maps_mode[ivar] = mode # assign units selected_unit, unit_name= getunit(dataobject, selected_v[1], selected_vars, units, uname=true) maps_unit[selected_v[1]] = unit_name maps[selected_v[1]] = maps[selected_v[1]] .* selected_unit maps_weight[selected_v[1]] = weighting maps_mode[selected_v[1]] = mode selected_unit, unit_name= getunit(dataobject, selected_v[2], selected_vars, units, uname=true) maps_unit[selected_v[2]] = unit_name maps[selected_v[2]] = maps[selected_v[2]] .* selected_unit^2 maps_weight[selected_v[2]] = weighting maps_mode[selected_v[2]] = mode end end # finish projected data and revise weighting for ivar in keys(data_dict) selected_unit, unit_name= getunit(dataobject, ivar, selected_vars, units, uname=true) if ivar == :sd maps_weight[ivar] = :nothing maps_mode[ivar] = :nothing maps[ivar] = maps[ivar] ./ (boxlen / res)^2 .* selected_unit # sd = mass/A * unit elseif ivar == :mass maps_weight[ivar] = :nothing maps_mode[ivar] = :sum maps[ivar] = maps[ivar] .* selected_unit else maps_weight[ivar] = weighting maps_mode[ivar] = mode if mode == :standard maps[ivar] = maps[ivar] ./ newmap_w .* selected_unit elseif mode == :sum maps[ivar] = maps[ivar].* selected_unit end end maps_unit[ivar] = unit_name end end # notonly_ranglecheck_vars # create radius map for ivar in selected_vars if in(ivar, rcheck) selected_unit, unit_name= getunit(dataobject, ivar, selected_vars, units, uname=true) map_R = zeros(Float64, length1, length2 ); for i = 1:(length1) for j = 1:(length2) x = i * dataobject.boxlen / res y = j * dataobject.boxlen / res radius = sqrt((x-length1_center)^2 + (y-length2_center)^2) map_R[i,j] = radius * selected_unit end end maps_mode[ivar] = :nothing maps_weight[ivar] = :nothing maps[ivar] = map_R maps_unit[ivar] = unit_name end end # create ϕ-angle map for ivar in selected_vars if in(ivar, anglecheck) map_ϕ = zeros(Float64, length1, length2 ); for i = 1:(length1) for j = 1:(length2) x = i * dataobject.boxlen /res - length1_center y = j * dataobject.boxlen / res - length2_center if x > 0. && y >= 0. map_ϕ[i,j] = atan(y / x) elseif x > 0. && y < 0. map_ϕ[i,j] = atan(y / x) + 2. * pi elseif x < 0. map_ϕ[i,j] = atan(y / x) + pi elseif x==0 && y > 0 map_ϕ[i,j] = pi/2. elseif x==0 && y < 0 map_ϕ[i,j] = 3. * pi/2. end end end maps_mode[ivar] = :nothing maps_weight[ivar] = :nothing maps[ivar] = map_ϕ maps_unit[ivar] = :radian end end maps_lmax = SortedDict( ) return HydroMapsType(maps, maps_unit, maps_lmax, maps_weight, maps_mode, lmax_projected, lmin, simlmax, ranges, extent, extent_center, ratio, res, pixsize, boxlen, dataobject.smallr, dataobject.smallc, dataobject.scale, dataobject.info) #return maps, maps_unit, extent_center, ranges end # check if only variables from ranglecheck are selected function check_for_maps(selected_vars::Array{Symbol,1}, rcheck, anglecheck, σcheck, σ_to_v) # checks to use maps instead of projections ranglecheck = [rcheck..., anglecheck...] # for velocity dispersion add necessary velocity components # ======================================================== rσanglecheck = [rcheck...,σcheck...,anglecheck...] for i in σcheck idx = findall(x->x==i, selected_vars) #[1] if length(idx) >= 1 selected_v = σ_to_v[i] for j in selected_v jdx = findall(x->x==j, selected_vars) if length(jdx) == 0 append!(selected_vars, [j]) end end end end # ======================================================== Nvars = length(selected_vars) cw = 0 for iw in selected_vars if in(iw,ranglecheck) cw +=1 end end Ndiff = Nvars-cw return Ndiff != 0 end function check_need_rho(dataobject, selected_vars, weighting, notonly_ranglecheck_vars) if weighting == :mass # only add :sd if there are also other variables than in ranglecheck if !in(:sd, selected_vars) && notonly_ranglecheck_vars append!(selected_vars, [:sd]) end if !in(:rho, keys(dataobject.data[1]) ) error("""[Mera]: For mass weighting variable "rho" is necessary.""") end end return selected_vars end function prep_maps(direction, data_centerm, res, boxlen, ranges, selected_vars) x_coord = :cx y_coord = :cy z_coord = :cz r1 = floor(Int, ranges[1] * res) r2 = ceil(Int, ranges[2] * res) r3 = floor(Int, ranges[3] * res) r4 = ceil(Int, ranges[4] * res) r5 = floor(Int, ranges[5] * res) r6 = ceil(Int, ranges[6] * res) rl1 = data_centerm[1] .* res rl2 = data_centerm[2] .* res rl3 = data_centerm[3] .* res xmin, xmax, ymin, ymax, zmin, zmax = ranges if direction == :z #x_coord = :cx #y_coord = :cy #z_coord = :cz rangez = [zmin, zmax] # get range for given resolution newrange1 = range(r1, stop=r2, length=(r2-r1)+1) newrange2 = range(r3, stop=r4, length=(r4-r3)+1) # export img properties for plots extent=[r1,r2,r3,r4] ratio = (extent[2]-extent[1]) / (extent[4]-extent[3]) extent_center = [0.,0.,0.,0.] extent_center[1:2] = [extent[1]-rl1, extent[2]-rl1] * boxlen / res extent_center[3:4] = [extent[3]-rl2, extent[4]-rl2] * boxlen / res extent = extent .* boxlen ./ res # for radius and ϕ-angle map length1_center = (data_centerm[1] -xmin ) * boxlen length2_center = (data_centerm[2] -ymin ) * boxlen elseif direction == :y x_coord = :cx y_coord = :cz z_coord = :cy rangez = [ymin, ymax] # get range for given resolution newrange1 = range(r1, stop=r2, length=(r2-r1)+1) newrange2 = range(r5, stop=r6, length=(r6-r5)+1) # export img properties for plots extent=[r1,r2,r5,r6] ratio = (extent[2]-extent[1]) / (extent[4]-extent[3]) extent_center = [0.,0.,0.,0.] extent_center[1:2] = [extent[1]-rl1, extent[2]-rl1] * boxlen / res extent_center[3:4] = [extent[3]-rl3, extent[4]-rl3] * boxlen / res extent = extent .* boxlen ./ res # for radius and ϕ-angle map length1_center = (data_centerm[1] -xmin ) * boxlen length2_center = (data_centerm[3] -zmin ) * boxlen elseif direction == :x x_coord = :cy y_coord = :cz z_coord = :cx rangez = [xmin, xmax] # get range for given resolution newrange1 = range(r3, stop=r4, length=(r4-r3)+1) newrange2 = range(r5, stop=r6, length=(r6-r5)+1) # export img properties for plots extent=[r3,r4,r5,r6] ratio = (extent[2]-extent[1]) / (extent[4]-extent[3]) extent_center = [0.,0.,0.,0.] extent_center[1:2] = [extent[1]-rl2, extent[2]-rl2] * boxlen / res extent_center[3:4] = [extent[3]-rl3, extent[4]-rl3] * boxlen / res extent = extent .* boxlen ./ res # for radius and ϕ-angle map length1_center = (data_centerm[2] -ymin ) * boxlen length2_center = (data_centerm[3] -zmin ) * boxlen end # prepare maps length1=length( newrange1) -1 length2=length( newrange2) -1 #map = zeros(Float64, length1, length2, length(selected_vars) ) # 2d map vor each variable #map_weight = zeros(Float64, length1 , length2, length(selected_vars) ); return x_coord, y_coord, z_coord, extent, extent_center, ratio , length1, length2, length1_center, length2_center, rangez end function prep_data(dataobject, x_coord, y_coord, z_coord, mask, ranges, weighting, res, selected_vars, maps, center, range_unit, anglecheck, rcheck, σcheck, skipmask,rangez, length1, length2, isamr, simlmax) # mask thickness of projection zval = getvar(dataobject, z_coord) if isamr lvl = getvar(dataobject, :level) else lvl = simlmax end #println(rangez) if rangez[1] != 0. mask_zmin = zval .>= floor.(Int, rangez[1] .* 2 .^lvl) if !skipmask #println("mask zmin 1") mask = mask .* mask_zmin else #println("mask zmin 1") mask = mask_zmin end else #println("mask zmin no") end if rangez[2] != 1. mask_zmax = zval .<= ceil.(Int, rangez[2] .* 2 .^lvl) if !skipmask #println("mask zmax 1") mask = mask .* mask_zmax else if rangez[1] != 0. #println("mask zmax 2") mask = mask .* mask_zmax else #println("mask zmax 3") mask = mask_zmax end end else #println("mask zmax no") end if length(mask) == 1 xval = select(dataobject.data, x_coord) yval = select(dataobject.data, y_coord) weightval = getvar(dataobject, weighting) if isamr leveldata = select(dataobject.data, :level) else leveldata = simlmax end else xval = select(dataobject.data, x_coord)[mask] #getvar(dataobject, x_coord, mask=mask) yval = select(dataobject.data, y_coord)[mask] #getvar(dataobject, y_coord, mask=mask) #if weighting == nothing # weightval = 1. #else weightval = getvar(dataobject, weighting, mask=mask) #end if isamr leveldata = select(dataobject.data, :level)[mask] #getvar(dataobject, :level, mask=mask) else leveldata = simlmax end #end end data_dict = SortedDict( ) for ivar in selected_vars if !in(ivar, anglecheck) && !in(ivar, rcheck) && !in(ivar, σcheck) maps[ivar] = zeros(Float64, (length1, length2) ) if ivar !== :sd if length(mask) == 1 data_dict[ivar] = getvar(dataobject, ivar, center=center, center_unit=range_unit) elseif !(ivar in σcheck) data_dict[ivar] = getvar(dataobject, ivar, mask=mask, center=center, center_unit=range_unit) end elseif ivar == :sd || ivar == :mass if weighting == :mass data_dict[ivar] = weightval else if length(mask) == 1 data_dict[ivar] = getvar(dataobject, :mass) else data_dict[ivar] = getvar(dataobject, :mass, mask=mask) end end end end end # ================================= return data_dict, xval, yval, leveldata, weightval, maps end function prep_level_range(direction, level, ranges) if direction == :z # rebin data on the current level grid rl1 = floor(Int, ranges[1] * 2^level) +1 rl2 = ceil(Int, ranges[2] * 2^level) +1 rl3 = floor(Int, ranges[3] * 2^level) +1 rl4 = ceil(Int, ranges[4] * 2^level) +1 # range of current level grid new_level_range1 = range(rl1, stop=rl2, length=(rl2-rl1)+1 ) new_level_range2 = range(rl3, stop=rl4, length=(rl4-rl3)+1 ) elseif direction == :y # rebin data on the current level grid rl1 = floor(Int, ranges[1] * 2^level) +1 rl2 = ceil(Int, ranges[2] * 2^level) +1 rl3 = floor(Int, ranges[5] * 2^level) +1 rl4 = ceil(Int, ranges[6] * 2^level) +1 # range of current level grid new_level_range1 = range(rl1, stop=rl2, length=(rl2-rl1)+1 ) new_level_range2 = range(rl3, stop=rl4, length=(rl4-rl3)+1 ) elseif direction == :x # rebin data on the current level grid rl1 = floor(Int, ranges[3] * 2^level) +1 rl2 = ceil(Int, ranges[4] * 2^level) +1 rl3 = floor(Int, ranges[5] * 2^level) +1 rl4 = ceil(Int, ranges[6] * 2^level) +1 # range of current level grid new_level_range1 = range(rl1, stop=rl2, length=(rl2-rl1)+1 ) new_level_range2 = range(rl3, stop=rl4, length=(rl4-rl3)+1 ) end # length of current level grid length_level1=length( new_level_range1 ) length_level2=length( new_level_range2 ) return new_level_range1, new_level_range2, length_level1, length_level2 end function check_mask(dataobject, mask, verbose) skipmask=true rows = length(dataobject.data) if length(mask) > 1 if length(mask) !== rows error("[Mera] ",now()," : array-mask length: $(length(mask)) does not match with data-table length: $(rows)") else skipmask = false if verbose println(":mask provided by function") println() end end end return skipmask end function nrange(start::Int, stop::Int, len::Int, nshift::Int) return range(start, stop=stop + nshift, length=len + nshift ) end #function hist2d_weight(x::Vector{Int64}, y::Vector{Int64}, # s::Vector{StepRangeLen{Float64, # Base.TwicePrecision{Float64}, # Base.TwicePrecision{Float64}}}, # mask::MaskType, w::Vector{Float64}) function hist2d_weight(x, y, s, mask, w, isamr) if isamr h = fit(Histogram, (x[mask], y[mask]), weights(w[mask]), (s[1],s[2])) else h = fit(Histogram, (x, y), weights(w), (s[1],s[2])) end return h.weights end #function hist2d_data(x::Vector{Int64}, y::Vector{Int64}, # s::Vector{StepRangeLen{Float64, # Base.TwicePrecision{Float64}, # Base.TwicePrecision{Float64}}}, # mask::MaskType, w::Vector{Float64}, # data::Vector{Float64}) function hist2d_data(x, y, s, mask, w, data, isamr) if isamr h = fit(Histogram, (x[mask], y[mask]), weights(data[mask] .* w[mask]), (s[1],s[2])) else h = fit(Histogram, (x, y), weights(data .* w), (s[1],s[2])) end return h.weights end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
43818
# #select particle types # function spt( parttypes, id) # if in(:all, parttypes) # return id >=-1 # elseif in(:negative, parttypes) # return id < 0 # elseif in(:m1, parttypes) # return id == -1 # elseif in(:stars, parttypes) # return id >0 # elseif in(:dm, parttypes) # return id ==0 # elseif in(:stars, parttypes) && in(parttypes, :dm) # return id >=0 # end # end # # # select vars and filter parttypes # function select_data(data, parttypes, var) # return select( filter( p-> spt( parttypes, p.id), data, select=(:id, var)), var ) # end """ #### Project variables or derived quantities from the **particle-dataset**: - projection to a grid related to a given level - overview the list of predefined quantities with: projection() - select variable(s) and their unit(s) - limit to a maximum range - give the spatial center (with units) of the data within the box (relevant e.g. for radius dependency) - relate the coordinates to a direction (x,y,z) - select between mass (default) and volume weighting - pass a mask to exclude elements (cells/particles/...) from the calculation - toggle verbose mode - toggle progress bar - pass a struct with arguments (myargs) ```julia projection( dataobject::PartDataType, vars::Array{Symbol,1}; units::Array{Symbol,1}=[:standard], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return HydroMapsType ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "PartDataType" - **`var(s)`:** select a variable from the database or a predefined quantity (see field: info, function projection(), dataobject.data) ##### Predefined/Optional Keywords: - **`unit(s)`:** return the variable in given units - **`pxsize``:** creates maps with the given pixel size in physical/code units (dominates over: res, lmax) : pxsize=[physical size (Number), physical unit (Symbol)] - **`res`** create maps with the given pixel number for each deminsion; if res not given by user -> lmax is selected; (pixel number is related to the full boxsize) - **`lmax`:** create maps with 2^lmax pixels for each dimension - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`weighting`:** select between `:mass` weighting (default) and `:volume` weighting - **`data_center`:** to calculate the data relative to the data_center; in units given by argument `data_center_unit`; by default the argument data_center = center ; - **`data_center_unit`:** :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`direction`:** select between: :x, :y, :z - **`mask`:** needs to be of type MaskType which is a supertype of Array{Bool,1} or BitArray{1} with the length of the database (rows) - **`ref_time`:** the age quantity relative to a given time (code_units); default relative to the loaded snapshot time - **`show_progress`:** print progress bar on screen - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of lmax, xrange, yrange, zrange, center, range_unit, verbose, show_progress ### Defined Methods - function defined for different arguments - projection( dataobject::PartDataType, var::Symbol; ...) # one given variable - projection( dataobject::PartDataType, var::Symbol, unit::Symbol; ...) # one given variable with its unit - projection( dataobject::PartDataType, vars::Array{Symbol,1}; ...) # several given variables -> array needed - projection( dataobject::PartDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}; ...) # several given variables and their corresponding units -> both arrays - projection( dataobject::PartDataType, vars::Array{Symbol,1}, unit::Symbol; ...) # several given variables that have the same unit -> array for the variables and a single Symbol for the unit #### Examples ... """ function projection( dataobject::PartDataType, vars::Array{Symbol,1}; #parttypes::Array{Symbol,1}=[:stars], units::Array{Symbol,1}=[:standard], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return create_projection( dataobject, vars, units=units, #parttypes=parttypes, lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, ref_time=ref_time, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::PartDataType, vars::Array{Symbol,1}, units::Array{Symbol,1}; #parttypes::Array{Symbol,1}=[:stars], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return create_projection( dataobject, vars, units=units, #parttypes=parttypes, lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, ref_time=ref_time, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::PartDataType, var::Symbol; #parttypes::Array{Symbol,1}=[:stars], unit::Symbol=:standard, lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return create_projection( dataobject, [var], units=[unit], #parttypes=parttypes, lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, ref_time=ref_time, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::PartDataType, var::Symbol, unit::Symbol,; #parttypes::Array{Symbol,1}=[:stars], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return create_projection( dataobject, [var], units=[unit], #parttypes=parttypes, lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, ref_time=ref_time, verbose=verbose, show_progress=show_progress, myargs=myargs) end function projection( dataobject::PartDataType, vars::Array{Symbol,1}, unit::Symbol; #parttypes::Array{Symbol,1}=[:stars], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return create_projection( dataobject, vars, units=fill(unit, length(vars)), #parttypes=parttypes, lmax=lmax, res=res, pxsize=pxsize, mask=mask, direction=direction, #plane_orientation=plane_orientation, weighting=weighting, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, data_center=data_center, data_center_unit=data_center_unit, ref_time=ref_time, verbose=verbose, show_progress=show_progress, myargs=myargs) end function create_projection( dataobject::PartDataType, vars::Array{Symbol,1}; #parttypes::Array{Symbol,1}=[:stars], units::Array{Symbol,1}=[:standard], lmax::Real=dataobject.lmax, res::Union{Real, Missing}=missing, pxsize::Array{<:Any,1}=[missing, missing], mask=[false], direction::Symbol=:z, #plane_orientation::Symbol=:perpendicular, weighting::Symbol=:mass, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, data_center::Array{<:Any,1}=[missing, missing, missing], data_center_unit::Symbol=:standard, ref_time::Real=dataobject.info.time, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.pxsize === missing) pxsize = myargs.pxsize end if !(myargs.res === missing) res = myargs.res end if !(myargs.lmax === missing) lmax = myargs.lmax end if !(myargs.direction === missing) direction = myargs.direction end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.data_center === missing) data_center = myargs.data_center end if !(myargs.data_center_unit === missing) data_center_unit = myargs.data_center_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end if !(myargs.show_progress === missing) show_progress = myargs.show_progress end verbose = Mera.checkverbose(verbose) show_progress = Mera.checkprogress(show_progress) printtime("", verbose) boxlen = dataobject.boxlen selected_vars = deepcopy(vars) #ranges = [xrange[1],xrange[1],yrange[1],yrange[1],zrange[1],zrange[1]] scale = dataobject.scale nvarh = dataobject.info.nvarh if res === missing res = 2^lmax end if !(pxsize[1] === missing) px_unit = 1. # :standard if length(pxsize) != 1 if !(pxsize[2] === missing) if pxsize[2] != :standard px_unit = getunit(dataobject.info, pxsize[2]) end end end px_scale = pxsize[1] / px_unit res = boxlen/px_scale end res = ceil(Int, res) # be sure to have Integer sd_names = [:sd, :Σ, :surfacedensity] density_names = [:density, :rho, :ρ] # checks to use maps instead of projections rcheck = [:r_cylinder, :r_sphere] anglecheck = [:ϕ] ranglecheck = [rcheck..., anglecheck...] # for velocity dispersion add necessary velocity components # ======================================================== σcheck = [:σx, :σy, :σz, :σ, :σr_cylinder, :σϕ_cylinder] rσanglecheck = [rcheck...,σcheck...,anglecheck...] σ_to_v = SortedDict( :σx => [:vx, :vx2], :σy => [:vy, :vy2], :σz => [:vz, :vz2], :σ => [:v, :v2], :σr_cylinder => [:vr_cylinder, :vr_cylinder2], :σϕ_cylinder => [:vϕ_cylinder, :vϕ_cylinder2] ) for i in σcheck idx = findall(x->x==i, selected_vars) #[1] if length(idx) >= 1 selected_v = σ_to_v[i] for j in selected_v jdx = findall(x->x==j, selected_vars) if length(jdx) == 0 append!(selected_vars, [j]) end end end end # ======================================================== if weighting == :mass use_sd_map = Mera.checkformaps(selected_vars, ranglecheck) # only add :sd if there are also other variables than in ranglecheck if !in(:sd, selected_vars) && use_sd_map append!(selected_vars, [:sd]) end if !in(:mass, keys(dataobject.data[1]) ) error("""[Mera]: For mass weighting variable "mass" is necessary.""") end end # convert given ranges and print overview on screen ranges = Mera.prepranges(dataobject.info,range_unit, verbose, xrange, yrange, zrange, center, dataranges=dataobject.ranges) data_centerm = Mera.prepdatacenter(dataobject.info, center, range_unit, data_center, data_center_unit) xmin, xmax, ymin, ymax, zmin, zmax = ranges # rebin data on the maximum used grid r1 = floor(Int, ranges[1] * res) + 1 r2 = ceil(Int, ranges[2] * res) + 1 r3 = floor(Int, ranges[3] * res) + 1 r4 = ceil(Int, ranges[4] * res) + 1 r5 = floor(Int, ranges[5] * res) + 1 r6 = ceil(Int, ranges[6] * res) + 1 pixsize = dataobject.boxlen / res # in code units if verbose println("Effective resolution: $res^2") #println("Map size: $length1 x $length2") px_val, px_unit = humanize(pixsize, dataobject.scale, 3, "length") pxmin_val, pxmin_unit = humanize(boxlen/2^dataobject.lmax, dataobject.scale, 3, "length") println("Pixel size: $px_val [$px_unit]") println("Simulation min.: $pxmin_val [$pxmin_unit]") println() end var_a = :x var_b = :y finished = zeros(Float64, res,res) rl = data_centerm .* dataobject.boxlen if direction == :z # range on maximum used grid newrange1 = range(r1, stop=r2-1, length=(r2-r1)+1 ) ./ res .* dataobject.boxlen newrange2 = range(r3, stop=r4-1, length=(r4-r3)+1 ) ./ res .* dataobject.boxlen #println(newrange1) #println(newrange2) var_a = :x var_b = :y extent=[r1-1,r2-1,r3-1,r4-1] .* dataobject.boxlen ./ res ratio = (extent[2]-extent[1]) / (extent[4]-extent[3]) extent_center= [extent[1]-rl[1], extent[2]-rl[1], extent[3]-rl[2], extent[4]-rl[2]] length1_center = (data_centerm[1] -xmin) * boxlen length2_center = (data_centerm[2] -ymin) * boxlen elseif direction == :y # range on maximum used grid newrange1 = range(r1, stop=r2-1, length=(r2-r1)+1 ) ./ res .* dataobject.boxlen newrange2 = range(r5, stop=r6-1, length=(r6-r5)+1 ) ./ res .* dataobject.boxlen #println(newrange1) #println(newrange2) var_a = :x var_b = :z extent=[r1-1,r2-1,r5-1,r6-1] .* dataobject.boxlen ./ res ratio = (extent[2]-extent[1]) / (extent[4]-extent[3]) extent_center= [extent[1]-rl[1], extent[2]-rl[1], extent[3]-rl[3], extent[4]-rl[3]] length1_center = (data_centerm[1] -xmin) * boxlen length2_center = (data_centerm[3] -zmin) * boxlen elseif direction == :x # range on maximum used grid newrange1 = range(r3, stop=r4-1, length=(r4-r3)+1 ) ./ res .* dataobject.boxlen newrange2 = range(r5, stop=r6-1, length=(r6-r5)+1 ) ./ res .* dataobject.boxlen #println(newrange1) #println(newrange2) var_a = :y var_b = :z extent=[r3-1,r4-1,r5-1,r6-1] .* dataobject.boxlen ./ res ratio = (extent[2]-extent[1]) / (extent[4]-extent[3]) extent_center= [extent[1]-rl[2], extent[2]-rl[2], extent[3]-rl[3], extent[4]-rl[3]] length1_center = (data_centerm[2] -ymin) * boxlen length2_center = (data_centerm[3] -zmin) * boxlen end length1=length( newrange1) - 1 length2=length( newrange2) - 1 map = zeros(Float64, length1, length2, length(selected_vars) ) map_weight = zeros(Float64, length1 , length2 ); #println("length1,2: (final maps) ", length1 , " ", length2 ) #println("-------------------------------------") #println() rows = length(dataobject.data) mera_mask_inserted = false if length(mask) > 1 if length(mask) !== rows error("[Mera] ",now()," : array-mask length: $(length(mask)) does not match with data-table length: $(rows)") else if in(:mask, colnames(dataobject.data)) if verbose println(":mask provided by datatable") println() end else Nafter = JuliaDB.ncols(dataobject.data) dataobject.data = JuliaDB.insertcolsafter(dataobject.data, Nafter, :mask => mask) if verbose println(":mask provided by function") println() end mera_mask_inserted = true end end end filtered_data = filter(p-> p.x >= (xmin * dataobject.boxlen) && p.x <= (xmax * dataobject.boxlen) && p.y >= (ymin * dataobject.boxlen) && p.y <= (ymax * dataobject.boxlen) && p.z >= (zmin * dataobject.boxlen) && p.z <= (zmax * dataobject.boxlen), dataobject.data) closed=:left maps = SortedDict( ) maps_mode = SortedDict( ) maps_unit = SortedDict( ) if show_progress p = 1 # show updates else p = length(selected_vars)+2 # do not show updates end #if show_progress p = Progress(length(selected_vars)) end @showprogress p for i_var in selected_vars #dependencies_part_list @showprogress 1 "" #println(i_var) if !in(i_var, rσanglecheck) # exclude velocity dispersion symbols and radius/angle maps if weighting == :mass if in(i_var, sd_names) if length(mask) == 1 global h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) ) , closed=closed, (newrange1, newrange2) ) else global h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) .* select(filtered_data, :mask)) , closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights ./ (dataobject.info.boxlen / res )^2 .* selected_unit else maps[Symbol(i_var)] = h.weights ./ (dataobject.info.boxlen / res )^2 end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :mass_weighted elseif in(i_var, density_names) if length(mask) == 1 h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) ) , closed=closed, (newrange1, newrange2) ) else h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) .* select(filtered_data, :mask) ) , closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights ./ ( (dataobject.info.boxlen / res )^3 * res) .* selected_unit else maps[Symbol(i_var)] = h.weights ./ ( (dataobject.info.boxlen / res )^3 * res) end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :mass_weighted else if length(mask) == 1 h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( getvar(dataobject, i_var, filtered_db=filtered_data, center=data_centerm, direction=direction, ref_time=ref_time) .* select(filtered_data, :mass) ), closed=closed, (newrange1, newrange2) ) h_mass = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) ), closed=closed, (newrange1, newrange2) ) else h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( getvar(dataobject, i_var, filtered_db=filtered_data, center=data_centerm, direction=direction, ref_time=ref_time) .* select(filtered_data, :mass) .* select(filtered_data, :mask) ), closed=closed, (newrange1, newrange2) ) h_mass = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) .* select(filtered_data, :mask) ), closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights ./ h_mass.weights .* selected_unit else maps[Symbol(i_var)] = h.weights ./ h_mass.weights end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :mass_weighted end elseif weighting == :volume if in(i_var, sd_names) if length(mask) == 1 h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) ), closed=closed, (newrange1, newrange2) ) else h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) .* select(filtered_data, :mask) ), closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights ./ (dataobject.info.boxlen / res )^2 .* selected_unit else maps[Symbol(i_var)] = h.weights ./ (dataobject.info.boxlen / res )^2 end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :volume_weighted elseif in(i_var, density_names) if length(mask) == 1 h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) ), closed=closed, (newrange1, newrange2) ) else h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( select(filtered_data, :mass) .* select(filtered_data, :mask) ), closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights ./ ( (dataobject.info.boxlen / res )^3 * res) .* selected_unit else maps[Symbol(i_var)] = h.weights ./ ( (dataobject.info.boxlen / res )^3 * res) end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :volume_weighted else if length(mask) == 1 h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( getvar(dataobject, i_var, filtered_db=filtered_data, center=data_centerm, direction=direction, ref_time=ref_time) ), #weights( select(filtered_data, Symbol(i_var)) ), closed=closed, (newrange1, newrange2) ) else h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( getvar(dataobject, i_var, filtered_db=filtered_data, center=data_centerm, direction=direction, ref_time=ref_time) .* select(filtered_data, :mask) ), #weights( select(filtered_data, Symbol(i_var)) ), closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights ./ ( (dataobject.info.boxlen / res )^3 * res) .* selected_unit else maps[Symbol(i_var)] = h.weights ./ ( (dataobject.info.boxlen / res )^3 * res) end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :volume_weighted end elseif mode == :sum if length(mask) == 1 h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( getvar(dataobject, i_var, filtered_db=filtered_data, center=data_centerm, direction=direction, ref_time=ref_time) ), #weights( select(filtered_data, Symbol(i_var)) ), closed=closed, (newrange1, newrange2) ) else h = fit(Histogram, (select(filtered_data, var_a) , select(filtered_data, var_b) ), weights( getvar(dataobject, i_var, filtered_db=filtered_data, center=data_centerm, direction=direction, ref_time=ref_time) .* select(filtered_data, :mask) ), #weights( select(filtered_data, Symbol(i_var)) ), closed=closed, (newrange1, newrange2) ) end selected_unit, unit_name= getunit(dataobject, i_var, selected_vars, units, uname=true) if selected_unit != 1. maps[Symbol(i_var)] = h.weights .* selected_unit else maps[Symbol(i_var)] = h.weights end maps_unit[Symbol( string(i_var) )] = unit_name maps_mode[Symbol( string(i_var) )] = :sum end end #if show_progress next!(p, showvalues = [(:Nvars, i_var)]) end # ProgressMeter end #for # create velocity dispersion maps, after all other maps are created counter = 0 for ivar in selected_vars counter = counter + 1 if in(ivar, σcheck) #for iσ in σcheck selected_unit, unit_name= getunit(dataobject, ivar, selected_vars, units, uname=true) selected_v = σ_to_v[ivar] iv = maps[selected_v[1]] iv_unit = maps_unit[Symbol( string(selected_v[1]) )] iv2 = maps[selected_v[2]] iv2_unit = maps_unit[Symbol( string(selected_v[2]) )] if iv_unit == iv2_unit diff_iv = iv2 .- iv .^2 diff_iv[ diff_iv .< 0. ] .= 0. if iv_unit == unit_name maps[Symbol(ivar)] = sqrt.( diff_iv ) elseif iv_unit == :standard maps[Symbol(ivar)] = sqrt.( diff_iv ) .* selected_unit elseif iv_unit == :km_s maps[Symbol(ivar)] = sqrt.( diff_iv ) ./ dataobject.info.scale.km_s end elseif iv_unit != iv2_unit if iv_unit == :km_s && unit_name == :standard iv = iv ./ dataobject.info.scale.km_s elseif iv_unit == :standard && unit_name == :km_s iv = iv .* dataobject.info.scale.km_s end if iv2_unit == :km_s && unit_name == :standard iv2 = iv2 ./ dataobject.info.scale.km_s.^2 elseif iv2_unit == :standard && unit_name == :km_s iv2 = iv2 .* dataobject.info.scale.km_s.^2 end # overwrite NaN due to radius = 0 #iv2 = iv2[isnan.(iv2)] .= 0 #iv = iv[isnan.(iv)] .= 0 diff_iv = iv2 .- iv .^2 diff_iv[ diff_iv .< 0. ] .= 0. maps[Symbol(ivar)] = sqrt.( diff_iv ) end maps_unit[Symbol( string(ivar) )] = unit_name #end #end end end # create radius map for ivar in selected_vars if in(ivar, rcheck) selected_unit, unit_name= getunit(dataobject, ivar, selected_vars, units, uname=true) map_R = zeros(Float64, length1, length2 ); for i = 1:(length1) for j = 1:(length2) x = i * dataobject.boxlen / res y = j * dataobject.boxlen / res radius = sqrt( ((x-length1_center) )^2 + ( (y-length2_center) )^2) map_R[i,j] = radius * selected_unit end end maps[Symbol(ivar)] = map_R maps_unit[Symbol( string(ivar) )] = unit_name end end # create ϕ-angle map for ivar in selected_vars if in(ivar, anglecheck) map_ϕ = zeros(Float64, length1, length2 ); for i = 1:(length1) for j = 1:(length2) x = i * dataobject.boxlen / res - length1_center y = j * dataobject.boxlen / res - length2_center if x > 0. && y >= 0. map_ϕ[i,j] = atan(y / x) elseif x > 0. && y < 0. map_ϕ[i,j] = atan(y / x) + 2. * pi elseif x < 0. map_ϕ[i,j] = atan(y / x) + pi elseif x==0 && y > 0 map_ϕ[i,j] = pi/2. elseif x==0 && y < 0 map_ϕ[i,j] = 3. * pi/2. end end end maps[Symbol(ivar)] = map_ϕ maps_unit[Symbol( string(ivar) )] = :radian end end if mera_mask_inserted # delete column :mask dataobject.data = select(dataobject.data, Not(:mask)) end maps_lmax = SortedDict( ) return PartMapsType(maps, maps_unit, maps_lmax, maps_mode, lmax, dataobject.lmin, lmax, ref_time, ranges, extent, extent_center, ratio, res, pixsize, boxlen, dataobject.scale, dataobject.info) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
5785
""" ### Cutout sub-regions of the data base of DataSetType - select shape of a shell-region - select size of a region (with or w/o intersecting cells) - give the spatial center (with units) of the data relative to the full box - relate the coordinates to a direction (x,y,z) - inverse the selected region - pass a struct with arguments (myargs) ```julia shellregion(dataobject::DataSetType, shape::Symbol=:cylinder; radius::Array{<:Real,1}=[0.,0.], # cylinder, sphere; height::Real=0., # cylinder direction::Symbol=:z, # cylinder center::Array{<:Any,1}=[0., 0., 0.], # all range_unit::Symbol=:standard, # all cell::Bool=true, # hydro and gravity inverse::Bool=false, # all verbose::Bool=true, # all myargs::ArgumentsType=ArgumentsType() ) # all ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" - **`shape`:** select between region shapes: :cylinder/:disc, :sphere ##### Predefined/Optional Keywords: **For cylindrical shell-region, related to a given center:** - **`radius`:** the inner and outer radius of the shell in units given by argument `range_unit` and relative to the given `center` - **`height`:** the hight above and below a plane [-height, height] in units given by argument `range_unit` and relative to the given `center` - **`direction`:** todo **For spherical shell-region, related to a given center:** - **`radius`:** the inner and outer radius of the shell in units given by argument `range_unit` and relative to the given `center` **Keywords related to all region shapes** - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`inverse`:** inverse the region selection = get the data outside of the region - **`cell`:** take intersecting cells of the region boarder into account (true) or only the cells-centers within the selected region (false) - **`verbose`:** print timestamp, selected vars and ranges on screen; default: true - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of radius, height, direction, center, range_unit, verbose """ function shellregion(dataobject::DataSetType, shape::Symbol=:cylinder; radius::Array{<:Real,1}=[0.,0.], # cylinder, sphere; height::Real=0., # cylinder direction::Symbol=:z, # cylinder center::Array{<:Any,1}=[0., 0., 0.], # all range_unit::Symbol=:standard, # all cell::Bool=true, # hydro and gravity inverse::Bool=false, # all verbose::Bool=true, # all myargs::ArgumentsType=ArgumentsType() ) # all # take values from myargs if given if !(myargs.direction === missing) direction = myargs.direction end if !(myargs.radius === missing) radius = myargs.radius end if !(myargs.height === missing) height = myargs.height end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end verbose = checkverbose(verbose) # subregion = wrapper over all subregion shell functions if shape == :cylinder || shape == :disc if typeof(dataobject) == HydroDataType || typeof(dataobject) == GravDataType return shellregioncylinder(dataobject, radius=radius, height=height, center=center, range_unit=range_unit, direction=direction, cell=cell, inverse=inverse, verbose=verbose) else return shellregioncylinder(dataobject, radius=radius, height=height, center=center, range_unit=range_unit, direction=direction, inverse=inverse, verbose=verbose) end elseif shape == :sphere if typeof(dataobject) == HydroDataType || typeof(dataobject) == GravDataType return shellregionsphere( dataobject, radius=radius, center=center, range_unit=range_unit, cell=cell, inverse=inverse, verbose=verbose) else return shellregionsphere( dataobject, radius=radius, center=center, range_unit=range_unit, inverse=inverse, verbose=verbose) end end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
5506
# ----------------------------------------------------------------------------- ##### CYLINDER/SHELL #####----------------------------------------------------- function shellregioncylinder(dataobject::ClumpDataType; radius::Array{<:Real,1}=[0.,0.], height::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, direction::Symbol=:z, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift, height_shift = prep_cylindrical_shellranges(dataobject.info, center, radius_in, radius_out, height, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2) >= ( radius_in_shift*boxlen ) && sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2) <= ( radius_out_shift*boxlen ) && abs(p.peak_z - cz_shift*boxlen) <= ( height_shift*boxlen), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2) < ( radius_in_shift*boxlen ) || sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2) > ( radius_out_shift*boxlen ) || abs(p.peak_z - cz_shift*boxlen) > ( height_shift*boxlen), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) clumpdata = ClumpDataType() clumpdata.data = sub_data clumpdata.info = dataobject.info clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = ranges clumpdata.selected_clumpvars = dataobject.selected_clumpvars clumpdata.used_descriptors = dataobject.used_descriptors clumpdata.scale = dataobject.scale return clumpdata end # ----------------------------------------------------------------------------- ##### SPHERE/SHELL #####------------------------------------------------------- function shellregionsphere(dataobject::ClumpDataType; radius::Array{<:Real,1}=[0.,0.], center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || in(0., center) error("[Mera]: given inner and outer radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift = prep_spherical_shellranges(dataobject.info, center, radius_in, radius_out, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2+ (p.peak_z - cz_shift*boxlen)^2 ) >= ( radius_in_shift*boxlen ) && sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2+ (p.peak_z - cz_shift*boxlen)^2 ) <= ( radius_out_shift*boxlen ), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2+ (p.peak_z - cz_shift*boxlen)^2 ) < ( radius_in_shift*boxlen ) || sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2+ (p.peak_z - cz_shift*boxlen)^2 ) > ( radius_out_shift*boxlen ), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) clumpdata = ClumpDataType() clumpdata.data = sub_data clumpdata.info = dataobject.info clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = ranges clumpdata.selected_clumpvars = dataobject.selected_clumpvars clumpdata.used_descriptors = dataobject.used_descriptors clumpdata.scale = dataobject.scale return clumpdata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
7790
# ----------------------------------------------------------------------------- ##### CYLINDER/SHELL #####----------------------------------------------------- function shellregioncylinder(dataobject::GravDataType; radius::Array{<:Real,1}=[0.,0.], height::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, direction::Symbol=:z, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift, height_shift = prep_cylindrical_shellranges(dataobject.info, center, radius_in, radius_out, height, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) >= (cell_shift(p.level, radius_in_shift,cell)) && get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) <= (cell_shift(p.level, radius_out_shift,cell)) && get_height_cylinder(p.cz, p.level, cz_shift) <= (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) >= (cell_shift(lmax, radius_in_shift,cell)) && get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) <= (cell_shift(lmax, radius_out_shift,cell)) && get_height_cylinder(p.cz, lmax, cz_shift) <= (cell_shift(lmax, height_shift,cell)), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) < (cell_shift(p.level, radius_in_shift,cell)) || get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) > (cell_shift(p.level, radius_out_shift,cell)) || get_height_cylinder(p.cz, p.level, cz_shift) > (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) < (cell_shift(lmax, radius_in_shift,cell)) || get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) > (cell_shift(lmax, radius_out_shift,cell)) || get_height_cylinder(p.cz, lmax, cz_shift) > (cell_shift(lmax, height_shift,cell)), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) gravitydata = GravDataType() gravitydata.data = sub_data gravitydata.info = dataobject.info gravitydata.lmin = dataobject.lmin gravitydata.lmax = dataobject.lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = ranges gravitydata.selected_gravvars = dataobject.selected_gravvars gravitydata.used_descriptors = dataobject.used_descriptors gravitydata.scale = dataobject.scale return gravitydata end # ----------------------------------------------------------------------------- ##### SPHERE/SHELL #####------------------------------------------------------- function shellregionsphere(dataobject::GravDataType; radius::Array{<:Real,1}=[0.,0.], center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || in(0., center) error("[Mera]: given inner and outer radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift = prep_spherical_shellranges(dataobject.info, center, radius_in, radius_out, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) >= cell_shift(p.level, radius_in_shift, cell) && get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) <= cell_shift(p.level, radius_out_shift,cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) >= cell_shift(lmax, radius_in_shift, cell) && get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) <= cell_shift(lmax, radius_out_shift,cell), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) < cell_shift(p.level, radius_in_shift, cell) || get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) > cell_shift(p.level, radius_out_shift, cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) < cell_shift(lmax, radius_in_shift, cell) || get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) > cell_shift(lmax, radius_out_shift, cell), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) gravitydata = GravDataType() gravitydata.data = sub_data gravitydata.info = dataobject.info gravitydata.lmin = dataobject.lmin gravitydata.lmax = dataobject.lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = ranges gravitydata.selected_gravvars = dataobject.selected_gravvars gravitydata.used_descriptors = dataobject.used_descriptors gravitydata.scale = dataobject.scale return gravitydata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
7926
# ----------------------------------------------------------------------------- ##### CYLINDER/SHELL #####----------------------------------------------------- function shellregioncylinder(dataobject::HydroDataType; radius::Array{<:Real,1}=[0.,0.], height::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, direction::Symbol=:z, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift, height_shift = prep_cylindrical_shellranges(dataobject.info, center, radius_in, radius_out, height, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) >= (cell_shift(p.level, radius_in_shift,cell)) && get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) <= (cell_shift(p.level, radius_out_shift,cell)) && get_height_cylinder(p.cz, p.level, cz_shift) <= (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) >= (cell_shift(lmax, radius_in_shift,cell)) && get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) <= (cell_shift(lmax, radius_out_shift,cell)) && get_height_cylinder(p.cz, lmax, cz_shift) <= (cell_shift(lmax, height_shift,cell)), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) < (cell_shift(p.level, radius_in_shift,cell)) || get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) > (cell_shift(p.level, radius_out_shift,cell)) || get_height_cylinder(p.cz, p.level, cz_shift) > (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) < (cell_shift(lmax, radius_in_shift,cell)) || get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) > (cell_shift(lmax, radius_out_shift,cell)) || get_height_cylinder(p.cz, lmax, cz_shift) > (cell_shift(lmax, height_shift,cell)), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) hydrodata = HydroDataType() hydrodata.data = sub_data hydrodata.info = dataobject.info hydrodata.lmin = dataobject.lmin hydrodata.lmax = dataobject.lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = ranges hydrodata.selected_hydrovars = dataobject.selected_hydrovars hydrodata.used_descriptors = dataobject.used_descriptors hydrodata.smallr = dataobject.smallr hydrodata.smallc = dataobject.smallc hydrodata.scale = dataobject.scale return hydrodata end # ----------------------------------------------------------------------------- ##### SPHERE/SHELL #####------------------------------------------------------- function shellregionsphere(dataobject::HydroDataType; radius::Array{<:Real,1}=[0.,0.], center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || in(0., center) error("[Mera]: given inner and outer radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift = prep_spherical_shellranges(dataobject.info, center, radius_in, radius_out, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) >= cell_shift(p.level, radius_in_shift, cell) && get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) <= cell_shift(p.level, radius_out_shift,cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) >= cell_shift(lmax, radius_in_shift, cell) && get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) <= cell_shift(lmax, radius_out_shift,cell), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) < cell_shift(p.level, radius_in_shift, cell) || get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) > cell_shift(p.level, radius_out_shift, cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) < cell_shift(lmax, radius_in_shift, cell) || get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) > cell_shift(lmax, radius_out_shift, cell), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) hydrodata = HydroDataType() hydrodata.data = sub_data hydrodata.info = dataobject.info hydrodata.lmin = dataobject.lmin hydrodata.lmax = dataobject.lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = ranges hydrodata.selected_hydrovars = dataobject.selected_hydrovars hydrodata.used_descriptors = dataobject.used_descriptors hydrodata.smallr = dataobject.smallr hydrodata.smallc = dataobject.smallc hydrodata.scale = dataobject.scale return hydrodata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
5502
# ----------------------------------------------------------------------------- ##### CYLINDER/SHELL #####----------------------------------------------------- function shellregioncylinder(dataobject::PartDataType; radius::Array{<:Real,1}=[0.,0.], height::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, direction::Symbol=:z, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift, height_shift = prep_cylindrical_shellranges(dataobject.info, center, radius_in, radius_out, height, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2) >= ( radius_in_shift*boxlen ) && sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2) <= ( radius_out_shift*boxlen ) && abs(p.z - cz_shift*boxlen) <= ( height_shift*boxlen), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2) < ( radius_in_shift*boxlen ) || sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2) > ( radius_out_shift*boxlen ) || abs(p.z - cz_shift*boxlen) > ( height_shift*boxlen), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) partdata = PartDataType() partdata.data = sub_data partdata.info = dataobject.info partdata.lmin = dataobject.lmin partdata.lmax = dataobject.lmax partdata.boxlen = dataobject.boxlen partdata.ranges = ranges partdata.selected_partvars = dataobject.selected_partvars partdata.used_descriptors = dataobject.used_descriptors partdata.scale = dataobject.scale return partdata end # ----------------------------------------------------------------------------- ##### SPHERE/SHELL #####------------------------------------------------------- function shellregionsphere(dataobject::PartDataType; radius::Array{<:Real,1}=[0.,0.], center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) radius_in = radius[1] radius_out = radius[2] if radius_in == 0. || radius_out == 0. || in(0., center) error("[Mera]: given inner and outer radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_in_shift, radius_out_shift = prep_spherical_shellranges(dataobject.info, center, radius_in, radius_out, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2 + (p.z - cz_shift*boxlen)^2 ) >= ( radius_in_shift*boxlen ) && sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2 + (p.z - cz_shift*boxlen)^2 ) <= ( radius_out_shift*boxlen ), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2 + (p.z - cz_shift*boxlen)^2 ) < ( radius_in_shift*boxlen ) || sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2 + (p.z - cz_shift*boxlen)^2 ) > ( radius_out_shift*boxlen ), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) partdata = PartDataType() partdata.data = sub_data partdata.info = dataobject.info partdata.lmin = dataobject.lmin partdata.lmax = dataobject.lmax partdata.boxlen = dataobject.boxlen partdata.ranges = ranges partdata.selected_partvars = dataobject.selected_partvars partdata.used_descriptors = dataobject.used_descriptors partdata.scale = dataobject.scale return partdata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
7330
""" ### Cutout sub-regions of the data base of DataSetType - select shape of a region - select size of a region (with or w/o intersecting cells) - give the spatial center (with units) of the data relative to the full box - relate the coordinates to a direction (x,y,z) - inverse the selected region - pass a struct with arguments (myargs) ```julia subregion(dataobject::DataSetType, shape::Symbol=:cuboid; xrange::Array{<:Any,1}=[missing, missing], # cuboid yrange::Array{<:Any,1}=[missing, missing], # cuboid zrange::Array{<:Any,1}=[missing, missing], # cuboid radius::Real=0., # cylinder, sphere height::Real=0., # cylinder direction::Symbol=:z, # cylinder center::Array{<:Any,1}=[0.,0.,0.], # all range_unit::Symbol=:standard, # all cell::Bool=true, # hydro and gravity inverse::Bool=false, # all verbose::Bool=true, # all myargs::ArgumentsType=ArgumentsType() ) # all ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "DataSetType" - **`shape`:** select between region shapes: :cuboid, :cylinder/:disc, :sphere ##### Predefined/Optional Keywords: **For cuboid region, related to a given center:** - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length **For cylindrical region, related to a given center:** - **`radius`:** the radius between [0., radius] in units given by argument `range_unit` and relative to the given `center` - **`height`:** the hight above and below a plane [-height, height] in units given by argument `range_unit` and relative to the given `center` - **`direction`:** todo **For spherical region, related to a given center:** - **`radius`:** the radius between [0., radius] in units given by argument `range_unit` and relative to the given `center` **Keywords related to all region shapes** - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`inverse`:** inverse the region selection = get the data outside of the region - **`cell`:** take intersecting cells of the region boarder into account (true) or only the cells-centers within the selected region (false) - **`verbose`:** print timestamp, selected vars and ranges on screen; default: true - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of xrange, yrange, zrange, radius, height, direction, center, range_unit, verbose """ function subregion(dataobject::DataSetType, shape::Symbol=:cuboid; xrange::Array{<:Any,1}=[missing, missing], # cuboid yrange::Array{<:Any,1}=[missing, missing], # cuboid zrange::Array{<:Any,1}=[missing, missing], # cuboid radius::Real=0., # cylinder, sphere height::Real=0., # cylinder direction::Symbol=:z, # cylinder center::Array{<:Any,1}=[0.,0.,0.], # all range_unit::Symbol=:standard, # all cell::Bool=true, # hydro and gravity inverse::Bool=false, # all verbose::Bool=true, # all myargs::ArgumentsType=ArgumentsType() ) # all # take values from myargs if given if !(myargs.direction === missing) direction = myargs.direction end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.radius === missing) radius = myargs.radius end if !(myargs.height === missing) height = myargs.height end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end verbose = checkverbose(verbose) # subregion = wrapper over all subregion functions if shape == :cuboid if typeof(dataobject) == HydroDataType || typeof(dataobject) == GravDataType return subregioncuboid(dataobject, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, cell=cell, inverse=inverse, verbose=verbose) else return subregioncuboid(dataobject, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, inverse=inverse, verbose=verbose) end elseif shape == :cylinder || shape == :disc if typeof(dataobject) == HydroDataType || typeof(dataobject) == GravDataType return subregioncylinder(dataobject, radius=radius, height=height, center=center, range_unit=range_unit, direction=direction, cell=cell, inverse=inverse, verbose=verbose) else return subregioncylinder(dataobject, radius=radius, height=height, center=center, range_unit=range_unit, direction=direction, inverse=inverse, verbose=verbose) end elseif shape == :sphere if typeof(dataobject) == HydroDataType || typeof(dataobject) == GravDataType return subregionsphere(dataobject, radius=radius, center=center, range_unit=range_unit, cell=cell, inverse=inverse, verbose=verbose) else return subregionsphere(dataobject, radius=radius, center=center, range_unit=range_unit, inverse=inverse, verbose=verbose) end end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
6984
# ----------------------------------------------------------------------------- ##### CUBOID #####------------------------------------------------------------- function subregioncuboid(dataobject::ClumpDataType; xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) boxlen = dataobject.boxlen # convert given ranges and print overview on screen ranges = prepranges(dataobject.info,range_unit, verbose, xrange, yrange, zrange, center) xmin, xmax, ymin, ymax, zmin, zmax = ranges #if !(xrange == [dataobject.ranges[1], dataobject.ranges[2]] && # yrange == [dataobject.ranges[3], dataobject.ranges[4]] && # zrange == [dataobject.ranges[5], dataobject.ranges[6]]) if !(xrange[1] === missing && xrange[2] === missing && yrange[1] === missing && yrange[2] === missing && zrange[1] === missing && zrange[2] === missing) if inverse == false sub_data = filter(p-> p.peak_x >= xmin * boxlen && p.peak_x <= xmax * boxlen && p.peak_y >= ymin * boxlen && p.peak_y <= ymax * boxlen && p.peak_z >= zmin * boxlen && p.peak_z <= zmax * boxlen, dataobject.data) elseif inverse == true sub_data = filter(p-> (p.peak_x < xmin * boxlen || p.peak_x > xmax * boxlen) || (p.peak_y < ymin * boxlen || p.peak_y > ymax * boxlen) || (p.peak_z < zmin * boxlen || p.peak_z > zmax * boxlen), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) clumpdata = ClumpDataType() clumpdata.data = sub_data clumpdata.info = dataobject.info clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = ranges clumpdata.selected_clumpvars = dataobject.selected_clumpvars clumpdata.used_descriptors = dataobject.used_descriptors clumpdata.scale = dataobject.scale return clumpdata else return dataobject # println("[Mera]: Nothing to do! Given ranges match data ranges!") # println() end end # ----------------------------------------------------------------------------- ##### CYLINDER #####----------------------------------------------------------- function subregioncylinder(dataobject::ClumpDataType; radius::Real=0., height::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, direction::Symbol=:z, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_shift, height_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2) <= ( radius_shift*boxlen ) && abs(p.peak_z - cz_shift*boxlen) <= ( height_shift*boxlen), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2) > ( radius_shift*boxlen ) || abs(p.peak_z - cz_shift*boxlen) > ( height_shift*boxlen), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) clumpdata = ClumpDataType() clumpdata.data = sub_data clumpdata.info = dataobject.info clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = ranges clumpdata.selected_clumpvars = dataobject.selected_clumpvars clumpdata.used_descriptors = dataobject.used_descriptors clumpdata.scale = dataobject.scale return clumpdata end # ----------------------------------------------------------------------------- ##### SPHERE #####------------------------------------------------------------- function subregionsphere(dataobject::ClumpDataType; radius::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || in(0., center) error("[Mera]: given radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen height = 0. ranges, cx_shift, cy_shift, cz_shift, radius_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2+ (p.peak_z - cz_shift*boxlen)^2 ) <= ( radius_shift*boxlen ), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.peak_x - cx_shift*boxlen)^2 + (p.peak_y - cy_shift*boxlen )^2+ (p.peak_z - cz_shift*boxlen)^2 ) > ( radius_shift*boxlen ), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) clumpdata = ClumpDataType() clumpdata.data = sub_data clumpdata.info = dataobject.info clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = ranges clumpdata.selected_clumpvars = dataobject.selected_clumpvars clumpdata.used_descriptors = dataobject.used_descriptors clumpdata.scale = dataobject.scale return clumpdata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
12277
# ----------------------------------------------------------------------------- ##### CUBOID #####------------------------------------------------------------- function subregioncuboid(dataobject::GravDataType; xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) boxlen = dataobject.boxlen lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges = prepranges(dataobject.info,range_unit, verbose, xrange, yrange, zrange, center) xmin, xmax, ymin, ymax, zmin, zmax = ranges #if !(xrange == [dataobject.ranges[1], dataobject.ranges[2]] && # yrange == [dataobject.ranges[3], dataobject.ranges[4]] && # zrange == [dataobject.ranges[5], dataobject.ranges[6]]) if !(xrange[1] === missing && xrange[2] === missing && yrange[1] === missing && yrange[2] === missing && zrange[1] === missing && zrange[2] === missing) if inverse == false if isamr if cell == true sub_data = filter(p-> p.cx >=floor(Int, 2^p.level * xmin) && p.cx <=ceil(Int, 2^p.level * xmax) && p.cy >=floor(Int, 2^p.level * ymin) && p.cy <=ceil(Int, 2^p.level * ymax) && p.cz >=floor(Int, 2^p.level * zmin) && p.cz <=ceil(Int, 2^p.level * zmax), dataobject.data) else sub_data = filter(p-> p.cx >=( 2^p.level * xmin) && p.cx <=( 2^p.level * xmax) && p.cy >=( 2^p.level * ymin) && p.cy <=( 2^p.level * ymax) && p.cz >=( 2^p.level * zmin) && p.cz <=( 2^p.level * zmax), dataobject.data) end else # for uniform grid if cell == true sub_data = filter(p-> p.cx >=floor(Int, 2^lmax * xmin) && p.cx <=ceil(Int, 2^lmax * xmax) && p.cy >=floor(Int, 2^lmax * ymin) && p.cy <=ceil(Int, 2^lmax * ymax) && p.cz >=floor(Int, 2^lmax * zmin) && p.cz <=ceil(Int, 2^lmax * zmax), dataobject.data) else sub_data = filter(p-> p.cx >=( 2^lmax * xmin) && p.cx <=( 2^lmax * xmax) && p.cy >=( 2^lmax * ymin) && p.cy <=( 2^lmax * ymax) && p.cz >=( 2^lmax * zmin) && p.cz <=( 2^lmax * zmax), dataobject.data) end end elseif inverse == true if cell == true if isamr sub_data = filter(p-> p.cx <floor(Int, 2^p.level * xmin) || p.cx >ceil(Int, 2^p.level * xmax) || p.cy <floor(Int, 2^p.level * ymin) || p.cy >ceil(Int, 2^p.level * ymax) || p.cz <floor(Int, 2^p.level * zmin) || p.cz >ceil(Int, 2^p.level * zmax) , dataobject.data) else # for uniform grid sub_data = filter(p-> p.cx <floor(Int, 2^lmax * xmin) || p.cx >ceil(Int, 2^lmax * xmax) || p.cy <floor(Int, 2^lmax * ymin) || p.cy >ceil(Int, 2^lmax * ymax) || p.cz <floor(Int, 2^lmax * zmin) || p.cz >ceil(Int, 2^lmax * zmax) , dataobject.data) end else if isamr sub_data = filter(p-> p.cx <( 2^p.level * xmin) || p.cx >( 2^p.level * xmax) || p.cy <( 2^p.level * ymin) || p.cy >( 2^p.level * ymax) || p.cz <( 2^p.level * zmin) || p.cz >( 2^p.level * zmax), dataobject.data) else # for uniform grid sub_data = filter(p-> p.cx <( 2^lmax * xmin) || p.cx >( 2^lmax * xmax) || p.cy <( 2^lmax * ymin) || p.cy >( 2^lmax * ymax) || p.cz <( 2^lmax * zmin) || p.cz >( 2^lmax * zmax), dataobject.data) end end ranges = dataobject.ranges end printtablememory(sub_data, verbose) gravitydata = GravDataType() gravitydata.data = sub_data gravitydata.info = dataobject.info gravitydata.lmin = dataobject.lmin gravitydata.lmax = dataobject.lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = ranges gravitydata.selected_gravvars = dataobject.selected_gravvars gravitydata.used_descriptors = dataobject.used_descriptors gravitydata.scale = dataobject.scale return gravitydata else return dataobject #println("[Mera]: Nothing to do! Given ranges match data ranges!") end end # ----------------------------------------------------------------------------- ##### CYLINDER #####----------------------------------------------------------- function subregioncylinder(dataobject::GravDataType; radius::Real=0., height::Real=0., center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, direction::Symbol=:z, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_shift, height_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) <= (cell_shift(p.level, radius_shift,cell)) && get_height_cylinder(p.cz, p.level, cz_shift) <= (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) <= (cell_shift(lmax, radius_shift,cell)) && get_height_cylinder(p.cz, lmax, cz_shift) <= (cell_shift(lmax, height_shift,cell)), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) > (cell_shift(p.level, radius_shift,cell)) || get_height_cylinder(p.cz, p.level, cz_shift) > (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) > (cell_shift(lmax, radius_shift,cell)) || get_height_cylinder(p.cz, lmax, cz_shift) > (cell_shift(lmax, height_shift,cell)), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) gravitydata = GravDataType() gravitydata.data = sub_data gravitydata.info = dataobject.info gravitydata.lmin = dataobject.lmin gravitydata.lmax = dataobject.lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = ranges gravitydata.selected_gravvars = dataobject.selected_gravvars gravitydata.used_descriptors = dataobject.used_descriptors gravitydata.scale = dataobject.scale return gravitydata end # ----------------------------------------------------------------------------- ##### SPHERE #####------------------------------------------------------------- function subregionsphere(dataobject::GravDataType; radius::Real=0., center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || in(0., center) error("[Mera]: given radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen height = 0. ranges, cx_shift, cy_shift, cz_shift, radius_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) <= cell_shift(p.level, radius_shift, cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) <= cell_shift(lmax, radius_shift, cell), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) > cell_shift(p.level, radius_shift, cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) > cell_shift(lmax, radius_shift, cell), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) gravitydata = GravDataType() gravitydata.data = sub_data gravitydata.info = dataobject.info gravitydata.lmin = dataobject.lmin gravitydata.lmax = dataobject.lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = ranges gravitydata.selected_gravvars = dataobject.selected_gravvars gravitydata.used_descriptors = dataobject.used_descriptors gravitydata.scale = dataobject.scale return gravitydata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
13270
# ----------------------------------------------------------------------------- ##### CUBOID #####------------------------------------------------------------- function subregioncuboid(dataobject::HydroDataType; xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) boxlen = dataobject.boxlen lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges = prepranges(dataobject.info,range_unit, verbose, xrange, yrange, zrange, center) xmin, xmax, ymin, ymax, zmin, zmax = ranges #if !(xrange == [dataobject.ranges[1], dataobject.ranges[2]] && # yrange == [dataobject.ranges[3], dataobject.ranges[4]] && # zrange == [dataobject.ranges[5], dataobject.ranges[6]]) if !(xrange[1] === missing && xrange[2] === missing && yrange[1] === missing && yrange[2] === missing && zrange[1] === missing && zrange[2] === missing) if inverse == false if isamr if cell == true sub_data = filter(p-> p.cx >=floor(Int, 2^p.level * xmin) && p.cx <=ceil(Int, 2^p.level * xmax) && p.cy >=floor(Int, 2^p.level * ymin) && p.cy <=ceil(Int, 2^p.level * ymax) && p.cz >=floor(Int, 2^p.level * zmin) && p.cz <=ceil(Int, 2^p.level * zmax), dataobject.data) else sub_data = filter(p-> p.cx >=( 2^p.level * xmin) && p.cx <=( 2^p.level * xmax) && p.cy >=( 2^p.level * ymin) && p.cy <=( 2^p.level * ymax) && p.cz >=( 2^p.level * zmin) && p.cz <=( 2^p.level * zmax), dataobject.data) end else # for uniform grid if cell == true sub_data = filter(p-> p.cx >=floor(Int, 2^lmax * xmin) && p.cx <=ceil(Int, 2^lmax * xmax) && p.cy >=floor(Int, 2^lmax * ymin) && p.cy <=ceil(Int, 2^lmax * ymax) && p.cz >=floor(Int, 2^lmax * zmin) && p.cz <=ceil(Int, 2^lmax * zmax), dataobject.data) else sub_data = filter(p-> p.cx >=( 2^lmax * xmin) && p.cx <=( 2^lmax * xmax) && p.cy >=( 2^lmax * ymin) && p.cy <=( 2^lmax * ymax) && p.cz >=( 2^lmax * zmin) && p.cz <=( 2^lmax * zmax), dataobject.data) end end elseif inverse == true if cell == true if isamr sub_data = filter(p-> p.cx <floor(Int, 2^p.level * xmin) || p.cx >ceil(Int, 2^p.level * xmax) || p.cy <floor(Int, 2^p.level * ymin) || p.cy >ceil(Int, 2^p.level * ymax) || p.cz <floor(Int, 2^p.level * zmin) || p.cz >ceil(Int, 2^p.level * zmax) , dataobject.data) else # for uniform grid sub_data = filter(p-> p.cx <floor(Int, 2^lmax * xmin) || p.cx >ceil(Int, 2^lmax * xmax) || p.cy <floor(Int, 2^lmax * ymin) || p.cy >ceil(Int, 2^lmax * ymax) || p.cz <floor(Int, 2^lmax * zmin) || p.cz >ceil(Int, 2^lmax * zmax) , dataobject.data) end else if isamr sub_data = filter(p-> p.cx <( 2^p.level * xmin) || p.cx >( 2^p.level * xmax) || p.cy <( 2^p.level * ymin) || p.cy >( 2^p.level * ymax) || p.cz <( 2^p.level * zmin) || p.cz >( 2^p.level * zmax), dataobject.data) else # for uniform grid sub_data = filter(p-> p.cx <( 2^lmax * xmin) || p.cx >( 2^lmax * xmax) || p.cy <( 2^lmax * ymin) || p.cy >( 2^lmax * ymax) || p.cz <( 2^lmax * zmin) || p.cz >( 2^lmax * zmax), dataobject.data) end end ranges = dataobject.ranges end printtablememory(sub_data, verbose) hydrodata = HydroDataType() hydrodata.data = sub_data hydrodata.info = dataobject.info hydrodata.lmin = dataobject.lmin hydrodata.lmax = dataobject.lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = ranges hydrodata.selected_hydrovars = dataobject.selected_hydrovars hydrodata.used_descriptors = dataobject.used_descriptors hydrodata.smallr = dataobject.smallr hydrodata.smallc = dataobject.smallc hydrodata.scale = dataobject.scale return hydrodata else return dataobject #println("[Mera]: Nothing to do! Given ranges match data ranges!") end end # ----------------------------------------------------------------------------- ##### CYLINDER #####----------------------------------------------------------- function cell_shift(level, value_shift, cell) if cell == false return 2^level * value_shift else return (ceil(Int, 2^level * value_shift)) end end function get_radius_cylinder(x,y, level, cx_shift, cy_shift) xcenter = 2^level * cx_shift ycenter = 2^level * cy_shift x = (x - xcenter) y = (y - ycenter) return sqrt( x^2 + y^2) end function get_height_cylinder(z, level, cz_shift) center = 2^level * cz_shift z = (z - center) return abs(z) end function subregioncylinder(dataobject::HydroDataType; radius::Real=0., height::Real=0., center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, direction::Symbol=:z, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_shift, height_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) <= (cell_shift(p.level, radius_shift,cell)) && get_height_cylinder(p.cz, p.level, cz_shift) <= (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) <= (cell_shift(lmax, radius_shift,cell)) && get_height_cylinder(p.cz, lmax, cz_shift) <= (cell_shift(lmax, height_shift,cell)), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, p.level, cx_shift, cy_shift) > (cell_shift(p.level, radius_shift,cell)) || get_height_cylinder(p.cz, p.level, cz_shift) > (cell_shift(p.level, height_shift,cell)), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_cylinder(p.cx, p.cy, lmax, cx_shift, cy_shift) > (cell_shift(lmax, radius_shift,cell)) || get_height_cylinder(p.cz, lmax, cz_shift) > (cell_shift(lmax, height_shift,cell)), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) hydrodata = HydroDataType() hydrodata.data = sub_data hydrodata.info = dataobject.info hydrodata.lmin = dataobject.lmin hydrodata.lmax = dataobject.lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = ranges hydrodata.selected_hydrovars = dataobject.selected_hydrovars hydrodata.used_descriptors = dataobject.used_descriptors hydrodata.smallr = dataobject.smallr hydrodata.smallc = dataobject.smallc hydrodata.scale = dataobject.scale return hydrodata end # ----------------------------------------------------------------------------- ##### SPHERE #####------------------------------------------------------------- function get_radius_sphere(x,y,z, level, cx_shift, cy_shift, cz_shift) xcenter = 2^level * cx_shift ycenter = 2^level * cy_shift zcenter = 2^level * cz_shift x = (x - xcenter) y = (y - ycenter) z = (z - zcenter) return sqrt( x^2 + y^2 + z^2) end function subregionsphere(dataobject::HydroDataType; radius::Real=0., center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, cell::Bool=true, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || in(0., center) error("[Mera]: given radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale lmax = dataobject.lmax isamr = checkuniformgrid(dataobject, lmax) # convert given ranges and print overview on screen height = 0. ranges, cx_shift, cy_shift, cz_shift, radius_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) <= cell_shift(p.level, radius_shift, cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) <= cell_shift(lmax, radius_shift, cell), dataobject.data) end elseif inverse == true if isamr sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, p.level, cx_shift, cy_shift, cz_shift) > cell_shift(p.level, radius_shift, cell), dataobject.data) else # for uniform grid sub_data = filter(p-> get_radius_sphere(p.cx, p.cy, p.cz, lmax, cx_shift, cy_shift, cz_shift) > cell_shift(lmax, radius_shift, cell), dataobject.data) end ranges = dataobject.ranges end printtablememory(sub_data, verbose) hydrodata = HydroDataType() hydrodata.data = sub_data hydrodata.info = dataobject.info hydrodata.lmin = dataobject.lmin hydrodata.lmax = dataobject.lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = ranges hydrodata.selected_hydrovars = dataobject.selected_hydrovars hydrodata.used_descriptors = dataobject.used_descriptors hydrodata.smallr = dataobject.smallr hydrodata.smallc = dataobject.smallc hydrodata.scale = dataobject.scale return hydrodata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
6741
# ----------------------------------------------------------------------------- ##### CUBOID #####------------------------------------------------------------- function subregioncuboid(dataobject::PartDataType; xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) boxlen = dataobject.boxlen # convert given ranges and print overview on screen ranges = prepranges(dataobject.info,range_unit, verbose, xrange, yrange, zrange, center) xmin, xmax, ymin, ymax, zmin, zmax = ranges #if !(xrange == [dataobject.ranges[1], dataobject.ranges[2]] && # yrange == [dataobject.ranges[3], dataobject.ranges[4]] && # zrange == [dataobject.ranges[5], dataobject.ranges[6]]) if !(xrange[1] === missing && xrange[2] === missing && yrange[1] === missing && yrange[2] === missing && zrange[1] === missing && zrange[2] === missing) if inverse == false sub_data = filter(p-> p.x >= xmin * boxlen && p.x <= xmax * boxlen && p.y >= ymin * boxlen && p.y <= ymax * boxlen && p.z >= zmin * boxlen && p.z <= zmax * boxlen, dataobject.data) elseif inverse == true sub_data = filter(p-> (p.x < xmin * boxlen || p.x > xmax * boxlen) || (p.y < ymin * boxlen || p.y > ymax * boxlen) || (p.z < zmin * boxlen || p.z > zmax * boxlen), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) partdata = PartDataType() partdata.data = sub_data partdata.info = dataobject.info partdata.lmin = dataobject.lmin partdata.lmax = dataobject.lmax partdata.boxlen = dataobject.boxlen partdata.ranges = ranges partdata.selected_partvars = dataobject.selected_partvars partdata.used_descriptors = dataobject.used_descriptors partdata.scale = dataobject.scale return partdata else return dataobject # println("[Mera]: Nothing to do! Given ranges match data ranges!") # println() end end function subregioncylinder(dataobject::PartDataType; radius::Real=0., height::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, direction::Symbol=:z, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || height == 0. || in(0., center) error("[Mera]: given radius, height or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen ranges, cx_shift, cy_shift, cz_shift, radius_shift, height_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2) <= ( radius_shift*boxlen ) && abs(p.z - cz_shift*boxlen) <= ( height_shift*boxlen), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2) > ( radius_shift*boxlen ) || abs(p.z - cz_shift*boxlen) > ( height_shift*boxlen), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) partdata = PartDataType() partdata.data = sub_data partdata.info = dataobject.info partdata.lmin = dataobject.lmin partdata.lmax = dataobject.lmax partdata.boxlen = dataobject.boxlen partdata.ranges = ranges partdata.selected_partvars = dataobject.selected_partvars partdata.used_descriptors = dataobject.used_descriptors partdata.scale = dataobject.scale return partdata end # ----------------------------------------------------------------------------- ##### SPHERE #####------------------------------------------------------------- function subregionsphere(dataobject::PartDataType; radius::Real=0., center::Array{<:Any,1}=[0.,0.,0.], range_unit::Symbol=:standard, inverse::Bool=false, verbose::Bool=verbose_mode) printtime("", verbose) if radius == 0. || in(0., center) error("[Mera]: given radius or center should be != 0.") end boxlen = dataobject.boxlen scale = dataobject.scale # convert given ranges and print overview on screen height = 0. ranges, cx_shift, cy_shift, cz_shift, radius_shift = prepranges(dataobject.info, center, radius, height, range_unit, verbose) if inverse == false sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2 + (p.z - cz_shift*boxlen)^2 ) <= ( radius_shift*boxlen ), dataobject.data) elseif inverse == true sub_data = filter(p-> sqrt( (p.x - cx_shift*boxlen)^2 + (p.y - cy_shift*boxlen )^2 + (p.z - cz_shift*boxlen)^2 ) > ( radius_shift*boxlen ), dataobject.data) ranges = dataobject.ranges end printtablememory(sub_data, verbose) partdata = PartDataType() partdata.data = sub_data partdata.info = dataobject.info partdata.lmin = dataobject.lmin partdata.lmax = dataobject.lmax partdata.boxlen = dataobject.boxlen partdata.ranges = ranges partdata.selected_partvars = dataobject.selected_partvars partdata.used_descriptors = dataobject.used_descriptors partdata.scale = dataobject.scale return partdata end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
10183
