licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 3281 | """
segmentation_F(
segmentation_B_not_ice_mask::Matrix{Gray{Float64}},
segmentation_B_ice_intersect::BitMatrix,
segmentation_B_watershed_intersect::BitMatrix,
ice_labels::Vector{Int64},
cloudmask::BitMatrix,
landmask::BitMatrix;
min_area_opening::Int64=20
)
Cleans up past segmentation images with morphological operations, and applies the results of prior watershed segmentation, returning the final cleaned image for tracking with ice floes segmented and isolated.
# Arguments
- `segmentation_B_not_ice_mask`: gray image output from `segmentation_b.jl`
- `segmentation_B_ice_intersect`: binary mask output from `segmentation_b.jl`
- `segmentation_B_watershed_intersect`: ice pixels, output from `segmentation_b.jl`
- `ice_labels`: vector of pixel coordinates output from `find_ice_labels.jl`
- `cloudmask.jl`: bitmatrix cloudmask for region of interest
- `landmask.jl`: bitmatrix landmask for region of interest
- `min_area_opening`: threshold used for area opening; pixel groups greater than threshold are retained
"""
function segmentation_F(
segmentation_B_not_ice_mask::Matrix{Gray{Float64}},
segmentation_B_ice_intersect::BitMatrix,
segmentation_B_watershed_intersect::BitMatrix,
ice_labels::Vector{Int64},
cloudmask::BitMatrix,
landmask::BitMatrix;
min_area_opening::Int64=20
)::BitMatrix
IceFloeTracker.apply_landmask!(segmentation_B_not_ice_mask, landmask)
ice_leads = .!segmentation_B_watershed_intersect .* segmentation_B_ice_intersect
ice_leads .=
.!ImageMorphology.area_opening(ice_leads; min_area=min_area_opening, connectivity=2)
not_ice = IceFloeTracker.MorphSE.dilate(
segmentation_B_not_ice_mask, IceFloeTracker.MorphSE.strel_diamond((5, 5))
)
IceFloeTracker.MorphSE.mreconstruct!(
IceFloeTracker.MorphSE.dilate,
not_ice,
complement.(not_ice),
complement.(segmentation_B_not_ice_mask),
)
reconstructed_leads = (not_ice .* ice_leads) .+ (60 / 255)
leads_segmented =
IceFloeTracker.kmeans_segmentation(reconstructed_leads, ice_labels) .*
.!segmentation_B_watershed_intersect
@info("Done with k-means segmentation")
leads_segmented_broken = IceFloeTracker.hbreak(leads_segmented)
leads_branched = IceFloeTracker.branch(leads_segmented_broken)
leads_filled = .!ImageMorphology.imfill(.!leads_branched, 0:1)
leads_opened = IceFloeTracker.branch(
ImageMorphology.area_opening(
leads_filled; min_area=min_area_opening, connectivity=2
),
)
leads_bothat =
IceFloeTracker.MorphSE.bothat(
leads_opened, IceFloeTracker.MorphSE.strel_diamond((5, 5))
) .> 0.499
leads = convert(BitMatrix, (complement.(leads_bothat) .* leads_opened))
ImageMorphology.area_opening!(leads, leads; min_area=min_area_opening, connectivity=2)
leads_bothat_filled = (IceFloeTracker.MorphSE.fill_holes(leads) .* cloudmask)
floes = IceFloeTracker.branch(leads_bothat_filled)
floes_opened = IceFloeTracker.MorphSE.opening(floes, centered(IceFloeTracker.se_disk4()))
IceFloeTracker.MorphSE.mreconstruct!(
IceFloeTracker.MorphSE.dilate, floes_opened, floes, floes_opened
)
return floes_opened
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1662 | """
watershed_ice_floes(intermediate_segmentation_image;)
Performs image processing and watershed segmentation with intermediate files from segmentation_b.jl to further isolate ice floes, returning a binary segmentation mask indicating potential sparse boundaries of ice floes.
# Arguments
-`intermediate_segmentation_image`: binary cloudmasked and landmasked intermediate file from segmentation B, either `SegB.not_ice_bit` or `SegB.ice_intersect`
"""
function watershed_ice_floes(intermediate_segmentation_image::BitMatrix)::BitMatrix
features = Images.feature_transform(.!intermediate_segmentation_image)
distances = 1 .- Images.distance_transform(features)
seg_mask = ImageSegmentation.hmin_transform(distances, 2)
seg_mask_bool = seg_mask .> 0
markers = Images.label_components(seg_mask_bool)
segment = ImageSegmentation.watershed(distances, markers)
labels = ImageSegmentation.labels_map(segment)
borders = Images.isboundary(labels)
return borders
end
"""
watershed_product(watershed_B_ice_intersect, watershed_B_not_ice;)
Intersects the outputs of watershed segmentation on intermediate files from segmentation B, indicating potential sparse boundaries of ice floes.
# Arguments
- `watershed_B_ice_intersect`: binary segmentation mask from `watershed_ice_floes`
- `watershed_B_not_ice`: binary segmentation mask from `watershed_ice_floes`
"""
function watershed_product(
watershed_B_ice_intersect::BitMatrix, watershed_B_not_ice::BitMatrix;
)::BitMatrix
## Intersect the two watershed files
watershed_intersect = watershed_B_ice_intersect .* watershed_B_not_ice
return watershed_intersect
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 21865 | function make_landmask_se()
begin
BitMatrix(
reshape(
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
],
99,
99,
),
)
end
end
se_disk4() = begin
se = zeros(Bool, 7, 7)
se[4, 4] = 1
bwdist(se) .<= 3.6
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 6696 | # Helper functions
"""
make_filename()
Makes default filename with timestamp.
"""
function make_filename()::String
return "persisted_img-" * Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") * ".png"
end
function make_filename(fname::T, ext::T=".png")::T where {T<:AbstractString}
return timestamp(fname) * ext
end
"""
timestamp(fname)
Attach timestamp to `fname`.
"""
function timestamp(fname::String)
ts = Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS")
return fname * "-" * ts
end
"""
fname_ext_split(fname)
Split `"fname.ext"` into `"fname"` and `"ext"`.
"""
function fname_ext_split(fname::String)
return (name=fname[1:(end - 4)], ext=fname[(end - 2):end])
end
"""
fname_ext_splice(fname, ext)
Join `"fname"` and `"ext"` with `'.'`.
"""
function fname_ext_splice(fname::String, ext::String)
return fname * '.' * ext
end
"""
check_fname(fname)
Checks `fname` does not exist in current directory; throws an assertion if this condition is false.
# Arguments
- `fname`: String object or Symbol to a reference to a String representing a path.
"""
function check_fname(fname::Union{String,Symbol,Nothing}=nothing)::String
if fname isa String # then use as filename
check_name = fname
elseif fname isa Symbol
check_name = eval(fname) # get the object represented by the symbol
elseif isnothing(fname) # nothing provided so make a filename
check_name = make_filename()
end
# check name does not exist in wd
isfile(check_name) && error("$check_name already exists in $(pwd())")
return check_name
end
"""
loadimg(; dir::String, fname::String)
Load an image from `dir` with filename `fname` into a matrix of `Float64` values. Returns the loaded image.
"""
function loadimg(; dir::String, fname::String)
return joinpath(dir, fname) |> load |> x-> float64.(x)
end
"""
add_padding(img, style)
Extrapolate the image `img` according to the `style` specifications type. Returns the extrapolated image.
# Arguments
- `img`: Image to be padded.
- `style`: A supported type (such as `Pad` or `Fill`) representing the extrapolation style. See the relevant [documentation](https://juliaimages.org/latest/function_reference/#ImageFiltering) for details.
See also [`remove_padding`](@ref)
"""
function add_padding(img, style::Union{Pad,Fill})::Matrix
return collect(Images.padarray(img, style))
end
"""
remove_padding(paddedimg, border_spec)
Removes padding from the boundary of padded image `paddedimg` according to the border specification `border_spec` type. Returns the cropped image.
# Arguments
- `paddedimg`: Pre-padded image.
- `border_spec`: Type representing the style of padding (such as `Pad` or `Fill`) with which `paddedimg` is assumend to be pre-padded. Example: `Pad((1,2), (3,4))` specifies 1 row on the top, 2 columns on the left, 3 rows on the bottom, and 4 columns on the right boundary.
See also [`add_padding`](@ref)
"""
function remove_padding(paddedimg, border_spec::Union{Pad,Fill})::Matrix
top, left = border_spec.lo
bottom, right = border_spec.hi
return paddedimg[(top + 1):(end - bottom), (left + 1):(end - right)]
end
"""
imextendedmin(img)
Mimics MATLAB's imextendedmin function that computes the extended-minima transform, which is the regional minima of the H-minima transform. Regional minima are connected components of pixels with a constant intensity value. This function returns a transformed bitmatrix.
# Arguments
- `img`: image object
- `h`: suppress minima below this depth threshold
- `conn`: neighborhood connectivity; in 2D 1 = 4-neighborhood and 2 = 8-neighborhood
"""
function imextendedmin(img::AbstractArray; h::Int=2, conn::Int=2)::BitMatrix
mask = ImageSegmentation.hmin_transform(img, h)
mask_minima = Images.local_minima(mask; connectivity=conn)
return Bool.(mask_minima)
end
"""
bwdist(bwimg)
Distance transform for binary image `bwdist`.
"""
function bwdist(bwimg::AbstractArray{Bool})::AbstractArray{Float64}
return Images.distance_transform(Images.feature_transform(bwimg))
end
"""
padnhood(img, I, nhood)
Pad the matrix `img[nhood]` with zeros according to the position of `I` within the edges`img`.
Returns `img[nhood]` if `I` is not an edge index.
"""
function padnhood(img, I, nhood)
# adaptive padding
maxr, maxc = size(img)
tofill = SizedMatrix{3,3}(zeros(Int, 3, 3))
@views if I == CartesianIndex(1, 1) # top left corner`
tofill[2:3, 2:3] = img[nhood]
elseif I == CartesianIndex(maxr, 1) # bottom left corner
tofill[1:2, 2:3] = img[nhood]
elseif I == CartesianIndex(1, maxc) # top right corner
tofill[2:3, 1:2] = img[nhood]
elseif I == CartesianIndex(maxr, maxc) # bottom right corner
tofill[1:2, 1:2] = img[nhood]
elseif I[1] == 1 # top edge (first row)
tofill[2:3, 1:3] = img[nhood]
elseif I[2] == 1 # left edge (first col)
tofill[1:3, 2:3] = img[nhood]
elseif I[1] == maxr # bottom edge (last row)
tofill[1:2, 1:3] = img[nhood]
elseif I[2] == maxc # right edge (last row)
tofill[1:3, 1:2] = img[nhood]
else
tofill = img[nhood]
end
return tofill
end
"""
_bin9todec(v)
Get decimal representation of a bit vector `v` with the leading bit at its leftmost posistion.
Example
```
julia> _bin9todec([0 0 0 0 0 0 0 0 0])
0
julia> _bin9todec([1 1 1 1 1 1 1 1 1])
511
```
"""
function _bin9todec(v::AbstractArray)::Int64
return sum(vec(v) .* 2 .^ (0:(length(v) - 1)))
end
"""
_operator_lut(I, img, nhood, lut1, lut2)
Look up the neighborhood `nhood` in lookup tables `lut1` and `lut2`.
Handles cases when the center of `nhood` is on the edge of `img` using data in `I`.
"""
function _operator_lut(
I::CartesianIndex{2},
img::AbstractArray{Bool},
nhood::CartesianIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}},
lut1::Vector{Int64},
lut2::Vector{Int64},
)::SVector{2,Int64}
# corner pixels
length(nhood) == 4 && return @SVector [false, 0]
val = IceFloeTracker._bin9todec(_pad_handler(I, img, nhood)) + 1
return @SVector [lut1[val], lut2[val]]
end
function _operator_lut(
I::CartesianIndex{2},
img::AbstractArray{Bool},
nhood::CartesianIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}},
lut::Vector{T},
)::T where {T} # for bridge
# corner pixels
length(nhood) == 4 && return false # for bridge and some other operations like hbreak, branch
return lut[_bin9todec(_pad_handler(I, img, nhood)) + 1]
end
function _pad_handler(I, img, nhood)
(length(nhood) == 6) && return padnhood(img, I, nhood) # edge pixels
return @view img[nhood]
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 4009 | module CenterIndexedArrays
using Interpolations, OffsetArrays
using OffsetArrays: IdentityUnitRange
export CenterIndexedArray
include("symrange.jl")
"""
A `CenterIndexedArray` is one for which the array center has indexes
`0,0,...`. Along each coordinate, allowed indexes range from `-n:n`.
CenterIndexedArray(A) "converts" `A` into a CenterIndexedArray. All
the sizes of `A` must be odd.
"""
struct CenterIndexedArray{T,N,A<:AbstractArray} <: AbstractArray{T,N}
data::A
halfsize::NTuple{N,Int}
function CenterIndexedArray{T,N,A}(data::A) where {T,N,A<:AbstractArray}
new{T,N,A}(data, _halfsize(data))
end
end
CenterIndexedArray(A::AbstractArray{T,N}) where {T,N} = CenterIndexedArray{T,N,typeof(A)}(A)
CenterIndexedArray{T,N}(::UndefInitializer, sz::Vararg{<:Integer,N}) where {T,N} =
CenterIndexedArray(Array{T,N}(undef, sz...))
CenterIndexedArray{T,N}(::UndefInitializer, sz::NTuple{N,Integer}) where {T,N} =
CenterIndexedArray(Array{T,N}(undef, sz))
CenterIndexedArray{T}(::UndefInitializer, sz::Vararg{<:Integer,N}) where {T,N} =
CenterIndexedArray{T,N}(undef, sz...)
CenterIndexedArray{T}(::UndefInitializer, sz::NTuple{N,Integer}) where {T,N} =
CenterIndexedArray{T,N}(undef, sz)
# This is the AbstractArray default, but do this just to be sure
Base.IndexStyle(::Type{A}) where {A<:CenterIndexedArray} = IndexCartesian()
Base.size(A::CenterIndexedArray) = size(A.data)
Base.axes(A::CenterIndexedArray) = map(SymRange, A.halfsize)
const SymAx = Union{SymRange, Base.Slice{SymRange}}
Base.axes(r::Base.Slice{SymRange}) = (r.indices,)
function Base.similar(A::CenterIndexedArray, ::Type{T}, inds::Tuple{SymAx,Vararg{SymAx}}) where T
data = Array{T}(undef, map(length, inds))
CenterIndexedArray(data)
end
function Base.similar(::Type{T}, inds::Tuple{SymAx, Vararg{SymAx}}) where T
data = Array{T}(undef, map(length, inds))
CenterIndexedArray(data)
end
# This is incomplete: ideally we wouldn't need SymAx in the first slot
# as long as there was at least one SymAx.
function Base.similar(A::CenterIndexedArray, ::Type{T}, inds::Tuple{SymAx,Vararg{Union{Int,<:IdentityUnitRange,SymAx}}}) where T
torange(n) = isa(n, Int) ? Base.OneTo(n) : n
return OffsetArray{T}(undef, map(torange, inds))
end
function _halfsize(A::AbstractArray)
all(isodd, size(A)) || error("Must have all-odd sizes")
map(n->n>>UInt(1), size(A))
end
@inline function Base.getindex(A::CenterIndexedArray{T,N}, i::Vararg{Int,N}) where {T,N}
@boundscheck checkbounds(A, i...)
@inbounds val = A.data[map(offset, A.halfsize, i)...]
val
end
Base.@propagate_inbounds Base.getindex(A::CenterIndexedArray{T,N,I}, i::Vararg{Int,N}) where {T,N,I<:AbstractInterpolation} =
_getindex(A, i...)
Base.@propagate_inbounds Base.getindex(A::CenterIndexedArray{T,N,I}, i::Vararg{Number,N}) where {T,N,I<:AbstractInterpolation} =
_getindex(A, i...)
@inline function _getindex(A::CenterIndexedArray{T,N,I}, i::Vararg{Number,N}) where {T,N,I<:AbstractInterpolation}
@boundscheck checkbounds(A, i...)
@inbounds val = A.data(map(offset, A.halfsize, i)...)
val
end
Base.throw_boundserror(A::CenterIndexedArray, I) = (Base.@_noinline_meta; throw(BoundsError(A, I)))
offset(off, i) = off+i+1
@inline function Base.setindex!(A::CenterIndexedArray{T,N}, v, i::Vararg{Int,N}) where {T,N}
@boundscheck checkbounds(A, i...)
@inbounds A.data[map(offset, A.halfsize, i)...] = v
v
end
Base.BroadcastStyle(::Type{<:CenterIndexedArray}) = Broadcast.ArrayStyle{CenterIndexedArray}()
function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{CenterIndexedArray}}, ::Type{ElType}) where ElType
similar(ElType, axes(bc))
end
Base.parent(A::CenterIndexedArray) = A.data
function Base.showarg(io::IO, A::CenterIndexedArray, toplevel)
print(io, "CenterIndexedArray(")
Base.showarg(io, parent(A), false)
print(io, ')')
toplevel && print(io, " with eltype ", eltype(A))
end
include("deprecated.jl")
end # module
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 200 | @deprecate CenterIndexedArray(::Type{T}, dims) where {T} CenterIndexedArray{T}(undef, dims...)
@deprecate CenterIndexedArray(::Type{T}, dims...) where {T} CenterIndexedArray{T}(undef, dims...)
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1586 | ## SymRange, an AbstractUnitRange that's symmetric around 0
# These are used as axes for CenterIndexedArrays
struct SymRange <: AbstractUnitRange{Int}
n::Int # goes from -n:n
end
function SymRange(r::AbstractUnitRange)
first(r) == -last(r) || error("cannot convert $r to a SymRange")
SymRange(last(r))
end
Base.first(r::SymRange) = -r.n
Base.last(r::SymRange) = r.n
Base.axes(r::SymRange) = (r,)
@inline Base.unsafe_indices(r::SymRange) = (r,)
function iterate(r::SymRange)
r.n == 0 && return nothing
first(r), first(r)
end
function iterate(r::SymRange, s)
s == last(r) && return nothing
copy(s+1), s+1
end
@inline function Base.getindex(v::SymRange, i::Int)
@boundscheck abs(i) <= v.n || Base.throw_boundserror(v, i)
return i
end
Base.intersect(r::SymRange, s::SymRange) = SymRange(min(last(r), last(s)))
@inline function Base.getindex(r::SymRange, s::SymRange)
@boundscheck checkbounds(r, s)
s
end
@inline function Base.getindex(r::SymRange, s::AbstractUnitRange{<:Integer})
@boundscheck checkbounds(r, s)
return s
end
# TODO: should we be worried about the mismatch in axes?
# And should `convert(SymRange, r)` fail if axes(r) isn't the same as the result?
Base.promote_rule(::Type{SymRange}, ::Type{UR}) where {UR<:AbstractUnitRange} =
UR
Base.promote_rule(::Type{UnitRange{T2}}, ::Type{SymRange}) where {T2} =
UnitRange{promote_type(T2, Int)}
Base.show(io::IO, r::SymRange) = print(io, "SymRange(", repr(last(r)), ')')
if isdefined(Base, :reduced_index)
Base.reduced_index(r::SymRange) = SymRange(0)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1524 | module QuadDIRECT
using LinearAlgebra
using StaticArrays, PositiveFactorizations
export Box, CountedFunction, LoggedFunction
export leaves, value, numevals, analyze, analyze!, minimize
export splitprint, splitprint_colored, treeprint
include("types.jl")
include("util.jl")
include("quadratic_model.jl")
include("algorithm.jl")
# Convenience methods
function analyze(f, x0::AbstractVector{<:Real}, lower::AbstractVector{<:Real}, upper::AbstractVector{<:Real}; kwargs...)
inds = LinearIndices(x0)
LinearIndices(lower) == LinearIndices(upper) == inds || error("lengths must match")
splits = similar(x0, Vector{Float64})
for i in inds
lo, hi, xi = lower[i], upper[i], x0[i]
@assert(lo<=xi<=hi)
lo = max(xi-1, (xi+lo)/2)
hi = min(xi+1, (xi+hi)/2)
xi = xi == lo ? (xi+hi)/2 :
xi == hi ? (xi+lo)/2 : xi
@assert(lo < xi < hi)
@assert isfinite(lo) && isfinite(xi) && isfinite(hi)
splits[i] = [lo, xi, hi]
end
return analyze(f, splits, lower, upper; kwargs...)
end
function analyze(f, x0::AbstractVector{<:Real}; kwargs...)
return analyze(f, x0, fill(-Inf, length(x0)), fill(Inf, length(x0)); kwargs...)
end
function analyze(f, lower::AbstractVector{<:Real}, upper::AbstractVector{<:Real}; kwargs...)
x0 = (lower .+ upper)./2
for i in eachindex(x0)
if !isfinite(x0[i])
x0[i] = clamp(0, lower[i], upper[i])
end
end
return analyze(f, x0, lower, upper; kwargs...)
end
end # module
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 29262 | function init(f, xsplits, lower::AbstractVector, upper::AbstractVector)
# Validate the inputs
n = length(lower)
length(upper) == length(xsplits) == n || throw(DimensionMismatch("inconsistent dimensionality among lower, upper, and splits"))
for i = 1:n
xsi = xsplits[i]
length(xsi) == 3 || throw(DimensionMismatch("3 values along each dimension required, got $(xsi) along dimension $i"))
lower[i] <= xsi[1] < xsi[2] < xsi[3] <= upper[i] || error("splits must be in strictly increasing order and lie between lower and upper, got $xsi along dimension $i")
all(isfinite, xsi) || error("not all splits along dimension $i are finite")
end
# Compute a consistent eltype
xs1 = xsplits[1]
Tx = promote_type(typeof(xs1[1]), typeof(xs1[2]), typeof(xs1[3]))
for i = 2:n
xsi = xsplits[i]
Tx = promote_type(Tx, typeof(xsi[1]), typeof(xsi[2]), typeof(xsi[3]))
end
Tx = boxeltype(Tx)
x0 = Tx[x[2] for x in xsplits]
box, xstar = _init(f, copy(x0), xsplits, lower, upper)
box, x0, xstar
end
@noinline function _init(f, xstar, xsplits, lower, upper)
T = boxeltype(promote_type(eltype(xstar), eltype(lower), eltype(upper)))
n = length(xstar)
root = box = Box{T,n}()
xtmp = copy(xstar)
fcur = dummyvalue(T)
for i = 1:n
box = split!(box, f, xtmp, i, xsplits[i], lower[i], upper[i], xstar[i], fcur)
xcur, fcur = box.parent.xvalues[box.parent_cindex], box.parent.fvalues[box.parent_cindex]
xstar = replacecoordinate!(xstar, i, xcur)
end
box, xstar
end
function split!(box::Box{T}, f, xtmp, splitdim, xsplit, lower::Real, upper::Real, xcur, fcur) where T
# Evaluate f along the splits, keeping track of the best
fsplit = MVector3{T}(typemax(T), typemax(T), typemax(T))
fmin, idxmin = typemax(T), 0
for l = 1:3
@assert(isfinite(xsplit[l]))
if xsplit[l] == xcur && !isdummy(fcur)
ftmp = fcur
else
xtmp = replacecoordinate!(xtmp, splitdim, xsplit[l])
ftmp = f(xtmp)
end
if ftmp < fmin
fmin = ftmp
idxmin = l
end
fsplit[l] = ftmp
end
idxmin == 0 && error("function was not finite at any evaluation point $xsplit")
if idxmin == 1 && fsplit[1] == fsplit[2]
idxmin = 2 # prefer the middle in case of ties
end
add_children!(box, splitdim, xsplit, fsplit, lower, upper)
xtmp = replacecoordinate!(xtmp, splitdim, xsplit[idxmin])
return box.children[idxmin]
end
# Splits a box. If the "tilt" over the domain of the
# box suggests that one of its neighbors might be even lower,
# recursively calls itself to split that box, too.
# Returns `box, minval`.
function autosplit!(box::Box{T}, mes::Vector{<:MELink}, f::WrappedFunction, x0, xtmp, splitdim, xsplitdefaults, lower, upper, minwidth, visited::Set) where T
box β visited && error("already visited box")
box.qnconverged && return (box, value(box))
if !isleaf(box)
# This box already got split along a different dimension
box = find_smallest_child_leaf(box)
xtmp = position(box, x0)
end
if splitdim == 0
# If we entered this box from a neighbor, just choose an axis that has been split the least
nsplits = count_splits(box)
splitdim = argmin(nsplits)
if nsplits[splitdim] > 0
# If all dimensions have been split, prefer splitting unbounded dimensions
bbs = boxbounds(box, lower, upper)
if all(isfinite, bbs[splitdim])
for (i, bb) in enumerate(bbs)
if !all(isfinite, bb)
splitdim = i
break
end
end
end
end
end
xsplitdefault = xsplitdefaults[splitdim]
lwr, upr = lower[splitdim], upper[splitdim]
p = find_parent_with_splitdim(box, splitdim)
if isroot(p) && p.splitdim != splitdim
xcur, fcur = x0[splitdim], box.parent.fvalues[box.parent_cindex]
split!(box, f, xtmp, splitdim, xsplitdefault, lwr, upr, xcur, fcur)
trimschedule!(mes, box, splitdim, x0, lower, upper)
return box, minimum(box.fvalues)
end
bb = boxbounds(p)
bb[2]-bb[1] > max(minwidth[splitdim], epswidth(bb)) || return (box, value(box))
xp, fp = p.parent.xvalues, p.parent.fvalues
Ξx = max(xp[2]-xp[1], xp[3]-xp[2]) # a measure of the "pragmatic" box scale even when the box is infinite
xcur = xp[p.parent_cindex]
@assert(xcur == xtmp[splitdim])
fcur = box.parent.fvalues[box.parent_cindex]
# Do a quadratic fit along splitdim
xvert, fvert, qcoef = qfit(xp[1]=>fp[1], xp[2]=>fp[2], xp[3]=>fp[3])
if qcoef > 0
# xvert is a minimum. However, in general we can't trust it: for example, for the
# "canyon" function
# f(x,y) = (x+y)^2/k + k*(x-y)^2,
# at fixed `x` the minimum `y` is at
# ystar = (k^2-1)/(k^2+1)*x.
# If the current box has a different `x` than the one used for box `p`,
# then this estimate will be wrong.
# (If `p == box.parent` it would be safe, but given that we'd have to pick a third
# point anyway, this case does not seem worth treating separately.)
# Instead of trusting `xvert`, we take `qcoef` (the quadratic coefficient) at face value. We then
# choose a second (arbitrary) point along splitdim (e.g., a new `y` in the "canyon" example)
# to evaluate `f`, and then use these two position/value pairs to estimate the
# remaining two parameters of the quadratic.
if isinf(bb[1])
xnew = xcur - 8*(bb[2]-xcur)
elseif isinf(bb[2])
xnew = xcur + 8*(xcur-bb[1])
else
xnew = bb[2]-xcur > xcur-bb[1] ? (xcur+2*bb[2])/3 : (2*bb[1]+xcur)/3
end
@assert(isfinite(xnew))
xtmp = replacecoordinate!(xtmp, splitdim, xnew)
fnew = f(xtmp)
# Solve for the minimum of the quadratic given the two pairs xcur=>fcur, xnew=>fnew
xvert = (xcur+xnew)/2 - (fnew-fcur)/(2*qcoef*(xnew-xcur))
if bb[1] <= xvert <= bb[2]
# xvert is in the box, use it---but first, make sure it's not "degenerate" with
# xcur or xnew
xvert = ensure_distinct(xvert, xcur, xnew, bb)
xtmp = replacecoordinate!(xtmp, splitdim, xvert)
fvert = f(xtmp)
xf1, xf2, xf3 = order_pairs(xcur=>fcur, xnew=>fnew, xvert=>fvert)
add_children!(box, splitdim, MVector3{T}(xf1[1], xf2[1], xf3[1]),
MVector3{T}(xf1[2], xf2[2], xf3[2]), lwr, upr)
trimschedule!(mes, box, splitdim, x0, lower, upper)
return box, minimum(box.fvalues)
end
# xvert is not in the box. Prepare to split the neighbor, but for this box
# just bisect xcur and xnew
if xvert < bb[1]
xtmp, dir = replacecoordinate!(xtmp, splitdim, bb[1]), -1
else
xtmp, dir = replacecoordinate!(xtmp, splitdim, bb[2]), +1
end
nbr, success = find_leaf_at_edge(get_root(box), xtmp, splitdim, dir)
xmid = (xcur+xnew)/2
xtmp = replacecoordinate!(xtmp, splitdim, xmid)
fmid = f(xtmp)
xf1, xf2, xf3 = order_pairs(xcur=>fcur, xnew=>fnew, xmid=>fmid)
add_children!(box, splitdim, MVector3{T}(xf1[1], xf2[1], xf3[1]),
MVector3{T}(xf1[2], xf2[2], xf3[2]), lwr, upr)
trimschedule!(mes, box, splitdim, x0, lower, upper)
minbox = minimum(box.fvalues)
if !success || nbr β visited || !isfinite(value(nbr)) || length(visited) > ndims(box)
return (box, minbox) # check nbr β visited to avoid cycles
end
nbr, mv = autosplit!(nbr, mes, f, x0, position(nbr, x0), 0, xsplitdefaults, lower, upper, minwidth, push!(visited, box))
if mv < minbox
return nbr, mv
end
return box, minbox
end
trisect!(box, f, xtmp, splitdim, bb, Ξx, xcur, fcur)
trimschedule!(mes, box, splitdim, x0, lower, upper)
return box, isleaf(box) ? value(box) : minimum(box.fvalues)
end
function trisect!(box::Box{T}, f, xtmp, splitdim, bb, Ξx, xcur, fcur) where T
l, r = bb
if isinf(l)
l = r - 6*Ξx # gap is usually 1/3 of the box size, so undo this at the level of "box size"
elseif isinf(r)
r = l + 6*Ξx
end
a, b, c = 5l/6+r/6, (l+r)/2, l/6+5r/6
# Ensure xcur is one of the three
if xcur < (a+b)/2
a = xcur
elseif xcur < (b+c)/2
b = xcur
else
c = xcur
end
if a < b < c
return split!(box, f, xtmp, splitdim, MVector3{T}(a, b, c), bb..., xcur, fcur)
end
return box
end
# This requires there to be a (non-root) parent split along splitdim
function trisect!(box::Box, f, xtmp, splitdim, p = find_parent_with_splitdim(box, splitdim))
bb = boxbounds(p)
xp, fp = p.parent.xvalues, p.parent.fvalues
Ξx = max(xp[2]-xp[1], xp[3]-xp[2]) # a measure of the "pragmatic" box scale even when the box is infinite
xcur = xp[p.parent_cindex]
@assert(xcur == xtmp[splitdim])
fcur = box.parent.fvalues[box.parent_cindex]
trisect!(box, f, xtmp, splitdim, bb, Ξx, xcur, fcur)
end
# Returns target box, value, and Ξ±. Uses Ξ±=0 to signal failure.
function quasinewton!(box::Box{T}, B, g, c, scale, f::Function, x0, lower, upper, itermax = 20) where T
x = position(box, x0)
fbox = fmin = value(box)
isfinite(fbox) || return box, fmin, T(0)
# Solve the bounded linear least-squares problem forcing B to be positive-definite
cB = cholesky(Positive, B)
Ξx = -(cB \ g) # unconstrained solution
lsc, usc = (lower.-x)./scale, (upper.-x)./scale
Ξx[:] .= clamp.(Ξx, lsc, usc)
Ξx = lls_bounded!(Ξx, Matrix(cB), g, lsc, usc)
# Test whether the update moves the point appreciably. If not, mark this point
# as converged.
issame = true
for i = 1:length(Ξx)
issame &= abs(Ξx[i]) < sqrt(eps(scale[i]))
end
if issame
box.qnconverged = true
return box, fmin, T(0)
end
Ξx[:] .= Ξx .* scale
Ξ± = T(1.0)
iter = 0
while !isinside(x + Ξ±*Ξx, lower, upper) && iter < itermax
Ξ± /= 2
iter += 1
end
iter == itermax && return box, fmin, T(0)
iter = 0 # the above weren't "real" iterations, so reset
root = get_root(box)
# Do a backtracking linesearch
local xtarget, ftarget
while iter < itermax
iter += 1
xtarget = x + Ξ±*Ξx
# Sadly, the following function evaluations get discarded. But recording them
# while preserving the box structure would take ndims(box)-1 additional
# evaluations, which is not worth it unless xtarget itself is an improvement.
ftarget = f(xtarget)
ftarget < fbox && break
Ξ± /= 2
end
ftarget >= fbox && return box, fmin, T(0)
leaf = find_leaf_at(root, xtarget)
isfinite(value(leaf)) || return box, fmin, T(0)
# The new point should improve on what was already obtained in `leaf`
ftarget >= value(leaf) && return box, fmin, T(0)
# For consistency with the tree structure, we can change only one coordinate of
# xleaf per split. Cycle through all coordinates, picking the one at each stage
# that yields the smallest value as predicted by the quadratic model among the
# not-yet-selected coordinates.
dims_targeted = falses(ndims(leaf))
q(x) = (x'*B*x)/2 + g'*x + c
for j = 1:ndims(leaf)
xleaf = position(leaf, x0)
xtest = copy(xleaf)
imin, qmin = 0, typemax(T)
for i = 1:ndims(leaf)
dims_targeted[i] && continue
xtest = replacecoordinate!(xtest, i, xtarget[i])
qx = q(xtest)
if qx < qmin
qmin = qx
imin = i
end
end
imin == 0 && break
xcur, xt = xleaf[imin], xtarget[imin]
if abs(xcur - xt) < sqrt(eps(scale[imin]))
# We're already at this point, continue
dims_targeted[imin] = true
continue
end
bb = boxbounds(leaf, imin, lower, upper)
a, b, c = pick3(xcur, xt, bb)
minsep = eps(T)*(c-a)
if a + minsep >= b || b + minsep >= c
# The box might be so narrow that there are not enough distinct floating-point
# numbers that lie between the bounds.
dims_targeted[imin] = true
continue
end
split!(leaf, f, xleaf, imin, MVector3{T}(a, b, c), bb..., xleaf[imin], value(leaf))
fmin = min(fmin, minimum(leaf.fvalues))
childindex = findfirst(isequal(xt), leaf.xvalues)
leaf = leaf.children[childindex]
isfinite(value(leaf)) || return leaf, fmin, T(0)
dims_targeted[imin] = true
end
return leaf, fmin, Ξ±
end
# Linear least squares with box-bounds. From
# Sequential Coordinate-wise Algorithm for the
# Non-negative Least Squares Problem
# VojtΛch e Franc, V Μclav aHlav Μ acΛ, and Mirko Navara
# Solves min(x'*H*x/2 + f'*x) over the domain bounded by lower and upper
function lls_bounded(H::AbstractMatrix{T}, f::VT, lower::V, upper::V, tol = sqrt(eps(T))) where {T,VT<:AbstractVector{T},V<:AbstractVector}
x = clamp.(-H \ f, lower, upper)
lls_bounded!(x, H, f, lower, upper, zeros(T, length(f)), tol)
return x
end
lls_bounded!(x::VT, H::AbstractMatrix{T}, f::VT, lower::V, upper::V, tol = sqrt(eps(T))) where {T,VT<:AbstractVector{T},V<:AbstractVector} =
lls_bounded!(x, H, f, lower, upper, zeros(T, length(f)), tol)
function lls_bounded!(x::VT, H::AbstractMatrix{T}, f::VT, lower::V, upper::V, g::VT, tol = sqrt(eps(T))) where {T,VT<:AbstractVector{T},V<:AbstractVector}
assert_oneindexed(A) = @assert(all(r->first(r)==1, axes(A)))
assert_oneindexed(x); assert_oneindexed(H); assert_oneindexed(f); assert_oneindexed(lower)
assert_oneindexed(upper); assert_oneindexed(g)
m, n = size(H)
m == n || error("H must be square")
length(f) == n || error("Mismatch between H and f")
length(g) == n || error("Mismatch between H and g")
niter = 0
while niter <= 1000
# Once per iter, calculate gradient freshly to avoid accumulation of roundoff
mul!(g, H, x)
for i = 1:n
g[i] += f[i]
end
xchange = zero(T)
for k = 1:n
xold = x[k]
xnew = clamp(xold - g[k]/H[k,k], lower[k], upper[k])
x[k] = xnew
dx = xnew-xold
xchange = max(xchange, abs(dx))
if dx != 0
for i = 1:n
g[i] += dx*H[i,k]
end
end
end
if xchange < tol
break
end
niter += 1
end
x
end
# A dumb O(N) algorithm for building the minimum-edge structures
# For large trees, this is the bottleneck
function minimum_edges(root::Box{T,N}, x0, lower, upper, minwidth=zeros(eltype(x0), ndims(root)); extrapolate::Bool=true) where {T,N}
mes = [MELink{T,T}(root) for i = 1:N]
# Make it a priority to have enough splits along each coordinate to provide adequate
# information for the quasi-Newton method. To compute an estimate of the full quadratic
# model, we'll need (N+1)*(N+2)Γ·2 independent points, so prioritze splitting
# boxes so that each coordinate has at least 1/Nth of the requisite number of splits.
nthresh = ceil(Int, (((N+1)*(N+2))Γ·2)/N)
nsplits = Vector{Int}(undef, N)
for box in leaves(root)
box.qnconverged && continue
fval = value(box)
isfinite(fval) || continue
count_splits!(nsplits, box)
nmin = minimum(nsplits)
for i = 1:N
if nmin < nthresh
nsplits[i] == nmin || continue
end
bb = boxbounds(find_parent_with_splitdim(box, i), lower[i], upper[i])
bb[2]-bb[1] < minwidth[i] && continue
insert!(mes[i], width(box, i, x0, lower, upper), box=>extrapolate ? fval+qdelta(box, i) : fval)
end
end
return mes
end
function trimschedule!(mes::Vector{<:MELink}, box::Box, splitdim, x0, lower, upper)
isleaf(box) && return mes
for child in box.children
fval = child.parent.fvalues[child.parent_cindex]
for i = 1:ndims(box)
trim!(mes[i], width(child, i, x0, lower, upper), child=>fval)
end
end
return mes
end
function mesprint(mes)
for i = 1:length(mes)
print(i, ": ")
for item in mes[i]
print(", (", item.w, ',', item.f, ')')
end
println()
end
nothing
end
function sweep!(root::Box, f, x0, splits, lower, upper; extrapolate::Bool = true, fvalue=-Inf, minwidth=zeros(eltype(x0), ndims(root)))
mes = minimum_edges(root, x0, lower, upper, minwidth; extrapolate=extrapolate)
sweep!(root, mes, f, x0, splits, lower, upper; fvalue=fvalue, minwidth=minwidth)
end
function sweep!(root::Box{T}, mes::Vector{<:MELink}, f, x0, splits, lower, upper; fvalue=-Inf, minwidth=zeros(eltype(x0), ndims(root))) where T
xtmp = similar(x0)
flag = similar(x0, Bool)
nsplits = similar(x0, Int)
visited = Set{typeof(root)}()
splitboxes = Set{typeof(root)}()
dimorder = sortperm(length.(mes)) # process the dimensions with the shortest queues first
fvalueT = T(fvalue)
for i in dimorder
me = mes[i]
while !isempty(me)
item = popfirst!(me)
box = item.l
box.qnconverged && continue
bb = boxbounds(find_parent_with_splitdim(box, i), lower[i], upper[i])
bb[2]-bb[1] < minwidth[i] && continue
position!(xtmp, flag, box)
default_position!(xtmp, flag, x0)
count_splits!(nsplits, box)
if nsplits[i] > 0 && any(iszero, nsplits)
# println("discarding ", box, " along dimension ", i)
continue
end
empty!(visited)
finalbox, minval = autosplit!(box, mes, f, x0, xtmp, i, splits, lower, upper, minwidth, visited)
push!(splitboxes, finalbox)
minval <= fvalueT && return root, unique_smallest_leaves(splitboxes)
end
end
root, unique_smallest_leaves(splitboxes)
end
"""
root, x0 = analyze(f, splits, lower, upper; rtol=1e-3, atol=0.0, fvalue=-Inf, maxevals=2500, nquasinewton=<auto>, minwidth=zeros(length(splits)), print_interval=typemax(Int))
Analyze the behavior of `f`, searching for minima, over the rectangular box specified by
`lower` and `upper` (`lower[i] <= x[i] <= upper[i]`). The bounds may be infinite.
`splits` is a list of 3-vectors containing the initial values along each coordinate
axis at which to potentially evaluate `f`; the values must be in increasing order.
`root` is a tree structure that stores information about the behavior of `f`.
`x0` contains the initial evaluation point, the position constructed from the middle value
of `splits` in each dimension.
There are several keywords which can be important:
- `rtol` and `atol` represent relative and absolute, respectively, changes in minimum
function value required for the exploration to terminate. (These limits must be hit on
`ndims` successive sweeps.)
Alternatively, the analysis is terminated if the function
value is ever reduced below `fvalue`. The combination `rtol=0, fvalue=<user-supplied-value>`
can be especially useful in benchmarking situations in which you know the value of the
global minimum; it will force the algorithm to keep trying until it reaches `fvalue`,
or until it exceeds the maximum number of allowed function evaluations.
- `maxevals` allows you to control the maximum number of function evaluations that the
algorithm is permitted to use. The actual number may be a bit higher, as the criterion
is not checked while, e.g., in the middle of a splitting-sweep or a quasi-Newton step.
- `nquasinewton` is the number of "explore" function evaluations required before attempting
the first quasi-Newton step. The default value is the minimum number of evaluations
required to estimate the parameters of a quadratic model, `(N+1)*(N+2)Γ·2` in `N` dimensions.
Using a higher number may encourage the algorithm to spend more time "exploring" before
thoroughly "exploiting" the most promising leads so far.
- `minwidth[i]` sets the minimum box size along dimension `i`. This is not strictly enforced,
but boxes that become smaller will not be split during "explore" (sweep) phases of the algorithm.
You can use this to improve coverage of space when you know that some parameter-value
changes are too small to lead to measurable improvements.
- setting `print_interval` displays a small amount of information about progress.
# Example:
# A function that has a long but skinny valley aligned at 45 degrees (minimum at [0,0])
function canyon(x)
x1, x2 = x[1], x[2]
return 0.1*(x1+x2)^2 + 10*(x1-x2)^2
end
lower, upper = [-Inf, -Inf], [Inf, Inf] # unbounded domain
# We'll initially consider a grid that covers -11->-9 along the first dimension
# and -7->-5 along the second. This isn't a great initial guess, but that's OK.
splits = ([-11,-10,-9], [-7,-6,-5])
# Since this problem has a minimum value of 0, relying on `rtol` is not ideal
# (it's possible to make infinitesimal relative improvements nearly forever),
# so specify an absolute tolerance.
julia> root, x0 = analyze(canyon, splits, lower, upper; atol=0.01)
(BoxRoot@[NaN, NaN], [-10.0, -6.0])
julia> box = minimum(root)
Box1.9407745316864587e-25@[-6.94556e-13, -6.98108e-13]
julia> value(box)
1.9407745316864587e-25
julia> position(box, x0)
2-element Array{Float64,1}:
-6.94556e-13
-6.98108e-13
See also [`minimize`](@ref).
"""
function analyze(f, splits, lower, upper; kwargs...)
box, x0 = init(f, splits, lower, upper)
root = get_root(box)
analyze!(root, f, x0, splits, lower, upper; kwargs...)
return root, x0
end
"""
root = analyze!(root, f, x0, splits, lower, upper; kwargs...)
Further refinement of `root`. See [`analyze`](@ref) for details.
"""
function analyze!(root::Box, f::Function, x0, splits, lower, upper; rtol=1e-3, atol=0.0, fvalue=-Inf, maxevals=2500, print_interval=typemax(Int), kwargs...)
analyze!(root, CountedFunction(f), x0, splits, lower, upper; rtol=rtol, atol=atol, fvalue=fvalue, maxevals=maxevals, print_interval=print_interval, kwargs...)
end
function analyze!(root::Box{T}, f::WrappedFunction, x0, splits, lower, upper; rtol=1e-3, atol=0.0, fvalue=-Inf, maxevals=2500, print_interval=typemax(Int), nquasinewton=qnthresh(ndims(root)), kwargs...) where T
box = minimum(root)
boxval = value(box)
lastval = typemax(boxval)
tol_counter = 0
lastprint = 0
baseline_evals = len = lenold = length(leaves(root))
if baseline_evals == numevals(f)
baseline_evals = 0 # already counted
end
if print_interval < typemax(Int)
println("Initial minimum ($len evaluations): ", box)
end
extrapolate = true
# The quasi-Newton step can reduce the function value so significantly, insist on
# using it at least once (unless the threshold to kick in not reachable)
used_quasinewton = nquasinewton > maxevals
nsweep, nqn = baseline_evals+numevals(f), 0
thresh = sqrt(eps(T))
nsplits = zeros(Int, ndims(root))
while boxval > fvalue && (tol_counter <= ndims(root) || !used_quasinewton) && len < maxevals
lastval = boxval
numeval0 = numevals(f)
_, splitboxes = sweep!(root, f, x0, splits, lower, upper; extrapolate=extrapolate, fvalue=fvalue, kwargs...)
box = minimum(root)
numeval1 = numevals(f)
nsweep += numeval1 - numeval0
if nquasinewton < baseline_evals + numevals(f) < maxevals && boxval > fvalue && !isempty(splitboxes)
# Quasi-Newton step for boxes split in the sweep
spbxs = sort(collect(splitboxes); by=value) # if unsorted, set hashing would introduce randomness
# determine which are in separate "basins" using a convexity test
# basinboxes = spbxs
# basinboxes = different_basins(spbxs, x0, lower, upper)
basinboxes = filter(is_diag_convex, spbxs)
badbox = Dict(box=>false for box in basinboxes)
for (ibox, box) in enumerate(basinboxes)
box.qnconverged && continue
isleaf(box) || continue # "outdated"
badbox[box] && continue # in same basin as a previous successful quadratic fit
baseline_evals + numevals(f) >= maxevals && break
# Ensure at least one split per coordinate before trying to build the quadratic model
count_splits!(nsplits, box)
xtmp = position(box, x0)
for i = 1:ndims(box)
if nsplits[i] == 0
box = split!(box, f, xtmp, i, splits[i], lower[i], upper[i], xtmp[i], value(box))
xtmp[i] = box.parent.xvalues[box.parent_cindex]
end
end
scale = boxscale(box, splits)
Q, xbase, c, success_build = build_quadratic_model(box, x0, scale, thresh)
if success_build && all(x->x>0, Q.dimpiv)
# Add more points, as needed, to fill in any missing rows from the regression
@assert isleaf(box)
complete_quadratic_model!(Q, c, box, f, x0, xbase, scale, splits, lower, upper, thresh)
# If the model is complete, try Quasi-Newton algorithm
if Q.nzrows[] == size(Q.coefs, 1) && minimum(abs.(diag(Q.coefs))) >= thresh
g, B = solve(Q)
# Bscale = (1./scale) .* B .* (1./scale)'
# display(Bscale)
# error("stop")
leaf, minvalue, Ξ± = quasinewton!(box, B, g, c, scale, f, x0, lower, upper)
success_qn = Ξ± > 0
used_quasinewton |= success_qn
minvalue < fvalue && break
if success_qn
@assert(isleaf(leaf))
boxvalue = value(box)
# If the improvement was tiny, mark the solution to block
# future attempts at quasi-Newton in this region
if boxvalue - minvalue <= max(atol, rtol*(abs(boxvalue) + abs(minvalue)))
# Check that leaf has roughly the same coordinates, too.
xbox = position(box, x0)
xleaf = position(leaf, x0)
if issame(xbox, xleaf, scale)
leaf.qnconverged = true
end
end
# check future boxes and eliminate them if they appear to lie in the same basin
if Ξ± == 1
for j = ibox+1:length(basinboxes)
boxj = basinboxes[j]
vj, xj = value(boxj), position(boxj, x0)
Ξx = (xj - xbase) ./ scale
pred = c + g'*Ξx + (Ξx'*B*Ξx)/2
if abs(pred - vj) <= 0.1*abs(pred - minvalue) # FIXME hardcoded
badbox[boxj] = true
end
end
end
end
end
end
end
# if !used_quasinewton
# nquasinewton *= 2
# end
box = minimum(root)
boxval = value(box)
end
nqn += numevals(f) - numeval1
len = baseline_evals + numevals(f)
len == lenold && break # couldn't split any boxes
lenold = len
if len-lastprint > print_interval
println("minimum ($len evaluations): ", box)
lastprint = len
end
@assert(boxval <= lastval)
if lastval - boxval < atol || lastval - boxval < rtol*(abs(lastval) + abs(boxval))
tol_counter += 1
else
tol_counter = 0
end
end
if print_interval < typemax(Int)
println("Final minimum ($len evaluations): ", minimum(root))
println("$nsweep evaluations for initialization+sweeps, $nqn for Quasi-Newton")
end
root
end
"""
xmin, fmin = minimize(f, splits, lower, upper; kwargs...)
Return the position `xmin` and value `fmin` of the minimum of `f` over the specified domain.
See [`analyze`](@ref) for information about the input arguments.
"""
function minimize(f, splits, lower, upper; kwargs...)
root, x0 = analyze(f, splits, lower, upper; kwargs...)
box = minimum(root)
return position(box, x0), value(box)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2566 | using PyPlot, Colors, PerceptualColourMaps
using QuadDIRECT
using QuadDIRECT: Box
get_finite(x, default) = isfinite(x) ? x : default
outerbounds(b1, b2) = (min(b1[1], b2[1]), max(b1[2], b2[2]))
outerbounds(b1, b2::Real) = (min(b1[1], b2), max(b1[2], b2))
outerbounds_finite(b1, b2) = (min(b1[1], get_finite(b2[1], b1[1])), max(b1[2], get_finite(b2[2], b1[2])))
widenbounds(b) = (Ξx = 0.1*(b[2]-b[1]); return (b[1]-Ξx, b[2]+Ξx))
function plotbounds(root::Box{T,2}, x0, lower, upper) where T
xbounds, ybounds = (Inf, -Inf), (Inf, -Inf)
bb = Vector{Tuple{T,T}}(undef, 2)
x = [NaN, NaN]
flag = [false, false]
for box in leaves(root)
for i = 1:2
bb[i] = (lower[i], upper[i])
end
QuadDIRECT.boxbounds!(bb, box)
xbounds = outerbounds_finite(xbounds, bb[1])
ybounds = outerbounds_finite(ybounds, bb[2])
x = QuadDIRECT.position!(x, flag, box)
QuadDIRECT.default_position!(x, flag, x0)
xbounds = outerbounds(xbounds, x[1])
ybounds = outerbounds(ybounds, x[2])
end
widenbounds(xbounds), widenbounds(ybounds)
end
function plotboxes(root::Box{T,2}, x0, lower, upper, xbounds::Tuple{Any,Any}, ybounds::Tuple{Any,Any}; clim=extrema(root), cs::AbstractVector{<:Colorant}=cmap("RAINBOW3")) where T
clf()
for bx in leaves(root)
plotrect(bx, x0, clim, cs, lower, upper, xbounds, ybounds)
end
xlim(xbounds)
ylim(ybounds)
ax = gca()
# norm = PyPlot.matplotlib[:colors][:Normalize](vmin=clim[1], vmax=clim[2])
# cb = PyPlot.matplotlib[:colorbar][:ColorbarBase](ax, cmap=ColorMap(cs), norm=norm)
ax
end
plotboxes(root::Box{T,2}, x0, lower, upper; clim=extrema(root), cs::AbstractVector{<:Colorant}=cmap("RAINBOW3")) where T =
plotboxes(root, x0, lower, upper, plotbounds(root, x0, lower, upper)...; clim=clim, cs=cs)
function plotrect(box::Box{T,2}, x0, clim, cs, lower, upper, xbounds, ybounds) where T
@assert(QuadDIRECT.isleaf(box))
x = QuadDIRECT.position(box, x0)
bb = QuadDIRECT.boxbounds(box, lower, upper)
bbx, bby = bb
rectx = [bbx[1], bbx[2], bbx[2], bbx[1], bbx[1]]
recty = [bby[1], bby[1], bby[2], bby[2], bby[1]]
fval = box.parent.fvalues[box.parent_cindex]
cnorm = (clamp(fval, clim...) - clim[1])/(clim[2] - clim[1])
col = cs[round(Int, (length(cs)-1)*cnorm) + 1]
hold(true)
fill(clamp.(rectx, xbounds...), clamp.(recty, ybounds...), color=[red(col), green(col), blue(col)])
plot(rectx, recty, "k")
plot([x[1]], [x[2]], "k.")
hold(false)
nothing
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 20265 | ## Use regression to compute the best-fit quadratic model (with a dense Hessian)
const scaledthresh = 100 # FIXME hardcoded
"""
g, B = solve(Q::QmIGE)
Solve a quadratic model `Q` for the gradient `g` and Hessian `B`. See
[`build_quadratic_model`](@ref) and [`complete_quadratic_model!`](@ref) to build `Q`.
"""
function solve(Q::QmIGE{T,N}) where {T,N}
# Importantly, this defines the storage order in Q
gB = LowerTriangular(Q.coefs) \ Q.rhs
g, B = Vector{T}(undef, N), Matrix{T}(undef, N, N)
k = 0
dimpiv = Q.dimpiv
for i = 1:N
di = dimpiv[i]
g[di] = gB[k+=1]
for j = 1:i
dj = dimpiv[j]
B[di,dj] = B[dj,di] = gB[k+=1]
end
end
return g, B
end
# Uses available points to set up the regression problem
"""
Q = build_quadratic_model(box, x0, scale, thresh)
Start building a quadratic model of the function, using points already stored
in the tree that contains `box`. `scale` (see [`boxscale`](@ref)) is used in part to
ensure numeric stability, and will prevent inclusion of points that are too distant along
any coordinate axis.
`Q` is not guaranteed to be complete; the tree may not contain enough points, or enough
"independent" points, to determine all the parameters of `Q`. See also [`complete_quadratic_model!`](@ref).
"""
function build_quadratic_model(box::Box{T,N}, x0, scale, thresh) where {T,N}
Q = QmIGE{T,N}()
c = value(box)
xbase = position(box, x0)
xtmp = similar(xbase)
flag = similar(xtmp, Bool)
nanfill = fill(T(NaN), N)
bbs = boxbounds(box, nanfill, nanfill)
succeeded = true
@assert(isleaf(box))
if !isleaf(box)
for i = 1:3
succeeded &= descend!(Q, c, box.children[i], x0, xbase, xtmp, flag, bbs, scale, thresh)
end
end
# To increase the numeric stability of the result, we do more boxes than
# nominally needed (see the `swap` portion of `insert!`)
need_extra = true
while succeeded && (Q.nzrows[] < length(Q.rhs) || need_extra) && !isroot(box)
if Q.nzrows[] == length(Q.rhs)
need_extra = minimum(abs.(diag(Q.coefs))) < thresh # because of scaling this doesn't need units
end
cindex = box.parent_cindex
box = box.parent
succeeded &= all(isfinite, box.fvalues) && !box.qnconverged
succeeded || break
j = 1
if j == cindex j+=1 end
succeeded &= descend!(Q, c, box.children[j], x0, xbase, xtmp, flag, bbs, scale, thresh)
succeeded || break
j += 1
if j == cindex j+=1 end
succeeded &= descend!(Q, c, box.children[j], x0, xbase, xtmp, flag, bbs, scale, thresh)
end
return Q, xbase, c, succeeded
end
# Evaluates the function at new points until the quadratic model is fully specified
"""
complete_quadratic_model!(Q::QmIGE, c, box::Box, f::Function, x0, xbase, scale, splits, lower::AbstractVector, upper::AbstractVector, thresh)
Split boxes in the tree containing `box` until all the parameters of the quadratic model can
be determined. It is allowed to fail if one or more boxes are too small to be split further,
so it is advisable to check that all diagonal coefficients in `Q` exceed `thresh` before
proceeding.
See also [`solve`](@ref).
"""
function complete_quadratic_model!(Q::QmIGE, c, box::Box{T,N}, f::Function, x0, xbase, scale, splits, lower::AbstractVector, upper::AbstractVector, thresh) where {T,N}
@assert(all(x->x>0, Q.dimpiv))
xtmp = similar(x0)
Ξx = similar(x0)
Ξxtmp = similar(x0)
flag = similar(x0, Bool)
dimpiv = Q.dimpiv
rowoffset = 0
# Sanity check
i = 0
for idim = 1:N
for irow = 0:idim
if isassigned(Q.rowbox, i+=1)
@assert(isleaf(Q.rowbox[i]))
position!(xtmp, flag, Q.rowbox[i], x0)
for j = idim+1:N
sd = Q.dimpiv[j]
@assert(xtmp[sd]==xbase[sd])
end
end
end
end
# Process block-by-block, each block corresponding to a "new" splitting dimension
for idim = 1:N
all_are_set = true
for j = 1:idim+1
all_are_set &= abs(Q.coefs[j+rowoffset,j+rowoffset]) >= thresh
end
if all_are_set
rowoffset += idim + 1
continue
end
rowb = row = rowoffset + idim + 1 # within this dimension's block, go backwards
irow = idim
# @show Q.rowbox[rowoffset+1:row]
# If all boxes that differed along this dimension were out-of-scale, we
# need to split along that dimension.
if !isassigned(Q.rowbox, rowb)
splitdim = Q.dimpiv[idim]
position!(xtmp, flag, box, x0)
xcur, s = xbase[splitdim], scale[splitdim]
p = find_parent_with_splitdim(box, splitdim)
bb = boxbounds(p)
@assert xtmp[splitdim] == xcur
l = max(bb[1], xcur - s/2)
u = min(bb[2], xcur + s/2)
if l >= xcur
l, xcur = xcur, (xcur + u)/2
elseif xcur >= u
u, xcur = xcur, (l + xcur)/2
end
abs(u-l) < epswidth((l, u)) && return Q #FIXME?
split!(box, f, xtmp, splitdim, MVector3{T}(l, xcur, u), lower[splitdim], upper[splitdim], xcur, value(box))
xcur = xbase[splitdim]
j = 3
j1 = 1; if box.xvalues[j1] == xcur j = j1; j1 += 1; end
j2 = j1+1; if box.xvalues[j2] == xcur j = j2; j2 += 1; end
nbrbox = box.fvalues[j1] < box.fvalues[j2] ? box.children[j1] : box.children[j2]
Q.rowbox[rowb] = nbrbox
box = box.children[j]
end
while irow >= 0
# @show row
# if row == rowb
# rng = rowoffset+1:rowoffset+idim+1
# display(Q.coefs[rng,rng])
# @show thresh
# end
Qd = abs(Q.coefs[row,row])
if Qd < thresh
# @show rowb irow
rbox = Q.rowbox[rowb]
@assert isleaf(rbox)
position!(xtmp, flag, rbox, x0)
Ξx .= xtmp .- xbase
if irow > 0
# When irow > 0, splitting along the corresponding dimension will fill
# in this missing information
splitdim = dimpiv[irow]
else
# root = get_root(box)
# splitprint_colored(root, box)
# println()
# splitprint_colored(root, rbox)
# println()
# @show Ξx dimpiv
# irow == 0 corresponds to the coefficient of the gradient
if Ξx[dimpiv[idim]] == 0
# There's no displacement in the gradient coordinate, so obviously
# we have to split it
splitdim = dimpiv[idim]
else
# Here it's not so obvious which coordinate we need to split.
# To avoid the risk of failure, we check the result of the gaussian
# elimination and choose our splitting dimension as the one that
# has largest (remaining) diagonal value.
Ξxtmp[:] .= Ξx ./ scale
maxdiag, splitdim = zero(T), 0
rng = rowoffset+1:rowoffset+idim+1
Q.rowzero[row] = true
for ii = 1:idim
# The precise magnitude of the step doesn't matter for these "probe" trials
sd = dimpiv[ii]
xold = Ξxtmp[sd]
Ξxtmp[sd] = Ξxtmp[sd] == 0 ? 1 : 2*Ξxtmp[sd] # ensure a non-zero entry no matter what
# @show Ξxtmp
setrow!(Q.rowtmp, dimpiv, Ξxtmp, N, sd)
Ξxtmp[sd] = xold
# @show ii sd
rtmp, _ = incremental_gaussian_elimination!(Q.rowtmp, Q.coefs, Q.rowzero, rng; canswap=false, debug=false)
thisdiag = abs(Q.rowtmp[row])
if thisdiag > maxdiag
maxdiag = thisdiag
splitdim = sd
end
end
if splitdim == 0
rng = rowoffset+1:rowoffset+idim+1
display(Q.coefs[rng,rng])
error("no direction works")
end
# @show maxdiag splitdim
end
end
xcur = xtmp[splitdim]
p = find_parent_with_splitdim(rbox, splitdim)
# Check that the box is big enough to split along this dimension
if !isroot(p)
bb = boxbounds(p)
bbeps = epswidth(bb)
if !(bb[2] - bb[1] > bbeps) || !(bb[2] - xtmp[splitdim] > bbeps) || !(xtmp[splitdim] - bb[1] > bbeps)
return Q # fail (FIXME?)
end
end
insrows, rboxn = split_insert!(Q, rbox, p, row:rowoffset+idim+1, f, xbase, c, xtmp, splitdim, scale, splits, lower, upper)
if Qd == 0 && (maximum(insrows) != row || Q.coefs[row,row] == 0)
# Debugging
println("Something went wrong")
@show numevals(f) insrows row irow rowb rowoffset idim Q.dimpiv
@show rbox.parent.splitdim box.parent.splitdim
@show splitdim boxbounds(rbox, lower, upper)
rng = rowoffset+1:rowoffset+idim+1
display(Q.coefs[rng,rng])
@show xcur rbox.xvalues (rbox.xvalues .- xcur)./scale[splitdim]
end
Qd == 0 && @assert(maximum(insrows) == row)
if row == rowb
Q.rowbox[row] = rboxn # ensure it's a leaf
end
end
if isassigned(Q.rowbox, row) && isleaf(Q.rowbox[row])
rowb = row
end
row -=1; irow -= 1
end
rowoffset += idim + 1
end
return Q
end
function split_insert!(Q, rbox::Box{T}, p, rng, f, xbase, c, xtmp, splitdim, scale, splits, lower, upper) where T
debug = false
debug && @show rng
row = first(rng)
xcur = xtmp[splitdim]
if isroot(p)
xsplit = MVector3{T}(splits[splitdim])
@assert(xsplit[1] < xsplit[2] < xsplit[3])
lwr, upr = lower[splitdim], upper[splitdim]
else
bb = boxbounds(p)
lwr, upr = bb[1], bb[2]
xcur, scalesd = xtmp[splitdim], scale[splitdim]
lo, hi = max(lwr, 5*lwr/6 + xcur/6, xcur - scalesd), min(upr, xcur/6 + 5*upr/6, xcur + scalesd)
if lo + sqrt(eps(T))*scalesd >= xcur
lo, xcur = xcur, (xcur+hi)/2
elseif xcur + sqrt(eps(T))*scalesd >= hi
xcur, hi = (xcur+lo)/2, xcur
end
xsplit = MVector3{T}(lo, xcur, hi)
xcur = xtmp[splitdim]
@assert(xsplit[1] < xsplit[2] < xsplit[3])
end
j1 = 1
if xsplit[j1] == xcur j1 += 1 end
j2 = j1+1
if xsplit[j2] == xcur j2 += 1 end
l, h = xsplit[j1], xsplit[j2]
Qd = abs(Q.coefs[row, row])
if Qd != 0
# This is a case where the existing entry is below thresh. Before proceeding, check
# whether the new one would be an improvement---rbox might be too small along
# splitdim to raise the value.
xtmp[splitdim] = l
setrow!(Q.rowtmp, Q.dimpiv, (xtmp-xbase)./scale, ndims(rbox), splitdim)
incremental_gaussian_elimination!(Q.rowtmp, Q.coefs, Q.rowzero, rng; canswap=false, debug=false)
debug && @show abs(Q.rowtmp[row])
if abs(Q.rowtmp[row]) < Qd
xtmp[splitdim] = h
setrow!(Q.rowtmp, Q.dimpiv, (xtmp-xbase)./scale, ndims(rbox), splitdim)
incremental_gaussian_elimination!(Q.rowtmp, Q.coefs, Q.rowzero, rng; canswap=false, debug=false)
debug && @show abs(Q.rowtmp[row])
if abs(Q.rowtmp[row]) < Qd
# Neither was an improvement, so keep what we've got
debug && println("skipping")
return (row,-1), rbox
end
end
end
# Split rbox and insert into Q
val = value(rbox)
fsplit = MVector3(val,val,val)
xtmp[splitdim] = l
fsplit[j1] = f(xtmp)
xtmp[splitdim] = h
fsplit[j2] = f(xtmp)
add_children!(rbox, splitdim, xsplit, fsplit, lwr, upr)
if l != xbase[splitdim]
xtmp[splitdim] = l
debug && @show (xtmp.-xbase)./scale
insrow1 = insert!(Q, (xtmp.-xbase)./scale, rbox.fvalues[j1]-c, splitdim, rbox.children[j1]; canswap=false, debug=debug)
else
debug && println("skipping l")
insrow1 = 0
end
if h != xbase[splitdim]
xtmp[splitdim] = h
debug && @show (xtmp.-xbase)./scale
insrow2 = insert!(Q, (xtmp.-xbase)./scale, rbox.fvalues[j2]-c, splitdim, rbox.children[j2]; canswap=false, debug=debug)
else
debug && println("skipping h")
insrow2 = 0
end
# Return the leaf corresponding to the original
xtmp[splitdim] = xcur
j = 1; if j == j1 j += 1 end; if j == j2 j += 1 end
return ((insrow1, insrow2), rbox.children[j])
end
function descend!(Q::QmIGE, c, box, x0, xbase, Ξx, flag, bbs, scale, thresh, skip::Bool=false)
box.qnconverged && return false # don't build quadratic models that include points tagged as converged minima
# Is this box so far away that we should prune this branch?
boxbounds!(bbs, flag, box)
for i = 1:ndims(box)
xb, bb = xbase[i], bbs[i]
min(bb[1] - xb, xb - bb[2]) > scaledthresh*scale[i] && return true
end
position!(Ξx, flag, box, x0)
thisx = isleaf(box) ? zero(eltype(Ξx)) : Ξx[box.splitdim]
if !skip
# Add this point to the model
isgood = true
leaf = find_leaf_at(box, Ξx)
for i = 1:length(Ξx)
Ξx[i] = (Ξx[i] - xbase[i])/scale[i]
# To prevent distant points from numerically overwhelming the local structure of the box,
# put in a cutoff. The concern is that large values here will dominate
# eigenvalues that come from local data.
isgood &= abs(Ξx[i]) < scaledthresh
end
if isgood
insert!(Q, Ξx, value(box)-c, box.parent.splitdim, leaf)
else
# we have to save space for this dimension, since they are added
# in splitdim order
sd = box.parent.splitdim
if sd β Q.dimpiv
Q.ndims[] += 1
Q.dimpiv[Q.ndims[]] = sd
end
end
end
# Recursively add all children
if !isleaf(box)
iskip = findfirst(isequal(thisx), box.xvalues)
for i = 1:3
descend!(Q, c, box.children[i], x0, xbase, Ξx, flag, bbs, scale, thresh, i==iskip) || return false
end
end
return true
end
function Base.insert!(Q::QmIGE, Ξx, Ξf, splitdim::Integer, box::Box; canswap::Bool=true, debug::Bool=false)
coefs, rhs, rowtmp = Q.coefs, Q.rhs, Q.rowtmp
dimpiv, rowzero, ndims_old = Q.dimpiv, Q.rowzero, Q.ndims[]
ndims = setrow!(rowtmp, dimpiv, Ξx, ndims_old, splitdim)
if ndims > ndims_old
# Append to coefs. We always insert at the end of the
# block corresponding to splitdim, so that we're performing
# elimination on incoming points. That gives us a chance to
# test for degeneracy before inserting them.
i = ndims + (ndims*(ndims+1))Γ·2 # #gcoefs + #Bcoefs so far
i == 0 && return i
for j = 1:i
coefs[i,j] = rowtmp[j]
end
rowzero[i] = false
Q.rowbox[i] = box
rhs[i] = Ξf
Q.ndims[] = ndims
Q.nzrows[] += 1
return i
end
ndims == 0 && return 0
# We've seen all the nonzero dimensions in Ξx previously
# Use elimination to determine whether it provides novel information
blockstart = ndims + ((ndims-1)*ndims)Γ·2 # first row for this splitting dimension
blockend = blockstart + ndims # last row for this splitting dimension
finalrow, newrhs, box = incremental_gaussian_elimination!(rowtmp, coefs, rowzero, blockstart:blockend, Ξf, rhs, box, Q.rowbox; canswap=canswap, debug=debug)
if finalrow > 0
rowzero[finalrow] = false
for j = 1:finalrow
coefs[finalrow,j] = rowtmp[j]
end
store!(rhs, newrhs, finalrow)
store!(Q.rowbox, box, finalrow)
Q.nzrows[] += 1
end
return finalrow
end
# This implements the logic of "flipped" Gaussian elimination (the zeros block on the
# upper triangle) when adding a new point. We do it in flipped form because incoming
# points tend to build a lower-triangular matrix: the tree structure
# adds dimensions one at a time, so Ξx will be all-zeros for trailing dimensions
# (once permuted into the order specified by dimpiv).
function incremental_gaussian_elimination!(newrow::AbstractVector{T}, coefs::AbstractMatrix, rowzero::AbstractVector{Bool}, rng::AbstractUnitRange, newrhs=nothing, rhs=nothing, meta=nothing, metastore=nothing; canswap::Bool=true, debug::Bool=false) where T
# @inline myapprox(x, y, rtol) = isequal(x, y) | (abs(x-y) < rtol*(abs(x) + abs(y)))
@inline myapprox(x, y, rtol) = (x == y) | (abs(x-y) < rtol*(abs(x) + abs(y)))
rtol = 1000*eps(T)
debug && @show rng
debug && println("input: ", newrow[rng])
i = last(rng)
@assert(first(rng) > 0)
@inbounds while i >= first(rng)
if newrow[i] == 0
i -= 1
continue
end
rowzero[i] && break
if canswap && abs(newrow[i]) > abs(coefs[i,i])
# Swap (for numeric stability)
debug && println("swap at ", i, "($(newrow[i]) vs $(coefs[i,i])")
for j = 1:i
newrow[j], coefs[i,j] = coefs[i,j], newrow[j]
end
newrhs = swap!(rhs, newrhs, i)
meta = swap!(metastore, meta, i)
end
c = newrow[i]/coefs[i,i]
@simd for j = 1:i-1
sub = c * coefs[i,j] # coefsp[j,i]
newrow[j] = ifelse(myapprox(newrow[j], sub, rtol), zero(sub), newrow[j] - sub)
end
newrow[i] = 0 # rather than subtracting, just set it (to avoid roundoff error)
debug && @show i newrow[rng]
newrhs = subtract(rhs, c, i, newrhs)
i -= 1
end
if i < first(rng)
i = 0
end
return i, newrhs, meta
end
function swap!(store, x, i)
x, store[i] = store[i], x
return x
end
swap!(::Any, ::Nothing, i) = nothing
store!(store, x, i) = store[i] = x
store!(::Any, ::Nothing, i) = nothing
subtract(rhs, c, i, newrhs) = newrhs - c*rhs[i]
subtract(rhs, c, i, ::Nothing) = nothing
function setrow!(rowtmp, dimpiv, Ξx, ndims, splitdim)
fill!(rowtmp, 0)
k = 0
have_splitdim = false
for j = 1:ndims
d = dimpiv[j]
have_splitdim |= splitdim == d
# The g coefs are linear in x, the B coefs quadratic
# The implied storage order here matches `solve` below
Ξxd = Ξx[d]
if Ξxd == 0
k += j+1
continue
end
rowtmp[k+=1] = Ξxd # g coef
for i = 1:j-1
rowtmp[k+=1] = Ξxd * Ξx[dimpiv[i]] # B[d,dimpiv[i]] coefficient
end
rowtmp[k+=1] = (Ξxd * Ξxd)/2 # B[d,d] coefficient
end
if !have_splitdim
# We've not seen this dimension previously, so make it the
# next one in dimpiv.
ndims += 1
dimpiv[ndims] = splitdim
rowtmp[k+=1] = Ξxd = Ξx[splitdim]
for i = 1:ndims-1
rowtmp[k+=1] = Ξxd * Ξx[dimpiv[i]]
end
rowtmp[k+=1] = (Ξxd * Ξxd)/2
end
# Back up to last nonzero dimension
while ndims > 0 && Ξx[dimpiv[ndims]] == 0
ndims -= 1
end
return ndims
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 5889 | """
mel = MELink{Tx,Ty}(dummylabel)
Create a linked-list storing labels and x/y pairs that represent the "minimum edge" of a
set of values, where the stored x and y values are monotonic in both x and y. Insertion
of a new x/y pair expunges any entries with smaller x but larger y. Add new elements with
`insert!(mel, x, label=>y)`.
