licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
8997
# [-Q - ρI Aᵀ I -I ][ Δx ] [ -rc ] # [ A δI 0 0 ][ Δy ] [ -rb ] # [ S_l 0 X-L 0 ][Δs_l] = [σμe - (X-L)S_le] # [ -S_u 0 0 U-X][Δs_u] [σμe + (U-X)S_ue] export K3KrylovParams """ Type to use the K3 formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K3KrylovParams(; uplo = :L, kmethod = :qmr, preconditioner = Identity(), rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e3 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:qmr` - `:bicgstab` - `:usymqr` """ mutable struct K3KrylovParams{T, PT} <: NewtonKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K3KrylovParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :qmr, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = T(sqrt(eps()) * 1e5), δ0::T = T(sqrt(eps()) * 1e5), ρ_min::T = T(1e3 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K3KrylovParams( uplo, kmethod, preconditioner, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K3KrylovParams(; kwargs...) = K3KrylovParams{Float64}(; kwargs...) mutable struct PreallocatedDataK3Krylov{T <: Real, S, L <: LinearOperator, Ksol <: KrylovSolver} <: PreallocatedDataNewtonKrylov{T, S} rhs::S rhs_scale::Bool regu::Regularization{T} ρv::Vector{T} δv::Vector{T} K::L # augmented matrix (LinearOperator) KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opK3prod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, ρv::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} @views mul!(res[1:nvar], Q, v[1:nvar], -α, β) res[1:nvar] .-= @views (α * ρv[1]) .* v[1:nvar] @. res[ilow] += @views α * v[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[iupp] -= @views α * v[(nvar + ncon + nlow + 1):end] if uplo == :U @views mul!(res[1:nvar], A, v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A', v[1:nvar], α, β) else @views mul!(res[1:nvar], A', v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A, v[1:nvar], α, β) end res[(nvar + 1):(nvar + ncon)] .+= @views (α * δv[1]) .* v[(nvar + 1):(nvar + ncon)] if β == 0 @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (s_l * v[ilow] + x_m_lvar * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) @. res[(nvar + ncon + nlow + 1):end] = @views α * (-s_u * v[iupp] + uvar_m_x * v[(nvar + ncon + nlow + 1):end]) else @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (s_l * v[ilow] + x_m_lvar * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) + β * res[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[(nvar + ncon + nlow + 1):end] = @views α * (-s_u * v[iupp] + uvar_m_x * v[(nvar + ncon + nlow + 1):end]) + β * res[(nvar + ncon + nlow + 1):end] end end function opK3tprod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, ρv::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} @views mul!(res[1:nvar], Q, v[1:nvar], -α, β) res[1:nvar] .-= @views (α * ρv[1]) .* v[1:nvar] @. res[ilow] += @views α * s_l * v[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[iupp] -= @views α * s_u * v[(nvar + ncon + nlow + 1):end] if uplo == :U @views mul!(res[1:nvar], A, v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A', v[1:nvar], α, β) else @views mul!(res[1:nvar], A', v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A, v[1:nvar], α, β) end res[(nvar + 1):(nvar + ncon)] .+= @views (α * δv[1]) .* v[(nvar + 1):(nvar + ncon)] if β == 0 @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (v[ilow] + x_m_lvar * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) @. res[(nvar + ncon + nlow + 1):end] = @views α * (-v[iupp] + uvar_m_x * v[(nvar + ncon + nlow + 1):end]) else @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (v[ilow] + x_m_lvar * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) + β * res[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[(nvar + ncon + nlow + 1):end] = @views α * (-v[iupp] + uvar_m_x * v[(nvar + ncon + nlow + 1):end]) + β * res[(nvar + ncon + nlow + 1):end] end end function PreallocatedData( sp::K3KrylovParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) end ρv = [regu.ρ] δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! K = LinearOperator( T, id.nvar + id.ncon + id.nlow + id.nupp, id.nvar + id.ncon + id.nlow + id.nupp, false, false, (res, v, α, β) -> opK3prod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, fd.Q, fd.A, ρv, δv, v, α, β, fd.uplo, ), (res, v, α, β) -> opK3tprod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, fd.Q, fd.A, ρv, δv, v, α, β, fd.uplo, ), ) rhs = similar(fd.c, id.nvar + id.ncon + id.nlow + id.nupp) KS = init_Ksolver(K, rhs, sp) return PreallocatedDataK3Krylov( rhs, sp.rhs_scale, regu, ρv, δv, K, #K KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK3Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} if step == :aff Δs_l = dda.Δs_l_aff Δs_u = dda.Δs_u_aff else Δs_l = itd.Δs_l Δs_u = itd.Δs_u end pad.rhs[1:(id.nvar + id.ncon)] .= dd pad.rhs[(id.nvar + id.ncon + 1):(id.nvar + id.ncon + id.nlow)] .= Δs_l pad.rhs[(id.nvar + id.ncon + id.nlow + 1):end] .= Δs_u if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.K, pad.rhs, I, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end dd .= @views pad.KS.x[1:(id.nvar + id.ncon)] Δs_l .= @views pad.KS.x[(id.nvar + id.ncon + 1):(id.nvar + id.ncon + id.nlow)] Δs_u .= @views pad.KS.x[(id.nvar + id.ncon + id.nlow + 1):end] return 0 end function update_pad!( pad::PreallocatedDataK3Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.ρv[1] = pad.regu.ρ pad.δv[1] = pad.regu.δ # update_preconditioner!(pad.pdat, pad, itd, pt, id, fd, cnts) return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
7421
# K3S # # [-Q - ρI Aᵀ I -I ][ Δx ] [ -rc ] # [ A δI 0 0 ][ Δy ] [ -rb ] # [ I 0 S_l⁻¹(X-L) 0 ][Δs_l2] = [-(x-l) + σμS_l⁻¹e] # [ -I 0 0 S_u⁻¹(U-X) ][Δs_u2] [-(u-x) + σμS_u⁻¹e] export K3SKrylovParams """ Type to use the K3S formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K3SKrylovParams(; uplo = :L, kmethod = :minres, preconditioner = Identity(), rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e3 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:minres` - `:minres_qlp` - `:symmlq` """ mutable struct K3SKrylovParams{T, PT} <: NewtonKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K3SKrylovParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :minres, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = T(sqrt(eps()) * 1e5), δ0::T = T(sqrt(eps()) * 1e5), ρ_min::T = T(1e2 * sqrt(eps())), δ_min::T = T(1e2 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K3SKrylovParams( uplo, kmethod, preconditioner, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K3SKrylovParams(; kwargs...) = K3SKrylovParams{Float64}(; kwargs...) mutable struct PreallocatedDataK3SKrylov{ T <: Real, S, L <: LinearOperator, Pr <: PreconditionerData, Ksol <: KrylovSolver, } <: PreallocatedDataNewtonKrylov{T, S} pdat::Pr rhs::S rhs_scale::Bool regu::Regularization{T} ρv::Vector{T} δv::Vector{T} x_m_lvar_div_s_l::S uvar_m_x_div_s_u::S K::L # augmented matrix (LinearOperator) KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opK3Sprod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, x_m_lvar_div_s_l::AbstractVector{T}, uvar_m_x_div_s_u::AbstractVector{T}, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, ρv::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} @views mul!(res[1:nvar], Q, v[1:nvar], -α, β) res[1:nvar] .-= @views (α * ρv[1]) .* v[1:nvar] @. res[ilow] += @views α * v[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[iupp] -= @views α * v[(nvar + ncon + nlow + 1):end] if uplo == :U @views mul!(res[1:nvar], A, v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A', v[1:nvar], α, β) else @views mul!(res[1:nvar], A', v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A, v[1:nvar], α, β) end res[(nvar + 1):(nvar + ncon)] .+= @views (α * δv[1]) .* v[(nvar + 1):(nvar + ncon)] if β == 0 @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (v[ilow] + x_m_lvar_div_s_l * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) @. res[(nvar + ncon + nlow + 1):end] = @views α * (-v[iupp] + uvar_m_x_div_s_u * v[(nvar + ncon + nlow + 1):end]) else @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (v[ilow] + x_m_lvar_div_s_l * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) + β * res[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[(nvar + ncon + nlow + 1):end] = @views α * (-v[iupp] + uvar_m_x_div_s_u * v[(nvar + ncon + nlow + 1):end]) + β * res[(nvar + ncon + nlow + 1):end] end end function PreallocatedData( sp::K3SKrylovParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) end ρv = [regu.ρ] δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! x_m_lvar_div_s_l = itd.x_m_lvar ./ pt.s_l uvar_m_x_div_s_u = itd.uvar_m_x ./ pt.s_u K = LinearOperator( T, id.nvar + id.ncon + id.nlow + id.nupp, id.nvar + id.ncon + id.nlow + id.nupp, true, true, (res, v, α, β) -> opK3Sprod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, x_m_lvar_div_s_l, uvar_m_x_div_s_u, fd.Q, fd.A, ρv, δv, v, α, β, fd.uplo, ), ) rhs = similar(fd.c, id.nvar + id.ncon + id.nlow + id.nupp) KS = init_Ksolver(K, rhs, sp) pdat = PreconditionerData(sp, id, fd, regu, K) return PreallocatedDataK3SKrylov( pdat, rhs, sp.rhs_scale, regu, ρv, δv, x_m_lvar_div_s_l, uvar_m_x_div_s_u, K, #K KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK3SKrylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} if step == :aff Δs_l = dda.Δs_l_aff Δs_u = dda.Δs_u_aff else Δs_l = itd.Δs_l Δs_u = itd.Δs_u end pad.rhs[1:(id.nvar + id.ncon)] .= dd @. pad.rhs[(id.nvar + id.ncon + 1):(id.nvar + id.ncon + id.nlow)] = Δs_l / pt.s_l @. pad.rhs[(id.nvar + id.ncon + id.nlow + 1):end] = Δs_u / pt.s_u if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.K, pad.rhs, pad.pdat.P, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end dd .= @views pad.KS.x[1:(id.nvar + id.ncon)] Δs_l .= @views pad.KS.x[(id.nvar + id.ncon + 1):(id.nvar + id.ncon + id.nlow)] Δs_u .= @views pad.KS.x[(id.nvar + id.ncon + id.nlow + 1):end] return 0 end function update_pad!( pad::PreallocatedDataK3SKrylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.ρv[1] = pad.regu.ρ pad.δv[1] = pad.regu.δ @. pad.x_m_lvar_div_s_l = itd.x_m_lvar / pt.s_l @. pad.uvar_m_x_div_s_u = itd.uvar_m_x / pt.s_u update_preconditioner!(pad.pdat, pad, itd, pt, id, fd, cnts) return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
11170
# K3S # # [-Q - ρI Aᵀ I -I ][ Δx ] [ -rc ] # [ A δI 0 0 ][ Δy ] [ -rb ] # [ I 0 S_l⁻¹(X-L) 0 ][Δs_l2] = [-(x-l) + σμS_l⁻¹e] # [ -I 0 0 S_u⁻¹(U-X) ][Δs_u2] [-(u-x) + σμS_u⁻¹e] export K3SStructuredParams """ Type to use the K3S formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K3SStructuredParams(; uplo = :U, kmethod = :trimr, rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e3, δ0 = sqrt(eps()) * 1e4, ρ_min = 1e4 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:tricg` - `:trimr` - `:gpmr` The `mem` argument sould be used only with `gpmr`. """ mutable struct K3SStructuredParams{T} <: NewtonParams{T} uplo::Symbol kmethod::Symbol rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K3SStructuredParams{T}(; uplo::Symbol = :U, kmethod::Symbol = :trimr, rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = T(sqrt(eps()) * 1e3), δ0::T = T(sqrt(eps()) * 1e4), ρ_min::T = T(1e4 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K3SStructuredParams( uplo, kmethod, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K3SStructuredParams(; kwargs...) = K3SStructuredParams{Float64}(; kwargs...) mutable struct PreallocatedDataK3SStructured{ T <: Real, S, L1 <: LinearOperator, L2 <: LinearOperator, L3 <: LinearOperator, Ksol <: KrylovSolver, } <: PreallocatedDataNewtonKrylovStructured{T, S} rhs1::S rhs2::S rhs_scale::Bool regu::Regularization{T} δv::Vector{T} AI::L1 Qreg::AbstractMatrix{T} # regularized Q QregF::LDLFactorizations.LDLFactorization{T, Int, Int, Int} Qregop::L2 # factorized matrix Qreg opBR::L3 KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opAIprod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, s_l::AbstractVector{T}, s_u::AbstractVector{T}, A::AbstractMatrix{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} if β == 0 @. res[(ncon + 1):(ncon + nlow)] = @views α * v[ilow] @. res[(ncon + nlow + 1):end] = @views -α * v[iupp] else @. res[(ncon + 1):(ncon + nlow)] = @views α * v[ilow] + β * res[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views -α * v[iupp] + β * res[(ncon + nlow + 1):end] end if uplo == :U @views mul!(res[1:ncon], A', v, α, β) else @views mul!(res[1:ncon], A, v, α, β) end end function opAItprod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, s_l::AbstractVector{T}, s_u::AbstractVector{T}, A::AbstractMatrix{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} if uplo == :U @views mul!(res, A, v[1:ncon], α, β) else @views mul!(res, A', v[1:ncon], α, β) end @. res[ilow] += @views α * v[(ncon + 1):(ncon + nlow)] @. res[iupp] -= @views α * v[(ncon + nlow + 1):end] end function opBRK3Sprod!( res::AbstractVector{T}, ncon::Int, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, ) where {T <: Real} if β == zero(T) res[1:ncon] .= @views (α / δv[1]) .* v[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α * s_l / x_m_lvar * v[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α * s_u / uvar_m_x * v[(ncon + nlow + 1):end] else res[1:ncon] .= @views (α / δv[1]) .* v[1:ncon] .+ β .* res[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α * s_l / x_m_lvar * v[(ncon + 1):(ncon + nlow)] + β * res[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α * s_u / uvar_m_x * v[(ncon + nlow + 1):end] + β * res[(ncon + nlow + 1):end] end end function update_kresiduals_historyK3S!( res::AbstractResiduals{T}, Qreg::AbstractMatrix{T}, AI::AbstractLinearOperator{T}, δ::T, solx::AbstractVector{T}, soly::AbstractVector{T}, rhs1::AbstractVector{T}, rhs2::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, nvar::Int, ncon::Int, nlow::Int, ilow::Vector{Int}, iupp::Vector{Int}, ) where {T <: Real} if typeof(res) <: ResidualsHistory @views mul!(res.Kres[1:nvar], Symmetric(Qreg, :U), solx) @views mul!(res.Kres[1:nvar], AI', soly, one(T), one(T)) @views mul!(res.Kres[(nvar + 1):end], AI, solx) @. res.Kres[(nvar + 1):(nvar + ncon)] += @views δ * soly[1:ncon] @. res.Kres[(nvar + ncon + 1):(nvar + ncon + nlow)] += @views solx[ilow] + x_m_lvar * soly[(ncon + 1):(ncon + nlow)] / s_l @. res.Kres[(nvar + ncon + nlow + 1):end] += @views -solx[iupp] + uvar_m_x * soly[(ncon + nlow + 1):end] / s_u res.Kres[1:nvar] .-= rhs1 res.Kres[(nvar + 1):end] .-= rhs2 end end function PreallocatedData( sp::K3SStructuredParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) end δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! # LinearOperator to compute [A I -I] v AI = LinearOperator( T, id.ncon + id.nlow + id.nupp, id.nvar, false, false, (res, v, α, β) -> opAIprod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, pt.s_l, pt.s_u, fd.A, v, α, β, fd.uplo, ), (res, v, α, β) -> opAItprod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, pt.s_l, pt.s_u, fd.A, v, α, β, fd.uplo, ), ) Qreg = fd.Q + regu.ρ_min * I QregF = ldl(Symmetric(Qreg, :U)) rhs1 = similar(fd.c, id.nvar) rhs2 = similar(fd.c, id.ncon + id.nlow + id.nupp) kstring = string(sp.kmethod) if sp.kmethod == :gpmr # operator to model the square root of the inverse of Q QregF.d .= sqrt.(QregF.d) Qregop = LinearOperator( T, id.nvar, id.nvar, false, false, (res, v) -> ld_div!(res, QregF, v), (res, v) -> dlt_div!(res, QregF, v), ) # operator to model the square root of the inverse of the bottom right block of K3.5 opBR = LinearOperator( T, id.ncon + id.nlow + id.nupp, id.ncon + id.nlow + id.nupp, true, true, (res, v, α, β) -> opsqrtBRK3Sprod!( res, id.ncon, id.nlow, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, δv, v, α, β, ), ) else # operator to model the inverse of Q Qregop = LinearOperator(T, id.nvar, id.nvar, true, true, (res, v) -> ldiv!(res, QregF, v)) # operator to model the inverse of the bottom right block of K3.5 opBR = LinearOperator( T, id.ncon + id.nlow + id.nupp, id.ncon + id.nlow + id.nupp, true, true, (res, v, α, β) -> opBRK3Sprod!( res, id.ncon, id.nlow, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, δv, v, α, β, ), ) end KS = init_Ksolver(AI', rhs1, sp) return PreallocatedDataK3SStructured( rhs1, rhs2, sp.rhs_scale, regu, δv, AI, Qreg, QregF, Qregop, opBR, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK3SStructured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} Δs_l = itd.Δs_l Δs_u = itd.Δs_u pad.rhs1 .= @views step == :init ? fd.c : dd[1:(id.nvar)] if step == :init && all(pad.rhs1 .== zero(T)) pad.rhs1 .= one(T) end pad.rhs2[1:(id.ncon)] .= @views (step == :init && all(dd[(id.nvar + 1):end] .== zero(T))) ? one(T) : dd[(id.nvar + 1):end] pad.rhs2[(id.ncon + 1):(id.ncon + id.nlow)] .= (step == :init) ? one(T) : Δs_l ./ pt.s_l pad.rhs2[(id.ncon + id.nlow + 1):end] .= (step == :init) ? one(T) : Δs_u ./ pt.s_u if pad.rhs_scale rhsNorm = sqrt(norm(pad.rhs1)^2 + norm(pad.rhs2)^2) pad.rhs1 ./= rhsNorm pad.rhs2 ./= rhsNorm end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.AI', pad.rhs1, pad.rhs2, pad.Qregop, pad.opBR, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_historyK3S!( res, pad.Qreg, pad.AI, pad.regu.δ, pad.KS.x, pad.KS.y, pad.rhs1, pad.rhs2, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.nvar, id.ncon, id.nlow, id.ilow, id.iupp, ) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) kunscale!(pad.KS.y, rhsNorm) end dd[1:(id.nvar)] .= @views pad.KS.x dd[(id.nvar + 1):end] .= @views pad.KS.y[1:(id.ncon)] Δs_l .= @views pad.KS.y[(id.ncon + 1):(id.ncon + id.nlow)] Δs_u .= @views pad.KS.y[(id.ncon + id.nlow + 1):end] return 0 end # function update_upper_Qreg!(Qreg, Q, ρ) # n = size(Qreg, 1) # nnzQ = nnz(Q) # if nnzQ > 0 # for i=1:n # diag_idx = Qreg.colptr[i+1] - 1 # ptrQ = Q.colptr[i+1] - 1 # Qreg.nzval[diag_idx] = (ptrQ ≤ nnzQ && Q.rowval[ptrQ] == i) ? Q.nzval[ptrQ] + ρ : ρ # end # end # end function update_pad!( pad::PreallocatedDataK3SStructured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end # if cnts.k == 4 # update_upper_Qreg!(pad.Qreg, fd.Q, pad.regu.ρ) # pad.Qreg[diagind(pad.Qreg)] .= fd.Q[diagind(fd.Q)] .+ pad.regu.ρ # ldl_factorize!(Symmetric(pad.Qreg, :U), pad.QregF) # end update_krylov_tol!(pad) pad.δv[1] = pad.regu.δ return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
7391
# K3.5 = D K3 D⁻¹ , # [ I 0 0 0 ] # D² = [ 0 I 0 0 ] # [ 0 0 S_l⁻¹ 0 ] # [ 0 0 0 S_u⁻¹] # # [-Q - ρI Aᵀ √S_l -√S_u ][ Δx ] [ -rc ] # [ A δI 0 0 ][ Δy ] [ -rb ] # [ √S_l 0 X-L 0 ][Δs_l2] = D [σμe - (X-L)S_le] # [ -√S_u 0 0 U-X ][Δs_u2] [σμe + (U-X)S_ue] export K3_5KrylovParams """ Type to use the K3.5 formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K3_5KrylovParams(; uplo = :L, kmethod = :minres, preconditioner = Identity(), rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e3 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:minres` - `:minres_qlp` - `:symmlq` """ mutable struct K3_5KrylovParams{T, PT} <: NewtonKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K3_5KrylovParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :minres, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = eps(T)^(1 / 8), δ0::T = eps(T)^(1 / 8), ρ_min::T = T(1e3 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K3_5KrylovParams( uplo, kmethod, preconditioner, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K3_5KrylovParams(; kwargs...) = K3_5KrylovParams{Float64}(; kwargs...) mutable struct PreallocatedDataK3_5Krylov{ T <: Real, S, L <: LinearOperator, Pr <: PreconditionerData, Ksol <: KrylovSolver, } <: PreallocatedDataNewtonKrylov{T, S} pdat::Pr rhs::S rhs_scale::Bool regu::Regularization{T} ρv::Vector{T} δv::Vector{T} K::L # augmented matrix (LinearOperator) KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opK3_5prod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, ρv::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} @views mul!(res[1:nvar], Q, v[1:nvar], -α, β) res[1:nvar] .-= @views (α * ρv[1]) .* v[1:nvar] @. res[ilow] += @views α * sqrt(s_l) * v[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[iupp] -= @views α * sqrt(s_u) * v[(nvar + ncon + nlow + 1):end] if uplo == :U @views mul!(res[1:nvar], A, v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A', v[1:nvar], α, β) else @views mul!(res[1:nvar], A', v[(nvar + 1):(nvar + ncon)], α, one(T)) @views mul!(res[(nvar + 1):(nvar + ncon)], A, v[1:nvar], α, β) end res[(nvar + 1):(nvar + ncon)] .+= @views (α * δv[1]) .* v[(nvar + 1):(nvar + ncon)] if β == 0 @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (sqrt(s_l) * v[ilow] + x_m_lvar * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) @. res[(nvar + ncon + nlow + 1):end] = @views α * (-sqrt(s_u) * v[iupp] + uvar_m_x * v[(nvar + ncon + nlow + 1):end]) else @. res[(nvar + ncon + 1):(nvar + ncon + nlow)] = @views α * (sqrt(s_l) * v[ilow] + x_m_lvar * v[(nvar + ncon + 1):(nvar + ncon + nlow)]) + β * res[(nvar + ncon + 1):(nvar + ncon + nlow)] @. res[(nvar + ncon + nlow + 1):end] = @views α * (-sqrt(s_u) * v[iupp] + uvar_m_x * v[(nvar + ncon + nlow + 1):end]) + β * res[(nvar + ncon + nlow + 1):end] end end function PreallocatedData( sp::K3_5KrylovParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) end ρv = [regu.ρ] δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! K = LinearOperator( T, id.nvar + id.ncon + id.nlow + id.nupp, id.nvar + id.ncon + id.nlow + id.nupp, true, true, (res, v, α, β) -> opK3_5prod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, fd.Q, fd.A, ρv, δv, v, α, β, fd.uplo, ), ) rhs = similar(fd.c, id.nvar + id.ncon + id.nlow + id.nupp) KS = init_Ksolver(K, rhs, sp) pdat = PreconditionerData(sp, id, fd, regu, K) return PreallocatedDataK3_5Krylov( pdat, rhs, sp.rhs_scale, regu, ρv, δv, K, #K KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK3_5Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} if step == :aff Δs_l = dda.Δs_l_aff Δs_u = dda.Δs_u_aff else Δs_l = itd.Δs_l Δs_u = itd.Δs_u end pad.rhs[1:(id.nvar + id.ncon)] .= dd @. pad.rhs[(id.nvar + id.ncon + 1):(id.nvar + id.ncon + id.nlow)] = Δs_l / sqrt(pt.s_l) @. pad.rhs[(id.nvar + id.ncon + id.nlow + 1):end] = Δs_u / sqrt(pt.s_u) if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.K, pad.rhs, pad.pdat.P, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end dd .= @views pad.KS.x[1:(id.nvar + id.ncon)] @. Δs_l = @views pad.KS.x[(id.nvar + id.ncon + 1):(id.nvar + id.ncon + id.nlow)] * sqrt(pt.s_l) @. Δs_u = @views pad.KS.x[(id.nvar + id.ncon + id.nlow + 1):end] * sqrt(pt.s_u) return 0 end function update_pad!( pad::PreallocatedDataK3_5Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.ρv[1] = pad.regu.ρ pad.δv[1] = pad.regu.δ update_preconditioner!(pad.pdat, pad, itd, pt, id, fd, cnts) return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
11084
# K3.5 = D K3 D⁻¹ , # [ I 0 0 0 ] # D² = [ 0 I 0 0 ] # [ 0 0 S_l⁻¹ 0 ] # [ 0 0 0 S_u⁻¹] # # [-Q - ρI Aᵀ √S_l -√S_u ][ Δx ] [ -rc ] # [ A δI 0 0 ][ Δy ] [ -rb ] # [ √S_l 0 X-L 0 ][Δs_l2] = D [σμe - (X-L)S_le] # [ -√S_u 0 0 U-X ][Δs_u2] [σμe + (U-X)S_ue] export K3_5StructuredParams """ Type to use the K3.5 formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K3_5StructuredParams(; uplo = :U, kmethod = :trimr, rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e3, δ0 = sqrt(eps()) * 1e4, ρ_min = 1e4 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:tricg` - `:trimr` - `:gpmr` The `mem` argument sould be used only with `gpmr`. """ mutable struct K3_5StructuredParams{T} <: NewtonParams{T} uplo::Symbol kmethod::Symbol rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K3_5StructuredParams{T}(; uplo::Symbol = :U, kmethod::Symbol = :trimr, rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = 1.0e-10, rtol_min::T = 1.0e-10, ρ0::T = T(sqrt(eps()) * 1e3), δ0::T = T(sqrt(eps()) * 1e4), ρ_min::T = T(1e4 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K3_5StructuredParams( uplo, kmethod, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K3_5StructuredParams(; kwargs...) = K3_5StructuredParams{Float64}(; kwargs...) mutable struct PreallocatedDataK3_5Structured{ T <: Real, S, L1 <: LinearOperator, L2 <: LinearOperator, L3 <: LinearOperator, Ksol <: KrylovSolver, } <: PreallocatedDataNewtonKrylovStructured{T, S} rhs1::S rhs2::S rhs_scale::Bool regu::Regularization{T} δv::Vector{T} As::L1 Qreg::AbstractMatrix{T} # regularized Q QregF::LDLFactorizations.LDLFactorization{T, Int, Int, Int} Qregop::L2 # factorized matrix Qreg opBR::L3 KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opAsprod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, s_l::AbstractVector{T}, s_u::AbstractVector{T}, A::AbstractMatrix{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} if β == 0 @. res[(ncon + 1):(ncon + nlow)] = @views α * sqrt(s_l) * v[ilow] @. res[(ncon + nlow + 1):end] = @views -α * sqrt(s_u) * v[iupp] else @. res[(ncon + 1):(ncon + nlow)] = @views α * sqrt(s_l) * v[ilow] + β * res[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views -α * sqrt(s_u) * v[iupp] + β * res[(ncon + nlow + 1):end] end if uplo == :U @views mul!(res[1:ncon], A', v, α, β) else @views mul!(res[1:ncon], A, v, α, β) end end function opAstprod!( res::AbstractVector{T}, nvar::Int, ncon::Int, ilow::Vector{Int}, iupp::Vector{Int}, nlow::Int, s_l::AbstractVector{T}, s_u::AbstractVector{T}, A::AbstractMatrix{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} if uplo == :U @views mul!(res, A, v[1:ncon], α, β) else @views mul!(res, A', v[1:ncon], α, β) end @. res[ilow] += @views α * sqrt(s_l) * v[(ncon + 1):(ncon + nlow)] @. res[iupp] -= @views α * sqrt(s_u) * v[(ncon + nlow + 1):end] end function opBRK3_5prod!( res::AbstractVector{T}, ncon::Int, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, ) where {T <: Real} if β == zero(T) res[1:ncon] .= @views (α / δv[1]) .* v[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α / x_m_lvar * v[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α / uvar_m_x * v[(ncon + nlow + 1):end] else res[1:ncon] .= @views (α / δv[1]) .* v[1:ncon] .+ β .* res[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α / x_m_lvar * v[(ncon + 1):(ncon + nlow)] + β * res[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α / uvar_m_x * v[(ncon + nlow + 1):end] + β * res[(ncon + nlow + 1):end] end end function update_kresiduals_history!( res::AbstractResiduals{T}, Qreg::AbstractMatrix{T}, As::AbstractLinearOperator{T}, δ::T, solx::AbstractVector{T}, soly::AbstractVector{T}, rhs1::AbstractVector{T}, rhs2::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, nvar::Int, ncon::Int, nlow::Int, ilow::Vector{Int}, iupp::Vector{Int}, ) where {T <: Real} if typeof(res) <: ResidualsHistory @views mul!(res.Kres[1:nvar], Symmetric(Qreg, :U), solx) @views mul!(res.Kres[1:nvar], As', soly, one(T), one(T)) @views mul!(res.Kres[(nvar + 1):end], As, solx) @. res.Kres[(nvar + 1):(nvar + ncon)] += @views δ * soly[1:ncon] @. res.Kres[(nvar + ncon + 1):(nvar + ncon + nlow)] += @views s_l * solx[ilow] + x_m_lvar * soly[(ncon + 1):(ncon + nlow)] @. res.Kres[(nvar + ncon + nlow + 1):end] += @views -s_u * solx[iupp] + uvar_m_x * soly[(ncon + nlow + 1):end] res.Kres[1:nvar] .-= rhs1 res.Kres[(nvar + 1):end] .-= rhs2 end end function PreallocatedData( sp::K3_5StructuredParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) end δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! # LinearOperator to compute [A √S_l -√S_u] v As = LinearOperator( T, id.ncon + id.nlow + id.nupp, id.nvar, false, false, (res, v, α, β) -> opAsprod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, pt.s_l, pt.s_u, fd.A, v, α, β, fd.uplo, ), (res, v, α, β) -> opAstprod!( res, id.nvar, id.ncon, id.ilow, id.iupp, id.nlow, pt.s_l, pt.s_u, fd.A, v, α, β, fd.uplo, ), ) Qreg = fd.Q + regu.ρ_min * I QregF = ldl(Symmetric(Qreg, :U)) rhs1 = similar(fd.c, id.nvar) rhs2 = similar(fd.c, id.ncon + id.nlow + id.nupp) if sp.kmethod == :gpmr # operator to model the square root of the inverse of Q QregF.d .= sqrt.(QregF.d) Qregop = LinearOperator( T, id.nvar, id.nvar, false, false, (res, v) -> ld_div!(res, QregF, v), (res, v) -> dlt_div!(res, QregF, v), ) # operator to model the square root of the inverse of the bottom right block of K3.5 opBR = LinearOperator( T, id.ncon + id.nlow + id.nupp, id.ncon + id.nlow + id.nupp, true, true, (res, v, α, β) -> opsqrtBRK3_5prod!(res, id.ncon, id.nlow, itd.x_m_lvar, itd.uvar_m_x, δv, v, α, β), ) else # operator to model the inverse of Q Qregop = LinearOperator(T, id.nvar, id.nvar, true, true, (res, v) -> ldiv!(res, QregF, v)) # operator to model the inverse of the bottom right block of K3.5 opBR = LinearOperator( T, id.ncon + id.nlow + id.nupp, id.ncon + id.nlow + id.nupp, true, true, (res, v, α, β) -> opBRK3_5prod!(res, id.ncon, id.nlow, itd.x_m_lvar, itd.uvar_m_x, δv, v, α, β), ) end KS = init_Ksolver(As', rhs1, sp) return PreallocatedDataK3_5Structured( rhs1, rhs2, sp.rhs_scale, regu, δv, As, Qreg, QregF, Qregop, opBR, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK3_5Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} Δs_l = itd.Δs_l Δs_u = itd.Δs_u pad.rhs1 .= @views step == :init ? fd.c : dd[1:(id.nvar)] if step == :init && all(pad.rhs1 .== zero(T)) pad.rhs1 .= one(T) end pad.rhs2[1:(id.ncon)] .= @views (step == :init && all(dd[(id.nvar + 1):end] .== zero(T))) ? one(T) : dd[(id.nvar + 1):end] pad.rhs2[(id.ncon + 1):(id.ncon + id.nlow)] .= (step == :init) ? one(T) : Δs_l ./ sqrt.(pt.s_l) pad.rhs2[(id.ncon + id.nlow + 1):end] .= (step == :init) ? one(T) : Δs_u ./ sqrt.(pt.s_u) if pad.rhs_scale rhsNorm = sqrt(norm(pad.rhs1)^2 + norm(pad.rhs2)^2) pad.rhs1 ./= rhsNorm pad.rhs2 ./= rhsNorm end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.As', pad.rhs1, pad.rhs2, pad.Qregop, pad.opBR, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_history!( res, pad.Qreg, pad.As, pad.regu.δ, pad.KS.x, pad.KS.y, pad.rhs1, pad.rhs2, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.nvar, id.ncon, id.nlow, id.ilow, id.iupp, ) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) kunscale!(pad.KS.y, rhsNorm) end dd[1:(id.nvar)] .= @views pad.KS.x dd[(id.nvar + 1):end] .= @views pad.KS.y[1:(id.ncon)] @. Δs_l = @views pad.KS.y[(id.ncon + 1):(id.ncon + id.nlow)] * sqrt(pt.s_l) @. Δs_u = @views pad.KS.y[(id.ncon + id.nlow + 1):end] * sqrt(pt.s_u) return 0 end # function update_upper_Qreg!(Qreg, Q, ρ) # n = size(Qreg, 1) # nnzQ = nnz(Q) # if nnzQ > 0 # for i=1:n # diag_idx = Qreg.colptr[i+1] - 1 # ptrQ = Q.colptr[i+1] - 1 # Qreg.nzval[diag_idx] = (ptrQ ≤ nnzQ && Q.rowval[ptrQ] == i) ? Q.nzval[ptrQ] + ρ : ρ # end # end # end function update_pad!( pad::PreallocatedDataK3_5Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end # if cnts.k == 4 # update_upper_Qreg!(pad.Qreg, fd.Q, pad.regu.ρ) # pad.Qreg[diagind(pad.Qreg)] .= fd.Q[diagind(fd.Q)] .+ pad.regu.ρ # ldl_factorize!(Symmetric(pad.Qreg, :U), pad.QregF) # end update_krylov_tol!(pad) pad.δv[1] = pad.regu.δ return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
2898
function ld_solve!(n, b::AbstractVector, Lp, Li, Lx, D, P) @views y = b[P] LDLFactorizations.ldl_lsolve!(n, y, Lp, Li, Lx) LDLFactorizations.ldl_dsolve!(n, y, D) return b end function dlt_solve!(n, b::AbstractVector, Lp, Li, Lx, D, P) @views y = b[P] LDLFactorizations.ldl_dsolve!(n, y, D) LDLFactorizations.ldl_ltsolve!(n, y, Lp, Li, Lx) return b end function ld_div!( y::AbstractVector{T}, LDL::LDLFactorizations.LDLFactorization{Tf, Ti, Tn, Tp}, b::AbstractVector{T}, ) where {T <: Real, Tf <: Real, Ti <: Integer, Tn <: Integer, Tp <: Integer} y .= b LDL.__factorized || throw(LDLFactorizations.SQDException(error_string)) ld_solve!(LDL.n, y, LDL.Lp, LDL.Li, LDL.Lx, LDL.d, LDL.P) end function dlt_div!( y::AbstractVector{T}, LDL::LDLFactorizations.LDLFactorization{Tf, Ti, Tn, Tp}, b::AbstractVector{T}, ) where {T <: Real, Tf <: Real, Ti <: Integer, Tn <: Integer, Tp <: Integer} y .= b LDL.__factorized || throw(LDLFactorizations.SQDException(error_string)) dlt_solve!(LDL.n, y, LDL.Lp, LDL.Li, LDL.Lx, LDL.d, LDL.P) end function opsqrtBRK3_5prod!( res::AbstractVector{T}, ncon::Int, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, ) where {T <: Real} if β == zero(T) res[1:ncon] .= @views (α / sqrt(δv[1])) .* v[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α / sqrt(x_m_lvar) * v[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α / sqrt(uvar_m_x) * v[(ncon + nlow + 1):end] else res[1:ncon] .= @views (α / sqrt.(δv[1])) .* v[1:ncon] .+ β .* res[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α / sqrt(x_m_lvar) * v[(ncon + 1):(ncon + nlow)] + β * res[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] .= @views α / sqrt(uvar_m_x) * v[(ncon + nlow + 1):end] + β * res[(ncon + nlow + 1):end] end end function opsqrtBRK3Sprod!( res::AbstractVector{T}, ncon::Int, nlow::Int, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, ) where {T <: Real} if β == zero(T) res[1:ncon] .= @views (α / sqrt.(δv[1])) .* v[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α * sqrt(s_l) / sqrt(x_m_lvar) * v[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α * sqrt(s_u) / sqrt(uvar_m_x) * v[(ncon + nlow + 1):end] else res[1:ncon] .= @views (α / sqrt.(δv[1])) .* v[1:ncon] .+ β .* res[1:ncon] @. res[(ncon + 1):(ncon + nlow)] = @views α * sqrt(s_l) / sqrt(x_m_lvar) * v[(ncon + 1):(ncon + nlow)] + β * res[(ncon + 1):(ncon + nlow)] @. res[(ncon + nlow + 1):end] = @views α * sqrt(s_u) / sqrt(uvar_m_x) * v[(ncon + nlow + 1):end] + β * res[(ncon + nlow + 1):end] end end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
659
abstract type NewtonParams{T} <: SolverParams{T} end abstract type NewtonKrylovParams{T, PT <: AbstractPreconditioner} <: NewtonParams{T} end abstract type PreallocatedDataNewton{T <: Real, S} <: PreallocatedData{T, S} end abstract type PreallocatedDataNewtonKrylov{T <: Real, S} <: PreallocatedDataNewton{T, S} end uses_krylov(pad::PreallocatedDataNewtonKrylov) = true abstract type PreallocatedDataNewtonKrylovStructured{T <: Real, S} <: PreallocatedDataNewton{T, S} end include("K3Krylov.jl") include("K3SKrylov.jl") include("K3_5Krylov.jl") # utils for K3_5 gpmr include("K3_5gpmr_utils.jl") include("K3SStructured.jl") include("K3_5Structured.jl")
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
7792
export K2KrylovParams """ Type to use the K2 formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K2KrylovParams(; uplo = :L, kmethod = :minres, preconditioner = Identity(), rhs_scale = true, form_mat = false, equilibrate = false, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e2 * sqrt(eps()), δ_min = 1e2 * sqrt(eps()), itmax = 0, memory = 20) creates a [`RipQP.SolverParams`](@ref). """ mutable struct K2KrylovParams{T, PT, FT <: DataType} <: AugmentedKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool form_mat::Bool equilibrate::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int Tir::FT end function K2KrylovParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :minres, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, form_mat::Bool = false, equilibrate::Bool = false, atol0::T = T(eps(T)^(1 / 4)), rtol0::T = T(eps(T)^(1 / 4)), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = T(sqrt(eps()) * 1e5), δ0::T = T(sqrt(eps()) * 1e5), ρ_min::T = T(1e2 * sqrt(eps(T))), δ_min::T = T(1e2 * sqrt(eps(T))), itmax::Int = 0, mem::Int = 20, Tir::DataType = T, ) where {T <: Real} if equilibrate && !form_mat error("use form_mat = true to use equilibration") end if typeof(preconditioner) <: LDL if !form_mat form_mat = true @info "changed form_mat to true to use this preconditioner" end uplo_fact = get_uplo(preconditioner.fact_alg) if uplo != uplo_fact uplo = uplo_fact @info "changed uplo to :$uplo_fact to use this preconditioner" end end return K2KrylovParams( uplo, kmethod, preconditioner, rhs_scale, form_mat, equilibrate, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, Tir, ) end K2KrylovParams(; kwargs...) = K2KrylovParams{Float64}(; kwargs...) mutable struct MatrixTools{T} diag_Q::SparseVector{T, Int} # Q diag diagind_K::Vector{Int} Deq::Diagonal{T, Vector{T}} C_eq::Diagonal{T, Vector{T}} end convert(::Type{MatrixTools{T}}, mt::MatrixTools) where {T} = MatrixTools( convert(SparseVector{T, Int}, mt.diag_Q), mt.diagind_K, Diagonal(convert(Vector{T}, mt.Deq.diag)), Diagonal(convert(Vector{T}, mt.C_eq.diag)), ) mutable struct PreallocatedDataK2Krylov{ T <: Real, S, M <: Union{LinearOperator{T}, AbstractMatrix{T}}, MT <: Union{MatrixTools{T}, Int}, Pr <: PreconditionerData, Ksol <: KrylovSolver, } <: PreallocatedDataAugmentedKrylov{T, S} pdat::Pr D::S # temporary top-left diagonal rhs::S rhs_scale::Bool equilibrate::Bool regu::Regularization{T} δv::Vector{T} K::M # augmented matrix mt::MT KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opK2prod!( res::AbstractVector{T}, nvar::Int, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, D::AbstractVector{T}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} @views mul!(res[1:nvar], Q, v[1:nvar], -α, β) @. res[1:nvar] += @views α * D * v[1:nvar] if uplo == :U @views mul!(res[1:nvar], A, v[(nvar + 1):end], α, one(T)) @views mul!(res[(nvar + 1):end], A', v[1:nvar], α, β) else @views mul!(res[1:nvar], A', v[(nvar + 1):end], α, one(T)) @views mul!(res[(nvar + 1):end], A, v[1:nvar], α, β) end res[(nvar + 1):end] .+= @views (α * δv[1]) .* v[(nvar + 1):end] end function PreallocatedData( sp::K2KrylovParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) D .= -T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :hybrid) D .= -T(1.0e-2) end δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! if sp.form_mat K, diagind_K, diag_Q = get_K2_matrixdata(id, D, fd.Q, fd.A, regu, sp.uplo, T) if sp.equilibrate Deq = Diagonal(Vector{T}(undef, id.nvar + id.ncon)) Deq.diag .= one(T) C_eq = Diagonal(Vector{T}(undef, id.nvar + id.ncon)) else Deq = Diagonal(Vector{T}(undef, 0)) C_eq = Diagonal(Vector{T}(undef, 0)) end mt = MatrixTools(diag_Q, diagind_K, Deq, C_eq) else K = LinearOperator( T, id.nvar + id.ncon, id.nvar + id.ncon, true, true, (res, v, α, β) -> opK2prod!(res, id.nvar, fd.Q, D, fd.A, δv, v, α, β, fd.uplo), ) mt = 0 end rhs = similar(fd.c, id.nvar + id.ncon) KS = @timeit_debug to "krylov solver setup" init_Ksolver(K, rhs, sp) pdat = @timeit_debug to "preconditioner setup" PreconditionerData(sp, id, fd, regu, D, K) return PreallocatedDataK2Krylov( pdat, D, rhs, sp.rhs_scale, sp.equilibrate, regu, δv, K, #K mt, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} pad.rhs .= pad.equilibrate ? dd .* pad.mt.Deq.diag : dd if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end if step !== :cc out = @timeit_debug to "preconditioner update" update_preconditioner!( pad.pdat, pad, itd, pt, id, fd, cnts, ) pad.kiter = 0 out == 1 && return out end @timeit_debug to "Krylov solve" ksolve!( pad.KS, pad.K, pad.rhs, pad.pdat.P, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) pad.kiter += niterations(pad.KS) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end if pad.equilibrate if typeof(pad.K) <: Symmetric{T, <:Union{SparseMatrixCSC{T}, SparseMatrixCOO{T}}} && step !== :aff rdiv!(pad.K.data, pad.mt.Deq) ldiv!(pad.mt.Deq, pad.K.data) end pad.KS.x .*= pad.mt.Deq.diag end dd .= pad.KS.x return 0 end function update_pad!( pad::PreallocatedDataK2Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) update_D!(pad.D, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, pad.regu.ρ, id.ilow, id.iupp) pad.δv[1] = pad.regu.δ if typeof(pad.K) <: Symmetric{T, <:Union{SparseMatrixCSC{T}, SparseMatrixCOO{T}}} pad.D[pad.mt.diag_Q.nzind] .-= pad.mt.diag_Q.nzval update_diag_K11!(pad.K, pad.D, pad.mt.diagind_K, id.nvar) update_diag_K22!(pad.K, pad.regu.δ, pad.mt.diagind_K, id.nvar, id.ncon) if pad.equilibrate @timeit_debug to "equilibration" equilibrate!( pad.K, pad.mt.Deq, pad.mt.C_eq; ϵ = T(1.0e-2), max_iter = 15, ) end end return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
15313
# Formulation K2: (if regul==:classic, adds additional regularization parmeters -ρ (top left) and δ (bottom right)) # [-Q - D A' ] [x] = rhs # [ A 0 ] [y] export K2LDLParams """ Type to use the K2 formulation with a LDLᵀ factorization. The package [`LDLFactorizations.jl`](https://github.com/JuliaSmoothOptimizers/LDLFactorizations.jl) is used by default. The outer constructor sp = K2LDLParams(; fact_alg = LDLFact(regul = :classic), ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = sqrt(eps()), δ_min = sqrt(eps()), safety_dist_bnd = true) creates a [`RipQP.SolverParams`](@ref). `regul = :dynamic` uses a dynamic regularization (the regularization is only added if the LDLᵀ factorization encounters a pivot that has a small magnitude). `regul = :none` uses no regularization (not recommended). When `regul = :classic`, the parameters `ρ0` and `δ0` are used to choose the initial regularization values. `fact_alg` should be a [`RipQP.AbstractFactorization`](@ref). `safety_dist_bnd = true`: boolean used to determine if the regularization values should be updated (or if the algorithm should transition to another solver in multi mode) if the variables are too close from their bound. """ mutable struct K2LDLParams{T, Fact} <: AugmentedParams{T} uplo::Symbol fact_alg::Fact ρ0::T δ0::T ρ_min::T δ_min::T safety_dist_bnd::Bool function K2LDLParams( fact_alg::AbstractFactorization, ρ0::T, δ0::T, ρ_min::T, δ_min::T, safety_dist_bnd::Bool, ) where {T} return new{T, typeof(fact_alg)}( get_uplo(fact_alg), fact_alg, ρ0, δ0, ρ_min, δ_min, safety_dist_bnd, ) end end K2LDLParams{T}(; fact_alg::AbstractFactorization = LDLFact(:classic), ρ0::T = (T == Float16) ? one(T) : T(sqrt(eps()) * 1e5), δ0::T = (T == Float16) ? one(T) : T(sqrt(eps()) * 1e5), ρ_min::T = (T == Float64) ? 1e-5 * sqrt(eps()) : sqrt(eps(T)), δ_min::T = (T == Float64) ? 1e0 * sqrt(eps()) : sqrt(eps(T)), safety_dist_bnd::Bool = true, ) where {T} = K2LDLParams(fact_alg, ρ0, δ0, ρ_min, δ_min, safety_dist_bnd) K2LDLParams(; kwargs...) = K2LDLParams{Float64}(; kwargs...) mutable struct PreallocatedDataK2LDL{T <: Real, S, F, M <: AbstractMatrix{T}} <: PreallocatedDataAugmentedLDL{T, S} D::S # temporary top-left diagonal regu::Regularization{T} safety_dist_bnd::Bool diag_Q::SparseVector{T, Int} # Q diagonal K::Symmetric{T, M} # augmented matrix K_fact::F # factorized matrix fact_fail::Bool # true if factorization failed diagind_K::Vector{Int} # diagonal indices of J end solver_name(pad::PreallocatedDataK2LDL) = string(string(typeof(pad).name.name)[17:end], " with $(typeof(pad.K_fact).name.name)") # outer constructor function PreallocatedData( sp::K2LDLParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) D .= -T(1.0e0) / 2 regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), sp.fact_alg.regul) K, diagind_K, diag_Q = get_K2_matrixdata(id, D, fd.Q, fd.A, regu, sp.uplo, T) K_fact = init_fact(K, sp.fact_alg) if regu.regul == :dynamic || regu.regul == :hybrid Amax = @views norm(K.data.nzval[diagind_K], Inf) # regu.ρ, regu.δ = T(eps(T)^(3 / 4)), T(eps(T)^(0.45)) # ρ and δ kept for hybrid mode K_fact.LDL.r1, K_fact.LDL.r2 = -T(eps(T)^(3 / 4)), T(eps(T)^(0.45)) K_fact.LDL.tol = Amax * T(eps(T)) K_fact.LDL.n_d = id.nvar elseif regu.regul == :none regu.ρ, regu.δ = zero(T), zero(T) end return PreallocatedDataK2LDL( D, regu, sp.safety_dist_bnd, diag_Q, #diag_Q K, #K K_fact, #K_fact false, diagind_K, #diagind_K ) end init_pad!(pad::PreallocatedDataK2LDL) = generic_factorize!(pad.K, pad.K_fact) # function used to solve problems # solver LDLFactorization function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2LDL{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} ldiv!(pad.K_fact, dd) return 0 end function update_pad!( pad::PreallocatedDataK2LDL{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if (pad.regu.regul == :classic || pad.regu.regul == :hybrid) && cnts.k != 0 # update ρ and δ values, check K diag magnitude out = update_regu_diagK2!( pad.regu, pad.K, pad.diagind_K, itd.μ, id.nvar, cnts, safety_dist_bnd = pad.safety_dist_bnd, ) out == 1 && return out end update_K!( pad.K, pad.D, pad.regu, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.ilow, id.iupp, pad.diag_Q, pad.diagind_K, id.nvar, id.ncon, ) out = factorize_K2!( pad.K, pad.K_fact, pad.D, pad.diag_Q, pad.diagind_K, pad.regu, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.ilow, id.iupp, id.ncon, id.nvar, cnts, itd.qp, ) # update D and factorize K if out == 1 pad.fact_fail = true return out end return 0 end # Init functions for the K2 system when uplo = U function fill_K2_U!( K_colptr, K_rowval, K_nzval, D, Q_colptr, Q_rowval, Q_nzval, A_colptr, A_rowval, A_nzval, δ, ncon, nvar, regul, ) added_coeffs_diag = 0 # we add coefficients that do not appear in Q in position i,i if Q[i,i] = 0 nnz_Q = length(Q_rowval) @inbounds for j = 1:nvar # Q coeffs, tmp diag coefs. K_colptr[j + 1] = Q_colptr[j + 1] + added_coeffs_diag # add previously added diagonal elements for k = Q_colptr[j]:(Q_colptr[j + 1] - 1) nz_idx = k + added_coeffs_diag K_rowval[nz_idx] = Q_rowval[k] K_nzval[nz_idx] = -Q_nzval[k] end k = Q_colptr[j + 1] - 1 if k ≤ nnz_Q && k != 0 && Q_rowval[k] == j nz_idx = K_colptr[j + 1] - 1 K_rowval[nz_idx] = j K_nzval[nz_idx] = D[j] - Q_nzval[k] else added_coeffs_diag += 1 K_colptr[j + 1] += 1 nz_idx = K_colptr[j + 1] - 1 K_rowval[nz_idx] = j K_nzval[nz_idx] = D[j] end end countsum = K_colptr[nvar + 1] # current value of K_colptr[Q.n+j+1] nnz_top_left = countsum # number of coefficients + 1 already added @inbounds for j = 1:ncon countsum += A_colptr[j + 1] - A_colptr[j] if (regul == :classic || regul == :hybrid) && δ > 0 countsum += 1 end K_colptr[nvar + j + 1] = countsum for k = A_colptr[j]:(A_colptr[j + 1] - 1) nz_idx = ((regul == :classic || regul == :hybrid) && δ > 0) ? k + nnz_top_left + j - 2 : k + nnz_top_left - 1 K_rowval[nz_idx] = A_rowval[k] K_nzval[nz_idx] = A_nzval[k] end if (regul == :classic || regul == :hybrid) && δ > 0 nz_idx = K_colptr[nvar + j + 1] - 1 K_rowval[nz_idx] = nvar + j K_nzval[nz_idx] = δ end end end # Init functions for the K2 system when uplo = U function fill_K2_L!( K_colptr, K_rowval, K_nzval, D, Q_colptr, Q_rowval, Q_nzval, A_colptr, A_rowval, A_nzval, δ, ncon, nvar, regul, ) added_coeffs_diag = 0 # we add coefficients that do not appear in Q in position i,i if Q[i,i] = 0 nnz_Q = length(Q_rowval) @inbounds for j = 1:nvar # Q coeffs, tmp diag coefs. k = Q_colptr[j] K_deb_ptr = K_colptr[j] if k ≤ nnz_Q && k != 0 && Q_rowval[k] == j added_diagj = false K_rowval[K_deb_ptr] = j K_nzval[K_deb_ptr] = D[j] - Q_nzval[k] else added_diagj = true added_coeffs_diag += 1 K_rowval[K_deb_ptr] = j K_nzval[K_deb_ptr] = D[j] end nb_col_elements = 1 deb = added_diagj ? Q_colptr[j] : (Q_colptr[j] + 1) # if already addded a new Kjj, do not add Qjj for k = deb:(Q_colptr[j + 1] - 1) nz_idx = K_deb_ptr + nb_col_elements nb_col_elements += 1 K_rowval[nz_idx] = Q_rowval[k] K_nzval[nz_idx] = -Q_nzval[k] end # nb_elemsj_bloc11 = nb_col_elements for k = A_colptr[j]:(A_colptr[j + 1] - 1) nz_idx = K_deb_ptr + nb_col_elements nb_col_elements += 1 K_rowval[nz_idx] = A_rowval[k] + nvar K_nzval[nz_idx] = A_nzval[k] end K_colptr[j + 1] = K_colptr[j] + nb_col_elements end if (regul == :classic || regul == :hybrid) && δ > 0 @inbounds for j = 1:ncon K_prevptr = K_colptr[nvar + j] K_colptr[nvar + j + 1] = K_prevptr + 1 K_rowval[K_prevptr] = nvar + j K_nzval[K_prevptr] = δ end end end function create_K2( id::QM_IntData, D::AbstractVector, Q::SparseMatrixCSC, A::SparseMatrixCSC, diag_Q::SparseVector, regu::Regularization, uplo::Symbol, ::Type{T}, ) where {T} # for classic regul only n_nz = length(D) - length(diag_Q.nzind) + length(A.nzval) + length(Q.nzval) if (regu.regul == :classic || regu.regul == :hybrid) && regu.δ > 0 n_nz += id.ncon end K_colptr = Vector{Int}(undef, id.ncon + id.nvar + 1) K_colptr[1] = 1 K_rowval = Vector{Int}(undef, n_nz) K_nzval = Vector{T}(undef, n_nz) if uplo == :L # [-Q -D 0] # [ A δI] fill_K2_L!( K_colptr, K_rowval, K_nzval, D, Q.colptr, Q.rowval, Q.nzval, A.colptr, A.rowval, A.nzval, regu.δ, id.ncon, id.nvar, regu.regul, ) else # [-Q -D A] # [0 δI] fill_K2_U!( K_colptr, K_rowval, K_nzval, D, Q.colptr, Q.rowval, Q.nzval, A.colptr, A.rowval, A.nzval, regu.δ, id.ncon, id.nvar, regu.regul, ) end return Symmetric( SparseMatrixCSC{T, Int}(id.ncon + id.nvar, id.ncon + id.nvar, K_colptr, K_rowval, K_nzval), uplo, ) end function create_K2( id::QM_IntData, D::AbstractVector, Q::SparseMatrixCOO, A::SparseMatrixCOO, diag_Q::SparseVector, regu::Regularization, uplo::Symbol, ::Type{T}, ) where {T} nvar, ncon = id.nvar, id.ncon δ = regu.δ nnz_Q, nnz_A = nnz(Q), nnz(A) Qrows, Qcols, Qvals = Q.rows, Q.cols, Q.vals Arows, Acols, Avals = A.rows, A.cols, A.vals nnz_tot = nnz_A + nnz_Q + nvar + id.ncon - length(diag_Q.nzind) rows = Vector{Int}(undef, nnz_tot) cols = Vector{Int}(undef, nnz_tot) vals = Vector{T}(undef, nnz_tot) kQ, kA = 1, 1 current_col = 1 added_diag_col = false # true if K[j, j] has been filled for k = 1:nnz_tot if current_col > nvar rows[k] = current_col cols[k] = current_col vals[k] = δ elseif !added_diag_col # add diagonal rows[k] = current_col cols[k] = current_col if kQ ≤ nnz_Q && Qrows[kQ] == Qcols[kQ] == current_col vals[k] = -Qvals[kQ] + D[current_col] kQ += 1 else vals[k] = D[current_col] end added_diag_col = true elseif kQ ≤ nnz_Q && Qcols[kQ] == current_col rows[k] = Qrows[kQ] cols[k] = Qcols[kQ] vals[k] = -Qvals[kQ] kQ += 1 elseif kA ≤ nnz_A && Acols[kA] == current_col rows[k] = Arows[kA] + nvar cols[k] = Acols[kA] vals[k] = Avals[kA] kA += 1 end if (kQ > nnz_Q || Qcols[kQ] != current_col) && (kA > nnz_A || Acols[kA] != current_col) current_col += 1 added_diag_col = false end end return Symmetric(SparseMatrixCOO(nvar + ncon, nvar + ncon, rows, cols, vals), uplo) end function get_K2_matrixdata( id::QM_IntData, D::AbstractVector, Q::Symmetric, A::AbstractSparseMatrix, regu::Regularization, uplo::Symbol, ::Type{T}, ) where {T} diag_Q = get_diag_Q(Q) K = create_K2(id, D, Q.data, A, diag_Q, regu, uplo, T) diagind_K = get_diagind_K(K, uplo) return K, diagind_K, diag_Q end function update_D!( D::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, ρ::T, ilow, iupp, ) where {T} D .= -ρ @. D[ilow] -= s_l / x_m_lvar @. D[iupp] -= s_u / uvar_m_x end function update_diag_K11!(K::Symmetric{T, <:SparseMatrixCSC}, D, diagind_K, nvar) where {T} K.data.nzval[view(diagind_K, 1:nvar)] = D end function update_diag_K11!(K::Symmetric{T, <:SparseMatrixCOO}, D, diagind_K, nvar) where {T} K.data.vals[view(diagind_K, 1:nvar)] = D end function update_diag_K22!(K::Symmetric{T, <:SparseMatrixCSC}, δ, diagind_K, nvar, ncon) where {T} K.data.nzval[view(diagind_K, (nvar + 1):(ncon + nvar))] .= δ end function update_diag_K22!(K::Symmetric{T, <:SparseMatrixCOO}, δ, diagind_K, nvar, ncon) where {T} K.data.vals[view(diagind_K, (nvar + 1):(ncon + nvar))] .= δ end function update_K!( K::Symmetric{T}, D::AbstractVector{T}, regu::Regularization, s_l::AbstractVector{T}, s_u::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, ilow, iupp, diag_Q::AbstractSparseVector{T}, diagind_K, nvar, ncon, ) where {T} if regu.regul == :classic || regu.regul == :hybrid ρ = regu.ρ if regu.δ > 0 update_diag_K22!(K, regu.δ, diagind_K, nvar, ncon) end else ρ = zero(T) end update_D!(D, x_m_lvar, uvar_m_x, s_l, s_u, ρ, ilow, iupp) D[diag_Q.nzind] .-= diag_Q.nzval update_diag_K11!(K, D, diagind_K, nvar) end function update_K_dynamic!( K::Symmetric{T}, K_fact::LDLFactorizations.LDLFactorization{Tlow}, regu::Regularization{Tlow}, diagind_K, cnts::Counters, qp::Bool, ) where {T, Tlow} Amax = @views norm(K.data.nzval[diagind_K], Inf) if Amax > T(1e6) / K_fact.r2 && cnts.c_regu_dim < 8 if Tlow == Float32 && regu.regul == :dynamic return one(Int) # update to Float64 elseif (qp || cnts.c_regu_dim < 4) && regu.regul == :dynamic cnts.c_regu_dim += 1 regu.δ /= 10 K_fact.r2 = regu.δ end end K_fact.tol = Tlow(Amax * eps(Tlow)) end # iteration functions for the K2 system function factorize_K2!( K::Symmetric{T}, K_fact::FactorizationData{Tlow}, D::AbstractVector{T}, diag_Q::AbstractSparseVector{T}, diagind_K, regu::Regularization{Tlow}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, ilow, iupp, ncon, nvar, cnts::Counters, qp::Bool, ) where {T, Tlow} if (regu.regul == :dynamic || regu.regul == :hybrid) && K_fact isa LDLFactorizationData update_K_dynamic!(K, K_fact.LDL, regu, diagind_K, cnts, qp) @timeit_debug to "factorize" generic_factorize!(K, K_fact) elseif regu.regul == :classic @timeit_debug to "factorize" generic_factorize!(K, K_fact) while !RipQP.factorized(K_fact) out = update_regu_trycatch!(regu, cnts) out == 1 && return out cnts.c_catch += 1 cnts.c_catch >= 10 && return 1 update_K!(K, D, regu, s_l, s_u, x_m_lvar, uvar_m_x, ilow, iupp, diag_Q, diagind_K, nvar, ncon) @timeit_debug to "factorize" generic_factorize!(K, K_fact) end else # no Regularization @timeit_debug to "factorize" generic_factorize!(K, K_fact) end return 0 # factorization succeeded end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
3269
# Formulation K2: (if regul==:classic, adds additional regularization parmeters -ρ (top left) and δ (bottom right)) # [-Q - D A' ] [x] = rhs # [ A 0 ] [y] export K2LDLDenseParams """ Type to use the K2 formulation with a LDLᵀ factorization. The outer constructor sp = K2LDLDenseParams(; ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5) creates a [`RipQP.SolverParams`](@ref). """ mutable struct K2LDLDenseParams{T} <: AugmentedParams{T} uplo::Symbol fact_alg::Symbol ρ0::T δ0::T end function K2LDLDenseParams(; fact_alg::Symbol = :bunchkaufman, ρ0::Float64 = sqrt(eps()) * 1e5, δ0::Float64 = sqrt(eps()) * 1e5, ) uplo = :L # mandatory for LDL fact return K2LDLDenseParams(uplo, fact_alg, ρ0, δ0) end mutable struct PreallocatedDataK2LDLDense{T <: Real, S, M <: AbstractMatrix{T}} <: PreallocatedDataAugmentedLDL{T, S} D::S # temporary top-left diagonal regu::Regularization{T} K::M # augmented matrix fact_alg::Symbol end # outer constructor function PreallocatedData( sp::K2LDLDenseParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), 1e-5 * sqrt(eps(T)), 1e0 * sqrt(eps(T)), :classic) D .= -T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) D .= -T(1.0e-2) end K = Symmetric(zeros(T, id.nvar + id.ncon, id.nvar + id.ncon), :L) K.data[1:(id.nvar), 1:(id.nvar)] .= .-fd.Q.data .+ Diagonal(D) K.data[(id.nvar + 1):(id.nvar + id.ncon), 1:(id.nvar)] .= fd.A K.data[view(diagind(K), (id.nvar + 1):(id.nvar + id.ncon))] .= regu.δ if sp.fact_alg == :bunchkaufman bunchkaufman!(K) elseif sp.fact_alg == :ldl ldl_dense!(K) end return PreallocatedDataK2LDLDense( D, regu, K, #K sp.fact_alg, ) end # function used to solve problems # solver LDLFactorization function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2LDLDense{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} ldiv_dense!(pad.K, dd) return 0 end function update_pad!( pad::PreallocatedDataK2LDLDense{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end pad.D .= -pad.regu.ρ @. pad.D[id.ilow] -= pt.s_l / itd.x_m_lvar @. pad.D[id.iupp] -= pt.s_u / itd.uvar_m_x pad.K.data[1:(id.nvar), 1:(id.nvar)] .= .-fd.Q.data .+ Diagonal(pad.D) pad.K.data[(id.nvar + 1):(id.nvar + id.ncon), 1:(id.nvar)] .= fd.A pad.K.data[(id.nvar + 1):(id.nvar + id.ncon), (id.nvar + 1):(id.nvar + id.ncon)] .= zero(T) pad.K.data[view(diagind(pad.K), (id.nvar + 1):(id.nvar + id.ncon))] .= pad.regu.δ if pad.fact_alg == :bunchkaufman bunchkaufman!(pad.K) elseif pad.fact_alg == :ldl ldl_dense!(pad.K) end return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
5127
export K2StructuredParams """ Type to use the K2 formulation with a structured Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). This only works for solving Linear Problems. The outer constructor K2StructuredParams(; uplo = :L, kmethod = :trimr, rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ_min = 1e2 * sqrt(eps()), δ_min = 1e2 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:tricg` - `:trimr` - `:gpmr` The `mem` argument sould be used only with `gpmr`. """ mutable struct K2StructuredParams{T} <: AugmentedParams{T} uplo::Symbol kmethod::Symbol rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ_min::T δ_min::T itmax::Int mem::Int end function K2StructuredParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :trimr, rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ_min::T = T(1e2 * sqrt(eps(T))), δ_min::T = T(1e2 * sqrt(eps(T))), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K2StructuredParams( uplo, kmethod, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ_min, δ_min, itmax, mem, ) end K2StructuredParams(; kwargs...) = K2StructuredParams{Float64}(; kwargs...) mutable struct PreallocatedDataK2Structured{T <: Real, S, Ksol <: KrylovSolver} <: PreallocatedDataAugmentedKrylovStructured{T, S} E::S # temporary top-left diagonal invE::S ξ1::S ξ2::S rhs_scale::Bool regu::Regularization{T} KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function PreallocatedData( sp::K2StructuredParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values E = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sqrt(eps()) * 1e5), T(sqrt(eps()) * 1e5), T(sp.ρ_min), T(sp.δ_min), :classic) E .= T(1.0e0) / 2 else regu = Regularization( T(sqrt(eps()) * 1e5), T(sqrt(eps()) * 1e5), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic, ) E .= T(1.0e-2) end if regu.δ_min == zero(T) # gsp for gpmr regu.δ = zero(T) end invE = similar(E) invE .= one(T) ./ E ξ1 = similar(fd.c, id.nvar) ξ2 = similar(fd.c, id.ncon) KS = init_Ksolver(fd.A', fd.b, sp) return PreallocatedDataK2Structured( E, invE, ξ1, ξ2, sp.rhs_scale, regu, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function update_kresiduals_history!( res::AbstractResiduals{T}, E::AbstractVector{T}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, δ::T, solx::AbstractVector{T}, soly::AbstractVector{T}, ξ1::AbstractVector{T}, ξ2::AbstractVector{T}, nvar::Int, ) where {T <: Real} if typeof(res) <: ResidualsHistory @views mul!(res.Kres[1:nvar], A', soly) @. res.Kres[1:nvar] += -E * solx - ξ1 @views mul!(res.Kres[(nvar + 1):end], A, solx) @. res.Kres[(nvar + 1):end] += δ * soly - ξ2 end end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} pad.ξ1 .= @views step == :init ? fd.c : dd[1:(id.nvar)] pad.ξ2 .= @views (step == :init && all(dd[(id.nvar + 1):end] .== zero(T))) ? one(T) : dd[(id.nvar + 1):end] if pad.rhs_scale rhsNorm = sqrt(norm(pad.ξ1)^2 + norm(pad.ξ2)^2) pad.ξ1 ./= rhsNorm pad.ξ2 ./= rhsNorm end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, fd.A', pad.ξ1, pad.ξ2, Diagonal(pad.invE), (one(T) / pad.regu.δ) .* I, verbose = 0, atol = pad.atol, rtol = pad.rtol, gsp = (pad.regu.δ == zero(T)), itmax = pad.itmax, ) update_kresiduals_history!( res, pad.E, fd.A, pad.regu.δ, pad.KS.x, pad.KS.y, pad.ξ1, pad.ξ2, id.nvar, ) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) kunscale!(pad.KS.y, rhsNorm) end dd[1:(id.nvar)] .= pad.KS.x dd[(id.nvar + 1):end] .= pad.KS.y return 0 end function update_pad!( pad::PreallocatedDataK2Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.E .= pad.regu.ρ @. pad.E[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.E[id.iupp] += pt.s_u / itd.uvar_m_x @. pad.invE = one(T) / pad.E return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
6304
export K2_5KrylovParams """ Type to use the K2.5 formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K2_5KrylovParams(; uplo = :L, kmethod = :minres, preconditioner = Identity(), rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e2 * sqrt(eps()), δ_min = 1e2 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:minres` - `:minres_qlp` - `:symmlq` """ mutable struct K2_5KrylovParams{T, PT} <: AugmentedKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K2_5KrylovParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :minres, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, atol0::T = 1.0e-4, rtol0::T = 1.0e-4, atol_min::T = 1.0e-10, rtol_min::T = 1.0e-10, ρ0::T = sqrt(eps()) * 1e5, δ0::T = sqrt(eps()) * 1e5, ρ_min::T = 1e2 * sqrt(eps()), δ_min::T = 1e3 * sqrt(eps()), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K2_5KrylovParams( uplo, kmethod, preconditioner, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K2_5KrylovParams(; kwargs...) = K2_5KrylovParams{Float64}(; kwargs...) mutable struct PreallocatedDataK2_5Krylov{ T <: Real, S, L <: LinearOperator, Pr <: PreconditionerData, Ksol <: KrylovSolver, } <: PreallocatedDataAugmentedKrylov{T, S} pdat::Pr D::S # temporary top-left diagonal sqrtX1X2::S # vector to scale K2 to K2.5 tmp1::S # temporary vector for products tmp2::S # temporary vector for products rhs::S rhs_scale::Bool regu::Regularization{T} δv::Vector{T} K::L # augmented matrix KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opK2_5prod!( res::AbstractVector{T}, nvar::Int, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, D::AbstractVector{T}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, sqrtX1X2::AbstractVector{T}, tmp1::AbstractVector{T}, tmp2::AbstractVector{T}, δv::AbstractVector{T}, v::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} @. tmp2 = @views sqrtX1X2 * v[1:nvar] mul!(tmp1, Q, tmp2, -α, zero(T)) @. tmp1 = @views sqrtX1X2 * tmp1 + α * D * v[1:nvar] if β == zero(T) res[1:nvar] .= tmp1 else @. res[1:nvar] = @views tmp1 + β * res[1:nvar] end if uplo == :U @views mul!(tmp1, A, v[(nvar + 1):end], α, zero(T)) @. res[1:nvar] += sqrtX1X2 * tmp1 @views mul!(res[(nvar + 1):end], A', tmp2, α, β) else @views mul!(tmp1, A', v[(nvar + 1):end], α, zero(T)) @. res[1:nvar] += sqrtX1X2 * tmp1 @views mul!(res[(nvar + 1):end], A, tmp2, α, β) end res[(nvar + 1):end] .+= @views (α * δv[1]) .* v[(nvar + 1):end] end function PreallocatedData( sp::K2_5KrylovParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) D .= -T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) D .= -T(1.0e-2) end sqrtX1X2 = fill!(similar(D), one(T)) tmp1 = similar(D) tmp2 = similar(D) δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! K = LinearOperator( T, id.nvar + id.ncon, id.nvar + id.ncon, true, true, (res, v, α, β) -> opK2_5prod!(res, id.nvar, fd.Q, D, fd.A, sqrtX1X2, tmp1, tmp2, δv, v, α, β, fd.uplo), ) rhs = similar(fd.c, id.nvar + id.ncon) KS = init_Ksolver(K, rhs, sp) pdat = PreconditionerData(sp, id, fd, regu, D, K) return PreallocatedDataK2_5Krylov( pdat, D, sqrtX1X2, tmp1, tmp2, rhs, sp.rhs_scale, regu, δv, K, #K KS, #K_fact 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2_5Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} # erase dda.Δxy_aff only for affine predictor step with PC method @. pad.rhs[1:(id.nvar)] = @views dd[1:(id.nvar)] * pad.sqrtX1X2 pad.rhs[(id.nvar + 1):end] .= @views dd[(id.nvar + 1):end] if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.K, pad.rhs, pad.pdat.P, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end pad.KS.x[1:(id.nvar)] .*= pad.sqrtX1X2 dd .= pad.KS.x return 0 end function update_pad!( pad::PreallocatedDataK2_5Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) # K2.5 pad.sqrtX1X2 .= one(T) @. pad.sqrtX1X2[id.ilow] *= sqrt(itd.x_m_lvar) @. pad.sqrtX1X2[id.iupp] *= sqrt(itd.uvar_m_x) pad.D .= zero(T) pad.D[id.ilow] .-= pt.s_l pad.D[id.iupp] .*= itd.uvar_m_x pad.tmp1 .= zero(T) pad.tmp1[id.iupp] .-= pt.s_u pad.tmp1[id.ilow] .*= itd.x_m_lvar @. pad.D += pad.tmp1 - pad.regu.ρ pad.δv[1] = pad.regu.δ update_preconditioner!(pad.pdat, pad, itd, pt, id, fd, cnts) return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
8465
# Formulation K2: (if regul==:classic, adds additional Regularization parmeters -ρ (top left) and δ (bottom right)) # [-Q_X - D sqrt(X1X2)A' ] [̃x] = rhs # [ A sqrt(X1x2) 0 ] [y] # where Q_X = sqrt(X1X2) Q sqrt(X1X2) and D = s_l X2 + s_u X1 # and Δ x = sqrt(X1 X2) Δ ̃x export K2_5LDLParams """ Type to use the K2.5 formulation with a LDLᵀ factorization. The package [`LDLFactorizations.jl`](https://github.com/JuliaSmoothOptimizers/LDLFactorizations.jl) is used by default. The outer constructor sp = K2_5LDLParams(; fact_alg = LDLFact(regul = :classic), ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5) creates a [`RipQP.SolverParams`](@ref). `regul = :dynamic` uses a dynamic regularization (the regularization is only added if the LDLᵀ factorization encounters a pivot that has a small magnitude). `regul = :none` uses no regularization (not recommended). When `regul = :classic`, the parameters `ρ0` and `δ0` are used to choose the initial regularization values. `fact_alg` should be a [`RipQP.AbstractFactorization`](@ref). """ mutable struct K2_5LDLParams{T, Fact} <: AugmentedParams{T} uplo::Symbol fact_alg::Fact ρ0::T δ0::T ρ_min::T δ_min::T function K2_5LDLParams( fact_alg::AbstractFactorization, ρ0::T, δ0::T, ρ_min::T, δ_min::T, ) where {T} return new{T, typeof(fact_alg)}(get_uplo(fact_alg), fact_alg, ρ0, δ0, ρ_min, δ_min) end end K2_5LDLParams{T}(; fact_alg::AbstractFactorization = LDLFact(:classic), ρ0::T = (T == Float64) ? sqrt(eps()) * 1e5 : one(T), δ0::T = (T == Float64) ? sqrt(eps()) * 1e5 : one(T), ρ_min::T = (T == Float64) ? 1e-5 * sqrt(eps()) : sqrt(eps(T)), δ_min::T = (T == Float64) ? 1e0 * sqrt(eps()) : sqrt(eps(T)), ) where {T} = K2_5LDLParams(fact_alg, ρ0, δ0, ρ_min, δ_min) K2_5LDLParams(; kwargs...) = K2_5LDLParams{Float64}(; kwargs...) mutable struct PreallocatedDataK2_5LDL{T <: Real, S, M, F <: FactorizationData{T}} <: PreallocatedDataAugmentedLDL{T, S} D::S # temporary top-left diagonal regu::Regularization{T} diag_Q::SparseVector{T, Int} # Q diagonal K::Symmetric{T, M} # augmented matrix K_fact::F # factorized matrix fact_fail::Bool # true if factorization failed diagind_K::Vector{Int} # diagonal indices of J K_scaled::Bool # true if K is scaled with X1X2 end solver_name(pad::PreallocatedDataK2_5LDL) = string(string(typeof(pad).name.name)[17:end], " with $(typeof(pad.K_fact).name.name)") function PreallocatedData( sp::K2_5LDLParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) D .= -T(1.0e0) / 2 regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), sp.fact_alg.regul) K, diagind_K, diag_Q = get_K2_matrixdata(id, D, fd.Q, fd.A, regu, sp.uplo, T) K_fact = init_fact(K, sp.fact_alg) if regu.regul == :dynamic Amax = @views norm(K.data.nzval[diagind_K], Inf) regu.ρ, regu.δ = T(eps(T)^(3 / 4)), T(eps(T)^(0.45)) K_fact.LDL.r1, K_fact.LDL.r2 = -regu.ρ, regu.δ K_fact.LDL.tol = Amax * T(eps(T)) K_fact.LDL.n_d = id.nvar elseif regu.regul == :none regu.ρ, regu.δ = zero(T), zero(T) end generic_factorize!(K, K_fact) return PreallocatedDataK2_5LDL( D, regu, diag_Q, #diag_Q K, #K K_fact, #K_fact false, diagind_K, #diagind_K false, ) end # solver LDLFactorization function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2_5LDL{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} if pad.K_scaled dd[1:(id.nvar)] .*= pad.D ldiv!(pad.K_fact, dd) dd[1:(id.nvar)] .*= pad.D else ldiv!(pad.K_fact, dd) end if step == :cc || step == :IPF # update regularization and restore K. Cannot be done in update_pad since x-lvar and uvar-x will change. out = 0 if pad.regu.regul == :classic # update ρ and δ values, check K diag magnitude out = update_regu_diagK2_5!(pad.regu, pad.D, itd.μ, cnts) end # restore J for next iteration if pad.K_scaled pad.D .= one(T) @. pad.D[id.ilow] /= sqrt(itd.x_m_lvar) @. pad.D[id.iupp] /= sqrt(itd.uvar_m_x) lrmultilply_K!(pad.K, pad.D, id.nvar) pad.K_scaled = false end out == 1 && return out end return 0 end function update_pad!( pad::PreallocatedDataK2_5LDL{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} pad.K_scaled = false update_K!( pad.K, pad.D, pad.regu, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.ilow, id.iupp, pad.diag_Q, pad.diagind_K, id.nvar, id.ncon, ) out = factorize_K2_5!( pad.K, pad.K_fact, pad.D, pad.diag_Q, pad.diagind_K, pad.regu, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.ilow, id.iupp, id.ncon, id.nvar, cnts, itd.qp, ) out == 1 && return out pad.K_scaled = true return out end function lrmultilply_K_CSC!(K_colptr, K_rowval, K_nzval::Vector{T}, v::Vector{T}, nvar) where {T} @inbounds @simd for i = 1:nvar for idx_row = K_colptr[i]:(K_colptr[i + 1] - 1) K_nzval[idx_row] *= v[i] * v[K_rowval[idx_row]] end end n = length(K_colptr) @inbounds @simd for i = (nvar + 1):(n - 1) for idx_row = K_colptr[i]:(K_colptr[i + 1] - 1) if K_rowval[idx_row] <= nvar K_nzval[idx_row] *= v[K_rowval[idx_row]] # multiply row i by v[i] end end end end lrmultilply_K!(K::Symmetric{T, SparseMatrixCSC{T, Int}}, v::Vector{T}, nvar) where {T} = lrmultilply_K_CSC!(K.data.colptr, K.data.rowval, K.data.nzval, v, nvar) function lrmultilply_K!(K::Symmetric{T, SparseMatrixCOO{T, Int}}, v::Vector{T}, nvar) where {T} lmul!(v, K.data) rmul!(K.data, v) end function X1X2_to_D!( D::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, ilow, iupp, ) where {T} D .= one(T) D[ilow] .*= sqrt.(x_m_lvar) D[iupp] .*= sqrt.(uvar_m_x) end function update_Dsquare_diag_K11!(K::SparseMatrixCSC, D, diagind_K, nvar) K.data.nzval[view(diagind_K, 1:nvar)] .*= D .^ 2 end function update_Dsquare_diag_K11!(K::SparseMatrixCOO, D, diagind_K, nvar) K.data.vals[view(diagind_K, 1:nvar)] .*= D .^ 2 end # iteration functions for the K2.5 system function factorize_K2_5!( K::Symmetric{T}, K_fact::FactorizationData{T}, D::AbstractVector{T}, diag_Q::AbstractSparseVector{T}, diagind_K, regu::Regularization{T}, s_l::AbstractVector{T}, s_u::AbstractVector{T}, x_m_lvar::AbstractVector{T}, uvar_m_x::AbstractVector{T}, ilow, iupp, ncon, nvar, cnts::Counters, qp::Bool, ) where {T} X1X2_to_D!(D, x_m_lvar, uvar_m_x, ilow, iupp) lrmultilply_K!(K, D, nvar) if regu.regul == :dynamic # Amax = @views norm(K.nzval[diagind_K], Inf) Amax = minimum(D) if Amax < sqrt(eps(T)) && cnts.c_regu_dim < 8 if cnts.last_sp # restore K for next iteration X1X2_to_D!(D, x_m_lvar, uvar_m_x, ilow, iupp) lrmultilply_K!(K, D, nvar) return one(Int) # update to Float64 elseif qp || cnts.c_regu_dim < 4 cnts.c_regu_dim += 1 regu.δ /= 10 K_fact.LDL.r2 = max(sqrt(Amax), regu.δ) # regu.ρ /= 10 end end K_fact.LDL.tol = min(Amax, T(eps(T))) generic_factorize!(K, K_fact) elseif regu.regul == :classic generic_factorize!(K, K_fact) while !RipQP.factorized(K_fact) out = update_regu_trycatch!(regu, cnts) if out == 1 # restore J for next iteration X1X2_to_D!(D, x_m_lvar, uvar_m_x, ilow, iupp) lrmultilply_K!(K, D, nvar) return out end cnts.c_catch += 1 cnts.c_catch >= 4 && return 1 update_K!(K, D, regu, s_l, s_u, x_m_lvar, uvar_m_x, ilow, iupp, diag_Q, diagind_K, nvar, ncon) X1X2_to_D!(D, x_m_lvar, uvar_m_x, ilow, iupp) K.data.nzval[view(diagind_K, 1:nvar)] .*= D .^ 2 update_diag_K22!(K, regu.δ, diagind_K, nvar, ncon) generic_factorize!(K, K_fact) end else # no Regularization generic_factorize!(K, K_fact) end return 0 # factorization succeeded end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
5423
export K2_5StructuredParams """ Type to use the K2.5 formulation with a structured Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). This only works for solving Linear Problems. The outer constructor K2_5StructuredParams(; uplo = :L, kmethod = :trimr, rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e2 * sqrt(eps()), δ_min = 1e2 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:tricg` - `:trimr` - `:gpmr` The `mem` argument sould be used only with `gpmr`. """ mutable struct K2_5StructuredParams{T} <: AugmentedParams{T} uplo::Symbol kmethod::Symbol rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K2_5StructuredParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :trimr, rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = eps(T)^(1 / 4), δ0::T = eps(T)^(1 / 4), ρ_min::T = T(1e2 * sqrt(eps(T))), δ_min::T = T(1e2 * sqrt(eps(T))), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K2_5StructuredParams( uplo, kmethod, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K2_5StructuredParams(; kwargs...) = K2_5StructuredParams{Float64}(; kwargs...) mutable struct PreallocatedDataK2_5Structured{ T <: Real, S, Ksol <: KrylovSolver, L <: AbstractLinearOperator{T}, } <: PreallocatedDataAugmentedKrylovStructured{T, S} E::S # temporary top-left diagonal invE::S sqrtX1X2::S # vector to scale K2 to K2.5 AsqrtX1X2::L ξ1::S ξ2::S rhs_scale::Bool regu::Regularization{T} KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opAsqrtX1X2tprod!(res, A, v, α, β, sqrtX1X2) mul!(res, transpose(A), v, α, β) res .*= sqrtX1X2 end function PreallocatedData( sp::K2_5StructuredParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values E = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) E .= T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) E .= T(1.0e-2) end if regu.δ_min == zero(T) # gsp for gpmr regu.δ = zero(T) end invE = similar(E) @. invE = one(T) / E sqrtX1X2 = fill!(similar(fd.c), one(T)) ξ1 = similar(fd.c, id.nvar) ξ2 = similar(fd.c, id.ncon) KS = init_Ksolver(fd.A', fd.b, sp) AsqrtX1X2 = LinearOperator( T, id.ncon, id.nvar, false, false, (res, v, α, β) -> mul!(res, fd.A, v .* sqrtX1X2, α, β), (res, v, α, β) -> opAsqrtX1X2tprod!(res, fd.A, v, α, β, sqrtX1X2), ) return PreallocatedDataK2_5Structured( E, invE, sqrtX1X2, AsqrtX1X2, ξ1, ξ2, sp.rhs_scale, regu, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2_5Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} pad.ξ1 .= @views step == :init ? fd.c : dd[1:(id.nvar)] .* pad.sqrtX1X2 pad.ξ2 .= @views (step == :init && all(dd[(id.nvar + 1):end] .== zero(T))) ? one(T) : dd[(id.nvar + 1):end] if pad.rhs_scale rhsNorm = sqrt(norm(pad.ξ1)^2 + norm(pad.ξ2)^2) pad.ξ1 ./= rhsNorm pad.ξ2 ./= rhsNorm end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.AsqrtX1X2', pad.ξ1, pad.ξ2, Diagonal(pad.invE), (one(T) / pad.regu.δ) .* I, verbose = 0, atol = pad.atol, rtol = pad.rtol, gsp = (pad.regu.δ == zero(T)), itmax = pad.itmax, ) update_kresiduals_history!( res, pad.E, fd.A, pad.regu.δ, pad.KS.x, pad.KS.y, pad.ξ1, pad.ξ2, id.nvar, ) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) kunscale!(pad.KS.y, rhsNorm) end @. dd[1:(id.nvar)] = pad.KS.x * pad.sqrtX1X2 dd[(id.nvar + 1):end] .= pad.KS.y return 0 end function update_pad!( pad::PreallocatedDataK2_5Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.sqrtX1X2 .= one(T) @. pad.sqrtX1X2[id.ilow] *= sqrt(itd.x_m_lvar) @. pad.sqrtX1X2[id.iupp] *= sqrt(itd.uvar_m_x) pad.E .= pad.regu.ρ @. pad.E[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.E[id.iupp] += pt.s_u / itd.uvar_m_x @. pad.E *= pad.sqrtX1X2^2 @. pad.invE = one(T) / pad.E return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
845
