licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.4.4
ccd0226f62ff59b9b1f5231646e2afa7b8002586
docs
1915
# Load Data from Existing Outputs ```julia using Mera ``` *__ __ _______ ______ _______ | |_| | | _ | | _ | | | ___| | || | |_| | | | |___| |_||_| | | | ___| __ | | | ||_|| | |___| | | | _ | |_| |_|_______|___| |_|__| |__| ## Load data from a sequence of snapshots ```julia for i = 1:10 info = getinfo(output=i, "../../../testing/simulations/manu_sim_sf_L10", verbose=false) #...gethydro(info)...getparticles(info)... etc. end ``` ## Load data from existing simulations in a given folder List the content of a given folder: ```julia path = "../../../testing/simulations/ramses_star_formation" readdir(path) ``` 9-element Array{String,1}: ".ipynb_checkpoints" "output_00001" "output_00003" "output_00004" "output_00007" "output_00010" "output_00013" "output_00016" "output_00019" Get the relevant simulation output-numbers: ```julia N = checkoutputs(path); ``` ```julia N.outputs ``` 7-element Array{Int64,1}: 1 4 7 10 13 16 19 List of empty simulation folders: ```julia N.missing ``` 1-element Array{Int64,1}: 3 Load the data: ```julia for i in N.outputs println("Output: $i") info = getinfo(output=i, path, verbose=false) #...gethydro(info)...getparticles(info)... etc. end ``` Output: 1 Output: 4 Output: 7 Output: 10 Output: 13 Output: 16 Output: 19 Get the physical time of all existing outputs: ```julia gettime.(N.outputs, path, :Myr) ``` 7-element Array{Float64,1}: 0.0 0.6974071892328049 0.8722968605999833 1.0432588470755855 1.2217932462903247 1.4016810597086558 1.5865234202798626 ```julia ```
Mera
https://github.com/ManuelBehrendt/Mera.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
4832
module CGumbo # immutable types corresponding to structs from gumbo.h # also various enums from gumbo.h struct Vector # Gumbo vector data::Ptr{Ptr{Cvoid}} length::Cuint capacity::Cuint end struct StringPiece data::Ptr{UInt8} length::Csize_t end struct SourcePosition line::Cuint column::Cuint offset::Cuint end struct Text text::Ptr{UInt8} original_text::StringPiece start_pos::SourcePosition end # GumboNodeType enum const DOCUMENT = Int32(0) const ELEMENT = Int32(1) const TEXT = Int32(2) const CDATA = Int32(3) const WHITESPACE = Int32(5) struct Document children::Vector has_doctype::Bool name::Ptr{UInt8} public_identifier::Ptr{UInt8} system_identifier::Ptr{UInt8} doc_type_quirks_mode::Int32 # enum end struct Attribute attr_namespace::Int32 # enum name::Ptr{UInt8} original_name::StringPiece value::Ptr{UInt8} original_value::StringPiece name_start::SourcePosition name_end::SourcePosition value_start::SourcePosition value_end::SourcePosition end struct Element children::Vector tag::Int32 # enum tag_namespace::Int32 # enum original_tag::StringPiece original_end_tag::StringPiece start_pos::SourcePosition end_pos::SourcePosition attributes::Vector end struct Node{T} gntype::Int32 # enum parent::Ptr{Node} index_within_parent::Csize_t parse_flags::Int32 # enum v::T end struct Output document::Ptr{Node} root::Ptr{Node} errors::Vector end const TAGS = [:HTML, :head, :title, :base, :link, :meta, :style, :script, :noscript, :template, :body, :article, :section, :nav, :aside, :h1, :h2, :h3, :h4, :h5, :h6, :hgroup, :header, :footer, :address, :p, :hr, :pre, :blockquote, :ol, :ul, :li, :dl, :dt, :dd, :figure, :figcaption, :main, :div, :a, :em, :strong, :small, :s, :cite, :q, :dfn, :abbr, :data, :time, :code, :var, :samp, :kbd, :sub, :sup, :i, :b, :u, :mark, :ruby, :rt, :rp, :bdi, :bdo, :span, :br, :wbr, :ins, :del, :image, :img, :iframe, :embed, :object, :param, :video, :audio, :source, :track, :canvas, :map, :area, :math, :mi, :mo, :mn, :ms, :mtext, :mglyph, :malignmark, :annotation_xml, :svg, :foreignobject, :desc, :table, :caption, :colgroup, :col, :tbody, :thead, :tfoot, :tr, :td, :th, :form, :fieldset, :legend, :label, :input, :button, :select, :datalist, :optgroup, :option, :textarea, :keygen, :output, :progress, :meter, :details, :summary, :menu, :menuitem, :applet, :acronym, :bgsound, :dir, :frame, :frameset, :noframes, :isindex, :listing, :xmp, :nextid, :noembed, :plaintext, :rb, :strike, :basefont, :big, :blink, :center, :font, :marquee, :multicol, :nobr, :spacer, :tt, :rtc, :unknown ] end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
473
module Gumbo using Gumbo_jll, Libdl include("CGumbo.jl") export HTMLElement, HTMLDocument, HTMLText, NullNode, HTMLNode, attrs, text, tag, children, hasattr, getattr, setattr!, parsehtml, postorder, preorder, breadthfirst, prettyprint include("htmltypes.jl") include("manipulation.jl") include("comparison.jl") include("io.jl") include("conversion.jl") end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
1366
# comparison functions for HTML Nodes and Documents # TODO right now hashing and equality completely ignore # parents. I think this is *probably* appropriate but it deserves # some more thought. There's an argument that two HTMLElements with # the same contents and children but different parent pointers are not # really equal. Perhaps an auxilliary equality function could be provided # for this purpose? # equality import Base: ==, isequal, hash isequal(x::HTMLDocument, y::HTMLDocument) = isequal(x.doctype,y.doctype) && isequal(x.root,y.root) isequal(x::HTMLText,y::HTMLText) = isequal(x.text, y.text) isequal(x::HTMLElement, y::HTMLElement) = isequal(x.attributes,y.attributes) && isequal(x.children,y.children) ==(x::HTMLDocument, y::HTMLDocument) = ==(x.doctype,y.doctype) && ==(x.root,y.root) ==(x::HTMLText,y::HTMLText) = ==(x.text, y.text) ==(x::HTMLElement, y::HTMLElement) = ==(x.attributes,y.attributes) && ==(x.children,y.children) # hashing function hash(doc::HTMLDocument) hash(hash(HTMLDocument),hash(hash(doc.doctype), hash(doc.root))) end function hash(elem::HTMLElement{T}) where {T} h = hash(HTMLElement) h = hash(h,hash(T)) h = hash(h,hash(attrs(elem))) for child in children(elem) h = hash(h,hash(child)) end return h end hash(t::HTMLText) = hash(hash(HTMLText),hash(t.text))
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
4117
using Libdl function parsehtml(input::AbstractString; strict=false, preserve_whitespace=false) result_ptr = ccall((:gumbo_parse,libgumbo), Ptr{CGumbo.Output}, (Cstring,), input) goutput::CGumbo.Output = unsafe_load(result_ptr) if strict && goutput.errors.length > 0 throw(InvalidHTMLException("input html was invalid")) end doc = document_from_gumbo(goutput, preserve_whitespace) default_options = Libdl.dlsym(Gumbo_jll.libgumbo_handle, :kGumboDefaultOptions) ccall((:gumbo_destroy_output,libgumbo), Cvoid, (Ptr{Cvoid}, Ptr{CGumbo.Output}), default_options, result_ptr) return doc end # turn a gumbo vector into a Julia vector # of Ptr{T} where T is the struct contained # by the gumbo vector gvector_to_jl(T,gv::CGumbo.Vector) = unsafe_wrap(Array, convert(Ptr{Ptr{T}},gv.data), (Int(gv.length),)) # convert a vector of pointers to GumboAttributes to # a Dict AbstractString => AbstractString function attributes(av::Vector{Ptr{CGumbo.Attribute}}) result = Dict{AbstractString,AbstractString}() for ptr in av ga::CGumbo.Attribute = unsafe_load(ptr) result[unsafe_string(ga.name)] = unsafe_string(ga.value) end return result end function elem_tag(ge::CGumbo.Element) tag = CGumbo.TAGS[ge.tag+1] # +1 is for 1-based julia indexing if tag == :unknown ot = ge.original_tag tag = split(unsafe_string(ot.data, ot.length)[2:end-1])[1] |> Symbol end tag end function gumbo_to_jl(parent::HTMLNode, ge::CGumbo.Element, preserve_whitespace) tag = elem_tag(ge) attrs = attributes(gvector_to_jl(CGumbo.Attribute,ge.attributes)) children = HTMLNode[] res = HTMLElement{tag}(children, parent, attrs) preserve_whitespace = tag in RELEVANT_WHITESPACE || preserve_whitespace for childptr in gvector_to_jl(CGumbo.Node{Int},ge.children) node = load_node(childptr, preserve_whitespace) if in(typeof(node).parameters[1], [CGumbo.Element, CGumbo.Text]) push!(children, gumbo_to_jl(res, node.v, preserve_whitespace)) end end res end function gumbo_to_jl(parent::HTMLNode, gt::CGumbo.Text, preserve_whitespace) HTMLText(parent, unsafe_string(gt.text)) end # this is a fallback method that should only be called to construct # the root of a tree gumbo_to_jl(ge::CGumbo.Element, preserve_whitespace) = gumbo_to_jl(NullNode(), ge, preserve_whitespace) # load a GumboNode struct into memory as the appropriate Julia type # this involves loading it once as a CGumbo.Node{Int} in order to # figure out what the correct type actually is, and then reloading it as # that type function load_node(nodeptr::Ptr, preserve_whitespace=false) precursor = unsafe_load(reinterpret(Ptr{CGumbo.Node{Int}},nodeptr)) # TODO clean this up with a Dict in the CGumbo module correctptr = if precursor.gntype == CGumbo.ELEMENT reinterpret(Ptr{CGumbo.Node{CGumbo.Element}},nodeptr) elseif precursor.gntype == CGumbo.TEXT reinterpret(Ptr{CGumbo.Node{CGumbo.Text}},nodeptr) elseif precursor.gntype == CGumbo.DOCUMENT reinterpret(Ptr{CGumbo.Node{CGumbo.Document}},nodeptr) elseif preserve_whitespace && precursor.gntype == CGumbo.WHITESPACE reinterpret(Ptr{CGumbo.Node{CGumbo.Text}},nodeptr) else # TODO this is super sketchy and should realistically be an # error nodeptr end unsafe_load(correctptr) end # transform gumbo output into Julia data function document_from_gumbo(goutput::CGumbo.Output, preserve_whitespace) # TODO convert some of these typeasserts to better error messages? gnode::CGumbo.Node{CGumbo.Document} = load_node(goutput.document, preserve_whitespace) gdoc = gnode.v doctype = unsafe_string(gdoc.name) groot::CGumbo.Node{CGumbo.Element} = load_node(goutput.root, preserve_whitespace) root = gumbo_to_jl(groot.v, preserve_whitespace) # already an element HTMLDocument(doctype, root) end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
714
abstract type HTMLNode end mutable struct HTMLText <: HTMLNode parent::HTMLNode text::AbstractString end # convenience method for defining without parent HTMLText(text::AbstractString) = HTMLText(NullNode(), text) struct NullNode <: HTMLNode end mutable struct HTMLElement{T} <: HTMLNode children::Vector{HTMLNode} parent::HTMLNode attributes::Dict{AbstractString,AbstractString} end # convenience method for defining an empty element HTMLElement(T::Symbol) = HTMLElement{T}(HTMLNode[],NullNode(),Dict{AbstractString,AbstractString}()) mutable struct HTMLDocument doctype::AbstractString root::HTMLElement end struct InvalidHTMLException <: Exception msg::AbstractString end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
3344
const NO_ENTITY_SUBSTITUTION = Set([:script, :style]) const EMPTY_TAGS = Set([ :area, :base, :basefont, :bgsound, :br, :command, :col, :embed, Symbol("event-source"), :frame, :hr, :image, :img, :input, :keygen, :link, :menuitem, :meta, :param, :source, :spacer, :track, :wbr ]) const RELEVANT_WHITESPACE = Set([:pre, :textarea, :script, :style]) function substitute_text_entities(str) str = replace(str, "&" => "&amp;") str = replace(str, "<" => "&lt;") str = replace(str, ">" => "&gt;") return str end function substitute_attribute_entities(str) str = substitute_text_entities(str) str = replace(str, "\""=> "&quot;") str = replace(str, "'" => "&#39;") return str end function Base.print(io::IO, elem::HTMLElement{T}; pretty = false, depth = 0, substitution = true) where {T} empty_tag = T in EMPTY_TAGS ws_relevant = T in RELEVANT_WHITESPACE has_children = !isempty(elem.children) pretty_children = pretty && !ws_relevant pretty && print(io, ' '^(2*depth)) print(io, '<', T) for (name, value) in sort(collect(elem.attributes), by = first) print(io, ' ', name, "=\"", substitute_attribute_entities(value), '"') end if empty_tag print(io, '/') end print(io, '>') pretty_children && has_children && print(io, '\n') if !empty_tag for child in elem.children print(io, child; pretty = pretty_children, depth = depth + 1, substitution = substitution && !in(T, NO_ENTITY_SUBSTITUTION)) end pretty && has_children && print(io, ' '^(2*depth)) print(io, "</", T, '>') end pretty && print(io, '\n') return nothing end function Base.print(io::IO, node::HTMLText; pretty = false, depth = 0, substitution = true) substitutor = substitution ? substitute_text_entities : identity if !pretty print(io, substitutor(node.text)) return nothing end for line in strip.(split(node.text, '\n')) isempty(line) && continue print(io, ' '^(2*depth), substitutor(line), '\n') end end function Base.print(io::IO, doc::HTMLDocument; pretty = false) write(io, "<!DOCTYPE ", doc.doctype, ">") Base.print(io, doc.root, pretty = pretty) end prettyprint(io::IO, doc::HTMLDocument) = Base.print(io, doc, pretty = true) prettyprint(doc::HTMLDocument) = prettyprint(stdout, doc) prettyprint(io::IO, elem::HTMLElement) = print(io, elem, pretty = true) prettyprint(elem::HTMLElement) = print(stdout, elem, pretty = true) function Base.show(io::IO, elem::HTMLElement) write(io, summary(elem), ":") if get(io, :compact, false) return elseif get(io, :limit, false) buf = IOBuffer() print(buf, elem, pretty = true) for (i, line) in enumerate(split(String(take!(buf)), '\n')) if i > 20 println(io, "...") return end println(io, line) end else print(io, elem, pretty=true) end end function Base.show(io::IO, t::HTMLText) write(io,"HTML Text: `", t.text, '`') end function Base.show(io::IO, doc::HTMLDocument) write(io, "HTML Document:\n") write(io, "<!DOCTYPE ", doc.doctype, ">\n") Base.show(io, doc.root) end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
1484
# functions for accessing and manipulation HTML types import AbstractTrees # elements tag(elem::HTMLElement{T}) where {T} = T attrs(elem::HTMLElement) = elem.attributes function setattr!(elem::HTMLElement, name::AbstractString, value::AbstractString) elem.attributes[name] = value end getattr(elem::HTMLElement, name) = elem.attributes[name] getattr(elem::HTMLElement, name, default) = get(elem.attributes, name, default) getattr(f::Function, elem::HTMLElement, name) = get(f, elem.attributes, name) hasattr(elem::HTMLElement, name) = name in keys(attrs(elem)) AbstractTrees.children(elem::HTMLElement) = elem.children AbstractTrees.children(elem::HTMLText) = () # TODO there is a naming conflict here if you want to use both packages # (see https://github.com/JuliaWeb/Gumbo.jl/issues/31) # # I still think exporting `children` from Gumbo is the right thing to # do, since it's probably more common to be using this package alone children = AbstractTrees.children # indexing into an element indexes into its children Base.getindex(elem::HTMLElement,i) = getindex(elem.children,i) Base.setindex!(elem::HTMLElement,i,val) = setindex!(elem.children,i,val) Base.push!(elem::HTMLElement,val) = push!(elem.children, val) # text text(t::HTMLText) = t.text function text(el::HTMLElement) io = IOBuffer() for c in AbstractTrees.PreOrderDFS(el) if c isa HTMLText print(io, c.text, ' ') end end return strip(String(take!(io))) end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
657
# tests of basic utilities for working with HTML import Gumbo: HTMLNode, NullNode # convenience constructor works @test HTMLElement(:body) == HTMLElement{:body}(HTMLNode[], NullNode(), Dict{AbstractString,AbstractString}()) # accessing tags works @test HTMLElement(:body) |> tag == :body let elem = HTMLElement{:body}(HTMLNode[], NullNode(), Dict("foo" => "bar")) @test getattr(elem, "foo") == "bar" @test getattr(elem, "foo", "baz") == "bar" @test getattr(elem, "bar", "qux") == "qux" @test getattr(() -> "qux", elem, "bar") == "qux" end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
912
# test for comparisons and hashing let x = HTMLText("test") y = HTMLText("test") x1 = HTMLText("test1") @test x == y @test hash(x) == hash(y) @test x1 != y @test hash(x1) != hash(y) end let x = HTMLElement(:div) y = HTMLElement(:div) @test x == y @test hash(x) == hash(y) push!(x, HTMLElement(:p)) @test x != y @test hash(x) != hash(y) push!(y, HTMLElement(:p)) @test x == y @test hash(x) == hash(y) setattr!(x,"class","test") @test x != y @test hash(x) != hash(y) setattr!(y,"class","test") @test x == y @test hash(x) == hash(y) end let x = HTMLDocument("html", HTMLElement(:html)) y = HTMLDocument("html", HTMLElement(:html)) @test x == y @test hash(x) == hash(y) x.doctype = "" @test x != y @test hash(x) != hash(y) y.doctype = "" @test x == y @test hash(x) == hash(y) end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
1400
let # roundtrip test # TODO this could be done with Quickcheck if we had a way of # generating "interesting" HTML documents doc = open("$testdir/fixtures/example.html") do example read(example, String) |> parsehtml end io = IOBuffer() print(io, doc) seek(io, 0) newdoc = read(io, String) |> parsehtml @test newdoc == doc end tests = [ "30", # regression test for issue #30 "multitext", # regression test for multiple HTMLText in one HTMLElement "varied", # relatively complex example "whitespace", # whitespace sensitive "whitespace2", # whitespace sensitive ] @testset for test in tests let doc = open("$testdir/fixtures/$(test)_input.html") do example parsehtml(read(example, String), preserve_whitespace = (test == "whitespace")) end io = IOBuffer() print(io, doc.root, pretty = (test != "whitespace")) seek(io, 0) ground_truth = read(open("$testdir/fixtures/$(test)_output.html"), String) # Eliminate possible line ending issues ground_truth = replace(ground_truth, "\r\n" => "\n") @test read(io, String) == ground_truth end end @testset "xml entities" begin io = IOBuffer() orig = """<p class="asd&gt;&amp;-2&quot;">&lt;faketag&gt;</p>""" print(io, parsehtml(orig)) @test occursin(orig, String(take!(io))) end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
877
# basic test that parsing works correctly testdir = dirname(@__FILE__) @test_throws Gumbo.InvalidHTMLException parsehtml("", strict=true) let page = open("$testdir/fixtures/example.html") do example read(example, String) |> parsehtml end @test page.doctype == "html" root = page.root @test tag(root[1][1]) == :meta @test root[2][1][1].text == "A simple test page." @test root[2][1][1].parent === root[2][1] end # test that nonexistant tags are parsed as their actual name and not "unknown" let page = parsehtml("<weird></weird") @test tag(page.root[2][1]) == :weird end # test that non-standard tags, with attributes, are parsed correctly let page = Gumbo.parsehtml("<my-element cool></my-element>") @test tag(page.root[2][1]) == Symbol("my-element") @test Gumbo.attrs(page.root[2][1]) == Dict("cool" => "") end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
133
using Test using Gumbo include("basics.jl") include("comparison.jl") include("parsing.jl") include("traversal.jl") include("io.jl")
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
code
1345
using AbstractTrees # TODO these tests are pretty silly in that they now pretty much just # test code in AbstractTrees.jl. They are still sort of useful though # in that they test our implementation of `children` indirectly, and I # an just loath to remove tests in general, so I'm going to leave them # here for now const ex = parsehtml(""" <html> <head></head> <body> <p>a<strong>b</strong>c</p> </body> </html> """) let res = Any[] for node in StatelessBFS(ex.root) push!(res, node) end @assert tag(res[3]) == :body @assert tag(res[4]) == :p @assert text(last(res)) == "b" end let res = Any[] for node in PreOrderDFS(ex.root) push!(res, node) end @assert tag(res[3]) == :body @assert tag(res[4]) == :p @assert text(last(res)) == "c" end let res = Any[] for node in PostOrderDFS(ex.root) push!(res, node) end @assert tag(res[1]) == :head @assert text(res[2]) == "a" @assert tag(res[4]) == :strong @assert tag(last(res)) == :HTML end isp(node::HTMLNode) = isa(node, HTMLElement) && tag(node) == :p for itr in [PostOrderDFS, PreOrderDFS, StatelessBFS] @assert mapreduce(isp,+,itr(ex.root)) == 1 end
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.8.2
a1a138dfbf9df5bace489c7a9d5196d6afdfa140
docs
6249
# Gumbo.jl [![version](https://juliahub.com/docs/Gumbo/version.svg)](https://juliahub.com/ui/Packages/Gumbo/mllB2) [![Build Status](https://travis-ci.org/JuliaWeb/Gumbo.jl.svg?branch=master)](https://travis-ci.org/JuliaWeb/Gumbo.jl) [![codecov.io](http://codecov.io/github/JuliaWeb/Gumbo.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaWeb/Gumbo.jl?branch=master) [![pkgeval](https://juliahub.com/docs/Gumbo/pkgeval.svg)](https://juliahub.com/ui/Packages/Gumbo/mllB2) [![deps](https://juliahub.com/docs/Gumbo/deps.svg)](https://juliahub.com/ui/Packages/Gumbo/mllB2?t=2) Gumbo.jl is a Julia wrapper around [Google's gumbo library](https://github.com/google/gumbo-parser) for parsing HTML. Getting started is very easy: ```julia julia> using Gumbo julia> parsehtml("<h1> Hello, world! </h1>") HTML Document: <!DOCTYPE > HTMLElement{:HTML}: <HTML> <head></head> <body> <h1> Hello, world! </h1> </body> </HTML> ``` Read on for further documentation. ## Installation ```jl using Pkg Pkg.add("Gumbo") ``` or activate `Pkg` mode in the REPL by typing `]`, and then: ``` add Gumbo ``` ## Basic usage The workhorse is the `parsehtml` function, which takes a single argument, a valid UTF8 string, which is interpreted as HTML data to be parsed, e.g.: ```julia parsehtml("<h1> Hello, world! </h1>") ``` Parsing an HTML file named `filename`can be done using: ```julia julia> parsehtml(read(filename, String)) ``` The result of a call to `parsehtml` is an `HTMLDocument`, a type which has two fields: `doctype`, which is the doctype of the parsed document (this will be the empty string if no doctype is provided), and `root`, which is a reference to the `HTMLElement` that is the root of the document. Note that gumbo is a very permissive HTML parser, designed to gracefully handle the insanity that passes for HTML out on the wild, wild web. It will return a valid HTML document for *any* input, doing all sorts of algorithmic gymnastics to twist what you give it into valid HTML. If you want an HTML validator, this is probably not your library. That said, `parsehtml` does take an optional `Bool` keyword argument, `strict` which, if `true`, causes an `InvalidHTMLError` to be thrown if the call to the gumbo C library produces any errors. ## HTML types This library defines a number of types for representing HTML. ### `HTMLDocument` `HTMlDocument` is what is returned from a call to `parsehtml` it has a `doctype` field, which contains the doctype of the parsed document, and a `root` field, which is a reference to the root of the document. ### `HTMLNode`s A document contains a tree of HTML Nodes, which are represented as children of the `HTMLNode` abstract type. The first of these is `HTMLElement`. ### `HTMLElement` ```julia mutable struct HTMLElement{T} <: HTMLNode children::Vector{HTMLNode} parent::HTMLNode attributes::Dict{String, String} end ``` `HTMLElement` is probably the most interesting and frequently used type. An `HTMLElement` is parameterized by a symbol representing its tag. So an `HTMLElement{:a}` is a different type from an `HTMLElement{:body}`, etc. An empty `HTMLElement` of a given tag can be constructed as follows: ```julia julia> HTMLElement(:div) HTMLElement{:div}: <div></div> ``` `HTMLElement`s have a `parent` field, which refers to another `HTMLNode`. `parent` will always be an `HTMLElement`, unless the element has no parent (as is the case with the root of a document), in which case it will be a `NullNode`, a special type of `HTMLNode` which exists for just this purpose. Empty `HTMLElement`s constructed as in the example above will also have a `NullNode` for a parent. `HTMLElement`s also have `children`, which is a vector of `HTMLElement` containing the children of this element, and `attributes`, which is a `Dict` mapping attribute names to values. `HTMLElement`s implement `getindex`, `setindex!`, and `push!`; indexing into or pushing onto an `HTMLElement` operates on its children array. There are a number of convenience methods for working with `HTMLElement`s: - `tag(elem)` get the tag of this element as a symbol - `attrs(elem)` return the attributes dict of this element - `children(elem)` return the children array of this element - `getattr(elem, name)` get the value of attribute `name` or raise a `KeyError`. Also supports being called with a default value (`getattr(elem, name, default)`) or function (`getattr(f, elem, name)`). - `setattr!(elem, name, value)` set the value of attribute `name` to `value` ### `HTMLText` ```jl type HTMLText <: HTMLNode parent::HTMLNode text::String end ``` Represents text appearing in an HTML document. For example: ```julia julia> doc = parsehtml("<h1> Hello, world! </h1>") HTML Document: <!DOCTYPE > HTMLElement{:HTML}: <HTML> <head></head> <body> <h1> Hello, world! </h1> </body> </HTML> julia> doc.root[2][1][1] HTML Text: Hello, world! ``` This type is quite simple, just a reference to its parent and the actual text it represents (this is also accessible by a `text` function). You can construct `HTMLText` instances as follows: ```jl julia> HTMLText("Example text") HTML Text: Example text ``` Just as with `HTMLElement`s, the parent of an instance so constructed will be a `NullNode`. ## Tree traversal Use the iterators defined in [AbstractTrees.jl](https://github.com/Keno/AbstractTrees.jl/), e.g.: ```julia julia> using AbstractTrees julia> using Gumbo julia> doc = parsehtml(""" <html> <body> <div> <p></p> <a></a> <p></p> </div> <div> <span></span> </div> </body> </html> """); julia> for elem in PreOrderDFS(doc.root) println(tag(elem)) end HTML head body div p a p div span julia> for elem in PostOrderDFS(doc.root) println(tag(elem)) end head p a p div span div body HTML julia> for elem in StatelessBFS(doc.root) println(tag(elem)) end HTML head body div div p a p span julia> ``` ## TODOS - support CDATA - support comments
Gumbo
https://github.com/JuliaWeb/Gumbo.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
374
module SimpleTensorNetworks using Requires using LinearAlgebra include("tensors.jl") include("tensorcontract.jl") include("simplify.jl") include("contractionorder/contractionorder.jl") function __init__() @require CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" include("cuda.jl") @require Viznet = "52a3aca4-6234-47fd-b74a-806bdf78ede9" include("viz.jl") end end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
1211
using .CUDA using .CUDA: CuArray, @linearidx, GPUArrays, CUBLAS using LinearAlgebra export togpu function togpu(tn::TensorNetwork) TensorNetwork(togpu.(tn.tensors)) end function togpu(t::LabeledTensor) LabeledTensor(CuArray(t.array), t.labels, t.meta) end function genperm(I::NTuple{N}, perm::NTuple{N}) where N ntuple(d-> (@inbounds return I[perm[d]]), Val(N)) end function LinearAlgebra.permutedims!(dest::GPUArrays.AbstractGPUArray, src::GPUArrays.AbstractGPUArray, perm) LinearAlgebra.permutedims!(dest::GPUArrays.AbstractGPUArray, src::GPUArrays.AbstractGPUArray, Tuple(perm)) end function LinearAlgebra.permutedims!(dest::GPUArrays.AbstractGPUArray, src::GPUArrays.AbstractGPUArray, perm::NTuple) perm isa Tuple || (perm = Tuple(perm)) size_dest = size(dest) size_src = size(src) CUDA.gpu_call(vec(dest), vec(src), perm; name="permutedims!") do ctx, dest, src, perm i = @linearidx src I = l2c(size_src, i) @inbounds dest[c2l(size_dest, genperm(I, perm))] = src[i] return end return reshape(dest, size(dest)) end function LinearAlgebra.rmul!(a::StridedCuArray{<:CUBLAS.CublasFloat}, k::Number) vec(a) .*= k return a end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
2474
export rm_multiedges!, rm_degree12, to_simplified_tnet using LightGraphs: SimpleGraph, add_edge! function rm_multiedges!(tn::TensorNetwork) n = length(tn.tensors) for i=1:n ti = tn.tensors[i] for j=i+1:n tj = tn.tensors[j] if count(x->x ∈ ti.labels, tj.labels) > 1 # rm multi edges tn.tensors[i], tn.tensors[j] = rm_multiedge(ti, tj) end end end return tn end function rm_multiedge(ti, tj, li::Tuple, lj::Tuple) ti, tj, li, lj = rm_multiedge(ti, tj, collect(li), collect(lj)) ti, tj, (li...,), (lj...,) end function rm_multiedge(t1, t2) ti, li, tj, lj = t1.array, t1.labels, t2.array, t2.labels common_edges = li ∩ lj dimsi = indexin(common_edges, li) remsi = setdiff(1:length(li), dimsi) dimsj = indexin(common_edges, lj) remsj = setdiff(1:length(lj), dimsj) orderi = Int[(remsi ∪ dimsi)...] orderj = Int[(remsj ∪ dimsj)...] # permute ti = permutedims(ti, orderi) tj = permutedims(tj, orderj) li = li[orderi] lj = lj[orderj] # reshape ti = reshape(ti, size(ti)[1:length(remsi)]..., :) tj = reshape(tj, size(tj)[1:length(remsj)]..., :) li = li[1:length(remsi)+1] lj = lj[1:length(remsj)+1] return similar(t1, ti, li), similar(t2, tj, lj) end function tn2graph(tn::TensorNetwork) n = length(tn.tensors) g = SimpleGraph(n) for i=1:n ti = tn.tensors[i] for j=i+1:n if any(x->x ∈ ti.labels, tn.tensors[j].labels) add_edge!(g, i, j) end end end return g end function rm_degree12(tn::TensorNetwork{T}) where T tn = copy(tn) n = length(tn) mask = ones(Bool, n) has_dangling_edges = true factor = one(T) while has_dangling_edges && length(tn) > 1 has_dangling_edges = false for i=1:n mask[i] || continue ti = tn.tensors[i] if ndims(ti) <= 2 has_dangling_edges = true mask[i] = false if ndims(ti) != 0 j = findfirst(k -> mask[k] && (ti.labels[1] ∈ tn.tensors[k].labels), 1:n) # absorb i -> j tn.tensors[j] = ti * tn.tensors[j] else factor *= Array(tn.tensors[i].array)[] end end end end return factor, TensorNetwork(tn.tensors[mask]) end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
5599
export tensorcontract, TensorNetwork, contract_label!, PlotMeta, contract, ContractionTree export contract_tree function _align_eltypes(xs::AbstractArray...) T = promote_type(eltype.(xs)...) return map(x->eltype(x)==T ? x : T.(x), xs) end function _align_eltypes(xs::AbstractArray{T}...) where T xs end # batched routines @inline _indexpos(iAs, i)::Int = findfirst(==(i), iAs) _isunique(x) = length(unique(x)) == length(x) # can be used in either static or dynamic invoke @noinline function analyse_dim(iAs, iBs, iOuts) # check indices @assert _isunique(iAs) "indices in A matrix is not unique $iAs" @assert _isunique(iBs) "indices in B matrix is not unique $iBs" @assert _isunique(iOuts) "indices in C matrix is not unique $iOuts" allinds = [iAs..., iBs..., iOuts...] @assert all(i -> count(==(i), allinds) == 2, allinds) "indices does not appear in pairs! got $iAs, $iBs and $iOuts" mdims = setdiff(iAs, iBs) ndims = setdiff(iBs, iAs) kdims = iAs ∩ iBs iABs = mdims ∪ ndims lA = mdims ∪ kdims lB = kdims ∪ ndims lOut = mdims ∪ ndims pA = indexin(lA, iAs) pB = indexin(lB, iBs) pOut = indexin(iOuts, lOut) pA, pB, pOut, length(kdims) end @noinline function analyse_size(pA, sA, pB, sB, nc) nA = length(sA) nB = length(sB) sA1 = Int[sA[pA[i]] for i=1:nA-nc] sB2 = Int[sB[pB[i]] for i=nc+1:nB] K = mapreduce(i->sB[pB[i]], *, 1:nc, init=1) return prod(sA1), K, prod(sB2), [sA1..., sB2...] end function tensorcontract(iAs, A::AbstractArray, iBs, B::AbstractArray, iOuts) A, B = _align_eltypes(A, B) pA, pB, pOut, nc = analyse_dim([iAs...], [iBs...], [iOuts...]) M, K, N, sOut = analyse_size(pA, size(A), pB, size(B), nc) Apr = reshape(_conditioned_permutedims(A, pA), M, K) Bpr = reshape(_conditioned_permutedims(B, pB), K, N) AB = Apr * Bpr AB = _conditioned_permutedims(reshape(AB, sOut...), (pOut...,)) end function _conditioned_permutedims(A::AbstractArray{T,N}, perm) where {T,N} if any(i-> (@inbounds perm[i]!=i), 1:N) return permutedims(A, (perm...,)) else return A end end """ TensorNetwork{T,TT<:AbstractTensor{T}} TensorNetworks(tensors) A tensor network, its only field is `tensors` - a vector of `AbstractTensor` (e.g. `LabeledTensor`). """ struct TensorNetwork{T,TT<:AbstractTensor{T}} tensors::Vector{TT} end function TensorNetwork(tensors) T = promote_type([eltype(x.array) for x in tensors]...) TensorNetwork(AbstractTensor{T}[tensors...]) end Base.copy(tn::TensorNetwork) = TensorNetwork(copy(tn.tensors)) Base.length(tn::TensorNetwork) = length(tn.tensors) struct ContractionTree left right function ContractionTree(left::Union{Integer, ContractionTree}, right::Union{Integer, ContractionTree}) new(left, right) end end function Base.getindex(ct::ContractionTree, i::Int) Base.@boundscheck i==1 || i==2 i==1 ? ct.left : ct.right end function contract_tree(tn::TensorNetwork{T}, ctree; normalizer) where T if ctree isa Integer t = tn.tensors[ctree] if normalizer !== nothing normt = normalizer(t) return normt, rmul!(copy(t), T(1/normt)) else return one(T), t end else normt1, t1 = contract_tree(tn, ctree[1]; normalizer=normalizer) normt2, t2 = contract_tree(tn, ctree[2]; normalizer=normalizer) normt = normt1 * normt2 t = t1 * t2 if normalizer !== nothing normt_ = normalizer(t) normt = normt * normt_ rmul!(t, T(1/normt_)) end return normt, t end end function contract(tn::TensorNetwork{T}, ctree; normalizer=nothing) where T normt, t = contract_tree(tn, ctree; normalizer=normalizer) if normt != one(T) rmul!(t.array, normt) end return t end function contract_label!(tn::TensorNetwork{T}, label) where {T} ts = findall(x->label ∈ x.labels, tn.tensors) @assert length(ts) == 2 "number of tensors with the same label $label is not 2, find $ts" t1, t2 = tn.tensors[ts[1]], tn.tensors[ts[2]] tout = t1 * t2 deleteat!(tn.tensors, ts) push!(tn.tensors, tout) return tout, t1.labels ∩ t2.labels end using Base.Cartesian c2l(size::NTuple{0, Int}, c::NTuple{0,Int}) = 1 @generated function c2l(size::NTuple{N, Int}, c::NTuple{N,Int}) where N quote res = c[1] stride = size[1] @nexprs $(N-1) i->begin res += (c[i+1]-1) * stride stride *= size[i+1] end return res end end l2c(size::NTuple{0, Int}, l::Int) = () @generated function l2c(size::NTuple{N, Int}, l::Int) where N quote l -= 1 @nexprs $(N-1) i->begin @inbounds l, s_i = divrem(l, size[i]) end $(Expr(:tuple, [:($(Symbol(:s_, i))+1) for i=1:N-1]..., :(l+1))) end end function Base.show(io::IO, tn::TensorNetwork) print(io, "$(typeof(tn).name):\n $(join(["$(t.meta === nothing ? i : dispmeta(t.meta)) => $t" for (i, t) in enumerate(tn.tensors)], "\n "))") end function Base.show(io::IO, ::MIME"plain/text", tn::TensorNetwork) Base.show(io, tn) end function adjacency_matrix(tn::TensorNetwork) indx = Int[] indy = Int[] data = Int[] for i=1:length(tn) for j=1:length(tn) if i!=j && any(l->l ∈ tn.tensors[i].labels, tn.tensors[j].labels) push!(indx, i) push!(indy, j) push!(data, 1) end end end return sparse(indx, indy, data) end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
2590
export LabeledTensor # abstractions abstract type AbstractTensor{T, N} end """ LabeledTensor{T,N,AT<:AbstractArray{T,N}, LT, MT} <: AbstractTensor{T, N} LabeledTensor(array::AbstractArray, labels::AbstractVector[, meta]) Tensor with labeled legs. When multiplying two tensors, legs with same labels will be treated as inner degree of freedom and get contracted. The optional argument `meta` is the meta information, default is `nothing`. One can use it to store additional information like plotting layout. """ struct LabeledTensor{T,N,AT<:AbstractArray{T,N}, LT, MT} <: AbstractTensor{T, N} array::AT labels::Vector{LT} meta::MT end Base.ndims(t::LabeledTensor) = ndims(t.array) LinearAlgebra.norm(t::LabeledTensor, p::Real=2) = norm(t.array, p) function LabeledTensor(tensor::AbstractArray, labels::AbstractVector) @assert ndims(tensor) == length(labels) "dimension of tensor $(ndims(tensor)) != number of labels $(length(labels))" LabeledTensor(tensor, labels, nothing) end function Base.:(*)(A::LabeledTensor, B::LabeledTensor) labels_AB = setdiff(A.labels, B.labels) ∪ setdiff(B.labels, A.labels) LabeledTensor(tensorcontract(A.labels, A.array, B.labels, B.array, labels_AB), labels_AB, merge_meta(A.meta, B.meta)) end function Base.isapprox(a::LabeledTensor, b::LabeledTensor; kwargs...) isapprox(a.array, b.array; kwargs...) && a.labels == b.labels end Base.size(t::LabeledTensor) = Base.size(t.array) Base.copy(t::LabeledTensor) = LabeledTensor(copy(t.array), t.labels) Base.similar(::Type{<:LabeledTensor}, arr::AbstractArray, labels::AbstractVector, meta=nothing) = LabeledTensor(arr, labels, meta) Base.similar(::LabeledTensor, arr::AbstractArray, labels::AbstractVector, meta=nothing) = LabeledTensor(arr, labels, meta) LinearAlgebra.rmul!(t::LabeledTensor, factor) = (rmul!(t.array, factor); t) function Base.show(io::IO, lt::LabeledTensor) print(io, "$(typeof(lt).name.name){$(eltype(lt.array))}($(join(lt.labels, ", ")))") end function Base.show(io::IO, ::MIME"plain/text", lt::LabeledTensor) Base.show(io, lt) end function mul_dim(t::LabeledTensor, m::AbstractMatrix; dim::Int) data = t.array iA = ntuple(i->i, ndims(data)) iB = (dim, -dim) iC = ntuple(i->i==dim ? -dim : i, ndims(data)) LabeledTensor(tensorcontract(iA, data, iB, m, iC), t.labels) end struct PlotMeta loc::Tuple{Float64, Float64} name::String end merge_meta(m1::PlotMeta, m2::PlotMeta) = PlotMeta((m1.loc .+ m2.loc) ./ 2, m1.name*m2.name) merge_meta(m1::Nothing, m2::Nothing) = nothing dispmeta(m::PlotMeta) = m.name
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
3965
using .Viznet using .Viznet.Compose using SparseArrays export viz_tnet function viz_tnet(tnet::TensorNetwork; r=0.25/sqrt(length(tnet.tensors)+1), show_edgeindex=false, node_fontsize=100pt/sqrt(length(tnet.tensors)+1), edge_fontsize=200pt/sqrt(length(tnet.tensors)+1), labels=1:length(tnet), locs=spring_layout(tnet), linecolor="skyblue", node_edgecolor="black", node_facecolor="white" ) nt = length(tnet.tensors) nb = nodestyle(:default, fill(node_facecolor), stroke(node_edgecolor), linewidth(2mm/sqrt(length(tnet.tensors)+1)); r=r) eb = bondstyle(:default, linewidth(4mm/sqrt(length(tnet.tensors)+1)), stroke(linecolor)) tb1 = textstyle(:default, fontsize(node_fontsize)) tb2 = textstyle(:default, fontsize(edge_fontsize)) compose(Compose.context(r, r, 1-2r, 1-2r), canvas() do for (t, loc, label) in zip(tnet.tensors, locs, labels) nb >> loc if !isempty(label) tb1 >> (loc, string(label)) end end for i=1:nt for j=i+1:nt li = tnet.tensors[i].labels lj = tnet.tensors[j].labels loci, locj = locs[i], locs[j] common_labels = li ∩ lj if !isempty(common_labels) eb >> (loci, locj) show_edgeindex && tb2 >> ((loci .+ locj) ./ 2, join(common_labels, ", ")) end end end end) end function Base.show(io::IO, mime::MIME"text/html", tnet::TensorNetwork) show(io, mime, viz_tnet(tnet)) end # copied from LightGraphs function spring_layout(tn::TensorNetwork, locs_x=2*rand(length(tn)).-1.0, locs_y=2*rand(length(tn)).-1.0; C=2.0, MAXITER=100, INITTEMP=2.0) nvg = length(tn) adj_matrix = adjacency_matrix(tn) # The optimal distance bewteen vertices k = C * sqrt(4.0 / nvg) k² = k * k # Store forces and apply at end of iteration all at once force_x = zeros(nvg) force_y = zeros(nvg) # Iterate MAXITER times @inbounds for iter = 1:MAXITER # Calculate forces for i = 1:nvg force_vec_x = 0.0 force_vec_y = 0.0 for j = 1:nvg i == j && continue d_x = locs_x[j] - locs_x[i] d_y = locs_y[j] - locs_y[i] dist² = (d_x * d_x) + (d_y * d_y) dist = sqrt(dist²) if !( iszero(adj_matrix[i,j]) && iszero(adj_matrix[j,i]) ) # Attractive + repulsive force # F_d = dist² / k - k² / dist # original FR algorithm F_d = dist / k - k² / dist² else # Just repulsive # F_d = -k² / dist # original FR algorithm F_d = -k² / dist² end force_vec_x += F_d*d_x force_vec_y += F_d*d_y end force_x[i] = force_vec_x force_y[i] = force_vec_y end # Cool down temp = INITTEMP / iter # Now apply them, but limit to temperature for i = 1:nvg fx = force_x[i] fy = force_y[i] force_mag = sqrt((fx * fx) + (fy * fy)) scale = min(force_mag, temp) / force_mag locs_x[i] += force_x[i] * scale locs_y[i] += force_y[i] * scale end end # Scale to unit square min_x, max_x = minimum(locs_x), maximum(locs_x) min_y, max_y = minimum(locs_y), maximum(locs_y) function scaler(z, a, b) 2.0*((z - a)/(b - a)) - 1.0 end map!(z -> scaler(z, min_x, max_x), locs_x, locs_x) map!(z -> scaler(z, min_y, max_y), locs_y, locs_y) return [((x+1)/2, (y+1)/2) for (x, y) in zip(locs_x, locs_y)] end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
2199
module ContractionOrder using LightGraphs using LightGraphs: SimpleEdge function log2sumexp2(s) ms = maximum(s) return log2(sum(x->exp2(x - ms), s)) + ms end function indexof(x, v) @inbounds for i=1:length(v) if v[i] == x return i end end return 0 end include("edgeinfo.jl") include("greedy.jl") end using .ContractionOrder: order_greedy, TensorNetworkLayout import .ContractionOrder: abstract_contract, log2sumexp2 using LightGraphs: SimpleEdge, src, dst export trees_greedy, abstract_contract, log2sumexp2 function build_trees(N::Int, order::AbstractVector) ids = collect(Any, 1:N) for i=1:length(order) ta, tb = src(order[i]), dst(order[i]) ids[ta] = ContractionTree(ids[ta], ids[tb]) ids[tb] = nothing end filter(x->x!==(nothing), ids) end function build_order(trees::AbstractVector) res = SimpleEdge[] for t in trees build_order!(t, res) end return res end function build_order!(tree, res) if tree isa Integer return tree else a = build_order!(tree.left, res) b = build_order!(tree.right, res) push!(res, SimpleEdge(a, b)) return min(a, b) end end function layout(tn::TensorNetwork) graph = tn2graph(tn) log2shapes = [[log2.(size(tn.tensors[i]))...] for i=1:length(tn)] TensorNetworkLayout(graph, log2shapes) end """ trees_greedy(tn::TensorNetwork, strategy="min_dim") Returns a tuple of `(time complexities, space complexities, trees)`, where `trees` is a vector of `ContractionTree` objects. For disconnected graphs, the number of trees can be greater than 1. `strategy` can be "min_dim", "min_reduce", "max_reduce", "min_reduce_tri" or "max_reduce_tri". """ function trees_greedy(tn::TensorNetwork; kwargs...) tc, sc, order = order_greedy(layout(tn); kwargs...) tc, sc, build_trees(length(tn), order) end abstract_contract(tn::TensorNetwork, trees::ContractionTree) = abstract_contract(tn, [trees]) function abstract_contract(tn::TensorNetwork, trees::AbstractVector) abstract_contract(layout(tn), build_order(trees)) end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
2950
export EdgeInfo, edgeinfo, update!, add!, remove!, select struct EdgeInfo{DT<:Dict} data::DT end function EdgeInfo() EdgeInfo(Dict{SimpleEdge{Int},Float64}()) end function edgeinfo(edges, log2_shapes, neighbors, strategy) ei = EdgeInfo() for edge in edges update!(ei, edge, log2_shapes, neighbors, strategy) end return ei end Base.copy(ei::EdgeInfo) = EdgeInfo(copy(ei.data)) # strategy ∈ {'min_dim','max_reduce','min_dim_tri','max_reduce_tri'} function update!(ei::EdgeInfo, edge::SimpleEdge, log2_shapes::Vector, neighbors, strategy) m, n = src(edge), dst(edge) idxm_n = findfirst(==(n), neighbors[m]) log2_shapemn = log2_shapes[m][idxm_n] log2_shapem = sum(log2_shapes[m]) log2_shapen = sum(log2_shapes[n]) if strategy == "min_reduce" || strategy == "min_reduce_tri" value = exp2(log2_shapem + log2_shapen - 2*log2_shapemn) elseif strategy == "max_reduce" || strategy == "max_reduce_tri" loga = log2_shapem + log2_shapen - 2*log2_shapemn logb = log2sumexp2([log2_shapem, log2_shapen]) value = exp2(loga) - exp2(logb) # different with previous one! else value = 1.0 end ei.data[edge] = value return ei end function add!(ei::EdgeInfo, nodes::Vector{Int}, log2_shapes::Vector, neighbors, strategy) edges = SimpleEdge{Int}[] for node in nodes for neighbor in neighbors[node] edge = uedge(neighbor, node) if !(edge ∈ edges) push!(edges, edge) update!(ei, edge, log2_shapes, neighbors, strategy) end end end return ei end function remove!(ei::EdgeInfo, nodes) for edge in keys(ei.data) if src(edge) in nodes || dst(edge) in nodes pop!(ei.data, edge) end end return ei end """ select(ei::EdgeInfo, strategy, neighbors, edge_pool=nothing) Select an edge from edge_pool, considering the priority of data. """ function select(ei::EdgeInfo, strategy, neighbors, edge_pool=nothing) pool_edge_info = if edge_pool !== nothing Dict(edge=>ei.data[edge] for edge in edge_pool) else ei.data end min_value = minimum(values(pool_edge_info)) min_edges = [edge for edge in keys(pool_edge_info) if pool_edge_info[edge] == min_value] if strategy == "min_dim_tri" || strategy == "max_reduce_tri" triangle_count = zeros(Int, length(min_edges)) for (i, edge) in enumerate(min_edges) triangle_count[i] = length(neighbors[src(edge)] ∩ neighbors[dst(edge)]) end edge = min_edges[rand(findall(==(maximum(triangle_count)), triangle_count))] else edge = rand(min_edges) end return edge end Base.keys(ei::EdgeInfo) = keys(ei.data) Base.haskey(ei::EdgeInfo, ind) = haskey(ei.data, ind) nremain(ei::EdgeInfo) = length(ei.data) """undirected edge""" uedge(i, k) = i < k ? SimpleEdge(i, k) : SimpleEdge(k, i)
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
4606
export TensorNetworkLayout, order_greedy export abstract_contract struct TensorNetworkLayout graph::SimpleGraph{Int} log2_shapes::Vector{Vector{Float64}} function TensorNetworkLayout(graph, log2_shapes) @assert nv(graph) == length(log2_shapes) "size of graph ($(nv(graph))) and length of shapes ($(length(log2_shapes))) does not match!" new(graph, log2_shapes) end end LightGraphs.edges(tn::TensorNetworkLayout) = edges(tn.graph) """ abstract contraction of each edge, returns the time complexity and space complexity. """ function abstract_contract_edge!(edge, log2_shapes::Vector{Vector{Float64}}, edge_info::EdgeInfo, neighbors::Vector{Vector{ET}}, strategy::String) where ET haskey(edge_info, edge) || error("edge $edge not found!") i, j = src(edge), dst(edge) remove!(edge_info, [i, j, neighbors[i]..., neighbors[j]...]) local log2_shapei, log2_shapej, log2_shapeij idxi_j = indexof(j, neighbors[i]) idxj_i = indexof(i, neighbors[j]) log2_shapeij = log2_shapes[i][idxi_j] deleteat!(log2_shapes[i], idxi_j) deleteat!(log2_shapes[j], idxj_i) deleteat!(neighbors[i], idxi_j) deleteat!(neighbors[j], idxj_i) log2_shapei, log2_shapej = sum(log2_shapes[i]), sum(log2_shapes[j]) for node in neighbors[j] # rm multi-edge idxj_n = indexof(node, neighbors[j]) idxn_j = indexof(j, neighbors[node]) if node in neighbors[i] idxi_n = indexof(node, neighbors[i]) idxn_i = indexof(i, neighbors[node]) log2_shapes[i][idxi_n] += log2_shapes[j][idxj_n] log2_shapes[node][idxn_i] += log2_shapes[node][idxn_j] deleteat!(log2_shapes[node], idxn_j) deleteat!(neighbors[node], idxn_j) else push!(log2_shapes[i], log2_shapes[j][idxj_n]) push!(neighbors[i], node) neighbors[node][idxn_j] = i end end add!(edge_info, [i, neighbors[i]...], log2_shapes, neighbors, strategy) log2_tc = log2_shapei + log2_shapeij + log2_shapej log2_sc = log2_shapei + log2_shapej # completely remove j empty!(log2_shapes[j]) empty!(neighbors[j]) return log2_tc, log2_sc end """ order_greedy(tn::TensorNetworkLayout; strategy="min_dim") Compute greedy order, return the time and space complexities. """ function order_greedy(tn::TensorNetworkLayout; strategy="min_dim", edge_pool=collect(edges(tn))) order = SimpleEdge{Int}[] log2_shapes = deepcopy(tn.log2_shapes) neighbors = deepcopy(tn.graph.fadjlist) edge_info = edgeinfo(edges(tn), log2_shapes, neighbors, strategy) log2_tcs = Float64[] # time complexity log2_scs = Float64[] # space complexity while !isempty(edge_pool) edge = select(edge_info, strategy, neighbors, edge_pool) push!(order, edge) log2_tc_step, log2_sc_step = abstract_contract_edge!(edge, log2_shapes, edge_info, neighbors, strategy) push!(log2_tcs, log2_tc_step) push!(log2_scs, log2_sc_step) deleteat!(edge_pool, indexof(edge, edge_pool)) i, j = src(edge), dst(edge) for (l, el) in enumerate(edge_pool) if j == src(el) || j == dst(el) k = src(el) == j ? dst(el) : src(el) edge_pool[l] = uedge(i, k) end end edge_pool = unique(edge_pool) end return log2_tcs, log2_scs, order end function abstract_contract(tn::TensorNetworkLayout, order) @assert check_healthy(tn) "tensor network shape mismatch!" log2_tcs = Float64[] log2_scs = Float64[] log2_shapes = deepcopy(tn.log2_shapes) neighbors = deepcopy(tn.graph.fadjlist) edge_info = edgeinfo(edges(tn), log2_shapes, neighbors, "min_dim") maxsize = 0.0 for edge in order log2_tc, log2_sc = abstract_contract_edge!(edge, log2_shapes, edge_info, neighbors, "min_dim") push!(log2_tcs, log2_tc) push!(log2_scs, compute_log2_sc(log2_shapes)) maxsize = max(maxsize, maximum(sum.(log2_shapes))) end return log2_tcs, log2_scs, maxsize end function check_healthy(tn::TensorNetworkLayout) res = true for i in vertices(tn.graph) for j in neighbors(tn.graph, i) res = res && (edgesize(tn, i, j) == edgesize(tn, j, i)) end end return res end log2size(s) = isempty(s) ? -Inf : sum(s) compute_log2_sc(log2_shapes) = (isempty(log2_shapes) || all(isempty, log2_shapes)) ? 0.0 : log2sumexp2(log2size.(log2_shapes)) edgesize(tn::TensorNetworkLayout, m::Int, n::Int) = tn.log2_shapes[n][indexof(m, neighbors(tn.graph, n))]
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
1202
using Test using SimpleTensorNetworks using CUDA using SimpleTensorNetworks: c2l, l2c using Random CUDA.allowscalar(false) @testset "c2l" begin for i=1:100 shape = (4,rand(1:5),rand(1:7),5,19) target = ([rand(1:s) for s in shape]...,) @test c2l(shape, target) == LinearIndices(shape)[target...] end for i=1:100 shape = (4,rand(1:5),rand(1:12),15,19) ci = CartesianIndices(shape) i = rand(1:prod(shape)) @test l2c(shape, i) == ci[i].I end @test l2c((), 1) == () @test c2l((), ()) == 1 end @testset "permutedims" begin a = randn(rand(1:3, 20)...) A = CuArray(a) p = randperm(20) @test Array(permutedims(A, p)) ≈ permutedims(a, p) end @testset "tensor contract - GPU" begin A = zeros(Float64, 10, 32, 21); B = zeros(Float64, 32, 11, 5, 2, 41, 10); tA = LabeledTensor(A, [1,2,3]) tB = LabeledTensor(B, [2,4,5,6,7,1]) tOut = tA * tB tnet = TensorNetwork([tA, tB]) |> togpu tOut2, contracted_labels = contract_label!(tnet, 1) @test Array(tnet.tensors[].array) ≈ tOut.array @test Array(tnet.tensors[].array) ≈ Array(tOut2.array) @test contracted_labels == [1, 2] end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
406
using SimpleTensorNetworks using Test @testset "contract" begin include("tensorcontract.jl") end @testset "simplify" begin include("simplify.jl") end @testset "contractionorder" begin include("contractionorder/contractionorder.jl") end @testset "viz" begin include("viz.jl") end @testset "cuda" begin if Base.find_package("CUDA") !== nothing include("cuda.jl") end end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
1391
using Test using SimpleTensorNetworks @testset "rm multi edges" begin t1 = randn(2,3,4,5) l1 = ['a', 'b', 'c', 'd'] t2 = randn(6,4,7,2,3) l2 = ['e', 'c', 'f', 'a', 'b'] t1_, t2_ = SimpleTensorNetworks.rm_multiedge(LabeledTensor(t1, l1), LabeledTensor(t2, l2)) @test t1_.array == reshape(permutedims(t1, (4,1,2,3)), 5, :) @test t2_.array == reshape(permutedims(t2, (1,3,4,5,2)), 6,7,:) @test t1_.labels == ['d', 'a'] @test t2_.labels == ['e', 'f', 'a'] end @testset "rm single nodes" begin tn = TensorNetwork([ LabeledTensor(randn(2), ["a"]), LabeledTensor(randn(2,2,2,2,2), ["g", "c", "a", "k", "l"]), LabeledTensor(randn(2), ["c"]), LabeledTensor(randn(2,2,2), ["g", "k", "l"]), ]) r1 = contract(tn, [[[1,2], 3], 4]) factor, tn = rm_degree12(tn) @test length(tn) == 2 @test tn.tensors[1].labels == ["g", "k", "l"] @test tn.tensors[2].labels == ["g", "k", "l"] r2 = contract(tn, [1,2]) @test r1 ≈ r2 @test factor == 1.0 tn = TensorNetwork([ LabeledTensor(randn(2), ["a"]), LabeledTensor(randn(2,2,2,2), ["g", "c", "a", "k"]), LabeledTensor(randn(2), ["c"]), LabeledTensor(randn(2,2), ["g", "k"]), ]) r1 = contract(tn, [[[1,2], 3], 4]) factor, tn = rm_degree12(tn) @test length(tn) == 0 @test r1.array[] ≈ factor end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
1604
using Test using OMEinsum using SimpleTensorNetworks @testset "contract" begin for (iAs, iBs, iOut) in [ [(1,2,3), (2,3,4), (1,4)], [(1,3,2), (2,3,4), (4,1)], [(), (2,4), (4,2)], [(2,4), (), (4,2)], [(2,4), (1,), (4,2,1)], [(2,4), (2,4), ()], [(2,4), (4,), (2,)], ] A = asarray(randn(rand(4:12, length(iAs))...)) B = asarray(randn([(iBs[i] in iAs) ? size(A, indexin(iBs[i], collect(iAs))[]) : rand(4:12) for i=1:length(iBs)]...)) out = tensorcontract(iAs, A, iBs, B, iOut) eincode = EinCode{(iAs, iBs), iOut}() eout = eincode(A, B) @test eout ≈ out end end @testset "tensor contract" begin A = zeros(Float64, 10, 32, 21); B = zeros(Float64, 32, 11, 5, 2, 41, 10); tA = LabeledTensor(A, [1,2,3]) tB = LabeledTensor(B, [2,4,5,6,7,1]) tOut = tA * tB @test tOut.array == ein"abc,bdefga->cdefg"(A, B) @test tOut.labels == [3,4,5,6,7] tnet1 = TensorNetwork([tA]) @test tnet1 isa TensorNetwork tnet = TensorNetwork([tA, tB]) tOut2, contracted_labels = contract_label!(tnet, 1) @test tnet.tensors[] ≈ tOut @test tnet.tensors[] ≈ tOut2 @test contracted_labels == [1, 2] end @testset "mul_dim" begin A = zeros(Float64, 10, 32, 21); B = zeros(Float64, 32, 11); tA = LabeledTensor(A, [1,2,3]) tB = LabeledTensor(B, [2,4]) tA1 = SimpleTensorNetworks.mul_dim(tA, B; dim=2) tA2 = tA * tB @test tA1.array ≈ permutedims(tA2.array, (1,3,2)) @test tA1.labels == [1, 2, 3] @test tA2.labels == [1, 3, 4] end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
263
using Test using SimpleTensorNetworks using Compose, Viznet @testset "viz" begin tn = TensorNetwork([LabeledTensor(randn(2,2), ['a', 'b']), LabeledTensor(randn(2,2), ['b', 'c']), LabeledTensor(randn(2,2), ['a', 'c'])]) @test viz_tnet(tn) isa Context end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
957
using Test using LightGraphs using SimpleTensorNetworks using Random @testset "greedy" begin include("edgeinfo.jl") end @testset "greedy" begin include("greedy.jl") end @testset "other" begin for seed in 1:10 Random.seed!(3) g = random_regular_graph(10, 3) tn = TensorNetwork([LabeledTensor(randn(2,2,2), [e for e in edges(g) if i ∈ (e.src, e.dst)]) for i=1:10]) tcs, scs, order = SimpleTensorNetworks.order_greedy(SimpleTensorNetworks.layout(tn); strategy="min_reduce") trees = SimpleTensorNetworks.build_trees(10, order) order_new = SimpleTensorNetworks.build_order(trees) #@test order == order_new tc, sc = abstract_contract(SimpleTensorNetworks.layout(tn), order) tc2, sc2 = abstract_contract(tn, trees) @test sort(tc) ≈ sort(tc2) end @testset "log2sumexp2" begin x = randn(10) @test log2(sum(exp2.(x))) ≈ log2sumexp2(x) end end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
886
using Test using SimpleTensorNetworks.ContractionOrder using LightGraphs: SimpleEdge @testset "edge info" begin egs = [SimpleEdge(1, 2), SimpleEdge(2, 3), SimpleEdge(3, 1), SimpleEdge(3, 4)] log2_shapes = [log2.((2,2)), log2.((2,3)), log2.((3,2,6)), log2.((6,))] neighbors = [[2,3], [1,3], [1,2,4], [3]] strategy = "max_reduce_tri" ei = edgeinfo(egs[1:3], log2_shapes, neighbors, strategy) @test ei.data[SimpleEdge(3, 1)] ≈ -24.0 @test ei.data[SimpleEdge(1, 2)] ≈ -4 @test ei.data[SimpleEdge(2, 3)] ≈ -18 @test select(ei, strategy, neighbors, nothing) == SimpleEdge(3, 1) # add!, remove! ei2 = add!(copy(ei), [4], log2_shapes, neighbors, strategy) ei3 = edgeinfo(egs, log2_shapes, neighbors, strategy) for (k, v) in ei2.data @test ei3.data[k] ≈ v end ei4 = remove!(copy(ei2), [4]) @test ei4.data == ei.data end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
code
2345
using Test, SimpleTensorNetworks.ContractionOrder using LightGraphs using LightGraphs: SimpleEdge using SimpleTensorNetworks.ContractionOrder: abstract_contract_edge!, log2sumexp2 function get_shapes(edges, sizes, neighbors) log2_shapes = Vector{Float64}[] for i=1:length(neighbors) si = Float64[] for nb in neighbors[i] ie = findfirst(e->e == SimpleEdge(i=>nb) || e == SimpleEdge(nb=>i), edges) push!(si, sizes[ie]) end push!(log2_shapes, si) end return log2_shapes end tolog2(shapes) = [log2.(x) for x in shapes] @testset "abstract contract" begin es = [SimpleEdge(1, 2), SimpleEdge(2, 3), SimpleEdge(1, 3), SimpleEdge(3, 4)] log2_sizes = log2.([2, 3, 4, 5]) neighbors = [[2,3], [3,1], [1,2,4], [3]] log2_shapes = get_shapes(es, log2_sizes, neighbors) strategy = "min_reduce" edge_info = edgeinfo(es, log2_shapes, neighbors, strategy) edge = SimpleEdge(2, 3) tc, sc = abstract_contract_edge!(edge, log2_shapes, edge_info, neighbors, strategy) @test edge_info.data[SimpleEdge(2, 4)] ≈ 8.0 @test edge_info.data[SimpleEdge(1, 2)] ≈ 5.0 @test log2_shapes == [[8], [8, 5], Int[], [5]] |> tolog2 @test neighbors == [[2], [1, 4], Int[], [2]] @test tc ≈ log2(120) es = [SimpleEdge(1, 2), SimpleEdge(2, 3), SimpleEdge(1, 3), SimpleEdge(3, 4)] log2_sizes = log2.([2, 3, 4, 5]) neighbors = [[2,3], [3,1], [1,2,4], [3]] log2_shapes = get_shapes(es, log2_sizes, neighbors) tn = TensorNetworkLayout(SimpleGraph(4, neighbors), log2_shapes) order = [SimpleEdge(1, 2),SimpleEdge(1, 3), SimpleEdge(1, 4)] tcs, scs = abstract_contract(tn, order) @test log2sumexp2(tcs) ≈ log2(89) @test maximum(scs) ≈ log2(12*5+12+5) end @testset "greedy order" begin g = random_regular_graph(10, 3) log2_shapes = [[2,2,2] for i=1:10] |> tolog2 tn = TensorNetworkLayout(g, log2_shapes) tcs, scs, order = order_greedy(tn; strategy="min_dim") @test length(order) <= length(edges(g)) end @testset "disconnected graph" begin n = 5 g = SimpleGraph(n) add_edge!(g, 2, 3) tn = TensorNetworkLayout(g, [ones(degree(g, i)) for i=1:n]) tc, sc, orders = order_greedy(tn) @test orders isa Vector tcs, scs = abstract_contract(tn, orders) @test maximum(tcs) == 1 end
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "MIT" ]
0.2.1
6e23282395631fd2fed63a3347f729cbd4dc6e02
docs
265
# SimpleTensorNetworks [![Build Status](https://github.com/TensorBFS/SimpleTensorNetworks.jl/workflows/CI/badge.svg)](https://github.com/TensorBFS/SimpleTensorNetworks.jl/actions) A naive implementation of tensor network. Warning: It is still a work in progress.
