licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
7766
module sphere_modes_serial using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked using FinEtoolsAcoustics using FinEtoolsMultithreading.Exports using FinEtools.MeshExportModule using LinearAlgebra using Arpack: eigs using DataDrop # For the data # rho = 1.2*phun("kg/m^3");# mass density # c = 340.0*phun("m/s");# sound speed # bulk = c^2*rho; # R = 1000.0*phun("mm");# radius of the piston # the reference # @article{GAO2013914, # title = {Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method}, # journal = {Engineering Analysis with Boundary Elements}, # volume = {37}, # number = {6}, # pages = {914-923}, # year = {2013}, # issn = {0955-7997}, # doi = {https://doi.org/10.1016/j.enganabound.2013.03.015}, # url = {https://www.sciencedirect.com/science/article/pii/S0955799713000714}, # author = {Haifeng Gao and Toshiro Matsumoto and Toru Takahashi and Hiroshi Isakari}, # keywords = {Eigenvalues, Acoustic, The block SS method, Boundary element method, Burton–Miller's method}, # abstract = {This paper presents accurate numerical solutions for nonlinear eigenvalue analysis of three-dimensional acoustic cavities by boundary element method (BEM). To solve the nonlinear eigenvalue problem (NEP) formulated by BEM, we employ a contour integral method, called block Sakurai–Sugiura (SS) method, by which the NEP is converted to a standard linear eigenvalue problem and the dimension of eigenspace is reduced. The block version adopted in present work can also extract eigenvalues whose multiplicity is larger than one, but for the complex connected region which includes a internal closed boundary, the methodology yields fictitious eigenvalues. The application of the technique is demonstrated through the eigenvalue calculation of sphere with unique homogenous boundary conditions, cube with mixed boundary conditions and a complex connected region formed by cubic boundary and spherical boundary, however, the fictitious eigenvalues can be identified by Burton–Miller's method. These numerical results are supported by appropriate convergence study and comparisons with close form.} # } # shows the wave numbers in Table 1. #= The multiplicity of the Dirichlet eigenvalues. Wavenumber*R Multiplicity 3.14159, 6.28319, 9.42478 1 4.49340, 7.72525, 10.90412 3 5.76346, 9.09501, 12.32294 5 6.98793, 10.41711, 13.69802 7 8.18256, 11.70491, 15.03966 9 9.35581, 12.96653, 16.35471 11 =# # Sphere with Dirichlet boundary conditions: model analysis. # Sphere of radius $(R), in WATER. # Tetrahedral T4 mesh. # Exact fundamental frequency: $(c/2/R) function run(N=2, assembly_only=false) rho = 1000 * phun("kg/m^3")# mass density c = 1500.0 * phun("m/s")# sound speed bulk = c^2 * rho R = 500.0 * phun("mm")# radius of the sphere tolerance = R / 1e3 neigvs = 7 wn_table = [ ([3.14159, 6.28319, 9.42478], 1), ([4.49340, 7.72525, 10.90412], 3), ([5.76346, 9.09501, 12.32294], 5), ([6.98793, 10.41711, 13.69802], 7), ([8.18256, 11.70491, 15.03966], 9), ([9.35581, 12.96653, 16.35471], 11), ] # @info "Reference frequencies" # for i in axes(wn_table, 1) # fq = wn_table[i][1] ./ R .* c / (2 * pi) # @info "$(fq), multiplicity $(wn_table[i][2])" # end fens, fes = H8sphere(R, N) renumb(c) = c[[1, 4, 3, 2, 5, 8, 7, 6]] fens1, fes1 = mirrormesh( fens, fes, [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], renumb=renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) fens1, fes1 = mirrormesh( fens, fes, [0.0, -1.0, 0.0], [0.0, 0.0, 0.0], renumb=renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) fens1, fes1 = mirrormesh( fens, fes, [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], renumb=renumb, ) fens, newfes1, fes2 = mergemeshes(fens1, fes1, fens, fes, tolerance) fes = cat(newfes1, fes2) @info "$(count(fens)) nodes" @info "$(count(fes)) elements" geom = NodalField(fens.xyz) P = NodalField(zeros(size(fens.xyz, 1), 1)) bfes = meshboundary(fes) setebc!(P, connectednodes(bfes)) numberdofs!(P) material = MatAcoustFluid(bulk, rho) femm = FEMMAcoust(IntegDomain(fes, GaussRule(3, 2)), material) mass_times = Dict{String,Vector{Float64}}() t0 = time() t1 = time() assmblr = SysmatAssemblerSparse(0.0) setnomatrixresult(assmblr, true) acousticmass(femm, assmblr, geom, P) mass_times["AssembleCOOMass"] = [time() - t1] println("Assemble mass = $(mass_times["AssembleCOOMass"]) [s]") t1 = time() setnomatrixresult(assmblr, false) Ma = makematrix!(assmblr) mass_times["ConvertToCSCMass"] = [time() - t1] println("Convert to CSC = $(mass_times["ConvertToCSCMass"]) [s]") mass_times["TotalAssemblyMass"] = [time() - t0] println("Assembly MASS total = $(mass_times["TotalAssemblyMass"]) [s]") stiffness_times = Dict{String,Vector{Float64}}() t0 = time() t1 = time() assmblr = SysmatAssemblerSparse(0.0) setnomatrixresult(assmblr, true) acousticstiffness(femm, assmblr, geom, P) stiffness_times["AssembleCOOStiffness"] = [time() - t1] println("Assemble stiffness = $(stiffness_times["AssembleCOOStiffness"]) [s]") t1 = time() setnomatrixresult(assmblr, false) Ka = makematrix!(assmblr) stiffness_times["ConvertToCSCStiffness"] = [time() - t1] println("Convert to CSC = $(stiffness_times["ConvertToCSCStiffness"]) [s]") stiffness_times["TotalAssemblyStiffness"] = [time() - t0] println("Assembly STIFFNESS total = $(stiffness_times["TotalAssemblyStiffness"]) [s]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "sphere_modes_serial-timing-stiffness"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) stiffness_times[k] = cat(stiffness_times[k], storedtimes[k], dims=1) end end DataDrop.store_json(n, stiffness_times) n = DataDrop.with_extension(joinpath("$(N)", "sphere_modes_serial-timing-mass"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) mass_times[k] = cat(mass_times[k], storedtimes[k], dims=1) end end DataDrop.store_json(n, mass_times) return end Ma_ff = matrix_blocked(Ma, nfreedofs(P), nfreedofs(P))[:ff] Ka_ff = matrix_blocked(Ka, nfreedofs(P), nfreedofs(P))[:ff] d, v, nconv = eigs(Ka_ff, Ma_ff; nev=neigvs, which=:SM, explicittransform=:none) v = real.(v) fs = real(sqrt.(complex(d))) ./ (2 * pi) @info("Frequencies (1:5): $(fs[1:5]) [Hz]") @info "Reference frequencies" for i in axes(wn_table, 1) fq = wn_table[i][1] ./ R .* c / (2 * pi) @info "$(fq), multiplicity $(wn_table[i][2])" end ks = (2 * pi) .* fs ./ c ./ phun("m") # @info("Wavenumbers: $(ks) [m]") File = "sphere_modes_serial.vtk" scalarllist = Any[] for n = [2, 5, 7] scattersysvec!(P, v[:, n]) push!(scalarllist, ("Pressure_mode_$n", deepcopy(P.values))) end vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H8; scalars=scalarllist, ) # @async run(`"paraview.exe" $File`) true end # sphere_h8_in_air end # module sphere_mode_examples nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