The first item in the list is a dummy item with `x=0`, so that the head of the list is constant.
"""
mutable struct MELink{Tl,Tw,Tf}
l::Tl # label
w::Tw # x-coordinate (box width)
f::Tf # y-coordinate (function value)
next::MELink{Tl,Tw,Tf}
function MELink{Tl,Tw,Tf}(l, w, f) where {Tw, Tf, Tl}
mel = new{Tl,Tw,Tf}(l, w, f)
mel.next = mel
return mel
end
function MELink{Tl,Tw,Tf}(l, w, f, next) where {Tw, Tf, Tl}
mel = new{Tl,Tw,Tf}(l, w, f, next)
return mel
end
end
MELink{Tw,Tf}(dummylabel::Tl) where {Tl,Tw,Tf} = MELink{Tl,Tw,Tf}(dummylabel, typemin(Tw), typemin(Tf))
Base.IteratorSize(::Type{<:MELink}) = Base.SizeUnknown()
# Mutable length-3 vector without the storage overhead of Array
mutable struct MVector3{T} <: AbstractVector{T}
x1::T
x2::T
x3::T
end
MVector3{T}(a::AbstractVector) where T = convert(MVector3{T}, a)
Base.IndexStyle(::Type{<:MVector3}) = IndexLinear()
Base.size(v::MVector3) = (3,)
Base.axes1(v::MVector3) = Base.OneTo(3)
function Base.getindex(v::MVector3, i::Int)
@boundscheck ((1 <= i) & (i <= 3)) || Base.throw_boundserror(v, i)
ifelse(i == 1, v.x1, ifelse(i == 2, v.x2, v.x3))
end
function Base.setindex!(v::MVector3, val, i::Int)
@boundscheck ((1 <= i) & (i <= 3)) || Base.throw_boundserror(v, i)
if i == 1
v.x1 = val
elseif i == 2
v.x2 = val
else
v.x3 = val
end
v
end
Base.convert(::Type{MVector3{T}}, a::MVector3{T}) where T = a
function Base.convert(::Type{MVector3{T}}, a::AbstractVector) where T
@boundscheck axes(a) == (Base.OneTo(3),) || throw(DimensionMismatch("vector must have length 3"))
@inbounds ret = MVector3{T}(a[1], a[2], a[3])
return ret
end
Base.convert(::Type{MVector3}, a::AbstractVector{T}) where T =
convert(MVector3{T}, a)
Base.similar(::MVector3{T}, ::Type{S}, dims::Tuple{Vararg{Int}}) where {T,S} =
Array{S}(undef, dims)
boxeltype(::Type{<:Integer}) = Float64
boxeltype(::Type{T}) where T = T
mutable struct Box{T,N}
parent::Box{T,N}
parent_cindex::Int # of its parent's children, which one is this?
splitdim::Int # the dimension along which this box has been split, or 0 if this is a leaf node
qnconverged::Bool # true if the box was the minimum-value box in a Quasi-Newton step and the improvement was within convergence criterion
minmax::Tuple{T,T} # the outer edges not corresponding to one of the parent's xvalues (splits that occur between dots in Fig 2)
xvalues::MVector3{T} # the values of x_splitdim at which f is evaluated
fvalues::MVector3{T} # the corresponding values of f
children::MVector3{Box{T,N}}
function default!(box::Box{T,N}) where {T,N}
box.qnconverged = false
box.minmax = (typemax(T), typemin(T))
box.xvalues = MVector3{T}(typemax(T), zero(T), typemin(T))
box.fvalues = MVector3{T}(zero(T), zero(T), zero(T))
box.children = MVector3(box, box, box)
end
function Box{T,N}() where {T,N}
# Create the root box
box = new{T,N}()
box.parent = box
box.parent_cindex = 0
box.splitdim = 0
default!(box)
return box
end
function Box{T,N}(parent::Box, parent_cindex::Integer) where {T,N}
# Create a new child and store it in the parent
box = new{T,N}(parent, parent_cindex, 0)
parent.children[parent_cindex] = box
default!(box)
box
end
end
Box(parent::Box{T,N}, parent_cindex::Integer) where {T,N} = Box{T,N}(parent, parent_cindex)
isroot(box::Box) = box.parent == box
isleaf(box::Box) = box.splitdim == 0
Base.parent(box::Box) = box.parent
Base.ndims(box::Box{T,N}) where {T,N} = N
Base.IteratorSize(::Type{<:Box}) = Base.SizeUnknown()
abstract type WrappedFunction <: Function end
# A function that keeps track of the number of evaluations
mutable struct CountedFunction{F} <: WrappedFunction
f::F
evals::Int
CountedFunction{F}(f) where F = new{F}(f, 0)
end
CountedFunction(f::Function) = CountedFunction{typeof(f)}(f)
function (f::CountedFunction{F})(x::AbstractVector) where F
f.evals += 1
return f.f(x)
end
numevals(f::CountedFunction) = f.evals
# A function that keeps track of the number of evaluations
mutable struct LoggedFunction{F} <: WrappedFunction
f::F
values::Vector{Float64}
LoggedFunction{F}(f) where F = new{F}(f, Float64[])
end
LoggedFunction(f::Function) = LoggedFunction{typeof(f)}(f)
function (f::LoggedFunction{F})(x::AbstractVector) where F
val = f.f(x)
push!(f.values, val)
return val
end
numevals(f::LoggedFunction) = length(f.values)
# Quadratic-model Incremental Gaussian Elimination
struct QmIGE{T,N}
coefs::PermutedDimsArray{T,2,(2, 1),(2, 1),Array{T,2}} # to make row-major operations fast
rhs::Vector{T}
dimpiv::Vector{Int} # order in which dimensions were added
rowzero::Vector{Bool} # true if a row in coefs is all-zeros
rowbox::Vector{Box{T,N}} # the box that set this row
ndims::typeof(Ref(1)) # number of dimensions added so far
nzrows::typeof(Ref(1))
rowtmp::Vector{T}
end
function QmIGE{T,N}() where {T,N}
m = ((N+1)*(N+2))Γ·2 - 1 # the constant is handled separately
coefs = PermutedDimsArray(zeros(T, m, m), (2, 1))
rhs = zeros(T, m)
rowtmp = zeros(T, m)
dimpiv = zeros(Int, N)
rowzero = fill(true, m)
rowbox = Vector{Box{T,N}}(undef, m)
QmIGE{T,N}(coefs, rhs, dimpiv, rowzero, rowbox, Ref(0), Ref(0), rowtmp)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 30306 | dummyvalue(::Type{T}) where T<:AbstractFloat = T(NaN)
dummyvalue(::Type{T}) where T = typemax(T)
isdummy(val::T) where T = isequal(val, dummyvalue(T))
"""
qnthresh(N)
Return the minimum number of points needed to specify the quasi-Newton quadratic model
in `N` dimensions.
"""
qnthresh(N) = ((N+1)*(N+2))Γ·2
"""
xvert, fvert, qcoef = qfit(xm=>fm, x0=>f0, xp=>fp)
Given three points `xm < x0 < xp ` and three corresponding
values `fm`, `f0`, and `fp`, fit a quadratic. Returns the position `xvert` of the vertex,
the quadratic's value `fvert` at `xvert`, and the coefficient `qcoef` of the quadratic term.
`xvert` is a minimum if `qcoef > 0`.
Note that if the three points lie on a line, `qcoef == 0` and both `xvert` and `fvert` will
be infinite.
"""
function qfit(xfm, xf0, xfp)
cm, c0, cp = lagrangecoefs(xfm, xf0, xfp)
xm, fm = xfm
x0, f0 = xf0
xp, fp = xfp
qvalue(x) = cm*(x-x0)*(x-xp) + c0*(x-xm)*(x-xp) + cp*(x-xm)*(x-x0)
qcoef = cm+c0+cp
if fm == f0 == fp
return x0, f0, zero(qcoef) # when it's flat, use the middle point as the "vertex"
end
xvert = (cm*(x0+xp) + c0*(xm+xp) + cp*(xm+x0))/(2*qcoef)
return xvert, qvalue(xvert), qcoef
end
@inline function lagrangecoefs(xfm, xf0, xfp)
xm, fm = xfm.first, xfm.second
x0, f0 = xf0.first, xf0.second
xp, fp = xfp.first, xfp.second
@assert(xp > x0 && x0 > xm && isfinite(xm) && isfinite(xp))
cm = fm/((xm-x0)*(xm-xp)) # coefficients of Lagrange polynomial
c0 = f0/((x0-xm)*(x0-xp))
cp = fp/((xp-xm)*(xp-x0))
cm, c0, cp
end
"""
Ξf = qdelta(box)
Return the difference `fmin - fbox`, where `fbox` is the value of `f` at the evaluation
point of `box` and `fmin` is the minimum of a one-dimensional quadratic fit of `f` (using
the data in `box.parent`) over the bounds of `box`.
Note that `Ξf` might be -Inf, if `box` is unbounded and the quadratic estimate
is not convex.
"""
function qdelta(box::Box)
xv, fv = box.parent.xvalues, box.parent.fvalues
xm, x0, xp = xv[1], xv[2], xv[3]
fm, f0, fp = fv[1], fv[2], fv[3]
fbox = box.parent.fvalues[box.parent_cindex]
cm, c0, cp = lagrangecoefs(xm=>fm, x0=>f0, xp=>fp)
qvalue(x) = cm*(x-x0)*(x-xp) + c0*(x-xm)*(x-xp) + cp*(x-xm)*(x-x0)
bb = boxbounds(box)
qcoef = cm+c0+cp
xvert = (cm*(x0+xp) + c0*(xm+xp) + cp*(xm+x0))/(2*qcoef)
if qcoef > 0 && bb[1] <= xvert <= bb[2]
# Convex and the vertex is inside the box
return qvalue(xvert) - fbox
end
# Otherwise, the minimum is achieved at one of the edges
# This needs careful evaluation in the case of infinite boxes to avoid Inf - Inf == NaN.
if isinf(bb[1]) || isinf(bb[2])
lcoef = -cm*(x0+xp) - c0*(xm+xp) - cp*(xm+x0)
ccoef = cm*x0*xp + c0*xm*xp + cp*xm*x0
if qcoef == 0 # the function is linear
let lcoef = lcoef, ccoef = ccoef
lvalue(x) = lcoef*x + ccoef
return min(lvalue(bb[1]), lvalue(bb[2])) - fbox
end
else
qvalue_inf(x) = isinf(x) ? abs(x)*sign(qcoef) : qvalue(x)
return min(qvalue_inf(bb[1]), qvalue_inf(bb[2])) - fbox
end
end
return min(qvalue(bb[1]), qvalue(bb[2])) - fbox
end
function qdelta(box::Box{T}, splitdim::Integer) where T
p = find_parent_with_splitdim(box, splitdim)
return p.parent.splitdim == splitdim ? qdelta(p) : zero(T)
end
function is_diag_convex(box)
# Test whether we're likely to be in a convex patch. This only checks the
# diagonals, because that's quick.
isdiagconvex = true
for i = 1:ndims(box)
p = find_parent_with_splitdim(box, i)
if isroot(p)
isdiagconvex = false
else
xs, fs = p.parent.xvalues, p.parent.fvalues
xvert, fvert, qcoef = qfit(xs[1]=>fs[1], xs[2]=>fs[2], xs[3]=>fs[3])
isdiagconvex &= qcoef > 0
end
isdiagconvex || break
end
return isdiagconvex
end
## Minimum Edge List utilities
Base.empty!(mel::MELink) = (mel.next = mel; return mel)
function dropnext!(prev, next)
if next != next.next
# Drop the next item from the list
next = next.next
prev.next = next
else
# Drop the last item from the list
prev.next = prev
next = prev
end
return next
end
"""
prev, next = trim!(mel::MELink, w, label=>fvalue)
Remove entries from `mel` that are worse than `(w, label=>fvalue)`.
Returns linked-list positions on either side of the putative new value.
"""
function trim!(mel::MELink, w, lf::Pair)
l, f = lf.first, lf.second
prev, next = mel, mel.next
while prev != next && w > next.w
if f <= next.f
next = dropnext!(prev, next)
else
prev = next
next = next.next
end
end
if w == next.w && f < next.f
next = dropnext!(prev, next)
end
return prev, next
end
function Base.insert!(mel::MELink, w, lf::Pair)
l, f = lf
prev, next = trim!(mel, w, lf)
# Perform the insertion
if prev == next
# we're at the end of the list
prev.next = typeof(mel)(l, w, f)
else
if f < next.f
prev.next = typeof(mel)(l, w, f, next)
end
end
return mel
end
function Base.iterate(mel::MELink)
mel == mel.next && return nothing
return (mel.next, mel.next)
end
function Base.iterate(mel::MELink, state::MELink)
state == state.next && return nothing
return (state.next, state.next)
end
function popfirst!(mel::MELink)
item = mel.next
mel.next = item.next == item ? mel : item.next
return item
end
Base.length(mel::MELink) = count(x->true, mel)
function Base.show(io::IO, mel::MELink)
print(io, "List(")
next = mel.next
while mel != next
print(io, '(', next.w, ", ", next.l, "=>", next.f, "), ")
mel = next
next = next.next
end
print(io, ')')
end
### Box utilities
function Base.show(io::IO, box::Box)
x = fill(NaN, ndims(box))
position!(x, box)
val = isroot(box) ? "Root" : value(box)
print(io, "Box$val@", x)
end
function value(box::Box)
isroot(box) && error("root box does not have a unique value")
box.parent.fvalues[box.parent_cindex]
end
value_safe(box::Box{T}) where T = isroot(box) ? typemax(T) : value(box)
Base.isless(box1::Box, box2::Box) = isless(value_safe(box1), value_safe(box2))
function pick_other(xvalues, fvalues, idx)
j = 1
if j == idx j += 1 end
xf1 = xvalues[j] => fvalues[j]
j += 1
if j == idx j += 1 end
xf2 = xvalues[j] => fvalues[j]
return xf1, xf2
end
function treeprint(io::IO, f::Function, root::Box)
show(io, root)
y = f(root)
y != nothing && print(io, y)
if !isleaf(root)
print(io, '(')
treeprint(io, f, root.children[1])
print(io, ", ")
treeprint(io, f, root.children[2])
print(io, ", ")
treeprint(io, f, root.children[3])
print(io, ')')
end
end
treeprint(io::IO, root::Box) = treeprint(io, x->nothing, root)
function add_children!(parent::Box{T}, splitdim, xvalues, fvalues, u::Real, v::Real) where T
isleaf(parent) || error("cannot add children to non-leaf node")
(length(xvalues) == 3 && xvalues[1] < xvalues[2] < xvalues[3]) || throw(ArgumentError("xvalues must be monotonic, got $xvalues"))
parent.splitdim = splitdim
p = find_parent_with_splitdim(parent, splitdim)
if isroot(p)
parent.minmax = (u, v)
else
parent.minmax = boxbounds(p)
end
for i = 1:3
@assert(parent.minmax[1] <= xvalues[i] <= parent.minmax[2])
end
minsep = eps(T)*(xvalues[3]-xvalues[1])
@assert(xvalues[2]-xvalues[1] > minsep)
@assert(xvalues[3]-xvalues[2] > minsep)
parent.xvalues = xvalues
parent.fvalues = fvalues
for i = 1:3
Box(parent, i) # creates the children of parent
end
parent
end
function cycle_free(box)
p = parent(box)
while !isroot(p)
p == box && return false
p = p.parent
end
return true
end
function isparent(parent, child)
parent == child && return true
while !isroot(child)
child = child.parent
parent == child && return true
end
return false
end
"""
boxp = find_parent_with_splitdim(box, splitdim::Integer)
Return the first node at or above `box` who's parent box was split
along dimension `splitdim`. If `box` has not yet been split along
`splitdim`, returns the root box.
"""
function find_parent_with_splitdim(box::Box, splitdim::Integer)
while !isroot(box)
p = parent(box)
if p.splitdim == splitdim
return box
end
box = p
end
return box
end
"""
box = greedy_smallest_child_leaf(root)
Walk the tree recursively, choosing the child with smallest function value at each stage.
`box` will be a leaf node.
"""
function greedy_smallest_child_leaf(box::Box)
# Not guaranteed to be the smallest function value, it's the smallest that can be
# reached stepwise
while !isleaf(box)
idx = argmin(box.fvalues)
box = box.children[idx]
end
box
end
"""
box = find_smallest_child_leaf(root)
Return the node below `root` with smallest function value.
"""
function find_smallest_child_leaf(box::Box)
vmin, boxmin = value(box), box
for leaf in leaves(box)
vleaf = value(leaf)
if vleaf <= vmin
vmin, boxmin = vleaf, leaf
end
end
return boxmin
end
function unique_smallest_leaves(boxes)
uboxes = Set{eltype(boxes)}()
for box in boxes
push!(uboxes, find_smallest_child_leaf(box))
end
return uboxes
end
"""
box = find_leaf_at(root, x)
Return the leaf-node `box` that contains `x`.
"""
function find_leaf_at(root::Box, x)
isleaf(root) && return root
while !isleaf(root)
i = root.splitdim
found = false
for box in (root.children[1], root.children[2], root.children[3])
bb = boxbounds(box)
if bb[1] <= x[i] <= bb[2]
root = box
found = true
break
end
end
found || error("$(x[i]) not within $(root.minmax)")
end
root
end
"""
box, success = find_leaf_at_edge(root, x, splitdim, dir)
Return the node `box` that contains `x` with an edge at `x[splitdim]`.
If `dir > 0`, a box to the right of the edge will be returned; if `dir < 0`, a box to the
left will be returned. `box` will be a leaf-node unless `success` is false;
the usual explanation for this is that the chosen edge is at the edge of the allowed
domain, and hence there isn't a node in that direction.
This is a useful utility for finding the neighbor of a given box. Example:
# Let's find the neighbors of `box` along its parent's splitdim
x = position(box, x0)
i = box.parent.splitdim
bb = boxbounds(box)
# Right neighbor
x[i] = bb[2]
rnbr = find_leaf_at_edge(root, x, i, +1)
# Left neighbor
x[i] = bb[1]
lnbr = find_leaf_at_edge(root, x, i, -1)
"""
function find_leaf_at_edge(root::Box, x, splitdim::Integer, dir::Signed)
isleaf(root) && return root, false
while !isleaf(root)
i = root.splitdim
found = false
for box in (root.children[1], root.children[2], root.children[3])
bb = boxbounds(box)
if within(x[i], bb, dir)
root = box
found = true
break
end
end
found || return (root, false)
end
return (root, true)
end
"""
x = position(box)
x = position(box, x0)
Return the n-dimensional position vector `x` at which this box was evaluated
when it was a leaf. Some entries of `x` might be `NaN`, if `box` is sufficiently
near the root and not all dimensions have been split.
The variant supplying `x0` fills in those dimensions with the corresponding values
from `x0`.
"""
Base.position(box::Box) = position!(fill(NaN, ndims(box)), box)
function Base.position(box::Box, x0::AbstractVector)
x = similar(x0)
flag = falses(length(x0))
position!(x, flag, box, x0)
end
function position!(x, flag, box::Box, x0::AbstractVector)
copyto!(x, x0)
position!(x, flag, box)
end
function position!(x, box::Box)
flag = falses(length(x))
position!(x, flag, box)
return x
end
function position!(x, flag, box::Box)
fill!(flag, false)
nfilled = 0
while !isroot(box) && nfilled < length(x)
i = box.parent.splitdim
if !flag[i]
x[i] = box.parent.xvalues[box.parent_cindex]
flag[i] = true
nfilled += 1
end
box = box.parent
end
x
end
function default_position!(x, flag, xdefault)
length(x) == length(flag) == length(xdefault) || throw(DimensionMismatch("all three inputs must have the same length"))
for i = 1:length(x)
if !flag[i]
x[i] = xdefault[i]
end
end
x
end
"""
left, right = boxbounds(box)
Compute the bounds of `box` along the `splitdim` of `box`'s parent.
This throws an error for the root box.
"""
function boxbounds(box::Box)
isroot(box) && error("cannot compute bounds on root Box")
p = parent(box)
if box.parent_cindex == 1
return (p.minmax[1], (p.xvalues[1]+p.xvalues[2])/2)
elseif box.parent_cindex == 2
return ((p.xvalues[1]+p.xvalues[2])/2, (p.xvalues[2]+p.xvalues[3])/2)
elseif box.parent_cindex == 3
return ((p.xvalues[2]+p.xvalues[3])/2, p.minmax[2])
end
error("invalid parent_cindex $(box.parent_cindex)")
end
"""
left, right = boxbounds(box, lower::Real, upper::Real)
Compute the bounds of `box` along the `splitdim` of `box`'s parent.
For the root box, returns `(lower, upper)`.
"""
function boxbounds(box::Box, lower::Real, upper::Real)
isroot(box) && return (lower, upper)
return boxbounds(box)
end
"""
bb = boxbounds(box, lower::AbstractVector, upper::AbstractVector)
Compute the bounds of `box` along all dimensions.
"""
function boxbounds(box::Box{T}, lower::AbstractVector, upper::AbstractVector) where T
length(lower) == length(upper) == ndims(box) || throw(DimensionMismatch("lower and upper must match dimensions of box"))
bb = [(T(lower[i]), T(upper[i])) for i = 1:ndims(box)]
boxbounds!(bb, box)
end
"""
bb = boxbounds(box, splitdim::Integer, lower::AbstractVector, upper::AbstractVector)
Compute the bounds of `box` along dimension `splitdim`.
"""
function boxbounds(box::Box{T}, splitdim::Integer, lower::AbstractVector, upper::AbstractVector) where T
p = find_parent_with_splitdim(box, splitdim)
boxbounds(p, lower[splitdim], upper[splitdim])
end
function boxbounds!(bb, box::Box)
flag = falses(ndims(box))
boxbounds!(bb, flag, box)
return bb
end
function boxbounds!(bb, flag, box::Box)
fill!(flag, false)
if isleaf(box)
bb[box.parent.splitdim] = boxbounds(box)
flag[box.parent.splitdim] = true
else
bb[box.splitdim] = box.minmax
flag[box.splitdim] = true
end
nfilled = 1
while !isroot(box) && nfilled < ndims(box)
i = box.parent.splitdim
if !flag[i]
bb[i] = boxbounds(box)
flag[i] = true
nfilled += 1
end
box = box.parent
end
bb
end
function boxbounds!(bb, flag, box::Box, lower, upper)
for i = 1:ndims(box)
bb[i] = (lower[i], upper[i])
end
boxbounds!(bb, flag, box)
end
"""
scale = boxscale(box, splits)
Return a vector containing a robust measure of the "scale" of `box` along
each coordinate axis. Specifically, it is typically related to the gap between
evaluation points of its parent boxes, falling back on the initial user-supplied `splits`
if it hasn't been split along a particular axis.
Note that a box that extends to infinity still has a finite `scale`. Moreover, a box
where one evaluation point is at the edge has a scale bigger than zero.
"""
function boxscale(box::Box{T,N}, splits) where {T,N}
bxscale(s1, s2, s3) = s1 == s2 ? s3 - s2 :
s2 == s3 ? s2 - s1 :
min(s2-s1, s3-s2)
bxscale(s) = bxscale(s[1], s[2], s[3])
scale = Vector{T}(undef, N)
for i = 1:N
p = find_parent_with_splitdim(box, i)
splitsi = splits[i]
if isroot(p)
scale[i] = bxscale(splitsi)
else
scale[i] = bxscale(p.parent.xvalues)
end
end
return scale
end
function width(box::Box, splitdim::Integer, xdefault::Real, lower::Real, upper::Real)
p = find_parent_with_splitdim(box, splitdim)
bb = boxbounds(p, lower, upper)
x = isroot(p) ? xdefault : p.parent.xvalues[p.parent_cindex]
max(x-bb[1], bb[2]-x)
end
width(box::Box, splitdim::Integer, xdefault, lower, upper) =
width(box, splitdim, xdefault[splitdim], lower[splitdim], upper[splitdim])
function isinside(x, lower, upper)
ret = true
for i = 1:length(x)
ret &= lower[i] <= x[i] <= upper[i]
end
ret
end
function isinside(x, bb::Vector{Tuple{T,T}}) where T
ret = true
for i = 1:length(x)
bbi = bb[i]
ret &= bbi[1] <= x[i] <= bbi[2]
end
ret
end
"""
within(x, (left, right), dir)
Return `true` if `x` lies between `left` and `right`. If `x` is on the edge,
`dir` must point towards the interior (positive if `x==left`, negative if `x==right`).
"""
function within(x::Real, bb::Tuple{Real,Real}, dir)
if !(bb[1] <= x <= bb[2])
return false
end
((x == bb[1]) & (dir < 0)) && return false
((x == bb[2]) & (dir > 0)) && return false
return true
end
function epswidth(bb::Tuple{T,T}) where T<:Real
w1 = isfinite(bb[1]) ? eps(bb[1]) : T(0)
w2 = isfinite(bb[2]) ? eps(bb[2]) : T(0)
return 10*min(w1, w2)
end
function count_splits(box::Box)
nsplits = Vector{Int}(undef, ndims(box))
count_splits!(nsplits, box)
end
function count_splits!(nsplits, box::Box)
fill!(nsplits, 0)
if box.splitdim == 0
box = box.parent
box.splitdim == 0 && return nsplits # an unsplit tree
end
nsplits[box.splitdim] += 1
while !isroot(box)
box = box.parent
nsplits[box.splitdim] += 1
end
return nsplits
end
function Base.extrema(root::Box)
isleaf(root) && error("tree is empty")
minv, maxv = extrema(root.fvalues)
for bx in root
isleaf(bx) && continue
mn, mx = extrema(bx.fvalues)
minv = min(minv, mn)
maxv = max(maxv, mx)
end
minv, maxv
end
## Utilities for experimenting with topology of the tree
"""
splitprint([io::IO], box)
Print a representation of all boxes below `box`, using parentheses prefaced by a number `n`
to denote a split along dimension `n`, and `l` to represent a leaf.
See also [`parse`](@ref) for the inverse: converting a string representation to a tree of boxes.
"""
function splitprint(io::IO, box::Box)
if isleaf(box)
print(io, 'l')
else
print(io, box.splitdim, '(')
splitprint(io, box.children[1])
print(io, ", ")
splitprint(io, box.children[2])
print(io, ", ")
splitprint(io, box.children[3])
print(io, ')')
end
end
splitprint(box::Box) = splitprint(stdout, box)
"""
splitprint_colored([io::IO], box, innerbox)
Like [`splitprint`](@ref), except that `innerbox` is highlighted in red, and the chain
of parents of `innerbox` are highlighted in cyan.
"""
function splitprint_colored(io::IO, box::Box, thisbox::Box, allparents=get_allparents(thisbox))
if isleaf(box)
box == thisbox ? printstyled(io, 'l', color=:light_red) : print(io, 'l')
else
if box == thisbox
printstyled(io, box.splitdim, color=:light_red)
elseif box β allparents
printstyled(io, box.splitdim, color=:cyan)
else
print(io, box.splitdim)
end
print(io, '(')
splitprint_colored(io, box.children[1], thisbox, allparents)
print(io, ", ")
splitprint_colored(io, box.children[2], thisbox, allparents)
print(io, ", ")
splitprint_colored(io, box.children[3], thisbox, allparents)
print(io, ')')
end
end
splitprint_colored(box::Box, thisbox::Box) = splitprint_colored(stdout, box, thisbox)
function get_allparents(box)
allparents = Set{typeof(box)}()
p = box
while !isroot(p)
p = parent(p)
push!(allparents, p)
end
allparents
end
"""
root = parse(Box{T,N}, string)
Parse a `string`, in the output format of [`splitprint`](@ref), and generate
a tree of boxes with that structure.
"""
function Base.parse(::Type{B}, str::AbstractString) where B<:Box
b = B()
splitbox!(b, str)
end
# splitbox! uses integer-valued positions and sets all function values to 0
function splitbox!(box::Box{T,N}, dim) where {T,N}
x = position(box, zeros(N))
xd = x[dim]
add_children!(box, dim, [xd,xd+1,xd+2], zeros(3), -Inf, Inf)
box
end
function splitbox!(box::Box, str::AbstractString)
str == "l" && return
m = match(r"([0-9]*)\((.*)\)", str)
dim = parse(Int, m.captures[1])
dimstr = m.captures[2]
splitbox!(box, dim)
commapos = [0,0]
commaidx = 0
open = 0
i = firstindex(dimstr)
while i <= ncodeunits(dimstr)
c, i = iterate(dimstr, i)
if c == '('
open += 1
elseif c == ')'
open -= 1
elseif c == ',' && open == 0
commapos[commaidx+=1] = prevind(dimstr, i)
end
end
splitbox!(box.children[1], strip(dimstr[1:prevind(dimstr, commapos[1])]))
splitbox!(box.children[2], strip(dimstr[nextind(dimstr, commapos[1]):prevind(dimstr, commapos[2])]))
splitbox!(box.children[3], strip(dimstr[nextind(dimstr, commapos[2]):end]))
return box
end
## Tree traversal
"""
root = get_root(box)
Return the root node for `box`.
"""
function get_root(box::Box)
while !isroot(box)
box = parent(box)
end
box
end
abstract type DepthFirstIterator end
Base.IteratorSize(::Type{<:DepthFirstIterator}) = Base.SizeUnknown()
struct DepthFirstLeafIterator{B<:Box} <: DepthFirstIterator
root::B
end
function leaves(root::Box)
DepthFirstLeafIterator(root)
end
function Base.iterate(iter::DepthFirstLeafIterator)
state = find_next_leaf(iter, iter.root)
state === nothing && return nothing
return state, state
end
Base.iterate(root::Box) = root, root
function Base.iterate(iter::DepthFirstLeafIterator, state::Box)
@assert(isleaf(state))
state = find_next_leaf(iter, state)
state === nothing && return nothing
return (state, state)
end
function find_next_leaf(iter::DepthFirstLeafIterator, state::Box)
ret = iterate(iter.root, state)
ret === nothing && return nothing
while !isleaf(ret[1])
ret = iterate(iter.root, ret[2])
ret === nothing && return nothing
end
return ret[2]
end
function Base.iterate(root::Box, state::Box)
item = state # old item
if isleaf(item)
box, i = up(item, root)
if i <= length(box.children)
item = box.children[i]
return (item, item)
end
@assert(box == root)
return nothing
end
item = item.children[1]
return (item, item)
end
function up(box, root)
local i
box == root && return (box, length(box.children)+1)
while true
box, i = box.parent, box.parent_cindex+1
box == root && return (box, i)
i <= length(box.children) && break
end
return (box, i)
end
function Base.length(iter::DepthFirstLeafIterator)
ret = iterate(iter)
len = 0
while ret !== nothing
item, state = ret
ret = iterate(iter, state)
len += 1
end
return len
end
## Utilities for working with both mutable and immutable vectors
replacecoordinate!(x, i::Integer, val) = (x[i] = val; x)
replacecoordinate!(x::SVector{N,T}, i::Integer, val) where {N,T} =
SVector{N,T}(_rpc(Tuple(x), i-1, T(val)))
@inline _rpc(t, i, val) = (ifelse(i == 0, val, t[1]), _rpc(Base.tail(t), i-1, val)...)
_rps(::Tuple{}, i, val) = ()
ipcopy!(dest, src) = copyto!(dest, src)
ipcopy!(dest::SVector, src) = src
## Other utilities
lohi(x, y) = x <= y ? (x, y) : (y, x)
function lohi(x, y, z)
@assert(x <= y)
z <= x && return z, x, y
z <= y && return x, z, y
return x, y, z
end
function order_pairs(xf1, xf2)
x1, f1 = xf1
x2, f2 = xf2
return x1 <= x2 ? (xf1, xf2) : (xf2, xf1)
end
function order_pairs(xf1, xf2, xf3)
xf1, xf2 = order_pairs(xf1, xf2)
xf2, xf3 = order_pairs(xf2, xf3)
xf1, xf2 = order_pairs(xf1, xf2)
return xf1, xf2, xf3
end
function biggest_interval(a, b, c, d)
ab, bc, cd = b-a, c-b, d-c
if ab <= bc && ab <= cd
return (a, b)
elseif bc <= ab && bc <= cd
return (b, c)
end
return (c, d)
end
function ensure_distinct(x::T, xref, bb::Tuple{Real,Real}; minfrac = 0.1) where T
Ξx = min(xref - bb[1], bb[2] - xref)
if !isfinite(Ξx)
x != xref && return x
return xref + 1
end
Ξxmin = T(minfrac*Ξx)
if abs(x - xref) < Ξxmin
s = x == xref ? (bb[2] - xref > xref - bb[1] ? 1 : -1) : sign(x-xref)
x = T(xref + Ξxmin*s)
end
return x
end
function ensure_distinct(x::T, x1, x2, bb::Tuple{Real,Real}; minfrac = 0.1) where T
x1, x2 = lohi(x1, x2)
Ξxmin = minfrac*min(x2-x1, bb[2] == x2 ? T(Inf) : bb[2]-x2, bb[1] == x1 ? T(Inf) : x1-bb[1])
@assert(Ξxmin > 0)
if abs(x - x1) < Ξxmin
s = x == x1 ? 1 : sign(x-x1)
x = T(max(bb[1], x1 + Ξxmin*s))
elseif abs(x - x2) < Ξxmin
s = x == x2 ? -1 : sign(x-x2)
x = T(min(bb[2], x2 + Ξxmin*s))
end
return x
end
"""
t, exitdim = pathlength_box_exit(x0, dx, bb)
Given a ray `x0 + t*dx`, compute the value of `t` at which the ray exits the box
delimited by `bb` (a vector of `(lo, hi)` tuples). Also return the coordinate dimension
along which the exit occurs.
"""
function pathlength_box_exit(x0, dx, bb)
t = oftype((bb[1][1] - x0[1])/dx[1], Inf)
exitdim = 0
for i = 1:length(x0)
xi, dxi, bbi = x0[i], dx[i], bb[i]
ti = (ifelse(dxi >= 0, bbi[2], bbi[1]) - xi)/dxi
if ti < t
t = ti
exitdim = i
end
end
t, exitdim
end
"""
t, intersectdim = pathlength_hyperplane_intersect(x0, dx, xtarget, tmax)
Compute the maximum pathlength `t` (up to a value of `tmax`) at which the ray `x0 + t*dx`
intersects one of the hyperplanes specified by `x[i] = xtarget[i]` for any dimension `i`.
"""
function pathlength_hyperplane_intersect(x0, dx, xtarget, tmax)
t = zero(typeof((xtarget[1] - x0[1])/dx[1]))
intersectdim = 0
for i = 1:length(x0)
xi, dxi, xti = x0[i], dx[i], xtarget[i]
ti = (xti - xi)/dxi
if ti <= tmax && ti > t
t = ti
intersectdim = i
end
end
t, intersectdim
end
# function different_basins(boxes::AbstractVector{B}, x0, lower, upper) where B<:Box
# basinboxes = B[]
# for box in boxes
# ubasin = true
# for bbox in basinboxes
# if !is_different_basin(box, bbox, x0, lower, upper)
# ubasin = false
# break
# end
# end
# if ubasin
# push!(basinboxes, box)
# end
# end
# return basinboxes
# end
# function is_different_basin(box1, box2, x0, lower, upper)
# # This convexity test has its limits: we're comparing the maximum along the secant
# # within the box to a function value calculated at a point that isn't along the secant.
# # False positives happen, but this is better than false negatives.
# root = get_root(box1)
# v1, v2 = value(box1), value(box2)
# x1, x2 = position(box1, x0), position(box2, x0)
# dx = x2 - x1
# bb = boxbounds(box1, lower, upper)
# flag = Vector{Bool}(undef, length(lower))
# leaf = box1
# t, exitdim = pathlength_box_exit(x1, dx, bb)
# # For consistency (e.g., commutivity with box1 and box2), we have to check
# # exit condition even at first box, even though it's likely a false positive.
# vmax = v1 + t*(v2-v1)
# qdtot = oftype(vmax, 0)
# # for i = 1:ndims(leaf) # commented out to avoid false negatives
# # qdtot += qdelta(leaf, i)
# # end
# if value(leaf)+qdtot > vmax
# return true
# end
# while t < 1
# x2[:] .= x1 .+ t.*dx
# x2[exitdim] = bb[exitdim][dx[exitdim] > 0 ? 2 : 1] # avoid roundoff error in the critical coordinate
# leaf_old = leaf
# leaf, success = find_leaf_at_edge(root, x2, exitdim, dx[exitdim] > 0 ? +1 : -1)
# success || break
# boxbounds!(bb, flag, leaf, lower, upper)
# tnext, exitdim = pathlength_box_exit(x1, dx, bb)
# tnext = max(tnext, t)
# while tnext == t # must have hit a corner
# tnext += oftype(t, 1e-4)
# x2[:] .= x1 .+ tnext.*dx
# bxtmp = find_leaf_at(root, x2)
# boxbounds!(bb, flag, bxtmp, lower, upper)
# tnext, exitdim = pathlength_box_exit(x1, dx, bb)
# end
# vmax = v1 + t*(v2-v1)
# if tnext < 1
# vmax = max(vmax, v1 + tnext*(v2-v1))
# end
# qdtot = oftype(vmax, 0)
# # for i = 1:ndims(leaf)
# # qdtot += qdelta(leaf, i)
# # end
# if value(leaf)+qdtot > vmax
# return true
# end
# t = tnext
# end
# return false
# end
"""
a, b, c = pick3(a, b, (lower::Real, upper::Real))
Returns an ordered triple `a, b, c`, with two agreeing with the input `a` and `b`,
and the third point bisecting the largest interval between `a`, `b`, and the edges
`lower`, `upper`.
"""
function pick3(a, b, bb)
a, b = lohi(a, b)
imin, imax = biggest_interval(bb[1], a, b, bb[2])
if isinf(imin)
return a-2*(b-a), a, b
elseif isinf(imax)
return a, b, b+2*(b-a)
end
return a, b, c = lohi(a, b, (imin+imax)/2)
end
function issame(x1, x2, scale, rtol=sqrt(eps(eltype(x1))))
same = true
for i = 1:length(x1)
same &= abs(x1[i] - x2[i]) < rtol*scale[i]
end
return same
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2700 | module RFFT
using FFTW, LinearAlgebra
export RCpair, plan_rfft!, plan_irfft!, rfft!, irfft!, normalization
import Base: real, complex, copy, copy!
mutable struct RCpair{T<:AbstractFloat,N,RType<:AbstractArray{T,N},CType<:AbstractArray{Complex{T},N}}
R::RType
C::CType
region::Vector{Int}
end
function RCpair{T}(::UndefInitializer, realsize::Dims{N}, region=1:length(realsize)) where {T<:AbstractFloat,N}
sz = [realsize...]
firstdim = region[1]
sz[firstdim] = realsize[firstdim]>>1 + 1
sz2 = copy(sz)
sz2[firstdim] *= 2
R = Array{T,N}(undef, (sz2...,)::Dims{N})
C = unsafe_wrap(Array, convert(Ptr{Complex{T}}, pointer(R)), (sz...,)::Dims{N}) # work around performance problems of reinterpretarray
RCpair(view(R, map(n->1:n, realsize)...), C, [region...])
end
RCpair(A::Array{T}, region=1:ndims(A)) where {T<:AbstractFloat} = copy!(RCpair{T}(undef, size(A), region), A)
real(RC::RCpair) = RC.R
complex(RC::RCpair) = RC.C
copy!(RC::RCpair, A::AbstractArray{T}) where {T<:Real} = (copy!(RC.R, A); RC)
function copy(RC::RCpair{T,N}) where {T,N}
C = copy(RC.C)
R = reshape(reinterpret(T, C), size(parent(RC.R)))
RCpair(view(R, RC.R.indices...), C, copy(RC.region))
end
# New API
rplan_fwd(R, C, region, flags, tlim) =
FFTW.rFFTWPlan{eltype(R),FFTW.FORWARD,true,ndims(R)}(R, C, region, flags, tlim)
rplan_inv(R, C, region, flags, tlim) =
FFTW.rFFTWPlan{eltype(R),FFTW.BACKWARD,true,ndims(R)}(R, C, region, flags, tlim)
function plan_rfft!(RC::RCpair{T}; flags::Integer = FFTW.ESTIMATE, timelimit::Real = FFTW.NO_TIMELIMIT) where T
p = rplan_fwd(RC.R, RC.C, RC.region, flags, timelimit)
return Z::RCpair -> begin
FFTW.assert_applicable(p, Z.R, Z.C)
FFTW.unsafe_execute!(p, Z.R, Z.C)
return Z
end
end
function plan_irfft!(RC::RCpair{T}; flags::Integer = FFTW.ESTIMATE, timelimit::Real = FFTW.NO_TIMELIMIT) where T
p = rplan_inv(RC.C, RC.R, RC.region, flags, timelimit)
return Z::RCpair -> begin
FFTW.assert_applicable(p, Z.C, Z.R)
FFTW.unsafe_execute!(p, Z.C, Z.R)
rmul!(Z.R, 1 / prod(size(Z.R)[Z.region]))
return Z
end
end
function rfft!(RC::RCpair{T}) where T
p = rplan_fwd(RC.R, RC.C, RC.region, FFTW.ESTIMATE, FFTW.NO_TIMELIMIT)
FFTW.unsafe_execute!(p, RC.R, RC.C)
return RC
end
function irfft!(RC::RCpair{T}) where T
p = rplan_inv(RC.C, RC.R, RC.region, FFTW.ESTIMATE, FFTW.NO_TIMELIMIT)
FFTW.unsafe_execute!(p, RC.C, RC.R)
rmul!(RC.R, 1 / prod(size(RC.R)[RC.region]))
return RC
end
@deprecate RCpair(realtype::Type{T}, realsize, region=1:length(realsize)) where T<:AbstractFloat RCpair{T}(undef, realsize, region)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 14739 | module RegisterCore
using ..CenterIndexedArrays
using ImageCore, ImageFiltering
using Requires
import Base: +, -, *, /
export
# types
MismatchArray,
NumDenom,
ColonFun,
PreprocessSNF,
# functions
highpass,
indmin_mismatch,
maxshift,
mismatcharrays,
ratio,
separate,
paddedview,
trimmedview
"""
The major functions/types exported by this module are:
- `NumDenom` and `MismatchArray`: packed pair representation of
`(num,denom)` mismatch data
- `separate`: splits a `NumDenom` array into its component `num,denom` arrays
- `indmin_mismatch`: find the location of the minimum mismatch
- `highpass`: highpass filter an image before performing registration
- `PreprocessSNF`: shot-noise standardization and filtering
"""
RegisterCore
"""
x = NumDenom(num, denom)
`NumDenom{T}` is an object containing a `(num,denom)` pair.
`x.num` is `num` and `x.denom` is `denom`.
Algebraically, `NumDenom` objects act like 2-vectors, and can be added and multiplied
by scalars:
nd1 + nd2 = NumDenom(nd1.num + nd2.num, nd1.denom + nd2.denom)
2*nd = NumDenom(2*nd.num, 2*nd.denom)
Note that this is *not* what you'd get from normal arithmetic with ratios, where, e.g.,
`2*nd` would be expected to produce `NumDenom(2*nd.num, nd.denom)`.
The reason for calling these `*` and `+` is for use in `Interpolations.jl`, because it
allows interpolation to be performed on "both arrays" at once without
recomputing the interpolation coefficients. See the documentation for information
about how this is used for performing aperturered mismatch computations.
As a consequence, there is no `convert(Float64, nd::NumDenom)` method, because the algebra
above breaks any pretense that `NumDenom` numbers are somehow equivalent to ratios.
If you want to convert to a ratio, see [`ratio`](@ref).
"""
struct NumDenom{T<:Number}
num::T
denom::T
end
NumDenom(n::Gray, d::Gray) = NumDenom(gray(n), gray(d))
NumDenom(n::Gray, d) = NumDenom(gray(n), d)
NumDenom(n, d::Gray) = NumDenom(n, gray(d))
NumDenom(n, d) = NumDenom(promote(n, d)...)
(+)(p1::NumDenom, p2::NumDenom) = NumDenom(p1.num + p2.num, p1.denom + p2.denom)
(-)(p1::NumDenom, p2::NumDenom) = NumDenom(p1.num - p2.num, p1.denom - p2.denom)
(*)(n::Number, p::NumDenom) = NumDenom(n * p.num, n * p.denom)
(*)(p::NumDenom, n::Number) = n * p
(/)(p::NumDenom, n::Number) = NumDenom(p.num / n, p.denom / n)
Base.oneunit(::Type{NumDenom{T}}) where {T} = NumDenom{T}(oneunit(T), oneunit(T))
Base.oneunit(p::NumDenom) = oneunit(typeof(p))
Base.zero(::Type{NumDenom{T}}) where {T} = NumDenom(zero(T), zero(T))
Base.zero(p::NumDenom) = zero(typeof(p))
function Base.promote_rule(::Type{NumDenom{T1}}, ::Type{T2}) where {T1,T2<:Number}
return NumDenom{promote_type(T1, T2)}
end
function Base.promote_rule(::Type{NumDenom{T1}}, ::Type{NumDenom{T2}}) where {T1,T2}
return NumDenom{promote_type(T1, T2)}
end
Base.eltype(::Type{NumDenom{T}}) where {T} = T
Base.convert(::Type{NumDenom{T}}, p::NumDenom{T}) where {T} = p
Base.convert(::Type{NumDenom{T}}, p::NumDenom) where {T} = NumDenom{T}(p.num, p.denom)
function Base.round(::Type{NumDenom{T}}, p::NumDenom) where {T}
return NumDenom{T}(round(T, p.num), round(T, p.denom))
end
function Base.convert(::Type{F}, p::NumDenom) where {F<:AbstractFloat}
return error("`convert($F, ::NumDenom)` is deliberately not defined, see `?NumDenom`.")
end
function Base.show(io::IO, p::NumDenom)
print(io, "NumDenom(")
show(io, p.num)
print(io, ",")
show(io, p.denom)
print(io, ")")
return nothing
end
const MismatchArray{ND<:NumDenom,N,A} = CenterIndexedArray{ND,N,A}
"""
mxs = maxshift(D)
Return the `maxshift` value used to compute the mismatch array `D`.
"""
maxshift(A::MismatchArray) = A.halfsize
"""
`numdenom = MismatchArray(num, denom)` packs the array-pair
`(num,denom)` into a single `MismatchArray`. This is useful
preparation for interpolation.
"""
function (::Type{M})(num::AbstractArray, denom::AbstractArray) where {M<:MismatchArray}
size(num) == size(denom) ||
throw(DimensionMismatch("num and denom must have the same size"))
T = promote_type(eltype(num), eltype(denom))
numdenom = CenterIndexedArray{NumDenom{T}}(undef, size(num))
return _packnd!(numdenom, num, denom)
end
function _packnd!(numdenom::AbstractArray, num::AbstractArray, denom::AbstractArray)
Rnd, Rnum, Rdenom = eachindex(numdenom), eachindex(num), eachindex(denom)
if Rnum == Rdenom
for (Idest, Isrc) in zip(Rnd, Rnum)
@inbounds numdenom[Idest] = NumDenom(num[Isrc], denom[Isrc])
end
elseif Rnd == Rnum
for (Inum, Idenom) in zip(Rnum, Rdenom)
@inbounds numdenom[Inum] = NumDenom(num[Inum], denom[Idenom])
end
else
for (Ind, Inum, Idenom) in zip(Rnd, Rnum, Rdenom)
@inbounds numdenom[Ind] = NumDenom(num[Inum], denom[Idenom])
end
end
return numdenom
end
function _packnd!(
numdenom::CenterIndexedArray, num::CenterIndexedArray, denom::CenterIndexedArray
)
@simd for I in eachindex(num)
@inbounds numdenom[I] = NumDenom(num[I], denom[I])
end
return numdenom
end
# The next are mostly used just for testing
"""
`mms = mismatcharrays(nums, denoms)` packs array-of-arrays num/denom pairs as an array-of-MismatchArrays.
`mms = mismatcharrays(nums, denom)`, for `denom` a single array, uses the same `denom` array for all `nums`.
"""
function mismatcharrays(
nums::AbstractArray{A}, denom::AbstractArray{T}
) where {A<:AbstractArray,T<:Number}
first = true
local mms
for i in eachindex(nums)
num = nums[i]
mm = MismatchArray(num, denom)
if first
mms = Array{typeof(mm)}(undef, size(nums))
first = false
end
mms[i] = mm
end
return mms
end
function mismatcharrays(
nums::AbstractArray{A1}, denoms::AbstractArray{A2}
) where {A1<:AbstractArray,A2<:AbstractArray}
size(nums) == size(denoms) || throw(
DimensionMismatch("nums and denoms arrays must have the same number of apertures"),
)
first = true
local mms
for i in eachindex(nums, denoms)
mm = MismatchArray(nums[i], denoms[i])
if first
mms = Array{typeof(mm)}(undef, size(nums))
first = false
end
mms[i] = mm
end
return mms
end
"""
`num, denom = separate(mm)` splits an `AbstractArray{NumDenom}` into separate
numerator and denominator arrays.
"""
function separate(data::AbstractArray{NumDenom{T}}) where {T}
num = Array{T}(undef, size(data))
denom = similar(num)
for I in eachindex(data)
nd = data[I]
num[I] = nd.num
denom[I] = nd.denom
end
return num, denom
end
function separate(mm::MismatchArray)
num, denom = separate(mm.data)
return CenterIndexedArray(num), CenterIndexedArray(denom)
end
function separate(mma::AbstractArray{M}) where {M<:MismatchArray}
T = eltype(eltype(M))
nums = Array{CenterIndexedArray{T,ndims(M)}}(undef, size(mma))
denoms = similar(nums)
for (i, mm) in enumerate(mma)
nums[i], denoms[i] = separate(mm)
end
return nums, denoms
end
"""
r = ratio(nd::NumDenom, thresh, fillval=NaN)
Return `nd.num/nd.denom`, unless `nd.denom < thresh`, in which case return `fillval` converted
to the same type as the ratio.
Choosing a `thresh` of zero will always return the ratio.
"""
@inline function ratio(nd::NumDenom{T}, thresh, fillval=convert(T, NaN)) where {T}
r = nd.num / nd.denom
return nd.denom < thresh ? oftype(r, fillval) : r
end
ratio(r::Real, thresh, fillval=NaN) = r
function (::Type{M})(::Type{T}, dims::Dims) where {M<:MismatchArray,T}
return CenterIndexedArray{NumDenom{T}}(undef, dims)
end
function (::Type{M})(::Type{T}, dims::Integer...) where {M<:MismatchArray,T}
return CenterIndexedArray{NumDenom{T}}(undef, dims)
end
function Base.copyto!(M::MismatchArray, nd::Tuple{AbstractArray,AbstractArray})
num, denom = nd
size(M) == size(num) == size(denom) || error("all sizes must match")
for (IM, Ind) in zip(eachindex(M), eachindex(num))
M[IM] = NumDenom(num[Ind], denom[Ind])
end
return M
end
#### Utility functions ####
"""
`index = indmin_mismatch(numdenom, thresh)` returns the location of
the minimum value of what is effectively `num./denom`. However, it
considers only those points for which `denom .> thresh`; moreover, it
will never choose an edge point. `index` is a CartesianIndex into the
arrays.
"""
function indmin_mismatch(numdenom::MismatchArray{NumDenom{T},N}, thresh::Real) where {T,N}
imin = CartesianIndex(ntuple(d -> 0, Val(N)))
rmin = typemax(T)
threshT = convert(T, thresh)
@inbounds for I in CartesianIndices(map(trimedges, axes(numdenom)))
nd = numdenom[I]
if nd.denom > threshT
r = nd.num / nd.denom
if r < rmin
imin = I
rmin = r
end
end
end
return imin
end
function indmin_mismatch(r::CenterIndexedArray{T,N}) where {T<:Number,N}
imin = CartesianIndex(ntuple(d -> 0, Val(N)))
rmin = typemax(T)
@inbounds for I in CartesianIndices(map(trimedges, axes(r)))
rval = r[I]
if rval < rmin
imin = I
rmin = rval
end
end
return imin
end
trimedges(r::AbstractUnitRange) = (first(r) + 1):(last(r) - 1)
### Miscellaneous
"""
`datahp = highpass([T], data, sigma)` returns a highpass-filtered
version of `data`, with all negative values truncated at 0. The
highpass is computed by subtracting a lowpass-filtered version of
data, using Gaussian filtering of width `sigma`. As it is based on
`Image.jl`'s Gaussian filter, it gracefully handles `NaN` values.
If you do not wish to highpass-filter along a particular axis, put
`Inf` into the corresponding slot in `sigma`.
You may optionally specify the element type of the result, which for
`Integer` or `FixedPoint` inputs defaults to `Float32`.
"""
function highpass(::Type{T}, data::AbstractArray, sigma) where {T}
if any(isinf, sigma)
datahp = convert(Array{T,ndims(data)}, data)
else
datahp = data - imfilter(T, data, KernelFactors.IIRGaussian(T, (sigma...,)), NA())
end
datahp[datahp .< 0] .= 0 # truncate anything below 0
return datahp
end
highpass(data::AbstractArray{T}, sigma) where {T<:AbstractFloat} = highpass(T, data, sigma)
highpass(data::AbstractArray, sigma) = highpass(Float32, data, sigma)
"""
`pp = PreprocessSNF(bias, sigmalp, sigmahp)` constructs an object that
can be used to pre-process an image as `pp(img)`. The "SNF" part of
the name means "shot-noise filtered," meaning that this preprocessor
is specifically designed for situations in which you are dominated by
shot noise (i.e., from photon-counting statistics).
The processing is of the form
```
imgout = bandpass(βmax(0,img-bias))
```
i.e., the image is bias-subtracted, square-root transformed (to turn
shot noise into constant variance), and then band-pass filtered using
Gaussian filters of width `sigmalp` (for the low-pass) and `sigmahp`
(for the high-pass). You can pass `sigmalp=zeros(n)` to skip low-pass
filtering, and `sigmahp=fill(Inf, n)` to skip high-pass filtering.
"""
mutable struct PreprocessSNF # Shot-noise filtered
bias::Float32
sigmalp::Vector{Float32}
sigmahp::Vector{Float32}
end
# PreprocessSNF(bias::T, sigmalp, sigmahp) = PreprocessSNF{T}(bias, T[sigmalp...], T[sigmahp...])
function preprocess(pp::PreprocessSNF, A::AbstractArray)
Af = sqrt_subtract_bias(A, pp.bias)
return imfilter(
highpass(Af, pp.sigmahp), KernelFactors.IIRGaussian((pp.sigmalp...,)), NA()
)
end
(pp::PreprocessSNF)(A::AbstractArray) = preprocess(pp, A)
# For SubArrays, extend to the parent along any non-sliced
# dimension. That way, we keep any information from padding.
function (pp::PreprocessSNF)(A::SubArray)
Bpad = preprocess(pp, paddedview(A))
return trimmedview(Bpad, A)
end
# ImageMeta method is defined under @require in __init__
function sqrt_subtract_bias(A, bias)
# T = typeof(sqrt(one(promote_type(eltype(A), typeof(bias)))))
T = Float32
out = Array{T}(undef, size(A))
for I in eachindex(A)
@inbounds out[I] = sqrt(max(zero(T), convert(T, A[I]) - bias))
end
return out
end
"""
`Apad = paddedview(A)`, for a SubArray `A`, returns a SubArray that
extends to the full parent along any non-sliced dimensions of the
parent. See also [`trimmedview`](@ref).
"""
paddedview(A::SubArray) = _paddedview(A, (), (), A.indices...)
function _paddedview(A::SubArray{T,N,P,I}, newindexes, newsize) where {T,N,P,I}
return SubArray(A.parent, newindexes)
end
@inline function _paddedview(A, newindexes, newsize, index, indexes...)
d = length(newindexes) + 1
return _paddedview(
A,
(newindexes..., pdindex(A.parent, d, index)),
pdsize(A.parent, newsize, d, index),
indexes...,
)
end
pdindex(A, d, i::Base.Slice) = i
pdindex(A, d, i::Real) = i
pdindex(A, d, i::UnitRange) = 1:size(A, d)
pdindex(A, d, i) = error("Cannot pad with an index of type ", typeof(i))
pdsize(A, newsize, d, i::Base.Slice) = tuple(newsize..., size(A, d))
pdsize(A, newsize, d, i::Real) = newsize
pdsize(A, newsize, d, i::UnitRange) = tuple(newsize..., size(A, d))
"""
`B = trimmedview(Bpad, A::SubArray)` returns a SubArray `B` with
`axes(B) = axes(A)`. `Bpad` must have the same size as `paddedview(A)`.
"""
function trimmedview(Bpad, A::SubArray)
ndims(Bpad) == ndims(A) || throw(
DimensionMismatch(
"dimensions $(ndims(Bpad)) and $(ndims(A)) of Bpad and A must match"
),
)
return _trimmedview(Bpad, A.parent, 1, (), A.indices...)
end
_trimmedview(Bpad, P, d, newindexes) = view(Bpad, newindexes...)
@inline function _trimmedview(Bpad, P, d, newindexes, index::Real, indexes...)
return _trimmedview(Bpad, P, d + 1, newindexes, indexes...)
end
@inline function _trimmedview(Bpad, P, d, newindexes, index, indexes...)
dB = length(newindexes) + 1
Bsz = size(Bpad, dB)
Psz = size(P, d)
Bsz == Psz || throw(
DimensionMismatch("dimension $dB of Bpad has size $Bsz, should have size $Psz")
)
return _trimmedview(Bpad, P, d + 1, (newindexes..., index), indexes...)
end
# For faster and type-stable slicing
struct ColonFun end
ColonFun(::Int) = Colon()
function __init__()
@require ImageMetadata = "bc367c6b-8a6b-528e-b4bd-a4b897500b49" begin
function (pp::PreprocessSNF)(A::ImageMetadata.ImageMeta)
return ImageMetadata.shareproperties(A, pp(ImageMetadata.arraydata(A)))
end
end
end
include("deprecations.jl")
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 212 | import Base: one
@deprecate one(::Type{NumDenom{T}}) where T oneunit(NumDenom{T})
@deprecate one(p::NumDenom) oneunit(p)
@deprecate ratio(mm::AbstractArray, args...) ratio.(mm, args...)
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 3236 | module RegisterDeformation
using ImageCore, ImageAxes, Interpolations, StaticArrays, HDF5, JLD2, ProgressMeter
using ..RegisterUtilities, LinearAlgebra, Rotations, Base.Cartesian
using Distributed, Statistics, SharedArrays
using Base: tail
using Interpolations: AbstractInterpolation, AbstractExtrapolation
import ImageTransformations: warp, warp!
# to avoid `scale` conflict with Interpolations, selectively import CoordinateTransformations:
using CoordinateTransformations: AffineMap
import CoordinateTransformations: compose
using OffsetArrays: IdentityUnitRange # for Julia-version compatibility
export
# types
AbstractDeformation,
GridDeformation,
WarpedArray,
# functions
arraysize, # TODO: don't export?
centeraxes,
compose,
eachnode,
extrapolate,
extrapolate!,
getindex!,
griddeformations,
interpolate,
interpolate!,
medfilt,
nodegrid,
regrid,
similarΟ,
tform2deformation,
tinterpolate,
translate,
vecindex, # TODO: don't export?
vecgradient!, # TODO: don't export?
warp,
warp!,
warpgrid,
# old AffineTransfroms.jl code (TODO?: remove)
tformtranslate,
tformrotate,
tformeye,
rotation2,
rotation3,
rotationparameters,
transform!,
transform
const DimsLike = Union{Vector{Int},Dims}
const InterpExtrap = Union{AbstractInterpolation,AbstractExtrapolation}
"""
# RegisterDeformation
A deformation (or warp) of space is represented by a function `Ο(x)`.
For an image, the warped version of the image is specified by "looking
up" the pixel value at a location `Ο(x) = x + u(x)`. `u(x)` thus
expresses the displacement, in pixels, at position `x`. Note that a
constant deformation, `u(x) = x0`, corresponds to a shift of the
*coordinates* by `x0`, and therefore a shift of the *image* in the
opposite direction.
In reality, deformations will be represented on a grid, and
interpolation is implied at locations between grid points. For a
deformation defined directly from an array, make it interpolating
using `Οi = interpolate(Ο)`.
The major functions/types exported by RegisterDeformation are:
- `GridDeformation`: create a deformation
- `tform2deformation`: convert an `AffineMap` to a deformation
- `Ο_old(Ο_new)` and `compose`: composition of two deformations
- `warp` and `warp!`: deform an image
- `WarpedArray`: create a deformed array lazily
- `warpgrid`: visualize a deformation
"""
RegisterDeformation
abstract type AbstractDeformation{T,N} end
Base.eltype(::Type{AbstractDeformation{T,N}}) where {T,N} = T
Base.ndims(::Type{AbstractDeformation{T,N}}) where {T,N} = N
Base.eltype(::Type{D}) where {D<:AbstractDeformation} = eltype(supertype(D))
Base.ndims(::Type{D}) where {D<:AbstractDeformation} = ndims(supertype(D))
Base.eltype(d::AbstractDeformation) = eltype(typeof(d))
Base.ndims(d::AbstractDeformation) = ndims(typeof(d))
include("griddeformation.jl")
include("utils.jl")
include("timeseries.jl")
include("tformedarrays.jl")
const Extrapolatable{T,N} = Union{TransformedArray{T,N},AbstractExtrapolation{T,N}}
include("warpedarray.jl")
include("warp.jl")
include("visualize.jl")
include("deprecated.jl")
end # module
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2175 | @inline function Base.getproperty(Ο::GridDeformation, name::Symbol)
if name === :u
return getfield(Ο, :u)
elseif name === :nodes
return getfield(Ο, :nodes)
elseif name === :knots
Base.depwarn("the field name of `GridDeformation` has changed from `knots` to `nodes`.", :getproperty)
return getfield(Ο, :nodes)
end
error("field ", name, " is not available")
end
function GridDeformation(u::AbstractArray{FV,N},
sz::NTuple{N,L}) where {FV<:SVector,N,L<:Integer}
Base.depwarn("`GridDeformation(u, size(fixed))` is deprecated, use `GridDeformation(u, axes(fixed))` instead.", :GridDeformation)
return GridDeformation(u, map(Base.OneTo, sz))
end
# The above causes an ambiguity, resolve it
function GridDeformation(u::AbstractArray{FV,0}, nodes::Tuple{}) where FV<:SVector
error("node tuple cannot be empty")
end
function GridDeformation(u, nodes::AbstractVector{<:Integer})
Base.depwarn("`GridDeformation(u, [size(fixed)...])` is deprecated, pass the axes of `fixed` instead.", :GridDeformation)
GridDeformation(u, map(Base.OneTo, (nodes...,)))
end
function tform2deformation(tform::AffineMap{M,V}, arraysize::DimsLike, gridsize) where {M,V}
Base.depwarn("""
`tform2deformation(tform, arraysize, gridsize)` is deprecated.
Formerly, `tform` was defined so as to apply to `centered(img)`, which shifts
the axes of `img` to put 0 at the midpoint of `img`.
