licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
4988
# ===== Parcel constructors ===== """ Parcel(surface) Make an empty `Parcel` where `surface::Hemisphere` dictates the length of the representational space. """ function Parcel(surface::Hemisphere) return Parcel(surface, falses(size(surface))) end """ Parcel(surface, verts) Make a `Parcel`, given a `surface::Hemisphere` its vertex indices. """ function Parcel(surface::Hemisphere, verts::Vector{Int}) membership = falses(size(surface)) membership[verts] .= true return Parcel(surface, membership) end """ Parcel(surface, coords, tree) Given a `Matrix` of arbitrary x, y, z coordinates and a `KDTree` representing the positions of defined cortical vertex indices, make a `Parcel` by mapping those coordinates to the set of defined indices via nearest neighbor search. """ function Parcel(surface::Hemisphere, coords::AbstractMatrix, tree::KDTree) inds, dists = knn(tree, coords, 1) inds = [x[1] for x in inds] # flatten result to just a vector nverts = size(surface) return all(inds .> 0) ? Parcel(surface, inds) : Parcel(surface) end """ Parcel(p) Create a new `Parcel` that's a copy of another one `p`. """ function Parcel(p::Parcel) Parcel(p.surface, vertices(p)) end # ===== Parcellation constructors ===== """ BilateralParcellation{T}(surface, x) Create a `BilateralParcellation` from a `Vector` `x`, the length of which should match the size of the `surface::CorticalSurface` being supplied. The distinct elements of that `Vector` will become the `Parcels` of the resulting struct. Parcels will be keyed by IDs of type `T`; therefore the eltype of the `Vector` you supply must be coercable to `T`. """ function BilateralParcellation{T}(surface::CorticalSurface, x::AbstractVector) where T nverts = size(surface) input_size = length(x) if input_size != nverts input_size == size(surface, Exclusive()) || error(DimensionMismatch) x = pad(x, surface; sentinel = 0) end parcels = Dict{BrainStructure, HemisphericParcellation{T}}() for hem in LR verts = vertices(surface[hem], Bilateral(), Inclusive()) parcels[hem] = HemisphericParcellation{T}(surface[hem], x[verts]) end length(intersect(keys(parcels[L]), keys(parcels[R]))) == 0 || error("Found parcels with membership spanning hemispheres; this is not supported") return BilateralParcellation{T}(surface, parcels) end """ HemisphericParcellation{T}(surface, x) Create a `HemisphericParcellation` from a `Vector` `x`, the length of which should match the size of the `surface::Hemisphere` being supplied. The distinct elements of that `Vector` will become the `Parcels` of the resulting struct. Parcels will be keyed by IDs of type `T`; therefore the eltype of the `Vector` you supply must be coercable to `T`. """ function HemisphericParcellation{T}(surface::Hemisphere, x::AbstractVector) where T nverts = size(surface) input_size = length(x) if input_size != nverts input_size == size(surface, Exclusive()) || error(DimensionMismatch) x = pad(x, surface; sentinel = 0) end return HemisphericParcellation{T}( surface, Dict(p => Parcel(surface, findall(x .== p)) for p in setdiff(x, 0)) ) end """ BilateralParcellation{T}(surface, x) Create a `BilateralParcellation` from a single-column `Matrix` `x`. """ function BilateralParcellation{T}(surface::CorticalSurface, x::AbstractMatrix) where T size(x, 2) == 1 || error("For matrix input, column dimension must be singleton") BilateralParcellation{T}(surface, x[:]) end """ HemisphericParcellation{T}(surface, x) Create a `HemisphericParcellation` from a single-column `Matrix` `x`. """ function HemisphericParcellation{T}(surface::Hemisphere, x::AbstractMatrix) where T size(x, 2) == 1 || error("For matrix input, column dimension must be singleton") HemisphericParcellation{T}(surface, x[:]) end """ BilateralParcellation{T}(surface) Create an empty `BilateralParcellation` from `surface::CorticalSurface`. """ function BilateralParcellation{T}(surface::CorticalSurface) where T return BilateralParcellation{T}( surface, Dict(hem => HemisphericParcellation{T}(surface[hem]) for hem in LR) ) end """ HemisphericParcellation{T}(surface::Hemisphere) Create an empty `HemisphericParcellation`. """ function HemisphericParcellation{T}(surface::Hemisphere) where T return HemisphericParcellation{T}(surface, Dict{T, Parcel}()) end """ BilateralParcellation{T}(surface, cifti) Create a `BilateralParcellation` from `surface::CorticalSurface`, with parcels initialized by the values given from a CiftiStruct (see CIFTI.jl) """ function BilateralParcellation{T}(surface::CorticalSurface, cifti::CiftiStruct) where T size(cifti)[2] == 1 || error("Expected single-column CIFTI file") px = Dict( hem => HemisphericParcellation{T}(surface[hem], cifti[hem]) for hem in LR ) length(intersect(keys(px[L]), keys(px[R]))) == 0 || error("Found parcels with membership spanning hemispheres; this is not supported") return BilateralParcellation{T}(surface, px) end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
1794
abstract type DistanceMethod end struct CentroidToCentroid <: DistanceMethod end struct ClosestVertices <: DistanceMethod end """ centroid(p, distances) Find the centroid of a parcel (the vertex that has the least summed distance to all other vertices in the parcel). `distances` is expected to be a square distance matrix of dimensions (length(p), length(p)). """ function centroid(p::Parcel, distances::DistanceMatrix) all(size(distances) .== length(p)) || error(DimensionMismatch) verts = vertices(p) summed_dists = sum(distances[verts, verts]; dims = 1)[:] return verts[argmin(summed_dists)] end """ distance(p1, p2, distances; method = CentroidToCentroid()) Find the distance between `Parcel`s `p1` and `p2` according to distance matrix `distances`, using `method` (one of `CentroidToCentroid()` or `ClosestVertices`) """ function distance( p1::Parcel, p2::Parcel, distances::DistanceMatrix; method::DistanceMethod = CentroidToCentroid() ) distance(method, p1, p2, distances) end """ distance(p1, p2; method = CentroidToCentroid()) Find the distance between `Parcel`s `p1` and `p2` using `method` (one of `CentroidToCentroid()` or `ClosestVertices`). This method call will expect to find a distance matrix `:distances` belonging to the first parcel's `SurfaceSpace` struct """ function distance(p1::Parcel, p2::Parcel, method::DistanceMethod = CentroidToCentroid()) distance(method, p1, p2, p1.surface[:distances]) end function distance( ::CentroidToCentroid, p1::Parcel, p2::Parcel, distances::DistanceMatrix ) c1 = centroid(p1, distances) c2 = centroid(p2, distances) return distances[c1, c2] end function distance( ::ClosestVertices, p1::Parcel, p2::Parcel, distances::DistanceMatrix ) return minimum(distances[vertices(p1), vertices(p2)]) end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
4037
import Graphs Base.setindex!(p::Parcel, args...) = setindex!(p.membership, args...) Base.dotview(p::Parcel, args...) = view(p.membership, args...) function Base.setindex!(px::HemisphericParcellation{T}, p::Parcel, k::T) where T p.surface == px.surface || error("Surface incompatibility") px.parcels[k] = p end function Graphs.Graph(p::Parcel, A::AdjacencyMatrix) verts = vertices(p) nvertices = length(p) temp = spzeros(Bool, nvertices, nvertices) temp[verts, verts] .= true temp .*= A return Graphs.Graph(temp) end """ cut(p, A) Cut articulation point(s), if any, from a graph representation of a `Parcel`, and return a new set of `Parcel`s: one for each connected component remaining after the vertex cut. """ function cut(p::Parcel, A::AdjacencyMatrix) g = Graphs.Graph(p, A) a = Graphs.articulation(g) Graphs.rem_vertices!(g, a) clusters = filter(x -> length(x) > 1, Graphs.connected_components(g)) new_parcels = [Parcel(p.surface, c) for c in clusters] return new_parcels end function cut(p::Parcel) haskey(p.surface, :A) || error("Operation requires adjacency matrix `:A`") return cut(p, p.surface[:A]) end # TODO: this function is almost exactly the same as cut(p); not sure how to # refactor though without type piracy """ split(p, v) Remove vertices `v` from a graph representation of a `Parcel`, and return a new set of `Parcel`s: one for each connected component remaining. """ function Base.split(p::Parcel, v::Vector{Int}) haskey(p.surface, :A) || error("Operation requires adjacency matrix `:A`") g = Graphs.Graph(p, p.surface[:A]) Graphs.rem_vertices!(g, v) clusters = filter(x -> length(x) > 1, Graphs.connected_components(g)) new_parcels = [Parcel(p.surface, c) for c in clusters] return new_parcels end """ clear!(p) Zero-out all membership vertices of a `Parcel`. """ clear!(p::Parcel) = p.membership .*= false """ delete!(px, k) Delete `Parcel` with ID `k` from a `Parcellation`. """ Base.delete!(px::HemisphericParcellation{T}, k::T) where T = delete!(px.parcels, k) """ append!(p, v) Add vertex `v::Int` to the `p`'s membership vector. """ Base.append!(p::Parcel, v::Int) = p.membership[v] = true Base.append!(p::Parcel, v::Vector{Int}) = p.membership[v] .= true """ merge!(p1, p2, A) Merge two `Parcel`s by moving the member vertices of `p2` to `p1`. """ function Base.merge!(p1::Parcel, p2::Parcel, A::AdjacencyMatrix) i = interstices(p1, p2, A) sum(i) > 0 || return 0 union!(p1, i) union!(p1, p2) clear!(p2) return size(p1) end function Base.merge!(p1::Parcel, p2::Parcel) haskey(p1.surface, :A) || error("Operation requires adjacency matrix `A`") p1.surface == p2.surface || error("Surfaces must be the same for both parcels") return merge!(p1, p2, p1.surface[:A]) end """ merge!(px, k1, k2, A) Given a `Parcellation{T}` and two keys of type `T`, merge the two `Parcel`s denoted by those keys and delete the latter one from the dictionary. """ function Base.merge!(px::HemisphericParcellation{T}, k1::T, k2::T, A::AdjacencyMatrix) where T p1 = px[k1] p2 = px[k2] merge!(p1, p2, A) delete!(px, k2) return size(p1) end function Base.merge!(px::HemisphericParcellation{T}, k1::T, k2::T) where T haskey(px.surface, :A) || error("Operation requires adjacency matrix `A`") return merge!(px, k1, k2, px.surface[:A]) end """ deepcopy(p) Make a new `Parcel` containing a `deepcopy` of original parcel `p`'s `membership` vector. Note however that the surface remains just a reference and is not itself copied, since it may be a large object. """ function Base.deepcopy(p::Parcel) return Parcel(p) end """ deepcopy(px) Make a new parcellation containing a `deepcopy` of all parcels from `px`. Note however that, as with `deepcopy(p::Parcel)`, the surface remains just a reference and is not itself copied, since it may be a large object. """ function Base.deepcopy(px::HemisphericParcellation{T}) where T pxโ€ฒ = HemisphericParcellation{T}(px.surface) for k in keys(px) pxโ€ฒ[k] = deepcopy(px[k]) end return pxโ€ฒ end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
5134
""" dilate!(p, A; limit = nothing) Perform a single pass of dilation on `Parcel` `p`, guided by adjacency matrix `A`; optionally specify a `limit::Int` on the number of new vertices that can be added. """ function dilate!( p::Parcel, A::AdjacencyMatrix; limit::Union{Nothing, Int} = nothing ) parcel_verts = vertices(p) border_verts = setdiff(unique(A[:, parcel_verts].rowval), parcel_verts) length(border_verts) > 0 || return if !isnothing(limit) && length(border_verts) > limit border_verts = border_verts[1:limit] end border = Parcel(p.surface, border_verts) union!(p, border) return length(border_verts) end dilate!(p::Parcel; limit::Union{Nothing, Int} = nothing) = dilate!(p, p.surface[:A]; limit = limit) function dilate(p::Parcel, args...) pโ€ฒ = Parcel(p.surface, vertices(p)) dilate!(pโ€ฒ, args...) return pโ€ฒ end """ erode!(p, neighbors; limit = nothing) Perform a single pass of erosion on `Parcel` `p`, guided by adjacency list `neighbors`; optionally specify a `limit::Int` on the number of vertices that you want to remove. """ function erode!( p::Parcel, neighbors::AdjacencyList; limit::Union{Nothing, Int} = nothing ) verts = vertices(p) border_verts = verts[ [any([!(x in verts) for x in neighbors[x]]) for x in verts] ] if !isnothing(limit) && length(border_verts) > limit border_verts = border_verts[1:limit] end setdiff!(p, border_verts) return length(border_verts) end erode!(p::Parcel; limit::Union{Nothing, Int} = nothing) = erode!(p, p.surface[:neighbors]; limit = limit) function erode(p::Parcel, args...) pโ€ฒ = Parcel(p.surface, vertices(p)) erode!(pโ€ฒ, args...) return pโ€ฒ end """ close!(p, neighbors) Given a `Parcel` `p` and an adjacency list `neighbors`, perform a morphological closing to fill in gaps, if any, by finding vertices in `p` where all of its neighbors but one belong to `p`. Note: for performance reasons, this may not be technically quite the same as a true closing operation, `erode!(dilate!(p))`. """ function close!(p::Parcel, neighbors::AdjacencyList) candidates = union([neighbors[v] for v in vertices(p)]...) while true add_inds = filter(x -> sum(.!p[neighbors[x]]) .<= 2, candidates) p2 = Parcel(p.surface, add_inds) complement(p2, p) > 0 || break union!(p, p2) end end close!(p::Parcel) = close!(p, p.surface[:neighbors]) """ resize!(p, desired_size, A, neighbors) Resize a `Parcel` `p`, guided by an adjacency matrix and an adjacency list, by repeated dilation or erosion until `p` reaches `desired_size`. """ function Base.resize!( p::Parcel, desired_size::Int, A::AdjacencyMatrix, neighbors::AdjacencyList ) curr_size = size(p) ฮ” = curr_size - desired_size while ฮ” != 0 if ฮ” < 0 nchanged = dilate!(p, A; limit = abs(ฮ”)) ฮ” += nchanged else nchanged = erode!(p, neighbors; limit = ฮ”) ฮ” -= nchanged end if nchanged == 0 siz = size(p) println("Could not achieve size $desired_size; stopped at $siz") return siz end end return desired_size end """ resize!(p, desired_size) Resize a `Parcel` `p`, using adjacency information from its `surface` field. """ Base.resize!(p::Parcel, desired_size::Int) = resize!(p, desired_size, p.surface[:A], p.surface[:neighbors]) """ interstices(p1, p2, A) Find the vertices lying in the boundaries between two `Parcel`s. """ function interstices(p1::Parcel, p2::Parcel, A::AdjacencyMatrix)::BitVector p1โ€ฒ = dilate(p1, A) p2โ€ฒ = dilate(p2, A) setdiff!(p1โ€ฒ, p1) setdiff!(p2โ€ฒ, p2) temp = intersect(p1โ€ฒ, p2โ€ฒ) return membership(temp) .& Iterators.flatten(sum(A[:, membership(union(p1, p2))]; dims = 2) .> 2) end interstices(p1::Parcel, p2::Parcel) = interstices(p1, p2, p1.surface[:A]) """ interstices(px, A) Iterate through a parcellation and find, for each pair of neighboring `Parcel`s separated by a 1-vertex-wide gap, the vertices in that interstitial region. """ function interstices(px::HemisphericParcellation{T}, A::AdjacencyMatrix) where T v = vec(px) u = unassigned(px) temp = @view A[:, u] # find all unassigned vertices that have 2 or more parcels as neighbors status = filter( x -> length(x) >= 2, ThreadsX.map(x -> sort(setdiff(v[x], 0)), eachcol(temp)) ) # from all unique parcel-parcel pairs discovered from the above, # make a dict in which to store their interstitial vertices, if any result = Dict{Tuple{T, T}, BitVector}() for parcel_list in status for x in parcel_list for y in setdiff(parcel_list, x) a = min(x, y) b = max(x, y) haskey(result, (a, b)) && continue i = interstices(px[a], px[b], A) .& u any(i) || continue result[(a, b)] = i end end end return result end interstices(px::HemisphericParcellation) = interstices(px, px.surface[:A]) function borders(p::Parcel, neighbors::AdjacencyList) verts = vertices(p) counts = [sum(map(!in(verts), n)) for n in neighbors[verts]] out = falses(length(p)) out[verts[counts .> 0]] .= true return out end """ borders(p) Get a `BitVector` of the just the vertices of `Parcel p` that lie on its outermost edge. """ function borders(p::Parcel) return borders(p, p.surface[:neighbors]) end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
2201
Base.intersect(p1::Parcel, p2::Parcel) = Parcel(p1.surface, p1.membership .& p2.membership) Base.union(p1::Parcel, p2::Parcel) = Parcel(p1.surface, p1.membership .| p2.membership) Base.setdiff(p1::Parcel, p2::Parcel) = Parcel(p1.surface, p1.membership .& .!p2.membership) Base.intersect(p::Parcel, x::BitVector) = Parcel(p.surface, p.membership .&= x) Base.union(p::Parcel, x::BitVector) = Parcel(p.surface, p.membership .|= x) Base.setdiff(p::Parcel, x::BitVector) = Parcel(p.surface, p.membership .&= .!x) Base.intersect!(p1::Parcel, p2::Parcel) = p1.membership .&= p2.membership Base.union!(p1::Parcel, p2::Parcel) = p1.membership .|= p2.membership Base.setdiff!(p1::Parcel, p2::Parcel) = p1.membership .&= .!p2.membership Base.intersect!(p::Parcel, x::BitVector) = p.membership .&= x Base.union!(p::Parcel, x::BitVector) = p.membership .|= x Base.setdiff!(p::Parcel, x::BitVector) = p.membership .&= .!x Base.intersect!(p::Parcel, x::Vector{T}) where T <: Integer = p.membership .*= x Base.union!(p::Parcel, x::Vector{T}) where T <: Integer = p.membership[x] .= true Base.setdiff!(p::Parcel, x::Vector{T}) where T <: Integer = p.membership[x] .= false """ overlap(p1, p2) Compute the number of member vertices shared between two `Parcel`s `p1`, `p2`. """ overlap(p1::Parcel, p2::Parcel) = p1.membership' * p2.membership overlap(p::Parcel, x::Union{Vector{Bool}, BitVector}) = p.membership' * x overlap(p::Parcel, px::HemisphericParcellation) = sum([overlap(p, px[k]) for k in keys(px)]) overlap(px::HemisphericParcellation, p::Parcel) = overlap(p, px) overlap(x::Union{Vector{Bool}, BitVector}, p::Parcel) = overlap(p, x) function overlap(px::HemisphericParcellation) counts = zeros(Int, length(px)) for k in keys(px) counts .+= px[k].membership end overlap_inds = findall(counts .> 1) return sum(counts[overlap_inds] .- 1) end """ complement(p1, p2) Compute the number of member vertices in `Parcel` `p1` not shared by those of `p2`. """ complement(p1::Parcel, p2::Parcel) = p1.membership' * .!p2.membership complement(p::Parcel, x::Union{Vector{Bool}, BitVector}) = p.membership' * .!x complement(x::Union{Vector{Bool}, BitVector}, p::Parcel) = complement(p, x)
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
1576
function Base.show( io::IO, ::MIME"text/plain", p::Parcel; label::Any = nothing ) siz = size(p) len = length(p) dens = round(density(p) * 100; digits = 2) id_str = isnothing(label) ? "" : " [$label]" print(io, "Parcel") printstyled(io, id_str; bold = true) print(io, " with $siz non-zero vertices out of $len") print(io, " ($dens% dense)") end function Base.show(io::IO, mime::MIME"text/plain", px::HemisphericParcellation) ks = @chain keys(px) collect sample(_, size(px); replace = false) dens = Int(round(density(px) * 100; digits = 0)) print(io, "HemisphericParcellation{$(eltype(keys(px)))} with $(size(px)) parcels,") print(io, " $dens% dense,") print(io, " in a space of $(size(px.surface)) vertices") print(io, "\n") for i in 1:min(length(ks), 3) print(io, " โŠข ") show(io, mime, px[ks[i]]; label = ks[i]) print(io, "\n") end if length(ks) > 4 println(io, " โŠข โ‹ฎ") end if length(ks) > 3 print(io, " โŠข ") show(io, mime, px[ks[end]]; label = ks[end]) end end function Base.show(io::IO, mime::MIME"text/plain", px::BilateralParcellation) println("CORTEX_LEFT:") show(io, mime, px[L]) println("\nCORTEX_RIGHT:") show(io, mime, px[R]) end function Base.show( io::IO, mime::MIME"text/plain", pxs::Vector{HemisphericParcellation{T}} ) where T print(io, "Vector of $(length(pxs)) HemisphericParcellation with keys of type $T") end function Base.show( io::IO, mime::MIME"text/plain", pxs::Vector{BilateralParcellation{T}} ) where T print(io, "Vector of $(length(pxs)) BilateralParcellation with keys of type $T") end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
360
struct Parcel surface::Hemisphere membership::BitVector end abstract type AbstractParcellation end struct HemisphericParcellation{T} <: AbstractParcellation surface::Hemisphere parcels::Dict{T, Parcel} end struct BilateralParcellation{T} <: AbstractParcellation surface::CorticalSurface parcels::Dict{BrainStructure, HemisphericParcellation{T}} end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
3977
