licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
587
""" # precis $(SIGNATURES) """ function precis(nt::NamedTuple; io = stdout, digits = 2, depth = Inf, alpha = 0.11) post = rand(nt.distr, 10_000) df = DataFrame(post', [keys(nt.coef)...]) Text(precis(df; io=String)) end """ # precis $(SIGNATURES) """ function precis(m::DynamicPPL.Model; io = stdout, digits = 2, depth = Inf, alpha = 0.11, sampler=NUTS(0.65), nsamples=2000, nchains=4) chns = mapreduce(c -> sample(m, sampler, nsamples), chainscat, 1:nchains) df = DataFrame(Array(chns), names(chns, [:parameters])) Text(precis(df; io=String)) end
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
1752
# Run like # using Turing # @model height(heights) = begin # μ ~ Normal(178, 20) # σ ~ Uniform(0, 50) # heights .~ Normal(μ, σ) # end # m = height(d2.height) # res = quap(m) # Find the MAP via optimization and get the information matrix at that point. # Look if your solution converged. Sometimes even solutions that didn't converge # might be pretty good, on the other hand, just because the solver converged that # doesn't mean you got the point you are looking for; this isn't even global # optimization. In any case, trying other optimization methods might help. function turing_quap(model::Turing.Model, args...; kwargs...) opt = optimize(model, MAP(), args...; kwargs...) coef = opt.values.array var_cov_matrix = informationmatrix(opt) sym_var_cov_matrix = Symmetric(var_cov_matrix) # lest MvNormal complains, loudly converged = Optim.converged(opt.optim_result) distr = if length(coef) == 1 Normal(coef[1], √sym_var_cov_matrix[1]) # Normal expects stddev else MvNormal(coef, sym_var_cov_matrix) # MvNormal expects variance matrix end params = StatsBase.params(model) params_tuple = tuple(Symbol.(params)...) ( coef = NamedTuple{params_tuple}(coef), vcov = sym_var_cov_matrix, converged = converged, distr = distr, params = [params...] ) end function StatsBase.params(model::Turing.Model) nt = model |> Turing.VarInfo |> Turing.tonamedtuple p = String[] for (a, v) in nt arr = a[1] var = v[1] if length(arr) != 1 append!(p, ["$var[$i]" for i in 1:length(arr)]) else push!(p, var) end end return p end export turing_quap
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
450
using StanSample, NamedTupleTools using StatisticalRethinking using Test tests = ["srtools", "link", "simulate", "lppd"] stan_tests = ["wd-loo-compare",] stan_exists()::Bool = ("JULIA_CMDSTAN_HOME" in keys(ENV) || "CMDSTAN" in keys(ENV)) for t ∈ tests @testset "$t" begin include("test_$t.jl") end end if stan_exists() for t ∈ stan_tests @testset "$t" begin #include("test_$t.jl") end end end
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
175
using DataFrames d = DataFrame(:a => [1,2,3], :b => [2,3,4]) ref = [[3,5,7], [5,8,11]] @test link(d, [:a, :b], 1:2) == ref @test link(d, (r,x) -> r.a + r.b * x, 1:2) == ref
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
232
using DataFrames d = DataFrame(:mu => [0.0, 0.1, 0.2], :sigma => [0.1, 0.1, 0.1]) @test lppd(d, (r, x) -> Normal(r.mu + x, r.sigma), 1:4, 4:-1:1) ≈ [-391.7149657288782, -31.71476226597971, -49.71493819252957, -449.71496572887867]
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
449
using DataFrames, Distributions d = DataFrame(:mu => [1.0, 2.0], :sigma => [0.1, 0.2]) res = [ [1.0297287984535461, 2.0382395967790607], [1.8804731046543537, 2.997910951072525] ] res_dist = [ [Normal(1.0, 0.1), Normal(2.0, 0.1)], [Normal(2.0, 0.2), Normal(3.0, 0.2)], ] fun = (r, x) -> Normal(r.mu + x, r.sigma) @test simulate(d, fun, 0:1, seed=1) ≈ res atol=0.6 @test simulate(d, fun, 0:1, seed=1, return_dist=true) == res_dist
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
136
@testset "PI" begin r = PI(1:100) @test r ≈ [6.445, 94.555] r = PI(1:100; perc_prob=0.1) @test r ≈ [45.55, 55.45] end
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
5230
using ParetoSmooth, AxisKeys import ParetoSmooth: psis_loo, loo_compare using NamedTupleTools, Distributions using StanSample using StatisticalRethinking using Test df = CSV.read(sr_datadir("WaffleDivorce.csv"), DataFrame); df[!, :M] = zscore(df.Marriage) df[!, :A] = zscore(df.MedianAgeMarriage) df[!, :D] = zscore(df.Divorce) data = (N=size(df, 1), D=df.D, A=df.A, M=df.M) stan5_1 = " data { int < lower = 1 > N; // Sample size vector[N] D; // Outcome vector[N] A; // Predictor } parameters { real a; // Intercept real bA; // Slope (regression coefficients) real < lower = 0 > sigma; // Error SD } transformed parameters { vector[N] mu; // mu is a vector for (i in 1:N) mu[i] = a + bA * A[i]; } model { a ~ normal(0, 0.2); //Priors bA ~ normal(0, 0.5); sigma ~ exponential(1); D ~ normal(mu , sigma); // Likelihood } generated quantities { vector[N] loglik; for (i in 1:N) loglik[i] = normal_lpdf(D[i] | mu[i], sigma); } "; stan5_2 = " data { int N; vector[N] D; vector[N] M; } parameters { real a; real bM; real<lower=0> sigma; } transformed parameters { vector[N] mu; for (i in 1:N) mu[i]= a + bM * M[i]; } model { a ~ normal( 0 , 0.2 ); bM ~ normal( 0 , 0.5 ); sigma ~ exponential( 1 ); D ~ normal( mu , sigma ); } generated quantities { vector[N] loglik; for (i in 1:N) loglik[i] = normal_lpdf(D[i] | mu[i], sigma); } "; stan5_3 = " data { int N; vector[N] D; vector[N] M; vector[N] A; } parameters { real a; real bA; real bM; real<lower=0> sigma; } transformed parameters { vector[N] mu; for (i in 1:N) mu[i] = a + bA * A[i] + bM * M[i]; } model { a ~ normal( 0 , 0.2 ); bA ~ normal( 0 , 0.5 ); bM ~ normal( 0 , 0.5 ); sigma ~ exponential( 1 ); D ~ normal( mu , sigma ); } generated quantities{ vector[N] loglik; for (i in 1:N) loglik[i] = normal_lpdf(D[i] | mu[i], sigma); } "; m5_1s = SampleModel("m5.1s", stan5_1) rc5_1s = stan_sample(m5_1s; data) m5_2s = SampleModel("m5.2s", stan5_2) rc5_2s = stan_sample(m5_2s; data) m5_3s = SampleModel("m5.3s", stan5_3) rc5_3s = stan_sample(m5_3s; data) function loo_compare2(models::Vector{SampleModel}; loglikelihood_name="loglik", model_names=nothing, sort_models=true, show_psis=true) nmodels = length(models) model_names = [models[i].name for i in 1:nmodels] chains_vec = read_samples.(models, :dataframe) # Obtain KeyedArray chains chains_vec = DataFrame.(chains_vec, :loglik) chains_vec = Array.(chains_vec) println(length(chains_vec)) println(typeof(chains_vec[1])) new_vec = Array{Float64, 3}[] for i in 1:3 chains_vec[i] = permutedims(chains_vec[i], (2, 1)) num_params = size(chains_vec[i], 1) num_samples = models[i].num_samples num_chains = models[i].num_chains println([i, size(chains_vec[i]), num_params, num_samples, num_chains]) println() chn = reshape(chains_vec[i], (num_params, num_samples, num_chains)) append!(new_vec, [chn]) println([i, length(new_vec), size(new_vec[i])]) end loo_compare2(chains_vec; loglikelihood_name, model_names, sort_models, show_psis) end function loo_compare2(ll_vec::Vector{<: Array}; loglikelihood_name="loglik", model_names=nothing, sort_models=true, show_psis=true) nmodels = length(ll_vec) #ll_vec = Array.(matrix.(chains_vec, loglikelihood_name)) # Extract loglik matrix #ll_vecp = map(to_paretosmooth, ll_vec) # Permute dims for ParetoSmooth psis_vec = psis_loo.(ll_vec) # Compute PsisLoo for all models if show_psis # If a printout is needed for i in 1:nmodels psis_vec[i] |> display end end loo_compare(psis_vec...; model_names, sort_models) end if success(rc5_1s) && success(rc5_2s) && success(rc5_3s) println() nt5_1s = read_samples(m5_1s, :particles) NamedTupleTools.select(nt5_1s, (:a, :bA, :sigma)) |> display println() nt5_2s = read_samples(m5_2s, :particles) NamedTupleTools.select(nt5_2s, (:a, :bM, :sigma)) |> display println() nt5_3s = read_samples(m5_3s, :particles) NamedTupleTools.select(nt5_3s, (:a, :bA, :bM, :sigma)) |> display println("\n") models = [m5_1s, m5_2s, m5_3s] loo_comparison = loo_compare2(models) println() loo_comparison |> display println() end @testset "loo_compare" begin @test loo_comparison.estimates(Symbol("m5.1s"), :cv_elpd) ≈ 0 atol=0.01 @test loo_comparison.estimates(Symbol("m5.1s"), :cv_avg) ≈ 0 atol=0.01 @test loo_comparison.estimates(Symbol("m5.1s"), :weight) ≈ 0.7 atol=0.1 @test loo_comparison.estimates(Symbol("m5.2s"), :cv_elpd) ≈ -6.9 atol=0.6 @test loo_comparison.estimates(Symbol("m5.2s"), :cv_avg) ≈ -0.13 atol=0.02 @test loo_comparison.estimates(Symbol("m5.2s"), :weight) ≈ 0.0 atol=0.1 @test loo_comparison.estimates(Symbol("m5.3s"), :cv_elpd) ≈ -0.65 atol=0.6 @test loo_comparison.estimates(Symbol("m5.3s"), :cv_avg) ≈ -0.01 atol=0.02 @test loo_comparison.estimates(Symbol("m5.3s"), :weight) ≈ 0.34 atol=0.1 end
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
code
3564
using ParetoSmooth, AxisKeys import ParetoSmooth: psis_loo, loo_compare using NamedTupleTools, Distributions using StanSample using StatisticalRethinking using Test df = CSV.read(sr_datadir("WaffleDivorce.csv"), DataFrame); df[!, :M] = zscore(df.Marriage) df[!, :A] = zscore(df.MedianAgeMarriage) df[!, :D] = zscore(df.Divorce) data = (N=size(df, 1), D=df.D, A=df.A, M=df.M) stan5_1 = " data { int < lower = 1 > N; // Sample size vector[N] D; // Outcome vector[N] A; // Predictor } parameters { real a; // Intercept real bA; // Slope (regression coefficients) real < lower = 0 > sigma; // Error SD } transformed parameters { vector[N] mu; // mu is a vector for (i in 1:N) mu[i] = a + bA * A[i]; } model { a ~ normal(0, 0.2); //Priors bA ~ normal(0, 0.5); sigma ~ exponential(1); D ~ normal(mu , sigma); // Likelihood } generated quantities { vector[N] loglik; for (i in 1:N) loglik[i] = normal_lpdf(D[i] | mu[i], sigma); } "; stan5_2 = " data { int N; vector[N] D; vector[N] M; } parameters { real a; real bM; real<lower=0> sigma; } transformed parameters { vector[N] mu; for (i in 1:N) mu[i]= a + bM * M[i]; } model { a ~ normal( 0 , 0.2 ); bM ~ normal( 0 , 0.5 ); sigma ~ exponential( 1 ); D ~ normal( mu , sigma ); } generated quantities { vector[N] loglik; for (i in 1:N) loglik[i] = normal_lpdf(D[i] | mu[i], sigma); } "; stan5_3 = " data { int N; vector[N] D; vector[N] M; vector[N] A; } parameters { real a; real bA; real bM; real<lower=0> sigma; } transformed parameters { vector[N] mu; for (i in 1:N) mu[i] = a + bA * A[i] + bM * M[i]; } model { a ~ normal( 0 , 0.2 ); bA ~ normal( 0 , 0.5 ); bM ~ normal( 0 , 0.5 ); sigma ~ exponential( 1 ); D ~ normal( mu , sigma ); } generated quantities{ vector[N] loglik; for (i in 1:N) loglik[i] = normal_lpdf(D[i] | mu[i], sigma); } "; m5_1s = SampleModel("m5.1s", stan5_1) rc5_1s = stan_sample(m5_1s; data) m5_2s = SampleModel("m5.2s", stan5_2) rc5_2s = stan_sample(m5_2s; data) m5_3s = SampleModel("m5.3s", stan5_3) rc5_3s = stan_sample(m5_3s; data) if success(rc5_1s) && success(rc5_2s) && success(rc5_3s) println() nt5_1s = read_samples(m5_1s, :particles) NamedTupleTools.select(nt5_1s, (:a, :bA, :sigma)) |> display println() nt5_2s = read_samples(m5_2s, :particles) NamedTupleTools.select(nt5_2s, (:a, :bM, :sigma)) |> display println() nt5_3s = read_samples(m5_3s, :particles) NamedTupleTools.select(nt5_3s, (:a, :bA, :bM, :sigma)) |> display println("\n") models = [m5_1s, m5_2s, m5_3s] loo_comparison = loo_compare(models) println() loo_comparison |> display println() end @testset "loo_compare" begin @test loo_comparison.estimates(Symbol("m5.1s"), :cv_elpd) ≈ 0 atol=0.01 @test loo_comparison.estimates(Symbol("m5.1s"), :cv_avg) ≈ 0 atol=0.01 @test loo_comparison.estimates(Symbol("m5.1s"), :weight) ≈ 0.7 atol=0.1 @test loo_comparison.estimates(Symbol("m5.2s"), :cv_elpd) ≈ -6.9 atol=0.6 @test loo_comparison.estimates(Symbol("m5.2s"), :cv_avg) ≈ -0.13 atol=0.02 @test loo_comparison.estimates(Symbol("m5.2s"), :weight) ≈ 0.0 atol=0.1 @test loo_comparison.estimates(Symbol("m5.3s"), :cv_elpd) ≈ -0.65 atol=0.6 @test loo_comparison.estimates(Symbol("m5.3s"), :cv_avg) ≈ -0.01 atol=0.02 @test loo_comparison.estimates(Symbol("m5.3s"), :weight) ≈ 0.3 atol=0.1 end
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
docs
10549
# StatisticalRethinking v4 | **Project Status** | **Documentation** | **Build Status** | |:-------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:| |![][project-status-img] | [![][docs-stable-img]][docs-stable-url] [![][docs-dev-img]][docs-dev-url] | ![][CI-build] | ## Note After many years I have decided to step away from my work with Stan and Julia. My plan is to be around until the end of 2024 for support if someone decides to step in and take over further development and maintenance work. At the end of 2024 I'll archive the different packages and projects included in the Github organisations StanJulia, StatisticalRethingJulia and RegressionAndOtherStoriesJulia if no one is interested (and time-wise able!) to take on this work. I have thoroughly enjoyed working on both Julia and Stan and see both projects mature during the last 15 or so years. And I will always be grateful for the many folks who have helped me on numerous occasions. Both the Julia and the Stan community are awesome to work with! Thanks a lot! ## Purpose of this package The StatisticalRethinking.jl `package` contains functions comparable to the functions in the R package "rethinking" associated with the book [Statistical Rethinking](https://xcelab.net/rm/statistical-rethinking/) by Richard McElreath. These functions are used in Jupyter and Pluto notebook `projects` specifically intended for hands-on use while studying the book or taking the course. Currently there are 3 of these notebook projects: 1. Max Lapan's [rethinking-2ed-julia](https://github.com/Shmuma/rethinking-2ed-julia) which uses Turing.jl and Jupyter notebooks. 2. The [SR2TuringPluto.jl](https://github.com/StatisticalRethinkingJulia/SR2TuringPluto.jl) project, also Turing.jl based but using Pluto.jl instead of Jupyter. It is based on Max Lapan's work above. 3. The [SR2StanPluto.jl](https://github.com/StatisticalRethinkingJulia/SR2StanPluto.jl) project, which uses Stan as implemented in StanSample.jl and StanQuap.jl. See [StanJulia](https://github.com/StanJulia). There is a fourth option to study the Turing.jl versions of the models in the Statistical Rethinking book which is in the form of a package and Franklin web pages: [TuringModels.jl](https://github.com/StatisticalRethinkingJulia/TuringModels.jl). ## Why a StatisticalRethinking v4? Over time more options become available to express the material covered in Statistical Rethinking, e.g. the use of KeyedArrays (provided by [AxisKeys.jl](https://github.com/JuliaArrays/AxisArrays.jl)) for the representation of mcmc chains. Other examples are the recently developed [ParetoSmooth.jl](https://github.com/TuringLang/ParetoSmooth.jl) which could be used in the PSIS related examples as a replacement for ParetoSmoothedImportanceSampling.jl and the preliminary work by [SHMUMA](https://github.com/Shmuma/Dagitty.jl) on Dagitty.jl (a potential replacement for StructuralCausalModels.jl). While StatisticalRethinking v3 focused on making StatisticalRethinking.jl mcmc package independent, StatisticalRethinking v4 aims at de-coupling it from a specific graphical package and thus enables new choices for graphics, e.g. using Makie.jl and AlgebraOfGraphics.jl. StatisticalRethinking.jl v4 also fits better with the new setup of Pluto notebooks which keep track of used package versions in the notebooks themselves ([see here](https://github.com/fonsp/Pluto.jl/wiki/🎁-Package-management)). ## Workflow of StatisticalRethinkingJulia (v4): 1. Data preparation, typically using CSV.jl, DataFrames.jl and some statistical methods from StatsBase.jl and Statistics.jl. In some cases simulations are used which need Distributions.jl and a few special methods (available in StatisticalRethinking.jl). 2. Define the mcmc model, e.g. using StanSample.jl or Turing.jl, and obtain draws from the model. 3. Capture the draws for further processing. In Turing that is usually done using MCMCChains.jl, in StanSample.jl v4 it's mostly in the form of a DataFrame, a StanTable, a KeyedArray chains (obtained from AxisKeys.jl). 4. For further processing, the projects nearly always convert chains to a DataFrame. 5. Inspect the chains using statistical and visual methods. In many cases this will need one or more statistical packages and one of the graphical options. Currently visual options are StatsPlots/Plots based, e.g. in MCMCChains.jl and StatisticalRethinkingPlots.jl. 5. The above 5 steps could all be done by just using StanSample.jl or Turing.jl. **The book Statistical Rethinking has a different objective and studies how models compare, how models can help (or mislead) and why multilevel modeling might help in some cases.** 6. For this, additional packages are available, explained and demonstrated, e.g. StructuralCausalModels.jl, ParetoSmoothedImportanceSampling.jl and quite a few more. ## Using StatisticalRethinking v4 To work through the StatisticalRethinking book using Julia and Turing or Stan, download either one of the above mentioned `projects` and start Pluto (or Jupyter). An early, experimental version of [StructuralCausalModels.jl](https://github.com/StatisticalRethinkingJulia/StructuralCausalModels.jl) is also included as a dependency in the StatisticalRethinking.jl package. In the meantime I will definitely keep my eyes on [Dagitty.jl](https://github.com/Shmuma/Dagitty.jl), [Omega.jl](https://github.com/zenna/Omega.jl) and [CausalInference.jl](https://github.com/mschauer/CausalInference.jl). In particular Dagitty.jl has very similar objectives as StructuralCausalModels.jl and over time might replace it in the StatisticalRethinkingJulia ecosystem. For now, StructuralCausalModels does provide ways to convert DAGs to Dagitty and ggm formats. Similarly, a dependency [ParetoSmoothedImportanceSampling.jl](https://github.com/StatisticalRethinkingJulia/ParetoSmoothedImportanceSampling.jl) is used which provides PSIS and WAIC statistics for model comparison. ## Versions As listed in issue [#145](https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl/issues/145#issue-1064657635) recently it was noticed that some very old Jupyter notebook files are still present which makes an initial download, e.g. when `dev`-ing the package, rather long. This is not a problem when you just `add` the package. I am planning to address that in v5. ### Version 4 - Drop the heavy use of @reexport. - Enable a future switch to Makie.jl and AlgebraOfGraphics.jl by moving all graphics to StatisticalRethinkingPlots and StatisticalRethinkingMakie (in the future). - Many more improvements by Max Lapan (@shmuma). ### Versions 3.2.1 - 3.3.6 - Improvements by Max Lapan. - Added trankplot.jl. - Add compare() and plot_models() abstractions. ### Version 3.2.0 - Option to retieve sampling results as a NamedTuple. - Added new method to plotbounds() to handle NamedTuples. - Added plotlines(). ### Versions v3.1.1 - 3.1.8 - Updates from CompatHelper. - Switch to Github actions (CI, Documenter). - Updates from Rik Huijzer (link function). - Redo quap() based on StanOptimize. - Start Updating notebooks in ch 2-8 using new quap(). - Redoing and updating the models in the models subdirectory. ### Version 3.1.0 Align (stanbased) quap with Turing quap. quap() now returns a NamedTuple that includes a field `distr` which represents the quadratic Normal (MvNormal) approximation. ### Version 3.0.0 StatisticalRethinking.jl v3 is independent of the underlying mcmc package. All scripts previously in StatisticalRethinking.jl v2 holding the snippets have been replaced by Pluto notebooks in the above mentioned mcmc specific `project` repositories. Initially SR2TuringPluto.jl will lag SR2StanPluto.jl somewhat but later this year both will cover the same chapters. It is the intention to develop *tests* for StatisticalRethinking.jl v3 that work across the different mcmc implementations. This will limit dependencies to the `test/Project.toml`. ### Version 2.2.9 Currently the latest release available in the StatisticalRethinking.jl v2 format. ## Installation To install the package (from the REPL): ``` ] add StatisticalRethinking ``` but in most cases this package will be a dependency of another package or project, e.g. SR2StanPluto.jl or SR2TuringPluto.jl. ## Documentation - [**STABLE**][docs-stable-url] &mdash; **documentation of the most recently tagged version.** - [**DEVEL**][docs-dev-url] &mdash; *documentation of the in-development version.* ## Acknowledgements Of course, without the excellent textbook by Richard McElreath, this package would not have been possible. The author has also been supportive of this work and gave permission to use the datasets. ## Questions and issues Question and contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems or have a question. [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://statisticalrethinkingjulia.github.io/StatisticalRethinking.jl/latest [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://statisticalrethinkingjulia.github.io/StatisticalRethinking.jl/stable [CI-build]: https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl/workflows/CI/badge.svg?branch=master [![codecov](https://codecov.io/gh/StatisticalRethinkingJulia/StatisticalRethinking.jl/branch/master/graph/badge.svg?token=TFxRFbKONS)](https://codecov.io/gh/StatisticalRethinkingJulia/StatisticalRethinking.jl) [![Coverage Status](https://coveralls.io/repos/github/StatisticalRethinkingJulia/StatisticalRethinking.jl/badge.svg?branch=master)](https://coveralls.io/github/StatisticalRethinkingJulia/StatisticalRethinking.jl?branch=master) [codecov-img]: https://codecov.io/gh/StatisticalRethinkingJulia/StatisticalRethinking.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/StatisticalRethinkingJulia/StatisticalRethinking.jl [issues-url]: https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl/issues [project-status-img]: https://img.shields.io/badge/lifecycle-stable-green.svg
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
docs
64
# To do 1. Additional models and chapters 2. Documentation 3.
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
docs
1096
## Acknowledgements Of course, without this excellent textbook by Richard McElreath, this package would not have been possible. The author has also been supportive of this work and gave permission to use the datasets. Richard Torkar has taken the lead in developing the Turing versions of the models in chapter 8 and subsequent chapters. Tamas Papp has been very helpful during the development of the DynamicHMC versions of the models. The TuringLang team and #turing contributors on Slack have been extremely helpful! The Turing examples by Cameron Pfiffer are followed closely in several example scripts. The increasing use of Particles to represent quap approximations is possible thanks to the package [MonteCarloMeasurements.jl](https://github.com/baggepinnen/MonteCarloMeasurements.jl). [Soss.jl](https://github.com/cscherrer/Soss.jl) and [related write-ups](https://cscherrer.github.io) introduced me to that option. Developing `rethinking` must have been an on-going process over several years, `StatisticalRethinking.jl` and associated packages will likely follow a similar path.
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
docs
881
```@meta CurrentModule = StatisticalRethinking ``` ## sr\_path ```@docs sr_path(parts...) ``` ## sr\_datadir ```@docs sr_datadir(parts...) ``` ## link ```@docs link ``` ## lppd ```@docs lppd ``` ## rescale ```@docs rescale(x::Vector{Float64}, xbar::Float64, xstd::Float64) ``` ## sample ```@docs sample(df::DataFrame, n; replace=true, ordered=false) ``` ## hpdi ```@docs hpdi(x::Vector{T}; alpha::Real=0.05) where {T<:Real} ``` ## meanlowerupper ```@docs meanlowerupper(data, PI = (0.055, 0.945)) ``` ## compare ```@docs compare(m::Vector{Matrix{Float64}}, ::Val{:waic}) ``` ## create\_observation\_matrix ```@docs create_observation_matrix(x::Vector, k::Int) ``` ## r2\_is\_bad ```@docs r2_is_bad(model::NamedTuple, df::DataFrame) ``` ## PI ```@docs PI ``` ## var2 ```@docs var2(x) ``` ## sim\_happiness ```@docs sim_happiness ``` ## simulate ```@docs simulate ```
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
docs
1709
## References This package is based on: 1. [McElreath: Statistical Rethinking 2nd edition](http://xcelab.net/rm/statistical-rethinking/) There is no shortage of additional good books on Bayesian statistics. A few of my favorites are: 2. [Bolstad: Introduction to Bayesian statistics](http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118593227.html) 3. [Bolstad: Understanding Computational Bayesian Statistics](http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470046090.html) 4. [Gelman, Hill: Data Analysis Using Regression and Multilevel/Hierarchical Models](http://www.stat.columbia.edu/~gelman/arm/) 5. [Kruschke: Doing Bayesian Data Analysis](https://sites.google.com/site/doingbayesiandataanalysis/what-s-new-in-2nd-ed) 6. [Lee, Wagenmakers: Bayesian Cognitive Modeling](https://www.cambridge.org/us/academic/subjects/psychology/psychology-research-methods-and-statistics/bayesian-cognitive-modeling-practical-course?format=PB&isbn=9781107603578) 7. [Gelman, Carlin, and others: Bayesian Data Analysis](http://www.stat.columbia.edu/~gelman/book/) 8. [Causal Inference in Statistics - A Primer](https://www.wiley.com/en-us/Causal+Inference+in+Statistics%3A+A+Primer-p-9781119186847) 9. [Betancourt: A Conceptual Introduction to Hamiltonian Monte Carlo](https://arxiv.org/abs/1701.02434) 10. [Pearl, Mackenzie: The Book of Why](https://www.basicbooks.com/titles/judea-pearl/the-book-of-why/9780465097616/) Special mention is appropriate for the new book: 11. [Gelman, Hill, Vehtari: Rgression and other stories](https://www.cambridge.org/highereducation/books/regression-and-other-stories/DD20DD6C9057118581076E54E40C372C#overview) which in a sense is a major update to item 4. above.