Now you should call this as `tform2deformation(tform, axs, gridsize)`, where
`axs` represents the desired domain of `tform`.
If you are transitioning old code, either use `axs = axes(fixed)` if `fixed`
is already centered, or `axs = centeraxes(axes(fixed))` if not.
""", :tform2deformation)
axs = map((arraysize...,)) do sz
halfsz = sz Γ· 2
IdentityUnitRange(1-halfsz:sz-halfsz)
end
return tform2deformation(tform, axs, (gridsize...,))
end
import Base: getindex
@deprecate getindex(Ο::GridDeformation{T,N,A}, xs::Vararg{Number,N}) where {T,N,A<:AbstractInterpolation} Ο(xs...)
Base.@deprecate_binding eachknot eachnode
Base.@deprecate_binding knotgrid nodegrid
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 17276 | """
`Ο = GridDeformation(u::Array{<:SVector}, axs)` creates a
deformation `Ο` for an array with axes `axs`. `u` specifies the
"pixel-wise" displacement at a series of nodes that are
evenly-spaced over the domain specified by `axs` (i.e., using
node-vectors `range(first(axs[d]), stop=last(axs[d]), length=size(u,d))`).
In particular, each corner of the array is the site of one node.
`Ο = GridDeformation(u::Array{<:SVector}, nodes)` specifies the
node-vectors manually. `u` must have dimensions equal to
`(length(nodes[1]), length(nodes[2]), ...)`.
`Ο = GridDeformation(u::Array{T<:Real}, ...)` constructs the
deformation from a "plain" `u` array. For a deformation in `N` dimensions,
`u` must have `N+1` dimensions, where the first dimension corresponds
to the displacement along each axis (and therefore `size(u,1) == N`).
Finally, `Ο = GridDeformation((u1, u2, ...), ...)` allows you to
construct the deformation using an `N`-tuple of shift-arrays, each
with `N` dimensions.
# Example
To represent a two-dimensional deformation over a spatial region `1:100 Γ 1:200`
(e.g., for an image of that size),
```julia
gridsize = (3, 5) # a coarse grid
u = 10*randn(2, gridsize...) # each displacement is 2-dimensional, typically ~10 pixels
nodes = (range(1, stop=100, length=gridsize[1]), range(1, stop=200, length=gridsize[2]))
Ο = GridDeformation(u, nodes) # this is a "naive" deformation (not ready for interpolation)
```
"""
struct GridDeformation{T,N,A<:AbstractArray,L} <: AbstractDeformation{T,N}
u::A
nodes::NTuple{N,L}
function GridDeformation{T,N,A,L}(u::AbstractArray{FV,N}, nodes::NTuple{N,L}) where {T,N,A,L,FV<:SVector}
typeof(u) == A || error("typeof(u) = $(typeof(u)), which is different from $A")
length(FV) == N || throw(DimensionMismatch("Dimensionality $(length(FV)) must match $N node vectors"))
for d = 1:N
size(u, d) == length(nodes[d]) || error("size(u) = $(size(u)), but the nodes specify a grid of size $(map(length, nodes))")
end
new{T,N,A,L}(u, nodes)
end
function GridDeformation{T,N,A,L}(u::ScaledInterpolation{FV,N}) where {T,N,A,L,FV<:SVector}
new{T,N,A,L}(u, u.ranges)
end
end
const InterpolatingDeformation{T,N,A<:AbstractInterpolation} = GridDeformation{T,N,A}
# With node ranges
function GridDeformation(u::AbstractArray{FV,N},
nodes::NTuple{N,L}) where {FV<:SVector,N,L<:AbstractVector}
T = eltype(FV)
length(FV) == N || throw(DimensionMismatch("$N-dimensional array requires SVector{$N,T}"))
GridDeformation{T,N,typeof(u),L}(u, nodes)
end
# With image axes
function GridDeformation(u::AbstractArray{FV,N},
axs::NTuple{N,L}) where {FV<:SVector,N,L<:AbstractUnitRange{<:Integer}}
T = eltype(FV)
length(FV) == N || throw(DimensionMismatch("$N-dimensional array requires SVector{$N,T}"))
nodes = ntuple(N) do d
ax = axs[d]
range(first(ax), stop=last(ax), length=size(u,d))
end
GridDeformation{T,N,typeof(u),typeof(nodes[1])}(u, nodes)
end
# Construct from a plain array
function GridDeformation(u::AbstractArray{T}, nodes::NTuple{N}) where {T<:Number,N}
ndims(u) == N+1 || error("`u` needs $(N+1) dimensions for $N-dimensional deformations")
size(u, 1) == N || error("first dimension of u must be of length $N")
uf = Array(convert_to_fixed(SVector{N,T}, u, tail(size(u))))
GridDeformation(uf, nodes)
end
# Construct from a (u1, u2, ...) tuple
function GridDeformation(u::NTuple{N,AbstractArray}, nodes::NTuple{N}) where N
ndims(u[1]) == N || error("Need $N dimensions for $N-dimensional deformations")
ua = permutedims(cat(u..., dims=N+1), (N+1,(1:N)...))
uf = Array(convert_to_fixed(ua))
GridDeformation(uf, nodes)
end
# When nodes is a vector
GridDeformation(u, nodes::AbstractVector{V}) where {V<:AbstractVector} = GridDeformation(u, (nodes...,))
function GridDeformation(u::ScaledInterpolation{FV}) where FV<:SVector
N = length(FV)
ndims(u) == N || throw(DimensionMismatch("Dimension $(ndims(u)) incompatible with vectors of length $N"))
GridDeformation{eltype(FV),N,typeof(u),typeof(u.ranges[1])}(u)
end
function Base.show(io::IO, Ο::GridDeformation{T}) where T
if Ο.u isa AbstractInterpolation
print(io, "Interpolating ")
end
print(io, Base.dims2string(size(Ο.u)), " GridDeformation{", T, "} over a domain ")
for (i, n) in enumerate(Ο.nodes)
print(io, first(n), "..", last(n))
i < length(Ο.nodes) && print(io, 'Γ')
end
end
"""
`Οs = griddeformations(u, nodes)` constructs a vector `Οs` of
seqeuential deformations. The last dimension of the array `u` should
correspond to time; `Οs[i]` is produced from `u[:, ..., i]`.
"""
function griddeformations(u::AbstractArray{T}, nodes::NTuple{N}) where {N,T<:Number}
ndims(u) == N+2 || error("Need $(N+2) dimensions for a vector of $N-dimensional deformations")
size(u,1) == N || error("First dimension of u must be of length $N")
uf = Array(convert_to_fixed(SVector{N,T}, u, Base.tail(size(u))))
griddeformations(uf, nodes)
end
function griddeformations(u::AbstractArray{FV}, nodes::NTuple{N}) where {N,FV<:SVector}
ndims(u) == N+1 || error("Need $(N+1) dimensions for a vector of $N-dimensional deformations")
length(FV) == N || throw(DimensionMismatch("Dimensionality $(length(FV)) must match $N node vectors"))
colons = ntuple(d->Colon(), Val(N))
[GridDeformation(view(u, colons..., i), nodes) for i = 1:size(u, N+1)]
end
Base.:(==)(Ο1::GridDeformation, Ο2::GridDeformation) = Ο1.u == Ο2.u && Ο1.nodes == Ο2.nodes
Base.copy(Ο::GridDeformation{T,N,A,L}) where {T,N,A,L} = (u = copy(Ο.u); GridDeformation{T,N,typeof(u),L}(u, map(copy, Ο.nodes)))
# # TODO: flesh this out
# immutable VoroiDeformation{T,N,Vu<:AbstractVector,Vc<:AbstractVector} <: AbstractDeformation{T,N}
# u::Vu
# centers::Vc
# simplexes::??
# end
# (but there are several challenges, including the lack of a continuous gradient)
"""
Οi = interpolate(Ο, BC=Flat(OnCell()))
Create a deformation `Οi` suitable for interpolation, matching the displacements
of `Ο.u` at the nodes. A quadratic interpolation scheme is used, with default
flat boundary conditions.
"""
function Interpolations.interpolate(Ο::GridDeformation, BC=Flat(OnCell()))
itp = scale(interpolate(Ο.u, BSpline(Quadratic(BC))), Ο.nodes...)
GridDeformation(itp)
end
"""
Οi = extrapolate(Ο, BC=Flat(OnCell()))
Create a deformation `Οi` suitable for interpolation, matching the displacements
of `Ο.u` at the nodes. A quadratic interpolation scheme is used, with default
flat boundary conditions and `Line` extrapolation.
!!! warning
Extrapolation beyond the supported region of `Ο` can yield poor results.
"""
function Interpolations.extrapolate(Ο::GridDeformation, BC=Flat(OnCell()))
etp = _extrapolate(Ο.u, Ο.nodes, BC)
GridDeformation(etp)
end
_extrapolate(A::AbstractArray, nodes, BC) = _extrapolate(interpolate(A, BSpline(Quadratic(BC))), nodes, BC)
_extrapolate(A::AbstractInterpolation, nodes, BC) = _extrapolate(extrapolate(A, Line()), nodes, BC)
_extrapolate(A::AbstractExtrapolation, nodes, BC) = scale(A, nodes...)
_extrapolate(A::ScaledInterpolation, nodes, BC) = _extrapolate(A.itp, nodes, BC)
"""
Οi = interpolate!(Ο, BC=InPlace(OnCell()))
Create a deformation `Οi` suitable for interpolation, matching the displacements
of `Ο.u` at the nodes. `Ο` is destroyed in the process.
A quadratic interpolation scheme is used, with the default being to use "InPlace"
boundary conditions.
!!! warning
Because of the difference in default boundary conditions,
`interpolate!(copy(Ο))` does *not* yield a result identical to `interpolate(Ο)`.
When it matters, it is recommended that you annotate such calls with
`# not same as interpolate(Ο)` in your code.
"""
function Interpolations.interpolate!(Ο::GridDeformation, BC=InPlace(OnCell()))
itp = scale(interpolate!(Ο.u, BSpline(Quadratic(BC))), Ο.nodes...)
GridDeformation(itp)
end
Interpolations.interpolate(Ο::InterpolatingDeformation, args...) = error("Ο is already interpolating")
Interpolations.interpolate!(Ο::InterpolatingDeformation, args...) = error("Ο is already interpolating")
"""
Οi = extrapolate!(Ο, BC=InPlace(OnCell()))
Create a deformation `Οi` suitable for interpolation, matching the displacements
of `Ο.u` at the nodes. `Ο` is destroyed in the process.
A quadratic interpolation scheme is used, with the default being to use "InPlace"
boundary conditions.
!!! warning
Because of the difference in default boundary conditions,
`extrapolate!(copy(Ο))` does *not* yield a result identical to `extrapolate(Ο)`.
When it matters, it is recommended that you annotate such calls with
`# not same as extrapolate(Ο)` in your code.
"""
function extrapolate!(Ο::GridDeformation, BC=InPlace(OnCell()))
etp = _extrapolate!(Ο.u, Ο.nodes, BC)
GridDeformation(etp)
end
_extrapolate!(A, nodes, BC) = _extrapolate(interpolate!(A, BSpline(Quadratic(BC))), nodes, BC)
_extrapolate!(A::AbstractInterpolation, nodes, BC) = error("Ο is already interpolating")
function vecindex(Ο::GridDeformation{T,N,A}, x::SVector{N}) where {T,N,A<:AbstractInterpolation}
x + vecindex(Ο.u, x)
end
"""
Ο = similarΟ(Οref, coefs)
Create a deformation with the same nodes as `Οref` but using `coefs` for the data.
This is primarily useful for testing purposes, e.g., computing gradients with
`ForwardDiff` where the elements are `ForwardDiff.Dual` numbers.
If `Οref` is interpolating, `coefs` will be used for the interpolation coefficients,
not the node displacements. Typically you want to create `Οref` with
Οref = interpolate!(copy(Ο0))
rather than `interpolate(Ο0)` (see [`interpolate!`](@ref)).
"""
function similarΟ(Οref, coefs::AbstractArray{<:Number})
coefsref = getcoefs(Οref)
N = ndims(coefsref)
udata = convert_to_fixed(SVector{N,eltype(coefs)}, coefs, size(coefsref))
return similarΟ(Οref, udata)
end
similarΟ(Οref, udata::AbstractArray{<:SVector}) = _similarΟ(Οref, udata)
_similarΟ(Οref::GridDeformation, udata) = GridDeformation(udata, Οref.nodes)
function _similarΟ(Οref::InterpolatingDeformation, udata)
scaleref = Οref.u
itpref = scaleref.itp
itp = Interpolations.BSplineInterpolation(floattype(eltype(udata)), udata, itpref.it, itpref.parentaxes)
return GridDeformation(scale(itp, Οref.nodes...))
end
# @generated function Base.getindex(Ο::GridDeformation{T,N,A}, xs::Vararg{Number,N}) where {T,N,A<:AbstractInterpolation}
# xindexes = [:(xs[$d]) for d = 1:N]
# Οxindexes = [:(xs[$d]+ux[$d]) for d = 1:N]
# quote
# $(Expr(:meta, :inline))
# ux = Ο.u($(xindexes...))
# SVector($(Οxindexes...))
# end
# end
@inline function (Ο::GridDeformation{T,N,A})(xs::Vararg{Number,N}) where {T,N,A<:AbstractInterpolation}
return Ο.u(xs...) .+ xs
end
function (Ο::GridDeformation{T,N})(xs::Vararg{Number,N}) where {T,N}
error("call `Οi = interpolate(Ο)` and use `Οi` for evaluating the deformation.")
end
@inline (Ο::GridDeformation{T,N})(xs::SVector{N}) where {T,N} = Ο(Tuple(xs)...)
# Composition Ο_old(Ο_new(x))
function (Ο_old::GridDeformation{T1,N,A})(Ο_new::GridDeformation{T2,N}) where {T1,T2,N,A<:AbstractInterpolation}
uold, nodes = Ο_old.u, Ο_old.nodes
if !isa(Ο_new.u, AbstractInterpolation)
Ο_new.nodes == nodes || error("If nodes are incommensurate, Ο_new must be interpolating")
end
ucomp = _compose(uold, Ο_new.u, nodes)
GridDeformation(ucomp, nodes)
end
(Ο_old::GridDeformation)(Ο_new::GridDeformation) =
error("Ο_old must be interpolating")
function _compose(uold, unew, nodes)
sz = map(length, nodes)
x = node(nodes, 1)
out = _compose(uold, unew, x, 1)
ucomp = similar(uold, typeof(out))
for I in CartesianIndices(sz)
ucomp[I] = _compose(uold, unew, node(nodes, I), I)
end
ucomp
end
function _compose(uold, unew, x, i)
dx = lookup(unew, x, i)
dx + vecindex(uold, x+dx)
end
lookup(u::AbstractInterpolation, x, i) = vecindex(extrapolate(u,Flat()), x) # using extrpolate to resolve BoundsError
lookup(u, x, i) = u[i]
@inline function node(nodes::NTuple{N}, i::Integer) where N
I = CartesianIndices(map(length, nodes))[i]
return node(nodes, I)
end
@inline function node(nodes::NTuple{N}, I::CartesianIndex{N}) where N
return SVector(map(getindex, nodes, Tuple(I)))
end
arraysize(nodes::NTuple) = map(n->Int(maximum(n) - minimum(n) + 1), nodes)
struct NodeIterator{K,N}
nodes::K
iter::CartesianIndices{N}
end
"""
iter = eachnode(Ο)
Create an iterator for visiting all the nodes of `Ο`.
"""
eachnode(Ο::GridDeformation) = eachnode(Ο.nodes)
eachnode(nodes) = NodeIterator(nodes, CartesianIndices(map(length, nodes)))
function Base.iterate(ki::NodeIterator)
iterate(ki.iter) == nothing && return nothing
I, state = iterate(ki.iter)
k = node(ki.nodes, I)
k, state
end
function Base.iterate(ki::NodeIterator, state)
iterate(ki.iter, state) == nothing && return nothing
I, state = iterate(ki.iter, state)
k = node(ki.nodes, I)
k, state
end
"""
Οnew = regrid(Ο, gridsize)
Reparametrize the deformation `Ο` so that it has a grid size `gridsize`.
# Example
```
Οnew = regrid(Ο, (13,11,7))
```
for a 3-dimensional deformation `Ο`.
"""
function regrid(Ο::InterpolatingDeformation{T,N}, sz::Dims{N}) where {T,N}
nodes_new = map((r,n)->range(first(r), stop=last(r), length=n), Ο.nodes, sz)
u = Array{SVector{N,T},N}(undef, sz)
for (i, k) in enumerate(eachnode(nodes_new))
u[i] = Ο.u(k...)
end
GridDeformation(u, nodes_new)
end
regrid(Ο::GridDeformation{T,N}, sz::Dims{N}) where {T,N} = regrid(interpolate(Ο), sz)
"""
`Ο_c = Ο_old(Ο_new)` computes the composition of two deformations,
yielding a deformation for which `Ο_c(x) β Ο_old(Ο_new(x))`. `Ο_old`
must be interpolating (see `interpolate(Ο_old)`).
`Ο_c, g = compose(Ο_old, Ο_new)` also yields the gradient `g` of `Ο_c`
with respect to `u_new`. `g[i,j,...]` is the Jacobian matrix at grid
position `(i,j,...)`.
You can use `_, g = compose(identity, Ο_new)` if you need the gradient
for when `Ο_old` is equal to the identity transformation.
"""
function compose(Ο_old::GridDeformation{T1,N,A}, Ο_new::GridDeformation{T2,N}) where {T1,T2,N,A<:AbstractInterpolation}
u, nodes = Ο_old.u, Ο_old.nodes
Ο_new.nodes == nodes || error("Not yet implemented for incommensurate nodes")
unew = Ο_new.u
sz = map(length, nodes)
x = node(nodes, 1)
out = _compose(u, unew, x, 1)
ucomp = similar(u, typeof(out))
TG = similar_type(SArray, eltype(out), Size(N, N))
g = Array{TG}(undef, size(u))
gtmp = Vector{typeof(out)}(undef, N)
eyeN = TG(1.0I) # eye(TG)
for I in CartesianIndices(sz)
x = node(nodes, I)
dx = lookup(unew, x, I)
y = x + dx
ucomp[I] = dx + vecindex(u, y)
vecgradient!(gtmp, u, y)
g[I] = hcat(ntuple(d->gtmp[d], Val(N))...) + eyeN
end
GridDeformation(ucomp, nodes), g
end
"""
`Οsi_old` and `Οs_new` will generate `Οs_c` vector and `g` vector
`Οsi_old` is interpolated ``Οs_old`:
e.g) `Οsi_old = map(Interpolations.interpolate!, copy(Οs_old))`
"""
function compose(Οsi_old::AbstractVector{G1}, Οs_new::AbstractVector{G2}) where {G1<:GridDeformation, G2<:GridDeformation}
n = length(Οs_new)
length(Οsi_old) == n || throw(DimensionMismatch("vectors-of-deformations must have the same length, got $(length(Οsi_old)) and $n"))
Οc1, g1 = compose(first(Οsi_old), first(Οs_new))
Οs_c = Vector{typeof(Οc1)}(undef, n)
gs = Vector{typeof(g1)}(undef, n)
Οs_c[1], gs[1] = Οc1, g1
for i in 2:n
Οs_c[i], gs[i] = compose(Οsi_old[i], Οs_new[i]);
end
Οs_c, gs
end
function compose(f::Function, Ο_new::GridDeformation{T,N}) where {T,N}
f == identity || error("Only the identity function is supported")
Ο_new, fill(similar_type(SArray, T, Size(N, N))(1.0I), size(Ο_new.u))
end
"""
Ο = tform2deformation(tform, imgaxes, gridsize)
Construct a deformation `Ο` from the affine transform `tform` suitable
for warping arrays with axes `imgaxes`. The array of grid points defining `Ο` has
size specified by `gridsize`. The dimensionality of `tform` must
match that specified by `arraysize` and `gridsize`.
Note it's more accurate to `warp(img, tform)` directly; the main use of this function
is to initialize a GridDeformation for later optimization.
"""
function tform2deformation(tform::AffineMap{M,V},
imgaxes::NTuple{N,<:AbstractUnitRange},
gridsize::NTuple{N,<:Integer}) where {M,V,N}
A = deltalinear(tform.linear)
u = Array{SVector{N,eltype(M)}}(undef, gridsize...)
nodes = map(imgaxes, gridsize) do ax, g
range(first(ax), stop=last(ax), length=g)
end
for I in CartesianIndices(gridsize)
x = SVector(map(getindex, nodes, Tuple(I)))
u[I] = A*x + tform.translation
end
GridDeformation(u, nodes)
end
"""
deltalinear(linear)
Compute the difference between `linear` and the identity transformation.
"""
deltalinear(scale::Number) = (scale - 1)*I
deltalinear(mtrx::AbstractMatrix) = mtrx - I
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 6349 | using CoordinateTransformations, Requires
import Interpolations: AbstractExtrapolation
export TransformedArray
"""
A `TransformedArray` is an `AbstractArray` type with an affine
coordinate shift: `A[i,j]` evaluates the "parent" array `P` used to
construct `A` at a location `x,y` given by `[x, y] = tfm*[i,j]`. It
therefore allows you to use lazy-evaluation to perform affine
coordinate transformations.
```
A = TransformedArray(etp, tfm)
```
where `etp` is an extrapolation object as defined by the
Interpolations package, and `tfm` is an `AffineMap`.
"""
struct TransformedArray{T,N,E<:AbstractExtrapolation,Tf<:AffineMap} <: AbstractArray{T,N}
data::E
tform::Tf
end
TransformedArray(etp::AbstractExtrapolation{T,N}, a::AffineMap) where {T,N} =
TransformedArray{T,N,typeof(etp),typeof(a)}(etp, a)
function TransformedArray(A::AbstractInterpolation, a::AffineMap)
etp = extrapolate(A, NaN)
TransformedArray(etp, a)
end
function TransformedArray(A::AbstractArray, a::AffineMap)
itp = interpolate(A, BSpline(Linear()))
TransformedArray(itp, a)
end
Base.size(A::TransformedArray) = size(A.data)
function Base.getindex(A::TransformedArray{T,2}, i::Number, j::Number) where T
x, y = A.tform([i,j]) #tformfwd(A.tform, i, j)
A.data(x, y)
end
function Base.getindex(A::TransformedArray{T,3}, i::Number, j::Number, k::Number) where T
x, y, z = A.tform([i,j,k]) #tformfwd(A.tform, i, j, k)
A.data(x, y, z)
end
Base.similar(A::TransformedArray, ::Type{T}, dims::Dims) where T = Array{T}(dims)
"""
`transform(A, tfm; origin_dest=center(A), origin_src=center(A)`
computes the transformed `A` over its entire domain. By default the
transformation is assumed to operate around the center of the input
array, and output coordinates are referenced relative to the center of
the output.
If `A` is a TransformedArray, then the syntax is just `transform(A;
origin_dest=center(A), origin_src=center(A))`. This is different from
the behavior of `A[:,:]`, which assumes the origin of coordinates to
be all-zeros. To obtain behavior equivalent to `getindex`, supply
zero-vectors for both of them. Alternatively to make `getindex` behave
as `transform`, offset the origin of the transform used to construct
`A` by
```
origin_src - tform.linear*origin_dest
```
"""
function transform(A::TransformedArray{T,N}; kwargs...) where {T,N}
y = A.tform(ones(Int, N))
yt = (y...,)::NTuple{N,eltype(y)}
a = A.data(yt...)
dest = Array{typeof(a)}(undef, size(A))
transform!(dest, A; kwargs...)
dest
end
transform(A, a::AffineMap; kwargs...) = transform(TransformedArray(A, a); kwargs...)
"""
`transform!(dest, src, tfm; origin_dest=center(dest),
origin_src=center(src))` is like `transform`, but using a
pre-allocated output array `dest`.
If `src` is already a TransformedArray, use `transform!(dest, src;
kwargs...)`.
"""
function transform!(dest::AbstractArray{S,N},
src::TransformedArray{T,N};
origin_dest = center(dest),
origin_src = center(src)) where {S,T,N}
tform = src.tform
if tform.linear == Matrix{T}(I, N, N) && tform.translation == zeros(N) && size(dest) == size(src) && origin_dest == origin_src
copyto!(dest, src)
return dest
end
offset = tform.translation - tform.linear*origin_dest + origin_src
_transform!(dest, src, offset)
end
transform!(dest, src, a::AffineMap; kwargs...) = transform!(dest, TransformedArray(src, a); kwargs...)
@require ImageMetadata="bc367c6b-8a6b-528e-b4bd-a4b897500b49" begin
transform(A::ImageMetadata.ImageMeta, a::AffineMap; kwargs...) = ImageMetadata.copyproperties(A, transform(ImageMetadata.data(A), a; kwargs...))
transform!(dest, A::ImageMetadata.ImageMeta, a::AffineMap; kwargs...) = ImageMetadata.copyproperties(A, transform!(dest, ImageMetadata.data(A), a; kwargs...))
end
# For a FilledExtrapolation, this is designed to (usually) avoid evaluating
# the interpolation unless it is in-bounds. This often improves performance.
@generated function _transform!(dest::AbstractArray{S,N},
src::TransformedArray{T,N,E},
offset) where {S,T,N,E<:Interpolations.FilledExtrapolation}
# Initialize the final column of s "matrix," e.g., s_1_3 = A_1_3 + o_3
# s stands for source-coordinates. The first "column," s_d_1, corresponds
# to the actual interpolation position. The later columns simply cache
# previous computations.
sN = ntuple(i->Expr(:(=), Symbol(string("s_",i,"_$N")), Expr(:call, :+, Symbol(string("A_",i,"_$N")), Symbol(string("o_",i)))), N)
quote
tform = src.tform
data = src.data
@nexprs $N d->(o_d = offset[d])
@nexprs $N j->(@nexprs $N i->(A_i_j = tform.linear[i,j]))
fill!(dest, data.fillvalue)
$(sN...)
@nloops($N,i,d->(d>1 ? (1:size(dest,d)) : (imin:imax)),
# The pre-expression chooses the range within each column that will be in-bounds
d->(d > 2 ? (@nexprs $N e->s_e_{d-1}=A_e_{d-1}+s_e_d) :
d == 2 ? begin
imin = 1
imax = size(dest,1)
@nexprs $N e->((imin, imax) = irange(imin, imax, A_e_1, s_e_2, size(data, e)))
@nexprs $N e->(s_e_1=A_e_1*imin+s_e_d)
end :
nothing), # pre
d->(@nexprs $N e->(s_e_d += A_e_d)), # post
# Perform the interpolation of the source data
@inbounds (@nref $N dest i) = (@ncall $N data d->s_d_1)
)
dest
end
end
center(A::AbstractArray) = [(size(A,d)+1)/2 for d = 1:ndims(A)]
# Find i such that
# imin <= i <= imax
# 1 <= coef*i+offset <= upper
function irange(imin::Int, imax::Int, coef, offset, upper)
thresh = 10^4/typemax(Int) # needed to avoid InexactError for results with abs() bigger than typemax
if coef > thresh
return max(imin, floor(Int, (1-offset)/coef)), min(imax, ceil(Int, (upper-offset)/coef))
elseif coef < -thresh
return max(imin, floor(Int, (upper-offset)/coef)), min(imax, ceil(Int, (1-offset)/coef))
else
if 1 <= offset <= upper
return imin, imax
else
return 1, 0 # empty range
end
end
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2275 | """
`Οs = tinterpolate(Οsindex, tindex, nstack)` uses linear
interpolation/extrapolation in time to "fill out" to times `1:nstack`
a deformation defined intermediate times `tindex` . Note that
`Οs[tindex] == Οsindex`.
"""
function tinterpolate(Οsindex, tindex, nstack)
Οs = Vector{eltype(Οsindex)}(undef, nstack)
# Before the first tindex
k = 0
for i in 1:tindex[1]-1
Οs[k+=1] = Οsindex[1]
end
# Within tindex
for i in 2:length(tindex)
Ο1 = Οsindex[i-1]
Ο2 = Οsindex[i]
Ξt = tindex[i] - tindex[i-1]
for j = 0:Ξt-1
Ξ± = convert(eltype(eltype(Ο1.u)), j/Ξt)
Οs[k+=1] = GridDeformation((1-Ξ±)*Ο1.u + Ξ±*Ο2.u, Ο2.nodes)
end
end
# After the last tindex
for i in tindex[end]:nstack
Οs[k+=1] = Οsindex[end]
end
return Οs
end
"""
Οsβ² = medfilt(Οs)
Perform temporal median-filtering on a sequence of deformations. This is a form of smoothing
that does not "round the corners" on sudden (but persistent) shifts.
"""
function medfilt(Οs::AbstractVector{D}, n) where D<:AbstractDeformation
nhalf = n>>1
2nhalf+1 == n || error("filter size must be odd")
T = eltype(eltype(D))
v = Array{T}(undef, ndims(D), n)
vs = ntuple(d->view(v, d, :), ndims(D))
Ο1 = copy(Οs[1])
Οout = Vector{typeof(Ο1)}(undef, length(Οs))
Οout[1] = Ο1
_medfilt!(Οout, Οs, v, vs) # function barrier due to instability of vs
end
@noinline function _medfilt!(Οout, Οs, v, vs::NTuple{N,T}) where {N,T}
n = size(v,2)
nhalf = n>>1
tmp = Vector{eltype(T)}(undef, N)
u1 = Οout[1].u
for i = 1+nhalf:length(Οs)-nhalf
u = similar(u1)
for I in eachindex(Οs[i].u)
for j = -nhalf:nhalf
utmp = Οs[i+j].u[I]
for d = 1:N
v[d, j+nhalf+1] = utmp[d]
end
end
for d = 1:N
tmp[d] = median!(vs[d])
end
u[I] = tmp
end
Οout[i] = GridDeformation(u, Οs[i].nodes)
end
# Copy the beginning and end
for i = 2:nhalf # we did [1] in medfilt
Οout[i] = copy(Οs[i])
end
for i = length(Οs)-nhalf+1:length(Οs)
Οout[i] = copy(Οs[i])
end
Οout
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 6615 | """
caxs = centeraxes(axs)
Return a set of axes centered on zero. Specifically, if `axs[i]` is a range,
then `caxs[i]` is a UnitRange of the same length that is approximately symmetric
around 0.
"""
centeraxes(axs) = map(centeraxis, axs)
function centeraxis(ax)
f, l = first(ax), last(ax)
n = l - f + 1
nhalf = (n+1) Γ· 2
return 1-nhalf:n-nhalf
end
function extract1(u::AbstractArray{V}, N, ssz) where V<:SVector
if ndims(u) == N+1
Ο = GridDeformation(reshape(u, size(u)[1:end-1]), ssz)
else
Ο = GridDeformation(u, ssz)
end
Ο
end
extract1(Οs::Vector{D}, N, ssz) where {D<:AbstractDeformation} = Οs[1]
function extracti(u::AbstractArray{V}, i, ssz) where V<:SVector
colons = [Colon() for d = 1:ndims(u)-1]
GridDeformation(u[colons..., i], ssz)
end
extracti(Οs::Vector{D}, i, _) where {D<:AbstractDeformation} = Οs[i]
function checkΟdims(u::AbstractArray{V}, N, n) where V<:SVector
ndims(u) == N+1 || error("u's dimensionality $(ndims(u)) is inconsistent with the number of spatial dimensions $N of the image")
if size(u)[end] != n
error("Must have one `u` slice per image")
end
nothing
end
checkΟdims(Οs::Vector{D}, N, n) where {D<:AbstractDeformation} = length(Οs) == n || error("Must have one `Ο` per image")
# TODO?: do we need to return real values beyond-the-edge for a SubArray?
floattype(::Type{T}) where T<:AbstractFloat = T
floattype(::Type{<:Integer}) = Float64
floattype(::Type{SVector{N,T}}) where {N,T} = floattype(T)
nanvalue(::Type{T}) where T<:Real = convert(promote_type(T, Float32), NaN)
nanvalue(::Type{C}) where C<:AbstractGray = Gray(nanvalue(eltype(C)))
nanvalue(::Type{C}) where C<:AbstractRGB = (x = nanvalue(eltype(C)); RGB(x, x, x))
to_etp(img) = extrapolate(interpolate(img, BSpline(Linear())), nanvalue(eltype(img)))
to_etp(itp::AbstractInterpolation) = extrapolate(itp, convert(promote_type(eltype(itp), Float32), NaN))
to_etp(etp::AbstractExtrapolation) = etp
to_etp(img, A::AffineMap) = TransformedArray(to_etp(img), A)
getcoefs(Ο::GridDeformation) = getcoefs(Ο.u)
getcoefs(itp::AbstractInterpolation) = getcoefs(itp.itp)
getcoefs(itp::Interpolations.BSplineInterpolation) = itp.coefs
getcoefs(u::AbstractArray{<:SVector}) = u
# Extensions to Interpolations and StaticArrays
@generated function vecindex(A::AbstractArray, x::SVector{N}) where N
args = [:(x[$d]) for d = 1:N]
meta = Expr(:meta, :inline)
quote
$meta
getindex(A, $(args...))
end
end
@generated function vecindex(A::AbstractInterpolation, x::SVector{N}) where N
args = [:(x[$d]) for d = 1:N]
meta = Expr(:meta, :inline)
quote
$meta
A($(args...))
end
end
@generated function vecgradient!(g, itp::AbstractArray, x::SVector{N}) where N
args = [:(x[$d]) for d = 1:N]
meta = Expr(:meta, :inline)
quote
$meta
Interpolations.gradient!(g, itp, $(args...))
end
end
function convert_to_fixed(u::Array{T}, sz=size(u)) where T
N = sz[1]
convert_to_fixed(SVector{N, T}, u, tail(sz))
end
# Unlike the one above, this is type-stable
function convert_to_fixed(::Type{SVector{N,T}}, u::AbstractArray{T}, sz=tail(size(u))) where {T,N}
reshape(reinterpret(SVector{N,T}, vec(u)), sz)
end
@generated function copy_ctf!(dest::Array{SVector{N,T}}, src::Array) where {N,T}
exvec = [:(src[offset+$d]) for d=1:N]
quote
for i = 1:length(dest)
offset = (i-1)*N
dest[i] = SVector($(exvec...))
end
dest
end
end
function convert_from_fixed(uf::AbstractArray{SVector{N,T}}, sz=size(uf)) where {N,T}
if isbitstype(T) && isa(uf, Array)
u = reshape(reinterpret(T, vec(uf)), (N, sz...))
else
u = Array{T}(undef, N, sz...)
for i = 1:length(uf)
for d = 1:N
u[d,i] = uf[i][d]
end
end
end
u
end
# # Note this is a bit unsafe as it requires the user to specify C correctly
# @generated function Base.convert{R,C,T}(::Type{SMatrix{Tuple{R,C},T}}, v::Vector{SVector{R,T}})
# args = [:(Tuple(v[$d])) for d = 1:C]
# :(SMatrix{Tuple{R,C},T}(($(args...),)))
# end
# Wrapping functions to interface with CoordinateTransfromations instead of AffineTransfroms module
tformeye(m::Int) = AffineMap(Matrix{Float64}(I,m,m), zeros(m))
tformtranslate(trans::Vector) = (m = length(trans); AffineMap(Matrix{Float64}(I,m,m), trans))
rotation2(angle) = RotMatrix(angle)
function tformrotate(angle)
A = RotMatrix(angle)
AffineMap(A, zeros(eltype(A),2))
end
function rotationparameters(R::Matrix)
size(R, 1) == size(R, 2) || error("Matrix must be square")
if size(R, 1) == 2
return [atan(-R[1,2],R[1,1])]
elseif size(R, 1) == 3
aa = AngleAxis(R)
return rotation_angle(aa)*rotation_axis(aa)
else
error("Rotations in $(size(R, 1)) dimensions not supported")
end
end
function rotation3(axis::Vector{T}, angle) where T
n = norm(axis)
axisn = n>0 ? axis/n : (tmp = zeros(T,length(axis)); tmp[1] = 1; tmp)
AngleAxis(angle, axisn...)
end
function rotation3(axis::Vector{T}) where T
n = norm(axis)
axisn = n>0 ? axis/n : (tmp = zeros(typeof(one(T)/1),length(axis)); tmp[1] = 1; tmp)
AngleAxis(n, axisn...)
end
function tformrotate(axis::Vector, angle)
if length(axis) == 3
return AffineMap(rotation3(axis, angle), zeros(eltype(axis),3))
else
error("Dimensionality ", length(axis), " not supported")
end
end
function tformrotate(x::Vector)
if length(x) == 3
return AffineMap(rotation3(x), zeros(eltype(x),3))
else
error("Dimensionality ", length(x), " not supported")
end
end
#=
# The following assumes uaxis is normalized
function _rotation3(uaxis::Vector, angle)
if length(uaxis) != 3
error("3d rotations only")
end
ux, uy, uz = uaxis[1], uaxis[2], uaxis[3]
c = cos(angle)
s = sin(angle)
cm = one(typeof(c)) - c
R = [c+ux*ux*cm ux*uy*cm-uz*s ux*uz*cm+uy*s;
uy*ux*cm+uz*s c+uy*uy*cm uy*uz*cm-ux*s;
uz*ux*cm-uy*s uz*uy*cm+ux*s c+uz*uz*cm]
end
function rotation3{T}(axis::Vector{T}, angle)
n = norm(axis)
axisn = n>0 ? axis/n : (tmp = zeros(T,length(axis)); tmp[1] = 1)
_rotation3(axisn, angle)
end
# Angle/axis representation where the angle is the norm of the vector (so axis is not normalized)
function rotation3{T}(axis::Vector{T})
n = norm(axis)
axisn = n>0 ? axis/n : (tmp = zeros(typeof(one(T)/1),length(axis)); tmp[1] = 1; tmp)
_rotation3(axisn, n)
end
=#
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2267 | """
img = nodegrid(T, nodes)
img = nodegrid(nodes)
img = nodegrid([T], Ο)
Returns an image `img` which has value 1 at points that are "on the
nodes." If `nodes`/`Ο` is two-dimensional, the image will
consist of grid lines; for three-dimensional inputs, the image will
have grid planes.
The meaning of "on the nodes" is that `x[d] == nodes[d][i]` for some
dimension `d` and node index `i`. An exception is made for the edge
values, which are brought inward by one pixel to prevent complete loss
under subpixel deformations.
Optionally specify the element type `T` of `img`.
See also [`warpgrid`](@ref).
"""
function nodegrid(::Type{T}, nodes::NTuple{N,AbstractRange}) where {T,N}
@assert all(r->first(r)==1, nodes)
inds = map(r->Base.OneTo(ceil(Int, last(r))), nodes)
img = Array{T}(undef, map(length, inds))
fill!(img, zero(T))
for idim = 1:N
indexes = Any[inds...]
indexes[idim] = map(x->clamp(round(Int, x), first(inds[idim])+1, last(inds[idim])-1), nodes[idim])
img[indexes...] .= one(T)
end
img
end
nodegrid(::Type{T}, Ο::GridDeformation) where {T} = nodegrid(T, Ο.nodes)
nodegrid(arg) = nodegrid(Bool, arg)
"""
img = warpgrid(Ο; [scale=1, showidentity=false])
Returns an image `img` that permits visualization of the deformation
`Ο`. The output is a warped rectangular grid with nodes centered on
the control points as specified by the nodes of `Ο`. If `Ο` is a
two-dimensional deformation, the image will consist of grid lines; for
a three-dimensional deformation, the image will have grid planes.
`scale` multiplies `Ο.u`, effectively making the deformation stronger
(for `scale > 1`). This can be useful if you are trying to visualize
subtle changes. If `showidentity` is `true`, an RGB image is returned
that has the warped grid in magenta and the original grid in green.
See also [`nodegrid`](@ref).
"""
function warpgrid(Ο; scale=1, showidentity::Bool=false)
img = nodegrid(Ο)
if scale != 1
Ο = GridDeformation(scale*Ο.u, Ο.nodes)
end
wimg = warp(img, Ο)
if showidentity
n = ndims(img)+1
return reshape(reinterpret(RGB{Float32}, permutedims(cat(wimg, img, wimg, dims=n), (n,1:ndims(img)...))),(size(img)...,))
end
wimg
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 5770 |
"""
`wimg = warp(img, Ο)` warps the array `img` according to the
deformation `Ο`.
"""
function warp(img::AbstractArray, Ο::AbstractDeformation)
wimg = WarpedArray(img, Ο)
dest = similar(img, warp_type(img))
warp!(dest, wimg)
end
warp_type(img::AbstractArray{T}) where {T<:AbstractFloat} = T
warp_type(img::AbstractArray{T}) where {T<:Number} = Float32
warp_type(img::AbstractArray{C}) where {C<:Colorant} = warp_type(img, eltype(eltype(C)))
warp_type(img::AbstractArray{C}, ::Type{T}) where {C<:Colorant, T<:AbstractFloat} = C
warp_type(img::AbstractArray{C}, ::Type{T}) where {C<:Colorant, T} = base_colorant_type(C){Float32}
"""
`warp!(dest, src::WarpedArray)` instantiates a `WarpedArray` in the output `dest`.
"""
function warp!(dest::AbstractArray{T,N}, src::WarpedArray) where {T,N}
axes(dest) == axes(src) || throw(DimensionMismatch("dest must have the same axes as src"))
destiter = CartesianIndices(axes(dest))
I, deststate = iterate(destiter)
for ux in eachvalue(src.Ο.u)
dest[I] = src.data((Tuple(I) .+ ux)...)
if deststate == last(destiter)
break
end
I, deststate = iterate(destiter, deststate)
end
return dest
end
"""
`warp!(dest, img, Ο)` warps `img` using the deformation `Ο`. The
result is stored in `dest`.
"""
function warp!(dest::AbstractArray, img::AbstractArray, Ο::AbstractDeformation)
wimg = WarpedArray(to_etp(img), Ο)
warp!(dest, wimg)
end
"""
`warp!(dest, img, tform, Ο)` warps `img` using a combination of the affine transformation `tform` followed by deformation with `Ο`. The result is stored in `dest`.
"""
function warp!(dest::AbstractArray, img::AbstractArray, A::AffineMap, Ο::AbstractDeformation)
wimg = WarpedArray(to_etp(img, A), Ο)
warp!(dest, wimg)
end
"""
`warp!(T, io, img, Οs; [nworkers=1])` writes warped images to
disk. `io` is an `IO` object or HDF5/JLD2 dataset (the latter must be
pre-allocated using `d_create` to be of the proper size). `img` is an
image sequence, and `Οs` is a vector of deformations, one per image in
`img`. If `nworkers` is greater than one, it will spawn additional
processes to perform the deformation.
An alternative syntax is `warp!(T, io, img, uarray; [nworkers=1])`,
where `uarray` is an array of `u` values with `size(uarray)[end] ==
nimages(img)`.
"""
function warp!(::Type{T}, dest::Union{IO,HDF5.Dataset,JLD2.JLDFile}, img, Οs; nworkers=1) where T
n = nimages(img)
saxs = indices_spatial(img)
ssz = map(length, saxs)
if n == 1
Ο = extract1(Οs, sdims(img), saxs)
destarray = Array{T}(undef, ssz)
warp!(destarray, img, Ο)
warp_write(dest, destarray)
return nothing
end
checkΟdims(Οs, sdims(img), n)
if nworkers > 1
return _warp!(T, dest, img, Οs, nworkers)
end
destarray = Array{T}(undef, ssz)
@showprogress 1 "Stacks:" for i = 1:n
Ο = extracti(Οs, i, saxs)
warp!(destarray, view(img, timeaxis(img)(i)), Ο)
warp_write(dest, destarray, i)
end
nothing
end
warp!(::Type{T}, dest::Union{IO,HDF5.Dataset,JLD2.JLDFile}, img, u::AbstractArray{R}; kwargs...) where {T,R<:Real} = warp!(T, dest, img, Array(convert_to_fixed(u)); kwargs...)
warp!(dest::Union{HDF5.Dataset,JLD2.JLDFile}, img, u; nworkers=1) =
warp!(eltype(dest), dest, img, u; nworkers=nworkers)
function _warp!(::Type{T}, dest, img, Οs, nworkers) where T
n = nimages(img)
saxs = indices_spatial(img)
ssz = map(length, saxs)
wpids = addprocs(nworkers)
simg = Vector{Any}()
swarped = Vector{Any}()
rrs = Vector{RemoteChannel}()
mydir = splitdir(@__FILE__)[1]
pkgbase = String(chop(mydir,tail=4))
for p in wpids
remotecall_fetch(Main.eval, p, :(using Pkg))
remotecall_fetch(Main.eval, p, :(Pkg.activate($pkgbase)))
remotecall_fetch(Main.eval, p, :(push!(LOAD_PATH, $mydir)))
remotecall_fetch(Main.eval, p, :(using RegisterDeformation))
push!(simg, SharedArray{eltype(img)}(ssz, pids=[myid(),p]))
push!(swarped, SharedArray{T}(ssz, pids=[myid(),p]))
end
nextidx = 0
getnextidx() = nextidx += 1
writing_mutex = RemoteChannel()
prog = Progress(n, 1, "Stacks:")
@sync begin
for i = 1:nworkers
p = wpids[i]
src = simg[i]
warped = swarped[i]
@async begin
while (idx = getnextidx()) <= n
Ο = extracti(Οs, idx, saxs)
copyto!(src, view(img, timeaxis(img)(idx)))
remotecall_fetch(warp!, p, warped, src, Ο)
put!(writing_mutex, true)
warp_write(dest, warped, idx)
update!(prog, idx)
take!(writing_mutex)
end
end
end
end
finish!(prog)
nothing
end
warp_write(io::IO, destarray) = write(io, destarray)
function warp_write(io::IO, destarray, i)
offset = (i-1)*length(destarray)*sizeof(eltype(destarray))
seek(io, offset)
write(io, destarray)
end
function warp_write(dest, destarray, i)
colons = [Colon() for d = 1:ndims(destarray)]
dest[colons..., i] = destarray
end
"""
`Atrans = translate(A, displacement)` shifts `A` by an amount
specified by `displacement`. Specifically, in simple cases `Atrans[i,
j, ...] = A[i+displacement[1], j+displacement[2], ...]`. More
generally, `displacement` is applied only to the spatial coordinates
of `A`.
`NaN` is filled in for any missing pixels.
"""
function translate(A::AbstractArray, displacement::DimsLike)
disp = zeros(Int, ndims(A))
disp[[coords_spatial(A)...]] = displacement
indx = UnitRange{Int}[ axes(A, i) .+ disp[i] for i = 1:ndims(A) ]
get(A, indx, NaN)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1667 | ### WarpedArray
"""
A `WarpedArray` `W` is an AbstractArray for which `W[x] = A[Ο(x)]` for
some parent array `A` and some deformation `Ο`. The object is created
lazily, meaning that computation of the displaced values occurs only
when you ask for them explicitly.
Create a `WarpedArray` like this:
```
W = WarpedArray(A, Ο)
```
where
- The first argument `A` is an `AbstractExtrapolation` that can be
evaluated anywhere. See the Interpolations package.
- Ο is an `AbstractDeformation`
"""
struct WarpedArray{T,N,A<:Extrapolatable,D<:AbstractDeformation} <: AbstractArray{T,N}
data::A
Ο::D
end
# User already supplied an interpolatable Ο
function WarpedArray(data::Extrapolatable{T,N},
Ο::GridDeformation{S,N,A}) where {T,N,S,A<:AbstractInterpolation}
WarpedArray{T,N,typeof(data),typeof(Ο)}(data, Ο)
end
# Create an interpolatable Ο
function WarpedArray(data::Extrapolatable{T,N}, Ο::GridDeformation) where {T,N}
itp = scale(interpolate(Ο.u, BSpline(Quadratic(Flat(OnCell())))), Ο.nodes...)
Οβ² = GridDeformation(itp, Ο.nodes)
WarpedArray{T,N,typeof(data),typeof(Οβ²)}(data, Οβ²)
end
WarpedArray(data, Ο::GridDeformation) = WarpedArray(to_etp(data), Ο)
Base.size(A::WarpedArray) = size(A.data)
Base.size(A::WarpedArray, i::Integer) = size(A.data, i)
Base.axes(A::WarpedArray) = axes(A.data)
Base.axes(A::WarpedArray, i::Integer) = axes(A.data, i)
@inline function Base.getindex(W::WarpedArray{T,N}, I::Vararg{Number,N}) where {T,N}
Οx = W.Ο(I...)
return W.data(Οx...)
end
ImageAxes.getindex!(dest, W::WarpedArray{T,N}, coords::Vararg{Any,N}) where {T,N} =
Base._unsafe_getindex!(dest, W, coords...)
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 12326 | module RegisterMismatch
import Base: copy, eltype, isnan, ndims
using ImageCore
using ..RFFT, FFTW
using ..RegisterCore, PaddedViews, MappedArrays
using Printf
using Reexport
@reexport using ..RegisterMismatchCommon
import ..RegisterMismatchCommon: mismatch0, mismatch, mismatch_apertures
export CMStorage,
fillfixed!, mismatch0, mismatch, mismatch!, mismatch_apertures, mismatch_apertures!
"""
The major types and functions exported are:
- `mismatch` and `mismatch!`: compute the mismatch between two images
- `mismatch_apertures` and `mismatch_apertures!`: compute apertured mismatch between two images
- `mismatch0`: simple direct mismatch calculation with no shift
- `nanpad`: pad the smaller image with NaNs
- `highpass`: highpass filter an image
- `correctbias!`: replace corrupted mismatch data (due to camera bias inhomogeneity) with imputed data
- `truncatenoise!`: threshold mismatch computation to prevent problems from roundoff
- `aperture_grid`: create a regular grid of apertures
- `allocate_mmarrays`: create storage for output of `mismatch_apertures!`
- `CMStorage`: a type that facilitates re-use of intermediate storage during registration computations
"""
RegisterMismatch
FFTW.set_num_threads(min(Sys.CPU_THREADS, 8))
set_FFTPROD([2, 3])
mutable struct NanCorrFFTs{T<:AbstractFloat,N,RCType<:RCpair{T,N}}
I0::RCType
I1::RCType
I2::RCType
end
copy(x::NanCorrFFTs) = NanCorrFFTs(copy(x.I0), copy(x.I1), copy(x.I2))
"""
CMStorage{T}(undef, aperture_width, maxshift; flags=FFTW.ESTIMATE, timelimit=Inf, display=true)
Prepare for FFT-based mismatch computations over domains of size `aperture_width`, computing the
mismatch up to shifts of size `maxshift`. The keyword arguments allow you to control the planning
process for the FFTs.
"""
mutable struct CMStorage{
T<:AbstractFloat,N,RCType<:RCpair{T,N},FFT<:Function,IFFT<:Function
}
aperture_width::Vector{Float64}
maxshift::Vector{Int}
getindices::Vector{UnitRange{Int}} # indices for pulling padded data, in source-coordinates
padded::Array{T,N}
fixed::NanCorrFFTs{T,N,RCType}
moving::NanCorrFFTs{T,N,RCType}
buf1::RCType
buf2::RCType
# the next two store the result of calling plan_fft! and plan_ifft!
fftfunc!::FFT
ifftfunc!::IFFT
shiftindices::Vector{Vector{Int}} # indices for performing fftshift & snipping from -maxshift:maxshift
end
function CMStorage{T,N}(
::UndefInitializer,
aperture_width::NTuple{N,<:Real},
maxshift::Dims{N};
flags=FFTW.ESTIMATE,
timelimit=Inf,
display=true,
) where {T,N}
blocksize = map(x -> ceil(Int, x), aperture_width)
padsz = padsize(blocksize, maxshift)
padded = Array{T}(undef, padsz)
getindices = padranges(blocksize, maxshift)
maxshiftv = [maxshift...]
region = findall(maxshiftv .> 0)
fixed = NanCorrFFTs(
RCpair{T}(undef, padsz, region),
RCpair{T}(undef, padsz, region),
RCpair{T}(undef, padsz, region),
)
moving = NanCorrFFTs(
RCpair{T}(undef, padsz, region),
RCpair{T}(undef, padsz, region),
RCpair{T}(undef, padsz, region),
)
buf1 = RCpair{T}(undef, padsz, region)
buf2 = RCpair{T}(undef, padsz, region)
tcalib = 0
if display && flags != FFTW.ESTIMATE
print("Planning FFTs (maximum $timelimit seconds)...")
flush(stdout)
tcalib = time()
end
fftfunc = plan_rfft!(fixed.I0; flags=flags, timelimit=timelimit / 2)
ifftfunc = plan_irfft!(fixed.I0; flags=flags, timelimit=timelimit / 2)
if display && flags != FFTW.ESTIMATE
dt = time() - tcalib
@printf("done (%.2f seconds)\n", dt)
end
shiftindices = Vector{Int}[
[size(padded, i) .+ ((-maxshift[i] + 1):0); 1:(maxshift[i] + 1)] for
i in 1:length(maxshift)
]
return CMStorage{T,N,typeof(buf1),typeof(fftfunc),typeof(ifftfunc)}(
Float64[aperture_width...],
maxshiftv,
getindices,
padded,
fixed,
moving,
buf1,
buf2,
fftfunc,
ifftfunc,
shiftindices,
)
end
function CMStorage{T}(
::UndefInitializer, aperture_width::NTuple{N,<:Real}, maxshift::Dims{N}; kwargs...
) where {T<:Real,N}
return CMStorage{T,N}(undef, aperture_width, maxshift; kwargs...)
end
eltype(cms::CMStorage{T,N}) where {T,N} = T
ndims(cms::CMStorage{T,N}) where {T,N} = N
"""
mm = mismatch([T], fixed, moving, maxshift; normalization=:intensity)
Compute the mismatch between `fixed` and
`moving` as a function of translations (shifts) up to size `maxshift`.
Optionally specify the element-type of the mismatch arrays (default
`Float32` for Integer- or FixedPoint-valued images) and the
normalization scheme (`:intensity` or `:pixels`).
`fixed` and `moving` must have the same size; you can pad with
`NaN`s as needed. See `nanpad`.
"""
function mismatch(
::Type{T},
fixed::AbstractArray,
moving::AbstractArray,
maxshift::DimsLike;
normalization=:intensity,
) where {T<:Real}
msz = 2 .* maxshift .+ 1
mm = MismatchArray(T, msz...)
cms = CMStorage{T}(undef, size(fixed), maxshift)
fillfixed!(cms, fixed)
erng = shiftrange.((cms.getindices...,), first.(axes(fixed)) .- 1) # expanded rng
mpad = PaddedView(convert(T, NaN), of_eltype(T, moving), erng)
mismatch!(mm, cms, mpad; normalization=normalization)
return mm
end
"""
`mismatch!(mm, cms, moving; [normalization=:intensity])`
computes the mismatch as a function of shift, storing the result in
`mm`. The `fixed` image has been prepared in `cms`, a `CMStorage` object.
"""
function mismatch!(
mm::MismatchArray, cms::CMStorage, moving::AbstractArray; normalization=:intensity
)
# Pad the moving snippet using any available data, including
# regions that might be in the parent Array but are not present
# within the boundaries of the SubArray. Use NaN only for pixels
# truly lacking data.
checksize_maxshift(mm, cms.maxshift)
copyto!(cms.padded, CartesianIndices(cms.padded), moving, CartesianIndices(moving))
fftnan!(cms.moving, cms.padded, cms.fftfunc!)
# Compute the mismatch
f0 = complex(cms.fixed.I0)
f1 = complex(cms.fixed.I1)
f2 = complex(cms.fixed.I2)
m0 = complex(cms.moving.I0)
m1 = complex(cms.moving.I1)
m2 = complex(cms.moving.I2)
tnum = complex(cms.buf1)
tdenom = complex(cms.buf2)
if normalization == :intensity
@inbounds Threads.@threads for i in 1:length(tnum)
c = 2 * conj(f1[i]) * m1[i]
q = conj(f2[i]) * m0[i] + conj(f0[i]) * m2[i]
tdenom[i] = q
tnum[i] = q - c
end
elseif normalization == :pixels
@inbounds Threads.@threads for i in 1:length(tnum)
f0i, m0i = f0[i], m0[i]
tdenom[i] = conj(f0i) * m0i
tnum[i] = conj(f2[i]) * m0i - 2 * conj(f1[i]) * m1[i] + conj(f0i) * m2[i]
end
else
error("normalization $normalization not recognized")
end
cms.ifftfunc!(cms.buf1)
cms.ifftfunc!(cms.buf2)
copyto!(
mm,
(
view(real(cms.buf1), cms.shiftindices...),
view(real(cms.buf2), cms.shiftindices...),
),
)
return mm
end
"""
`mms = mismatch_apertures([T], fixed, moving, gridsize, maxshift;
[normalization=:pixels], [flags=FFTW.MEASURE], kwargs...)` computes
the mismatch between `fixed` and `moving` over a regularly-spaced grid
of aperture centers, effectively breaking the images up into
chunks. The maximum-allowed shift in any aperture is `maxshift`.
`mms = mismatch_apertures([T], fixed, moving, aperture_centers,
aperture_width, maxshift; kwargs...)` computes the mismatch between
`fixed` and `moving` over a list of apertures of size `aperture_width`
at positions defined by `aperture_centers`.
`fixed` and `moving` must have the same size; you can pad with `NaN`s
as needed to ensure this. You can optionally specify the real-valued
element type mm; it defaults to the element type of `fixed` and
`moving` or, for Integer- or FixedPoint-valued images, `Float32`.
On output, `mms` will be an Array-of-MismatchArrays, with the outer
array having the same "grid" shape as `aperture_centers`. The centers
can in general be provided as an vector-of-tuples, vector-of-vectors,
or a matrix with each point in a column. If your centers are arranged
in a rectangular grid, you can use an `N`-dimensional array-of-tuples
(or array-of-vectors) or an `N+1`-dimensional array with the center
positions specified along the first dimension. See `aperture_grid`.
"""
function mismatch_apertures(
::Type{T},
fixed::AbstractArray,
moving::AbstractArray,
aperture_centers::AbstractArray,
aperture_width::WidthLike,
maxshift::DimsLike;
normalization=:pixels,
flags=FFTW.MEASURE,
kwargs...,
) where {T}
nd = sdims(fixed)
(length(aperture_width) == nd && length(maxshift) == nd) ||
error("Dimensionality mismatch")
mms = allocate_mmarrays(T, aperture_centers, maxshift)
cms = CMStorage{T}(undef, aperture_width, maxshift; flags=flags, kwargs...)
return mismatch_apertures!(
mms, fixed, moving, aperture_centers, cms; normalization=normalization
)
end
"""
`mismatch_apertures!(mms, fixed, moving, aperture_centers, cms;
[normalization=:pixels])` computes the mismatch between `fixed` and
`moving` over a list of apertures at positions defined by
`aperture_centers`. The parameters and working storage are contained
in `cms`, a `CMStorage` object. The results are stored in `mms`, an
Array-of-MismatchArrays which must have length equal to the number of
aperture centers.
"""
function mismatch_apertures!(
mms, fixed, moving, aperture_centers, cms::CMStorage{T}; normalization=:pixels
) where {T}
N = ndims(cms)
fillvalue = convert(T, NaN)
getinds = (cms.getindices...,)::NTuple{ndims(fixed),UnitRange{Int}}
fixedT, movingT = of_eltype(T, fixed), of_eltype(T, moving)
for (mm, center) in zip(mms, each_point(aperture_centers))
rng = aperture_range(center, cms.aperture_width)
fsnip = PaddedView(fillvalue, fixedT, rng)
erng = shiftrange.(getinds, first.(rng) .- 1) # expanded rng
msnip = PaddedView(fillvalue, movingT, erng)
# Perform the calculation
fillfixed!(cms, fsnip)
mismatch!(mm, cms, msnip; normalization=normalization)
end
return mms
end
# Calculate the components needed to "nancorrelate"
function fftnan!(
out::NanCorrFFTs{T}, A::AbstractArray{T}, fftfunc!::Function
) where {T<:Real}
I0 = real(out.I0)
I1 = real(out.I1)
I2 = real(out.I2)
_fftnan!(parent(I0), parent(I1), parent(I2), A)
fftfunc!(out.I0)
fftfunc!(out.I1)
fftfunc!(out.I2)
return out
end
function _fftnan!(I0, I1, I2, A::AbstractArray{T}) where {T<:Real}
@inbounds Threads.@threads for i in CartesianIndices(size(A))
a = A[i]
f = !isnan(a)
I0[i] = f
af = f ? a : zero(T)
I1[i] = af
I2[i] = af * af
end
end
function fillfixed!(cms::CMStorage{T}, fixed::AbstractArray) where {T}
fill!(cms.padded, NaN)
pinds = CartesianIndices(
ntuple(d -> (1:size(fixed, d)) .+ cms.maxshift[d], ndims(fixed))
)
copyto!(cms.padded, pinds, fixed, CartesianIndices(fixed))
return fftnan!(cms.fixed, cms.padded, cms.fftfunc!)
end
#### Utilities
Base.isnan(A::Array{Complex{T}}) where {T} = isnan(real(A)) | isnan(imag(A))
function sumsq_finite(A)
s = 0.0
for a in A
if isfinite(a)
s += a * a
end
end
if s == 0
error("No finite values available")
end
return s
end
### Deprecations
function CMStorage{T}(
::UndefInitializer, aperture_width::WidthLike, maxshift::WidthLike; kwargs...
) where {T<:Real}
Base.depwarn(
"CMStorage with aperture_width::$(typeof(aperture_width)) and maxshift::$(typeof(maxshift)) is deprecated, use tuples instead",
:CMStorage,
)
(N = length(aperture_width)) == length(maxshift) || error("Dimensionality mismatch")
return CMStorage{T,N}(undef, (aperture_width...,), (maxshift...,); kwargs...)
end
@deprecate CMStorage(::Type{T}, aperture_width, maxshift; kwargs...) where {T} CMStorage{T}(
undef, aperture_width, maxshift; kwargs...
)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 17531 | module RegisterMismatchCommon
using ..RegisterCore
using ..CenterIndexedArrays, ImageCore
export correctbias!,
nanpad,
mismatch0,
aperture_grid,
allocate_mmarrays,
default_aperture_width,
truncatenoise!
export DimsLike,
WidthLike,
each_point,
aperture_range,
assertsamesize,
tovec,
mismatch,
padsize,
set_FFTPROD
export padranges, shiftrange, checksize_maxshift, register_translate
const DimsLike = Union{AbstractVector{Int},Dims} # try to avoid these and just use Dims tuples for sizes
const WidthLike = Union{AbstractVector,Tuple}
FFTPROD = [2, 3]
set_FFTPROD(v) = global FFTPROD = v
function mismatch(
fixed::AbstractArray{T},
moving::AbstractArray{T},
maxshift::DimsLike;
normalization=:intensity,
) where {T<:AbstractFloat}
return mismatch(T, fixed, moving, maxshift; normalization=normalization)
end
function mismatch(
fixed::AbstractArray,
moving::AbstractArray,
maxshift::DimsLike;
normalization=:intensity,
)
return mismatch(Float32, fixed, moving, maxshift; normalization=normalization)
end
function mismatch_apertures(
fixed::AbstractArray{T}, moving::AbstractArray{T}, args...; kwargs...
) where {T<:AbstractFloat}
return mismatch_apertures(T, fixed, moving, args...; kwargs...)
end
function mismatch_apertures(fixed::AbstractArray, moving::AbstractArray, args...; kwargs...)
return mismatch_apertures(Float32, fixed, moving, args...; kwargs...)
end
function mismatch_apertures(
::Type{T},
fixed::AbstractArray,
moving::AbstractArray,
gridsize::DimsLike,
maxshift::DimsLike;
kwargs...,
) where {T}
cs = coords_spatial(fixed)
aperture_centers = aperture_grid(map(d -> size(fixed, d), cs), gridsize)
aperture_width = default_aperture_width(fixed, gridsize)
return mismatch_apertures(
T, fixed, moving, aperture_centers, aperture_width, maxshift; kwargs...
)
end
"""
`correctbias!(mm::MismatchArray)` replaces "suspect" mismatch
data with imputed data. If each pixel in your camera has a different
bias, then matching that bias becomes an incentive to avoid
shifts. Likewise, CMOS cameras tend to have correlated row/column
noise. These two factors combine to imply that `mm[i,j,...]` is unreliable
whenever `i` or `j` is zero.
Data are imputed by averaging the adjacent non-suspect values. This
function works in-place, overwriting the original `mm`.
"""
function correctbias!(mm::MismatchArray{ND,N}, w=correctbias_weight(mm)) where {ND,N}
T = eltype(ND)
mxshift = maxshift(mm)
Imax = CartesianIndex(mxshift)
Imin = CartesianIndex(map(x -> -x, mxshift)::NTuple{N,Int})
I1 = CartesianIndex(ntuple(d -> d > 2 ? 0 : 1, N)::NTuple{N,Int}) # only first 2 dims
for I in eachindex(mm)
if w[I] == 0
mms = NumDenom{T}(0, 0)
ws = zero(T)
strt = max(Imin, I - I1)
stop = min(Imax, I + I1)
for J in CartesianIndices(ntuple(d -> strt[d]:stop[d], N))
wJ = w[J]
if wJ != 0
mms += wJ * mm[J]
ws += wJ
end
end
mm[I] = mms / ws
end
end
return mm
end
"`correctbias!(mms)` runs `correctbias!` on each element of an array-of-MismatchArrays."
function correctbias!(mms::AbstractArray{M}) where {M<:MismatchArray}
for mm in mms
correctbias!(mm)
end
return mms
end
function correctbias_weight(mm::MismatchArray{ND,N}) where {ND,N}
T = eltype(ND)
w = CenterIndexedArray(ones(T, size(mm)))
for I in eachindex(mm)
anyzero = false
for d in 1:min(N, 2) # only first 2 dims
anyzero |= I[d] == 0
end
if anyzero
w[I] = 0
end
end
return w
end
"""
`fixedpad, movingpad = nanpad(fixed, moving)` will pad `fixed` and/or
`moving` with NaN as needed to ensure that `fixedpad` and `movingpad`
have the same size.
"""
function nanpad(fixed, moving)
ndims(fixed) == ndims(moving) ||
error("fixed and moving must have the same dimensionality")
if size(fixed) == size(moving)
return fixed, moving
end
rng = map(d -> 1:max(size(fixed, d), size(moving, d)), 1:ndims(fixed))
T = promote_type(eltype(fixed), eltype(moving))
return get(fixed, rng, nanval(T)), get(moving, rng, nanval(T))
end
nanval(::Type{T}) where {T<:AbstractFloat} = convert(T, NaN)
nanval(::Type{T}) where {T} = convert(Float32, NaN)
"""
`mm0 = mismatch0(fixed, moving, [normalization])` computes the
"as-is" mismatch between `fixed` and `moving`, without any shift.
`normalization` may be either `:intensity` (the default) or `:pixels`.
"""
function mismatch0(
fixed::AbstractArray{Tf,N}, moving::AbstractArray{Tm,N}; normalization=:intensity
) where {Tf,Tm,N}
size(fixed) == size(moving) || throw(
DimensionMismatch(
"Size $(size(fixed)) of fixed is not equal to size $(size(moving)) of moving",
),
)
return _mismatch0(
zero(Float64), zero(Float64), fixed, moving; normalization=normalization
)
end
function _mismatch0(
num::T,
denom::T,
fixed::AbstractArray{Tf,N},
moving::AbstractArray{Tm,N};
normalization=:intensity,
) where {T,Tf,Tm,N}
if normalization == :intensity
for i in eachindex(fixed, moving)
vf = T(fixed[i])
vm = T(moving[i])
if isfinite(vf) && isfinite(vm)
num += (vf - vm)^2
denom += vf^2 + vm^2
end
end
elseif normalization == :pixels
for i in eachindex(fixed, moving)
vf = T(fixed[i])
vm = T(moving[i])
if isfinite(vf) && isfinite(vm)
num += (vf - vm)^2
denom += 1
end
end
else
error("Normalization $normalization not recognized")
end
return NumDenom(num, denom)
end
"""
`mm0 = mismatch0(mms)` computes the "as-is"
mismatch between `fixed` and `moving`, without any shift. The
mismatch is represented in `mms` as an aperture-wise
Arrays-of-MismatchArrays.