SimpleTensorNetworks
https://github.com/TensorBFS/SimpleTensorNetworks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
2145
using Documenter using DataAssimilationBenchmarks makedocs( sitename = "DataAssimilationBenchmarks", format = Documenter.HTML(), modules = [DataAssimilationBenchmarks], pages = [ "Home" => "index.md", "DataAssimilationBenchmarks" => Any[ "Introduction" => "home/Introduction.md", "Getting Started" => "home/Getting Started.md", "Global Types" => "home/DataAssimilationBenchmarks.md", ], "Submodules" => Any[ "Models" => Any[ "L96" => "submodules/models/L96.md", "IEEE39bus" => "submodules/models/IEEE39bus.md", "ObsOperators" => "submodules/models/ObsOperators.md" ], "Methods" => Any[ "DeSolvers" => "submodules/methods/DeSolvers.md", "EnsembleKalmanSchemes" => "submodules/methods/EnsembleKalmanSchemes.md", "XdVAR" => "submodules/methods/XdVAR.md" ], "Experiments" => Any[ "Workflow" => "submodules/experiments/Workflow.md", "GenerateTimeSeries" => "submodules/experiments/GenerateTimeSeries.md", "FilterExps" => "submodules/experiments/FilterExps.md", "SmootherExps" => "submodules/experiments/SmootherExps.md", "SingleExperimentDriver" => "submodules/experiments/SingleExperimentDriver.md", "ParallelExperimentDriver" => "submodules/experiments/ParallelExperimentDriver.md", ], "Analysis" => Any[ "ProcessExperimentData" => "submodules/analysis/ProcessExperimentData.md", "PlotExperimentData" => "submodules/analysis/PlotExperimentData.md", ], ], "Community" => Any[ "Contributing" => "community/Contributing.md", "Contributor Covenant Code of Conduct" => "community/CodeOfConduct.md", ], ] ) deploydocs( repo = "github.com:cgrudz/DataAssimilationBenchmarks.jl.git", )
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
8035
############################################################################################## module DataAssimilationBenchmarks ############################################################################################## # imports and exports using LinearAlgebra export VecA, ArView, ParamDict, ParamSample, CovM, ConM, TransM, StepKwargs ############################################################################################## # Global type union declarations for multiple dispatch and type aliases """ function VecA(type) Union{Vector{T}, SubArray{T, 1}} where T <: type end Type constructor for union of Vectors and 1-D SubArrays. This is utilzed in order to pass columns of an ensemble maxtrix into integration schemes and related array operations. """ function VecA(type) Union{Vector{T}, SubArray{T, 1}} where T <: type end """ function ArView(type) Union{Array{T, 2}, SubArray{T, 2}} where T <: type end Type constructor for union of Arrays and SubArrays for use within ensemble conditioning operations, integration schemes and other array operations. """ function ArView(type) Union{Array{T, 2}, SubArray{T, 2}} where T <: type end """ function ParamDict(type) Union{Dict{String, Array{T}}, Dict{String, Vector{T}}} where T <: type end Type constructor for Dictionary of model parameters to be passed to derivative functions by name. This allows one to pass both vector parameters (and scalars written as vectors), as well as matrix valued parameters such as diffusion arrays. """ function ParamDict(type) Union{Dict{String, Array{T}}, Dict{String, Vector{T}}} where T <: type end """ ParamSample = Dict{String, Vector{UnitRange{Int64}}} Dictionary containing key and index pairs to subset the state vector and then merge a statistical sample of parameters that govern the equations of motion with the ParamDict `dx_params` in parameter estimation problems. """ ParamSample = Dict{String, Vector{UnitRange{Int64}}} """ function CovM(type) Union{UniformScaling{T}, Diagonal{T, Vector{T}}, Symmetric{T, Matrix{T}}} where T <: type end Type constructor for union of covariance matrix types, for multiple dispatch based on their special characteristics as symmetric, positive definite operators. """ function CovM(type) Union{UniformScaling{T}, Diagonal{T, Vector{T}}, Symmetric{T, Matrix{T}}} where T <: type end """ function ConM(type) Union{UniformScaling{T}, Symmetric{T}} where T <: type end Type union of conditioning matrix types, which are used for optimization routines in the transform method. """ function ConM(type) Union{UniformScaling{T}, Symmetric{T}} where T <: type end """ function TransM(type) Union{Tuple{Symmetric{T,Array{T,2}},Array{T,1},Array{T,2}}, Tuple{Symmetric{T,Array{T,2}},Array{T,2},Array{T,2}}} where T <: type end Type union constructor for tuples representing the ensemble update step with a right ensemble anomaly transformation, mean update weights and mean-preserving orthogonal transformation. """ function TransM(type) Union{Tuple{Symmetric{T,Array{T,2}},Array{T,1},Array{T,2}}, Tuple{Symmetric{T,Array{T,2}},Array{T,2},Array{T,2}}} where T <: type end """ StepKwargs = Dict{String,Any} Key word arguments for twin experiment time stepping. Arguments are given as: REQUIRED: * `dx_dt` - time derivative function with arguments x and dx_params * `dx_params` - parameters necessary to resolve dx_dt, not including parameters to be estimated in the extended state vector; * `h` - numerical time discretization step size OPTIONAL: * `diffusion` - tunes the standard deviation of the Wiener process, equal to `sqrt(h) * diffusion`; * `diff_mat` - structure matrix for the diffusion coefficients, replaces the default uniform scaling; * `s_infl` - ensemble anomalies of state components are scaled by this parameter for calculation of emperical covariance; * `p_infl` - ensemble anomalies of extended-state components for parameter sample replicates are scaled by this parameter for calculation of emperical covariance, `state_dim` must be defined below; * `state_dim` - keyword for parameter estimation, specifying the dimension of the dynamic state, less than the dimension of full extended state; * `param_sample` - `ParamSample` dictionary for merging extended state with `dx_params`; * `ξ` - random array size `state_dim`, can be defined in `kwargs` to provide a particular realization for method validation; * `γ` - controls nonlinearity of the alternating_obs_operatori. See [`DataAssimilationBenchmarks.ObsOperators.alternating_obs_operator`](@ref) for a discusssion of the `γ` parameter. """ StepKwargs = Union{Dict{String,Any}} ############################################################################################## # imports and exports of sub-modules include("methods/DeSolvers.jl") include("methods/EnsembleKalmanSchemes.jl") include("methods/XdVAR.jl") include("models/L96.jl") include("models/IEEE39bus.jl") include("models/ObsOperators.jl") include("experiments/GenerateTimeSeries.jl") include("experiments/FilterExps.jl") include("experiments/SmootherExps.jl") include("experiments/SingleExperimentDriver.jl") include("experiments/ParallelExperimentDriver.jl") using .DeSolvers using .EnsembleKalmanSchemes using .L96 using .IEEE39bus using .ObsOperators using .GenerateTimeSeries using .FilterExps using .SmootherExps using .SingleExperimentDriver using .ParallelExperimentDriver export DeSolvers, EnsembleKalmanSchemes, XdVAR, L96, IEEE39bus, ObsOperators, GenerateTimeSeries, FilterExps, SingleExperimentDriver, ParallelExperimentDriver ############################################################################################## # info function Info() print(" _____ _ ") printstyled("_",color=9) print(" ") printstyled("_",color=2) print(" _ _ ") printstyled("_ \n",color=13) print(" | __ \\ | | /\\ ") printstyled("(_)",color=9) printstyled(" (_)",color=2) print(" | | | ") printstyled("(_) \n",color=13) print(" | | | | __ _| |_ __ _ / \\ ___ ___ _ _ __ ___ _| | __ _| |_ _ ___ _ __ \n") print(" | | | |/ _` | __/ _` | / /\\ \\ / __/ __| | '_ ` _ \\| | |/ _` | __| |/ _ \\| '_ \\ \n") print(" | |__| | (_| | || (_| |/ ____ \\\\__ \\__ \\ | | | | | | | | (_| | |_| | (_) | | | | \n") print(" |_____/ \\__,_|\\__\\__,_/_/ \\_\\___/___/_|_| |_| |_|_|_|\\__,_|\\__|_|\\___/|_| |_| \n") print("\n") print(" ____ _ _ ") printstyled(" _ ", color=12) print("_\n") print(" | _ \\ | | | | ") printstyled("(_)",color=12) print(" | \n") print(" | |_) | ___ _ __ ___| |__ _ __ ___ __ _ _ __| | _____ _| | \n") print(" | _ < / _ \\ '_ \\ / __| '_ \\| '_ ` _ \\ / _` | '__| |/ / __| | | | \n") print(" | |_) | __/ | | | (__| | | | | | | | | (_| | | | <\\__ \\_| | | \n") print(" |____/ \\___|_| |_|\\___|_| |_|_| |_| |_|\\__,_|_| |_|\\_\\___(_) |_| \n") print(" _/ | \n") print(" |__/ \n") print("\n") printstyled(" Welcome to DataAssimilationBenchmarks!\n", bold=true) print(" Version v0.3.4, Copyright 2022 Colin Grudzien ([email protected]) et al.\n") print(" Licensed under the Apache License, Version 2.0 \n") print(" https://github.com/cgrudz/DataAssimilationBenchmarks/blob/master/LICENSE.md\n") print("\n") nothing end ############################################################################################## end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
9933
####################################################################################################################### module ProcessExperimentData ######################################################################################################################## ######################################################################################################################## # imports and exports using Debugger using Statistics using JLD, HDF5 export process_filter_state, process_smoother_state, process_smoother_param, process_filter_nonlinear_obs, process_smoother_nonlinear_obs, process_smoother_versus_shift, process_smoother_versus_tanl, rename_smoother_state ######################################################################################################################## ######################################################################################################################## # Scripts for processing experimental output data and writing to JLD and HDF5 to read into matplotlib later # # These scripts are designed to try to load every file according to the standard naming conventions # and if these files cannot be loaded, to save inf as a dummy variable for missing or corrupted data. # NOTE: these scripts are currently deprecated and there is only a single method provided as an example # Future plans include merging in methods for processing data that are more consistent. ######################################################################################################################## function process_filter_state() # creates an array of the average RMSE and spread for each experiment # ensemble size is increasing from the origin on the horizontal axis # inflation is increasing from the origin on the vertical axis # time the operation t1 = time() # static parameters that are not varied seed = 0 tanl = 0.05 nanl = 20000 burn = 5000 diffusion = 0.0 h = 0.01 obs_un = 1.0 obs_dim = 40 sys_dim = 40 γ = 1.0 # parameters in ranges that will be used in loops analysis_list = [ "fore", "filt", ] stat_list = [ "rmse", "spread", ] method_list = [ "enkf", "etkf", "enkf-n-primal", ] ensemble_sizes = 15:2:41 total_ensembles = length(ensemble_sizes) inflations = LinRange(1.00, 1.10, 11) total_inflations = length(inflations) # define the storage dictionary here, looping over the method list data = Dict{String, Array{Float64}}() for method in method_list if method == "enkf-n" for analysis in analysis_list for stat in stat_list # multiplicative inflation parameter should always be one, there is no dimension for this variable data[method * "_" * analysis * "_" * stat] = Array{Float64}(undef, total_ensembles) end end else for analysis in analysis_list for stat in stat_list # create storage for inflations and ensembles data[method * "_" * analysis * "_" * stat] = Array{Float64}(undef, total_inflations, total_ensembles) end end end end # auxilliary function to process data, producing rmse and spread averages function process_data(fnames::Vector{String}, method::String) # loop ensemble size, last axis for j in 0:(total_ensembles - 1) if method[1:6] == "enkf-n" try # attempt to load the file tmp = load(fnames[j+1]) # if successful, continue to unpack arrays and store the mean stats over # the experiment after the burn period for stationary statistics for analysis in analysis_list for stat in stat_list analysis_stat = tmp[analysis * "_" * stat]::Vector{Float64} data[method * "_" * analyis * "_" * stat][j+1] = mean(analysis_stat[burn+1: nanl+burn]) end end catch # file is missing or corrupted, load infinity to represent an incomplete or unstable experiment for analysis in analysis_list for stat in stat_list analysis_stat = tmp[analysis * "_" * stat]::Vector{Float64} data[method * "_" * analyis * "_" * stat][j+1] = inf end end end else # loop inflations, first axis for i in 1:total_inflations try # attempt to load the file tmp = load(fnames[i + j*total_inflations]) # if successful, continue to unpack arrays and store the mean stats over # the experiment after the burn period for stationary statistics for analysis in analysis_list for stat in stat_list analysis_stat = tmp[analysis * "_" * stat]::Vector{Float64} data[method * "_" * analyis * "_" * stat][total_inflations + 1 - i, j + 1] = mean(analysis_stat[burn+1: nanl+burn]) end end catch # file is missing or corrupted, load infinity to represent an incomplete or unstable experiment for analysis in analysis_list for stat in stat_list analysis_stat = tmp[analysis * "_" * stat]::Vector{Float64} data[method * "_" * analyis * "_" * stat][total_inflations + 1 - i, j + 1] = inf end end end end end end end # define path to data on server fpath = "/x/capa/scratch/cgrudzien/final_experiment_data/all_ens/" # generate the range of experiments, storing file names as a list for method in method_list fnames = [] for N_ens in ensemble_sizes if method[1:6] == "enkf-n" # inflation is a static value of 1.0 name = method * "_L96_state_seed_" * lpad(seed, 4, "0") * "_diffusion_" * rpad(diffusion, 4, "0") * "_sys_dim_" * lpad(sys_dim, 2, "0") * "_obs_dim_" * lpad(obs_dim, 2, "0") * "_obs_un_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl + burn, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_N_ens_" * lpad(N_ens, 3,"0") * "_state_inflation_" * rpad(round(1.0, digits=2), 4, "0") * ".jld" push!(fnames, fpath * method * "/diffusion_" * rpad(diffusion, 4, "0") * "/" * name) else # loop inflations for infl in inflations name = method * "_L96_state_seed_" * lpad(seed, 4, "0") * "_diffusion_" * rpad(diffusion, 4, "0") * "_sys_dim_" * lpad(sys_dim, 2, "0") * "_obs_dim_" * lpad(obs_dim, 2, "0") * "_obs_un_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl + burn, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_N_ens_" * lpad(N_ens, 3,"0") * "_state_inflation_" * rpad(round(infl, digits=2), 4, "0") * ".jld" push!(fnames, fpath * method * "/diffusion_" * rpad(diffusion, 4, "0") * "/" * name) end end end # turn fnames into a string array, use this as the argument in process_data fnames = Array{String}(fnames) process_data(fnames, method) end # create jld file name with relevant parameters jlname = "processed_filter_state" * "_diffusion_" * rpad(diffusion, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_burn_" * lpad(burn, 5, "0") * ".jld" # create hdf5 file name with relevant parameters h5name = "processed_filter_state" * "_diffusion_" * rpad(diffusion, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_burn_" * lpad(burn, 5, "0") * ".h5" # write out file in jld save(jlname, data) # write out file in hdf5 h5open(h5name, "w") do file for key in keys(data) h5write(h5name, key, data[key]) end end print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ######################################################################################################################## end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
2648
############################################################################################## module plot_var_analysis ############################################################################################## # imports and exports using Random, LinearAlgebra using JLD2, HDF5, Plots, Statistics, Measures using DataAssimilationBenchmarks ############################################################################################## # parameters of interest bkg_covs = ["ID", "clima"] dims = collect(1:1:40) s_infls = collect(1:1:199) # pre-allocation for stabilized rmse stab_rmse_id = ones(length(dims), length(s_infls)) * 20 stab_rmse_clima = ones(length(dims), length(s_infls)) * 20 # iterate through configurations of parameters of interest for bkg_cov in bkg_covs for dim in dims for s_infl in s_infls infl = s_infl*0.005; # import data path = pkgdir(DataAssimilationBenchmarks) * "/src/data/D3-var-bkg-" * bkg_cov * "/" file = "bkg-" * bkg_cov * "_L96_state_seed_0123_diff_0.000_sysD_40_obsD_" * lpad(dim, 2, "0") * "_obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_stateInfl_" * rpad(round(infl, digits=3), 5, "0") * ".jld2" # retrieve statistics of interest ts = load(path * file)::Dict{String,Any} nanl = ts["nanl"]::Int64 filt_rmse = ts["filt_rmse"]::Array{Float64, 1} # generate statistics based on background covariance if cmp(bkg_cov, "ID") == 0 stab_rmse_id[dim,s_infl] = mean(filter(!isinf, filter(!isnan,filt_rmse[1000:nanl]))) else stab_rmse_clima[dim,s_infl] = mean(filter(!isinf, filter(!isnan,filt_rmse[1000:nanl]))) end end end end # transform data for plotting infl_vals = s_infls*0.005 clima_t = transpose(stab_rmse_clima) id_t = transpose(stab_rmse_id) # create heatmap for background covariance using climatology heatmap(dims,infl_vals,clima_t,clim=(0.001,5.0), title="Stabilized Filter RMSE Clima: Inflation Tuning Parameter vs. Dimensions", margin=15mm, size=(800,500), dpi = 600) xlabel!("Dimensions") ylabel!("Inflation Tuning Parameter") savefig("stab_heat_clima_t") # create heatmap for background covariance using identity heatmap(dims,infl_vals,id_t,clim=(0.001,5.0), title="Stabilized Filter RMSE ID: Inflation Tuning Parameter vs. Dimensions", margin=15mm, size=(800,500), dpi = 600) xlabel!("Dimensions") ylabel!("Inflation Tuning Parameter") savefig("stab_heat_id_t") ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
1058
####################################################################################################################### module Rename ######################################################################################################################## # imports and exports using Debugger using Glob using JLD export rename_files ######################################################################################################################## function rename_files() fnames = Glob.glob("./ienks-transform/*") for name in fnames split_name = split(name, "_") tmp = [split_name[1:end-7]; ["nens"]; split_name[end-4:end]] rename = "" string_len = (length(tmp)-1) for i in 1:string_len rename *= tmp[i] * "_" end rename *= tmp[end] @bp print(rename) my_command = `mv $name $rename` run(my_command) end end ######################################################################################################################## end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
28174
############################################################################################## module FilterExps ############################################################################################## # imports and exports using Random, Distributions, StatsBase using LinearAlgebra using JLD2, HDF5 using ..DataAssimilationBenchmarks, ..ObsOperators, ..DeSolvers, ..EnsembleKalmanSchemes, ..XdVAR, ..L96, ..IEEE39bus, ..GenerateTimeSeries export ensemble_filter_state, ensemble_filter_param, D3_var_filter_state ############################################################################################## # Main filtering experiments, debugged and validated for use with schemes in methods directory ############################################################################################## """ ensemble_filter_state((time_series::String, method::String, seed::Int64, nanl::Int64, obs_un::Float64, obs_dim::Int64, γ::Float64, N_ens::Int64, s_infl::Float64)::NamedTuple) Ensemble filter state estimation twin experiment. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"]::Array{Float64,2} end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" where the file name is written dynamically according to the selected parameters as follows: method * "_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" """ function ensemble_filter_state((time_series, method, seed, nanl, obs_un, obs_dim, γ, N_ens, s_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:obs_un,:obs_dim, :γ,:N_ens,:s_infl), <:Tuple{String,String,Int64,Int64,Float64,Int64, Float64,Int64,Float64}}) # time the experiment t1 = time() # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] sys_dim = length(init) ens = rand(MvNormal(init, I), N_ens) # define the observation range and truth reference solution obs = obs[:, 2:nanl + 1] truth = copy(obs) # define kwargs for the filtering method # and the underlying dynamical model kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "s_infl" => s_infl, "γ" => γ, ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # check if there is a diffusion structure matrix if haskey(ts, "diff_mat") kwargs["diff_mat"] = ts["diff_mat"]::Array{Float64,2} end # create storage for the forecast and analysis statistics fore_rmse = Vector{Float64}(undef, nanl) filt_rmse = Vector{Float64}(undef, nanl) fore_spread = Vector{Float64}(undef, nanl) filt_spread = Vector{Float64}(undef, nanl) # loop over the number of observation-forecast-analysis cycles for i in 1:nanl # for each ensemble member for j in 1:N_ens # loop over the integration steps between observations @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if model == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end # compute the forecast statistics fore_rmse[i], fore_spread[i] = analyze_ens(ens, truth[:, i]) # after the forecast step, perform assimilation of the observation analysis = ensemble_filter(method, ens, obs[:, i], H_obs, obs_cov, kwargs) ens = analysis["ens"]::Array{Float64,2} # compute the analysis statistics filt_rmse[i], filt_spread[i] = analyze_ens(ens, truth[:, i]) end data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"]::Array{Float64,2} end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" name = method * "_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ ensemble_filter_param((time_series::String, method::String, seed::Int64, nanl::Int64, obs_un::Float64, obs_dim::Int64, γ::Float64, p_err::Float64, p_wlk::Float64, N_ens::Int64, s_infl::Float64, p_infl::Float64)::NamedTuple) Ensemble filter joint state-parameter estimation twin experiment. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "param_spread" => para_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "param_truth" => param_truth, "sys_dim" => sys_dim, "state_dim" => state_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_err" => p_err, "p_wlk" => p_wlk, "nanl" => nanl, "tanl" => tanl, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"]::Array{Float64,2} end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" where the file name is written dynamically according to the selected parameters as follows: method * "_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_stateD_" * lpad(state_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_nens_" * lpad(N_ens, 3, "0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" """ function ensemble_filter_param((time_series, method, seed, nanl, obs_un, obs_dim, γ, p_err, p_wlk,N_ens, s_infl, p_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:obs_un,:obs_dim,:γ,:p_err, :p_wlk,:N_ens,:s_infl,:p_infl), <:Tuple{String,String,Int64,Int64,Float64,Int64,Float64,Float64, Float64,Int64,Float64,Float64}}) # time the experiment t1 = time() # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] if model == "L96" param_truth = pop!(dx_params, "F") elseif model == "IEEE39bus" param_truth = [pop!(dx_params, "H"); pop!(dx_params, "D")] param_truth = param_truth[:] end # define state and extended system dimensions state_dim = length(init) sys_dim = state_dim + length(param_truth) # define the initial ensemble ens = rand(MvNormal(init, I), N_ens) # extend this by the parameter ensemble # note here the covariance is supplied such that the standard deviation is a percent # of the parameter value param_ens = rand(MvNormal(param_truth[:], diagm(param_truth[:] * p_err).^2.0), N_ens) # define the extended state ensemble ens = [ens; param_ens] # define the observation range and truth reference solution obs = obs[:, 2:nanl + 1] truth = copy(obs) # define kwargs, note the possible exclusion of dx_params if it is the only parameter for # dx_dt and this is the parameter to be estimated kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "dx_params" => dx_params, "f_steps" => f_steps, "step_model" => step_model!, "h" => h, "diffusion" => diffusion, "γ" => γ, "state_dim" => state_dim, "s_infl" => s_infl, "p_infl" => p_infl ) # define the observation operator, observation error covariance and observations with # error observation covariance operator currently taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # we define the parameter sample as the key name and index # of the extended state vector pair, to be loaded in the # ensemble integration step if model == "L96" param_sample = Dict("F" => [41:41]) elseif model == "IEEE39bus" param_sample = Dict("H" => [21:30], "D" => [31:40]) end kwargs["param_sample"] = param_sample # create storage for the forecast and analysis statistics fore_rmse = Vector{Float64}(undef, nanl) filt_rmse = Vector{Float64}(undef, nanl) para_rmse = Vector{Float64}(undef, nanl) fore_spread = Vector{Float64}(undef, nanl) filt_spread = Vector{Float64}(undef, nanl) para_spread = Vector{Float64}(undef, nanl) # loop over the number of observation-forecast-analysis cycles for i in 1:nanl # for each ensemble member for j in 1:N_ens if model == "IEEE39bus" # we define the diffusion structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = dx_params["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end @views for k in 1:f_steps # loop over the integration steps between observations step_model!(ens[:, j], 0.0, kwargs) if model == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end # compute the forecast statistics fore_rmse[i], fore_spread[i] = analyze_ens(ens[1:state_dim, :], truth[:, i]) # after the forecast step, perform assimilation of the observation analysis = ensemble_filter(method, ens, obs[:, i], H_obs, obs_cov, kwargs) ens = analysis["ens"]::Array{Float64,2} # extract the parameter ensemble for later usage param_ens = @view ens[state_dim+1:end, :] # compute the analysis statistics filt_rmse[i], filt_spread[i] = analyze_ens(ens[1:state_dim, :], truth[:, i]) para_rmse[i], para_spread[i] = analyze_ens_param(param_ens, param_truth) # include random walk for the ensemble of parameters # with standard deviation given by the p_wlk scaling # of the mean vector param_mean = mean(param_ens, dims=2) param_ens .= param_ens + p_wlk * param_mean .* rand(Normal(), length(param_truth), N_ens) end data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "param_spread" => para_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "param_truth" => param_truth, "sys_dim" => sys_dim, "state_dim" => state_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "gamma" => γ, "p_err" => p_err, "p_wlk" => p_wlk, "nanl" => nanl, "tanl" => tanl, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"]::Array{Float64,2} end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" name = method * "_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_stateD_" * lpad(state_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_nens_" * lpad(N_ens, 3, "0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ D3_var_filter_state((time_series::String, bkg_cov::String, seed::Int64, nanl::Int64, obs_dim::Int64, obs_un:Float64, γ::Float64, s_infl::Float64)::NamedTuple) 3D-VAR state estimation twin experiment. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "bkg_cov" => bkg_cov, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "h" => h, "s_infl" => round(s_infl, digits=2) ) Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/D3-var-bkg-" * bkg_cov * "/" where the file name is written dynamically according to the selected parameters as follows: "bkg-" * bkg_cov * "_L96" * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_stateInfl_" * rpad(round(s_infl, digits=3), 5, "0") * ".jld2" """ function D3_var_filter_state((time_series, bkg_cov, seed, nanl, obs_un, obs_dim, γ, s_infl)::NamedTuple{ (:time_series,:bkg_cov,:seed,:nanl,:obs_un,:obs_dim,:γ, :s_infl), <:Tuple{String,String,Int64,Int64,Float64,Int64,Float64, Float64}}) # time the experiment t1 = time() # load the path, timeseries, and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) F = dx_params["F"]::Vector{Float64} tanl = ts["tanl"]::Float64 # set the integration step size for the control trajectory h = ts["h"]::Float64 # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # define the dynamical model derivative for this experiment - we are assuming # Lorenz-96 model dx_dt = L96.dx_dt # define integration method step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # set seed seed = ts["seed"]::Int64 Random.seed!(seed) # define the initial background state as a perturbation of first true state obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] sys_dim = length(init) x_b = rand(MvNormal(init, I)) # define the observation range and truth reference solution obs = obs[:, 2:nanl + 1] truth = copy(obs) # define the state background covariance if bkg_cov == "ID" state_cov = s_infl * I elseif bkg_cov == "clima" path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" state_dim = sys_dim clima_nanl = 11000 clima_tanl = 0.50 clima_spin = 1000 clima_h = 0.01 clima_seed = 0 name = "L96_time_series_seed_" * lpad(clima_seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F[1], 4, "0") * "_tanl_" * rpad(clima_tanl, 4, "0") * "_nanl_" * lpad(clima_nanl, 5, "0") * "_spin_" * lpad(clima_spin, 4, "0") * "_h_" * rpad(clima_h, 5, "0") * ".jld2" print("Loading background climatology from " * name * "\n") try clima = load(path * name)::Dict{String,Any} catch clima_params = ( seed = clima_seed, h = clima_h, state_dim = state_dim, tanl = clima_tanl, nanl = clima_nanl, spin = clima_spin, diffusion = diffusion, F = F[1], ) L96_time_series(clima_params) clima = load(path * name)::Dict{String,Any} end clima = clima["obs"] state_cov = s_infl * Symmetric(cov(clima, dims=2)) end # define kwargs for the analysis method # and the underlying dynamical model kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "γ" => γ, ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # create storage for the forecast and analysis statistics fore_rmse = Vector{Float64}(undef, nanl) filt_rmse = Vector{Float64}(undef, nanl) # loop over the number of observation-forecast-analysis cycles for i in 1:nanl # loop over the integration steps between observations for j in 1:f_steps step_model!(x_b, 0.0, kwargs) end # compute the forecast rmse fore_rmse[i] = rmsd(x_b, truth[:, i]) # optimized cost function input and value x_b = D3_var_NewtonOp(x_b, obs[:, i], state_cov, H_obs, obs_cov, kwargs) # compute the forecast rmse filt_rmse[i] = rmsd(x_b, truth[:, i]) end data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "bkg_cov" => bkg_cov, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "h" => h, "s_infl" => s_infl, ) path = pkgdir(DataAssimilationBenchmarks) * "/src/data/D3-var-bkg-" * bkg_cov * "/" name = "bkg-" * bkg_cov * "_L96" * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_stateInfl_" * rpad(round(s_infl, digits=3), 5, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
10118
############################################################################################## module GenerateTimeSeries ############################################################################################## # imports and exports using Random, Distributions using LinearAlgebra using JLD2, HDF5 using ..DataAssimilationBenchmarks, ..DeSolvers, ..L96, ..IEEE39bus export L96_time_series, IEEE39bus_time_series ############################################################################################## """ L96_time_series((seed::Int64, h::Float64, state_dim::Int64, tanl::Float64, nanl::Int64, spin::Int64, diffusion::Float64, F::Float64)::NamedTuple) Simulate a "free run" time series of the [Lorenz-96 model](@ref) model for generating an observation process and truth twin for data assimilation twin experiments. Output from the experiment is saved in a dictionary of the form, Dict{String, Any}( "seed" => seed, "h" => h, "diffusion" => diffusion, "dx_params" => dx_params, "tanl" => tanl, "nanl" => nanl, "spin" => spin, "state_dim" => state_dim, "obs" => obs, "model" => "L96" ) Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" where the file name is written dynamically according to the selected parameters as follows: "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" """ function L96_time_series((seed, h, state_dim, tanl, nanl, spin, diffusion, F)::NamedTuple{ (:seed,:h,:state_dim,:tanl,:nanl,:spin,:diffusion,:F), <:Tuple{Int64,Float64,Int64,Float64,Int64,Int64, Float64,Float64}}) # time the experiment t1 = time() # define the model dx_dt = L96.dx_dt dx_params = Dict{String, Array{Float64}}("F" => [8.0]) # define the integration scheme if diffusion == 0.0 # generate the observations with the Runge-Kutta scheme step_model! = DeSolvers.rk4_step! else # generate the observations with the strong Taylor scheme step_model! = L96.l96s_tay2_step! # parameters for the order 2.0 strong Taylor scheme p = 1 α, ρ = comput_α_ρ(p) end # set the number of discrete integrations steps between each observation time f_steps = convert(Int64, tanl/h) # set storage for the ensemble timeseries obs = Array{Float64}(undef, state_dim, nanl) # define the integration parameters in the kwargs dict kwargs = Dict{String, Any}( "h" => h, "diffusion" => diffusion, "dx_params" => dx_params, "dx_dt" => dx_dt, ) if diffusion != 0.0 kwargs["p"] = p kwargs["α"] = α kwargs["ρ"] = ρ end # seed the random generator Random.seed!(seed) x = rand(Normal(), state_dim) # spin the model onto the attractor for j in 1:spin for k in 1:f_steps step_model!(x, 0.0, kwargs) end end # save the model state at timesteps of tanl for j in 1:nanl for k in 1:f_steps step_model!(x, 0.0, kwargs) end obs[:, j] = x end data = Dict{String, Any}( "seed" => seed, "h" => h, "diffusion" => diffusion, "dx_params" => dx_params, "tanl" => tanl, "nanl" => nanl, "spin" => spin, "state_dim" => state_dim, "obs" => obs, "model" => "L96" ) path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" name = "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ IEEE39bus_time_series((seed::Int64, h:Float64, tanl::Float64, nanl::Int64, spin::Int64, diffusion::Float64)::NamedTuple) Simulate a "free run" time series of the [IEEE39bus](@ref) for generating an observation process and truth twin for data assimilation twin experiments. Output from the experiment is saved in a dictionary of the form, Dict{String, Any}( "seed" => seed, "h" => h, "diffusion" => diffusion, "diff_mat" => diff_mat, "dx_params" => dx_params, "tanl" => tanl, "nanl" => nanl, "spin" => spin, "obs" => obs, "model" => "IEEE39bus" ) Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" where the file name is written dynamically according to the selected parameters as follows: "IEEE39bus_time_series_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" """ function IEEE39bus_time_series((seed, h, tanl, nanl, spin, diffusion)::NamedTuple{ (:seed,:h,:tanl,:nanl,:spin,:diffusion), <:Tuple{Int64,Float64,Float64,Int64,Int64,Float64}}) # time the experiment t1 = time() # set random seed Random.seed!(seed) # define the model dx_dt = IEEE39bus.dx_dt state_dim = 20 # define the model parameters input_data = pkgdir(DataAssimilationBenchmarks) * "/src/models/IEEE39bus_inputs/NE_EffectiveNetworkParams.jld2" tmp = load(input_data) dx_params = Dict{String, Array{Float64}}( "A" => tmp["A"], "D" => tmp["D"], "H" => tmp["H"], "K" => tmp["K"], "γ" => tmp["γ"], "ω" => tmp["ω"] ) # define the integration scheme step_model! = DeSolvers.rk4_step! h = 0.01 # define the diffusion coefficient structure matrix # notice that the perturbations are only applied to the frequencies # based on the change of variables derivation # likewise, the diffusion parameter is applied separately as an amplitude # in the Runge-Kutta scheme diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = tmp["ω"][1] ./ (2.0 * tmp["H"]) # set the number of discrete integrations steps between each observation time f_steps = convert(Int64, tanl/h) # set storage for the ensemble timeseries obs = Array{Float64}(undef, state_dim, nanl) # define the integration parameters in the kwargs dict kwargs = Dict{String, Any}( "h" => h, "diffusion" => diffusion, "dx_params" => dx_params, "dx_dt" => dx_dt, "diff_mat" => diff_mat ) # load the steady state, generated by long simulation without noise x = tmp["synchronous_state"] # spin the model onto the attractor for j in 1:spin for k in 1:f_steps step_model!(x, 0.0, kwargs) # set phase angles mod 2pi x[1:10] .= rem2pi.(x[1:10], RoundNearest) end end # save the model state at timesteps of tanl for j in 1:nanl for k in 1:f_steps step_model!(x, 0.0, kwargs) # set phase angles mod 2pi x[1:10] .= rem2pi.(x[1:10], RoundNearest) end obs[:, j] = x end data = Dict{String, Any}( "seed" => seed, "h" => h, "diffusion" => diffusion, "diff_mat" => diff_mat, "dx_params" => dx_params, "tanl" => tanl, "nanl" => nanl, "spin" => spin, "obs" => obs, "model" => "IEEE39bus" ) path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" name = "IEEE39bus_time_series_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
25239
############################################################################################## module ParallelExperimentDriver ############################################################################################## # imports and exports using ..DataAssimilationBenchmarks export ensemble_filter_adaptive_inflation, ensemble_filter_param, classic_ensemble_state, classic_ensemble_param, single_iteration_ensemble_state, iterative_ensemble_state, D3_var_tuned_inflation ############################################################################################## # Utility methods and definitions ############################################################################################## path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" ############################################################################################## # Filters ############################################################################################## """ args, wrap_exp = ensemble_filter_adaptive_inflation() Constucts a parameter map and experiment wrapper for sensitivity test of adaptive inflation. The ensemble size is varied along with the adaptive multiplicative inflation method, including the dual, primal and primal with linesearch EnKF-N methods. """ function ensemble_filter_adaptive_inflation() exp = DataAssimilationBenchmarks.FilterExps.ensemble_filter_state function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 6500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["enkf-n-primal", "enkf-n-primal-ls", "enkf-n-dual"] seed = 1234 obs_un = 1.0 obs_dim = 40 N_enss = 15:3:42 s_infls = [1.0] nanl = 4000 γ = 1.0 # load the experiments args = Vector{Any}() for method in methods for N_ens in N_enss for s_infl in s_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, obs_un = obs_un, obs_dim = obs_dim, γ = γ, N_ens = N_ens, s_infl = s_infl ) push!(args, tmp) end end end return args, wrap_exp end ############################################################################################## """ args, wrap_exp = D3_var_tuned_inflation() Constructs parameter range for tuning multiplicative inflation for 3D-VAR background cov. The choice of the background covariance is varied between the identity matrix and a climatological covariance computed from a long time series of the Lorenz-96 system. Both choices then are scaled by a multiplicative covariance parameter that tunes the variances. """ function D3_var_tuned_inflation() exp = DataAssimilationBenchmarks.FilterExps.D3_var_filter_state function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 6500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters bkg_covs = ["ID", "clima"] dims = collect(1:1:40) s_infls = 0.005:0.005:1.0 # load the experiments args = Vector{Any}() for s_infl in s_infls for dim in dims for bkg_cov in bkg_covs tmp = ( time_series = time_series, bkg_cov = bkg_cov, seed = 0, nanl = 3500, obs_un = 1.0, obs_dim = dim, γ = 1.0, s_infl = s_infl, ) push!(args, tmp) end end end return args, wrap_exp end ############################################################################################## """ args, wrap_exp = ensemble_filter_param() Constucts a parameter map and experiment wrapper for sensitivity test of parameter estimation. Ensemble schemes sample the forcing parameter for the Lorenz-96 system and vary the random walk parameter model for its time evolution / search over parameter space. """ function ensemble_filter_param() exp = DataAssimilationBenchmarks.FilterExps.ensemble_filter_param function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 7500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["etkf", "mlef-transform"] seed = 1234 obs_un = 1.0 obs_dim = 40 p_err = 0.03 p_wlks = [0.0000, 0.0001, 0.0010, 0.0100] N_enss = 15:3:42 nanl = 4000 s_infls = LinRange(1.0, 1.10, 11) p_infls = LinRange(1.0, 1.05, 6) γ = 1.0 # load the experiments args = Vector{Any}() for method in methods for p_wlk in p_wlks for N_ens in N_enss for s_infl in s_infls for p_infl in p_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, obs_un = obs_un, obs_dim = obs_dim, γ = γ, p_err = p_err, p_wlk = p_wlk, N_ens = N_ens, s_infl = s_infl, p_infl = p_infl ) push!(args, tmp) end end end end end return args, wrap_exp end ############################################################################################## # Classic smoothers ############################################################################################## """ args, wrap_exp = classic_ensemble_state() Constucts a parameter map and experiment wrapper for sensitivity test of nonlinear obs. The ETKS / MLES estimators vary over different multiplicative inflation parameters, smoother lag lengths and the nonlinearity of the observation operator. """ function classic_ensemble_state() exp = DataAssimilationBenchmarks.SmootherExps.classic_ensemble_state function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 7500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["etks", "mles-transform"] seed = 1234 lags = 1:3:52 shifts = [1] gammas = Vector{Float64}(1:10) shift = 1 obs_un = 1.0 obs_dim = 40 N_enss = 15:3:42 s_infls = LinRange(1.0, 1.10, 11) nanl = 4000 # load the experiments args = Vector{Any}() for method in methods for γ in gammas for lag in lags for shift in shifts for N_ens in N_enss for s_infl in s_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, lag = lag, shift = shift, obs_un = obs_un, obs_dim = obs_dim, γ = γ, N_ens = N_ens, s_infl = s_infl ) push!(args, tmp) end end end end end end return args, wrap_exp end ############################################################################################# """ args, wrap_exp = ensemble_filter_adaptive_inflation() Constucts a parameter map and experiment wrapper for sensitivity test of parameter estimation. Ensemble schemes sample the forcing parameter for the Lorenz-96 system and vary the random walk parameter model for its time evolution / search over parameter space. Methods vary the ETKS and MLES analysis, with different lag lengths, multiplicative inflation parameters, and different pameter models. """ function classic_ensemble_param() exp = DataAssimilationBenchmarks.SmootherExps.classic_ensemble_param function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 7500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["etks", "mles-transform"] seed = 1234 lags = 1:3:52 shifts = [1] gammas = [1.0] shift = 1 obs_un = 1.0 obs_dim = 40 N_enss = 15:3:42 p_err = 0.03 p_wlks = [0.0000, 0.0001, 0.0010, 0.0100] s_infls = LinRange(1.0, 1.10, 11) p_infls = LinRange(1.0, 1.05, 6) nanl = 4000 # load the experiments args = Vector{Any}() for method in methods for lag in lags for γ in gammas for N_ens in N_enss for p_wlk in p_wlks for s_infl in s_infls for p_infl in p_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, lag = lag, shift = shift, obs_un = obs_un, obs_dim = obs_dim, γ = γ, p_err = p_err, p_wlk = p_wlk, N_ens = N_ens, s_infl = s_infl, p_infl = p_infl ) push!(args, tmp) end end end end end end end return args, wrap_exp end ############################################################################################# # SIEnKS ############################################################################################# """ args, wrap_exp = single_iteration_ensemble_state() Constucts a parameter map and experiment wrapper for sensitivity test of multiple DA. The ensemble size is varied along with the multiplicative inflation coefficient, and the use of single versus multiple data assimilation in the SIEnKS. """ function single_iteration_ensemble_state() exp = DataAssimilationBenchmarks.SmootherExps.single_iteration_ensemble_state function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 7500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["etks"] seed = 1234 lags = 1:3:52 shifts = [1] gammas = [1.0] shift = 1 obs_un = 1.0 obs_dim = 40 N_enss = 15:3:42 s_infls = LinRange(1.0, 1.10, 11) nanl = 4000 mdas = [false, true] # load the experiments args = Vector{Any}() for mda in mdas for γ in gammas for method in methods for lag in lags for shift in shifts for N_ens in N_enss for s_infl in s_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, lag = lag, shift = shift, mda = mda, obs_un = obs_un, obs_dim = obs_dim, γ = γ, N_ens = N_ens, s_infl = s_infl ) push!(args, tmp) end end end end end end end return args, wrap_exp end ############################################################################################# # IEnKS ############################################################################################# """ args, wrap_exp = iterative_ensemble_state() Constucts a parameter map and experiment wrapper for sensitivity test of multiple DA. The ensemble size is varied along with the multiplicative inflation coefficient, and the use of single versus multiple data assimilation in the IEnKS. """ function iterative_ensemble_state() exp = DataAssimilationBenchmarks.SmootherExps.iterative_ensemble_state function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 7500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["ienks-transform", "lin-ienks-transform"] seed = 1234 lags = 1:3:52 gammas = [1.0] shift = 1 obs_un = 1.0 obs_dim = 40 N_enss = 15:3:42 s_infls = LinRange(1.0, 1.10, 11) nanl = 4000 mdas = [false, true] # load the experiments args = Vector{Any}() for mda in mdas for γ in gammas for method in methods for lag in lags for N_ens in N_enss for s_infl in s_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, lag = lag, shift = shift, mda = mda, obs_un = obs_un, obs_dim = obs_dim, γ = γ, N_ens = N_ens, s_infl = s_infl ) push!(args, tmp) end end end end end end return args, exp end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
11037
############################################################################################## module SingleExperimentDriver ############################################################################################## # imports and exports using JLD2, HDF5 using ..DataAssimilationBenchmarks, ..FilterExps, ..SmootherExps, ..GenerateTimeSeries export time_series_exps, enkf_exps, d3_var_exps, classic_enks_exps, sienks_exps, ienks_exps ############################################################################################## # Utility methods and definitions ############################################################################################## path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" ############################################################################################## # Time series ############################################################################################## """ time_series_exps = Dict{String, Any} Pre-configured time series experiments for generating test data for twin experiments. """ time_series_exps = Dict{String, Any}( # Generates a short time series of the L96 model for testing "L96_deterministic_test" => ( seed = 0, h = 0.05, state_dim = 40, tanl = 0.05, nanl = 5000, spin = 1500, diffusion = 0.00, F = 8.0, ), # Generates a short time series of the IEEE39bus model for testing "IEEE39bus_deterministic_test" => ( seed = 0, h = 0.01, tanl = 0.01, nanl = 5000, spin = 1500, diffusion = 0.0, ), ) ############################################################################################## # EnKF style experiments ############################################################################################## """ enkf_exps = Dict{String, Any} Pre-configured EnKF style twin experiments for benchmark models. """ enkf_exps = Dict{String, Any}( # Lorenz-96 ETKF state estimation standard configuration "L96_ETKF_state_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etkf", seed = 0, nanl = 3500, obs_un = 1.0, obs_dim = 40, γ = 1.00, N_ens = 21, s_infl = 1.02, ), # Lorenz-96 3D-VAR state estimation standard configuration "L96_D3_var_state_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", bkg_cov = "ID", seed = 0, nanl = 3500, obs_un = 1.0, obs_dim = 40, γ = 1.00, s_infl = 0.20, ), # Lorenz-96 ETKF joint state-parameter estimation standard configuration "L96_ETKF_param_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etkf", seed = 0, nanl = 3500, obs_un = 1.0, obs_dim = 40, γ = 1.0, p_err = 0.10, p_wlk = 0.0010, N_ens = 21, s_infl = 1.02, p_infl = 1.0, ), # IEEE39bus ETKF state estimation standard configuration "IEEE39bus_ETKF_state_test" => ( time_series = path * "IEEE39bus_time_series_seed_0000_diff_0.000_tanl_0.01_nanl_05000_spin_1500_" * "h_0.010.jld2", method = "etkf", seed = 0, nanl = 3500, obs_un = 0.1, obs_dim = 20, γ = 1.00, N_ens = 21, s_infl = 1.02 ), ) ############################################################################################## # 3D-VAR style experiments ############################################################################################## """ d3_var_exps = Dict{String, Any} Pre-configured 3D-VAR style twin experiments for benchmark models. """ d3_var_exps = Dict{String, Any}( # Lorenz-96 3D-VAR state estimation configuration "L96_D3_var_state_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_"* "spin_1500_h_0.050.jld2", bkg_cov = "ID", seed = 0, nanl = 3500, obs_un = 1.0, obs_dim = 40, γ = 1.00, s_infl = 0.23, ) ) ############################################################################################## # Classic smoothers ############################################################################################## """ classic_enks_exps = Dict{String, Any} Pre-configured classic EnKS style twin experiments for benchmark models. """ classic_enks_exps = Dict{String, Any}( # Lorenz-96 ETKS state estimation standard configuration "L96_ETKS_state_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etks", seed = 0, nanl = 3500, lag = 10, shift = 1, obs_un = 1.0, obs_dim = 40, γ = 1.00, N_ens = 21, s_infl = 1.02, ), # Lorenz-96 ETKS joint state-parameter estimation standard configuration "L96_ETKS_param_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etks", seed = 0, nanl = 3500, lag = 10, shift = 1, obs_un = 1.0, obs_dim = 40, γ = 1.0, p_err = 0.10, p_wlk = 0.0010, N_ens = 21, s_infl = 1.02, p_infl = 1.0, ), ) ############################################################################################## # SIEnKS style experiments ############################################################################################## """ sienks_exps = Dict{String, Any} Pre-configured SIEnKS style twin experiments for benchmark models. """ sienks_exps = Dict{String, Any}( # Lorenz-96 SIEnKS sda state estimation standard configuration "L96_ETKS_state_sda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etks", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = false, obs_un = 1.0, obs_dim = 40, γ = 1.00, N_ens = 21, s_infl = 1.02, ), "L96_ETKS_state_mda_test" => ( # Lorenz-96 SIEnKS mda state estimation standard configuration time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etks", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = true, obs_un = 1.0, obs_dim = 40, γ = 1.00, N_ens = 21, s_infl = 1.02, ), # Lorenz-96 SIEnKS sda joint state-parameter estimation standard configuration "L96_ETKS_param_sda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "etks", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = false, obs_un = 1.0, obs_dim = 40, γ = 1.00, p_err = 0.10, p_wlk = 0.0010, N_ens = 21, s_infl = 1.02, p_infl = 1.0, ), # Lorenz-96 SIEnKS mda joint state-parameter estimation standard configuration "L96_ETKS_param_mda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_" * "tanl_0.05_nanl_05000_spin_1500_h_0.050.jld2", method = "etks", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = true, obs_un = 1.0, obs_dim = 40, γ = 1.0, p_err = 0.10, p_wlk = 0.0010, N_ens = 21, s_infl = 1.02, p_infl = 1.0, ), ) ############################################################################################## # IEnKS style experiments ############################################################################################## """ ienks_exps = Dict{String, Any} Pre-configured IEnKS style twin experiments for benchmark models. """ ienks_exps = Dict{String, Any}( # Lorenz-96 IEnKS sda state estimation standard configuration "L96_IEnKS_state_sda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "ienks-transform", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = false, obs_un = 1.0, obs_dim = 40, γ = 1.00, N_ens = 21, s_infl = 1.02, ), # Lorenz-96 IEnKS mda state estimation standard configuration "L96_IEnKS_state_mda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05_nanl_05000_" * "spin_1500_h_0.050.jld2", method = "ienks-transform", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = true, obs_un = 1.0, obs_dim = 40, γ = 1.00, N_ens = 21, s_infl = 1.02, ), # Lorenz-96 IEnKS sda joint state-parameter estimation standard configuration "L96_IEnKS_param_sda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0" * "_tanl_0.05_nanl_05000_spin_1500_h_0.050.jld2", method = "ienks-transform", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = false, obs_un = 1.0, obs_dim = 40, γ = 1.00, p_err = 0.10, p_wlk = 0.0010, N_ens = 21, s_infl = 1.02, p_infl = 1.0, ), # Lorenz-96 IEnKS mda joint state-parameter estimation standard configuration "L96_IEnKS_param_mda_test" => ( time_series = path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0" * "_tanl_0.05_nanl_05000_spin_1500_h_0.050.jld2", method = "ienks-transform", seed = 0, nanl = 3500, lag = 10, shift = 1, mda = true, obs_un = 1.0, obs_dim = 40, γ = 1.00, p_err = 0.10, p_wlk = 0.0010, N_ens = 21, s_infl = 1.02, p_infl = 1.0, ), ) ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