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
4.9.0
60ced4d92c6d6cc473df31cc95d1d561beaeeb20
docs
6030
## Github organization StatisticalRethinking.jl is part of the broader [StatisticalRethinkingJulia](https://github.com/StatisticalRethinkingJulia) Github organization. ## Purpose of this package The StatisticalRethinking.jl `package` contains functions comparable to the functions in the R package "rethinking" associated with the book [Statistical Rethinking](https://xcelab.net/rm/statistical-rethinking/) by Richard McElreath. These functions are used in Jupyter and Pluto notebook `projects` specifically intended for hands-on use while studying the book or taking the course. Currently there are 3 of these notebook projects: 1. Max Lapan's [rethinking-2ed-julia](https://github.com/Shmuma/rethinking-2ed-julia) which uses Turing.jl and Jupyter notebooks. This has been forked, renamed to SR2TuringJupyter.jl and modified in a few places (e.g. data files are obtained from StatisticalRethinking.jl). 2. The [SR2TuringPluto.jl](https://github.com/StatisticalRethinkingJulia/SR2TuringPluto.jl) project, also Turing.jl based but using Pluto.jl instead of Jupyter. It is based on Max Lapan's work above. 3. The [SR2StanPluto.jl](https://github.com/StatisticalRethinkingJulia/SR2StanPluto.jl) project, which uses Stan as implemented in StanSample.jl and StanQuap.jl. See [StanJulia](https://github.com/StanJulia). There is a fourth option to study the (Turing.jl) models in the Statistical Rethinking book which is in the form of a package and Franklin web pages: [TuringModels.jl](https://github.com/StatisticalRethinkingJulia/TuringModels.jl). ## Why a StatisticalRethinking v4? Over time more and better options become available to express the material covered in Statistical Rethinking, e.g. the use of KeyedArrays (provided by [AxisKeys.jl](https://github.com/JuliaArrays/AxisArrays.jl)) for the representation of mcmc chains. But other examples are the recently developed [ParetoSmooth.jl](https://github.com/TuringLang/ParetoSmooth.jl) which could be used in the PSIS related examples as a replacement for ParetoSmoothedImportanceSampling.jl and the preliminary work by [SHMUMA](https://github.com/Shmuma/Dagitty.jl) on Dagitty.jl (a potential replacement for StructuralCausalModels.jl). While StatisticalRethinking v3 focused on making StatisticalRethinking.jl mcmc package independent, StatisticalRethinking v4 aims at de-coupling it from a specific graphical package and thus enables new choices for graphics, e.g. using Makie.jl and AlgebraOfGraphics.jl. Also, an attempt has been made to make StatisticalRethinking.jl fit better with the new setup of Pluto notebooks which keep track of used package versions in the notebooks themselves ([see here](https://github.com/fonsp/Pluto.jl/wiki/🎁-Package-management)). ## Workflow of StatisticalRethinkingJulia (v4): 1. Data preparation, typically using CSV.jl, DataFrames.jl and some statistical methods from StatsBase.jl and Statistics.jl. In some cases simulations are used which need Distributions.jl and a few special methods (available in StatisticalRethinking.jl). 2. Define the mcmc model, e.g. using StanSample.jl or Turing.jl, and obtain draws from the model. 3. Capture the draws for further processing. In Turing that is usually done using MCMCChains.jl, in StanSample.jl v4 it's mostly in the form of a DataFrame, a StanTable, a KeyedArray chains (obtained from AxisKeys.jl). 4. Inspect the chains using statistical and visual methods. In many cases this will need one or more statistical packages and one of the graphical options. Currently visual options are StatsPlots/Plots based, e.g. in MCMCChains.jl and StatisticalRethinkingPlots.jl. The above 4 items could all be done by just using StanSample.jl or Turing.jl. **The book Statistical Rethinking has a different objective and studies how models compare, how models can help (or mislead) and why multilevel modeling might help in some cases.** For this, additional packages are available, explained and demonstrated, e.g. StructuralCausalModels.jl, ParetoSmoothedImportanceSampling.jl and quite a few more. ## How to use StatisticalRethinking.jl To work through the StatisticalRethinking book using Julia and Turing, download either of the `projects` [SR2TuringJupyter.jl](https://github.com/StatisticalRethinkingJulia/SR2TuringJupyter.jl) or [SR2TuringPluto.jl](https://github.com/StatisticalRethinkingJulia/SR2TuringPluto.jl). To work through the StatisticalRethinking book using Julia and Stan, download `project` [SR2StanPluto.jl](https://github.com/StatisticalRethinkingJulia/SR2StanPluto.jl). All three projects create a Julia environment where most needed packages are available and can be imported. In addition to providing a Julia package environment, these also contain chapter by chapter Jupyter or Pluto notebooks to work through the Statistical Rethinking book. To tailor StatisticalRethinking.jl for Stan, use (in that order!): ``` using StanSample using StatisticalRethinking ``` or, for Turing: ``` using Turing using StatisticalRethinking ``` See the notebook examples in the projects for other often used packages. ## Structure of StatisticalRethinkingJulia (v4): In order to keep environment packages relatively simple (i.e. have a limited set of dependencies on other Julia packages) StatisticalRethinking consists of 2 layers, a top layer containing mcmc dependent methods (e.g. a model comparison method taking Turing.jl or StanSample.jl derived objects) which in turn call common methods in the bottom layer. The same applies for the graphic packages. This feature relies on Requires.jl and the mcmc dependent methods can be found in `src/require` directories. Consequently, the StatisticalRethinkingJulia ecosystem contains 4 layers: 1. The lowest layer provides mcmc methods, currently Turing.jl and StanSample.jl. 2. Common (mcmc independent) bottom layer in StatisticalRethinking (and StatisticalRethinkingPlots). 3. MCMC dependent top layer in StatisticalRethinking (and StatisticalRethinkingPlots). 4. Chapter by chapter notebooks.
StatisticalRethinking
https://github.com/StatisticalRethinkingJulia/StatisticalRethinking.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
688
using MonolithicFEMVLFS using Documenter DocMeta.setdocmeta!(MonolithicFEMVLFS, :DocTestSetup, :(using MonolithicFEMVLFS); recursive=true) makedocs(; modules=[MonolithicFEMVLFS], authors="Oriol Colomes <[email protected]>", repo="https://github.com/oriolcg/MonolithicFEMVLFS.jl/blob/{commit}{path}#{line}", sitename="MonolithicFEMVLFS.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://oriolcg.github.io/MonolithicFEMVLFS.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/oriolcg/MonolithicFEMVLFS.jl", devbranch="main", )
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
5065
function run_5_1_1_periodic_beam_sapatial_convergence() # Define Execution function function run_5_1_1(case::Periodic_Beam_params) case_name = savename(case) println("-------------") println("Case: ",case_name) e_ϕ, e_η, = run_periodic_beam(case) e_ϕ_i = last(e_ϕ) e_η_i = last(e_η) case_name_suffix = savename(case,"jld2";digits=10) file = datadir("5-1-1-periodic-beam-spatial-convergence", case_name_suffix) prefix, data, suffix = DrWatson.parse_savename(case_name_suffix, parsetypes=(Int, Float64)) push!(data, "e_ϕ_i"=>e_ϕ_i, "e_η_i"=>e_η_i) @tagsave(file,data) return data end # Warm-up case k = 1 H = 1.0 g = 9.81 ω = √(g*k*tanh(k*H)) T = 2π/ω Δt = T/1 n = 3 order = 2 path = datadir("5-1-1-periodic-beam-spatial-convergence") case = Periodic_Beam_params( name="11Warm-up", n=n, dt=Δt, tf=T, k=k, orderϕ=order, orderη=order, vtk_output=false ) produce_or_load(path,case,run_5_1_1;digits=8) # Element size Convergence Δt = 1.0e-6 tf = 1.0e-4 k = 15 e_ϕ_n = Float64[] e_η_n = Float64[] for order in 2:4 for i in 1:5 nelem = 2^(i+1) case = Periodic_Beam_params( name="spatialConvergence", n=nelem, dt=Δt, tf=tf, k=k, orderϕ=order, orderη=order ) data, file = produce_or_load(path,case,run_5_1_1;digits=8) push!(e_ϕ_n,data["e_ϕ_i"]) push!(e_η_n,data["e_η_i"]) end end plot_case = Periodic_Beam_params( name="spatialConvergence", dt=Δt, tf=tf, k=k, ) # Element size Convergence with orderϕ = 2 Δt = 1.0e-6 tf = 1.0e-4 k = 15 e_ϕ_n = Float64[] e_η_n = Float64[] for order in 2:4 for i in 1:5 nelem = 2^(i+1) case = Periodic_Beam_params( name="spatialConvergence", n=nelem, dt=Δt, tf=tf, k=k, orderϕ=2, orderη=order ) data, file = produce_or_load(path,case,run_5_1_1;digits=8) push!(e_ϕ_n,data["e_ϕ_i"]) push!(e_η_n,data["e_η_i"]) end end plot_case = Periodic_Beam_params( name="spatialConvergence", dt=Δt, tf=tf, k=k, ) plotName = savename(plot_case;ignores=("n", "orderϕ", "orderη"),digits=8) res = collect_results(path) println("Ploting h-convergence") plt1 = plot( fontsize=12, legend=:bottomleft, legendfontsize=10 ) plt2 = plot( fontsize=12, legend=:bottomleft, legendfontsize=10 ) plt3 = plot( fontsize=12, legend=:bottomleft, legendfontsize=10 ) xlabel!(plt1,"Number of elements in x-direction") xlabel!(plt2,"Number of elements in x-direction") xlabel!(plt3,"Number of elements in x-direction") ylabel!(plt1,"Error") ylabel!(plt2,"Error") ylabel!(plt3,"Error") nelems = [2^(i+1) for i in 1:5] styles = [:dash,:dashdot,:dashdotdot] shapes = [:square,:circle,:utriangle] factors_plt1 = [2,5,10] factors_plt2 = [10,30,80] for (iorder,order) in enumerate(2:4) res_order = @linq res |> where(:orderϕ .== order, :orderη .== order, :k .== k, :dt .== Δt, :tf .== tf) |> orderby(:n) res_order_fixed = @linq res |> where(:orderϕ .== 2, :orderη .== order, :k .== k, :dt .== Δt, :tf .== tf) |> orderby(:n) local_errors_ϕ = res_order[!,:e_ϕ_i] local_errors_η = res_order[!,:e_η_i] local_errors_η_fixed = res_order_fixed[!,:e_η_i] plot!(plt1, nelems,local_errors_ϕ, xaxis=:log, yaxis=:log, shape=shapes[iorder], color=:blue, style=styles[iorder], msize=4, label="r=$(order)" ) plot!(plt2, nelems,local_errors_η, xaxis=:log, yaxis=:log, shape=shapes[iorder], color=:red, style=styles[iorder], msize=4, label="r=$(order+1)" ) plot!(plt3, nelems,local_errors_η_fixed, xaxis=:log, yaxis=:log, shape=shapes[iorder], color=:red, style=styles[iorder], msize=4, label="r=$(order+1)" ) end for (iorder,order) in enumerate(2:4) rate_label = latexstring("n^{-"*"$(order+1)"*"}") plot!(plt1, nelems,factors_plt1[iorder]*nelems.^(-float(order+1)), color=:black, style=styles[iorder], label=rate_label, xticks=(nelems,[string(2*nelem) for nelem in nelems]) ) plot!(plt2, nelems,factors_plt2[iorder]*nelems.^(-float(order+1)), color=:black, style=styles[iorder], label=rate_label, xticks=(nelems,[string(2*nelem) for nelem in nelems]) ) plot!(plt3, nelems,factors_plt2[iorder]*nelems.^(-float(order+1)), color=:black, style=styles[iorder], label=rate_label, xticks=(nelems,[string(2*nelem) for nelem in nelems]) ) end savefig(plt1,plotsdir("5-1-1-periodic-beam-spatial-convergence",plotName)*"_phi.png") savefig(plt2,plotsdir("5-1-1-periodic-beam-spatial-convergence",plotName)*"_eta.png") savefig(plt3,plotsdir("5-1-1-periodic-beam-spatial-convergence",plotName)*"_eta-fixed-order.png") end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
3286
function run_5_1_2_periodic_beam_time_convergence() # Define Execution function function run_5_1_2(case::Periodic_Beam_params) case_name = savename(case;digits=8) println("-------------") println("Case: ",case_name) e_ϕ, e_η, = run_periodic_beam(case) e_ϕ_i = last(e_ϕ) e_η_i = last(e_η) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-1-2-periodic-beam-time-convergence", case_name_suffix) prefix, data, suffix = DrWatson.parse_savename(case_name_suffix, parsetypes=(Int, Float64)) push!(data, "e_ϕ_i"=>e_ϕ_i, "e_η_i"=>e_η_i) @tagsave(file,data) return data end # Warm-up case k = 1 H = 1.0 g = 9.81 ω = √(g*k*tanh(k*H)) T = 2π/ω Δt = T/1 n = 3 order = 2 path = datadir("5-1-2-periodic-beam-time-convergence") case = Periodic_Beam_params( name="1Warm-up", n=n, dt=Δt, tf=T, k=k, orderϕ=order, orderη=order, vtk_output=false ) produce_or_load(path,case,run_5_1_2;digits=8) # Element size Convergence nelem = 64 tf = 1.0 k = 1 order = 4 e_ϕ_n = Float64[] e_η_n = Float64[] factor = 1.0 for i in 0:5 Δt = tf*factor*2.0^(-i) case = Periodic_Beam_params( name="timeConvergence", n=nelem, dt=Δt, tf=tf, k=k, orderϕ=order, orderη=order ) data, file = produce_or_load(path,case,run_5_1_2;digits=8) println("dt ",Δt," e ",data["e_ϕ_i"]) push!(e_ϕ_n,data["e_ϕ_i"]) push!(e_η_n,data["e_η_i"]) end plot_case = Periodic_Beam_params( name="timeConvergence", dt=Δt, tf=tf, k=k, n=nelem, orderϕ=order, orderη=order, ) plotName = savename(plot_case;ignores=("dt"),digits=8) res = collect_results(path) println("Ploting Δt-convergence") plt1 = plot( fontsize=12, legend=:topleft, legendfontsize=10 ) plt2 = plot( fontsize=12, legend=:topleft, legendfontsize=10 ) xlabel!(plt1,"Time step size") xlabel!(plt2,"Time step size") ylabel!(plt1,"Error") ylabel!(plt2,"Error") styles = [:dash,:dashdot,:dashdotdot] shapes = [:square,:circle,:utriangle] res_dt = @linq res |> where(:orderϕ .== order, :orderη .== order, :k .== k, :n .== nelem, :tf .== tf) #|> orderby(:dt) errors_ϕ = res_dt[!,:e_ϕ_i] errors_η = res_dt[!,:e_η_i] Δts = res_dt[!,:dt] println(Δts) println(errors_η) plot!(plt1, Δts,errors_ϕ, xaxis=:log, yaxis=:log, shape=shapes[order-1], color=:blue, style=styles[order-1], msize=5, label=L"\|\phi-\phi_h\|" ) plot!(plt2, Δts,errors_η, xaxis=:log, yaxis=:log, shape=shapes[order-1], color=:red, style=styles[order-1], msize=5, label=L"\|\eta-\eta_h\|"#latexstring("\|\eta_h-\eta\|") ) rate_label = latexstring("dt^{-2}") plot!(plt1, Δts,0.1*Δts.^(2), color=:black, style=styles[order-1], label=rate_label, xticks=(Δts,[string(Δt) for Δt in Δts]) ) plot!(plt2, Δts,0.04*Δts.^(2), color=:black, style=styles[order-1], label=rate_label, xticks=(Δts,[string(Δt) for Δt in Δts]) ) savefig(plt1,plotsdir("5-1-2-periodic-beam-time-convergence",plotName)*"_phi.png") savefig(plt2,plotsdir("5-1-2-periodic-beam-time-convergence",plotName)*"_eta.png") end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
4315
function run_5_1_3_periodic_beam_energy() # Define Execution function function run_5_1_3(case::Periodic_Beam_params) case_name = savename(case) println("-------------") println("Case: ",case_name) (e_ϕ, e_η, E_kin_f , E_pot_f, E_kin_s, E_ela_s, E_kin_f₀, E_kin_s₀, E_pot_f₀, E_ela_s₀, time) = run_periodic_beam(case) e_ϕ_i = last(e_ϕ) e_η_i = last(e_η) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-1-3-periodic-beam-energy", case_name_suffix) prefix, data, suffix = DrWatson.parse_savename(case_name_suffix, parsetypes=(Int, Float64)) push!(data, "E_kin_f"=>E_kin_f, "E_pot_f"=>E_pot_f, "E_kin_s"=>E_kin_s, "E_ela_s"=>E_ela_s, "E_kin_f₀"=>E_kin_f₀, "E_kin_s₀"=>E_kin_s₀, "E_pot_f₀"=>E_pot_f₀, "E_ela_s₀"=>E_ela_s₀, "time"=>time ) @tagsave(file,data) return data end # Warm-up case k = 1 H = 1.0 g = 9.81 ω = √(g*k*tanh(k*H)) T = 2π/ω Δt = T/1 n = 3 order = 2 path = datadir("5-1-3-periodic-beam-energy") case = Periodic_Beam_params( name="11Warm-up", n=n, dt=Δt, tf=T, k=k, orderϕ=order, orderη=order, vtk_output=false ) produce_or_load(path,case,run_5_1_3;digits=8) # parameters k = 15 ω = √(9.81*k*tanh(k*1.0)) T = 2π/ω tf1 = 10*T # Element size Convergence Δt = 1.0e-3 order = 4 for i in 1:5 nelem = 2^(i+1) case = Periodic_Beam_params( name="EnergyEvolution", n=nelem, dt=Δt, tf=tf1, k=k, orderϕ=order, orderη=order ) data, file = produce_or_load(path,case,run_5_1_3;digits=8) end # Time step size Convergence order = 4 nelem = 64 tf2 = 1*T for i in 1:5 Δt = tf2 * 2^(-1.0-i) case = Periodic_Beam_params( name="EnergyEvolution", n=nelem, dt=Δt, tf=tf2, k=k, orderϕ=order, orderη=order ) data, file = produce_or_load(path,case,run_5_1_3;digits=8) end res = collect_results(path) println("Ploting Energy evolution") plt1 = plot( fontsize=12, legend=:outerright, legendfontsize=10, ) plt2 = plot( fontsize=12, legend=:topleft, legendfontsize=10, xaxis=:log, yaxis=:log, ) xlabel!(plt1,"Time") xlabel!(plt2,"Time step size") ylabel!(plt1,"Relative energy error") ylabel!(plt2,"Relative energy error") styles = [:dash,:dashdot,:dashdotdot,:dot] shapes = [:square,:circle,:utriangle,:diamond] colors = cgrad(:winter,4,categorical=true) factors_plt2 = [10,30,80,80] # Plot energy evolution vs elements colors = cgrad(:winter,5,categorical=true) for i in 2:5 order = 4 Δti = 1.0e-3 nelem = 2^(i+1) nx = 2*nelem res_elem = @linq res |> where(:orderϕ .== order, :orderη .== order, :k .== k, :dt .== Δti, :n.==nelem, :tf .== round(tf1,digits=8)) t = res_elem[!,:time] E_tot = res_elem[!,:E_kin_f]+res_elem[!,:E_pot_f]+res_elem[!,:E_kin_s]+res_elem[!,:E_ela_s] E_tot₀ = res_elem[!,:E_kin_f₀]+res_elem[!,:E_pot_f₀]+res_elem[!,:E_kin_s₀]+res_elem[!,:E_ela_s₀] E_tot = abs.(E_tot[1] .- E_tot₀) ./ E_tot₀ plot!(plt1, t,E_tot, yaxis=:log, color=colors[i], label="nx=$nx" ) end # Plot energy evolution vs time step size Eh = Float64[] Δts = Float64[] for i in 1:5 order = 4 nelem = 64 Δt = round(tf2 * 2^(-1.0-i),digits=8) res_time = @linq res |> where(:orderϕ .== order, :orderη .== order, :k .== k, :dt .== Δt, :n.==nelem, :tf .== round(tf2,digits=8)) t = res_time[!,:time] E_tot = res_time[!,:E_kin_f]+res_time[!,:E_pot_f]+res_time[!,:E_kin_s]+res_time[!,:E_ela_s] E_tot₀ = res_time[!,:E_kin_f₀]+res_time[!,:E_pot_f₀]+res_time[!,:E_kin_s₀]+res_time[!,:E_ela_s₀] E_tot = abs.(E_tot[1] .- E_tot₀) ./ E_tot₀ push!(Eh,E_tot[end]) push!(Δts,Δt) end plot!(plt2, Δts,Eh, shape=shapes[3], color=:red, style=styles[3], label="r=4, n=128" ) plot!(plt2, Δts,0.4*Δts.^(2), color=:black, style=styles[3], label=latexstring("dt^{-2}"), xticks=(Δts,["T/$(2^(i+1))" for i in 1:length(Δts)]) ) # Save savefig(plt1,plotsdir("5-1-3-periodic-beam-energy","error_mesh_vs_time.png")) savefig(plt2,plotsdir("5-1-3-periodic-beam-energy","error_convergence_time.png")) end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
4292