"""
function mismatch0(mms::AbstractArray{M}) where {M<:MismatchArray}
mm0 = eltype(M)(0, 0)
cr = eachindex(first(mms))
z = first(cr) + last(cr) # all-zeros CartesianIndex
for mm in mms
mm0 += mm[z]
end
return mm0
end
"""
`ag = aperture_grid(ssize, gridsize)` constructs a uniformly-spaced
grid of aperture centers. The grid has size `gridsize`, and is
constructed for an image of spatial size `ssize`. Along each
dimension the first and last elements are at the image corners.
"""
function aperture_grid(ssize::Dims{N}, gridsize) where {N}
if length(gridsize) != N
if length(gridsize) == N - 1
@info(
"ssize and gridsize disagree; possible fix is to use a :time axis (AxisArrays) for the image"
)
end
error("ssize and gridsize must have the same length, got $ssize and $gridsize")
end
grid = Array{NTuple{N,Float64},N}(undef, (gridsize...,))
centers = map(
i -> if gridsize[i] > 1
collect(range(1; stop=ssize[i], length=gridsize[i]))
else
[(ssize[i] + 1) / 2]
end,
1:N,
)
for I in CartesianIndices(size(grid))
grid[I] = ntuple(i -> centers[i][I[i]], N)
end
return grid
end
"""
`mms = allocate_mmarrays(T, gridsize, maxshift)` allocates storage for
aperture-wise mismatch computation. `mms` will be an
Array-of-MismatchArrays with element type `NumDenom{T}` and half-size
`maxshift`. `mms` will be an array of size `gridsize`. This syntax is
recommended when your apertures are centered at points of a grid.
`mms = allocate_mmarrays(T, aperture_centers, maxshift)` returns `mms`
with a shape that matches that of `aperture_centers`. The centers can
in general be provided as an vector-of-tuples, vector-of-vectors, or a
matrix with each point in a column. If your centers are arranged in a
rectangular grid, you can use an `N`-dimensional array-of-tuples (or
array-of-vectors) or an `N+1`-dimensional array with the center
positions specified along the first dimension. (But you may find the
`gridsize` syntax to be simpler.)
"""
function allocate_mmarrays(
::Type{T}, aperture_centers::AbstractArray{C}, maxshift
) where {T,C<:Union{AbstractVector,Tuple}}
isempty(aperture_centers) && error("aperture_centers is empty")
N = length(first(aperture_centers))
sz = map(x -> 2 * x + 1, maxshift)
mm = MismatchArray(T, sz...)
mms = Array{typeof(mm)}(undef, size(aperture_centers))
f = true
for i in eachindex(mms)
if f
mms[i] = mm
f = false
else
mms[i] = MismatchArray(T, sz...)
end
end
return mms
end
function allocate_mmarrays(
::Type{T}, aperture_centers::AbstractArray{R}, maxshift
) where {T,R<:Real}
N = ndims(aperture_centers) - 1
mms = Array{MismatchArray{T,N}}(undef, size(aperture_centers)[2:end])
sz = map(x -> 2 * x + 1, maxshift)
for i in eachindex(mms)
mms[i] = MismatchArray(T, sz...)
end
return mms
end
function allocate_mmarrays(::Type{T}, gridsize::NTuple{N,Int}, maxshift) where {T<:Real,N}
mms = Array{MismatchArray{NumDenom{T},N}}(undef, gridsize)
sz = map(x -> 2 * x + 1, maxshift)
for i in eachindex(mms)
mms[i] = MismatchArray(T, sz...)
end
return mms
end
struct ContainerIterator{C}
data::C
end
Base.iterate(iter::ContainerIterator) = iterate(iter.data)
Base.iterate(iter::ContainerIterator, state) = iterate(iter.data, state)
struct FirstDimIterator{A<:AbstractArray,R<:CartesianIndices}
data::A
rng::R
function FirstDimIterator{A,R}(data::A) where {A,R}
return new{A,R}(data, CartesianIndices(Base.tail(size(data))))
end
end
function FirstDimIterator(A::AbstractArray)
return FirstDimIterator{typeof(A),typeof(CartesianIndices(Base.tail(size(A))))}(A)
end
function Base.iterate(iter::FirstDimIterator)
isempty(iter.rng) && return nothing
index, state = iterate(iter.rng)
return iter.data[:, index], state
end
function Base.iterate(iter::FirstDimIterator, state)
state == last(iter.rng) && return nothing
index, state = iterate(iter.rng, state)
return iter.data[:, index], state
end
"""
`iter = each_point(points)` yields an iterator `iter` over all the
points in `points`. `points` may be represented as an
AbstractArray-of-tuples or -AbstractVectors, or may be an
`AbstractArray` where each point is represented along the first
dimension (e.g., columns of a matrix).
"""
function each_point(
aperture_centers::AbstractArray{C}
) where {C<:Union{AbstractVector,Tuple}}
return ContainerIterator(aperture_centers)
end
function each_point(aperture_centers::AbstractArray{R}) where {R<:Real}
return FirstDimIterator(aperture_centers)
end
"""
`rng = aperture_range(center, width)` returns a tuple of
`UnitRange{Int}`s that, for dimension `d`, is centered on `center[d]`
and has width `width[d]`.
"""
function aperture_range(center, width)
length(center) == length(width) || error("center and width must have the same length")
return ntuple(
d -> leftedge(center[d], width[d]):rightedge(center[d], width[d]), length(center)
)
end
"""
`aperturesize = default_aperture_width(img, gridsize, [overlap])`
calculates the aperture width for a regularly-spaced grid of aperture
centers with size `gridsize`. Apertures that are adjacent along
dimension `d` may overlap by a number pixels specified by
`overlap[d]`; the default value is 0. For non-negative `overlap`, the
collection of apertures will yield full coverage of the image.
"""
function default_aperture_width(
img, gridsize::DimsLike, overlap::DimsLike=zeros(Int, sdims(img))
)
sc = coords_spatial(img)
length(sc) == length(gridsize) == length(overlap) || error(
"gridsize and overlap must have length equal to the number of spatial dimensions in img",
)
for i in 1:length(sc)
if gridsize[i] > size(img, sc[i])
error(
"gridsize $gridsize is too large, given the size $(size(img)[sc]) of the image",
)
end
end
gsz1 = max.(1, [gridsize...] .- 1)
gflag = [gridsize...] .> 1
return tuple(
(([map(d -> size(img, d), sc)...] - gflag) ./ gsz1 + 2 * [overlap...] .* gflag)...
)
end
"""
`truncatenoise!(mm, thresh)` zeros out any entries of the
MismatchArray `mm` whose `denom` values are less than `thresh`.
"""
function truncatenoise!(mm::AbstractArray{NumDenom{T}}, thresh::Real) where {T<:Real}
for I in eachindex(mm)
if mm[I].denom <= thresh
mm[I] = NumDenom{T}(0, 0)
end
end
return mm
end
function truncatenoise!(mms::AbstractArray{A}, thresh::Real) where {A<:MismatchArray}
for i in 1:length(denoms)
truncatenoise!(mms[i], thresh)
end
return nothing
end
"""
`shift = register_translate(fixed, moving, maxshift, [thresh])`
computes the integer-valued translation which best aligns images
`fixed` and `moving`. All shifts up to size `maxshift` are considered.
Optionally specify `thresh`, the fraction (0<=thresh<=1) of overlap
required between `fixed` and `moving` (default 0.25).
"""
function register_translate(fixed, moving, maxshift, thresh=nothing)
mm = mismatch(fixed, moving, maxshift)
_, denom = separate(mm)
if thresh == nothing
thresh = 0.25maximum(denom)
end
return indmin_mismatch(mm, thresh)
end
function checksize_maxshift(A::AbstractArray, maxshift)
ndims(A) == length(maxshift) || error(
"Array is $(ndims(A))-dimensional, but maxshift has length $(length(maxshift))"
)
for i in 1:ndims(A)
size(A, i) == 2 * maxshift[i] + 1 || error(
"Along dimension $i, the output size $(size(A,i)) does not agree with maxshift[$i] = $(maxshift[i])",
)
end
return nothing
end
function padranges(blocksize, maxshift)
padright = [maxshift...]
transformdims = findall(padright .> 0)
paddedsz = [blocksize...] + 2 * padright
for i in transformdims
# Pick a size for which one can efficiently calculate ffts
padright[i] += padsize(blocksize, maxshift, i) - paddedsz[i]
end
return rng = UnitRange{Int}[
(1 - maxshift[i]):(blocksize[i] + padright[i]) for i in 1:length(blocksize)
]
end
function padsize(blocksize::Dims{N}, maxshift::Dims{N}) where {N}
return map(padsize, blocksize, maxshift, ntuple(identity, Val(N)))
end
function padsize(blocksize::Int, maxshift::Int, dim::Int)
p = blocksize + 2maxshift
return maxshift > 0 ? (dim == 1 ? nextpow(2, p) : nextprod(FFTPROD, p)) : p # we won't FFT along dimensions with maxshift 0
end
function assertsamesize(A, B)
if !issamesize(A, B)
error("Arrays are not the same size")
end
end
function issamesize(A::AbstractArray, B::AbstractArray)
n = ndims(A)
ndims(B) == n || return false
for i in 1:n
axes(A, i) == axes(B, i) || return false
end
return true
end
function issamesize(A::AbstractArray, indices)
n = ndims(A)
length(indices) == n || return false
for i in 1:n
size(A, i) == length(indices[i]) || return false
end
return true
end
# This yields the _effective_ overlap, i.e., sets to zero if gridsize==1 along a coordinate
# imgssz = image spatial size
function computeoverlap(imgssz, blocksize, gridsize)
gsz1 = max(1, [gridsize...] .- 1)
tmp = [imgssz...] ./ gsz1
return blocksize - [ceil(Int, x) for x in tmp]
end
leftedge(center, width) = ceil(Int, center - width / 2)
rightedge(center, width) = leftedge(center + width, width) - 1
# These avoid making a copy if it's not necessary
tovec(v::AbstractVector) = v
tovec(v::Tuple) = [v...]
shiftrange(r, s) = r .+ s
### Utilities for unsafe indexing of views
# TODO: redesign this whole thing to be safer?
using Base: ViewIndex, to_indices, unsafe_length, index_shape, tail
@inline function extraunsafe_view(V::SubArray{T,N}, I::Vararg{ViewIndex,N}) where {T,N}
idxs = unsafe_reindex(V, V.indices, to_indices(V, I))
return SubArray(V.parent, idxs)
end
function get_index_wo_boundcheck(r::AbstractUnitRange, s::AbstractUnitRange{<:Integer}) # BlockRegistration issue #36
f = first(r)
st = oftype(f, f + first(s) - 1)
return range(st; length=length(s))
end
function unsafe_reindex(
V, idxs::Tuple{UnitRange,Vararg{Any}}, subidxs::Tuple{UnitRange,Vararg{Any}}
)
(Base.@_propagate_inbounds_meta;
@inbounds new1 = get_index_wo_boundcheck(idxs[1], subidxs[1]);
(new1, unsafe_reindex(V, tail(idxs), tail(subidxs))...))
end
unsafe_reindex(V, idxs, subidxs) = Base.reindex(V, idxs, subidxs)
### Deprecations
function padsize(blocksize, maxshift)
Base.depwarn(
"padsize(::$(typeof(blocksize)), ::$(typeof(maxshift)) is deprecated, use Dims-tuples instead",
:padsize,
)
sz = Vector{Int}(undef, length(blocksize))
return padsize!(sz, blocksize, maxshift)
end
function padsize!(sz::Vector, blocksize, maxshift)
n = length(blocksize)
for i in 1:n
sz[i] = padsize(blocksize, maxshift, i)
end
return sz
end
function padsize(blocksize, maxshift, dim)
m = maxshift[dim]
p = blocksize[dim] + 2m
return m > 0 ? (dim == 1 ? nextpow(2, p) : nextprod(FFTPROD, p)) : p # we won't FFT along dimensions with maxshift[i]==0
end
end #module
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1317 | module RegisterQD
using Images, CoordinateTransformations, ..QuadDIRECT
using ..RegisterMismatchCommon
using ..RegisterCore
using ..RegisterDeformation, PaddedViews, MappedArrays
using Rotations
using Interpolations, ..CenterIndexedArrays, StaticArrays, OffsetArrays
using LinearAlgebra
using Images.ImageTransformations: CornerIterator
const VecLike = Union{AbstractVector{<:Number},Tuple{Number,Vararg{Number}}}
include("util.jl")
include("translations.jl")
include("rigid.jl")
include("affine.jl")
include("gridsearch.jl")
export qd_translate,
qd_rigid, qd_affine, arrayscale, grid_rotations, rotation_gridsearch, getSD, qsmooth
# Deprecations
function qd_rigid(
fixed,
moving,
mxshift::VecLike,
mxrot::Union{Number,VecLike},
minwidth_rot::VecLike,
SD::AbstractMatrix=I;
kwargs...,
)
return error("""
`qd_rigid` has a new syntax, see the help (`?qd_rigid`) and `NEWS.md`.
""")
end
function qd_affine(
fixed,
moving,
mxshift,
linmins,
linmaxs,
SD;
thresh=0.5 * sum(_abs2.(fixed[.!(isnan.(fixed))])),
initial_tfm=IdentityTransformation(),
print_interval=100,
kwargs...,
)
return error("""
`qd_affine` has a new syntax, see the help (`?qd_affine`) and `NEWS.md`.
""")
end
end # module
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 11887 | """
tfm = linmap(mat, img, initial_tfm=IdentityTransformation())
Construct a linear transformation from the values in `mat`.
`mat` can be any list of `N^2` values, where `N` is the dimensionality.
`img` is the array (or array of the same dimensionality) that `tfm` will be applied to.
If `initial_tfm` is supplied, it will be composed with the one from `mat`.
See also [`RegisterQD.aff`](@ref), which includes a translational component.
"""
function linmap(mat, img::AbstractArray{T,N}, initial_tfm=IdentityTransformation()) where {T,N}
# img isn't used *except* to get the dimensionality in an inferrable way, so that
# the (static) size of the array in `tfm` is known.
mat = [mat...]
mat = reshape(mat, N,N)
lm = LinearMap(SMatrix{N,N}(mat))
# The order below is subtle: you might think that `initial_tfm` should be applied
# to `x` first, so that the order of composition should be `lm β initial_tfm`.
# But what we're going to be doing is calculating an `lm` that aligns
# imgw(x) = moving(initial_tfm(x))
# to `fixed`. The final aligned image is
# imgw2(x) = imgw(lm(x))
# Putting these two together, we see that
# imgw2(x) = moving(initial_tfm(lm(x)))
# and thus the resulting transformation is
# initial_tfm β lm
return initial_tfm β lm
end
"""
tfm = aff(params, img, initial_tfm=IdentityTransformation())
Construct an affine transformation from the values in `params`.
`params` can be any list of `N + N^2` values, where `N` is the dimensionality;
the first `N` are for the translation,
and the last `N^2` are for the linear portion (see [`RegisterQD.linmap`](@ref)).
`img` is the array (or array of the same dimensionality) that `tfm` will be applied to.
If `initial_tfm` is supplied, it will be composed with the one from `params`.
"""
function aff(params, img::AbstractArray{T,N}, initial_tfm=IdentityTransformation()) where {T,N}
# img isn't used *except* to get the dimensionality in an inferrable way, so that
# the (static) sizes of the arrays in `tfm` are known.
params = [params...]
length(params) == (N+N^2) || throw(DimensionMismatch("expected $(N+N^2) parameters, got $(length(params))"))
offs = Float64.(params[1:N])
mat = Float64.(params[(N+1):end])
mat = reshape(mat,N,N)
# The order below is explained in `linmap`
return initial_tfm β AffineMap(SMatrix{N,N}(mat), SVector{N}(offs))
end
# This acts as the objective function during optimization, see qd_affine_coarse
# which defines `f(x)` in terms of this function.
# here params contains parameters of a linear map
# The "fast" part means that it handles translation using `best_shift`, so this is
# concerned only with the linear-map portion of the affine transformation.
function affine_mm_fast(params, mxshift, fixed, moving, thresh, SD; initial_tfm=IdentityTransformation())
tfm = arrayscale(linmap(params, moving, initial_tfm), SD)
moving, fixed = warp_and_intersect(moving, fixed, tfm)
bshft, mm = best_shift(fixed, moving, mxshift, thresh; normalization=:intensity)
return mm
end
# Similar to the above but includes the translation in `params`
# This is used for optimization of the complete affine transformation.
function affine_mm_slow(params, fixed, moving, thresh, SD; initial_tfm=IdentityTransformation())
tfm = arrayscale(aff(params, moving, initial_tfm), SD)
moving, fixed = warp_and_intersect(moving, fixed, tfm)
mm = mismatch0(fixed, moving; normalization=:intensity)
return ratio(mm, thresh, Inf)
end
"""
tfm, mm = qd_affine_coarse(fixed, moving, mxshift, linmins, linmaxs; kwargs...)
Compute an affine transformation `tfm` that coarsely minimizes the mismatch between
`fixed(x)` and `moving(tfm(x))`. `mm` is the total mismatch.
The translational component is handled at the level of integer-pixel shifts,
which is why this is "coarse" optimization.
"""
function qd_affine_coarse(fixed, moving, mxshift, linmins, linmaxs;
SD=I,
initial_tfm=IdentityTransformation(),
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
minwidth=default_lin_minwidths(moving),
maxevals=5e4,
kwargs...)
# Define the objective function for the coarse stage
f(x) = affine_mm_fast(x, mxshift, fixed, moving, thresh, SD; initial_tfm=initial_tfm)
# QuadDIRECT benefits from bounds on the search region, build those bounds
upper = linmaxs
lower = linmins
# Try to find the global minimum (within the needed precision)
root, x0 = _analyze(f, lower, upper;
minwidth=minwidth, print_interval=100, maxevals=maxevals, kwargs..., atol=0, rtol=1e-3)
box = minimum(root)
# Convert the coarse-minimum into a complete affine transformation
params = position(box, x0)
tfmcoarse0 = linmap(params, moving, initial_tfm)
best_shft, mm = best_shift(fixed, moving, mxshift, thresh; normalization=:intensity, initial_tfm=arrayscale(tfmcoarse0, SD))
tfmcoarse = tfmcoarse0 β pscale(Translation(best_shft), SD)
return tfmcoarse, mm
end
"""
tfm, mm = qd_affine_fine(fixed, moving, linmins, linmaxs; initial_tfm=IdentityTransformation(), kwargs...)
Compute an affine transformation `tfm` that minimizes the mismatch between
`fixed(x)` and `moving(tfm(x))`. `mm` is the total mismatch.
This only allows small translations (just a couple of pixels).
As a consequence, any large translations must be supplied with reasonable accuracy in
`initial_tfm` (see [`RegisterQD.qd_affine_coarse`](@ref)).
"""
function qd_affine_fine(fixed, moving, linmins, linmaxs;
SD=I,
initial_tfm=IdentityTransformation(),
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
minwidth_mat=default_lin_minwidths(fixed)./10,
maxevals=5e4,
kwargs...)
# Define the objective function
f(x) = affine_mm_slow(x, fixed, moving, thresh, SD; initial_tfm=initial_tfm)
# Limit translations to only a couple of pixels
upper_shft = fill(2.0, ndims(fixed))
# Combine translation limits with the affine-transform limits
upper = vcat(upper_shft, linmaxs)
lower = vcat(-upper_shft, linmins)
# Don't worry about translations that less than 1% of a pixel
minwidth_shfts = fill(0.01, ndims(fixed))
minwidth = vcat(minwidth_shfts, minwidth_mat)
# Try to find the global minimum
root, x0 = _analyze(f, lower, upper;
minwidth=minwidth, print_interval=100, maxevals=maxevals, kwargs...)
box = minimum(root)
# Convert the result to an affine transformation
params = position(box, x0)
tfmfine = aff(params, moving, initial_tfm)
return tfmfine, value(box)
end
#TODO oops maybe dmax and ndax is too closely related to linmax and linmin?
# Response: dmax and ndmax are designed to allow you to control linmax and linmin.
# You supply one or the other, so I don't see a problem.
#TODO I think that this is a tad loquatious, and not enough examples. Permission to rework it?
"""
`tform, mm = qd_affine(fixed, moving, mxshift, linmins, linmaxs, SD=I; presmoothed=false, thresh, initial_tfm, kwargs...)`
`tform, mm = qd_affine(fixed, moving, mxshift, SD=I; presmoothed=false, thresh, initial_tfm, kwargs...)`
optimizes an affine transformation (linear map + translation) to minimize the mismatch between `fixed` and
`moving` using the QuadDIRECT algorithm. The algorithm is run twice: the first step samples the search space
at a coarser resolution than the second. `kwargs...` may contain any keyword argument that can be passed to
`QuadDIRECT.analyze`. It's recommended that you pass your own stopping criteria when possible
(i.e. `rtol`, `atol`, and/or `fvalue`). If you provide `rtol` and/or `atol` they will apply only to the
second (fine) step of the registration; the user may not adjust these criteria for the coarse step.
`tform` will be centered on the origin-of-coordinates, i.e. (0,0) for a 2D image. Usually it is more natural to consider rotations
around the center of the image. If you would like `mxrot` and the returned rotation to act relative to the center of the image, then you must
move the origin to the center of the image by calling `centered(img)` from the `ImageTransformations` package. Call `centered` on both the
fixed and moving image to generate the `fixed` and `moving` that you provide as arguments. If you later want to apply the returned transform
to an image you must remember to call `centered` on that image as well. Alternatively you can re-encode the transformation in terms of a
different origin by calling `recenter(tform, newctr)` where `newctr` is the displacement of the new center from the old center.
The `linmins` and `linmaxs` arguments set the minimum and maximum allowable values in the linear map matrix.
They can be supplied as NxN matrices or flattened vectors. If omitted then a modest default search space is chosen.
`mxshift` sets the magnitude of the largest allowable translation in each dimension (It's a vector of length N).
This default search-space allows for very little rotation.
Alternatively, you can submit `dmax` or `ndmax` values as keyword functions, which will use diagonal or non-diagonal variation from the identity matrix
to generate less modest `linmins` and `linmaxs` arguments for you.
Use `presmoothed=true` if you have called [`qsmooth`](@ref) on `fixed` before calling `qd_affine`.
Do not smooth `moving`.
`kwargs...` can also include any other keyword argument that can be passed to `QuadDIRECT.analyze`.
It's recommended that you pass your own stopping criteria when possible (i.e. `rtol`, `atol`, and/or `fvalue`).
If you have a good initial guess at the solution, pass it with the `initial_tfm` kwarg to jump-start the search.
Use `SD` if your axes are not uniformly sampled, for example `SD = diagm(voxelspacing)` where `voxelspacing`
is a vector encoding the spacing along all axes of the image. `thresh` enforces a certain amount of sum-of-squared-intensity
overlap between the two images; with non-zero `thresh`, it is not permissible to "align" the images by shifting one entirely out of the way of the other.
"""
function qd_affine(fixed, moving, mxshift, linmins, linmaxs;
presmoothed=false,
SD=I,
thresh=0.5*sum(_abs2.(fixed[.!(isnan.(fixed))])),
initial_tfm=IdentityTransformation(),
print_interval=100,
kwargs...)
fixed, moving = float(fixed), float(moving)
if presmoothed
moving = qinterp(eltype(fixed), moving)
end
linmins = [linmins...]
linmaxs = [linmaxs...]
print_interval < typemax(Int) && print("Running coarse step\n")
mw = default_lin_minwidths(moving)
tfm_coarse, mm_coarse = qd_affine_coarse(fixed, moving, mxshift, linmins, linmaxs;
SD = SD, minwidth=mw, initial_tfm=initial_tfm, thresh=thresh, print_interval=print_interval, kwargs...)
print_interval < typemax(Int) && print("Running fine step\n")
mw = mw./100
linmins, linmaxs = scalebounds(linmins, linmaxs, 0.5) # should these be narrowed further?
final_tfm, final_mm = qd_affine_fine(fixed, moving, linmins, linmaxs;
SD = SD, minwidth_mat=mw, initial_tfm=tfm_coarse, thresh=thresh, print_interval=print_interval, kwargs...)
return final_tfm, final_mm
end
function qd_affine(fixed, moving, mxshift;
dmax = 0.05, ndmax = 0.05,
kwargs...)
minb, maxb = default_linmap_bounds(fixed; dmax = dmax, ndmax = ndmax)
return qd_affine(fixed, moving, mxshift, minb, maxb; kwargs...)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 3602 | """
`rotations = grid_rotations(maxradians, rgridsz, SD)` generates
a set of rotations (AffineMap) useful for a gridsearch of
possible rotations to align a pair of images.
`maxradians` is either a single maximum angle (in 2D) or a set of
Euler angles (in 3D and higher). `rgridsz` is one or more integers
specifying the number of gridpoints to search in each of the rotation
axes, corresponding with entries in `maxradians`. `SD` is a matrix
specifying the sample spacing.
e.g. `grid_rotations((pi/8,pi/8,pi/8), (3,3,3), Matrix{Float64}(I,3,3))` would
return an array of 27 rotations with 3 possible angles for each
Euler axis: -pi/8, 0, pi/8. Passing `Matrix{Float64}(I,3,3)` for SD indicates
that the resulting transforms are meant to be applied to an image with isotropic
pixel spacing.
"""
function grid_rotations(maxradians, rgridsz, SD)
rgridsz = [rgridsz...]
maxradians = [maxradians...]
nd = size(SD,1)
if !all(isodd, rgridsz)
@warn("rgridsz should be odd; rounding up to the next odd integer")
end
for i = 1:length(rgridsz)
if !isodd(rgridsz[i])
rgridsz[i] = max(round(Int, rgridsz[i]) + 1, 1)
end
end
grid_radius = map(x->div(x,2), rgridsz)
if nd > 2
gridcoords = [range(-grid_radius[x]*maxradians[x], stop=grid_radius[x]*maxradians[x], length=rgridsz[x]) for x=1:nd]
rotation_angles = Iterators.product(gridcoords...)
else
rotation_angles = range(-grid_radius[1]*maxradians[1], stop=grid_radius[1]*maxradians[1], length=rgridsz[1])
end
axmat = Matrix{Float64}(I,nd,nd)
axs = map(x->axmat[:,x], 1:nd)
tfeye = tformeye(nd)
output = typeof(tfeye)[]
for ra in rotation_angles
if nd > 2
euler_rots = map(x->tformrotate(x...), zip(axs, ra))
rot = foldr(β, euler_rots, init=tfeye)
elseif nd == 2
rot = tformrotate(ra)
else
error("Unsupported dimensionality")
end
push!(output, AffineMap(SD*rot.linear/SD , zeros(nd))) #account for sample spacing
end
return output
end
"""
`best_tform, best_mm = rotation_gridsearch(fixed, moving, maxshift, maxradians, rgridsz, SD =Matrix{Float64}(I,ndims(fixed),ndims(fixed))))`
Tries a grid of rotations to align `moving` to `fixed`. Also calculates the best translation (`maxshift` pixels
or less) to align the images after performing the rotation. Returns an AffineMap that captures both the
best rotation and shift out of the values searched, along with the mismatch value after applying that transform (`best_mm`).
For more on how the arguments `maxradians`, `rgridsz`, and `SD` influence the search, see the documentation for
`grid_rotations`.
"""
function rotation_gridsearch(fixed, moving, maxshift, maxradians, rgridsz, SD = Matrix{Float64}(I,ndims(fixed),ndims(fixed)))
rgridsz = [rgridsz...]
nd = ndims(moving)
@assert nd == ndims(fixed)
rots = grid_rotations(maxradians, rgridsz, SD)
best_mm = Inf
best_rot = tformeye(nd)
best_shift = zeros(nd)
for rot in rots
new_moving = transform(moving, rot)
#calc mismatch
#mm = mismatch(fixed, new_moving, maxshift; normalization=:pixels)
mm = mismatch(fixed, new_moving, maxshift)
thresh = 0.1*maximum(x->x.denom, mm)
best_i = indmin_mismatch(mm, thresh)
cur_best =ratio(mm[best_i], 0.0)
if cur_best < best_mm
best_mm = cur_best
best_rot = rot
best_shift = [best_i.I...]
end
end
return tformtranslate(best_shift) β best_rot, best_mm
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 9990 | ## Transformations
# Rotation only
"""
R2 = rot(ΞΈ)
Calculate a two-dimensional rotation transformation `R2`.
`ΞΈ` is the angle of rotation around the `z` axis applied to the `xy` plane.
"""
rot(ΞΈ::Number) = LinearMap(RotMatrix(ΞΈ))
"""
R3 = rot(qx, qy, qz)
Calculate a three-dimensional rotation transformation from the supplied parameters.
`qx`, `qy`, and `qz` specify the rotation via the components of the corresponding
[unit quaternion](https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation).
Briefly, `R3` is a rotation around the axis specified by the unit vector `q/|q|`
(where `q` is the 3-component vector), with an angle `ΞΈ` given by `sin(ΞΈ/2) = |q|`.
If `|q| > 1`, `rot` returns `nothing` instead of erroring.
"""
function rot(qx::Number, qy::Number, qz::Number)
# Unit-quaternion parametrization
r2 = qx^2 + qy^2 + qz^2
r2 > 1 && return nothing
qr = sqrt(1 - r2)
R = @SMatrix([1 - 2*(qy^2 + qz^2) 2*(qx*qy - qz*qr) 2*(qx*qz + qy*qr);
2*(qx*qy + qz*qr) 1 - 2*(qx^2 + qz^2) 2*(qy*qz - qx*qr);
2*(qx*qz - qy*qr) 2*(qy*qz + qx*qr) 1 - 2*(qx^2 + qy^2)])
return LinearMap(RotMatrix(R))
end
#rotation + translation
tfmrigid(dx::Number, dy::Number, ΞΈ::Number) = Translation(dx, dy) β rot(ΞΈ)
tfmrigid(dx::Number, dy::Number, dz::Number, qx::Number, qy::Number, qz::Number) =
Translation(dx, dy, dz) β rot(qx, qy, qz)
## Transformations supplied as vectors, for which we pass the array so we can infer the dimensionality
@noinline dimcheck(v, lv) = length(v) == lv || throw(DimensionMismatch("expected $lv parameters, got $(length(v))"))
function rot(theta, img::AbstractArray{T,2}) where {T}
dimcheck(theta, 1)
return rot(theta[1])
end
function rot(qs, img::AbstractArray{T,3}) where {T}
dimcheck(qs, 3)
qx, qy, qz = qs
return rot(qx, qy, qz)
end
function tfmrigid(params, img::AbstractArray{T,2}) where {T}
dimcheck(params, 3)
dx, dy, ΞΈ = params
return tfmrigid(dx, dy, ΞΈ)
end
function tfmrigid(params, img::AbstractArray{T,3}) where {T}
dimcheck(params, 6)
dx, dy, dz, qx, qy, qz = params
return tfmrigid(dx, dy, dz, qx, qy, qz)
end
## Computing mismatch
#rotation + shift, fast because it uses fourier method for shift
function rigid_mm_fast(theta, mxshift, fixed, moving, thresh, SD; initial_tfm=IdentityTransformation())
# The reason this is `initial_tfm β rot` rather than `rot β initial_tfm`
# is explained in `linmap`
tfm = arrayscale(initial_tfm β rot(theta, moving), SD)
moving, fixed = warp_and_intersect(moving, fixed, tfm)
bshft, mm = best_shift(fixed, moving, mxshift, thresh; normalization=:intensity)
return mm
end
#rotation + shift, slow because it warps for every rotation and shift
function rigid_mm_slow(params, fixed, moving, thresh, SD; initial_tfm=IdentityTransformation())
tfm = arrayscale(initial_tfm β tfmrigid(params, moving), SD)
moving, fixed = warp_and_intersect(moving, fixed, tfm)
mm = mismatch0(fixed, moving; normalization=:intensity)
return ratio(mm, thresh, Inf)
end
function qd_rigid_coarse(fixed, moving, mxshift, mxrot, minwidth_rot;
SD=I,
initial_tfm=IdentityTransformation(),
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
kwargs...)
#note: if a trial rotation results in image overlap < thresh for all possible shifts then QuadDIRECT throws an error
f(x) = rigid_mm_fast(x, mxshift, fixed, moving, thresh, SD; initial_tfm=initial_tfm)
upper = [mxrot...]
lower = -upper
root_coarse, x0coarse = _analyze(f, lower, upper;
minwidth=minwidth_rot, print_interval=100, maxevals=5e4, kwargs..., atol=0, rtol=1e-3)
box_coarse = minimum(root_coarse)
tfmcoarse0 = initial_tfm β rot(position(box_coarse, x0coarse), moving)
best_shft, mm = best_shift(fixed, moving, mxshift, thresh; normalization=:intensity, initial_tfm=arrayscale(tfmcoarse0, SD))
tfmcoarse = tfmcoarse0 β pscale(Translation(best_shft), SD)
return tfmcoarse, mm
end
function qd_rigid_fine(fixed, moving, mxrot, minwidth_rot;
SD=I,
initial_tfm=IdentityTransformation(),
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
kwargs...)
f(x) = rigid_mm_slow(x, fixed, moving, thresh, SD; initial_tfm=initial_tfm)
upper_shft = fill(2.0, ndims(fixed))
upper_rot = mxrot
upper = vcat(upper_shft, upper_rot)
lower = -upper
minwidth_shfts = fill(0.005, ndims(fixed))
minwidth = vcat(minwidth_shfts, minwidth_rot)
root, x0 = _analyze(f, lower, upper; minwidth=minwidth, print_interval=100, maxevals=5e4, kwargs...)
box = minimum(root)
tfmfine = initial_tfm β tfmrigid(position(box, x0), moving)
return tfmfine, value(box)
end
"""
tform, mm = qd_rigid(fixed, moving, mxshift, mxrot;
presmoothed=false,
SD=I, minwidth_rot=default_minwidth_rot(fixed, SD),
thresh=thresh, initial_tfm=IdentityTransformation(), kwargs...)
Optimize a rigid transformation (rotation + shift) to minimize the mismatch between `fixed` and
`moving` using the QuadDIRECT algorithm. The algorithm is run twice: the first step finds the optimal rotation,
using a fourier method to speed up the search for the best whole-pixel shift.
The second step performs the rotation + shift in combination to obtain sub-pixel accuracy.
Any `NaN`-valued pixels are not included in the mismatch; you can use this to mask out
any regions of `fixed` that you don't want to align against.
`mxshift` is the maximum-allowed translation, in units of array indices. It can be passed
as a vector or tuple.
`mxrot` is the maximum-allowed rotation, in radians for 2d or
[quaternion-units](https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation) for 3d.
See [`RegisterQD.rot`](@ref) for more information.
`minwidth_rot` optionally specifies the lower limit of resolution for the rotation;
the default is a rotation that moves corner elements by 0.1 pixel.
`kwargs...` can include any keyword argument that can be passed to `QuadDIRECT.analyze`.
It's recommended that you pass your own stopping criteria when possible
(i.e. `rtol`, `atol`, and/or `fvalue`).
If you provide `rtol` and/or `atol` they will apply only to the second (fine) step of the registration;
there is currently no way to adjust these criteria for the coarse step.
The rotation returned will be centered on the origin-of-coordinates, i.e. (0,0) for a 2D image.
Usually it is more natural to consider rotations around the center of the image.
If you would like `mxrot` and the returned rotation to act relative to the center of the image,
then you must move the origin to the center of the image by calling `centered(img)` from the
`ImageTransformations` package.
Call `centered` on both the fixed and moving image to generate the `fixed` and `moving` that you provide as arguments.
If you later want to apply the returned transform to an image you must remember to call `centered`
on that image as well. Alternatively you can re-encode the transformation in terms of a
different origin by calling `recenter(tform, newctr)` where `newctr` is the displacement of the new center from the old center.
Use `SD` ("spatial displacements") if your axes are not uniformly sampled, for example
`SD = diagm(voxelspacing)` where `voxelspacing` is a vector encoding the spacing along all axes
of the image.
See [`arrayscale`](@ref) for more information about `SD`.
`thresh` enforces a certain amount of sum-of-squared-intensity overlap between
the two images; with non-zero `thresh`, it is not permissible to "align" the images by
shifting one entirely out of the way of the other. The default value for `thresh` is 10%
of the sum-of-squared-intensity of `fixed`.
If you have a good initial guess at the solution, pass it with the `initial_tfm` kwarg to jump-start the search.
Use `presmoothed=true` if you have called [`qsmooth`](@ref) on `fixed` before calling `qd_rigid`.
Do not smooth `moving`.
Both the output `tfm` and any `initial_tfm` are represented in *physical* coordinates;
as long as `initial_tfm` is a rigid transformation, `tfm` will be a pure rotation+translation.
If `SD` is not the identity, use `arrayscale` before applying the result to `moving`.
"""
function qd_rigid(fixed, moving, mxshift::VecLike, mxrot::Union{Number,VecLike};
presmoothed=false,
SD=I,
minwidth_rot=default_minwidth_rot(CartesianIndices(fixed), SD),
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
initial_tfm=IdentityTransformation(),
print_interval=100,
kwargs...)
#TODO make sure isrotation(initial_tfm.linear) returns true, else throw a warning and an option to terminate? do I still allow the main block to run?
if initial_tfm == IdentityTransformation() || isrotation(initial_tfm.linear)
else
@show "WARNING: initial_tfm is not a rigid transformation"
# @warn "initial_tfm is not a rigid transformation"
end
fixed, moving = float(fixed), float(moving)
if presmoothed
moving = qinterp(eltype(fixed), moving)
end
mxrot = [mxrot...]
print_interval < typemax(Int) && print("Running coarse step\n")
tfm_coarse, mm_coarse = qd_rigid_coarse(fixed, moving, mxshift, mxrot, minwidth_rot; SD=SD, initial_tfm=initial_tfm, thresh=thresh, print_interval=print_interval, kwargs...)
print_interval < typemax(Int) && print("Obtained mismatch $mm_coarse from coarse step, running fine step\n")
final_tfm, mm_fine = qd_rigid_fine(fixed, moving, mxrot./2, minwidth_rot; SD=SD, initial_tfm=tfm_coarse, thresh=thresh, print_interval=print_interval, kwargs...)
return final_tfm, mm_fine
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 4824 | #################### Translation Search ##########################
function tfmshift(params, img::AbstractArray{T,N}) where {T,N}
length(params) == N || throw(DimensionMismatch("expected $N parameters, got $(length(params))"))
return Translation(params...)
end
#slow because it warps for every shift instead of using fourier method
function translate_mm_slow(params, fixed, moving, thresh; initial_tfm=IdentityTransformation())
tfm = initial_tfm β tfmshift(params, moving)
moving, fixed = warp_and_intersect(moving, fixed, tfm)
mm = mismatch0(fixed, moving; normalization=:intensity)
return ratio(mm, thresh, Inf)
end
function qd_translate_fine(fixed, moving;
initial_tfm=IdentityTransformation(),
minwidth=fill(0.01, ndims(fixed)),
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
kwargs...)
f(x) = translate_mm_slow(x, fixed, moving, thresh; initial_tfm=initial_tfm)
upper = fill(1.0, ndims(fixed))
lower = -upper
root, x0 = _analyze(f, lower, upper; minwidth=minwidth, print_interval=100, kwargs...)
box = minimum(root)
tfmfine = initial_tfm β tfmshift(position(box, x0), moving)
return tfmfine, value(box)
end
"""
`tform, mm = qd_translate(fixed, moving, mxshift; presmoothed=false, thresh=thresh, kwargs...)`
optimizes a simple shift (translation) to minimize the mismatch between `fixed` and
`moving` using the QuadDIRECT algorithm with the constraint that no shifts larger than
``mxshift` (after an optional `initial_tfm`) will be considered.
Both `mxshift` and the returned translation are specified in terms of pixel units, so the
algorithm need not be aware of anisotropic sampling.
The algorithm involves two steps: the first step uses a fourier method to speed up
the search for the best whole-pixel shift. The second step refines the search for sub-pixel accuracy.
The default precision of this step is 1% of one pixel (0.01) for each dimension of the image.
You can override the default with the `minwidth` argument. `kwargs...` can also include
any other keyword argument that can be passed to `QuadDIRECT.analyze`.
It's recommended that you pass your own stopping criteria when possible (i.e. `rtol`, `atol`, and/or `fvalue`).
Use `presmoothed=true` if you have called [`qsmooth`](@ref) on `fixed` before calling `qd_affine`.
Do not smooth `moving`.
If you have a good initial guess at the solution, pass it with the `initial_tfm` kwarg to jump-start the search.
`thresh` enforces a certain amount of sum-of-squared-intensity overlap between the two images;
with non-zero `thresh`, it is not permissible to "align" the images by shifting one entirely out of the way of the other.
If the `crop` keyword arg is `true` then `fixed` is cropped by `mxshift` (after the optional `initial_tfm`) on all sides
so that there will be complete overlap between `fixed` and `moving` for any evaluated shift. This avoids edge effects
that can occur due to normalization when the transformed `moving` doesn't fully overlap with `fixed`.
"""
function qd_translate(fixed, moving, mxshift;
presmoothed=false,
thresh=0.1*sum(_abs2.(fixed[.!(isnan.(fixed))])),
initial_tfm=IdentityTransformation(),
minwidth=fill(0.01, ndims(fixed)), print_interval=100, crop=false, kwargs...)
fixed, moving = float(fixed), float(moving)
if presmoothed
moving = qinterp(eltype(fixed), moving)
end
print_interval < typemax(Int) && print("Running coarse step\n")
if crop
#we enforce that moving is always bigger than fixed by amount 2*(maxshift+1) (the +1 is for the fine step)
sz = size(fixed) .- (2 .* mxshift)
if any(size(moving) .< (2 .* (mxshift.+1)))
error("Moving image size must be at least 2 * (mxshift+1) when crop_edges is set to true")
end
cropped_inds_f = crop_rng.(axes(fixed), mxshift)
cropped_inds_m = crop_rng.(axes(moving), mxshift)
moving_inner = view(moving, cropped_inds_m...)
fixed_inner = view(fixed, cropped_inds_f...)
moving_fine = OffsetArray(moving, (-1 .* mxshift)...)
else
fixed_inner = fixed
moving_inner = moving_fine = moving
end
best_shft, mm = best_shift(fixed_inner, moving_inner, mxshift, thresh; normalization=:intensity, initial_tfm=initial_tfm)
tfm_coarse = initial_tfm β Translation(best_shft)
print_interval < typemax(Int) && print("Running fine step\n")
return qd_translate_fine(fixed_inner, moving_fine; initial_tfm=tfm_coarse, thresh=thresh, minwidth=minwidth, print_interval=print_interval, kwargs...)
end
crop_rng(rng::AbstractUnitRange{Int}, amt::Int) = (first(rng)+amt):(last(rng)-amt)
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 9696 | function warp_and_intersect(moving, fixed, tfm::IdentityTransformation)
if axes(moving) == axes(fixed)
return moving, fixed
end
inds = intersect.(axes(moving), axes(fixed))
return view(moving, inds...), view(fixed, inds...)
end
function warp_and_intersect(moving, fixed, tfm)
moving = warp(moving, tfm)
inds = intersect.(axes(moving), axes(fixed))
return view(moving, inds...), view(fixed, inds...)
end
"""
I, mm = best_shift(fixed, moving, mxshift, thresh; normalization=:intensity, initial_tfm=IdentityTransformation())
Find the best shift `I` (expressed as a tuple) aligning `moving` to `fixed`,
possibly after an initial transformation `initial_tfm` applied to `moving`.
`mm` is the sum-of-square errors at shift `I`.
`mxshift` represents the maximum allowed shift, in pixels.
`thresh` is a threshold on the minimum allowed overlap between `fixed` and the shifted `moving`,
expressed in pixels if `normalization=:pixels` and in sum-of-squared-intensity if `normalization=:intensity`.
One can compute an overall transformation by composing `initial_tfm` with the returned shift `I`.
"""
function best_shift(fixed, moving, mxshift, thresh; normalization=:intensity, initial_tfm=IdentityTransformation())
moving, fixed = warp_and_intersect(moving, fixed, initial_tfm)
mms = mismatch(fixed, moving, mxshift; normalization=normalization)
best_i = indmin_mismatch(mms, thresh)
mm = mms[best_i]
return best_i.I, ratio(mm, thresh, typemax(eltype(mm)))
end
"""
itfm = arrayscale(ptfm, SD)
Convert the physical-space transformation `ptfm` into one, `itfm`, that operates on index-space
for arrays.
For example, suppose `ptfm` is a pure 3d rotation, but you want to apply it to an array
in which the sampling along the three axes is (0.5mm, 0.5mm, 2mm). Then by setting
`SD = Diagonal(SVector(1, 1, 4))` (the ratio of scales along each axis),
one obtains an `itfm` suitable for warping the array.
Any translational component of `ptfm` is interpreted in physical-space units, not index-units.
`SD` does not even have to be diagonal, if the array sampling is skewed.
The columns of `SD` should correspond to the physical-coordinate displacement
achieved by shifting by one array element along each axis of the array.
Specifically, `SD[:,j]` should be the physical displacement of one array voxel along dimension `j`.
"""
arrayscale(ptfm::AbstractAffineMap, SD::AbstractMatrix) =
arrayscale(ptfm, LinearMap(SD))
arrayscale(ptfm::AbstractAffineMap, scale::LinearMap) =
inv(scale) β ptfm β scale
arrayscale(ptfm::AbstractAffineMap, scale::UniformScaling) = ptfm
"""
pt = pscale(it, SD)
Convert an index-scaled translation `it` into a physical-space translation `pt`.
See [`arrayscale`](@ref) for more information.
"""
pscale(t::Translation, SD::AbstractMatrix) = pscale(t, LinearMap(SD))
pscale(t::Translation, scale::LinearMap) = Translation(scale(t.translation))
pscale(t::Translation, scale::UniformScaling) = Translation(scale.Ξ»*t.translation)
#returns new minbounds and maxbounds with range sizes change by fac
function scalebounds(minb, maxb, fac::Real)
orng = maxb.-minb
newradius = fac.*orng./2
ctrs = minb.+(orng./2)
return ctrs.-newradius, ctrs.+newradius
end
"""
minb, maxb = default_linmap_bounds(img::AbstractArray{T,N}; dmax=0.05, ndmax=0.05) where {T,N}
Returns two matrices describing a search space of linear transformation matrices.
(Linear transformation matrices can encode rotations, scaling, shear, etc)
`minb` and `maxb` contain the minimum and maximum acceptable values of an
NxN transformation matrix. The center of the space is the identity matrix.
The size of the space can be specified with `dmax` and `ndmax` kwargs.
These represent the maximum (absolute) difference from the identity matrix for elements
along the diagonal and off the diagnonal, respectively.
e.g. `dmax=0.05` implies that diagonal elements can range from 0.95 to 1.05.
The space is centered on the identity matrix
"""
function default_linmap_bounds(img::AbstractArray{T,N}; dmax=0.05, ndmax=0.05) where {T, N}
deltas = fill(abs(ndmax), N,N)
for i=1:N
deltas[i,i] = abs(dmax)
end
return Matrix(1.0*I,N,N).-deltas, Matrix(1.0*I,N,N).+deltas
end
"""
m = default_lin_minwidths(img::AbstractArray{T,N}; dmin=1e-3, ndmin=1e-3) where {T,N}
Returns a NxN matrix describing granularity of a search space of linear transformation matrices.
This can be useful for setting the `minwidth` parameter of QuadDIRECT when performing a
full affine registration. `dmin` and `ndmin` set the tolerances for diagonal and
off-diagonal elements of the linear transformation matrix, respectively.
"""
function default_lin_minwidths(img::AbstractArray{T,N}; dmin=1e-5, ndmin=1e-5) where {T, N}
mat = fill(abs(ndmin), N,N)
for i=1:N
mat[i,i] = abs(dmin)
end
return mat[:]
end
"""
ΞΈ = default_minrot(ci::CartesianIndices, SD=I; Ξc=0.1)
Compute the rotation `ΞΈ` that results in largest change in coordinates
of size `Ξc` (in pixels) for any index in `ci`.
"""
function default_minrot(ci::CartesianIndices, SD=I; Ξc=0.1)
L = -Inf
for x in CornerIterator(ci)
xβ² = SD*SVector(Tuple(x)) # position of corner point in physical space
L = max(L, norm(xβ²))
end
S2 = SD'*SD
if SD == I
Ξ» = 1
else
F = eigen(S2)
Ξ» = minimum(F.values)
end
β = sqrt(Ξ»)*Ξc
return 2*asin(β/(2*L))
end
default_minwidth_rot(ci::CartesianIndices{2}, SD=I; kwargs...) =
[default_minrot(ci, SD; kwargs...)]
function default_minwidth_rot(ci::CartesianIndices{3}, SD=I; kwargs...)
ΞΈ = default_minrot(ci, SD; kwargs...)
return [ΞΈ, ΞΈ, ΞΈ]
end
"""
getSD(A::AbstractArray)
If your image is not uniformily sampled, use this to get the `SD` matrix, which represents spacing along all axes of an image.
# Examples
```julia-repl
julia> myimage
Normed ImageMeta with:
data: 3-dimensional AxisArray{N2f14,3,...} with axes:
:x, 0.0 ΞΌm:0.71 ΞΌm:6.39 ΞΌm
:l, 0.0 ΞΌm:0.71 ΞΌm:6.39 ΞΌm
:z, 0.0 ΞΌm:6.2 ΞΌm:55.8 ΞΌm
And data, a 10Γ10Γ10 Array{N2f14,3} with eltype Normed{UInt16,14}
properties:
imagineheader: <suppressed>
julia> getSD(myimage)
3Γ3 SArray{Tuple{3,3},Float64,2,9} with indices SOneTo(3)ΓSOneTo(3):
0.71 0.0 0.0
0.0 0.71 0.0
0.0 0.0 6.2
```
"""
getSD(A::AbstractArray) = getSD(spacedirections(A)) #takes advantage of how spacedirections automatically strips out the time component
function getSD(sd::NTuple{N,Tuple}) where N
SD = zeros(N,N)
denom = oneunit(sd[1][1]) #dividing by a unit should remove unit inconsistancies
for i = 1:N
for j = 1:N
SD[i,j] = sd[i][j]/denom
end
end
return SMatrix{N,N}(SD) #returns static matrix for faster type inferrence
end
"""
imgq = qsmooth(img)
imgq = qsmooth(T, img)
Create a smoothed version of `img`, smoothing with the kernel of a quadratic B-spline.
Use this on your `fixed` image in preparation for registration, and pass `presmoothed`
as an option. (Do not smooth `moving`.)
`T` allows you to specify the output eltype (default `Float32`).
"""
function qsmooth(::Type{T}, img::AbstractArray{T2,N}) where {T,N,T2}
kern1 = centered(T[1/8, 3/4, 1/8]) # quadratic B-spline kernel
return imfilter(img, kernelfactors(ntuple(i->kern1, Val(N))))
end
qsmooth(img::AbstractArray) = qsmooth(Float32, img)
function qinterp(::Type{T}, moving) where T
widen1(ax) = first(ax)-1:last(ax)+1
# This sets up an interpolant object *without* using Interpolations.prefilter
# Prefiltering is a form of "anti-smoothing," meaning that for quadratic interpolation
# it defines a coefficient array so that, when you interpolate (aka, smooth),
# it reconstructs the original values. In this case, we *want* interpolation to
# perform smoothing, because the user has applied the same smoothing to `fixed`
# by calling `qsmooth`.
# Build the coefficient array. Quadratic interpolation requires one beyond-the-edge
# element, which we set to NaN
nanT = convert(T, NaN)
mmpad = PaddedView(nanT, of_eltype(T, moving), widen1.(axes(moving)))
# Create the interpolant, bypassing prefiltering
return extrapolate(Interpolations.BSplineInterpolation(T, T.(mmpad), BSpline(Quadratic(Free(OnCell()))), axes(moving)), nanT)
end
# ΞΈ = Inf
# # R = I + [0 -ΞΞΈ; ΞΞΈ 0] is a rotmtrx for infinitesimal ΞΞΈ
# # `dRdΞΈ` is the "slope" of the rotation, which allows us to compute
# # the
# dRdΞΈ = SD \ (@SMatrix([0 -1; 1 0]) * SD)
# for c in CornerIterator(ci)
# dcdΞΈs = dRdΞΈ*SVector(Tuple(c))
# for dcdΞΈ in dcdΞΈs
# ΞΈ = min(ΞΈ, abs(Ξc/dcdΞΈ))
# end
# end
# return (ΞΈ,)
# end
# function default_minwidth_rot(I::CartesianIndices{3}, SD; d=0.1)
# slice2d(I, i1, i2) = CartesianIndices((I.indices[i1], I.indices[i2]))
# return (default_minwidth_rot(slice2d(I, 2, 3), SD[2:3, 2:3]; d=d)...,
# default_minwidth_rot(slice2d(I, 1, 3), SD[[1,3], [1,3]]; d=d)...,
# default_minwidth_rot(slice2d(I, 1, 2), SD[1:2, 1:2]; d=d)...)
# end
#sets splits based on lower and upper bounds
function _analyze(f, lower, upper; kwargs...)
splits = ([[lower[i]; lower[i]+(upper[i]-lower[i])/2; upper[i]] for i=1:length(lower)]...,)
QuadDIRECT.analyze(f, splits, lower, upper; kwargs...)
end
# abs2 was removed in https://github.com/JuliaGraphics/ColorVectorSpace.jl/pull/131
# this is the current recommended replacement
# TODO: follow https://github.com/JuliaGraphics/ColorVectorSpace.jl/issues/157 and adjust for changes
_abs2(c) = mapreducec(v->float(v)^2, +, float(zero(eltype(c))), c)
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1382 | module RegisterUtilities
export Counter
#### Counter ####
#
# Stolen from Grid.jl. Useful when you want to do more math on the iterator.
struct Counter
max::Vector{Int}
end
Counter(sz::Tuple) = Counter(Int[sz...])
function Base.iterate(c::Counter)
N = length(c.max)
(N == 0 || any(c.max .<= 0)) && return nothing
state = ones(Int, N)
copy(state), state
end
function Base.iterate(c::Counter, state)
state[1] += 1
i = 1
while state[i] > c.max[i] && i < length(state)
state[i] = 1
i += 1
state[i] += 1
end
state[end] > c.max[end] && return nothing
copy(state), state
end
# Below functions are from RegisterTestUtilities
using ..RegisterCore, LinearAlgebra
export quadratic, block_center, tighten
function quadratic(m, n, shift, Q)
A = zeros(m, n)
c = block_center(m, n)
cntr = [shift[1] + c[1], shift[2] + c[2]]
u = zeros(2)
for j = 1:n, i = 1:m
u[1], u[2] = i - cntr[1], j - cntr[2]
A[i, j] = dot(u, Q * u)
end
A
end
quadratic(shift, Q, denom::Matrix) = MismatchArray(quadratic(size(denom)..., shift, Q), denom)
function block_center(sz...)
ntuple(i -> sz[i] >> 1 + 1, length(sz))
end
function tighten(A::AbstractArray)
T = typeof(first(A))
for a in A
T = promote_type(T, typeof(a))
end
At = similar(A, T)
copyto!(At, A)
end
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 9316 | function make_lutbridge()
begin
vec(
[
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
],
)
end
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2344 | module StructuringElements
export strel, strel_type, strel_size, strel_ndims
export SEMask, MorphologySE, SEOffset
export is_symmetric, require_symmetric_strel
export strel_split
export strel_box, SEBox, SEBoxArray
export strel_diamond, SEDiamond, SEDiamondArray
export strel_chain, strel_product, SEChain, SEChainArray
# TODO(johnnychen94): remove ImageCore dependency
using ImageCore: coords_spatial
using OffsetArrays
using OffsetArrays: centered
abstract type MorphologySE{N} end
abstract type MorphologySEArray{N} <: AbstractArray{Bool,N} end
OffsetArrays.centered(A::MorphologySEArray) = A
"""
SEMask{N}()
A (holy) trait type for representing structuring element as connectivity mask. This
connectivity mask SE is a bool array where `true` indicates that pixel position is connected
to the center point.
```jldoctest; setup=:(using ImageMorphology)
julia> se = centered(Bool[0 1 0; 1 1 1; 0 1 0]) # commonly known as C4 connectivity
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
0 1 0
1 1 1
0 1 0
julia> strel_type(se)
ImageMorphology.StructuringElements.SEMask{2}()
```
See also [`SEOffset`](@ref StructuringElements.SEOffset) for the displacement offset
representation. More details can be found on he documentation page [Structuring
Element](@ref concept_se).
"""
struct SEMask{N} <: MorphologySE{N} end
"""
SEOffset{N}()
A (holy) trait type for representing structuring element as displacement offsets. This
displacement offsets SE is an array of `CartesianIndex` where each element stores the
displacement offset from the center point.
```jldoctest; setup=:(using ImageMorphology)
julia> se = [CartesianIndex(-1, 0), CartesianIndex(0, -1), CartesianIndex(1, 0), CartesianIndex(0, 1)]
4-element Vector{CartesianIndex{2}}:
CartesianIndex(-1, 0)
CartesianIndex(0, -1)
CartesianIndex(1, 0)
CartesianIndex(0, 1)
julia> strel_type(se)
ImageMorphology.StructuringElements.SEOffset{2}()
```
See also [`SEMask`](@ref StructuringElements.SEMask) for the connectivity mask representation.
More details can be found on he documentation page [Structuring Element](@ref concept_se).
"""
struct SEOffset{N} <: MorphologySE{N} end
include("strel.jl")
# SE constructors
include("strel_chain.jl")
include("strel_box.jl")
include("strel_diamond.jl")
include("utils.jl")
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2128 | # From https://github.com/JuliaImages/ImageMorphology.jl/blob/master/src/ops/bothat.jl
"""
bothat(img; dims=coords_spatial(img), r=1)
bothat(img, se)
Performs morphological bottom-hat transform for given image, i.e., `closing(img, se) - img`.
$(_docstring_se)
This bottom-hat transform, also known as _black_ top-hat transform, can be used to extract
small black elements and details from an image. To extract white details, the _white_
top-hat transform [`tophat`](@ref) can be used.
# Examples
```jldoctest; setup = :(using ImageMorphology)
julia> img = falses(7, 7); img[3:5, 3:5] .= true; img[4, 6] = true; img[4, 4] = false; img
7Γ7 BitMatrix:
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 0 1 1 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
julia> Int.(bothat(img))
7Γ7 Matrix{$Int}:
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
julia> Int.(bothat(img, strel_diamond(img))) # use diamond shape SE
7Γ7 Matrix{$Int}:
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
```
See also [`bothat!`](@ref) for the in-place version.
"""
function bothat(img; kwargs...)
return bothat!(similar(img, maybe_floattype(eltype(img))), img, similar(img); kwargs...)
end
bothat(img, se) = bothat!(similar(img, maybe_floattype(eltype(img))), img, se, similar(img))
"""
bothat!(out, img, buffer; [dims], [r])
bothat!(out, img, se, buffer)
The in-place version of [`bothat`](@ref) with input image `img` and output image `out`. The
intermediate dilation result is stored in `buffer`.
"""
function bothat!(out, img, buffer; dims=coords_spatial(img), r=nothing)
return bothat!(out, img, strel_box(img, dims; r), buffer)
end
function bothat!(out, img, se, buffer)
closing!(out, img, se, buffer)
@. out = out - img
return out
end
function bothat!(out::AbstractArray{<:Color3}, img, se, buffer)
throw(ArgumentError("color image is not supported"))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2024 | # From https://github.com/JuliaImages/ImageMorphology.jl/blob/master/src/ops/closing.jl
"""
closing(img; dims=coords_spatial(img), r=1)
closing(img, se)
Perform the morphological closing on `img`. The closing operation is defined as dilation
followed by an erosion: `erode(dilate(img, se), se)`.
$(_docstring_se)
# Examples
```jldoctest; setup = :(using ImageMorphology)
julia> img = falses(7,7); img[2, 2] = true; img[3:5, 3:5] .= true; img[4, 4] = false; img
7Γ7 BitMatrix:
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
julia> closing(img)
7Γ7 BitMatrix:
1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
julia> closing(img, strel_diamond(img)) # # use diamond shape SE
7Γ7 BitMatrix:
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
```
## See also
- [`opening!`](@ref) is the in-place version of this function.
- [`closing`](@ref) is the dual operator of `opening` in the sense that
`complement.(opening(img)) == closing(complement.(img))`.
"""
closing(img; kwargs...) = closing!(similar(img), img, similar(img); kwargs...)
closing(img, se) = closing!(similar(img), img, se, similar(img))
"""
closing!(out, img, buffer; [dims], [r])
closing!(out, img, se, buffer)
The in-place version of [`closing`](@ref) with input image `img` and output image `out`. The
intermediate dilation result is stored in `buffer`.
"""
function closing!(out, img, buffer; dims=coords_spatial(img), r=nothing)
return closing!(out, img, strel_box(img, dims; r), buffer)
end
function closing!(out, img, se, buffer)
dilate!(buffer, img, se)
erode!(out, buffer, se)
return out
end
function closing!(out::AbstractArray{<:Color3}, img, se, buffer)
throw(ArgumentError("color image is not supported"))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2228 | # From https://github.com/JuliaImages/ImageMorphology.jl/blob/master/src/ops/dilate.jl
using ColorTypes
const _docstring_se = """
`se` is the structuring element that defines the neighborhood of the image. See
[`strel`](@ref) for more details. If `se` is not specified, then it will use the
[`strel_box`](@ref) with an extra keyword `dims` to control the dimensions to filter,
and half-size `r` to control the diamond size.
"""
"""
dilate(img; dims=coords_spatial(img), r=1)
dilate(img, se)
Perform a max-filter over the neighborhood of `img`, specified by structuring element `se`.
$(_docstring_se)
# Examples
```jldoctest; setup = :(using ImageMorphology)
julia> img = falses(5, 5); img[3, [2, 4]] .= true; img
5Γ5 BitMatrix:
0 0 0 0 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
julia> dilate(img)
5Γ5 BitMatrix:
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 0 0
julia> dilate(img; dims=1)
5Γ5 BitMatrix:
0 0 0 0 0
0 1 0 1 0
0 1 0 1 0
0 1 0 1 0
0 0 0 0 0
julia> dilate(img, strel_diamond(img)) # use diamond shape SE
5Γ5 BitMatrix:
0 0 0 0 0
0 1 0 1 0
1 1 1 1 1
0 1 0 1 0
0 0 0 0 0
```
## See also
- [`dilate!`](@ref) is the in-place version of this function
- [`erode`](@ref) is the dual operator of `dilate` in the sense that
`complement.(dilate(img)) == erode(complement.(img))`.
!!! note "symmetricity"
If `se` is symmetric with repsect to origin, i.e., `se[b] == se[-b]` for any `b`, then
dilation becomes the Minkowski sum: AβB={a+b|aβA, bβB}.
"""
dilate(img::AbstractArray; kwargs...) = dilate!(similar(img), img; kwargs...)
dilate(img::AbstractArray, se::AbstractArray) = dilate!(similar(img), img, se)
"""
dilate!(out, img; [dims], [r])
dilate!(out, img, se)
The in-place version of [`dilate`](@ref) with input image `img` and output image `out`.
"""
function dilate!(out, img; dims=coords_spatial(img), r=nothing)
return dilate!(out, img, strel_box(img, dims; r))
end
dilate!(out, img, se::AbstractArray) = extreme_filter!(max, out, img, se)
function dilate!(out::AbstractArray{<:Color3}, img, se::AbstractArray)
throw(ArgumentError("color image is not supported"))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1885 | # From https://github.com/JuliaImages/ImageMorphology.jl/blob/master/src/ops/dilate.jl
"""
out = erode(img; dims=coords_spatial(img), r=1)
out = erode(img, se)
Perform a min-filter over the neighborhood of `img`, specified by structuring element `se`.
$(_docstring_se)
# Examples
```jldoctest; setup = :(using ImageMorphology)
julia> img = trues(5, 5); img[3, [2, 4]] .= false; img
5Γ5 BitMatrix:
1 1 1 1 1
1 1 1 1 1
1 0 1 0 1
1 1 1 1 1
1 1 1 1 1
julia> erode(img)
5Γ5 BitMatrix:
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
julia> erode(img; dims=1)
5Γ5 BitMatrix:
1 1 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 1 0 1
1 1 1 1 1
julia> erode(img, strel_diamond(img)) # use diamond shape SE
5Γ5 BitMatrix:
1 1 1 1 1
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
1 1 1 1 1
```
## See also
- [`erode!`](@ref) is the in-place version of this function
- [`dilate`](@ref) is the dual operator of `erode` in the sense that
`complement.(dilate(img)) == erode(complement.(img))`.
!!! note "symmetricity"
If `se` is symmetric with repsect to origin, i.e., `se[b] == se[-b]` for any `b`, then
erosion becomes the Minkowski difference: AβB={a-b|aβA, bβB}.
"""
erode(img::AbstractArray; kwargs...) = erode!(similar(img), img; kwargs...)
erode(img::AbstractArray, se::AbstractArray) = erode!(similar(img), img, se)
"""
erode!(out, img; [dims], [r])
erode!(out, img, se)
The in-place version of [`erode`](@ref) with input image `img` and output image `out`.
"""
function erode!(out, img; dims=coords_spatial(img), r=nothing)
return erode!(out, img, strel_box(img, dims; r))
end
erode!(out, img, se::AbstractArray) = extreme_filter!(min, out, img, se)
function erode!(out::AbstractArray{<:Color3}, img, se::AbstractArray)
throw(ArgumentError("color image is not supported"))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 21546 | const MAX_OR_MIN = Union{typeof(max),typeof(min)}
"""
extreme_filter(f, A; r=1, [dims]) -> out
extreme_filter(f, A, Ξ©) -> out
Filter the array `A` using select function `f(x, y)` for each Ξ©-neighborhood. The name
"extreme" comes from the fact that typical select function `f` choice is `min` and `max`.
For each pixel `p` in `A`, the select function `f` is applied to its Ξ©-neighborhood
iteratively in a `f(...(f(f(A[p], A[p+Ξ©[1]]), A[p+Ξ©[2]]), ...)` manner. For instance, in the
1-dimensional case, `out[p] = f(f(A[p], A[p-1]), A[p+1])` for each `p` is the default
behavior.
The Ξ©-neighborhood is defined by the `dims` or `Ξ©` argument. The `r` and `dims` keywords
specifies the box shape neighborhood `Ξ©` using [`strel_box`](@ref). The `Ξ©` is also known as
structuring element (SE), it can be either displacement offsets or bool array mask, please
refer to [`strel`](@ref) for more details.
# Examples
```jldoctest extreme_filter; setup=:(using ImageMorphology)
julia> M = [4 6 5 3 4; 8 6 9 4 8; 7 8 4 9 6; 6 2 2 1 7; 1 6 5 2 6]
5Γ5 Matrix{$Int}:
4 6 5 3 4
8 6 9 4 8
7 8 4 9 6
6 2 2 1 7
1 6 5 2 6
julia> extreme_filter(max, M) # max-filter using 4 direct neighbors along both dimensions
5Γ5 Matrix{$Int}:
8 9 9 9 8
8 9 9 9 9
8 9 9 9 9
8 8 9 9 9
6 6 6 7 7
julia> extreme_filter(max, M; dims=1) # max-filter along the first dimension (column)
5Γ5 Matrix{$Int}:
8 6 9 4 8
8 8 9 9 8
8 8 9 9 8
7 8 5 9 7
6 6 5 2 7
```
`Ξ©` can be either an `AbstractArray{Bool}` mask array with `true` element indicating
connectivity, or a `AbstractArray{<:CartesianIndex}` array with each element indicating the
displacement offset to its center element.