109889
############################################################################################## module SmootherExps ############################################################################################## # imports and exports using Random, Distributions using LinearAlgebra using JLD2, HDF5 using ..DataAssimilationBenchmarks, ..ObsOperators, ..EnsembleKalmanSchemes, ..DeSolvers, ..L96, ..IEEE39bus export classic_ensemble_state, classic_ensemble_param, single_iteration_ensemble_state, single_iteration_ensemble_param, iterative_ensemble_state, iterative_ensemble_param ############################################################################################## # Main smoothing experiments, debugged and validated for use with schemes in methods directory ############################################################################################## """ classic_ensemble_state((time_series::String, method::String, seed::Int64, nanl::Int64, lag::Int64, shift::Int64, obs_un::Float64, obs_dim::Int64, γ::Float64, N_ens::Int64, s_infl::Float64)::NamedTuple) Classic ensemble Kalman smoother state estimation twin experiment. NOTE: the classic scheme does not use multiple data assimilation and we hard code `mda=false` in the function for consistency with the API of other methods. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "h" => h, "N_ens" => N_ens, "mda" => mda, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-classic/" where the file name is written dynamically according to the selected parameters as follows: method * "-classic_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" """ function classic_ensemble_state((time_series, method, seed, nanl, lag, shift, obs_un, obs_dim, γ, N_ens, s_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:lag,:shift,:obs_un,:obs_dim, :γ,:N_ens,:s_infl), <:Tuple{String,String,Int64,Int64,Int64,Int64,Float64,Int64, Float64,Int64,Float64}}) # time the experiment t1 = time() # Define experiment parameters # define static mda parameter, not used for classic smoother mda = false # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] sys_dim = length(init) ens = rand(MvNormal(init, I), N_ens) # define the observation range and truth reference solution obs = obs[:, 1:nanl + 3 * lag + 1] truth = copy(obs) # define kwargs kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "s_infl" => s_infl, "γ" => γ, "shift" => shift, "mda" => mda ) # define the observation operator, observation error covariance and observations # with error, observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # check if there is a diffusion structure matrix if haskey(ts, "diff_mat") kwargs["diff_mat"] = ts["diff_mat"] end # create storage for the forecast and analysis statistics, indexed in relative time # the first index corresponds to time 1 # last index corresponds to index nanl + 3 * lag + 1 fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # posterior array of length lag + shift will be loaded with filtered states as they # arrive in the DAW, with the shifting time index post = Array{Float64}(undef, sys_dim, N_ens, lag + shift) # we will run through nanl total analyses, i ranges in the absolute analysis-time index, # we perform assimilation of the observation window from time 2 to time nanl + 1 + lag # at increments of shift starting at time 2 because of no observations at time 1 # only the interval 2 : nanl + 1 is stored later for all statistics for i in 2: shift : nanl + 1 + lag kwargs["posterior"] = post # observations indexed in absolute time analysis = ls_smoother_classic(method, ens, obs[:, i: i + shift - 1], H_obs, obs_cov, kwargs) ens = analysis["ens"]::Array{Float64} fore = analysis["fore"]::Array{Float64} filt = analysis["filt"]::Array{Float64} post = analysis["post"]::Array{Float64} for j in 1:shift # compute the forecast, filter and analysis statistics # indices for the forecast, filter, analysis statistics storage index starts # at absolute time 1, truth index starts at absolute time 1 fore_rmse[i + j - 1], fore_spread[i + j - 1] = analyze_ens( fore[:, :, j], truth[:, i + j - 1] ) filt_rmse[i + j - 1], filt_spread[i + j - 1] = analyze_ens( filt[:, :, j], truth[:, i + j - 1] ) # we analyze the posterior states to be be discarded in the non-overlapping DAWs if shift == lag # for the shift=lag, all states are analyzed and discared, # no dummy past states are used, truth follows times minus 1 # from the filter and forecast stastistics post_rmse[i + j - 2], post_spread[i + j - 2] = analyze_ens( post[:, :, j], truth[:, i + j - 2] ) elseif i > lag # for lag > shift, we wait for the dummy lag-1-total posterior states to be # cycled out, the first posterior starts with the first prior at time 1, # later discarded to align stats post_rmse[i - lag + j - 1], post_spread[i - lag + j - 1] = analyze_ens( post[:, :, j], truth[:, i - lag + j - 1] ) end end end # cut the statistics so that they align on the same absolute time points fore_rmse = fore_rmse[2: nanl + 1] fore_spread = fore_spread[2: nanl + 1] filt_rmse = filt_rmse[2: nanl + 1] filt_spread = filt_spread[2: nanl + 1] post_rmse = post_rmse[2: nanl + 1] post_spread = post_spread[2: nanl + 1] data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "h" => h, "N_ens" => N_ens, "mda" => mda, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-classic/" name = method * "-classic_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ classic_ensemble_param((time_series::String, method::String, seed::Int64, nanl::Int64, lag::Int64, shift::Int64, obs_un::Float64, obs_dim::Int64, γ::Float64, p_err::Float64, p_wlk::Float64, N_ens::Int64, s_infl::Float64, s_infl::Float64})::NamedTuple) Classic ensemble Kalman smoother joint state-parameter estimation twin experiment. NOTE: the classic scheme does not use multiple data assimilation and we hard code `mda=false` in the function for consistency with other methods. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "param_spread" => para_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "param_truth" => param_truth, "sys_dim" => sys_dim, "state_dim" => state_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_err" => p_err, "p_wlk" => p_wlk, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-classic/" where the file name is written dynamically according to the selected parameters as follows: method * "-classic_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" """ function classic_ensemble_param((time_series, method, seed, nanl, lag, shift, obs_un, obs_dim, γ, p_err, p_wlk, N_ens, s_infl, p_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:lag,:shift,:obs_un,:obs_dim, :γ,:p_err,:p_wlk,:N_ens,:s_infl,:p_infl), <:Tuple{String,String,Int64,Int64,Int64,Int64,Float64,Int64, Float64,Float64,Float64,Int64,Float64,Float64}}) # time the experiment t1 = time() # define static mda parameter, not used for classic smoother mda=false # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] if model == "L96" param_truth = pop!(dx_params, "F") elseif model == "IEEE39bus" param_truth = [pop!(dx_params, "H"); pop!(dx_params, "D")] param_truth = param_truth[:] end state_dim = length(init) sys_dim = state_dim + length(param_truth) # define the initial ensemble ens = rand(MvNormal(init, I), N_ens) # extend this by the parameter ensemble # note here the covariance is supplied such that the standard deviation is a percent # of the parameter value param_ens = rand(MvNormal(param_truth[:], diagm(param_truth[:] * p_err).^2.0), N_ens ) # define the extended state ensemble ens = [ens; param_ens] # define the observation sequence where we map the true state into the observation space # and perturb by white-in-time-and-space noise with standard deviation obs_un obs = obs[:, 1:nanl + 3 * lag + 1] truth = copy(obs) # define kwargs kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "h" => h, "diffusion" => diffusion, "dx_params" => dx_params, "γ" => γ, "state_dim" => state_dim, "p_wlk" => p_wlk, "s_infl" => s_infl, "p_infl" => p_infl, "shift" => shift, "mda" => mda ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # we define the parameter sample as the key name and index # of the extended state vector pair, to be loaded in the # ensemble integration step if model == "L96" param_sample = Dict("F" => [41:41]) elseif model == "IEEE39bus" param_sample = Dict("H" => [21:30], "D" => [31:40]) end kwargs["param_sample"] = param_sample # create storage for the forecast and analysis statistics, indexed in relative time # first index corresponds to time 1, last index corresponds to index nanl + 3 * lag + 1 fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) para_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) para_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # posterior array of length lag + shift will be loaded with filtered states as they # arrive in the DAW, with the shifting time index post = Array{Float64}(undef, sys_dim, N_ens, lag + shift) # we will run through nanl total analyses, i ranges in the absolute analysis-time index, # we perform assimilation of the observation window from time 2 to time nanl + 1 + lag # at increments of shift starting at time 2 because of no observations at time 1 # only the interval 2 : nanl + 1 is stored later for all statistics for i in 2: shift : nanl + 1 + lag kwargs["posterior"] = post # observations indexed in absolute time analysis = ls_smoother_classic( method, ens, obs[:, i: i + shift - 1], H_obs, obs_cov, kwargs ) ens = analysis["ens"]::Array{Float64} fore = analysis["fore"]::Array{Float64} filt = analysis["filt"]::Array{Float64} post = analysis["post"]::Array{Float64} for j in 1:shift # compute the forecast, filter and analysis statistics # indices for the forecast, filter, analysis statistics storage index starts # at absolute time 1, truth index starts at absolute time 1 fore_rmse[i + j - 1], fore_spread[i + j - 1] = analyze_ens( fore[1:state_dim, :, j], truth[:, i + j - 1] ) filt_rmse[i + j - 1], filt_spread[i + j - 1] = analyze_ens( filt[1:state_dim, :, j], truth[:, i + j - 1] ) # analyze the posterior states that will be discarded in the non-overlapping DAWs if shift == lag # for the shift=lag, all states are analyzed and discared, # no dummy past states are used truth follows times minus 1 from the # filter and forecast stastistics post_rmse[i + j - 2], post_spread[i + j - 2] = analyze_ens( post[1:state_dim, :, j], truth[:, i + j - 2] ) para_rmse[i + j - 2], para_spread[i + j - 2] = analyze_ens_param( post[state_dim + 1: end,:, j], param_truth ) elseif i > lag # for lag > shift, we wait for the dummy lag-1-total posterior states # to be cycled out the first posterior starts with the first prior at time 1, # later discarded to align stats post_rmse[i - lag + j - 1], post_spread[i - lag + j - 1] = analyze_ens( post[1:state_dim, :, j], truth[:, i - lag + j - 1] ) para_rmse[i - lag + j - 1], para_spread[i - lag + j - 1] = analyze_ens_param( post[state_dim + 1: end, :, j], param_truth ) end end end # cut the statistics so that they align on the same absolute time points fore_rmse = fore_rmse[2: nanl + 1] fore_spread = fore_spread[2: nanl + 1] filt_rmse = filt_rmse[2: nanl + 1] filt_spread = filt_spread[2: nanl + 1] post_rmse = post_rmse[2: nanl + 1] post_spread = post_spread[2: nanl + 1] para_rmse = para_rmse[2: nanl + 1] para_spread = para_spread[2: nanl + 1] data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "param_spread" => para_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "param_truth" => param_truth, "sys_dim" => sys_dim, "state_dim" => state_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_err" => p_err, "p_wlk" => p_wlk, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-classic/" name = method * "-classic_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ single_iteration_ensemble_state((time_series::String, method::String, seed::Int64, nanl::Int64, lag::Int64, shift::Int64, mda::Bool, obs_un::Float64, obs_dim::Int64, γ::Float64, N_ens::Int64, s_infl::Float64})::NamedTuple) SIEnKS state estimation twin experiment. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-single-iteration/" where the file name is written dynamically according to the selected parameters as follows: method * "-single-iteration_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" """ function single_iteration_ensemble_state((time_series, method, seed, nanl, lag, shift, mda, obs_un, obs_dim, γ, N_ens, s_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:lag,:shift,:mda, :obs_un,:obs_dim,:γ,:N_ens,:s_infl), <:Tuple{String,String,Int64,Int64,Int64,Int64,Bool, Float64,Int64,Float64,Int64,Float64}}) # time the experiment t1 = time() # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # number of discrete shift windows within the lag window n_shifts = convert(Int64, lag / shift) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] sys_dim = length(init) ens = rand(MvNormal(init, I), N_ens) # define the observation sequence where we map the true state into the observation # space andperturb by white-in-time-and-space noise with standard deviation obs_un obs = obs[:, 1:nanl + 3 * lag + 1] truth = copy(obs) # define kwargs kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "γ" => γ, "shift" => shift, "s_infl" => s_infl, "mda" => mda ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # check if there is a diffusion structure matrix if haskey(ts, "diff_mat") kwargs["diff_mat"] = ts["diff_mat"] end # create storage for the forecast and analysis statistics, indexed in relative time # first index corresponds to time 1, last index corresponds to index nanl + 3 * lag + 1 fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # perform an initial spin for the smoothed re-analyzed first prior estimate while # handling new observations with a filtering step to prevent divergence of the # forecast for long lags spin = true kwargs["spin"] = spin posterior = Array{Float64}(undef, sys_dim, N_ens, shift) kwargs["posterior"] = posterior # we will run through nanl + 2 * lag total observations but discard the last-lag # forecast values and first-lag posterior values so that the statistics align on # the same time points after the spin for i in 2: shift : nanl + lag + 1 # perform assimilation of the DAW # we use the observation window from current time +1 to current time +lag if mda # NOTE: mda spin weights only take lag equal to an integer multiple of shift if spin # for the first rebalancing step, all observations are new # and get fully assimilated, observation weights are given with # respect to a special window in terms of the number of times the # observation will be assimilated obs_weights = [] for n in 1:n_shifts obs_weights = [obs_weights; ones(shift) * n] end kwargs["obs_weights"] = Array{Float64}(obs_weights) kwargs["reb_weights"] = ones(lag) elseif i <= lag # if still processing observations from the spin cycle, # deal with special weights given by the number of times # the observation is assimilated n_complete = (i - 2) / shift n_incomplete = n_shifts - n_complete # the leading terms have weights that are based upon the number of times # that the observation will be assimilated < n_shifts total times as in # the stable algorithm obs_weights = [] for n in n_shifts - n_incomplete + 1 : n_shifts obs_weights = [obs_weights; ones(shift) * n] end for n in 1 : n_complete obs_weights = [obs_weights; ones(shift) * n_shifts] end kwargs["obs_weights"] = Array{Float64}(obs_weights) reb_weights = [] # the rebalancing weights are specially constructed as above for n in 1:n_incomplete reb_weights = [reb_weights; ones(shift) * n / (n + n_complete)] end for n in n_incomplete + 1 : n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) else # equal weights as all observations are assimilated n_shifts total times kwargs["obs_weights"] = ones(lag) * n_shifts # rebalancing weights are constructed in steady state reb_weights = [] for n in 1:n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) end end # peform the analysis analysis = ls_smoother_single_iteration( method, ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs ) ens = analysis["ens"]::Array{Float64} fore = analysis["fore"]::Array{Float64} filt = analysis["filt"]::Array{Float64} post = analysis["post"]::Array{Float64} if spin for j in 1:lag # compute forecast and filter statistics for spin period fore_rmse[i - 1 + j], fore_spread[i - 1 + j] = analyze_ens( fore[:, :, j], truth[:, i - 1 + j] ) filt_rmse[i - 1 + j], filt_spread[i - 1 + j] = analyze_ens( filt[:, :, j], truth[:, i - 1 + j] ) end for j in 1:shift # compute the reanalyzed prior and the shift-forward forecasted reanalysis post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[:, :, j], truth[:, i - 2 + j] ) end # turn off the initial spin period, continue on the normal assimilation cycle spin = false kwargs["spin"] = spin else for j in 1:shift # compute the forecast, filter and analysis statistics # indices for the forecast, filter, analysis and truth are in absolute time, # forecast / filter stats computed beyond the first lag period for the spin fore_rmse[i + lag - 1 - shift + j], fore_spread[i + lag - 1 - shift + j] = analyze_ens( fore[:, :, j], truth[:, i + lag - 1 - shift + j] ) filt_rmse[i + lag - 1 - shift + j], filt_spread[i + lag - 1 - shift + j] = analyze_ens( filt[:, :, j], truth[:, i + lag - 1 - shift + j] ) # analysis statistics computed beyond the first shift post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[:, :, j], truth[:, i - 2 + j] ) end end end # cut the statistics so that they align on the same absolute time points fore_rmse = fore_rmse[2: nanl + 1] fore_spread = fore_spread[2: nanl + 1] filt_rmse = filt_rmse[2: nanl + 1] filt_spread = filt_spread[2: nanl + 1] post_rmse = post_rmse[2: nanl + 1] post_spread = post_spread[2: nanl + 1] data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-single-iteration/" name = method * "-single-iteration_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ single_iteration_ensemble_param((time_series::String, method::String, seed:Int64, nanl::Int64, lag::Int64, shift::Int64, mda::Bool, obs_un::Float64, obs_dim::Int64, γ::Float64, p_err::Float64, p_wlk::Float64, N_ens::Int64, s_infl::Float64, p_infl::Float64)::NamedTuple) SIEnKS joint state-parameter estimation twin experiment. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "param_spread" => para_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "param_truth" => param_truth, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_wlk" => p_wlk, "p_infl" => p_infl, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-single-iteration/" where the file name is written dynamically according to the selected parameters as follows: method * "-single-iteration_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" """ function single_iteration_ensemble_param((time_series, method, seed, nanl, lag, shift, mda, obs_un, obs_dim, γ, p_err, p_wlk, N_ens, s_infl, p_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:lag,:shift,:mda, :obs_un,:obs_dim,:γ,:p_err,:p_wlk,:N_ens,:s_infl, :p_infl), <:Tuple{String,String,Int64,Int64,Int64,Int64,Bool, Float64,Int64,Float64,Float64,Float64,Int64, Float64,Float64}}) # time the experiment t1 = time() # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # number of discrete shift windows within the lag window n_shifts = convert(Int64, lag / shift) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] if model == "L96" param_truth = pop!(dx_params, "F") elseif model == "IEEE39bus" param_truth = [pop!(dx_params, "H"); pop!(dx_params, "D")] param_truth = param_truth[:] end state_dim = length(init) sys_dim = state_dim + length(param_truth) # define the initial ensemble ens = rand(MvNormal(init, I), N_ens) # extend this by the parameter ensemble # note here the covariance is supplied such that the standard deviation is a percent # of the parameter value param_ens = rand(MvNormal(param_truth[:], diagm(param_truth[:] * p_err).^2.0), N_ens) # define the extended state ensemble ens = [ens; param_ens] obs = obs[:, 1:nanl + 3 * lag + 1] truth = copy(obs) # define kwargs kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "γ" => γ, "state_dim" => state_dim, "shift" => shift, "p_wlk" => p_wlk, "s_infl" => s_infl, "p_infl" => p_infl, "mda" => mda ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # we define the parameter sample as the key name and index # of the extended state vector pair, to be loaded in the # ensemble integration step if model == "L96" param_sample = Dict("F" => [41:41]) elseif model == "IEEE39bus" param_sample = Dict("H" => [21:30], "D" => [31:40]) end kwargs["param_sample"] = param_sample # create storage for the forecast and analysis statistics, indexed in relative time # first index corresponds to time 1, last index corresponds to index nanl + 3 * lag + 1 fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) para_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) para_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # perform an initial spin for the smoothed re-analyzed first prior estimate while # handling new observations with a filtering step to prevent divergence of the forecast # for long lags spin = true kwargs["spin"] = spin posterior = zeros(sys_dim, N_ens, shift) kwargs["posterior"] = posterior # we will run through nanl + 2 * lag total analyses but discard the last-lag # forecast values and first-lag posterior values so that the statistics align on # the same time points after the spin for i in 2: shift : nanl + lag + 1 # perform assimilation of the DAW # we use the observation window from current time +1 to current time +lag if mda # NOTE: mda spin weights only take lag equal to an integer multiple of shift if spin # for the first rebalancing step, all observations are new # and get fully assimilated, observation weights are given with # respect to a special window in terms of the number of times the # observation will be assimilated obs_weights = [] for n in 1:n_shifts obs_weights = [obs_weights; ones(shift) * n] end kwargs["obs_weights"] = Array{Float64}(obs_weights) kwargs["reb_weights"] = ones(lag) elseif i <= lag # if still processing observations from the spin cycle, # deal with special weights given by the number of times # the observation is assimilated n_complete = (i - 2) / shift n_incomplete = n_shifts - n_complete # the leading terms have weights that are based upon the number of times # that the observation will be assimilated < n_shifts total times as in # the stable algorithm obs_weights = [] for n in n_shifts - n_incomplete + 1 : n_shifts obs_weights = [obs_weights; ones(shift) * n] end for n in 1 : n_complete obs_weights = [obs_weights; ones(shift) * n_shifts] end kwargs["obs_weights"] = Array{Float64}(obs_weights) reb_weights = [] # the rebalancing weights are specially constructed as above for n in 1:n_incomplete reb_weights = [reb_weights; ones(shift) * n / (n + n_complete)] end for n in n_incomplete + 1 : n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) else # equal weights as all observations are assimilated n_shifts total times kwargs["obs_weights"] = ones(lag) * n_shifts # rebalancing weights are constructed in steady state reb_weights = [] for n in 1:n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) end end # peform the analysis analysis = ls_smoother_single_iteration( method, ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs ) ens = analysis["ens"]::Array{Float64} fore = analysis["fore"]::Array{Float64} filt = analysis["filt"]::Array{Float64} post = analysis["post"]::Array{Float64} if spin for j in 1:lag # compute forecast and filter statistics for the spin period fore_rmse[i - 1 + j], fore_spread[i - 1 + j] = analyze_ens( fore[1:state_dim, :, j], truth[:, i - 1 + j] ) filt_rmse[i - 1 + j], filt_spread[i - 1 + j] = analyze_ens( filt[1:state_dim, :, j], truth[:, i - 1 + j] ) end for j in 1:shift # compute the reanalyzed prior and the shift-forward forecasted reanalysis post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[1:state_dim, :, j], truth[:, i - 2 + j] ) para_rmse[i - 2 + j], para_spread[i - 2 + j] = analyze_ens_param( post[state_dim+1:end, :, j], param_truth ) end # turn off the initial spin period, continue on the normal assimilation cycle spin = false kwargs["spin"] = spin else for j in 1:shift # compute the forecast, filter and analysis statistics # indices for the forecast, filter, analysis and truth arrays are # in absolute time, forecast / filter stats computed beyond the # first lag period for the spin fore_rmse[i + lag - 1 - shift + j], fore_spread[i + lag - 1 - shift + j] = analyze_ens( fore[1:state_dim, :, j], truth[:, i + lag - 1 - shift + j] ) filt_rmse[i + lag - 1 - shift + j], filt_spread[i + lag - 1 - shift + j] = analyze_ens( filt[1:state_dim, :, j], truth[:, i + lag - 1 - shift + j] ) # analysis statistics computed beyond the first shift post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[1:state_dim, :, j], truth[:, i - 2 + j] ) para_rmse[i - 2 + j], para_spread[i - 2 + j] = analyze_ens_param( post[state_dim+1:end, :, j], param_truth ) end end end # cut the statistics so that they align on the same absolute time points fore_rmse = fore_rmse[2: nanl + 1] fore_spread = fore_spread[2: nanl + 1] filt_rmse = filt_rmse[2: nanl + 1] filt_spread = filt_spread[2: nanl + 1] post_rmse = post_rmse[2: nanl + 1] post_spread = post_spread[2: nanl + 1] para_rmse = para_rmse[2: nanl + 1] para_spread = para_spread[2: nanl + 1] data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "param_spread" => para_spread, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "param_truth" => param_truth, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_wlk" => p_wlk, "p_infl" => p_infl, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "-single-iteration/" name = method * "-single-iteration_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ iterative_ensemble_state((time_series::String, method::String, seed::Int64, nanl::Int64, lag::Int64, shift::Int64, mda::Bool, obs_un::Float64, obs_dim::Int64, γ::Float64, N_ens::Int64, s_infl::Float64)::NamedTuple) 4DEnVAR state estimation twin experiment using the IEnKS formalism. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "iteration_sequence" => iteration_sequence, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" where the file name is written dynamically according to the selected parameters as follows: method * "_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" """ function iterative_ensemble_state((time_series, method, seed, nanl, lag, shift, mda, obs_un, obs_dim,γ, N_ens, s_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:lag,:shift,:mda,:obs_un, :obs_dim,:γ,:N_ens,:s_infl), <:Tuple{String,String,Int64,Int64,Int64,Int64,Bool,Float64, Int64,Float64,Int64,Float64}}) # time the experiment t1 = time() # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # define the iterative smoother method HARD-CODED here ls_smoother_iterative = ls_smoother_gauss_newton # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # number of discrete shift windows within the lag window n_shifts = convert(Int64, lag / shift) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] sys_dim = length(init) ens = rand(MvNormal(init, I), N_ens) # define the observation range and truth reference solution obs = obs[:, 1:nanl + 3 * lag + 1] truth = copy(obs) # define kwargs kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "γ" => γ, "s_infl" => s_infl, "shift" => shift, "mda" => mda ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # check if there is a diffusion structure matrix if haskey(ts, "diff_mat") kwargs["diff_mat"] = ts["diff_mat"] end # create storage for the forecast and analysis statistics, indexed in relative time # first index corresponds to time 1, last index corresponds to index nanl + 3 * lag + 1 fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # create storage for the iteration sequence, where we will append the number # of iterations on the fly, due to the miss-match between the number of observations # and the number of analyses with shift > 1 iteration_sequence = Vector{Float64}[] # create counter for the analyses m = 1 # perform an initial spin for the smoothed re-analyzed first prior estimate while # handling new observations with a filtering step to prevent divergence of the # forecast for long lags spin = true kwargs["spin"] = spin posterior = zeros(sys_dim, N_ens, shift) kwargs["posterior"] = posterior # we will run through nanl + 2 * lag total observations but discard the # last-lag forecast values and first-lag posterior values so that the statistics # align on the same observation time points after the spin for i in 2: shift : nanl + lag + 1 # perform assimilation of the DAW # we use the observation window from current time +1 to current time +lag if mda # NOTE: mda spin weights are only designed for lag equal to an integer # multiple of shift if spin # for the first rebalancing step, all observations are new and get # fully assimilated observation weights are given with respect to a # special window in terms of the number of times the observation will # be assimilated obs_weights = [] for n in 1:n_shifts obs_weights = [obs_weights; ones(shift) * n] end kwargs["obs_weights"] = Array{Float64}(obs_weights) kwargs["reb_weights"] = ones(lag) elseif i <= lag # if still processing observations from the spin cycle, # deal with special weights given by the number of times the observation # is assimilated n_complete = (i - 2) / shift n_incomplete = n_shifts - n_complete # the leading terms have weights that are based upon the number of times # that the observation will be assimilated < n_shifts total times as in # the stable algorithm obs_weights = [] for n in n_shifts - n_incomplete + 1 : n_shifts obs_weights = [obs_weights; ones(shift) * n] end for n in 1 : n_complete obs_weights = [obs_weights; ones(shift) * n_shifts] end kwargs["obs_weights"] = Array{Float64}(obs_weights) reb_weights = [] # the rebalancing weights are specially constructed as above for n in 1:n_incomplete reb_weights = [reb_weights; ones(shift) * n / (n + n_complete)] end for n in n_incomplete + 1 : n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) else # otherwise equal weights as all observations are assimilated n_shifts # total times kwargs["obs_weights"] = ones(lag) * n_shifts # rebalancing weights are constructed in steady state reb_weights = [] for n in 1:n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) end end if method[1:4] == "lin-" if spin # on the spin cycle, there are the standard number of iterations allowed # to warm up analysis = ls_smoother_iterative(method[5:end], ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs) else # after this, the number of iterations allowed is set to one analysis = ls_smoother_iterative(method[5:end], ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs, max_iter=1) end else analysis = ls_smoother_iterative(method, ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs) end ens = analysis["ens"]::Array{Float64} fore = analysis["fore"]::Array{Float64} filt = analysis["filt"]::Array{Float64} post = analysis["post"]::Array{Float64} iteration_sequence = [iteration_sequence; analysis["iterations"]] m+=1 if spin for j in 1:lag # compute filter statistics on the first lag states during spin period filt_rmse[i - 1 + j], filt_spread[i - 1 + j] = analyze_ens( filt[:, :, j], truth[:, i - 1 + j] ) end for j in 1:lag+shift # compute the forecast statistics on the first lag+shift states during # the spin period fore_rmse[i - 1 + j], fore_spread[i - 1 + j] = analyze_ens( fore[:, :, j], truth[:, i - 1 + j] ) end for j in 1:shift # compute only the reanalyzed prior and the shift-forward forecasted # reanalysis post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[:, :, j], truth[:, i - 2 + j] ) end # turn off the initial spin period, continue hereafter on the normal # assimilation cycle spin = false kwargs["spin"] = spin else for j in 1:shift # compute the forecast, filter and analysis statistics # indices for the forecast, filter, analysis and truth arrays # are in absolute time, forecast / filter stats computed beyond # the first lag period for the spin fore_rmse[i + lag - 1 + j], fore_spread[i + lag - 1+ j] = analyze_ens( fore[:, :, j], truth[:, i + lag - 1 + j] ) filt_rmse[i + lag - 1 - shift + j], filt_spread[i + lag - 1 - shift + j] = analyze_ens( filt[:, :, j], truth[:, i + lag - 1 - shift + j] ) # analysis statistics computed beyond the first shift post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[:, :, j], truth[:, i - 2 + j] ) end end end # cut the statistics so that they align on the same absolute time points fore_rmse = fore_rmse[2: nanl + 1] fore_spread = fore_spread[2: nanl + 1] filt_rmse = filt_rmse[2: nanl + 1] filt_spread = filt_spread[2: nanl + 1] post_rmse = post_rmse[2: nanl + 1] post_spread = post_spread[2: nanl + 1] iteration_sequence = Array{Float64}(iteration_sequence) data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "iteration_sequence" => iteration_sequence, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" name = method * "_" * model * "_state_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## """ iterative_ensemble_param((time_series:String, method:String, seed::Int64, nanl::Int64, lag::Int64, shift::Int64, mda::Bool, obs_un::Float64, obs_dim::Int64, γ::Float64, p_err::Float64, p_wlk::Float64, N_ens::Int64, s_infl::Float64, p_infl::Float64)::NamedTuple) 4DEnVAR joint state-parameter estimation twin experiment using the IEnKS formalism. Output from the experiment is saved in a dictionary of the form, data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "param_spread" => para_spread, "iteration_sequence" => iteration_sequence, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_wlk" => p_wlk, "p_infl" => p_infl, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end Experiment output is written to a directory defined by path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" where the file name is written dynamically according to the selected parameters as follows: method * "_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" """ function iterative_ensemble_param((time_series, method, seed, nanl, lag, shift, mda, obs_un, obs_dim, γ, p_err, p_wlk, N_ens, s_infl, p_infl)::NamedTuple{ (:time_series,:method,:seed,:nanl,:lag,:shift,:mda,:obs_un, :obs_dim,:γ,:p_err,:p_wlk,:N_ens,:s_infl,:p_infl), <:Tuple{String,String,Int64,Int64,Int64,Int64,Bool,Float64, Int64,Float64,Float64,Float64,Int64,Float64, Float64}}) # time the experiment t1 = time() # load the timeseries and associated parameters ts = load(time_series)::Dict{String,Any} diffusion = ts["diffusion"]::Float64 dx_params = ts["dx_params"]::ParamDict(Float64) tanl = ts["tanl"]::Float64 model = ts["model"]::String # define the observation operator HARD-CODED in this line H_obs = alternating_obs_operator # set the integration step size for the ensemble at 0.01 if an SDE, if deterministic # simply use the same step size as the observation model if diffusion > 0.0 h = 0.01 else h = ts["h"] end # define the dynamical model derivative for this experiment from the name # supplied in the time series if model == "L96" dx_dt = L96.dx_dt elseif model == "IEEE39bus" dx_dt = IEEE39bus.dx_dt end # define integration method step_model! = rk4_step! # define the iterative smoother method ls_smoother_iterative = ls_smoother_gauss_newton # number of discrete forecast steps f_steps = convert(Int64, tanl / h) # number of discrete shift windows within the lag window n_shifts = convert(Int64, lag / shift) # set seed Random.seed!(seed) # define the initialization obs = ts["obs"]::Array{Float64, 2} init = obs[:, 1] if model == "L96" param_truth = pop!(dx_params, "F") elseif model == "IEEE39bus" param_truth = [pop!(dx_params, "H"); pop!(dx_params, "D")] param_truth = param_truth[:] end state_dim = length(init) sys_dim = state_dim + length(param_truth) # define the initial ensemble ens = rand(MvNormal(init, I), N_ens) # extend this by the parameter ensemble # note here the covariance is supplied such that the standard deviation is a # percent of the parameter value param_ens = rand(MvNormal(param_truth[:], diagm(param_truth[:] * p_err).^2.0), N_ens) # define the extended state ensemble ens = [ens; param_ens] # define the observation range and truth reference solution obs = obs[:, 1:nanl + 3 * lag + 1] truth = copy(obs) # define kwargs kwargs = Dict{String,Any}( "dx_dt" => dx_dt, "f_steps" => f_steps, "step_model" => step_model!, "dx_params" => dx_params, "h" => h, "diffusion" => diffusion, "γ" => γ, "state_dim" => state_dim, "shift" => shift, "p_wlk" => p_wlk, "s_infl" => s_infl, "p_infl" => p_infl, "mda" => mda ) # define the observation operator, observation error covariance and observations # with error observation covariance operator taken as a uniform scaling by default, # can be changed in the definition below obs = H_obs(obs, obs_dim, kwargs) obs += obs_un * rand(Normal(), size(obs)) obs_cov = obs_un^2.0 * I # we define the parameter sample as the key name and index # of the extended state vector pair, to be loaded in the # ensemble integration step if model == "L96" param_sample = Dict("F" => [41:41]) elseif model == "IEEE39bus" param_sample = Dict("H" => [21:30], "D" => [31:40]) end kwargs["param_sample"] = param_sample # create storage for the forecast and analysis statistics, indexed in relative time # first index corresponds to time 1, last index corresponds to index nanl + 3 * lag + 1 fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) para_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) para_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # create storage for the iteration sequence, where we will append the number # of iterations on the fly, due to the miss-match between the number of observations # and the number of analyses with shift > 1 iteration_sequence = Vector{Float64}[] # create counter for the analyses m = 1 # perform an initial spin for the smoothed re-analyzed first prior estimate while # handling new observations with a filtering step to prevent divergence of the # forecast for long lags spin = true kwargs["spin"] = spin posterior = zeros(sys_dim, N_ens, shift) kwargs["posterior"] = posterior # we will run through nanl + 2 * lag total observations but discard the # last-lag forecast values and first-lag posterior values so that the statistics # align on the same observation time points after the spin for i in 2: shift : nanl + lag + 1 # perform assimilation of the DAW # we use the observation window from current time +1 to current time +lag if mda # NOTE: mda spin weights only take lag equal to an integer multiple of shift if spin # all observations are new and get fully assimilated # observation weights are given in terms of the # number of times the observation will be assimilated obs_weights = [] for n in 1:n_shifts obs_weights = [obs_weights; ones(shift) * n] end kwargs["obs_weights"] = Array{Float64}(obs_weights) kwargs["reb_weights"] = ones(lag) elseif i <= lag # still processing observations from the spin cycle, deal with special weights # given by the number of times the observation is assimilated n_complete = (i - 2) / shift n_incomplete = n_shifts - n_complete # the leading terms have weights that are based upon the number of times # that the observation will be assimilated < n_shifts total times as in # the stable algorithm obs_weights = [] for n in n_shifts - n_incomplete + 1 : n_shifts obs_weights = [obs_weights; ones(shift) * n] end for n in 1 : n_complete obs_weights = [obs_weights; ones(shift) * n_shifts] end kwargs["obs_weights"] = Array{Float64}(obs_weights) reb_weights = [] # the rebalancing weights are specially constructed as above for n in 1:n_incomplete reb_weights = [reb_weights; ones(shift) * n / (n + n_complete)] end for n in n_incomplete + 1 : n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) else # equal weights as all observations are assimilated n_shifts total times kwargs["obs_weights"] = ones(lag) * n_shifts # rebalancing weights are constructed in steady state reb_weights = [] for n in 1:n_shifts reb_weights = [reb_weights; ones(shift) * n / n_shifts] end kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) end end if method[1:4] == "lin-" if spin # on the spin cycle, a standard number of iterations allowed to warm up analysis = ls_smoother_iterative(method[5:end], ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs) else # after this, the number of iterations allowed is set to one analysis = ls_smoother_iterative(method[5:end], ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs, max_iter=1) end else analysis = ls_smoother_iterative(method, ens, obs[:, i: i + lag - 1], H_obs, obs_cov, kwargs) end ens = analysis["ens"]::Array{Float64} fore = analysis["fore"]::Array{Float64} filt = analysis["filt"]::Array{Float64} post = analysis["post"]::Array{Float64} iteration_sequence = [iteration_sequence; analysis["iterations"]] m+=1 if spin for j in 1:lag # compute filter statistics on the first lag states during spin period filt_rmse[i - 1 + j], filt_spread[i - 1 + j] = analyze_ens(filt[1:state_dim, :, j], truth[:, i - 1 + j]) end for j in 1:lag+shift # compute the forecast statistics on the first lag+shift states # during the spin period fore_rmse[i - 1 + j], fore_spread[i - 1 + j] = analyze_ens(fore[1:state_dim, :, j], truth[:, i - 1 + j]) end for j in 1:shift # compute the reanalyzed prior and the shift-forward forecasted reanalysis post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens(post[1:state_dim, :, j], truth[:, i - 2 + j]) para_rmse[i - 2 + j], para_spread[i - 2 + j] = analyze_ens_param(post[state_dim+1:end, :, j], param_truth) end # turn off the initial spin period, continue with the normal assimilation cycle spin = false kwargs["spin"] = spin else for j in 1:shift # compute the forecast, filter and analysis statistics # indices for the forecast, filter, analysis and truth are in absolute time, # forecast / filter stats computed beyond the first lag period for the spin fore_rmse[i + lag - 1 + j], fore_spread[i + lag - 1+ j] = analyze_ens( fore[1:state_dim, :, j], truth[:, i + lag - 1 + j] ) filt_rmse[i + lag - 1 - shift + j], filt_spread[i + lag - 1 - shift + j] = analyze_ens( filt[1:state_dim, :, j], truth[:, i + lag - 1 - shift + j] ) # analysis statistics computed beyond the first shift post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens( post[1:state_dim, :, j], truth[:, i - 2 + j] ) para_rmse[i - 2 + j], para_spread[i - 2 + j] = analyze_ens_param( post[state_dim+1:end, :, j], param_truth ) end end end # cut the statistics so that they align on the same absolute time points fore_rmse = fore_rmse[2: nanl + 1] fore_spread = fore_spread[2: nanl + 1] filt_rmse = filt_rmse[2: nanl + 1] filt_spread = filt_spread[2: nanl + 1] post_rmse = post_rmse[2: nanl + 1] post_spread = post_spread[2: nanl + 1] para_rmse = para_rmse[2: nanl + 1] para_spread = para_spread[2: nanl + 1] iteration_sequence = Array{Float64}(iteration_sequence) data = Dict{String,Any}( "fore_rmse" => fore_rmse, "filt_rmse" => filt_rmse, "post_rmse" => post_rmse, "param_rmse" => para_rmse, "fore_spread" => fore_spread, "filt_spread" => filt_spread, "post_spread" => post_spread, "param_spread" => para_spread, "iteration_sequence" => iteration_sequence, "method" => method, "seed" => seed, "diffusion" => diffusion, "dx_params" => dx_params, "sys_dim" => sys_dim, "obs_dim" => obs_dim, "obs_un" => obs_un, "γ" => γ, "p_wlk" => p_wlk, "p_infl" => p_infl, "nanl" => nanl, "tanl" => tanl, "lag" => lag, "shift" => shift, "mda" => mda, "h" => h, "N_ens" => N_ens, "s_infl" => round(s_infl, digits=2), "p_infl" => round(p_infl, digits=2) ) if haskey(ts, "diff_mat") data["diff_mat"] = ts["diff_mat"] end path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" * method * "/" name = method * "_" * model * "_param_seed_" * lpad(seed, 4, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_sysD_" * lpad(sys_dim, 2, "0") * "_obsD_" * lpad(obs_dim, 2, "0") * "_obsU_" * rpad(obs_un, 4, "0") * "_gamma_" * lpad(γ, 5, "0") * "_paramE_" * rpad(p_err, 4, "0") * "_paramW_" * rpad(p_wlk, 6, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_h_" * rpad(h, 4, "0") * "_lag_" * lpad(lag, 3, "0") * "_shift_" * lpad(shift, 3, "0") * "_mda_" * string(mda) * "_nens_" * lpad(N_ens, 3,"0") * "_stateInfl_" * rpad(round(s_infl, digits=2), 4, "0") * "_paramInfl_" * rpad(round(p_infl, digits=2), 4, "0") * ".jld2" save(path * name, data) print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") end ############################################################################################## # end module end ############################################################################################## # NOTE STILL DEBUGGING THIS EXPERIMENT #function single_iteration_adaptive_state(args::Tuple{String,String,Int64,Int64,Int64,Bool,Float64,Int64, # Float64,Int64,Float64};tail::Int64=3) # # # time the experiment # t1 = time() # # # Define experiment parameters # time_series, method, seed, lag, shift, mda, obs_un, obs_dim, γ, N_ens, s_infl = args # # # load the timeseries and associated parameters # ts = load(time_series)::Dict{String,Any} # diffusion = ts["diffusion"]::Float64 # f = ts["F"]::Float64 # tanl = ts["tanl"]::Float64 # h = 0.01 # dx_dt = L96.dx_dt # step_model! = rk4_step! # # # number of discrete forecast steps # f_steps = convert(Int64, tanl / h) # # # number of discrete shift windows within the lag window # n_shifts = convert(Int64, lag / shift) # # # number of analyses # nanl = 2500 # # # set seed # Random.seed!(seed) # # # define the initial ensembles # obs = ts["obs"]::Array{Float64, 2} # init = obs[:, 1] # sys_dim = length(init) # ens = rand(MvNormal(init, I), N_ens) # # # define the observation sequence where we map the true state into the observation space and # # perturb by white-in-time-and-space noise with standard deviation obs_un # obs = obs[:, 1:nanl + 3 * lag + 1] # truth = copy(obs) # # # define kwargs # kwargs = Dict{String,Any}( # "dx_dt" => dx_dt, # "f_steps" => f_steps, # "step_model" => step_model!, # "dx_params" => [f], # "h" => h, # "diffusion" => diffusion, # "γ" => γ, # "shift" => shift, # "mda" => mda # ) # # if method == "etks_adaptive" # tail_spin = true # kwargs["tail_spin"] = tail_spin # kwargs["analysis"] = Array{Float64}(undef, sys_dim, N_ens, lag) # kwargs["analysis_innovations"] = Array{Float64}(undef, sys_dim, lag) # end # # # define the observation operator, observation error covariance and observations with error # obs = H_obs(obs, obs_dim, kwargs) # obs += obs_un * rand(Normal(), size(obs)) # obs_cov = obs_un^2.0 * I # # # create storage for the forecast and analysis statistics, indexed in relative time # # the first index corresponds to time 1, last index corresponds to index nanl + 3 * lag + 1 # fore_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) # filt_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) # post_rmse = Vector{Float64}(undef, nanl + 3 * lag + 1) # # fore_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # filt_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # post_spread = Vector{Float64}(undef, nanl + 3 * lag + 1) # # # perform an initial spin for the smoothed re-analyzed first prior estimate while handling # # new observations with a filtering step to prevent divergence of the forecast for long lags # spin = true # kwargs["spin"] = spin # posterior = Array{Float64}(undef, sys_dim, N_ens, shift) # kwargs["posterior"] = posterior # # # we will run through nanl + 2 * lag total observations but discard the last-lag # # forecast values and first-lag posterior values so that the statistics align on # # the same time points after the spin # for i in 2: shift : nanl + lag + 1 # # perform assimilation of the DAW # # we use the observation window from current time +1 to current time +lag # if mda # # NOTE: mda spin weights are only designed for lag equal to an integer multiple of shift # if spin # # for the first rebalancing step, all observations are new and get fully assimilated # # observation weights are given with respect to a special window in terms of the # # number of times the observation will be assimilated # obs_weights = [] # for n in 1:n_shifts # obs_weights = [obs_weights; ones(shift) * n] # end # kwargs["obs_weights"] = Array{Float64}(obs_weights) # kwargs["reb_weights"] = ones(lag) # # elseif i <= lag # # if still processing observations from the spin cycle, deal with special weights # # given by the number of times the observation is assimilated # n_complete = (i - 2) / shift # n_incomplete = n_shifts - n_complete # # # the leading terms have weights that are based upon the number of times # # that the observation will be assimilated < n_shifts total times as in # # the stable algorithm # obs_weights = [] # for n in n_shifts - n_incomplete + 1 : n_shifts # obs_weights = [obs_weights; ones(shift) * n] # end # for n in 1 : n_complete # obs_weights = [obs_weights; ones(shift) * n_shifts] # end # kwargs["obs_weights"] = Array{Float64}(obs_weights) # reb_weights = [] # # # the rebalancing weights are specially constructed as above # for n in 1:n_incomplete # reb_weights = [reb_weights; ones(shift) * n / (n + n_complete)] # end # for n in n_incomplete + 1 : n_shifts # reb_weights = [reb_weights; ones(shift) * n / n_shifts] # end # kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) # # else # # otherwise equal weights as all observations are assimilated n_shifts total times # kwargs["obs_weights"] = ones(lag) * n_shifts # # # rebalancing weights are constructed in steady state # reb_weights = [] # for n in 1:n_shifts # reb_weights = [reb_weights; ones(shift) * n / n_shifts] # end # kwargs["reb_weights"] = 1.0 ./ Array{Float64}(reb_weights) # end # end # # # peform the analysis # analysis = ls_smoother_single_iteration(method, ens, obs[:, i: i + lag - 1], # obs_cov, s_infl, kwargs) # ens = analysis["ens"] # fore = analysis["fore"] # filt = analysis["filt"] # post = analysis["post"] # # if method == "etks_adaptive" # # cycle the analysis states for the new DAW # kwargs["analysis"] = analysis["anal"] # if tail_spin # # check if we have reached a long enough tail of innovation statistics # analysis_innovations = analysis["inno"] # if size(analysis_innovations, 2) / lag >= tail # # if so, stop the tail spin # tail_spin = false # kwargs["tail_spin"] = tail_spin # end # end # # cycle the analysis states for the new DAW # kwargs["analysis_innovations"] = analysis["inno"] # end # # if spin # for j in 1:lag # # compute forecast and filter statistics on the first lag states during spin period # fore_rmse[i - 1 + j], fore_spread[i - 1 + j] = analyze_ens(fore[:, :, j], # truth[:, i - 1 + j]) # # filt_rmse[i - 1 + j], filt_spread[i - 1 + j] = analyze_ens(filt[:, :, j], # truth[:, i - 1 + j]) # end # # for j in 1:shift # # compute only the reanalyzed prior and the shift-forward forecasted reanalysis # post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens(post[:, :, j], truth[:, i - 2 + j]) # end # # # turn off the initial spin period, continue hereafter on the normal assimilation cycle # spin = false # kwargs["spin"] = spin # # else # for j in 1:shift # # compute the forecast, filter and analysis statistics # # indices for the forecast, filter, analysis and truth arrays are in absolute time, # # forecast / filter stats computed beyond the first lag period for the spin # fore_rmse[i + lag - 1 - shift + j], # fore_spread[i + lag - 1 - shift + j] = analyze_ens(fore[:, :, j], # truth[:, i + lag - 1 - shift + j]) # # filt_rmse[i + lag - 1 - shift + j], # filt_spread[i + lag - 1 - shift + j] = analyze_ens(filt[:, :, j], # truth[:, i + lag - 1 - shift + j]) # # # analysis statistics computed beyond the first shift # post_rmse[i - 2 + j], post_spread[i - 2 + j] = analyze_ens(post[:, :, j], truth[:, i - 2 + j]) # end # end # end # # # cut the statistics so that they align on the same absolute time points # fore_rmse = fore_rmse[2: nanl + 1] # fore_spread = fore_spread[2: nanl + 1] # filt_rmse = filt_rmse[2: nanl + 1] # filt_spread = filt_spread[2: nanl + 1] # post_rmse = post_rmse[2: nanl + 1] # post_spread = post_spread[2: nanl + 1] # # data = Dict{String,Any}( # "fore_rmse" => fore_rmse, # "filt_rmse" => filt_rmse, # "post_rmse" => post_rmse, # "fore_spread" => fore_spread, # "filt_spread" => filt_spread, # "post_spread" => post_spread, # "method" => method, # "seed" => seed, # "diffusion" => diffusion, # "sys_dim" => sys_dim, # "obs_dim" => obs_dim, # "obs_un" => obs_un, # "γ" => γ, # "nanl" => nanl, # "tanl" => tanl, # "lag" => lag, # "shift" => shift, # "mda" => mda, # "h" => h, # "N_ens" => N_ens, # "s_infl" => round(s_infl, digits=2) # ) # # if method == "etks_adaptive" # data["tail"] = tail # end # # path = "../data/" * method * "_single_iteration/" # name = method * "_single_iteration" * # "_l96_state_benchmark_seed_" * lpad(seed, 4, "0") * # "_diffusion_" * rpad(diffusion, 4, "0") * # "_sys_dim_" * lpad(sys_dim, 2, "0") * # "_obs_dim_" * lpad(obs_dim, 2, "0") * # "_obs_un_" * rpad(obs_un, 4, "0") * # "_gamma_" * lpad(γ, 5, "0") * # "_nanl_" * lpad(nanl, 5, "0") * # "_tanl_" * rpad(tanl, 4, "0") * # "_h_" * rpad(h, 4, "0") * # "_lag_" * lpad(lag, 3, "0") * # "_shift_" * lpad(shift, 3, "0") * # "_mda_" * string(mda) * # "_N_ens_" * lpad(N_ens, 3,"0") * # "_s_infl_" * rpad(round(s_infl, digits=2), 4, "0") * # ".jld2" # # # save(path * name, data) # print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") # #end # # #########################################################################################################################