using CorticalParcels using CorticalSurfaces using JLD using Test using Chain using CIFTI using Pkg.Artifacts data_dir = artifact"CIFTI_test_files" surf_file = joinpath(data_dir, "MSC01.jld") temp = load(surf_file) hems = Dict() for hem in LR coords = temp["pointsets"]["midthickness"][hem] mw = temp["medial wall"][hem] triangles = temp["triangle"][hem] # required for adjacency calculations below hems[hem] = Hemisphere(hem, coords, mw; triangles = triangles) end c = CorticalSurface(hems[L], hems[R]) initialize_adjacencies!(c) hem = c[L] # for most of these tests below we'll just deal with left hem for now parcel_file = joinpath(data_dir, "test_parcels.dtseries.nii") cifti_data = CIFTI.load(parcel_file) types_to_test = [UInt16, Int64] @testset "CorticalParcels.jl" begin for dtype in types_to_test px = HemisphericParcellation{dtype}(hem, cifti_data[L]) @test size(px) == length(setdiff(cifti_data[L], 0)) @test length(px) == 32492 @test all(trim(vec(px), hem) .== cifti_data[L]) parcel_sizes = [size(px[p]) for p in keys(px)] @test sum(parcel_sizes) == sum(cifti_data[L] .!= 0) parcel_vertices = [vertices(px[p]) for p in keys(px)] @test all(length.(parcel_vertices) == parcel_sizes) pxโ€ฒ = deepcopy(px) @test pxโ€ฒ.surface === px.surface @test pxโ€ฒ == px end # things should work with arbitrary non-numeric types of T as well; test this dtype = String inds = [9, 99, 999, 9999] temp = fill("unassigned", 32492) temp[inds] .= "test" px = HemisphericParcellation{dtype}(hem, temp) @test size(px["test"]) == 4 @test size(px["unassigned"]) == 32492 - 4 # `vec(px)` is not possible however because we can only do this where T <: Real: @test_throws MethodError vec(px) end @testset "demo.jl tests" begin p1 = Parcel(hem, [17344]) p2 = Parcel(hem, [8423]) @test dilate!(p1) == 6 @test dilate!(p1) == 12 p1โ€ฒ = deepcopy(p1) dilate!(p1โ€ฒ) erode!(p1โ€ฒ) @test isequal(p1, p1โ€ฒ) @test size(Parcel(hem)) == 0 test_sizes = [1, 100, 500, 1000, 10000, size(hem)] for siz in test_sizes resize!(p1โ€ฒ, siz) @test size(p1โ€ฒ) == siz end clear!(p1โ€ฒ) @test size(p1โ€ฒ) == 0 p1โ€ฒ = deepcopy(p1) limits = [0, 1, 3, 5, 10, 20, 30] limits = [limits; reverse(limits)] for limit in limits dilate!(p1โ€ฒ; limit = limit) end @test size(p1โ€ฒ) == size(p1) + sum(limits) border_verts = borders(p1) @test findall(border_verts) == [17259, 17260, 17261, 17301, 17304, 17342, 17346, 17383, 17386, 17423, 17424, 17425] while sum(interstices(p1, p2)) == 0 dilate!(p2) end @test overlap(p1, p2) == 0 @test complement(p1, p2) == size(p1) @test complement(p2, p1) == size(p2) margin_vertices = findall(interstices(p1, p2)) @test length(margin_vertices) == 3 px = HemisphericParcellation{Int}(hem) px[1] = deepcopy(p1) px[2] = deepcopy(p2) @test size(px) == 2 @test_throws ErrorException px[2] = Parcel(Hemisphere(L, 9999)) merge!(px, 1, 2) @test size(px) == 1 # just one parcel remains now @test size(px[1]) == size(p1) + size(p2) + length(margin_vertices) setdiff!(px[1], p2) setdiff!(px[1], margin_vertices) @test isequal(px[1], p1) px[2] = deepcopy(p2) append!(px[1], margin_vertices[1]) p3 = deepcopy(px[1]) union!(p3, p2) @test size(p3) == 1 + size(p1) + size(p2) orig_parcels = cut(p3) @test isequal(orig_parcels[1], p2) @test overlap(orig_parcels[2], p1) == size(p1) - 1 delete!(px, 1) delete!(px, 2) @test size(px) == 0 # load in a real parcellation form a CIFTI file: parcel_file = joinpath(data_dir, "test_parcels.dtseries.nii") temp = CIFTI.load(parcel_file) px = BilateralParcellation{Int}(c, temp) pxL = HemisphericParcellation{Int}(c[L], temp[L]) pxR = HemisphericParcellation{Int}(c[R], temp[R]) @test vec(px) == vcat(vec(pxL), vec(pxR)) == pad(temp[LR][:], c; sentinel = 0) @test length(keys(px[L])) == 185 @test density(px[L]) โ‰ˆ 0.740613073987443 @test sum(unassigned(px[L])) == 8428 @test sum(nnz(px[L])) == length(px[L]) - sum(unassigned(px[L])) == sum(union(px[L])) end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
docs
8518
# CorticalParcels This Julia package supplies a set of tools for conveniently and efficiently working with parcels, or regions of interest, in the context of the surface-space representation of the cerebral cortex. It builds upon the `Hemisphere` and `CorticalSurface` types (with supertype `SurfaceSpace`) from [CorticalSurfaces.jl](https://github.com/myersm0/CorticalSurfaces.jl) and provides the foundation for my implementation of an important parcel-generation and -evaluation method in [WatershedParcellation.jl](https://github.com/myersm0/WatershedParcellation.jl). The functions supplied are based on MATLAB code developed at Washington University by Tim Laumann and Evan Gordon from their 2016 paper ["Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations."](https://pubmed.ncbi.nlm.nih.gov/25316338/). A `Parcel` is a discrete region of interest on the cortical surface, and in this implementation is stored internally as a `BitVector` of vertices where each element denotes membership (`true` or `false`). The total length of that vector constitutes the surface-space representation in which the parcel is defined. The size of a parcel `size(p::Parcel)` is given as the number of non-zero elements of that vector, i.e. the number of vertices belonging to that parcel. This implementation was chosen to enable very fast performance of common operations such as getting the size, computing overlap with other parcels, dilating and eroding, etc, by reducing them internally to simple bitwise operations. A parcellation is a collection of `Parcel`s that all share the same space. It's typically the case that the parcels within it are non-overlapping, but nothing in this implementation enforces that. As of version 0.7, the former Parcellation type has been replaced by `HemisphericParcellation`, which is functionally equivalent. It's been reanmed to distinguish it from the new `BilateralParcellation` struct, which provides the capability of dealing with both hemispheres at the same time. Currently `BilateralParcellation` is available only as a convenient container and constructor for its left and right component `HemisphericParcellation`s; it has little functionality beyond that *yet*, so for the moment you can use it to store the hemispheres and then you'll have to manage iteration over the hemispheres yourself in order to do some work on each of them individually. The `HemisphericParcellation` struct contains two fields: - `surface`: a `Hemisphere` supplying details of the geometry (particularly, the size of the space) that all its component `Parcel`s must conform to - (if however the geometry is not of interest in your application, then a dummy surface can be created by, for example, `Hemisphere(32492)` where the only piece of information that's strictly required is the number of vertices, 32492 in this case) - `parcels`: a `Dict{T, Parcel}` mapping keys of type `T` to parcels, where `T` can be any type (preferably one for which a `zero(::T)` method is defined) that you want to use as keys for accessing and labeling individual parcels Rather than having to create the parcel dictionaries yourself, I anticipate that a parcellation will most often be initialized via its `BilateralParcellation(surface::SurfaceSpace, x::Vector{T})` constructor, since the `Vector{T}` representation is probably the way you read in an existing parcellation from disk, e.g. from a [CIFTI](https://github.com/myersm0/CIFTI.jl") file. See the Usage section below. A parcellation (either hemispheric or bilateral) can be mapped back to a vanilla `Vector{T}` representation if desired via `vec(px::AbstractParcellation)`. Some notation notes: in the following documentation and in demos, `p`, `p1`, `p2` will refer to individual parcels; and `px` will refer to a whole parcellation. ## Performance The performance is going to depend on several factors. The benchmarks below are based on using a single-hemisphere parcellation of 185 parcels, in a space of 32492 vertices, and compares the current `BitVector`-based implementation to an alternative using `SparseVector`s as well as to a naive `Vector{Int}` representation (simply a list of vertex index numbers). - *Adding or removing vertices to/from a `Parcel`*. This is where the current implementation shines most, via operations like `union!(p1::Parcel, p2::Parcel)` and analogous calls to `setdiff!` and `intersect!`. - *Computing the amount of overlap of two `Parcel`s*. This is fast because it reduces to just taking the dot product of their respective membership vectors. - *Checking the size of a `Parcel`.* This is the only case where the current implementation lags behind alternatives. - *Checking a `Parcellation` for unassigned values*. This is relatively "slow" compared to `Parcel`-level operations supplied. But it should be infrequent enough that it doesn't matter much; and the present `BitVector` is still faster than alternatives. | |`intersect!(p1, p2)`|`overlap(p1, p2`|`size(p)`|`unassigned(px)`| |:-------------|-------------------:|-------------------:|-------------------:|-------------------:| |**`BitVector`**|**85 ns**|**108 ns**|104 ns|**22000** ns| |`SparseVector`|3047 ns|812 ns|83 ns|39000 ns| |`Vector`|7692 ns|49110 ns|**9 ns**|1024000 ns| While the need to compute the size of a parcel is indeed a common operation and we'd like it to be as fast as possible, this implementation's considerable advantage in the other basic operations should still make it the clear frontrunner in most use cases. If we assume for simplicity that the above operations occur equally often, the `SparseVector` implementation (used in this package version 0.1.0 only) achieves a 25x speedup relative to the naive case, and the present `BitVector` implementation (package version 0.2+) achieves a 48x speedup relative to the same. If we ignore the `unassigned(px)` call, the current implementation improves to a 191x speedup over baseline. ## Installation Within Julia: ``` using Pkg Pkg.add("CorticalParcels") ``` ## Usage A full demo of the basic functionality can be found in `examples/demo.jl`. The package [CorticalSurfaces.jl](https://github.com/myersm0/CorticalSurfaces.jl) provides the definitions of `Hemisphere` and `CorticalSurface` types (and their supertype `SurfaceSpace`), on which many of the operations in this package depend. So first of all, load both packages and create a `Hemisphere` struct that will define the vertex space. At a minimum, you need to specify the number of vertices in that space, for example 32492; but see [CorticalSurfaces.jl](https://github.com/myersm0/CorticalSurfaces.jl) for further details. ``` using CorticalSurfaces using CorticalParcels hem = Hemisphere(32492) # create a Hemisphere of 32492 vertices that will define the space ``` ### Constructors Once a `Hemisphere` has been created (we'll call it `hem` here), the following are two basic ways in which to initialize a `Parcel`:: ``` Parcel(hem) # create an empty parcel within the same space as `hem` Parcel(hem, [5, 6, 7]) # create a parcel with 3 vertices within the same space as `hem` ``` A `HemisphericParcellation` can be initialized in several ways, such as: ``` hem = Hemisphere(32492) # create a Hemisphere of 39492 vertices HemisphericParcellation{Int}(hem) # create an empty parcellation within that space # as above, but this time fill the space with 10 randomly assigned parcels HemisphericParcellation{Int}(hem, rand(1:10, 32492)) ``` The above examples use `Int` as the initialization parameter, and this defines the type of key that will be assigned to each parcel. Any type should be usable, however, provided that its `typemax` can represent the largest value you anticipate needing to store. You could use `String` keys, for example, if you want to provide descriptive labels for your parcels and index them in that way. ### Accessors `unassigned(px::HemisphericParcellation)` may be used to dynamically determine the elements in the vector space that are not assigned to any parcel. `vec(px::AbstractParcellation)` will reduce the parcellation to a single `Vector{T}`. If you constructed `px` from a `Vector{T}` (and have not changed any of its elements), this operation should return that same vector. [![Build Status](https://github.com/myersm0/CorticalParcels.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/myersm0/CorticalParcels.jl/actions/workflows/CI.yml?query=branch%3Amain)
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.2.0
0aa363f36f4d46f190859807c4f9849a3cf07a43
code
5272
module GtkMarkdownTextView using Gtk4 import Gtk4: _GtkTextIter, create_tag, apply_tag import Gtk4.GLib: gobject_move_ref, GObject using Markdown export MarkdownTextView, MarkdownColors struct MarkdownColors font_size::Int color::String background::String highlight_color::String highlight_background::String end MarkdownColors() = MarkdownColors(13, "#000", "#fff", "#111", "#eee") mutable struct MarkdownTextView <: GtkTextView handle::Ptr{GObject} view::GtkTextView buffer::GtkTextBuffer function MarkdownTextView(m::Markdown.MD, prelude::String, mc::MarkdownColors = MarkdownColors()) buffer = GtkTextBuffer() buffer.text = prelude view = GtkTextView(buffer) style_css(view, "window, view, textview, buffer, text { background-color: $(mc.background); color: $(mc.color); font-family: Monaco, Consolas, Courier, monospace; margin:0px; }" ) #set_gtk_property!(view, :margin_left, 1) view.monospace = true view.wrap_mode = true fs = mc.font_size create_tag(buffer, "normal", font = "$fs") create_tag(buffer, "h1", font = "bold $(fs+3)") create_tag(buffer, "h2", font = "bold $(fs+2)") create_tag(buffer, "h3", font = "bold $(fs+1)") create_tag(buffer, "h4", font = "bold $(fs)") create_tag(buffer, "h5", font = "$(fs)") create_tag(buffer, "h6", font = "$(fs-1)") create_tag(buffer, "bold", font = "bold $(fs)") create_tag(buffer, "italic", font = "italic $fs") create_tag(buffer, "code", font = "bold $fs", foreground=mc.highlight_color, background=mc.highlight_background) insert_MD!(buffer, m) # tag(buffer, "normal", 1, length(buffer)) n = new(view.handle, view, buffer) gobject_move_ref(n, view) end MarkdownTextView(m::String) = MarkdownTextView(Markdown.parse(m), "") MarkdownTextView(m::String, prelude::String, mc::MarkdownColors = MarkdownColors()) = MarkdownTextView(Markdown.parse(m), prelude, mc) MarkdownTextView(m::String, mc::MarkdownColors) = MarkdownTextView(Markdown.parse(m), "", mc) end function tag(buffer, what, i, j) apply_tag(buffer, what, _GtkTextIter(buffer, i), _GtkTextIter(buffer, j) ) end function style_css(w::GtkWidget, css::String) sc = Gtk4.style_context(w) push!(sc, GtkCssProvider(css), 600) end function insert_MD!(buffer, m::Markdown.Header{N}, i) where N ip = i insert!(buffer, " ") i += 4 for el in m.text i = insert_MD!(buffer, el, i) end tag(buffer, "h$(min(N,4))", ip, i) i end function insert_MD!(buffer, m::Markdown.BlockQuote, i) insert!(buffer, "โ”‚ ") i += 3 for el in m.content i = insert_MD!(buffer, el, i) end i end function insert_MD!(buffer, m::String, i) insert!(buffer, m) i += length(m) end function insert_MD!(buffer, m::Markdown.LaTeX, i) i = insert_MD!(buffer, m.formula, i) end function insert_MD!(buffer, m::Markdown.Paragraph, i) # insert!(buffer, "\n\n") # i += 2 for el in m.content i = insert_MD!(buffer, el, i) end i end function insert_MD!(buffer, m::Markdown.Code, i) insert!(buffer, m.code) tag(buffer, "code", i, i+sizeof(m.code)) i += length(m.code) end function insert_MD!(buffer, m::Markdown.List, i) marker = k -> m.ordered == -1 ? "โ€ข" : "$(k)." for (k, it) in enumerate(m.items) insert!(buffer, " $(marker(k)) ") i += 6 + (m.ordered == 1) for el in it i = insert_MD!(buffer, el, i) end insert!(buffer, "\n") i += 1 end i end tagname(m::Markdown.Italic) = "italic" tagname(m::Markdown.Bold) = "bold" function insert_MD!(buffer, m::T, i) where T <: Union{Markdown.Italic, Markdown.Bold} ip = i for el in m.text i = insert_MD!(buffer, el, i) end tag(buffer, tagname(m), ip, i) i end function insert_MD!(buffer, m, i) if isdefined(m, :text) for el in m.text i = insert_MD!(buffer, el, i) end end if isdefined(m, :content) for el in m.content i = insert_MD!(buffer, el, i) end end i end function insert_MD!(buffer, m::Markdown.MD) i = length(buffer)+1 for el in m.content i = insert_MD!(buffer, el, i) insert!(buffer, "\n\n") i += 2 end end end
GtkMarkdownTextView
https://github.com/JuliaGtk/GtkMarkdownTextView.jl.git
[ "MIT" ]
0.2.0
0aa363f36f4d46f190859807c4f9849a3cf07a43
code
803
using GtkMarkdownTextView, Test using Gtk4 @testset "MarkdownTextView" begin w = GtkWindow("") md = """ IOBuffer([data::AbstractVector{UInt8}]; keywords...) -> IOBuffer Create an in-memory I/O stream, which may optionally operate on a pre-existing array. It may take optional keyword arguments: - `read`, `write`, `append`: restricts operations to the buffer; see `open` for details. - `truncate`: truncates the buffer size to zero length. - `maxsize`: specifies a size beyond which the buffer may not be grown. - `sizehint`: suggests a capacity of the buffer (`data` must implement `sizehint!(data, size)`). When `data` is not given, the buffer will be both readable and writable by default. """ v = MarkdownTextView(md) push!(w,v) show(w) sleep(1) destroy(w) end
GtkMarkdownTextView
https://github.com/JuliaGtk/GtkMarkdownTextView.jl.git
[ "MIT" ]
0.2.0
0aa363f36f4d46f190859807c4f9849a3cf07a43
docs
1197
# GtkMarkdownTextView [![CI](https://github.com/JuliaGtk/GtkMarkdownTextView.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/JuliaGtk/GtkMarkdownTextView.jl/actions/workflows/CI.yml) [![Coverage Status](https://coveralls.io/repos/jonathanBieler/GtkMarkdownTextView.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/jonathanBieler/GtkMarkdownTextView.jl?branch=master) A widget to display simple markdown formatted text: ![screenshot](assets/GtkMarkdownTextView.png) ```julia using Gtk4, GtkMarkdownTextView w = GtkWindow("") md = """ # h1 heading ## h2 heading ## h3 heading *italic* normal **bold** code > quote - item 1 - items 2 1. list 2. list2 """ v = MarkdownTextView(md) push!(w,v) show(w) ``` The constructor can take a prelude text and color settings : ```julia MarkdownTextView(m::String, prelude::String, mc::MarkdownColors = MarkdownColors()) ``` The color settings are defined as : ```julia struct MarkdownColors font_size::Int color::String background::String highlight_color::String highlight_background::String end # default values MarkdownColors() = MarkdownColors(13, "#000", "#fff", "#111", "#eee") ```
GtkMarkdownTextView
https://github.com/JuliaGtk/GtkMarkdownTextView.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
353
using BenchmarkTools, SegmentIntersections random_coordinates = 100 .* rand(500, 4); segments = Segment{Float64}[] for datap in eachrow(random_coordinates) push!(segments, Segment(datap...)) end println("Running brute force...") @btime find_intersections_brute(segments); println("Running Bentley-Ottman...") @btime find_intersections(segments);
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
2588
using PyPlot, SegmentIntersections function plot_random_lines() random_coordinates = 100 .* rand(100, 4); segments = Segment{Float64}[] for datap in eachrow(random_coordinates) push!(segments, Segment(datap...)) end intersections_brute = find_intersections_brute(segments); intersections = find_intersections(segments); fig, ax = plt.subplots(1,2, sharex=true, sharey=true, figsize=(10,4)) for segment in segments for axis in ax axis.plot( [segment.p.x, segment.q.x], [segment.p.y, segment.q.y], color = "C0", linewidth = 1, ) end end ax[1].set_title("Brute force algorithm") ax[2].set_title("Bentley-Ottmann algorithm") xs = [point.x for point in intersections]; ys = [point.y for point in intersections]; ax[1].scatter(xs, ys, color = "red", s = 30) xs = [point.x for point in intersections_brute]; ys = [point.y for point in intersections_brute]; ax[2].scatter(xs, ys, color = "red", s = 30) plt.subplots_adjust(wspace=0, hspace=0) fig.savefig("random_lines.png", dpi=300, bbox_inches="tight") end function plot_complete_graph(n=16, r=100) theta_values = range(0, 2ฯ€, length=n+1)[1:end-1] coordinates = [[r*cos(theta), r*sin(theta)] for theta in theta_values] segments = Segment{Float64}[] for i in 1:n for j in (i+1):n push!(segments, Segment(Point(coordinates[i]...), Point(coordinates[j]...))) end end intersections_brute = find_intersections_brute(segments); intersections_bo = find_intersections(segments, tol=1e-9); fig, ax = plt.subplots(1,2, sharex=true, sharey=true, figsize=(10,4)) for segment in segments for axis in ax axis.plot( [segment.p.x, segment.q.x], [segment.p.y, segment.q.y], color = "C0", linewidth = 1, ) end end ax[1].set_title("Brute force algorithm") xs = [point.x for point in intersections_brute]; ys = [point.y for point in intersections_brute]; ax[1].scatter(xs, ys, color = "red", s = 30) xs = [point.x for point in intersections_bo]; ys = [point.y for point in intersections_bo]; ax[2].scatter(xs, ys, color = "red", s = 30) ax[2].set_title("Bentley-Ottmann algorithm") plt.subplots_adjust(wspace=0, hspace=0) fig.savefig("complete_graph.png", dpi=300, bbox_inches="tight") end plot_random_lines() plot_complete_graph(14)