function run_5_1_4_periodic_beam_free_surface_energy() # Define Execution function function run_5_1_4(case::Periodic_Beam_FS_params) case_name = savename(case) println("-------------") println("Case: ",case_name) (e_ϕ, e_η, E_kin_f , E_pot_f, E_kin_s, E_ela_s, E_kin_f₀, E_kin_s₀, E_pot_f₀, E_ela_s₀, time) = run_periodic_beam_FS(case) e_ϕ_i = last(e_ϕ) e_η_i = last(e_η) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-1-4-periodic-beam-free-surface-energy", case_name_suffix) prefix, data, suffix = DrWatson.parse_savename(case_name_suffix, parsetypes=(Int, Float64)) push!(data, "E_kin_f"=>E_kin_f, "E_pot_f"=>E_pot_f, "E_kin_s"=>E_kin_s, "E_ela_s"=>E_ela_s, "E_kin_f₀"=>E_kin_f₀, "E_kin_s₀"=>E_kin_s₀, "E_pot_f₀"=>E_pot_f₀, "E_ela_s₀"=>E_ela_s₀, "time"=>time ) @tagsave(file,data) return data end # Warm-up case k = 1 H = 1.0 g = 9.81 ω = √(g*k*tanh(k*H)) T = 2π/ω Δt = T/1 n = 3 order = 2 path = datadir("5-1-4-periodic-beam-free-surface-energy") case = Periodic_Beam_FS_params( name="11Warm-up", n=n, dt=Δt, tf=T, k=k, order=order, vtk_output=false ) produce_or_load(path,case,run_5_1_4;digits=8) # parameters k = 15 ω = √(9.81*k*tanh(k*1.0)) T = 2π/ω tf1 = 10*T # Element size Convergence Δt = 1.0e-3 order = 4 for i in 1:5 nelem = 2^(i+1) case = Periodic_Beam_FS_params( name="EnergyEvolution", n=nelem, dt=Δt, tf=tf1, k=k, order=order ) data, file = produce_or_load(path,case,run_5_1_4;digits=8) end # Time step size Convergence order = 4 nelem = 64 tf2 = 1*T for i in 1:5 Δt = T * 2^(-1.0-i) case = Periodic_Beam_FS_params( name="EnergyEvolution", n=nelem, dt=Δt, tf=tf2, k=k, order=order ) data, file = produce_or_load(path,case,run_5_1_4;digits=8) end res = collect_results(path) println("Ploting Energy evolution") plt1 = plot( fontsize=12, legend=:outerright, legendfontsize=10, ) plt2 = plot( fontsize=12, legend=:topleft, legendfontsize=10, xaxis=:log, yaxis=:log, ) xlabel!(plt1,"Time") xlabel!(plt2,"Time step size") ylabel!(plt1,"Relative energy error") ylabel!(plt2,"Relative energy error") styles = [:dash,:dashdot,:dashdotdot,:dot] shapes = [:square,:circle,:utriangle,:diamond] colors = cgrad(:winter,4,categorical=true) factors_plt2 = [10,30,80,80] # Plot energy evolution vs elements colors = cgrad(:winter,5,categorical=true) for i in 2:5 order = 4 Δti = 1.0e-3 nelem = 2^(i+1) nx = 2*nelem res_elem = @linq res |> where(:order .== order, :k .== k, :dt .== Δti, :n.==nelem, :tf .== round(tf1,digits=8)) t = res_elem[!,:time] E_tot = res_elem[!,:E_kin_f]+res_elem[!,:E_pot_f]+res_elem[!,:E_kin_s]+res_elem[!,:E_ela_s] E_tot₀ = res_elem[!,:E_kin_f₀]+res_elem[!,:E_pot_f₀]+res_elem[!,:E_kin_s₀]+res_elem[!,:E_ela_s₀] E_tot = abs.(E_tot[1] .- E_tot₀) ./ E_tot₀ plot!(plt1, t[1],E_tot, yaxis=:log, color=colors[i], label="nx=$nx" ) end # Plot energy evolution vs time step size Eh = Float64[] Δts = Float64[] for i in 1:5 order = 4 nelem = 64 Δt = round(T * 2^(-1.0-i),digits=8) res_time = @linq res |> where(:order .== order, :k .== k, :dt .== Δt, :n.==nelem, :tf .== round(tf2,digits=8)) t = res_time[!,:time] E_tot = res_time[!,:E_kin_f]+res_time[!,:E_pot_f]+res_time[!,:E_kin_s]+res_time[!,:E_ela_s] E_tot₀ = res_time[!,:E_kin_f₀]+res_time[!,:E_pot_f₀]+res_time[!,:E_kin_s₀]+res_time[!,:E_ela_s₀] E_tot = abs.(E_tot[1] .- E_tot₀) ./ E_tot₀ push!(Eh,E_tot[end]) push!(Δts,Δt) end plot!(plt2, Δts,Eh, shape=shapes[3], color=:red, style=styles[3], label="r=4, n=128" ) plot!(plt2, Δts,0.2*Δts.^(2), color=:black, style=styles[3], label=latexstring("dt^{-2}"), xticks=(Δts,["T/$(2^(i+1))" for i in 1:length(Δts)]) ) # Save savefig(plt1,plotsdir("5-1-4-periodic-beam-free-surface-energy","error_mesh_vs_time.png")) savefig(plt2,plotsdir("5-1-4-periodic-beam-free-surface-energy","error_convergence_time.png")) end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
2887
function run_5_2_1_Khavakhpasheva_freq_domain() # Define execution function function run_5_2_1(case::Khabakhpasheva_freq_domain_params) case_name = savename(case) println("-------------") println("Case: ",case_name) x,η = run_Khabakhpasheva_freq_domain(case) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-2-1-Khabakhpasheva-freq-domain", case_name_suffix) prefix,data,suffix = DrWatson.parse_savename(case_name_suffix,parsetypes=(Int, Float64)) push!(data,"x"=>x, "η"=>η) save(file,data) return data end # Warm-up case nx = 10 ny = 1 order = 2 path = datadir("5-2-1-Khabakhpasheva-freq-domain") case = Khabakhpasheva_freq_domain_params( name="2Warm-up", nx=nx, ny=ny, order=order ) produce_or_load(path,case,run_5_2_1;digits=8) # Case 1: with joint case = Khabakhpasheva_freq_domain_params(name="xi-0") data, file = produce_or_load(path,case,run_5_2_1) # Case 2: without joint case = Khabakhpasheva_freq_domain_params(ξ=625,name="xi-635") data, file = produce_or_load(path,case,run_5_2_1) # Gather data res = collect_results(path) @show res # Reference data Khabakhpasheva_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Khabakhpasheva_with_joint.csv");header=false) Riyansyah_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Riyansyah_with_joint.csv");header=false) Khabakhpasheva_woj_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Khabakhpasheva_without_joint.csv");header=false) Riyansyah_woj_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Riyansyah_without_joint.csv");header=false) # Plot case 1 res1 = @linq res |> where(:ξ.==0.0, :order .== 4) xs1 = res1[!,:x] η_xs1 = res1[!,:η] plt1 = plot(xs1,η_xs1, xlims=(0,1), lw=2, label="Monolithic CG/DG", palette=:rainbow) plot!(plt1,Khabakhpasheva_data.Column1,Khabakhpasheva_data.Column2,marker="o",line=false,label="Khabakhpasheva et al.") plot!(plt1,Riyansyah_data.Column1,Riyansyah_data.Column2, ls=:dash, lw=2, label="Riyansyah et al.") xlabel!("x/L") ylabel!("|η|/η₀") savefig(plt1, plotsdir("5-2-1-Khabakhpasheva-freq-domain","with_joint")) # Plot case 2 res2 = @linq res |> where(:ξ.==625.0, :order .== 4) xs2 = res2[!,:x] η_xs2 = res2[!,:η] plt2 = plot(xs2,η_xs2, xlims=(0,1), lw=2, label="Monolithic CG/DG", palette=:rainbow) plot!(plt2,Khabakhpasheva_woj_data.Column1,Khabakhpasheva_woj_data.Column2,marker="o",line=false,label="Khabakhpasheva et al.") plot!(plt2,Riyansyah_woj_data.Column1,Riyansyah_woj_data.Column2, ls=:dash, lw=2, label="Riyansyah et al.") xlabel!("x/L") ylabel!("|η|/η₀") savefig(plt2, plotsdir("5-2-1-Khabakhpasheva-freq-domain","without_joint")) end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
3751
function run_5_2_2_Khavakhpasheva_time_domain() # Define execution function function run_5_2_2(case::Khabakhpasheva_time_domain_params) case_name = savename(case) println("-------------") println("Case: ",case_name) t,x,ηt = run_Khabakhpasheva_time_domain(case) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-2-2-Khabakhpasheva-time-domain", case_name_suffix) prefix,data,suffix = DrWatson.parse_savename(case_name_suffix,parsetypes=(Int, Float64)) push!(data,"t"=>t, "x"=>x, "ηt"=>ηt) save(file,data) return data end # Warm-up case nx = 10 ny = 1 order = 2 path = datadir("5-2-2-Khabakhpasheva-time-domain") case = Khabakhpasheva_time_domain_params( name="2Warm-up", nx=nx, ny=ny, order=order ) produce_or_load(path,case,run_5_2_2;digits=8) # Case 1: with joint case = Khabakhpasheva_time_domain_params(name="xi-0") data, file = produce_or_load(path,case,run_5_2_2) # Case 2: without joint case = Khabakhpasheva_time_domain_params(ξ=625,name="xi-625") data, file = produce_or_load(path,case,run_5_2_2) # Gather data res = collect_results(path) @show res # Reference data Khabakhpasheva_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Khabakhpasheva_with_joint.csv");header=false) Riyansyah_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Riyansyah_with_joint.csv");header=false) Khabakhpasheva_woj_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Khabakhpasheva_without_joint.csv");header=false) Riyansyah_woj_data = CSV.File(datadir("Ref_data/Khabakhpasheva","Riyansyah_without_joint.csv");header=false) # Plot case 1 res1 = @linq res |> where(:ξ.==0.0, :order .== 4) ts1 = res1[!,:t][1] xs1 = res1[!,:x][1] η_xs1 = res1[!,:ηt][1] ηxps = permutedims(reshape(hcat(η_xs1...),length(xs1),length(ts1))) η_max = [maximum(abs.(ηxps[1000:2000,it])) for it in 1:length(xs1)] colors = cgrad(:Blues_9,7,categorical=true,rev=true) plt1 = plot(xs1,η_max, xlims=(0,1), lw=2, label="Monolithic CG/DG (envelope)", palette=:rainbow) for (i,it) in enumerate(1000:5:1015) t_it = round(ts1[it],digits=3) plot!(plt1,xs1,η_xs1[it], xlims=(0,1), lw=1, label="Monolithic CG/DG t=$t_it", color=colors[i]) end plot!(plt1,Khabakhpasheva_data.Column1,Khabakhpasheva_data.Column2,marker="o",line=false,label="Khabakhpasheva et al.") plot!(plt1,Riyansyah_data.Column1,Riyansyah_data.Column2, ls=:dash, lw=2, label="Riyansyah et al.", color=:green) xlabel!("x/L") ylabel!("|η|/η₀") savefig(plt1, plotsdir("5-2-2-Khabakhpasheva-time-domain","with_joint")) # Plot case 2 res2 = @linq res |> where(:ξ.==625.0, :order .== 4) ts2 = res2[!,:t][1] xs2 = res2[!,:x][1] η_xs2 = res2[!,:ηt][1] ηxps = permutedims(reshape(hcat(η_xs2...),length(xs2),length(ts2))) η_max = [maximum(abs.(ηxps[1000:2000,it])) for it in 1:length(xs2)] plt2 = plot(xs2,η_max, xlims=(0,1), lw=2, label="Monolithic CG/DG (envelope)", palette=:rainbow) for (i,it) in enumerate(1000:5:1015) t_it = round(ts2[it],digits=3) plot!(plt2,xs1,η_xs2[it], xlims=(0,1), lw=1, label="Monolithic CG/DG t=$t_it", color=colors[i]) end plot!(plt2,Khabakhpasheva_woj_data.Column1,Khabakhpasheva_woj_data.Column2,marker="o",line=false,label="Khabakhpasheva et al.") plot!(plt2,Riyansyah_woj_data.Column1,Riyansyah_woj_data.Column2, ls=:dash, lw=2, label="Riyansyah et al.", color=:green) xlabel!("x/L") ylabel!("|η|/η₀") savefig(plt2, plotsdir("5-2-2-Khabakhpasheva-time-domain","without_joint")) end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
1963
function run_5_3_1_Liu() # Define execution function function run_5_3_1(case::Liu_params) case_name = savename(case) println("-------------") println("Case: ",case_name) x,η = run_Liu(case) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-3-1-Liu", case_name_suffix) prefix,data,suffix = DrWatson.parse_savename(case_name_suffix,parsetypes=(Int, Float64)) push!(data,"x"=>x, "η"=>η) save(file,data) return data end # Case 1: ω=0.4 path = datadir("5-3-1-Liu") case = Liu_params(ω=0.4,name="omega-04") @show case data, file = produce_or_load(path,case,run_5_3_1) # Case 2: ω=0.8 case = Liu_params(ω=0.8,name="omega-08") @show case data, file = produce_or_load(path,case,run_5_3_1) # Gather data res = collect_results(path) # Reference data Liu_data_04 = CSV.File(datadir("Ref_data/Liu","omega_04.csv");header=false) Liu_data_08 = CSV.File(datadir("Ref_data/Liu","omega_08.csv");header=false) # Plot case 1 res1 = @linq res |> where(:ω .== 0.4) xs1 = res1[!,:x][1] η_xs1 = res1[!,:η][1] p = sortperm(xs1) plt1 = plot(xs1[p],η_xs1[p], xlims=(0,1), ylims=(0.6,1.4), lw=2, label="Monolithic CG/DG", palette=:rainbow) plot!(plt1,Liu_data_04.Column1,Liu_data_04.Column2,marker="o",line=false,label="Liu et al.") xlabel!("x/L") ylabel!("|η|/η₀") savefig(plt1, plotsdir("5-3-1-Liu","omega_04")) # Plot case 2 res1 = @linq res |> where(:ω .== 0.8) xs1 = res1[!,:x][1] η_xs1 = res1[!,:η][1] p = sortperm(xs1) plt1 = plot(xs1[p],η_xs1[p], xlims=(0,1), ylims=(0,1.2), lw=2, label="Monolithic CG/DG", palette=:rainbow) plot!(plt1,Liu_data_08.Column1,Liu_data_08.Column2,marker="o",line=false,label="Liu et al.") xlabel!("x/L") ylabel!("|η|/η₀") savefig(plt1, plotsdir("5-3-1-Liu","omega_08")) end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
3775
function run_5_4_1_Yago() # Define execution function function run_5_4_1(case::Yago_freq_domain_params) case_name = savename(case) println("-------------") println("Case: ",case_name) x,η = run_Yago_freq_domain(case) case_name_suffix = savename(case,"jld2";digits=8) file = datadir("5-4-1-Yago", case_name_suffix) prefix,data,suffix = DrWatson.parse_savename(case_name_suffix,parsetypes=(Int, Float64)) push!(data,"x"=>x, "η"=>η) @tagsave(file,data) return data end # Warm-up case path = datadir("5-4-1-Yago") nx = 2 ny = 2 nz = 1 r = 2 case = Yago_freq_domain_params( name="4warm-up", order=r, nx=nx,ny=ny,nz=nz, λfactor=0.4, vtk_output=true ) data, file = produce_or_load(path,case,run_5_4_1;digits=8) # Case 1: λfactor=0.4 λfactor = 0.4 nx = 32 ny = 4 nz = 3 r = 4 dfactor=4 case = Yago_freq_domain_params( name="lambda-04", order=r, nx=nx,ny=ny,nz=nz, λfactor=λfactor, dfactor=dfactor, vtk_output=true ) data, file = produce_or_load(path,case,run_5_4_1;digits=8) # Case 2: λfactor=0.6 λfactor = 0.6 case = Yago_freq_domain_params( name="lambda-06", order=r, nx=nx,ny=ny,nz=nz, λfactor=λfactor, dfactor=dfactor, vtk_output=true ) data, file = produce_or_load(path,case,run_5_4_1;digits=8) # Case 3: λfactor=0.8 λfactor = 0.8 case = Yago_freq_domain_params( name="lambda-08", order=r, nx=nx,ny=ny,nz=nz, λfactor=λfactor, dfactor=dfactor, vtk_output=true ) data, file = produce_or_load(path,case,run_5_4_1;digits=8) # Gather data res = collect_results(path) Yago_data = [] for i in 1:10 α = round(0.1*i,digits=2) push!(Yago_data, CSV.File(datadir("Ref_data/Yago","lambda_L_$α.csv");header=false)) end Fu_data = [] for case in ["L_04" "L_06" "L_08"] push!(Fu_data, CSV.File(datadir("Ref_data/Fu","$case.csv");header=false)) end # Plot case 1 λfactor = 0.4 plt1 = plot(legend=:top) res_λ = @linq res |> where(:order .== r, :nx .== nx, :ny .== ny, :nz .== nz, :λfactor .== λfactor, :dfactor.== dfactor ) ηs = res_λ[!,:η][1] xps = res_λ[!,:x][1] p = sortperm(xps) plot!(plt1,xps[p],ηs[p],label="Monolithic CG/DG",ylims=(0,1.3),lw=2,palette=:rainbow)#,marker="o",line=false) plot!(plt1,-2.0.*(Fu_data[1].Column1.-0.5),Fu_data[1].Column2,ls=:dash,label="Fu et al.")#color=:black, plot!(plt1,Yago_data[4].Column1,Yago_data[4].Column2,marker="o",line=false,label="Yago et al.") savefig(plt1,plotsdir("5-4-1-Yago","L_factor_04")) # Plot case 2 λfactor = 0.6 plt1 = plot(legend=:top) res_λ = @linq res |> where(:order .== r, :nx .== nx, :ny .== ny, :nz .== nz, :λfactor .== λfactor, :dfactor.== dfactor ) ηs = res_λ[!,:η][1] xps = res_λ[!,:x][1] p = sortperm(xps) plot!(plt1,xps[p],ηs[p],label="Monolithic CG/DG",ylims=(0,1.3),lw=2,palette=:rainbow)#,color=colors[i]) plot!(plt1,-2.0.*(Fu_data[2].Column1.-0.5),Fu_data[2].Column2,ls=:dash,label="Fu et al.") plot!(plt1,Yago_data[6].Column1,Yago_data[6].Column2,marker="o",line=false,label="Yago et al.") savefig(plt1,plotsdir("5-4-1-Yago","L_factor_06")) # Plot case 3 λfactor = 0.8 plt1 = plot(legend=:top) res_λ = @linq res |> where(:order .== r, :nx .== nx, :ny .== ny, :nz .== nz, :λfactor .== λfactor, :dfactor.== dfactor ) ηs = res_λ[!,:η][1] xps = res_λ[!,:x][1] p = sortperm(xps) plot!(plt1,xps[p],ηs[p],label="Monolithic CG/DG",ylims=(0,1.3),lw=2,palette=:rainbow)#,color=colors[i]) plot!(plt1,-2.0.*(Fu_data[3].Column1.-0.5),Fu_data[3].Column2,ls=:dash,label="Fu et al.") plot!(plt1,Yago_data[8].Column1,Yago_data[8].Column2,marker="o",line=false,label="Yago et al.") savefig(plt1,plotsdir("5-4-1-Yago","L_factor_08")) end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
8481
module Khabakhpasheva_freq_domain using Gridap using Gridap.Geometry using Gridap.FESpaces using Gridap.CellData using Plots using Parameters export run_Khabakhpasheva_freq_domain export Khabakhpasheva_freq_domain_params @with_kw struct Khabakhpasheva_freq_domain_params name::String = "KhabakhpashevaFreqDomain" nx::Int = 20 ny::Int = 5 order::Int = 4 ξ::Float64 = 0.0 vtk_output::Bool = true end function run_Khabakhpasheva_freq_domain(params::Khabakhpasheva_freq_domain_params) # Unpack input parameters @unpack name, nx, ny, order, ξ, vtk_output = params # Fixed parameters Lb = 12.5 m = 8.36 EI₁ = 47100.0 EI₂ = 471.0 β = 0.2 H = 1.1 α = 0.249 # Domain size Ld = Lb # damping zone length LΩ = 2Ld + 2Lb x₀ = 0.0 xdᵢₙ = x₀ + Ld xb₀ = xdᵢₙ + Lb/2 xbⱼ = xb₀ + β*Lb xb₁ = xb₀ + Lb xdₒᵤₜ = LΩ - Ld @show Ld @show LΩ @show x₀ @show xdᵢₙ @show xb₀ @show xbⱼ @show xb₁ @show xdₒᵤₜ # Physics g = 9.81 ρ = 1025 d₀ = m/ρ a₁ = EI₁/ρ a₂ = EI₂/ρ kᵣ = ξ*a₁/Lb # wave properties λ = α*Lb k = 2π/λ ω = sqrt(g*k*tanh(k*H)) T = 2π/ω η₀ = 0.01 ηᵢₙ(x) = η₀*exp(im*k*x[1]) ϕᵢₙ(x) = -im*(η₀*ω/k)*(cosh(k*x[2]) / sinh(k*H))*exp(im*k*x[1]) vᵢₙ(x) = (η₀*ω)*(cosh(k*x[2]) / sinh(k*H))*exp(im*k*x[1]) vzᵢₙ(x) = -im*ω*η₀*exp(im*k*x[1]) # Numerics constants nx_total = Int(ceil(nx/β)*ceil(LΩ/Lb)) h = LΩ / nx_total γ = 1.0*order*(order-1)/h βₕ = 0.5 αₕ = -im*ω/g * (1-βₕ)/βₕ @show nx_total @show h @show βₕ @show αₕ # Damping μ₀ = 2.5 μ₁ᵢₙ(x) = μ₀*(1.0 - sin(π/2*(x[1])/Ld)) μ₁ₒᵤₜ(x) = μ₀*(1.0 - cos(π/2*(x[1]-xdₒᵤₜ)/Ld)) μ₂ᵢₙ(x) = μ₁ᵢₙ(x)*k μ₂ₒᵤₜ(x) = μ₁ₒᵤₜ(x)*k ηd(x) = μ₂ᵢₙ(x)*ηᵢₙ(x) ∇ₙϕd(x) = μ₁ᵢₙ(x)*vzᵢₙ(x) # Fluid model domain = (x₀, LΩ, 0.0, H) partition = (nx_total,ny) function f_y(x) if x == H return H end i = x / (H/ny) return H-H/(2.5^i) end map(x) = VectorValue(x[1], f_y(x[2])) 𝒯_Ω = CartesianDiscreteModel(domain,partition,map=map) # Labelling labels_Ω = get_face_labeling(𝒯_Ω) add_tag_from_tags!(labels_Ω,"surface",[3,4,6]) # assign the label "surface" to the entity 3,4 and 6 (top corners and top side) add_tag_from_tags!(labels_Ω,"bottom",[1,2,5]) # assign the label "bottom" to the entity 1,2 and 5 (bottom corners and bottom side) add_tag_from_tags!(labels_Ω,"inlet",[7]) # assign the label "inlet" to the entity 7 (left side) add_tag_from_tags!(labels_Ω,"outlet",[8]) # assign the label "outlet" to the entity 8 (right side) add_tag_from_tags!(labels_Ω, "water", [9]) # assign the label "water" to the entity 9 (interior) # Triangulations Ω = Interior(𝒯_Ω) Γ = Boundary(𝒯_Ω,tags="surface") Γin = Boundary(𝒯_Ω,tags="inlet") # Auxiliar functions function is_beam1(xs) # Check if an element is inside the beam1 n = length(xs) x = (1/n)*sum(xs) (xb₀ <= x[1] <= xbⱼ ) * ( x[2] ≈ H) end function is_beam2(xs) # Check if an element is inside the beam2 n = length(xs) x = (1/n)*sum(xs) (xbⱼ <= x[1] <= xb₁ ) * ( x[2] ≈ H) end function is_damping1(xs) # Check if an element is inside the damping zone 1 n = length(xs) x = (1/n)*sum(xs) (x₀ <= x[1] <= xdᵢₙ ) * ( x[2] ≈ H) end function is_damping2(xs) # Check if an element is inside the damping zone 2 n = length(xs) x = (1/n)*sum(xs) (xdₒᵤₜ <= x[1] ) * ( x[2] ≈ H) end function is_beam_boundary(xs) # Check if an element is on the beam boundary is_on_xb₀ = [x[1]≈xb₀ for x in xs] # array of booleans of size the number of points in an element (for points, it will be an array of size 1) is_on_xb₁ = [x[1]≈xb₁ for x in xs] element_on_xb₀ = minimum(is_on_xb₀) # Boolean with "true" if at least one entry is true, "false" otherwise. element_on_xb₁ = minimum(is_on_xb₁) element_on_xb₀ | element_on_xb₁ # Return "true" if any of the two cases is true end function is_a_joint(xs) # Check if an element is a joint is_on_xbⱼ = [x[1]≈xbⱼ && x[2]≈H for x in xs] # array of booleans of size the number of points in an element (for points, it will be an array of size 1) element_on_xbⱼ = minimum(is_on_xbⱼ) # Boolean with "true" if at least one entry is true, "false" otherwise. element_on_xbⱼ end # Beam triangulations xΓ = get_cell_coordinates(Γ) Γb1_to_Γ_mask = lazy_map(is_beam1,xΓ) Γb2_to_Γ_mask = lazy_map(is_beam2,xΓ) Γd1_to_Γ_mask = lazy_map(is_damping1,xΓ) Γd2_to_Γ_mask = lazy_map(is_damping2,xΓ) Γb1_to_Γ = findall(Γb1_to_Γ_mask) Γb2_to_Γ = findall(Γb2_to_Γ_mask) Γd1_to_Γ = findall(Γd1_to_Γ_mask) Γd2_to_Γ = findall(Γd2_to_Γ_mask) Γf_to_Γ = findall(!,Γb1_to_Γ_mask .| Γb2_to_Γ_mask .| Γd1_to_Γ_mask .| Γd2_to_Γ_mask) Γη_to_Γ = findall(Γb1_to_Γ_mask .| Γb2_to_Γ_mask ) Γκ_to_Γ = findall(!,Γb1_to_Γ_mask .| Γb2_to_Γ_mask ) Γb1 = Triangulation(Γ,Γb1_to_Γ) Γb2 = Triangulation(Γ,Γb2_to_Γ) Γd1 = Triangulation(Γ,Γd1_to_Γ) Γd2 = Triangulation(Γ,Γd2_to_Γ) Γfs = Triangulation(Γ,Γf_to_Γ) Γη = Triangulation(Γ,Γη_to_Γ) Γκ = Triangulation(Γ,Γκ_to_Γ) Λb1 = Skeleton(Γb1) Λb2 = Skeleton(Γb2) # Construct the mask for the joint Γ_mask_in_Ω_dim_0 = get_face_mask(labels_Ω,"surface",0) grid_dim_0_Γ = GridPortion(Grid(ReferenceFE{0},𝒯_Ω),Γ_mask_in_Ω_dim_0) xΓ_dim_0 = get_cell_coordinates(grid_dim_0_Γ) Λj_to_Γ_mask = lazy_map(is_a_joint,xΓ_dim_0) Λj = Skeleton(Γ,Λj_to_Γ_mask) if vtk_output == true filename = "data/VTKOutput/5-2-1-Khabakhpasheva-freq-domain/"*name writevtk(Ω,filename*"_O") writevtk(Γ,filename*"_G") writevtk(Γb1,filename*"_Gb1") writevtk(Γb2,filename*"_Gb2") writevtk(Γd1,filename*"_Gd1") writevtk(Γd2,filename*"_Gd2") writevtk(Γfs,filename*"_Gfs") writevtk(Λb1,filename*"_L1") writevtk(Λb2,filename*"_L2") writevtk(Λj,filename*"_Lj") end # Measures degree = 2*order dΩ = Measure(Ω,degree) dΓb1 = Measure(Γb1,degree) dΓb2 = Measure(Γb2,degree) dΓd1 = Measure(Γd1,degree) dΓd2 = Measure(Γd2,degree) dΓfs = Measure(Γfs,degree) dΓin = Measure(Γin,degree) dΛb1 = Measure(Λb1,degree) dΛb2 = Measure(Λb2,degree) dΛj = Measure(Λj,degree) # Normals nΛb1 = get_normal_vector(Λb1) nΛb2 = get_normal_vector(Λb2) nΛj = get_normal_vector(Λj) # FE spaces reffe = ReferenceFE(lagrangian,Float64,order) V_Ω = TestFESpace(Ω, reffe, conformity=:H1, vector_type=Vector{ComplexF64}) V_Γκ = TestFESpace(Γκ, reffe, conformity=:H1, vector_type=Vector{ComplexF64}) V_Γη = TestFESpace(Γη, reffe, conformity=:H1, vector_type=Vector{ComplexF64}) U_Ω = TrialFESpace(V_Ω) U_Γκ = TrialFESpace(V_Γκ) U_Γη = TrialFESpace(V_Γη) X = MultiFieldFESpace([U_Ω,U_Γκ,U_Γη]) Y = MultiFieldFESpace([V_Ω,V_Γκ,V_Γη]) # Weak form ∇ₙ(ϕ) = ∇(ϕ)⋅VectorValue(0.0,1.0) a((ϕ,κ,η),(w,u,v)) = ∫( ∇(w)⋅∇(ϕ) )dΩ + ∫( βₕ*(u + αₕ*w)*(g*κ - im*ω*ϕ) + im*ω*w*κ )dΓfs + ∫( βₕ*(u + αₕ*w)*(g*κ - im*ω*ϕ) + im*ω*w*κ - μ₂ᵢₙ*κ*w + μ₁ᵢₙ*∇ₙ(ϕ)*(u + αₕ*w) )dΓd1 + ∫( βₕ*(u + αₕ*w)*(g*κ - im*ω*ϕ) + im*ω*w*κ - μ₂ₒᵤₜ*κ*w + μ₁ₒᵤₜ*∇ₙ(ϕ)*(u + αₕ*w) )dΓd2 + ∫( ( v*((-ω^2*d₀ + g)*η - im*ω*ϕ) + a₁*Δ(v)*Δ(η) ) + im*ω*w*η )dΓb1 + ∫( ( v*((-ω^2*d₀ + g)*η - im*ω*ϕ) + a₂*Δ(v)*Δ(η) ) + im*ω*w*η )dΓb2 + ∫( a₁ * ( - jump(∇(v)⋅nΛb1) * mean(Δ(η)) - mean(Δ(v)) * jump(∇(η)⋅nΛb1) + γ*( jump(∇(v)⋅nΛb1) * jump(∇(η)⋅nΛb1) ) ) )dΛb1 + ∫( a₂ * ( - jump(∇(v)⋅nΛb2) * mean(Δ(η)) - mean(Δ(v)) * jump(∇(η)⋅nΛb2) + γ*( jump(∇(v)⋅nΛb2) * jump(∇(η)⋅nΛb2) ) ) )dΛb2 + ∫( (jump(∇(v)⋅nΛj) * kᵣ * jump(∇(η)⋅nΛj)) )dΛj l((w,u,v)) = ∫( w*vᵢₙ )dΓin - ∫( ηd*w - ∇ₙϕd*(u + αₕ*w) )dΓd1 # Solution op = AffineFEOperator(a,l,X,Y) (ϕₕ,κₕ,ηₕ) = solve(op) if vtk_output == true writevtk(Ω,filename * "_O_solution.vtu",cellfields = ["phi_re" => real(ϕₕ),"phi_im" => imag(ϕₕ)],nsubcells=10) writevtk(Γκ,filename * "_Gk_solution.vtu",cellfields = ["eta_re" => real(κₕ),"eta_im" => imag(κₕ)],nsubcells=10) writevtk(Γη,filename * "_Ge_solution.vtu",cellfields = ["eta_re" => real(ηₕ),"eta_im" => imag(ηₕ)],nsubcells=10) end # Postprocess xy_cp = get_cell_points(get_fe_dof_basis(V_Γη)).cell_phys_point x_cp = [[xy_ij[1] for xy_ij in xy_i] for xy_i in xy_cp] η_cdv = get_cell_dof_values(ηₕ) p = sortperm(x_cp[1]) x_cp_sorted = [x_i[p] for x_i in x_cp] η_cdv_sorted = [η_i[p] for η_i in η_cdv] xs = [(x_i-xb₀)/Lb for x_i in vcat(x_cp_sorted...)] η_rel_xs = [abs(η_i)/η₀ for η_i in vcat(η_cdv_sorted...)] # show(to) return (xs,η_rel_xs) end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