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
1081
############################################################################################## module run_sensitivity_test ############################################################################################## # imports and exports using Distributed @everywhere using DataAssimilationBenchmarks ############################################################################################## config = ParallelExperimentDriver.ensemble_filter_adaptive_inflation print("Generating experiment configurations from " * string(config) * "\n") print("Generate truth twin\n") args, wrap_exp = config() num_exps = length(args) print("Configuration ready\n") print("\n") print("Running " * string(num_exps) * " configurations on " * string(nworkers()) * " total workers\n") print("Begin pmap\n") pmap(wrap_exp, args) print("Experiments completed, verify outputs in the appropriate directory under:\n") print(pkgdir(DataAssimilationBenchmarks) * "/src/data\n") ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
6647
############################################################################################## module DeSolvers ############################################################################################## # imports and exports using ..DataAssimilationBenchmarks export rk4_step!, tay2_step!, em_step! ############################################################################################## """ rk4_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real Steps model state with the 4 stage Runge-Kutta scheme. The rule has strong convergence order 1.0 for generic SDEs and order 4.0 for ODEs. This method overwrites the input in-place and returns the updated ``` return x ``` """ function rk4_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real # unpack the integration scheme arguments and the parameters of the derivative h = kwargs["h"]::Float64 diffusion = kwargs["diffusion"]::Float64 dx_dt = kwargs["dx_dt"]::Function if haskey(kwargs, "dx_params") # get parameters for resolving dx_dt dx_params = kwargs["dx_params"]::ParamDict(T) end # infer the (possibly) extended state dimension sys_dim = length(x) # check if extended state vector if haskey(kwargs, "param_sample") param_sample = kwargs["param_sample"]::ParamSample state_dim = kwargs["state_dim"]::Int64 v = @view x[begin: state_dim] param_est = true else # the state dim equals the system dim state_dim = sys_dim v = @view x[begin: state_dim] param_est = false end # check if SDE formulation if diffusion != 0.0 if haskey(kwargs, "ξ") # pre-computed perturbation is provided for controlled run ξ = kwargs["ξ"]::Array{Float64,2} else # generate perturbation for brownian motion if not neccesary to reproduce ξ = rand(Normal(), state_dim) end if haskey(kwargs, "diff_mat") # diffusion is a scalar intensity which is applied to the # structure matrix for the diffusion coefficients diff_mat = kwargs["diff_mat"]::Array{Float64} diffusion = diffusion * diff_mat end # rescale the standard normal to variance h for Wiener process W = ξ * sqrt(h) end # load parameter values from the extended state into the derivative if param_est if haskey(kwargs, "dx_params") # extract the parameter sample and append to other derivative parameters for key in keys(param_sample) dx_params = merge(dx_params, Dict(key => x[param_sample[key][1]])) end else # set the parameter sample as the only derivative parameters dx_params = Dict{String, Array{T}} for key in keys(param_sample) dx_params = merge(dx_params, Dict(key => x[param_sample[key][1]])) end end end # pre-allocate storage for the Runge-Kutta scheme κ = Array{T}(undef, state_dim, 4) # terms of the RK scheme recursively evolve the dynamic state components alone if diffusion != 0.0 # SDE formulation κ[:, 1] = dx_dt(v, t, dx_params) * h + diffusion * W κ[:, 2] = dx_dt(v + 0.5 * κ[:, 1], t + 0.5 * h, dx_params) * h + diffusion * W κ[:, 3] = dx_dt(v + 0.5 * κ[:, 2], t + 0.5 * h, dx_params) * h + diffusion * W κ[:, 4] = dx_dt(v + κ[:, 3], t + h, dx_params) * h + diffusion * W else # deterministic formulation κ[:, 1] = dx_dt(v, t, dx_params) * h κ[:, 2] = dx_dt(v + 0.5 * κ[:, 1], t + 0.5 * h, dx_params) * h κ[:, 3] = dx_dt(v + 0.5 * κ[:, 2], t + 0.5 * h, dx_params) * h κ[:, 4] = dx_dt(v + κ[:, 3], t + h, dx_params) * h end # compute the update to the dynamic variables x[begin: state_dim] = v + (1.0 / 6.0) * (κ[:, 1] + 2.0*κ[:, 2] + 2.0*κ[:, 3] + κ[:, 4]) return x end ############################################################################################## """ tay2_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T<: Real Steps model state with the deterministic second order autonomous Taylor method. This method has order 2.0 convergence for autonomous ODEs. Time variable `t` is just a dummy variable, where this method is not defined for non-autonomous dynamics. This overwrites the input in-place and returns the updated ``` return x ``` """ function tay2_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real # unpack dx_params h = kwargs["h"]::Float64 dx_params = kwargs["dx_params"]::ParamDict(T) dx_dt = kwargs["dx_dt"]::Function jacobian = kwargs["jacobian"]::Function # calculate the evolution of x one step forward via the second order Taylor expansion # first derivative dx = dx_dt(x, t, dx_params) # second order taylor expansion x .= x + dx * h + 0.5 * jacobian(x, t, dx_params) * dx * h^2.0 return x end ############################################################################################## """ em_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real Steps model state with the Euler-Maruyama scheme. This method has order 1.0 convergence for ODEs and for SDEs with additive noise, though has inferior performance to the four stage Runge-Kutta scheme when the amplitude of the SDE noise purturbations are small-to-moderately large. This overwrites the input in-place and returns the updated ``` return x ``` """ function em_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real # unpack the arguments for the integration step h = kwargs["h"]::Float64 dx_params = kwargs["dx_params"]::ParamDict(T) diffusion = kwargs["diffusion"]::Float64 dx_dt = kwargs["dx_dt"]::Function state_dim = length(x) # check if SDE or deterministic formulation if diffusion != 0.0 if haskey(kwargs, "ξ") # pre-computed perturbation is provided for controlled run ξ = kwargs["ξ"]::Array{Float64,2} else # generate perturbation for brownian motion if not neccesary to reproduce ξ = rand(Normal(), state_dim) end else # if deterministic Euler, load dummy ξ of zeros ξ = zeros(state_dim) end # rescale the standard normal to variance h for Wiener process W = ξ * sqrt(h) # step forward by interval h x .= x + h * dx_dt(x, t, dx_params) + diffusion * W return x end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
122010
############################################################################################## module EnsembleKalmanSchemes ############################################################################################## # imports and exports using Random, Distributions, Statistics, StatsBase using LinearAlgebra, SparseArrays using ..DataAssimilationBenchmarks using Optim, LineSearches, LinearAlgebra export analyze_ens, analyze_ens_param, rand_orth, inflate_state!, inflate_param!, transform_R, ens_gauss_newton, square_root, square_root_inv, ensemble_filter, ls_smoother_classic, ls_smoother_single_iteration, ls_smoother_gauss_newton ############################################################################################## # Main methods, debugged and validated ############################################################################################## """ analyze_ens(ens::ArView(T), truth::VecA(T)) where T <: Float64 Computes the ensemble state RMSE as compared with truth twin, and the ensemble spread. ``` return rmse, spread ``` Note: the ensemble `ens` should only include the state vector components to compare with the truth twin state vector `truth`, without replicates of the model parameters. These can be passed as an [`ArView`](@ref) for efficient memory usage. """ function analyze_ens(ens::ArView(T), truth::VecA(T)) where T <: Float64 # infer the shapes sys_dim, N_ens = size(ens) # compute the ensemble mean x_bar = mean(ens, dims=2) # compute the RMSE of the ensemble mean rmse = rmsd(truth, x_bar) # compute the spread as in whitaker & louge 98 by the standard deviation # of the mean square deviation of the ensemble from its mean spread = sqrt( ( 1.0 / (N_ens - 1.0) ) * sum(mean((ens .- x_bar).^2.0, dims=1))) # return the tuple pair rmse, spread end ############################################################################################## """ analyze_ens_param(ens::ArView(T), truth::VecA(T)) where T <: Float64 Computes the ensemble parameter RMSE as compared with truth twin, and the ensemble spread. ``` return rmse, spread ``` Note: the ensemble `ens` should only include the extended state vector components consisting of model parameter replicates to compare with the truth twin's governing model parameters `truth`. These can be passed as an [`ArView`](@ref) for efficient memory usage. """ function analyze_ens_param(ens::ArView(T), truth::VecA(T)) where T <: Float64 # infer the shapes param_dim, N_ens = size(ens) # compute the ensemble mean x_bar = mean(ens, dims=2) # compute the RMSE of relative to the magnitude of the parameter rmse = sqrt( mean( (truth - x_bar).^2.0 ./ truth.^2.0 ) ) # compute the spread as in whitaker & louge 98 by the standard deviation # of the mean square deviation of the ensemble from its mean, # with the weight by the size of the parameter square spread = sqrt( ( 1.0 / (N_ens - 1.0) ) * sum(mean( (ens .- x_bar).^2.0 ./ (ones(param_dim, N_ens) .* truth.^2.0), dims=1))) # return the tuple pair rmse, spread end ############################################################################################## """ rand_orth(N_ens::Int64) This generates a random, mean-preserving, orthogonal matrix as in [Sakov et al. 2008](https://journals.ametsoc.org/view/journals/mwre/136/3/2007mwr2021.1.xml), depending on the esemble size `N_ens`. ``` return U ``` """ function rand_orth(N_ens::Int64) # generate the random, mean preserving orthogonal transformation within the # basis given by the B matrix Q = rand(Normal(), N_ens - 1, N_ens - 1) Q, R = qr!(Q) U_p = zeros(N_ens, N_ens) U_p[1, 1] = 1.0 U_p[2:end, 2:end] = Q # generate the B basis for which the first basis vector is the vector of 1/sqrt(N) b_1 = ones(N_ens) / sqrt(N_ens) B = zeros(N_ens, N_ens) B[:, 1] = b_1 # note, this uses the "full" QR decomposition so that the singularity is encoded in R # and B is a full-size orthogonal matrix B, R = qr!(B) U = B * U_p * transpose(B) U end ############################################################################################## """ inflate_state!(ens::ArView(T), inflation::Float64, sys_dim::Int64, state_dim::Int64) where T <: Float64 Applies multiplicative covariance inflation to the state components of the ensemble matrix. ``` return ens ``` The first index of the ensemble matrix `ens` corresponds to the length `sys_dim` (extended) state dimension while the second index corresponds to the ensemble dimension. Dynamic state variables are assumed to be in the leading `state_dim` rows of `ens`, while extended state parameter replicates are after. Multiplicative inflation is performed only in the leading components of the ensemble anomalies from the ensemble mean, in-place in memory. """ function inflate_state!(ens::ArView(T), inflation::Float64, sys_dim::Int64, state_dim::Int64) where T <: Float64 if inflation != 1.0 x_mean = mean(ens, dims=2) X = ens .- x_mean infl = Matrix(1.0I, sys_dim, sys_dim) infl[1:state_dim, 1:state_dim] .*= inflation ens .= x_mean .+ infl * X return ens end end ############################################################################################## """ inflate_param!(ens::ArView(T), inflation::Float64, sys_dim::Int64, state_dim::Int64) where T <: Float64 Applies multiplicative covariance inflation to parameter replicates in the ensemble matrix. ``` return ens ``` The first index of the ensemble matrix `ens` corresponds to the length `sys_dim` (extended) state dimension while the second index corresponds to the ensemble dimension. Dynamic state variables are assumed to be in the leading `state_dim` rows of `ens`, while extended state parameter replicates are after. Multiplicative inflation is performed only in the trailing `state_dim + 1: state_dim` components of the ensemble anomalies from the ensemble mean, in-place in memory. """ function inflate_param!(ens::ArView(T), inflation::Float64, sys_dim::Int64, state_dim::Int64) where T <: Float64 if inflation == 1.0 return ens else x_mean = mean(ens, dims=2) X = ens .- x_mean infl = Matrix(1.0I, sys_dim, sys_dim) infl[state_dim+1: end, state_dim+1: end] .*= inflation ens .= x_mean .+ infl * X return ens end end ############################################################################################## """ square_root(M::CovM(T)) where T <: Real Computes the square root of covariance matrices with parametric type. Multiple dispatches for the method are defined according to the sub-type of [`CovM`](@ref), where the square roots of `UniformScaling` and `Diagonal` covariance matrices are computed directly, while the square roots of the more general class of `Symmetric` covariance matrices are computed via the singular value decomposition, for stability and accuracy for close-to-singular matrices. ``` return S ``` """ function square_root(M::UniformScaling{T}) where T <: Real S = M^0.5 end function square_root(M::Diagonal{T, Vector{T}}) where T <: Real S = sqrt(M) end function square_root(M::Symmetric{T, Matrix{T}}) where T <: Real F = svd(M) S = Symmetric(F.U * Diagonal(sqrt.(F.S)) * F.Vt) end ############################################################################################## """ square_root_inv(M::CovM(T); sq_rt::Bool=false, inverse::Bool=false, full::Bool=false) where T <: Real Computes the square root inverse of covariance matrices with parametric type. Multiple dispatches for the method are defined according to the sub-type of [`CovM`](@ref), where the square root inverses of `UniformScaling` and `Diagonal` covariance matrices are computed directly, while the square root inverses of the more general class of `Symmetric` covariance matrices are computed via the singular value decomposition, for stability and accuracy for close-to-singular matrices. This will optionally return a computation of the inverse and the square root itself all as a byproduct of the singular value decomposition for efficient numerical computation of ensemble analysis / update routines. Optional keyword arguments are specified as: * `sq_rt=true` returns the matrix square root in addition to the square root inverse * `inverse=true` returns the matrix inverse in addition to the square root inverse * `full=true` returns the square root and the matrix inverse in addition to the square root inverse and are evaluated in the above order. Output follows control flow: ``` if sq_rt return S_inv, S elseif inverse return S_inv, M_inv elseif full return S_inv, S, M_inv else return S_inv end ``` """ function square_root_inv(M::UniformScaling{T}; sq_rt::Bool=false, inverse::Bool=false, full::Bool=false) where T <: Real if sq_rt S = M^0.5 S_inv = S^(-1.0) S_inv, S elseif inverse M_inv = M^(-1.0) S_inv = M_inv^0.5 S_inv, M_inv elseif full M_inv = M^(-1.0) S = M^0.5 S_inv = S^(-1.0) S_inv, S, M_inv else S_inv = M^(-0.5) S_inv end end function square_root_inv(M::Diagonal{T, Vector{T}}; sq_rt::Bool=false, inverse::Bool=false, full::Bool=false) where T <: Real if sq_rt S = sqrt(M) S_inv = inv(S) S_inv, S elseif inverse M_inv = inv(M) S_inv = sqrt(M_inv) S_inv, M_inv elseif full S = sqrt(M) S_inv = inv(S) M_inv = inv(M) S_inv, S, M else S_inv = M.^(-0.5) S_inv end end function square_root_inv(M::Symmetric{T, Matrix{T}}; sq_rt::Bool=false, inverse::Bool=false, full::Bool=false) where T <: Real # stable square root inverse for close-to-singular inverse calculations F = svd(M) if sq_rt # take advantage of the SVD calculation to produce both the square root inverse # and square root simultaneously S_inv = Symmetric(F.U * Diagonal(1.0 ./ sqrt.(F.S)) * F.Vt) S = Symmetric(F.U * Diagonal(sqrt.(F.S)) * F.Vt) S_inv, S elseif inverse # take advantage of the SVD calculation to produce the square root inverse # and inverse calculations all at once S_inv = Symmetric(F.U * Diagonal(1.0 ./ sqrt.(F.S)) * F.Vt) M_inv = Symmetric(F.U * Diagonal(1.0 ./ F.S) * F.Vt) S_inv, M_inv elseif full # take advantage of the SVD calculation to produce the square root inverse, # square root and inverse calculations all at once S_inv = Symmetric(F.U * Diagonal(1.0 ./ sqrt.(F.S)) * F.Vt) S = Symmetric(F.U * Diagonal(sqrt.(F.S)) * F.Vt) M_inv = Symmetric(F.U * Diagonal(1.0 ./ F.S) * F.Vt) S_inv, S, M_inv else # only return the square root inverse, if other calculations are not necessary S_inv = Symmetric(F.U * Diagonal(1.0 ./ sqrt.(F.S)) * F.Vt) S_inv end end ############################################################################################## """ transform_R(analysis::String, ens::ArView(T), obs::VecA(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs; conditioning::ConM=1000.0I, m_err::ArView(T)=(1.0 ./ zeros(1,1)), tol::Float64 = 0.0001, j_max::Int64=40, Q::CovM(T)=1.0I) where T <: Float64 Computes the ensemble transform and related values for various flavors of ensemble Kalman schemes. The output type is a tuple containing a right transform of the ensemble anomalies, the weights for the mean update and a random orthogonal transformation for stabilization: ``` return trans, w, U ``` where the tuple is of type [`TransM`](@ref). `m_err`, `tol`, `j_max`, `Q` are optional arguments depending on the `analysis`, with default values provided. Serves as an auxilliary function for EnKF, ETKF(-N), EnKS, ETKS(-N), where "analysis" is a string which determines the type of transform update. The observation error covariance `obs_cov` is of type [`CovM`](@ref), the conditioning matrix `conditioning` is of type [`ConM`](@ref), the keyword arguments dictionary `kwargs` is of type [`StepKwargs`](@ref) and the model error covariance matrix `Q` is of type [`CovM`](@ref). Currently validated `analysis` options: * `analysis=="etkf" || analysis=="etks"` computes the deterministic ensemble transform as in the ETKF described in [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). * `analysis[1:7]=="mlef-ls" || analysis[1:7]=="mles-ls"` computes the maximum likelihood ensemble filter transform described in [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html), optimizing the nonlinear cost function with Newton-based [line searches](https://julianlsolvers.github.io/LineSearches.jl/stable/). * `analysis[1:4]=="mlef" || analysis[1:4]=="mles"` computes the maximum likelihood ensemble filter transform described in [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html), optimizing the nonlinear cost function with simple Newton-based scheme. * `analysis=="enkf-n-dual" || analysis=="enks-n-dual"` computes the dual form of the EnKF-N transform as in [Bocquet et al. 2015](https://npg.copernicus.org/articles/22/645/2015/) Note: this cannot be used with the nonlinear observation operator. This uses the Brent method for the argmin problem as this has been more reliable at finding a global minimum than Newton optimization. * `analysis=="enkf-n-primal" || analysis=="enks-n-primal"` computes the primal form of the EnKF-N transform as in [Bocquet et al. 2015](https://npg.copernicus.org/articles/22/645/2015/), [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). This differs from the MLEF/S-N in that there is no approximate linearization of the observation operator in the EnKF-N, this only handles the approximation error with respect to the adaptive inflation. This uses a simple Newton-based minimization of the cost function for the adaptive inflation. * `analysis=="enkf-n-primal-ls" || analysis=="enks-n-primal-ls"` computes the primal form of the EnKF-N transform as in [Bocquet et al. 2015](https://npg.copernicus.org/articles/22/645/2015/), [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). This differs from the MLEF/S-N in that there is no approximate linearization of the observation operator in the EnKF-N, this only handles the approximation error with respect to the adaptive inflation. This uses a Newton-based minimization of the cost function for the adaptive inflation with [line searches](https://julianlsolvers.github.io/LineSearches.jl/stable/). """ function transform_R(analysis::String, ens::ArView(T), obs::VecA(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs; conditioning::ConM(T)=1000.0I, m_err::ArView(T)=(1.0 ./ zeros(1,1)), tol::Float64 = 0.0001, j_max::Int64=40, Q::CovM(T)=1.0I) where T <: Float64 if analysis=="etkf" || analysis=="etks" # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: compute the ensemble in observation space Y = H_obs(ens, obs_dim, kwargs) # step 2: compute the ensemble mean in observation space y_mean = mean(Y, dims=2) # step 3: compute the sensitivity matrix in observation space obs_sqrt_inv = square_root_inv(obs_cov) S = obs_sqrt_inv * (Y .- y_mean ) # step 4: compute the weighted innovation δ = obs_sqrt_inv * ( obs - y_mean ) # step 5: compute the approximate hessian hessian = Symmetric((N_ens - 1.0)*I + transpose(S) * S) # step 6: compute the transform matrix, transform matrix inverse and # hessian inverse simultaneously via the SVD for stability trans, hessian_inv = square_root_inv(hessian, inverse=true) # step 7: compute the analysis weights w = hessian_inv * transpose(S) * δ # step 8: generate mean preserving random orthogonal matrix as in sakov oke 08 U = rand_orth(N_ens) elseif analysis[1:7]=="mlef-ls" || analysis[1:7]=="mles-ls" # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: set up inputs for the optimization # step 1a: inial choice is no change to the mean state ens_mean_0 = mean(ens, dims=2) anom_0 = ens .- ens_mean_0 w = zeros(N_ens) # step 1b: pre-compute the observation error covariance square root obs_sqrt_inv = square_root_inv(obs_cov) # step 1c: define the conditioning and parameters for finite size formalism if needed if analysis[end-5:end] == "bundle" trans = inv(conditioning) trans_inv = conditioning elseif analysis[end-8:end] == "transform" trans = Symmetric(Matrix(1.0*I, N_ens, N_ens)) trans_inv = Symmetric(Matrix(1.0*I, N_ens, N_ens)) end if analysis[8:9] == "-n" # define the epsilon scaling and the effective ensemble size if finite size form ϵ_N = 1.0 + (1.0 / N_ens) N_effective = N_ens + 1.0 end # step 1d: define the storage of the gradient and Hessian as global to the functions grad_w = Vector{Float64}(undef, N_ens) hess_w = Array{Float64}(undef, N_ens, N_ens) cost_w = 0.0 # step 2: define the cost / gradient / hessian function to avoid repeated computations function fgh!(G, H, C, trans::ConM(T1), trans_inv::ConM(T1), w::Vector{T1}) where T1 <: Float64 # step 2a: define the linearization of the observation operator ens_mean_iter = ens_mean_0 + anom_0 * w ens = ens_mean_iter .+ anom_0 * trans Y = H_obs(ens, obs_dim, kwargs) y_mean = mean(Y, dims=2) # step 2b: compute the weighted anomalies in observation space, conditioned # with trans inverse S = obs_sqrt_inv * (Y .- y_mean) * trans_inv # step 2c: compute the weighted innovation δ = obs_sqrt_inv * (obs - y_mean) # step 2d: gradient, hessian and cost function definitions if G != nothing if analysis[8:9] == "-n" ζ = 1.0 / (ϵ_N + sum(w.^2.0)) G[:] = N_effective * ζ * w - transpose(S) * δ else G[:] = (N_ens - 1.0) * w - transpose(S) * δ end end if H != nothing if analysis[8:9] == "-n" H .= Symmetric((N_effective - 1.0)*I + transpose(S) * S) else H .= Symmetric((N_ens - 1.0)*I + transpose(S) * S) end end if C != nothing if analysis[8:9] == "-n" y_mean_iter = H_obs(ens_mean_iter, obs_dim, kwargs) δ = obs_sqrt_inv * (obs - y_mean_iter) return N_effective * log(ϵ_N + sum(w.^2.0)) + sum(δ.^2.0) else y_mean_iter = H_obs(ens_mean_iter, obs_dim, kwargs) δ = obs_sqrt_inv * (obs - y_mean_iter) return (N_ens - 1.0) * sum(w.^2.0) + sum(δ.^2.0) end end nothing end function newton_ls!(grad_w, hess_w, trans::ConM(T1), trans_inv::ConM(T1), w::Vector{T1}, linesearch) where T1 <: Float64 # step 2e: find the Newton direction and the transform update if needed fx = fgh!(grad_w, hess_w, cost_w, trans, trans_inv, w) p = -hess_w \ grad_w if analysis[end-8:end] == "transform" trans_tmp, trans_inv_tmp = square_root_inv(Symmetric(hess_w), sq_rt=true) trans .= trans_tmp trans_inv .= trans_inv_tmp end # step 2f: univariate line search functions ϕ(α) = fgh!(nothing, nothing, cost_w, trans, trans_inv, w .+ α.*p) function dϕ(α) fgh!(grad_w, nothing, nothing, trans, trans_inv, w .+ α.*p) return dot(grad_w, p) end function ϕdϕ(α) phi = fgh!(grad_w, nothing, cost_w, trans, trans_inv, w .+ α.*p) dphi = dot(grad_w, p) return (phi, dphi) end # step 2g: define the linesearch dϕ_0 = dot(p, grad_w) α, fx = linesearch(ϕ, dϕ, ϕdϕ, 1.0, fx, dϕ_0) Δw = α * p w .= w + Δw return Δw end # step 3: optimize # step 3a: perform the optimization by Newton with linesearch # we use StrongWolfe for RMSE performance as the default linesearch #ln_search = HagerZhang() ln_search = StrongWolfe() j = 0 Δw = ones(N_ens) while j < j_max && norm(Δw) > tol Δw = newton_ls!(grad_w, hess_w, trans, trans_inv, w, ln_search) end if analysis[8:9] == "-n" # peform a final inflation with the finite size cost function ζ = 1.0 / (ϵ_N + sum(w.^2.0)) hess_w = ζ * I - 2.0 * ζ^2.0 * w * transpose(w) hess_w = Symmetric(transpose(S) * S + (N_ens + 1.0) * hess_w) trans = square_root_inv(hess_w) elseif analysis[end-5:end] == "bundle" trans = square_root_inv(hess_w) end # step 3b: generate mean preserving random orthogonal matrix as in sakov oke 08 U = rand_orth(N_ens) elseif analysis[1:4]=="mlef" || analysis[1:4]=="mles" # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: set up the optimization, inial choice is no change to the mean state ens_mean_0 = mean(ens, dims=2) anom_0 = ens .- ens_mean_0 w = zeros(N_ens) # pre-compute the observation error covariance square root obs_sqrt_inv = square_root_inv(obs_cov) # define these variables as global compared to the while loop grad_w = Vector{Float64}(undef, N_ens) hess_w = Array{Float64}(undef, N_ens, N_ens) S = Array{Float64}(undef, obs_dim, N_ens) ens_mean_iter = copy(ens_mean_0) # define the conditioning if analysis[end-5:end] == "bundle" trans = inv(conditioning) trans_inv = conditioning elseif analysis[end-8:end] == "transform" trans = 1.0*I trans_inv = 1.0*I end # step 2: perform the optimization by simple Newton j = 0 if analysis[5:6] == "-n" # define the epsilon scaling and the effective ensemble size if finite size form ϵ_N = 1.0 + (1.0 / N_ens) N_effective = N_ens + 1.0 end while j < j_max # step 2a: compute the observed ensemble and ensemble mean ens_mean_iter = ens_mean_0 + anom_0 * w ens = ens_mean_iter .+ anom_0 * trans Y = H_obs(ens, obs_dim, kwargs) y_mean = mean(Y, dims=2) # step 2b: compute the weighted anomalies in observation space, conditioned # with trans inverse S = obs_sqrt_inv * (Y .- y_mean) * trans_inv # step 2c: compute the weighted innovation δ = obs_sqrt_inv * (obs - y_mean) # step 2d: compute the gradient and hessian if analysis[5:6] == "-n" # for finite formalism, we follow the IEnKS-N convention where # the gradient is computed with the finite-size cost function but we use the # usual hessian, with the effective ensemble size ζ = 1.0 / (ϵ_N + sum(w.^2.0)) grad_w = N_effective * ζ * w - transpose(S) * δ hess_w = Symmetric((N_effective - 1.0)*I + transpose(S) * S) else grad_w = (N_ens - 1.0) * w - transpose(S) * δ hess_w = Symmetric((N_ens - 1.0)*I + transpose(S) * S) end # step 2e: perform Newton approximation, simultaneously computing # the update transform trans with the SVD based inverse at once if analysis[end-8:end] == "transform" trans, trans_inv, hessian_inv = square_root_inv(hess_w, full=true) Δw = hessian_inv * grad_w else Δw = hess_w \ grad_w end # 2f: update the weights w -= Δw if norm(Δw) < tol break else # step 2g: update the iterative mean state j+=1 end end if analysis[5:6] == "-n" # peform a final inflation with the finite size cost function ζ = 1.0 / (ϵ_N + sum(w.^2.0)) hess_w = ζ * I - 2.0 * ζ^2.0 * w * transpose(w) hess_w = Symmetric(transpose(S) * S + (N_ens + 1.0) * hess_w) trans = square_root_inv(hess_w) elseif analysis[end-5:end] == "bundle" trans = square_root_inv(hess_w) end # step 7: generate mean preserving random orthogonal matrix as in sakov oke 08 U = rand_orth(N_ens) elseif analysis=="etkf-sqrt-core" || analysis=="etks-sqrt-core" ### NOTE: STILL DEVELOPMENT CODE, NOT DEBUGGED # needs to be revised for the calculation with unweighted anomalies # Uses the contribution of the model error covariance matrix Q # in the square root as in Raanes et al. 2015 # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: compute the ensemble mean x_mean = mean(ens, dims=2) # step 2a: compute the normalized anomalies A = (ens .- x_mean) / sqrt(N_ens - 1.0) # step 2b: compute the SVD for the two-sided projected model error covariance F = svd(A) Σ_inv = Diagonal([1.0 ./ F.S[1:N_ens-1]; 0.0]) p_inv = F.V * Σ_inv * transpose(F.U) ## NOTE: want to G = Symmetric(1.0I + (N_ens - 1.0) * p_inv * Q * transpose(p_inv)) # step 2c: compute the model error adjusted anomalies A = A * square_root(G) # step 3: compute the ensemble in observation space Y = H_obs(ens, obs_dim, kwargs) # step 4: compute the ensemble mean in observation space y_mean = mean(Y, dims=2) # step 5: compute the weighted anomalies in observation space # first we find the observation error covariance inverse obs_sqrt_inv = square_root_inv(obs_cov) # then compute the weighted anomalies S = (Y .- y_mean) / sqrt(N_ens - 1.0) S = obs_sqrt_inv * S # step 6: compute the weighted innovation δ = obs_sqrt_inv * ( obs - y_mean ) # step 7: compute the transform matrix trans = inv(Symmetric(1.0I + transpose(S) * S)) # step 8: compute the analysis weights w = trans * transpose(S) * δ # step 9: compute the square root of the transform trans = sqrt(trans) # step 10: generate mean preserving random orthogonal matrix as in sakov oke 08 U = rand_orth(N_ens) elseif analysis=="enkf-n-dual" || analysis=="enks-n-dual" # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: compute the observed ensemble and ensemble mean Y = H_obs(ens, obs_dim, kwargs) y_mean = mean(Y, dims=2) # step 2: compute the weighted anomalies in observation space # first we find the observation error covariance inverse obs_sqrt_inv = square_root_inv(obs_cov) # then compute the sensitivity matrix in observation space S = obs_sqrt_inv * (Y .- y_mean) # step 5: compute the weighted innovation δ = obs_sqrt_inv * (obs - y_mean) # step 6: compute the SVD for the simplified cost function, gauge weights and range F = svd(S) ϵ_N = 1.0 + (1.0 / N_ens) ζ_l = 0.000001 ζ_u = (N_ens + 1.0) / ϵ_N # step 7: define the dual cost function derived in singular value form function D(ζ::Float64) cost = I - (F.U * Diagonal( F.S.^2.0 ./ (ζ .+ F.S.^2.0) ) * transpose(F.U) ) cost = transpose(δ) * cost * δ .+ ϵ_N * ζ .+ (N_ens + 1.0) * log((N_ens + 1.0) / ζ) .- (N_ens + 1.0) cost[1] end # The below is defined for possible Hessian-based minimization # NOTE: standard Brent's method appears to be more reliable at finding a # global minimizer with some basic tests, may be tested further # #function D_v(ζ::Vector{Float64}) # ζ = ζ[1] # cost = I - (F.U * Diagonal( F.S.^2.0 ./ (ζ .+ F.S.^2.0) ) * transpose(F.U) ) # cost = transpose(δ) * cost * δ .+ ϵ_N * ζ .+ # (N_ens + 1.0) * log((N_ens + 1.0) / ζ) .- (N_ens + 1.0) # cost[1] #end #function D_prime!(storage::Vector{Float64}, ζ::Vector{Float64}) # ζ = ζ[1] # grad = transpose(δ) * F.U * Diagonal( - F.S.^2.0 .* (ζ .+ F.S.^2.0).^(-2.0) ) * # transpose(F.U) * δ # storage[:, :] = grad .+ ϵ_N .- (N_ens + 1.0) / ζ #end #function D_hess!(storage::Array{Float64}, ζ::Vector{Float64}) # ζ = ζ[1] # hess = transpose(δ) * F.U * # Diagonal( 2.0 * F.S.^2.0 .* (ζ .+ F.S.^2.0).^(-3.0) ) * transpose(F.U) * δ # storage[:, :] = hess .+ (N_ens + 1.0) * ζ^(-2.0) #end #lx = [ζ_l] #ux = [ζ_u] #ζ_0 = [(ζ_u + ζ_l)/2.0] #df = TwiceDifferentiable(D_v, D_prime!, D_hess!, ζ_0) #dfc = TwiceDifferentiableConstraints(lx, ux) #ζ_b = optimize(D_v, D_prime!, D_hess!, ζ_0) # step 8: find the argmin ζ_a = optimize(D, ζ_l, ζ_u) diag_vals = ζ_a.minimizer .+ F.S.^2.0 # step 9: compute the update weights w = F.V * Diagonal( F.S ./ diag_vals ) * transpose(F.U) * δ # step 10: compute the update transform trans = Symmetric(Diagonal( F.S ./ diag_vals) * transpose(F.U) * δ * transpose(δ) * F.U * Diagonal( F.S ./ diag_vals)) trans = Symmetric(Diagonal(diag_vals) - ( (2.0 * ζ_a.minimizer^2.0) / (N_ens + 1.0) ) * trans) trans = Symmetric(F.V * square_root_inv(trans) * F.Vt) # step 11: generate mean preserving random orthogonal matrix as in sakov oke 08 U = rand_orth(N_ens) elseif analysis=="enkf-n-primal" || analysis=="enks-n-primal" # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: compute the observed ensemble and ensemble mean Y = H_obs(ens, obs_dim, kwargs) y_mean = mean(Y, dims=2) # step 2: compute the weighted anomalies in observation space # first we find the observation error covariance inverse obs_sqrt_inv = square_root_inv(obs_cov) # then compute the sensitivity matrix in observation space S = obs_sqrt_inv * (Y .- y_mean) # step 3: compute the weighted innovation δ = obs_sqrt_inv * (obs - y_mean) # step 4: define the epsilon scaling and the effective ensemble size ϵ_N = 1.0 + (1.0 / N_ens) N_effective = N_ens + 1.0 # step 5: set up the optimization # step 5:a the inial choice is no change to the mean state w = zeros(N_ens) # step 5b: define the primal cost function function P(w::Vector{Float64}) cost = (δ - S * w) cost = sum(cost.^2.0) + N_effective * log(ϵ_N + sum(w.^2.0)) 0.5 * cost end # step 5c: define the primal gradient function ∇P!(grad::Vector{Float64}, w::Vector{Float64}) ζ = 1.0 / (ϵ_N + sum(w.^2.0)) grad[:] = N_effective * ζ * w - transpose(S) * (δ - S * w) end # step 5d: define the primal hessian function H_P!(hess::ArView(T1), w::Vector{Float64}) where T1 <: Float64 ζ = 1.0 / (ϵ_N + sum(w.^2.0)) hess .= ζ * I - 2.0 * ζ^2.0 * w * transpose(w) hess .= transpose(S) * S + N_effective * hess end # step 6: perform the optimization by simple Newton j = 0 trans = Array{Float64}(undef, N_ens, N_ens) grad_w = Array{Float64}(undef, N_ens) hess_w = Array{Float64}(undef, N_ens, N_ens) while j < j_max # compute the gradient and hessian ∇P!(grad_w, w) H_P!(hess_w, w) # perform Newton approximation, simultaneously computing # the update transform trans with the SVD based inverse at once trans, hessian_inv = square_root_inv(Symmetric(hess_w), inverse=true) Δw = hessian_inv * grad_w w -= Δw if norm(Δw) < tol break else j+=1 end end # step 7: generate mean preserving random orthogonal matrix as in sakov oke 08 U = rand_orth(N_ens) elseif analysis=="enkf-n-primal-ls" || analysis=="enks-n-primal-ls" # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) # step 1: compute the observed ensemble and ensemble mean Y = H_obs(ens, obs_dim, kwargs) y_mean = mean(Y, dims=2) # step 2: compute the weighted anomalies in observation space # first we find the observation error covariance inverse obs_sqrt_inv = square_root_inv(obs_cov) # then compute the sensitivity matrix in observation space S = obs_sqrt_inv * (Y .- y_mean) # step 3: compute the weighted innovation δ = obs_sqrt_inv * (obs - y_mean) # step 4: define the epsilon scaling and the effective ensemble size ϵ_N = 1.0 + (1.0 / N_ens) N_effective = N_ens + 1.0 # step 5: set up the optimization # step 5:a the inial choice is no change to the mean state w = zeros(N_ens) # step 5b: define the primal cost function function J(w::Vector{Float64}) cost = (δ - S * w) cost = sum(cost.^2.0) + N_effective * log(ϵ_N + sum(w.^2.0)) 0.5 * cost end # step 5c: define the primal gradient function ∇J!(grad::Vector{Float64}, w::Vector{Float64}) ζ = 1.0 / (ϵ_N + sum(w.^2.0)) grad[:] = N_effective * ζ * w - transpose(S) * (δ - S * w) end # step 5d: define the primal hessian function H_J!(hess::ArView(T1), w::Vector{Float64}) where T1 <: Float64 ζ = 1.0 / (ϵ_N + sum(w.^2.0)) hess .= ζ * I - 2.0 * ζ^2.0 * w * transpose(w) hess .= transpose(S) * S + N_effective * hess end # step 6: find the argmin for the update weights # step 6a: define the line search algorithm with Newton # we use StrongWolfe for RMSE performance as the default linesearch # method, see the LineSearches docs, alternative choice is commented below # ln_search = HagerZhang() ln_search = StrongWolfe() opt_alg = Newton(linesearch = ln_search) # step 6b: perform the optimization w = Optim.optimize(J, ∇J!, H_J!, w, method=opt_alg, x_tol=tol).minimizer # step 7: compute the update transform trans = Symmetric(H_J!(Array{Float64}(undef, N_ens, N_ens), w)) trans = square_root_inv(trans) # step 8: generate mean preserving random orthogonal matrix as in Sakov & Oke 08 U = rand_orth(N_ens) end return trans, w, U end ############################################################################################## """ ens_gauss_newton(analysis::String, ens::ArView(T), obs::VecA(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs; conditioning::ConM(T)=1000.0I, m_err::ArView(T)=(1.0 ./ zeros(1,1)), tol::Float64 = 0.0001, j_max::Int64=40, Q::CovM(T)=1.0I) where T <: Float64 Computes the ensemble estimated gradient and Hessian terms for nonlinear least-squares ``` return ∇_J, Hess_J ``` `m_err`, `tol`, `j_max`, `Q` are optional arguments depending on the `analysis`, with default values provided. Serves as an auxilliary function for IEnKS(-N), where "analysis" is a string which determines the method of transform update ensemble Gauss-Newton calculation. The observation error covariance `obs_cov` is of type [`CovM`](@ref), the conditioning matrix `conditioning` is of type [`ConM`](@ref), the keyword arguments dictionary `kwargs` is of type [`StepKwargs`](@ref) and the model error covariance matrix `Q` is of type [`CovM`](@ref). Currently validated `analysis` options: * `analysis == "ienks-bundle" || "ienks-n-bundle" || "ienks-transform" || "ienks-n-transform"` computes the weighted observed anomalies as per the bundle or transform version of the IEnKS, described in [Bocquet et al. 2013](https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2236), [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). Bundle versus tranform versions of the scheme are specified by the trailing `analysis` string as `-bundle` or `-transform`. The bundle version uses a small uniform scalar `ϵ`, whereas the transform version uses a matrix square root inverse as the conditioning operator. This form of analysis differs from other schemes by returning a sequential-in-time value for the cost function gradient and Hessian, which will is utilized within the iterative smoother optimization. A finite-size inflation scheme, based on the EnKF-N above, can be utilized by appending additionally a `-n` to the `-bundle` or `-transform` version of the IEnKS scheme specified in `analysis`. """ function ens_gauss_newton(analysis::String, ens::ArView(T), obs::VecA(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs; conditioning::ConM(T)=1000.0I, m_err::ArView(T)=(1.0 ./ zeros(1,1)), tol::Float64 = 0.0001, j_max::Int64=40, Q::CovM(T)=1.0I) where T <: Float64 if analysis[1:5]=="ienks" # step 0: infer observation dimension obs_dim = length(obs) # step 1: compute the observed ensemble and ensemble mean Y = H_obs(ens, obs_dim, kwargs) y_mean = mean(Y, dims=2) # step 2: compute the observed anomalies, proportional to the conditioning matrix # here conditioning should be supplied as trans^(-1) S = (Y .- y_mean) * conditioning # step 3: compute the cost function gradient term inv_obs_cov = inv(obs_cov) ∇J = transpose(S) * inv_obs_cov * (obs - y_mean) # step 4: compute the cost function gradient term hess_J = transpose(S) * inv_obs_cov * S # return tuple of the gradient and hessian terms return ∇J, hess_J end end ############################################################################################## """ ens_update_RT!(ens::ArView(T), transform::TransM(T)) where T <: Float64 Updates forecast ensemble to the analysis ensemble by right transform (RT) method. ``` return ens ``` Arguments include the ensemble of type [`ArView`](@ref) and the 3-tuple including the right transform for the anomalies, the weights for the mean and the random, mean-preserving orthogonal matrix, type [`TransM`](@ref). """ function ens_update_RT!(ens::ArView(T), update::TransM(T)) where T <: Float64 # step 0: infer dimensions and unpack the transform sys_dim, N_ens = size(ens) trans, w, U = update # step 1: compute the ensemble mean x_mean = mean(ens, dims=2) # step 2: compute the non-normalized anomalies X = ens .- x_mean # step 3: compute the update ens_transform = w .+ trans * U * sqrt(N_ens - 1.0) ens .= x_mean .+ X * ens_transform return ens end ############################################################################################## """ ensemble_filter(analysis::String, ens::ArView(T), obs::VecA(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 General filter analysis step, wrapping the right transform / update, and inflation steps. Optional keyword argument includes state_dim for extended state including parameters. In this case, a value for the parameter covariance inflation should be included in addition to the state covariance inflation. ``` return Dict{String,Array{Float64,2}}("ens" => ens) ``` """ function ensemble_filter(analysis::String, ens::ArView(T), obs::VecA(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 # step 0: infer the system, observation and ensemble dimensions sys_dim, N_ens = size(ens) obs_dim = length(obs) if haskey(kwargs, "state_dim") state_dim = kwargs["state_dim"] else state_dim = sys_dim end # step 1: compute the tranform and update ensemble ens_update_RT!(ens, transform_R(analysis, ens, obs, H_obs, obs_cov, kwargs)) # step 2a: compute multiplicative inflation of state variables if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # step 2b: if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end return Dict{String,Array{Float64,2}}("ens" => ens) end ############################################################################################## """ ls_smoother_classic(analysis::String, ens::ArView(T), obs::ArView(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 Lag-shift ensemble Kalman smoother analysis step, classical version. Classic EnKS uses the last filtered state for the forecast, different from the iterative schemes which use the once or multiple-times re-analized posterior for the initial condition for the forecast of the states to the next shift. Optional argument includes state dimension for extended state including parameters. In this case, a value for the parameter covariance inflation should be included in addition to the state covariance inflation. ``` return Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered ) ``` """ function ls_smoother_classic(analysis::String, ens::ArView(T), obs::ArView(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 # step 0: unpack kwargs f_steps = kwargs["f_steps"]::Int64 step_model! = kwargs["step_model"]::Function posterior = kwargs["posterior"]::Array{Float64,3} # infer the ensemble, obs, and system dimensions, # observation sequence includes shift forward times, # posterior is size lag + shift obs_dim, shift = size(obs) sys_dim, N_ens, lag = size(posterior) lag = lag - shift if shift < lag # posterior contains length lag + shift past states, we discard the oldest shift # states and load the new filtered states in the routine posterior = cat(posterior[:, :, 1 + shift: end], Array{Float64}(undef, sys_dim, N_ens, shift), dims=3) end # optional parameter estimation if haskey(kwargs, "state_dim") state_dim = kwargs["state_dim"]::Int64 param_est = true else state_dim = sys_dim param_est = false end # step 1: create storage for the forecast and filter values over the DAW forecast = Array{Float64}(undef, sys_dim, N_ens, shift) filtered = Array{Float64}(undef, sys_dim, N_ens, shift) # step 2: forward propagate the ensemble and analyze the observations for s in 1:shift # initialize posterior for the special case lag=shift if lag==shift posterior[:, :, s] = ens end # step 2a: propagate between observation times for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define the diffusion structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end # step 2b: store forecast to compute ensemble statistics before observations # become available forecast[:, :, s] = ens # step 2c: perform the filtering step trans = transform_R(analysis, ens, obs[:, s], H_obs, obs_cov, kwargs) ens_update_RT!(ens, trans) # optionally compute multiplicative inflation of state variables if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end # store the filtered states and posterior states filtered[:, :, s] = ens posterior[:, :, end - shift + s] = ens # step 2e: re-analyze the posterior in the lag window of states, # not including current time @views for l in 1:lag + s - 1 ens_update_RT!(posterior[:, :, l], trans) end end # step 3: if performing parameter estimation, apply the parameter model if haskey(kwargs, "p_wlk") p_wlk = kwargs["p_wlk"]::Float64 param_ens = ens[state_dim + 1:end , :] param_mean = mean(param_ens, dims=2) param_ens .= param_ens + p_wlk * param_mean .* rand(Normal(), length(param_mean), N_ens) ens[state_dim + 1:end, :] = param_ens end Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered ) end ############################################################################################## """ ls_smoother_single_iteration(analysis::String, ens::ArView(T), H_obs::Function, obs::ArView(T), obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 Lag-shift, single-iteration ensemble Kalman smoother (SIEnKS) analysis step. Single-iteration EnKS uses the final re-analyzed posterior initial state for the forecast, which is pushed forward in time to shift-number of observation times. Optional argument includes state dimension for an extended state including parameters. In this case, a value for the parameter covariance inflation should be included in addition to the state covariance inflation. ``` return Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered ) ``` """ function ls_smoother_single_iteration(analysis::String, ens::ArView(T), obs::ArView(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 # step 0: unpack kwargs, posterior contains length lag past states ending # with ens as final entry f_steps = kwargs["f_steps"]::Int64 step_model! = kwargs["step_model"]::Function posterior = kwargs["posterior"]::Array{Float64,3} # infer the ensemble, obs, and system dimensions, observation sequence # includes lag forward times obs_dim, lag = size(obs) sys_dim, N_ens, shift = size(posterior) # optional parameter estimation if haskey(kwargs, "state_dim") state_dim = kwargs["state_dim"]::Int64 param_est = true else state_dim = sys_dim param_est = false end # make a copy of the intial ens for re-analysis ens_0 = copy(ens) # spin to be used on the first lag-assimilations -- this makes the smoothed time-zero # re-analized prior the first initial condition for the future iterations # regardless of sda or mda settings spin = kwargs["spin"]::Bool # step 1: create storage for the posterior, forecast and filter values over the DAW # only the shift-last and shift-first values are stored as these represent the # newly forecasted values and last-iterate posterior estimate respectively if spin forecast = Array{Float64}(undef, sys_dim, N_ens, lag) filtered = Array{Float64}(undef, sys_dim, N_ens, lag) else forecast = Array{Float64}(undef, sys_dim, N_ens, shift) filtered = Array{Float64}(undef, sys_dim, N_ens, shift) end # multiple data assimilation (mda) is optional, read as boolean variable mda = kwargs["mda"]::Bool if mda # set the observation and re-balancing weights reb_weights = kwargs["reb_weights"]::Vector{Float64} obs_weights = kwargs["obs_weights"]::Vector{Float64} # set iteration count for the initial rebalancing step followed by mda i = 0 # the posterior statistics are computed in the zeroth pass with rebalancing posterior[:, :, 1] = ens_0 # make a single iteration with SDA, # with MDA make a rebalancing step on the zeroth iteration while i <=1 # step 2: forward propagate the ensemble and analyze the observations for l in 1:lag # step 2a: propagate between observation times for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define the structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end if i == 0 # step 2b: store forecast to compute ensemble statistics before # observations become available # for MDA, this is on the zeroth iteration through the DAW if spin # store all new forecast states forecast[:, :, l] = ens elseif (l > (lag - shift)) # only store forecasted states for beyond unobserved # times beyond previous forecast windows forecast[:, :, l - (lag - shift)] = ens end # step 2c: perform the filtering step with rebalancing weights trans = transform_R(analysis, ens, obs[:, l], H_obs, obs_cov * reb_weights[l], kwargs) ens_update_RT!(ens, trans) if spin # optionaly compute multiplicative inflation of state variables if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end # store all new filtered states filtered[:, :, l] = ens elseif l > (lag - shift) # store the filtered states for previously unobserved times, # not mda values filtered[:, :, l - (lag - shift)] = ens end # step 2d: compute re-analyzed posterior statistics within rebalancing # step, using the MDA rebalancing analysis transform for all available # times on all states that will be discarded on the next shift reanalysis_index = min(shift, l) @views for s in 1:reanalysis_index ens_update_RT!(posterior[:, :, s], trans) end # store most recent filtered state in the posterior statistics, for all # states to be discarded on the next shift > 1 if l < shift posterior[:, :, l + 1] = ens end else # step 2c: perform the filtering step with mda weights trans = transform_R(analysis, ens, obs[:, l], H_obs, obs_cov * obs_weights[l], kwargs) ens_update_RT!(ens, trans) # re-analyzed initial conditions are computed in the mda step ens_update_RT!(ens_0, trans) end end # reset the ensemble with the prior for mda and step forward the iteration count, ens = copy(ens_0) i+=1 end else # step 2: forward propagate the ensemble and analyze the observations for l in 1:lag # step 2a: propagate between observation times for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define the structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end if spin # step 2b: store forecast to compute ensemble statistics before observations # become available # if spin, store all new forecast states forecast[:, :, l] = ens # step 2c: apply the transformation and update step trans = transform_R(analysis, ens, obs[:, l], H_obs, obs_cov, kwargs) ens_update_RT!(ens, trans) # optionally compute multiplicative inflation of state variables if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end # store all new filtered states filtered[:, :, l] = ens # step 2d: compute the re-analyzed initial condition if assimilation update ens_update_RT!(ens_0, trans) elseif l > (lag - shift) # step 2b: store forecast to compute ensemble statistics before observations # become available # if not spin, only store forecasted states for beyond unobserved times # beyond previous forecast windows forecast[:, :, l - (lag - shift)] = ens # step 2c: apply the transformation and update step trans = transform_R(analysis, ens, obs[:, l], H_obs, obs_cov, kwargs) ens_update_RT!(ens, trans) # store the filtered states for previously unobserved times, not mda values filtered[:, :, l - (lag - shift)] = ens # step 2d: compute re-analyzed initial condition if assimilation update ens_update_RT!(ens_0, trans) end end # reset the ensemble with the re-analyzed prior ens = copy(ens_0) end # step 3: propagate the posterior initial condition forward to the shift-forward time # step 3a: optionally inflate the posterior covariance if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end # step 3b: if performing parameter estimation, apply the parameter model if haskey(kwargs, "p_wlk") p_wlk = kwargs["p_wlk"]::Float64 param_ens = ens[state_dim + 1:end , :] param_mean = mean(param_ens, dims=2) param_ens .= param_ens + p_wlk * param_mean .