# todo: skip not assigned fields """Get an overview of the fields from MERA composite types: ```julia viewfields(object) ``` """ function viewfields(object::InfoType) list_field = propertynames(object) for i=list_field if i == :scale println() printstyled(i, " ==> subfields: ", propertynames(object.scale), "\n", bold=true, color=:normal) println() elseif i == :grid_info printstyled(i, " ==> subfields: ", propertynames(object.grid_info), "\n", bold=true, color=:normal) println() elseif i == :part_info printstyled(i, " ==> subfields: ", propertynames(object.part_info), "\n", bold=true, color=:normal) println() elseif i == :compilation printstyled(i, " ==> subfields: ", propertynames(object.compilation), "\n", bold=true, color=:normal) println() elseif i == :constants printstyled(i, " ==> subfields: ", propertynames(object.constants), "\n", bold=true, color=:normal) println() elseif i == :fnames printstyled(i, " ==> subfields: ", propertynames(object.fnames), "\n", bold=true, color=:normal) println() elseif i == :descriptor printstyled(i, " ==> subfields: ", propertynames(object.descriptor), "\n", bold=true, color=:normal) println() elseif i == :namelist_content printstyled(i, " ==> dictionary: ", tuple(keys(object.namelist_content)...), "\n", bold=true, color=:normal) println() elseif i == :files_content printstyled(i, " ==> subfields: ", propertynames(object.files_content), "\n", bold=true, color=:normal) println() else println(i, "\t= ", getfield(object, i)) end end println() return end function viewfields(object::ArgumentsType) list_field = propertynames(object) println() printstyled("[Mera]: Fields to use as arguments in functions\n", bold=true, color=:normal) printstyled("=======================================================================\n", bold=true, color=:normal) for (j,i)=enumerate(list_field) #fname = fieldname(field, i) if isdefined(object, j) println(i, "\t= ", getfield(object, i)) #, "\t\t", "[",typeof(getfield(object, i)),"]") else println(i, "\t= #undef") end end println() return end function viewfields(object::ScalesType001) list_field = propertynames(object) println() printstyled("[Mera]: Fields to scale from user/code units to selected units\n", bold=true, color=:normal) printstyled("=======================================================================\n", bold=true, color=:normal) for i=list_field #fname = fieldname(field, i) println(i, "\t= ", getfield(object, i)) #, "\t\t", "[",typeof(getfield(object, i)),"]") end println() return end function viewfields(object::PartInfoType) list_field = propertynames(object) println() printstyled("[Mera]: Particle overview\n", bold=true, color=:normal) printstyled("===============================\n", bold=true, color=:normal) for i=list_field #fname = fieldname(field, i) println(i, "\t= ", getfield(object, i)) #, "\t\t", "[",typeof(getfield(object, i)),"]") end println() return end function viewfields(object::GridInfoType) list_field = propertynames(object) println() printstyled("[Mera]: Grid overview \n", bold=true, color=:normal) printstyled("============================\n", bold=true, color=:normal) for i=list_field if i == :ngridmax || i == :nstep_coarse || i == :nx || i == :ny || i == :nz || i == :nlevelmax || i == :nboundary || i == :ngrid_current println(i, "\t= ", getfield(object, i) ) elseif i == :bound_key array_length = length(object.bound_key) println(i, " ==> length($array_length)" ) elseif i == :cpu_read array_length = length(object.bound_key) println(i, " ==> length($array_length)" ) end end println() return end function viewfields(object::CompilationInfoType) list_field = propertynames(object) println() printstyled("[Mera]: Compilation file overview\n", bold=true, color=:normal) printstyled("========================================\n", bold=true, color=:normal) for i=list_field #fname = fieldname(field, i) println(i, "\t= ", getfield(object, i)) #, "\t\t", "[",typeof(getfield(object, i)),"]") end println() return end function viewfields(object::FileNamesType) list_field = propertynames(object) println() printstyled("[Mera]: Paths and file-names\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) for i=list_field println(i, "\t= ", getfield(object, i) ) end println() return end function viewfields(object::DescriptorType) list_field = propertynames(object) println() printstyled("[Mera]: Descriptor overview\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) for i=list_field println(i, "\t= ", getfield(object, i) ) end println() return end function viewfields(object::FilesContentType) list_field = propertynames(object) println() printstyled("[Mera]: List of files-content\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) println(propertynames(object)) println() return end function viewfields(object::PhysicalUnitsType001) list_field = propertynames(object) println() printstyled("[Mera]: Constants given in cgs units\n", bold=true, color=:normal) printstyled("=========================================\n", bold=true, color=:normal) for i=list_field println(i, "\t= ", getfield(object, i) ) end println() return end # todo: check function viewfields(object::DataSetType) list_field = propertynames(object) println() for i=list_field if i== :data printstyled(i, " ==> JuliaDB table: ", colnames(object.data), "\n", bold=true, color=:normal) println() elseif i== :info printstyled(i, " ==> subfields: ", propertynames(object.info), "\n", bold=true, color=:normal) println() elseif i== :scale println() printstyled(i, " ==> subfields: ", propertynames(object.scale), "\n", bold=true, color=:normal) println() elseif i == :used_descriptors if object.info.descriptor.usehydro println(i, "\t= ", getfield(object, i) ) end else println(i, "\t= ", getfield(object, i) ) end end println() return end function namelist(object::InfoType) println() printstyled("[Mera]: Namelist file content\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) keylist_header = keys(object.namelist_content) for i in keylist_header println(i) icontent = object.namelist_content[i] keylist_parameters = keys(icontent) for j in keylist_parameters println(j, " \t=", icontent[j] ) end println() end return end function namelist(object::Dict{Any,Any}) println() printstyled("[Mera]: Namelist file content\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) keylist_header = keys(object) for i in keylist_header println(i) icontent = object[i] keylist_parameters = keys(icontent) for j in keylist_parameters println(j, " \t=", icontent[j] ) end println() end println() return end """Get a printout of the makefile: ```julia makefile(object::InfoType) ``` """ function makefile(object::InfoType) println() printstyled("[Mera]: Makefile content\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) if object.makefile for i in object.files_content.makefile println(i) end else println("[Mera]: No Makefile found!") end println() return end """Get a printout of the timerfile: ```julia timerfile(object::InfoType) ``` """ function timerfile(object::InfoType) println() printstyled("[Mera]: Timer-file content\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) if object.timerfile for i in object.files_content.timerfile println(i) end else println("[Mera]: No Timer-file found!") end println() return end """Get a printout of the patchfile: ```julia patchfile(object::InfoType) ``` """ function patchfile(object::InfoType) println() printstyled("[Mera]: Patch-file content\n", bold=true, color=:normal) printstyled("=================================\n", bold=true, color=:normal) if object.patchfile for i in object.files_content.patchfile println(i) end else println("[Mera]: No Patch-file found!") end println() return end """Get a detailed overview of many fields from the MERA InfoType: ```julia viewallfields(dataobject::InfoType) ``` """ function viewallfields(dataobject::InfoType) viewfields(dataobject) viewfields(dataobject.scale) viewfields(dataobject.constants) viewfields(dataobject.fnames) viewfields(dataobject.descriptor) namelist(dataobject) viewfields(dataobject.grid_info) viewfields(dataobject.part_info) viewfields(dataobject.compilation) makefile(dataobject) timerfile(dataobject) return end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
5166
""" ```julia createpath(output::Real, path::String; namelist::String="") return FileNamesType ``` """ function createpath(output::Real, path::String; namelist::String="") if output < 10 Path_folder = "output_0000$output" Info_file = "info_0000$output.txt" AMR_file = "amr_0000$output." Hydro_file = "hydro_0000$output." Grav_file = "grav_0000$output." RT_file = "rt_0000$output." RT_descriptor = "info_rt_0000$output.txt" Part_file = "part_0000$output." Clump_file = "clump_0000$output." Timer_file = "timer_0000$output.txt" Header_file = "header_0000$output.txt" elseif output < 100 && output > 9 Path_folder = "output_000$output" Info_file = "info_000$output.txt" AMR_file = "amr_000$output." Hydro_file = "hydro_000$output." Grav_file = "grav_000$output." RT_file = "rt_000$output." RT_descriptor = "info_rt_000$output.txt" Part_file = "part_000$output." Clump_file = "clump_000$output." Timer_file = "timer_000$output.txt" Header_file = "header_000$output.txt" elseif output < 1000 && output > 99 Path_folder = "output_00$output" Info_file = "info_00$output.txt" AMR_file = "amr_00$output." Hydro_file = "hydro_00$output." Grav_file = "grav_00$output." RT_file = "rt_00$output." RT_descriptor = "info_rt_00$output.txt" Part_file = "part_00$output." Clump_file = "clump_00$output." Timer_file = "timer_00$output.txt" Header_file = "header_00$output.txt" elseif output < 10000 && output > 999 Path_folder = "output_0$output" Info_file = "info_0$output.txt" AMR_file = "amr_0$output." Hydro_file = "hydro_0$output." Grav_file = "grav_0$output." RT_file = "rt_0$output." RT_descriptor = "info_rt_0$output.txt" Part_file = "part_0$output." Clump_file = "clump_0$output." Timer_file = "timer_0$output.txt" Header_file = "header_0$output.txt" elseif output < 100000 && output > 9999 Path_folder = "output_$output" Info_file = "info_$output.txt" AMR_file = "amr_$output." Hydro_file = "hydro_$output." Grav_file = "grav_$output." RT_file = "rt_$output." RT_descriptor = "info_rt_$output.txt" Part_file = "part_$output." Clump_file = "clump_$output." Timer_file = "timer_$output.txt" Header_file = "header_$output.txt" end fnames = FileNamesType() fnames.output = joinpath(path, Path_folder) fnames.info = joinpath(path, Path_folder, Info_file) fnames.amr = joinpath(path, Path_folder, AMR_file) fnames.hydro = joinpath(path, Path_folder, Hydro_file) fnames.hydro_descriptor = joinpath(path, Path_folder, "hydro_file_descriptor.txt") fnames.gravity = joinpath(path, Path_folder, Grav_file) fnames.particles = joinpath(path, Path_folder, Part_file) fnames.part_descriptor = joinpath(path, Path_folder, "part_file_descriptor.txt") fnames.rt = joinpath(path, Path_folder, RT_file) fnames.rt_descriptor = joinpath(path, Path_folder, "rt_file_descriptor.txt") # newer version fnames.rt_descriptor_v0 = joinpath(path, Path_folder, RT_descriptor) # older version fnames.clumps = joinpath(path, Path_folder, Clump_file) fnames.timer = joinpath(path, Path_folder, Timer_file) fnames.header = joinpath(path, Path_folder, Header_file) fnames.compilation = joinpath(path, Path_folder, "compilation.txt") fnames.makefile = joinpath(path, Path_folder, "makefile.txt") fnames.patchfile = joinpath(path, Path_folder, "patches.txt") if namelist == "" || namelist == "./" fnames.namelist = joinpath(path, Path_folder, "namelist.txt") else fnames.namelist = namelist end return fnames end function createpath!(dataobject::InfoType; namelist::String="") dataobject.fnames = createpath(dataobject.output, dataobject.path, namelist=namelist) return dataobject end function getproc2string(path::String, icpu::Int32) if icpu < 10 return string(path, "out0000", icpu) elseif icpu < 100 && icpu > 9 return string(path, "out000", icpu) elseif icpu < 1000 && icpu > 99 return string(path, "out00", icpu) elseif icpu < 10000 && icpu > 999 return string(path, "out0", icpu) elseif icpu < 100000 && icpu > 9999 return string(path, "out", icpu) end end function getproc2string(path::String, textfile::Bool, icpu::Int) if icpu < 10 return string(path, "txt0000", icpu) elseif icpu < 100 && icpu > 9 return string(path, "txt000", icpu) elseif icpu < 1000 && icpu > 99 return string(path, "txt00", icpu) elseif icpu < 10000 && icpu > 999 return string(path, "txt0", icpu) elseif icpu < 100000 && icpu > 9999 return string(path, "txt", icpu) end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
11101
# function getclumps(dataobject::InfoType, var::Symbol; # xrange::Array{<:Any,1}=[missing, missing], # yrange::Array{<:Any,1}=[missing, missing], # zrange::Array{<:Any,1}=[missing, missing], # center::Array{<:Any,1}=[0., 0., 0.], # range_unit::Symbol=:standard, # print_filenames::Bool=false, # verbose::Bool=verbose_mode) # # return getclumps(dataobject, vars=[var], # xrange=xrange, # yrange=yrange, # zrange=zrange, # center=center, # range_unit=range_unit, # print_filenames=print_filenames, # verbose=verbose) # # end """ #### Read the clump-data: - selected variables - limited to a spatial range - print the name of each data-file before reading it - toggle verbose mode - pass a struct with arguments (myargs) ```julia getclumps( dataobject::InfoType; vars::Array{Symbol,1}=[:all], xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) ``` #### Returns an object of type ClumpDataType, containing the clump-data table, the selected options and the simulation ScaleType and summary of the InfoType ```julia return ClumpDataType() # get an overview of the returned fields: # e.g.: julia> info = getinfo(100) julia> clumps = getclumps(info) julia> viewfields(clumps) #or: julia> fieldnames(clumps) ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "InfoType", created by the function *getinfo* ##### Predefined/Optional Keywords: - **`vars`:** Currently, the length of the loaded variable list can be modified *(see examples below). - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`print_filenames`:** print on screen the current processed particle file of each CPU - **`verbose`:** print timestamp, selected vars and ranges on screen; default: true - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of xrange, yrange, zrange, center, range_unit, verbose ### Defined Methods - function defined for different arguments - getclumps(dataobject::InfoType; ...) # no given variables -> all variables loaded - getclumps(dataobject::InfoType, vars::Array{Symbol,1}; ...) # one or several given variables -> array needed #### Examples ```julia # read simulation information julia> info = getinfo(420) # Example 1: # read clump data of all variables, full-box julia> clumps = getclumps(info) # Example 2: # read clump data of all variables # data range 20x20x4 kpc; ranges are given in kpc relative to the box (here: 48 kpc) center at 24 kpc julia> clumps = getclumps( info, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24., 24., 24.], range_unit=:kpc ) # Example 3: # give the center of the box by simply passing: center = [:bc] or center = [:boxcenter] # this is equivalent to center=[24.,24.,24.] in Example 2 # the following combination is also possible: e.g. center=[:bc, 12., 34.], etc. julia> clumps = getclumps( info, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[33., bc:, 10.], range_unit=:kpc ) # Example 4: # Load less than the found 12 columns from the header of the clump files; # Pass an array with the variables to the keyword argument *vars*. # The order of the variables has to be consistent with the header in the clump files: julia> lumps = getclumps(info, [ :index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z ]) # Example 5: # Load more than the found 12 columns from the header of the clump files. # E.g. the list can be extended with more names if there are more columns # in the data than given by the header in the files. # The order of the variables has to be consistent with the header in the clump files: julia> clumps = getclumps(info, [ :index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance, :vx, :vy, :vz ]) ... ``` """ function getclumps(dataobject::InfoType, vars::Array{Symbol,1}; xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return getclumps(dataobject, vars=vars, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, print_filenames=print_filenames, verbose=verbose, myargs=myargs) end function getclumps(dataobject::InfoType; vars::Array{Symbol,1}=[:all], xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end verbose = checkverbose(verbose) printtime("Get clump data: ", verbose) checkfortype(dataobject, :clumps) boxlen = dataobject.boxlen # convert given ranges and print overview on screen ranges = prepranges(dataobject, range_unit, verbose, xrange, yrange, zrange, center) fnames = createpath(dataobject.output, dataobject.path) # read clumps-data of the selected variables column_names, NColumns = getclumpvariables(dataobject, vars, fnames) if verbose println("Read $NColumns colums: ") println(column_names) end data = readclumps(dataobject, fnames, NColumns, column_names, print_filenames) # filter data out of selected ranges if ranges[1] !=0. || ranges[2] !=1. || ranges[3] !=0. || ranges[4] !=1. || ranges[5] !=0. || ranges[6] !=1. data = filter(p-> p.peak_x >= ranges[1] * boxlen && p.peak_x <= ranges[2] * boxlen && p.peak_y >= ranges[3] * boxlen && p.peak_y <= ranges[4] * boxlen && p.peak_z >= ranges[5] * boxlen && p.peak_z <= ranges[6] * boxlen, data) end printtablememory(data, verbose) clumpdata = ClumpDataType() clumpdata.data = data clumpdata.info = dataobject clumpdata.boxlen = dataobject.boxlen clumpdata.ranges = ranges clumpdata.selected_clumpvars = column_names clumpdata.used_descriptors = Dict() clumpdata.scale = dataobject.scale return clumpdata end function getclumpvariables(dataobject::InfoType, vars::Array{Symbol,1}, fnames::FileNamesType) if vars == [:all] # MERA: Read column names #-------------------------------------------- # get header of first clump file f = open(dataobject.fnames.clumps * "txt00001") lines = readlines(f) column_names = Symbol.( split(lines[1]) ) NColumns = length(split(lines[1])) close(f) else NColumns = length(vars) column_names = vars end return column_names, NColumns end function readclumps(dataobject::InfoType, fnames::FileNamesType, NColumns::Int, column_names::Array{Symbol,1}, print_filenames::Bool=false) clcol = zeros(Float64, 1, NColumns) NCpu = dataobject.ncpu data = 0. create_table = 1 line_beginning = 1 for NC=1:NCpu clumpspath = getproc2string(fnames.clumps, true, NC) if print_filenames println(clumpspath) end f = open(clumpspath) lines = readlines(f) if length(lines) > 1 for i=2:length(lines) #NColumns = length(split(lines[i])) for j = 1:NColumns #println(i, " ", j) clcol[j] = parse(Float64, split(lines[i])[j] ) end if create_table == 0 data_buffer = table( [clcol[:, k ] for k = 1:NColumns ]...,names=collect(column_names) ) data = merge(data, data_buffer) end if create_table == 1 data = table( [clcol[:, k ] for k = 1:NColumns ]...,names=collect(column_names) ) create_table = 0 end end end close(f) end return data end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
12782
""" #### Read the leaf-cells of the gravity-data: - select variables - limit to a maximum level - limit to a spatial range - print the name of each data-file before reading it - toggle verbose mode - toggle progress bar - pass a struct with arguments (myargs) ```julia getgravity( dataobject::InfoType; lmax::Real=dataobject.levelmax, vars::Array{Symbol,1}=[:all], xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) ``` #### Returns an object of type GravDataType, containing the gravity-data table, the selected options and the simulation ScaleType and summary of the InfoType ```julia return GravDataType() # get an overview of the returned fields: # e.g.: julia> info = getinfo(100) julia> grav = getgravity(info) julia> viewfields(grav) #or: julia> fieldnames(grav) ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "InfoType", created by the function *getinfo* ##### Predefined/Optional Keywords: - **`lmax`:** the maximum level to be read from the data - **`var(s)`:** the selected gravity variables in arbitrary order: :all (default), :cpu, :epot, :ax, :ay, :az - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`print_filenames`:** print on screen the current processed gravity file of each CPU - **`verbose`:** print timestamp, selected vars and ranges on screen; default: true - **`show_progress`:** print progress bar on screen - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of lmax, xrange, yrange, zrange, center, range_unit, verbose, show_progress ### Defined Methods - function defined for different arguments - getgravity( dataobject::InfoType; ...) # no given variables -> all variables loaded - getgravity( dataobject::InfoType, var::Symbol; ...) # one given variable -> no array needed - getgravity( dataobject::InfoType, vars::Array{Symbol,1}; ...) # several given variables -> array needed #### Examples ```julia # read simulation information julia> info = getinfo(420) # Example 1: # read gravity data of all variables, full-box, all levels julia> grav = getgravity(info) # Example 2: # read gravity data of all variables up to level 8 # data range 20x20x4 kpc; ranges are given in kpc relative to the box (here: 48 kpc) center at 24 kpc julia> grav = getgravity( info, lmax=8, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24., 24., 24.], range_unit=:kpc ) # Example 3: # give the center of the box by simply passing: center = [:bc] or center = [:boxcenter] # this is equivalent to center=[24.,24.,24.] in Example 2 # the following combination is also possible: e.g. center=[:bc, 12., 34.], etc. julia> grav = getgravity( info, lmax=8, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[33., bc:, 10.], range_unit=:kpc ) # Example 4: # read gravity data of the variables epot and the x-acceleration, full-box, all levels julia> grav = getgravity( info, [:epot, :ax] ) # use array for the variables # Example 5: # read gravity data of the single variable epot, full-box, all levels julia> grav = getgravity( info, :epot ) # no array for a single variable needed ... ``` """ function getgravity( dataobject::InfoType, var::Symbol; lmax::Real=dataobject.levelmax, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return getgravity(dataobject, vars=[var], lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, print_filenames=print_filenames, verbose=verbose, show_progress=show_progress, myargs=myargs) end function getgravity( dataobject::InfoType, vars::Array{Symbol,1}; lmax::Real=dataobject.levelmax, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return getgravity(dataobject, vars=vars, lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, print_filenames=print_filenames, verbose=verbose, show_progress=show_progress, myargs=myargs) end function getgravity( dataobject::InfoType; lmax::Real=dataobject.levelmax, vars::Array{Symbol,1}=[:all], xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.lmax === missing) lmax = myargs.lmax end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end if !(myargs.show_progress === missing) show_progress = myargs.show_progress end verbose = checkverbose(verbose) printtime("Get gravity data: ", verbose) checkfortype(dataobject, :gravity) checklevelmax(dataobject, lmax) isamr = checkuniformgrid(dataobject, lmax) # create variabe-list and vector-mask (nvarg_corr) for getgravitydata-function # print selected variables on screen nvarg_list, nvarg_i_list, nvarg_corr, read_cpu, used_descriptors = prepvariablelist(dataobject, :gravity, vars, lmax, verbose) # convert given ranges and print overview on screen ranges = prepranges(dataobject, range_unit, verbose, xrange, yrange, zrange, center) # read gravity-data of the selected variables if read_cpu vars_1D, pos_1D, cpus_1D = getgravitydata( dataobject, length(nvarg_list), nvarg_corr, lmax, ranges, print_filenames, show_progress, read_cpu, isamr ) else vars_1D, pos_1D = getgravitydata( dataobject, length(nvarg_list), nvarg_corr, lmax, ranges, print_filenames, show_progress, read_cpu, isamr ) end # prepare column names for the data table names_constr = preptablenames_gravity(length(dataobject.gravity_variable_list), nvarg_list, used_descriptors, read_cpu, isamr) # create data table # decouple pos_1D/vars_1D from ElasticArray with ElasticArray.data if read_cpu # load also cpu number related to cell if isamr @inbounds data = table( pos_1D[4,:].data, cpus_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[nvarg_corr[i],: ].data for i in nvarg_i_list]..., names=collect(names_constr), pkey=[:level, :cx, :cy, :cz], presorted = false ) #[names_constr...] else # if uniform grid @inbounds data = table(cpus_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[nvarg_corr[i],: ].data for i in nvarg_i_list]..., names=collect(names_constr), pkey=[:cx, :cy, :cz], presorted = false ) #[names_constr...] end else if isamr @inbounds data = table( pos_1D[4,:].data, pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[nvarg_corr[i],: ].data for i in nvarg_i_list]..., names=collect(names_constr), pkey=[:level, :cx, :cy, :cz], presorted = false ) #[names_constr...] else # if uniform grid @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[ nvarg_corr[i],: ].data for i in nvarg_i_list]..., names=collect(names_constr), pkey=[:cx, :cy, :cz], presorted = false ) #[names_constr...] end end printtablememory(data, verbose) # Return data gravitydata = GravDataType() gravitydata.data = data gravitydata.info = dataobject gravitydata.lmin = dataobject.levelmin gravitydata.lmax = lmax gravitydata.boxlen = dataobject.boxlen gravitydata.ranges = ranges if read_cpu gravitydata.selected_gravvars = [-1, nvarg_list...] else gravitydata.selected_gravvars = nvarg_list end gravitydata.used_descriptors = used_descriptors gravitydata.scale = dataobject.scale return gravitydata end function preptablenames_gravity(nvarg::Int, nvarg_list::Array{Int, 1}, used_descriptors::Dict{Any,Any}, read_cpu::Bool, isamr::Bool) if read_cpu if isamr names_constr = [Symbol("level") ,Symbol("cpu"), Symbol("cx"), Symbol("cy"), Symbol("cz")] else #if uniform grid names_constr = [Symbol("cpu"), Symbol("cx"), Symbol("cy"), Symbol("cz")] end #, Symbol("x"), Symbol("y"), Symbol("z") else if isamr names_constr = [Symbol("level") , Symbol("cx"), Symbol("cy"), Symbol("cz")] else #if uniform grid names_constr = [Symbol("cx"), Symbol("cy"), Symbol("cz")] end end for i=1:nvarg if in(i, nvarg_list) if length(used_descriptors) == 0 || !haskey(used_descriptors, i) if i == 1 append!(names_constr, [Symbol("epot")] ) elseif i == 2 append!(names_constr, [Symbol("ax")] ) elseif i == 3 append!(names_constr, [Symbol("ay")] ) elseif i == 4 append!(names_constr, [Symbol("az")] ) end else append!(names_constr, [used_descriptors[i]] ) end end end return names_constr end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
15603
""" #### Read the leaf-cells of the hydro-data: - select variables - limit to a maximum level - limit to a spatial range - set a minimum density or sound speed - check for negative values in density and thermal pressure - print the name of each data-file before reading it - toggle verbose mode - toggle progress bar - pass a struct with arguments (myargs) ```julia gethydro( dataobject::InfoType; lmax::Real=dataobject.levelmax, vars::Array{Symbol,1}=[:all], xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., check_negvalues::Bool=false, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) ``` #### Returns an object of type HydroDataType, containing the hydro-data table, the selected options and the simulation ScaleType and summary of the InfoType ```julia return HydroDataType() # get an overview of the returned fields: # e.g.: julia> info = getinfo(100) julia> gas = gethydro(info) julia> viewfields(gas) #or: julia> fieldnames(gas) ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "InfoType", created by the function *getinfo* ##### Predefined/Optional Keywords: - **`lmax`:** the maximum level to be read from the data - **`var(s)`:** the selected hydro variables in arbitrary order: :all (default), :cpu, :rho, :vx, :vy, :vz, :p, :var6, :var7... - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`smallr`:** set lower limit for density; zero means inactive - **`smallc`:** set lower limit for thermal pressure; zero means inactive - **`check_negvalues`:** check loaded data of "rho" and "p" on negative values; false by default - **`print_filenames`:** print on screen the current processed hydro file of each CPU - **`verbose`:** print timestamp, selected vars and ranges on screen; default: true - **`show_progress`:** print progress bar on screen - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of lmax, xrange, yrange, zrange, center, range_unit, verbose, show_progress ### Defined Methods - function defined for different arguments - gethydro( dataobject::InfoType; ...) # no given variables -> all variables loaded - gethydro( dataobject::InfoType, var::Symbol; ...) # one given variable -> no array needed - gethydro( dataobject::InfoType, vars::Array{Symbol,1}; ...) # several given variables -> array needed #### Examples ```julia # read simulation information julia> info = getinfo(420) # Example 1: # read hydro data of all variables, full-box, all levels julia> gas = gethydro(info) # Example 2: # read hydro data of all variables up to level 8 # data range 20x20x4 kpc; ranges are given in kpc relative to the box (here: 48 kpc) center at 24 kpc julia> gas = gethydro( info, lmax=8, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24., 24., 24.], range_unit=:kpc ) # Example 3: # give the center of the box by simply passing: center = [:bc] or center = [:boxcenter] # this is equivalent to center=[24.,24.,24.] in Example 2 # the following combination is also possible: e.g. center=[:bc, 12., 34.], etc. julia> gas = gethydro( info, lmax=8, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[33., bc:, 10.], range_unit=:kpc ) # Example 4: # read hydro data of the variables density and the thermal pressure, full-box, all levels julia> gas = gethydro( info, [:rho, :p] ) # use array for the variables # Example 5: # read hydro data of the single variable density, full-box, all levels julia> gas = gethydro( info, :rho ) # no array for a single variable needed ... ``` """ function gethydro( dataobject::InfoType, var::Symbol; lmax::Real=dataobject.levelmax, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., check_negvalues::Bool=false, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return gethydro(dataobject, vars=[var], lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, smallr=smallr, smallc=smallc, check_negvalues=check_negvalues, print_filenames=print_filenames, verbose=verbose, show_progress=show_progress, myargs=myargs) end function gethydro( dataobject::InfoType, vars::Array{Symbol,1}; lmax::Real=dataobject.levelmax, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., check_negvalues::Bool=false, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return gethydro(dataobject, vars=vars, lmax=lmax, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, smallr=smallr, smallc=smallc, check_negvalues=check_negvalues, print_filenames=print_filenames, verbose=verbose, show_progress=show_progress, myargs=myargs) end function gethydro( dataobject::InfoType; lmax::Real=dataobject.levelmax, vars::Array{Symbol,1}=[:all], xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, smallr::Real=0., smallc::Real=0., check_negvalues::Bool=false, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.lmax === missing) lmax = myargs.lmax end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end if !(myargs.show_progress === missing) show_progress = myargs.show_progress end verbose = checkverbose(verbose) show_progress = checkprogress(show_progress) printtime("Get hydro data: ", verbose) checkfortype(dataobject, :hydro) checklevelmax(dataobject, lmax) isamr = checkuniformgrid(dataobject, lmax) # create variabe-list and vector-mask (nvarh_corr) for gethydrodata-function # print selected variables on screen nvarh_list, nvarh_i_list, nvarh_corr, read_cpu, used_descriptors = prepvariablelist(dataobject, :hydro, vars, lmax, verbose) # convert given ranges and print overview on screen ranges = prepranges(dataobject, range_unit, verbose, xrange, yrange, zrange, center) # read hydro-data of the selected variables if read_cpu vars_1D, pos_1D, cpus_1D = gethydrodata( dataobject, length(nvarh_list), nvarh_corr, lmax, ranges, print_filenames, show_progress, read_cpu, isamr ) else vars_1D, pos_1D = gethydrodata( dataobject, length(nvarh_list), nvarh_corr, lmax, ranges, print_filenames, show_progress, read_cpu, isamr ) end # set minimum density in cells and check vor negative values vars_1D = manageminvalues(vars_1D, check_negvalues, smallr, smallc, nvarh_list, nvarh_corr) # prepare column names for the data table names_constr = preptablenames(dataobject.nvarh, nvarh_list, used_descriptors, read_cpu, isamr) # create data table # decouple pos_1D/vars_1D from ElasticArray with ElasticArray.data if read_cpu # load also cpu number related to cell if isamr @inbounds data = table(pos_1D[4,:].data, cpus_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[nvarh_corr[i],: ].data for i in nvarh_i_list]..., names=collect(names_constr), pkey=[:level,:cx, :cy, :cz], presorted = false ) #[names_constr...] else # if uniform grid @inbounds data = table(cpus_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[nvarh_corr[i],: ].data for i in nvarh_i_list]..., names=collect(names_constr), pkey=[:cx, :cy, :cz], presorted = false ) #[names_constr...] end else if isamr @inbounds data = table(pos_1D[4,:].data, pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[ nvarh_corr[i],: ].data for i in nvarh_i_list]..., names=collect(names_constr), pkey=[:level,:cx, :cy, :cz], presorted = false ) #[names_constr...] else # if uniform grid @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, [vars_1D[ nvarh_corr[i],: ].data for i in nvarh_i_list]..., names=collect(names_constr), pkey=[:cx, :cy, :cz], presorted = false ) #[names_constr...] end end printtablememory(data, verbose) # Return data hydrodata = HydroDataType() hydrodata.data = data hydrodata.info = dataobject hydrodata.lmin = dataobject.levelmin hydrodata.lmax = lmax hydrodata.boxlen = dataobject.boxlen hydrodata.ranges = ranges if read_cpu hydrodata.selected_hydrovars = [-1, nvarh_list...] else hydrodata.selected_hydrovars = nvarh_list end hydrodata.used_descriptors = used_descriptors hydrodata.smallr = smallr hydrodata.smallc = smallc hydrodata.scale = dataobject.scale return hydrodata end function manageminvalues(vars_1D::ElasticArray{Float64,2,1}, check_negvalues::Bool, smallr::Real, smallc::Real, nvarh_list::Array{Int,1}, nvarh_corr::Array{Int,1}) # set minimum density in cells if smallr != 0. && in(1, nvarh_list) @inbounds vars_1D[1,:] =clamp.(vars_1D[nvarh_corr[1],:], smallr, maximum(vars_1D[nvarh_corr[1],:]) + 1 ) else # check for negative values in density if check_negvalues == true if in(1, nvarh_list) @inbounds count_nv = count(x->x<0., vars_1D[nvarh_corr[1],:]) if count_nv > 0 println() println("[Mera]: Found $count_nv negative value(s) in density data.") end end end end # set minimum thermal pressure in cells if smallc != 0. && in(5, nvarh_list) @inbounds vars_1D[5,:] =clamp.(vars_1D[nvarh_corr[5],:], smallc, maximum(vars_1D[nvarh_corr[5],:]) + 1 ) else # check for negative values in thermal pressure if check_negvalues == true if in(5, nvarh_list) @inbounds count_nv = count(x->x<0., vars_1D[nvarh_corr[5],:]) if count_nv > 0 println() println("[Mera]: Found $count_nv negative value(s) in thermal pressure data.") end end end end return vars_1D end function preptablenames(nvarh::Int, nvarh_list::Array{Int, 1}, used_descriptors::Dict{Any,Any}, read_cpu::Bool, isamr::Bool) if read_cpu if isamr names_constr = [Symbol("level") ,Symbol("cpu"), Symbol("cx"), Symbol("cy"), Symbol("cz")] else #if uniform grid names_constr = [Symbol("cpu"), Symbol("cx"), Symbol("cy"), Symbol("cz")] end #, Symbol("x"), Symbol("y"), Symbol("z") else if isamr names_constr = [Symbol("level") , Symbol("cx"), Symbol("cy"), Symbol("cz")] else #if uniform grid names_constr = [Symbol("cx"), Symbol("cy"), Symbol("cz")] end end for i=1:nvarh if in(i, nvarh_list) if length(used_descriptors) == 0 || !haskey(used_descriptors, i) if i == 1 append!(names_constr, [Symbol("rho")] ) elseif i == 2 append!(names_constr, [Symbol("vx")] ) elseif i == 3 append!(names_constr, [Symbol("vy")] ) elseif i == 4 append!(names_constr, [Symbol("vz")] ) elseif i == 5 append!(names_constr, [Symbol("p")] ) elseif i > 5 append!(names_constr, [Symbol("var$i")] ) end else append!(names_constr, [used_descriptors[i]] ) end end end return names_constr end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
30811
""" #### Get the simulation overview from RAMSES info, descriptor and output header files ```julia getinfo(; output::Real=1, path::String="", namelist::String="", verbose::Bool=true) return InfoType ``` #### Keyword Arguments - **`output`:** timestep number (default=1) - **`path`:** the path to the output folder relative to the current folder or absolute path - **`namelist`:** give the path to a namelist file (by default the namelist.txt-file in the output-folder is read) - **`verbose:`:** informations are printed on the screen by default #### Examples ```julia # read simulation information from output `1` in current folder julia> info = getinfo() # read simulation information from output `420` in given folder (relative path to the current working folder) julia> info = getinfo(output=420, path="../MySimFolder/") # or simply use julia> info = getinfo(420, "../MySimFolder/") # get an overview of the returned field-names julia> propertynames(info) # a more detailed overview julia> viewfields(info) ... julia> viewallfields(info) ... julia> namelist(info) ... julia> makefile(info) ... julia> timerfile(info) ... julia> patchfile(info) ... ``` """ function getinfo(output::Real; path::String="", namelist::String="", verbose::Bool=true) return getinfo(output=output, path=path, namelist=namelist, verbose=verbose) end function getinfo(output::Real, path::String; namelist::String="", verbose::Bool=true) return getinfo(output=output, path=path, namelist=namelist, verbose=verbose) end function getinfo(path::String; output::Real=1, namelist::String="", verbose::Bool=true) return getinfo(output=output, path=path, namelist=namelist, verbose=verbose) end function getinfo(; output::Real=1, path::String="", namelist::String="", verbose::Bool=true) verbose = checkverbose(verbose) printtime("",verbose) info = InfoType() # predeclare InfoType info.descriptor = DescriptorType() info.files_content = FilesContentType() info.output = output info.path = joinpath(pwd(), path) # store full path info.simcode = "RAMSES" info.Narraysize = 0 createpath!(info, namelist=namelist) # create path to the files readinfofile!(info) # infofile overview createconstants!(info) # predefined constants (create before scales) createscales!(info) # get predefined scales and the corresponding cgs units readnamelistfile!(info) # read namelist, check for ASCII file readamrfile1!(info) # amr overview readhydrofile1!(info) # hydro overview isgravityfile1!(info) # gravity overview readparticlesfile1!(info) # particles overview readrtfile1!(info) # rt overview readclumpfile1!(info) # clumps overview # todo: check for sinks info.sinks = false info.sinks_variable_list = Symbol[] info.descriptor.sinks = Symbol[] info.descriptor.usesinks = false info.descriptor.sinksfile = false readtimerfile!(info) # check for timer-file readcompilationfile!(info) # compilation overview readmakefile!(info) # check for makefile readpatchfile!(info) # check for patchfile printsimoverview(info, verbose) # print overview on screen return info end # ============================================ # 'getinfo' related functions # ============================================ function readinfofile!(dataobject::InfoType) if !isfile(dataobject.fnames.info) println() error("[Mera]: File or folder does not exist: $(dataobject.fnames.info) !") end mtime = Dates.unix2datetime(stat(dataobject.fnames.info).mtime) ctime = Dates.unix2datetime(stat(dataobject.fnames.info).ctime) f = open(dataobject.fnames.info) lines = readlines(f) ncpu = parse(Int32, rsplit(lines[1],"=")[2] ) ndim = parse(Int32, rsplit(lines[2],"=")[2] ) levelmin = parse(Int32, rsplit(lines[3],"=")[2] ) levelmax = parse(Int32, rsplit(lines[4],"=")[2] ) dataobject.grid_info = GridInfoType() #0,0,0,0,0,0,0,0,zeros(Float64, ncpu+1) ,falses(ncpu) ) dataobject.grid_info.bound_key = zeros(Float64, ncpu+1) dataobject.grid_info.cpu_read = falses(ncpu) dataobject.grid_info.ngridmax = parse(Int32, rsplit(lines[5],"=")[2] ) dataobject.grid_info.nstep_coarse = parse(Int32, rsplit(lines[6],"=")[2] ) boxlen = parse(Float64, rsplit(lines[8],"=")[2] ) time = parse(Float64, rsplit(lines[9],"=")[2] ) aexp = parse(Float64, rsplit(lines[10],"=")[2] ) H0 = parse(Float64, rsplit(lines[11],"=")[2] ) omega_m = parse(Float64, rsplit(lines[12],"=")[2] ) omega_l = parse(Float64, rsplit(lines[13],"=")[2] ) omega_k = parse(Float64, rsplit(lines[14],"=")[2] ) omega_b = parse(Float64, rsplit(lines[15],"=")[2] ) unit_l = parse(Float64, rsplit(lines[16],"=")[2] ) unit_d = parse(Float64, rsplit(lines[17],"=")[2] ) unit_t = parse(Float64, rsplit(lines[18],"=")[2] ) unit_v = unit_l / unit_t unit_m = unit_d * unit_l^3 hilbert_ordering = occursin(r"(?i)hilbert", lines[20]) if ndim != 3 error("[Mera]: Program only works with 3D data!") end dataobject.grid_info.bound_key[1] = parse( Float64, split(lines[22])[2] ) for i = 1:ncpu #println( parse( Float64, split(lines[21+i])[1] ), " ", parse( Float64, split(lines[21+i])[2] ), " ", parse( Float64, split(lines[21+i])[3] ) ) dataobject.grid_info.bound_key[i+1] = parse( Float64, split(lines[21+i])[3] ) end close(f) dataobject.ndim = ndim #dataobject.grid_info = grid_info dataobject.mtime = mtime dataobject.ctime = ctime dataobject.ncpu = ncpu dataobject.levelmin = levelmin dataobject.levelmax = levelmax dataobject.boxlen = boxlen dataobject.time = time dataobject.aexp = aexp dataobject.H0 = H0 dataobject.omega_m = omega_m dataobject.omega_l = omega_l dataobject.omega_k = omega_k dataobject.omega_b = omega_b dataobject.unit_l = unit_l dataobject.unit_d = unit_d dataobject.unit_m = unit_m dataobject.unit_v = unit_v dataobject.unit_t = unit_t return dataobject end function readamrfile1!(dataobject::InfoType) dataobject.amr = true if !isfile(dataobject.fnames.amr * "out00001") dataobject.amr = false #println() #error("""[Mera]: File or folder does not exist: $(dataobject.fnames.amr * "out00001")!""") else f = FortranFile(dataobject.fnames.amr * "out00001") #read(f) # ncpu = read(f, Int32) #read(f) # ndim = read(f, Int32) skiplines(f, 2) dataobject.grid_info.nx, dataobject.grid_info.ny, dataobject.grid_info.nz = read(f, Int32,Int32,Int32 ) dataobject.grid_info.nlevelmax = read(f, Int32) dataobject.grid_info.ngridmax = read(f, Int32) dataobject.grid_info.nboundary = read(f, Int32) dataobject.grid_info.ngrid_current = read(f, Int32) #info.boxlen = read(f, Float64) close(f) end return dataobject end function readhydrofile1!(dataobject::InfoType) # read descriptor file descriptor_file = false variable_descriptor_list = Symbol[] variable_types = String[] version = 0 if isfile(dataobject.fnames.hydro_descriptor) descriptor_file = true f = open(dataobject.fnames.hydro_descriptor) lines = readlines(f) # check for descriptor version if occursin("nvar", String(lines[1])) # =< stable_17_09 version = 0 elseif occursin("version", String(lines[1])) # > stable_17_09 version = parse(Int, rsplit(lines[1], ":" )[2]) end # read descriptor variables if version == 0 dnvar = parse(Int, rsplit(lines[1],"=")[2] ) for i = 1:dnvar ivar = String(rsplit(lines[i+1], ":" )[2]) ivar = strip(ivar) append!(variable_descriptor_list, [Symbol(ivar)]) end elseif version == 1 dnvar = length(lines) for i = 3:dnvar ivar = String(rsplit(lines[i], "," )[2]) itype = String(rsplit(lines[i], "," )[3]) ivar = strip(ivar) itype = strip(itype) append!(variable_descriptor_list, [Symbol(ivar)]) append!(variable_types, [itype]) end else # version not supported, # descriptor variables not read end close(f) end #read header from first cpu file hydro_files = false nvarh = 0 variable_list = Symbol[] if isfile(dataobject.fnames.hydro * "out00001") f_hydro = FortranFile(dataobject.fnames.hydro * "out00001") skiplines(f_hydro, 1) nvarh = read(f_hydro, Int32) skiplines(f_hydro, 3) ###skiplines(f_hydro, 3) dataobject.gamma = read(f_hydro, Float64) close(f_hydro) variable_list = [:rho,:vx,:vy,:vz,:p] if nvarh > 5 for ivar=6:nvarh append!(variable_list, [Symbol("var$ivar")]) end end hydro_files = true end if !isfile(dataobject.fnames.hydro_descriptor) variable_descriptor_list = variable_list end dataobject.hydro = hydro_files dataobject.nvarh = nvarh dataobject.variable_list = variable_list # descriptor dataobject.descriptor.hversion = version dataobject.descriptor.hydro = variable_descriptor_list dataobject.descriptor.htypes = variable_types dataobject.descriptor.usehydro = false dataobject.descriptor.hydrofile = descriptor_file return dataobject end # in work function readrtfile1!(dataobject::InfoType) # read descriptor file descriptor_file = false rtPhotonGroups = Dict() descriptor_list= Dict() version = 0 if isfile(dataobject.fnames.rt_descriptor) version = 1 descriptor_file = true elseif isfile(dataobject.fnames.rt_descriptor_v0) descriptor_file = true end if descriptor_file if version == 0 f = open(dataobject.fnames.rt_descriptor_v0) elseif version == 1 f = open(dataobject.fnames.rt_descriptor) end lines = readlines(f) if length(lines) != 0 # check for empty file # read descriptor variables descriptor_list[Symbol("nRTvar")] = parse(Int, rsplit(lines[1],"=")[2] ) descriptor_list[Symbol("nIons")] = parse(Int, rsplit(lines[2],"=")[2] ) descriptor_list[Symbol("nGroups")] = parse(Int, rsplit(lines[3],"=")[2] ) descriptor_list[Symbol("iIons")] = parse(Int, rsplit(lines[4],"=")[2] ) descriptor_list[Symbol("X_fraction")] = parse(Float64, rsplit(lines[6],"=")[2] ) descriptor_list[Symbol("Y_fraction")] = parse(Float64, rsplit(lines[7],"=")[2] ) descriptor_list[Symbol("unit_np")] = parse(Float64, rsplit(lines[9],"=")[2] ) descriptor_list[Symbol("unit_pf")] = parse(Float64, rsplit(lines[10],"=")[2] ) descriptor_list[Symbol("rt_c_frac")] = parse(Float64, rsplit(lines[11],"=")[2] ) descriptor_list[Symbol("n_star")] = parse(Float64, rsplit(lines[13],"=")[2] ) descriptor_list[Symbol("T2_star")] = parse(Float64, rsplit(lines[14],"=")[2] ) descriptor_list[Symbol("g_star")] = parse(Float64, rsplit(lines[15],"=")[2] ) #todo read photon groups #rtPhotonGroups else # if file is empty descriptor_file = false end end #read header from first cpu file rt_files = false nvarrt = 0 if isfile(dataobject.fnames.rt * "out00001") rt_files = true f_rt = FortranFile(dataobject.fnames.rt * "out00001") skiplines(f_rt, 1) nvarrt = read(f_rt, Int32) skiplines(f_rt, 3) #println(read(f_rt, Float64)) # gamma close(f_rt) end dataobject.rt = rt_files dataobject.nvarrt = nvarrt dataobject.rt_variable_list = Symbol[] # descriptor dataobject.descriptor.rtversion = version dataobject.descriptor.rt = descriptor_list dataobject.descriptor.rtPhotonGroups = rtPhotonGroups dataobject.descriptor.usert = false dataobject.descriptor.rtfile = descriptor_file return dataobject end function isgravityfile1!(dataobject::InfoType) grav_files = false # grav file of first cpu if isfile(dataobject.fnames.gravity * "out00001") grav_files = true end dataobject.gravity = grav_files dataobject.gravity_variable_list = [:epot,:ax,:ay,:az] # descriptor dataobject.descriptor.gravity = [:epot,:ax,:ay,:az] dataobject.descriptor.usegravity = false dataobject.descriptor.gravityfile = false return dataobject end # todo: introduce new RAMSES version function readparticlesfile1!(dataobject::InfoType) Npart = 0 Ndm = 0 Nstars = 0 Nsinks = 0 other_tracer1 = 0 debris_tracer = 0 cloud_tracer = 0 star_tracer = 0 other_tracer2 = 0 gas_tracer = 0 Ncloud = 0 Ndebris = 0 Nother = 0 Nundefined = 0 part_files = false part_header = false version=0 if isfile(dataobject.fnames.particles * "out00001") part_files = true if isfile(dataobject.fnames.header) part_header = true f = open(dataobject.fnames.header) line = readline(f) # check for header version if occursin("Total", String(line)) # =< stable_18_09 version = 0 elseif occursin("Family", String(line)) # > stable_18_09 version = 1 else version =-1 end if version == 0 Npart = parse(Int, readline(f) ) line = readline(f) Ndm = parse(Int, readline(f) ) line = readline(f) Nstars = parse(Int, readline(f) ) line = readline(f) Nsinks = parse(Int, readline(f) ) elseif version == 1 other_tracer1 = parse(Int, rsplit(readline(f))[2] ) debris_tracer = parse(Int, rsplit(readline(f))[2] ) cloud_tracer = parse(Int, rsplit(readline(f))[2] ) star_tracer = parse(Int, rsplit(readline(f))[2] ) other_tracer2 = parse(Int, rsplit(readline(f))[2] ) gas_tracer = parse(Int, rsplit(readline(f))[2] ) Ndm = parse(Int, rsplit(readline(f))[2] ) Nstars = parse(Int, rsplit(readline(f))[2] ) Ncloud = parse(Int, rsplit(readline(f))[2] ) Ndebris = parse(Int, rsplit(readline(f))[2] ) Nother = parse(Int, rsplit(readline(f))[2] ) Nundefined = parse(Int, rsplit(readline(f))[2] ) end close(f) #if Npart != 0 # part_files = true #end end end dataobject.part_info = PartInfoType() dataobject.part_info.eta_sn = 0. dataobject.part_info.age_sn = 10. / dataobject.scale.Myr dataobject.part_info.f_w = 0. # overwrite some default parameters from namelist file if dataobject.namelist keylist_header = keys(dataobject.namelist_content) for i in keylist_header icontent = dataobject.namelist_content[i] keylist_parameters = keys(icontent) for j in keylist_parameters if j == "eta_sn" dataobject.part_info.eta_sn = parse(Float64,icontent[j]) elseif j == "age_sn" dataobject.part_info.age_sn = parse(Float64,icontent[j]) elseif j == "f_w" dataobject.part_info.f_w = parse(Float64,icontent[j]) end end end end # read descriptor file descriptor_file = false variable_descriptor_list = Symbol[] variable_types = String[] dnvar = 0 version = 0 if isfile(dataobject.fnames.part_descriptor) descriptor_file = true f = open(dataobject.fnames.part_descriptor) lines = readlines(f) # read descriptor version # > stable_18_09 version = parse(Int, rsplit(lines[1], ":" )[2]) # read descriptor variables if version == 1 dnvar = length(lines) for i = 3:dnvar ivar = String(rsplit(lines[i], "," )[2]) itype = String(rsplit(lines[i], "," )[3]) ivar = strip(ivar) itype = strip(itype) append!(variable_descriptor_list, [Symbol(ivar)]) append!(variable_types, [itype]) end else # version not supported, # descriptor variables not read end close(f) end dataobject.nvarp = 5 if version <= 0 dataobject.particles_variable_list=[:vx, :vy, :vz, :mass, :birth] else if in(:metallicity, variable_descriptor_list) pre_variable_list = [:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :birth_time, :metallicity, :family, :tag] addvar_index = Int[] for (i,ival) in enumerate(variable_descriptor_list) if !in(ival, pre_variable_list) append!(addvar_index, [i]) end end particles_variable_list=[:vx, :vy, :vz, :mass, :family, :tag, :birth, :metals] if length(addvar_index) != 0 addvar = variable_descriptor_list[addvar_index] append!(particles_variable_list, addvar) end dataobject.particles_variable_list=particles_variable_list dataobject.nvarp = length(particles_variable_list) else dataobject.particles_variable_list=[:vx, :vy, :vz, :mass, :family, :tag, :birth] dataobject.nvarp = 7 end # todo: automatic detection of more variables #if (dnvar-3) > dataobject.nvarp + 7 # variables + (id,x,y,z,level,family,tag) # for invar = (dataobject.nvarp+7):(dnvar-3) # icount = invar - 3 # append!(dataobject.particles_variable_list, [Symbol("var$icount")]) # dataobject.nvarp = dataobject.nvarp + 1 # end #end end dataobject.part_info.Npart = Npart dataobject.part_info.Ndm = Ndm dataobject.part_info.Nstars = Nstars dataobject.part_info.Nsinks = Nsinks dataobject.part_info.Ncloud = Ncloud dataobject.part_info.Ndebris = Ndebris dataobject.part_info.Nother = Nother dataobject.part_info.Nundefined = Nundefined dataobject.part_info.other_tracer1 = other_tracer1 dataobject.part_info.debris_tracer = debris_tracer dataobject.part_info.cloud_tracer = cloud_tracer dataobject.part_info.star_tracer = star_tracer dataobject.part_info.other_tracer2 = other_tracer2 dataobject.part_info.gas_tracer = gas_tracer dataobject.particles = part_files dataobject.headerfile = part_header dataobject.descriptor.pversion = version if version == 0 dataobject.descriptor.particles = dataobject.particles_variable_list dataobject.descriptor.ptypes = String[] elseif version > 0 dataobject.descriptor.particles = variable_descriptor_list dataobject.descriptor.ptypes = variable_types end dataobject.descriptor.useparticles=false dataobject.descriptor.particlesfile=descriptor_file return dataobject end function readnamelistfile!(dataobject::InfoType) namelist_file = false asciifile = false namelist = Dict() variables = Dict() if isfile(dataobject.fnames.namelist) f = open(dataobject.fnames.namelist ) lines = readlines(f) #check for ASCII content for i in lines if occursin("&RUN_PARAMS", i) asciifile = true namelist_file = true end end if asciifile iheader = "false" Nlines = length(lines) for (j,i) in enumerate(lines) if iheader != "false" if occursin("=", i) variable = String(rsplit(i, "=" )[1]) content = String(rsplit(i, "=" )[2]) variables[variable] = content end end if occursin("&", i) || j == Nlines if iheader != "false" namelist[iheader]= variables variables = Dict() end iheader = i end end end end dataobject.namelist = namelist_file dataobject.namelist_content = namelist return dataobject end function readclumpfile1!(dataobject::InfoType) # clump file of first cpu clump_files = false header= Symbol[] if isfile(dataobject.fnames.clumps * "txt00001") clump_files = true header, NColumns = getclumpvariables(dataobject, [:all], dataobject.fnames) end dataobject.clumps = clump_files dataobject.clumps_variable_list = header # descriptor dataobject.descriptor.clumps = header dataobject.descriptor.useclumps = false dataobject.descriptor.clumpsfile = false return dataobject end function readtimerfile!(dataobject::InfoType) timer_file = false dataobject.files_content.timerfile = [""] if isfile(dataobject.fnames.timer ) timer_file = true f = open(dataobject.fnames.timer); dataobject.files_content.timerfile = readlines(f) end dataobject.timerfile = timer_file return dataobject end function readcompilationfile!(dataobject::InfoType) compilation_file = false compile_date = "" patch_dir = "" remote_repo = "" local_branch= "" last_commit= "" if isfile(dataobject.fnames.compilation ) compilation_file = true f = open(dataobject.fnames.compilation ) lines = readlines(f) if !occursin("\0", String(rsplit(lines[1], "=" )[2])) # skip embedded NULs compile_date = String(rsplit(lines[1], "=" )[2]) patch_dir = String(rsplit(lines[2], "=" )[2]) remote_repo = String(rsplit(lines[3], "=" )[2]) local_branch = String(rsplit(lines[4], "=" )[2]) last_commit = String(rsplit(lines[5], "=" )[2]) end close(f) end dataobject.compilation = CompilationInfoType() #"", "" ,"" , "", "" ) dataobject.compilation.compile_date = compile_date dataobject.compilation.patch_dir = patch_dir dataobject.compilation.remote_repo = remote_repo dataobject.compilation.local_branch= local_branch dataobject.compilation.last_commit= last_commit dataobject.compilationfile = compilation_file return dataobject end function readmakefile!(dataobject::InfoType) make_file = false dataobject.files_content.makefile = [""] if isfile(dataobject.fnames.makefile) make_file = true f = open(dataobject.fnames.makefile); dataobject.files_content.makefile = readlines(f) end dataobject.makefile = make_file return dataobject end function readpatchfile!(dataobject::InfoType) patch_file = false dataobject.files_content.patchfile = [""] if isfile(dataobject.fnames.patchfile) patch_file = true f = open(dataobject.fnames.patchfile); dataobject.files_content.patchfile = readlines(f) end dataobject.patchfile = patch_file return dataobject end function printsimoverview(info::InfoType, verbose::Bool) if verbose println("Code: ", info.simcode) println("output [$(info.output)] summary:") println("mtime: ", info.mtime) println("ctime: ", info.ctime) printstyled("=======================================================\n", bold=true, color=:normal) time_val, time_unit = humanize(info.time, info.scale, 2, "time") println("simulation time: ", time_val, " [$time_unit]") boxlen_val, boxlen_unit = humanize(info.boxlen, info.scale, 2, "length") println("boxlen: ", boxlen_val, " [$boxlen_unit]") println("ncpu: ", info.ncpu) println("ndim: ", info.ndim) println("-------------------------------------------------------") min_cellsize, min_unit = humanize(info.boxlen / 2^info.levelmin, info.scale, 2, "length") max_cellsize, max_unit = humanize(info.boxlen / 2^info.levelmax, info.scale, 2, "length") println("amr: ", info.amr) if info.levelmin != info.levelmax # if AMR println("level(s): ", info.levelmin, " - ", info.levelmax, " --> cellsize(s): ", min_cellsize ," [$min_unit]", " - ", max_cellsize," [$max_unit]") else println("level of uniform grid: ", info.levelmax, " --> cellsize(s): ", max_cellsize," [$max_unit]") end if info.hydro println("-------------------------------------------------------") else println() end println("hydro: ", info.hydro) if info.hydro println("hydro-variables: ", info.nvarh, " --> ", tuple(info.variable_list...) ) if info.descriptor.hydrofile println("hydro-descriptor: ", tuple(info.descriptor.hydro...) ) end println("γ: ", info.gamma) end if info.gravity println("-------------------------------------------------------") end println("gravity: ", info.gravity) if info.gravity println("gravity-variables: ", tuple(info.gravity_variable_list...)) end if info.particles println("-------------------------------------------------------") end print("particles: ", info.particles) if info.particles if info.headerfile == false print(" (no particle header file) \n") else print("\n") if info.part_info.other_tracer1 != 0 @printf "- other_tracer1: %e \n" info.part_info.other_tracer1 end if info.part_info.debris_tracer != 0 @printf "- debris_tracer: %e \n" info.part_info.debris_tracer end if info.part_info.cloud_tracer != 0 @printf "- cloud_tracer: %e \n" info.part_info.cloud_tracer end if info.part_info.star_tracer != 0 @printf "- star_tracer: %e \n" info.part_info.star_tracer end if info.part_info.other_tracer2 != 0 @printf "- other_tracer2: %e \n" info.part_info.other_tracer2 end if info.part_info.gas_tracer != 0 @printf "- gas_tracer: %e \n" info.part_info.gas_tracer end if info.part_info.Npart != 0 @printf "- Npart: %e \n" info.part_info.Npart end if info.part_info.Nstars != 0 @printf "- Nstars: %e \n" info.part_info.Nstars end if info.part_info.Ndm != 0 @printf "- Ndm: %e \n" info.part_info.Ndm end if info.part_info.Nsinks != 0 @printf "- Nsinks: %e \n" info.part_info.Nsinks end if info.part_info.Ncloud != 0 @printf "- Ncloud: %e \n" info.part_info.Ncloud end if info.part_info.Ndebris != 0 @printf "- Ndebris: %e \n" info.part_info.Ndebris end if info.part_info.Nother != 0 @printf "- Nother: %e \n" info.part_info.Nother end if info.part_info.Nundefined != 0 @printf "- Nundefined: %e \n" info.part_info.Nundefined end end else print("\n") end if info.particles println("particle-variables: ", info.nvarp, " --> ", tuple(info.particles_variable_list...) ) if info.descriptor.particlesfile println("particle-descriptor: ", tuple(info.descriptor.particles...) ) end if !info.rt println("-------------------------------------------------------") end end if info.rt println("-------------------------------------------------------") end println("rt: ", info.rt) if info.rt println("rt-variables: ", info.nvarrt) if info.descriptor.rtfile #println("nRTvar: ", info.descriptor.rt[:nRTvar] ) println("nIons: ", info.descriptor.rt[:nIons] ) println("nGroups: ", info.descriptor.rt[:nGroups] ) println("iIons: ", info.descriptor.rt[:iIons] ) end if !info.clumps println("-------------------------------------------------------") end end if info.clumps println("-------------------------------------------------------") end println("clumps: ", info.clumps) if info.clumps println("clump-variables: ", tuple(info.clumps_variable_list...) ) println("-------------------------------------------------------") end if info.namelist if !info.clumps println("-------------------------------------------------------") end println("namelist-file: ", tuple(keys(info.namelist_content)...) ) println("-------------------------------------------------------") else println("namelist-file: ", info.namelist) end println("timer-file: ", info.timerfile) println("compilation-file: ", info.compilationfile) println("makefile: ", info.makefile) println("patchfile: ", info.patchfile) #println("nx, ny, nz: ", overview.nx, ", ", overview.ny, ", ",overview.nz) #println("infofile creation-time: ", DateTime(ctime) ) #todo: format #println("infofile modification-time: ", DateTime(mtime) ) #todo: format printstyled("=======================================================\n", bold=true, color=:normal) println() end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
22085
""" #### Read the particle-data - select variables - limit to a maximum range - print the name of each data-file before reading it - toggle verbose mode - toggle progress bar - pass a struct with arguments (myargs) ```julia getparticles( dataobject::InfoType; lmax::Real=dataobject.levelmax, vars::Array{Symbol,1}=[:all], stars::Bool=true, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, presorted::Bool=true, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) ``` #### Returns an object of type PartDataType, containing the particle-data table, the selected and the simulation ScaleType and summary of the InfoType ```julia return PartDataType() # get an overview of the returned fields: # e.g.: julia> info = getinfo(100) julia> particles = getparticles(info) julia> viewfields(particles) #or: julia> fieldnames(particles) ``` #### Arguments ##### Required: - **`dataobject`:** needs to be of type: "InfoType", created by the function *getinfo* ##### Predefined/Optional Keywords: - **`lmax`:** not defined - **`stars`:** not defined - **`var(s)`:** the selected particle variables in arbitrary order: :all (default), :cpu, :mass, :vx, :vy, :vz, :birth :metals, ... - **`xrange`:** the range between [xmin, xmax] in units given by argument `range_unit` and relative to the given `center`; zero length for xmin=xmax=0. is converted to maximum possible length - **`yrange`:** the range between [ymin, ymax] in units given by argument `range_unit` and relative to the given `center`; zero length for ymin=ymax=0. is converted to maximum possible length - **`zrange`:** the range between [zmin, zmax] in units given by argument `range_unit` and relative to the given `center`; zero length for zmin=zmax=0. is converted to maximum possible length - **`range_unit`:** the units of the given ranges: :standard (code units), :Mpc, :kpc, :pc, :mpc, :ly, :au , :km, :cm (of typye Symbol) ..etc. ; see for defined length-scales viewfields(info.scale) - **`center`:** in units given by argument `range_unit`; by default [0., 0., 0.]; the box-center can be selected by e.g. [:bc], [:boxcenter], [value, :bc, :bc], etc.. - **`presorted`:** presort data according to the key vars (by default) - **`print_filenames`:** print on screen the current processed particle file of each CPU - **`verbose`:** print timestamp, selected vars and ranges on screen; default: true - **`show_progress`:** print progress bar on screen - **`myargs`:** pass a struct of ArgumentsType to pass several arguments at once and to overwrite default values of lmax not!, xrange, yrange, zrange, center, range_unit, verbose, show_progress ### Defined Methods - function defined for different arguments - getparticles( dataobject::InfoType; ...) # no given variables -> all variables loaded - getparticles( dataobject::InfoType, var::Symbol; ...) # one given variable -> no array needed - getparticles( dataobject::InfoType, vars::Array{Symbol,1}; ...) # several given variables -> array needed #### Examples ```julia # read simulation information julia> info = getinfo(420) # Example 1: # read particle data of all variables, full-box, all levels julia> particles = getparticles(info) # Example 2: # read particle data of all variables # data range 20x20x4 kpc; ranges are given in kpc relative to the box (here: 48 kpc) center at 24 kpc julia> particles = getparticles( info, xrange=[-10., 10.], yrange=[-10., 10.], zrange=[-2., 2.], center=[24., 24., 24.], range_unit=:kpc ) # Example 3: # give the center of the box by simply passing: center = [:bc] or center = [:boxcenter] # this is equivalent to center=[24.,24.,24.] in Example 2 # the following combination is also possible: e.g. center=[:bc, 12., 34.], etc. julia> particles = getparticles( info, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[33., bc:, 10.], range_unit=:kpc ) # Example 4: # read particle data of the variables mass and the birth-time, full-box, all levels julia> particles = getparticles( info, [:mass, :birth] ) # use array for the variables # Example 5: # read particle data of the single variable mass, full-box, all levels julia> particles = getparticles( info, :mass ) # no array for a single variable needed ... ``` """ function getparticles( dataobject::InfoType, var::Symbol; lmax::Real=dataobject.levelmax, stars::Bool=true, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, presorted::Bool=true, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return getparticles( dataobject, vars=[var], lmax=lmax, stars=stars, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, presorted=presorted, print_filenames=print_filenames, verbose=verbose, show_progress=show_progress, myargs=myargs ) end function getparticles( dataobject::InfoType, vars::Array{Symbol,1}; lmax::Real=dataobject.levelmax, stars::Bool=true, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, presorted::Bool=true, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) return getparticles( dataobject, vars=vars, lmax=lmax, stars=stars, xrange=xrange, yrange=yrange, zrange=zrange, center=center, range_unit=range_unit, presorted=presorted, print_filenames=print_filenames, verbose=verbose, show_progress=show_progress, myargs=myargs ) end function getparticles( dataobject::InfoType; lmax::Real=dataobject.levelmax, vars::Array{Symbol,1}=[:all], stars::Bool=true, xrange::Array{<:Any,1}=[missing, missing], yrange::Array{<:Any,1}=[missing, missing], zrange::Array{<:Any,1}=[missing, missing], center::Array{<:Any,1}=[0., 0., 0.], range_unit::Symbol=:standard, presorted::Bool=true, print_filenames::Bool=false, verbose::Bool=true, show_progress::Bool=true, myargs::ArgumentsType=ArgumentsType() ) # take values from myargs if given if !(myargs.lmax === missing) lmax = myargs.lmax end if !(myargs.xrange === missing) xrange = myargs.xrange end if !(myargs.yrange === missing) yrange = myargs.yrange end if !(myargs.zrange === missing) zrange = myargs.zrange end if !(myargs.center === missing) center = myargs.center end if !(myargs.range_unit === missing) range_unit = myargs.range_unit end if !(myargs.verbose === missing) verbose = myargs.verbose end if !(myargs.show_progress === missing) show_progress = myargs.show_progress end verbose = checkverbose(verbose) printtime("Get particle data: ", verbose) checkfortype(dataobject, :particles) #Todo: limit to a given lmax lmax=dataobject.levelmax # overwrite given lmax #checklevelmax(dataobject, lmax) isamr = checkuniformgrid(dataobject, lmax) #time = dataobject.time # create variabe-list and vector-mask (nvarh_corr) for getparticledata-function # print selected variables on screen nvarp_list, nvarp_i_list, nvarp_corr, read_cpu, used_descriptors = prepvariablelist(dataobject, :particles, vars, lmax, verbose) # convert given ranges and print overview on screen ranges = prepranges(dataobject, range_unit, verbose, xrange, yrange, zrange, center) # read particle-data of the selected variables if read_cpu if dataobject.descriptor.pversion == 0 pos_1D, vars_1D, cpus_1D, identity_1D, levels_1D = getparticledata( dataobject, length(nvarp_list), nvarp_corr, stars, lmax, ranges, print_filenames, show_progress, verbose, read_cpu) elseif dataobject.descriptor.pversion > 0 pos_1D, vars_1D, cpus_1D, identity_1D, family_1D, tag_1D, levels_1D = getparticledata( dataobject, length(nvarp_list), nvarp_corr, stars, lmax, ranges, print_filenames, show_progress, verbose, read_cpu) end else if dataobject.descriptor.pversion == 0 pos_1D, vars_1D, identity_1D, levels_1D = getparticledata( dataobject, length(nvarp_list), nvarp_corr, stars, lmax, ranges, print_filenames, show_progress, verbose, read_cpu) elseif dataobject.descriptor.pversion > 0 pos_1D, vars_1D, identity_1D, family_1D, tag_1D, levels_1D = getparticledata( dataobject, length(nvarp_list), nvarp_corr, stars, lmax, ranges, print_filenames, show_progress, verbose, read_cpu) end end if verbose @printf "Found %e particles\n" size(pos_1D)[2] end # prepare column names for the data table names_constr = preptablenames_particles(dataobject, dataobject.nvarp, nvarp_list, used_descriptors, read_cpu, lmax, dataobject.levelmin) if lmax != dataobject.levelmin # if AMR if dataobject.descriptor.pversion == 0 Nkeys = [:level, :x, :y, :z, :id] elseif dataobject.descriptor.pversion > 0 Nkeys = [:level, :x, :y, :z, :id, :family, :tag] end else # if uniform grid if dataobject.descriptor.pversion == 0 Nkeys = [:x, :y, :z, :id] elseif dataobject.descriptor.pversion > 0 Nkeys = [:x, :y, :z, :id, :family, :tag] end end # create data table # decouple pos_1D/vars_1D from ElasticArray with ElasticArray.data if read_cpu # read also cpu number related to particle if isamr if dataobject.descriptor.pversion == 0 if presorted @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end elseif dataobject.descriptor.pversion > 0 filter!(x->x≠6,nvarp_i_list) filter!(x->x≠5,nvarp_i_list) if presorted @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end end else # if uniform grid if dataobject.descriptor.pversion == 0 if presorted @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end elseif dataobject.descriptor.pversion > 0 filter!(x->x≠6,nvarp_i_list) filter!(x->x≠5,nvarp_i_list) if presorted @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], cpus_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end end end else if isamr if dataobject.descriptor.pversion == 0 if presorted @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end elseif dataobject.descriptor.pversion > 0 filter!(x->x≠6,nvarp_i_list) filter!(x->x≠5,nvarp_i_list) if presorted @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table( levels_1D[:], pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end end else # if uniform grid if dataobject.descriptor.pversion == 0 if presorted @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end elseif dataobject.descriptor.pversion > 0 filter!(x->x≠6,nvarp_i_list) filter!(x->x≠5,nvarp_i_list) if presorted @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), pkey=collect(Nkeys), presorted = false ) else @inbounds data = table(pos_1D[1,:].data, pos_1D[2,:].data, pos_1D[3,:].data, identity_1D[:], family_1D[:], tag_1D[:], [vars_1D[ nvarp_corr[i],: ].data for i in nvarp_i_list]..., names=collect(names_constr), presorted = false ) end end end end printtablememory(data, verbose) partdata = PartDataType() partdata.data = data partdata.info = dataobject partdata.lmin = dataobject.levelmin partdata.lmax = lmax partdata.boxlen = dataobject.boxlen partdata.ranges = ranges partdata.selected_partvars = names_constr partdata.used_descriptors = used_descriptors partdata.scale = dataobject.scale return partdata end function preptablenames_particles(dataobject::InfoType, nvarp::Int, nvarp_list::Array{Int, 1}, used_descriptors::Dict{Any,Any}, read_cpu::Bool, lmax::Real, levelmin::Real) if read_cpu if lmax != levelmin # if AMR if dataobject.descriptor.pversion == 0 names_constr = [:level, :x, :y, :z, :id, :cpu] elseif dataobject.descriptor.pversion > 0 names_constr = [:level, :x, :y, :z, :id, :family, :tag, :cpu] end else # if uniform grid if dataobject.descriptor.pversion == 0 names_constr = [:x, :y, :z, :id, :cpu] elseif dataobject.descriptor.pversion > 0 names_constr = [:x, :y, :z, :id, :family, :tag, :cpu] end end #, Symbol("x"), Symbol("y"), Symbol("z") else if lmax != levelmin # if AMR if dataobject.descriptor.pversion == 0 names_constr = [:level, :x, :y, :z, :id] elseif dataobject.descriptor.pversion > 0 names_constr = [:level, :x, :y, :z, :id, :family, :tag] end else # if uniform grid if dataobject.descriptor.pversion == 0 names_constr = [:x, :y, :z, :id] elseif dataobject.descriptor.pversion > 0 names_constr = [:x, :y, :z, :id, :family, :tag] end end end for i=1:nvarp if in(i, nvarp_list) #if length(used_descriptors) == 0 || !haskey(used_descriptors, i) if dataobject.descriptor.pversion == 0 if i == 1 append!(names_constr, [Symbol("vx")] ) elseif i == 2 append!(names_constr, [Symbol("vy")] ) elseif i == 3 append!(names_constr, [Symbol("vz")] ) elseif i == 4 append!(names_constr, [Symbol("mass")] ) elseif i == 5 append!(names_constr, [Symbol("birth")] ) elseif i > 5 append!(names_constr, [Symbol("var$i")] ) end elseif dataobject.descriptor.pversion > 0 if i == 1 append!(names_constr, [Symbol("vx")] ) elseif i == 2 append!(names_constr, [Symbol("vy")] ) elseif i == 3 append!(names_constr, [Symbol("vz")] ) elseif i == 4 append!(names_constr, [Symbol("mass")] ) elseif i == 7 append!(names_constr, [Symbol("birth")] ) elseif i == 8 append!(names_constr, [Symbol("metals")] ) elseif i > 8 append!(names_constr, [Symbol("var$i")] ) end end #else append!(names_constr, [used_descriptors[i]] ) #end end end return names_constr end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2828
function btest(i::Int,pos::Int) return (((i)>>(pos)) & 1) == 1 end function hilbert3d(x::Int,y::Int,z::Int,bit_length::Int,npoint::Int) state_diagram = [ 1, 2, 3, 2, 4, 5, 3, 5, 0, 1, 3, 2, 7, 6, 4, 5, 2, 6, 0, 7, 8, 8, 0, 7, 0, 7, 1, 6, 3, 4, 2, 5, 0, 9,10, 9, 1, 1,11,11, 0, 3, 7, 4, 1, 2, 6, 5, 6, 0, 6,11, 9, 0, 9, 8, 2, 3, 1, 0, 5, 4, 6, 7, 11,11, 0, 7, 5, 9, 0, 7, 4, 3, 5, 2, 7, 0, 6, 1, 4, 4, 8, 8, 0, 6,10, 6, 6, 5, 1, 2, 7, 4, 0, 3, 5, 7, 5, 3, 1, 1,11,11, 4, 7, 3, 0, 5, 6, 2, 1, 6, 1, 6,10, 9, 4, 9,10, 6, 7, 5, 4, 1, 0, 2, 3, 10, 3, 1, 1,10, 3, 5, 9, 2, 5, 3, 4, 1, 6, 0, 7, 4, 4, 8, 8, 2, 7, 2, 3, 2, 1, 5, 6, 3, 0, 4, 7, 7, 2,11, 2, 7, 5, 8, 5, 4, 5, 7, 6, 3, 2, 0, 1, 10, 3, 2, 6,10, 3, 4, 4, 6, 1, 7, 0, 5, 2, 4, 3 ] state_diagram = reshape(state_diagram, 8 ,2, 12) x_bit_mask = falses(bit_length) y_bit_mask = falses(bit_length) z_bit_mask = falses(bit_length) i_bit_mask = falses(3*bit_length) order=0. #zeros(npoint); npoint=1, therefore no array #for ip=1:npoint # convert to binary for i=1:bit_length x_bit_mask[i]=btest(x,i-1) y_bit_mask[i]=btest(y,i-1) z_bit_mask[i]=btest(z,i-1) end # interleave bits for i=0:(bit_length-1) i_bit_mask[3*i+2+1]=x_bit_mask[i+1] i_bit_mask[3*i+1+1]=y_bit_mask[i+1] i_bit_mask[3*i+1]=z_bit_mask[i+1] end # build Hilbert ordering using state diagram cstate=0 staterange = range(bit_length-1, stop=0, step=-1) for i in staterange #println(i) if i_bit_mask[3*i+2+1] b2=1 else b2=0 end if i_bit_mask[3*i+1+1] b1=1 else b1=0 end if i_bit_mask[3*i+1] b0=1 else b0=0 end sdigit=b2*4+b1*2+b0 nstate=state_diagram[sdigit+1,1,cstate+1] hdigit=state_diagram[sdigit+1,2,cstate+1] #println("nstate: ", nstate) #println("hdigit: ", hdigit) i_bit_mask[3*i+2+1]=btest(hdigit,2) i_bit_mask[3*i+1+1]=btest(hdigit,1) i_bit_mask[3*i+1] =btest(hdigit,0) #println("i_bit_mask: ", i_bit_mask[3*i+2+1]) #println("i_bit_mask: ", i_bit_mask[3*i+1+1]) #println("i_bit_mask: ", i_bit_mask[3*i+1]) cstate=nstate end # save Hilbert key as double precision real #order[ip]=0. order=0. #zeros(npoint); npoint=1, therefore no array for i=1:(3*bit_length) if i_bit_mask[i] b0=1 else b0=0 end #order[ip]=order[ip]+b0*2^i order=order+b0*2^(i-1) #println(i-1, " ", order[ip]) end #end return order end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
17314