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
241
module SegmentIntersections include("point.jl") include("segment.jl") include("bentley_ottmann/queue.jl") include("bentley_ottmann/event.jl") include("bentley_ottmann/status.jl") include("bentley_ottmann/base.jl") include("brute.jl") end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
1131
export find_intersections_brute """ find_intersections_brute(segments::Vector{Segment{T}}) where {T<:AbstractFloat} Compute all the intersections between the segments performing a brute force algorithm O(n^2). This is the O(N^2) brute force version in which we test all segments against all segments for intersections. This method is faster than the BentleyOttman one when there are few points and lots of intersections. # Examples ```jldoctest julia> segments = [Segment(0,0,5,5), Segment(0,5,5,0)]; julia> intersections = find_intersections_brute(segments) julia> [Point(2.5, 2.5)] ``` """ function find_intersections_brute(segments::Vector{Segment{T}}) where {T<:AbstractFloat} A = zeros((2, 2)) b = zeros(2) n_segments = length(segments) intersections = typeof(segments[1].p)[] for i = 1:(n_segments-1) s1 = segments[i] for j = (i+1):n_segments s2 = segments[j] do_intersect, intersection = intersect!(s1, s2, A, b) if do_intersect push!(intersections, intersection) end end end return intersections end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
415
export Point struct Point{T<:Float64} x::T y::T end function Point(x::Int, y::Int) return Point(convert(Float64, x), convert(Float64, y)) end Base.:(==)(p::Point, q::Point) = (p.x == q.x) & (p.y == q.y) Base.isless(p::Point, q::Point) = (p.y > q.y) | ((p.y == q.y) & (p.x < q.x)) Base.isapprox(p::Point, q::Point; rtol = 1e-6) = isapprox(p.x, q.x, rtol = rtol) && isapprox(p.y, q.y, rtol = rtol)
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
3743
export Segment, Segments, intersect!, is_lower_end, is_upper_end, contains, find_leftmost, find_rightmost, contains, is_singular, min_x, min_y, max_x, max_y, trivial_miss struct Segment{T<:Float64} p::Point{T} q::Point{T} slope::T function Segment(p::Point{T}, q::Point{T}) where {T<:Float64} if p > q p, q = q, p end slope = (q.x - p.x) / (q.y - p.y) return new{T}(p, q, slope) end end Base.isless(s::Segment, t::Segment) = (s.p.y > t.q.y) | ((s.p.y == t.p.y) && (s.p.x < t.p.x)) Base.:(==)(s::Segment, t::Segment) = (s.p == t.p) && (s.q == t.q) get_x(segment::Segment, y) = segment.p.x + segment.slope * (y - segment.p.y) get_y(segment::Segment, x) = segment.p.y + (x - segment.p.x) / segment.slope min_x(segment::Segment) = min(segment.p.x, segment.q.x) min_y(segment::Segment) = min(segment.p.y, segment.q.y) max_x(segment::Segment) = max(segment.p.x, segment.q.x) max_y(segment::Segment) = max(segment.p.y, segment.q.y) Segment(px, py, qx, qy) = Segment(Point(px, py), Point(qx, qy)) """ Checks if the segment s is purely horizontal or vertical. """ function is_singular(s::Segment) if (s.p.x == s.q.x) || (s.p.y == s.q.y) return true else return false end end function trivial_miss(s1::Segment, s2::Segment) if s1.slope โ‰ˆ s2.slope rtol=1e-10 return true elseif max_x(s1) < min_x(s2) return true elseif max_x(s2) < min_x(s1) return true elseif max_y(s1) < min_y(s2) return true elseif max_y(s2) < min_y(s1) return true end return false end """ Checks for the intersection of two segments s1, s2. """ function Base.intersect!( s1::Segment{T}, s2::Segment{T}, A::Matrix{T}, b::Vector{T}, tol=1e-9 ) where {T<:AbstractFloat} if is_singular(s1) || is_singular(s2) return false, Point(0.0, 0.0) end if trivial_miss(s1, s2) return false, Point(0.0, 0.0) end A[1, 1] = s1.q.x - s1.p.x A[1, 2] = s2.p.x - s2.q.x A[2, 1] = s1.q.y - s1.p.y A[2, 2] = s2.p.y - s2.q.y b[1] = s2.p.x - s1.p.x b[2] = s2.p.y - s1.p.y sol = 0.0 try sol = A \ b catch @warn "Singular matrix. Check for edge cases!" return false, Point(0.0, 0.0) end if (-tol < sol[1] < 1+tol) && (-tol < sol[2] < 1+tol) intersection = Point(s1.p.x + sol[1] * (s1.q.x - s1.p.x), s1.p.y + sol[1] * (s1.q.y - s1.p.y)) return true, intersection else return false, Point(0.0, 0.0) end end function Base.intersect!(s1::Segment{T}, s2::Segment{T}) where {T<:AbstractFloat} A = zeros((2, 2)) b = zeros(2) return intersect!(s1, s2, A, b) end is_lower_end(segment::Segment, Point::Point) = (segment.q == Point) is_upper_end(segment::Segment, Point::Point) = (segment.p == Point) function Base.contains(segment::Segment, point::Point, tol=1e-9) if is_lower_end(segment, point) | is_upper_end(segment, point) return false end y = get_y(segment, point.x) if y โ‰ˆ point.y atol = tol return true else return false end end function find_leftmost(segment_set, y, tol=1e-9) ret = nothing xmin = Inf for segment in segment_set x = get_x(segment, y - tol) if x < xmin xmin = x ret = segment end end return ret, xmin end function find_rightmost(segment_set, y, tol=1e-9) ret = nothing xmax = 0 for segment in segment_set x = get_x(segment, y - tol) if x > xmax xmax = x ret = segment end end return ret, xmax end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
2414
export find_intersections """ find_intersections(segments::Vector{Segment{T}}; tol=1e-9) where {T<:AbstractFloat} Compute all the intersections between the segments using the Bentley-Ottmann algorithm. Seting a tolerance value to work for all situations is tricky, so try to play with it if you are finding that not all intersections are found. # Examples ```jldoctest julia> segments = [Segment(0,0,5,5), Segment(0,5,5,0)]; julia> intersections = find_intersections(segments) julia> [Point(2.5, 2.5)] ``` """ function find_intersections(segments::Vector{Segment{T}}; tol=1e-9) where {T<:AbstractFloat} Q = EventQueue(segments) y0 = Q.tree[1].y ys = [y0] status = Status(y0, tol) intersections = [] while length(Q) != 0 event = fetch_event!(Q) handle_event_point(Q, event, status, intersections) end return intersections end function handle_event_point( Q::EventQueue, event::Event, status::Status, intersections, ) p = event.point status.y_sweep = p.y U = event.segments L = Set{Segment}() C = Set{Segment}() for (key, segment) in status.dict if is_lower_end(segment, p) push!(L, segment) elseif contains(segment, p, status.tol) push!(C, segment) end end CL = union(C, L) total = union(CL, U) if length(total) > 1 push!(intersections, p) end UC = union(U, C) update!(status, insert=UC, delete=CL) if length(UC) == 0 sl = find_left(status, p.x) sr = find_right(status, p.x) find_new_event(Q, sl, sr, p) else sp, xp = find_leftmost(UC, p.y, status.tol) sl = find_left(status, xp) find_new_event(Q, sl, sp, p) spp, xpp = find_rightmost(UC, p.y, status.tol) sr = find_right(status, xpp) find_new_event(Q, spp, sr, p) end return end function find_new_event(Q::EventQueue, s1::Segment, s2::Segment, p::Point, tol=1e-9) if s1 == s2 return end do_intersect, intersection = intersect!(s1, s2) if do_intersect if intersection.y < p.y insert!(Q, intersection) elseif (intersection.y โ‰ˆ p.y) && (intersection.x > p.x) insert!(Q, intersection) else return end end end # for when s1 or s2 are nothing find_new_event(Q::EventQueue, s1, s2, p::Point) = nothing
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
432
export Event, Events, handle_event_point struct Event{T} point::Point{T} segments::Set{Segment{T}} end Event(point::Point{T}) where {T<:Number} = Event(point, Set{Segment{T}}()) Event(x::Float64, y::Float64) = Event(Point(x, y)) Event(x::Number, y::Number) = Event(convert(Float64, x), convert(Float64, y)) Base.:(==)(e1::Event, e2::Event) = e1.point == e2.point Base.isless(e1::Event, e2::Event) = e1.point < e2.point
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
1377
import Base: insert!, length, delete! export EventQueue, fetch_event!, insert_event! using DataStructures struct EventQueue{T} tree::AVLTree{Point{T}} segments::Dict{Point{T},Set{Segment{T}}} # maps upper point -> list of segments end length(Q::EventQueue) = length(Q.tree) function delete!(Q::EventQueue, p::Point) delete!(Q.tree, p) delete!(Q.segments, p) end EventQueue() = EventQueue(AVLTree{Point{Float64}}(), Dict{Point{Float64},Set{Segment{Float64}}}()) function insert!(Q::EventQueue, segment::Segment) p = segment.p # guaranteed to be the upper point q = segment.q if p โˆˆ Q.tree push!(Q.segments[p], segment) else push!(Q.tree, p) Q.segments[p] = Set([segment]) end if q โˆ‰ Q.tree push!(Q.tree, q) Q.segments[q] = Set(Segment[]) # we only store for the upper end end function insert!(Q::EventQueue, p::Point) if p โˆ‰ Q.tree push!(Q.tree, p) end end function EventQueue(segments::Vector{Segment{T}}) where {T<:AbstractFloat} Q = EventQueue() for segment in segments insert!(Q, segment) end return Q end function fetch_event!(Q::EventQueue) p = Q.tree[1] if p in keys(Q.segments) segments = Q.segments[p] else segments = Set{Segment{Float64}}() end delete!(Q, p) return Event(p, segments) end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
1247
export Status, find_left, find_right, insert!, update!, delete! using DataStructures mutable struct Status{T <: AbstractFloat} dict::SortedDict{T, Segment{T}} y_sweep::T tol::T end Status(y0, tol=1e-9) = Status(SortedDict{Float64, Segment{Float64}}(), y0, tol) function insert!(status::Status, segment::Segment) y = status.y_sweep - status.tol x = get_x(segment, y) status.dict[x] = segment end function update!(status::Status; insert, delete) y = status.y_sweep - status.tol new_dict = SortedDict{Float64, Segment{Float64}}() for (key, segment) in status.dict if segment โˆ‰ delete new_dict[get_x(segment, y)] = segment end end for segment in insert new_dict[get_x(segment, y)] = segment end status.dict = new_dict end function find_left(status::Status, x) x -= 1e-9 (length(status.dict) == 0) && return nothing (x < first(status.dict).first) && return nothing return status.dict[searchsortedlast(status.dict, x)] end function find_right(status::Status, x) x += 1e-9 (length(status.dict) == 0) && return nothing (x > last(status.dict).first) && return nothing return status.dict[searchsortedfirst(status.dict, x)] end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
657
using Test, SegmentIntersections @testset "Test results" begin segments = [ Segment(4.9, 3.56, 2.86, 1.62), Segment(3.63, 3.88, 5.45, 2.32), Segment(2.99, 3.29, 4.47, 1.8), Segment(2.66, 2.85, 3.81, 1.44), ]; expected_intersections = [Point(4.48, 3.16), Point(3.78, 2.5), Point(3.31, 2.05)]; intersections = find_intersections_brute(segments) for expected in expected_intersections match = false for intersection in intersections if isapprox(intersection, expected, rtol = 1e-2) match = true end end @test match == true end end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
773
using SegmentIntersections, Test @testset "create point" begin p = Point(1,2) @test p.x == 1.0 @test typeof(p.x) == Float64 @test p.y == 2.0 @test typeof(p.y) == Float64 p = Point(1.0,2.0) @test p.x == 1.0 @test typeof(p.x) == Float64 @test p.y == 2.0 @test typeof(p.y) == Float64 end @testset "Test point order" begin @testset "Test different y" begin p = Point(1,2) q = Point(3,4) @test q < p @test q <= p @test !(q > p) @test !(q >= p) @test !(q == p) end @testset "Test same y" begin p = Point(1,2) q = Point(3,2) @test !(q < p) @test !(q <= p) @test (q > p) @test (q >= p) @test !(q == p) end end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
286
using SegmentIntersections, Test include("point_tests.jl") include("segment_tests.jl") include("brute_tests.jl") include("bentley_ottmann/event_tests.jl") include("bentley_ottmann/queue_tests.jl") include("bentley_ottmann/status_tests.jl") include("bentley_ottmann/results_tests.jl")
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
3497
using Test, SegmentIntersections @testset "test segment init" begin s1 = Segment(1,2,3,4) @test s1.p == Point(3,4) @test s1.q == Point(1,2) end @testset "Test min max segment" begin s = Segment(1,2,3,4) @test min_x(s) == 1 @test min_y(s) == 2 @test max_x(s) == 3 @test max_y(s) == 4 end @testset "Test segment order" begin s1 = Segment(1,2,3,4) s2 = Segment(1,5,3,4) @test s2 < s1 s1 = Segment(3,5,3,4) s2 = Segment(1,5,3,4) @test s2 < s1 end @testset "Test singular segment" begin s = Segment(1, 2, 1, 4) @test is_singular(s) == true s = Segment(3, 2, 3, 2) @test is_singular(s) == true s = Segment(1, 2, 3, 4) @test is_singular(s) == false end @testset "Test trivial misses" begin s1 = Segment(0,0,1,1) s2 = Segment(0,0,2,2) @test trivial_miss(s1, s2) == true s1 = Segment(1,2,3,4) s2 = Segment(4,2,5,4) @test trivial_miss(s1, s2) == true s2 = Segment(1,2,3,4) s1 = Segment(4,2,5,4) @test trivial_miss(s1, s2) == true s1 = Segment(1,3,3,6) s2 = Segment(4,7,5,8) @test trivial_miss(s1, s2) == true s2 = Segment(1,3,3,6) s1 = Segment(4,7,5,8) @test trivial_miss(s1, s2) == true end @testset "Test segment intersection" begin # test trivial miss segment1 = Segment(1,2,3,4) segment2 = Segment(4,2,5,4) do_intersect, intersection = intersect!(segment1, segment2) @test do_intersect == false @test intersection == Point(0.0, 0.0) # do intersect segment1 = Segment(2.3, 7.99, 10.64, 3.93) segment2 = Segment(2.86, 3.45, 11.0, 7.0) do_intersect, intersection = intersect!(segment1, segment2) @test do_intersect == true @test intersection.x โ‰ˆ 7.48 rtol = 1e-2 @test intersection.y โ‰ˆ 5.47 rtol = 1e-2 # don't intersect segment1 = Segment(5, -2, 9.4, -2.79) segment2 = Segment(4.82, -5.83, 7.2, -3.41) do_intersect, intersection = intersect!(segment1, segment2) @test do_intersect == false @test intersection == Point(0.0, 0.0) # ignore singular segment1 = Segment(1, 2, 1, 4) segment2 = Segment(1, 2, 3, 4) do_intersect, intersection = intersect!(segment1, segment2) @test do_intersect == false @test intersection == Point(0.0, 0.0) end @testset "Test is end" begin segment = Segment(1,2,3,4) @test is_lower_end(segment, Point(3,4)) == false @test is_lower_end(segment, Point(1,2)) == true @test is_lower_end(segment, Point(10,2)) == false @test is_upper_end(segment, Point(3,4)) == true @test is_upper_end(segment, Point(1,2)) == false @test is_upper_end(segment, Point(10,2)) == false end @testset "Test contains" begin segment = Segment(1,2,3,4) @test contains(segment, Point(1,2)) == false @test contains(segment, Point(3,4)) == false @test contains(segment, Point(2,3)) == true @test contains(segment, Point(2,3)) == true @test contains(segment, Point(1.5,2.5)) == true end @testset "Test leftmost and rightmost" begin segment1 = Segment(12.4, 5.56, 9.69, 2.85) segment2 = Segment(12.4, 5.56, 11.71, 2.61) segment3 = Segment(12.4, 5.56, 13.06, 2.68) segment4 = Segment(12.4, 5.56, 14.55, 3.47) segment_set = Set([segment1, segment2, segment3, segment4]) segment, xmin = find_leftmost(segment_set, 4) @test segment == segment1 @test xmin โ‰ˆ 10.84 segment, xmax = find_rightmost(segment_set, 4) @test segment == segment4 @test xmax โ‰ˆ 14.0 rtol=1e-2 end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
205
using Test, SegmentIntersections @testset "Test event creation" begin e1 = Event(1,2) e2 = Event(0,5) e3 = Event(1,2) @test e1.point == Point(1,2) @test e2 < e1 @test e1 == e3 end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
691
using Test, SegmentIntersections @testset "Test queue" begin Q = EventQueue() s1 = Segment(1, 2, 3, 4) s2 = Segment(5, 6, 3, 4) s3 = Segment(4, 3, 2, 7) s4 = Segment(4, 3, 2, 4) s5 = Segment(0, 1, 2, 7) insert!(Q, s1) insert!(Q, s2) insert!(Q, s3) insert!(Q, s4) insert!(Q, s5) e = fetch_event!(Q) @test e.point == Point(2,7) @test e.segments == Set([s3, s5]) e = fetch_event!(Q) @test e.point == Point(5,6) @test e.segments == Set([s2]) e = fetch_event!(Q) @test e.point == Point(2,4) @test e.segments == Set([s4]) e = fetch_event!(Q) @test e.point == Point(3,4) @test e.segments == Set([s1]) end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
1610
using Test, SegmentIntersections @testset "Test random lines" begin random_data = 100 .* rand(100, 4); segments = Segment{Float64}[] for datap in eachrow(random_data) push!(segments, Segment(datap...)) end bo_intersections = find_intersections(segments) brute_intersections = find_intersections_brute(segments) @test length(bo_intersections) == length(brute_intersections) for expected in brute_intersections match = false for intersection in bo_intersections if isapprox(intersection, expected, rtol = 1e-2) match = true end end @test match == true end end # This test does currently not pass #@testset "Test complete graph" begin # n = 4 # r = 100 # theta_values = range(0, 2ฯ€, length=n+1)[1:end-1] # coordinates = [[r*cos(theta), r*sin(theta)] for theta in theta_values] # segments = Segment{Float64}[] # for i in 1:n # for j in (i+1):n # push!(segments, Segment(Point(coordinates[i]...), Point(coordinates[j]...))) # end # end # bo_intersections = find_intersections(segments) # brute_intersections = find_intersections_brute(segments) # @test length(bo_intersections) == length(brute_intersections) # matches = 0 # println("checking intersections...") # for expected in brute_intersections # for intersection in bo_intersections # if isapprox(intersection, expected, rtol = 1e-2) # matches += 1 # end # end # end # @test matches == length(bo_intersections) #end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
code
1900
using Test, SegmentIntersections @testset "Test insert segment" begin status = Status(3.0) segment = Segment(1,2,3,4) insert!(status, segment) xs = collect(keys(status.dict)) @test length(xs) == 1 @test xs[1] โ‰ˆ 2.0 @test status.dict[xs[1]] == segment segment = Segment(0.41, 1.11, 6.15, 0.29) status.y_sweep = 0.5 insert!(status, segment) xs = collect(keys(status.dict)) @test length(xs) == 2 @test xs[1] โ‰ˆ 2.0 @test xs[2] โ‰ˆ 4.68 @test status.dict[xs[2]] == segment end @testset "Test update status" begin status = Status(3.0) segment = Segment(1,2,3,4) insert!(status, segment) segment_set = Set([Segment(10, 2, 12, 4), Segment(5,2,7,4)]) update!(status, insert=segment_set, delete=Set()) xs = collect(keys(status.dict)) @test xs[1] โ‰ˆ 2 @test status.dict[xs[1]] == Segment(1,2,3,4) @test xs[2] โ‰ˆ 6 @test status.dict[xs[2]] == Segment(5,2,7,4) @test xs[3] โ‰ˆ 11 @test status.dict[xs[3]] == Segment(10,2,12,4) end @testset "Test delete segment from status" begin status = Status(3.0) segment = Segment(1,2,3,4) insert!(status, segment) @test length(status.dict) == 1 xs = collect(keys(status.dict)) @test xs[1] โ‰ˆ 2 @test status.dict[xs[1]] == segment update!(status, insert=Set(), delete=Set([segment])) @test length(status.dict) == 0 xs = collect(keys(status.dict)) @test length(xs) == 0 end @testset "Test find segment side of point" begin segment1 = Segment(7.0, 10.0, 4.48, 5.09) segment2 = Segment(7.76, 9.33, 9.4, 7.83) segment3 = Segment(14.3, 7.61, 16.3, 9.57) status = Status(0.0) point = Point(11.8, 8.69) status.y_sweep = point.y update!(status, insert=Set([segment1, segment2, segment3]), delete=Set()) @test find_left(status, point.x) == segment2 @test find_right(status, point.x) == segment3 end
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.1.0
c3648d7f66b8308deeb5367c38e9270f2408ea60
docs
1242
[![CI](https://github.com/arnauqb/SegmentIntersections.jl/actions/workflows/blank.yml/badge.svg)](https://github.com/arnauqb/SegmentIntersections.jl/actions/workflows/blank.yml) [![codecov](https://codecov.io/gh/arnauqb/SegmentIntersections.jl/branch/main/graph/badge.svg?token=8XT5Y1JCTY)](https://codecov.io/gh/arnauqb/SegmentIntersections.jl) # SegmentIntersections.jl This package implements two algorithms for computing the intersection points between a set of finite segments. * A brute force algorithm, in which each segment is tested for intersection against all the other segments. The scaling of this algorithm is thus O(N^2). * The [Bentley-Ottmann algorithm](https://en.wikipedia.org/wiki/Bentley%E2%80%93Ottmann_algorithm) which should scale much better for a high number of points. However, in many situations the brute force performs better. This could also be because of the BO algorithm needs a bit of memory optimization. ![image](images/random_lines.png) The intersections for a complete K-graph need to be debugged, probably a toleranece error. ![image](images/complete_graph.png) # Limitations The algorithm ignores purely horizontal and vertical segments. This will probably be implemented in the future.