* rand(Normal(), length(param_mean), N_ens) ens[state_dim + 1:end , :] = param_ens end # step 3c: propagate the re-analyzed, resampled-in-parameter-space ensemble up by shift # observation times for s in 1:shift if !mda posterior[:, :, s] = ens end for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define the diffusion structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end end Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered, ) end ############################################################################################## """ ls_smoother_gauss_newton(analysis::String, ens::ArView(T), obs::ArView(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs; ϵ::Float64=0.0001, tol::Float64=0.001, max_iter::Int64=5) where T <: Float64 This implements a lag-shift Gauss-Newton IEnKS analysis step as in algorithm 4 of [Bocquet et al. 2014](https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.2236). The IEnKS uses the final re-analyzed initial state in the data assimilation window to generate the forecast, which is subsequently pushed forward in time from the initial conidtion to shift-number of observation times. Optional argument includes state dimension for an extended state including parameters. In this case, a value for the parameter covariance inflation should be included in addition to the state covariance inflation. ``` return Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered ) ``` """ function ls_smoother_gauss_newton(analysis::String, ens::ArView(T), obs::ArView(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs; ϵ::Float64=0.0001, tol::Float64=0.001, max_iter::Int64=5) where T <: Float64 # step 0: unpack kwargs, posterior contains length lag past states ending # with ens as final entry f_steps = kwargs["f_steps"]::Int64 step_model! = kwargs["step_model"]::Function posterior = kwargs["posterior"]::Array{Float64,3} # infer the ensemble, obs, and system dimensions, # observation sequence includes lag forward times obs_dim, lag = size(obs) sys_dim, N_ens, shift = size(posterior) # optional parameter estimation if haskey(kwargs, "state_dim") state_dim = kwargs["state_dim"]::Int64 param_est = true else state_dim = sys_dim param_est = false end # spin to be used on the first lag-assimilations -- this makes the smoothed time-zero # re-analized prior # the first initial condition for the future iterations regardless of sda or mda settings spin = kwargs["spin"]::Bool # step 1: create storage for the posterior filter values over the DAW, # forecast values in the DAW+shift if spin forecast = Array{Float64}(undef, sys_dim, N_ens, lag + shift) filtered = Array{Float64}(undef, sys_dim, N_ens, lag) else forecast = Array{Float64}(undef, sys_dim, N_ens, shift) filtered = Array{Float64}(undef, sys_dim, N_ens, shift) end # step 1a: determine if using finite-size or MDA formalism in the below if analysis[1:7] == "ienks-n" # epsilon inflation factor corresponding to unknown forecast distribution mean ϵ_N = 1.0 + (1.0 / N_ens) # effective ensemble size N_effective = N_ens + 1.0 end # multiple data assimilation (mda) is optional, read as boolean variable mda = kwargs["mda"]::Bool # algorithm splits on the use of MDA or not if mda # 1b: define the initial parameters for the two stage iterative optimization # define the rebalancing weights for the first sweep of the algorithm reb_weights = kwargs["reb_weights"]::Vector{Float64} # define the mda weights for the second pass of the algorithm obs_weights = kwargs["obs_weights"]::Vector{Float64} # m gives the total number of iterations of the algorithm over both the # rebalancing and the MDA steps, this is combined from the iteration count # i in each stage; the iterator i will give the number of iterations of the # optimization and does not take into account the forecast / filtered iteration; # for an optmized routine of the transform version, forecast / filtered statistics # can be computed within the iteration count i; for the optimized bundle # version, forecast / filtered statistics need to be computed with an additional # iteration due to the epsilon scaling of the ensemble m = 0 # stage gives the algorithm stage, 0 is rebalancing, 1 is MDA stage = 0 # step 1c: compute the initial ensemble mean and normalized anomalies, # and storage for the sequentially computed iterated mean, gradient # and hessian terms ens_mean_0 = mean(ens, dims=2) anom_0 = ens .- ens_mean_0 ∇J = Array{Float64}(undef, N_ens, lag) hess_J = Array{Float64}(undef, N_ens, N_ens, lag) # pre-allocate these variables as global for the loop re-definitions hessian = Symmetric(Array{Float64}(undef, N_ens, N_ens)) new_ens = Array{Float64}(undef, sys_dim, N_ens) # step through two stages starting at zero while stage <=1 # step 1d: (re)-define the conditioning for bundle versus transform varaints if analysis[end-5:end] == "bundle" trans = ϵ*I trans_inv = (1.0 / ϵ)*I elseif analysis[end-8:end] == "transform" trans = 1.0*I trans_inv = 1.0*I end # step 1e: (re)define the iteration count and the base-point for the optimization i = 0 ens_mean_iter = copy(ens_mean_0) w = zeros(N_ens) # step 2: begin iterative optimization while i < max_iter # step 2a: redefine the conditioned ensemble with updated mean, after # first spin run in stage 0 if !spin || i > 0 || stage > 0 ens = ens_mean_iter .+ anom_0 * trans end # step 2b: forward propagate the ensemble and sequentially store the # forecast or construct cost function for l in 1:lag # propagate between observation times for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end if spin && i == 0 && stage==0 # if first spin, store the forecast over the entire DAW forecast[:, :, l] = ens # otherwise, compute the sequential terms of the gradient and hessian of # the cost function, weights depend on the stage of the algorithm elseif stage == 0 # this is the rebalancing step to produce filter and forecast stats ∇J[:,l], hess_J[:, :, l] = ens_gauss_newton( analysis, ens, obs[:, l], H_obs, obs_cov * reb_weights[l], kwargs, conditioning=trans_inv ) elseif stage == 1 # this is the MDA step to shift the window forward ∇J[:,l], hess_J[:, :, l] = ens_gauss_newton( analysis, ens, obs[:, l], H_obs, obs_cov * obs_weights[l], kwargs, conditioning=trans_inv ) end end # skip this section in the first spin cycle, return and begin optimization if !spin || i > 0 || stage > 0 # step 2c: formally compute the gradient and the hessian from the # sequential components, perform Gauss-Newton after forecast iteration if analysis[1:7] == "ienks-n" # use the finite size EnKF cost function for the gradient calculation ζ = 1.0 / (sum(w.^2.0) + ϵ_N) gradient = N_effective * ζ * w - sum(∇J, dims=2) # hessian is computed with the effective ensemble size hessian = Symmetric((N_effective - 1.0) * I + dropdims(sum(hess_J, dims=3), dims=3)) else # compute the usual cost function directly gradient = (N_ens - 1.0) * w - sum(∇J, dims=2) # hessian is computed with the ensemble rank hessian = Symmetric((N_ens - 1.0) * I + dropdims(sum(hess_J, dims=3), dims=3)) end if analysis[end-8:end] == "transform" # transform method requires each of the below, and we make # all calculations simultaneously via the SVD for stability trans, trans_inv, hessian_inv = square_root_inv(hessian, full=true) # compute the weights update Δw = hessian_inv * gradient else # compute the weights update by the standard linear equation solver Δw = hessian \ gradient end # update the weights w -= Δw # update the mean via the increment, always with the zeroth # iterate of the ensemble ens_mean_iter = ens_mean_0 + anom_0 * w if norm(Δw) < tol i+=1 break end end # update the iteration count i+=1 end # step 3: compute posterior initial condiiton and propagate forward in time # step 3a: perform the analysis of the ensemble if analysis[1:7] == "ienks-n" # use finite size EnKF cost function to produce adaptive # inflation with the hessian ζ = 1.0 / (sum(w.^2.0) + ϵ_N) hessian = Symmetric( N_effective * (ζ * I - 2.0 * ζ^(2.0) * w * transpose(w)) + dropdims(sum(hess_J, dims=3), dims=3) ) trans = square_root_inv(hessian) elseif analysis == "ienks-bundle" trans = square_root_inv(hessian) end # compute analyzed ensemble by the iterated mean and the transformed # original anomalies U = rand_orth(N_ens) ens = ens_mean_iter .+ sqrt(N_ens - 1.0) * anom_0 * trans * U # step 3b: if performing parameter estimation, apply the parameter model # for the for the MDA step and shifted window if haskey(kwargs, "p_wlk") && stage == 1 p_wlk = kwargs["p_wlk"]::Float64 param_ens = ens[state_dim + 1:end , :] param_mean = mean(param_ens, dims=2) param_ens .= param_ens + p_wlk * param_mean .* rand(Normal(), length(param_mean), N_ens) ens[state_dim + 1:end, :] = param_ens end # step 3c: propagate the re-analyzed, resampled-in-parameter-space ensemble up # by shift observation times in stage 1, store the filtered state as the forward # propagated value at the new observation times within the DAW in stage 0, # the forecast states as those beyond the DAW in stage 0, and # store the posterior at the times discarded at the next shift in stage 0 if stage == 0 for l in 1:lag + shift if l <= shift # store the posterior ensemble at times that will be discarded posterior[:, :, l] = ens end # shift the ensemble forward Δt for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end if spin && l <= lag # store spin filtered states at all times up to lag filtered[:, :, l] = ens elseif spin && l > lag # store the remaining spin forecast states at shift times # beyond the DAW forecast[:, :, l] = ens elseif l > lag - shift && l <= lag # store filtered states for newly assimilated observations filtered[:, :, l - (lag - shift)] = ens elseif l > lag # store forecast states at shift times beyond the DAW forecast[:, :, l - lag] = ens end end else for l in 1:shift for j in 1:N_ens @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end end end stage += 1 m += i end # store and optionally inflate the forward posterior at the new initial condition if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered, "iterations" => Array{Float64}([m]) ) else # step 1b: define the initial correction and iteration count, note that i will # give the number of iterations of the optimization and does not take into # account the forecast / filtered iteration; for an optmized routine of the # transform version, forecast / filtered statistics can be computed within # the iteration count i; for the optimized bundle version, forecast / filtered # statistics need to be computed with an additional iteration due to the epsilon # scaling of the ensemble w = zeros(N_ens) i = 0 # step 1c: compute the initial ensemble mean and normalized anomalies, # and storage for the sequentially computed iterated mean, gradient # and hessian terms ens_mean_0 = mean(ens, dims=2) ens_mean_iter = copy(ens_mean_0) anom_0 = ens .- ens_mean_0 if spin ∇J = Array{Float64}(undef, N_ens, lag) hess_J = Array{Float64}(undef, N_ens, N_ens, lag) else ∇J = Array{Float64}(undef, N_ens, shift) hess_J = Array{Float64}(undef, N_ens, N_ens, shift) end # pre-allocate these variables as global for the loop re-definitions hessian = Symmetric(Array{Float64}(undef, N_ens, N_ens)) new_ens = Array{Float64}(undef, sys_dim, N_ens) # step 1e: define the conditioning for bundle versus transform varaints if analysis[end-5:end] == "bundle" trans = ϵ*I trans_inv = (1.0 / ϵ)*I elseif analysis[end-8:end] == "transform" trans = 1.0*I trans_inv = 1.0*I end # step 2: begin iterative optimization while i < max_iter # step 2a: redefine the conditioned ensemble with updated mean, after the # first spin run or for all runs if after the spin cycle if !spin || i > 0 ens = ens_mean_iter .+ anom_0 * trans end # step 2b: forward propagate the ensemble and sequentially store the forecast # or construct cost function for l in 1:lag # propagate between observation times for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end if spin if i == 0 # if first spin, store the forecast over the entire DAW forecast[:, :, l] = ens else # otherwise, compute the sequential terms of the gradient # and hessian of the cost function over all observations in the DAW ∇J[:,l], hess_J[:, :, l] = ens_gauss_newton( analysis, ens, obs[:, l], H_obs, obs_cov, kwargs, conditioning=trans_inv ) end elseif l > (lag - shift) # compute sequential terms of the gradient and hessian of the # cost function only for the shift-length new observations in the DAW ∇J[:,l - (lag - shift)], hess_J[:, :, l - (lag - shift)] = ens_gauss_newton( analysis, ens, obs[:, l], H_obs, obs_cov, kwargs, conditioning=trans_inv ) end end # skip this section in the first spin cycle, return and begin optimization if !spin || i > 0 # step 2c: otherwise, formally compute the gradient and the hessian from the # sequential components, perform Gauss-Newton step after forecast iteration if analysis[1:7] == "ienks-n" # use finite size EnKF cost function to produce the gradient calculation ζ = 1.0 / (sum(w.^2.0) + ϵ_N) gradient = N_effective * ζ * w - sum(∇J, dims=2) # hessian is computed with the effective ensemble size hessian = Symmetric((N_effective - 1.0) * I + dropdims(sum(hess_J, dims=3), dims=3)) else # compute the usual cost function directly gradient = (N_ens - 1.0) * w - sum(∇J, dims=2) # hessian is computed with the ensemble rank hessian = Symmetric((N_ens - 1.0) * I + dropdims(sum(hess_J, dims=3), dims=3)) end if analysis[end-8:end] == "transform" # transform method requires each of the below, and we make # all calculations simultaneously via the SVD for stability trans, trans_inv, hessian_inv = square_root_inv(hessian, full=true) # compute the weights update Δw = hessian_inv * gradient else # compute the weights update by the standard linear equation solver Δw = hessian \ gradient end # update the weights w -= Δw # update the mean via the increment, always with the zeroth iterate # of the ensemble ens_mean_iter = ens_mean_0 + anom_0 * w if norm(Δw) < tol i +=1 break end end # update the iteration count i+=1 end # step 3: compute posterior initial condiiton and propagate forward in time # step 3a: perform the analysis of the ensemble if analysis[1:7] == "ienks-n" # use finite size EnKF cost function to produce adaptive inflation # with the hessian ζ = 1.0 / (sum(w.^2.0) + ϵ_N) hessian = Symmetric( N_effective * (ζ * I - 2.0 * ζ^(2.0) * w * transpose(w)) + dropdims(sum(hess_J, dims=3), dims=3) ) # redefine the ensemble transform for the final update trans = square_root_inv(hessian) elseif analysis == "ienks-bundle" # redefine the ensemble transform for the final update, # this is already computed in-loop for the ienks-transform trans = square_root_inv(hessian) end # compute analyzed ensemble by the iterated mean and the transformed # original anomalies U = rand_orth(N_ens) ens = ens_mean_iter .+ sqrt(N_ens - 1.0) * anom_0 * trans * U # step 3b: if performing parameter estimation, apply the parameter model if haskey(kwargs, "p_wlk") p_wlk = kwargs["p_wlk"]::Float64 param_ens = ens[state_dim + 1:end , :] param_ens = param_ens + p_wlk * rand(Normal(), size(param_ens)) ens[state_dim + 1:end, :] = param_ens end # step 3c: propagate re-analyzed, resampled-in-parameter-space ensemble up by shift # observation times, store the filtered state as the forward propagated value at the # new observation times within the DAW, forecast states as those beyond the DAW, and # store the posterior at the times discarded at the next shift for l in 1:lag + shift if l <= shift # store the posterior ensemble at times that will be discarded posterior[:, :, l] = ens end # shift the ensemble forward Δt for j in 1:N_ens if param_est if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # define structure matrix with respect to the sample value # of the inertia, as per each ensemble member diff_mat = zeros(20,20) diff_mat[LinearAlgebra.diagind(diff_mat)[11:end]] = kwargs["dx_params"]["ω"][1] ./ (2.0 * ens[21:30, j]) kwargs["diff_mat"] = diff_mat end end @views for k in 1:f_steps step_model!(ens[:, j], 0.0, kwargs) if string(parentmodule(kwargs["dx_dt"])) == "IEEE39bus" # set phase angles mod 2pi ens[1:10, j] .= rem2pi.(ens[1:10, j], RoundNearest) end end end if l == shift # store the shift-forward ensemble for the initial condition in the new DAW new_ens = copy(ens) end if spin && l <= lag # store spin filtered states at all times up to lag filtered[:, :, l] = ens elseif spin && l > lag # store the remaining spin forecast states at shift times beyond the DAW forecast[:, :, l] = ens elseif l > lag - shift && l <= lag # store filtered states for newly assimilated observations filtered[:, :, l - (lag - shift)] = ens elseif l > lag # store forecast states at shift times beyond the DAW forecast[:, :, l - lag] = ens end end # store and optionally inflate the forward posterior at the new initial condition ens = copy(new_ens) if haskey(kwargs, "s_infl") s_infl = kwargs["s_infl"]::Float64 inflate_state!(ens, s_infl, sys_dim, state_dim) end # if including an extended state of parameter values, # optionally compute multiplicative inflation of parameter values if haskey(kwargs, "p_infl") p_infl = kwargs["p_infl"]::Float64 inflate_param!(ens, p_infl, sys_dim, state_dim) end Dict{String,Array{Float64}}( "ens" => ens, "post" => posterior, "fore" => forecast, "filt" => filtered, "iterations" => Array{Float64}([i]) ) end end ############################################################################################## # end module end ############################################################################################## # Methods below are yet to be to debugged and benchmark ############################################################################################## # single iteration, correlation-based lag_shift_smoother, adaptive inflation STILL DEBUGGING # #function ls_smoother_single_iteration_adaptive(analysis::String, ens::ArView, obs::ArView, # obs_cov::CovM, s_infl::Float64, kwargs::StepKwargs) # # """Lag-shift ensemble kalman smoother analysis step, single iteration adaptive version # # This version of the lag-shift enks uses the final re-analyzed posterior initial state for the forecast, # which is pushed forward in time from the initial conidtion to shift-number of observation times. # # Optional keyword argument includes state dimension if there is an extended state including parameters. In this # case, a value for the parameter covariance inflation should be included in addition to the state covariance # inflation. If the analysis method is 'etks_adaptive', this utilizes the past analysis means to construct an # innovation-based estimator for the model error covariances. This is formed by the expectation step in the # expectation maximization algorithm dicussed by Tandeo et al. 2021.""" # # # step 0: unpack kwargs, posterior contains length lag past states ending with ens as final entry # f_steps = kwargs["f_steps"]::Int64 # step_model! = kwargs["step_model"]::Function # posterior = kwargs["posterior"]::Array{Float64,3} # # # infer the ensemble, obs, and system dimensions, observation sequence includes lag forward times # obs_dim, lag = size(obs) # sys_dim, N_ens, shift = size(posterior) # # # for the adaptive inflation shceme # # load bool if spinning up tail of innovation statistics # tail_spin = kwargs["tail_spin"]::Bool # # # pre_analysis will contain the sequence of the last cycle's analysis states # # over the current DAW # pre_analysis = kwargs["analysis"]::Array{Float64,3} # # # analysis innovations contains the innovation statistics over the previous DAW plus a trail of # # length tail * lag to ensure more robust frequentist estimates # analysis_innovations = kwargs["analysis_innovations"]::ArView # # # optional parameter estimation # if haskey(kwargs, "state_dim") # state_dim = kwargs["state_dim"]::Int64 # p_infl = kwargs["p_infl"]::Float64 # p_wlk = kwargs["p_wlk"]::Float64 # # else # state_dim = sys_dim # end # # # make a copy of the intial ens for re-analysis # ens_0 = copy(ens) # # # spin to be used on the first lag-assimilations -- this makes the smoothed time-zero re-analized prior # # the first initial condition for the future iterations regardless of sda or mda settings # spin = kwargs["spin"]::Bool # # # step 1: create storage for the posterior, forecast and filter values over the DAW # # only the shift-last and shift-first values are stored as these represent the newly forecasted values and # # last-iterate posterior estimate respectively # if spin # forecast = Array{Float64}(undef, sys_dim, N_ens, lag) # filtered = Array{Float64}(undef, sys_dim, N_ens, lag) # else # forecast = Array{Float64}(undef, sys_dim, N_ens, shift) # filtered = Array{Float64}(undef, sys_dim, N_ens, shift) # end # # if spin # ### NOTE: WRITING THIS NOW SO THAT WE WILL HAVE AN ARBITRARY TAIL OF INNOVATION STATISTICS # # FROM THE PASS BACK THROUGH THE WINDOW, BUT WILL COMPUTE INNOVATIONS ONLY ON THE NEW # # SHIFT-LENGTH REANALYSIS STATES BY THE SHIFTED DAW # # create storage for the analysis means computed at each forward step of the current DAW # post_analysis = Array{Float64}(undef, sys_dim, N_ens, lag) # else # # create storage for the analysis means computed at the shift forward states in the DAW # post_analysis = Array{Float64}(undef, sys_dim, N_ens, shift) # end # # # step 2: forward propagate the ensemble and analyze the observations # for l in 1:lag # # step 2a: propagate between observation times # for j in 1:N_ens # @views for k in 1:f_steps # step_model!(ens[:, j], 0.0, kwargs) # end # end # if spin # # step 2b: store the forecast to compute ensemble statistics before observations become available # # if spin, store all new forecast states # forecast[:, :, l] = ens # # # step 2c: apply the transformation and update step # trans = transform_R(analysis, ens, obs[:, l], obs_cov, kwargs) # ens_update_RT!(ens, trans) # # # compute multiplicative inflation of state variables # inflate_state!(ens, s_infl, sys_dim, state_dim) # # # if including an extended state of parameter values, # # compute multiplicative inflation of parameter values # if state_dim != sys_dim # inflate_param!(ens, p_infl, sys_dim, state_dim) # end # # # store all new filtered states # filtered[:, :, l] = ens # # # store the re-analyzed ensembles for future statistics # post_analysis[:, :, l] = ens # for j in 1:l-1 # post_analysis[:, :, j] = ens_update_RT!(post_analysis[:, :, j], trans) # end # # # step 2d: compute the re-analyzed initial condition if we have an assimilation update # ens_update_RT!(ens_0, trans) # # elseif l > (lag - shift) # # step 2b: store the forecast to compute ensemble statistics before observations become available # # if not spin, only store forecasted states for beyond unobserved times beyond previous forecast windows # forecast[:, :, l - (lag - shift)] = ens # # # step 2c: apply the transformation and update step # if tail_spin # trans = transform_R(analysis, ens, obs[:, l], obs_cov, kwargs, # m_err=analysis_innovations[:, 1:end-shift]) # else # trans = transform_R(analysis, ens, obs[:, l], obs_cov, kwargs, # m_err=analysis_innovations) # end # # ens = ens_update_RT!(ens, trans) # # # store the filtered states for previously unobserved times, not mda values # filtered[:, :, l - (lag - shift)] = ens # # # store the re-analyzed ensembles for future statistics # post_analysis[:, :, l] = ens # for j in 1:l-1 # post_analysis[:, :, j] = ens_update_RT!(post_analysis[:, :, j], trans) # end # # # step 2d: compute the re-analyzed initial condition if we have an assimilation update # ens_update_RT!(ens_0, trans) # # elseif l > (lag - 2 * shift) # # store the re-analyzed ensembles for future statistics # post_analysis[:, :, l] = ens # # # compute the innovation versus the last cycle's analysis state # analysis_innovations[:, :, end - lag + l] = pre_analysis[:, :, l + shift] - post_analysis[:, :, l] # end # end # # reset the ensemble with the re-analyzed prior # ens = copy(ens_0) # # # reset the analysis innovations for the next DAW # pre_analysis = copy(post_analysis) # # if !tail_spin # # add the new shifted DAW innovations to the statistics and discard the oldest # # shift-innovations # analysis_innovations = hcat(analysis_innovations[:, shift + 1: end], # Array{Float64}(undef, sys_dim, shift)) # end # # # step 3: propagate the posterior initial condition forward to the shift-forward time # # step 3a: inflate the posterior covariance # inflate_state!(ens, s_infl, sys_dim, state_dim) # # # if including an extended state of parameter values, # # compute multiplicative inflation of parameter values # if state_dim != sys_dim # inflate_param!(ens, p_infl, sys_dim, state_dim) # end # # # step 3b: if performing parameter estimation, apply the parameter model # if state_dim != sys_dim # param_ens = ens[state_dim + 1:end , :] # param_ens = param_ens + p_wlk * rand(Normal(), size(param_ens)) # ens[state_dim + 1:end, :] = param_ens # end # # # step 3c: propagate the re-analyzed, resampled-in-parameter-space ensemble up by shift # # observation times # for s in 1:shift # if !mda # posterior[:, :, s] = ens # end # for j in 1:N_ens # @views for k in 1:f_steps # step_model!(ens[:, j], 0.0, kwargs) # end # end # end # # if tail_spin # # prepare storage for the new innovations concatenated to the oldest lag-innovations # analysis_innovations = hcat(analysis_innovations, # Array{Float64}(undef, sys_dim, shift)) # else # # reset the analysis innovations window to remove the oldest lag-innovations # analysis_innovations = hcat(analysis_innovations[:, shift + 1: end], # Array{Float64}(undef, sys_dim, lag)) # end # # Dict{String,Array{Float64}}( # "ens" => ens, # "post" => posterior, # "fore" => forecast, # "filt" => filtered, # "anal" => pre_analysis, # "inno" => analysis_innovations, # ) #end # # ######################################################################################################################### ######################################################################################################################### # Methods below taken from old python code, yet to completely convert, debug and benchmark ######################################################################################################################### ## IEnKF-T-LM # # #def ietlm(X_ext_ens, H, obs, obs_cov, f_steps, f, h, tau=0.001, e1=0, # inflation=1.0, tol=0.001, l_max=40): # # """This produces an analysis ensemble via transform as in algorithm 3, bocquet sakov 2012""" # # # step 0: infer the ensemble, obs, and state dimensions # [sys_dim, N_ens] = np.shape(X_ext_ens) # obs_dim = len(obs) # # # step 1: we compute the ensemble mean and non-normalized anomalies # X_mean_0 = np.mean(X_ext_ens, axis=1) # A_t = X_ext_ens.transpose() - X_mean_0 # # # step 2: we define the initial iterative minimization parameters # l = 0 # nu = 2 # w = np.zeros(N_ens) # # # step 3: update the mean via the w increment # X_mean_1 = X_mean_0 + A_t.transpose() @ w # X_mean_tmp = copy.copy(X_mean_1) # # # step 4: evolve the ensemble mean forward in time, and transform into observation space # for k in range(f_steps): # # propagate ensemble mean one step forward # X_mean_tmp = l96_rk4_step(X_mean_tmp, h, f) # # # define the observed mean by the propagated mean in the observation space # Y_mean = H @ X_mean_tmp # # # step 5: Define the initial transform # T = np.eye(N_ens) # # # step 6: redefine the ensemble with the updated mean and the transform # X_ext_ens = (X_mean_1 + T @ A_t).transpose() # # # step 7: loop over the discretization steps between observations to produce a forecast ensemble # for k in range(f_steps): # X_ext_ens = l96_rk4_stepV(X_ext_ens, h, f) # # # step 8: compute the forecast anomalies in the observation space, via the observed, evolved mean and the # # observed, forward ensemble, conditioned by the transform # Y_ens = H @ X_ext_ens # Y_ens_t = np.linalg.inv(T).transpose() @ (Y_ens.transpose() - Y_mean) # # # step 9: compute the cost function in ensemble space # J = 0.5 * (obs - Y_mean) @ np.linalg.inv(obs_cov) @ (obs - Y_mean) + 0.5 * (N_ens - 1) * w @ w # # # step 10: compute the approximate gradient of the cost function # grad_J = (N_ens - 1) * w - Y_ens_t @ np.linalg.inv(obs_cov) @ (obs - Y_mean) # # # step 11: compute the approximate hessian of the cost function # hess = (N_ens - 1) * np.eye(N_ens) + Y_ens_t @ np.linalg.inv(obs_cov) @ Y_ens_t.transpose() # # # step 12: compute the infinity norm of the jacobian and the max of the hessian diagonal # flag = np.max(np.abs(grad_J)) > e1 # mu = tau * np.max(np.diag(hess)) # # # step 13: while loop # while flag: # if l > l_max: # break # # # step 14: set the iteration count forward # l+= 1 # # # step 15: solve the system for the w increment update # δ_w = solve(hess + mu * np.eye(N_ens), -1 * grad_J) # # # step 16: check if the increment is sufficiently small to terminate # if np.sqrt(δ_w @ δ_w) < tol: # # step 17: flag false to terminate # flag = False # # # step 18: begin else # else: # # step 19: reset the ensemble adjustment # w_prime = w + δ_w # # # step 20: reset the initial ensemble with the new adjustment term # X_mean_1 = X_mean_0 + A_t.transpose() @ w_prime # # # step 21: forward propagate the new ensemble mean, and transform into observation space # X_mean_tmp = copy.copy(X_mean_1) # for k in range(f_steps): # X_mean_tmp = l96_rk4_step(X_mean_tmp, h, f) # # Y_mean = H @ X_mean_tmp # # # steps 22 - 24: define the parameters for the confidence region # L = 0.5 * δ_w @ (mu * δ_w - grad_J) # J_prime = 0.5 * (obs - Y_mean) @ np.linalg.inv(obs_cov) @ (obs - Y_mean) + 0.5 * (N_ens -1) * w_prime @ w_prime # theta = (J - J_prime) / L # # # step 25: evaluate if new correction needed # if theta > 0: # # # steps 26 - 28: update the cost function, the increment, and the past ensemble, conditioned with the # # transform # J = J_prime # w = w_prime # X_ext_ens = (X_mean_1 + T.transpose() @ A_t).transpose() # # # step 29: integrate the ensemble forward in time # for k in range(f_steps): # X_ext_ens = l96_rk4_stepV(X_ext_ens, h, f) # # # step 30: compute the forward anomlaies in the observation space, by the forward evolved mean and forward evolved # # ensemble # Y_ens = H @ X_ext_ens # Y_ens_t = np.linalg.inv(T).transpose() @ (Y_ens.transpose() - Y_mean) # # # step 31: compute the approximate gradient of the cost function # grad_J = (N_ens - 1) * w - Y_ens_t @ np.linalg.inv(obs_cov) @ (obs - Y_mean) # # # step 32: compute the approximate hessian of the cost function # hess = (N_ens - 1) * np.eye(N_ens) + Y_ens_t @ np.linalg.inv(obs_cov) @ Y_ens_t.transpose() # # # step 33: define the transform as the inverse square root of the hessian # V, Sigma, V_t = np.linalg.svd(hess) # T = V @ np.diag( 1 / np.sqrt(Sigma) ) @ V_t # # # steps 34 - 35: compute the tolerance and correction parameters # flag = np.max(np.abs(grad_J)) > e1 # mu = mu * np.max([1/3, 1 - (2 * theta - 1)**3]) # nu = 2 # # # steps 36 - 37: else statement, update mu and nu # else: # mu = mu * nu # nu = nu * 2 # # # step 38: end if # # step 39: end if # # step 40: end while # # # step 41: perform update to the initial mean with the new defined anomaly transform # X_mean_1 = X_mean_0 + A_t.transpose() @ w # # # step 42: define the transform as the inverse square root of the hessian, bundle version only # #V, Sigma, V_t = np.linalg.svd(hess) # #T = V @ np.diag( 1 / np.sqrt(Sigma) ) @ V_t # # # step 43: compute the updated ensemble by the transform conditioned anomalies and updated mean # X_ext_ens = (T.transpose() @ A_t + X_mean_1).transpose() # # # step 44: forward propagate the ensemble to the observation time # for k in range(f_steps): # X_ext_ens = l96_rk4_stepV(X_ext_ens, h, f) # # # step 45: compute the ensemble with inflation # X_mean_2 = np.mean(X_ext_ens, axis=1) # A_t = X_ext_ens.transpose() - X_mean_2 # infl = np.eye(N_ens) * inflation # X_ext_ens = (X_mean_2 + infl @ A_t).transpose() # # return X_ext_ens # ######################################################################################################################### ## IEnKF-B-LM # # #def ieblm(X_ext_ens, H, obs, obs_cov, f_steps, f, h, tau=0.001, e1=0, epsilon=0.0001, # inflation=1.0, tol=0.001, l_max=40): # # """This produces an analysis ensemble as in algorithm 3, bocquet sakov 2012""" # # # step 0: infer the ensemble, obs, and state dimensions # [sys_dim, N_ens] = np.shape(X_ext_ens) # obs_dim = len(obs) # # # step 1: we compute the ensemble mean and non-normalized anomalies # X_mean_0 = np.mean(X_ext_ens, axis=1) # A_t = X_ext_ens.transpose() - X_mean_0 # # # step 2: we define the initial iterative minimization parameters # l = 0 # # # NOTE: MARC'S VERSION HAS NU SET TO ONE FIRST AND THEN ITERATES ON THIS IN PRODUCTS # # OF TWO # #nu = 2 # nu = 1 # # w = np.zeros(N_ens) # # # step 3: update the mean via the w increment # X_mean_1 = X_mean_0 + A_t.transpose() @ w # X_mean_tmp = copy.copy(X_mean_1) # # # step 4: evolve the ensemble mean forward in time, and transform into observation space # for k in range(f_steps): # X_mean_tmp = l96_rk4_step(X_mean_tmp, h, f) # # Y_mean = H @ X_mean_tmp # # # step 5: Define the initial transform, transform version only # # T = np.eye(N_ens) # # # step 6: redefine the ensemble with the updated mean, rescaling by epsilon # X_ext_ens = (X_mean_1 + epsilon * A_t).transpose() # # # step 7: loop over the discretization steps between observations to produce a forecast ensemble # for k in range(f_steps): # X_ext_ens = l96_rk4_stepV(X_ext_ens, h, f) # # # step 8: compute the anomalies in the observation space, via the observed, evolved mean and the observed, # # forward ensemble, rescaling by epsilon # Y_ens = H @ X_ext_ens # Y_ens_t = (Y_ens.transpose() - Y_mean) / epsilon # # # step 9: compute the cost function in ensemble space # J = 0.5 * (obs - Y_mean) @ np.linalg.inv(obs_cov) @ (obs - Y_mean) + 0.5 * (N_ens - 1) * w @ w # # # step 10: compute the approximate gradient of the cost function # grad_J = (N_ens - 1) * w - Y_ens_t @ np.linalg.inv(obs_cov) @ (obs - Y_mean) # # # step 11: compute the approximate hessian of the cost function # hess = (N_ens - 1) * np.eye(N_ens) + Y_ens_t @ np.linalg.inv(obs_cov) @ Y_ens_t.transpose() # # # step 12: compute the infinity norm of the jacobian and the max of the hessian diagonal # # NOTE: MARC'S VERSION DOES NOT HAVE A FLAG BASED ON THE INFINITY NORM OF THE GRADIENT # # THIS IS ALSO PROBABLY A TRIVIAL FLAG # # flag = np.max(np.abs(grad_J)) > e1 # # # NOTE: MARC'S FLAG # flag = True # # # NOTE: MARC'S VERSION USES MU=1 IN THE FIRST ITERATION AND NEVER MAKES # # THIS DECLARATION IN TERMS OF TAU AND HESS # # mu = tau * np.max(np.diag(hess)) # mu = 1 # # # step 13: while loop # while flag: # if l > l_max: # print(l) # break # # # step 14: set the iteration count forward # l+= 1 # # # NOTE: MARC'S RE-DEFINITION OF MU AND NU # mu *= nu # nu *= 2 # # # step 15: solve the system for the w increment update # δ_w = solve(hess + mu * np.eye(N_ens), -1 * grad_J) # # # step 16: check if the increment is sufficiently small to terminate # # NOTE: MARC'S VERSION NORMALIZES THE LENGTH RELATIVE TO THE ENSEMBLE SIZE # if np.sqrt(δ_w @ δ_w) < tol: # # step 17: flag false to terminate # flag = False # print(l) # # # step 18: begin else # else: # # step 19: reset the ensemble adjustment # w_prime = w + δ_w # # # step 20: reset the initial ensemble with the new adjustment term # X_mean_1 = X_mean_0 + A_t.transpose() @ w_prime # # # step 21: forward propagate the new ensemble mean, and transform into observation space # X_mean_tmp = copy.copy(X_mean_1) # for k in range(f_steps): # X_mean_tmp = l96_rk4_step(X_mean_tmp, h, f) # # Y_mean = H @ X_mean_tmp # # # steps 22 - 24: define the parameters for the confidence region # L = 0.5 * δ_w @ (mu * δ_w - grad_J) # J_prime = 0.5 * (obs - Y_mean) @ np.linalg.inv(obs_cov) @ (obs - Y_mean) + 0.5 * (N_ens -1) * w_prime @ w_prime # theta = (J - J_prime) / L # # # step 25: evaluate if new correction needed # if theta > 0: # # # steps 26 - 28: update the cost function, the increment, and the past ensemble, rescaled with epsilon # J = J_prime # w = w_prime # X_ext_ens = (X_mean_1 + epsilon * A_t).transpose() # # # step 29: integrate the ensemble forward in time # for k in range(f_steps): # X_ext_ens = l96_rk4_stepV(X_ext_ens, h, f) # # # step 30: compute the forward anomlaies in the observation space, by the forward evolved mean and forward evolved # # ensemble # Y_ens = H @ X_ext_ens # Y_ens_t = (Y_ens.transpose() - Y_mean) / epsilon # # # step 31: compute the approximate gradient of the cost function # grad_J = (N_ens - 1) * w - Y_ens_t @ np.linalg.inv(obs_cov) @ (obs - Y_mean) # # # step 32: compute the approximate hessian of the cost function # hess = (N_ens - 1) * np.eye(N_ens) + Y_ens_t @ np.linalg.inv(obs_cov) @ Y_ens_t.transpose() # # # step 33: define the transform as the inverse square root of the hessian, transform version only # #V, Sigma, V_t = np.linalg.svd(hess) # #T = V @ np.diag( 1 / np.sqrt(Sigma) ) @ V_t # # # steps 34 - 35: compute the tolerance and correction parameters # # NOTE: TRIVIAL FLAG? # # flag = np.max(np.abs(grad_J)) > e1 # # mu = mu * np.max([1/3, 1 - (2 * theta - 1)**3]) # # # NOTE: ADJUSTMENT HERE TO MATCH NU TO MARC'S CODE # # nu = 2 # nu = 1 # # # steps 36 - 37: else statement, update mu and nu # #else: # # mu = mu * nu # # nu = nu * 2 # # # step 38: end if # # step 39: end if # # step 40: end while # # # step 41: perform update to the initial mean with the new defined anomaly transform # X_mean_1 = X_mean_0 + A_t.transpose() @ w # # # step 42: define the transform as the inverse square root of the hessian # V, Sigma, V_t = np.linalg.svd(hess) # T = V @ np.diag( 1 / np.sqrt(Sigma) ) @ V_t # # # step 43: compute the updated ensemble by the transform conditioned anomalies and updated mean # X_ext_ens = (T.transpose() @ A_t + X_mean_1).transpose() # # # step 44: forward propagate the ensemble to the observation time # for k in range(f_steps): # X_ext_ens = l96_rk4_stepV(X_ext_ens, h, f) # # # step 45: compute the ensemble with inflation # X_mean_2 = np.mean(X_ext_ens, axis=1) # A_t = X_ext_ens.transpose() - X_mean_2 # infl = np.eye(N_ens) * inflation # X_ext_ens = (X_mean_2 + infl @ A_t).transpose() # # return X_ext_ens # # elseif analysis=="etks-adaptive" # ## NOTE: STILL DEVELOPMENT VERSION, NOT DEBUGGED # # needs to be revised for unweighted anomalies # # This computes the transform of the ETKF update as in Asch, Bocquet, Nodet # # but using a computation of the contribution of the model error covariance matrix Q # # in the square root as in Raanes et al. 2015 and the adaptive inflation from the # # frequentist estimator for the model error covariance # # step 0: infer the system, observation and ensemble dimensions # sys_dim, N_ens = size(ens) # obs_dim = length(obs) # # # step 1: compute the ensemble mean # x_mean = mean(ens, dims=2) # # # step 2a: compute the normalized anomalies # A = (ens .- x_mean) / sqrt(N_ens - 1.0) # # if !(m_err[1] == Inf) # # step 2b: compute the SVD for the two-sided projected model error covariance # F_ens = svd(A) # mean_err = mean(m_err, dims=2) # # # NOTE: may want to consider separate formulations in which we treat # # the model error mean known versus unknown # # A_err = (m_err .- mean_err) / sqrt(length(mean_err) - 1.0) # A_err = m_err / sqrt(size(m_err, 2)) # F_err = svd(A_err) # if N_ens <= sys_dim # Σ_pinv = Diagonal([1.0 ./ F_ens.S[1:N_ens-1]; 0.0]) # else # Σ_pinv = Diagonal(1.0 ./ F_ens.S) # end # # # step 2c: compute the square root covariance with model error anomaly # # contribution in the ensemble space dimension, note the difference in # # equation due to the normalized anomalies # G = Symmetric(I + Σ_pinv * transpose(F_ens.U) * F_err.U * # Diagonal(F_err.S.^2) * transpose(F_err.U) * # F_ens.U * Σ_pinv) # # G = F_ens.V * square_root(G) * F_ens.Vt # # # step 2c: compute the model error adjusted anomalies # A = A * G # end # # # step 3: compute the ensemble in observation space # Y = alternating_obs_operator(ens, obs_dim, kwargs) # # # step 4: compute the ensemble mean in observation space # y_mean = mean(Y, dims=2) # # # step 5: compute the weighted anomalies in observation space # # # first we find the observation error covariance inverse # obs_sqrt_inv = square_root_inv(obs_cov) # # # then compute the weighted anomalies # S = (Y .- y_mean) / sqrt(N_ens - 1.0) # S = obs_sqrt_inv * S # # # step 6: compute the weighted innovation # δ = obs_sqrt_inv * ( obs - y_mean ) # # # step 7: compute the transform matrix # T = inv(Symmetric(1.0I + transpose(S) * S)) # # # step 8: compute the analysis weights # w = T * transpose(S) * δ # # # step 9: compute the square root of the transform # T = sqrt(T) # # # step 10: generate mean preserving random orthogonal matrix as in sakov oke 08 # U = rand_orth(N_ens) # # # step 11: package the transform output tuple # T, w, U # # elseif analysis=="etkf-hybrid" || analysis=="etks-hybrid" # # NOTE: STILL DEVELOPMENT VERSION, NOT DEBUGGED # # step 0: infer the system, observation and ensemble dimensions # sys_dim, N_ens = size(ens) # obs_dim = length(obs) # # # step 1: compute the background in observation space, and the square root hybrid # # covariance # Y = H * conditioning # x_mean = mean(ens, dims=2) # X = (ens .- x_mean) # Σ = inv(conditioning) * X # # # step 2: compute the ensemble mean in observation space # Y_ens = H * ens # y_mean = mean(Y_ens, dims=2) # # # step 3: compute the sensitivity matrix in observation space # obs_sqrt_inv = square_root_inv(obs_cov) # Γ = obs_sqrt_inv * Y # # # step 4: compute the weighted innovation # δ = obs_sqrt_inv * ( obs - y_mean ) # # # step 5: run the Gauss-Newton optimization of the cost function # # # step 5a: define the gradient of the cost function for the hybridized covariance # function ∇J!(w_full::Vector{Float64}) # # define the factor to be inverted and compute with the SVD # w = w_full[1:end-2] # α_1 = w_full[end-1] # α_2 = w_full[end] # K = (N_ens - 1.0) / α_1 * I + transpose(Σ) * Σ # F = svd(K) # K_inv = F.U * Diagonal(1.0 ./ F.S) * F.Vt # grad_w = transpose(Γ) * (δ - Γ * w) + w / α_2 - K_inv * w / α_2 # grad_1 = 1 / α_2 * transpose(w) * K_inv * ( (1.0 - N_ens) / α_1^2.0 * I) * # k_inv * w # grad_2 = -transpose(w) * w / α_2^2.0 + transpose(w) * K_inv * w / α_2^2.0 # [grad_w; grad_1; grad_2] # end # # # step 5b: run the Gauss-Newton iteration # w = zeros(N_ens) # α_1 = 0.5 # α_2 = 0.5 # j = 0 # w_full = [w; α_1; α_2] # # while j < j_max # # compute the gradient and hessian approximation # grad_w = ∇J(w_full) # hess_w = grad_w * transpose(grad_w) # # # perform Newton approximation, simultaneously computing # # the update transform T with the SVD based inverse at once # T, hessian_inv = square_root_inv(Symmetric(hess_w), inverse=true) # Δw = hessian_inv * grad_w # w_full -= Δw # # if norm(Δw) < tol # break # else # j+=1 # end # end # # # step 6: store the ensemble weights # # # step 6: generate mean preserving random orthogonal matrix as in sakov oke 08 # U = rand_orth(N_ens) # # # step 7: package the transform output tuple # T, w, U # # #
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
6987
############################################################################################## module XdVAR ############################################################################################## # imports and exports using LinearAlgebra, ForwardDiff using ..DataAssimilationBenchmarks export D3_var_cost, D3_var_grad, D3_var_hessian, D3_var_NewtonOp ############################################################################################## # Main methods ############################################################################################## """ D3_var_cost(x::VecA(T), obs::VecA(T), x_bkg::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Real Computes the cost of the three-dimensional variational analysis increment from an initial state proposal with a static background covariance `x` is a free argument used to evaluate the cost of the given state proposal versus other proposal states, `obs` is to the observation vector, `x_bkg` is the initial state proposal vector, `state_cov` is the background error covariance matrix, `H_obs` is a model mapping operator for observations, and `obs_cov` is the observation error covariance matrix. `kwargs` refers to any additional arguments needed for the operation computation. ``` return 0.5*back_component + 0.5*obs_component ``` """ function D3_var_cost(x::VecA(T), obs::VecA(T), x_bkg::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Real # initializations obs_dim = length(obs) # obs operator H = H_obs(x, obs_dim, kwargs) # background discepancy δ_b = x - x_bkg # observation discrepancy δ_o = obs - H # cost function back_component = dot(δ_b, inv(state_cov) * δ_b) obs_component = dot(δ_o, inv(obs_cov) * δ_o) 0.5*back_component + 0.5*obs_component end ############################################################################################## """ D3_var_grad(x::VecA(T), obs::VecA(T), x_bkg::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 Computes the gradient of the three-dimensional variational analysis increment from an initial state proposal with a static background covariance using a wrapper function for automatic differentiation `x` is a free argument used to evaluate the cost of the given state proposal versus other proposal states, `obs` is to the observation vector, `x_bkg` is the initial state proposal vector, `state_cov` is the background error covariance matrix, `H_obs` is a model mapping operator for observations, and `obs_cov` is the observation error covariance matrix. `kwargs` refers to any additional arguments needed for the operation computation. `wrap_cost` is a function that allows differentiation with respect to the free argument `x` while treating all other hyperparameters of the cost function as constant. ``` return ForwardDiff.gradient(wrap_cost, x) ``` """ function D3_var_grad(x::VecA(T), obs::VecA(T), x_bkg::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 function wrap_cost(x::VecA(T)) where T <: Real D3_var_cost(x, obs, x_bkg, state_cov, H_obs, obs_cov, kwargs) end ForwardDiff.gradient(wrap_cost, x) end ############################################################################################## """ D3_var_hessian(x::VecA(T), obs::VecA(T), x_bkg::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 Computes the Hessian of the three-dimensional variational analysis increment from an initial state proposal with a static background covariance using a wrapper function for automatic differentiation `x` is a free argument used to evaluate the cost of the given state proposal versus other proposal states, `obs` is to the observation vector, `x_bkg` is the initial state proposal vector, `state_cov` is the background error covariance matrix, `H_obs` is a model mapping operator for observations, and `obs_cov` is the observation error covariance matrix. `kwargs` refers to any additional arguments needed for the operation computation. `wrap_cost` is a function that allows differentiation with respect to the free argument `x` while treating all other hyperparameters of the cost function as constant. ``` return ForwardDiff.hessian(wrap_cost, x) ``` """ function D3_var_hessian(x::VecA(T), obs::VecA(T), x_bkg::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 function wrap_cost(x::VecA(T)) where T <: Real D3_var_cost(x, obs, x_bkg, state_cov, H_obs, obs_cov, kwargs) end ForwardDiff.hessian(wrap_cost, x) end ############################################################################################## """ D3_var_NewtonOp(x_bkg::VecA(T), obs::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 Computes the local minima of the three-dimension variational cost function with a static background covariance using a simple Newton optimization method `x_bkg` is the initial state proposal vector, `obs` is to the observation vector, `state_cov` is the background error covariance matrix, `H_obs` is a model mapping operator for observations, `obs_cov` is the observation error covariance matrix, and `kwargs` refers to any additional arguments needed for the operation computation. ``` return x ``` """ function D3_var_NewtonOp(x_bkg::VecA(T), obs::VecA(T), state_cov::CovM(T), H_obs::Function, obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 # initializations j_max = 40 tol = 0.001 j = 1 sys_dim = length(x_bkg) # first guess is copy of the first background x = copy(x_bkg) # gradient preallocation over-write function grad!(g::VecA(T), x::VecA(T)) where T <: Real g[:] = D3_var_grad(x, obs, x_bkg, state_cov, H_obs, obs_cov, kwargs) end # Hessian preallocation over-write function hess!(h::ArView(T), x::VecA(T)) where T <: Real h .= D3_var_hessian(x, obs, x_bkg, state_cov, H_obs, obs_cov, kwargs) end # perform the optimization by simple Newton grad_x = Array{Float64}(undef, sys_dim) hess_x = Array{Float64}(undef, sys_dim, sys_dim) while j <= j_max # compute the gradient and Hessian grad!(grad_x, x) hess!(hess_x, x) # perform Newton approximation Δx = inv(hess_x) * grad_x x = x - Δx if norm(Δx) < tol break else j+=1 end end return x end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
2793
############################################################################################## module IEEE39bus ############################################################################################## # imports and exports using ..DataAssimilationBenchmarks export dx_dt ############################################################################################## """ dx_dt(x::VecA(T), t::Float64, dx_params::ParamDict(T)) where T <: Real Time derivative of the phase and fequency of the [effective-network swing equation model](https://iopscience.iop.org/article/10.1088/1367-2630/17/1/015012). Input x is a 2 `n_g` [`VecA`](@ref) of the phase and fequency at each of the `n_g` generator buses. The input `dx_params` of type [`ParamDict`](@ref) containing system parameters to be passed to the integration scheme. The system is currenty defined autonomously to be run as an SDE, noise perturbed steady state. """ function dx_dt(x::VecA(T), t::Float64, dx_params::ParamDict(T)) where T <: Real # unpack the system parameters effective network of # Nishikawa, T., & Motter, A. E. (2015). Comparative analysis of existing # models for power-grid synchronization. A = dx_params["A"]::Array{T} D = dx_params["D"]::Array{T} H = dx_params["H"]::Array{T} K = dx_params["K"]::Array{T} γ = dx_params["γ"]::Array{T} ω = dx_params["ω"]::Array{T} # convert the effective bus coupling and passive injection to contain the change # of variable terms K = ω[1] * K / 2.0 A = ω[1] * A / 2.0 # unpack the phase and frequency at the n_g buses, with all phases listed first, then all # fequencies in the order of the bus index n_g = convert(Int, length(x) / 2) δ_1 = @view x[1:n_g] δ_2 = @view x[n_g+1:end] # define the vector of the derivatives dx = zeros(2 * n_g) # derivative of the phase equals frequency dx[1:n_g] .= δ_2 # compute the derivative of the inertia normalized frequencies # entry j is defined as # A_j * ω/2 - D_j /2 * δ_2 - Σ_{i!=j} K * ω/2 * sin(δ_j - δ_i - γ_ij) for j in 1:n_g for i in 1:n_g if j != i # K is symmetric, we loop over the columns for faster memory access # with the same variable j as in the row index of the derivative dx[n_g + j] += -K[i, j] * sin(δ_1[j] - δ_1[i] - γ[i, j]) end end # finally apply the remaining terms dx[n_g + j] += A[j] - δ_2[j] * D[j] / 2.0 end # to compute the derivative of the frequencies, we finally # divide back out by the inertia dx[n_g + 1 : end] = dx[n_g + 1: end] ./ H return dx end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
8830