function prepvariablelist(dataobject::InfoType, datatype::Symbol, vars::Array{Symbol,1}, lmax::Real, verbose::Bool) if datatype == :hydro nvarh = dataobject.nvarh # manage user selected variables #------------------------------------- nvarh_list=Int[] ivar=1 read_cpu = false # do not load cpu number by default hydrovar_buffer = copy(vars) used_descriptors = Dict() if in(:all, hydrovar_buffer) #hydrovar_buffer == [:all] nvarh_list=[1,2,3,4,5] # read_cpu = true if in(:cpu, hydrovar_buffer) || in(:varn1, hydrovar_buffer) read_cpu = true end if nvarh > 5 for ivar=6:nvarh append!(nvarh_list, [ivar]) end end #if dataobject.descriptor.usehydro == true # for (i,idvar) in enumerate(dataobject.descriptor.hydro) # used_descriptors[i] = idvar # end #end else if in(:cpu, hydrovar_buffer) || in(:varn1, hydrovar_buffer) read_cpu = true filter!(e->e≠:cpu, hydrovar_buffer) filter!(e->e≠:varn1, hydrovar_buffer) end if in(:rho, hydrovar_buffer) || in(:var1, hydrovar_buffer) append!(nvarh_list, 1) filter!(e->e≠:rho, hydrovar_buffer) filter!(e->e≠:var1, hydrovar_buffer) end if in(:vx, hydrovar_buffer) || in(:var2, hydrovar_buffer) append!(nvarh_list, 2) filter!(e->e≠:vx, hydrovar_buffer) filter!(e->e≠:var2, hydrovar_buffer) end if in(:vy, hydrovar_buffer) || in(:var3, hydrovar_buffer) append!(nvarh_list, 3) filter!(e->e≠:vy, hydrovar_buffer) filter!(e->e≠:var3, hydrovar_buffer) end if in(:vz, hydrovar_buffer) || in(:var4, hydrovar_buffer) append!(nvarh_list, 4) filter!(e->e≠:vz, hydrovar_buffer) filter!(e->e≠:var4, hydrovar_buffer) end if in(:p, hydrovar_buffer) || in(:var5, hydrovar_buffer) append!(nvarh_list, 5) filter!(e->e≠:p, hydrovar_buffer) filter!(e->e≠:var5, hydrovar_buffer) end # if dataobject.descriptor.hydro != dataobject.variable_list # for (ivar,idvar) in enumerate(dataobject.descriptor.hydro) # if in(idvar, vars) # append!(nvarh_list, ivar) # used_descriptors[ivar] = idvar # end # end # end if length(hydrovar_buffer)>0 for x in hydrovar_buffer if occursin("var", string(x)) append!( nvarh_list, parse(Int, string(x)[4:end]) ) end end #append!( nvarh_list, map(x->parse(Int, string(x)[4:end]), hydrovar_buffer) ) #for Symbols #append!( nvarh_list, map(x->parse(Int,x), hydrovar_buffer) ) #for Strings end end if length(nvarh_list) == 0 error("[Mera]: Simulation vars array is empty!") end #clean for double assignment nvarh_list = unique(nvarh_list) if maximum(nvarh_list) > maximum(nvarh) error("[Mera]: Simulation maximum variable=$(maximum(nvarh)) < your maximum variable=$(maximum(nvarh_list))") end # create vector to use selected hydrovars nvarh = dataobject.nvarh nvarh_corr = zeros(Int, nvarh ) nvarh_i_list=[] for i =1:nvarh if in(i,nvarh_list) nvarh_corr[i] = findall(x -> x == i, nvarh_list)[1] append!(nvarh_i_list, i) end end nvarh_list_strings= Symbol[] if read_cpu append!(nvarh_list_strings, [:cpu]) end for i in nvarh_list #if !haskey(used_descriptors, i) if i < 6 append!(nvarh_list_strings, [Symbol("$(indices_tovariables[i])")]) elseif i > 5 append!(nvarh_list_strings, [Symbol("var$i")]) end #else # append!(nvarh_list_strings, [used_descriptors[i]]) #end end #println("nvarh_list",nvarh_list) #println("nvarh_corr",nvarh_corr) if verbose if lmax != dataobject.levelmin # if AMR println("Key vars=(:level, :cx, :cy, :cz)") else # if uniform grid println("Key vars=(:cx, :cy, :cz)") end if read_cpu println("Using var(s)=$(tuple(-1, nvarh_list...)) = $(tuple(nvarh_list_strings...)) ") else println("Using var(s)=$(tuple(nvarh_list...)) = $(tuple(nvarh_list_strings...)) ") end println() end return nvarh_list, nvarh_i_list, nvarh_corr, read_cpu, used_descriptors elseif datatype == :particles nvarp = dataobject.nvarp # vx, vy, vz, mass, birth #:level, :x, :y, :z, :id, :cpu, :vx, :vy, :vz, :mass, :birth] # manage user selected variables #------------------------------------- nvarp_list=Int[] ivar=1 read_cpu = false particlesvar_buffer = copy(vars) used_descriptors = Dict() if in(:all, particlesvar_buffer) #particlesvar_buffer == [:all] for invarp = 1:nvarp append!(nvarp_list, invarp) end # read_cpu = true if in(:cpu, particlesvar_buffer) || in(:varn1, particlesvar_buffer) read_cpu = true end if nvarp > 5 && dataobject.descriptor.pversion <= 0 for ivar=6:nvarp append!(nvarp_list, [ivar]) end elseif nvarp > 8 && dataobject.descriptor.pversion > 0 for ivar=9:nvarp append!(nvarp_list, [ivar]) end end # if dataobject.use_particles_descriptor == true # for (i,idvar) in enumerate(dataobject.particles_descriptor) # used_descriptors[i] = idvar # end # end else if in(:cpu, particlesvar_buffer) || in(:varn1, particlesvar_buffer) read_cpu = true filter!(e->e≠:cpu, particlesvar_buffer) filter!(e->e≠:varn1, particlesvar_buffer) end if in(:vx, particlesvar_buffer) || in(:var1, particlesvar_buffer) append!(nvarp_list, 1) filter!(e->e≠:vx, particlesvar_buffer) filter!(e->e≠:var1, particlesvar_buffer) end if in(:vy, particlesvar_buffer) || in(:var2, particlesvar_buffer) append!(nvarp_list, 2) filter!(e->e≠:vy, particlesvar_buffer) filter!(e->e≠:var2, particlesvar_buffer) end if in(:vz, particlesvar_buffer) || in(:var3, particlesvar_buffer) append!(nvarp_list, 3) filter!(e->e≠:vz, particlesvar_buffer) filter!(e->e≠:var3, particlesvar_buffer) end if in(:mass, particlesvar_buffer) || in(:var4, particlesvar_buffer) append!(nvarp_list, 4) filter!(e->e≠:mass, particlesvar_buffer) filter!(e->e≠:var4, particlesvar_buffer) end if in(:birth, particlesvar_buffer) || in(:var5, particlesvar_buffer) || in(:var7, particlesvar_buffer) if dataobject.descriptor.pversion <= 0 || in(:var5, particlesvar_buffer) append!(nvarp_list, 5) filter!(e->e≠:var5, particlesvar_buffer) elseif dataobject.descriptor.pversion > 0 || in(:var7, particlesvar_buffer) append!(nvarp_list, 7) filter!(e->e≠:var7, particlesvar_buffer) end filter!(e->e≠:birth, particlesvar_buffer) end if in(:metals, particlesvar_buffer) || in(:var8, particlesvar_buffer) if dataobject.descriptor.pversion > 0 append!(nvarp_list, 8) filter!(e->e≠:var8, particlesvar_buffer) end filter!(e->e≠:metals, particlesvar_buffer) end # if dataobject.particles_descriptor != dataobject.particles_variable_list # for (ivar,idvar) in enumerate(dataobject.particles_descriptor) # if in(idvar, vars) # append!(nvarp_list, ivar) # used_descriptors[ivar] = idvar # filter!(e->e≠idvar, particlesvar_buffer) # end # end # end if length(particlesvar_buffer)>0 for x in particlesvar_buffer if occursin("var", string(x)) append!( nvarp_list, parse(Int, string(x)[4:end]) ) end end #append!( nvarp_list, map(x->parse(Int, string(x)[4:end]), particlesvar_buffer) ) #for Symbols end end if length(nvarp_list) == 0 error("[Mera]: Simulation vars array is empty!") end #clean for double assignment nvarp_list = unique(nvarp_list) if maximum(nvarp_list) > maximum(nvarp) error("[Mera]: Simulation maximum variable=$(maximum(nvarp)) < your maximum variable=$(maximum(nvarp_list))") end # create vector to use selected particlevars nvarp = dataobject.nvarp nvarp_corr = zeros(Int, nvarp ) nvarp_i_list=[] for i =1:nvarp if in(i,nvarp_list) nvarp_corr[i] = findall(x -> x == i, nvarp_list)[1] append!(nvarp_i_list, i) end end nvarp_list_strings= Symbol[] if read_cpu append!(nvarp_list_strings, [:cpu]) end for i in nvarp_list #if !haskey(used_descriptors, i) if dataobject.descriptor.pversion == 0 if i < 6 append!(nvarp_list_strings, [Symbol("$(indices_toparticlevariables[i])")]) elseif i > 5 append!(nvarp_list_strings, [Symbol("var$i")]) end elseif dataobject.descriptor.pversion > 0 if i < 9 && i != 5 && i != 6 append!(nvarp_list_strings, [Symbol("$(indices_toparticlevariables_v1[i])")]) elseif i > 8 append!(nvarp_list_strings, [Symbol("var$i")]) end end #else # append!(nvarp_list_strings, [used_descriptors[i]]) #end end if verbose if dataobject.descriptor.pversion == 0 println("Key vars=(:level, :x, :y, :z, :id)") elseif dataobject.descriptor.pversion > 0 println("Key vars=(:level, :x, :y, :z, :id, :family, :tag)") end if read_cpu println("Using var(s)=$(tuple(-1, nvarp_list...)) = $(tuple(nvarp_list_strings...)) ") else nvarp_i_list_buffer = nvarp_i_list if dataobject.descriptor.pversion > 0 filter!(x->x≠6,nvarp_i_list_buffer) filter!(x->x≠5,nvarp_i_list_buffer) end println("Using var(s)=$(tuple(nvarp_i_list_buffer...)) = $(tuple(nvarp_list_strings...)) ") end println() end return nvarp_list, nvarp_i_list, nvarp_corr, read_cpu, used_descriptors elseif datatype == :gravity nvarg = length(dataobject.gravity_variable_list) # :epot, :ax, :ay, :az #:level, :x, :y, :z, :id, :cpu, :epot, :ax, :ay, :az] # manage user selected variables #------------------------------------- nvarg_list=Int[] ivar=1 read_cpu = false # do not load cpu number by default gravvar_buffer = copy(vars) used_descriptors = Dict() if in(:all, gravvar_buffer) #gravvar_buffer == [:all] nvarg_list=[1,2,3,4] # read_cpu = true if in(:cpu, gravvar_buffer) || in(:varn1, gravvar_buffer) read_cpu = true end else if in(:cpu, gravvar_buffer) || in(:varn1, gravvar_buffer) read_cpu = true filter!(e->e≠:cpu, gravvar_buffer) filter!(e->e≠:varn1, gravvar_buffer) end if in(:epot, gravvar_buffer) || in(:var1, gravvar_buffer) append!(nvarg_list, 1) filter!(e->e≠:epot, gravvar_buffer) filter!(e->e≠:var1, gravvar_buffer) end if in(:ax, gravvar_buffer) || in(:var2, gravvar_buffer) append!(nvarg_list, 2) filter!(e->e≠:ax, gravvar_buffer) filter!(e->e≠:var2, gravvar_buffer) end if in(:ay, gravvar_buffer) || in(:var3, gravvar_buffer) append!(nvarg_list, 3) filter!(e->e≠:ay, gravvar_buffer) filter!(e->e≠:var3, gravvar_buffer) end if in(:az, gravvar_buffer) || in(:var4, gravvar_buffer) append!(nvarg_list, 4) filter!(e->e≠:az, gravvar_buffer) filter!(e->e≠:var4, gravvar_buffer) end end if length(nvarg_list) == 0 error("[Mera]: Simulation vars array is empty!") end #clean for double assignment nvarg_list = unique(nvarg_list) if maximum(nvarg_list) > maximum(nvarg) error("[Mera]: Simulation maximum variable=$(maximum(nvarg)) < your maximum variable=$(maximum(nvarg_list))") end # create vector to use selected gravvars nvarg = length(dataobject.gravity_variable_list) nvarg_corr = zeros(Int, nvarg ) nvarg_i_list=[] for i =1:nvarg if in(i,nvarg_list) nvarg_corr[i] = findall(x -> x == i, nvarg_list)[1] append!(nvarg_i_list, i) end end nvarg_list_strings= Symbol[] if read_cpu append!(nvarg_list_strings, [:cpu]) end for i in nvarg_list #if !haskey(used_descriptors, i) if i < 5 append!(nvarg_list_strings, [Symbol("$(indices_togravvariables[i])")]) #elseif i > 4 # append!(nvarg_list_strings, [Symbol("var$i")]) end #else # append!(nvarg_list_strings, [used_descriptors[i]]) #end end #println("nvarg_list",nvarg_list) #println("nvarg_corr",nvarg_corr) if verbose if lmax != dataobject.levelmin # if AMR println("Key vars=(:level, :cx, :cy, :cz)") else # if uniform grid println("Key vars=(:cx, :cy, :cz)") end if read_cpu println("Using var(s)=$(tuple(-1, nvarg_list...)) = $(tuple(nvarg_list_strings...)) ") else println("Using var(s)=$(tuple(nvarg_list...)) = $(tuple(nvarg_list_strings...)) ") end println() end return nvarg_list, nvarg_i_list, nvarg_corr, read_cpu, used_descriptors end end # index to variable assignment global indices_tovariables = SortedDict( -1 => "cpu", 0 => "level", 1 => "rho", 2 => "vx", 3 => "vy", 4 => "vz", 5 => "p") global indices_togravvariables = SortedDict( -1 => "cpu", 0 => "level", 1 => "epot", 2 => "ax", 3 => "ay", 4 => "az") global indices_toparticlevariables = SortedDict( -1 => "cpu", 0 => "level", 1 => "vx", 2 => "vy", 3 => "vz", 4 => "mass", 5 => "birth") global indices_toparticlevariables_v1 = SortedDict( -1 => "cpu", 0 => "level", 1 => "vx", 2 => "vy", 3 => "vz", 4 => "mass", 7 => "birth", 8 => "metallicity")
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
9427
function getgravitydata( dataobject::InfoType, Nnvarh::Int, nvarh_corr::Array{Int,1}, lmax::Real, ranges::Array{Float64,1}, print_filenames::Bool, show_progress::Bool, read_cpu::Bool, read_level::Bool) if show_progress println("Reading data...") end # Narraysize::Int, kind = Float64 #data type xmin, xmax, ymin, ymax, zmin, zmax = ranges # 6 elements idom = zeros(Int32, 8) jdom = zeros(Int32, 8) kdom = zeros(Int32, 8) bounding_min = zeros(Float64, 8) bounding_max = zeros(Float64, 8) cpu_min = zeros(Int32, 8) cpu_max = zeros(Int32, 8) #vars_1D = zeros(kind, Narraysize, Nnvarh) #pos_1D = zeros(Int32, Narraysize, 4) vars_1D = ElasticArray{Float64}(undef, Nnvarh, 0) # to append multidim array if read_level # if AMR pos_1D = ElasticArray{Int}(undef, 4, 0) # to append multidim array else # if uniform grid pos_1D = ElasticArray{Int}(undef, 3, 0) # to append multidim array end #if read_cpu cpus_1D = zeros(Int, Narraysize) end cpus_1D = zeros(Int, 0) # zero size to use for append function path = dataobject.path overview = dataobject.grid_info nvarh = length(dataobject.gravity_variable_list) cpu_overview = dataobject.grid_info twotondim=2^dataobject.ndim twotondim_float=2. ^dataobject.ndim xbound=[round( dataobject.grid_info.nx/2, RoundDown), round( dataobject.grid_info.ny/2, RoundDown), round( dataobject.grid_info.nz/2, RoundDown)] ngridfile = zeros(Int32, dataobject.ncpu+dataobject.grid_info.nboundary, dataobject.grid_info.nlevelmax) ngridlevel = zeros(Int32, dataobject.ncpu, dataobject.grid_info.nlevelmax) if dataobject.grid_info.nboundary > 0 ngridbound = zeros(Int32, dataobject.grid_info.nboundary, dataobject.grid_info.nlevelmax) end dmax= maximum([xmax-xmin,ymax-ymin,zmax-zmin]) ilevel = 1 # define ilevel before loop for il=1:lmax ilevel=il dx=0.5^ilevel if dx < dmax break end end bit_length=ilevel-1 maxdom=2^bit_length #for positive valuse: Julia floor == Fotran int if bit_length > 0 imin=floor(Int32, xmin * maxdom) imax=imin+1 jmin=floor(Int32, ymin * maxdom) jmax=jmin+1 kmin=floor(Int32, zmin * maxdom) kmax=kmin+1 else imin=0 imax=0 jmin=0 jmax=0 kmin=0 kmax=0 end dkey=(2^(dataobject.grid_info.nlevelmax+1)/maxdom)^dataobject.ndim if bit_length>0 ndom=8 else ndom=1 end idom = [imin, imax, imin, imax, imin, imax, imin, imax] jdom = [jmin, jmin, jmax, jmax, jmin, jmin, jmax, jmax] kdom = [kmin, kmin, kmin, kmin, kmax, kmax, kmax, kmax] order_min=0.0e0 #todo: predeclare for i=1:ndom if bit_length > 0 order_min = hilbert3d(idom[i],jdom[i],kdom[i],bit_length,1) else order_min=0.0e0 end bounding_min[i]=(order_min)*dkey bounding_max[i]=(order_min+1.)*dkey end for impi=1:dataobject.ncpu for i=1:ndom if (dataobject.grid_info.bound_key[impi] <= bounding_min[i] && dataobject.grid_info.bound_key[impi+1] > bounding_min[i]) cpu_min[i]=impi end if (dataobject.grid_info.bound_key[impi] < bounding_max[i] && dataobject.grid_info.bound_key[impi+1] >= bounding_max[i]) cpu_max[i]=impi end end end cpu_read = copy(dataobject.grid_info.cpu_read) cpu_list = zeros(Int32, dataobject.ncpu) ncpu_read=Int32(0) for i=1:ndom #Todo for j=(cpu_min[i]):(cpu_max[i]) if cpu_read[j]==false ncpu_read=ncpu_read+1 cpu_list[ncpu_read]=j cpu_read[j]=true end end end # ----------------------------------------------------------- grid = fill(LevelType(0,0,0,0,0,0), lmax) # Compute hierarchy for ilevel=1:lmax nx_full=Int32(2^ilevel) ny_full=nx_full nz_full=nx_full imin=floor(Int32, xmin * nx_full) +1 imax=floor(Int32, xmax * nx_full) +1 jmin=floor(Int32, ymin * ny_full) +1 jmax=floor(Int32, ymax * ny_full) +1 kmin=floor(Int32, zmin * nz_full) +1 kmax=floor(Int32, zmax * nz_full) +1 grid[ilevel] = LevelType( imin, imax, jmin, jmax, kmin, kmax ) end fnames = createpath(dataobject.output, path) xc = zeros(kind, 8,3) dummy1 = 0 read_data= 0 lmax2 =2^lmax var_firsttime =1 var1 = 0. var_x = 0 var_level = 0 #get_var_totsize = 0 if show_progress p = 1 # show updates else p = ncpu_read+2 # do not show updates end @showprogress p for k=1:ncpu_read #Reading files... @showprogress 1 "" icpu=cpu_list[k] #println("icpu ",icpu) # Open AMR file and skip header ###if print_filenames println(Full_Path_AMR_cpufile) end amrpath = getproc2string(fnames.amr, icpu) f_amr = FortranFile(amrpath) # Open AMR file and skip header skiplines(f_amr, 21) # Read grid numbers read(f_amr, ngridlevel) ngridfile[1:dataobject.ncpu, 1:dataobject.grid_info.nlevelmax] = ngridlevel skiplines(f_amr, 1) if dataobject.grid_info.nboundary > 0 skiplines(f_amr, 2) read(f_amr, ngridbound) ngridfile[(dataobject.ncpu+1):(dataobject.ncpu+overview.nboundary),1:dataobject.grid_info.nlevelmax]=ngridbound end skiplines(f_amr, 6) # Open GRAVITY file and skip header gravpath = getproc2string(fnames.gravity, icpu) if print_filenames println(gravpath) end f_grav = FortranFile(gravpath) skiplines(f_grav, 4) # Loop over levels for ilevel=1:lmax # Geometry dx=0.5^ilevel nx_full=Int32(2^ilevel) ny_full=nx_full nz_full=nx_full xc = geometry(twotondim_float, ilevel, xc) # @trace # Allocate work arrays ngrida=ngridfile[icpu,ilevel] # integer if ngrida>0 xg = zeros(kind, ngrida, dataobject.ndim) son = zeros(Int32, ngrida, twotondim) vara = zeros(kind, ngrida, twotondim, Nnvarh) end # Loop over domains for j=1:(overview.nboundary+dataobject.ncpu) # Read AMR data if ngridfile[j,ilevel]>0 skiplines(f_amr, 3) # Skip grid index # Read grid center for idim=1:dataobject.ndim if j == icpu xg[:,idim] = read(f_amr, (kind, ngrida)) else skiplines(f_amr, 1) end end # Skip father index + Skip nbor index skiplines(f_amr, 1 + (2*dataobject.ndim)) # Read son index for ind=1:twotondim if j == icpu son[:,ind] = read(f_amr, (Int32, ngrida)) else skiplines(f_amr, 1) end end # Skip cpu map + refinement map skiplines(f_amr, twotondim * 2) end # Read gravity data skiplines(f_grav, 2) if ngridfile[j,ilevel]>0 # Read gravity variables for ind=1:twotondim for ivar=1:nvarh if j == icpu if nvarh_corr[ivar] != 0 vara[:,ind,nvarh_corr[ivar]] = read(f_grav,(kind, ngrida) ) else skiplines(f_grav, 1) end else skiplines(f_grav, 1) end end end end end # Compute map if ngrida>0 vars_1D, pos_1D, cpus_1D = loopovercellshydro(twotondim, ngrida, ilevel, lmax, xg, xc, son, xbound, nx_full, ny_full, nz_full, grid, vara, vars_1D, pos_1D, read_cpu, cpus_1D, k, read_level) # for kind = Float64 end end # End loop over levels close(f_amr) close(f_grav) #if show_progress next!(p, showvalues = [(:Nfiles, k)]) end # ProgressMeter end # End loop over cpu files if read_cpu return vars_1D, pos_1D, cpus_1D #arrays else return vars_1D, pos_1D #arrays end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
12535
function gethydrodata( dataobject::InfoType, Nnvarh::Int, nvarh_corr::Array{Int,1}, lmax::Real, ranges::Array{Float64,1}, print_filenames::Bool, show_progress::Bool, read_cpu::Bool, read_level::Bool) if show_progress println("Reading data...") end # Narraysize::Int, kind = Float64 #data type xmin, xmax, ymin, ymax, zmin, zmax = ranges # 6 elements idom = zeros(Int32, 8) jdom = zeros(Int32, 8) kdom = zeros(Int32, 8) bounding_min = zeros(Float64, 8) bounding_max = zeros(Float64, 8) cpu_min = zeros(Int32, 8) cpu_max = zeros(Int32, 8) #vars_1D = zeros(kind, Narraysize, Nnvarh) #pos_1D = zeros(Int32, Narraysize, 4) vars_1D = ElasticArray{Float64}(undef, Nnvarh, 0) # to append multidim array if read_level # if AMR pos_1D = ElasticArray{Int}(undef, 4, 0) # to append multidim array else # if uniform grid pos_1D = ElasticArray{Int}(undef, 3, 0) # to append multidim array end #if read_cpu cpus_1D = zeros(Int, Narraysize) end cpus_1D = zeros(Int, 0) # zero size to use for append function path = dataobject.path overview = dataobject.grid_info nvarh = dataobject.nvarh cpu_overview = dataobject.grid_info twotondim=2^dataobject.ndim twotondim_float=2. ^dataobject.ndim xbound=[round( dataobject.grid_info.nx/2, RoundDown), round( dataobject.grid_info.ny/2, RoundDown), round( dataobject.grid_info.nz/2, RoundDown)] ngridfile = zeros(Int32, dataobject.ncpu+dataobject.grid_info.nboundary, dataobject.grid_info.nlevelmax) ngridlevel = zeros(Int32, dataobject.ncpu, dataobject.grid_info.nlevelmax) if dataobject.grid_info.nboundary > 0 ngridbound = zeros(Int32, dataobject.grid_info.nboundary, dataobject.grid_info.nlevelmax) end dmax= maximum([xmax-xmin,ymax-ymin,zmax-zmin]) ilevel = 1 # define ilevel before loop for il=1:lmax ilevel=il dx=0.5^ilevel if dx < dmax break end end bit_length=ilevel-1 maxdom=2^bit_length #for positive valuse: Julia floor == Fotran int if bit_length > 0 imin=floor(Int32, xmin * maxdom) imax=imin+1 jmin=floor(Int32, ymin * maxdom) jmax=jmin+1 kmin=floor(Int32, zmin * maxdom) kmax=kmin+1 else imin=0 imax=0 jmin=0 jmax=0 kmin=0 kmax=0 end dkey=(2^(dataobject.grid_info.nlevelmax+1)/maxdom)^dataobject.ndim if bit_length>0 ndom=8 else ndom=1 end idom = [imin, imax, imin, imax, imin, imax, imin, imax] jdom = [jmin, jmin, jmax, jmax, jmin, jmin, jmax, jmax] kdom = [kmin, kmin, kmin, kmin, kmax, kmax, kmax, kmax] order_min=0.0e0 #todo: predeclare for i=1:ndom if bit_length > 0 order_min = hilbert3d(idom[i],jdom[i],kdom[i],bit_length,1) else order_min=0.0e0 end bounding_min[i]=(order_min)*dkey bounding_max[i]=(order_min+1.)*dkey end for impi=1:dataobject.ncpu for i=1:ndom if (dataobject.grid_info.bound_key[impi] <= bounding_min[i] && dataobject.grid_info.bound_key[impi+1] > bounding_min[i]) cpu_min[i]=impi end if (dataobject.grid_info.bound_key[impi] < bounding_max[i] && dataobject.grid_info.bound_key[impi+1] >= bounding_max[i]) cpu_max[i]=impi end end end cpu_read = copy(dataobject.grid_info.cpu_read) cpu_list = zeros(Int32, dataobject.ncpu) ncpu_read=Int32(0) for i=1:ndom #Todo for j=(cpu_min[i]):(cpu_max[i]) if cpu_read[j]==false ncpu_read=ncpu_read+1 cpu_list[ncpu_read]=j cpu_read[j]=true end end end # ----------------------------------------------------------- grid = fill(LevelType(0,0,0,0,0,0), lmax) # Compute hierarchy for ilevel=1:lmax nx_full=Int32(2^ilevel) ny_full=nx_full nz_full=nx_full imin=floor(Int32, xmin * nx_full) +1 imax=floor(Int32, xmax * nx_full) +1 jmin=floor(Int32, ymin * ny_full) +1 jmax=floor(Int32, ymax * ny_full) +1 kmin=floor(Int32, zmin * nz_full) +1 kmax=floor(Int32, zmax * nz_full) +1 grid[ilevel] = LevelType( imin, imax, jmin, jmax, kmin, kmax ) end fnames = createpath(dataobject.output, path) xc = zeros(kind, 8,3) dummy1 = 0 read_data= 0 lmax2 =2^lmax var_firsttime =1 var1 = 0. var_x = 0 var_level = 0 #get_var_totsize = 0 if show_progress p = 1 # show updates else p = ncpu_read+2 # do not show updates end @showprogress p for k=1:ncpu_read #Reading files... @showprogress 1 "" icpu=cpu_list[k] #println("icpu ",icpu) # Open AMR file and skip header ###if print_filenames println(Full_Path_AMR_cpufile) end amrpath = getproc2string(fnames.amr, icpu) f_amr = FortranFile(amrpath) # Open AMR file and skip header skiplines(f_amr, 21) # Read grid numbers read(f_amr, ngridlevel) ngridfile[1:dataobject.ncpu, 1:dataobject.grid_info.nlevelmax] = ngridlevel skiplines(f_amr, 1) if dataobject.grid_info.nboundary > 0 skiplines(f_amr, 2) read(f_amr, ngridbound) ngridfile[(dataobject.ncpu+1):(dataobject.ncpu+overview.nboundary),1:dataobject.grid_info.nlevelmax]=ngridbound end skiplines(f_amr, 6) # Open HYDRO file and skip header hydropath = getproc2string(fnames.hydro, icpu) if print_filenames println(hydropath) end #println(Full_Path_Hydro_cpufile) f_hydro = FortranFile(hydropath) skiplines(f_hydro, 6) # Loop over levels for ilevel=1:lmax # Geometry dx=0.5^ilevel nx_full=Int32(2^ilevel) ny_full=nx_full nz_full=nx_full xc = geometry(twotondim_float, ilevel, xc) # @trace # Allocate work arrays ngrida=ngridfile[icpu,ilevel] # integer if ngrida>0 xg = zeros(kind, ngrida, dataobject.ndim) son = zeros(Int32, ngrida, twotondim) vara = zeros(kind, ngrida, twotondim, Nnvarh) end # Loop over domains for j=1:(overview.nboundary+dataobject.ncpu) # Read AMR data if ngridfile[j,ilevel]>0 skiplines(f_amr, 3) # Skip grid index # Read grid center for idim=1:dataobject.ndim if j == icpu xg[:,idim] = read(f_amr, (kind, ngrida)) else skiplines(f_amr, 1) end end # Skip father index + Skip nbor index skiplines(f_amr, 1 + (2*dataobject.ndim)) # Read son index for ind=1:twotondim if j == icpu son[:,ind] = read(f_amr, (Int32, ngrida)) else skiplines(f_amr, 1) end end # Skip cpu map + refinement map skiplines(f_amr, twotondim * 2) end # Read hydro data skiplines(f_hydro, 2) if ngridfile[j,ilevel]>0 # Read hydro variables for ind=1:twotondim for ivar=1:nvarh if j == icpu if nvarh_corr[ivar] != 0 vara[:,ind,nvarh_corr[ivar]] = read(f_hydro,(kind, ngrida) ) else skiplines(f_hydro, 1) end else skiplines(f_hydro, 1) end end end end end # Compute map if ngrida>0 vars_1D, pos_1D, cpus_1D = loopovercellshydro(twotondim, ngrida, ilevel, lmax, xg, xc, son, xbound, nx_full, ny_full, nz_full, grid, vara, vars_1D, pos_1D, read_cpu, cpus_1D, k, read_level) # for kind = Float64 end end # End loop over levels close(f_amr) close(f_hydro) #if show_progress next!(p, showvalues = [(:Nfiles, k)]) end # ProgressMeter end # End loop over cpu files if read_cpu return vars_1D, pos_1D, cpus_1D #arrays else return vars_1D, pos_1D #arrays end end function geometry(twotondim_float::Float64, ilevel::Int, xc::Array{Float64,2}) dx=0.5^ilevel for (ind,iind) =enumerate(1.:twotondim_float) iiz=round( (iind-1)/4, RoundDown) #floor(Int32, (ind-1)/4) iiy=round( (iind-1-4*iiz)/2, RoundDown) #floor(Int32, (ind-1-4*iiz)/2) iix=round( (iind-1-2*iiy-4*iiz), RoundDown) #floor(Int32, (ind-1-2*iiy-4*iiz)) xc[ind,1]=(iix-0.5)*dx xc[ind,2]=(iiy-0.5)*dx xc[ind,3]=(iiz-0.5)*dx end return xc end function loopovercellshydro(twotondim::Int, ngrida::Int32, ilevel::Int, lmax::Int, xg::Array{Float64,2}, xc::Array{Float64,2}, son::Array{Int32,2}, xbound::Array{Float64,1}, nx_full::Int32, ny_full::Int32, nz_full::Int32, grid::Array{LevelType,1}, vara::Array{Float64,3}, vars_1D::ElasticArray{Float64,2,1}, pos_1D::ElasticArray{Int,2,1}, read_cpu::Bool, cpus_1D::Array{Int,1}, k::Int, read_level::Bool) for ind=1:twotondim # Loop over cells # Store data cube for i=1:ngrida if !(son[i,ind]>0 && ilevel<lmax) #if !ref[i] #= ix = round( (xg[i,1]+xc[ind,1]-xbound[1]) *nx_full, RoundDown) +1. iy = round( (xg[i,2]+xc[ind,2]-xbound[2]) *ny_full, RoundDown) +1. iz = round( (xg[i,3]+xc[ind,3]-xbound[3]) *nz_full, RoundDown) +1. =# # todo: simplify "fortran int" ix=floor(Int, (xg[i,1]+xc[ind,1]-xbound[1]) *nx_full)+1 iy=floor(Int, (xg[i,2]+xc[ind,2]-xbound[2]) *ny_full)+1 iz=floor(Int, (xg[i,3]+xc[ind,3]-xbound[3]) *nz_full)+1 #println(ilevel, ", ", ix, " ", iy, " ", iz, " ", grid[ilevel] ) if ix>=(grid[ilevel].imin) && iy>=(grid[ilevel].jmin) && iz>=(grid[ilevel].kmin) && ix<=(grid[ilevel].imax) && iy<=(grid[ilevel].jmax) && iz<=(grid[ilevel].kmax) #println() #println(ilevel, ", ", ix, " ", iy, " ", iz, " ", grid[ilevel] ) append!(vars_1D, vara[i,ind,:]) if read_level # if AMR append!(pos_1D, [ix, iy, iz, ilevel]) else # if uniform grid append!(pos_1D, [ix, iy, iz]) end if read_cpu append!(cpus_1D, k) end end end end end # End loop over cell return vars_1D, pos_1D, cpus_1D end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
13154
function getparticledata( dataobject::InfoType, Nvarp::Int, nvarp_corr::Array{Int,1}, stars::Bool, lmax::Real, ranges::Array{Float64,1}, print_filenames::Bool, show_progress::Bool, verbose::Bool, read_cpu::Bool ) output = dataobject.output lmin = dataobject.levelmin path = dataobject.path ndim = dataobject.ndim boxlen = dataobject.boxlen omega_m = dataobject.omega_m omega_l = dataobject.omega_l omega_k = dataobject.omega_k h0 = dataobject.H0 aexp = dataobject.aexp xmin, xmax, ymin, ymax, zmin, zmax = ranges # 6 elements idom = zeros(Int32, 8) jdom = zeros(Int32, 8) kdom = zeros(Int32, 8) bounding_min = zeros(Float64, 8) bounding_max = zeros(Float64, 8) cpu_min = zeros(Int32, 8) cpu_max = zeros(Int32, 8) dmax= maximum([xmax-xmin,ymax-ymin,zmax-zmin]) ilevel = 1 # define ilevel before loop for il=1:lmax ilevel=il dx=0.5^ilevel if dx < dmax break end end bit_length=ilevel-1 maxdom=2^bit_length # Todo: floor = fotran int ? if bit_length > 0 imin=floor(Int32, xmin * maxdom) imax=imin+1 jmin=floor(Int32, ymin * maxdom) jmax=jmin+1 kmin=floor(Int32, zmin * maxdom) kmax=kmin+1 else imin=0 imax=0 jmin=0 jmax=0 kmin=0 kmax=0 end dkey=(2^(dataobject.grid_info.nlevelmax+1)/maxdom)^dataobject.ndim if bit_length>0 ndom=8 else ndom=1 end idom = [imin, imax, imin, imax, imin, imax, imin, imax] jdom = [jmin, jmin, jmax, jmax, jmin, jmin, jmax, jmax] kdom = [kmin, kmin, kmin, kmin, kmax, kmax, kmax, kmax] order_min=0.0e0 #todo: predeclare for i=1:ndom if bit_length > 0 order_min = hilbert3d(idom[i],jdom[i],kdom[i],bit_length,1) else order_min=0.0e0 end bounding_min[i]=(order_min)*dkey bounding_max[i]=(order_min+1.)*dkey end for impi=1:dataobject.ncpu for i=1:ndom if (dataobject.grid_info.bound_key[impi] <= bounding_min[i] && dataobject.grid_info.bound_key[impi+1] > bounding_min[i]) cpu_min[i]=impi end if (dataobject.grid_info.bound_key[impi] < bounding_max[i] && dataobject.grid_info.bound_key[impi+1] >= bounding_max[i]) cpu_max[i]=impi end end end cpu_read = copy(dataobject.grid_info.cpu_read) cpu_list = zeros(Int32, dataobject.ncpu) ncpu_read=Int32(0) for i=1:ndom #Todo for j=(cpu_min[i]):(cpu_max[i]) if cpu_read[j]==false ncpu_read=ncpu_read+1 cpu_list[ncpu_read]=j cpu_read[j]=true end end end if read_cpu if dataobject.descriptor.pversion == 0 pos_1D, vars_1D, cpus_1D, identity_1D, levels_1D = readpart( dataobject, Nvarp=Nvarp, nvarp_corr=nvarp_corr, lmax=lmax, ranges=ranges, cpu_list=cpu_list, ncpu_read=ncpu_read, stars=stars, read_cpu=read_cpu, verbose=verbose, print_filenames=print_filenames, show_progress=show_progress ) return pos_1D, vars_1D, cpus_1D, identity_1D, levels_1D elseif dataobject.descriptor.pversion > 0 pos_1D, vars_1D, cpus_1D, identity_1D, family_1D, tag_1D, levels_1D = readpart( dataobject, Nvarp=Nvarp, nvarp_corr=nvarp_corr, lmax=lmax, ranges=ranges, cpu_list=cpu_list, ncpu_read=ncpu_read, stars=stars, read_cpu=read_cpu, verbose=verbose, print_filenames=print_filenames, show_progress=show_progress ) return pos_1D, vars_1D, cpus_1D, identity_1D, family_1D, tag_1D, levels_1D end # if pversion else # if read_cpu if dataobject.descriptor.pversion == 0 pos_1D, vars_1D, identity_1D, levels_1D = readpart( dataobject, Nvarp=Nvarp, nvarp_corr=nvarp_corr, lmax=lmax, ranges=ranges, cpu_list=cpu_list, ncpu_read=ncpu_read, stars=stars, read_cpu=read_cpu, verbose=verbose, print_filenames=print_filenames, show_progress=show_progress ) return pos_1D, vars_1D, identity_1D, levels_1D elseif dataobject.descriptor.pversion > 0 pos_1D, vars_1D, identity_1D, family_1D, tag_1D, levels_1D = readpart( dataobject, Nvarp=Nvarp, nvarp_corr=nvarp_corr, lmax=lmax, ranges=ranges, cpu_list=cpu_list, ncpu_read=ncpu_read, stars=stars, read_cpu=read_cpu, verbose=verbose, print_filenames=print_filenames, show_progress=show_progress ) return pos_1D, vars_1D, identity_1D, family_1D, tag_1D, levels_1D end # if pversion end end function readpart(dataobject::InfoType; Nvarp::Int, nvarp_corr::Array{Int,1}, lmax::Int=dataobject.levelmax, ranges::Array{Float64,1}=[0.,1.], cpu_list::Array{Int32,1}=[1], ncpu_read::Int=0, stars::Bool=true, read_cpu::Bool=false, verbose::Bool=verbose_mode, print_filenames::Bool=false, show_progress::Bool=true) boxlen = dataobject.boxlen path = dataobject.path ndim = dataobject.ndim fnames = createpath(dataobject.output, path) vars_1D = ElasticArray{Float64}(undef, Nvarp, 0) r1, r2, r3, r4, r5, r6 = ranges .* boxlen pos_1D = ElasticArray{Float64}(undef, 3, 0) if read_cpu cpus_1D = Array{Int}(undef, 0) end #zeros(Int, npart) identity_1D = Array{Int32}(undef, 0) #zeros(Int32, npart) #if dataobject.descriptor.pversion == 0 if dataobject.descriptor.pversion > 0 #identity_1D = Array{Int32}(undef, 0) #zeros(Int32, npart) family_1D = Array{Int8}(undef, 0) #zeros(Int32, npart) tag_1D = Array{Int8}(undef, 0) #zeros(Int32, npart) end levels_1D = Array{Int32}(undef, 0) #zeros(Int32, npart) #manu ndim2=Int32(0) #ngrida=0 parti=Int32(0) # particle iterator if show_progress p = 1 # show updates else p = ncpu_read+2 # do not show updates end @showprogress p for k=1:ncpu_read # @showprogress 1 "Reading data..." icpu=cpu_list[k] partpath = getproc2string(fnames.particles, icpu) f_part = FortranFile(partpath) skiplines(f_part, 1) #ncpu2 ndim2 = read(f_part, Int32) #, (Int32, ndim2)) npart2 = read(f_part, Int32) #, (Int32, npart2)) skiplines(f_part, 1) nstar = read(f_part, Int32) skiplines(f_part, 3) if npart2 != 0 pos_1D_buffer = zeros(Float64, 3, npart2) vars_1D_buffer = zeros(Float64, Nvarp, npart2 ) if dataobject.descriptor.pversion > 0 family_1D_buffer = zeros(Int8, npart2) tag_1D_buffer = zeros(Int8, npart2) end identity_1D_buffer = zeros(Int32, npart2) levels_1D_buffer = zeros(Int32, npart2) # Read position for i=1:ndim #x[:,i] = read(f_part, (Float64, npart2) pos_1D_buffer[i, 1:npart2] = read(f_part, (Float64, npart2) ) end pos_selected = (pos_1D_buffer[1,:] .>= r1) .& (pos_1D_buffer[1,:] .<= r2) .& (pos_1D_buffer[2,:] .>= r3) .& (pos_1D_buffer[2,:] .<= r4) .& (pos_1D_buffer[3,:] .>= r5) .& (pos_1D_buffer[3,:] .<= r6) ls = Int32(length( pos_1D_buffer[1, pos_selected] ) ) #selected length #todo int32 if ls != 0 append!(pos_1D, pos_1D_buffer[:, pos_selected] ) # Read velocity for i=1:ndim if nvarp_corr[i] != 0 #vel[:,i] = read(f_part, (Float64, npart2) vars_1D_buffer[nvarp_corr[i], 1:npart2] = read(f_part, (Float64, npart2) ) else skiplines(f_part, 1) end #read(f_part) end # Read mass if nvarp_corr[4] != 0 vars_1D_buffer[nvarp_corr[4], 1:npart2] = read(f_part, (Float64, npart2) ) else skiplines(f_part, 1) end # Read identity #if dataobject.descriptor.pversion == 0 identity_1D_buffer[1:npart2] = read(f_part, (Int32, npart2) ) # identity append!(identity_1D, identity_1D_buffer[pos_selected]) # identity #end # Read level levels_1D_buffer[1:npart2] = read(f_part, (Int32, npart2) ) # level append!(levels_1D, levels_1D_buffer[pos_selected]) # level # Read family, tag if dataobject.descriptor.pversion > 0 #skiplines(f_part, 1) # skip identity family_1D_buffer[1:npart2] = read(f_part, (Int8, npart2) ) # family tag_1D_buffer[1:npart2] = read(f_part, (Int8, npart2) ) # tag append!(family_1D, family_1D_buffer[pos_selected]) # family append!(tag_1D, tag_1D_buffer[pos_selected]) # tag # read birth if nstar>0 && nvarp_corr[7] != 0 #birth = read(f_part, (Float64, npart2) #skiplines(f_part, 1) vars_1D_buffer[nvarp_corr[7], 1:npart2] = read(f_part, (Float64, npart2) ) #age (birth) elseif nstar>0 && nvarp_corr[7] == 0 skiplines(f_part, 1) end elseif dataobject.descriptor.pversion == 0 # read birth if nstar>0 && nvarp_corr[5] != 0 #birth = read(f_part, (Float64, npart2) #skiplines(f_part, 1) vars_1D_buffer[nvarp_corr[5], 1:npart2] = read(f_part, (Float64, npart2) ) #age (birth) elseif nstar>0 && nvarp_corr[5] == 0 skiplines(f_part, 1) end end # read additional variables if Nvarp>7 for iN = 8:Nvarp if nvarp_corr[iN] != 0 vars_1D_buffer[nvarp_corr[iN], 1:npart2] = read(f_part, (Float64, npart2) ) end end end append!(vars_1D, vars_1D_buffer[:, pos_selected] ) if read_cpu append!(cpus_1D, fill(k,ls) ) end parti = parti + ls end end close(f_part) #if show_progress next!(p, showvalues = [(:Nfiles, k)]) end # ProgressMeter end #for if read_cpu if dataobject.descriptor.pversion == 0 return pos_1D, vars_1D, cpus_1D, identity_1D, levels_1D elseif dataobject.descriptor.pversion > 0 return pos_1D, vars_1D, cpus_1D, identity_1D, family_1D, tag_1D, levels_1D end else if dataobject.descriptor.pversion == 0 return pos_1D, vars_1D, identity_1D, levels_1D elseif dataobject.descriptor.pversion > 0 return pos_1D, vars_1D, identity_1D, family_1D, tag_1D, levels_1D end end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
792
@testset "01 General Tests" begin include("general.jl") end verbose(false) showprogress(false) @testset "02 getvar hydro" begin printscreen("getvar hydro:") include("values_hydro.jl") end @testset "03 getvar particles" begin printscreen("getvar particles:") include("values_particles.jl") end @testset "04 projection hydro" begin printscreen("projection hydro:") include("projection/projection_hydro.jl") end @testset "05 projection stars" begin printscreen("projection particle/stars:") include("projection/projection_particles.jl") end verbose(true) @testset "06 MERA files" begin printscreen("Write/Read MERA files:") include("merafiles.jl") end @testset "07 Error Checks" begin printscreen("data types:") include("errors.jl") end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
1003
@testset "01 General Tests" begin include("clumps/general.jl") end # verbose(false) # showprogress(false) # @testset "02 getvar clumps" begin # printscreen("getvar clumps:") # include("clumps/values_clumps.jl") # end # @testset "03 getvar clumps" begin # printscreen("getvar clumps:") # include("clumps/values_clumps.jl") # end # end verbose(true) @testset "04 MERA files" begin printscreen("Write/Read MERA files:") include("clumps/merafiles.jl") @testset "saving" begin @test save_clumps_jld2(output, path) end @testset "loading" begin @test load_data(output, path) end @testset "save different order" begin @test save_clumps_different_order_jld2(output, path) end @testset "converting" begin@test convert_clumps_jld2(output, path) end @testset "compare stored clump data" begin @test load_uaclumps_data(output, path) end end # @testset "05 Error Checks" begin # printscreen("data types:") # include("clumps/errors.jl") # end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
1576
@test_throws ErrorException("[Mera]: Simulation has no hydro files!") checktypes_error(output, path, :hydro) @test_throws ErrorException("[Mera]: Simulation has no particle files!") checktypes_error(output, path, :particles) @test_throws ErrorException("[Mera]: Simulation has no gravity files!") checktypes_error(output, path, :gravity) @test_throws ErrorException("[Mera]: Simulation has no rt files!") checktypes_error(output, path, :rt) @test_throws ErrorException("[Mera]: Simulation has no clump files!") checktypes_error(output, path, :clumps) @test_throws ErrorException("[Mera]: Simulation has no sink files!") checktypes_error(output, path, :sinks) @test_throws ErrorException("[Mera]: Simulation has no amr files!") checktypes_error(output, path, :amr) if info.levelmin !== info.levelmax @test_throws ErrorException("[Mera]: Simulation lmax=7 < your lmax=10") checklevelmax_error(output, path) @test_throws ErrorException("[Mera]: Simulation lmin=3 > your lmin=1") checklevelmin_error(output, path) end if Sys.iswindows() @test_throws ErrorException("[Mera]: File or folder does not exist: " * pwd() *"\\./simulations/output_00003\\info_00003.txt !") checkfolder_error(path) else @test_throws ErrorException("[Mera]: File or folder does not exist: " * pwd() *"/./simulations/output_00003/info_00003.txt !") checkfolder_error(path) end @test_throws ErrorException("Datatype clumps does not exist...") infodata(output, :clumps) @test_throws ErrorException("unknown datatype(s) given...") convertdata(output, [:anyname], path=path) # savedata
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
13353
if !(Sys.iswindows()) # skip test for windows @testset "file/folder-names" begin printscreen("file/folder-names:") @testset "createpath" begin # ================================= fname = Mera.createpath(10, "./"); flag = Dict() flag[1] = fname.amr == "./output_00010/amr_00010." flag[2] = fname.clumps == "./output_00010/clump_00010." flag[3] = fname.compilation == "./output_00010/compilation.txt" flag[4] = fname.gravity == "./output_00010/grav_00010." flag[5] = fname.header == "./output_00010/header_00010.txt" flag[6] = fname.hydro == "./output_00010/hydro_00010." flag[7] = fname.hydro_descriptor == "./output_00010/hydro_file_descriptor.txt" flag[8] = fname.info == "./output_00010/info_00010.txt" flag[9] = fname.makefile == "./output_00010/makefile.txt" flag[10] = fname.namelist == "./output_00010/namelist.txt" flag[11] = fname.output == "./output_00010" flag[12] = fname.part_descriptor == "./output_00010/part_file_descriptor.txt" flag[13] = fname.particles == "./output_00010/part_00010." flag[14] = fname.patchfile == "./output_00010/patches.txt" flag[15] = fname.rt == "./output_00010/rt_00010." flag[16] = fname.rt_descriptor == "./output_00010/rt_file_descriptor.txt" flag[17] = fname.rt_descriptor_v0 == "./output_00010/info_rt_00010.txt" flag[18] = fname.timer == "./output_00010/timer_00010.txt" ispos = true for i in sort(collect(keys(flag))) if flag[i] == false ispos = false println("test 10: flag: ", i, " = false") end end # ================================= fname = Mera.createpath(100, "./"); flag = Dict() flag[1] = fname.amr == "./output_00100/amr_00100." flag[2] = fname.clumps == "./output_00100/clump_00100." flag[3] = fname.compilation == "./output_00100/compilation.txt" flag[4] = fname.gravity == "./output_00100/grav_00100." flag[5] = fname.header == "./output_00100/header_00100.txt" flag[6] = fname.hydro == "./output_00100/hydro_00100." flag[7] = fname.hydro_descriptor == "./output_00100/hydro_file_descriptor.txt" flag[8] = fname.info == "./output_00100/info_00100.txt" flag[9] = fname.makefile == "./output_00100/makefile.txt" flag[10] = fname.namelist == "./output_00100/namelist.txt" flag[11] = fname.output == "./output_00100" flag[12] = fname.part_descriptor == "./output_00100/part_file_descriptor.txt" flag[13] = fname.particles == "./output_00100/part_00100." flag[14] = fname.patchfile == "./output_00100/patches.txt" flag[15] = fname.rt == "./output_00100/rt_00100." flag[16] = fname.rt_descriptor == "./output_00100/rt_file_descriptor.txt" flag[17] = fname.rt_descriptor_v0 == "./output_00100/info_rt_00100.txt" flag[18] = fname.timer == "./output_00100/timer_00100.txt" for i in sort(collect(keys(flag))) if flag[i] == false ispos = false println("test 100: flag: ", i, " = false") end end # ================================= fname = Mera.createpath(1000, "./"); flag = Dict() flag[1] = fname.amr == "./output_01000/amr_01000." flag[2] = fname.clumps == "./output_01000/clump_01000." flag[3] = fname.compilation == "./output_01000/compilation.txt" flag[4] = fname.gravity == "./output_01000/grav_01000." flag[5] = fname.header == "./output_01000/header_01000.txt" flag[6] = fname.hydro == "./output_01000/hydro_01000." flag[7] = fname.hydro_descriptor == "./output_01000/hydro_file_descriptor.txt" flag[8] = fname.info == "./output_01000/info_01000.txt" flag[9] = fname.makefile == "./output_01000/makefile.txt" flag[10] = fname.namelist == "./output_01000/namelist.txt" flag[11] = fname.output == "./output_01000" flag[12] = fname.part_descriptor == "./output_01000/part_file_descriptor.txt" flag[13] = fname.particles == "./output_01000/part_01000." flag[14] = fname.patchfile == "./output_01000/patches.txt" flag[15] = fname.rt == "./output_01000/rt_01000." flag[16] = fname.rt_descriptor == "./output_01000/rt_file_descriptor.txt" flag[17] = fname.rt_descriptor_v0 == "./output_01000/info_rt_01000.txt" flag[18] = fname.timer == "./output_01000/timer_01000.txt" for i in sort(collect(keys(flag))) if flag[i] == false ispos = false println("test 1000: flag: ", i, " = false") end end # ================================= fname = Mera.createpath(10000, "./"); flag = Dict() flag[1] = fname.amr == "./output_10000/amr_10000." flag[2] = fname.clumps == "./output_10000/clump_10000." flag[3] = fname.compilation == "./output_10000/compilation.txt" flag[4] = fname.gravity == "./output_10000/grav_10000." flag[5] = fname.header == "./output_10000/header_10000.txt" flag[6] = fname.hydro == "./output_10000/hydro_10000." flag[7] = fname.hydro_descriptor == "./output_10000/hydro_file_descriptor.txt" flag[8] = fname.info == "./output_10000/info_10000.txt" flag[9] = fname.makefile == "./output_10000/makefile.txt" flag[10] = fname.namelist == "./output_10000/namelist.txt" flag[11] = fname.output == "./output_10000" flag[12] = fname.part_descriptor == "./output_10000/part_file_descriptor.txt" flag[13] = fname.particles == "./output_10000/part_10000." flag[14] = fname.patchfile == "./output_10000/patches.txt" flag[15] = fname.rt == "./output_10000/rt_10000." flag[16] = fname.rt_descriptor == "./output_10000/rt_file_descriptor.txt" flag[17] = fname.rt_descriptor_v0 == "./output_10000/info_rt_10000.txt" flag[18] = fname.timer == "./output_10000/timer_10000.txt" for i in sort(collect(keys(flag))) if flag[i] == false ispos = false println("test 10000: flag: ", i, " = false") end end @test ispos end @testset "getproc2string - out" begin fname = Mera.getproc2string("./", Int32(1) ) flag1 = fname == "./out00001" fname = Mera.getproc2string("./", Int32(10) ) flag10 = fname == "./out00010" fname = Mera.getproc2string("./", Int32(100) ) flag100 = fname == "./out00100" fname = Mera.getproc2string("./", Int32(1000) ) flag1000 = fname == "./out01000" fname = Mera.getproc2string("./", Int32(10000) ) flag10000 = fname == "./out10000" @test flag1 == flag10 == flag100 == flag1000 == flag10000 end @testset "getproc2string - txt" begin fname = Mera.getproc2string("./",true , 1 ) flag1 = fname == "./txt00001" fname = Mera.getproc2string("./", true, 10 ) flag10 = fname == "./txt00010" fname = Mera.getproc2string("./", true, 100 ) flag100 = fname == "./txt00100" fname = Mera.getproc2string("./", true, 1000 ) flag1000 = fname == "./txt01000" fname = Mera.getproc2string("./", true, 10000 ) flag10000 = fname == "./txt10000" @test flag1 == flag10 == flag100 == flag1000 == flag10000 end end end # =================================================================== @testset "getinfo general" begin printscreen("general tests:") verbose(true) @test verbose_status(true) verbose(false) @test verbose_status(false) verbose(nothing) @test verbose_status(nothing) showprogress(true) @test showprogress_status(true) showprogress(false) @test showprogress_status(false) showprogress(nothing) @test showprogress_status(nothing) @test view_argtypes() @test view_namelist(output, path) @test view_patchfile(output, path) end @test memory_units() @test module_view() #@test_broken call_bell() #skip=true # cannot test on GitHub #@test_broken call_notifyme() #skip=true # cannot test on GitHub # =================================================================== @testset "getinfo" begin # main functionality printscreen("getinfo:") @test infotest(output, path) # simulation details info = getinfo(output, path, verbose=false) @test info.output == output @test info.descriptor.hversion == 1 # hydro reader version @test info.descriptor.pversion == 1 # particle reader version if info.levelmin !== info.levelmax # for uniform grid sim time = 0. @test info.time ≈ 0.330855641315456 rtol=1e-13 @test gettime(info) ≈ 0.330855641315456 rtol=1e-13 @test gettime(info, :Myr) ≈ 4.9320773034440295 rtol=1e-13 end @test info.rt == false @test info.sinks == false @test info.clumps == false @test info.particles == true @test info.hydro == true @test info.gravity == true # check variables end # =================================================================== @testset "info overview" begin printscreen("info overview:") @test_broken simoverview(output, simpath) @test viewfieldstest(output, path) @test viewfilescontent(output, path) end # =================================================================== @testset "hydro data inspection" begin printscreen("hydro data inspection:") @test gethydro_infocheck(output, path) @test gethydro_allvars(output, path) @test gethydro_selectedvars(output, path) @test gethydro_cpuvar(output, path) @test gethydro_negvalues(output, path) @test gethydro_lmaxEQlmin(output, path) @test hydro_smallr(output, path) @test hydro_smallc(output, path) @test hydro_viewfields(output, path) @test hydro_amroverview(output, path) @test hydro_dataoverview(output, path) @test hydro_gettime(output, path) end # =================================================================== @testset "hydro selected ranges" begin printscreen("hydro selected ranges:") @test hydro_range_codeunit(output, path) end # =================================================================== @testset "particle data inspection" begin printscreen("particle data inspection:") @test getparticles_infocheck(output, path) info = getinfo(output, path, verbose=false) if info.levelmin !== info.levelmax @test_broken getparticles_number(output, path) else @test getparticles_number(output, path) end # test number of stars and dm @test getparticles_allvars(output, path) @test getparticles_selectedvars(output, path) @test getparticles_cpuvar(output, path) @test particles_viewfields(output, path) @test particles_amroverview(output, path) @test particles_dataoverview(output, path) @test particles_gettime(output, path) end # =================================================================== @testset "particles selected data" begin printscreen("particle selected ranges:") @test particles_range_codeunit(output, path) end # =================================================================== @testset "gravity data inspection" begin printscreen("gravity data inspection:") @test getgravity_infocheck(output, path) @test getgravity_allvars(output, path) @test getgravity_selectedvars(output, path) @test getgravity_cpuvar(output, path) @test gravity_viewfields(output, path) @test gravity_amroverview(output, path) @test gravity_dataoverview(output, path) @test gravity_gettime(output, path) end # =================================================================== @testset "gravity selected data" begin printscreen("gravity selected ranges:") @test gravity_range_codeunit(output, path) end # ===================================================================
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
252
@test save_jld2(output, path) @test load_data(output, path) @test save_different_order_jld2(output, path) @test convert_jld2(output, path) @test info_jld2(output, path) @test viewdata_all(output) @test load_data(output, path) @test check_filenames()
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2694
using Mera using Mera.JuliaDB using Test using Downloads using Tar #run(`mkdir simulations`) #mkdir("simulations") include("screen_output.jl") include("overview/00_info.jl") include("overview/00_simoverview.jl") include("inspection/01_hydro_inspection.jl") include("inspection/01_particle_inspection.jl") include("inspection/01_gravity_inspection.jl") include("varselection/02_hydro_selections.jl") include("varselection/02_particles_selections.jl") include("varselection/02_gravity_selections.jl") include("getvar/03_hydro_getvar.jl") include("getvar/03_particles_getvar.jl") include("errors/04_error_checks.jl") include("jld2files/05_mera_files.jl") include("clumps/inspection.jl") #simpath = "./simulations/" #path = "./simulations/01_spiral/" @testset "MERA tests" begin global simpath = "./" global path = "./simulations/" global output = 2 @testset "AMR" begin Downloads.download("www.usm.uni-muenchen.de/CAST/behrendt/simulations.tar", pwd() * "/simulations.tar") tar = open("./simulations.tar") dir = Tar.extract(tar, "simulations") close(tar) include("alltests.jl") if Sys.iswindows() #rm(pwd() * "\\simulations", recursive=true) #rm(pwd() * "\\simulations.tar") else rm(pwd() * "/simulations", recursive=true) rm(pwd() * "/simulations.tar") end end global simpath = "./" global path = "./simulations/" global output = 1 @testset "Uniform Grid" begin Downloads.download("www.usm.uni-muenchen.de/CAST/behrendt/simulation_ugrid.tar", pwd() * "/simulations.tar") tar = open("./simulations.tar") dir = Tar.extract(tar, "simulations") close(tar) include("alltests.jl") if Sys.iswindows() #rm(pwd() * "\\simulations", recursive=true) #rm(pwd() * "\\simulations.tar") else rm(pwd() * "/simulations", recursive=true) rm(pwd() * "/simulations.tar") end end global simpath = "./" global path = "./simulations/" global output = 100 @testset "Clumps Simulation" begin Downloads.download("www.usm.uni-muenchen.de/CAST/behrendt/simulation_clumps.tar", pwd() * "/simulations.tar") tar = open("./simulations.tar") dir = Tar.extract(tar, "simulations") close(tar) include("clumptests.jl") end end # basic calcs: msum, com, bulk vel; average # old RAMSES version: gethydro, getparticles # humanize, getunit # error amroverview for uniform grid (hydro, particles, etc.) # hydro_range_codeunit,gravity_range_codeunit add test for uniform grid
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
255
function printscreen(message) println() println() println() printstyled("--------------------------------------\n", color=:cyan) @info(message) printstyled("--------------------------------------\n", color=:cyan) println() end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
3305
gas, irho1, ip1, ics1= prepare_data1(output, path) @testset "show possible vars" begin getvar() end @testset "rho" begin @test test_rho(gas) ≈ irho1 rtol=1e-10 @test test_p(gas) ≈ ip1 rtol=1e-10 end # test mass @testset "mass" begin mass_ref = 1.0000000000019456e16 mass_tot = sum( getvar(gas, :mass, :Msol) ) mass_tot_function1 = sum(getmass(gas)) .* gas.info.scale.Msol mass_tot_function2 = msum(gas, :Msol) @test mass_ref ≈ mass_tot rtol=1e-10 @test mass_tot ≈ mass_tot_function1 rtol=1e-10 @test mass_tot ≈ mass_tot_function2 rtol=1e-10 end # test masking on mass @testset "mass masking" begin if gas.info.levelmin !== gas.info.levelmax mask1 = getvar(gas, :level) .> 6 else mask1 = getvar(gas, :rho, :nH) .< 0.1 end mass1 = sum( getvar(gas, :mass, :Msol, mask=mask1)) mass1_function1 = sum(getmass(gas)[mask1]) .* gas.info.scale.Msol mass1_function2 = msum(gas, :Msol, mask=mask1) @test mass1 ≈ mass1_function1 rtol=1e-10 @test mass1 ≈ mass1_function2 rtol=1e-10 end # test cs @testset "cs" begin cs = getvar(gas, :cs, :cm_s) cs_av = sum(cs) / length(cs) @test cs_av ≈ ics1 rtol=1e-10 end # test vx, vy, vz @testset "vx, vy, vz, |v|" begin vxdata = getvar(gas, :vx, :km_s) vxdata = sum(vxdata) / length(vxdata) @test vxdata == 20. #km/s vydata = getvar(gas, :vy, :km_s) vydata = sum(vydata) / length(vydata) @test vydata == 30. #km/s vzdata = getvar(gas, :vz, :km_s) vzdata = sum(vzdata) / length(vzdata) @test vzdata == 40. #km/s # test |v| vref = sqrt(20. ^2 + 30. ^2 + 40. ^2) vdata = getvar(gas, :v, :km_s) vdata = sum(vdata) / length(vdata) @test vref ≈ vdata rtol=1e-10 end if gas.info.levelmin !== gas.info.levelmax @testset "cellsize, volume" begin leveldata = getvar(gas, :level) cellsize_ref = gas.boxlen ./ 2 .^leveldata cellsize_data = getvar(gas, :cellsize); @test cellsize_ref == cellsize_data volume_ref = cellsize_ref .^3 volume_data = getvar(gas, :volume) @test volume_ref == volume_data end end @testset "get positions/velocities" begin @test check_positions_hydro(output, path) #@test check_positions_part(output, path) @test check_velocities_hydro(output, path) end @testset "get extent" begin rx,ry,rz = getextent(gas, :kpc) rxu, ryu, rzu = getextent(gas, unit=:kpc) @test rx == rxu @test ry == ryu @test rz == rzu rx,ry,rz = getextent(gas, :kpc, center=[:bc]) @test rx[1] ≈ -50 atol=1e-10 @test rx[2] ≈ 50 atol=1e-10 @test ry[1] ≈ -50 atol=1e-10 @test ry[2] ≈ 50 atol=1e-10 @test rz[1] ≈ -50 atol=1e-10 @test rz[2] ≈ 50 atol=1e-10 rx,ry,rz = getextent(gas, :kpc, center=[0.5,0.5,0.5]) @test rx[1] ≈ -50 atol=1e-10 @test rx[2] ≈ 50 atol=1e-10 @test ry[1] ≈ -50 atol=1e-10 @test ry[2] ≈ 50 atol=1e-10 @test rz[1] ≈ -50 atol=1e-10 @test rz[2] ≈ 50 atol=1e-10 rx,ry,rz = getextent(gas, :kpc, center=[0.5,0.5,0.5], center_unit=:kpc) @test rx[1] ≈ -0.5 atol=1e-10 @test rx[2] ≈ 99.5 atol=1e-10 @test ry[1] ≈ -0.5 atol=1e-10 @test ry[2] ≈ 99.5 atol=1e-10 @test rz[1] ≈ -0.5 atol=1e-10 @test rz[2] ≈ 99.5 atol=1e-10 end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
1190
@testset "get positions/velocities" begin @test check_positions_part(output, path) @test check_velocities_part(output, path) end @testset "get extent" begin info = getinfo(output, path, verbose=false) part = getparticles(info, verbose=false) rx,ry,rz = getextent(part, :kpc) rxu, ryu, rzu = getextent(part, unit=:kpc) @test rx == rxu @test ry == ryu @test rz == rzu rx,ry,rz = getextent(part, :kpc, center=[:bc]) @test rx[1] ≈ -50 atol=1e-10 @test rx[2] ≈ 50 atol=1e-10 @test ry[1] ≈ -50 atol=1e-10 @test ry[2] ≈ 50 atol=1e-10 @test rz[1] ≈ -50 atol=1e-10 @test rz[2] ≈ 50 atol=1e-10 rx,ry,rz = getextent(part, :kpc, center=[0.5,0.5,0.5]) @test rx[1] ≈ -50 atol=1e-10 @test rx[2] ≈ 50 atol=1e-10 @test ry[1] ≈ -50 atol=1e-10 @test ry[2] ≈ 50 atol=1e-10 @test rz[1] ≈ -50 atol=1e-10 @test rz[2] ≈ 50 atol=1e-10 rx,ry,rz = getextent(part, :kpc, center=[0.5,0.5,0.5], center_unit=:kpc) @test rx[1] ≈ -0.5 atol=1e-10 @test rx[2] ≈ 99.5 atol=1e-10 @test ry[1] ≈ -0.5 atol=1e-10 @test ry[2] ≈ 99.5 atol=1e-10 @test rz[1] ≈ -0.5 atol=1e-10 @test rz[2] ≈ 99.5 atol=1e-10 end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
1561
# =================================================================== @testset "getinfo" begin printscreen("getinfo:") info = getinfo(output, path); @test info.clumps == true end # =================================================================== @testset "clumps data inspection" begin printscreen("clumps data inspection:") @testset "info vars" begin info = getinfo(output, path); @test length(info.clumps_variable_list) == 12 end @testset "all vars" begin info = getinfo(output, path); clumps = getclumps(info) @test length( colnames(clumps.data) ) == 12 @test length(clumps.data) == 7 end @testset "selected vars" begin info = getinfo(output, path); clumps = getclumps(info, [:peak_x, :peak_y, :peak_z]); @test length(colnames(clumps.data)) == 3 Ncol = propertynames(clumps.data.columns) @test :peak_x in Ncol && :peak_y in Ncol && :peak_z in Ncol end @testset "info overview" begin printscreen("info overview:") @test_broken simoverview(output, simpath) @test viewfilescontent(output, path) end @testset "gravity data inspection" begin printscreen("gravity data inspection:") @test clumps_dataoverview(output, path) @test clumps_gettime(output, path) end end # =================================================================== #@testset "clumps selected ranges" begin # printscreen("clumps selected ranges:") # #end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
308
function clumps_dataoverview(output, path) info =getinfo(output, path) clumps = getclumps(info) dataoverview(clumps) return true end function clumps_gettime(output, path) info =getinfo(output, path) clumps = getclumps(info) return gettime(info, :Myr) == gettime(clumps, :Myr) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
4342
function save_clumps_jld2(output, path) info = getinfo(output, path) clumps = getclumps(info) savedata(clumps, :write) savedata(clumps, "./", :write) savedata(clumps, "./", fmode=:write) vd = viewdata(output) stdata = keys(vd) flag1 = in("clumps", stdata) println("flag1: clumps in jld2 file? ", flag1) println() gas = gethydro(info) savedata(gas, fmode=:append) vd = viewdata(output) stdata = keys(vd) flag2 = in("hydro", stdata) println("flag2: hydro in jld2 file? ", flag2) println() part = getparticles(info) savedata(part, fmode=:append) grav = getgravity(info) savedata(grav, fmode=:append) vd = viewdata(output) stdata = keys(vd) flag3 = in("hydro", stdata) flag4 = in("gravity", stdata) flag5 = in("particles", stdata) println("flag3: hydro in jld2 file? ", flag3) println("flag4: gravity in jld2 file? ", flag4) println("flag5: particles in jld2 file? ", flag5) println() println() return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true end function save_clumps_different_order_jld2(output, path) info = getinfo(output, path) part = getparticles(info) savedata(part, fmode=:write) vd = viewdata(output) stdata = keys(vd) flag1 = in("particles", stdata) flag1a = !in("clumps", stdata) clumps = getclumps(info) savedata(clumps, fmode=:write) vd = viewdata(output) stdata = keys(vd) flag2 = in("clumps", stdata) flag2a = !in("particles", stdata) println("flag1: particles in jld2 file? ", flag1) println("flag1a: no clumps in jld2 file? ", flag1a) println() println("flag2: clumps in jld2 file? ", flag2) println("flag2a: no particles in jld2 file? ", flag2a) println() println() return flag1 == true && flag1a == true && flag2 == true && flag2a == true end function convert_clumps_jld2(output, path) st = convertdata(output, [:clumps], path=path) vd = viewdata(output) stdata = keys(vd) flag1 = in("clumps", stdata) println("flag1: clumps in jld2 file? ", flag1) flag1a = !in("hydro", stdata) println("flag1a: hydro not in jld2 file? ", flag1a) println() st = convertdata(output, :clumps, path=path) vd = viewdata(output) stdata = keys(vd) flag2 = in("clumps", stdata) println("flag2: hydro in jld2 file? ", flag2) flag2a = !in("hydro", stdata) println("flag2a: hydro not in jld2 file? ", flag2a) println() st = convertdata(output, path=path, fpath=".") vd = viewdata(output) stdata = keys(vd) flag3 = in("hydro", stdata) flag4 = in("gravity", stdata) flag5 = in("particles", stdata) flag6 = in("clumps", stdata) println("flag3: hydro in jld2 file? ", flag3) println("flag4: gravity in jld2 file? ", flag4) println("flag5: particles in jld2 file? ", flag5) println("flag6: clumps in jld2 file? ", flag6) println() return flag1 == flag1a == flag2 == flag2a ==flag3 == flag4 == flag5 == flag6 == true end function load_uaclumps_data(output, path) info = getinfo(output, path) gas = gethydro(info) gasconv = loaddata(output, :hydro) flag1 = gas.data == gasconv.data println() println("flag1: data load hydro: ", flag1) println() part = getparticles(info) partconv = loaddata(output, :particles) flag2 = part.data == partconv.data println() println("flag2: data load particles: ", flag2) println() grav = getgravity(info) gravconv = loaddata(output, :gravity) flag3 = grav.data == gravconv.data println() println("flag3: data load gravity: ", flag3) println() clumps = getclumps(info) clumpconv = loaddata(output, :clumps) flag4 = clumps.data == clumpconv.data println() println("flag4: data load clumps: ", flag4) println() clumpconv = loaddata(output, "./", :clumps) flag5 = clumps.data == clumpconv.data println() println("flag5: data load clumps: ", flag5) println() clumpconv = loaddata(output, "./", datatype=:clumps) flag6 = clumps.data == clumpconv.data println() println("flag6: data load clumps: ", flag6) println() return flag1 == flag2 == flag3 == flag4 == flag5 == flag6 == true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
1113
function checktypes_error(output, path, datatype) info = getinfo(output, path, verbose=false) info.hydro = false info.particles = false info.gravity = false info.amr = false info.rt = false info.clumps = false info.sinks = false if datatype == :hydro gethydro(info) elseif datatype == :particles getparticles(info) elseif datatype == :gravity getgravity(info) elseif datatype == :clumps getclumps(info) elseif datatype == :amr Mera.checkfortype(info, :amr) elseif datatype == :rt Mera.checkfortype(info, :rt) elseif datatype == :sinks Mera.checkfortype(info, :sinks) end return end function checklevelmax_error(output, path) info = getinfo(output, path, verbose=false) gas = gethydro(info, lmax=10) return end function checklevelmin_error(output, path) info = getinfo(output, path, verbose=false) gas = gethydro(info, lmax=1) return end function checkfolder_error(path) info = getinfo(3, path) return end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
3577
function prepare_data1(output, path) info = getinfo(output, path, verbose=false) gas = gethydro(info, verbose=false, show_progress=false) if info.levelmin !== info.levelmax t = select(gas.data, (:level, :cx, :cy, :cz) ) else t = select(gas.data, (:cx, :cy, :cz) ) end kB = gas.info.constants.kB #1.38062e-16 # erg/K T = 1e4 #K mu = 100. / 76. mH = gas.info.constants.mH #1.66e-24 #g irho = 6.770254302002489e-22 #!g/cm^3 = 10 Msol_pc^3 ip = irho * kB * T/ (mu * mH) # g/cm/s^2 gamma = gas.info.gamma ics = sqrt.(ip/irho * gamma) #cm/s N = length(t) rho = fill( irho /gas.info.unit_d , N) #vx = fill(20. * 1e5 / gas.info.unit_v, N ); #vy = fill(30. * 1e5 / gas.info.unit_v, N ); #vz = fill(40. * 1e5 / gas.info.unit_v, N ); vx = fill(20. / gas.info.scale.km_s, N ); vy = fill(30. / gas.info.scale.km_s, N ); vz = fill(40. / gas.info.scale.km_s, N ); p = fill( ip / gas.info.unit_d / gas.info.unit_v^2 , N); if info.levelmin !== info.levelmax shift = 0 else shift = -1 end t = insertcols(t, 5+shift, :rho => rho) t = insertcols(t, 6+shift, :vx => vx) t = insertcols(t, 7+shift, :vy => vy) t = insertcols(t, 8+shift, :vz => vz) t = insertcols(t, 9+shift, :p => p) gas.data = t; return gas, irho, ip / gas.info.unit_d / gas.info.unit_v^2, ics end function test_rho(dataobject) rhodata = getvar(dataobject, :rho, :g_cm3) rhodata = sum(rhodata) / length(rhodata) return rhodata end function test_p(dataobject) pdata = getvar(dataobject, :p) pdata = sum(pdata) / length(pdata) return pdata end function check_positions_hydro(output, path) info = getinfo(output, path, verbose=false) gas = gethydro(info, verbose=false) x,y,z = getpositions(gas, :kpc, center=[:bc] ) xv = getvar(gas, :x, :kpc, center=[:bc]) yv = getvar(gas, :y, :kpc, center=[:bc]) zv = getvar(gas, :z, :kpc, center=[:bc]); flag1 = x == xv flag2 = y == yv flag3 = z == zv x,y,z = getpositions(gas, unit=:kpc, center=[:bc] ) xv = getvar(gas, :x, :kpc, center=[:bc]) yv = getvar(gas, :y, :kpc, center=[:bc]) zv = getvar(gas, :z, :kpc, center=[:bc]); flag4 = x == xv flag5 = y == yv flag6 = z == zv return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true && flag6 == true end function check_velocities_hydro(output, path) info = getinfo(output, path, verbose=false) gas = gethydro(info, verbose=false) vx,vy,vz = getvelocities(gas, :km_s) vxv = getvar(gas, :vx, :km_s) vyv = getvar(gas, :vy, :km_s) vzv = getvar(gas, :vz, :km_s); flag1 = vx == vxv flag2 = vy == vyv flag3 = vz == vzv vx,vy,vz = getvelocities(gas, unit=:km_s ) vxv = getvar(gas, :vx, :km_s) vyv = getvar(gas, :vy, :km_s) vzv = getvar(gas, :vz, :km_s); flag4 = vx == vxv flag5 = vy == vyv flag6 = vz == vzv vel = getvar(gas, [:vx, :vy, :vz], :km_s) flag7 = vx == vel[:vx] flag8 = vy == vel[:vy] flag9 = vz == vel[:vz] vel = getvar(gas, [:vx, :vy, :vz], [:km_s, :km_s, :km_s]) flag10 = vx == vel[:vx] flag11 = vy == vel[:vy] flag12 = vz == vel[:vz] return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true && flag6 == true && flag7 == true && flag8 == true && flag9 == true && flag10 == true && flag11 == true && flag12 == true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
1474
function check_positions_part(output, path) info = getinfo(output, path, verbose=false) part = getparticles(info, verbose=false) x,y,z = getpositions(part, :kpc, center=[:bc] ) xv = getvar(part, :x, :kpc, center=[:bc]) yv = getvar(part, :y, :kpc, center=[:bc]) zv = getvar(part, :z, :kpc, center=[:bc]); flag1 = x == xv flag2 = y == yv flag3 = z == zv x,y,z = getpositions(part, unit=:kpc, center=[:bc] ) xv = getvar(part, :x, :kpc, center=[:bc]) yv = getvar(part, :y, :kpc, center=[:bc]) zv = getvar(part, :z, :kpc, center=[:bc]); flag4 = x == xv flag5 = y == yv flag6 = z == zv return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true && flag6 == true end function check_velocities_part(output, path) info = getinfo(output, path, verbose=false) part = getparticles(info, verbose=false) vx,vy,vz = getvelocities(part, :km_s) vxv = getvar(part, :vx, :km_s) vyv = getvar(part, :vy, :km_s) vzv = getvar(part, :vz, :km_s); flag1 = vx == vxv flag2 = vy == vyv flag3 = vz == vzv vx,vy,vz = getvelocities(part, unit=:km_s ) vxv = getvar(part, :vx, :km_s) vyv = getvar(part, :vy, :km_s) vzv = getvar(part, :vz, :km_s); flag4 = vx == vxv flag5 = vy == vyv flag6 = vz == vzv return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true && flag6 == true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2714
function getgravity_infocheck(output, path) info = getinfo(output, path) grav = getgravity(info); return grav.info == info end function getgravity_allvars(output, path) info = getinfo(output, path) grav = getgravity(info); return length(grav.selected_gravvars) == 4 end function getgravity_selectedvars(output, path) info = getinfo(output, path) grav = getgravity(info, :epot) Ncol = propertynames(grav.data.columns) Ncol_flag1 = false if info.levelmin !== info.levelmax if length(Ncol) == 5 && :epot in Ncol Ncol_flag1 = true end else if length(Ncol) == 4 && :epot in Ncol Ncol_flag1 = true end end println("Ncol_flag1 = ", Ncol_flag1 ) grav = getgravity(info, [:epot, :ax]) Ncol = propertynames(grav.data.columns) Ncol_flag2 = false if info.levelmin !== info.levelmax if length(Ncol) == 6 && :epot in Ncol && :ax in Ncol Ncol_flag2 = true end else if length(Ncol) == 5 && :epot in Ncol && :ax in Ncol Ncol_flag2 = true end end println("Ncol_flag2 = ", Ncol_flag2 ) return Ncol_flag1 == true && Ncol_flag2 == true end function getgravity_cpuvar(output, path) info = getinfo(output, path) grav = getgravity(info, [:cpu, :epot]) Ncol = propertynames(grav.data.columns) Ncol_flag1 = false if info.levelmin !== info.levelmax if length(Ncol) == 6 && :epot in Ncol && :cpu in Ncol Ncol_flag1 = true end else if length(Ncol) == 5 && :epot in Ncol && :cpu in Ncol Ncol_flag1 = true end end println("Ncol_flag1 = ", Ncol_flag1 ) grav = getgravity(info, [:cpu, :all]) Ncol = propertynames(grav.data.columns) Ncol_flag2 = false if info.levelmin !== info.levelmax if length(Ncol) == 9 && :epot in Ncol && :cpu in Ncol Ncol_flag2 = true end else if length(Ncol) == 8 && :epot in Ncol && :cpu in Ncol Ncol_flag2 = true end end println("Ncol_flag2 = ", Ncol_flag2 ) return Ncol_flag1 == true && Ncol_flag2 == true end function gravity_amroverview(output, path) info =getinfo(output, path) if info.levelmin !== info.levelmax grav = getgravity(info) amroverview(grav) end return true end function gravity_dataoverview(output, path) info =getinfo(output, path) grav = getgravity(info) dataoverview(grav) return true end function gravity_viewfields(output, path) info =getinfo(output, path) grav = getgravity(info) viewfields(grav) return true end function gravity_gettime(output, path) info =getinfo(output, path) grav = getgravity(info) return gettime(info, :Myr) == gettime(grav, :Myr) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
4000
function gethydro_infocheck(output, path) info = getinfo(output, path) gas = gethydro(info); return gas.info == info end function gethydro_lmaxEQlmin(output, path) info = getinfo(output, path) gas = gethydro(info, lmax=info.levelmin); Ncol = propertynames(gas.data.columns) return !(:level in Ncol) # lmax=levelmin -> treated as uniform grid end function gethydro_allvars(output, path) info = getinfo(output, path) gas = gethydro(info); return length(gas.selected_hydrovars) == 6 end function gethydro_selectedvars(output, path) info = getinfo(output, path) gas = gethydro(info, :rho) Ncol = propertynames(gas.data.columns) Ncol_flag1 = false if info.levelmin !== info.levelmax if length(Ncol) == 5 && :rho in Ncol Ncol_flag1 = true end else if length(Ncol) == 4 && :rho in Ncol Ncol_flag1 = true end end println("Ncol_flag1 = ", Ncol_flag1 ) gas = gethydro(info, [:rho, :vx]) Ncol = propertynames(gas.data.columns) Ncol_flag2 = false if info.levelmin !== info.levelmax if length(Ncol) == 6 && :rho in Ncol && :vx in Ncol Ncol_flag2 = true end else if length(Ncol) == 5 && :rho in Ncol && :vx in Ncol Ncol_flag2 = true end end println("Ncol_flag2 = ", Ncol_flag2 ) gas = gethydro(info, [:rho, :vx, :vy, :vz, :p]) Ncol = propertynames(gas.data.columns) Ncol_flag3 = false if info.levelmin !== info.levelmax if length(Ncol) == 9 && :rho in Ncol && :vx in Ncol && :vy in Ncol && :vz in Ncol && :p in Ncol Ncol_flag3 = true end else if length(Ncol) == 8 && :rho in Ncol && :vx in Ncol && :vy in Ncol && :vz in Ncol && :p in Ncol Ncol_flag3 = true end end println("Ncol_flag3 = ", Ncol_flag3 ) return Ncol_flag1 == true && Ncol_flag2 == true && Ncol_flag3 == true end function gethydro_cpuvar(output, path) info = getinfo(output, path) gas = gethydro(info, [:cpu, :rho]); Ncol = propertynames(gas.data.columns) Ncol_flag1 = false if info.levelmin !== info.levelmax if length(Ncol) == 6 && :cpu in Ncol Ncol_flag1 = true end else if length(Ncol) == 5 && :cpu in Ncol Ncol_flag1 = true end end println("flag1: CPU numbers loaded = ", Ncol_flag1 ) gas = gethydro(info, [:cpu, :all]); Ncol = propertynames(gas.data.columns) Ncol_flag2 = false if info.levelmin !== info.levelmax if length(Ncol) == 11 && :cpu in Ncol Ncol_flag2 = true end else if length(Ncol) == 10 && :cpu in Ncol Ncol_flag2 = true end end println("flag2: CPU numbers loaded = ", Ncol_flag2 ) return Ncol_flag1 == true && Ncol_flag2 == true end function gethydro_negvalues(output, path) info = getinfo(output, path) gas = gethydro(info, check_negvalues=true); return true end function hydro_smallr(output, path) info = getinfo(output, path) gas = gethydro(info, smallr=1e-11) rho = select(gas.data, :rho) println("min-rho: ", minimum(rho)) return minimum(rho) >= 1e-11 && gas.smallr >= 1e-11 end function hydro_smallc(output, path) info = getinfo(output, path) gas = gethydro(info, smallc=1e-7) p = select(gas.data, :p) println("min-p: ", minimum(p)) return minimum(p) >= 1e-7 && gas.smallc >= 1e-7 end function hydro_amroverview(output, path) info =getinfo(output, path) if info.levelmin !== info.levelmax gas = gethydro(info) amroverview(gas) end return true end function hydro_dataoverview(output, path) info =getinfo(output, path) gas = gethydro(info) dataoverview(gas) return true end function hydro_viewfields(output, path) info =getinfo(output, path) gas = gethydro(info) viewfields(gas) return true end function hydro_gettime(output, path) info =getinfo(output, path) gas = gethydro(info) return gettime(info, :Myr) == gettime(gas, :Myr) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
3164
function getparticles_infocheck(output, path) info = getinfo(output, path) part = getparticles(info); return part.info == info end function getparticles_number(output, path) info = getinfo(output, path) part = getparticles(info); println("loaded particles: ", length(part.data)) println("information from getinfo: ", info.part_info.Nstars + info.part_info.Ndm) return length(part.data) == (info.part_info.Nstars + info.part_info.Ndm) end function getparticles_allvars(output, path) info = getinfo(output, path) part = getparticles(info); if info.levelmin !== info.levelmax return length(part.selected_partvars) == 13 else return length(part.selected_partvars) == 12 end end function getparticles_selectedvars(output, path) info = getinfo(output, path) part = getparticles(info, :mass) Ncol = propertynames(part.data.columns) Ncol_flag1 = false if info.levelmin !== info.levelmax if length(Ncol) == 8 && :mass in Ncol Ncol_flag1 = true end else if length(Ncol) == 7 && :mass in Ncol Ncol_flag1 = true end end println("Ncol_flag1 = ", Ncol_flag1 ) part = getparticles(info, [:mass, :metals]) Ncol = propertynames(part.data.columns) Ncol_flag2 = false if info.levelmin !== info.levelmax if length(Ncol) == 9 && :mass in Ncol && :metals in Ncol Ncol_flag2 = true end else if length(Ncol) == 8 && :mass in Ncol && :metals in Ncol Ncol_flag2 = true end end println("Ncol_flag2 = ", Ncol_flag2 ) return Ncol_flag1 == true && Ncol_flag2 == true end function getparticles_cpuvar(output, path) info = getinfo(output, path) part = getparticles(info, [:cpu, :mass]); Ncol = propertynames(part.data.columns) Ncol_flag1 = false if info.levelmin !== info.levelmax if length(Ncol) == 9 && :cpu in Ncol Ncol_flag1 = true end else if length(Ncol) == 8 && :cpu in Ncol Ncol_flag1 = true end end println("flag1: CPU numbers loaded = ", Ncol_flag1 ) part = getparticles(info, [:cpu, :all]); Ncol = propertynames(part.data.columns) Ncol_flag2 = false if info.levelmin !== info.levelmax if length(Ncol) == 14 && :cpu in Ncol Ncol_flag2 = true end else if length(Ncol) == 13 && :cpu in Ncol Ncol_flag2 = true end end println("flag2: CPU numbers loaded = ", Ncol_flag2 ) return Ncol_flag1 == true && Ncol_flag2 == true end function particles_amroverview(output, path) info =getinfo(output, path) if info.levelmin !== info.levelmax part = getparticles(info) amroverview(part) end return true end function particles_dataoverview(output, path) info =getinfo(output, path) part = getparticles(info) dataoverview(part) return true end function particles_viewfields(output, path) info =getinfo(output, path) part = getparticles(info) viewfields(part) return true end function particles_gettime(output, path) info =getinfo(output, path) part = getparticles(info) return gettime(info, :Myr) == gettime(part, :Myr) end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
7338
function save_jld2(output, path) info = getinfo(output, path) gas = gethydro(info) savedata(gas, :write) vd = viewdata(output) stdata = keys(vd) flag1 = in("hydro", stdata) println("flag1: hydro in jld2 file? ", flag1) println() savedata(gas, "./", :write) savedata(gas, "./", fmode=:write) vd = viewdata(output) stdata = keys(vd) flag2 = in("hydro", stdata) println("flag2: hydro in jld2 file? ", flag2) println() part = getparticles(info) savedata(part, fmode=:append) grav = getgravity(info) savedata(grav, fmode=:append) vd = viewdata(output) stdata = keys(vd) flag3 = in("hydro", stdata) flag4 = in("gravity", stdata) flag5 = in("particles", stdata) println("flag3: hydro in jld2 file? ", flag3) println("flag4: gravity in jld2 file? ", flag4) println("flag5: particles in jld2 file? ", flag5) println() println() return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true end function save_different_order_jld2(output, path) info = getinfo(output, path) part = getparticles(info) savedata(part, fmode=:write) vd = viewdata(output) stdata = keys(vd) flag1 = in("particles", stdata) flag1a = !in("hydro", stdata) grav = getgravity(info) savedata(grav, fmode=:write) vd = viewdata(output) stdata = keys(vd) flag2 = in("gravity", stdata) flag2a = !in("hydro", stdata) println("flag1: particles in jld2 file? ", flag1) println("flag1a: no hydro in jld2 file? ", flag1a) println() println("flag2: gravity in jld2 file? ", flag2) println("flag2a: no hydro in jld2 file? ", flag2a) println() println() return flag1 == true && flag1a == true && flag2 == true && flag2a == true end function convert_jld2(output, path) st = convertdata(output, [:hydro], path=path) vd = viewdata(output) stdata = keys(vd) flag1 = in("hydro", stdata) println("flag1: hydro in jld2 file? ", flag1) flag1a = !in("particles", stdata) println("flag1a: particles not in jld2 file? ", flag1a) println() st = convertdata(output, :hydro, path=path) vd = viewdata(output) stdata = keys(vd) flag2 = in("hydro", stdata) println("flag2: hydro in jld2 file? ", flag2) flag2a = !in("particles", stdata) println("flag2a: particles not in jld2 file? ", flag2a) println() st = convertdata(output, path=path, fpath=".") vd = viewdata(output) stdata = keys(vd) flag3 = in("hydro", stdata) flag4 = in("gravity", stdata) flag5 = in("particles", stdata) println("flag3: hydro in jld2 file? ", flag3) println("flag4: gravity in jld2 file? ", flag4) println("flag5: particles in jld2 file? ", flag5) println() return flag1 == flag1a == flag2 == flag2a == flag3 == flag4 == flag5 == true end function info_jld2(output, path) info = getinfo(output, path) infoconv = infodata(output) infoconv = infodata(output, "./", :hydro) infoconv = infodata(output, "./", datatype=:hydro) infoconv = infodata(output, :hydro) # test reading only infopart = infodata(output, :particles) infograv = infodata(output, :gravity) # =================== info_fields = propertynames(info) field_comparison = true field_comparison_data = true for i in info_fields fieldef = isdefined(infoconv, i) if !fieldef field_comparison = false println("missing field: ", i) else field_data_infoconv = getfield(infoconv, i) field_data_info = getfield(info, i) if i == :fnames comparefields(info.fnames, infoconv.fnames, field_comparison_data) elseif i == :descriptor comparefields(info.descriptor, infoconv.descriptor, field_comparison_data) elseif i == :files_content comparefields(info.files_content, infoconv.files_content, field_comparison_data) elseif i == :scale comparefields(info.scale, infoconv.scale, field_comparison_data) elseif i == :grid_info comparefields(info.grid_info, infoconv.grid_info, field_comparison_data) elseif i == :part_info comparefields(info.part_info, infoconv.part_info, field_comparison_data) elseif i == :compilation comparefields(info.compilation, infoconv.compilation, field_comparison_data) elseif i == :constants comparefields(info.constants, infoconv.constants, field_comparison_data) else compare_field_data = field_data_infoconv == field_data_info if !compare_field_data field_comparison_data = false println("unequal data - field: ", i) end end end end return field_comparison == true && field_comparison_data == true end function comparefields(info_field, infoconv_field, field_comparison_data) inames = propertynames(info_field) for j in inames field_inames_infoconv = getfield(infoconv_field, j) field_inames_info = getfield(info_field, j) compare_field_inames = field_inames_infoconv == field_inames_info if !compare_field_inames field_comparison_data = false println("unequal data - field: ", j) end end return end function viewdata_all(output) vd = viewdata(output, showfull=true) return true end function load_data(output, path) info = getinfo(output, path) gas = gethydro(info) gasconv = loaddata(output, :hydro) flag1 = gas.data == gasconv.data println() println("flag1: data load hydro: ", flag1) println() part = getparticles(info) partconv = loaddata(output, :particles) flag2 = part.data == partconv.data println() println("flag2: data load particles: ", flag2) println() grav = getgravity(info) gravconv = loaddata(output, :gravity) flag3 = grav.data == gravconv.data println() println("flag3: data load gravity: ", flag3) println() gasconv = loaddata(output, "./", :hydro) flag4 = gas.data == gasconv.data println() println("flag4: data load hydro: ", flag4) println() gasconv = loaddata(output, "./", datatype=:hydro) flag5 = gas.data == gasconv.data println() println("flag5: data load hydro: ", flag5) println() return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true end function check_filenames() fname="output_" filename = Mera.outputname(fname, 10) * ".jld2" flag1 = filename == "output_00010.jld2" filename = Mera.outputname(fname, 100) * ".jld2" flag2 = filename == "output_00100.jld2" filename = Mera.outputname(fname, 1000) * ".jld2" flag3 = filename == "output_01000.jld2" filename = Mera.outputname(fname, 10000) * ".jld2" flag4 = filename == "output_10000.jld2" return flag1 == true && flag2 == true && flag3 == true && flag4 == true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2163