4933
module Poisson_parallel using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtools.AssemblyModule using FinEtools.MeshExportModule using FinEtoolsHeatDiff using ChunkSplitters using LinearAlgebra using DataDrop using SparseArrays using SymRCM using FinEtoolsMultithreading using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt, SysmatAssemblerSparsePattwLookup using ECLGraphColor const A = 1.0 # dimension of the domain (length of the side of the square) include("make_model.jl") function _run(make_model, N, ntasks, assembly_only) times = Dict{String,Vector{Float64}}() thermal_conductivity = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] # conductivity matrix Q = -6.0 # internal heat generation rate function getsource!(forceout, XYZ, tangents, feid, qpid) forceout[1] = Q #heat source end tempf(x) = (1.0 .+ x[:, 1] .^ 2 + 2.0 .* x[:, 2] .^ 2)#the exact distribution of temperature1 fens, fes, ir = make_model(N) geom = NodalField(fens.xyz) Temp = NodalField(zeros(size(fens.xyz, 1), 1)) Tolerance = 1.0 / count(fes) / 100 l1 = selectnode(fens; box = [0.0 0.0 0.0 A 0.0 A], inflate = Tolerance) l2 = selectnode(fens; box = [A A 0.0 A 0.0 A], inflate = Tolerance) l3 = selectnode(fens; box = [0.0 A 0.0 0.0 0.0 A], inflate = Tolerance) l4 = selectnode(fens; box = [0.0 A A A 0.0 A], inflate = Tolerance) l5 = selectnode(fens; box = [0.0 A 0.0 A 0.0 0.0], inflate = Tolerance) l6 = selectnode(fens; box = [0.0 A 0.0 A A A], inflate = Tolerance) List = vcat(l1, l2, l3, l4, l5, l6) setebc!(Temp, List, true, 1, tempf(geom.values[List, :])[:]) numberdofs!(Temp) @info "$(count(fens)) nodes" @info "$(count(fes)) elements" material = MatHeatDiff(thermal_conductivity) println("Conductivity") t1 = time() n2e = FENodeToFEMapThr(fes, nnodes(Temp)) times["FENodeToFEMap"] = [time() - t1] println("Make node to element map = $(times["FENodeToFEMap"]) [s]") GC.enable(false) AT = SysmatAssemblerSparsePatt # AT = SysmatAssemblerSparsePattwLookup t0 = time() t1 = time() e2e = FElemToNeighborsMap(n2e, fes, ECLGraphColor.int_type()) times["FElemToNeighborsMap"] = [time() - t1] println(" Make element to neighbor map = $(times["FElemToNeighborsMap"]) [s]") t1 = time() coloring = FinEtoolsMultithreading.element_coloring(fes, e2e, ntasks) times["ElementColors"] = [time() - t1] println(" Compute element colors = $(times["ElementColors"]) [s]") t1 = time() n2n = FENodeToNeighborsMap(n2e, fes) times["FENodeToNeighborsMap"] = [time() - t1] println(" Make node to neighbor map = $(times["FENodeToNeighborsMap"]) [s]") t1 = time() K_pattern = csc_symmetric_pattern(Temp.dofnums, nalldofs(Temp), n2n, eltype(Temp.values)) times["SparsityPattern"] = [time() - t1] println(" Sparsity pattern = $(times["SparsityPattern"]) [s]") t1 = time() decomposition = decompose(fes, coloring, (fessubset) -> FEMMHeatDiff(IntegDomain(fessubset, ir), material), ntasks) times["DomainDecomposition"] = [time() - t1] println(" Domain decomposition = $(times["DomainDecomposition"]) [s]") t1 = time() K = parallel_matrix_assembly!( AT(K_pattern), decomposition, (femm, assmblr) -> conductivity(femm, assmblr, geom, Temp), ) times["AssemblyOfValues"] = [time() - t1] println(" Add to matrix = $(times["AssemblyOfValues"]) [s]") times["TotalAssemblyStiffness"] = [time() - t0] println("Assembly total = $(times["TotalAssemblyStiffness"]) [s]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "Poisson_parallel-timing-stiffness"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims=1) end end return end femm = FEMMHeatDiff(IntegDomain(fes, ir), material) println("Internal heat generation") fi = ForceIntensity(Float64[Q]) F1 = distribloads(femm, geom, Temp, fi, 3) println("Solution of the system") t1 = time() solve_blocked!(Temp, K, F1) times["Solution"] = [time() - t0] println("Solution = $(times["Solution"]) [s]") Error = 0.0 for k in axes(fens.xyz, 1) Error = Error + abs.(Temp.values[k, 1] - tempf(reshape(fens.xyz[k, :], (1, 3)))[1]) end println("Error =$Error") true end # Poisson_parallel function run(N = 25, ntasks=Threads.nthreads(), assembly_only = false) return _run(make_model, N, ntasks, assembly_only) end end # module Poisson_parallel nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
3409
module Poisson_serial using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtools.AssemblyModule using FinEtools.MeshExportModule using FinEtoolsHeatDiff using ChunkSplitters using LinearAlgebra using DataDrop using SparseArrays using SymRCM const A = 1.0 # dimension of the domain (length of the side of the square) include("make_model.jl") function _run(make_model, N, assembly_only) times = Dict{String,Vector{Float64}}() thermal_conductivity = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] # conductivity matrix Q = -6.0 # internal heat generation rate function getsource!(forceout, XYZ, tangents, feid, qpid) forceout[1] = Q #heat source end tempf(x) = (1.0 .+ x[:, 1] .^ 2 + 2.0 .* x[:, 2] .^ 2)#the exact distribution of temperature1 fens, fes, ir = make_model(N) geom = NodalField(fens.xyz) Temp = NodalField(zeros(size(fens.xyz, 1), 1)) Tolerance = 1.0 / count(fes) / 100 l1 = selectnode(fens; box = [0.0 0.0 0.0 A 0.0 A], inflate = Tolerance) l2 = selectnode(fens; box = [A A 0.0 A 0.0 A], inflate = Tolerance) l3 = selectnode(fens; box = [0.0 A 0.0 0.0 0.0 A], inflate = Tolerance) l4 = selectnode(fens; box = [0.0 A A A 0.0 A], inflate = Tolerance) l5 = selectnode(fens; box = [0.0 A 0.0 A 0.0 0.0], inflate = Tolerance) l6 = selectnode(fens; box = [0.0 A 0.0 A A A], inflate = Tolerance) List = vcat(l1, l2, l3, l4, l5, l6) setebc!