abstract type AugmentedParams{T} <: SolverParams{T} end abstract type AugmentedKrylovParams{T, PT <: AbstractPreconditioner} <: AugmentedParams{T} end abstract type PreallocatedDataAugmented{T <: Real, S} <: PreallocatedData{T, S} end abstract type PreallocatedDataAugmentedLDL{T <: Real, S} <: PreallocatedDataAugmented{T, S} end uses_krylov(pad::PreallocatedDataAugmentedLDL) = false include("K2LDL.jl") include("K2_5LDL.jl") include("K2LDLDense.jl") abstract type PreallocatedDataAugmentedKrylov{T <: Real, S} <: PreallocatedDataAugmented{T, S} end uses_krylov(pad::PreallocatedDataAugmentedKrylov) = true abstract type PreallocatedDataAugmentedKrylovStructured{T <: Real, S} <: PreallocatedDataAugmented{T, S} end include("K2Krylov.jl") include("K2_5Krylov.jl") include("K2Structured.jl") include("K2_5Structured.jl")
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
11879
export LDLGPU """ preconditioner = LDLGPU(; T = Float32, pos = :C, warm_start = true) Preconditioner for [`K2KrylovParams`](@ref) using a LDL factorization in precision `T`. The `pos` argument is used to choose the type of preconditioning with an unsymmetric Krylov method. It can be `:C` (center), `:L` (left) or `:R` (right). The `warm_start` argument tells RipQP to solve the system with the LDL factorization before using the Krylov method with the LDLFactorization as a preconditioner. """ mutable struct LDLGPU{FloatType <: DataType} <: AbstractPreconditioner T::FloatType pos::Symbol # :L (left), :R (right) or :C (center) warm_start::Bool end LDLGPU(; T::DataType = Float32, pos = :C, warm_start = true) = LDLGPU(T, pos, warm_start) mutable struct LDLGPUData{ T <: Real, S, Tlow, Op <: Union{LinearOperator, LRPrecond}, F <: FactorizationData{Tlow}, } <: PreconditionerData{T, S} K::Symmetric{T, SparseMatrixCSC{T, Int}} L::UnitLowerTriangular{Tlow, CUDA.CUSPARSE.CuSparseMatrixCSC{Tlow, Int32}} # T or Tlow? d::CUDA.CuVector{Tlow, CUDA.Mem.DeviceBuffer} tmp_res::CUDA.CuVector{Tlow, CUDA.Mem.DeviceBuffer} tmp_v::CUDA.CuVector{Tlow, CUDA.Mem.DeviceBuffer} regu::Regularization{Tlow} K_fact::F # factorized matrix fact_fail::Bool # true if factorization failed warm_start::Bool P::Op end precond_name(pdat::LDLGPUData{T, S, Tlow}) where {T, S, Tlow} = string(Tlow, " ", string(typeof(pdat).name.name)[1:(end - 4)]) lowtype(pdat::LDLGPUData{T, S, Tlow}) where {T, S, Tlow} = Tlow function ldl_ldiv_gpu!(res, L, d, x, P, Pinv, tmp_res, tmp_v) @views copyto!(tmp_res, x[P]) ldiv!(tmp_v, L, tmp_res) tmp_v ./= d ldiv!(tmp_res, L', tmp_v) @views copyto!(res, tmp_res[Pinv]) end function PreconditionerData( sp::AugmentedKrylovParams{<:Real, <:LDLGPU}, id::QM_IntData, fd::QM_FloatData{T}, regu::Regularization{T}, D::AbstractVector{T}, K, ) where {T <: Real} Tlow = sp.preconditioner.T @assert fd.uplo == :U regu_precond = Regularization( -Tlow(eps(Tlow)^(3 / 4)), Tlow(eps(Tlow)^(0.45)), sqrt(eps(Tlow)), sqrt(eps(Tlow)), :dynamic, ) K_fact = @timeit_debug to "LDL analyze" init_fact(K, LDLFact(), Tlow) K_fact.LDL.r1, K_fact.LDL.r2 = regu_precond.ρ, regu_precond.δ K_fact.LDL.tol = Tlow(eps(Tlow)) K_fact.LDL.n_d = id.nvar generic_factorize!(K, K_fact) L = UnitLowerTriangular( CUDA.CUSPARSE.CuSparseMatrixCSC( CuVector(K_fact.LDL.Lp), CuVector(K_fact.LDL.Li), CuVector{Tlow}(K_fact.LDL.Lx), size(K), ), ) if !( sp.kmethod == :gmres || sp.kmethod == :dqgmres || sp.kmethod == :gmresir || sp.kmethod == :ir ) d = abs.(CuVector(K_fact.LDL.d)) else d = CuVector(K_fact.LDL.d) end tmp_res = similar(d) tmp_v = similar(d) P = LinearOperator( Tlow, id.nvar + id.ncon, id.nvar + id.ncon, true, true, (res, v, α, β) -> ldl_ldiv_gpu!(res, L, d, v, K_fact.LDL.P, K_fact.LDL.pinv, tmp_res, tmp_v), ) return LDLGPUData{T, typeof(fd.c), Tlow, typeof(P), typeof(K_fact)}( K, L, d, tmp_res, tmp_v, regu_precond, K_fact, false, sp.preconditioner.warm_start, P, ) end function update_preconditioner!( pdat::LDLGPUData{T}, pad::PreallocatedData{T}, itd::IterData{T}, pt::Point{T}, id::QM_IntData, fd::Abstract_QM_FloatData{T}, cnts::Counters, ) where {T <: Real} Tlow = lowtype(pad.pdat) pad.pdat.regu.ρ, pad.pdat.regu.δ = max(pad.regu.ρ, sqrt(eps(Tlow))), max(pad.regu.ρ, sqrt(eps(Tlow))) out = factorize_K2!( pad.pdat.K, pad.pdat.K_fact, pad.D, pad.mt.diag_Q, pad.mt.diagind_K, pad.pdat.regu, pt.s_l, pt.s_u, itd.x_m_lvar, itd.uvar_m_x, id.ilow, id.iupp, id.ncon, id.nvar, cnts, itd.qp, ) # update D and factorize K copyto!(pad.pdat.L.data.nzVal, pad.pdat.K_fact.LDL.Lx) copyto!(pad.pdat.d, pad.pdat.K_fact.LDL.d) if !( typeof(pad.KS) <: GmresSolver || typeof(pad.KS) <: DqgmresSolver || typeof(pad.KS) <: GmresIRSolver || typeof(pad.KS) <: IRSolver ) @. pad.pdat.d = abs(pad.pdat.d) end if out == 1 pad.pdat.fact_fail = true return out end if pad.pdat.warm_start ldl_ldiv_gpu!( pad.KS.x, pdat.L, pdat.d, pad.rhs, pdat.K_fact.LDL.P, pdat.K_fact.LDL.pinv, pdat.tmp_res, pdat.tmp_v, ) warm_start!(pad.KS, pad.KS.x) end end mutable struct K2KrylovGPUParams{T, PT} <: AugmentedKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool equilibrate::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int verbose::Int end function K2KrylovGPUParams{T}(; uplo::Symbol = :U, kmethod::Symbol = :minres, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, equilibrate::Bool = true, atol0::T = T(1.0e-4), rtol0::T = T(1.0e-4), atol_min::T = T(1.0e-10), rtol_min::T = T(1.0e-10), ρ0::T = T(sqrt(eps()) * 1e5), δ0::T = T(sqrt(eps()) * 1e5), ρ_min::T = 1e2 * sqrt(eps(T)), δ_min::T = 1e2 * sqrt(eps(T)), itmax::Int = 0, mem::Int = 20, verbose::Int = 0, ) where {T <: Real} return K2KrylovGPUParams( uplo, kmethod, preconditioner, rhs_scale, equilibrate, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, verbose, ) end K2KrylovGPUParams(; kwargs...) = K2KrylovGPUParams{Float64}(; kwargs...) mutable struct PreallocatedDataK2KrylovGPU{ T <: Real, S, M <: Union{LinearOperator{T}, AbstractMatrix{T}}, MT <: Union{MatrixTools{T}, Int}, Pr <: PreconditionerData, Ksol <: KrylovSolver, } <: PreallocatedDataAugmentedKrylov{T, S} pdat::Pr D::S # temporary top-left diagonal Dcpu::Vector{T} rhs::S rhs_scale::Bool equilibrate::Bool regu::Regularization{T} δv::Vector{T} K::M # augmented matrix Kcpu::Symmetric{T, SparseMatrixCSC{T, Int}} diagQnz::S mt::MT deq::S KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int verbose::Int end function opK2eqprod!( res::AbstractVector{T}, nvar::Int, Q::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, D::AbstractVector{T}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, δv::AbstractVector{T}, deq::AbstractVector{T}, v::AbstractVector{T}, vtmp::AbstractVector{T}, uplo::Symbol, equilibrate::Bool, ) where {T} equilibrate && (vtmp .= deq .* v) @views mul!(res[1:nvar], Q, vtmp[1:nvar], -one(T), zero(T)) @. res[1:nvar] += @views D * vtmp[1:nvar] if uplo == :U @views mul!(res[1:nvar], A, vtmp[(nvar + 1):end], one(T), one(T)) @views mul!(res[(nvar + 1):end], A', vtmp[1:nvar], one(T), zero(T)) else @views mul!(res[1:nvar], A', vtmp[(nvar + 1):end], one(T), one(T)) @views mul!(res[(nvar + 1):end], A, vtmp[1:nvar], one(T), zero(T)) end res[(nvar + 1):end] .+= @views δv[1] .* vtmp[(nvar + 1):end] equilibrate && (res .*= deq) end function PreallocatedData( sp::K2KrylovGPUParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} @assert fd.uplo == :U # init Regularization values D = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) D .= -T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :hybrid) D .= -T(1.0e-2) end Dcpu = Vector(D) δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! Kcpu, diagind_K, diag_Q = get_K2_matrixdata(id, Dcpu, fd.Q, fd.A, regu, sp.uplo, T) if sp.equilibrate Deq = Diagonal(Vector{T}(undef, id.nvar + id.ncon)) Deq.diag .= one(T) C_eq = Diagonal(Vector{T}(undef, id.nvar + id.ncon)) else Deq = Diagonal(Vector{T}(undef, 0)) C_eq = Diagonal(Vector{T}(undef, 0)) end mt = MatrixTools(diag_Q, diagind_K, Deq, C_eq) deq = CuVector(Deq.diag) vtmp = similar(D, id.nvar + id.ncon) K = LinearOperator( T, id.nvar + id.ncon, id.nvar + id.ncon, true, true, (res, v, α, β) -> opK2eqprod!(res, id.nvar, fd.Q, D, fd.A, δv, deq, v, vtmp, fd.uplo, sp.equilibrate), ) diagQnz = similar(deq, length(diag_Q.nzval)) copyto!(diagQnz, diag_Q.nzval) rhs = similar(fd.c, id.nvar + id.ncon) KS = @timeit_debug to "krylov solver setup" init_Ksolver(K, rhs, sp) pdat = @timeit_debug to "preconditioner setup" PreconditionerData(sp, id, fd, regu, D, Kcpu) return PreallocatedDataK2KrylovGPU( pdat, D, Dcpu, rhs, sp.rhs_scale, sp.equilibrate, regu, δv, K, #K Kcpu, diagQnz, mt, deq, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, sp.verbose, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK2KrylovGPU{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} pad.rhs .= pad.equilibrate ? dd .* pad.deq : dd if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end if step !== :cc @timeit_debug to "preconditioner update" update_preconditioner!( pad.pdat, pad, itd, pt, id, fd, cnts, ) end @timeit_debug to "Krylov solve" ksolve!( pad.KS, pad.K, pad.rhs, pad.pdat.P, verbose = pad.verbose, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) pad.kiter += niterations(pad.KS) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end if pad.equilibrate if typeof(pad.Kcpu) <: Symmetric{T, SparseMatrixCSC{T, Int}} && step !== :aff rdiv!(pad.Kcpu.data, pad.mt.Deq) ldiv!(pad.mt.Deq, pad.Kcpu.data) end pad.KS.x .*= pad.deq end dd .= pad.KS.x return 0 end function update_pad!( pad::PreallocatedDataK2KrylovGPU{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) update_D!(pad.D, itd.x_m_lvar, itd.uvar_m_x, pt.s_l, pt.s_u, pad.regu.ρ, id.ilow, id.iupp) pad.δv[1] = pad.regu.δ pad.D[pad.mt.diag_Q.nzind] .-= pad.diagQnz copyto!(pad.Dcpu, pad.D) update_diag_K11!(pad.Kcpu, pad.Dcpu, pad.mt.diagind_K, id.nvar) update_diag_K22!(pad.Kcpu, pad.regu.δ, pad.mt.diagind_K, id.nvar, id.ncon) if pad.equilibrate pad.mt.Deq.diag .= one(T) @timeit_debug to "equilibration" equilibrate!( pad.Kcpu, pad.mt.Deq, pad.mt.C_eq; ϵ = T(1.0e-2), max_iter = 15, ) copyto!(pad.deq, pad.mt.Deq.diag) end return 0 end function get_K2_matrixdata( id::QM_IntData, D::AbstractVector, Q::Symmetric, A::CUDA.CUSPARSE.AbstractCuSparseMatrix, regu::Regularization, uplo::Symbol, ::Type{T}, ) where {T} Qcpu = Symmetric(SparseMatrixCSC(Q.data), uplo) Acpu = SparseMatrixCSC(A) diag_Q = get_diag_Q(Qcpu) K = create_K2(id, D, Qcpu.data, Acpu, diag_Q, regu, uplo, T) diagind_K = get_diagind_K(K, uplo) return K, diagind_K, diag_Q end # function get_mat_QPData(A::CUDA.CUSPARSE.CuSparseMatrixCSC, H, nvar::Int, ncon::Int, uplo::Symbol) # fdA = uplo == :U ? CUDA.CUSPARSE.CuSparseMatrixCSC(SparseMatrixCSC(transpose(SparseMatrixCSC(A)))) : A # fdH = uplo == :U ? CUDA.CUSPARSE.CuSparseMatrixCSC(SparseMatrixCSC(transpose(SparseMatrixCSC(H)))) : H # return fdA, Symmetric(fdH, uplo) # end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
4526
# (A D⁻¹ Aᵀ + δI) Δy = A D⁻¹ ξ₁ + ξ₂ # where D = s_l (x - lvar)⁻¹ + s_u (uvar - x)⁻¹ + ρI, # and the right hand side of K2 is rhs = [ξ₁] # [ξ₂] export K1CholParams """ Type to use the K1 formulation with a Cholesky factorization. The outer constructor sp = K1CholParams(; fact_alg = LDLFact(regul = :classic), ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = sqrt(eps()), δ_min = sqrt(eps())) creates a [`RipQP.SolverParams`](@ref). """ mutable struct K1CholParams{T, Fact} <: NormalParams{T} uplo::Symbol fact_alg::Fact ρ0::T δ0::T ρ_min::T δ_min::T function K1CholParams(fact_alg::AbstractFactorization, ρ0::T, δ0::T, ρ_min::T, δ_min::T) where {T} return new{T, typeof(fact_alg)}(get_uplo(fact_alg), fact_alg, ρ0, δ0, ρ_min, δ_min) end end K1CholParams{T}(; fact_alg::AbstractFactorization = LDLFact(:classic), ρ0::T = (T == Float16) ? one(T) : T(sqrt(eps()) * 1e5), δ0::T = (T == Float16) ? one(T) : T(sqrt(eps()) * 1e5), ρ_min::T = sqrt(eps(T)) * 10, δ_min::T = sqrt(eps(T)) * 10, ) where {T} = K1CholParams(fact_alg, ρ0, δ0, ρ_min, δ_min) K1CholParams(; kwargs...) = K1CholParams{Float64}(; kwargs...) mutable struct PreallocatedDataK1Chol{T <: Real, S, M <: AbstractMatrix{T}, F} <: PreallocatedDataNormalChol{T, S} D::S regu::Regularization{T} K::Symmetric{T, M} # augmented matrix K_fact::F # factorized matrix diagind_K::Vector{Int} # diagonal indices of J rhs::S ξ1tmp::S Aj::S end # outer constructor function PreallocatedData( sp::K1CholParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) D .= T(1.0e0) / 2 regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), sp.fact_alg.regul) if sp.uplo == :L K = fd.A * fd.A' + regu.δ * I K = Symmetric(tril(K), sp.uplo) elseif sp.uplo == :U K = fd.A' * fd.A + regu.δ * I K = Symmetric(triu(K), sp.uplo) end diagind_K = get_diagind_K(K, sp.uplo) K_fact = init_fact(K, sp.fact_alg) generic_factorize!(K, K_fact) rhs = similar(D, id.ncon) ξ1tmp = similar(D) Aj = similar(D) return PreallocatedDataK1Chol(D, regu, K, K_fact, diagind_K, rhs, ξ1tmp, Aj) end # function used to solve problems # solver LDLFactorization function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK1Chol{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} @. pad.ξ1tmp = @views dd[1:(id.nvar)] / pad.D if fd.uplo == :L mul!(pad.rhs, fd.A, pad.ξ1tmp) else mul!(pad.rhs, fd.A', pad.ξ1tmp) end pad.rhs .+= @views dd[(id.nvar + 1):end] ldiv!(pad.K_fact, pad.rhs) if fd.uplo == :U @views mul!(dd[1:(id.nvar)], fd.A, pad.rhs, one(T), -one(T)) else @views mul!(dd[1:(id.nvar)], fd.A', pad.rhs, one(T), -one(T)) end dd[1:(id.nvar)] ./= pad.D dd[(id.nvar + 1):end] .= pad.rhs return 0 end function update_pad!( pad::PreallocatedDataK1Chol{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end pad.D .= pad.regu.ρ @. pad.D[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.D[id.iupp] += pt.s_u / itd.uvar_m_x updateK1!(pad.K, pad.D, fd.A, pad.Aj, pad.regu.δ, id.ncon) generic_factorize!(pad.K, pad.K_fact) return 0 end # (AAᵀ)_(i,j) = ∑ A_(i,k) D_(k,k) A_(j,k) # transpose A if uplo = U function updateK1!( K::Symmetric{T, <:SparseMatrixCSC{T}}, D::AbstractVector{T}, A::SparseMatrixCSC{T}, Aj, δ, ncon, ) where {T} K_colptr, K_rowval, K_nzval = K.data.colptr, K.data.rowval, K.data.nzval A_colptr, A_rowval, A_nzval = A.colptr, A.rowval, A.nzval for j = 1:ncon Aj .= zero(T) for kA = A_colptr[j]:(A_colptr[j + 1] - 1) k = A_rowval[kA] Aj[k] = A_nzval[kA] / D[k] end # Aj is col j of A divided by D for k2 = K_colptr[j]:(K_colptr[j + 1] - 1) i = K_rowval[k2] i ≤ j || continue K_nzval[k2] = (i == j) ? δ : zero(T) for l = A_colptr[i]:(A_colptr[i + 1] - 1) k = A_rowval[l] K_nzval[k2] += A_nzval[l] * Aj[k] end end end end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
3325
# (A D⁻¹ Aᵀ + δI) Δy = A D⁻¹ ξ₁ + ξ₂ # where D = s_l (x - lvar)⁻¹ + s_u (uvar - x)⁻¹ + ρI, # and the right hand side of K2 is rhs = [ξ₁] # [ξ₂] export K1CholDenseParams """ Type to use the K1 formulation with a dense Cholesky factorization. The input QuadraticModel should have `lcon .== ucon`. The outer constructor sp = K1CholDenseParams(; ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5) creates a [`RipQP.SolverParams`](@ref). """ mutable struct K1CholDenseParams{T} <: NormalParams{T} uplo::Symbol ρ0::T δ0::T end function K1CholDenseParams{T}(; ρ0::T = T(sqrt(eps()) * 1e5), δ0::T = T(sqrt(eps()) * 1e5), ) where {T} uplo = :L # mandatory for LDL fact return K1CholDenseParams(uplo, ρ0, δ0) end K1CholDenseParams(; kwargs...) = K1CholDenseParams{Float64}(; kwargs...) mutable struct PreallocatedDataK1CholDense{T <: Real, S, M <: AbstractMatrix{T}} <: PreallocatedDataNormalChol{T, S} D::S # temporary top-left diagonal invD::Diagonal{T, S} AinvD::M rhs::S regu::Regularization{T} K::M # augmented matrix diagindK::StepRange{Int, Int} tmpldiv::S end # outer constructor function PreallocatedData( sp::K1CholDenseParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values D = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), 1e-5 * sqrt(eps(T)), 1e0 * sqrt(eps(T)), :classic) D .= T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) D .= T(1.0e-2) end invD = Diagonal(one(T) ./ D) AinvD = fd.A * invD K = AinvD * fd.A' diagindK = diagind(K) K[diagindK] .+= regu.δ cholesky!(Symmetric(K)) return PreallocatedDataK1CholDense( D, invD, AinvD, similar(D, id.ncon), regu, K, #K diagindK, similar(D, id.ncon), ) end # function used to solve problems # solver LDLFactorization function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK1CholDense{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} pad.rhs .= @views dd[(id.nvar + 1):end] @views mul!(pad.rhs, pad.AinvD, dd[1:(id.nvar)], one(T), one(T)) ldiv!(pad.tmpldiv, UpperTriangular(pad.K)', pad.rhs) ldiv!(pad.rhs, UpperTriangular(pad.K), pad.tmpldiv) @views mul!(dd[1:(id.nvar)], fd.A', pad.rhs, one(T), -one(T)) dd[1:(id.nvar)] ./= pad.D dd[(id.nvar + 1):end] .= pad.rhs return 0 end function update_pad!( pad::PreallocatedDataK1CholDense{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end pad.D .= pad.regu.ρ @. pad.D[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.D[id.iupp] += pt.s_u / itd.uvar_m_x @. pad.invD.diag = one(T) / pad.D mul!(pad.AinvD, fd.A, pad.invD) mul!(pad.K, pad.AinvD, fd.A') pad.K[pad.diagindK] .+= pad.regu.δ cholesky!(Symmetric(pad.K)) return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
5572
# (A D⁻¹ Aᵀ + δI) Δy = A D⁻¹ ξ₁ + ξ₂ # where D = s_l (x - lvar)⁻¹ + s_u (uvar - x)⁻¹ + ρI, # and the right hand side of K2 is rhs = [ξ₁] # [ξ₂] export K1KrylovParams """ Type to use the K1 formulation with a Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). The outer constructor K1KrylovParams(; uplo = :L, kmethod = :cg, preconditioner = Identity(), rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ0 = sqrt(eps()) * 1e5, δ0 = sqrt(eps()) * 1e5, ρ_min = 1e2 * sqrt(eps()), δ_min = 1e2 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:cg` - `:cg_lanczos` - `:cr` - `:minres` - `:minres_qlp` - `:symmlq` """ mutable struct K1KrylovParams{T, PT} <: NormalKrylovParams{T, PT} uplo::Symbol kmethod::Symbol preconditioner::PT rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ0::T δ0::T ρ_min::T δ_min::T itmax::Int mem::Int end function K1KrylovParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :cg, preconditioner::AbstractPreconditioner = Identity(), rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ0::T = T(sqrt(eps()) * 1e5), δ0::T = T(sqrt(eps()) * 1e5), ρ_min::T = T(1e3 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K1KrylovParams( uplo, kmethod, preconditioner, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ0, δ0, ρ_min, δ_min, itmax, mem, ) end K1KrylovParams(; kwargs...) = K1KrylovParams{Float64}(; kwargs...) mutable struct PreallocatedDataK1Krylov{T <: Real, S, L <: LinearOperator, Ksol <: KrylovSolver} <: PreallocatedDataNormalKrylov{T, S} D::S rhs::S rhs_scale::Bool regu::Regularization{T} δv::Vector{T} K::L # augmented matrix (LinearOperator) KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function opK1prod!( res::AbstractVector{T}, D::AbstractVector{T}, A::Union{AbstractMatrix{T}, AbstractLinearOperator{T}}, δv::AbstractVector{T}, v::AbstractVector{T}, vtmp::AbstractVector{T}, α::T, β::T, uplo::Symbol, ) where {T} if uplo == :U mul!(vtmp, A, v) vtmp ./= D mul!(res, A', vtmp, α, β) res .+= (α * δv[1]) .* v else mul!(vtmp, A', v) vtmp ./= D mul!(res, A, vtmp, α, β) res .+= (α * δv[1]) .* v end end function PreallocatedData( sp::K1KrylovParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} D = similar(fd.c, id.nvar) # init Regularization values if iconf.mode == :mono regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sp.ρ_min), T(sp.δ_min), :classic) # Regularization(T(0.), T(0.), T(sp.ρ_min), T(sp.δ_min), :classic) D .= T(1.0e0) / 2 else regu = Regularization(T(sp.ρ0), T(sp.δ0), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic) D .= T(1.0e-2) end δv = [regu.δ] # put it in a Vector so that we can modify it without modifying opK2prod! K = LinearOperator( T, id.ncon, id.ncon, true, true, (res, v, α, β) -> opK1prod!(res, D, fd.A, δv, v, similar(fd.c), α, β, fd.uplo), ) rhs = similar(fd.c, id.ncon) KS = init_Ksolver(K, rhs, sp) return PreallocatedDataK1Krylov( D, rhs, sp.rhs_scale, regu, δv, K, #K KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK1Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} pad.rhs .= @views dd[(id.nvar + 1):end] if fd.uplo == :U @views mul!(pad.rhs, fd.A', dd[1:(id.nvar)] ./ pad.D, one(T), one(T)) else @views mul!(pad.rhs, fd.A, dd[1:(id.nvar)] ./ pad.D, one(T), one(T)) end if pad.rhs_scale rhsNorm = kscale!(pad.rhs) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, pad.K, pad.rhs, I, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) update_kresiduals_history!(res, pad.K, pad.KS.x, pad.rhs) pad.kiter += niterations(pad.KS) if pad.rhs_scale kunscale!(pad.KS.x, rhsNorm) end if fd.uplo == :U @views mul!(dd[1:(id.nvar)], fd.A, pad.KS.x, one(T), -one(T)) else @views mul!(dd[1:(id.nvar)], fd.A', pad.KS.x, one(T), -one(T)) end dd[1:(id.nvar)] ./= pad.D dd[(id.nvar + 1):end] .= pad.KS.x return 0 end function update_pad!( pad::PreallocatedDataK1Krylov{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.δv[1] = pad.regu.δ pad.D .= pad.regu.ρ @. pad.D[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.D[id.iupp] += pt.s_u / itd.uvar_m_x pad.δv[1] = pad.regu.δ # update_preconditioner!(pad.pdat, pad, itd, pt, id, fd, cnts) return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
5085
export K1_1StructuredParams """ Type to use the K1.1 formulation with a structured Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). This only works for solving Linear Problems. The outer constructor K1_1StructuredParams(; uplo = :L, kmethod = :lsqr, rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ_min = 1e3 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:lslq` - `:lsqr` - `:lsmr` """ mutable struct K1_1StructuredParams{T} <: NormalParams{T} uplo::Symbol kmethod::Symbol rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ_min::T δ_min::T itmax::Int mem::Int end function K1_1StructuredParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :lsqr, rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)) / 100, rtol_min::T = sqrt(eps(T)) / 100, ρ_min::T = T(1e3 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K1_1StructuredParams( uplo, kmethod, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ_min, δ_min, itmax, mem, ) end K1_1StructuredParams(; kwargs...) = K1_1StructuredParams{Float64}(; kwargs...) mutable struct PreallocatedDataK1_1Structured{T <: Real, S, Ksol <: KrylovSolver} <: PreallocatedDataNormalKrylovStructured{T, S} E::S # temporary top-left diagonal invE::S ξ1::S ξ2::S # todel Δy0::S ξ12::S # todel rhs_scale::Bool regu::Regularization{T} KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function PreallocatedData( sp::K1_1StructuredParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values E = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sqrt(eps()) * 1e5), T(sqrt(eps()) * 1e5), T(sp.ρ_min), T(sp.δ_min), :classic) E .= T(1.0e0) / 2 else regu = Regularization( T(sqrt(eps()) * 1e5), T(sqrt(eps()) * 1e5), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic, ) E .= T(1.0e-2) end if regu.δ_min == zero(T) # gsp for gpmr regu.δ = zero(T) end invE = similar(E) invE .= one(T) ./ E ξ1 = similar(fd.c, id.nvar) ξ2 = similar(fd.c, id.ncon) Δy0 = similar(fd.c, id.ncon) ξ12 = similar(fd.c, id.nvar) KS = init_Ksolver(fd.uplo == :U ? fd.A : fd.A', ξ12, sp) return PreallocatedDataK1_1Structured( E, invE, ξ1, ξ2, Δy0, ξ12, sp.rhs_scale, regu, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK1_1Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} @assert typeof(dda) <: DescentDirectionAllocsIPF pad.ξ1 .= @views step == :init ? fd.c : dd[1:(id.nvar)] pad.ξ2 .= @views (step == :init && all(dd[(id.nvar + 1):end] .== zero(T))) ? one(T) : dd[(id.nvar + 1):end] if pad.regu.δ == zero(T) pad.Δy0 .= zero(T) else @. pad.Δy0 = -pad.ξ2 / pad.regu.δ end if fd.uplo == :U mul!(pad.ξ12, fd.A, pad.Δy0) else mul!(pad.ξ12, fd.A', pad.Δy0) end pad.ξ12 .+= pad.ξ1 if pad.rhs_scale ξ12Norm = kscale!(pad.ξ12) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, fd.uplo == :U ? fd.A : fd.A', pad.ξ12, Diagonal(pad.invE), pad.regu.δ, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) if pad.rhs_scale kunscale!(pad.KS.x, ξ12Norm) end @. dd[(id.nvar + 1):end] = pad.KS.x - pad.Δy0 if fd.uplo == :U @views mul!(pad.ξ1, fd.A, dd[(id.nvar + 1):end], one(T), -one(T)) else @views mul!(pad.ξ1, fd.A', dd[(id.nvar + 1):end], one(T), -one(T)) end @. dd[1:(id.nvar)] = pad.ξ1 / pad.E update_kresiduals_history_K1struct!( res, fd.uplo == :U ? fd.A' : fd.A, pad.E, pad.invE, # tmp storage vector pad.regu.δ, pad.KS.x, pad.ξ12, :K1_1, ) pad.kiter += niterations(pad.KS) return 0 end function update_pad!( pad::PreallocatedDataK1_1Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.E .= pad.regu.ρ @. pad.E[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.E[id.iupp] += pt.s_u / itd.uvar_m_x @. pad.invE = one(T) / pad.E return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
4892
export K1_2StructuredParams """ Type to use the K1.2 formulation with a structured Krylov method, using the package [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). This only works for solving Linear Problems. The outer constructor K1_2StructuredParams(; uplo = :L, kmethod = :craig, rhs_scale = true, atol0 = 1.0e-4, rtol0 = 1.0e-4, atol_min = 1.0e-10, rtol_min = 1.0e-10, ρ_min = 1e3 * sqrt(eps()), δ_min = 1e4 * sqrt(eps()), itmax = 0, mem = 20) creates a [`RipQP.SolverParams`](@ref). The available methods are: - `:lnlq` - `:craig` - `:craigmr` """ mutable struct K1_2StructuredParams{T} <: NormalParams{T} uplo::Symbol kmethod::Symbol rhs_scale::Bool atol0::T rtol0::T atol_min::T rtol_min::T ρ_min::T δ_min::T itmax::Int mem::Int end function K1_2StructuredParams{T}(; uplo::Symbol = :L, kmethod::Symbol = :craig, rhs_scale::Bool = true, atol0::T = eps(T)^(1 / 4), rtol0::T = eps(T)^(1 / 4), atol_min::T = sqrt(eps(T)), rtol_min::T = sqrt(eps(T)), ρ_min::T = T(1e3 * sqrt(eps())), δ_min::T = T(1e4 * sqrt(eps())), itmax::Int = 0, mem::Int = 20, ) where {T <: Real} return K1_2StructuredParams( uplo, kmethod, rhs_scale, atol0, rtol0, atol_min, rtol_min, ρ_min, δ_min, itmax, mem, ) end K1_2StructuredParams(; kwargs...) = K1_2StructuredParams{Float64}(; kwargs...) mutable struct PreallocatedDataK1_2Structured{T <: Real, S, Ksol <: KrylovSolver} <: PreallocatedDataNormalKrylovStructured{T, S} E::S # temporary top-left diagonal invE::S ξ1::S ξ2::S # todel Δx0::S ξ22::S # todel rhs_scale::Bool regu::Regularization{T} KS::Ksol kiter::Int atol::T rtol::T atol_min::T rtol_min::T itmax::Int end function PreallocatedData( sp::K1_2StructuredParams, fd::QM_FloatData{T}, id::QM_IntData, itd::IterData{T}, pt::Point{T}, iconf::InputConfig{Tconf}, ) where {T <: Real, Tconf <: Real} # init Regularization values E = similar(fd.c, id.nvar) if iconf.mode == :mono regu = Regularization(T(sqrt(eps()) * 1e5), T(sqrt(eps()) * 1e5), T(sp.ρ_min), T(sp.δ_min), :classic) E .= T(1.0e0) / 2 else regu = Regularization( T(sqrt(eps()) * 1e5), T(sqrt(eps()) * 1e5), T(sqrt(eps(T)) * 1e0), T(sqrt(eps(T)) * 1e0), :classic, ) E .= T(1.0e-2) end if regu.δ_min == zero(T) # gsp for gpmr regu.δ = zero(T) end invE = similar(E) invE .= one(T) ./ E ξ1 = similar(fd.c, id.nvar) ξ2 = similar(fd.c, id.ncon) Δx0 = similar(fd.c, id.nvar) ξ22 = similar(fd.c, id.ncon) KS = init_Ksolver(fd.uplo == :U ? fd.A' : fd.A, ξ22, sp) return PreallocatedDataK1_2Structured( E, invE, ξ1, ξ2, Δx0, ξ22, sp.rhs_scale, regu, KS, 0, T(sp.atol0), T(sp.rtol0), T(sp.atol_min), T(sp.rtol_min), sp.itmax, ) end function solver!( dd::AbstractVector{T}, pad::PreallocatedDataK1_2Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, step::Symbol, ) where {T <: Real} @assert typeof(dda) <: DescentDirectionAllocsIPF pad.ξ1 .= @views step == :init ? fd.c : dd[1:(id.nvar)] pad.ξ2 .= @views (step == :init && all(dd[(id.nvar + 1):end] .== zero(T))) ? one(T) : dd[(id.nvar + 1):end] pad.Δx0 .= pad.ξ1 ./ pad.E if fd.uplo == :U mul!(pad.ξ22, fd.A', pad.Δx0) else mul!(pad.ξ22, fd.A, pad.Δx0) end pad.ξ22 .+= pad.ξ2 if pad.rhs_scale ξ22Norm = kscale!(pad.ξ22) end (step !== :cc) && (pad.kiter = 0) ksolve!( pad.KS, fd.uplo == :U ? fd.A' : fd.A, pad.ξ22, Diagonal(pad.invE), pad.regu.δ, verbose = 0, atol = pad.atol, rtol = pad.rtol, itmax = pad.itmax, ) if pad.rhs_scale kunscale!(pad.KS.x, ξ22Norm) kunscale!(pad.KS.y, ξ22Norm) end dd[(id.nvar + 1):end] .= pad.KS.y @. dd[1:(id.nvar)] = pad.KS.x - pad.Δx0 update_kresiduals_history_K1struct!( res, fd.uplo == :U ? fd.A' : fd.A, pad.E, pad.invE, # tmp storage vector pad.regu.δ, pad.KS.y, pad.ξ22, :K1_2, ) # kunscale!(pad.KS.x, rhsNorm) pad.kiter += niterations(pad.KS) return 0 end function update_pad!( pad::PreallocatedDataK1_2Structured{T}, dda::DescentDirectionAllocs{T}, pt::Point{T}, itd::IterData{T}, fd::Abstract_QM_FloatData{T}, id::QM_IntData, res::AbstractResiduals{T}, cnts::Counters, ) where {T <: Real} if cnts.k != 0 update_regu!(pad.regu) end update_krylov_tol!(pad) pad.E .= pad.regu.ρ @. pad.E[id.ilow] += pt.s_l / itd.x_m_lvar @. pad.E[id.iupp] += pt.s_u / itd.uvar_m_x @. pad.invE = one(T) / pad.E return 0 end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
754
abstract type NormalParams{T} <: SolverParams{T} end abstract type NormalKrylovParams{T, PT <: AbstractPreconditioner} <: NormalParams{T} end abstract type PreallocatedDataNormal{T <: Real, S} <: PreallocatedData{T, S} end abstract type PreallocatedDataNormalChol{T <: Real, S} <: PreallocatedDataNormal{T, S} end uses_krylov(pad::PreallocatedDataNormalChol) = false include("K1CholDense.jl") include("K1Chol.jl") abstract type PreallocatedDataNormalKrylov{T <: Real, S} <: PreallocatedDataNormal{T, S} end uses_krylov(pad::PreallocatedDataNormalKrylov) = true abstract type PreallocatedDataNormalKrylovStructured{T <: Real, S} <: PreallocatedDataNormal{T, S} end include("K1Krylov.jl") include("K1_1Structured.jl") include("K1_2Structured.jl")
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
3640
export AbstractFactorization, LDLFact, HSLMA57Fact, HSLMA97Fact, CholmodFact, QDLDLFact, LLDLFact import LinearAlgebra.ldiv! """ Abstract type to select a factorization algorithm. """ abstract type AbstractFactorization end abstract type FactorizationData{T} end function ldiv!(res::AbstractVector, K_fact::FactorizationData, v::AbstractVector) res .= v ldiv!(K_fact, res) end function factorized end """ fact_alg = LDLFact(; regul = :classic) Choose [`LDLFactorizations.jl`](https://github.com/JuliaSmoothOptimizers/LDLFactorizations.jl) to compute factorizations. """ struct LDLFact <: AbstractFactorization regul::Symbol function LDLFact(regul::Symbol) regul == :classic || regul == :dynamic || regul == :hybrid || regul == :none || error("regul should be :classic or :dynamic or :hybrid or :none") return new(regul) end end LDLFact(; regul::Symbol = :classic) = LDLFact(regul) include("ldlfact_utils.jl") """ fact_alg = CholmodFact(; regul = :classic) Choose `ldlt` from Cholmod to compute factorizations. `using SuiteSparse` should be used before `using RipQP`. """ struct CholmodFact <: AbstractFactorization regul::Symbol function CholmodFact(regul::Symbol) regul == :classic || regul == :none || error("regul should be :classic or :none") return new(regul) end end CholmodFact(; regul::Symbol = :classic) = CholmodFact(regul) """ fact_alg = QDLDLFact(; regul = :classic) Choose [`QDLDL.jl`](https://github.com/oxfordcontrol/QDLDL.jl) to compute factorizations. `using QDLDL` should be used before `using RipQP`. """ struct QDLDLFact <: AbstractFactorization regul::Symbol function QDLDLFact(regul::Symbol) regul == :classic || regul == :none || error("regul should be :classic or :none") return new(regul) end end QDLDLFact(; regul::Symbol = :classic) = QDLDLFact(regul) """ fact_alg = HSLMA57Fact(; regul = :classic) Choose [`HSL.jl`](https://github.com/JuliaSmoothOptimizers/HSL.jl) MA57 to compute factorizations. `using HSL` should be used before `using RipQP`. """ struct HSLMA57Fact <: AbstractFactorization regul::Symbol sqd::Bool function HSLMA57Fact(regul::Symbol, sqd::Bool) regul == :classic || regul == :none || error("regul should be :classic or :none") return new(regul, sqd) end end HSLMA57Fact(; regul::Symbol = :classic, sqd::Bool = true) = HSLMA57Fact(regul, sqd) if LIBHSL_isfunctional() include("ma57fact_utils.jl") end """ fact_alg = HSLMA97Fact(; regul = :classic) Choose [`HSL.jl`](https://github.com/JuliaSmoothOptimizers/HSL.jl) MA57 to compute factorizations. `using HSL` should be used before `using RipQP`. """ struct HSLMA97Fact <: AbstractFactorization regul::Symbol function HSLMA97Fact(regul::Symbol) regul == :classic || regul == :none || error("regul should be :classic or :none") return new(regul) end end HSLMA97Fact(; regul::Symbol = :classic) = HSLMA97Fact(regul) if LIBHSL_isfunctional() include("ma97fact_utils.jl") end """ fact_alg = LLDLFact(; regul = :classic, mem = 0, droptol = 0.0) Choose [`LimitedLDLFactorizations.jl`](https://github.com/JuliaSmoothOptimizers/LimitedLDLFactorizations.jl) to compute factorizations. """ struct LLDLFact <: AbstractFactorization regul::Symbol mem::Int droptol::Float64 function LLDLFact(regul::Symbol, mem::Int, droptol::Float64) regul == :classic || regul == :none || error("regul should be :classic or :none") return new(regul, mem, droptol) end end LLDLFact(; regul::Symbol = :classic, mem::Int = 0, droptol::Float64 = 0.0) = LLDLFact(regul, mem, droptol) include("lldlfact_utils.jl")
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
988
using .SuiteSparse get_uplo(fact_alg::CholmodFact) = :U mutable struct CholmodFactorization{T} <: FactorizationData{T} F::SuiteSparse.CHOLMOD.Factor{T} initialized::Bool factorized::Bool end init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::CholmodFact, ::Type{T}) where {T} = CholmodFactorization(ldlt(K), false, true) init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::CholmodFact) where {T} = CholmodFactorization(ldlt(K), false, true) function generic_factorize!( K::Symmetric{T, SparseMatrixCSC{T, Int}}, K_fact::CholmodFactorization{T}, ) where {T} if K_fact.initialized K_fact.factorized = false try ldlt!(K_fact.F, K) K_fact.factorized = true catch K_fact.factorized = false end end !K_fact.initialized && (K_fact.initialized = true) end RipQP.factorized(K_fact::CholmodFactorization) = K_fact.factorized function ldiv!(K_fact::CholmodFactorization, dd::AbstractVector) dd .= K_fact.F \ dd end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
1671
get_uplo(fact_alg::LDLFact) = :U mutable struct LDLFactorizationData{T} <: FactorizationData{T} LDL::LDLFactorizations.LDLFactorization{T, Int, Int, Int} end init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::LDLFact) where {T} = LDLFactorizationData(ldl_analyze(K)) init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::LDLFact, ::Type{Tf}) where {T, Tf} = LDLFactorizationData(ldl_analyze(K, Tf)) generic_factorize!(K::Symmetric, K_fact::LDLFactorizationData) = ldl_factorize!(K, K_fact.LDL) RipQP.factorized(K_fact::LDLFactorizationData) = LDLFactorizations.factorized(K_fact.LDL) ldiv!(K_fact::LDLFactorizationData, dd::AbstractVector) = ldiv!(K_fact.LDL, dd) # used only for preconditioner function abs_diagonal!(K_fact::LDLFactorizationData) K_fact.LDL.d .= abs.(K_fact.LDL.d) end # LDLFactorization conversion function function convertldl(::Type{T}, K_fact::LDLFactorizationData{T_old}) where {T, T_old} if T == T_old return K_fact else return LDLFactorizationData( LDLFactorizations.LDLFactorization( K_fact.LDL.__analyzed, K_fact.LDL.__factorized, K_fact.LDL.__upper, K_fact.LDL.n, K_fact.LDL.parent, K_fact.LDL.Lnz, K_fact.LDL.flag, K_fact.LDL.P, K_fact.LDL.pinv, K_fact.LDL.Lp, K_fact.LDL.Cp, K_fact.LDL.Ci, K_fact.LDL.Li, convert(Array{T}, K_fact.LDL.Lx), convert(Array{T}, K_fact.LDL.d), convert(Array{T}, K_fact.LDL.Y), K_fact.LDL.pattern, T(K_fact.LDL.r1), T(K_fact.LDL.r2), T(K_fact.LDL.tol), K_fact.LDL.n_d, ), ) end end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
968
get_uplo(fact_alg::LLDLFact) = :L mutable struct LLDLFactorizationData{T, F <: LimitedLDLFactorization} <: FactorizationData{T} LLDL::F mem::Int droptol::T end init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::LLDLFact) where {T} = LLDLFactorizationData(lldl(K.data, memory = fact_alg.mem), fact_alg.mem, T(fact_alg.droptol)) init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::LLDLFact, ::Type{Tf}) where {T, Tf} = LLDLFactorizationData(lldl(K.data, Tf, memory = fact_alg.mem), fact_alg.mem, Tf(fact_alg.droptol)) generic_factorize!(K::Symmetric, K_fact::LLDLFactorizationData) = lldl_factorize!(K_fact.LLDL, K.data) RipQP.factorized(K_fact::LLDLFactorizationData) = LimitedLDLFactorizations.factorized(K_fact.LLDL) ldiv!(K_fact::LLDLFactorizationData, dd::AbstractVector) = ldiv!(K_fact.LLDL, dd) # used only for preconditioner function abs_diagonal!(K_fact::LLDLFactorizationData) K_fact.LLDL.D .= abs.(K_fact.LLDL.D) end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
2413
get_uplo(fact_alg::HSLMA57Fact) = :L mutable struct Ma57Factorization{T} <: FactorizationData{T} ma57::Ma57{T} work::Vector{T} end function init_fact(K::Symmetric{T, SparseMatrixCOO{T, Int}}, fact_alg::HSLMA57Fact) where {T} K_fact = Ma57Factorization( ma57_coord(size(K, 1), K.data.rows, K.data.cols, K.data.vals, sqd = fact_alg.sqd), Vector{T}(undef, size(K, 1)), ) return K_fact end function init_fact( K::Symmetric{T, SparseMatrixCOO{T, Int}}, fact_alg::HSLMA57Fact, ::Type{Tf}, ) where {T, Tf} K_fact = Ma57Factorization( ma57_coord(size(K, 1), K.data.rows, K.data.cols, Tf.(K.data.vals), sqd = fact_alg.sqd), Vector{Tf}(undef, size(K, 1)), ) return K_fact end function generic_factorize!( K::Symmetric{T, SparseMatrixCOO{T, Int}}, K_fact::Ma57Factorization, ) where {T} copyto!(K_fact.ma57.vals, K.data.vals) ma57_factorize!(K_fact.ma57) end RipQP.factorized(K_fact::Ma57Factorization) = (K_fact.ma57.info.info[1] == 0) ldiv!(K_fact::Ma57Factorization{T}, dd::AbstractVector{T}) where {T} = ma57_solve!(K_fact.ma57, dd, K_fact.work) function abs_diagonal!(K_fact::Ma57Factorization) K_fact end convertldl(T::DataType, K_fact::Ma57Factorization) = Ma57Factorization( Ma57( K_fact.ma57.n, K_fact.ma57.nz, K_fact.ma57.rows, K_fact.ma57.cols, convert(Array{T}, K_fact.ma57.vals), Ma57_Control(K_fact.ma57.control.icntl, convert(Array{T}, K_fact.ma57.control.cntl)), Ma57_Info( K_fact.ma57.info.info, convert(Array{T}, K_fact.ma57.info.rinfo), K_fact.ma57.info.largest_front, K_fact.ma57.info.num_2x2_pivots, K_fact.ma57.info.num_delayed_pivots, K_fact.ma57.info.num_negative_eigs, K_fact.ma57.info.rank, K_fact.ma57.info.num_pivot_sign_changes, T(K_fact.ma57.info.backward_error1), T(K_fact.ma57.info.backward_error2), T(K_fact.ma57.info.matrix_inf_norm), T(K_fact.ma57.info.solution_inf_norm), T(K_fact.ma57.info.scaled_residuals), T(K_fact.ma57.info.cond1), T(K_fact.ma57.info.cond2), T(K_fact.ma57.info.error_inf_norm), ), T(K_fact.ma57.multiplier), K_fact.ma57.__lkeep, K_fact.ma57.__keep, K_fact.ma57.__lfact, convert(Array{T}, K_fact.ma57.__fact), K_fact.ma57.__lifact, K_fact.ma57.__ifact, K_fact.ma57.iwork_fact, K_fact.ma57.iwork_solve, ), convert(Array{T}, K_fact.work), )
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
2977
get_uplo(fact_alg::HSLMA97Fact) = :L mutable struct Ma97Factorization{T} <: FactorizationData{T} ma97::Ma97{T} end function init_fact( K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::HSLMA97Fact, ::Type{T}, ) where {T} return Ma97Factorization( ma97_csc(size(K, 1), Int32.(K.data.colptr), Int32.(K.data.rowval), K.data.nzval), ) end function init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::HSLMA97Fact) where {T} return Ma97Factorization( ma97_csc(size(K, 1), Int32.(K.data.colptr), Int32.(K.data.rowval), K.data.nzval), ) end function generic_factorize!( K::Symmetric{T, SparseMatrixCSC{T, Int}}, K_fact::Ma97Factorization, ) where {T} copyto!(K_fact.ma97.nzval, K.data.nzval) ma97_factorize!(K_fact.ma97) end RipQP.factorized(K_fact::Ma97Factorization) = (K_fact.ma97.info.flag == 0) ldiv!(K_fact::Ma97Factorization{T}, dd::AbstractVector{T}) where {T} = ma97_solve!(K_fact.ma97, dd) function abs_diagonal!(K_fact::Ma97Factorization) K_fact end # function convertldl(T::DataType, K_fact::Ma97Factorization) # K_fact2 = Ma97Factorization( # Ma97{T, T}( # K_fact.ma97.__akeep, # K_fact.ma97.__fkeep, # K_fact.ma97.n, # K_fact.ma97.colptr, # K_fact.ma97.rowval, # convert(Array{T}, K_fact.ma97.nzval), # Ma97_Control{T}( # K_fact.ma97.control.f_arrays, # K_fact.ma97.control.action, # K_fact.ma97.control.nemin, # T(K_fact.ma97.control.multiplier), # K_fact.ma97.control.ordering, # K_fact.ma97.control.print_level, # K_fact.ma97.control.scaling, # T(K_fact.ma97.control.small), # T(K_fact.ma97.control.u), # K_fact.ma97.control.unit_diagnostics, # K_fact.ma97.control.unit_error, # K_fact.ma97.control.unit_warning, # K_fact.ma97.control.factor_min, # K_fact.ma97.control.solve_blas3, # K_fact.ma97.control.solve_min, # K_fact.ma97.control.solve_mf, # T(K_fact.ma97.control.consist_tol), # K_fact.ma97.control.ispare, # convert(Array{T}, K_fact.ma97.control.rspare), # ), # Ma97_Info{T}( # K_fact.ma97.info.flag, # K_fact.ma97.info.flag68, # K_fact.ma97.info.flag77, # K_fact.ma97.info.matrix_dup, # K_fact.ma97.info.matrix_rank, # K_fact.ma97.info.matrix_outrange, # K_fact.ma97.info.matrix_missing_diag, # K_fact.ma97.info.maxdepth, # K_fact.ma97.info.maxfront, # K_fact.ma97.info.num_delay, # K_fact.ma97.info.num_factor, # K_fact.ma97.info.num_flops, # K_fact.ma97.info.num_neg, # K_fact.ma97.info.num_sup, # K_fact.ma97.info.num_two, # K_fact.ma97.info.ordering, # K_fact.ma97.info.stat, # K_fact.ma97.info.ispare, # convert(Array{T}, K_fact.ma97.info.rspare), # ), # ), # ) # HSL.ma97_finalize(K_fact2.ma97) # return K_fact2 # end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
1162
using .QDLDL get_uplo(fact_alg::QDLDLFact) = :U mutable struct QDLDLFactorization{T} <: FactorizationData{T} F::QDLDL.QDLDLFactorisation{T, Int} initialized::Bool diagindK::Vector{Int} factorized::Bool end init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::QDLDLFact, ::Type{T}) where {T} = QDLDLFactorization(QDLDL.qdldl(K.data), false, get_diagind_K(K, :U), true) init_fact(K::Symmetric{T, SparseMatrixCSC{T, Int}}, fact_alg::QDLDLFact) where {T} = QDLDLFactorization(QDLDL.qdldl(K.data), false, get_diagind_K(K, :U), true) function generic_factorize!( K::Symmetric{T, SparseMatrixCSC{T, Int}}, K_fact::QDLDLFactorization{T}, ) where {T} if K_fact.initialized QDLDL.update_values!(K_fact.F, K_fact.diagindK, view(K.data.nzval, K_fact.diagindK)) K_fact.factorized = false try QDLDL.refactor!(K_fact.F) K_fact.factorized = true catch K_fact.factorized = false end end !K_fact.initialized && (K_fact.initialized = true) end RipQP.factorized(K_fact::QDLDLFactorization) = K_fact.factorized function ldiv!(K_fact::QDLDLFactorization, dd::AbstractVector) QDLDL.solve!(K_fact.F, dd) end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
803
function convertpad( ::Type{<:PreallocatedData{T}}, pad::PreallocatedDataK1CholDense{T0, S0, M0}, sp_old::K1CholDenseParams, sp_new::Union{Nothing, K1CholDenseParams}, id::QM_IntData, fd::Abstract_QM_FloatData, ) where {T <: Real, T0 <: Real, S0, M0} S = change_vector_eltype(S0, T) pad = PreallocatedDataK1CholDense( convert(S, pad.D), Diagonal(convert(S, pad.invD.diag)), convert_mat(pad.AinvD, T), convert(S, pad.rhs), convert(Regularization{T}, pad.regu), convert_mat(pad.K, T), pad.diagindK, convert(S, pad.tmpldiv), ) if T == Float64 && T0 == Float64 pad.regu.ρ_min, pad.regu.δ_min = T(sqrt(eps()) * 1e0), T(sqrt(eps()) * 1e0) else pad.regu.ρ_min, pad.regu.δ_min = T(sqrt(eps(T)) * 1e1), T(sqrt(eps(T)) * 1e1) end return pad end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
4011
function convertpad( ::Type{<:PreallocatedData{T}}, pad::PreallocatedDataK2LDL{T_old}, sp_old::K2LDLParams, sp_new::K2KrylovParams, id::QM_IntData, fd::Abstract_QM_FloatData, ) where {T <: Real, T_old <: Real} D = convert(Array{T}, pad.D) regu = convert(Regularization{T}, pad.regu) regu.ρ_min = T(sp_new.ρ_min) regu.δ_min = T(sp_new.δ_min) K = Symmetric(convert(eval(typeof(pad.K.data).name.name){T, Int}, pad.K.data), sp_new.uplo) rhs = similar(D, id.nvar + id.ncon) δv = [regu.δ] if sp_new.equilibrate Deq = Diagonal(similar(D, id.nvar + id.ncon)) Deq.diag .= one(T) C_eq = Diagonal(similar(D, id.nvar + id.ncon)) else Deq = Diagonal(similar(D, 0)) C_eq = Diagonal(similar(D, 0)) end mt = MatrixTools(convert(SparseVector{T, Int}, pad.diag_Q), pad.diagind_K, Deq, C_eq) regu_precond = pad.regu regu_precond.regul = :dynamic pdat = PreconditionerData(sp_new, pad.K_fact, id.nvar, id.ncon, regu_precond, K) KS = init_Ksolver(K, rhs, sp_new) return PreallocatedDataK2Krylov( pdat, D, rhs, sp_new.rhs_scale, sp_new.equilibrate, regu, δv, K, #K mt, KS, 0, T(sp_new.atol0), T(sp_new.rtol0), T(sp_new.atol_min), T(sp_new.rtol_min), sp_new.itmax, ) end function convertpad( ::Type{<:PreallocatedData{T}}, pad::PreallocatedDataK2Krylov{T_old}, sp_old::K2KrylovParams, sp_new::K2KrylovParams, id::QM_IntData, fd::Abstract_QM_FloatData, ) where {T <: Real, T_old <: Real} D = convert(Array{T}, pad.D) regu = convert(Regularization{T}, pad.regu) regu.ρ_min = T(sp_new.ρ_min) regu.δ_min = T(sp_new.δ_min) K = Symmetric(convert(eval(typeof(pad.K.data).name.name){T, Int}, pad.K.data), sp_new.uplo) rhs = similar(D, id.nvar + id.ncon) δv = [regu.δ] if !(sp_old.equilibrate) && sp_new.equilibrate Deq = Diagonal(similar(D, id.nvar + id.ncon)) C_eq = Diagonal(similar(D, id.nvar + id.ncon)) mt = MatrixTools(convert(SparseVector{T, Int}, pad.mt.diag_Q), pad.mt.diagind_K, Deq, C_eq) else mt = convert(MatrixTools{T}, pad.mt) mt.Deq.diag .= one(T) end sp_new.equilibrate && (mt.Deq.diag .= one(T)) regu_precond = convert(Regularization{sp_new.preconditioner.T}, pad.regu) regu_precond.regul = :dynamic if typeof(sp_old.preconditioner.fact_alg) == LLDLFact || typeof(sp_old.preconditioner.fact_alg) != typeof(sp_new.preconditioner.fact_alg) if get_uplo(sp_old.preconditioner.fact_alg) != get_uplo(sp_new.preconditioner.fact_alg) # transpose if new factorization does not use the same uplo K = Symmetric(SparseMatrixCSC(K.data'), sp_new.uplo) mt.diagind_K = get_diagind_K(K, sp_new.uplo) end K_fact = init_fact(K, sp_new.preconditioner.fact_alg) else K_fact = convertldl(sp_new.preconditioner.T, pad.pdat.K_fact) end pdat = PreconditionerData(sp_new, K_fact, id.nvar, id.ncon, regu_precond, K) KS = init_Ksolver(K, rhs, sp_new) return PreallocatedDataK2Krylov( pdat, D, rhs, sp_new.rhs_scale, sp_new.equilibrate, regu, δv, K, #K mt, KS, 0, T(sp_new.atol0), T(sp_new.rtol0), T(sp_new.atol_min), T(sp_new.rtol_min), sp_new.itmax, ) end function convertpad( ::Type{<:PreallocatedData{T}}, pad::PreallocatedDataK2Krylov{T_old}, sp_old::K2KrylovParams, sp_new::K2LDLParams, id::QM_IntData, fd::Abstract_QM_FloatData, ) where {T <: Real, T_old <: Real} D = convert(Array{T}, pad.D) regu = convert(Regularization{T}, pad.regu) regu.ρ_min = T(sp_new.ρ_min) regu.δ_min = T(sp_new.δ_min) regu.ρ *= 10 regu.δ *= 10 regu.regul = sp_new.fact_alg.regul K_fact = convertldl(T, pad.pdat.K_fact) K = Symmetric(convert(eval(typeof(pad.K.data).name.name){T, Int}, pad.K.data), sp_new.uplo) return PreallocatedDataK2LDL( D, regu, sp_new.safety_dist_bnd, convert(SparseVector{T, Int}, pad.mt.diag_Q), #diag_Q K, #K K_fact, #K_fact false, pad.mt.diagind_K, #diagind_K ) end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
828
function convertpad( ::Type{<:PreallocatedData{T}}, pad::PreallocatedDataK2LDL{T_old}, sp_old::K2LDLParams, sp_new::K2LDLParams, id::QM_IntData, fd::Abstract_QM_FloatData, ) where {T <: Real, T_old <: Real} pad = PreallocatedDataK2LDL( convert(Array{T}, pad.D), convert(Regularization{T}, pad.regu), sp_new.safety_dist_bnd, convert(SparseVector{T, Int}, pad.diag_Q), Symmetric(convert_mat(pad.K.data, T), Symbol(pad.K.uplo)), convertldl(T, pad.K_fact), pad.fact_fail, pad.diagind_K, ) if pad.regu.regul == :classic pad.regu.ρ_min, pad.regu.δ_min = T(sp_new.ρ_min), T(sp_new.ρ_min) elseif pad.regu.regul == :dynamic pad.regu.ρ, pad.regu.δ = T(eps(T)^(3 / 4)), T(eps(T)^(0.45)) pad.K_fact.LDL.r1, pad.K_fact.LDL.r2 = -pad.regu.ρ, pad.regu.δ end return pad end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
1065
function convertpad( ::Type{<:PreallocatedData{T}}, pad::PreallocatedDataK2_5LDL{T_old}, sp_old::K2_5LDLParams, sp_new::Union{Nothing, K2_5LDLParams}, id::QM_IntData, fd::Abstract_QM_FloatData, ) where {T <: Real, T_old <: Real} pad = PreallocatedDataK2_5LDL( convert(Array{T}, pad.D), convert(Regularization{T}, pad.regu), convert(SparseVector{T, Int}, pad.diag_Q), Symmetric(convert(SparseMatrixCSC{T, Int}, pad.K.data), Symbol(pad.K.uplo)), convertldl(T, pad.K_fact), pad.fact_fail, pad.diagind_K, pad.K_scaled, ) if pad.regu.regul == :classic if T == Float64 && typeof(sp_new) == Nothing pad.regu.ρ_min, pad.regu.δ_min = T(sqrt(eps()) * 1e-5), T(sqrt(eps()) * 1e0) else pad.regu.ρ_min, pad.regu.δ_min = T(sqrt(eps(T)) * 1e1), T(sqrt(eps(T)) * 1e1) end pad.regu.ρ /= 10 pad.regu.δ /= 10 elseif pad.regu.regul == :dynamic pad.regu.ρ, pad.regu.δ = T(eps(T)^(3 / 4)), T(eps(T)^(0.45)) pad.K_fact.LDL.r1, pad.K_fact.LDL.r2 = -pad.regu.ρ, pad.regu.δ end return pad end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
135
include("K2LDL_transitions.jl") include("K2Krylov_transitions.jl") include("K2_5LDL_transitions.jl") include("K1dense_transitions.jl")
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
791
using HSL, LinearOperators, LLSModels, NLPModelsModifiers, QPSReader, QuadraticModels using DelimitedFiles, DoubleFloats, LinearAlgebra, MatrixMarket, SparseArrays, Test using SuiteSparse # test cholmod using RipQP qps1 = readqps("QAFIRO.SIF") #lower bounds qps2 = readqps("HS21.SIF") # low/upp bounds qps3 = readqps("HS52.SIF") # free bounds qps4 = readqps("AFIRO.SIF") # LP qps5 = readqps("HS35MOD.SIF") # fixed variables Q = [ 6.0 2.0 1.0 2.0 5.0 2.0 1.0 2.0 4.0 ] c = [-8.0; -3; -3] A = [ 1.0 0.0 1.0 0.0 2.0 1.0 ] b = [0.0; 3] l = [0.0; 0; 0] u = [Inf; Inf; Inf] include("solvers/test_augmented.jl") include("solvers/test_newton.jl") include("solvers/test_normal.jl") include("test_multi.jl") include("test_alternative_methods.jl") include("test_alternative_problems.jl")
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
3565
@testset "dynamic_regularization" begin stats1 = ripqp( QuadraticModel(qps1), sp = K2LDLParams(fact_alg = LDLFact(regul = :dynamic)), history = true, display = false, ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp( QuadraticModel(qps2), sp = K2LDLParams(fact_alg = LDLFact(regul = :dynamic)), display = false, ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats3 = ripqp( QuadraticModel(qps3), sp = K2LDLParams(fact_alg = LDLFact(regul = :dynamic)), display = false, ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-2) @test stats3.status == :first_order end @testset "centrality_corrections" begin stats1 = ripqp(QuadraticModel(qps1), kc = -1, display = false) # automatic centrality corrections computation @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModel(qps2), kc = 2, display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats3 = ripqp(QuadraticModel(qps3), kc = 2, display = false) @test isapprox(stats3.objective, 5.32664756, atol = 1e-2) @test stats3.status == :first_order end @testset "refinement" begin stats1 = ripqp(QuadraticModel(qps1), mode = :zoom, display = false) # automatic centrality corrections computation @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats1 = ripqp(QuadraticModel(qps1), mode = :ref, display = false) # automatic centrality corrections computation @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModel(qps2), mode = :multizoom, scaling = false, display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats3 = ripqp(QuadraticModel(qps3), mode = :multiref, display = false) @test isapprox(stats3.objective, 5.32664756, atol = 1e-2) @test stats3.status == :first_order end @testset "IPF" begin stats1 = ripqp(QuadraticModel(qps1), display = false, solve_method = IPF(), mode = :multi) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModel(qps2), display = false, solve_method = IPF()) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats2 = ripqp( QuadraticModel(qps2), display = false, solve_method = IPF(), sp = K2_5LDLParams(), mode = :zoom, ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats1 = ripqp( QuadraticModel(qps1), display = false, perturb = true, solve_method = IPF(), mode = :multiref, ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp( QuadraticModel(qps2), display = false, solve_method = IPF(), mode = :multizoom, sp = K2_5LDLParams(), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats2 = ripqp( QuadraticModel(qps2), display = false, solve_method = IPF(), mode = :zoom, sp = K2LDLParams(fact_alg = LDLFact(regul = :dynamic)), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
4115
@testset "LLS" begin # least-square problem without constraints m, n = 20, 10 A = rand(m, n) b = rand(m) nls = LLSModel(A, b) statsnls = ripqp(nls, itol = InputTol(ϵ_rb = sqrt(eps()), ϵ_rc = sqrt(eps())), display = false) x, r = statsnls.solution, statsnls.solver_specific[:r] @test norm(x - A \ b) ≤ norm(b) * sqrt(eps()) * 100 @test norm(A * x - b - r) ≤ norm(b) * sqrt(eps()) * 100 # least-square problem with constraints A = rand(m, n) b = rand(m) lcon, ucon = zeros(m), fill(Inf, m) C = ones(m, n) lvar, uvar = fill(-10.0, n), fill(200.0, n) nls = LLSModel(A, b, lvar = lvar, uvar = uvar, C = C, lcon = lcon, ucon = ucon) statsnls = ripqp(nls, display = false) x, r = statsnls.solution, statsnls.solver_specific[:r] @test length(r) == m @test norm(A * x - b - r) ≤ norm(b) * sqrt(eps()) end @testset "matrixwrite" begin stats1 = ripqp( QuadraticModel(qps1), display = false, w = SystemWrite(write = true, name = "test_", kfirst = 4, kgap = 1000), ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order K = MatrixMarket.mmread("test_K_iter4.mtx") rhs_aff = readdlm("test_rhs_iter4_aff.rhs", Float64)[:] rhs_cc = readdlm("test_rhs_iter4_cc.rhs", Float64)[:] @test size(K, 1) == size(K, 2) == length(rhs_aff) == length(rhs_cc) end function QuadraticModelMaximize(qps, x0 = zeros(qps.nvar)) QuadraticModel( -qps.c, qps.qrows, qps.qcols, -qps.qvals, Arows = qps.arows, Acols = qps.acols, Avals = qps.avals, lcon = qps.lcon, ucon = qps.ucon, lvar = qps.lvar, uvar = qps.uvar, c0 = -qps.c0, x0 = x0, minimize = false, ) end @testset "maximize" begin stats1 = ripqp(QuadraticModelMaximize(qps1), display = false) @test isapprox(stats1.objective, 1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModelMaximize(qps2), ps = false, display = false) @test isapprox(stats2.objective, 9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats3 = ripqp(QuadraticModelMaximize(qps3), display = false) @test isapprox(stats3.objective, -5.32664756, atol = 1e-2) @test stats3.status == :first_order end @testset "presolve" begin qp = QuadraticModel(zeros(2), zeros(2, 2), lvar = zeros(2), uvar = zeros(2)) stats_ps = ripqp(qp) @test stats_ps.status == :first_order @test stats_ps.solution == [0.0; 0.0] stats5 = ripqp(QuadraticModel(qps5), display = false) @test isapprox(stats5.objective, 0.250000001, atol = 1e-2) @test stats5.status == :first_order stats5 = ripqp(QuadraticModel(qps5), sp = K2KrylovParams(), display = false) @test isapprox(stats5.objective, 0.250000001, atol = 1e-2) @test stats5.status == :first_order end qp_linop = QuadraticModel( c, LinearOperator(Q), A = LinearOperator(A), lcon = b, ucon = b, lvar = l, uvar = u, c0 = 0.0, name = "QM_LINOP", ) qp_dense = QuadraticModel( c, Symmetric(tril(Q), :L), A = A, lcon = b, ucon = b, lvar = l, uvar = u, c0 = 0.0, name = "QM_LINOP", ) @testset "Dense and LinearOperator QPs" begin stats_linop = ripqp( qp_linop, sp = K2KrylovParams(kmethod = :gmres), ps = false, scaling = false, display = false, ) @test isapprox(stats_linop.objective, 1.1249999990782493, atol = 1e-2) @test stats_linop.status == :first_order stats_dense = ripqp(qp_dense, sp = K2KrylovParams(kmethod = :gmres, uplo = :U)) @test isapprox(stats_dense.objective, 1.1249999990782493, atol = 1e-2) @test stats_dense.status == :first_order for fact_alg in [:bunchkaufman, :ldl] stats_dense = ripqp( qp_dense, sp = K2LDLDenseParams(fact_alg = fact_alg, ρ0 = 0.0, δ0 = 0.0), ps = false, scaling = false, display = false, ) @test isapprox(stats_dense.objective, 1.1249999990782493, atol = 1e-2) @test stats_dense.status == :first_order end # test conversion stats_dense = ripqp(qp_dense) @test isapprox(stats_dense.objective, 1.1249999990782493, atol = 1e-2) @test stats_dense.status == :first_order end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
3400
function createQuadraticModelT(qpdata; T = Double64, name = "qp_pb") return QuadraticModel( convert(Array{T}, qpdata.c), qpdata.qrows, qpdata.qcols, convert(Array{T}, qpdata.qvals), Arows = qpdata.arows, Acols = qpdata.acols, Avals = convert(Array{T}, qpdata.avals), lcon = convert(Array{T}, qpdata.lcon), ucon = convert(Array{T}, qpdata.ucon), lvar = convert(Array{T}, qpdata.lvar), uvar = convert(Array{T}, qpdata.uvar), c0 = T(qpdata.c0), x0 = zeros(T, length(qpdata.c)), name = name, ) end @testset "multi_mode" begin stats1 = ripqp(QuadraticModel(qps1), mode = :multi, display = false) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModel(qps2), mode = :multi, display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats3 = ripqp(QuadraticModel(qps3), mode = :multi, display = false) @test isapprox(stats3.objective, 5.32664756, atol = 1e-2) @test stats3.status == :first_order end @testset "Float16, Float32, Float128, BigFloat" begin qm16 = QuadraticModel( Float16.(c), Float16.(tril(Q)), A = Float16.(A), lcon = Float16.(b), ucon = Float16.(b), lvar = Float16.(l), uvar = Float16.(u), c0 = Float16(0.0), x0 = zeros(Float16, 3), name = "QM16", ) stats_dense = ripqp(qm16, itol = InputTol(Float16), display = false, ps = false) @test isapprox(stats_dense.objective, 1.1249999990782493, atol = 1e-2) @test stats_dense.status == :first_order for T ∈ [Float32, Double64] qmT_2 = createQuadraticModelT(qps2, T = T) stats2 = ripqp(qmT_2, display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order end qm128_1 = createQuadraticModelT(qps1, T = BigFloat) stats1 = ripqp( qm128_1, itol = InputTol(BigFloat, ϵ_rb1 = BigFloat(0.1), ϵ_rb2 = BigFloat(0.01)), mode = :multi, normalize_rtol = false, display = false, ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order end @testset "multi solvers" begin for mode ∈ [:multi, :multizoom, :multiref] stats1 = ripqp( QuadraticModel(qps1), mode = mode, solve_method = IPF(), sp2 = K2KrylovParams(uplo = :U, kmethod = :gmres, preconditioner = LDL()), display = false, ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order end qm128_1 = createQuadraticModelT(qps1, T = Double64) stats1 = ripqp( qm128_1, mode = :multi, solve_method = IPF(), sp = K2KrylovParams( uplo = :U, form_mat = true, equilibrate = false, preconditioner = LDL(T = Float64), ρ_min = sqrt(eps()), δ_min = sqrt(eps()), ), sp2 = K2KrylovParams{Double64}( uplo = :U, form_mat = true, equilibrate = false, preconditioner = LDL(T = Float64), atol_min = Double64(1.0e-18), rtol_min = Double64(1.0e-18), ρ_min = sqrt(eps(Double64)), δ_min = sqrt(eps(Double64)), ), display = true, itol = InputTol(Double64, ϵ_rb = Double64(1.0e-12), ϵ_rc = Double64(1.0e-12)), ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
6891
@testset "mono_mode" begin stats1 = ripqp(QuadraticModel(qps1), ps = false) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModel(qps2), sp = K2LDLParams(fact_alg = CholmodFact()), display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats1.status == :first_order if LIBHSL_isfunctional() stats2 = ripqp(QuadraticModel(qps2), sp = K2LDLParams(fact_alg = HSLMA57Fact()), display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats1.status == :first_order end if LIBHSL_isfunctional() stats2 = ripqp(QuadraticModel(qps2), sp = K2LDLParams(fact_alg = HSLMA97Fact()), display = false) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats1.status == :first_order end stats3 = ripqp(QuadraticModel(qps3), display = false) @test isapprox(stats3.objective, 5.32664756, atol = 1e-2) @test stats3.status == :first_order stats4 = ripqp(QuadraticModel(qps4), display = false) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end @testset "K2_5" begin stats1 = ripqp(QuadraticModel(qps1), display = false, sp = K2_5LDLParams()) @test isapprox(stats1.objective, -1.59078179, atol = 1e-2) @test stats1.status == :first_order stats2 = ripqp(QuadraticModel(qps2), display = false, sp = K2_5LDLParams(), mode = :multi) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-2) @test stats2.status == :first_order stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K2_5LDLParams(fact_alg = LDLFact(regul = :dynamic)), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-2) @test stats3.status == :first_order end @testset "KrylovK2" begin for precond in [Identity(), Jacobi(), Equilibration()] for kmethod in [:minres, :minres_qlp, :symmlq] stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K2KrylovParams(uplo = :L, kmethod = kmethod, preconditioner = precond), history = true, itol = InputTol( max_iter = 50, max_time = 40.0, ϵ_rc = 1.0e-3, ϵ_rb = 1.0e-3, ϵ_pdd = 1.0e-3, ), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-1) @test stats2.status == :first_order end end stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K2KrylovParams( uplo = :U, kmethod = :minres_qlp, preconditioner = Equilibration(), form_mat = true, ), itol = InputTol(max_iter = 50, max_time = 40.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order for T in [Float32, Float64] for precond in [LDL(T = T, pos = :C), LDL(T = T, warm_start = false, pos = :L), LDL(T = T, pos = :R)] stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K2KrylovParams( uplo = :U, kmethod = :gmres, preconditioner = precond, rhs_scale = true, form_mat = true, equilibrate = true, ), solve_method = IPF(), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-1) @test stats2.status == :first_order end end stats3 = ripqp( QuadraticModel(qps3), display = true, sp = K2KrylovParams( uplo = :U, kmethod = :minres, preconditioner = LDL(), rhs_scale = true, form_mat = true, equilibrate = true, ), solve_method = IPF(), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K2KrylovParams( uplo = :L, kmethod = :minres, preconditioner = LDL(fact_alg = LLDLFact()), rhs_scale = true, form_mat = true, equilibrate = true, ), solve_method = IPF(), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order end @testset "KrylovK2_5" begin for kmethod in [:minres, :dqgmres] stats1 = ripqp( QuadraticModel(qps1), display = false, sp = K2_5KrylovParams(kmethod = kmethod, preconditioner = Identity()), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats1.objective, -1.59078179, atol = 1e-1) @test stats1.status == :first_order stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K2_5KrylovParams(kmethod = kmethod, preconditioner = Jacobi()), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order end end @testset "K2 structured LP" begin for kmethod in [:gpmr, :trimr] for δ_min in [1.0e-2, 0.0] stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K2StructuredParams(kmethod = kmethod, δ_min = δ_min), solve_method = IPF(), itol = InputTol( max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-4, ϵ_rb = 1.0e-4, ϵ_pdd = 1.0e-4, ), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-1) @test stats4.status == :first_order end end stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K2StructuredParams(kmethod = :tricg), solve_method = IPF(), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-4, ϵ_rb = 1.0e-4, ϵ_pdd = 1.0e-4), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-1) @test stats4.status == :first_order end @testset "K2.5 structured LP" begin for kmethod in [:gpmr, :trimr] for δ_min in [1.0e-2, 0.0] stats4 = ripqp( QuadraticModel(qps4), display = false, solve_method = IPF(), sp = K2_5StructuredParams(kmethod = kmethod, δ_min = δ_min), itol = InputTol( max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-4, ϵ_rb = 1.0e-4, ϵ_pdd = 1.0e-4, ), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-1) @test stats4.status == :first_order end end stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K2_5StructuredParams(kmethod = :tricg), solve_method = IPF(), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-4, ϵ_rb = 1.0e-4, ϵ_pdd = 1.0e-4), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-1) @test stats4.status == :first_order end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
4470
@testset "Krylov K3" begin for kmethod in [:bilq, :bicgstab, :usymlq, :usymqr, :qmr, :diom, :fom, :gmres, :dqgmres] stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K3KrylovParams(kmethod = kmethod), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-4, ϵ_rb = 1.0e-4, ϵ_pdd = 1.0e-4), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-1) @test stats2.status == :first_order end stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K3KrylovParams(uplo = :U, kmethod = :gmres), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-4, ϵ_rb = 1.0e-4, ϵ_pdd = 1.0e-4), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order end @testset "KrylovK3_5" begin stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K3_5KrylovParams(uplo = :U, kmethod = :minres), solve_method = IPF(), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-3, ϵ_rb = 1.0e-3, ϵ_pdd = 1.0e-3), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e-1) @test stats2.status == :first_order for kmethod in [:minres, :gmres] stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K3_5KrylovParams(uplo = :U, kmethod = kmethod, preconditioner = Equilibration()), solve_method = IPF(), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e0) @test stats2.status == :first_order stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K3_5KrylovParams(kmethod = kmethod, preconditioner = Equilibration()), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order end end @testset "KrylovK3S" begin stats2 = ripqp( QuadraticModel(qps2), display = true, sp = K3SKrylovParams(uplo = :U, kmethod = :minres_qlp), solve_method = IPF(), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e0) @test stats2.status == :first_order stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K3SKrylovParams(kmethod = :minres_qlp), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K3SKrylovParams(uplo = :U, kmethod = :minres, preconditioner = Equilibration()), solve_method = IPF(), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e0) @test stats2.status == :first_order stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K3SKrylovParams(kmethod = :minres, preconditioner = Equilibration()), itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order end @testset "K3_5 structured" begin for kmethod in [:gpmr, :trimr] stats2 = ripqp( QuadraticModel(qps2), display = false, sp = K3_5StructuredParams(kmethod = kmethod), solve_method = IPF(), history = true, itol = InputTol( max_iter = 100, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2, ), ) @test isapprox(stats2.objective, -9.99599999e1, atol = 1e0) @test stats2.status == :first_order end end @testset "K3S structured" begin for kmethod in [:gpmr, :trimr] stats3 = ripqp( QuadraticModel(qps3), display = false, sp = K3SStructuredParams(kmethod = kmethod), solve_method = IPF(), history = true, itol = InputTol( max_iter = 100, max_time = 20.0, ϵ_rc = 1.0e-2, ϵ_rb = 1.0e-2, ϵ_pdd = 1.0e-2, ), ) @test isapprox(stats3.objective, 5.32664756, atol = 1e-1) @test stats3.status == :first_order end end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
code
3962
@testset "K1 Chol" begin stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K1CholParams(), solve_method = PC(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end @testset "Krylov K1" begin for kmethod in [:cg, :cg_lanczos, :cr] stats4 = ripqp( QuadraticModel(qps4), display = true, sp = K1KrylovParams(kmethod = kmethod), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K1KrylovParams(uplo = :U), solve_method = PC(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end @testset "Krylov K1.1 Structured" begin for kmethod in [:lsqr, :lsmr] stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K1_1StructuredParams(kmethod = kmethod), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-1) @test stats4.status == :first_order end stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K1_1StructuredParams(uplo = :U), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end @testset "Krylov K1.2 Structured" begin for kmethod in [:lnlq, :craig, :craigmr] stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K1_2StructuredParams(kmethod = kmethod), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-1) @test stats4.status == :first_order end stats4 = ripqp( QuadraticModel(qps4), display = false, sp = K1_2StructuredParams(uplo = :U), solve_method = IPF(), history = true, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end @testset "Krylov K1 Dense" begin sm_dense4 = SlackModel(QuadraticModel(qps4)) qm_dense4 = QuadraticModel( sm_dense4.data.c, Matrix(sm_dense4.data.H), A = Matrix(sm_dense4.data.A), lcon = sm_dense4.meta.lcon, ucon = sm_dense4.meta.ucon, lvar = sm_dense4.meta.lvar, uvar = sm_dense4.meta.uvar, ) stats4 = ripqp( qm_dense4, display = false, sp = K1CholDenseParams(), solve_method = PC(), ps = false, scaling = false, history = false, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order stats4 = ripqp( qm_dense4, display = true, sp = K1CholDenseParams(), solve_method = PC(), mode = :multi, ps = false, scaling = false, history = false, itol = InputTol(max_iter = 50, max_time = 20.0, ϵ_rc = 1.0e-6, ϵ_rb = 1.0e-6, ϵ_pdd = 1.0e-6), ) @test isapprox(stats4.objective, -4.6475314286e02, atol = 1e-2) @test stats4.status == :first_order end
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
2294
# RipQP [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4309783.svg)](https://doi.org/10.5281/zenodo.4309783) ![CI](https://github.com/JuliaSmoothOptimizers/RipQP.jl/workflows/CI/badge.svg?branch=main) [![Cirrus CI - Base Branch Build Status](https://img.shields.io/cirrus/github/JuliaSmoothOptimizers/RipQP.jl?logo=Cirrus%20CI)](https://cirrus-ci.com/github/JuliaSmoothOptimizers/RipQP.jl) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaSmoothOptimizers.github.io/RipQP.jl/dev) [![](https://img.shields.io/badge/docs-stable-3f51b5.svg)](https://JuliaSmoothOptimizers.github.io/RipQP.jl/stable) [![codecov](https://codecov.io/gh/JuliaSmoothOptimizers/RipQP.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaSmoothOptimizers/RipQP.jl) A package to optimize linear and quadratic problems in QuadraticModel format (see https://github.com/JuliaSmoothOptimizers/QuadraticModels.jl). By default, RipQP iterates in the floating-point type of its input QuadraticModel, but it can also perform operations in several floating-point systems if some parameters are modified (see the [documentation](https://JuliaSmoothOptimizers.github.io/RipQP.jl/stable) for more information). # Basic usage In this example, we use QPSReader to read a quadratic problem (QAFIRO) from the Maros and Meszaros dataset. ```julia using QPSReader, QuadraticModels using RipQP qps = readqps("QAFIRO.SIF") qm = QuadraticModel(qps) stats = ripqp(qm) ``` To use the multi precision mode (default to :mono) and change the maximum number of iterations: ```julia stats = ripqp(qm, mode=:multi, itol = InputTol(max_iter=100)) ``` ## Bug reports and discussions If you think you found a bug, feel free to open an [issue](https://github.com/JuliaSmoothOptimizers/RipQP.jl/issues). Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please. If you want to ask a question not suited for a bug report, feel free to start a discussion [here](https://github.com/JuliaSmoothOptimizers/Organization/discussions). This forum is for general discussion about this repository and the [JuliaSmoothOptimizers](https://github.com/JuliaSmoothOptimizers) organization, so questions about any of our packages are welcome.
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
619
## RipQP ```@docs ripqp ``` ## Input Types ```@docs InputTol SystemWrite ``` ## Solvers ```@docs SolverParams K2LDLParams K2_5LDLParams K2KrylovParams K2_5KrylovParams K2StructuredParams K2_5StructuredParams K3KrylovParams K3SKrylovParams K3SStructuredParams K3_5KrylovParams K3_5StructuredParams K1CholParams K1KrylovParams K1CholDenseParams K2LDLDenseParams K1_1StructuredParams K1_2StructuredParams ``` ## Preconditioners ```@docs AbstractPreconditioner Identity Jacobi Equilibration LDL ``` ## Factorizations ```@docs AbstractFactorization LDLFact CholmodFact QDLDLFact HSLMA57Fact HSLMA97Fact LLDLFact ```
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
1531
# [RipQP.jl documentation](@id Home) This package provides a solver for minimizing convex quadratic problems, of the form: ```math \min \frac{1}{2} x^T Q x + c^T x + c_0, ~~~~ s.t. ~~ \ell con \le A x \le ucon, ~~ \ell \le x \le u, ``` where Q is positive semi-definite and the bounds on x and Ax can be infinite. RipQP uses Interior Point Methods and incorporates several linear algebra and optimization techniques. It can run in several floating-point systems, and is able to switch between floating-point systems during the resolution of a problem. The user should be able to write its own solver to compute the direction of descent that should be used at each iterate of RipQP. RipQP can also solve constrained linear least squares problems: ```math \min \frac{1}{2} \| A x - b \|^2, ~~~~ s.t. ~~ c_L \le C x \le c_U, ~~ \ell \le x \le u. ``` ## Bug reports and discussions If you think you found a bug, feel free to open an [issue](https://github.com/JuliaSmoothOptimizers/RipQP.jl/issues). Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please. If you want to ask a question not suited for a bug report, feel free to start a discussion [here](https://github.com/JuliaSmoothOptimizers/Organization/discussions). This forum is for general discussion about this repository and the [JuliaSmoothOptimizers](https://github.com/JuliaSmoothOptimizers) organization, so questions about any of our packages are welcome.