```jldoctest extreme_filter
julia> Ξ©_mask = centered(Bool[1 1 0; 1 1 0; 1 0 0]) # custom neighborhood in mask format
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
1 1 0
1 1 0
1 0 0
julia> out = extreme_filter(max, M, Ξ©_mask)
5Γ5 Matrix{$Int}:
4 8 6 9 4
8 8 9 9 9
8 8 9 9 9
7 8 8 9 9
6 6 6 5 7
julia> Ξ©_offsets = strel(CartesianIndex, Ξ©_mask) # custom neighborhood as displacement offset
4-element Vector{CartesianIndex{2}}:
CartesianIndex(-1, -1)
CartesianIndex(0, -1)
CartesianIndex(1, -1)
CartesianIndex(-1, 0)
julia> out == extreme_filter(max, M, Ξ©_offsets) # both versions work equivalently
true
```
See also the in-place version [`extreme_filter!`](@ref). Another function in ImageFiltering
package `ImageFiltering.mapwindow` provides similar functionality.
"""
function extreme_filter(f, A; r=nothing, dims=coords_spatial(A))
return extreme_filter(f, A, strel_box(A, dims; r))
end
extreme_filter(f, A, Ξ©::AbstractArray) = extreme_filter!(f, similar(A), A, Ξ©)
"""
extreme_filter!(f, out, A; [r], [dims])
extreme_filter!(f, out, A, Ξ©)
The in-place version of [`extreme_filter`](@ref) where `out` is the output array that gets
modified.
"""
function extreme_filter!(f, out, A; r=nothing, dims=coords_spatial(A))
return extreme_filter!(f, out, A, strel_box(A, dims; r))
end
function extreme_filter!(f, out, A, Ξ©)
axes(out) == axes(A) || throw(DimensionMismatch("axes(out) must match axes(A)"))
require_select_function(f, eltype(A))
return _extreme_filter!(strel_type(Ξ©), f, out, A, Ξ©)
end
_extreme_filter!(::MorphologySE, f, out, A, Ξ©) = _extreme_filter_generic!(f, out, A, Ξ©)
_extreme_filter!(::SEDiamond, f, out, A, Ξ©) = _extreme_filter_diamond!(f, out, A, Ξ©)
function _extreme_filter!(
::MorphologySE, f::MAX_OR_MIN, out, A::AbstractArray{T}, Ξ©
) where {T<:Union{Gray{Bool},Bool}}
# NOTE(johnnychen94): empirical choice based on benchmark results (intel i9-12900k)
true_ratio = gray(sum(A) / length(A)) # this usually takes <2% of the time but gives a pretty good hint to do the decision
true_ratio == 1 && (out .= true; return out)
true_ratio == 0 && (out .= false; return out)
use_bool =
prod(strel_size(Ξ©)) > 9 ||
(f === max && true_ratio > 0.8) ||
(f === min && true_ratio < 0.2)
if use_bool
return _extreme_filter_bool!(f, out, A, Ξ©)
else
return _extreme_filter_generic!(f, out, A, Ξ©)
end
end
function _extreme_filter!(
::SEDiamond, f::MAX_OR_MIN, out, A::AbstractArray{T}, Ξ©
) where {T<:Union{Gray{Bool},Bool}}
rΞ© = strel_size(Ξ©) .Γ· 2
if ndims(A) == 2 && all(rΞ©[1] .== rΞ©)
# super fast implementation and wins in all cases
return _extreme_filter_diamond!(f, out, A, Ξ©)
end
# NOTE(johnnychen94): empirical choice based on benchmark results (intel i9-12900k)
true_ratio = gray(sum(A) / length(A)) # this usually takes <2% of the time but gives a pretty good hint to do the decision
true_ratio == 1 && (out .= true; return out)
true_ratio == 0 && (out .= false; return out)
use_bool = (f === max && true_ratio > 0.4) || (f === min && true_ratio < 0.6)
if use_bool
return _extreme_filter_bool!(f, out, A, Ξ©)
else
return _extreme_filter_diamond!(f, out, A, Ξ©)
end
end
function _extreme_filter!(
::SEBox, f::MAX_OR_MIN, out, A::AbstractArray{T}, Ξ©
) where {T<:Union{Gray{Bool},Bool}}
rΞ© = strel_size(Ξ©) .Γ· 2
if ndims(A) == 2 && all(rΞ©[1] .== rΞ©)
# super fast implementation and wins in all cases
return _extreme_filter_box!(f, out, A, Ξ©)
end
return _extreme_filter_bool!(f, out, A, Ξ©)
end
###
# Implementation details
###
function _extreme_filter_generic!(f, out, A, Ξ©)
@debug "call the generic `extreme_filter` implementation" fname =
_extreme_filter_generic!
Ξ© = strel(CartesianIndex, Ξ©)
Ξ΄ = CartesianIndex(strel_size(Ξ©) .Γ· 2)
R = CartesianIndices(A)
R_inner = (first(R) + Ξ΄):(last(R) - Ξ΄)
# NOTE(johnnychen94): delibrately duplicate the kernel codes here for inner loop and
# boundary loop, because keeping the big function body allows Julia to do further
# optimization and thus significantly improves the overall performance.
@inbounds for p in R_inner
# for interior points, boundary check is unnecessary
s = A[p]
for o in Ξ©
v = A[p + o]
s = f(s, v)
end
out[p] = s
end
@inbounds for p in EdgeIterator(R, R_inner)
# for edge points, skip if the offset exceeds the boundary
s = A[p]
for o in Ξ©
q = p + o
checkbounds(Bool, A, q) || continue
s = f(s, A[q])
end
out[p] = s
end
return out
end
# optimized implementation for SEDiamond -- a typical case of separable filter
function _extreme_filter_diamond!(f, out, A, Ξ©::SEDiamondArray{N}) where {N}
rΞ© = strel_size(Ξ©) .Γ· 2
if N == 2 && f isa MAX_OR_MIN && all(rΞ©[1] .== rΞ©)
iter = rΞ©[1]
return _extreme_filter_diamond_2D!(f, out, A, iter)
else
return _extreme_filter_diamond_generic!(f, out, A, Ξ©)
end
end
function _extreme_filter_diamond_generic!(f, out, A, Ξ©::SEDiamondArray)
@debug "call the optimized `extreme_filter` implementation for SEDiamond SE" fname =
_extreme_filter_diamond!
rΞ© = strel_size(Ξ©) .Γ· 2
r = maximum(rΞ©)
# To avoid the result affected by loop order, we need two arrays
src = (out === A) || (r > 1) ? copy(A) : A
out .= src
# applying radius=r filter is equivalent to applying radius=1 filter r times
for i in 1:r
Ξ© = strel_diamond(A, Ξ©.dims)
rΞ© = strel_size(Ξ©) .Γ· 2
inds = axes(A)
for d in 1:ndims(A)
# separately apply to each dimension
if size(out, d) == 1 || rΞ©[d] == 0
continue
end
Rpre = CartesianIndices(inds[1:(d - 1)])
Rpost = CartesianIndices(inds[(d + 1):end])
_extreme_filter_C2!(f, out, src, Rpre, inds[d], Rpost)
end
if r > 1 && i < r
src .= out
end
end
return out
end
# fast version for C2 connectivity along each dimension
@noinline function _extreme_filter_C2!(f, dst, src, Rpre, inds, Rpost)
# manually unroll the loop for r=1 case
# for r>1 case, it is equivalently to apply r times
@inbounds for Ipost in Rpost, Ipre in Rpre
# loop inner region
for i in (first(inds) + 1):(last(inds) - 1)
a1 = src[Ipre, i - 1, Ipost]
a2 = dst[Ipre, i, Ipost]
a3 = src[Ipre, i + 1, Ipost]
dst[Ipre, i, Ipost] = f(f(a1, a2), a3)
end
# process two edge points
i = first(inds)
a2 = dst[Ipre, i, Ipost]
a3 = src[Ipre, i + 1, Ipost]
dst[Ipre, i, Ipost] = f(a2, a3)
i = last(inds)
a1 = src[Ipre, i - 1, Ipost]
a2 = dst[Ipre, i, Ipost]
dst[Ipre, i, Ipost] = f(a1, a2)
end
return dst
end
# Shift vector of size N up or down by 1 accorded to dir, pad with v
const SafeArrayTypes{T,N,NA} = Union{Array{T,N},Base.SubArray{T,N,Array{T,NA}}}
function _unsafe_padded_copyto!(
dest::SafeArrayTypes{T,1}, src::SafeArrayTypes{T,1}, dir, N, v
) where {T}
# ptr level optimized implementation for Real types
# short-circuit all check so unsafe
if dir
unsafe_store!(pointer(dest), v)
unsafe_copyto!(pointer(dest, 2), pointer(src, 1), N - 1)
else
unsafe_copyto!(pointer(dest, 1), pointer(src, 2), N - 1)
unsafe_store!(pointer(dest), v, N)
end
return dest
end
function _unsafe_padded_copyto!(dest::AbstractVector, src::AbstractVector, dir, N, v)
if dir
dest[begin] = v
copyto!(dest, 2, src, 1, N - 1)
else
dest[end] = v
copyto!(dest, 1, src, 2, N - 1)
end
return dest
end
# ptr level optimized implementation for Real types
# short-circuit all check
# call LoopVectorization directly
function _unsafe_shift_arith!(
f::MAX_OR_MIN,
out::AbstractVector,
tmp::AbstractVector,
tmp2::AbstractVector,
A::AbstractVector,
) #tmp external to reuse external allocation
if f === min
padd = typemax(eltype(out))
else
padd = typemin(eltype(out))
end
N = length(out)
#in src = [1,2,3,4], padd, N=4
#out tmp = [padd,1,2,3]
#out tmp2 = [1,2,3,padd]
_unsafe_padded_copyto!(tmp, A, true, N, padd)
_unsafe_padded_copyto!(tmp2, A, false, N, padd)
@turbo warn_check_args = false for i in eachindex(out, A, tmp, tmp2)
out[i] = f(f(A[i], tmp[i]), tmp2[i])
end
return out
end
@static if Sys.WORD_SIZE == 64
# optimized `extreme_filter` implementation for SEDiamond SE and 2D images
# Similar approach could be found in
# Ε½laus, Danijel & Mongus, Domen. (2018). In-place SIMD Accelerated Mathematical Morphology. 76-79. 10.1145/3206157.3206176.
# see https://www.researchgate.net/publication/325480366_In-place_SIMD_Accelerated_Mathematical_Morphology
function _extreme_filter_diamond_2D!(
f::MAX_OR_MIN, out::AbstractArray{T}, A, iter
) where {T}
@debug "call the AVX-enabled `extreme_filter` implementation for 2D SEDiamond" fname =
_extreme_filter_diamond_2D!
out_actual = out
out = OffsetArrays.no_offset_view(out)
A = OffsetArrays.no_offset_view(A)
src = if (out === A) || (iter > 1)
# To avoid the result affected by loop order, we need two arrays
T.(A)
elseif eltype(A) != T
# To avoid incorrect result, we need to ensure the eltypes are the same
# https://github.com/JuliaImages/ImageMorphology.jl/issues/104
T.(A)
else
A
end
# NOTE(johnnychen94): we don't need to do `out .= src` here because it is write-only;
# all values are generated from the read-only `src`.
# LoopVectorization currently doesn't understand Gray and N0f8 types, thus we
# reinterpret to its raw data type UInt8
src = rawview(channelview(src))
out = rawview(channelview(out))
# creating temporaries
ySize, xSize = size(A)
tmp = similar(out, eltype(out), ySize)
tmp2 = similar(tmp)
tmp3 = similar(tmp)
# applying radius=r filter is equivalent to applying radius=1 filter r times
for i in 1:iter
# NOTE(johnnychen94): this implementation is essentially equivalent to the
# following loop. Here we buffer the getindex to further improve the performance
# by explicitly introducing SIMD buffers.
# for y in 2:(size(src, 2) - 1), x in 2:(size(src, 1) - 1)
# tmp = f(f(src[x, y], src[x - 1, y]), src[x + 1, y])
# out[x, y] = f(f(tmp, src[x, y - 1]), src[x, y + 1])
# end
#compute first edge column
#translate to clipped connection, x neighborhood of interest, ? neighborhood we don't care, . center
# x ?
# . x
# x ?
viewprevious = view(src, :, 1)
# dilate/erode col 1
_unsafe_shift_arith!(f, tmp2, tmp, tmp3, viewprevious)
viewnext = view(src, :, 2)
viewout = view(out, :, 1)
# inf/sup between dilate/erode col 1 0 and col 2
LoopVectorization.vmap!(f, viewout, viewnext, tmp2)
#next->current
viewcurrent = view(src, :, 2)
for c in 3:xSize
# viewprevious c-2
# viewcurrent c-1
# viewnext c
# ? x ?
# x . x
# ? x ?
viewout = view(out, :, c - 1)
viewnext = view(src, :, c)
# dilate(x-1)/erode(x-1)
_unsafe_shift_arith!(f, tmp2, tmp, tmp3, viewcurrent)
@turbo warn_check_args = false for i in
eachindex(viewout, viewprevious, tmp2)
#sup(x-2,dilate(x-1)),inf(x-2,erode(x-1))
#sup(sup(x-2,dilate(x-1),x) || inf(inf(x-2,erode(x-1),x)
viewout[i] = f(f(viewprevious[i], tmp2[i]), viewnext[i])
end
#current->previous
viewprevious = view(src, :, c - 1)
#next->current
viewcurrent = view(src, :, c)
end
#end last column
#translate to clipped connection
# ? x
# x .
# ? x
# dilate/erode col x
viewout = view(out, :, xSize)
_unsafe_shift_arith!(f, tmp2, tmp, tmp3, viewcurrent)
LoopVectorization.vmap!(f, viewout, tmp2, viewprevious)
if iter > 1 && i < iter
src .= out
end
end
return out_actual
end
else
# FIXME(johnnychen94): unknown segfault happens to 32bit machine
# https://github.com/JuliaImages/ImageMorphology.jl/pull/106
function _extreme_filter_diamond_2D!(f::MAX_OR_MIN, out::AbstractArray, A, iter)
return _extreme_filter_diamond_generic!(f, out, A, strel_diamond(A; r=iter))
end
end
function _extreme_filter_box!(f, out, A, Ξ©::SEBoxArray{N}) where {N}
rΞ© = strel_size(Ξ©) .Γ· 2
if N == 2 && f isa MAX_OR_MIN && all(rΞ©[1] .== rΞ©)
iter = rΞ©[1]
return _extreme_filter_box_2D!(f, out, A, iter)
else
return _extreme_filter_generic!(f, out, A, Ξ©)
end
end
@static if Sys.WORD_SIZE == 64
# optimized `extreme_filter` implementation for SEBox SE and 2D images
# Similar approach could be found in
# Ε½laus, Danijel & Mongus, Domen. (2018). In-place SIMD Accelerated Mathematical Morphology. 76-79. 10.1145/3206157.3206176.
# see https://www.researchgate.net/publication/325480366_In-place_SIMD_Accelerated_Mathematical_Morphology
function _extreme_filter_box_2D!(
f::MAX_OR_MIN, out::AbstractArray{T}, A, iter
) where {T}
@debug "call the AVX-enabled `extreme_filter` implementation for 2D SEBox" fname =
_extreme_filter_box_2D!
out_actual = out
out = OffsetArrays.no_offset_view(out)
A = OffsetArrays.no_offset_view(A)
src = if (out === A) || (iter > 1)
# To avoid the result affected by loop order, we need two arrays
T.(A)
elseif eltype(A) != T
# To avoid incorrect result, we need to ensure the eltypes are the same
# https://github.com/JuliaImages/ImageMorphology.jl/issues/104
T.(A)
else
A
end
# NOTE(johnnychen94): we don't need to do `out .= src` here because it is write-only;
# all values are generated from the read-only `src`.
# LoopVectorization currently doesn't understand Gray and N0f8 types, thus we
# reinterpret to its raw data type UInt8
src = rawview(channelview(src))
out = rawview(channelview(out))
#creating temporaries
ySize, xSize = size(A)
tmp = similar(out, eltype(out), ySize)
tmp2 = similar(tmp)
tmp3 = similar(tmp)
tmp4 = similar(tmp)
tmp5 = similar(tmp)
# applying radius=r filter is equivalent to applying radius=1 filter r times
for i in 1:iter
#compute first edge column
#translate to clipped connection, x neighborhood of interest, ? neighborhood we don't care, . center
# x x
# . x
# x x
viewprevious = view(src, :, 1)
# dilate/erode col 1
_unsafe_shift_arith!(f, tmp2, tmp, tmp5, viewprevious)
viewnext = view(src, :, 2)
viewout = view(out, :, 1)
# dilate/erode col 2
_unsafe_shift_arith!(f, tmp3, tmp, tmp5, viewnext)
#sup(dilate col 1,dilate col 0) or inf(erode col 1,erode col 0)
LoopVectorization.vmap!(f, viewout, tmp3, tmp2)
#next->current
viewcurrent = view(src, :, 2)
for c in 3:xSize
# Invariant of the loop
# temp2 contains dilation/erosion of previous col x-2
# temp3 contains dilation/erosion of current col x-1
# temp4 contains dilation/erosion of next col ie x
# viewprevious c-2
# viewcurrent c-1
# viewnext c
# x x x
# x . x
# x x x
viewout = view(out, :, c - 1)
viewnext = view(src, :, c)
# dilate(x)/erode(x)
_unsafe_shift_arith!(f, tmp4, tmp, tmp5, viewnext)
@turbo warn_check_args = false for i in eachindex(viewout, tmp4, tmp3, tmp2)
#sup(x-2,dilate(x-1)),inf(x-2,erode(x-1))
#sup(dilate(x-2),dilate(x-1),dilate(y)) or inf(erode(x-2),erode(x-1),erode(x))
viewout[i] = f(f(tmp2[i], tmp3[i]), tmp4[i])
end
#swap
tmp4, tmp3 = tmp3, tmp4
tmp4, tmp2 = tmp2, tmp4
end
#end last column
#translate to clipped connection
# x x
# x .
# x x
# dilate/erode col x
viewout = view(out, :, xSize)
_unsafe_shift_arith!(f, tmp4, tmp, tmp5, viewcurrent)
LoopVectorization.vmap!(f, viewout, tmp2, tmp3)
if iter > 1 && i < iter
src .= out
end
end
return out_actual
end
else
# FIXME(johnnychen94): unknown segfault happens to 32bit machine
# https://github.com/JuliaImages/ImageMorphology.jl/pull/106
function _extreme_filter_box_2D!(f::MAX_OR_MIN, out::AbstractArray, A, iter)
return _extreme_filter_generic!(f, out, A, strel_box(A; r=iter))
end
end
# optimized implementation for Bool inputs with max/min select function
# 1) use &&, || instead of max, min
# 2) short-circuit the result to avoid unnecessary indexing and computation
function _extreme_filter_bool!(f, out, A::AbstractArray{Bool}, Ξ©)
@debug "call the optimized max/min `extreme_filter` implementation for boolean array" fname =
_extreme_filter_bool!
Ξ© = strel(CartesianIndex, Ξ©)
Ξ΄ = CartesianIndex(strel_size(Ξ©) .Γ· 2)
R = CartesianIndices(A)
R_inner = (first(R) + Ξ΄):(last(R) - Ξ΄)
select = _fast_select(f)
@inbounds for p in R_inner
out[p] = select(A, p, Ξ©)
end
for p in EdgeIterator(R, R_inner)
out[p] = select(A, p, Ξ©)
end
return out
end
function _extreme_filter_bool!(f, out, A::AbstractArray{Gray{Bool}}, Ξ©)
return _extreme_filter_bool!(f, out, reinterpret(Bool, A), Ξ©)
end
_fast_select(::typeof(max)) = _maximum_fast
_fast_select(::typeof(min)) = _minimum_fast
Base.@propagate_inbounds function _maximum_fast(A::AbstractArray{Bool}, p, Ξ©)
rst = A[p]
for o in Ξ©
# the complicated control flow ruins the SIMD and thus for small Ξ©, the performance
# will be worse
q = p + o
@boundscheck checkbounds(Bool, A, q) || continue
x = A[q]
x && return true
rst = rst || x
end
return rst
end
Base.@propagate_inbounds function _minimum_fast(A::AbstractArray{Bool}, p, Ξ©)
rst = A[p]
for o in Ξ©
# the complicated control flow ruins the SIMD and thus for small Ξ©, the performance
# will be worse
q = p + o
@boundscheck checkbounds(Bool, A, q) || continue
x = A[q]
x || return false
rst = rst && x
end
return rst
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1841 | # From https://github.com/JuliaImages/ImageMorphology.jl/pull/119
"""
fill_holes(img; [dims])
fill_holes(img; se)
Fill the holes in image 'img'. Could be binary or grascale
The `dims` keyword is used to specify the dimension to process by constructing the box shape
structuring element [`strel_box(img; dims)`](@ref strel_box). For generic structuring
element, the half-size is expected to be either `0` or `1` along each dimension.
The output has the same type as input image
"""
function fill_holes(img; dims=coords_spatial(img))
return fill_holes(img, strel_box(img, dims))
end
function fill_holes(img, se)
return fill_holes!(similar(img), img, se)
end
function fill_holes!(out, img; dims=coords_spatial(img))
return fill_holes!(out, img, strel_box(img, dims))
end
function fill_holes!(out, img, se)
return _fill_holes!(out, img, se)
end
function _fill_holes!(out, img, se)
N = ndims(img)
axes(out) == axes(img) || throw(DimensionMismatch("images should have the same axes"))
se_size = strel_size(se)
if length(se_size) != N
msg = "the input structuring element is not for $N dimensional array, instead it is for $(length(se_size)) dimensional array"
throw(DimensionMismatch(msg))
end
if !all(x -> in(x, (1, 3)), strel_size(se))
msg = "structuring element with half-size larger than 1 is invalid"
throw(DimensionMismatch(msg))
end
tmp = similar(img)
# fill marker image with max
fill!(tmp, typemax(eltype(img)))
# fill borders with 0
dimensions = size(tmp)
outerrange = CartesianIndices(map(i -> 1:i, dimensions))
innerrange = CartesianIndices(map(i -> (1 + 1):(i - 1), dimensions))
for i in EdgeIterator(outerrange, innerrange)
tmp[i] = 0
end
return mreconstruct!(erode, out, tmp, img, se)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 6710 | """
mreconstruct(op, marker, mask; [dims])
mreconstruct(op, marker, mask, se)
Morphological reconstruction of `marker` image by operation `op`.
The `op` argument is either `erode` or `dilate`, indicating reconstruction by erosion or by
dilation. The `mask` argument has the same shape as `marker` and is used to restrict the
output value range.
The `dims` keyword is used to specify the dimension to process by constructing the box shape
structuring element [`strel_box(marker; dims)`](@ref strel_box). For generic structuring
element, the half-size is expected to be either `0` or `1` along each dimension.
By definition, the reconstruction is done by applying `marker = select.(op(marker; dims),
mask)` repeatly until reaching stability. For dilation `op, select = dilate, min` and for
erosion `op, select = erode, max`.
# Examples
```jldoctest; setup=:(using ImageMorphology)
julia> marker = [0 0 0 0 0; 0 9 0 0 0; 0 0 0 0 0; 0 0 0 5 0; 0 0 0 0 0; 0 9 0 0 0]
6Γ5 Matrix{$Int}:
0 0 0 0 0
0 9 0 0 0
0 0 0 0 0
0 0 0 5 0
0 0 0 0 0
0 9 0 0 0
julia> mask = [9 0 0 0 0; 0 8 7 1 0; 0 9 0 4 0; 0 0 0 4 0; 0 0 6 5 6; 0 0 9 8 9]
6Γ5 Matrix{$Int}:
9 0 0 0 0
0 8 7 1 0
0 9 0 4 0
0 0 0 4 0
0 0 6 5 6
0 0 9 8 9
julia> mreconstruct(dilate, marker, mask) # equivalent to underbuild(marker, mask)
6Γ5 Matrix{$Int}:
8 0 0 0 0
0 8 7 1 0
0 8 0 4 0
0 0 0 4 0
0 0 4 4 4
0 0 4 4 4
```
# See also
The inplace version of this function is [`mreconstruct!`](@ref). There are also aliases
[`underbuild`](@ref) for reconstruction by dilation and [`overbuild`](@ref) for
reconstruction by erosion.
# References
- [1] L. Vincent, βMorphological grayscale reconstruction in image analysis: applications
and efficient algorithms,β IEEE Trans. on Image Process., vol. 2, no. 2, pp. 176β201, Apr.
1993, doi: 10.1109/83.217222.
- [2] P. Soille, Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004. doi: 10.1007/978-3-662-05088-0.
"""
function mreconstruct(op, marker, mask; dims=coords_spatial(mask))
return mreconstruct(op, marker, mask, strel_box(marker, dims))
end
function mreconstruct(op, marker, mask, se)
axes(marker) == axes(mask) ||
throw(DimensionMismatch("`marker` and `mask` should have the same axes"))
# This ensures that we support mixed types, e.g. marker as Matrix{Gray{N0f8}} and mask as Matrix{Float64}
OT = ImageCore.MosaicViews.promote_wrapped_type(eltype(marker), eltype(mask))
return mreconstruct!(op, similar(mask, OT), marker, mask, se)
end
"""
mreconstruct!(op, out, marker, mask; [dims])
The in-place version of morphological reconstruction [`mreconstruct`](@ref).
"""
function mreconstruct!(op, out, marker, mask; dims=coords_spatial(mask))
return mreconstruct!(op, out, marker, mask, strel_box(marker, dims))
end
function mreconstruct!(op, out, marker, mask, se)
return _mreconstruct!(_prepare_reconstruct_ops(op), out, marker, mask, se)
end
function _prepare_reconstruct_ops(::op) where {op}
return error("operation `$(op.instance)` is not supported for `mreconstruct`")
end
_prepare_reconstruct_ops(::typeof(dilate)) = (max, min)
_prepare_reconstruct_ops(::typeof(erode)) = (min, max)
@inline _should_enqueue(::typeof(max)) = <
@inline _should_enqueue(::typeof(min)) = >
# Single-CPU version, references are [1] and section 6.2 of [2]
function _mreconstruct!((select_se, select_marker), out, marker, mask, se)
N = ndims(marker)
axes(out) == axes(marker) == axes(mask) ||
throw(DimensionMismatch("images should have the same axes"))
require_select_function(select_se, eltype(mask), eltype(marker))
require_select_function(select_marker, eltype(mask), eltype(marker))
# For generic structuring element, the half-size should to be either `0` or `1` along
# each dimension. See also section 6.2.3 of [2].
se_size = strel_size(se)
if length(se_size) != N
msg = "the input structuring element is not for $N dimensional array, instead it is for $(length(se_size)) dimensional array"
throw(DimensionMismatch(msg))
end
if !all(x -> in(x, (1, 3)), strel_size(se))
# center cropping the input se using [-1:1, -1:1, ...]
inds_str = join(ntuple(_ -> 3, N), "Γ")
@warn "structuring element with half-size larger than 1 is invalid, only the center $inds_str values are used"
inds = ntuple(i -> (-1:1), N)
se = centered(strel(Bool, strel(CartesianIndex, se))[inds...])
end
se = strel(CartesianIndex, se)
# The original algorithm assume that the marker < mask for erosion and marker > mask for
# dilation. This assertion is not always true in practice.
@. out = select_marker(marker, mask)
queue = Queue{CartesianIndex{N}}()
se = strel(CartesianIndex, se)
upper_se, lower_se = strel_split(se)
# NOTE we could pad the array with -Inf to speedup forward/backward scan
# forward scan
R = CartesianIndices(axes(marker))
for i in R
@inbounds curr_val = out[i]
for Ξi in upper_se # examine neighborhoods
ii = i + Ξi
if checkbounds(Bool, R, ii) #check that we are in the image
@inbounds curr_val = select_se(curr_val, out[ii])
end
end
@inbounds out[i] = select_marker(curr_val, mask[i])
end
# backward scan
should_enqueue = _should_enqueue(select_se)
for i in reverse(R)
@inbounds curr_val = out[i]
for Ξi in lower_se # examine neighborhoods
ii = i + Ξi
if checkbounds(Bool, R, ii) #check that we are in the image
@inbounds curr_val = select_se(curr_val, out[ii])
end
end
@inbounds out[i] = select_marker(curr_val, mask[i])
for Ξi in lower_se # examine neighborhoods
ii = i + Ξi
if checkbounds(Bool, R, ii) #check that we are in the image
@inbounds if should_enqueue(out[ii], out[i]) &&
should_enqueue(out[ii], mask[ii])
enqueue!(queue, i)
end
end
end
end
# Loop until all pixel have been examined
while !isempty(queue)
curr_idx = dequeue!(queue)
for Ξi in se # examine neighborhoods
ii = curr_idx + Ξi
if checkbounds(Bool, R, ii) #check that we are in the image
@inbounds if should_enqueue(out[ii], out[curr_idx]) && mask[ii] != out[ii]
out[ii] = select_marker(out[curr_idx], mask[ii])
enqueue!(queue, ii)
end
end
end
end
return out
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1931 | """
opening(img; dims=coords_spatial(img), r=1)
opening(img, se)
Perform the morphological opening on `img`. The opening operation is defined as erosion
followed by a dilation: `dilate(erode(img, se), se)`.
$(_docstring_se)
# Examples
```jldoctest; setup = :(using ImageMorphology)
julia> img = trues(7,7); img[2, 2] = false; img[3:5, 3:5] .= false; img[4, 4] = true; img
7Γ7 BitMatrix:
1 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 1 0 1 1
1 1 0 0 0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
julia> opening(img)
7Γ7 BitMatrix:
0 0 1 1 1 1 1
0 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
julia> opening(img, strel_diamond(img)) # use diamond shape SE
7Γ7 BitMatrix:
1 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
```
## See also
- [`opening!`](@ref) is the in-place version of this function.
- [`closing`](@ref) is the dual operator of `opening` in the sense that
`complement.(opening(img)) == closing(complement.(img))`.
"""
opening(img; kwargs...) = opening!(similar(img), img, similar(img); kwargs...)
opening(img, se) = opening!(similar(img), img, se, similar(img))
"""
opening!(out, img, buffer; [dims], [r])
opening!(out, img, se, buffer)
The in-place version of [`opening`](@ref) with input image `img` and output image `out`. The
intermediate erosion result is stored in `buffer`.
"""
function opening!(out, img, buffer; dims=coords_spatial(img), r=nothing)
return opening!(out, img, strel_box(img, dims; r), buffer)
end
function opening!(out, img, se, buffer)
erode!(buffer, img, se)
dilate!(out, buffer, se)
return out
end
function opening!(out::AbstractArray{<:Color3}, img, se, buffer)
throw(ArgumentError("color image is not supported"))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 5407 | """
strel([T], X::AbstractArray)
Convert structuring element (SE) `X` to appropriate presentation format with element type `T`.
This is a useful tool to generate SE that most ImageMorphology functions understand.
ImageMorphology currently supports two commonly used representations:
- `T=CartesianIndex`: offsets to its center point. The output type is
`Vector{CartesianIndex{N}}`.
- `T=Bool`: connectivity mask where `true` indicates connected to its center point. The
output type is `BitArray{N}`.
```jldoctest; setup=:(using ImageMorphology)
julia> se_mask = centered(Bool[1 1 0; 1 1 0; 0 0 0]) # connectivity mask
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
1 1 0
1 1 0
0 0 0
julia> se_offsets = strel(CartesianIndex, se_mask) # displacement offsets to its center point
3-element Vector{CartesianIndex{2}}:
CartesianIndex(-1, -1)
CartesianIndex(0, -1)
CartesianIndex(-1, 0)
julia> se = strel(Bool, se_offsets)
3Γ3 OffsetArray(::BitMatrix, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
1 1 0
1 1 0
0 0 0
```
See also [`strel_diamond`](@ref) and [`strel_box`](@ref) for SE constructors for two
special cases.
"""
function strel end
strel(se) = strel(strel_type(se), se)
# convenient user interface without exporting MorphologySE
function strel(::Type{ET}, se::AbstractArray) where {ET<:CartesianIndex}
return strel(SEOffset{strel_ndims(se)}(), se)
end
strel(::Type{ET}, se::AbstractArray) where {ET<:Bool} = strel(SEMask{strel_ndims(se)}(), se)
# conversion between different SE arrays
function strel(SET::MorphologySE, se::T) where {T}
strel_type(se) == SET || error("unsupported conversion from type $T to $SET")
return se
end
function strel(::SEMask{N}, offsets::AbstractArray{CartesianIndex{N}}) where {N}
isempty(offsets) && return centered(trues(ntuple(_ -> 1, N)))
mn, mx = extrema(offsets)
r = ntuple(N) do i
max(abs(mn.I[i]), abs(mx.I[i]))
end
sz = @. 2r + 1
se = centered(falses(sz))
se[offsets] .= true
se[zero(eltype(offsets))] = true # always set center point to true
return centered(BitArray(OffsetArrays.no_offset_view(se)))
end
strel(::SEMask{N}, mask::AbstractArray{Bool,N}) where {N} = mask
function strel(::SEOffset{N}, connectivity::AbstractArray{Bool,N}) where {N}
all(isodd, size(connectivity)) || error("`connectivity` must be odd-sized")
ax = axes(connectivity)
is_symmetric = all(r -> first(r) == -last(r), ax)
if !is_symmetric && all(first.(axes(connectivity)) .== 1)
# To keep consistent with the "kernel" concept in ImageFiltering, we require
# the connectivity mask to be centered as well.
# This is a perhaps permanent depwarn to throw friendly message to the user
# if they're used to use, e.g., `trues(3, 3)` as the input.
msg = "connectivity mask is expected to be a centered bool array"
hint = "Do you mean `centered(connectivity)`"
Base.depwarn("$msg. $hint?", :strel)
elseif !is_symmetric
throw(ArgumentError("`connectivity` must be symmetric bool array"))
end
connectivity = centered(connectivity)
# always skip center point
return [i for i in CartesianIndices(connectivity) if connectivity[i] && !iszero(i)]
end
"""
strel_type(x)
Infer the structuring element type for `x`.
!!! note "developer note"
This function is used to dispatch special SE types, e.g., [`SEBoxArray`](@ref), to
optimized implementation of particular morphology filter. In this sense it is required
for custom SE array types to define this method.
"""
strel_type(se::MorphologySE) = se
strel_type(::AbstractArray{Bool,N}) where {N} = SEMask{N}()
strel_type(::AbstractVector{CartesianIndex{N}}) where {N} = SEOffset{N}()
strel_type(::CartesianIndices{N}) where {N} = SEOffset{N}()
strel_type(::T) where {T} = error("invalid structuring element data type: $T")
"""
strel_size(x)
Calculate the minimal block size that contains the structuring element. The result
will be a tuple of odd integers.
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> se = strel_diamond((5, 5); r=1)
5Γ5 SEDiamondArray{2, 2, UnitRange{$Int}, 0} with indices -2:2Γ-2:2:
0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0
julia> strel_size(se) # is not (5, 5)
(3, 3)
julia> strel(Bool, strel(CartesianIndex, se)) # because it only checks the minimal enclosing block
3Γ3 OffsetArray(::BitMatrix, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
0 1 0
1 1 1
0 1 0
julia> se = [CartesianIndex(1, 1), CartesianIndex(-2, -2)];
julia> strel_size(se) # is not (4, 4)
(5, 5)
julia> strel(Bool, se) # because the connectivity mask has to be odd size
5Γ5 OffsetArray(::BitMatrix, -2:2, -2:2) with eltype Bool with indices -2:2Γ-2:2:
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
julia> se = strel_diamond((5, 5), (1, ); r=1)
5Γ5 SEDiamondArray{2, 1, UnitRange{$Int}, 1} with indices -2:2Γ-2:2:
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
julia> strel_size(se)
(3, 1)
```
"""
strel_size(se) = size(strel(Bool, strel(CartesianIndex, se)))
"""
strel_ndims(x)::Int
Infer the dimension of the structuring element `x`
"""
strel_ndims(se) = strel_ndims(strel_type(se))
strel_ndims(::MorphologySE{N}) where {N} = N
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 4386 | """
SEBox{N}(axes; [r])
The N-dimensional structuring element with all elements connected. This is a special case of
[`SEMask`](@ref) that ImageMorphology algorithms might provide
optimized implementation.
It is recommended to use [`strel_box`](@ref) and [`strel_type`](@ref):
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> se = strel_box((3, 3)) # C8 connectivity
3Γ3 SEBoxArray{2, UnitRange{$Int}} with indices -1:1Γ-1:1:
1 1 1
1 1 1
1 1 1
julia> strel_type(se)
SEBox{2, UnitRange{$Int}}((-1:1, -1:1), (1, 1))
julia> se = centered(collect(se)) # converted to normal centered array
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
1 1 1
1 1 1
1 1 1
julia> strel_type(se)
SEMask{2}()
```
"""
struct SEBox{N,R} <: MorphologySE{N}
axes::NTuple{N,R}
r::Dims{N}
function SEBox{N,R}(axes::NTuple{N,R}, r::Dims{N}) where {N,R<:AbstractUnitRange{Int}}
if !all(r -> first(r) == -last(r), axes)
throw(ArgumentError("axes must be symmetric along each dimension"))
end
return new{N,R}(axes, r)
end
end
function SEBox{N}(ax::NTuple{N,R}; r=map(R -> length(R) Γ· 2, ax)) where {N,R}
r = r isa Integer ? ntuple(_ -> r, N) : r
return SEBox{N,R}(ax, r)
end
"""
SEBoxArray(se::SEBox)
The instantiated array object of [`SEBox`](@ref SEBox).
"""
struct SEBoxArray{N,R<:AbstractUnitRange{Int}} <: MorphologySEArray{N}
axes::NTuple{N,R}
r::Dims{N}
end
SEBoxArray(se::SEBox{N,R}) where {N,R} = SEBoxArray{N,R}(se.axes, se.r)
strel_type(A::SEBoxArray{N}) where {N} = SEBox{N}(A.axes; r=A.r)
strel_size(se::SEBoxArray) = @. 1 + 2 * se.r
@inline Base.axes(A::SEBoxArray) = A.axes
@inline Base.size(A::SEBoxArray) = map(length, axes(A))
@inline function Base.getindex(A::SEBoxArray, inds::Int...)
@inbounds for i in 1:length(inds)
if abs(inds[i]) > A.r[i]
return false
end
end
return true
end
"""
strel_box(A; r=1)
strel_box(size; r=size .Γ· 2)
Construct the N-dimensional structuring element (SE) with all elements in the local window
connected.
If image `A` is provided, then the SE size will be `(2r+1, 2r+1, ...)` with default
half-size `r=1`. If `size` is provided, the default `r` will be `size .Γ· 2`. The default
`dims` will be all dimensions, that is, `(1, 2, ..., length(size))`.
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> img = rand(64, 64);
julia> strel_box(img)
3Γ3 SEBoxArray{2, UnitRange{$Int}} with indices -1:1Γ-1:1:
1 1 1
1 1 1
1 1 1
julia> strel_box(img; r=2)
5Γ5 SEBoxArray{2, UnitRange{$Int}} with indices -2:2Γ-2:2:
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
julia> strel_box((5,5); r=(1,2))
5Γ5 SEBoxArray{2, UnitRange{$Int}} with indices -2:2Γ-2:2:
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 0 0
```
!!! note "specialization and performance"
The box shape `SEBox` is a special type for which many morphology algorithms may provide
efficient implementations. For this reason, if one tries to collect an `SEBoxArray` into
other array types (e.g. `Array{Bool}` via `collect`), then a significant performance
drop is very likely to occur.
See also [`strel`](@ref) and [`strel_box`](@ref).
"""
function strel_box(
A::AbstractArray{T,N}, dims=coords_spatial(A); r::Union{Nothing,Dims{N},Int}=nothing
) where {T,N}
dims = _to_dims(Val(N), dims)
sz, r = if isnothing(r)
ntuple(i -> !isempty(dims) && in(i, dims) ? 3 : 1, N), 1
elseif r isa Dims{N}
ntuple(i -> !isempty(dims) && in(i, dims) ? 2r[i] + 1 : 1, N), r
elseif r isa Integer
ntuple(i -> !isempty(dims) && in(i, dims) ? 2r + 1 : 1, N), r
end
return strel_box(sz, dims)
end
function strel_box(
sz::Dims{N}, dims=ntuple(identity, N); r::Union{Nothing,Dims{N},Int}=nothing
) where {N}
dims = _to_dims(Val(N), dims)
all(isodd, sz) || throw(ArgumentError("size should be odd integers"))
radius = if isnothing(r)
ntuple(i -> !isempty(dims) && in(i, dims) ? sz[i] Γ· 2 : 0, N)
elseif r isa Dims{N}
r
elseif r isa Integer
ntuple(i -> !isempty(dims) && in(i, dims) ? r : 0, N)
end
ax = map(r -> (-r):r, sz .Γ· 2)
return SEBoxArray(SEBox{N}(ax; r=radius))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 4850 | struct SEChain{N} <: MorphologySE{N}
data::Vector{<:AbstractArray{Bool}}
end
struct SEChainArray{N,AT<:AbstractArray{Bool,N}} <: MorphologySEArray{N}
data::Vector{<:AbstractArray{Bool}}
_data::AT # pre-calculated chained data as mask
function SEChainArray{N}(data::Vector{<:AbstractArray{Bool}}) where {N}
# TODO(johnnychen94): defer the calculation of chained data until it is needed since
# this is mainly used for visualization purposes
_data = _strel_chain(data)
return new{N,typeof(_data)}(data, _data)
end
end
function SEChainArray(data::Vector{<:AbstractArray{Bool}})
data = convert(Vector, data)
N = maximum(ndims.(data))
return SEChainArray{N}(data)
end
SEChainArray(data::Tuple) = SEChainArray(collect(data))
strel_type(A::SEChainArray{N}) where {N} = SEChain{N}(A.data)
strel_size(A::SEChainArray) = size(A._data)
Base.axes(A::SEChainArray) = axes(A._data)
Base.size(A::SEChainArray) = size(A._data)
Base.@propagate_inbounds function Base.getindex(A::SEChainArray, inds::Int...)
return getindex(A._data, inds...)
end
"""
strel_chain(A, B, ...)
strel_chain(As)
For structuring elements of the same dimensions, chain them together to build a bigger one.
The output dimension is the same as the inputs dimensions. See also [`strel_product`](@ref)
that cartesian producting each SE.
!!! note "structuring element decomposition"
For some morphological operations `f` such as dilation and erosion, if `se` can be
decomposed into smaller ones `se1, se2, ..., seN`, then `f(img, se)` is equivalent to
`f(...f(f(img, se1), se2), ..., seN)`. Because applying `f` to smaller SEs is more
efficient than to the original big one, this trick is used widely in image morphology.
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> img = rand(512, 512);
julia> se1, se2 = [centered(rand(Bool, 3, 3)) for _ in 1:2];
julia> se = strel_chain(se1, se2);
julia> out_se = dilate(img, se);
julia> out_pipe = dilate(dilate(img, se1), se2);
julia> out_se[2:end-1, 2:end-1] == out_pipe[2:end-1, 2:end-1] # except for the boundary
true
```
"""
strel_chain(se, se_rest...) = strel_chain([se, se_rest...])
strel_chain(se_list::Vector{<:AbstractArray{T,N}}) where {T,N} = SEChainArray{N}(se_list)
strel_chain(se_list::Tuple) = SEChainArray(se_list)
strel_chain(se) = se
function _strel_chain(data::AbstractVector{<:AbstractArray})
isempty(data) && throw(ArgumentError("data cannot be empty"))
data = strel.(CartesianIndex, data)
out = first(data)
for i in axes(data, 1)[2:end]
# TODO: preallocating the output can reduce a few more
out = _simple_dilate(out, data[i])
end
out = strel(Bool, strel(CartesianIndex, out))
return out
end
# a simple dilate function that automatically extends the boundary and dimension
function _simple_dilate(A::AbstractArray{T,N}, B::AbstractArray{T,N}) where {T,N}
r = strel_size(B) .Γ· 2
sz = max.(strel_size(A), strel_size(B))
out_sz = @. sz + 2r
out = centered(falses(out_sz))
R = strel(CartesianIndex, A)
offsets = strel(CartesianIndex, B)
i = zero(eltype(R))
out[i] = true
for o in offsets
out[i + o] = true
end
for i in R
out[i] = true
for o in offsets
out[i + o] = true
end
end
# remove unnecessary zero boundaries
return strel(CartesianIndex, out)
end
"""
strel_product(A, B, ...)
strel_product(se_list)
Cartesian product of multiple structuring elements; the output dimension `ndims(out) ==
sum(ndims, se_list)`.
See also [`strel_chain`](@ref) that chains SEs in the same dimension.
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> strel_product(strel_diamond((5, 5)), centered(Bool[1, 1, 1]))
5Γ5Γ3 SEChainArray{3, OffsetArrays.OffsetArray{Bool, 3, BitArray{3}}} with indices -2:2Γ-2:2Γ-1:1:
[:, :, -1] =
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
[:, :, 0] =
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
[:, :, 1] =
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
```
"""
strel_product(se, se_rest...) = strel_product([se, se_rest...])
# TODO(johnnychen94): fix the type instability if it really matters in practice
function strel_product(se_list)
N = sum(ndims, se_list)
new_se_list = Array{Bool,N}[]
ni = 0
for se in se_list
pre_ones = ntuple(_ -> one(Int), max(0, ni))
post_ones = ntuple(_ -> one(Int), max(0, N - ndims(se) - ni))
new_se = reshape(se, pre_ones..., size(se)..., post_ones...)
push!(new_se_list, convert(Array{Bool,N}, new_se))
ni += ndims(se)
end
return SEChainArray{N}(map(centered, new_se_list))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 6028 | """
SEDiamond{N}(axes, [dims]; [r])
A (holy) trait type for the N-dimensional diamond shape structuring element. This is a
special case of [`SEMask`](@ref SEMask) that ImageMorphology algorithms
might provide optimized implementation.
It is recommended to use [`strel_diamond`](@ref) and [`strel_type`](@ref):
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> se = strel_diamond((3, 3)) # C4 connectivity
3Γ3 SEDiamondArray{2, 2, UnitRange{$Int}, 0} with indices -1:1Γ-1:1:
0 1 0
1 1 1
0 1 0
julia> strel_type(se)
SEDiamond{2, 2, UnitRange{$Int}}((-1:1, -1:1), (1, 2), 1)
julia> se = centered(collect(se)) # converted to normal centered array
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
0 1 0
1 1 1
0 1 0
julia> strel_type(se)
SEMask{2}()
```
"""
struct SEDiamond{N,K,R<:AbstractUnitRange{Int}} <: MorphologySE{N}
axes::NTuple{N,R}
dims::Dims{K}
r::Int # radius
function SEDiamond{N,K,R}(
axes::NTuple{N,R}, dims::Dims{K}, r
) where {N,K,R<:AbstractUnitRange{Int}}
if !all(r -> first(r) == -last(r), axes)
throw(ArgumentError("axes must be symmetric along each dimension"))
end
_is_unique_tuple(dims) || throw(ArgumentError("dims should be unique"))
N >= K || throw(ArgumentError("`axes` length should be at least $K"))
if !all(i -> i <= N, dims)
throw(ArgumentError("all `dims` values should be less than or equal to $N"))
end
return new{N,K,R}(axes, dims, r)
end
end
function SEDiamond{N}(
ax::NTuple{N,R}, dims=ntuple(identity, N); r=maximum(length.(ax)) Γ· 2
) where {N,R}
return SEDiamond{N,length(dims),R}(ax, dims, r)
end
# Helper array type to build a consistant array interface for SEs
"""
SEDiamondArray(se::SEDiamond)
The instantiated array object of [`SEDiamond`](@ref).
"""
struct SEDiamondArray{N,K,R<:AbstractUnitRange{Int},S} <: MorphologySEArray{N}
axes::NTuple{N,R}
dims::Dims{K}
r::Int # radius
_rdims::Dims{S}
end
function SEDiamondArray(se::SEDiamond{N,K,R}) where {N,K,R}
_rdims = _cal_rdims(Val(N), se.dims)
return SEDiamondArray{N,K,R,length(_rdims)}(se.axes, se.dims, se.r, _rdims)
end
strel_type(A::SEDiamondArray{N}) where {N} = SEDiamond{N}(A.axes, A.dims; r=A.r)
function strel_size(se::SEDiamondArray)
return ntuple(i -> in(i, se.dims) ? 1 + 2 * se.r : 1, strel_ndims(se))
end
@inline Base.axes(A::SEDiamondArray) = A.axes
@inline Base.size(A::SEDiamondArray) = map(length, axes(A))
@inline Base.IndexStyle(::SEDiamondArray) = IndexCartesian()
Base.@propagate_inbounds function Base.getindex(
A::SEDiamondArray{N,K}, inds::Int...
) where {N,K}
# for remaining dimensions, check if it is at the center position
ri = _tuple_getindex(inds, A._rdims)
all(iszero, ri) || return false
# for masked dimensions, compare if the city-block distance to center is within radius
mi = _tuple_getindex(inds, A.dims)
r = isempty(mi) ? 0 : sum(abs, mi)
return ifelse(r > A.r, false, true)
end
_tuple_getindex(t::Tuple, inds::Dims) = ntuple(i -> t[inds[i]], length(inds))
function _cal_rdims(::Val{N}, dims::NTuple{K}) where {N,K}
return Dims{N - K}(filter(i -> !in(i, dims), 1:N))
end
_is_unique_tuple(t::Tuple) = any(i -> t[i] in t[1:(i - 1)], 2:length(t)) ? false : true
"""
strel_diamond(A::AbstractArray, [dims]; r=1)
strel_diamond(size, [dims]; [r])
Construct the N-dimensional structuring element (SE) for a diamond shape.
If image `A` is provided, then the SE size will be `(2r+1, 2r+1, ...)` with default
half-size `r=1`. If `size` is provided, the default `r` will be `maximum(size)Γ·2`. The
default `dims` will be all dimensions, that is, `(1, 2, ..., length(size))`.
```jldoctest; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> img = rand(64, 64);
julia> strel_diamond(img) # default size for image input is (3, 3)
3Γ3 SEDiamondArray{2, 2, UnitRange{$Int}, 0} with indices -1:1Γ-1:1:
0 1 0
1 1 1
0 1 0
julia> strel_diamond(img; r=2) # equivalent to `strel_diamond((5,5))`
5Γ5 SEDiamondArray{2, 2, UnitRange{$Int}, 0} with indices -2:2Γ-2:2:
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
julia> strel_diamond(img, (1,)) # mask along dimension 1
3Γ1 SEDiamondArray{2, 1, UnitRange{$Int}, 1} with indices -1:1Γ0:0:
1
1
1
julia> strel_diamond((3,3), (1,)) # 3Γ3 mask along dimension 1
3Γ3 SEDiamondArray{2, 1, UnitRange{$Int}, 1} with indices -1:1Γ-1:1:
0 1 0
0 1 0
0 1 0
```
!!! note "specialization and performance"
The diamond shape `SEDiamond` is a special type for which many morphology algorithms may
provide much more efficient implementations. For this reason, if one tries to collect an
`SEDiamondArray` into other array types (e.g. `Array{Bool}` via `collect`), then a
significant performance drop is very likely to occur.
See also [`strel`](@ref) and [`strel_box`](@ref).
"""
function strel_diamond(
img::AbstractArray{T,N}, dims=coords_spatial(img); r::Union{Nothing,Int}=nothing
) where {T,N}
dims = _to_dims(Val(N), dims)
sz, r = if isnothing(r)
ntuple(i -> !isempty(dims) && in(i, dims) ? 3 : 1, N), 1
else
ntuple(i -> !isempty(dims) && in(i, dims) ? 2r + 1 : 1, N), r
end
return strel_diamond(sz, dims; r)
end
function strel_diamond(sz::Dims{N}, dims=ntuple(identity, N); kw...) where {N}
dims = _to_dims(Val(N), dims)
all(isodd, sz) || throw(ArgumentError("size should be odd integers"))
ax = map(r -> (-r):r, sz .Γ· 2)
return SEDiamondArray(SEDiamond{N}(ax, dims; kw...))
end
# Tuple(1) is not inferable before Julia 1.9
# we want to support Colon input
@inline _to_dims(::Val{N}, i::Int) where {N} = (i,)
@inline _to_dims(::Val{N}, dims::Dims) where {N} = dims
@inline _to_dims(::Val{N}, ::Union{Colon,Tuple{Colon}}) where {N} = ntuple(identity, N)
@inline _to_dims(::Val{N}, v) where {N} = Tuple(v) # fallback
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 5172 |
#=
maybe_floattype(T)
To keep consistant with Base `diff` that Int array outputs Int array. It is sometimes
useful to only promote types for Bool and FixedPoint. In most of the time, `floattype`
should be the most reliable way.
=#
maybe_floattype(::Type{T}) where {T} = T
maybe_floattype(::Type{Bool}) = floattype(Bool)
# maybe_floattype(::Type{T}) where {T<:FixedPoint} = floattype(T)
# maybe_floattype(::Type{CT}) where {CT<:Color} = base_color_type(CT){maybe_floattype(eltype(CT))}
#=
A helper to eagerly check if particular function makes sense for `extreme_filter` semantics.
For instance, `max(::RGB, ::RGB)` is not well-defined and we should early throw errors so that
our users don't get encrypted error messages.
=#
require_select_function(f, ::Type{T}) where {T} = require_select_function(f, T, T)
function require_select_function(f, ::Type{T1}, ::Type{T2}) where {T1,T2}
if !_is_select_function(f, T1, T2)
hint = "does `f(x::T1, y::T2)` work as expected?"
throw(
ArgumentError(
"function `$f` is not a well-defined select function on type `$T1` and `$T2`: $hint",
),
)
end
end
_is_select_function(f, ::Type{T}) where {T} = _is_select_function(f, T, T)
function _is_select_function(f, ::Type{T1}, ::Type{T2}) where {T1,T2}
return _is_select_function_trial(f, T1, T2)
end
function _is_select_function(f, ::Type{T1}, ::Type{T2}) where {T1<:Real,T2<:Real}
f in (min, max) && return true
return _is_select_function_trial(f, T1, T2)
end
# function _is_select_function(f, ::Type{CT1}, ::Type{CT2}) where {CT1<:AbstractGray,CT2<:AbstractGray}
# f in (min, max) && return true
# return _is_select_function_trial(f, CT1, CT2)
# end
# function _is_select_function(f, ::Type{CT1}, ::Type{CT2}) where {CT1<:Colorant,CT2<:Colorant}
# # min/max is not well-defined on generic color space
# f in (min, max) && return false
# return _is_select_function_trial(f, CT1, CT2)
# end
function _is_select_function_trial(f, ::Type{T1}, ::Type{T2}) where {T1,T2}
# for generic case, just run a trial and see if it doesn't error
try
f(zero(T1), zero(T2))
return true
catch
return false
end
end
"""
upper, lower = strel_split([T], se)
Split a symmetric structuring element into its upper and lower half parts based on its center point.
For each element `o` in `strel(CartesianIndex, upper)`, its negative `-o` is an element of `strel(CartesianIndex, lower)`. This function is not the inverse of [`strel_chain`](@ref).
The splited non-symmetric SE parts will be represented as array of `T`, where `T` is either a `Bool` or `CartesianIndex`. By default, `T = eltype(se)`.
```jldoctest strel_split; setup=:(using ImageMorphology; using ImageMorphology.StructuringElements)
julia> se = strel_diamond((3, 3))
3Γ3 SEDiamondArray{2, 2, UnitRange{$Int}, 0} with indices -1:1Γ-1:1:
0 1 0
1 1 1
0 1 0
julia> upper, lower = strel_split(se);
julia> upper
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
0 1 0
1 1 0
0 0 0
julia> lower
3Γ3 OffsetArray(::Matrix{Bool}, -1:1, -1:1) with eltype Bool with indices -1:1Γ-1:1:
0 0 0
0 1 1
0 1 0
```
If the `se` is represented as displacement offset array, then the splitted result will also be displacement offset array:
```jldoctest strel_split
julia> se = strel(CartesianIndex, se)
4-element Vector{CartesianIndex{2}}:
CartesianIndex(0, -1)
CartesianIndex(-1, 0)
CartesianIndex(1, 0)
CartesianIndex(0, 1)
julia> upper, lower = strel_split(se);
julia> upper
2-element Vector{CartesianIndex{2}}:
CartesianIndex(0, -1)
CartesianIndex(-1, 0)
julia> lower
2-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 0)
CartesianIndex(0, 1)
```
"""
strel_split(se) = strel_split(eltype(se), se)
function strel_split(T, se)
se = strel(Bool, se)
require_symmetric_strel(se)
R = LinearIndices(se)
c = R[OffsetArrays.center(R)...]
upper = copy(se)
lower = copy(se)
upper[(c + 1):end] .= false
lower[begin:(c - 1)] .= false
return strel(T, upper), strel(T, lower)
end
"""
is_symmetric(se)
Check if a given structuring element array `se` is symmetric with respect to its center pixel.
More formally, this checks if `mask[I] == mask[-I]` for any valid `I β
CartesianIndices(mask)` in the connectivity mask representation `mask = strel(Bool, se)`.
"""
function is_symmetric(se::AbstractArray)
# first check the axes, and then the values
se = OffsetArrays.centered(strel(Bool, se))
all(r -> first(r) == -last(r), axes(se)) || return false
R = CartesianIndices(map(r -> 0:maximum(r), axes(se)))
return all(R) do o
@inbounds se[o] == se[-o]
end
end
is_symmetric(se::SEBoxArray) = true
is_symmetric(se::SEDiamondArray) = true
#=
Some morphological operation only makes sense for symmetric structuring elements.
Here we provide a checker in spirit of Base.require_one_based_indexing.
=#
function require_symmetric_strel(se)
return is_symmetric(se) || throw(
ArgumentError("structuring element must be symmetric with respect to its center")
)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2461 | """
matchcorr(
f1::T,
f2::T,
Ξt::F,
mxrot::S=10,
psi::F=0.95,
sz::S=16,
comp::F=0.25,
mm::F=0.22
)
where {T<:AbstractArray{Bool,2},S<:Int64,F<:Float64}
Compute the mismatch `mm` and psi-s-correlation `c` for floes with masks `f1` and `f2`.
The criteria for floes to be considered equivalent is as follows:
- `c` greater than `mm`
- `_mm` is less than `mm`
A pair of `NaN` is returned for cases for which one of their mask dimension is too small or their sizes are not comparable.
# Arguments
- `f1`: mask of floe 1
- `f2`: mask of floe 2
- `Ξt`: time difference between floes
- `mxrot`: maximum rotation (in degrees) allowed between floesn (default: 10)
- `psi`: psi-s-correlation threshold (default: 0.95)
- `sz`: size threshold (default: 16)
- `comp`: size comparability threshold (default: 0.25)
- `mm`: mismatch threshold (default: 0.22)
"""
function matchcorr(
f1::T, f2::T, Ξt::F; mxrot::S=10, psi::F=0.95, sz::S=16, comp::F=0.25, mm::F=0.22
) where {T<:AbstractArray{Bool,2},S<:Int64,F<:Float64}
# check if the floes are too small and size are comparable
_sz = size.([f1, f2])
if (any([(_sz...)...] .< sz) || getsizecomparability(_sz...) > comp)
return (mm=NaN, c=NaN)
end
_psi = buildΟs.([f1, f2])
c = corr(_psi...)
if c < psi
@warn "correlation too low, c: $c"
return (mm=NaN, c=NaN)
else
return (mm=0.0, c=c)
end
# check if the time difference is too large or the rotation is too large
_mm, rot = mismatch(f1, f2; mxrot=deg2rad(mxrot))
if all([Ξt < 300, rot > mxrot]) || _mm > mm
@warn "time difference too small for a large rotation or mismatch too large\nmm: $mm, rot: $rot"
return (mm=NaN, c=NaN)
end
if mm < 0.1
mm = 0.0
end
return (mm=mm, c=c)
end
"""
getsizecomparability(s1, s2)
Check if the size of two floes `s1` and `s2` are comparable. The size is defined as the product of the floe dimensions.
# Arguments
- `s1`: size of floe 1
- `s2`: size of floe 2
"""
function getsizecomparability(s1::T, s2::T) where {T<:Tuple{Int64,Int64}}
a1 = *(s1...)
a2 = *(s2...)
return abs(a1 - a2) / a1
end
"""
corr(f1,f2)
Return the normalized cross-correlation between the psi-s curves `p1` and `p2`.
"""
function corr(p1::T, p2::T) where {T<:AbstractArray}
cc, _ = maximum.(IceFloeTracker.crosscorr(p1, p2; normalize=true))
return cc
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 17190 | # need this for adding methods to Base functions
import Base.isempty
import Base.isequal
# Containers and methods for preliminary matches
struct MatchingProps
s::Vector{Int64}
props::DataFrame
ratios::DataFrame
dist::Vector{Float64}
end
"""
Container for matched pairs of floes. `props1` and `props2` are dataframes with the same column names as the input dataframes. `ratios` is a dataframe with column names `area`, `majoraxis`, `minoraxis`, `convex_area`, `area_mismatch`, and `corr` for similarity ratios. `dist` is a vector of (pixel) distances between paired floes.
"""
struct MatchedPairs
props1::DataFrame
props2::DataFrame
ratios::DataFrame
dist::Vector{Float64}
end
"""
MatchedPairs(df)
Return an object of type `MatchedPairs` with an empty dataframe with the same column names as `df`, an empty dataframe with column names `area`, `majoraxis`, `minoraxis`, `convex_area`, `area_mismatch`, and `corr` for similarity ratios, and an empty vector for distances.
"""
function MatchedPairs(df)
emptypropsdf = similar(df, 0)
return MatchedPairs(emptypropsdf, copy(emptypropsdf), makeemptyratiosdf(), Float64[])
end
"""
update!(match_total::MatchedPairs, matched_pairs::MatchedPairs)
Update `match_total` with the data from `matched_pairs`.
"""
function update!(match_total::MatchedPairs, matched_pairs::MatchedPairs)
append!(match_total.props1, matched_pairs.props1)
append!(match_total.props2, matched_pairs.props2)
append!(match_total.ratios, matched_pairs.ratios)
append!(match_total.dist, matched_pairs.dist)
return nothing
end
"""
addmatch!(matched_pairs, newmatch)
Add `newmatch` to `matched_pairs`.
"""
function addmatch!(matched_pairs::MatchedPairs, newmatch)
push!(matched_pairs.props1, newmatch.props1)
push!(matched_pairs.props2, newmatch.props2)
push!(matched_pairs.ratios, newmatch.ratios)
push!(matched_pairs.dist, newmatch.dist)
return nothing
end
function isempty(matched_pairs::MatchedPairs)
return isempty(matched_pairs.props1) &&
isempty(matched_pairs.props2) &&
isempty(matched_pairs.ratios)
end
"""
appendrows!(df::MatchingProps, props::T, ratios, idx::Int64, dist::Float64) where {T<:DataFrameRow}
Append a row to `df.props` and `df.ratios` with the values of `props` and `ratios` respectively.
"""
function appendrows!(
df::MatchingProps, props::T, ratios, idx::Int64, dist::Float64
) where {T<:DataFrameRow}
push!(df.s, idx)
push!(df.props, props)
push!(df.ratios, ratios)
push!(df.dist, dist)
return nothing
end
"""
isequal(matchedpairs1::MatchedPairs, matchedpairs2::MatchedPairs)
Return `true` if `matchedpairs1` and `matchedpairs2` are equal, `false` otherwise.
"""
function isequal(matchedpairs1::MatchedPairs, matchedpairs2::MatchedPairs)
return all((
isequal(getfield(matchedpairs1, name), getfield(matchedpairs2, name)) for
name in namesof(matchedpairs1)
))
end
# Final pairs container and associated methods
"""
Container for final matched pairs of floes. `data` is a vector of `MatchedPairs` objects.
"""
struct Tracked
data::Vector{MatchedPairs}
end
"""
sort!(tracked::Tracked)
Sort the floes in `tracked` by area in descending order.
"""
function sort!(tracked::Tracked)
for container in tracked.data
p = sortperm(container.props1, "area"; rev=true)
for nm in namesof(container)
getproperty(container, nm)[:, :] = getproperty(container, nm)[p, :]
end
end
return nothing
end
function Tracked()
return Tracked(MatchedPairs[])
end
function update!(tracked::Tracked, matched_pairs::MatchedPairs)
push!(tracked.data, matched_pairs)
return nothing
end
# Misc functions
"""
modenan(x::AbstractVector{<:Float64})
Return the mode of `x` or `NaN` if `x` is empty.
"""
function modenan(x::AbstractVector{<:Int64})
length(x) == 0 && return NaN
return mode(x)
end
"""
getcentroid(props_day::DataFrame, r)
Get the coordinates of the `r`th floe in `props_day`.
"""
function getcentroid(props_day::DataFrame, r)
return props_day[r, [:row_centroid, :col_centroid]]
end
"""
absdiffmeanratio(x, y)
Calculate the absolute difference between `x` and `y` divided by the mean of `x` and `y`.
"""
function absdiffmeanratio(x::T, y::T)::Float64 where {T<:Real}
return abs(x - y) / mean(x, y)
end
"""
mean(x,y)
Compute the mean of `x` and `y`.
"""
function mean(x::T, y::T)::Float64 where {T<:Real}
return (x + y) / 2
end
"""
makeemptydffrom(df::DataFrame)
Return an object with an empty dataframe with the same column names as `df` and an empty dataframe with column names `area`, `majoraxis`, `minoraxis`, `convex_area`, `area_mismatch`, and `corr` for similarity ratios.
"""
function makeemptydffrom(df::DataFrame)
return MatchingProps(
Vector{Int64}(), similar(df, 0), makeemptyratiosdf(), Vector{Float64}()
)
end
"""
makeemptyratiosdf()
Return an empty dataframe with column names `area`, `majoraxis`, `minoraxis`, `convex_area`, `area_mismatch`, and `corr` for similarity ratios.
"""
function makeemptyratiosdf()
return DataFrame(;
area=Float64[],
majoraxis=Float64[],
minoraxis=Float64[],
convex_area=Float64[],
area_mismatch=Float64[],
corr=Float64[],
)
end
#= Conditions for a match:
Condition 1: displacement time delta =#
"""
trackercond1(p1, p2, delta_time, t1=(dt = (30, 100, 1300), dist=(15, 30, 120)))
Return `true` if the floe at `p1` and the floe at `p2` are within a certain distance of each other and the displacement time is within a certain range. Return `false` otherwise.
# Arguments
- `p1`: coordinates of floe 1
- `p2`: coordinates of floe 2
- `delta_time`: time elapsed from image day 1 to image day 2
- `t`: tuple of thresholds for elapsed time and distance
"""
function trackercond1(d, delta_time, t1=(dt=(30, 100, 1300), dist=(15, 30, 120)))
return (delta_time < t1.dt[1] && d < t1.dist[1]) ||
(delta_time >= t1.dt[1] && delta_time <= t1.dt[2] && d < t1.dist[2]) ||
(delta_time >= t1.dt[3] && d < t1.dist[3])
end
"""
trackercond2(area1, ratios, t2=(area=1200, arearatio=0.28, majaxisratio=0.10, minaxisratio=0.12, convex_area=0.14))
Set of conditions for "big" floes. Return `true` if the area of the floe is greater than `t2.area` and the similarity ratios are less than the corresponding thresholds in `t2`. Return `false` otherwise.
"""
function trackercond2(
area1,
ratios,
t2=(area=1200, arearatio=0.28, majaxisratio=0.10, minaxisratio=0.12, convex_area=0.14),
)
return area1 > t2.area &&
ratios.area < t2.arearatio &&
ratios.majoraxis < t2.majaxisratio &&
ratios.minoraxis < t2.minaxisratio &&
ratios.convex_area < t2.convexarearatio
end
"""
trackercond3(area1, ratios, t3=(area=1200, arearatio=0.18, majaxisratio=0.07, minaxisratio=0.08, convex_area=0.09))
Set of conditions for "small" floes. Return `true` if the area of the floe is less than `t3.area` and the similarity ratios are less than the corresponding thresholds in `t3`. Return `false` otherwise
"""
function trackercond3(
area1,
ratios,
t3=(
area=1200,
arearatio=0.18,
majaxisratio=0.07,
minaxisratio=0.08,
convexarearatio=0.09,
),
)
return area1 <= t3.area &&
ratios.area < t3.arearatio &&
ratios.majoraxis < t3.majaxisratio &&
ratios.minoraxis < t3.minaxisratio &&
ratios.convex_area < t3.convexarearatio
end
"""
callmatchcorr(conditions)
Condition to decide whether match_corr should be called.