function verbose_status(status) verbose() # print status on screen return verbose_mode == status # check status end function showprogress_status(status) showprogress() # print status on screen return showprogress_mode == status # check status end function view_argtypes() # test creation myargs = ArgumentsType() viewfields(myargs) fields = propertynames(myargs) flagpos = true for i in fields iif = getfield(myargs, i ) if !(iif === missing) flagpos = false println("false for field: ", iif) end end return flagpos end function view_namelist(output, path) info = getinfo(output, path) namelist(info) return true end function view_patchfile(output, path) info = getinfo(output, path) patchfile(info) return true end function infotest(output, path) info = getinfo(path) info = getinfo(path, verbose=false) info = getinfo(output, path) info = getinfo(1, path, namelist= path * "/output_00001") return true end function memory_units() obj_value=1 op = usedmemory(obj_value, true) op[1] == 1.0 flag1 = op[2] == "Bytes" println("flag1: ", flag1) obj_value=1024^1 op = usedmemory(obj_value, true) op[1] == 1.0 flag2 = op[2] == "KB" println("flag2: ", flag2) obj_value=1024^2 op = usedmemory(obj_value, true) op[1] == 1.0 flag3 = op[2] == "MB" println("flag3: ", flag3) obj_value=1024^3 op = usedmemory(obj_value, true) op[1] == 1.0 flag4 = op[2] == "GB" println("flag4: ", flag4) obj_value=1024^4 op = usedmemory(obj_value, true) op[1] == 1.0 flag5 = op[2] == "TB" println("flag5: ", flag5) return flag1 == true && flag2 == true && flag3 == true && flag4 == true && flag5 == true end function module_view() viewmodule(Mera) return true end function call_bell() bell() return true end function call_notifyme() # prepare test open(homedir() * "/email.txt", "w") do io print(io, "[email protected]") end notifyme() notifyme("GitHub runtest!") return true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
857
function simoverview(output, simpath) sims = checksimulations(simpath); path = sims[1].N.path N = checkoutputs(path) info = getinfo(output, path) so = storageoverview(info) so = storageoverview(info,true) my_scales = createscales(info) verbose(false) showprogress(false) sims = checksimulations(simpath); path = sims[1].N.path N = checkoutputs(path) info = getinfo(output, path) so = storageoverview(info); verbose(nothing) showprogress(nothing) return true end function viewfieldstest(output, path) info = getinfo(output, path, verbose=false) viewfields(info) viewallfields(info) return true end function viewfilescontent(output, path) info = getinfo(output, path, verbose=false) viewfields(info.files_content) return true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
8620
gas, irho1, ip1, ics1= prepare_data1(output, path) @testset "default" begin mtot = msum(gas, :Msol) projection() p = projection(gas, :mass, :Msol, mode=:sum, show_progress=false) map = p.maps[:mass] @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) ≈ mtot rtol=1e-10 @test p.maps_unit[:mass] == :Msol @test p.maps_unit[:sd] == :standard @test p.maps_mode[:mass] == :sum @test p.maps_mode[:sd] == :nothing @test p.extent == gas.ranges[1:4] .* gas.boxlen @test p.cextent == gas.ranges[1:4] .* gas.boxlen @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) @test p.boxlen == gas.boxlen @test p.smallr == gas.smallr @test p.smallc == gas.smallc @test p.lmin == gas.lmin @test p.lmax == gas.lmax @test p.scale == gas.scale @test p.info == gas.info end @testset "lmax, better resolution, center" begin mtot = msum(gas, :Msol) res=2^11 p = projection(gas, :mass, :Msol, mode=:sum, center=[:bc], res=res, verbose=false, show_progress=false) map = p.maps[:mass] @test size(map) == (res, res) @test sum(map) ≈ mtot rtol=1e-10 @test p.maps_unit[:mass] == :Msol @test p.maps_unit[:sd] == :standard @test p.maps_mode[:mass] == :sum @test p.maps_mode[:sd] == :nothing @test p.extent == gas.ranges[1:4] .* gas.boxlen @test p.cextent == gas.ranges[1:4] .* gas.boxlen .- gas.boxlen /2 @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) end @testset "lmax, less resolution, center" begin mtot = msum(gas, :Msol) res = 2^5 p = projection(gas, :mass, :Msol, mode=:sum, res=res, center=[:bc], verbose=true, show_progress=false) map = p.maps[:mass] @test size(map) == (res, res) @test sum(map) ≈ mtot rtol=1e-10 @test p.maps_unit[:mass] == :Msol @test p.maps_unit[:sd] == :standard @test p.maps_mode[:mass] == :sum @test p.maps_mode[:sd] == :nothing @test p.extent == gas.ranges[1:4] .* gas.boxlen @test p.cextent == gas.ranges[1:4] .* gas.boxlen .- gas.boxlen /2 @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) end @testset "pxsize - resolution, center" begin verbose(true) mtot = msum(gas, :Msol) res=2^11 csize = gas.info.boxlen * gas.info.scale.pc / res p = projection(gas, :mass, :Msol, mode=:sum, center=[:bc], pxsize=[csize, :pc], verbose=true, show_progress=false) p2 = projection(gas, :mass, unit=:Msol, mode=:sum, center=[:bc], pxsize=[csize, :pc], verbose=true, show_progress=false) @test p.maps == p2.maps map = p.maps[:mass] @test size(map) == (res, res) @test sum(map) ≈ mtot rtol=1e-10 @test p.maps_unit[:mass] == :Msol @test p.maps_unit[:sd] == :standard @test p.maps_mode[:mass] == :sum @test p.maps_mode[:sd] == :nothing @test p.extent == gas.ranges[1:4] .* gas.boxlen @test p.cextent == gas.ranges[1:4] .* gas.boxlen .- gas.boxlen /2 @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) verbose(nothing) end @testset "several vars" begin mtot = msum(gas, :Msol) p = projection(gas, [:mass], [:Msol], center=[:bc], mode=:sum, verbose=false, show_progress=false) map = p.maps[:mass] @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) ≈ mtot rtol=1e-10 @test p.maps_unit[:mass] == :Msol @test p.maps_unit[:sd] == :standard @test p.maps_mode[:mass] == :sum @test p.maps_mode[:sd] == :nothing p = projection(gas, [:sd, :cs], [:Msun_pc2, :cm_s], verbose=false, show_progress=false) map = p.maps[:sd] map_cs = p.maps[:cs] cs = p.pixsize .* gas.info.scale.pc @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) * cs^2 ≈ mtot rtol=1e-10 @test sum(map_cs) / length(map_cs[:]) ≈ ics1 rtol=1e-10 @test p.maps_unit[:sd] == :Msun_pc2 @test p.maps_unit[:cs] == :cm_s @test p.maps_mode[:sd] == :nothing p = projection(gas, [:cs, :v, :vx,:vy, :vz], :km_s, verbose=false, show_progress=false) map_cs = p.maps[:cs] map_v = p.maps[:v] map_vx = p.maps[:vx] map_vy = p.maps[:vy] map_vz = p.maps[:vz] vref = sqrt(20. ^2 + 30. ^2 + 40. ^2) @test size(map_cs) == (2^gas.lmax, 2^gas.lmax) @test sum(map_cs) / length(map_cs[:]) ≈ ics1 /1e5 rtol=1e-10 @test sum(map_vx) / length(map_vx[:]) ≈ 20. rtol=1e-10 @test sum(map_vy) / length(map_vy[:]) ≈ 30. rtol=1e-10 @test sum(map_vz) / length(map_vz[:]) ≈ 40. rtol=1e-10 @test sum(map_v) / length(map_v[:]) ≈ vref rtol=1e-10 @test p.maps_unit[:sd] == :standard @test p.maps_unit[:cs] == :km_s @test p.maps_unit[:vx] == :km_s @test p.maps_unit[:vy] == :km_s @test p.maps_unit[:vz] == :km_s @test p.maps_unit[:v] == :km_s @test p.maps_mode[:sd] == :nothing @test p.maps_mode[:cs] == :standard @test p.maps_mode[:vx] == :standard @test p.maps_mode[:vy] == :standard @test p.maps_mode[:vz] == :standard @test p.maps_mode[:v] == :standard # todo """ @test p.maps_weight[:cs] == Union{Missing, Symbol}[:mass, missing] @test p.maps_weight[:sd] == :nothing @test p.maps_weight[:v] == Union{Missing, Symbol}[:mass, missing] @test p.maps_weight[:vx] == Union{Missing, Symbol}[:mass, missing] @test p.maps_weight[:vy] == Union{Missing, Symbol}[:mass, missing] @test p.maps_weight[:vz] == Union{Missing, Symbol}[:mass, missing] """ end # ========== @testset "fullbox, directions and mass conservation " begin mtot = msum(gas, :Msol) p = projection(gas, [:sd, :cs], [:Msun_pc2, :cm_s], direction=:x, verbose=false, show_progress=false) map = p.maps[:sd] map_cs = p.maps[:cs] cellsize = p.pixsize * p.info.scale.pc @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 @test sum(map_cs) / length(map_cs[:]) ≈ ics1 rtol=1e-10 p = projection(gas, [:sd, :cs], [:Msun_pc2, :cm_s], direction=:y, verbose=false, show_progress=false) map = p.maps[:sd] map_cs = p.maps[:cs] cellsize = p.pixsize * p.info.scale.pc @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 @test sum(map_cs) / length(map_cs[:]) ≈ ics1 rtol=1e-10 end """ @testset "subregions, direction and mass conservation " begin xrange = yrange = [-12., 12.] zrange = [-1., 1.] gas_sub = subregion(gas,:cuboid, xrange=xrange, yrange=yrange, zrange=zrange, center=[:bc], range_unit=:kpc) mtot = msum(gas_sub, :Msol) p = projection(gas, [:mass], [:Msol], mode=:sum, direction=:z, xrange=xrange, yrange=yrange, zrange=zrange, center=[:bc], range_unit=:kpc, verbose=false, show_progress=false) map = p.maps[:mass] ##map_cs = p.maps[:cs] #@test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) ≈ mtot rtol=1e-10 ##@test sum(map_cs) / length(map_cs[:]) ≈ ics1 rtol=1e-10 @test p.extent == [-12., 12, -12., 12.] .+ gas.boxlen /2 @test p.cextent == [-12., 12, -12., 12.] #@test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) p = projection(gas, [:mass], [:Msol], mode=:sum, direction=:x, xrange=xrange, yrange=yrange, zrange=zrange, center=[:bc], range_unit=:kpc, verbose=false, show_progress=false) map = p.maps[:mass] ##map_cs = p.maps[:cs] @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) ≈ mtot rtol=1e-10 ##@test sum(map_cs) / length(map_cs[:]) ≈ ics1 rtol=1e-10 @test p.extent == [-12., 12, -1., 1.] .+ gas.boxlen /2 @test p.cextent == [-12., 12, -1., 1.] #@test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) p = projection(gas, [:mass], [:Msol], mode=:sum, direction=:y, xrange=xrange, yrange=yrange, zrange=zrange, center=[:bc], range_unit=:kpc, verbose=false, show_progress=false) map = p.maps[:mass] ##map_cs = p.maps[:cs] @test size(map) == (2^gas.lmax, 2^gas.lmax) @test sum(map) ≈ mtot rtol=1e-10 ##@test sum(map_cs) / length(map_cs[:]) ≈ ics1 rtol=1e-10 @test p.extent == [-12., 12, -1., 1.] .+ gas.boxlen /2 @test p.cextent == [-12., 12, -1., 1.] #@test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) end """
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
4233
info = getinfo(output, path, verbose=false) part = getparticles(info, verbose=false) mask_stars = getvar(part, :family) .== 2 @testset "default" begin mtot = msum(part, :Msol, mask=mask_stars) p = projection(part, :sd, :Msun_pc2, show_progress=false, mask=mask_stars) p2 = projection(part, [:sd], units=[:Msun_pc2], show_progress=false, mask=mask_stars) @test p.maps == p2.maps map = p.maps[:sd] @test size(map) == (2^part.lmax, 2^part.lmax) cellsize = p.pixsize * info.scale.pc @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 @test p.maps_unit[:sd] == :Msun_pc2 @test p.maps_mode[:sd] == :mass_weighted @test p.extent == part.ranges[1:4] .* part.boxlen @test p.cextent == part.ranges[1:4] .* part.boxlen @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) @test p.boxlen == part.boxlen @test p.lmin == part.lmin @test p.lmax == part.lmax @test p.scale == part.scale @test p.info == part.info mtot = msum(part, :Msol) p = projection(part, :sd, :Msun_pc2, show_progress=false, verbose=false) map = p.maps[:sd] cellsize = p.pixsize * info.scale.pc @test sum(map) * cellsize^2 ≈ mtot rtol=1e-4 end @testset "lmax, better resolution, center" begin mtot = msum(part, :Msol, mask=mask_stars) res=2^11 p = projection(part, :sd, :Msun_pc2, center=[:bc], res=res, verbose=false, show_progress=false, mask=mask_stars) map = p.maps[:sd] @test size(map) == (res, res) cellsize = p.pixsize * info.scale.pc @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 @test p.maps_unit[:sd] == :Msun_pc2 @test p.maps_mode[:sd] == :mass_weighted @test p.extent == part.ranges[1:4] .* part.boxlen @test p.cextent == part.ranges[1:4] .* part.boxlen .- part.boxlen /2 @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) end @testset "lmax, less resolution, center" begin mtot = msum(part, :Msol, mask=mask_stars) res = 2^5 p = projection(part, :sd, :Msun_pc2, res=res, center=[:bc], verbose=true, show_progress=false, mask=mask_stars) map = p.maps[:sd] @test size(map) == (res, res) cellsize = p.pixsize * info.scale.pc @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 @test p.maps_unit[:sd] == :Msun_pc2 @test p.maps_mode[:sd] == :mass_weighted @test p.extent == part.ranges[1:4] .* part.boxlen @test p.cextent == part.ranges[1:4] .* part.boxlen .- part.boxlen /2 @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) end @testset "pxsize - resolution, center" begin verbose(true) mtot = msum(part, :Msol, mask=mask_stars) res=2^11 csize = part.info.boxlen * part.info.scale.pc / res p = projection(part, :sd, :Msun_pc2, center=[:bc], pxsize=[csize, :pc], verbose=true, show_progress=false, mask=mask_stars) p2 = projection(part, :sd, unit=:Msun_pc2, center=[:bc], pxsize=[csize, :pc], verbose=true, show_progress=false, mask=mask_stars) @test p.maps == p2.maps map = p.maps[:sd] @test size(map) == (res, res) cellsize = p.pixsize * info.scale.pc @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 @test p.maps_unit[:sd] == :Msun_pc2 @test p.maps_mode[:sd] == :mass_weighted @test p.extent == part.ranges[1:4] .* part.boxlen @test p.cextent == part.ranges[1:4] .* part.boxlen .- part.boxlen /2 @test p.ratio == (p.extent[4] - p.extent[3]) / (p.extent[2] - p.extent[1]) verbose(nothing) end # ========== @testset "fullbox, directions and mass conservation " begin mtot = msum(part, :Msol, mask=mask_stars) # todo add, e.g., age p = projection(part, [:sd], [:Msun_pc2], direction=:x, verbose=false, show_progress=false, mask=mask_stars) map = p.maps[:sd] cellsize = p.pixsize * p.info.scale.pc @test size(map) == (2^part.lmax, 2^part.lmax) @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 p = projection(part, [:sd], [:Msun_pc2], direction=:y, verbose=false, show_progress=false, mask=mask_stars) map = p.maps[:sd] cellsize = p.pixsize * p.info.scale.pc @test size(map) == (2^part.lmax, 2^part.lmax) @test sum(map) * cellsize^2 ≈ mtot rtol=1e-10 end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2546
function gravity_range_codeunit(output, path) info = getinfo(output, path) if info.levelmin !== info.levelmax gas00 = getgravity(info, lmax=5) gas01 = getgravity(info, lmax=5, xrange=[0.2,0.8], yrange=[0.2,0.8], zrange=[0.4,0.6]); if gas01.ranges == [0.2, 0.8, 0.2, 0.8, 0.4, 0.6] gas01_flag1 = true else gas01_flag1 = false end println("code unit ranges: ", gas01_flag1, " -flag01") if gas01.lmax == 5 gas01_flag2 = true else gas01_flag2 = false end println("lmax: ", gas01_flag2, " -flag02") if gas00.data != gas01.data gas01_flag3 = true else gas01_flag3 = false end println("different data ", gas01_flag3, " -flag03") gas02 = getgravity(info, lmax=5, xrange=[-0.3,0.3], yrange=[-0.3,0.3], zrange=[-0.1,0.1], center=[0.5,0.5,0.5]) if gas01.data == gas02.data gas02_flag4 = true else gas02_flag4 = false end println("ranges relative to a given center gives same data: ", gas02_flag4, " -flag4") gas03 = getgravity(info, lmax=5, xrange=[-0.3 * 100, 0.3 * 100], yrange=[-0.3 * 100, 0.3 * 100], zrange=[-0.1 * 100, 0.1 * 100], center=[50., 50., 50.], range_unit=:kpc ) if gas03.data == gas01.data gas03_flag5 = true else gas03_flag5 = false end println("ranges given in physical units gives same data: ", gas03_flag5, " -flag5") gas04 = getgravity(info, lmax=5, xrange=[-0.3 * 100, 0.3 * 100], yrange=[-0.3 * 100, 0.3 * 100], zrange=[-0.1 * 100, 0.1 * 100], center=[:bc], range_unit=:kpc) if gas04.data == gas01.data gas04_flag6 = true else gas04_flag6 = false end println(":bc call in center argument gives same data: ", gas04_flag6, " -flag6") return gas01_flag1 = true && gas01_flag2 == true && gas01_flag3 == true && gas02_flag4 == true && gas03_flag5 == true && gas04_flag6 == true else return true end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2628
function hydro_range_codeunit(output, path) info = getinfo(output, path) if info.levelmin !== info.levelmax gas00 = gethydro(info, lmax=5, smallr=1e-11) gas01 = gethydro(info, lmax=5, xrange=[0.2,0.8], yrange=[0.2,0.8], zrange=[0.4,0.6], smallr = 1e-11); if gas01.ranges == [0.2, 0.8, 0.2, 0.8, 0.4, 0.6] gas01_flag1 = true else gas01_flag1 = false end println("code unit ranges: ", gas01_flag1, " -flag01") if gas01.lmax == 5 gas01_flag2 = true else gas01_flag2 = false end println("lmax: ", gas01_flag2, " -flag02") if gas00.data != gas01.data gas01_flag3 = true else gas01_flag3 = false end println("different data ", gas01_flag3, " -flag03") gas02 = gethydro(info, lmax=5,smallr=1e-11, xrange=[-0.3,0.3], yrange=[-0.3,0.3], zrange=[-0.1,0.1], center=[0.5,0.5,0.5]) if gas01.data == gas02.data gas02_flag4 = true else gas02_flag4 = false end println("ranges relative to a given center gives same data: ", gas02_flag4, " -flag4") gas03 = gethydro(info, lmax=5, smallr=1e-11, xrange=[-0.3 * 100, 0.3 * 100], yrange=[-0.3 * 100, 0.3 * 100], zrange=[-0.1 * 100, 0.1 * 100], center=[50., 50., 50.], range_unit=:kpc ) if gas03.data == gas01.data gas03_flag5 = true else gas03_flag5 = false end println("ranges given in physical units gives same data: ", gas03_flag5, " -flag5") gas04 = gethydro(info, lmax=5, smallr=1e-11, xrange=[-0.3 * 100, 0.3 * 100], yrange=[-0.3 * 100, 0.3 * 100], zrange=[-0.1 * 100, 0.1 * 100], center=[:bc], range_unit=:kpc) if gas04.data == gas01.data gas04_flag6 = true else gas04_flag6 = false end println(":bc call in center argument gives same data: ", gas04_flag6, " -flag6") return gas01_flag1 = true && gas01_flag2 == true && gas01_flag3 == true && gas02_flag4 == true && gas03_flag5 == true && gas04_flag6 == true else return true end end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
code
2080
function particles_range_codeunit(output, path) info = getinfo(output, path) part00 = getparticles(info) part01 = getparticles(info, xrange=[0.2,0.8], yrange=[0.2,0.8], zrange=[0.4,0.6]); if part01.ranges == [0.2, 0.8, 0.2, 0.8, 0.4, 0.6] part01_flag1 = true else part01_flag1 = false end println("code unit ranges: ", part01_flag1, " -flag01") if part00.data != part01.data part01_flag3 = true else part01_flag3 = false end println("different data ", part01_flag3, " -flag03") part02 = getparticles(info, xrange=[-0.3,0.3], yrange=[-0.3,0.3], zrange=[-0.1,0.1], center=[0.5,0.5,0.5]) if part01.data == part02.data part02_flag4 = true else part02_flag4 = false end println("ranges relative to a given center gives same data: ", part02_flag4, " -flag4") part03 = getparticles(info, xrange=[-0.3 * 100, 0.3 * 100], yrange=[-0.3 * 100, 0.3 * 100], zrange=[-0.1 * 100, 0.1 * 100], center=[50., 50., 50.], range_unit=:kpc ) if part03.data == part01.data part03_flag5 = true else part03_flag5 = false end println("ranges given in physical units gives same data: ", part03_flag5, " -flag5") part04 = getparticles(info, xrange=[-0.3 * 100, 0.3 * 100], yrange=[-0.3 * 100, 0.3 * 100], zrange=[-0.1 * 100, 0.1 * 100], center=[:bc], range_unit=:kpc) if part04.data == part01.data part04_flag6 = true else part04_flag6 = false end println(":bc call in center argument gives same data: ", part04_flag6, " -flag6") return part01_flag1 == true && part01_flag3 == true && part02_flag4 == true && part03_flag5 == true && part04_flag6 == true end
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
3355
# Contributor Covenant Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. ## Scope This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at [email protected]. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
14578
<img src="assets/repository_logo_small.jpg" alt="Mera.jl" width="200"> |**Version** | **Documentation** | **Cite**| |:------------|:----------------- |:------------------ | | [![version](https://juliahub.com/docs/Mera/version.svg)](https://juliahub.com/ui/Packages/Mera/7jlnw) | [![][docs-stable-img]][docs-stable-url] | [![][doi-img]][doi-url] | [docs-stable-img]: https://img.shields.io/badge/docs-stable%20release-blue.svg [docs-stable-url]: https://manuelbehrendt.github.io/Mera.jl/stable/ [docs-latest-img]: https://img.shields.io/badge/docs-in_development-orange.svg [docs-latest-url]: https://manuelbehrendt.github.io/Mera.jl/dev/ [doi-img]: https://zenodo.org/badge/229728152.svg [doi-url]: https://zenodo.org/badge/latestdoi/229728152 MERA is a package for working with large 3D AMR/uniform-grid and N-body particle data sets from astrophysical simulations. It is entirely written in the language [Julia](https://julialang.org) and currently supports the hydrodynamic code [RAMSES](https://bitbucket.org/rteyssie/ramses/overview). With this package, I intend to provide essential functions to load and prepare the simulation data for calculations but try to avoid too high-level abstraction (black boxes). > **Note** > To get a first impression, look at the `Hands-On Session RUM2023` with downloadable simulation examples: https://github.com/ManuelBehrendt/RUM2023 ## Package Features - Easy to install and update - Fast and memory lightweight data reading/saving and handling - The data is loaded and processed in a database framework [JuliaDB.jl](https://juliadb.org) - Efficient workflow - Many functionalities for advanced analysis - Easy to extend - Interactive and script functionality - Many examples and tutorials - Mera-files, a significant faster way to read/store the RAMSES data for time sequence analysis ## Dependencies Find the main dependencies on [JuliaHub](https://juliahub.com/ui/Packages/Mera/7jlnw/1.4.2?page=1) or from the development version listed in the file [Project.toml](https://github.com/ManuelBehrendt/Mera.jl/blob/master/Project.toml). ## Tests We are developing **unit-test** and **end-to-end** testing strategies to encounter bugs like general errors, incorrect data returns, and functionality issues. After new commits are pushed to GitHub, **different operating system environments** and **Julia versions** run **automated tests**, e. g. on outputs from various RAMSES simulations, to ensure important functionalities of MERA. The *test* folder contains all tests with the main function in the **runtest.jl** file. **Development Version**| |:---------------------| |[![Coverage Status](https://coveralls.io/repos/github/ManuelBehrendt/Mera.jl/badge.svg?branch=master&kill_cache=2)](https://coveralls.io/github/ManuelBehrendt/Mera.jl?branch=master) [![codecov](https://codecov.io/gh/ManuelBehrendt/Mera.jl/branch/master/graph/badge.svg?token=17HiKD4N30)](https://codecov.io/gh/ManuelBehrendt/Mera.jl) [![CompatHelper](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CompatHelper.yml/badge.svg)](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CompatHelper.yml) | [![Documentation](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/documentation.yml/badge.svg)](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/documentation.yml) [![][docs-latest-img]][docs-latest-url]| **Runtests for:** | **OS** | |:---------------------|:---------------------| [![1.6](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.6.yml/badge.svg)](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.6.yml) | ubuntu-latest, macOS-latest| [![1.7](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.7.yml/badge.svg)](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.7.yml) | ubuntu-latest, macOS-latest | [![1.8](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.8.yml/badge.svg)](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.8.yml) | ubuntu-latest, macOS-latest | [![Julia1.9](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.9.yml/badge.svg)](https://github.com/ManuelBehrendt/Mera.jl/actions/workflows/CI_1.9.yml)| ubuntu-latest, macOS-latest | ## Julia Installation - Binary download + installation instructions: https://julialang.org/downloads/ - Juliaup, an installer and version manager: https://github.com/JuliaLang/juliaup - Apple Silicon: M1/M2 Chips: Julia 1.6.x can be installed without any trouble. But to use PyPlot, it is recommended to install/pin the package [email protected] ! https://pkgdocs.julialang.org/v1.6/managing-packages/#Pinning-a-package . If you encounter any problems with Julia 1.9, try the binary *macOS x86 (Intel or Rosetta)* instead of *macOS (Apple Silicon)*. ## Package Installation The package is tested against the long-term supported Julia 1.6.x (recommended), 1.7.x, 1.8.x, 1.9.x and can be installed with the Julia package manager: https://pkgdocs.julialang.org/v1/ ### Julia REPL From the Julia REPL, type ] to enter the Pkg REPL mode and run: ```julia pkg> add Mera ``` ### Jupyter Notebook Or, equivalently, via the Pkg API in the Jupyter notebook use ```julia using Pkg Pkg.add("Mera") ``` ## Updates Watch on [GitHub](https://github.com/ManuelBehrendt/Mera.jl). Note: Before updating, always read the release notes. In Pkg REPL mode run: ```julia pkg> update Mera ``` Or, equivalently, in a Jupyter notebook: ```julia using Pkg Pkg.update("Mera") ``` ## Reproducibility Reproducibility is an essential requirement of the scientific process. Therefore, I recommend working with environments. Create independent projects that contain their list of used package dependencies and their versions. The possibility of creating projects ensures reproducibility of your programs on your or other platforms if, e.g. the code is shared (toml-files are added to the project folder). For more information see [Julia environments]([https://julialang.github.io/Pkg.jl/v1.6/environments/](https://pkgdocs.julialang.org/v1.9/environments/)). In order to create a new project "activate" your working directory: ```julia shell> cd MyProject /Users/you/MyProject (v1.6) pkg> activate . ``` Now add packages like Mera and PyPlot in the favored version: ```julia (MyProject) pkg> add Package ``` ## Help and Documentation The exported functions and types in MERA are listed in the API documentation, but can also be accessed in the REPL or Jupyter notebook. In the REPL use e.g. for the function *getinfo*: ```julia julia> ? # upon typing ?, the prompt changes (in place) to: help?> help?> getinfo search: getinfo SegmentationFault getindex getpositions MissingException Get the simulation overview from RAMSES info, descriptor and output header files ---------------------------------------------------------------------------------- getinfo(; output::Real=1, path::String="", namelist::String="", verbose::Bool=verbose_mode) return InfoType Keyword Arguments ------------------- • output: timestep number (default=1) • path: the path to the output folder relative to the current folder or absolute path • namelist: give the path to a namelist file (by default the namelist.txt-file in the output-folder is read) • verbose:: informations are printed on the screen by default: gloval variable verbose_mode=true Examples ---------- ........... ``` In the Jupyter notebook use e.g.: ```julia ?getinfo search: getinfo SegmentationFault getindex getpositions MissingException Get the simulation overview from RAMSES info, descriptor and output header files ---------------------------------------------------------------------------------- getinfo(; output::Real=1, path::String="", namelist::String="", verbose::Bool=verbose_mode) return InfoType Keyword Arguments ------------------- • output: timestep number (default=1) • path: the path to the output folder relative to the current folder or absolute path • namelist: give the path to a namelist file (by default the namelist.txt-file in the output-folder is read) • verbose:: informations are printed on the screen by default: gloval variable verbose_mode=true Examples ---------- ........... ``` Get a list of the defined methods of a function: ```julia julia> methods(viewfields) # 10 methods for generic function "viewfields": [1] viewfields(object::PhysicalUnitsType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:181 [2] viewfields(object::Mera.FilesContentType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:166 [3] viewfields(object::DescriptorType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:150 [4] viewfields(object::FileNamesType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:134 [5] viewfields(object::CompilationInfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:116 [6] viewfields(object::GridInfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:90 [7] viewfields(object::PartInfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:73 [8] viewfields(object::ScalesType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:57 [9] viewfields(object::InfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:12 [10] viewfields(object::DataSetType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:197 ``` ## Further Notes - To use the **Jupyter** interactive environment, please install IJulia (see [IJulia](https://github.com/JuliaLang/IJulia.jl)) and/or the standalone "JupyterLab Desktop" app: https://github.com/jupyterlab/jupyterlab-desktop - The **tutorials** in the documentation can be downloaded from [GitHub](https://github.com/ManuelBehrendt/Mera.jl/tree/master/tutorials) as Jupyter notebooks - To get a first impression, look at the **Hands-On Session** RUM2023` with downloadable simulation examples: https://github.com/ManuelBehrendt/RUM2023 - Mera is tested against the **RAMSES versions**: =< stable-17.09, stable-18-09, stable-19-10 - The variables from the **descriptor-files** are currently only read and can be used in a future Mera version - For simulations with a **uniform grid**, the column **:level** is not created to reduce memory usage ## Why Julia? In scientific computing, we are dealing with a steadily increasing amount of data. Highest performance is required, and therefore, most science-related libraries are written in low-level languages like C or Fortran with relatively long development times. The reduced data is often processed in a high-level language like Python. Julia is a relatively new and modern language, and it combines high-level programming with high-performance numerical computing. The syntax is simple and great for math. The just-in-time compilation allows for interactive coding and to achieve an optimized machine code on the fly. Both enhance prototyping and code readability. Therefore, complex projects can be realized in relatively short development times. ​ Further features: - Package manager - Runs on multiple platform - Multiple dispatch - Build-in parallelism - Metaprogramming - Directly call C, Fortran, Python (e.g. Matplotlib), R libraries, ... …. ## Useful Links - [Official Julia website](https://julialang.org) - Alternatively use the Julia version manager and make Julia 1.6.* the default: https://github.com/JuliaLang/juliaup - [Learning Julia](https://julialang.org/learning/) - [Wikibooks](https://en.wikibooks.org/wiki/Introducing_Julia) - [Julia Cheatsheet](https://juliadocs.github.io/Julia-Cheat-Sheet/) - [Free book ThinkJulia](https://benlauwens.github.io/ThinkJulia.jl/latest/book.html) - [Synthax comparison: MATLAB–Python–Julia](https://cheatsheets.quantecon.org) - [Julia forum JuliaDiscourse](https://discourse.julialang.org) - [Courses on YouTube](https://www.youtube.com/user/JuliaLanguage) - Database framework used in Mera: [JuliaDB.jl](https://juliadb.org) - Interesting Packages: [JuliaAstro.jl](http://juliaastro.github.io), [JuliaObserver.com](https://juliaobserver.com) - Use Matplotlib in Julia: [PyPlot.jl](https://github.com/JuliaPy/PyPlot.jl) - Call Python packages/functions from Julia: [PyCall.jl](https://github.com/JuliaPy/PyCall.jl) - Visual Studio Code based Julia IDE [julia-vscode](https://github.com/julia-vscode/julia-vscode) ## Contact for Questions and Contributing - If you have any questions about the package, please feel free to write an email to: mera[>]manuelbehrendt.com - For bug reports, etc., please submit an issue on [GitHub](https://github.com/ManuelBehrendt/Mera.jl) New ideas, feature requests are very welcome! MERA can be easily extended for other grid-based or N-body based data. Write an email to: mera[>]manuelbehrendt.com ## Supporting and Citing To credit the Mera software, please star the repository on GitHub. If you use the Mera software as part of your research, teaching, or other activities, I would be grateful if you could cite my work. To give proper academic credit, follow the link for BibTeX export: [![DOI](https://zenodo.org/badge/229728152.svg)](https://zenodo.org/badge/latestdoi/229728152) ## License MIT License Copyright (c) 2019 Manuel Behrendt Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
834
--- name: Bug report about: Create a report to help us improve title: '' labels: '' assignees: '' --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. iOS] - Browser [e.g. chrome, safari] - Version [e.g. 22] **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] - OS: [e.g. iOS8.1] - Browser [e.g. stock browser, safari] - Version [e.g. 22] **Additional context** Add any other context about the problem here.
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
595
--- name: Feature request about: Suggest an idea for this project title: '' labels: '' assignees: '' --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
32350
# First Steps ## Simulation Overview ```julia using Mera ``` Get information with the function ``getinfo`` about the simulation for a selected output and assign it to an object, here: "info" (composite type). The RAMSES output folders are assumed to be in the current working directory, and the user can give a relative or absolute path. The information is read from several files: info-file, header-file, from the header of the Fortran binary files of the first CPU (hydro, grav, part, clump, sink, ... if they exist), etc. Many familiar names and acronyms known from RAMSES are maintained. The function ``getinfo`` prints a small summary and the given units are printed in human-readable representation. ```julia info = getinfo(300, "../../testing/simulations/mw_L10"); # output=300 in given path ``` [Mera]: 2023-04-10T10:09:57.797 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= The simulation output can be selected in several ways, which is realised by using multiple dispatch. See the different defined methods on the function ``getinfo``: ```julia # info = getinfo(); # default: output=1 in current folder, # info = getinfo("../simulations/"); # given path, default: output=1 # info = getinfo(output=400, path="../simulations/"); # pass path and output number by keywords methods(getinfo) ``` 4 methods for generic function <b>getinfo</b>:<ul><li> getinfo(; <i>output, path, namelist, verbose</i>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl:58</a></li> <li> getinfo(output::<b>Real</b>; <i>path, namelist, verbose</i>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl:46</a></li> <li> getinfo(output::<b>Real</b>, path::<b>String</b>; <i>namelist, verbose</i>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl:50</a></li> <li> getinfo(path::<b>String</b>; <i>output, namelist, verbose</i>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/read_data/RAMSES/getinfo.jl:54</a></li> </ul> ## Fields The created object ``info`` is of type ``InfoType`` (composite type): ```julia typeof(info) ``` InfoType The previously printed information and even more simulation properties are assigned to the object and can be accessed from fields and sub-fields. Get an overview with: ```julia viewfields(info); ``` output = 300 path = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 fnames ==> subfields: (:output, :info, :amr, :hydro, :hydro_descriptor, :gravity, :particles, :part_descriptor, :rt, :rt_descriptor, :rt_descriptor_v0, :clumps, :timer, :header, :namelist, :compilation, :makefile, :patchfile) simcode = RAMSES mtime = 2023-04-09T05:34:09 ctime = 2023-04-10T08:08:14.488 ncpu = 640 ndim = 3 levelmin = 6 levelmax = 10 boxlen = 48.0 time = 29.9031937665063 aexp = 1.0 H0 = 1.0 omega_m = 1.0 omega_l = 0.0 omega_k = 0.0 omega_b = 0.045 unit_l = 3.085677581282e21 unit_d = 6.76838218451376e-23 unit_m = 1.9885499720830952e42 unit_v = 6.557528732282063e6 unit_t = 4.70554946422349e14 gamma = 1.6667 hydro = true nvarh = 7 nvarp = 7 nvarrt = 0 variable_list = [:rho, :vx, :vy, :vz, :p, :var6, :var7] gravity_variable_list = [:epot, :ax, :ay, :az] particles_variable_list = [:vx, :vy, :vz, :mass, :family, :tag, :birth] rt_variable_list = Symbol[] clumps_variable_list = Symbol[] sinks_variable_list = Symbol[] descriptor ==> subfields: (:hversion, :hydro, :htypes, :usehydro, :hydrofile, :pversion, :particles, :ptypes, :useparticles, :particlesfile, :gravity, :usegravity, :gravityfile, :rtversion, :rt, :rtPhotonGroups, :usert, :rtfile, :clumps, :useclumps, :clumpsfile, :sinks, :usesinks, :sinksfile) amr = true gravity = true particles = true rt = false clumps = false sinks = false namelist = true namelist_content ==> dictionary: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") headerfile = true makefile = true files_content ==> subfields: (:makefile, :timerfile, :patchfile) timerfile = true compilationfile = false patchfile = true Narraysize = 0 scale ==> subfields: (:Mpc, :kpc, :pc, :mpc, :ly, :Au, :km, :m, :cm, :mm, :μm, :Mpc3, :kpc3, :pc3, :mpc3, :ly3, :Au3, :km3, :m3, :cm3, :mm3, :μm3, :Msol_pc3, :Msun_pc3, :g_cm3, :Msol_pc2, :Msun_pc2, :g_cm2, :Gyr, :Myr, :yr, :s, :ms, :Msol, :Msun, :Mearth, :Mjupiter, :g, :km_s, :m_s, :cm_s, :nH, :erg, :g_cms2, :T_mu, :K_mu, :T, :K, :Ba, :g_cm_s2, :p_kB, :K_cm3) grid_info ==> subfields: (:ngridmax, :nstep_coarse, :nx, :ny, :nz, :nlevelmax, :nboundary, :ngrid_current, :bound_key, :cpu_read) mpart_info ==> subfields: (:eta_sn, :age_sn, :f_w, :Npart, :Ndm, :Nstars, :Nsinks, :Ncloud, :Ndebris, :Nother, :Nundefined, :other_tracer1, :debris_tracer, :cloud_tracer, :star_tracer, :other_tracer2, :gas_tracer) compilation ==> subfields: (:compile_date, :patch_dir, :remote_repo, :local_branch, :last_commit) constants ==> subfields: (:Au, :Mpc, :kpc, :pc, :mpc, :ly, :Msol, :Msun, :Mearth, :Mjupiter, :Rsol, :Rsun, :me, :mp, :mn, :mH, :amu, :NA, :c, :G, :kB, :Gyr, :Myr, :yr) Get a simple list of the fields of any object: ```julia propertynames(info) ``` (:output, :path, :fnames, :simcode, :mtime, :ctime, :ncpu, :ndim, :levelmin, :levelmax, :boxlen, :time, :aexp, :H0, :omega_m, :omega_l, :omega_k, :omega_b, :unit_l, :unit_d, :unit_m, :unit_v, :unit_t, :gamma, :hydro, :nvarh, :nvarp, :nvarrt, :variable_list, :gravity_variable_list, :particles_variable_list, :rt_variable_list, :clumps_variable_list, :sinks_variable_list, :descriptor, :amr, :gravity, :particles, :rt, :clumps, :sinks, :namelist, :namelist_content, :headerfile, :makefile, :files_content, :timerfile, :compilationfile, :patchfile, :Narraysize, :scale, :grid_info, :part_info, :compilation, :constants) ## Physical Units All calculations in **MERA** are processed in the code units of the loaded simulation. The **RAMSES** scaling factors from code- to cgs-units are given for the length, density, mass, velocity and time, assigned to the fields: unit_l, unit_d, unit_m, unit_v, unit_t To make life easier, we provide more predefined scaling factors, assigned to the sub-field ``scale``: ```julia viewfields(info.scale) ``` [Mera]: Fields to scale from user/code units to selected units ======================================================================= Mpc = 0.0010000000000006482 kpc = 1.0000000000006481 pc = 1000.0000000006482 mpc = 1.0000000000006482e6 ly = 3261.5637769461323 Au = 2.0626480623310105e23 km = 3.0856775812820004e16 m = 3.085677581282e19 cm = 3.085677581282e21 mm = 3.085677581282e22 μm = 3.085677581282e25 Mpc3 = 1.0000000000019446e-9 kpc3 = 1.0000000000019444 pc3 = 1.0000000000019448e9 mpc3 = 1.0000000000019446e18 ly3 = 3.469585750743794e10 Au3 = 8.775571306099254e69 km3 = 2.9379989454983075e49 m3 = 2.9379989454983063e58 cm3 = 2.9379989454983065e64 mm3 = 2.937998945498306e67 μm3 = 2.937998945498306e76 Msol_pc3 = 0.9997234790001649 Msun_pc3 = 0.9997234790001649 g_cm3 = 6.76838218451376e-23 Msol_pc2 = 999.7234790008131 Msun_pc2 = 999.7234790008131 g_cm2 = 0.20885045168302602 Gyr = 0.014910986463557083 Myr = 14.910986463557084 yr = 1.4910986463557083e7 s = 4.70554946422349e14 ms = 4.70554946422349e17 Msol = 9.99723479002109e8 Msun = 9.99723479002109e8 Mearth = 3.329677459032007e14 Mjupiter = 1.0476363431814971e12 g = 1.9885499720830952e42 km_s = 65.57528732282063 m_s = 65575.28732282063 cm_s = 6.557528732282063e6 nH = 30.987773856809987 erg = 8.551000140274429e55 g_cms2 = 2.9104844143584656e-9 T_mu = 517028.3199143136 K_mu = 517028.3199143136 T = 680300.4209398864 K = 680300.4209398864 Ba = 2.910484414358466e-9 g_cm_s2 = 2.910484414358466e-9 p_kB = 2.1080995598777838e7 K_cm3 = 2.1080995598777838e7 ```julia list_field = propertynames( info.scale ) ``` (:Mpc, :kpc, :pc, :mpc, :ly, :Au, :km, :m, :cm, :mm, :μm, :Mpc3, :kpc3, :pc3, :mpc3, :ly3, :Au3, :km3, :m3, :cm3, :mm3, :μm3, :Msol_pc3, :Msun_pc3, :g_cm3, :Msol_pc2, :Msun_pc2, :g_cm2, :Gyr, :Myr, :yr, :s, :ms, :Msol, :Msun, :Mearth, :Mjupiter, :g, :km_s, :m_s, :cm_s, :nH, :erg, :g_cms2, :T_mu, :K_mu, :T, :K, :Ba, :g_cm_s2, :p_kB, :K_cm3) The underline in the unit representation corresponds to the fraction line, e.g.: |field name | corresponding unit | |---- | ----| |Msun_pc3 | Msun * pc^-3| |g_cm3 | g * cm^-3 | |Msun_pc2 | Msun * pc^-2| |g_cm2 | g * cm^-2| | km_s| km * s^-1| | m_s| m * s^-1| | cm_s| cm * s^-1| | g_cms2| g / (cm * s^2)| | nH | cm^-3 | | T_mu | T / μ | | T_mu | K / μ | | p_kB | p / kB | | Ba | = Barye (pressure) [cm^-1 * g * s^-2] | Access a scaling factor to use it in your calculations or plots by e.g.: ```julia info.scale.km_s ``` 65.57528732282063 To reduce the hierarchy of sub-fields, assign a new object: ```julia scale = info.scale; ``` The scaling factor can now be accessed by: ```julia scale.km_s ``` 65.57528732282063 Furthermore, the scales can be assigned by applying the function ``createscales`` on an object of type ``InfoType`` (here: `info`): ```julia typeof(info) ``` InfoType ```julia my_scales = createscales(info) my_scales.km_s ``` 65.57528732282063 ## Physical Constants Some useful constants are assigned to the `InfoType` object: ```julia viewfields(info.constants) ``` [Mera]: Constants given in cgs units ========================================= Au = 0.01495978707 Mpc = 3.08567758128e24 kpc = 3.08567758128e21 pc = 3.08567758128e18 mpc = 3.08567758128e15 ly = 9.4607304725808e17 Msol = 1.9891e33 Msun = 1.9891e33 Mearth = 5.9722e27 Mjupiter = 1.89813e30 Rsol = 6.96e10 Rsun = 6.96e10 me = 9.1093897e-28 mp = 1.6726231e-24 mn = 1.6749286e-24 mH = 1.66e-24 amu = 1.6605402e-24 NA = 6.0221367e23 c = 2.99792458e10 G = 6.67259e-8 kB = 1.38062e-16 Gyr = 3.15576e16 Myr = 3.15576e13 yr = 3.15576e7 Reduce the hierarchy of sub-fields: ```julia con = info.constants; ``` ```julia viewfields(con) ``` [Mera]: Constants given in cgs units ========================================= Au = 0.01495978707 Mpc = 3.08567758128e24 kpc = 3.08567758128e21 pc = 3.08567758128e18 mpc = 3.08567758128e15 ly = 9.4607304725808e17 Msol = 1.9891e33 Msun = 1.9891e33 Mearth = 5.9722e27 Mjupiter = 1.89813e30 Rsol = 6.96e10 Rsun = 6.96e10 me = 9.1093897e-28 mp = 1.6726231e-24 mn = 1.6749286e-24 mH = 1.66e-24 amu = 1.6605402e-24 NA = 6.0221367e23 c = 2.99792458e10 G = 6.67259e-8 kB = 1.38062e-16 Gyr = 3.15576e16 Myr = 3.15576e13 yr = 3.15576e7 ## InfoType Fields Overview All fields and sub-fields that are assigned to the `InfoType` or from other objects can be viewed by the function **viewfields**, **namelist**, **makefile**, **timerfile**, **patchfile**. See the methods list: ```julia methods(viewfields) ``` 11 methods for generic function <b>viewfields</b>:<ul><li> viewfields(object::<b>InfoType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:10</a></li> <li> viewfields(object::<b>ArgumentsType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:54</a></li> <li> viewfields(object::<b>ScalesType001</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:74</a></li> <li> viewfields(object::<b>PartInfoType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:90</a></li> <li> viewfields(object::<b>GridInfoType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:107</a></li> <li> viewfields(object::<b>CompilationInfoType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:133</a></li> <li> viewfields(object::<b>FileNamesType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:151</a></li> <li> viewfields(object::<b>DescriptorType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:167</a></li> <li> viewfields(object::<b>Mera.FilesContentType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:183</a></li> <li> viewfields(object::<b>PhysicalUnitsType001</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:198</a></li> <li> viewfields(object::<b>DataSetType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:215</a></li> </ul> ```julia methods(namelist) ``` 2 methods for generic function <b>namelist</b>:<ul><li> namelist(object::<b>InfoType</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:244</a></li> <li> namelist(object::<b>Dict{Any, Any}</b>) in Mera at <a href="file:///Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl" target="_blank">/Users/mabe/.julia/packages/Mera/tD6wJ/src/functions/viewfields.jl:262</a></li> </ul> Get a detailed overview of all the fields from MERA composite types: ```julia viewallfields(info) ``` output = 300 path = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 fnames ==> subfields: (:output, :info, :amr, :hydro, :hydro_descriptor, :gravity, :particles, :part_descriptor, :rt, :rt_descriptor, :rt_descriptor_v0, :clumps, :timer, :header, :namelist, :compilation, :makefile, :patchfile) simcode = RAMSES mtime = 2023-04-09T05:34:09 ctime = 2023-04-10T08:08:14.488 ncpu = 640 ndim = 3 levelmin = 6 levelmax = 10 boxlen = 48.0 time = 29.9031937665063 aexp = 1.0 H0 = 1.0 omega_m = 1.0 omega_l = 0.0 omega_k = 0.0 omega_b = 0.045 unit_l = 3.085677581282e21 unit_d = 6.76838218451376e-23 unit_m = 1.9885499720830952e42 unit_v = 6.557528732282063e6 unit_t = 4.70554946422349e14 gamma = 1.6667 hydro = true nvarh = 7 nvarp = 7 nvarrt = 0 variable_list = [:rho, :vx, :vy, :vz, :p, :var6, :var7] gravity_variable_list = [:epot, :ax, :ay, :az] particles_variable_list = [:vx, :vy, :vz, :mass, :family, :tag, :birth] rt_variable_list = Symbol[] clumps_variable_list = Symbol[] sinks_variable_list = Symbol[] descriptor ==> subfields: (:hversion, :hydro, :htypes, :usehydro, :hydrofile, :pversion, :particles, :ptypes, :useparticles, :particlesfile, :gravity, :usegravity, :gravityfile, :rtversion, :rt, :rtPhotonGroups, :usert, :rtfile, :clumps, :useclumps, :clumpsfile, :sinks, :usesinks, :sinksfile) amr = true gravity = true particles = true rt = false clumps = false sinks = false namelist = true namelist_content ==> dictionary: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") headerfile = true makefile = true files_content ==> subfields: (:makefile, :timerfile, :patchfile) timerfile = true compilationfile = false patchfile = true Narraysize = 0 scale ==> subfields: (:Mpc, :kpc, :pc, :mpc, :ly, :Au, :km, :m, :cm, :mm, :μm, :Mpc3, :kpc3, :pc3, :mpc3, :ly3, :Au3, :km3, :m3, :cm3, :mm3, :μm3, :Msol_pc3, :Msun_pc3, :g_cm3, :Msol_pc2, :Msun_pc2, :g_cm2, :Gyr, :Myr, :yr, :s, :ms, :Msol, :Msun, :Mearth, :Mjupiter, :g, :km_s, :m_s, :cm_s, :nH, :erg, :g_cms2, :T_mu, :K_mu, :T, :K, :Ba, :g_cm_s2, :p_kB, :K_cm3) grid_info ==> subfields: (:ngridmax, :nstep_coarse, :nx, :ny, :nz, :nlevelmax, :nboundary, :ngrid_current, :bound_key, :cpu_read) part_info ==> subfields: (:eta_sn, :age_sn, :f_w, :Npart, :Ndm, :Nstars, :Nsinks, :Ncloud, :Ndebris, :Nother, :Nundefined, :other_tracer1, :debris_tracer, :cloud_tracer, :star_tracer, :other_tracer2, :gas_tracer) compilation ==> subfields: (:compile_date, :patch_dir, :remote_repo, :local_branch, :last_commit) constants ==> subfields: (:Au, :Mpc, :kpc, :pc, :mpc, :ly, :Msol, :Msun, :Mearth, :Mjupiter, :Rsol, :Rsun, :me, :mp, :mn, :mH, :amu, :NA, :c, :G, :kB, :Gyr, :Myr, :yr) [Mera]: Fields to scale from user/code units to selected units ======================================================================= Mpc = 0.0010000000000006482 kpc = 1.0000000000006481 pc = 1000.0000000006482 mpc = 1.0000000000006482e6 ly = 3261.5637769461323 Au = 2.0626480623310105e23 km = 3.0856775812820004e16 m = 3.085677581282e19 cm = 3.085677581282e21 mm = 3.085677581282e22 μm = 3.085677581282e25 Mpc3 = 1.0000000000019446e-9 kpc3 = 1.0000000000019444 pc3 = 1.0000000000019448e9 mpc3 = 1.0000000000019446e18 ly3 = 3.469585750743794e10 Au3 = 8.775571306099254e69 km3 = 2.9379989454983075e49 m3 = 2.9379989454983063e58 cm3 = 2.9379989454983065e64 mm3 = 2.937998945498306e67 μm3 = 2.937998945498306e76 Msol_pc3 = 0.9997234790001649 Msun_pc3 = 0.9997234790001649 g_cm3 = 6.76838218451376e-23 Msol_pc2 = 999.7234790008131 Msun_pc2 = 999.7234790008131 g_cm2 = 0.20885045168302602 Gyr = 0.014910986463557083 Myr = 14.910986463557084 yr = 1.4910986463557083e7 s = 4.70554946422349e14 ms = 4.70554946422349e17 Msol = 9.99723479002109e8 Msun = 9.99723479002109e8 Mearth = 3.329677459032007e14 Mjupiter = 1.0476363431814971e12 g = 1.9885499720830952e42 km_s = 65.57528732282063 m_s = 65575.28732282063 cm_s = 6.557528732282063e6 nH = 30.987773856809987 erg = 8.551000140274429e55 g_cms2 = 2.9104844143584656e-9 T_mu = 517028.3199143136 K_mu = 517028.3199143136 T = 680300.4209398864 K = 680300.4209398864 Ba = 2.910484414358466e-9 g_cm_s2 = 2.910484414358466e-9 p_kB = 2.1080995598777838e7 K_cm3 = 2.1080995598777838e7 [Mera]: Constants given in cgs units ========================================= Au = 0.01495978707 Mpc = 3.08567758128e24 kpc = 3.08567758128e21 pc = 3.08567758128e18 mpc = 3.08567758128e15 ly = 9.4607304725808e17 Msol = 1.9891e33 Msun = 1.9891e33 Mearth = 5.9722e27 Mjupiter = 1.89813e30 Rsol = 6.96e10 Rsun = 6.96e10 me = 9.1093897e-28 mp = 1.6726231e-24 mn = 1.6749286e-24 mH = 1.66e-24 amu = 1.6605402e-24 NA = 6.0221367e23 c = 2.99792458e10 G = 6.67259e-8 kB = 1.38062e-16 Gyr = 3.15576e16 Myr = 3.15576e13 yr = 3.15576e7 [Mera]: Paths and file-names ================================= output = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300 info = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/info_00300.txt amr = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/amr_00300. hydro = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/hydro_00300. hydro_descriptor = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/hydro_file_descriptor.txt gravity = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/grav_00300. particles = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/part_00300. part_descriptor = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/part_file_descriptor.txt rt = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/rt_00300. rt_descriptor = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/rt_file_descriptor.txt rt_descriptor_v0 = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/info_rt_00300.txt clumps = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/clump_00300. timer = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/timer_00300.txt header = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/header_00300.txt namelist = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/namelist.txt compilation = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/compilation.txt makefile = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/makefile.txt patchfile = /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10/output_00300/patches.txt [Mera]: Descriptor overview ================================= hversion = 1 hydro = [:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01] htypes = ["d", "d", "d", "d", "d", "d", "d"] usehydro = false hydrofile = true pversion = 1 particles = [:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time] ptypes = ["d", "d", "d", "d", "d", "d", "d", "i", "i", "b", "b", "d"] useparticles = false particlesfile = true gravity = [:epot, :ax, :ay, :az] usegravity = false gravityfile = false rtversion = 0 rt = Dict{Any, Any}() rtPhotonGroups = Dict{Any, Any}() usert = false rtfile = false clumps = Symbol[] useclumps = false clumpsfile = false sinks = Symbol[] usesinks = false sinksfile = false [Mera]: Namelist file content ================================= &COOLING_PARAMS cooling =.true. z_ave =1. &SF_PARAMS m_star = 1 n_star = 10. !H/cc T2_star = 0 !T/mu K eps_star = 0.01 !1% &AMR_PARAMS levelmax =10 npartmax = 200000 ngridmax = 1000000 !1000000 boxlen =48.0 !kpc levelmin =6 nexpand =1 !number of mesh expansions (mesh smoothing) &BOUNDARY_PARAMS jbound_min = 0, 0,-1,+1,-1,-1 kbound_max = 0, 0, 0, 0,-1,+1 no_inflow =.true. bound_type = 2, 2, 2, 2, 2, 2 !2 nboundary = 6 ibound_max =-1,+1,+1,+1,+1,+1 ibound_min =-1,+1,-1,-1,-1,-1 jbound_max = 0, 0,-1,+1,+1,+1 kbound_min = 0, 0, 0, 0,-1,+1 &OUTPUT_PARAMS tend =400 delta_tout =0.1 !Time increment between outputs &POISSON_PARAMS gravity_type =-3 !for 0 ->self gravitation ; 3 ->ext pot; -3 ->ext. pot. + sg &RUN_PARAMS pic =.true. nsubcycle =20*2 ncontrol =100 !frequency of screen output poisson =.true. verbose =.false. nremap =10 !10 nrestart =0 hydro =.true. &FEEDBACK_PARAMS eta_sn =0.2 delayed_cooling =.true. t_diss = 1.5 &HYDRO_PARAMS slope_type =1 smallr =1e-11 gamma =1.6667 courant_factor =0.6 !smallc = riemann ='hllc' &INIT_PARAMS nregion =2 &REFINE_PARAMS [Mera]: Grid overview ============================ ngridmax = 1000000 nstep_coarse = 6544 nx = 3 ny = 3 nz = 3 nlevelmax = 10 nboundary = 6 ngrid_current = 21305 bound_key ==> length(641) cpu_read ==> length(641) [Mera]: Particle overview =============================== eta_sn = 0.0 age_sn = 0.6706464407596582 f_w = 0.0 Npart = 0 Ndm = 0 Nstars = 544515 Nsinks = 0 Ncloud = 0 Ndebris = 0 Nother = 0 Nundefined = 0 other_tracer1 = 0 debris_tracer = 0 cloud_tracer = 0 star_tracer = 0 other_tracer2 = 0 gas_tracer = 0 [Mera]: Compilation file overview ======================================== compile_date = patch_dir = remote_repo = local_branch = last_commit = [Mera]: Makefile content ================================= !content deleted on purpose [Mera]: Timer-file content ================================= -------------------------------------------------------------------- minimum average maximum standard dev std/av % rmn rmx TIMER 426.559 428.960 431.540 1.216 0.003 0.5 562 606 coarse levels 2086.863 2285.294 2620.028 109.814 0.048 2.9 639 1 refine 518.746 519.356 520.299 0.572 0.001 0.7 608 21 load balance 173.017 565.169 1799.729 385.862 0.683 0.7 602 1 particles 5897.562 5897.616 5897.791 0.018 0.000 7.5 244 1 io 5176.808 9619.415 26606.857 5416.924 0.563 12.3 568 1 feedback 25022.898 25410.890 25585.446 143.363 0.006 32.4 1 602 poisson 1131.397 2241.256 2547.320 322.916 0.144 2.9 1 345 rho 521.635 678.056 1076.044 151.775 0.224 0.9 601 1 courant 82.818 115.742 135.415 10.926 0.094 0.1 398 125 hydro - set unew 7009.921 9876.180 12208.171 1176.765 0.119 12.6 481 343 hydro - godunov 948.967 16679.099 23569.950 4760.658 0.285 21.3 640 340 hydro - rev ghostzones 189.513 208.576 229.883 7.902 0.038 0.3 398 581 hydro - set uold 1757.246 1795.542 1860.788 11.757 0.007 2.3 524 180 cooling 84.519 300.570 375.587 67.032 0.223 0.4 1 593 hydro - ghostzones 933.143 1662.855 1788.316 119.084 0.072 2.1 1 639 flag 78327.986 100.0 TOTAL ## Disc Space Gives an overview of the used disc space for the different data types of the selected output: ```julia storageoverview(info) ``` Overview of the used disc space for output: [300] ------------------------------------------------------ Folder: 5.68 GB <2.26 MB>/file AMR-Files: 1.1 GB <1.75 MB>/file Hydro-Files: 2.87 GB <4.58 MB>/file Gravity-Files: 1.68 GB <2.69 MB>/file Particle-Files: 38.56 MB <61.6 KB>/file mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 Dict{Any, Any} with 8 entries: :folder => 6101105264 :sink => 0.0 :particle => 40430034 :hydro => 3079240490 :gravity => 1802094080 :amr => 1177085816 :clump => 0.0 :rt => 0.0 ## Simulation outputs Get an overview of existing output folders of a simulation ```julia co = checkoutputs("../../testing/simulations/mw_L10") ``` Outputs - existing: 1 betw. 300:300 - missing: 1 Mera.CheckOutputNumberType([300], [301], "../../testing/simulations/mw_L10") ```julia # It returns all output numbers of existing or missing (e.g. empty) folders: propertynames(co) ``` (:outputs, :miss, :path) ```julia co.outputs ``` 1-element Vector{Int64}: 300 ```julia co.miss ``` 1-element Vector{Int64}: 301 ```julia ``` ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
9743
# 1. Clumps: First Data Inspection ## Simulation Overview ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); ``` [Mera]: 2020-02-12T20:41:16.814 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= A short overview of the loaded clumps properties is printed: - existence of clumps files - the variable names from the header of the clump files ## Load Clump Data Read the Clumps data from all files of the full box with all existing variables. **MERA** checks the first line of a clump file to find the column names. The identified names give the number of existing columns. ```julia clumps = getclumps(info); ``` [Mera]: Get clump data: 2020-02-12T20:41:23.656 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- The memory consumption of the data table is printed at the end. We provide a function which gives the possibility to print the used memory of any object: ```julia usedmemory(clumps); ``` Memory used: 331.672 KB The assigned object is now of type: `ClumpsDataType`: ```julia typeof(clumps) ``` ClumpDataType It is a sub-type of `ContainMassDataSetType` ```julia supertype( ContainMassDataSetType ) ``` DataSetType `ContainMassDataSetType` is a sub-type of to the super-type `DataSetType` ```julia supertype( ClumpDataType ) ``` ContainMassDataSetType The data is stored as a **JuliaDB** table and the selected clump variables and parameters are assigned to fields: ```julia viewfields(clumps) ``` data ==> JuliaDB table: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) info ==> subfields: (:output, :path, :fnames, :simcode, :mtime, :ctime, :ncpu, :ndim, :levelmin, :levelmax, :boxlen, :time, :aexp, :H0, :omega_m, :omega_l, :omega_k, :omega_b, :unit_l, :unit_d, :unit_m, :unit_v, :unit_t, :gamma, :hydro, :nvarh, :nvarp, :variable_list, :gravity_variable_list, :particles_variable_list, :clumps_variable_list, :sinks_variable_list, :descriptor, :amr, :gravity, :particles, :clumps, :sinks, :rt, :namelist, :namelist_content, :headerfile, :makefile, :files_content, :timerfile, :compilationfile, :patchfile, :Narraysize, :scale, :grid_info, :part_info, :compilation, :constants) boxlen = 48.0 ranges = [0.0, 1.0, 0.0, 1.0, 0.0, 1.0] selected_clumpvars = Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] scale ==> subfields: (:Mpc, :kpc, :pc, :mpc, :ly, :Au, :km, :m, :cm, :mm, :μm, :Msol_pc3, :g_cm3, :Msol_pc2, :g_cm2, :Gyr, :Myr, :yr, :s, :ms, :Msol, :Mearth, :Mjupiter, :g, :km_s, :m_s, :cm_s, :nH, :erg, :g_cms2, :T_mu, :Ba) For convenience, all the fields from the info-object above (InfoType) are now also accessible from the object with "clumps.info" and the scaling relations from code to cgs units in "clumps.scale". The box length, the selected ranges and number of the clump variables are also retained. Print the fields of an object (composite type) in a simple list: ```julia propertynames(clumps) ``` (:data, :info, :boxlen, :ranges, :selected_clumpvars, :used_descriptors, :scale) ## Overview of Clump Data Get some overview of the data associated with the object `clumps`. The calculated information can be accessed from the object `data_overview` (here) in code units for further calculations: ```julia data_overview = dataoverview(clumps) ``` Table with 2 rows, 13 columns: Columns: # colname type ─────────────────── 1 extrema Any 2 index Any 3 lev Any 4 parent Any 5 ncell Any 6 peak_x Any 7 peak_y Any 8 peak_z Any 9 rho- Any 10 rho+ Any 11 rho_av Any 12 mass_cl Any 13 relevance Any If the number of columns is relatively long, the table is typically represented by an overview. To access certain columns, use the `select` function. The representation ":mass_cl" is called a quoted Symbol ([see in Julia documentation](https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols-1)): ```julia using JuliaDB ``` ```julia select(data_overview, (:extrema, :index, :peak_x, :peak_y, :peak_z, :mass_cl) ) ``` Table with 2 rows, 6 columns: extrema index peak_x peak_y peak_z mass_cl ────────────────────────────────────────────────────── "min" 4.0 10.292 9.93604 22.1294 0.00031216 "max" 2147.0 38.1738 35.7056 25.4634 0.860755 Get an array from the column ":mass_cl" in `data_overview` and scale it to the units `Msol`. The order of the calculated data is consistent with the table above: ```julia select(data_overview, :mass_cl) * info.scale.Msol ``` 2-element Array{Float64,1}: 312073.3187055649 8.605166312657958e8 Or simply convert the `:mass_cl` data in the table to `Msol` units by manipulating the column: ```julia data_overview = transform(data_overview, :mass_cl => :mass_cl => value->value * info.scale.Msol); ``` ```julia select(data_overview, (:extrema, :index, :peak_x, :peak_y, :peak_z, :mass_cl) ) ``` Table with 2 rows, 6 columns: extrema index peak_x peak_y peak_z mass_cl ───────────────────────────────────────────────────── "min" 4.0 10.292 9.93604 22.1294 3.12073e5 "max" 2147.0 38.1738 35.7056 25.4634 8.60517e8 ## Data Inspection The data is associated with the field `clumps.data` as a **JuliaDB** table (code units). Each row corresponds to a clump and each column to a property which makes it easy to find, filter, map, aggregate, group the data, etc. More information can be found in the MERA tutorials or in: [JuliaDB API Reference](http://juliadb.org/latest/api/) ### Table View The positions peak_x, peak_y,peak_z are the positions and should not be modified. ```julia clumps.data ``` Table with 644 rows, 12 columns: Columns: # colname type ────────────────────── 1 index Float64 2 lev Float64 3 parent Float64 4 ncell Float64 5 peak_x Float64 6 peak_y Float64 7 peak_z Float64 8 rho- Float64 9 rho+ Float64 10 rho_av Float64 11 mass_cl Float64 12 relevance Float64 A more detailed view into the data: ```julia select(clumps.data, (:index, :peak_x, :peak_y, :peak_z, :mass_cl) ) ``` Table with 644 rows, 5 columns: index peak_x peak_y peak_z mass_cl ───────────────────────────────────────────── 4.0 20.1094 11.5005 23.9604 0.0213767 5.0 20.1592 11.5122 23.9253 0.0131504 9.0 21.7852 17.855 23.814 0.00358253 12.0 21.8232 17.8608 23.855 0.00509792 13.0 21.8906 17.2837 23.5415 0.0319414 18.0 21.7822 16.8823 23.7817 0.00848828 19.0 21.75 16.8589 23.7993 0.00587003 20.0 21.6006 17.5679 23.7935 0.0324672 25.0 21.5801 17.6177 23.9341 0.0245806 26.0 21.5859 17.5796 23.9165 0.0183601 29.0 21.5625 17.5854 23.8726 0.0303356 46.0 21.5215 17.6235 23.9458 0.343594 ⋮ 2115.0 27.7705 13.2788 23.8081 0.0340939 2116.0 27.7617 13.3081 23.8081 0.0145199 2117.0 27.7793 13.2993 23.6851 0.00855992 2120.0 27.7559 13.1792 23.8638 0.00508007 2125.0 27.7939 13.0298 23.9194 0.00128829 2128.0 27.791 13.0649 23.9019 0.00183979 2131.0 28.3037 12.8188 23.9487 0.00128627 2132.0 28.626 12.8188 23.8755 0.00434 2137.0 29.9736 15.0571 23.7202 0.00195464 2140.0 27.1436 15.6401 23.9048 0.0160477 2147.0 25.1953 9.93604 23.9897 0.0294943 ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
14092
# 1. Hydro: First Data Inspection ## Simulation Overview ```julia using Mera info = getinfo(300, "../../testing/simulations/mw_L10"); ``` [Mera]: 2023-04-10T10:48:46.483 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= A short overview of the loaded hydro properties is printed: - existence of hydro files - the number and predefined variables - the variable names from the descriptor file - adiabatic index The functions in **Mera** "know" the predefined hydro variable names: :rho, :vx, :vy, :vz, :p, :var6, :var7,.... In a future version the variable names from the hydro descriptor can be used by setting the field info.descriptor.usehydro = true . Furthermore, the user has the opportunity to overwrite the variable names in the discriptor list by changing the entries in the array: ```julia info.descriptor.hydro ``` 7-element Vector{Symbol}: :density :velocity_x :velocity_y :velocity_z :pressure :scalar_00 :scalar_01 For example: ```julia info.descriptor.hydro[2] = :vel_x; ``` ```julia info.descriptor.hydro ``` 7-element Vector{Symbol}: :density :vel_x :velocity_y :velocity_z :pressure :scalar_00 :scalar_01 Get an overview of the loaded descriptor properties: ```julia viewfields(info.descriptor) ``` [Mera]: Descriptor overview ================================= hversion = 1 hydro = [:density, :vel_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01] htypes = ["d", "d", "d", "d", "d", "d", "d"] usehydro = false hydrofile = true pversion = 1 particles = [:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time] ptypes = ["d", "d", "d", "d", "d", "d", "d", "i", "i", "b", "b", "d"] useparticles = false particlesfile = true gravity = [:epot, :ax, :ay, :az] usegravity = false gravityfile = false rtversion = 0 rt = Dict{Any, Any}() rtPhotonGroups = Dict{Any, Any}() usert = false rtfile = false clumps = Symbol[] useclumps = false clumpsfile = false sinks = Symbol[] usesinks = false sinksfile = false Get a simple list of the fields: ```julia propertynames(info.descriptor) ``` (:hversion, :hydro, :htypes, :usehydro, :hydrofile, :pversion, :particles, :ptypes, :useparticles, :particlesfile, :gravity, :usegravity, :gravityfile, :rtversion, :rt, :rtPhotonGroups, :usert, :rtfile, :clumps, :useclumps, :clumpsfile, :sinks, :usesinks, :sinksfile) ## Load AMR/Hydro Data ```julia info = getinfo(300, "../../testing/simulations/mw_L10", verbose=false); # used to overwrite the previous changes ``` Read the AMR and the Hydro data from all files of the full box with all existing variables and cell positions (only leaf cells of the AMR grid). ```julia gas = gethydro(info); ``` [Mera]: Get hydro data: 2023-04-10T10:49:21.228 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:29 Memory used for data table :2.3210865957662463 GB ------------------------------------------------------- The memory consumption of the data table is printed at the end. We provide a function which gives the possibility to print the used memory of any object: ```julia usedmemory(gas); ``` Memory used: 2.321 GB The assigned data object is now of type `HydroDataType`: ```julia typeof(gas) ``` HydroDataType It is a sub-type of `ContainMassDataSetType` ```julia supertype( ContainMassDataSetType ) ``` DataSetType `ContainMassDataSetType` is a sub-type of to the super-type `DataSetType` ```julia supertype( HydroDataType ) ``` HydroPartType The data is stored in a **JuliaDB** table and the user selected hydro variables and parameters are assigned to fields: ```julia viewfields(gas) ``` data ==> JuliaDB table: (:level, :cx, :cy, :cz, :rho, :vx, :vy, :vz, :p, :var6, :var7) info ==> subfields: (:output, :path, :fnames, :simcode, :mtime, :ctime, :ncpu, :ndim, :levelmin, :levelmax, :boxlen, :time, :aexp, :H0, :omega_m, :omega_l, :omega_k, :omega_b, :unit_l, :unit_d, :unit_m, :unit_v, :unit_t, :gamma, :hydro, :nvarh, :nvarp, :nvarrt, :variable_list, :gravity_variable_list, :particles_variable_list, :rt_variable_list, :clumps_variable_list, :sinks_variable_list, :descriptor, :amr, :gravity, :particles, :rt, :clumps, :sinks, :namelist, :namelist_content, :headerfile, :makefile, :files_content, :timerfile, :compilationfile, :patchfile, :Narraysize, :scale, :grid_info, :part_info, :compilation, :constants) lmin = 6 lmax = 10 boxlen = 48.0 ranges = [0.0, 1.0, 0.0, 1.0, 0.0, 1.0] selected_hydrovars = [1, 2, 3, 4, 5, 6, 7] smallr = 0.0 smallc = 0.0 scale ==> subfields: (:Mpc, :kpc, :pc, :mpc, :ly, :Au, :km, :m, :cm, :mm, :μm, :Mpc3, :kpc3, :pc3, :mpc3, :ly3, :Au3, :km3, :m3, :cm3, :mm3, :μm3, :Msol_pc3, :Msun_pc3, :g_cm3, :Msol_pc2, :Msun_pc2, :g_cm2, :Gyr, :Myr, :yr, :s, :ms, :Msol, :Msun, :Mearth, :Mjupiter, :g, :km_s, :m_s, :cm_s, :nH, :erg, :g_cms2, :T_mu, :K_mu, :T, :K, :Ba, :g_cm_s2, :p_kB, :K_cm3) For convenience, all the fields from the info-object above (InfoType) are now also accessible from the object with "gas.info" and the scaling relations from code to cgs units in "gas.scale". The minimum and maximum level of the loaded data, the box length, the selected ranges and number of the hydro variables are retained. A minimum density or sound speed can be set for the loaded data (e.g. to overwrite negative densities) and is then represented by the fields smallr and smallc of the object `gas` (here). An example: ```julia gas = gethydro(info, smallr=1e-11); ``` [Mera]: Get hydro data: 2023-04-10T10:54:09.424 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:25 Memory used for data table :2.3210865957662463 GB ------------------------------------------------------- Print the fields of an object (composite type) in a simple list: ```julia propertynames(gas) ``` (:data, :info, :lmin, :lmax, :boxlen, :ranges, :selected_hydrovars, :used_descriptors, :smallr, :smallc, :scale) ## Overview of AMR/Hydro Get an overview of the AMR structure associated with the object `gas` (HydroDataType). The printed information is stored into the object `overview_amr` as a **JuliaDB** table (code units)  and can be used for further calculations: ```julia overview_amr = amroverview(gas) ``` Counting... Table with 5 rows, 3 columns: level cells cellsize ───────────────────────── 6 66568 0.75 7 374908 0.375 8 7806793 0.1875 9 12774134 0.09375 10 7298576 0.046875 Get some overview of the data that is associated with the object `gas`. The calculated information can be accessed from the object `data_overview` (here) in code units for further calculations: ```julia data_overview = dataoverview(gas) ``` Calculating... 100%|███████████████████████████████████████████████████| Time: 0:00:06 Table with 5 rows, 16 columns: Columns: # colname type ────────────────── 1 level Any 2 mass Any 3 rho_min Any 4 rho_max Any 5 vx_min Any 6 vx_max Any 7 vy_min Any 8 vy_max Any 9 vz_min Any 10 vz_max Any 11 p_min Any 12 p_max Any 13 var6_min Any 14 var6_max Any 15 var7_min Any 16 var7_max Any If the number of columns is relatively long, the table is typically represented by an overview. To access certain columns, use the `select` function. The representation ":mass" is called a quoted Symbol ([see in Julia documentation](https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols-1)): ```julia using JuliaDB ``` ```julia select(data_overview, (:level,:mass, :rho_min, :rho_max ) ) ``` Table with 5 rows, 4 columns: level mass rho_min rho_max ─────────────────────────────────────────── 6 0.000698165 2.61776e-9 1.16831e-7 7 0.00126374 1.15139e-8 2.21103e-7 8 0.0201245 2.44071e-8 0.000222309 9 0.204407 1.2142e-7 0.0141484 10 6.83618 4.49036e-7 3.32984 Get an array from the column ":mass" in `data_overview` and scale it to the units `Msol`. The order of the calculated data is consistent with the table above: ```julia column(data_overview, :mass) * info.scale.Msol ``` 5-element Vector{Float64}: 697971.5415380469 1.2633877595077453e6 2.01189316548175e7 2.0435047070331135e8 6.834288803451587e9 Or simply convert the `:mass` data in the table to `Msol` units by manipulating the column: ```julia data_overview = transform(data_overview, :mass => :mass => value->value * info.scale.Msol); ``` ```julia select(data_overview, (:level, :mass, :rho_min, :rho_max ) ) ``` Table with 5 rows, 4 columns: level mass rho_min rho_max ───────────────────────────────────────── 6 6.97972e5 2.61776e-9 1.16831e-7 7 1.26339e6 1.15139e-8 2.21103e-7 8 2.01189e7 2.44071e-8 0.000222309 9 2.0435e8 1.2142e-7 0.0141484 10 6.83429e9 4.49036e-7 3.32984 ## Data Inspection The data is associated with the field `gas.data` as a **JuliaDB** table (code units). Each row corresponds to a cell and each column to a property which makes it easy to find, filter, map, aggregate, group the data, etc. More information can be found in the **Mera** tutorials or in: [JuliaDB API Reference](http://juliadb.org/latest/api/) ### Table View The cell positions cx,cy,cz correspond to a uniform 3D array for each level. E.g., for level=8, the positions range from 1-256 for each dimension, for level=14, 1-16384 while not all positions within this range exist due to the complex AMR structure. The integers cx,cy,cz are used to reconstruct the grid in many functions of **MERA** and should not be modified. ```julia gas.data ``` Table with 28320979 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 A more detailed view into the data: ```julia select(gas.data, (:level,:cx, :cy, :cz, :rho) ) ``` Table with 28320979 rows, 5 columns: level cx cy cz rho ───────────────────────────────── 6 1 1 1 3.18647e-9 6 1 1 2 3.58591e-9 6 1 1 3 3.906e-9 6 1 1 4 4.27441e-9 6 1 1 5 4.61042e-9 6 1 1 6 4.83977e-9 6 1 1 7 4.974e-9 6 1 1 8 5.08112e-9 6 1 1 9 5.20596e-9 6 1 1 10 5.38372e-9 6 1 1 11 5.67209e-9 6 1 1 12 6.14423e-9 ⋮ 10 814 493 514 0.000321702 10 814 494 509 1.42963e-6 10 814 494 510 1.4351e-6 10 814 494 511 0.00029515 10 814 494 512 0.000395273 10 814 494 513 0.000321133 10 814 494 514 0.000319678 10 814 495 511 0.00024646 10 814 495 512 0.000269009 10 814 496 511 0.000235329 10 814 496 512 0.000242422 ```julia ``` ```julia ``` ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
12150
# 1. Particles: First Data Inspection ## Simulation Overview ```julia using Mera info = getinfo(300, "../../testing/simulations/mw_L10"); ``` [Mera]: 2023-04-10T10:58:43.590 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= A short overview of the loaded particle properties is printed: - existence of particle files - the predefined variables - the number of particles for each id/family (if exist) - the variable names from the descriptor file (if exist) The functions in **Mera** "know" the predefined particle variable names: - From >= ramses-version-2018: :vx, :vy, :vz, :mass, :family, :tag, :birth, :metals :var9,.... - For =< ramses-version-2017: :vx, :vy, :vz, :mass, :birth, :var6, :var7,.... - Currently, the following variables are loaded by default (if exist): :level, :x, :y, :z, :id, :family, :tag. - The cpu number associated with the particles can be loaded with the variable names: :cpu or :varn1 - In a future version the variable names from the particle descriptor can be used by setting the field info.descriptor.useparticles = true . Get an overview of the loaded particle properties: ```julia viewfields(info.part_info) ``` [Mera]: Particle overview =============================== eta_sn = 0.0 age_sn = 0.6706464407596582 f_w = 0.0 Npart = 0 Ndm = 0 Nstars = 544515 Nsinks = 0 Ncloud = 0 Ndebris = 0 Nother = 0 Nundefined = 0 other_tracer1 = 0 debris_tracer = 0 cloud_tracer = 0 star_tracer = 0 other_tracer2 = 0 gas_tracer = 0 ## Load AMR/Particle Data Read the AMR and the Particle data from all files of the full box with all existing variables and particle positions: ```julia particles = getparticles(info); ``` [Mera]: Get particle data: 2023-04-10T10:58:56.439 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Found 5.445150e+05 particles Memory used for data table :38.42913246154785 MB ------------------------------------------------------- The memory consumption of the data table is printed at the end. We provide a function which gives the possibility to print the used memory of any object: ```julia usedmemory(particles); ``` Memory used: 38.451 MB The assigned object is now of type `PartDataType`: ```julia typeof(particles) ``` PartDataType It is a sub-type of ContainMassDataSetType ```julia supertype( ContainMassDataSetType ) ``` DataSetType ContainMassDataSetType is a sub-type of to the super-type DataSetType ```julia supertype( PartDataType ) ``` HydroPartType The data is stored in a **JuliaDB** table and the user selected particle variables and parameters are assigned to fields: ```julia viewfields(particles) ``` data ==> JuliaDB table: (:level, :x, :y, :z, :id, :family, :tag, :vx, :vy, :vz, :mass, :birth) info ==> subfields: (:output, :path, :fnames, :simcode, :mtime, :ctime, :ncpu, :ndim, :levelmin, :levelmax, :boxlen, :time, :aexp, :H0, :omega_m, :omega_l, :omega_k, :omega_b, :unit_l, :unit_d, :unit_m, :unit_v, :unit_t, :gamma, :hydro, :nvarh, :nvarp, :nvarrt, :variable_list, :gravity_variable_list, :particles_variable_list, :rt_variable_list, :clumps_variable_list, :sinks_variable_list, :descriptor, :amr, :gravity, :particles, :rt, :clumps, :sinks, :namelist, :namelist_content, :headerfile, :makefile, :files_content, :timerfile, :compilationfile, :patchfile, :Narraysize, :scale, :grid_info, :part_info, :compilation, :constants) lmin = 6 lmax = 10 boxlen = 48.0 ranges = [0.0, 1.0, 0.0, 1.0, 0.0, 1.0] selected_partvars = [:level, :x, :y, :z, :id, :family, :tag, :vx, :vy, :vz, :mass, :birth] scale ==> subfields: (:Mpc, :kpc, :pc, :mpc, :ly, :Au, :km, :m, :cm, :mm, :μm, :Mpc3, :kpc3, :pc3, :mpc3, :ly3, :Au3, :km3, :m3, :cm3, :mm3, :μm3, :Msol_pc3, :Msun_pc3, :g_cm3, :Msol_pc2, :Msun_pc2, :g_cm2, :Gyr, :Myr, :yr, :s, :ms, :Msol, :Msun, :Mearth, :Mjupiter, :g, :km_s, :m_s, :cm_s, :nH, :erg, :g_cms2, :T_mu, :K_mu, :T, :K, :Ba, :g_cm_s2, :p_kB, :K_cm3) For convenience, all the fields from the info-object above (InfoType) are now also accessible from the object with "particles.info" and the scaling relations from code to cgs units in "particles.scale". Print the fields of an object (composite type) in a simple list: ```julia propertynames(particles) ``` (:data, :info, :lmin, :lmax, :boxlen, :ranges, :selected_partvars, :used_descriptors, :scale) ## Overview of AMR/Particles Get an overview of the AMR structure associated with the object `particles` (PartDataType). The printed information is stored into the object `overview_amr` as a **JuliaDB** table (code units)  and can be used for further calculations: ```julia amr_overview = amroverview(particles) ``` Counting... Table with 5 rows, 2 columns: level particles ──────────────── 6 1389 7 543126 8 0 9 0 10 0 Get some overview of the data that is associated with the object `particles`. The calculated information can be accessed from the object `data_overview` (here) in code units for further calculations: ```julia data_overview = dataoverview(particles) ``` Calculating... Table with 5 rows, 23 columns: Columns: # colname type ──────────────────── 1 level Any 2 x_min Any 3 x_max Any 4 y_min Any 5 y_max Any 6 z_min Any 7 z_max Any 8 id_min Any 9 id_max Any 10 family_min Any 11 family_max Any 12 tag_min Any 13 tag_max Any 14 vx_min Any 15 vx_max Any 16 vy_min Any 17 vy_max Any 18 vz_min Any 19 vz_max Any 20 mass_min Any 21 mass_max Any 22 birth_min Any 23 birth_max Any If the number of columns is relatively long, the table is typically represented by an overview. To access certain columns, use the `select` function. The representation ":birth_max" is called a quoted Symbol ([see in Julia documentation](https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols-1)): ```julia using JuliaDB ``` ```julia select(data_overview, (:level,:mass_min, :mass_max, :birth_min, :birth_max ) ) ``` Table with 5 rows, 5 columns: level mass_min mass_max birth_min birth_max ─────────────────────────────────────────────────── 6 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 9 8.00221e-7 8.00221e-7 5.56525 22.126 10 8.00221e-7 2.00055e-6 0.0951753 29.9032 Get an array from the column ":birth" in `data_overview` and scale it to the units `Myr`. The order of the calculated data is consistent with the table above: ```julia column(data_overview, :birth_min) * info.scale.Myr ``` 5-element Vector{Float64}: 0.0 0.0 0.0 82.98342559299353 1.419158337486011 Or simply convert the `birth_max` data in the table to `Myr` units by manipulating the column: ```julia data_overview = transform(data_overview, :birth_max => :birth_max => value->value * info.scale.Myr); ``` ```julia select(data_overview, (:level,:mass_min, :mass_max, :birth_min, :birth_max ) ) ``` Table with 5 rows, 5 columns: level mass_min mass_max birth_min birth_max ─────────────────────────────────────────────────── 6 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 9 8.00221e-7 8.00221e-7 5.56525 329.92 10 8.00221e-7 2.00055e-6 0.0951753 445.886 ## Data inspection The data is associated with the field `particles.data` as a **JuliaDB** table (code units). Each row corresponds to a particle and each column to a property which makes it easy to find, filter, map, aggregate, group the data, etc. More information can be found in the **Mera** tutorials or in: [JuliaDB API Reference](http://juliadb.org/latest/api/) ### Table View The particle positions x,y,z are given in code units and used in many functions of **MERA** and should not be modified. ```julia particles.data ``` Table with 544515 rows, 12 columns: Columns: # colname type ──────────────────── 1 level Int32 2 x Float64 3 y Float64 4 z Float64 5 id Int32 6 family Int8 7 tag Int8 8 vx Float64 9 vy Float64 10 vz Float64 11 mass Float64 12 birth Float64 A more detailed view into the data: ```julia select(particles.data, (:level,:x, :y, :z, :birth) ) ``` Table with 544515 rows, 5 columns: level x y z birth ───────────────────────────────────────── 9 9.17918 22.4404 24.0107 8.86726 9 9.23642 21.5559 24.0144 8.71495 9 9.35638 20.7472 24.0475 7.91459 9 9.39529 21.1854 24.0155 7.85302 9 9.42686 20.9697 24.0162 8.2184 9 9.42691 22.2181 24.0137 8.6199 9 9.48834 22.0913 24.0137 8.70493 9 9.5262 20.652 24.0179 7.96008 9 9.60376 21.2814 24.0155 8.03346 9 9.6162 20.6243 24.0506 8.56482 9 9.62155 20.6248 24.0173 7.78062 9 9.62252 24.4396 24.0206 9.44825 ⋮ 10 37.7913 25.6793 24.018 9.78881 10 37.8255 22.6271 24.0279 9.89052 10 37.8451 22.7506 24.027 9.61716 10 37.8799 25.5668 24.0193 10.2294 10 37.969 23.2135 24.0273 9.85439 10 37.9754 22.6288 24.0265 9.4959 10 37.9811 23.2854 24.0283 9.9782 10 37.9919 22.873 24.0271 9.12003 10 37.9966 23.092 24.0281 9.45574 10 38.0328 22.8404 24.0265 9.77493 10 38.0953 22.8757 24.0231 9.20251 ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
15552