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
2412
# Multi-precision ## Solving precision You can use RipQP in several floating-point systems. The algorithm will run in the precision of the input `QuadraticModel`. For example, if you have a `QuadraticModel` `qm32` in `Float32`, then ```julia stats = ripqp(qm32) ``` will solve this problem in `Float32`. The stopping criteria of [`RipQP.InputTol`](@ref) will be adapted to the preicison of the `QuadraticModel` to solve. ## Multi-precision You can use the multi-precision mode to solve a problem with a warm-start in a lower floating-point system. [`RipQP.InputTol`](@ref) contains intermediate parameters that are used to decide when to transition from a lower precision to a higher precision. ```julia stats = ripqp(qm, mode = :multi, itol = InputTol(ϵ_pdd1 = 1.0e-2)) ``` `ϵ_pdd1` is used for the transition from `Float32` to `Float64`, while `ϵ_pdd` is used at the end of the algorithm. ## Refinement of the Quadratic Problem Instead of just increasing the precision of the algorithm for the transition between precisions, it is possible to solve a refined quadratic problem. References: * T. Weber, S. Sager, A. Gleixner [*Solving quadratic programs to high precision using scaled iterative refinement*](https://doi.org/10.1007/s12532-019-00154-6), Mathematical Programming Computation, 49(6), pp. 421-455, 2019. * D. Ma, L. Yang, R. M. T. Fleming, I. Thiele, B. O. Palsson, M. A. Saunders [*Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression*](https://doi.org/10.1038/srep40863), Scientific Reports 7, 40863, 2017. ```julia stats = ripqp(qm, mode = :multiref, itol = InputTol(ϵ_pdd1 = 1.0e-2)) stats = ripqp(qm, mode = :multizoom, itol = InputTol(ϵ_pdd1 = 1.0e-2)) ``` The two presented algorithms follow the procedure described in each of the two above references. ## Switching solvers when increasing precision Instead of using the same solver after the transition between two floating-point systems, it is possible to switch to another solver, if a conversion function from the old solver to the new solvers is implemented. ```julia stats = ripqp(qm, mode = :multiref, solve_method = IPF(), sp = K2LDLParams(), sp2 = K2KrylovParams(uplo = :U, preconditioner = LDL(T = Float32))) # start with K2LDL in Float32, then transition to Float64, # then use K2Krylov in Float64 with a LDL preconditioner in Float32. ```
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
96
# Reference ​ ## Contents ​ ```@contents Pages = ["reference.md"] ``` ​ ## Index ​ ```@index ```
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
6490
# Switching solvers ## Solve method By default, RipQP uses a predictor-corrector algorithm that solves two linear systems per interior-point iteration. This is efficient when using a factorization to solve the interior-point system. It is also possible to use an infeasible path-following algorithm, which is efficient when solving each system is more expensive (for example when using a Krylov method without preconditioner). ```julia stats = ripqp(qm, solve_method = PC()) # predictor-corrector (default) stats = ripqp(qm, solve_method = IPF()) # infeasible path-following ``` ## Choosing a solver It is possible to choose different solvers to solve the interior-point system. All these solvers can be called with a structure that is a subtype of a [`RipQP.SolverParams`](@ref). The default solver is [`RipQP.K2LDLParams`](@ref). There are a lot of solvers that are implemented using Krylov methods from [`Krylov.jl`](https://github.com/JuliaSmoothOptimizers/Krylov.jl). For example: ```julia stats = ripqp(qm, sp = K2KrylovParams()) ``` These solvers are usually less efficient, but they can be used with a preconditioner to improve the performances. All these preconditioners can be called with a structure that is a subtype of an [`AbstractPreconditioner`](@ref). By default, most Krylov solvers use the [`RipQP.Identity`](@ref) preconditioner, but is possible to use for example a LDL factorization [`RipQP.LDL`](@ref). The Krylov method then acts as form of using iterative refinement to a LDL factorization of K2: ```julia stats = ripqp(qm, sp = K2KrylovParams(uplo = :U, preconditioner = LDL())) # uplo = :U is mandatory with this preconditioner ``` It is also possible to change the Krylov method used to solve the system: ```julia stats = ripqp(qm, sp = K2KrylovParams(uplo = :U, kmethod = :gmres, preconditioner = LDL())) ``` ## Logging for Krylov Solver Solvers using a Krylov method have two more log columns. The first one is the number of iterations to solve the interior-point system with the Krylov method, and the second one is a character indication the output status of the Krylov method. The different characters are `'u'` for user-requested exit (callback), `'i'` for maximum number of iterations exceeded, and `'s'` otherwise. ## Advanced: write your own solver You can use your own solver to compute the direction of descent inside RipQP at each iteration. Here is a basic example using the package [`LDLFactorizations.jl`](https://github.com/JuliaSmoothOptimizers/LDLFactorizations.jl). First, you will need a [`RipQP.SolverParams`](@ref) to define parameters for your solver: ```julia using RipQP, LinearAlgebra, LDLFactorizations, SparseArrays struct K2basicLDLParams{T<:Real} <: SolverParams uplo :: Symbol # mandatory, tells RipQP which triangle of the augmented system to store ρ :: T # dual regularization δ :: T # primal regularization end ``` Then, you will have to create a type that allocates space for your solver, and a constructor using the following parameters: ```julia mutable struct PreallocatedDataK2basic{T<:Real, S} <: RipQP.PreallocatedDataAugmented{T, S} D :: S # temporary top-left diagonal of the K2 system ρ :: T # dual regularization δ :: T # primal regularization K :: SparseMatrixCSC{T,Int} # K2 matrix K_fact :: LDLFactorizations.LDLFactorization{T,Int,Int,Int} # factorized K2 end ``` Now you need to write a `RipQP.PreallocatedData` function that returns your type: ```julia function RipQP.PreallocatedData(sp :: SolverParams, fd :: RipQP.QM_FloatData{T}, id :: RipQP.QM_IntData, itd :: RipQP.IterData{T}, pt :: RipQP.Point{T}, iconf :: InputConfig{Tconf}) where {T<:Real, Tconf<:Real} ρ, δ = T(sp.ρ), T(sp.δ) K = spzeros(T, id.ncon+id.nvar, id.ncon + id.nvar) K[1:id.nvar, 1:id.nvar] = .-fd.Q .- ρ .* Diagonal(ones(T, id.nvar)) # A = Aᵀ of the input QuadraticModel since we use the upper triangle: K[1:id.nvar, id.nvar+1:end] = fd.A K[diagind(K)[id.nvar+1:end]] .= δ K_fact = ldl_analyze(Symmetric(K, :U)) @assert sp.uplo == :U # LDLFactorizations does not work with the lower triangle K_fact = ldl_factorize!(Symmetric(K, :U), K_fact) K_fact.__factorized = true return PreallocatedDataK2basic(zeros(T, id.nvar), ρ, δ, K, #K K_fact #K_fact ) end ``` Then, you need to write a `RipQP.update_pad!` function that will update the `RipQP.PreallocatedData` struct before computing the direction of descent. ```julia function RipQP.update_pad!(pad :: PreallocatedDataK2basic{T}, dda :: RipQP.DescentDirectionAllocs{T}, pt :: RipQP.Point{T}, itd :: RipQP.IterData{T}, fd :: RipQP.Abstract_QM_FloatData{T}, id :: RipQP.QM_IntData, res :: RipQP.Residuals{T}, cnts :: RipQP.Counters) where {T<:Real} # update the diagonal of K2 pad.D .= -pad.ρ pad.D[id.ilow] .-= pt.s_l ./ itd.x_m_lvar pad.D[id.iupp] .-= pt.s_u ./ itd.uvar_m_x pad.D .-= fd.Q[diagind(fd.Q)] pad.K[diagind(pad.K)[1:id.nvar]] = pad.D pad.K[diagind(pad.K)[id.nvar+1:end]] .= pad.δ # factorize K2 ldl_factorize!(Symmetric(pad.K, :U), pad.K_fact) end ``` Finally, you need to write a `RipQP.solver!` function that compute directions of descent. Note that this function solves in-place the linear system by overwriting the direction of descent. That is why the direction of descent `dd` contains the right hand side of the linear system to solve. ```julia function RipQP.solver!(dd :: AbstractVector{T}, pad :: PreallocatedDataK2basic{T}, dda :: RipQP.DescentDirectionAllocsPC{T}, pt :: RipQP.Point{T}, itd :: RipQP.IterData{T}, fd :: RipQP.Abstract_QM_FloatData{T}, id :: RipQP.QM_IntData, res :: RipQP.Residuals{T}, cnts :: RipQP.Counters, step :: Symbol) where {T<:Real} ldiv!(pad.K_fact, dd) return 0 end ``` Then, you can use your solver: ```julia using QuadraticModels, QPSReader qm = QuadraticModel(readqps("QAFIRO.SIF")) stats1 = ripqp(qm, sp = K2basicLDLParams(:U, 1.0e-6, 1.0e-6)) ```
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.4
a734ff1ea463d482c7fad756d128810e829bd44b
docs
3298
# Tutorial ## Input RipQP uses the package [QuadraticModels.jl](https://github.com/JuliaSmoothOptimizers/QuadraticModels.jl) to model convex quadratic problems. Here is a basic example: ```@example QM using QuadraticModels, LinearAlgebra, SparseMatricesCOO Q = [6. 2. 1. 2. 5. 2. 1. 2. 4.] c = [-8.; -3; -3] A = [1. 0. 1. 0. 2. 1.] b = [0.; 3] l = [-1.0;0;0] u = [Inf; Inf; Inf] QM = QuadraticModel( c, SparseMatrixCOO(tril(Q)), A=SparseMatrixCOO(A), lcon=b, ucon=b, lvar=l, uvar=u, c0=0., name="QM" ) ``` Once your `QuadraticModel` is loaded, you can simply solve it RipQP: ```@example QM using RipQP stats = ripqp(QM) println(stats) ``` The `stats` output is a [GenericExecutionStats](https://jso.dev/SolverCore.jl/dev/reference/#SolverCore.GenericExecutionStats). It is also possible to use the package [QPSReader.jl](https://github.com/JuliaSmoothOptimizers/QPSReader.jl) in order to read convex quadratic problems in MPS or SIF formats: (download [QAFIRO](https://raw.githubusercontent.com/JuliaSmoothOptimizers/RipQP.jl/main/test/QAFIRO.SIF)) ```@example QM using QPSReader, QuadraticModels QM = QuadraticModel(readqps("assets/QAFIRO.SIF")) ``` ## Logging RipQP displays some logs at each iterate. ```@example QM stats = ripqp(QM) println(stats) ``` You can deactivate logging with ```@example QM stats = ripqp(QM, display = false) println(stats) ``` It is also possible to get a history of several quantities such as the primal and dual residuals and the relative primal-dual gap. These quantites are available in the dictionary `solver_specific` of the `stats`. ```@example QM stats = ripqp(QM, display = false, history = true) pddH = stats.solver_specific[:pddH] ``` ## Change configuration and tolerances You can use `RipQP` without presolve and scaling with: ```julia stats = ripqp(QM, ps=false, scaling = false) ``` You can also change the [`RipQP.InputTol`](https://jso.dev/RipQP.jl/stable/API/#RipQP.InputTol) type to change the tolerances for the stopping criteria: ```@example QM stats = ripqp(QM, itol = InputTol(max_iter = 5)) println(stats) ``` ## Save the Interior-Point system At every iteration, RipQP solves two linear systems with the default Predictor-Corrector method (the affine system and the corrector-centering system), or one linear system with the Infeasible Path-Following method. To save these systems, you can use: ```julia w = SystemWrite(write = true, name="test_", kfirst = 4, kgap=3) stats = ripqp(QM, w = w) ``` This will save one matrix and the associated two right hand sides of the PC method every three iterations starting at iteration four. Then, you can read the saved files with: ```julia using DelimitedFiles, MatrixMarket K = MatrixMarket.mmread("test_K_iter4.mtx") rhs_aff = readdlm("test_rhs_iter4_aff.rhs", Float64)[:] rhs_cc = readdlm("test_rhs_iter4_cc.rhs", Float64)[:]; ``` ## Timers You can see the elapsed time with: ```julia stats.elapsed_time ``` For more advance timers you can use [TimerOutputs.jl](https://github.com/KristofferC/TimerOutputs.jl): ```julia using TimerOutputs TimerOutputs.enable_debug_timings(RipQP) reset_timer!(RipQP.to) stats = ripqp(QM) TimerOutputs.complement!(RipQP.to) # print complement of timed sections show(RipQP.to, sortby = :firstexec) ```
RipQP
https://github.com/JuliaSmoothOptimizers/RipQP.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
1024
using HarmonicOrthogonalPolynomials, Plot plotly() G = HarmonicOrthogonalPolynomials.grid(SphericalHarmonic()[:,Block.(Base.OneTo(10))]) n,m = size(G) g = append!(vec(G), [SphericalCoordinate(0,0), SphericalCoordinate(π,0)]) x,y,z = ntuple(k ->getindex.(g,k), 3); N = length(g) i = [range(0; length=m, step=n); ] j = [range(n; length=m-1, step=n); 0] k = fill(N-2, m) for ν = range(0; length=m-1, step=n) append!(i, range(ν; length=n-1)) append!(i, range(ν+n; length=n-1)) append!(j, range(ν+1; length=n-1)) append!(j, range(ν+1; length=n-1)) append!(k, range(ν+n; length=n-1)) append!(k, range(ν+n+1; length=n-1)) end append!(i, range(n*(m-1); length=n-1)) append!(i, range(0; length=n-1)) append!(j, range(n*(m-1)+1; length=n-1)) append!(j, range(n*(m-1)+1; length=n-1)) append!(k, range(0; length=n-1)) append!(k, range(1; length=n-1)) append!(i, [range(2n-1; length=m-1, step=n); n-1]) append!(j, range(n-1; length=m, step=n)) append!(k, fill(N-1, m)) mesh3d(x,y,z; connections = (i,j,k))
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
6497
module HarmonicOrthogonalPolynomials using FastTransforms, LinearAlgebra, ClassicalOrthogonalPolynomials, ContinuumArrays, DomainSets, BlockArrays, BlockBandedMatrices, InfiniteArrays, StaticArrays, QuasiArrays, Base, SpecialFunctions import Base: OneTo, oneto, axes, getindex, convert, to_indices, tail, eltype, *, ==, ^, copy, -, abs, resize! import BlockArrays: block, blockindex, unblock, BlockSlice import DomainSets: indomain, Sphere import LinearAlgebra: norm, factorize import QuasiArrays: to_quasi_index, SubQuasiArray, * import ContinuumArrays: TransformFactorization, @simplify, ProjectionFactorization, plan_grid_transform, plan_transform, grid, grid_layout, plotgrid_layout, AbstractBasisLayout, MemoryLayout import ClassicalOrthogonalPolynomials: checkpoints, _sum, cardinality, increasingtruncations import BlockBandedMatrices: BlockRange1, _BandedBlockBandedMatrix import FastTransforms: Plan, interlace import QuasiArrays: LazyQuasiMatrix, LazyQuasiArrayStyle import InfiniteArrays: InfStepRange, RangeCumsum export SphericalHarmonic, UnitSphere, SphericalCoordinate, RadialCoordinate, Block, associatedlegendre, RealSphericalHarmonic, sphericalharmonicy, Laplacian, AbsLaplacianPower, abs, -, ^, AngularMomentum cardinality(::Sphere) = ℵ₁ include("multivariateops.jl") include("spheretrav.jl") include("coordinates.jl") # roughly try to double the computational time each iteration increasingtruncations(::BlockedOneTo{Int,<:RangeCumsum{Int,<:AbstractRange}}) = broadcast(n -> Block.(oneto((2^(n ÷ 2)) ÷ 2)), 4:2:∞) checkpoints(::UnitSphere{T}) where T = [SphericalCoordinate{T}(0.1,0.2), SphericalCoordinate{T}(0.3,0.4)] abstract type AbstractSphericalHarmonic{T} <: MultivariateOrthogonalPolynomial{3,T} end struct RealSphericalHarmonic{T} <: AbstractSphericalHarmonic{T} end struct SphericalHarmonic{T} <: AbstractSphericalHarmonic{T} end SphericalHarmonic() = SphericalHarmonic{ComplexF64}() RealSphericalHarmonic() = RealSphericalHarmonic{Float64}() axes(S::AbstractSphericalHarmonic{T}) where T = (Inclusion{SphericalCoordinate{real(T)}}(UnitSphere{real(T)}()), blockedrange(1:2:∞)) associatedlegendre(m) = ((-1)^m*prod(1:2:(2m-1)))*(UltrasphericalWeight((m+1)/2).*Ultraspherical(m+1/2)) lgamma(n) = logabsgamma(n)[1] function sphericalharmonicy(ℓ, m, θ, φ) m̃ = abs(m) exp((lgamma(ℓ+m̃+1)+lgamma(ℓ-m̃+1)-2lgamma(ℓ+1))/2)*sqrt((2ℓ+1)/(4π)) * exp(im*m*φ) * sin(θ/2)^m̃ * cos(θ/2)^m̃ * jacobip(ℓ-m̃,m̃,m̃,cos(θ)) end function getindex(S::SphericalHarmonic{T}, x::SphericalCoordinate, K::BlockIndex{1}) where T ℓ = Int(block(K)) k = blockindex(K) m = k-ℓ convert(T, sphericalharmonicy(ℓ-1, m, x.θ, x.φ))::T end ==(::SphericalHarmonic{T},::SphericalHarmonic{T}) where T = true ==(::RealSphericalHarmonic{T},::RealSphericalHarmonic{T}) where T = true # function getindex(S::RealSphericalHarmonic{T}, x::ZSphericalCoordinate, K::BlockIndex{1}) where T # # sorts entries by ...-2,-1,0,1,2... scheme # ℓ = Int(block(K)) # k = blockindex(K) # m = k-ℓ # m̃ = abs(m) # indepm = (-1)^m̃*exp((lgamma(ℓ-m̃)-lgamma(ℓ+m̃))/2)*sqrt((2ℓ-1)/(2π))*associatedlegendre(m̃)[x.z,ℓ-m̃] # m>0 && return cos(m*x.φ)*indepm # m==0 && return cos(m*x.φ)/sqrt(2)*indepm # m<0 && return sin(m̃*x.φ)*indepm # end function getindex(S::RealSphericalHarmonic{T}, x::SphericalCoordinate, K::BlockIndex{1}) where T # starts with m=0, then alternates between sin and cos terms (beginning with sin). ℓ = Int(block(K)) m = blockindex(K)-1 z = cos(x.θ) if iszero(m) return sqrt((2ℓ-1)/(4*π))*associatedlegendre(0)[z,ℓ] elseif isodd(m) m = (m+1)÷2 return sin(m*x.φ)*(-1)^m*exp((lgamma(ℓ-m)-lgamma(ℓ+m))/2)*sqrt((2ℓ-1)/(2*π))*associatedlegendre(m)[z,ℓ-m] else m = m÷2 return cos(m*x.φ)*(-1)^m*exp((lgamma(ℓ-m)-lgamma(ℓ+m))/2)*sqrt((2ℓ-1)/(2*π))*associatedlegendre(m)[z,ℓ-m] end end getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, K::BlockIndex{1}) = S[SphericalCoordinate(x), K] getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, K::Block{1}) = S[x, axes(S,2)[K]] getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, KR::BlockOneTo) = mortar([S[x, K] for K in KR]) getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, k::Int) = S[x, findblockindex(axes(S,2), k)] getindex(S::AbstractSphericalHarmonic, x::StaticVector{3}, kr::AbstractUnitRange{Int}) = [S[x, k] for k in kr] # @simplify *(Ac::QuasiAdjoint{<:Any,<:SphericalHarmonic}, B::SphericalHarmonic) = ## # Expansion ## function grid(S::AbstractSphericalHarmonic, B::Block{1}) N = Int(B) T = real(eltype(S)) # The colatitudinal grid (mod $\pi$): θ = ((1:N) .- one(T)/2)/N # The longitudinal grid (mod $\pi$): M = 2*N-1 φ = (0:M-1)*2/convert(T, M) SphericalCoordinate.(π*θ, π*φ') end struct SphericalHarmonicTransform{T} <: Plan{T} sph2fourier::FastTransforms.FTPlan{T,2,FastTransforms.SPINSPHERE} analysis::FastTransforms.FTPlan{T,2,FastTransforms.SPINSPHEREANALYSIS} end struct RealSphericalHarmonicTransform{T} <: Plan{T} sph2fourier::FastTransforms.FTPlan{T,2,FastTransforms.SPHERE} analysis::FastTransforms.FTPlan{T,2,FastTransforms.SPHEREANALYSIS} end SphericalHarmonicTransform{T}(N::Int) where T<:Complex = SphericalHarmonicTransform{T}(plan_spinsph2fourier(T, N, 0), plan_spinsph_analysis(T, N, 2N-1, 0)) RealSphericalHarmonicTransform{T}(N::Int) where T<:Real = RealSphericalHarmonicTransform{T}(plan_sph2fourier(T, N), plan_sph_analysis(T, N, 2N-1)) *(P::SphericalHarmonicTransform{T}, f::Matrix{T}) where T = SphereTrav(P.sph2fourier \ (P.analysis * f)) *(P::RealSphericalHarmonicTransform{T}, f::Matrix{T}) where T = RealSphereTrav(P.sph2fourier \ (P.analysis * f)) plan_transform(P::SphericalHarmonic{T}, (N,)::Tuple{Block{1}}, dims=1) where T = SphericalHarmonicTransform{T}(Int(N)) plan_transform(P::RealSphericalHarmonic{T}, (N,)::Tuple{Block{1}}, dims=1) where T = RealSphericalHarmonicTransform{T}(Int(N)) grid(P::MultivariateOrthogonalPolynomial, n::Int) = grid(P, findblock(axes(P,2),n)) plan_transform(P::MultivariateOrthogonalPolynomial, Bs::NTuple{N,Int}, dims=ntuple(identity,Val(N))) where N = plan_transform(P, findblock.(Ref(axes(P,2)), Bs), dims) function _sum(A::AbstractSphericalHarmonic{T}, dims) where T @assert dims == 1 BlockedArray(Hcat(sqrt(4convert(T, π)), Zeros{T}(1,∞)), (Base.OneTo(1),axes(A,2))) end include("laplace.jl") include("angularmomentum.jl") end # module
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
1698
######### # AngularMomentum # Applies the partial derivative with respect to the last angular variable in the coordinate system. # For example, in polar coordinates (r, θ) in ℝ² or cylindrical coordinates (r, θ, z) in ℝ³, we apply ∂ / ∂θ = (x ∂ / ∂y - y ∂ / ∂x). # In spherical coordinates (ρ, θ, φ) in ℝ³, we apply ∂ / ∂φ = (x ∂ / ∂y - y ∂ / ∂x). ######### struct AngularMomentum{T,Ax<:Inclusion} <: LazyQuasiMatrix{T} axis::Ax end AngularMomentum{T}(axis::Inclusion) where T = AngularMomentum{T,typeof(axis)}(axis) AngularMomentum{T}(domain) where T = AngularMomentum{T}(Inclusion(domain)) AngularMomentum(axis) = AngularMomentum{eltype(eltype(axis))}(axis) axes(A::AngularMomentum) = (A.axis, A.axis) ==(a::AngularMomentum, b::AngularMomentum) = a.axis == b.axis copy(A::AngularMomentum) = AngularMomentum(copy(A.axis)) ^(A::AngularMomentum, k::Integer) = ApplyQuasiArray(^, A, k) @simplify function *(A::AngularMomentum, P::SphericalHarmonic) # Spherical harmonics are the eigenfunctions of the angular momentum operator on the unit sphere T = real(eltype(P)) k = mortar(Base.OneTo.(1:2:∞)) m = T.((-1) .^ (k .- 1) .* k .÷ 2) P * Diagonal(im .* m) end #= @simplify function *(A::AngularMomentum, P::RealSphericalHarmonic) # The angular momentum operator applied to real spherical harmonics negates orders T = real(eltype(P)) n = mortar(Fill.(oneto(∞),1:2:∞)) k = mortar(Base.OneTo.(0:2:∞)) m = T.(iseven.(k) .* (k .÷ 2)) dat = BlockedArray(Vcat( (-m)', # n, k-1 (0 .* m)', # n, k (m)', # n, k+1 ), (blockedrange(Fill(3, 1)), axes(n,1))) P * _BandedBlockBandedMatrix(dat', axes(k,1), (0,0), (1,1)) end =#
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
3768
### # RadialCoordinate #### """ RadialCoordinate(r, θ) represents the 2-vector [r*cos(θ),r*sin(θ)] """ struct RadialCoordinate{T} <: StaticVector{2,T} r::T θ::T RadialCoordinate{T}(r::T, θ::T) where T = new{T}(r, θ) end RadialCoordinate{T}(r, θ) where T = RadialCoordinate{T}(convert(T,r), convert(T,θ)) RadialCoordinate(r::T, θ::V) where {T<:Real,V<:Real} = RadialCoordinate{float(promote_type(T,V))}(r, θ) function RadialCoordinate(xy::StaticVector{2}) x,y = xy RadialCoordinate(norm(xy), atan(y,x)) end StaticArrays.SVector(rθ::RadialCoordinate) = SVector(rθ.r * cos(rθ.θ), rθ.r * sin(rθ.θ)) getindex(R::RadialCoordinate, k::Int) = SVector(R)[k] norm(rθ::RadialCoordinate) = rθ.r ### # SphericalCoordinate ### abstract type AbstractSphericalCoordinate{T} <: StaticVector{3,T} end norm(::AbstractSphericalCoordinate{T}) where T = real(one(T)) Base.in(::AbstractSphericalCoordinate, ::UnitSphere{T}) where T = true """ SphericalCoordinate(θ, φ) represents a point in the unit sphere as a `StaticVector{3}` in spherical coordinates where the pole is `SphericalCoordinate(0,φ) == SVector(0,0,1)` and `SphericalCoordinate(π/2,0) == SVector(1,0,0)`. """ struct SphericalCoordinate{T} <: AbstractSphericalCoordinate{T} θ::T φ::T SphericalCoordinate{T}(θ::T, φ::T) where T = new{T}(θ, φ) end SphericalCoordinate{T}(θ, φ) where T = SphericalCoordinate{T}(convert(T,θ), convert(T,φ)) SphericalCoordinate(θ::V, φ::T) where {T<:Real,V<:Real} = SphericalCoordinate{float(promote_type(T,V))}(θ, φ) SphericalCoordinate(S::SphericalCoordinate) = S """ ZSphericalCoordinate(φ, z) represents a point in the unit sphere as a `StaticVector{3}` in where `z` is specified while the angle coordinate is given by spherical coordinates where the pole is `SVector(0,0,1)`. """ struct ZSphericalCoordinate{T} <: AbstractSphericalCoordinate{T} φ::T z::T function ZSphericalCoordinate{T}(φ::T, z::T) where T -1 ≤ z ≤ 1 || throw(ArgumentError("z must be between -1 and 1")) new{T}(φ, z) end end ZSphericalCoordinate(φ::T, z::V) where {T,V} = ZSphericalCoordinate{promote_type(T,V)}(φ,z) ZSphericalCoordinate(S::SphericalCoordinate) = ZSphericalCoordinate(S.φ, cos(S.θ)) ZSphericalCoordinate{T}(S::SphericalCoordinate) where T = ZSphericalCoordinate{T}(S.φ, cos(S.θ)) SphericalCoordinate(S::ZSphericalCoordinate) = SphericalCoordinate(acos(S.z), S.φ) SphericalCoordinate{T}(S::ZSphericalCoordinate) where T = SphericalCoordinate{T}(acos(S.z), S.φ) function getindex(S::SphericalCoordinate, k::Int) k == 1 && return sin(S.θ) * cos(S.φ) k == 2 && return sin(S.θ) * sin(S.φ) k == 3 && return cos(S.θ) throw(BoundsError(S, k)) end function getindex(S::ZSphericalCoordinate, k::Int) k == 1 && return sqrt(1-S.z^2) * cos(S.φ) k == 2 && return sqrt(1-S.z^2) * sin(S.φ) k == 3 && return S.z throw(BoundsError(S, k)) end convert(::Type{SVector{3,T}}, S::SphericalCoordinate) where T = SVector{3,T}(sin(S.θ)*cos(S.φ), sin(S.θ)*sin(S.φ), cos(S.θ)) convert(::Type{SVector{3,T}}, S::ZSphericalCoordinate) where T = SVector{3,T}(sqrt(1-S.z^2)*cos(S.φ), sqrt(1-S.z^2)*sin(S.φ), S.z) convert(::Type{SVector{3}}, S::SphericalCoordinate) = SVector(sin(S.θ)*cos(S.φ), sin(S.θ)*sin(S.φ), cos(S.θ)) convert(::Type{SVector{3}}, S::ZSphericalCoordinate) = SVector(sqrt(1-S.z^2)*cos(S.φ), sqrt(1-S.z^2)*sin(S.φ), S.z) convert(::Type{SphericalCoordinate}, S::ZSphericalCoordinate) = SphericalCoordinate(S) convert(::Type{SphericalCoordinate{T}}, S::ZSphericalCoordinate) where T = SphericalCoordinate{T}(S) convert(::Type{ZSphericalCoordinate}, S::SphericalCoordinate) = ZSphericalCoordinate(S) convert(::Type{ZSphericalCoordinate{T}}, S::SphericalCoordinate) where T = ZSphericalCoordinate{T}(S)
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
1225
# Laplacian struct Laplacian{T,D} <: LazyQuasiMatrix{T} axis::Inclusion{T,D} end Laplacian{T}(axis::Inclusion{<:Any,D}) where {T,D} = Laplacian{T,D}(axis) # Laplacian{T}(domain) where T = Laplacian{T}(Inclusion(domain)) # Laplacian(axis) = Laplacian{eltype(axis)}(axis) axes(D::Laplacian) = (D.axis, D.axis) ==(a::Laplacian, b::Laplacian) = a.axis == b.axis copy(D::Laplacian) = Laplacian(copy(D.axis)) @simplify function *(Δ::Laplacian, P::AbstractSphericalHarmonic) # Spherical harmonics are the eigenfunctions of the Laplace operator on the unit sphere P * Diagonal(mortar(Fill.((-(0:∞)-(0:∞).^2), 1:2:∞))) end # Negative fractional Laplacian (-Δ)^α or equiv. abs(Δ)^α struct AbsLaplacianPower{T,D,A} <: LazyQuasiMatrix{T} axis::Inclusion{T,D} α::A end AbsLaplacianPower{T}(axis::Inclusion{<:Any,D},α) where {T,D} = AbsLaplacianPower{T,D,typeof(α)}(axis,α) axes(D:: AbsLaplacianPower) = (D.axis, D.axis) ==(a:: AbsLaplacianPower, b:: AbsLaplacianPower) = a.axis == b.axis && a.α == b.α copy(D:: AbsLaplacianPower) = AbsLaplacianPower(copy(D.axis), D.α) abs(Δ::Laplacian) = AbsLaplacianPower(axes(Δ,1),1) -(Δ::Laplacian) = abs(Δ) ^(D::AbsLaplacianPower, k) = AbsLaplacianPower(D.axis, D.α*k)
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
5159
######### # PartialDerivative{k} # takes a partial derivative in the k-th index. ######### struct PartialDerivative{k,T,Ax<:Inclusion} <: LazyQuasiMatrix{T} axis::Ax end PartialDerivative{k,T}(axis::Inclusion) where {k,T} = PartialDerivative{k,T,typeof(axis)}(axis) PartialDerivative{k,T}(domain) where {k,T} = PartialDerivative{k,T}(Inclusion(domain)) PartialDerivative{k}(axis) where k = PartialDerivative{k,eltype(eltype(axis))}(axis) axes(D::PartialDerivative) = (D.axis, D.axis) ==(a::PartialDerivative{k}, b::PartialDerivative{k}) where k = a.axis == b.axis copy(D::PartialDerivative{k}) where k = PartialDerivative{k}(copy(D.axis)) ^(D::PartialDerivative, k::Integer) = ApplyQuasiArray(^, D, k) abstract type MultivariateOrthogonalPolynomial{d,T} <: Basis{T} end const BivariateOrthogonalPolynomial{T} = MultivariateOrthogonalPolynomial{2,T} struct MultivariateOPLayout{d} <: AbstractBasisLayout end MemoryLayout(::Type{<:MultivariateOrthogonalPolynomial{d}}) where d = MultivariateOPLayout{d}() const BlockOneTo = BlockRange{1,Tuple{OneTo{Int}}} copy(P::MultivariateOrthogonalPolynomial) = P getindex(P::MultivariateOrthogonalPolynomial{D}, xy::StaticVector{D}, JR::BlockOneTo) where D = error("Overload") getindex(P::MultivariateOrthogonalPolynomial{D}, xy::StaticVector{D}, J::Block{1}) where D = P[xy, Block.(OneTo(Int(J)))][J] getindex(P::MultivariateOrthogonalPolynomial{D}, xy::StaticVector{D}, JR::BlockRange{1}) where D = P[xy, Block.(OneTo(Int(maximum(JR))))][JR] getindex(P::MultivariateOrthogonalPolynomial{D}, xy::StaticVector{D}, Jj::BlockIndex{1}) where D = P[xy, block(Jj)][blockindex(Jj)] getindex(P::MultivariateOrthogonalPolynomial{D}, xy::StaticVector{D}, j::Integer) where D = P[xy, findblockindex(axes(P,2), j)] getindex(P::MultivariateOrthogonalPolynomial{D}, xy::StaticVector{D}, jr::AbstractVector{<:Integer}) where D = P[xy, Block.(OneTo(Int(findblock(axes(P,2), maximum(jr)))))][jr] const FirstInclusion = BroadcastQuasiVector{<:Any, typeof(first), <:Tuple{Inclusion}} const LastInclusion = BroadcastQuasiVector{<:Any, typeof(last), <:Tuple{Inclusion}} function Base.broadcasted(::LazyQuasiArrayStyle{2}, ::typeof(*), x::FirstInclusion, P::MultivariateOrthogonalPolynomial) axes(x,1) == axes(P,1) || throw(DimensionMismatch()) P*jacobimatrix(Val(1), P) end function Base.broadcasted(::LazyQuasiArrayStyle{2}, ::typeof(*), x::LastInclusion, P::MultivariateOrthogonalPolynomial) axes(x,1) == axes(P,1) || throw(DimensionMismatch()) P*jacobimatrix(Val(2), P) end """ forwardrecurrence!(v, A, B, C, (x,y)) evaluates the bivaraite orthogonal polynomials at points `(x,y)` , where `A`, `B`, and `C` are `AbstractVector`s containing the recurrence coefficients matrices. In particular, note that for any OPs we have P[N+1,x] = (A[N]* [x*I; y*I] + B[N]) * P[N,x] - C[N] * P[N-1,x] where A[N] is (N+1) x 2N, B[N] and C[N] are (N+1) x N. """ # function forwardrecurrence!(v::AbstractBlockVector{T}, A::AbstractVector, B::AbstractVector, C::AbstractVector, xy) where T # N = blocklength(v) # N == 0 && return v # length(A)+1 ≥ N && length(B)+1 ≥ N && length(C)+1 ≥ N || throw(ArgumentError("A, B, C must contain at least $(N-1) entries")) # v[Block(1)] .= one(T) # N = 1 && return v # p_1 = view(v,Block(2)) # p_0 = view(v,Block(1)) # mul!(p_1, B[1], p_0) # xy_muladd!(xy, A[1], p_0, one(T), p_1) # @inbounds for n = 2:N-1 # p_2 = view(v,Block(n+1)) # mul!(p_2, B[n], p_1) # xy_muladd!(xy, A[n], p_1, one(T), p_2) # muladd!(-one(T), C[n], p_0, one(T), p_2) # p_1,p_0 = p_2,p_1 # end # v # end # forwardrecurrence(N::Block{1}, A::AbstractVector, B::AbstractVector, C::AbstractVector, xy) = # forwardrecurrence!(BlockedVector{promote_type(eltype(eltype(A)),eltype(eltype(B)),eltype(eltype(C)),eltype(xy))}(undef, 1:Int(N)), A, B, C, xy) # use block expansion ContinuumArrays.transform_ldiv(V::SubQuasiArray{<:Any,2,<:MultivariateOrthogonalPolynomial,<:Tuple{Inclusion,BlockSlice{BlockOneTo}}}, B::AbstractQuasiArray, _) = factorize(V) \ B ContinuumArrays._sub_factorize(::Tuple{Any,Any}, (kr,jr)::Tuple{Any,BlockSlice{BlockRange1{OneTo{Int}}}}, L, dims...; kws...) = TransformFactorization(plan_grid_transform(parent(L), (last(jr.block), dims...), 1)...) # function factorize(V::SubQuasiArray{<:Any,2,<:MultivariateOrthogonalPolynomial,<:Tuple{Inclusion,AbstractVector{Int}}}) # P = parent(V) # _,jr = parentindices(V) # J = findblock(axes(P,2),maximum(jr)) # ProjectionFactorization(factorize(P[:,Block.(OneTo(Int(J)))]), jr) # end # Make sure block structure matches. Probably should do this for all block mul QuasiArrays.mul(A::MultivariateOrthogonalPolynomial, b::AbstractVector) = ApplyQuasiArray(*, A, BlockedVector(b, (axes(A,2),))) # plotting const MAX_PLOT_BLOCKS = 200 grid_layout(::MultivariateOPLayout, S, n::Integer) = grid(S, findblock(axes(S,2), n)) plotgrid_layout(::MultivariateOPLayout, S, n::Integer) = plotgrid(S, findblock(axes(S,2), n)) plotgrid_layout(::MultivariateOPLayout, S, B::Block{1}) = grid(S, min(2B, Block(MAX_PLOT_BLOCKS)))
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
2502
### # SphereTrav ### """ SphereTrav(A::AbstractMatrix) is an anlogue of `DiagTrav` but for coefficients stored according to FastTransforms.jl spherical harmonics layout """ struct SphereTrav{T, AA<:AbstractMatrix{T}} <: AbstractBlockVector{T} matrix::AA function SphereTrav{T, AA}(matrix::AA) where {T,AA<:AbstractMatrix{T}} n,m = size(matrix) m == 2n-1 || throw(ArgumentError("size must match")) new{T,AA}(matrix) end end SphereTrav{T}(matrix::AbstractMatrix{T}) where T = SphereTrav{T,typeof(matrix)}(matrix) SphereTrav(matrix::AbstractMatrix{T}) where T = SphereTrav{T}(matrix) axes(A::SphereTrav) = (blockedrange(range(1; step=2, length=size(A.matrix,1))),) function getindex(A::SphereTrav, K::Block{1}) k = Int(K) m = size(A.matrix,1) st = stride(A.matrix,2) # nonnegative terms p = A.matrix[range(k; step=2*st-1, length=k)] k == 1 && return p # negative terms n = A.matrix[range(k+st-1; step=2*st-1, length=k-1)] [reverse!(n); p] end getindex(A::SphereTrav, k::Int) = A[findblockindex(axes(A,1), k)] """ RealSphereTrav(A::AbstractMatrix) takes coefficients as provided by the spherical harmonics layout of FastTransforms.jl and makes them accessible sorted such that in each block the m=0 entries are always in first place, followed by alternating sin and cos terms of increasing |m|. """ struct RealSphereTrav{T, AA<:AbstractMatrix{T}} <: AbstractBlockVector{T} matrix::AA function RealSphereTrav{T, AA}(matrix::AA) where {T,AA<:AbstractMatrix{T}} n,m = size(matrix) m == 2n-1 || throw(ArgumentError("size must match")) new{T,AA}(matrix) end end RealSphereTrav{T}(matrix::AbstractMatrix{T}) where T = RealSphereTrav{T,typeof(matrix)}(matrix) RealSphereTrav(matrix::AbstractMatrix{T}) where T = RealSphereTrav{T}(matrix) axes(A::RealSphereTrav) = (blockedrange(range(1; step=2, length=size(A.matrix,1))),) function getindex(A::RealSphereTrav, K::Block{1}) k = Int(K) m = size(A.matrix,1) st = stride(A.matrix,2) # nonnegative terms p = A.matrix[range(k; step=2*st-1, length=k)] k == 1 && return p # negative terms n = A.matrix[range(k+st-1; step=2*st-1, length=k-1)] interlace(p,n) end getindex(A::RealSphereTrav, k::Int) = A[findblockindex(axes(A,1), k)] for Typ in (:SphereTrav,:RealSphereTrav) @eval function resize!(A::$Typ, K::Block{1}) k = Int(K) $Typ(A.matrix[1:k, 1:2k-1]) end end
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
code
15938
using HarmonicOrthogonalPolynomials, StaticArrays, Test, InfiniteArrays, LinearAlgebra, BlockArrays, ClassicalOrthogonalPolynomials, QuasiArrays import HarmonicOrthogonalPolynomials: ZSphericalCoordinate, associatedlegendre, grid, SphereTrav, RealSphereTrav, plotgrid # @testset "associated legendre" begin # m = 2 # θ = 0.1 # x = cos(θ) # @test associatedlegendre(m)[x,1:10] ≈ -(2:11) .* (sin(θ/2)^m * cos(θ/2)^m * Jacobi(m,m)[x,1:10]) # end @testset "SphereTrav" begin A = SphereTrav([1 2 3; 4 0 0]) @test A == [1, 2, 4, 3] @test A[Block(2)] == [2,4,3] B = SphereTrav([1 2 3 4 5; 6 7 8 0 0; 9 0 0 0 0 ]) @test B == [1, 2, 6, 3, 4, 7, 9, 8, 5] end @testset "RadialCoordinate" begin rθ = RadialCoordinate(0.1,0.2) @test rθ ≈ SVector(rθ) ≈ [0.1cos(0.2),0.1sin(0.2)] @test RadialCoordinate(1,0.2) isa RadialCoordinate{Float64} @test RadialCoordinate(1,1) isa RadialCoordinate{Float64} @test_throws BoundsError rθ[3] end @testset "SphericalCoordinate" begin θφ = SphericalCoordinate(0.2,0.1) @test θφ ≈ ZSphericalCoordinate(0.1,cos(0.2)) @test θφ == SVector(θφ) @test SphericalCoordinate(1,1) isa SphericalCoordinate{Float64} @test_throws BoundsError θφ[4] φz = ZSphericalCoordinate(0.1,cos(0.2)) @test φz == SVector(φz) @test norm(θφ) === norm(φz) === 1.0 @test θφ in UnitSphere() @test ZSphericalCoordinate(0.1,cos(0.2)) in UnitSphere() @test convert(SVector{3,Float64}, θφ) ≈ convert(SVector{3}, θφ) ≈ convert(SVector{3,Float64}, φz) ≈ convert(SVector{3}, φz) ≈ θφ @test ZSphericalCoordinate(θφ) ≡ convert(ZSphericalCoordinate, θφ) ≡ φz @test SphericalCoordinate(φz) ≡ convert(SphericalCoordinate, φz) ≡ θφ end @testset "Evaluation" begin S = SphericalHarmonic() @test copy(S) == S @test eltype(axes(S,1)) == SphericalCoordinate{Float64} θ,φ = 0.1,0.2 x = SphericalCoordinate(θ,φ) @test S[x, Block(1)[1]] == S[x,1] == sqrt(1/(4π)) @test view(S,x, Block(1)).indices[1] isa SphericalCoordinate @test S[x, Block(1)] == [sqrt(1/(4π))] @test associatedlegendre(0)[0.1,1:2] ≈ [1.0,0.1] @test associatedlegendre(1)[0.1,1:2] ≈ [-0.9949874371066201,-0.29849623113198603] @test associatedlegendre(2)[0.1,1] ≈ 2.97 @test S[x,Block(2)] ≈ 0.5sqrt(3/π)*[1/sqrt(2)*sin(θ)exp(-im*φ),cos(θ),1/sqrt(2)*sin(θ)exp(im*φ)] @test S[x,Block(3)] ≈ [0.25sqrt(15/2π)sin(θ)^2*exp(-2im*φ), 0.5sqrt(15/2π)sin(θ)cos(θ)exp(-im*φ), 0.25sqrt(5/π)*(3cos(θ)^2-1), 0.5sqrt(15/2π)sin(θ)cos(θ)exp(im*φ), 0.25sqrt(15/2π)sin(θ)^2*exp(2im*φ)] @test S[x,Block(4)] ≈ [0.125sqrt(35/π)sin(θ)^3*exp(-3im*φ), 0.25sqrt(105/2π)sin(θ)^2*cos(θ)*exp(-2im*φ), 0.125sqrt(21/π)sin(θ)*(5cos(θ)^2-1)*exp(-im*φ), 0.25sqrt(7/π)*(5cos(θ)^3-3cos(θ)), 0.125sqrt(21/π)sin(θ)*(5cos(θ)^2-1)*exp(im*φ), 0.25sqrt(105/2π)sin(θ)^2*cos(θ)*exp(2im*φ), 0.125sqrt(35/π)sin(θ)^3*exp(3im*φ)] @test S[x,Block.(1:4)] == [S[x,Block(1)]; S[x,Block(2)]; S[x,Block(3)]; S[x,Block(4)]] end @testset "Real Evaluation" begin S = SphericalHarmonic() R = RealSphericalHarmonic() @test eltype(axes(R,1)) == SphericalCoordinate{Float64} θ,φ = 0.1,0.2 x = SphericalCoordinate(θ,φ) @test R[x, Block(1)[1]] ≈ R[x,1] ≈ sqrt(1/(4π)) @test R[x, Block(2)][1] ≈ S[x, Block(2)][2] # Careful here with the (-1) conventions? @test R[x, Block(2)][3] ≈ 1/sqrt(2)*(S[x, Block(2)][3]+S[x, Block(2)][1]) @test R[x, Block(2)][2] ≈ im/sqrt(2)*(S[x, Block(2)][1]-S[x, Block(2)][3]) end @testset "Expansion" begin @testset "grid" begin N = 2 S = SphericalHarmonic()[:,Block.(Base.OneTo(N))] @test size(S,2) == 4 g = grid(S) @test eltype(g) == SphericalCoordinate{Float64} @test plotgrid(S) == grid(SphericalHarmonic(), Block(4)) # compare with FastTransforms.jl/examples/sphere.jl # The colatitudinal grid (mod $\pi$): N = 2 θ = (0.5:N-0.5)/N # The longitudinal grid (mod $\pi$): M = 2*N-1 φ = (0:M-1)*2/M X = [sinpi(θ)*cospi(φ) for θ in θ, φ in φ] Y = [sinpi(θ)*sinpi(φ) for θ in θ, φ in φ] Z = [cospi(θ) for θ in θ, φ in φ] @test g ≈ SVector.(X, Y, Z) end @testset "transform" begin N = 2 S = SphericalHarmonic()[:,Block.(Base.OneTo(N))] xyz = axes(S,1) P = factorize(S) @test eltype(P) == ComplexF64 c = P \ (xyz -> 1).(xyz) @test blocksize(c,1) == blocksize(S,2) @test c == S \ (xyz -> 1).(xyz) @test (S * c)[SphericalCoordinate(0.1,0.2)] ≈ 1 f = (x,y,z) -> 1 + x + y + z c = S \ splat(f).(xyz) u = S * c p = SphericalCoordinate(0.1,0.2) @test u[p] ≈ 1+sum(p) x = grid(SphericalHarmonic(), 5) P = plan_transform(SphericalHarmonic(), 5) @test P * splat(f).(x) ≈ [c; zeros(5)] end @testset "adaptive" begin S = SphericalHarmonic() xyz = axes(S,1) u = S * (S \ (xyz -> 1).(xyz)) @test u[SphericalCoordinate(0.1,0.2)] ≈ 1 f = c -> exp(-100*c.θ^2) u = S * (S \ f.(xyz)) r = SphericalCoordinate(0.1,0.2) @test u[r] ≈ f(r) f = c -> ((x,y,z) = c; 1 + x + y + z) u = S * (S \ f.(xyz)) p = SphericalCoordinate(0.1,0.2) @test u[p] ≈ 1+sum(p) f = c -> ((x,y,z) = c; exp(x)*cos(y*sin(z))) u = S * (S \ f.(xyz)) @test u[p] ≈ f(p) end end @testset "Real Expansion" begin @testset "grid" begin N = 2 S = RealSphericalHarmonic()[:,Block.(Base.OneTo(N))] @test size(S,2) == 4 g = grid(S) @test eltype(g) == SphericalCoordinate{Float64} # compare with FastTransforms.jl/examples/sphere.jl # The colatitudinal grid (mod $\pi$): N = 2 θ = (0.5:N-0.5)/N # The longitudinal grid (mod $\pi$): M = 2*N-1 φ = (0:M-1)*2/M X = [sinpi(θ)*cospi(φ) for θ in θ, φ in φ] Y = [sinpi(θ)*sinpi(φ) for θ in θ, φ in φ] Z = [cospi(θ) for θ in θ, φ in φ] @test g ≈ SVector.(X, Y, Z) end @testset "transform" begin N = 2 S = RealSphericalHarmonic()[:,Block.(Base.OneTo(N))] xyz = axes(S,1) P = factorize(S) @test eltype(P) == Float64 c = P \ (xyz -> 1).(xyz) @test blocksize(c,1) == blocksize(S,2) @test c == S \ (xyz -> 1).(xyz) @test (S * c)[SphericalCoordinate(0.1,0.2)] ≈ 1 f = c -> ((x,y,z) = c; 1 + x + y + z) u = S * (S \ f.(xyz)) p = SphericalCoordinate(0.1,0.2) @test u[p] ≈ 1+sum(p) end @testset "adaptive" begin S = RealSphericalHarmonic() xyz = axes(S,1) u = S * (S \ (xyz -> 1).(xyz)) @test u[SphericalCoordinate(0.1,0.2)] ≈ 1 f = c -> exp(-100*c.θ^2) u = S * (S \ f.(xyz)) r = SphericalCoordinate(0.1,0.2) @test u[r] ≈ f(r) f = c -> ((x,y,z) = c; 1 + x + y + z) u = S * (S \ f.(xyz)) p = SphericalCoordinate(0.1,0.2) @test u[p] ≈ 1+sum(p) f = c -> ((x,y,z) = c; exp(x)*cos(y*sin(z))) u = S * (S \ f.(xyz)) @test u[p] ≈ f(p) end end @testset "Laplacian basics" begin S = SphericalHarmonic() R = RealSphericalHarmonic() Sxyz = axes(S,1) Rxyz = axes(R,1) SΔ = Laplacian(Sxyz) RΔ = Laplacian(Rxyz) @test SΔ isa Laplacian @test RΔ isa Laplacian @test *(SΔ,S) isa ApplyQuasiArray @test *(RΔ,R) isa ApplyQuasiArray @test copy(SΔ) == SΔ == RΔ == copy(RΔ) @test axes(SΔ) == axes(RΔ) == (axes(S,1),axes(S,1)) == (axes(R,1),axes(R,1)) @test axes(SΔ) isa Tuple{Inclusion{SphericalCoordinate{Float64}},Inclusion{SphericalCoordinate{Float64}}} @test axes(RΔ) isa Tuple{Inclusion{SphericalCoordinate{Float64}},Inclusion{SphericalCoordinate{Float64}}} @test Laplacian{eltype(axes(S,1))}(axes(S,1)) == SΔ end @testset "test copy() for SphericalHarmonics" begin S = SphericalHarmonic() R = RealSphericalHarmonic() @test copy(S) == S @test copy(R) == R S = SphericalHarmonic()[:,Block.(Base.OneTo(10))] R = RealSphericalHarmonic()[:,Block.(Base.OneTo(10))] @test copy(S) == S @test copy(R) == R end @testset "Eigenvalues of spherical Laplacian" begin S = SphericalHarmonic() xyz = axes(S,1) Δ = Laplacian(xyz) @test Δ isa Laplacian # define some explicit spherical harmonics Y_20 = c -> 1/4*sqrt(5/π)*(-1+3*cos(c.θ)^2) Y_3m3 = c -> 1/8*exp(-3*im*c.φ)*sqrt(35/π)*sin(c.θ)^3 Y_41 = c -> 3/8*exp(im*c.φ)*sqrt(5/π)*cos(c.θ)*(-3+7*cos(c.θ)^2)*sin(c.θ) # note phase difference in definitions # check that the above correctly represents the respective spherical harmonics cfsY20 = S \ Y_20.(xyz) @test cfsY20[Block(3)[3]] ≈ 1 cfsY3m3 = S \ Y_3m3.(xyz) @test cfsY3m3[Block(4)[1]] ≈ 1 cfsY41 = S \ Y_41.(xyz) @test cfsY41[Block(5)[6]] ≈ 1 # Laplacian evaluation and correct eigenvalues @test (Δ*S*cfsY20)[SphericalCoordinate(0.7,0.2)] ≈ -6*Y_20(SphericalCoordinate(0.7,0.2)) @test (Δ*S*cfsY3m3)[SphericalCoordinate(0.1,0.36)] ≈ -12*Y_3m3(SphericalCoordinate(0.1,0.36)) @test (Δ*S*cfsY41)[SphericalCoordinate(1/3,6/7)] ≈ -20*Y_41(SphericalCoordinate(1/3,6/7)) end @testset "Laplacian of expansions in complex spherical harmonics" begin S = SphericalHarmonic() xyz = axes(S,1) Δ = Laplacian(xyz) @test Δ isa Laplacian # define some functions along with the action of the Laplace operator on the unit sphere f1 = c -> cos(c.θ)^2 Δf1 = c -> -1-3*cos(2*c.θ) f2 = c -> sin(c.θ)^2-3*cos(c.θ) Δf2 = c -> 1+6*cos(c.θ)+3*cos(2*c.θ) f3 = c -> 3*cos(c.φ)*sin(c.θ)-cos(c.θ)^2*sin(c.θ)^2 Δf3 = c -> -1/2-cos(2*c.θ)-5/2*cos(4*c.θ)-6*cos(c.φ)*sin(c.θ) f4 = c -> cos(c.θ)^3 Δf4 = c -> -3*(cos(c.θ)+cos(3*c.θ)) f5 = c -> 3*cos(c.φ)*sin(c.θ)-2*sin(c.θ)^2 Δf5 = c -> 1-9*cos(c.θ)^2-6*cos(c.φ)*sin(c.θ)+3*sin(c.θ)^2 # compare with HarmonicOrthogonalPolynomials Laplacian @test (Δ*S*(S\f1.(xyz)))[SphericalCoordinate(2.12,1.993)] ≈ Δf1(SphericalCoordinate(2.12,1.993)) @test (Δ*S*(S\f2.(xyz)))[SphericalCoordinate(3.108,1.995)] ≈ Δf2(SphericalCoordinate(3.108,1.995)) @test (Δ*S*(S\f3.(xyz)))[SphericalCoordinate(0.737,0.239)] ≈ Δf3(SphericalCoordinate(0.737,0.239)) @test (Δ*S*(S\f4.(xyz)))[SphericalCoordinate(0.162,0.162)] ≈ Δf4(SphericalCoordinate(0.162,0.162)) @test (Δ*S*(S\f5.(xyz)))[SphericalCoordinate(0.1111,0.999)] ≈ Δf5(SphericalCoordinate(0.1111,0.999)) end @testset "Laplacian of expansions in real spherical harmonics" begin R = RealSphericalHarmonic() xyz = axes(R,1) Δ = Laplacian(xyz) @test Δ isa Laplacian # define some functions along with the action of the Laplace operator on the unit sphere f1 = c -> cos(c.θ)^2 Δf1 = c -> -1-3*cos(2*c.θ) f2 = c -> sin(c.θ)^2-3*cos(c.θ) Δf2 = c -> 1+6*cos(c.θ)+3*cos(2*c.θ) f3 = c -> 3*cos(c.φ)*sin(c.θ)-cos(c.θ)^2*sin(c.θ)^2 Δf3 = c -> -1/2-cos(2*c.θ)-5/2*cos(4*c.θ)-6*cos(c.φ)*sin(c.θ) f4 = c -> cos(c.θ)^3 Δf4 = c -> -3*(cos(c.θ)+cos(3*c.θ)) f5 = c -> 3*cos(c.φ)*sin(c.θ)-2*sin(c.θ)^2 Δf5 = c -> 1-9*cos(c.θ)^2-6*cos(c.φ)*sin(c.θ)+3*sin(c.θ)^2 # compare with HarmonicOrthogonalPolynomials Laplacian @test (Δ*R*(R\f1.(xyz)))[SphericalCoordinate(2.12,1.993)] ≈ Δf1(SphericalCoordinate(2.12,1.993)) @test (Δ*R*(R\f2.(xyz)))[SphericalCoordinate(3.108,1.995)] ≈ Δf2(SphericalCoordinate(3.108,1.995)) @test (Δ*R*(R\f3.(xyz)))[SphericalCoordinate(0.737,0.239)] ≈ Δf3(SphericalCoordinate(0.737,0.239)) @test (Δ*R*(R\f4.(xyz)))[SphericalCoordinate(0.162,0.162)] ≈ Δf4(SphericalCoordinate(0.162,0.162)) @test (Δ*R*(R\f5.(xyz)))[SphericalCoordinate(0.1111,0.999)] ≈ Δf5(SphericalCoordinate(0.1111,0.999)) end @testset "Laplacian raised to integer power, adaptive" begin S = SphericalHarmonic() xyz = axes(S,1) @test Laplacian(xyz) isa Laplacian @test Laplacian(xyz)^2 isa QuasiArrays.ApplyQuasiArray @test Laplacian(xyz)^3 isa QuasiArrays.ApplyQuasiArray f1 = c -> cos(c.θ)^2 Δ_f1 = c -> -1-3*cos(2*c.θ) Δ2_f1 = c -> 6+18*cos(2*c.θ) Δ3_f1 = c -> -36*(1+3*cos(2*c.θ)) Δ = Laplacian(xyz) Δ2 = Laplacian(xyz)^2 Δ3 = Laplacian(xyz)^3 t = SphericalCoordinate(0.122,0.993) @test (Δ*S*(S\f1.(xyz)))[t] ≈ Δ_f1(t) @test (Δ^2*S*(S\f1.(xyz)))[t] ≈ (Δ*Δ*S*(S\f1.(xyz)))[t] ≈ Δ2_f1(t) @test (Δ^3*S*(S\f1.(xyz)))[t] ≈ (Δ*Δ*Δ*S*(S\f1.(xyz)))[t] ≈ Δ3_f1(t) end @testset "Finite basis Laplacian, complex" begin S = SphericalHarmonic()[:,Block.(Base.OneTo(10))] xyz = axes(S,1) @test Laplacian(xyz) isa Laplacian @test Laplacian(xyz)^2 isa QuasiArrays.ApplyQuasiArray @test Laplacian(xyz)^3 isa QuasiArrays.ApplyQuasiArray f1 = c -> cos(c.θ)^2 Δ_f1 = c -> -1-3*cos(2*c.θ) Δ2_f1 = c -> 6+18*cos(2*c.θ) Δ3_f1 = c -> -36*(1+3*cos(2*c.θ)) Δ = Laplacian(xyz) Δ2 = Laplacian(xyz)^2 Δ3 = Laplacian(xyz)^3 t = SphericalCoordinate(0.122,0.993) @test (Δ*S*(S\f1.(xyz)))[t] ≈ Δ_f1(t) @test (Δ^2*S*(S\f1.(xyz)))[t] ≈ (Δ*Δ*S*(S\f1.(xyz)))[t] ≈ Δ2_f1(t) @test (Δ^3*S*(S\f1.(xyz)))[t] ≈ (Δ*Δ*Δ*S*(S\f1.(xyz)))[t] ≈ Δ3_f1(t) end @testset "Finite basis Laplacian, real" begin S = RealSphericalHarmonic()[:,Block.(Base.OneTo(10))] xyz = axes(S,1) @test Laplacian(xyz) isa Laplacian @test Laplacian(xyz)^2 isa QuasiArrays.ApplyQuasiArray @test Laplacian(xyz)^3 isa QuasiArrays.ApplyQuasiArray f1 = c -> cos(c.θ)^2 Δ_f1 = c -> -1-3*cos(2*c.θ) Δ2_f1 = c -> 6+18*cos(2*c.θ) Δ3_f1 = c -> -36*(1+3*cos(2*c.θ)) Δ = Laplacian(xyz) Δ2 = Laplacian(xyz)^2 Δ3 = Laplacian(xyz)^3 t = SphericalCoordinate(0.122,0.993) @test (Δ*S*(S\f1.(xyz)))[t] ≈ Δ_f1(t) @test (Δ^2*S*(S\f1.(xyz)))[t] ≈ (Δ*Δ*S*(S\f1.(xyz)))[t] ≈ Δ2_f1(t) @test (Δ^3*S*(S\f1.(xyz)))[t] ≈ (Δ*Δ*Δ*S*(S\f1.(xyz)))[t] ≈ Δ3_f1(t) end @testset "abs(Δ)^α - Basics of absolute Laplacian powers" begin # Set 1 α = 1/3 S = SphericalHarmonic() Sxyz = axes(S,1) SΔα = AbsLaplacianPower(Sxyz,α) Δ = Laplacian(Sxyz) @test copy(SΔα) == SΔα @test SΔα isa AbsLaplacianPower @test SΔα isa QuasiArrays.LazyQuasiMatrix @test axes(SΔα) == (axes(S,1),axes(S,1)) @test abs(Δ) == -Δ == AbsLaplacianPower(axes(Δ,1),1) @test abs(Δ)^α == SΔα # Set 2 α = 7/13 S = SphericalHarmonic() Sxyz = axes(S,1) SΔα = AbsLaplacianPower(Sxyz,α) Δ = Laplacian(Sxyz) @test copy(SΔα) == SΔα @test SΔα isa AbsLaplacianPower @test SΔα isa QuasiArrays.LazyQuasiMatrix @test axes(SΔα) == (axes(S,1),axes(S,1)) @test abs(Δ) == -Δ == AbsLaplacianPower(axes(Δ,1),1) @test abs(Δ)^α == SΔα end @testset "sum" begin S = SphericalHarmonic() R = RealSphericalHarmonic() @test sum(S; dims=1)[:,1:10] ≈ sum(R; dims=1)[:,1:10] ≈ [sqrt(4π) zeros(1,9)] x = axes(S,1) @test sum(S * (S \ ones(x))) ≈ sum(R * (R \ ones(x))) ≈ 4π f = x -> cos(x[1]*sin(x[2]+x[3])) @test sum(S * (S \ f.(x))) ≈ sum(R * (R \ f.(x))) ≈ 11.946489824270322609 end @testset "Angular momentum" begin S = SphericalHarmonic() R = RealSphericalHarmonic() ∂θ = AngularMomentum(axes(S, 1)) @test axes(∂θ) == (axes(S, 1), axes(S, 1)) @test ∂θ == AngularMomentum(axes(R, 1)) == AngularMomentum(axes(S, 1).domain) @test copy(∂θ) ≡ ∂θ A = S \ (∂θ * S) A2 = S \ (∂θ^2 * S) @test diag(A[1:9, 1:9]) ≈ [0; 0; -im; im; 0; -im; im; -2im; 2im] N = 20 @test isdiag(A[1:N, 1:N]) @test A[1:N, 1:N]^2 ≈ A2[1:N, 1:N] end
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.6.0
a895ade45ba4b5255d4c7880dda3492c37d27d65
docs
3694
# HarmonicOrthogonalPolynomials.jl A Julia package for working with spherical harmonic expansions and harmonic polynomials in balls. [![Build Status](https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl/workflows/CI/badge.svg)](https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl/actions) [![codecov](https://codecov.io/gh/JuliaApproximation/HarmonicOrthogonalPolynomials.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaApproximation/HarmonicOrthogonalPolynomials.jl) A [harmonic polynomial](https://en.wikipedia.org/wiki/Harmonic_polynomial) is a multivariate polynomial that solves Laplace's equation. [Spherical harmonics](https://en.wikipedia.org/wiki/Spherical_harmonics) are restrictions of harmonic polynomials to the sphere. Importantly they are orthogonal. This package is primarily an implementation of spherical harmonics (in 2D and 3D) but exploiting their polynomial features. Currently this package focusses on support for 3D spherical harmonics. We use the convention of [FastTransforms](https://mikaelslevinsky.github.io/FastTransforms/transforms.html) for real spherical harmonics: ```julia julia> θ,φ = 0.1,0.2 # θ is polar, φ is azimuthal (physics convention) julia> sphericalharmonicy(ℓ, m, θ, φ) 0.07521112971423363 + 0.015246050775019674im ``` But we also allow function approximation, building on top of [ContinuumArrays.jl](https://github.com/JuliaApproximation/ContinuumArrays.jl) and [ClassicalOrthogonalPolynomials.jl](https://github.com/JuliaApproximation/ClassicalOrthogonalPolynomials.jl): ```julia julia> S = SphericalHarmonic() # A quasi-matrix representation of spherical harmonics SphericalHarmonic{Complex{Float64}} julia> S[SphericalCoordinate(θ,φ),Block(ℓ+1)] # evaluate all spherical harmonics with specified ℓ 5-element Array{Complex{Float64},1}: 0.003545977402630546 - 0.0014992151996309556im 0.07521112971423363 - 0.015246050775019674im 0.621352880681805 + 0.0im 0.07521112971423363 + 0.015246050775019674im 0.003545977402630546 + 0.0014992151996309556im julia> 𝐱 = axes(S,1) # represent the unit sphere as a quasi-vector Inclusion(the 3-dimensional unit sphere) julia> f = 𝐱 -> ((x,y,z) = 𝐱; exp(x)*cos(y*sin(z))); # function to be approximation julia> S \ f.(𝐱) # expansion coefficients, adaptively computed ∞-blocked ∞-element BlockedArray{Complex{Float64},1,LazyArrays.CachedArray{Complex{Float64},1,Array{Complex{Float64},1},Zeros{Complex{Float64},1,Tuple{InfiniteArrays.OneToInf{Int64}}}},Tuple{BlockedOneTo{Int,ArrayLayouts.RangeCumsum{Int64,InfiniteArrays.InfStepRange{Int64,Int64}}}}}: 4.05681442931116 + 0.0im ────────────────────────────────────────────────── 1.5777291816142751 + 3.19754060061646e-16im -8.006900295635809e-17 + 0.0im 1.5777291816142751 - 3.539535261006306e-16im ────────────────────────────────────────────────── 0.3881560551355611 + 5.196884701505137e-17im -7.035627371746071e-17 + 2.5784941810054987e-18im -0.30926350498081934 + 0.0im -6.82462130695514e-17 - 3.515332651034677e-18im 0.3881560551355611 - 6.271963079558218e-17im ────────────────────────────────────────────────── 0.06830566496722756 - 8.852861226980248e-17im -2.3672451919730833e-17 + 2.642173739237023e-18im -0.0514592471634392 - 1.5572791163000952e-17im 1.1972144648274198e-16 + 0.0im -0.05145924716343915 + 1.5264133695821818e-17im ⋮ julia> f̃ = S * (S \ f.(𝐱)); # expansion of f in spherical harmonics julia> f̃[SphericalCoordinate(θ,φ)] # approximates f 1.1026374731849062 + 4.004893695029451e-16im ```
HarmonicOrthogonalPolynomials
https://github.com/JuliaApproximation/HarmonicOrthogonalPolynomials.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
4016
using Manifolds, LinearAlgebra, PGFPlotsX, Colors, Contour, Random # # Settings # dark_mode = true line_offset_brightness = 0.25 patch_opacity = 1.0 geo_opacity = dark_mode ? 0.66 : 0.5 geo_line_width = 30 mesh_line_width = 5 mesh_opacity = dark_mode ? 0.5 : 0.7 logo_colors = [(77, 100, 174), (57, 151, 79), (202, 60, 50), (146, 89, 163)] # Julia colors rgb_logo_colors = map(x -> RGB(x ./ 255...), logo_colors) rgb_logo_colors_bright = map(x -> RGB((1 + line_offset_brightness) .* x ./ 255...), logo_colors) rgb_logo_colors_dark = map(x -> RGB((1 - line_offset_brightness) .* x ./ 255...), logo_colors) out_file_prefix = dark_mode ? "logo-interface-dark" : "logo-interface" out_file_ext = ".svg" # # Helping functions # polar_to_cart(r, θ) = (r * cos(θ), r * sin(θ)) cart_to_polar(x, y) = (hypot(x, y), atan(y, x)) normal_coord_to_vector(M, x, rθ, B) = get_vector(M, x, collect(polar_to_cart(rθ...)), B) normal_coord_to_point(M, x, rθ, B) = exp(M, x, normal_coord_to_vector(M, x, rθ, B)) function plot_patch!(ax, M, x, B, r, θs; options = Dict()) push!( ax, Plot3( options, Coordinates(map(θ -> Tuple(normal_coord_to_point(M, x, [r, θ], B)), θs)), ), ) return ax end function plot_geodesic!(ax, M, x, y; n = 100, options = Dict()) γ = shortest_geodesic(M, x, y) T = range(0, 1; length = n) push!(ax, Plot3(options, Coordinates(Tuple.(γ.(T))))) return ax end # # Prepare document # resize!(PGFPlotsX.CUSTOM_PREAMBLE, 0) push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\pgfplotsset{scale=6.0}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usetikzlibrary{arrows.meta}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\pgfplotsset{roundcaps/.style={line cap=round}}") push!( PGFPlotsX.CUSTOM_PREAMBLE, raw"\pgfplotsset{meshlinestyle/.style={dash pattern=on 1.8\pgflinewidth off 1.4\pgflinewidth, line cap=round}}", ) if dark_mode push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\pagecolor{black}") end S = Sphere(2) center = normalize([1, 1, 1]) x, y, z = eachrow(Matrix{Float64}(I, 3, 3)) γ1 = shortest_geodesic(S, center, z) γ2 = shortest_geodesic(S, center, x) γ3 = shortest_geodesic(S, center, y) p1 = γ1(1) p2 = γ2(1) p3 = γ3(1) # # Setup Axes if dark_mode tp = @pgf Axis({ axis_lines = "none", axis_equal, view = "{135}{35}", zmin = -0.05, zmax = 1.0, xmin = 0.0, xmax = 1.0, ymin = 0.0, ymax = 1.0, }) else tp = @pgf Axis({ axis_lines = "none", axis_equal, view = "{135}{35}", zmin = -0.05, zmax = 1.0, xmin = 0.0, xmax = 1.0, ymin = 0.0, ymax = 1.0, }) end rs = range(0, π / 5; length = 6) θs = range(0, 2π; length = 100) # # Plot manifold patches patch_colors = rgb_logo_colors[2:end] patch_colors_line = dark_mode ? rgb_logo_colors_bright[2:end] : rgb_logo_colors_dark[2:end] base_points = [p1, p2, p3] basis_vectors = [log(S, p1, p2), log(S, p2, p1), log(S, p3, p1)] for i in eachindex(base_points) b = base_points[i] B = DiagonalizingOrthonormalBasis(basis_vectors[i]) basis = get_basis(S, b, B) optionsP = @pgf {fill = patch_colors[i], draw = "none", opacity = patch_opacity} plot_patch!(tp, S, b, basis, π / 5, θs; options = optionsP) optionsP = @pgf {fill = dark_mode ? "black" : "white", draw = "none", opacity = patch_opacity} plot_patch!(tp, S, b, basis, 0.75 * π / 5, θs; options = optionsP) end # # Plot geodesics options = @pgf { opacity = geo_opacity, "meshlinestyle", no_markers, roundcaps, line_width = geo_line_width, color = dark_mode ? "white" : "black", } plot_geodesic!(tp, S, base_points[1], base_points[2]; options = options) plot_geodesic!(tp, S, base_points[1], base_points[3]; options = options) plot_geodesic!(tp, S, base_points[2], base_points[3]; options = options) # # Export Logo. out_file = "$(out_file_prefix)$(out_file_ext)" pgfsave(out_file, tp) pgfsave("$(out_file_prefix).pdf", tp)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
3337
#!/usr/bin/env julia # # if "--help" ∈ ARGS println( """ docs/make.jl Render the `Manopt.jl` documenation with optinal arguments Arguments * `--help` - print this help and exit without rendering the documentation * `--prettyurls` – toggle the prettyurls part to true (which is otherwise only true on CI) * `--quarto` – run the Quarto notebooks from the `tutorials/` folder before generating the documentation this has to be run locally at least once for the `tutorials/*.md` files to exist that are included in the documentation (see `--exclude-tutorials`) for the alternative. If they are generated ones they are cached accordingly. Then you can spare time in the rendering by not passing this argument. """, ) exit(0) end # # (a) if docs is not the current active environment, switch to it # (from https://github.com/JuliaIO/HDF5.jl/pull/1020/)  if Base.active_project() != joinpath(@__DIR__, "Project.toml") using Pkg Pkg.activate(@__DIR__) Pkg.develop(PackageSpec(; path = (@__DIR__) * "/../")) Pkg.resolve() Pkg.instantiate() end # (b) Did someone say render? Then we render! if "--quarto" ∈ ARGS using CondaPkg CondaPkg.withenv() do @info "Rendering Quarto" tutorials_folder = (@__DIR__) * "/../tutorials" # instantiate the tutorials environment if necessary Pkg.activate(tutorials_folder) Pkg.develop(PackageSpec(; path = (@__DIR__) * "/../")) Pkg.resolve() Pkg.instantiate() Pkg.build("IJulia") # build IJulia to the right version. Pkg.activate(@__DIR__) # but return to the docs one before return run(`quarto render $(tutorials_folder)`) end end using Documenter using DocumenterCitations using ManifoldsBase # (e) ...finally! make docs bib = CitationBibliography(joinpath(@__DIR__, "src", "references.bib"); style = :alpha) makedocs(; # for development, we disable prettyurls format = Documenter.HTML(; prettyurls = (get(ENV, "CI", nothing) == "true") || ("--prettyurls" ∈ ARGS), assets = ["assets/favicon.ico", "assets/citations.css"], size_threshold_warn = 200 * 2^10, # raise slightly from 100 to 200 KiB size_threshold = 300 * 2^10, # raise slightly 200 to to 300 KiB ), modules = [ManifoldsBase], authors = "Seth Axen, Mateusz Baran, Ronny Bergmann, and contributors.", sitename = "ManifoldsBase.jl", pages = [ "Home" => "index.md", "How to define a manifold" => "tutorials/implement-a-manifold.md", "Design principles" => "design.md", "An abstract manifold" => "types.md", "Functions on maniolds" => [ "Basic functions" => "functions.md", "Projections" => "projections.md", "Retractions" => "retractions.md", "Vector transports" => "vector_transports.md", ], "Manifolds" => "manifolds.md", "Meta-Manifolds" => "metamanifolds.md", "Decorating/Extending a Manifold" => "decorator.md", "Bases for tangent spaces" => "bases.md", "Numerical Verification" => "numerical_verification.md", "References" => "references.md", ], plugins = [bib], ) deploydocs(repo = "github.com/JuliaManifolds/ManifoldsBase.jl.git", push_preview = true)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
1490
module ManifoldsBasePlotsExt if isdefined(Base, :get_extension) using ManifoldsBase using Plots using Printf: @sprintf import ManifoldsBase: plot_slope else # imports need to be relative for Requires.jl-based workflows: # https://github.com/JuliaArrays/ArrayInterface.jl/pull/387 using ..ManifoldsBase using ..Plots using ..ManifoldsBase: @sprintf # is from Printf, but loaded in ManifoldsBase, and since Printf loading works here only on full moon days between 12 and noon, this trick might do it? import ..ManifoldsBase: plot_slope end function ManifoldsBase.plot_slope( x, y; slope = 2, line_base = 0, a = 0, b = 2.0, i = 1, j = length(x), ) fig = plot( x, y; xaxis = :log, yaxis = :log, label = "\$E(t)\$", linewidth = 3, legend = :topleft, color = :lightblue, ) s_line = [exp10(line_base + t * slope) for t in log10.(x)] plot!( fig, x, s_line; label = "slope s=$slope", linestyle = :dash, color = :black, linewidth = 2, ) if (i != 0) && (j != 0) best_line = [exp10(a + t * b) for t in log10.(x[i:j])] plot!( fig, x[i:j], best_line; label = "best slope $(@sprintf("%.4f", b))", color = :blue, linestyle = :dot, linewidth = 2, ) end return fig end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
707
module ManifoldsBaseQuaternionsExt if isdefined(Base, :get_extension) using ManifoldsBase using ManifoldsBase: ℍ, QuaternionNumbers using Quaternions else # imports need to be relative for Requires.jl-based workflows: # https://github.com/JuliaArrays/ArrayInterface.jl/pull/387 using ..ManifoldsBase using ..ManifoldsBase: ℍ, QuaternionNumbers using ..Quaternions end @inline function ManifoldsBase.allocate_result_type( ::AbstractManifold{ℍ}, f::TF, args::Tuple{}, ) where {TF} return QuaternionF64 end @inline function ManifoldsBase.coordinate_eltype( ::AbstractManifold, p, 𝔽::QuaternionNumbers, ) return quat(number_eltype(p)) end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
1979
module ManifoldsBaseStatisticsExt if isdefined(Base, :get_extension) using Statistics using ManifoldsBase import ManifoldsBase: find_best_slope_window else # imports need to be relative for Requires.jl-based workflows: # https://github.com/JuliaArrays/ArrayInterface.jl/pull/387 using ..Statistics using ..ManifoldsBase import ..ManifoldsBase: find_best_slope_window end function ManifoldsBase.find_best_slope_window( X, Y, window = nothing; slope::Real = 2.0, slope_tol::Real = 0.1, ) n = length(X) if window !== nothing && (any(window .> n)) error( "One of the window sizes ($(window)) is larger than the length of the signal (n=$n).", ) end a_best = 0 b_best = -Inf i_best = 0 j_best = 0 r_best = 0 # longest interval for w in (window === nothing ? (2:n) : [window...]) for j in 1:(n - w + 1) x = X[j:(j + w - 1)] y = Y[j:(j + w - 1)] # fit a line a + bx c = cor(x, y) b = std(y) / std(x) * c a = mean(y) - b * mean(x) # look for the largest interval where b is within slope tolerance r = (maximum(x) - minimum(x)) if (r > r_best) && abs(b - slope) < slope_tol #longer interval found. r_best = r a_best = a b_best = b i_best = j j_best = j + w - 1 #last index (see x and y from before) end # not best interval - maybe it is still the (first) best slope? if r_best == 0 && abs(b - slope) < abs(b_best - slope) # but do not update `r` since this indicates only a best r a_best = a b_best = b i_best = j j_best = j + w - 1 #last index (see x and y from before) end end end return (a_best, b_best, i_best, j_best) end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
2045
module ManifoldsBaseRecursiveArrayToolsExt if isdefined(Base, :get_extension) using ManifoldsBase using RecursiveArrayTools using ManifoldsBase: AbstractBasis, ProductBasisData, TangentSpaceType using ManifoldsBase: number_of_components using Random import ManifoldsBase: allocate, allocate_on, allocate_result, default_inverse_retraction_method, default_retraction_method, default_vector_transport_method, _get_dim_ranges, get_vector, get_vectors, inverse_retract, parallel_transport_direction, parallel_transport_to, project, riemann_tensor, submanifold_component, submanifold_components, vector_transport_direction, _vector_transport_direction, _vector_transport_to, vector_transport_to, ziptuples import Base: copyto!, getindex, setindex!, view else # imports need to be relative for Requires.jl-based workflows: # https://github.com/JuliaArrays/ArrayInterface.jl/pull/387 using ..ManifoldsBase using ..RecursiveArrayTools using ..ManifoldsBase: AbstractBasis, ProductBasisData, TangentSpaceType using ..ManifoldsBase: number_of_components using ..Random import ..ManifoldsBase: allocate, allocate_on, allocate_result, default_inverse_retraction_method, default_retraction_method, default_vector_transport_method, _get_dim_ranges, get_vector, get_vectors, inverse_retract, parallel_transport_direction, parallel_transport_to, project, _retract, riemann_tensor, submanifold_component, submanifold_components, vector_transport_direction, _vector_transport_direction, _vector_transport_to, vector_transport_to, ziptuples import ..Base: copyto!, getindex, setindex!, view end include("ProductManifoldRecursiveArrayToolsExt.jl") end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
10516
allocate(a::AbstractArray{<:ArrayPartition}) = map(allocate, a) allocate(x::ArrayPartition) = ArrayPartition(map(allocate, x.x)...) function allocate(x::ArrayPartition, T::Type) return ArrayPartition(map(t -> allocate(t, T), submanifold_components(x))...) end allocate_on(M::ProductManifold) = ArrayPartition(map(N -> allocate_on(N), M.manifolds)...) function allocate_on(M::ProductManifold, ::Type{ArrayPartition{T,U}}) where {T,U} return ArrayPartition(map((N, V) -> allocate_on(N, V), M.manifolds, U.parameters)...) end function allocate_on(M::ProductManifold, ft::TangentSpaceType) return ArrayPartition(map(N -> allocate_on(N, ft), M.manifolds)...) end function allocate_on( M::ProductManifold, ft::TangentSpaceType, ::Type{ArrayPartition{T,U}}, ) where {T,U} return ArrayPartition( map((N, V) -> allocate_on(N, ft, V), M.manifolds, U.parameters)..., ) end @inline function allocate_result(M::ProductManifold, f) return ArrayPartition(map(N -> allocate_result(N, f), M.manifolds)) end function copyto!(M::ProductManifold, q::ArrayPartition, p::ArrayPartition) map(copyto!, M.manifolds, submanifold_components(q), submanifold_components(p)) return q end function copyto!( M::ProductManifold, Y::ArrayPartition, p::ArrayPartition, X::ArrayPartition, ) map( copyto!, M.manifolds, submanifold_components(Y), submanifold_components(p), submanifold_components(X), ) return Y end function default_retraction_method(M::ProductManifold, ::Type{T}) where {T<:ArrayPartition} return ProductRetraction( map(default_retraction_method, M.manifolds, T.parameters[2].parameters)..., ) end function default_inverse_retraction_method( M::ProductManifold, ::Type{T}, ) where {T<:ArrayPartition} return InverseProductRetraction( map(default_inverse_retraction_method, M.manifolds, T.parameters[2].parameters)..., ) end function default_vector_transport_method( M::ProductManifold, ::Type{T}, ) where {T<:ArrayPartition} return ProductVectorTransport( map(default_vector_transport_method, M.manifolds, T.parameters[2].parameters)..., ) end function Base.exp(M::ProductManifold, p::ArrayPartition, X::ArrayPartition) return ArrayPartition( map( exp, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), )..., ) end function Base.exp(M::ProductManifold, p::ArrayPartition, X::ArrayPartition, t::Number) return ArrayPartition( map( (N, pc, Xc) -> exp(N, pc, Xc, t), M.manifolds, submanifold_components(M, p), submanifold_components(M, X), )..., ) end function get_vector( M::ProductManifold, p::ArrayPartition, Xⁱ, B::AbstractBasis{𝔽,TangentSpaceType}, ) where {𝔽} dims = map(manifold_dimension, M.manifolds) @assert length(Xⁱ) == sum(dims) dim_ranges = _get_dim_ranges(dims) tXⁱ = map(dr -> (@inbounds view(Xⁱ, dr)), dim_ranges) ts = ziptuples(M.manifolds, submanifold_components(M, p), tXⁱ) return ArrayPartition(map((@inline t -> get_vector(t..., B)), ts)) end function get_vector( M::ProductManifold, p::ArrayPartition, Xⁱ, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:ProductBasisData}, ) where {𝔽} dims = map(manifold_dimension, M.manifolds) @assert length(Xⁱ) == sum(dims) dim_ranges = _get_dim_ranges(dims) tXⁱ = map(dr -> (@inbounds view(Xⁱ, dr)), dim_ranges) ts = ziptuples(M.manifolds, submanifold_components(M, p), tXⁱ, B.data.parts) return ArrayPartition(map((@inline t -> get_vector(t...)), ts)) end function get_vectors( M::ProductManifold, p::ArrayPartition, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:ProductBasisData}, ) where {𝔽} N = number_of_components(M) xparts = submanifold_components(p) BVs = map(t -> get_vectors(t...), ziptuples(M.manifolds, xparts, B.data.parts)) zero_tvs = map(t -> zero_vector(t...), ziptuples(M.manifolds, xparts)) vs = typeof(ArrayPartition(zero_tvs...))[] for i in 1:N, k in 1:length(BVs[i]) push!( vs, ArrayPartition(zero_tvs[1:(i - 1)]..., BVs[i][k], zero_tvs[(i + 1):end]...), ) end return vs end ManifoldsBase._get_vector_cache_broadcast(::ArrayPartition) = Val(false) """ getindex(p, M::ProductManifold, i::Union{Integer,Colon,AbstractVector}) p[M::ProductManifold, i] Access the element(s) at index `i` of a point `p` on a [`ProductManifold`](@ref) `M` by linear indexing. See also [Array Indexing](https://docs.julialang.org/en/v1/manual/arrays/#man-array-indexing-1) in Julia. """ @inline Base.@propagate_inbounds function Base.getindex( p::ArrayPartition, M::ProductManifold, i::Union{Integer,Colon,AbstractVector,Val}, ) return get_component(M, p, i) end function inverse_retract( M::ProductManifold, p::ArrayPartition, q::ArrayPartition, method::InverseProductRetraction, ) return ArrayPartition( map( inverse_retract, M.manifolds, submanifold_components(M, p), submanifold_components(M, q), method.inverse_retractions, ), ) end function Base.log(M::ProductManifold, p::ArrayPartition, q::ArrayPartition) return ArrayPartition( map( log, M.manifolds, submanifold_components(M, p), submanifold_components(M, q), )..., ) end function parallel_transport_direction( M::ProductManifold, p::ArrayPartition, X::ArrayPartition, d::ArrayPartition, ) return ArrayPartition( map( parallel_transport_direction, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, d), ), ) end function parallel_transport_to( M::ProductManifold, p::ArrayPartition, X::ArrayPartition, q::ArrayPartition, ) return ArrayPartition( map( parallel_transport_to, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, q), ), ) end function project(M::ProductManifold, p::ArrayPartition) return ArrayPartition(map(project, M.manifolds, submanifold_components(M, p))...) end function project(M::ProductManifold, p::ArrayPartition, X::ArrayPartition) return ArrayPartition( map( project, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), )..., ) end @doc raw""" rand(M::ProductManifold; parts_kwargs = map(_ -> (;), M.manifolds)) Return a random point on [`ProductManifold`](@ref) `M`. `parts_kwargs` is a tuple of keyword arguments for `rand` on each manifold in `M.manifolds`. """ function Random.rand( M::ProductManifold; vector_at = nothing, parts_kwargs = map(_ -> (;), M.manifolds), ) if vector_at === nothing return ArrayPartition( map((N, kwargs) -> rand(N; kwargs...), M.manifolds, parts_kwargs)..., ) else return ArrayPartition( map( (N, p, kwargs) -> rand(N; vector_at = p, kwargs...), M.manifolds, submanifold_components(M, vector_at), parts_kwargs, )..., ) end end function Random.rand( rng::AbstractRNG, M::ProductManifold; vector_at = nothing, parts_kwargs = map(_ -> (;), M.manifolds), ) if vector_at === nothing return ArrayPartition( map((N, kwargs) -> rand(rng, N; kwargs...), M.manifolds, parts_kwargs)..., ) else return ArrayPartition( map( (N, p, kwargs) -> rand(rng, N; vector_at = p, kwargs...), M.manifolds, submanifold_components(M, vector_at), parts_kwargs, )..., ) end end function riemann_tensor( M::ProductManifold, p::ArrayPartition, X::ArrayPartition, Y::ArrayPartition, Z::ArrayPartition, ) return ArrayPartition( map( riemann_tensor, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, Y), submanifold_components(M, Z), ), ) end """ setindex!(q, p, M::ProductManifold, i::Union{Integer,Colon,AbstractVector}) q[M::ProductManifold,i...] = p set the element `[i...]` of a point `q` on a [`ProductManifold`](@ref) by linear indexing to `q`. See also [Array Indexing](https://docs.julialang.org/en/v1/manual/arrays/#man-array-indexing-1) in Julia. """ Base.@propagate_inbounds function Base.setindex!( q::ArrayPartition, p, M::ProductManifold, i::Union{Integer,Colon,AbstractVector,Val}, ) return set_component!(M, q, p, i) end @inline submanifold_component(p::ArrayPartition, ::Val{I}) where {I} = p.x[I] @inline submanifold_components(p::ArrayPartition) = p.x function vector_transport_direction( M::ProductManifold, p::ArrayPartition, X::ArrayPartition, d::ArrayPartition, m::ProductVectorTransport, ) return ArrayPartition( map( vector_transport_direction, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, d), m.methods, ), ) end function vector_transport_to( M::ProductManifold, p::ArrayPartition, X::ArrayPartition, q::ArrayPartition, m::ProductVectorTransport, ) return ArrayPartition( map( vector_transport_to, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, q), m.methods, ), ) end function vector_transport_to( M::ProductManifold, p::ArrayPartition, X::ArrayPartition, q::ArrayPartition, m::ParallelTransport, ) return ArrayPartition( map( (iM, ip, iX, id) -> vector_transport_to(iM, ip, iX, id, m), M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, q), ), ) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
6082
""" DefaultManifold <: AbstractManifold This default manifold illustrates the main features of the interface and provides a skeleton to build one's own manifold. It is a simplified/shortened variant of `Euclidean` from `Manifolds.jl`. This manifold further illustrates how to type your manifold points and tangent vectors. Note that the interface does not require this, but it might be handy in debugging and educative situations to verify correctness of involved variables. # Constructor DefaultManifold(n::Int...; field = ℝ, parameter::Symbol = :field) Arguments: - `n`: shape of array representing points on the manifold. - `field`: field over which the manifold is defined. Either `ℝ`, `ℂ` or `ℍ`. - `parameter`: whether a type parameter should be used to store `n`. By default size is stored in a field. Value can either be `:field` or `:type`. """ struct DefaultManifold{𝔽,T} <: AbstractManifold{𝔽} size::T end function DefaultManifold(n::Vararg{Int}; field = ℝ, parameter::Symbol = :field) size = wrap_type_parameter(parameter, n) return DefaultManifold{field,typeof(size)}(size) end function allocation_promotion_function( ::DefaultManifold{ℂ}, ::Union{typeof(get_vector),typeof(get_coordinates)}, ::Tuple, ) return complex end change_representer!(M::DefaultManifold, Y, ::EuclideanMetric, p, X) = copyto!(M, Y, p, X) change_metric!(M::DefaultManifold, Y, ::EuclideanMetric, p, X) = copyto!(M, Y, p, X) function check_approx(M::DefaultManifold, p, q; kwargs...) res = isapprox(p, q; kwargs...) res && return nothing v = distance(M, p, q) s = "The two points $p and $q on $M are not (approximately) equal." return ApproximatelyError(v, s) end function check_approx(M::DefaultManifold, p, X, Y; kwargs...) res = isapprox(X, Y; kwargs...) res && return nothing v = norm(M, p, X - Y) s = "The two tangent vectors $X and $Y in the tangent space at $p on $M are not (approximately) equal." return ApproximatelyError(v, s) end distance(::DefaultManifold, p, q) = norm(p - q) embed!(::DefaultManifold, q, p) = copyto!(q, p) embed!(::DefaultManifold, Y, p, X) = copyto!(Y, X) exp!(::DefaultManifold, q, p, X) = (q .= p .+ X) for fname in [:get_basis_orthonormal, :get_basis_orthogonal, :get_basis_default] BD = Dict( :get_basis_orthonormal => :DefaultOrthonormalBasis, :get_basis_orthogonal => :DefaultOrthogonalBasis, :get_basis_default => :DefaultBasis, ) BT = BD[fname] @eval function $fname(::DefaultManifold{ℝ}, p, N::RealNumbers) return CachedBasis($BT(N), [_euclidean_basis_vector(p, i) for i in eachindex(p)]) end @eval function $fname(::DefaultManifold{ℂ}, p, N::ComplexNumbers) return CachedBasis( $BT(N), [_euclidean_basis_vector(p, i, real) for i in eachindex(p)], ) end end function get_basis_diagonalizing(M::DefaultManifold, p, B::DiagonalizingOrthonormalBasis) vecs = get_vectors(M, p, get_basis(M, p, DefaultOrthonormalBasis())) eigenvalues = zeros(real(eltype(p)), manifold_dimension(M)) return CachedBasis(B, DiagonalizingBasisData(B.frame_direction, eigenvalues, vecs)) end # Complex manifold, real basis -> coefficients c are complex -> reshape # Real manifold, real basis -> reshape function get_coordinates_orthonormal!(M::DefaultManifold, c, p, X, N::AbstractNumbers) return copyto!(c, reshape(X, number_of_coordinates(M, N))) end function get_coordinates_diagonalizing!( M::DefaultManifold, c, p, X, ::DiagonalizingOrthonormalBasis{ℝ}, ) return copyto!(c, reshape(X, number_of_coordinates(M, ℝ))) end function get_coordinates_orthonormal!(::DefaultManifold{ℂ}, c, p, X, ::RealNumbers) m = length(X) return copyto!(c, [reshape(real(X), m); reshape(imag(X), m)]) end function get_vector_orthonormal!(M::DefaultManifold, Y, p, c, ::AbstractNumbers) return copyto!(Y, reshape(c, representation_size(M))) end function get_vector_diagonalizing!( M::DefaultManifold, Y, p, c, ::DiagonalizingOrthonormalBasis{ℝ}, ) return copyto!(Y, reshape(c, representation_size(M))) end function get_vector_orthonormal!(M::DefaultManifold{ℂ}, Y, p, c, ::RealNumbers) n = div(length(c), 2) return copyto!(Y, reshape(c[1:n] + c[(n + 1):(2n)] * 1im, representation_size(M))) end injectivity_radius(::DefaultManifold) = Inf @inline inner(::DefaultManifold, p, X, Y) = dot(X, Y) is_flat(::DefaultManifold) = true log!(::DefaultManifold, Y, p, q) = (Y .= q .- p) function manifold_dimension(M::DefaultManifold{𝔽}) where {𝔽} size = get_parameter(M.size) return prod(size) * real_dimension(𝔽) end number_system(::DefaultManifold{𝔽}) where {𝔽} = 𝔽 norm(::DefaultManifold, p, X) = norm(X) project!(::DefaultManifold, q, p) = copyto!(q, p) project!(::DefaultManifold, Y, p, X) = copyto!(Y, X) representation_size(M::DefaultManifold) = get_parameter(M.size) function Base.show(io::IO, M::DefaultManifold{𝔽,<:TypeParameter}) where {𝔽} return print( io, "DefaultManifold($(join(get_parameter(M.size), ", ")); field = $(𝔽), parameter = :type)", ) end function Base.show(io::IO, M::DefaultManifold{𝔽}) where {𝔽} return print(io, "DefaultManifold($(join(get_parameter(M.size), ", ")); field = $(𝔽))") end function parallel_transport_to!(::DefaultManifold, Y, p, X, q) return copyto!(Y, X) end function Random.rand!(::DefaultManifold, pX; σ = one(eltype(pX)), vector_at = nothing) pX .= randn(size(pX)) .* σ return pX end function Random.rand!( rng::AbstractRNG, ::DefaultManifold, pX; σ = one(eltype(pX)), vector_at = nothing, ) pX .= randn(rng, size(pX)) .* σ return pX end function riemann_tensor!(::DefaultManifold, Xresult, p, X, Y, Z) return fill!(Xresult, 0) end sectional_curvature_max(::DefaultManifold) = 0.0 sectional_curvature_min(::DefaultManifold) = 0.0 Weingarten!(::DefaultManifold, Y, p, X, V) = fill!(Y, 0) zero_vector(::DefaultManifold, p) = zero(p) zero_vector!(::DefaultManifold, Y, p) = fill!(Y, 0)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
2496
""" EmbeddedManifold{𝔽, MT <: AbstractManifold, NT <: AbstractManifold} <: AbstractDecoratorManifold{𝔽} A type to represent an explicit embedding of a [`AbstractManifold`](@ref) `M` of type `MT` embedded into a manifold `N` of type `NT`. By default, an embedded manifold is set to be embedded, but neither isometrically embedded nor a submanifold. !!! note This type is not required if a manifold `M` is to be embedded in one specific manifold `N`. One can then just implement [`embed!`](@ref) and [`project!`](@ref). You can further pass functions to the embedding, for example, when it is an isometric embedding, by using an [`AbstractDecoratorManifold`](@ref). Only for a second –maybe considered non-default– embedding, this type should be considered in order to dispatch on different embed and project methods for different embeddings `N`. # Fields * `manifold` the manifold that is an embedded manifold * `embedding` a second manifold, the first one is embedded into # Constructor EmbeddedManifold(M, N) Generate the `EmbeddedManifold` of the [`AbstractManifold`](@ref) `M` into the [`AbstractManifold`](@ref) `N`. """ struct EmbeddedManifold{𝔽,MT<:AbstractManifold{𝔽},NT<:AbstractManifold} <: AbstractDecoratorManifold{𝔽} manifold::MT embedding::NT end @inline active_traits(f, ::EmbeddedManifold, ::Any...) = merge_traits(IsEmbeddedManifold()) function allocate_result(M::EmbeddedManifold, f::typeof(project), x...) T = allocate_result_type(M, f, x) return allocate(M, x[1], T, representation_size(base_manifold(M))) end """ decorated_manifold(M::EmbeddedManifold, d::Val{N} = Val(-1)) Return the manifold of `M` that is decorated with its embedding. For this specific type the internally stored enhanced manifold `M.manifold` is returned. See also [`base_manifold`](@ref), where this is used to (potentially) completely undecorate the manifold. """ decorated_manifold(M::EmbeddedManifold) = M.manifold """ get_embedding(M::EmbeddedManifold) Return the embedding [`AbstractManifold`](@ref) `N` of `M`, if it exists. """ function get_embedding(M::EmbeddedManifold) return M.embedding end function project(M::EmbeddedManifold, p) q = allocate_result(M, project, p) project!(M, q, p) return q end function show( io::IO, M::EmbeddedManifold{𝔽,MT,NT}, ) where {𝔽,MT<:AbstractManifold{𝔽},NT<:AbstractManifold} return print(io, "EmbeddedManifold($(M.manifold), $(M.embedding))") end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
1617
""" abstract type FiberType end An abstract type for fiber types that can be used within [`Fiber`](@ref). """ abstract type FiberType end @doc raw""" Fiber{𝔽,TFiber<:FiberType,TM<:AbstractManifold{𝔽},TX} <: AbstractManifold{𝔽} A fiber of a fiber bundle at a point `p` on the manifold. This fiber itself is also a `manifold`. For vector fibers it's by default flat and hence isometric to the [`Euclidean`](https://juliamanifolds.github.io/Manifolds.jl/latest/manifolds/euclidean.html) manifold. # Fields * `manifold` – base space of the fiber bundle * `point` – a point ``p`` from the base space; the fiber corresponds to the preimage by bundle projection ``\pi^{-1}(\{p\})``. # Constructor Fiber(M::AbstractManifold, p, fiber_type::FiberType) A fiber of type `fiber_type` at point `p` from the manifold `manifold`. """ struct Fiber{𝔽,TFiber<:FiberType,TM<:AbstractManifold{𝔽},TX} <: AbstractManifold{𝔽} manifold::TM point::TX fiber_type::TFiber end base_manifold(B::Fiber) = B.manifold function Base.show(io::IO, ::MIME"text/plain", vs::Fiber) summary(io, vs) println(io, "\nFiber:") pre = " " sf = sprint(show, "text/plain", vs.fiber_type; context = io, sizehint = 0) sf = replace(sf, '\n' => "\n$(pre)") sm = sprint(show, "text/plain", vs.manifold; context = io, sizehint = 0) sm = replace(sm, '\n' => "\n$(pre)") println(io, pre, sf, sm) println(io, "Base point:") sp = sprint(show, "text/plain", vs.point; context = io, sizehint = 0) sp = replace(sp, '\n' => "\n$(pre)") return print(io, pre, sp) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
48040