"""
function callmatchcorr(conditions)
return conditions.cond1 && (conditions.cond2 || conditions.cond3)
end
"""
isfloegoodmatch(conditions, mct, area_mismatch, corr)
Return `true` if the floes are a good match as per the set thresholds. Return `false` otherwise.
# Arguments
- `conditions`: tuple of booleans for evaluating the conditions
- `mct`: tuple of thresholds for the match correlation test
- `area_mismatch` and `corr`: values returned by `match_corr`
"""
function isfloegoodmatch(conditions, mct, area_mismatch, corr)
return (
(conditions.cond3 && area_mismatch < mct.area3) ||
(conditions.cond2 && area_mismatch < mct.area2)
) && corr > mct.corr
end
"""
compute_ratios((props_day1, r), (props_day2,s))
Compute the ratios of the floe properties between the `r`th floe in `props_day1` and the `s`th floe in `props_day2`. Return a tuple of the ratios.
# Arguments
- `props_day1`: floe properties for day 1
- `r`: index of floe in `props_day1`
- `props_day2`: floe properties for day 2
- `s`: index of floe in `props_day2`
"""
function compute_ratios((props_day1, r), (props_day2, s))
arearatio = absdiffmeanratio(props_day1.area[r], props_day2.area[s])
majoraxisratio = absdiffmeanratio(
props_day1.major_axis_length[r], props_day2.major_axis_length[s]
)
minoraxisratio = absdiffmeanratio(
props_day1.minor_axis_length[r], props_day2.minor_axis_length[s]
)
convex_area = absdiffmeanratio(props_day1.convex_area[r], props_day2.convex_area[s])
return (
area=arearatio,
majoraxis=majoraxisratio,
minoraxis=minoraxisratio,
convex_area=convex_area,
)
end
"""
compute_ratios_conditions((props_day1, r), (props_day2, s), delta_time, t)
Compute the conditions for a match between the `r`th floe in `props_day1` and the `s`th floe in `props_day2`. Return a tuple of the conditions.
# Arguments
- `props_day1`: floe properties for day 1
- `r`: index of floe in `props_day1`
- `props_day2`: floe properties for day 2
- `s`: index of floe in `props_day2`
- `delta_time`: time elapsed from image day 1 to image day 2
- `t`: tuple of thresholds for elapsed time and distance. See `pair_floes` for details.
"""
function compute_ratios_conditions((props_day1, r), (props_day2, s), delta_time, thresh)
t1, t2, t3 = thresh
p1 = getcentroid(props_day1, r)
p2 = getcentroid(props_day2, s)
d = dist(p1, p2)
area1 = props_day1.area[r]
ratios = compute_ratios((props_day1, r), (props_day2, s))
cond1 = trackercond1(d, delta_time, t1)
cond2 = trackercond2(area1, ratios, t2)
cond3 = trackercond3(area1, ratios, t3)
return (ratios=ratios, conditions=(cond1=cond1, cond2=cond2, cond3=cond3), dist=d)
end
"""
dist(p1, p2)
Return the distance between the points `p1` and `p2`.
"""
function dist(p1, p2)
return sqrt(
(p1.row_centroid - p2.row_centroid)^2 + (p1.col_centroid - p2.col_centroid)^2
)
end
"""
getidxmostminimumeverything(ratiosdf)
Return the index of the row in `ratiosdf` with the most minima across its columns. If there are multiple columns with the same minimum value, return the index of the first column with the minimum value. If `ratiosdf` is empty, return `NaN`.
"""
function getidxmostminimumeverything(ratiosdf)
nrow(ratiosdf) == 0 && return NaN
return mode([argmin(col) for col in eachcol(ratiosdf)])
end
"""
getpropsday1day2(properties, dayidx::Int64)
Return the floe properties for day `dayidx` and day `dayidx+1`.
"""
function getpropsday1day2(properties, dayidx::Int64)
return copy(properties[dayidx]), copy(properties[dayidx + 1])
end
"""
getbestmatchdata(idx, r, props_day1, matching_floes)
Collect the data for the best match between the `r`th floe in `props_day1` and the `idx`th floe in `matching_floes`. Return a tuple of the floe properties for day 1 and day 2 and the ratios.
"""
function getbestmatchdata(idx, r, props_day1, matching_floes)
return (
props1=props_day1[r, :],
props2=matching_floes.props[idx, :],
ratios=matching_floes.ratios[idx, :],
dist=matching_floes.dist[idx],
)
end
"""
getidxofrow(rw0, df)
Return the indices of the rows in `df` that are equal to `rw0`.
"""
function getidxofrow(rw0, df)
return findall([rw0 == row for row in eachrow(df)])
end
# Collision handling
"""
getcollisionslocs(df)
Return a vector of tuples of the row and the index of the row in `df` that has a collision with another row in `df`.
"""
function getcollisionslocs(df) #::Vector{Tuple{DataFrameRow{DataFrame, DataFrames.Index}, Vector{Int64}}}
typeof(df) <: DataFrameRow &&
return Tuple{DataFrameRow{DataFrame,DataFrames.Index},Vector{Int64}}[]
collisions = getcollisions(df)
return [(data=rw, idxs=getidxofrow(rw, df)) for rw in eachrow(collisions)]
end
namesof(obj::MatchedPairs) = fieldnames(typeof(obj))
"""
getcollisions(matchedpairs)
Get nonunique rows in `matchedpairs`.
"""
function getcollisions(matchedpairs)
collisions = transform(matchedpairs, nonunique)
return filter(r -> r.x1 != 0, collisions)[:, 1:(end - 1)]
end
function deletematched!(
(propsday1, propsday2)::Tuple{DataFrame,DataFrame}, matched::MatchedPairs
)
deletematched!(propsday1, matched.props1)
deletematched!(propsday2, matched.props2)
return nothing
end
"""
deleteallbut!(matched_pairs, idxs, keeper)
Delete all rows in `matched_pairs` except for the row with index `keeper` in `idxs`.
"""
function deleteallbut!(matched_pairs, idxs, keeper)
for i in sort(idxs; rev=true)
if i !== keeper
deleteat!(matched_pairs.ratios, i)
deleteat!(matched_pairs.props1, i)
deleteat!(matched_pairs.props2, i)
deleteat!(matched_pairs.dist, i)
end
end
end
"""
ismember(df1,df2)
Return a boolean array indicating whether each row in `df1` is a member of `df2`.
"""
function ismember(df1, df2)
return in.(eachrow(df1), Ref(eachrow(df2)))
end
function resolvecollisions!(matched_pairs)
collisions = getcollisionslocs(matched_pairs.props2)
for collision in reverse(collisions)
bestentry = getidxmostminimumeverything(matched_pairs.ratios[collision.idxs, :])
keeper = collision.idxs[bestentry]
deleteallbut!(matched_pairs, collision.idxs, keeper)
end
end
function deletematched!(propsday::DataFrame, matched::DataFrame)
toremove = findall(ismember(propsday, matched))
return deleteat!(propsday, toremove)
end
isnotnan(x) = !isnan(x)
# match_corr related functions
"""
corr(f1,f2)
Return the correlation between the psi-s curves `p1` and `p2`.
"""
function corr(p1, p2)
cc, _ = maximum.(IceFloeTracker.crosscorr(p1, p2; normalize=true))
return cc
end
"""
normalizeangle(revised,t=180)
Normalize angle to be between -180 and 180 degrees.
"""
function normalizeangle(revised, t=180)
revised > t ? theta_revised = revised - 360 : theta_revised = revised
return (theta_revised=theta_revised, ROT=-theta_revised)
end
function buildΟs(floe)
bd = IceFloeTracker.bwtraceboundary(floe)
bdres = IceFloeTracker.resample_boundary(bd[1])
return IceFloeTracker.make_psi_s(bdres)[1]
end
function addΟs!(props::Vector{DataFrame})
for prop in props
prop.psi = map(buildΟs, prop.mask)
end
return nothing
end
function addfloemasks!(props, imgs)
for (img, prop) in zip(imgs, props)
IceFloeTracker.addfloemasks!(prop, img)
end
return nothing
end
## LatLon functions originally from IFTPipeline.jl
"""
convertcentroid!(propdf, latlondata, colstodrop)
Convert the centroid coordinates from row and column to latitude and longitude dropping unwanted columns specified in `colstodrop` for the output data structure. Addionally, add columns `x` and `y` with the pixel coordinates of the centroid.
"""
function convertcentroid!(propdf, latlondata, colstodrop)
latitude, longitude = [
[latlondata[c][x, y] for
(x, y) in zip(propdf.row_centroid, propdf.col_centroid)] for
c in ["latitude", "longitude"]
]
x, y = [
[latlondata[c][z] for z in V] for
(c, V) in zip(["Y", "X"], [propdf.row_centroid, propdf.col_centroid])
]
propdf.latitude = latitude
propdf.longitude = longitude
propdf.x = x
propdf.y = y
dropcols!(propdf, colstodrop)
return nothing
end
"""
converttounits!(propdf, latlondata, colstodrop)
Convert the floe properties from pixels to kilometers and square kilometers where appropiate. Also drop the columns specified in `colstodrop`.
"""
function converttounits!(propdf, latlondata, colstodrop)
if nrow(propdf) == 0
dropcols!(propdf, colstodrop)
insertcols!(propdf, :latitude=>Float64, :longitude=>Float64, :x=>Float64, :y=>Float64)
return nothing
end
convertcentroid!(propdf, latlondata, colstodrop)
x = latlondata["X"]
dx = abs(x[2] - x[1])
convertarea(area) = area * dx^2 / 1e6
convertlength(length) = length * dx / 1e3
propdf.area .= convertarea(propdf.area)
propdf.convex_area .= convertarea(propdf.convex_area)
propdf.minor_axis_length .= convertlength(propdf.minor_axis_length)
propdf.major_axis_length .= convertlength(propdf.major_axis_length)
propdf.perimeter .= convertlength(propdf.perimeter)
return nothing
end
function dropcols!(df, colstodrop)
select!(df, Not(colstodrop))
return nothing
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 10145 | """
addlatlon(pairedfloesdf::DataFrame, refimage::AbstractString)
Add columns `latitude`, `longitude`, and pixel coordinates `x`, `y` to `pairedfloesdf`.
# Arguments
- `pairedfloesdf`: dataframe containing floe tracking data.
- `refimage`: path to reference image.
"""
function addlatlon!(pairedfloesdf::DataFrame, refimage::AbstractString)
latlondata = getlatlon(refimage)
colstodrop = [:row_centroid, :col_centroid, :min_row, :min_col, :max_row, :max_col]
converttounits!(pairedfloesdf, latlondata, colstodrop)
return nothing
end
"""
add_passtimes!(props, passtimes)
Add a column `passtime` to each DataFrame in `props` containing the time of the image in which the floes were captured.
# Arguments
- `props`: array of DataFrames containing floe properties.
- `passtimes`: array of `DateTime` objects containing the time of the image in which the floes were captured.
"""
function add_passtimes!(props, passtimes)
for (i, passtime) in enumerate(passtimes)
props[i].passtime .= passtime
end
nothing
end
"""
sort_floes_by_area!(props)
Sort floes in `props` by area in descending order.
"""
function sort_floes_by_area!(props)
for prop in props
# sort by area in descending order
DataFrames.sort!(prop, :area; rev=true)
nothing
end
end
function _pairfloes(
segmented_imgs::Vector{BitMatrix},
props::Vector{DataFrame},
passtimes::Vector{DateTime},
condition_thresholds,
mc_thresholds
)
dt = diff(passtimes) ./ Minute(1)
sort_floes_by_area!(props)
# Assign a unique ID to each floe in each image
for (i, prop) in enumerate(props)
props[i].uuid = [randstring(12) for _ in 1:nrow(prop)]
end
add_passtimes!(props, passtimes)
# Initialize container for props of matched pairs of floes, their similarity ratios, and their distances between their centroids
tracked = Tracked()
# Crop floes from the images using the bounding box data in `props`.
addfloemasks!(props, segmented_imgs)
addΟs!(props)
numdays = length(segmented_imgs) - 1
for dayi in 1:numdays
props1, props2 = getpropsday1day2(props, dayi)
Ξt = dt[dayi]
# Container for matches in dayi which will be used to populate tracked
match_total = MatchedPairs(props1)
while true # there are no more floes to match in props1
# This routine mutates both props1 and props2.
# Container for props of matched floe pairs and their similarity ratios. Matches will be updated and added to match_total
matched_pairs = MatchedPairs(props1)
for r in 1:nrow(props1) # TODO: consider using eachrow(props1) to iterate over rows
# 1. Collect preliminary matches for floe r in matching_floes
matching_floes = makeemptydffrom(props1)
for s in 1:nrow(props2) # TODO: consider using eachrow(props2) to iterate over rows
ratios, conditions, dist = compute_ratios_conditions(
(props1, r), (props2, s), Ξt, condition_thresholds
)
if callmatchcorr(conditions)
(area_mismatch, corr) = matchcorr(
props1.mask[r], props2.mask[s], Ξt; mc_thresholds.comp...
)
if isfloegoodmatch(
conditions, mc_thresholds.goodness, area_mismatch, corr
)
appendrows!(
matching_floes,
props2[s, :],
(ratios..., area_mismatch, corr),
s,
dist,
)
end
end
end # of s for loop
# 2. Find the best match for floe r
best_match_idx = getidxmostminimumeverything(matching_floes.ratios)
if isnotnan(best_match_idx)
bestmatchdata = getbestmatchdata(
best_match_idx, r, props1, matching_floes
) # might be copying data unnecessarily
addmatch!(matched_pairs, bestmatchdata)
end
end # of for r = 1:nrow(props1)
# exit while loop if there are no more floes to match
isempty(matched_pairs) && break
#= Resolve collisions:
Are there floes in day k+1 paired with more than one
floe in day k? If so, keep the best matching pair and remove all others. =#
resolvecollisions!(matched_pairs)
deletematched!((props1, props2), matched_pairs)
update!(match_total, matched_pairs)
end # of while loop
update!(tracked, match_total)
end
sort!(tracked)
_pairs = tracked.data
# Concatenate horizontally props1, props2, tracked, and add dist as the last column for each item in _pairs
_pairs = [hcat(hcat(p.props1, p.props2, makeunique=true), p.ratios[:, ["area_mismatch", "corr"]]) for p in _pairs]
# Make a dict with keys in _pairs[i].props2.uuid and values in _pairs[i-1].props1.uuid
mappings = [Dict(zip(p.uuid_1, p.uuid)) for p in _pairs]
# Convert mappings to functions
funcsfrommappings = [x -> get(mapping, x, x) for mapping in mappings]
# Compose functions in reverse order to push uuids forward
mapuuid = foldr((f, g) -> x -> f(g(x)), funcsfrommappings)
# Apply mapuuid to uuid_1 in each set of props in _pairs => get consolidated uuids
[prop.uuid_0 = mapuuid.(prop.uuid_1) for prop in _pairs]
# Reshape _pairs to a long df
propsvert = vcat(_pairs...)
DataFrames.sort!(propsvert, [:uuid_0, :passtime])
rightcolnames = vcat([name for name in names(propsvert) if all([!(name in ["uuid_1", "psi_1", "mask_1"]), endswith(name, "_1")])], ["uuid_0"])
leftcolnames = [split(name, "_1")[1] for name in rightcolnames]
matchcolnames = ["area_mismatch", "corr", "uuid_0", "passtime", "passtime_1",]
leftdf = propsvert[:, leftcolnames]
rightdf = propsvert[:, rightcolnames]
matchdf = propsvert[:, matchcolnames]
rename!(rightdf, Dict(zip(rightcolnames, leftcolnames)))
_pairs = vcat(leftdf, rightdf)
# sort by uuid_0, passtime and keep unique rows
_pairs = DataFrames.sort!(_pairs, [:uuid_0, :passtime]) |> unique
_pairs = leftjoin(_pairs, matchdf, on=[:uuid_0, :passtime])
DataFrames.sort!(_pairs, [:uuid_0, :passtime])
# create mapping from uuids to index as ID
uuids = unique(_pairs.uuid_0)
uuid2index = Dict(uuid => i for (i, uuid) in enumerate(uuids))
_pairs.ID = [uuid2index[uuid] for uuid in _pairs.uuid_0]
_pairs = _pairs[:, [name for name in names(_pairs) if name != "uuid_0"]]
return _pairs
end
"""
pairfloes(
segmented_imgs::Vector{BitMatrix},
props::Vector{DataFrame},
passtimes::Vector{DateTime},
latlonrefimage::AbstractString,
condition_thresholds,
mc_thresholds,
)
Pair floes in `props[k]` to floes in `props[k+1]` for `k=1:length(props)-1`.
The main steps of the algorithm are as follows:
1. Crop floes from `segmented_imgs` using bounding box data in `props`. Floes in the edges are removed.
2. For each floe_k_r in `props[k]`, compare to floe_k+1_s in `props[k+1]` by computing similarity ratios, set of `conditions`, and drift distance `dist`. If the conditions are met, compute the area mismatch `mm` and psi-s correlation `c` for this pair of floes. Pair these two floes if `mm` and `c` satisfy the thresholds in `mc_thresholds`.
3. If there are collisions (i.e. floe `s` in `props[k+1]` is paired to more than one floe in `props[k]`), then the floe in `props[k]` with the best match is paired to floe `s` in `props[k+1]`.
4. Drop paired floes from `props[k]` and `props[k+1]` and repeat steps 2 and 3 until there are no more floes to match in `props[k]`.
5. Repeat steps 2-4 for `k=2:length(props)-1`.
# Arguments
- `segmented_imgs`: array of images with segmented floes
- `props`: array of dataframes containing floe properties
- `passtimes`: array of `DateTime` objects containing the time of the image in which the floes were captured
- `latlonrefimage`: path to geotiff reference image for getting latitude and longitude of floe centroids
- `condition_thresholds`: 3-tuple of thresholds (each a named tuple) for deciding whether to match floe `i` from day `k` to floe j from day `k+1`
- `mc_thresholds`: thresholds for area mismatch and psi-s shape correlation
Returns a dataframe containing the following columns:
- `ID`: unique ID for each floe pairing.
- `passtime`: time of the image in which the floes were captured.
- `area`: area of the floe in sq. kilometers
- `convex_area`: area of the convex hull of the floe in sq. kilometers
- `major_axis_length`: length of the major axis of the floe in kilometers
- `minor_axis_length`: length of the minor axis of the floe in kilometers
- `orientation`: angle between the major axis and the x-axis in radians
- `perimeter`: perimeter of the floe in kilometers
- `latitude`: latitude of the floe centroid
- `longitude`: longitude of the floe centroid
- `x`: x-coordinate of the floe centroid
- `y`: y-coordinate of the floe centroid
- `area_mismatch`: area mismatch between the two floes in row_i and row_i+1 after registration
- `corr`: psi-s shape correlation between the two floes in row_i and row_i+1
"""
function pairfloes(
segmented_imgs::Vector{BitMatrix},
props::Vector{DataFrame},
passtimes::Vector{DateTime},
latlonrefimage::AbstractString,
condition_thresholds,
mc_thresholds,
)
_pairs = _pairfloes(
segmented_imgs,
props,
passtimes,
condition_thresholds,
mc_thresholds,
)
addlatlon!(_pairs, latlonrefimage)
cols = [:ID, :passtime, :area, :convex_area, :major_axis_length, :minor_axis_length, :orientation, :perimeter, :latitude, :longitude, :x, :y, :area_mismatch, :corr]
_pairs = _pairs[:, cols]
return _pairs
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1642 | # Setting things up
## locate some files for the tests
test_data_dir = "./test_inputs"
test_output_dir = "./test_outputs"
truecolor_test_image_file = "$(test_data_dir)/NE_Greenland_truecolor.2020162.aqua.250m.tiff"
falsecolor_test_image_file = "$(test_data_dir)/NE_Greenland_reflectance.2020162.aqua.250m.tiff"
falsecolor_b7_test_file = "$(test_data_dir)/ref_image_b7.png"
landmask_file = "$(test_data_dir)/landmask.tiff"
landmask_no_dilate_file = "$(test_data_dir)/landmask_no_dilate.png"
current_landmask_file = "$(test_data_dir)/current_landmask.png"
normalized_test_file = "$(test_data_dir)/matlab_normalized.png"
clouds_channel_test_file = "$(test_data_dir)/clouds_channel.png"
cloudmask_test_file = "$(test_data_dir)/cloudmask.png"
ice_water_discrim_test_file = "$(test_data_dir)/matlab_ice_water_discrim.png"
sharpened_test_image_file = "$(test_data_dir)/matlab_sharpened.png"
segmented_a_ice_mask_file = "$(test_data_dir)/matlab_segmented_A.png"
segmented_b_ice_test_file = "$(test_data_dir)/matlab_segmented_b_ice.png"
segmented_b_filled_test_file = "$(test_data_dir)/matlab_segmented_b_filled.png"
segmented_c_test_file = "$(test_data_dir)/matlab_segmented_c.png"
not_ice_mask_test_file = "$(test_data_dir)/matlab_not_ice_mask.png"
strel_file_2 = "$(test_data_dir)/se2.csv" # original matlab structuring element - a disk-shaped kernel with radius of 2 px
strel_file_4 = "$(test_data_dir)/strel_disk_4.csv" # disk-shaped kernel with radius of 4 px
watershed_test_file = "$(test_data_dir)/matlab_watershed_intersect.png"
test_region = (1:2707, 1:4458)
lm_test_region = (1:800, 1:1500)
ice_floe_test_region = (1640:2060, 1840:2315)
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1521 | using IceFloeTracker
using Images
using Test
using DelimitedFiles
using Dates
using DataFrames
using Random
using ImageTransformations: imrotate
using ArgParse: ArgParseSettings, @add_arg_table!, add_arg_group!, parse_args
include("test_error_rate.jl")
include("config.jl")
# Setting things up (see config.jl)
## Get all test files filenames "test-*" in test folder and their corresponding names/label
alltests = [f for f in readdir() if startswith(f, "test-")]
testnames = [n[6:(end - 3)] for n in alltests]
## Put the filenames to test below
to_test = alltests # uncomment this line to run all tests or add individual files below
[
# "test-create-landmask.jl",
# "test-create-cloudmask.jl",
# "test-normalize-image.jl",
# "test-persist.jl",
# "test-utils-padding.jl",
# "test-discrim-ice-water.jl",
# "test-find-ice-labels.jl",
# "test-segmentation-a.jl",
# "test-segmentation-b.jl",
# "test-segmentation-watershed.jl",
# "test-segmentation-f.jl",
# "test-bwtraceboundary.jl",
# "test-resample-boundary.jl",
# "test-regionprops.jl",
# "test-psi-s.jl",
# "test-crosscorr.jl"
# "test-bwperim.jl",
# "test-bwareamaxfilt.jl"
# "test-register-mismatch.jl",
# "test-utils-imextendedmin.jl",
# "test-morphSE.jl",
# "test-hbreak.jl",
# "test-bridge.jl",
# "test-branch.jl"
# "test-pipeline.jl"
]
# Run the tests
@testset verbose = true "IceFloeTracker.jl" begin
for test in to_test
include(test)
end
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 520 | @testset "branch points tests" begin
dir = joinpath(test_data_dir, "branch")
readcsv(f) = readdlm(joinpath(dir, f), ',', Bool)
# Get inputs
circles = readcsv("circles.csv")
circles_skel = readcsv("circles_skel.csv")
circles_branch_exp = readcsv("circles_branch_matlab.csv")
# Ideal test on skeletonized image
@test circles_branch_exp == branch(circles_skel)
# Test on non-skeletonized image: Effect of brach = eroding
@test IceFloeTracker.erode(circles) == branch(circles)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 349 | @testset "bridge tests" begin
println("-------------------------------------------------")
println("---------------- bridge tests -------------------")
bwin = readdlm("./test_inputs/bridge/bridge_in.csv", ',', Bool)
bwexpected = readdlm("./test_inputs/bridge/bridge_expected.csv", ',', Bool)
@test bridge(bwin) == bwexpected
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2522 | @testset "bwareamaxfilt test" begin
println("-------------------------------------------------")
println("------------ bwareamaxfilt Tests --------------")
# Create a bitmatrix with a big floe and two smaller floes -- 3 connected components in total.
A = zeros(Bool, 12, 15)
A[2:6, 2:6] .= 1
A[4:8, 7:10] .= 1
A[10:12, 13:15] .= 1
A[10:12, 3:6] .= 1
# 12Γ15 Matrix{Bool}:
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
# Test 1: Check number of total blobs and their respective areas.
# First get the labels
labels = label_components(A)
# 12Γ15 Matrix{Int64}:
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 0 2 2 2 2 0 0 0 0 0 0 3 3 3
# 0 0 2 2 2 2 0 0 0 0 0 0 3 3 3
# 0 0 2 2 2 2 0 0 0 0 0 0 3 3 3
# a) Test there are three blobs
d = IceFloeTracker.get_areas(labels)
@test length(d) == 3
# b) Test largest blob is the one with label '1'
@test IceFloeTracker.get_max_label(d) == 1
# c) Test the distribution of the labels
@test all([d[1] == 45, d[2] == 12, d[3] == 9])
# Test 2: Filter smaller blobs from label matrix
@test sum(
IceFloeTracker.filt_except_label(labels, IceFloeTracker.get_max_label(d)) .!= 0
) == 45
# Test 3: Keep largest blob in input matrix a
@test sum(IceFloeTracker.bwareamaxfilt(A)) == 45
# Test 4: In-place version of bwareamaxfilt
A_copy = copy(A)
IceFloeTracker.bwareamaxfilt!(A_copy)
@test A_copy == IceFloeTracker.bwareamaxfilt(A)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2460 | @testset "bwperim" begin
println("-------------------------------------------------")
println("---------------- bwperim Tests ------------------")
# Create image with 3 connected components. The test consists of digging the biggests holes for each blob in the foreground using bwperim, thereby creating 3 additional connected components, 6 in total.
A = zeros(Bool, 13, 16)
A[2:6, 2:6] .= 1
A[4:8, 7:10] .= 1
A[10:12, 13:15] .= 1
A[10:12, 3:6] .= 1
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# count the components in A
numinicomps = maximum(IceFloeTracker.label_components(A))
# dig the holes and relabel the interiors
border_mask = IceFloeTracker.bwperim(A) # get the borders
interior = A .& .!border_mask # keep the interior of the holes
interior_relabel = IceFloeTracker.label_components(interior) * 2 # relabel the wholes
A_relabeled = interior_relabel .+ border_mask
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
# 0 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0
# 0 1 2 2 2 2 1 1 1 1 0 0 0 0 0 0
# 0 1 2 2 2 2 2 2 2 1 0 0 0 0 0 0
# 0 1 1 1 1 1 2 2 2 1 0 0 0 0 0 0
# 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 1 4 4 1 0 0 0 0 0 0 1 6 1 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
@test numinicomps + 3 ==
maximum(IceFloeTracker.label_components(A_relabeled, trues(3, 3)))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2574 | @testset "bwtraceboundary test" begin
println("-------------------------------------------------")
println("------------ bwtraceboundary Tests --------------")
# Create an image with 3 connected components. The test consists of identifying the three closed sequences of border pixels in the image below. We do so using bwtraceboundary.
A = zeros(Int, 13, 16)
A[2:6, 2:6] .= 1
A[4:8, 7:10] .= 1
A[10:12, 13:15] .= 1
A[10:12, 3:6] .= 1
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# get boundaries closed by default, no point provided
boundary = IceFloeTracker.bwtraceboundary(A)
# Test 1: Check correct number of boundary pixels are obtained
@test all([
length(boundary[1]) == 27, length(boundary[2]) == 11, length(boundary[3]) == 9
])
# Test 2: Initial points for contours
p1 = (2, 2)
p2 = (12, 3)
p3 = (10, 15)
pbad = (0, 0)
pint = (4, 4)
# get a closed boundary starting at p1
out = IceFloeTracker.bwtraceboundary(A; P0=p1)
@test all([length(boundary[1]) == length(out), out[1] == out[end]])
# get a closed boundary starting at p2
out = IceFloeTracker.bwtraceboundary(A; P0=p2)
@test all([length(boundary[2]) == length(out), out[1] == out[end]])
# get a closed boundary starting at p3
out = IceFloeTracker.bwtraceboundary(A; P0=p3)
@test all([length(boundary[3]) == length(out), out[1] == out[end]])
# test exterior point
out = IceFloeTracker.bwtraceboundary(A; P0=pbad)
@test boundary == out
# test interior point
out = IceFloeTracker.bwtraceboundary(A; P0=pint)
@test boundary == out
# test input is a BitMatrix
@test IceFloeTracker.bwtraceboundary(A) == IceFloeTracker.bwtraceboundary(BitArray(A))
# test not closed
@test length(IceFloeTracker.bwtraceboundary(A; P0=p1, closed=false)) ==
length(IceFloeTracker.bwtraceboundary(A; P0=p1)) - 1
end;
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1738 | @testset "Create Cloudmask" begin
println("-------------------------------------------------")
println("------------ Create Cloudmask Test --------------")
# define constants, maybe move to test config file
matlab_cloudmask_file = "$(test_data_dir)/matlab_cloudmask.tiff"
println("--------- Create and apply cloudmask --------")
ref_image = float64.(load(falsecolor_test_image_file)[test_region...])
matlab_cloudmask = float64.(load(matlab_cloudmask_file))
@time cloudmask = IceFloeTracker.create_cloudmask(ref_image)
@time masked_image = IceFloeTracker.apply_cloudmask(ref_image, cloudmask)
# test for percent difference in cloudmask images
@test (@test_approx_eq_sigma_eps masked_image matlab_cloudmask [0, 0] 0.005) == nothing
# test for create_clouds_channel
clouds_channel_expected = load(clouds_channel_test_file)
clds_channel = IceFloeTracker.create_clouds_channel(cloudmask, ref_image)
@test (@test_approx_eq_sigma_eps (clds_channel) (clouds_channel_expected) [0, 0] 0.005) ==
nothing
# Persist output images
cloudmask_filename =
"$(test_output_dir)/cloudmask_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist cloudmask cloudmask_filename
masked_image_filename =
"$(test_output_dir)/cloudmasked_reflectance_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist masked_image masked_image_filename
clouds_channel_filename =
"$(test_output_dir)/clouds_channel_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist clds_channel clouds_channel_filename
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 3430 | @testset "Create Landmask" begin
println("------------------------------------------------")
println("------------ Create Landmask Test --------------")
# define constants, maybe move to test config file
matlab_landmask_file = "$(test_data_dir)/matlab_landmask.png"
matlab_landmask_no_dilate_file = "$(test_data_dir)/matlab_landmask_no_dilate.png"
strel_file = "$(test_data_dir)/se.csv"
struct_elem = readdlm(strel_file, ',', Bool) # read in original matlab structuring element - a disk-shaped kernel with radius of 50 px
matlab_landmask = float64.(load(matlab_landmask_file)[lm_test_region...])
matlab_landmask_no_dilate =
float64.(load(matlab_landmask_no_dilate_file)[lm_test_region...]) # land is white
lm_image = float64.(load(landmask_file)[lm_test_region...])
test_image = load(truecolor_test_image_file)[lm_test_region...]
@time landmask = IceFloeTracker.create_landmask(lm_image, struct_elem)
# Test method with default se
@test landmask == IceFloeTracker.create_landmask(lm_image)
# Generate testing files
@time landmask_no_dilate = landmask.non_dilated
@time masked_image = IceFloeTracker.apply_landmask(test_image, landmask.dilated)
@time masked_image_no_dilate = IceFloeTracker.apply_landmask(
test_image, .!landmask_no_dilate
)
# test for percent difference in landmask images
@test test_similarity(.!landmask.dilated, convert(BitMatrix, matlab_landmask), 0.005)
@test test_similarity(
.!landmask.non_dilated, convert(BitMatrix, matlab_landmask_no_dilate), 0.005
) # flipping the landmask to match the matlab landmask
# test for in-place allocation reduction
@time normal_lm = IceFloeTracker.apply_landmask(test_image, landmask.dilated)
@time IceFloeTracker.apply_landmask!(test_image, landmask.dilated)
x = @allocated IceFloeTracker.apply_landmask(test_image, landmask.dilated)
@info("normal allocated: $x")
y = @allocated IceFloeTracker.apply_landmask!(test_image, landmask.dilated)
@info("in-place allocated: $y")
@test x > y
# test that the test image has been updated in-place and equals the new image with landmask applied
@test(test_image == normal_lm)
# persist imgs
matlab_landmask_filename =
"$(test_output_dir)/matlab_landmask_test_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist matlab_landmask matlab_landmask_filename
landmask_filename =
"$(test_output_dir)/landmask_test_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist landmask.dilated landmask_filename
landmask_no_dilate_filename =
"$(test_output_dir)/landmask_test_no_dilate_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist landmask.non_dilated landmask_no_dilate_filename
masked_image_filename =
"$(test_output_dir)/landmasked_truecolor_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist masked_image masked_image_filename
masked_image_no_dilate_filename =
"$(test_output_dir)/landmasked_truecolor_test_no_dilate_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist masked_image_no_dilate masked_image_no_dilate_filename
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1493 | @testset "crosscorr tests" begin
println("-------------------------------------------------")
println("----------- cross correlation tests -------------")
# Compare against matlab xcorr with normalization (standard use case in IceFloeTracker)
n = 0:15
x = 0.84 .^ n
y = circshift(x, 5)
# [cnormalized,lags] = xcorr(x,y,'coef'); (matlab call)
# Output of matlab call above
c_matlab = [
0.0516860456455592,
0.104947285063174,
0.161406917930332,
0.222785618772511,
0.290953976567756,
0.367989503172686,
0.456239947969545,
0.558394848323571,
0.677567496436029,
0.817389820630348,
0.982123072691496,
0.846599102605261,
0.736876248026996,
0.649610574340982,
0.582142556253932,
0.532416025595572,
0.444053743842906,
0.369224528569261,
0.305647870356775,
0.251386194859924,
0.204785812920709,
0.164426522422887,
0.129078325941762,
0.097663945108386,
0.0692259892687896,
0.0428977778640515,
0.0178769273085035,
0.0136884958891382,
0.00991723767782281,
0.00644821909097442,
0.00317571765737478,
]
# Compute normalized cross correlation scores and lags with padding
r, lags = IceFloeTracker.crosscorr(x, y; normalize=true)
# Test
@test all(round.(c_matlab, digits=5) .== round.(r, digits=5))
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1461 | @testset "Discriminate Ice-Water" begin
println("------------------------------------------------")
println("------------ Create Ice-Water Discrimination Test --------------")
input_image = float64.(load(truecolor_test_image_file)[test_region...])
falsecolor_image = float64.(load(falsecolor_test_image_file)[test_region...])
landmask = convert(BitMatrix, load(current_landmask_file))
landmask_no_dilate = convert(BitMatrix, float64.(load(landmask_no_dilate_file)))
cloudmask = IceFloeTracker.create_cloudmask(falsecolor_image)
matlab_ice_water_discrim =
float64.(load("$(test_data_dir)/matlab_ice_water_discrim.png"))
image_sharpened = IceFloeTracker.imsharpen(input_image, landmask_no_dilate)
image_sharpened_gray = IceFloeTracker.imsharpen_gray(image_sharpened, landmask)
normalized_image = IceFloeTracker.normalize_image(
image_sharpened, image_sharpened_gray, landmask
)
ice_water_discrim = IceFloeTracker.discriminate_ice_water(
falsecolor_image, normalized_image, landmask, cloudmask
)
@test (@test_approx_eq_sigma_eps ice_water_discrim matlab_ice_water_discrim [0, 0] 0.065) ==
nothing
# persist generated image
ice_water_discrim_filename =
"$(test_output_dir)/ice_water_discrim_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist ice_water_discrim ice_water_discrim_filename
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 937 | @testset "Find_Ice_Labels" begin
println("------------------------------------------------")
println("------------ Create Ice Labels Test --------------")
falsecolor_image = float64.(load(falsecolor_test_image_file)[test_region...])
landmask = convert(BitMatrix, load(current_landmask_file))
ice_labels_matlab = DelimitedFiles.readdlm(
"$(test_data_dir)/ice_labels_matlab.csv", ','
)
ice_labels_matlab = vec(ice_labels_matlab)
@time ice_labels_julia = IceFloeTracker.find_ice_labels(falsecolor_image, landmask)
DelimitedFiles.writedlm("ice_labels_julia.csv", ice_labels_julia, ',')
@test ice_labels_matlab == ice_labels_julia
@time ice_labels_ice_floe_region = IceFloeTracker.find_ice_labels(
falsecolor_image[ice_floe_test_region...], landmask[ice_floe_test_region...]
)
DelimitedFiles.writedlm("ice_labels_floe_region.csv", ice_labels_ice_floe_region, ',')
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 417 | @testset "hbreak tests" begin
h1, h2 = keys(IceFloeTracker.make_hbreak_dict())
A = zeros(Bool, 20, 20)
# Make 4 H-connected groups on each corner of A
A[1:3, 1:3] = h1
A[1:3, (end - 2):end] = h2
A[(end - 2):end, 1:3] = h1
A[(end - 2):end, (end - 2):end] = h2
A[10:12, 10:12] = h1 # and another in the middle for good measure
@test sum(A) == sum(IceFloeTracker.hbreak(A)) + 5
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2349 | @testset "tracker/matchcorr" begin
path = joinpath(test_data_dir, "tracker")
@testset "matchcorr" begin
floes =
deserialize.([
joinpath(path, f) for f in ["f1.dat", "f2.dat", "f3.dat", "f4.dat"]
])
mm, c = matchcorr(floes[1], floes[2], 400.0)
@test isapprox(mm, 0.0; atol=0.05) && isapprox(c, 0.99; atol=0.05)
@test all(isnan.(collect(matchcorr(floes[3], floes[4], 400.0))))
end
@testset "tracker" begin
# Set thresholds
t1 = (dt=(30.0, 100.0, 1300.0), dist=(200, 250, 300))
t2 = (
area=1200,
arearatio=0.28,
majaxisratio=0.10,
minaxisratio=0.12,
convexarearatio=0.14,
)
t3 = (
area=10_000,
arearatio=0.18,
majaxisratio=0.1,
minaxisratio=0.15,
convexarearatio=0.2,
)
condition_thresholds = (t1, t2, t3)
mc_thresholds = (
goodness=(area3=0.18, area2=0.236, corr=0.68), comp=(mxrot=10, sz=16)
)
dt = [15.0, 20.0]
# Load data
data = deserialize(joinpath(path, "tracker_test_data.dat"))
passtimes = deserialize(joinpath(path, "passtimes.dat"))
latlonimgpth = "test_inputs/NE_Greenland_truecolor.2020162.aqua.250m.tiff"
# Filtering out small floes. Algorithm performs poorly on small, amorphous floes as they seem to look similar (too `blobby`) to each other
for (i, prop) in enumerate(data.props)
data.props[i] = prop[prop[:, :area].>=350, :]
end
_pairs = IceFloeTracker.pairfloes(
data.imgs, data.props, passtimes, latlonimgpth, condition_thresholds, mc_thresholds
)
@test maximum(_pairs.ID) == 6
expectedcols = ["ID",
"passtime",
"area",
"convex_area",
"major_axis_length",
"minor_axis_length",
"orientation",
"perimeter",
"area_mismatch",
"corr",
"latitude",
"longitude",
"x",
"y"]
@test all([name in expectedcols for name in names(_pairs)])
@test issorted(_pairs, :ID)
@test all([issorted(grp, :passtime) for grp in groupby(_pairs, :ID)])
end
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 610 | println("------------------------------------------------
----------------- Misc. Tests ------------------")
# Define a test to check the version number of the package matches the version number in the Project.toml file. Use the get_version_from_toml function to get the version number from the Project.toml file. The version number is then compared to the version number of the package. If the version numbers match, the test passes. If the version numbers do not match, the test fails.
@testset "Version number" begin
@test IceFloeTracker.get_version_from_toml(dirname((@__DIR__))) == IFTVERSION
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1895 | @testset "MorphSE test" begin
println("------------------------------------------------")
println("---------------- MorphSE Tests -----------------")
# Dilate -- Start with a pixel in the middle and dilate in one go to fill up the full image
n = rand(11:2:21) # choose random odd number
mid = (n - 1) Γ· 2 + 1 # get median
a = zeros(Int, n, n)
a[mid, mid] = 1 # make 1 the pixel in the center
se = IceFloeTracker.MorphSE.strel_box((n, n))
@test IceFloeTracker.MorphSE.dilate(a, se) == ones(Int, n, n)
# Bothat, opening, erode, filling holes, reconstruction using output from Matlab
A = zeros(Bool, 41, 41)
A[(21 - 10):(21 + 10), (21 - 10):(21 + 10)] .= 1
I = falses(8, 8)
I[1:8, 3:6] .= 1
I[[CartesianIndex(4, 4), CartesianIndex(5, 5)]] .= 0
I
se = centered(IceFloeTracker.se_disk4())
#read in expected files from MATLAB
path = joinpath(test_data_dir, "morphSE")
erode_withse_exp = readdlm(joinpath(path, "erode_withse1_exp.csv"), ',', Bool)
bothat_withse_exp = readdlm(joinpath(path, "bothat_withse1_exp.csv"), ',', Bool)
open_withse_exp = readdlm(joinpath(path, "open_withse1_exp.csv"), ',', Bool)
reconstruct_exp = readdlm(joinpath(path, "reconstruct_exp.csv"), ',', Int64)
matrix_A = readdlm(joinpath(path, "mat_a.csv"), ',', Int64)
matrix_B = readdlm(joinpath(path, "mat_b.csv"), ',', Int64)
filled_holes_exp = readdlm(joinpath(path, "filled_holes.csv"), ',', Int64)
#run tests
@test open_withse_exp == IceFloeTracker.MorphSE.opening(A, se)
@test erode_withse_exp == IceFloeTracker.MorphSE.erode(A, se)
@test bothat_withse_exp == IceFloeTracker.MorphSE.bothat(A, se)
@test reconstruct_exp == IceFloeTracker.MorphSE.mreconstruct(
IceFloeTracker.MorphSE.dilate, matrix_B, matrix_A
)
@test filled_holes_exp == IceFloeTracker.MorphSE.fill_holes(I)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 3765 | @testset "Normalize Image" begin
println("-------------------------------------------------")
println("---------- Create Normalization Test ------------")
struct_elem2 = strel_diamond((5, 5)) #original matlab structuring element - a disk-shaped kernel with radius of 2 px
matlab_normalized_img_file = "$(test_data_dir)/matlab_normalized.png"
matlab_sharpened_file = "$(test_data_dir)/matlab_sharpened.png"
matlab_diffused_file = "$(test_data_dir)/matlab_diffused.png"
matlab_equalized_file = "$(test_data_dir)/matlab_equalized.png"
landmask_bitmatrix = convert(BitMatrix, float64.(load(current_landmask_file)))
landmask_no_dilate = convert(BitMatrix, float64.(load(landmask_no_dilate_file)))
input_image = float64.(load(truecolor_test_image_file)[test_region...])
matlab_norm_image = float64.(load(matlab_normalized_img_file)[test_region...])
matlab_sharpened = float64.(load(matlab_sharpened_file))
matlab_diffused = float64.(load(matlab_diffused_file)[test_region...])
matlab_equalized = float64.(load(matlab_equalized_file))
println("-------------- Process Image - Diffusion ----------------")
input_landmasked = IceFloeTracker.apply_landmask(input_image, landmask_no_dilate)
@time image_diffused = IceFloeTracker.diffusion(input_landmasked, 0.1, 75, 3)
@test (@test_approx_eq_sigma_eps image_diffused matlab_diffused [0, 0] 0.0054) ==
nothing
@test (@test_approx_eq_sigma_eps input_landmasked image_diffused [0, 0] 0.004) ==
nothing
@test (@test_approx_eq_sigma_eps input_landmasked matlab_diffused [0, 0] 0.007) ==
nothing
diffused_image_filename =
"$(test_output_dir)/diffused_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist image_diffused diffused_image_filename
println("-------------- Process Image - Equalization ----------------")
## Equalization
masked_view = (channelview(matlab_diffused))
eq = [
IceFloeTracker._adjust_histogram(masked_view[i, :, :], 255, 10, 10, 0.86) for
i in 1:3
]
image_equalized = colorview(RGB, eq...)
@test (@test_approx_eq_sigma_eps image_equalized matlab_equalized [0, 0] 0.051) ==
nothing
equalized_image_filename =
"$(test_output_dir)/equalized_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist image_equalized equalized_image_filename
println("-------------- Process Image - Sharpening ----------------")
## Sharpening
@time sharpenedimg = IceFloeTracker.imsharpen(input_image, landmask_no_dilate)
@time image_sharpened_gray = IceFloeTracker.imsharpen_gray(
sharpenedimg, landmask_bitmatrix
)
@test (@test_approx_eq_sigma_eps image_sharpened_gray matlab_sharpened [0, 0] 0.046) ==
nothing
sharpened_image_filename =
"$(test_output_dir)/sharpened_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist image_sharpened_gray sharpened_image_filename
println("-------------- Process Image - Normalization ----------------")
## Normalization
@time normalized_image = IceFloeTracker.normalize_image(
sharpenedimg, image_sharpened_gray, landmask_bitmatrix, struct_elem2
)
#test for percent difference in normalized images
@test (@test_approx_eq_sigma_eps normalized_image matlab_norm_image [0, 0] 0.045) ==
nothing
normalized_image_filename =
"$(test_output_dir)/normalized_test_image_" *
Dates.format(Dates.now(), "yyyy-mm-dd-HHMMSS") *
".png"
IceFloeTracker.@persist normalized_image normalized_image_filename
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1792 | @testset "persist.jl" begin
println("-------------------------------------------------")
println("---------- Persist Image Tests ------------")
outimage_path = "outimage1.tiff"
img = ones(3, 3)
# Test filename in variable
@persist img outimage_path
@test isfile(outimage_path)
# Test filename as string literal
@persist img "outimage2.tiff"
@test isfile("outimage2.tiff")
# Test no-filename call. Default filename startswith 'persisted_img-'
# First clear all files that start with this prefix, if any
prefix = "persisted_img-"
[rm(f) for f in readdir() if startswith(f, prefix)]
@persist img
@test length([f for f in readdir() if startswith(f, prefix)]) == 1
# clean up - part 1!
rm(outimage_path)
rm("outimage2.tiff")
[rm(f) for f in readdir() if startswith(f, prefix)]
# Part 2
# Test call expressions
@persist identity(img) outimage_path
@persist identity(img) "outimage2.tiff"
@persist identity(img) # no file name given
@test isfile(outimage_path)
@test isfile("outimage2.tiff")
@test length([f for f in readdir() if startswith(f, prefix)]) == 1
# Part 3
# Test filename as Expr, such as "$(dir)$(fname).$(ext)"
fname = "persistedimg"
ext = "png"
@persist img "$(fname).$(ext)"
@test isfile("$(fname).$(ext)")
# Part 4
# Test timestamp
[rm(f) for f in readdir() if startswith(f, "foo")] # clear "foo*" files
# Persist twice the same img with different ts
@persist img "foo.png" true
foos = [f for f in readdir() if startswith(f, "foo")]
@test length(foos) == 1
@test length(foos[1]) == 25 # ts adds 19 chars
# Clean up
[rm(f) for f in readdir() if endswith(f, "png") || endswith(f, "tiff")]
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1677 | @testset "Ο-s curve test" begin
# draw cardioid https://en.wikipedia.org/wiki/Cardioid
t = range(0, 2pi, 201)
x = @. cos(t) * (1 - cos(t))
y = @. (1 - cos(t)) * sin(t)
Ο, s = IceFloeTracker.make_psi_s(x, y)
# Test 0: Continuity for smooth curves (except initial/final point for cardioid)
@test all((Ο[2:end] - Ο[1:(end - 1)]) .< 0.05)
# Test 1: initial/final phase [0, 3Ο]
@test all([Ο[1] < 0.05, abs(Ο[end] - 3pi) < 0.05])
# Test 2: Option unwrap=false; cardioid will have one discontinuity
ΞΈ, s = IceFloeTracker.make_psi_s(x, y; rangeout=true, unwrap=false)
@test sum((abs.(ΞΈ[2:end] - ΞΈ[1:(end - 1)])) .> 0.05) == 1
# Test 3: Option rangeout=false, unwrap=false. There will be negative phase values.
p_wrapped, _ = IceFloeTracker.make_psi_s(x, y; rangeout=false, unwrap=false)
@test !all(p_wrapped .>= 0)
# Test 4: Return arclength; compare against theoretical total arclength = 8
_, s = IceFloeTracker.make_psi_s(x, y; rangeout=true)
@test abs(s[end] - 8) < 0.005
# Test 5: Auxiliary functions
A = [x y]
# norm of a Vector
@test all([
IceFloeTracker.norm(x) == sum(x .^ 2)^0.5, IceFloeTracker.norm(y) == sum(y .^ 2)^0.5
])
# norm of a row/col
@test all([
IceFloeTracker.norm(A[1, :]) == sum(A[1, :] .^ 2)^0.5,
IceFloeTracker.norm(A[:, 1]) == sum(A[:, 1] .^ 2)^0.5,
])
# test grad methods for vectors and matrices
@test IceFloeTracker.grad(x, y) == IceFloeTracker.grad(A)
# Test 6: Alternate method of make_psi_s with 2-column matrix as input
@test IceFloeTracker.make_psi_s(x, y) == IceFloeTracker.make_psi_s([x y])
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1838 | @testset "regionprops.jl" begin
println("-------------------------------------------------")
println("-------------- regionprops Tests ----------------")
Random.seed!(123)
bw_img = Bool.(rand([0, 1], 5, 10))
bw_img[end, 7] = 1
label_img = IceFloeTracker.label_components(bw_img, trues(3, 3))
properties = (
"centroid",
"area",
"major_axis_length",
"minor_axis_length",
"convex_area",
"bbox",
"perimeter",
"orientation",
)
extra_props = nothing
table = IceFloeTracker.regionprops_table(label_img, bw_img; properties=properties)
total_labels = maximum(label_img)
# Tests for regionprops_table
@test typeof(table) <: DataFrame && # check correct data type
6 == sum([p in names(table) for p in properties]) && # check correct set of properties
size(table) == (total_labels, length(properties) + 4) # check correct table size
# Check no value in bbox cols is 0 (zero indexing from skimage)
@test all(Matrix(table[:, ["min_row", "min_col", "max_row", "max_col"]] .> 0))
# Check no value in centroid cols is 0 (zero indexing from skimage)
@test all(Matrix(table[:, ["row_centroid", "col_centroid"]] .> 0))
# check default properties
@test table == IceFloeTracker.regionprops_table(label_img)
# Tests for regionprops
regions = IceFloeTracker.regionprops(label_img, bw_img)
# Check some data matches in table
randnum = rand(1:total_labels)
@test table.area[randnum] == regions[randnum].area
# Check floe masks generation and correct cropping
IceFloeTracker.addfloemasks!(table, bw_img)
@test all(
[
length(unique(label_components(table.mask[i], trues(3, 3)))) for
i in 1:nrow(table)
] .== [2, 2, 1],
)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 499 | @testset "register_mismatch tests" begin
# Read in floe from file
floe = readdlm("./test_inputs/floetorotate.csv", ',', Bool)
# Define rotation angle
rot_angle = 15 # degrees
# Rotate floe
rotated_floe = imrotate(floe, deg2rad(rot_angle))
# Estimate rigid transformation and mismatch
mm, rot = IceFloeTracker.mismatch(floe, rotated_floe)
# Test 1: mismatch accuracy
@test mm < 0.005
# Test 2: angle estimate
@test abs(rot - rot_angle) < 0.05
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1835 | @testset "resample_boundary test" begin
println("-------------------------------------------------")
println("------------ resample_boundary Tests --------------")
# Create an image with 3 connected components. The test consists of identifying the three closed sequences of border pixels in the image below. We do so using bwtraceboundary.
A = zeros(Int, 9, 11)
A[2:6, 2:6] .= 1
A[4:8, 7:10] .= 1
# 0 0 0 0 0 0 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0
# 0 1 1 1 1 1 0 0 0 0 0
# 0 1 1 1 1 1 1 1 1 1 0
# 0 1 1 1 1 1 1 1 1 1 0
# 0 1 1 1 1 1 1 1 1 1 0
# 0 0 0 0 0 0 1 1 1 1 0
# 0 0 0 0 0 0 1 1 1 1 0
# 0 0 0 0 0 0 0 0 0 0 0
# get boundary of biggest blob in image
boundary = IceFloeTracker.bwtraceboundary(A; P0=(2, 2))
# get resampled set of boundary points
resampled_boundary = IceFloeTracker.resample_boundary(boundary)
# Test 0: Check data type of resampled_boundary is Matrix{Float64}
@test typeof(resampled_boundary) <: Matrix{Float64}
# Test 1: Check correct number of resampled pixels where obtained
@test size(resampled_boundary)[1] == length(boundary) Γ· 2
# Test 2: Check perimeters are comparable (less than 10% after regularization by half the points)
# make dist function
norm(u) = (u[1]^2 + u[2]^2)^0.5
per1 = sum([norm(u) for u in (boundary[2:end] - boundary[1:(end - 1)])])
difs2 = [
norm(u) for
u in eachrow(resampled_boundary[2:end, :] - resampled_boundary[1:(end - 1), :])
]
per2 = sum(difs2)
d = abs(per1 - per2) / per1
@test d < 0.1
# Test 3: Check distances between a pair of adjacent points is about the same (small standard deviation)
IceFloeTracker.std(difs2) < 1.0
end;
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 2194 |
@testset "Segmentation-A" begin
println("------------------------------------------------")
println("------------ Create Segmentation-A Test --------------")
ice_water_discriminated_image =
float64.(load("$(test_data_dir)/matlab_ice_water_discrim.png"))
cloudmask = convert(BitMatrix, load(cloudmask_test_file))
landmask = convert(BitMatrix, load(current_landmask_file))
ice_labels = DelimitedFiles.readdlm("$(test_data_dir)/ice_labels_julia.csv", ',')
ice_labels = Int64.(vec(ice_labels))
matlab_segmented_A = float64.(load("$(test_data_dir)/matlab_segmented_A.png"))
matlab_segmented_A_bitmatrix = convert(BitMatrix, matlab_segmented_A)
matlab_segmented_ice = convert(
BitMatrix, float64.(load("$(test_data_dir)/matlab_segmented_ice.png"))
)
matlab_segmented_ice_cloudmasked =
load("$(test_data_dir)/matlab_segmented_ice_cloudmasked.png") .> 0.5
println("---------- Segment Image - Direct Method ------------")
@time segmented_ice_cloudmasked = IceFloeTracker.segmented_ice_cloudmasking(
ice_water_discriminated_image, cloudmask, ice_labels
)
IceFloeTracker.@persist segmented_ice_cloudmasked "./test_outputs/segmented_a_ice_cloudmasked.png" true
@time segmented_A = IceFloeTracker.segmentation_A(segmented_ice_cloudmasked)
IceFloeTracker.@persist segmented_A "./test_outputs/segmented_a.png" true
@time segmented_ice = IceFloeTracker.kmeans_segmentation(
ice_water_discriminated_image, ice_labels
)
IceFloeTracker.@persist segmented_ice "./test_outputs/segmented_a_ice.png" true
@test typeof(segmented_A) == typeof(matlab_segmented_A_bitmatrix)
@test test_similarity(matlab_segmented_A_bitmatrix, segmented_A, 0.039)
@test typeof(segmented_ice_cloudmasked) == typeof(matlab_segmented_ice_cloudmasked)
@test test_similarity(
convert(
BitMatrix, IceFloeTracker.apply_landmask(segmented_ice_cloudmasked, landmask)
),
matlab_segmented_ice_cloudmasked,
0.051,
)
@test typeof(segmented_ice) == typeof(matlab_segmented_ice)
@test test_similarity(matlab_segmented_ice, segmented_ice, 0.001)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1559 | @testset "Segmentation-B" begin
println("------------------------------------------------")
println("------------ Create Segmentation-B Test --------------")
sharpened_image = float64.(load(sharpened_test_image_file))
segmented_a_ice_mask = convert(BitMatrix, load(segmented_a_ice_mask_file))
cloudmask = convert(BitMatrix, load(cloudmask_test_file))
matlab_ice_intersect = convert(
BitMatrix, load("$(test_data_dir)/matlab_segmented_c.png")
)
matlab_not_ice_mask = float64.(load("$(test_data_dir)/matlab_I.png"))
#matlab_not_ice_bit = matlab_not_ice_mask .> 0.499
@time segB = IceFloeTracker.segmentation_B(
sharpened_image, cloudmask, segmented_a_ice_mask
)
IceFloeTracker.@persist segB.not_ice "./test_outputs/segB_not_ice_mask.png" true
IceFloeTracker.@persist segB.ice_intersect "./test_outputs/segB_ice_mask.png" true
IceFloeTracker.@persist matlab_not_ice_mask "./test_outputs/matlab_not_ice_mask.png" true
IceFloeTracker.@persist matlab_ice_intersect "./test_outputs/matlab_ice_intersect.png" true
@test typeof(segB.not_ice) == typeof(matlab_not_ice_mask)
@test (@test_approx_eq_sigma_eps segB.not_ice matlab_not_ice_mask [0, 0] 0.001) ==
nothing
@test typeof(segB.not_ice_bit) == typeof(matlab_not_ice_mask .> 0.499)
@test test_similarity((matlab_not_ice_mask .> 0.499), segB.not_ice_bit, 0.001)
@test typeof(segB.ice_intersect) == typeof(matlab_ice_intersect)
@test test_similarity(matlab_ice_intersect, segB.ice_intersect, 0.005)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1459 | @testset "Segmentation-F" begin
println("------------------------------------------------")
println("--------- Create Segmentation-F Test -----------")
## Load inputs for comparison
segmentation_B_not_ice_mask = float64.(load("$(test_data_dir)/matlab_I.png"))
segmentation_B_ice_intersect = convert(BitMatrix, load(segmented_c_test_file))
matlab_BW7 = load("$(test_data_dir)/matlab_BW7.png") .> 0.499
## Load function arg files
cloudmask = convert(BitMatrix, load(cloudmask_test_file))
landmask = convert(BitMatrix, load(current_landmask_file))
watershed_intersect = load(watershed_test_file) .> 0.499
ice_labels =
Int64.(
vec(DelimitedFiles.readdlm("$(test_data_dir)/ice_labels_floe_region.csv", ','))
)
## Run function with Matlab inputs
@time isolated_floes = IceFloeTracker.segmentation_F(
segmentation_B_not_ice_mask[ice_floe_test_region...],
segmentation_B_ice_intersect[ice_floe_test_region...],
watershed_intersect[ice_floe_test_region...],
ice_labels,
cloudmask[ice_floe_test_region...],
landmask[ice_floe_test_region...],
)
IceFloeTracker.@persist isolated_floes "./test_outputs/isolated_floes.png" true
IceFloeTracker.@persist matlab_BW7[ice_floe_test_region...] "./test_outputs/matlab_isolated_floes.png" true
@test test_similarity(matlab_BW7[ice_floe_test_region...], isolated_floes, 0.013)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1958 | @testset "Segmentation-Watershed" begin
println("------------------------------------------------")
println("------------ Create Segmentation-Watershed Test --------------")
matlab_not_ice = load("$(test_data_dir)/matlab_not_ice_mask.png")
matlab_not_ice_bit = matlab_not_ice .> 0.499
matlab_ice_intersect = convert(
BitMatrix, load("$(test_data_dir)/matlab_segmented_c.png")
)
matlab_watershed_D = convert(BitMatrix, load("$(test_data_dir)/matlab_watershed_D.png"))
matlab_watershed_E = convert(BitMatrix, load("$(test_data_dir)/matlab_watershed_E.png"))
matlab_watershed_intersect = convert(
BitMatrix, load("$(test_data_dir)/matlab_watershed_intersect.png")
)
## Run function with Matlab inputs
@time watershed_B_ice_intersect = IceFloeTracker.watershed_ice_floes(
matlab_ice_intersect
)
@time watershed_B_not_ice = IceFloeTracker.watershed_ice_floes(matlab_not_ice_bit)
@time watershed_intersect = IceFloeTracker.watershed_product(
watershed_B_ice_intersect, watershed_B_not_ice
)
IceFloeTracker.@persist watershed_B_ice_intersect "./test_outputs/watershed_ice_intersect.png" true
IceFloeTracker.@persist watershed_B_not_ice "./test_outputs/watershed_not_ice.png" true
IceFloeTracker.@persist watershed_intersect "./test_outputs/watershed_intersect.png" true
IceFloeTracker.@persist matlab_not_ice_bit "./test_outputs/matlab_not_ice_bit.png" true
## Tests with Matlab inputs
@test typeof(watershed_B_not_ice) == typeof(matlab_watershed_E)
@test typeof(watershed_B_ice_intersect) == typeof(matlab_watershed_D)
@test typeof(watershed_intersect) == typeof(matlab_watershed_intersect)
@test test_similarity(matlab_watershed_D, watershed_B_ice_intersect, 0.12)
@test test_similarity(matlab_watershed_E, watershed_B_not_ice, 0.15)
@test test_similarity(matlab_watershed_intersect, watershed_intersect, 0.033)
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1332 | @testset "imextendedmin and bwdist" begin
println("-------------------------------------------------")
println("------- imextendedmin bwdist Tests --------------")
test_matrix = "$(test_data_dir)/test_extendedmin.csv"
test_image = DelimitedFiles.readdlm(test_matrix, ',', Bool)
# Test matrix
# 10Γ10 BitMatrix:
# 1 1 1 1 1 1 1 1 1 0
# 1 1 1 1 1 1 1 0 1 0
# 1 1 1 0 1 1 1 1 1 1
# 1 1 0 0 1 1 1 1 1 1
# 1 1 1 1 1 1 1 1 1 1
# 1 1 1 1 1 1 1 1 1 1
# 1 1 1 1 1 0 1 1 1 1
# 1 1 1 1 1 1 1 1 0 1
# 1 0 1 1 1 1 1 1 1 1
# 1 0 1 1 1 1 1 1 1 1
matlab_extendedmin_output_file = "$(test_data_dir)/test_extendedmin_output.csv"
matlab_extendedmin_output = DelimitedFiles.readdlm(
matlab_extendedmin_output_file, ',', Bool
)
# Test workflow for watershed segmentation
distances = -IceFloeTracker.bwdist(.!test_image)
extendedmin_bitmatrix = IceFloeTracker.imextendedmin(distances)
# Matlab output
# 10Γ10 BitMatrix:
# 1 1 1 1 1 1 0 0 0 0
# 1 1 0 0 0 1 0 0 0 0
# 1 0 0 0 0 1 0 0 0 0
# 1 0 0 0 0 1 1 1 1 1
# 1 0 0 0 0 1 1 1 1 1
# 1 1 1 1 0 0 0 1 1 1
# 1 1 1 1 0 0 0 0 0 0
# 0 0 0 1 0 0 0 0 0 0
# 0 0 0 1 1 1 1 0 0 0
# 0 0 0 1 1 1 1 1 1 1
@test extendedmin_bitmatrix == matlab_extendedmin_output
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 1211 | @testset "utils.jl pad utilities" begin
println("-------------------------------------------------")
println("--------------- Pad Image Tests -----------------")
fill_value = 0
simpleimg = collect(reshape(1:4, 2, 2))
w, h = size(simpleimg)
# 2Γ2 Matrix{Int64}:
# 1 3
# 2 4
lo = (1, 2)
hi = (3, 4)
fil_type = Fill(fill_value, lo, hi)
rep_type = Pad(:replicate, lo, hi)
fil_paddedimg = IceFloeTracker.add_padding(simpleimg, fil_type)
rep_paddedimg = IceFloeTracker.add_padding(simpleimg, rep_type)
# test replicate padding at corners
@test rep_paddedimg[1, 1] == 1 &&
rep_paddedimg[1, end] == 3 &&
rep_paddedimg[end, 1] == 2 &&
rep_paddedimg[end, end] == 4
# test filled image at the corners
@test fil_paddedimg[1, 1] ==
fil_paddedimg[1, end] ==
fil_paddedimg[end, 1] ==
fil_paddedimg[end, end] ==
0
# test sizing
@test size(fil_paddedimg) == (h + lo[1] + hi[1], w + lo[2] + hi[2])
# test padding removal
@test IceFloeTracker.remove_padding(fil_paddedimg, fil_type) == simpleimg
@test IceFloeTracker.remove_padding(rep_paddedimg, rep_type) == simpleimg
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | code | 356 | function test_similarity(imgA::BitMatrix, imgB::BitMatrix, error_rate=0.005)
error = sum(imgA .!== imgB) / prod(size(imgA))
res = error_rate > error
if res
@info "Test passed with $error mismatch with threshold $error_rate"
else
@warn "Test failed with $error mismatch with threshold $error_rate"
end
return res
end
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | docs | 2927 | # IceFloeTracker
[](https://github.com/WilhelmusLab/IceFloeTracker.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/WilhelmusLab/IceFloeTracker.jl)
[](https://wilhelmuslab.github.io/IceFloeTracker.jl/)
Track Ice Floes using Moderate Resolution Imaging Spectroradiometer (MODIS) data.
## Documentation
See the package's documentation (in development) at https://wilhelmuslab.github.io/IceFloeTracker.jl/
## Prerequisites
A `julia` installation; ensure it is available on the `PATH`.
## Clone repo and run tests
Clone the repository.
```zsh
$ git clone https://github.com/WilhelmusLab/IceFloeTracker.jl
```
Now start a Julia session.
```zsh
$ julia
```
```
julia> ]
```
... to enter package mode.
```
(@v1.9) pkg> activate IceFloeTracker.jl/
Activating project at `~/IceFloeTracker.jl`
```
Instantiate the environment and run the tests:
```
(IceFloeTracker) pkg> instantiate
(IceFloeTracker) pkg> test
```
## Notebooks
There are Jupyter notebooks illustrating the main image processing and tracking functions, in the `/notebooks` folder.
## Interface for Pipeline Workflows
See related tools in the [IFTPipeline repository](https://github.com/WilhelmusLab/ice-floe-tracker-pipeline#ice-floe-tracker-pipeline), including a Julia Command-line Interface and templates that leverage the [Cylc](https://cylc.github.io) pipeline orchestrator.
## Development
Git hooks are used to run common developer tasks on commits (e.g. code formatting, tests, etc.). If you are running git version 2.9 or later run the following from the root of the project to enable git hooks.
```
git config core.hooksPath ./hooks
```
To help with passing git hooks, run the formatting script before staging files:
```
./scripts/format.jl
git add .
git commit -m "some informative message"
git push
```
### Versioning the registered package
1. Update the major or minor version numbers in the corresponding field at the top of `Project.toml`
2. Add `@JuliaRegistrator register` in a comment in the commit you wish to use for the release
- this bot will open a PR on the [Julia registry](https://github.com/JuliaRegistries/General/tree/master/I/IceFloeTracker) for the package
3. Wait for feedback from the bot to make sure the new version is accepted and merged to the Julia registry
4. Create a new version tag
- The bot will generate git commands that you can run in a terminal to add a tag
5. Create the new release on the [repo console](https://github.com/WilhelmusLab/IceFloeTracker.jl/releases)
- Click on `Draft a new release`
- Choose the new tag you created
- Click on `Generate release notes` or add a custom description
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | docs | 199 | # IceFloeTracker
Documentation for IceFloeTracker.jl package.