############################################################################################## module L96 ############################################################################################## # imports and exports using ..DataAssimilationBenchmarks, SparseArrays export dx_dt, jacobian, l96s_tay_2_step!, compute_α_ρ ############################################################################################## """ mod_indx!(indx::Int64, dim::Int64) Auxiliary function to return state vector indices for the Lorenz-96 model, where `indx` is taken mod `dim`. Mod zero is replaced with `dim` for indexing in Julia state vectors. """ function mod_indx!(indx::Int64, dim::Int64) indx = mod(indx, dim) if indx==0 indx = dim end return indx end ############################################################################################## """ dx_dt(x::VecA(T), t::Float64, dx_params::ParamDict(T)) where T <: Real Time derivative for Lorenz-96 model, `x` is a model state of size `state_dim` and type [`VecA`](@ref), `t` is a dummy time argument for consistency with integration methods, `dx_params` is of type [`ParamDict`](@ref) which is called for the forcing parameter. Returns time derivative of the state vector ``` return dx ``` """ function dx_dt(x::VecA(T), t::Float64, dx_params::ParamDict(T)) where T <: Real # unpack the (only) derivative parameter for l96 F = dx_params["F"][1] x_dim = length(x) dx = copy(x) for j in 1:x_dim # index j minus 2, modulo the system dimension j_m_2 = mod_indx!(j - 2, x_dim) # index j minus 1, modulo the system dimension j_m_1 = mod_indx!(j - 1, x_dim) # index j plus 1, modulo the system dimension j_p_1 = mod_indx!(j + 1, x_dim) dx[j] = (x[j_p_1] - x[j_m_2])*x[j_m_1] - x[j] + F end return dx end ############################################################################################## """ jacobian(x::VecA(T), t::Float64, dx_params::ParamDict(T)) where T <: Real Computes the Jacobian of Lorenz-96 about the state `x` of type [`VecA`](@ref). The time variable `t` is a dummy variable for consistency with integration methods, `dx_params` is of type [`ParamDict`](@ref) which is called for the forcing parameter. Note that this is designed to load entries in a zeros array and return a sparse array to make a compromise between memory and computational resources. ``` return sparse(dxF) ``` """ function jacobian(x::VecA(T), t::Float64, dx_params::ParamDict(T)) where T <: Real x_dim = length(x) dxF = zeros(x_dim, x_dim) # looping columns j of the jacobian, loading the standard matrix for j in 1:x_dim # index j minus 2, modulo the system dimension j_m_2 = mod_indx!(j - 2, x_dim) # index j minus 1, modulo the system dimension j_m_1 = mod_indx!(j - 1, x_dim) # index j plus 1, modulo the system dimension j_p_1 = mod_indx!(j + 1, x_dim) # index j plus 2, modulo the system dimension j_p_2 = mod_indx!(j + 2, x_dim) # load the jacobian entries in corresponding rows dxF[j_p_2, j] = -x[j_p_1] dxF[j_p_1, j] = x[j_p_2] - x[j_m_1] dxF[j, j] = -1.0 dxF[j_m_1, j] = x[j_m_2] end return sparse(dxF) end ############################################################################################## """ compute_α_ρ(p::Int64) Computes auxiliary functions for the 2nd order Taylor-Stratonovich expansion. The constants `α` and `ρ` need to be computed once, only as a function of the order of truncation of the Fourier series, the argument `p`, for the integration method. These constants are then supplied as arguments to `l96s_tay2_step!` in `kwargs`. See [`l96s_tay2_step!`](@ref) for the interpretation and usage of these constants. ``` return α(p)::Float64, ρ(p)::Float64 ``` """ function compute_α_ρ(p::Int64) function α(p::Int64) (π^2.0) / 180.0 - 0.5 * π^(-2.0) * sum(1.0 ./ Vector{Float64}(1:p).^4.0) end function ρ(p::Int64) 1.0/12.0 - 0.5 * π^(-2.0) * sum(1.0 ./ Vector{Float64}(1:p).^2.0) end return α(p), ρ(p) end ############################################################################################## """ l96s_tay2_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real One step of integration rule for l96 second order taylor rule The constants `ρ` and `α` are to be computed with `compute_α_ρ`, depending only on `p`, and supplied for all steps. This is the general formulation which includes, e.g., dependence on the truncation of terms in the auxilliary function `C` with respect to the parameter `p`. In general, truncation at `p=1` is all that is necessary for order 2.0 convergence. This method is derived in [Grudzien, C. et al. (2020).](https://gmd.copernicus.org/articles/13/1903/2020/gmd-13-1903-2020.html) NOTE: this Julia version still pending validation as in the manuscript ``` return x ``` """ function l96s_tay2_step!(x::VecA(T), t::Float64, kwargs::StepKwargs) where T <: Real # Infer model and parameters sys_dim = length(x) dx_params = kwargs["dx_params"]::ParamDict(T) h = kwargs["h"]::Float64 diffusion = kwargs["diffusion"]::Float64 p = kwargs["p"]::Int64 ρ = kwargs["ρ"]::Float64 α = kwargs["α"]::Float64 # Compute the deterministic dxdt and the jacobian equations dx = dx_dt(x, 0.0, dx_params) Jac_x = jacobian(x, 0.0, dx_params) ## random variables # Vectors ξ, μ, ϕ are sys_dim X 1 vectors of iid standard normal variables, # ζ and η are sys_dim X p matrices of iid standard normal variables. # Functional relationships describe each variable W_j as the transformation of # ξ_j to be of variace given by the length of the time step h. Functions of random # Fourier coefficients a_i, b_i are given in terms μ / η and ϕ / ζ respectively. # draw standard normal samples rndm = rand(Normal(), sys_dim, 2*p + 3) ξ = rndm[:, 1] μ = rndm[:, 2] ϕ = rndm[:, 3] ζ = rndm[:, 4: p+3] η = rndm[:, p+4: end] ### define the auxiliary functions of random fourier coefficients, a and b # denominators for the a series denoms = repeat((1.0 ./ Vector{Float64}(1:p)), 1, sys_dim) # vector of sums defining a terms a = -2.0 * sqrt(h * ρ) * μ - sqrt(2.0*h) * sum(ζ' .* denoms, dims=1)' / π # denominators for the b series denoms = repeat((1.0 ./ Vector{Float64}(1:p).^2.0), 1, sys_dim) # vector of sums defining b terms b = sqrt(h * α) * ϕ + sqrt(h / (2.0 * π^2.0) ) * sum(η' .* denoms, dims=1)' # vector of first order Stratonovich integrals J_pdelta = (h / 2.0) * (sqrt(h) * ξ + a) ### auxiliary functions for higher order stratonovich integrals ### # C function is optional for higher precision but does not change order of convergence function C(l, j) if p == 1 return 0.0 end c = zeros(p, p) # define the coefficient as a sum of matrix entries where r and k do not agree indx = Set(1:p) for r in 1:p # vals are all values not equal to r vals = setdiff(indx, Set(r)) for k in vals # and for column r, define all row entries below, with zeros on diagonal c[k, r] = (r / (r^2 - k^2)) * ((1.0 / k) * ζ[l, r] * ζ[j, k] + (1.0 / r) * η[l, r] * η[j, k]) end end # return the sum of all values scaled by -1/(2pi^2) -0.5 * π^(-2.0) * sum(c) end function Ψ(l, j) # Ψ - generic function of the indicies l and j, define Ψ plus and Ψ minus index-wise h^2.0 * ξ[l] * ξ[j] / 3.0 + h * a[l] * a[j] / 2.0 + h^(1.5) * (ξ[l] * a[j] + ξ[j] * a[l]) / 4.0 - h^(1.5) * (ξ[l] * b[j] + ξ[j] * b[l]) / (2.0 * π) - h^2.0 * (C(l,j) + C(j,l)) end # define the approximations of the second order Stratonovich integral Ψ_plus = copy(x) Ψ_minus = copy(x) for i in 1:sys_dim Ψ_plus[i] = Ψ(mod_indx!((i-1), sys_dim), mod_indx!((i+1), sys_dim)) Ψ_minus[i] = Ψ(mod_indx!((i-2), sys_dim), mod_indx!((i-1), sys_dim)) end # the final vectorized step forward is given as x .= collect(Iterators.flatten( x + dx * h + h^2.0 * 0.5 * Jac_x * dx + # deterministic taylor step diffusion * sqrt(h) * ξ + # stochastic euler step diffusion * Jac_x * J_pdelta + # stochastic first order taylor step diffusion^2.0 * (Ψ_plus - Ψ_minus) # stochastic second order taylor step )) return x end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
11071
############################################################################################## module ObsOperators ############################################################################################## # imports and exports using LinearAlgebra, SparseArrays using ..DataAssimilationBenchmarks export alternating_projector, alternating_obs_operator, alternating_obs_operator_jacobian ############################################################################################## # Main methods ############################################################################################## """ alternating_projector(x::VecA(T), obs_dim::Int64) where T <: Real alternating_projector(ens::ArView(T), obs_dim::Int64) where T <: Real Utility method produces a projection of alternating vector or ensemble components via slicing. ``` return x return ens ``` This operator takes a single model state `x` of type [`VecA`](@ref), a truth twin time series or an ensemble of states of type [`ArView`](@ref), and maps this data to alternating row components. If truth twin is 2D, then the first index corresponds to the state dimension and the second index corresponds to the time dimension. The ensemble is assumed to be 2D where the first index corresponds to the state dimension and the second index corresponds to the ensemble dimension. The operator selects row components of the input to keep based on the `obs_dim`. States correpsonding to even state dimension indices are removed from the state vector until the observation dimension is appropriate. If the observation dimension is less than half the state dimension, states corresponding to odd state dimension idices are subsequently removed until the observation dimension is appropriate. """ function alternating_projector(x::VecA(T), obs_dim::Int64) where T <: Real sys_dim = length(x) if obs_dim == sys_dim elseif (obs_dim / sys_dim) > 0.5 # the observation dimension is greater than half the state dimension, so we # remove only the trailing odd-index rows equal to the difference # of the state and observation dimension R = sys_dim - obs_dim indx = 1:(sys_dim - 2 * R) indx = [indx; sys_dim - 2 * R + 2: 2: sys_dim] x = x[indx] elseif (obs_dim / sys_dim) == 0.5 # the observation dimension is equal to half the state dimension so we remove exactly # half the rows, corresponding to those with even-index x = x[1:2:sys_dim, :] else # the observation dimension is less than half of the state dimension so that we # remove all even rows and then all but the remaining, leading obs_dim rows x = x[1:2:sys_dim] x = x[1:obs_dim] end return x end function alternating_projector(ens::ArView(T), obs_dim::Int64) where T <: Real sys_dim, N_ens = size(ens) if obs_dim == sys_dim elseif (obs_dim / sys_dim) > 0.5 # the observation dimension is greater than half the state dimension, so we # remove only the trailing odd-index rows equal to the difference # of the state and observation dimension R = sys_dim - obs_dim indx = 1:(sys_dim - 2 * R) indx = [indx; sys_dim - 2 * R + 2: 2: sys_dim] ens = ens[indx, :] elseif (obs_dim / sys_dim) == 0.5 # the observation dimension is equal to half the state dimension so we remove exactly # half the rows, corresponding to those with even-index ens = ens[1:2:sys_dim, :] else # the observation dimension is less than half of the state dimension so that we # remove all even rows and then all but the remaining, leading obs_dim rows ens = ens[1:2:sys_dim, :] ens = ens[1:obs_dim, :] end return ens end ############################################################################################## @doc raw""" alternating_obs_operator(x::VecA(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real alternating_obs_operator(ens::ArView(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real This produces observations of alternating state vector components for generating pseudo-data. ``` return obs ``` This operator takes a single model state `x` of type [`VecA`](@ref), a truth twin time series or an ensemble of states of type [`ArView`](@ref), and maps this data to the observation space via the method [`alternating_projector`](@ref) and (possibly) a nonlinear transform. The truth twin in this version is assumed to be 2D, where the first index corresponds to the state dimension and the second index corresponds to the time dimension. The ensemble is assumed to be 2D where the first index corresponds to the state dimension and the second index corresponds to the ensemble dimension. The `γ` parameter (optional) in `kwargs` of type [`StepKwargs`](@ref) controls the component-wise transformation of the remaining state vector components mapped to the observation space. For `γ=1.0`, there is no transformation applied, and the observation operator acts as a linear projection onto the remaining components of the state vector, equivalent to not specifying `γ`. For `γ>1.0`, the nonlinear observation operator of [Asch et al. 2016](https://epubs.siam.org/doi/book/10.1137/1.9781611974546), pg. 181 is applied, ```math \begin{align} \mathcal{H}(\pmb{x}) = \frac{\pmb{x}}{2}\circ\left[\pmb{1} + \left(\frac{\vert\pmb{x}\vert}{10} \right)^{\gamma - 1}\right] \end{align} ``` where ``\circ`` is the Schur product, and which limits to the identity for `γ=1.0`. If `γ=0.0`, the quadratic observation operator of [Hoteit et al. 2012](https://journals.ametsoc.org/view/journals/mwre/140/2/2011mwr3640.1.xml), ```math \begin{align} \mathcal{H}(\pmb{x}) =0.05 \pmb{x} \circ \pmb{x} \end{align} ``` is applied to the remaining state components (note, this is not a continuous limit). If `γ<0.0`, the exponential observation operator of [Wu et al. 2014](https://npg.copernicus.org/articles/21/955/2014/) ```math \begin{align} \mathcal{H}(\pmb{x}) = \pmb{x} \circ \exp\{- \gamma \pmb{x} \} \end{align} ``` is applied to the remaining state vector components, where the exponential is applied componentwise (note, this is also not a continuous limit). """ function alternating_obs_operator(x::VecA(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real sys_dim = length(x) if haskey(kwargs, "state_dim") # performing parameter estimation, load the dynamic state dimension state_dim = kwargs["state_dim"]::Int64 # observation operator for extended state, without observing extended state components obs = copy(x[1:state_dim]) # proceed with alternating observations of the regular state vector sys_dim = state_dim else obs = copy(x) end # project the state vector into the correct components obs = alternating_projector(obs, obs_dim) if haskey(kwargs, "γ") γ = kwargs["γ"]::Float64 if γ > 1.0 obs .= (obs ./ 2.0) .* ( 1.0 .+ ( abs.(obs) ./ 10.0 ).^(γ - 1.0) ) elseif γ == 0.0 obs .= 0.05*obs.^2.0 elseif γ < 0.0 obs .= obs .* exp.(-γ * obs) end end return obs end function alternating_obs_operator(ens::ArView(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real sys_dim, N_ens = size(ens) if haskey(kwargs, "state_dim") # performing parameter estimation, load the dynamic state dimension state_dim = kwargs["state_dim"]::Int64 # observation operator for extended state, without observing extended state components obs = copy(ens[1:state_dim, :]) # proceed with alternating observations of the regular state vector sys_dim = state_dim else obs = copy(ens) end # project the state vector into the correct components obs = alternating_projector(obs, obs_dim) if haskey(kwargs, "γ") γ = kwargs["γ"]::Float64 if γ > 1.0 for i in 1:N_ens x = obs[:, i] obs[:, i] .= (x / 2.0) .* ( 1.0 .+ ( abs.(x) / 10.0 ).^(γ - 1.0) ) end elseif γ == 0.0 obs = 0.05*obs.^2.0 elseif γ < 0.0 for i in 1:N_ens x = obs[:, i] obs[:, i] .= x .* exp.(-γ * x) end end end return obs end ############################################################################################## """ alternating_obs_operator_jacobian(x::VecA(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real Explicitly computes the jacobian of the alternating observation operator given a single model state `x` of type [`VecA`](@ref) and desired dimension of observations 'obs_dim' for the jacobian. The `γ` parameter (optional) in `kwargs` of type [`StepKwargs`](@ref) controls the component-wise transformation of the remaining state vector components mapped to the observation space. For `γ=1.0`, there is no transformation applied, and the observation operator acts as a linear projection onto the remaining components of the state vector, equivalent to not specifying `γ`. For `γ>1.0`, the nonlinear observation operator of [Asch, et al. (2016).](https://epubs.siam.org/doi/book/10.1137/1.9781611974546), pg. 181 is applied, which limits to the identity for `γ=1.0`. If `γ=0.0`, the quadratic observation operator of [Hoteit, et al. (2012).](https://journals.ametsoc.org/view/journals/mwre/140/2/2011mwr3640.1.xml) is applied to the remaining state components. If `γ<0.0`, the exponential observation operator of [Wu, et al. (2014).](https://npg.copernicus.org/articles/21/955/2014/) is applied to the remaining state vector components. """ function alternating_obs_operator_jacobian(x::VecA(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real sys_dim = length(x) if haskey(kwargs, "state_dim") # performing parameter estimation, load the dynamic state dimension state_dim = kwargs["state_dim"]::Int64 # observation operator for extended state, without observing extended state components jac = copy(x[1:state_dim]) # proceed with alternating observations of the regular state vector sys_dim = state_dim else jac = copy(x) end # jacobian calculation if haskey(kwargs, "γ") γ = kwargs["γ"]::Float64 if γ > 1.0 jac .= (1.0 / 2.0) .* (((jac .*(γ - 1.0) / 10.0) .* (( abs.(jac) / 10.0 ).^(γ - 2.0))) .+ 1.0 .+ (( abs.(jac) / 10.0 ).^(γ - 1.0))) elseif γ == 0.0 jac = 0.1.*jac elseif γ < 0.0 jac .= exp.(-γ * jac) .* (1.0 .- (γ * jac)) end end # matrix formation and projection jacobian_matrix = alternating_projector(diagm(jac), obs_dim) return jacobian_matrix end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
2953
############################################################################################## module TestClassicSmootherExps ############################################################################################## # imports and exports using DataAssimilationBenchmarks using DataAssimilationBenchmarks.SingleExperimentDriver using DataAssimilationBenchmarks.SmootherExps using JLD2, Statistics ############################################################################################## # run and analyze the ETKS for state estimation with the Lorenz-96 model function run_ensemble_smoother_state_L96() try classic_ensemble_state(classic_enks_exps["L96_ETKS_state_test"]) true catch false end end function analyze_ensemble_smoother_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etks-classic/" data = load(path * "etks-classic_L96_state_seed_0000_diff_0.000_sysD_40_obsD_40_" * "obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_lag_010_shift_001_" * "mda_false_nens_021_stateInfl_1.02.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(filt_rmse[501:end]) < 0.2 && mean(post_rmse[501:end]) < 0.15 true else false end catch false end end ############################################################################################## # run and analyze the ETKF for joint state-parameter estimation with the Lorenz-96 model function run_ensemble_smoother_param_L96() try classic_ensemble_param(classic_enks_exps["L96_ETKS_param_test"]) true catch false end end function analyze_ensemble_smoother_param_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etks-classic/" data = load(path * "etks-classic_L96_param_seed_0000_diff_0.000_sysD_41_obsD_40_" * "obsU_1.00_gamma_001.0_paramE_0.10_paramW_0.0010_nanl_03500_tanl_0.05_" * "h_0.05_lag_010_shift_001_mda_false_nens_021_stateInfl_1.02_" * "paramInfl_1.00.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] para_rmse = data["param_rmse"] # note, we use a small burn-in to reach more regular cycles if (mean(filt_rmse[501:end]) < 0.2) && (mean(post_rmse[501:end]) < 0.15) && (mean(para_rmse[501:end]) < 0.01) true else false end catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
587
############################################################################################## module TestDataAssimilationBenchmarks ############################################################################################## using DataAssimilationBenchmarks ############################################################################################## function splash() try DataAssimilationBenchmarks.Info() true catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
3970
############################################################################################## module TestDeSolvers ############################################################################################## # imports and exports using DataAssimilationBenchmarks using DataAssimilationBenchmarks.DeSolvers, DataAssimilationBenchmarks.L96 using LsqFit ############################################################################################## """ exponentialODE(x::T, t::Float64, dx_params::ParamDict) where {T <: VecA} Wrapper for making a vectorized output of the exponential function for the DE solvers. This is used to verify the order of convergence for integration methods versus an analytical solution. """ function exponentialODE(x::VecA(T), t::T, dx_params::ParamDict(T)) where T <: Float64 [exp(t)] end ############################################################################################## """ expDiscretizationError(step_model!, h) Auxiliary function to compute the difference of the numerically simulated integral versus the analytical value. This is a function of the time step and integration method, for varying the approximations to demonstrate the correct reduction in discretization errors. """ function expDiscretizationError(step_model!, h::Float64) # continuous time length of the integration tanl = 0.1 # discrete integration steps fore_steps = convert(Int64, tanl/h) time_steps = LinRange(0, tanl, fore_steps + 1) # initial data for the exponential function x = [1.0] # set the kwargs for the integration scheme # with empty values for the uneccessary parameters diffusion = 0.0 dx_params = Dict{String, Array{Float64}}() kwargs = Dict{String, Any}( "h" => h, "diffusion" => diffusion, "dx_params" => dx_params, "dx_dt" => exponentialODE, ) for i in 1:fore_steps step_model!(x, time_steps[i], kwargs) end # find the absolute difference of the apprximate integral from the built-in exponential abs(x[1] - exp(tanl)) end ############################################################################################## """ calculateOrderConvergence(step_model!) Auxiliary function to compute the least-squares estimated order of convergence for the numerical integration schemes. This ranges over step sizes as a function of the integration method, and calculates the log-10 / log-10 slope and intercept for change in error with respect to step size. """ function calculateOrderConvergence(step_model!) # set step sizes in increasing order for log-10 log-10 analysis h_range = [0.005, 0.01, 0.05, 0.1] error_range = Vector{Float64}(undef, length(h_range)) # loop the discretization and calculate the errors for i in 1:length(h_range) error_range[i] = expDiscretizationError(step_model!, h_range[i]) end # convert the error and the step sizes to log-10 h_range_log10 = log10.(h_range) error_range_log10 = log10.(error_range) function model_lsq_squares(x,p) # define a function object to vary parameters p @. p[1] + p[2]*x end # fit the best-fit line and return coefficients fit = curve_fit(model_lsq_squares, h_range_log10, error_range_log10, [1.0, 1.0]) coef(fit) end ############################################################################################## function testEMExponential() coef = calculateOrderConvergence(em_step!) if abs(coef[2] - 1.0) > 0.1 false else true end end ############################################################################################## function testRKExponential() coef = calculateOrderConvergence(rk4_step!) if abs(coef[2] - 4.0) > 0.1 false else true end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
4703
############################################################################################## module TestFilterExps ############################################################################################## # imports and exports using DataAssimilationBenchmarks using DataAssimilationBenchmarks.SingleExperimentDriver using DataAssimilationBenchmarks.FilterExps using JLD2, Statistics ############################################################################################## # run and analyze the ETKF for state estimation with the Lorenz-96 model function run_ensemble_filter_state_L96() try ensemble_filter_state(enkf_exps["L96_ETKF_state_test"]) true catch false end end function analyze_ensemble_filter_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etkf/" data = load(path * "etkf_L96_state_seed_0000_diff_0.000_sysD_40_obsD_40" * "_obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_nens_021" * "_stateInfl_1.02.jld2") rmse = data["filt_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(rmse[501:end]) < 0.2 true else false end catch false end end ############################################################################################## # run and analyze the 3D-VAR filter for state estimation with the Lorenz-96 model function run_D3_var_filter_state_L96() try D3_var_filter_state(d3_var_exps["L96_D3_var_state_test"]) true catch false end end function analyze_D3_var_filter_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/D3-var-bkg-ID/" data = load(path * "bkg-ID_L96_state_seed_0000_diff_0.000_sysD_40_obsD_40_obsU_" * "1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_stateInfl_0.230.jld2") nanl = data["nanl"] rmse = data["filt_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(filter(!isnan,rmse[1000:nanl])) < 0.41 true else false end catch false end end ############################################################################################## # run and analyze the ETKF for joint state-parameter estimation with the Lorenz-96 model function run_ensemble_filter_param_L96() try ensemble_filter_param(enkf_exps["L96_ETKF_param_test"]) true catch false end end function analyze_ensemble_filter_param_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etkf/" data = load(path * "etkf_L96_param_seed_0000_diff_0.000_sysD_41_stateD_40_obsD_40_" * "obsU_1.00_gamma_001.0_paramE_0.10_paramW_0.0010_nanl_03500_tanl_0.05_" * "h_0.05_nens_021_stateInfl_1.02_paramInfl_1.00.jld2") filt_rmse = data["filt_rmse"] para_rmse = data["param_rmse"] # note, we use a small burn-in to reach more regular cycles if (mean(filt_rmse[501:end]) < 0.2) && (mean(para_rmse[501:end]) < 0.01) true else false end catch false end end ############################################################################################## # run and analyzed the ETKF for state estimateion with the IEEE39bus model # static version for test cases function run_ensemble_filter_state_IEEE39bus() try ensemble_filter_state(enkf_exps["IEEE39bus_ETKF_state_test"]) true catch false end end function analyze_ensemble_filter_state_IEEE39bus() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etkf/" data = load(path * "etkf_IEEE39bus_state_seed_0000_diff_0.000_sysD_20_obsD_20_" * "obsU_0.10_gamma_001.0_nanl_03500_tanl_0.01_h_0.01_nens_021_" * "stateInfl_1.02.jld2") rmse = data["filt_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(rmse[501:end]) < 0.02 true else false end catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
1805
############################################################################################## module TestGenerateTimeSeries ############################################################################################## # imports and exports using DataAssimilationBenchmarks using DataAssimilationBenchmarks.SingleExperimentDriver using DataAssimilationBenchmarks.GenerateTimeSeries using JLD2, Random ############################################################################################## # Test generation and loading of the L96 model time series in default localtion function testGenL96() try L96_time_series(time_series_exps["L96_deterministic_test"]) true catch false end end function testLoadL96() try path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" load(path * "L96_time_series_seed_0000_dim_40_diff_0.000_F_08.0_tanl_0.05" * "_nanl_05000_spin_1500_h_0.050.jld2") true catch false end end ############################################################################################## # Test generation and loading of the IEEE39 bus model time series in the default location function testGenIEEE39bus() try IEEE39bus_time_series(time_series_exps["IEEE39bus_deterministic_test"]) true catch false end end function testLoadIEEE39bus() try path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" load(path * "IEEE39bus_time_series_seed_0000_diff_0.000_tanl_0.01" * "_nanl_05000_spin_1500_h_0.010.jld2") true catch false end end ####################################################################################################################### # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
1290
############################################################################################## module TestIEEE39bus ############################################################################################## # imports and exports using DataAssimilationBenchmarks using JLD2, Statistics ############################################################################################## """ test_synchrony() This function tests to see if the swing equation model without noise reaches the synchronous steady state for the system, by evaluating the standard deviation of the state components after the spin up period. """ function test_synchrony() try # load the observations path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" obs = load(path * "IEEE39bus_time_series_seed_0000_diff_0.000_tanl_0.01" * "_nanl_05000_spin_1500_h_0.010.jld2") obs = obs["obs"][:, 3001:end] # take the standard deviation of the model state after warm up sd = std(obs, dims=2) if sum(sd .< 0.01) == 20 true else false end catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
5092
############################################################################################## module TestIterativeSmootherExps ############################################################################################## # imports and exports using DataAssimilationBenchmarks using DataAssimilationBenchmarks.SmootherExps using DataAssimilationBenchmarks.SingleExperimentDriver using JLD2, Statistics ############################################################################################## # run and analyze the IEnKS for state estimation with the Lorenz-96 model function run_sda_ensemble_smoother_state_L96() try iterative_ensemble_state(ienks_exps["L96_IEnKS_state_sda_test"]) true catch false end end function analyze_sda_ensemble_smoother_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/ienks-transform/" data = load(path * "ienks-transform_L96_state_seed_0000_diff_0.000_sysD_40_obsD_40_" * "obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_lag_010_shift_001_" * "mda_false_nens_021_stateInfl_1.02.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(filt_rmse[501:end]) < 0.2 && mean(post_rmse[501:end]) < 0.10 true else false end catch false end end function run_mda_ensemble_smoother_state_L96() try iterative_ensemble_state(ienks_exps["L96_IEnKS_state_mda_test"]) true catch false end end function analyze_mda_ensemble_smoother_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/ienks-transform/" data = load(path * "ienks-transform_L96_state_seed_0000_diff_0.000_sysD_40_obsD_40_" * "obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_lag_010_shift_001_" * "mda_true_nens_021_stateInfl_1.02.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(filt_rmse[501:end]) < 0.2 && mean(post_rmse[501:end]) < 0.10 true else false end catch false end end ############################################################################################## # run and analyze the IEnKS for joint state-parameter estimation with the Lorenz-96 model function run_sda_ensemble_smoother_param_L96() try iterative_ensemble_param(ienks_exps["L96_IEnKS_param_sda_test"]) true catch false end end function analyze_sda_ensemble_smoother_param_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/ienks-transform/" data = load(path * "ienks-transform_L96_param_seed_0000_diff_0.000_sysD_41_obsD_40_" * "obsU_1.00_gamma_001.0_paramE_0.10_paramW_0.0010_nanl_03500_tanl_0.05_" * "h_0.05_lag_010_shift_001_mda_false_nens_021_stateInfl_1.02_" * "paramInfl_1.00.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] para_rmse = data["param_rmse"] # note, we use a small burn-in to reach more regular cycles if (mean(filt_rmse[501:end]) < 0.2) && (mean(post_rmse[501:end]) < 0.10) && (mean(para_rmse[501:end]) < 0.01) true else false end catch false end end function run_mda_ensemble_smoother_param_L96() try iterative_ensemble_param(ienks_exps["L96_IEnKS_param_mda_test"]) true catch false end end function analyze_mda_ensemble_smoother_param_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/ienks-transform/" data = load(path * "ienks-transform_L96_param_seed_0000_diff_0.000_sysD_41_obsD_40_" * "obsU_1.00_gamma_001.0_paramE_0.10_paramW_0.0010_nanl_03500_tanl_0.05_" * "h_0.05_lag_010_shift_001_mda_true_nens_021_stateInfl_1.02_" * "paramInfl_1.00.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] para_rmse = data["param_rmse"] # note, we use a small burn-in to reach more regular cycles if (mean(filt_rmse[501:end]) < 0.2) && (mean(post_rmse[501:end]) < 0.10) && (mean(para_rmse[501:end]) < 0.01) true else false end catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
3195
############################################################################################## module TestL96 ############################################################################################## using DataAssimilationBenchmarks.DeSolvers, DataAssimilationBenchmarks.L96 using ForwardDiff ############################################################################################## """ Jacobian() Tests the L96 jacobian function for known behavior with automatic differentiation. Returns whether the difference of computed jacobians is within error tolerance for every entry """ function Jacobian() # dummy time argument t = 0.0 # forcing parameter F = 8.0 dx_params = Dict{String, Array{Float64}}("F" => [F]) # wrapper function function wrap_dx_dt(x) L96.dx_dt(x, t, dx_params) end # model state x = Vector{Float64}(1:40) # compute difference between ForwardDiff and L96 calculated jacobians diff = Matrix(ForwardDiff.jacobian(wrap_dx_dt, x) - Matrix(L96.jacobian(x, t, dx_params))) # compare within error tolerance for every entry if sum((abs.(diff)) .<= 0.01) == 40*40 true else false end end ############################################################################################## """ EMZerosStep() Tests the L96 derivative function for known behavior with Euler(-Maruyama) method. The initial condition of zeros returns h * F in all components """ function EMZerosStep() # step size h = 0.01 # forcing parameter F = 8.0 dx_params = Dict{String, Array{Float64}}("F" => [F]) # initial conditions and arguments x = zeros(40) # parameters to test kwargs = Dict{String, Any}( "h" => h, "diffusion" => 0.0, "dx_params" => dx_params, "dx_dt" => L96.dx_dt, ) # em_step! writes over x in place em_step!(x, 0.0, kwargs) # evaluate test pass/fail if the vector of x is equal to (f*h) in every instance if sum(x .== (F*h)) == 40 true else false end end ############################################################################################## """ EMFStep() Tests the L96 derivative function for known behavior with Euler(-Maruyama) method. The vector with all components equal to the forcing parameter F is a fixed point for the system and the time derivative should be zero with this initiial condition. """ function EMFStep() # step size h = 0.01 # forcing parameter F = 8.0 dx_params = Dict{String, Array{Float64}}("F" => [F]) # initial conditions and arguments x = ones(40) x = x * F # parameters to test kwargs = Dict{String, Any}( "h" => h, "diffusion" => 0.0, "dx_params" => dx_params, "dx_dt" => L96.dx_dt, ) # em_step! writes over x in place em_step!(x, 0.0, kwargs) # evaluate test pass/fail if the vector of x is equal to (f*h) in every instance if sum(x .== (F)) == 40 true else false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
3908
############################################################################################## module TestObsOperators ############################################################################################## # imports and exports using DataAssimilationBenchmarks.ObsOperators using ForwardDiff ############################################################################################## """ alternating_obs_jacobian_pos() Tests the alternating observation operator jacobian function for known behavior with automatic differentiation using 'γ' > 1.0. Returns whether the difference of computed jacobian is within error tolerance for every entry """ function alternating_obs_jacobian_pos() # 1-D ensemble argument x = Vector{Float64}(1:40) # observation dimension obs_dim = 20 # test gammas gam_pos = Dict{String, Any}("γ" => 2.0) # wrapper function for γ > 1.0 function wrap_pos(x) ObsOperators.alternating_obs_operator(x, obs_dim, gam_pos) end # jacobian computed via automatic differentiation jacob_auto = ForwardDiff.jacobian(wrap_pos, x) # compute differences between ForwardDiff and ObsOperators calculated jacobians diff = jacob_auto - ObsOperators.alternating_obs_operator_jacobian(x, obs_dim, gam_pos) # compare within error tolerance for every entry across all differences if sum((abs.(diff)) .<= 0.001) == 20*40 true else false end end ############################################################################################## """ alternating_obs_jacobian_zero() Tests the alternating observation operator jacobian function for known behavior with automatic differentiation using 'γ' == 0.0. Returns whether the difference of computed jacobian is within error tolerance for every entry """ function alternating_obs_jacobian_zero() # 1-D ensemble argument x = Vector{Float64}(1:40) # observation dimension obs_dim = 20 # test gamma (γ == 0.0) gam_zero = Dict{String, Any}("γ" => 0.0) # wrapper function for γ == 0.0 function wrap_zero(x) ObsOperators.alternating_obs_operator(x, obs_dim, gam_zero) end # jacobian computed via automatic differentiation jacob_auto = ForwardDiff.jacobian(wrap_zero, x) # compute difference between ForwardDiff and ObsOperators calculated jacobian diff = jacob_auto - ObsOperators.alternating_obs_operator_jacobian(x, obs_dim, gam_zero) # compare within error tolerance for every entry of difference matrix if sum((abs.(diff)) .<= 0.01) == 20*40 true else false end end ############################################################################################## """ alternating_obs_jacobian_neg() Tests the alternating observation operator jacobian function for known behavior with automatic differentiation using 'γ' < 0.0. Returns whether the difference of computed jacobian is within error tolerance for every entry """ function alternating_obs_jacobian_neg() # 1-D ensemble argument x = Vector{Float64}(1:40) # observation dimension obs_dim = 20 # test gamma (γ < 0.0) gam_neg = Dict{String, Any}("γ" => -0.5) # wrapper function for γ < 0.0 function wrap_neg(x) ObsOperators.alternating_obs_operator(x, obs_dim, gam_neg) end # jacobian computed via automatic differentiation jacob_auto = ForwardDiff.jacobian(wrap_neg, x) # compute difference between ForwardDiff and ObsOperators calculated jacobian diff = jacob_auto - ObsOperators.alternating_obs_operator_jacobian(x, obs_dim, gam_neg) # compare within error tolerance for every entry of difference matrix if sum((abs.(diff)) .<= 0.001) == 20*40 true else false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
3072
############################################################################################## module TestParallelExperimentDriver ############################################################################################## using DataAssimilationBenchmarks using DataAssimilationBenchmarks.ParallelExperimentDriver ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_ensemble_filter_adaptive_inflation() try args, wrap_exp = ensemble_filter_adaptive_inflation() wrap_exp(args[1]) true catch false end end ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_D3_var_tuned_inflation() try args, wrap_exp = D3_var_tuned_inflation() wrap_exp(args[1]) true catch false end end ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_ensemble_filter_param() try args, wrap_exp = ensemble_filter_param() wrap_exp(args[1]) true catch false end end ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_classic_ensemble_state() try args, wrap_exp = classic_ensemble_state() wrap_exp(args[1]) true catch false end end ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_classic_ensemble_param() try args, wrap_exp = classic_ensemble_param() wrap_exp(args[1]) true catch false end end ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_single_iteration_ensemble_state() try args, wrap_exp = single_iteration_ensemble_state() wrap_exp(args[1]) true catch false end end ############################################################################################## """ This is to test if the named tuple constructor will generate the experiment configuration """ function test_iterative_ensemble_state() try args, wrap_exp = iterative_ensemble_state() wrap_exp(args[1]) true catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
5174
############################################################################################## module TestSingleIterationSmootherExps ############################################################################################## # imports and exports using DataAssimilationBenchmarks using DataAssimilationBenchmarks.SmootherExps using DataAssimilationBenchmarks.SingleExperimentDriver using JLD2, Statistics ############################################################################################## # run and analyze the IEnKS for state estimation with the Lorenz-96 model function run_sda_ensemble_smoother_state_L96() try single_iteration_ensemble_state(sienks_exps["L96_ETKS_state_sda_test"]) true catch false end end function analyze_sda_ensemble_smoother_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etks-single-iteration/" data = load(path * "etks-single-iteration_L96_state_seed_0000_diff_0.000_sysD_40_" * "obsD_40_obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_lag_010_" * "shift_001_mda_false_nens_021_stateInfl_1.02.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(filt_rmse[501:end]) < 0.2 && mean(post_rmse[501:end]) < 0.10 true else false end catch false end end function run_mda_ensemble_smoother_state_L96() try single_iteration_ensemble_state(sienks_exps["L96_ETKS_state_mda_test"]) true catch false end end function analyze_mda_ensemble_smoother_state_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etks-single-iteration/" data = load(path * "etks-single-iteration_L96_state_seed_0000_diff_0.000_sysD_40_" * "obsD_40_obsU_1.00_gamma_001.0_nanl_03500_tanl_0.05_h_0.05_lag_010_" * "shift_001_mda_true_nens_021_stateInfl_1.02.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] # note, we use a small burn-in to reach more regular cycles if mean(filt_rmse[501:end]) < 0.2 && mean(post_rmse[501:end]) < 0.10 true else false end catch false end end ############################################################################################## # run and analyze the IEnKS for joint state-parameter estimation with the Lorenz-96 model function run_sda_ensemble_smoother_param_L96() try single_iteration_ensemble_param(sienks_exps["L96_ETKS_param_sda_test"]) true catch false end end function analyze_sda_ensemble_smoother_param_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etks-single-iteration/" data = load(path * "etks-single-iteration_L96_param_seed_0000_diff_0.000_sysD_41" * "_obsD_40_obsU_1.00_gamma_001.0_paramE_0.10_paramW_0.0010_nanl_03500" * "_tanl_0.05_h_0.05_lag_010_shift_001_mda_false_nens_021_" * "stateInfl_1.02_paramInfl_1.00.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] para_rmse = data["param_rmse"] # note, we use a small burn-in to reach more regular cycles if (mean(filt_rmse[501:end]) < 0.2) && (mean(post_rmse[501:end]) < 0.10) && (mean(para_rmse[501:end]) < 0.01) true else false end catch false end end function run_mda_ensemble_smoother_param_L96() try single_iteration_ensemble_param(sienks_exps["L96_ETKS_param_mda_test"]) true catch false end end function analyze_mda_ensemble_smoother_param_L96() try # test if the filter RMSE for standard simulation falls below adequate threshold path = pkgdir(DataAssimilationBenchmarks) * "/src/data/etks-single-iteration/" data = load(path * "etks-single-iteration_L96_param_seed_0000_diff_0.000_sysD_41_" * "obsD_40_obsU_1.00_gamma_001.0_paramE_0.10_paramW_0.0010_nanl_03500_" * "tanl_0.05_h_0.05_lag_010_shift_001_mda_true_nens_021_stateInfl_1.02_" * "paramInfl_1.00.jld2") filt_rmse = data["filt_rmse"] post_rmse = data["post_rmse"] para_rmse = data["param_rmse"] # note, we use a small burn-in to reach more regular cycles if (mean(filt_rmse[501:end]) < 0.2) && (mean(post_rmse[501:end]) < 0.10) && (mean(para_rmse[501:end]) < 0.01) true else false end catch false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
2940
############################################################################################## module TestVarAD ############################################################################################## # imports and exports using DataAssimilationBenchmarks.XdVAR, DataAssimilationBenchmarks.ObsOperators using ForwardDiff, LinearAlgebra, Random, Distributions ############################################################################################## """ testCost() Tests the 3dVAR cost function for known behavior. """ function testCost() # initialization x = ones(40) * 0.5 obs = zeros(40) x_bkg = ones(40) state_cov = 1.0I obs_cov = 1.0I params = Dict{String, Any}() H_obs = alternating_obs_operator cost = D3_var_cost(x, obs, x_bkg, state_cov, H_obs, obs_cov, params) if abs(cost - 10) < 0.001 true else false end end ############################################################################################## """ testGrad() Tests the gradient 3dVAR cost function for known behavior using ForwardDiff. """ function testGrad() # initialization obs = zeros(40) x_bkg = ones(40) state_cov = 1.0I obs_cov = 1.0I params = Dict{String, Any}() H_obs = alternating_obs_operator # wrapper function function wrap_cost(x) D3_var_cost(x, obs, x_bkg, state_cov, H_obs, obs_cov, params) end # input x = ones(40) * 0.5 grad = ForwardDiff.gradient(wrap_cost, x) if norm(grad) < 0.001 true else false end end ############################################################################################## """ testNewton() Tests the Newton optimization of the 3dVAR cost function. """ function testNewton() # initialization obs = zeros(40) x_bkg = ones(40) state_cov = 1.0I obs_cov = 1.0I params = Dict{String, Any}() H_obs = alternating_obs_operator # perform Simple Newton optimization op = D3_var_NewtonOp(x_bkg, obs, state_cov, H_obs, obs_cov, params) if abs(sum(op - ones(40) * 0.5)) < 0.001 true else false end end ############################################################################################## """ testNewtonNoise() Tests the Newton optimization of the 3dVAR cost function with noise. """ function testNewtonNoise() # initialization Random.seed!(123) obs = rand(Normal(0, 1), 40) x_bkg = zeros(40) state_cov = 1.0I obs_cov = 1.0I params = Dict{String, Any}() H_obs = alternating_obs_operator # perform Simple Newton optimization op = D3_var_NewtonOp(x_bkg, obs, state_cov, H_obs, obs_cov, params) if abs(sum(op - obs * 0.5)) < 0.001 true else false end end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
code
5376
############################################################################################## module runtests ############################################################################################## # imports and exports using Test using JLD2 ############################################################################################## # include test sub-modules include("TestDataAssimilationBenchmarks.jl") include("TestObsOperators.jl") include("TestVarAD.jl") include("TestDeSolvers.jl") include("TestL96.jl") include("TestGenerateTimeSeries.jl") include("TestIEEE39bus.jl") include("TestFilterExps.jl") include("TestClassicSmootherExps.jl") include("TestIterativeSmootherExps.jl") include("TestSingleIterationSmootherExps.jl") include("TestParallelExperimentDriver.jl") ############################################################################################## # Run tests @testset "ParentModule" begin @test TestDataAssimilationBenchmarks.splash() end # Test Observation Operators jacobian @testset "Observation Operators" begin @test TestObsOperators.alternating_obs_jacobian_pos() @test TestObsOperators.alternating_obs_jacobian_zero() @test TestObsOperators.alternating_obs_jacobian_neg() end # Calculate the order of convergence for standard integrators @testset "Calculate Order Convergence" begin @test TestDeSolvers.testEMExponential() @test TestDeSolvers.testRKExponential() end # Test L96 model equations for known behavior @testset "Lorenz-96" begin @test TestL96.Jacobian() @test TestL96.EMZerosStep() @test TestL96.EMFStep() end # Test time series generation, saving output to default directory and loading @testset "Generate Time Series" begin @test TestGenerateTimeSeries.testGenL96() @test TestGenerateTimeSeries.testLoadL96() @test TestGenerateTimeSeries.testGenIEEE39bus() @test TestGenerateTimeSeries.testLoadIEEE39bus() end # Test the model equations for known behavior @testset "IEEE 39 Bus" begin @test TestIEEE39bus.test_synchrony() end # Test 3D-VAR @testset "VAR-AutoDiff" begin @test TestVarAD.testCost() @test TestVarAD.testGrad() @test TestVarAD.testNewton() @test TestVarAD.testNewtonNoise() end # Test filter state and parameter experiments @testset "Filter Experiments" begin @test TestFilterExps.run_ensemble_filter_state_L96() @test TestFilterExps.analyze_ensemble_filter_state_L96() @test TestFilterExps.run_D3_var_filter_state_L96() @test TestFilterExps.analyze_D3_var_filter_state_L96() @test TestFilterExps.run_ensemble_filter_param_L96() @test TestFilterExps.analyze_ensemble_filter_param_L96() @test TestFilterExps.run_ensemble_filter_state_IEEE39bus() @test TestFilterExps.analyze_ensemble_filter_state_IEEE39bus() end # Test classic smoother state and parameter experiments @testset "Classic Smoother Experiments" begin @test TestClassicSmootherExps.run_ensemble_smoother_state_L96() @test TestClassicSmootherExps.analyze_ensemble_smoother_state_L96() @test TestClassicSmootherExps.run_ensemble_smoother_param_L96() @test TestClassicSmootherExps.analyze_ensemble_smoother_param_L96() end # Test IEnKS smoother state and parameter experiments @testset "Iterative Smoother Experiments" begin @test TestIterativeSmootherExps.run_sda_ensemble_smoother_state_L96() @test TestIterativeSmootherExps.analyze_sda_ensemble_smoother_state_L96() @test TestIterativeSmootherExps.run_sda_ensemble_smoother_param_L96() @test TestIterativeSmootherExps.analyze_sda_ensemble_smoother_param_L96() @test TestIterativeSmootherExps.run_sda_ensemble_smoother_state_L96() @test TestIterativeSmootherExps.analyze_sda_ensemble_smoother_state_L96() @test TestIterativeSmootherExps.run_sda_ensemble_smoother_param_L96() @test TestIterativeSmootherExps.analyze_sda_ensemble_smoother_param_L96() end # Test SIEnKS smoother state and parameter experiments @testset "Single Iteration Smoother Experiments" begin @test TestSingleIterationSmootherExps.run_sda_ensemble_smoother_state_L96() @test TestSingleIterationSmootherExps.analyze_sda_ensemble_smoother_state_L96() @test TestSingleIterationSmootherExps.run_sda_ensemble_smoother_param_L96() @test TestSingleIterationSmootherExps.analyze_sda_ensemble_smoother_param_L96() @test TestSingleIterationSmootherExps.run_mda_ensemble_smoother_state_L96() @test TestSingleIterationSmootherExps.analyze_mda_ensemble_smoother_state_L96() @test TestSingleIterationSmootherExps.run_mda_ensemble_smoother_param_L96() @test TestSingleIterationSmootherExps.analyze_mda_ensemble_smoother_param_L96() end # Test parallel experiment constructors @testset "Parallel experiment constructors" begin @test TestParallelExperimentDriver.test_ensemble_filter_adaptive_inflation() @test TestParallelExperimentDriver.test_D3_var_tuned_inflation() @test TestParallelExperimentDriver.test_ensemble_filter_param() @test TestParallelExperimentDriver.test_classic_ensemble_state() @test TestParallelExperimentDriver.test_classic_ensemble_param() @test TestParallelExperimentDriver.test_single_iteration_ensemble_state() @test TestParallelExperimentDriver.test_iterative_ensemble_state() end ############################################################################################## # end module end
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
5471
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the project maintainer, Colin Grudzien, [email protected]. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.1, available at [https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1]. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder][Mozilla CoC]. For answers to common questions about this code of conduct, see the FAQ at [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at [https://www.contributor-covenant.org/translations][translations]. [homepage]: https://www.contributor-covenant.org [v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html [Mozilla CoC]: https://github.com/mozilla/diversity [FAQ]: https://www.contributor-covenant.org/faq [translations]: https://www.contributor-covenant.org/translations
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
3237
# DataAssimilationBenchmarks.jl ![DataAssimilationBenchmarks.jl logo](https://github.com/cgrudz/DataAssimilationBenchmarks.jl/blob/master/assets/dabenchmarks.png) <table> <tr> <td> <a href="https://cgrudz.github.io/DataAssimilationBenchmarks.jl/dev"> <img src="https://img.shields.io/badge/docs-dev-purple.svg" alt="docs-dev-img"> </a> </td> <td> <a href="https://cgrudz.github.io/DataAssimilationBenchmarks.jl/stable"> <img src="https://img.shields.io/badge/docs-stable-blue.svg" alt="docs-stable-img"> </a> </td> <td> <a href="https://joss.theoj.org/papers/478dcc0b1608d2a4d8c930edebb58736"> <img src="https://joss.theoj.org/papers/478dcc0b1608d2a4d8c930edebb58736/status.svg" alt="status"> </a> </td> <td> <a href="https://github.com/cgrudz/DataAssimilationBenchmarks.jl"> <img src="https://tokei.rs/b1/github/cgrudz/DataAssimilationBenchmarks.jl?category=code" alt="Total lines of code without comments"> </a> </td> <td> <a href="https://app.travis-ci.com/cgrudz/DataAssimilationBenchmarks.jl"> <img src="https://app.travis-ci.com/cgrudz/DataAssimilationBenchmarks.jl.svg?branch=master" alt="Build Status"> </a> </td> <td> <a href="https://codecov.io/gh/cgrudz/DataAssimilationBenchmarks.jl"> <img src="https://codecov.io/gh/cgrudz/DataAssimilationBenchmarks.jl/branch/master/graph/badge.svg?token=3XLYTH8YSZ" alt="codecov"> </a> </td> </tr> </table> Lines of code counter (without comments or blank lines) courtesy of [Tokei](https://github.com/XAMPPRocky/tokei). ## Welcome to DataAssimilationBenchmarks.jl! ### Description This is a data assimilation research code base with an emphasis on prototyping, testing and validating sequential filters and smoothers in toy model twin experiments. This code is meant to be performant in the sense that large hyper-parameter discretizations can be explored to determine hyper-parameter sensitivity and reliability of results across different experimental regimes, with parallel implementations in native Julia distributed computing. This package currently includes code for developing and testing data assimilation schemes in the [L96-s model](https://gmd.copernicus.org/articles/13/1903/2020/) and the IEEE 39 bus test case in the form of the [effective network model](https://iopscience.iop.org/article/10.1088/1367-2630/17/1/015012) model equations. New toy models and data assimilation schemes are in continuous development in the development branch. Currently validated techniques are available in the master branch. This package supported the development of all numerical results and benchmark simulations in the manuscript [A fast, single-iteration ensemble Kalman smoother for sequential data assimilation](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). ### Documentation Please see the [up-to-date documentation](https://cgrudz.github.io/DataAssimilationBenchmarks.jl/dev/) synchronized with the [master branch](https://github.com/cgrudz/DataAssimilationBenchmarks.jl) or the [stable documentation](https://cgrudz.github.io/DataAssimilationBenchmarks.jl/stable/) for the last tagged version in the [Julia General Registries](https://github.com/JuliaRegistries/General).