(Temp, List, true, 1, tempf(geom.values[List, :])[:]) numberdofs!(Temp) @info "$(count(fens)) nodes" @info "$(count(fes)) elements" material = MatHeatDiff(thermal_conductivity) femm = FEMMHeatDiff(IntegDomain(fes, ir), material) println("Conductivity") t0 = time() t1 = time() assmblr = SysmatAssemblerSparse(0.0) setnomatrixresult(assmblr, true) conductivity(femm, assmblr, geom, Temp) times["AssembleCOOStiffness"] = [time() - t1] println("Assemble stiffness = $(times["AssembleCOOStiffness"]) [s]") t1 = time() setnomatrixresult(assmblr, false) K = makematrix!(assmblr) times["ConvertToCSCStiffness"] = [time() - t1] println("Convert to CSC = $(times["ConvertToCSCStiffness"]) [s]") times["TotalAssemblyStiffness"] = [time() - t0] println("Assembly total = $(times["TotalAssemblyStiffness"]) [s]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "Poisson_serial-timing-stiffness"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims=1) end end return end println("Internal heat generation") fi = ForceIntensity(Float64[Q]) F1 = distribloads(femm, geom, Temp, fi, 3) println("Solution of the system") t1 = time() solve_blocked!(Temp, K, F1) times["Solution"] = [time() - t0] println("Solution = $(times["Solution"]) [s]") Error = 0.0 for k in axes(fens.xyz, 1) Error = Error + abs.(Temp.values[k, 1] - tempf(reshape(fens.xyz[k, :], (1, 3)))[1]) end println("Error =$Error") true end # Poisson_serial function run(N = 25, assembly_only = false) return _run(make_model, N, assembly_only) end end # module Poisson_serial nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
312
function make_model_H20(N = 25) fens, fes = H20block(A, A, A, N, N, N) ir = GaussRule(3, 3) return fens, fes, ir end function make_model_T10(N = 25) fens, fes = T10block(A, A, A, N, N, N) ir = TetRule(5) return fens, fes, ir end make_model = make_model_H20 make_model = make_model_T10
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
976
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need at least one arguments: N (mesh subdivision)") end using Pkg # Pkg.add("ThreadPinning") Pkg.activate(".") Pkg.instantiate() using LinearAlgebra LinearAlgebra.BLAS.set_num_threads(1) # Turn off thread pinning because it seems to interfere with the graph coloring library. # using ThreadPinning # ThreadPinning.Prefs.set_os_warning(false) # pinthreads(:cores) N = parse(Int, ARGS[1]) ntasks = Threads.nthreads() if length(ARGS) > 1 ntasks = parse(Int, ARGS[2]) end assembly_only = true if length(ARGS) > 2 assembly_only = parse(Bool, ARGS[3]) end include(raw"Poisson_parallel.jl") using .Poisson_parallel; using FinEtoolsMultithreading Pkg.status("FinEtoolsMultithreading") NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): nthreads=$(Threads.nthreads()), ntasks=$(ntasks), N=$(N)" Poisson_parallel.run(N, ntasks, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
483
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need one argument: N (mesh subdivision)") end using Pkg Pkg.activate(".") Pkg.instantiate() N = parse(Int, ARGS[1]) assembly_only = true if length(ARGS) > 1 assembly_only = parse(Bool, ARGS[2]) end include(raw"Poisson_serial.jl") using .Poisson_serial; NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): N=$(N)" Poisson_serial.run(N, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
994
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need at least one arguments: N (mesh subdivision)") end using Pkg # Pkg.add("ThreadPinning") Pkg.activate(".") Pkg.instantiate() using LinearAlgebra LinearAlgebra.BLAS.set_num_threads(1) # Turn off thread pinning because it seems to interfere with the graph coloring library. # using ThreadPinning # ThreadPinning.Prefs.set_os_warning(false) # pinthreads(:cores) N = parse(Int, ARGS[1]) ntasks = Threads.nthreads() if length(ARGS) > 1 ntasks = parse(Int, ARGS[2]) end assembly_only = true if length(ARGS) > 2 assembly_only = parse(Bool, ARGS[3]) end include(raw"stubby_corbel_parallel.jl") using .stubby_corbel_parallel; using FinEtoolsMultithreading Pkg.status("FinEtoolsMultithreading") NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): nthreads=$(Threads.nthreads()), ntasks=$(ntasks), N=$(N)" stubby_corbel_parallel.run(N, ntasks, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
501
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need one argument: N (mesh subdivision)") end using Pkg Pkg.activate(".") Pkg.instantiate() N = parse(Int, ARGS[1]) assembly_only = true if length(ARGS) > 1 assembly_only = parse(Bool, ARGS[2]) end include(raw"stubby_corbel_serial.jl") using .stubby_corbel_serial; NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): N=$(N)" stubby_corbel_serial.run(N, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
5889
module stubby_corbel_parallel using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using SuiteSparse using Printf using SymRCM using Random using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using FinEtoolsMultithreading using ECLGraphColor using DataDrop # Isotropic material E = 1000.0 nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -2.16e-01 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end function run(N = 10, ntasks = Threads.nthreads(), assembly_only = false) times = Dict{String, Vector{Float64}}() t1 = time() fens, fes = H8block(W, L, H, N, 2 * N, 2 * N) times["MeshGeneration"] = [time() - t1] println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") t1 = time() n2e = FENodeToFEMapThr(fes, nnodes(u)) times["FENodeToFEMap"] = [time() - t1] println("Make node to element map = $(times["FENodeToFEMap"]) [s]") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) function createsubdomain(fessubset) FEMMDeforLinearMSH8(MR, IntegDomain(fessubset, GaussRule(3, 2)), material) end function matrixcomputation!(femm, assembler) associategeometry!