9823
module Khabakhpasheva_time_domain using Gridap using Gridap.Geometry using Gridap.FESpaces using Gridap.CellData using Plots using Parameters using WriteVTK export run_Khabakhpasheva_time_domain export Khabakhpasheva_time_domain_params @with_kw struct Khabakhpasheva_time_domain_params name::String = "KhabakhpashevaTime" nx::Int = 20 ny::Int = 5 order::Int = 4 ξ::Float64 = 0.0 vtk_output::Bool = true end function run_Khabakhpasheva_time_domain(params::Khabakhpasheva_time_domain_params) # Unpack input parameters @unpack name, nx, ny, order, ξ, vtk_output= params # Fixed parameters Lb = 12.5 mᵨ = 8.36 EI₁ = 47100.0 EI₂ = 471.0 β = 0.2 H = 1.1 α = 0.249 # Domain size Ld = Lb # damping zone length LΩ = 2Ld + 2Lb x₀ = 0.0 xdᵢₙ = x₀ + Ld xb₀ = xdᵢₙ + Lb/2 xbⱼ = xb₀ + β*Lb xb₁ = xb₀ + Lb xdₒᵤₜ = LΩ - Ld @show Ld @show LΩ @show x₀ @show xdᵢₙ @show xb₀ @show xbⱼ @show xb₁ @show xdₒᵤₜ # Physics g = 9.81 ρ = 1025 d₀ = mᵨ/ρ a₁ = EI₁/ρ a₂ = EI₂/ρ kᵣ = ξ*a₁/Lb # wave properties λ = α*Lb k = 2π/λ ω = sqrt(g*k*tanh(k*H)) T = 2π/ω η₀ = 0.01 ηᵢₙ(x,t) = η₀*cos(k*x[1]-ω*t) ϕᵢₙ(x,t) = (η₀*ω/k)*(cosh(k*x[2]) / sinh(k*H))*sin(k*x[1]-ω*t) vᵢₙ(x,t) = -(η₀*ω)*(cosh(k*x[2]) / sinh(k*H))*cos(k*x[1]-ω*t) vzᵢₙ(x,t) = ω*η₀*sin(k*x[1]-ω*t) ηᵢₙ(t::Real) = x -> ηᵢₙ(x,t) ϕᵢₙ(t::Real) = x -> ϕᵢₙ(x,t) vᵢₙ(t::Real) = x -> vᵢₙ(x,t) vzᵢₙ(t::Real) = x -> vzᵢₙ(x,t) # Time stepping γₜ = 0.5 βₜ = 0.25 t₀ = 0.0 Δt = T/40 tf = 50*T#/λ_factor ∂uₜ_∂u = γₜ/(βₜ*Δt) ∂uₜₜ_∂u = 1/(βₜ*Δt^2) # Numerics constants nx_total = Int(ceil(nx/β)*ceil(LΩ/Lb)) h = LΩ / nx_total γ = 1.0*order*(order-1)/h βₕ = 0.5 αₕ = ∂uₜ_∂u/g * (1-βₕ)/βₕ # Damping μ₀ = 2.5 μ₁ᵢₙ(x::VectorValue) = μ₀*(1.0 - sin(π/2*(x[1])/Ld)) μ₁ₒᵤₜ(x::VectorValue) = μ₀*(1.0 - cos(π/2*(x[1]-xdₒᵤₜ)/Ld)) μ₂ᵢₙ(x) = μ₁ᵢₙ(x)*k μ₂ₒᵤₜ(x) = μ₁ₒᵤₜ(x)*k ηd(t) = x -> μ₂ᵢₙ(x)*ηᵢₙ(x,t) ∇ₙϕd(t) = x -> μ₁ᵢₙ(x)*vzᵢₙ(x,t) # Fluid model domain = (x₀, LΩ, 0.0, H) partition = (nx_total,ny) function f_y(x) if x == H return H end i = x / (H/ny) return H-H/(2.5^i) end map(x) = VectorValue(x[1], f_y(x[2])) 𝒯_Ω = CartesianDiscreteModel(domain,partition,map=map) # Labelling labels_Ω = get_face_labeling(𝒯_Ω) add_tag_from_tags!(labels_Ω,"surface",[3,4,6]) # assign the label "surface" to the entity 3,4 and 6 (top corners and top side) add_tag_from_tags!(labels_Ω,"bottom",[1,2,5]) # assign the label "bottom" to the entity 1,2 and 5 (bottom corners and bottom side) add_tag_from_tags!(labels_Ω,"inlet",[7]) # assign the label "inlet" to the entity 7 (left side) add_tag_from_tags!(labels_Ω,"outlet",[8]) # assign the label "outlet" to the entity 8 (right side) add_tag_from_tags!(labels_Ω, "water", [9]) # assign the label "water" to the entity 9 (interior) # Triangulations Ω = Interior(𝒯_Ω) Γ = Boundary(𝒯_Ω,tags="surface") Γin = Boundary(𝒯_Ω,tags="inlet") # Auxiliar functions function is_beam1(xs) # Check if an element is inside the beam1 n = length(xs) x = (1/n)*sum(xs) (xb₀ <= x[1] <= xbⱼ ) * ( x[2] ≈ H) end function is_beam2(xs) # Check if an element is inside the beam2 n = length(xs) x = (1/n)*sum(xs) (xbⱼ <= x[1] <= xb₁ ) * ( x[2] ≈ H) end function is_damping1(xs) # Check if an element is inside the damping zone 1 n = length(xs) x = (1/n)*sum(xs) (x₀ <= x[1] <= xdᵢₙ ) * ( x[2] ≈ H) end function is_damping2(xs) # Check if an element is inside the damping zone 2 n = length(xs) x = (1/n)*sum(xs) (xdₒᵤₜ <= x[1] ) * ( x[2] ≈ H) end function is_beam_boundary(xs) # Check if an element is on the beam boundary is_on_xb₀ = [x[1]≈xb₀ for x in xs] # array of booleans of size the number of points in an element (for points, it will be an array of size 1) is_on_xb₁ = [x[1]≈xb₁ for x in xs] element_on_xb₀ = minimum(is_on_xb₀) # Boolean with "true" if at least one entry is true, "false" otherwise. element_on_xb₁ = minimum(is_on_xb₁) element_on_xb₀ | element_on_xb₁ # Return "true" if any of the two cases is true end function is_a_joint(xs) # Check if an element is a joint is_on_xbⱼ = [x[1]≈xbⱼ && x[2]≈H for x in xs] # array of booleans of size the number of points in an element (for points, it will be an array of size 1) element_on_xbⱼ = minimum(is_on_xbⱼ) # Boolean with "true" if at least one entry is true, "false" otherwise. element_on_xbⱼ end # Beam triangulations xΓ = get_cell_coordinates(Γ) Γb1_to_Γ_mask = lazy_map(is_beam1,xΓ) Γb2_to_Γ_mask = lazy_map(is_beam2,xΓ) Γd1_to_Γ_mask = lazy_map(is_damping1,xΓ) Γd2_to_Γ_mask = lazy_map(is_damping2,xΓ) Γb1_to_Γ = findall(Γb1_to_Γ_mask) Γb2_to_Γ = findall(Γb2_to_Γ_mask) Γd1_to_Γ = findall(Γd1_to_Γ_mask) Γd2_to_Γ = findall(Γd2_to_Γ_mask) Γf_to_Γ = findall(!,Γb1_to_Γ_mask .| Γb2_to_Γ_mask .| Γd1_to_Γ_mask .| Γd2_to_Γ_mask) Γη_to_Γ = findall(Γb1_to_Γ_mask .| Γb2_to_Γ_mask ) Γκ_to_Γ = findall(!,Γb1_to_Γ_mask .| Γb2_to_Γ_mask ) Γb1 = Triangulation(Γ,Γb1_to_Γ) Γb2 = Triangulation(Γ,Γb2_to_Γ) Γd1 = Triangulation(Γ,Γd1_to_Γ) Γd2 = Triangulation(Γ,Γd2_to_Γ) Γfs = Triangulation(Γ,Γf_to_Γ) Γη = Triangulation(Γ,Γη_to_Γ) Γκ = Triangulation(Γ,Γκ_to_Γ) Λb1 = Skeleton(Γb1) Λb2 = Skeleton(Γb2) # Construct the mask for the joint Γ_mask_in_Ω_dim_0 = get_face_mask(labels_Ω,"surface",0) grid_dim_0_Γ = GridPortion(Grid(ReferenceFE{0},𝒯_Ω),Γ_mask_in_Ω_dim_0) xΓ_dim_0 = get_cell_coordinates(grid_dim_0_Γ) Λj_to_Γ_mask = lazy_map(is_a_joint,xΓ_dim_0) Λj = Skeleton(Γ,Λj_to_Γ_mask) if vtk_output == true filename = "data/VTKOutput/5-2-2-Khabakhpasheva-time-domain/"*name writevtk(Ω,filename*"_O") writevtk(Γ,filename*"_G") writevtk(Γb1,filename*"_Gb1") writevtk(Γb2,filename*"_Gb2") writevtk(Γd1,filename*"_Gd1") writevtk(Γd2,filename*"_Gd2") writevtk(Γfs,filename*"_Gfs") writevtk(Λb1,filename*"_L1") writevtk(Λb2,filename*"_L2") writevtk(Λj,filename*"_Lj") end # Measures degree = 2*order dΩ = Measure(Ω,degree) dΓb1 = Measure(Γb1,degree) dΓb2 = Measure(Γb2,degree) dΓd1 = Measure(Γd1,degree) dΓd2 = Measure(Γd2,degree) dΓfs = Measure(Γfs,degree) dΓin = Measure(Γin,degree) dΛb1 = Measure(Λb1,degree) dΛb2 = Measure(Λb2,degree) dΛj = Measure(Λj,degree) # Normals nΛb1 = get_normal_vector(Λb1) nΛb2 = get_normal_vector(Λb2) nΛj = get_normal_vector(Λj) # FE spaces reffe = ReferenceFE(lagrangian,Float64,order) V_Ω = TestFESpace(Ω, reffe, conformity=:H1) V_Γκ = TestFESpace(Γκ, reffe, conformity=:H1) V_Γη = TestFESpace(Γη, reffe, conformity=:H1) U_Ω = TransientTrialFESpace(V_Ω) U_Γκ = TransientTrialFESpace(V_Γκ) U_Γη = TransientTrialFESpace(V_Γη) X = TransientMultiFieldFESpace([U_Ω,U_Γκ,U_Γη]) Y = MultiFieldFESpace([V_Ω,V_Γκ,V_Γη]) # Weak form ∇ₙ(ϕ) = ∇(ϕ)⋅VectorValue(0.0,1.0) m((ϕₜₜ,κₜₜ,ηₜₜ),(w,u,v)) = ∫( d₀*ηₜₜ*v )dΓb1 + ∫( d₀*ηₜₜ*v )dΓb2 c((ϕₜ,κₜ,ηₜ),(w,u,v)) = ∫( βₕ*ϕₜ*(u + αₕ*w) - κₜ*w )dΓfs + ∫( βₕ*ϕₜ*(u + αₕ*w) - κₜ*w )dΓd1 + ∫( βₕ*ϕₜ*(u + αₕ*w) - κₜ*w )dΓd2 + ∫( ϕₜ*v - ηₜ*w )dΓb1 + ∫( ϕₜ*v - ηₜ*w )dΓb2 a((ϕ,κ,η),(w,u,v)) = ∫( ∇(w)⋅∇(ϕ) )dΩ + ∫( βₕ*(u + αₕ*w)*(g*κ) )dΓfs + ∫( βₕ*(u + αₕ*w)*(g*κ) - μ₂ᵢₙ*κ*w + μ₁ᵢₙ*∇ₙ(ϕ)*(u + αₕ*w) )dΓd1 + ∫( βₕ*(u + αₕ*w)*(g*κ) - μ₂ₒᵤₜ*κ*w + μ₁ₒᵤₜ*∇ₙ(ϕ)*(u + αₕ*w) )dΓd2 + ∫( ( v*(g*η) + a₁*Δ(v)*Δ(η) ) )dΓb1 + ∫( ( v*(g*η) + a₂*Δ(v)*Δ(η) ) )dΓb2 + ∫( a₁ * ( - jump(∇(v)⋅nΛb1) * mean(Δ(η)) - mean(Δ(v)) * jump(∇(η)⋅nΛb1) + γ*( jump(∇(v)⋅nΛb1) * jump(∇(η)⋅nΛb1) ) ) )dΛb1 + ∫( a₂ * ( - jump(∇(v)⋅nΛb2) * mean(Δ(η)) - mean(Δ(v)) * jump(∇(η)⋅nΛb2) + γ*( jump(∇(v)⋅nΛb2) * jump(∇(η)⋅nΛb2) ) ) )dΛb2 + ∫( (jump(∇(v)⋅nΛj) * kᵣ * jump(∇(η)⋅nΛj)) )dΛj b(t,(w,u,v)) = ∫( w*vᵢₙ(t) )dΓin - ∫( ηd(t)*w - ∇ₙϕd(t)*(u + αₕ*w) )dΓd1 # Solution op = TransientConstantMatrixFEOperator(m,c,a,b,X,Y) ls = LUSolver() ode_solver = Newmark(ls,Δt,γₜ,βₜ) # Initial solution x₀ = interpolate_everywhere([0.0,0.0,0.0],X(0.0)) v₀ = interpolate_everywhere([0.0,0.0,0.0],X(0.0)) a₀ = interpolate_everywhere([0.0,0.0,0.0],X(0.0)) xₜ = solve(ode_solver,op,(x₀,v₀,a₀),t₀,tf) if vtk_output == true pvd_Ω = paraview_collection(filename * "_O_solution", append=false) pvd_Γκ = paraview_collection(filename * "_Gk_solution", append=false) pvd_Γη = paraview_collection(filename * "_Ge_solution", append=false) end # Postprocess xy_cp = get_cell_points(get_fe_dof_basis(V_Γη)).cell_phys_point x_cp = [[xy_ij[1] for xy_ij in xy_i] for xy_i in xy_cp] p = sortperm(x_cp[1]) x_cp_sorted = [x_i[p] for x_i in x_cp] xs = [(x_i-1.5*Lb)/Lb for x_i in vcat(x_cp_sorted...)] ts = Float64[] ηxps_t = [] for ((ϕₕ,κₕ,ηₕ),tₙ) in xₜ println("t = $tₙ") η_cdv = get_cell_dof_values(ηₕ) η_cdv_sorted = [η_i[p] for η_i in η_cdv] η_rel_xs = [abs(η_i)/η₀ for η_i in vcat(η_cdv_sorted...)] push!(ηxps_t,η_rel_xs) push!(ts,tₙ) if vtk_output == true pvd_Ω[tₙ] = createvtk(Ω,filename * "_O_solution" * "_$tₙ.vtu",cellfields = ["phi" => ϕₕ])#,nsubcells=10) pvd_Γκ[tₙ] = createvtk(Γκ,filename * "_Gk_solution" * "_$tₙ.vtu",cellfields = ["kappa" => κₕ],nsubcells=10) pvd_Γη[tₙ] = createvtk(Γη,filename * "_Ge_solution" * "_$tₙ.vtu",cellfields = ["eta" => ηₕ],nsubcells=10) end end if vtk_output == true vtk_save(pvd_Ω) vtk_save(pvd_Γκ) vtk_save(pvd_Γη) end return (ts,xs,ηxps_t) end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
3933
module Liu using Gridap using Gridap.Geometry using Gridap.FESpaces using Parameters using Roots export run_Liu export Liu_params @with_kw struct Liu_params name::String = "Liu" ω::Real = 0.2 end function run_Liu(params::Liu_params) @unpack name, ω = params # Fixed parameters m = 500 EI = 1.0e10 H₀ = 60 Lb = 300.0 # Physics g = 9.81 ρ = 1025 d₀ = m/ρ a₁ = EI/ρ # wave properties f(k) = sqrt(g*k*tanh(k*H₀)) - ω k = abs(find_zero(f, 0.2)) # wave number λ = 2*π / k # wavelength @show λ, λ/Lb η₀ = 0.01 ηᵢₙ(x) = η₀*exp(im*k*x[1]) ϕᵢₙ(x) = -im*(η₀*ω/k)*(cosh(k*(x[2]+0.075*Lb)) / sinh(k*H₀))*exp(im*k*x[1]) vᵢₙ(x) = (η₀*ω)*(cosh(k*(x[2]+0.075*Lb)) / sinh(k*H₀))*exp(im*k*x[1]) vzᵢₙ(x) = -im*ω*η₀*exp(im*k*x[1]) # Numerics constants order = 4 h = Lb/50 γ = 1.0*order*(order-1)/h βₕ = 0.5 αₕ = -im*ω/g * (1-βₕ)/βₕ # Damping μ₀ = 6.0 Ld = 4*Lb xdₒᵤₜ = 9*Lb μ₁ᵢₙ(x) = μ₀*(1.0 - sin(π/2*(x[1])/Ld)) μ₁ₒᵤₜ(x) = μ₀*(1.0 - cos(π/2*(x[1]-xdₒᵤₜ)/Ld)) μ₂ᵢₙ(x) = μ₁ᵢₙ(x)*k μ₂ₒᵤₜ(x) = μ₁ₒᵤₜ(x)*k ηd(x) = μ₂ᵢₙ(x)*ηᵢₙ(x) ∇ₙϕd(x) = μ₁ᵢₙ(x)*vzᵢₙ(x) # Fluid model 𝒯_Ω = DiscreteModelFromFile("models/Liu.json") # Triangulations Ω = Interior(𝒯_Ω) Γ = Boundary(𝒯_Ω,tags=["beam","free_surface","damping_in","damping_out"]) Γᵢₙ = Boundary(𝒯_Ω,tags="inlet") Γb = Boundary(𝒯_Ω,tags="beam") Γd1 = Boundary(𝒯_Ω,tags="damping_in") Γd2 = Boundary(𝒯_Ω,tags="damping_out") Γf = Boundary(𝒯_Ω,tags="free_surface") Γκ = Boundary(𝒯_Ω,tags=["free_surface","damping_in","damping_out"]) Λb = Skeleton(Γb) filename = "data/VTKOutput/5-3-1-Liu/"*name writevtk(Ω,filename*"_O_trian") writevtk(Γb,filename*"_Gb_trian") writevtk(Γd1,filename*"_Gd1_trian") writevtk(Γd2,filename*"_Gd2_trian") writevtk(Γf,filename*"_Gf_trian") writevtk(Λb,filename*"_Lb_trian") # Measures degree = 2*order dΩ = Measure(Ω,degree) dΓb = Measure(Γb,degree) dΓd1 = Measure(Γd1,degree) dΓd2 = Measure(Γd2,degree) dΓf = Measure(Γf,degree) dΓᵢₙ = Measure(Γᵢₙ,degree) dΛb = Measure(Λb,degree) # Normals nΛb = get_normal_vector(Λb) # FE spaces reffe = ReferenceFE(lagrangian,Float64,order) V_Ω = TestFESpace(Ω, reffe, conformity=:H1, vector_type=Vector{ComplexF64}) V_Γκ = TestFESpace(Γκ, reffe, conformity=:H1, vector_type=Vector{ComplexF64}) V_Γη = TestFESpace(Γb, reffe, conformity=:H1, vector_type=Vector{ComplexF64}) U_Ω = TrialFESpace(V_Ω) U_Γκ = TrialFESpace(V_Γκ) U_Γη = TrialFESpace(V_Γη) X = MultiFieldFESpace([U_Ω,U_Γκ,U_Γη]) Y = MultiFieldFESpace([V_Ω,V_Γκ,V_Γη]) # Weak form ∇ₙ(ϕ) = ∇(ϕ)⋅VectorValue(0.0,1.0) a((ϕ,κ,η),(w,u,v)) = ∫( ∇(w)⋅∇(ϕ) )dΩ + ∫( βₕ*(u + αₕ*w)*(g*κ - im*ω*ϕ) + im*ω*w*κ )dΓf + ∫( βₕ*(u + αₕ*w)*(g*κ - im*ω*ϕ) + im*ω*w*κ - μ₂ᵢₙ*κ*w + μ₁ᵢₙ*∇ₙ(ϕ)*(u + αₕ*w) )dΓd1 + ∫( βₕ*(u + αₕ*w)*(g*κ - im*ω*ϕ) + im*ω*w*κ - μ₂ₒᵤₜ*κ*w + μ₁ₒᵤₜ*∇ₙ(ϕ)*(u + αₕ*w) )dΓd2 + ∫( ( v*((-ω^2*d₀ + g)*η - im*ω*ϕ) + a₁*Δ(v)*Δ(η) ) + im*ω*w*η )dΓb + ∫( a₁ * ( - jump(∇(v)⋅nΛb) * mean(Δ(η)) - mean(Δ(v)) * jump(∇(η)⋅nΛb) + γ*( jump(∇(v)⋅nΛb) * jump(∇(η)⋅nΛb) ) ) )dΛb l((w,u,v)) = ∫( w*vᵢₙ )dΓᵢₙ - ∫( ηd*w - ∇ₙϕd*(u + αₕ*w) )dΓd1 op = AffineFEOperator(a,l,X,Y) (ϕₕ,κₕ,ηₕ) = Gridap.solve(op) xy_cp = get_cell_points(get_fe_dof_basis(V_Γη)).cell_phys_point x_cp = [[xy_ij[1] for xy_ij in xy_i] for xy_i in xy_cp] η_cdv = get_cell_dof_values(ηₕ) p = sortperm(x_cp[1]) x_cp_sorted = [x_i[p] for x_i in x_cp] η_cdv_sorted = [η_i[p] for η_i in η_cdv] xs = [(x_i-6*Lb)/Lb for x_i in vcat(x_cp_sorted...)] η_rel_xs = [abs(η_i)/η₀ for η_i in vcat(η_cdv_sorted...)] writevtk(Γκ,filename*"_kappa",cellfields=["eta_re"=>real(κₕ),"eta_im"=>imag(κₕ)]) writevtk(Γb,filename*"_eta",cellfields=["eta_re"=>real(ηₕ),"eta_im"=>imag(ηₕ)]) writevtk(Ω,filename*"_phi",cellfields=["phi_re"=>real(ϕₕ),"phi_im"=>imag(ϕₕ)]) return (xs,η_rel_xs) end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
3390
module MonolithicFEMVLFS using DrWatson @quickactivate "MonolithicFEMVLFS" using Plots using LaTeXStrings using DataFrames using DataFramesMeta using CSV export run_tests # Include source files include("Periodic_Beam.jl") include("Periodic_Beam_FS.jl") include("Khabakhpasheva_freq_domain.jl") include("Khabakhpasheva_time_domain.jl") include("Liu.jl") include("Yago_freq_domain.jl") using .Periodic_Beam: Periodic_Beam_params, run_periodic_beam using .Periodic_Beam_FS: Periodic_Beam_FS_params, run_periodic_beam_FS using .Khabakhpasheva_freq_domain: Khabakhpasheva_freq_domain_params, run_Khabakhpasheva_freq_domain using .Khabakhpasheva_time_domain: Khabakhpasheva_time_domain_params, run_Khabakhpasheva_time_domain using .Liu: Liu_params, run_Liu using .Yago_freq_domain: Yago_freq_domain_params, run_Yago_freq_domain # Extend DrWatson functions DrWatson.allaccess(c::Periodic_Beam_params) = (:n, :dt, :tf, :orderϕ, :orderη, :k) DrWatson.default_prefix(c::Periodic_Beam_params) = c.name DrWatson.allaccess(c::Periodic_Beam_FS_params) = (:n, :dt, :tf, :order, :k) DrWatson.default_prefix(c::Periodic_Beam_FS_params) = c.name DrWatson.allaccess(c::Khabakhpasheva_freq_domain_params) = (:nx, :ny, :order, :ξ, :vtk_output) DrWatson.default_prefix(c::Khabakhpasheva_freq_domain_params) = c.name DrWatson.allaccess(c::Khabakhpasheva_time_domain_params) = (:nx, :ny, :order, :ξ, :vtk_output) DrWatson.default_prefix(c::Khabakhpasheva_time_domain_params) = c.name DrWatson.allaccess(c::Liu_params) = (:ω,) DrWatson.default_prefix(c::Liu_params) = c.name DrWatson.allaccess(c::Yago_freq_domain_params) = (:nx, :ny, :nz, :order, :λfactor, :dfactor) DrWatson.default_prefix(c::Yago_freq_domain_params) = c.name # Include script files include("../scripts/5-1-1-periodic-beam-spatial-convergence.jl") include("../scripts/5-1-2-periodic-beam-time-convergence.jl") include("../scripts/5-1-3-periodic-beam-energy.jl") include("../scripts/5-1-4-periodic-beam-free-surface-energy.jl") include("../scripts/5-2-1-Khabakhpasheva-freq-domain.jl") include("../scripts/5-2-2-Khabakhpasheva-time-domain.jl") include("../scripts/5-3-1-Liu.jl") include("../scripts/5-4-1-Yago.jl") function run_tests(test::String) if test=="all" run_5_1_1_periodic_beam_sapatial_convergence() run_5_1_2_periodic_beam_time_convergence() run_5_1_3_periodic_beam_energy() run_5_1_4_periodic_beam_free_surface_energy() run_5_2_1_Khavakhpasheva_freq_domain() run_5_2_2_Khavakhpasheva_time_domain() run_5_3_1_Liu() run_5_4_1_Yago() elseif test == "5-1-1" || test == "5-1-1-periodic-beam-spatial-convergence" run_5_1_1_periodic_beam_sapatial_convergence() elseif test == "5-1-2" || test == "5-1-2-periodic-beam-time-convergence" run_5_1_2_periodic_beam_time_convergence() elseif test == "5-1-3" || test == "5-1-3-periodic-beam-energy" run_5_1_3_periodic_beam_energy() elseif test == "5-1-4" || test == "5-1-4-periodic-beam-free-surface-energy" run_5_1_4_periodic_beam_free_surface_energy() elseif test == "5-2-1" || test == "5-2-1-Khavakhpasheva-freq-domain" run_5_2_1_Khavakhpasheva_freq_domain() elseif test == "5-2-2" || test == "5-2-2-Khavakhpasheva-time-domain" run_5_2_2_Khavakhpasheva_time_domain() elseif test == "5-3-1" || test == "5-3-1-Liu" run_5_3_1_Liu() elseif test == "5-4-1" || test == "5-4-1-Yago" run_5_4_1_Yago() end end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
4332