module ManifoldsBase import Base: isapprox, exp, log, convert, copy, copyto!, angle, eltype, fill, fill!, isempty, length, similar, show, +, -, *, == import LinearAlgebra: ×, dot, norm, det, cross, I, UniformScaling, Diagonal import Random: rand, rand! using LinearAlgebra using Markdown: @doc_str using Printf: @sprintf using Random using Requires include("maintypes.jl") include("numbers.jl") include("Fiber.jl") include("bases.jl") include("approximation_methods.jl") include("retractions.jl") include("exp_log_geo.jl") include("projections.jl") include("metric.jl") if isdefined(Base, Symbol("@constprop")) macro aggressive_constprop(ex) return esc(:(Base.@constprop :aggressive $ex)) end else macro aggressive_constprop(ex) return esc(ex) end end """ allocate(a) allocate(a, dims::Integer...) allocate(a, dims::Tuple) allocate(a, T::Type) allocate(a, T::Type, dims::Integer...) allocate(a, T::Type, dims::Tuple) allocate(M::AbstractManifold, a) allocate(M::AbstractManifold, a, dims::Integer...) allocate(M::AbstractManifold, a, dims::Tuple) allocate(M::AbstractManifold, a, T::Type) allocate(M::AbstractManifold, a, T::Type, dims::Integer...) allocate(M::AbstractManifold, a, T::Type, dims::Tuple) Allocate an object similar to `a`. It is similar to function `similar`, although instead of working only on the outermost layer of a nested structure, it maps recursively through outer layers and calls `similar` on the innermost array-like object only. Type `T` is the new number element type [`number_eltype`](@ref), if it is not given the element type of `a` is retained. The `dims` argument can be given for non-nested allocation and is forwarded to the function `similar`. It's behavior can be overridden by a specific manifold, for example power manifold with nested replacing representation can decide that `allocate` for `Array{<:SArray}` returns another `Array{<:SArray}` instead of `Array{<:MArray}`, as would be done by default. """ allocate(a, args...) allocate(a) = similar(a) allocate(a, dim1::Integer, dims::Integer...) = similar(a, dim1, dims...) allocate(a, dims::Tuple) = similar(a, dims) allocate(a, T::Type) = similar(a, T) allocate(a, T::Type, dim1::Integer, dims::Integer...) = similar(a, T, dim1, dims...) allocate(a, T::Type, dims::Tuple) = similar(a, T, dims) allocate(a::AbstractArray{<:AbstractArray}) = map(allocate, a) allocate(a::AbstractArray{<:AbstractArray}, T::Type) = map(t -> allocate(t, T), a) allocate(a::NTuple{N,AbstractArray} where {N}) = map(allocate, a) allocate(a::NTuple{N,AbstractArray} where {N}, T::Type) = map(t -> allocate(t, T), a) allocate(::AbstractManifold, a) = allocate(a) function allocate(::AbstractManifold, a, dim1::Integer, dims::Integer...) return allocate(a, dim1, dims...) end allocate(::AbstractManifold, a, dims::Tuple) = allocate(a, dims) allocate(::AbstractManifold, a, T::Type) = allocate(a, T) function allocate(::AbstractManifold, a, T::Type, dim1::Integer, dims::Integer...) return allocate(a, T, dim1, dims...) end allocate(::AbstractManifold, a, T::Type, dims::Tuple) = allocate(a, T, dims) """ allocate_on(M::AbstractManifold, [T:::Type]) allocate_on(M::AbstractManifold, F::FiberType, [T:::Type]) Allocate a new point on manifold `M` with optional type given by `T`. Note that `T` is not number element type as in [`allocate`](@ref) but rather the type of the entire point to be returned. If `F` is provided, then an element of the corresponding fiber is allocated, assuming it is independent of the base point. To allocate a tangent vector, use `` # Example ```julia-repl julia> using ManifoldsBase julia> M = ManifoldsBase.DefaultManifold(4) DefaultManifold(4; field = ℝ) julia> allocate_on(M) 4-element Vector{Float64}: 0.0 0.0 0.0 0.0 julia> allocate_on(M, Array{Float64}) 4-element Vector{Float64}: 0.0 0.0 0.0 0.0 julia> allocate_on(M, TangentSpaceType()) 4-element Vector{Float64}: 0.0 0.0 0.0 0.0 julia> allocate_on(M, TangentSpaceType(), Array{Float64}) 4-element Vector{Float64}: 0.0 0.0 0.0 0.0 ``` """ allocate_on(M::AbstractManifold) = similar(Array{Float64}, representation_size(M)) function allocate_on(M::AbstractManifold, T::Type{<:AbstractArray}) return similar(T, representation_size(M)) end """ _pick_basic_allocation_argument(::AbstractManifold, f, x...) Pick which one of elements of `x` should be used as a basis for allocation in the `allocate_result(M::AbstractManifold, f, x...)` method. This can be specialized to, for example, skip `Identity` arguments in Manifolds.jl group-related functions. """ function _pick_basic_allocation_argument(::AbstractManifold, f, x...) return x[1] end """ allocate_result(M::AbstractManifold, f, x...) Allocate an array for the result of function `f` on [`AbstractManifold`](@ref) `M` and arguments `x...` for implementing the non-modifying operation using the modifying operation. Usefulness of passing a function is demonstrated by methods that allocate results of musical isomorphisms. """ @inline function allocate_result(M::AbstractManifold, f, x...) T = allocate_result_type(M, f, x) picked = _pick_basic_allocation_argument(M, f, x...) return allocate(M, picked, T) end @inline function allocate_result(M::AbstractManifold, f) T = allocate_result_type(M, f, ()) rs = representation_size(M) return allocate_result_array(M, f, T, rs) end function allocate_result_array(M::AbstractManifold, f, ::Type, ::Nothing) msg = "Could not allocate result of function $f on manifold $M." if base_manifold(M) isa ProductManifold msg *= " This error could be resolved by importing RecursiveArrayTools.jl. If this is not the case, please open report an issue." end return error(msg) end function allocate_result_array(::AbstractManifold, f, T::Type, rs::Tuple) return Array{T}(undef, rs...) end """ allocate_result_type(M::AbstractManifold, f, args::NTuple{N,Any}) where N Return type of element of the array that will represent the result of function `f` and the [`AbstractManifold`](@ref) `M` on given arguments `args` (passed as a tuple). """ @inline function allocate_result_type( ::AbstractManifold, f::TF, args::NTuple{N,Any}, ) where {N,TF} @inline eti_to_one(eti) = one(number_eltype(eti)) return typeof(sum(map(eti_to_one, args))) end @inline function allocate_result_type(M::AbstractManifold, f::TF, args::Tuple{}) where {TF} return allocation_promotion_function(M, f, ())(Float64) end """ angle(M::AbstractManifold, p, X, Y) Compute the angle between tangent vectors `X` and `Y` at point `p` from the [`AbstractManifold`](@ref) `M` with respect to the inner product from [`inner`](@ref). """ function angle(M::AbstractManifold, p, X, Y) return acos(real(inner(M, p, X, Y)) / norm(M, p, X) / norm(M, p, Y)) end """ are_linearly_independent(M::AbstractManifold, p, X, Y) Check is vectors `X`, `Y` tangent at `p` to `M` are linearly independent. """ function are_linearly_independent( M::AbstractManifold, p, X, Y; atol::Real = sqrt(eps(number_eltype(X))), ) norm_X = norm(M, p, X) norm_Y = norm(M, p, Y) innerXY = inner(M, p, X, Y) return norm_X > atol && norm_Y > atol && !isapprox(abs(innerXY), norm_X * norm_Y) end """ base_manifold(M::AbstractManifold, depth = Val(-1)) Return the internally stored [`AbstractManifold`](@ref) for decorated manifold `M` and the base manifold for vector bundles or power manifolds. The optional parameter `depth` can be used to remove only the first `depth` many decorators and return the [`AbstractManifold`](@ref) from that level, whether its decorated or not. Any negative value deactivates this depth limit. """ base_manifold(M::AbstractManifold, ::Val = Val(-1)) = M """ check_approx(M::AbstractManifold, p, q; kwargs...) check_approx(M::AbstractManifold, p, X, Y; kwargs...) Check whether two elements are approximately equal, either `p`, `q` on the [`AbstractManifold`](@ref) or the two tangent vectors `X`, `Y` in the tangent space at `p` are approximately the same. The keyword arguments `kwargs` can be used to set tolerances, similar to Julia's `isapprox`. This function might use `isapprox` from Julia internally and is similar to [`isapprox`](@ref), with the difference that is returns an [`ApproximatelyError`](@ref) if the two elements are not approximately equal, containting a more detailed description/reason. If the two elements are approximalely equal, this method returns `nothing`. This method is an internal function and is called by `isapprox` whenever the user specifies an `error=` keyword therein. [`_isapprox`](@ref) is another related internal function. It is supposed to provide a fast true/false decision whether points or vectors are equal or not, while `check_approx` also provides a textual explanation. If no additional explanation is needed, a manifold may just implement a method of [`_isapprox`](@ref), while it should also implement `check_approx` if a more detailed explanation could be helpful. """ function check_approx(M::AbstractManifold, p, q; kwargs...) # fall back to classical approx mode - just that we do not have a reason then res = _isapprox(M, p, q; kwargs...) # since we can not assume distance to be implemented, we can not provide a default value res && return nothing s = "The two points $p and $q on $M are not (approximately) equal." return ApproximatelyError(s) end function check_approx(M::AbstractManifold, p, X, Y; kwargs...) # fall back to classical mode - just that we do not have a reason then res = _isapprox(M, p, X, Y; kwargs...) res && return nothing s = "The two tangent vectors $X and $Y in the tangent space at $p on $M are not (approximately) equal." v = try norm(M, p, X - Y) catch e NaN end return ApproximatelyError(v, s) end """ check_point(M::AbstractManifold, p; kwargs...) -> Union{Nothing,String} Return `nothing` when `p` is a point on the [`AbstractManifold`](@ref) `M`. Otherwise, return an error with description why the point does not belong to manifold `M`. By default, `check_point` returns `nothing`, i.e. if no checks are implemented, the assumption is to be optimistic for a point not deriving from the [`AbstractManifoldPoint`](@ref) type. """ check_point(M::AbstractManifold, p; kwargs...) = nothing """ check_vector(M::AbstractManifold, p, X; kwargs...) -> Union{Nothing,String} Check whether `X` is a valid tangent vector in the tangent space of `p` on the [`AbstractManifold`](@ref) `M`. An implementation does not have to validate the point `p`. If it is not a tangent vector, an error string should be returned. By default, `check_vector` returns `nothing`, i.e. if no checks are implemented, the assumption is to be optimistic for tangent vectors not deriving from the [`TVector`](@ref) type. """ check_vector(M::AbstractManifold, p, X; kwargs...) = nothing """ check_size(M::AbstractManifold, p) check_size(M::AbstractManifold, p, X) Check whether `p` has the right [`representation_size`](@ref) for a [`AbstractManifold`](@ref) `M`. Additionally if a tangent vector is given, both `p` and `X` are checked to be of corresponding correct representation sizes for points and tangent vectors on `M`. By default, `check_size` returns `nothing`, i.e. if no checks are implemented, the assumption is to be optimistic. """ function check_size(M::AbstractManifold, p) m = representation_size(M) m === nothing && return nothing # nothing reasonable in size to check n = size(p) if length(n) != length(m) return DomainError( length(n), "The point $(p) can not belong to the manifold $(M), since its size $(n) is not equal to the manifolds representation size ($(m)).", ) end if n != m return DomainError( n, "The point $(p) can not belong to the manifold $(M), since its size $(n) is not equal to the manifolds representation size ($(m)).", ) end end function check_size(M::AbstractManifold, p, X) mse = check_size(M, p) mse === nothing || return mse m = representation_size(M) m === nothing && return nothing # without a representation size - nothing to check. n = size(X) if length(n) != length(m) return DomainError( length(n), "The tangent vector $(X) can not belong to the manifold $(M), since its size $(n) is not equal to the manifolds representation size ($(m)).", ) end if n != m return DomainError( n, "The tangent vector $(X) can not belong to the manifold $(M), since its size $(n) is not equal to the manifodls representation size ($(m)).", ) end end """ convert(T::Type, M::AbstractManifold, p) Convert point `p` from manifold `M` to type `T`. """ convert(T::Type, ::AbstractManifold, p) = convert(T, p) """ convert(T::Type, M::AbstractManifold, p, X) Convert vector `X` tangent at point `p` from manifold `M` to type `T`. """ convert(T::Type, ::AbstractManifold, p, X) = convert(T, p, X) @doc raw""" copy(M::AbstractManifold, p) Copy the value(s) from the point `p` on the [`AbstractManifold`](@ref) `M` into a new point. See [`allocate_result`](@ref) for the allocation of new point memory and [`copyto!`](@ref) for the copying. """ function copy(M::AbstractManifold, p) q = allocate_result(M, copy, p) copyto!(M, q, p) return q end function copy(::AbstractManifold, p::Number) return copy(p) end @doc raw""" copy(M::AbstractManifold, p, X) Copy the value(s) from the tangent vector `X` at a point `p` on the [`AbstractManifold`](@ref) `M` into a new tangent vector. See [`allocate_result`](@ref) for the allocation of new point memory and [`copyto!`](@ref) for the copying. """ function copy(M::AbstractManifold, p, X) # the order of args switched, since the allocation by default takes the type of the first. Y = allocate_result(M, copy, X, p) copyto!(M, Y, p, X) return Y end function copy(::AbstractManifold, p, X::Number) return copy(X) end @doc raw""" copyto!(M::AbstractManifold, q, p) Copy the value(s) from `p` to `q`, where both are points on the [`AbstractManifold`](@ref) `M`. This function defaults to calling `copyto!(q, p)`, but it might be useful to overwrite the function at the level, where also information from `M` can be accessed. """ copyto!(::AbstractManifold, q, p) = copyto!(q, p) @doc raw""" copyto!(M::AbstractManifold, Y, p, X) Copy the value(s) from `X` to `Y`, where both are tangent vectors from the tangent space at `p` on the [`AbstractManifold`](@ref) `M`. This function defaults to calling `copyto!(Y, X)`, but it might be useful to overwrite the function at the level, where also information from `p` and `M` can be accessed. """ copyto!(::AbstractManifold, Y, p, X) = copyto!(Y, X) """ default_type(M::AbstractManifold) Get the default type of points on manifold `M`. """ default_type(M::AbstractManifold) = typeof(allocate_on(M)) """ default_type(M::AbstractManifold, ft::FiberType) Get the default type of points from the fiber `ft` of the fiber bundle based on manifold `M`. For example, call `default_type(MyManifold(), TangentSpaceType())` to get the default type of a tangent vector. """ default_type(M::AbstractManifold, ft::FiberType) = typeof(allocate_on(M, ft)) @doc raw""" distance(M::AbstractManifold, p, q) Shortest distance between the points `p` and `q` on the [`AbstractManifold`](@ref) `M`, i.e. ```math d(p,q) = \inf_{γ} L(γ), ``` where the infimum is over all piecewise smooth curves ``γ: [a,b] \to \mathcal M`` connecting ``γ(a)=p`` and ``γ(b)=q`` and ```math L(γ) = \displaystyle\int_{a}^{b} \lVert \dotγ(t)\rVert_{γ(t)} \mathrm{d}t ``` is the length of the curve $γ$. If ``\mathcal M`` is not connected, i.e. consists of several disjoint components, the distance between two points from different components should be ``∞``. """ distance(M::AbstractManifold, p, q) = norm(M, p, log(M, p, q)) """ distance(M::AbstractManifold, p, q, m::AbstractInverseRetractionMethod) Approximate distance between points `p` and `q` on manifold `M` using [`AbstractInverseRetractionMethod`](@ref) `m`. """ function distance(M::AbstractManifold, p, q, m::AbstractInverseRetractionMethod) return norm(M, p, inverse_retract(M, p, q, m)) end distance(M::AbstractManifold, p, q, ::LogarithmicInverseRetraction) = distance(M, p, q) """ embed(M::AbstractManifold, p) Embed point `p` from the [`AbstractManifold`](@ref) `M` into the ambient space. This method is only available for manifolds where implicitly an embedding or ambient space is given. Additionally, `embed` includes changing data representation, if applicable, i.e. if the points on `M` are not represented in the same way as points on the embedding, the representation is changed accordingly. The default is set in such a way that memory is allocated and `embed!(M, q, p)` is called. See also: [`EmbeddedManifold`](@ref), [`project`](@ref project(M::AbstractManifold,p)) """ function embed(M::AbstractManifold, p) q = allocate_result(M, embed, p) embed!(M, q, p) return q end """ embed!(M::AbstractManifold, q, p) Embed point `p` from the [`AbstractManifold`](@ref) `M` into an ambient space. This method is only available for manifolds where implicitly an embedding or ambient space is given. Not implementing this function means, there is no proper embedding for your manifold. Additionally, `embed` might include changing data representation, if applicable, i.e. if points on `M` are not represented in the same way as their counterparts in the embedding, the representation is changed accordingly. The default is set in such a way that it assumes that the points on `M` are represented in their embedding (for example like the unit vectors in a space to represent the sphere) and hence embedding in the identity by default. If you have more than one embedding, see [`EmbeddedManifold`](@ref) for defining a second embedding. If your point `p` is already represented in some embedding, see [`AbstractDecoratorManifold`](@ref) how you can avoid reimplementing code from the embedded manifold See also: [`EmbeddedManifold`](@ref), [`project!`](@ref project!(M::AbstractManifold, q, p)) """ embed!(M::AbstractManifold, q, p) = copyto!(M, q, p) """ embed(M::AbstractManifold, p, X) Embed a tangent vector `X` at a point `p` on the [`AbstractManifold`](@ref) `M` into an ambient space. This method is only available for manifolds where implicitly an embedding or ambient space is given. Not implementing this function means, there is no proper embedding for your tangent space(s). Additionally, `embed` might include changing data representation, if applicable, i.e. if tangent vectors on `M` are not represented in the same way as their counterparts in the embedding, the representation is changed accordingly. The default is set in such a way that memory is allocated and `embed!(M, Y, p. X)` is called. If you have more than one embedding, see [`EmbeddedManifold`](@ref) for defining a second embedding. If your tangent vector `X` is already represented in some embedding, see [`AbstractDecoratorManifold`](@ref) how you can avoid reimplementing code from the embedded manifold See also: [`EmbeddedManifold`](@ref), [`project`](@ref project(M::AbstractManifold, p, X)) """ function embed(M::AbstractManifold, p, X) # the order of args switched, since the allocation by default takes the type of the first. Y = allocate_result(M, embed, X, p) embed!(M, Y, p, X) return Y end """ embed!(M::AbstractManifold, Y, p, X) Embed a tangent vector `X` at a point `p` on the [`AbstractManifold`](@ref) `M` into the ambient space and return the result in `Y`. This method is only available for manifolds where implicitly an embedding or ambient space is given. Additionally, `embed!` includes changing data representation, if applicable, i.e. if the tangents on `M` are not represented in the same way as tangents on the embedding, the representation is changed accordingly. This is the case for example for Lie groups, when tangent vectors are represented in the Lie algebra. The embedded tangents are then in the tangent spaces of the embedded base points. The default is set in such a way that it assumes that the points on `M` are represented in their embedding (for example like the unit vectors in a space to represent the sphere) and hence embedding also for tangent vectors is the identity by default. See also: [`EmbeddedManifold`](@ref), [`project!`](@ref project!(M::AbstractManifold, Y, p, X)) """ embed!(M::AbstractManifold, Y, p, X) = copyto!(M, Y, p, X) """ embed_project(M::AbstractManifold, p) Embed `p` from manifold `M` an project it back to `M`. For points from `M` this is identity but in case embedding is defined for points outside of `M`, this can serve as a way to for example remove numerical inaccuracies caused by some algorithms. """ function embed_project(M::AbstractManifold, p) return project(M, embed(M, p)) end """ embed_project(M::AbstractManifold, p, X) Embed vector `X` tangent at `p` from manifold `M` an project it back to tangent space at `p`. For points from that tangent space this is identity but in case embedding is defined for tangent vectors from outside of it, this can serve as a way to for example remove numerical inaccuracies caused by some algorithms. """ function embed_project(M::AbstractManifold, p, X) return project(M, p, embed(M, p, X)) end function embed_project!(M::AbstractManifold, q, p) return project!(M, q, embed(M, p)) end function embed_project!(M::AbstractManifold, Y, p, X) return project!(M, Y, p, embed(M, p, X)) end @doc raw""" injectivity_radius(M::AbstractManifold) Infimum of the injectivity radii `injectivity_radius(M,p)` of all points `p` on the [`AbstractManifold`](@ref). injectivity_radius(M::AbstractManifold, p) Return the distance $d$ such that [`exp(M, p, X)`](@ref exp(::AbstractManifold, ::Any, ::Any)) is injective for all tangent vectors shorter than $d$ (i.e. has an inverse). injectivity_radius(M::AbstractManifold[, x], method::AbstractRetractionMethod) injectivity_radius(M::AbstractManifold, x, method::AbstractRetractionMethod) Distance ``d`` such that [`retract(M, p, X, method)`](@ref retract(::AbstractManifold, ::Any, ::Any, ::AbstractRetractionMethod)) is injective for all tangent vectors shorter than ``d`` (i.e. has an inverse) for point `p` if provided or all manifold points otherwise. In order to dispatch on different retraction methods, please either implement `_injectivity_radius(M[, p], m::T)` for your retraction `R` or specifically `injectivity_radius_exp(M[, p])` for the exponential map. By default the variant with a point `p` assumes that the default (without `p`) can ve called as a lower bound. """ injectivity_radius(M::AbstractManifold) injectivity_radius(M::AbstractManifold, p) = injectivity_radius(M) function injectivity_radius(M::AbstractManifold, p, m::AbstractRetractionMethod) return _injectivity_radius(M, p, m) end function injectivity_radius(M::AbstractManifold, m::AbstractRetractionMethod) return _injectivity_radius(M, m) end function _injectivity_radius(M::AbstractManifold, p, m::AbstractRetractionMethod) return _injectivity_radius(M, m) end function _injectivity_radius(M::AbstractManifold, m::AbstractRetractionMethod) return _injectivity_radius(M) end function _injectivity_radius(M::AbstractManifold) return injectivity_radius(M) end function _injectivity_radius(M::AbstractManifold, p, ::ExponentialRetraction) return injectivity_radius_exp(M, p) end function _injectivity_radius(M::AbstractManifold, ::ExponentialRetraction) return injectivity_radius_exp(M) end injectivity_radius_exp(M, p) = injectivity_radius_exp(M) injectivity_radius_exp(M) = injectivity_radius(M) """ inner(M::AbstractManifold, p, X, Y) Compute the inner product of tangent vectors `X` and `Y` at point `p` from the [`AbstractManifold`](@ref) `M`. """ inner(M::AbstractManifold, p, X, Y) """ is_flat(M::AbstractManifold) Return true if the [`AbstractManifold`](@ref) `M` is flat, i.e. if its Riemann curvature tensor is everywhere zero. """ is_flat(M::AbstractManifold) """ isapprox(M::AbstractManifold, p, q; error::Symbol=:none, kwargs...) Check if points `p` and `q` from [`AbstractManifold`](@ref) `M` are approximately equal. The keyword argument can be used to get more information for the case that the result is false, if the concrete manifold provides such information. Currently the following are supported * `:error` - throws an error if `isapprox` evaluates to false, providing possibly a more detailed error. Note that this turns `isapprox` basically to an `@assert`. * `:info` – prints the information in an `@info` * `:warn` – prints the information in an `@warn` * `:none` (default) – the function just returns `true`/`false` Keyword arguments can be used to specify tolerances. """ function isapprox(M::AbstractManifold, p, q; error::Symbol = :none, kwargs...) if error === :none return _isapprox(M, p, q; kwargs...) else ma = check_approx(M, p, q; kwargs...) if ma !== nothing (error === :error) && throw(ma) # else: collect and info showerror io = IOBuffer() showerror(io, ma) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s return false end return true end end """ isapprox(M::AbstractManifold, p, X, Y; error:Symbol=:none; kwargs...) Check if vectors `X` and `Y` tangent at `p` from [`AbstractManifold`](@ref) `M` are approximately equal. The optional positional argument can be used to get more information for the case that the result is false, if the concrete manifold provides such information. Currently the following are supported * `:error` - throws an error if `isapprox` evaluates to false, providing possibly a more detailed error. Note that this turns `isapprox` basically to an `@assert`. * `:info` – prints the information in an `@info` * `:warn` – prints the information in an `@warn` * `:none` (default) – the function just returns `true`/`false` By default these informations are collected by calling [`check_approx`](@ref). Keyword arguments can be used to specify tolerances. """ function isapprox(M::AbstractManifold, p, X, Y; error::Symbol = :none, kwargs...) if error === :none return _isapprox(M, p, X, Y; kwargs...)::Bool else mat = check_approx(M, p, X, Y; kwargs...) if mat !== nothing (error === :error) && throw(mat) # else: collect and info showerror io = IOBuffer() showerror(io, mat) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s return false end return true end end """ _isapprox(M::AbstractManifold, p, q; kwargs...) An internal function for testing whether points `p` and `q` from manifold `M` are approximately equal. Returns either `true` or `false` and does not support errors like [`isapprox`](@ref). For more details see documentation of [`check_approx`](@ref). """ function _isapprox(M::AbstractManifold, p, q; kwargs...) return isapprox(p, q; kwargs...) end """ _isapprox(M::AbstractManifold, p, X, Y; kwargs...) An internal function for testing whether tangent vectors `X` and `Y` from tangent space at point `p` from manifold `M` are approximately equal. Returns either `true` or `false` and does not support errors like [`isapprox`](@ref). For more details see documentation of [`check_approx`](@ref). """ function _isapprox(M::AbstractManifold, p, X, Y; kwargs...) return isapprox(X, Y; kwargs...) end """ is_point(M::AbstractManifold, p; error::Symbol = :none, kwargs...) is_point(M::AbstractManifold, p, throw_error::Bool; kwargs...) Return whether `p` is a valid point on the [`AbstractManifold`](@ref) `M`. By default the function calls [`check_point`](@ref), which returns an `ErrorException` or `nothing`. How to report a potential error can be set using the `error=` keyword * `:error` - throws an error if `p` is not a point * `:info` - displays the error message as an `@info` * `:warn` - displays the error message as a `@warning` * `:none` (default) – the function just returns `true`/`false` all other symbols are equivalent to `error=:none`. The second signature is a shorthand, where the boolean is used for `error=:error` (`true`) and `error=:none` (default, `false`). This case ignores the `error=` keyword """ function is_point( M::AbstractManifold, p, throw_error::Bool; error::Symbol = :none, kwargs..., ) return is_point(M, p; error = throw_error ? :error : :none, kwargs...) end function is_point(M::AbstractManifold, p; error::Symbol = :none, kwargs...) mps = check_size(M, p) if mps !== nothing (error === :error) && throw(mps) if (error === :info) || (error === :warn) # else: collect and info showerror io = IOBuffer() showerror(io, mps) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s end return false end mpe = check_point(M, p; kwargs...) if mpe !== nothing (error === :error) && throw(mpe) if (error === :info) || (error === :warn) # else: collect and info showerror io = IOBuffer() showerror(io, mpe) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s end return false end return true end """ is_vector(M::AbstractManifold, p, X, check_base_point::Bool=true; error::Symbol=:none, kwargs...) is_vector(M::AbstractManifold, p, X, check_base_point::Bool=true, throw_error::Boolean; kwargs...) Return whether `X` is a valid tangent vector at point `p` on the [`AbstractManifold`](@ref) `M`. Returns either `true` or `false`. If `check_base_point` is set to true, this function also (first) calls [`is_point`](@ref) on `p`. Then, the function calls [`check_vector`](@ref) and checks whether the returned value is `nothing` or an error. How to report a potential error can be set using the `error=` keyword * `:error` - throws an error if `X` is not a tangent vector and/or `p` is not point ^ `:info` - displays the error message as an `@info` * `:warn` - displays the error message as a `@warn`ing. * `:none` - (default) the function just returns `true`/`false` all other symbols are equivalent to `error=:none` The second signature is a shorthand, where `throw_error` is used for `error=:error` (`true`) and `error=:none` (default, `false`). This case ignores the `error=` keyword. """ function is_vector( M::AbstractManifold, p, X, check_base_point::Bool, throw_error::Bool; error::Symbol = :none, kwargs..., ) return is_vector( M, p, X, check_base_point; error = throw_error ? :error : :none, kwargs..., ) end function is_vector( M::AbstractManifold, p, X, check_base_point::Bool = true; error::Symbol = :none, kwargs..., ) if check_base_point # if error, is_point throws, otherwise if not a point return false !is_point(M, p; error = error, kwargs...) && return false end mXs = check_size(M, p, X) if mXs !== nothing (error === :error) && throw(mXs) if (error === :info) || (error === :warn) # else: collect and info showerror io = IOBuffer() showerror(io, mXs) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s end return false end mXe = check_vector(M, p, X; kwargs...) if mXe !== nothing (error === :error) && throw(mXe) if (error === :info) || (error === :warn) # else: collect and info showerror io = IOBuffer() showerror(io, mXe) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s end return false end return true end @doc raw""" manifold_dimension(M::AbstractManifold) The dimension $n=\dim_{\mathcal M}$ of real space $\mathbb R^n$ to which the neighborhood of each point of the [`AbstractManifold`](@ref) `M` is homeomorphic. """ manifold_dimension(M::AbstractManifold) """ mid_point(M::AbstractManifold, p1, p2) Calculate the middle between the two point `p1` and `p2` from manifold `M`. By default uses [`log`](@ref), divides the vector by 2 and uses [`exp`](@ref). """ function mid_point(M::AbstractManifold, p1, p2) q = allocate(p1) return mid_point!(M, q, p1, p2) end """ mid_point!(M::AbstractManifold, q, p1, p2) Calculate the middle between the two point `p1` and `p2` from manifold `M`. By default uses [`log`](@ref), divides the vector by 2 and uses [`exp!`](@ref). Saves the result in `q`. """ function mid_point!(M::AbstractManifold, q, p1, p2) X = log(M, p1, p2) return exp!(M, q, p1, X / 2) end """ norm(M::AbstractManifold, p, X) Compute the norm of tangent vector `X` at point `p` from a [`AbstractManifold`](@ref) `M`. By default this is computed using [`inner`](@ref). """ norm(M::AbstractManifold, p, X) = sqrt(max(real(inner(M, p, X, X)), 0)) """ number_eltype(x) Numeric element type of the a nested representation of a point or a vector. To be used in conjuntion with [`allocate`](@ref) or [`allocate_result`](@ref). """ number_eltype(x) = eltype(x) @inline function number_eltype(x::AbstractArray) return typeof(mapreduce(eti -> one(number_eltype(eti)), +, x)) end @inline number_eltype(::AbstractArray{T}) where {T<:Number} = T @inline function number_eltype(::Type{<:AbstractArray{T}}) where {T} return number_eltype(T) end @inline function number_eltype(::Type{<:AbstractArray{T}}) where {T<:Number} return T end @inline function number_eltype(x::Tuple) @inline eti_to_one(eti) = one(number_eltype(eti)) return typeof(sum(map(eti_to_one, x))) end """ Random.rand(M::AbstractManifold, [d::Integer]; vector_at=nothing) Random.rand(rng::AbstractRNG, M::AbstractManifold, [d::Integer]; vector_at=nothing) Generate a random point on manifold `M` (when `vector_at` is `nothing`) or a tangent vector at point `vector_at` (when it is not `nothing`). Optionally a random number generator `rng` to be used can be specified. An optional integer `d` indicates that a vector of `d` points or tangent vectors is to be generated. !!! note Usually a uniform distribution should be expected for compact manifolds and a Gaussian-like distribution for non-compact manifolds and tangent vectors, although it is not guaranteed. The distribution may change between releases. `rand` methods for specific manifolds may take additional keyword arguments. """ Random.rand(M::AbstractManifold) function Random.rand(M::AbstractManifold, d::Integer; kwargs...) return [rand(M; kwargs...) for _ in 1:d] end function Random.rand(rng::AbstractRNG, M::AbstractManifold, d::Integer; kwargs...) return [rand(rng, M; kwargs...) for _ in 1:d] end function Random.rand(M::AbstractManifold; vector_at = nothing, kwargs...) if vector_at === nothing pX = allocate_result(M, rand) else pX = allocate_result(M, rand, vector_at) end rand!(M, pX; vector_at = vector_at, kwargs...) return pX end function Random.rand(rng::AbstractRNG, M::AbstractManifold; vector_at = nothing, kwargs...) if vector_at === nothing pX = allocate_result(M, rand) else pX = allocate_result(M, rand, vector_at) end rand!(rng, M, pX; vector_at = vector_at, kwargs...) return pX end @doc raw""" representation_size(M::AbstractManifold) The size of an array representing a point on [`AbstractManifold`](@ref) `M`. Returns `nothing` by default indicating that points are not represented using an `AbstractArray`. """ function representation_size(::AbstractManifold) return nothing end @doc raw""" riemann_tensor(M::AbstractManifold, p, X, Y, Z) Compute the value of the Riemann tensor ``R(X_f,Y_f)Z_f`` at point `p`, where ``X_f``, ``Y_f`` and ``Z_f`` are vector fields defined by parallel transport of, respectively, `X`, `Y` and `Z` to the desired point. All computations are performed using the connection associated to manifold `M`. The formula reads ``R(X_f,Y_f)Z_f = \nabla_X\nabla_Y Z - \nabla_Y\nabla_X Z - \nabla_{[X, Y]}Z``, where ``[X, Y]`` is the Lie bracket of vector fields. Note that some authors define this quantity with inverse sign. """ function riemann_tensor(M::AbstractManifold, p, X, Y, Z) Xresult = allocate_result(M, riemann_tensor, X) return riemann_tensor!(M, Xresult, p, X, Y, Z) end @doc raw""" sectional_curvature(M::AbstractManifold, p, X, Y) Compute the sectional curvature of a manifold ``\mathcal M`` at a point ``p \in \mathcal M`` on two linearly independent tangent vectors at ``p``. The formula reads ```math \kappa_p(X, Y) = \frac{⟨R(X, Y, Y), X⟩_p}{\lVert X \rVert^2_p \lVert Y \rVert^2_p - ⟨X, Y⟩^2_p} ``` where ``R(X, Y, Y)`` is the [`riemann_tensor`](@ref) on ``\mathcal M``. # Input * `M`: a manifold ``\mathcal M`` * `p`: a point ``p \in \mathcal M`` * `X`: a tangent vector ``X \in T_p \mathcal M`` * `Y`: a tangent vector ``Y \in T_p \mathcal M`` """ function sectional_curvature(M::AbstractManifold, p, X, Y) R = riemann_tensor(M, p, X, Y, Y) return inner(M, p, R, X) / ((norm(M, p, X)^2 * norm(M, p, Y)^2) - (inner(M, p, X, Y)^2)) end @doc raw""" sectional_curvature_max(M::AbstractManifold) Upper bound on sectional curvature of manifold `M`. The formula reads ```math \omega = \operatorname{sup}_{p\in\mathcal M, X\in T_p\mathcal M, Y\in T_p\mathcal M, ⟨X, Y⟩ ≠ 0} \kappa_p(X, Y) ``` """ sectional_curvature_max(M::AbstractManifold) @doc raw""" sectional_curvature_min(M::AbstractManifold) Lower bound on sectional curvature of manifold `M`. The formula reads ```math \omega = \operatorname{inf}_{p\in\mathcal M, X\in T_p\mathcal M, Y\in T_p\mathcal M, ⟨X, Y⟩ ≠ 0} \kappa_p(X, Y) ``` """ sectional_curvature_min(M::AbstractManifold) """ size_to_tuple(::Type{S}) where S<:Tuple Converts a size given by `Tuple{N, M, ...}` into a tuple `(N, M, ...)`. """ Base.@pure size_to_tuple(::Type{S}) where {S<:Tuple} = tuple(S.parameters...) @doc raw""" Weingarten!(M, Y, p, X, V) Compute the Weingarten map ``\mathcal W_p\colon T_p\mathcal M × N_p\mathcal M \to T_p\mathcal M`` in place of `Y`, see [`Weingarten`](@ref). """ Weingarten!(M::AbstractManifold, Y, p, X, V) @doc raw""" Weingarten(M, p, X, V) Compute the Weingarten map ``\mathcal W_p\colon T_p\mathcal M × N_p\mathcal M \to T_p\mathcal M``, where ``N_p\mathcal M`` is the orthogonal complement of the tangent space ``T_p\mathcal M`` of the embedded submanifold ``\mathcal M``, where we denote the embedding by ``\mathcal E``. The Weingarten map can be defined by restricting the differential of the orthogonal [`project`](@ref)ion ``\operatorname{proj}_{T_p\mathcal M}\colon T_p \mathcal E \to T_p\mathcal M`` with respect to the base point ``p``, i.e. defining ```math \mathcal P_X := D_p\operatorname{proj}_{T_p\mathcal M}(Y)[X], \qquad Y \in T_p \mathcal E, X \in T_p\mathcal M, ``` the Weingarten map can be written as ``\mathcal W_p(X,V) = \mathcal P_X(V)``. The Weingarten map is named after [Julius Weingarten](https://en.wikipedia.org/wiki/Julius_Weingarten) (1836–1910). """ function Weingarten(M::AbstractManifold, p, X, V) Y = copy(M, p, X) Weingarten!(M, Y, p, X, V) return Y end @doc raw""" zero_vector!(M::AbstractManifold, X, p) Save to `X` the tangent vector from the tangent space ``T_p\mathcal M`` at `p` that represents the zero vector, i.e. such that retracting `X` to the [`AbstractManifold`](@ref) `M` at `p` produces `p`. """ zero_vector!(M::AbstractManifold, X, p) = log!(M, X, p, p) @doc raw""" zero_vector(M::AbstractManifold, p) Return the tangent vector from the tangent space ``T_p\mathcal M`` at `p` on the [`AbstractManifold`](@ref) `M`, that represents the zero vector, i.e. such that a retraction at `p` produces `p`. """ function zero_vector(M::AbstractManifold, p) X = allocate_result(M, zero_vector, p) zero_vector!(M, X, p) return X end include("errors.jl") include("parallel_transport.jl") include("vector_transport.jl") include("shooting.jl") include("vector_spaces.jl") include("point_vector_fallbacks.jl") include("nested_trait.jl") include("decorator_trait.jl") include("numerical_checks.jl") include("VectorFiber.jl") include("TangentSpace.jl") include("ValidationManifold.jl") include("EmbeddedManifold.jl") include("DefaultManifold.jl") include("ProductManifold.jl") include("PowerManifold.jl") # # # Init # ----- function __init__() # # Error Hints # @static if isdefined(Base.Experimental, :register_error_hint) # COV_EXCL_LINE Base.Experimental.register_error_hint(MethodError) do io, exc, argtypes, kwargs if exc.f === plot_slope print( io, """ `plot_slope` has to be implemented using your favourite plotting package. A default is available when Plots.jl is added to the current environment. To then get the plotting functionality activated, do """, ) printstyled(io, "`using Plots`"; color = :cyan) end if exc.f === find_best_slope_window print( io, """ `find_best_slope_window` has to be implemented using some statistics package A default is available when Statistics.jl is added to the current environment. To then get the functionality activated, do """, ) printstyled(io, "`using Statistics`"; color = :cyan) end end end # Extensions in the pre 1.9 fallback using Requires.jl @static if !isdefined(Base, :get_extension) @require RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd" begin include( "../ext/ManifoldsBaseRecursiveArrayToolsExt/ManifoldsBaseRecursiveArrayToolsExt.jl", ) end @require Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin include("../ext/ManifoldsBasePlotsExt.jl") end @require Quaternions = "94ee1d12-ae83-5a48-8b1c-48b8ff168ae0" begin include("../ext/ManifoldsBaseQuaternionsExt.jl") end @require Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" begin include("../ext/ManifoldsBaseStatisticsExt.jl") end end end # # # Export # ------ # # (a) Manifolds and general types export AbstractManifold, AbstractManifoldPoint, TVector, CoTVector, TFVector, CoTFVector export VectorSpaceFiber export TangentSpace, TangentSpaceType export CotangentSpace, CotangentSpaceType export AbstractDecoratorManifold export AbstractTrait, IsEmbeddedManifold, IsEmbeddedSubmanifold, IsIsometricEmbeddedManifold export IsExplicitDecorator export ValidationManifold, ValidationMPoint, ValidationTVector, ValidationCoTVector export EmbeddedManifold export AbstractPowerManifold, PowerManifold export AbstractPowerRepresentation, NestedPowerRepresentation, NestedReplacingPowerRepresentation export ProductManifold # (b) Generic Estimation Types export GeodesicInterpolationWithinRadius, CyclicProximalPointEstimation, ExtrinsicEstimation, GradientDescentEstimation, WeiszfeldEstimation, AbstractApproximationMethod, GeodesicInterpolation # (b) Retraction Types export AbstractRetractionMethod, ApproximateInverseRetraction, CayleyRetraction, EmbeddedRetraction, ExponentialRetraction, NLSolveInverseRetraction, ODEExponentialRetraction, QRRetraction, PadeRetraction, PolarRetraction, ProductRetraction, ProjectionRetraction, RetractionWithKeywords, SasakiRetraction, ShootingInverseRetraction, SoftmaxRetraction # (c) Inverse Retraction Types export AbstractInverseRetractionMethod, ApproximateInverseRetraction, CayleyInverseRetraction, EmbeddedInverseRetraction, InverseProductRetraction, LogarithmicInverseRetraction, NLSolveInverseRetraction, QRInverseRetraction, PadeInverseRetraction, PolarInverseRetraction, ProjectionInverseRetraction, InverseRetractionWithKeywords, SoftmaxInverseRetraction # (d) Vector Transport Types export AbstractVectorTransportMethod, DifferentiatedRetractionVectorTransport, EmbeddedVectorTransport, ParallelTransport, PoleLadderTransport, ProductVectorTransport, ProjectionTransport, ScaledVectorTransport, SchildsLadderTransport, VectorTransportDirection, VectorTransportTo, VectorTransportWithKeywords # (e) Basis Types export CachedBasis, DefaultBasis, DefaultOrthogonalBasis, DefaultOrthonormalBasis, DiagonalizingOrthonormalBasis, DefaultOrthonormalBasis, GramSchmidtOrthonormalBasis, ProjectedOrthonormalBasis, VeeOrthogonalBasis # (f) Error Messages export OutOfInjectivityRadiusError, ManifoldDomainError export ApproximatelyError export CompositeManifoldError, ComponentManifoldError, ManifoldDomainError # (g) Functions on Manifolds export ×, ℝ, ℂ, allocate, allocate_on, angle, base_manifold, base_point, change_basis, change_basis!, change_metric, change_metric!, change_representer, change_representer!, check_inverse_retraction, check_retraction, check_vector_transport, copy, copyto!, default_approximation_method, default_inverse_retraction_method, default_retraction_method, default_type, default_vector_transport_method, distance, exp, exp!, embed, embed!, embed_project, embed_project!, fill, fill!, geodesic, geodesic!, get_basis, get_component, get_coordinates, get_coordinates!, get_embedding, get_vector, get_vector!, get_vectors, hat, hat!, injectivity_radius, inner, inverse_retract, inverse_retract!, isapprox, is_flat, is_point, is_vector, isempty, length, log, log!, manifold_dimension, mid_point, mid_point!, norm, number_eltype, number_of_coordinates, number_system, power_dimensions, parallel_transport_along, parallel_transport_along!, parallel_transport_direction, parallel_transport_direction!, parallel_transport_to, parallel_transport_to!, project, project!, real_dimension, representation_size, set_component!, shortest_geodesic, shortest_geodesic!, show, rand, rand!, retract, retract!, riemann_tensor, riemann_tensor!, sectional_curvature, sectional_curvature_max, sectional_curvature_min, vector_space_dimension, vector_transport_along, vector_transport_along!, vector_transport_direction, vector_transport_direction!, vector_transport_to, vector_transport_to!, vee, vee!, Weingarten, Weingarten!, zero_vector, zero_vector! end # module
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
55482
""" AbstractPowerRepresentation An abstract representation type of points and tangent vectors on a power manifold. """ abstract type AbstractPowerRepresentation end """ NestedPowerRepresentation Representation of points and tangent vectors on a power manifold using arrays of size equal to `TSize` of a [`PowerManifold`](@ref). Each element of such array stores a single point or tangent vector. For modifying operations, each element of the outer array is modified in-place, differently than in [`NestedReplacingPowerRepresentation`](@ref). """ struct NestedPowerRepresentation <: AbstractPowerRepresentation end """ NestedReplacingPowerRepresentation Representation of points and tangent vectors on a power manifold using arrays of size equal to `TSize` of a [`PowerManifold`](@ref). Each element of such array stores a single point or tangent vector. For modifying operations, each element of the outer array is replaced using non-modifying operations, differently than for [`NestedReplacingPowerRepresentation`](@ref). """ struct NestedReplacingPowerRepresentation <: AbstractPowerRepresentation end @doc raw""" AbstractPowerManifold{𝔽,M,TPR} <: AbstractManifold{𝔽} An abstract [`AbstractManifold`](@ref) to represent manifolds that are build as powers of another [`AbstractManifold`](@ref) `M` with representation type `TPR`, a subtype of [`AbstractPowerRepresentation`](@ref). """ abstract type AbstractPowerManifold{ 𝔽, M<:AbstractManifold{𝔽}, TPR<:AbstractPowerRepresentation, } <: AbstractManifold{𝔽} end @doc raw""" PowerManifold{𝔽,TM<:AbstractManifold,TSize,TPR<:AbstractPowerRepresentation} <: AbstractPowerManifold{𝔽,TM} The power manifold ``\mathcal M^{n_1× n_2 × … × n_d}`` with power geometry. `TSize` defines the number of elements along each axis, either statically using `TypeParameter` or storing it in a field. For example, a manifold-valued time series would be represented by a power manifold with ``d`` equal to 1 and ``n_1`` equal to the number of samples. A manifold-valued image (for example in diffusion tensor imaging) would be represented by a two-axis power manifold (``d=2``) with ``n_1`` and ``n_2`` equal to width and height of the image. While the size of the manifold is static, points on the power manifold would not be represented by statically-sized arrays. # Constructor PowerManifold(M::PowerManifold, N_1, N_2, ..., N_d; parameter::Symbol=:field) PowerManifold(M::AbstractManifold, NestedPowerRepresentation(), N_1, N_2, ..., N_d; parameter::Symbol=:field) M^(N_1, N_2, ..., N_d) Generate the power manifold ``M^{N_1 × N_2 × … × N_d}``. By default, a [`PowerManifold`](@ref) is expanded further, i.e. for `M=PowerManifold(N, 3)` `PowerManifold(M, 2)` is equivalent to `PowerManifold(N, 3, 2)`. Points are then 3×2 matrices of points on `N`. Providing a [`NestedPowerRepresentation`](@ref) as the second argument to the constructor can be used to nest manifold, i.e. `PowerManifold(M, NestedPowerRepresentation(), 2)` represents vectors of length 2 whose elements are vectors of length 3 of points on N in a nested array representation. The third signature `M^(...)` is equivalent to the first one, and hence either yields a combination of power manifolds to _one_ larger power manifold, or a power manifold with the default representation. Since there is no default [`AbstractPowerRepresentation`](@ref) within this interface, the `^` operator is only available for `PowerManifold`s and concatenates dimensions. `parameter`: whether a type parameter should be used to store `n`. By default size is stored in a field. Value can either be `:field` or `:type`. """ struct PowerManifold{𝔽,TM<:AbstractManifold{𝔽},TSize,TPR<:AbstractPowerRepresentation} <: AbstractPowerManifold{𝔽,TM,TPR} manifold::TM size::TSize end """ _parameter_symbol(M::PowerManifold) Return `:field` if size of [`PowerManifold`](@ref) `M` is stored in a field and `:type` if in a `TypeParameter`. """ _parameter_symbol(::PowerManifold) = :field function _parameter_symbol( ::PowerManifold{𝔽,<:AbstractManifold{𝔽},<:TypeParameter}, ) where {𝔽} return :type end @aggressive_constprop function PowerManifold( M::AbstractManifold{𝔽}, ::TPR, size::Integer...; parameter::Symbol = :field, ) where {𝔽,TPR<:AbstractPowerRepresentation} size_w = wrap_type_parameter(parameter, size) return PowerManifold{𝔽,typeof(M),typeof(size_w),TPR}(M, size_w) end @aggressive_constprop function PowerManifold( M::PowerManifold{𝔽,TM,TSize,TPR}, size::Integer...; parameter::Symbol = _parameter_symbol(M), ) where {𝔽,TM<:AbstractManifold{𝔽},TSize,TPR<:AbstractPowerRepresentation} size_w = wrap_type_parameter(parameter, (get_parameter(M.size)..., size...)) return PowerManifold{𝔽,TM,typeof(size_w),TPR}(M.manifold, size_w) end @aggressive_constprop function PowerManifold( M::PowerManifold{𝔽,TM}, ::TPR, size::Integer...; parameter::Symbol = _parameter_symbol(M), ) where {𝔽,TM<:AbstractManifold{𝔽},TPR<:AbstractPowerRepresentation} size_w = wrap_type_parameter(parameter, (get_parameter(M.size)..., size...)) return PowerManifold{𝔽,TM,typeof(size_w),TPR}(M.manifold, size_w) end function PowerManifold( M::PowerManifold{𝔽}, ::TPR, size::Integer...; parameter::Symbol = _parameter_symbol(M), ) where {𝔽,TPR<:Union{NestedPowerRepresentation,NestedReplacingPowerRepresentation}} size_w = wrap_type_parameter(parameter, size) return PowerManifold{𝔽,typeof(M),typeof(size_w),TPR}(M, size_w) end """ PowerBasisData{TB<:AbstractArray} Data storage for an array of basis data. """ struct PowerBasisData{TB<:AbstractArray} bases::TB end const PowerManifoldNested = AbstractPowerManifold{𝔽,<:AbstractManifold{𝔽},NestedPowerRepresentation} where {𝔽} const PowerManifoldNestedReplacing = AbstractPowerManifold{ 𝔽, <:AbstractManifold{𝔽}, NestedReplacingPowerRepresentation, } where {𝔽} # _access_nested(::AbstractManifold, x, i::Tuple) can be overloaded to achieve # manifold-specific nested element access (for example to `Identity` on power manifolds). @inline _access_nested(M::AbstractManifold, x, i::Int) = _access_nested(M, x, (i,)) @inline _access_nested(::AbstractManifold, x, i::Tuple) = _access_nested(x, i) @inline _access_nested(x, i::Tuple) = x[i...] function Base.:^( M::PowerManifold{ 𝔽, TM, TSize, <:Union{NestedPowerRepresentation,NestedReplacingPowerRepresentation}, }, size::Integer..., ) where {𝔽,TM<:AbstractManifold{𝔽},TSize} return PowerManifold(M, size...) end function allocate_on( M::PowerManifold{ 𝔽, TM, TSize, <:Union{NestedPowerRepresentation,NestedReplacingPowerRepresentation}, }, ) where {𝔽,TM<:AbstractManifold{𝔽},TSize} return [allocate_on(M.manifold) for _ in get_iterator(M)] end function allocate_on( M::PowerManifold{ 𝔽, TM, TSize, <:Union{NestedPowerRepresentation,NestedReplacingPowerRepresentation}, }, ::Type{<:Array{U}}, ) where {𝔽,TM<:AbstractManifold{𝔽},TSize,U} return [allocate_on(M.manifold, U) for _ in get_iterator(M)] end function allocate_on( M::PowerManifold{ 𝔽, TM, TSize, <:Union{NestedPowerRepresentation,NestedReplacingPowerRepresentation}, }, ft::TangentSpaceType, ) where {𝔽,TM<:AbstractManifold{𝔽},TSize} return [allocate_on(M.manifold, ft) for _ in get_iterator(M)] end function allocate_on( M::PowerManifold{ 𝔽, TM, TSize, <:Union{NestedPowerRepresentation,NestedReplacingPowerRepresentation}, }, ft::TangentSpaceType, ::Type{<:Array{U}}, ) where {𝔽,TM<:AbstractManifold{𝔽},TSize,U} return [allocate_on(M.manifold, ft, U) for _ in get_iterator(M)] end """ _allocate_access_nested(M::PowerManifoldNested, y, i) Helper function for `allocate_result` on `PowerManifoldNested`. In allocation `y` can be a number in which case `_access_nested` wouldn't work. """ _allocate_access_nested(M::PowerManifoldNested, y, i) = _access_nested(M, y, i) _allocate_access_nested(::PowerManifoldNested, y::Number, i) = y function allocate_result(M::PowerManifoldNested, f, x...) if representation_size(M.manifold) === () && length(x) > 0 return allocate(M, x[1]) else return [ allocate_result( M.manifold, f, map(y -> _allocate_access_nested(M, y, i), x)..., ) for i in get_iterator(M) ] end end # avoid ambiguities - though usually not used function allocate_result( M::PowerManifoldNested, f::typeof(get_coordinates), p, X, B::AbstractBasis, ) return invoke( allocate_result, Tuple{AbstractManifold,typeof(get_coordinates),Any,Any,AbstractBasis}, M, f, p, X, B, ) end function allocate_result(M::PowerManifoldNestedReplacing, f, x...) if length(x) == 0 return [allocate_result(M.manifold, f) for _ in get_iterator(M)] else return copy(x[1]) end end # the following is not used but necessary to avoid ambiguities function allocate_result( M::PowerManifoldNestedReplacing, f::typeof(get_coordinates), p, X, B::AbstractBasis, ) return invoke( allocate_result, Tuple{AbstractManifold,typeof(get_coordinates),Any,Any,AbstractBasis}, M, f, p, X, B, ) end function allocate_result(M::PowerManifoldNested, f::typeof(get_vector), p, X) return [ allocate_result(M.manifold, f, _access_nested(M, p, i)) for i in get_iterator(M) ] end function allocate_result(::PowerManifoldNestedReplacing, ::typeof(get_vector), p, X) return copy(p) end function allocation_promotion_function(M::AbstractPowerManifold, f, args::Tuple) return allocation_promotion_function(M.manifold, f, args) end """ change_representer(M::AbstractPowerManifold, ::AbstractMetric, p, X) Since the metric on a power manifold decouples, the change of a representer can be done elementwise """ change_representer(::AbstractPowerManifold, ::AbstractMetric, ::Any, ::Any) function change_representer!(M::AbstractPowerManifold, Y, G::AbstractMetric, p, X) rep_size = representation_size(M.manifold) for i in get_iterator(M) change_representer!( M.manifold, _write(M, rep_size, Y, i), G, _read(M, rep_size, p, i), _read(M, rep_size, X, i), ) end return Y end """ change_metric(M::AbstractPowerManifold, ::AbstractMetric, p, X) Since the metric on a power manifold decouples, the change of metric can be done elementwise. """ change_metric(M::AbstractPowerManifold, ::AbstractMetric, ::Any, ::Any) function change_metric!(M::AbstractPowerManifold, Y, G::AbstractMetric, p, X) rep_size = representation_size(M.manifold) for i in get_iterator(M) change_metric!( M.manifold, _write(M, rep_size, Y, i), G, _read(M, rep_size, p, i), _read(M, rep_size, X, i), ) end return Y end """ check_point(M::AbstractPowerManifold, p; kwargs...) Check whether `p` is a valid point on an [`AbstractPowerManifold`](@ref) `M`, i.e. each element of `p` has to be a valid point on the base manifold. If `p` is not a point on `M` a [`CompositeManifoldError`](@ref) consisting of all error messages of the components, for which the tests fail is returned. The tolerance for the last test can be set using the `kwargs...`. """ function check_point(M::AbstractPowerManifold, p; kwargs...) rep_size = representation_size(M.manifold) e = [ (i, check_point(M.manifold, _read(M, rep_size, p, i); kwargs...)) for i in get_iterator(M) ] errors = filter((x) -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end """ check_power_size(M, p) check_power_size(M, p, X) Check whether `p`` has the right size to represent points on `M`` generically, i.e. just checking the overall sizes, not the individual ones per manifold. """ function check_power_size(M::AbstractPowerManifold, p) d = prod(representation_size(M.manifold)) * prod(power_dimensions(M)) (d != length(p)) && return DomainError( length(p), "The point $p can not be a point on $M, since its number of elements does not match the required overall representation size ($d)", ) return nothing end function check_power_size(M::Union{PowerManifoldNested,PowerManifoldNestedReplacing}, p) d = prod(power_dimensions(M)) (d != length(p)) && return DomainError( length(p), "The point $p can not be a point on $M, since its number of elements does not match the power dimensions ($d)", ) return nothing end function check_power_size(M::AbstractPowerManifold, p, X) d = prod(representation_size(M.manifold)) * prod(power_dimensions(M)) (d != length(X)) && return DomainError( length(X), "The tangent vector $X can not belong to a trangent space at on $M, since its number of elements does not match the required overall representation size ($d)", ) return nothing end function check_power_size(M::Union{PowerManifoldNested,PowerManifoldNestedReplacing}, p, X) d = prod(power_dimensions(M)) (d != length(X)) && return DomainError( length(X), "The point $p can not be a point on $M, since its number of elements does not match the power dimensions ($d)", ) return nothing end function check_size(M::AbstractPowerManifold, p) cps = check_power_size(M, p) (cps === nothing) || return cps rep_size = representation_size(M.manifold) e = [(i, check_size(M.manifold, _read(M, rep_size, p, i))) for i in get_iterator(M)] errors = filter((x) -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end function check_size(M::AbstractPowerManifold, p, X) cps = check_power_size(M, p, X) (cps === nothing) || return cps rep_size = representation_size(M.manifold) e = [ (i, check_size(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i);)) for i in get_iterator(M) ] errors = filter((x) -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end """ check_vector(M::AbstractPowerManifold, p, X; kwargs... ) Check whether `X` is a tangent vector to `p` an the [`AbstractPowerManifold`](@ref) `M`, i.e. atfer [`check_point`](@ref)`(M, p)`, and all projections to base manifolds must be respective tangent vectors. If `X` is not a tangent vector to `p` on `M` a [`CompositeManifoldError`](@ref) consisting of all error messages of the components, for which the tests fail is returned. The tolerance for the last test can be set using the `kwargs...`. """ function check_vector(M::AbstractPowerManifold, p, X; kwargs...) rep_size = representation_size(M.manifold) e = [ ( i, check_vector( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i); kwargs..., ), ) for i in get_iterator(M) ] errors = filter((x) -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end @doc raw""" copyto!(M::PowerManifoldNested, q, p) Copy the values elementwise, i.e. call `copyto!(M.manifold, b, a)` for all elements `a` and `b` of `p` and `q`, respectively. """ function copyto!(M::PowerManifoldNested, q, p) rep_size = representation_size(M.manifold) for i in get_iterator(M) copyto!(M.manifold, _write(M, rep_size, q, i), _read(M, rep_size, p, i)) end return q end @doc raw""" copyto!(M::PowerManifoldNested, Y, p, X) Copy the values elementwise, i.e. call `copyto!(M.manifold, B, a, A)` for all elements `A`, `a` and `B` of `X`, `p`, and `Y`, respectively. """ function copyto!(M::PowerManifoldNested, Y, p, X) rep_size = representation_size(M.manifold) for i in get_iterator(M) copyto!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), ) end return Y end @doc raw""" default_retraction_method(M::PowerManifold) Use the default retraction method of the internal `M.manifold` also in defaults of functions defined for the power manifold, meaning that this is used elementwise. """ function default_retraction_method(M::PowerManifold) return default_retraction_method(M.manifold) end function default_retraction_method(M::PowerManifold, t::Type) return default_retraction_method(M.manifold, eltype(t)) end @doc raw""" default_inverse_retraction_method(M::PowerManifold) Use the default inverse retraction method of the internal `M.manifold` also in defaults of functions defined for the power manifold, meaning that this is used elementwise. """ function default_inverse_retraction_method(M::PowerManifold) return default_inverse_retraction_method(M.manifold) end function default_inverse_retraction_method(M::PowerManifold, t::Type) return default_inverse_retraction_method(M.manifold, eltype(t)) end @doc raw""" default_vector_transport_method(M::PowerManifold) Use the default vector transport method of the internal `M.manifold` also in defaults of functions defined for the power manifold, meaning that this is used elementwise. """ function default_vector_transport_method(M::PowerManifold) return default_vector_transport_method(M.manifold) end function default_vector_transport_method(M::PowerManifold, t::Type) return default_vector_transport_method(M.manifold, eltype(t)) end @doc raw""" distance(M::AbstractPowerManifold, p, q) Compute the distance between `q` and `p` on an [`AbstractPowerManifold`](@ref), i.e. from the element wise distances the Forbenius norm is computed. """ function distance(M::AbstractPowerManifold, p, q) sum_squares = zero(number_eltype(p)) rep_size = representation_size(M.manifold) for i in get_iterator(M) sum_squares += distance(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, q, i))^2 end return sqrt(sum_squares) end @doc raw""" exp(M::AbstractPowerManifold, p, X) Compute the exponential map from `p` in direction `X` on the [`AbstractPowerManifold`](@ref) `M`, which can be computed using the base manifolds exponential map elementwise. """ exp(::AbstractPowerManifold, ::Any...) function exp!(M::AbstractPowerManifold, q, p, X) rep_size = representation_size(M.manifold) for i in get_iterator(M) exp!( M.manifold, _write(M, rep_size, q, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), ) end return q end function exp!(M::PowerManifoldNestedReplacing, q, p, X) rep_size = representation_size(M.manifold) for i in get_iterator(M) q[i...] = exp(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i)) end return q end @doc raw""" fill(p, M::AbstractPowerManifold) Create a point on the [`AbstractPowerManifold`](@ref) `M`, where every entry is set to the point `p`. !!! note while usually the manifold is a first argument in all functions in `ManifoldsBase.jl`, we follow the signature of `fill`, where the power manifold serves are the size information. """ function fill(p, M::AbstractPowerManifold) P = allocate_result(M, rand) # rand finds the right way to allocate our point usually return fill!(P, p, M) end @doc raw""" fill!(P, p, M::AbstractPowerManifold) Fill a point `P` on the [`AbstractPowerManifold`](@ref) `M`, setting every entry to `p`. !!! note while usually the manifold is the first argument in all functions in `ManifoldsBase.jl`, we follow the signature of `fill!`, where the power manifold serves are the size information. """ function fill!(P, p, M::PowerManifoldNestedReplacing) for i in get_iterator(M) P[M, i] = p end return P end function fill!(P, p, M::AbstractPowerManifold) rep_size = representation_size(M.manifold) for i in get_iterator(M) copyto!(M.manifold, _write(M, rep_size, P, i), p) end return P end function get_basis(M::AbstractPowerManifold, p, B::AbstractBasis) rep_size = representation_size(M.manifold) vs = [get_basis(M.manifold, _read(M, rep_size, p, i), B) for i in get_iterator(M)] return CachedBasis(B, PowerBasisData(vs)) end function get_basis(M::AbstractPowerManifold, p, B::DiagonalizingOrthonormalBasis) rep_size = representation_size(M.manifold) vs = [ get_basis( M.manifold, _read(M, rep_size, p, i), DiagonalizingOrthonormalBasis(_read(M, rep_size, B.frame_direction, i)), ) for i in get_iterator(M) ] return CachedBasis(B, PowerBasisData(vs)) end """ get_component(M::AbstractPowerManifold, p, idx...) Get the component of a point `p` on an [`AbstractPowerManifold`](@ref) `M` at index `idx`. """ function get_component(M::AbstractPowerManifold, p, idx...) rep_size = representation_size(M.manifold) return _read(M, rep_size, p, idx) end function get_coordinates(M::AbstractPowerManifold, p, X, B::AbstractBasis) rep_size = representation_size(M.manifold) vs = [ get_coordinates(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), B) for i in get_iterator(M) ] return reduce(vcat, reshape(vs, length(vs))) end function get_coordinates( M::AbstractPowerManifold, p, X, B::CachedBasis{𝔽,<:AbstractBasis,<:PowerBasisData}, ) where {𝔽} rep_size = representation_size(M.manifold) vs = [ get_coordinates( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _access_nested(M, B.data.bases, i), ) for i in get_iterator(M) ] return reduce(vcat, reshape(vs, length(vs))) end function get_coordinates!(M::AbstractPowerManifold, c, p, X, B::AbstractBasis) rep_size = representation_size(M.manifold) dim = manifold_dimension(M.manifold) v_iter = 1 for i in get_iterator(M) # TODO: this view is really suboptimal when `dim` can be statically determined get_coordinates!( M.manifold, view(c, v_iter:(v_iter + dim - 1)), _read(M, rep_size, p, i), _read(M, rep_size, X, i), B, ) v_iter += dim end return c end function get_coordinates!( M::AbstractPowerManifold, c, p, X, B::CachedBasis{𝔽,<:AbstractBasis,<:PowerBasisData}, ) where {𝔽} rep_size = representation_size(M.manifold) dim = manifold_dimension(M.manifold) v_iter = 1 for i in get_iterator(M) # TODO: this view is really suboptimal when `dim` can be statically determined get_coordinates!( M.manifold, view(c, v_iter:(v_iter + dim - 1)), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _access_nested(M, B.data.bases, i), ) v_iter += dim end return c end function get_iterator( ::PowerManifold{𝔽,<:AbstractManifold{𝔽},TypeParameter{Tuple{N}}}, ) where {𝔽,N} return Base.OneTo(N) end function get_iterator(M::PowerManifold{𝔽,<:AbstractManifold{𝔽},Tuple{Int}}) where {𝔽} return Base.OneTo(M.size[1]) end @generated function get_iterator( ::PowerManifold{𝔽,<:AbstractManifold{𝔽},TypeParameter{SizeTuple}}, ) where {𝔽,SizeTuple} size_tuple = size_to_tuple(SizeTuple) return Base.product(map(Base.OneTo, size_tuple)...) end function get_iterator(M::PowerManifold{𝔽,<:AbstractManifold{𝔽},NTuple{N,Int}}) where {𝔽,N} size_tuple = M.size return Base.product(map(Base.OneTo, size_tuple)...) end function get_vector( M::AbstractPowerManifold, p, c, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:PowerBasisData}, ) where {𝔽} Y = allocate_result(M, get_vector, p, c) return get_vector!(M, Y, p, c, B) end function get_vector!( M::AbstractPowerManifold, Y, p, c, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:PowerBasisData}, ) where {𝔽} dim = manifold_dimension(M.manifold) rep_size = representation_size(M.manifold) v_iter = 1 for i in get_iterator(M) get_vector!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), c[v_iter:(v_iter + dim - 1)], _access_nested(M, B.data.bases, i), ) v_iter += dim end return Y end function get_vector!( M::PowerManifoldNestedReplacing, Y, p, c, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:PowerBasisData}, ) where {𝔽} dim = manifold_dimension(M.manifold) rep_size = representation_size(M.manifold) v_iter = 1 for i in get_iterator(M) Y[i...] = get_vector( M.manifold, _read(M, rep_size, p, i), c[v_iter:(v_iter + dim - 1)], _access_nested(M, B.data.bases, i), ) v_iter += dim end return Y end function get_vector(M::AbstractPowerManifold, p, c, B::AbstractBasis) Y = allocate_result(M, get_vector, p, c) return get_vector!(M, Y, p, c, B) end function get_vector!(M::AbstractPowerManifold, Y, p, c, B::AbstractBasis) dim = manifold_dimension(M.manifold) rep_size = representation_size(M.manifold) v_iter = 1 for i in get_iterator(M) get_vector!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), c[v_iter:(v_iter + dim - 1)], B, ) v_iter += dim end return Y end function get_vector!(M::PowerManifoldNestedReplacing, Y, p, c, B::AbstractBasis) dim = manifold_dimension(M.manifold) rep_size = representation_size(M.manifold) v_iter = 1 for i in get_iterator(M) Y[i...] = get_vector( M.manifold, _read(M, rep_size, p, i), c[v_iter:(v_iter + dim - 1)], B, ) v_iter += dim end return Y end function _get_vectors( M::PowerManifoldNested, p, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:PowerBasisData}, ) where {𝔽} zero_tv = zero_vector(M, p) rep_size = representation_size(M.manifold) vs = typeof(zero_tv)[] for i in get_iterator(M) b_i = _access_nested(M, B.data.bases, i) p_i = _read(M, rep_size, p, i) for v in get_vectors(M.manifold, p_i, b_i) #a bit safer than just b_i.data new_v = copy(M, p, zero_tv) copyto!(M.manifold, _write(M, rep_size, new_v, i), p_i, v) push!(vs, new_v) end end return vs end function _get_vectors( M::PowerManifoldNestedReplacing, p, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:PowerBasisData}, ) where {𝔽} zero_tv = zero_vector(M, p) vs = typeof(zero_tv)[] for i in get_iterator(M) b_i = _access_nested(M, B.data.bases, i) for v in b_i.data new_v = copy(M, p, zero_tv) new_v[i...] = v push!(vs, new_v) end end return vs end """ getindex(p, M::AbstractPowerManifold, i::Union{Integer,Colon,AbstractVector}...) p[M::AbstractPowerManifold, i...] Access the element(s) at index `[i...]` of a point `p` on an [`AbstractPowerManifold`](@ref) `M` by linear or multidimensional indexing. See also [Array Indexing](https://docs.julialang.org/en/v1/manual/arrays/#man-array-indexing-1) in Julia. """ Base.@propagate_inbounds function Base.getindex( p::AbstractArray, M::AbstractPowerManifold, I::Union{Integer,Colon,AbstractVector}..., ) return get_component(M, p, I...) end """ getindex(M::TangentSpace{𝔽, AbstractPowerManifold}, i...) TpM[i...] Access the `i`th manifold component from an [`AbstractPowerManifold`](@ref)s' tangent space `TpM`. """ function Base.getindex( TpM::TangentSpace{𝔽,<:AbstractPowerManifold}, I::Union{Integer,Colon,AbstractVector}..., ) where {𝔽} M = base_manifold(TpM) p = base_point(TpM) return TangentSpace(M.manifold, p[M, I...]) end @doc raw""" injectivity_radius(M::AbstractPowerManifold[, p]) the injectivity radius on an [`AbstractPowerManifold`](@ref) is for the global case equal to the one of its base manifold. For a given point `p` it's equal to the minimum of all radii in the array entries. """ function injectivity_radius(M::AbstractPowerManifold, p) radius = 0.0 initialized = false rep_size = representation_size(M.manifold) for i in get_iterator(M) cur_rad = injectivity_radius(M.manifold, _read(M, rep_size, p, i)) if initialized radius = min(cur_rad, radius) else radius = cur_rad initialized = true end end return radius end injectivity_radius(M::AbstractPowerManifold) = injectivity_radius(M.manifold) function injectivity_radius(M::AbstractPowerManifold, ::AbstractRetractionMethod) return injectivity_radius(M) end @doc raw""" inner(M::AbstractPowerManifold, p, X, Y) Compute the inner product of `X` and `Y` from the tangent space at `p` on an [`AbstractPowerManifold`](@ref) `M`, i.e. for each arrays entry the tangent vector entries from `X` and `Y` are in the tangent space of the corresponding element from `p`. The inner product is then the sum of the elementwise inner products. """ function inner(M::AbstractPowerManifold, p, X, Y) result = zero(number_eltype(X)) rep_size = representation_size(M.manifold) for i in get_iterator(M) result += inner( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, Y, i), ) end return result end """ is_flat(M::AbstractPowerManifold) Return true if [`AbstractPowerManifold`](@ref) is flat. It is flat if and only if the wrapped manifold is flat. """ is_flat(M::AbstractPowerManifold) = is_flat(M.manifold) function _isapprox(M::AbstractPowerManifold, p, q; kwargs...) result = true rep_size = representation_size(M.manifold) for i in get_iterator(M) result &= isapprox( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, q, i); kwargs..., ) end return result end function _isapprox(M::AbstractPowerManifold, p, X, Y; kwargs...) result = true rep_size = representation_size(M.manifold) for i in get_iterator(M) result &= isapprox( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, Y, i); kwargs..., ) end return result end @doc raw""" inverse_retract(M::AbstractPowerManifold, p, q, m::AbstractInverseRetractionMethod) Compute the inverse retraction from `p` with respect to `q` on an [`AbstractPowerManifold`](@ref) `M` using an [`AbstractInverseRetractionMethod`](@ref). Then this method is performed elementwise, so the inverse retraction method has to be one that is available on the base [`AbstractManifold`](@ref). """ inverse_retract(::AbstractPowerManifold, ::Any...) function inverse_retract( M::AbstractPowerManifold, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) X = allocate_result(M, inverse_retract, p, q) return inverse_retract!(M, X, p, q, m) end function inverse_retract!( M::AbstractPowerManifold, X, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) inverse_retract!( M.manifold, _write(M, rep_size, X, i), _read(M, rep_size, p, i), _read(M, rep_size, q, i), m, ) end return X end function inverse_retract!( M::PowerManifoldNestedReplacing, X, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) X[i...] = inverse_retract( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, q, i), m, ) end return X end @doc raw""" log(M::AbstractPowerManifold, p, q) Compute the logarithmic map from `p` to `q` on the [`AbstractPowerManifold`](@ref) `M`, which can be computed using the base manifolds logarithmic map elementwise. """ log(::AbstractPowerManifold, ::Any...) function log!(M::AbstractPowerManifold, X, p, q) rep_size = representation_size(M.manifold) for i in get_iterator(M) log!( M.manifold, _write(M, rep_size, X, i), _read(M, rep_size, p, i), _read(M, rep_size, q, i), ) end return X end function log!(M::PowerManifoldNestedReplacing, X, p, q) rep_size = representation_size(M.manifold) for i in get_iterator(M) X[i...] = log(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, q, i)) end return X end @doc raw""" manifold_dimension(M::PowerManifold) Returns the manifold-dimension of an [`PowerManifold`](@ref) `M` ``=\mathcal N = (\mathcal M)^{n_1,…,n_d}``, i.e. with ``n=(n_1,…,n_d)`` the array size of the power manifold and ``d_{\mathcal M}`` the dimension of the base manifold ``\mathcal M``, the manifold is of dimension ````math \dim(\mathcal N) = \dim(\mathcal M)\prod_{i=1}^d n_i = n_1n_2⋅…⋅ n_d \dim(\mathcal M). ```` """ function manifold_dimension(M::PowerManifold) size = get_parameter(M.size) return manifold_dimension(M.manifold) * prod(size) end function mid_point!(M::AbstractPowerManifold, q, p1, p2) rep_size = representation_size(M.manifold) for i in get_iterator(M) mid_point!( M.manifold, _write(M, rep_size, q, i), _read(M, rep_size, p1, i), _read(M, rep_size, p2, i), ) end return q end function mid_point!(M::PowerManifoldNestedReplacing, q, p1, p2) rep_size = representation_size(M.manifold) for i in get_iterator(M) q[i...] = mid_point(M.manifold, _read(M, rep_size, p1, i), _read(M, rep_size, p2, i)) end return q end @doc raw""" norm(M::AbstractPowerManifold, p, X) Compute the norm of `X` from the tangent space of `p` on an [`AbstractPowerManifold`](@ref) `M`, i.e. from the element wise norms the Frobenius norm is computed. """ function LinearAlgebra.norm(M::AbstractPowerManifold, p, X) sum_squares = zero(number_eltype(X)) rep_size = representation_size(M.manifold) for i in get_iterator(M) sum_squares += norm(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i))^2 end return sqrt(sum_squares) end function parallel_transport_direction!(M::AbstractPowerManifold, Y, p, X, d) rep_size = representation_size(M.manifold) for i in get_iterator(M) parallel_transport_direction!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, d, i), ) end return Y end function parallel_transport_direction(M::AbstractPowerManifold, p, X, d) Y = allocate_result(M, vector_transport_direction, p, X, d) return parallel_transport_direction!(M, Y, p, X, d) end function parallel_transport_direction!(M::PowerManifoldNestedReplacing, Y, p, X, d) rep_size = representation_size(M.manifold) for i in get_iterator(M) Y[i...] = parallel_transport_direction( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, d, i), ) end return Y end function parallel_transport_direction(M::PowerManifoldNestedReplacing, p, X, d) Y = allocate_result(M, parallel_transport_direction, p, X, d) rep_size = representation_size(M.manifold) for i in get_iterator(M) Y[i...] = parallel_transport_direction( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, d, i), ) end return Y end function parallel_transport_to(M::AbstractPowerManifold, p, X, q) Y = allocate_result(M, vector_transport_to, p, X) return parallel_transport_to!(M, Y, p, X, q) end function parallel_transport_to!(M::AbstractPowerManifold, Y, p, X, q) rep_size = representation_size(M.manifold) for i in get_iterator(M) vector_transport_to!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, q, i), ) end return Y end function parallel_transport_to!(M::PowerManifoldNestedReplacing, Y, p, X, q) rep_size = representation_size(M.manifold) for i in get_iterator(M) Y[i...] = parallel_transport_to( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, q, i), ) end return Y end @doc raw""" power_dimensions(M::PowerManifold) return the power of `M`, """ function power_dimensions(M::PowerManifold) return get_parameter(M.size) end @doc raw""" project(M::AbstractPowerManifold, p) Project the point `p` from the embedding onto the [`AbstractPowerManifold`](@ref) `M` by projecting all components. """ project(::AbstractPowerManifold, ::Any) function project!(M::AbstractPowerManifold, q, p) rep_size = representation_size(M.manifold) for i in get_iterator(M) project!(M.manifold, _write(M, rep_size, q, i), _read(M, rep_size, p, i)) end return q end function project!(M::PowerManifoldNestedReplacing, q, p) rep_size = representation_size(M.manifold) for i in get_iterator(M) q[i...] = project(M.manifold, _read(M, rep_size, p, i)) end return q end @doc raw""" project(M::AbstractPowerManifold, p, X) Project the point `X` onto the tangent space at `p` on the [`AbstractPowerManifold`](@ref) `M` by projecting all components. """ project(::AbstractPowerManifold, ::Any, ::Any) function project!(M::AbstractPowerManifold, Z, q, Y) rep_size = representation_size(M.manifold) for i in get_iterator(M) project!( M.manifold, _write(M, rep_size, Z, i), _read(M, rep_size, q, i), _read(M, rep_size, Y, i), ) end return Z end function project!(M::PowerManifoldNestedReplacing, Z, q, Y) rep_size = representation_size(M.manifold) for i in get_iterator(M) q[i...] = project(M.manifold, _read(M, rep_size, q, i), _read(M, rep_size, Y, i)) end return Z end function Random.rand!(M::AbstractPowerManifold, pX; vector_at = nothing, kwargs...) rep_size = representation_size(M.manifold) if vector_at === nothing for i in get_iterator(M) rand!(M.manifold, _write(M, rep_size, pX, i); kwargs...) end else for i in get_iterator(M) rand!( M.manifold, _write(M, rep_size, pX, i); vector_at = _read(M, rep_size, vector_at, i), kwargs..., ) end end return pX end function Random.rand!( rng::AbstractRNG, M::AbstractPowerManifold, pX; vector_at = nothing, kwargs..., ) rep_size = representation_size(M.manifold) if vector_at === nothing for i in get_iterator(M) rand!(rng, M.manifold, _write(M, rep_size, pX, i); kwargs...) end else for i in get_iterator(M) rand!( rng, M.manifold, _write(M, rep_size, pX, i); vector_at = _read(M, rep_size, vector_at, i), kwargs..., ) end end return pX end function Random.rand!(M::PowerManifoldNestedReplacing, pX; vector_at = nothing, kwargs...) if vector_at === nothing for i in get_iterator(M) pX[i...] = rand(M.manifold; kwargs...) end else for i in get_iterator(M) pX[i...] = rand(M.manifold; vector_at = vector_at[i...], kwargs...) end end return pX end function Random.rand!( rng::AbstractRNG, M::PowerManifoldNestedReplacing, pX; vector_at = nothing, kwargs..., ) if vector_at === nothing for i in get_iterator(M) pX[i...] = rand(rng, M.manifold; kwargs...) end else for i in get_iterator(M) pX[i...] = rand(rng, M.manifold; vector_at = vector_at[i...], kwargs...) end end return pX end Base.@propagate_inbounds @inline function _read( M::AbstractPowerManifold, rep_size::Union{Tuple,Nothing}, x::AbstractArray, i::Int, ) return _read(M, rep_size, x, (i,)) end Base.@propagate_inbounds @inline function _read( ::Union{PowerManifoldNested,PowerManifoldNestedReplacing}, rep_size::Union{Tuple,Nothing}, x::AbstractArray, i::Tuple, ) return x[i...] end @generated function rep_size_to_colons(rep_size::Tuple) N = length(rep_size.parameters) return ntuple(i -> Colon(), N) end @doc raw""" retract(M::AbstractPowerManifold, p, X, method::AbstractRetractionMethod) Compute the retraction from `p` with tangent vector `X` on an [`AbstractPowerManifold`](@ref) `M` using a [`AbstractRetractionMethod`](@ref). Then this method is performed elementwise, so the retraction method has to be one that is available on the base [`AbstractManifold`](@ref). """ retract(::AbstractPowerManifold, ::Any...) function retract( M::AbstractPowerManifold, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) q = allocate_result(M, retract, p, X) return retract!(M, q, p, X, m) end function retract!( M::AbstractPowerManifold, q, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) retract!( M.manifold, _write(M, rep_size, q, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), m, ) end return q end function retract!( M::PowerManifoldNestedReplacing, q, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) q[i...] = retract(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), m) end return q end function retract!( M::AbstractPowerManifold, q, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) retract!( M.manifold, _write(M, rep_size, q, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), t, m, ) end return q end function retract!( M::PowerManifoldNestedReplacing, q, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) q[i...] = retract(M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), t, m) end return q end @doc raw""" riemann_tensor(M::AbstractPowerManifold, p, X, Y, Z) Compute the Riemann tensor at point from `p` with tangent vectors `X`, `Y` and `Z` on the [`AbstractPowerManifold`](@ref) `M`. """ riemann_tensor(M::AbstractPowerManifold, p, X, Y, Z) function riemann_tensor!(M::AbstractPowerManifold, Xresult, p, X, Y, Z) rep_size = representation_size(M.manifold) for i in get_iterator(M) riemann_tensor!( M.manifold, _write(M, rep_size, Xresult, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, Y, i), _read(M, rep_size, Z, i), ) end return Xresult end function riemann_tensor!(M::PowerManifoldNestedReplacing, Xresult, p, X, Y, Z) rep_size = representation_size(M.manifold) for i in get_iterator(M) Xresult[i...] = riemann_tensor( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, Y, i), _read(M, rep_size, Z, i), ) end return Xresult end @doc raw""" sectional_curvature(M::AbstractPowerManifold, p, X, Y) Compute the sectional curvature of a power manifold manifold ``\mathcal M`` at a point ``p \in \mathcal M`` on two linearly independent tangent vectors at ``p``. It may be 0 for if projections of `X` and `Y` on subspaces corresponding to component manifolds are not linearly independent. """ function sectional_curvature(M::AbstractPowerManifold, p, X, Y) curvature = zero(number_eltype(X)) rep_size = representation_size(M.manifold) for i in get_iterator(M) p_i = _read(M, rep_size, p, i) X_i = _read(M, rep_size, X, i) Y_i = _read(M, rep_size, Y, i) if are_linearly_independent(M.manifold, p_i, X_i, Y_i) curvature += sectional_curvature(M.manifold, p_i, X_i, Y_i) end end return curvature end @doc raw""" sectional_curvature_max(M::AbstractPowerManifold) Upper bound on sectional curvature of [`AbstractPowerManifold`](@ref) `M`. It is the maximum of sectional curvature of the wrapped manifold and 0 in case there are two or more component manifolds, as the sectional curvature corresponding to the plane spanned by vectors `(X_1, 0, ... 0)` and `(0, X_2, 0, ..., 0)` is 0. """ function sectional_curvature_max(M::AbstractPowerManifold) d = prod(power_dimensions(M)) mscm = sectional_curvature_max(M.manifold) if d > 1 return max(mscm, zero(mscm)) else return mscm end end @doc raw""" sectional_curvature_min(M::AbstractPowerManifold) Lower bound on sectional curvature of [`AbstractPowerManifold`](@ref) `M`. It is the minimum of sectional curvature of the wrapped manifold and 0 in case there are two or more component manifolds, as the sectional curvature corresponding to the plane spanned by vectors `(X_1, 0, ... 0)` and `(0, X_2, 0, ..., 0)` is 0. """ function sectional_curvature_min(M::AbstractPowerManifold) d = prod(power_dimensions(M)) mscm = sectional_curvature_max(M.manifold) if d > 1 return min(mscm, zero(mscm)) else return mscm end end """ set_component!(M::AbstractPowerManifold, q, p, idx...) Set the component of a point `q` on an [`AbstractPowerManifold`](@ref) `M` at index `idx` to `p`, which itself is a point on the [`AbstractManifold`](@ref) the power manifold is build on. """ function set_component!(M::AbstractPowerManifold, q, p, idx...) rep_size = representation_size(M.manifold) return copyto!(_write(M, rep_size, q, idx), p) end function set_component!(::PowerManifoldNestedReplacing, q, p, idx...) return q[idx...] = p end """ setindex!(q, p, M::AbstractPowerManifold, i::Union{Integer,Colon,AbstractVector}...) q[M::AbstractPowerManifold, i...] = p Set the element(s) at index `[i...]` of a point `q` on an [`AbstractPowerManifold`](@ref) `M` by linear or multidimensional indexing to `q`. See also [Array Indexing](https://docs.julialang.org/en/v1/manual/arrays/#man-array-indexing-1) in Julia. """ Base.@propagate_inbounds function Base.setindex!( q::AbstractArray, p, M::AbstractPowerManifold, I::Union{Integer,Colon,AbstractVector}..., ) return set_component!(M, q, p, I...) end function Base.show( io::IO, M::PowerManifold{𝔽,TM,TSize,TPR}, ) where {𝔽,TM<:AbstractManifold{𝔽},TSize,TPR<:AbstractPowerRepresentation} size = get_parameter(M.size) return print(io, "PowerManifold($(M.manifold), $(TPR()), $(join(size, ", ")))") end function Base.show( io::IO, M::PowerManifold{𝔽,TM,TypeParameter{TSize},TPR}, ) where {𝔽,TM<:AbstractManifold{𝔽},TSize,TPR<:AbstractPowerRepresentation} size = get_parameter(M.size) return print( io, "PowerManifold($(M.manifold), $(TPR()), $(join(size, ", ")); parameter=:type)", ) end function Base.show( io::IO, mime::MIME"text/plain", B::CachedBasis{𝔽,T,D}, ) where {T<:AbstractBasis,D<:PowerBasisData,𝔽} println(io, "$(T()) for a power manifold") for i in Base.product(map(Base.OneTo, size(B.data.bases))...) println(io, "Basis for component $i:") show(io, mime, _access_nested(B.data.bases, i)) println(io) end return nothing end function vector_transport_direction!( M::AbstractPowerManifold, Y, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) vector_transport_direction!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, d, i), m, ) end return Y end function vector_transport_direction( M::AbstractPowerManifold, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) Y = allocate_result(M, vector_transport_direction, p, X, d) return vector_transport_direction!(M, Y, p, X, d, m) end function vector_transport_direction!( M::PowerManifoldNestedReplacing, Y, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) Y[i...] = vector_transport_direction( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, d, i), m, ) end return Y end function vector_transport_direction( M::PowerManifoldNestedReplacing, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) Y = allocate_result(M, vector_transport_direction, p, X, d) rep_size = representation_size(M.manifold) for i in get_iterator(M) Y[i...] = vector_transport_direction( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, d, i), m, ) end return Y end @doc raw""" vector_transport_to(M::AbstractPowerManifold, p, X, q, method::AbstractVectorTransportMethod) Compute the vector transport the tangent vector `X`at `p` to `q` on the [`PowerManifold`](@ref) `M` using an [`AbstractVectorTransportMethod`](@ref) `m`. This method is performed elementwise, i.e. the method `m` has to be implemented on the base manifold. """ vector_transport_to( ::AbstractPowerManifold, ::Any, ::Any, ::Any, ::AbstractVectorTransportMethod, ) function vector_transport_to( M::AbstractPowerManifold, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) Y = allocate_result(M, vector_transport_to, p, X) return vector_transport_to!(M, Y, p, X, q, m) end function vector_transport_to!( M::AbstractPowerManifold, Y, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) vector_transport_to!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, q, i), m, ) end return Y end function vector_transport_to!( M::PowerManifoldNestedReplacing, Y, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) rep_size = representation_size(M.manifold) for i in get_iterator(M) Y[i...] = vector_transport_to( M.manifold, _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, q, i), m, ) end return Y end """ view(p, M::PowerManifoldNested, i::Union{Integer,Colon,AbstractVector}...) Get the view of the element(s) at index `[i...]` of a point `p` on an [`AbstractPowerManifold`](@ref) `M` by linear or multidimensional indexing. """ function Base.view( p::AbstractArray, M::PowerManifoldNested, I::Union{Integer,Colon,AbstractVector}..., ) rep_size = representation_size(M.manifold) return view(p[I...], rep_size_to_colons(rep_size)...) end @doc raw""" Y = Weingarten(M::AbstractPowerManifold, p, X, V) Weingarten!(M::AbstractPowerManifold, Y, p, X, V) Since the metric decouples, also the computation of the Weingarten map ``\mathcal W_p`` can be computed elementwise on the single elements of the [`PowerManifold`](@ref) `M`. """ Weingarten(::AbstractPowerManifold, p, X, V) function Weingarten!(M::AbstractPowerManifold, Y, p, X, V) rep_size = representation_size(M.manifold) for i in get_iterator(M) Weingarten!( M.manifold, _write(M, rep_size, Y, i), _read(M, rep_size, p, i), _read(M, rep_size, X, i), _read(M, rep_size, V, i), ) end return Y end @inline function _write( M::AbstractPowerManifold, rep_size::Union{Tuple,Nothing}, x::AbstractArray, i::Int, ) return _write(M, rep_size, x, (i,)) end @inline function _is_nested_write_getindex(::PowerManifoldNested, x) return !isbitstype(eltype(x)) end @inline function _write( M::PowerManifoldNested, ::Union{Tuple,Nothing}, x::AbstractArray, i::Tuple, ) if _is_nested_write_getindex(M, x) return x[i...] else return view(x, i...) end end function zero_vector!(M::AbstractPowerManifold, X, p) rep_size = representation_size(M.manifold) for i in get_iterator(M) zero_vector!(M.manifold, _write(M, rep_size, X, i), _read(M, rep_size, p, i)) end return X end function zero_vector!(M::PowerManifoldNestedReplacing, X, p) rep_size = representation_size(M.manifold) for i in get_iterator(M) X[i...] = zero_vector(M.manifold, _read(M, rep_size, p, i)) end return X end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