(femm, geom) stiffness(femm, assembler, geom, u) end println("Stiffness =============================================================") GC.enable(false) t0 = time(); t1 = time() e2e = FElemToNeighborsMap(n2e, fes, ECLGraphColor.int_type()) times["FElemToNeighborsMap"] = [time() - t1] println(" Make element to neighbor map = $(times["FElemToNeighborsMap"]) [s]") t1 = time() coloring = FinEtoolsMultithreading.element_coloring(fes, e2e, ntasks) times["ElementColors"] = [time() - t1] println(" Compute element colors = $(times["ElementColors"]) [s]") t1 = time() n2n = FENodeToNeighborsMap(n2e, fes) times["FENodeToNeighborsMap"] = [time() - t1] println(" Make node to neighbor map = $(times["FENodeToNeighborsMap"]) [s]") t1 = time() K_pattern = csc_symmetric_pattern(u.dofnums, nalldofs(u), n2n, eltype(u.values)) times["SparsityPattern"] = [time() - t1] println(" Sparsity pattern = $(times["SparsityPattern"]) [s]") t1 = time() decomposition = decompose(fes, coloring, createsubdomain, ntasks) times["DomainDecomposition"] = [time() - t1] println(" Domain decomposition = $(times["DomainDecomposition"]) [s]") t1 = time() K = parallel_matrix_assembly!( SysmatAssemblerSparsePatt(K_pattern), decomposition, matrixcomputation! ) times["AssemblyOfValues"] = [time() - t1] println(" Add to matrix = $(times["AssemblyOfValues"]) [s]") times["TotalAssembly"] = [time() - t0] println("Assembly total = $(times["TotalAssembly"]) [s]") GC.enable(true) K_ff = matrix_blocked_ff(K, nfreedofs(u)) F_f = vector_blocked_f(F, nfreedofs(u)) println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "stubby_corbel_H8_ms-timing-parallel-nth=$(ntasks)"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims = 1) end end DataDrop.store_json(n, times) return end Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) @show norm(K_ff - K_ff') / norm(K_ff) @time K_ff_factors = SuiteSparse.CHOLMOD.cholesky(Symmetric(K_ff)) @show nnz(K_ff_factors) # @time K = SparseArrays.ldlt(K) # @time K = cholesky(K) @time U_f = K_ff_factors \ (F_f) scattersysvec!(u, U_f[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_ms_parallel.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) true end # run end # module nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
4238
module stubby_corbel_serial using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using SuiteSparse using SymRCM using Random using DataDrop # Isotropic material E = 1000.0 nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -2.16e-01 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end function run(N = 10, assembly_only = false) times = Dict{String,Vector{Float64}}() t1 = time() fens, fes = H8block(W, L, H, N, 2 * N, 2 * N) times["MeshGeneration"] = [time() - t1] println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) t0 = time() t1 = time() associategeometry!(femm, geom) assembler = SysmatAssemblerSparse(1.0) setnomatrixresult(assembler, true) stiffness(femm, assembler, geom, u) times["ComputeCOO"] = [time() - t1] println("Compute COO = $(times["ComputeCOO"]) [s]") t1 = time() setnomatrixresult(assembler, false) K = makematrix!(assembler) times["BuildCSC"] = [time() - t1] println("Build CSC = $(times["BuildCSC"]) [s]") times["TotalAssembly"] = [time() - t0] println("Assembly total = $(times["TotalAssembly"]) [s]") K_ff = matrix_blocked_ff(K, nfreedofs(u)) F_f = vector_blocked_f(F, nfreedofs(u)) println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "stubby_corbel_H8_ms-timing-serial"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims = 1) end end DataDrop.store_json(n, times) return end Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) @show norm(K_ff - K_ff') / norm(K_ff) @time K_ff_factors = SuiteSparse.CHOLMOD.cholesky(Symmetric(K_ff)) @show nnz(K_ff_factors) @time U_f = K_ff_factors \ (F_f) scattersysvec!(u, U_f[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_ms_serial.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) true end # run end # module nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
5939
module ops_parallel using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using SuiteSparse using Printf using SymRCM using Random using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using FinEtoolsMultithreading using ECLGraphColor using DataDrop # Isotropic material E = 1000.0 nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -2.16e-01 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end function run(N = 10, ntasks = Threads.nthreads(), assembly_only = false) times = Dict{String, Vector{Float64}}() t1 = time() fens, fes = H8block(W, L, H, N, 2 * N, 2 * N) times["MeshGeneration"] = [time() - t1] println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") t1 = time() n2e = FENodeToFEMapThr(fes, nnodes(u)) times["FENodeToFEMap"] = [time() - t1] println("Make node to element map = $(times["FENodeToFEMap"]) [s]") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) function createsubdomain(fessubset) FEMMDeforLinearMSH8(MR, IntegDomain(fessubset, GaussRule(3, 2)), material) end function matrixcomputation!(femm, assembler) associategeometry!(femm, geom) stiffness(femm, assembler, geom, u) end println("Stiffness =============================================================") GC.enable(false) t0 = time(); t1 = time() e2e = FElemToNeighborsMap(n2e, fes, ECLGraphColor.int_type()) times["FElemToNeighborsMap"] = [time() - t1] println(" Make element to neighbor map = $(times["FElemToNeighborsMap"]) [s]") t1 = time() coloring = FinEtoolsMultithreading.element_coloring(fes, e2e, ntasks) times["ElementColors"] = [time() - t1] println(" Compute element colors = $(times["ElementColors"]) [s]") t1 = time() n2n = FENodeToNeighborsMap(n2e, fes) times["FENodeToNeighborsMap"] = [time() - t1] println(" Make node to neighbor map = $(times["FENodeToNeighborsMap"]) [s]") t1 = time() K_pattern = csc_symmetric_pattern(u.dofnums, nalldofs(u), n2n, eltype(u.values)) times["SparsityPattern"] = [time() - t1] println(" Sparsity pattern = $(times["SparsityPattern"]) [s]") # t1 = time() # decomposition = decompose(fes, coloring, createsubdomain, ntasks) # times["DomainDecomposition"] = [time() - t1] # println(" Domain decomposition = $(times["DomainDecomposition"]) [s]") # t1 = time() # K = parallel_matrix_assembly!( # SysmatAssemblerSparsePatt(K_pattern), # decomposition, # matrixcomputation! # ) # times["AssemblyOfValues"] = [time() - t1] # println(" Add to matrix = $(times["AssemblyOfValues"]) [s]") # times["TotalAssembly"] = [time() - t0] # println("Assembly total = $(times["TotalAssembly"]) [s]") GC.enable(true) # K_ff = matrix_blocked_ff(K, nfreedofs(u)) # F_f = vector_blocked_f(F, nfreedofs(u)) # println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") # println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "stubby_corbel_H8_ms-timing-parallel-nth=$(ntasks)"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims = 1) end end DataDrop.store_json(n, times) return end # Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) # @show norm(K_ff - K_ff') / norm(K_ff) # @time K_ff_factors = SuiteSparse.CHOLMOD.cholesky(Symmetric(K_ff)) # @show nnz(K_ff_factors) # # @time K = SparseArrays.ldlt(K) # # @time K = cholesky(K) # @time U_f = K_ff_factors \ (F_f) # scattersysvec!(u, U_f[:]) # utip = mean(u.values[Tipl, 3], dims = 1) # println("Deflection: $(utip), compared to $(uzex)") # File = "stubby_corbel_H8_ms_parallel.vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) true end # run end # module nothing