```@contents
```
## Functions
```@autodocs
Modules = [IceFloeTracker]
Order = [:function, :macro, :type]
```
## Index
```@index
```
| IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 0.5.0 | 945ba13f54390ab0147b8a7dd41185264b85505a | docs | 702 | ## Recommened Settings
1. Install Julia
2. Install VS Code
3. Add the following extensions for VS Code: Julia, Jupyter
4. (Optional) Ensure Julia is set up to work with threading enabled for shared memory multiprocessing.
a. Press Cmd+Shift+P (mac) or Ctrl+Shift+P (windows) to display the command palette and search for `settings.json` and choose the option that appears

b. In the `settings.json` file, find the ` "julia.NumThreads"` option (near the bottom). Change its value to `"auto"` and save the file

5. Open the `./notebooks/preprocessing-workflow/preprocessing-workflow.ipynb` file within VS Code | IceFloeTracker | https://github.com/WilhelmusLab/IceFloeTracker.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 37 | using Conda
Conda.add("astroquery")
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 576 | using Documenter
using Pkg
push!(LOAD_PATH, joinpath(@__DIR__, "../src/"))
Pkg.develop(path=abspath(joinpath(@__DIR__, "../")))
using Supernovae
DocMeta.setdocmeta!(Supernovae, :DocTestSetup, :(using Supernovae); recursive=true)
makedocs(
sitename="Supernovae Documentation",
modules = [Supernovae],
pages = [
"Supernovae" => "index.md",
"Usage" => "usage.md",
"API" => "api.md"
],
format = Documenter.HTML(
assets = ["assets/favicon.ico"],
)
)
deploydocs(
repo = "github.com/OmegaLambda1998/Supernovae.jl.git"
)
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 7286 | # Filter Module
module FilterModule
# Internal Packages
# External Packages
using Unitful
using UnitfulAstro
using PyCall
using Trapz
# Exports
export Filter
export planck
export synthetic_flux
const h = 6.626e-34 * u"J / Hz" # Planck Constant
const k = 1.381e-23 * u"J / K" # Boltzmann Constant
const c = 299792458 * u"m / s" # Speed of light in a vacuum
"""
svo(facility::String, instrument::String, passband::String)
Attempt to get filter transmission curve from [SVO](http://svo2.cab.inta-csic.es/theory/fps/). Uses the python package `astroquery` via PyCall.
# Arguments
- `facility::String`: SVO name for the filter's facility
- `instrument::String`: SVO name for the filter's instrument
- `passband::String`: SVO name for the filter's passband
"""
function svo(facility::String, instrument::String, passband::String)
py"""
from astroquery.svo_fps import SvoFps
def svo(svo_name):
try:
return SvoFps.get_transmission_data(svo_name)
except:
return None
"""
svo_name = "$facility/$instrument.$passband"
return py"svo"(svo_name)
end
"""
struct Filter
Photometric filter transmission curve.
# Fields
- `facility::String`: Name of the filter's facility (NewHorizons, Keper, Tess, etc...)
- `instrument::String`: Name of the filter's instrument (Bessell, CTIO, Landolt, etc...)
- `passband::String`: Name of the filter's passband (g, r, i, z, etc...)
- `wavelength::Vector{Γ
}`: Transmission curve wavelength
- `transmission::Vector{Float64}`: Transmission curve transmission
"""
struct Filter
facility::String # Facility name (NewHorizons, Keper, Tess, etc...)
instrument::String # Instrument name (Bessell, CTIO, Landolt, etc...)
passband::String # Filter name (g, r, i, z, etc...)
wavelength::Vector{typeof(1.0u"β«")} # Default unit of Angstrom
transmission::Vector{Float64} # Unitless
end
"""
Filter(facility::String, instrument::String, passband::String, svo::PyCall.PyObject)
Make [`Filter`](@ref) object from [`svo`](@ref) transmission curve.
# Arguments
- `facility::String`: Name of the filter's facility
- `instrument::String`: Name of the filter's instrument
- `passband::String`: Name of the filter's passband
- `svo::Pycall.PyObject`: SVO transmission curve
"""
function Filter(facility::String, instrument::String, passband::String, svo::PyCall.PyObject)
wavelength = svo.__getitem__("Wavelength")
transmission = svo.__getitem__("Transmission")
return Filter(facility, instrument, passband, wavelength .* u"Γ
", transmission)
end
"""
Filter(facility::String, instrument::String, passband::String, filter_file::AbstractString)
Make [`Filter`](@ref) object from `filter_file` transmission curve.
# Arguments
- `facility::String`: Name of the filter's facility
- `instrument::String`: Name of the filter's instrument
- `passband::String`: Name of the filter's passband
- `filter_file::AbstractString`: Path to transmission curve file. Assumed to be a comma delimited wavelength,transmission file.
"""
function Filter(facility::String, instrument::String, passband::String, filter_file::AbstractString)
lines = open(filter_file) do io
ls = [line for line in readlines(io) if line != ""]
return ls
end
wavelength = []
transmission = []
for line in lines
w, t = split(line, ',')
w = parse(Float64, w) * u"Γ
"
t = parse(Float64, t)
push!(wavelength, w)
push!(transmission, t)
end
return Filter(facility, instrument, passband, wavelength, transmission)
end
"""
Filter(facility::String, instrument::String, passband::String, config::Dict{String, Any})
Make [`Filter`](@ref) object from `config` options. `config` must include "FILTER_PATH" => path/to/transmission_curve. If this file exists, the transmission curve will be loaded via [`Filter(facility::String, instrument::String, passband::String, filter_file::AbstractString)`](@ref), otherwise attempt to create Filter via [`Filter(facility::String, instrument::String, passband::String, svo::PyCall.PyObject)`](@ref) and the SVO FPS database.
# Arguments
- `facility::String`: Name of the filter's facility
- `instrument::String`: Name of the filter's instrument
- `passband::String`: Name of the filter's passband
- `config::Dict{String, Any}`: Options for creating a Filter.
"""
function Filter(facility::String, instrument::String, passband::String, config::Dict{String,Any})
filter_directory = config["FILTER_PATH"]
filter_file = "$(facility)__$(instrument)__$(passband)"
if !isfile(joinpath(filter_directory, filter_file))
@debug "Could not find $(filter_file) in $(filter_directory)"
@debug "Attempting to find filter on SVO FPS"
filter_svo = svo(facility, instrument, passband)
if !isnothing(filter_svo)
filter = Filter(facility, instrument, passband, filter_svo)
save_filter(filter, filter_directory)
return filter
else
error("Could not find $(filter_file) anywhere, no filter found with facility: $facility, instrument: $instrument, and passband: $passband")
end
else
return Filter(facility, instrument, passband, joinpath(filter_directory, filter_file))
end
end
"""
save_filter(filter::Filter, filter_dir::AbstractString)
Save `filter` to directory `filter_dir`.
# Arguments
- `filter::Filter`: The [`Filter`](@ref) to save.
- `filter_dir::AbstractString`: The directory to save `filter` to.
"""
function save_filter(filter::Filter, filter_dir::AbstractString)
filter_path = joinpath(filter_dir, "$(filter.facility)__$(filter.instrument)__$(filter.passband)")
@debug "Saving filter to $filter_path"
filter_str = ""
for i in 1:length(filter.wavelength)
filter_str *= "$(ustrip(filter.wavelength[i])),$(filter.transmission[i])\n"
end
open(filter_path, "w") do io
write(io, filter_str)
end
end
"""
planck(T::Unitful.Unitful.Temperature, Ξ»::Unitful.Length)
Planck's law: Calculates the specral radiance of a blackbody at temperature T, emitting at wavelength Ξ»
# Arguments
- `T::Unitful.Temperature`: Temperature of blackbody
- `Ξ»::Unitful.Length`: Wavelength of blackbody
"""
function planck(T::Unitful.Temperature, Ξ»::Unitful.Length)
if T <= 0u"K"
throw(DomainError(T, "Temperature must be strictly greater than 0 K"))
end
if Ξ» <= 0u"Γ
"
throw(DomainError(Ξ», "Wavelength must be strictly greater than 0 Γ
"))
end
exponent = h * c / (Ξ» * k * T)
B = (2Ο * h * c * c / (Ξ»^5)) / (exp(exponent) - 1) # Spectral Radiance
return B
end
"""
synthetic_flux(filter::Filter, T::Unitful.Temperature)
Calculates the flux of a blackbody at temperature `T`, as observed with the `filter`
# Arguments
- `filter::Filter`: The [`Filter`](@ref) through which the blackbody is observed
- `T::Unitful.Temperature`: The temperature of the blackbody
"""
function synthetic_flux(filter::Filter, T::Unitful.Temperature)
numer = @. planck(T, filter.wavelength) * filter.transmission * filter.wavelength
numer = trapz(numer, filter.wavelength)
denom = @. filter.transmission / filter.wavelength
denom = c .* trapz(denom, filter.wavelength)
return abs(numer / denom)
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 22438 | # Photometry Module
module PhotometryModule
# Internal Packages
using ..FilterModule
# External Packages
using Unitful, UnitfulAstro
const UNITS = [Unitful, UnitfulAstro]
# Exports
export Observation
export Lightcurve
export flux_to_mag, mag_to_flux
export absmag_to_mag, mag_to_absmag
const c = 299792458.0u"m / s"
const Magnitude = Union{Quantity{T, dimension(1.0u"AB_mag"), U}, Level{L, S, Quantity{T, dimension(1.0u"AB_mag"), U}} where {L, S}} where {T, U}
const Flux = Union{Quantity{T, dimension(1.0u"ΞΌJy"), U}, Level{L, S, Quantity{T, dimension(1.0u"ΞΌJy"), U}} where {L, S}} where {T, U}
"""
mutable struct Observation
A single observation of a supernova, including time, flux, magnitude and filter information.
# Fields
- `name::String`: The name of the supernova
- `time::typeof(1.0u"d")`: The time of the observation in MJD
- `flux::typeof(1.0u"Jy")`: The flux of the observation in Jansky
- `flux_err::typeof(1.0u"Jy")`: The flux error of the observation in Jansky
- `mag::typeof(1.0u"AB_mag")`: The magnitude of the observations in AB Magnitude
- `mag_err::typeof(1.0u"AB_mag")`: The magnitude error of the observations in AB Magnitude
- `absmag::typeof(1.0u"AB_mag")`: The absolute magnitude of the observations in AB Magnitude
- `absmag_err::typeof(1.0u"AB_mag")`: The absolute magnitude error of the observations in AB Magnitude
- `filter::Filter`: The [`Filter`](@ref) used to observe the supernova
- `is_upperlimit::Bool`: Whether the observation is an upperlimit
"""
mutable struct Observation
name::String
time::typeof(1.0u"d")
flux::typeof(1.0u"Jy")
flux_err::typeof(1.0u"Jy")
mag::typeof(1.0u"AB_mag")
mag_err::typeof(1.0u"AB_mag")
absmag::typeof(1.0u"AB_mag")
absmag_err::typeof(1.0u"AB_mag")
filter::Filter
is_upperlimit::Bool
end
"""
mutable struct Lightcurve
A lightcurve is simply a collection of observations
# Fields
- `observations::Vector{Observation}`: A `Vector` of [`Observation`](@ref) representing a supernova lightcurve.
"""
Base.@kwdef mutable struct Lightcurve
observations::Vector{Observation} = Vector{Observation}()
end
"""
parse_file(lines::Vector{String}; delimiter::String=", ", comment::String="#")
Parse a file, splitting on `delimiter` and removing `comment`s.
# Arguments
- `lines::Vector{String}`: A vector containing each line of the file to parse
- `;delimiter::String=", "`: What `delimiter` to split on
- `;comment::String="#"`: What comments to remove. Will remove everything from this comment onwards, allowing for inline comments
"""
function parse_file(lines::Vector{String}; delimiter::String=", ", comment::String="#")
parsed_file = Vector{Vector{String}}()
for line in lines
# Remove comments
# Assumes once a comment starts, it takes up the rest of the line
first = findfirst(comment, line)
if !isnothing(first)
comment_index = first[1] - 1
line = line[1:comment_index]
end
line = string.([l for l in split(line, delimiter) if l != ""])
if length(line) > 0
push!(parsed_file, line)
end
end
return parsed_file
end
"""
get_column_index(header::Vector{String}, header_keys::Dict{String,Any})
Determine the index of each column withing `header` associated with `header_keys`
# Arguments
- `header::Vector{String}`: The header, split by column names
- `header_keys::Dict{String, Any}`: Determine the index of these parameters. The `key::String` is the type of object stored in the column, for instance `"TIME"`, `"FLUX"`, `"MAG_ERR"`, and so on. The `values::Any` can be an `Int64` or a `String` where the former indicates the column index (which is simply returned) and the latter represents the name of the `key` object inside `header`. For instance `key = "FLUX"` might map to a column in the `header` title `"Flux"`, `"F"`, `"emmission"`, or `"uJy"`.
"""
function get_column_index(header::Vector{String}, header_keys::Dict{String,Any})
columns = Dict{String,Tuple{Any,Any}}()
for key in keys(header_keys)
opts = header_keys[key]
column_id = opts["COL"]
unit = get(opts, "UNIT", nothing)
unit_column_id = get(opts, "UNIT_COL", nothing)
column_index = get_column_id(header, column_id)
if !isnothing(unit)
if unit == "DEFAULT"
column_unit = get_default_unit(header, column_id, column_index)
else
column_unit = uparse(unit, unit_context=UNITS)
end
elseif !isnothing(unit_column_id)
column_unit = get_column_id(header, unit_column_id)
else
column_unit = nothing
end
columns[key] = (column_index, column_unit)
end
return columns
end
"""
get_column_id(::Vector{String}, column_id::Int64)
Convenience function which simply returns the `column_id` passed in.
# Arguments
- `column_id::Int64`: Return this column id
"""
function get_column_id(::Vector{String}, column_id::Int64)
return column_id
end
"""
get_column_id(header::Vector{String}, column_id::String)
Find the column in `header` which contains the given `column_id` and return its index.
# Arguments
- `header::Vector{String}`: The header, split by column
- `column_id::String`: The column title to search for in `header`
"""
function get_column_id(header::Vector{String}, column_id::String)
first = findfirst(f -> occursin(column_id, f), header)
if !isnothing(first)
return first
end
error("Can not find column $(column_id) in header: $header")
end
"""
get_default_unit(header::Vector{String}, column_id::String, column_index::Int64)
If no unit is provided for a parameter, it is assumed that the unit is listed in the header via `"paramater_name[unit]"`. Under this system you might have `"time[d]"`, `"flux[ΞΌJy]"`, or `"mag[AB_mag]"`.
# Arguments
- `header::Vector{String}`: The header, split by column
- `column_id::String`: The name of the parameter in the column title
- `column_index::Int64`: The index of the column in `header`
"""
function get_default_unit(header::Vector{String}, column_id::String, column_index::Int64)
column_head = header[column_index]
unit = foldl(replace, [column_id => "", "[" => "", "]" => ""]; init=column_head)
return uparse(unit, unit_context=UNITS)
end
"""
Lightcurve(observations::Vector{Dict{String,Any}}, zeropoint::Magnitude, redshift::Float64, config::Dict{String,Any}; max_flux_err::Flux=Inf * 1.0u"ΞΌJy", peak_time::Union{Bool,Float64}=false)
Create a Lightcurve from a Vector of observations, modelled as a Vector of Dicts. Each observation must contains the keys `NAME`, and `PATH` which specify the name of the supernovae, and a path to the photometry respectively. `PATH` can either be absolute, or relative to `DATA_PATH` as specified in `[ GLOBAL ]` and is expected to be a delimited file of rows and columns, with a header row describing the content of each column, and a row for each individual photometric observation of the lightcurve. Each observation in `PATH` must contain a time, flux, and flux error column. You can also optionally pescribe a seperate facility, instrument, passband, and upperlimit column. If any of these column exist, they will be read per row. If not, you must specify a global value. The keys `DELIMITER::String=", "`, and `COMMENT::String="#"` allow you to specify the delimiter and comment characters used by `PATH`.
The rest of the keys in an observation are for reading or overwriting the photometry in `PATH`. You can overwrite the facility (`FACILITY`::String), instrument (`INSTRUMENT`::String), passband (`PASSBAND`::String), and whether the photometry is an upperlimit (`UPPERLIMIT`::Union{Bool, String}). Specifying any overwrites will apply that overwrite to every row of `PATH`. You can also specify a flux offset (`FLUX_OFFSET`) assumed to be of the same unit as the flux measurements in `PATH`. By default, the upplimit column / overwrite is assumed to be a string: `upperlimitβ["T", "TRUE", "F", "FALSE"]`, if you instead want a different string identifier, you can specify `UPPERLIMIT_TRUE::Union{String, Vector{String}}`, and `UPPERLIMIT_FALSE::Union{String, Vector{String}}`.
Each column of `PATH`, including the required time (`TIME`), flux (`FLUX`), and flux error (`FLUX_ERR`), and the optional facility (`FACILITY`), instrument (`INSTRUMENT`), passband (`PASSBAND`), and upperlimit (`UPPERLIMIT`) columns, can have both an identifier of the column, and the unit of the values be specified (units must be recognisable by [`Unitful`](https://painterqubits.github.io/Unitful.jl/stable/). There are three ways to do this. All of these methods are described by specifying identifiers through `HEADER.OBJECT_NAME.COL` and either `HEADER.OBJECT_NAME.UNIT` or `HEADER.OBJECT_NAME.UNIT_COL`. For example to given an identifier for time, you'd include `HEADER.TIME.COL` and `HEADER.TIME.UNIT`.
The first method is to simply assume the headers have the syntax `name [unit]`, with time, flux, and flux error having the names `time`, `flux`, and `flux_err` respectively. This is the default when no identifiers are given, but can also be used for the unit identifier by specifying `HEADER.OBJECT_NAME.UNIT = "DEFAULT"`.
The next method involves specifying the name of the column containing data of the object in question. This is simply `HEADER.OBJECT_NAME.COL = "col_name"`. For the unit you can either specify a global unit for the object via `HEADER.OBJECT_NAME.UNIT = "unit"`, or you can specify a unit column by name via `HEADER.OBJECT_NAME.UNIT_COL = "unit_col_name"`.
The final method is to specify the index of the column containing data of the object in questions. This is done via `HEADER.OBJECT_NAME.COL = col_index`. Once again you can either specify a global unit or the index of the column containing unit information via `HEADER.OBJECT_NAME.UNIT_COL = unit_col_index`. Your choice of identifer can be different for each object and unit, for instance you could specify the name of the time column, and the index of the time unit column.
As for the rest of the inputs, it is required to specify a zeropoint (in some magnitude unit), the redshift, and provide a global config. You can specify a maximum error on the flux via `max_flux_err`, which will treat every observation with a flux error greater than this as an outlier which will not be included. Finally you can specify a peak time which all other time parameters will be relative to (i.e, the peak time will be 0 and all other times become time - peak_time). This can either be `true`, in which case the peak time will be set to the time of maximum flux, or a float with units equal to the units of the time column. If you don't want relative times, set `peak_time` to `false`, which is the default.
# Arguments
- `observations::Vector{Dict{String,Any}}`: A `Vector` of `Dicts` containing information and overwrites for the file containing photometry of the supernova.
- `zeropoint::Magnitude`: The zeropoint of the supernova
- `redshift::Float64`: The redshift of the supernova
- `config::Dict{String,Any}`: The global config, containing information about paths
- `max_flux_err::Flux=Inf * 1.0u"ΞΌJy"`: An optional constrain on the maximum flux error. Any observation with flux error greater than this is considered an outlier and removed from the lightcurve.
- `peak_time::Union{Bool, Float64}=false`: If not `false`, times will be relative to `peak_time` (i.e, will transform from `time` to `time - peak_time`). If `true` times a relative to the time of peak flux, otherwise times are relative to `peak_time`, which is assumed to be of the same unit as the times.
"""
function Lightcurve(observations::Vector{Dict{String,Any}}, zeropoint::Magnitude, redshift::Float64, config::Dict{String,Any}; max_flux_err::Flux=Inf * 1.0u"ΞΌJy", peak_time::Union{Bool,Float64}=false)
lightcurve = Lightcurve()
for observation in observations
# File path
obs_name = observation["NAME"]
@info "Loading observations for $obs_name"
obs_path = observation["PATH"]
if !isabspath(obs_path)
obs_path = joinpath(config["DATA_PATH"], obs_path)
end
obs_path = abspath(obs_path)
# Optional overwrites
facility = get(observation, "FACILITY", nothing)
instrument = get(observation, "INSTRUMENT", nothing)
passband = get(observation, "PASSBAND", nothing)
upperlimit = get(observation, "UPPERLIMIT", nothing)
flux_offset = get(observation, "FLUX_OFFSET", 0)
# Upperlimit identifiers
upperlimit_true = collect(get(observation, "UPPERLIMIT_TRUE", ["T", "TRUE"]))
upperlimit_false = collect(get(observation, "UPPERLIMIT_FALSE", ["F", "FALSE"]))
# File details
delimiter = get(observation, "DELIMITER", ", ")
comment = get(observation, "COMMENT", "#")
default_header_keys = Dict{String,Any}(
"TIME" => Dict{String,Any}("COL" => "time", "UNIT" => "DEFAULT"),
"FLUX" => Dict{String,Any}("COL" => "flux", "UNIT" => "DEFAULT"),
"FLUX_ERR" => Dict{String,Any}("COL" => "flux_err", "UNIT" => "DEFAULT")
)
header_keys = get(observation, "HEADER", default_header_keys)
obs_file = open(obs_path, "r") do io
return parse_file(readlines(io); delimiter=delimiter, comment=comment)
end
header = obs_file[1]
data = obs_file[2:end]
columns::Dict{String,Tuple{Any,Any}} = get_column_index(header, header_keys)
if "TIME" in keys(columns)
time_col = columns["TIME"][1]
time_unit_col = columns["TIME"][2]
time_unit(row) = begin
if isa(time_unit_col, Int64)
return uparse(row[time_unit_col], unit_context=UNITS)
else
return time_unit_col
end
end
time = [parse(Float64, d[time_col]) * time_unit(d) for d in data]
else
error("Missing time column. Please specify a time column.")
end
if "FLUX" in keys(columns)
flux_col = columns["FLUX"][1]
flux_unit_col = columns["FLUX"][2]
flux_unit(row) = begin
if isa(flux_unit_col, Int64)
return uparse(row[flux_unit_col], unit_context=UNITS)
else
return flux_unit_col
end
end
flux = [(parse(Float64, d[flux_col]) + flux_offset) * flux_unit(d) for d in data]
else
error("Missing flux column. Please specify a flux column.")
end
if "FLUX_ERR" in keys(columns)
flux_err_col = columns["FLUX_ERR"][1]
flux_err_unit_col = columns["FLUX_ERR"][2]
flux_err_unit(row) = begin
if isa(flux_err_unit_col, Int64)
return uparse(row[flux_err_unit_col], unit_context=UNITS)
else
return flux_err_unit_col
end
end
flux_err = [parse(Float64, d[flux_err_col]) * flux_err_unit(d) for d in data]
else
error("Missing flux_err column. Please specify a flux_err column.")
end
mag = flux_to_mag.(flux, zeropoint)
mag_err = flux_err_to_mag_err.(flux, flux_err)
absmag = mag_to_absmag.(mag, redshift)
absmag_err = mag_err
if isnothing(facility)
if "FACILITY" in keys(columns)
facility_col = columns["FACILITY"][1]
facility = [d[facility_col] for d in data]
else
error("Missing Facility details. Please either specify a facility column, or provide a facility")
end
else
facility = [facility for _ in data]
end
if isnothing(instrument)
if "INSTRUMENT" in keys(columns)
instrument_col = columns["INSTRUMENT"][1]
instrument = [d[instrument_col] for d in data]
else
error("Missing instrument details. Please either specify a instrument column, or provide a instrument")
end
else
instrument = [instrument for _ in data]
end
if isnothing(passband)
if "PASSBAND" in keys(columns)
passband_col = columns["PASSBAND"][1]
passband = [d[passband_col] for d in data]
else
error("Missing passband details. Please either specify a passband column, or provide a passband")
end
else
passband = [passband for _ in data]
end
get_equiv = Dict("time" => time, "flux" => flux, "flux_err" => flux_err)
if isnothing(upperlimit)
if "UPPERLIMIT" in keys(columns)
upperlimit_col = columns["UPPERLIMIT"][1]
upperlimit = Vector{Bool}()
for d in data
if d[upperlimit_col] in upperlimit_true
push!(upperlimit, true)
elseif d[upperlimit_col] in upperlimit_false
push!(upperlimit, false)
else
error("Unknown upperlimit specifier $d, truth options include: $upperlimit_true, false options include: $upperlimit_false")
end
end
else
error("Missing upperlimit details. Please either specify a upperlimit column, or provide a upperlimit")
end
else
if typeof(upperlimit) == Bool
upperlimit = [upperlimit for _ in data]
elseif typeof(upperlimit) == String
if upperlimit in keys(get_equiv)
upperlimit_equivalent = get_equiv[upperlimit]
upperlimit = [u < 0 * unit(u) for u in upperlimit_equivalent]
else
error("Can not determine upperlimit from $(upperlimit), only 'time', 'flux', and 'flux_err' can be used.")
end
end
end
filter = [Filter(facility[i], instrument[i], passband[i], config) for i in 1:length(data)]
obs = [Observation(obs_name, time[i], flux[i], flux_err[i], mag[i], mag_err[i], absmag[i], absmag_err[i], filter[i], upperlimit[i]) for i in 1:length(data) if flux_err[i] < max_flux_err]
lightcurve.observations = vcat(lightcurve.observations, obs)
end
# If peak_time is a value, set all time relative to that value
if peak_time isa Float64
peak_time *= unit(time[1])
for obs in lightcurve.observations
obs.time -= peak_time
end
# Otherwise if peak_time is true, set all time relative to maximum flux time
elseif peak_time
max_ind = argmax(get(lightcurve, "flux"))
time = get(lightcurve, "time")
max_time = time[max_ind]
for obs in lightcurve.observations
obs.time -= max_time
end
end
return lightcurve
end
function Base.get(lightcurve::Lightcurve, key::String, default::Any=nothing)
if Symbol(key) in fieldnames(Observation)
return [getfield(obs, Symbol(key)) for obs in lightcurve.observations]
end
return default
end
"""
flux_to_mag(flux::Unitful.Quantity{Float64}, zeropoint::Level)
Convert `flux` to magnitudes. Calculates `zeropoint - 2.5log10(flux)`. Returns `AB_mag` units
# Arguments
- `flux::Unitful.Quantity{Float64}`: The flux to convert, in units compatible with Jansky. If the flux is negative it will be set to 0.0 to avoid `log10` errors
- `zeropoint::Level`: The assumed zeropoint, used to convert the flux to magnitudes.
"""
function flux_to_mag(flux::Flux, zeropoint::Magnitude)
if flux <= 0.0 * unit(flux)
flux *= 0.0
end
return (ustrip(zeropoint |> u"AB_mag") - 2.5 * log10(ustrip(flux |> u"Jy"))) * u"AB_mag"
end
"""
flux_err_to_mag_err(flux::Unitful.Quantity{Float64}, flux_err::Unitful.Quantity{Float64})
Converts `flux_err` to magnitude error. Calculates `(2.5 / log(10)) * (flux_err / flux)`.
# Arguments
- `flux::Unitful.Quantity{Float64}`: The flux associated with the error to be converted
- `flux_err::Unitful.Quantity{Float64}`: The flux error to be converted
"""
function flux_err_to_mag_err(flux::Flux, flux_err::Flux)
return (2.5 / log(10)) * (flux_err / flux) * u"AB_mag"
end
"""
mag_to_flux(mag::Level, zeropoint::Level)
Convert `flux` to magnitudes. Calculates `10^(0.4(zeropoint - mag))`. Return `Jy` units.
# Arguments
- `flux::Unitful.Quantity{Float64}`: The flux to convert, in units compatible with Jansky. If the flux is negative it will be set to 0.0 to avoid `log10` errors
- `zeropoint::Level`: The assumed zeropoint, used to convert the flux to magnitudes.
"""
function mag_to_flux(mag::Magnitude, zeropoint::Magnitude)
return (10.0^(0.4 * (ustrip(zeropoint |> u"AB_mag") - ustrip(mag |> u"AB_mag")))) * u"Jy"
end
"""
mag_to_absmag(mag::Level, redshift::Float64; H0::Unitful.Quantity{Float64}=70.0u"km/s/Mpc")
Converts `mag` to absolute magnitude. Calculates `mag - 5 log10(c * redshift / (H0 * 10pc))`
# Arguments
- `mag::Level`: The magnitude to convert
- `redshift::Float64`: The redshift, used to calculate the distance to the object
- `;H0::Unitful.Quantity{Float64}=70.0u"km/s/Mpc`: The assumed value of H0, used to calculate the distance to the object
"""
function mag_to_absmag(mag::Magnitude, redshift::Float64; H0::Unitful.Frequency=70.0u"km/s/Mpc")
d = c * redshift / H0
ΞΌ = 5.0 * log10(d / 10.0u"pc")
absmag = (ustrip(mag |> u"AB_mag") - ΞΌ) * u"AB_mag"
return absmag
end
"""
absmag_to_mag(absmag::Level, redshift::Float64; H0::Unitful.Quantity{Float64}=70.0u"km/s/Mpc")
Converts `absmag` to magnitudes. Calculates `absmag + 5 log10(c * redshift / (H0 * 10pc))`
# Arguments
- `mag::Level`: The magnitude to convert
- `redshift::Float64`: The redshift, used to calculate the distance to the object
- `;H0::Unitful.Quantity{Float64}=70.0u"km/s/Mpc`: The assumed value of H0, used to calculate the distance to the object
"""
function absmag_to_mag(absmag::Magnitude, redshift::Float64; H0::Unitful.Frequency=70.0u"km/s/Mpc")
d = c * redshift / H0
ΞΌ = 5.0 * log10(d / 10.0u"pc")
mag = (ustrip(absmag |> u"AB_mag") + ΞΌ) * u"AB_mag"
return mag
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 9146 | # Plot Module
module PlotModule
# Internal Packages
using ..SupernovaModule
using ..FilterModule
# External Packages
using Random
Random.seed!(0)
using CairoMakie
CairoMakie.activate!(type="svg")
using Unitful, UnitfulAstro
const UNITS = [Unitful, UnitfulAstro]
# Exports
export plot_lightcurve, plot_lightcurve!
const marker_labels = shuffle([:rect, :star5, :diamond, :hexagon, :cross, :xcross, :utriangle, :dtriangle, :ltriangle, :rtriangle, :pentagon, :star4, :star8, :vline, :hline, :x, :+, :circle])
const colour_labels = shuffle(["salmon", "coral", "tomato", "firebrick", "crimson", "red", "orange", "green", "forestgreen", "seagreen", "olive", "lime", "charteuse", "teal", "turquoise", "cyan", "navyblue", "midnightblue", "indigo", "royalblue", "slateblue", "steelblue", "blue", "purple", "orchid", "magenta", "maroon", "hotpink", "deeppink", "saddlebrown", "brown", "peru", "tan"])
# Plotting functions
"""
plot_lightcurve!(fig::Figure, ax::Axis, supernova::Supernova, plot_config::Dict{String, Any})
Add lightcurve plot to axis. plot_config contains plotting options.
DATA_TYPE = ["flux", "magnitude", "abs_magnitude"]: The type of data to plot
UNITS::Dict: Units for time, and flux, magnitude, or abs_magnitude
NAMES::Vector: List of [`SupernovaModule.Observation`](@ref).name's to include in the plot. If `nothing`, all observations are included
RENAME::Dict: Convert [`FilterModule.Filter`](@ref).passband to new name
FILTERS::Vector: List of [`FilterModule.Filter`](@ref).passband's to include
MARKERSIZE::Int: Size of the markers
MARKER::Dict: Marker to use for each [`SupernovaModule.Observation`](@ref).name. If a passband is missing, a default marker is used
COLOUR::Dict: Marker to use for each [`FilterModule.Filter`](@ref).passband. If a passband is missing, a default marker is used
LEGEND::Bool: Whether to include a legend
# Arguments
- `fig::Figure`: Figure to plot to
- `ax::Axis`: Axis to plot to
- `supernova::Supernova`: Supernova to plot
- `plot_config::Dict{String, Any}`: Details of the plot
"""
function plot_lightcurve!(fig::Figure, ax::Axis, supernova::Supernova, plot_config::Dict{String, Any})
time = Dict{Tuple{String, String}, Vector{Float64}}()
data_type = get(plot_config, "DATATYPE", "flux")
@debug "Plotting data type set to $data_type"
data = Dict{Tuple{String, String}, Vector{Float64}}()
data_err = Dict{Tuple{String, String}, Vector{Float64}}()
marker_plots = Dict{String,MarkerElement}()
markers = Dict{String,Symbol}()
colour_plots = Dict{String,MarkerElement}()
colours = Dict{String,String}()
units = get(plot_config, "UNIT", Dict{String,Any}())
time_unit = uparse(get(units, "TIME", "d"), unit_context=UNITS)
if data_type == "flux"
data_unit = uparse(get(units, "DATA", "Β΅Jy"), unit_context=UNITS)
elseif data_type == "magnitude"
data_unit = uparse(get(units, "DATA", "AB_mag"), unit_context=UNITS)
elseif data_type == "abs_magnitude"
data_unit = uparse(get(units, "DATA", "AB_mag"), unit_context=UNITS)
else
error("Unknown data type: $data_type. Possible options are [flux, magnitude, abs_magnitude]")
end
@debug "Plotting data unit set to $data_unit"
names = get(plot_config, "NAME", nothing)
rename = get(plot_config, "RENAME", Dict{String, Any}())
filters = get(plot_config, "FILTERS", nothing)
markersize = get(plot_config, "MARKERSIZE", 11)
offsets = get(plot_config, "OFFSET", Dict{String, Any}())
@debug "Generating all plot vectors"
for obs in supernova.lightcurve.observations
if !isnothing(names)
if !(obs.name in names)
continue
end
end
if !isnothing(filters)
if !(obs.filter.passband in filters)
continue
end
end
passband = get(rename, uppercase(obs.filter.passband), obs.filter.passband)
obs_name = get(rename, uppercase(obs.name), obs.name)
passband_offset = get(offsets, uppercase(obs.filter.passband), 0)
obs_name_offset = get(offsets, uppercase(obs.name), 0)
if !(obs.name in keys(markers))
marker = Meta.parse(get(get(plot_config, "MARKER", Dict{String, Any}()), uppercase(obs.name), "nothing"))
if marker == :nothing
marker = marker_labels[length(marker_plots)+1]
end
elem = MarkerElement(color=:black, marker=marker, markersize=markersize)
marker_plots[obs_name] = elem
markers[obs.name] = marker
end
if !(obs.filter.passband in keys(colours))
colour = get(get(plot_config, "COLOUR", Dict{String, Any}()), uppercase(obs.filter.passband), nothing)
if isnothing(colour)
colour = colour_labels[length(colour_plots)+1]
end
elem = MarkerElement(marker=:hline, color=colour, markersize=0.5 * markersize)
colour_plots[passband] = elem
colours[obs.filter.passband] = colour
end
push!(get!(time, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(time_unit, obs.time)))
if data_type == "flux"
push!(get!(data, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(data_unit, obs.flux)) + passband_offset + obs_name_offset)
push!(get!(data_err, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(data_unit, obs.flux_err)))
elseif data_type == "magnitude"
push!(get!(data, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(data_unit, obs.mag)) + passband_offset + obs_name_offset)
push!(get!(data_err, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(data_unit, obs.mag_err)))
elseif data_type == "abs_magnitude"
push!(get!(data, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(data_unit, obs.absmag)) + passband_offset + obs_name_offset)
push!(get!(data_err, (obs.name, obs.filter.passband), Float64[]), ustrip(uconvert(data_unit, obs.absmag_err)))
else
error("Unknown data type: $data_type. Possible options are [flux, magnitude, abs_magnitude]")
end
end
legend_plots = MarkerElement[]
legend_names = String[]
for k in sort(collect(keys(marker_plots)))
push!(legend_names, k)
push!(legend_plots, marker_plots[k])
end
for k in sort(collect(keys(colour_plots)))
push!(legend_names, k)
push!(legend_plots, colour_plots[k])
end
@debug "Plotting"
for (i, key) in enumerate(collect(keys(time)))
marker = Meta.parse(get(get(plot_config, "MARKER", Dict{String, Any}()), key[1], "nothing"))
if marker == :nothing
marker = markers[key[1]]
end
colour = get(get(plot_config, "COLOUR", Dict{String, Any}()), key[2], nothing)
if isnothing(colour)
colour = colours[key[2]]
end
sc = scatter!(ax, time[key], data[key], color=colour, marker=marker)
sc.markersize = markersize
errorbars!(ax, time[key], data[key], data_err[key], color=colour)
end
if get(plot_config, "LEGEND", true)
Legend(fig[1, 2], legend_plots, legend_names)
end
return colours, markers, legend_plots, legend_names
end
"""
plot_lightcurve(supernova::Supernova, plot_config::Dict{String,Any}, config::Dict{String,Any})
Set up Figure and Axis, then plot lightcurve using [`plot_lightcurve!`](@ref)
# Arguments
- `supernova::Supernova`: The supernova to plot
- `plot_config::Dict{String, Any}`: Plot options passed to plot_lightcurve!
- `config::Dict{String, Any}`: Global options including where to save the plot
"""
function plot_lightcurve(supernova::Supernova, plot_config::Dict{String,Any}, config::Dict{String,Any})
fig = Figure()
units = get(plot_config, "UNIT", Dict{String,Any}())
time_unit = uparse(get(units, "TIME", "d"), unit_context=UNITS)
data_type = get(plot_config, "DATATYPE", "flux")
if data_type == "flux"
data_unit = uparse(get(units, "DATA", "Β΅Jy"), unit_context=UNITS)
ax = Axis(fig[1, 1], xlabel="Time [$time_unit]", ylabel="Flux [$data_unit]", title=supernova.name)
elseif data_type == "magnitude"
data_unit = uparse(get(units, "DATA", "AB_mag"), unit_context=UNITS)
ax = Axis(fig[1, 1], xlabel="Time [$time_unit]", ylabel="Magnitude [$data_unit]", title=supernova.name)
ax.yreversed = true
elseif data_type == "abs_magnitude"
data_unit = uparse(get(units, "DATA", "AB_mag"), unit_context=UNITS)
ax = Axis(fig[1, 1], xlabel="Time [$time_unit]", ylabel="Absolute Magnitude [$data_unit]", title=supernova.name)
ax.yreversed = true
else
error("Unknown data type: $data_type. Possible options are [flux, magnitude, abs_magnitude]")
end
plot_lightcurve!(fig, ax, supernova, plot_config)
path = get(plot_config, "PATH", "$(supernova.name)_lightcurve.svg")
if !isabspath(path)
path = joinpath(config["OUTPUT_PATH"], path)
end
path = abspath(path)
save(path, fig)
return fig, ax
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 1415 | module RunModule
# External Packages
# Internal Packages
include(joinpath(@__DIR__, "FilterModule.jl"))
using .FilterModule
include(joinpath(@__DIR__, "PhotometryModule.jl"))
using .PhotometryModule
include(joinpath(@__DIR__, "SupernovaModule.jl"))
using .SupernovaModule
include(joinpath(@__DIR__, "PlotModule.jl"))
# `used` later only if needed
# Exports
export run_Supernovae
export Supernova
export Observation
export synthetic_flux
export flux_to_mag, mag_to_flux
export absmag_to_mag, mag_to_absmag
export plot_lightcurve
"""
run_Supernovae(toml::Dict{String, Any})
Main entrance function for the package
# Arguments
- `toml::Dict{String, Any}`: Input toml file containing all options for the package
"""
function run_Supernovae(toml::Dict{String,Any})
config = toml["GLOBAL"]
supernova = Supernova(toml["DATA"], config)
if "PLOT" in keys(toml)
@info "Plotting"
plot_config = toml["PLOT"]
# Only include PlotModule if needed to save on precompilation time if we don't need to use Makie
@debug "Loading Plotting Module"
@eval using .PlotModule
if "LIGHTCURVE" in keys(plot_config)
@info "Plotting Lightcurve"
for lightcurve_config in plot_config["LIGHTCURVE"]
Base.@invokelatest plot_lightcurve(supernova, lightcurve_config, config)
end
end
end
return supernova
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 3124 | # Supernova Module
module SupernovaModule
# Internal Packages
using ..PhotometryModule
# External Packages
using Unitful
using UnitfulAstro
const UNITS = [Unitful, UnitfulAstro]
# Exports
export Supernova
"""
mutable struct Supernova
A Supernova
# Fields
- `name::String`: Supernova name
- `zeropoint::typeof(1.0u"AB_mag")`: Zeropoint of the supernova
- `redshift::Float64`: Redshift of the supernova
- `lightcurve::[`Lightcurve`](@ref)`: The lightcurve of the supernova
"""
mutable struct Supernova
name::String
zeropoint::typeof(1.0u"AB_mag")
redshift::Float64
lightcurve::Lightcurve
end
"""
Supernova(data::Dict{String,Any}, config::Dict{String,Any})
Load in a supernova from `data`, which has a number of keys containing supernova data and options.
- `NAME::String`: Name of the supernova
- `ZEROPOINT::Float64`: Supernova zeropoint
- `ZEROPOINT_UNIT::String`: Unitful unit of zeropoint, default to AB_mag
- `REDSHIFT::Float64`: Supernova redshift
- `MAX_FLUX_ERR::Float64`: Maximum allowed flux error, default to inf
- `MAX_FLUX_ERR_UNIT::String`: Unitful unit of maximum flux error
- `PEAK_TIME::Union{Bool, Float64}`: If bool, whether to set time relative to peak flux, if Float64, set time relative to PEAK_TIME
- `OBSERVATIONS::Vector{Dict{String,Any}}`: Data to be turned into a [`Lightcurve`](@ref)
"""
function Supernova(data::Dict{String,Any}, config::Dict{String,Any})
# Supernova Details
name = data["NAME"]
@info "Loading Supernova: $name"
zeropoint = data["ZEROPOINT"]
zeropoint_unit = get(data, "ZEROPOINT_UNIT", "AB_mag")
zeropoint = zeropoint * uparse(zeropoint_unit, unit_context=UNITS)
@debug "Supernova has zeropoint: $zeropoint"
redshift = data["REDSHIFT"]
@debug "Supernova has redshift: $redshift"
# Maximum error in flux
max_flux_err = get(data, "MAX_FLUX_ERR", Inf)
max_flux_err_units = get(data, "MAX_FLUX_ERR_UNIT", "ΞΌJy")
max_flux_err = max_flux_err * uparse(max_flux_err_units, unit_context=UNITS)
@debug "Maximum flux error set to: $max_flux_err"
# Whether times are absolute or relative to the peak
# Alternative choose a time for other times to be relative to
peak_time = get(data, "PEAK_TIME", false)
# Load in observations
observations = get(data, "OBSERVATIONS", Vector{Dict{String,Any}}())
@info "Found $(length(observations)) observations"
lightcurve = Lightcurve(observations, zeropoint, redshift, config; max_flux_err=max_flux_err, peak_time=peak_time)
@info "Finished loading Supernova"
return Supernova(name, zeropoint, redshift, lightcurve)
end
function Base.get(supernova::Supernova, key::AbstractString, default::Any=nothing)
return get(supernova.lightcurve, key, default)
end
function Base.filter(f::Function, supernova::Supernova)
filt = filter(f, supernova.lightcurve.observations)
return Supernova(supernova.name, supernova.zeropoint, supernova.redshift, Lightcurve(filt))
end
function Base.filter!(f::Function, supernova::Supernova)
supernova.lightcurve = Lightcurve(filter(f, supernova.lightcurve.observations))
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 2095 | module Supernovae
# External packages
using TOML
using BetterInputFiles
using ArgParse
using StatProfilerHTML
using OrderedCollections
# Internal Packages
include("RunModule.jl")
using .RunModule
# Exports
export main
export run_Supernovae
export Supernova
export Observation
export synthetic_flux
export flux_to_mag, mag_to_flux
export absmag_to_mag, mag_to_absmag
export plot_lightcurve
"""
get_args()
Helper function to get the ARGS passed to julia.
"""
function get_args()
s = ArgParseSettings()
@add_arg_table! s begin
"--verbose", "-v"
help = "Increase level of logging verbosity"
action = :store_true
"--profile", "-p"
help = "Run profiler"
action = :store_true
"input"
help = "Path to .toml file"
required = true
end
return parse_args(s)
end
"""
main()
Read the args, prepare the input TOML and run the actual package functionality. Runs [`main(toml_path, verbose, profile)`](@ref).
"""
function main()
args = get_args()
toml_path = args["input"]
verbose = args["verbose"]
profile = args["profile"]
main(toml_path, verbose, profile)
end
"""
main(toml_path::AbstractString, verbose::Bool, profile::Bool)
Loads `toml_path`, and sets up logging with verbosity based on `verbose`. Runs [`run_Supernovae`](@ref) and if `profile` is `true`, also profiles the code.
# Arguments
- `toml_path::AbstractString`: Path to toml input file.
- `verbose::Bool`: Set verbosity of logging
- `profile::Bool`: If true, profile [`run_Supernovae`](@ref)
"""
function main(toml_path::AbstractString, verbose::Bool, profile::Bool)
paths = OrderedDict(
"data_path" => ("base_path", "Data"),
"filter_path" => ("base_path", "Filters")
)
toml = setup_input(toml_path, verbose; paths=paths)
if profile
@warn "Running everything once to precompile before profiling"
run_Supernovae(toml)
@profilehtml run_Supernovae(toml)
else
run_Supernovae(toml)
end
end
if abspath(PROGRAM_FILE) == @__FILE__
main()
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | code | 15838 | using Supernovae
using Supernovae.RunModule
using Supernovae.RunModule.FilterModule
using Supernovae.RunModule.PhotometryModule
using Supernovae.RunModule.SupernovaModule
using Supernovae.RunModule.PlotModule
using Test
using Unitful, UnitfulAstro
@testset "Supernovae.jl" begin
@testset "FilterModule" begin
facility = "JWST"
instrument = "NIRCam"
passband = "F200W"
filter_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
filter_path = joinpath(filter_config["FILTER_PATH"], "$(facility)__$(instrument)__$(passband)")
# Get the filter from svo
filter_1 = Filter(facility, instrument, passband, filter_config)
# Load the same filter from disk
filter_2 = Filter(facility, instrument, passband, filter_config)
# Make sure it crashes correctly
@test_throws ErrorException broken_filter = Filter("A", "B", "C", filter_config)
# Test that filter_1 and filter_2 are identical
for field in fieldnames(Filter)
@test getfield(filter_1, field) == getfield(filter_2, field)
end
rm(filter_path)
neg_t = -10u"K"
zero_t = 0.0u"K"
neg_Ξ» = -10.0u"nm"
zero_Ξ» = 0u"nm"
# Ensure physically impossible inputs are caught
@test_throws DomainError planck(neg_t, 1000.0u"nm")
@test_throws DomainError planck(zero_t, 1000.0u"nm")
@test_throws DomainError planck(1000.0u"K", neg_Ξ»)
@test_throws DomainError planck(1000.0u"K", zero_Ξ»)
@test_throws DomainError synthetic_flux(filter_1, neg_t)
@test_throws DomainError synthetic_flux(filter_1, zero_t)
# Ensure units are handled correctly
a_planck = planck(1000u"K", 5000u"nm")
b_planck = planck(1000.0u"K", 50000.0u"β«")
@test a_planck |> unit(b_planck) β b_planck
@test synthetic_flux(filter_1, 1000u"K") == synthetic_flux(filter_2, 1000.0u"K")
end
@testset "PhotometryModule" begin
# Load lightcurves using various methods
default_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "default",
"PATH" => joinpath(@__DIR__, "observations/Default.txt"),
"FACILITY" => "JWST",
"INSTRUMENT" => "NIRCam",
"PASSBAND" => "F200W",
"UPPERLIMIT" => false
)
])
default_zeropoint = -21.0u"AB_mag"
default_redshift = 1.0
default_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
default_lightcurve = Lightcurve(default_observations, default_zeropoint, default_redshift, default_config)
default_time = [o.time for o in default_lightcurve.observations]
default_flux = [o.flux for o in default_lightcurve.observations]
default_flux_err = [o.flux_err for o in default_lightcurve.observations]
default_mag = [o.mag for o in default_lightcurve.observations]
default_absmag = [o.absmag for o in default_lightcurve.observations]
default_filter = [o.filter for o in default_lightcurve.observations]
default_upperlimit = [o.is_upperlimit for o in default_lightcurve.observations]
extracols_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "extracols",
"PATH" => joinpath(@__DIR__, "observations/ExtraCols.txt"),
"UPPERLIMIT_TRUE" => ["True"],
"UPPERLIMIT_FALSE" => ["False"],
"HEADER" => Dict{String, Any}(
"TIME" => Dict{String, Any}(
"COL" => "time",
"UNIT" => "DEFAULT"
),
"FLUX" => Dict{String, Any}(
"COL" => "flux",
"UNIT" => "DEFAULT"
),
"FLUX_ERR" => Dict{String, Any}(
"COL" => "flux_err",
"UNIT" => "DEFAULT"
),
"FACILITY" => Dict{String, Any}(
"COL" => "facility"
),
"INSTRUMENT" => Dict{String, Any}(
"COL" => "instrument"
),
"PASSBAND" => Dict{String, Any}(
"COL" => "passband"
),
"UPPERLIMIT" => Dict{String, Any}(
"COL" => "upperlimit"
)
)
)
])
extracols_zeropoint = -21.0u"AB_mag"
extracols_redshift = 1.0
extracols_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
extracols_lightcurve = Lightcurve(extracols_observations, extracols_zeropoint, extracols_redshift, extracols_config)
extracols_time = [o.time for o in extracols_lightcurve.observations]
extracols_flux = [o.flux for o in extracols_lightcurve.observations]
extracols_flux_err = [o.flux_err for o in extracols_lightcurve.observations]
extracols_filter = [o.filter for o in extracols_lightcurve.observations]
extracols_upperlimit = [o.is_upperlimit for o in extracols_lightcurve.observations]
named_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "named",
"PATH" => joinpath(@__DIR__, "observations/Named.txt"),
"FACILITY" => "JWST",
"INSTRUMENT" => "NIRCam",
"PASSBAND" => "F200W",
"UPPERLIMIT" => "flux",
"HEADER" => Dict{String, Any}(
"TIME" => Dict{String, Any}(
"COL" => "time",
"UNIT" => "d"
),
"FLUX" => Dict{String, Any}(
"COL" => "flux",
"UNIT_COL" => "flux_unit"
),
"FLUX_ERR" => Dict{String, Any}(
"COL" => "flux_err",
"UNIT_COL" => 5
)
)
)
])
named_zeropoint = -21.0u"AB_mag"
named_redshift = 1.0
named_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
named_lightcurve = Lightcurve(named_observations, named_zeropoint, named_redshift, named_config)
named_time = [o.time for o in named_lightcurve.observations]
named_flux = [o.flux for o in named_lightcurve.observations]
named_flux_err = [o.flux_err for o in named_lightcurve.observations]
named_filter = [o.filter for o in named_lightcurve.observations]
named_upperlimit = [o.is_upperlimit for o in named_lightcurve.observations]
index_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "index",
"PATH" => joinpath(@__DIR__, "observations/Index.txt"),
"FACILITY" => "JWST",
"INSTRUMENT" => "NIRCam",
"PASSBAND" => "F200W",
"UPPERLIMIT" => false,
"COMMENT" => "-", # Treat comment as header
"HEADER" => Dict{String, Any}(
"TIME" => Dict{String, Any}(
"COL" => 1,
"UNIT_COL" => 2
),
"FLUX" => Dict{String, Any}(
"COL" => 3,
"UNIT_COL" => 4
),
"FLUX_ERR" => Dict{String, Any}(
"COL" => 5,
"UNIT_COL" => 6
)
)
)
])
index_zeropoint = -21.0u"AB_mag"
index_redshift = 1.0
index_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
index_lightcurve = Lightcurve(index_observations, index_zeropoint, index_redshift, index_config)
index_time = [o.time for o in index_lightcurve.observations]
index_flux = [o.flux for o in index_lightcurve.observations]
index_flux_err = [o.flux_err for o in index_lightcurve.observations]
index_filter = [o.filter for o in index_lightcurve.observations]
index_upperlimit = [o.is_upperlimit for o in index_lightcurve.observations]
# Test that the lightcurves are identical
@test default_time == extracols_time == named_time == index_time
@test default_flux == extracols_flux == named_flux == index_flux
@test default_flux_err == extracols_flux_err == named_flux_err == index_flux_err
for field in fieldnames(Filter)
@test getfield.(default_filter, field) == getfield.(extracols_filter, field) == getfield.(named_filter, field) == getfield.(index_filter, field)
end
@test default_upperlimit == extracols_upperlimit == named_upperlimit == index_upperlimit
# Test that functions make sense
@test !(false in (absmag_to_mag.(default_absmag, default_redshift) .β default_mag))
@test !(false in (mag_to_flux.(default_mag, default_zeropoint) β default_flux))
# Error testing
broken_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "broken",
"PATH" => joinpath(@__DIR__, "observations/Default.txt"),
"HEADER" => Dict{String, Any}()
)
])
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["HEADER"]["TIME"] = Dict{String, Any}(
"COL" => "missing",
"UNIT" => "DEFAULT"
)
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["HEADER"]["TIME"]["COL"] = "time"
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["HEADER"]["FLUX"] = Dict{String, Any}(
"COL" => "flux",
"UNIT" => "DEFAULT"
)
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["HEADER"]["FLUX_ERR"] = Dict{String, Any}(
"COL" => "flux_err",
"UNIT" => "DEFAULT"
)
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["FACILITY"] = "JWST"
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["INSTRUMENT"] = "NIRCam"
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["PASSBAND"] = "F200W"
@test_throws ErrorException broken_lightcurve = Lightcurve(broken_observations, default_zeropoint, default_redshift, default_config)
broken_observations[1]["UPPERLIMIT"] = false
# Test peak time options
peak_time_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "peak_time",
"PATH" => joinpath(@__DIR__, "observations/Default.txt"),
"FACILITY" => "JWST",
"INSTRUMENT" => "NIRCam",
"PASSBAND" => "F200W",
"UPPERLIMIT" => false
)
])
peak_time_zeropoint = -21.0u"AB_mag"
peak_time_redshift = 1.0
peak_time_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
lc_1= Lightcurve(peak_time_observations, peak_time_zeropoint, peak_time_redshift, peak_time_config, peak_time=true)
lc_2= Lightcurve(peak_time_observations, peak_time_zeropoint, peak_time_redshift, peak_time_config, peak_time=3.0)
lc_1_time = [o.time for o in lc_1.observations]
lc_2_time = [o.time for o in lc_2.observations]
@test lc_1_time == lc_2_time
# Test getting
@test get(default_lightcurve, "time") == default_time
@test isnothing(get(default_lightcurve, "key", nothing))
end
@testset "SupernovaModule" begin
default_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "default",
"PATH" => joinpath(@__DIR__, "observations/Default.txt"),
"FACILITY" => "JWST",
"INSTRUMENT" => "NIRCam",
"PASSBAND" => "F200W",
"UPPERLIMIT" => false
)
])
default_zeropoint = -21.0
default_redshift = 1.0
default_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters")
)
default_data = Dict{String, Any}(
"NAME" => "default",
"ZEROPOINT" => default_zeropoint,
"REDSHIFT" => default_redshift,
"OBSERVATIONS" => default_observations
)
default_supernova = Supernova(default_data, default_config)
@test length(default_supernova.lightcurve.observations) == 2
@test get(default_supernova.lightcurve, "time") == get(default_supernova, "time")
filt_supernova = filter(x -> x.time < 2u"d", default_supernova)
@test length(filt_supernova.lightcurve.observations) == 1
filter!(x -> x.time < 2u"d", default_supernova)
@test length(default_supernova.lightcurve.observations) == 1
end
@testset "PlotModule" begin
# These `tests` just make sure the plotting function runs without crashing
default_observations = Vector{Dict{String, Any}}([
Dict{String, Any}(
"NAME" => "default",
"PATH" => joinpath(@__DIR__, "observations/Default.txt"),
"FACILITY" => "JWST",
"INSTRUMENT" => "NIRCam",
"PASSBAND" => "F200W",
"UPPERLIMIT" => false
)
])
default_zeropoint = -21.0
default_redshift = 1.0
default_config = Dict{String, Any}(
"FILTER_PATH" => joinpath(@__DIR__, "filters"),
"OUTPUT_PATH" => joinpath(@__DIR__, "output")
)
default_data = Dict{String, Any}(
"NAME" => "default",
"ZEROPOINT" => default_zeropoint,
"REDSHIFT" => default_redshift,
"OBSERVATIONS" => default_observations
)
default_supernova = Supernova(default_data, default_config)
plot_config = Dict{String, Any}()
plot_lightcurve(default_supernova, plot_config, default_config)
@test isfile(joinpath(default_config["OUTPUT_PATH"], "default_lightcurve.svg"))
plot_config["DATATYPE"] = "magnitude"
plot_lightcurve(default_supernova, plot_config, default_config)
@test isfile(joinpath(default_config["OUTPUT_PATH"], "default_lightcurve.svg"))
plot_config["DATATYPE"] = "abs_magnitude"
plot_lightcurve(default_supernova, plot_config, default_config)
@test isfile(joinpath(default_config["OUTPUT_PATH"], "default_lightcurve.svg"))
plot_config["DATATYPE"] = "error"
@test_throws ErrorException plot_lightcurve(default_supernova, plot_config, default_config)
end
end
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | docs | 4407 | [](https://github.com/OmegaLambda1998/Supernovae.jl/actions/workflows/test_and_codecov.yml)
[](https://omegalambda.au/Supernovae.jl/)
[](https://coveralls.io/github/OmegaLambda1998/Supernovae.jl?branch=main)
# Supernovae.jl
Provides methods for reading in and plotting supernova lightcurves from text files. Extremely flexible reading methods allow for almost any reasonable lightcurve data file syntax to be read.
## Prerequisites
To automatically download passbands from the [SVO Filter Profile Service](svo2.cab.inta-csic.es/theory/fps/), you must install the python package [astroquery](https://astroquery.readthedocs.io/en/latest/index.html). This is installed as part of the build process, installing into a `Conda.jl` conda environment.
## Install
```bash
$ git clone [email protected]:OmegaLambda1998/Supernovae.jl.git
$ cd Supernovae.jl
$ make
```
This will instantiate and build `Supernovae.jl`, installing all required Julia packages, and setting up a Conda environment for the required Python packages. Finally it will run the tests to make sure everything is working. If you want to skip testing run `make install` instead. You can also run `./scripts/Supernovae -v ./Examples/Inputs/2021zby/2021zby_data.toml` to load and plot the lightcurve of 2021zby. This will create a `.svg` plot in `./Examples/Outputs/2021zby/`.
## Usage
```bash
$ ./scripts/Supernovae -v path/to/input.toml
```
Details on how to build the input files which control `Supernovae.jl` can be found in [Usage](./usage.md).
## Example data file
The following example input file can be found in the Examples directory. `base_path` is the directory containing your input file.
```toml
[ global ]
filter_path = "../Filters" # Defaults to base_path / Filters
output_path = "../../Outputs/2021zby" # Defaults to base_path / Output
# Data
[ data ]
# First include information about the supernova
name = "2021zby" # Required
zeropoint = 8.9 # Required
redshift = 0.02559 # Required
max_flux_err = 2.5e2 # Optional, set's the maximum allowed value for the uncertainty in the flux, assumes same units as flux
peak_time = true # Default false. Can either be true, in which case all times will become relative to the peak data point. Alternatively, give a value, and all times will be relative to that value
peak_time_unit = "d" # Optional, default to d
[[ data.observations ]] # Now load in different observations of the supernova. This can either be one file with all observations, or you can load in multiple files
name = "atlas" # Required, Human readable name to distinguish observations
path = "atlas_1007.dat" # Required, Accepts either relative (to Supernova) or absolute path
delimiter = " " # Optional, defaults to comma
facility = "Misc"
instrument = "Atlas" # Optional, will overwrite anything in the file
upperlimit = "flux_err"
# Since this file contains a header that isn't in the expected format, you can optionally specify what each header corresponds to.
# If you do this you MUST specify the time, flux, and flux error.
# You can also specify the filter, instrument, or upperlimit columns if they're in the file. If not, specify them above
header.time.col = "MJD"
header.time.unit = "d"
header.flux.col = "uJy"
header.flux.unit = "Β΅Jy"
header.flux_err.col = "duJy"
header.flux_err.unit = "Β΅Jy"
header.passband.col = "F"
[[ data.observations ]]
name = "tess 6hr"
path = "tess_2_6hrlc.txt"
delimiter = " "
comment = "#" # Optional, defines what is a comment (will be removed). Defaults to #
facility = "tess"
instrument = "tess"
passband = "Red"
filter_name = "Tess"
upperlimit = false
flux_offset = 0.296 # Defaults to 0, assumes same units as flux
[[ plot.lightcurve ]]
filters = ["Red", "orange"]
markersize = 21
marker."tess 6hr" = "utriangle"
rename."tess 6hr" = "Tess (6hr)"
marker.atlas = "circle"
rename.atlas = "Atlas"
colour.Red = "red"
rename.Red = "Tess: Red"
rename.orange = "Atlas: Orange (+150 ΞΌJy)"
colour.orange = "orange"
offset.orange = 150
legend = true
```
Further details can be found in the [documentation](https://www.omegalambda.au/Supernovae.jl/dev/).
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | docs | 1525 | # API
## Contents
```@contents
Pages = ["api.md"]
Depth = 5
```
## Supernovae Functions
```@meta
CurrentModule = Supernovae
```
### Public Objects
```@autodocs
Modules = [Supernovae]
Private = false
```
### Private Objects
```@autodocs
Modules = [Supernovae]
Public = false
```
## RunModule Functions
```@meta
CurrentModule = Supernovae.RunModule
```
### Public Objects
```@autodocs
Modules = [RunModule]
Private = false
```
### Private Objects
```@autodocs
Modules = [RunModule]
Public = false
```
## FilterModule Functions
```@meta
CurrentModule = Supernovae.RunModule.FilterModule
```
### Public Objects
```@autodocs
Modules = [FilterModule]
Private = false
```
### Private Objects
```@autodocs
Modules = [FilterModule]
Public = false
```
## PhotometryModule Functions
```@meta
CurrentModule = Supernovae.RunModule.PhotometryModule
```
### Public Objects
```@autodocs
Modules = [PhotometryModule]
Private = false
```
### Private Objects
```@autodocs
Modules = [PhotometryModule]
Public = false
```
## SupernovaModule Functions
```@meta
CurrentModule = Supernovae.RunModule.SupernovaModule
```
### Public Objects
```@autodocs
Modules = [SupernovaModule]
Private = false
```
### Private Objects
```@autodocs
Modules = [SupernovaModule]
Public = false
```
## PlotModule Objects
```@meta
CurrentModule = Supernovae.RunModule.PlotModule
```
### Public Objects
```@autodocs
Modules = [PlotModule]
Private = false
```
### Private Objects
```@autodocs
Modules = [PlotModule]
Public = false
```
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | docs | 4378 | [](https://github.com/OmegaLambda1998/Supernovae.jl/actions/workflows/test_and_codecov.yml)
[](https://omegalambda.au/Supernovae.jl/)
[](https://coveralls.io/github/OmegaLambda1998/Supernovae.jl?branch=main)
# [Supernovae.jl](https://github.com/OmegaLambda1998/Supernovae.jl) Documentation
Provides methods for reading in and plotting supernova lightcurves from text files. Extremely flexible reading methods allow for almost any reasonable lightcurve data file syntax to be read.
## Prerequisites
To automatically download passbands from the [SVO Filter Profile Service](http://svo2.cab.inta-csic.es/theory/fps/), you must install the python package [astroquery](https://astroquery.readthedocs.io/en/latest/index.html). This is installed as part of the build process, installing into a `Conda.jl` conda environment.
## Install
```bash
$ git clone [email protected]:OmegaLambda1998/Supernovae.jl.git
$ cd Supernovae.jl
$ make
```
This will instantiate and build `Supernovae.jl`, installing all required Julia packages, and setting up a Conda environment for the required Python packages. Finally it will run the tests to make sure everything is working. If you want to skip testing run `make install` instead. You can also run `./scripts/Supernovae -v ./Examples/Inputs/2021zby/2021zby_data.toml` to load and plot the lightcurve of 2021zby. This will create a `.svg` plot in `./Examples/Outputs/2021zby/`.
## Usage
```bash
$ ./scripts/Supernovae -v path/to/input.toml
```
Details on how to build the input files which control `Supernovae.jl` can be found in [Usage](./usage.md).
## Example data file
The following example input file can be found in the Examples directory. `base_path` is the directory containing your input file.
```toml
[ global ]
filter_path = "../Filters" # Defaults to base_path / Filters
output_path = "../../Outputs/2021zby" # Defaults to base_path / Output
# Data
[ data ]
# First include information about the supernova
name = "2021zby" # Required
zeropoint = 8.9 # Required
redshift = 0.02559 # Required
max_flux_err = 2.5e2 # Optional, set's the maximum allowed value for the uncertainty in the flux, assumes same units as flux
peak_time = true # Default false. Can either be true, in which case all times will become relative to the peak data point. Alternatively, give a value, and all times will be relative to that value
peak_time_unit = "d" # Optional, default to d
[[ data.observations ]] # Now load in different observations of the supernova. This can either be one file with all observations, or you can load in multiple files
name = "atlas" # Required, Human readable name to distinguish observations
path = "atlas_1007.dat" # Required, Accepts either relative (to Supernova) or absolute path
delimiter = " " # Optional, defaults to comma
facility = "Misc"
instrument = "Atlas" # Optional, will overwrite anything in the file
upperlimit = "flux_err"
# Since this file contains a header that isn't in the expected format, you can optionally specify what each header corresponds to.
# If you do this you MUST specify the time, flux, and flux error.
# You can also specify the filter, instrument, or upperlimit columns if they're in the file. If not, specify them above
header.time.col = "MJD"
header.time.unit = "d"
header.flux.col = "uJy"
header.flux.unit = "Β΅Jy"
header.flux_err.col = "duJy"
header.flux_err.unit = "Β΅Jy"
header.passband.col = "F"
[[ data.observations ]]
name = "tess 6hr"
path = "tess_2_6hrlc.txt"
delimiter = " "
comment = "#" # Optional, defines what is a comment (will be removed). Defaults to #
facility = "tess"
instrument = "tess"
passband = "Red"
filter_name = "Tess"
upperlimit = false
flux_offset = 0.296 # Defaults to 0, assumes same units as flux
[[ plot.lightcurve ]]
filters = ["Red", "orange"]
markersize = 21
marker."tess 6hr" = "utriangle"
rename."tess 6hr" = "Tess (6hr)"
marker.atlas = "circle"
rename.atlas = "Atlas"
colour.Red = "red"
rename.Red = "Tess: Red"
rename.orange = "Atlas: Orange (+150 ΞΌJy)"
colour.orange = "orange"
offset.orange = 150
legend = true
```
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 1.0.0 | deabfde09b46a5730813f23a6656588c6ab14bed | docs | 9076 | # Usage Details
To load a supernova with `Supernovae.jl` you must create an input file containing details on how to read the lightcurve files of the supernova. This file is read in using [BetterInputFiles.jl](https://www.omegalambda.au/BetterInputFiles.jl/dev/), which provides a number of advantages, including:
- Choice of `.yaml`, `.toml`, or `.json` files. All examples will be `.toml` but you can choose whichever is preferable for your workflow.
- Case-insensitive keys
- Ability to include other files via `<include path/to/file.toml>`. This will essentially copy paste the contents of `file.toml` into your input file.
- Ability to interpolate environmental variables via `<$ENV_VAR>`.
- Ability to interpolate other keys in your input via `<%key>`. As long as `<%key>` exists in the same subtree, the value of key will be interpolated, allowing for easy duplication.
- Default values via `[DEFAULT]`. Default sub-keys are available everywhere. This is particularly useful when combined with interpolation.
See the BetterInputFiles [documentation](https://www.omegalambda.au/BetterInputFiles.jl/dev/) for more details and examples about how this all works.
## Supernovae.jl Input Files
There are three keys which can be included in a supernova's input file, `[ global ]`, `[ data ]`, and `[ plot ]`.