39604
@doc raw""" ProductManifold{𝔽,TM<:Tuple} <: AbstractManifold{𝔽} Product manifold $M_1 × M_2 × … × M_n$ with product geometry. # Constructor ProductManifold(M_1, M_2, ..., M_n) generates the product manifold $M_1 × M_2 × … × M_n$. Alternatively, the same manifold can be contructed using the `×` operator: `M_1 × M_2 × M_3`. """ struct ProductManifold{𝔽,TM<:Tuple} <: AbstractDecoratorManifold{𝔽} manifolds::TM end function ProductManifold(manifolds::AbstractManifold...) 𝔽 = ManifoldsBase._unify_number_systems((number_system.(manifolds))...) return ProductManifold{𝔽,typeof(manifolds)}(manifolds) end """ getindex(M::ProductManifold, i) M[i] access the `i`th manifold component from the [`ProductManifold`](@ref) `M`. """ @inline Base.getindex(M::ProductManifold, i::Integer) = M.manifolds[i] """ getindex(M::TangentSpace{𝔽,<:ProductManifold}, i::Integer) TpM[i] Access the `i`th manifold component from a [`ProductManifold`](@ref)s' tangent space `TpM`. """ function Base.getindex(TpM::TangentSpace{𝔽,<:ProductManifold}, i::Integer) where {𝔽} M = base_manifold(TpM) return TangentSpace(M[i], base_point(TpM)[M, i]) end ProductManifold() = throw(MethodError("No method matching ProductManifold().")) const PRODUCT_BASIS_LIST = [ VeeOrthogonalBasis, DefaultBasis, DefaultBasis{<:Any,TangentSpaceType}, DefaultOrthogonalBasis, DefaultOrthogonalBasis{<:Any,TangentSpaceType}, DefaultOrthonormalBasis, DefaultOrthonormalBasis{<:Any,TangentSpaceType}, ProjectedOrthonormalBasis{:gram_schmidt,ℝ}, ProjectedOrthonormalBasis{:svd,ℝ}, ] """ ProductBasisData A typed tuple to store tuples of data of stored/precomputed bases for a [`ProductManifold`](@ref). """ struct ProductBasisData{T<:Tuple} parts::T end const PRODUCT_BASIS_LIST_CACHED = [CachedBasis] """ ProductMetric <: AbstractMetric A type to represent the product of metrics for a [`ProductManifold`](@ref). """ struct ProductMetric <: AbstractMetric end """ ProductRetraction(retractions::AbstractRetractionMethod...) Product retraction of `retractions`. Works on [`ProductManifold`](@ref). """ struct ProductRetraction{TR<:Tuple} <: AbstractRetractionMethod retractions::TR end function ProductRetraction(retractions::AbstractRetractionMethod...) return ProductRetraction{typeof(retractions)}(retractions) end """ InverseProductRetraction(retractions::AbstractInverseRetractionMethod...) Product inverse retraction of `inverse retractions`. Works on [`ProductManifold`](@ref). """ struct InverseProductRetraction{TR<:Tuple} <: AbstractInverseRetractionMethod inverse_retractions::TR end function InverseProductRetraction(inverse_retractions::AbstractInverseRetractionMethod...) return InverseProductRetraction{typeof(inverse_retractions)}(inverse_retractions) end function allocation_promotion_function(M::ProductManifold, f, args::Tuple) apfs = map(MM -> allocation_promotion_function(MM, f, args), M.manifolds) return reduce(combine_allocation_promotion_functions, apfs) end """ ProductVectorTransport(methods::AbstractVectorTransportMethod...) Product vector transport type of `methods`. Works on [`ProductManifold`](@ref). """ struct ProductVectorTransport{TR<:Tuple} <: AbstractVectorTransportMethod methods::TR end function ProductVectorTransport(methods::AbstractVectorTransportMethod...) return ProductVectorTransport{typeof(methods)}(methods) end """ change_representer(M::ProductManifold, ::AbstractMetric, p, X) Since the metric on a product manifold decouples, the change of a representer can be done elementwise """ change_representer(::ProductManifold, ::AbstractMetric, ::Any, ::Any) function change_representer!(M::ProductManifold, Y, G::AbstractMetric, p, X) map( (m, y, P, x) -> change_representer!(m, y, G, P, x), M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), ) return Y end """ change_metric(M::ProductManifold, ::AbstractMetric, p, X) Since the metric on a product manifold decouples, the change of metric can be done elementwise. """ change_metric(::ProductManifold, ::AbstractMetric, ::Any, ::Any) function change_metric!(M::ProductManifold, Y, G::AbstractMetric, p, X) map( (m, y, P, x) -> change_metric!(m, y, G, P, x), M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), ) return Y end """ check_point(M::ProductManifold, p; kwargs...) Check whether `p` is a valid point on the [`ProductManifold`](@ref) `M`. If `p` is not a point on `M` a [`CompositeManifoldError`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/functions.html#ManifoldsBase.CompositeManifoldError).consisting of all error messages of the components, for which the tests fail is returned. The tolerance for the last test can be set using the `kwargs...`. """ function check_point(M::ProductManifold, p; kwargs...) try submanifold_components(M, p) catch e return DomainError("Point $p does not support submanifold_components") end ts = ziptuples(Tuple(1:length(M.manifolds)), M.manifolds, submanifold_components(M, p)) e = [(t[1], check_point(t[2:end]...; kwargs...)) for t in ts] errors = filter((x) -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end """ check_size(M::ProductManifold, p; kwargs...) Check whether `p` is of valid size on the [`ProductManifold`](@ref) `M`. If `p` has components of wrong size a [`CompositeManifoldError`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/functions.html#ManifoldsBase.CompositeManifoldError).consisting of all error messages of the components, for which the tests fail is returned. The tolerance for the last test can be set using the `kwargs...`. """ function check_size(M::ProductManifold, p) try submanifold_components(M, p) catch e return DomainError("Point $p does not support submanifold_components") end ts = ziptuples(Tuple(1:length(M.manifolds)), M.manifolds, submanifold_components(M, p)) e = [(t[1], check_size(t[2:end]...)) for t in ts] errors = filter((x) -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end function check_size(M::ProductManifold, p, X) try submanifold_components(M, X) catch e return DomainError("Vector $X does not support submanifold_components") end ts = ziptuples( Tuple(1:length(M.manifolds)), M.manifolds, submanifold_components(M, p), submanifold_components(M, X), ) e = [(t[1], check_size(t[2:end]...)) for t in ts] errors = filter(x -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end """ check_vector(M::ProductManifold, p, X; kwargs... ) Check whether `X` is a tangent vector to `p` on the [`ProductManifold`](@ref) `M`, i.e. all projections to base manifolds must be respective tangent vectors. If `X` is not a tangent vector to `p` on `M` a [`CompositeManifoldError`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/functions.html#ManifoldsBase.CompositeManifoldError).consisting of all error messages of the components, for which the tests fail is returned. The tolerance for the last test can be set using the `kwargs...`. """ function check_vector(M::ProductManifold, p, X; kwargs...) try submanifold_components(M, X) catch e return DomainError("Vector $X does not support submanifold_components") end ts = ziptuples( Tuple(1:length(M.manifolds)), M.manifolds, submanifold_components(M, p), submanifold_components(M, X), ) e = [(t[1], check_vector(t[2:end]...; kwargs...)) for t in ts] errors = filter(x -> !(x[2] === nothing), e) cerr = [ComponentManifoldError(er...) for er in errors] (length(errors) > 1) && return CompositeManifoldError(cerr) (length(errors) == 1) && return cerr[1] return nothing end @doc raw""" ×(M, N) cross(M, N) cross(M1, M2, M3,...) Return the [`ProductManifold`](@ref) For two `AbstractManifold`s `M` and `N`, where for the case that one of them is a [`ProductManifold`](@ref) itself, the other is either prepended (if `N` is a product) or appenden (if `M`) is. If both are product manifold, they are combined into one product manifold, keeping the order. For the case that more than one is a product manifold of these is build with the same approach as above """ cross(::AbstractManifold...) LinearAlgebra.cross(M::AbstractManifold, N::AbstractManifold) = ProductManifold(M, N) function LinearAlgebra.cross(M::ProductManifold, N::AbstractManifold) return ProductManifold(M.manifolds..., N) end function LinearAlgebra.cross(M::AbstractManifold, N::ProductManifold) return ProductManifold(M, N.manifolds...) end function LinearAlgebra.cross(M::ProductManifold, N::ProductManifold) return ProductManifold(M.manifolds..., N.manifolds...) end @doc raw""" ×(m, n) cross(m, n) cross(m1, m2, m3,...) Return the [`ProductRetraction`](@ref) For two or more [`AbstractRetractionMethod`](@ref)s, where for the case that one of them is a [`ProductRetraction`](@ref) itself, the other is either prepended (if `m` is a product) or appenden (if `n`) is. If both [`ProductRetraction`](@ref)s, they are combined into one keeping the order. """ cross(::AbstractRetractionMethod...) function LinearAlgebra.cross(m::AbstractRetractionMethod, n::AbstractRetractionMethod) return ProductRetraction(m, n) end function LinearAlgebra.cross(m::ProductRetraction, n::AbstractRetractionMethod) return ProductRetraction(m.retractions..., n) end function LinearAlgebra.cross(m::AbstractRetractionMethod, n::ProductRetraction) return ProductRetraction(m, n.retractions...) end function LinearAlgebra.cross(m::ProductRetraction, n::ProductRetraction) return ProductRetraction(m.retractions..., n.retractions...) end @doc raw""" ×(m, n) cross(m, n) cross(m1, m2, m3,...) Return the [`InverseProductRetraction`](@ref) For two or more [`AbstractInverseRetractionMethod`](@ref)s, where for the case that one of them is a [`InverseProductRetraction`](@ref) itself, the other is either prepended (if `r` is a product) or appenden (if `s`) is. If both [`InverseProductRetraction`](@ref)s, they are combined into one keeping the order. """ cross(::AbstractInverseRetractionMethod...) function LinearAlgebra.cross( m::AbstractInverseRetractionMethod, n::AbstractInverseRetractionMethod, ) return InverseProductRetraction(m, n) end function LinearAlgebra.cross( m::InverseProductRetraction, n::AbstractInverseRetractionMethod, ) return InverseProductRetraction(m.inverse_retractions..., n) end function LinearAlgebra.cross( m::AbstractInverseRetractionMethod, n::InverseProductRetraction, ) return InverseProductRetraction(m, n.inverse_retractions...) end function LinearAlgebra.cross(m::InverseProductRetraction, n::InverseProductRetraction) return InverseProductRetraction(m.inverse_retractions..., n.inverse_retractions...) end @doc raw""" ×(m, n) cross(m, n) cross(m1, m2, m3,...) Return the [`ProductVectorTransport`](@ref) For two or more [`AbstractVectorTransportMethod`](@ref)s, where for the case that one of them is a [`ProductVectorTransport`](@ref) itself, the other is either prepended (if `r` is a product) or appenden (if `s`) is. If both [`ProductVectorTransport`](@ref)s, they are combined into one keeping the order. """ cross(::AbstractVectorTransportMethod...) function LinearAlgebra.cross( m::AbstractVectorTransportMethod, n::AbstractVectorTransportMethod, ) return ProductVectorTransport(m, n) end function LinearAlgebra.cross(m::ProductVectorTransport, n::AbstractVectorTransportMethod) return ProductVectorTransport(m.methods..., n) end function LinearAlgebra.cross(m::AbstractVectorTransportMethod, n::ProductVectorTransport) return ProductVectorTransport(m, n.methods...) end function LinearAlgebra.cross(m::ProductVectorTransport, n::ProductVectorTransport) return ProductVectorTransport(m.methods..., n.methods...) end function default_retraction_method(M::ProductManifold) return ProductRetraction(map(default_retraction_method, M.manifolds)...) end function default_inverse_retraction_method(M::ProductManifold) return InverseProductRetraction(map(default_inverse_retraction_method, M.manifolds)...) end function default_vector_transport_method(M::ProductManifold) return ProductVectorTransport(map(default_vector_transport_method, M.manifolds)...) end @doc raw""" distance(M::ProductManifold, p, q) Compute the distance between two points `p` and `q` on the [`ProductManifold`](@ref) `M`, which is the 2-norm of the elementwise distances on the internal manifolds that build `M`. """ function distance(M::ProductManifold, p, q) return sqrt( sum( map( distance, M.manifolds, submanifold_components(M, p), submanifold_components(M, q), ) .^ 2, ), ) end @doc raw""" exp(M::ProductManifold, p, X) compute the exponential map from `p` in the direction of `X` on the [`ProductManifold`](@ref) `M`, which is the elementwise exponential map on the internal manifolds that build `M`. """ exp(::ProductManifold, ::Any...) function exp!(M::ProductManifold, q, p, X) map( exp!, M.manifolds, submanifold_components(M, q), submanifold_components(M, p), submanifold_components(M, X), ) return q end function exp!(M::ProductManifold, q, p, X, t::Number) map( (N, qc, pc, Xc) -> exp!(N, qc, pc, Xc, t), M.manifolds, submanifold_components(M, q), submanifold_components(M, p), submanifold_components(M, X), ) return q end function get_basis(M::ProductManifold, p, B::AbstractBasis) parts = map(t -> get_basis(t..., B), ziptuples(M.manifolds, submanifold_components(p))) return CachedBasis(B, ProductBasisData(parts)) end function get_basis(M::ProductManifold, p, B::CachedBasis) return invoke(get_basis, Tuple{AbstractManifold,Any,CachedBasis}, M, p, B) end function get_basis(M::ProductManifold, p, B::DiagonalizingOrthonormalBasis) vs = map( ziptuples( M.manifolds, submanifold_components(p), submanifold_components(B.frame_direction), ), ) do t return get_basis(t[1], t[2], DiagonalizingOrthonormalBasis(t[3])) end return CachedBasis(B, ProductBasisData(vs)) end """ get_component(M::ProductManifold, p, i) Get the `i`th component of a point `p` on a [`ProductManifold`](@ref) `M`. """ @inline function get_component(M::ProductManifold, p, i) return submanifold_component(M, p, i) end function get_coordinates(M::ProductManifold, p, X, B::AbstractBasis) reps = map( t -> get_coordinates(t..., B), ziptuples(M.manifolds, submanifold_components(M, p), submanifold_components(M, X)), ) return vcat(reps...) end function get_coordinates( M::ProductManifold, p, X, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:ProductBasisData}, ) where {𝔽} reps = map( get_coordinates, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), B.data.parts, ) return vcat(reps...) end function get_coordinates!(M::ProductManifold, Xⁱ, p, X, B::AbstractBasis) dim = manifold_dimension(M) @assert length(Xⁱ) == dim i = one(dim) ts = ziptuples(M.manifolds, submanifold_components(M, p), submanifold_components(M, X)) for t in ts SM = first(t) dim = manifold_dimension(SM) tXⁱ = @inbounds view(Xⁱ, i:(i + dim - 1)) get_coordinates!(SM, tXⁱ, Base.tail(t)..., B) i += dim end return Xⁱ end function get_coordinates!( M::ProductManifold, Xⁱ, p, X, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:ProductBasisData}, ) where {𝔽} dim = manifold_dimension(M) @assert length(Xⁱ) == dim i = one(dim) ts = ziptuples( M.manifolds, submanifold_components(M, p), submanifold_components(M, X), B.data.parts, ) for t in ts SM = first(t) dim = manifold_dimension(SM) tXⁱ = @inbounds view(Xⁱ, i:(i + dim - 1)) get_coordinates!(SM, tXⁱ, Base.tail(t)...) i += dim end return Xⁱ end function _get_dim_ranges(dims::NTuple{N,Any}) where {N} dims_acc = accumulate(+, (1, dims...)) return ntuple(i -> (dims_acc[i]:(dims_acc[i] + dims[i] - 1)), Val(N)) end function get_vector!(M::ProductManifold, X, p, Xⁱ, B::AbstractBasis) dims = map(manifold_dimension, M.manifolds) @assert length(Xⁱ) == sum(dims) dim_ranges = _get_dim_ranges(dims) tXⁱ = map(dr -> (@inbounds view(Xⁱ, dr)), dim_ranges) ts = ziptuples( M.manifolds, submanifold_components(M, X), submanifold_components(M, p), tXⁱ, ) map(ts) do t return get_vector!(t..., B) end return X end function get_vector!( M::ProductManifold, X, p, Xⁱ, B::CachedBasis{𝔽,<:AbstractBasis{𝔽},<:ProductBasisData}, ) where {𝔽} dims = map(manifold_dimension, M.manifolds) @assert length(Xⁱ) == sum(dims) dim_ranges = _get_dim_ranges(dims) tXⁱ = map(dr -> (@inbounds view(Xⁱ, dr)), dim_ranges) ts = ziptuples( M.manifolds, submanifold_components(M, X), submanifold_components(M, p), tXⁱ, B.data.parts, ) map(ts) do t return get_vector!(t...) end return X end @doc raw""" injectivity_radius(M::ProductManifold) injectivity_radius(M::ProductManifold, x) Compute the injectivity radius on the [`ProductManifold`](@ref), which is the minimum of the factor manifolds. """ injectivity_radius(::ProductManifold, ::Any...) function injectivity_radius(M::ProductManifold, p) return min(map(injectivity_radius, M.manifolds, submanifold_components(M, p))...) end function injectivity_radius(M::ProductManifold, p, m::AbstractRetractionMethod) return min( map( (lM, lp) -> injectivity_radius(lM, lp, m), M.manifolds, submanifold_components(M, p), )..., ) end function injectivity_radius(M::ProductManifold, p, m::ProductRetraction) return min( map( (lM, lp, lm) -> injectivity_radius(lM, lp, lm), M.manifolds, submanifold_components(M, p), m.retractions, )..., ) end injectivity_radius(M::ProductManifold) = min(map(injectivity_radius, M.manifolds)...) function injectivity_radius(M::ProductManifold, m::AbstractRetractionMethod) return min(map(manif -> injectivity_radius(manif, m), M.manifolds)...) end function injectivity_radius(M::ProductManifold, m::ProductRetraction) return min(map((lM, lm) -> injectivity_radius(lM, lm), M.manifolds, m.retractions)...) end @doc raw""" inner(M::ProductManifold, p, X, Y) compute the inner product of two tangent vectors `X`, `Y` from the tangent space at `p` on the [`ProductManifold`](@ref) `M`, which is just the sum of the internal manifolds that build `M`. """ function inner(M::ProductManifold, p, X, Y) subproducts = map( inner, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, Y), ) return sum(subproducts) end @doc raw""" inverse_retract(M::ProductManifold, p, q, m::InverseProductRetraction) Compute the inverse retraction from `p` with respect to `q` on the [`ProductManifold`](@ref) `M` using an [`InverseProductRetraction`](@ref), which by default encapsulates a inverse retraction for each manifold of the product. Then this method is performed elementwise, so the encapsulated inverse retraction methods have to be available per factor. """ inverse_retract(::ProductManifold, ::Any, ::Any, ::Any, ::InverseProductRetraction) @doc raw""" inverse_retract(M::ProductManifold, p, q, m::AbstractInverseRetractionMethod) Compute the inverse retraction from `p` with respect to `q` on the [`ProductManifold`](@ref) `M` using an [`AbstractInverseRetractionMethod`](@ref), which is used on each manifold of the product. """ inverse_retract(::ProductManifold, ::Any, ::Any, ::Any, ::AbstractInverseRetractionMethod) function inverse_retract!(M::ProductManifold, Y, p, q, method::InverseProductRetraction) map( (iM, iY, ip, iq, im) -> inverse_retract!(iM, iY, ip, iq, im), M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, q), method.inverse_retractions, ) return Y end function inverse_retract!( M::ProductManifold, Y, p, q, method::IRM, ) where {IRM<:AbstractInverseRetractionMethod} map( (iM, iY, ip, iq) -> inverse_retract!(iM, iY, ip, iq, method), M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, q), ) return Y end function _isapprox(M::ProductManifold, p, q; kwargs...) return all( t -> isapprox(t...; kwargs...), ziptuples(M.manifolds, submanifold_components(M, p), submanifold_components(M, q)), ) end function _isapprox(M::ProductManifold, p, X, Y; kwargs...) return all( t -> isapprox(t...; kwargs...), ziptuples( M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, Y), ), ) end """ is_flat(::ProductManifold) Return true if and only if all component manifolds of [`ProductManifold`](@ref) `M` are flat. """ function is_flat(M::ProductManifold) return all(is_flat, M.manifolds) end @doc raw""" log(M::ProductManifold, p, q) Compute the logarithmic map from `p` to `q` on the [`ProductManifold`](@ref) `M`, which can be computed using the logarithmic maps of the manifolds elementwise. """ log(::ProductManifold, ::Any...) function log!(M::ProductManifold, X, p, q) map( log!, M.manifolds, submanifold_components(M, X), submanifold_components(M, p), submanifold_components(M, q), ) return X end @doc raw""" manifold_dimension(M::ProductManifold) Return the manifold dimension of the [`ProductManifold`](@ref), which is the sum of the manifold dimensions the product is made of. """ manifold_dimension(M::ProductManifold) = mapreduce(manifold_dimension, +, M.manifolds) function mid_point!(M::ProductManifold, q, p1, p2) map( mid_point!, M.manifolds, submanifold_components(M, q), submanifold_components(M, p1), submanifold_components(M, p2), ) return q end @doc raw""" norm(M::ProductManifold, p, X) Compute the norm of `X` from the tangent space of `p` on the [`ProductManifold`](@ref), i.e. from the element wise norms the 2-norm is computed. """ function LinearAlgebra.norm(M::ProductManifold, p, X) norms_squared = ( map( norm, M.manifolds, submanifold_components(M, p), submanifold_components(M, X), ) .^ 2 ) return sqrt(sum(norms_squared)) end """ number_of_components(M::ProductManifold{<:NTuple{N,Any}}) where {N} Calculate the number of manifolds multiplied in the given [`ProductManifold`](@ref) `M`. """ number_of_components(::ProductManifold{𝔽,<:NTuple{N,Any}}) where {𝔽,N} = N function parallel_transport_direction!(M::ProductManifold, Y, p, X, d) map( parallel_transport_direction!, M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, d), ) return Y end function parallel_transport_to!(M::ProductManifold, Y, p, X, q) map( parallel_transport_to!, M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, q), ) return Y end function project!(M::ProductManifold, q, p) map(project!, M.manifolds, submanifold_components(M, q), submanifold_components(M, p)) return q end function project!(M::ProductManifold, Y, p, X) map( project!, M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), ) return Y end function Random.rand!( M::ProductManifold, pX; vector_at = nothing, parts_kwargs = map(_ -> (;), M.manifolds), ) return rand!( Random.default_rng(), M, pX; vector_at = vector_at, parts_kwargs = parts_kwargs, ) end function Random.rand!( rng::AbstractRNG, M::ProductManifold, pX; vector_at = nothing, parts_kwargs = map(_ -> (;), M.manifolds), ) if vector_at === nothing map( (N, q, kwargs) -> rand!(rng, N, q; kwargs...), M.manifolds, submanifold_components(M, pX), parts_kwargs, ) else map( (N, X, p, kwargs) -> rand!(rng, N, X; vector_at = p, kwargs...), M.manifolds, submanifold_components(M, pX), submanifold_components(M, vector_at), parts_kwargs, ) end return pX end @doc raw""" retract(M::ProductManifold, p, X, m::ProductRetraction) Compute the retraction from `p` with tangent vector `X` on the [`ProductManifold`](@ref) `M` using an [`ProductRetraction`](@ref), which by default encapsulates retractions of the base manifolds. Then this method is performed elementwise, so the encapsulated retractions method has to be one that is available on the manifolds. """ retract(::ProductManifold, ::Any, ::Any, ::ProductRetraction) @doc raw""" retract(M::ProductManifold, p, X, m::AbstractRetractionMethod) Compute the retraction from `p` with tangent vector `X` on the [`ProductManifold`](@ref) `M` using the [`AbstractRetractionMethod`](@ref) `m` on every manifold. """ retract(::ProductManifold, ::Any, ::Any, ::AbstractRetractionMethod) function retract!(M::ProductManifold, q, p, X, t::Number, method::ProductRetraction) map( (N, qc, pc, Xc, rm) -> retract!(N, qc, pc, Xc, t, rm), M.manifolds, submanifold_components(M, q), submanifold_components(M, p), submanifold_components(M, X), method.retractions, ) return q end function retract!( M::ProductManifold, q, p, X, t::Number, method::RTM, ) where {RTM<:AbstractRetractionMethod} map( (N, qc, pc, Xc) -> retract!(N, qc, pc, Xc, t, method), M.manifolds, submanifold_components(M, q), submanifold_components(M, p), submanifold_components(M, X), ) return q end function representation_size(::ProductManifold) return nothing end @doc raw""" riemann_tensor(M::ProductManifold, p, X, Y, Z) Compute the Riemann tensor at point from `p` with tangent vectors `X`, `Y` and `Z` on the [`ProductManifold`](@ref) `M`. """ riemann_tensor(M::ProductManifold, p, X, Y, X) function riemann_tensor!(M::ProductManifold, Xresult, p, X, Y, Z) map( riemann_tensor!, M.manifolds, submanifold_components(M, Xresult), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, Y), submanifold_components(M, Z), ) return Xresult end @doc raw""" sectional_curvature(M::ProductManifold, p, X, Y) Compute the sectional curvature of a manifold ``\mathcal M`` at a point ``p \in \mathcal M`` on two linearly independent tangent vectors at ``p``. It may be 0 for a product of non-flat manifolds if projections of `X` and `Y` on subspaces corresponding to component manifolds are not linearly independent. """ function sectional_curvature(M::ProductManifold, p, X, Y) curvature = zero(number_eltype(X)) map( M.manifolds, submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, Y), ) do M_i, p_i, X_i, Y_i if are_linearly_independent(M_i, p_i, X_i, Y_i) curvature += sectional_curvature(M_i, p_i, X_i, Y_i) end end return curvature end @doc raw""" sectional_curvature_max(M::ProductManifold) Upper bound on sectional curvature of [`ProductManifold`](@ref) `M`. It is the maximum of sectional curvatures of component manifolds and 0 in case there are two or more component manifolds, as the sectional curvature corresponding to the plane spanned by vectors `(X_1, 0)` and `(0, X_2)` is 0. """ function sectional_curvature_max(M::ProductManifold) max_sc = mapreduce(sectional_curvature_max, max, M.manifolds) if length(M.manifolds) > 1 return max(max_sc, zero(max_sc)) else return max_sc end end @doc raw""" sectional_curvature_min(M::ProductManifold) Lower bound on sectional curvature of [`ProductManifold`](@ref) `M`. It is the minimum of sectional curvatures of component manifolds and 0 in case there are two or more component manifolds, as the sectional curvature corresponding to the plane spanned by vectors `(X_1, 0)` and `(0, X_2)` is 0. """ function sectional_curvature_min(M::ProductManifold) min_sc = mapreduce(sectional_curvature_min, min, M.manifolds) if length(M.manifolds) > 1 return min(min_sc, zero(min_sc)) else return min_sc end end """ select_from_tuple(t::NTuple{N, Any}, positions::Val{P}) Selects elements of tuple `t` at positions specified by the second argument. For example `select_from_tuple(("a", "b", "c"), Val((3, 1, 1)))` returns `("c", "a", "a")`. """ @generated function select_from_tuple(t::NTuple{N,Any}, positions::Val{P}) where {N,P} for k in P (k < 0 || k > N) && error("positions must be between 1 and $N") end return Expr(:tuple, [Expr(:ref, :t, k) for k in P]...) end """ set_component!(M::ProductManifold, q, p, i) Set the `i`th component of a point `q` on a [`ProductManifold`](@ref) `M` to `p`, where `p` is a point on the [`AbstractManifold`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/types.html#ManifoldsBase.AbstractManifold) this factor of the product manifold consists of. """ function set_component!(M::ProductManifold, q, p, i) return copyto!(submanifold_component(M, q, i), p) end function _show_submanifold(io::IO, M::AbstractManifold; pre = "") sx = sprint(show, "text/plain", M, context = io, sizehint = 0) if occursin('\n', sx) sx = sprint(show, M, context = io, sizehint = 0) end sx = replace(sx, '\n' => "\n$(pre)") print(io, pre, sx) return nothing end function _show_submanifold_range(io::IO, Ms, range; pre = "") for i in range M = Ms[i] print(io, '\n') _show_submanifold(io, M; pre = pre) end return nothing end function _show_product_manifold_no_header(io::IO, M) n = length(M.manifolds) sz = displaysize(io) screen_height, screen_width = sz[1] - 4, sz[2] half_height = div(screen_height, 2) inds = 1:n pre = " " if n > screen_height inds = [1:half_height; (n - div(screen_height - 1, 2) + 1):n] end if n ≤ screen_height _show_submanifold_range(io, M.manifolds, 1:n; pre = pre) else _show_submanifold_range(io, M.manifolds, 1:half_height; pre = pre) print(io, "\n$(pre)⋮") _show_submanifold_range( io, M.manifolds, (n - div(screen_height - 1, 2) + 1):n; pre = pre, ) end return nothing end function Base.show(io::IO, ::MIME"text/plain", M::ProductManifold) n = length(M.manifolds) print(io, "ProductManifold with $(n) submanifold$(n == 1 ? "" : "s"):") return _show_product_manifold_no_header(io, M) end function Base.show(io::IO, M::ProductManifold) return print(io, "ProductManifold(", join(M.manifolds, ", "), ")") end function Base.show(io::IO, m::ProductRetraction) return print(io, "ProductRetraction(", join(m.retractions, ", "), ")") end function Base.show(io::IO, m::InverseProductRetraction) return print(io, "InverseProductRetraction(", join(m.inverse_retractions, ", "), ")") end function Base.show(io::IO, m::ProductVectorTransport) return print(io, "ProductVectorTransport(", join(m.methods, ", "), ")") end function Base.show( io::IO, mime::MIME"text/plain", B::CachedBasis{𝔽,T,D}, ) where {𝔽,T<:AbstractBasis{𝔽},D<:ProductBasisData} println(io, "$(T) for a product manifold") for (i, cb) in enumerate(B.data.parts) println(io, "Basis for component $i:") show(io, mime, cb) println(io) end return nothing end """ submanifold(M::ProductManifold, i::Integer) Extract the `i`th factor of the product manifold `M`. """ submanifold(M::ProductManifold, i::Integer) = M.manifolds[i] """ submanifold(M::ProductManifold, i::Val) submanifold(M::ProductManifold, i::AbstractVector) Extract the factor of the product manifold `M` indicated by indices in `i`. For example, for `i` equal to `Val((1, 3))` the product manifold constructed from the first and the third factor is returned. The version with `AbstractVector` is not type-stable, for better preformance use `Val`. """ function submanifold(M::ProductManifold, i::Val) return ProductManifold(select_from_tuple(M.manifolds, i)...) end submanifold(M::ProductManifold, i::AbstractVector) = submanifold(M, Val(tuple(i...))) function vector_transport_direction!( M::ProductManifold, Y, p, X, d, m::ProductVectorTransport, ) map( vector_transport_direction!, M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, d), m.methods, ) return Y end function vector_transport_direction!( M::ProductManifold, Y, p, X, d, m::VTM, ) where {VTM<:AbstractVectorTransportMethod} map( (iM, iY, ip, iX, id) -> vector_transport_direction!(iM, iY, ip, iX, id, m), M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, d), ) return Y end @doc raw""" vector_transport_to(M::ProductManifold, p, X, q, m::ProductVectorTransport) Compute the vector transport the tangent vector `X` at `p` to `q` on the [`ProductManifold`](@ref) `M` using a [`ProductVectorTransport`](@ref) `m`. """ vector_transport_to(::ProductManifold, ::Any, ::Any, ::Any, ::ProductVectorTransport) @doc raw""" vector_transport_to(M::ProductManifold, p, X, q, m::AbstractVectorTransportMethod) Compute the vector transport the tangent vector `X` at `p` to `q` on the [`ProductManifold`](@ref) `M` using an [`AbstractVectorTransportMethod`](@ref) `m` on each manifold. """ vector_transport_to(::ProductManifold, ::Any, ::Any, ::Any, ::AbstractVectorTransportMethod) function vector_transport_to!(M::ProductManifold, Y, p, X, q, m::ProductVectorTransport) map( vector_transport_to!, M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, q), m.methods, ) return Y end function vector_transport_to!( M::ProductManifold, Y, p, X, q, m::AbstractVectorTransportMethod, ) map( (iM, iY, ip, iX, iq) -> vector_transport_to!(iM, iY, ip, iX, iq, m), M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, q), ), return Y end @doc raw""" Y = Weingarten(M::ProductManifold, p, X, V) Weingarten!(M::ProductManifold, Y, p, X, V) Since the metric decouples, also the computation of the Weingarten map ``\mathcal W_p`` can be computed elementwise on the single elements of the [`ProductManifold`](@ref) `M`. """ Weingarten(::ProductManifold, p, X, V) function Weingarten!(M::ProductManifold, Y, p, X, V) map( Weingarten!, M.manifolds, submanifold_components(M, Y), submanifold_components(M, p), submanifold_components(M, X), submanifold_components(M, V), ) return Y end function zero_vector!(M::ProductManifold, X, p) map( zero_vector!, M.manifolds, submanifold_components(M, X), submanifold_components(M, p), ) return X end @doc raw""" submanifold_component(M::AbstractManifold, p, i::Integer) submanifold_component(M::AbstractManifold, p, ::Val{i}) where {i} submanifold_component(p, i::Integer) submanifold_component(p, ::Val{i}) where {i} Project the product array `p` on `M` to its `i`th component. A new array is returned. """ submanifold_component(::Any...) @inline function submanifold_component(M::AbstractManifold, p, i::Integer) return submanifold_component(M, p, Val(i)) end @inline submanifold_component(M::AbstractManifold, p, i::Val) = submanifold_component(p, i) @inline submanifold_component(p, i::Integer) = submanifold_component(p, Val(i)) @doc raw""" submanifold_components(M::AbstractManifold, p) submanifold_components(p) Get the projected components of `p` on the submanifolds of `M`. The components are returned in a Tuple. """ submanifold_components(::Any...) @inline submanifold_components(::AbstractManifold, p) = submanifold_components(p) """ ziptuples(a, b[, c[, d[, e]]]) Zips tuples `a`, `b`, and remaining in a fast, type-stable way. If they have different lengths, the result is trimmed to the length of the shorter tuple. """ @generated function ziptuples(a::NTuple{N,Any}, b::NTuple{M,Any}) where {N,M} ex = Expr(:tuple) for i in 1:min(N, M) push!(ex.args, :((a[$i], b[$i]))) end return ex end @generated function ziptuples( a::NTuple{N,Any}, b::NTuple{M,Any}, c::NTuple{L,Any}, ) where {N,M,L} ex = Expr(:tuple) for i in 1:min(N, M, L) push!(ex.args, :((a[$i], b[$i], c[$i]))) end return ex end @generated function ziptuples( a::NTuple{N,Any}, b::NTuple{M,Any}, c::NTuple{L,Any}, d::NTuple{K,Any}, ) where {N,M,L,K} ex = Expr(:tuple) for i in 1:min(N, M, L, K) push!(ex.args, :((a[$i], b[$i], c[$i], d[$i]))) end return ex end @generated function ziptuples( a::NTuple{N,Any}, b::NTuple{M,Any}, c::NTuple{L,Any}, d::NTuple{K,Any}, e::NTuple{J,Any}, ) where {N,M,L,K,J} ex = Expr(:tuple) for i in 1:min(N, M, L, K, J) push!(ex.args, :((a[$i], b[$i], c[$i], d[$i], e[$i]))) end return ex end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
9030
@doc raw""" TangentSpace{𝔽,M} = Fiber{𝔽,TangentSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽}} A manifold for the tangent space ``T_p\mathcal M`` at a point ``p\in\mathcal M``. This is modelled as an alias for [`VectorSpaceFiber`](@ref) corresponding to [`TangentSpaceType`](@ref). # Constructor TangentSpace(M::AbstractManifold, p) Return the manifold (vector space) representing the tangent space ``T_p\mathcal M`` at point `p`, ``p\in\mathcal M``. """ const TangentSpace{𝔽,M} = Fiber{𝔽,TangentSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽}} TangentSpace(M::AbstractManifold, p) = Fiber(M, p, TangentSpaceType()) @doc raw""" CotangentSpace{𝔽,M} = Fiber{𝔽,CotangentSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽}} A manifold for the Cotangent space ``T^*_p\mathcal M`` at a point ``p\in\mathcal M``. This is modelled as an alias for [`VectorSpaceFiber`](@ref) corresponding to [`CotangentSpaceType`](@ref). # Constructor CotangentSpace(M::AbstractManifold, p) Return the manifold (vector space) representing the cotangent space ``T^*_p\mathcal M`` at point `p`, ``p\in\mathcal M``. """ const CotangentSpace{𝔽,M} = Fiber{𝔽,CotangentSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽}} CotangentSpace(M::AbstractManifold, p) = Fiber(M, p, CotangentSpaceType()) function allocate_result(M::TangentSpace, ::typeof(rand)) return zero_vector(M.manifold, M.point) end @doc raw""" base_point(TpM::TangentSpace) Return the base point of the [`TangentSpace`](@ref). """ base_point(TpM::TangentSpace) = TpM.point # forward both point checks to tangent vector checks function check_point(TpM::TangentSpace, p; kwargs...) return check_vector(TpM.manifold, TpM.point, p; kwargs...) end function check_size(TpM::TangentSpace, p; kwargs...) return check_size(TpM.manifold, TpM.point, p; kwargs...) end # fix tangent vector checks to use the right base point function check_vector(TpM::TangentSpace, p, X; kwargs...) return check_vector(TpM.manifold, TpM.point, X; kwargs...) end function check_size(TpM::TangentSpace, p, X; kwargs...) return check_size(TpM.manifold, TpM.point, X; kwargs...) end """ distance(M::TangentSpace, X, Y) Distance between vectors `X` and `Y` from the [`TangentSpace`](@ref) `TpM`. It is calculated as the [`norm`](@ref) (induced by the metric on `TpM`) of their difference. """ function distance(TpM::TangentSpace, X, Y) return norm(TpM.manifold, TpM.point, Y - X) end function embed!(TpM::TangentSpace, Y, X) return embed!(TpM.manifold, Y, TpM.point, X) end function embed!(TpM::TangentSpace, W, X, V) return embed!(TpM.manifold, W, TpM.point, V) end @doc raw""" exp(TpM::TangentSpace, X, V) Exponential map of tangent vectors `X` from `TpM` and a direction `V`, which is also from the [`TangentSpace`](@ref) `TpM` since we identify the tangent space of `TpM` with `TpM`. The exponential map then simplifies to the sum `X+V`. """ exp(::TangentSpace, ::Any, ::Any) function exp!(TpM::TangentSpace, Y, X, V) copyto!(TpM.manifold, Y, TpM.point, X + V) return Y end fiber_dimension(M::AbstractManifold, ::CotangentSpaceType) = manifold_dimension(M) fiber_dimension(M::AbstractManifold, ::TangentSpaceType) = manifold_dimension(M) function get_basis(TpM::TangentSpace, X, B::CachedBasis) return invoke( get_basis, Tuple{AbstractManifold,Any,CachedBasis}, TpM.manifold, TpM.point, B, ) end function get_basis(TpM::TangentSpace, X, B::AbstractBasis{<:Any,TangentSpaceType}) return get_basis(TpM.manifold, TpM.point, B) end function get_coordinates(TpM::TangentSpace, X, V, B::AbstractBasis) return get_coordinates(TpM.manifold, TpM.point, V, B) end function get_coordinates!(TpM::TangentSpace, c, X, V, B::AbstractBasis) return get_coordinates!(TpM.manifold, c, TpM.point, V, B) end function get_vector(TpM::TangentSpace, X, c, B::AbstractBasis) return get_vector(TpM.manifold, TpM.point, c, B) end function get_vector!(TpM::TangentSpace, V, X, c, B::AbstractBasis) return get_vector!(TpM.manifold, V, TpM.point, c, B) end function get_vectors(TpM::TangentSpace, X, B::CachedBasis) return get_vectors(TpM.manifold, TpM.point, B) end @doc raw""" injectivity_radius(TpM::TangentSpace) Return the injectivity radius on the [`TangentSpace`](@ref) `TpM`, which is $∞$. """ injectivity_radius(::TangentSpace) = Inf @doc raw""" inner(M::TangentSpace, X, V, W) For any ``X ∈ T_p\mathcal M`` we identify the tangent space ``T_X(T_p\mathcal M)`` with ``T_p\mathcal M`` again. Hence an inner product of ``V,W`` is just the inner product of the tangent space itself. ``⟨V,W⟩_X = ⟨V,W⟩_p``. """ function inner(TpM::TangentSpace, X, V, W) return inner(TpM.manifold, TpM.point, V, W) end """ is_flat(::TangentSpace) The [`TangentSpace`](@ref) is a flat manifold, so this returns `true`. """ is_flat(::TangentSpace) = true function _isapprox(TpM::TangentSpace, X, Y; kwargs...) return isapprox(TpM.manifold, TpM.point, X, Y; kwargs...) end function _isapprox(TpM::TangentSpace, X, V, W; kwargs...) return isapprox(TpM.manifold, TpM.point, V, W; kwargs...) end """ log(TpM::TangentSpace, X, Y) Logarithmic map on the [`TangentSpace`](@ref) `TpM`, calculated as the difference of tangent vectors `q` and `p` from `TpM`. """ log(::TangentSpace, ::Any...) function log!(TpM::TangentSpace, V, X, Y) copyto!(TpM, V, TpM.point, Y - X) return V end @doc raw""" manifold_dimension(TpM::TangentSpace) Return the dimension of the [`TangentSpace`](@ref) ``T_p\mathcal M`` at ``p∈\mathcal M``, which is the same as the dimension of the manifold ``\mathcal M``. """ function manifold_dimension(TpM::TangentSpace) return manifold_dimension(TpM.manifold) end @doc raw""" parallel_transport_to(::TangentSpace, X, V, Y) Transport the tangent vector ``Z ∈ T_X(T_p\mathcal M)`` from `X` to `Y`. Since we identify ``T_X(T_p\mathcal M) = T_p\mathcal M`` and the tangent space is a vector space, parallel transport simplifies to the identity, so this function yields ``V`` as a result. """ parallel_transport_to(TpM::TangentSpace, X, V, Y) function parallel_transport_to!(TpM::TangentSpace, W, X, V, Y) return copyto!(TpM.manifold, W, TpM.point, V) end @doc raw""" project(TpM::TangentSpace, X) Project the point `X` from embedding of the [`TangentSpace`](@ref) `TpM` onto `TpM`. """ project(::TangentSpace, ::Any) function project!(TpM::TangentSpace, Y, X) return project!(TpM.manifold, Y, TpM.point, X) end @doc raw""" project(TpM::TangentSpace, X, V) Project the vector `V` from the embedding of the tangent space `TpM` (identified with ``T_X(T_p\mathcal M)``), that is project the vector `V` onto the tangent space at `TpM.point`. """ project(::TangentSpace, ::Any, ::Any) function project!(TpM::TangentSpace, W, X, V) return project!(TpM.manifold, W, TpM.point, V) end function Random.rand!(TpM::TangentSpace, X; vector_at = nothing) rand!(TpM.manifold, X; vector_at = TpM.point) return X end function Random.rand!(rng::AbstractRNG, TpM::TangentSpace, X; vector_at = nothing) rand!(rng, TpM.manifold, X; vector_at = TpM.point) return X end function representation_size(TpM::TangentSpace) return representation_size(TpM.manifold) end function Base.show(io::IO, ::MIME"text/plain", TpM::TangentSpace) println(io, "Tangent space to the manifold $(base_manifold(TpM)) at point:") pre = " " sp = sprint(show, "text/plain", TpM.point; context = io, sizehint = 0) sp = replace(sp, '\n' => "\n$(pre)") return print(io, pre, sp) end function Base.show(io::IO, ::MIME"text/plain", cTpM::CotangentSpace) println(io, "Cotangent space to the manifold $(base_manifold(cTpM)) at point:") pre = " " sp = sprint(show, "text/plain", cTpM.point; context = io, sizehint = 0) sp = replace(sp, '\n' => "\n$(pre)") return print(io, pre, sp) end @doc raw""" Y = Weingarten(TpM::TangentSpace, X, V, A) Weingarten!(TpM::TangentSpace, Y, p, X, V) Compute the Weingarten map ``\mathcal W_X`` at `X` on the [`TangentSpace`](@ref) `TpM` with respect to the tangent vector ``V \in T_p\mathcal M`` and the normal vector ``A \in N_p\mathcal M``. Since this a flat space by itself, the result is always the zero tangent vector. """ Weingarten(::TangentSpace, ::Any, ::Any, ::Any) Weingarten!(::TangentSpace, W, X, V, A) = fill!(W, 0) @doc raw""" zero_vector(TpM::TangentSpace) Zero tangent vector in the [`TangentSpace`](@ref) `TpM`, that is the zero tangent vector at point `TpM.point`. """ zero_vector(TpM::TangentSpace) = zero_vector(TpM.manifold, TpM.point) @doc raw""" zero_vector(TpM::TangentSpace, X) Zero tangent vector at point `X` from the [`TangentSpace`](@ref) `TpM`, that is the zero tangent vector at point `TpM.point`, since we identify the tangent space ``T_X(T_p\mathcal M)`` with ``T_p\mathcal M``. """ zero_vector(::TangentSpace, ::Any...) function zero_vector!(M::TangentSpace, V, X) return zero_vector!(M.manifold, V, M.point) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
14613
""" ValidationManifold{𝔽,M<:AbstractManifold{𝔽}} <: AbstractDecoratorManifold{𝔽} A manifold to encapsulate manifolds working on array representations of [`AbstractManifoldPoint`](@ref)s and [`TVector`](@ref)s in a transparent way, such that for these manifolds it's not necessary to introduce explicit types for the points and tangent vectors, but they are encapsulated/stripped automatically when needed. This manifold is a decorator for a manifold, i.e. it decorates a [`AbstractManifold`](@ref) `M` with types points, vectors, and covectors. # Constructor ValidationManifold(M::AbstractManifold; error::Symbol = :error) Generate the Validation manifold, where `error` is used as the symbol passed to all checks. This `:error`s by default but could also be set to `:warn` for example """ struct ValidationManifold{𝔽,M<:AbstractManifold{𝔽}} <: AbstractDecoratorManifold{𝔽} manifold::M mode::Symbol end function ValidationManifold(M::AbstractManifold; error::Symbol = :error) return ValidationManifold(M, error) end """ ValidationMPoint <: AbstractManifoldPoint Represent a point on an [`ValidationManifold`](@ref), i.e. on a manifold where data can be represented by arrays. The array is stored internally and semantically. This distinguished the value from [`ValidationTVector`](@ref)s and [`ValidationCoTVector`](@ref)s. """ struct ValidationMPoint{V} <: AbstractManifoldPoint value::V end """ ValidationFibreVector{TType<:VectorSpaceType} <: AbstractFibreVector{TType} Represent a tangent vector to a point on an [`ValidationManifold`](@ref), i.e. on a manifold where data can be represented by arrays. The array is stored internally and semantically. This distinguished the value from [`ValidationMPoint`](@ref)s vectors of other types. """ struct ValidationFibreVector{TType<:VectorSpaceType,V} <: AbstractFibreVector{TType} value::V end function ValidationFibreVector{TType}(value::V) where {TType,V} return ValidationFibreVector{TType,V}(value) end """ ValidationTVector = ValidationFibreVector{TangentSpaceType} Represent a tangent vector to a point on an [`ValidationManifold`](@ref), i.e. on a manifold where data can be represented by arrays. The array is stored internally and semantically. This distinguished the value from [`ValidationMPoint`](@ref)s vectors of other types. """ const ValidationTVector = ValidationFibreVector{TangentSpaceType} """ ValidationCoTVector = ValidationFibreVector{CotangentSpaceType} Represent a cotangent vector to a point on an [`ValidationManifold`](@ref), i.e. on a manifold where data can be represented by arrays. The array is stored internally and semantically. This distinguished the value from [`ValidationMPoint`](@ref)s vectors of other types. """ const ValidationCoTVector = ValidationFibreVector{CotangentSpaceType} @eval @manifold_vector_forwards ValidationFibreVector{TType} TType value @eval @manifold_element_forwards ValidationMPoint value @inline function active_traits(f, ::ValidationManifold, ::Any...) return merge_traits(IsExplicitDecorator()) end """ array_value(p) Return the internal array value of an [`ValidationMPoint`](@ref), [`ValidationTVector`](@ref), or [`ValidationCoTVector`](@ref) if the value `p` is encapsulated as such. Return `p` if it is already an array. """ array_value(p::AbstractArray) = p array_value(p::ValidationMPoint) = p.value array_value(X::ValidationFibreVector) = X.value decorated_manifold(M::ValidationManifold) = M.manifold convert(::Type{M}, m::ValidationManifold{𝔽,M}) where {𝔽,M<:AbstractManifold{𝔽}} = m.manifold function convert(::Type{ValidationManifold{𝔽,M}}, m::M) where {𝔽,M<:AbstractManifold{𝔽}} return ValidationManifold(m) end convert(::Type{V}, p::ValidationMPoint{V}) where {V<:AbstractArray} = p.value function convert(::Type{ValidationMPoint{V}}, x::V) where {V<:AbstractArray} return ValidationMPoint{V}(x) end function convert( ::Type{V}, X::ValidationFibreVector{TType,V}, ) where {TType,V<:AbstractArray} return X.value end function convert( ::Type{ValidationFibreVector{TType,V}}, X::V, ) where {TType,V<:AbstractArray} return ValidationFibreVector{TType,V}(X) end function copyto!(M::ValidationManifold, q::ValidationMPoint, p::ValidationMPoint; kwargs...) is_point(M, p; error = M.mode, kwargs...) copyto!(M.manifold, q.value, p.value) is_point(M, q; error = M.mode, kwargs...) return q end function copyto!( M::ValidationManifold, Y::ValidationFibreVector{TType}, p::ValidationMPoint, X::ValidationFibreVector{TType}; kwargs..., ) where {TType} is_point(M, p; error = M.mode, kwargs...) copyto!(M.manifold, Y.value, p.value, X.value) return p end function distance(M::ValidationManifold, p, q; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_point(M, q; error = M.mode, kwargs...) return distance(M.manifold, array_value(p), array_value(q)) end function exp(M::ValidationManifold, p, X; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) y = exp(M.manifold, array_value(p), array_value(X)) is_point(M, y; error = M.mode, kwargs...) return ValidationMPoint(y) end function exp!(M::ValidationManifold, q, p, X; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) exp!(M.manifold, array_value(q), array_value(p), array_value(X)) is_point(M, q; error = M.mode, kwargs...) return q end function get_basis(M::ValidationManifold, p, B::AbstractBasis; kwargs...) is_point(M, p; error = M.mode, kwargs...) Ξ = get_basis(M.manifold, array_value(p), B) bvectors = get_vectors(M, p, Ξ) N = length(bvectors) if N != manifold_dimension(M.manifold) throw( ErrorException( "For a basis of the tangent space at $(p) of $(M.manifold), $(manifold_dimension(M)) vectors are required, but get_basis $(B) computed $(N)", ), ) end # check that the vectors are linearly independent\ bv_rank = rank(reduce(hcat, bvectors)) if N != bv_rank throw( ErrorException( "For a basis of the tangent space at $(p) of $(M.manifold), $(manifold_dimension(M)) linearly independent vectors are required, but get_basis $(B) computed $(bv_rank)", ), ) end map(X -> is_vector(M, p, X; error = M.mode, kwargs...), bvectors) return Ξ end function get_basis( M::ValidationManifold, p, B::Union{AbstractOrthogonalBasis,CachedBasis{𝔽,<:AbstractOrthogonalBasis{𝔽}} where {𝔽}}; kwargs..., ) is_point(M, p; error = M.mode, kwargs...) Ξ = invoke(get_basis, Tuple{ValidationManifold,Any,AbstractBasis}, M, p, B; kwargs...) bvectors = get_vectors(M, p, Ξ) N = length(bvectors) for i in 1:N for j in (i + 1):N dot_val = real(inner(M, p, bvectors[i], bvectors[j])) if !isapprox(dot_val, 0; atol = eps(eltype(p))) throw( ArgumentError( "vectors number $i and $j are not orthonormal (inner product = $dot_val)", ), ) end end end return Ξ end function get_basis( M::ValidationManifold, p, B::Union{ AbstractOrthonormalBasis, <:CachedBasis{𝔽,<:AbstractOrthonormalBasis{𝔽}} where {𝔽}, }; kwargs..., ) is_point(M, p; error = M.mode, kwargs...) get_basis_invoke_types = Tuple{ ValidationManifold, Any, Union{ AbstractOrthogonalBasis, CachedBasis{𝔽2,<:AbstractOrthogonalBasis{𝔽2}}, } where {𝔽2}, } Ξ = invoke(get_basis, get_basis_invoke_types, M, p, B; kwargs...) bvectors = get_vectors(M, p, Ξ) N = length(bvectors) for i in 1:N Xi_norm = norm(M, p, bvectors[i]) if !isapprox(Xi_norm, 1) throw(ArgumentError("vector number $i is not normalized (norm = $Xi_norm)")) end end return Ξ end function get_coordinates(M::ValidationManifold, p, X, B::AbstractBasis; kwargs...) is_point(M, p; error = :error, kwargs...) is_vector(M, p, X; error = :error, kwargs...) return get_coordinates(M.manifold, p, X, B) end function get_coordinates!(M::ValidationManifold, Y, p, X, B::AbstractBasis; kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) get_coordinates!(M.manifold, Y, p, X, B) return Y end function get_vector(M::ValidationManifold, p, X, B::AbstractBasis; kwargs...) is_point(M, p; error = M.mode, kwargs...) size(X) == (manifold_dimension(M),) || error("Incorrect size of coefficient vector X") Y = get_vector(M.manifold, p, X, B) size(Y) == representation_size(M) || error("Incorrect size of tangent vector Y") return Y end function get_vector!(M::ValidationManifold, Y, p, X, B::AbstractBasis; kwargs...) is_point(M, p; error = M.mode, kwargs...) size(X) == (manifold_dimension(M),) || error("Incorrect size of coefficient vector X") get_vector!(M.manifold, Y, p, X, B) size(Y) == representation_size(M) || error("Incorrect size of tangent vector Y") return Y end injectivity_radius(M::ValidationManifold) = injectivity_radius(M.manifold) function injectivity_radius(M::ValidationManifold, method::AbstractRetractionMethod) return injectivity_radius(M.manifold, method) end function injectivity_radius(M::ValidationManifold, p; kwargs...) is_point(M, p; error = M.mode, kwargs...) return injectivity_radius(M.manifold, array_value(p)) end function injectivity_radius( M::ValidationManifold, p, method::AbstractRetractionMethod; kwargs..., ) is_point(M, p; error = M.mode, kwargs...) return injectivity_radius(M.manifold, array_value(p), method) end function inner(M::ValidationManifold, p, X, Y; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) is_vector(M, p, Y; error = M.mode, kwargs...) return inner(M.manifold, array_value(p), array_value(X), array_value(Y)) end function is_point(M::ValidationManifold, p; kw...) return is_point(M.manifold, array_value(p); kw...) end function is_vector(M::ValidationManifold, p, X, cbp::Bool = true; kw...) return is_vector(M.manifold, array_value(p), array_value(X), cbp; kw...) end function isapprox(M::ValidationManifold, p, q; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_point(M, q; error = M.mode, kwargs...) return isapprox(M.manifold, array_value(p), array_value(q); kwargs...) end function isapprox(M::ValidationManifold, p, X, Y; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) is_vector(M, p, Y; error = M.mode, kwargs...) return isapprox(M.manifold, array_value(p), array_value(X), array_value(Y); kwargs...) end function log(M::ValidationManifold, p, q; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_point(M, q; error = M.mode, kwargs...) X = log(M.manifold, array_value(p), array_value(q)) is_vector(M, p, X; error = M.mode, kwargs...) return ValidationTVector(X) end function log!(M::ValidationManifold, X, p, q; kwargs...) is_point(M, p; error = M.mode, kwargs...) is_point(M, q; error = M.mode, kwargs...) log!(M.manifold, array_value(X), array_value(p), array_value(q)) is_vector(M, p, X; error = M.mode, kwargs...) return X end function mid_point(M::ValidationManifold, p1, p2; kwargs...) is_point(M, p1; error = M.mode, kwargs...) is_point(M, p2; error = M.mode, kwargs...) q = mid_point(M.manifold, array_value(p1), array_value(p2)) is_point(M, q; error = M.mode, kwargs...) return q end function mid_point!(M::ValidationManifold, q, p1, p2; kwargs...) is_point(M, p1; error = M.mode, kwargs...) is_point(M, p2; error = M.mode, kwargs...) mid_point!(M.manifold, array_value(q), array_value(p1), array_value(p2)) is_point(M, q; error = M.mode, kwargs...) return q end number_eltype(::Type{ValidationMPoint{V}}) where {V} = number_eltype(V) number_eltype(::Type{ValidationFibreVector{TType,V}}) where {TType,V} = number_eltype(V) function project!(M::ValidationManifold, Y, p, X; kwargs...) is_point(M, p; error = M.mode, kwargs...) project!(M.manifold, array_value(Y), array_value(p), array_value(X)) is_vector(M, p, Y; error = M.mode, kwargs...) return Y end function vector_transport_along( M::ValidationManifold, p, X, c::AbstractVector, m::AbstractVectorTransportMethod; kwargs..., ) is_vector(M, p, X; error = M.mode, kwargs...) Y = vector_transport_along(M.manifold, array_value(p), array_value(X), c, m) is_vector(M, c[end], Y; error = M.mode, kwargs...) return Y end function vector_transport_along!( M::ValidationManifold, Y, p, X, c::AbstractVector, m::AbstractVectorTransportMethod; kwargs..., ) is_vector(M, p, X; error = M.mode, kwargs...) vector_transport_along!( M.manifold, array_value(Y), array_value(p), array_value(X), c, m, ) is_vector(M, c[end], Y; error = M.mode, kwargs...) return Y end function vector_transport_to( M::ValidationManifold, p, X, q, m::AbstractVectorTransportMethod; kwargs..., ) is_point(M, q; error = M.mode, kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) Y = vector_transport_to(M.manifold, array_value(p), array_value(X), array_value(q), m) is_vector(M, q, Y; error = M.mode, kwargs...) return Y end function vector_transport_to!( M::ValidationManifold, Y, p, X, q, m::AbstractVectorTransportMethod; kwargs..., ) is_point(M, q; error = M.mode, kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) vector_transport_to!( M.manifold, array_value(Y), array_value(p), array_value(X), array_value(q), m, ) is_vector(M, q, Y; error = M.mode, kwargs...) return Y end function zero_vector(M::ValidationManifold, p; kwargs...) is_point(M, p; error = M.mode, kwargs...) w = zero_vector(M.manifold, array_value(p)) is_vector(M, p, w; error = M.mode, kwargs...) return w end function zero_vector!(M::ValidationManifold, X, p; kwargs...) is_point(M, p; error = M.mode, kwargs...) zero_vector!(M.manifold, array_value(X), array_value(p); kwargs...) is_vector(M, p, X; error = M.mode, kwargs...) return X end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
408
""" VectorSpaceFiber{𝔽,M,TSpaceType} = Fiber{𝔽,TSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽},TSpaceType<:VectorSpaceType} Alias for a [`Fiber`](@ref) when the fiber is a vector space. """ const VectorSpaceFiber{𝔽,M,TSpaceType} = Fiber{𝔽,TSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽},TSpaceType<:VectorSpaceType} LinearAlgebra.norm(M::VectorSpaceFiber, p, X) = norm(M.manifold, M.point, X)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
3369
@doc raw""" AbstractApproximationMethod Abstract type for defining estimation methods on manifolds. """ abstract type AbstractApproximationMethod end @doc raw""" GradientDescentEstimation <: AbstractApproximationMethod Method for estimation using [📖 gradient descent](https://en.wikipedia.org/wiki/Gradient_descent). """ struct GradientDescentEstimation <: AbstractApproximationMethod end @doc raw""" CyclicProximalPointEstimation <: AbstractApproximationMethod Method for estimation using the cyclic proximal point technique, which is based on [📖 proximal maps](https://en.wikipedia.org/wiki/Proximal_operator). """ struct CyclicProximalPointEstimation <: AbstractApproximationMethod end @doc raw""" EfficientEstimator <: AbstractApproximationMethod Method for estimation in the best possible sense, see [📖 Efficiency (Statictsics)](https://en.wikipedia.org/wiki/Efficiency_(statistics)) for more details. This can for example be used when computing the usual mean on an Euclidean space, which is the best estimator. """ struct EfficientEstimator <: AbstractApproximationMethod end @doc raw""" ExtrinsicEstimation{T} <: AbstractApproximationMethod Method for estimation in the ambient space with a method of type `T` and projecting the result back to the manifold. """ struct ExtrinsicEstimation{T<:AbstractApproximationMethod} <: AbstractApproximationMethod extrinsic_estimation::T end @doc raw""" WeiszfeldEstimation <: AbstractApproximationMethod Method for estimation using the Weiszfeld algorithm, compare for example the computation of the [📖 Geometric median](https://en.wikipedia.org/wiki/Geometric_median). """ struct WeiszfeldEstimation <: AbstractApproximationMethod end @doc raw""" GeodesicInterpolation <: AbstractApproximationMethod Method for estimation based on geodesic interpolation. """ struct GeodesicInterpolation <: AbstractApproximationMethod end @doc raw""" GeodesicInterpolationWithinRadius{T} <: AbstractApproximationMethod Method for estimation based on geodesic interpolation that is restricted to some `radius` # Constructor GeodesicInterpolationWithinRadius(radius::Real) """ struct GeodesicInterpolationWithinRadius{T<:Real} <: AbstractApproximationMethod radius::T function GeodesicInterpolationWithinRadius(radius::T) where {T<:Real} radius > 0 && return new{T}(radius) return throw( DomainError("The radius must be strictly postive, received $(radius)."), ) end end @doc raw""" default_approximation_method(M::AbstractManifold, f) default_approximation_method(M::AbtractManifold, f, T) Specify a default estimation method for an [`AbstractManifold`](@ref) and a specific function `f` and optionally as well a type `T` to distinguish different (point or vector) representations on `M`. By default, all functions `f` call the signature for just a manifold. The exceptional functions are: * `retract` and `retract!` which fall back to [`default_retraction_method`](@ref) * `inverse_retract` and `inverse_retract!` which fall back to [`default_inverse_retraction_method`](@ref) * any of the vector transport mehods fall back to [`default_vector_transport_method`](@ref) """ default_approximation_method(M::AbstractManifold, f) default_approximation_method(M::AbstractManifold, f, T) = default_approximation_method(M, f)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
36759
""" VectorSpaceType Abstract type for tangent spaces, cotangent spaces, their tensor products, exterior products, etc. Every vector space `fiber` is supposed to provide: * a method of constructing vectors, * basic operations: addition, subtraction, multiplication by a scalar and negation (unary minus), * `zero_vector(fiber, p)` to construct zero vectors at point `p`, * `allocate(X)` and `allocate(X, T)` for vector `X` and type `T`, * `copyto!(X, Y)` for vectors `X` and `Y`, * `number_eltype(v)` for vector `v`, * [`vector_space_dimension`](@ref). Optionally: * inner product via `inner` (used to provide Riemannian metric on vector bundles), * [`flat`](https://juliamanifolds.github.io/Manifolds.jl/stable/features/atlases.html#Manifolds.flat-Tuple{AbstractManifold,%20Any,%20Any}) and [`sharp`](https://juliamanifolds.github.io/Manifolds.jl/stable/features/atlases.html#Manifolds.sharp-Tuple{AbstractManifold,%20Any,%20Any}), * `norm` (by default uses `inner`), * [`project`](@ref) (for embedded vector spaces), * [`representation_size`](@ref), * broadcasting for basic operations. """ abstract type VectorSpaceType <: FiberType end """ struct TangentSpaceType <: VectorSpaceType end A type that indicates that a [`Fiber`](@ref) is a [`TangentSpace`](@ref). """ struct TangentSpaceType <: VectorSpaceType end """ struct CotangentSpaceType <: VectorSpaceType end A type that indicates that a [`Fiber`](@ref) is a [`CotangentSpace`](@ref). """ struct CotangentSpaceType <: VectorSpaceType end TCoTSpaceType = Union{TangentSpaceType,CotangentSpaceType} """ AbstractBasis{𝔽,VST<:VectorSpaceType} Abstract type that represents a basis of vector space of type `VST` on a manifold or a subset of it. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # See also [`VectorSpaceType`](@ref) """ abstract type AbstractBasis{𝔽,VST<:VectorSpaceType} end """ DefaultBasis{𝔽,VST<:VectorSpaceType} An arbitrary basis of vector space of type `VST` on a manifold. This will usually be the fastest basis available for a manifold. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # See also [`VectorSpaceType`](@ref) """ struct DefaultBasis{𝔽,VST<:VectorSpaceType} <: AbstractBasis{𝔽,VST} vector_space::VST end function DefaultBasis(𝔽::AbstractNumbers = ℝ, vs::VectorSpaceType = TangentSpaceType()) return DefaultBasis{𝔽,typeof(vs)}(vs) end function DefaultBasis{𝔽}(vs::VectorSpaceType = TangentSpaceType()) where {𝔽} return DefaultBasis{𝔽,typeof(vs)}(vs) end function DefaultBasis{𝔽,TangentSpaceType}() where {𝔽} return DefaultBasis{𝔽,TangentSpaceType}(TangentSpaceType()) end """ AbstractOrthogonalBasis{𝔽,VST<:VectorSpaceType} Abstract type that represents an orthonormal basis of vector space of type `VST` on a manifold or a subset of it. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # See also [`VectorSpaceType`](@ref) """ abstract type AbstractOrthogonalBasis{𝔽,VST<:VectorSpaceType} <: AbstractBasis{𝔽,VST} end """ DefaultOrthogonalBasis{𝔽,VST<:VectorSpaceType} An arbitrary orthogonal basis of vector space of type `VST` on a manifold. This will usually be the fastest orthogonal basis available for a manifold. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # See also [`VectorSpaceType`](@ref) """ struct DefaultOrthogonalBasis{𝔽,VST<:VectorSpaceType} <: AbstractOrthogonalBasis{𝔽,VST} vector_space::VST end function DefaultOrthogonalBasis( 𝔽::AbstractNumbers = ℝ, vs::VectorSpaceType = TangentSpaceType(), ) return DefaultOrthogonalBasis{𝔽,typeof(vs)}(vs) end function DefaultOrthogonalBasis{𝔽}(vs::VectorSpaceType = TangentSpaceType()) where {𝔽} return DefaultOrthogonalBasis{𝔽,typeof(vs)}(vs) end function DefaultOrthogonalBasis{𝔽,TangentSpaceType}() where {𝔽} return DefaultOrthogonalBasis{𝔽,TangentSpaceType}(TangentSpaceType()) end struct VeeOrthogonalBasis{𝔽} <: AbstractOrthogonalBasis{𝔽,TangentSpaceType} end VeeOrthogonalBasis(𝔽::AbstractNumbers = ℝ) = VeeOrthogonalBasis{𝔽}() """ AbstractOrthonormalBasis{𝔽,VST<:VectorSpaceType} Abstract type that represents an orthonormal basis of vector space of type `VST` on a manifold or a subset of it. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # See also [`VectorSpaceType`](@ref) """ abstract type AbstractOrthonormalBasis{𝔽,VST<:VectorSpaceType} <: AbstractOrthogonalBasis{𝔽,VST} end """ DefaultOrthonormalBasis(𝔽::AbstractNumbers = ℝ, vs::VectorSpaceType = TangentSpaceType()) An arbitrary orthonormal basis of vector space of type `VST` on a manifold. This will usually be the fastest orthonormal basis available for a manifold. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # See also [`VectorSpaceType`](@ref) """ struct DefaultOrthonormalBasis{𝔽,VST<:VectorSpaceType} <: AbstractOrthonormalBasis{𝔽,VST} vector_space::VST end function DefaultOrthonormalBasis( 𝔽::AbstractNumbers = ℝ, vs::VectorSpaceType = TangentSpaceType(), ) return DefaultOrthonormalBasis{𝔽,typeof(vs)}(vs) end function DefaultOrthonormalBasis{𝔽}(vs::VectorSpaceType = TangentSpaceType()) where {𝔽} return DefaultOrthonormalBasis{𝔽,typeof(vs)}(vs) end function DefaultOrthonormalBasis{𝔽,TangentSpaceType}() where {𝔽} return DefaultOrthonormalBasis{𝔽,TangentSpaceType}(TangentSpaceType()) end """ ProjectedOrthonormalBasis(method::Symbol, 𝔽::AbstractNumbers = ℝ) An orthonormal basis that comes from orthonormalization of basis vectors of the ambient space projected onto the subspace representing the tangent space at a given point. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. Available methods: - `:gram_schmidt` uses a modified Gram-Schmidt orthonormalization. - `:svd` uses SVD decomposition to orthogonalize projected vectors. The SVD-based method should be more numerically stable at the cost of an additional assumption (local metric tensor at a point where the basis is calculated has to be diagonal). """ struct ProjectedOrthonormalBasis{Method,𝔽} <: AbstractOrthonormalBasis{𝔽,TangentSpaceType} end function ProjectedOrthonormalBasis(method::Symbol, 𝔽::AbstractNumbers = ℝ) return ProjectedOrthonormalBasis{method,𝔽}() end @doc raw""" GramSchmidtOrthonormalBasis{𝔽} <: AbstractOrthonormalBasis{𝔽} An orthonormal basis obtained from a basis. # Constructor GramSchmidtOrthonormalBasis(𝔽::AbstractNumbers = ℝ) """ struct GramSchmidtOrthonormalBasis{𝔽} <: AbstractOrthonormalBasis{𝔽,TangentSpaceType} end GramSchmidtOrthonormalBasis(𝔽::AbstractNumbers = ℝ) = GramSchmidtOrthonormalBasis{𝔽}() @doc raw""" DiagonalizingOrthonormalBasis{𝔽,TV} <: AbstractOrthonormalBasis{𝔽,TangentSpaceType} An orthonormal basis `Ξ` as a vector of tangent vectors (of length determined by [`manifold_dimension`](@ref)) in the tangent space that diagonalizes the curvature tensor ``R(u,v)w`` and where the direction `frame_direction` ``v`` has curvature `0`. The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used as coefficients in linear combinations of the basis vectors. # Constructor DiagonalizingOrthonormalBasis(frame_direction, 𝔽::AbstractNumbers = ℝ) """ struct DiagonalizingOrthonormalBasis{𝔽,TV} <: AbstractOrthonormalBasis{𝔽,TangentSpaceType} frame_direction::TV end function DiagonalizingOrthonormalBasis(X, 𝔽::AbstractNumbers = ℝ) return DiagonalizingOrthonormalBasis{𝔽,typeof(X)}(X) end struct DiagonalizingBasisData{D,V,ET} frame_direction::D eigenvalues::ET vectors::V end const DefaultOrDiagonalizingBasis{𝔽} = Union{DefaultOrthonormalBasis{𝔽,TangentSpaceType},DiagonalizingOrthonormalBasis{𝔽}} """ CachedBasis{𝔽,V,<:AbstractBasis{𝔽}} <: AbstractBasis{𝔽} A cached version of the given `basis` with precomputed basis vectors. The basis vectors are stored in `data`, either explicitly (like in cached variants of [`ProjectedOrthonormalBasis`](@ref)) or implicitly. # Constructor CachedBasis(basis::AbstractBasis, data) """ struct CachedBasis{𝔽,B,V} <: AbstractBasis{𝔽,TangentSpaceType} where {B<:AbstractBasis{𝔽,TangentSpaceType},V} data::V end function CachedBasis(::B, data::V) where {V,𝔽,B<:AbstractBasis{𝔽,<:TangentSpaceType}} return CachedBasis{𝔽,B,V}(data) end function CachedBasis(basis::CachedBasis) # avoid double encapsulation return basis end function CachedBasis( basis::DiagonalizingOrthonormalBasis, eigenvalues::ET, vectors::T, ) where {ET<:AbstractVector,T<:AbstractVector} data = DiagonalizingBasisData(basis.frame_direction, eigenvalues, vectors) return CachedBasis(basis, data) end # forward declarations function get_coordinates end function get_vector end const all_uncached_bases{T} = Union{ AbstractBasis{<:Any,T}, DefaultBasis{<:Any,T}, DefaultOrthogonalBasis{<:Any,T}, DefaultOrthonormalBasis{<:Any,T}, } function allocate_on(M::AbstractManifold, ::TangentSpaceType) return similar(Array{Float64}, representation_size(M)) end function allocate_on(M::AbstractManifold, ::TangentSpaceType, T::Type{<:AbstractArray}) return similar(T, representation_size(M)) end """ allocate_coordinates(M::AbstractManifold, p, T, n::Int) Allocate vector of coordinates of length `n` of type `T` of a vector at point `p` on manifold `M`. """ allocate_coordinates(::AbstractManifold, p, T, n::Int) = allocate(p, T, n) function allocate_coordinates(M::AbstractManifold, p::Int, T, n::Int) return (representation_size(M) == () && n == 0) ? zero(T) : zeros(T, n) end function allocate_result( M::AbstractManifold, f::typeof(get_coordinates), p, X, basis::AbstractBasis{𝔽}, ) where {𝔽} T = coordinate_eltype(M, p, 𝔽) return allocate_coordinates(M, p, T, number_of_coordinates(M, basis)) end @inline function allocate_result_type( M::AbstractManifold, f::typeof(get_vector), args::Tuple{Any,Vararg{Any}}, ) apf = allocation_promotion_function(M, f, args) return apf( invoke(allocate_result_type, Tuple{AbstractManifold,Any,typeof(args)}, M, f, args), ) end """ allocation_promotion_function(M::AbstractManifold, f, args::Tuple) Determine the function that must be used to ensure that the allocated representation is of the right type. This is needed for [`get_vector`](@ref) when a point on a complex manifold is represented by a real-valued vectors with a real-coefficient basis, so that a complex-valued vector representation is allocated. """ allocation_promotion_function(M::AbstractManifold, f, args::Tuple) = identity """ change_basis(M::AbstractManifold, p, c, B_in::AbstractBasis, B_out::AbstractBasis) Given a vector with coordinates `c` at point `p` from manifold `M` in basis `B_in`, compute coordinates of the same vector in basis `B_out`. """ function change_basis(M::AbstractManifold, p, c, B_in::AbstractBasis, B_out::AbstractBasis) return get_coordinates(M, p, get_vector(M, p, c, B_in), B_out) end function change_basis!( M::AbstractManifold, c_out, p, c, B_in::AbstractBasis, B_out::AbstractBasis, ) return get_coordinates!(M, c_out, p, get_vector(M, p, c, B_in), B_out) end function combine_allocation_promotion_functions(f::T, ::T) where {T} return f end function combine_allocation_promotion_functions(::typeof(complex), ::typeof(identity)) return complex end function combine_allocation_promotion_functions(::typeof(identity), ::typeof(complex)) return complex end """ coordinate_eltype(M::AbstractManifold, p, 𝔽::AbstractNumbers) Get the element type for 𝔽-field coordinates of the tangent space at a point `p` from manifold `M`. This default assumes that usually complex bases of complex manifolds have real coordinates but it can be overridden by a more specific method. """ @inline function coordinate_eltype(::AbstractManifold, p, 𝔽::ComplexNumbers) return complex(float(number_eltype(p))) end @inline function coordinate_eltype(::AbstractManifold, p, ::RealNumbers) return real(float(number_eltype(p))) end @doc raw""" dual_basis(M::AbstractManifold, p, B::AbstractBasis) Get the dual basis to `B`, a basis of a vector space at point `p` from manifold `M`. The dual to the ``i``th vector ``v_i`` from basis `B` is a vector ``v^i`` from the dual space such that ``v^i(v_j) = δ^i_j``, where ``δ^i_j`` is the Kronecker delta symbol: ````math δ^i_j = \begin{cases} 1 & \text{ if } i=j, \\ 0 & \text{ otherwise.} \end{cases} ```` """ dual_basis(M::AbstractManifold, p, B::AbstractBasis) = _dual_basis(M, p, B) function _dual_basis( ::AbstractManifold, p, ::DefaultOrthonormalBasis{𝔽,TangentSpaceType}, ) where {𝔽} return DefaultOrthonormalBasis{𝔽}(CotangentSpaceType()) end function _dual_basis( ::AbstractManifold, p, ::DefaultOrthonormalBasis{𝔽,CotangentSpaceType}, ) where {𝔽} return DefaultOrthonormalBasis{𝔽}(TangentSpaceType()) end # if `p` has complex eltype but you'd like to have real basis vectors, # you can pass `real` as a third argument to get that function _euclidean_basis_vector(p::StridedArray, i, eltype_transform = identity) X = zeros(eltype_transform(eltype(p)), size(p)...) X[i] = 1 return X end function _euclidean_basis_vector(p, i, eltype_transform = identity) # when p is for example a SArray X = similar(p, eltype_transform(eltype(p))) fill!(X, zero(eltype(X))) X[i] = 1 return X end """ get_basis(M::AbstractManifold, p, B::AbstractBasis; kwargs...) -> CachedBasis Compute the basis vectors of the tangent space at a point on manifold `M` represented by `p`. Returned object derives from [`AbstractBasis`](@ref) and may have a field `.vectors` that stores tangent vectors or it may store them implicitly, in which case the function [`get_vectors`](@ref) needs to be used to retrieve the basis vectors. See also: [`get_coordinates`](@ref), [`get_vector`](@ref) """ function get_basis(M::AbstractManifold, p, B::AbstractBasis; kwargs...) return _get_basis(M, p, B; kwargs...) end function _get_basis(::AbstractManifold, ::Any, B::CachedBasis) return B end function _get_basis(M::AbstractManifold, p, B::ProjectedOrthonormalBasis{:svd,ℝ}) S = representation_size(M) PS = prod(S) dim = manifold_dimension(M) # projection # TODO: find a better way to obtain a basis of the ambient space Xs = [ convert(Vector, reshape(project(M, p, _euclidean_basis_vector(p, i)), PS)) for i in eachindex(p) ] O = reduce(hcat, Xs) # orthogonalization # TODO: try using rank-revealing QR here decomp = svd(O) rotated = Diagonal(decomp.S) * decomp.Vt vecs = [collect(reshape(rotated[i, :], S)) for i in 1:dim] # normalization for i in 1:dim i_norm = norm(M, p, vecs[i]) vecs[i] /= i_norm end return CachedBasis(B, vecs) end function _get_basis( M::AbstractManifold, p, B::ProjectedOrthonormalBasis{:gram_schmidt,ℝ}; kwargs..., ) E = [project(M, p, _euclidean_basis_vector(p, i)) for i in eachindex(p)] V = gram_schmidt(M, p, E; kwargs...) return CachedBasis(B, V) end function _get_basis(M::AbstractManifold, p, B::VeeOrthogonalBasis) return get_basis_vee(M, p, number_system(B)) end function get_basis_vee(M::AbstractManifold, p, N) return get_basis(M, p, DefaultOrthogonalBasis(N)) end function _get_basis(M::AbstractManifold, p, B::DefaultBasis) return get_basis_default(M, p, number_system(B)) end function get_basis_default(M::AbstractManifold, p, N) return get_basis(M, p, DefaultOrthogonalBasis(N)) end function _get_basis(M::AbstractManifold, p, B::DefaultOrthogonalBasis) return get_basis_orthogonal(M, p, number_system(B)) end function get_basis_orthogonal(M::AbstractManifold, p, N) return get_basis(M, p, DefaultOrthonormalBasis(N)) end function _get_basis(M::AbstractManifold, p, B::DiagonalizingOrthonormalBasis) return get_basis_diagonalizing(M, p, B) end function get_basis_diagonalizing end function _get_basis(M::AbstractManifold, p, B::DefaultOrthonormalBasis) return get_basis_orthonormal(M, p, number_system(B)) end function get_basis_orthonormal(M::AbstractManifold, p, N::AbstractNumbers; kwargs...) B = DefaultOrthonormalBasis(N) dim = number_of_coordinates(M, B) Eltp = coordinate_eltype(M, p, N) p0 = zero(Eltp) p1 = one(Eltp) return CachedBasis( B, [get_vector(M, p, [ifelse(i == j, p1, p0) for j in 1:dim], B) for i in 1:dim], ) end @doc raw""" get_coordinates(M::AbstractManifold, p, X, B::AbstractBasis) get_coordinates(M::AbstractManifold, p, X, B::CachedBasis) Compute a one-dimensional vector of coefficients of the tangent vector `X` at point denoted by `p` on manifold `M` in basis `B`. Depending on the basis, `p` may not directly represent a point on the manifold. For example if a basis transported along a curve is used, `p` may be the coordinate along the curve. If a [`CachedBasis`](@ref) is provided, their stored vectors are used, otherwise the user has to provide a method to compute the coordinates. For the [`CachedBasis`](@ref) keep in mind that the reconstruction with [`get_vector`](@ref) requires either a dual basis or the cached basis to be selfdual, for example orthonormal See also: [`get_vector`](@ref), [`get_basis`](@ref) """ function get_coordinates(M::AbstractManifold, p, X, B::AbstractBasis) return _get_coordinates(M, p, X, B) end function _get_coordinates(M::AbstractManifold, p, X, B::VeeOrthogonalBasis) return get_coordinates_vee(M, p, X, number_system(B)) end function get_coordinates_vee(M::AbstractManifold, p, X, N) return get_coordinates(M, p, X, DefaultOrthogonalBasis(N)) end function _get_coordinates(M::AbstractManifold, p, X, B::DefaultBasis) return get_coordinates_default(M, p, X, number_system(B)) end function get_coordinates_default(M::AbstractManifold, p, X, N::AbstractNumbers) return get_coordinates(M, p, X, DefaultOrthogonalBasis(N)) end function _get_coordinates(M::AbstractManifold, p, X, B::DefaultOrthogonalBasis) return get_coordinates_orthogonal(M, p, X, number_system(B)) end function get_coordinates_orthogonal(M::AbstractManifold, p, X, N) return get_coordinates_orthonormal(M, p, X, N) end function _get_coordinates(M::AbstractManifold, p, X, B::DefaultOrthonormalBasis) return get_coordinates_orthonormal(M, p, X, number_system(B)) end function get_coordinates_orthonormal(M::AbstractManifold, p, X, N) c = allocate_result(M, get_coordinates, p, X, DefaultOrthonormalBasis(N)) return get_coordinates_orthonormal!(M, c, p, X, N) end function _get_coordinates(M::AbstractManifold, p, X, B::DiagonalizingOrthonormalBasis) return get_coordinates_diagonalizing(M, p, X, B) end function get_coordinates_diagonalizing( M::AbstractManifold, p, X, B::DiagonalizingOrthonormalBasis, ) c = allocate_result(M, get_coordinates, p, X, B) return get_coordinates_diagonalizing!(M, c, p, X, B) end function _get_coordinates(M::AbstractManifold, p, X, B::CachedBasis) return get_coordinates_cached(M, number_system(M), p, X, B, number_system(B)) end function get_coordinates_cached( M::AbstractManifold, ::ComplexNumbers, p, X, B::CachedBasis, ::ComplexNumbers, ) return map(vb -> conj(inner(M, p, X, vb)), get_vectors(M, p, B)) end function get_coordinates_cached( M::AbstractManifold, ::𝔽, p, X, C::CachedBasis, ::RealNumbers, ) where {𝔽} return map(vb -> real(inner(M, p, X, vb)), get_vectors(M, p, C)) end function get_coordinates!(M::AbstractManifold, Y, p, X, B::AbstractBasis) return _get_coordinates!(M, Y, p, X, B) end function _get_coordinates!(M::AbstractManifold, Y, p, X, B::VeeOrthogonalBasis) return get_coordinates_vee!(M, Y, p, X, number_system(B)) end function get_coordinates_vee!(M::AbstractManifold, Y, p, X, N) return get_coordinates!(M, Y, p, X, DefaultOrthogonalBasis(N)) end function _get_coordinates!(M::AbstractManifold, Y, p, X, B::DefaultBasis) return get_coordinates_default!(M, Y, p, X, number_system(B)) end function get_coordinates_default!(M::AbstractManifold, Y, p, X, N) return get_coordinates!(M, Y, p, X, DefaultOrthogonalBasis(N)) end function _get_coordinates!(M::AbstractManifold, Y, p, X, B::DefaultOrthogonalBasis) return get_coordinates_orthogonal!(M, Y, p, X, number_system(B)) end function get_coordinates_orthogonal!(M::AbstractManifold, Y, p, X, N) return get_coordinates!(M, Y, p, X, DefaultOrthonormalBasis(N)) end function _get_coordinates!(M::AbstractManifold, Y, p, X, B::DefaultOrthonormalBasis) return get_coordinates_orthonormal!(M, Y, p, X, number_system(B)) end function get_coordinates_orthonormal! end function _get_coordinates!(M::AbstractManifold, Y, p, X, B::DiagonalizingOrthonormalBasis) return get_coordinates_diagonalizing!(M, Y, p, X, B) end function get_coordinates_diagonalizing! end function _get_coordinates!(M::AbstractManifold, Y, p, X, B::CachedBasis) return get_coordinates_cached!(M, number_system(M), Y, p, X, B, number_system(B)) end function get_coordinates_cached!( M::AbstractManifold, ::ComplexNumbers, Y, p, X, B::CachedBasis, ::ComplexNumbers, ) map!(vb -> conj(inner(M, p, X, vb)), Y, get_vectors(M, p, B)) return Y end function get_coordinates_cached!( M::AbstractManifold, ::𝔽, Y, p, X, C::CachedBasis, ::RealNumbers, ) where {𝔽} map!(vb -> real(inner(M, p, X, vb)), Y, get_vectors(M, p, C)) return Y end """ X = get_vector(M::AbstractManifold, p, c, B::AbstractBasis) Convert a one-dimensional vector of coefficients in a basis `B` of the tangent space at `p` on manifold `M` to a tangent vector `X` at `p`. Depending on the basis, `p` may not directly represent a point on the manifold. For example if a basis transported along a curve is used, `p` may be the coordinate along the curve. For the [`CachedBasis`](@ref) keep in mind that the reconstruction from [`get_coordinates`](@ref) requires either a dual basis or the cached basis to be selfdual, for example orthonormal See also: [`get_coordinates`](@ref), [`get_basis`](@ref) """ @inline function get_vector(M::AbstractManifold, p, c, B::AbstractBasis) return _get_vector(M, p, c, B) end @inline function _get_vector(M::AbstractManifold, p, c, B::VeeOrthogonalBasis) return get_vector_vee(M, p, c, number_system(B)) end @inline function get_vector_vee(M::AbstractManifold, p, c, N) return get_vector(M, p, c, DefaultOrthogonalBasis(N)) end @inline function _get_vector(M::AbstractManifold, p, c, B::DefaultBasis) return get_vector_default(M, p, c, number_system(B)) end @inline function get_vector_default(M::AbstractManifold, p, c, N) return get_vector(M, p, c, DefaultOrthogonalBasis(N)) end @inline function _get_vector(M::AbstractManifold, p, c, B::DefaultOrthogonalBasis) return get_vector_orthogonal(M, p, c, number_system(B)) end @inline function get_vector_orthogonal(M::AbstractManifold, p, c, N) return get_vector_orthonormal(M, p, c, N) end function _get_vector(M::AbstractManifold, p, c, B::DefaultOrthonormalBasis) return get_vector_orthonormal(M, p, c, number_system(B)) end function get_vector_orthonormal(M::AbstractManifold, p, c, N) B = DefaultOrthonormalBasis(N) Y = allocate_result(M, get_vector, p, c) return get_vector!(M, Y, p, c, B) end @inline function _get_vector(M::AbstractManifold, p, c, B::DiagonalizingOrthonormalBasis) return get_vector_diagonalizing(M, p, c, B) end function get_vector_diagonalizing( M::AbstractManifold, p, c, B::DiagonalizingOrthonormalBasis, ) Y = allocate_result(M, get_vector, p, c) return get_vector!(M, Y, p, c, B) end @inline function _get_vector(M::AbstractManifold, p, c, B::CachedBasis) return get_vector_cached(M, p, c, B) end _get_vector_cache_broadcast(::Any) = Val(true) function get_vector_cached(M::AbstractManifold, p, X, B::CachedBasis) # quite convoluted but: # 1) preserves the correct `eltype` # 2) guarantees a reasonable array type `Y` # (for example scalar * `SizedValidation` is an `SArray`) bvectors = get_vectors(M, p, B) if _get_vector_cache_broadcast(bvectors[1]) === Val(false) Xt = X[1] * bvectors[1] for i in 2:length(X) copyto!(Xt, Xt + X[i] * bvectors[i]) end else Xt = X[1] .* bvectors[1] for i in 2:length(X) Xt .+= X[i] .* bvectors[i] end end return Xt end @inline function get_vector!(M::AbstractManifold, Y, p, c, B::AbstractBasis) return _get_vector!(M, Y, p, c, B) end @inline function _get_vector!(M::AbstractManifold, Y, p, c, B::VeeOrthogonalBasis) return get_vector_vee!(M, Y, p, c, number_system(B)) end @inline get_vector_vee!(M, Y, p, c, N) = get_vector!(M, Y, p, c, DefaultOrthogonalBasis(N)) @inline function _get_vector!(M::AbstractManifold, Y, p, c, B::DefaultBasis) return get_vector_default!(M, Y, p, c, number_system(B)) end @inline function get_vector_default!(M::AbstractManifold, Y, p, c, N) return get_vector!(M, Y, p, c, DefaultOrthogonalBasis(N)) end @inline function _get_vector!(M::AbstractManifold, Y, p, c, B::DefaultOrthogonalBasis) return get_vector_orthogonal!(M, Y, p, c, number_system(B)) end @inline function get_vector_orthogonal!(M::AbstractManifold, Y, p, c, N) return get_vector!(M, Y, p, c, DefaultOrthonormalBasis(N)) end @inline function _get_vector!(M::AbstractManifold, Y, p, c, B::DefaultOrthonormalBasis) return get_vector_orthonormal!(M, Y, p, c, number_system(B)) end function get_vector_orthonormal! end @inline function _get_vector!( M::AbstractManifold, Y, p, c, B::DiagonalizingOrthonormalBasis, ) return get_vector_diagonalizing!(M, Y, p, c, B) end function get_vector_diagonalizing! end @inline function _get_vector!(M::AbstractManifold, Y, p, c, B::CachedBasis) return get_vector_cached!(M, Y, p, c, B) end function get_vector_cached!(M::AbstractManifold, Y, p, X, B::CachedBasis) # quite convoluted but: # 1) preserves the correct `eltype` # 2) guarantees a reasonable array type `Y` # (for example scalar * `SizedValidation` is an `SArray`) bvectors = get_vectors(M, p, B) return if _get_vector_cache_broadcast(bvectors[1]) === Val(false) Xt = X[1] * bvectors[1] copyto!(Y, Xt) for i in 2:length(X) copyto!(Y, Y + X[i] * bvectors[i]) end return Y else Xt = X[1] .* bvectors[1] copyto!(Y, Xt) for i in 2:length(X) Y .+= X[i] .* bvectors[i] end return Y end end """ get_vectors(M::AbstractManifold, p, B::AbstractBasis) Get the basis vectors of basis `B` of the tangent space at point `p`. """ function get_vectors(M::AbstractManifold, p, B::AbstractBasis) return _get_vectors(M, p, B) end function _get_vectors(::AbstractManifold, ::Any, B::CachedBasis) return _get_vectors(B) end _get_vectors(B::CachedBasis{𝔽,<:AbstractBasis,<:AbstractArray}) where {𝔽} = B.data function _get_vectors(B::CachedBasis{𝔽,<:AbstractBasis,<:DiagonalizingBasisData}) where {𝔽} return B.data.vectors end @doc raw""" gram_schmidt(M::AbstractManifold{𝔽}, p, B::AbstractBasis{𝔽}) where {𝔽} gram_schmidt(M::AbstractManifold, p, V::AbstractVector) Compute an ONB in the tangent space at `p` on the [`AbstractManifold`](@ref} `M` from either an [`AbstractBasis`](@ref) basis ´B´ or a set of (at most) [`manifold_dimension`](@ref)`(M)` many vectors. Note that this method requires the manifold and basis to work on the same [`AbstractNumbers`](@ref) `𝔽`, i.e. with real coefficients. The method always returns a basis, i.e. linearly dependent vectors are removed. # Keyword arguments * `warn_linearly_dependent` (`false`) – warn if the basis vectors are not linearly independent * `skip_linearly_dependent` (`false`) – whether to just skip (`true`) a vector that is linearly dependent to the previous ones or to stop (`false`, default) at that point * `return_incomplete_set` (`false`) – throw an error if the resulting set of vectors is not a basis but contains less vectors further keyword arguments can be passed to set the accuracy of the independence test. Especially `atol` is raised slightly by default to `atol = 5*1e-16`. # Return value When a set of vectors is orthonormalized a set of vectors is returned. When an [`AbstractBasis`](@ref) is orthonormalized, a [`CachedBasis`](@ref) is returned. """ function gram_schmidt( M::AbstractManifold{𝔽}, p, B::AbstractBasis{𝔽}; warn_linearly_dependent = false, return_incomplete_set = false, skip_linearly_dependent = false, kwargs..., ) where {𝔽} V = gram_schmidt( M, p, get_vectors(M, p, B); warn_linearly_dependent = warn_linearly_dependent, skip_linearly_dependent = skip_linearly_dependent, return_incomplete_set = return_incomplete_set, kwargs..., ) return CachedBasis(GramSchmidtOrthonormalBasis(𝔽), V) end function gram_schmidt( M::AbstractManifold, p, V::AbstractVector; atol = eps(number_eltype(first(V))), warn_linearly_dependent = false, return_incomplete_set = false, skip_linearly_dependent = false, kwargs..., ) N = length(V) Ξ = empty(V) dim = manifold_dimension(M) N < dim && @warn "Input only has $(N) vectors, but manifold dimension is $(dim)." @inbounds for n in 1:N Ξₙ = copy(M, p, V[n]) for k in 1:length(Ξ) Ξₙ .-= real(inner(M, p, Ξ[k], Ξₙ)) .* Ξ[k] end nrmΞₙ = norm(M, p, Ξₙ) if isapprox(nrmΞₙ / dim, 0; atol = atol, kwargs...) warn_linearly_dependent && @warn "Input vector $(n) lies in the span of the previous ones." !skip_linearly_dependent && throw( ErrorException("Input vector $(n) lies in the span of the previous ones."), ) else push!(Ξ, Ξₙ ./ nrmΞₙ) end if length(Ξ) == dim (n < N) && @warn "More vectors ($(N)) entered than the dimension of the manifold ($dim). All vectors after the $n th ignored." return Ξ end end if return_incomplete_set # if we rech this point - length(Ξ) < dim return Ξ else throw( ErrorException( "gram_schmidt found only $(length(Ξ)) orthonormal basis vectors, but manifold dimension is $(dim).", ), ) end end @doc raw""" hat(M::AbstractManifold, p, Xⁱ) Given a basis ``e_i`` on the tangent space at a point `p` and tangent component vector ``X^i ∈ ℝ``, compute the equivalent vector representation ``X=X^i e_i``, where Einstein summation notation is used: ````math ∧ : X^i ↦ X^i e_i ```` For array manifolds, this converts a vector representation of the tangent vector to an array representation. The [`vee`](@ref) map is the `hat` map's inverse. """ @inline hat(M::AbstractManifold, p, X) = get_vector(M, p, X, VeeOrthogonalBasis(ℝ)) @inline hat!(M::AbstractManifold, Y, p, X) = get_vector!(M, Y, p, X, VeeOrthogonalBasis(ℝ)) """ number_of_coordinates(M::AbstractManifold, B::AbstractBasis) number_of_coordinates(M::AbstractManifold, ::𝔾) Compute the number of coordinates in basis of field type `𝔾` on a manifold `M`. This also corresponds to the number of vectors represented by `B`, or stored within `B` in case of a [`CachedBasis`](@ref). """ function number_of_coordinates(M::AbstractManifold, ::AbstractBasis{𝔾}) where {𝔾} return number_of_coordinates(M, 𝔾) end function number_of_coordinates(M::AbstractManifold, f::𝔾) where {𝔾} return div(manifold_dimension(M), real_dimension(f)) end """ number_system(::AbstractBasis) The number system for the vectors of the given basis. """ number_system(::AbstractBasis{𝔽}) where {𝔽} = 𝔽 """ requires_caching(B::AbstractBasis) Return whether basis `B` can be used in [`get_vector`](@ref) and [`get_coordinates`](@ref) without calling [`get_basis`](@ref) first. """ requires_caching(::AbstractBasis) = true requires_caching(::CachedBasis) = false requires_caching(::DefaultBasis) = false requires_caching(::DefaultOrthogonalBasis) = false requires_caching(::DefaultOrthonormalBasis) = false function _show_basis_vector(io::IO, X; pre = "", head = "") sX = sprint(show, "text/plain", X, context = io, sizehint = 0) sX = replace(sX, '\n' => "\n$(pre)") return print(io, head, pre, sX) end function _show_basis_vector_range(io::IO, Ξ, range; pre = "", sym = "E") for i in range _show_basis_vector(io, Ξ[i]; pre = pre, head = "\n$(sym)$(i) =\n") end return nothing end function _show_basis_vector_range_noheader(io::IO, Ξ; max_vectors = 4, pre = "", sym = "E") nv = length(Ξ) return if nv ≤ max_vectors _show_basis_vector_range(io, Ξ, 1:nv; pre = " ", sym = " E") else halfn = div(max_vectors, 2) _show_basis_vector_range(io, Ξ, 1:halfn; pre = " ", sym = " E") print(io, "\n ⋮") _show_basis_vector_range(io, Ξ, (nv - halfn + 1):nv; pre = " ", sym = " E") end end function show(io::IO, ::DefaultBasis{𝔽}) where {𝔽} return print(io, "DefaultBasis($(𝔽))") end function show(io::IO, ::DefaultOrthogonalBasis{𝔽}) where {𝔽} return print(io, "DefaultOrthogonalBasis($(𝔽))") end function show(io::IO, ::DefaultOrthonormalBasis{𝔽}) where {𝔽} return print(io, "DefaultOrthonormalBasis($(𝔽))") end function show(io::IO, ::GramSchmidtOrthonormalBasis{𝔽}) where {𝔽} return print(io, "GramSchmidtOrthonormalBasis($(𝔽))") end function show(io::IO, ::ProjectedOrthonormalBasis{method,𝔽}) where {method,𝔽} return print(io, "ProjectedOrthonormalBasis($(repr(method)), $(𝔽))") end function show(io::IO, ::MIME"text/plain", onb::DiagonalizingOrthonormalBasis) println( io, "DiagonalizingOrthonormalBasis($(number_system(onb))) with eigenvalue 0 in direction:", ) sk = sprint(show, "text/plain", onb.frame_direction, context = io, sizehint = 0) sk = replace(sk, '\n' => "\n ") return print(io, sk) end function show( io::IO, ::MIME"text/plain", B::CachedBasis{𝔽,T,D}, ) where {𝔽,T<:AbstractBasis,D} try vectors = _get_vectors(B) print( io, "Cached basis of type $T with $(length(vectors)) basis vector$(length(vectors) == 1 ? "" : "s"):", ) return _show_basis_vector_range_noheader( io, vectors; max_vectors = 4, pre = " ", sym = " E", ) catch e # in case _get_vectors(B) is not defined print(io, "Cached basis of type $T") end end function show( io::IO, ::MIME"text/plain", B::CachedBasis{𝔽,T,D}, ) where {𝔽,T<:DiagonalizingOrthonormalBasis,D<:DiagonalizingBasisData} vectors = _get_vectors(B) nv = length(vectors) sk = sprint(show, "text/plain", T(B.data.frame_direction), context = io, sizehint = 0) sk = replace(sk, '\n' => "\n ") print(io, sk) println(io, "\nand $(nv) basis vector$(nv == 1 ? "" : "s").") print(io, "Basis vectors:") _show_basis_vector_range_noheader(io, vectors; max_vectors = 4, pre = " ", sym = " E") println(io, "\nEigenvalues:") sk = sprint(show, "text/plain", B.data.eigenvalues, context = io, sizehint = 0) sk = replace(sk, '\n' => "\n ") return print(io, ' ', sk) end @doc raw""" vee(M::AbstractManifold, p, X) Given a basis ``e_i`` on the tangent space at a point `p` and tangent vector `X`, compute the vector components ``X^i ∈ ℝ``, such that ``X = X^i e_i``, where Einstein summation notation is used: ````math \vee : X^i e_i ↦ X^i ```` For array manifolds, this converts an array representation of the tangent vector to a vector representation. The [`hat`](@ref) map is the `vee` map's inverse. """ vee(M::AbstractManifold, p, X) = get_coordinates(M, p, X, VeeOrthogonalBasis(ℝ)) function vee!(M::AbstractManifold, Y, p, X) return get_coordinates!(M, Y, p, X, VeeOrthogonalBasis(ℝ)) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