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
964
println("Current folder: $(pwd())") if length(ARGS) < 1 error("I need at least one arguments: N (mesh subdivision)") end using Pkg # Pkg.add("ThreadPinning") Pkg.activate(".") Pkg.instantiate() using LinearAlgebra LinearAlgebra.BLAS.set_num_threads(1) # Turn off thread pinning because it seems to interfere with the graph coloring library. # using ThreadPinning # ThreadPinning.Prefs.set_os_warning(false) # pinthreads(:cores) N = parse(Int, ARGS[1]) ntasks = Threads.nthreads() if length(ARGS) > 1 ntasks = parse(Int, ARGS[2]) end assembly_only = true if length(ARGS) > 2 assembly_only = parse(Bool, ARGS[3]) end include(raw"ops_parallel.jl") using .ops_parallel; using FinEtoolsMultithreading Pkg.status("FinEtoolsMultithreading") NTRIALS = 5 for trial in 1:NTRIALS @info "Trial $(trial) out of $(NTRIALS): nthreads=$(Threads.nthreads()), ntasks=$(ntasks), N=$(N)" ops_parallel.run(N, ntasks, assembly_only) GC.gc(true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1007
""" FENodeToFEMapModule Module to construct a map from finite element nodes to elements connected to them. This map is constructed in parallel.1 """ module FENodeToFEMapModule __precompile__(true) using FinEtools.FESetModule: AbstractFESet, subset, count using FinEtools using ChunkSplitters function _merge_maps!(maps, rnge) for m in 2:length(maps) for i in rnge append!(maps[1][i], maps[m][i]) end end return maps end function FENodeToFEMapThr(fes::FE, nmax::IT, ntasks = Threads.nthreads()) where {FE<:AbstractFESet,IT<:Integer} chks = chunks(1:count(fes), ntasks) maps = Vector{Vector{Vector{IT}}}(undef, length(chks)) Base.Threads.@threads for c in chks maps[c[2]] = FinEtools.FENodeToFEMapModule._makemap(fes.conn, c[1], nmax) end chks = chunks(1:nmax, ntasks) Base.Threads.@threads for c in chks _merge_maps!(maps, c[1]) end return FinEtools.FENodeToFEMapModule.FENodeToFEMap(maps[1]) end end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
2203
""" FENodeToNeighborsMapModule Module to construct a map from finite element nodes to nodes connected to them. """ module FENodeToNeighborsMapModule __precompile__(true) using FinEtools.FESetModule: AbstractFESet using FinEtools.FENodeToFEMapModule: FENodeToFEMap function _nneighbors(self, ellist, conn, npe) totn = length(ellist) * (npe - 1) # we are not adding self-reference nodes = fill(zero(eltype(conn[1])), totn) p = 1 @inbounds for i in ellist for k in conn[i] if k != self # we are not adding self-reference nodes[p] = k; p += 1 end end end return unique!(sort!(nodes)) end function _make_map(n2e, conn) npe = length(conn[1]) map = Vector{eltype(n2e.map)}(undef, length(n2e.map)) Base.Threads.@threads for i in eachindex(n2e.map) # run this in PARALLEL map[i] = _nneighbors(i, n2e.map[i], conn, npe) end return map end """ FENodeToNeighborsMap Map from finite element nodes to the nodes that are connected to them by finite elements. !!! note Self references are excluded (a node is its own neighbor, but it is not included in this data structure as such). """ struct FENodeToNeighborsMap{IT} # Map as a vector of vectors. map::Vector{Vector{IT}} end """ FENodeToNeighborsMap( n2e::N2EMAP, conn::Vector{NTuple{N,IT}}, ) where {N2EMAP<:FENodeToFEMap,N,IT<:Integer} Map from finite element nodes to the nodes connected to them by elements. - `conns` = connectivities as a vector of tuples - `nmax` = largest possible node number """ function FENodeToNeighborsMap( n2e::N2EMAP, conn::Vector{NTuple{N,IT}}, ) where {N2EMAP<:FENodeToFEMap,N,IT<:Integer} return FENodeToNeighborsMap(_make_map(n2e, conn)) end """ FENodeToNeighborsMap( n2e::N2EMAP, fes::FE, ) where {N2EMAP<:FENodeToFEMap,FE<:AbstractFESet} Map from finite element nodes to the nodes connected to them by elements. Convenience constructor. """ function FENodeToNeighborsMap( n2e::N2EMAP, fes::FE, ) where {N2EMAP<:FENodeToFEMap,FE<:AbstractFESet} return FENodeToNeighborsMap(_make_map(n2e, fes.conn)) end end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
2738
""" FElemToNeighborsMapModule Module to construct a map from finite elements to elements that share nodes with them (i.e. that are connected to them through the nodes). """ module FElemToNeighborsMapModule __precompile__(true) using FinEtools.FESetModule: AbstractFESet using FinEtools.FENodeToFEMapModule: FENodeToFEMap using ECLGraphColor function _unique_elem_neighbors(self, n2emap, conn1, IntType) len = 0 @inbounds for k in conn1 len += (length(n2emap[k]) - 1) # we are not adding self-references end neighbors = fill(zero(IntType), len) p = 1 @inbounds for k in conn1 for j in n2emap[k] if j != self # we are not adding self-reference neighbors[p] = j; p += 1 end end end return unique!(sort!(neighbors)) end function _e2e_map(n2e, conn, IntType) map = Vector{Vector{IntType}}(undef, length(conn)) Base.Threads.