# 2. Clumps: Load Selected Variables and Data Ranges ## Simulation Overview ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); ``` [Mera]: 2020-02-08T13:43:44.724 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= ## Select Variables **MERA** reads the first line of a clump file to identify the number of columns and their names. ### Read all variables (default) ```julia clumps = getclumps(info); ``` [Mera]: Get clump data: 2020-02-08T13:43:54.134 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ```julia clumps.data ``` Table with 644 rows, 12 columns: Columns: # colname type ────────────────────── 1 index Float64 2 lev Float64 3 parent Float64 4 ncell Float64 5 peak_x Float64 6 peak_y Float64 7 peak_z Float64 8 rho- Float64 9 rho+ Float64 10 rho_av Float64 11 mass_cl Float64 12 relevance Float64 The colum names should not be changed, since they are assumed in some functions. The usage of individual descriptor variables will be implemented in the future. ### Select several variables w/o a keyword Currently, the length of the loaded variable list can be modified. E.g. the list can be extended with more names if there are more columns in the data than given by the header in the files. Load less than the found 12 columns from the header of the clump files; Pass an array with the variables to the keyword argument `vars`. The order of the variables has to be consistent with the header in the clump files:} ```julia clumps = getclumps(info, vars=[ :index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z]); ``` [Mera]: Get clump data: 2020-02-08T13:44:01.434 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 7 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z] Memory used for data table :36.1083984375 KB ------------------------------------------------------- Pass an array that contains the variables without the keyword argument `vars`. The following order has to be preserved: InfoType-object, variables ```julia clumps = getclumps(info, [ :index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z]); ``` [Mera]: Get clump data: 2020-02-08T13:44:03.36 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 7 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z] Memory used for data table :36.1083984375 KB ------------------------------------------------------- ```julia clumps.data ``` Table with 644 rows, 7 columns: index lev parent ncell peak_x peak_y peak_z ────────────────────────────────────────────────────── 4.0 0.0 4.0 740.0 20.1094 11.5005 23.9604 5.0 0.0 5.0 1073.0 20.1592 11.5122 23.9253 9.0 0.0 9.0 551.0 21.7852 17.855 23.814 12.0 0.0 12.0 463.0 21.8232 17.8608 23.855 13.0 0.0 13.0 2141.0 21.8906 17.2837 23.5415 18.0 0.0 18.0 691.0 21.7822 16.8823 23.7817 19.0 0.0 19.0 608.0 21.75 16.8589 23.7993 20.0 0.0 20.0 1253.0 21.6006 17.5679 23.7935 25.0 0.0 25.0 1275.0 21.5801 17.6177 23.9341 26.0 0.0 26.0 1212.0 21.5859 17.5796 23.9165 29.0 0.0 29.0 1759.0 21.5625 17.5854 23.8726 46.0 0.0 46.0 4741.0 21.5215 17.6235 23.9458 ⋮ 2115.0 0.0 2115.0 1071.0 27.7705 13.2788 23.8081 2116.0 0.0 2116.0 839.0 27.7617 13.3081 23.8081 2117.0 0.0 2117.0 753.0 27.7793 13.2993 23.6851 2120.0 0.0 2120.0 866.0 27.7559 13.1792 23.8638 2125.0 0.0 2125.0 181.0 27.7939 13.0298 23.9194 2128.0 0.0 2128.0 296.0 27.791 13.0649 23.9019 2131.0 0.0 2131.0 323.0 28.3037 12.8188 23.9487 2132.0 0.0 2132.0 615.0 28.626 12.8188 23.8755 2137.0 0.0 2137.0 318.0 29.9736 15.0571 23.7202 2140.0 0.0 2140.0 1719.0 27.1436 15.6401 23.9048 2147.0 0.0 2147.0 1535.0 25.1953 9.93604 23.9897 Load more than the found 12 columns from the header of the clump files. The order of the variables has to be consistent with the header in the clump files: ```julia clumps = getclumps(info, vars=[ :index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance, :vx, :vy, :vz]); ``` [Mera]: Get clump data: 2020-02-08T13:44:04.175 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 15 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance, :vx, :vy, :vz] Memory used for data table :77.1787109375 KB ------------------------------------------------------- ```julia clumps.data ``` Table with 644 rows, 15 columns: Columns: # colname type ────────────────────── 1 index Float64 2 lev Float64 3 parent Float64 4 ncell Float64 5 peak_x Float64 6 peak_y Float64 7 peak_z Float64 8 rho- Float64 9 rho+ Float64 10 rho_av Float64 11 mass_cl Float64 12 relevance Float64 13 vx Float64 14 vy Float64 15 vz Float64 ## Select Spatial Ranges ### Use RAMSES Standard Notation Ranges correspond to the domain [0:1]^3 and are related to the box corner at [0., 0., 0.] by default. ```julia clumps = getclumps(info, xrange=[0.2,0.8], yrange=[0.2,0.8], zrange=[0.4,0.6]); ``` [Mera]: Get clump data: 2020-02-08T13:44:06.579 domain: xmin::xmax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] ymin::ymax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] zmin::zmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- The loaded data ranges are assigned to the field `ranges` in an array in **RAMSES** standard notation (domain: [0:1]^3): ```julia clumps.ranges ``` 6-element Array{Float64,1}: 0.2 0.8 0.2 0.8 0.4 0.6 ### Ranges relative to a given center: ```julia clumps = getclumps(info, xrange=[-0.3, 0.3], yrange=[-0.3, 0.3], zrange=[-0.1, 0.1], center=[0.5, 0.5, 0.5]); ``` [Mera]: Get clump data: 2020-02-08T13:44:09.633 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] ymin::ymax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] zmin::zmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ### Use notation in physical units In the following example the ranges are given in units "kpc", relative to the box corner [0., 0., 0.] (default): ```julia clumps = getclumps(info, xrange=[2.,22.], yrange=[2.,22.], zrange=[22.,26.], range_unit=:kpc); ``` [Mera]: Get clump data: 2020-02-08T13:44:09.96 domain: xmin::xmax: 0.0416667 :: 0.4583333 ==> 2.0 [kpc] :: 22.0 [kpc] ymin::ymax: 0.0416667 :: 0.4583333 ==> 2.0 [kpc] :: 22.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :12.83984375 KB ------------------------------------------------------- The possible physical length units for the keyword `range_unit` are defined in the field `scale` : ```julia viewfields(info.scale) # or e.g.: clumps.info.scale ``` [Mera]: Fields to scale from user/code units to selected units ======================================================================= Mpc = 0.0010000000000006482 kpc = 1.0000000000006481 pc = 1000.0000000006482 mpc = 1.0000000000006482e6 ly = 3261.5637769461323 Au = 2.0626480623310105e23 km = 3.0856775812820004e16 m = 3.085677581282e19 cm = 3.085677581282e21 mm = 3.085677581282e22 μm = 3.085677581282e25 Msol_pc3 = 0.9997234790001649 g_cm3 = 6.76838218451376e-23 Msol_pc2 = 999.7234790008131 g_cm2 = 0.20885045168302602 Gyr = 0.014910986463557083 Myr = 14.910986463557084 yr = 1.4910986463557083e7 s = 4.70554946422349e14 ms = 4.70554946422349e17 Msol = 9.99723479002109e8 Mearth = 3.329677459032007e14 Mjupiter = 1.0476363431814971e12 g = 1.9885499720830952e42 km_s = 65.57528732282063 m_s = 65575.28732282063 cm_s = 6.557528732282063e6 nH = 30.987773856809987 erg = 8.551000140274429e55 g_cms2 = 2.9104844143584656e-9 T_mu = 517028.3199143136 Ba = 2.910484414358466e-9 ### Ranges relative to a given center e.g. in units "kpc": ```julia clumps = getclumps(info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: Get clump data: 2020-02-08T13:44:10.318 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia clumps = getclumps(info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: Get clump data: 2020-02-08T13:44:11.159 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ```julia clumps = getclumps(info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[:bc], range_unit=:kpc); ``` [Mera]: Get clump data: 2020-02-08T13:44:11.478 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- Use the box center notation for individual dimensions, here x,z: ```julia clumps = getclumps(info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[:bc, 24., :bc], range_unit=:kpc); ``` [Mera]: Get clump data: 2020-02-08T13:44:12.344 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
17378
# 2. Hydro: Load Selected Variables and Data Ranges ## Simulation Overview ```julia using Mera info = getinfo(300, "../../testing/simulations/mw_L10"); ``` [Mera]: 2023-04-10T11:03:31.417 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= ## Select Variables Choose from the existing hydro variables listed in the simulation-info. Use the quoted Symbols: :varn1 or :cpu (=neg. one), :var1 or :rho, :var2 or :vx, :var3 or :vy, :var4 or :vz, :var5 or :p. Variables above 5 can be selected by :var6, :var7 etc. . No order is required. The selection of the variable's names from the descriptor files will be implemented in the future. ### Read all variables (default) ```julia gas = gethydro(info); ``` [Mera]: Get hydro data: 2023-04-10T11:03:36.069 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:22 Memory used for data table :2.3210865957662463 GB ------------------------------------------------------- ```julia gas.data ``` Table with 28320979 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### Select several variables w/o a keyword ```julia gas_a = gethydro(info, vars=[:rho, :p]); ``` [Mera]: Get hydro data: 2023-04-10T11:04:07.311 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 5) = (:rho, :p) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:21 Memory used for data table :1.2660473119467497 GB ------------------------------------------------------- The same variables can be read by using the var-number: ```julia gas_a = gethydro(info, vars=[:var1, :var5]); ``` [Mera]: Get hydro data: 2023-04-10T11:04:31.757 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 5) = (:rho, :p) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:21 Memory used for data table :1.2660473119467497 GB ------------------------------------------------------- A keyword argument for the variables is not needed if the following order is preserved: InfoType-object, variables: ```julia gas_a = gethydro(info, [:rho, :p]); ``` [Mera]: Get hydro data: 2023-04-10T11:04:55.703 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 5) = (:rho, :p) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:21 Memory used for data table :1.2660473119467497 GB ------------------------------------------------------- ```julia gas_a.data ``` Table with 28320979 rows, 6 columns: level cx cy cz rho p ───────────────────────────────────────────── 6 1 1 1 3.18647e-9 1.06027e-9 6 1 1 2 3.58591e-9 1.33677e-9 6 1 1 3 3.906e-9 1.58181e-9 6 1 1 4 4.27441e-9 1.93168e-9 6 1 1 5 4.61042e-9 2.37842e-9 6 1 1 6 4.83977e-9 2.8197e-9 6 1 1 7 4.974e-9 3.20883e-9 6 1 1 8 5.08112e-9 3.56075e-9 6 1 1 9 5.20596e-9 3.89183e-9 6 1 1 10 5.38372e-9 4.20451e-9 6 1 1 11 5.67209e-9 4.50256e-9 6 1 1 12 6.14423e-9 4.78595e-9 ⋮ 10 814 493 514 0.000321702 2.18179e-6 10 814 494 509 1.42963e-6 3.35949e-6 10 814 494 510 1.4351e-6 3.38092e-6 10 814 494 511 0.00029515 2.55696e-6 10 814 494 512 0.000395273 2.5309e-6 10 814 494 513 0.000321133 2.16472e-6 10 814 494 514 0.000319678 2.17348e-6 10 814 495 511 0.00024646 2.19846e-6 10 814 495 512 0.000269009 2.20717e-6 10 814 496 511 0.000235329 2.10577e-6 10 814 496 512 0.000242422 2.09634e-6 ### Select one variable In this case, no array and keyword is necessary, but preserve the following order: InfoType-object, variable: ```julia gas_c = gethydro(info, :vx ); ``` [Mera]: Get hydro data: 2023-04-10T11:05:59.554 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(2,) = (:vx,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:20 Memory used for data table :1.0550394551828504 GB ------------------------------------------------------- ```julia gas_c.data ``` Table with 28320979 rows, 5 columns: level cx cy cz vx ──────────────────────────────── 6 1 1 1 -1.25532 6 1 1 2 -1.23262 6 1 1 3 -1.2075 6 1 1 4 -1.16462 6 1 1 5 -1.10493 6 1 1 6 -1.02686 6 1 1 7 -0.948004 6 1 1 8 -0.879731 6 1 1 9 -0.824484 6 1 1 10 -0.782768 6 1 1 11 -0.754141 6 1 1 12 -0.737723 ⋮ 10 814 493 514 0.268398 10 814 494 509 0.00398492 10 814 494 510 0.00496945 10 814 494 511 0.303842 10 814 494 512 0.305647 10 814 494 513 0.266079 10 814 494 514 0.26508 10 814 495 511 0.289612 10 814 495 512 0.290753 10 814 496 511 0.285209 10 814 496 512 0.285463 ## Select Spatial Ranges ### Use RAMSES Standard Notation Ranges correspond to the domain [0:1]^3 and are related to the box corner at [0., 0., 0.] by default. Here, we limit the loading of the data to a maximum level of 8: ```julia gas = gethydro(info, lmax=8, xrange=[0.2,0.8], yrange=[0.2,0.8], zrange=[0.4,0.6]); ``` [Mera]: Get hydro data: 2023-04-10T11:06:31.565 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] ymin::ymax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] zmin::zmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :103.4984769821167 MB ------------------------------------------------------- The loaded data ranges are assigned to the field `ranges` as an array in **RAMSES** standard notation (domain: [0:1]^3): ```julia gas.ranges ``` 6-element Vector{Float64}: 0.2 0.8 0.2 0.8 0.4 0.6 ### Ranges relative to a given center: ```julia gas = gethydro(info, lmax=8, xrange=[-0.3, 0.3], yrange=[-0.3, 0.3], zrange=[-0.1, 0.1], center=[0.5, 0.5, 0.5]); ``` [Mera]: Get hydro data: 2023-04-10T11:06:46.359 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] ymin::ymax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] zmin::zmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :103.4984769821167 MB ------------------------------------------------------- ### Use notation in physical units In the following example the ranges are given in unit "kpc", relative to the box corner [0., 0., 0.] (default): ```julia gas = gethydro(info, lmax=8, xrange=[2.,22.], yrange=[2.,22.], zrange=[22.,26.], range_unit=:kpc); ``` [Mera]: Get hydro data: 2023-04-10T11:07:00.080 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0416667 :: 0.4583333 ==> 2.0 [kpc] :: 22.0 [kpc] ymin::ymax: 0.0416667 :: 0.4583333 ==> 2.0 [kpc] :: 22.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :19.30322551727295 MB ------------------------------------------------------- The possible physical length units for the keyword `range_unit` are defined in the field `scale` : ```julia viewfields(info.scale) # or e.g.: gas.info.scale ``` [Mera]: Fields to scale from user/code units to selected units ======================================================================= Mpc = 0.0010000000000006482 kpc = 1.0000000000006481 pc = 1000.0000000006482 mpc = 1.0000000000006482e6 ly = 3261.5637769461323 Au = 2.0626480623310105e23 km = 3.0856775812820004e16 m = 3.085677581282e19 cm = 3.085677581282e21 mm = 3.085677581282e22 μm = 3.085677581282e25 Mpc3 = 1.0000000000019446e-9 kpc3 = 1.0000000000019444 pc3 = 1.0000000000019448e9 mpc3 = 1.0000000000019446e18 ly3 = 3.469585750743794e10 Au3 = 8.775571306099254e69 km3 = 2.9379989454983075e49 m3 = 2.9379989454983063e58 cm3 = 2.9379989454983065e64 mm3 = 2.937998945498306e67 μm3 = 2.937998945498306e76 Msol_pc3 = 0.9997234790001649 Msun_pc3 = 0.9997234790001649 g_cm3 = 6.76838218451376e-23 Msol_pc2 = 999.7234790008131 Msun_pc2 = 999.7234790008131 g_cm2 = 0.20885045168302602 Gyr = 0.014910986463557083 Myr = 14.910986463557084 yr = 1.4910986463557083e7 s = 4.70554946422349e14 ms = 4.70554946422349e17 Msol = 9.99723479002109e8 Msun = 9.99723479002109e8 Mearth = 3.329677459032007e14 Mjupiter = 1.0476363431814971e12 g = 1.9885499720830952e42 km_s = 65.57528732282063 m_s = 65575.28732282063 cm_s = 6.557528732282063e6 nH = 30.987773856809987 erg = 8.551000140274429e55 g_cms2 = 2.9104844143584656e-9 T_mu = 517028.3199143136 K_mu = 517028.3199143136 T = 680300.4209398864 K = 680300.4209398864 Ba = 2.910484414358466e-9 g_cm_s2 = 2.910484414358466e-9 p_kB = 2.1080995598777838e7 K_cm3 = 2.1080995598777838e7 ### Ranges relative to a given center e.g. in unit "kpc": ```julia gas = gethydro(info, lmax=8, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: Get hydro data: 2023-04-10T11:07:13.344 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :54.6228666305542 MB ------------------------------------------------------- Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia gas = gethydro(info, lmax=8, xrange=[-16., 16.], yrange=[-16., 16.], zrange=[-2., 2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: Get hydro data: 2023-04-10T11:07:26.753 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :54.6228666305542 MB ------------------------------------------------------- ```julia gas = gethydro(info, lmax=8, xrange=[-16., 16.], yrange=[-16., 16.], zrange=[-2., 2.], center=[:bc], range_unit=:kpc); ``` [Mera]: Get hydro data: 2023-04-10T11:07:40.694 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :54.6228666305542 MB ------------------------------------------------------- Use the box center notation for individual dimensions, here x,z: ```julia gas = gethydro(info, lmax=8, xrange=[-16., 16.], yrange=[-16., 16.], zrange=[-2., 2.], center=[:bc, 24., :bc], range_unit=:kpc); ``` [Mera]: Get hydro data: 2023-04-10T11:07:54.736 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 Memory used for data table :54.6228666305542 MB ------------------------------------------------------- ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
18994
# 2. Particles: Load Selected Variables and Data Ranges ## Simulation Overview ```julia using Mera info = getinfo(300, "../../testing/simulations/mw_L10"); ``` [Mera]: 2023-04-10T11:09:58.577 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= ## Select Variables Choose from the existing particle variables listed in the simulation-info. The functions in **Mera** "know" the predefined particle variable names: - From >= ramses-version-2018: :vx, :vy, :vz, :mass, :family, :tag, :birth, :metals :var9,.... - For =< ramses-version-2017: :vx, :vy, :vz, :mass, :birth, :var6, :var7,.... - Currently, the following variables are loaded by default (if exist): :level, :x, :y, :z, :id, :family, :tag. - The cpu number associated with the particles can be loaded with the variable names: :cpu or :varn1 - In a future version the variable names from the particle descriptor can be used by setting the field info.descriptor.useparticles = true . ### Read all variables by default ```julia particles = getparticles(info); ``` [Mera]: Get particle data: 2023-04-10T11:10:06.672 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.445150e+05 particles Memory used for data table :38.42913246154785 MB ------------------------------------------------------- ```julia particles.data ``` Table with 544515 rows, 12 columns: Columns: # colname type ──────────────────── 1 level Int32 2 x Float64 3 y Float64 4 z Float64 5 id Int32 6 family Int8 7 tag Int8 8 vx Float64 9 vy Float64 10 vz Float64 11 mass Float64 12 birth Float64 ### Select several variables w/o a keyword ```julia particles_a = getparticles(info, vars=[:mass, :birth]); ``` [Mera]: Get particle data: 2023-04-10T11:10:09.828 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(4, 7) = (:mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.445150e+05 particles Memory used for data table :25.96580410003662 MB ------------------------------------------------------- The same variables can be read by using the var-number: ```julia particles_a = getparticles(info, vars=[:var4, :var7]); ``` [Mera]: Get particle data: 2023-04-10T11:10:15.319 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(4, 7) = (:mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.445150e+05 particles Memory used for data table :25.96580410003662 MB ------------------------------------------------------- A keyword argument for the variables is not needed if the following order is preserved: InfoType-object, variables: ```julia particles_a = getparticles(info, [:mass, :birth]); ``` [Mera]: Get particle data: 2023-04-10T11:10:17.681 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(4, 7) = (:mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.445150e+05 particles Memory used for data table :25.96580410003662 MB ------------------------------------------------------- ```julia particles_a.data ``` Table with 544515 rows, 9 columns: level x y z id family tag mass birth ────────────────────────────────────────────────────────────────────────── 9 9.17918 22.4404 24.0107 128710 2 0 8.00221e-7 8.86726 9 9.23642 21.5559 24.0144 126838 2 0 8.00221e-7 8.71495 9 9.35638 20.7472 24.0475 114721 2 0 8.00221e-7 7.91459 9 9.39529 21.1854 24.0155 113513 2 0 8.00221e-7 7.85302 9 9.42686 20.9697 24.0162 120213 2 0 8.00221e-7 8.2184 9 9.42691 22.2181 24.0137 125689 2 0 8.00221e-7 8.6199 9 9.48834 22.0913 24.0137 126716 2 0 8.00221e-7 8.70493 9 9.5262 20.652 24.0179 115550 2 0 8.00221e-7 7.96008 9 9.60376 21.2814 24.0155 116996 2 0 8.00221e-7 8.03346 9 9.6162 20.6243 24.0506 125003 2 0 8.00221e-7 8.56482 9 9.62155 20.6248 24.0173 112096 2 0 8.00221e-7 7.78062 9 9.62252 24.4396 24.0206 136641 2 0 8.00221e-7 9.44825 ⋮ 10 37.7913 25.6793 24.018 141792 2 0 8.00221e-7 9.78881 10 37.8255 22.6271 24.0279 143663 2 0 8.00221e-7 9.89052 10 37.8451 22.7506 24.027 138989 2 0 8.00221e-7 9.61716 10 37.8799 25.5668 24.0193 150226 2 0 8.00221e-7 10.2294 10 37.969 23.2135 24.0273 142995 2 0 8.00221e-7 9.85439 10 37.9754 22.6288 24.0265 137301 2 0 8.00221e-7 9.4959 10 37.9811 23.2854 24.0283 145294 2 0 8.00221e-7 9.9782 10 37.9919 22.873 24.0271 132010 2 0 8.00221e-7 9.12003 10 37.9966 23.092 24.0281 136766 2 0 8.00221e-7 9.45574 10 38.0328 22.8404 24.0265 141557 2 0 8.00221e-7 9.77493 10 38.0953 22.8757 24.0231 133214 2 0 8.00221e-7 9.20251 ### Select one variable In this case, no array and keyword is necessary, but preserve the following order: InfoType-object, variable: ```julia particles_c = getparticles(info, :vx ); ``` [Mera]: Get particle data: 2023-04-10T11:10:22.160 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1,) = (:vx,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.445150e+05 particles Memory used for data table :21.81136131286621 MB ------------------------------------------------------- ```julia particles_c.data ``` Table with 544515 rows, 8 columns: level x y z id family tag vx ───────────────────────────────────────────────────────────────── 9 9.17918 22.4404 24.0107 128710 2 0 0.670852 9 9.23642 21.5559 24.0144 126838 2 0 0.810008 9 9.35638 20.7472 24.0475 114721 2 0 0.93776 9 9.39529 21.1854 24.0155 113513 2 0 0.870351 9 9.42686 20.9697 24.0162 120213 2 0 0.899373 9 9.42691 22.2181 24.0137 125689 2 0 0.717235 9 9.48834 22.0913 24.0137 126716 2 0 0.739564 9 9.5262 20.652 24.0179 115550 2 0 0.946747 9 9.60376 21.2814 24.0155 116996 2 0 0.893236 9 9.6162 20.6243 24.0506 125003 2 0 0.996445 9 9.62155 20.6248 24.0173 112096 2 0 0.960817 9 9.62252 24.4396 24.0206 136641 2 0 0.239579 ⋮ 10 37.7913 25.6793 24.018 141792 2 0 -0.466362 10 37.8255 22.6271 24.0279 143663 2 0 0.129315 10 37.8451 22.7506 24.027 138989 2 0 0.100542 10 37.8799 25.5668 24.0193 150226 2 0 -0.397774 10 37.969 23.2135 24.0273 142995 2 0 -0.0192855 10 37.9754 22.6288 24.0265 137301 2 0 0.10287 10 37.9811 23.2854 24.0283 145294 2 0 -0.0461542 10 37.9919 22.873 24.0271 132010 2 0 0.0570142 10 37.9966 23.092 24.0281 136766 2 0 -0.0185658 10 38.0328 22.8404 24.0265 141557 2 0 0.0391784 10 38.0953 22.8757 24.0231 133214 2 0 -0.0510545 ## Selected Spatial Ranges ### Use RAMSES Standard Notation Ranges correspond to the domain [0:1]^3 and are related to the box corner at [0., 0., 0.] by default. ```julia particles = getparticles( info, xrange=[0.2,0.8], yrange=[0.2,0.8], zrange=[0.4,0.6]); ``` [Mera]: Get particle data: 2023-04-10T11:10:29.091 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] ymin::ymax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] zmin::zmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] Found 5.444850e+05 particles Memory used for data table :38.42701530456543 MB ------------------------------------------------------- The loaded data ranges are assigned to the field `ranges` as an array in **RAMSES** standard notation (domain: [0:1]^3): ```julia particles.ranges ``` 6-element Vector{Float64}: 0.2 0.8 0.2 0.8 0.4 0.6 ### Ranges relative to a given center: ```julia particles = getparticles( info, xrange=[-0.3, 0.3], yrange=[-0.3, 0.3], zrange=[-0.1, 0.1], center=[0.5, 0.5, 0.5]); ``` [Mera]: Get particle data: 2023-04-10T11:10:33.971 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] ymin::ymax: 0.2 :: 0.8 ==> 9.6 [kpc] :: 38.4 [kpc] zmin::zmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] Found 5.444850e+05 particles Memory used for data table :38.42701530456543 MB ------------------------------------------------------- ### Use notation in physical units In the following example the ranges are given in unit "kpc", relative to the box corner [0., 0., 0.] (default): ```julia particles = getparticles( info, xrange=[2.,22.], yrange=[2.,22.], zrange=[22.,26.], range_unit=:kpc); ``` [Mera]: Get particle data: 2023-04-10T11:10:40.217 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0416667 :: 0.4583333 ==> 2.0 [kpc] :: 22.0 [kpc] ymin::ymax: 0.0416667 :: 0.4583333 ==> 2.0 [kpc] :: 22.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Found 3.091600e+04 particles Memory used for data table :2.1834754943847656 MB ------------------------------------------------------- The possible physical length units for the keyword `range_unit` are defined in the field `scale` : ```julia viewfields(info.scale) # or e.g.: gas.info.scale ``` [Mera]: Fields to scale from user/code units to selected units ======================================================================= Mpc = 0.0010000000000006482 kpc = 1.0000000000006481 pc = 1000.0000000006482 mpc = 1.0000000000006482e6 ly = 3261.5637769461323 Au = 2.0626480623310105e23 km = 3.0856775812820004e16 m = 3.085677581282e19 cm = 3.085677581282e21 mm = 3.085677581282e22 μm = 3.085677581282e25 Mpc3 = 1.0000000000019446e-9 kpc3 = 1.0000000000019444 pc3 = 1.0000000000019448e9 mpc3 = 1.0000000000019446e18 ly3 = 3.469585750743794e10 Au3 = 8.775571306099254e69 km3 = 2.9379989454983075e49 m3 = 2.9379989454983063e58 cm3 = 2.9379989454983065e64 mm3 = 2.937998945498306e67 μm3 = 2.937998945498306e76 Msol_pc3 = 0.9997234790001649 Msun_pc3 = 0.9997234790001649 g_cm3 = 6.76838218451376e-23 Msol_pc2 = 999.7234790008131 Msun_pc2 = 999.7234790008131 g_cm2 = 0.20885045168302602 Gyr = 0.014910986463557083 Myr = 14.910986463557084 yr = 1.4910986463557083e7 s = 4.70554946422349e14 ms = 4.70554946422349e17 Msol = 9.99723479002109e8 Msun = 9.99723479002109e8 Mearth = 3.329677459032007e14 Mjupiter = 1.0476363431814971e12 g = 1.9885499720830952e42 km_s = 65.57528732282063 m_s = 65575.28732282063 cm_s = 6.557528732282063e6 nH = 30.987773856809987 erg = 8.551000140274429e55 g_cms2 = 2.9104844143584656e-9 T_mu = 517028.3199143136 K_mu = 517028.3199143136 T = 680300.4209398864 K = 680300.4209398864 Ba = 2.910484414358466e-9 g_cm_s2 = 2.910484414358466e-9 p_kB = 2.1080995598777838e7 K_cm3 = 2.1080995598777838e7 ### Ranges relative to the given center e.g. in unit "kpc": ```julia particles = getparticles( info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[50.,50.,50.], range_unit=:kpc); ``` [Mera]: Get particle data: 2023-04-10T11:10:45.564 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) center: [1.0416667, 1.0416667, 1.0416667] ==> [50.0 [kpc] :: 50.0 [kpc] :: 50.0 [kpc]] domain: xmin::xmax: 0.7083333 :: 1.0 ==> 34.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.7083333 :: 1.0 ==> 34.0 [kpc] :: 48.0 [kpc] zmin::zmax: 1.0 :: 1.0 ==> 48.0 [kpc] :: 48.0 [kpc] Found 0.000000e+00 particles Memory used for data table :1.71484375 KB ------------------------------------------------------- Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia particles = getparticles( info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: Get particle data: 2023-04-10T11:10:48.345 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Found 5.445150e+05 particles Memory used for data table :38.42913246154785 MB ------------------------------------------------------- ```julia particles = getparticles( info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[:bc], range_unit=:kpc); ``` [Mera]: Get particle data: 2023-04-10T11:10:50.163 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Found 5.445150e+05 particles Memory used for data table :38.42913246154785 MB ------------------------------------------------------- Use the box center notation for individual dimensions, here x,z: ```julia particles = getparticles( info, xrange=[-16.,16.], yrange=[-16.,16.], zrange=[-2.,2.], center=[:bc, 50., :bc], range_unit=:kpc); ``` [Mera]: Get particle data: 2023-04-10T11:10:53.187 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) center: [0.5, 1.0416667, 0.5] ==> [24.0 [kpc] :: 50.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.1666667 :: 0.8333333 ==> 8.0 [kpc] :: 40.0 [kpc] ymin::ymax: 0.7083333 :: 1.0 ==> 34.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Found 2.078000e+03 particles Memory used for data table :151.8828125 KB ------------------------------------------------------- ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
31115
# 3. Clumps: Get Sub-Regions of The Loaded Data ## Load the Data ```julia using Mera, PyPlot info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14") clumps = getclumps(info); ```  [Mera]: 2020-02-08T20:39:44.033 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051  ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true  =======================================================  [Mera]: Get clump data: 2020-02-08T20:39:48.496 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ## Cuboid Region ### Create scatter plots of the full box: Use the `getvar` function to extract the positions of the clumps relative to the box center. It returns a dictionary of arrays: ```julia positions = getvar(clumps, [:x, :y, :z], :kpc, center=[:boxcenter], center_unit=:kpc) # units=[:kpc, :kpc, :kpc] x, y, z = positions[:x], positions[:y], positions[:z]; # assign the three components of the dictionary to three arrays ``` Alternatively, use the `getposition` function to extract the positions of the clumps. It returns a tuple of the three components: ```julia x, y, z = getpositions(clumps, :kpc, center=[:boxcenter], center_unit=:kpc); # assign the three components of the tuple to three arrays ``` Get the extent of the processed domain with respect to a given center. The returned tuple is useful declare the specific range of the plots. ```julia rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` #### Cuboid Region: The red lines show the region that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_11_0.png) #### Cuboid Region: Cutout the data assigned to the object `clumps` Note: The selected regions can be given relative to a user given center or to the box corner [0., 0., 0.] by default. The user can choose between standard notation [0:1] (default) or physical length-units, defined in e.g. info.scale : ```julia clumps_subregion = subregion( clumps, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[:boxcenter], range_unit=:kpc); ```  [Mera]: 2020-02-08T20:40:04.755 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :29.52734375 KB ------------------------------------------------------- The function `subregion` creates a new object with the same type as the object created by the function `getclumps` : ```julia typeof(clumps_subregion) ``` ClumpDataType #### Cuboid Region: Scatter-Plots of the sub-region. The coordinates center is the center of the box by default: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # clump positions of the subregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter] ); # extent of the box ``` ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_19_0.png) #### Cuboid Region: Get the extent of the subregion data ranges ```julia rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); # extent of the subregion ``` ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) xlim(rx_sub) ylim(ry_sub) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) xlim(rx_sub) ylim(rz_sub) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) xlim(ry_sub) ylim(rz_sub) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_22_0.png) #### Cuboid Region: Get the data outside of the selected region (inverse selection): ```julia clumps_subregion = subregion( clumps, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[:boxcenter], range_unit=:kpc, inverse=true); ```  [Mera]: 2020-02-08T20:40:36.521 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :33.65234375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlim(rx_sub) ylim(ry_sub) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlim(rx_sub) ylim(rz_sub) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry_sub) ylim(rz_sub) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_26_0.png) ## Cylindrical Region Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ```  [Mera]: Get clump data: 2020-02-08T20:40:43.377 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### Cylindrical Region: The red lines show the region that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_31_0.png) #### Cylindrical Region: Cutout the data assigned to the object `clumps` Select the ranges of the cylinder in the unit "kpc", relative to the given center [13., 24., 24.]. The height refers to both z-directions from the plane. ```julia clumps_subregion = subregion( clumps, :cylinder, radius=3., height=2., range_unit=:kpc, center=[(24. -11.), :bc, :bc]); # direction=:z, by default ```  [Mera]: 2020-02-08T20:40:50.168 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :5.24609375 KB ------------------------------------------------------- Extract the the clump positions of the subregion and the extent of the full box: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]) rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_36_0.png) #### Cylindrical Region: Scatter-Plot of the selected data range with respect to the center of the sub-region: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[ (24. -11.), :bc, :bc], center_unit=:kpc); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[ (24. -11.), :bc, :bc], center_unit=:kpc); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta), 3 .* cos.(theta), color="red") xlim(rx_sub) ylim(ry_sub) xlabel("kpc") ylabel("kpc") subplot(1,3,2) scatter(x,z) xlim(rx_sub) ylim(rz_sub) xlabel("kpc") ylabel("kpc") subplot(1,3,3) scatter(y,z) xlim(ry_sub) ylim(rz_sub) xlabel("kpc") ylabel("kpc"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_39_0.png) #### Cylindrical Region: Get the data outside of the selected region (inverse selection): ```julia clumps_subregion = subregion( clumps, :cylinder, radius=3., height=2., range_unit=:kpc, center=[ (24. -11.),:bc,:bc], inverse=true); ```  [Mera]: 2020-02-08T20:41:13.553 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :57.93359375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_43_0.png) ## Spherical Region Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ```  [Mera]: Get clump data: 2020-02-08T20:41:17.127 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### The red lines show the region that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]") ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_48_0.png) PyObject Text(871.9411764705884, 0.5, 'z [kpc]') #### Spherical Region: Cutout the data assigned to the object `clumps` Select the radius of the sphere in the unit "kpc", relative to the given center [13., 24., 24.]: ```julia clumps_subregion = subregion( clumps, :sphere, radius=10., range_unit=:kpc, center=[ (24. -11.),:bc, :bc]); ```  [Mera]: 2020-02-08T20:41:21.728 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :28.68359375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # subregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_52_0.png) #### Spherical Region: Scatter-Plot of the selected data range with respect to the center of the sub-region: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[ (24. -11.), :bc, :bc], center_unit=:kpc); # subregion rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[(24. -11.), :bc, :bc], center_unit=:kpc); # subregion ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta), 10 .* cos.(theta), color="red") xlim(rx_sub) ylim(ry_sub) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta), 10 .* cos.(theta), color="red") xlim(rx_sub) ylim(rz_sub) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta), 10 .* cos.(theta), color="red") xlim(ry_sub) ylim(rz_sub) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_55_0.png) #### Spherical Region: Get the data outside of the selected region (inverse selection): ```julia clumps_subregion = subregion( clumps, :sphere, radius=10., range_unit=:kpc, center=[ (24. -11.),:bc,:bc], inverse=true); ```  [Mera]: 2020-02-08T20:41:43.641 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :34.49609375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]") ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_59_0.png) PyObject Text(871.9411764705884, 0.5, 'z [kpc]') ## Combined/Nested/Shell Sub-Regions #### The sub-region functions can be used in any combination with each other! (Combined with overlapping ranges or nested) ## Cylindrical Shell Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ```  [Mera]: Get clump data: 2020-02-08T20:41:52.553 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### The red lines show the shell that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red",ls = "--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_66_0.png) #### Cylindrical Shell: Pass the height of the cylinder and the inner/outer radius of the shell in the unit "kpc", relative to the box center [24., 24., 24.]: ```julia clumps_subregion = shellregion( clumps, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter]); ```  [Mera]: 2020-02-08T20:42:00.413 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :18.55859375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_70_0.png) #### Cylindrical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia clumps_subregion = shellregion( clumps, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter], inverse=true); ```  [Mera]: 2020-02-08T20:42:10.055 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :44.62109375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_74_0.png) ## Spherical Shell Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ```  [Mera]: Get clump data: 2020-02-08T20:42:14.641 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### The red lines show the shell that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_79_0.png) #### Spherical Shell: Select the inner and outer radius of the spherical shell in unit "kpc", relative to the box center [24., 24., 24.]: ```julia clumps_subregion = shellregion( clumps, :sphere, radius=[5.,10.], range_unit=:kpc, center=[:boxcenter]); ```  [Mera]: 2020-02-08T20:42:19.499 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :18.55859375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_83_0.png) #### Spherical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia clumps_subregion = shellregion( clumps, :sphere, radius=[5.,10.], range_unit=:kpc, center=[:boxcenter], inverse=true); ```  [Mera]: 2020-02-08T20:42:23.949 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :44.62109375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter] ); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](03_clumps_Get_Subregions_files/03_clumps_Get_Subregions_87_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
39598
# 3. Hydro: Get Sub-Regions of The Loaded Data ## Load the Data ```julia using Mera, PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14") gas = gethydro(info, :rho, lmax=10, smallr=1e-5); ```  [Mera]: 2020-02-18T23:23:22.753 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051  ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true  =======================================================  [Mera]: Get hydro data: 2020-02-18T23:23:32.417 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1,) = (:rho,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data...  100%|███████████████████████████████████████████████████| Time: 0:02:49 Memory used for data table :186.1558656692505 MB ------------------------------------------------------- ## Cuboid Region ### Create projections of the full box: ```julia proj_z = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ```  100%|███████████████████████████████████████████████████| Time: 0:00:03 The generated objects include, e.g. the extent of the processed domain, that can be used to declare the specific range of the plots, while the field `cextent` gives the extent related to a given center (default: [0.,0.,0.]). ```julia propertynames(proj_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ranges, :extent, :cextent, :ratio, :boxlen, :smallr, :smallc, :scale, :info) #### Cuboid Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_9_0.png) #### Cuboid Region: Cutout the data assigned to the object `gas` Note: The selected regions can be given relative to a user given center or to the box corner [0., 0., 0.] by default. The user can choose between standard notation [0:1] (default) or physical length-units, defined in e.g. info.scale : ```julia gas_subregion = subregion( gas, :cuboid, xrange=[-4., 0.], yrange=[-15., 15.], zrange=[-2., 2.], center=[:boxcenter], range_unit=:kpc); ```  [Mera]: 2020-02-18T23:27:06.861 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :47.87415790557861 MB ------------------------------------------------------- The function `subregion` creates a new object with the same type as the object created by the function `gethydro` : ```julia typeof(gas_subregion) ``` HydroDataType #### Cuboid Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_17_0.png) #### Cuboid Region: Get the data outside of the selected region (inverse selection): ```julia gas_subregion = subregion( gas, :cuboid, xrange=[-4., 0.], yrange=[-15., 15.], zrange=[-2., 2.], center=[:boxcenter], range_unit=:kpc, inverse=true); ```  [Mera]: 2020-02-18T23:27:09.597 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :138.2824068069458 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ```  100%|███████████████████████████████████████████████████| Time: 0:00:01 ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_21_0.png) ## Cylindrical Region #### Create projections of the full box: ```julia proj_z = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ```  100%|███████████████████████████████████████████████████| Time: 0:00:01  100%|███████████████████████████████████████████████████| Time: 0:00:01 #### Cylindrical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_25_0.png) #### Cylindrical Region: Cutout the data assigned to the object `gas` Select the ranges of the cylinder in the unit "kpc", relative to the given center [13., 24., 24.]. The height refers to both z-directions from the plane. ```julia gas_subregion = subregion( gas, :cylinder, radius=3., height=2., range_unit=:kpc, center=[13., :bc, :bc]); # direction=:z, by default ```  [Mera]: 2020-02-18T23:27:24.715 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :9.945767402648926 MB ------------------------------------------------------- #### Cylindrical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_30_0.png) #### Cylindrical Region: Projections of the sub-region rekated ti a given data center: ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, direction=:z, center=[13., 24.,24.], range_unit=:kpc, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, direction=:y, center=[13., 24.,24.], range_unit=:kpc, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, direction=:x, center=[13., 24.,24.], range_unit=:kpc, verbose=false); ``` #### The ranges of the plots are now adapted to the given data center: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta), 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_34_0.png) #### Cylindrical Region: Get the data outside of the selected region (inverse selection): ```julia gas_subregion = subregion( gas, :cylinder, radius=3., height=2., range_unit=:kpc, center=[13.,:bc,:bc], inverse=true); # direction=:z, by default ```  [Mera]: 2020-02-18T23:27:29.071 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :176.2107973098755 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_38_0.png) ## Spherical Region ### Create projections of the full box: ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ```  100%|███████████████████████████████████████████████████| Time: 0:00:01 #### Spherical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_42_0.png) #### Spherical Region: Cutout the data assigned to the object `gas` Select the radius of the sphere in the unit "kpc", relative to the given center [13., 24., 24.]: ```julia gas_subregion = subregion( gas, :sphere, radius=10., range_unit=:kpc, center=[13.,:bc,:bc]); ```  [Mera]: 2020-02-18T23:27:42.261 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :57.03980731964111 MB ------------------------------------------------------- #### Spherical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_47_0.png) #### Spherical Region: Get the data outside of the selected region (inverse selection): ```julia gas_subregion = subregion( gas, :sphere, radius=10., range_unit=:kpc, center=[13.,:bc,:bc], inverse=true); ```  [Mera]: 2020-02-18T23:27:46.433 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :129.1167573928833 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_51_0.png) ## Combined/Nested/Shell Sub-Regions #### The sub-region functions can be used in any combination with each other! (Combined with overlapping or nested ranges) One Example: ```julia comb_region = subregion(gas, :cuboid, xrange=[-8.,8.], yrange=[-8.,8.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) comb_region2 = subregion(comb_region, :sphere, radius=12., center=[40.,24.,24.], range_unit=:kpc, inverse=true, verbose=false) comb_region3 = subregion(comb_region2, :sphere, radius=12., center=[8.,24.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region4 = subregion(comb_region3, :sphere, radius=12., center=[24.,5.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region5 = subregion(comb_region4, :sphere, radius=12., center=[24.,43.,24.], range_unit=:kpc, inverse=true, verbose=false); ``` ```julia proj_z = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_57_0.png) ## Cylindrical Shell #### Create projections of the full box: ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ```  100%|███████████████████████████████████████████████████| Time: 0:00:02 #### Cylindrical Shell: The red lines show the shell that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_61_0.png) #### Cylindrical Shell: Pass the height of the cylinder and the inner/outer radius of the shell in the unit "kpc", relative to the box center [24., 24., 24.]: ```julia gas_subregion = shellregion( gas, :cylinder, radius=[5., 10.], height=2., range_unit=:kpc, center=[:boxcenter]); ```  [Mera]: 2020-02-18T23:28:03.834 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :53.790066719055176 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_65_0.png) #### Cylindrical Shell: Get the data outside of the selected shell (inverse selection): ```julia gas_subregion = shellregion(gas, :cylinder, radius=[5., 10.], height=2., range_unit=:kpc, center=[:boxcenter], inverse=true); ```  [Mera]: 2020-02-18T23:28:06.945 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :132.36649799346924 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_69_0.png) ## Spherical Shell #### Create projections of the full box: ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ```  100%|███████████████████████████████████████████████████| Time: 0:00:02  100%|███████████████████████████████████████████████████| Time: 0:00:02  100%|███████████████████████████████████████████████████| Time: 0:00:01 #### Spherical Shell: The red lines show the shell that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_73_0.png) #### Spherical Shell: Select the inner and outer radius of the spherical shell in unit "kpc", relative to the box center [24., 24., 24.]: ```julia gas_subregion = shellregion(gas, :sphere, radius=[5., 10.], range_unit=:kpc, center=[24.,24.,24.]); ```  [Mera]: 2020-02-18T23:28:21.357 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :56.55305194854736 MB ------------------------------------------------------- #### Spherical Shell: Projections of the shell-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_78_0.png) #### Spherical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia gas_subregion = shellregion(gas, :sphere, radius=[5., 10.], range_unit=:kpc, center=[:boxcenter], inverse=true); ```  [Mera]: 2020-02-18T23:28:25.267 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :129.60351276397705 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_hydro_Get_Subregions_files/03_hydro_Get_Subregions_82_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
39918
# 3. Particles: Get Sub-Regions of Loaded the Data ## Load the Data ```julia using Mera, PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); particles = getparticles(info, :mass); ```  [Mera]: 2020-02-18T23:29:31.468 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051  ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true  =======================================================  [Mera]: Get particle data: 2020-02-18T23:29:46.476 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(4,) = (:mass,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc]  Reading data...100%|████████████████████████████████████| Time: 0:00:03 Found 5.089390e+05 particles Memory used for data table :19.4152889251709 MB ------------------------------------------------------- ## Cuboid Region ### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` The generated objects include, e.g. the extent of the processed domain, that can be used to declare the specific range of the plots, while the field cextent gives the extent related to a given center (default: [0.,0.,0.]). ```julia propertynames(proj_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ref_time, :ranges, :extent, :cextent, :ratio, :boxlen, :scale, :info) #### Cuboid Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_9_0.png) #### Cuboid Region: Cutout the data assigned to the object `particles` Note: The selected regions can be given relative to a user given center or to the box corner [0., 0., 0.] by default. The user can choose between standard notation [0:1] (default) or physical length-units, defined in e.g. info.scale : ```julia part_subregion = subregion( particles, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[:boxcenter], range_unit=:kpc ); ```  [Mera]: 2020-02-18T23:30:10.393 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :10.259977340698242 MB ------------------------------------------------------- The function `subregion` creates a new object with the same type as the object created by the function `getparticles` : ```julia typeof(part_subregion) ``` PartDataType #### Cuboid Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=10, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=10, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=10, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_17_0.png) #### Cuboid Region: Get the data outside of the selected region (inverse selection): ```julia part_subregion = subregion( particles, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[24.,24.,24.], range_unit=:kpc, inverse=true); ```  [Mera]: 2020-02-18T23:30:12.491 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :9.156118392944336 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_21_0.png) ## Cylindrical Region #### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Cylindrical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_25_0.png) #### Cylindrical Region: Cutout the data assigned to the object `particles` Select the ranges of the cylinder in the unit "kpc", relative to the given center [13., 24., 24.]. The height refers to both z-directions from the plane. ```julia part_subregion = subregion(particles, :cylinder, radius=3., height=2., range_unit=:kpc, center=[13.,:bc,:bc], direction=:z); ```  [Mera]: 2020-02-18T23:30:15.671 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :578.951171875 KB ------------------------------------------------------- #### Cylindrical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=10, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=10, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=10, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_30_0.png) #### Cylindrical Region: Projections of the sub-region py passing a different center: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, direction=:z, center=[13., 24.,24.], range_unit=:kpc, lmax=10, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, direction=:y, center=[13., 24.,24.], range_unit=:kpc, lmax=10, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, direction=:x, center=[13., 24.,24.], range_unit=:kpc, lmax=10, verbose=false); ``` #### The ranges of the plots are now adapted to the given data center: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta), 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_34_0.png) #### Cylindrical Region: Get the data outside of the selected region (inverse selection): ```julia part_subregion = subregion(particles, :cylinder, radius=3., height=2., range_unit=:kpc, center=[ (24. -11.),:bc,:bc], direction=:z, inverse=true); ```  [Mera]: 2020-02-18T23:30:19.162 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :18.8507137298584 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_38_0.png) ## Spherical Region ### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Spherical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_42_0.png) #### Spherical Region: Cutout the data assigned to the object `particles` Select the radius of the sphere in the unit "kpc", relative to the given center [13., 24., 24.]: ```julia part_subregion = subregion( particles, :sphere, radius=10., range_unit=:kpc, center=[(24. -11.),24.,24.]); ```  [Mera]: 2020-02-18T23:30:22.122 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :8.807950973510742 MB ------------------------------------------------------- #### Spherical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_47_0.png) #### Spherical Region: Get the data outside of the selected region (inverse selection): ```julia part_subregion = subregion( particles, :sphere, radius=10., range_unit=:kpc, center=[(24. -11.),24.,24.], inverse=true); ```  [Mera]: 2020-02-18T23:30:23.142 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :10.608144760131836 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_51_0.png) ## Combined/Nested/Shell Sub-Regions #### The sub-region and shell functions can be used in any combination with each other! (Combined with overlapping ranges or nested) One Example: ```julia comb_region = subregion(particles, :cuboid, xrange=[-8.,8.], yrange=[-8.,8.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) comb_region2 = subregion(comb_region, :sphere, radius=12., center=[40.,24.,24.], range_unit=:kpc, inverse=true, verbose=false) comb_region3 = subregion(comb_region2, :sphere, radius=12., center=[8.,24.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region4 = subregion(comb_region3, :sphere, radius=12., center=[24.,5.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region5 = subregion(comb_region4, :sphere, radius=12., center=[24.,43.,24.], range_unit=:kpc, inverse=true, verbose=false); ``` ```julia proj_z = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter],direction=:y, verbose=false); proj_x = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter],direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_57_0.png) ## Cylindrical Shell #### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Cylindrical Shell: The red lines show the shell we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_62_0.png) #### Cylindrical Shell: Pass the height of the cylinder and the inner/outer radius of the shell in the unit "kpc", relative to the box center [24., 24., 24.]: ```julia part_subregion = shellregion( particles, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter]); ```  [Mera]: 2020-02-18T23:30:28.41 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :7.282835006713867 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_66_0.png) #### Cylindrical Shell: Get the data outside of the selected shell (inverse selection): ```julia part_subregion = shellregion( particles, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter], inverse=true); ```  [Mera]: 2020-02-18T23:30:30.228 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :12.133260726928711 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_70_0.png) <a id="ShellRegionSphere"></a> ## Spherical Shell #### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Spherical Shell: The red lines show the shell that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_75_0.png) #### Spherical Shell: Select the inner and outer radius of the spherical shell in unit "kpc", relative to the box center [24., 24., 24.]: ```julia part_subregion = shellregion( particles, :sphere, radius=[5.,10.], range_unit=:kpc, center=[24.,24.,24.]); ```  [Mera]: 2020-02-18T23:30:34.32 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :7.592016220092773 MB ------------------------------------------------------- #### Spherical Shell: Projections of the shell-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_80_0.png) #### Spherical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia part_subregion = shellregion( particles, :sphere, radius=[5.,10.], range_unit=:kpc, center=[:boxcenter], inverse=true); ```  [Mera]: 2020-02-18T23:30:35.378 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :11.824079513549805 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](03_particles_Get_Subregions_files/03_particles_Get_Subregions_84_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
39319
# 4. Basic Calculations The following functions process different types of `DataSetType`: - ContainMassDataSetType, - HydroPartType, - HydroDataType, - PartDataType, - ClumpDataType. ## Load The Data ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); gas = gethydro(info, [:rho, :vx, :vy, :vz], lmax=8); particles = getparticles(info, [:mass, :vx, :vy, :vz]) clumps = getclumps(info); ``` ┌ Info: Precompiling Mera [02f895e8-fdb1-4346-8fe6-c721699f5126] └ @ Base loading.jl:1273 *__ __ _______ ______ _______ | |_| | | _ | | _ | | | ___| | || | |_| | | | |___| |_||_| | | | ___| __ | | | ||_|| | |___| | | | _ | |_| |_|_______|___| |_|__| |__| [Mera]: 2020-02-15T21:12:42.671 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= [Mera]: Get hydro data: 2020-02-15T21:12:50.488 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4) = (:rho, :vx, :vy, :vz) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... 100%|███████████████████████████████████████████████████| Time: 0:02:13 Memory used for data table :51.840110778808594 MB ------------------------------------------------------- [Mera]: Get particle data: 2020-02-15T21:15:06.908 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(1, 2, 3, 4) = (:vx, :vy, :vz, :mass) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data...100%|████████████████████████████████████| Time: 0:00:02 Found 5.089390e+05 particles Memory used for data table :31.064278602600098 MB ------------------------------------------------------- [Mera]: Get clump data: 2020-02-15T21:15:11.574 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ### Note Many functions can provide the results in selected units. The internal scaling from code to physical units makes use of the following defined relations: ```julia viewfields(info.scale) ``` [Mera]: Fields to scale from user/code units to selected units ======================================================================= Mpc = 0.0010000000000006482 kpc = 1.0000000000006481 pc = 1000.0000000006482 mpc = 1.0000000000006482e6 ly = 3261.5637769461323 Au = 2.0626480623310105e23 km = 3.0856775812820004e16 m = 3.085677581282e19 cm = 3.085677581282e21 mm = 3.085677581282e22 μm = 3.085677581282e25 Msol_pc3 = 0.9997234790001649 g_cm3 = 6.76838218451376e-23 Msol_pc2 = 999.7234790008131 g_cm2 = 0.20885045168302602 Gyr = 0.014910986463557083 Myr = 14.910986463557084 yr = 1.4910986463557083e7 s = 4.70554946422349e14 ms = 4.70554946422349e17 Msol = 9.99723479002109e8 Mearth = 3.329677459032007e14 Mjupiter = 1.0476363431814971e12 g = 1.9885499720830952e42 km_s = 65.57528732282063 m_s = 65575.28732282063 cm_s = 6.557528732282063e6 nH = 30.987773856809987 erg = 8.551000140274429e55 g_cms2 = 2.9104844143584656e-9 T_mu = 517028.3199143136 Ba = 2.910484414358466e-9 ## Total Mass The function `msum` calculates the total mass of the data that is assigned to the provided object. For the hydro-data, the mass is derived from the density and cell-size (level) of all elements. `info.scale.Msol` (or e.g.: gas.info.scale.Msol) scales the result from code units to solar masses: ```julia println( "Gas Mtot: ", msum(gas) * info.scale.Msol, " Msol" ) println( "Particles Mtot: ", msum(particles) * info.scale.Msol, " Msol" ) println( "Clumps Mtot: ", msum(clumps) * info.scale.Msol, " Msol" ) ``` Gas Mtot: 2.6703951073850353e10 Msol Particles Mtot: 5.804426008528444e9 Msol Clumps Mtot: 1.3743280681841675e10 Msol The units for the results can be calculated by the function itself by providing an unit-argument: ```julia println( "Gas Mtot: ", msum(gas, :Msol) , " Msol" ) println( "Particles Mtot: ", msum(particles, :Msol) , " Msol" ) println( "Clumps Mtot: ", msum(clumps, :Msol) , " Msol" ) ``` Gas Mtot: 2.6703951073850353e10 Msol Particles Mtot: 5.804426008528437e9 Msol Clumps Mtot: 1.3743280681841677e10 Msol The following methods are defined on the function `msum`: ```julia methods(msum) ``` 2 methods for generic function <b>msum</b>:<ul><li> msum(dataobject::<b>ContainMassDataSetType</b>; <i>unit, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L23" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:23</a></li> <li> msum(dataobject::<b>ContainMassDataSetType</b>, unit::<b>Symbol</b>; <i>mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L19" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:19</a></li> </ul> ## Center-Of-Mass The function `center_of_mass` or `com` calculates the center-of-mass of the data that is assigned to the provided object. ```julia println( "Gas COM: ", center_of_mass(gas) .* info.scale.kpc, " kpc" ) println( "Particles COM: ", center_of_mass(particles) .* info.scale.kpc, " kpc" ) println( "Clumps COM: ", center_of_mass(clumps) .* info.scale.kpc, " kpc" ); ``` Gas COM: (23.327487354477643, 23.835419919525922, 24.041720148035843) kpc Particles COM: (22.891354761211332, 24.174147282680273, 24.003205056545575) kpc Clumps COM: (23.135765457064576, 23.741712325649264, 24.0050127185862) kpc The units for the results can be calculated by the function itself by providing a unit-argument: ```julia println( "Gas COM: ", center_of_mass(gas, :kpc) , " kpc" ) println( "Particles COM: ", center_of_mass(particles, :kpc) , " kpc" ) println( "Clumps COM: ", center_of_mass(clumps, :kpc) , " kpc" ); ``` Gas COM: (23.327487354477643, 23.835419919525922, 24.041720148035843) kpc Particles COM: (22.891354761211332, 24.174147282680273, 24.003205056545575) kpc Clumps COM: (23.135765457064576, 23.741712325649264, 24.0050127185862) kpc A shorter name for the function `center_of_mass` is defined as `com` : ```julia println( "Gas COM: ", com(gas, :kpc) , " kpc" ) println( "Particles COM: ", com(particles, :kpc) , " kpc" ) println( "Clumps COM: ", com(clumps, :kpc) , " kpc" ); ``` Gas COM: (23.327487354477643, 23.835419919525922, 24.041720148035843) kpc Particles COM: (22.891354761211332, 24.174147282680273, 24.003205056545575) kpc Clumps COM: (23.135765457064576, 23.741712325649264, 24.0050127185862) kpc The result of the coordinates (x, y, z) can be assigned e.g. to a tuple or to three single variables: ```julia # return coordinates in a tuple com_gas = com(gas, :kpc) println( "Tuple: ", com_gas, " kpc" ) # return coordinates into variables x_pos, y_pos, z_pos = com(gas, :kpc); #create variables println("Single vars: ", x_pos, " ", y_pos, " ", z_pos, " kpc") ``` Tuple: (23.327487354477643, 23.835419919525922, 24.041720148035843) kpc Single vars: 23.327487354477643 23.835419919525922 24.041720148035843 kpc Calculate the joint centre-of-mass from the hydro and particle data. Provide the hydro and particle data with an array (independent order): ```julia println( "Joint COM (Gas + Particles): ", center_of_mass([gas,particles], :kpc) , " kpc" ) println( "Joint COM (Particles + Gas): ", center_of_mass([particles,gas], :kpc) , " kpc" ) ``` Joint COM (Gas + Particles): (23.24961513830681, 23.895900266222746, 24.03484321295537) kpc Joint COM (Particles + Gas): (23.24961513830681, 23.895900266222746, 24.03484321295537) kpc Use the shorter name `com` that is defined as the function `center_of_mass` : ```julia println( "Joint COM (Gas + Particles): ", com([gas,particles], :kpc) , " kpc" ) println( "Joint COM (Particles + Gas): ", com([particles,gas], :kpc) , " kpc" ) ``` Joint COM (Gas + Particles): (23.24961513830681, 23.895900266222746, 24.03484321295537) kpc Joint COM (Particles + Gas): (23.24961513830681, 23.895900266222746, 24.03484321295537) kpc ```julia methods(center_of_mass) ``` 4 methods for generic function <b>center_of_mass</b>:<ul><li> center_of_mass(dataobject::<b>Array{HydroPartType,1}</b>; <i>unit, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L108" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:108</a></li> <li> center_of_mass(dataobject::<b>Array{HydroPartType,1}</b>, unit::<b>Symbol</b>; <i>mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L103" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:103</a></li> <li> center_of_mass(dataobject::<b>ContainMassDataSetType</b>; <i>unit, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L51" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:51</a></li> <li> center_of_mass(dataobject::<b>ContainMassDataSetType</b>, unit::<b>Symbol</b>; <i>mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L47" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:47</a></li> </ul> ```julia methods(com) ``` 4 methods for generic function <b>com</b>:<ul><li> com(dataobject::<b>Array{HydroPartType,1}</b>; <i>unit, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L166" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:166</a></li> <li> com(dataobject::<b>Array{HydroPartType,1}</b>, unit::<b>Symbol</b>; <i>mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L162" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:162</a></li> <li> com(dataobject::<b>ContainMassDataSetType</b>; <i>unit, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L80" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:80</a></li> <li> com(dataobject::<b>ContainMassDataSetType</b>, unit::<b>Symbol</b>; <i>mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L76" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:76</a></li> </ul> ## Bulk Velocity The function `bulk_velocity` or `average_velocity` calculates the average velocity (w/o mass-weight) of the data that is assigned to the provided object. It can also be used for the clump data if it has velocity components: vx, vy, vz. The default is with mass-weighting: ```julia println( "Gas: ", bulk_velocity(gas, :km_s) , " km/s" ) println( "Particles: ", bulk_velocity(particles, :km_s) , " km/s" ) ``` Gas: (-1.4418303105424648, -11.708719305767849, -0.5393243496862975) km/s Particles: (-11.623422700314535, -18.440572802490234, -0.3291927731417528) km/s ```julia println( "Gas: ", average_velocity(gas, :km_s) , " km/s" ) println( "Particles: ", average_velocity(particles, :km_s) , " km/s" ) ``` Gas: (-1.4418303105424648, -11.708719305767849, -0.5393243496862975) km/s Particles: (-11.623422700314535, -18.440572802490234, -0.3291927731417528) km/s Without mass-weighting: - gas: volume or :no weighting - particles: no weighting ```julia println( "Gas: ", bulk_velocity(gas, :km_s, weighting=:volume) , " km/s" ) println( "Particles: ", bulk_velocity(particles, :km_s, weighting=:no) , " km/s" ) ``` Gas: (1.5248458901822857, -8.770913864354458, -0.5037635305158431) km/s Particles: (-11.594477384589647, -18.38859118719373, -0.3097746295267971) km/s ```julia println( "Gas: ", average_velocity(gas, :km_s, weighting=:volume) , " km/s" ) println( "Particles: ", average_velocity(particles, :km_s, weighting=:no) , " km/s" ) ``` Gas: (1.5248458901822857, -8.770913864354458, -0.5037635305158431) km/s Particles: (-11.594477384589647, -18.38859118719373, -0.3097746295267971) km/s ```julia methods(bulk_velocity) ``` 2 methods for generic function <b>bulk_velocity</b>:<ul><li> bulk_velocity(dataobject::<b>ContainMassDataSetType</b>; <i>unit, weighting, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L200" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:200</a></li> <li> bulk_velocity(dataobject::<b>ContainMassDataSetType</b>, unit::<b>Symbol</b>; <i>weighting, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L195" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:195</a></li> </ul> ```julia methods(average_velocity) ``` 2 methods for generic function <b>average_velocity</b>:<ul><li> average_velocity(dataobject::<b>ContainMassDataSetType</b>; <i>unit, weighting, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L241" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:241</a></li> <li> average_velocity(dataobject::<b>ContainMassDataSetType</b>, unit::<b>Symbol</b>; <i>weighting, mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L237" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:237</a></li> </ul> ## Mass Weighted Average The functions `center_of_mass` and `bulk_velocity` use the function `average_mweighted` (average_mass-weighted) in the backend which can be feeded with any kind of variable that is pre-defined for the `getvar()` function or exists in the datatable. See the defined method and at getvar() below: ```julia methods( average_mweighted ) ``` 1 method for generic function <b>average_mweighted</b>:<ul><li> average_mweighted(dataobject::<b>ContainMassDataSetType</b>, var::<b>Symbol</b>; <i>mask</i>) in Mera at <a href="https://github.com/ManuelBehrendt/Mera/tree/23691e0c306bee008c0474baa1e7d326f318cfa3//src/functions/basic_calc.jl#L172" target="_blank">/Users/mabe/Documents/Projects/dev/Mera/src/functions/basic_calc.jl:172</a></li> </ul> <a id="Statistics"></a> ## Get Predefined Quantities Here, we only show the examples with the hydro-data: ```julia info = getinfo(1, "../../testing/simulations/manu_stable_2019", verbose=false); gas = gethydro(info, [:rho, :vx, :vy, :vz], verbose=false); ``` Reading data... 100%|███████████████████████████████████████████████████| Time: 0:00:56 Use `getvar` to extract variables or derive predefined quantities from the database, dependent on the data type. See the possible variables: ```julia getvar() ``` Predefined vars that can be calculated for each cell/particle: ---------------------------------------------------------------- =============================[gas]:============================= -all the non derived hydro vars- :cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,... -derived hydro vars- :x, :y, :z :mass, :cellsize, :volume, :freefall_time :cs, :mach, :jeanslength, :jeansnumber ==========================[particles]:========================== all the non derived vars: :cpu, :level, :id, :family, :tag :x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal.... -derived particle vars- :age ===========================[clumps]:=========================== :peak_x or :x, :peak_y or :y, :peak_z or :z :v, :ekin,... =====================[gas or particles]:======================= :v, :ekin related to a given center: --------------------------- :r_cylinder, :r_sphere (radial components) :vr_cylinder :vϕ ---------------------------------------------------------------- ### Get a Single Quantity In the following example, we calculate the mass for each cell of the hydro data. - The output is a 1dim array in code units by default (mass1). - Each element/cell can be scaled to Msol units by the elementwise multiplikation **gas.scale.Msol** (mass2). - The `getvar` function supports intrinsic scaling to a selected unit (mass3). - The selected unit does not need a keyword argument if the following order is maintained: dataobject, variable, unit ```julia mass1 = getvar(gas, :mass) # [code units] mass2 = getvar(gas, :mass) * gas.scale.Msol # scale the result (1dim array) from code units to solar masses mass3 = getvar(gas, :mass, unit=:Msol) # unit calculation, provided by a keyword argument [Msol] mass4 = getvar(gas, :mass, :Msol) # unit calculation provided by an argument [Msol] # construct a three dimensional array to compare the three created arrays column wise: mass_overview = [mass1 mass2 mass3 mass4] ``` 37898393×4 Array{Float64,2}: 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 8.9407e-7 894.07 894.07 894.07 ⋮ 1.02889e-7 102.889 102.889 102.889 1.02889e-7 102.889 102.889 102.889 1.94423e-7 194.423 194.423 194.423 1.94423e-7 194.423 194.423 194.423 8.90454e-8 89.0454 89.0454 89.0454 8.90454e-8 89.0454 89.0454 89.0454 2.27641e-8 22.7641 22.7641 22.7641 2.27641e-8 22.7641 22.7641 22.7641 8.42157e-9 8.42157 8.42157 8.42157 8.42157e-9 8.42157 8.42157 8.42157 3.65085e-8 36.5085 36.5085 36.5085 3.65085e-8 36.5085 36.5085 36.5085 Furthermore, we provide a simple function to get the mass of each cell in code units: ```julia getmass(gas) ``` 37898393-element Array{Float64,1}: 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 8.940696716308594e-7 ⋮ 1.0288910576564388e-7 1.0288910576564388e-7 1.9442336261293343e-7 1.9442336261293343e-7 8.90453891574347e-8 8.90453891574347e-8 2.276412192306883e-8 2.276412192306883e-8 8.421571563820485e-9 8.421571563820485e-9 3.650851622718898e-8 3.650851622718898e-8 ### Get Multiple Quantities Get several quantities with one function call by passing an array containing the selected variables. `getvar` returns a dictionary containing 1dim arrays for each quantity in code units: ```julia quantities = getvar(gas, [:mass, :ekin]) ``` Dict{Any,Any} with 2 entries: :mass => [8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8… :ekin => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 2.28274e-7, 2.… The units for each quantity can by passed as an array to the keyword argument "units" (plural, compare with single quantitiy call above) by preserving the order of the vars argument: ```julia quantities = getvar(gas, [:mass, :ekin], units=[:Msol, :erg]) ``` Dict{Any,Any} with 2 entries: :mass => [894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894… :ekin => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 1.95354e49, 1.… The function can be called without any keywords by preserving the following order: dataobject, variables, units ```julia quantities = getvar(gas, [:mass, :ekin], [:Msol, :erg]) ``` Dict{Any,Any} with 2 entries: :mass => [894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894… :ekin => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 1.95354e49, 1.