25422
# # Base pass-ons # manifold_dimension(M::AbstractDecoratorManifold) = manifold_dimension(base_manifold(M)) # # Traits - each passed to a function that is properly documented # """ IsEmbeddedManifold <: AbstractTrait A trait to declare an [`AbstractManifold`](@ref) as an embedded manifold. """ struct IsEmbeddedManifold <: AbstractTrait end """ IsIsometricManifoldEmbeddedManifold <: AbstractTrait A Trait to determine whether an [`AbstractDecoratorManifold`](@ref) `M` is an isometrically embedded manifold. It is a special case of the [`IsEmbeddedManifold`](@ref) trait, i.e. it has all properties of this trait. Here, additionally, netric related functions like [`inner`](@ref) and [`norm`](@ref) are passed to the embedding """ struct IsIsometricEmbeddedManifold <: AbstractTrait end parent_trait(::IsIsometricEmbeddedManifold) = IsEmbeddedManifold() """ IsEmbeddedSubmanifold <: AbstractTrait A trait to determine whether an [`AbstractDecoratorManifold`](@ref) `M` is an embedded submanifold. It is a special case of the [`IsIsometricEmbeddedManifold`](@ref) trait, i.e. it has all properties of this trait. In this trait, additionally to the isometric embedded manifold, all retractions, inverse retractions, and vectors transports, especially [`exp`](@ref), [`log`](@ref), and [`parallel_transport_to`](@ref) are passed to the embedding. """ struct IsEmbeddedSubmanifold <: AbstractTrait end parent_trait(::IsEmbeddedSubmanifold) = IsIsometricEmbeddedManifold() # # Generic Decorator functions @doc raw""" decorated_manifold(M::AbstractDecoratorManifold) For a manifold `M` that is decorated with some properties, this function returns the manifold without that manifold, i.e. the manifold that _was decorated_. """ decorated_manifold(M::AbstractDecoratorManifold) decorated_manifold(M::AbstractManifold) = M @trait_function decorated_manifold(M::AbstractDecoratorManifold) # # Implemented Traits function base_manifold(M::AbstractDecoratorManifold, depth::Val{N} = Val(-1)) where {N} # end recursion I: depth is 0 N == 0 && return M # end recursion II: M is equal to its decorated manifold (avoid stack overflow) D = decorated_manifold(M) M === D && return M # indefinite many steps for negative values of M N < 0 && return base_manifold(D, depth) # reduce depth otherwise return base_manifold(D, Val(N - 1)) end # # Embedded specifix functions. """ get_embedding(M::AbstractDecoratorManifold) get_embedding(M::AbstractDecoratorManifold, p) Specify the embedding of a manifold that has abstract decorators. the embedding might depend on a point representation, where different point representations are distinguished as subtypes of [`AbstractManifoldPoint`](@ref). A unique or default representation might also just be an `AbstractArray`. """ get_embedding(M::AbstractDecoratorManifold, p) = get_embedding(M) # # ----------------------------------------------------------------------------------------- # This is one new function # Introduction and default fallbacks could become a macro? # Introduce trait @inline function allocate_result( M::AbstractDecoratorManifold, f::TF, x::Vararg{Any,N}, ) where {TF,N} return allocate_result(trait(allocate_result, M, f, x...), M, f, x...) end # disambiguation @invoke_maker 1 AbstractManifold allocate_result( M::AbstractDecoratorManifold, f::typeof(get_coordinates), p, X, B::AbstractBasis, ) # Introduce fallback @inline function allocate_result( ::EmptyTrait, M::AbstractManifold, f::TF, x::Vararg{Any,N}, ) where {TF,N} return invoke( allocate_result, Tuple{AbstractManifold,typeof(f),typeof(x).parameters...}, M, f, x..., ) end # Introduce automatic forward @inline function allocate_result( t::TraitList, M::AbstractManifold, f::TF, x::Vararg{Any,N}, ) where {TF,N} return allocate_result(next_trait(t), M, f, x...) end function allocate_result( ::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, f::typeof(embed), x::Vararg{Any,N}, ) where {N} T = allocate_result_type(get_embedding(M, x[1]), f, x) return allocate(M, x[1], T, representation_size(get_embedding(M, x[1]))) end function allocate_result( ::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, f::typeof(project), x::Vararg{Any,N}, ) where {N} T = allocate_result_type(get_embedding(M, x[1]), f, x) return allocate(M, x[1], T, representation_size(M)) end @inline function allocate_result( ::TraitList{IsExplicitDecorator}, M::AbstractDecoratorManifold, f::TF, x::Vararg{Any,N}, ) where {TF,N} return allocate_result(decorated_manifold(M), f, x...) end @trait_function change_metric(M::AbstractDecoratorManifold, G::AbstractMetric, X, p) @trait_function change_metric!(M::AbstractDecoratorManifold, Y, G::AbstractMetric, X, p) @trait_function change_representer(M::AbstractDecoratorManifold, G::AbstractMetric, X, p) @trait_function change_representer!( M::AbstractDecoratorManifold, Y, G::AbstractMetric, X, p, ) # Introduce Deco Trait | automatic foward | fallback @trait_function check_size(M::AbstractDecoratorManifold, p) # Embedded function check_size(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p) mpe = check_size(get_embedding(M, p), embed(M, p)) if mpe !== nothing return ManifoldDomainError( "$p is not a point on $M because it is not a valid point in its embedding.", mpe, ) end return nothing end # Introduce Deco Trait | automatic foward | fallback @trait_function check_size(M::AbstractDecoratorManifold, p, X) # Embedded function check_size(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p, X) mpe = check_size(get_embedding(M, p), embed(M, p), embed(M, p, X)) if mpe !== nothing return ManifoldDomainError( "$X is not a tangent vector at $p on $M because it is not a valid tangent vector in its embedding.", mpe, ) end return nothing end # Introduce Deco Trait | automatic foward | fallback @trait_function copyto!(M::AbstractDecoratorManifold, q, p) @trait_function copyto!(M::AbstractDecoratorManifold, Y, p, X) # Introduce Deco Trait | automatic foward | fallback @trait_function embed(M::AbstractDecoratorManifold, p) # EmbeddedManifold function embed(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p) q = allocate_result(M, embed, p) return embed!(M, q, p) end # Introduce Deco Trait | automatic foward | fallback @trait_function embed!(M::AbstractDecoratorManifold, q, p) # EmbeddedManifold function embed!(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, q, p) return copyto!(M, q, p) end # Introduce Deco Trait | automatic foward | fallback @trait_function embed(M::AbstractDecoratorManifold, p, X) # EmbeddedManifold function embed(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p, X) q = allocate_result(M, embed, p, X) return embed!(M, q, p, X) end # Introduce Deco Trait | automatic foward | fallback @trait_function embed!(M::AbstractDecoratorManifold, Y, p, X) # EmbeddedManifold function embed!(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, Y, p, X) return copyto!(M, Y, p, X) end # Introduce Deco Trait | automatic foward | fallback @trait_function exp(M::AbstractDecoratorManifold, p, X) @trait_function exp(M::AbstractDecoratorManifold, p, X, t::Number) # EmbeddedSubManifold function exp(::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X) return exp(get_embedding(M, p), p, X) end function exp( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, t::Number, ) return exp(get_embedding(M, p), p, X, t) end # Introduce Deco Trait | automatic foward | fallback @trait_function exp!(M::AbstractDecoratorManifold, q, p, X) @trait_function exp!(M::AbstractDecoratorManifold, q, p, X, t::Number) # EmbeddedSubManifold function exp!(::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, q, p, X) return exp!(get_embedding(M, p), q, p, X) end function exp!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, q, p, X, t::Number, ) return exp!(get_embedding(M, p), q, p, X, t) end # Introduce Deco Trait | automatic foward | fallback @trait_function get_basis(M::AbstractDecoratorManifold, p, B::AbstractBasis) # Introduce Deco Trait | automatic foward | fallback @trait_function get_coordinates(M::AbstractDecoratorManifold, p, X, B::AbstractBasis) # Introduce Deco Trait | automatic foward | fallback @trait_function get_coordinates!(M::AbstractDecoratorManifold, Y, p, X, B::AbstractBasis) # Introduce Deco Trait | automatic foward | fallback @trait_function get_vector(M::AbstractDecoratorManifold, p, c, B::AbstractBasis) # Introduce Deco Trait | automatic foward | fallback @trait_function get_vector!(M::AbstractDecoratorManifold, Y, p, c, B::AbstractBasis) # Introduce Deco Trait | automatic foward | fallback @trait_function get_vectors(M::AbstractDecoratorManifold, p, B::AbstractBasis) @trait_function injectivity_radius(M::AbstractDecoratorManifold) function injectivity_radius( ::TraitList{IsIsometricEmbeddedManifold}, M::AbstractDecoratorManifold, ) return injectivity_radius(get_embedding(M)) end @trait_function injectivity_radius(M::AbstractDecoratorManifold, p) function injectivity_radius( ::TraitList{IsIsometricEmbeddedManifold}, M::AbstractDecoratorManifold, p, ) return injectivity_radius(get_embedding(M, p), p) end @trait_function injectivity_radius( M::AbstractDecoratorManifold, m::AbstractRetractionMethod, ) function injectivity_radius( ::TraitList{IsIsometricEmbeddedManifold}, M::AbstractDecoratorManifold, m::AbstractRetractionMethod, ) return injectivity_radius(get_embedding(M), m) end @trait_function injectivity_radius( M::AbstractDecoratorManifold, p, m::AbstractRetractionMethod, ) function injectivity_radius( ::TraitList{IsIsometricEmbeddedManifold}, M::AbstractDecoratorManifold, p, m::AbstractRetractionMethod, ) return injectivity_radius(get_embedding(M, p), p, m) end # Introduce Deco Trait | automatic foward | fallback @trait_function inner(M::AbstractDecoratorManifold, p, X, Y) # Isometric Embedded submanifold function inner( ::TraitList{IsIsometricEmbeddedManifold}, M::AbstractDecoratorManifold, p, X, Y, ) return inner(get_embedding(M, p), p, X, Y) end # Introduce Deco Trait | automatic foward | fallback @trait_function inverse_retract( M::AbstractDecoratorManifold, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) # Transparent for Submanifolds function inverse_retract( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) return inverse_retract(get_embedding(M, p), p, q, m) end # Introduce Deco Trait | automatic foward | fallback @trait_function inverse_retract!(M::AbstractDecoratorManifold, X, p, q) @trait_function inverse_retract!( M::AbstractDecoratorManifold, X, p, q, m::AbstractInverseRetractionMethod, ) function inverse_retract!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, X, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) return inverse_retract!(get_embedding(M, p), X, p, q, m) end @trait_function isapprox(M::AbstractDecoratorManifold, p, q; kwargs...) @trait_function isapprox(M::AbstractDecoratorManifold, p, X, Y; kwargs...) @trait_function is_flat(M::AbstractDecoratorManifold) # Introduce Deco Trait | automatic foward | fallback @trait_function is_point(M::AbstractDecoratorManifold, p; kwargs...) # Embedded function is_point( ::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p; error::Symbol = :none, kwargs..., ) # to be safe check_size first es = check_size(M, p) if es !== nothing (error === :error) && throw(es) s = "$(typeof(es)) with $(es)" (error === :info) && @info s (error === :warn) && @warn s return false end try pt = is_point(get_embedding(M, p), embed(M, p); error = error, kwargs...) !pt && return false # no error thrown (deactivated) but returned false -> return false catch e if e isa DomainError || e isa AbstractManifoldDomainError e = ManifoldDomainError( "$p is not a point on $M because it is not a valid point in its embedding.", e, ) end throw(e) #an error occured that we do not handle ourselves -> rethrow. end mpe = check_point(M, p; kwargs...) if mpe !== nothing (error === :error) && throw(mpe) # else: collect and info showerror io = IOBuffer() showerror(io, mpe) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s return false end return true end # Introduce Deco Trait | automatic foward | fallback @trait_function is_vector(M::AbstractDecoratorManifold, p, X, cbp::Bool = true; kwargs...) # EmbeddedManifold # I am not yet sure how to properly document this embedding behaviour here in a docstring. function is_vector( ::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p, X, check_base_point::Bool = true; error::Symbol = :none, kwargs..., ) es = check_size(M, p, X) if es !== nothing (error === :error) && throw(es) # else: collect and info showerror io = IOBuffer() showerror(io, es) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s return false end if check_base_point try ep = is_point(M, p; error = error, kwargs...) !ep && return false catch e if e isa DomainError || e isa AbstractManifoldDomainError ManifoldDomainError( "$X is not a tangent vector to $p on $M because $p is not a valid point on $p", e, ) end throw(e) end end try tv = is_vector( get_embedding(M, p), embed(M, p), embed(M, p, X), check_base_point; error = error, kwargs..., ) !tv && return false # no error thrown (deactivated) but returned false -> return false catch e if e isa DomainError || e isa AbstractManifoldDomainError e = ManifoldDomainError( "$X is not a tangent vector to $p on $M because it is not a valid tangent vector in its embedding.", e, ) end throw(e) end # Check (additional) local stuff mXe = check_vector(M, p, X; kwargs...) mXe === nothing && return true (error === :error) && throw(mXe) # else: collect and info showerror io = IOBuffer() showerror(io, mXe) s = String(take!(io)) (error === :info) && @info s (error === :warn) && @warn s return false end @trait_function norm(M::AbstractDecoratorManifold, p, X) function norm(::TraitList{IsIsometricEmbeddedManifold}, M::AbstractDecoratorManifold, p, X) return norm(get_embedding(M, p), p, X) end @trait_function log(M::AbstractDecoratorManifold, p, q) function log(::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, q) return log(get_embedding(M, p), p, q) end # Introduce Deco Trait | automatic foward | fallback @trait_function log!(M::AbstractDecoratorManifold, X, p, q) function log!(::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, X, p, q) return log!(get_embedding(M, p), X, p, q) end # Introduce Deco Trait | automatic foward | fallback @trait_function parallel_transport_along( M::AbstractDecoratorManifold, p, X, c::AbstractVector, ) # EmbeddedSubManifold function parallel_transport_along( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, c::AbstractVector, ) return parallel_transport_along(get_embedding(M, p), p, X, c) end # Introduce Deco Trait | automatic foward | fallback @trait_function parallel_transport_along!( M::AbstractDecoratorManifold, Y, p, X, c::AbstractVector, ) # EmbeddedSubManifold function parallel_transport_along!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, Y, p, X, c::AbstractVector, ) return parallel_transport_along!(get_embedding(M, p), Y, p, X, c) end # Introduce Deco Trait | automatic foward | fallback @trait_function parallel_transport_direction(M::AbstractDecoratorManifold, p, X, q) # EmbeddedSubManifold function parallel_transport_direction( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, q, ) return parallel_transport_direction(get_embedding(M, p), p, X, q) end # Introduce Deco Trait | automatic foward | fallback @trait_function parallel_transport_direction!(M::AbstractDecoratorManifold, Y, p, X, q) # EmbeddedSubManifold function parallel_transport_direction!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, Y, p, X, q, ) return parallel_transport_direction!(get_embedding(M, p), Y, p, X, q) end # Introduce Deco Trait | automatic foward | fallback @trait_function parallel_transport_to(M::AbstractDecoratorManifold, p, X, q) # EmbeddedSubManifold function parallel_transport_to( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, q, ) return parallel_transport_to(get_embedding(M, p), p, X, q) end # Introduce Deco Trait | automatic foward | fallback @trait_function parallel_transport_to!(M::AbstractDecoratorManifold, Y, p, X, q) # EmbeddedSubManifold function parallel_transport_to!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, Y, p, X, q, ) return parallel_transport_to!(get_embedding(M, p), Y, p, X, q) end # Introduce Deco Trait | automatic foward | fallback @trait_function project(M::AbstractDecoratorManifold, p) # Introduce Deco Trait | automatic foward | fallback @trait_function project!(M::AbstractDecoratorManifold, q, p) # Introduce Deco Trait | automatic foward | fallback @trait_function project(M::AbstractDecoratorManifold, p, X) # Introduce Deco Trait | automatic foward | fallback @trait_function project!(M::AbstractDecoratorManifold, Y, p, X) @trait_function Random.rand(M::AbstractDecoratorManifold; kwargs...) @trait_function Random.rand!(M::AbstractDecoratorManifold, p; kwargs...) @trait_function Random.rand(rng::AbstractRNG, M::AbstractDecoratorManifold; kwargs...) :() 2 @trait_function Random.rand!(rng::AbstractRNG, M::AbstractDecoratorManifold, p; kwargs...) :() 2 # Introduce Deco Trait | automatic foward | fallback @trait_function representation_size(M::AbstractDecoratorManifold) (no_empty,) # Isometric Embedded submanifold function representation_size(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold) return representation_size(get_embedding(M)) end function representation_size(::EmptyTrait, M::AbstractDecoratorManifold) return representation_size(decorated_manifold(M)) end # Introduce Deco Trait | automatic foward | fallback @trait_function retract( M::AbstractDecoratorManifold, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) @trait_function retract( M::AbstractDecoratorManifold, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) function retract( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return retract(get_embedding(M, p), p, X, m) end function retract( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return retract(get_embedding(M, p), p, X, t, m) end @trait_function retract!( M::AbstractDecoratorManifold, q, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) @trait_function retract!( M::AbstractDecoratorManifold, q, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) function retract!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, q, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return retract!(get_embedding(M, p), q, p, X, m) end function retract!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, q, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return retract!(get_embedding(M, p), q, p, X, t, m) end @trait_function vector_transport_along( M::AbstractDecoratorManifold, q, p, X, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) function vector_transport_along( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, c, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return vector_transport_along(get_embedding(M, p), p, X, c, m) end @trait_function vector_transport_along!( M::AbstractDecoratorManifold, Y, p, X, c::AbstractVector, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) function vector_transport_along!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, Y, p, X, c::AbstractVector, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return vector_transport_along!(get_embedding(M, p), Y, p, X, c, m) end @trait_function vector_transport_direction( M::AbstractDecoratorManifold, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) function vector_transport_direction( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return vector_transport_direction(get_embedding(M, p), p, X, d, m) end @trait_function vector_transport_direction!( M::AbstractDecoratorManifold, Y, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) function vector_transport_direction!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, Y, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return vector_transport_direction!(get_embedding(M, p), Y, p, X, d, m) end @trait_function vector_transport_to( M::AbstractDecoratorManifold, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) function vector_transport_to( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return vector_transport_to(get_embedding(M, p), p, X, q, m) end @trait_function vector_transport_to!( M::AbstractDecoratorManifold, Y, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) function vector_transport_to!( ::TraitList{IsEmbeddedSubmanifold}, M::AbstractDecoratorManifold, Y, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return vector_transport_to!(get_embedding(M, p), Y, p, X, q, m) end @trait_function Weingarten(M::AbstractDecoratorManifold, p, X, V) @trait_function Weingarten!(M::AbstractDecoratorManifold, Y, p, X, V) @trait_function zero_vector(M::AbstractDecoratorManifold, p) function zero_vector(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, p) return zero_vector(get_embedding(M, p), p) end @trait_function zero_vector!(M::AbstractDecoratorManifold, X, p) function zero_vector!(::TraitList{IsEmbeddedManifold}, M::AbstractDecoratorManifold, X, p) return zero_vector!(get_embedding(M, p), X, p) end # Trait recursion breaking # An unfortunate consequence of Julia's method recursion limitations # Add more traits and functions as needed for trait_type in [TraitList{IsEmbeddedManifold}, TraitList{IsEmbeddedSubmanifold}] @eval begin @next_trait_function $trait_type isapprox( M::AbstractDecoratorManifold, p, q; kwargs..., ) @next_trait_function $trait_type isapprox( M::AbstractDecoratorManifold, p, X, Y; kwargs..., ) end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
4214
""" AbstractManifoldDomainError <: Exception An absytract Case for Errors when checking validity of points/vectors on mainfolds """ abstract type AbstractManifoldDomainError <: Exception end @doc """ ApproximatelyError{V,S} <: Exception Store an error that occurs when two data structures, e.g. points or tangent vectors. # Fields * `val` amount the two approximate elements are apart – is set to `NaN` if this is not known * `msg` a message providing more detail about the performed test and why it failed. # Constructors ApproximatelyError(val::V, msg::S) where {V,S} Generate an Error with value `val` and message `msg`. ApproximatelyError(msg::S) where {S} Generate a message without a value (using `val=NaN` internally) and message `msg`. """ struct ApproximatelyError{V,S} <: Exception val::V msg::S end ApproximatelyError(msg::S) where {S} = ApproximatelyError{Float64,S}(NaN, msg) function Base.show(io::IO, ex::ApproximatelyError) isnan(ex.val) && return print(io, "ApproximatelyError(\"$(ex.msg)\")") return print(io, "ApproximatelyError($(ex.val), \"$(ex.msg)\")") end function Base.showerror(io::IO, ex::ApproximatelyError) isnan(ex.val) && return print(io, "ApproximatelyError\n$(ex.msg)\n") return print(io, "ApproximatelyError with $(ex.val)\n$(ex.msg)\n") end @doc """ CompnentError{I,E} <: Exception Store an error that occured in a component, where the additional `index` is stored. # Fields * `index::I` index where the error occured` * `error::E` error that occured. """ struct ComponentManifoldError{I,E} <: AbstractManifoldDomainError where {I,E<:Exception} index::I error::E end function ComponentManifoldError(i::I, e::E) where {I,E<:Exception} return ComponentManifoldError{I,E}(i, e) end @doc """ CompositeManifoldError{T} <: Exception A composite type to collect a set of errors that occured. Mainly used in conjunction with [`ComponentManifoldError`](@ref) to store a set of errors that occured. # Fields * `errors` a `Vector` of `<:Exceptions`. """ struct CompositeManifoldError{T} <: AbstractManifoldDomainError where {T<:Exception} errors::Vector{T} end CompositeManifoldError() = CompositeManifoldError{Exception}(Exception[]) function CompositeManifoldError(errors::Vector{T}) where {T<:Exception} return CompositeManifoldError{T}(errors) end isempty(c::CompositeManifoldError) = isempty(c.errors) length(c::CompositeManifoldError) = length(c.errors) function Base.show(io::IO, ex::ComponentManifoldError) return print(io, "ComponentManifoldError($(ex.index), $(ex.error))") end function Base.show(io::IO, ex::CompositeManifoldError) print(io, "CompositeManifoldError(") if !isempty(ex) print(io, "[") start = true for e in ex.errors show(io, e) print(io, ", ") end print(io, "]") end return print(io, ")") end function Base.showerror(io::IO, ex::ComponentManifoldError) print(io, "At #$(ex.index): ") return showerror(io, ex.error) end function Base.showerror(io::IO, ex::CompositeManifoldError) return if !isempty(ex) print(io, "CompositeManifoldError: ") showerror(io, ex.errors[1]) remaining = length(ex) - 1 if remaining > 0 print(io, string("\n\n...and ", remaining, " more error(s).\n")) end else print(io, "CompositeManifoldError()\n") end end """ OutOfInjectivityRadiusError An error thrown when a function (for example [`log`](@ref)arithmic map or [`inverse_retract`](@ref)) is given arguments outside of its [`injectivity_radius`](@ref). """ struct OutOfInjectivityRadiusError <: Exception end """ ManifoldDomainError{<:Exception} <: Exception An error to represent a nested (Domain) error on a manifold, for example if a point or tangent vector is invalid because its representation in some embedding is already invalid. """ struct ManifoldDomainError{E} <: AbstractManifoldDomainError where {E<:Exception} outer_text::String error::E end function Base.showerror(io::IO, ex::ManifoldDomainError) print(io, "ManifoldDomainError: $(ex.outer_text)\n") return showerror(io, ex.error) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
8626
@doc raw""" exp(M::AbstractManifold, p, X) exp(M::AbstractManifold, p, X, t::Number = 1) Compute the exponential map of tangent vector `X`, optionally scaled by `t`, at point `p` from the manifold [`AbstractManifold`](@ref) `M`, i.e. ```math \exp_p X = γ_{p,X}(1), ``` where ``γ_{p,X}`` is the unique geodesic starting in ``γ(0)=p`` such that ``\dot γ(0) = X``. See also [`shortest_geodesic`](@ref), [`retract`](@ref). """ function exp(M::AbstractManifold, p, X) q = allocate_result(M, exp, p, X) exp!(M, q, p, X) return q end function exp(M::AbstractManifold, p, X, t::Number) q = allocate_result(M, exp, p, X, t) exp!(M, q, p, X, t) return q end """ exp!(M::AbstractManifold, q, p, X) exp!(M::AbstractManifold, q, p, X, t::Number = 1) Compute the exponential map of tangent vector `X`, optionally scaled by `t`, at point `p` from the manifold [`AbstractManifold`](@ref) `M`. The result is saved to `q`. If you want to implement exponential map for your manifold, you should implement the method with `t`, that is `exp!(M::MyManifold, q, p, X, t::Number)`. See also [`exp`](@ref). """ exp!(M::AbstractManifold, q, p, X) exp!(M::AbstractManifold, q, p, X, t::Number) = exp!(M, q, p, t * X) @doc raw""" geodesic(M::AbstractManifold, p, X) -> Function Get the geodesic with initial point `p` and velocity `X` on the [`AbstractManifold`](@ref) `M`. A geodesic is a curve of zero acceleration. That is for the curve ``γ_{p,X}: I → \mathcal M``, with ``γ_{p,X}(0) = p`` and ``\dot γ_{p,X}(0) = X`` a geodesic further fulfills ```math ∇_{\dot γ_{p,X}(t)} \dot γ_{p,X}(t) = 0, ``` i.e. the curve is acceleration free with respect to the Riemannian metric. This yields, that the curve has constant velocity that is locally distance-minimizing. This function returns a function of (time) `t`. """ geodesic(M::AbstractManifold, p, X) = t -> exp(M, p, X, t) @doc raw""" geodesic(M::AbstractManifold, p, X, t::Real) Evaluate the geodesic ``γ_{p,X}: I → \mathcal M``, with ``γ_{p,X}(0) = p`` and ``\dot γ_{p,X}(0) = X`` a geodesic further fulfills ```math ∇_{\dot γ_{p,X}(t)} \dot γ_{p,X}(t) = 0, ``` at time `t`. """ geodesic(M::AbstractManifold, p, X, t::Real) = exp(M, p, X, t) @doc raw""" geodesic(M::AbstractManifold, p, X, T::AbstractVector) -> AbstractVector Evaluate the geodesic ``γ_{p,X}: I → \mathcal M``, with ``γ_{p,X}(0) = p`` and ``\dot γ_{p,X}(0) = X`` a geodesic further fulfills ```math ∇_{\dot γ_{p,X}(t)} \dot γ_{p,X}(t) = 0, ``` at time points `t` from `T`. """ geodesic(M::AbstractManifold, p, X, T::AbstractVector) = map(t -> exp(M, p, X, t), T) @doc raw""" geodesic!(M::AbstractManifold, p, X) -> Function Get the geodesic with initial point `p` and velocity `X` on the [`AbstractManifold`](@ref) `M`. A geodesic is a curve of zero acceleration. That is for the curve ``γ_{p,X}: I → \mathcal M``, with ``γ_{p,X}(0) = p`` and ``\dot γ_{p,X}(0) = X`` a geodesic further fulfills ```math ∇_{\dot γ_{p,X}(t)} \dot γ_{p,X}(t) = 0, ``` i.e. the curve is acceleration free with respect to the Riemannian metric. This yields that the curve has constant velocity and is locally distance-minimizing. This function returns a function `(q,t)` of (time) `t` that mutates `q``. """ geodesic!(M::AbstractManifold, p, X) = (q, t) -> exp!(M, q, p, X, t) @doc raw""" geodesic!(M::AbstractManifold, q, p, X, t::Real) Get the geodesic with initial point `p` and velocity `X` on the [`AbstractManifold`](@ref) `M`. A geodesic is a curve of zero acceleration. That is for the curve ``γ_{p,X}: I → \mathcal M``, with ``γ_{p,X}(0) = p`` and ``\dot γ_{p,X}(0) = X`` a geodesic further fulfills ```math ∇_{\dot γ_{p,X}(t)} \dot γ_{p,X}(t) = 0, ``` i.e. the curve is acceleration free with respect to the Riemannian metric. This function evaluates the geodeic at `t` in place of `q`. """ geodesic!(M::AbstractManifold, q, p, X, t::Real) = exp!(M, q, p, X, t) @doc raw""" geodesic!(M::AbstractManifold, Q, p, X, T::AbstractVector) -> AbstractVector Get the geodesic with initial point `p` and velocity `X` on the [`AbstractManifold`](@ref) `M`. A geodesic is a curve of zero acceleration. That is for the curve ``γ_{p,X}: I → \mathcal M``, with ``γ_{p,X}(0) = p`` and ``\dot γ_{p,X}(0) = X`` a geodesic further fulfills ```math ∇_{\dot γ_{p,X}(t)} \dot γ_{p,X}(t) = 0, ``` i.e. the curve is acceleration free with respect to the Riemannian metric. This function evaluates the geodeic at time points `t` fom `T` in place of `Q`. """ function geodesic!(M::AbstractManifold, Q, p, X, T::AbstractVector) for (q, t) in zip(Q, T) exp!(M, q, p, X, t) end return Q end """ log(M::AbstractManifold, p, q) Compute the logarithmic map of point `q` at base point `p` on the [`AbstractManifold`](@ref) `M`. The logarithmic map is the inverse of the [`exp`](@ref)onential map. Note that the logarithmic map might not be globally defined. See also [`inverse_retract`](@ref). """ function log(M::AbstractManifold, p, q) X = allocate_result(M, log, p, q) log!(M, X, p, q) return X end """ log!(M::AbstractManifold, X, p, q) Compute the logarithmic map of point `q` at base point `p` on the [`AbstractManifold`](@ref) `M`. The result is saved to `X`. The logarithmic map is the inverse of the [`exp!`](@ref)onential map. Note that the logarithmic map might not be globally defined. see also [`log`](@ref) and [`inverse_retract!`](@ref), """ log!(M::AbstractManifold, X, p, q) @doc raw""" shortest_geodesic(M::AbstractManifold, p, q) -> Function Get a [`geodesic`](@ref) $γ_{p,q}(t)$ whose length is the shortest path between the points `p`and `q`, where $γ_{p,q}(0)=p$ and $γ_{p,q}(1)=q$. When there are multiple shortest geodesics, a deterministic choice will be returned. This function returns a function of time, which may be a `Real` or an `AbstractVector`. """ shortest_geodesic(M::AbstractManifold, p, q) = geodesic(M, p, log(M, p, q)) @doc raw""" shortest_geodesic(M::AabstractManifold, p, q, t::Real) Evaluate a [`geodesic`](@ref) $γ_{p,q}(t)$ whose length is the shortest path between the points `p`and `q`, where $γ_{p,q}(0)=p$ and $γ_{p,q}(1)=q$ at time `t`. When there are multiple shortest geodesics, a deterministic choice will be returned. """ shortest_geodesic(M::AbstractManifold, p, q, t::Real) = geodesic(M, p, log(M, p, q), t) @doc raw""" shortest_geodesic(M::AbstractManifold, p, q, T::AbstractVector) -> AbstractVector Evaluate a [`geodesic`](@ref) $γ_{p,q}(t)$ whose length is the shortest path between the points `p`and `q`, where $γ_{p,q}(0)=p$ and $γ_{p,q}(1)=q$ at time points `T`. When there are multiple shortest geodesics, a deterministic choice will be returned. """ function shortest_geodesic(M::AbstractManifold, p, q, T::AbstractVector) return geodesic(M, p, log(M, p, q), T) end @doc raw""" shortest_geodesic!(M::AbstractManifold, p, q) -> Function Get a [`geodesic`](@ref) $γ_{p,q}(t)$ whose length is the shortest path between the points `p`and `q`, where $γ_{p,q}(0)=p$ and $γ_{p,q}(1)=q$. When there are multiple shortest geodesics, a deterministic choice will be returned. This function returns a function `(r,t) -> ... ` of time `t` which works in place of `r`. Further variants shortest_geodesic!(M::AabstractManifold, r, p, q, t::Real) shortest_geodesic!(M::AbstractManifold, R, p, q, T::AbstractVector) -> AbstractVector mutate (and return) the point `r` and the vector of points `R`, respectively, returning the point at time `t` or points at times `t` in `T` along the shortest [`geodesic`](@ref). """ shortest_geodesic!(M::AbstractManifold, p, q) = geodesic!(M, p, log(M, p, q)) @doc raw""" shortest_geodesic!(M::AabstractManifold, r, p, q, t::Real) Evaluate a [`geodesic`](@ref) $γ_{p,q}(t)$ whose length is the shortest path between the points `p`and `q`, where $γ_{p,q}(0)=p$ and $γ_{p,q}(1)=q$ at `t` in place of `r`. When there are multiple shortest geodesics, a deterministic choice will be taken. """ function shortest_geodesic!(M::AbstractManifold, r, p, q, t::Real) return geodesic!(M, r, p, log(M, p, q), t) end @doc raw""" shortest_geodesic!(M::AbstractManifold, R, p, q, T::AbstractVector) -> AbstractVector Evaluate a [`geodesic`](@ref) $γ_{p,q}(t)$ whose length is the shortest path between the points `p`and `q`, where $γ_{p,q}(0)=p$ and $γ_{p,q}(1)=q$ at all `t` from `T` in place of `R`. When there are multiple shortest geodesics, a deterministic choice will be taken. """ function shortest_geodesic!(M::AbstractManifold, R, p, q, T::AbstractVector) return geodesic!(M, R, p, log(M, p, q), T) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
2688
""" AbstractManifold{𝔽} A type to represent a (Riemannian) manifold. The [`AbstractManifold`](@ref) is a central type of this interface. It allows to distinguish different implementations of functions like the [`exp`](@ref)onential and [`log`](@ref)arithmic map for different manifolds. Usually, the manifold is the first parameter in any of these functions within `ManifoldsBase.jl`. Based on these, say “elementary” functions, as the two mentioned above, more general functions are built, for example the [`shortest_geodesic`](@ref) and the [`geodesic`](@ref). These should only be overwritten (reimplemented) if for a certain manifold specific, more efficient implementations are possible, that do not just call the elementary functions. The [`AbstractManifold`] is parametrized by [`AbstractNumbers`](@ref) to distinguish for example real (ℝ) and complex (ℂ) manifolds. For subtypes the preferred order of parameters is: size and simple value parameters, followed by the [`AbstractNumbers`](@ref) `field`, followed by data type parameters, which might depend on the abstract number field type. """ abstract type AbstractManifold{𝔽} end """ AbstractManifoldPoint Type for a point on a manifold. While an [`AbstractManifold`](@ref) does not necessarily require this type, for example when it is implemented for `Vector`s or `Matrix` type elements, this type can be used either * for more complicated representations, * semantic verification, or * when dispatching on different representations of points on a manifold. Since semantic verification and different representations usually might still only store a matrix internally, it is possible to use [`@manifold_element_forwards`](@ref) and [`@default_manifold_fallbacks`](@ref) to reduce implementation overhead. """ abstract type AbstractManifoldPoint end """ TypeParameter{T} Represents numeric parameters of a manifold type as type parameters, allowing for static specialization of methods. """ struct TypeParameter{T} end TypeParameter(t::NTuple) = TypeParameter{Tuple{t...}}() get_parameter(::TypeParameter{T}) where {T} = tuple(T.parameters...) get_parameter(P) = P """ wrap_type_parameter(parameter::Symbol, data) Wrap `data` in `TypeParameter` if `parameter` is `:type` or return `data` unchanged if `parameter` is `:field`. Intended for use in manifold constructors, see [`DefaultManifold`](@ref) for an example. """ @inline function wrap_type_parameter(parameter::Symbol, data) if parameter === :field return data elseif parameter === :type TypeParameter(data) else throw(ArgumentError("Parameter can be either :field or :type. Given: $parameter")) end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
3682
@doc raw""" AbstractMetric Abstract type for the pseudo-Riemannian metric tensor ``g``, a family of smoothly varying inner products on the tangent space. See [`inner`](@ref). # Functor (metric::Metric)(M::AbstractManifold) (metric::Metric)(M::MetricManifold) Generate the `MetricManifold` that wraps the manifold `M` with given `metric`. This works for both a variable containing the metric as well as a subtype `T<:AbstractMetric`, where a zero parameter constructor `T()` is availabe. If `M` is already a metric manifold, the inner manifold with the new `metric` is returned. """ abstract type AbstractMetric end @doc raw""" RiemannianMetric <: AbstractMetric Abstract type for Riemannian metrics, a family of positive definite inner products. The positive definite property means that for ``X ∈ T_p \mathcal M``, the inner product ``g(X, X) > 0`` whenever ``X`` is not the zero vector. """ abstract type RiemannianMetric <: AbstractMetric end """ EuclideanMetric <: RiemannianMetric A general type for any manifold that employs the Euclidean Metric, for example the [`Euclidean`](https://juliamanifolds.github.io/Manifolds.jl/latest/manifolds/euclidean.html) manifold itself, or the [`Sphere`](https://juliamanifolds.github.io/Manifolds.jl/latest/manifolds/sphere.html), where every tangent space (as a plane in the embedding) uses this metric (in the embedding). Since the metric is independent of the field type, this metric is also used for the Hermitian metrics, i.e. metrics that are analogous to the `EuclideanMetric` but where the field type of the manifold is `ℂ`. This metric is the default metric for example for the [`Euclidean`](https://juliamanifolds.github.io/Manifolds.jl/latest/manifolds/euclidean.html) manifold. """ struct EuclideanMetric <: RiemannianMetric end @doc raw""" change_metric(M::AbstractcManifold, G2::AbstractMetric, p, X) On the [`AbstractManifold`](@ref) `M` with implicitly given metric ``g_1`` and a second [`AbstractMetric`](@ref) ``g_2`` this function performs a change of metric in the sense that it returns the tangent vector ``Z=BX`` such that the linear map ``B`` fulfills ```math g_2(Y_1,Y_2) = g_1(BY_1,BY_2) \quad \text{for all } Y_1, Y_2 ∈ T_p\mathcal M. ``` """ function change_metric(M::AbstractManifold, G::AbstractMetric, p, X) Y = allocate_result(M, change_metric, X, p) # this way we allocate a tangent return change_metric!(M, Y, G, p, X) end @doc raw""" change_metric!(M::AbstractcManifold, Y, G2::AbstractMetric, p, X) Compute the [`change_metric`](@ref) in place of `Y`. """ change_metric!(M::AbstractManifold, Y, G::AbstractMetric, p, X) @doc raw""" change_representer(M::AbstractManifold, G2::AbstractMetric, p, X) Convert the representer `X` of a linear function (in other words a cotangent vector at `p`) in the tangent space at `p` on the [`AbstractManifold`](@ref) `M` given with respect to the [`AbstractMetric`](@ref) `G2` into the representer with respect to the (implicit) metric of `M`. In order to convert `X` into the representer with respect to the (implicitly given) metric ``g_1`` of `M`, we have to find the conversion function ``c: T_p\mathcal M \to T_p\mathcal M`` such that ```math g_2(X,Y) = g_1(c(X),Y) ``` """ function change_representer(M::AbstractManifold, G::AbstractMetric, p, X) Y = allocate_result(M, change_representer, X, p) # this way we allocate a tangent return change_representer!(M, Y, G, p, X) end @doc raw""" change_representer!(M::AbstractcManifold, Y, G2::AbstractMetric, p, X) Compute the [`change_metric`](@ref) in place of `Y`. """ change_representer!(M::AbstractManifold, Y, G::AbstractMetric, p, X)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
12061
@doc raw""" AbstractDecoratorManifold{𝔽} <: AbstractManifold{𝔽} Declare a manifold to be an abstract decorator. A manifold which is a subtype of is a __decorated manifold__, i.e. has * certain additional properties or * delegates certain properties to other manifolds. Most prominently, a manifold might be an embedded manifold, i.e. points on a manifold ``\mathcal M`` are represented by (some, maybe not all) points on another manifold ``\mathcal N``. Depending on the type of embedding, several functions are dedicated to the embedding. For example if the embedding is isometric, then the [`inner`](@ref) does not have to be implemented for ``\mathcal M`` but can be automatically implemented by deligation to ``\mathcal N``. This is modelled by the `AbstractDecoratorManifold` and traits. These are mapped to functions, which determine the types of transparencies. """ abstract type AbstractDecoratorManifold{𝔽} <: AbstractManifold{𝔽} end """ AbstractTrait An abstract trait type to build a sequence of traits """ abstract type AbstractTrait end """ EmptyTrait <: AbstractTrait A Trait indicating that no feature is present. """ struct EmptyTrait <: AbstractTrait end """ IsExplicitDecorator <: AbstractTrait Specify that a certain type should dispatch per default to its [`decorated_manifold`](@ref). !!! note Any decorator _behind_ this decorator might not have any effect, since the function dispatch is moved to its field at this point. Therefore this decorator should always be _last_ in the [`TraitList`](@ref). """ struct IsExplicitDecorator <: AbstractTrait end """ TraitList <: AbstractTrait Combine two traits into a combined trait. Note that this introduces a preceedence. the first of the traits takes preceedence if a trait is implemented for both functions. # Constructor TraitList(head::AbstractTrait, tail::AbstractTrait) """ struct TraitList{T1<:AbstractTrait,T2<:AbstractTrait} <: AbstractTrait head::T1 tail::T2 end function Base.show(io::IO, t::TraitList) return print(io, "TraitList(", t.head, ", ", t.tail, ")") end """ active_traits(f, args...) Return the list of traits applicable to the given call of function `f``. This function should be overloaded for specific function calls. """ @inline active_traits(f, args...) = EmptyTrait() """ merge_traits(t1, t2, trest...) Merge two traits into a nested list of traits. Note that this takes trait preceedence into account, i.e. `t1` takes preceedence over `t2` is any operations. It always returns either ab [`EmptyTrait`](@ref) or a [`TraitList`](@ref). This means that for * one argument it just returns the trait itself if it is list-like, or wraps the trait in a single-element list otherwise, * two arguments that are list-like, it merges them, * two arguments of which only the first one is list-like and the second one is not, it appends the second argument to the list, * two arguments of which only the second one is list-like, it prepends the first one to the list, * two arguments of which none is list-like, it creates a two-element list. * more than two arguments it recursively performs a left-assiciative recursive reduction on arguments, that is for example `merge_traits(t1, t2, t3)` is equivalent to `merge_traits(merge_traits(t1, t2), t3)` """ merge_traits() @inline merge_traits() = EmptyTrait() @inline merge_traits(t::EmptyTrait) = t @inline merge_traits(t::TraitList) = t @inline merge_traits(t::AbstractTrait) = TraitList(t, EmptyTrait()) @inline merge_traits(t1::EmptyTrait, ::EmptyTrait) = t1 @inline merge_traits(::EmptyTrait, t2::AbstractTrait) = merge_traits(t2) @inline merge_traits(t1::AbstractTrait, t2::EmptyTrait) = TraitList(t1, t2) @inline merge_traits(t1::AbstractTrait, t2::TraitList) = TraitList(t1, t2) @inline merge_traits(::EmptyTrait, t2::TraitList) = t2 @inline function merge_traits(t1::AbstractTrait, t2::AbstractTrait) return TraitList(t1, TraitList(t2, EmptyTrait())) end @inline merge_traits(t1::TraitList, ::EmptyTrait) = t1 @inline function merge_traits(t1::TraitList, t2::AbstractTrait) return TraitList(t1.head, merge_traits(t1.tail, t2)) end @inline function merge_traits(t1::TraitList, t2::TraitList) return TraitList(t1.head, merge_traits(t1.tail, t2)) end @inline function merge_traits( t1::AbstractTrait, t2::AbstractTrait, t3::AbstractTrait, trest::AbstractTrait..., ) return merge_traits(merge_traits(t1, t2), t3, trest...) end """ parent_trait(t::AbstractTrait) Return the parent trait for trait `t`, that is the more general trait whose behaviour it inherits as a fallback. """ @inline parent_trait(::AbstractTrait) = EmptyTrait() @inline function trait(f::TF, args...) where {TF} bt = active_traits(f, args...) return expand_trait(bt) end """ expand_trait(t::AbstractTrait) Expand given trait into an ordered [`TraitList`](@ref) list of traits with their parent traits obtained using [`parent_trait`](@ref). """ expand_trait(::AbstractTrait) @inline expand_trait(e::EmptyTrait) = e @inline expand_trait(t::AbstractTrait) = merge_traits(t, expand_trait(parent_trait(t))) @inline function expand_trait(t::TraitList) et1 = expand_trait(t.head) et2 = expand_trait(t.tail) return merge_traits(et1, et2) end """ next_trait(t::AbstractTrait) Return the next trait to consider, which by default is no following trait (i.e. [`EmptyTrait`](@ref)). Expecially for a a [`TraitList`](@ref) this function returns the (remaining) tail of the remaining traits. """ next_trait(::AbstractTrait) = EmptyTrait() @inline next_trait(t::TraitList) = t.tail #! format: off # turn formatting for for the following functions # due to the if with returns inside (formatter puts a return upfront the if) function _split_signature(sig::Expr) if sig.head == :where where_exprs = sig.args[2:end] call_expr = sig.args[1] elseif sig.head == :call where_exprs = [] call_expr = sig else error("Incorrect syntax in $sig. Expected a :where or :call expression.") end fname = call_expr.args[1] if isa(call_expr.args[2], Expr) && call_expr.args[2].head == :parameters # we have keyword arguments callargs = call_expr.args[3:end] kwargs_list = call_expr.args[2].args else callargs = call_expr.args[2:end] kwargs_list = [] end argnames = map(callargs) do arg if isa(arg, Expr) && arg.head === :kw # default val present arg = arg.args[1] end if isa(arg, Expr) && arg.head === :(::) # typed return arg.args[1] end return arg end argtypes = map(callargs) do arg if isa(arg, Expr) && arg.head === :kw # default val present arg = arg.args[1] end if isa(arg, Expr) return arg.args[2] else return Any end end kwargs_call = map(kwargs_list) do kwarg if kwarg.head === :... return kwarg else if isa(kwarg.args[1], Symbol) kwargname = kwarg.args[1] else kwargname = kwarg.args[1].args[1] end return :($kwargname = $kwargname) end end return (; fname = fname, where_exprs = where_exprs, callargs = callargs, kwargs_list = kwargs_list, argnames = argnames, argtypes = argtypes, kwargs_call = kwargs_call, ) end #! format: on macro invoke_maker(argnum, type, sig) parts = ManifoldsBase._split_signature(sig) kwargs_list = parts[:kwargs_list] callargs = parts[:callargs] fname = parts[:fname] where_exprs = parts[:where_exprs] argnames = parts[:argnames] argtypes = parts[:argtypes] kwargs_call = parts[:kwargs_call] return esc( quote function ($fname)($(callargs...); $(kwargs_list...)) where {$(where_exprs...)} return invoke( $fname, Tuple{ $(argtypes[1:(argnum - 1)]...), $type, $(argtypes[(argnum + 1):end]...), }, $(argnames...); $(kwargs_call...), ) end end, ) end """ next_trait_function(trait_type, sig) Define a special trait-handling method for function indicated by `sig`. It does not change the result but the presence of such additional methods may prevent method recursion limits in Julia's inference from being triggered. Some functions may work faster after adding methods generated by `next_trait_function`. See the "Trait recursion breaking" section at the bottom of `src/decorator_trait.jl` file for an example of intended usage. """ macro next_trait_function(trait_type, sig) parts = ManifoldsBase._split_signature(sig) kwargs_list = parts[:kwargs_list] callargs = parts[:callargs] fname = parts[:fname] where_exprs = parts[:where_exprs] argnames = parts[:argnames] kwargs_call = parts[:kwargs_call] block = quote @inline function ($fname)( _t::$trait_type, $(callargs...); $(kwargs_list...), ) where {$(where_exprs...)} return ($fname)(next_trait(_t), $(argnames...); $(kwargs_call...)) end end return esc(block) end macro trait_function(sig, opts = :(), manifold_arg_no = 1) parts = ManifoldsBase._split_signature(sig) kwargs_list = parts[:kwargs_list] callargs = parts[:callargs] fname = parts[:fname] where_exprs = parts[:where_exprs] argnames = parts[:argnames] argtypes = parts[:argtypes] kwargs_call = parts[:kwargs_call] argnametype_exprs = [:(typeof($(argname))) for argname in argnames] block = quote @inline function ($fname)($(callargs...); $(kwargs_list...)) where {$(where_exprs...)} return ($fname)(trait($fname, $(argnames...)), $(argnames...); $(kwargs_call...)) end @inline function ($fname)( _t::ManifoldsBase.TraitList, $(callargs...); $(kwargs_list...), ) where {$(where_exprs...)} return ($fname)(next_trait(_t), $(argnames...); $(kwargs_call...)) end @inline function ($fname)( _t::ManifoldsBase.TraitList{ManifoldsBase.IsExplicitDecorator}, $(callargs...); $(kwargs_list...), ) where {$(where_exprs...)} arg_manifold = decorated_manifold($(argnames[manifold_arg_no])) argt_manifold = typeof(arg_manifold) return invoke( $fname, Tuple{ $(argnametype_exprs[1:(manifold_arg_no - 1)]...), argt_manifold, $(argnametype_exprs[(manifold_arg_no + 1):end]...), }, $(argnames[1:(manifold_arg_no - 1)]...), arg_manifold, $(argnames[(manifold_arg_no + 1):end]...); $(kwargs_call...), ) end end if !(:no_empty in opts.args) block = quote $block # See https://discourse.julialang.org/t/extremely-slow-invoke-when-inlined/90665 # for the reasoning behind @noinline @noinline function ($fname)( ::ManifoldsBase.EmptyTrait, $(callargs...); $(kwargs_list...), ) where {$(where_exprs...)} return invoke( $fname, Tuple{ $(argnametype_exprs[1:(manifold_arg_no - 1)]...), supertype($(argtypes[manifold_arg_no])), $(argnametype_exprs[(manifold_arg_no + 1):end]...), }, $(argnames...); $(kwargs_call...), ) end end end return esc(block) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
2881
""" AbstractNumbers An abstract type to represent the number system on which a manifold is built. This provides concrete number types for dispatch. The two most common number types are the fields [`RealNumbers`](@ref) (`ℝ` for short) and [`ComplexNumbers`](@ref) (`ℂ`). """ abstract type AbstractNumbers end """ RealNumbers <: AbstractNumbers ℝ = RealNumbers() The field of real numbers. """ struct RealNumbers <: AbstractNumbers end """ ComplexNumbers <: AbstractNumbers ℂ = ComplexNumbers() The field of complex numbers. """ struct ComplexNumbers <: AbstractNumbers end """ QuaternionNumbers <: AbstractNumbers ℍ = QuaternionNumbers() The division algebra of quaternions. """ struct QuaternionNumbers <: AbstractNumbers end const ℝ = RealNumbers() const ℂ = ComplexNumbers() const ℍ = QuaternionNumbers() @inline function allocate_result_type( ::AbstractManifold{ℂ}, f::TF, args::Tuple{}, ) where {TF} return ComplexF64 end """ _unify_number_systems(𝔽s::AbstractNumbers...) Compute a number system that includes all given number systems (as sub-systems) and is closed under addition and multiplication. """ function _unify_number_systems(a::AbstractNumbers, rest::AbstractNumbers...) return _unify_number_systems(a, _unify_number_systems(rest...)) end _unify_number_systems(𝔽::AbstractNumbers) = 𝔽 _unify_number_systems(r::RealNumbers, ::RealNumbers) = r _unify_number_systems(::RealNumbers, c::ComplexNumbers) = c _unify_number_systems(::RealNumbers, q::QuaternionNumbers) = q _unify_number_systems(c::ComplexNumbers, ::RealNumbers) = c _unify_number_systems(c::ComplexNumbers, ::ComplexNumbers) = c _unify_number_systems(::ComplexNumbers, q::QuaternionNumbers) = q _unify_number_systems(q::QuaternionNumbers, ::RealNumbers) = q _unify_number_systems(q::QuaternionNumbers, ::ComplexNumbers) = q _unify_number_systems(q::QuaternionNumbers, ::QuaternionNumbers) = q Base.show(io::IO, ::RealNumbers) = print(io, "ℝ") Base.show(io::IO, ::ComplexNumbers) = print(io, "ℂ") Base.show(io::IO, ::QuaternionNumbers) = print(io, "ℍ") @doc raw""" real_dimension(𝔽::AbstractNumbers) Return the real dimension $\dim_ℝ 𝔽$ of the [`AbstractNumbers`](@ref) system `𝔽`. The real dimension is the dimension of a real vector space with which a number in `𝔽` can be identified. For example, [`ComplexNumbers`](@ref) have a real dimension of 2, and [`QuaternionNumbers`](@ref) have a real dimension of 4. """ function real_dimension(𝔽::AbstractNumbers) return error("real_dimension not defined for number system $(𝔽)") end real_dimension(::RealNumbers) = 1 real_dimension(::ComplexNumbers) = 2 real_dimension(::QuaternionNumbers) = 4 @doc raw""" number_system(M::AbstractManifold{𝔽}) Return the number system the manifold `M` is based on, i.e. the parameter `𝔽`. """ number_system(M::AbstractManifold{𝔽}) where {𝔽} = 𝔽
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
15714
@doc raw""" check_inverse_retraction( M::AbstractManifold, inverse_rectraction_method::AbstractInverseRetractionMethod, p=rand(M), X=rand(M; vector_at=p); # exactness_tol::Real = 1e-12, io::Union{IO,Nothing} = nothing, limits::Tuple = (-8.0, 0.0), log_range::AbstractVector = range(limits[1], limits[2]; length=N), N::Int = 101, name::String = "inverse retraction", plot::Bool = false, second_order::Bool = true slope_tol::Real = 0.1, error::Symbol = :none, window = nothing, ) Check numerically wether the inverse retraction `inverse_retraction_method` is correct. This requires the [`exp`](@ref) and [`norm`](@ref) functions to be implemented for the [`AbstractManifold`](@ref) `M`. This implements a method similar to [Boumal:2023; Section 4.8 or Section 6.8](@cite). Note that if the errors are below the given tolerance and the method is exact, no plot is generated, # Keyword arguments * `exactness_tol`: if all errors are below this tolerance, the inverse retraction is considered to be exact * `io`: provide an `IO` to print the result to * `limits`: specify the limits in the `log_range`, that is the exponent for the range * `log_range`: specify the range of points (in log scale) to sample the length of the tangent vector `X` * `N`: number of points to verify within the `log_range` default range ``[10^{-8},10^{0}]`` * `name`: name to display in the plot * `plot`: whether to plot the result (see [`plot_slope`](@ref)) The plot is in log-log-scale. This is returned and can then also be saved. * `second_order`: check whether the retraction is of second order. if set to `false`, first order is checked. * `slope_tol`: tolerance for the slope (global) of the approximation * `error`: specify how to report errors: `:none`, `:info`, `:warn`, or `:error` are available * `window`: specify window sizes within the `log_range` that are used for the slope estimation. the default is, to use all window sizes `2:N`. """ function check_inverse_retraction( M::AbstractManifold, inverse_retraction_method::AbstractInverseRetractionMethod, p = rand(M), X = rand(M; vector_at = p); exactness_tol::Real = 1e-12, io::Union{IO,Nothing} = nothing, limits = (-8.0, 0.0), N::Int = 101, second_order::Bool = true, name::String = second_order ? "second order inverse retraction" : "inverse retraction", log_range::AbstractVector = range(limits[1], limits[2]; length = N), plot::Bool = false, slope_tol::Real = 0.1, error::Symbol = :none, window = nothing, ) Xn = X ./ norm(M, p, X) # normalize tangent direction # function for the directional derivative # T = exp10.(log_range) # points `p_i` to evaluate the error function at points = [exp(M, p, Xn, t) for t in T] Xs = [t * Xn for t in T] approx_Xs = [inverse_retract(M, p, q, inverse_retraction_method) for q in points] errors = [norm(M, p, X - Y) for (X, Y) in zip(Xs, approx_Xs)] return prepare_check_result( log_range, errors, second_order ? 3.0 : 2.0; exactness_tol = exactness_tol, io = io, name = name, plot = plot, slope_tol = slope_tol, error = error, window = window, ) end @doc raw""" check_retraction( M::AbstractManifold, rectraction_method::AbstractRetractionMethod, p=rand(M), X=rand(M; vector_at=p); # exactness_tol::Real = 1e-12, io::Union{IO,Nothing} = nothing, limits::Tuple = (-8.0, 0.0), log_range::AbstractVector = range(limits[1], limits[2]; length=N), N::Int = 101, name::String = "retraction", plot::Bool = false, second_order::Bool = true slope_tol::Real = 0.1, error::Symbol = :none, window = nothing, ) Check numerically wether the retraction `vector_transport_to` is correct, by selecting a set of points ``q_i = \exp_p (t_i X)`` where ``t`` takes all values from `log_range`, to then compare [`parallel_transport_to`](@ref) to the `vector_transport_method` applied to the vector `Y`. This requires the [`exp`](@ref), [`parallel_transport_to`](@ref) and [`norm`](@ref) function to be implemented for the [`AbstractManifold`](@ref) `M`. This implements a method similar to [Boumal:2023; Section 4.8 or Section 6.8](@cite). Note that if the errors are below the given tolerance and the method is exact, no plot is generated, # Keyword arguments * `exactness_tol`: if all errors are below this tolerance, the retraction is considered to be exact * `io`: provide an `IO` to print the result to * `limits`: specify the limits in the `log_range`, that is the exponent for the range * `log_range`: specify the range of points (in log scale) to sample the length of the tangent vector `X` * `N`: number of points to verify within the `log_range` default range ``[10^{-8},10^{0}]`` * `name`: name to display in the plot * `plot`: whether to plot the result (if `Plots.jl` is loaded). The plot is in log-log-scale. This is returned and can then also be saved. * `second_order`: check whether the retraction is of second order. if set to `false`, first order is checked. * `slope_tol`: tolerance for the slope (global) of the approximation * `error`: specify how to report errors: `:none`, `:info`, `:warn`, or `:error` are available * `window`: specify window sizes within the `log_range` that are used for the slope estimation. the default is, to use all window sizes `2:N`. """ function check_retraction( M::AbstractManifold, retraction_method::AbstractRetractionMethod, p = rand(M), X = rand(M; vector_at = p); exactness_tol::Real = 1e-12, io::Union{IO,Nothing} = nothing, limits::Tuple = (-8.0, 0.0), N::Int = 101, second_order::Bool = true, name::String = second_order ? "second order retraction" : "retraction", log_range = range(limits[1], limits[2]; length = N), plot::Bool = false, slope_tol::Real = 0.1, error::Symbol = :none, window = nothing, ) Xn = X ./ norm(M, p, X) # normalize tangent direction # function for the directional derivative # T = exp10.(log_range) # points `p_i` to evaluate the error function at points = [exp(M, p, Xn, t) for t in T] approx_points = [retract(M, p, Xn, t, retraction_method) for t in T] errors = [distance(M, p, q) for (p, q) in zip(points, approx_points)] return prepare_check_result( log_range, errors, second_order ? 3.0 : 2.0; exactness_tol = exactness_tol, io = io, name = name, plot = plot, slope_tol = slope_tol, error = error, window = window, ) end @doc raw""" check_vector_transport( M::AbstractManifold, vector_transport_method::AbstractVectorTransportMethod, p=rand(M), X=rand(M; vector_at=p), Y=rand(M; vector_at=p); # exactness_tol::Real = 1e-12, io::Union{IO,Nothing} = nothing, limits::Tuple = (-8.0, 0.0), log_range::AbstractVector = range(limits[1], limits[2]; length=N), N::Int = 101, name::String = "inverse retraction", plot::Bool = false, second_order::Bool = true slope_tol::Real = 0.1, error::Symbol = :none, window = nothing, ) Check numerically wether the retraction `vector_transport_to` is correct, by selecting a set of points ``q_i = \exp_p (t_i X)`` where ``t`` takes all values from `log_range`, to then compare [`parallel_transport_to`](@ref) to the `vector_transport_method` applied to the vector `Y`. This requires the [`exp`](@ref), [`parallel_transport_to`](@ref) and [`norm`](@ref) function to be implemented for the [`AbstractManifold`](@ref) `M`. This implements a method similar to [Boumal:2023; Section 4.8 or Section 6.8](@cite). Note that if the errors are below the given tolerance and the method is exact, no plot is generated, # Keyword arguments * `exactness_tol`: if all errors are below this tolerance, the differential is considered to be exact * `io`: provide an `IO` to print the result to * `limits`: specify the limits in the `log_range`, that is the exponent for the range * `log_range`: specify the range of points (in log scale) to sample the differential line * `N`: number of points to verify within the `log_range` default range ``[10^{-8},10^{0}]`` * `name`: name to display in the plot * `plot`: whether to plot the result (if `Plots.jl` is loaded). The plot is in log-log-scale. This is returned and can then also be saved. * `second_order`: check whether the retraction is of second order. if set to `false`, first order is checked. * `slope_tol`: tolerance for the slope (global) of the approximation * `error`: specify how to report errors: `:none`, `:info`, `:warn`, or `:error` are available * `window`: specify window sizes within the `log_range` that are used for the slope estimation. the default is, to use all window sizes `2:N`. """ function check_vector_transport( M::AbstractManifold, vector_transport_method::AbstractVectorTransportMethod, p = rand(M), X = rand(M; vector_at = p), Y = rand(M; vector_at = p); exactness_tol::Real = 1e-12, io::Union{IO,Nothing} = nothing, limits::Tuple = (-8.0, 0.0), N::Int = 101, second_order::Bool = true, name::String = second_order ? "second order vector transport" : "vector transport", log_range::AbstractVector = range(limits[1], limits[2]; length = N), plot::Bool = false, slope_tol::Real = 0.1, error::Symbol = :none, window = nothing, ) Xn = X ./ norm(M, p, X) # normalize tangent direction # function for the directional derivative # T = exp10.(log_range) # points `p_i` to evaluate the error function at points = [exp(M, p, Xn, t) for t in T] Yv = [vector_transport_to(M, p, Y, q, vector_transport_method) for q in points] Yp = [parallel_transport_to(M, p, Y, q) for q in points] errors = [norm(M, q, X - Y) for (q, X, Y) in zip(points, Yv, Yp)] return prepare_check_result( log_range, errors, second_order ? 3.0 : 2.0; exactness_tol = exactness_tol, io = io, name = name, plot = plot, slope_tol = slope_tol, error = error, window = window, ) end function plot_slope end """ plot_slope(x, y; slope=2, line_base=0, a=0, b=2.0, i=1, j=length(x) ) Plot the result from the verification functions on data `x,y` with two comparison lines 1) `line_base` + t`slope` as the global slope(s) the plot could have 2) `a` + `b*t` on the interval [`x[i]`, `x[j]`] for some (best fitting) comparison slope !!! note This function has to be implemented for a certain plotting package. loading [Plots.jl](https://docs.juliaplots.org/stable/) provides a default implementation. """ plot_slope(x, y) """ prepare_check_result( log_range::AbstractVector, errors::AbstractVector, slope::Real; exactness_to::Real = 1e3*eps(eltype(errors)), io::Union{IO,Nothing} = nothing name::String = "estimated slope", plot::Bool = false, slope_tol::Real = 0.1, error::Symbol = :none, ) Given a range of values `log_range`, with computed `errors`, verify whether this yields a slope of `slope` in log-scale Note that if the errors are below the given tolerance and the method is exact, no plot is be generated, # Keyword arguments * `exactness_tol`: is all errors are below this tolerance, the verification is considered to be exact * `io`: provide an `IO` to print the result to * `name`: name to display in the plot title * `plot`: whether to plot the result, see [`plot_slope`](@ref) The plot is in log-log-scale. This is returned and can then also be saved. * `slope_tol`: tolerance for the slope (global) of the approximation * `error`: specify how to handle errors, `:none`, `:info`, `:warn`, `:error` """ function prepare_check_result( log_range::AbstractVector, errors::AbstractVector, slope::Real; io::Union{IO,Nothing} = nothing, name::String = "estimated slope", slope_tol::Real = 1e-1, plot::Bool = false, error::Symbol = :none, window = nothing, exactness_tol::Real = 1e3 * eps(eltype(errors)), ) if max(errors...) < exactness_tol (io !== nothing) && print( io, "All errors are below the exactness tolerance $(exactness_tol). Your check can be considered exact, hence there is no use to check for a slope.\n", ) return true end x = log_range[errors .> 0] T = exp10.(x) y = log10.(errors[errors .> 0]) (a, b) = find_best_slope_window(x, y, length(x))[1:2] if isapprox(b, slope; atol = slope_tol) plot && return plot_slope( T, errors[errors .> 0]; slope = slope, line_base = errors[1], a = a, b = b, i = 1, j = length(y), ) (io !== nothing) && print( io, "Your $name's slope is globally $(@sprintf("%.4f", b)), so within $slope ± $(slope_tol).\n", ) return true end # otherwise # find best contiguous window of length w (ab, bb, ib, jb) = find_best_slope_window(x, y, window; slope_tol = slope_tol) msg = "The $(name) fits best on [$(T[ib]),$(T[jb])] with slope $(@sprintf("%.4f", bb)), but globally your slope $(@sprintf("%.4f", b)) is outside of the tolerance $slope ± $(slope_tol).\n" (io !== nothing) && print(io, msg) plot && return plot_slope( T, errors[errors .> 0]; slope = slope, line_base = errors[1], a = ab, b = bb, i = ib, j = jb, ) (error === :info) && @info msg (error === :warn) && @warn msg (error === :error) && throw(ErrorException(msg)) return false end function find_best_slope_window end """ (a, b, i, j) = find_best_slope_window(X, Y, window=nothing; slope::Real=2.0, slope_tol::Real=0.1) Check data X,Y for the largest contiguous interval (window) with a regression line fitting “best”. Among all intervals with a slope within `slope_tol` to `slope` the longest one is taken. If no such interval exists, the one with the slope closest to `slope` is taken. If the window is set to `nothing` (default), all window sizes `2,...,length(X)` are checked. You can also specify a window size or an array of window sizes. For each window size, all its translates in the data is checked. For all these (shifted) windows the regression line is computed (with `a,b` in `a + t*b`) and the best line is computed. From the best line the following data is returned * `a`, `b` specifying the regression line `a + t*b` * `i`, `j` determining the window, i.e the regression line stems from data `X[i], ..., X[j]` !!! note This function has to be implemented using some statistics package. loading [Statistics.jl](https://github.com/JuliaStats/Statistics.jl) provides a default implementation. """ find_best_slope_window(X, Y, window = nothing)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
2214
function parallel_transport_along! end @doc raw""" Y = parallel_transport_along(M::AbstractManifold, p, X, c) Compute the parallel transport of the vector `X` from the tangent space at `p` along the curve `c`. To be precise let ``c(t)`` be a curve ``c(0)=p`` for [`vector_transport_along`](@ref) ``\mathcal P^cY`` THen In the result ``Y\in T_p\mathcal M`` is the vector ``X`` from the tangent space at ``p=c(0)`` to the tangent space at ``c(1)``. Let ``Z\colon [0,1] \to T\mathcal M``, ``Z(t)\in T_{c(t)}\mathcal M`` be a smooth vector field along the curve ``c`` with ``Z(0) = Y``, such that ``Z`` is _parallel_, i.e. its covariant derivative ``\frac{\mathrm{D}}{\mathrm{d}t}Z`` is zero. Note that such a ``Z`` always exists and is unique. Then the parallel transport is given by ``Z(1)``. """ function parallel_transport_along(M::AbstractManifold, p, X, c::AbstractVector; kwargs...) Y = allocate_result(M, vector_transport_along, X, p) return parallel_transport_along!(M, Y, p, X, c; kwargs...) end function parallel_transport_direction!(M::AbstractManifold, Y, p, X, d; kwargs...) return parallel_transport_to!(M, Y, p, X, exp(M, p, d); kwargs...) end @doc raw""" parallel_transport_direction(M::AbstractManifold, p, X, d) Compute the [`parallel_transport_along`](@ref) the curve ``c(t) = γ_{p,q}(t)``, i.e. the * the unique geodesic ``c(t)=γ_{p,X}(t)`` from ``γ_{p,d}(0)=p`` into direction ``\dot γ_{p,d}(0)=d``, of the tangent vector `X`. By default this function calls [`parallel_transport_to`](@ref)`(M, p, X, q)`, where ``q=\exp_pX``. """ function parallel_transport_direction(M::AbstractManifold, p, X, d; kwargs...) return parallel_transport_to(M, p, X, exp(M, p, d); kwargs...) end function parallel_transport_to! end @doc raw""" parallel_transport_to(M::AbstractManifold, p, X, q) Compute the [`parallel_transport_along`](@ref) the curve ``c(t) = γ_{p,q}(t)``, i.e. the (assumed to be unique) [`geodesic`](@ref) connecting `p` and `q`, of the tangent vector `X`. """ function parallel_transport_to(M::AbstractManifold, p, X, q; kwargs...) Y = allocate_result(M, vector_transport_to, X, p, q) return parallel_transport_to!(M, Y, p, X, q; kwargs...) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
21658