@threads for i in eachindex(map) # run this in PARALLEL map[i] = _unique_elem_neighbors(i, n2e.map, conn[i], IntType) end return map end """ FElemToNeighborsMap Map from finite elements to the elements that are connected to them by finite nodes. !!! note Self references are included (an element is connected to itself). """ struct FElemToNeighborsMap{IT} # Map as a vector of vectors. map::Vector{Vector{IT}} end """ FElemToNeighborsMap( n2e::N2EMAP, conn::Vector{NTuple{N,IT}}, ) where {N2EMAP<:FENodeToFEMap,N,IT<:Integer} Map from finite elements to the elements that are connected by finite nodes. - `conns` = connectivities as a vector of tuples - `nmax` = largest possible node number """ function FElemToNeighborsMap( n2e::N2EMAP, conn::Vector{NTuple{N,IT}}, ) where {N2EMAP<:FENodeToFEMap,N,IT<:Integer} return FElemToNeighborsMap(_e2e_map(n2e, conn, IT)) end """ FElemToNeighborsMap( n2e::N2EMAP, fes::FE, ) where {N2EMAP<:FENodeToFEMap,FE<:AbstractFESet} Map from finite elements to the elements that are connected by finite nodes. Convenience constructor. """ function FElemToNeighborsMap( n2e::N2EMAP, fes::FE, ) where {N2EMAP<:FENodeToFEMap,FE<:AbstractFESet} return FElemToNeighborsMap(_e2e_map(n2e, fes.conn, ECLGraphColor.int_type())) end """ FElemToNeighborsMap( n2e::N2EMAP, fes::FE, ) where {N2EMAP<:FENodeToFEMap,FE<:AbstractFESet} Map from finite elements to the elements that are connected by finite nodes. Convenience constructor. """ function FElemToNeighborsMap( n2e::N2EMAP, fes::FE, IntType::IT ) where {N2EMAP<:FENodeToFEMap,FE<:AbstractFESet,IT} return FElemToNeighborsMap(_e2e_map(n2e, fes.conn, IntType)) end end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1707
""" FinEtoolsMultithreading Package for parallel finite element computing. """ module FinEtoolsMultithreading using SparseArrays using ChunkSplitters using SparseMatricesCSR using LinearAlgebra using FinEtools using ThreadedScans using ECLGraphColor include("utilities.jl") include("prefixsum.jl") include("FENodeToNeighborsMapModule.jl") using .FENodeToNeighborsMapModule: FENodeToNeighborsMap include("FElemToNeighborsMapModule.jl") using .FElemToNeighborsMapModule: FElemToNeighborsMap include("FENodeToFEMapModule.jl") include("element_coloring.jl") include("parallel_element_coloring.jl") include("sparsity_pattern.jl") include("parallel_assembly.jl") include("domain_decomposition.jl") using .FENodeToFEMapModule: FENodeToFEMapThr include("high_level.jl") module Exports # The high level interface using ..FinEtoolsMultithreading: parallel_make_matrix export parallel_make_matrix # These three routines give access to intermediate steps using ..FinEtoolsMultithreading: parallel_matrix_assembly! export parallel_matrix_assembly! using ..FinEtoolsMultithreading: csc_symmetric_pattern export csc_symmetric_pattern using ..FENodeToNeighborsMapModule: FENodeToNeighborsMap # Exported: type for maps from nodes to connected nodes export FENodeToNeighborsMap using ..FElemToNeighborsMapModule: FElemToNeighborsMap # Exported: type for maps from nodes to connected nodes export FElemToNeighborsMap using ..FENodeToFEMapModule: FENodeToFEMapThr # Exported: type for maps from nodes to elements computed on multiple threads export FENodeToFEMapThr export element_coloring end # Enable LSP look up in test modules if false include("../test/runtests.jl") end end # module FinEtoolsMultithreading
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
4350
using FinEtools using SparseArrays import FinEtools.AssemblyModule.eltype import FinEtools.AssemblyModule.startassembly! import FinEtools.AssemblyModule.assemble! import FinEtools.AssemblyModule.makematrix! """ SysmatAssemblerSparsePatt{IT, MBT, IBT} <: AbstractSysmatAssembler Type for assembling a sparse global matrix from elementwise matrices using a sparsity pattern (sparse matrix with all potential non-zeroes represented, but all those numbers are actually zero). !!! note All fields of the datatype are private. The type is manipulated by the functions `startassembly!`, `assemble!`, and `makematrix!`. """ mutable struct SysmatAssemblerSparsePatt{TPATT<:SparseMatrixCSC} <: AbstractSysmatAssembler _pattern::TPATT _nomatrixresult::Bool _force_init::Bool end function eltype(self::TPATT) where {TPATT<:SysmatAssemblerSparsePatt} eltype(self._pattern.nzval) end function SysmatAssemblerSparsePatt(pattern::TPATT) where {TPATT<:SparseMatrixCSC} return SysmatAssemblerSparsePatt(pattern, false, false) end """ startassembly!(self::SysmatAssemblerSparsePatt{T}, elem_mat_nrows::IT, elem_mat_ncols::IT, n_elem_mats::IT, row_nalldofs::IT, col_nalldofs::IT; force_init = false ) where {T, IT<:Integer} Start the assembly of a global matrix. The method makes buffers for matrix assembly. It must be called before the first call to the method `assemble!`. # Arguments - `elem_mat_nrows` = row dimension of the element matrix; - `elem_mat_ncols` = column dimension of the element matrix; - `n_elem_mats` = number of element matrices; - `row_nalldofs`= The total number of rows as a tuple; - `col_nalldofs`= The total number of columns as a tuple. This is a noop. The pattern has already been built, per our assumption. # Returns - `self`: the modified assembler. """ function startassembly!( self::TPATT, elem_mat_nrows::IT, elem_mat_ncols::IT, n_elem_mats::IT, row_nalldofs::IT, col_nalldofs::IT; force_init = false, ) where {TPATT<:SysmatAssemblerSparsePatt,IT<:Integer} if force_init fill!(zero(eltype(self._pattern.nzval)), self._pattern.nzval) end return self end @inline function _binary_search(array::Array{IT,1}, target::IT, left::IT, right::IT) where {IT} @inbounds while left <= right # Generating the middle element position mid = fld((left + right), 2) # If element > mid, then it can only be present in right subarray if array[mid] < target left = mid + 1 # If element < mid, then it can only be present in left subarray elseif array[mid] > target right = mid - 1 # If element is present at the middle itself else # == return mid end end return 0 end """ assemble!( self::SysmatAssemblerSparsePatt, mat::MT, dofnums_row::IT, dofnums_col::IT, ) where {MT, IT} Assemble a rectangular matrix. Assembly of a rectangular matrix. The method assembles a rectangular matrix using the two vectors of equation numbers for the rows and columns. """ function assemble!( self::TPATT, mat::MBT, dofnums_row::CIT, dofnums_col::CIT, ) where {TPATT<:SysmatAssemblerSparsePatt,MBT,CIT} nrows = length(dofnums_row) ncolumns = length(dofnums_col) size(mat) == (nrows, ncolumns) || error("Wrong size of matrix") row_nalldofs, col_nalldofs = size(self._pattern) @inbounds for j = 1:ncolumns dj = dofnums_col[j] # dj < 1 && error("Column degree of freedom < 1") # dj > col_nalldofs && error("Column degree of freedom > size") for i = 1:nrows di = dofnums_row[i] # di < 1 && error("Row degree of freedom < 1") # di > row_nalldofs && error("Row degree of freedom > size") k = _binary_search(self._pattern.rowval, di, self._pattern.colptr[dj], self._pattern.colptr[dj+1] - 1) self._pattern.nzval[k] += mat[i, j] end end return self end """ makematrix!(self::SysmatAssemblerSparsePatt) Make a sparse matrix. The sparse matrix (i.e. a sparsity pattern with the nonzero values filled in) is returned. """ function makematrix!(self::TPATT) where {TPATT<:SysmatAssemblerSparsePatt} return self._pattern end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