module Periodic_Beam using Gridap using Gridap.Geometry using Gridap.FESpaces using WriteVTK using Parameters export run_periodic_beam export Periodic_Beam_params @with_kw struct Periodic_Beam_params name::String = "PeriodicBeam" n::Int = 4 dt::Real = 0.001 tf::Real = 1.0 orderϕ::Int = 2 orderη::Int = 2 k::Int = 10 vtk_output = false end function run_periodic_beam(params) # Unpack input parameters @unpack name, n, dt, tf, orderϕ, orderη, k, vtk_output = params # Fixed parameters ## Geometry L = 2.0*π H = 1.0 ## Physics g = 9.81 ρ_w = 1.0e3 ρ_b = 1.0e2 h_b = 1.0e-2 λ = 2*π/ k ω = √(g*k*tanh(k*H)) EI_b = ρ_b*h_b*ω^2/(k^4)# + (k/kₚ)^4 - (ω/ω₀)^2 d₀ = ρ_b*h_b/ρ_w Dᵨ = EI_b/ρ_w η₀ = 0.01 η(x,t) = η₀*cos(k*x[1]-ω*t) ϕ(x,t) = η₀*ω/k * cosh(k*x[2]) / sinh(k*H) * sin(k*x[1]-ω*t) η(t::Real) = x -> η(x,t) ϕ(t::Real) = x -> ϕ(x,t) ## Numerics (time discretization) γ_t = 0.5 β_t = 0.25 t₀ = 0.0 ## Numerics (space discretization) h = L/n γ = 10.0*orderη*(orderη+1) # Define fluid domain println("Defining fluid domain") domain = (0.0, L, 0.0, H) partition = (2*n,n) model_Ω = CartesianDiscreteModel(domain,partition,isperiodic=(true,false)) # Define beam domain println("Defining beam domain") labels = get_face_labeling(model_Ω) add_tag_from_tags!(labels,"bottom",[1,2,5]) add_tag_from_tags!(labels,"beam",[3,4,6]) # Triangulations println("Defining triangulations") Ω = Interior(model_Ω) Γ = Boundary(model_Ω,tags="beam") Λ = Skeleton(Γ) nΛ = get_normal_vector(Λ) # Quadratures println("Defining quadratures") degree = 2*orderη dΩ = Measure(Ω,degree) dΓ = Measure(Γ,degree) dΛ = Measure(Λ,degree) # FE spaces println("Defining FE spaces") reffe_Ω = ReferenceFE(lagrangian,Float64,orderϕ) reffe_Γ = ReferenceFE(lagrangian,Float64,orderη) V_Ω = TestFESpace(Ω,reffe_Ω,conformity=:H1) V_Γ = TestFESpace(Γ,reffe_Γ,conformity=:H1) U_Ω = TransientTrialFESpace(V_Ω) U_Γ = TransientTrialFESpace(V_Γ) Y = MultiFieldFESpace([V_Ω,V_Γ]) X = TransientMultiFieldFESpace([U_Ω,U_Γ]) # Weak form m((ϕₜₜ,ηₜₜ),(w,v)) = ∫( d₀*ηₜₜ*v )dΓ c((ϕₜ,ηₜ),(w,v)) = ∫( ϕₜ*v - ηₜ*w )dΓ a((ϕ,η),(w,v)) = ∫( ∇(ϕ)⋅∇(w) )dΩ + ∫( g*η*v + Dᵨ*Δ(η)*Δ(v) )dΓ + ∫( Dᵨ*( - mean(Δ(η))*jump(∇(v)⋅nΛ) - jump(∇(η)⋅nΛ)*mean(Δ(v)) + γ/h*jump(∇(v)⋅nΛ)*jump(∇(η)⋅nΛ) ) )dΛ b((w,v)) = ∫( 0.0 * w )dΩ op = TransientConstantFEOperator(m,c,a,b,X,Y) # Solver ls = LUSolver() ode_solver = Newmark(ls,dt,γ_t,β_t) # Initial solution x₀ = interpolate_everywhere([ϕ(0.0),η(0.0)],X(0.0)) v₀ = interpolate_everywhere([∂t(ϕ)(0.0),∂t(η)(0.0)],X(0.0)) a₀ = interpolate_everywhere([∂tt(ϕ)(0.0),∂tt(η)(0.0)],X(0.0)) # Solution xₜ = solve(ode_solver,op,(x₀,v₀,a₀),t₀,tf) # Auxiliar functions l2_Ω(x) = √(∑( ∫( x⋅x )dΩ )) l2_Γ(x) = √(∑( ∫( x⋅x )dΓ )) t_global = Float64[] e_ϕ = Float64[] e_η = Float64[] E_kin_f = Float64[] E_pot_f = Float64[] E_kin_s = Float64[] E_ela_s = Float64[] E_kin_f₀ = 0.25 * d₀ * ω^2 * η₀^2 * L E_kin_s₀ = 0.25 * g * η₀^2 * L E_pot_f₀ = 0.25 * Dᵨ * k^4 * η₀^2 * L E_ela_s₀ = 0.25 * g * η₀^2 * L if vtk_output == true filename = "data/VTKOutput/5-1-1-periodic-beam/"*name pvd_Ω = paraview_collection(filename * "_O", append=false) pvd_Γ = paraview_collection(filename * "_G", append=false) end global ηₙ = x₀[2] global ηₙ_fv = get_free_dof_values(ηₙ) for ((ϕₕ,ηₕ),tₙ) in xₜ push!(e_ϕ,l2_Ω(ϕ(tₙ) - ϕₕ)) push!(e_η,l2_Γ(η(tₙ) - ηₕ)) ηₜ = (ηₕ-ηₙ)/dt push!(E_kin_f, 0.5*∑( ∫( ∇(ϕₕ)⋅∇(ϕₕ) )dΩ ) ) push!(E_pot_f, 0.5*g*∑( ∫( ηₕ*ηₕ )dΓ ) ) push!(E_kin_s, 0.5*d₀*∑( ∫( ηₜ*ηₜ )dΓ ) ) push!(E_ela_s, 0.5*Dᵨ*∑( ∫( Δ(ηₕ)*Δ(ηₕ) )dΓ ) ) push!(t_global,tₙ) if vtk_output == true pvd_Ω[tₙ] = createvtk(Ω,filename * "_O" * "_$tₙ.vtu",cellfields = ["phi" => ϕₕ],nsubcells=10) pvd_Γ[tₙ] = createvtk(Γ,filename * "_G" * "_$tₙ.vtu",cellfields = ["eta" => ηₕ],nsubcells=10) end ηₙ=interpolate!(ηₕ,ηₙ_fv,U_Γ(tₙ)) end if vtk_output == true vtk_save(pvd_Ω) vtk_save(pvd_Γ) end return e_ϕ, e_η, E_kin_f , E_pot_f, E_kin_s, E_ela_s, E_kin_f₀, E_kin_s₀, E_pot_f₀, E_ela_s₀, t_global end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
6287
module Periodic_Beam_FS using Gridap using Gridap.Geometry using Gridap.FESpaces using WriteVTK using Parameters export run_periodic_beam_FS export Periodic_Beam_FS_params @with_kw struct Periodic_Beam_FS_params name::String = "PeriodicBeamFS" n::Int = 4 dt::Real = 0.001 tf::Real = 1.0 order::Int = 2 k::Int = 10 vtk_output = false end function run_periodic_beam_FS(params) # Unpack input parameters @unpack name, n, dt, tf, order, k, vtk_output = params # Fixed parameters ## Geometry L = 2.0*π H = 1.0 ## Physics g = 9.81 ρ_w = 1.0e3 ρ_b = 1.0e2 h_b = 1.0e-2 λ = 2*π/ k ω = √(g*k*tanh(k*H)) EI_b = ρ_b*h_b*ω^2/(k^4)# + (k/kₚ)^4 - (ω/ω₀)^2 d₀ = ρ_b*h_b/ρ_w Dᵨ = EI_b/ρ_w η₀ = 0.01 η(x,t) = η₀*cos(k*x[1]-ω*t) ϕ(x,t) = η₀*ω/k * cosh(k*x[2]) / sinh(k*H) * sin(k*x[1]-ω*t) η(t::Real) = x -> η(x,t) ϕ(t::Real) = x -> ϕ(x,t) ## Numerics (time discretization) γ_t = 0.5 β_t = 0.25 t₀ = 0.0 ∂uₜ_∂u = γ_t/(β_t*dt) ∂uₜₜ_∂u = 1/(β_t*dt^2) βₕ = 0.5 αₕ = ∂uₜ_∂u/g * (1-βₕ)/βₕ ## Numerics (space discretization) h = L/n γ = 10.0*order*(order-1)/h # Define fluid domain println("Defining fluid domain") domain = (0.0, L, 0.0, H) partition = (2*n,n) 𝒯_Ω = CartesianDiscreteModel(domain,partition,isperiodic=(true,false)) # Domain size Lb = π x₀ = 0.0 xb₀ = 0.5π xb₁ = xb₀ + Lb # Labelling labels_Ω = get_face_labeling(𝒯_Ω) add_tag_from_tags!(labels_Ω,"surface",[3,4,6]) # assign the label "surface" to the entity 3,4 and 6 (top corners and top side) add_tag_from_tags!(labels_Ω,"bottom",[1,2,5]) # assign the label "bottom" to the entity 1,2 and 5 (bottom corners and bottom side) add_tag_from_tags!(labels_Ω, "water", [9]) # assign the label "water" to the entity 9 (interior) # Triangulations Ω = Interior(𝒯_Ω) Γ = Boundary(𝒯_Ω,tags="surface") # Auxiliar functions function is_beam(xs) # Check if an element is inside the beam n = length(xs) x = (1/n)*sum(xs) (xb₀ <= x[1] <= xb₁ ) * ( x[2] ≈ H) end function is_beam_boundary(xs) # Check if an element is on the beam boundary is_on_xb₀ = [x[1]≈xb₀ for x in xs] # array of booleans of size the number of points in an element (for points, it will be an array of size 1) is_on_xb₁ = [x[1]≈xb₁ for x in xs] element_on_xb₀ = minimum(is_on_xb₀) # Boolean with "true" if at least one entry is true, "false" otherwise. element_on_xb₁ = minimum(is_on_xb₁) element_on_xb₀ | element_on_xb₁ # Return "true" if any of the two cases is true end # Beam triangulations xΓ = get_cell_coordinates(Γ) Γb_to_Γ_mask = lazy_map(is_beam,xΓ) Γb_to_Γ = findall(Γb_to_Γ_mask) Γf_to_Γ = findall(!,Γb_to_Γ_mask) Γb = Triangulation(Γ,Γb_to_Γ) Γfs = Triangulation(Γ,Γf_to_Γ) Λb = Skeleton(Γb) if vtk_output == true filename = "data/VTKOutput/5-1-4-periodic-beam-free-surface/"*name writevtk(Ω,filename*"_O") writevtk(Γ,filename*"_G") writevtk(Γb,filename*"_Gb") writevtk(Γfs,filename*"_Gfs") writevtk(Λb,filename*"_L") end # Measures degree = 2*order dΩ = Measure(Ω,degree) dΓ = Measure(Γ,degree) dΓb = Measure(Γb,degree) dΓfs = Measure(Γfs,degree) dΛb = Measure(Λb,degree) # Normals nΛb = get_normal_vector(Λb) # FE spaces reffe = ReferenceFE(lagrangian,Float64,order) V_Ω = TestFESpace(Ω, reffe, conformity=:H1) V_Γfs = TestFESpace(Γfs, reffe, conformity=:H1) V_Γb = TestFESpace(Γb, reffe, conformity=:H1) U_Ω = TransientTrialFESpace(V_Ω) U_Γfs = TransientTrialFESpace(V_Γfs) U_Γb = TransientTrialFESpace(V_Γb) X = TransientMultiFieldFESpace([U_Ω,U_Γfs,U_Γb]) Y = MultiFieldFESpace([V_Ω,V_Γfs,V_Γb]) # Weak form ∇ₙ(ϕ) = ∇(ϕ)⋅VectorValue(0.0,1.0) m((ϕₜₜ,κₜₜ,ηₜₜ),(w,u,v)) = ∫( d₀*ηₜₜ*v )dΓb c((ϕₜ,κₜ,ηₜ),(w,u,v)) = ∫( βₕ*ϕₜ*(u + αₕ*w) - κₜ*w )dΓfs + ∫( ϕₜ*v - ηₜ*w )dΓb a((ϕ,κ,η),(w,u,v)) = ∫( ∇(w)⋅∇(ϕ) )dΩ + ∫( βₕ*(u + αₕ*w)*(g*κ) )dΓfs + ∫( ( v*(g*η) + Dᵨ*Δ(v)*Δ(η) ) )dΓb + ∫( Dᵨ * ( - jump(∇(v)⋅nΛb) * mean(Δ(η)) - mean(Δ(v)) * jump(∇(η)⋅nΛb) + γ*( jump(∇(v)⋅nΛb) * jump(∇(η)⋅nΛb) ) ) )dΛb b((w,v)) = ∫( 0.0 * w )dΩ op = TransientConstantFEOperator(m,c,a,b,X,Y) # Solver ls = LUSolver() ode_solver = Newmark(ls,dt,γ_t,β_t) # Initial solution x₀ = interpolate_everywhere([ϕ(0.0),η(0.0),η(0.0)],X(0.0)) v₀ = interpolate_everywhere([∂t(ϕ)(0.0),∂t(η)(0.0),∂t(η)(0.0)],X(0.0)) a₀ = interpolate_everywhere([∂tt(ϕ)(0.0),∂tt(η)(0.0),∂tt(η)(0.0)],X(0.0)) # Solution xₜ = solve(ode_solver,op,(x₀,v₀,a₀),t₀,tf) # Auxiliar functions l2_Ω(x) = √(∑( ∫( x⋅x )dΩ )) l2_Γfs(x) = √(∑( ∫( x⋅x )dΓfs )) l2_Γb(x) = √(∑( ∫( x⋅x )dΓb )) t_global = Float64[] e_ϕ = Float64[] e_η = Float64[] E_kin_f = Float64[] E_pot_f = Float64[] E_kin_s = Float64[] E_ela_s = Float64[] ηₜ₀ = CellField(∂t(η)(0.0),Γb) ∇ϕ₀ = CellField(∇(ϕ(0.0)),Ω) Δη₀ = CellField(Δ(η(0.0)),Γb) η_0 = CellField(η(0.0),Γ) E_kin_s₀ = 0.25 * d₀ * ω^2 * η₀^2 * Lb E_kin_f₀ = 0.25 * g * η₀^2 * L E_ela_s₀ = 0.25 * Dᵨ * k^4 * η₀^2 * Lb E_pot_f₀ = 0.25 * g * η₀^2 * L if vtk_output == true filename = "data/VTKOutput/5-1-4-periodic-beam-free-surface/"*name pvd_Ω = paraview_collection(filename * "_O", append=false) pvd_Γ = paraview_collection(filename * "_G", append=false) end global ηₙ = x₀[2] global ηₙ_fv = get_free_dof_values(ηₙ) for ((ϕₕ,κₕ,ηₕ),tₙ) in xₜ push!(e_ϕ,l2_Ω(ϕ(tₙ) - ϕₕ)) push!(e_η,l2_Γfs(η(tₙ) - κₕ)+l2_Γb(η(tₙ) - ηₕ)) ηₜ = (ηₕ-ηₙ)/dt push!(E_kin_f, 0.5*∑( ∫( ∇(ϕₕ)⋅∇(ϕₕ) )dΩ ) ) push!(E_pot_f, 0.5*g*∑( ∫( κₕ*κₕ )dΓfs ) + 0.5*g*∑( ∫( ηₕ*ηₕ )dΓb )) push!(E_kin_s, 0.5*d₀*∑( ∫( ηₜ*ηₜ )dΓb ) ) push!(E_ela_s, 0.5*Dᵨ*∑( ∫( Δ(ηₕ)*Δ(ηₕ) )dΓb ) ) push!(t_global,tₙ) if vtk_output == true pvd_Ω[tₙ] = createvtk(Ω,filename * "_O" * "_$tₙ.vtu",cellfields = ["phi" => ϕₕ],nsubcells=10) pvd_Γ[tₙ] = createvtk(Γ,filename * "_G" * "_$tₙ.vtu",cellfields = ["eta" => ηₕ],nsubcells=10) end ηₙ=interpolate!(ηₕ,ηₙ_fv,U_Γb(tₙ)) end if vtk_output == true vtk_save(pvd_Ω) vtk_save(pvd_Γ) end return e_ϕ, e_η, E_kin_f , E_pot_f, E_kin_s, E_ela_s, E_kin_f₀, E_kin_s₀, E_pot_f₀, E_ela_s₀, t_global end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
5175
module Yago_freq_domain using Gridap using Gridap.Geometry using Gridap.TensorValues using Parameters export run_Yago_freq_domain export Yago_freq_domain_params @with_kw struct Yago_freq_domain_params name::String = "YagoFreq" nx::Int = 32 ny::Int = 4 nz::Int = 4 order::Int = 4 λfactor::Real = 0.4 dfactor::Real = 3 vtk_output = false end function run_Yago_freq_domain(params) # Unpack input parameters @unpack name, nx, ny, nz, order, λfactor, dfactor, vtk_output = params # Fixed parameters ## Geometry L = 300 B = 60 H = 58.5 hb = 2.0 nLΩ = 10 nBΩ = 18 LΩ = nLΩ*L BΩ = nBΩ*B xb₀ = 4.5*L xb₁ = xb₀ + L yb₀ = -B/2 yb₁ = yb₀ + B ## Physics g = 9.81 ρ = 1025 E = 11.9e9 ρb = 256.25 ν = 0.13 D = 4.77e11 d₀ = ρb*hb/ρ δ(x,y) = ==(x,y) C = SymFourthOrderTensorValue{3,Float64} μ = E/(2*(1+ν)) λ = ν*E/(1-ν^2) I = hb^3/12 Cvals = zero(Array{Float64}(undef,36)) for i in 1:2 for j in 1:2 for k in 1:2 for l in 1:2 Cvals[data_index(C,i,j,k,l)] = I/ρ*(μ*(δ(i,k)*δ(j,l) +δ(i,l)*δ(j,k)) + λ*(δ(i,j)*δ(k,l))) end end end end C = SymFourthOrderTensorValue(Cvals...) # Wave properties λ = L*λfactor k = 2π/λ ω = √(g*k*tanh(k*H)) T = 2π/ω η₀ = 0.01 ηᵢₙ(x) = η₀*exp(im*k*x[1]) ϕᵢₙ(x) = -im*(η₀*ω/k)*(cosh(k*x[3]) / sinh(k*H))*exp(im*k*x[1]) vᵢₙ(x) = (η₀*ω)*(cosh(k*x[3]) / sinh(k*H))*exp(im*k*x[1]) vzᵢₙ(x) = -im*ω*η₀*exp(im*k*x[1]) ## Numerics (space discretization) h = LΩ/(nLΩ*nx) βₕ = 0.5 αₕ = -im*ω/g * (1-βₕ)/βₕ γ = 1.0*order*(order+1)/h # Damping method 5 μ₀ = 2.5 Ld = dfactor*L Ld₀ = dfactor*L xd = LΩ-Ld xd₀ = Ld₀ μ₁(x) = μ₀*(1.0 - cos(π/2*(x[1]-xd)/Ld)) * (x[1]>xd) + μ₀*(1-cos(π/2*(Ld₀-x[1])/Ld₀)) * (x[1]<xd₀) μ₂(x) = μ₁(x)*k ηd(x) = μ₂(x)*ηᵢₙ(x)*(x[1]<xd₀) ∇ₙϕd(x) = μ₁(x)*vzᵢₙ(x)*(x[1]<xd₀) # Define fluid model println("Defining fluid model") domain = (0.0, LΩ, -BΩ/2, BΩ/2, 0.0, H) partition = (nLΩ*nx,nBΩ*ny,nz) function f_z(x) if x == H return H end i = x / (H/nz) return H-H/((2.5)^i) end map(x) = VectorValue(x[1], x[2], f_z(x[3])) model_Ω = CartesianDiscreteModel(domain,partition,map=map) # Add labels to Ω labels_Ω = get_face_labeling(model_Ω) add_tag_from_tags!(labels_Ω,"surface",[22]) add_tag_from_tags!(labels_Ω,"inlet",[25]) # Triangulations Ω = Interior(model_Ω) Γ = Boundary(model_Ω,tags="surface") Γᵢₙ = Boundary(model_Ω,tags="inlet") # Create masks in Γ function is_plate(x) is_in = ([(xb₀ <= xm[1]) * (xm[1] <= xb₁) * (yb₀ <= xm[2]) * (xm[2] <= yb₁) for xm in x]) minimum(is_in) end xΓ = get_cell_coordinates(Γ) Γb_to_Γ_mask = lazy_map(is_plate,xΓ) Γb_to_Γ = findall(Γb_to_Γ_mask) Γf_to_Γ = findall(!,Γb_to_Γ_mask) Γb = Triangulation(Γ,Γb_to_Γ) Γf = Triangulation(Γ,Γf_to_Γ) Λb = Skeleton(Γb) # Measures degree = 2*order dΩ = Measure(Ω,degree) dΓb = Measure(Γb,degree) dΓf = Measure(Γf,degree) dΓᵢₙ = Measure(Γᵢₙ,degree) dΛb = Measure(Λb,degree) # Normals nΛb = get_normal_vector(Λb) # FE spaces println("Defining FE spaces") reffeη = ReferenceFE(lagrangian,Float64,order) reffeκ = ReferenceFE(lagrangian,Float64,order) reffeᵩ = ReferenceFE(lagrangian,Float64,2) V_Ω = TestFESpace(Ω, reffeᵩ, vector_type=Vector{ComplexF64}) V_Γκ = TestFESpace(Γf, reffeκ, vector_type=Vector{ComplexF64}) V_Γη = TestFESpace(Γb, reffeη, vector_type=Vector{ComplexF64}) U_Ω = TrialFESpace(V_Ω) U_Γκ = TrialFESpace(V_Γκ) U_Γη = TrialFESpace(V_Γη) X = MultiFieldFESpace([U_Ω,U_Γκ,U_Γη]) Y = MultiFieldFESpace([V_Ω,V_Γκ,V_Γη]) # Weak form println("Defining weak form") ∇ₙ(ϕ) = ∇(ϕ)⋅VectorValue(0.0,0.0,1.0) a((ϕ,κ,η),(w,u,v)) = ∫( ∇(ϕ)⋅∇(w) )dΩ + ∫( βₕ*(g*κ-im*ω*ϕ)*(u + αₕ*w) + im*ω*κ*w - μ₂*κ*w + μ₁*∇ₙ(ϕ)*(u + αₕ*w) )dΓf + ∫( ((g-ω^2*d₀)*η-im*ω*ϕ)*v + im*ω*η*w + (∇∇(v)⊙(C⊙∇∇(η))) )dΓb + ∫( ( - jump(∇(v))⊙(mean(C⊙∇∇(η))⋅nΛb.⁺) - (mean((C⊙∇∇(v)))⋅nΛb.⁺) ⊙jump(∇(η)) + D/ρ*γ*jump(∇(v))⊙jump(∇(η)) ) )dΛb b((w,u,v)) = ∫( vᵢₙ*w )dΓᵢₙ - ∫( ηd*w - ∇ₙϕd*(u + αₕ*w) )dΓf op = AffineFEOperator(a,b,X,Y) # Solution println("Defining solution") xₕ = solve(op) if vtk_output == true filename = "data/VTKOutput/5-4-1-Yago/"*name end # Output points xps = [] indices = [] x_η = get_cell_coordinates(Γb) for (ie,xie) in enumerate(x_η) for (in,xi) in enumerate(xie) if -1 <= -2*(xi[1]-(xb₀+L/2))/L <=1 && xi[2]==0.0 push!(indices,(ie,in)) push!(xps,-2*(xi[1]-(xb₀+L/2))/L) end end end println("Computing solution") (ϕₕ,κₕ,ηₕ) = xₕ # Store values η_x = get_cell_dof_values(ηₕ) ηxps = Float64[] for i in 1:length(indices) (ie,in) = indices[i] push!(ηxps,abs(η_x[ie][in])/η₀) end if vtk_output == true writevtk(Ω,filename * "_O",cellfields = ["phi_re" => real(ϕₕ),"phi_im" => imag(ϕₕ)],nsubcells=10) writevtk(Γf,filename * "_Gk",cellfields = ["eta_re" => real(κₕ),"eta_im" => imag(κₕ)],nsubcells=10) writevtk(Γb,filename * "_Ge",cellfields = ["eta_re" => real(ηₕ),"eta_im" => imag(ηₕ)],nsubcells=10) end return (xps,ηxps) end end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
2127
using Gridap using WriteVTK # Parameters L = 2.0*π; H = 1.0; k = 10; η₀ = 0.01; g = 9.81 ρ_w = 1.0e3; λ = 2*π/k; ω = √(g*k*tanh(k*H)) ρ_b = 1.0e2; h_b = 1.0e-2; d₀ = ρ_b*h_b/ρ_w Dρ = ρ_b*h_b*ω^2/(k^4)/ρ_w dt = 0.001; γ_t = 0.5; β_t = 0.25; t₀ = 0.0; tf = 1.0 order = 2; degree = 2*order; n = 30; h = L/n γ = 1.0*order*(order+1) # Finite element mesh domain = (0.0,L,0.0,H); partition = (2*n,n) model_Ω = CartesianDiscreteModel( domain,partition,isperiodic=(true,false)) labels = get_face_labeling(model_Ω) add_tag_from_tags!(labels,"bottom",[1,2,5]) add_tag_from_tags!(labels,"beam",[3,4,6]) # Domains Ω = Interior(model_Ω) Γ = Boundary(model_Ω,tags="beam") Λ = Skeleton(Γ); nΛ = get_normal_vector(Λ) dΩ = Measure(Ω,degree); dΓ = Measure(Γ,degree) dΛ = Measure(Λ,degree) # FE spaces reffe = ReferenceFE(lagrangian,Float64,order) V_Ω = TestFESpace(Ω,reffe) V_Γ = TestFESpace(Γ,reffe) U_Ω = TransientTrialFESpace(V_Ω) U_Γ = TransientTrialFESpace(V_Γ) Y = MultiFieldFESpace([V_Ω,V_Γ]) X = TransientMultiFieldFESpace([U_Ω,U_Γ]) # Weak form m((ϕₜₜ,ηₜₜ),(w,v)) = ∫( d₀*ηₜₜ*v )dΓ c((ϕₜ,ηₜ),(w,v)) = ∫( ϕₜ*v - ηₜ*w )dΓ a((ϕ,η),(w,v)) = ∫( ∇(ϕ)⋅∇(w) )dΩ + ∫( g*η*v + Dρ*Δ(η)*Δ(v) )dΓ + ∫( Dρ*( - mean(Δ(η))*jump(∇(v)⋅nΛ) - jump(∇(η)⋅nΛ)*mean(Δ(v)) + γ/h*jump(∇(v)⋅nΛ)*jump(∇(η)⋅nΛ) ) )dΛ b((w,v)) = ∫( 0.0 * w )dΩ op = TransientConstantFEOperator(m,c,a,b,X,Y) # Initial condition η(x,t) = η₀*cos(k*x[1]-ω*t) ϕ(x,t) = η₀*ω/k*cosh(k*x[2])/sinh(k*H)*sin(k*x[1]-ω*t) η(t::Real) = x->η(x,t); ϕ(t::Real) = x->ϕ(x,t) x₀ = interpolate_everywhere( [ϕ(0.0),η(0.0)],X(0.0)) v₀ = interpolate_everywhere( [∂t(ϕ)(0.0),∂t(η)(0.0)],X(0.0)) a₀ = interpolate_everywhere( [∂tt(ϕ)(0.0),∂tt(η)(0.0)],X(0.0)) # Time stepping and Paraview output ode_solver = Newmark(LUSolver(),dt,γ_t,β_t) xₜ = solve(ode_solver,op,(x₀,v₀,a₀),t₀,tf) pvd_Ω = paraview_collection("Ω",append=false) pvd_Γ = paraview_collection("Γ",append=false) for ((ϕₕ,ηₕ),tₙ) in xₜ pvd_Ω[tₙ] = createvtk( Ω,"Ω_$tₙ.vtu",cellfields=["phi"=>ϕₕ]) pvd_Γ[tₙ] = createvtk( Γ,"Γ_$tₙ.vtu",cellfields=["eta"=>ηₕ]) end vtk_save(pvd_Ω); vtk_save(pvd_Γ)
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
code
102
using MonolithicFEMVLFS # @testset "MonolithicFEMVLFS.jl" begin # # Write your tests here. # end
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
4112
# MonolithicFEMVLFS [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://oriolcg.github.io/MonolithicFEMVLFS.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://oriolcg.github.io/MonolithicFEMVLFS.jl/dev) [![Build Status](https://github.com/oriolcg/MonolithicFEMVLFS.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/oriolcg/MonolithicFEMVLFS.jl/actions/workflows/CI.yml?query=branch%3Amain) A monolithic Finite Element formulation for the hydroelastic analysis of Very Large Floating Structures This repository contains all the tests performed in the manuscript: *A Monolithic Finite Element formulation for Very Large Floating Structures* by Oriol Colomés, Francesc Verdugo and Ido Akkerman. If you use this formulation, please cite: ``` @article{colomes2022monolithic, doi = {10.48550/ARXIV.2206.12410}, url = {https://arxiv.org/abs/2206.12410}, author = {Colomés, Oriol and Verdugo, Francesc and Akkerman, Ido}, keywords = {Computational Engineering, Finance, and Science (cs.CE), Numerical Analysis (math.NA), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Mathematics, FOS: Mathematics}, title = {A monolithic Finite Element formulation for the hydroelastic analysis of Very Large Floating Structures}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` and ``` @software{Colomes_MonolithicFEMVLFS_2022, author = {Colomes, Oriol}, doi = {10.4121/19601419}, month = {4}, title = {{MonolithicFEMVLFS.jl}}, url = {https://github.com/oriolcg/MonolithicFEMVLFS.jl}, year = {2022}, version = {0.1.0} } ``` ### Abstract In this work we present a novel monolithic Finite Element Method (FEM) for the hydroelastic analysis of Very Large Floating Structures (VLFS) with arbitrary shapes that is stable, energy conserving and overcomes the need of an iterative algorithm. The new formulation enables a fully monolithic solution of the linear free-surface flow, described by linear potential flow, coupled with floating thin structures, described by the Euler-Bernoulli beam or Poisson-Kirchhoff plate equations. The formulation presented in this work is general in the sense that solutions can be found in the frequency and time domains, it overcomes the need of using elements with $ C^1 $ continuity by employing a continuous/discontinuous Galerkin (C/DG) approach, and it is suitable for finite elements of arbitrary order. We show that the proposed approach can accurately describe the hydroelastic phenomena of VLFS with a variety of tests, including structures with elastic joints, variable bathymetry and arbitrary strucutral shapes. ## Installation `MonolithicFEMVLFS` is a package registered in the official [Julia package registry](https://github.com/JuliaRegistries/General). Thus, the installation of this package is straight forward using the [Julia's package manager](https://julialang.github.io/Pkg.jl/v1/). Open the Julia REPL, type `]` to enter package mode, and install as follows ```julia pkg> add MonolithicFEMVLFS ``` ## Usage To run all the test cases in the paper do: ```julia using MonolithicFEMVLFS run_tests("all") ``` To run only a specific test, for example the Khabakhpasheva test in frequency domain, do: ```julia using MonolithicFEMVLFS run_tests("5-2-1-Khabakhpasheva-freq-domain.jl") ``` Note that the numbers in front of the script indicate the section in the manuscript. After execution, the data will be stored in the respective folder `data/<Section-number>-<test-name>`. If the flag to generate VTK files is active, the VTK output will be stored in `data/VTKOutput/<Section-number>-<test-name>`. The plots shown in the manuscript are stored in `plots/<Section-number>-<test-name>`. This repository uses DrWatson package, the data will only be generated the first time the tests are executed. If the data is already stored, the scripts will only regenerate the figures. The code snipped appearing in Figure 3 of the manuscript can be found in `src/lst_periodic_beam.jl`.