""" manifold_element_forwards(T, field::Symbol) manifold_element_forwards(T, Twhere, field::Symbol) Introduce basic fallbacks for type `T` (which can be a subtype of `Twhere`) that represents points or vectors for a manifold. Fallbacks will work by forwarding to the field passed in `field`` List of forwarded functions: * [`allocate`](@ref), * [`copy`](@ref), * [`copyto!`](@ref), * [`number_eltype`](@ref) (only for values, not the type itself), * `similar`, * `size`, * `==`. """ macro manifold_element_forwards(T, field::Symbol) return esc(quote ManifoldsBase.@manifold_element_forwards ($T) _unused ($field) end) end macro manifold_element_forwards(T, Twhere, field::Symbol) TWT = if Twhere === :_unused T else :($T where {$Twhere}) end code = quote function ManifoldsBase.number_eltype(p::$TWT) return typeof(one(eltype(p.$field))) end Base.size(p::$TWT) = size(p.$field) end if Twhere === :_unused push!( code.args, quote ManifoldsBase.allocate(p::$T) = $T(allocate(p.$field)) function ManifoldsBase.allocate(p::$T, ::Type{P}) where {P} return $T(allocate(p.$field, P)) end function ManifoldsBase.allocate(p::$T, ::Type{P}, dims::Tuple) where {P} return $T(allocate(p.$field, P, dims)) end @inline Base.copy(p::$T) = $T(copy(p.$field)) function Base.copyto!(q::$T, p::$T) copyto!(q.$field, p.$field) return q end Base.similar(p::$T) = $T(similar(p.$field)) Base.similar(p::$T, ::Type{P}) where {P} = $T(similar(p.$field, P)) Base.:(==)(p::$T, q::$T) = (p.$field == q.$field) end, ) else push!( code.args, quote ManifoldsBase.allocate(p::$T) where {$Twhere} = $T(allocate(p.$field)) function ManifoldsBase.allocate(p::$T, ::Type{P}) where {P,$Twhere} return $T(allocate(p.$field, P)) end function ManifoldsBase.allocate( p::$T, ::Type{P}, dims::Tuple, ) where {P,$Twhere} return $T(allocate(p.$field, P, dims)) end @inline Base.copy(p::$T) where {$Twhere} = $T(copy(p.$field)) function Base.copyto!(q::$T, p::$T) where {$Twhere} copyto!(q.$field, p.$field) return q end Base.similar(p::$T) where {$Twhere} = $T(similar(p.$field)) Base.similar(p::$T, ::Type{P}) where {P,$Twhere} = $T(similar(p.$field, P)) Base.:(==)(p::$T, q::$T) where {$Twhere} = (p.$field == q.$field) end, ) end return esc(code) end """ default_manifold_fallbacks(TM, TP, TV, pfield::Symbol, vfield::Symbol) Introduce default fallbacks for all basic functions on manifolds, for manifold of type `TM`, points of type `TP`, tangent vectors of type `TV`, with forwarding to fields `pfield` and `vfield` for point and tangent vector functions, respectively. """ macro default_manifold_fallbacks(TM, TP, TV, pfield::Symbol, vfield::Symbol) block = quote function ManifoldsBase.allocate_result(::$TM, ::typeof(log), p::$TP, ::$TP) a = allocate(p.$vfield) return $TV(a) end function ManifoldsBase.allocate_result( ::$TM, ::typeof(inverse_retract), p::$TP, ::$TP, ) a = allocate(p.$vfield) return $TV(a) end function ManifoldsBase.allocate_coordinates(M::$TM, p::$TP, T, n::Int) return ManifoldsBase.allocate_coordinates(M, p.$pfield, T, n) end function ManifoldsBase.angle(M::$TM, p::$TP, X::$TV, Y::$TV) return ManifoldsBase.angle(M, p.$pfield, X.$vfield, Y.$vfield) end function ManifoldsBase.check_point(M::$TM, p::$TP; kwargs...) return ManifoldsBase.check_point(M, p.$pfield; kwargs...) end function ManifoldsBase.check_vector(M::$TM, p::$TP, X::$TV; kwargs...) return ManifoldsBase.check_vector(M, p.$pfield, X.$vfield; kwargs...) end function ManifoldsBase.check_approx(M::$TM, p::$TP, q::$TP; kwargs...) return ManifoldsBase.check_approx(M, p.$pfield, q.$pfield; kwargs...) end function ManifoldsBase.check_approx(M::$TM, p::$TP, X::$TV, Y::$TV; kwargs...) return ManifoldsBase.check_approx(M, p.$pfield, X.$vfield, Y.$vfield; kwargs...) end function ManifoldsBase.distance(M::$TM, p::$TP, q::$TP) return ManifoldsBase.distance(M, p.$pfield, q.$pfield) end function ManifoldsBase.embed!(M::$TM, q::$TP, p::$TP) ManifoldsBase.embed!(M, q.$pfield, p.$pfield) return q end function ManifoldsBase.embed!(M::$TM, Y::$TV, p::$TP, X::$TV) ManifoldsBase.embed!(M, Y.$vfield, p.$pfield, X.$vfield) return Y end function ManifoldsBase.exp!(M::$TM, q::$TP, p::$TP, X::$TV) ManifoldsBase.exp!(M, q.$pfield, p.$pfield, X.$vfield) return q end function ManifoldsBase.inner(M::$TM, p::$TP, X::$TV, Y::$TV) return ManifoldsBase.inner(M, p.$pfield, X.$vfield, Y.$vfield) end function ManifoldsBase.inverse_retract!( M::$TM, X::$TV, p::$TP, q::$TP, m::LogarithmicInverseRetraction, ) ManifoldsBase.inverse_retract!(M, X.$vfield, p.$pfield, q.$pfield, m) return X end function ManifoldsBase.isapprox(M::$TM, p::$TP, q::$TP; kwargs...) return ManifoldsBase.isapprox(M, p.$pfield, q.$pfield; kwargs...) end function ManifoldsBase.isapprox(M::$TM, p::$TP, X::$TV, Y::$TV; kwargs...) return ManifoldsBase.isapprox(M, p.$pfield, X.$vfield, Y.$vfield; kwargs...) end function ManifoldsBase.log!(M::$TM, X::$TV, p::$TP, q::$TP) ManifoldsBase.log!(M, X.$vfield, p.$pfield, q.$pfield) return X end function ManifoldsBase.norm(M::$TM, p::$TP, X::$TV) return ManifoldsBase.norm(M, p.$pfield, X.$vfield) end function ManifoldsBase.retract!( M::$TM, q::$TP, p::$TP, X::$TV, m::ExponentialRetraction, ) ManifoldsBase.retract!(M, q.$pfield, p.$pfield, X.$vfield, m) return q end function ManifoldsBase.vector_transport_along!( M::$TM, Y::$TV, p::$TP, X::$TV, c::AbstractVector, ) ManifoldsBase.vector_transport_along!(M, Y.$vfield, p.$pfield, X.$vfield, c) return Y end function ManifoldsBase.zero_vector(M::$TM, p::$TP) return $TV(zero_vector(M, p.$pfield)) end function ManifoldsBase.zero_vector!(M::$TM, X::$TV, p::$TP) ManifoldsBase.zero_vector!(M, X.$vfield, p.$pfield) return X end end for f_postfix in [:default, :orthogonal, :orthonormal, :vee, :cached, :diagonalizing] ca = Symbol("get_coordinates_$(f_postfix)") cm = Symbol("get_coordinates_$(f_postfix)!") va = Symbol("get_vector_$(f_postfix)") vm = Symbol("get_vector_$(f_postfix)!") B_types = if f_postfix in [:default, :orthogonal, :orthonormal, :vee] [:AbstractNumbers, :RealNumbers, :ComplexNumbers] elseif f_postfix === :cached [:CachedBasis] elseif f_postfix === :diagonalizing [:DiagonalizingOrthonormalBasis] else [:Any] end for B_type in B_types push!( block.args, quote function ManifoldsBase.$ca(M::$TM, p::$TP, X::$TV, B::$B_type) return ManifoldsBase.$ca(M, p.$pfield, X.$vfield, B) end function ManifoldsBase.$cm(M::$TM, Y, p::$TP, X::$TV, B::$B_type) ManifoldsBase.$cm(M, Y, p.$pfield, X.$vfield, B) return Y end function ManifoldsBase.$va(M::$TM, p::$TP, X, B::$B_type) return $TV(ManifoldsBase.$va(M, p.$pfield, X, B)) end function ManifoldsBase.$vm(M::$TM, Y::$TV, p::$TP, X, B::$B_type) ManifoldsBase.$vm(M, Y.$vfield, p.$pfield, X, B) return Y end end, ) end end for f_postfix in [:polar, :project, :qr, :softmax] rm = Symbol("retract_$(f_postfix)!") push!( block.args, quote function ManifoldsBase.$rm(M::$TM, q, p::$TP, X::$TV, t::Number) ManifoldsBase.$rm(M, q.$pfield, p.$pfield, X.$vfield, t) return q end end, ) end push!( block.args, quote function ManifoldsBase.retract_exp_ode!( M::$TM, q::$TP, p::$TP, X::$TV, t::Number, m::AbstractRetractionMethod, B::ManifoldsBase.AbstractBasis, ) ManifoldsBase.retract_exp_ode!(M, q.$pfield, p.$pfield, X.$vfield, t, m, B) return q end function ManifoldsBase.retract_pade!( M::$TM, q::$TP, p::$TP, X::$TV, t::Number, m::PadeRetraction, ) ManifoldsBase.retract_pade!(M, q.$pfield, p.$pfield, X.$vfield, t, m) return q end function ManifoldsBase.retract_embedded!( M::$TM, q::$TP, p::$TP, X::$TV, t::Number, m::AbstractRetractionMethod, ) ManifoldsBase.retract_embedded!(M, q.$pfield, p.$pfield, X.$vfield, t, m) return q end function ManifoldsBase.retract_sasaki!( M::$TM, q::$TP, p::$TP, X::$TV, t::Number, m::SasakiRetraction, ) ManifoldsBase.retract_sasaki!(M, q.$pfield, p.$pfield, X.$vfield, t, m) return q end end, ) for f_postfix in [:polar, :project, :qr, :softmax] rm = Symbol("inverse_retract_$(f_postfix)!") push!(block.args, quote function ManifoldsBase.$rm(M::$TM, Y::$TV, p::$TP, q::$TP) ManifoldsBase.$rm(M, Y.$vfield, p.$pfield, q.$pfield) return Y end end) end push!( block.args, quote function ManifoldsBase.inverse_retract_embedded!( M::$TM, X::$TV, p::$TP, q::$TP, m::AbstractInverseRetractionMethod, ) ManifoldsBase.inverse_retract_embedded!( M, X.$vfield, p.$pfield, q.$pfield, m, ) return X end function ManifoldsBase.inverse_retract_nlsolve!( M::$TM, X::$TV, p::$TP, q::$TP, m::NLSolveInverseRetraction, ) ManifoldsBase.inverse_retract_nlsolve!( M, X.$vfield, p.$pfield, q.$pfield, m, ) return X end end, ) # forward vector transports for sub in [:project, :diff, :embedded] # project & diff vtam = Symbol("vector_transport_along_$(sub)!") vttm = Symbol("vector_transport_to_$(sub)!") push!( block.args, quote function ManifoldsBase.$vtam( M::$TM, Y::$TV, p::$TP, X::$TV, c::AbstractVector, ) ManifoldsBase.$vtam(M, Y.$vfield, p.$pfield, X.$vfield, c) return Y end function ManifoldsBase.$vttm(M::$TM, Y::$TV, p::$TP, X::$TV, q::$TP) ManifoldsBase.$vttm(M, Y.$vfield, p.$pfield, X.$vfield, q.$pfield) return Y end end, ) end # parallel transports push!( block.args, quote function ManifoldsBase.parallel_transport_along( M::$TM, p::$TP, X::$TV, c::AbstractVector, ) return $TV( ManifoldsBase.parallel_transport_along(M, p.$pfield, X.$vfield, c), ) end function ManifoldsBase.parallel_transport_along!( M::$TM, Y::$TV, p::$TP, X::$TV, c::AbstractVector, ) ManifoldsBase.parallel_transport_along!( M, Y.$vfield, p.$pfield, X.$vfield, c, ) return Y end function ManifoldsBase.parallel_transport_direction( M::$TM, p::$TP, X::$TV, d::$TV, ) return $TV( ManifoldsBase.parallel_transport_direction( M, p.$pfield, X.$vfield, d.$vfield, ), ) end function ManifoldsBase.parallel_transport_direction!( M::$TM, Y::$TV, p::$TP, X::$TV, d::$TV, ) ManifoldsBase.parallel_transport_direction!( M, Y.$vfield, p.$pfield, X.$vfield, d.$vfield, ) return Y end function ManifoldsBase.parallel_transport_to(M::$TM, p::$TP, X::$TV, q::$TP) return $TV( ManifoldsBase.parallel_transport_to(M, p.$pfield, X.$vfield, q.$pfield), ) end function ManifoldsBase.parallel_transport_to!( M::$TM, Y::$TV, p::$TP, X::$TV, q::$TP, ) ManifoldsBase.parallel_transport_to!( M, Y.$vfield, p.$pfield, X.$vfield, q.$pfield, ) return Y end end, ) return esc(block) end @doc raw""" manifold_vector_forwards(T, field::Symbol) manifold_vector_forwards(T, Twhere, field::Symbol) Introduce basic fallbacks for type `T` that represents vectors from a vector bundle for a manifold. `Twhere` is put into `where` clause of each method. Fallbacks work by forwarding to field passed as `field`. List of forwarded functions: * basic arithmetic (`*`, `/`, `\`, `+`, `-`), * all things from [`@manifold_element_forwards`](@ref), * broadcasting support. # example @eval @manifold_vector_forwards ValidationFibreVector{TType} TType value """ macro manifold_vector_forwards(T, field::Symbol) return esc(quote ManifoldsBase.@manifold_vector_forwards ($T) _unused ($field) end) end macro manifold_vector_forwards(T, Twhere, field::Symbol) TWT = if Twhere === :_unused T else :($T where {$Twhere}) end code = quote @eval ManifoldsBase.@manifold_element_forwards $T $Twhere $field Base.axes(p::$TWT) = axes(p.$field) Broadcast.broadcastable(X::$TWT) = X Base.@propagate_inbounds function Broadcast._broadcast_getindex(X::$TWT, I) return X.$field end end broadcast_copyto_code = quote axes(dest) == axes(bc) || Broadcast.throwdm(axes(dest), axes(bc)) # Performance optimization: broadcast!(identity, dest, A) is equivalent to copyto!(dest, A) if indices match if bc.f === identity && bc.args isa Tuple{$T} # only a single input argument to broadcast! A = bc.args[1] if axes(dest) == axes(A) return copyto!(dest, A) end end bc′ = Broadcast.preprocess(dest, bc) # Performance may vary depending on whether `@inbounds` is placed outside the # for loop or not. (cf. https://github.com/JuliaLang/julia/issues/38086) copyto!(dest.$field, bc′[1]) return dest end if Twhere === :_unused push!( code.args, quote Base.:*(X::$T, s::Number) = $T(X.$field * s) Base.:*(s::Number, X::$T) = $T(s * X.$field) Base.:/(X::$T, s::Number) = $T(X.$field / s) Base.:\(s::Number, X::$T) = $T(s \ X.$field) Base.:-(X::$T) = $T(-X.$field) Base.:+(X::$T) = $T(X.$field) Base.zero(X::$T) = $T(zero(X.$field)) Base.:+(X::$T, Y::$T) = $T(X.$field + Y.$field) Base.:-(X::$T, Y::$T) = $T(X.$field - Y.$field) function Broadcast.BroadcastStyle(::Type{<:$T}) return Broadcast.Style{$T}() end function Broadcast.BroadcastStyle( ::Broadcast.AbstractArrayStyle{0}, b::Broadcast.Style{$T}, ) return b end function Broadcast.instantiate( bc::Broadcast.Broadcasted{Broadcast.Style{$T},Nothing}, ) return bc end function Broadcast.instantiate( bc::Broadcast.Broadcasted{Broadcast.Style{$T}}, ) Broadcast.check_broadcast_axes(bc.axes, bc.args...) return bc end @inline function Base.copy(bc::Broadcast.Broadcasted{Broadcast.Style{$T}}) return $T(Broadcast._broadcast_getindex(bc, 1)) end @inline function Base.copyto!( dest::$T, bc::Broadcast.Broadcasted{Broadcast.Style{$T}}, ) return $broadcast_copyto_code end end, ) else push!( code.args, quote Base.:*(X::$T, s::Number) where {$Twhere} = $T(X.$field * s) Base.:*(s::Number, X::$T) where {$Twhere} = $T(s * X.$field) Base.:/(X::$T, s::Number) where {$Twhere} = $T(X.$field / s) Base.:\(s::Number, X::$T) where {$Twhere} = $T(s \ X.$field) Base.:-(X::$T) where {$Twhere} = $T(-X.$field) Base.:+(X::$T) where {$Twhere} = $T(X.$field) Base.zero(X::$T) where {$Twhere} = $T(zero(X.$field)) Base.:+(X::$T, Y::$T) where {$Twhere} = $T(X.$field + Y.$field) Base.:-(X::$T, Y::$T) where {$Twhere} = $T(X.$field - Y.$field) function Broadcast.BroadcastStyle(::Type{<:$T}) where {$Twhere} return Broadcast.Style{$T}() end function Broadcast.BroadcastStyle( ::Broadcast.AbstractArrayStyle{0}, b::Broadcast.Style{$T}, ) where {$Twhere} return b end function Broadcast.instantiate( bc::Broadcast.Broadcasted{Broadcast.Style{$T},Nothing}, ) where {$Twhere} return bc end function Broadcast.instantiate( bc::Broadcast.Broadcasted{Broadcast.Style{$T}}, ) where {$Twhere} Broadcast.check_broadcast_axes(bc.axes, bc.args...) return bc end @inline function Base.copy( bc::Broadcast.Broadcasted{Broadcast.Style{$T}}, ) where {$Twhere} return $T(Broadcast._broadcast_getindex(bc, 1)) end @inline function Base.copyto!( dest::$T, bc::Broadcast.Broadcasted{Broadcast.Style{$T}}, ) where {$Twhere} return $broadcast_copyto_code end end, ) end return esc(code) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
2998
""" project(M::AbstractManifold, p) Project point `p` from the ambient space of the [`AbstractManifold`](@ref) `M` to `M`. This method is only available for manifolds where implicitly an embedding or ambient space is given. Additionally, the projection includes changing data representation, if applicable, i.e. if the points on `M` are not represented in the same array data, the data is changed accordingly. See also: [`EmbeddedManifold`](@ref), [`embed`](@ref embed(M::AbstractManifold, p)) """ function project(M::AbstractManifold, p) q = allocate_result(M, project, p) project!(M, q, p) return q end """ project!(M::AbstractManifold, q, p) Project point `p` from the ambient space onto the [`AbstractManifold`](@ref) `M`. The result is storedin `q`. This method is only available for manifolds where implicitly an embedding or ambient space is given. Additionally, the projection includes changing data representation, if applicable, i.e. if the points on `M` are not represented in the same array data, the data is changed accordingly. See also: [`EmbeddedManifold`](@ref), [`embed!`](@ref embed!(M::AbstractManifold, q, p)) """ project!(::AbstractManifold, q, p) """ project(M::AbstractManifold, p, X) Project ambient space representation of a vector `X` to a tangent vector at point `p` on the [`AbstractManifold`](@ref) `M`. This method is only available for manifolds where implicitly an embedding or ambient space is given. Additionally, `project` includes changing data representation, if applicable, i.e. if the tangents on `M` are not represented in the same way as points on the embedding, the representation is changed accordingly. This is the case for example for Lie groups, when tangent vectors are represented in the Lie algebra. after projection the change to the Lie algebra is perfomed, too. See also: [`EmbeddedManifold`](@ref), [`embed`](@ref embed(M::AbstractManifold, p, X)) """ function project(M::AbstractManifold, p, X) # Note that the order is switched, # since the allocation by default takes the type of the first. Y = allocate_result(M, project, X, p) project!(M, Y, p, X) return Y end """ project!(M::AbstractManifold, Y, p, X) Project ambient space representation of a vector `X` to a tangent vector at point `p` on the [`AbstractManifold`](@ref) `M`. The result is saved in vector `Y`. This method is only available for manifolds where implicitly an embedding or ambient space is given. Additionally, `project!` includes changing data representation, if applicable, i.e. if the tangents on `M` are not represented in the same way as points on the embedding, the representation is changed accordingly. This is the case for example for Lie groups, when tangent vectors are represented in the Lie algebra. after projection the change to the Lie algebra is perfomed, too. See also: [`EmbeddedManifold`](@ref), [`embed!`](@ref embed!(M::AbstractManifold, Y, p, X)) """ project!(::AbstractManifold, Y, p, X)
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
30936
""" AbstractInverseRetractionMethod <: AbstractApproximationMethod Abstract type for methods for inverting a retraction (see [`inverse_retract`](@ref)). """ abstract type AbstractInverseRetractionMethod <: AbstractApproximationMethod end """ AbstractRetractionMethod <: AbstractApproximationMethod Abstract type for methods for [`retract`](@ref)ing a tangent vector to a manifold. """ abstract type AbstractRetractionMethod <: AbstractApproximationMethod end """ ApproximateInverseRetraction <: AbstractInverseRetractionMethod An abstract type for representing approximate inverse retraction methods. """ abstract type ApproximateInverseRetraction <: AbstractInverseRetractionMethod end """ ApproximateRetraction <: AbstractRetractionMethod An abstract type for representing approximate retraction methods. """ abstract type ApproximateRetraction <: AbstractRetractionMethod end @doc raw""" EmbeddedRetraction{T<:AbstractRetractionMethod} <: AbstractRetractionMethod Compute a retraction by using the retraction of type `T` in the embedding and projecting the result. # Constructor EmbeddedRetraction(r::AbstractRetractionMethod) Generate the retraction with retraction `r` to use in the embedding. """ struct EmbeddedRetraction{T<:AbstractRetractionMethod} <: AbstractRetractionMethod retraction::T end """ ExponentialRetraction <: AbstractRetractionMethod Retraction using the exponential map. """ struct ExponentialRetraction <: AbstractRetractionMethod end @doc raw""" ODEExponentialRetraction{T<:AbstractRetractionMethod, B<:AbstractBasis} <: AbstractRetractionMethod Approximate the exponential map on the manifold by evaluating the ODE descripting the geodesic at 1, assuming the default connection of the given manifold by solving the ordinary differential equation ```math \frac{d^2}{dt^2} p^k + Γ^k_{ij} \frac{d}{dt} p_i \frac{d}{dt} p_j = 0, ``` where ``Γ^k_{ij}`` are the Christoffel symbols of the second kind, and the Einstein summation convention is assumed. # Constructor ODEExponentialRetraction( r::AbstractRetractionMethod, b::AbstractBasis=DefaultOrthogonalBasis(), ) Generate the retraction with a retraction to use internally (for some approaches) and a basis for the tangent space(s). """ struct ODEExponentialRetraction{T<:AbstractRetractionMethod,B<:AbstractBasis} <: AbstractRetractionMethod retraction::T basis::B end function ODEExponentialRetraction(r::T) where {T<:AbstractRetractionMethod} return ODEExponentialRetraction(r, DefaultOrthonormalBasis()) end function ODEExponentialRetraction(::T, b::CachedBasis) where {T<:AbstractRetractionMethod} return throw( DomainError( b, "Cached Bases are currently not supported, since the basis has to be implemented in a surrounding of the start point as well.", ), ) end function ODEExponentialRetraction(r::ExponentialRetraction, ::AbstractBasis) return throw( DomainError( r, "You can not use the exponential map as an inner method to solve the ode for the exponential map.", ), ) end function ODEExponentialRetraction(r::ExponentialRetraction, ::CachedBasis) return throw( DomainError( r, "Neither the exponential map nor a Cached Basis can be used with this retraction type.", ), ) end """ PolarRetraction <: AbstractRetractionMethod Retractions that are based on singular value decompositions of the matrix / matrices for point and tangent vectors. !!! note "Technical Note" Though you would call e.g. [`retract`](@ref)`(M, p, X, PolarRetraction())`, to implement a polar retraction, define [`retract_polar!`](@ref)`(M, q, p, X, t)` for your manifold `M`. """ struct PolarRetraction <: AbstractRetractionMethod end """ ProjectionRetraction <: AbstractRetractionMethod Retractions that are based on projection and usually addition in the embedding. !!! note "Technical Note" Though you would call e.g. [`retract`](@ref)`(M, p, X, ProjectionRetraction())`, to implement a projection retraction, define [`retract_project!`](@ref)`(M, q, p, X, t)` for your manifold `M`. """ struct ProjectionRetraction <: AbstractRetractionMethod end """ QRRetraction <: AbstractRetractionMethod Retractions that are based on a QR decomposition of the matrix / matrices for point and tangent vector on a [`AbstractManifold`](@ref) !!! note "Technical Note" Though you would call e.g. [`retract`](@ref)`(M, p, X, QRRetraction())`, to implement a QR retraction, define [`retract_qr!`](@ref)`(M, q, p, X, t)` for your manifold `M`. """ struct QRRetraction <: AbstractRetractionMethod end """ RetractionWithKeywords{R<:AbstractRetractionMethod,K} <: AbstractRetractionMethod Since retractions might have keywords, this type is a way to set them as an own type to be used as a specific retraction. Another reason for this type is that we dispatch on the retraction first and only the last layer would be implemented with keywords, so this way they can be passed down. ## Fields * `retraction` the retraction that is decorated with keywords * `kwargs` the keyword arguments Note that you can nest this type. Then the most outer specification of a keyword is used. ## Constructor RetractionWithKeywords(m::T; kwargs...) where {T <: AbstractRetractionMethod} Specify the subtype `T <: `[`AbstractRetractionMethod`](@ref) to have keywords `kwargs...`. """ struct RetractionWithKeywords{T<:AbstractRetractionMethod,K} <: AbstractRetractionMethod retraction::T kwargs::K end function RetractionWithKeywords(m::T; kwargs...) where {T<:AbstractRetractionMethod} return RetractionWithKeywords{T,typeof(kwargs)}(m, kwargs) end @doc raw""" struct SasakiRetraction <: AbstractRetractionMethod end Exponential map on [`TangentBundle`](https://juliamanifolds.github.io/Manifolds.jl/stable/manifolds/vector_bundle.html#Manifolds.TangentBundle) computed via Euler integration as described in [MuralidharanFletcher:2012](@cite). The system of equations for ``\gamma : ℝ \to T\mathcal M`` such that ``\gamma(1) = \exp_{p,X}(X_M, X_F)`` and ``\gamma(0)=(p, X)`` reads ```math \dot{\gamma}(t) = (\dot{p}(t), \dot{X}(t)) = (R(X(t), \dot{X}(t))\dot{p}(t), 0) ``` where ``R`` is the Riemann curvature tensor (see [`riemann_tensor`](@ref)). # Constructor SasakiRetraction(L::Int) In this constructor `L` is the number of integration steps. """ struct SasakiRetraction <: AbstractRetractionMethod L::Int end """ SoftmaxRetraction <: AbstractRetractionMethod Describes a retraction that is based on the softmax function. !!! note "Technical Note" Though you would call e.g. [`retract`](@ref)`(M, p, X, SoftmaxRetraction())`, to implement a softmax retraction, define [`retract_softmax!`](@ref)`(M, q, p, X, t)` for your manifold `M`. """ struct SoftmaxRetraction <: AbstractRetractionMethod end @doc raw""" PadeRetraction{m} <: AbstractRetractionMethod A retraction based on the Padé approximation of order ``m`` # Constructor PadeRetraction(m::Int) !!! note "Technical Note" Though you would call e.g. [`retract`](@ref)`(M, p, X, PadeRetraction(m))`, to implement a Padé retraction, define [`retract_pade!`](@ref)`(M, q, p, X, t, m)` for your manifold `M`. """ struct PadeRetraction{m} <: AbstractRetractionMethod end function PadeRetraction(m::Int) (m < 1) && error( "The Padé based retraction is only available for positive orders, not for order $m.", ) return PadeRetraction{m}() end @doc raw""" CayleyRetraction <: AbstractRetractionMethod A retraction based on the Cayley transform, which is realized by using the [`PadeRetraction`](@ref)`{1}`. !!! note "Technical Note" Though you would call e.g. [`retract`](@ref)`(M, p, X, CayleyRetraction())`, to implement a caley retraction, define [`retract_cayley!`](@ref)`(M, q, p, X, t)` for your manifold `M`. By default both these functions fall back to calling a [`PadeRetraction`](@ref)`(1)`. """ const CayleyRetraction = PadeRetraction{1} @doc raw""" EmbeddedInverseRetraction{T<:AbstractInverseRetractionMethod} <: AbstractInverseRetractionMethod Compute an inverse retraction by using the inverse retraction of type `T` in the embedding and projecting the result # Constructor EmbeddedInverseRetraction(r::AbstractInverseRetractionMethod) Generate the inverse retraction with inverse retraction `r` to use in the embedding. """ struct EmbeddedInverseRetraction{T<:AbstractInverseRetractionMethod} <: AbstractInverseRetractionMethod inverse_retraction::T end """ LogarithmicInverseRetraction <: AbstractInverseRetractionMethod Inverse retraction using the [`log`](@ref)arithmic map. """ struct LogarithmicInverseRetraction <: AbstractInverseRetractionMethod end @doc raw""" PadeInverseRetraction{m} <: AbstractInverseRetractionMethod An inverse retraction based on the Padé approximation of order ``m`` for the retraction. !!! note "Technical Note" Though you would call e.g. [`inverse_retract`](@ref)`(M, p, q, PadeInverseRetraction(m))`, to implement an inverse Padé retraction, define [`inverse_retract_pade!`](@ref)`(M, X, p, q, m)` for your manifold `M`. """ struct PadeInverseRetraction{m} <: AbstractInverseRetractionMethod end function PadeInverseRetraction(m::Int) (m < 1) && error( "The Padé based inverse retraction is only available for positive orders, not for order $m.", ) return PadeInverseRetraction{m}() end @doc raw""" CayleyInverseRetraction <: AbstractInverseRetractionMethod A retraction based on the Cayley transform, which is realized by using the [`PadeRetraction`](@ref)`{1}`. !!! note "Technical Note" Though you would call e.g. [`inverse_retract`](@ref)`(M, p, q, CayleyInverseRetraction())`, to implement an inverse caley retraction, define [`inverse_retract_cayley!`](@ref)`(M, X, p, q)` for your manifold `M`. By default both these functions fall back to calling a [`PadeInverseRetraction`](@ref)`(1)`. """ const CayleyInverseRetraction = PadeInverseRetraction{1} """ PolarInverseRetraction <: AbstractInverseRetractionMethod Inverse retractions that are based on a singular value decomposition of the matrix / matrices for point and tangent vector on a [`AbstractManifold`](@ref) !!! note "Technical Note" Though you would call e.g. [`inverse_retract`](@ref)`(M, p, q, PolarInverseRetraction())`, to implement an inverse polar retraction, define [`inverse_retract_polar!`](@ref)`(M, X, p, q)` for your manifold `M`. """ struct PolarInverseRetraction <: AbstractInverseRetractionMethod end """ ProjectionInverseRetraction <: AbstractInverseRetractionMethod Inverse retractions that are based on a projection (or its inversion). !!! note "Technical Note" Though you would call e.g. [`inverse_retract`](@ref)`(M, p, q, ProjectionInverseRetraction())`, to implement an inverse projection retraction, define [`inverse_retract_project!`](@ref)`(M, X, p, q)` for your manifold `M`. """ struct ProjectionInverseRetraction <: AbstractInverseRetractionMethod end """ QRInverseRetraction <: AbstractInverseRetractionMethod Inverse retractions that are based on a QR decomposition of the matrix / matrices for point and tangent vector on a [`AbstractManifold`](@ref) !!! note "Technical Note" Though you would call e.g. [`inverse_retract`](@ref)`(M, p, q, QRInverseRetraction())`, to implement an inverse QR retraction, define [`inverse_retract_qr!`](@ref)`(M, X, p, q)` for your manifold `M`. """ struct QRInverseRetraction <: AbstractInverseRetractionMethod end """ NLSolveInverseRetraction{T<:AbstractRetractionMethod,TV,TK} <: ApproximateInverseRetraction An inverse retraction method for approximating the inverse of a retraction using `NLsolve`. # Constructor NLSolveInverseRetraction( method::AbstractRetractionMethod[, X0]; project_tangent=false, project_point=false, nlsolve_kwargs..., ) Constructs an approximate inverse retraction for the retraction `method` with initial guess `X0`, defaulting to the zero vector. If `project_tangent` is `true`, then the tangent vector is projected before the retraction using `project`. If `project_point` is `true`, then the resulting point is projected after the retraction. `nlsolve_kwargs` are keyword arguments passed to `NLsolve.nlsolve`. """ struct NLSolveInverseRetraction{TR<:AbstractRetractionMethod,TV,TK} <: ApproximateInverseRetraction retraction::TR X0::TV project_tangent::Bool project_point::Bool nlsolve_kwargs::TK function NLSolveInverseRetraction(m, X0, project_point, project_tangent, nlsolve_kwargs) return new{typeof(m),typeof(X0),typeof(nlsolve_kwargs)}( m, X0, project_point, project_tangent, nlsolve_kwargs, ) end end function NLSolveInverseRetraction( m, X0 = nothing; project_tangent::Bool = false, project_point::Bool = false, nlsolve_kwargs..., ) return NLSolveInverseRetraction(m, X0, project_point, project_tangent, nlsolve_kwargs) end """ InverseRetractionWithKeywords{R<:AbstractRetractionMethod,K} <: AbstractInverseRetractionMethod Since inverse retractions might have keywords, this type is a way to set them as an own type to be used as a specific inverse retraction. Another reason for this type is that we dispatch on the inverse retraction first and only the last layer would be implemented with keywords, so this way they can be passed down. ## Fields * `inverse_retraction` the inverse retraction that is decorated with keywords * `kwargs` the keyword arguments Note that you can nest this type. Then the most outer specification of a keyword is used. ## Constructor InverseRetractionWithKeywords(m::T; kwargs...) where {T <: AbstractInverseRetractionMethod} Specify the subtype `T <: `[`AbstractInverseRetractionMethod`](@ref) to have keywords `kwargs...`. """ struct InverseRetractionWithKeywords{T<:AbstractInverseRetractionMethod,K} <: AbstractInverseRetractionMethod inverse_retraction::T kwargs::K end function InverseRetractionWithKeywords( m::T; kwargs..., ) where {T<:AbstractInverseRetractionMethod} return InverseRetractionWithKeywords{T,typeof(kwargs)}(m, kwargs) end """ SoftmaxInverseRetraction <: AbstractInverseRetractionMethod Describes an inverse retraction that is based on the softmax function. !!! note "Technical Note" Though you would call e.g. [`inverse_retract`](@ref)`(M, p, q, SoftmaxInverseRetraction())`, to implement an inverse softmax retraction, define [`inverse_retract_softmax!`](@ref)`(M, X, p, q)` for your manifold `M`. """ struct SoftmaxInverseRetraction <: AbstractInverseRetractionMethod end """ default_inverse_retraction_method(M::AbstractManifold) default_inverse_retraction_method(M::AbstractManifold, ::Type{T}) where {T} The [`AbstractInverseRetractionMethod`](@ref) that is used when calling [`inverse_retract`](@ref) without specifying the inverse retraction method. By default, this is the [`LogarithmicInverseRetraction`](@ref). This method can also be specified more precisely with a point type `T`, for the case that on a `M` there are two different representations of points, which provide different inverse retraction methods. """ default_inverse_retraction_method(::AbstractManifold) = LogarithmicInverseRetraction() function default_inverse_retraction_method(M::AbstractManifold, ::Type{T}) where {T} return default_inverse_retraction_method(M) end """ default_retraction_method(M::AbstractManifold) default_retraction_method(M::AbstractManifold, ::Type{T}) where {T} The [`AbstractRetractionMethod`](@ref) that is used when calling [`retract`](@ref) without specifying the retraction method. By default, this is the [`ExponentialRetraction`](@ref). This method can also be specified more precisely with a point type `T`, for the case that on a `M` there are two different representations of points, which provide different retraction methods. """ default_retraction_method(::AbstractManifold) = ExponentialRetraction() function default_retraction_method(M::AbstractManifold, ::Type{T}) where {T} return default_retraction_method(M) end """ inverse_retract(M::AbstractManifold, p, q) inverse_retract(M::AbstractManifold, p, q, method::AbstractInverseRetractionMethod Compute the inverse retraction, a cheaper, approximate version of the [`log`](@ref)arithmic map), of points `p` and `q` on the [`AbstractManifold`](@ref) `M`. Inverse retraction method can be specified by the last argument, defaulting to [`default_inverse_retraction_method`](@ref)`(M)`. For available inverse retractions on certain manifolds see the documentation on the corresponding manifold. See also [`retract`](@ref). """ function inverse_retract( M::AbstractManifold, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) return _inverse_retract(M, p, q, m) end function _inverse_retract(M::AbstractManifold, p, q, ::LogarithmicInverseRetraction) return log(M, p, q) end function _inverse_retract(M::AbstractManifold, p, q, m::AbstractInverseRetractionMethod) X = allocate_result(M, inverse_retract, p, q) return inverse_retract!(M, X, p, q, m) end """ inverse_retract!(M::AbstractManifold, X, p, q[, method::AbstractInverseRetractionMethod]) Compute the inverse retraction, a cheaper, approximate version of the [`log`](@ref)arithmic map), of points `p` and `q` on the [`AbstractManifold`](@ref) `M`. Result is saved to `X`. Inverse retraction method can be specified by the last argument, defaulting to [`default_inverse_retraction_method`](@ref)`(M)`. See the documentation of respective manifolds for available methods. See also [`retract!`](@ref). """ function inverse_retract!( M::AbstractManifold, X, p, q, m::AbstractInverseRetractionMethod = default_inverse_retraction_method(M, typeof(p)), ) return _inverse_retract!(M, X, p, q, m) end function _inverse_retract!( M::AbstractManifold, X, p, q, ::LogarithmicInverseRetraction; kwargs..., ) return log!(M, X, p, q; kwargs...) end # # dispatch to lower level function _inverse_retract!( M::AbstractManifold, X, p, q, ::CayleyInverseRetraction; kwargs..., ) return inverse_retract_cayley!(M, X, p, q; kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, m::EmbeddedInverseRetraction; kwargs..., ) return inverse_retract_embedded!(M, X, p, q, m.inverse_retraction; kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, m::NLSolveInverseRetraction; kwargs..., ) return inverse_retract_nlsolve!(M, X, p, q, m; kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, m::PadeInverseRetraction; kwargs..., ) return inverse_retract_pade!(M, X, p, q, m; kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, ::PolarInverseRetraction; kwargs..., ) return inverse_retract_polar!(M, X, p, q; kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, ::ProjectionInverseRetraction; kwargs..., ) return inverse_retract_project!(M, X, p, q; kwargs...) end function _inverse_retract!(M::AbstractManifold, X, p, q, ::QRInverseRetraction; kwargs...) return inverse_retract_qr!(M, X, p, q; kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, m::InverseRetractionWithKeywords; kwargs..., ) return _inverse_retract!(M, X, p, q, m.inverse_retraction; kwargs..., m.kwargs...) end function _inverse_retract!( M::AbstractManifold, X, p, q, ::SoftmaxInverseRetraction; kwargs..., ) return inverse_retract_softmax!(M, X, p, q; kwargs...) end """ inverse_retract_embedded!(M::AbstractManifold, X, p, q, m::AbstractInverseRetractionMethod) Compute the in-place variant of the [`EmbeddedInverseRetraction`](@ref) using the [`AbstractInverseRetractionMethod`](@ref) `m` in the embedding (see [`get_embedding`](@ref)) and projecting the result back. """ function inverse_retract_embedded!( M::AbstractManifold, X, p, q, m::AbstractInverseRetractionMethod, ) return project!( M, X, p, inverse_retract( get_embedding(M), embed(get_embedding(M), p), embed(get_embedding(M), q), m, ), ) end """ inverse_retract_cayley!(M::AbstractManifold, X, p, q) Compute the in-place variant of the [`CayleyInverseRetraction`](@ref), which by default calls the first order [`PadeInverseRetraction`§(@ref). """ function inverse_retract_cayley!(M::AbstractManifold, X, p, q; kwargs...) return inverse_retract_pade!(M, X, p, q, 1; kwargs...) end """ inverse_retract_pade!(M::AbstractManifold, p, q, n) Compute the in-place variant of the [`PadeInverseRetraction`](@ref)`(n)`, """ inverse_retract_pade!(M::AbstractManifold, p, q, n) function inverse_retract_pade! end """ inverse_retract_qr!(M::AbstractManifold, X, p, q) Compute the in-place variant of the [`QRInverseRetraction`](@ref). """ inverse_retract_qr!(M::AbstractManifold, X, p, q) function inverse_retract_qr! end """ inverse_retract_project!(M::AbstractManifold, X, p, q) Compute the in-place variant of the [`ProjectionInverseRetraction`](@ref). """ inverse_retract_project!(M::AbstractManifold, X, p, q) function inverse_retract_project! end """ inverse_retract_polar!(M::AbstractManifold, X, p, q) Compute the in-place variant of the [`PolarInverseRetraction`](@ref). """ inverse_retract_polar!(M::AbstractManifold, X, p, q) function inverse_retract_polar! end """ inverse_retract_nlsolve!(M::AbstractManifold, X, p, q, m::NLSolveInverseRetraction) Compute the in-place variant of the [`NLSolveInverseRetraction`](@ref) `m`. """ inverse_retract_nlsolve!(M::AbstractManifold, X, p, q, m::NLSolveInverseRetraction) function inverse_retract_nlsolve! end """ inverse_retract_softmax!(M::AbstractManifold, X, p, q) Compute the in-place variant of the [`SoftmaxInverseRetraction`](@ref). """ inverse_retract_softmax!(M::AbstractManifold, X, p, q) function inverse_retract_softmax! end @doc raw""" retract(M::AbstractManifold, p, X, method::AbstractRetractionMethod=default_retraction_method(M, typeof(p))) retract(M::AbstractManifold, p, X, t::Number=1, method::AbstractRetractionMethod=default_retraction_method(M, typeof(p))) Compute a retraction, a cheaper, approximate version of the [`exp`](@ref)onential map, from `p` into direction `X`, scaled by `t`, on the [`AbstractManifold`](@ref) `M`. A retraction ``\operatorname{retr}_p: T_p\mathcal M → \mathcal M`` is a smooth map that fulfils 1. ``\operatorname{retr}_p(0) = p`` 2. ``D\operatorname{retr}_p(0): T_p\mathcal M \to T_p\mathcal M`` is the identity map, i.e. ``D\operatorname{retr}_p(0)[X]=X`` holds for all ``X\in T_p\mathcal M``, where ``D\operatorname{retr}_p`` denotes the differential of the retraction The retraction is called of second order if for all ``X`` the curves ``c(t) = R_p(tX)`` have a zero acceleration at ``t=0``, i.e. ``c''(0) = 0``. Retraction method can be specified by the last argument, defaulting to [`default_retraction_method`](@ref)`(M)`. For further available retractions see the documentation of respective manifolds. Locally, the retraction is invertible. For the inverse operation, see [`inverse_retract`](@ref). """ function retract( M::AbstractManifold, p, X, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return _retract(M, p, X, one(number_eltype(X)), m) end function retract( M::AbstractManifold, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return _retract(M, p, X, t, m) end function _retract(M::AbstractManifold, p, X, t::Number, ::ExponentialRetraction) return exp(M, p, X, t) end function _retract(M::AbstractManifold, p, X, t, m::AbstractRetractionMethod) q = allocate_result(M, retract, p, X) return retract!(M, q, p, X, t, m) end """ retract!(M::AbstractManifold, q, p, X) retract!(M::AbstractManifold, q, p, X, t::Real=1) retract!(M::AbstractManifold, q, p, X, method::AbstractRetractionMethod) retract!(M::AbstractManifold, q, p, X, t::Real=1, method::AbstractRetractionMethod) Compute a retraction, a cheaper, approximate version of the [`exp`](@ref)onential map, from `p` into direction `X`, scaled by `t`, on the [`AbstractManifold`](@ref) manifold `M`. Result is saved to `q`. Retraction method can be specified by the last argument, defaulting to [`default_retraction_method`](@ref)`(M)`. See the documentation of respective manifolds for available methods. See [`retract`](@ref) for more details. """ function retract!( M::AbstractManifold, q, p, X, t::Number, m::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return _retract!(M, q, p, X, t, m) end function retract!( M::AbstractManifold, q, p, X, method::AbstractRetractionMethod = default_retraction_method(M, typeof(p)), ) return retract!(M, q, p, X, one(number_eltype(X)), method) end # dispatch to lower level function _retract!(M::AbstractManifold, q, p, X, t, ::CayleyRetraction; kwargs...) return retract_cayley!(M, q, p, X, t; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, m::EmbeddedRetraction; kwargs...) return retract_embedded!(M, q, p, X, t, m.retraction; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, ::ExponentialRetraction; kwargs...) return exp!(M, q, p, X, t; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, m::ODEExponentialRetraction; kwargs...) return retract_exp_ode!(M, q, p, X, t, m.retraction, m.basis; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, ::PolarRetraction; kwargs...) return retract_polar!(M, q, p, X, t; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, ::ProjectionRetraction; kwargs...) return retract_project!(M, q, p, X, t; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, ::QRRetraction; kwargs...) return retract_qr!(M, q, p, X, t; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t::Number, m::SasakiRetraction) return retract_sasaki!(M, q, p, X, t, m) end function _retract!(M::AbstractManifold, q, p, X, t::Number, ::SoftmaxRetraction; kwargs...) return retract_softmax!(M, q, p, X, t; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, m::PadeRetraction; kwargs...) return retract_pade!(M, q, p, X, t, m; kwargs...) end function _retract!(M::AbstractManifold, q, p, X, t, m::RetractionWithKeywords; kwargs...) return _retract!(M, q, p, X, t, m.retraction; kwargs..., m.kwargs...) end """ retract_embedded!(M::AbstractManifold, q, p, X, t, m::AbstractRetractionMethod) Compute the in-place variant of the [`EmbeddedRetraction`](@ref) using the [`AbstractRetractionMethod`](@ref) `m` in the embedding (see [`get_embedding`](@ref)) and projecting the result back. """ function retract_embedded!( M::AbstractManifold, q, p, X, t, m::AbstractRetractionMethod; kwargs..., ) return project!( M, q, retract( get_embedding(M), embed(get_embedding(M), p), embed(get_embedding(M), p, X), t, m; kwargs..., ), ) end """ retract_cayley!(M::AbstractManifold, q, p, X, t) Compute the in-place variant of the [`CayleyRetraction`](@ref), which by default falls back to calling the first order [`PadeRetraction`](@ref). """ function retract_cayley!(M::AbstractManifold, q, p, X, t; kwargs...) return retract_pade!(M, q, p, X, t, PadeRetraction(1); kwargs...) end """ retract_exp_ode!(M::AbstractManifold, q, p, X, t, m::AbstractRetractionMethod, B::AbstractBasis) Compute the in-place variant of the [`ODEExponentialRetraction`](@ref)`(m, B)`. """ function retract_exp_ode!( M::AbstractManifold, q, p, X, t, m::AbstractRetractionMethod, B::AbstractBasis, ) return retract_exp_ode!( M::AbstractManifold, q, p, t * X, m::AbstractRetractionMethod, B::AbstractBasis, ) end """ retract_pade!(M::AbstractManifold, q, p, X, t, m::PadeRetraction) Compute the in-place variant of the [`PadeRetraction`](@ref) `m`. """ function retract_pade!(M::AbstractManifold, q, p, X, t, m::PadeRetraction) return retract_pade!(M, q, p, t * X) end """ retract_project!(M::AbstractManifold, q, p, X, t) Compute the in-place variant of the [`ProjectionRetraction`](@ref). """ function retract_project!(M::AbstractManifold, q, p, X, t) return retract_project!(M, q, p, t * X) end """ retract_polar!(M::AbstractManifold, q, p, X, t) Compute the in-place variant of the [`PolarRetraction`](@ref). """ function retract_polar!(M::AbstractManifold, q, p, X, t) return retract_polar!(M, q, p, t * X) end """ retract_qr!(M::AbstractManifold, q, p, X, t) Compute the in-place variant of the [`QRRetraction`](@ref). """ function retract_qr!(M::AbstractManifold, q, p, X, t) return retract_qr!(M, q, p, t * X) end """ retract_softmax!(M::AbstractManifold, q, p, X, t) Compute the in-place variant of the [`SoftmaxRetraction`](@ref). """ function retract_softmax!(M::AbstractManifold, q, p, X, t::Number) return retract_softmax!(M, q, p, t * X) end """ retract_sasaki!(M::AbstractManifold, q, p, X, t::Number, m::SasakiRetraction) Compute the in-place variant of the [`SasakiRetraction`](@ref) `m`. """ retract_sasaki!(M::AbstractManifold, q, p, X, t::Number, m::SasakiRetraction) function retract_sasaki! end Base.show(io::IO, ::CayleyRetraction) = print(io, "CayleyRetraction()") Base.show(io::IO, ::PadeRetraction{m}) where {m} = print(io, "PadeRetraction($m)") # # default estimation methods pass down with and without the point type function default_approximation_method(M::AbstractManifold, ::typeof(inverse_retract)) return default_inverse_retraction_method(M) end function default_approximation_method(M::AbstractManifold, ::typeof(inverse_retract), T) return default_inverse_retraction_method(M, T) end function default_approximation_method(M::AbstractManifold, ::typeof(retract)) return default_retraction_method(M) end function default_approximation_method(M::AbstractManifold, ::typeof(retract), T) return default_retraction_method(M, T) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
3297
""" ShootingInverseRetraction <: ApproximateInverseRetraction Approximating the inverse of a retraction using the shooting method. This implementation of the shooting method works by using another inverse retraction to form the first guess of the vector. This guess is updated by shooting the vector, guessing the vector pointing from the shooting result to the target point, and transporting this vector update back to the initial point on a discretized grid. This process is repeated until the norm of the vector update falls below a specified tolerance or the maximum number of iterations is reached. # Fields - `retraction::AbstractRetractionMethod`: The retraction whose inverse is approximated. - `initial_inverse_retraction::AbstractInverseRetractionMethod`: The inverse retraction used to form the initial guess of the vector. - `vector_transport::AbstractVectorTransportMethod`: The vector transport used to transport the initial guess of the vector. - `num_transport_points::Int`: The number of discretization points used for vector transport in the shooting method. 2 is the minimum number of points, including just the endpoints. - `tolerance::Real`: The tolerance for the shooting method. - `max_iterations::Int`: The maximum number of iterations for the shooting method. """ struct ShootingInverseRetraction{ R<:AbstractRetractionMethod, IR<:AbstractInverseRetractionMethod, VT<:AbstractVectorTransportMethod, T<:Real, } <: ApproximateInverseRetraction retraction::R initial_inverse_retraction::IR vector_transport::VT num_transport_points::Int tolerance::T max_iterations::Int end function _inverse_retract!(M::AbstractManifold, X, p, q, m::ShootingInverseRetraction) return inverse_retract_shooting!(M, X, p, q, m) end """ inverse_retract_shooting!(M::AbstractManifold, X, p, q, m::ShootingInverseRetraction) Approximate the inverse of a retraction using the shooting method. """ function inverse_retract_shooting!( M::AbstractManifold, X, p, q, m::ShootingInverseRetraction, ) inverse_retract!(M, X, p, q, m.initial_inverse_retraction) gap = norm(M, p, X) gap < m.tolerance && return X T = real(Base.promote_type(number_eltype(X), number_eltype(p), number_eltype(q))) transport_grid = range(one(T), zero(T); length = m.num_transport_points)[2:(end - 1)] ΔX = allocate(X) ΔXnew = tX = allocate(ΔX) retr_tX = allocate_result(M, retract, p, X) if m.num_transport_points > 2 retr_tX_new = allocate_result(M, retract, p, X) end iteration = 1 while (gap > m.tolerance) && (iteration < m.max_iterations) retract!(M, retr_tX, p, X, m.retraction) inverse_retract!(M, ΔX, retr_tX, q, m.initial_inverse_retraction) gap = norm(M, retr_tX, ΔX) for t in transport_grid tX .= t .* X retract!(M, retr_tX_new, p, tX, m.retraction) vector_transport_to!(M, ΔXnew, retr_tX, ΔX, retr_tX_new, m.vector_transport) # realias storage retr_tX, retr_tX_new, ΔX, ΔXnew, tX = retr_tX_new, retr_tX, ΔXnew, ΔX, ΔX end vector_transport_to!(M, ΔXnew, retr_tX, ΔX, p, m.vector_transport) X .+= ΔXnew iteration += 1 end return X end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
4417
""" FVector(type::VectorSpaceType, data, basis::AbstractBasis) Decorator indicating that the vector `data` contains coordinates of a vector from a fiber of a vector bundle of type `type`. `basis` is an object describing the basis of that space in which the coordinates are given. Conversion between `FVector` representation and the default representation of an object (for example a tangent vector) for a manifold should be done using [`get_coordinates`](@ref) and [`get_vector`](@ref). # Examples ```julia-repl julia> using Manifolds julia> M = Sphere(2) Sphere(2, ℝ) julia> p = [1.0, 0.0, 0.0] 3-element Vector{Float64}: 1.0 0.0 0.0 julia> X = [0.0, 2.0, -1.0] 3-element Vector{Float64}: 0.0 2.0 -1.0 julia> B = DefaultOrthonormalBasis() DefaultOrthonormalBasis(ℝ) julia> fX = TFVector(get_coordinates(M, p, X, B), B) TFVector([2.0, -1.0], DefaultOrthonormalBasis(ℝ)) julia> X_back = get_vector(M, p, fX.data, fX.basis) 3-element Vector{Float64}: -0.0 2.0 -1.0 ``` """ struct FVector{TType<:VectorSpaceType,TData,TBasis<:AbstractBasis} type::TType data::TData basis::TBasis end const TFVector = FVector{TangentSpaceType} const CoTFVector = FVector{CotangentSpaceType} function TFVector(data, basis::AbstractBasis) return TFVector{typeof(data),typeof(basis)}(TangentSpaceType(), data, basis) end function CoTFVector(data, basis::AbstractBasis) return CoTFVector{typeof(data),typeof(basis)}(CotangentSpaceType(), data, basis) end function Base.show(io::IO, fX::TFVector) return print(io, "TFVector(", fX.data, ", ", fX.basis, ")") end function Base.show(io::IO, fX::CoTFVector) return print(io, "CoTFVector(", fX.data, ", ", fX.basis, ")") end """ AbstractFibreVector{TType<:VectorSpaceType} Type for a vector from a vector space (fibre of a vector bundle) of type `TType` of a manifold. While a [`AbstractManifold`](@ref) does not necessarily require this type, for example when it is implemented for `Vector`s or `Matrix` type elements, this type can be used for more complicated representations, semantic verification, or even dispatch for different representations of tangent vectors and their types on a manifold. You may use macro [`@manifold_vector_forwards`](@ref) to introduce commonly used method definitions for your subtype of `AbstractFibreVector`. """ abstract type AbstractFibreVector{TType<:VectorSpaceType} end """ TVector = AbstractFibreVector{TangentSpaceType} Type for a tangent vector of a manifold. While a [`AbstractManifold`](@ref) does not necessarily require this type, for example when it is implemented for `Vector`s or `Matrix` type elements, this type can be used for more complicated representations, semantic verification, or even dispatch for different representations of tangent vectors and their types on a manifold. """ const TVector = AbstractFibreVector{TangentSpaceType} """ CoTVector = AbstractFibreVector{CotangentSpaceType} Type for a cotangent vector of a manifold. While a [`AbstractManifold`](@ref) does not necessarily require this type, for example when it is implemented for `Vector`s or `Matrix` type elements, this type can be used for more complicated representations, semantic verification, or even dispatch for different representations of cotangent vectors and their types on a manifold. """ const CoTVector = AbstractFibreVector{CotangentSpaceType} Base.:+(X::FVector, Y::FVector) = FVector(X.type, X.data + Y.data, X.basis) Base.:-(X::FVector, Y::FVector) = FVector(X.type, X.data - Y.data, X.basis) Base.:-(X::FVector) = FVector(X.type, -X.data, X.basis) Base.:*(a::Number, X::FVector) = FVector(X.type, a * X.data, X.basis) allocate(x::FVector) = FVector(x.type, allocate(x.data), x.basis) allocate(x::FVector, ::Type{T}) where {T} = FVector(x.type, allocate(x.data, T), x.basis) function Base.copyto!(X::FVector, Y::FVector) copyto!(X.data, Y.data) return X end function number_eltype( ::Type{FVector{TType,TData,TBasis}}, ) where {TType<:VectorSpaceType,TData,TBasis} return number_eltype(TData) end number_eltype(v::FVector) = number_eltype(v.data) """ vector_space_dimension(M::AbstractManifold, V::VectorSpaceType) Dimension of the vector space of type `V` on manifold `M`. """ vector_space_dimension(::AbstractManifold, ::VectorSpaceType) function vector_space_dimension(M::AbstractManifold, ::TCoTSpaceType) return manifold_dimension(M) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
41048
""" AbstractVectorTransportMethod <: AbstractApproximationMethod Abstract type for methods for transporting vectors. Such vector transports are not necessarily linear. # See also [`AbstractLinearVectorTransportMethod`](@ref) """ abstract type AbstractVectorTransportMethod <: AbstractApproximationMethod end """ AbstractLinearVectorTransportMethod <: AbstractVectorTransportMethod Abstract type for linear methods for transporting vectors, that is transport of a linear combination of vectors is a linear combination of transported vectors. """ abstract type AbstractLinearVectorTransportMethod <: AbstractVectorTransportMethod end @doc raw""" DifferentiatedRetractionVectorTransport{R<:AbstractRetractionMethod} <: AbstractVectorTransportMethod A type to specify a vector transport that is given by differentiating a retraction. This can be introduced in two ways. Let ``\mathcal M`` be a Riemannian manifold, ``p∈\mathcal M`` a point, and ``X,Y∈ T_p\mathcal M`` denote two tangent vectors at ``p``. Given a retraction (cf. [`AbstractRetractionMethod`](@ref)) ``\operatorname{retr}``, the vector transport of `X` in direction `Y` (cf. [`vector_transport_direction`](@ref)) by differentiation this retraction, is given by ```math \mathcal T^{\operatorname{retr}}_{p,Y}X = D_Y\operatorname{retr}_p(Y)[X] = \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{retr}_p(Y+tX)\Bigr|_{t=0}. ``` see [AbsilMahonySepulchre:2008](@cite), Section 8.1.2 for more details. This can be phrased similarly as a [`vector_transport_to`](@ref) by introducing ``q=\operatorname{retr}_pX`` and defining ```math \mathcal T^{\operatorname{retr}}_{q \gets p}X = \mathcal T^{\operatorname{retr}}_{p,Y}X ``` which in practice usually requires the [`inverse_retract`](@ref) to exists in order to compute ``Y = \operatorname{retr}_p^{-1}q``. # Constructor DifferentiatedRetractionVectorTransport(m::AbstractRetractionMethod) """ struct DifferentiatedRetractionVectorTransport{R<:AbstractRetractionMethod} <: AbstractLinearVectorTransportMethod retraction::R end @doc raw""" EmbeddedVectorTransport{T<:AbstractVectorTransportMethod} <: AbstractVectorTransportMethod Compute a vector transport by using the vector transport of type `T` in the embedding and projecting the result. # Constructor EmbeddedVectorTransport(vt::AbstractVectorTransportMethod) Generate the vector transport with vector transport `vt` to use in the embedding. """ struct EmbeddedVectorTransport{T<:AbstractVectorTransportMethod} <: AbstractVectorTransportMethod vector_transport::T end @doc raw""" ParallelTransport <: AbstractVectorTransportMethod Compute the vector transport by parallel transport, see [`parallel_transport_to`](@ref) """ struct ParallelTransport <: AbstractLinearVectorTransportMethod end """ ProjectionTransport <: AbstractVectorTransportMethod Specify to use projection onto tangent space as vector transport method within [`vector_transport_to`](@ref), [`vector_transport_direction`](@ref), or [`vector_transport_along`](@ref). See [`project`](@ref) for details. """ struct ProjectionTransport <: AbstractLinearVectorTransportMethod end @doc raw""" PoleLadderTransport <: AbstractVectorTransportMethod Specify to use [`pole_ladder`](@ref) as vector transport method within [`vector_transport_to`](@ref), [`vector_transport_direction`](@ref), or [`vector_transport_along`](@ref), i.e. Let $X∈ T_p\mathcal M$ be a tangent vector at $p∈\mathcal M$ and $q∈\mathcal M$ the point to transport to. Then $x = \exp_pX$ is used to call `y = `[`pole_ladder`](@ref)`(M, p, x, q)` and the resulting vector is obtained by computing $Y = -\log_qy$. The [`PoleLadderTransport`](@ref) posesses two advantages compared to [`SchildsLadderTransport`](@ref): * it is cheaper to evaluate, if you want to transport several vectors, since the mid point $c$ then stays unchanged. * while both methods are exact if the curvature is zero, pole ladder is even exact in symmetric Riemannian manifolds [Pennec:2018](@cite) The pole ladder was was proposed in [LorenziPennec:2013](@cite). Its name stems from the fact that it resembles a pole ladder when applied to a sequence of points usccessively. # Constructor ````julia PoleLadderTransport( retraction = ExponentialRetraction(), inverse_retraction = LogarithmicInverseRetraction(), ) ```` Construct the classical pole ladder that employs exp and log, i.e. as proposed in[LorenziPennec:2013](@cite). For an even cheaper transport the inner operations can be changed to an [`AbstractRetractionMethod`](@ref) `retraction` and an [`AbstractInverseRetractionMethod`](@ref) `inverse_retraction`, respectively. """ struct PoleLadderTransport{ RT<:AbstractRetractionMethod, IRT<:AbstractInverseRetractionMethod, } <: AbstractLinearVectorTransportMethod retraction::RT inverse_retraction::IRT function PoleLadderTransport( retraction = ExponentialRetraction(), inverse_retraction = LogarithmicInverseRetraction(), ) return new{typeof(retraction),typeof(inverse_retraction)}( retraction, inverse_retraction, ) end end @doc raw""" ScaledVectorTransport{T} <: AbstractVectorTransportMethod Introduce a scaled variant of any [`AbstractVectorTransportMethod`](@ref) `T`, as introduced in [SatoIwai:2013](@cite) for some ``X∈ T_p\mathcal M`` as ```math \mathcal T^{\mathrm{S}}(X) = \frac{\lVert X\rVert_p}{\lVert \mathcal T(X)\rVert_q}\mathcal T(X). ``` Note that the resulting point `q` has to be known, i.e. for [`vector_transport_direction`](@ref) the curve or more precisely its end point has to be known (via an exponential map or a retraction). Therefore a default implementation is only provided for the [`vector_transport_to`](@ref) # Constructor ScaledVectorTransport(m::AbstractVectorTransportMethod) """ struct ScaledVectorTransport{T<:AbstractVectorTransportMethod} <: AbstractVectorTransportMethod method::T end @doc raw""" SchildsLadderTransport <: AbstractVectorTransportMethod Specify to use [`schilds_ladder`](@ref) as vector transport method within [`vector_transport_to`](@ref), [`vector_transport_direction`](@ref), or [`vector_transport_along`](@ref), i.e. Let $X∈ T_p\mathcal M$ be a tangent vector at $p∈\mathcal M$ and $q∈\mathcal M$ the point to transport to. Then ````math P^{\mathrm{S}}_{q\gets p}(X) = \log_q\bigl( \operatorname{retr}_p ( 2\operatorname{retr}_p^{-1}c ) \bigr), ```` where $c$ is the mid point between $q$ and $d=\exp_pX$. This method employs the internal function [`schilds_ladder`](@ref)`(M, p, d, q)` that avoids leaving the manifold. The name stems from the image of this paralleltogram in a repeated application yielding the image of a ladder. The approximation was proposed in [EhlersPiraniSchild:1972](@cite). # Constructor ````julia SchildsLadderTransport( retraction = ExponentialRetraction(), inverse_retraction = LogarithmicInverseRetraction(), ) ```` Construct the classical Schilds ladder that employs exp and log, i.e. as proposed in [EhlersPiraniSchild:1972](@cite). For an even cheaper transport these inner operations can be changed to an [`AbstractRetractionMethod`](@ref) `retraction` and an [`AbstractInverseRetractionMethod`](@ref) `inverse_retraction`, respectively. """ struct SchildsLadderTransport{ RT<:AbstractRetractionMethod, IRT<:AbstractInverseRetractionMethod, } <: AbstractLinearVectorTransportMethod retraction::RT inverse_retraction::IRT function SchildsLadderTransport( retraction = ExponentialRetraction(), inverse_retraction = LogarithmicInverseRetraction(), ) return new{typeof(retraction),typeof(inverse_retraction)}( retraction, inverse_retraction, ) end end @doc raw""" VectorTransportDirection{VM<:AbstractVectorTransportMethod,RM<:AbstractRetractionMethod} <: AbstractVectorTransportMethod Specify a [`vector_transport_direction`](@ref) using a [`AbstractVectorTransportMethod`](@ref) with explicitly using the [`AbstractRetractionMethod`](@ref) to determine the point in the specified direction where to transsport to. Note that you only need this for the non-default (non-implicit) second retraction method associated to a vector transport, i.e. when a first implementation assumed an implicit associated retraction. """ struct VectorTransportDirection{ VM<:AbstractVectorTransportMethod, RM<:AbstractRetractionMethod, } <: AbstractVectorTransportMethod retraction::RM vector_transport::VM function VectorTransportDirection( vector_transport = ParallelTransport(), retraction = ExponentialRetraction(), ) return new{typeof(vector_transport),typeof(retraction)}( retraction, vector_transport, ) end end @doc raw""" VectorTransportTo{VM<:AbstractVectorTransportMethod,RM<:AbstractRetractionMethod} <: AbstractVectorTransportMethod Specify a [`vector_transport_to`](@ref) using a [`AbstractVectorTransportMethod`](@ref) with explicitly using the [`AbstractInverseRetractionMethod`](@ref) to determine the direction that transports from in `p`to `q`. Note that you only need this for the non-default (non-implicit) second retraction method associated to a vector transport, i.e. when a first implementation assumed an implicit associated retraction. """ struct VectorTransportTo{ VM<:AbstractVectorTransportMethod, IM<:AbstractInverseRetractionMethod, } <: AbstractVectorTransportMethod inverse_retraction::IM vector_transport::VM function VectorTransportTo( vector_transport = ParallelTransport(), inverse_retraction = LogarithmicInverseRetraction(), ) return new{typeof(vector_transport),typeof(inverse_retraction)}( inverse_retraction, vector_transport, ) end end """ VectorTransportWithKeywords{V<:AbstractVectorTransportMethod, K} <: AbstractVectorTransportMethod Since vector transports might have keywords, this type is a way to set them as an own type to be used as a specific vector transport. Another reason for this type is that we dispatch on the vector transport first and only the last layer would be implemented with keywords, so this way they can be passed down. ## Fields * `vector_transport` the vector transport that is decorated with keywords * `kwargs` the keyword arguments Note that you can nest this type. Then the most outer specification of a keyword is used. ## Constructor VectorTransportWithKeywords(m::T; kwargs...) where {T <: AbstractVectorTransportMethod} Specify the subtype `T <: `[`AbstractVectorTransportMethod`](@ref) to have keywords `kwargs...`. """ struct VectorTransportWithKeywords{T<:AbstractVectorTransportMethod,K} <: AbstractVectorTransportMethod vector_transport::T kwargs::K end function VectorTransportWithKeywords( m::T; kwargs..., ) where {T<:AbstractVectorTransportMethod} return VectorTransportWithKeywords{T,typeof(kwargs)}(m, kwargs) end """ default_vector_transport_method(M::AbstractManifold) default_vector_transport_method(M::AbstractManifold, ::Type{T}) where {T} The [`AbstractVectorTransportMethod`](@ref) that is used when calling [`vector_transport_along`](@ref), [`vector_transport_to`](@ref), or [`vector_transport_direction`](@ref) without specifying the vector transport method. By default, this is [`ParallelTransport`](@ref). This method can also be specified more precisely with a point type `T`, for the case that on a `M` there are two different representations of points, which provide different vector transport methods. """ function default_vector_transport_method(::AbstractManifold) return ParallelTransport() end function default_vector_transport_method(M::AbstractManifold, ::Type{T}) where {T} return default_vector_transport_method(M) end @doc raw""" pole_ladder( M, p, d, q, c = mid_point(M, p, q); retraction=default_retraction_method(M, typeof(p)), inverse_retraction=default_inverse_retraction_method(M, typeof(p)) ) Compute an inner step of the pole ladder, that can be used as a [`vector_transport_to`](@ref). Let $c = \gamma_{p,q}(\frac{1}{2})$ mid point between `p` and `q`, then the pole ladder is given by ````math \operatorname{Pl}(p,d,q) = \operatorname{retr}_d (2\operatorname{retr}_d^{-1}c) ```` Where the classical pole ladder employs $\operatorname{retr}_d=\exp_d$ and $\operatorname{retr}_d^{-1}=\log_d$ but for an even cheaper transport these can be set to different [`AbstractRetractionMethod`](@ref) and [`AbstractInverseRetractionMethod`](@ref). When you have $X=log_pd$ and $Y = -\log_q \operatorname{Pl}(p,d,q)$, you will obtain the [`PoleLadderTransport`](@ref). When performing multiple steps, this method avoids the switching to the tangent space. Keep in mind that after $n$ successive steps the tangent vector reads $Y_n = (-1)^n\log_q \operatorname{Pl}(p_{n-1},d_{n-1},p_n)$. It is cheaper to evaluate than [`schilds_ladder`](@ref), sinc if you want to form multiple ladder steps between `p` and `q`, but with different `d`, there is just one evaluation of a geodesic each., since the center `c` can be reused. """ function pole_ladder( M, p, d, q, c = mid_point(M, p, q); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) return retract(M, d, 2 * inverse_retract(M, d, c, inverse_retraction), retraction) end @doc raw""" pole_ladder( M, pl, p, d, q, c = mid_point(M, p, q), X = allocate_result_type(M, log, d, c); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) Compute the [`pole_ladder`](@ref), i.e. the result is saved in `pl`. `X` is used for storing intermediate inverse retraction. """ function pole_ladder!( M, pl, p, d, q, c = mid_point(M, p, q), X = allocate_result(M, log, d, c); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) inverse_retract!(M, X, d, c, inverse_retraction) X *= 2 return retract!(M, pl, d, X, retraction) end @doc raw""" schilds_ladder( M, p, d, q, c = mid_point(M, q, d); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) Perform an inner step of schilds ladder, which can be used as a [`vector_transport_to`](@ref), see [`SchildsLadderTransport`](@ref). Let $c = \gamma_{q,d}(\frac{1}{2})$ denote the mid point on the shortest geodesic connecting $q$ and the point $d$. Then Schild's ladder reads as ````math \operatorname{Sl}(p,d,q) = \operatorname{retr}_p( 2\operatorname{retr}_p^{-1} c) ```` Where the classical Schilds ladder employs $\operatorname{retr}_d=\exp_d$ and $\operatorname{retr}_d^{-1}=\log_d$ but for an even cheaper transport these can be set to different [`AbstractRetractionMethod`](@ref) and [`AbstractInverseRetractionMethod`](@ref). In consistency with [`pole_ladder`](@ref) you can change the way the mid point is computed using the optional parameter `c`, but note that here it's the mid point between `q` and `d`. When you have $X=log_pd$ and $Y = \log_q \operatorname{Sl}(p,d,q)$, you will obtain the [`PoleLadderTransport`](@ref). Then the approximation to the transported vector is given by $\log_q\operatorname{Sl}(p,d,q)$. When performing multiple steps, this method avoidsd the switching to the tangent space. Hence after $n$ successive steps the tangent vector reads $Y_n = \log_q \operatorname{Pl}(p_{n-1},d_{n-1},p_n)$. """ function schilds_ladder( M, p, d, q, c = mid_point(M, q, d); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) return retract(M, p, 2 * inverse_retract(M, p, c, inverse_retraction), retraction) end @doc raw""" schilds_ladder!( M, sl p, d, q, c = mid_point(M, q, d), X = allocate_result_type(M, log, d, c); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) Compute [`schilds_ladder`](@ref) and return the value in the parameter `sl`. If the required mid point `c` was computed before, it can be passed using `c`, and the allocation of new memory can be avoided providing a tangent vector `X` for the interims result. """ function schilds_ladder!( M, sl, p, d, q, c = mid_point(M, q, d), X = allocate_result(M, log, d, c); retraction = default_retraction_method(M, typeof(p)), inverse_retraction = default_inverse_retraction_method(M, typeof(p)), ) inverse_retract!(M, X, p, c, inverse_retraction) X *= 2 return retract!(M, sl, p, X, retraction) end function show(io::IO, ::ParallelTransport) return print(io, "ParallelTransport()") end function show(io::IO, m::ScaledVectorTransport) return print(io, "ScaledVectorTransport($(m.method))") end """ vector_transport_along(M::AbstractManifold, p, X, c) vector_transport_along(M::AbstractManifold, p, X, c, m::AbstractVectorTransportMethod) Transport a vector `X` from the tangent space at a point `p` on the [`AbstractManifold`](@ref) `M` along the curve represented by `c` using the `method`, which defaults to [`default_vector_transport_method`](@ref)`(M)`. """ function vector_transport_along( M::AbstractManifold, p, X, c, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return _vector_transport_along(M, p, X, c, m) end function _vector_transport_along( M::AbstractManifold, p, X, c, ::ParallelTransport; kwargs..., ) return parallel_transport_along(M, p, X, c; kwargs...) end function _vector_transport_along( M::AbstractManifold, p, X, c, m::VectorTransportWithKeywords; kwargs..., ) return _vector_transport_along(M, p, X, c, m.vector_transport; kwargs..., m.kwargs...) end function _vector_transport_along( M::AbstractManifold, p, X, c, m::AbstractVectorTransportMethod; kwargs..., ) Y = allocate_result(M, vector_transport_along, X, p) return vector_transport_along!(M, Y, p, X, c, m; kwargs...) end @doc raw""" vector_transport_along_diff!(M::AbstractManifold, Y, p, X, c, m::AbstractRetractionMethod) Compute the vector transport of `X` from ``T_p\mathcal M`` along the curve `c` using the differential of the [`AbstractRetractionMethod`](@ref) `m` in place of `Y`. """ vector_transport_along_diff!(M::AbstractManifold, Y, p, X, c, m) function vector_transport_along_diff! end @doc raw""" vector_transport_along_project!(M::AbstractManifold, Y, p, X, c::AbstractVector) Compute the vector transport of `X` from ``T_p\mathcal M`` along the curve `c` using a projection. The result is computed in place of `Y`. """ vector_transport_along_project!(M::AbstractManifold, Y, p, X, c::AbstractVector) function vector_transport_along_project! end """ vector_transport_along!(M::AbstractManifold, Y, p, X, c::AbstractVector) vector_transport_along!(M::AbstractManifold, Y, p, X, c::AbstractVector, m::AbstractVectorTransportMethod) Transport a vector `X` from the tangent space at a point `p` on the [`AbstractManifold`](@ref) `M` along the curve represented by `c` using the `method`, which defaults to [`default_vector_transport_method`](@ref)`(M)`. The result is saved to `Y`. """ function vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return _vector_transport_along!(M, Y, p, X, c, m) end function parallel_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector; kwargs..., ) n = length(c) if n == 0 copyto!(Y, X) else parallel_transport_to!(M, Y, p, X, c[1]; kwargs...) for i in 1:(length(c) - 1) parallel_transport_to!(M, Y, c[i], Y, c[i + 1]; kwargs...) end end return Y end function _vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, ::ParallelTransport; kwargs..., ) return parallel_transport_along!(M, Y, p, X, c; kwargs...) end function _vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, m::DifferentiatedRetractionVectorTransport; kwargs..., ) return vector_transport_along_diff!(M, Y, p, X, c, m.retraction; kwargs...) end function _vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, ::ProjectionTransport; kwargs..., ) return vector_transport_along_project!(M, Y, p, X, c; kwargs...) end function _vector_transport_along!( M::AbstractManifold, Y, p, X, c, m::VectorTransportWithKeywords; kwargs..., ) return _vector_transport_along!( M, Y, p, X, c, m.vector_transport; kwargs..., m.kwargs..., ) end function _vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, m::EmbeddedVectorTransport; kwargs..., ) return vector_transport_along_embedded!(M, Y, p, X, c, m.vector_transport; kwargs...) end @doc raw""" vector_transport_along_embedded!(M::AbstractManifold, Y, p, X, c, m::AbstractVectorTransportMethod; kwargs...) Compute the vector transport of `X` from ``T_p\mathcal M`` along the curve `c` using the vector transport method `m` in the embedding and projecting the result back on the corresponding tangent space. The result is computed in place of `Y`. """ vector_transport_along_embedded!( M::AbstractManifold, Y, p, X, c, ::AbstractVectorTransportMethod, ) function vector_transport_along_embedded! end @doc raw""" function vector_transport_along( M::AbstractManifold, p, X, c::AbstractVector, m::PoleLadderTransport ) Compute the vector transport along a discretized curve using [`PoleLadderTransport`](@ref) succesively along the sampled curve. This method is avoiding additional allocations as well as inner exp/log by performing all ladder steps on the manifold and only computing one tangent vector in the end. """ vector_transport_along( M::AbstractManifold, Y, p, X, c::AbstractVector, m::PoleLadderTransport, ) function _vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, m::PoleLadderTransport; kwargs..., ) clen = length(c) if clen == 0 copyto!(Y, X) else d = retract(M, p, X, m.retraction) mp = mid_point(M, p, c[1]) pole_ladder!( M, d, p, d, c[1], mp, Y; retraction = m.retraction, inverse_retraction = m.inverse_retraction, kwargs..., ) for i in 1:(clen - 1) # precompute mid point inplace ci = c[i] cip1 = c[i + 1] mid_point!(M, mp, ci, cip1) # compute new ladder point pole_ladder!( M, d, ci, d, cip1, mp, Y; retraction = m.retraction, inverse_retraction = m.inverse_retraction, kwargs..., ) end inverse_retract!(M, Y, c[clen], d, m.inverse_retraction) Y *= (-1)^clen end return Y end @doc raw""" vector_transport_along( M::AbstractManifold, p, X, c::AbstractVector, m::SchildsLadderTransport ) Compute the vector transport along a discretized curve using [`SchildsLadderTransport`](@ref) succesively along the sampled curve. This method is avoiding additional allocations as well as inner exp/log by performing all ladder steps on the manifold and only computing one tangent vector in the end. """ vector_transport_along( M::AbstractManifold, p, X, c::AbstractVector, m::SchildsLadderTransport, ) function _vector_transport_along!( M::AbstractManifold, Y, p, X, c::AbstractVector, m::SchildsLadderTransport; kwargs..., ) clen = length(c) if clen == 0 copyto!(Y, X) else d = retract(M, p, X, m.retraction) mp = mid_point(M, c[1], d) schilds_ladder!( M, d, p, d, c[1], mp, Y; retraction = m.retraction, inverse_retraction = m.inverse_retraction, kwargs..., ) for i in 1:(clen - 1) ci = c[i] cip1 = c[i + 1] # precompute mid point inplace mid_point!(M, mp, cip1, d) # compute new ladder point schilds_ladder!( M, d, ci, d, cip1, mp, Y; retraction = m.retraction, inverse_retraction = m.inverse_retraction, kwargs..., ) end inverse_retract!(M, Y, c[clen], d, m.inverse_retraction) end return Y end @doc raw""" vector_transport_direction(M::AbstractManifold, p, X, d) vector_transport_direction(M::AbstractManifold, p, X, d, m::AbstractVectorTransportMethod) Given an [`AbstractManifold`](@ref) ``\mathcal M`` the vector transport is a generalization of the [`parallel_transport_direction`](@ref) that identifies vectors from different tangent spaces. More precisely using [AbsilMahonySepulchre:2008](@cite), Def. 8.1.1, a vector transport ``T_{p,d}: T_p\mathcal M \to T_q\mathcal M``, ``p∈ \mathcal M``, ``Y∈ T_p\mathcal M`` is a smooth mapping associated to a retraction ``\operatorname{retr}_p(Y) = q`` such that 1. (associated retraction) ``\mathcal T_{p,d}X ∈ T_q\mathcal M`` if and only if ``q = \operatorname{retr}_p(d)``. 2. (consistency) ``\mathcal T_{p,0_p}X = X`` for all ``X∈T_p\mathcal M`` 3. (linearity) ``\mathcal T_{p,d}(αX+βY) = α\mathcal T_{p,d}X + β\mathcal T_{p,d}Y`` For the [`AbstractVectorTransportMethod`](@ref) we might even omit the third point. The [`AbstractLinearVectorTransportMethod`](@ref)s are linear. # Input Parameters * `M` a manifold * `p` indicating the tangent space of * `X` the tangent vector to be transported * `d` indicating a transport direction (and distance through its length) * `m` an [`AbstractVectorTransportMethod`](@ref), by default [`default_vector_transport_method`](@ref), so usually [`ParallelTransport`](@ref) Usually this method requires a [`AbstractRetractionMethod`](@ref) as well. By default this is assumed to be the [`default_retraction_method`](@ref) or implicitly given (and documented) for a vector transport. To explicitly distinguish different retractions for a vector transport, see [`VectorTransportDirection`](@ref). Instead of spcifying a start direction `d` one can equivalently also specify a target tanget space ``T_q\mathcal M``, see [`vector_transport_to`](@ref). By default [`vector_transport_direction`](@ref) falls back to using [`vector_transport_to`](@ref), using the [`default_retraction_method`](@ref) on `M`. """ function vector_transport_direction( M::AbstractManifold, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return _vector_transport_direction(M, p, X, d, m) end function _vector_transport_direction( M::AbstractManifold, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)); kwargs..., ) # allocate first Y = allocate_result(M, vector_transport_direction, X, p, d) return vector_transport_direction!(M, Y, p, X, d, m; kwargs...) end function _vector_transport_direction( M::AbstractManifold, p, X, d, m::VectorTransportDirection; kwargs..., ) mv = length(kwargs) > 0 ? VectorTransportWithKeywords(m.vector_transport; kwargs...) : m.vector_transport mr = m.retraction return vector_transport_to(M, p, X, retract(M, p, d, mr), mv) end function _vector_transport_direction( M::AbstractManifold, p, X, d, m::VectorTransportWithKeywords; kwargs..., ) return _vector_transport_direction( M, p, X, d, m.vector_transport; kwargs..., m.kwargs..., ) end """ vector_transport_direction!(M::AbstractManifold, Y, p, X, d) vector_transport_direction!(M::AbstractManifold, Y, p, X, d, m::AbstractVectorTransportMethod) Transport a vector `X` from the tangent space at a point `p` on the [`AbstractManifold`](@ref) `M` in the direction indicated by the tangent vector `d` at `p`. By default, [`retract`](@ref) and [`vector_transport_to!`](@ref) are used with the `m` and `r`, which default to [`default_vector_transport_method`](@ref)`(M)` and [`default_retraction_method`](@ref)`(M)`, respectively. The result is saved to `Y`. See [`vector_transport_direction`](@ref) for more details. """ function vector_transport_direction!( M::AbstractManifold, Y, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)); kwargs..., ) return _vector_transport_direction!(M, Y, p, X, d, m; kwargs...) end function _vector_transport_direction!( M::AbstractManifold, Y, p, X, d, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)); kwargs..., ) r = default_retraction_method(M, typeof(p)) v = length(kwargs) > 0 ? VectorTransportWithKeywords(m; kwargs...) : m return vector_transport_to!(M, Y, p, X, retract(M, p, d, r), v) end function _vector_transport_direction!( M::AbstractManifold, Y, p, X, d, m::VectorTransportDirection; kwargs..., ) v = length(kwargs) > 0 ? VectorTransportWithKeywords(m.vector_transport; kwargs...) : m.vector_transport return vector_transport_to!(M, Y, p, X, retract(M, p, d, m.retraction), v) end function _vector_transport_direction!( M::AbstractManifold, Y, p, X, d, m::DifferentiatedRetractionVectorTransport; kwargs..., ) return vector_transport_direction_diff!(M, Y, p, X, d, m.retraction; kwargs...) end function _vector_transport_direction!( M::AbstractManifold, Y, p, X, d, m::EmbeddedVectorTransport; kwargs..., ) return vector_transport_direction_embedded!( M, Y, p, X, d, m.vector_transport; kwargs..., ) end @doc raw""" vector_transport_direction_diff!(M::AbstractManifold, Y, p, X, d, m::AbstractRetractionMethod) Compute the vector transport of `X` from ``T_p\mathcal M`` into the direction `d` using the differential of the [`AbstractRetractionMethod`](@ref) `m` in place of `Y`. """ vector_transport_direction_diff!(M, Y, p, X, d, m) function vector_transport_direction_diff! end function _vector_transport_direction!( M::AbstractManifold, Y, p, X, d, ::ParallelTransport; kwargs..., ) return parallel_transport_direction!(M, Y, p, X, d; kwargs...) end function _vector_transport_direction!( M::AbstractManifold, Y, p, X, d, m::VectorTransportWithKeywords; kwargs..., ) return _vector_transport_direction!( M, Y, p, X, d, m.vector_transport; kwargs..., m.kwargs..., ) end @doc raw""" vector_transport_direction_embedded!(M::AbstractManifold, Y, p, X, d, m::AbstractVectorTransportMethod) Compute the vector transport of `X` from ``T_p\mathcal M`` into the direction `d` using the [`AbstractRetractionMethod`](@ref) `m` in the embedding. The default implementataion requires one allocation for the points and tangent vectors in the embedding and the resulting point, but the final projection is performed in place of `Y` """ function vector_transport_direction_embedded!( M::AbstractManifold, Y, p, X, d, m::AbstractVectorTransportMethod, ) p_e = embed(M, p) d_e = embed(M, d) X_e = embed(M, p, X) Y_e = vector_transport_direction(get_embedding(M), p_e, X_e, d_e, m) q = exp(M, p, d) return project!(M, Y, q, Y_e) end @doc raw""" vector_transport_to(M::AbstractManifold, p, X, q) vector_transport_to(M::AbstractManifold, p, X, q, m::AbstractVectorTransportMethod) vector_transport_to(M::AbstractManifold, p, X, q, m::AbstractVectorTransportMethod) Transport a vector `X` from the tangent space at a point `p` on the [`AbstractManifold`](@ref) `M` along a curve implicitly given by an [`AbstractRetractionMethod`](@ref) associated to `m`. By default `m` is the [`default_vector_transport_method`](@ref)`(M)`. To explicitly specify a (different) retraction to the implicitly assumeed retraction, see [`VectorTransportTo`](@ref). Note that some vector transport methods might also carry their own retraction they are associated to, like the [`DifferentiatedRetractionVectorTransport`](@ref) and some are even independent of the retraction, for example the [`ProjectionTransport`](@ref). This method is equivalent to using ``d = \operatorname{retr}^{-1}_p(q)`` in [`vector_transport_direction`](@ref)`(M, p, X, q, m, r)`, where you can find the formal definition. This is the fallback for [`VectorTransportTo`](@ref). """ function vector_transport_to( M::AbstractManifold, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return _vector_transport_to(M, p, X, q, m) end function _vector_transport_to(M::AbstractManifold, p, X, q, m::VectorTransportTo; kwargs...) d = inverse_retract(M, p, q, m.inverse_retraction) v = length(kwargs) > 0 ? VectorTransportWithKeywords(m.vector_transport; kwargs...) : m.vector_transport return vector_transport_direction(M, p, X, d, v) end function _vector_transport_to(M::AbstractManifold, p, X, q, ::ParallelTransport; kwargs...) return parallel_transport_to(M, p, X, q; kwargs...) end function _vector_transport_to( M::AbstractManifold, p, X, q, m::AbstractVectorTransportMethod; kwargs..., ) Y = allocate_result(M, vector_transport_to, X, p) return vector_transport_to!(M, Y, p, X, q, m; kwargs...) end function _vector_transport_to( M::AbstractManifold, p, X, q, m::VectorTransportWithKeywords; kwargs..., ) return _vector_transport_to(M, p, X, q, m.vector_transport; kwargs..., m.kwargs...) end """ vector_transport_to!(M::AbstractManifold, Y, p, X, q) vector_transport_to!(M::AbstractManifold, Y, p, X, q, m::AbstractVectorTransportMethod) Transport a vector `X` from the tangent space at a point `p` on the [`AbstractManifold`](@ref) `M` to `q` using the [`AbstractVectorTransportMethod`](@ref) `m` and the [`AbstractRetractionMethod`](@ref) `r`. The result is computed in `Y`. See [`vector_transport_to`](@ref) for more details. """ function vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::AbstractVectorTransportMethod = default_vector_transport_method(M, typeof(p)), ) return _vector_transport_to!(M, Y, p, X, q, m) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::VectorTransportTo; kwargs..., ) d = inverse_retract(M, p, q, m.inverse_retraction) return _vector_transport_direction!(M, Y, p, X, d, m.vector_transport; kwargs...) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, ::ParallelTransport; kwargs..., ) return parallel_transport_to!(M, Y, p, X, q; kwargs...) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::DifferentiatedRetractionVectorTransport; kwargs..., ) return vector_transport_to_diff!(M, Y, p, X, q, m.retraction; kwargs...) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::EmbeddedVectorTransport; kwargs..., ) return vector_transport_to_embedded!(M, Y, p, X, q, m.vector_transport; kwargs...) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, ::ProjectionTransport; kwargs..., ) return vector_transport_to_project!(M, Y, p, X, q; kwargs...) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::PoleLadderTransport; kwargs..., ) inverse_retract!( M, Y, q, pole_ladder( M, p, retract(M, p, X, m.retraction), q; retraction = m.retraction, inverse_retraction = m.inverse_retraction, kwargs..., ), m.inverse_retraction, ) copyto!(Y, -Y) return Y end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::ScaledVectorTransport; kwargs..., ) v = length(kwargs) > 0 ? VectorTransportWithKeywords(m.method; kwargs...) : m.method vector_transport_to!(M, Y, p, X, q, v) Y .*= norm(M, p, X) / norm(M, q, Y) return Y end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::VectorTransportWithKeywords; kwargs..., ) return _vector_transport_to!(M, Y, p, X, q, m.vector_transport; kwargs..., m.kwargs...) end function _vector_transport_to!( M::AbstractManifold, Y, p, X, q, m::SchildsLadderTransport; kwargs..., ) return inverse_retract!( M, Y, q, schilds_ladder( M, p, retract(M, p, X, m.retraction), q; retraction = m.retraction, inverse_retraction = m.inverse_retraction, kwargs..., ), m.inverse_retraction, ) end @doc raw""" vector_transport_to_diff(M::AbstractManifold, p, X, q, r) Compute a vector transport by using a [`DifferentiatedRetractionVectorTransport`](@ref) `r` in place of `Y`. """ vector_transport_to_diff!(M::AbstractManifold, Y, p, X, q, r) function vector_transport_to_diff! end @doc raw""" vector_transport_to_embedded!(M::AbstractManifold, Y, p, X, q, m::AbstractRetractionMethod) Compute the vector transport of `X` from ``T_p\mathcal M`` to the point `q` using the of the [`AbstractRetractionMethod`](@ref) `m` in th embedding. The default implementataion requires one allocation for the points and tangent vectors in the embedding and the resulting point, but the final projection is performed in place of `Y` """ function vector_transport_to_embedded!(M::AbstractManifold, Y, p, X, q, m) p_e = embed(M, p) X_e = embed(M, p, X) q_e = embed(M, q) Y_e = vector_transport_to(get_embedding(M), p_e, X_e, q_e, m) return project!(M, Y, q, Y_e) end @doc raw""" vector_transport_to_project!(M::AbstractManifold, Y, p, X, q) Compute a vector transport by projecting ``X\in T_p\mathcal M`` onto the tangent space ``T_q\mathcal M`` at ``q`` in place of `Y`. """ function vector_transport_to_project!(M::AbstractManifold, Y, p, X, q; kwargs...) # Note that we have to use embed (not embed!) since we do not have memory to store this embedded value in return project!(M, Y, q, embed(M, p, X); kwargs...) end # default estimation fallbacks with and without the T function default_approximation_method( M::AbstractManifold, ::typeof(vector_transport_direction), ) return default_vector_transport_method(M) end function default_approximation_method(M::AbstractManifold, ::typeof(vector_transport_along)) return default_vector_transport_method(M) end function default_approximation_method(M::AbstractManifold, ::typeof(vector_transport_to)) return default_vector_transport_method(M) end function default_approximation_method( M::AbstractManifold, ::typeof(vector_transport_direction), T, ) return default_vector_transport_method(M, T) end function default_approximation_method( M::AbstractManifold, ::typeof(vector_transport_along), T, ) return default_vector_transport_method(M, T) end function default_approximation_method(M::AbstractManifold, ::typeof(vector_transport_to), T) return default_vector_transport_method(M, T) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
17291