4046
using FinEtools using SparseArrays import FinEtools.AssemblyModule.eltype import FinEtools.AssemblyModule.startassembly! import FinEtools.AssemblyModule.assemble! import FinEtools.AssemblyModule.makematrix! """ SysmatAssemblerSparsePattwLookup{IT, MBT, IBT} <: AbstractSysmatAssembler Type for assembling a sparse global matrix from elementwise matrices using a sparsity pattern (sparse matrix with all potential non-zeroes represented, but all those numbers are actually zero). !!! note All fields of the datatype are private. The type is manipulated by the functions `startassembly!`, `assemble!`, and `makematrix!`. """ mutable struct SysmatAssemblerSparsePattwLookup{TPATT<:SparseMatrixCSC} <: AbstractSysmatAssembler _pattern::TPATT _rows::Vector{Dict{Int, Int}} _nomatrixresult::Bool _force_init::Bool end function eltype(self::TPATT) where {TPATT<:SysmatAssemblerSparsePattwLookup} eltype(self._pattern.nzval) end function SysmatAssemblerSparsePattwLookup(pattern::TPATT) where {TPATT<:SparseMatrixCSC} empty = Dict{Int,Int}() rows = fill(empty, size(pattern, 2)) Threads.@threads for c in axes(pattern, 2) cr = pattern.colptr[c]:(pattern.colptr[c+1]-1) rows[c] = Dict{Int,Int}(zip(view(pattern.rowval, cr), cr)) end return SysmatAssemblerSparsePattwLookup(pattern, rows, false, false) end """ startassembly!(self::SysmatAssemblerSparsePattwLookup{T}, elem_mat_nrows::IT, elem_mat_ncols::IT, n_elem_mats::IT, row_nalldofs::IT, col_nalldofs::IT; force_init = false ) where {T, IT<:Integer} Start the assembly of a global matrix. The method makes buffers for matrix assembly. It must be called before the first call to the method `assemble!`. # Arguments - `elem_mat_nrows` = row dimension of the element matrix; - `elem_mat_ncols` = column dimension of the element matrix; - `n_elem_mats` = number of element matrices; - `row_nalldofs`= The total number of rows as a tuple; - `col_nalldofs`= The total number of columns as a tuple. This is a noop. The pattern has already been built, per our assumption. # Returns - `self`: the modified assembler. """ function startassembly!( self::TPATT, elem_mat_nrows::IT, elem_mat_ncols::IT, n_elem_mats::IT, row_nalldofs::IT, col_nalldofs::IT; force_init = false, ) where {TPATT<:SysmatAssemblerSparsePattwLookup,IT<:Integer} if force_init fill!(zero(eltype(self._pattern.nzval)), self._pattern.nzval) end return self end """ assemble!( self::SysmatAssemblerSparsePattwLookup, mat::MT, dofnums_row::IT, dofnums_col::IT, ) where {MT, IT} Assemble a rectangular matrix. """ function assemble!( self::TPATT, mat::MBT, dofnums_row::CIT, dofnums_col::CIT, ) where {TPATT<:SysmatAssemblerSparsePattwLookup,MBT,CIT} # Assembly of a rectangular matrix. # The method assembles a rectangular matrix using the two vectors of # equation numbers for the rows and columns. nrows = length(dofnums_row) ncolumns = length(dofnums_col) size(mat) == (nrows, ncolumns) || error("Wrong size of matrix") row_nalldofs, col_nalldofs = size(self._pattern) @inbounds for j = 1:ncolumns dj = dofnums_col[j] # dj < 1 && error("Column degree of freedom < 1") # dj > col_nalldofs && error("Column degree of freedom > size") for i = 1:nrows di = dofnums_row[i] # di < 1 && error("Row degree of freedom < 1") # di > row_nalldofs && error("Row degree of freedom > size") k = self._rows[dj][di] self._pattern.nzval[k] += mat[i, j] end end return self end """ makematrix!(self::SysmatAssemblerSparsePattwLookup) Make a sparse matrix. The sparse matrix (i.e. a sparsity pattern with the nonzero values filled in) is returned. """ function makematrix!(self::TPATT) where {TPATT<:SysmatAssemblerSparsePattwLookup} return self._pattern end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1676
""" decompose(fes, coloring, createsubd, ntasks = Threads.nthreads()) Create finite element machines for the subdomains. # Arguments - `fes` = finite element set, - `ntasks` = number of tasks (subdomains), - `element_colors` = array of element colors, one for each element, - `unique_colors` = array of the unique element colours, - `createsubd` = function to create one finite element machine Example: ``` function createsubd(fessubset) FEMMDeforLinear(MR, IntegDomain(fessubset, GaussRule(3, 2)), material) end ``` Create a vector of vectors: for each unique color in the element coloring, the vector of the finite element machines is stored. The finite element machines are created using the function `createsubd`. The matrix is created by going sequentially through the unique colors and then in parallel execute all the finite element machines for that color. """ function decompose(fes, coloring, createsubd, ntasks=Threads.nthreads()) el_colors, uniq_colors = coloring decomp = fill([], length(uniq_colors)) Threads.@threads for i in eachindex(uniq_colors) c = uniq_colors[i] ellist = findall(_c -> _c == c, el_colors) _fes = subset(fes, ellist) decomp[i] = _make_femms(_fes, ntasks, createsubd) end return decomp end function _make_femms(fesofacolor, ntasks, createsubd) chks = chunks(1:count(fesofacolor), ntasks) return [createsubd(subset(fesofacolor, ch)) for (ch, j) in chks] end # using LazyArrays # i = 1000 # is = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # function f(i, is) # for n in ApplyArray(vcat, i, is) # n # end # end # @time f(i, is)
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
2691