… The arrays of the single quantities can be accessed from the dictionary: ```julia quantities[:mass] ``` 37898393-element Array{Float64,1}: 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 894.0696716308591 ⋮ 102.88910576564386 102.88910576564386 194.42336261293337 194.42336261293337 89.04538915743468 89.04538915743468 22.764121923068824 22.764121923068824 8.421571563820482 8.421571563820482 36.50851622718897 36.50851622718897 If all selected variables should be of the same unit use the following arguments: dataobject, array of quantities, unit (no array needed): ```julia quantities = getvar(gas, [:vx, :vy, :vz], :km_s) ``` Dict{Any,Any} with 3 entries: :vy => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … -97.5301, -97.53… :vz => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 0.0, 0.0, 0.0, 0… :vx => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … -24.307, -24.307… ### Get Quantities related to a center Some quantities are related to a given center, e.g. radius in cylindrical coordinates, see the overview : ```julia getvar() ``` Predefined vars that can be calculated for each cell/particle: ---------------------------------------------------------------- =============================[gas]:============================= -all the non derived hydro vars- :cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,... -derived hydro vars- :x, :y, :z :mass, :cellsize, :volume, :freefall_time :cs, :mach, :jeanslength, :jeansnumber :T, :Temp, :Temperature with p/rho :h, :hx, :hy, :hz (specific angular momentum) ==========================[particles]:========================== -all the non derived particle vars- :cpu, :level, :id, :family, :tag :x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal.... -derived particle vars- :age ===========================[gravity]:=========================== -all the non derived gravity vars- :cpu, :level, cx, cy, cz, :epot, :ax, :ay, :az -derived gravity vars- :x, :y, :z :cellsize, :volume ===========================[clumps]:=========================== :peak_x or :x, :peak_y or :y, :peak_z or :z :v, :ekin,... =====================[gas or particles]:======================= :v, :ekin related to a given center: --------------------------- :r_cylinder, :r_sphere (radial components) :vr_cylinder :vϕ ---------------------------------------------------------------- The unit of the provided center-array (in cartesian coordinates: x,y.z) is given by the keyword argument `center_unit` (default: code units). The function returns the quantitites in code units: ```julia cv = (gas.boxlen / 2.) * gas.scale.kpc # provide the box-center in kpc # e.g. for :mass the center keyword is ignored quantities = getvar(gas, [:mass, :r_cylinder], center=[cv, cv, cv], center_unit=:kpc) ``` Dict{Any,Any} with 2 entries: :r_cylinder => [70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583… :mass => [8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407e-7, 8.9407… Here, the function returns the result in the units that are provided. Note: E.g. the quantities :mass and :v (velocity) are not affected by the given center. ```julia quantities = getvar(gas, [:mass, :r_cylinder, :v], units=[:Msol, :kpc, :km_s], center=[cv, cv, cv], center_unit=:kpc) ``` Dict{Any,Any} with 3 entries: :r_cylinder => [70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583… :v => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 100.513,… :mass => [894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.0… Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z). In this case the keyword `center_unit` is ignored: ```julia quantities = getvar(gas, [:mass, :r_cylinder, :v], units=[:Msol, :kpc, :km_s], center=[:boxcenter]) ``` Dict{Any,Any} with 3 entries: :r_cylinder => [70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583… :v => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 100.513,… :mass => [894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.0… ```julia quantities = getvar(gas, [:mass, :r_cylinder, :v], units=[:Msol, :kpc, :km_s], center=[:bc]) ``` Dict{Any,Any} with 3 entries: :r_cylinder => [70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583, 70.1583… :v => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 100.513,… :mass => [894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.0… Use the box center notation for individual dimensions, here x,z. The keyword `center_unit` is needed for the y-coordinates: ```julia quantities = getvar(gas, [:mass, :r_cylinder, :v], units=[:Msol, :kpc, :km_s], center=[:bc, 24., :bc], center_unit=:kpc) ``` Dict{Any,Any} with 3 entries: :r_cylinder => [54.9408, 54.9408, 54.9408, 54.9408, 54.9408, 54.9408, 54.9408… :v => [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 100.513,… :mass => [894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.07, 894.0… ## Create Costum Quantities **Example1:** Represent the positions of the data as the radius for a disk, centred in the simulation box (cylindrical coordinates): ```julia boxlen = info.boxlen cv = boxlen / 2. # box-center levels = getvar(gas, :level) # get the level of each cell cellsize = boxlen ./ 2 .^levels # calculate the cellsize for each cell (code units) # or use the predefined quantity cellsize = getvar(gas, :cellsize) # convert the cell-number (related to the levels) into positions (code units), relative to the box center x = getvar(gas, :cx) .* cellsize .- cv # (code units) y = getvar(gas, :cy) .* cellsize .- cv # (code units) # or use the predefined quantity x = getvar(gas, :x, center=[:bc]) y = getvar(gas, :y, center=[:bc]) # calculate the cylindrical radius and scale from code units to kpc radius = sqrt.(x.^2 .+ y.^2) .* info.scale.kpc ``` 37898393-element Array{Float64,1}: 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 70.15825094589823 ⋮ 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 20.08587520654808 ### Use JuliaDB Functions see <https://juliadb.org> ```julia using JuliaDB ``` Example: Get the mass for each gas cell: m_i = ρ_i * cell_volume_i = ρ_i * (boxlen / 2^level)^3 #### Version 1 Use the `select` function and calculate the mass for each cell: ```julia boxlen = gas.boxlen level = select(gas.data, :level ) # get level information from each cell cellvol = (boxlen ./ 2 .^level).^3 # calculate volume for each cell mass1 = select(gas.data, :rho) .* cellvol .* info.scale.Msol; # calculate the mass for each cell in Msol units ``` #### Version 2 Use a single time the `select` function to do the calculations from above : ```julia mass2 = select( gas.data, (:rho, :level)=>p->p.rho * (boxlen / 2^p.level)^3 ) .* info.scale.Msol; ``` #### Version 3 Use the `map` function to do the calculations from above : ```julia mass3 = map(p->p.rho * (boxlen / 2^p.level)^3, gas.data) .* info.scale.Msol; ``` Comparison of the results: ```julia [mass1 mass2 mass3] ``` 37898393×3 Array{Float64,2}: 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 894.07 ⋮ 102.889 102.889 102.889 102.889 102.889 102.889 194.423 194.423 194.423 194.423 194.423 194.423 89.0454 89.0454 89.0454 89.0454 89.0454 89.0454 22.7641 22.7641 22.7641 22.7641 22.7641 22.7641 8.42157 8.42157 8.42157 8.42157 8.42157 8.42157 36.5085 36.5085 36.5085 36.5085 36.5085 36.5085 ## Statistical Quantities ```julia info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14", verbose=false); gas = gethydro(info, [:rho, :vx, :vy, :vz], lmax=8, smallr=1e-5, verbose=false); particles = getparticles(info, [:mass, :vx, :vy, :vz], verbose=false) clumps = getclumps(info, verbose=false); ``` Reading data... 100%|███████████████████████████████████████████████████| Time: 0:02:22 Reading data...100%|████████████████████████████████████| Time: 0:00:03 Pass any kind of Array{<:Real,1} (Float, Integer,...) to the `wstat` function to get several unweighted statistical quantities at once: ```julia stats_gas = wstat( getvar(gas, :vx, :km_s) ) stats_particles = wstat( getvar(particles, :vx, :km_s) ) stats_clumps = wstat( getvar(clumps, :rho_av, :Msol_pc3) ); ``` The result is an object that contains several fields with the statistical quantities: ```julia println( typeof(stats_gas) ) println( typeof(stats_particles) ) println( typeof(stats_clumps) ) propertynames(stats_gas) ``` Mera.WStatType Mera.WStatType Mera.WStatType (:mean, :median, :std, :skewness, :kurtosis, :min, :max) ```julia println( "Gas <vx>_allcells : ", stats_gas.mean, " km/s" ) println( "Particles <vx>_allparticles : ", stats_particles.mean, " km/s" ) println( "Clumps <rho_av>_allclumps : ", stats_clumps.mean, " Msol/pc^3" ) ``` Gas <vx>_allcells : -2.9318774650713726 km/s Particles <vx>_allparticles : -11.594477384589647 km/s Clumps <rho_av>_allclumps : 594.7315900915924 Msol/pc^3 ```julia println( "Gas min/max_allcells : ", stats_gas.min, "/", stats_gas.max, " km/s" ) println( "Particles min/max_allparticles : ", stats_particles.min,"/", stats_particles.max, " km/s" ) println( "Clumps min/max_allclumps : ", stats_clumps.min, "/", stats_clumps.max, " Msol/pc^3" ) ``` Gas min/max_allcells : -676.5464963488397/894.9181733956399 km/s Particles min/max_allparticles : -874.6440509326601/670.7956741234592 km/s Clumps min/max_allclumps : 125.4809686796669/5357.370234867635 Msol/pc^3 ## Weighted Statistics Pass any kind of Array{<:Real,1} (Float, Integer,...) for the given variables and one for the weighting with the same length. The weighting goes cell by cell, particle by particle, clump by clump, etc...: ```julia stats_gas = wstat( getvar(gas, :vx, :km_s), weight=getvar(gas, :mass )); stats_particles = wstat( getvar(particles, :vx, :km_s), weight=getvar(particles, :mass )); stats_clumps = wstat( getvar(clumps, :peak_x, :kpc ), weight=getvar(clumps, :mass_cl)) ; ``` Without the keyword `weight` the following order for the given arrays has to be maintained: values, weight ```julia stats_gas = wstat( getvar(gas, :vx, :km_s), getvar(gas, :mass )); stats_particles = wstat( getvar(particles, :vx, :km_s), getvar(particles, :mass )); stats_clumps = wstat( getvar(clumps, :peak_x, :kpc ), getvar(clumps, :mass_cl)) ; ``` ```julia propertynames(stats_gas) ``` (:mean, :median, :std, :skewness, :kurtosis, :min, :max) ```julia println( "Gas <vx>_allcells : ", stats_gas.mean, " km/s (mass weighted)" ) println( "Particles <vx>_allparticles : ", stats_particles.mean, " km/s (mass weighted)" ) println( "Clumps <peak_x>_allclumps : ", stats_clumps.mean, " kpc (mass weighted)" ) ``` Gas <vx>_allcells : -1.199925358479736 km/s (mass weighted) Particles <vx>_allparticles : -11.623422700314544 km/s (mass weighted) Clumps <peak_x>_allclumps : 23.13576545706458 kpc (mass weighted) ```julia println( "Gas min/max_allcells : ", stats_gas.min, "/", stats_gas.max, " km/s" ) println( "Particles min/max_allparticles : ", stats_particles.min,"/", stats_particles.max, " km/s" ) println( "Clumps min/max_allclumps : ", stats_clumps.min, "/", stats_clumps.max, " Msol/pc^3" ) ``` Gas min/max_allcells : -676.5464963488397/894.9181733956399 km/s Particles min/max_allparticles : -874.6440509326601/670.7956741234592 km/s Clumps min/max_allclumps : 10.29199219000667/38.17382813002474 Msol/pc^3 For the average of the gas-density use volume weighting: ```julia stats_gas = wstat( getvar(gas, :rho, :g_cm3), weight=getvar(gas, :volume) ); ``` ```julia println( "Gas <rho>_allcells : ", stats_gas.mean, " g/cm^3 (volume weighted)" ) ``` Gas <rho>_allcells : 0.008679815788762611 g/cm^3 (volume weighted) ## Helpful Functions Get the x,y,z positions of every cell relative to a given center: ```julia x,y,z = getpositions(gas, :kpc, center=[24.,24.,24.], center_unit=:kpc); # returns a Tuple of 3 arrays ``` The box-center can be calculated automatically: ```julia x,y,z = getpositions(gas, :kpc, center=[:boxcenter]); ``` ```julia [x y z] # preview of the output ``` 849332×3 Array{Float64,2}: -23.25 -23.25 -23.25 -23.25 -23.25 -22.5 -23.25 -23.25 -21.75 -23.25 -23.25 -21.0 -23.25 -23.25 -20.25 -23.25 -23.25 -19.5 -23.25 -23.25 -18.75 -23.25 -23.25 -18.0 -23.25 -23.25 -17.25 -23.25 -23.25 -16.5 -23.25 -23.25 -15.75 -23.25 -23.25 -15.0 -23.25 -23.25 -14.25 ⋮ 16.125 3.9375 0.1875 16.125 3.9375 0.375 16.125 3.9375 0.5625 16.125 3.9375 0.75 16.125 4.125 -0.5625 16.125 4.125 -0.375 16.125 4.125 -0.1875 16.125 4.125 0.0 16.125 4.125 0.1875 16.125 4.125 0.375 16.125 4.125 0.5625 16.125 4.125 0.75 Get the extent of the dataset-domain: ```julia getextent(gas) # returns Tuple of (xmin, xmax), (ymin ,ymax ), (zmin ,zmax ) ``` ((0.0, 48.0), (0.0, 48.0), (0.0, 48.0)) Get the extent relative to a given center: ```julia getextent(gas, center=[:boxcenter]) ``` ((-24.0, 24.0), (-24.0, 24.0), (-24.0, 24.0)) Get simulation time in code unit oder physical unit ```julia gettime(info) ``` 29.9031937665063 ```julia gettime(info, :Myr) ``` 445.8861174695 ```julia gettime(gas, :Myr) ``` 445.8861174695 ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
26561
# 5. Mask/Select/Map/Filter/Metaprogramming... - Learn how to extract data from the data table with JuliaDB and Mera functions - Filter the data table according to one or several conditions - Extract data from a filtered data table and use it for further calculations - Extend the data table with new columns/variables - Mask data with different methods and apply it to some functions ## Load The Data ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); gas = gethydro(info, lmax=8, smallr=1e-5); particles = getparticles(info) clumps = getclumps(info); ```  [Mera]: 2020-02-08T20:56:19.834 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051  ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true  =======================================================  [Mera]: Get hydro data: 2020-02-08T20:56:27.064 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... 100%|███████████████████████████████████████████████████| Time: 0:02:07 Memory used for data table :71.28007793426514 MB -------------------------------------------------------  [Mera]: Get particle data: 2020-02-08T20:58:39.435 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(1, 2, 3, 4, 5) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.089390e+05 particles Memory used for data table :34.947275161743164 MB -------------------------------------------------------  [Mera]: Get clump data: 2020-02-08T20:58:41.769 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ## Select From Data Table ### Select a single column/variable ##### By using JuliaDB or Mera functions ```julia using JuliaDB ``` The JuliaDB data table is stored in the `data`-field of any `DataSetType`. Extract an existing column (variable): ```julia select(gas.data, :rho) # JuliaDB ``` 849332-element Array{Float64,1}: 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 ⋮ 0.00010967104288285959 0.0001088040126114162 0.00010915603617815434 0.00010917096551347797 0.00012465438542871006 0.00011934527871880502 0.00011294656300014925 0.00011110068692986109 0.00010901341218606515 0.00010849404903183988 0.00010900588395976569 0.00010910219163333514 Pass the entire `DataSetType` (here `gas`) to the Mera function `getvar` to extract the selected variable or derived quantity from the data table. Call `getvar()` to get a list of the predefined quantities. ```julia getvar(gas, :rho) # MERA ``` 849332-element Array{Float64,1}: 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 ⋮ 0.00010967104288285959 0.0001088040126114162 0.00010915603617815434 0.00010917096551347797 0.00012465438542871006 0.00011934527871880502 0.00011294656300014925 0.00011110068692986109 0.00010901341218606515 0.00010849404903183988 0.00010900588395976569 0.00010910219163333514 ### Select several columns By selecting several columns a new JuliaDB databse is returned: ```julia select(gas.data, (:rho, :level)) #JuliaDB ``` Table with 849332 rows, 2 columns: rho level ────────────────── 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 ⋮ 0.000108804 8 0.000109156 8 0.000109171 8 0.000124654 8 0.000119345 8 0.000112947 8 0.000111101 8 0.000109013 8 0.000108494 8 0.000109006 8 0.000109102 8 The getvar function returns a dictionary containing the extracted arrays: ```julia getvar(gas, [:rho, :level]) # MERA ``` Dict{Any,Any} with 2 entries: :level => [6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0 … 8.0, 8.0, 8.0… :rho => [1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.… Select one or more columns and get a tuple of vectors: ```julia vtuple = columns(gas.data, (:rho, :level)) # JuliaDB ``` (rho = [1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5 … 0.00010915603617815434, 0.00010917096551347797, 0.00012465438542871006, 0.00011934527871880502, 0.00011294656300014925, 0.00011110068692986109, 0.00010901341218606515, 0.00010849404903183988, 0.00010900588395976569, 0.00010910219163333514], level = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6 … 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]) ```julia propertynames(vtuple) ``` (:rho, :level) ```julia vtuple.rho ``` 849332-element Array{Float64,1}: 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 ⋮ 0.00010967104288285959 0.0001088040126114162 0.00010915603617815434 0.00010917096551347797 0.00012465438542871006 0.00011934527871880502 0.00011294656300014925 0.00011110068692986109 0.00010901341218606515 0.00010849404903183988 0.00010900588395976569 0.00010910219163333514 ## Filter by Condition ### With JuliaDB (example A) Get all the data corresponding to cells/rows with level=6. Here, the variable `p` is used as placeholder for rows. A new JuliaDB data table is returend: ```julia filtered_db = filter(p->p.level==6, gas.data ) # JuliaDB # see the reduced row number ``` Table with 240956 rows, 11 columns: Columns: #  colname  type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### With Macro Expression (example A) (see the documentation at: <https://piever.github.io/JuliaDBMeta.jl/stable/> ) ```julia using JuliaDBMeta ``` ┌ Info: Precompiling JuliaDBMeta [2c06ca41-a429-545c-b8f0-5ca7dd64ba19] └ @ Base loading.jl:1273 ```julia filtered_db = @filter gas.data :level==6 # JuliaDBMeta ``` Table with 240956 rows, 11 columns: Columns: #  colname  type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### With JuliaDB (example B) Get all cells/rows with densities >= 3 Msol/pc^3. Since the data is given in code units, we need to convert from the given physical units: ```julia density = 3. / gas.scale.Msol_pc3 filtered_db = filter(p->p.rho>= density, gas.data ) # JuliaDB ``` Table with 210 rows, 11 columns: Columns: #  colname  type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### With Macro Expression (example B) ```julia density = 3. /gas.scale.Msol_pc3 filtered_db = @filter gas.data :rho>= density # JuliaDBMeta ``` Table with 210 rows, 11 columns: Columns: #  colname  type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### Get a Quantity/Variable from The Filtered Data Table Calculate the mass for each cell and the sum: ```julia mass_tot = getvar(gas, :mass, :Msol) # the full data table sum(mass_tot) ``` 3.0968754148332745e10 The same calculation is possible for the filtered data base which has to be passed together with the original object, here: `gas` ```julia mass_filtered_tot = getvar(gas, :mass, :Msol, filtered_db=filtered_db) # the filtered data table sum(mass_filtered_tot) ``` 1.4862767967535206e10 ### Create a New DataSetType from a Filtered Data Table A new `DataSetType` can be constructed for the filtered data table that can be passed to the functions. ```julia density = 3. /gas.scale.Msol_pc3 filtered_db = @filter gas.data :rho >= density gas_new = construct_datatype(filtered_db, gas); ``` ```julia # Both are now of HydroDataType and include the same information about the simulation properties (besides the canged data table) println( typeof(gas) ) println( typeof(gas_new) ) ``` HydroDataType HydroDataType ```julia mass_filtered_tot = getvar(gas_new, :mass, :Msol) sum(mass_filtered_tot) ``` 1.4862767967535206e10 ## Filter by Multiple Conditions ### With JuliaDB Get the mass of all cells/rows with densities >= 3 Msol/pc^3 that is within the disk radius of 3 kpc and 2 kpc from the plane: ```julia boxlen = info.boxlen cv = boxlen/2. # box-center density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc # filter cells/rows that contain rho greater equal density filtered_db = filter(p->p.rho >= density, gas.data ) # filter cells/rows lower equal the defined radius and height # (convert the cell number to a position according to its cellsize and relative to the box center) filtered_db = filter(row-> sqrt( (row.cx * boxlen /2^row.level - cv)^2 + (row.cy * boxlen /2^row.level - cv)^2) <= radius && abs(row.cz * boxlen /2^row.level - cv) <= height, filtered_db) var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### Use Pipeline Macros ```julia boxlen = info.boxlen cv = boxlen/2. density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc filtered_db = @apply gas.data begin @where :rho >= density @where sqrt( (:cx * boxlen/2^:level - cv)^2 + (:cy * boxlen/2^:level - cv)^2 ) <= radius @where abs(:cz * boxlen/2^:level -cv) <= height end var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### External Functions With JuliaDB ```julia boxlen = info.boxlen function r(x,y,level,boxlen) return sqrt((x * boxlen /2^level - boxlen/2.)^2 + (y * boxlen /2^level - boxlen/2.)^2) end function h(z,level,boxlen) return abs(z * boxlen /2^level - boxlen/2.) end density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc filtered_db = filter(row-> row.rho >= density && r(row.cx,row.cy, row.level, boxlen) <= radius && h(row.cz,row.level, boxlen) <= height, gas.data) var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### External Functions With Macro Expression ```julia boxlen = info.boxlen cv = boxlen/2. density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc function p(val, level, boxlen) cv = boxlen/2 return val * boxlen /2^level - cv end filtered_db = @apply gas.data begin @where :rho >= density @where sqrt( p(:cx, :level, boxlen)^2 + p(:cy, :level, boxlen)^2 ) <= radius @where abs( p(:cz, :level, boxlen) ) <= height end var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### Compare With Predefined Functions Compare the previous calculations with the predefined `subregion` function: The `subregion` function takes the intersected cells of the range borders into account (default): ```julia density = 3. /gas.scale.Msol_pc3 # in code units sub_region = subregion(gas, :cylinder, radius=3., height=2., center=[:boxcenter], range_unit=:kpc, verbose=false ) # default: cell=true filtered_db = @filter sub_region.data :rho >= density var_filtered = getvar(gas, :mass, :Msol, filtered_db=filtered_db) sum(var_filtered) # [Msol] ``` 2.9388306102361355e9 By setting the keyword `cell=false`, only the cell-centres within the defined region are taken into account (as in the calculations in the previous section). ```julia density = 3. /gas.scale.Msol_pc3 # in code units sub_region = subregion(gas, :cylinder, radius=3., height=2., center=[:boxcenter], range_unit=:kpc, cell=false, verbose=false ) filtered_db = @filter sub_region.data :rho >= density var_filtered = getvar(gas, :mass, :Msol, filtered_db=filtered_db) sum(var_filtered) ``` 2.750632450062189e9 ## Extend the Data Table Add costum columns/variables to the data that can be automatically processed in some functions: (note: to take advantage of the Mera unit management, store new data in code-units) ```julia # calculate the Mach number in each cell mach = getvar(gas, :mach); ``` ```julia # add the extracted Mach number (1dim-array) to the data in the object "gas" # the array has the same length and order (rows/cells) as in the data table # push a column at the end of the table: # transform(data-table, key => new-data) gas.data = transform(gas.data, :mach => mach) # JuliaDB ``` Table with 849332 rows, 12 columns: Columns: #  colname  type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 12 mach Float64 ```julia proj_z = projection(gas, :mach, xrange=[-8.,8.], yrange=[-8.,8.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ```  [Mera]: 2020-02-08T20:59:42.246 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.3333333 :: 0.6666667 ==> 16.0 [kpc] :: 32.0 [kpc] ymin::ymax: 0.3333333 :: 0.6666667 ==> 16.0 [kpc] :: 32.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:mach, :sd) 100%|███████████████████████████████████████████████████| Time: 0:00:07 ```julia using PyPlot imshow( ( permutedims(proj_z.maps[:mach]) ), origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](05_multi_Masking_Filtering_files/05_multi_Masking_Filtering_60_0.png) Remove the column :mach from the table: ```julia gas.data = select(gas.data, Not(:mach)) # select all columns, not :mach ``` Table with 849332 rows, 11 columns: Columns: #  colname  type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ## Masking Many functions in **MERA** provide the opportunity to use a mask on selected data without changing the content in the data table. Here we present several methods to prepare a mask and apply it to some functions. A created mask is an array of type: `MaskType`, which can be Array{Bool,1} or BitArray{1}. A masked cell/row corresponds to a **false**. #### Version 1: External Function Create an array which represents the cells with the selected condition by true. The function checks if the following requirement is true or false for each row/cell in the data table: ```julia function ftest(value) density = (4. / gas.scale.Msol_pc3) if value < density return true else return false end end mask_v1 = map(row->ftest(row.rho), gas.data); println( length(mask_v1) ) println( typeof(mask_v1) ) ``` 849332 Array{Bool,1} #### Version 2: Short Syntax ##### Example 1 ```julia mask_v2 = map(row->row.rho < 4. / gas.scale.Msol_pc3, gas.data); println( length(mask_v2) ) println( typeof(mask_v2) ) ``` 849332 Array{Bool,1} ##### Example 2 ```julia mask_v2b = getvar(gas, :rho, :Msol_pc3) .> 1. ; println( length(mask_v2b) ) println( typeof(mask_v2b) ) ``` 849332 BitArray{1} #### Version 3: Longer Syntax ```julia rho_array = select(gas.data, :rho); mask_v3 = rho_array .< 1. / gas.scale.Msol_pc3; println( length(mask_v3) ) println( typeof(mask_v3) ) ``` 849332 BitArray{1} ### Some Functions With Masking Functionality The masked rows are not considered in the calculations (mask-element = false ). ### Examples ### Total Mass ```julia mask = map(row->row.rho < 1. / gas.scale.Msol_pc3, gas.data); mtot_masked = msum(gas, :Msol, mask=mask) mtot = msum(gas, :Msol) println() println( "Gas Mtot masked: ", mtot_masked , " Msol" ) println( "Gas Mtot: ", mtot , " Msol" ) println() ``` Gas Mtot masked: 1.336918953133308e10 Msol Gas Mtot: 3.0968754148332745e10 Msol ```julia mask = map(row->row.birth < 100. / particles.scale.Myr, particles.data); mtot_masked = msum(particles, :Msol, mask=mask) mtot = msum(particles, :Msol) println() println( "Particles Mtot masked: ", mtot_masked , " Msol" ) println( "Particles Mtot: ", mtot , " Msol" ) println() ``` Particles Mtot masked: 1.4537556611888414e7 Msol Particles Mtot: 5.804426008528437e9 Msol ```julia mask = map(row->row.mass_cl < 1e6 / clumps.scale.Msol, clumps.data); mtot_masked = msum(clumps, :Msol, mask=mask) mtot = msum(clumps, :Msol) println() println( "Clumps Mtot masked: ", mtot_masked , " Msol" ) println( "Clumps Mtot: ", mtot , " Msol" ) println() ``` Clumps Mtot masked: 2.926390055686605e7 Msol Clumps Mtot: 1.3743280681841677e10 Msol ### Center-Of-Mass ```julia mask = map(row->row.rho < 100. / gas.scale.nH, gas.data); com_gas_masked = center_of_mass(gas, :kpc, mask=mask) com_gas = center_of_mass(gas, :kpc) println() println( "Gas COM masked: ", com_gas_masked , " kpc" ) println( "Gas COM: ", com_gas , " kpc" ) println() ``` Gas COM masked: (23.632781376611646, 24.017935187730938, 24.078280687627124) kpc Gas COM: (23.47221401632259, 23.93931869865653, 24.08483637116779) kpc ```julia mask = map(row->row.birth < 100. / particles.scale.Myr, particles.data); com_particles_masked = center_of_mass(particles, :kpc, mask=mask) com_particles = center_of_mass(particles, :kpc) println() println( "Particles COM masked: ", com_particles_masked , " kpc" ) println( "Particles COM: ", com_particles , " kpc" ) println() ``` Particles COM masked: (22.766374936557934, 24.817294529838456, 24.020065595650212) kpc Particles COM: (22.891354761211332, 24.174147282680273, 24.003205056545575) kpc ```julia # calculate joint center-of-mass from gas and particles mask1 = map(row->row.rho < 100. / gas.scale.nH, gas.data); # mask for the hydro data mask2 = map(row->row.birth < 100. / particles.scale.Myr, particles.data); # mask for the particle data println( "Joint COM (Gas + Particles) masked: ", center_of_mass([gas,particles], :kpc, mask=[mask1, mask2]) , " kpc" ) println( "Joint COM (Gas + Particles): ", center_of_mass([gas,particles], :kpc) , " kpc" ) ``` Joint COM (Gas + Particles) masked: (23.632014753139174, 24.01864248583754, 24.078229177095928) kpc Joint COM (Gas + Particles): (23.380528865533876, 23.976384982693947, 24.07195135758772) kpc ```julia mask = map(row->row.mass_cl < 1e6 / clumps.scale.Msol, clumps.data); com_clumps_masked = center_of_mass(clumps, mask=mask) com_clumps = center_of_mass(clumps) println() println( "Clumps COM masked:", com_clumps_masked .* clumps.scale.kpc, " kpc" ) println( "Clumps COM: ", com_clumps .* clumps.scale.kpc, " kpc" ) println() ``` Clumps COM masked:(22.979676622296815, 23.22447986984898, 24.11056806473746) kpc Clumps COM: (23.135765457064576, 23.741712325649264, 24.0050127185862) kpc ### Bulk-Velocity ```julia mask = map(row->row.rho < 100. / gas.scale.nH, gas.data); bv_gas_masked = bulk_velocity(gas, :km_s, mask=mask) bv_gas = bulk_velocity(gas, :km_s) println() println( "Gas bulk velocity masked: ", bv_gas_masked , " km/s" ) println( "Gas bulk velocity: ", bv_gas , " km/s" ) println() ``` Gas bulk velocity masked: (-0.046336703401138456, -6.60993479840688, -1.000280146674773) km/s Gas bulk velocity: (-1.1999253584798182, -10.678485153330122, -0.44038538452508785) km/s ```julia mask = map(row->row.birth < 100. / particles.scale.Myr, particles.data); bv_particles_masked = bulk_velocity(particles, :km_s, mask=mask) bv_particles = bulk_velocity(particles, :km_s) println() println( "Particles bulk velocity masked: ", bv_particles_masked , " km/s" ) println( "Particles bulk velocity: ", bv_particles , " km/s" ) println() ``` Particles bulk velocity masked: (-27.702254113836513, -7.532075727552787, -1.3273993940211153) km/s Particles bulk velocity: (-11.623422700314535, -18.440572802490234, -0.3291927731417528) km/s ### Weighted Statistics (It is also possible to use the mask within the `getvar` function) ```julia maskgas = map(row->row.rho < 100. / gas.scale.nH, gas.data); maskpart = map(row->row.birth < 100. / particles.scale.Myr, particles.data); maskclump = map(row->row.mass_cl < 1e7 / clumps.scale.Msol, clumps.data); stats_gas_masked = wstat( getvar(gas, :vx, :km_s), weight=getvar(gas, :mass ), mask=maskgas); stats_particles_masked = wstat( getvar(particles, :vx, :km_s), weight=getvar(particles, :mass ), mask=maskpart); stats_clumps_masked = wstat( getvar(clumps, :peak_x, :kpc ), weight=getvar(clumps, :mass_cl), mask=maskclump) ; println( "Gas <vx>_cells masked : ", stats_gas_masked.mean, " km/s (mass weighted)" ) println( "Particles <vx>_particles masked : ", stats_particles_masked.mean, " km/s (mass weighted)" ) println( "Clumps <peak_x>_clumps masked : ", stats_clumps_masked.mean, " kpc (mass weighted)" ) println() ``` Gas <vx>_cells masked : -0.04633670340114798 km/s (mass weighted) Particles <vx>_particles masked : -27.702254113836517 km/s (mass weighted) Clumps <peak_x>_clumps masked : 22.907689025275953 kpc (mass weighted) ```julia stats_gas = wstat( getvar(gas, :vx, :km_s), weight=getvar(gas, :mass )); stats_particles = wstat( getvar(particles, :vx, :km_s), weight=getvar(particles, :mass )); stats_clumps = wstat( getvar(clumps, :peak_x, :kpc ), weight=getvar(clumps, :mass_cl)) ; println( "Gas <vx>_allcells : ", stats_gas.mean, " km/s (mass weighted)" ) println( "Particles <vx>_allparticles : ", stats_particles.mean, " km/s (mass weighted)" ) println( "Clumps <peak_x>_allclumps : ", stats_clumps.mean, " kpc (mass weighted)" ) println() ``` Gas <vx>_allcells : -1.199925358479736 km/s (mass weighted) Particles <vx>_allparticles : -11.623422700314544 km/s (mass weighted) Clumps <peak_x>_allclumps : 23.13576545706458 kpc (mass weighted) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
42772
# 6. Hydro: Projections ## Load The Data ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); gas = gethydro(info, lmax=10, smallr=1e-5); ``` ┌ Info: Precompiling Mera [02f895e8-fdb1-4346-8fe6-c721699f5126] └ @ Base loading.jl:1273 *__ __ _______ ______ _______ | |_| | | _ | | _ | | | ___| | || | |_| | | | |___| |_||_| | | | ___| __ | | | ||_|| | |___| | | | _ | |_| |_|_______|___| |_|__| |__|  [Mera]: 2020-02-18T22:27:12.257 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051  ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true  =======================================================  [Mera]: Get hydro data: 2020-02-18T22:27:49.16 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data...  100%|███████████████████████████████████████████████████| Time: 0:03:04 Memory used for data table :409.5426664352417 MB ------------------------------------------------------- ```julia gas.data ``` Table with 4879946 rows, 11 columns: Columns:  #   colname   type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ## Projection of Predefined Quantities See the possible variables: ```julia projection() ``` Predefined vars for projections: ------------------------------------------------ =====================[gas]:===================== -all the non derived hydro vars- :cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,... further possibilities: :rho, :density, :ρ -derived hydro vars- :x, :y, :z :sd or :Σ or :surfacedensity :mass, :cellsize, :freefall_time :cs, :mach, :jeanslength, :jeansnumber ==================[particles]:================== all the non derived vars: :cpu, :level, :id, :family, :tag :x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal.... -derived particle vars- :age ==============[gas or particles]:=============== :v, :ekin squared => :vx2, :vy2, :vz2 velocity dispersion => σx, σy, σz, σ related to a given center: --------------------------- :vr_cylinder, vr_sphere (radial components) :vϕ_cylinder, :vθ squared => :vr_cylinder2, :vϕ_cylinder2 velocity dispersion => σr_cylinder, σϕ_cylinder 2d maps (not projected): :r_cylinder :ϕ ------------------------------------------------ ## Projection of a Single Quantity in Different Directions (z,y,x) Here we project the surface density in the z-direction of the data within a particular vertical range (domain=[0:1]) onto a grid corresponding to the maximum loaded level. Pass any object of `HydroDataType` (here: "gas") to the `projection`-function and select a variable by a Symbol (here: :sd = :surfacedensity = :Σ in Msol/pc^3) ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, zrange=[0.45,0.55]) proj_z = projection(gas, :Σ, unit=:Msol_pc2, zrange=[0.45,0.55], verbose=false) proj_z = projection(gas, :surfacedensity, unit=:Msol_pc2, zrange=[0.45,0.55], verbose=false) proj_z = projection(gas, :sd, :Msol_pc2, zrange=[0.45,0.55], verbose=false) # The keyword "unit" (singular) can be omit if the following order is preserved: data-object, quantity, unit. proj_x = projection(gas, :sd, :Msol_pc2, direction = :x, zrange=[0.45,0.55], verbose=false); # Project the surface density in x-direction ```  [Mera]: 2020-02-12T12:18:14.842 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:sd,)  100%|███████████████████████████████████████████████████| Time: 0:01:07  100%|███████████████████████████████████████████████████| Time: 0:01:02  100%|███████████████████████████████████████████████████| Time: 0:00:57  100%|███████████████████████████████████████████████████| Time: 0:00:57  100%|███████████████████████████████████████████████████| Time: 0:00:56 ### Select a Range Related to a Center See also in the documentation for: load data by selection ```julia cv = (gas.boxlen / 2.) * gas.scale.kpc # provide the box-center in kpc proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[cv,cv,cv], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:23:18.582 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,)  100%|███████████████████████████████████████████████████| Time: 0:00:55 Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:24:15.893 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,)  100%|███████████████████████████████████████████████████| Time: 0:00:53 ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:25:09.001 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,)  100%|███████████████████████████████████████████████████| Time: 0:00:52 Use the box center notation for individual dimensions, here x,z: ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc, 24., :bc], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:26:03.671 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,)  100%|███████████████████████████████████████████████████| Time: 0:00:53 ### Get Multiple Quantities Get several quantities with one function call by passing an array containing the selected variables (at least one entry). The keyword name for the units is now in plural. ```julia proj1_x = projection(gas, [:sd], units=[:Msol_pc2], direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:26:57.186 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,)  100%|███████████████████████████████████████████████████| Time: 0:00:53 Pass an array containing several quantities to process and their corresponding units: ```julia proj1_z = projection(gas, [:sd, :vx], units=[:Msol_pc2, :km_s], direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:27:50.658 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd, :vx)  100%|███████████████████████████████████████████████████| Time: 0:00:59 The function can be called without any keywords by preserving the following order: dataobject, variables, units ```julia proj1_z = projection(gas, [:sd , :vx], [:Msol_pc2, :km_s], direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:28:49.928 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd, :vx)  100%|███████████████████████████████████████████████████| Time: 0:00:56 If all selected variables should be of the same unit use the following arguments: dataobject, array of quantities, unit (no array needed) ```julia projvel_z = projection(gas, [:vx, :vy, :vz], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T12:29:46.23 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:vx, :vy, :vz, :sd)  100%|███████████████████████████████████████████████████| Time: 0:00:55 ## Function Output List the fields of the assigned object: ```julia propertynames(proj1_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ranges, :extent, :cextent, :ratio, :boxlen, :smallr, :smallc, :scale, :info) The projected 2D maps are stored in a dictionary: ```julia proj1_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 2 entries: :sd => [2.42108 2.42108 … 3.06809 3.06809; 2.42108 2.42108 … 3.06809 3.06809;… :vx => [48.3311 48.3311 … 35.0161 35.0161; 48.3311 48.3311 … 35.0161 35.0161;… The maps can be accessed by giving the name of the dictionary: ```julia proj1_z.maps[:sd] ``` 428×86 Array{Float64,2}: 2.42108 2.42108 2.42108 2.76423 … 3.80613 3.06809 3.06809 3.06809 2.42108 2.42108 2.42108 2.76423 3.80613 3.06809 3.06809 3.06809 2.43323 2.43323 2.43323 2.83905 3.77978 3.04769 3.04769 3.04769 2.43323 2.43323 2.43323 2.83905 3.77978 3.04769 3.04769 3.04769 2.43323 2.43323 2.43323 2.83612 3.77978 3.04769 3.04769 3.04769 2.43323 2.43323 2.43323 2.83612 … 3.77978 3.04769 3.04769 3.04769 2.61724 2.61724 2.61724 2.78421 3.38093 2.59978 2.59978 2.59978 2.61724 2.61724 2.61724 2.78421 3.38093 2.59978 2.59978 2.59978 2.61724 2.61724 2.61724 2.78048 3.38093 2.59978 2.59978 2.59978 2.61724 2.61724 2.61724 2.78048 3.38093 2.59978 2.59978 2.59978 2.65948 2.65948 2.65948 2.92033 … 3.26695 2.56391 2.56391 2.56391 2.65948 2.65948 2.65948 2.92033 3.26695 2.56391 2.56391 2.56391 2.65948 2.65948 2.65948 2.9154 3.26695 2.56391 2.56391 2.56391 ⋮ ⋱ ⋮ 3.64783 3.62431 3.62431 3.69296 2.64986 2.58555 2.58555 2.58555 3.64783 3.62431 3.62431 3.69296 2.64986 2.58555 2.58555 2.58555 4.06584 4.06584 4.06584 4.25253 2.5403 2.54319 2.54319 2.54319 4.06584 4.06584 4.06584 4.25253 2.5403 2.54319 2.54319 2.54319 4.06584 4.06584 4.06584 4.36169 … 2.5403 2.54319 2.54319 2.54319 4.06584 4.06584 4.06584 4.36169 2.5403 2.54319 2.54319 2.54319 5.43946 5.43946 5.43946 5.56363 2.45995 2.45782 2.45782 2.45782 5.43946 5.43946 5.43946 5.56363 2.45995 2.45782 2.45782 2.45782 5.43946 5.43946 5.43946 5.39163 2.45995 2.45782 2.45782 2.45782 5.43946 5.43946 5.43946 5.39163 … 2.45995 2.45782 2.45782 2.45782 5.68876 5.68876 5.68876 5.8404 2.41942 2.43411 2.43411 2.43411 5.68876 5.68876 5.68876 2.62535 2.41942 2.43411 2.43411 2.43411 The units of the maps are stored in: ```julia proj1_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 2 entries: :sd => :Msol_pc2 :vx => :km_s Projections on a different grid size (see subject below): ```julia proj1_z.maps_lmax ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 0 entries The following fields are helpful for further calculations or plots. ```julia proj1_z.ranges # normalized to the domain=[0:1] ``` 6-element Array{Float64,1}: 0.29166666666647767 0.7083333333328743 0.29166666666647767 0.7083333333328743 0.4583333333330363 0.5416666666663156 ```julia proj1_z.extent # ranges in code units ``` 4-element Array{Float64,1}: 13.96875 34.03125 21.984375 26.015625 ```julia proj1_z.cextent # ranges in code units relative to a given center (by default: box center) ``` 4-element Array{Float64,1}: -10.03125 10.03125 -2.015625 2.015625 ```julia proj1_z.ratio # the ratio between the two ranges ``` 4.976744186046512 ## Plot Maps with Python ```julia proj_z = projection(gas, :sd, :Msol_pc2, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) proj_x = projection(gas, :sd, :Msol_pc2, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, direction = :x); ```  100%|███████████████████████████████████████████████████| Time: 0:01:02  100%|███████████████████████████████████████████████████| Time: 0:01:00 Python functions can be directly called in Julia, which gives the opportunity, e.g. to use the Matplotlib library. ```julia using PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php cmap2 = ColorMap(ColorSchemes.roma.colors) ``` ![svg](06_hydro_Projection_files/06_hydro_Projection_45_0.svg) ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_46_0.png) Project a specific spatial range and plot the axes of the map relative to the box-center (given by keyword: data_center): ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc) proj_x = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc, direction = :x); ```  100%|███████████████████████████████████████████████████| Time: 0:00:54  100%|███████████████████████████████████████████████████| Time: 0:00:51 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_49_0.png) Plot the axes of the map relative to the map-center (given by keyword: data_center): ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc) proj_x = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc, direction = :x); ```  100%|███████████████████████████████████████████████████| Time: 0:01:10  100%|███████████████████████████████████████████████████| Time: 0:01:00 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_52_0.png) ## Projections of Derived Kinematic Data #### Use quantities in cartesian coordinates: Project the following derived data (mass weighted by default): The absolute value of the velocity :v, the velocity dispersion :σ in different directions. The Julia language supports Unicode characters and can be inserted by e.g. "\sigma + tab-key" leading to: **σ**. ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :σz], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-18T22:49:54.49 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :σz, :vx, :vx2, :vy, :vy2, :vz, :vz2, :v2, :sd)  100%|███████████████████████████████████████████████████| Time: 0:01:03 For the velocity dispersion additional maps are created to created the mass-weighted quantity: E. g.: σx = sqrt( <vx^2> - < vx >^2 ) ```julia proj_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 13 entries: :sd => [0.000525384 0.000525384 … 0.000463458 0.000334485; 0.000525384 0.000… :v => [10.9033 10.9033 … 9.28165 8.34605; 10.9033 10.9033 … 9.28165 8.34605… :v2 => [0.245404 0.245404 … 0.193833 0.163449; 0.245404 0.245404 … 0.193833 … :vx => [0.11951 0.11951 … -0.0700017 -0.0384127; 0.11951 0.11951 … -0.070001… :vx2 => [0.122347 0.122347 … 0.111339 0.0775909; 0.122347 0.122347 … 0.111339… :vy => [0.0445661 0.0445661 … -0.00514768 -0.00554146; 0.0445661 0.0445661 …… :vy2 => [0.0331066 0.0331066 … 0.019046 0.018845; 0.0331066 0.0331066 … 0.019… :vz => [-0.0999134 -0.0999134 … -0.0370643 -0.024236; -0.0999134 -0.0999134 … :vz2 => [0.0899502 0.0899502 … 0.0634475 0.0670127; 0.0899502 0.0899502 … 0.0… :σ => [30.6004 30.6004 … 27.3378 25.1633; 30.6004 30.6004 … 27.3378 25.1633… :σx => [21.5567 21.5567 … 21.3939 18.0916; 21.5567 21.5567 … 21.3939 18.0916… :σy => [11.5681 11.5681 … 9.04357 8.99465; 11.5681 11.5681 … 9.04357 8.99465… :σz => [18.5437 18.5437 … 16.3378 16.9008; 18.5437 18.5437 … 16.3378 16.9008… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 13 entries: :sd => :standard :v => :km_s :v2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :σ => :km_s :σx => :km_s :σy => :km_s :σz => :km_s ```julia usedmemory(proj_z); ``` Memory used: 18.436 MB ```julia figure(figsize=(10, 5.5)) subplot(2, 3, 1) title("v [km/s]") imshow( (permutedims(proj_z.maps[:v]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 2) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 4) title("σx [km/s]") imshow( (permutedims(proj_z.maps[:σx]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 5) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 6) title("σz [km/s]") imshow( permutedims(proj_z.maps[:σz]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_61_0.png) #### Use quantities in cylindrical coordinates: #### Face-on disc (z-direction) For the cylindrical or spherical components of a quantity, the center of the coordinate system is used (keywords: data_center = center default) and can be given with the keyword "data_center" and its units with "data_center_unit". Additionally, the quantities that are based on cartesian coordinates can be given. ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :ϕ, :r_cylinder, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], units=[:km_s,:km_s,:km_s, :km_s, :standard, :kpc, :km_s, :km_s, :km_s, :km_s], xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, data_center=[24.,24.,24.], data_center_unit=:kpc); ```  [Mera]: 2020-02-18T23:17:14.519 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :ϕ, :r_cylinder, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder, :vx, :vx2, :vy, :vy2, :v2, :vr_cylinder2, :vϕ_cylinder2, :sd)  100%|███████████████████████████████████████████████████| Time: 0:01:08 ```julia proj_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => [14.0758 14.0427 … 14.1201 14.1534; 14.0427 14.0096 … 14.087… :sd => [0.000525384 0.000525384 … 0.000463458 0.000334485; 0.000525… :v => [8.72263 8.72263 … 7.42532 6.67684; 8.72263 8.72263 … 7.4253… :v2 => [0.196323 0.196323 … 0.155066 0.130759; 0.196323 0.196323 … … :vr_cylinder => [-6.0864 -6.0864 … 2.38666 1.2034; -6.0864 -6.0864 … 2.38666… :vr_cylinder2 => [0.105049 0.105049 … 0.0620751 0.0537682; 0.105049 0.105049 … :vx => [0.0956079 0.0956079 … -0.0560013 -0.0307302; 0.0956079 0.09… :vx2 => [0.097878 0.097878 … 0.0890713 0.0620727; 0.097878 0.097878 … :vy => [0.0356529 0.0356529 … -0.00411814 -0.00443317; 0.0356529 0.… :vy2 => [0.0264853 0.0264853 … 0.0152368 0.015076; 0.0264853 0.02648… :vϕ_cylinder => [2.78004 2.78004 … 3.22947 2.23274; 2.78004 2.78004 … 3.2294… :vϕ_cylinder2 => [0.0193141 0.0193141 … 0.042233 0.0233806; 0.0193141 0.01931… :σ => [27.7151 27.7151 … 24.7319 22.753; 27.7151 27.7151 … 24.7319… :σr_cylinder => [20.3637 20.3637 … 16.1627 15.1579; 20.3637 20.3637 … 16.162… :σx => [19.5341 19.5341 … 19.2232 16.2129; 19.5341 19.5341 … 19.223… :σy => [10.4127 10.4127 … 8.08995 8.04638; 10.4127 10.4127 … 8.0899… :σϕ_cylinder => [8.67895 8.67895 … 13.0835 9.77518; 8.67895 8.67895 … 13.083… :ϕ => [3.92699 3.92463 … 2.35306 2.35073; 3.92935 3.92699 … 2.3507… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => :kpc :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σϕ_cylinder => :km_s :ϕ => :radian ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("Radius [kpc]") imshow( permutedims(proj_z.maps[:r_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmin=-20.,vmax=20.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("ϕ-angle ") imshow( permutedims(proj_z.maps[:ϕ]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_z.maps[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_z.maps[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( permutedims(proj_z.maps[:σ]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_z.maps[:σx] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_66_0.png) ## Project on a Coarser Grid The default is the projection on the maximum loaded grid level (always provided in the output). Choose a smaller level with the keyword `lmax` to project on a coarser grid in addition. Higher-resolution data is averaged within each coarser grid-cell (default: mass-weighted). By default, the data is assumed to be in the center of the simulation box. ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, lmax=8); ```  [Mera]: 2020-02-18T23:18:44.018 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder, :vx, :vx2, :vy, :vy2, :vz, :vz2, :v2, :vr_cylinder2, :vϕ_cylinder2, :sd)  100%|███████████████████████████████████████████████████| Time: 0:01:08 remap from: level 10 => 8 cellsize 46.88 [pc] => 187.5 [pc] pixels (428, 428) => (107, 107) The projection onto the maximum loaded grid is always provided: ```julia proj_z.maps_lmax ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 19 entries: :sd => [0.000525384 0.000545269 … 0.000475553 0.000334485; 0.000532… :v => [7.26886 7.32994 … 7.73366 5.56403; 7.30578 7.37137 … 8.9885… :v2 => [0.163603 0.166415 … 0.210983 0.108966; 0.166587 0.168972 … … :vr_cylinder => [-5.072 -4.65663 … 2.60367 1.00283; -5.02593 -4.4874 … 2.140… :vr_cylinder2 => [0.0875409 0.0826628 … 0.0646939 0.0448068; 0.0884293 0.0811… :vx => [0.0796732 0.0788819 … -0.0691436 -0.0256085; 0.0809557 0.07… :vx2 => [0.081565 0.0804544 … 0.136752 0.0517273; 0.0845953 0.082583… :vy => [0.0297108 0.0211165 … -0.0132175 -0.0036943; 0.0278214 0.01… :vy2 => [0.022071 0.0251372 … 0.0168816 0.0125634; 0.0229327 0.02711… :vz => [-0.0666089 -0.0671458 … -0.0188721 -0.0161574; -0.0657326 -… :vz2 => [0.0599668 0.0608235 … 0.0573498 0.0446751; 0.0590593 0.0592… :vϕ_cylinder => [2.3167 2.65081 … 3.9351 1.86062; 2.49477 2.91954 … 5.93535 … :vϕ_cylinder2 => [0.0160951 0.0229288 … 0.0889397 0.0194838; 0.0190986 0.0284… :σ => [25.5083 25.727 … 29.1109 20.9191; 25.7482 25.928 … 33.7281 … :σr_cylinder => [18.7273 18.2695 … 16.4746 13.8445; 18.8414 18.1389 … 13.727… :σx => [17.9845 17.8664 … 23.8221 14.8194; 18.319 18.1022 … 25.8056… :σy => [9.54527 10.3042 … 8.47594 7.3461; 9.7614 10.7401 … 15.0491 … :σz => [15.4527 15.5615 … 15.655 13.8198; 15.3422 15.3681 … 16.8782… :σϕ_cylinder => [7.99022 9.56921 … 19.1564 8.96219; 8.7122 10.678 … 26.5011 … ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 19 entries: :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σz => :km_s :σϕ_cylinder => :km_s The projection onto a coarser grid (fieldname: `maps_lmax`) is stored in a dictionary into the field `maps_lmax`: ```julia proj_z.lmax_projected ``` 8 ```julia proj_z.maps_lmax ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 19 entries: :sd => [0.000525384 0.000545269 … 0.000475553 0.000334485; 0.000532… :v => [7.26886 7.32994 … 7.73366 5.56403; 7.30578 7.37137 … 8.9885… :v2 => [0.163603 0.166415 … 0.210983 0.108966; 0.166587 0.168972 … … :vr_cylinder => [-5.072 -4.65663 … 2.60367 1.00283; -5.02593 -4.4874 … 2.140… :vr_cylinder2 => [0.0875409 0.0826628 … 0.0646939 0.0448068; 0.0884293 0.0811… :vx => [0.0796732 0.0788819 … -0.0691436 -0.0256085; 0.0809557 0.07… :vx2 => [0.081565 0.0804544 … 0.136752 0.0517273; 0.0845953 0.082583… :vy => [0.0297108 0.0211165 … -0.0132175 -0.0036943; 0.0278214 0.01… :vy2 => [0.022071 0.0251372 … 0.0168816 0.0125634; 0.0229327 0.02711… :vz => [-0.0666089 -0.0671458 … -0.0188721 -0.0161574; -0.0657326 -… :vz2 => [0.0599668 0.0608235 … 0.0573498 0.0446751; 0.0590593 0.0592… :vϕ_cylinder => [2.3167 2.65081 … 3.9351 1.86062; 2.49477 2.91954 … 5.93535 … :vϕ_cylinder2 => [0.0160951 0.0229288 … 0.0889397 0.0194838; 0.0190986 0.0284… :σ => [25.5083 25.727 … 29.1109 20.9191; 25.7482 25.928 … 33.7281 … :σr_cylinder => [18.7273 18.2695 … 16.4746 13.8445; 18.8414 18.1389 … 13.727… :σx => [17.9845 17.8664 … 23.8221 14.8194; 18.319 18.1022 … 25.8056… :σy => [9.54527 10.3042 … 8.47594 7.3461; 9.7614 10.7401 … 15.0491 … :σz => [15.4527 15.5615 … 15.655 13.8198; 15.3422 15.3681 … 16.8782… :σϕ_cylinder => [7.99022 9.56921 … 19.1564 8.96219; 8.7122 10.678 … 26.5011 … ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("v [km/s]") imshow( permutedims(proj_z.maps_lmax[:v] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps_lmax[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmin=-20.,vmax=20.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps_lmax[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("σz [km/s]") imshow( permutedims(proj_z.maps_lmax[:σz] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_z.maps_lmax[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_z.maps_lmax[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( permutedims(proj_z.maps_lmax[:σ]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_z.maps_lmax[:σx] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_z.maps_lmax[:σy] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_76_0.png) ## Remap a Projected Data onto a Coarser Grid Pass the object with the projected data to the function `remap` and the level of the coarser grid: ```julia proj_zlmax = remap(proj_z, 6, weighting=:mass); ``` remap from: level 10 => 6 cellsize 46.88 [pc] => 750.0 [pc] pixels (428, 428) => (27, 27) ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("v [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:v] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent, vmin=-20.,vmax=20.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 4) title("log10(σz) [km/s]") imshow( log10.(permutedims(proj_zlmax.maps_lmax[:σz]) ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 5) title("log10(σr) [km/s]") imshow( log10.(permutedims(proj_zlmax.maps_lmax[:σr_cylinder] )), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 6) title("log10(σϕ) [km/s]") imshow( log10.(permutedims(proj_zlmax.maps_lmax[:σϕ_cylinder] )), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 7) title("log10(σ) [km/s]") imshow( log10.(permutedims(proj_zlmax.maps_lmax[:σ]) ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 8) title("log10(σx) [km/s]") imshow( log10.(permutedims(proj_zlmax.maps_lmax[:σx] )), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 9) title("log10(σy) [km/s]") imshow( log10.(permutedims(proj_zlmax.maps_lmax[:σy] )), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar(); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_80_0.png) ## Projection of Thermal Data The the sound speed is calculated from the loaded adiabatic index (from the hydro files): ```julia proj_z = projection(gas, :cs, :km_s, zrange=[0.45,0.55], xrange=[0.3, 0.6], yrange=[0.3, 0.6]) proj_x = projection(gas, :cs, :km_s, zrange=[0.45,0.55], xrange=[0.3, 0.6], yrange=[0.3, 0.6], direction=:x); ```  [Mera]: 2020-02-18T22:54:00.33 domain: xmin::xmax: 0.3 :: 0.6 ==> 14.4 [kpc] :: 28.8 [kpc] ymin::ymax: 0.3 :: 0.6 ==> 14.4 [kpc] :: 28.8 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:cs, :sd)  100%|███████████████████████████████████████████████████| Time: 0:00:58  [Mera]: 2020-02-18T22:54:58.629 domain: xmin::xmax: 0.3 :: 0.6 ==> 14.4 [kpc] :: 28.8 [kpc] ymin::ymax: 0.3 :: 0.6 ==> 14.4 [kpc] :: 28.8 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:cs, :sd)  100%|███████████████████████████████████████████████████| Time: 0:00:55 ```julia figure(figsize=(10, 3.5)) subplot(1, 2, 1) im = imshow( log10.(permutedims(proj_z.maps[:cs]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(c_s) \ [km \ s^{-1}]}") subplot(1, 2, 2) im = imshow( log10.(permutedims(proj_x.maps[:cs]) ), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(c_s) \ [km \ s^{-1}]}",orientation="horizontal", pad=0.2); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_84_0.png) Change the adiabatic index in the field `gas.info.gamma` to use a different value in the projection calculation. ## Projection of Masked Data Mask higher densities by creating a Bool-array where the lower density cells correspond to false entries: ```julia density = 4e-3 / gas.scale.Msol_pc3 mask = map(row->row.rho < density, gas.data); ``` Pass the mask to the projection function: ```julia proj_z = projection(gas, :sd, :Msol_pc2, zrange=[0.45,0.55], mask=mask) proj_x = projection(gas, :sd, :Msol_pc2, zrange=[0.45,0.55], mask=mask, direction=:x); ```  [Mera]: 2020-02-18T23:04:58.755 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:sd,) :mask provided by function  100%|███████████████████████████████████████████████████| Time: 0:01:35  [Mera]: 2020-02-18T23:06:34.69 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:sd,) :mask provided by function  100%|███████████████████████████████████████████████████| Time: 0:01:34 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_hydro_Projection_files/06_hydro_Projection_91_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
43224
# 6. Particles: Projections ## Load The Data ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); particles = getparticles(info); ```  [Mera]: 2020-02-18T23:09:51.793 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051  ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true  =======================================================  [Mera]: Get particle data: 2020-02-18T23:10:01.886 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(1, 2, 3, 4, 5) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc]  Reading data...100%|████████████████████████████████████| Time: 0:00:04 Found 5.089390e+05 particles Memory used for data table :34.947275161743164 MB ------------------------------------------------------- ```julia particles.data ``` Table with 508939 rows, 10 columns: Columns:  #   colname   type ──────────────────── 1 level Int32 2 x Float64 3 y Float64 4 z Float64 5 id Int32 6 vx Float64 7 vy Float64 8 vz Float64 9 mass Float64 10 birth Float64 ## Projection of Predefined Quantities See the possible variables: ```julia projection() ``` Predefined vars for projections: ------------------------------------------------ =====================[gas]:===================== -all the non derived hydro vars- :cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,... further possibilities: :rho, :density, :ρ -derived hydro vars- :x, :y, :z :sd or :Σ or :surfacedensity :mass, :cellsize, :freefall_time :cs, :mach, :jeanslength, :jeansnumber ==================[particles]:================== all the non derived vars: :cpu, :level, :id, :family, :tag :x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal.... -derived particle vars- :age ==============[gas or particles]:=============== :v, :ekin squared => :vx2, :vy2, :vz2 velocity dispersion => σx, σy, σz, σ related to a given center: --------------------------- :vr_cylinder, vr_sphere (radial components) :vϕ_cylinder, :vθ squared => :vr_cylinder2, :vϕ_cylinder2 velocity dispersion => σr_cylinder, σϕ_cylinder 2d maps (not projected): :r_cylinder :ϕ ------------------------------------------------ ## Projection of a Single Quantity in Different Directions (z,y,x) Here we project the surface density in the z-direction of the data within a particular vertical range (domain=[0:1]) on a grid corresponding to level=9. Pass any object of *PartDataType* (here: "particles") to the *projection*-function and select a variable by a Symbol (here: :sd = :surfacedensity = :Σ in Msol/pc^3) ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, lmax=9, zrange=[0.45,0.55]) proj_z = projection(particles, :Σ, unit=:Msol_pc2, lmax=9, zrange=[0.45,0.55], verbose=false) proj_z = projection(particles, :surfacedensity, unit=:Msol_pc2, lmax=9,zrange=[0.45,0.55], verbose=false) proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, zrange=[0.45,0.55], verbose=false) # The keyword "unit" (singular) can be omit if the following order is preserved: data-object, quantity, unit. proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, direction = :x, zrange=[0.45,0.55], verbose=false); # Project the surface density in x-direction ```  [Mera]: 2020-02-12T20:07:42.33 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.95 :: 1.0 ==> 45.6 [kpc] :: 48.0 [kpc] Map data on given lmax: 9 xrange: 1 513 yrange: 1 513 zrange: 487 513 pixel-size: 93.75 [pc] ### Select a Range Related to a Center See also in the documentation for: load data by selection ```julia cv = (particles.boxlen / 2.) * particles.scale.kpc # provide the box-center in kpc proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[cv,cv,cv], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:45.187 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:46.718 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:46.818 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] Use the box center notation for individual dimensions, here x,z: ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc, 24., :bc], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:48.695 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] ### Get Multiple Quantities Get several quantities with one function call by passing an array containing the selected variables (at least one entry). The keyword name for the units is now in plural. ```julia proj1_x = projection(particles, [:sd], units=[:Msol_pc2], lmax=9, direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:49.018 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] Pass an array containing several quantities to process and their corresponding units: ```julia proj1_z = projection(particles, [:sd, :vx], units=[:Msol_pc2, :km_s], lmax=9, direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:49.132 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] The function can be called without any keywords by preserving the following order: dataobject, variables, units ```julia proj1_z = projection(particles, [:sd , :vx], [:Msol_pc2, :km_s], lmax=9, direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:50.02 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] If all selected variables should be of the same unit use the following arguments: dataobject, array of quantities, unit (no array needed) ```julia projvel_z = projection(particles, [:vx, :vy, :vz], :km_s, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-12T20:07:50.259 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc] ## Function Output List the fields of the assigned object: ```julia propertynames(proj1_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ref_time, :ranges, :extent, :cextent, :ratio, :boxlen, :scale, :info) The projected 2D maps are stored in a dictionary: ```julia proj1_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 2 entries: :sd => [1.29223 1.29223 … 1.29223 0.0; 2.58445 1.29223 … 0.0 0.0; … ; 3.87668… :vx => [178.738 143.611 … 131.468 NaN; 96.6932 154.086 … NaN NaN; … ; -189.97… The maps can be accessed by giving the name of the dictionary: ```julia proj1_z.maps[:sd] ``` 214×44 Array{Float64,2}: 1.29223 1.29223 1.29223 1.29223 … 0.0 1.29223 1.29223 0.0 2.58445 1.29223 2.58445 2.58445 1.29223 1.29223 0.0 0.0 0.0 1.29223 3.87668 2.58445 1.29223 0.0 0.0 0.0 1.29223 1.29223 2.58445 1.29223 0.0 1.29223 0.0 0.0 0.0 0.0 1.29223 2.58445 1.29223 0.0 1.29223 0.0 2.58445 2.58445 3.87668 1.29223 … 0.0 0.0 0.0 0.0 0.0 2.58445 0.0 2.58445 2.58445 0.0 0.0 0.0 1.29223 1.29223 6.46114 3.87668 3.87668 0.0 0.0 0.0 0.0 1.29223 1.29223 1.29223 0.0 2.58445 0.0 0.0 1.29223 2.58445 1.29223 3.87668 5.16891 2.58445 0.0 0.0 1.29223 0.0 1.29223 7.75336 … 0.0 2.58445 0.0 0.0 2.58445 2.58445 2.58445 3.87668 6.46114 0.0 1.29223 0.0 2.58445 2.58445 5.16891 0.0 0.0 2.58445 0.0 0.0 ⋮ ⋱ ⋮ 3.87668 3.87668 5.16891 2.58445 5.16891 3.87668 0.0 0.0 1.29223 6.46114 2.58445 5.16891 3.87668 2.58445 2.58445 0.0 5.16891 7.75336 3.87668 6.46114 3.87668 2.58445 3.87668 0.0 11.63 7.75336 5.16891 5.16891 … 7.75336 5.16891 1.29223 0.0 1.29223 3.87668 3.87668 2.58445 2.58445 1.29223 0.0 0.0 5.16891 3.87668 3.87668 11.63 2.58445 3.87668 0.0 0.0 2.58445 6.46114 6.46114 6.46114 5.16891 2.58445 1.29223 0.0 2.58445 3.87668 3.87668 10.3378 9.04559 2.58445 0.0 0.0 5.16891 6.46114 7.75336 9.04559 … 3.87668 2.58445 0.0 0.0 3.87668 3.87668 0.0 6.46114 9.04559 6.46114 0.0 0.0 3.87668 5.16891 5.16891 1.29223 2.58445 3.87668 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 The units of the maps are stored in: ```julia proj1_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 2 entries: :sd => :Msol_pc2 :vx => :km_s The following fields are helpful for further calculations or plots. ```julia proj1_z.ranges # normalized to the domain=[0:1] ``` 6-element Array{Float64,1}: 0.29166666666647767 0.7083333333328743 0.29166666666647767 0.7083333333328743 0.4583333333330363 0.5416666666663156 ```julia proj1_z.extent # ranges in code units ``` 4-element Array{Float64,1}: 13.96875 34.03125 21.9375 26.0625 ```julia proj1_z.cextent # ranges in code units relative to a given center (by default: box center) ``` 4-element Array{Float64,1}: -10.031250000015554 10.031249999984446 -2.062500000015554 2.062499999984446 ```julia proj1_z.ratio # the ratio between the two ranges ``` 4.863636363636363 ## Plot Maps with Python ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, direction = :x); ``` Python functions can be directly called in Julia, which gives the opportunity, e.g. to use the Matplotlib library. ```julia using PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php cmap2 = ColorMap(ColorSchemes.roma.colors) ``` ![svg](06_particles_Projection_files/06_particles_Projection_43_0.svg) ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_44_0.png) Project a specific spatial range and plot the axes of the map relative to the box-center (given by keyword: data_center): ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc) proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc, direction = :x); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_47_0.png) Plot the axes of the map relative to the map-center (given by keyword: data_center): ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc) proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc, direction = :x); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_50_0.png) ## Projections of Derived Kinematic Data #### Use quantities in cartesian coordinates: Project the following derived data (mass weighted by default): The absolute value of the velocity :v, the velocity dispersion :σ in different directions and the kinetic energy :ekin. The Julia language supports Unicode characters and can be inserted by e.g. "\sigma + tab-key" leading to: **σ**. ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :σz, :ekin], units=[:km_s,:km_s,:km_s,:km_s,:km_s,:erg], lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ```  [Mera]: 2020-02-18T23:11:45.881 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc]  100%|███████████████████████████████████████████████████| Time: 0:00:03 For the velocity dispersion additional maps are created to created the mass-weighted quantity: E. g.: σx = sqrt( <vx^2> - < vx >^2 ) ```julia proj_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 14 entries: :ekin => [2.4169e51 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; … :sd => [0.00129258 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0;… :v => [146.277 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; Na… :v2 => [4.97588 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; Na… :vx => [1.22376 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; Na… :vx2 => [1.49758 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; Na… :vy => [-1.84928 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; N… :vy2 => [3.41984 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; Na… :vz => [-0.241781 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; … :vz2 => [0.058458 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; N… :σ => [1.90735e-6 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN;… :σx => [0.0 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :σy => [0.0 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :σz => [1.72737e-7 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN;… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 14 entries: :ekin => :erg :sd => :standard :v => :km_s :v2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :σ => :km_s :σx => :km_s :σy => :km_s :σz => :km_s ```julia usedmemory(proj_z); ``` Memory used: 5.16 MB ```julia figure(figsize=(10, 5.5)) subplot(2, 3, 1) title("v [km/s]") imshow( (permutedims(proj_z.maps[:v]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmax=300.) colorbar() subplot(2, 3, 2) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 3) title("Ekin [erg]") imshow( log10.(permutedims(proj_z.maps[:ekin]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 4) title("σx [km/s]") imshow( (permutedims(proj_z.maps[:σx]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 5) title("σy [km/s]") imshow( (permutedims(proj_z.maps[:σy]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 6) title("σz [km/s]") imshow( (permutedims(proj_z.maps[:σz]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](06_particles_Projection_files/06_particles_Projection_59_0.png) #### Use quantities in cylindrical coordinates: #### Face-on disc (z-direction) For the cylindrical or spherical components of a quantity, the center of the coordinate system is used (keywords: data_center = center default) and can be given with the keyword "data_center" and its units with "data_center_unit". Additionally, the quantities that are based on cartesian coordinates can be given. ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :ϕ, :r_cylinder, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], units=[:km_s,:km_s,:km_s, :km_s, :standard, :kpc, :km_s, :km_s, :km_s, :km_s], xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, data_center=[24.,24.,24.], data_center_unit=:kpc); ```  [Mera]: 2020-02-18T23:14:53.029 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 9 xrange: 150 364 yrange: 150 364 zrange: 235 279 pixel-size: 93.75 [pc]  100%|███████████████████████████████████████████████████| Time: 0:00:01 ```julia proj_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => [14.0096 13.9434 … 14.1205 14.1874; 13.9434 13.877 … 14.0549… :sd => [0.00129258 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … … :v => [146.277 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN… :v2 => [4.97588 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN… :vr_cylinder => [29.3132 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN… :vr_cylinder2 => [0.199823 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … Na… :vx => [1.22376 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN… :vx2 => [1.49758 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN… :vy => [-1.84928 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … Na… :vy2 => [3.41984 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN… :vϕ_cylinder => [142.43 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN … :vϕ_cylinder2 => [4.7176 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN … :σ => [1.90735e-6 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … … :σr_cylinder => [0.0 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σx => [0.0 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σy => [0.0 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σϕ_cylinder => [0.0 NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :ϕ => [3.92699 3.92224 … 2.34837 2.34373; 3.93175 3.92699 … 2.3436… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => :kpc :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σϕ_cylinder => :km_s :ϕ => :radian ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("Radius [kpc]") imshow( permutedims(proj_z.maps[:r_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmin=-200.,vmax=200.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("ϕ-angle") imshow( (permutedims(proj_z.maps[:ϕ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_z.maps[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_z.maps[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_z.maps[:σx] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](06_particles_Projection_files/06_particles_Projection_64_0.png) ## Project on a Coarser Grid The default is the projection on the maximum loaded grid level (always provided in the output). Choose a smaller level with the keyword *lmax* to project on a coarser grid in addition. Higher-resolution data is averaged within each coarser grid-cell (default: mass-weighted). By default, the data is assumed to be in the center of the simulation box. ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, lmax=8); ```  [Mera]: 2020-02-18T23:15:37.232 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Map data on given lmax: 8 xrange: 75 183 yrange: 75 183 zrange: 118 140 pixel-size: 187.5 [pc]  100%|███████████████████████████████████████████████████| Time: 0:00:01 The projection onto the maximum loaded grid is always provided: ```julia proj_z.maps ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 19 entries: :sd => [0.000323146 0.000323146 … 0.0 0.0; 0.000969439 0.000323146 … :v => [146.277 156.41 … NaN NaN; 168.992 166.428 … NaN NaN; … ; Na… :v2 => [4.97588 5.6892 … NaN NaN; 6.6621 6.4413 … NaN NaN; … ; NaN … :vr_cylinder => [29.3132 76.3408 … NaN NaN; 26.5929 6.80341 … NaN NaN; … ; N… :vr_cylinder2 => [0.199823 1.35529 … NaN NaN; 0.25831 0.010764 … NaN NaN; … ;… :vx => [1.22376 0.610176 … NaN NaN; 1.49846 1.69991 … NaN NaN; … ; … :vx2 => [1.49758 0.372314 … NaN NaN; 2.33418 2.88971 … NaN NaN; … ; … :vy => [-1.84928 -2.29076 … NaN NaN; -2.04837 -1.86716 … NaN NaN; …… :vy2 => [3.41984 5.24756 … NaN NaN; 4.22525 3.48629 … NaN NaN; … ; N… :vz => [-0.241781 -0.263284 … NaN NaN; -0.187282 0.25555 … NaN NaN;… :vz2 => [0.058458 0.0693187 … NaN NaN; 0.102671 0.0653057 … NaN NaN;… :vϕ_cylinder => [142.43 135.419 … NaN NaN; 164.297 165.443 … NaN NaN; … ; Na… :vϕ_cylinder2 => [4.7176 4.26459 … NaN NaN; 6.30112 6.36523 … NaN NaN; … ; Na… :σ => [1.90735e-6 0.0 … NaN NaN; 9.45804 1.90735e-6 … NaN NaN; … ;… :σr_cylinder => [0.0 0.0 … NaN NaN; 20.0894 8.42937e-8 … NaN NaN; … ; NaN Na… :σx => [0.0 0.0 … NaN NaN; 19.5408 0.0 … NaN NaN; … ; NaN NaN … NaN… :σy => [0.0 0.0 … NaN NaN; 11.246 1.9543e-6 … NaN NaN; … ; NaN NaN … :σz => [1.72737e-7 0.0 … NaN NaN; 17.0492 0.0 … NaN NaN; … ; NaN Na… :σϕ_cylinder => [0.0 0.0 … NaN NaN; 10.1009 0.0 … NaN NaN; … ; NaN NaN … NaN… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 19 entries: :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σz => :km_s :σϕ_cylinder => :km_s ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("|v| [km/s]") imshow( permutedims(proj_z.maps[:v] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmax=300.) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmin=-200.,vmax=200.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("σz [km/s]") imshow( (permutedims(proj_z.maps[:σz]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( (permutedims(proj_z.maps[:σr_cylinder] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( (permutedims(proj_z.maps[:σϕ_cylinder] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( (permutedims(proj_z.maps[:σx] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( (permutedims(proj_z.maps[:σy] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](06_particles_Projection_files/06_particles_Projection_71_0.png) ## Remap a Projected Data onto a Coarser Grid Pass the object with the projected data to the function *remap* and the level of the coarser grid: ```julia proj_zlmax = remap(proj_z, 6, weighting=:mass); ``` remap from: level 8 => 6 cellsize 187.5 [pc] => 750.0 [pc] pixels (108, 108) => (27, 27) ```julia proj_zlmax.maps_lmax ``` DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 19 entries: :sd => [0.000323146 0.000646292 … 0.000969439 0.0; 0.000323146 0.00… :v => [146.277 168.298 … 156.122 NaN; 139.301 147.989 … 163.056 Na… :v2 => [4.97588 6.59448 … 5.72437 NaN; 4.51262 5.41716 … 6.34405 Na… :vr_cylinder => [29.3132 84.1136 … 12.6568 NaN; -65.7457 1.40056 … -13.4105 … :vr_cylinder2 => [0.199823 1.66491 … 1.15359 NaN; 1.0052 0.0947446 … 0.295219… :vx => [1.22376 0.492592 … -1.53257 NaN; 2.0553 1.52317 … -1.57894 … :vx2 => [1.49758 0.249049 … 2.51795 NaN; 4.22424 2.55826 … 2.92281 N… :vy => [-1.84928 -2.42313 … -1.35159 NaN; -0.536675 -1.55209 … -1.8… :vy2 => [3.41984 5.88813 … 3.07412 NaN; 0.28802 2.57923 … 3.41524 Na… :vz => [-0.241781 -0.672377 … -0.170057 NaN; -0.0189591 -0.412132 …… :vz2 => [0.058458 0.457301 … 0.132298 NaN; 0.000359447 0.279663 … 0.… :vϕ_cylinder => [142.43 138.647 … 133.136 NaN; 122.804 142.63 … 158.394 NaN;… :vϕ_cylinder2 => [4.7176 4.47227 … 4.43848 NaN; 3.50705 5.04275 … 6.04282 NaN… :σ => [1.90735e-6 5.72296 … 15.5331 0.0; 0.0 37.3334 … 26.3214 0.0… :σr_cylinder => [0.0 9.17629 … 69.2848 0.0; 0.0 20.1358 … 33.0096 0.0; … ; 0… :σx => [0.0 5.24676 … 26.9716 0.0; 0.0 32.0052 … 42.9889 0.0; … ; 0… :σy => [0.0 8.44153 … 73.2366 0.0; 0.0 27.0583 … 11.713 0.0; … ; 0.… :σz => [1.72737e-7 4.73321 … 21.0841 0.0; 0.0 21.7301 … 4.72985 0.0… :σϕ_cylinder => [0.0 2.88507 … 36.8894 0.0; 0.0 36.6195 … 29.9383 0.0; … ; 0… ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("Radius [kpc]") imshow( permutedims(proj_zlmax.maps_lmax[:v] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent, vmin=-150.,vmax=150.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 4) title("σz [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:σz]) , cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:σ]) , cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:σx]), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_zlmax.maps_lmax[:σy] ), cmap=cmap2, origin="lower", extent=proj_zlmax.cextent) colorbar(); ``` ![png](06_particles_Projection_files/06_particles_Projection_76_0.png) ## Projection of the Birth/Age-Time Project the average birth-time of the particles to the grid: ```julia proj_z = projection(particles, :birth, :Myr, lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.], verbose=false); proj_x = projection(particles, :birth, :Myr, lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.], direction=:x, verbose=false); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:birth])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Birth) \ [Myr]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:birth])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Birth) \ [Myr]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_80_0.png) Project the average age of the particles to the grid. The age is taken relative to the loaded snapshot time by default. ```julia proj_z = projection(particles, :age, :Myr, lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.], verbose=false); proj_x = projection(particles, :age, :Myr, lmax=6, zrange=[0.45,0.55], direction=:x, center=[0.,0.,0.], verbose=false); ``` The reference time (code units) for the age calculation: ```julia proj_z.ref_time ``` 39.9019537349027 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:age])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:age])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_85_0.png) Project the average age of the particles relative to a given reference time: ```julia proj_z = projection(particles, :age, :Myr, ref_time=0., lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.], verbose=false); proj_x = projection(particles, :age, :Myr, ref_time = 0., lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.], direction=:x, verbose=false); ``` The reference time (code units) for the age calculation: ```julia proj_z.ref_time ``` 0.0 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( ( permutedims(proj_z.maps[:age])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}") subplot(1,2,2) im = imshow( ( permutedims(proj_x.maps[:age])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_90_0.png) ## Projection of Masked Data Mask particles with ages higher than 500 Myr by creating a Bool-array where the smaller ages correspond to false entries: ```julia mask = getvar(particles, :age, :Myr) .> 500. ; ``` ```julia proj_z = projection(particles, :age, :Myr, mask=mask, lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.]); proj_x = projection(particles, :age, :Myr, mask=mask, lmax=6, zrange=[0.45,0.55], center=[0.,0.,0.], direction=:x); ```  [Mera]: 2020-02-18T23:14:17.09 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Map data on given lmax: 6 xrange: 1 65 yrange: 1 65 zrange: 29 37 pixel-size: 750.0 [pc] :mask provided by function  [Mera]: 2020-02-18T23:14:24.262 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Map data on given lmax: 6 xrange: 1 65 yrange: 1 65 zrange: 29 37 pixel-size: 750.0 [pc] :mask provided by function ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:age])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:age])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}",orientation="horizontal", pad=0.2); ``` ![png](06_particles_Projection_files/06_particles_Projection_95_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
36071