SegmentIntersections
https://github.com/arnauqb/SegmentIntersections.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1336
using RDatasets, JDF, DataFrames a = dataset("datasets", "iris"); first(a, 2) @time jdffile = JDF.save("iris.jdf", a) @time a2 = DataFrame(JDF.load("iris.jdf")) all(names(a2) .== names(a)) # true all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)])) #true a2_selected = DataFrame(JDF.load("iris.jdf", cols = [:Species, :SepalLength, :PetalWidth])) jdf"path/to/JDF.jdf" path_to_JDF = "path/to/JDF.jdf" JDFFile(path_to_JDF) afile = JDFFile("iris.jdf") afile[:Species] # load Species column using Tables ajdf = JDFFile("iris.jdf") Tables.columnaccess(ajdf) Tables.columns(ajdf) Tables.schema(ajdf) getproperty(Tables.columns(ajdf), :Species) jdffile = jdf"iris.jdf" for col in eachcol(jdffile) # do something to col # where `col` is the content of one column of iris.jdf end jdffile = jdf"iris.jdf" for (name, col) in zip(names(jdffile), eachcol(jdffile)) # `name::Symbol` is the name of the column # `col` is the content of one column of iris.jdf end using JDF, DataFrames df = DataFrame(a = 1:3, b = 1:3) JDF.save(df, "plsdel.jdf") names(jdf"plsdel.jdf") # [:a, :b] # clean up rm("plsdel.jdf", force = true, recursive = true) @time jdffile = ssavejdf("iris.jdf", a) @time jdffile = sloadjdf("iris.jdf") type_compress!(df) type_compress!(df, compress_float = true)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
257
# Weave readme using Pkg cd("c:/git/JDF/readme-build") Pkg.activate("c:/git/JDF/readme-build") Pkg.update() upcheck() using Weave weave("../README.jmd", out_path="./", doctype="github") if false # debug tangle("../README.jmd") end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
9651
using CSV, Feather #using JLD2 #using JLD#, JLSO using JDF, FileIO, Blosc, StatsPlots, RCall using DataFrames, WeakRefStrings # required for JLD2, JDF Blosc.set_num_threads(6) gen_benchmark(dirpath, largest_file, outpath, data_label; delim = ',', header=true) = begin if !isdir(outpath) mkpath(outpath) end csv_read1 = @elapsed df = CSV.read(joinpath(dirpath, largest_file), delim = delim, header = header, threaded=false); csv_read2 = @elapsed CSV.read(joinpath(dirpath, largest_file), delim = delim, header = header, threaded=false); csv_write1 = 0 csv_write2 = 0 try csv_write1 = @elapsed CSV.write(joinpath(outpath, largest_file*".csv"), df); csv_write2 = @elapsed CSV.write(joinpath(outpath, largest_file*".csv"), df); catch err end R""" library(data.table) library(fst) # memory.limit(Inf) data_table_read1 = system.time(a <- data.table::fread($(joinpath(dirpath, largest_file))))[3] data_table_read2 = system.time(data.table::fread($(joinpath(dirpath, largest_file))))[3] data_table_write1 = system.time(data.table::fwrite(a, $(joinpath(outpath, largest_file*".data.table.csv"))))[3] data_table_write2 = system.time(data.table::fwrite(a, $(joinpath(outpath, largest_file*".data.table.csv"))))[3] fst_write1 = system.time(fst::write_fst(a, $(joinpath(outpath, largest_file*".fst"))))[3] fst_write2 = system.time(fst::write_fst(a, $(joinpath(outpath, largest_file*".fst"))))[3] fst_read1 = system.time(fst::read_fst($(joinpath(outpath, largest_file*".fst"))))[3] fst_read2 = system.time(fst::read_fst($(joinpath(outpath, largest_file*".fst"))))[3] parquet_r_write1 = system.time(arrow::write_parquet(a, $(joinpath(outpath, largest_file*".parquet"))))[3] parquet_r_write2 = system.time(arrow::write_parquet(a, $(joinpath(outpath, largest_file*".parquet"))))[3] parquet_r_read1 = system.time(arrow::read_parquet($(joinpath(outpath, largest_file*".parquet"))))[3] parquet_r_read2 = system.time(arrow::read_parquet($(joinpath(outpath, largest_file*".parquet"))))[3] rm(a) gc() """ @rget data_table_read1 @rget data_table_read2 @rget data_table_write1 @rget data_table_write2 @rget fst_write1 @rget fst_write2 @rget fst_read1 @rget fst_read2 @rget parquet_r_read1 @rget parquet_r_read2 @rget parquet_r_write1 @rget parquet_r_write2 # jlso_write1 = 0 # jlso_write2 = 0 # try # jlso_write1 = @elapsed JLSO.save(joinpath(outpath, largest_file*".jlso"), df); # jlso_write2 = @elapsed JLSO.save(joinpath(outpath, largest_file*".jlso"), df); # catch err # end # jld2_write1 = 0 # jld2_write2 = 0 # try # jld2_write1 = @elapsed save(joinpath(outpath, largest_file*".jld2"), Dict("df" => df)); # jld2_write2 = @elapsed save(joinpath(outpath, largest_file*".jld2"), Dict("df" => df)); # catch err # end # jld_write1 = 0 # jld_write2 = 0 # try # jld_write1 = @elapsed save(joinpath(outpath, largest_file*".jld"), Dict("df" => df)); # jld_write2 = @elapsed save(joinpath(outpath, largest_file*".jld"), Dict("df" => df)); # catch err # end jdf_write1 = 0 jdf_write2 = 0 try jdf_write1 = @elapsed savejdf(joinpath(outpath, largest_file*".jdf"), df); jdf_write2 = @elapsed savejdf(joinpath(outpath, largest_file*".jdf"), df); catch err end # # feather can't handle all missing for n in names(df) if eltype(df[!,n]) == Missing println("Removed $n for Feather.jl") select!(df, Not(n)) df[!,n] = Vector{Union{Missing, Bool}}(missing, size(df, 1)) end end feather_write1 = 0 feather_write2 = 0 try feather_write1 = @elapsed Feather.write(joinpath(outpath, largest_file*".feather"), df); feather_write2 = @elapsed Feather.write(joinpath(outpath, largest_file*".feather"), df); catch err end ######################################### loading feather_read1 = 0 feather_read2 = 0 try feather_read1 = @elapsed Feather.read(joinpath(outpath, largest_file*".feather")); feather_read2 = @elapsed Feather.read(joinpath(outpath, largest_file*".feather")); catch err end # jld_read1 = 0 # jld_read2 = 0 # try # jld_read1 = @elapsed load(joinpath(outpath, largest_file*".jld"))["df"]; # jld_read2 = @elapsed load(joinpath(outpath, largest_file*".jld"))["df"]; # catch err # end # jld2_read1 = 0 # jld2_read2 = 0 # try # jld2_read1 = @elapsed load(joinpath(outpath, largest_file*".jld2"))["df"]; # jld2_read2 = @elapsed load(joinpath(outpath, largest_file*".jld2"))["df"]; # catch err # end # # jlso_read1 = 0 # jlso_read2 = 0 # try # jlso_read1 = @elapsed JLSO.load(joinpath(outpath, largest_file*".jlso"))["data"]; # jlso_read2 = @elapsed JLSO.load(joinpath(outpath, largest_file*".jlso"))["data"]; # catch err # end jdf_read1 = 0 jdf_read2 = 0 try jdf_read1 = @elapsed loadjdf(joinpath(outpath, largest_file*".jdf")); jdf_read2 = @elapsed loadjdf(joinpath(outpath, largest_file*".jdf")); catch err end # write_perf = [jdf_write1, jdf_write2, csv_write1, csv_write2, feather_write1, feather_write2, jld2_write1, jld2_write2, jlso_write1, jlso_write2] # read_perf = [jdf_read1, jdf_read2, csv_read1, csv_read2, feather_read1, feather_read2, jld2_read1, jld2_read2, jlso_read1, jlso_read2] write_perf = [jdf_write1, jdf_write2, csv_write1, csv_write2, feather_write1, feather_write2, data_table_write1, data_table_write2, fst_write1, fst_write2, parquet_r_write1, parquet_r_write2] read_perf = [jdf_read1, jdf_read2, csv_read1, csv_read2, feather_read1, feather_read2, data_table_read1, data_table_read2, fst_read1, fst_read2, parquet_r_read1, parquet_r_read2] pkgs = repeat(["JDF.jl", "CSV.jl", "Feather.jl", "data.table", "fst", "parquet R"], inner = 2) run_group = repeat(["1st", "2nd"], outer = 6) plot_write = groupedbar( pkgs, write_perf, group = run_group, ylab = "Seconds", title = "Disk-format Write performance comparison \n Data: $data_label data \n Size: $(size(df)) filesize:$(round(filesize(joinpath(dirpath, largest_file))/1024^3, digits=1))GB \n Julia $(VERSION)" ) savefig(plot_write, joinpath(outpath, largest_file*"plot_write.png")) # plot_write_wo_jlso = groupedbar( # repeat(["JDF.jl", "CSV.jl", "Feather.jl", "JLD2.jl"], inner = 2), # [jdf_write1, jdf_write2, csv_write1, csv_write2, feather_write1, feather_write2, jld2_write1, jld2_write2], # group = repeat(["1st", "2nd"], outer = 4), # ylab = "Seconds", # title = "Disk-format Write performance comparison \n Data: $data_label data \n Size: $(size(df)) filesize:$(round(filesize(joinpath(dirpath, largest_file))/1024^3, digits=1))GB \n Julia $(VERSION)" # ) # savefig(plot_write_wo_jlso, joinpath(outpath, largest_file*"plot_write_wo_jlso.png")) plot_read = groupedbar( pkgs, read_perf, group = run_group, ylab = "Seconds", title = "Disk-format Read performance comparison \n Data: $data_label data \n Size: $(size(df)) filesize:$(round(filesize(joinpath(dirpath, largest_file))/1024^3, digits=1))GB \n Julia $(VERSION)" ) savefig(plot_read, joinpath(outpath, largest_file*"plot_read.png")) # plot_read_wo_csv_jlso = groupedbar( # repeat(["JDF.jl", "Feather.jl", "JLD2.jl"], inner = 2), # [jdf_read1, jdf_read2, feather_read1, feather_read2, jld2_read1, jld2_read2], # group = repeat(["1st", "2nd"], outer = 3), # ylab = "Seconds", # title = "Disk-format Read performance comparison \n Data: $data_label data \n Size: $(size(df)) filesize:$(round(filesize(joinpath(dirpath, largest_file))/1024^3, digits=1))GB \n Julia $(VERSION)" # ) # savefig(plot_read_wo_csv_jlso, joinpath(outpath, largest_file*"plot_read_wo_csv_jlso.png")) # # plot_read_wo_jlso = groupedbar( # repeat(["JDF.jl", "CSV.jl", "Feather.jl", "JLD2.jl"], inner = 2), # [jdf_read1, jdf_read2, csv_read1, csv_read2, feather_read1, feather_read2, jld2_read1, jld2_read2], # group = repeat(["1st", "2nd"], outer = 4), # ylab = "Seconds", # title = "Disk-format Read performance comparison \n Data: $data_label data \n Size: $(size(df)) filesize:$(round(filesize(joinpath(dirpath, largest_file))/1024^3, digits=1))GB \n Julia $(VERSION)" # ) # savefig(plot_read_wo_jlso, joinpath(outpath, largest_file*"plot_read_wo_jlso.png")) (write_perf, read_perf, dirpath, outpath, largest_file, df) end sum_file_size(dir) = begin res = Int[] for f in joinpath.(dir, readdir(dir)) if isfile(f) push!(res, filesize(f)) elseif isdir(f) println(f) push!(res, sum(filesize.(joinpath.(f,readdir(f))))) end end df = DataFrame(file = readdir(dir), fs = res) tmpfn = (x->x[end-3:end]) df[!,:ext] = tmpfn.(df[!, :file]) filter!(r -> r.ext != ".png", df) df = sort!(df, :ext)[[1;3:4;6:7], :] df[:pkg] = ["CSV", "fst", "JDF.jl", "parquet R", "Feather.jl"] sort!(df, :pkg) df end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1109
# dirpath = "C:/data/Performance_All/" # largest_file = "Performance_2000Q4.txt" # outpath = "c:/data" # # download("https://packages.revolutionanalytics.com/datasets/AirOnTime87to12/AirOnTimeCSV.zip") # ;unzip c:/data/AirOnTimeCSV AirOnTimeCSV.zip # Uncomment for debugging dirpath = "c:/data/AirOnTimeCSV/" largest_file = "airOT199302.csv" outpath = "c:/data/jdf-bench/airOT199302.csv" data_label = "Air On Time 199302" delim = ',' header = true include("C:/Users/RTX2080/git/JDF/benchmarks/benchmarks.jl") @time res = gen_benchmark("c:/data/AirOnTimeCSV/", "airOT199302.csv", "c:/data/jdf-bench/airOT199302.csv", data_label) # gen_benchmark("C:/data/Performance_All/", "Performance_2000Q4.txt", "c:/data/jdf-bench/Performance_2000Q4.txt", "Fannie Mae Performance 2000Q4") sizedf = sum_file_size(outpath) using StatsPlots p = plot( sizedf.pkg, sizedf.fs/1024^3, linetype = :bar, ylab = "Size (GB)", legend = false, title = "On-disk file Size for various formats\n $data_label data") savefig(p, joinpath(outpath, largest_file*"_filesize.png"))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
3404
# Fannie Mae # download("http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-data/mortgage_2000-2007.tgz", "c:/data/mortgage_2000-2007.tgz") # un-tar and uncompress the file # ;tar zxvg mortgage_2000-2007.tgz # uncomment for debugging dirpath = "C:/data/perf/" largest_file = "Performance_2004Q3.txt" outpath = "c:/data/jdf-bench/Performance_2004Q3.txt" data_label = "Fannie Mae Performance 2004Q3" # delim = ',' # header = true include("C:/Users/RTX2080/git/JDF/benchmarks/benchmarks.jl") #@timegen_benchmark("c:/data/AirOnTimeCSV/", "airOT199302.csv", "c:/data/jdf-bench/airOT199302.csv", "Air On Time 199302") @time res = gen_benchmark(dirpath, largest_file, outpath, data_label, delim = '|', header = false); write_perf = res[1] read_perf = res[2] pkgs = repeat(["JDF.jl", "CSV.jl", "Feather.jl", "data.table", "fst", "parquet R"], inner = 2) run_group = repeat(["1st", "2nd"], outer = 6) write_perf = write_perf[pkgs .!= "Feather.jl"] run_group = run_group[pkgs .!= "Feather.jl"] pkgs1 = pkgs[pkgs .!= "Feather.jl"] plot_write = groupedbar( pkgs1, write_perf, group = run_group, ylab = "Seconds", title = "Disk-format Write performance comparison \n Julia $(VERSION)" ) savefig(plot_write, joinpath(outpath, largest_file*"plot_write_less.png")) pkgs = repeat(["JDF.jl", "CSV.jl", "Feather.jl", "data.table", "fst", "parquet R"], inner = 2) run_group = repeat(["1st", "2nd"], outer = 6) read_perf = read_perf[.!in.(pkgs, Ref(["CSV.jl", "parqeut R"]))] run_group = run_group[.!in.(pkgs, Ref(["CSV.jl", "parqeut R"]))] pkgs2 = pkgs[.!in.(pkgs, Ref(["CSV.jl", "parqeut R"]))] plot_read = groupedbar( pkgs2, read_perf, group = run_group, ylab = "Seconds", title = "Disk-format Read performance comparison \n Julia $(VERSION)" ) savefig(plot_read, joinpath(outpath, largest_file*"plot_read_less.png")) write_perf = res[1] read_perf = res[2] pkgs = repeat(["JDF.jl", "CSV.jl", "Feather.jl", "data.table", "fst", "parquet R"], inner = 2) run_group = repeat(["1st", "2nd"], outer = 6) write_perf = write_perf[pkgs .!= "Feather.jl"] run_group = run_group[pkgs .!= "Feather.jl"] pkgs1 = pkgs[pkgs .!= "Feather.jl"] plot_write = groupedbar( pkgs1, write_perf, group = run_group, ylab = "Seconds", title = "Disk-format Write performance comparison \n Julia $(VERSION)" ) savefig(plot_write, joinpath(outpath, largest_file*"plot_write_less.png")) pkgs = repeat(["JDF.jl", "CSV.jl", "Feather.jl", "data.table", "fst", "parquet R"], inner = 2) run_group = repeat(["1st", "2nd"], outer = 6) read_perf = read_perf[.!in.(pkgs, Ref(["CSV.jl", "parqeut R"]))] run_group = run_group[.!in.(pkgs, Ref(["CSV.jl", "parqeut R"]))] pkgs2 = pkgs[.!in.(pkgs, Ref(["CSV.jl", "parqeut R"]))] plot_read = groupedbar( pkgs2, read_perf, group = run_group, ylab = "Seconds", title = "Disk-format Read performance comparison \n Julia $(VERSION)" ) savefig(plot_read, joinpath(outpath, largest_file*"plot_read_less.png")) sizedf = sum_file_size(outpath) using StatsPlots p = plot( sizedf.pkg, sizedf.fs/1024^3, linetype = :bar, ylab = "Size (GB)", legend = false, title = "On-disk file Size for various formats\n $data_label data") savefig(p, joinpath(outpath, largest_file*"_filesize.png"))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1068
# Fannie Mae # download("http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-data/mortgage_2000.tgz", "c:/data/mortgage_2000.tgz") # un-tar and uncompress the file # ;tar zxvg c:/data/mortgage_2000.tgz # uncomment for debugging dirpath = "C:/data/Performance_All/" largest_file = "Performance_2000Q4.txt" outpath = "c:/data/jdf-bench/Performance_2000Q4.txt" data_label = "Fannie Mae Performance 2000Q4" # delim = ',' # header = true include("C:/Users/RTX2080/git/JDF/benchmarks/benchmarks.jl") #@timegen_benchmark("c:/data/AirOnTimeCSV/", "airOT199302.csv", "c:/data/jdf-bench/airOT199302.csv", "Air On Time 199302") @time gen_benchmark(dirpath, largest_file, outpath, data_label, delim = '|', header = false); sizedf = sum_file_size(outpath) using StatsPlots p = plot( sizedf.pkg, sizedf.fs/1024^3, linetype = :bar, ylab = "Size (GB)", legend = false, title = "On-disk file Size for various formats\n $data_label data") savefig(p, joinpath(outpath, largest_file*"_filesize.png"))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
344
using Documenter using JDF makedocs( sitename = "JDF", format = Documenter.HTML(), modules = [JDF] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. #=deploydocs( repo = "<repository url>" )=#
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1483
module JDF using Blosc: Blosc using Missings: Missings using BufferedStreams #using RLEVectors using WeakRefStrings, TimeZones using StatsBase: rle, inverse_rle, countmap, sample import Base: show, getindex, setindex!, eltype, names using Base: size using Serialization: serialize, deserialize import Base.Threads: @spawn function __init__() Blosc.set_num_threads(Threads.nthreads()) end export savejdf, loadjdf export column_loader, column_loader! export type_compress!, type_compress export compress_then_write export JDFFile, @jdf_str, jdfmetadata, metadata, size, names export IsBitsType, eachcol, some_elm, getindex, istable include("JDFFile.jl") include("type-writer-loader/Bool.jl") include("type-writer-loader/Char.jl") include("type-writer-loader/DateTime.jl") include("type-writer-loader/categorical-arrays.jl") include("type-writer-loader/pooled-arrays.jl") include("type-writer-loader/Missing.jl") include("type-writer-loader/Nothing.jl") include("type-writer-loader/String.jl") include("type-writer-loader/StringArray.jl") include("type-writer-loader/Symbol.jl") include("type-writer-loader/ZonedDateTime.jl") include("type-writer-loader/substring.jl") include("column_loader.jl") include("compress_then_write.jl") include("load-columns.jl") include("loadjdf.jl") include("savejdf.jl") include("type_compress.jl") include("metadata.jl") include("eachcol.jl") include("Tables.jl") end # module
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1921
export JDFFile, @jdf_str, path, getindex import Base: getindex, view """ jdf"path/to/JDFfile.jdf" JDFFile("path/to/JDFfile.jdf") Define a JDF file, which you use with methods like `names` and `size`. ## Example using JDF, DataFrames df = DataFrame(a = 1:3, b = 1:3) savejdf(df, "plsdel.jdf") names(jdf"plsdel.jdf") # [:a, :b] size(jdf"plsdel.jdf") # (2, 3) size(jdf"plsdel.jdf", 1) # (2, 3) size(jdf"plsdel.jdf", 1) # (2, 3) # clean up rm("plsdel.jdf", force = true, recursive = true) """ struct JDFFile{T<:AbstractString} path::T end """ jdf"path/to/JDFfile.jdf" JDFFile("path/to/JDFfile.jdf") Define a JDF file, which you can apply `names` and `size`. ## Example using JDF, DataFrames df = DataFrame(a = 1:3, b = 1:3) savejdf(df, "plsdel.jdf") names(jdf"plsdel.jdf") # [:a, :b] ncol(jdf"plsdel.jdf") # 2 size(jdf"plsdel.jdf") # (2, 3) size(jdf"plsdel.jdf", 1) # (2, 3) size(jdf"plsdel.jdf", 1) # (2, 3) # clean up rm("plsdel.jdf", force = true, recursive = true) """ macro jdf_str(path) return :(JDFFile($path)) end """ path(jdf::JDFFile) Return the path of the JDF """ path(jdf) = getfield(jdf, :path) function Base.getindex(file::JDFFile, col::String) getindex(file, Symbol(col)) end function Base.getindex(file::JDFFile, col::Symbol) # TODO make it load from column loader for faster access JDF.load(file; cols = [col])[col] end function Base.getindex(file::JDFFile, rows, col::String) # TODO make it load from column loader for faster access getfield(JDF.load(file; cols = [col]), Symbol(col))[rows, :] end function Base.getindex(file::JDFFile, rows, cols::AbstractVector{String}) JDF.load(file; cols = cols)[rows, :] end Base.view(file::JDFFile, rows, cols) = getindex(file, rows, cols) getindex(file::JDFFile, rows, cols) = JDF.load(file)[rows, cols]
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1157
import Tables: rows, columns, istable, rowaccess, columnaccess, schema, Schema import Base: propertynames, getproperty, getindex export istable, columns istable(::Type{JDFFile}) = true istable(::JDFFile) = true rowaccess(::JDFFile) = false columnaccess(::JDFFile) = true rowaccess(::Type{<:JDFFile}) = false columnaccess(::Type{<:JDFFile}) = true propertynames(jdf::JDFFile) = names(jdf) getproperty(jdf::JDFFile, col::Symbol) = JDF.load(jdf; cols = [col]).columns[col] schema(jdf::JDFFile) = begin meta = metadata(jdf) Schema(meta.names, map(x -> x.type, meta.metadatas)) end columns(jdf::JDFFile) = jdf # this is the table type specific to JDF struct Table columns::NamedTuple end nrow(t::Table) = length(t.columns[1]) ncol(t::Table) = length(t.columns) Tables.columns(t::Table) = t.columns Tables.istable(t::Table) = true function Base.getindex(t::Table, col::Symbol) t.columns[col] end function Base.getindex(t::Table, rows, col::Symbol) t.columns[col][rows] end function Base.getindex(t::Table, rows, ::Colon) # TODO probably not efficient NamedTuple{names(t.columns)}([nt[rows] for nt in t.columns]) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