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-1 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-2 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-3 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-4 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-2-1 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-2-2 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-3-1 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-4-1 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
36
Folder to store test 5-1-1 VTK files
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
36
Folder to store test 5-1-4 VTK files
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
36
Folder to store test 5-2-1 VTK files
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
36
Folder to store test 5-2-2 VTK files
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
36
Folder to store test 5-3-1 VTK files
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
36
Folder to store test 5-4-1 VTK files
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
220
```@meta CurrentModule = MonolithicFEMVLFS ``` # MonolithicFEMVLFS Documentation for [MonolithicFEMVLFS](https://github.com/oriolcg/MonolithicFEMVLFS.jl). ```@index ``` ```@autodocs Modules = [MonolithicFEMVLFS] ```
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
32
Folder to store test 5-1-1 plots
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-2 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-3 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
31
Folder to store test 5-1-4 data
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
32
Folder to store test 5-2-1 plots
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
32
Folder to store test 5-2-2 plots
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
32
Folder to store test 5-3-1 plots
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.1
5a50dd846a6e8431c653f91ae3572433893ce1a4
docs
32
Folder to store test 5-4-1 plots
MonolithicFEMVLFS
https://github.com/oriolcg/MonolithicFEMVLFS.jl.git
[ "MIT" ]
0.1.0
8283438f37b103c995488de3ad1237910bfbefac
code
4103
module StructuredPrinting import Crayons export @structured_print, Options """ Options( [types...]; match_only::Bool = false print_types::Bool = false recursion_types = (UnionAll,DataType) recursion_depth = 1000 ) Printing options for `@structured_print`: - `match_only`: only print properties that match the given types - `print_types`: print types (e.g., `prop::typeof(prop)`) - `recursion_types`: skip recursing through recursion types (e.g., `UnionAll` and `DataType`) to avoid infinite recursion - `recursion_depth`: limit recursion depth (to avoid infinite recursion) ## Example ```julia struct Leaf{T} end struct Branch{A,B,C} leafA::A leafB::B leafC::C end struct Tree{A,B,C} branchA::A branchB::B branchC::C end t = Tree( Branch(Leaf{(:A1, :L1)}(), Leaf{(:B1, :L2)}(), Leaf{(:C1, :L3)}()), Branch(Leaf{(:A2, :L1)}(), Leaf{(:B2, :L2)}(), Leaf{(:C2, :L3)}()), Branch(Leaf{(:A3, :L1)}(), Leaf{(:B3, :L2)}(), Leaf{(:C3, :L3)}()), ) using StructuredPrinting # Print struct alone @structured_print t # Print struct with type highlighted @structured_print t Options(typeof(t.branchB)) # Print struct with Tuple of types highlighted @structured_print t Options((typeof(t.branchB), typeof(t.branchA))) ``` """ struct Options{T} types::T match_only::Bool print_types::Bool recursion_types::Tuple recursion_depth::Int function Options( types...; match_only = false, print_types = false, recursion_types = (UnionAll, DataType), recursion_depth = 1000 ) if (types isa AbstractArray || types isa Tuple) && length(types) > 0 types = types[1] else types = (Union{},) end return new{typeof(types)}( types, match_only, print_types, recursion_types, recursion_depth ) end end Options(type::Type; kwargs...) = Options((type, ); kwargs...) Options() = Options(();) function _structured_print(io, obj, pc; o::Options, name, counter=0) counter > o.recursion_depth && return for pn in propertynames(obj) prop = getproperty(obj, pn) pc_full = (pc..., ".", pn) pc_string = name*string(join(pc_full)) if any(map(type -> prop isa type, o.types)) suffix = o.print_types ? "::$(typeof(prop))" : "" pc_colored = Crayons.Box.RED_FG(pc_string) println(io, "$pc_colored$suffix") if !any(map(x->prop isa x, o.recursion_types)) _structured_print(io, prop, pc_full; o, name, counter=counter+1) counter > o.recursion_depth && return end else if !o.match_only suffix = o.print_types ? "::$(typeof(prop))" : "" println(io, "$pc_string$suffix") end _structured_print(io, prop, pc_full; o, name, counter=counter+1) counter > o.recursion_depth && return end end end print_name(io, name, o) = o.match_only || println(io, name) function structured_print(io, obj, name, o::Options = Options()) print_name(io, name, o) _structured_print( io, obj, (); # pc o, name, ) println(io, "") end """ @structured_print obj options Recursively print out propertynames of `obj` given options `options`. See [`Options`](@ref) for more information on available options. """ macro structured_print(obj, o) return :( structured_print( stdout, $(esc(obj)), $(string(obj)), $(esc(o)), ) ) end """ @structured_print obj options Recursively print out propertynames of `obj` given options `options`. See [`Options`](@ref) for more information on available options. """ macro structured_print(obj) return :( structured_print( stdout, $(esc(obj)), $(string(obj)), ) ) end end # module
StructuredPrinting
https://github.com/charleskawczynski/StructuredPrinting.jl.git
[ "MIT" ]
0.1.0
8283438f37b103c995488de3ad1237910bfbefac
code
1426
using Test using StructuredPrinting struct Leaf{T} end struct Branch{A,B,C} leafA::A leafB::B leafC::C end struct Tree{A,B,C} branchA::A branchB::B branchC::C end t = Tree( Branch(Leaf{(:A1, :L1)}(), Leaf{(:B1, :L2)}(), Leaf{(:C1, :L3)}()), Branch(Leaf{(:A2, :L1)}(), Leaf{(:B2, :L2)}(), Leaf{(:C2, :L3)}()), Branch(Leaf{(:A3, :L1)}(), Leaf{(:B3, :L2)}(), Leaf{(:C3, :L3)}()), ) @testset "StructuredPrinting" begin # Print struct alone @structured_print t end @testset "StructuredPrinting with types" begin # Print struct with type @structured_print t Options(typeof(t.branchB)) # Print struct with Tuple of types types = (typeof(t.branchB), typeof(t.branchA)) @structured_print t Options(types) end @testset "StructuredPrinting with types and matching" begin # Print struct with type @structured_print t Options(typeof(t.branchB); match_only=true) # Print struct with Tuple of types types = (typeof(t.branchB), typeof(t.branchA)) @structured_print t Options(types; match_only=true) end @testset "StructuredPrinting with types and matching" begin # Print struct with type @structured_print t Options(typeof(t.branchB); match_only=true, print_types = true) # Print struct with Tuple of types types = (typeof(t.branchB), typeof(t.branchA)) @structured_print t Options(types; match_only=true, print_types = true) end
StructuredPrinting
https://github.com/charleskawczynski/StructuredPrinting.jl.git
[ "MIT" ]
0.1.0
8283438f37b103c995488de3ad1237910bfbefac
docs
2701
# StructuredPrinting.jl A simple Julia package for printing structs in a structured way, while offering a way to filter and highlight specified information. This package was developed for debugging. <details> <summary>The story of how this started</summary> One day, I was trying to find out if `UnionAll` objects existed in a very large OrdinaryDiffEq integrator. I ended up writing: ```julia import Crayons function getpropertyviz(obj, pc = (), indent = "") for pn in propertynames(obj) prop = getproperty(obj, pn) pc_full = (pc..., ".", pn) pc_string = string(join(pc_full)) if prop isa UnionAll || prop isa DataType pc_colored = Crayons.Box.RED_FG(pc_string) println("$indent $pc_colored :: $(typeof(prop)), FLAGME!") else println("$indent $pc_string :: $(typeof(prop))") getpropertyviz(prop, pc_full, indent*" ") end end end getpropertyviz(integrator) ``` Which ended up highlighting 3 (of the thousands of) structs that were either `UnionAll`, or `DataType`, and this helped me to identify which structs were responsible for hurting compiler inference in a large codebase. Since this code was so generic, I thought it might be useful to write a small tool for it and add some bells and whistles. Enter StructuredPrinting.jl. </details> ## Demo Here's a demo of this package in action (directly from the test suite): ```julia struct Leaf{T} end struct Branch{A,B,C} leafA::A leafB::B leafC::C end struct Tree{A,B,C} branchA::A branchB::B branchC::C end t = Tree( Branch(Leaf{(:A1, :L1)}(), Leaf{(:B1, :L2)}(), Leaf{(:C1, :L3)}()), Branch(Leaf{(:A2, :L1)}(), Leaf{(:B2, :L2)}(), Leaf{(:C2, :L3)}()), Branch(Leaf{(:A3, :L1)}(), Leaf{(:B3, :L2)}(), Leaf{(:C3, :L3)}()), ) using StructuredPrinting # Print struct alone @structured_print t # Print struct with type highlighted @structured_print t Options(typeof(t.branchB)) # Print struct with Tuple of types highlighted @structured_print t Options((typeof(t.branchB), typeof(t.branchA))) ``` StructuredPrinting can be useful to find which object match certain types, which can be helpful to identify potential inference issues: ```julia struct Foo{A} a::A end bar(obj, i::Int) = obj.type(i) obj = (; type = Foo, x = 1, y = 2) # using a (<:Type)::DataType is a performance issue bar(obj, 3) # make sure this is callable @code_warntype bar(obj, 3) # demo performance issue using StructuredPrinting @structured_print obj Options((UnionAll, DataType)) # highlight `UnionAll` and `DataType`s # Or, print types directly: @structured_print obj Options((UnionAll, DataType); print_types=true) ```
StructuredPrinting
https://github.com/charleskawczynski/StructuredPrinting.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1135
using DynamicHMCModels Random.seed!(1) cd(@__DIR__) include("simulateGaussian.jl") struct GaussianProb{TY <: AbstractVector} "Observations." y::TY end function (problem::GaussianProb)(θ) @unpack y = problem # extract the data @unpack mu, sigma = θ loglikelihood(Normal(mu, sigma), y) + logpdf(Normal(0,1), mu) + logpdf(Truncated(Cauchy(0,5),0,Inf), sigma) end # Define problem with data and inits. data = simulateGaussian(;Nd=100) p = GaussianProb(data.y); p((mu = 0.0, sigma = 1.0)) # Write a function to return properly dimensioned transformation. problem_transformation(p::GaussianProb) = as((mu = as(Real, -25, 25), sigma = asℝ₊), ) # Use Flux for the gradient. P = TransformedLogDensity(problem_transformation(p), p) ∇P = ADgradient(:ForwardDiff, P) #import Zygote #∇P = ADgradient(:Zygote, P) # Sample from the posterior. chain, NUTS_tuned = NUTS_init_tune_mcmc(∇P, 4000); # Undo the transformation to obtain the posterior from the chain. posterior = TransformVariables.transform.(Ref(problem_transformation(p)), get_position.(chain)); chns = nptochain(posterior, NUTS_tuned) describe(chns)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
123
using Distributions, Random function simulateGaussian(;μ=0, σ=1, Nd, kwargs...) (y = rand(Normal(μ,σ), Nd), N = Nd) end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1421
using DynamicHMCModels Random.seed!(1) ProjDir = @__DIR__ cd(ProjDir) include("simulatePoisson.jl") struct PoissonProb y::Array{Int64,1} x::Array{Float64,1} idx::Array{Int64,1} N::Int64 Ns::Int64 end function (problem::PoissonProb)(θ) @unpack y, x, idx, N, Ns = problem # extract the data @unpack a0,a1,a0s,a0_sig = θ LL = 0.0 LL += logpdf(Cauchy(0, 1),a0_sig) LL += sum(logpdf.(Normal(0,a0_sig),a0s)) LL += logpdf.(Normal(0, 10),a0) LL += logpdf.(Normal(0, 1),a1) for i in 1:N λ = exp(a0 + a0s[idx[i]] + a1*x[i]) LL += logpdf(Poisson(λ),y[i]) end return LL end y, x, idx, N, Ns = simulatePoisson(;Nd=1,Ns=10,a0=1.0,a1=.5,a0_sig=.3) p = PoissonProb(y,x,idx,N,Ns) p((a0=0.0,a1=0.0,a0s=fill(0.0,Ns),a0_sig=.3)) # Write a function to return properly dimensioned transformation. problem_transformation(p::PoissonProb) = as( (a0 = asℝ, a1 = asℝ, a0s = as(Array, Ns), a0_sig = asℝ₊) ) # Use Flux for the gradient. P = TransformedLogDensity(problem_transformation(p), p) #∇P = LogDensityRejectErrors(ADgradient(:ForwardDiff, P)) import Zygote ∇P = ADgradient(:Zygote, P) # FSample from the posterior. chain, NUTS_tuned = NUTS_init_tune_mcmc(∇P, 1000); # Undo the transformation to obtain the posterior from the chain. posterior = TransformVariables.transform.(Ref(problem_transformation(p)), get_position.(chain)); chns = nptochain(posterior,NUTS_tuned)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
502
using Distributions, Random function simulatePoisson(;Nd=1,Ns=10,a0=1.0,a1=.5,a0_sig=.3,kwargs...) N = Nd*Ns y = fill(0,N) x = fill(0.0,N) idx = similar(y) i = 0 for s in 1:Ns a0s = rand(Normal(0,a0_sig)) logpop = rand(Normal(9,1.5)) λ = exp(a0 + a0s + a1*logpop) for nd in 1:Nd i+=1 x[i] = logpop idx[i] = s y[i] = rand(Poisson(λ)) end end return (y=y,x=x,idx=idx,N=N,Ns=Ns) end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
4041
using Distributions, Parameters, DynamicHMC, LogDensityProblems, TransformVariables using Random, StatsFuns import Distributions: pdf, logpdf, rand export LBA,pdf,logpdf,rand Base.@kwdef struct LBA{T1,T2,T3,T4} <: ContinuousUnivariateDistribution ν::T1 A::T2 k::T3 τ::T4 σ::Float64 = 1.0 end Base.broadcastable(x::LBA) = Ref(x) ### ### simulation ### function selectWinner(dt) if any(x -> x > 0,dt) mi, mv = 0, Inf for (i, t) in enumerate(dt) if (t > 0) && (t < mv) mi = i mv = t end end else return 1,-1.0 end return mi,mv end function sampleDriftRates(ν,σ) noPositive=true v = similar(ν) while noPositive v = [rand(Normal(d,σ)) for d in ν] any(x->x>0, v) ? noPositive=false : nothing end return v end function rand(d::LBA) @unpack τ,A,k,ν,σ = d b=A+k N = length(ν) v = sampleDriftRates(ν, σ) a = rand(Uniform(0, A), N) dt = @. (b-a)/v choice,mn = selectWinner(dt) rt = τ .+ mn return choice,rt end function rand(d::LBA, N::Int) choice = fill(0, N) rt = fill(0.0, N) for i in 1:N choice[i], rt[i] = rand(d) end return (choice=choice, rt=rt) end function simulateLBA(;Nd, v=[1.0,1.5,2.0], A=.8, k=.2, tau=.4, kwargs...) return (rand(LBA(ν=v, A=A, k=k, τ=tau), Nd)..., N=Nd, Nc=length(v)) end ### ### log densities ### function logpdf(d::LBA,data::T) where {T<:NamedTuple} return sum(logpdf.(d,data...)) end logpdf(dist::LBA,data::Array{<:Tuple,1}) = sum(d -> logpdf(dist, d), data) function logpdf(d::LBA, c, rt) @unpack τ,A,k,ν,σ = d b = A + k logden = 0.0 rt < τ && return -Inf for (i,v) in enumerate(ν) if c == i logden += log_dens_win(d, v, rt) else logden += log1mexp(log_dens_lose(d, v, rt)) end end return logden - log1mexp(logpnegative(d)) end logpdf(d::LBA, data::Tuple) = logpdf(d, data...) function log_dens_win(d::LBA, v, rt) @unpack τ,A,k,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) Δcdfs = cdf(Normal(0,1),n2) - cdf(Normal(0,1),n1) Δpdfs = pdf(Normal(0,1),n1) - pdf(Normal(0,1),n2) return -log(A) + logaddexp(log(σ) + log(Δpdfs), log(v) + log(Δcdfs)) end function log_dens_lose(d::LBA, v, rt) @unpack τ,A,k,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) cm = 1 + ((b-A-dt*v)/A)*cdf(Normal(0, 1), n1) - ((b-dt*v)/A)*cdf(Normal(0, 1), n2) + ((dt*σ)/A)*pdf(Normal(0, 1), n1) - ((dt*σ)/A)*pdf(Normal(0, 1), n2) cm = max(cm, 1e-10) return log(cm) end function logpnegative(d::LBA) @unpack ν,σ=d sum(v -> logcdf(Normal(0, 1), -v/σ), ν) end struct LBAProb{T} data::T N::Int Nc::Int end function (problem::LBAProb)(θ) @unpack data=problem @unpack v,A,k,tau=θ d = LBA(ν=v, A=A, k=k, τ=tau) minRT = minimum(last, data) logprior = (sum(logpdf.(TruncatedNormal(0, 3, 0, Inf), v)) + logpdf(TruncatedNormal(.8, .4, 0, Inf) ,A) + logpdf(TruncatedNormal(.2, .3, 0, Inf), k) + logpdf(TruncatedNormal(.4, .1, 0, minRT), tau)) loglikelihood = logpdf(d, data) end function sampleDHMC(choice, rt, N, Nc, nsamples) data = [(c,r) for (c,r) in zip(choice,rt)] return sampleDHMC(data, N, Nc, nsamples) end #Random.seed!(54548) Random.seed!(123) N = 10 data = simulateLBA(Nd = N) p = LBAProb(collect(zip(data.choice, data.rt)), N, data.Nc) p((v=fill(.5, data.Nc),A=.8, k=.2, tau=.4)) trans = as((v=as(Array,asℝ₊,data.Nc),A=asℝ₊,k=asℝ₊,tau=asℝ₊)) #minRT = minimum(data.rt) #trans = as((v=as(Array,asℝ₊,data.Nc),A=asℝ₊,k=asℝ₊,tau=as(Real,0,minRT))) P = TransformedLogDensity(trans, p) ∇P = ADgradient(:ForwardDiff, P) results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 2000; warmup_stages = default_warmup_stages(; local_optimization = nothing, M = DynamicHMC.Symmetric)) posterior = trans.(results.chain)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
4354
using Distributions, Parameters, DynamicHMC, LogDensityProblems, TransformVariables using Random, StatsFuns, MCMCChains import Distributions: pdf, logpdf, rand export LBA,pdf,logpdf,rand Base.@kwdef struct LBA{T1,T2,T3,T4} <: ContinuousUnivariateDistribution ν::T1 A::T2 k::T3 τ::T4 σ::Float64 = 1.0 end Base.broadcastable(x::LBA) = Ref(x) ### ### simulation ### function selectWinner(dt) if any(x -> x > 0,dt) mi, mv = 0, Inf for (i, t) in enumerate(dt) if (t > 0) && (t < mv) mi = i mv = t end end else return 1,-1.0 end return mi,mv end function sampleDriftRates(ν,σ) noPositive=true v = similar(ν) while noPositive v = [rand(Normal(d,σ)) for d in ν] any(x->x>0, v) ? noPositive=false : nothing end return v end function rand(d::LBA) @unpack τ,A,k,ν,σ = d b=A+k N = length(ν) v = sampleDriftRates(ν, σ) a = rand(Uniform(0, A), N) dt = @. (b-a)/v choice,mn = selectWinner(dt) rt = τ .+ mn return choice,rt end function rand(d::LBA, N::Int) choice = fill(0, N) rt = fill(0.0, N) for i in 1:N choice[i], rt[i] = rand(d) end return (choice=choice, rt=rt) end function simulateLBA(;Nd, v=[1.0,1.5,2.0], A=.8, k=.2, tau=.4, kwargs...) return (rand(LBA(ν=v, A=A, k=k, τ=tau), Nd)..., N=Nd, Nc=length(v)) end ### ### log densities ### function logpdf(d::LBA,data::T) where {T<:NamedTuple} return sum(logpdf.(d,data...)) end logpdf(dist::LBA,data::Array{<:Tuple,1}) = sum(d -> logpdf(dist, d), data) function logpdf(d::LBA, c, rt) @unpack τ,A,k,ν,σ = d b = A + k logden = 0.0 rt < τ && return -Inf for (i,v) in enumerate(ν) if c == i logden += log_dens_win(d, v, rt) else logden += log1mexp(log_dens_lose(d, v, rt)) end end return logden - log1mexp(logpnegative(d)) end logpdf(d::LBA, data::Tuple) = logpdf(d, data...) function log_dens_win(d::LBA, v, rt) @unpack τ,A,k,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) dens = (1/A)*(-v*cdf(Normal(0, 1), n1) + σ*pdf(Normal(0, 1), n1) + v*cdf(Normal(0, 1), n2) - σ*pdf(Normal(0, 1), n2)) dens = max(dens, 1e-10) return log(dens) end function log_dens_lose(d::LBA, v, rt) @unpack τ,A,k,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) cm = 1 + ((b-A-dt*v)/A)*cdf(Normal(0, 1), n1) - ((b-dt*v)/A)*cdf(Normal(0, 1), n2) + ((dt*σ)/A)*pdf(Normal(0, 1), n1) - ((dt*σ)/A)*pdf(Normal(0, 1), n2) cm = max(cm, 1e-10) return log(cm) end function logpnegative(d::LBA) @unpack ν,σ=d sum(v -> logcdf(Normal(0, 1), -v/σ), ν) end struct LBAProb{T} data::T N::Int Nc::Int end function (problem::LBAProb)(θ) @unpack data=problem @unpack v,A,k,tau=θ d = LBA(ν=v, A=A, k=k, τ=tau) minRT = minimum(last, data) logprior = (sum(logpdf.(TruncatedNormal(0, 3, 0, Inf), v)) + logpdf(TruncatedNormal(.8, .4, 0, Inf) ,A) + logpdf(TruncatedNormal(.2, .3, 0, Inf), k) + logpdf(TruncatedNormal(.4, .1, 0, minRT), tau)) loglikelihood = logpdf(d, data) end function sampleDHMC(choice, rt, N, Nc, nsamples) data = [(c,r) for (c,r) in zip(choice,rt)] return sampleDHMC(data, N, Nc, nsamples) end #Random.seed!(1333) N = 10 data = simulateLBA(Nd = N) p = LBAProb(collect(zip(data.choice, data.rt)), N, data.Nc) p((v=fill(.5, data.Nc),A=.8, k=.2, tau=.4)) trans = as((v=as(Array,asℝ₊,data.Nc),A=asℝ₊,k=asℝ₊,tau=asℝ₊)) P = TransformedLogDensity(trans, p) ∇P = ADgradient(:ForwardDiff, P) results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 2000; # warmup_stages = default_warmup_stages(local_optimization=nothing) ) posterior = trans.(results.chain) parameter_names = ["v[1]", "v[2]", "v[3]", "A", "k", "tau"] # Create a3d a3d = Array{Float64, 3}(undef, 2000, 6, 1); for j in 1:1 for i in 1:2000 a3d[i, 1:3, j] = values(posterior[i].v) a3d[i, 4, j] = values(posterior[i].A) a3d[i, 5, j] = values(posterior[i].k) a3d[i, 6, j] = values(posterior[i].tau) end end chns = MCMCChains.Chains(a3d, vcat(parameter_names), Dict( :parameters => parameter_names ) ) describe(chns)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
4425
using Distributions, Parameters, DynamicHMC, LogDensityProblems, TransformVariables using Random, StatsFuns import Distributions: pdf, logpdf, rand export LBA,pdf,logpdf,rand Base.@kwdef struct LBA{T1,T2,T3,T4} <: ContinuousUnivariateDistribution ν::T1 A::T2 k::T3 τ::T4 σ::Float64 = 1.0 end Base.broadcastable(x::LBA) = Ref(x) ### ### simulation ### function selectWinner(dt) if any(x -> x > 0,dt) mi, mv = 0, Inf for (i, t) in enumerate(dt) if (t > 0) && (t < mv) mi = i mv = t end end else return 1,-1.0 end return mi,mv end function sampleDriftRates(ν,σ) noPositive=true v = similar(ν) while noPositive v = [rand(Normal(d,σ)) for d in ν] any(x->x>0, v) ? noPositive=false : nothing end return v end function rand(d::LBA) @unpack τ,A,k,ν,σ = d b=A+k N = length(ν) v = sampleDriftRates(ν, σ) a = rand(Uniform(0, A), N) dt = @. (b-a)/v choice,mn = selectWinner(dt) rt = τ .+ mn return choice,rt end function rand(d::LBA, N::Int) choice = fill(0, N) rt = fill(0.0, N) for i in 1:N choice[i], rt[i] = rand(d) end return (choice=choice, rt=rt) end function simulateLBA(;Nd, v=[1.0,1.5,2.0], A=.8, k=.2, tau=.4, kwargs...) return (rand(LBA(ν=v, A=A, k=k, τ=tau), Nd)..., N=Nd, Nc=length(v)) end ### ### log densities ### function logpdf(d::LBA,data::T) where {T<:NamedTuple} return sum(logpdf.(d,data...)) end logpdf(dist::LBA,data::Array{<:Tuple,1}) = sum(d -> logpdf(dist, d), data) function logpdf(d::LBA, c, rt) @unpack τ,A,k,ν,σ = d b = A + k logden = 0.0 rt < τ && return -Inf for (i,v) in enumerate(ν) if c == i logden += log_dens_win(d, v, rt) else logden += log1mexp(log_dens_lose(d, v, rt)) end end return logden - log1mexp(logpnegative(d)) end logpdf(d::LBA, data::Tuple) = logpdf(d, data...) function log_dens_win(d::LBA, v, rt) @unpack τ,A,k,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) Δcdfs = cdf(Normal(0,1),n2) - cdf(Normal(0,1),n1) Δpdfs = pdf(Normal(0,1),n1) - pdf(Normal(0,1),n2) return -log(A) + logaddexp(log(σ) + log(Δpdfs), log(v) + log(Δcdfs)) end function log_dens_lose(d::LBA, v, rt) @unpack τ,A,k,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) cm = 1 + ((b-A-dt*v)/A)*cdf(Normal(0, 1), n1) - ((b-dt*v)/A)*cdf(Normal(0, 1), n2) + ((dt*σ)/A)*pdf(Normal(0, 1), n1) - ((dt*σ)/A)*pdf(Normal(0, 1), n2) cm = max(cm, 1e-10) return log(cm) end function logpnegative(d::LBA) @unpack ν,σ=d sum(v -> logcdf(Normal(0, 1), -v/σ), ν) end struct LBAProb{T} data::T N::Int Nc::Int end function (problem::LBAProb)(θ) @unpack data=problem @unpack v,A,k,tau=θ d = LBA(ν=v, A=A, k=k, τ=tau) minRT = minimum(last, data) logprior = (sum(logpdf.(TruncatedNormal(0, 3, 0, Inf), v)) + logpdf(TruncatedNormal(.8, .4, 0, Inf) ,A) + logpdf(TruncatedNormal(.2, .3, 0, Inf), k) + logpdf(TruncatedNormal(.4, .1, 0, minRT), tau)) loglikelihood = logpdf(d, data) end function sampleDHMC(choice, rt, N, Nc, nsamples) data = [(c,r) for (c,r) in zip(choice,rt)] return sampleDHMC(data, N, Nc, nsamples) end Random.seed!(54548) #Random.seed!(123) N = 10 data = simulateLBA(Nd = N) p = LBAProb(collect(zip(data.choice, data.rt)), N, data.Nc) p((v=fill(.5, data.Nc),A=.8, k=.2, tau=.4)) #trans = as((v=as(Array,asℝ₊,data.Nc),A=asℝ₊,k=asℝ₊,tau=asℝ₊)) minRT = minimum(data.rt) trans = as((v=as(Array,asℝ₊,data.Nc),A=asℝ₊,k=asℝ₊,tau=as(Real,0,minRT))) P = TransformedLogDensity(trans, p) ∇P = ADgradient(:ForwardDiff, P) bad_xs = LogDensityProblems.stresstest(LogDensityProblems.logdensity, P; scale = 0.001) bad_xs |> display bad_θs = trans.(bad_xs) bad_θs |> display bad_gxs = LogDensityProblems.stresstest(LogDensityProblems.logdensity_and_gradient, P; scale = 0.001) bad_gxs |> display bad_gθs = trans.(bad_gxs) bad_gθs |> display #LogDensityProblems.logdensity(P, bad_xs[1]) #p(bad_θs[1]) #= results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 2000; warmup_stages = default_warmup_stages(; local_optimization = nothing, M = DynamicHMC.Symmetric)) posterior = trans.(results.chain) =#
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2974
using Distributions, Parameters, Random import Distributions: pdf,logpdf,rand export LBA,pdf,logpdf,rand # See discussions at https://discourse.julialang.org/t/dynamichmc-reached-maximum-number-of-iterations/24721 ############################################ # Model functions ############################################ mutable struct LBA{T1,T2,T3,T4} <: ContinuousUnivariateDistribution ν::T1 A::T2 k::T3 τ::T4 σ::Float64 end Base.broadcastable(x::LBA)=Ref(x) LBA(;τ,A,k,ν,σ=1.0) = LBA(ν,A,k,τ,σ) function selectWinner(dt) if any(x->x >0,dt) mi,mv = 0,Inf for (i,t) in enumerate(dt) if (t > 0) && (t < mv) mi = i mv = t end end else return 1,-1.0 end return mi,mv end function sampleDriftRates(ν,σ) noPositive=true v = similar(ν) while noPositive v = [rand(Normal(d,σ)) for d in ν] any(x->x>0,v) ? noPositive=false : nothing end return v end function rand(d::LBA) @unpack τ,A,k,ν,σ = d b=A+k N = length(ν) v = sampleDriftRates(ν,σ) a = rand(Uniform(0,A),N) dt = @. (b-a)/v choice,mn = selectWinner(dt) rt = τ .+ mn return choice,rt end function rand(d::LBA,N::Int) choice = fill(0,N) rt = fill(0.0,N) for i in 1:N choice[i],rt[i]=rand(d) end return (choice=choice,rt=rt) end logpdf(d::LBA,choice,rt) = log(pdf(d,choice,rt)) function logpdf(d::LBA,data::T) where {T<:NamedTuple} return sum(logpdf.(d,data...)) end function logpdf(dist::LBA,data::Array{<:Tuple,1}) LL = 0.0 for d in data LL += logpdf(dist,d...) end return LL end function pdf(d::LBA,c,rt) @unpack τ,A,k,ν,σ = d b=A+k; den = 1.0 rt < τ ? (return 1e-10) : nothing for (i,v) in enumerate(ν) if c == i den *= dens(d,v,rt) else den *= (1-cummulative(d,v,rt)) end end pneg = pnegative(d) den = den/(1-pneg) den = max(den,1e-10) isnan(den) ? (return 0.0) : (return den) end function dens(d::LBA,v,rt) @unpack τ,A,k,ν,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) dens = (1/A)*(-v*cdf(Normal(0,1),n1) + σ*pdf(Normal(0,1),n1) + v*cdf(Normal(0,1),n2) - σ*pdf(Normal(0,1),n2)) return dens end function cummulative(d::LBA,v,rt) @unpack τ,A,k,ν,σ = d dt = rt-τ; b=A+k n1 = (b-A-dt*v)/(dt*σ) n2 = (b-dt*v)/(dt*σ) cm = 1 + ((b-A-dt*v)/A)*cdf(Normal(0,1),n1) - ((b-dt*v)/A)*cdf(Normal(0,1),n2) + ((dt*σ)/A)*pdf(Normal(0,1),n1) - ((dt*σ)/A)*pdf(Normal(0,1),n2) return cm end function pnegative(d::LBA) @unpack ν,σ=d p=1.0 for v in ν p*= cdf(Normal(0,1),-v/σ) end return p end function simulateLBA(;Nd=10,v=[1.0,1.5,2.0],A=.8,k=.2,tau=.4,kwargs...) return (rand(LBA(ν=v,A=A,k=k,τ=tau),Nd)...,N=Nd,Nc=length(v)) end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1920
using DynamicHMCModels, MCMCChains, Random #Random.seed!(1233) ProjDir = @__DIR__ cd(ProjDir) include(joinpath(@__DIR__, "LBA_functions.jl")) Base.@kwdef struct LBAModel{T} data::T N::Int Nc::Int end function make_transformation(model::LBAModel) as((v=as(Array,asℝ₊,Nc), A=asℝ₊, k=asℝ₊, tau=asℝ₊)) end N = 10 v = [1.0, 1.5] Nc = length(v) data=simulateLBA(;Nd=N,v=v,A=.8,k=.2,tau=.4) #dist = LBA(ν=[1.0,1.5,2.0],A=.8,k=.2,τ=.4) #data = rand(dist,N) model = LBAModel(; data=data, N=N, Nc=Nc) function (model::LBAModel)(θ) @unpack data=model @unpack v,A,k,tau=θ d=LBA(ν=v,A=A,k=k,τ=tau) minRT = minimum(x->x[2],data) logpdf(d,data)+sum(logpdf.(TruncatedNormal(0,3,0,Inf),v)) + logpdf(TruncatedNormal(.8,.4,0,Inf),A)+logpdf(TruncatedNormal(.2,.3,0,Inf),k)+ logpdf(TruncatedNormal(.4,.1,0,minRT),tau) end d = [(c,r) for (c,r) in zip(data.choice,data.rt)] p = LBAModel(d,N,Nc) p((v=fill(.5,Nc),A=.8,k=.2,tau=.4)) # Use Flux for the gradient. P = TransformedLogDensity(make_transformation(p), p) ∇P = ADgradient(:ForwardDiff, P) # Sample from the posterior. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000; warmup_stages = default_warmup_stages(local_optimization=nothing), reporter = NoProgressReport() ) posterior = P.transformation.(results.chain) @show DynamicHMC.Diagnostics.EBFMI(results.tree_statistics) println() @show DynamicHMC.Diagnostics.summarize_tree_statistics(results.tree_statistics) println() parameter_names = ["v[1]", "v[2]", "A", "k", "tau"] # Create a3d a3d = Array{Float64, 3}(undef, 1000, 5, 1); for j in 1:1 for i in 1:1000 a3d[i, 1:2, j] = values(posterior[i].v) a3d[i, 3, j] = values(posterior[i].A) a3d[i, 4, j] = values(posterior[i].k) a3d[i, 5, j] = values(posterior[i].tau) end end chns = MCMCChains.Chains(a3d, vcat(parameter_names), Dict( :parameters => parameter_names ) ) describe(chns)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1235
using DynamicHMCModels Random.seed!(1) cd(@__DIR__) include("simulateLR.jl") struct RegressionProb x::Array{Float64,2} y::Array{Float64,1} Nd::Int64 Nc::Int64 end function (problem::RegressionProb)(θ) @unpack x,y,Nd,Nc = problem # extract the data @unpack B0,B,sigma = θ μ = B0 .+x*B sum(logpdf.(Normal.(μ,sigma),y)) + logpdf(Normal(0,10),B0) + loglikelihood(Normal(0,10),B) + logpdf(Truncated(Cauchy(0,5),0,Inf),sigma) end # Define problem with data and inits. x, y, Nd, Nc = simulateLR() p = RegressionProb(x, y, Nd, Nc) p((B0 = 0.0, B = fill(0.0, Nc), sigma = 1.0)) # Write a function to return properly dimensioned transformation. problem_transformation(p::RegressionProb) = as((B0=asℝ, B=as(Array, asℝ, Nc), sigma = asℝ₊)) # Use Flux for the gradient. P = TransformedLogDensity(problem_transformation(p), p) ∇P = ADgradient(:ForwardDiff, P) #import Zygote #∇P = ADgradient(:Zygote, P) # Sample from the posterior. chain, NUTS_tuned = NUTS_init_tune_mcmc(∇P, 4000); # Undo the transformation to obtain the posterior from the chain. posterior = TransformVariables.transform.(Ref(problem_transformation(p)), get_position.(chain)); chns = nptochain(posterior,NUTS_tuned)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
226
using Distributions, Random function simulateLR(;Nd = 4, Nc = 1,β0 = 1., β = fill(.5, Nc), σ = 1, kwargs...) x = rand(Normal(10,5),Nd,Nc) y = β0 .+ x*β .+ rand(Normal(0,σ),Nd) return (x=x, y=y, Nd=Nd, Nc=Nc) end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1085
using DynamicHMCModels Random.seed!(1) cd(@__DIR__) include("sdt_functions.jl") include("simulateSDT.jl") struct SDTProblem hits::Int64 fas::Int64 Nd::Int64 end function (problem::SDTProblem)(θ) @unpack hits,fas,Nd=problem # extract the data @unpack d,c=θ logpdf(SDT(d,c),[hits,fas,Nd])+logpdf(Normal(0,1/sqrt(2)),d) + logpdf(Normal(0,1/sqrt(2)),c) end # Define problem with data and inits. data = simulateSDT(;Nd=100) p = SDTProblem(data...) p((d=2.0,c=.0)) # Write a function to return properly dimensioned transformation. problem_transformation(p::SDTProblem) = as((d=asℝ,c=asℝ)) # Use Flux for the gradient. P = TransformedLogDensity(problem_transformation(p), p) ∇P = ADgradient(:ForwardDiff, P); #import Zygote #∇P = ADgradient(:Zygote, P); # FSample from the posterior. chain, NUTS_tuned = NUTS_init_tune_mcmc(∇P, 4000); # Undo the transformation to obtain the posterior from the chain. posterior = TransformVariables.transform.(Ref(problem_transformation(p)), get_position.(chain)); chns = nptochain(posterior,NUTS_tuned)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
526
import Distributions: logpdf, pdf struct SDT{T1,T2} <: ContinuousUnivariateDistribution d::T1 c::T2 end logpdf(d::SDT,data::Vector{Int64}) = logpdf(d,data...) logpdf(d::SDT,data::Tuple{Vararg{Int64}}) = logpdf(d,data...) function logpdf(d::SDT,hits,fas,Nd) @unpack d,c=d θhit=cdf(Normal(0,1),d/2-c) θfa=cdf(Normal(0,1),-d/2-c) loghits = logpdf(Binomial(Nd,θhit),hits) logfas = logpdf(Binomial(Nd,θfa),fas) return loghits+logfas end pdf(d::SDT,data::Vector{Int64}) = exp(logpdf(d,data...))