# Save/Convert/Load MERA-Files The RAMSES simulation data can be stored and accessed from files in the JLD2 file format. ```julia using Mera ``` ## Load the Data From Ramses ```julia info = getinfo(300, "../../testing/simulations/mw_L10"); gas = gethydro(info, verbose=false, show_progress=false); part = getparticles(info, verbose=false, show_progress=false); grav = getgravity(info, verbose=false, show_progress=false); # the same applies for clump-data... ``` [Mera]: 2023-04-10T14:48:37.021 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= ## Store the Data Into JLD2 Files The running number is taken from the original RAMSES outputs. ```julia savedata(gas, "../../testing/simulations/JLD2_files/"); ``` [Mera]: 2023-04-10T14:50:14.702 Not existing file: output_00300.jld2 Directory: /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 ----------------------------------- merafile_version: 1.0 - Simulation code: RAMSES ----------------------------------- DataType: hydro - Data variables: (:level, :cx, :cy, :cz, :rho, :vx, :vy, :vz, :p, :var6, :var7) ----------------------------------- I/O mode: nothing - Compression: nothing ----------------------------------- ----------------------------------- Memory size: 2.321 GB (uncompressed) ----------------------------------- <div class="alert alert-block alert-info"> <b>NOTE</b> The hydro data was not written into the file to prevent overwriting existing files. The following argument is mandatory: **fmode=:write** </div> ```julia savedata(gas, "../../testing/simulations/JLD2_files/", fmode=:write); ``` [Mera]: 2023-04-10T14:53:39.878 Create file: output_00300.jld2 Directory: /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 ----------------------------------- merafile_version: 1.0 - Simulation code: RAMSES ----------------------------------- DataType: hydro - Data variables: (:level, :cx, :cy, :cz, :rho, :vx, :vy, :vz, :p, :var6, :var7) ----------------------------------- I/O mode: write - Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x000000011f192040, 0x0000000000000013), false) ----------------------------------- CodecZlib 0.6.0 Mera 1.2.0 https://github.com/ManuelBehrendt/Mera.jl CodecBzip2 0.7.2 JLD2 0.4.31 CodecLz4 0.4.0 ----------------------------------- Memory size: 2.321 GB (uncompressed) Total file size: 1.276 GB ----------------------------------- Add/Append further datatypes: ```julia savedata(part, "../../testing/simulations/JLD2_files/", fmode=:append); savedata(grav, "../../testing/simulations/JLD2_files/", fmode=:append); ``` [Mera]: 2023-04-10T14:53:41.387 Create file: output_00300.jld2 Directory: /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 ----------------------------------- merafile_version: 1.0 - Simulation code: RAMSES ----------------------------------- DataType: particles - Data variables: (:level, :x, :y, :z, :id, :family, :tag, :vx, :vy, :vz, :mass, :birth) ----------------------------------- I/O mode: append - Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x00000001198ff9a0, 0x0000000000000013), false) ----------------------------------- CodecZlib 0.6.0 Mera 1.2.0 https://github.com/ManuelBehrendt/Mera.jl CodecBzip2 0.7.2 JLD2 0.4.31 CodecLz4 0.4.0 ----------------------------------- Memory size: 38.451 MB (uncompressed) Total file size: 1.306 GB ----------------------------------- [Mera]: 2023-04-10T14:53:43.590 Create file: output_00300.jld2 Directory: /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 ----------------------------------- merafile_version: 1.0 - Simulation code: RAMSES ----------------------------------- DataType: gravity - Data variables: (:level, :cx, :cy, :cz, :epot, :ax, :ay, :az) ----------------------------------- I/O mode: append - Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x000000011a600ec0, 0x0000000000000013), false) ----------------------------------- CodecZlib 0.6.0 Mera 1.2.0 https://github.com/ManuelBehrendt/Mera.jl CodecBzip2 0.7.2 JLD2 0.4.31 CodecLz4 0.4.0 ----------------------------------- Memory size: 1.688 GB (uncompressed) Total file size: 2.159 GB ----------------------------------- <div class="alert alert-block alert-info"> <b>NOTE</b> It is not possible to exchange stored data; only writing into a new file or appending is supported. </div> ## Overview of Stored Data ```julia vd = viewdata(300, "../../testing/simulations/JLD2_files/") ``` [Mera]: 2023-04-10T17:53:19.650 Mera-file output_00300.jld2 contains: Datatype: particles merafile_version: 1.0 Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x0000000000000000, 0x0000000000000013), false) CodecZlib: VersionNumber[v"0.6.0"] merafile_version: 1.0 JLD2: VersionNumber[v"0.4.31"] CodecBzip2: VersionNumber[v"0.7.2"] JLD2compatible_versions: 0.1 CodecLz4: VersionNumber[v"0.4.0"] Mera: Any[v"1.2.0", "https://github.com/ManuelBehrendt/Mera.jl"] ------------------------- Memory: 38.4513635635376 MB (uncompressed) Datatype: gravity merafile_version: 1.0 Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x0000000000000000, 0x0000000000000013), false) CodecZlib: VersionNumber[v"0.6.0"] merafile_version: 1.0 JLD2: VersionNumber[v"0.4.31"] CodecBzip2: VersionNumber[v"0.7.2"] JLD2compatible_versions: 0.1 CodecLz4: VersionNumber[v"0.4.0"] Mera: Any[v"1.2.0", "https://github.com/ManuelBehrendt/Mera.jl"] ------------------------- Memory: 1.6880846759304404 GB (uncompressed) Datatype: hydro merafile_version: 1.0 Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x0000000000000000, 0x0000000000000013), false) CodecZlib: VersionNumber[v"0.6.0"] merafile_version: 1.0 JLD2: VersionNumber[v"0.4.31"] CodecBzip2: VersionNumber[v"0.7.2"] JLD2compatible_versions: 0.1 CodecLz4: VersionNumber[v"0.4.0"] Mera: Any[v"1.2.0", "https://github.com/ManuelBehrendt/Mera.jl"] ------------------------- Memory: 2.3211082834750414 GB (uncompressed) ----------------------------------- convert stat: false ----------------------------------- Total file size: 2.159 GB ----------------------------------- Dict{Any, Any} with 4 entries: "particles" => Dict{Any, Any}("versions"=>Dict{Any, Any}("CodecZlib"=>Version… "FileSize" => (2.159, "GB") "gravity" => Dict{Any, Any}("versions"=>Dict{Any, Any}("CodecZlib"=>Version… "hydro" => Dict{Any, Any}("versions"=>Dict{Any, Any}("CodecZlib"=>Version… Information about the content, etc. is returned in a dictionary. ```julia ``` Get a detailed tree-view of the data-file: ```julia vd = viewdata(300, "../../testing/simulations/JLD2_files/", showfull=true) ``` [Mera]: 2023-04-10T17:54:10.300 Mera-file output_00300.jld2 contains: ├─📂 hydro │ ├─🔢 data │ ├─🔢 info │ └─📂 information │ ├─🔢 compression │ ├─🔢 comments │ ├─🔢 storage │ ├─🔢 memory │ └─📂 versions │ ├─🔢 merafile_version │ ├─🔢 JLD2compatible_versions │ ├─🔢 CodecZlib │ ├─🔢 Mera │ ├─🔢 CodecBzip2 │ ├─🔢 JLD2 │ └─🔢 CodecLz4 ├─📂 particles │ ├─🔢 data │ ├─🔢 info │ └─📂 information │ ├─🔢 compression │ ├─🔢 comments │ ├─🔢 storage │ ├─🔢 memory │ └─📂 versions │ ├─🔢 merafile_version │ ├─🔢 JLD2compatible_versions │ ├─🔢 CodecZlib │ ├─🔢 Mera │ ├─🔢 CodecBzip2 │ ├─🔢 JLD2 │ └─🔢 CodecLz4 └─📂 gravity ├─🔢 data ├─🔢 info └─📂 information ├─🔢 compression ├─🔢 comments ├─🔢 storage ├─🔢 memory └─📂 versions ├─🔢 merafile_version ├─🔢 JLD2compatible_versions ├─🔢 CodecZlib ├─🔢 Mera ├─🔢 CodecBzip2 ├─🔢 JLD2 └─🔢 CodecLz4 Datatype: particles merafile_version: 1.0 Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x0000000000000000, 0x0000000000000013), false) CodecZlib: VersionNumber[v"0.6.0"] merafile_version: 1.0 JLD2: VersionNumber[v"0.4.31"] CodecBzip2: VersionNumber[v"0.7.2"] JLD2compatible_versions: 0.1 CodecLz4: VersionNumber[v"0.4.0"] Mera: Any[v"1.2.0", "https://github.com/ManuelBehrendt/Mera.jl"] ------------------------- Memory: 38.4513635635376 MB (uncompressed) Datatype: gravity merafile_version: 1.0 Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x0000000000000000, 0x0000000000000013), false) CodecZlib: VersionNumber[v"0.6.0"] merafile_version: 1.0 JLD2: VersionNumber[v"0.4.31"] CodecBzip2: VersionNumber[v"0.7.2"] JLD2compatible_versions: 0.1 CodecLz4: VersionNumber[v"0.4.0"] Mera: Any[v"1.2.0", "https://github.com/ManuelBehrendt/Mera.jl"] ------------------------- Memory: 1.6880846759304404 GB (uncompressed) Datatype: hydro merafile_version: 1.0 Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x0000000000000000, 0x0000000000000013), false) CodecZlib: VersionNumber[v"0.6.0"] merafile_version: 1.0 JLD2: VersionNumber[v"0.4.31"] CodecBzip2: VersionNumber[v"0.7.2"] JLD2compatible_versions: 0.1 CodecLz4: VersionNumber[v"0.4.0"] Mera: Any[v"1.2.0", "https://github.com/ManuelBehrendt/Mera.jl"] ------------------------- Memory: 2.3211082834750414 GB (uncompressed) ----------------------------------- convert stat: false ----------------------------------- Total file size: 2.159 GB ----------------------------------- Dict{Any, Any} with 4 entries: "particles" => Dict{Any, Any}("versions"=>Dict{Any, Any}("CodecZlib"=>Version… "FileSize" => (2.159, "GB") "gravity" => Dict{Any, Any}("versions"=>Dict{Any, Any}("CodecZlib"=>Version… "hydro" => Dict{Any, Any}("versions"=>Dict{Any, Any}("CodecZlib"=>Version… ## Get Info The following function **infodata** is comparable to **getinfo()** used for the RAMSES files and loads detailed information about the simulation output: ```julia info = infodata(300, "../../testing/simulations/JLD2_files/"); ``` [Mera]: 2023-04-10T17:56:08.095 Use datatype: hydro Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&HYDRO_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&INIT_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= In this case, it loaded the **InfoDataType** from the **hydro** data. Choose a different stored **datatype** to get the info from: ```julia info = infodata(300, "../../testing/simulations/JLD2_files/", :particles); ``` [Mera]: 2023-04-10T17:58:12.353 Use datatype: particles Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&HYDRO_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&INIT_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= ## Load The Data from JLD2 ### Full Data ```julia gas = loaddata(300, "../../testing/simulations/JLD2_files/", :hydro); ``` [Mera]: 2023-04-10T17:59:17.292 Open Mera-file output_00300.jld2: domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Memory used for data table :2.321107776835561 GB ------------------------------------------------------- ```julia typeof(gas) ``` HydroDataType ```julia part = loaddata(300, "../../testing/simulations/JLD2_files/", :particles); ``` [Mera]: 2023-04-10T17:59:53.847 Open Mera-file output_00300.jld2: domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Memory used for data table :38.45084476470947 MB ------------------------------------------------------- ```julia typeof(part) ``` PartDataType ### Data Range Complete data is loaded, and the selected subregion is returned: ```julia gas = loaddata(300, "../../testing/simulations/JLD2_files/", :hydro, xrange=[-10,10], yrange=[-10,10], zrange=[-2,2], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: 2023-04-10T18:02:11.639 Open Mera-file output_00300.jld2: center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :587.3237018585205 MB ------------------------------------------------------- ## Convert RAMSES Output Into JLD2 Existing AMR, hydro, gravity, particle, and clump data is sequentially stored in a JLD2 file. The individual loading/writing processes are timed, and the memory usage is returned in a dictionary: ### Full Data ```julia cvd = convertdata(300, path="../../testing/simulations/mw_L10", fpath="../../testing/simulations/JLD2_files/"); ``` [Mera]: 2023-04-10T18:06:14.413 Requested datatypes: [:hydro, :gravity, :particles, :clumps] domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] reading/writing lmax: 10 of 10 ----------------------------------- Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x000000011f291c50, 0x0000000000000013), false) ----------------------------------- - hydro Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:24 - gravity Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:19 - particles Total datasize: - total folder: 5.682 GB - selected: 5.68 GB - used: 4.047 GB - new on disc: 2.159 GB #### Timer Get a view of the timers: ```julia using TimerOutputs ``` ```julia cvd ``` Dict{Any, Any} with 3 entries: "viewdata" => Dict{Any, Any}("particles"=>Dict{Any, Any}("versions"=>Dict… "size" => Dict{Any, Any}("folder"=>Any[6101105264, "Bytes"], "selecte… "TimerOutputs" => Dict{Any, Any}("writing"=> ──────────────────────────… ```julia cvd["TimerOutputs"]["reading"] ``` ────────────────────────────────────────────────────────────────────── Time Allocations ─────────────────────── ──────────────────────── Tot / % measured: 324s / 16.9% 45.4GiB / 72.9% Section ncalls time %tot avg alloc %tot avg ────────────────────────────────────────────────────────────────────── hydro 1 30.4s 55.4% 30.4s 18.7GiB 56.5% 18.7GiB gravity 1 24.0s 43.7% 24.0s 14.1GiB 42.6% 14.1GiB particles 1 503ms 0.9% 503ms 309MiB 0.9% 309MiB ────────────────────────────────────────────────────────────────────── ```julia cvd["TimerOutputs"]["writing"] ``` ────────────────────────────────────────────────────────────────────── Time Allocations ─────────────────────── ──────────────────────── Tot / % measured: 327s / 1.0% 45.4GiB / 22.6% Section ncalls time %tot avg alloc %tot avg ────────────────────────────────────────────────────────────────────── hydro 1 1.89s 55.4% 1.89s 5.92GiB 57.6% 5.92GiB gravity 1 1.34s 39.3% 1.34s 4.23GiB 41.2% 4.23GiB particles 1 181ms 5.3% 181ms 129MiB 1.2% 129MiB ────────────────────────────────────────────────────────────────────── ```julia ``` ```julia # prep timer to = TimerOutput(); ``` ```julia @timeit to "MERA" begin @timeit to "hydro" gas = loaddata(300, "../../testing/simulations/JLD2_files/", :hydro, ) @timeit to "particles" part= loaddata(300, "../../testing/simulations/JLD2_files/", :particles) end; ``` [Mera]: 2023-04-10T18:13:05.133 Open Mera-file output_00300.jld2: domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Memory used for data table :2.321107776835561 GB ------------------------------------------------------- [Mera]: 2023-04-10T18:13:11.371 Open Mera-file output_00300.jld2: domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Memory used for data table :38.45084476470947 MB ------------------------------------------------------- ```julia to ``` ──────────────────────────────────────────────────────────────────────── Time Allocations ─────────────────────── ──────────────────────── Tot / % measured: 80.3s / 8.1% 7.23GiB / 99.8% Section ncalls time %tot avg alloc %tot avg ──────────────────────────────────────────────────────────────────────── MERA 3 6.50s 100.0% 2.17s 7.22GiB 100.0% 2.41GiB hydro 3 6.36s 97.8% 2.12s 7.10GiB 98.4% 2.37GiB particles 1 140ms 2.1% 140ms 121MiB 1.6% 121MiB ──────────────────────────────────────────────────────────────────────── <div class="alert alert-block alert-info"> <b>NOTE</b> The reading from JLD2 files is multiple times faster than from the original RAMSES files. </div> #### Used Memory ```julia cvd["size"] ``` Dict{Any, Any} with 4 entries: "folder" => Any[6101105264, "Bytes"] "selected" => Any[4.29676e9, "Bytes"] "ondisc" => Any[1402573523, "Bytes"] "used" => Any[2.53259e9, "Bytes"] <div class="alert alert-block alert-info"> <b>NOTE</b> The compressed JLD2 file takes a significantly smaller disk space than the original RAMSES folder.</div> ```julia factor = cvd["size"]["folder"][1] / cvd["size"]["ondisc"][1] println("==============================================================================") println("In this example, the disk space is reduced by a factor of $factor !!") println("==============================================================================") ``` ============================================================================== In this example, the disk space is reduced by a factor of 4.349936145201281 !! ============================================================================== ```julia ``` ### Selected Datatypes ```julia cvd = convertdata(300, [:hydro, :particles], path="../../testing/simulations/mw_L10", fpath="../../testing/simulations/JLD2_files/"); ``` [Mera]: 2023-04-10T18:17:17.373 Requested datatypes: [:hydro, :particles] domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] reading/writing lmax: 10 of 10 ----------------------------------- Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x000000011dbea7b0, 0x0000000000000013), false) ----------------------------------- - hydro Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:24 - particles Total datasize: - total folder: 5.682 GB - selected: 4.002 GB - used: 2.359 GB - new on disc: 1.306 GB ```julia ``` ## Compression By default, the data is compressed by a standard compressor. Therefore, if you want to use a different compression algorithm better suited to your needs, you can also directly pass a compressor. https://juliaio.github.io/JLD2.jl/stable/compression/ |Library | Compressor| | |---|---|---| |CodecZlib.jl | ZlibCompressor | The default as it is very widely used. | |CodecBzip2.jl | Bzip2Compressor | Can often times be faster | |CodecLz4.jl | LZ4FrameCompressor | Fast, but not compatible to the LZ4 shipped by HDF5 | To use any of these, replace the compress = true argument with an instance of the compressor, e.g. ```julia using CodecZlib cvd = convertdata(300, [:hydro, :particles], compress=ZlibCompressor(), path="../../testing/simulations/mw_L10", fpath="../../testing/simulations/JLD2_files/"); ``` [Mera]: 2023-04-10T18:25:31.061 Requested datatypes: [:hydro, :particles] domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] reading/writing lmax: 10 of 10 ----------------------------------- Compression: ZlibCompressor(level=-1, windowbits=15) ----------------------------------- - hydro Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:23 - particles Total datasize: - total folder: 5.682 GB - selected: 4.002 GB - used: 2.359 GB - new on disc: 1.24 GB ```julia savedata(gas, "../../testing/simulations/JLD2_files/", fmode=:write, compress=ZlibCompressor()); ``` [Mera]: 2023-04-10T19:38:12.259 Create file: output_00300.jld2 Directory: /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 ----------------------------------- merafile_version: 1.0 - Simulation code: RAMSES ----------------------------------- DataType: hydro - Data variables: (:level, :cx, :cy, :cz, :rho, :vx, :vy, :vz, :p, :var6, :var7) ----------------------------------- I/O mode: write - Compression: ZlibCompressor(level=-1, windowbits=15) ----------------------------------- CodecZlib 0.6.0 Mera 1.2.0 https://github.com/ManuelBehrendt/Mera.jl CodecBzip2 0.7.2 JLD2 0.4.31 CodecLz4 0.4.0 ----------------------------------- Memory size: 2.321 GB (uncompressed) Total file size: 1.213 GB ----------------------------------- Get more information about the parameters of the compressor: ```julia ?ZlibCompressor ``` search: ZlibCompressor ZlibCompressorStream ZlibDecompressor ``` ZlibCompressor(;level=-1, windowbits=15) ``` Create a zlib compression codec. ## Arguments * `level`: compression level (-1..9) * `windowbits`: size of history buffer (8..15) ```julia ``` ## Comments Add a description to the files: ```julia comment = "The simulation is...." cvd = convertdata(300, [:hydro, :particles], comments=comment, path="../../testing/simulations/mw_L10", fpath="../../testing/simulations/JLD2_files/"); ``` [Mera]: 2023-04-10T19:40:13.068 Requested datatypes: [:hydro, :particles] domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] reading/writing lmax: 10 of 10 ----------------------------------- Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x000000011d36bcb0, 0x0000000000000013), false) ----------------------------------- - hydro Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:29 - particles Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Total datasize: - total folder: 5.682 GB - selected: 4.002 GB - used: 2.359 GB - new on disc: 1.306 GB ```julia ``` ```julia comment = "The simulation is...." savedata(gas, "../../testing/simulations/JLD2_files/", comments=comment, fmode=:write); ``` [Mera]: 2023-04-10T19:42:11.007 Create file: output_00300.jld2 Directory: /Users/mabe/Documents/codes/github/Mera.jl/tutorials/version_1/../../testing/simulations/mw_L10 ----------------------------------- merafile_version: 1.0 - Simulation code: RAMSES ----------------------------------- DataType: hydro - Data variables: (:level, :cx, :cy, :cz, :rho, :vx, :vy, :vz, :p, :var6, :var7) ----------------------------------- I/O mode: write - Compression: CodecLz4.LZ4FrameCompressor(Base.RefValue{Ptr{CodecLz4.LZ4F_cctx}}(Ptr{CodecLz4.LZ4F_cctx} @0x0000000000000000), Base.RefValue{CodecLz4.LZ4F_preferences_t}(CodecLz4.LZ4F_preferences_t(CodecLz4.LZ4F_frameInfo_t(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000000000000, 0x00000000, 0x00000000), 0, 0x00000000, (0x00000000, 0x00000000, 0x00000000, 0x00000000))), TranscodingStreams.Memory(Ptr{UInt8} @0x000000011a279cc0, 0x0000000000000013), false) ----------------------------------- CodecZlib 0.6.0 Mera 1.2.0 https://github.com/ManuelBehrendt/Mera.jl CodecBzip2 0.7.2 JLD2 0.4.31 CodecLz4 0.4.0 ----------------------------------- Memory size: 2.321 GB (uncompressed) Total file size: 1.276 GB ----------------------------------- Load the comment (hydro) from JLD2 file: ```julia vd = viewdata(300, "../../testing/simulations/JLD2_files/", verbose=false); ``` ```julia vd["hydro"]["comments"] ``` "The simulation is...." ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
7067
# Miscellaneous ```julia using Mera info=getinfo(300, "../../../testing/simulations/mw_L10/", verbose=false); ``` ## MyArguments Pass several arguments at once to a function for better readability! ```julia # create an empty struct for arguments: myargs = ArgumentsType() ``` ArgumentsType(missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing, missing) ```julia viewfields(myargs) ``` [Mera]: Fields to use as arguments in functions ======================================================================= pxsize = missing res = missing lmax = missing xrange = missing yrange = missing zrange = missing radius = missing height = missing direction = missing plane = missing plane_ranges = missing thickness = missing position = missing center = missing range_unit = missing data_center = missing data_center_unit = missing verbose = missing show_progress = missing ```julia # assign necessary fields: myargs.pxsize = [100., :pc] myargs.xrange=[-10.,10.] myargs.yrange=[-10.,10.] myargs.zrange=[-2.,2.] myargs.center=[:boxcenter] myargs.range_unit=:kpc; ``` <div class="alert alert-block alert-info"> <b>NOTE</b> All functions that hold the upper listed arguments can handle the ArgumentsType struct! </div> ```julia gas = gethydro(info, myargs=myargs); ``` [Mera]: Get hydro data: 2023-04-10T21:15:35.249 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:17 Memory used for data table :580.2776288986206 MB ------------------------------------------------------- ```julia part = getparticles(info, myargs=myargs); ``` [Mera]: Get particle data: 2023-04-10T21:15:57.394 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Found 5.368130e+05 particles Memory used for data table :37.88558769226074 MB ------------------------------------------------------- ```julia p = projection(gas, :sd, :Msun_pc2, myargs=myargs); ``` [Mera]: 2023-04-10T21:16:08.050 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 481^2 Map size: 201 x 201 Pixel size: 99.792 [pc] Simulation min.: 46.875 [pc] ```julia # add more args for silent screen: myargs.verbose=false myargs.show_progress=false; ``` ```julia gas = gethydro(info, myargs=myargs); ``` ```julia part = getparticles(info, myargs=myargs); ``` ```julia p = projection(gas, :sd, :Msun_pc2, myargs=myargs); ``` ```julia ``` ## Verbose & Progressbar Switch Master switch to toggle the verbose mode and progress bar for all functions: ```julia # current status # "nothing" allows the functions to use the passed argument: # verbose=false/true verbose() ``` verbose_mode: nothing ```julia # switch off verbose mode globally: verbose(false) ``` false ```julia # check gas = gethydro(info); ``` Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:22 ```julia # switch on verbose mode globally: # the passed argument verbose=false/true to the individual # functions is ignored. verbose(true) ``` ```julia gas = gethydro(info); ``` [Mera]: Get hydro data: 2023-04-10T21:21:09.500 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:24 Memory used for data table :2.3210865957662463 GB ------------------------------------------------------- ```julia ``` ```julia # current status # "nothing" allows the functions to use the passed argument: # show_progress=false/true showprogress() ``` showprogress_mode: nothing ```julia # switch off the progressbar globally: showprogress(false) ``` false ```julia # check showprogress() ``` showprogress_mode: false ```julia gas = gethydro(info); ``` [Mera]: Get hydro data: 2023-04-10T21:25:05.493 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Memory used for data table :2.3210865957662463 GB ------------------------------------------------------- ```julia ``` ```julia # switch on the progressbar globally: # the passed argument show_progress=false/true to the individual # functions is ignored. showprogress(true) ``` true ```julia # check showprogress() ``` showprogress_mode: true ```julia # return to neutral mode showprogress(nothing) ``` ```julia # check showprogress() ``` showprogress_mode: nothing ```julia ``` ## Notification Bell ```julia ?bell ``` search: bell bytesavailable @label bulk_velocity baremodule AbstractChannel ### Get a notification sound, e.g., when your calculations are finished. This may not apply when working remotely on a server: ```julia julia> bell() ``` ## Notification E-Mail ```julia ?notifyme ``` search: notifyme notify ### Get an email notification, e.g., when your calculations are finished. Mandatory: * the email client "mail" needs to be installed * put a file with the name "email.txt" in your home folder that contains your email address in the first line ```julia julia> notifyme() ``` or: ```julia julia> notifyme("Calculation 1 finished!") ``` ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
469
## Types #### Abstract type hierarchies ![DataSetType hierarchy](assets/TypeHierarchy.png) - HydroMapsType <: DataMapsType - PartMapsType <: DataMapsType #### List of types ```@index Modules = [Mera] Order = [:type] ``` ## Functions ```@index Modules = [Mera] Private = false Order = [:function] ``` ## Documentation Types ```@autodocs Modules = [Mera] Order = [:type] ``` ## Documentation Functions ```@autodocs Modules = [Mera] Order = [:function] ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
444
# Short Tutorials - [Hands-On Session RUM2023 (included: density PDFs, radial profiles, phase diagram...)](https://github.com/ManuelBehrendt/RUM2023) - [Load from a sequence of existing simulations in a folder](examples/LoadFromExistingOutputs.md) - [Export/Import data - ASCII/binary files](examples/ExportImportData.md) - [The documentation as Jupyter Notebooks for download](https://github.com/ManuelBehrendt/Mera.jl/tree/master/tutorials)
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
12231
# Home [![DOI](https://zenodo.org/badge/229728152.svg)](https://zenodo.org/badge/latestdoi/229728152) MERA is a package for working with large 3D AMR/uniform-grid and N-body particle data sets from astrophysical simulations. It is entirely written in the language [Julia](https://julialang.org) and currently supports the hydrodynamic code [RAMSES](https://bitbucket.org/rteyssie/ramses/overview). With this package, I intend to provide essential functions to load and prepare the simulation data for calculations but try to avoid too high-level abstraction (black boxes). !!! note "Note" To get a first impression, look at the `Hands-On Session RUM2023` with downloadable simulation examples: https://github.com/ManuelBehrendt/RUM2023 ## Package Features - Easy to install and update - Fast and memory lightweight data reading/saving and handling - The data is loaded and processed in a database framework [JuliaDB.jl](https://juliadb.org) - Efficient workflow - Many functionalities for advanced analysis - Easy to extend - Interactive and script functionality - Many examples and tutorials - Mera-files, a significant faster way to read/store the RAMSES data for time sequence analysis ## Dependencies Find the main dependencies on [JuliaHub](https://juliahub.com/ui/Packages/Mera/7jlnw/1.4.2?page=1) or of the development version listed in the file [Project.toml](https://github.com/ManuelBehrendt/Mera.jl/blob/master/Project.toml). ## Tests We are developing **unit-test** and **end-to-end** testing strategies to encounter bugs like general errors, incorrect data returns, and functionality issues. After new commits are pushed to GitHub, **different operating system environments** and **Julia versions** run **automated tests**, e. g. on outputs from various RAMSES simulations, to ensure important functionalities of MERA. The *test* folder contains all tests with the main function in the **runtest.jl** file. Find the current test status of the development version at: https://github.com/ManuelBehrendt/Mera.jl/blob/master/README.md ## Julia Installation - Binary download + installation instructions: https://julialang.org/downloads/ - Juliaup, an installer and version manager: https://github.com/JuliaLang/juliaup - Apple Silicon: M1/M2 Chips: Julia 1.6.x can be installed without any trouble. But to use PyPlot, it is recommended to install/pin the package [email protected] ! https://pkgdocs.julialang.org/v1.6/managing-packages/#Pinning-a-package . If you encounter any problems with Julia 1.9, try the binary *macOS x86 (Intel or Rosetta)* instead of *macOS (Apple Silicon)*. ## Package Installation The package is tested against the long-term supported Julia 1.6.x (recommended), 1.7.x, 1.8.x, 1.9.x and can be installed with the Julia package manager: https://pkgdocs.julialang.org/v1/ ### Julia REPL From the Julia REPL, type ] to enter the Pkg REPL mode and run: ```julia pkg> add Mera ``` ### Jupyter Notebook Or, equivalently, via the Pkg API in the Jupyter notebook use ```julia using Pkg Pkg.add("Mera") ``` ## Updates Watch on [GitHub](https://github.com/ManuelBehrendt/Mera.jl). Note: Before updating, always read the release notes. In Pkg REPL mode run: ```julia pkg> update Mera ``` Or, equivalently, ```julia using Pkg Pkg.update("Mera") ``` ## Reproducibility Reproducibility is an essential requirement of the scientific process. Therefore, I recommend working with environments. Create independent projects that contain their list of used package dependencies and their versions. The possibility of creating projects ensures reproducibility of your programs on your or other platforms if, e.g. the code is shared (toml-files are added to the project folder). For more information see [Julia environments](https://julialang.github.io/Pkg.jl/v1.6/environments/). In order to create a new project "activate" your working directory: ```julia shell> cd MyProject /Users/you/MyProject (v1.6) pkg> activate . ``` Now add packages like Mera and PyPlot in the favored version: ```julia (MyProject) pkg> add Package ``` ## Help and Documentation The exported functions and types in MERA are listed in the API documentation, but can also be accessed in the REPL or Jupyter notebook. In the REPL use e.g. for the function *getinfo*: ```julia julia> ? # upon typing ?, the prompt changes (in place) to: help?> help?> getinfo search: getinfo SegmentationFault getindex getpositions MissingException Get the simulation overview from RAMSES info, descriptor and output header files ---------------------------------------------------------------------------------- getinfo(; output::Real=1, path::String="", namelist::String="", verbose::Bool=verbose_mode) return InfoType Keyword Arguments ------------------- • output: timestep number (default=1) • path: the path to the output folder relative to the current folder or absolute path • namelist: give the path to a namelist file (by default the namelist.txt-file in the output-folder is read) • verbose:: informations are printed on the screen by default: gloval variable verbose_mode=true Examples ---------- ........... ``` In the Jupyter notebook use e.g.: ```julia ?getinfo search: getinfo SegmentationFault getindex getpositions MissingException Get the simulation overview from RAMSES info, descriptor and output header files ---------------------------------------------------------------------------------- getinfo(; output::Real=1, path::String="", namelist::String="", verbose::Bool=verbose_mode) return InfoType Keyword Arguments ------------------- • output: timestep number (default=1) • path: the path to the output folder relative to the current folder or absolute path • namelist: give the path to a namelist file (by default the namelist.txt-file in the output-folder is read) • verbose:: informations are printed on the screen by default: gloval variable verbose_mode=true Examples ---------- ........... ``` Get a list of the defined methods of a function: ```julia julia> methods(viewfields) # 10 methods for generic function "viewfields": [1] viewfields(object::PhysicalUnitsType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:181 [2] viewfields(object::Mera.FilesContentType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:166 [3] viewfields(object::DescriptorType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:150 [4] viewfields(object::FileNamesType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:134 [5] viewfields(object::CompilationInfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:116 [6] viewfields(object::GridInfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:90 [7] viewfields(object::PartInfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:73 [8] viewfields(object::ScalesType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:57 [9] viewfields(object::InfoType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:12 [10] viewfields(object::DataSetType) in Mera at /Users/mabe/Documents/Projects/dev/Mera/src/functions/viewfields.jl:197 ``` ## Further Notes - To use the **Jupyter** interactive environment, please install IJulia (see [IJulia](https://github.com/JuliaLang/IJulia.jl)) and/or the standalone "JupyterLab Desktop" app: https://github.com/jupyterlab/jupyterlab-desktop - The **tutorials** in the documentation can be downloaded from [GitHub](https://github.com/ManuelBehrendt/Mera.jl/tree/master/tutorials) as Jupyter notebooks - To get a first impression, look at the **Hands-On Session** RUM2023` with downloadable simulation examples: https://github.com/ManuelBehrendt/RUM2023 - Mera is tested against the **RAMSES versions**: =< stable-17.09, stable-18-09, stable-19-10 - The variables from the **descriptor-files** are currently only read and can be used in a future Mera version - For simulations with a **uniform grid**, the column **:level** is not created to reduce memory usage ## Why Julia? In scientific computing, we are dealing with a steadily increasing amount of data. Highest performance is required, and therefore, most science-related libraries are written in low-level languages like C or Fortran with relatively long development times. The reduced data is often processed in a high-level language like Python. Julia is a relatively new and modern language, and it combines high-level programming with high-performance numerical computing. The syntax is simple and great for math. The just-in-time compilation allows for interactive coding and to achieve an optimized machine code on the fly. Both enhance prototyping and code readability. Therefore, complex projects can be realized in relatively short development times. ​ Further features: - Package manager - Runs on multiple platform - Multiple dispatch - Build-in parallelism - Metaprogramming - Directly call C, Fortran, Python (e.g. Matplotlib), R libraries, ... …. ## Useful Links - [Official Julia website](https://julialang.org) - Alternatively use the Julia version manager and make Julia 1.6.* the default: https://github.com/JuliaLang/juliaup - [Learning Julia](https://julialang.org/learning/) - [Wikibooks](https://en.wikibooks.org/wiki/Introducing_Julia) - [Julia Cheatsheet](https://juliadocs.github.io/Julia-Cheat-Sheet/) - [Free book ThinkJulia](https://benlauwens.github.io/ThinkJulia.jl/latest/book.html) - [Synthax comparison: MATLAB–Python–Julia](https://cheatsheets.quantecon.org) - [Julia forum JuliaDiscourse](https://discourse.julialang.org) - [Courses on YouTube](https://www.youtube.com/user/JuliaLanguage) - Database framework used in Mera: [JuliaDB.jl](https://juliadb.org) - Interesting Packages: [JuliaAstro.jl](http://juliaastro.github.io), [JuliaObserver.com](https://juliaobserver.com) - Use Matplotlib in Julia: [PyPlot.jl](https://github.com/JuliaPy/PyPlot.jl) - Call Python packages/functions from Julia: [PyCall.jl](https://github.com/JuliaPy/PyCall.jl) - Visual Studio Code based Julia IDE [julia-vscode](https://github.com/julia-vscode/julia-vscode) ## Contact for Questions and Contributing - If you have any questions about the package, please feel free to write an email to: mera[>]manuelbehrendt.com - For bug reports, etc., please submit an issue on [GitHub](https://github.com/ManuelBehrendt/Mera.jl) New ideas, feature requests are very welcome! MERA can be easily extended for other grid-based or N-body based data. Write an email to: mera[>]manuelbehrendt.com ## Supporting and Citing To credit the Mera software, please star the repository on GitHub. If you use the Mera software as part of your research, teaching, or other activities, I would be grateful if you could cite my work. To give proper academic credit, follow the link for BibTeX export: [![DOI](https://zenodo.org/badge/229728152.svg)](https://zenodo.org/badge/latestdoi/229728152) ## License MIT License Copyright (c) 2019 Manuel Behrendt Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
30622
# 3. Clumps: Get Sub-Regions of The Loaded Data ## Load the Data ```julia using Mera, PyPlot info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14") clumps = getclumps(info); ``` [Mera]: 2020-02-08T20:39:44.033 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= [Mera]: Get clump data: 2020-02-08T20:39:48.496 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ## Cuboid Region ### Create scatter plots of the full box: Use the `getvar` function to extract the positions of the clumps relative to the box center. It returns a dictionary of arrays: ```julia positions = getvar(clumps, [:x, :y, :z], :kpc, center=[:boxcenter], center_unit=:kpc) # units=[:kpc, :kpc, :kpc] x, y, z = positions[:x], positions[:y], positions[:z]; # assign the three components of the dictionary to three arrays ``` Alternatively, use the `getposition` function to extract the positions of the clumps. It returns a tuple of the three components: ```julia x, y, z = getpositions(clumps, :kpc, center=[:boxcenter], center_unit=:kpc); # assign the three components of the tuple to three arrays ``` Get the extent of the processed domain with respect to a given center. The returned tuple is useful declare the specific range of the plots. ```julia rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` #### Cuboid Region: The red lines show the region that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_11_0.png) #### Cuboid Region: Cutout the data assigned to the object `clumps` Note: The selected regions can be given relative to a user given center or to the box corner [0., 0., 0.] by default. The user can choose between standard notation [0:1] (default) or physical length-units, defined in e.g. info.scale : ```julia clumps_subregion = subregion( clumps, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: 2020-02-08T20:40:04.755 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :29.52734375 KB ------------------------------------------------------- The function `subregion` creates a new object with the same type as the object created by the function `getclumps` : ```julia typeof(clumps_subregion) ``` ClumpDataType #### Cuboid Region: Scatter-Plots of the sub-region. The coordinates center is the center of the box by default: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # clump positions of the subregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter] ); # extent of the box ``` ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_19_0.png) #### Cuboid Region: Get the extent of the subregion data ranges ```julia rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); # extent of the subregion ``` ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) xlim(rx_sub) ylim(ry_sub) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) xlim(rx_sub) ylim(rz_sub) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) xlim(ry_sub) ylim(rz_sub) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_22_0.png) #### Cuboid Region: Get the data outside of the selected region (inverse selection): ```julia clumps_subregion = subregion( clumps, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[:boxcenter], range_unit=:kpc, inverse=true); ``` [Mera]: 2020-02-08T20:40:36.521 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :33.65234375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) subplot(1,3,1) scatter(x,y) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlim(rx_sub) ylim(ry_sub) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlim(rx_sub) ylim(rz_sub) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry_sub) ylim(rz_sub) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_26_0.png) ## Cylindrical Region Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` [Mera]: Get clump data: 2020-02-08T20:40:43.377 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### Cylindrical Region: The red lines show the region that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_31_0.png) #### Cylindrical Region: Cutout the data assigned to the object `clumps` Select the ranges of the cylinder in the unit "kpc", relative to the given center [13., 24., 24.]. The height refers to both z-directions from the plane. ```julia clumps_subregion = subregion( clumps, :cylinder, radius=3., height=2., range_unit=:kpc, center=[(24. -11.), :bc, :bc]); # direction=:z, by default ``` [Mera]: 2020-02-08T20:40:50.168 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :5.24609375 KB ------------------------------------------------------- Extract the the clump positions of the subregion and the extent of the full box: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]) rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_36_0.png) #### Cylindrical Region: Scatter-Plot of the selected data range with respect to the center of the sub-region: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[ (24. -11.), :bc, :bc], center_unit=:kpc); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[ (24. -11.), :bc, :bc], center_unit=:kpc); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta), 3 .* cos.(theta), color="red") xlim(rx_sub) ylim(ry_sub) xlabel("kpc") ylabel("kpc") subplot(1,3,2) scatter(x,z) xlim(rx_sub) ylim(rz_sub) xlabel("kpc") ylabel("kpc") subplot(1,3,3) scatter(y,z) xlim(ry_sub) ylim(rz_sub) xlabel("kpc") ylabel("kpc"); ``` ![png](output_39_0.png) #### Cylindrical Region: Get the data outside of the selected region (inverse selection): ```julia clumps_subregion = subregion( clumps, :cylinder, radius=3., height=2., range_unit=:kpc, center=[ (24. -11.),:bc,:bc], inverse=true); ``` [Mera]: 2020-02-08T20:41:13.553 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :57.93359375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_43_0.png) ## Spherical Region Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` [Mera]: Get clump data: 2020-02-08T20:41:17.127 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### The red lines show the region that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]") ``` ![png](output_48_0.png) PyObject Text(871.9411764705884, 0.5, 'z [kpc]') #### Spherical Region: Cutout the data assigned to the object `clumps` Select the radius of the sphere in the unit "kpc", relative to the given center [13., 24., 24.]: ```julia clumps_subregion = subregion( clumps, :sphere, radius=10., range_unit=:kpc, center=[ (24. -11.),:bc, :bc]); ``` [Mera]: 2020-02-08T20:41:21.728 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :28.68359375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # subregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_52_0.png) #### Spherical Region: Scatter-Plot of the selected data range with respect to the center of the sub-region: ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[ (24. -11.), :bc, :bc], center_unit=:kpc); # subregion rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[(24. -11.), :bc, :bc], center_unit=:kpc); # subregion ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta), 10 .* cos.(theta), color="red") xlim(rx_sub) ylim(ry_sub) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta), 10 .* cos.(theta), color="red") xlim(rx_sub) ylim(rz_sub) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta), 10 .* cos.(theta), color="red") xlim(ry_sub) ylim(rz_sub) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_55_0.png) #### Spherical Region: Get the data outside of the selected region (inverse selection): ```julia clumps_subregion = subregion( clumps, :sphere, radius=10., range_unit=:kpc, center=[ (24. -11.),:bc,:bc], inverse=true); ``` [Mera]: 2020-02-08T20:41:43.641 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :34.49609375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); rx_sub, ry_sub, rz_sub = getextent(clumps_subregion, :kpc, center=[:boxcenter]); ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(ry) xlabel("x [kpc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]") ``` ![png](output_59_0.png) PyObject Text(871.9411764705884, 0.5, 'z [kpc]') ## Combined/Nested/Shell Sub-Regions #### The sub-region functions can be used in any combination with each other! (Combined with overlapping ranges or nested) ## Cylindrical Shell Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` [Mera]: Get clump data: 2020-02-08T20:41:52.553 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### The red lines show the shell that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red",ls = "--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_66_0.png) #### Cylindrical Shell: Pass the height of the cylinder and the inner/outer radius of the shell in the unit "kpc", relative to the box center [24., 24., 24.]: ```julia clumps_subregion = shellregion( clumps, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter]); ``` [Mera]: 2020-02-08T20:42:00.413 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :18.55859375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_70_0.png) #### Cylindrical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia clumps_subregion = shellregion( clumps, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter], inverse=true); ``` [Mera]: 2020-02-08T20:42:10.055 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :44.62109375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_74_0.png) ## Spherical Shell Extract the the clump positions and the extent of the full box: ```julia clumps = getclumps(info); x, y, z = getpositions(clumps, :kpc, center=[:boxcenter]); rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); ``` [Mera]: Get clump data: 2020-02-08T20:42:14.641 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- #### The red lines show the shell that we want to cut-out as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_79_0.png) #### Spherical Shell: Select the inner and outer radius of the spherical shell in unit "kpc", relative to the box center [24., 24., 24.]: ```julia clumps_subregion = shellregion( clumps, :sphere, radius=[5.,10.], range_unit=:kpc, center=[:boxcenter]); ``` [Mera]: 2020-02-08T20:42:19.499 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :18.55859375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter]); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_83_0.png) #### Spherical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia clumps_subregion = shellregion( clumps, :sphere, radius=[5.,10.], range_unit=:kpc, center=[:boxcenter], inverse=true); ``` [Mera]: 2020-02-08T20:42:23.949 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :44.62109375 KB ------------------------------------------------------- ```julia x, y, z = getpositions(clumps_subregion, :kpc, center=[:boxcenter]); # shellregion rx, ry, rz = getextent(clumps, :kpc, center=[:boxcenter] ); # full box ``` ```julia figure(figsize=(15.5, 3.5)) theta = range(-pi, stop=pi, length=100) subplot(1,3,1) scatter(x,y) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(ry) xlabel("x k[pc]") ylabel("y [kpc]") subplot(1,3,2) scatter(x,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(rx) ylim(rz) xlabel("x [kpc]") ylabel("z [kpc]") subplot(1,3,3) scatter(y,z) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlim(ry) ylim(rz) xlabel("y [kpc]") ylabel("z [kpc]"); ``` ![png](output_87_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
39131
# 3. Hydro: Get Sub-Regions of The Loaded Data ## Load the Data ```julia using Mera, PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14") gas = gethydro(info, :rho, lmax=10, smallr=1e-5); ``` [Mera]: 2020-02-18T23:23:22.753 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= [Mera]: Get hydro data: 2020-02-18T23:23:32.417 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1,) = (:rho,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... 100%|███████████████████████████████████████████████████| Time: 0:02:49 Memory used for data table :186.1558656692505 MB ------------------------------------------------------- ## Cuboid Region ### Create projections of the full box: ```julia proj_z = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` 100%|███████████████████████████████████████████████████| Time: 0:00:03 The generated objects include, e.g. the extent of the processed domain, that can be used to declare the specific range of the plots, while the field `cextent` gives the extent related to a given center (default: [0.,0.,0.]). ```julia propertynames(proj_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ranges, :extent, :cextent, :ratio, :boxlen, :smallr, :smallc, :scale, :info) #### Cuboid Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_9_0.png) #### Cuboid Region: Cutout the data assigned to the object `gas` Note: The selected regions can be given relative to a user given center or to the box corner [0., 0., 0.] by default. The user can choose between standard notation [0:1] (default) or physical length-units, defined in e.g. info.scale : ```julia gas_subregion = subregion( gas, :cuboid, xrange=[-4., 0.], yrange=[-15., 15.], zrange=[-2., 2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: 2020-02-18T23:27:06.861 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :47.87415790557861 MB ------------------------------------------------------- The function `subregion` creates a new object with the same type as the object created by the function `gethydro` : ```julia typeof(gas_subregion) ``` HydroDataType #### Cuboid Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_17_0.png) #### Cuboid Region: Get the data outside of the selected region (inverse selection): ```julia gas_subregion = subregion( gas, :cuboid, xrange=[-4., 0.], yrange=[-15., 15.], zrange=[-2., 2.], center=[:boxcenter], range_unit=:kpc, inverse=true); ``` [Mera]: 2020-02-18T23:27:09.597 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :138.2824068069458 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` 100%|███████████████████████████████████████████████████| Time: 0:00:01 ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_21_0.png) ## Cylindrical Region #### Create projections of the full box: ```julia proj_z = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` 100%|███████████████████████████████████████████████████| Time: 0:00:01 100%|███████████████████████████████████████████████████| Time: 0:00:01 #### Cylindrical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_25_0.png) #### Cylindrical Region: Cutout the data assigned to the object `gas` Select the ranges of the cylinder in the unit "kpc", relative to the given center [13., 24., 24.]. The height refers to both z-directions from the plane. ```julia gas_subregion = subregion( gas, :cylinder, radius=3., height=2., range_unit=:kpc, center=[13., :bc, :bc]); # direction=:z, by default ``` [Mera]: 2020-02-18T23:27:24.715 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :9.945767402648926 MB ------------------------------------------------------- #### Cylindrical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_30_0.png) #### Cylindrical Region: Projections of the sub-region rekated ti a given data center: ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, direction=:z, center=[13., 24.,24.], range_unit=:kpc, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, direction=:y, center=[13., 24.,24.], range_unit=:kpc, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, direction=:x, center=[13., 24.,24.], range_unit=:kpc, verbose=false); ``` #### The ranges of the plots are now adapted to the given data center: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta), 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_34_0.png) #### Cylindrical Region: Get the data outside of the selected region (inverse selection): ```julia gas_subregion = subregion( gas, :cylinder, radius=3., height=2., range_unit=:kpc, center=[13.,:bc,:bc], inverse=true); # direction=:z, by default ``` [Mera]: 2020-02-18T23:27:29.071 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :176.2107973098755 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, :Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_38_0.png) ## Spherical Region ### Create projections of the full box: ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` 100%|███████████████████████████████████████████████████| Time: 0:00:01 #### Spherical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_42_0.png) #### Spherical Region: Cutout the data assigned to the object `gas` Select the radius of the sphere in the unit "kpc", relative to the given center [13., 24., 24.]: ```julia gas_subregion = subregion( gas, :sphere, radius=10., range_unit=:kpc, center=[13.,:bc,:bc]); ``` [Mera]: 2020-02-18T23:27:42.261 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :57.03980731964111 MB ------------------------------------------------------- #### Spherical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_47_0.png) #### Spherical Region: Get the data outside of the selected region (inverse selection): ```julia gas_subregion = subregion( gas, :sphere, radius=10., range_unit=:kpc, center=[13.,:bc,:bc], inverse=true); ``` [Mera]: 2020-02-18T23:27:46.433 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :129.1167573928833 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_51_0.png) ## Combined/Nested/Shell Sub-Regions #### The sub-region functions can be used in any combination with each other! (Combined with overlapping or nested ranges) One Example: ```julia comb_region = subregion(gas, :cuboid, xrange=[-8.,8.], yrange=[-8.,8.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) comb_region2 = subregion(comb_region, :sphere, radius=12., center=[40.,24.,24.], range_unit=:kpc, inverse=true, verbose=false) comb_region3 = subregion(comb_region2, :sphere, radius=12., center=[8.,24.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region4 = subregion(comb_region3, :sphere, radius=12., center=[24.,5.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region5 = subregion(comb_region4, :sphere, radius=12., center=[24.,43.,24.], range_unit=:kpc, inverse=true, verbose=false); ``` ```julia proj_z = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_57_0.png) ## Cylindrical Shell #### Create projections of the full box: ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` 100%|███████████████████████████████████████████████████| Time: 0:00:02 #### Cylindrical Shell: The red lines show the shell that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_61_0.png) #### Cylindrical Shell: Pass the height of the cylinder and the inner/outer radius of the shell in the unit "kpc", relative to the box center [24., 24., 24.]: ```julia gas_subregion = shellregion( gas, :cylinder, radius=[5., 10.], height=2., range_unit=:kpc, center=[:boxcenter]); ``` [Mera]: 2020-02-18T23:28:03.834 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :53.790066719055176 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_65_0.png) #### Cylindrical Shell: Get the data outside of the selected shell (inverse selection): ```julia gas_subregion = shellregion(gas, :cylinder, radius=[5., 10.], height=2., range_unit=:kpc, center=[:boxcenter], inverse=true); ``` [Mera]: 2020-02-18T23:28:06.945 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :132.36649799346924 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_69_0.png) ## Spherical Shell #### Create projections of the full box: ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` 100%|███████████████████████████████████████████████████| Time: 0:00:02 100%|███████████████████████████████████████████████████| Time: 0:00:02 100%|███████████████████████████████████████████████████| Time: 0:00:01 #### Spherical Shell: The red lines show the shell that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_73_0.png) #### Spherical Shell: Select the inner and outer radius of the spherical shell in unit "kpc", relative to the box center [24., 24., 24.]: ```julia gas_subregion = shellregion(gas, :sphere, radius=[5., 10.], range_unit=:kpc, center=[24.,24.,24.]); ``` [Mera]: 2020-02-18T23:28:21.357 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :56.55305194854736 MB ------------------------------------------------------- #### Spherical Shell: Projections of the shell-region. The coordinates center is the center of the box: ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_78_0.png) #### Spherical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia gas_subregion = shellregion(gas, :sphere, radius=[5., 10.], range_unit=:kpc, center=[:boxcenter], inverse=true); ``` [Mera]: 2020-02-18T23:28:25.267 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :129.60351276397705 MB ------------------------------------------------------- ```julia proj_z = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, verbose=false); proj_x = projection(gas_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_82_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
39330
# 3. Particles: Get Sub-Regions of Loaded the Data ## Load the Data ```julia using Mera, PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); particles = getparticles(info, :mass); ``` [Mera]: 2020-02-18T23:29:31.468 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= [Mera]: Get particle data: 2020-02-18T23:29:46.476 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(4,) = (:mass,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data...100%|████████████████████████████████████| Time: 0:00:03 Found 5.089390e+05 particles Memory used for data table :19.4152889251709 MB ------------------------------------------------------- ## Cuboid Region ### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` The generated objects include, e.g. the extent of the processed domain, that can be used to declare the specific range of the plots, while the field cextent gives the extent related to a given center (default: [0.,0.,0.]). ```julia propertynames(proj_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ref_time, :ranges, :extent, :cextent, :ratio, :boxlen, :scale, :info) #### Cuboid Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_9_0.png) #### Cuboid Region: Cutout the data assigned to the object `particles` Note: The selected regions can be given relative to a user given center or to the box corner [0., 0., 0.] by default. The user can choose between standard notation [0:1] (default) or physical length-units, defined in e.g. info.scale : ```julia part_subregion = subregion( particles, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[:boxcenter], range_unit=:kpc ); ``` [Mera]: 2020-02-18T23:30:10.393 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :10.259977340698242 MB ------------------------------------------------------- The function `subregion` creates a new object with the same type as the object created by the function `getparticles` : ```julia typeof(part_subregion) ``` PartDataType #### Cuboid Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=10, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=10, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=10, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_17_0.png) #### Cuboid Region: Get the data outside of the selected region (inverse selection): ```julia part_subregion = subregion( particles, :cuboid, xrange=[-4., 0.], yrange=[-15. ,15.], zrange=[-2. ,2.], center=[24.,24.,24.], range_unit=:kpc, inverse=true); ``` [Mera]: 2020-02-18T23:30:12.491 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.4166667 :: 0.5 ==> 20.0 [kpc] :: 24.0 [kpc] ymin::ymax: 0.1875 :: 0.8125 ==> 9.0 [kpc] :: 39.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Memory used for data table :9.156118392944336 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-15.,-15.,15.,15.,-15.], color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-4.,0.,0.,-4.,-4.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-15.,15.,15.,-15.,-15.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_21_0.png) ## Cylindrical Region #### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Cylindrical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_25_0.png) #### Cylindrical Region: Cutout the data assigned to the object `particles` Select the ranges of the cylinder in the unit "kpc", relative to the given center [13., 24., 24.]. The height refers to both z-directions from the plane. ```julia part_subregion = subregion(particles, :cylinder, radius=3., height=2., range_unit=:kpc, center=[13.,:bc,:bc], direction=:z); ``` [Mera]: 2020-02-18T23:30:15.671 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :578.951171875 KB ------------------------------------------------------- #### Cylindrical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=10, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=10, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=10, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext = L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_30_0.png) #### Cylindrical Region: Projections of the sub-region py passing a different center: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, direction=:z, center=[13., 24.,24.], range_unit=:kpc, lmax=10, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, direction=:y, center=[13., 24.,24.], range_unit=:kpc, lmax=10, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, direction=:x, center=[13., 24.,24.], range_unit=:kpc, lmax=10, verbose=false); ``` #### The ranges of the plots are now adapted to the given data center: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta), 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_34_0.png) #### Cylindrical Region: Get the data outside of the selected region (inverse selection): ```julia part_subregion = subregion(particles, :cylinder, radius=3., height=2., range_unit=:kpc, center=[ (24. -11.),:bc,:bc], direction=:z, inverse=true); ``` [Mera]: 2020-02-18T23:30:19.162 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2083333 :: 0.3333333 ==> 10.0 [kpc] :: 16.0 [kpc] ymin::ymax: 0.4375 :: 0.5625 ==> 21.0 [kpc] :: 27.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Radius: 3.0 [kpc] Height: 2.0 [kpc] Memory used for data table :18.8507137298584 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 3. .* sin.(theta) .-11, 3 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.] .-11.,[-2.,-2.,2.,2.,-2.], color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-3.,3.,3.,-3.,-3.],[-2.,-2.,2.,2.,-2.], color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_38_0.png) ## Spherical Region ### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Spherical Region: The red lines show the region that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_42_0.png) #### Spherical Region: Cutout the data assigned to the object `particles` Select the radius of the sphere in the unit "kpc", relative to the given center [13., 24., 24.]: ```julia part_subregion = subregion( particles, :sphere, radius=10., range_unit=:kpc, center=[(24. -11.),24.,24.]); ``` [Mera]: 2020-02-18T23:30:22.122 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :8.807950973510742 MB ------------------------------------------------------- #### Spherical Region: Projections of the sub-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_47_0.png) #### Spherical Region: Get the data outside of the selected region (inverse selection): ```julia part_subregion = subregion( particles, :sphere, radius=10., range_unit=:kpc, center=[(24. -11.),24.,24.], inverse=true); ``` [Mera]: 2020-02-18T23:30:23.142 center: [0.2708333, 0.5, 0.5] ==> [13.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.0625 :: 0.4791667 ==> 3.0 [kpc] :: 23.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Radius: 10.0 [kpc] Memory used for data table :10.608144760131836 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) .-11., 10 .* cos.(theta), color="red") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_51_0.png) ## Combined/Nested/Shell Sub-Regions #### The sub-region and shell functions can be used in any combination with each other! (Combined with overlapping ranges or nested) One Example: ```julia comb_region = subregion(particles, :cuboid, xrange=[-8.,8.], yrange=[-8.,8.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) comb_region2 = subregion(comb_region, :sphere, radius=12., center=[40.,24.,24.], range_unit=:kpc, inverse=true, verbose=false) comb_region3 = subregion(comb_region2, :sphere, radius=12., center=[8.,24.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region4 = subregion(comb_region3, :sphere, radius=12., center=[24.,5.,24.], range_unit=:kpc, inverse=true, verbose=false); comb_region5 = subregion(comb_region4, :sphere, radius=12., center=[24.,43.,24.], range_unit=:kpc, inverse=true, verbose=false); ``` ```julia proj_z = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, verbose=false); proj_y = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter],direction=:y, verbose=false); proj_x = projection(comb_region5, :sd, unit=:Msol_pc2, center=[:boxcenter],direction=:x, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = LinRange(-pi, pi, 100) subplot(1,3,1) im = imshow( log10.(permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.(permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_57_0.png) ## Cylindrical Shell #### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Cylindrical Shell: The red lines show the shell we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.(permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_62_0.png) #### Cylindrical Shell: Pass the height of the cylinder and the inner/outer radius of the shell in the unit "kpc", relative to the box center [24., 24., 24.]: ```julia part_subregion = shellregion( particles, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter]); ``` [Mera]: 2020-02-18T23:30:28.41 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :7.282835006713867 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, orientation="horizontal", label=labeltext, pad=0.2); ``` ![png](output_66_0.png) #### Cylindrical Shell: Get the data outside of the selected shell (inverse selection): ```julia part_subregion = shellregion( particles, :cylinder, radius=[5.,10.], height=2., range_unit=:kpc, center=[:boxcenter], inverse=true); ``` [Mera]: 2020-02-18T23:30:30.228 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Height: 2.0 [kpc] Memory used for data table :12.133260726928711 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot([-10.,-10.,10.,10.,-10.], [-2.,2.,2.,-2.,-2.], color="red") plot([-5.,-5,5.,5.,-5.], [-2.,2.,2.,-2.,-2.], color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_70_0.png) <a id="ShellRegionSphere"></a> ## Spherical Shell #### Create projections of the full box: ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(particles, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` #### Spherical Shell: The red lines show the shell that we want to cutout as a sub-region from the full data: ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_75_0.png) #### Spherical Shell: Select the inner and outer radius of the spherical shell in unit "kpc", relative to the box center [24., 24., 24.]: ```julia part_subregion = shellregion( particles, :sphere, radius=[5.,10.], range_unit=:kpc, center=[24.,24.,24.]); ``` [Mera]: 2020-02-18T23:30:34.32 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :7.592016220092773 MB ------------------------------------------------------- #### Spherical Shell: Projections of the shell-region. The coordinates center is the center of the box: ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red",ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_80_0.png) #### Spherical Shell: Get the data outside of the selected shell-region (inverse selection): ```julia part_subregion = shellregion( particles, :sphere, radius=[5.,10.], range_unit=:kpc, center=[:boxcenter], inverse=true); ``` [Mera]: 2020-02-18T23:30:35.378 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] Inner radius: 5.0 [kpc] Outer radius: 10.0 [kpc] Radius diff: 5.0 [kpc] Memory used for data table :11.824079513549805 MB ------------------------------------------------------- ```julia proj_z = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:z, lmax=8, verbose=false); proj_y = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:y, lmax=8, verbose=false); proj_x = projection(part_subregion, :sd, unit=:Msol_pc2, center=[:boxcenter], direction=:x, lmax=8, verbose=false); ``` ```julia figure(figsize=(15.5, 3.5)) labeltext=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}" theta = range(-pi, stop=pi, length=100) subplot(1,3,1) im = imshow( log10.( permutedims(proj_z.maps[:sd]) ), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,2) im = imshow( log10.( permutedims(proj_y.maps[:sd]) ), cmap=cmap, aspect=proj_y.ratio, origin="lower", extent=proj_y.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext) subplot(1,3,3) im = imshow( log10.( permutedims(proj_x.maps[:sd]) ), cmap=cmap, aspect=proj_x.ratio, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) plot( 10. .* sin.(theta) , 10 .* cos.(theta), color="red") plot( 5. .* sin.(theta) , 5. .* cos.(theta), color="red", ls="--") xlabel("y [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=labeltext); ``` ![png](output_84_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
27093