392
""" Load data from file using metadata """ function column_loader(t::Type{T}, io, metadata) where {T} buffer = Vector{UInt8}(undef, metadata.len) column_loader!(buffer, t, io, metadata) end # load bytes from io decompress into type function column_loader!(buffer, ::Type{T}, io, metadata) where {T} readbytes!(io, buffer, metadata.len) return Blosc.decompress(T, buffer) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
317
function compress_then_write(b::AbstractVector{T}, io) where {T} compress_then_write(Vector(b), io) end # the generic dispatch for T where is isbits function compress_then_write(b::Vector{T}, io) where {T} bbc = Blosc.compress(b) res = length(bbc) write(io, bbc) return (len = res, type = T) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
840
import Base: iterate, length, eachcol struct JDFFileColIterator jdf::JDFFile cols::Vector{Union{String,Symbol}} end eachcol(jdf::JDFFile) = JDFFileColIterator(jdf, names(jdf)) Base.length(jdf::JDFFileColIterator) = length(jdf.cols) function Base.iterate(jdf::JDFFileColIterator, state = 1) if state > length(jdf.cols) return nothing end # TODO isoloate this into a column loader indir = path(jdf.jdf) # load the metadatas metadatas = open(joinpath(indir, "metadata.jls")) do io deserialize(io) end name = metadatas.names[state] metadata = metadatas.metadatas[state] io = BufferedInputStream(open(joinpath(indir, string(name)), "r")) result = column_loader(metadata.type, io, metadata) close(io) return (result, state+1) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
475
# ###################### # A DataFrame way to get file import Base: getindex, view export getindex function Base.getindex(file::JDFFile, rows, col::String) JDF.load(file; cols = [col])[rows, 1] end Base.getindex(file::JDFFile, rows, cols::AbstractVector{String}) = begin JDF.load(file; cols = cols)[rows, :] end Base.view(file::JDFFile, rows, cols) = getindex(file, rows, cols) getindex(file::JDFFile, rows, cols) = JDF.load(file)[rows, cols]
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
2127
""" Load the columns of the JDF as vectors """ load_columns(jdf::JDFFile; args...) = load_columns(path(jdf); args...) function load_columns(indir; cols = Symbol[], verbose = false) # starting from DataFrames.jl 0.21 the colnames are strings cols = collect(string.(cols)) if verbose println("loading $indir in parallel") end metadatas = open(joinpath(indir, "metadata.jls")) do io deserialize(io) end if length(cols) == 0 cols =collect(string.(metadatas.names)) else scmn = setdiff(cols, collect(string.(metadatas.names))) if length(scmn) > 0 throw("columns $(reduce((x,y) -> string(x) * ", " * string(y), scmn)) are not available, please ensure you have spelt them correctly") end end results = Vector{Any}(undef, length(cols)) names = Vector{String}(undef, length(cols)) # rate limit channel c1 = Channel{Bool}(Threads.nthreads()) atexit(() -> close(c1)) i = 1 for (name, metadata) in zip(metadatas.names, metadatas.metadatas) name_str = string(name) if name_str in cols put!(c1, true) results[i] = @spawn begin io = BufferedInputStream(open(joinpath(indir, string(name)), "r")) new_result = column_loader(metadata.type, io, metadata) close(io) (name = name_str, task = new_result) end take!(c1) i += 1 end end # run the collection of results this serially result_vectors = Vector{Any}(undef, length(cols)) for (i, result) in enumerate(results) if verbose println("Extracting $(fetch(result).name)") end new_result = fetch(result).task colname = fetch(result).name names[i] = colname if new_result === nothing result_vectors[i] = Vector{Missing}(missing, metadatas.rows) else result_vectors[i] = new_result end end return names, result_vectors end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1215
""" JDF.load(indir, verbose = true) JDF.load(indir, cols = Vector{Symbol}, verbose = true) Load a `Tables.jl` table from JDF saved at `outdir`. On Julia > v1.3, a multithreaded version is used. """ load(indir; cols = Symbol[], verbose = false) = begin # starting from DataFrames.jl 0.21 the colnames are strings cols = collect(string.(cols)) metadatas = jdfmetadata(indir) # TODO simplify this this is duplicated in load_columns if length(cols) == 0 cols =collect(string.(metadatas.names)) else scmn = setdiff(cols,collect(string.(metadatas.names))) if length(scmn) > 0 throw("columns $(reduce((x,y) -> string(x) * ", " * string(y), scmn)) are not available, please ensure you have spelt them correctly") end end cols_in_loaded_order, result_vectors = load_columns(indir; cols = cols, verbose = verbose) # reorders to specified order reorder_idx = indexin(cols_in_loaded_order, cols) Table(NamedTuple{Tuple(Symbol.(cols))}(@view result_vectors[reorder_idx])) end load(jdf::JDFFile; args...) = load(path(jdf); args...) loadjdf(args...; kwargs...) = load(args...; kwargs...)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1011
""" JDF.metadata(indir) Load the metadata associated with the JDF in `indir` """ jdfmetadata(indir) = begin open(joinpath(indir, "metadata.jls")) do io deserialize(io) end end """ JDF.metadata(indir) Load the metadata associated with the JDF in `indir` """ metadata(jdf::JDFFile) = jdfmetadata(path(jdf)) """ JDF.names(indir) Load the column names associated with the JDF in `indir` # Examples ```julia using JDF, DataFrames JDF.save(DataFrame(a = 1:3, b = 1:3), "plsdel.jdf") JDF.names("plsdel.jdf") ``` """ names(jdf::JDFFile) = metadata(jdf).names # names(indir) = jdfmetadata(indir).names """ JDF.size(indir) Returns the JDF's `size` """ # JDF.size(indir) = begin # m = metadata(indir) # (m.rows, length(m.names)) # end JDF.size(jdf::JDFFile) = begin m = metadata(jdf) (m.rows, length(m.names)) end # JDF.size(indir, v) = JDF.size(indir, Val(v)) JDF.size(jdf::JDFFile, val) = JDF.size(jdf)[val]
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
2955
using Tables """ some_elm(::Type{T}) Some arbitrary element of type `T` """ function some_elm(::Type{T}) where {T} try return zero(T) catch try return T(0) catch try rand(T) catch try Vector{T}(undef, 1)[1] catch throw("the type $T is not supported by JDF.jl yet. Try to update JDF.jl. If it still doesn't work after update, please submit an issue at https://github.com/xiaodaigh/JDF.jl/issues") end end end end end some_elm(::Type{Date}) = Date(0) """ JDF.save(outdir, table) JDF.save(table, outdir) Save a `Tables.jl` compatitable table to the `outdir`. On Julia > v1.3, a multi-threaded version is used. The columns of the table can be of the following vector types columns are supported * `isbits` types e.g. `Int*`, `UInt*`, `Float*` * `Bool` * `Strings` * `WeakRefStrings.StringVector` * `CategoricalArrays` * `Union{Missing, T}`` for `T` support above """ save(df, outdir::AbstractString; kwargs...) = save(outdir, df; kwargs...) function save(outdir::AbstractString, df; verbose = false) @assert Tables.istable(df) pmetadatas = Any[missing for i = 1:length(Tables.columnnames(df))] if !isdir(outdir) mkpath(outdir) end # use a bounded channel to limit the number simultaneous writes c1 = Channel{Bool}(Threads.nthreads()) atexit(() -> close(c1)) for (i, n) in enumerate(Tables.columnnames(df)) if verbose println(n) end put!(c1, true) pmetadatas[i] = @spawn begin io = BufferedOutputStream(open(joinpath(outdir, string(n)), "w")) res = compress_then_write(Tables.getcolumn(df, n), io) close(io) res end take!(c1) end metadatas = fetch.(pmetadatas) fnl_metadata = ( names = Tables.columnnames(df), rows = length(Tables.columns(df)[1]), metadatas = metadatas, version = v"0.2", ) open(joinpath(outdir, "metadata.jls"), "w") do io serialize(io, fnl_metadata) end #fnl_metadata JDFFile(outdir) end # figure out from metadata how much space is allocated """ Get tthe number of bytes used by the file""" get_bytes(metadata) = begin if metadata.type == String return max(metadata.string_compressed_bytes, metadata.string_len_bytes) elseif metadata.type == Missing return 0 elseif metadata.type >: Missing return max(get_bytes(metadata.Tmeta), get_bytes(metadata.missingmeta)) else return metadata.len end end hasfieldnames(::Type{T}) where {T} = fieldnames(T) >= 1 savejdf(args...; kwargs...) = save(args...; kwargs...)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
6718
# TODO compress Union{Int, Missing} is no missing present # TODO allow int to uint """ type_compress!(df, compress_float = false, verbose = false) Compress a DataFrame by using types of smaller bit. If safe to do so, it will "downgrade" `Int*` and `UInt*` if safe to do some. It will compress any `CategoricalVector` with `DataFrames.compress`. For `Vector{String}`, if the number unique values is less than 2^16 then it will be converted to `CategoricalVector` and otherwise will be stored as `WeakRefStrings.StringVector`. If `compress_float = true` then `Float64` will be downgraded to `Float32`; but beware that this means the calculation will be done with reduce precision. """ type_compress!(df; compress_float = false, verbose = false) = begin @assert Tables.istable(df) for n in names(df) if verbose println("Compressing $n") end if compress_float || (nonmissingtype(eltype(df[!, n])) != Float64) df[!, n] = type_compress(df[!, n]) end end df end type_compress(v::Vector{T}) where {T<:Union{Int128,Int64,Int32,Int16}} = begin min1, max1 = extrema(v) if typemin(Int8) <= min1 && max1 <= typemax(Int8) return Int8.(v) elseif typemin(Int16) <= min1 && max1 <= typemax(Int16) return Int16.(v) elseif typemin(Int32) <= min1 && max1 <= typemax(Int32) return Int32.(v) elseif typemin(Int64) <= min1 && max1 <= typemax(Int64) return Int64.(v) end end type_compress(v::Vector{T}) where {T<:Union{UInt128,UInt64,UInt32,UInt16}} = begin max1 = maximum(v) if max1 <= typemax(UInt8) return UInt8.(v) elseif max1 <= typemax(UInt16) return UInt16.(v) elseif max1 <= typemax(UInt32) return UInt32.(v) elseif max1 <= typemax(UInt64) return UInt64.(v) end end type_compress(v::Vector{Union{Missing,T}}) where {T<:Union{UInt128,UInt64,UInt32,UInt16}} = begin max1 = maximum(skipmissing(v)) if max1 <= typemax(UInt8) return Vector{Union{Missing,UInt8}}(v) elseif max1 <= typemax(UInt16) return Vector{Union{Missing,UInt16}}(v) elseif max1 <= typemax(UInt32) return Vector{Union{Missing,UInt32}}(v) elseif max1 <= typemax(UInt64) return Vector{Union{Missing,UInt64}}(v) end end type_compress(v::Vector{Union{Missing,T}}) where {T<:Union{Int128,Int64,Int32,Int16}} = begin min1, max1 = extrema(skipmissing(v)) if typemin(Int8) <= min1 && max1 <= typemax(Int8) return Vector{Union{Missing,Int8}}(v) elseif typemin(Int16) <= min1 && max1 <= typemax(Int16) return Vector{Union{Missing,Int16}}(v) elseif typemin(Int32) <= min1 && max1 <= typemax(Int32) return Vector{Union{Missing,Int32}}(v) elseif typemin(Int64) <= min1 && max1 <= typemax(Int64) return Vector{Union{Missing,Int64}}(v) end end type_compress(v::Vector{Float64}) = Vector{Float32}(v) type_compress(v::Vector{Union{Missing,Float64}}) = Vector{Union{Missing,Float32}}(v) type_compress(v::Vector{String}) = begin # TODO recommend a PooledString if necessary # use some heuristic to decide whether to compress ## if the number of unique elements is predicted to be less than typemax(UInt16) + 1 ## then we can use categorical array to compress them # sv = countmap(sample(v, 888)) # # # Estimate the number of unique items # # https://stats.stackexchange.com/questions/19014/how-can-i-estimate-unique-occurrence-counts-from-a-random-sampling-of-data # u1 = length([key for (key, value) in sv if value == 1]) # u = length(sv) # # if the estimated number of estimtes is less than about 32000 then it's # # worth putting it into a categorical array # if u + u1/888 * (length(v) - 888) < typemax(UInt16) + 1 # return categorical(v) # # rlev = rle(categorical(v)) # # rlev[2] .= cumsum(rlev[2]) # # return RLEVector(rlev...) # end if length(Set(v)) <= 2^16 return categorical(v) end # check if the string is more compact at RLE level rlev = rle(v) # firstly check if the rlev can be whittle down further offset_dict = Dict{String,UInt}() # an IOBuffer to build up the string buffer long_string_builder = IOBuffer() offset_array_builder = IOBuffer() string_len_builder = IOBuffer() values = rlev[1] offset_upto = 0 # add the first entry offset_dict[values[1]] = offset_upto write(offset_array_builder, offset_upto) offset_update = write(long_string_builder, values[1]) write(string_len_builder, offset_update) offset_upto += offset_update for v in values[2:end] if !haskey(offset_dict, v) write(offset_array_builder, offset_upto) offset_update = write(long_string_builder, v) write(string_len_builder, offset_update) # update the offset_upto for next one offset_dict[v] = offset_upto offset_upto += offset_update # println(v, " : ", offset_dict[v]) else # If the string doesn't existing then obtain the offset from the # offset_dict. # There is no need to write it to the string aagain because it's # already there offset_old = offset_dict[v] # still write the lengths write(string_len_builder, sizeof(v)) # still write the offset write(offset_array_builder, offset_old) end end #long_str =String(take!(long_string_builder)) offsets = inverse_rle(reinterpret(Int, take!(offset_array_builder)), rlev[2]) lengths = inverse_rle(reinterpret(Int, take!(string_len_builder)), rlev[2]) buffer = take!(long_string_builder) close(long_string_builder) close(offset_array_builder) close(string_len_builder) #return String(buffer), offsets, lengths #return (StringArray{String, 1}(buffer, offsets, lengths), String(buffer), offsets, lengths) return StringArray{String,1}(buffer, offsets, lengths) end type_compress(v::Vector{Missing}) = v type_compress(v::CategoricalVector) where {T,IntType} = compress(v) type_compress(v) = begin # println("The compression for $(typeof(v)) is not yet supported. No compression is performed. Submit an idea if you think JDF should support it: https://github.com/xiaodaigh/JDF.jl/issues") v end if false end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
556
column_loader(T::Type{Bool}, io, metadata) = begin # Bool are saved as UInt8 buffer = Vector{UInt8}(undef, metadata.len) readbytes!(io, buffer, metadata.len) Bool.(Blosc.decompress(UInt8, buffer)) end column_loader!(buffer, T::Type{Bool}, io, metadata) = begin # Bool are saved as UInt8 read!(io, buffer) res = Blosc.decompress(UInt8, buffer) Bool.(res) end compress_then_write(b::Vector{Bool}, io) = begin b8 = UInt8.(b) bbc = Blosc.compress(b8) write(io, bbc) return (len = length(bbc), type = Bool) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
437
# save symbols compress_then_write(b::Vector{Char}, io) = begin meta = compress_then_write(Int.(b), io) (type = Char, len = meta.len, metadata = meta) end # load a Symbol column column_loader(::Type{Char}, io, metadata) = begin strs = column_loader(Int, io, metadata.metadata) Char.(strs) end column_loader!(_, ::Type{Char}, io, metadata) = begin column_loader(Char, io, metadata) end some_elm(::Type{Char}) = 'J'
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
600
# save symbols # compress_then_write(b::Vector{DateTime}, io) = begin # meta = compress_then_write(map(x->x.instant, b), io) # (type = DateTime, len = meta.len, metadata = meta) # end # # # load a Symbol column # column_loader(::Type{DateTime}, io, metadata) = begin # strs = column_loader(meta.type, io, metadata.metadata) # DateTime.(strs) # end # # column_loader!(_, ::Type{DateTime}, io, metadata) = begin # column_loader(DateTime, io, metadata) # end # some_elm(::Type{DateTime}) = DateTime(2000,1,1,1,1,1) # turns out DateTime is BLosc Compressable; no need to do anything
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1203
using Missings: allowmissing some_elm(::Type{Missing}) = missing # the dispatch for Union{T, Missing} # 1. compress the missing # 2. and also load the missing function compress_then_write(b::Vector{Union{T,Missing}}, io) where {T} b_S = coalesce.(b, some_elm(T)) metadata = compress_then_write(b_S, io) b_m = ismissing.(b) metadata2 = compress_then_write(b_m, io) ( Tmeta = metadata, missingmeta = metadata2, type = eltype(b), len = max(metadata.len, metadata2.len), ) end # just write it out as missing # notice how io is not needed since nothing need to be written compress_then_write(b::Vector{Missing}, _) = (len = 0, type = Missing, orig_len = length(b)) function column_loader!(buffer, ::Type{Union{Missing,T}}, io, metadata) where {T} # read the content Tmeta = metadata.Tmeta t_pre = column_loader!(buffer, Tmeta.type, io, Tmeta) |> allowmissing # read the missings as bool m = column_loader(Bool, io, metadata.missingmeta) t_pre[m] .= missing t_pre end column_loader!(_, ::Type{Missing}, io, metadata) = Vector{Missing}(missing, metadata.orig_len)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1096
some_elm(::Type{Nothing}) = nothing # just write it out as nothing compress_then_write(b::Vector{Nothing}, io) = (len = 0, type = Nothing, orig_len = length(b)) # the dispatch for Union{T, Missing} # 1. comporess the missing # 2. and also load the missing compress_then_write(b::Vector{Union{T,Nothing}}, io) where {T} = begin #S = nonmissingtype(eltype(b)) b_S = T[isnothing(b) ? some_elm(T) : b for b in b] metadata = compress_then_write(b_S, io) b_m = isnothing.(b) metadata2 = compress_then_write(b_m, io) ( len = max(metadata.len, metadata2.len), type = T, metadata = metadata, missingmeta = metadata2, ) end column_loader!(buffer, ::Type{Union{Nothing,T}}, io, metadata) where {T} = begin # read the content Tmeta = metadata.metadata t_pre = Vector{Union{Nothing,T}}(column_loader!(buffer, Tmeta.type, io, Tmeta)) m = column_loader(Bool, io, metadata.missingmeta) t_pre[m] .= nothing t_pre end column_loader!(_, ::Type{Nothing}, _, metadata) = Vector{Nothing}(nothing, metadata.orig_len)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
2446
some_elm(::Type{String}) = "" """ Saving a String """ compress_then_write(b::Vector{String}, io) = begin # TODO compare whether StringArray is better # return compress_then_write(StringArray(b), io) # write the string one by one # do a Run-length encoding (RLE) previous_b = b[1] cnt = 1 lens = Int[] str_lens = Int[] for i = 2:length(b) if b[i] != previous_b push!(str_lens, write(io, previous_b)) push!(lens, cnt) cnt = 0 previous_b = b[i] end cnt += 1 end # reach the end: two situation # 1) it's a new element, so write it # 2) it's an existing element. Also write it push!(str_lens, write(io, previous_b)) push!(lens, cnt) @assert sum(lens) == length(b) str_lens_compressed = Blosc.compress(Vector{UInt32}(str_lens)) str_lens_bytes = write(io, str_lens_compressed) lens_compressed = Blosc.compress(Vector{UInt64}(lens)) rle_bytes = write(io, lens_compressed) # return metadata return ( string_compressed_bytes = sum(str_lens), string_len_bytes = str_lens_bytes, rle_bytes = rle_bytes, rle_len = length(str_lens), type = String, len = max(sum(str_lens), str_lens_bytes, rle_bytes), ) end # load a string column """ metadata should consists of length, compressed byte size of string-lengths, string content lengths """ column_loader!(_, ::Type{String}, io, metadata) = begin column_loader(String, io, metadata) end column_loader(::Type{String}, io, metadata) = begin buffer = Vector{UInt8}(undef, metadata.string_compressed_bytes) readbytes!(io, buffer, metadata.string_compressed_bytes) #return String(buffer) # read the string-lengths buffer2 = Vector{UInt8}(undef, metadata.string_len_bytes) readbytes!(io, buffer2, metadata.string_len_bytes) buffer3 = Vector{UInt8}(undef, metadata.rle_bytes) readbytes!(io, buffer3, metadata.rle_bytes) counts = Blosc.decompress(UInt64, buffer3) str_lens = Blosc.decompress(UInt32, buffer2) #return (String(buffer), str_lens, counts) lengths = inverse_rle(str_lens, counts) offsets = inverse_rle(vcat(0, cumsum(str_lens[1:end-1])), counts) #res = StringArray{String, 1}(buffer, vcat(1, cumsum(Blosc.decompress(UInt64, buffer3))[1:end-1]) .-1, ) res = StringArray{String,1}(buffer, offsets, lengths) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