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
6914
--- title: 'DataAssimilationBenchmarks.jl: a data assimilation research framework.' tags: - Julia - Data Assimilation - Bayesian Inference - Optimization - Machine learning authors: - name: Colin Grudzien orcid: 0000-0002-3084-3178 affiliation: "1,2" - name: Charlotte Merchant affiliation: "1,3" - name: Sukhreen Sandhu affiliation: "4" affiliations: - name: CW3E - Scripps Institution of Oceanography, University of California, San Diego, USA index: 1 - name: Department of Mathematics and Statistics, University of Nevada, Reno, USA index: 2 - name: Department of Computer Science, Princeton University, USA index: 3 - name: Department of Computer Science and Engineering, University of Nevada, Reno, USA index: 4 date: 10 September 2022 bibliography: paper.bib --- # Summary Data assimilation (DA) refers to techniques used to combine the data from physics-based, numerical models and real-world observations to produce an estimate for the state of a time-evolving random process and the parameters that govern its evolution [@asch2016data]. Owing to their history in numerical weather prediction, full-scale DA systems are designed to operate in an extremely large dimension of model variables and observations, often with sequential-in-time observational data [@carrassi2018data]. As a long-studied "big-data" problem, DA has benefited from the fusion of a variety of techniques, including methods from Bayesian inference, dynamical systems, numerical analysis, optimization, control theory, and machine learning. DA techniques are widely used in many areas of geosciences, neurosciences, biology, autonomous vehicle guidance, and various engineering applications requiring dynamic state estimation and control. The purpose of this package is to provide a research framework for the theoretical development and empirical validation of novel data assimilation techniques. While analytical proofs can be derived for classical methods, such as the Kalman filter in linear-Gaussian dynamics [@jazwinski2007stochastic], most currently developed DA techniques are designed for estimation in nonlinear, non-Gaussian models where no analytical solution may exist. DA methods, therefore, must be studied with rigorous numerical simulation in standard test-cases to demonstrate the effectiveness and computational performance of novel algorithms. Pursuant to proposing a novel DA method, one should likewise compare the performance of a proposed scheme with other standard methods within the same class of estimators. This package implements a variety of standard data assimilation algorithms, including some of the widely used performance modifications that are used in practice to tune these estimators. This software framework was written originally to support the development and intercomparison of methods studied in @grudzien2022fast. Details of the studied ensemble DA schemes, including pseudo-code detailing their implementation and DA experiment benchmark configurations, can be found in the above principal reference. Additional details on numerical integration schemes utilized in this package can be found in the secondary reference [@grudzien2020numerical]. # Statement of need Standard libraries exist for full-scale DA system research and development, e.g., the Data Assimilation Research Testbed (DART) [@anderson2009data], but there are fewer standard options for theoretical research and algorithm development in simple test systems. Many basic research frameworks, furthermore, do not include standard operational techniques developed from classical variational methods, due to the difficulty in constructing tangent linear and adjoint codes [@kalnay20074denkf]. DataAssimilationBenchmarks.jl provides one framework for studying sequential filters and smoothers that are commonly used in online, geoscientific prediction settings, including both ensemble methods and variational schemes, with hybrid methods planned for future development. ## Comparison with similar projects Similar projects to DataAssimilationBenchmarks.jl include the DAPPER Python library [@dapper], DataAssim.jl used by @vetra2018state, and EnsembleKalmanProcesses.jl of the Climate Modeling Alliance [@enkprocesses]. These alternatives are differentiated primarily in that: * DAPPER is a Python-based library which is well-established, and includes many of the same estimators and models. However, numerical simulations in Python run notably slower than simulations in Julia when numerical routines cannot be vectorized in Numpy [@bezanson2017julia]. Particularly, this can make the wide hyper-parameter search intended above computationally challenging without utilizing additional packages such as Numba [@lam2015numba] for code acceleration. * DataAssim.jl is another established Julia library, but notably lacks an implementation of variational and ensemble-variational techniques. * EnsembleKalmanProcesses.jl is another established Julia library, but specifically lacks traditional geoscientific DA approaches such as 3D-VAR and the ETKF/S. ## Future development The future development of the DataAssimilationBenchmarks.jl package is intended to expand upon the existing, variational and ensemble-variational filters and sequential smoothers for robust intercomparison of novel schemes. Additional process models and observation models for the DA system are also in development. # Acknowledgements Colin Grudzien developed the numerical code for the package's Julia type optimizations for numerical schemes and automatic differentiation of code, the ensemble-based estimation schemes, the observation models, the Lorenz-96 model, the IEEE 39 Bus test case model, and the numerical integration schemes for ordinary and stochastic differential equations. Charlotte Merchant developed the numerical code for implementing variational data assimilation in the Lorenz-96 model and related experiments. Sukhreen Sandhu supported the development of the package structure and organization. All authors supported the development of the package by implementing test cases and writing software documentation. This work was supported by the University of Nevada, Reno, Office of Undergraduate Research's Pack Research Experience Program which supported Sukhreen Sandhu as a research assistant. This work was supported by the Center for Western Weather and Water Extremes internship program which supported Charlotte Merchant as a research assistant. This work benefited from the DAPPER library which was referenced at times for the development of DA schemes. The authors would like to thank the two handling editors Bita Hasheminezhad and Patrick Diehl, and the two named referees Lukas Riedel and Tangi Migot, for their comments, suggestions, and valuable advice which strongly improved the quality of the paper and the software. # References
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
834
--- name: Bug report about: Create a report to help us improve title: '' labels: '' assignees: '' --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. iOS] - Browser [e.g. chrome, safari] - Version [e.g. 22] **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] - OS: [e.g. iOS8.1] - Browser [e.g. stock browser, safari] - Version [e.g. 22] **Additional context** Add any other context about the problem here.
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1338
--- name: Feature requests and new use-cases about: Suggest an idea for this project title: '' labels: '' assignees: '' --- **Please introduce yourself and your use-case for the software** Are you developing a new method that you want to test versus other similar learning / estimation schemes in standard benchmarks or do you want to examine the behavior of an existing method within the main code base in a novel context? Do you want to implement a new state or observation model to benchmark methods in the code base? Please note that there is no support for operational data assimilation or data assimilation with real data, please see alternatives that exist for that scope. **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. Provide relevant references for models, methods, benchmarks, etc. **Describe a plan forward for your use-case and any alternatives you've considered** A clear and concise description of how you see this new functionality being implemented and any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1069
# Description This is a data assimilation research code base with an emphasis on prototyping, testing, and validating sequential filters and smoothers in toy model twin experiments. This code is meant to be performant in the sense that large hyper-parameter discretizations can be explored to determine hyper-parameter sensitivity and reliability of results across different experimental regimes, with parallel implementations in native Julia distributed computing. This package currently includes code for developing and testing data assimilation schemes in the [L96-s model](https://gmd.copernicus.org/articles/13/1903/2020/) and the IEEE 39 bus test case in the form of the [effective network model](https://iopscience.iop.org/article/10.1088/1367-2630/17/1/015012) model equations. New toy models and data assimilation schemes are in continuous development. This package supported the development of all numerical results and benchmark simulations in the manuscript [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html).
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
4803
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the project maintainer, Colin Grudzien, [email protected]. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org/version/2/1/code_of_conduct.html)
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
4172
# Contributing ## What to expect This is currently a small project maintained by a small community of researchers and developers, focused on academic research in data assimilation and machine learning methodology. This software is not intended for use in an operational data assimilation environment, or even for use with real data, as there are a variety of existing alternatives for that scope. We will gladly work with others who want to join our community by using this software for their own research, whether that means simply using an existing functionality or contributing new source code to the main code base. However, please note that support for community development is primarily a volunteer effort, and it may take some time to get a response. Anyone participating in this community is expected to follow the [Contributor Covenant Code of Conduct](@ref). ## How to get support or ask a question The preferred means to get support is to use the [Github discussions](https://github.com/cgrudz/DataAssimilationBenchmarks.jl/discussions). to ask a question or to make an introduction as a user of this software. If you cannot find what you are looking for in the [main documentation](https://cgrudz.github.io/DataAssimilationBenchmarks.jl/dev/), please feel free to post a question in the [Github discussions](https://github.com/cgrudz/DataAssimilationBenchmarks.jl/discussions). and this may be migrated to the main documentation as frequently asked questions develop. ## Bug reports with existing code Bug reports go in the [Github issues](https://github.com/cgrudz/DataAssimilationBenchmarks.jl/issues) for the project. Please follow the template and provide any relevant details of the bug you have encountered that will allow the community to reproduce and solve the issue. Reproducibility is key, and if there are not sufficient details to reproduce an issue, the issue will be sent back for more details. ## How to contribute new methods, models or other core code The best way to contribute new code is to reach out to the community first as this code base is in an early and active state of development and will occasionally face breaking changes in order to accommodate more generality and new features. Please start with an introduction of yourself in the [Github discussions](https://github.com/cgrudz/DataAssimilationBenchmarks.jl/discussions) followed by a detailed feature request in the [Github issues](https://github.com/cgrudz/DataAssimilationBenchmarks.jl/issues), covering your use-case and what new functionality you are proposing. This will help the community anticipate your needs and the backend changes that might need to be implemented in order to accommodate new functionality. There is not currently a general system for implementing new data assimilation methods or models, and it is therefore critical to bring up your use-case to the community so that how this new feature is incorporated can be planned into the development. Once the issue can be evaluated and discussed by the development community, the strategy is usually to create a fork of the main code base where new modules and features can be prototyped. Once the new code development is ready for a review, a pull request can be made where the new functionality may be merged, and possibly further refactored for general consistency and consolidation of codes. Ideally, any new data assimilation method incorporated into this code should come with a hyper-parameter configuration built into the [SingleExperimentDriver](@ref) module, a selected benchmark model in which the learning scheme is to be utilized and a corresponding test case that demonstrates and verifies an expected behavior. As much as possible, conventions with arguments should try to match existing conventions in, e.g., [EnsembleKalmanSchemes](@ref) and [XdVAR](@ref), though it is understood that not all data assimilation methods need follow these conventions or even have analogous arguments and sub-routines. Please discuss your approach with the community in advanced so that the framework can be made as consistent (and therefore extendable and user-friendly) as possible.
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
524
# Global Types The following type and type constructors are declared for optimizing numerical routines, for using multiple dispatch of functions with different specified input forms and for passing arguments between inner / outer loop steps of the DA twin experiment. Type constructors are designed to be flexible enough to handle multiple dispatch for automatic code differentiation, though seek to ensure type consistency within methods for improved performance. ```@autodocs Modules = [DataAssimilationBenchmarks] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
3281
# Getting Started ## Installation The main module DataAssimilationBenchmarks.jl declares global types and type constructors. These conventions are utilized in sub-modules that implement the core numerical solvers for ordinary and stochastic differential equations, solvers for data assimilation routines, and the core process model code for running twin experiments with benchmark models, collected in the `methods` and `models` sub-directories. Experiments define routines for driving standard benchmark case studies with [NamedTuples](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple) as arguments to these methods defining the associated experimental hyper-parameters. This parent module only serves to support the overhead of type declarations used thoughout the package and the functionality of the methods standalone is extremely limited. In order to get the full functionality of this package __you will need to install the dev version__. This provides access to the source code needed to create new experiments and to define performance benchmarks for these experiments. ### Install a dev package There are two ways to install a dev package of the repository. In either case, the installed version will be included in your ``` ~/.julia/dev/ ``` on Linux and the analogous directory with respect Windows and Mac systems. #### Install the tagged stable version To install the last tagged official release, you can use the following commands in the REPL ```{julia} pkg> dev DataAssimilationBenchmarks ``` This version in the Julia General Registries will be the latest official release. However, this official release tends to lag behind the current version. #### Install the up-to-date version You can install the latest version from the main Github branch directly as follows: ```{julia} pkg> dev https://github.com/cgrudz/DataAssimilationBenchmarks.jl ``` The master branch synchronizes with the up-to-date documentation and commits to the master branch are considered tested but not necessarily stable. As this package functions as a __research framework__, the master branch is in continuous development. If your use case is performing research of DA methods with this package, it is recommended to install and keep up-to-date with the current version of the master branch. ### Repository structure The repository is structured as follows: ```@raw html <ul> <li><code>src</code> - contains the main parent module</li> <ul> <li><code>models</code> - contains code for defining the state and observation model equation for twin experiments</li> <li><code>methods</code> - contains DA solvers and general numerical routines for running twin experiments</li> <li><code>experiments</code> - contains the outer-loop scripts that set up twin experiments, and constructors for generating parameter grids</li> <li><code>data</code> - this is an input / output directory for the inputs to and ouptuts from experiments</li> <li><code>analysis</code> - contains auxilliary scripts for batch processing experiment results and for plotting (currently in Python, not fully integrated).</li> </ul> <li><code>test</code> - contains test cases for the package.</li> <li><code>docs</code> - contains the documenter files.</li> </ul> ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
2999
# Introduction ## Statement of purpose The purpose of this package is to provide a research framework for the theoretical development and empirical validation of novel data assimilation techniques. While analytical proofs can be derived for classical methods, such as the Kalman filter in linear-Gaussian dynamics, most currently developed DA techniques are designed for estimation in nonlinear, non-Gaussian models where no analytical solution typically exists. Rigorous validation of novel data assimilation methods, therefore, must be performed with reproducible numerical simulations in standard test-cases in order to demonstrate the effectiveness and computational performance of the proposed technique. Pursuant to proposing a novel DA method, one should likewise compare its performance with other standard methods within the same class of estimators. This package implements a variety of standard data assimilation algorithms, including some of the widely used performance modifications that are used in practice to tune these estimators. Standard libraries exist for full-scale DA system research and development, e.g., the [Data Assimilation Research Testbed (DART)](https://dart.ucar.edu/), but there are fewer standard options for theoretical research and algorithm development in simple test systems. Many basic research frameworks, furthermore, do not include standard operational techniques developed from classical VAR methods, due to the difficulty in constructing tangent linear and adjoint codes. DataAssimilationBenchmarks.jl provides one framework for studying sequential filters and smoothers that are commonly used in online, geoscientific prediction settings, including ensemble estimators, classical VAR techniques (currently in-development) and (in-planning) hybrid-EnVAR methods. ## Validated methods For a discussion of many of the following methods and benchmarks for their performance validation, please see the manuscript [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). ```@raw html <table> <tr> <th>Estimator / enhancement</th> <th>Tuned inflation</th> <th>Adaptive inflation</th> <th>Linesearch</th> <th>Localization / Hybridization</th> <th>Multiple data assimilation</th> </tr> <tr> <td>ETKF</td> <td> X </td> <td> X </td> <td> NA </td> <td> </td> <td> NA </td> </tr> <tr> <td>3D-VAR</td> <td> X </td> <td> </td> <td> </td> <td> </td> <td> NA </td> </tr> <tr> <td>MLEF</td> <td> X </td> <td> X </td> <td> X </td> <td> </td> <td> NA </td> </tr> <tr> <td>ETKS</td> <td> X </td> <td> X </td> <td> NA </td> <td> </td> <td> NA </td> </tr> <tr> <td>MLES</td> <td> X </td> <td> X </td> <td> X </td> <td> </td> <td> NA </td> </tr> <tr> <td>SIEnKS</td> <td> X </td> <td> X </td> <td> X </td> <td> </td> <td> X </td> </tr> <tr> <td>IEnKS</td> <td> X </td> <td> X </td> <td> </td> <td> </td> <td> X </td> </tr> </table> ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
216
# PlotExperimentData This is currently in-development and is only integrated loosely based on Python codes for plotting. A native Julia implementation is planned, though without any currently planned release date.
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1840
# Analysis ## Processing experiment outputs The `analysis` directory contains examples for batch processing the outputs from experiments into time-averaged RMSE and spread and arranging these outputs in an array for plotting. These examples should be modified based on the local paths to stored data and experiment settings. This will try to load files based on parameter settings written in the name of the output `.jld2` file and if this is not available, this will store `Inf` values in the place of missing data. These scripts are not currently integrated or supported, with the expecation that one will write their own variants based on their needs with specific experiments. ## Validating results Benchmark configurations for the above filtering and smoothing experiments are available in the open access article [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html), with details on the algorithm and parameter specifications discussed in the experiments section. Performance of filtering and smoothing schemes should be validated versus the numerical results for root mean square error and ensemble spread. Simple versions of these diagnostics are built for automatic testing of the filter and smoother experiments for state and parameter estimation in the L96-s model. Further test cases are currently in development. The deterministic Runge-Kutta and Euler scheme for ODEs are validated in the package tests, estimating the order of convergence with the least-squares log-10 line fit between step size and discretization error. Test cases for the stochastic integration schemes are in development, but numerical results with these schemes can be validated versus the results in the open-access article [Grudzien et al. 2020](https://gmd.copernicus.org/articles/13/1903/2020/).
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
2046
# FilterExps The `FilterExps.jl` sub-module contains methods to configure filter twin experiments, using a stored time series as generated by [GenerateTimeSeries](@ref) as the underlying observation generating process. The frequency of observations in continuous time is defined by the frequency of data saved in the time series and is inferred by the experiment when reading in the data. Filter experiment configurations are generated by supplying a [NamedTuple](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple) with the required fields as specified in the experiment method. Conventions for these arguments are as follows: * `time_series` - the path and file name of the [.jld2](https://juliaio.github.io/JLD2.jl/dev/) truth twin data set; * `method` - the sub-method analysis scheme string name; * `seed` - the pseudo-random seed that will define, e.g., the observation noise sequence; * `nanl` - the number of observation / analysis times to produce a posterior estimate; * `obs_un` - the observation error standard deviation, assuming a uniform scaling observation error covariance; * `obs_dim` - the dimension of the observation vector; * `γ` - defines nonlinearity in the [`DataAssimilationBenchmarks.ObsOperators.alternating_obs_operator`](@ref); * `N_ens` - the ensemble size for ensemble-based filters; * `s_infl` - the multiplicative inflation for the empirical model state covariance; * `p_infl` - the multiplicative inflation for the empirical parameter sample covariance; * `p_err` - defines initial parameter sample standard deviation as `p_err` percent of the system parameter value; * `p_wlk` - defines the standard deviation of a Gaussian random walk as `p_wlk` percent of the estimated parameter value for a random parameter model. Standard configurations should be defined in the [SingleExperimentDriver](@ref) module, for reproducing results and generating standard tests of methods. ## Filter Experiment Methods ```@autodocs Modules = [DataAssimilationBenchmarks.FilterExps] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1792
# GenerateTimeSeries GenerateTimeSeries is a sub-module used to generate a time series for a twin experiment based on tuneable model configuration parameters. Example syntax for the configuration of a time series is as follows, where arguments are defined in a [NamedTuple](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple) to be passed to the specific experiment function: ```{julia} (seed::Int64, h::Float64, state_dim::Int64, tanl::Float64, nanl::Int64, spin::Int64, diffusion::Float64)::NamedTuple) ``` Conventions for these arguments are as follows: * `seed` - specifies initial condition for the pseudo-random number generator on which various simulation settings will depend and will be reproducible with the same `seed` value; * `h` - is the numerical integration step size, controlling the discretization error of the model evolution; * `state_dim` - controls the size of the [Lorenz-96 model](@ref) model though other models such as the [IEEE39bus](@ref) model are of pre-defined size; * `tanl` - (__time-between-analysis__) defines the length of continuous time units between sequential observations; * `nanl` - (__number-of-analyses__) defines the number of observations / analyses to be saved; * `spin` - discrete number of `tanl` intervals to spin-up for the integration of the dynamical system solution to guarantee a stationary observation generating process; * `diffusion` - determines intensity of the random perturbations in the integration scheme; Results are saved in [.jld2 format](https://juliaio.github.io/JLD2.jl/dev/) in the data directory to be called by filter / smoother experiments cycling over the pseudo-observations. ## Time series experiments ```@autodocs Modules = [DataAssimilationBenchmarks.GenerateTimeSeries] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
6183
# ParallelExperimentDriver In order to perform sensitivity testing and estimator tuning, many different parameter combinations may need to be evaluated for each experiment defined in the submodules [GenerateTimeSeries](@ref), [FilterExps](@ref) and [SmootherExps](@ref). These experiments are designed so that these hyper-parameter searches can be implemented with naive parallelism, using [parallel maps](https://en.wikipedia.org/wiki/MapReduce) and Julia's native [Distributed](https://docs.julialang.org/en/v1/stdlib/Distributed/) computing module. This module defines argumentless functions to construct an array with each array entry given by a [NamedTuple](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple), defining a particular hyper-parameter configuration. These functions also define a soft-fail method for evaluating experiments, with example syntax as ```{julia} args, wrap_exp = method() ``` where the `wrap_exp` follows a convention of ```{julia} function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end ``` with `exp` being imported from one of the experiment modules above. This soft-fail wrapper provides that if a single experiment configuration in the parameter array fails due to, e.g., numerical overflow, the remaining configurations will continue their own course unaffected. ## Example usage An example of how one can use the ParallelExperimentDriver framework to run a sensitivity test is as follows. We use a sensitivity test on the ensemble size for several variants of the EnKF using adaptive inflation. The following function, defined in ParallelExperimentDriver.jl module, will construct all of input data for the truth twin and a collection of NamedTuples that define individual experiments: ```{julia} path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" function ensemble_filter_adaptive_inflation() exp = DataAssimilationBenchmarks.FilterExps.ensemble_filter_state function wrap_exp(arguments) try exp(arguments) catch print("Error on " * string(arguments) * "\n") end end # set time series parameters seed = 123 h = 0.05 state_dim = 40 tanl = 0.05 nanl = 6500 spin = 1500 diffusion = 0.00 F = 8.0 # generate truth twin time series GenerateTimeSeries.L96_time_series( ( seed = seed, h = h, state_dim = state_dim, tanl = tanl, nanl = nanl, spin = spin, diffusion = diffusion, F = F, ) ) # define load path to time series time_series = path * "L96_time_series_seed_" * lpad(seed, 4, "0") * "_dim_" * lpad(state_dim, 2, "0") * "_diff_" * rpad(diffusion, 5, "0") * "_F_" * lpad(F, 4, "0") * "_tanl_" * rpad(tanl, 4, "0") * "_nanl_" * lpad(nanl, 5, "0") * "_spin_" * lpad(spin, 4, "0") * "_h_" * rpad(h, 5, "0") * ".jld2" # define ranges for filter parameters methods = ["enkf-n-primal", "enkf-n-primal-ls", "enkf-n-dual"] seed = 1234 obs_un = 1.0 obs_dim = 40 N_enss = 15:3:42 s_infls = [1.0] nanl = 4000 γ = 1.0 # load the experiments args = Vector{Any}() for method in methods for N_ens in N_enss for s_infl in s_infls tmp = ( time_series = time_series, method = method, seed = seed, nanl = nanl, obs_un = obs_un, obs_dim = obs_dim, γ = γ, N_ens = N_ens, s_infl = s_infl ) push!(args, tmp) end end end return args, wrap_exp end ``` With a constructor as above, one can define a script as follows to run the sensitivity test: ```{julia} ############################################################################################## module run_sensitivity_test ############################################################################################## # imports and exports using Distributed @everywhere using DataAssimilationBenchmarks ############################################################################################## config = ParallelExperimentDriver.ensemble_filter_adaptive_inflation print("Generating experiment configurations from " * string(config) * "\n") print("Generate truth twin\n") args, wrap_exp = config() num_exps = length(args) print("Configuration ready\n") print("\n") print("Running " * string(num_exps) * " configurations on " * string(nworkers()) * " total workers\n") print("Begin pmap\n") pmap(wrap_exp, args) print("Experiments completed, verify outputs in the appropriate directory under:\n") print(pkgdir(DataAssimilationBenchmarks) * "/src/data\n") ############################################################################################## # end module end ``` Running the script using ``` julia -p N run_sensitivity_test.jl ``` will map the evaluation of all parameter configurations to parallel workers where `N` is the number of workers, to be defined based on the available resources on the user system. User-defined sensitivity tests can be generated by modifying the above script according to new constructors defined within the ParallelExperimentDriver module. ## Experiment groups ```@autodocs Modules = [DataAssimilationBenchmarks.ParallelExperimentDriver] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1180
# SingleExperimentDriver Following the convention of [GenerateTimeSeries](@ref), [FilterExps](@ref) and [SmootherExps](@ref) using [NamedTuple](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple) arguments to define hyper-parameter configurations, the SingleExperimentDriver module defines dictionaries of the form ``` experiment_group["parameter_settings"] ``` where keyword arguments return standard parameter configurations for these experiments with known results for reproducibility. These standard configurations are used in the package for for debugging, testing, benchmarking and profiling code. Package tests use these standard configurations to verify a DA method's forecast and analysis RMSE. User-defined, custom experiments can be modeled from the methods in the above modules with a corresponding SingleExperimentDriver dictionary entry used to run and debug the experiment, and to test and document the expected results. Parallel submission scripts are used for production runs of sensitivity experiments, defined in [ParallelExperimentDriver](@ref). ## Experiment groups ```@autodocs Modules = [DataAssimilationBenchmarks.SingleExperimentDriver] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
2261
# SmootherExps The `SmootherExps.jl` sub-module contains methods to configure filter twin experiments, using a stored time series as generated by [GenerateTimeSeries](@ref) as the underlying observation generating process. The frequency of observations in continuous time is defined by the frequency of data saved in the time series and is inferred by the experiment when reading in the data. ```@raw html <div sytle="float:left; width:100%;"> <img style="width:95%" src="https://raw.githubusercontent.com/cgrudz/DataAssimilationBenchmarks.jl/master/assets/cyclingSDA.png" alt="Observation analysis forecast cycle over multiple data assimilation windows"> </div> ``` Smoother experiment configurations are generated by supplying a [NamedTuple](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple) with the required fields as specified in the experiment method. Conventions for these arguments are the same as with the [FilterExps](@ref), with the additional options that configure the data assimilation window (DAW) and how this is shifted in time: * `lag` - the number of past observation / analysis times to reanalyze in a DAW, corresponding to ``L`` in the figure above; * `shift`- the number of observation / analysis times to shift the DAW, corresponding to ``S`` in the figure above; * `mda` - (__Multiple Data Assimilation__), type `Bool`, determines whether the technique of multiple data assimilation is used (only compatible with `single_iteration` and `iterative` smoothers. Currently debugged and validated smoother experiment configurations include * `classic_state` - classic ETKS style state estimation * `classic_param` - classic ETKS style state-parameter estimation * `single_iteration_state` - SIEnKS state estimation * `single_iteration_param` - SIEnKS state-parameter estimation * `iterative_state` - IEnKS Gauss-Newton style state estimation * `iterative_param` - IEnKS Gauss-Newton style state-parameter estimation Note, the single-iteration and fully iterative Gauss-Newton style smoothers are only defined for MDA compatible values of lag and shift where the lag is an integer multiple of the shift. ## Smoother Experiment Methods ```@autodocs Modules = [DataAssimilationBenchmarks.SmootherExps] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1662
# Workflow This package is based around file input and output, with experiment configurations defined as function arguments using the [NamedTuple](https://docs.julialang.org/en/v1/base/base/#Core.NamedTuple) data type. A basic workflow to run a data assimilation twin experiment is to first generate a time series for observations using a choice of tuneable parameters using the [GenerateTimeSeries](@ref) submodule. Once the time series data is generated from one of the benchmark models, one can use this data as a truth twin to generate pseudo-observations. This time series can thus be re-used over multiple configurations of filters and smoothers, holding the pseudo-data fixed while varying other hyper-parameters. Test cases in this package model this workflow, to first generate test data and then to implement a particular experiment based on a parameter configuration to exhibit known behavior of the estimator, typically in terms of forecast and analysis root mean square error (RMSE). Standard configurations of hyper-parameters for the truth twin and the data assimilation method are included in the [SingleExperimentDriver](@ref) submodule, and constructors for generating maps of parallel experiments over parameter grids are defined in the [ParallelExperimentDriver](@ref) submodule. It is assumed that one will [Install a dev package](@ref) this package in order to define new parameter tuples and constructors for parallel experiments in order to test the behavior of estimators in new configurations. It is also assumed that one will write new experiments using the [FilterExps](@ref) and [SmootherExps](@ref) submodules as templates.
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
3128
# Differential Equation Solvers Three general schemes are developed for ordinary and stochastic differential equations, * the four-stage Runge-Kutta [`DataAssimilationBenchmarks.DeSolvers.rk4_step!`](@ref) scheme, * the second order autonomous Taylor [`DataAssimilationBenchmarks.DeSolvers.tay2_step!`](@ref) scheme, and * the Euler-(Maruyama) [`DataAssimilationBenchmarks.DeSolvers.em_step!`](@ref) scheme. These schemes have arguments with the conventions: * `x` - model states of type [`VecA`](@ref) possibly including a statistical replicate of model parameter values; * `t` - time value of type [`Float64`](https://docs.julialang.org/en/v1/base/numbers/#Core.Float64) for present model state (a dummy argument is used for autonomous dynamics); * `kwargs` - a dictionary of type [`StepKwargs`](@ref). Details of these schemes are available in the manuscript [Grudzien et al. 2020](https://gmd.copernicus.org/articles/13/1903/2020/gmd-13-1903-2020.html) Because the second order Taylor-Stratonovich scheme relies specifically on the structure of the Lorenz-96 model with additive noise, this is included separately in the [Lorenz-96 model](@ref) sub-module. These time steppers over-write the value of the model state `x` in-place for efficient ensemble integration. The four-stage Runge-Kutta scheme follows the convention in data assimilation of the extended state formalism for parameter estimation. In particular, the parameter sample should be included as trailing state variables in the columns of the ensemble array. If the following conditional is true: ```{julia} true == haskey(kwargs, "param_sample") ``` the `state_dim` parameter specifies the dimension of the dynamical states and creates a view of the vector `x` including all entries up to this index. The remaining entries in the state vector `x` will be passed to the `dx_dt` function in a dictionary merged with the `dx_params` [`ParamDict`](@ref), according to the `param_sample` indices and parameter values specified in `param_sample`. The parameter sample values will remain unchanged by the time stepper when the dynamical state entries in `x` are over-written in place. Setting `diffusion > 0.0` introduces additive noise to the dynamical system. The main [`DataAssimilationBenchmarks.DeSolvers.rk4_step!`](@ref) has convergence on order 4.0 when diffusion is equal to zero, and both strong and weak convergence on order 1.0 when stochasticity is introduced. This is the recommended out-of-the-box solver for any generic DA simulation for the statistically robust performance, versus Euler-(Maruyama). When specifically generating the truth-twin for the Lorenz-96 model with additive noise, this should be performed with the [`DataAssimilationBenchmarks.L96.l96s_tay2_step!`](@ref), while the ensemble should be generated with the [`DataAssimilationBenchmarks.DeSolvers.rk4_step!`](@ref). See the benchmarks on the [L96-s model](https://gmd.copernicus.org/articles/13/1903/2020/) for a full discussion of statistically robust model configurations. ## Methods ```@autodocs Modules = [DataAssimilationBenchmarks.DeSolvers] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
4004
# EnsembleKalmanSchemes There are currently four families of ensemble Kalman estimators available in this package, which define the outer-loop of the data assimilation cycle. Particularly, these define how the sequential data assimilation cycle will pass over a time series of observations, with more details in the [SmootherExps](@ref) documents. Ensemble filters only produce analyses forward-in-time. The classic lag-shift smoother runs identically to the filter in its forecast and filter steps, but includes an additional retrospective analysis to past ensemble states stored in memory. The single iteration smoother follows the same convention as the classic smoother, except in that new cycles are initiated from a past, reanalyzed ensemble state. The Gauss-Newton iterative smoothers are 4D smoothers, which iteratively optimize the initial condition at the beginning of a data assimilation cycle, and propagate this initial condition to initialize the subsequent cycle. A full discussion of these methods can be found in [Grudzien et al. 2022](https://gmd.copernicus.org/articles/15/7641/2022/gmd-15-7641-2022.html). For each outer-loop method defining the data assimilation cycle, different types of analyses can be specified within their arguments. Likewise, these outer-loop methods require arguments such as the ensemble state or the range of ensemble states to analyze, an observation to assimilate or a range of observations to assimilate, as the observation operator and observation error covariance and key word arguments for running the underlying dynamical state model. Examples of the syntax are below: ```{julia} ensemble_filter(analysis::String, ens::ArView(T), obs::VecA(T), obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 ls_smoother_classic(analysis::String, ens::ArView(T), obs::ArView(T), obs_cov::CovM(T), kwargs::StepKwargs) where T <: Float64 ls_smoother_single_iteration(analysis::String, ens::ArView(T), obs::ArView(T), kwargs::StepKwargs) where T <: Float64 ls_smoother_gauss_newton(analysis::String, ens::ArView(T), obs::ArView(T), obs_cov::CovM(T), kwargs::StepKwargs; ϵ::Float64=0.0001, tol::Float64=0.001, max_iter::Int64=10) where T <: Float64 ``` with conventions defined as follows: * `analysis` - string name of the analysis scheme; * `ens` - ensemble matrix defined by the array with columns given by the replicates of the model state; * `obs` - observation vector for the current analysis in `ensemble_filter` / array with columns given by the observation vectors for the ordered sequence of analysis times in the current smoothing window; * `H_obs` - observation model mapping state vectors and ensembles into observed variables; * `obs_cov` - observation error covariance matrix; * `kwargs` - keyword arguments for inflation, parameter estimation or other functionality, including integration parameters for the state model in smoothing schemes. The `analysis` string is passed to the [`DataAssimilationBenchmarks.EnsembleKalmanSchemes.transform_R`](@ref) or the [`DataAssimilationBenchmarks.EnsembleKalmanSchemes.ens_gauss_newton`](@ref) methods below to produce a specialized analysis within the outer-loop controlled by the above filter and smoother methods. Observations for the filter schemes correspond to information available at a single analysis time giving an observation of the state vector of type [`VecA`](@ref). The `ls` (lag-shift) smoothers require an array of observations of type [`ArView`](@ref) corresponding to all analysis times within the data assimilation window (DAW). Observation covariances are typed as [`CovM`](@ref) for efficiency. State covariance multiplicative inflation and extended state parameter covariance multiplicative inflation can be specified in `kwargs`. Utility scripts to generate observation operators, analyze ensemble statistics, etc, are included in the below. ## Methods ```@autodocs Modules = [DataAssimilationBenchmarks.EnsembleKalmanSchemes] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
874
# XdVAR This module defines methods for classical variational data assimilation such as 3D- / 4D-VAR. Primal cost functions are defined, with their implicit differentiation performed with automatic differentiation with [JuliaDiff](https://github.com/JuliaDiff) methods. Development of gradient-based optimization schemes using automatic differentiation is ongoing, with future development planned to integrate variational benchmark experiments. The basic 3D-VAR cost function API is defined as follows ```{julia} D3_var_cost(x::VecA(T), obs::VecA(T), x_background::VecA(T), state_cov::CovM(T), obs_cov::CovM(T), kwargs::StepKwargs) where T <: Real ``` where the control variable `x` is optimized, with fixed hyper-parameters defined in a wrapping function passed to auto-differentiation. ## Methods ```@autodocs Modules = [DataAssimilationBenchmarks.XdVAR] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
5494
# IEEE39bus This is a version of the IEEE-39 bus test case as described by [Nishikawa et al. 2015](https://iopscience.iop.org/article/10.1088/1367-2630/17/1/015012). The model, denoted the "effective network", consists of the ten generator buses in the network with all other buses eliminated by the classical Kron reduction. The power flow is described in steady state by a fixed point of the nonlinear swing equations $$\begin{align} \frac{2H_i}{\omega_\mathrm{R}} \ddot{\delta}_i + \frac{D_i}{\omega_\mathrm{R}} \dot{\delta}_i = A_{i}^\mathrm{EN} - \sum_{j =1, j\neq i}^{n_g} K_{ij}\sin\left(\delta_i - \delta_j -\gamma_{ij}^\mathrm{EN}\right), \end{align}$$ where we define each of the following: * the angular reference frequency (in radians) about which the steady state synchronizes is defined as $\omega_\mathrm{R}$; * the angle of rotation of the generator rotor at bus $i$, relative to the frame rotating at the reference frequency, is defined as $\delta_i(t)$; * the difference between the reference frequency and the frequency of the rotor at bus $i$ is defined $\dot{\delta}_i(t)$; * the rate of acceleration of the difference between the angle of the rotor at bus $i$ and the frame rotating at the reference frequency is defined as $\ddot{\delta}_i(t)$; * the values of the inertia and damping at bus $i$ are defined as $H_i$ and $D_i$ respectively; * the strength of the dynamical coupling of the buses $i$ and $j$ is defined as $K_{ij}$, while $\gamma_{ij}$ represents the phase shift involved in the coupling of these buses; * the active power injected into the network by the generator at bus $i$ is represented by $A^\mathrm{EN}_i$; and * the number of generators in the network is defined as $n_g =10$. This model assumes constant, passive loads at each bus that draws power. The actual parameters used in the model are defined by files in the ``` DataAssimilationBenchmarks/src/models/IEEE39bus_inputs/ ``` directory, taken from the configuration studied by [Nishikawa et al. 2015](https://iopscience.iop.org/article/10.1088/1367-2630/17/1/015012), with details on their interpretation in section 4.1. The stochastic form in this code loosens the assumption of constant loads in this model by assuming that, at the time scale of interest, the draw of power fluctuates randomly about the constant level that defines the steady state. We introduce a Wiener process to the above equations of the form $s W_i(t)$, where $s$ is a parameter in the model controlling the relative diffusion level. We assume that the fluctuations in the net power are uncorrelated across buses and that the diffusion in all buses is proportional to $s$. Making a change of variables $\psi_i = \dot{\delta}_i$, we recover the system of nonlinear SDEs, $$\begin{align} \dot{\delta}_i = \psi_i, \end{align}$$ $$\begin{align} \dot{\psi}_i = \frac{A^\mathrm{EN}_i \omega_\mathrm{R}}{2H_i} - \frac{D_i}{2H_i} \psi_i - \sum_{j=1,j\neq i}^{n_g} \frac{K_{ij}^\mathrm{EN}\omega_\mathrm{R}}{2H_i} \sin\left(\delta_i - \delta_j -\gamma_{ij}^\mathrm{EN}\right) + \frac{ s \omega_R}{2 H_i} \mathrm{d}W_i(t). \end{align}$$ The diffusion level $s$ controls the standard deviation of the Gaussian process $$\begin{align} \frac{s \omega_R}{2H_i} W_{i,\Delta_t}\doteq \frac{s \omega_R}{2H_i}\left(W_i(\Delta + t) - W_i(t)\right). \end{align}$$ By definition the standard deviation of $W_{i,\Delta_t}$ is equal to $\sqrt{\Delta}$ so that for each time-discretization of the Wiener process of step size $\Delta$, $\frac{s \omega_R}{2 H_i}W_{i,\Delta_t}$ is a mean zero, Gaussian distributed variable with standard deviation $\frac{s \omega_\mathrm{R}}{2}\sqrt{\Delta}$. The reference frequency in North America is 60 Hz, and the tolerable deviation from this frequency under normal operations is approximately $\pm 0.05$ Hz, or of magnitude approximately $0.08\%$. In the above model, the reference frequency is in radians, related to the reference frequency in Hz as $\omega_\mathrm{R} = 60 \mathrm{Hz} \times 2 \pi \approx 376.99$. This makes the tolerable limit of perturbations to the frequency approximately $0.3$ radians under normal operations. By definition $\psi_i$ is the $i$-th frequency relative to the reference frequency $\omega_\mathrm{R}$. One should choose $s$ sufficiently small such that the probability that the size of a perturbation to the frequency $$\begin{align} \parallel \frac{s \omega_\mathrm{R}}{2 H_i}\mathbf{W}_{\Delta_t} \parallel\geq 0.3 \end{align}$$ is small. Simulating the model numerically with the four-stage, stochastic Runge-Kutta algorithm [`DataAssimilationBenchmarks.DeSolvers.rk4_step!`](@ref) a step size of $\Delta=0.01$ is recommended, so that the standard deviation of a perturbation to the $i$-th relative frequency $\psi_i$ at any time step is $\frac{s \omega_\mathrm{R}}{20 H_i}$. The smallest inertia parameter in the model is approximately $24.3$, so that three standard deviations of the perturbation to the frequency is bounded as $$\begin{align} \frac{s\omega_\mathrm{R}}{20 \times 24.3} \times 3 \leq 0.03 \Leftrightarrow s \leq\frac{4.86}{\omega_\mathrm{R}} \approx 0.0129. \end{align}$$ For $s \leq 0.012$, we bound the standard deviation of each component, $\frac{s \omega_\mathrm{R}}{2H_i}\sqrt{\Delta}$, of the perturbation vector by $0.01$ so that over $99.7\%$ of perturbations to the $i$-th frequency have size less than $0.03$. ## Methods ```@autodocs Modules = [DataAssimilationBenchmarks.IEEE39bus] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1722
# Lorenz-96 model The classical form for the (single-layer) Lorenz-96 equations are defined as $$\begin{align} \frac{\mathrm{d}\pmb{x}}{\mathrm{d} t} = \pmb{f}(\pmb{x}), \end{align}$$ where for each state component $i\in\{1,\cdots,n\}$, $$\begin{align} f^i(\pmb{x}) &=-x^{i-2}x^{i-1} + x^{i-1}x^{i+1} - x^i + F \end{align}$$ such that the components of the vector $\pmb{x}$ are given by the variables $x^i$ with periodic boundary conditions, $x^0=x^n$, $x^{-1}=x^{n-1}$ and $x^{n+1}=x^{1}$. The term $F$ in the Lorenz-96 system is the forcing parameter that injects energy to the model. With the above definition for the classical Lorenz-96 equations, we define the L96-s model with additive noise (of scalar covariance) as $$\begin{align} \frac{\mathrm{d} \pmb{x}}{\mathrm{d} t} = \pmb{f}(\pmb{x}) + s(t)\mathbf{I}_{n}\pmb{W}(t), \end{align}$$ where $\pmb{f}$ is defined as in the classical equations, $\mathbf{I}_n$ is the $n\times n$ identity matrix, $\pmb{W}(t)$ is an $n$-dimensional Wiener process and $s(t):\mathbb{R}\rightarrow \mathbb{R}$ is a measurable function of (possibly) time-varying diffusion coefficients. This model is analyzed in-depth for data assimilation twin experiments in the manuscript [Grudzien et al. 2020](https://gmd.copernicus.org/articles/13/1903/2020/gmd-13-1903-2020.html) and further details of using the system for data assimilation benchmarks in stochastic dynamics are discussed there. The methods in the below define the model equations, the Jacobian, and the order 2.0 Taylor-Stratonovich scheme derived especially for statistically robust numerical simulation of the truth twin of the L96-s system. ## Methods ```@autodocs Modules = [DataAssimilationBenchmarks.L96] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "Apache-2.0" ]
0.3.4
633aca1308dd579a622fd8559de7d96e425f0dc4
docs
1054
# Observation Operators The methods in this module define observation operators mapping the state model to the observation space. In current experiments, the observation operator is hard-coded in the driver script with a statement ``` H_obs = alternating_obs_operator ``` defining the observation operator. The dimension of the observation and the nonlinear transform applied can be controlled with the parameters of [`DataAssimilationBenchmarks.ObsOperators.alternating_obs_operator`](@ref). Additional observation models are pending, following the convention where observation operators will be defined both for vector arguments and multi-arrays using mutliple dispatch with the conventions: ``` function H_obs(x::VecA(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real function H_obs(x::ArView(T), obs_dim::Int64, kwargs::StepKwargs) where T <: Real ``` allowing for the same naming to be used for single states, time series of states, and ensembles of states. ## Methods ```@autodocs Modules = [DataAssimilationBenchmarks.ObsOperators] ```
DataAssimilationBenchmarks
https://github.com/cgrudz/DataAssimilationBenchmarks.jl.git
[ "MIT" ]
1.1.0
a8d466a4330392cd2c3bfa7a74e170d8dccd6f66
code
63
module Khepri using Reexport @reexport using KhepriAutoCAD end
Khepri
https://github.com/aptmcl/Khepri.jl.git
[ "MIT" ]
1.1.0
a8d466a4330392cd2c3bfa7a74e170d8dccd6f66
code
144
using Khepri #@static if VERSION < v"0.7.0-DEV.2005" # using Base.Test #else # using Test #end # write your own tests here #@test 1 == 2
Khepri
https://github.com/aptmcl/Khepri.jl.git
[ "MIT" ]