# 5. Mask/Select/Map/Filter/Metaprogramming... - Learn how to extract data from the data table with JuliaDB and Mera functions - Filter the data table according to one or several conditions - Extract data from a filtered data table and use it for further calculations - Extend the data table with new columns/variables - Mask data with different methods and apply it to some functions ## Load The Data ```julia using Mera info = getinfo(400, "../../testing/simulations/manu_sim_sf_L14"); gas = gethydro(info, lmax=8, smallr=1e-5); particles = getparticles(info) clumps = getclumps(info); ``` [Mera]: 2020-02-08T20:56:19.834 Code: RAMSES output [400] summary: mtime: 2018-09-05T09:51:55.041 ctime: 2019-11-01T17:35:21.051 ======================================================= simulation time: 594.98 [Myr] boxlen: 48.0 [kpc] ncpu: 2048 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 14 --> cellsize(s): 750.0 [pc] - 2.93 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :thermal_pressure, :passive_scalar_1, :passive_scalar_2) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Npart: 5.091500e+05 - Nstars: 5.066030e+05 - Ndm: 2.547000e+03 particle variables: (:vx, :vy, :vz, :mass, :birth) ------------------------------------------------------- clumps: true clump-variables: (:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance) ------------------------------------------------------- namelist-file: false timer-file: false compilation-file: true makefile: true patchfile: true ======================================================= [Mera]: Get hydro data: 2020-02-08T20:56:27.064 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... 100%|███████████████████████████████████████████████████| Time: 0:02:07 Memory used for data table :71.28007793426514 MB ------------------------------------------------------- [Mera]: Get particle data: 2020-02-08T20:58:39.435 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(1, 2, 3, 4, 5) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.089390e+05 particles Memory used for data table :34.947275161743164 MB ------------------------------------------------------- [Mera]: Get clump data: 2020-02-08T20:58:41.769 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Read 12 colums: Symbol[:index, :lev, :parent, :ncell, :peak_x, :peak_y, :peak_z, Symbol("rho-"), Symbol("rho+"), :rho_av, :mass_cl, :relevance] Memory used for data table :61.77734375 KB ------------------------------------------------------- ## Select From Data Table ### Select a single column/variable ##### By using JuliaDB or Mera functions ```julia using JuliaDB ``` The JuliaDB data table is stored in the `data`-field of any `DataSetType`. Extract an existing column (variable): ```julia select(gas.data, :rho) # JuliaDB ``` 849332-element Array{Float64,1}: 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 ⋮ 0.00010967104288285959 0.0001088040126114162 0.00010915603617815434 0.00010917096551347797 0.00012465438542871006 0.00011934527871880502 0.00011294656300014925 0.00011110068692986109 0.00010901341218606515 0.00010849404903183988 0.00010900588395976569 0.00010910219163333514 Pass the entire `DataSetType` (here `gas`) to the Mera function `getvar` to extract the selected variable or derived quantity from the data table. Call `getvar()` to get a list of the predefined quantities. ```julia getvar(gas, :rho) # MERA ``` 849332-element Array{Float64,1}: 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 ⋮ 0.00010967104288285959 0.0001088040126114162 0.00010915603617815434 0.00010917096551347797 0.00012465438542871006 0.00011934527871880502 0.00011294656300014925 0.00011110068692986109 0.00010901341218606515 0.00010849404903183988 0.00010900588395976569 0.00010910219163333514 ### Select several columns By selecting several columns a new JuliaDB databse is returned: ```julia select(gas.data, (:rho, :level)) #JuliaDB ``` Table with 849332 rows, 2 columns: rho level ────────────────── 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 1.0e-5 6 ⋮ 0.000108804 8 0.000109156 8 0.000109171 8 0.000124654 8 0.000119345 8 0.000112947 8 0.000111101 8 0.000109013 8 0.000108494 8 0.000109006 8 0.000109102 8 The getvar function returns a dictionary containing the extracted arrays: ```julia getvar(gas, [:rho, :level]) # MERA ``` Dict{Any,Any} with 2 entries: :level => [6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0 … 8.0, 8.0, 8.0… :rho => [1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.… Select one or more columns and get a tuple of vectors: ```julia vtuple = columns(gas.data, (:rho, :level)) # JuliaDB ``` (rho = [1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5, 1.0e-5 … 0.00010915603617815434, 0.00010917096551347797, 0.00012465438542871006, 0.00011934527871880502, 0.00011294656300014925, 0.00011110068692986109, 0.00010901341218606515, 0.00010849404903183988, 0.00010900588395976569, 0.00010910219163333514], level = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6 … 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]) ```julia propertynames(vtuple) ``` (:rho, :level) ```julia vtuple.rho ``` 849332-element Array{Float64,1}: 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 1.0e-5 ⋮ 0.00010967104288285959 0.0001088040126114162 0.00010915603617815434 0.00010917096551347797 0.00012465438542871006 0.00011934527871880502 0.00011294656300014925 0.00011110068692986109 0.00010901341218606515 0.00010849404903183988 0.00010900588395976569 0.00010910219163333514 ## Filter by Condition ### With JuliaDB (example A) Get all the data corresponding to cells/rows with level=6. Here, the variable `p` is used as placeholder for rows. A new JuliaDB data table is returend: ```julia filtered_db = filter(p->p.level==6, gas.data ) # JuliaDB # see the reduced row number ``` Table with 240956 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### With Macro Expression (example A) (see the documentation at: <https://piever.github.io/JuliaDBMeta.jl/stable/> ) ```julia using JuliaDBMeta ``` ┌ Info: Precompiling JuliaDBMeta [2c06ca41-a429-545c-b8f0-5ca7dd64ba19] └ @ Base loading.jl:1273 ```julia filtered_db = @filter gas.data :level==6 # JuliaDBMeta ``` Table with 240956 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### With JuliaDB (example B) Get all cells/rows with densities >= 3 Msol/pc^3. Since the data is given in code units, we need to convert from the given physical units: ```julia density = 3. / gas.scale.Msol_pc3 filtered_db = filter(p->p.rho>= density, gas.data ) # JuliaDB ``` Table with 210 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### With Macro Expression (example B) ```julia density = 3. /gas.scale.Msol_pc3 filtered_db = @filter gas.data :rho>= density # JuliaDBMeta ``` Table with 210 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ### Get a Quantity/Variable from The Filtered Data Table Calculate the mass for each cell and the sum: ```julia mass_tot = getvar(gas, :mass, :Msol) # the full data table sum(mass_tot) ``` 3.0968754148332745e10 The same calculation is possible for the filtered data base which has to be passed together with the original object, here: `gas` ```julia mass_filtered_tot = getvar(gas, :mass, :Msol, filtered_db=filtered_db) # the filtered data table sum(mass_filtered_tot) ``` 1.4862767967535206e10 ### Create a New DataSetType from a Filtered Data Table A new `DataSetType` can be constructed for the filtered data table that can be passed to the functions. ```julia density = 3. /gas.scale.Msol_pc3 filtered_db = @filter gas.data :rho >= density gas_new = construct_datatype(filtered_db, gas); ``` ```julia # Both are now of HydroDataType and include the same information about the simulation properties (besides the canged data table) println( typeof(gas) ) println( typeof(gas_new) ) ``` HydroDataType HydroDataType ```julia mass_filtered_tot = getvar(gas_new, :mass, :Msol) sum(mass_filtered_tot) ``` 1.4862767967535206e10 ## Filter by Multiple Conditions ### With JuliaDB Get the mass of all cells/rows with densities >= 3 Msol/pc^3 that is within the disk radius of 3 kpc and 2 kpc from the plane: ```julia boxlen = info.boxlen cv = boxlen/2. # box-center density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc # filter cells/rows that contain rho greater equal density filtered_db = filter(p->p.rho >= density, gas.data ) # filter cells/rows lower equal the defined radius and height # (convert the cell number to a position according to its cellsize and relative to the box center) filtered_db = filter(row-> sqrt( (row.cx * boxlen /2^row.level - cv)^2 + (row.cy * boxlen /2^row.level - cv)^2) <= radius && abs(row.cz * boxlen /2^row.level - cv) <= height, filtered_db) var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### Use Pipeline Macros ```julia boxlen = info.boxlen cv = boxlen/2. density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc filtered_db = @apply gas.data begin @where :rho >= density @where sqrt( (:cx * boxlen/2^:level - cv)^2 + (:cy * boxlen/2^:level - cv)^2 ) <= radius @where abs(:cz * boxlen/2^:level -cv) <= height end var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### External Functions With JuliaDB ```julia boxlen = info.boxlen function r(x,y,level,boxlen) return sqrt((x * boxlen /2^level - boxlen/2.)^2 + (y * boxlen /2^level - boxlen/2.)^2) end function h(z,level,boxlen) return abs(z * boxlen /2^level - boxlen/2.) end density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc filtered_db = filter(row-> row.rho >= density && r(row.cx,row.cy, row.level, boxlen) <= radius && h(row.cz,row.level, boxlen) <= height, gas.data) var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### External Functions With Macro Expression ```julia boxlen = info.boxlen cv = boxlen/2. density = 3. /gas.scale.Msol_pc3 radius = 3. /gas.scale.kpc height = 2. /gas.scale.kpc function p(val, level, boxlen) cv = boxlen/2 return val * boxlen /2^level - cv end filtered_db = @apply gas.data begin @where :rho >= density @where sqrt( p(:cx, :level, boxlen)^2 + p(:cy, :level, boxlen)^2 ) <= radius @where abs( p(:cz, :level, boxlen) ) <= height end var_filtered = getvar(gas, :mass, filtered_db=filtered_db, unit=:Msol) sum(var_filtered) # [Msol] ``` 2.750632450062189e9 ### Compare With Predefined Functions Compare the previous calculations with the predefined `subregion` function: The `subregion` function takes the intersected cells of the range borders into account (default): ```julia density = 3. /gas.scale.Msol_pc3 # in code units sub_region = subregion(gas, :cylinder, radius=3., height=2., center=[:boxcenter], range_unit=:kpc, verbose=false ) # default: cell=true filtered_db = @filter sub_region.data :rho >= density var_filtered = getvar(gas, :mass, :Msol, filtered_db=filtered_db) sum(var_filtered) # [Msol] ``` 2.9388306102361355e9 By setting the keyword `cell=false`, only the cell-centres within the defined region are taken into account (as in the calculations in the previous section). ```julia density = 3. /gas.scale.Msol_pc3 # in code units sub_region = subregion(gas, :cylinder, radius=3., height=2., center=[:boxcenter], range_unit=:kpc, cell=false, verbose=false ) filtered_db = @filter sub_region.data :rho >= density var_filtered = getvar(gas, :mass, :Msol, filtered_db=filtered_db) sum(var_filtered) ``` 2.750632450062189e9 ## Extend the Data Table Add costum columns/variables to the data that can be automatically processed in some functions: (note: to take advantage of the Mera unit management, store new data in code-units) ```julia # calculate the Mach number in each cell mach = getvar(gas, :mach); ``` ```julia # add the extracted Mach number (1dim-array) to the data in the object "gas" # the array has the same length and order (rows/cells) as in the data table # push a column at the end of the table: # transform(data-table, key => new-data) gas.data = transform(gas.data, :mach => mach) # JuliaDB ``` Table with 849332 rows, 12 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 12 mach Float64 ```julia proj_z = projection(gas, :mach, xrange=[-8.,8.], yrange=[-8.,8.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: 2020-02-08T20:59:42.246 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.3333333 :: 0.6666667 ==> 16.0 [kpc] :: 32.0 [kpc] ymin::ymax: 0.3333333 :: 0.6666667 ==> 16.0 [kpc] :: 32.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:mach, :sd) 100%|███████████████████████████████████████████████████| Time: 0:00:07 ```julia using PyPlot imshow( ( permutedims(proj_z.maps[:mach]) ), origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_60_0.png) Remove the column :mach from the table: ```julia gas.data = select(gas.data, Not(:mach)) # select all columns, not :mach ``` Table with 849332 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ## Masking Many functions in **MERA** provide the opportunity to use a mask on selected data without changing the content in the data table. Here we present several methods to prepare a mask and apply it to some functions. A created mask is an array of type: `MaskType`, which can be Array{Bool,1} or BitArray{1}. A masked cell/row corresponds to a **false**. #### Version 1: External Function Create an array which represents the cells with the selected condition by true. The function checks if the following requirement is true or false for each row/cell in the data table: ```julia function ftest(value) density = (4. / gas.scale.Msol_pc3) if value < density return true else return false end end mask_v1 = map(row->ftest(row.rho), gas.data); println( length(mask_v1) ) println( typeof(mask_v1) ) ``` 849332 Array{Bool,1} #### Version 2: Short Syntax ##### Example 1 ```julia mask_v2 = map(row->row.rho < 4. / gas.scale.Msol_pc3, gas.data); println( length(mask_v2) ) println( typeof(mask_v2) ) ``` 849332 Array{Bool,1} ##### Example 2 ```julia mask_v2b = getvar(gas, :rho, :Msol_pc3) .> 1. ; println( length(mask_v2b) ) println( typeof(mask_v2b) ) ``` 849332 BitArray{1} #### Version 3: Longer Syntax ```julia rho_array = select(gas.data, :rho); mask_v3 = rho_array .< 1. / gas.scale.Msol_pc3; println( length(mask_v3) ) println( typeof(mask_v3) ) ``` 849332 BitArray{1} #### Combine Multiple Masks ```julia # create individual masks for different density and temperature regions mask_h = getvar(gas, :rho, :nH) .< 10. # cm-3 mask_l = getvar(gas, :rho, :nH) .> 1e-2 # cm-3 mask_T1 = getvar(gas, :Temperature, :K) .< 1e4 # K mask_T2 = getvar(gas, :Temperature, :K) .> 1e3 # K # combine several masks to one mask_tot = mask_h .* mask_l .* mask_T1 .* mask_T2 println( length(mask_tot) ) println( typeof(mask_tot) ) ``` 28320979 BitVector ### Some Functions With Masking Functionality The masked rows are not considered in the calculations (mask-element = false ). ### Examples ### Total Mass ```julia mask = map(row->row.rho < 1. / gas.scale.Msol_pc3, gas.data); mtot_masked = msum(gas, :Msol, mask=mask) mtot = msum(gas, :Msol) println() println( "Gas Mtot masked: ", mtot_masked , " Msol" ) println( "Gas Mtot: ", mtot , " Msol" ) println() ``` Gas Mtot masked: 1.336918953133308e10 Msol Gas Mtot: 3.0968754148332745e10 Msol ```julia mask = map(row->row.birth < 100. / particles.scale.Myr, particles.data); mtot_masked = msum(particles, :Msol, mask=mask) mtot = msum(particles, :Msol) println() println( "Particles Mtot masked: ", mtot_masked , " Msol" ) println( "Particles Mtot: ", mtot , " Msol" ) println() ``` Particles Mtot masked: 1.4537556611888414e7 Msol Particles Mtot: 5.804426008528437e9 Msol ```julia mask = map(row->row.mass_cl < 1e6 / clumps.scale.Msol, clumps.data); mtot_masked = msum(clumps, :Msol, mask=mask) mtot = msum(clumps, :Msol) println() println( "Clumps Mtot masked: ", mtot_masked , " Msol" ) println( "Clumps Mtot: ", mtot , " Msol" ) println() ``` Clumps Mtot masked: 2.926390055686605e7 Msol Clumps Mtot: 1.3743280681841677e10 Msol ### Center-Of-Mass ```julia mask = map(row->row.rho < 100. / gas.scale.nH, gas.data); com_gas_masked = center_of_mass(gas, :kpc, mask=mask) com_gas = center_of_mass(gas, :kpc) println() println( "Gas COM masked: ", com_gas_masked , " kpc" ) println( "Gas COM: ", com_gas , " kpc" ) println() ``` Gas COM masked: (23.632781376611646, 24.017935187730938, 24.078280687627124) kpc Gas COM: (23.47221401632259, 23.93931869865653, 24.08483637116779) kpc ```julia mask = map(row->row.birth < 100. / particles.scale.Myr, particles.data); com_particles_masked = center_of_mass(particles, :kpc, mask=mask) com_particles = center_of_mass(particles, :kpc) println() println( "Particles COM masked: ", com_particles_masked , " kpc" ) println( "Particles COM: ", com_particles , " kpc" ) println() ``` Particles COM masked: (22.766374936557934, 24.817294529838456, 24.020065595650212) kpc Particles COM: (22.891354761211332, 24.174147282680273, 24.003205056545575) kpc ```julia # calculate joint center-of-mass from gas and particles mask1 = map(row->row.rho < 100. / gas.scale.nH, gas.data); # mask for the hydro data mask2 = map(row->row.birth < 100. / particles.scale.Myr, particles.data); # mask for the particle data println( "Joint COM (Gas + Particles) masked: ", center_of_mass([gas,particles], :kpc, mask=[mask1, mask2]) , " kpc" ) println( "Joint COM (Gas + Particles): ", center_of_mass([gas,particles], :kpc) , " kpc" ) ``` Joint COM (Gas + Particles) masked: (23.632014753139174, 24.01864248583754, 24.078229177095928) kpc Joint COM (Gas + Particles): (23.380528865533876, 23.976384982693947, 24.07195135758772) kpc ```julia mask = map(row->row.mass_cl < 1e6 / clumps.scale.Msol, clumps.data); com_clumps_masked = center_of_mass(clumps, mask=mask) com_clumps = center_of_mass(clumps) println() println( "Clumps COM masked:", com_clumps_masked .* clumps.scale.kpc, " kpc" ) println( "Clumps COM: ", com_clumps .* clumps.scale.kpc, " kpc" ) println() ``` Clumps COM masked:(22.979676622296815, 23.22447986984898, 24.11056806473746) kpc Clumps COM: (23.135765457064576, 23.741712325649264, 24.0050127185862) kpc ### Bulk-Velocity ```julia mask = map(row->row.rho < 100. / gas.scale.nH, gas.data); bv_gas_masked = bulk_velocity(gas, :km_s, mask=mask) bv_gas = bulk_velocity(gas, :km_s) println() println( "Gas bulk velocity masked: ", bv_gas_masked , " km/s" ) println( "Gas bulk velocity: ", bv_gas , " km/s" ) println() ``` Gas bulk velocity masked: (-0.046336703401138456, -6.60993479840688, -1.000280146674773) km/s Gas bulk velocity: (-1.1999253584798182, -10.678485153330122, -0.44038538452508785) km/s ```julia mask = map(row->row.birth < 100. / particles.scale.Myr, particles.data); bv_particles_masked = bulk_velocity(particles, :km_s, mask=mask) bv_particles = bulk_velocity(particles, :km_s) println() println( "Particles bulk velocity masked: ", bv_particles_masked , " km/s" ) println( "Particles bulk velocity: ", bv_particles , " km/s" ) println() ``` Particles bulk velocity masked: (-27.702254113836513, -7.532075727552787, -1.3273993940211153) km/s Particles bulk velocity: (-11.623422700314535, -18.440572802490234, -0.3291927731417528) km/s ### Weighted Statistics (It is also possible to use the mask within the `getvar` function) ```julia maskgas = map(row->row.rho < 100. / gas.scale.nH, gas.data); maskpart = map(row->row.birth < 100. / particles.scale.Myr, particles.data); maskclump = map(row->row.mass_cl < 1e7 / clumps.scale.Msol, clumps.data); stats_gas_masked = wstat( getvar(gas, :vx, :km_s), weight=getvar(gas, :mass ), mask=maskgas); stats_particles_masked = wstat( getvar(particles, :vx, :km_s), weight=getvar(particles, :mass ), mask=maskpart); stats_clumps_masked = wstat( getvar(clumps, :peak_x, :kpc ), weight=getvar(clumps, :mass_cl), mask=maskclump) ; println( "Gas <vx>_cells masked : ", stats_gas_masked.mean, " km/s (mass weighted)" ) println( "Particles <vx>_particles masked : ", stats_particles_masked.mean, " km/s (mass weighted)" ) println( "Clumps <peak_x>_clumps masked : ", stats_clumps_masked.mean, " kpc (mass weighted)" ) println() ``` Gas <vx>_cells masked : -0.04633670340114798 km/s (mass weighted) Particles <vx>_particles masked : -27.702254113836517 km/s (mass weighted) Clumps <peak_x>_clumps masked : 22.907689025275953 kpc (mass weighted) ```julia stats_gas = wstat( getvar(gas, :vx, :km_s), weight=getvar(gas, :mass )); stats_particles = wstat( getvar(particles, :vx, :km_s), weight=getvar(particles, :mass )); stats_clumps = wstat( getvar(clumps, :peak_x, :kpc ), weight=getvar(clumps, :mass_cl)) ; println( "Gas <vx>_allcells : ", stats_gas.mean, " km/s (mass weighted)" ) println( "Particles <vx>_allparticles : ", stats_particles.mean, " km/s (mass weighted)" ) println( "Clumps <peak_x>_allclumps : ", stats_clumps.mean, " kpc (mass weighted)" ) println() ``` Gas <vx>_allcells : -1.199925358479736 km/s (mass weighted) Particles <vx>_allparticles : -11.623422700314544 km/s (mass weighted) Clumps <peak_x>_allclumps : 23.13576545706458 kpc (mass weighted) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
41376
# 6. Hydro: Projections ## Load The Data ```julia using Mera info = getinfo(300, "../../testing/simulations/mw_L10"); gas = gethydro(info, lmax=10); ``` [Mera]: 2023-04-10T12:05:52.163 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= [Mera]: Get hydro data: 2023-04-10T12:05:52.197 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1, 2, 3, 4, 5, 6, 7) = (:rho, :vx, :vy, :vz, :p, :var6, :var7) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data... Progress: 100%|█████████████████████████████████████████| Time: 0:00:23 Memory used for data table :2.3210865957662463 GB ------------------------------------------------------- ```julia gas.data ``` Table with 28320979 rows, 11 columns: Columns: # colname type ──────────────────── 1 level Int64 2 cx Int64 3 cy Int64 4 cz Int64 5 rho Float64 6 vx Float64 7 vy Float64 8 vz Float64 9 p Float64 10 var6 Float64 11 var7 Float64 ## Projection of Predefined Quantities See the possible variables: ```julia projection() ``` Predefined vars for projections: ------------------------------------------------ =====================[gas]:===================== -all the non derived hydro vars- :cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,... further possibilities: :rho, :density, :ρ -derived hydro vars- :x, :y, :z :sd or :Σ or :surfacedensity :mass, :cellsize, :freefall_time :cs, :mach, :jeanslength, :jeansnumber :t, :Temp, :Temperature with p/rho ==================[particles]:================== all the non derived vars: :cpu, :level, :id, :family, :tag :x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal.... -derived particle vars- :age ==============[gas or particles]:=============== :v, :ekin squared => :vx2, :vy2, :vz2 velocity dispersion => σx, σy, σz, σ related to a given center: --------------------------- :vr_cylinder, vr_sphere (radial components) :vϕ_cylinder, :vθ squared => :vr_cylinder2, :vϕ_cylinder2 velocity dispersion => σr_cylinder, σϕ_cylinder 2d maps (not projected) => :r_cylinder, :ϕ ------------------------------------------------ ## Projection of a Single Quantity in Different Directions (z,y,x) Here we project the surface density in the z-direction of the data within a particular vertical range (domain=[0:1]) onto a grid corresponding to the maximum loaded level. Pass any object of `HydroDataType` (here: "gas") to the `projection`-function and select a variable by a Symbol (here: :sd = :surfacedensity = :Σ in Msol/pc^3) ```julia proj_z = projection(gas, :sd, unit=:Msol_pc2, zrange=[0.45,0.55]) proj_z = projection(gas, :sd, :Msol_pc2, zrange=[0.45,0.55], verbose=false) # The keyword "unit" (singular) can be omit if the following order is preserved: data-object, quantity, unit. proj_x = projection(gas, :sd, :Msol_pc2, direction = :x, zrange=[0.45,0.55], verbose=false); # Project the surface density in x-direction ``` [Mera]: 2023-04-10T12:06:22.093 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 1024 x 1024 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 ### Select a Range Related to a Center See also in the documentation for: load data by selection ```julia cv = (gas.boxlen / 2.) * gas.scale.kpc # provide the box-center in kpc proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[cv,cv,cv], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:30.071 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:32.245 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:34.277 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Use the box center notation for individual dimensions, here x,z: ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc, 24., :bc], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:36.462 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] ### Get Multiple Quantities Get several quantities with one function call by passing an array containing the selected variables (at least one entry). The keyword name for the units is now in plural. ```julia proj1_x = projection(gas, [:sd], units=[:Msol_pc2], direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:43.824 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 86 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 Pass an array containing several quantities to process and their corresponding units: ```julia proj1_z = projection(gas, [:sd, :vx], units=[:Msol_pc2, :km_s], direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:48.228 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd, :vx) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 86 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 The function can be called without any keywords by preserving the following order: dataobject, variables, units ```julia proj1_z = projection(gas, [:sd , :vx], [:Msol_pc2, :km_s], direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:52.513 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:sd, :vx) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 86 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 If all selected variables should be of the same unit use the following arguments: dataobject, array of quantities, unit (no array needed) ```julia projvel_z = projection(gas, [:vx, :vy, :vz], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T12:06:56.640 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:vx, :vy, :vz, :sd) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] ## Function Output List the fields of the assigned object: ```julia propertynames(proj1_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_weight, :maps_mode, :lmax_projected, :lmin, :lmax, :ranges, :extent, :cextent, :ratio, :effres, :pixsize, :boxlen, :smallr, :smallc, :scale, :info) The projected 2D maps are stored in a dictionary: ```julia proj1_z.maps ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 2 entries: :sd => [0.139938 0.137134 … 0.0559771 0.039597; 0.139217 0.137082 … 0.0542157… :vx => [77.2952 76.0304 … 81.0816 35.6391; 77.0928 75.8627 … 76.2712 35.0263;… The maps can be accessed by giving the name of the dictionary: ```julia proj1_z.maps[:sd] ``` 428×86 Matrix{Float64}: 0.139938 0.137134 0.131767 … 0.0872412 0.0559771 0.039597 0.139217 0.137082 0.132994 0.0816654 0.0542157 0.0398295 0.137721 0.136923 0.135395 0.0704139 0.0505852 0.0401868 0.130652 0.132227 0.135241 0.060856 0.0473774 0.0403063 0.118059 0.123044 0.132582 0.0530844 0.0446923 0.0402881 0.10163 0.110067 0.126214 … 0.0476658 0.0429264 0.0404395 0.0813691 0.0933035 0.116143 0.044649 0.0421367 0.0408176 0.0669271 0.07945 0.103416 0.0428914 0.0417599 0.041163 0.0582977 0.0685004 0.0880284 0.0423535 0.0417506 0.0414303 0.0535281 0.06126 0.0760619 0.0423028 0.0420018 0.0418397 0.0526318 0.0577423 0.0675286 … 0.0427375 0.0425119 0.0423895 0.052837 0.0560511 0.0622078 0.0431381 0.0429604 0.0428636 0.0541345 0.0561769 0.0600908 0.0435055 0.0433486 0.0432631 ⋮ ⋱ ⋮ 0.345865 0.369255 0.413998 0.629721 0.626234 0.624502 0.331128 0.356762 0.405799 0.633807 0.626743 0.623164 0.301443 0.329698 0.38375 0.635831 0.62586 0.620785 0.264759 0.29386 0.349533 0.636119 0.623004 0.616308 0.221068 0.249242 0.303144 … 0.634589 0.618091 0.609649 0.18151 0.207886 0.25835 0.626543 0.606447 0.596148 0.146155 0.169863 0.215215 0.611892 0.588007 0.575739 0.116928 0.137085 0.175624 0.589726 0.562302 0.548179 0.0937383 0.109461 0.139499 0.560153 0.529411 0.513549 0.0759276 0.087617 0.109919 … 0.527518 0.495959 0.479666 0.063372 0.0714275 0.0867677 0.49155 0.461674 0.446257 0.0570274 0.063266 0.0751304 0.473422 0.444384 0.429406 The units of the maps are stored in: ```julia proj1_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 2 entries: :sd => :Msol_pc2 :vx => :km_s Projections on a different grid size (see subject below): ```julia proj1_z.maps_lmax ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering}() The following fields are helpful for further calculations or plots. ```julia proj1_z.ranges # normalized to the domain=[0:1] ``` 6-element Vector{Float64}: 0.29166666666647767 0.7083333333328743 0.29166666666647767 0.7083333333328743 0.4583333333330363 0.5416666666663156 ```julia proj1_z.extent # ranges in code units ``` 4-element Vector{Float64}: 13.96875 34.03125 21.984375 26.015625 ```julia proj1_z.cextent # ranges in code units relative to a given center (by default: box center) ``` 4-element Vector{Float64}: -10.031250000015556 10.031249999984444 -2.0156250000155556 2.0156249999844444 ```julia proj1_z.ratio # the ratio between the two ranges ``` 4.976744186046512 ## Plot Maps with Python ```julia proj_z = projection(gas, :sd, :Msol_pc2, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) proj_x = projection(gas, :sd, :Msol_pc2, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, direction = :x); ``` Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Python functions can be directly called in Julia, which gives the opportunity, e.g. to use the Matplotlib library. ```julia using PyPlot using ColorSchemes cmap3 = ColorMap(ColorSchemes.Blues.colors) cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php cmap2 = ColorMap(reverse(ColorSchemes.roma.colors)) ``` ![svg](output_45_0.svg) ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](output_46_0.png) Project a specific spatial range and plot the axes of the map relative to the box-center (given by keyword: data_center): ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc) proj_x = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc, direction = :x); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](output_49_0.png) Plot the axes of the map relative to the map-center (given by keyword: data_center): ```julia proj_z = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc) proj_x = projection(gas, :sd, :Msol_pc2, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc, direction = :x); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](output_52_0.png) ## Projections of Derived Kinematic Data #### Use quantities in cartesian coordinates: Project the following derived data (mass weighted by default): The absolute value of the velocity :v, the velocity dispersion :σ in different directions. The Julia language supports Unicode characters and can be inserted by e.g. "\sigma + tab-key" leading to: **σ**. ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :σz], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:07:59.030 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :σz, :vx, :vx2, :vy, :vy2, :vz, :vz2, :v2, :sd) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 For the velocity dispersion additional maps are created to created the mass-weighted quantity: E. g.: σx = sqrt( <vx^2> - < vx >^2 ) ```julia proj_z.maps ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 13 entries: :sd => [6.6833e-5 6.80617e-5 … 0.000177126 0.000163977; 7.28461e-5 7.45496e-… :v => [200.553 200.475 … 206.694 206.58; 201.081 201.027 … 206.638 206.51; … :v2 => [9.55132 9.53998 … 9.97416 9.96594; 9.58466 9.57475 … 9.96848 9.95871… :vx => [2.20801 2.21133 … -2.44779 -2.44328; 2.2193 2.22319 … -2.44946 -2.44… :vx2 => [4.99404 5.00648 … 6.07258 6.05673; 5.03519 5.04973 … 6.07857 6.06466… :vy => [-2.1024 -2.09689 … -1.95211 -1.9531; -2.10305 -2.09739 … -1.94946 -1… :vy2 => [4.53656 4.51184 … 3.85382 3.86121; 4.52933 4.50363 … 3.84079 3.8444;… :vz => [-0.00975545 -0.0138632 … 0.145365 0.144179; -0.0151512 -0.0196064 … … :vz2 => [0.0207161 0.0216515 … 0.0477525 0.048001; 0.0201404 0.0213888 … 0.04… :σ => [29.1564 28.8564 … 12.9517 13.3988; 27.9589 27.5801 … 12.8922 13.3103… :σx => [22.5962 22.3827 … 18.6511 19.3549; 21.74 21.4671 … 18.3996 19.0645; … :σy => [22.3791 22.2288 … 13.6137 14.1599; 21.4007 21.2053 … 13.1819 13.719;… :σz => [9.41661 9.60612 … 10.6993 10.8176; 9.25306 9.50375 … 10.6957 10.8257… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 13 entries: :sd => :standard :v => :km_s :v2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :σ => :km_s :σx => :km_s :σy => :km_s :σz => :km_s ```julia usedmemory(proj_z); ``` Memory used: 19.595 MB ```julia figure(figsize=(10, 5.5)) subplot(2, 3, 1) title("v [km/s]") imshow( (permutedims(proj_z.maps[:v]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 2) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 4) title("σx [km/s]") imshow( (permutedims(proj_z.maps[:σx]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 5) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 6) title("σz [km/s]") imshow( permutedims(proj_z.maps[:σz]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_61_0.png) #### Use quantities in cylindrical coordinates: #### Face-on disc (z-direction) For the cylindrical or spherical components of a quantity, the center of the coordinate system is used (keywords: data_center = center default) and can be given with the keyword "data_center" and its units with "data_center_unit". Additionally, the quantities that are based on cartesian coordinates can be given. ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :ϕ, :r_cylinder, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], units=[:km_s,:km_s,:km_s, :km_s, :standard, :kpc, :km_s, :km_s, :km_s, :km_s], xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, data_center=[24.,24.,24.], data_center_unit=:kpc); ``` [Mera]: 2023-04-10T13:08:23.110 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :ϕ, :r_cylinder, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder, :vx, :vx2, :vy, :vy2, :v2, :vr_cylinder2, :vϕ_cylinder2, :sd) Weighting = :mass Effective resolution: 1024^2 Map size: 428 x 428 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:07 ```julia proj_z.maps ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => [14.0758 14.0427 … 14.1201 14.1534; 14.0427 14.0096 … 14.087… :sd => [6.6833e-5 6.80617e-5 … 0.000177126 0.000163977; 7.28461e-5 … :v => [200.553 200.475 … 206.694 206.58; 201.081 201.027 … 206.638… :v2 => [9.55132 9.53998 … 9.97416 9.96594; 9.58466 9.57475 … 9.9684… :vr_cylinder => [-4.89687 -5.55316 … 22.2491 21.7111; -5.09439 -5.78506 … 22… :vr_cylinder2 => [0.013517 0.0160811 … 0.166383 0.16509; 0.0139447 0.0166047 … :vx => [2.20801 2.21133 … -2.44779 -2.44328; 2.2193 2.22319 … -2.44… :vx2 => [4.99404 5.00648 … 6.07258 6.05673; 5.03519 5.04973 … 6.0785… :vy => [-2.1024 -2.09689 … -1.95211 -1.9531; -2.10305 -2.09739 … -1… :vy2 => [4.53656 4.51184 … 3.85382 3.86121; 4.52933 4.50363 … 3.8407… :vϕ_cylinder => [199.868 199.758 … 204.153 204.024; 200.431 200.34 … 204.133… :vϕ_cylinder2 => [9.51708 9.50225 … 9.76002 9.75285; 9.55058 9.53676 … 9.7569… :σ => [29.1564 28.8564 … 12.9517 13.3988; 27.9589 27.5801 … 12.892… :σr_cylinder => [5.84342 6.18975 … 14.8473 15.4446; 5.83191 6.15915 … 14.326… :σx => [22.5962 22.3827 … 18.6511 19.3549; 21.74 21.4671 … 18.3996 … :σy => [22.3791 22.2288 … 13.6137 14.1599; 21.4007 21.2053 … 13.181… :σϕ_cylinder => [31.2613 30.9453 … 17.0522 17.6776; 29.935 29.5447 … 16.903 … :ϕ => [3.92699 3.92463 … 2.35306 2.35073; 3.92935 3.92699 … 2.3507… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => :kpc :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σϕ_cylinder => :km_s :ϕ => :radian ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("Radius [kpc]") imshow( permutedims(proj_z.maps[:r_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap="seismic", origin="lower", extent=proj_z.cextent, vmin=-20.,vmax=20.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("ϕ-angle ") imshow( permutedims(proj_z.maps[:ϕ]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_z.maps[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_z.maps[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( permutedims(proj_z.maps[:σ]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_z.maps[:σx] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_66_0.png) ## Project on a Coarser Grid ### lmax The default is the projection on the maximum loaded grid level (always provided in the output). Choose a smaller/larger level with the keyword `lmax` (independend on the maximum level of the simulation) to project on a coarser/finer grid. By default, the data is assumed to be in the center of the simulation box. ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, lmax=6); ``` [Mera]: 2023-04-10T13:12:01.879 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder, :vx, :vx2, :vy, :vy2, :vz, :vz2, :v2, :vr_cylinder2, :vϕ_cylinder2, :sd) Weighting = :mass Effective resolution: 64^2 Map size: 28 x 28 Pixel size: 750.0 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:08 ```julia # this corresponds to an effective resolution of: proj_z.effres ``` 64 ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("v [km/s]") imshow( permutedims(proj_z.maps[:v] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap="seismic", origin="lower", extent=proj_z.cextent, vmin=-20.,vmax=20.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("σz [km/s]") imshow( permutedims(proj_z.maps[:σz] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_z.maps[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_z.maps[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( permutedims(proj_z.maps[:σ]) , cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_z.maps[:σx] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_71_0.png) ### res Choose the effective resolution (related to the full box) of the projected grid: ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, res=100); ``` [Mera]: 2023-04-10T13:16:07.047 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder, :vx, :vx2, :vy, :vy2, :vz, :vz2, :v2, :vr_cylinder2, :vϕ_cylinder2, :sd) Weighting = :mass Effective resolution: 100^2 Map size: 42 x 42 Pixel size: 480.0 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:08 ### pxsize Choose the pixel size in a physical unit, e.g. pixel-size=100 pc. The data is projected to a grid with a pixel-size that is closest to the given number, but not larger: ```julia proj_z = projection(gas, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, pxsize=[100., :pc]); ``` [Mera]: 2023-04-10T13:20:23.556 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Selected var(s)=(:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder, :vx, :vx2, :vy, :vy2, :vz, :vz2, :v2, :vr_cylinder2, :vϕ_cylinder2, :sd) Weighting = :mass Effective resolution: 481^2 Map size: 201 x 201 Pixel size: 99.792 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:08 ```julia ``` ## Projection of Thermal Data The the sound speed is calculated from the loaded adiabatic index (from the hydro files): ```julia proj_z = projection(gas, :cs, :km_s, zrange=[0.45,0.55], xrange=[0.4, 0.6], yrange=[0.4, 0.6]) proj_x = projection(gas, :cs, :km_s, zrange=[0.45,0.55], xrange=[0.4, 0.6], yrange=[0.4, 0.6], direction=:x); ``` [Mera]: 2023-04-10T13:38:42.414 domain: xmin::xmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] ymin::ymax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:cs, :sd) Weighting = :mass Effective resolution: 1024^2 Map size: 206 x 206 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] [Mera]: 2023-04-10T13:38:45.005 domain: xmin::xmax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] ymin::ymax: 0.4 :: 0.6 ==> 19.2 [kpc] :: 28.8 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:cs, :sd) Weighting = :mass Effective resolution: 1024^2 Map size: 206 x 104 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 ```julia figure(figsize=(10, 3.5)) subplot(1, 2, 1) im = imshow( log10.(permutedims(proj_z.maps[:cs]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(c_s) \ [km \ s^{-1}]}") subplot(1, 2, 2) im = imshow( log10.(permutedims(proj_x.maps[:cs]) ), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(c_s) \ [km \ s^{-1}]}",orientation="horizontal", pad=0.2); ``` ![png](output_80_0.png) Change the adiabatic index in the field `gas.info.gamma` to use a different value in the projection calculation. ## Projection of Masked Data Mask higher densities by creating a Bool-array where the lower density cells correspond to false entries: ```julia #density = 4e-3 / gas.scale.Msol_pc3 #mask = map(row->row.rho < density, gas.data); mask_nH = getvar(gas, :rho, :nH) .< 1. # cm-3 mask_T = getvar(gas, :Temperature, :K) .< 1e4 # K mask_tot = mask_nH .* mask_T; ``` Pass the mask to the projection function: ```julia proj_z = projection(gas, :sd, :Msol_pc2, zrange=[0.45,0.55], mask=mask_tot) proj_x = projection(gas, :sd, :Msol_pc2, zrange=[0.45,0.55], mask=mask_tot, direction=:x); ``` [Mera]: 2023-04-10T13:25:01.398 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 1024 x 1024 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] :mask provided by function [Mera]: 2023-04-10T13:25:02.534 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Selected var(s)=(:sd,) Weighting = :mass Effective resolution: 1024^2 Map size: 1024 x 104 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] :mask provided by function ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=0, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); tight_layout() ``` ![png](output_87_0.png) ```julia ``` ## Weighting - Integration By default, the data is weighted by mass, except for the surface density. Choose different weightings, e.g., volume: ```julia proj_z = projection(gas, :cs, :km_s, weighting=[:volume]); ``` [Mera]: 2023-04-10T13:31:41.084 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Selected var(s)=(:cs,) Weighting = :volume Effective resolution: 1024^2 Map size: 1024 x 1024 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 Any quantity that is predefined (see: projection(), getvar()) or is part of the data-table can be selected. Furthermore, a unit can be given, e.g., for volume with cm3: ```julia proj_z = projection(gas, :cs, :km_s, weighting=[:volume, :cm3]); ``` [Mera]: 2023-04-10T13:34:04.680 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Selected var(s)=(:cs,) Weighting = :volume Effective resolution: 1024^2 Map size: 1024 x 1024 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 This can be useful if you want to make an integrated projection for local emissivities that are given e.g., emissivity/cm3. For such integration, choose the summation mode (examples will be given soon): ```julia proj_z = projection(gas, :emissivity, weighting=[:volume, :cm3], mode=:sum); ``` ```julia ``` ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
41261
# 6. Particles: Projections ## Load The Data ```julia using Mera info = getinfo(300, "../../testing/simulations/mw_L10"); particles = getparticles(info); ``` [Mera]: 2023-04-10T13:44:15.828 Code: RAMSES output [300] summary: mtime: 2023-04-09T05:34:09 ctime: 2023-04-10T08:08:14.488 ======================================================= simulation time: 445.89 [Myr] boxlen: 48.0 [kpc] ncpu: 640 ndim: 3 ------------------------------------------------------- amr: true level(s): 6 - 10 --> cellsize(s): 750.0 [pc] - 46.88 [pc] ------------------------------------------------------- hydro: true hydro-variables: 7 --> (:rho, :vx, :vy, :vz, :p, :var6, :var7) hydro-descriptor: (:density, :velocity_x, :velocity_y, :velocity_z, :pressure, :scalar_00, :scalar_01) γ: 1.6667 ------------------------------------------------------- gravity: true gravity-variables: (:epot, :ax, :ay, :az) ------------------------------------------------------- particles: true - Nstars: 5.445150e+05 particle-variables: 7 --> (:vx, :vy, :vz, :mass, :family, :tag, :birth) particle-descriptor: (:position_x, :position_y, :position_z, :velocity_x, :velocity_y, :velocity_z, :mass, :identity, :levelp, :family, :tag, :birth_time) ------------------------------------------------------- rt: false clumps: false ------------------------------------------------------- namelist-file: ("&COOLING_PARAMS", "&SF_PARAMS", "&AMR_PARAMS", "&BOUNDARY_PARAMS", "&OUTPUT_PARAMS", "&POISSON_PARAMS", "&RUN_PARAMS", "&FEEDBACK_PARAMS", "&HYDRO_PARAMS", "&INIT_PARAMS", "&REFINE_PARAMS") ------------------------------------------------------- timer-file: true compilation-file: false makefile: true patchfile: true ======================================================= [Mera]: Get particle data: 2023-04-10T13:44:20.554 Key vars=(:level, :x, :y, :z, :id, :family, :tag) Using var(s)=(1, 2, 3, 4, 7) = (:vx, :vy, :vz, :mass, :birth) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Found 5.445150e+05 particles Memory used for data table :38.42913246154785 MB ------------------------------------------------------- ```julia particles.data ``` Table with 544515 rows, 12 columns: Columns: # colname type ──────────────────── 1 level Int32 2 x Float64 3 y Float64 4 z Float64 5 id Int32 6 family Int8 7 tag Int8 8 vx Float64 9 vy Float64 10 vz Float64 11 mass Float64 12 birth Float64 ## Projection of Predefined Quantities See the possible variables: ```julia projection() ``` Predefined vars for projections: ------------------------------------------------ =====================[gas]:===================== -all the non derived hydro vars- :cpu, :level, :rho, :cx, :cy, :cz, :vx, :vy, :vz, :p, var6,... further possibilities: :rho, :density, :ρ -derived hydro vars- :x, :y, :z :sd or :Σ or :surfacedensity :mass, :cellsize, :freefall_time :cs, :mach, :jeanslength, :jeansnumber :t, :Temp, :Temperature with p/rho ==================[particles]:================== all the non derived vars: :cpu, :level, :id, :family, :tag :x, :y, :z, :vx, :vy, :vz, :mass, :birth, :metal.... -derived particle vars- :age ==============[gas or particles]:=============== :v, :ekin squared => :vx2, :vy2, :vz2 velocity dispersion => σx, σy, σz, σ related to a given center: --------------------------- :vr_cylinder, vr_sphere (radial components) :vϕ_cylinder, :vθ squared => :vr_cylinder2, :vϕ_cylinder2 velocity dispersion => σr_cylinder, σϕ_cylinder 2d maps (not projected) => :r_cylinder, :ϕ ------------------------------------------------ ## Projection of a Single Quantity in Different Directions (z,y,x) Here we project the surface density in the z-direction of the data within a particular vertical range (domain=[0:1]) on a grid corresponding to level=9. Pass any object of *PartDataType* (here: "particles") to the *projection*-function and select a variable by a Symbol (here: :sd = :surfacedensity = :Σ in Msol/pc^3) ```julia proj_z = projection(particles, :sd, unit=:Msol_pc2, lmax=9, zrange=[0.45,0.55]) proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, zrange=[0.45,0.55], verbose=false) # The keyword "unit" (singular) can be omit if the following order is preserved: data-object, quantity, unit. proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, direction = :x, zrange=[0.45,0.55], verbose=false); # Project the surface density in x-direction ``` [Mera]: 2023-04-10T13:44:30.854 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] ### Select a Range Related to a Center See also in the documentation for: load data by selection ```julia cv = (particles.boxlen / 2.) * particles.scale.kpc # provide the box-center in kpc proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[cv,cv,cv], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:44:38.556 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] Use the short notation for the box center :bc or :boxcenter for all dimensions (x,y,z): ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:44:42.484 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:44:43.180 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] Use the box center notation for individual dimensions, here x,z: ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:bc, 24., :bc], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:44:46.717 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] ### Get Multiple Quantities Get several quantities with one function call by passing an array containing the selected variables (at least one entry). The keyword name for the units is now in plural. ```julia proj1_x = projection(particles, [:sd], units=[:Msol_pc2], lmax=9, direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:44:54.060 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] Pass an array containing several quantities to process and their corresponding units: ```julia proj1_z = projection(particles, [:sd, :vx], units=[:Msol_pc2, :km_s], lmax=9, direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:44:56.764 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] The function can be called without any keywords by preserving the following order: dataobject, variables, units ```julia proj1_z = projection(particles, [:sd , :vx], [:Msol_pc2, :km_s], lmax=9, direction = :x, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:45:02.692 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] If all selected variables should be of the same unit use the following arguments: dataobject, array of quantities, unit (no array needed) ```julia projvel_z = projection(particles, [:vx, :vy, :vz], :km_s, lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:45:05.474 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] ## Function Output List the fields of the assigned object: ```julia propertynames(projvel_z) ``` (:maps, :maps_unit, :maps_lmax, :maps_mode, :lmax_projected, :lmin, :lmax, :ref_time, :ranges, :extent, :cextent, :ratio, :effres, :pixsize, :boxlen, :scale, :info) The projected 2D maps are stored in a dictionary: ```julia projvel_z.maps # NaN for empty regions ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 4 entries: :sd => [0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … :vx => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN NaN … :vy => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN NaN … :vz => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN NaN … The maps can be accessed by giving the name of the dictionary: ```julia proj1_z.maps[:sd] ``` 214×44 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ ⋮ ⋱ ⋮ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 The units of the maps are stored in: ```julia projvel_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 4 entries: :sd => :standard :vx => :km_s :vy => :km_s :vz => :km_s The following fields are helpful for further calculations or plots. ```julia projvel_z.ranges # normalized to the domain=[0:1] ``` 6-element Vector{Float64}: 0.29166666666647767 0.7083333333328743 0.29166666666647767 0.7083333333328743 0.4583333333330363 0.5416666666663156 ```julia projvel_z.extent # ranges in code units ``` 4-element Vector{Float64}: 13.96875 34.03125 13.96875 34.03125 ```julia projvel_z.cextent # ranges in code units relative to a given center (by default: box center) ``` 4-element Vector{Float64}: -10.031250000015554 10.031249999984446 -10.031250000015554 10.031249999984446 ```julia proj1_z.ratio # the ratio between the two ranges ``` 4.863636363636363 ## Plot Maps with Python ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false) proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, direction = :x); ``` Python functions can be directly called in Julia, which gives the opportunity, e.g. to use the Matplotlib library. ```julia using PyPlot using ColorSchemes cmap = ColorMap(ColorSchemes.lajolla.colors) # See http://www.fabiocrameri.ch/colourmaps.php cmap2 = ColorMap(reverse(ColorSchemes.roma.colors)) ``` ![svg](output_43_0.svg) ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=-0.5, vmax=1.5) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=-0.5, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); tight_layout() ``` ![png](output_44_0.png) Project a specific spatial range and plot the axes of the map relative to the box-center (given by keyword: data_center): ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc) proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[24.,24.,24.], data_center_unit=:kpc, direction = :x); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=-0.5, vmax=2.) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=-0.5, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](output_47_0.png) Plot the axes of the map relative to the map-center (given by keyword: data_center): ```julia proj_z = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc) proj_x = projection(particles, :sd, :Msol_pc2, lmax=9, xrange=[-10.,0.], yrange=[-10.,0.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, verbose=false, data_center=[19.,19.,24.], data_center_unit=:kpc, direction = :x); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:sd])), cmap=cmap, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent, vmin=-0.5, vmax=2.) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:sd])), cmap=cmap, origin="lower", extent=proj_x.cextent, vmin=-0.5, vmax=3) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(\Sigma) \ [M_{\odot} pc^{-2}]}",orientation="horizontal", pad=0.2); ``` ![png](output_50_0.png) ## Projections of Derived Kinematic Data #### Use quantities in cartesian coordinates: Project the following derived data (mass weighted by default): The absolute value of the velocity :v, the velocity dispersion :σ in different directions and the kinetic energy :ekin. The Julia language supports Unicode characters and can be inserted by e.g. "\sigma + tab-key" leading to: **σ**. ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :σz, :ekin], units=[:km_s,:km_s,:km_s,:km_s,:km_s,:erg], lmax=9, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[24.,24.,24.], range_unit=:kpc); ``` [Mera]: 2023-04-10T13:49:11.587 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 512^2 Pixel size: 93.75 [pc] Simulation min.: 46.875 [pc] For the velocity dispersion additional maps are created to created the mass-weighted quantity: E. g.: σx = sqrt( <vx^2> - < vx >^2 ) ```julia proj_z.maps ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 14 entries: :ekin => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :sd => [0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.… :v => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :v2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :vx => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :vx2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :vy => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :vy2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :vz => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :vz2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :σ => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :σx => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :σy => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… :σz => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN; NaN Na… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 14 entries: :ekin => :erg :sd => :standard :v => :km_s :v2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :σ => :km_s :σx => :km_s :σy => :km_s :σz => :km_s ```julia usedmemory(proj_z); ``` Memory used: 4.919 MB ```julia figure(figsize=(10, 5.5)) subplot(2, 3, 1) title("v [km/s]") imshow( (permutedims(proj_z.maps[:v]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmax=300.) colorbar() subplot(2, 3, 2) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 3) title("Ekin [erg]") imshow( log10.(permutedims(proj_z.maps[:ekin]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 4) title("σx [km/s]") imshow( (permutedims(proj_z.maps[:σx]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 5) title("σy [km/s]") imshow( (permutedims(proj_z.maps[:σy]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(2, 3, 6) title("σz [km/s]") imshow( (permutedims(proj_z.maps[:σz]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_59_0.png) #### Use quantities in cylindrical coordinates: #### Face-on disc (z-direction) For the cylindrical or spherical components of a quantity, the center of the coordinate system is used (keywords: data_center = center default) and can be given with the keyword "data_center" and its units with "data_center_unit". Additionally, the quantities that are based on cartesian coordinates can be given. ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :ϕ, :r_cylinder, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], units=[:km_s,:km_s,:km_s, :km_s, :standard, :kpc, :km_s, :km_s, :km_s, :km_s], xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, data_center=[24.,24.,24.], data_center_unit=:kpc); ``` [Mera]: 2023-04-10T13:50:46.517 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 1024^2 Pixel size: 46.875 [pc] Simulation min.: 46.875 [pc] Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 ```julia proj_z.maps ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => [14.0758 14.0427 … 14.1201 14.1534; 14.0427 14.0096 … 14.087… :sd => [0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0… :v => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :v2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vr_cylinder => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vr_cylinder2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vx => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vx2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vy => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vy2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vϕ_cylinder => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :vϕ_cylinder2 => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σ => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σr_cylinder => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σx => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σy => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :σϕ_cylinder => [NaN NaN … NaN NaN; NaN NaN … NaN NaN; … ; NaN NaN … NaN NaN… :ϕ => [3.92699 3.92463 … 2.35306 2.35073; 3.92935 3.92699 … 2.3507… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 18 entries: :r_cylinder => :kpc :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σϕ_cylinder => :km_s :ϕ => :radian ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("Radius [kpc]") imshow( permutedims(proj_z.maps[:r_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap="seismic", origin="lower", extent=proj_z.cextent, vmin=-50.,vmax=50.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("ϕ-angle") imshow( (permutedims(proj_z.maps[:ϕ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( permutedims(proj_z.maps[:σr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( permutedims(proj_z.maps[:σϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( permutedims(proj_z.maps[:σx] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( permutedims(proj_z.maps[:σy] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_64_0.png) ## Project on a Coarser Grid ### lmax The default is the projection on the maximum loaded grid level (always provided in the output). Choose a smaller/larger level with the keyword `lmax` (independend on the maximum level of the simulation) to project on a coarser/finer grid. By default, the data is assumed to be in the center of the simulation box. ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, lmax=6); ``` [Mera]: 2023-04-10T14:35:46.954 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 64^2 Pixel size: 750.0 [pc] Simulation min.: 46.875 [pc] The projection onto the maximum loaded grid is always provided: ```julia proj_z.maps ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 19 entries: :sd => [3.6988e-5 6.11725e-5 … 2.84523e-5 4.26785e-6; 0.000146885 8… :v => [215.727 217.893 … 213.689 211.398; 211.909 214.371 … 215.29… :v2 => [10.8327 11.0472 … 10.6218 10.3945; 10.4511 10.6909 … 10.782… :vr_cylinder => [-4.97035 9.83744 … 0.326624 -5.23378; -8.36334 3.71396 … 7.… :vr_cylinder2 => [0.0231364 0.0346302 … 0.0196151 0.0344127; 0.0339309 0.0312… :vx => [2.38824 2.13472 … -2.30736 -2.28246; 2.4166 2.28742 … -2.49… :vx2 => [5.71099 4.56492 … 5.33794 5.23511; 5.844 5.24859 … 6.2532 6… :vy => [-2.25778 -2.54366 … -2.29652 -2.26901; -2.14059 -2.32778 … … :vy2 => [5.12035 6.48209 … 5.28291 5.15929; 4.60593 5.44099 … 4.5285… :vz => [-0.032174 0.00624848 … -0.0229633 0.00636579; -0.0269481 -0… :vz2 => [0.00140393 0.000219812 … 0.000962049 0.000127987; 0.0011519… :vϕ_cylinder => [215.479 217.553 … 213.481 211.046; 211.546 214.042 … 214.91… :vϕ_cylinder2 => [10.8082 11.0124 … 10.6012 10.36; 10.416 10.6583 … 10.7443 1… :σ => [6.62266 5.19183 … 3.45808 2.9201; 5.96424 4.11213 … 3.61926… :σr_cylinder => [8.64782 7.22072 … 9.17826 10.9812; 8.71558 10.9816 … 10.005… :σx => [5.59831 5.83217 … 7.77318 10.4683; 4.16244 8.36784 … 6.5268… :σy => [9.89835 7.14297 … 6.19364 6.84324; 10.118 9.82426 … 9.42142… :σz => [1.25926 0.88166 … 1.36727 0.613275; 1.35303 2.02241 … 1.188… :σϕ_cylinder => [6.7421 5.02267 … 3.52611 2.97303; 6.19423 4.23835 … 3.69795… ```julia proj_z.maps_unit ``` DataStructures.SortedDict{Any, Any, Base.Order.ForwardOrdering} with 19 entries: :sd => :standard :v => :km_s :v2 => :standard :vr_cylinder => :km_s :vr_cylinder2 => :standard :vx => :standard :vx2 => :standard :vy => :standard :vy2 => :standard :vz => :standard :vz2 => :standard :vϕ_cylinder => :km_s :vϕ_cylinder2 => :standard :σ => :km_s :σr_cylinder => :km_s :σx => :km_s :σy => :km_s :σz => :km_s :σϕ_cylinder => :km_s ```julia figure(figsize=(10, 8.5)) subplot(3, 3, 1) title("|v| [km/s]") imshow( permutedims(proj_z.maps[:v] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmax=300.) colorbar() subplot(3, 3, 2) title("vr [km/s]") imshow( permutedims(proj_z.maps[:vr_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent, vmin=-200.,vmax=200.) colorbar() subplot(3, 3, 3) title("vϕ [km/s]") imshow( permutedims(proj_z.maps[:vϕ_cylinder] ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 4) title("σz [km/s]") imshow( (permutedims(proj_z.maps[:σz]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 5) title("σr [km/s]") imshow( (permutedims(proj_z.maps[:σr_cylinder] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 6) title("σϕ [km/s]") imshow( (permutedims(proj_z.maps[:σϕ_cylinder] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 7) title("σ [km/s]") imshow( (permutedims(proj_z.maps[:σ]) ), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 8) title("σx [km/s]") imshow( (permutedims(proj_z.maps[:σx] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar() subplot(3, 3, 9) title("σy [km/s]") imshow( (permutedims(proj_z.maps[:σy] )), cmap=cmap2, origin="lower", extent=proj_z.cextent) colorbar(); ``` ![png](output_70_0.png) ### res Choose the effective resolution (related to the full box) of the projected grid: ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, res=100); ``` [Mera]: 2023-04-10T14:36:28.832 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 100^2 Pixel size: 480.0 [pc] Simulation min.: 46.875 [pc] ### pxsize Choose the pixel size in a physical unit, e.g. pixel-size=100 pc. The data is projected to a grid with a pixel-size that is closest to the given number, but not larger: ```julia proj_z = projection(particles, [:v, :σ, :σx, :σy, :σz, :vr_cylinder, :vϕ_cylinder, :σr_cylinder, :σϕ_cylinder], :km_s, xrange=[-10.,10.], yrange=[-10.,10.], zrange=[-2.,2.], center=[:boxcenter], range_unit=:kpc, pxsize=[100., :pc]); ``` [Mera]: 2023-04-10T14:36:55.300 center: [0.5, 0.5, 0.5] ==> [24.0 [kpc] :: 24.0 [kpc] :: 24.0 [kpc]] domain: xmin::xmax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] ymin::ymax: 0.2916667 :: 0.7083333 ==> 14.0 [kpc] :: 34.0 [kpc] zmin::zmax: 0.4583333 :: 0.5416667 ==> 22.0 [kpc] :: 26.0 [kpc] Effective resolution: 481^2 Pixel size: 99.792 [pc] Simulation min.: 46.875 [pc] ## Projection of the Birth/Age-Time Project the average birth-time of the particles to the grid: ```julia proj_z = projection(particles, :birth, :Myr, lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.], verbose=false); proj_x = projection(particles, :birth, :Myr, lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.], direction=:x, verbose=false); ``` ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:birth])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Birth) \ [Myr]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:birth])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Birth) \ [Myr]}",orientation="horizontal", pad=0.2); tight_layout() ``` ![png](output_78_0.png) Project the average age of the particles to the grid. The age is taken relative to the loaded snapshot time by default. ```julia proj_z = projection(particles, :age, :Myr, lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.], verbose=false); proj_x = projection(particles, :age, :Myr, lmax=8, zrange=[0.45,0.55], direction=:x, center=[0.,0.,0.], verbose=false); ``` The reference time (code units) for the age calculation: ```julia proj_z.ref_time ``` 29.9031937665063 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:age])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:age])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}",orientation="horizontal", pad=0.2); tight_layout() ``` ![png](output_83_0.png) Project the average age of the particles relative to a given reference time: ```julia proj_z = projection(particles, :age, :Myr, ref_time=0., lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.], verbose=false); proj_x = projection(particles, :age, :Myr, ref_time = 0., lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.], direction=:x, verbose=false); ``` The reference time (code units) for the age calculation: ```julia proj_z.ref_time ``` 0.0 ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( ( permutedims(proj_z.maps[:age])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{Age \ [Myr]}") subplot(1,2,2) im = imshow( ( permutedims(proj_x.maps[:age])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{Age \ [Myr]}",orientation="horizontal", pad=0.2); tight_layout() ``` ![png](output_88_0.png) ## Projection of Masked Data Mask particles with ages higher than 400 Myr by creating a Bool-array where the smaller ages correspond to false entries: ```julia mask = getvar(particles, :age, :Myr) .> 400. ; ``` ```julia proj_z = projection(particles, :age, :Myr, mask=mask, lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.]); proj_x = projection(particles, :age, :Myr, mask=mask, lmax=8, zrange=[0.45,0.55], center=[0.,0.,0.], direction=:x); ``` [Mera]: 2023-04-10T14:40:56.942 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Effective resolution: 256^2 Pixel size: 187.5 [pc] Simulation min.: 46.875 [pc] :mask provided by function [Mera]: 2023-04-10T14:40:57.144 domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.45 :: 0.55 ==> 21.6 [kpc] :: 26.4 [kpc] Effective resolution: 256^2 Pixel size: 187.5 [pc] Simulation min.: 46.875 [pc] :mask provided by function ```julia figure(figsize=(10, 3.5)) subplot(1,2,1) im = imshow( log10.( permutedims(proj_z.maps[:age])), cmap=cmap2, aspect=proj_z.ratio, origin="lower", extent=proj_z.cextent) xlabel("x [kpc]") ylabel("y [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}") subplot(1,2,2) im = imshow( log10.( permutedims(proj_x.maps[:age])), cmap=cmap2, origin="lower", extent=proj_x.cextent) xlabel("x [kpc]") ylabel("z [kpc]") cb = colorbar(im, label=L"\mathrm{log10(Age) \ [Myr]}",orientation="horizontal", pad=0.2); tight_layout() ``` ![png](output_93_0.png) ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
19381
# Export/Import Data (ASCII/Binary) This notebook presents several ways to export your data. Used libraries in this tutorial: - DelimitedFiles, Serialization (comes with Julia) - JuliaDB, FileIO, CSVFiles, JLD, CodecZlib, HDF5, Numpy, FITS, Matlap, GZip (needs to be installed) ## Load The Data ```julia using Mera ``` ```julia info = getinfo(400, "../../../testing/simulations/manu_sim_sf_L14", verbose=false) hydro = gethydro(info, :rho, smallr=1e-5, lmax=10) particles = getparticles(info, :mass); ```  [Mera]: Get hydro data: 2020-02-29T17:54:15.397 Key vars=(:level, :cx, :cy, :cz) Using var(s)=(1,) = (:rho,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] Reading data...  100%|███████████████████████████████████████████████████| Time: 0:02:55 Memory used for data table :186.1558656692505 MB -------------------------------------------------------  [Mera]: Get particle data: 2020-02-29T17:57:14.49 Key vars=(:level, :x, :y, :z, :id) Using var(s)=(4,) = (:mass,) domain: xmin::xmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] ymin::ymax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc] zmin::zmax: 0.0 :: 1.0 ==> 0.0 [kpc] :: 48.0 [kpc]  Reading data...100%|████████████████████████████████████| Time: 0:00:03 Found 5.089390e+05 particles Memory used for data table :19.4152889251709 MB ------------------------------------------------------- ```julia println("Cells: ", length(hydro.data)) println("Particles: ", length(particles.data)) ``` Cells: 4879946 Particles: 508939 Define a function to preview the first lines of the created ASCII files: ```julia function viewheader(filename, lines) open(filename) do f line = 1 while line<=lines x = readline(f) println(x) line += 1 end end end ``` viewheader (generic function with 1 method) ## Collect The Data For Export ```julia # Get the cell and particle positions relative to the box-center # Choose the relevant units # The function getvar returns a dictionary containing a 1d-array for each quantity hvals = getvar(hydro, [:x,:y,:z,:cellsize,:rho], [:kpc,:kpc,:kpc,:kpc,:g_cm3], center=[:boxcenter]); pvals = getvar(hydro, [:x,:y,:z,:mass], [:kpc,:kpc,:kpc,:Msol], center=[:boxcenter]); ``` ```julia hvals ``` Dict{Any,Any} with 5 entries: :cellsize => [0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75 … … :y => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25,… :rho => [6.76838e-28, 6.76838e-28, 6.76838e-28, 6.76838e-28, 6.76838e-28… :z => [-23.25, -22.5, -21.75, -21.0, -20.25, -19.5, -18.75, -18.0, -17… :x => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25,… ```julia pvals ``` Dict{Any,Any} with 4 entries: :y => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23… :z => [-23.25, -22.5, -21.75, -21.0, -20.25, -19.5, -18.75, -18.0, -17.25,… :mass => [4217.58, 4217.58, 4217.58, 4217.58, 4217.58, 4217.58, 4217.58, 4217… :x => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23… ## ASCII: DelimitedFiles Library ```julia using DelimitedFiles ``` Save into an ASCII file with no header, comma separated: ```julia open("simulation_hydro.csv", "w") do io writedlm(io, [hvals[:x] hvals[:y] hvals[:z] hvals[:cellsize] hvals[:rho]], ",") end ``` Check the first lines in the file: ```julia viewheader("simulation_hydro.csv", 5) ``` -23.25000000001507,-23.25000000001507,-23.25000000001507,0.7500000000004861,6.768382184513761e-28 -23.25000000001507,-23.25000000001507,-22.500000000014584,0.7500000000004861,6.768382184513761e-28 -23.25000000001507,-23.25000000001507,-21.750000000014097,0.7500000000004861,6.768382184513761e-28 -23.25000000001507,-23.25000000001507,-21.00000000001361,0.7500000000004861,6.768382184513761e-28 -23.25000000001507,-23.25000000001507,-20.250000000013124,0.7500000000004861,6.768382184513761e-28 Use a different syntax; save into file with header and tab-separated values: ```julia header = ["x/kpc" "y/kpc" "z/kpc" "cellsize/kpc" "rho/g_cm3"] valsrray = [hvals[:x] hvals[:y] hvals[:z] hvals[:cellsize] hvals[:rho]] # Array with the columns writedlm("simulation_hydro.dat", [header ; valsrray], "\t") ``` ```julia viewheader("simulation_hydro.dat", 5) ``` x/kpc y/kpc z/kpc cellsize/kpc rho/g_cm3 -23.25000000001507 -23.25000000001507 -23.25000000001507 0.7500000000004861 6.768382184513761e-28 -23.25000000001507 -23.25000000001507 -22.500000000014584 0.7500000000004861 6.768382184513761e-28 -23.25000000001507 -23.25000000001507 -21.750000000014097 0.7500000000004861 6.768382184513761e-28 -23.25000000001507 -23.25000000001507 -21.00000000001361 0.7500000000004861 6.768382184513761e-28 Write the particles data into an ASCII file with header: ```julia header = ["x/kpc" "y/kpc" "z/kpc" "mass/Msol"] valsrray = [pvals[:x] pvals[:y] pvals[:z] pvals[:mass]] writedlm("simulation_particles.dat", [header ; valsrray], "\t") ``` ```julia viewheader("simulation_particles.dat", 5) ``` x/kpc y/kpc z/kpc mass/Msol -23.25000000001507 -23.25000000001507 -23.25000000001507 4217.583427040147 -23.25000000001507 -23.25000000001507 -22.500000000014584 4217.583427040147 -23.25000000001507 -23.25000000001507 -21.750000000014097 4217.583427040147 -23.25000000001507 -23.25000000001507 -21.00000000001361 4217.583427040147 ## ASCII: Save JuliaDB Database into a CSV-File with FileIO ```julia using FileIO ``` See for documentation https://github.com/JuliaIO/FileIO.jl/tree/master/docs The simulation data is stored in a JuliadB database: ```julia particles.data ``` Table with 508939 rows, 6 columns:  level  x  y  z  id  mass ─────────────────────────────────────────────────────── 6 0.00462947 22.3885 24.571 327957 1.13606e-5 6 0.109066 22.3782 21.5844 116193 1.13606e-5 6 0.238211 28.7537 24.8191 194252 1.13606e-5 6 0.271366 22.7512 31.5681 130805 1.13606e-5 6 0.312574 16.2385 23.7591 162174 1.13606e-5 6 0.314957 28.2084 30.966 320052 1.13606e-5 6 0.328337 4.59858 23.5001 292889 1.13606e-5 6 0.420712 27.6688 26.5735 102940 1.13606e-5 6 0.509144 33.1737 23.9789 183902 1.13606e-5 6 0.565516 25.9409 26.0579 342278 1.13606e-5 6 0.587289 9.60231 23.8477 280020 1.13606e-5 6 0.592878 25.5519 21.3079 64182 1.13606e-5 ⋮ 14 37.6271 25.857 23.8833 437164 1.13606e-5 14 37.6299 25.8403 23.9383 421177 1.13606e-5 14 37.6301 25.8502 23.9361 478941 1.13606e-5 14 37.6326 25.8544 23.9383 428429 1.13606e-5 14 37.6528 25.8898 23.9928 467148 1.13606e-5 14 37.6643 25.9061 23.9945 496129 1.13606e-5 14 37.6813 25.8743 23.9789 435636 1.13606e-5 14 37.7207 25.8623 23.8775 476398 1.13606e-5 14 38.173 25.8862 23.7978 347919 1.13606e-5 14 38.1738 25.8914 23.7979 403094 1.13606e-5 14 38.1739 25.8905 23.7992 381503 1.13606e-5 ```julia FileIO.save("database_partilces.csv", particles.data) ``` ┌ Info: Precompiling CSVFiles [5d742f6a-9f54-50ce-8119-2520741973ca] └ @ Base loading.jl:1273 ```julia viewheader("database_partilces.csv", 5) ``` "level","x","y","z","id","mass" 6,0.004629472789625229,22.388543919075275,24.571021484979347,327957,1.1360607549574087e-5 6,0.1090659052277639,22.3782196217294,21.58442789512976,116193,1.1360607549574087e-5 6,0.2382109772356709,28.753723953405462,24.81911909925676,194252,1.1360607549574087e-5 6,0.271365638325332,22.751224267806695,31.568145104287826,130805,1.1360607549574087e-5 Export selected variables from the datatable: ```julia using JuliaDB ``` See for documentation https://juliacomputing.github.io/JuliaDB.jl/latest/ ```julia FileIO.save("database_partilces.csv", select(particles.data, (:x,:y,:mass)) ) ``` ```julia viewheader("database_partilces.csv", 5) ``` "x","y","mass" 0.004629472789625229,22.388543919075275,1.1360607549574087e-5 0.1090659052277639,22.3782196217294,1.1360607549574087e-5 0.2382109772356709,28.753723953405462,1.1360607549574087e-5 0.271365638325332,22.751224267806695,1.1360607549574087e-5 ## Binary: Save JuliaDB Database into a Binary Format ```julia JuliaDB.save(hydro.data, "database_hydro.jdb") ``` Table with 4879946 rows, 5 columns:  level  cx  cy  cz  rho ───────────────────────────────── 6 1 1 1 1.0e-5 6 1 1 2 1.0e-5 6 1 1 3 1.0e-5 6 1 1 4 1.0e-5 6 1 1 5 1.0e-5 6 1 1 6 1.0e-5 6 1 1 7 1.0e-5 6 1 1 8 1.0e-5 6 1 1 9 1.0e-5 6 1 1 10 1.0e-5 6 1 1 11 1.0e-5 6 1 1 12 1.0e-5 ⋮ 10 826 554 512 0.000561671 10 826 554 513 0.000634561 10 826 554 514 0.000585903 10 826 555 509 0.000368259 10 826 555 510 0.000381535 10 826 555 511 0.000401867 10 826 555 512 0.000413433 10 826 556 509 0.000353701 10 826 556 510 0.000360669 10 826 556 511 0.000380094 10 826 556 512 0.000386327 ```julia hdata = JuliaDB.load("database_hydro.jdb") ``` Table with 4879946 rows, 5 columns:  level  cx  cy  cz  rho ───────────────────────────────── 6 1 1 1 1.0e-5 6 1 1 2 1.0e-5 6 1 1 3 1.0e-5 6 1 1 4 1.0e-5 6 1 1 5 1.0e-5 6 1 1 6 1.0e-5 6 1 1 7 1.0e-5 6 1 1 8 1.0e-5 6 1 1 9 1.0e-5 6 1 1 10 1.0e-5 6 1 1 11 1.0e-5 6 1 1 12 1.0e-5 ⋮ 10 826 554 512 0.000561671 10 826 554 513 0.000634561 10 826 554 514 0.000585903 10 826 555 509 0.000368259 10 826 555 510 0.000381535 10 826 555 511 0.000401867 10 826 555 512 0.000413433 10 826 556 509 0.000353701 10 826 556 510 0.000360669 10 826 556 511 0.000380094 10 826 556 512 0.000386327 ## Binary: Save Multiple Data into a JLD File See for documentation: https://github.com/JuliaIO/JLD.jl ```julia using JLD ``` ```julia jldopen("mydata.jld", "w") do file write(file, "hydro", hvals ) write(file, "particles", pvals ) end ``` Open file for read and get an overview of the stored dataset: ```julia file = jldopen("mydata.jld","r") ``` Julia data file version 0.1.3: mydata.jld ```julia names(file) ``` 2-element Array{String,1}: "hydro" "particles" ```julia hydrodata = read(file, "hydro") ``` Dict{Any,Any} with 5 entries: :x => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25,… :y => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25,… :rho => [6.76838e-28, 6.76838e-28, 6.76838e-28, 6.76838e-28, 6.76838e-28… :z => [-23.25, -22.5, -21.75, -21.0, -20.25, -19.5, -18.75, -18.0, -17… :cellsize => [0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75 … … ```julia particledata = read(file, "particles") ``` Dict{Any,Any} with 4 entries: :y => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23… :z => [-23.25, -22.5, -21.75, -21.0, -20.25, -19.5, -18.75, -18.0, -17.25,… :mass => [4217.58, 4217.58, 4217.58, 4217.58, 4217.58, 4217.58, 4217.58, 4217… :x => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23… Compare stored with original data: ```julia hydrodata == hvals ``` true ```julia particledata == pvals ``` true ## Binary: Compress Data into a gz-File ```julia using CodecZlib, Serialization ``` See for documentation: https://github.com/JuliaIO/CodecZlib.jl ```julia fo= GzipCompressorStream( open("sample-data.jls.gz", "w") ); serialize(fo, hvals); close(fo) ``` ```julia hydrodata1 = deserialize( GzipDecompressorStream( open("sample-data.jls.gz", "r") ) ) ``` Dict{Any,Any} with 5 entries: :x => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25,… :y => [-23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25, -23.25,… :rho => [6.76838e-28, 6.76838e-28, 6.76838e-28, 6.76838e-28, 6.76838e-28… :z => [-23.25, -22.5, -21.75, -21.0, -20.25, -19.5, -18.75, -18.0, -17… :cellsize => [0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75 … … ```julia hydrodata1 == hvals ``` true Prepare variable-array: ```julia varsarray = [hvals[:x] hvals[:y] hvals[:z] hvals[:cellsize] hvals[:rho]] ``` 4879946×5 Array{Float64,2}: -23.25 -23.25 -23.25 0.75 6.76838e-28 -23.25 -23.25 -22.5 0.75 6.76838e-28 -23.25 -23.25 -21.75 0.75 6.76838e-28 -23.25 -23.25 -21.0 0.75 6.76838e-28 -23.25 -23.25 -20.25 0.75 6.76838e-28 -23.25 -23.25 -19.5 0.75 6.76838e-28 -23.25 -23.25 -18.75 0.75 6.76838e-28 -23.25 -23.25 -18.0 0.75 6.76838e-28 -23.25 -23.25 -17.25 0.75 6.76838e-28 -23.25 -23.25 -16.5 0.75 6.76838e-28 -23.25 -23.25 -15.75 0.75 6.76838e-28 -23.25 -23.25 -15.0 0.75 6.76838e-28 -23.25 -23.25 -14.25 0.75 6.76838e-28 ⋮ 14.7188 1.96875 -0.046875 0.046875 3.59298e-26 14.7188 1.96875 0.0 0.046875 3.80161e-26 14.7188 1.96875 0.046875 0.046875 4.29495e-26 14.7188 1.96875 0.09375 0.046875 3.96562e-26 14.7188 2.01563 -0.140625 0.046875 2.49252e-26 14.7188 2.01563 -0.09375 0.046875 2.58237e-26 14.7188 2.01563 -0.046875 0.046875 2.71999e-26 14.7188 2.01563 0.0 0.046875 2.79827e-26 14.7188 2.0625 -0.140625 0.046875 2.39398e-26 14.7188 2.0625 -0.09375 0.046875 2.44115e-26 14.7188 2.0625 -0.046875 0.046875 2.57262e-26 14.7188 2.0625 0.0 0.046875 2.61481e-26 ```julia fo= GzipCompressorStream( open("sample-data2.jls.gz", "w") ); serialize(fo, varsarray); close(fo) ``` Read the data again: ```julia hydrodata2 = deserialize( GzipDecompressorStream( open("sample-data2.jls.gz", "r") ) ) ``` 4879946×5 Array{Float64,2}: -23.25 -23.25 -23.25 0.75 6.76838e-28 -23.25 -23.25 -22.5 0.75 6.76838e-28 -23.25 -23.25 -21.75 0.75 6.76838e-28 -23.25 -23.25 -21.0 0.75 6.76838e-28 -23.25 -23.25 -20.25 0.75 6.76838e-28 -23.25 -23.25 -19.5 0.75 6.76838e-28 -23.25 -23.25 -18.75 0.75 6.76838e-28 -23.25 -23.25 -18.0 0.75 6.76838e-28 -23.25 -23.25 -17.25 0.75 6.76838e-28 -23.25 -23.25 -16.5 0.75 6.76838e-28 -23.25 -23.25 -15.75 0.75 6.76838e-28 -23.25 -23.25 -15.0 0.75 6.76838e-28 -23.25 -23.25 -14.25 0.75 6.76838e-28 ⋮ 14.7188 1.96875 -0.046875 0.046875 3.59298e-26 14.7188 1.96875 0.0 0.046875 3.80161e-26 14.7188 1.96875 0.046875 0.046875 4.29495e-26 14.7188 1.96875 0.09375 0.046875 3.96562e-26 14.7188 2.01563 -0.140625 0.046875 2.49252e-26 14.7188 2.01563 -0.09375 0.046875 2.58237e-26 14.7188 2.01563 -0.046875 0.046875 2.71999e-26 14.7188 2.01563 0.0 0.046875 2.79827e-26 14.7188 2.0625 -0.140625 0.046875 2.39398e-26 14.7188 2.0625 -0.09375 0.046875 2.44115e-26 14.7188 2.0625 -0.046875 0.046875 2.57262e-26 14.7188 2.0625 0.0 0.046875 2.61481e-26 Compare original with loaded data: ```julia hydrodata2 == varsarray ``` true Store array with header: ```julia header = ["x/kpc" "y/kpc" "z/kpc" "cellsize/kpc" "rho/g_cm3"] fo= GzipCompressorStream( open("sample-data3.jls.gz", "w") ); serialize(fo, [header ; varsarray]); close(fo) ``` ```julia hydrodata3 = deserialize( GzipDecompressorStream( open("sample-data3.jls.gz", "r") ) ) ``` 4879947×5 Array{Any,2}: "x/kpc" "y/kpc" "z/kpc" "cellsize/kpc" "rho/g_cm3" -23.25 -23.25 -23.25 0.75 6.76838e-28 -23.25 -23.25 -22.5 0.75 6.76838e-28 -23.25 -23.25 -21.75 0.75 6.76838e-28 -23.25 -23.25 -21.0 0.75 6.76838e-28 -23.25 -23.25 -20.25 0.75 6.76838e-28 -23.25 -23.25 -19.5 0.75 6.76838e-28 -23.25 -23.25 -18.75 0.75 6.76838e-28 -23.25 -23.25 -18.0 0.75 6.76838e-28 -23.25 -23.25 -17.25 0.75 6.76838e-28 -23.25 -23.25 -16.5 0.75 6.76838e-28 -23.25 -23.25 -15.75 0.75 6.76838e-28 -23.25 -23.25 -15.0 0.75 6.76838e-28 ⋮ 14.7188 1.96875 -0.046875 0.046875 3.59298e-26 14.7188 1.96875 0.0 0.046875 3.80161e-26 14.7188 1.96875 0.046875 0.046875 4.29495e-26 14.7188 1.96875 0.09375 0.046875 3.96562e-26 14.7188 2.01563 -0.140625 0.046875 2.49252e-26 14.7188 2.01563 -0.09375 0.046875 2.58237e-26 14.7188 2.01563 -0.046875 0.046875 2.71999e-26 14.7188 2.01563 0.0 0.046875 2.79827e-26 14.7188 2.0625 -0.140625 0.046875 2.39398e-26 14.7188 2.0625 -0.09375 0.046875 2.44115e-26 14.7188 2.0625 -0.046875 0.046875 2.57262e-26 14.7188 2.0625 0.0 0.046875 2.61481e-26 ## Other File Formats - HDF5 https://github.com/JuliaIO/HDF5.jl - Numpy https://github.com/fhs/NPZ.jl - FITS https://github.com/JuliaAstro/FITSIO.jl - FITS https://github.com/emmt/EasyFITS.jl - Matlab https://github.com/JuliaIO/MAT.jl - GZip https://github.com/JuliaIO/GZip.jl ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git