924
compress_then_write(b::StringVector{T}, io) where {T} = begin buffer_meta = (type = eltype(b.buffer), len = write(io, Blosc.compress(b.buffer))) offsets_meta = (type = eltype(b.offsets), len = write(io, Blosc.compress(b.offsets))) lengths_meta = (type = eltype(b.lengths), len = write(io, Blosc.compress(b.lengths))) ( metadata = (buffer = buffer_meta, offsets = offsets_meta, lengths = lengths_meta), type = typeof(b), ) end column_loader(::Type{StringVector{T}}, io, metadata) where {T} = begin buffer = column_loader(metadata.metadata.buffer.type, io, metadata.metadata.buffer) offsets = column_loader(metadata.metadata.offsets.type, io, metadata.metadata.offsets) lengths = column_loader(metadata.metadata.lengths.type, io, metadata.metadata.lengths) metadata.type(buffer, offsets, lengths) end # tests at test/test-stringarray.jl
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
479
# save symbols compress_then_write(b::Vector{Symbol}, io) = begin string_meta = compress_then_write(String.(b), io) (type = Symbol, len = string_meta.len, metadata = string_meta) end # load a Symbol column column_loader(::Type{Symbol}, io, metadata) = begin strs = column_loader(String, io, metadata.metadata) Symbol.(strs) end column_loader!(_, ::Type{Symbol}, io, metadata) = begin column_loader(Symbol, io, metadata) end some_elm(::Type{Symbol}) = :JDF
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
5586
# ############################################################################## # ZonedDateTime # ############################################################################## # the structure # utc_datetime : isbits # timezone : VariableTimeZone # name : string # transitions : Vector{TimeZones.Transitions} # utc_datetime : isbits # zone: FixedTimeZone # name : string # offset : isbits # cutoff : isbits (Union{Nothing, DateTime}) # zone # name : string # offset : isbits compress_then_write(b::Vector{ZonedDateTime}, io) = begin utc_datetime_meta = compress_then_write([b.utc_datetime for b in b], io) timezone_meta = compress_then_write([b.timezone for b in b], io) zone_meta = compress_then_write([b.zone for b in b], io) ( type = ZonedDateTime, len = utc_datetime_meta.len + timezone_meta.len + zone_meta.len, utc_datetime_meta = utc_datetime_meta, timezone_meta = timezone_meta, zone_meta = zone_meta, ) end # load a ZonedDateTime column column_loader(::Type{ZonedDateTime}, io, metadata) = begin v1 = column_loader(metadata.utc_datetime_meta.type, io, metadata.utc_datetime_meta) v2 = column_loader(metadata.timezone_meta.type, io, metadata.timezone_meta) v3 = column_loader(metadata.zone_meta.type, io, metadata.zone_meta) [ZonedDateTime(v1, v2, v3) for (v1, v2, v3) in zip(v1, v2, v3)] end column_loader!(_, ::Type{ZonedDateTime}, io, metadata) = begin column_loader(ZonedDateTime, io, metadata) end some_elm(::Type{ZonedDateTime}) = ZonedDateTime(1984, 1, 5, tz"Asia/Shanghai") # ############################################################################## # TimeZones.Transitions # ############################################################################## compress_then_write(b::Vector{TimeZones.Transition}, io) = begin # the structure of Transition is like # (utc_datetime::isbits, zone::string) utc_datetime_meta = compress_then_write([b.utc_datetime for b in b], io) zone_meta = compress_then_write([b.zone for b in b], io) ( type = TimeZones.Transition, len = utc_datetime_meta.len + zone_meta.len, utc_datetime_meta = utc_datetime_meta, zone_meta = zone_meta, ) end column_loader(::Type{TimeZones.Transition}, io, metadata) = begin v1 = column_loader(metadata.utc_datetime_meta.type, io, metadata.utc_datetime_meta) v2 = column_loader(metadata.zone_meta.type, io, metadata.zone_meta) [TimeZones.Transition(v1, v2) for (v1, v2) in zip(v1, v2)] end column_loader!(::Type{TimeZones.Transition}, io, metadata) = begin column_loader(TimeZones.Transition, io, metadata) end # ############################################################################## # VariableTimeZone # ############################################################################## compress_then_write(b::Vector{VariableTimeZone}, io) = begin # the structure of Transition is like # (name::string, transitions, cutoff::string) name_meta = compress_then_write([b.name for b in b], io) len_transitions = [length(b.transitions) for b in b] len_transitions_meta = compress_then_write(len_transitions, io) transitions = Vector{TimeZones.Transition}(undef, sum(len_transitions)) i = 1 for b in b for t in b.transitions transitions[i] = t i += 1 end end transitions_meta = compress_then_write(transitions, io) cutoff_meta = compress_then_write([b.cutoff for b in b], io) ( type = VariableTimeZone, len = name_meta.len + len_transitions_meta.len + transitions_meta.len + cutoff_meta.len, name_meta = name_meta, len_transitions_meta = len_transitions_meta, transitions_meta = transitions_meta, cutoff_meta = cutoff_meta, ) end column_loader(::Type{VariableTimeZone}, io, metadata) = begin name = column_loader(metadata.name_meta.type, io, metadata.name_meta) len_transitions = column_loader( metadata.len_transitions_meta.type, io, metadata.len_transitions_meta, ) hi = cumsum(len_transitions) lo = vcat(0, hi[1:end-1]) .+ 1 transitions = column_loader(metadata.transitions_meta.type, io, metadata.transitions_meta) metadata.cutoff_meta.type cutoff = column_loader(metadata.cutoff_meta.type, io, metadata.cutoff_meta) [ VariableTimeZone(name, transitions[lo:hi], cutoff) for (name, lo, hi, cutoff) in zip(name, lo, hi, cutoff) ] end column_loader!(::Type{VariableTimeZone}, io, metadata) = begin column_loader(VariableTimeZone, io, metadata) end # ############################################################################## # FixedTimeZone # ############################################################################## compress_then_write(b::Vector{FixedTimeZone}, io) = begin # the structure of Transition is like # (name, offset) m1 = compress_then_write([b.name for b in b], io) m2 = compress_then_write([b.offset for b in b], io) (type = FixedTimeZone, len = m1.len + m2.len, name_meta = m1, offset_meta = m2) end column_loader(::Type{FixedTimeZone}, io, metadata) = begin v1 = column_loader(metadata.name_meta.type, io, metadata.name_meta) v2 = column_loader(metadata.offset_meta.type, io, metadata.offset_meta) [FixedTimeZone(v1, v2) for (v1, v2) in zip(v1, v2)] end column_loader!(::Type{FixedTimeZone}, io, metadata) = begin column_loader(FixedTimeZone, io, metadata) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
2227
using DataAPI using CategoricalArrays: CategoricalVector, CategoricalArray, CategoricalPool function compress_then_write(b::CategoricalVector{T,IntType}, io) where {T, IntType<:Integer} compress_refs = compress_then_write(b.refs, io) compress_poolindex = compress_then_write(DataAPI.levels(b), io) ( type = CategoricalVector, refs = compress_refs, poolindex = compress_poolindex, ordered = b.pool.ordered, ) end # function column_loader(::Type{CategoricalVector{Union{Missing, T}, I}}, io, metadata) where {T, I} # println("got here1") # refs_meta = metadata.refs # pi_meta = metadata.poolindex # ref = column_loader(refs_meta.type, io, refs_meta) # poolindex = column_loader(pi_meta.type, io, pi_meta) # return CategoricalArray{pi_meta.type,1}( # ref, # CategoricalPool{eltype(poolindex),eltype(ref)}(Array(poolindex), metadata.ordered), # ) # end function column_loader(::Type{CategoricalVector}, io, metadata) refs_meta = metadata.refs pi_meta = metadata.poolindex ref = column_loader(refs_meta.type, io, refs_meta) poolindex = column_loader(pi_meta.type, io, pi_meta) # this checks for missing in the values which would be represented by ref = 0 if any(==(0), ref) return CategoricalArray{Union{pi_meta.type, Missing},1}( ref, CategoricalPool{eltype(poolindex),eltype(ref)}(Array(poolindex), metadata.ordered), ) else # no missing in the values, just return return CategoricalArray{pi_meta.type,1}( ref, CategoricalPool{eltype(poolindex),eltype(ref)}(Array(poolindex), metadata.ordered), ) end end if false # # compress_then_write-cate.jl # using Revise # using JDF # using DataFrames, Debugger # b = categorical(["a", "b", "a", "c"]) # io = open("c:/data/test.io", "w") # metadata = compress_then_write(a, io) # close(io) # # io = open("c:/data/test.io", "r") # aa = column_loader(CategoricalVector, io, metadata) # close(io) # # df = DataFrame(a = a) # # savejdf("c:/data/pls_del.jdf", df) # # loadjdf("c:/data/pls_del.jdf") end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
752
using DataAPI, PooledArrays function compress_then_write(b::PooledVector, io) compress_refs = compress_then_write(b.refs, io) compress_poolindex = compress_then_write(b.pool, io) (type = PooledVector, refs = compress_refs, poolindex = compress_poolindex) end function column_loader(b::Type{PooledVector}, io, metadata) refs_meta = metadata.refs pi_meta = metadata.poolindex ref = column_loader(refs_meta.type, io, refs_meta) poolindex = column_loader(pi_meta.type, io, pi_meta) # TODO more efficient pooledArray construction # PooledVector{pi_meta.type}(ref, CategoricalPool{eltype(poolindex), eltype(ref)}(Array(poolindex))) ref = max.(1, min.(length(poolindex), ref)) PooledArray(poolindex[ref]) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
444
function compress_then_write(b::Vector{SubString{String}}, io) @warn "JDF is writing a SubString vector. When loaded back it will be a String vector not a SubString vector" compress_then_write(String.(b), io) end function column_loader(::Type{SubString{String}}, io, metadata) @warn "JDF is loading SubString vector. It will be loaded as a String vector not a SubString vector" column_loader(String, io, metadata) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1569
using JDF using Test using DataFrames using Random: randstring using WeakRefStrings include("test-categorical-ararys.jl") include("test-stringarray.jl") include("test-symbol.jl") include("test-jdf-str.jl") include("test-eachcol.jl") include("test-ZonedDateTime.jl") include("test-substring.jl") include("test-date-w-missing.jl") @testset "JDF.jl parallel" begin df = DataFrame([collect(1:100) for i = 1:3000], :auto) df[!, :int_missing] = rand([rand(rand([UInt, Int, Float64, Float32, Bool])), missing], nrow(df)) df[!, :missing] .= missing df[!, :strs] = [randstring(8) for i = 1:nrow(df)] df[!, :stringarray] = StringVector([randstring(8) for i = 1:nrow(df)]) df[!, :strs_missing] = [rand([missing, randstring(8)]) for i = 1:nrow(df)] df[!, :stringarray_missing] = StringVector([rand([missing, randstring(8)]) for i = 1:nrow(df)]) df[!, :symbol_missing] = [rand([missing, Symbol(randstring(8))]) for i = 1:nrow(df)] df[!, :char] = getindex.(df[!, :strs], 1) df[!, :char_missing] = allowmissing(df[!, :char]) df[rand(1:nrow(df), 10), :char_missing] .= missing @time JDF.save("a.jdf", df) @time df2 = DataFrame(JDF.load("a.jdf"), copycols=false) isequal(df, df2) df2 = DataFrame(JDF.load("a.jdf"), copycols=false) @test ncol(df2) == 3009 @test nrow(df2) == 100 df2[!, :stringarray_missing] @test all(all(isequal(df[!, n], df2[!, n])) for n in names(df)) # clean up rm("a.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
242
using Test, RDatasets using JDF, Tables iris = dataset("datasets", "iris") ok = savejdf(iris, "plsdel.jdf") Tables.columns(ok) Tables.schema(ok) propertynames(ok) getproperty(ok, :Species) rm("plsdel.jdf", force = true, recursive = true)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1043
using Test using JDF, TimeZones, DataFrames a = some_elm(ZonedDateTime) ar = Vector{ZonedDateTime}(undef, 10) ar .= a meta = open("plsdel.io", "w") do io compress_then_write(ar, io) end ar_loaded = open("plsdel.io") do io column_loader(meta.type, io, meta) end @test ar == ar_loaded df = DataFrame(ar = ar) JDF.save(df, "df.jdf") df_loaded = DataFrame(JDF.load("df.jdf")) @test df == df_loaded ar_timezone = [ar.timezone for ar in ar] meta = open("plsdel.io", "w") do io compress_then_write(ar_timezone, io) end ar_timezone_copy = open("plsdel.io") do io column_loader(meta.type, io, meta) end @test ar_timezone == ar_timezone_copy meta = open("plsdel.io", "w") do io compress_then_write(a.timezone.transitions, io) end a_timezone_transitions_loaded = open("plsdel.io") do io column_loader(meta.type, io, meta) end @test a.timezone.transitions == a_timezone_transitions_loaded rm("plsdel.io", force = true) rm("df.jdf", force = true, recursive = true)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1204
using Test using JDF using RDatasets using DataFrames: DataFrame using CategoricalArrays using Tables @testset "JDF.jl categorical arrays" begin df = DataFrame([collect(1:100) for i = 1:3], :auto) df[!, :x1] = categorical(df[!, :x1]) df[!, :x2] = categorical(string.(df[!, :x2])) JDF.save(df, "a3cate.jdf") df_loaded_back = JDF.load("a3cate.jdf", cols = [:x2, :x1]) df2 = DataFrame(df_loaded_back; copycols = true) @test size(df2, 2) == 2 @test size(df2, 1) == 100 @time df2[!, :x1] isa CategoricalVector{Int} @time df2[!, :x2] isa CategoricalVector{String} rm("a3cate.jdf", force = true, recursive = true) end @testset "Guard against Github #27" begin iris = dataset("datasets", "iris") JDF.save(iris, "iris.jdf") JDF.load("iris.jdf") rm("iris.jdf", force = true, recursive = true) end @testset "CategoricalArray{Union{Missing, String}}" begin # Guard against github 73 df2 = DataFrame(sex = categorical(["Male", missing, "Female"])) JDF.save("df2.jdf", df2) b = JDF.load("df2.jdf") |> DataFrame @test any(ismissing, b.sex) rm("df2.jdf", force=true, recursive=true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
727
# using Revise using Test using JDF, DataFrames @testset "JDF.jl Char" begin ac = ['a', 'b', 'a', 'c', 'd'] metadata_ac = open("io.jdf", "w") do io compress_then_write(ac, io) end a = ['a', 'b', 'a', missing, 'd'] metadata = open("io.jdf", "w") do io compress_then_write(a, io) end aa = open("io.jdf", "r") do io column_loader(Union{Missing,Symbol}, io, metadata) end df = DataFrame(a = a, ac = ac) savejdf("pls_del.jdf", df) df2 = loadjdf("pls_del.jdf") @test size(df) == size(df2) @test all(isequal.(df.a, df2.a)) @test all(isequal.(df.ac, df2.ac)) rm("io.jdf", force = true) rm("pls_del.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
586
# Guard aginst github #62 using JDF using Dates col = [Date(1999,1,1), missing] df = (d = col, a = [1, missing]) using Tables JDF.save("plsdel-date-w-missing.jdf", df) DataFrame(JDF.load("plsdel-date-w-missing.jdf")) rm("plsdel-date-w-missing.jdf", recursive=true) # Guard aginst github #72 using DataFrames using Dates df = DataFrame() df[!, :test] = [Dates.DateTime(2000,1,1,1,1,1), missing] df using JDF JDF.savejdf("plsdel-datetime-w-missing.jdf", df) DataFrame(JDF.load("plsdel-datetime-w-missing.jdf")) rm("plsdel-datetime-w-missing.jdf", recursive=true)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1299
using Test using DataFrames using Random: randstring using WeakRefStrings: StringVector @testset "JDF.jl eachcol" begin df = DataFrame([collect(1:100) for i = 1:3000], :auto) df[!, :int_missing] = rand([rand(rand([UInt, Int, Float64, Float32, Bool])), missing], size(df, 1)) df[!, :missing] .= missing df[!, :strs] = [randstring(8) for i = 1:size(df, 1)] df[!, :stringarray] = StringVector([randstring(8) for i = 1:size(df, 1)]) df[!, :strs_missing] = [rand([missing, randstring(8)]) for i = 1:size(df, 1)] df[!, :stringarray_missing] = StringVector([rand([missing, randstring(8)]) for i = 1:size(df, 1)]) df[!, :symbol_missing] = [rand([missing, Symbol(randstring(8))]) for i = 1:size(df, 1)] df[!, :char] = getindex.(df[!, :strs], 1) df[!, :char_missing] = allowmissing(df[!, :char]) df[rand(1:size(df, 1), 10), :char_missing] .= missing JDF.save("a.jdf", df) df2 = jdf"a.jdf" @test size(df2, 2) == 3009 @test size(df2, 1) == 100 @time df3 = [a for a in eachcol(df2)] df4 = DataFrame(df3, :auto) @test size(df4) == size(df) @test all([isequal(df4[!, n], df[!, n]) for n = 1:size(df4, 2)]) # clean up rm("a.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
230
using Test; using JDF, DataFrames a = DataFrame(a = 1:3, b =4:6) tf = tempname() JDF.save(tf, a) a = DataFrame(JDF.load(tf)) a1 = DataFrame(JDF.load(tf; cols = ["b", "a"])) @test a1.a == 1:3 @test a1.b == 4:6
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
860
# Based on the Julia implementation # InlineStringN are all `isbitstype` so they work with JDF automatically # However for other languages, we may still need to explicitly support them and conver them # to string is not available in those languages using JDF using InlineStrings, DataFrames, CSV using Random:randstring @testset "Test InlineStrings get loaded and saved properly" begin a = DataFrames.DataFrame(a = [randstring(254) |> String255 for i in 1:100]) path = tempdir() CSV.write(joinpath(path, "tmp.csv"), a) a1 = CSV.read(joinpath(path, "tmp.csv"), DataFrame) a1.a = a1.a .|> String255 JDF.save(joinpath(path, "tmp.jdf"), a1) a2 = JDF.load(joinpath(path, "tmp.jdf")) |> DataFrame @test eltype(a2.a) == String255 # clean up rm("tmp.csv"; force=true) rm("tmp.jdf"; force=true, recursive=true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1275
@testset "JDF.jl jdf_str" begin df = DataFrame([collect(1:100) for i = 1:3000], :auto) df[!, :int_missing] = rand([rand(rand([UInt, Int, Float64, Float32, Bool])), missing], size(df, 1)) df[!, :missing] .= missing df[!, :strs] = [randstring(8) for i = 1:size(df, 1)] df[!, :stringarray] = StringVector([randstring(8) for i = 1:size(df, 1)]) df[!, :strs_missing] = [rand([missing, randstring(8)]) for i = 1:size(df, 1)] df[!, :stringarray_missing] = StringVector([rand([missing, randstring(8)]) for i = 1:size(df, 1)]) df[!, :symbol_missing] = [rand([missing, Symbol(randstring(8))]) for i = 1:size(df, 1)] df[!, :char] = getindex.(df[!, :strs], 1) df[!, :char_missing] = allowmissing(df[!, :char]) df[rand(1:size(df, 1), 10), :char_missing] .= missing JDF.save("a.jdf", df) df2 = DataFrame(JDF.load(jdf"a.jdf"), copycols=false) @test size(df2, 2) == 3009 @test size(df2, 1) == 100 @test all(all(isequal(df[!, n], df2[!, n])) for n in names(df)) df3 = DataFrame(JDF.load(jdf"a.jdf", cols = [:missing, :strs]), copycols=false) @test size(df3, 2) == 2 @test size(df3, 1) == 100 # clean up rm("a.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
924
using DataFrames, Random, WeakRefStrings using JDF @testset "JDF.jl nrow" begin df = DataFrame([collect(1:100) for i = 1:3000]) df[!, :int_missing] = rand([rand(rand([UInt, Int, Float64, Float32, Bool])), missing], nrow(df)) df[!, :missing] .= missing df[!, :strs] = [randstring(8) for i = 1:nrow(df)] df[!, :stringarray] = StringVector([randstring(8) for i = 1:nrow(df)]) df[!, :strs_missing] = [rand([missing, randstring(8)]) for i = 1:nrow(df)] df[!, :stringarray_missing] = StringVector([rand([missing, randstring(8)]) for i = 1:nrow(df)]) JDF.save("a.jdf", df) dfjdf = jdf"a.jdf" @test ncol(jdf"a.jdf") == 3006 @test nrow(jdf"a.jdf") == 100 @test size(jdf"a.jdf") == (100, 3006) @test size(jdf"a.jdf", 1) == 100 @test size(jdf"a.jdf", 2) == 3006 # clean up rm("a.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
983
using Test using JDF using DataFrames: DataFrame using PooledArrays using Missings: allowmissing @testset "JDF.jl pooledarrays arrays" begin df = DataFrame([rand(1:10, 100) for i = 1:3]) df[!, :x3] = df[:, :x1] |> allowmissing df[!, :x4] = string.(df[!, :x2]) |> allowmissing df[50, :x3] = missing df[66, :x4] = missing df[!, :x1] = PooledArray(df[!, :x1]) df[!, :x2] = PooledArray(string.(df[!, :x2])) df[!, :x3] = PooledArray(df[!, :x3]) df[!, :x4] = PooledArray(df[!, :x4]) JDF.save(df, "a3pooled.jdf") df2 = JDF.load("a3pooled.jdf") @test size(df2, 2) == 4 @test size(df2, 1) == 100 @time df2[!, :x1] isa PooledVector{Int} @time df2[!, :x2] isa PooledVector{String} @time df2[!, :x3] isa PooledVector{Union{Missing,Int}} @time df2[!, :x4] isa PooledVector{Union{Missing,String}} for n in names(df) @test isequal(df2[n], df[n]) end rm("a3pooled.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