""" ManifoldsBaseTestUtils A small module to collect common definitions and functions used in (several) tests of `ManifoldsBase.jl`. * A `TestSphere` * """ module ManifoldsBaseTestUtils using ManifoldsBase, LinearAlgebra, Random using ManifoldsBase: ℝ, ℂ, AbstractManifold, DefaultManifold, EuclideanMetric using ManifoldsBase: AbstractNumbers, RealNumbers, ComplexNumbers using ManifoldsBase: @manifold_element_forwards, @manifold_vector_forwards, @default_manifold_fallbacks import Base: +, *, - # # # minimal implementation of the sphere – to test a few more involved Riemannian functions struct TestSphere{N,𝔽} <: AbstractManifold{𝔽} end TestSphere(N::Int, 𝔽 = ℝ) = TestSphere{N,𝔽}() function ManifoldsBase.change_metric!( M::TestSphere, Y, ::ManifoldsBase.EuclideanMetric, p, X, ) return copyto!(M, Y, p, X) end function ManifoldsBase.change_representer!( M::TestSphere, Y, ::ManifoldsBase.EuclideanMetric, p, X, ) return copyto!(M, Y, p, X) end function ManifoldsBase.check_point(M::TestSphere, p; kwargs...) if !isapprox(norm(p), 1.0; kwargs...) return DomainError( norm(p), "The point $(p) does not lie on the $(M) since its norm is not 1.", ) end return nothing end function ManifoldsBase.check_vector(M::TestSphere, p, X; kwargs...) if !isapprox(abs(real(dot(p, X))), 0.0; kwargs...) return DomainError( abs(dot(p, X)), "The vector $(X) is not a tangent vector to $(p) on $(M), since it is not orthogonal in the embedding.", ) end return nothing end function ManifoldsBase.exp!(M::TestSphere, q, p, X) return exp!(M, q, p, X, one(number_eltype(X))) end function ManifoldsBase.exp!(::TestSphere, q, p, X, t::Number) θ = abs(t) * norm(X) if θ == 0 copyto!(q, p) else X_scale = t * sin(θ) / θ q .= p .* cos(θ) .+ X .* X_scale end return q end function ManifoldsBase.get_basis_diagonalizing( M::TestSphere{n}, p, B::DiagonalizingOrthonormalBasis{ℝ}, ) where {n} A = zeros(n + 1, n + 1) A[1, :] = transpose(p) A[2, :] = transpose(B.frame_direction) V = nullspace(A) κ = ones(n) if !iszero(B.frame_direction) # if we have a nonzero direction for the geodesic, add it and it gets curvature zero from the tensor V = hcat(B.frame_direction / norm(M, p, B.frame_direction), V) κ[1] = 0 # no curvature along the geodesic direction, if x!=y end T = typeof(similar(B.frame_direction)) Ξ = [convert(T, V[:, i]) for i in 1:n] return CachedBasis(B, κ, Ξ) end @inline function nzsign(z, absz = abs(z)) psignz = z / absz return ifelse(iszero(absz), one(psignz), psignz) end function ManifoldsBase.get_coordinates_orthonormal!(M::TestSphere, Y, p, X, ::RealNumbers) n = manifold_dimension(M) p1 = p[1] cosθ = abs(p1) λ = nzsign(p1, cosθ) pend, Xend = view(p, 2:(n + 1)), view(X, 2:(n + 1)) factor = λ * X[1] / (1 + cosθ) Y .= Xend .- pend .* factor return Y end function ManifoldsBase.get_vector_orthonormal!(M::TestSphere, Y, p, X, ::RealNumbers) n = manifold_dimension(M) p1 = p[1] cosθ = abs(p1) λ = nzsign(p1, cosθ) pend = view(p, 2:(n + 1)) pX = dot(pend, X) factor = pX / (1 + cosθ) Y[1] = -λ * pX Y[2:(n + 1)] .= X .- pend .* factor return Y end ManifoldsBase.injectivity_radius(::TestSphere) = π ManifoldsBase.inner(::TestSphere, p, X, Y) = dot(X, Y) function ManifoldsBase.inverse_retract_project!(M::TestSphere, X, p, q) X .= q .- p project!(M, X, p, X) return X end ManifoldsBase.is_flat(M::TestSphere) = manifold_dimension(M) == 1 function ManifoldsBase.log!(::TestSphere, X, p, q) cosθ = clamp(real(dot(p, q)), -1, 1) X .= q .- p .* cosθ nrmX = norm(X) if nrmX > 0 X .*= acos(cosθ) / nrmX end return X end ManifoldsBase.manifold_dimension(::TestSphere{N}) where {N} = N function ManifoldsBase.parallel_transport_to!(::TestSphere, Y, p, X, q) m = p .+ q mnorm2 = real(dot(m, m)) factor = 2 * real(dot(X, q)) / mnorm2 Y .= X .- m .* factor return Y end function ManifoldsBase.project!(::TestSphere, q, p) q .= p ./ norm(p) return q end function ManifoldsBase.project!(::TestSphere, Y, p, X) Y .= X .- p .* real(dot(p, X)) return Y end function Random.rand!(M::TestSphere, pX; vector_at = nothing, σ = one(eltype(pX))) return rand!(Random.default_rng(), M, pX; vector_at = vector_at, σ = σ) end function Random.rand!( rng::AbstractRNG, M::TestSphere, pX; vector_at = nothing, σ = one(eltype(pX)), ) if vector_at === nothing project!(M, pX, randn(rng, eltype(pX), representation_size(M))) else n = σ * randn(rng, eltype(pX), size(pX)) # Gaussian in embedding project!(M, pX, vector_at, n) #project to TpM (keeps Gaussianness) end return pX end ManifoldsBase.representation_size(::TestSphere{N}) where {N} = (N + 1,) function ManifoldsBase.retract_project!(M::TestSphere, q, p, X, t::Number) q .= p .+ t .* X project!(M, q, q) return q end function ManifoldsBase.riemann_tensor!(M::TestSphere, Xresult, p, X, Y, Z) innerZX = inner(M, p, Z, X) innerZY = inner(M, p, Z, Y) Xresult .= innerZY .* X .- innerZX .* Y return Xresult end function ManifoldsBase.sectional_curvature_max(M::TestSphere) return ifelse(manifold_dimension(M) == 1, 0.0, 1.0) end function ManifoldsBase.sectional_curvature_min(M::TestSphere) return ifelse(manifold_dimension(M) == 1, 0.0, 1.0) end # from Absil, Mahony, Trumpf, 2013 https://sites.uclouvain.be/absil/2013-01/Weingarten_07PA_techrep.pdf function ManifoldsBase.Weingarten!(::TestSphere, Y, p, X, V) return Y .= -X * p' * V end # # # minimal implementation of SPD (for its nontrivial metric conversion) # --- struct TestSPD <: AbstractManifold{ℝ} n::Int end function ManifoldsBase.change_metric!(::TestSPD, Y, ::EuclideanMetric, p, X) Y .= p * X return Y end function ManifoldsBase.change_representer!(::TestSPD, Y, ::EuclideanMetric, p, X) Y .= p * X * p return Y end function ManifoldsBase.inner(::TestSPD, p, X, Y) F = cholesky(Symmetric(convert(AbstractMatrix, p))) return dot((F \ Symmetric(X)), (Symmetric(Y) / F)) end function spd_sqrt_and_sqrt_inv(p::AbstractMatrix) e = eigen(Symmetric(p)) U = e.vectors S = max.(e.values, floatmin(eltype(e.values))) Ssqrt = Diagonal(sqrt.(S)) SsqrtInv = Diagonal(1 ./ sqrt.(S)) return (Symmetric(U * Ssqrt * transpose(U)), Symmetric(U * SsqrtInv * transpose(U))) end function ManifoldsBase.log!(::TestSPD, X, p, q) (p_sqrt, p_sqrt_inv) = spd_sqrt_and_sqrt_inv(p) T = Symmetric(p_sqrt_inv * convert(AbstractMatrix, q) * p_sqrt_inv) e2 = eigen(T) Se = Diagonal(log.(max.(e2.values, eps()))) pUe = p_sqrt * e2.vectors return mul!(X, pUe, Se * transpose(pUe)) end ManifoldsBase.representation_size(M::TestSPD) = (M.n, M.n) # # # A simple Manifold based on a projection onto a subspace struct ProjManifold <: AbstractManifold{ℝ} end ManifoldsBase.inner(::ProjManifold, p, X, Y) = dot(X, Y) ManifoldsBase.project!(::ProjManifold, Y, p, X) = (Y .= X .- dot(p, X) .* p) ManifoldsBase.representation_size(::ProjManifold) = (2, 3) ManifoldsBase.manifold_dimension(::ProjManifold) = 5 ManifoldsBase.get_vector_orthonormal(::ProjManifold, p, X, N) = reverse(X) # # # A second simple Manifold based on a projection onto a subspace struct ProjectionTestManifold <: AbstractManifold{ℝ} end ManifoldsBase.inner(::ProjectionTestManifold, ::Any, X, Y) = dot(X, Y) function ManifoldsBase.project!(::ProjectionTestManifold, Y, p, X) Y .= X .- dot(p, X) .* p Y[end] = 0 return Y end ManifoldsBase.manifold_dimension(::ProjectionTestManifold) = 100 # # Thre Non-Things to check for the correct errors in case functions are not implemented struct NonManifold <: AbstractManifold{ℝ} end struct NonBasis <: ManifoldsBase.AbstractBasis{ℝ,TangentSpaceType} end struct NonMPoint <: AbstractManifoldPoint end struct NonTVector <: TVector end struct NonCoTVector <: CoTVector end struct NotImplementedRetraction <: AbstractRetractionMethod end struct NotImplementedInverseRetraction <: AbstractInverseRetractionMethod end *(t::Float64, X::NonTVector) = X struct NonBroadcastBasisThing{T} v::T end +(a::NonBroadcastBasisThing, b::NonBroadcastBasisThing) = NonBroadcastBasisThing(a.v + b.v) *(α, a::NonBroadcastBasisThing) = NonBroadcastBasisThing(α * a.v) -(a::NonBroadcastBasisThing, b::NonBroadcastBasisThing) = NonBroadcastBasisThing(a.v - b.v) function ManifoldsBase.isapprox(a::NonBroadcastBasisThing, b::NonBroadcastBasisThing) return isapprox(a.v, b.v) end function ManifoldsBase.number_eltype(a::NonBroadcastBasisThing) return typeof(reduce(+, one(number_eltype(eti)) for eti in a.v)) end ManifoldsBase.allocate(a::NonBroadcastBasisThing) = NonBroadcastBasisThing(allocate(a.v)) function ManifoldsBase.allocate(a::NonBroadcastBasisThing, ::Type{T}) where {T} return NonBroadcastBasisThing(allocate(a.v, T)) end function ManifoldsBase.allocate(::NonBroadcastBasisThing, ::Type{T}, s::Integer) where {T} return Vector{T}(undef, s) end function Base.copyto!(a::NonBroadcastBasisThing, b::NonBroadcastBasisThing) copyto!(a.v, b.v) return a end function ManifoldsBase.log!( ::DefaultManifold, v::NonBroadcastBasisThing, x::NonBroadcastBasisThing, y::NonBroadcastBasisThing, ) return copyto!(v, y - x) end function ManifoldsBase.exp!( ::DefaultManifold, y::NonBroadcastBasisThing, x::NonBroadcastBasisThing, v::NonBroadcastBasisThing, ) return copyto!(y, x + v) end function ManifoldsBase.get_basis_orthonormal( ::DefaultManifold{ℝ}, p::NonBroadcastBasisThing, 𝔽::RealNumbers, ) return CachedBasis( DefaultOrthonormalBasis(𝔽), [ NonBroadcastBasisThing(ManifoldsBase._euclidean_basis_vector(p.v, i)) for i in eachindex(p.v) ], ) end function ManifoldsBase.get_basis_orthogonal( ::DefaultManifold{ℝ}, p::NonBroadcastBasisThing, 𝔽::RealNumbers, ) return CachedBasis( DefaultOrthogonalBasis(𝔽), [ NonBroadcastBasisThing(ManifoldsBase._euclidean_basis_vector(p.v, i)) for i in eachindex(p.v) ], ) end function ManifoldsBase.get_basis_default( ::DefaultManifold{ℝ}, p::NonBroadcastBasisThing, N::ManifoldsBase.RealNumbers, ) return CachedBasis( DefaultBasis(N), [ NonBroadcastBasisThing(ManifoldsBase._euclidean_basis_vector(p.v, i)) for i in eachindex(p.v) ], ) end function ManifoldsBase.get_coordinates_orthonormal!( M::DefaultManifold, Y, ::NonBroadcastBasisThing, X::NonBroadcastBasisThing, ::RealNumbers, ) copyto!(Y, reshape(X.v, manifold_dimension(M))) return Y end function ManifoldsBase.get_vector_orthonormal!( M::DefaultManifold, Y::NonBroadcastBasisThing, ::NonBroadcastBasisThing, X, ::RealNumbers, ) copyto!(Y.v, reshape(X, representation_size(M))) return Y end function ManifoldsBase.inner( ::DefaultManifold, ::NonBroadcastBasisThing, X::NonBroadcastBasisThing, Y::NonBroadcastBasisThing, ) return dot(X.v, Y.v) end ManifoldsBase._get_vector_cache_broadcast(::NonBroadcastBasisThing) = Val(false) DiagonalizingBasisProxy() = DiagonalizingOrthonormalBasis([1.0, 0.0, 0.0]) # # # Vector Space types struct TestVectorSpaceType <: ManifoldsBase.VectorSpaceType end struct TestFiberType <: ManifoldsBase.FiberType end function ManifoldsBase.fiber_dimension(M::AbstractManifold, ::TestFiberType) return 2 * manifold_dimension(M) end function ManifoldsBase.vector_space_dimension(M::AbstractManifold, ::TestVectorSpaceType) return 2 * manifold_dimension(M) end # # # DefaultManifold with a few artificiual retrations struct CustomDefinedRetraction <: ManifoldsBase.AbstractRetractionMethod end struct CustomUndefinedRetraction <: ManifoldsBase.AbstractRetractionMethod end struct CustomDefinedKeywordRetraction <: ManifoldsBase.AbstractRetractionMethod end struct CustomDefinedKeywordInverseRetraction <: ManifoldsBase.AbstractInverseRetractionMethod end struct CustomDefinedInverseRetraction <: ManifoldsBase.AbstractInverseRetractionMethod end struct DefaultPoint{T} <: AbstractManifoldPoint value::T end Base.convert(::Type{DefaultPoint{T}}, v::T) where {T} = DefaultPoint(v) Base.eltype(p::DefaultPoint) = eltype(p.value) Base.length(p::DefaultPoint) = length(p.value) struct DefaultTVector{T} <: TVector value::T end Base.convert(::Type{DefaultTVector{T}}, ::DefaultPoint, v::T) where {T} = DefaultTVector(v) Base.eltype(X::DefaultTVector) = eltype(X.value) function Base.fill!(X::DefaultTVector, x) fill!(X.value, x) return X end function ManifoldsBase.allocate_result_type( ::DefaultManifold, ::typeof(log), ::Tuple{DefaultPoint,DefaultPoint}, ) return DefaultTVector end function ManifoldsBase.allocate_result_type( ::DefaultManifold, ::typeof(inverse_retract), ::Tuple{DefaultPoint,DefaultPoint}, ) return DefaultTVector end ManifoldsBase.@manifold_element_forwards DefaultPoint value ManifoldsBase.@manifold_vector_forwards DefaultTVector value ManifoldsBase.@default_manifold_fallbacks ManifoldsBase.DefaultManifold DefaultPoint DefaultTVector value value function ManifoldsBase._injectivity_radius(::DefaultManifold, ::CustomDefinedRetraction) return 10.0 end function ManifoldsBase._retract!( M::DefaultManifold, q, p, X, t::Number, ::CustomDefinedKeywordRetraction; kwargs..., ) return retract_custom_kw!(M, q, p, X, t; kwargs...) end function retract_custom_kw!( ::DefaultManifold, q::DefaultPoint, p::DefaultPoint, X::DefaultTVector, t::Number; scale = 2.0, ) q.value .= scale .* p.value .+ t .* X.value return q end function ManifoldsBase._inverse_retract!( M::DefaultManifold, X, p, q, ::CustomDefinedKeywordInverseRetraction; kwargs..., ) return inverse_retract_custom_kw!(M, X, p, q; kwargs...) end function inverse_retract_custom_kw!( ::DefaultManifold, X::DefaultTVector, p::DefaultPoint, q::DefaultPoint; scale = 2.0, ) X.value .= q.value - scale * p.value return X end function ManifoldsBase.retract!( ::DefaultManifold, q::DefaultPoint, p::DefaultPoint, X::DefaultTVector, t::Number, ::CustomDefinedRetraction, ) q.value .= 2 .* p.value .+ t * X.value return q end function ManifoldsBase.inverse_retract!( ::DefaultManifold, X::DefaultTVector, p::DefaultPoint, q::DefaultPoint, ::CustomDefinedInverseRetraction, ) X.value .= q.value .- 2 .* p.value return X end struct MatrixVectorTransport{T} <: AbstractVector{T} m::Matrix{T} end # dummy retractions, inverse retracions for fallback tests - mutating should be enough ManifoldsBase.retract_polar!(::DefaultManifold, q, p, X, t::Number) = (q .= p .+ t .* X) ManifoldsBase.retract_project!(::DefaultManifold, q, p, X, t::Number) = (q .= p .+ t .* X) ManifoldsBase.retract_qr!(::DefaultManifold, q, p, X, t::Number) = (q .= p .+ t .* X) function ManifoldsBase.retract_exp_ode!( ::DefaultManifold, q, p, X, t::Number, m::AbstractRetractionMethod, B::ManifoldsBase.AbstractBasis, ) return (q .= p .+ t .* X) end function ManifoldsBase.retract_pade!( ::DefaultManifold, q, p, X, t::Number, m::PadeRetraction, ) return (q .= p .+ t .* X) end function ManifoldsBase.retract_sasaki!( ::DefaultManifold, q, p, X, t::Number, ::SasakiRetraction, ) return (q .= p .+ t .* X) end ManifoldsBase.retract_softmax!(::DefaultManifold, q, p, X, t::Number) = (q .= p .+ t .* X) ManifoldsBase.get_embedding(M::DefaultManifold) = M # dummy embedding ManifoldsBase.inverse_retract_polar!(::DefaultManifold, Y, p, q) = (Y .= q .- p) ManifoldsBase.inverse_retract_project!(::DefaultManifold, Y, p, q) = (Y .= q .- p) ManifoldsBase.inverse_retract_qr!(::DefaultManifold, Y, p, q) = (Y .= q .- p) ManifoldsBase.inverse_retract_softmax!(::DefaultManifold, Y, p, q) = (Y .= q .- p) function ManifoldsBase.inverse_retract_nlsolve!( ::DefaultManifold, Y, p, q, m::NLSolveInverseRetraction, ) return (Y .= q .- p) end function ManifoldsBase.vector_transport_along_project!( ::DefaultManifold, Y, p, X, c::AbstractVector, ) return (Y .= X) end Base.getindex(x::MatrixVectorTransport, i) = x.m[:, i] Base.size(x::MatrixVectorTransport) = (size(x.m, 2),) export CustomDefinedInverseRetraction, CustomDefinedKeywordInverseRetraction export CustomDefinedKeywordRetraction, CustomDefinedRetraction, CustomUndefinedRetraction export DefaultPoint, DefaultTVector export DiagonalizingBasisProxy export MatrixVectorTransport export NonManifold, NonBasis, NonBroadcastBasisThing export NonMPoint, NonTVector, NonCoTVector export NotImplementedRetraction, NotImplementedInverseRetraction export ProjManifold, ProjectionTestManifold export TestSphere, TestSPD export TestVectorSpaceType, TestFiberType end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
3902
using ManifoldsBase using Test using ManifoldsBase: combine_allocation_promotion_functions, allocation_promotion_function, ℝ, ℂ, ℍ using Quaternions struct AllocManifold{𝔽} <: AbstractManifold{𝔽} end AllocManifold() = AllocManifold{ℝ}() function ManifoldsBase.exp!(::AllocManifold, v, x, y) v[1] .= x[1] .+ y[1] v[2] .= x[2] .+ y[2] v[3] .= x[3] .+ y[3] return v end struct AllocManifold2 <: AbstractManifold{ℝ} end ManifoldsBase.representation_size(::AllocManifold2) = (2, 3) struct AllocManifold3 <: AbstractManifold{ℂ} end ManifoldsBase.representation_size(::AllocManifold3) = (2, 3) struct AllocManifold4 <: AbstractManifold{ℍ} end ManifoldsBase.representation_size(::AllocManifold4) = (2, 3) @testset "Allocation" begin a = [[1.0], [2.0], [3.0]] b = [[2.0], [3.0], [-3.0]] M = AllocManifold() v = exp(M, a, b) @test v ≈ [[3.0], [5.0], [0.0]] @test allocate(([1.0], [2.0])) isa Tuple{Vector{Float64},Vector{Float64}} @test allocate(([1.0], [2.0]), Int) isa Tuple{Vector{Int},Vector{Int}} @test allocate([[1.0], [2.0]]) isa Vector{Vector{Float64}} @test allocate([[1.0], [2.0]], Int) isa Vector{Vector{Int}} @test allocate(M, a, 5) isa Vector{Vector{Float64}} @test length(allocate(M, a, 5)) == 5 @test allocate(M, a, (5,)) isa Vector{Vector{Float64}} @test length(allocate(M, a, (5,))) == 5 @test allocate(M, a, Int, (5,)) isa Vector{Int} @test length(allocate(M, a, Int, (5,))) == 5 @test allocate(M, a, Int, 5) isa Vector{Int} @test length(allocate(M, a, Int, 5)) == 5 a1 = allocate([1], 2, 3) @test a1 isa Matrix{Int} @test size(a1) == (2, 3) a2 = allocate([1], (2, 3)) @test a2 isa Matrix{Int} @test size(a2) == (2, 3) a3 = allocate([1], Float64, 2, 3) @test a3 isa Matrix{Float64} @test size(a3) == (2, 3) a4 = allocate([1], Float64, (2, 3)) @test a4 isa Matrix{Float64} @test size(a4) == (2, 3) @test allocation_promotion_function(M, exp, (a, b)) === identity @test combine_allocation_promotion_functions(identity, identity) === identity @test combine_allocation_promotion_functions(identity, complex) === complex @test combine_allocation_promotion_functions(complex, identity) === complex @test combine_allocation_promotion_functions(complex, complex) === complex @test number_eltype([2.0]) === Float64 @test number_eltype([[2.0], [3]]) === Float64 @test number_eltype([[2], [3.0]]) === Float64 @test number_eltype([[2], [3]]) === Int @test number_eltype(([2.0], [3])) === Float64 @test number_eltype(([2], [3.0])) === Float64 @test number_eltype(([2], [3])) === Int @test number_eltype(Any[[2.0], [3.0]]) === Float64 @test number_eltype(typeof([[1.0, 2.0]])) === Float64 M2 = AllocManifold2() alloc2 = ManifoldsBase.allocate_result(M2, rand) @test alloc2 isa Matrix{Float64} @test size(alloc2) == representation_size(M2) @test ManifoldsBase.allocate_result(AllocManifold3(), rand) isa Matrix{ComplexF64} @test ManifoldsBase.allocate_result(AllocManifold4(), rand) isa Matrix{QuaternionF64} an = allocate_on(M2) @test an isa Matrix{Float64} @test size(an) == representation_size(M2) an = allocate_on(M2, Array{Float32}) @test an isa Matrix{Float32} @test size(an) == representation_size(M2) an = allocate_on(M2, TangentSpaceType()) @test an isa Matrix{Float64} @test size(an) == representation_size(M2) an = allocate_on(M2, TangentSpaceType(), Array{Float32}) @test an isa Matrix{Float32} @test size(an) == representation_size(M2) @test default_type(M2) === Matrix{Float64} @test default_type(M2, TangentSpaceType()) === Matrix{Float64} @test ManifoldsBase.coordinate_eltype(M, fill(true, 2, 3), ℝ) === Float64 @test ManifoldsBase.coordinate_eltype(AllocManifold4(), a4, ℍ) === QuaternionF64 end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
17598
using LinearAlgebra using ManifoldsBase using ManifoldsBase: DefaultManifold, ℝ, ℂ, RealNumbers, ComplexNumbers using ManifoldsBase: CotangentSpaceType, TangentSpaceType using ManifoldsBase: FVector using Test s = @__DIR__ !(s in LOAD_PATH) && (push!(LOAD_PATH, s)) using ManifoldsBaseTestUtils @testset "Bases" begin @testset "Projected and arbitrary orthonormal basis" begin M = ProjManifold() x = [ sqrt(2)/2 0.0 0.0 0.0 sqrt(2)/2 0.0 ] for pB in (ProjectedOrthonormalBasis(:svd), ProjectedOrthonormalBasis(:gram_schmidt)) if pB isa ProjectedOrthonormalBasis{:gram_schmidt,ℝ} pb = @test_logs ( :warn, "Input vector 4 lies in the span of the previous ones.", ) get_basis( M, x, pB; warn_linearly_dependent = true, skip_linearly_dependent = true, ) # skip V4, wich is -V1 after proj. @test_throws ErrorException get_basis(M, x, pB) # error else pb = get_basis(M, x, pB) # skips V4 automatically end @test number_system(pb) == ℝ N = manifold_dimension(M) @test isa(pb, CachedBasis) @test CachedBasis(pb) === pb @test !ManifoldsBase.requires_caching(pb) @test length(get_vectors(M, x, pb)) == N # test orthonormality for i in 1:N @test norm(M, x, get_vectors(M, x, pb)[i]) ≈ 1 for j in (i + 1):N @test inner(M, x, get_vectors(M, x, pb)[i], get_vectors(M, x, pb)[j]) ≈ 0 atol = 1e-15 end end end aonb = get_basis(M, x, DefaultOrthonormalBasis()) @test size(get_vectors(M, x, aonb)) == (5,) @test get_vectors(M, x, aonb)[1] ≈ [0, 0, 0, 0, 1] @testset "Gram-Schmidt" begin # for a basis M = ManifoldsBase.DefaultManifold(3) p = zeros(3) V = [[2.0, 0.0, 0.0], [1.1, 2.2, 0.0], [0.0, 3.3, 4.4]] b1 = ManifoldsBase.gram_schmidt(M, p, V) b2 = ManifoldsBase.gram_schmidt(M, zeros(3), CachedBasis(DefaultBasis(), V)) @test b1 == get_vectors(M, p, b2) # projected gram schmidt tm = ProjectionTestManifold() bt = ProjectedOrthonormalBasis(:gram_schmidt) p = [sqrt(2) / 2, 0.0, sqrt(2) / 2, 0.0, 0.0] @test_logs (:warn, "Input only has 5 vectors, but manifold dimension is 100.") (@test_throws ErrorException get_basis( tm, p, bt, )) b = @test_logs ( :warn, "Input only has 5 vectors, but manifold dimension is 100.", ) get_basis( tm, p, bt; return_incomplete_set = true, skip_linearly_dependent = true, #skips 3 and 5 ) @test length(get_vectors(tm, p, b)) == 3 @test_logs (:warn, "Input only has 1 vectors, but manifold dimension is 3.") (@test_throws ErrorException ManifoldsBase.gram_schmidt( M, p, [V[1]], )) @test_throws ErrorException ManifoldsBase.gram_schmidt( M, p, [V[1], V[1], V[1]]; skip_linearly_dependent = true, ) end end @testset "ManifoldsBase.jl stuff" begin @testset "Errors" begin m = NonManifold() onb = DefaultOrthonormalBasis() @test_throws MethodError get_basis(m, [0], onb) @test_throws MethodError get_basis(m, [0], NonBasis()) @test_throws MethodError get_coordinates(m, [0], [0], onb) @test_throws MethodError get_coordinates!(m, [0], [0], [0], onb) @test_throws MethodError get_vector(m, [0], [0], onb) @test_throws MethodError get_vector!(m, [0], [0], [0], onb) @test_throws MethodError get_vectors(m, [0], NonBasis()) end M = DefaultManifold(3) @test sprint( show, "text/plain", CachedBasis(NonBasis(), NonBroadcastBasisThing([])), ) == "Cached basis of type NonBasis" @testset "Constructors" begin @test DefaultBasis{ℂ,TangentSpaceType}() === DefaultBasis(ℂ) @test DefaultOrthogonalBasis{ℂ,TangentSpaceType}() === DefaultOrthogonalBasis(ℂ) @test DefaultOrthonormalBasis{ℂ,TangentSpaceType}() === DefaultOrthonormalBasis(ℂ) @test DefaultBasis{ℂ}(CotangentSpaceType()) === DefaultBasis(ℂ, CotangentSpaceType()) @test DefaultOrthogonalBasis{ℂ}(CotangentSpaceType()) === DefaultOrthogonalBasis(ℂ, CotangentSpaceType()) @test DefaultOrthonormalBasis{ℂ}(CotangentSpaceType()) === DefaultOrthonormalBasis(ℂ, CotangentSpaceType()) end _pts = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] @testset "basis representation" for BT in ( DefaultBasis, DefaultOrthonormalBasis, DefaultOrthogonalBasis, DiagonalizingBasisProxy, ), pts in (_pts, map(NonBroadcastBasisThing, _pts)) if BT == DiagonalizingBasisProxy && pts !== _pts continue end v1 = log(M, pts[1], pts[2]) @test ManifoldsBase.number_of_coordinates(M, BT()) == 3 vb = get_coordinates(M, pts[1], v1, BT()) @test isa(vb, AbstractVector) vbi = get_vector(M, pts[1], vb, BT()) @test isapprox(M, pts[1], v1, vbi) b = get_basis(M, pts[1], BT()) if BT != DiagonalizingBasisProxy if pts[1] isa Array @test isa( b, CachedBasis{ℝ,BT{ℝ,TangentSpaceType},Vector{Vector{Float64}}}, ) else @test isa( b, CachedBasis{ ℝ, BT{ℝ,TangentSpaceType}, Vector{NonBroadcastBasisThing{Vector{Float64}}}, }, ) end end @test get_basis(M, pts[1], b) === b N = manifold_dimension(M) @test length(get_vectors(M, pts[1], b)) == N # check orthonormality if BT isa DefaultOrthonormalBasis && pts[1] isa Vector for i in 1:N @test norm(M, pts[1], get_vectors(M, pts[1], b)[i]) ≈ 1 for j in (i + 1):N @test inner( M, pts[1], get_vectors(M, pts[1], b)[i], get_vectors(M, pts[1], b)[j], ) ≈ 0 end end # check that the coefficients correspond to the basis for i in 1:N @test inner(M, pts[1], v1, get_vectors(M, pts[1], b)[i]) ≈ vb[i] end end if BT != DiagonalizingBasisProxy @test get_coordinates(M, pts[1], v1, b) ≈ get_coordinates(M, pts[1], v1, BT()) @test get_vector(M, pts[1], vb, b) ≈ get_vector(M, pts[1], vb, BT()) end v1c = Vector{Float64}(undef, 3) get_coordinates!(M, v1c, pts[1], v1, b) @test v1c ≈ get_coordinates(M, pts[1], v1, b) v1cv = allocate(v1) get_vector!(M, v1cv, pts[1], v1c, b) @test isapprox(M, pts[1], v1, v1cv) end @testset "() Manifolds" begin M = ManifoldsBase.DefaultManifold() ManifoldsBase.allocate_coordinates(M, 1, Float64, 0) == 0.0 ManifoldsBase.allocate_coordinates(M, 1, Float64, 1) == zeros(Float64, 1) ManifoldsBase.allocate_coordinates(M, 1, Float64, 2) == zeros(Float64, 2) end end @testset "Complex DefaultManifold with real and complex Cached Bases" begin M = ManifoldsBase.DefaultManifold(3; field = ℂ) p = [1.0, 2.0im, 3.0] X = [1.2, 2.2im, 2.3im] b = [Matrix{Float64}(I, 3, 3)[:, i] for i in 1:3] bℂ = [b..., (b .* 1im)...] Bℝ = CachedBasis(DefaultOrthonormalBasis{ℂ}(), b) aℝ = get_coordinates(M, p, X, Bℝ) Yℝ = get_vector(M, p, aℝ, Bℝ) @test Yℝ ≈ X @test ManifoldsBase.number_of_coordinates(M, Bℝ) == 3 Bℂ = CachedBasis(DefaultOrthonormalBasis{ℝ}(), bℂ) aℂ = get_coordinates(M, p, X, Bℂ) Yℂ = get_vector(M, p, aℂ, Bℂ) @test Yℂ ≈ X @test ManifoldsBase.number_of_coordinates(M, Bℂ) == 6 @test change_basis(M, p, aℝ, Bℝ, Bℂ) ≈ aℂ aℂ_sim = similar(aℂ) change_basis!(M, aℂ_sim, p, aℝ, Bℝ, Bℂ) @test aℂ_sim ≈ aℂ end @testset "Basis show methods" begin @test sprint(show, DefaultBasis()) == "DefaultBasis(ℝ)" @test sprint(show, DefaultOrthogonalBasis()) == "DefaultOrthogonalBasis(ℝ)" @test sprint(show, DefaultOrthonormalBasis()) == "DefaultOrthonormalBasis(ℝ)" @test sprint(show, DefaultOrthonormalBasis(ℂ)) == "DefaultOrthonormalBasis(ℂ)" @test sprint(show, GramSchmidtOrthonormalBasis(ℂ)) == "GramSchmidtOrthonormalBasis(ℂ)" @test sprint(show, ProjectedOrthonormalBasis(:svd)) == "ProjectedOrthonormalBasis(:svd, ℝ)" @test sprint(show, ProjectedOrthonormalBasis(:gram_schmidt, ℂ)) == "ProjectedOrthonormalBasis(:gram_schmidt, ℂ)" diag_onb = DiagonalizingOrthonormalBasis(Float64[1, 2, 3]) @test sprint(show, "text/plain", diag_onb) == """ DiagonalizingOrthonormalBasis(ℝ) with eigenvalue 0 in direction: 3-element $(sprint(show, Vector{Float64})): 1.0 2.0 3.0""" M = DefaultManifold(2, 3) x = collect(reshape(1.0:6.0, (2, 3))) pb = get_basis(M, x, DefaultOrthonormalBasis()) B2 = DefaultOrthonormalBasis(ManifoldsBase.ℝ, ManifoldsBase.CotangentSpaceType()) pb2 = get_basis(M, x, B2) test_basis_string = """ Cached basis of type $(sprint(show, typeof(DefaultOrthonormalBasis()))) with 6 basis vectors: E1 = 2×3 $(sprint(show, Matrix{Float64})): 1.0 0.0 0.0 0.0 0.0 0.0 E2 = 2×3 $(sprint(show, Matrix{Float64})): 0.0 0.0 0.0 1.0 0.0 0.0 ⋮ E5 = 2×3 $(sprint(show, Matrix{Float64})): 0.0 0.0 1.0 0.0 0.0 0.0 E6 = 2×3 $(sprint(show, Matrix{Float64})): 0.0 0.0 0.0 0.0 0.0 1.0""" @test sprint(show, "text/plain", pb) == test_basis_string @test sprint(show, "text/plain", pb2) == test_basis_string b = DiagonalizingOrthonormalBasis(get_vectors(M, x, pb)[1]) dpb = CachedBasis(b, Float64[1, 2, 3, 4, 5, 6], get_vectors(M, x, pb)) @test sprint(show, "text/plain", dpb) == """ DiagonalizingOrthonormalBasis(ℝ) with eigenvalue 0 in direction: 2×3 $(sprint(show, Matrix{Float64})): 1.0 0.0 0.0 0.0 0.0 0.0 and 6 basis vectors. Basis vectors: E1 = 2×3 $(sprint(show, Matrix{Float64})): 1.0 0.0 0.0 0.0 0.0 0.0 E2 = 2×3 $(sprint(show, Matrix{Float64})): 0.0 0.0 0.0 1.0 0.0 0.0 ⋮ E5 = 2×3 $(sprint(show, Matrix{Float64})): 0.0 0.0 1.0 0.0 0.0 0.0 E6 = 2×3 $(sprint(show, Matrix{Float64})): 0.0 0.0 0.0 0.0 0.0 1.0 Eigenvalues: 6-element $(sprint(show, Vector{Float64})): 1.0 2.0 3.0 4.0 5.0 6.0""" M = DefaultManifold(1, 1, 1) x = reshape(Float64[1], (1, 1, 1)) pb = get_basis(M, x, DefaultOrthonormalBasis()) @test sprint(show, "text/plain", pb) == """ Cached basis of type $(sprint(show, typeof(DefaultOrthonormalBasis()))) with 1 basis vector: E1 = 1×1×1 $(sprint(show, Array{Float64,3})): [:, :, 1] = 1.0""" dpb = CachedBasis( DiagonalizingOrthonormalBasis(get_vectors(M, x, pb)), Float64[1], get_vectors(M, x, pb), ) @test sprint(show, "text/plain", dpb) == """ DiagonalizingOrthonormalBasis(ℝ) with eigenvalue 0 in direction: 1-element $(sprint(show, Vector{Array{Float64,3}})): $(sprint(show, dpb.data.frame_direction[1])) and 1 basis vector. Basis vectors: E1 = 1×1×1 $(sprint(show, Array{Float64,3})): [:, :, 1] = 1.0 Eigenvalues: 1-element $(sprint(show, Vector{Float64})): 1.0""" end @testset "Bases of cotangent spaces" begin b1 = DefaultOrthonormalBasis(ℝ, CotangentSpaceType()) @test b1.vector_space == CotangentSpaceType() b2 = DefaultOrthogonalBasis(ℝ, CotangentSpaceType()) @test b2.vector_space == CotangentSpaceType() b3 = DefaultBasis(ℝ, CotangentSpaceType()) @test b3.vector_space == CotangentSpaceType() M = DefaultManifold(2; field = ℂ) p = [1.0, 2.0im] b1_d = ManifoldsBase.dual_basis(M, p, b1) @test b1_d isa DefaultOrthonormalBasis @test b1_d.vector_space == TangentSpaceType() b1_d_d = ManifoldsBase.dual_basis(M, p, b1_d) @test b1_d_d isa DefaultOrthonormalBasis @test b1_d_d.vector_space == CotangentSpaceType() end @testset "Complex Basis - Mutating cases" begin Mc = ManifoldsBase.DefaultManifold(2, field = ManifoldsBase.ℂ) p = [1.0, 1.0im] X = [2.0, 1.0im] Bc = DefaultOrthonormalBasis(ManifoldsBase.ℂ) CBc = get_basis(Mc, p, Bc) @test CBc.data == [[1.0, 0.0], [0.0, 1.0]] B = DefaultOrthonormalBasis(ManifoldsBase.ℝ) CB = get_basis(Mc, p, B) @test CB.data == [[1.0, 0.0], [0.0, 1.0], [1.0im, 0.0], [0.0, 1.0im]] @test get_coordinates(Mc, p, X, CB) == [2.0, 0.0, 0.0, 1.0] @test get_coordinates(Mc, p, X, CBc) == [2.0, 1.0im] # ONB cc = zeros(4) @test get_coordinates!(Mc, cc, p, X, B) == [2.0, 0.0, 0.0, 1.0] @test cc == [2.0, 0.0, 0.0, 1.0] c = zeros(ComplexF64, 2) @test get_coordinates!(Mc, c, p, X, Bc) == [2.0, 1.0im] @test c == [2.0, 1.0im] # Cached @test get_coordinates!(Mc, cc, p, X, CB) == [2.0, 0.0, 0.0, 1.0] @test cc == [2.0, 0.0, 0.0, 1.0] @test get_coordinates!(Mc, c, p, X, CBc) == [2.0, 1.0im] @test c == [2.0, 1.0im] end @testset "FVector" begin @test sprint(show, TangentSpaceType()) == "TangentSpaceType()" @test sprint(show, CotangentSpaceType()) == "CotangentSpaceType()" tvs = ([1.0, 0.0, 0.0], [0.0, 1.0, 0.0]) fv_tvs = map(v -> TFVector(v, DefaultOrthonormalBasis()), tvs) fv1 = fv_tvs[1] tv1s = allocate(fv_tvs[1]) @test isa(tv1s, FVector) @test tv1s.type == TangentSpaceType() @test size(tv1s.data) == size(tvs[1]) @test number_eltype(tv1s) == number_eltype(tvs[1]) @test number_eltype(tv1s) == number_eltype(typeof(tv1s)) @test isa(fv1 + fv1, FVector) @test (fv1 + fv1).type == TangentSpaceType() @test isa(fv1 - fv1, FVector) @test (fv1 - fv1).type == TangentSpaceType() @test isa(-fv1, FVector) @test (-fv1).type == TangentSpaceType() @test isa(2 * fv1, FVector) @test (2 * fv1).type == TangentSpaceType() tv1s_32 = allocate(fv_tvs[1], Float32) @test isa(tv1s, FVector) @test eltype(tv1s_32.data) === Float32 copyto!(tv1s, fv_tvs[2]) @test isapprox(tv1s.data, fv_tvs[2].data) @test sprint(show, fv1) == "TFVector([1.0, 0.0, 0.0], $(fv1.basis))" cofv1 = CoTFVector(tvs[1], DefaultOrthonormalBasis(ℝ, CotangentSpaceType())) @test cofv1 isa CoTFVector @test sprint(show, cofv1) == "CoTFVector([1.0, 0.0, 0.0], $(fv1.basis))" end @testset "vector_space_dimension" begin M = ManifoldsBase.DefaultManifold(3) MC = ManifoldsBase.DefaultManifold(3; field = ℂ) @test ManifoldsBase.vector_space_dimension(M, TangentSpaceType()) == 3 @test ManifoldsBase.vector_space_dimension(M, CotangentSpaceType()) == 3 @test ManifoldsBase.vector_space_dimension(MC, TangentSpaceType()) == 6 @test ManifoldsBase.vector_space_dimension(MC, CotangentSpaceType()) == 6 end @testset "requires_caching" begin @test ManifoldsBase.requires_caching(ProjectedOrthonormalBasis(:svd)) @test !ManifoldsBase.requires_caching(DefaultBasis()) @test !ManifoldsBase.requires_caching(DefaultOrthogonalBasis()) @test !ManifoldsBase.requires_caching(DefaultOrthonormalBasis()) end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
949
using ManifoldsBase import ManifoldsBase: representation_size, manifold_dimension, inner using LinearAlgebra using Test struct ComplexEuclidean{N} <: AbstractManifold{ℂ} where {N} end ComplexEuclidean(n::Int) = ComplexEuclidean{n}() representation_size(::ComplexEuclidean{N}) where {N} = (N,) manifold_dimension(::ComplexEuclidean{N}) where {N} = 2N @inline inner(::ComplexEuclidean, x, v, w) = dot(v, w) @testset "Complex Euclidean" begin M = ComplexEuclidean(3) x = complex.([1.0, 2.0, 3.0], [4.0, 5.0, 6.0]) v1 = complex.([0.1, 0.2, 0.3], [0.4, 0.5, 0.6]) v2 = complex.([0.3, 0.2, 0.1], [0.6, 0.5, 0.4]) @test norm(M, x, v1) isa Real @test norm(M, x, v1) ≈ norm(v1) @test angle(M, x, v1, v2) isa Real @test angle(M, x, v1, v2) ≈ acos(real(dot(v1, v2)) / norm(v1) / norm(v2)) vv1 = vcat(reim(v1)...) vv2 = vcat(reim(v2)...) @test angle(M, x, v1, v2) ≈ acos(dot(normalize(vv1), normalize(vv2))) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
5598
using Test using ManifoldsBase using ManifoldsBase: AbstractTrait, TraitList, EmptyTrait, trait, merge_traits using ManifoldsBase: expand_trait, next_trait import ManifoldsBase: active_traits, parent_trait struct IsCool <: AbstractTrait end struct IsNice <: AbstractTrait end abstract type AbstractA end abstract type DecoA <: AbstractA end # A few concrete types struct A <: AbstractA end struct A1 <: DecoA end struct A2 <: DecoA end struct A3 <: DecoA end struct A4 <: DecoA end struct A5 <: DecoA end # just some function f(::AbstractA, x) = x + 2 g(::DecoA, x, y) = x + y struct IsGreat <: AbstractTrait end # a special case of IsNice parent_trait(::IsGreat) = IsNice() active_traits(f, ::A1, ::Any) = merge_traits(IsNice()) active_traits(f, ::A2, ::Any) = merge_traits(IsCool()) active_traits(f, ::A3, ::Any) = merge_traits(IsCool(), IsNice()) active_traits(f, ::A5, ::Any) = merge_traits(IsGreat()) f(a::DecoA, b) = f(trait(f, a, b), a, b) f(::TraitList{IsNice}, a, b) = g(a, b, 3) f(::TraitList{IsCool}, a, b) = g(a, b, 5) # generic forward to the next trait to be looked at f(t::TraitList, a, b) = f(next_trait(t), a, b) # generic fallback when no traits are defined f(::EmptyTrait, a, b) = invoke(f, Tuple{AbstractA,typeof(b)}, a, b) @testset "Decorator trait tests" begin t = ManifoldsBase.EmptyTrait() t2 = ManifoldsBase.TraitList(t, t) @test merge_traits() == t @test merge_traits(t) == t @test merge_traits(t, t) == t @test merge_traits(t2) == t2 @test merge_traits( merge_traits(IsGreat(), IsNice()), merge_traits(IsGreat(), IsNice()), ) === merge_traits(IsGreat(), IsNice(), IsGreat(), IsNice()) @test expand_trait(merge_traits(IsGreat(), IsCool())) === merge_traits(IsGreat(), IsNice(), IsCool()) @test expand_trait(merge_traits(IsCool(), IsGreat())) === merge_traits(IsCool(), IsGreat(), IsNice()) @test string(merge_traits(IsGreat(), IsNice())) == "TraitList(IsGreat(), TraitList(IsNice(), EmptyTrait()))" global f @test f(A(), 0) == 2 @test f(A2(), 0) == 5 @test f(A3(), 0) == 5 @test f(A4(), 0) == 2 @test f(A5(), 890) == 893 f(::TraitList{IsGreat}, a, b) = g(a, b, 54) @test f(A5(), 890) == 944 @test next_trait(EmptyTrait()) === EmptyTrait() end # # A Manifold decorator test - check that EmptyTrait cases call Abstract and those fail with # MethodError due to ambiguities (between Abstract and Decorator) struct NonDecoratorManifold <: AbstractDecoratorManifold{ManifoldsBase.ℝ} end ManifoldsBase.representation_size(::NonDecoratorManifold) = (2,) @testset "Testing a NonDecoratorManifold - emptytrait fallbacks" begin M = NonDecoratorManifold() p = [2.0, 1.0] q = similar(p) X = [1.0, 0.0] Y = similar(X) @test ManifoldsBase.check_size(M, p) === nothing @test ManifoldsBase.check_size(M, p, X) === nothing # default to identity @test embed(M, p) == p @test embed!(M, q, p) == p @test embed(M, p, X) == X @test embed!(M, Y, p, X) == X # the following is implemented but passes to the second and hence fails @test_throws MethodError exp(M, p, X) @test_throws MethodError exp(M, p, X, 2.0) @test_throws MethodError exp!(M, q, p, X) @test_throws MethodError exp!(M, q, p, X, 2.0) @test_throws MethodError retract(M, p, X) @test_throws MethodError retract(M, p, X, 2.0) @test_throws MethodError retract!(M, q, p, X) @test_throws MethodError retract!(M, q, p, X, 2.0) @test_throws MethodError log(M, p, q) @test_throws MethodError log!(M, Y, p, q) @test_throws MethodError inverse_retract(M, p, q) @test_throws MethodError inverse_retract!(M, Y, p, q) @test_throws MethodError parallel_transport_along(M, p, X, :curve) @test_throws MethodError parallel_transport_along!(M, Y, p, X, :curve) @test_throws MethodError parallel_transport_direction(M, p, X, X) @test_throws MethodError parallel_transport_direction!(M, Y, p, X, X) @test_throws MethodError parallel_transport_to(M, p, X, q) @test_throws MethodError parallel_transport_to!(M, Y, p, X, q) @test_throws MethodError vector_transport_along(M, p, X, :curve) @test_throws MethodError vector_transport_along!(M, Y, p, X, :curve) end # With even less, check that representation size stack overflows struct NonDecoratorNonManifold <: AbstractDecoratorManifold{ManifoldsBase.ℝ} end @testset "Testing a NonDecoratorNonManifold - emptytrait fallback Errors" begin N = NonDecoratorNonManifold() @test_throws StackOverflowError representation_size(N) end h(::AbstractA, x::Float64, y; a = 1) = x + y - a h(::DecoA, x, y) = x + y ManifoldsBase.@invoke_maker 1 AbstractA h(A::DecoA, x::Float64, y) @testset "@invoke_maker" begin @test h(A1(), 1.0, 2) == 2 sig = ManifoldsBase._split_signature(:(fname(x::T; k::Float64 = 1) where {T})) @test sig.fname == :fname @test sig.where_exprs == Any[:T] @test sig.callargs == Any[:(x::T)] @test sig.kwargs_list == Any[:($(Expr(:kw, :(k::Float64), 1)))] @test sig.argnames == [:x] @test sig.argtypes == [:T] @test sig.kwargs_call == Expr[:(k = k)] @test_throws ErrorException ManifoldsBase._split_signature(:(a = b)) sig2 = ManifoldsBase._split_signature(:(fname(x; kwargs...))) @test sig2.kwargs_call == Expr[:(kwargs...)] sig3 = ManifoldsBase._split_signature(:(fname(x::T, y::Int = 10; k1 = 1) where {T})) @test sig3.kwargs_call == Expr[:(k1 = k1)] @test sig3.callargs[2] == :($(Expr(:kw, :(y::Int), 10))) @test sig3.argnames == [:x, :y] end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
30499
using ManifoldsBase using DoubleFloats using ForwardDiff using LinearAlgebra using Random using ReverseDiff using StaticArrays using Test s = @__DIR__ !(s in LOAD_PATH) && (push!(LOAD_PATH, s)) using ManifoldsBaseTestUtils @testset "Testing Default (Euclidean)" begin M = ManifoldsBase.DefaultManifold(3) types = [ Vector{Float64}, SizedVector{3,Float64,Vector{Float64}}, MVector{3,Float64}, Vector{Float32}, SizedVector{3,Float32,Vector{Float32}}, MVector{3,Float32}, Vector{Double64}, MVector{3,Double64}, SizedVector{3,Double64,Vector{Double64}}, DefaultPoint{Vector{Float64}}, ] @test repr(M) == "DefaultManifold(3; field = ℝ)" @test isa(manifold_dimension(M), Integer) @test manifold_dimension(M) ≥ 0 @test base_manifold(M) == M @test number_system(M) == ManifoldsBase.ℝ @test ManifoldsBase.representation_size(M) == (3,) p = zeros(3) m = PolarRetraction() @test injectivity_radius(M) == Inf @test injectivity_radius(M, p) == Inf @test injectivity_radius(M, m) == Inf @test injectivity_radius(M, p, m) == Inf @test default_retraction_method(M) == ExponentialRetraction() @test default_inverse_retraction_method(M) == LogarithmicInverseRetraction() @test is_flat(M) rm = ManifoldsBase.ExponentialRetraction() irm = ManifoldsBase.LogarithmicInverseRetraction() # Representation sizes not equal @test ManifoldsBase.check_size(M, zeros(3, 3)) isa DomainError @test ManifoldsBase.check_size(M, zeros(3), zeros(3, 3)) isa DomainError rm2 = CustomDefinedRetraction() rm3 = CustomUndefinedRetraction() for T in types @testset "Type $T" begin pts = convert.(Ref(T), [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) @test injectivity_radius(M, pts[1]) == Inf @test injectivity_radius(M, pts[1], rm) == Inf @test injectivity_radius(M, rm) == Inf @test injectivity_radius(M, rm2) == 10 @test injectivity_radius(M, pts[1], rm2) == 10 tv1 = log(M, pts[1], pts[2]) for pt in pts @test is_point(M, pt) end @test is_vector(M, pts[1], tv1; atol = eps(eltype(pts[1]))) tv2 = log(M, pts[2], pts[1]) tv3 = log(M, pts[2], pts[3]) @test isapprox(M, pts[2], exp(M, pts[1], tv1)) @test_logs (:info,) !isapprox(M, pts[1], pts[2]; error = :info) @test isapprox(M, pts[1], pts[1]; error = :info) @test_logs (:info,) !isapprox( M, pts[1], convert(T, [NaN, NaN, NaN]); error = :info, ) @test isapprox(M, pts[1], exp(M, pts[1], tv1, 0)) @test isapprox(M, pts[2], exp(M, pts[1], tv1, 1)) @test isapprox(M, pts[1], exp(M, pts[2], tv2)) if T <: Array @test_throws ApproximatelyError isapprox(M, pts[1], pts[2]; error = :error) @test_throws ApproximatelyError isapprox( M, pts[2], tv2, tv3; error = :error, ) end # test lower level fallbacks @test ManifoldsBase.check_approx(M, pts[1], pts[2]) isa ApproximatelyError @test ManifoldsBase.check_approx(M, pts[1], pts[1]) === nothing @test ManifoldsBase.check_approx(M, pts[2], tv2, tv2) === nothing @test is_point(M, retract(M, pts[1], tv1)) @test isapprox(M, pts[1], retract(M, pts[1], tv1, 0)) @test is_point(M, retract(M, pts[1], tv1, rm)) @test isapprox(M, pts[1], retract(M, pts[1], tv1, 0, rm)) new_pt = exp(M, pts[1], tv1) retract!(M, new_pt, pts[1], tv1) @test is_point(M, new_pt) @test !isapprox(M, pts[1], [1, 2, 3], [3, 2, 4]; error = :other) for p in pts X_p_zero = zero_vector(M, p) X_p_nan = NaN * X_p_zero @test isapprox(M, p, X_p_zero, log(M, p, p); atol = eps(eltype(p))) if T <: Array @test_logs (:info,) !isapprox( M, p, X_p_zero, X_p_nan; atol = eps(eltype(p)), error = :info, ) @test isapprox( M, p, X_p_zero, log(M, p, p); atol = eps(eltype(p)), error = :info, ) end @test isapprox( M, p, X_p_zero, inverse_retract(M, p, p); atol = eps(eltype(p)), ) @test isapprox( M, p, X_p_zero, inverse_retract(M, p, p, irm); atol = eps(eltype(p)), ) end zero_vector!(M, tv1, pts[1]) @test isapprox(M, pts[1], tv1, zero_vector(M, pts[1])) log!(M, tv1, pts[1], pts[2]) @test norm(M, pts[1], tv1) ≈ sqrt(inner(M, pts[1], tv1, tv1)) @test isapprox(M, exp(M, pts[1], tv1, 1), pts[2]) @test isapprox(M, exp(M, pts[1], tv1, 0), pts[1]) @test distance(M, pts[1], pts[2]) ≈ norm(M, pts[1], tv1) @test distance(M, pts[1], pts[2], LogarithmicInverseRetraction()) ≈ norm(M, pts[1], tv1) @test mid_point(M, pts[1], pts[2]) == convert(T, [0.5, 0.5, 0.0]) midp = allocate(pts[1]) @test mid_point!(M, midp, pts[1], pts[2]) === midp @test midp == convert(T, [0.5, 0.5, 0.0]) @test riemann_tensor(M, pts[1], tv1, tv2, tv1) == zero(tv1) tv_rt = allocate(tv1) @test riemann_tensor!(M, tv_rt, pts[1], tv1, tv2, tv1) === tv_rt @test tv_rt == zero(tv1) @test sectional_curvature(M, pts[1], tv1, log(M, pts[1], pts[3])) == 0.0 @test sectional_curvature_max(M) == 0.0 @test sectional_curvature_min(M) == 0.0 q = copy(M, pts[1]) Ts = [0.0, 1.0 / 2, 1.0] @testset "Geodesic interface test" begin @test isapprox(M, geodesic(M, pts[1], tv1)(0.0), pts[1]) @test isapprox(M, geodesic(M, pts[1], tv1)(1.0), pts[2]) g! = geodesic!(M, pts[1], tv1) g!(q, 0.0) isapprox(M, q, pts[1]) g!(q, 0.0) isapprox(M, q, pts[2]) geodesic!(M, q, pts[1], tv1, 1.0 / 2) isapprox(M, q, midp) @test isapprox(M, geodesic(M, pts[1], tv1, 1.0), pts[2]) @test isapprox(M, geodesic(M, pts[1], tv1, 1.0 / 2), midp) @test isapprox(M, shortest_geodesic(M, pts[1], pts[2])(0.0), pts[1]) @test isapprox(M, shortest_geodesic(M, pts[1], pts[2])(1.0), pts[2]) sg! = shortest_geodesic!(M, pts[1], pts[2]) sg!(q, 0.0) isapprox(M, q, pts[1]) sg!(q, 1.0) isapprox(M, q, pts[2]) @test isapprox(M, shortest_geodesic(M, pts[1], pts[2], 0.0), pts[1]) @test isapprox(M, shortest_geodesic(M, pts[1], pts[2], 1.0), pts[2]) shortest_geodesic!(M, q, pts[1], pts[2], 0.5) isapprox(M, q, midp) @test all( isapprox.(Ref(M), geodesic(M, pts[1], tv1, Ts), [pts[1], midp, pts[2]]), ) @test all( isapprox.( Ref(M), shortest_geodesic(M, pts[1], pts[2], Ts), [pts[1], midp, pts[2]], ), ) Q = [copy(M, q), copy(M, q), copy(M, q)] geodesic!(M, Q, pts[1], tv1, Ts) @test all(isapprox.(Ref(M), Q, [pts[1], midp, pts[2]])) shortest_geodesic!(M, Q, pts[1], pts[2], Ts) @test all(isapprox.(Ref(M), Q, [pts[1], midp, pts[2]])) end @testset "basic linear algebra in tangent space" begin @test isapprox( M, pts[1], 0 * tv1, zero_vector(M, pts[1]); atol = eps(eltype(pts[1])), ) @test isapprox(M, pts[1], 2 * tv1, tv1 + tv1) @test isapprox(M, pts[1], 0 * tv1, tv1 - tv1) @test isapprox(M, pts[1], (-1) * tv1, -tv1) end @testset "Change Representer and Metric" begin G = ManifoldsBase.EuclideanMetric() p = pts[1] for X in [tv1, tv2, tv3] @test change_representer(M, G, p, X) == X Y = similar(X) change_representer!(M, Y, G, p, X) @test isapprox(M, p, Y, X) @test change_metric(M, G, p, X) == X Z = similar(X) change_metric!(M, Z, G, p, X) @test isapprox(M, p, Z, X) end end @testset "Hat and vee in the tangent space" begin X = log(M, pts[1], pts[2]) a = vee(M, pts[1], X) b = similar(a) vee!(M, b, pts[1], X) Y = hat(M, pts[1], a) Z = similar(Y) hat!(M, Z, pts[1], a) @test a == b @test X == Y @test Z == X @test a == ((T <: DefaultPoint) ? vec(X.value) : vec(X)) end @testset "broadcasted linear algebra in tangent space" begin @test isapprox(M, pts[1], 3 * tv1, 2 .* tv1 .+ tv1) @test isapprox(M, pts[1], -tv1, tv1 .- 2 .* tv1) @test isapprox(M, pts[1], -tv1, .-tv1) v = similar(tv1) v .= 2 .* tv1 .+ tv1 @test isapprox(M, pts[1], v, 3 * tv1) end @testset "project test" begin # point @test isapprox(M, pts[1], project(M, pts[1])) pt = similar(pts[1]) project!(M, pt, pts[1]) @test isapprox(M, pt, pts[1]) @test isapprox(M, pts[1], embed(M, pts[1])) pt = similar(pts[1]) embed!(M, pt, pts[1]) @test isapprox(M, pt, pts[1]) # tangents @test isapprox(M, pts[1], tv1, project(M, pts[1], tv1)) tv = similar(tv1) project!(M, tv, pts[1], tv1) @test isapprox(M, pts[1], tv, tv1) @test isapprox(M, pts[1], tv1, embed(M, pts[1], tv1)) tv = similar(tv1) embed!(M, tv, pts[1], tv1) @test isapprox(M, pts[1], tv, tv1) @test Weingarten(M, pts[1], tv, tv) == zero_vector(M, pts[1]) end @testset "randon tests" begin Random.seed!(23) pr = rand(M) @test is_point(M, pr, true) Xr = rand(M; vector_at = pr) @test is_vector(M, pr, Xr, true) rng = MersenneTwister(42) P = rand(M, 3) @test length(P) == 3 @test all([is_point(M, pj) for pj in P]) Xv = rand(M, 3; vector_at = pr) @test length(Xv) == 3 @test all([is_point(M, Xj) for Xj in Xv]) # and the same again with rng upfront rng = MersenneTwister(42) pr = rand(rng, M) @test is_point(M, pr, true) Xr = rand(rng, M; vector_at = pr) @test is_vector(M, pr, Xr, true) rng = MersenneTwister(42) P = rand(rng, M, 3) @test length(P) == 3 @test all([is_point(M, pj) for pj in P]) Xv = rand(rng, M, 3; vector_at = pr) @test length(Xv) == 3 @test all([is_point(M, Xj) for Xj in Xv]) end @testset "vector transport" begin # test constructor @test default_vector_transport_method(M) == ParallelTransport() X1 = log(M, pts[1], pts[2]) X2 = log(M, pts[1], pts[3]) X1t1 = vector_transport_to(M, pts[1], X1, pts[3]) X1t2 = zero(X1t1) vector_transport_to!(M, X1t2, pts[1], X1, X2, ProjectionTransport()) X1t3 = vector_transport_direction(M, pts[1], X1, X2) @test ManifoldsBase.is_vector(M, pts[3], X1t1) @test ManifoldsBase.is_vector(M, pts[3], X1t3) @test isapprox(M, pts[3], X1t1, X1t3) # along a `Vector` of points c = [pts[1], pts[1]] X1t4 = vector_transport_along(M, pts[1], X1, c) @test isapprox(M, pts[1], X1, X1t4) X1t5 = allocate(X1) vector_transport_along!(M, X1t5, pts[1], X1, c) @test isapprox(M, pts[1], X1, X1t5) # transport along more than one interims point @test vector_transport_along(M, pts[1], X1, pts[2:3]) == X1 X1t6 = allocate(X1) vector_transport_along!(M, X1t6, pts[1], X1, pts[2:3]) @test isapprox(M, pts[1], X1, X1t6) # along a custom type of points if T <: DefaultPoint S = eltype(pts[1].value) mat = reshape(pts[1].value, length(pts[1].value), 1) else S = eltype(pts[1]) mat = reshape(pts[1], length(pts[1]), 1) end c2 = MatrixVectorTransport{S}(mat) X1t4c2 = vector_transport_along(M, pts[1], X1, c2) @test isapprox(M, pts[1], X1, X1t4c2) X1t5c2 = allocate(X1) vector_transport_along!(M, X1t5c2, pts[1], X1, c2) @test isapprox(M, pts[1], X1, X1t5c2) # On Euclidean Space Schild & Pole are identity @test vector_transport_to( M, pts[1], X2, pts[2], SchildsLadderTransport(), ) == X2 @test vector_transport_to(M, pts[1], X2, pts[2], PoleLadderTransport()) == X2 @test vector_transport_to( M, pts[1], X2, pts[2], ScaledVectorTransport(ParallelTransport()), ) == X2 # along is also the identity c = [ mid_point(M, pts[1], pts[2]), pts[2], mid_point(M, pts[2], pts[3]), pts[3], ] Xtmp = allocate(X2) @test vector_transport_along(M, pts[1], X2, c, SchildsLadderTransport()) == X2 @test vector_transport_along!( M, Xtmp, pts[1], X2, c, SchildsLadderTransport(), ) == X2 @test vector_transport_along(M, pts[1], X2, c, PoleLadderTransport()) == X2 @test vector_transport_along!( M, Xtmp, pts[1], X2, c, PoleLadderTransport(), ) == X2 @test vector_transport_along(M, pts[1], X2, c, ParallelTransport()) == X2 @test vector_transport_along!( M, Xtmp, pts[1], X2, c, ParallelTransport(), ) == X2 @test ManifoldsBase._vector_transport_along!( M, Xtmp, pts[1], X2, c, ParallelTransport(), ) == X2 @test vector_transport_along(M, pts[1], X2, c, ProjectionTransport()) == X2 @test vector_transport_along!( M, Xtmp, pts[1], X2, c, ProjectionTransport(), ) == X2 # check mutating ones with defaults p = allocate(pts[1]) ManifoldsBase.pole_ladder!(M, p, pts[1], pts[2], pts[3]) # -log_p3 p == log_p1 p2 @test isapprox(M, pts[3], -log(M, pts[3], p), log(M, pts[1], pts[2])) ManifoldsBase.schilds_ladder!(M, p, pts[1], pts[2], pts[3]) @test isapprox(M, pts[3], log(M, pts[3], p), log(M, pts[1], pts[2])) @test repr(ParallelTransport()) == "ParallelTransport()" @test repr(ScaledVectorTransport(ParallelTransport())) == "ScaledVectorTransport(ParallelTransport())" end @testset "ForwardDiff support" begin exp_f(t) = distance(M, pts[1], exp(M, pts[1], t * tv1)) d12 = distance(M, pts[1], pts[2]) for t in 0.1:0.1:0.9 @test d12 ≈ ForwardDiff.derivative(exp_f, t) end retract_f(t) = distance(M, pts[1], retract(M, pts[1], t * tv1)) for t in 0.1:0.1:0.9 @test ForwardDiff.derivative(retract_f, t) ≥ 0 end end isa(pts[1], Union{Vector,SizedVector}) && @testset "ReverseDiff support" begin exp_f(t) = distance(M, pts[1], exp(M, pts[1], t[1] * tv1)) d12 = distance(M, pts[1], pts[2]) for t in 0.1:0.1:0.9 @test d12 ≈ ReverseDiff.gradient(exp_f, [t])[1] end retract_f(t) = distance(M, pts[1], retract(M, pts[1], t[1] * tv1)) for t in 0.1:0.1:0.9 @test ReverseDiff.gradient(retract_f, [t])[1] ≥ 0 end end end end @testset "mid_point on 0-index arrays" begin M = ManifoldsBase.DefaultManifold(1) p1 = fill(0.0) p2 = fill(1.0) @test isapprox(M, fill(0.5), mid_point(M, p1, p2)) end @testset "Retraction" begin a = NLSolveInverseRetraction(ExponentialRetraction()) @test a.retraction isa ExponentialRetraction end @testset "copy of points and vectors" begin M = ManifoldsBase.DefaultManifold(2) for (p, X) in ( ([2.0, 3.0], [4.0, 5.0]), (DefaultPoint([2.0, 3.0]), DefaultTVector([4.0, 5.0])), ) q = similar(p) copyto!(M, q, p) @test p == q r = copy(M, p) @test r == p Y = similar(X) copyto!(M, Y, p, X) @test Y == X Z = copy(M, p, X) @test Z == X end p1 = DefaultPoint([2.0, 3.0]) p2 = copy(p1) @test (p1 == p2) && (p1 !== p2) end @testset "further vector and point automatic forwards" begin M = ManifoldsBase.DefaultManifold(3) p = DefaultPoint([1.0, 0.0, 0.0]) q = DefaultPoint([0.0, 0.0, 0.0]) X = DefaultTVector([0.0, 1.0, 0.0]) Y = DefaultTVector([1.0, 0.0, 0.0]) @test angle(M, p, X, Y) ≈ π / 2 @test inverse_retract(M, p, q, LogarithmicInverseRetraction()) == -Y @test retract(M, q, Y, CustomDefinedRetraction()) == p @test retract(M, q, Y, 1.0, CustomDefinedRetraction()) == p @test retract(M, q, Y, ExponentialRetraction()) == p @test retract(M, q, Y, 1.0, ExponentialRetraction()) == p # rest not implemented - so they also fall back even onto mutating Z = similar(Y) r = similar(p) # test passthrough using the dummy implementations for retr in [ PolarRetraction(), ProjectionRetraction(), QRRetraction(), SoftmaxRetraction(), ODEExponentialRetraction(PolarRetraction(), DefaultBasis()), PadeRetraction(2), EmbeddedRetraction(ExponentialRetraction()), SasakiRetraction(5), ] @test retract(M, q, Y, retr) == DefaultPoint(q.value + Y.value) @test retract(M, q, Y, 0.5, retr) == DefaultPoint(q.value + 0.5 * Y.value) @test retract!(M, r, q, Y, retr) == DefaultPoint(q.value + Y.value) @test retract!(M, r, q, Y, 0.5, retr) == DefaultPoint(q.value + 0.5 * Y.value) end mRK = RetractionWithKeywords(CustomDefinedKeywordRetraction(); scale = 3.0) pRK = allocate(p, eltype(p.value), size(p.value)) @test retract(M, p, X, mRK) == DefaultPoint(3 * p.value + X.value) @test retract(M, p, X, 0.5, mRK) == DefaultPoint(3 * p.value + 0.5 * X.value) @test retract!(M, pRK, p, X, mRK) == DefaultPoint(3 * p.value + X.value) @test retract!(M, pRK, p, X, 0.5, mRK) == DefaultPoint(3 * p.value + 0.5 * X.value) mIRK = InverseRetractionWithKeywords( CustomDefinedKeywordInverseRetraction(); scale = 3.0, ) XIRK = allocate(X, eltype(X.value), size(X.value)) @test inverse_retract(M, p, pRK, mIRK) == DefaultTVector(pRK.value - 3 * p.value) @test inverse_retract!(M, XIRK, p, pRK, mIRK) == DefaultTVector(pRK.value - 3 * p.value) p2 = allocate(p, eltype(p.value), size(p.value)) @test size(p2.value) == size(p.value) X2 = allocate(X, eltype(X.value), size(X.value)) @test size(X2.value) == size(X.value) X3 = ManifoldsBase.allocate_result(M, log, p, q) @test log!(M, X3, p, q) == log(M, p, q) @test X3 == log(M, p, q) @test log!(M, X3, p, q) == log(M, p, q) @test X3 == log(M, p, q) @test inverse_retract(M, p, q, CustomDefinedInverseRetraction()) == -2 * Y @test distance(M, p, q, CustomDefinedInverseRetraction()) == 2.0 X4 = ManifoldsBase.allocate_result(M, inverse_retract, p, q) @test inverse_retract!(M, X4, p, q) == inverse_retract(M, p, q) @test X4 == inverse_retract(M, p, q) # rest not implemented but check passthrough for r in [ PolarInverseRetraction, ProjectionInverseRetraction, QRInverseRetraction, SoftmaxInverseRetraction, ] @test inverse_retract(M, q, p, r()) == DefaultTVector(p.value - q.value) @test inverse_retract!(M, Z, q, p, r()) == DefaultTVector(p.value - q.value) end @test inverse_retract( M, q, p, EmbeddedInverseRetraction(LogarithmicInverseRetraction()), ) == DefaultTVector(p.value - q.value) @test inverse_retract(M, q, p, NLSolveInverseRetraction(ExponentialRetraction())) == DefaultTVector(p.value - q.value) @test inverse_retract!( M, Z, q, p, EmbeddedInverseRetraction(LogarithmicInverseRetraction()), ) == DefaultTVector(p.value - q.value) @test inverse_retract!( M, Z, q, p, NLSolveInverseRetraction(ExponentialRetraction()), ) == DefaultTVector(p.value - q.value) c = ManifoldsBase.allocate_coordinates(M, p, Float64, manifold_dimension(M)) @test c isa Vector @test length(c) == 3 @test 2.0 \ X == DefaultTVector(2.0 \ X.value) @test X + Y == DefaultTVector(X.value + Y.value) @test +X == X @test (Y .= X) === Y # vector transport pass through @test vector_transport_to(M, p, X, q, ProjectionTransport()) == X @test vector_transport_direction(M, p, X, X, ProjectionTransport()) == X @test vector_transport_to!(M, Y, p, X, q, ProjectionTransport()) == X @test vector_transport_direction!(M, Y, p, X, X, ProjectionTransport()) == X @test vector_transport_along(M, p, X, [p], ProjectionTransport()) == X @test vector_transport_along!(M, Z, p, X, [p], ProjectionTransport()) == X @test vector_transport_to(M, p, X, :q, ProjectionTransport()) == X @test parallel_transport_to(M, p, X, q) == X @test parallel_transport_direction(M, p, X, X) == X @test parallel_transport_along(M, p, X, []) == X @test parallel_transport_to!(M, Y, p, X, q) == X @test parallel_transport_direction!(M, Y, p, X, X) == X @test parallel_transport_along!(M, Y, p, X, []) == X # convert with manifold @test convert(typeof(p), M, p.value) == p @test convert(typeof(X), M, p, X.value) == X end @testset "DefaultManifold and ONB" begin M = ManifoldsBase.DefaultManifold(3) p = [1.0f0, 0.0f0, 0.0f0] CB = get_basis(M, p, DefaultOrthonormalBasis()) # make sure the right type is propagated @test CB.data isa Vector{Vector{Float32}} @test CB.data == [[1.0f0, 0.0f0, 0.0f0], [0.0f0, 1.0f0, 0.0f0], [0.0f0, 0.0f0, 1.0f0]] # test complex point -> real coordinates MC = ManifoldsBase.DefaultManifold(3; field = ManifoldsBase.ℂ) p = [1.0im, 2.0im, -1.0im] CB = get_basis(MC, p, DefaultOrthonormalBasis(ManifoldsBase.ℂ)) @test CB.data == [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] @test CB.data isa Vector{Vector{Float64}} @test ManifoldsBase.coordinate_eltype(MC, p, ManifoldsBase.ℂ) === ComplexF64 @test ManifoldsBase.coordinate_eltype(MC, p, ManifoldsBase.ℝ) === Float64 CBR = get_basis(MC, p, DefaultOrthonormalBasis()) @test CBR.data == [ [1.0 + 0.0im, 0.0 + 0.0im, 0.0 + 0.0im], [0.0 + 0.0im, 1.0 + 0.0im, 0.0 + 0.0im], [0.0 + 0.0im, 0.0 + 0.0im, 1.0 + 0.0im], [0.0 + 1.0im, 0.0 + 0.0im, 0.0 + 0.0im], [0.0 + 0.0im, 0.0 + 1.0im, 0.0 + 0.0im], [0.0 + 0.0im, 0.0 + 0.0im, 0.0 + 1.0im], ] end @testset "Show methods" begin @test repr(CayleyRetraction()) == "CayleyRetraction()" @test repr(PadeRetraction(2)) == "PadeRetraction(2)" end @testset "Further TestArrayRepresentation" begin M = ManifoldsBase.DefaultManifold(3) p = [1.0, 0.0, 0.0] X = [1.0, 0.0, 0.0] @test is_point(M, p, true) @test is_vector(M, p, X, true) pF = [1.0, 0.0] XF = [0.0, 0.0] m = ExponentialRetraction() @test_throws DomainError is_point(M, pF, true) @test_throws DomainError is_vector(M, p, XF; error = :error) @test_throws DomainError is_vector(M, pF, XF, true; error = :error) @test injectivity_radius(M) == Inf @test injectivity_radius(M, p) == Inf @test injectivity_radius(M, p, m) == Inf @test injectivity_radius(M, m) == Inf end @testset "performance" begin @allocated isapprox(M, SA[1, 2], SA[3, 4]) == 0 end @testset "scalars" begin M = ManifoldsBase.DefaultManifold() p = 1.0 X = 2.0 @test copy(M, p) === p @test copy(M, p, X) === X end @testset "static (size in type parameter)" begin MS = ManifoldsBase.DefaultManifold(3; parameter = :type) @test (@inferred representation_size(MS)) == (3,) @test repr(MS) == "DefaultManifold(3; field = ℝ, parameter = :type)" @test_throws ArgumentError ManifoldsBase.DefaultManifold(3; parameter = :foo) end @testset "complex vee and hat" begin MC = ManifoldsBase.DefaultManifold(3; field = ManifoldsBase.ℂ) p = [1im, 2 + 2im, 3.0] @test isapprox(vee(MC, p, [1 + 2im, 3 + 4im, 5 + 6im]), [1, 3, 5, 2, 4, 6]) @test isapprox(hat(MC, p, [1, 3, 5, 2, 4, 6]), [1 + 2im, 3 + 4im, 5 + 6im]) end ManifoldsBase.default_approximation_method( ::ManifoldsBase.DefaultManifold, ::typeof(exp), ) = GradientDescentEstimation() @testset "Estimation Method defaults" begin M = ManifoldsBase.DefaultManifold(3) # Point generic type fallback @test default_approximation_method(M, exp, Float64) == default_approximation_method(M, exp) # Retraction @test default_approximation_method(M, retract) == default_retraction_method(M) @test default_approximation_method(M, retract, DefaultPoint) == default_retraction_method(M) # Inverse Retraction @test default_approximation_method(M, inverse_retract) == default_inverse_retraction_method(M) @test default_approximation_method(M, inverse_retract, DefaultPoint) == default_inverse_retraction_method(M) # Vector Transsports – all 3: to @test default_approximation_method(M, vector_transport_to) == default_vector_transport_method(M) @test default_approximation_method(M, vector_transport_to, DefaultPoint) == default_vector_transport_method(M) # along @test default_approximation_method(M, vector_transport_along) == default_vector_transport_method(M) @test default_approximation_method(M, vector_transport_along, DefaultPoint) == default_vector_transport_method(M) @test default_approximation_method(M, vector_transport_direction) == default_vector_transport_method(M) @test default_approximation_method(M, vector_transport_direction, DefaultPoint) == default_vector_transport_method(M) end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
3411
using ManifoldsBase using ManifoldsBase: ℝ using Test struct ErrorTestManifold <: AbstractManifold{ℝ} end function ManifoldsBase.check_size(::ErrorTestManifold, p) size(p) != (2,) && return DomainError(size(p), "size $p not (2,)") return nothing end function ManifoldsBase.check_size(::ErrorTestManifold, p, X) size(X) != (2,) && return DomainError(size(X), "size $X not (2,)") return nothing end function ManifoldsBase.check_point(::ErrorTestManifold, x) if any(u -> u < 0, x) return DomainError(x, "<0") end return nothing end function ManifoldsBase.check_vector(M::ErrorTestManifold, x, v) mpe = ManifoldsBase.check_point(M, x) mpe === nothing || return mpe if any(u -> u < 0, v) return DomainError(v, "<0") end return nothing end @testset "Domain errors" begin M = ErrorTestManifold() @test isa(ManifoldsBase.check_point(M, [-1, 1]), DomainError) @test isa(ManifoldsBase.check_size(M, [-1, 1, 1]), DomainError) @test isa(ManifoldsBase.check_size(M, [-1, 1], [1, 1, 1]), DomainError) @test ManifoldsBase.check_point(M, [1, 1]) === nothing @test !is_point(M, [-1, 1]) @test !is_point(M, [1, 1, 1]) # checksize fails @test_throws DomainError is_point(M, [-1, 1, 1], true) # checksize errors @test_throws DomainError is_point(M, [-1, 1, 1]; error = :error) # checksize errors cs = "DomainError with (3,):\nsize [-1, 1, 1] not (2,)" @test_logs (:info, cs) is_point(M, [-1, 1, 1]; error = :info) @test_logs (:warn, cs) is_point(M, [-1, 1, 1]; error = :warn) @test is_point(M, [1, 1]) @test is_point(M, [1, 1]; error = :error) @test_throws DomainError is_point(M, [-1, 1], true) @test_throws DomainError is_point(M, [-1, 1]; error = :error) ps = "DomainError with [-1, 1]:\n<0" @test_logs (:info, ps) is_point(M, [-1, 1]; error = :info) @test_logs (:warn, ps) is_point(M, [-1, 1]; error = :warn) @test isa(ManifoldsBase.check_vector(M, [1, 1], [-1, 1]), DomainError) @test ManifoldsBase.check_vector(M, [1, 1], [1, 1]) === nothing @test !is_vector(M, [1, 1], [-1, 1]) @test !is_vector(M, [1, 1], [1, 1, 1]) @test_throws DomainError is_vector(M, [1, 1], [-1, 1, 1], false, true) @test_throws DomainError is_vector(M, [1, 1], [-1, 1, 1]; error = :error) vs = "DomainError with (3,):\nsize [-1, 1, 1] not (2,)" @test_logs (:info, vs) is_vector(M, [1, 1], [-1, 1, 1]; error = :info) @test_logs (:warn, vs) is_vector(M, [1, 1], [-1, 1, 1]; error = :warn) @test !is_vector(M, [1, 1, 1], [1, 1, 1], false) @test_throws DomainError is_vector(M, [1, 1, 1], [1, 1], true, true) @test_throws DomainError is_vector(M, [1, 1, 1], [1, 1], true; error = :error) ps2 = "DomainError with (3,):\nsize [1, 1, 1] not (2,)" @test_logs (:info, ps2) is_vector(M, [1, 1, 1], [1, 1], true; error = :info) @test_logs (:warn, ps2) is_vector(M, [1, 1, 1], [1, 1], true; error = :warn) @test is_vector(M, [1, 1], [1, 1]) @test is_vector(M, [1, 1], [1, 1]; error = :none) @test_throws DomainError is_vector(M, [1, 1], [-1, 1]; error = :error) @test_throws DomainError is_vector(M, [1, 1], [-1, 1], true; error = :error) ps3 = "DomainError with [-1, 1]:\n<0" @test_logs (:info, ps3) is_vector(M, [1, 1], [-1, 1], true; error = :info) @test_logs (:warn, ps3) is_vector(M, [1, 1], [-1, 1], true; error = :warn) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
18782
using ManifoldsBase, Test using ManifoldsBase: DefaultManifold, ℝ # # A first artificial (not real) manifold that is modelled as a submanifold # half plane with euclidean metric is not a manifold but should test all things correctly here # struct HalfPlaneManifold <: AbstractDecoratorManifold{ℝ} end struct PosQuadrantManifold <: AbstractDecoratorManifold{ℝ} end ManifoldsBase.get_embedding(::HalfPlaneManifold) = ManifoldsBase.DefaultManifold(1, 3) ManifoldsBase.decorated_manifold(::HalfPlaneManifold) = ManifoldsBase.DefaultManifold(2) ManifoldsBase.representation_size(::HalfPlaneManifold) = (3,) ManifoldsBase.get_embedding(::PosQuadrantManifold) = HalfPlaneManifold() ManifoldsBase.representation_size(::PosQuadrantManifold) = (3,) function ManifoldsBase.check_point(::HalfPlaneManifold, p) return p[1] > 0 ? nothing : DomainError(p[1], "p[1] ≤ 0") end function ManifoldsBase.check_vector(::HalfPlaneManifold, p, X) return X[1] > 0 ? nothing : DomainError(X[1], "X[1] ≤ 0") end function ManifoldsBase.check_point(::PosQuadrantManifold, p) return p[2] > 0 ? nothing : DomainError(p[1], "p[2] ≤ 0") end function ManifoldsBase.check_vector(::PosQuadrantManifold, p, X) return X[2] > 0 ? nothing : DomainError(X[1], "X[2] ≤ 0") end ManifoldsBase.embed(::HalfPlaneManifold, p) = reshape(p, 1, :) ManifoldsBase.embed(::HalfPlaneManifold, p, X) = reshape(X, 1, :) ManifoldsBase.project!(::HalfPlaneManifold, q, p) = (q .= [p[1] p[2] 0.0]) ManifoldsBase.project!(::HalfPlaneManifold, Y, p, X) = (Y .= [X[1] X[2] 0.0]) function ManifoldsBase.get_coordinates_orthonormal!( ::HalfPlaneManifold, Y, p, X, ::ManifoldsBase.RealNumbers, ) return (Y .= [X[1], X[2]]) end function ManifoldsBase.get_vector_orthonormal!( ::HalfPlaneManifold, Y, p, c, ::ManifoldsBase.RealNumbers, ) return (Y .= [c[1] c[2] 0.0]) end function ManifoldsBase.active_traits(f, ::HalfPlaneManifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsEmbeddedSubmanifold()) end function ManifoldsBase.active_traits(f, ::PosQuadrantManifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsEmbeddedSubmanifold()) end # # A second manifold that is modelled as just isometrically embedded but not a submanifold # struct AnotherHalfPlanemanifold <: AbstractDecoratorManifold{ℝ} end ManifoldsBase.get_embedding(::AnotherHalfPlanemanifold) = ManifoldsBase.DefaultManifold(3) function ManifoldsBase.decorated_manifold(::AnotherHalfPlanemanifold) return ManifoldsBase.DefaultManifold(2) end ManifoldsBase.representation_size(::AnotherHalfPlanemanifold) = (2,) function ManifoldsBase.active_traits(f, ::AnotherHalfPlanemanifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsIsometricEmbeddedManifold()) end function ManifoldsBase.embed!(::AnotherHalfPlanemanifold, q, p) q[1:2] .= p q[3] = 0 return q end function ManifoldsBase.embed!(::AnotherHalfPlanemanifold, Y, p, X) Y[1:2] .= X Y[3] = 0 return Y end function ManifoldsBase.project!(::AnotherHalfPlanemanifold, q, p) return q .= [p[1], p[2]] end function ManifoldsBase.project!(::AnotherHalfPlanemanifold, Y, p, X) return Y .= [X[1], X[2]] end function ManifoldsBase.exp!(::AnotherHalfPlanemanifold, q, p, X) return q .= p .+ X end function ManifoldsBase.vector_transport_along_embedded!( ::AnotherHalfPlanemanifold, Y, p, X, c, ::ParallelTransport, ) return Y .= X .+ 1 # +1 for check end # # Third example - explicitly mention an embedding. # function ManifoldsBase.embed!( ::EmbeddedManifold{𝔽,DefaultManifold{𝔽,nL},DefaultManifold{𝔽2,mL}}, q, p, ) where {nL,mL,𝔽,𝔽2} n = size(p) ln = length(n) m = size(q) lm = length(m) (length(n) > length(m)) && throw( DomainError( "Invalid embedding, since Euclidean dimension ($(n)) is longer than embedding dimension $(m).", ), ) any(n .> m[1:ln]) && throw( DomainError( "Invalid embedding, since Euclidean dimension ($(n)) has entry larger than embedding dimensions ($(m)).", ), ) fill!(q, 0) q[map(ind_n -> Base.OneTo(ind_n), n)..., ntuple(_ -> 1, lm - ln)...] .= p return q end function ManifoldsBase.project!( ::EmbeddedManifold{𝔽,DefaultManifold{𝔽,nL},DefaultManifold{𝔽2,mL}}, q, p, ) where {nL,mL,𝔽,𝔽2} n = size(p) ln = length(n) m = size(q) lm = length(m) (length(n) < length(m)) && throw( DomainError( "Invalid embedding, since Euclidean dimension ($(n)) is longer than embedding dimension $(m).", ), ) any(n .< m[1:ln]) && throw( DomainError( "Invalid embedding, since Euclidean dimension ($(n)) has entry larger than embedding dimensions ($(m)).", ), ) # fill q with the „top left edge“ of p. q .= p[map(i -> Base.OneTo(i), m)..., ntuple(_ -> 1, lm - ln)...] return q end # # A manifold that is a submanifold but otherwise has not implementations # struct NotImplementedEmbeddedSubManifold <: AbstractDecoratorManifold{ℝ} end function ManifoldsBase.get_embedding(::NotImplementedEmbeddedSubManifold) return ManifoldsBase.DefaultManifold(3) end function ManifoldsBase.decorated_manifold(::NotImplementedEmbeddedSubManifold) return ManifoldsBase.DefaultManifold(2) end function ManifoldsBase.active_traits(f, ::NotImplementedEmbeddedSubManifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsEmbeddedSubmanifold()) end # # A manifold that is isometrically embedded but has no implementations # struct NotImplementedIsometricEmbeddedManifold <: AbstractDecoratorManifold{ℝ} end function ManifoldsBase.active_traits(f, ::NotImplementedIsometricEmbeddedManifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsIsometricEmbeddedManifold()) end # # A manifold that is an embedded manifold but not isometric and has no other implementation # struct NotImplementedEmbeddedManifold <: AbstractDecoratorManifold{ℝ} end function ManifoldsBase.active_traits(f, ::NotImplementedEmbeddedManifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsEmbeddedManifold()) end # # A Manifold with a fallback # struct FallbackManifold <: AbstractDecoratorManifold{ℝ} end function ManifoldsBase.active_traits(f, ::FallbackManifold, args...) return ManifoldsBase.merge_traits(ManifoldsBase.IsExplicitDecorator()) end ManifoldsBase.decorated_manifold(::FallbackManifold) = DefaultManifold(3) @testset "Embedded Manifolds" begin @testset "EmbeddedManifold basic tests" begin M = EmbeddedManifold( ManifoldsBase.DefaultManifold(2), ManifoldsBase.DefaultManifold(3), ) @test repr(M) == "EmbeddedManifold($(sprint(show, M.manifold)), $(sprint(show, M.embedding)))" @test base_manifold(M) == ManifoldsBase.DefaultManifold(2) @test base_manifold(M, Val(0)) == M @test base_manifold(M, Val(1)) == ManifoldsBase.DefaultManifold(2) @test base_manifold(M, Val(2)) == ManifoldsBase.DefaultManifold(2) @test get_embedding(M) == ManifoldsBase.DefaultManifold(3) @test get_embedding(M, [1, 2, 3]) == ManifoldsBase.DefaultManifold(3) end @testset "HalfPlanemanifold" begin M = HalfPlaneManifold() N = PosQuadrantManifold() @test repr(M) == "HalfPlaneManifold()" @test get_embedding(M) == ManifoldsBase.DefaultManifold(1, 3) @test representation_size(M) == (3,) # Check point checks using embedding @test is_point(M, [1 0.1 0.1], true) @test !is_point(M, [-1, 0, 0]) #wrong dim (3,1) @test_throws DomainError is_point(M, [-1, 0, 0], true) @test !is_point(M, [-1, 0, 0]) @test !is_point(M, [1, 0.1]) # size (from embedding) @test_throws ManifoldDomainError is_point(M, [1, 0.1], true) @test !is_point(M, [1, 0.1]) @test is_point(M, [1 0 0], true) @test !is_point(M, [-1 0 0]) # right size but <0 1st @test_throws DomainError is_point(M, [-1 0 0], true) # right size but <0 1st @test !is_vector(M, [1 0 0], [1]) # right point, wrong size vector @test_throws ManifoldDomainError is_vector(M, [1 0 0], [1]; error = :error) @test !is_vector(M, [1 0 0], [1]) @test_throws DomainError is_vector(M, [1 0 0], [-1 0 0]; error = :error) # right point, vec 1st <0 @test !is_vector(M, [1 0 0], [-1 0 0]) @test is_vector(M, [1 0 0], [1 0 1], true) @test !is_vector(M, [-1, 0, 0], [0, 0, 0]) @test_throws DomainError is_vector(M, [-1, 0, 0], [0, 0, 0]; error = :error) @test_throws DomainError is_vector(M, [1, 0, 0], [-1, 0, 0]; error = :error) @test !is_vector(M, [-1, 0, 0], [0, 0, 0]) @test !is_vector(M, [1, 0, 0], [-1, 0, 0]) # check manifold domain error from embedding to obtain ManifoldDomainErrors @test !is_point(N, [0, 0, 0]) @test_throws ManifoldDomainError is_point(N, [0, 0, 0]; error = :error) @test !is_vector(N, [1, 1, 0], [0, 0, 0]) @test_throws ManifoldDomainError is_vector(N, [1, 1, 0], [0, 0, 0]; error = :error) p = [1.0 1.0 0.0] q = [1.0 0.0 0.0] X = q - p @test ManifoldsBase.check_size(M, p) === nothing @test ManifoldsBase.check_size(M, p, X) === nothing @test ManifoldsBase.check_size(M, [1, 2]) isa ManifoldDomainError @test ManifoldsBase.check_size(M, [1 2 3 4]) isa ManifoldDomainError @test ManifoldsBase.check_size(M, p, [1, 2]) isa ManifoldDomainError @test ManifoldsBase.check_size(M, p, [1 2 3 4]) isa ManifoldDomainError @test embed(M, p) == p pE = similar(p) embed!(M, pE, p) @test pE == p P = [1.0 1.0 2.0] Q = similar(P) @test project!(M, Q, P) == project!(M, Q, P) @test project!(M, Q, P) == embed_project!(M, Q, P) @test project!(M, Q, P) == [1.0 1.0 0.0] @test isapprox(M, p, zero_vector(M, p), [0 0 0]) XZ = similar(X) zero_vector!(M, XZ, p) @test isapprox(M, p, XZ, [0 0 0]) XE = similar(X) embed!(M, XE, p, X) XE2 = embed(M, p, X) @test X == XE @test XE == XE2 @test log(M, p, q) == q - p Y = similar(p) log!(M, Y, p, q) @test Y == q - p @test exp(M, p, X) == q @test exp(M, p, X, 1.0) == q r = similar(p) exp!(M, r, p, X) @test r == q exp!(M, r, p, X, 1.0) @test r == q @test distance(M, p, r) == norm(r - p) @test retract(M, p, X) == q @test retract(M, p, X, 1.0) == q q2 = similar(q) @test retract!(M, q2, p, X) == q @test retract!(M, q2, p, X, 1.0) == q @test q2 == q @test inverse_retract(M, p, q) == X Y = similar(X) @test inverse_retract!(M, Y, p, q) == X @test Y == X @test vector_transport_along(M, p, X, []) == X @test vector_transport_along!(M, Y, p, X, []) == X @test parallel_transport_along(M, p, X, []) == X @test parallel_transport_along!(M, Y, p, X, []) == X @test parallel_transport_direction(M, p, X, X) == X @test parallel_transport_direction!(M, Y, p, X, X) == X @test parallel_transport_to(M, p, X, q) == X @test parallel_transport_to!(M, Y, p, X, q) == X @test get_basis(M, p, DefaultOrthonormalBasis()) isa CachedBasis Xc = [X[1], X[2]] Yc = similar(Xc) @test get_coordinates(M, p, X, DefaultOrthonormalBasis()) == Xc @test get_coordinates!(M, Yc, p, X, DefaultOrthonormalBasis()) == Xc @test get_vector(M, p, Xc, DefaultOrthonormalBasis()) == X @test get_vector!(M, Y, p, Xc, DefaultOrthonormalBasis()) == X end @testset "AnotherHalfPlanemanifold" begin M = AnotherHalfPlanemanifold() p = [1.0, 2.0] pe = embed(M, p) @test pe == [1.0, 2.0, 0.0] X = [2.0, 3.0] Xe = embed(M, pe, X) @test Xe == [2.0, 3.0, 0.0] @test project(M, pe) == p @test embed_project(M, p) == p @test embed_project(M, p, X) == X Xs = similar(X) @test embed_project!(M, Xs, p, X) == X @test project(M, pe, Xe) == X # isometric passtthrough @test injectivity_radius(M) == Inf @test injectivity_radius(M, p) == Inf @test injectivity_radius(M, p, ExponentialRetraction()) == Inf @test injectivity_radius(M, ExponentialRetraction()) == Inf # test vector transports in the embedding m = EmbeddedVectorTransport(ParallelTransport()) q = [2.0, 2.0] @test vector_transport_to(M, p, X, q, m) == X #since its PT on R^3 @test vector_transport_direction(M, p, X, q, m) == X @test vector_transport_along(M, p, X, [], m) == X .+ 1 #as specified in definition above end @testset "Test nonimplemented fallbacks" begin @testset "Submanifold Embedding Fallbacks & Error Tests" begin M = NotImplementedEmbeddedSubManifold() A = zeros(2) # for a submanifold quite a lot of functions are passed on @test ManifoldsBase.check_point(M, [1, 2]) === nothing @test ManifoldsBase.check_vector(M, [1, 2], [3, 4]) === nothing @test norm(M, [1, 2], [2, 3]) ≈ sqrt(13) @test distance(M, [1, 2], [3, 4]) ≈ sqrt(8) @test inner(M, [1, 2], [2, 3], [2, 3]) == 13 @test manifold_dimension(M) == 2 # since base is defined is defined @test_throws MethodError project(M, [1, 2]) @test_throws MethodError project(M, [1, 2], [2, 3]) == [2, 3] @test_throws MethodError project!(M, A, [1, 2], [2, 3]) @test vector_transport_direction(M, [1, 2], [2, 3], [3, 4]) == [2, 3] vector_transport_direction!(M, A, [1, 2], [2, 3], [3, 4]) @test A == [2, 3] @test vector_transport_to(M, [1, 2], [2, 3], [3, 4]) == [2, 3] vector_transport_to!(M, A, [1, 2], [2, 3], [3, 4]) @test A == [2, 3] @test @inferred !isapprox(M, [1, 2], [2, 3]) @test @inferred !isapprox(M, [1, 2], [2, 3], [4, 5]) end @testset "Isometric Embedding Fallbacks & Error Tests" begin M2 = NotImplementedIsometricEmbeddedManifold() @test base_manifold(M2) == M2 A = zeros(2) # Check that all of these report not to be implemented, i.e. @test_throws MethodError exp(M2, [1, 2], [2, 3]) @test_throws MethodError exp(M2, [1, 2], [2, 3], 1.0) @test_throws MethodError exp!(M2, A, [1, 2], [2, 3]) @test_throws MethodError exp!(M2, A, [1, 2], [2, 3], 1.0) @test_throws MethodError retract(M2, [1, 2], [2, 3]) @test_throws MethodError retract(M2, [1, 2], [2, 3], 1.0) @test_throws MethodError retract!(M2, A, [1, 2], [2, 3]) @test_throws MethodError retract!(M2, A, [1, 2], [2, 3], 1.0) @test_throws MethodError log(M2, [1, 2], [2, 3]) @test_throws MethodError log!(M2, A, [1, 2], [2, 3]) @test_throws MethodError inverse_retract(M2, [1, 2], [2, 3]) @test_throws MethodError inverse_retract!(M2, A, [1, 2], [2, 3]) @test_throws MethodError distance(M2, [1, 2], [2, 3]) @test_throws StackOverflowError manifold_dimension(M2) @test_throws MethodError project(M2, [1, 2]) @test_throws MethodError project!(M2, A, [1, 2]) @test_throws MethodError project(M2, [1, 2], [2, 3]) @test_throws MethodError project!(M2, A, [1, 2], [2, 3]) @test_throws MethodError vector_transport_along(M2, [1, 2], [2, 3], [[1, 2]]) @test_throws MethodError vector_transport_along( M2, [1, 2], [2, 3], [[1, 2]], ParallelTransport(), ) @test vector_transport_along!(M2, A, [1, 2], [2, 3], []) == [2, 3] @test A == [2, 3] @test_throws MethodError vector_transport_direction(M2, [1, 2], [2, 3], [3, 4]) @test_throws MethodError vector_transport_direction!( M2, A, [1, 2], [2, 3], [3, 4], ) @test_throws MethodError vector_transport_to(M2, [1, 2], [2, 3], [3, 4]) @test_throws MethodError vector_transport_to!(M2, A, [1, 2], [2, 3], [3, 4]) end @testset "Nonisometric Embedding Fallback Error Rests" begin M3 = NotImplementedEmbeddedManifold() @test_throws MethodError inner(M3, [1, 2], [2, 3], [2, 3]) @test_throws StackOverflowError manifold_dimension(M3) @test_throws MethodError distance(M3, [1, 2], [2, 3]) @test_throws MethodError norm(M3, [1, 2], [2, 3]) @test_throws MethodError embed(M3, [1, 2], [2, 3]) @test_throws MethodError embed(M3, [1, 2]) @test @inferred !isapprox(M3, [1, 2], [2, 3]) @test @inferred !isapprox(M3, [1, 2], [2, 3], [4, 5]) end end @testset "Explicit Embeddings using EmbeddedManifold" begin M = DefaultManifold(3, 3) N = DefaultManifold(4, 4) O = EmbeddedManifold(M, N) # first test with same length of sizes p = ones(3, 3) q = zeros(4, 4) qT = zeros(4, 4) qT[1:3, 1:3] .= 1.0 embed!(O, q, p) @test norm(qT - q) == 0 qM = embed(O, p) @test norm(project(O, qM) - p) == 0 @test norm(qT - qM) == 0 # test with different sizes, check that it only fills first element q2 = zeros(4, 4, 3) q2T = zeros(4, 4, 3) q2T[1:3, 1:3, 1] .= 1.0 embed!(O, q2, p) @test norm(q2T - q2) == 0 O2 = EmbeddedManifold(M, DefaultManifold(4, 4, 3)) q2M = embed(O2, p) @test norm(q2T - q2M) == 0 # wrong size error checks @test_throws DomainError embed!(O, zeros(3, 3), zeros(3, 3, 5)) @test_throws DomainError embed!(O, zeros(3, 3), zeros(4, 4)) @test_throws DomainError project!(O, zeros(3, 3, 5), zeros(3, 3)) @test_throws DomainError project!(O, zeros(4, 4), zeros(3, 3)) end @testset "Explicit Fallback" begin M = FallbackManifold() # test the explicit fallback to DefaultManifold(3) @test inner(M, [1, 0, 0], [1, 2, 3], [0, 1, 0]) == 2 @test is_point(M, [1, 0, 0]) @test ManifoldsBase.allocate_result(M, exp, [1.0, 0.0, 2.0]) isa Vector end end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
5603
using ManifoldsBase, Test using Test @testset "AbstractManifold with empty implementation" begin M = NonManifold() p = NonMPoint() v = NonTVector() @test base_manifold(M) === M @test number_system(M) === ℝ @test representation_size(M) === nothing @test_throws MethodError manifold_dimension(M) # by default isapprox compares given points or vectors @test isapprox(M, [0], [0]) @test isapprox(M, [0], [0]; atol = 1e-6) @test !isapprox(M, [0], [1]) @test !isapprox(M, [0], [1]; atol = 1e-6) @test isapprox(M, [0], [0], [0]) @test isapprox(M, [0], [0], [0]; atol = 1e-6) @test !isapprox(M, [0], [0], [1]) @test !isapprox(M, [0], [0], [1]; atol = 1e-6) exp_retr = ManifoldsBase.ExponentialRetraction() @test_throws MethodError retract!(M, p, p, v) @test_throws MethodError retract!(M, p, p, v, exp_retr) @test_throws MethodError retract!(M, p, p, [0.0], 0.0) @test_throws MethodError retract!(M, p, p, [0.0], 0.0, exp_retr) @test_throws MethodError retract!(M, [0], [0], [0]) @test_throws MethodError retract!(M, [0], [0], [0], exp_retr) @test_throws MethodError retract!(M, [0], [0], [0], 0.0) @test_throws MethodError retract!(M, [0], [0], [0], 0.0, exp_retr) @test_throws MethodError retract(M, [0], [0]) @test_throws MethodError retract(M, [0], [0], exp_retr) @test_throws MethodError retract(M, [0], [0], 0.0) @test_throws MethodError retract(M, [0], [0], 0.0, exp_retr) @test_throws MethodError retract(M, [0.0], [0.0]) @test_throws MethodError retract(M, [0.0], [0.0], exp_retr) @test_throws MethodError retract(M, [0.0], [0.0], 0.0) @test_throws MethodError retract(M, [0.0], [0.0], 0.0, exp_retr) @test_throws MethodError retract(M, [0.0], [0.0], NotImplementedRetraction()) log_invretr = ManifoldsBase.LogarithmicInverseRetraction() @test_throws MethodError inverse_retract!(M, p, p, p) @test_throws MethodError inverse_retract!(M, p, p, p, log_invretr) @test_throws MethodError inverse_retract!(M, [0], [0], [0]) @test_throws MethodError inverse_retract!(M, [0], [0], [0], log_invretr) @test_throws MethodError inverse_retract(M, [0], [0]) @test_throws MethodError inverse_retract(M, [0], [0], log_invretr) @test_throws MethodError inverse_retract(M, [0.0], [0.0]) @test_throws MethodError inverse_retract(M, [0.0], [0.0], log_invretr) @test_throws MethodError inverse_retract( M, [0.0], [0.0], NotImplementedInverseRetraction(), ) @test_throws MethodError project!(M, p, [0]) @test_throws MethodError project!(M, [0], [0]) @test_throws MethodError project(M, [0]) @test_throws MethodError project!(M, v, p, [0.0]) @test_throws MethodError project!(M, [0], [0], [0]) @test_throws MethodError project(M, [0], [0]) @test_throws MethodError project(M, [0.0], [0.0]) @test_throws MethodError inner(M, p, v, v) @test_throws MethodError inner(M, [0], [0], [0]) @test_throws MethodError norm(M, p, v) @test_throws MethodError norm(M, [0], [0]) @test_throws MethodError angle(M, p, v, v) @test_throws MethodError angle(M, [0], [0], [0]) @test_throws MethodError distance(M, [0.0], [0.0]) @test_throws MethodError exp!(M, p, p, v) @test_throws MethodError exp!(M, p, p, v, 0.0) @test_throws MethodError exp!(M, [0], [0], [0]) @test_throws MethodError exp!(M, [0], [0], [0], 0.0) @test_throws MethodError exp(M, [0], [0]) @test_throws MethodError exp(M, [0], [0], 0.0) @test_throws MethodError exp(M, [0.0], [0.0]) @test_throws MethodError exp(M, [0.0], [0.0], 0.0) @test_throws MethodError embed!(M, p, [0]) # no copy for NoPoint p @test embed!(M, [0], [0]) == [0] @test embed(M, [0]) == [0] # Identity @test_throws MethodError embed!(M, v, p, [0.0]) # no copyto @test embed!(M, [0], [0], [0]) == [0] @test_throws MethodError embed(M, [0], v) # no copyto @test embed(M, [0.0], [0.0]) == [0.0] @test_throws MethodError log!(M, v, p, p) @test_throws MethodError log!(M, [0], [0], [0]) @test_throws MethodError log(M, [0.0], [0.0]) @test_throws MethodError vector_transport_to!(M, [0], [0], [0], [0]) @test_throws MethodError vector_transport_to(M, [0], [0], [0]) @test_throws MethodError vector_transport_to!(M, [0], [0], [0], ProjectionTransport()) @test_throws MethodError vector_transport_direction!(M, [0], [0], [0], [0]) @test_throws MethodError vector_transport_direction(M, [0], [0], [0]) @test_throws MethodError ManifoldsBase.vector_transport_along!(M, [0], [0], [0], x -> x) @test_throws MethodError vector_transport_along(M, [0], [0], x -> x) @test_throws MethodError injectivity_radius(M) @test_throws MethodError injectivity_radius(M, [0]) @test_throws MethodError injectivity_radius(M, [0], exp_retr) @test_throws MethodError injectivity_radius(M, exp_retr) @test_throws MethodError zero_vector!(M, [0], [0]) @test_throws MethodError zero_vector(M, [0]) @test ManifoldsBase.check_point(M, [0]) === nothing @test ManifoldsBase.check_point(M, p) === nothing @test is_point(M, [0]) @test ManifoldsBase.check_point(M, [0]) === nothing @test ManifoldsBase.check_vector(M, [0], [0]) === nothing @test ManifoldsBase.check_vector(M, p, v) === nothing @test is_vector(M, [0], [0]) @test ManifoldsBase.check_vector(M, [0], [0]) === nothing @test_throws MethodError hat!(M, [0], [0], [0]) @test_throws MethodError vee!(M, [0], [0], [0]) end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git
[ "MIT" ]
0.15.17
4259c5f29dbe9d7441ec0f5ce31c2a6895285495
code
1272
# # Test specific error methods # using ManifoldsBase using Test @testset "Test specific Errors and their format." begin e = DomainError(1.0, "Norm not zero.") # a dummy e2 = ComponentManifoldError(1, e) s1 = sprint(showerror, e) s2 = sprint(showerror, e2) @test s2 == "At #1: $(s1)" e3 = CompositeManifoldError() s3 = sprint(showerror, e3) @test s3 == "CompositeManifoldError()\n" @test length(e3) == 0 @test isempty(e3) @test repr(e3) == "CompositeManifoldError()" e4 = CompositeManifoldError([e2]) @test repr(e4) == "CompositeManifoldError([$(repr(e2)), ])" s4 = sprint(showerror, e4) @test s4 == "CompositeManifoldError: $(s2)" eV = [e2, e2] e5 = CompositeManifoldError(eV) @test repr(e5) == "CompositeManifoldError([$(repr(e2)), $(repr(e2)), ])" s5 = sprint(showerror, e5) @test s5 == "CompositeManifoldError: $(s2)\n\n...and $(length(eV)-1) more error(s).\n" e6 = ManifoldDomainError("A.", e) s6 = sprint(showerror, e6) @test s6 == "ManifoldDomainError: A.\n$(s1)" e7 = ApproximatelyError(1.0, "M.") s7 = sprint(showerror, e7) @test s7 == "ApproximatelyError with 1.0\nM.\n" p7 = sprint(show, e7) @test p7 == "ApproximatelyError(1.0, \"M.\")" end
ManifoldsBase
https://github.com/JuliaManifolds/ManifoldsBase.jl.git