1.1.0
a8d466a4330392cd2c3bfa7a74e170d8dccd6f66
docs
36
# Khepri.jl Khepri for Julia users.
Khepri
https://github.com/aptmcl/Khepri.jl.git
[ "MIT" ]
0.3.0
658f5aff8f64b475c4b3c3c8da6ab457dd96812b
code
612
using Documenter, TERMIOS, DocumenterMarkdown cp(joinpath(@__DIR__, "../README.md"), joinpath(@__DIR__, "./src/index.md"), force=true, follow_symlinks=true) makedocs( sitename="TERMIOS.jl documentation", format = Markdown() ) deploydocs(; repo="github.com/kdheepak/TERMIOS.jl", deps = Deps.pip( "mkdocs==0.17.5", "mkdocs-material==2.9.4", "python-markdown-math", "pygments", "pymdown-extensions", ), make = () -> run(`mkdocs build`), target = "site", )
TERMIOS
https://github.com/kdheepak/TERMIOS.jl.git
[ "MIT" ]
0.3.0
658f5aff8f64b475c4b3c3c8da6ab457dd96812b
code
22627
""" This package provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls, see the [termios(3)](http://man7.org/linux/man-pages/man3/termios.3.html) manual page. **Usage** Example: using TERMIOS const T = TERMIOS term_stdin = T.termios() T.tcgetattr(stdin, term_stdin) term_stdin.c_iflag |= T.IGNBRK T.tcsetattr(stdin, T.TCSANOW, term_stdin) """ module TERMIOS struct TERMIOSError <: Exception msg::String end Base.showerror(io::IO, e::TERMIOSError) = print(io, "TERMIOSError: $(e.msg)") const cc_t = Sys.islinux() ? Cuchar : Cvoid const tcflag_t = Sys.islinux() ? Cuint : Culong const char = Sys.islinux() ? Cchar : Cchar const speed_t = Sys.islinux() ? Cuint : Culong """End-of-file character ICANON""" const VEOF = Sys.islinux() ? 4 : 0 """End-of-line character ICANON""" const VEOL = Sys.islinux() ? 11 : 1 """Second EOL character ICANON together with IEXTEN""" const VEOL2 = Sys.islinux() ? 16 : 2 """Erase character ICANON""" const VERASE = Sys.islinux() ? 2 : 3 """Word-erase character ICANON together with IEXTEN""" const VWERASE = Sys.islinux() ? 14 : 4 """Kill-line character ICANON""" const VKILL = Sys.islinux() ? 3 : 5 """Reprint-line character ICANON together with IEXTEN""" const VREPRINT = Sys.islinux() ? 12 : 6 """Interrupt character ISIG""" const VINTR = Sys.islinux() ? 0 : 8 """Quit character ISIG""" const VQUIT = Sys.islinux() ? 1 : 9 """Suspend character ISIG""" const VSUSP = Sys.islinux() ? 10 : 10 """Delayed suspend character ISIG together with IEXTEN""" const VDSUSP = Sys.islinux() ? nothing : 11 """Start (X-ON) character IXON, IXOFF""" const VSTART = Sys.islinux() ? 8 : 12 """Stop (X-OFF) character IXON, IXOFF""" const VSTOP = Sys.islinux() ? 9 : 13 """Literal-next character IEXTEN""" const VLNEXT = Sys.islinux() ? 15 : 14 """Discard character IEXTEN""" const VDISCARD = Sys.islinux() ? 13 : 15 """Minimum number of bytes read at once !ICANON""" const VMIN = Sys.islinux() ? 6 : 16 """Time-out value (tenths of a second) !ICANON""" const VTIME = Sys.islinux() ? 5 : 17 """Status character ICANON together with IEXTEN""" const VSTATUS = Sys.islinux() ? nothing : 18 const NCCS = Sys.islinux() ? 32 : 20 const VSWTC = Sys.islinux() ? 7 : nothing # # Input flags - software input processing # """Ignore BREAK condition""" const IGNBRK = 0x00000001 """Map BREAK to SIGINTR""" const BRKINT = 0x00000002 """Ignore (discard) parity errors""" const IGNPAR = 0x00000004 """Mark parity and framing errors""" const PARMRK = 0x00000008 """Enable checking of parity errors""" const INPCK = 0x00000010 """Strip 8th bit off chars""" const ISTRIP = 0x00000020 """Map NL into CR""" const INLCR = 0x00000040 """Ignore CR""" const IGNCR = 0x00000080 """Map CR to NL (ala CRMOD)""" const ICRNL = 0x00000100 """Enable output flow control""" const IXON = Sys.islinux() ? 0x00000400 : 0x00000200 """Enable input flow control""" const IXOFF = Sys.islinux() ? 0x00001000 : 0x00000400 """Any char will restart after stop""" const IXANY = 0x00000800 """Ring bell on input queue full""" const IMAXBEL = Sys.islinux() ? nothing : 0x00002000 """(macos) maintain state for UTF-8 VERASE""" const IUTF8 = Sys.islinux() ? nothing : 0x00004000 """(glibc) Translate upper case input to lower case.""" const IUCLC = Sys.islinux() ? (1 << 14) : nothing # # Output flags - software output processing # """Enable following output processing """ const OPOST = 0x00000001 """Map NL to CR-NL (ala CRMOD)""" const ONLCR = Sys.islinux() ? 0x00000004 : 0x00000002 """Expand tabs to spaces""" const OXTABS = 0x00000004 """Discard EOT's (^D) on output)""" const ONOEOT = 0x00000008 """Map CR to NL on output""" const OCRNL = Sys.islinux() ? 0x00000008 : 0x00000010 """No CR output at column 0""" const ONOCR = Sys.islinux() ? 0x00000010 : 0x00000020 """NL performs CR function""" const ONLRET = Sys.islinux() ? 0x00000020 : 0x00000040 raw"""\n delay""" const NLDLY = Sys.islinux() ? 0x00000100 : 0x00000300 """Horizontal tab delay""" const TABDLY = Sys.islinux() ? 0x00001800 : 0x00000c04 raw"""\r delay""" const CRDLY = Sys.islinux() ? 0x00000600 : 0x00003000 """Form feed delay""" const FFDLY = Sys.islinux() ? 0x00008000 : 0x00004000 raw"""\b delay""" const BSDLY = Sys.islinux() ? 0x00002000 : 0x00008000 """Vertical tab delay""" const VTDLY = Sys.islinux() ? 0x00004000 : 0x00010000 """NL type 0.""" const NL0 = 0x00000000 """NL type 1.""" const NL1 = 0x00000100 const NL2 = Sys.islinux() ? nothing : 0x00000200 const NL3 = Sys.islinux() ? nothing : 0x00000300 """TAB delay type 0.""" const TAB0 = 0x00000000 """TAB delay type 1.""" const TAB1 = Sys.islinux() ? 0x00000800 : 0x00000400 """TAB delay type 2.""" const TAB2 = Sys.islinux() ? 0x00001000 : 0x00000800 """Expand tabs to spaces.""" const TAB3 = Sys.islinux() ? 0x00001800 : 0x00000004 """CR delay type 0.""" const CR0 = 0x00000000 """CR delay type 1.""" const CR1 = Sys.islinux() ? 0x00000200 : 0x00001000 """CR delay type 2.""" const CR2 = Sys.islinux() ? 0x00000400 : 0x00002000 """CR delay type 3.""" const CR3 = Sys.islinux() ? 0x00000600 : 0x00003000 """FF delay type 0.""" const FF0 = 0x00000000 """FF delay type 1.""" const FF1 = Sys.islinux() ? 0x00008000 : 0x00004000 """BS delay type 0.""" const BS0 = 0x00000000 """BS delay type 1.""" const BS1 = Sys.islinux() ? 0x00002000 : 0x00008000 """VT delay type 0.""" const VT0 = 0x00000000 """VT delay type 1.""" const VT1 = Sys.islinux() ? 0x00004000 : 0x00010000 """(glibc) Translate lower case output to upper case.""" const OLCUC = Sys.islinux() ? (1 << 17) : nothing """Use fill characters for delay""" const OFILL = Sys.islinux() ? 0x00000040 : 0x00000080 """Fill is DEL, else NUL""" const OFDEL = Sys.islinux() ? nothing : 0x00020000 # # Control flags - hardware control of terminal # """Ignore control flags""" const CIGNORE = Sys.islinux() ? nothing : 0x00000001 """5 bits (pseudo)""" const CS5 = 0x00000000 """6 bits""" const CS6 = Sys.islinux() ? 0x00000010 : 0x00000100 """7 bits""" const CS7 = Sys.islinux() ? 0x00000020 : 0x00000200 """8 bits""" const CS8 = CS6 | CS7 """Character size mask""" const CSIZE = CS5 | CS6 | CS7 | CS8 """Send 2 stop bits""" const CSTOPB = Sys.islinux() ? 0x00000040 : 0x00000400 """Enable receiver""" const CREAD = Sys.islinux() ? 0x00000080 : 0x00000800 """Parity enable""" const PARENB = Sys.islinux() ? 0x00000100 : 0x00001000 """Odd parity, else even""" const PARODD = Sys.islinux() ? 0x00000200 : 0x00002000 """Hang up on last close""" const HUPCL = Sys.islinux() ? 0x00000400 : 0x00004000 """Ignore modem status lines""" const CLOCAL = Sys.islinux() ? 0x00000800 : 0x00008000 """CTS flow control of output""" const CCTS_OFLOW = Sys.islinux() ? nothing : 0x00010000 """RTS flow control of input""" const CRTS_IFLOW = Sys.islinux() ? nothing : 0x00020000 """DTR flow control of input""" const CDTR_IFLOW = Sys.islinux() ? nothing : 0x00040000 """DSR flow control of output""" const CDSR_OFLOW = Sys.islinux() ? nothing : 0x00080000 """DCD flow control of output""" const CCAR_OFLOW = Sys.islinux() ? nothing : 0x00100000 """Old name for CCAR_OFLOW""" const MDMBUF = Sys.islinux() ? nothing : 0x00100000 const CRTSCTS = Sys.islinux() ? nothing : (CCTS_OFLOW | CRTS_IFLOW) # # "Local" flags - dumping ground for other state # # Warning: some flags in this structure begin with # the letter "I" and look like they belong in the # input flag. # """Visual erase for line kill""" const ECHOKE = Sys.islinux() ? nothing : 0x00000001 """Visually erase chars""" const ECHOE = Sys.islinux() ? 0x00000010 : 0x00000002 """Echo NL after line kill""" const ECHOK = Sys.islinux() ? 0x00000020 : 0x00000004 """Enable echoing""" const ECHO = 0x00000008 """Echo NL even if ECHO is off""" const ECHONL = Sys.islinux() ? 0x00000040 : 0x00000010 """Visual erase mode for hardcopy""" const ECHOPRT = Sys.islinux() ? nothing : 0x00000020 """Echo control chars as ^(Char)""" const ECHOCTL = Sys.islinux() ? nothing : 0x00000040 """Enable signals INTR, QUIT, [D]SUSP""" const ISIG = Sys.islinux() ? 0x00000001 : 0x00000080 """Canonicalize input lines""" const ICANON = Sys.islinux() ? 0x00000002 : 0x00000100 """Use alternate WERASE algorithm""" const ALTWERASE = Sys.islinux() ? nothing : 0x00000200 """Enable DISCARD and LNEXT""" const IEXTEN = Sys.islinux() ? 0x00008000 : 0x00000400 """External processing""" const EXTPROC = Sys.islinux() ? nothing : 0x00000800 """Stop background jobs from output""" const TOSTOP = Sys.islinux() ? 0x00000100 : 0x00400000 """Output being flushed (state)""" const FLUSHO = Sys.islinux() ? nothing : 0x00800000 """No kernel output from VSTATUS""" const NOKERNINFO = Sys.islinux() ? nothing : 0x02000000 """XXX retype pending input (state)""" const PENDIN = Sys.islinux() ? nothing : 0x20000000 """Don't flush after interrupt""" const NOFLSH = Sys.islinux() ? 0x00000080 : 0x80000000 # # Commands passed to tcsetattr() for setting the termios structure. # """Make change immediate""" const TCSANOW = 0 """Drain output, then change""" const TCSADRAIN = 1 """Drain output, flush input""" const TCSAFLUSH = 2 """Flag - don't alter h.w. state""" const TCSASOFT = Sys.islinux() ? nothing : 0x10 # # Standard speeds # const B0 = Sys.islinux() ? 0 : 0 const B50 = Sys.islinux() ? 1 : 50 const B75 = Sys.islinux() ? 2 : 75 const B110 = Sys.islinux() ? 3 : 110 const B134 = Sys.islinux() ? 4 : 134 const B150 = Sys.islinux() ? 5 : 150 const B200 = Sys.islinux() ? 6 : 200 const B300 = Sys.islinux() ? 7 : 300 const B600 = Sys.islinux() ? 8 : 600 const B1200 = Sys.islinux() ? 9 : 1200 const B1800 = Sys.islinux() ? 10 : 1800 const B2400 = Sys.islinux() ? 11 : 2400 const B4800 = Sys.islinux() ? 12 : 4800 const B7200 = Sys.islinux() ? 13 : 7200 const B19200 = Sys.islinux() ? 14 : 19200 const B38400 = Sys.islinux() ? 15 : 38400 const B9600 = 9600 const B14400 = 14400 const B28800 = 28800 const B57600 = 57600 const B76800 = 76800 const B115200 = 115200 const B230400 = 230400 const EXTA = 19200 const EXTB = 38400 const B460800 = 460800 const B500000 = 500000 const B576000 = 576000 const B921600 = 921600 const B1000000 = 1000000 const B1152000 = 1152000 const B1500000 = 1500000 const B2000000 = 2000000 const B2500000 = 2500000 const B3000000 = 3000000 const B3500000 = 3500000 const B4000000 = 4000000 # # Values for the QUEUE_SELECTOR argument to `tcflush'. # """Discard data received but not yet read.""" const TCIFLUSH = Sys.islinux() ? 0 : 1 """Discard data written but not yet sent.""" const TCOFLUSH = Sys.islinux() ? 1 : 2 """Discard all pending data.""" const TCIOFLUSH = Sys.islinux() ? 2 : 3 # # Values for the ACTION argument to `tcflow'. # """Suspend output.""" const TCOOFF = Sys.islinux() ? 16 : 1 """Restart suspended output.""" const TCOON = Sys.islinux() ? 32 : 2 """Send a STOP character.""" const TCIOFF = Sys.islinux() ? 4 : 3 """Send a START character.""" const TCION = Sys.islinux() ? 8 : 4 ######################################################################################################################## # The layout of a termios struct in C must be as follows # # ```c # struct termios { # tcflag_t c_iflag; # tcflag_t c_oflag; # tcflag_t c_cflag; # tcflag_t c_lflag; # cc_t c_line; # cc_t c_cc[NCCS]; # speed_t c_ispeed; # speed_t c_ospeed; # }; # ``` # # We need to create this struct in Julia and set the memory layout in Julia. # the termios library requires passing in a termios struct that is used to get or set attributes # There are two ways to create a `struct` in Julia that affect the memory layout. # `struct termios end` and `mutable struct termios end` # The first one is a immutable, and cannot be passed as a reference into a library. # Additionally, because it is a immutable, Julia may make a copy of the struct instead of passing in the reference. # The second one is what we want. # Typical workflow in using the termios library involves using `tcgetattr` to initialize a termios struct, changing values appropriately # and using `tcsetattr` to set the attributes. # the termios struct has a field `c_cc[NCCS]`. # This field is laid out sequentially in memory. # In Julia, there are two ways to lay out memory sequentially. We can either # 1) use a `NTuple{NCCS, UInt8}` # 2) lay out the memory manually # Tuples are immutable, which means if a user wants to change `termios.c_cc`, they would have to create a new tuple with the values needed. # In both of these approaches, we can use `getproperty` to mimic the interface presented in C mutable struct termios """Input flags""" c_iflag::tcflag_t """Output flags""" c_oflag::tcflag_t """Control flags""" c_cflag::tcflag_t """Local flags""" c_lflag::tcflag_t @static if Sys.islinux() c_line::cc_t end """Control chars""" _c_cc::NTuple{NCCS, UInt8} """Input speed""" c_ispeed::speed_t """Output speed""" c_ospeed::speed_t end function Base.getproperty(t::termios, name::Symbol) if name == :c_cc return _C_CC(t) else return getfield(t, name) end end function Base.propertynames(t::termios, private = false) return @static if Sys.islinux() ( :c_iflag, :c_oflag, :c_cflag, :c_lflag, :c_cc, :c_ispeed, :c_ospeed, ) else ( :c_iflag, :c_oflag, :c_cflag, :c_lflag, :c_line, :c_cc, :c_ispeed, :c_ospeed, ) end end struct _C_CC ref::termios end function Base.getindex(c_cc::_C_CC, index) return collect(c_cc.ref._c_cc)[index + 1] end function Base.setindex!(c_cc::_C_CC, value, index) _c_cc = collect(c_cc.ref._c_cc) _c_cc[index + 1] = value c_cc.ref._c_cc = NTuple{NCCS, UInt8}(_c_cc) end function Base.show(io::IO, ::MIME"text/plain", c_cc::_C_CC) X = [getfield(c_cc.ref, Symbol("_c_cc$i")) for i in 1:NCCS] summary(io, X) isempty(X) && return print(io, ":") if !haskey(io, :compact) && length(axes(X, 2)) > 1 io = IOContext(io, :compact => true) end if get(io, :limit, false) && eltype(X) === Method # override usual show method for Vector{Method}: don't abbreviate long lists io = IOContext(io, :limit => false) end if get(io, :limit, false) && displaysize(io)[1]-4 <= 0 return print(io, " …") else println(io) end io = IOContext(io, :typeinfo => eltype(X)) Base.print_array(io, X) end function termios() term = @static if Sys.islinux() termios( 0, 0, 0, 0, 0, NTuple{NCCS, UInt8}([0 for _ in 1:NCCS]), 0, 0, ) else termios( 0, 0, 0, 0, NTuple{NCCS, UInt8}([0 for _ in 1:NCCS]), 0, 0, ) end return term end # helper function _file_handle(s::Base.LibuvStream) = Base._fd(s) """ tcgetattr(fd::RawFD, term::termios) tcgetattr(s::Base.LibuvStream, term::termios) tcgetattr(f::Int, term::termios) Get the tty attributes for file descriptor fd """ function tcgetattr(fd::RawFD, term::termios) r = ccall(:tcgetattr, Cint, (Cint, Ptr{Cvoid}), fd, Ref(term)) r == -1 ? throw(TERMIOSError("tcgetattr failed: $(Base.Libc.strerror())")) : nothing end tcgetattr(s::Base.LibuvStream, term) = tcgetattr(_file_handle(s), term) tcgetattr(f::Int, term) = tcgetattr(RawFD(f), term) """ tcsetattr(s::Base.LibuvStream, when::Integer, term::termios) Set the tty attributes for file descriptor fd. The when argument determines when the attributes are changed: - `TERMIOS.TCSANOW` to change immediately - `TERMIOS.TCSADRAIN` to change after transmitting all queued output - `TERMIOS.TCSAFLUSH` to change after transmitting all queued output and discarding all queued input. """ function tcsetattr(fd::RawFD, when::Integer, term::termios) r = ccall(:tcsetattr, Cint, (Cint, Cint, Ptr{Cvoid}), fd, when, Ref(term)) r == -1 ? throw(TERMIOSError("tcsetattr failed: $(Base.Libc.strerror())")) : nothing end tcsetattr(s::Base.LibuvStream, when, term) = tcsetattr(_file_handle(s), when, term) tcsetattr(f::Int, when, term) = tcsetattr(RawFD(f), when, term) """ tcdrain(s::Base.LibuvStream) Wait until all output written to file descriptor fd has been transmitted. """ function tcdrain(fd::RawFD) r = ccall(:tcdrain, Cint, (Cint, ), fd) r == -1 ? throw(TERMIOSError("tcdrain failed: $(Base.Libc.strerror())")) : nothing end tcdrain(s::Base.LibuvStream) = tcdrain(_file_handle(s)) tcdrain(f::Int) = tcdrain(RawFD(f)) """ tcflow(s::Base.LibuvStream, action::Integer) Suspend transmission or reception of data on the object referred to by fd, depending on the value of action: - `TERMIOS.TCOOFF` to suspend output, - `TERMIOS.TCOON` to restart output - `TERMIOS.TCIOFF` to suspend input, - `TERMIOS.TCION` to restart input. """ function tcflow(fd::RawFD, action::Integer) r = ccall(:tcflush, Cint, (Cint, Cint), fd, action) r == -1 ? throw(TERMIOSError("tcflow failed: $(Base.Libc.strerror())")) : nothing end tcflow(s::Base.LibuvStream, action) = tcflow(_file_handle(s), action) tcflow(fd::Int, action) = tcflow(RawFD(fd), action) """ tcflush(s::Base.LibuvStream, queue::Integer) Discard data written to the object referred to by fd but not transmitted, or data received but not read, depending on the value of queue_selector: - `TERMIOS.TCIFLUSH` flushes data received but not read. - `TERMIOS.TCOFLUSH` flushes data written but not transmitted. - `TERMIOS.TCIOFLUSH` flushes both data received but not read, and data written but not transmitted. """ function tcflush(fd::RawFD, queue::Integer) r = ccall(:tcflush, Cint, (Cint, Cint), fd, queue) r == -1 ? throw(TERMIOSError("tcflush failed: $(Base.Libc.strerror())")) : nothing end tcflush(s::Base.LibuvStream, queue) = tcflush(_file_handle(s), queue) tcflush(fd::Int, queue) = tcflush(RawFD(fd), queue) """ tcsendbreak(s::Base.LibuvStream, duration::Integer) Transmit a continuous stream of zero-valued bits for a specific duration, if the terminal is using asynchronous serial data transmission. If duration is zero, it transmits zero-valued bits for at least 0.25 seconds, and not more that 0.5 seconds. If duration is not zero, it sends zero-valued bits for some implementation-defined length of time. If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns without taking any action. """ function tcsendbreak(fd::RawFD, duration::Integer) r = ccall(:tcsendbreak, Cint, (Cint, Cint), fd, duration) r == -1 ? throw(TERMIOSError("tcsendbreak failed: $(Base.Libc.strerror())")) : nothing end tcsendbreak(s::Base.LibuvStream, duration) = tcsendbreak(_file_handle(s), duration) tcsendbreak(f::Int, duration) = tcsendbreak(RawFD(f), duration) """ cfmakeraw(term::termios) Set the terminal to something like the "raw" mode of the old Version 7 terminal driver: input is available character by character, echoing is disabled, and all special processing of terminal input and output characters is disabled. The terminal attributes are set as follows: term.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL | IXON); term.c_oflag &= ~OPOST; term.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN); term.c_cflag &= ~(CSIZE | PARENB); term.c_cflag |= CS8; """ function cfmakeraw(term::termios) r = ccall(:cfmakeraw, Cint, (Ref{termios},), Ref(term)) r == -1 ? throw(TERMIOSError("cfmakeraw failed: $(Base.Libc.strerror())")) : nothing end """ cfsetspeed(term::termios, speed::Int) is a 4.4BSD extension. It takes the same arguments as cfsetispeed(), and sets both input and output speed. """ function cfsetspeed(term::termios, speed::Integer) r = ccall(:cfsetspeed, Cint, (Ref{termios}, speed_t), Ref(term), speed) r == -1 ? throw(TERMIOSError("cfsetspeed failed: $(Base.Libc.strerror())")) : nothing end """ cfgetispeed(term::termios) -> Int Returns the input baud rate stored in the termios structure. """ cfgetispeed(term::termios) = ccall(:cfgetispeed, speed_t, (Ptr{termios}, ), Ref(term)) """ cfgetospeed(term::termios) -> Int Returns the output baud rate stored in the termios structure. """ cfgetospeed(term::termios) = ccall(:cfgetospeed, speed_t, (Ptr{termios}, ), Ref(term)) """ cfsetispeed(term::termios, speed::Integer) sets the input baud rate stored in the termios structure to speed, which must be one of these constants: - `TERMIOS.B0` - `TERMIOS.B50` - `TERMIOS.B75` - `TERMIOS.B110` - `TERMIOS.B134` - `TERMIOS.B150` - `TERMIOS.B200` - `TERMIOS.B300` - `TERMIOS.B600` - `TERMIOS.B1200` - `TERMIOS.B1800` - `TERMIOS.B2400` - `TERMIOS.B4800` - `TERMIOS.B9600` - `TERMIOS.B19200` - `TERMIOS.B38400` - `TERMIOS.B57600` - `TERMIOS.B115200` - `TERMIOS.B230400` The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the modem control lines shall no longer be asserted. Normally, this will disconnect the line. CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600 and above). Thus, B57600 & CBAUDEX is nonzero. """ function cfsetispeed(term::termios, speed::Integer) r = ccall(:cfsetispeed, Cint, (Ref{termios}, speed_t), Ref(term), speed) r == -1 ? throw(TERMIOSError("cfsetispeed failed: $(Base.Libc.strerror())")) : nothing end """ cfsetospeed(term::termios, speed::Integer) sets the output baud rate stored in the termios structure to speed, which must be one of these constants: - `TERMIOS.B0` - `TERMIOS.B50` - `TERMIOS.B75` - `TERMIOS.B110` - `TERMIOS.B134` - `TERMIOS.B150` - `TERMIOS.B200` - `TERMIOS.B300` - `TERMIOS.B600` - `TERMIOS.B1200` - `TERMIOS.B1800` - `TERMIOS.B2400` - `TERMIOS.B4800` - `TERMIOS.B9600` - `TERMIOS.B19200` - `TERMIOS.B38400` - `TERMIOS.B57600` - `TERMIOS.B115200` - `TERMIOS.B230400` The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the modem control lines shall no longer be asserted. Normally, this will disconnect the line. CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600 and above). Thus, B57600 & CBAUDEX is nonzero. """ function cfsetospeed(term::termios, speed::Integer) r = ccall(:cfsetospeed, Cint, (Ref{termios}, speed_t), Ref(term), speed) r == -1 ? throw(TERMIOSError("cfsetospeed failed: $(Base.Libc.strerror())")) : nothing end end # module
TERMIOS
https://github.com/kdheepak/TERMIOS.jl.git
[ "MIT" ]
0.3.0
658f5aff8f64b475c4b3c3c8da6ab457dd96812b
code
2373
using TERMIOS using Test const c_iflag = Sys.islinux() ? 0x00000500 : 0x0000000000006b02 const c_oflag = Sys.islinux() ? 0x00000005 : 0x0000000000000003 const c_cflag = Sys.islinux() ? 0x000000bf : 0x0000000000004b00 const c_lflag = Sys.islinux() ? 0x00008a3b : 0x00000000000005cf const c_cc = Sys.islinux() ? (0x03, 0x1c, 0x7f, 0x15, 0x04, 0x00, 0x01, 0x00, 0x11, 0x13, 0x1a, 0x00, 0x12, 0x0f, 0x17, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) : (0x04, 0xff, 0xff, 0x7f, 0x17, 0x15, 0x12, 0x00, 0x03, 0x1c, 0x1a, 0x19, 0x11, 0x13, 0x16, 0x0f, 0x01, 0x00, 0x14, 0x00) const c_ispeed = Sys.islinux() ? 0x0000000f : 0x0000000000009600 const c_ospeed = Sys.islinux() ? 0x0000000f : 0x0000000000009600 @testset "All" begin @testset "termios.jl stdout" begin term = TERMIOS.termios() TERMIOS.tcgetattr(stdout, term) @test term.c_iflag == c_iflag @test term.c_oflag == c_oflag @test term.c_cflag == c_cflag @test term.c_lflag == c_lflag @test term.c_cc.ref._c_cc == c_cc @test term.c_ispeed == c_ispeed @test term.c_ospeed == c_ospeed term = TERMIOS.termios() TERMIOS.tcgetattr(0, term) @test term.c_iflag == c_iflag @test term.c_oflag == c_oflag @test term.c_cflag == c_cflag @test term.c_lflag == c_lflag @test term.c_cc.ref._c_cc == c_cc @test term.c_ispeed == c_ispeed @test term.c_ospeed == c_ospeed term = TERMIOS.termios() TERMIOS.tcgetattr(0, term) @test TERMIOS.cfgetispeed(term) == term.c_ispeed @test TERMIOS.cfgetospeed(term) == term.c_ospeed TERMIOS.cfsetispeed(term, term.c_ispeed) @test TERMIOS.cfgetispeed(term) == term.c_ispeed TERMIOS.cfsetospeed(term, term.c_ospeed) @test TERMIOS.cfgetospeed(term) == term.c_ospeed term = TERMIOS.termios() TERMIOS.tcgetattr(0, term) TERMIOS.tcsetattr(0, TERMIOS.TCSANOW, term) @test TERMIOS.cfgetispeed(term) == term.c_ispeed @test TERMIOS.cfgetospeed(term) == term.c_ospeed end @testset "termios.jl stdin" begin term = TERMIOS.termios() TERMIOS.tcgetattr(stdin, term) @test term.c_iflag == c_iflag @test term.c_oflag == c_oflag @test term.c_cflag == c_cflag @test term.c_lflag == c_lflag @test term.c_cc.ref._c_cc == c_cc @test term.c_ispeed == c_ispeed @test term.c_ospeed == c_ospeed end end
TERMIOS
https://github.com/kdheepak/TERMIOS.jl.git
[ "MIT" ]
0.3.0
658f5aff8f64b475c4b3c3c8da6ab457dd96812b
docs
1347
# TERMIOS [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://kdheepak.github.io/TERMIOS.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://kdheepak.github.io/TERMIOS.jl/dev) [![Build Status](https://travis-ci.com/kdheepak/TERMIOS.jl.svg?branch=master)](https://travis-ci.com/kdheepak/TERMIOS.jl) [![Codecov](https://codecov.io/gh/kdheepak/TERMIOS.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kdheepak/TERMIOS.jl) [![Coveralls](https://coveralls.io/repos/github/kdheepak/TERMIOS.jl/badge.svg?branch=master)](https://coveralls.io/github/kdheepak/TERMIOS.jl?branch=master) This package provides an interface to the POSIX calls for tty I/O control. > The termios functions describe a general terminal interface that is provided to control asynchronous communications ports. For a complete description of these calls, see the [termios(3)](http://man7.org/linux/man-pages/man3/termios.3.html) manual page. All functions in this package take a `RawFD` file descriptor `fd` as their first argument. This can also be an integer file descriptor or a concrete instance of `Base.LibuvStream`, such as `stdin` or `stdout`. This package defines the constants needed to work with the functions provided. You may need to refer to your system documentation for more information on using this package.
TERMIOS
https://github.com/kdheepak/TERMIOS.jl.git
[ "MIT" ]
0.3.0
658f5aff8f64b475c4b3c3c8da6ab457dd96812b
docs
761
# Usage ### Example ```julia using TERMIOS const T = TERMIOS options = T.termios() T.tcgetattr(stdin, options) # Disable ctrl-c, disable CR translation, disable stripping 8th bit (unicode), disable parity options.c_iflag &= ~(T.BRKINT | T.ICRNL | T.INPCK | T.ISTRIP | T.IXON) # Disable output processing options.c_oflag &= ~(T.OPOST) # Disable parity options.c_cflag &= ~(T.CSIZE | T.PARENB) # Set character size to 8 bits (unicode) options.c_cflag |= (T.CS8) # Disable echo, disable canonical mode (line mode), disable input processing, disable signals options.c_lflag &= ~(T.ECHO | T.ICANON | T.IEXTEN | T.ISIG) options.c_cc[T.VMIN] = 0 options.c_cc[T.VTIME] = 1 T.tcsetattr(stdin, T.TCSANOW, options) ``` ### API ```@autodocs Modules = [TERMIOS] ```
TERMIOS
https://github.com/kdheepak/TERMIOS.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
5447
using CorticalSurfaces using CorticalParcels using CIFTI using JLD using Pkg.Artifacts # first we need to set up a surface to use (refer to CorticalSurfaces.jl for details); data_dir = artifact"CIFTI_test_files" surf_file = joinpath(data_dir, "MSC01.jld") temp = load(surf_file) hems = Dict() for hem in LR coords = temp["pointsets"]["midthickness"][hem] mw = temp["medial wall"][hem] triangles = temp["triangle"][hem] # required for adjacency calculations below hems[hem] = Hemisphere(hem, coords, mw; triangles = triangles) make_adjacency_list!(hems[hem]) make_adjacency_matrix!(hems[hem]) end c = CorticalSurface(hems[L], hems[R]) # note that the two adjacency items created above, :A and :neighbors, are required # for many parcelwise ops (particularly ones that require graph traversal such # as erode!() and dilate!()), though you could still do some things without them # for how we'll just deal with one hemisphere, the left one: hem = c[L] # given the vertex space defined in the left Hemisphere struct above, # now make a "parcel" within that space consisting of just a single vertex, 17344 p1 = Parcel(hem, [17344]) # make another parcel at vertex 8423 (which happens to be 30mm from the previous one) p2 = Parcel(hem, [8423]) # grow the first parcel a couple of times, and check the size afterwards ... dilate!(p1) # 6 vertices are added, so size is now 7 @assert size(p1) == 7 dilate!(p1) # 12 vertices are added, so size is now 19 @assert size(p1) == 19 # make a copy of p1 and do some various resizing p1′ = Parcel(p1) dilate!(p1′) erode!(p1′) @assert isequal(p1, p1′) # resize to an arbitrary size, say 500 vertices, by repeated dilation: resize!(p1′, 500) # or shrink (erode) it to 100 vertices: resize!(p1′, 100) # dilate it once more, but don't add more than 10 new vertices: dilate!(p1′; limit = 10) @assert size(p1′) <= 110 # if you want to see which vertices belong to a parcel: vertices(p1′) # remove all vertices from the parcel clear!(p1′) # grow p2 iteratively until there's only a small margin or interstice # separating it from p1: while sum(interstices(p1, p2)) == 0 n_new_verts = dilate!(p2) println("Added $n_new_verts vertices to p2 (total size: $(size(p2)))") end # they still don't quite overlap yet ... @assert overlap(p1, p2) == 0 @assert complement(p1, p2) == size(p1) @assert complement(p2, p1) == size(p2) # but there's only a thin margin or interstice, 3 vertices long, between them: margin_vertices = findall(interstices(p1, p2)) @assert length(margin_vertices) == 3 # now make an empty parcellation within the space of our left Hemisphere struct, # using keys (parcel IDs) of type Int: px = HemisphericParcellation{Int}(hem) # give it *copies* of the two parcels we were working with above px[1] = Parcel(p1) px[2] = Parcel(p2) @assert size(px) == 2 # two parcels # now combine parcels 1 and 2 from px; parcel 2 will be incorporated into # parcel 1, along with the 3 interstitial vertices in between, and then deleted merge!(px, 1, 2) @assert size(px) == 1 # just one parcel remains now @assert size(px[1]) == size(p1) + size(p2) + length(margin_vertices) # now reverse those operations and go back to the way it was a minute ago setdiff!(px[1], p2) setdiff!(px[1], margin_vertices) @assert isequal(px[1], p1) # add a copy of parcel #2 back in px[2] = Parcel(p2) # add just one vertex from the interstices so that the two parcels become connected append!(px[1], margin_vertices[1]) # make a new parcel p3 just for demo purposes p3 = Parcel(px[1]) union!(p3, p2) # combine p3 and p2 @assert size(p3) == 1 + size(p1) + size(p2) # now p3 has all the vertices from p1, all the vertices from p2, # plus one vertex linking those two regions; we can cut that vertex # (an articulation point or cut vertex in graph theory terms) and then # get back the two resulting connected components, i.e. recover the # two original parcels p1 and p2 though not necessarily in the same order: orig_parcels = cut(p3) @assert isequal(orig_parcels[1], p2) @assert overlap(orig_parcels[2], p1) == size(p1) - 1 # load in a real parcellation form a CIFTI file: parcel_file = joinpath(data_dir, "test_parcels.dtseries.nii") cifti_data = CIFTI.load(parcel_file) px = BilateralParcellation{Int}(c, cifti_data) # as long as there are no overlapping parcels, you can use vec() on an # AbstractParcellation{T} to recover a simple Vector{T} that matches the original vector # from which it was constructed (except for the fact that the parcellation will # include medial wall vertices; so for comparison we pad the original cifti data # to account for that): @assert vec(px) == pad(vec(cifti_data[LR]), c) # A BilateralParcellation is composed of a left and a right HemisphericParcellation; # you can access them like px[L] and px[R]. Every time you show px, it will display # properties of a few random parcels px[L] px[L] px[L] # some miscellaneous functions: keys(px[L]) # get the parcel IDs (of type T) from HemisphericParcellation{T} px vec(px[L]) # turn a HemisphericParcellation{T} into a Vector{T} unassigned(px[L]) # get a BitVector representing the unassigned vertices in px union(px[L]) # collapse all Parcels within px to a single BitVector nnz(px[L]) # the number of vertices in px that have parcel membership length(px[L]) # the length of px's vector space representation density(px[L]) # proportion of assigned verices: nnz(px) / length(px)
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
992
module CorticalParcels using CIFTI using CorticalSurfaces using Chain using NearestNeighbors using SparseArrays using StatsBase: sample using ThreadsX # import some type-aliasing constants for convenience import CorticalSurfaces: AdjacencyList, AdjacencyMatrix, DistanceMatrix include("types.jl") export Parcel, AbstractParcellation, HemisphericParcellation, BilateralParcellation include("constructors.jl") include("accessors.jl") export vertices, size, length, keys, haskey, values, getindex export vec, union, unassigned, nnz, density include("set_ops.jl") export intersect, union, setdiff, intersect!, union!, setdiff! export overlap, complement include("morphology.jl") export dilate!, erode!, close!, resize! export dilate, erode, interstices, borders include("editing.jl") export setindex!, cut, split, clear!, delete!, append!, merge!, deepcopy include("distances.jl") export DistanceMethod, CentroidToCentroid, ClosestVertices, centroid, distance include("show.jl") end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
4553
import CorticalSurfaces: vertices # ===== Parcel functions ===== """ membership(p) Get a `BitVector` denoting vertexwise parcel membership """ membership(p::Parcel) = p.membership """ vertices(p) Get the vertex indices belonging to a `Parcel`. Indices will be numbered inclusive of medial wall by default. """ vertices(p::Parcel) = findall(p.membership) """ size(p) Get the size (number of non-zero vertices) of a `Parcel`". """ Base.size(p::Parcel) = sum(p.membership) """ length(p) Get the length of the representational space in which a `Parcel` is located. """ Base.length(p::Parcel) = length(p.membership) """ density(p) Get the proportion of member vertices in a `Parcel` relative to the length of its space. """ density(p::Parcel) = size(p) / length(p) Base.getindex(p::Parcel, args...) = getindex(p.membership, args...) Base.isequal(p1::Parcel, p2::Parcel) = p1.surface == p2.surface && p1.membership == p2.membership Base.isequal(p1::Parcel, x::BitVector) = p1.membership == p2.membership Base.:(==)(p1::Parcel, p2::Parcel) = isequal(p1, p2) Base.:(==)(p1::Parcel, x::BitVector) = isequal(p1, p2) CorticalSurfaces.brainstructure(p::Parcel) = brainstructure(p.surface) # ===== Parcellation functions ===== """ size(px) Get the number of Parcels comprising a Parcellation. """ Base.size(px::HemisphericParcellation) = length(px.parcels) Base.size(px::BilateralParcellation) = size(px[L]) + size(px[R]) """ length(px) Get the number of vertices comprising the representation space of a `Parcellation`. """ Base.length(px::AbstractParcellation) = size(px.surface) """ keys(px) Get the IDs of all `Parcel`s within a `Parcellation`. """ Base.keys(px::HemisphericParcellation) = keys(px.parcels) Base.keys(px::BilateralParcellation) = union(keys(px[L]), keys(px[R])) """ haskey(px, k) Check whether `Parcellation{T} px` contains a parcel with key value `k`. """ Base.haskey(px::HemisphericParcellation{T}, k::T) where T = haskey(px.parcels, k) Base.haskey(px::BilateralParcellation{T}, k::T) where T = haskey(px[L], k) || haskey(px[R], k) """ values(px) Access the `Parcel`s in a `Parcellation`. """ Base.values(px::HemisphericParcellation) = values(px.parcels) """ getindex(px, k) Access a single Parcel within a Parcellation via its key of type `T`". """ Base.getindex(px::HemisphericParcellation{T}, k::T) where T = px.parcels[k] Base.getindex(px::BilateralParcellation{T}, k::T) where T = haskey(px[L], k) ? px[L][k] : px[R][k] Base.getindex(px::BilateralParcellation, b::BrainStructure) = px.parcels[b] """ vec(px) Convert a `HemisphericParcellation` from its internal `Dict`-based representation into a `Vector{T}`. `T` must have a `zeros(T, ...)` method. Warning: this is not a sensible representation in the event that any `Parcel`s overlap. """ function Base.vec(px::HemisphericParcellation{T}) where T <: Real out = zeros(T, length(px)) for k in keys(px) @inbounds out[vertices(px[k])] .= k end return out end """ vec(px) Convert a `BilateralParcellation` from its internal `Dict`-based representation into a `Vector{T}`. `T` must have a `zeros(T, ...)` method. Warning: this is not a sensible representation in the event that any `Parcel`s overlap. """ function Base.vec(px::BilateralParcellation{T}) where T <: Real return vcat(vec(px[L]), vec(px[R])) end function Base.union(px::HemisphericParcellation) out = falses(length(px)) for k in keys(px) out .|= px[k].membership end return out end """ unassigned(px) Get a `BitVector` identifying unassigned vertices (`1`) in a parcellation. """ unassigned(px::HemisphericParcellation) = .!union(px) unassigned(px::BilateralParcellation) = vcat(unassigned(px[L]), unassigned(px[R])) """ nnz(px) Get the number of vertices within a parcellation that are assigned to at least one `Parcel`. """ nnz(px::HemisphericParcellation) = sum(union(px)) nnz(px::BilateralParcellation) = nnz(px[L]) + nnz(px[R]) """ density(px) Get the proportion of assigned parcel vertices of a parcellation relative to the total number of vertices in its surface representation. """ density(px::AbstractParcellation) = nnz(px) / length(px) function Base.:(==)(px1::HemisphericParcellation, px2::HemisphericParcellation) px1.surface == px2.surface || return false all([haskey(px2, k) && px1[k] == px2[k] for k in keys(px1)]) || return false return true end function Base.:(==)(px1::BilateralParcellation, px2::BilateralParcellation) return px1[L] == px2[L] && px1[R] == px2[R] end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git
[ "MIT" ]
0.9.0
1a6437e64eda050221e0886b7c37e9f3535028bf
code
802
function Base.getindex( c::CiftiStruct{E, CIFTI.BRAIN_MODELS(), C}, p::Parcel ) where {E, C} hem = brainstructure(p.surface) n_out = length(dts.brainstructure[hem]) nverts_excl = size(p.surface, Exclusive()) nverts_excl == n_out || error("Provided parcel doesn't match CIFTI's vertex space") verts = c.brainstructure[hem][collapse(vertices(p), p.surface)] return c[verts, :] end function Base.getindex( c::CiftiStruct{E, CIFTI.BRAIN_MODELS(), CIFTI.BRAIN_MODELS()}, p::Parcel ) where E hem = brainstructure(p.surface) n_out = length(dts.brainstructure[hem]) nverts_excl = size(p.surface, Exclusive()) nverts_excl == n_out || error("Provided parcel doesn't match CIFTI's vertex space") verts = c.brainstructure[hem][collapse(vertices(p), p.surface)] return c[verts, verts] end
CorticalParcels
https://github.com/myersm0/CorticalParcels.jl.git