540
# using Revise using Test using JDF, WeakRefStrings, DataFrames @testset "JDF.jl WeakRefStrings.StringArrays" begin a = StringVector(["a", "b", "a", missing, "c"]) io = open("io.jdf", "w") metadata = compress_then_write(a, io) close(io) io = open("io.jdf", "r") aa = column_loader(StringVector{String}, io, metadata) close(io) df = DataFrame(a = a) savejdf("pls_del.jdf", df) df2 = loadjdf("pls_del.jdf") rm("io.jdf", force = true) rm("pls_del.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
430
using DataFrames using Random: randstring using JDF using Test df = DataFrame([collect(1:10) for i = 1:3000], :auto); df[!, :strs] = [randstring(8) for i = 1:DataFrames.nrow(df)] df[!, :substrs] = [SubString(x, 1, 3) for x in df[!, :strs]] JDF.save("tmp-substring.jdf", df) df2 = DataFrame(JDF.load("tmp-substring.jdf")) @test df.substrs == df2.substrs rm("tmp-substring.jdf", force=true, recursive=true)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
762
using Test using JDF, DataFrames @testset "JDF.jl Symbol" begin ac = [:a, :b, :a, :c, :d] metadata_ac = open("io.jdf", "w") do io compress_then_write(ac, io) end a = [:a, :b, :a, missing, :c] metadata = open("io.jdf", "w") do io compress_then_write(a, io) end aa = open("io.jdf", "r") do io column_loader(Union{Missing,Symbol}, io, metadata) end df = DataFrame(a = a, ac = ac) JDF.save("pls_del.jdf", df) df2 = DataFrame(JDF.load("pls_del.jdf"); copycols=false) @test size(df) == size(df2) @test all(isequal.(df.a, df2.a)) @test all(isequal.(df.ac, df2.ac)) rm("io.jdf", force = true) rm("pls_del.jdf", force = true, recursive = true) end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
344
gf() = begin CSV.read("c:/data/AirOnTimeCSV/airOT198710.csv") end gf2() = begin p = "c:/data/AirOnTimeCSV/" f = joinpath.(p, readdir(p)) sort!(f, by = x -> filesize(x), rev = true) reduce(vcat, CSV.read.(f[1:100])) end iow() = begin open("c:/data/bin.bin", "w") end ior() = begin open("c:/data/bin.bin", "r") end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
568
using CSV a = gf() CSV.write("c:/data/a.csv", a) ;gzip c:/data/a.csv using CodecZlib, BufferedStreams io = open("c:/data/a.csv.gz") |> GzipDecompressorStream |> BufferedInputStream @time a2 = CSV.read(io) close(io) using ZipFile, CSV, DataFrames, BufferedStreams a = DataFrame(a = 1:3) CSV.write("c:/data/a.csv", a) # zip the file; Windows users who do not have zip available on the PATH can manual zip the CSV ;zip c:/data/a.zip c:/data/a.csv io = open("c:/data/a.zip", "r") z = ZipFile.Reader(io) df = CSV.read(z.files[1]) close(io)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
520
using Revise using JDF, CSV, DataFrames @time a = gf() # 2G file # @time a = CSV.read( # "C:/data/Performance_All/Performance_2010Q3.txt", # delim = '|', # header = false # ); b = type_compress(Array(a[!, :ORIGIN])); io = iow() @time metadata = compress_then_write(b, io) close(io) using Revise using JDF, CSV, DataFrames # using JLSO # metadata = JLSO.load("C:/data/metatmp")["data"] io = ior() @time oo = column_loader(metadata.type, io, metadata); close(io) all(b.==oo)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
518
using Revise using JDF, CSV, DataFrames const path = "c:/data/AirOnTimeCSV" const outpath = "c:/data/AirOnTimeCSV_jdf_pp" convert_csv_to_jdf(infile, outdir) = begin print("$(infile): csv read: ") @time df = CSV.read(infile) print("$(infile): compression: ") @time type_compress!(df) print("$(infile): write_out: ") @time psavejdf(outdir, df) end for infile in readdir(path) @time convert_csv_to_jdf( joinpath(path, infile), joinpath(outpath, infile) ) println("") println("") end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
763
using Revise using JDF, CSV, DataFrames, Blosc, Base.GC, BenchmarkTools, Serialization # use 12 threads Blosc.set_num_threads(6) # GC.gc() @time a = CSV.read( "C:/data/Performance_All/Performance_2003Q3.txt", delim = '|', header = false ); GC.gc() t = time() @time metadatas = psavejdf(a, "c:/data/large12.dir.jdf"); time() - t GC.gc() GC.gc() @time metadatas = savejdf(a, "c:/data/large12.jdf"); GC.gc() serialize("c:/data/large12.meta", metadatas) using Revise, JDF, DataFrames, Serialization metadatas = deserialize("c:/data/large12.meta") @time a2 = loadjdf("c:/data/large12.jdf", metadatas); GC.gc() all(names(a) .== names(a2)) all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)]))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1025
using Revise using JDF, CSV, DataFrames, Blosc, Base.GC, BenchmarkTools, Serialization # use 12 threads Blosc.set_num_threads(6) # GC.gc() @time a = CSV.read( "C:/data/Performance_All/Performance_2010Q3.txt", delim = '|', header = false ); GC.gc() @time metadatas = savejdf("c:/data/large.jdf", a); using Revise, JDF, DataFrames, Serialization @time a2 = loadjdf("c:/data/large.jdf"; verbose); GC.gc() @time type_compress!(a2); io = iow() compress_then_write(a2.Column2, io) close(io) @time psavejdf("c:/data/largec.jdf", a2); using Revise, JDF, DataFrames, Serialization @time a2 = ploadjdf("c:/data/largec.jdf"); GC.gc() @time type_compress!(a2, verbose = true) @time psavejdf("c:/data/largec2.jdf", a2); @time a2 = loadjdf("c:/data/largec.jdf"); using Revise, JDF, DataFrames, Serialization @time a2 = ploadjdf("c:/data/largec.jdf"); GC.gc() all(names(a) .== names(a2)) all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)]))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1654
using Revise using JDF using CSV, DataFrames, Blosc, JLSO, Base.GC # use 12 threads Blosc.set_num_threads(6) # GC.gc() @time a = CSV.read( "C:/data/Performance_All/Performance_2016Q1.txt", delim = '|', header = false ); GC.gc() t = time() @time metadatas = psavejdf(a, "c:/data/large.jdf"); time() - t GC.gc() GC.gc() @time metadatas = savejdf(a, "c:/data/large.jdf"); GC.gc() @time JLSO.save("c:/data/large.meta.jlso", metadatas) GC.gc() using Revise, JLSO, JDF @time metadatas = JLSO.load("c:/data/large.meta.jlso")["data"]; GC.gc() @time a2 = loadjdf("c:/data/large.jdf", metadatas); GC.gc() all(names(a) .== names(a2)) all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)])) # CSVFiles vs CSV using Revise using CSV, DataFrames, JDF, Base.GC import Base.Threads: @spawn # a = gf() fp = [f for f in readdir("c:/data/AirOnTimeCSV/") if endswith(f, ".csv")]; using CSVFiles @time a= load(joinpath("c:/data/AirOnTimeCSV", fp[1]), type_detect_rows = 2000) #psavejdf(a, joinpath("c:/data/hehe/", fp[1])) sort!(fp, by = x->filesize(joinpath("c:/data/AirOnTimeCSV/", x)), rev=true) fn4(fp) = begin #@time a = load(joinpath("C:/data/AirOnTimeCSV", fp), type_detect_rows = 2000) |> DataFrame @time a = CSV.read(joinpath("C:/data/AirOnTimeCSV", fp)) #mkdir(joinpath("c:/data/hehe/", fp)) res = psavejdf(a, joinpath("c:/data/hehe/", fp)) a = nothing res end res = Vector{Any}(undef, length(fp)) @time for (i, f) in enumerate(fp[1:6]) print(i) res[i] = fn4(f) end #@time fn4(fp[1]) #@time fn4.(fp) 2+2
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1139
using Revise using JDF, CSV, DataFrames, Blosc, Base.GC, BenchmarkTools, Serialization # use 12 threads Blosc.set_num_threads(6) # GC.gc() @time a = CSV.read( "C:/data/Performance_All/Performance_2003Q1.txt", delim = '|', header = false ); GC.gc() t = time() @time metadatas = psavejdf(a, "c:/data/large8.dir.jdf"); time() - t GC.gc() GC.gc() @time metadatas = savejdf(a, "c:/data/large8.jdf"); GC.gc() serialize("c:/data/large8.meta", metadatas) using Revise, JDF, DataFrames, Serialization metadatas = deserialize("c:/data/large8.meta") @time a2 = loadjdf("c:/data/large8.jdf", metadatas); # before=Base.summarysize(a2) @time type_compress!(a2, verbose = true) # after=Base.summarysize(a2) # # before/after GC.gc() @time metadatas = savejdf(a2, "c:/data/large8c.jdf"); GC.gc() serialize("c:/data/large8c.meta", metadatas) using Serialization, JDF metadatas = deserialize("c:/data/large8c.meta") @time a2 = loadjdf("c:/data/large8c.jdf", metadatas); GC.gc() all(names(a) .== names(a2)) all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)]))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
377
using Revise using JDF using CSV, DataFrames, Feather @time a = CSV.read("c:/data/a.feather"); @time pmetadatas = psavejdf(a, "c:/data/a.jdf"); @time metadatas = savejdf(a, "c:/data/a.jdf"); #a = nothing @time a2 = loadjdf("c:/data/a.jdf", metadatas); all(names(a) .== names(a2)) all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)]))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
1826
using Revise using JDF using CSV, DataFrames, Blosc, JLSO, Base.GC # use 12 threads Blosc.set_num_threads(6) @time a = CSV.read("C:/data/Performance_All/Performance_2010Q3.txt", delim = '|', header = false); strs = "id".*string.(rand(UInt16, 100_000_000)); # write randomstring to io strs = coalesce.(Array(a[:Column3]), "") io = open("c:/data/string.jdf", "w") @time string_byte_sizes = write.(Ref(io), strs); close(io) load_str(file, string_byte_sizes) = begin io = open(file, "r") tot_strings_in_bytes = sum(string_byte_sizes) strings_in_bytes = Vector{UInt8}(undef, tot_strings_in_bytes) @time read!(io, strings_in_bytes) close(io) i = 1 j = 0 ptr_to_string_in_bytes = pointer(strings_in_bytes) @time reconstituted_strings = String[" "^s for s in string_byte_sizes] @time for string_byte_size in string_byte_sizes #global i, j, reconstituted_strings #reconstituted_strings[i] = unsafe_string(ptr_to_string_in_bytes+j, string_byte_size) unsafe_copyto!( reconstituted_strings[i] |> pointer, ptr_to_string_in_bytes + j, string_byte_size) i += 1 j += string_byte_size end reconstituted_strings end @time reconstituted_strings = load_str("c:/data/string.jdf", string_byte_sizes); all(reconstituted_strings .== strs) # true: works but FAST @time metadata = compress_then_write(a, "c:/data/string.jdf"); x = "abc" xp = pointer(x) unsafe_load(xp-8) unsafe_pointer_to_objref(pointer(UInt8[3, 0, 0, 0, 0, 0, 0, 0, 63, 63, 63])) unsafe_pointer_to_objref(xp-8) y = unsafe_string(xp) yp = pointer(y) yp == xp # false reinterpret(8, UInt8) pointer(8) unsafe_pointer_to_objref(pointer(UInt8[0,0,0,0, 0,0,0,2, 64, 65]))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
579
using Revise using DataFrames, CSV, JDF using WeakRefStrings a[!, :stringarr] = StringArray(rand(["a", "a", "b"], size(a,1))) a[!, :cate] = categorical(a[!, :stringarr]) @time a = CSV.read("c:/data/feature_matrix_cleaned.csv"); @time savejdf("c:/data/feature_matrix_cleaned.csv.jdf", a) a = nothing @time a = loadjdf("c:/data/feature_matrix_cleaned.csv.jdf") type_compress!(a, compress_float=true) @time savejdf("c:/data/feature_matrix_cleaned.csv.compressed.jdf", a) using BenchmarkTools @benchmark a = loadjdf("c:/data/feature_matrix_cleaned.csv.jdf")
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
3212
using Revise using JDF a = gf() b = Array(a.ORIGIN) io = iow() metadata = compress_then_write(b, io) close(io) io = ior() oo = column_loader(String, io, metadata) close(io) all(b.==oo) b = Array(a.FL_DATE) io = iow() metadata = compress_then_write(b, io) close(io) io = ior() oo = column_loader(metadata.type, io, metadata) close(io) all(b.==oo) @time metadatas = savejdf(a, "c:/data/a.jdf") @time a2 = loadjdf("c:/data/a.jdf", metadatas) using LambdaFn fn = @ฮป joinpath.(_1, readdir(_1)) files = fn("d:/data/AirOnTimeCSV") sort!(files, by = x->filesize(x)) @time listdf =reduce(vcat, CSV.read(f) for f in files[1:50]); using DataFrames, Blosc @time schema = savejdf(listdf, "d:/data/plsdel.jdf"); @time loadjdf("d:/data/plsdel.jdf", schema); bb = [Blosc.compress(Array(b)) for b in eachcol(a)] bbc = bb[1]) bbc = rand(UInt8, 100) io = open("io.test", "w") w = Array{Float32,2}(undef,n1,nw) read!(fileID, w[:,iw]) write(io, bbc) close(io) io = open("io.test", "r") bbc_new = read(io, Vector) bbc_new = Array{UInt8,1}(undef, 100) read!(io, bbc_new) close(io) N = 100_000_000; K = 100; # faster string sort svec = rand("id".*string.(1:NรทK), N); using Blosc # save with no compression io = open("c:/data/no_compression.bin", "w") @time ncw = write.(Ref(io), codeunits.(svec)); ncwtot=sum(ncw) @time ncw_compressed_tot = write(io, Blosc.compress(UInt16.(ncw))) close(io) @time res = column_loader(String, io, ncwtot) io = open("c:/data/no_compression.bin", "r") @time tmp = Vector{UInt8}(undef, sum(ncw)) @time read!(io, tmp) close(io) @time tmp_compressed = Blosc.compress(tmp) io = open("c:/data/compression.bin", "w") write(io, tmp_compressed) close(io) tot = sum(ncw) ok(tmp, ncw) = begin cncw = cumsum(ncw) str = unsafe_string(pointer(tmp)) getindex.(Ref(str), Colon().(vcat(1, cncw[1:end-1].+1), cncw)) end io = open("c:/data/bin.bin", "r") @time tmp = Vector{UInt8}(undef, tot) @time read!(io, tmp) @time ok(tmp, ncw) close(io) # @time nc = ncodeunits.(svec) # @time aa = Vector{UInt8}(undef, sum(nc)) # meh!(aa, svec, nc) = begin # start = 1 # @time for (n, s) in zip(nc, svec) # aa[1:n] = codeunits(s) # start += n # end # end @time meh!(aa, svec, nc) @time a = codeunits.(svec) close(io) @time ncw = write.(Ref(io), a); using Blosc io = open("c:/data/compression.bin", "w") @time ncw = write.(Ref(io), Blosc.compress.(codeunits.(svec))); close(io) stringit(n, io) = begin tmp = Vector{UInt8}(undef, n) read!(io, tmp) tmp end tot = sum(ncw) ok(tmp, ncw) = begin cncw = cumsum(ncw) str = unsafe_string(pointer(tmp)) getindex.(Ref(str), Colon().(vcat(1, cncw[1:end-1].+1), cncw)) end io = open("c:/data/bin.bin", "r") @time tmp = Vector{UInt8}(undef, tot) @time read!(io, tmp) @time ok(tmp, ncw) close(io) a = pointer(tmp[1:8]) @time str = unsafe_string(a) close(io) io = open("c:/data/bin.bin", "r") @time svec2 = stringit.(ncw, Ref(io)) close(io) @time svec2 = unsafe_string.(pointer.(aa)) all(svec2 .== svec)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
998
unsafe_load(pointer.(strs) + 3) a = "def" b = unsafe_string(pointer(a)) pointer(a) pointer(b) a = UInt8[64, 65, C_NULL, 62, 53] pp= pointer(a) print(pp) @time as = String(a) pointer(as) unsafe_wrap(a, Ptr{String}) a = "def" unsafe_load(pointer(a)+3) x = "id".*string.(rand(UInt8, 1_000_000)) io = open("c:/data/io.bin", "w") ncw = write.(Ref(io), x) close(io) io = open("c:/data/io.bin", "r") buffer = Vector{UInt8}(undef, sum(ncw)) readbytes!(io, buffer, sum(ncw)) close(io) @time aa = test(buffer) function test(array) start = 1 strings = String[] GC.@preserve array begin ptr = pointer(array) - 1 for i in eachindex(array) @inbounds char = array[i] if char == UInt8(',') len = i - start str = unsafe_string(ptr + start, len) push!(strings, str) start = i + 1 end end end strings end
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
719
a = CSV.read("d:/data\\AirOnTimeCSV\\airOT199401.csv") bb = [Array(b) for b in eachcol(a)] bbc = Blosc.compress(bb[1]) bbc = Blosc.compress([1,2,3]) io = open("io.test", "w") write(io, bbc) write(io, bbc) close(io) io = open("io.test", "r") bbc_new = Array{UInt8,1}(undef, length(bbc)) bbc_new2 = similar(bbc_new) read!(io, bbc_new) read!(io, bbc_new2) close(io) Blosc.decompress(Int64, bbc_new) Blosc.decompress(Int64, bbc_new2) all(Blosc.decompress(Int64, bbc_new) .== [1,2,3]) using CSV, DataFrames, Bloss, Missing # a = DataFrame( # a = rand(Int32, 100_000_000), b = rand(Float32, 100_000_000) # ) @time a = CSV.read("d:/data/AirOnTimeCSV/airOT199401.csv")
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
517
using Revise using JDF, DataFrames # a = gf() # savejdf("c:/data/a.jdf", a) @time a = loadjdf("c:/data/large.jdf") # 2G file # @time a = CSV.read( # "C:/data/Performance_All/Performance_2010Q3.txt", # delim = '|', # header = false # ); @time b = Array(a[:, :Column2]); @time res = type_compress(b); all(b .== res) # ne = findfirst(b .!= b1) # # b[ne], res[ne] using RLEVectors, StatsBase ar = rle(res) ar[2] .= cumsum(ar[2]) rlev= RLEVector(ar...) all(b .== rlev)
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
code
358
using Revise using JDF a=gf() b = Array(a.ORIGIN_STATE_ABR) io = iow() @which compress_then_write(eltype(b), b, io) @time metadata = compress_then_write(eltype(b), b, io) close(io) io = ior() @which column_loader(eltype(b), b, io) @time okhl = column_loader(eltype(b), io, metadata) close(io) all(skipmissing(b) .== skipmissing(okhl))
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
docs
599
## 0.4.1 fixed date with missing issues ## 0.4 Returning a JDFFile type that is Tables.jl compatible ## 0.2.19 Added support for `SubString{String}` ## 0.2.18 Added PooledArrays support; fixes #45 Added `save` and `load` functions ## 0.2.16 Updated to DataFrames v0.21 ## 0.2.11 Updated to Tables v1 ## 0.2.9 Updated dep to allow DataFrames.jl v0.20.0 ## 0.2.8 Tables.jl support `savejdf` now return the `JDFFile` instead of the metadata ## 0.2.7 * df[rows, cols] interface ## 0.2.6 Bug fixes for CategoricalArrays ## 0.2.5 Support for Julia 1.0 is added
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
docs
7342