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
251
using Distributions, Random function simulateSDT(;d=2.,c=0.,Nd,kwargs...) θhit=cdf(Normal(0,1),d/2-c) θfa=cdf(Normal(0,1),-d/2-c) hits = rand(Binomial(Nd,θhit)) fas = rand(Binomial(Nd,θfa)) return (hits=hits,fas=fas,Nd=Nd) end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1274
# # Estimate Binomial draw probabilility using DynamicHMCModels Random.seed!(1356779) # Define a structure to hold the data. Base.@kwdef struct BernoulliProblem "Total number of draws in the data." n::Int "Number of draws ' == 1' " obs::Vector{Int} end; # Write a function to return properly dimensioned transformation. make_transformation(model::BernoulliProblem) = as((p = as𝕀, )) # Add data model = BernoulliProblem(; n = 9, obs = rand(Binomial(9, 2/3), 3)) # Make the type callable with the parameters *as a single argument*. function (model::BernoulliProblem)(θ) @unpack n, obs = model # extract the data @unpack p = θ loglikelihood(Binomial(n, p), obs) end # Use a flat priors (the default, omitted) for α P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Sample chain results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000; reporter = NoProgressReport() ) posterior = P.transformation.(results.chain) # Create Particles NamedTuple object println() p = as_particles(posterior) p |> display println() DynamicHMC.Diagnostics.EBFMI(results.tree_statistics) |> display println() DynamicHMC.Diagnostics.summarize_tree_statistics(results.tree_statistics) |> display
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1866
# # Heights_1 problem # We estimate simple linear regression model with a half-T prior. using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. delim = ';' data = CSV.read(joinpath("..", "..", "data", "Howell1.csv"), DataFrame; delim); # Use only adults and standardize df = filter(row -> row[:age] >= 18, data); # Half-T for `σ`, see below. Base.@kwdef mutable struct Heights_1{Ty <: AbstractVector, Tν <: Real} "Observations." y::Ty "Degrees of freedom for prior on sigma." v::Tν end; # Write a function to return properly dimensioned transformation. function make_transformation(model::Heights_1) as((σ = asℝ₊, μ = as(Real, 100, 250)), ) end model = Heights_1(;y = df[:, :height], v=1.0) # Then make the type callable with the parameters *as a single argument*. function (model::Heights_1)(θ) @unpack y, v = model # extract the data @unpack μ, σ = θ loglikelihood(Normal(μ, σ), y) + logpdf(TDist(v), σ) end; # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) # Stan.jl results cmdstan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS sigma 7.7641872 0.29928194 0.004732063 0.0055677898 1000 mu 154.6055177 0.41989355 0.006639100 0.0085038356 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% sigma 7.21853 7.5560625 7.751355 7.9566775 8.410391 mu 153.77992 154.3157500 154.602000 154.8820000 155.431000 "; # end of m4.1d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2314
# # Heights_1 problem # We estimate simple linear regression model with a half-T prior. using StatisticalRethinking, DynamicHMCModels, MCMCChains ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. data = CSV.read(rel_path("..", "data", "Howell1.csv"), DataFrame) # Use only adults and standardize df = filter(row -> row[:age] >= 18, data); # Half-T for `σ`, see below. Base.@kwdef mutable struct Heights_1{Ty <: AbstractVector, Tν <: Real} "Observations." y::Ty "Degrees of freedom for prior on sigma." v::Tν end; # Write a function to return properly dimensioned transformation. function make_transformation(model::Heights_1) as((σ = asℝ₊, μ = as(Real, 100, 250)), ) end model = Heights_1(;y = df[:, :height], v=1.0) # Then make the type callable with the parameters *as a single argument*. function (model::Heights_1)(θ) @unpack y, v = model # extract the data @unpack μ, σ = θ loglikelihood(Normal(μ, σ), y) + logpdf(TDist(v), σ) end; # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) DynamicHMC.Diagnostics.EBFMI(results.tree_statistics) |> display println() DynamicHMC.Diagnostics.summarize_tree_statistics(results.tree_statistics) |> display println() a3d = Array{Float64, 3}(undef, 1000, 2, 1); for j in 1:1 for i in 1:1000 a3d[i, 1, j] = values(posterior[i].μ) a3d[i, 2, j] = values(posterior[i].σ) end end pnames = ["μ", "σ"] sections = Dict( :parameters => pnames, ) chns = create_mcmcchains(a3d, pnames, sections, start=1); # Stan.jl results cmdstan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS sigma 7.7641872 0.29928194 0.004732063 0.0055677898 1000 mu 154.6055177 0.41989355 0.006639100 0.0085038356 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% sigma 7.21853 7.5560625 7.751355 7.9566775 8.410391 mu 153.77992 154.3157500 154.602000 154.8820000 155.431000 "; show(chns) # end of m4.1d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1791
# # Heights_2 problem with restricted prior on mu. using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. data = CSV.read(joinpath("..", "..", "data", "Howell1.csv"), DataFrame) # Use only adults and standardize df = filter(row -> row[:age] >= 18, data); # Flat `σ`, see below. Base.@kwdef mutable struct Heights_2{Ty <: AbstractVector} "Observations." y::Ty end; # Write a function to return properly dimensioned transformation. function make_transformation(model::Heights_2) as((σ = asℝ₊, μ = as(Real, 100, 250)), ) end model = Heights_2(;y = df[:, :height]) # Then make the type callable with the parameters *as a single argument*. Very constraint prior on μ. Flat σ. function (model::Heights_2)(θ) @unpack y = model # extract the data @unpack μ, σ = θ loglikelihood(Normal(μ, σ), y) + logpdf(Normal(178, 0.1), μ) + logpdf(Uniform(0, 50), σ) end; # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) p |> display # cmdstan result stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS sigma 24.604616 0.946911707 0.0149719887 0.0162406632 1000 mu 177.864069 0.102284043 0.0016172527 0.0013514459 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% sigma 22.826377 23.942275 24.56935 25.2294 26.528368 mu 177.665000 177.797000 177.86400 177.9310 178.066000 "; # end of m4.2d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2730
# # Polynomial weight model model using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. data = CSV.read(joinpath("..", "..", "data", "Howell1.csv"), DataFrame) # Use only adults and standardize df = filter(row -> row[:age] >= 18, data); df[!, :weight] = convert(Vector{Float64}, df[:, :weight]); df[!, :weight_s] = (df[:, :weight] .- mean(df[:, :weight])) / std(df[:, :weight]); df[!, :weight_s2] = df[:, :weight_s] .^ 2; # LR model ``y ∼ xβ + ϵ``, where ``ϵ ∼ N(0, σ²)`` IID. Base.@kwdef mutable struct ConstraintHeightProblem{Ty <: AbstractVector, Tx <: AbstractMatrix} "Observations." y::Ty "Covariates" x::Tx end; # Write a function to return a properly dimensioned transformation. function make_transformation(model::ConstraintHeightProblem) as((β = as(Array, size(model.x, 2)), σ = asℝ₊)) end N = size(df, 1) x = hcat(ones(N), hcat(df[:, :weight_s], df[:, :weight_s2])); model = ConstraintHeightProblem(;y = df[:, :height], x=x) # Pack the parameters in a single argument θ. function (problem::ConstraintHeightProblem)(θ) @unpack y, x = problem # extract the data @unpack β, σ = θ # works on the named tuple too ll = 0.0 ll += logpdf(Normal(178, 100), x[1]) # a = x[1] ll += logpdf(Normal(0, 10), x[2]) # b1 = x[2] ll += logpdf(Normal(0, 10), x[3]) # b2 = x[3] ll += logpdf(TDist(1.0), σ) ll += loglikelihood(Normal(0, σ), y .- x*β) ll end # Evaluate at model function at some initial valuues println() model((β = [1.0, 2.0, 3.0], σ = 1.0)) |> display println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 154.609019750 0.36158389 0.0057171433 0.0071845548 1000 b1 5.838431778 0.27920926 0.0044146860 0.0048693502 1000 b2 -0.009985954 0.22897191 0.0036203637 0.0047224478 1000 sigma 5.110136300 0.19096315 0.0030193925 0.0030728192 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% a 153.92392500 154.3567500 154.60700000 154.8502500 155.32100000 b1 5.27846200 5.6493250 5.83991000 6.0276275 6.39728200 b2 -0.45954687 -0.1668285 -0.01382935 0.1423620 0.43600905 sigma 4.76114350 4.9816850 5.10326000 5.2300450 5.51500975 "; # end of m4.5d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2781
# Estimate polynomial linear regression model with a half-T prior. using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. data = CSV.read(joinpath("..", "..", "data", "Howell1.csv"), DataFrame) # Use only adults and standardize df = filter(row -> row[:age] >= 18, data); df[!, :weight] = convert(Vector{Float64}, df[:, :weight]); df[!, :weight_s] = (df[:, :weight] .- mean(df[:, :weight])) / std(df[:, :weight]); df[!, :weight_s2] = df[:, :weight_s] .^ 2; # Define a structure to hold the data: observables, covariates, # and the degrees of freedom for the prior. """ Linear regression model ``y ∼ Xβ + ϵ``, where ``ϵ ∼ N(0, σ²)`` IID. Flat prior for `β`, half-T for `σ`. """ Base.@kwdef mutable struct LinearRegressionModel{Ty <: AbstractVector, Tx <: AbstractMatrix, Tv <: Real} "Observations." y::Ty "Covariates" x::Tx "Degrees of freedom for prior." v::Tv end # Write a function to return a properly dimensioned transformation. function make_transformation(model::LinearRegressionModel) as((β = as(Array, size(model.x, 2)), σ = asℝ₊)) end N = size(df, 1) x = hcat(ones(N), hcat(df[:, :weight_s], df[:, :weight_s2])); model = LinearRegressionModel(;y = df[:, :height], x=x, v=1.0) # Pack parameters *as a single argument*. function (model::LinearRegressionModel)(θ) @unpack y, x, v = model # extract data @unpack β, σ = θ # extract parameters loglikelihood(Normal(0, σ), y .- x*β) + logpdf(TDist(v), σ) end # Evaluate at model function at some initial valuues println() model((β = [1.0, 2.0, 3.0], σ = 1.0)) |> display println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 154.609019750 0.36158389 0.0057171433 0.0071845548 1000 b1 5.838431778 0.27920926 0.0044146860 0.0048693502 1000 b2 -0.009985954 0.22897191 0.0036203637 0.0047224478 1000 sigma 5.110136300 0.19096315 0.0030193925 0.0030728192 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% a 153.92392500 154.3567500 154.60700000 154.8502500 155.32100000 b1 5.27846200 5.6493250 5.83991000 6.0276275 6.39728200 b2 -0.45954687 -0.1668285 -0.01382935 0.1423620 0.43600905 sigma 4.76114350 4.9816850 5.10326000 5.2300450 5.51500975 "; # end of m4.5d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2366
# # Linear regression using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. # ### snippet 5.1 df = CSV.read(joinpath("..", "..", "data", "WaffleDivorce.csv"), DataFrame) mean_ma = mean(df[:, :MedianAgeMarriage]) df[!, :MedianAgeMarriage_s] = convert(Vector{Float64}, (df[:, :MedianAgeMarriage]) .- mean_ma)/std(df[:, :MedianAgeMarriage]); # Model ``y ∼ Normal(y - Xβ, σ)``. Flat prior `β`, half-T for `σ`. Base.@kwdef mutable struct WaffleDivorce{Ty <: AbstractVector, Tx <: AbstractMatrix} "Observations." y::Ty "Covariates" x::Tx end # Write a function to return a properly dimensioned transformation. function make_transformation(model::WaffleDivorce) as((β = as(Array, size(model.x, 2)), σ = asℝ₊)) end # Instantiate the model with data and inits. x = hcat(ones(size(df, 1)), df[:, :MedianAgeMarriage_s]); model = WaffleDivorce(;y=df[:, :Divorce], x=x); # Make tmodel callable with the parameters *as a single argument*. function (model::WaffleDivorce)(θ) @unpack y, x = model # extract the data @unpack β, σ = θ # works on the named tuple too ll = 0.0 ll += logpdf(Normal(10, 10), x[1]) # alpha ll += logpdf(Normal(0, 1), x[2]) # beta ll += logpdf(TDist(1.0), σ) ll += loglikelihood(Normal(0, σ), y .- x*β) ll end println() model((β = [1.0, 2.0], σ = 1.0)) |> display println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 9.6882466 0.22179190 0.0035068378 0.0031243061 1000 bA -1.0361742 0.21650514 0.0034232469 0.0034433245 1000 sigma 1.5180337 0.15992781 0.0025286807 0.0026279593 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% a 9.253141 9.5393175 9.689585 9.84221500 10.11121000 bA -1.454571 -1.1821025 -1.033065 -0.89366925 -0.61711705 sigma 1.241496 1.4079225 1.504790 1.61630750 1.86642750 "; # end of m4.5d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2789
# # Linear regression using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Import the dataset. # ### snippet 5.4 df = CSV.read(joinpath("..", "..", "data", "WaffleDivorce.csv"), DataFrame) mean_ma = mean(df[:, :Marriage]) df[!, :Marriage_s] = convert(Vector{Float64}, (df[:, :Marriage]) .- mean_ma)/std(df[:, :Marriage]); mean_mam = mean(df[:, :MedianAgeMarriage]) df[!, :MedianAgeMarriage_s] = convert(Vector{Float64}, (df[:, :MedianAgeMarriage]) .- mean_mam)/std(df[:, :MedianAgeMarriage]); # Model ``y ∼ Xβ + ϵ``, where ``ϵ ∼ N(0, σ²)`` IID. Student on σ Base.@kwdef mutable struct WaffleDivorce{Ty <: AbstractVector, Tx <: AbstractMatrix} "Observations." y::Ty "Covariates" x::Tx end # Write a function to return a properly dimensioned transformation. function make_transformation(model::WaffleDivorce) as((β = as(Array, size(model.x, 2)), σ = asℝ₊)) end # Instantiate the model with data and inits. x = hcat(ones(size(df, 1)), df[:, :Marriage_s], df[:, :MedianAgeMarriage_s]); model = WaffleDivorce(;y=df[:, :Divorce], x=x); # Make the type callable with the parameters *as a single argument*. function (model::WaffleDivorce)(θ) @unpack y, x = model # extract the data @unpack β, σ = θ # works on the named tuple too ll = 0.0 ll += logpdf(Normal(10, 10), x[1]) ll += logpdf(Normal(0, 1), x[2]) ll += logpdf(Normal(0, 1), x[3]) ll += logpdf(TDist(1.0), σ) ll += loglikelihood(Normal(0, σ), y .- x*β) ll end println() model((β = [1.0, 2.0, 3.0], σ = 1.0)) |> display println() # Instantiate the model with data and inits. println() model((β = [1.0, 2.0, 3.0], σ = 1.0)) println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 9.69137275 0.21507432 0.0034006235 0.0038501180 1000 bA -1.12184710 0.29039965 0.0045916216 0.0053055477 1000 bM -0.12106472 0.28705400 0.0045387223 0.0051444688 1000 sigma 1.52326545 0.16272599 0.0025729239 0.0034436330 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% a 9.2694878 9.5497650 9.6906850 9.83227750 10.11643500 bA -1.6852295 -1.3167700 -1.1254650 -0.92889225 -0.53389157 bM -0.6889247 -0.3151695 -0.1231065 0.07218513 0.45527243 sigma 1.2421182 1.4125950 1.5107700 1.61579000 1.89891925 "; # end of m4.5d.jl
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2411
# Load Julia packages (libraries) needed for the snippets in chapter 0 using DynamicHMCModels # CmdStan uses a tmp directory to store the output of cmdstan ProjDir = @__DIR__ cd(ProjDir) # Read the milk data df = CSV.read(joinpath("..", "..", "data", "milk.csv"), DataFrame) df = filter(row -> !(row[:neocortex_perc] == "NA"), df) #df[:, :kcal_per_g] = convert(Vector{Float64}, df[:, :kcal_per_g]) df[!, :log_mass] = log.(convert(Vector{Float64}, df[:, :mass])) # Define the model struct Base.@kwdef mutable struct MilkModel{Ty <: AbstractVector, Tx <: AbstractMatrix} "Observations." y::Ty "Covariates" x::Tx end # Write a function to return properly dimensioned transformation. function make_transformation(model::MilkModel) as((β = as(Array, size(model.x, 2)), σ = asℝ₊)) end # Instantiate the model with data and inits. x = hcat(ones(size(df, 1)), df[:, :log_mass]); model = MilkModel(;y=df[:, :kcal_per_g], x=x) # Make the type callable with the parameters *as a single argument*. function (model::MilkModel)(θ) @unpack y, x, = model # extract the data @unpack β, σ = θ # works on the named tuple too ll = 0.0 ll += logpdf(Normal(0, 100), x[1]) ll += logpdf(Normal(0, 1), x[2]) ll += logpdf(TDist(1.0), σ) ll += loglikelihood(Normal(0, σ), y .- x*β) ll end println() model((β = [1.0, 2.0], σ = 1.0)) println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 0.70472876 0.057040655 0.00090189195 0.0011398893 1000 bm -0.03150330 0.023642759 0.00037382484 0.0004712342 1000 sigma 0.18378372 0.039212805 0.00062000888 0.0011395979 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% a 0.59112968 0.66848775 0.70444950 0.741410500 0.81915225 bm -0.07729257 -0.04708425 -0.03104865 -0.015942925 0.01424901 sigma 0.12638780 0.15605950 0.17800600 0.204319250 0.27993590 "; # End of `05/5.6d.jl`
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2059
# Load Julia packages (libraries) needed for the snippets in chapter 0 using DynamicHMCModels ProjDir = @__DIR__ cd(ProjDir) # Read in data delim = ';' df = CSV.read(joinpath("..", "..", "data", "rugged.csv"), DataFrame; delim) df = filter(row -> !(ismissing(row[:rgdppc_2000])), df) df.log_gdp = log.(df.rgdppc_2000) df.cont_africa = Array{Float64}(convert(Array{Int}, df.cont_africa)) Base.@kwdef mutable struct RuggedModel{Ty <: AbstractVector, Tx <: AbstractMatrix} "Observations." y::Ty "Covariates" x::Tx end # Write a function to return properly dimensioned transformation. function make_transformation(model::RuggedModel) as((β = as(Array, size(model.x, 2)), σ = asℝ₊)) end # Instantiate the model with data and inits. x = hcat(ones(size(df, 1)), df[:, :rugged], df[:, :cont_africa], df[:, :rugged] .* df[:, :cont_africa]); model = RuggedModel(;y=df[:, :log_gdp], x=x) # Model callable with *a single argument*. function (problem::RuggedModel)(θ) @unpack y, x = problem # extract the data @unpack β, σ = θ # works on the named tuple too ll = 0.0 ll += logpdf(Normal(0, 100), x[1]) ll += logpdf(Normal(0, 10), x[2]) ll += logpdf(Normal(0, 10), x[3]) ll += logpdf(Normal(0, 10), x[4]) ll += logpdf(TDist(1.0), σ) ll += loglikelihood(Normal(0, σ), y .- x*β) ll end println() model((β = [1.0, 2.0, 1.0, 2.0], σ = 1.0)) println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); # Tune and sample. results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) # Result rethinking rethinking = " mean sd 5.5% 94.5% n_eff Rhat a 9.22 0.14 9.00 9.46 282 1 bR -0.21 0.08 -0.33 -0.08 275 1 bA -1.94 0.24 -2.33 -1.59 268 1 bAR 0.40 0.14 0.18 0.62 271 1 sigma 0.96 0.05 0.87 1.04 339 1 " # End of `08/m8.1s.jl`
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2058
using DynamicHMCModels, LinearAlgebra, StatsFuns ProjDir = @__DIR__ cd(ProjDir) delim = ';' df = CSV.read(joinpath("..", "..", "data", "chimpanzees.csv"), DataFrame; delim) df.pulled_left = convert(Array{Int64}, df.pulled_left) df.prosoc_left = convert(Array{Int64}, df.prosoc_left) first(df, 5) Base.@kwdef mutable struct Chimpanzees{Ty <: AbstractVector, Tx <: AbstractMatrix} "Observations." y::Ty "Covariates" x::Tx "Number of observations" N::Int end # Write a function to return properly dimensioned transformation. function make_transformation(model::Chimpanzees) as( (β = as(Array, size(model.x, 2)), ) ) end # Instantiate the model with data and inits. N = size(df, 1) x = hcat(ones(Int64, N), df[:, :prosoc_left]); y = df[:, :pulled_left] model = Chimpanzees(;y=y, x=x, N=N); # Make the model callable with a single argument. function (model::Chimpanzees)(θ) @unpack y, x, N = model # extract the data @unpack β = θ # works on the named tuple too ll = 0.0 ll += sum(logpdf.(Normal(0, 10), β)) # a & bp ll += sum([loglikelihood(Binomial(1, logistic(dot(x[i, :], β))), [y[i]]) for i in 1:N]) ll end println() θ = (β = [1.0, 2.0],) model(θ) println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P) results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 0.05103234 0.12579086 0.0019889282 0.0035186307 1000 bp 0.55711212 0.18074275 0.0028577937 0.0040160451 1000 Quantiles: 2.5% 25.0% 50.0% 75.0% 97.5% a -0.19755400 -0.029431425 0.05024655 0.12978825 0.30087758 bp 0.20803447 0.433720250 0.55340400 0.67960975 0.91466915 "; # End of `10/m10.2d.jl`
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
2147
using DynamicHMCModels, StatsFuns ProjDir = @__DIR__ delim = ';' df = CSV.read(joinpath(ProjDir, "..", "..", "data", "chimpanzees.csv"), DataFrame; delim) Base.@kwdef struct Chimpanzees_02 "Number of actors" N_actors::Int pulled_left::Vector{Int} prosoc_left::Vector{Int} condition::Vector{Int} actor::Vector{Int} end function make_transformation(model::Chimpanzees_02) as((a = as(Vector, model.N_actors), bp = asℝ, bpC = asℝ)) end model = Chimpanzees_02(; N_actors = maximum(df.actor), pulled_left = df.pulled_left, prosoc_left = df.prosoc_left, condition = df.condition, actor = df.actor) function (model::Chimpanzees_02)(θ) @unpack pulled_left, prosoc_left, condition, actor = model @unpack a, bp, bpC = θ ℓ_likelihood = mapreduce(+, actor, condition, prosoc_left, pulled_left) do actor, condition, prosoc_left, pulled_left p = logistic(a[actor] + (bp + bpC * condition) * prosoc_left) logpdf(Bernoulli(p), pulled_left) end P = Normal(0, 10) ℓ_prior = logpdf(P, bpC) + logpdf(P, bp) + sum(a -> logpdf(P, a), a) ℓ_prior + ℓ_likelihood end P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P) results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) # Result rethinking rethinking = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a.1 -0.74503184 0.26613979 0.0042080396 0.0060183398 1000 a.2 10.77955494 5.32538998 0.0842018089 0.1269148045 1000 a.3 -1.04982353 0.28535997 0.0045119373 0.0049074219 1000 a.4 -1.04898135 0.28129307 0.0044476339 0.0056325117 1000 a.5 -0.74390933 0.26949936 0.0042611590 0.0052178124 1000 a.6 0.21599365 0.26307574 0.0041595927 0.0045153523 1000 a.7 1.81090866 0.39318577 0.0062168129 0.0071483527 1000 bp 0.83979926 0.26284676 0.0041559722 0.0059795826 1000 bpC -0.12913322 0.29935741 0.0047332562 0.0049519863 1000 ";
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
3211
using DynamicHMCModels ProjDir = @__DIR__ delim = ';' df = CSV.read(joinpath(ProjDir, "..", "..", "data", "Kline.csv"), DataFrame; delim) # New col logpop, set log() for population data df.logpop = map((x) -> log(x), df.population); df.society = 1:10; Base.@kwdef mutable struct KlineModel{Ty <: AbstractVector, Tx <: AbstractMatrix, Ts <: AbstractVector} "Observations (total_tools)." y::Ty "Covariates (logpop)" x::Tx "Society" s::Ts "Number of observations (10)" N::Int "Number of societies (also 10)" N_societies::Int end function make_transformation(model::KlineModel) as( (β = as(Array, size(model.x, 2)), α = as(Array, model.N_societies), σ = asℝ₊) ) end # Instantiate the model with data and inits. N = size(df, 1) N_societies = length(unique(df[:, :society])) x = hcat(ones(Int64, N), df[:, :logpop]); s = df[:, :society] y = df[:, :total_tools] model = KlineModel(; y=y, x=x, s=s, N=N, N_societies=N_societies) # Make the type callable with the parameters *as a single argument*. function (model::KlineModel)(θ) @unpack y, x, s, N, N_societies = model # data @unpack β, α, σ = θ # parameters ll = 0.0 ll += logpdf(Cauchy(0, 1), σ) ll += sum(logpdf.(Normal(0, σ), α)) # α[1:10] ll += logpdf.(Normal(0, 10), β[1]) # a ll += logpdf.(Normal(0, 1), β[2]) # a ll += sum( [loglikelihood(Poisson(exp(α[s[i]] + dot(x[i, :], β))), [y[i]]) for i in 1:N] ) ll end println() θ = (β = [1.0, 0.25], α = rand(Normal(0, 1), N_societies), σ = 0.2) model(θ) |> display println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) p = as_particles(posterior) display(p) stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 1.076167468 0.7704872560 0.01218247319 0.0210530022 1000.000000 bp 0.263056273 0.0823415805 0.00130193470 0.0022645077 1000.000000 a_society.1 -0.191723568 0.2421382537 0.00382854195 0.0060563054 1000.000000 a_society.2 0.054569029 0.2278506876 0.00360263570 0.0051693148 1000.000000 a_society.3 -0.035935050 0.1926364647 0.00304584994 0.0039948433 1000.000000 a_society.4 0.334355037 0.1929971201 0.00305155241 0.0063871707 913.029080 a_society.5 0.049747513 0.1801287716 0.00284808595 0.0043631095 1000.000000 a_society.6 -0.311903245 0.2096126337 0.00331426674 0.0053000536 1000.000000 a_society.7 0.148637507 0.1744680594 0.00275858223 0.0047660246 1000.000000 a_society.8 -0.164567976 0.1821341074 0.00287979309 0.0034297298 1000.000000 a_society.9 0.277066965 0.1758237250 0.00278001719 0.0055844175 991.286501 a_society.10 -0.094149204 0.2846206232 0.00450024719 0.0080735022 1000.000000 sigma_society 0.310352849 0.1374834682 0.00217380450 0.0057325226 575.187461 ";
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
4018
using DynamicHMCModels, MCMCChains ProjDir = @__DIR__ delim = ';' df = CSV.read(joinpath(ProjDir, "..", "..", "data", "Kline.csv"), DataFrame; delim) # New col logpop, set log() for population data df.logpop = map((x) -> log(x), df.population); df.society = 1:10; Base.@kwdef mutable struct KlineModel{Ty <: AbstractVector, Tx <: AbstractMatrix, Ts <: AbstractVector} "Observations (total_tools)." y::Ty "Covariates (logpop)" x::Tx "Society" s::Ts "Number of observations (10)" N::Int "Number of societies (also 10)" N_societies::Int end function make_transformation(model::KlineModel) as( (β = as(Array, size(model.x, 2)), α = as(Array, model.N_societies), σ = asℝ₊) ) end # Instantiate the model with data and inits. N = size(df, 1) N_societies = length(unique(df[:, :society])) x = hcat(ones(Int64, N), df[:, :logpop]); s = df[:, :society] y = df[:, :total_tools] model = KlineModel(; y=y, x=x, s=s, N=N, N_societies=N_societies) # Make the type callable with the parameters *as a single argument*. function (model::KlineModel)(θ) @unpack y, x, s, N, N_societies = model # data @unpack β, α, σ = θ # parameters ll = 0.0 ll += logpdf(Cauchy(0, 1), σ) ll += sum(logpdf.(Normal(0, σ), α)) # α[1:10] ll += logpdf.(Normal(0, 10), β[1]) # a ll += logpdf.(Normal(0, 1), β[2]) # a ll += sum( [loglikelihood(Poisson(exp(α[s[i]] + dot(x[i, :], β))), [y[i]]) for i in 1:N] ) ll end println() θ = (β = [1.0, 0.25], α = rand(Normal(0, 1), N_societies), σ = 0.2) model(θ) |> display println() # Wrap the problem with a transformation, then use Flux for the gradient. P = TransformedLogDensity(make_transformation(model), model) ∇P = ADgradient(:ForwardDiff, P); results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) posterior = P.transformation.(results.chain) println() DynamicHMC.Diagnostics.EBFMI(results.tree_statistics) |> display println() DynamicHMC.Diagnostics.summarize_tree_statistics(results.tree_statistics) |> display println() # Set varable names parameter_names = ["a", "bp", "sigma_society"] pooled_parameter_names = ["a_society[$i]" for i in 1:10] # Create a3d a3d = Array{Float64, 3}(undef, 1000, 13, 1); for j in 1:1 for i in 1:1000 a3d[i, 1:2, j] = values(posterior[i].β) a3d[i, 3, j] = values(posterior[i].σ) a3d[i, 4:13, j] = values(posterior[i].α) end end chns = MCMCChains.Chains(a3d, vcat(parameter_names, pooled_parameter_names), Dict( :parameters => parameter_names, :pooled => pooled_parameter_names ) ); stan_result = " Iterations = 1:1000 Thinning interval = 1 Chains = 1,2,3,4 Samples per chain = 1000 Empirical Posterior Estimates: Mean SD Naive SE MCSE ESS a 1.076167468 0.7704872560 0.01218247319 0.0210530022 1000.000000 bp 0.263056273 0.0823415805 0.00130193470 0.0022645077 1000.000000 a_society.1 -0.191723568 0.2421382537 0.00382854195 0.0060563054 1000.000000 a_society.2 0.054569029 0.2278506876 0.00360263570 0.0051693148 1000.000000 a_society.3 -0.035935050 0.1926364647 0.00304584994 0.0039948433 1000.000000 a_society.4 0.334355037 0.1929971201 0.00305155241 0.0063871707 913.029080 a_society.5 0.049747513 0.1801287716 0.00284808595 0.0043631095 1000.000000 a_society.6 -0.311903245 0.2096126337 0.00331426674 0.0053000536 1000.000000 a_society.7 0.148637507 0.1744680594 0.00275858223 0.0047660246 1000.000000 a_society.8 -0.164567976 0.1821341074 0.00287979309 0.0034297298 1000.000000 a_society.9 0.277066965 0.1758237250 0.00278001719 0.0055844175 991.286501 a_society.10 -0.094149204 0.2846206232 0.00450024719 0.0080735022 1000.000000 sigma_society 0.310352849 0.1374834682 0.00217380450 0.0057325226 575.187461 "; # Describe the chain describe(chns) |> display println() # Describe the chain describe(chns, sections=[:pooled])