### `[ global ]`
`[ global ]` controls file-paths and is optional. File paths can be absolute, or relative to `base_path` which, by default, is the parent directory of the input file. The file paths that can be defined are:
```toml
[ global ]
base_path = "./" # All other paths will be relative to this path
output_path = "base_path/Output" # Where all output will be placed
filter_path = "base_path/Filters" # Where filter transmission curves will be saved and loaded
data_path = "base_path/Data" # any relative paths to data files will be relative to data_path
```
### `[ data ]`
`[ data ]` includes all the options for loading in your supernova and is required. `data` keys include:
```toml
[ data ]
name::String # The name of the supernova
zeropoint::Float64 # The zeropoint of the supernova
zeropoint_unit::String="AB_mag" # The unit of the zeropoint.
redshift::Float64 # The redshift of the supernova
max_flux_err::Float64=Inf # The maximum allowed flux error. Any datapoint with flux error greater than this will be removed. Assumes the same units as flux.
peak_time::Union{Bool, Float64}=false # If true, set time relatative to the time of maximum flux. Alternatively, provide a value for time to be set relative to. Assumes the same units as time
```
In addition to these options, you must specify `[[ data.observations ]]`, which contain details on the data files you with to associate with this supernova. The main assumption is that columns are different parameters and rows are different datapoints. Since `[[ data.observations ]]` is a list object, you can include as many files as you want, and they will all get collated into the one supernova object. `observations` keys include:
```toml
[[ data.observations ]]
name::String # Human readable name of the observations. Typically this is the survey responsible for the observations
path::String # Path to data file containing photometry information. Can be absolute or relative (to data_path).
delimiter::String=", " # Delimiter of the data file.
comment::String="#" # Comment character of the data file.
facility::Union{String,Nothing}=nothing # Override the facility responsible for the data. Use this if this information is not available in the data file.
instrument::Union{String,Nothing}=nothing # Override the instrument responsible for the data. Use this if this information is not available in the data file.
passband::Union{String,Nothing}=nothing # Override the passband of the data. Use this if this information is not available in the data file.
upperlimit::Union{Bool,String,Nothing}=nothing # Override whether the data is an upperlimit. The String options include ["time", "flux", "flux_err"]. If a String, upperlimit is true if that parameter is negative. Use this if this information is not available in the data file.
flux_offset::Float64=0 # Apply an offset to the flux. Assumes flux_offset is the same unit as flux.
upperlimit_true::Vector{String}=["T", "TRUE"] # Provides the (case-insensitive) string which corresponds to an upperlimit being true. Used when reading the upperlimit from a column of the data file.
upperlimit_false::Vector{String}=["F", "FALSE"] # Provides the (case-insensitive) string which corresponds to an upperlimit being false. Used when reading the upperlimit from a column of the data file.
```
The rest of the `observations` keys are related to loading in data from the data file. Your data file must include per-observation time, flux, and flux error information. Additionally, per-observation facility, instrument, passband, and upperlimit information can be included. In general there are three different ways to load a parameter from the data file.
#### Default Method
The default assumption is that the data file has a header line with syntax:
```
time [d], flux [ΞΌJy], flux_err [ΞΌJy]
```
If this is the case, then you need not provide any more details and `Supernovae.jl` will be able to extract these.
#### Column Name
If your header doesn't exactly match the default header, then you can specify which column corresponds to which parameter via the header name of that parameter:
```toml
[[ data.observations ]]
header.time.col = "MJD" # The name of the time column
header.time.unit = "d" # The unit of the time column
header.flux.col = "brightness" # The name of the time column
header.flux.unit = "ΞΌJy" # The unit of the time column
header.flux_err.col = "d_brightness" # The name of the time column
header.flux_err.unit = "ΞΌJy" # The unit of the time column
header.facility.col = "survey" # The name of the facility column
header.instrument.col = "telescope" # The name of the instrument column
header.passband.col = "filter" # The name of the passband column
header.upperlimit.col = "is_real" # The name of the upperlimit column
```
In addition to specifying the unit of a parameter, you can also specify `header.parameter.unit_col` to give the column name containing the unit of that parameter.
#### Column Index
Instead of `header.parameter.col` being the name of the column, you can provide the index of the column. This can be mixed and matched with the column name method to allow you to load in a large number of different syntaxes.
#### Filter details
Your choice of `facility`, `instrument`, and `passband` is very important. `Supernovae.jl` will search `filter_path` for a transmission curve file with name `facility__instrument__passband`. If you have the passband for all your observations, make sure to put them in `filter_path`! If you don't, check if they're available on the [SVO Filter Profile Service](http://svo2.cab.inta-csic.es/theory/fps/). If so, make sure `facility`, `instrument`, and `passband` match the SVO FPS syntax as `Supernovae.jl` will attempt to download the transmission curve and save it to `filter_path`.
Transission curve files should be comma seperated files containing the wavelength (in angstroms), and the transmission at that wavelength. Check the Examples directory to see what to expect.
### `[ plot ]`
The `plot` key is optional, with `Supernovae.jl` only producing plots if this key exists. At the moment only lightcurve plots are implemented, but in the future there will be filter, and spectra plots.
#### `[[ plot.lightcurve ]]`
The lightcurve plot has a number of keys used to customise your plot. You can make any number of lightcurve plots by defining multiple `[[ plot.lightcurve ]]` keys.
```toml
[ plot.lightcurve ]]
path::String="$(supernova.name)_lightcurve.svg" # Where to save the plot, relative to output_path
datatype::String="flux" # What type of data to plot. Options include "flux", "magnitude", and "abs_magnitude".
unit.time::String="d" # Time unit
unit.data::String=["ΞΌJy", "AB_mag"] # Depending on the type of data, this will default to either ΞΌJy or AB_mag.
name::Union{Vector{String},Nothing}=nothing # What observations to include, based on their human readable name. If nothing, all observations are included.
filters::Union{Vector{String},Nothing}=nothing # What passbands to include. If nothing, all passbands are included.
rename.[passband, obs_name]::String=new_name # Optionally rename passband or obs_name to new_name. Useful if you don't want to use the SVO name, or want to add additional detail.
offset.[passband, obs_name]::Float64=0 # Optionally include an offset to the given passband or obs_name. If an observation has both passband and obs_name, it will be offset twice!
markersize::Int64=11 # Set the marker size.
marker.obs_name::String="nothing" # Set the marker type for observations with name obs_name. If "nothing", default marker is used.
colour.passband::Union{String,Nothing}=nothing # Set the colour for passband. If nothing, default colours are used.
legend::Bool=true # Whether to include a legend in the plot.
```
| Supernovae | https://github.com/OmegaLambda1998/Supernovae.jl.git |
|
[
"MIT"
] | 0.2.5 | c0aa4b519104fecca9bc146c9843393f7cbd3c99 | code | 3989 | module AbstractNumbers
using SpecialFunctions
# Yeah yeah, how ironic
abstract type AbstractNumber{T} <: Number end
abstract type AbstractReal{T} <: Real end
const AbstractNumberOrReal = Union{AbstractNumber{T},AbstractReal{T}} where T
# convert(Number, my_type) & is the only interface one needs to overload
@inline basetype(T::Type{<:AbstractNumberOrReal}) = error("AbstractNumbers.basetype not implemented for $T")
@inline basetype(x::T) where T <: AbstractNumberOrReal = basetype(T)
@inline number(x::AbstractNumberOrReal) = error("AbstractNumbers.number not implemented for $(typeof(x))")
@inline function Base.convert(::Type{AN}, x::AbstractNumberOrReal{T2}) where {AN <: AbstractNumberOrReal{T}, T2} where T
AN(T(number(x)))
end
@inline function Base.convert(::Type{AN}, x::Number) where AN <: AbstractNumberOrReal{T} where T
AN(x)
end
@inline function Base.convert(::Type{T}, x::AbstractNumberOrReal) where T <: Number
if isabstracttype(T)
return x
else
return convert(T, number(x))
end
end
"""
like(num::Union{AbstractNumber,AbstractReal}, x::T)
Creates a number from `x` like the first argument. It discards the eltype of `num`
and uses the type of `x` instead.
usage:
```
like(MyAbstractNumber(1f0), 22) === MyAbstractNumber{Int}(22)
```
"""
@inline like(num::AN, x::T) where {AN <: AbstractNumberOrReal, T} = like(AN, x)
@inline like(::Type{AN}, x::T) where {AN <: AbstractNumberOrReal, T} = basetype(AN){T}(x)
# Not sure if this is the most performant and correct way, but this enables
# that == and friends return a bool. Returning an AbstractNumberOrReal{Bool} seems a bit odd
@inline like(::Type{AN}, x::Tuple) where AN <: AbstractNumberOrReal = like.(AN, x)
@inline Base.typemax(::Type{Num}) where Num <: AbstractNumberOrReal{T} where T = like(Num, typemax(T))
@inline Base.typemin(::Type{Num}) where Num <: AbstractNumberOrReal{T} where T = like(Num, typemin(T))
@inline Base.typemax(::T) where T <: AbstractNumberOrReal = typemax(T)
@inline Base.typemin(::T) where T <: AbstractNumberOrReal = typemax(T)
@inline Base.eltype(x::T) where T <: AbstractNumberOrReal = T
@inline Base.eltype(::Type{T}) where T <: AbstractNumberOrReal = T
include("overloads.jl")
rem(x::AbstractNumber, y::AbstractNumber, r::RoundingMode) = like(x, rem(number(x), number(y), r))
rem(x::AbstractReal, y::AbstractReal, r::RoundingMode) = like(x, rem(number(x), number(y), r))
# Overload ambiguities
for (M, f, A, B) in [
(Base, :^, Irrational{:β―}, AbstractNumber),
(Base, :^, Irrational{:β―}, AbstractReal),
(Base, :log, Irrational{:β―}, AbstractNumber),
(Base, :log, Irrational{:β―}, AbstractReal),
(Base, :flipsign, Signed, AbstractReal),
(Base, :flipsign, Float32, AbstractReal),
(Base, :flipsign, Float64, AbstractReal),
(Base, :copysign, Float32, AbstractReal),
(Base, :copysign, Float64, AbstractReal),
(Base, :copysign, Rational, AbstractReal),
(Base, :copysign, Signed, AbstractReal),
(SpecialFunctions, :polygamma, Integer, AbstractNumber),
(SpecialFunctions, :polygamma, Integer, AbstractReal),
]
@eval $M.$f(a::$A, b::$B) = like(a, $f(a, number(b)))
end
for (M, f, A, B) in [
(SpecialFunctions, :besselkx, AbstractReal, AbstractFloat),
(SpecialFunctions, :besselyx, AbstractReal, AbstractFloat),
(SpecialFunctions, :besselj, AbstractReal, AbstractFloat),
(SpecialFunctions, :besselk, AbstractReal, AbstractFloat),
(SpecialFunctions, :besseli, AbstractReal, AbstractFloat),
(SpecialFunctions, :bessely, AbstractReal, AbstractFloat),
(SpecialFunctions, :besselix, AbstractReal, AbstractFloat),
(SpecialFunctions, :besseljx, AbstractReal, AbstractFloat),
(Base, :^, AbstractNumber, Integer),
(Base, :^, AbstractNumber, Rational),
(Base, :^, AbstractReal, Rational),
(Base, :^, AbstractReal, Integer),
]
@eval $M.$f(a::$A, b::$B) = like(a, $f(number(a), b))
end
export AbstractNumber, AbstractReal
end # module
| AbstractNumbers | https://github.com/SimonDanisch/AbstractNumbers.jl.git |
|
[
"MIT"
] | 0.2.5 | c0aa4b519104fecca9bc146c9843393f7cbd3c99 | code | 4569 | using SpecialFunctions
all_funcs = (
:~, :conj, :abs, :sin, :cos, :tan, :sinh, :cosh, :tanh, :asin, :acos, :atan,
:asinh, :acosh, :atanh, :sec, :csc, :cot, :asec, :acsc, :acot, :sech, :csch,
:coth, :asech, :acsch, :acoth, :sinc, :cosc, :cosd, :cotd, :cscd, :secd,
:sind, :tand, :acosd, :acotd, :acscd, :asecd, :asind, :atand, :rad2deg,
:deg2rad, :log, :log2, :log10, :log1p, :exponent, :exp, :exp2, :expm1,
:cbrt, :sqrt, :ceil, :floor, :trunc, :round, :significand,
:frexp, :ldexp, :modf, :real, :imag, :!, :identity,
:zero, :one, :<<, :>>, :abs2, :sign, :sinpi, :cospi, :exp10,
:iseven, :ispow2, :isfinite, :isinf, :isodd, :isinteger, :isreal,
:isnan, :isempty, :iszero, :transpose, :copysign, :flipsign, :signbit,
:+, :-, :*, :/, :\, :^, :(==), :(!=), :<, :(<=), :>, :(>=), :β, :min, :max,
:div, :fld, :rem, :mod, :mod1, :cmp, :&, :|, :xor,
:clamp
)
special_funcs = (
:airyai,
:airyaiprime,
:airybi,
:airybiprime,
:airyaix,
:airyaiprimex,
:airybix,
:airybiprimex,
:besselh,
:besselhx,
:besseli,
:besselix,
:besselj,
:besselj0,
:besselj1,
:besseljx,
:besselk,
:besselkx,
:bessely,
:bessely0,
:bessely1,
:besselyx,
:dawson,
:erf,
:erfc,
:erfcinv,
:erfcx,
:erfi,
:erfinv,
:eta,
:digamma,
:invdigamma,
:polygamma,
:trigamma,
:hankelh1,
:hankelh1x,
:hankelh2,
:hankelh2x,
:zeta
)
function to_abstract(x::Type{T}) where T <: Number
isa(x, Union) && return to_abstract(reduce(Base.typejoin, Base.uniontypes(x)))
AbstractNumber
end
function to_abstract(x::T) where T
x == Any && return Number
isa(x, TypeVar) && return to_abstract(x.ub)
return x
end
function isa_number(T::Type)
return T <: Number || T == Any
end
function isa_number(tv::TypeVar)
isa_number(tv.ub)
end
function isa_number(tv)
false
end
open(joinpath(@__DIR__, "overloads.jl"), "w") do io
for (mod, funcs) in ((Base, all_funcs), (SpecialFunctions, special_funcs)), f in funcs
func = getfield(mod, f)
ms = methods(func)
sigs = []
for m in ms
#TODO infer correct types
sig = (Base.unwrap_unionall(m.sig).parameters...,)[2:end]
if all(isa_number, sig)
# _RT = Base.Core.Inference.return_type(func, Tuple{sig...})
# isleaftype(_RT) && (RT = _RT)
push!(sigs, m.nargs - 1)
end
end
sigs = sort(unique(sigs))
if f in (:+, :-, :*, :|, :&, :xor) && length(sigs) >= 2
sigs = sigs[1:2]
end
for n in sigs
(n == 3 && f == :cmp) && continue
boolfunc = f in (
:(==), :(!=), :<, :(<=), :>, :(>=), :β
) || startswith(string(f), "is")
argnames = ntuple(i-> Symbol("arg$i"), n)
number_args = map(x-> :($x::AbstractNumber), argnames)
real_args = map(x-> :($x::AbstractReal), argnames)
converted = map(x-> :(number($x)), argnames)
fname = "$mod.$(sprint(show, f))"
ret = boolfunc ? "tmp" : "like(arg1, tmp)"
println(io, """
function $fname($(join(number_args, ", ")))
tmp = $fname($(join(converted, ", ")))
$ret
end
function $fname($(join(real_args, ", ")))
tmp = $fname($(join(converted, ", ")))
$ret
end
""")
# I think it only makes sense to define all permutations only for binary ops.
# The rest seems to be too bug ridden
if n == 2
ret = boolfunc ? "tmp" : "like(a, tmp)"
println(io, """
function $fname(a::AbstractNumber, b::Number)
tmp = $fname(number(a), b)
$ret
end
function $fname(a::AbstractReal, b::Real)
tmp = $fname(number(a), b)
$ret
end
""")
ret = boolfunc ? "tmp" : "like(b, tmp)"
println(io, """
function $fname(a::Number, b::AbstractNumber)
tmp = $fname(a, number(b))
$ret
end
function $fname(a::Real, b::AbstractReal)
tmp = $fname(a, number(b))
$ret
end
""")
end
end
end
end
| AbstractNumbers | https://github.com/SimonDanisch/AbstractNumbers.jl.git |
|
[
"MIT"
] | 0.2.5 | c0aa4b519104fecca9bc146c9843393f7cbd3c99 | code | 62786 | function Base.:~(arg1::AbstractNumber)
tmp = Base.:~(number(arg1))
like(arg1, tmp)
end
function Base.:~(arg1::AbstractReal)
tmp = Base.:~(number(arg1))
like(arg1, tmp)
end
function Base.:conj(arg1::AbstractNumber)
tmp = Base.:conj(number(arg1))
like(arg1, tmp)
end
function Base.:conj(arg1::AbstractReal)
tmp = Base.:conj(number(arg1))
like(arg1, tmp)
end
function Base.:abs(arg1::AbstractNumber)
tmp = Base.:abs(number(arg1))
like(arg1, tmp)
end
function Base.:abs(arg1::AbstractReal)
tmp = Base.:abs(number(arg1))
like(arg1, tmp)
end
function Base.:sin(arg1::AbstractNumber)
tmp = Base.:sin(number(arg1))
like(arg1, tmp)
end
function Base.:sin(arg1::AbstractReal)
tmp = Base.:sin(number(arg1))
like(arg1, tmp)
end
function Base.:cos(arg1::AbstractNumber)
tmp = Base.:cos(number(arg1))
like(arg1, tmp)
end
function Base.:cos(arg1::AbstractReal)
tmp = Base.:cos(number(arg1))
like(arg1, tmp)
end
function Base.:tan(arg1::AbstractNumber)
tmp = Base.:tan(number(arg1))
like(arg1, tmp)
end
function Base.:tan(arg1::AbstractReal)
tmp = Base.:tan(number(arg1))
like(arg1, tmp)
end
function Base.:sinh(arg1::AbstractNumber)
tmp = Base.:sinh(number(arg1))
like(arg1, tmp)
end
function Base.:sinh(arg1::AbstractReal)
tmp = Base.:sinh(number(arg1))
like(arg1, tmp)
end
function Base.:cosh(arg1::AbstractNumber)
tmp = Base.:cosh(number(arg1))
like(arg1, tmp)
end
function Base.:cosh(arg1::AbstractReal)
tmp = Base.:cosh(number(arg1))
like(arg1, tmp)
end
function Base.:tanh(arg1::AbstractNumber)
tmp = Base.:tanh(number(arg1))
like(arg1, tmp)
end
function Base.:tanh(arg1::AbstractReal)
tmp = Base.:tanh(number(arg1))
like(arg1, tmp)
end
function Base.:asin(arg1::AbstractNumber)
tmp = Base.:asin(number(arg1))
like(arg1, tmp)
end
function Base.:asin(arg1::AbstractReal)
tmp = Base.:asin(number(arg1))
like(arg1, tmp)
end
function Base.:acos(arg1::AbstractNumber)
tmp = Base.:acos(number(arg1))
like(arg1, tmp)
end
function Base.:acos(arg1::AbstractReal)
tmp = Base.:acos(number(arg1))
like(arg1, tmp)
end
function Base.:atan(arg1::AbstractNumber)
tmp = Base.:atan(number(arg1))
like(arg1, tmp)
end
function Base.:atan(arg1::AbstractReal)
tmp = Base.:atan(number(arg1))
like(arg1, tmp)
end
function Base.:atan(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:atan(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:atan(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:atan(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:atan(a::AbstractNumber, b::Number)
tmp = Base.:atan(number(a), b)
like(a, tmp)
end
function Base.:atan(a::AbstractReal, b::Real)
tmp = Base.:atan(number(a), b)
like(a, tmp)
end
function Base.:atan(a::Number, b::AbstractNumber)
tmp = Base.:atan(a, number(b))
like(b, tmp)
end
function Base.:atan(a::Real, b::AbstractReal)
tmp = Base.:atan(a, number(b))
like(b, tmp)
end
function Base.:asinh(arg1::AbstractNumber)
tmp = Base.:asinh(number(arg1))
like(arg1, tmp)
end
function Base.:asinh(arg1::AbstractReal)
tmp = Base.:asinh(number(arg1))
like(arg1, tmp)
end
function Base.:acosh(arg1::AbstractNumber)
tmp = Base.:acosh(number(arg1))
like(arg1, tmp)
end
function Base.:acosh(arg1::AbstractReal)
tmp = Base.:acosh(number(arg1))
like(arg1, tmp)
end
function Base.:atanh(arg1::AbstractNumber)
tmp = Base.:atanh(number(arg1))
like(arg1, tmp)
end
function Base.:atanh(arg1::AbstractReal)
tmp = Base.:atanh(number(arg1))
like(arg1, tmp)
end
function Base.:sec(arg1::AbstractNumber)
tmp = Base.:sec(number(arg1))
like(arg1, tmp)
end
function Base.:sec(arg1::AbstractReal)
tmp = Base.:sec(number(arg1))
like(arg1, tmp)
end
function Base.:csc(arg1::AbstractNumber)
tmp = Base.:csc(number(arg1))
like(arg1, tmp)
end
function Base.:csc(arg1::AbstractReal)
tmp = Base.:csc(number(arg1))
like(arg1, tmp)
end
function Base.:cot(arg1::AbstractNumber)
tmp = Base.:cot(number(arg1))
like(arg1, tmp)
end
function Base.:cot(arg1::AbstractReal)
tmp = Base.:cot(number(arg1))
like(arg1, tmp)
end
function Base.:asec(arg1::AbstractNumber)
tmp = Base.:asec(number(arg1))
like(arg1, tmp)
end
function Base.:asec(arg1::AbstractReal)
tmp = Base.:asec(number(arg1))
like(arg1, tmp)
end
function Base.:acsc(arg1::AbstractNumber)
tmp = Base.:acsc(number(arg1))
like(arg1, tmp)
end
function Base.:acsc(arg1::AbstractReal)
tmp = Base.:acsc(number(arg1))
like(arg1, tmp)
end
function Base.:acot(arg1::AbstractNumber)
tmp = Base.:acot(number(arg1))
like(arg1, tmp)
end
function Base.:acot(arg1::AbstractReal)
tmp = Base.:acot(number(arg1))
like(arg1, tmp)
end
function Base.:sech(arg1::AbstractNumber)
tmp = Base.:sech(number(arg1))
like(arg1, tmp)
end
function Base.:sech(arg1::AbstractReal)
tmp = Base.:sech(number(arg1))
like(arg1, tmp)
end
function Base.:csch(arg1::AbstractNumber)
tmp = Base.:csch(number(arg1))
like(arg1, tmp)
end
function Base.:csch(arg1::AbstractReal)
tmp = Base.:csch(number(arg1))
like(arg1, tmp)
end
function Base.:coth(arg1::AbstractNumber)
tmp = Base.:coth(number(arg1))
like(arg1, tmp)
end
function Base.:coth(arg1::AbstractReal)
tmp = Base.:coth(number(arg1))
like(arg1, tmp)
end
function Base.:asech(arg1::AbstractNumber)
tmp = Base.:asech(number(arg1))
like(arg1, tmp)
end
function Base.:asech(arg1::AbstractReal)
tmp = Base.:asech(number(arg1))
like(arg1, tmp)
end
function Base.:acsch(arg1::AbstractNumber)
tmp = Base.:acsch(number(arg1))
like(arg1, tmp)
end
function Base.:acsch(arg1::AbstractReal)
tmp = Base.:acsch(number(arg1))
like(arg1, tmp)
end
function Base.:acoth(arg1::AbstractNumber)
tmp = Base.:acoth(number(arg1))
like(arg1, tmp)
end
function Base.:acoth(arg1::AbstractReal)
tmp = Base.:acoth(number(arg1))
like(arg1, tmp)
end
function Base.:sinc(arg1::AbstractNumber)
tmp = Base.:sinc(number(arg1))
like(arg1, tmp)
end
function Base.:sinc(arg1::AbstractReal)
tmp = Base.:sinc(number(arg1))
like(arg1, tmp)
end
function Base.:cosc(arg1::AbstractNumber)
tmp = Base.:cosc(number(arg1))
like(arg1, tmp)
end
function Base.:cosc(arg1::AbstractReal)
tmp = Base.:cosc(number(arg1))
like(arg1, tmp)
end
function Base.:cosd(arg1::AbstractNumber)
tmp = Base.:cosd(number(arg1))
like(arg1, tmp)
end
function Base.:cosd(arg1::AbstractReal)
tmp = Base.:cosd(number(arg1))
like(arg1, tmp)
end
function Base.:cotd(arg1::AbstractNumber)
tmp = Base.:cotd(number(arg1))
like(arg1, tmp)
end
function Base.:cotd(arg1::AbstractReal)
tmp = Base.:cotd(number(arg1))
like(arg1, tmp)
end
function Base.:cscd(arg1::AbstractNumber)
tmp = Base.:cscd(number(arg1))
like(arg1, tmp)
end
function Base.:cscd(arg1::AbstractReal)
tmp = Base.:cscd(number(arg1))
like(arg1, tmp)
end
function Base.:secd(arg1::AbstractNumber)
tmp = Base.:secd(number(arg1))
like(arg1, tmp)
end
function Base.:secd(arg1::AbstractReal)
tmp = Base.:secd(number(arg1))
like(arg1, tmp)
end
function Base.:sind(arg1::AbstractNumber)
tmp = Base.:sind(number(arg1))
like(arg1, tmp)
end
function Base.:sind(arg1::AbstractReal)
tmp = Base.:sind(number(arg1))
like(arg1, tmp)
end
function Base.:tand(arg1::AbstractNumber)
tmp = Base.:tand(number(arg1))
like(arg1, tmp)
end
function Base.:tand(arg1::AbstractReal)
tmp = Base.:tand(number(arg1))
like(arg1, tmp)
end
function Base.:acosd(arg1::AbstractNumber)
tmp = Base.:acosd(number(arg1))
like(arg1, tmp)
end
function Base.:acosd(arg1::AbstractReal)
tmp = Base.:acosd(number(arg1))
like(arg1, tmp)
end
function Base.:acotd(arg1::AbstractNumber)
tmp = Base.:acotd(number(arg1))
like(arg1, tmp)
end
function Base.:acotd(arg1::AbstractReal)
tmp = Base.:acotd(number(arg1))
like(arg1, tmp)
end
function Base.:acscd(arg1::AbstractNumber)
tmp = Base.:acscd(number(arg1))
like(arg1, tmp)
end
function Base.:acscd(arg1::AbstractReal)
tmp = Base.:acscd(number(arg1))
like(arg1, tmp)
end
function Base.:asecd(arg1::AbstractNumber)
tmp = Base.:asecd(number(arg1))
like(arg1, tmp)
end
function Base.:asecd(arg1::AbstractReal)
tmp = Base.:asecd(number(arg1))
like(arg1, tmp)
end
function Base.:asind(arg1::AbstractNumber)
tmp = Base.:asind(number(arg1))
like(arg1, tmp)
end
function Base.:asind(arg1::AbstractReal)
tmp = Base.:asind(number(arg1))
like(arg1, tmp)
end
function Base.:atand(arg1::AbstractNumber)
tmp = Base.:atand(number(arg1))
like(arg1, tmp)
end
function Base.:atand(arg1::AbstractReal)
tmp = Base.:atand(number(arg1))
like(arg1, tmp)
end
function Base.:atand(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:atand(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:atand(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:atand(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:atand(a::AbstractNumber, b::Number)
tmp = Base.:atand(number(a), b)
like(a, tmp)
end
function Base.:atand(a::AbstractReal, b::Real)
tmp = Base.:atand(number(a), b)
like(a, tmp)
end
function Base.:atand(a::Number, b::AbstractNumber)
tmp = Base.:atand(a, number(b))
like(b, tmp)
end
function Base.:atand(a::Real, b::AbstractReal)
tmp = Base.:atand(a, number(b))
like(b, tmp)
end
function Base.:rad2deg(arg1::AbstractNumber)
tmp = Base.:rad2deg(number(arg1))
like(arg1, tmp)
end
function Base.:rad2deg(arg1::AbstractReal)
tmp = Base.:rad2deg(number(arg1))
like(arg1, tmp)
end
function Base.:deg2rad(arg1::AbstractNumber)
tmp = Base.:deg2rad(number(arg1))
like(arg1, tmp)
end
function Base.:deg2rad(arg1::AbstractReal)
tmp = Base.:deg2rad(number(arg1))
like(arg1, tmp)
end
function Base.:log(arg1::AbstractNumber)
tmp = Base.:log(number(arg1))
like(arg1, tmp)
end
function Base.:log(arg1::AbstractReal)
tmp = Base.:log(number(arg1))
like(arg1, tmp)
end
function Base.:log(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:log(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:log(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:log(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:log(a::AbstractNumber, b::Number)
tmp = Base.:log(number(a), b)
like(a, tmp)
end
function Base.:log(a::AbstractReal, b::Real)
tmp = Base.:log(number(a), b)
like(a, tmp)
end
function Base.:log(a::Number, b::AbstractNumber)
tmp = Base.:log(a, number(b))
like(b, tmp)
end
function Base.:log(a::Real, b::AbstractReal)
tmp = Base.:log(a, number(b))
like(b, tmp)
end
function Base.:log2(arg1::AbstractNumber)
tmp = Base.:log2(number(arg1))
like(arg1, tmp)
end
function Base.:log2(arg1::AbstractReal)
tmp = Base.:log2(number(arg1))
like(arg1, tmp)
end
function Base.:log10(arg1::AbstractNumber)
tmp = Base.:log10(number(arg1))
like(arg1, tmp)
end
function Base.:log10(arg1::AbstractReal)
tmp = Base.:log10(number(arg1))
like(arg1, tmp)
end
function Base.:log1p(arg1::AbstractNumber)
tmp = Base.:log1p(number(arg1))
like(arg1, tmp)
end
function Base.:log1p(arg1::AbstractReal)
tmp = Base.:log1p(number(arg1))
like(arg1, tmp)
end
function Base.:exponent(arg1::AbstractNumber)
tmp = Base.:exponent(number(arg1))
like(arg1, tmp)
end
function Base.:exponent(arg1::AbstractReal)
tmp = Base.:exponent(number(arg1))
like(arg1, tmp)
end
function Base.:exp(arg1::AbstractNumber)
tmp = Base.:exp(number(arg1))
like(arg1, tmp)
end
function Base.:exp(arg1::AbstractReal)
tmp = Base.:exp(number(arg1))
like(arg1, tmp)
end
function Base.:exp2(arg1::AbstractNumber)
tmp = Base.:exp2(number(arg1))
like(arg1, tmp)
end
function Base.:exp2(arg1::AbstractReal)
tmp = Base.:exp2(number(arg1))
like(arg1, tmp)
end
function Base.:expm1(arg1::AbstractNumber)
tmp = Base.:expm1(number(arg1))
like(arg1, tmp)
end
function Base.:expm1(arg1::AbstractReal)
tmp = Base.:expm1(number(arg1))
like(arg1, tmp)
end
function Base.:cbrt(arg1::AbstractNumber)
tmp = Base.:cbrt(number(arg1))
like(arg1, tmp)
end
function Base.:cbrt(arg1::AbstractReal)
tmp = Base.:cbrt(number(arg1))
like(arg1, tmp)
end
function Base.:sqrt(arg1::AbstractNumber)
tmp = Base.:sqrt(number(arg1))
like(arg1, tmp)
end
function Base.:sqrt(arg1::AbstractReal)
tmp = Base.:sqrt(number(arg1))
like(arg1, tmp)
end
function Base.:ceil(arg1::AbstractNumber)
tmp = Base.:ceil(number(arg1))
like(arg1, tmp)
end
function Base.:ceil(arg1::AbstractReal)
tmp = Base.:ceil(number(arg1))
like(arg1, tmp)
end
function Base.:floor(arg1::AbstractNumber)
tmp = Base.:floor(number(arg1))
like(arg1, tmp)
end
function Base.:floor(arg1::AbstractReal)
tmp = Base.:floor(number(arg1))
like(arg1, tmp)
end
function Base.:trunc(arg1::AbstractNumber)
tmp = Base.:trunc(number(arg1))
like(arg1, tmp)
end
function Base.:trunc(arg1::AbstractReal)
tmp = Base.:trunc(number(arg1))
like(arg1, tmp)
end
function Base.:round(arg1::AbstractNumber)
tmp = Base.:round(number(arg1))
like(arg1, tmp)
end
function Base.:round(arg1::AbstractReal)
tmp = Base.:round(number(arg1))
like(arg1, tmp)
end
function Base.:significand(arg1::AbstractNumber)
tmp = Base.:significand(number(arg1))
like(arg1, tmp)
end
function Base.:significand(arg1::AbstractReal)
tmp = Base.:significand(number(arg1))
like(arg1, tmp)
end
function Base.:frexp(arg1::AbstractNumber)
tmp = Base.:frexp(number(arg1))
like(arg1, tmp)
end
function Base.:frexp(arg1::AbstractReal)
tmp = Base.:frexp(number(arg1))
like(arg1, tmp)
end
function Base.:ldexp(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:ldexp(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:ldexp(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:ldexp(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:ldexp(a::AbstractNumber, b::Number)
tmp = Base.:ldexp(number(a), b)
like(a, tmp)
end
function Base.:ldexp(a::AbstractReal, b::Real)
tmp = Base.:ldexp(number(a), b)
like(a, tmp)
end
function Base.:ldexp(a::Number, b::AbstractNumber)
tmp = Base.:ldexp(a, number(b))
like(b, tmp)
end
function Base.:ldexp(a::Real, b::AbstractReal)
tmp = Base.:ldexp(a, number(b))
like(b, tmp)
end
function Base.:modf(arg1::AbstractNumber)
tmp = Base.:modf(number(arg1))
like(arg1, tmp)
end
function Base.:modf(arg1::AbstractReal)
tmp = Base.:modf(number(arg1))
like(arg1, tmp)
end
function Base.:real(arg1::AbstractNumber)
tmp = Base.:real(number(arg1))
like(arg1, tmp)
end
function Base.:real(arg1::AbstractReal)
tmp = Base.:real(number(arg1))
like(arg1, tmp)
end
function Base.:imag(arg1::AbstractNumber)
tmp = Base.:imag(number(arg1))
like(arg1, tmp)
end
function Base.:imag(arg1::AbstractReal)
tmp = Base.:imag(number(arg1))
like(arg1, tmp)
end
function Base.:!(arg1::AbstractNumber)
tmp = Base.:!(number(arg1))
like(arg1, tmp)
end
function Base.:!(arg1::AbstractReal)
tmp = Base.:!(number(arg1))
like(arg1, tmp)
end
function Base.:identity(arg1::AbstractNumber)
tmp = Base.:identity(number(arg1))
like(arg1, tmp)
end
function Base.:identity(arg1::AbstractReal)
tmp = Base.:identity(number(arg1))
like(arg1, tmp)
end
function Base.:zero(arg1::AbstractNumber)
tmp = Base.:zero(number(arg1))
like(arg1, tmp)
end
function Base.:zero(arg1::AbstractReal)
tmp = Base.:zero(number(arg1))
like(arg1, tmp)
end
function Base.:one(arg1::AbstractNumber)
tmp = Base.:one(number(arg1))
like(arg1, tmp)
end
function Base.:one(arg1::AbstractReal)
tmp = Base.:one(number(arg1))
like(arg1, tmp)
end
function Base.:<<(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:<<(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:<<(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:<<(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:<<(a::AbstractNumber, b::Number)
tmp = Base.:<<(number(a), b)
like(a, tmp)
end
function Base.:<<(a::AbstractReal, b::Real)
tmp = Base.:<<(number(a), b)
like(a, tmp)
end
function Base.:<<(a::Number, b::AbstractNumber)
tmp = Base.:<<(a, number(b))
like(b, tmp)
end
function Base.:<<(a::Real, b::AbstractReal)
tmp = Base.:<<(a, number(b))
like(b, tmp)
end
function Base.:>>(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:>>(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:>>(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:>>(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:>>(a::AbstractNumber, b::Number)
tmp = Base.:>>(number(a), b)
like(a, tmp)
end
function Base.:>>(a::AbstractReal, b::Real)
tmp = Base.:>>(number(a), b)
like(a, tmp)
end
function Base.:>>(a::Number, b::AbstractNumber)
tmp = Base.:>>(a, number(b))
like(b, tmp)
end
function Base.:>>(a::Real, b::AbstractReal)
tmp = Base.:>>(a, number(b))
like(b, tmp)
end
function Base.:abs2(arg1::AbstractNumber)
tmp = Base.:abs2(number(arg1))
like(arg1, tmp)
end
function Base.:abs2(arg1::AbstractReal)
tmp = Base.:abs2(number(arg1))
like(arg1, tmp)
end
function Base.:sign(arg1::AbstractNumber)
tmp = Base.:sign(number(arg1))
like(arg1, tmp)
end
function Base.:sign(arg1::AbstractReal)
tmp = Base.:sign(number(arg1))
like(arg1, tmp)
end
function Base.:sinpi(arg1::AbstractNumber)
tmp = Base.:sinpi(number(arg1))
like(arg1, tmp)
end
function Base.:sinpi(arg1::AbstractReal)
tmp = Base.:sinpi(number(arg1))
like(arg1, tmp)
end
function Base.:cospi(arg1::AbstractNumber)
tmp = Base.:cospi(number(arg1))
like(arg1, tmp)
end
function Base.:cospi(arg1::AbstractReal)
tmp = Base.:cospi(number(arg1))
like(arg1, tmp)
end
function Base.:exp10(arg1::AbstractNumber)
tmp = Base.:exp10(number(arg1))
like(arg1, tmp)
end
function Base.:exp10(arg1::AbstractReal)
tmp = Base.:exp10(number(arg1))
like(arg1, tmp)
end
function Base.:iseven(arg1::AbstractNumber)
tmp = Base.:iseven(number(arg1))
tmp
end
function Base.:iseven(arg1::AbstractReal)
tmp = Base.:iseven(number(arg1))
tmp
end
function Base.:ispow2(arg1::AbstractNumber)
tmp = Base.:ispow2(number(arg1))
tmp
end
function Base.:ispow2(arg1::AbstractReal)
tmp = Base.:ispow2(number(arg1))
tmp
end
function Base.:isfinite(arg1::AbstractNumber)
tmp = Base.:isfinite(number(arg1))
tmp
end
function Base.:isfinite(arg1::AbstractReal)
tmp = Base.:isfinite(number(arg1))
tmp
end
function Base.:isinf(arg1::AbstractNumber)
tmp = Base.:isinf(number(arg1))
tmp
end
function Base.:isinf(arg1::AbstractReal)
tmp = Base.:isinf(number(arg1))
tmp
end
function Base.:isodd(arg1::AbstractNumber)
tmp = Base.:isodd(number(arg1))
tmp
end
function Base.:isodd(arg1::AbstractReal)
tmp = Base.:isodd(number(arg1))
tmp
end
function Base.:isinteger(arg1::AbstractNumber)
tmp = Base.:isinteger(number(arg1))
tmp
end
function Base.:isinteger(arg1::AbstractReal)
tmp = Base.:isinteger(number(arg1))
tmp
end
function Base.:isreal(arg1::AbstractNumber)
tmp = Base.:isreal(number(arg1))
tmp
end
function Base.:isreal(arg1::AbstractReal)
tmp = Base.:isreal(number(arg1))
tmp
end
function Base.:isnan(arg1::AbstractNumber)
tmp = Base.:isnan(number(arg1))
tmp
end
function Base.:isnan(arg1::AbstractReal)
tmp = Base.:isnan(number(arg1))
tmp
end
function Base.:isempty(arg1::AbstractNumber)
tmp = Base.:isempty(number(arg1))
tmp
end
function Base.:isempty(arg1::AbstractReal)
tmp = Base.:isempty(number(arg1))
tmp
end
function Base.:iszero(arg1::AbstractNumber)
tmp = Base.:iszero(number(arg1))
tmp
end
function Base.:iszero(arg1::AbstractReal)
tmp = Base.:iszero(number(arg1))
tmp
end
function Base.:transpose(arg1::AbstractNumber)
tmp = Base.:transpose(number(arg1))
like(arg1, tmp)
end
function Base.:transpose(arg1::AbstractReal)
tmp = Base.:transpose(number(arg1))
like(arg1, tmp)
end
function Base.:copysign(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:copysign(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:copysign(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:copysign(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:copysign(a::AbstractNumber, b::Number)
tmp = Base.:copysign(number(a), b)
like(a, tmp)
end
function Base.:copysign(a::AbstractReal, b::Real)
tmp = Base.:copysign(number(a), b)
like(a, tmp)
end
function Base.:copysign(a::Number, b::AbstractNumber)
tmp = Base.:copysign(a, number(b))
like(b, tmp)
end
function Base.:copysign(a::Real, b::AbstractReal)
tmp = Base.:copysign(a, number(b))
like(b, tmp)
end
function Base.:flipsign(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:flipsign(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:flipsign(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:flipsign(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:flipsign(a::AbstractNumber, b::Number)
tmp = Base.:flipsign(number(a), b)
like(a, tmp)
end
function Base.:flipsign(a::AbstractReal, b::Real)
tmp = Base.:flipsign(number(a), b)
like(a, tmp)
end
function Base.:flipsign(a::Number, b::AbstractNumber)
tmp = Base.:flipsign(a, number(b))
like(b, tmp)
end
function Base.:flipsign(a::Real, b::AbstractReal)
tmp = Base.:flipsign(a, number(b))
like(b, tmp)
end
function Base.:signbit(arg1::AbstractNumber)
tmp = Base.:signbit(number(arg1))
like(arg1, tmp)
end
function Base.:signbit(arg1::AbstractReal)
tmp = Base.:signbit(number(arg1))
like(arg1, tmp)
end
function Base.:+(arg1::AbstractNumber)
tmp = Base.:+(number(arg1))
like(arg1, tmp)
end
function Base.:+(arg1::AbstractReal)
tmp = Base.:+(number(arg1))
like(arg1, tmp)
end
function Base.:+(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:+(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:+(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:+(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:+(a::AbstractNumber, b::Number)
tmp = Base.:+(number(a), b)
like(a, tmp)
end
function Base.:+(a::AbstractReal, b::Real)
tmp = Base.:+(number(a), b)
like(a, tmp)
end
function Base.:+(a::Number, b::AbstractNumber)
tmp = Base.:+(a, number(b))
like(b, tmp)
end
function Base.:+(a::Real, b::AbstractReal)
tmp = Base.:+(a, number(b))
like(b, tmp)
end
function Base.:-(arg1::AbstractNumber)
tmp = Base.:-(number(arg1))
like(arg1, tmp)
end
function Base.:-(arg1::AbstractReal)
tmp = Base.:-(number(arg1))
like(arg1, tmp)
end
function Base.:-(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:-(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:-(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:-(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:-(a::AbstractNumber, b::Number)
tmp = Base.:-(number(a), b)
like(a, tmp)
end
function Base.:-(a::AbstractReal, b::Real)
tmp = Base.:-(number(a), b)
like(a, tmp)
end
function Base.:-(a::Number, b::AbstractNumber)
tmp = Base.:-(a, number(b))
like(b, tmp)
end
function Base.:-(a::Real, b::AbstractReal)
tmp = Base.:-(a, number(b))
like(b, tmp)
end
function Base.:*(arg1::AbstractNumber)
tmp = Base.:*(number(arg1))
like(arg1, tmp)
end
function Base.:*(arg1::AbstractReal)
tmp = Base.:*(number(arg1))
like(arg1, tmp)
end
function Base.:*(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:*(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:*(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:*(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:*(a::AbstractNumber, b::Number)
tmp = Base.:*(number(a), b)
like(a, tmp)
end
function Base.:*(a::AbstractReal, b::Real)
tmp = Base.:*(number(a), b)
like(a, tmp)
end
function Base.:*(a::Number, b::AbstractNumber)
tmp = Base.:*(a, number(b))
like(b, tmp)
end
function Base.:*(a::Real, b::AbstractReal)
tmp = Base.:*(a, number(b))
like(b, tmp)
end
function Base.:/(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:/(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:/(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:/(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:/(a::AbstractNumber, b::Number)
tmp = Base.:/(number(a), b)
like(a, tmp)
end
function Base.:/(a::AbstractReal, b::Real)
tmp = Base.:/(number(a), b)
like(a, tmp)
end
function Base.:/(a::Number, b::AbstractNumber)
tmp = Base.:/(a, number(b))
like(b, tmp)
end
function Base.:/(a::Real, b::AbstractReal)
tmp = Base.:/(a, number(b))
like(b, tmp)
end
function Base.:\(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:\(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:\(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:\(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:\(a::AbstractNumber, b::Number)
tmp = Base.:\(number(a), b)
like(a, tmp)
end
function Base.:\(a::AbstractReal, b::Real)
tmp = Base.:\(number(a), b)
like(a, tmp)
end
function Base.:\(a::Number, b::AbstractNumber)
tmp = Base.:\(a, number(b))
like(b, tmp)
end
function Base.:\(a::Real, b::AbstractReal)
tmp = Base.:\(a, number(b))
like(b, tmp)
end
function Base.:^(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:^(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:^(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:^(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:^(a::AbstractNumber, b::Number)
tmp = Base.:^(number(a), b)
like(a, tmp)
end
function Base.:^(a::AbstractReal, b::Real)
tmp = Base.:^(number(a), b)
like(a, tmp)
end
function Base.:^(a::Number, b::AbstractNumber)
tmp = Base.:^(a, number(b))
like(b, tmp)
end
function Base.:^(a::Real, b::AbstractReal)
tmp = Base.:^(a, number(b))
like(b, tmp)
end
function Base.:(==)(arg1::AbstractNumber)
tmp = Base.:(==)(number(arg1))
tmp
end
function Base.:(==)(arg1::AbstractReal)
tmp = Base.:(==)(number(arg1))
tmp
end
function Base.:(==)(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:(==)(number(arg1), number(arg2))
tmp
end
function Base.:(==)(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:(==)(number(arg1), number(arg2))
tmp
end
function Base.:(==)(a::AbstractNumber, b::Number)
tmp = Base.:(==)(number(a), b)
tmp
end
function Base.:(==)(a::AbstractReal, b::Real)
tmp = Base.:(==)(number(a), b)
tmp
end
function Base.:(==)(a::Number, b::AbstractNumber)
tmp = Base.:(==)(a, number(b))
tmp
end
function Base.:(==)(a::Real, b::AbstractReal)
tmp = Base.:(==)(a, number(b))
tmp
end
function Base.:!=(arg1::AbstractNumber)
tmp = Base.:!=(number(arg1))
tmp
end
function Base.:!=(arg1::AbstractReal)
tmp = Base.:!=(number(arg1))
tmp
end
function Base.:!=(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:!=(number(arg1), number(arg2))
tmp
end
function Base.:!=(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:!=(number(arg1), number(arg2))
tmp
end
function Base.:!=(a::AbstractNumber, b::Number)
tmp = Base.:!=(number(a), b)
tmp
end
function Base.:!=(a::AbstractReal, b::Real)
tmp = Base.:!=(number(a), b)
tmp
end
function Base.:!=(a::Number, b::AbstractNumber)
tmp = Base.:!=(a, number(b))
tmp
end
function Base.:!=(a::Real, b::AbstractReal)
tmp = Base.:!=(a, number(b))
tmp
end
function Base.:<(arg1::AbstractNumber)
tmp = Base.:<(number(arg1))
tmp
end
function Base.:<(arg1::AbstractReal)
tmp = Base.:<(number(arg1))
tmp
end
function Base.:<(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:<(number(arg1), number(arg2))
tmp
end
function Base.:<(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:<(number(arg1), number(arg2))
tmp
end
function Base.:<(a::AbstractNumber, b::Number)
tmp = Base.:<(number(a), b)
tmp
end
function Base.:<(a::AbstractReal, b::Real)
tmp = Base.:<(number(a), b)
tmp
end
function Base.:<(a::Number, b::AbstractNumber)
tmp = Base.:<(a, number(b))
tmp
end
function Base.:<(a::Real, b::AbstractReal)
tmp = Base.:<(a, number(b))
tmp
end
function Base.:<=(arg1::AbstractNumber)
tmp = Base.:<=(number(arg1))
tmp
end
function Base.:<=(arg1::AbstractReal)
tmp = Base.:<=(number(arg1))
tmp
end
function Base.:<=(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:<=(number(arg1), number(arg2))
tmp
end
function Base.:<=(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:<=(number(arg1), number(arg2))
tmp
end
function Base.:<=(a::AbstractNumber, b::Number)
tmp = Base.:<=(number(a), b)
tmp
end
function Base.:<=(a::AbstractReal, b::Real)
tmp = Base.:<=(number(a), b)
tmp
end
function Base.:<=(a::Number, b::AbstractNumber)
tmp = Base.:<=(a, number(b))
tmp
end
function Base.:<=(a::Real, b::AbstractReal)
tmp = Base.:<=(a, number(b))
tmp
end
function Base.:>(arg1::AbstractNumber)
tmp = Base.:>(number(arg1))
tmp
end
function Base.:>(arg1::AbstractReal)
tmp = Base.:>(number(arg1))
tmp
end
function Base.:>(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:>(number(arg1), number(arg2))
tmp
end
function Base.:>(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:>(number(arg1), number(arg2))
tmp
end
function Base.:>(a::AbstractNumber, b::Number)
tmp = Base.:>(number(a), b)
tmp
end
function Base.:>(a::AbstractReal, b::Real)
tmp = Base.:>(number(a), b)
tmp
end
function Base.:>(a::Number, b::AbstractNumber)
tmp = Base.:>(a, number(b))
tmp
end
function Base.:>(a::Real, b::AbstractReal)
tmp = Base.:>(a, number(b))
tmp
end
function Base.:>=(arg1::AbstractNumber)
tmp = Base.:>=(number(arg1))
tmp
end
function Base.:>=(arg1::AbstractReal)
tmp = Base.:>=(number(arg1))
tmp
end
function Base.:>=(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:>=(number(arg1), number(arg2))
tmp
end
function Base.:>=(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:>=(number(arg1), number(arg2))
tmp
end
function Base.:>=(a::AbstractNumber, b::Number)
tmp = Base.:>=(number(a), b)
tmp
end
function Base.:>=(a::AbstractReal, b::Real)
tmp = Base.:>=(number(a), b)
tmp
end
function Base.:>=(a::Number, b::AbstractNumber)
tmp = Base.:>=(a, number(b))
tmp
end
function Base.:>=(a::Real, b::AbstractReal)
tmp = Base.:>=(a, number(b))
tmp
end
function Base.:β(arg1::AbstractNumber)
tmp = Base.:β(number(arg1))
tmp
end
function Base.:β(arg1::AbstractReal)
tmp = Base.:β(number(arg1))
tmp
end
function Base.:β(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:β(number(arg1), number(arg2))
tmp
end
function Base.:β(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:β(number(arg1), number(arg2))
tmp
end
function Base.:β(a::AbstractNumber, b::Number)
tmp = Base.:β(number(a), b)
tmp
end
function Base.:β(a::AbstractReal, b::Real)
tmp = Base.:β(number(a), b)
tmp
end
function Base.:β(a::Number, b::AbstractNumber)
tmp = Base.:β(a, number(b))
tmp
end
function Base.:β(a::Real, b::AbstractReal)
tmp = Base.:β(a, number(b))
tmp
end
function Base.:min(arg1::AbstractNumber)
tmp = Base.:min(number(arg1))
like(arg1, tmp)
end
function Base.:min(arg1::AbstractReal)
tmp = Base.:min(number(arg1))
like(arg1, tmp)
end
function Base.:min(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:min(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:min(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:min(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:min(a::AbstractNumber, b::Number)
tmp = Base.:min(number(a), b)
like(a, tmp)
end
function Base.:min(a::AbstractReal, b::Real)
tmp = Base.:min(number(a), b)
like(a, tmp)
end
function Base.:min(a::Number, b::AbstractNumber)
tmp = Base.:min(a, number(b))
like(b, tmp)
end
function Base.:min(a::Real, b::AbstractReal)
tmp = Base.:min(a, number(b))
like(b, tmp)
end
function Base.:max(arg1::AbstractNumber)
tmp = Base.:max(number(arg1))
like(arg1, tmp)
end
function Base.:max(arg1::AbstractReal)
tmp = Base.:max(number(arg1))
like(arg1, tmp)
end
function Base.:max(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:max(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:max(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:max(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:max(a::AbstractNumber, b::Number)
tmp = Base.:max(number(a), b)
like(a, tmp)
end
function Base.:max(a::AbstractReal, b::Real)
tmp = Base.:max(number(a), b)
like(a, tmp)
end
function Base.:max(a::Number, b::AbstractNumber)
tmp = Base.:max(a, number(b))
like(b, tmp)
end
function Base.:max(a::Real, b::AbstractReal)
tmp = Base.:max(a, number(b))
like(b, tmp)
end
function Base.:div(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:div(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:div(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:div(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:div(a::AbstractNumber, b::Number)
tmp = Base.:div(number(a), b)
like(a, tmp)
end
function Base.:div(a::AbstractReal, b::Real)
tmp = Base.:div(number(a), b)
like(a, tmp)
end
function Base.:div(a::Number, b::AbstractNumber)
tmp = Base.:div(a, number(b))
like(b, tmp)
end
function Base.:div(a::Real, b::AbstractReal)
tmp = Base.:div(a, number(b))
like(b, tmp)
end
function Base.:fld(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:fld(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:fld(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:fld(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:fld(a::AbstractNumber, b::Number)
tmp = Base.:fld(number(a), b)
like(a, tmp)
end
function Base.:fld(a::AbstractReal, b::Real)
tmp = Base.:fld(number(a), b)
like(a, tmp)
end
function Base.:fld(a::Number, b::AbstractNumber)
tmp = Base.:fld(a, number(b))
like(b, tmp)
end
function Base.:fld(a::Real, b::AbstractReal)
tmp = Base.:fld(a, number(b))
like(b, tmp)
end
function Base.:rem(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:rem(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:rem(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:rem(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:rem(a::AbstractNumber, b::Number)
tmp = Base.:rem(number(a), b)
like(a, tmp)
end
function Base.:rem(a::AbstractReal, b::Real)
tmp = Base.:rem(number(a), b)
like(a, tmp)
end
function Base.:rem(a::Number, b::AbstractNumber)
tmp = Base.:rem(a, number(b))
like(b, tmp)
end
function Base.:rem(a::Real, b::AbstractReal)
tmp = Base.:rem(a, number(b))
like(b, tmp)
end
function Base.:mod(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:mod(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:mod(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:mod(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:mod(a::AbstractNumber, b::Number)
tmp = Base.:mod(number(a), b)
like(a, tmp)
end
function Base.:mod(a::AbstractReal, b::Real)
tmp = Base.:mod(number(a), b)
like(a, tmp)
end
function Base.:mod(a::Number, b::AbstractNumber)
tmp = Base.:mod(a, number(b))
like(b, tmp)
end
function Base.:mod(a::Real, b::AbstractReal)
tmp = Base.:mod(a, number(b))
like(b, tmp)
end
function Base.:mod1(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:mod1(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:mod1(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:mod1(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:mod1(a::AbstractNumber, b::Number)
tmp = Base.:mod1(number(a), b)
like(a, tmp)
end
function Base.:mod1(a::AbstractReal, b::Real)
tmp = Base.:mod1(number(a), b)
like(a, tmp)
end
function Base.:mod1(a::Number, b::AbstractNumber)
tmp = Base.:mod1(a, number(b))
like(b, tmp)
end
function Base.:mod1(a::Real, b::AbstractReal)
tmp = Base.:mod1(a, number(b))
like(b, tmp)
end
function Base.:cmp(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:cmp(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:cmp(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:cmp(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:cmp(a::AbstractNumber, b::Number)
tmp = Base.:cmp(number(a), b)
like(a, tmp)
end
function Base.:cmp(a::AbstractReal, b::Real)
tmp = Base.:cmp(number(a), b)
like(a, tmp)
end
function Base.:cmp(a::Number, b::AbstractNumber)
tmp = Base.:cmp(a, number(b))
like(b, tmp)
end
function Base.:cmp(a::Real, b::AbstractReal)
tmp = Base.:cmp(a, number(b))
like(b, tmp)
end
function Base.:&(arg1::AbstractNumber)
tmp = Base.:&(number(arg1))
like(arg1, tmp)
end
function Base.:&(arg1::AbstractReal)
tmp = Base.:&(number(arg1))
like(arg1, tmp)
end
function Base.:&(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:&(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:&(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:&(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:&(a::AbstractNumber, b::Number)
tmp = Base.:&(number(a), b)
like(a, tmp)
end
function Base.:&(a::AbstractReal, b::Real)
tmp = Base.:&(number(a), b)
like(a, tmp)
end
function Base.:&(a::Number, b::AbstractNumber)
tmp = Base.:&(a, number(b))
like(b, tmp)
end
function Base.:&(a::Real, b::AbstractReal)
tmp = Base.:&(a, number(b))
like(b, tmp)
end
function Base.:|(arg1::AbstractNumber)
tmp = Base.:|(number(arg1))
like(arg1, tmp)
end
function Base.:|(arg1::AbstractReal)
tmp = Base.:|(number(arg1))
like(arg1, tmp)
end
function Base.:|(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:|(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:|(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:|(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:|(a::AbstractNumber, b::Number)
tmp = Base.:|(number(a), b)
like(a, tmp)
end
function Base.:|(a::AbstractReal, b::Real)
tmp = Base.:|(number(a), b)
like(a, tmp)
end
function Base.:|(a::Number, b::AbstractNumber)
tmp = Base.:|(a, number(b))
like(b, tmp)
end
function Base.:|(a::Real, b::AbstractReal)
tmp = Base.:|(a, number(b))
like(b, tmp)
end
function Base.:xor(arg1::AbstractNumber)
tmp = Base.:xor(number(arg1))
like(arg1, tmp)
end
function Base.:xor(arg1::AbstractReal)
tmp = Base.:xor(number(arg1))
like(arg1, tmp)
end
function Base.:xor(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = Base.:xor(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:xor(arg1::AbstractReal, arg2::AbstractReal)
tmp = Base.:xor(number(arg1), number(arg2))
like(arg1, tmp)
end
function Base.:xor(a::AbstractNumber, b::Number)
tmp = Base.:xor(number(a), b)
like(a, tmp)
end
function Base.:xor(a::AbstractReal, b::Real)
tmp = Base.:xor(number(a), b)
like(a, tmp)
end
function Base.:xor(a::Number, b::AbstractNumber)
tmp = Base.:xor(a, number(b))
like(b, tmp)
end
function Base.:xor(a::Real, b::AbstractReal)
tmp = Base.:xor(a, number(b))
like(b, tmp)
end
function Base.:clamp(arg1::AbstractNumber, arg2::AbstractNumber, arg3::AbstractNumber)
tmp = Base.:clamp(number(arg1), number(arg2), number(arg3))
like(arg1, tmp)
end
function Base.:clamp(arg1::AbstractReal, arg2::AbstractReal, arg3::AbstractReal)
tmp = Base.:clamp(number(arg1), number(arg2), number(arg3))
like(arg1, tmp)
end
function SpecialFunctions.:airyai(arg1::AbstractNumber)
tmp = SpecialFunctions.:airyai(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyai(arg1::AbstractReal)
tmp = SpecialFunctions.:airyai(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyaiprime(arg1::AbstractNumber)
tmp = SpecialFunctions.:airyaiprime(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyaiprime(arg1::AbstractReal)
tmp = SpecialFunctions.:airyaiprime(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybi(arg1::AbstractNumber)
tmp = SpecialFunctions.:airybi(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybi(arg1::AbstractReal)
tmp = SpecialFunctions.:airybi(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybiprime(arg1::AbstractNumber)
tmp = SpecialFunctions.:airybiprime(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybiprime(arg1::AbstractReal)
tmp = SpecialFunctions.:airybiprime(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyaix(arg1::AbstractNumber)
tmp = SpecialFunctions.:airyaix(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyaix(arg1::AbstractReal)
tmp = SpecialFunctions.:airyaix(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyaiprimex(arg1::AbstractNumber)
tmp = SpecialFunctions.:airyaiprimex(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airyaiprimex(arg1::AbstractReal)
tmp = SpecialFunctions.:airyaiprimex(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybix(arg1::AbstractNumber)
tmp = SpecialFunctions.:airybix(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybix(arg1::AbstractReal)
tmp = SpecialFunctions.:airybix(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybiprimex(arg1::AbstractNumber)
tmp = SpecialFunctions.:airybiprimex(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:airybiprimex(arg1::AbstractReal)
tmp = SpecialFunctions.:airybiprimex(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:besselh(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselh(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselh(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselh(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselh(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselh(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselh(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselh(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselh(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselh(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselh(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselh(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselh(arg1::AbstractNumber, arg2::AbstractNumber, arg3::AbstractNumber)
tmp = SpecialFunctions.:besselh(number(arg1), number(arg2), number(arg3))
like(arg1, tmp)
end
function SpecialFunctions.:besselh(arg1::AbstractReal, arg2::AbstractReal, arg3::AbstractReal)
tmp = SpecialFunctions.:besselh(number(arg1), number(arg2), number(arg3))
like(arg1, tmp)
end
function SpecialFunctions.:besselhx(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselhx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselhx(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselhx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselhx(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselhx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselhx(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselhx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselhx(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselhx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselhx(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselhx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselhx(arg1::AbstractNumber, arg2::AbstractNumber, arg3::AbstractNumber)
tmp = SpecialFunctions.:besselhx(number(arg1), number(arg2), number(arg3))
like(arg1, tmp)
end
function SpecialFunctions.:besselhx(arg1::AbstractReal, arg2::AbstractReal, arg3::AbstractReal)
tmp = SpecialFunctions.:besselhx(number(arg1), number(arg2), number(arg3))
like(arg1, tmp)
end
function SpecialFunctions.:besseli(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besseli(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besseli(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besseli(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besseli(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besseli(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besseli(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besseli(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besseli(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besseli(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besseli(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besseli(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselix(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselix(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselix(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselix(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselix(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselix(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselix(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselix(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselix(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselix(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselix(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselix(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselj(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselj(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselj(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselj(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselj(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselj(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselj(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselj(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselj(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselj(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselj(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselj(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselj0(arg1::AbstractNumber)
tmp = SpecialFunctions.:besselj0(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:besselj0(arg1::AbstractReal)
tmp = SpecialFunctions.:besselj0(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:besselj1(arg1::AbstractNumber)
tmp = SpecialFunctions.:besselj1(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:besselj1(arg1::AbstractReal)
tmp = SpecialFunctions.:besselj1(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:besseljx(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besseljx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besseljx(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besseljx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besseljx(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besseljx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besseljx(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besseljx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besseljx(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besseljx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besseljx(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besseljx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselk(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselk(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselk(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselk(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselk(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselk(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselk(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselk(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselk(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselk(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselk(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselk(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselkx(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselkx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselkx(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselkx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselkx(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselkx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselkx(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselkx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselkx(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselkx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselkx(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselkx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:bessely(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:bessely(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:bessely(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:bessely(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:bessely(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:bessely(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:bessely(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:bessely(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:bessely(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:bessely(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:bessely(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:bessely(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:bessely0(arg1::AbstractNumber)
tmp = SpecialFunctions.:bessely0(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:bessely0(arg1::AbstractReal)
tmp = SpecialFunctions.:bessely0(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:bessely1(arg1::AbstractNumber)
tmp = SpecialFunctions.:bessely1(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:bessely1(arg1::AbstractReal)
tmp = SpecialFunctions.:bessely1(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:besselyx(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:besselyx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselyx(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:besselyx(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:besselyx(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:besselyx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselyx(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:besselyx(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:besselyx(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:besselyx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:besselyx(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:besselyx(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:dawson(arg1::AbstractNumber)
tmp = SpecialFunctions.:dawson(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:dawson(arg1::AbstractReal)
tmp = SpecialFunctions.:dawson(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erf(arg1::AbstractNumber)
tmp = SpecialFunctions.:erf(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erf(arg1::AbstractReal)
tmp = SpecialFunctions.:erf(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erf(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:erf(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:erf(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:erf(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:erf(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:erf(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:erf(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:erf(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:erf(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:erf(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:erf(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:erf(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:erfc(arg1::AbstractNumber)
tmp = SpecialFunctions.:erfc(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfc(arg1::AbstractReal)
tmp = SpecialFunctions.:erfc(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfcinv(arg1::AbstractNumber)
tmp = SpecialFunctions.:erfcinv(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfcinv(arg1::AbstractReal)
tmp = SpecialFunctions.:erfcinv(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfcx(arg1::AbstractNumber)
tmp = SpecialFunctions.:erfcx(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfcx(arg1::AbstractReal)
tmp = SpecialFunctions.:erfcx(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfi(arg1::AbstractNumber)
tmp = SpecialFunctions.:erfi(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfi(arg1::AbstractReal)
tmp = SpecialFunctions.:erfi(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfinv(arg1::AbstractNumber)
tmp = SpecialFunctions.:erfinv(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:erfinv(arg1::AbstractReal)
tmp = SpecialFunctions.:erfinv(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:eta(arg1::AbstractNumber)
tmp = SpecialFunctions.:eta(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:eta(arg1::AbstractReal)
tmp = SpecialFunctions.:eta(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:digamma(arg1::AbstractNumber)
tmp = SpecialFunctions.:digamma(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:digamma(arg1::AbstractReal)
tmp = SpecialFunctions.:digamma(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:invdigamma(arg1::AbstractNumber)
tmp = SpecialFunctions.:invdigamma(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:invdigamma(arg1::AbstractReal)
tmp = SpecialFunctions.:invdigamma(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:polygamma(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:polygamma(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:polygamma(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:polygamma(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:polygamma(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:polygamma(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:polygamma(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:polygamma(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:polygamma(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:polygamma(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:polygamma(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:polygamma(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:trigamma(arg1::AbstractNumber)
tmp = SpecialFunctions.:trigamma(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:trigamma(arg1::AbstractReal)
tmp = SpecialFunctions.:trigamma(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh1(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:hankelh1(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh1(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:hankelh1(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh1(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:hankelh1(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh1(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:hankelh1(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh1(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:hankelh1(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh1(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:hankelh1(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh1x(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:hankelh1x(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh1x(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:hankelh1x(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh1x(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:hankelh1x(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh1x(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:hankelh1x(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh1x(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:hankelh1x(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh1x(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:hankelh1x(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh2(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:hankelh2(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh2(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:hankelh2(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh2(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:hankelh2(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh2(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:hankelh2(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh2(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:hankelh2(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh2(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:hankelh2(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh2x(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:hankelh2x(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh2x(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:hankelh2x(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:hankelh2x(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:hankelh2x(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh2x(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:hankelh2x(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:hankelh2x(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:hankelh2x(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:hankelh2x(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:hankelh2x(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:zeta(arg1::AbstractNumber)
tmp = SpecialFunctions.:zeta(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:zeta(arg1::AbstractReal)
tmp = SpecialFunctions.:zeta(number(arg1))
like(arg1, tmp)
end
function SpecialFunctions.:zeta(arg1::AbstractNumber, arg2::AbstractNumber)
tmp = SpecialFunctions.:zeta(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:zeta(arg1::AbstractReal, arg2::AbstractReal)
tmp = SpecialFunctions.:zeta(number(arg1), number(arg2))
like(arg1, tmp)
end
function SpecialFunctions.:zeta(a::AbstractNumber, b::Number)
tmp = SpecialFunctions.:zeta(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:zeta(a::AbstractReal, b::Real)
tmp = SpecialFunctions.:zeta(number(a), b)
like(a, tmp)
end
function SpecialFunctions.:zeta(a::Number, b::AbstractNumber)
tmp = SpecialFunctions.:zeta(a, number(b))
like(b, tmp)
end
function SpecialFunctions.:zeta(a::Real, b::AbstractReal)
tmp = SpecialFunctions.:zeta(a, number(b))
like(b, tmp)
end
| AbstractNumbers | https://github.com/SimonDanisch/AbstractNumbers.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.