# What is JDF.jl? JDF is a `DataFrame`s serialization format with the following goals * Fast save and load times * Compressed storage on disk * Enable disk-based data manipulation (not yet achieved) * Supports machine learning workloads, e.g. mini-batch, sampling (not yet achieved) JDF.jl is the Julia pacakge for all things related to JDF. JDF stores a `DataFrame` in a folder with each column stored as a separate file. There is also a `metadata.jls` file that stores metadata about the original `DataFrame`. Collectively, the column files, the metadata file, and the folder is called a JDF "file". `JDF.jl` is a pure-Julia solution and there are a lot of ways to do nifty things like compression and encapsulating the underlying struture of the arrays that's hard to do in R and Python. E.g. Python's numpy arrays are C objects, but all the vector types used in JDF are Julia data types. ## Please note The next major version of JDF will contain breaking changes. But don't worry I am fully committed to providing an automatic upgrade path. This means that you can safely use JDF.jl to save your data and not have to worry about the impending breaking change breaking all your JDF files. ## Example: Quick Start ```julia using RDatasets, JDF, DataFrames a = dataset("datasets", "iris"); first(a, 2) ``` ### *Saving* and *Loading* data By default JDF loads and saves `DataFrame`s using multiple threads starting from Julia 1.3. For Julia < 1.3, it saves and loads using one thread only. ```julia @time jdffile = JDF.save("iris.jdf", a) @time a2 = DataFrame(JDF.load("iris.jdf")) ``` Simple checks for correctness ```julia all(names(a2) .== names(a)) # true all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)])) #true ``` ### Loading only certain columns You can load only a few columns from the dataset by specifying `cols = [:column1, :column2]`. For example ```julia a2_selected = DataFrame(JDF.load("iris.jdf", cols = [:Species, :SepalLength, :PetalWidth])) ``` The difference with loading the whole datasets and then subsetting the columns is that it saves time as only the selected columns are loaded from disk. ### Some `DataFrame`-like convenience syntax/functions To take advatnage of some these convenience functions, you need to create a variable of type `JDFFile` pointed to the JDF file on disk. For example ```julia jdf"path/to/JDF.jdf" ``` or ```julia path_to_JDF = "path/to/JDF.jdf" JDFFile(path_to_JDF) ``` #### Using `df[col::Symbol]` syntax You can load arbitrary `col` using the `df[col]` syntax. However, some of these operations are not yet optimized and hence may not be efficient. ```julia afile = JDFFile("iris.jdf") afile[:Species] # load Species column ``` #### JDFFile is Table.jl columm-accessible ```julia using Tables ajdf = JDFFile("iris.jdf") Tables.columnaccess(ajdf) ``` ```julia Tables.columns(ajdf) ``` ```julia Tables.schema(ajdf) ``` ```julia getproperty(Tables.columns(ajdf), :Species) ``` #### Load each column from disk You can load each column of a JDF file from disk using iterations ```julia jdffile = jdf"iris.jdf" for col in eachcol(jdffile) # do something to col # where `col` is the content of one column of iris.jdf end ``` To iterate through the columns names and the `col` ```julia jdffile = jdf"iris.jdf" for (name, col) in zip(names(jdffile), eachcol(jdffile)) # `name::Symbol` is the name of the column # `col` is the content of one column of iris.jdf end ``` #### Metadata Names & Size from disk You can obtain the column names and number of columns `ncol` of a JDF, for example: ```julia using JDF, DataFrames df = DataFrame(a = 1:3, b = 1:3) JDF.save(df, "plsdel.jdf") names(jdf"plsdel.jdf") # [:a, :b] # clean up rm("plsdel.jdf", force = true, recursive = true) ``` ### Additional functionality: In memory `DataFrame` compression `DataFrame` sizes are out of control. A 2GB CSV file can easily take up 10GB in RAM. One can use the function `type_compress!(df)` to compress any `df::DataFrame`. E.g. ```julia type_compress!(df) ``` The function looks at `Int*` columns and see if it can be safely "downgraded" to another `Int*` type with a smaller bits size. It will convert `Float64` to `Float32` if `compress_float = true`. E.g. ```julia type_compress!(df, compress_float = true) ``` `String` compression is _planned_ and will likely employ categorical encoding combined with RLE encoding. ## Benchmarks Here are some benchmarks using the [Fannie Mae Mortgage Data](https://docs.rapids.ai/datasets/mortgage-data). Please note that a reading of zero means that the method has failed to read or write. JDF is a decent performer on both read and write and can achieve comparable performance to [R's {fst}](https://www.fstpackage.org/), once compiled. The JDF format also results in much smaller file size vs Feather.jl in this particular example (probably due to Feather.jl's inefficient storage of `Union{String, Missing}`). ![](benchmarks/results/fannie-mae-read-Performance_2004Q3.txt.png) ![](benchmarks/results/fannie-mae-write-Performance_2004Q3.txt.png) ![](benchmarks/results/fannie-mae-filesize-Performance_2004Q3.txt.png) Please note that the benchmarks were obtained on Julia 1.3+. On earlier versions of Julia where multi-threading isn't available, JDF is roughly 2x slower than as shown in the benchmarks. ## Supported data types I believe that restricting the types that JDF supports is vital for simplicity and maintainability. There is support for * `WeakRefStrings.StringVector` * `Vector{T}`, `Vector{Union{Mising, T}}`, `Vector{Union{Nothing, T}}` * `CategoricalArrays.CategoricalVetors{T}` and `PooledArrays.PooledVector` where `T` can be `String`, `Bool`, `Symbol`, `Char`, `SubString{String}`, `TimeZones.ZonedDateTime` (experimental) and `isbits` types i.e. `UInt*`, `Int*`, and `Float*` `Date*` types etc. `RLEVectors` support will be considered in the future when `missing` support arrives for `RLEVectors.jl`. ## Resources [@bkamins](https://github.com/bkamins/)'s excellent [DataFrames.jl tutorial](https://github.com/bkamins/Julia-DataFrames-Tutorial/blob/master/04_loadsave.ipynb) contains a section on using JDF.jl. ## How does JDF work? When saving a JDF, each vector is Blosc compressed (using the default settings) if possible; this includes all `T` and `Unions{Missing, T}` types where `T` is `isbits`. For `String` vectors, they are first converted to a Run Length Encoding (RLE) representation, and the lengths component in the RLE are `Blosc` compressed. ## Development Plans I fully intend to develop JDF.jl into a language neutral format by version v0.4. However, I have other OSS commitments including [R's {disk.frame}](http:/diskframe.com) and hence new features might be slow to come onboard. But I am fully committed to making JDF files created using JDF.jl v0.2 or higher loadable in all future JDF.jl versions. ## Notes * Parallel read and write support is only available from Julia 1.3. * The design of JDF was inspired by [fst](https://www.fstpackage.org/) in terms of using compressions and allowing random-access to columns
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
docs
11055
# What is JDF.jl? JDF is a `DataFrame`s serialization format with the following goals * Fast save and load times * Compressed storage on disk * Enable disk-based data manipulation (not yet achieved) * Supports machine learning workloads, e.g. mini-batch, sampling (not yet achieved) JDF.jl is the Julia pacakge for all things related to JDF. JDF stores a `DataFrame` in a folder with each column stored as a separate file. There is also a `metadata.jls` file that stores metadata about the original `DataFrame`. Collectively, the column files, the metadata file, and the folder is called a JDF "file". `JDF.jl` is a pure-Julia solution and there are a lot of ways to do nifty things like compression and encapsulating the underlying struture of the arrays that's hard to do in R and Python. E.g. Python's numpy arrays are C objects, but all the vector types used in JDF are Julia data types. ## Please note The next major version of JDF will contain breaking changes. But don't worry I am fully committed to providing an automatic upgrade path. This means that you can safely use JDF.jl to save your data and not have to worry about the impending breaking change breaking all your JDF files. ## Example: Quick Start ```julia using RDatasets, JDF, DataFrames a = dataset("datasets", "iris"); first(a, 2) ``` ``` 2ร—5 DataFrame Row โ”‚ SepalLength SepalWidth PetalLength PetalWidth Species โ”‚ Float64 Float64 Float64 Float64 Catโ€ฆ โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ 5.1 3.5 1.4 0.2 setosa 2 โ”‚ 4.9 3.0 1.4 0.2 setosa ``` ### *Saving* and *Loading* data By default JDF loads and saves `DataFrame`s using multiple threads starting from Julia 1.3. For Julia < 1.3, it saves and loads using one thread only. ```julia @time jdffile = JDF.save("iris.jdf", a) @time a2 = DataFrame(JDF.load("iris.jdf")) ``` ``` 0.091923 seconds (157.33 k allocations: 9.226 MiB, 98.89% compilation tim e) 0.165332 seconds (197.31 k allocations: 11.476 MiB, 98.49% compilation ti me) 150ร—5 DataFrame Row โ”‚ SepalLength SepalWidth PetalLength PetalWidth Species โ”‚ Float64 Float64 Float64 Float64 Catโ€ฆ โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ 5.1 3.5 1.4 0.2 setosa 2 โ”‚ 4.9 3.0 1.4 0.2 setosa 3 โ”‚ 4.7 3.2 1.3 0.2 setosa 4 โ”‚ 4.6 3.1 1.5 0.2 setosa 5 โ”‚ 5.0 3.6 1.4 0.2 setosa 6 โ”‚ 5.4 3.9 1.7 0.4 setosa 7 โ”‚ 4.6 3.4 1.4 0.3 setosa 8 โ”‚ 5.0 3.4 1.5 0.2 setosa โ‹ฎ โ”‚ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ 144 โ”‚ 6.8 3.2 5.9 2.3 virginica 145 โ”‚ 6.7 3.3 5.7 2.5 virginica 146 โ”‚ 6.7 3.0 5.2 2.3 virginica 147 โ”‚ 6.3 2.5 5.0 1.9 virginica 148 โ”‚ 6.5 3.0 5.2 2.0 virginica 149 โ”‚ 6.2 3.4 5.4 2.3 virginica 150 โ”‚ 5.9 3.0 5.1 1.8 virginica 135 rows omitted ``` Simple checks for correctness ```julia all(names(a2) .== names(a)) # true all(skipmissing([all(a2[!,name] .== Array(a[!,name])) for name in names(a2)])) #true ``` ``` true ``` ### Loading only certain columns You can load only a few columns from the dataset by specifying `cols = [:column1, :column2]`. For example ```julia a2_selected = DataFrame(JDF.load("iris.jdf", cols = [:Species, :SepalLength, :PetalWidth])) ``` ``` 150ร—3 DataFrame Row โ”‚ SepalLength PetalWidth Species โ”‚ Float64 Float64 Catโ€ฆ โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ 5.1 0.2 setosa 2 โ”‚ 4.9 0.2 setosa 3 โ”‚ 4.7 0.2 setosa 4 โ”‚ 4.6 0.2 setosa 5 โ”‚ 5.0 0.2 setosa 6 โ”‚ 5.4 0.4 setosa 7 โ”‚ 4.6 0.3 setosa 8 โ”‚ 5.0 0.2 setosa โ‹ฎ โ”‚ โ‹ฎ โ‹ฎ โ‹ฎ 144 โ”‚ 6.8 2.3 virginica 145 โ”‚ 6.7 2.5 virginica 146 โ”‚ 6.7 2.3 virginica 147 โ”‚ 6.3 1.9 virginica 148 โ”‚ 6.5 2.0 virginica 149 โ”‚ 6.2 2.3 virginica 150 โ”‚ 5.9 1.8 virginica 135 rows omitted ``` The difference with loading the whole datasets and then subsetting the columns is that it saves time as only the selected columns are loaded from disk. ### Some `DataFrame`-like convenience syntax/functions To take advatnage of some these convenience functions, you need to create a variable of type `JDFFile` pointed to the JDF file on disk. For example ```julia jdf"path/to/JDF.jdf" ``` ``` JDFFile{String}("path/to/JDF.jdf") ``` or ```julia path_to_JDF = "path/to/JDF.jdf" JDFFile(path_to_JDF) ``` ``` JDFFile{String}("path/to/JDF.jdf") ``` #### Using `df[col::Symbol]` syntax You can load arbitrary `col` using the `df[col]` syntax. However, some of these operations are not yet optimized and hence may not be efficient. ```julia afile = JDFFile("iris.jdf") afile[:Species] # load Species column ``` ``` 150-element CategoricalArrays.CategoricalArray{String,1,UInt8}: "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" โ‹ฎ "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" ``` #### JDFFile is Table.jl columm-accessible ```julia using Tables ajdf = JDFFile("iris.jdf") Tables.columnaccess(ajdf) ``` ``` true ``` ```julia Tables.columns(ajdf) ``` ``` JDFFile{String}("iris.jdf") ``` ```julia Tables.schema(ajdf) ``` ``` Tables.Schema: :SepalLength Float64 :SepalWidth Float64 :PetalLength Float64 :PetalWidth Float64 :Species CategoricalVector (alias for CategoricalArrays.CategoricalAr ray{T, 1} where T) ``` ```julia getproperty(Tables.columns(ajdf), :Species) ``` ``` 150-element CategoricalArrays.CategoricalArray{String,1,UInt8}: "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" "setosa" โ‹ฎ "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" "virginica" ``` #### Load each column from disk You can load each column of a JDF file from disk using iterations ```julia jdffile = jdf"iris.jdf" for col in eachcol(jdffile) # do something to col # where `col` is the content of one column of iris.jdf end ``` To iterate through the columns names and the `col` ```julia jdffile = jdf"iris.jdf" for (name, col) in zip(names(jdffile), eachcol(jdffile)) # `name::Symbol` is the name of the column # `col` is the content of one column of iris.jdf end ``` #### Metadata Names & Size from disk You can obtain the column names and number of columns `ncol` of a JDF, for example: ```julia using JDF, DataFrames df = DataFrame(a = 1:3, b = 1:3) JDF.save(df, "plsdel.jdf") names(jdf"plsdel.jdf") # [:a, :b] # clean up rm("plsdel.jdf", force = true, recursive = true) ``` ### Additional functionality: In memory `DataFrame` compression `DataFrame` sizes are out of control. A 2GB CSV file can easily take up 10GB in RAM. One can use the function `type_compress!(df)` to compress any `df::DataFrame`. E.g. ```julia type_compress!(df) ``` ``` 3ร—2 DataFrame Row โ”‚ a b โ”‚ Int8 Int8 โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ 1 1 2 โ”‚ 2 2 3 โ”‚ 3 3 ``` The function looks at `Int*` columns and see if it can be safely "downgraded" to another `Int*` type with a smaller bits size. It will convert `Float64` to `Float32` if `compress_float = true`. E.g. ```julia type_compress!(df, compress_float = true) ``` ``` 3ร—2 DataFrame Row โ”‚ a b โ”‚ Int8 Int8 โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ 1 1 2 โ”‚ 2 2 3 โ”‚ 3 3 ``` `String` compression is _planned_ and will likely employ categorical encoding combined with RLE encoding. ## Benchmarks Here are some benchmarks using the [Fannie Mae Mortgage Data](https://docs.rapids.ai/datasets/mortgage-data). Please note that a reading of zero means that the method has failed to read or write. JDF is a decent performer on both read and write and can achieve comparable performance to [R's {fst}](https://www.fstpackage.org/), once compiled. The JDF format also results in much smaller file size vs Feather.jl in this particular example (probably due to Feather.jl's inefficient storage of `Union{String, Missing}`). ![](benchmarks/results/fannie-mae-read-Performance_2004Q3.txt.png) ![](benchmarks/results/fannie-mae-write-Performance_2004Q3.txt.png) ![](benchmarks/results/fannie-mae-filesize-Performance_2004Q3.txt.png) Please note that the benchmarks were obtained on Julia 1.3+. On earlier versions of Julia where multi-threading isn't available, JDF is roughly 2x slower than as shown in the benchmarks. ## Supported data types I believe that restricting the types that JDF supports is vital for simplicity and maintainability. There is support for * `WeakRefStrings.StringVector` * `Vector{T}`, `Vector{Union{Mising, T}}`, `Vector{Union{Nothing, T}}` * `CategoricalArrays.CategoricalVetors{T}` and `PooledArrays.PooledVector` where `T` can be `String`, `Bool`, `Symbol`, `Char`, `SubString{String}`, `TimeZones.ZonedDateTime` (experimental) and `isbits` types i.e. `UInt*`, `Int*`, and `Float*` `Date*` types etc. `RLEVectors` support will be considered in the future when `missing` support arrives for `RLEVectors.jl`. ## Resources [@bkamins](https://github.com/bkamins/)'s excellent [DataFrames.jl tutorial](https://github.com/bkamins/Julia-DataFrames-Tutorial/blob/master/04_loadsave.ipynb) contains a section on using JDF.jl. ## How does JDF work? When saving a JDF, each vector is Blosc compressed (using the default settings) if possible; this includes all `T` and `Unions{Missing, T}` types where `T` is `isbits`. For `String` vectors, they are first converted to a Run Length Encoding (RLE) representation, and the lengths component in the RLE are `Blosc` compressed. ## Development Plans I fully intend to develop JDF.jl into a language neutral format by version v0.4. However, I have other OSS commitments including [R's {disk.frame}](http:/diskframe.com) and hence new features might be slow to come onboard. But I am fully committed to making JDF files created using JDF.jl v0.2 or higher loadable in all future JDF.jl versions. ## Notes * Parallel read and write support is only available from Julia 1.3. * The design of JDF was inspired by [fst](https://www.fstpackage.org/) in terms of using compressions and allowing random-access to columns
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
0.5.3
6e2645607454affcfdff0d433ebb61ec2e4b88f4
docs
38
# JDF.jl Documentation for JDF.jl
JDF
https://github.com/xiaodaigh/JDF.jl.git
[ "MIT" ]
1.2.0
569556d349015ef22131b7e0e8867d18ee77b679
code
485
abstract type PullType end struct PullAction{pt <: PullType, ARGS <: Tuple} <: Function f::Function args::ARGS end PullAction(f, args, pt = StandardPull) = PullAction{pt, typeof(args)}(f, args) pull_args(pa::PullAction) = pull_args(pa.args) pull_args(args) = map(args) do arg pull!(arg) end valid_args(args) = all(args) do arg !(typeof(arg) <: Signal) ? true : valid(arg) end valid(pa::PullAction) = valid_args(pa.args) (pa::PullAction)() = pa.f(pull_args(pa)...)
Signals
https://github.com/TsurHerman/Signals.jl.git
[ "MIT" ]
1.2.0
569556d349015ef22131b7e0e8867d18ee77b679
code
3185
mutable struct SignalData x valid::Bool propagated::Bool end SignalData(x) = SignalData(x, true, false) SignalData() = SignalData(nothing, false, false) SignalData(::Nothing) = SignalData() struct Signal data::SignalData action::PullAction children::Vector{Signal} binders::Vector{Signal} strict_push::Bool state::Ref end add_child!(arg_signal::Signal,s::Signal) = push!(arg_signal.children,s) add_child!(arg_signal,s) = nothing function store!(sd::SignalData, val) sd.propagated = false sd.valid = true; sd.x = val end store!(s::Signal, val) = store!(s.data, val) value(s::Signal) = value(s.data) value(sd::SignalData) = sd.x """Retrieve the internal state of a `Signal`""" state(s::Signal) = state(s.state) state(ref::Ref) = ref.x state(s::Signal, val) = state(s.state, val) state(ref::Ref, val) = ref.x = val propagated(s::Signal) = propagated(s.data) propagated(sd::SignalData) = sd.propagated propagated(s::Signal, val::Bool) = propagated(s.data, val) propagated(sd::SignalData, val::Bool) = sd.propagated = val valid(s::Signal) = valid(s.data) valid(sd::SignalData) = sd.valid Signal(val; kwargs...) = Signal(() -> val; kwargs...) abstract type Stateless end function Signal(f::Function, args...; state = Stateless, strict_push = false, pull_type = StandardPull, v0 = nothing) _state = Ref(state) if state != Stateless args = (args..., _state) end sd = SignalData(v0) action = PullAction(f, args, pull_type) s=Signal(sd, action, _state, strict_push) v0 === nothing && s() s end function Signal(sd::SignalData, action::PullAction, state = Stateless, strict_push = false) if debug_mode() f(x) = @async println("signal deleted") finalizer(f, sd) end !(typeof(state) <: Ref) && (state = Ref(state)) s = Signal(sd, action, Signal[], Signal[], strict_push, state) for arg in action.args add_child!(arg,s) # isa(arg, Signal) && push!(arg.children, s) end s end import Base.getindex function getindex(s::Signal) value(s) end import Base.setindex! function setindex!(s::Signal, val) set_value!(s, val) end function set_value!(s::Signal, val) invalidate!(s) store!(s, val) end function invalidate!(s::Signal) if valid(s) invalidate!(s.data) foreach(invalidate!, s.children) end end function invalidate!(sd::SignalData) sd.valid = false sd.propagated = false end function validate(s::Signal) valid(s) && return if valid(s.action) validate(s.data) foreach(validate, s.children) end end function validate(sd::SignalData) sd.propagated = false sd.valid = true end import Base.show show(io::IO, s::Signal) = show(io, MIME"text/plain"(), s) function show(io::IO, ::MIME"text/plain", s::Signal) state_str = "\nstate{$(typeof(s.state.x))}: $(s.state.x)" state_str = state(s) === Signals.Stateless ? "" : state_str valid_str = valid(s) ? "" : "(invalidated)" printstyled(io, "Signal"; bold = true,color = 200) val = s[] === nothing ? Nothing : s[] print(io, "$valid_str $state_str \nvalue: ", val) end
Signals
https://github.com/TsurHerman/Signals.jl.git
[ "MIT" ]
1.2.0
569556d349015ef22131b7e0e8867d18ee77b679
code
2173
__precompile__() module Signals export Signal const _async_mode = Ref(true) async_mode() = _async_mode.x async_mode(b::Bool) = _async_mode.x = b const _debug_mode = Ref(false) debug_mode() = _debug_mode.x debug_mode(b::Bool) = _debug_mode.x = b include("PullAction.jl") include("Signal.jl") include("error.jl") include("pushpull.jl") include("eventloop.jl") include("operators.jl") include("bind.jl") include("async_remote.jl") include("time.jl") include("TypedSignal.jl") @doc """ S = Signal(val; strict_push = false) Create a source `Signal` with initial value `val`, setting `strict_push` to `true` guarantees that every push to this `Signal` will be carried out independently. Otherwise if updates occur faster than what the `eventloop` can process, then only the last value before the `eventloop` kicks in will be used(*default*). S = Signal(f,args...; v0 = nothing) Create a derived `Signal` whos value is `f(args...)`, args can be of any type, `Signal` args get replaced by their value before calling `f(args...)`. reads best with with `do` notation(see example).if `v0` is not `nothing` then `f(args...)` will not be called directly after Signal creation instead the Signal will be initialized to have value v0. # Syntax S[] = val Set the value of `S` to `val` without propogating the change to the rest of the signal graph, usefull in pull based paradigm. S() `pull!` Signal, pulling any changes in the Signal graph that affects `S`. S(val) Set the value of `S` to `val` and pushes the changes along the Signal graph. S[] Get the current value stored in `S` without pulling changes from the graph. # Examples julia> A = Signal(1) # source Signal Signal value: 1 julia> B = 2 # non-Signal input 2 julia> C = Signal(A, B) do a, b # derived Signal a + b end Signal value: 3 julia> A[] = 10 # set value without propogation 10 julia> C[] # reads current value 3 julia> C() # pull latest changes from the Signal graph 12 julia> A(100) # set value to a signal and propogate this change 100 julia> C[] 102 """ Signal end # module
Signals
https://github.com/TsurHerman/Signals.jl.git