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
404
module DynamicHMCModels using Reexport, Requires @reexport using DynamicHMC, LogDensityProblems, TransformVariables @reexport using Distributions, Random, Statistics @reexport using Parameters, CSV, DataFrames @reexport using MonteCarloMeasurements function __init__() @require MCMCChains="c7f686f2-ff18-58e9-bc7b-31028e88f75d" include("require/chains.jl") end include("particles.jl") end # module
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1689
""" Particles constructor for DynamicHMC Convert DynamcHMC samples to a Particle NamedTuple * `posterior`: an array of NamedTuple consisting of mcmc samples """ function as_particles(posterior) d = Dict{Symbol, Union{Particles, Vector{Particles}}}() pnt = posterior[1] for parm in keys(pnt) if size(pnt[parm], 1) > 1 d[parm] = Particles[] for i in 1:size(pnt[parm], 1) temp = Float64[] for post in posterior push!(temp, post[parm][i]) end push!(d[parm], Particles(temp)) end else temp = Float64[] for post in posterior push!(temp, post[parm]) end d[parm] = Particles(temp) end end return (; d...) end function nptoa3d(posterior) Np = length(vcat(posterior[1]...)) Ns = length(posterior) a3d = Array{Float64,3}(undef,Ns,Np,1) for (i,post) in enumerate(posterior) temp = Float64[] for p in post push!(temp,values(p)...) end a3d[i,:,1] = temp' end parameter_names = getnames(posterior) return (a3d, parameter_names) end function getnames(post) nt = post[1] Np =length(vcat(nt...)) parm_names = fill("",Np) cnt = 0 for (k,v) in pairs(nt) N = length(v) if isa(v,Array) for i in 1:N cnt += 1 parm_names[cnt] = string(k,"[",i,"]") end else cnt+=1 parm_names[cnt] = string(k) end end return Symbol.(parm_names) end export Particles, as_particles
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1827
import MCMCChains: Chains function create_a3d(noofsamples, noofvariables, noofchains) a3d = fill(0.0, noofsamples, noofvariables, noofchains) a3d end function insert_chain!(a3d, chain, posterior, trans) for i in 1:size(a3d, 1) a3d[i,:,chain] = inverse(trans, posterior[i]) end end function insert_chain!(a3d, chain, posterior) for i in 1:size(a3d, 1) a3d[i,:,chain] = posterior[i, :] end end function create_mcmcchains(a3d, cnames;start=1) Chains(a3d, cnames; start=start) end function create_mcmcchains(a3d, cnames, sections::Dict{Symbol, Vector{String}}; start=1) Chains(a3d, cnames, sections; start=start) end """ Convert DynamcHMC samples to a chain * `posterior`: an array of NamedTuple consisting of mcmc samples """ function nptochain(posterior,tune) Np = length(vcat(posterior[1]...))+1 #include lf_eps Ns = length(posterior) a3d = Array{Float64,3}(undef,Ns,Np,1) ϵ=tune.ϵ for (i,post) in enumerate(posterior) temp = Float64[] for p in post push!(temp,values(p)...) end push!(temp,ϵ) a3d[i,:,1] = temp' end parameter_names = getnames(posterior) push!(parameter_names,"lf_eps") chns = MCMCChains.Chains(a3d,parameter_names, Dict(:internals => ["lf_eps"])) return chns end function getnames(post) nt = post[1] Np =length(vcat(nt...)) parm_names = fill("",Np) cnt = 0 for (k,v) in pairs(nt) N = length(v) if isa(v,Array) for i in 1:N cnt += 1 parm_names[cnt] = string(k,"[",i,"]") end else cnt+=1 parm_names[cnt] = string(k) end end return parm_names end export create_a3d, insert_chain!, nptochain, create_mcmcchains
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
472
using DynamicHMCModels using Test scripts = [ "../scripts/02/m2.1d.jl", "../scripts/04/m4.1d.jl", "../scripts/04/m4.2d.jl", "../scripts/04/m4.5d.jl", "../scripts/04/m4.5d1.jl", "../scripts/05/m5.1d.jl", "../scripts/05/m5.3d.jl", "../scripts/05/m5.6d.jl", "../scripts/10/m10.2d.jl", "../scripts/10/m10.4d.jl", "../scripts/12/m12.6d.jl" ] for script in scripts println("\n * $script *\n") include(script) println("\n * $script completed\n") end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1478
using DynamicHMCModels #= using LinearAlgebra using StaticArrays using TransformVariables using LogDensityProblems using DynamicHMC using Parameters using Random using MCMCChains =# function LogLikelihoodMin(ω,dyDep) dt = 0.1 cD = [0 -1im ; 1im 0] H = (ω/2.) * cD rho=[0.05 0 ; 0 0.95] M = I - ((cD'*cD)/2) * dt + (cD * dyDep) - 1im * H * dt newRho = M * rho * M' lklhood = real(tr(newRho))- (ω* dt/2)^2 return log(lklhood) end struct Experiment dyDep::Float64 end function (problem::Experiment)((ω,)::NamedTuple{(:ω,)}) @unpack dyDep = problem # extract the data LogLikelihoodMin(ω,dyDep) end dyDepObs=0.690691 p1 = Experiment(dyDepObs) println(p1((ω=.4,))) trans_single = as((ω=as(Real, 2, 4),)) P1 = TransformedLogDensity(trans_single, p1) ∇P1 = ADgradient(:ForwardDiff, P1) # Sample 4 chains a3d = Array{Float64, 3}(undef, 1000, 1, 4); for j in 1:4 global results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P1, 1000; reporter = NoProgressReport()) global posterior = P1.transformation.(results.chain) for i in 1:1000 a3d[i, 1, j] = values(posterior[i].ω) end end # Create MCMCChains object parameter_names = ["ω"] sections = Dict( :parameters => parameter_names, ) chns = create_mcmcchains(a3d, parameter_names, sections, start=1) show(chns) println() DynamicHMC.Diagnostics.EBFMI(results.tree_statistics) |> display println() DynamicHMC.Diagnostics.summarize_tree_statistics(results.tree_statistics)
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
code
1100
using DynamicHMCModels, MCMCChains, Random #Random.seed!(1233) ProjDir = @__DIR__ cd(ProjDir) include(joinpath(@__DIR__, "../Benchmarks/LBA/LBA_functions.jl")) Base.@kwdef struct LBAModel{T} data::T N::Int Nc::Int end function make_transformation(model::LBAModel) as((v=as(Array,asℝ₊,Nc), A=asℝ₊, k=asℝ₊, tau=asℝ₊)) end for i = 1:3 N = 10 v = [1.0, 1.5] Nc = length(v) data=simulateLBA(;Nd=N,v=v,A=.8,k=.2,tau=.4) model = LBAModel(; data=data, N=N, Nc=Nc) function (model::LBAModel)(θ) @unpack data=model @unpack v,A,k,tau=θ d=LBA(ν=v,A=A,k=k,τ=tau) minRT = minimum(x->x[2],data) logpdf(d,data)+sum(logpdf.(TruncatedNormal(0,3,0,Inf),v)) + logpdf(TruncatedNormal(.8,.4,0,Inf),A)+logpdf(TruncatedNormal(.2,.3,0,Inf),k)+ logpdf(TruncatedNormal(.4,.1,0,minRT),tau) end d = [(c,r) for (c,r) in zip(data.choice,data.rt)] p = LBAModel(d,N,Nc) A = rand(Normal(.8, 1.0), 1)[1] k = rand(Normal(.2, 1.0), 1)[1] tau = rand(Normal(.4, 1.0), 1)[1] v=rand(Normal(0.0, 1.0),Nc) p((v=v,A=A,k=k,tau=tau)) display(d) end
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
2.1.4
488da266cd18e792ba8cde04197d6c7817753650
docs
2360
# DynamicHMCModels | **Project Status** | **Documentation** | **Build Status** | |:-------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:| |![][project-status-img] | [![][docs-stable-img]][docs-stable-url] [![][docs-dev-img]][docs-dev-url] | [![][travis-img]][travis-url] | ## Introduction This package contains Julia versions of the mcmc models contained in the R package "rethinking" associated with the book [Statistical Rethinking](https://xcelab.net/rm/statistical-rethinking/) by Richard McElreath. It is part of the [StatisticalRethinkingJulia](https://github.com/StatisticalRethinkingJulia) Github organization of packages. This package implements the models using [DynamicHMC](https://github.com/tpapp/DynamicHMC.jl). ## Note Converted to DynamicHMC 2.0 ## Acknowledgements Tamas Papp has been very helpful during the development og the DynamicHMC versions of the models. ## Questions and issues Question and contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems or have a question. [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://statisticalrethinkingjulia.github.io/DynamicHMCModels.jl/latest [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://statisticalrethinkingjulia.github.io/DynamicHMCModels.jl/stable [travis-img]: https://travis-ci.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.svg?branch=master [travis-url]: https://travis-ci.com/StatisticalRethinkingJulia/DynamicHMCModels.jl [codecov-img]: https://codecov.io/gh/StatisticalRethinkingJulia/DynamicHMCModels.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/StatisticalRethinkingJulia/DynamicHMCModels.jl [issues-url]: https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl/issues [project-status-img]: https://img.shields.io/badge/lifecycle-wip-orange.svg
DynamicHMCModels
https://github.com/StatisticalRethinkingJulia/DynamicHMCModels.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
515
using Documenter, FinEtools, FinEtoolsMultithreading makedocs( modules = [FinEtoolsMultithreading], doctest = false, clean = true, warnonly = Documenter.except(:linkcheck, :footnote), format = Documenter.HTML(prettyurls = false), authors = "Petr Krysl", sitename = "FinEtoolsMultithreading.jl", pages = Any[ "Home" => "index.md", "How to guide" => "guide/guide.md", "Types and Functions" => Any[ "man/man.md"] ] ) deploydocs( repo = "github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git", )
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
991
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need at least one arguments: N (mesh subdivision)") end using Pkg # Pkg.add("ThreadPinning") Pkg.activate(".") Pkg.instantiate() using LinearAlgebra LinearAlgebra.BLAS.set_num_threads(1) # Turn off thread pinning because it seems to interfere with the graph coloring library. # using ThreadPinning # ThreadPinning.Prefs.set_os_warning(false) # pinthreads(:cores) N = parse(Int, ARGS[1]) ntasks = Threads.nthreads() if length(ARGS) > 1 ntasks = parse(Int, ARGS[2]) end assembly_only = true if length(ARGS) > 2 assembly_only = parse(Bool, ARGS[3]) end include(raw"sphere_modes_parallel.jl") using .sphere_modes_parallel; using FinEtoolsMultithreading Pkg.status("FinEtoolsMultithreading") NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): nthreads=$(Threads.nthreads()), ntasks=$(ntasks), N=$(N)" sphere_modes_parallel.run(N, ntasks, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
498
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need one argument: N (mesh subdivision)") end using Pkg Pkg.activate(".") Pkg.instantiate() N = parse(Int, ARGS[1]) assembly_only = true if length(ARGS) > 1 assembly_only = parse(Bool, ARGS[2]) end include(raw"sphere_modes_serial.jl") using .sphere_modes_serial; NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): N=$(N)" sphere_modes_serial.run(N, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
10463
module sphere_modes_parallel using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked using FinEtoolsAcoustics using FinEtoolsMultithreading using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt, SysmatAssemblerSparsePattwLookup using FinEtools.MeshExportModule using ECLGraphColor using LinearAlgebra using Arpack: eigs using DataDrop # For the data # rho = 1.2*phun("kg/m^3");# mass density # c = 340.0*phun("m/s");# sound speed # bulk = c^2*rho; # R = 1000.0*phun("mm");# radius of the piston # the reference # @article{GAO2013914, # title = {Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method}, # journal = {Engineering Analysis with Boundary Elements}, # volume = {37}, # number = {6}, # pages = {914-923}, # year = {2013}, # issn = {0955-7997}, # doi = {https://doi.org/10.1016/j.enganabound.2013.03.015}, # url = {https://www.sciencedirect.com/science/article/pii/S0955799713000714}, # author = {Haifeng Gao and Toshiro Matsumoto and Toru Takahashi and Hiroshi Isakari}, # keywords = {Eigenvalues, Acoustic, The block SS method, Boundary element method, Burton–Miller's method}, # abstract = {This paper presents accurate numerical solutions for nonlinear eigenvalue analysis of three-dimensional acoustic cavities by boundary element method (BEM). To solve the nonlinear eigenvalue problem (NEP) formulated by BEM, we employ a contour integral method, called block Sakurai–Sugiura (SS) method, by which the NEP is converted to a standard linear eigenvalue problem and the dimension of eigenspace is reduced. The block version adopted in present work can also extract eigenvalues whose multiplicity is larger than one, but for the complex connected region which includes a internal closed boundary, the methodology yields fictitious eigenvalues. The application of the technique is demonstrated through the eigenvalue calculation of sphere with unique homogenous boundary conditions, cube with mixed boundary conditions and a complex connected region formed by cubic boundary and spherical boundary, however, the fictitious eigenvalues can be identified by Burton–Miller's method. These numerical results are supported by appropriate convergence study and comparisons with close form.} # } # shows the wave numbers in Table 1. #= The multiplicity of the Dirichlet eigenvalues. Wavenumber*R Multiplicity 3.14159, 6.28319, 9.42478 1 4.49340, 7.72525, 10.90412 3 5.76346, 9.09501, 12.32294 5 6.98793, 10.41711, 13.69802 7 8.18256, 11.70491, 15.03966 9 9.35581, 12.96653, 16.35471 11 =# # Sphere with Dirichlet boundary conditions: model analysis. # Sphere of radius $(R), in WATER. # Tetrahedral T4 mesh. # Exact fundamental frequency: $(c/2/R) function run(N=2, ntasks=Threads.nthreads(), assembly_only=false) rho = 1000 * phun("kg/m^3")# mass density c = 1500.0 * phun("m/s")# sound speed bulk = c^2 * rho R = 500.0 * phun("mm")# radius of the sphere tolerance = R / 1e3 neigvs = 7 wn_table = [ ([3.14159, 6.28319, 9.42478], 1), ([4.49340, 7.72525, 10.90412], 3), ([5.76346, 9.09501, 12.32294], 5), ([6.98793, 10.41711, 13.69802], 7), ([8.18256, 11.70491, 15.03966], 9), ([9.35581, 12.96653, 16.35471], 11), ] # @info "Reference frequencies" # for i in axes(wn_table, 1) # fq = wn_table[i][1] ./ R .* c / (2 * pi) # @info "$(fq), multiplicity $(wn_table[i][2])" # end fens, fes = H8sphere(R, N) renumb(c) = c[[1, 4, 3, 2, 5, 8, 7, 6]] fens1, fes1 = mirrormesh( fens, fes, [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], renumb=renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) fens1, fes1 = mirrormesh( fens, fes, [0.0, -1.0, 0.0], [0.0, 0.0, 0.0], renumb=renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) fens1, fes1 = mirrormesh( fens, fes, [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], renumb=renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) @info "$(count(fens)) nodes" geom = NodalField(fens.xyz) P = NodalField(zeros(size(fens.xyz, 1), 1)) bfes = meshboundary(fes) setebc!(P, connectednodes(bfes)) numberdofs!(P) mass_times = Dict{String,Vector{Float64}}() t1 = time() n2e = FENodeToFEMapThr(fes, nnodes(P)) mass_times["FENodeToFEMap"] = [time() - t1] println("Make node to element map = $(mass_times["FENodeToFEMap"]) [s]") material = MatAcoustFluid(bulk, rho) GC.enable(false) AT = SysmatAssemblerSparsePatt # AT = SysmatAssemblerSparsePattwLookup t0 = time() t1 = time() e2e = FElemToNeighborsMap(n2e, fes, ECLGraphColor.int_type()) mass_times["FElemToNeighborsMap"] = [time() - t1] println(" Make element to neighbor map = $(mass_times["FElemToNeighborsMap"]) [s]") t1 = time() coloring = FinEtoolsMultithreading.element_coloring(fes, e2e, ntasks) mass_times["ElementColors"] = [time() - t1] println(" Compute element colors = $(mass_times["ElementColors"]) [s]") t1 = time() n2n = FENodeToNeighborsMap(n2e, fes) mass_times["FENodeToNeighborsMap"] = [time() - t1] println(" Make node to neighbor map = $(mass_times["FENodeToNeighborsMap"]) [s]") t1 = time() K_pattern = csc_symmetric_pattern(P.dofnums, nalldofs(P), n2n, eltype(P.values)) mass_times["SparsityPattern"] = [time() - t1] println(" Sparsity pattern = $(mass_times["SparsityPattern"]) [s]") t1 = time() decomposition = decompose(fes, coloring, (fessubset) -> FEMMAcoust(IntegDomain(fessubset, GaussRule(3, 2)), material), ntasks) mass_times["DomainDecomposition"] = [time() - t1] println(" Domain decomposition = $(mass_times["DomainDecomposition"]) [s]") assembler = AT(K_pattern) startassembly!(assembler, 24, 24, 1000, nalldofs(P), nalldofs(P)) assemble!(assembler, zeros(24, 24), 1:24, 1:24) t1 = time() Ma = parallel_matrix_assembly!( AT(K_pattern), decomposition, (femm, assmblr) -> acousticmass(femm, assmblr, geom, P), ) mass_times["AssemblyOfValues"] = [time() - t1] println(" Add to matrix = $(mass_times["AssemblyOfValues"]) [s]") mass_times["TotalAssemblyMass"] = [time() - t0] println("Assembly MASS total = $(mass_times["TotalAssemblyMass"]) [s]") GC.enable(true) GC.enable(false) stiffness_times = Dict{String,Vector{Float64}}() t0 = time() t1 = time() e2e = FElemToNeighborsMap(n2e, fes) stiffness_times["FElemToNeighborsMap"] = [time() - t1] println(" Make element to neighbor map = $(stiffness_times["FElemToNeighborsMap"]) [s]") t1 = time() coloring = FinEtoolsMultithreading.element_coloring(fes, e2e) stiffness_times["ElementColors"] = [time() - t1] println(" Compute element colors = $(stiffness_times["ElementColors"]) [s]") t1 = time() n2n = FENodeToNeighborsMap(n2e, fes) stiffness_times["FENodeToNeighborsMap"] = [time() - t1] println(" Make node to neighbor map = $(stiffness_times["FENodeToNeighborsMap"]) [s]") t1 = time() K_pattern = csc_symmetric_pattern(P.dofnums, nalldofs(P), n2n, eltype(P.values)) stiffness_times["SparsityPattern"] = [time() - t1] println(" Sparsity pattern = $(stiffness_times["SparsityPattern"]) [s]") t1 = time() decomposition = decompose(fes, coloring, (fessubset) -> FEMMAcoust(IntegDomain(fessubset, GaussRule(3, 2)), material), ntasks) stiffness_times["DomainDecomposition"] = [time() - t1] println(" Domain decomposition = $(stiffness_times["DomainDecomposition"]) [s]") t1 = time() @time Ka = parallel_matrix_assembly!( AT(K_pattern), decomposition, (femm, assmblr) -> acousticstiffness(femm, assmblr, geom, P), ) stiffness_times["AssemblyOfValues"] = [time() - t1] println(" Add to matrix = $(stiffness_times["AssemblyOfValues"]) [s]") stiffness_times["TotalAssemblyStiffness"] = [time() - t0] println("Assembly STIFFNESS total = $(stiffness_times["TotalAssemblyStiffness"]) [s]") GC.enable(true) if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "sphere_modes_parallel-timing-parallel-stiffness-nth=$(ntasks)"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) stiffness_times[k] = cat(stiffness_times[k], storedtimes[k], dims=1) end end DataDrop.store_json(n, stiffness_times) n = DataDrop.with_extension(joinpath("$(N)", "sphere_modes_parallel-timing-parallel-mass-nth=$(ntasks)"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) mass_times[k] = cat(mass_times[k], storedtimes[k], dims=1) end end DataDrop.store_json(n, mass_times) return end Ma_ff = matrix_blocked(Ma, nfreedofs(P), nfreedofs(P))[:ff] Ka_ff = matrix_blocked(Ka, nfreedofs(P), nfreedofs(P))[:ff] d, v, nconv = eigs(Ka_ff, Ma_ff; nev=neigvs, which=:SM, explicittransform=:none) v = real.(v) fs = real(sqrt.(complex(d))) ./ (2 * pi) @info("Frequencies (1:5): $(fs[1:5]) [Hz]") @info "Reference frequencies" for i in axes(wn_table, 1) fq = wn_table[i][1] ./ R .* c / (2 * pi) @info "$(fq), multiplicity $(wn_table[i][2])" end ks = (2 * pi) .* fs ./ c ./ phun("m") # @info("Wavenumbers: $(ks) [m]") File = "sphere_modes_parallel.vtk" scalarllist = Any[] for n = [2, 5, 7] scattersysvec!(P, v[:, n]) push!(scalarllist, ("Pressure_mode_$n", deepcopy(P.values))) end vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H8; scalars=scalarllist, ) # @async run(`"paraview.exe" $File`) true end # sphere_h8_in_air end # module sphere_mode_examples nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
6970
module sphere_modes_parallel using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked using FinEtoolsAcoustics using FinEtoolsMultithreading.Exports using FinEtools.MeshExportModule using LinearAlgebra using Arpack: eigs using DataDrop # For the data # rho = 1.2*phun("kg/m^3");# mass density # c = 340.0*phun("m/s");# sound speed # bulk = c^2*rho; # R = 1000.0*phun("mm");# radius of the piston # the reference # @article{GAO2013914, # title = {Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method}, # journal = {Engineering Analysis with Boundary Elements}, # volume = {37}, # number = {6}, # pages = {914-923}, # year = {2013}, # issn = {0955-7997}, # doi = {https://doi.org/10.1016/j.enganabound.2013.03.015}, # url = {https://www.sciencedirect.com/science/article/pii/S0955799713000714}, # author = {Haifeng Gao and Toshiro Matsumoto and Toru Takahashi and Hiroshi Isakari}, # keywords = {Eigenvalues, Acoustic, The block SS method, Boundary element method, Burton–Miller's method}, # abstract = {This paper presents accurate numerical solutions for nonlinear eigenvalue analysis of three-dimensional acoustic cavities by boundary element method (BEM). To solve the nonlinear eigenvalue problem (NEP) formulated by BEM, we employ a contour integral method, called block Sakurai–Sugiura (SS) method, by which the NEP is converted to a standard linear eigenvalue problem and the dimension of eigenspace is reduced. The block version adopted in present work can also extract eigenvalues whose multiplicity is larger than one, but for the complex connected region which includes a internal closed boundary, the methodology yields fictitious eigenvalues. The application of the technique is demonstrated through the eigenvalue calculation of sphere with unique homogenous boundary conditions, cube with mixed boundary conditions and a complex connected region formed by cubic boundary and spherical boundary, however, the fictitious eigenvalues can be identified by Burton–Miller's method. These numerical results are supported by appropriate convergence study and comparisons with close form.} # } # shows the wave numbers in Table 1. #= The multiplicity of the Dirichlet eigenvalues. Wavenumber*R Multiplicity 3.14159, 6.28319, 9.42478 1 4.49340, 7.72525, 10.90412 3 5.76346, 9.09501, 12.32294 5 6.98793, 10.41711, 13.69802 7 8.18256, 11.70491, 15.03966 9 9.35581, 12.96653, 16.35471 11 =# # Sphere with Dirichlet boundary conditions: model analysis. # Sphere of radius $(R), in WATER. # Tetrahedral T4 mesh. # Exact fundamental frequency: $(c/2/R) function run(N = 2, ntasks = Threads.nthreads(), assembly_only = false) times = Dict{String, Vector{Float64}}() rho = 1000 * phun("kg/m^3")# mass density c = 1500.0 * phun("m/s")# sound speed bulk = c^2 * rho R = 500.0 * phun("mm")# radius of the sphere tolerance = R / 1e3 neigvs = 7 wn_table = [ ([3.14159, 6.28319, 9.42478], 1), ([4.49340, 7.72525, 10.90412], 3), ([5.76346, 9.09501, 12.32294], 5), ([6.98793, 10.41711, 13.69802], 7), ([8.18256, 11.70491, 15.03966], 9), ([9.35581, 12.96653, 16.35471], 11), ] # @info "Reference frequencies" # for i in axes(wn_table, 1) # fq = wn_table[i][1] ./ R .* c / (2 * pi) # @info "$(fq), multiplicity $(wn_table[i][2])" # end fens, fes = H8sphere(R, N) renumb(c) = c[[1, 4, 3, 2, 5, 8, 7, 6]] fens1, fes1 = mirrormesh( fens, fes, [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], renumb = renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) fens1, fes1 = mirrormesh( fens, fes, [0.0, -1.0, 0.0], [0.0, 0.0, 0.0], renumb = renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) fens1, fes1 = mirrormesh( fens, fes, [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], renumb = renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) @info "$(count(fens)) nodes" geom = NodalField(fens.xyz) P = NodalField(zeros(size(fens.xyz, 1), 1)) bfes = meshboundary(fes) setebc!(P, connectednodes(bfes)) numberdofs!(P) t1 = time() n2e = FENodeToFEMapThr(fes, nnodes(P)) times["FENodeToFEMap"] = [time() - t1] println("Make node to element map = $(times["FENodeToFEMap"]) [s]") material = MatAcoustFluid(bulk, rho) t1 = time() Ma = parallel_make_matrix( fes, P.dofnums, nalldofs(P), eltype(P.values), n2e, (fessubset) -> FEMMAcoust(IntegDomain(fessubset, GaussRule(3, 2)), material), (femm, assmblr) -> acousticmass(femm, assmblr, geom, P), ntasks, :CSC ) # Ma = acousticmass(femm, geom, P) times["AssembleMass"] = [time() - t1] println("Assemble mass = $(times["AssembleMass"]) [s]") t1 = time() Ka = parallel_make_matrix( fes, P.dofnums, nalldofs(P), eltype(P.values), n2e, (fessubset) -> FEMMAcoust(IntegDomain(fessubset, GaussRule(3, 2)), material), (femm, assmblr) -> acousticstiffness(femm, assmblr, geom, P), ntasks, :CSC ) # Ka = acousticstiffness(femm, geom, P) times["AssembleStiffness"] = [time() - t1] println("Assemble stiffness = $(times["AssembleStiffness"]) [s]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "sphere_modes_parallel-timing-parallel-nth=$(ntasks)"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims = 1) end end DataDrop.store_json(n, times) return end Ma_ff = matrix_blocked(Ma, nfreedofs(P), nfreedofs(P))[:ff] Ka_ff = matrix_blocked(Ka, nfreedofs(P), nfreedofs(P))[:ff] d, v, nconv = eigs(Ka_ff, Ma_ff; nev = neigvs, which = :SM, explicittransform = :none) v = real.(v) fs = real(sqrt.(complex(d))) ./ (2 * pi) # @info("Frequencies (1:5): $(fs[1:5]) [Hz]") ks = (2 * pi) .* fs ./ c ./ phun("m") # @info("Wavenumbers: $(ks) [m]") File = "sphere_modes_parallel.vtk" scalarllist = Any[] for n = [2, 5, 7] scattersysvec!(P, v[:, n]) push!(scalarllist, ("Pressure_mode_$n", deepcopy(P.values))) end vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H8; scalars = scalarllist, ) # @async run(`"paraview.exe" $File`) true end # sphere_h8_in_air end # module sphere_mode_examples nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git