import FinEtools: element_coloring """ element_coloring(fes, e2e::E2EM, ellist::Vector{IT} = Int[]) where {E2EM<:FElemToNeighborsMap,IT<:Integer} Determine element coloring such that no elements of the same color share a node. # Arguments - `fes`: The finite element set. - `e2e`: The element-to-element map. - `ellist`: Optional list of element serial numbers to include (default is all elements need to be considered). # Returns Vector of element colors, vector of unique colors, and vector of counts of each color. """ function element_coloring(fes, e2e::E2EM) where {E2EM<:FElemToNeighborsMap{IT} where {IT}} element_colors = fill(zero(Int16), count(fes)) unique_colors = eltype(element_colors)[1] color_counts = eltype(element_colors)[0] return element_coloring!(element_colors, unique_colors, color_counts, e2e.map) end function __find_of_min_count(color_used, first, color_counts) c = 0 mincount = typemax(eltype(color_counts)) @inbounds for k in first:length(color_used) if color_used[k] == 0 && mincount > color_counts[k] mincount = color_counts[k] c = k end end return c end function __find_first_avail(color_used) @inbounds for k in eachindex(color_used) if color_used[k] == 0 return k end end return 0 end function element_coloring!(element_colors, unique_colors, color_counts, e2emap) color_used = fill(zero(eltype(element_colors)), length(unique_colors)) for e in eachindex(element_colors) if element_colors[e] == 0 color_used .= 0; ncolorsatneighbors = 0 for oe in e2emap[e] c = element_colors[oe] if c > 0 color_used[c] += 1 ncolorsatneighbors += 1 end end if ncolorsatneighbors == 0 c = __find_of_min_count(color_used, 1, color_counts) element_colors[e] = unique_colors[c] color_counts[c] += 1 else first = __find_first_avail(color_used) if first == 0 added = maximum(unique_colors) + 1 push!(unique_colors, added) push!(color_counts, 1) push!(color_used, 0) element_colors[e] = added else c = __find_of_min_count(color_used, first, color_counts) element_colors[e] = unique_colors[c] color_counts[c] += 1 end end end end return element_colors, unique_colors, color_counts end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
2515
""" parallel_make_matrix( fes, u, createsubd, matrixupdt!; ntasks = Threads.nthreads(), kind = :CSC, ) Assemble a sparse matrix. Either a `:CSC` matrix or a `:CSR` matrix is created. We shall refer to this matrix as a CSX matrix. The process is: 1. Construct the incidence relation node-to-elements. 2. Construct the incidence relation node-to-neighbors. 3. Make the sparse pattern and create a sparse CSX matrix with all values zero. 4. Construct the incidence relation element-to-neighbors. 5. Compute element coloring. 6. Set up domain decomposition. 7. Compute and assemble the matrix entries. Here, `createsubd` could be ``` (fessubset) -> FEMMAcoust(IntegDomain(fessubset, GaussRule(3, 2)), material) ``` and `matrixupdt!` could be ``` (femm, assmblr) -> acousticstiffness(femm, assmblr, geom, P) ``` """ function parallel_make_matrix( fes, u, createsubd, matrixupdt!; ntasks = Threads.nthreads(), kind = :CSC, ) n2e = FENodeToFEMapThr(fes, nnodes(u)) parallel_make_matrix( fes, u.dofnums, nalldofs(u), eltype(u.values), n2e, createsubd, matrixupdt!, ntasks, kind, ) end """ parallel_make_matrix( fes, dofnums, ndofs, FT, n2e, createsubd, matrixupdt!, ntasks, kind, ) Assemble a sparse matrix. 1. Construct the incidence relation node-to-neighbors. 2. Make the sparse pattern and create a sparse CSX matrix with all values zero. 3. Construct the incidence relation element-to-neighbors. 4. Compute element coloring. 5. Set up domain decomposition. 6. Compute and assemble the matrix entries. """ function parallel_make_matrix( fes, dofnums, ndofs, FT, n2e, # data createsubd, matrixupdt!, # functions ntasks, # how many threads? kind ) @assert kind in [:CSC, :CSR] n2n = FENodeToNeighborsMap(n2e, fes) # ALG 1 matrix = csc_symmetric_pattern(dofnums, # ALG 2 ndofs, n2n, FT) e2e = FElemToNeighborsMap(n2e, fes) # ALG 3 coloring = element_coloring(fes, e2e, ntasks) # ALG 4 decomposition = decompose(fes, coloring, # ALG 5 createsubd, ntasks) return parallel_matrix_assembly!( # ALG 6 SysmatAssemblerSparsePatt(matrix), decomposition, matrixupdt!, ) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1459
using FinEtools using SparseArrays import FinEtools.AssemblyModule.eltype import FinEtools.AssemblyModule.startassembly! import FinEtools.AssemblyModule.assemble! import FinEtools.AssemblyModule.makematrix! include("assembler_patt.jl") include("assembler_patt_w_lookup.jl") function _check_femm_compatibility(femms::AbstractArray{FEMM,1}) where {FEMM<:AbstractFEMM} for j in eachindex(femms) iselementbased(femms[j]) || error("FEMM is not element-based") (nameof(typeof(femms[j])) === nameof(typeof(femms[1]))) || error("All FEMMs must be of the same type") ( nameof(typeof(finite_elements(femms[j]))) === nameof(typeof(finite_elements(femms[1]))) ) || error("All finite elements must be of the same type") end return true end """ parallel_matrix_assembly!( assmblr, decomposition, matrixupdt!::F ) where {F<:Function} Execute the assembly in parallel. The decomposition is a vector of vector of FEMMs. As many tasks as there are FEMMs at any level are spawned. The function `matrixupdt!` updates the assembler. """ function parallel_matrix_assembly!( assmblr, decomposition, matrixupdt!::F, ) where {F<:Function} for femms in decomposition Threads.@sync begin for femm in femms Threads.@spawn matrixupdt!(femm, assmblr) end end end return assmblr._pattern end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1435
using ECLGraphColor: PECLgraph, make_graph, add_nlist_all_row, add_nindex using ECLGraphColor: get_color, run_graph_coloring, free_graph, print_graph, write_graph """ element_coloring(fes, e2e::E2EM, ntasks::IT1) where {E2EM<:FElemToNeighborsMap{IT} where {IT},IT1<:Integer} Determine element coloring such that no elements of the same color share a node. # Arguments - `fes`: The finite element set. - `e2e`: The element-to-element map. # Returns Vector of element colors, vector of unique colors. """ function element_coloring(fes, e2e::E2EM, ntasks::IT1) where {E2EM<:FElemToNeighborsMap{IT} where {IT},IT1<:Integer} element_colors = fill(zero(Int16), count(fes)) if !((Base.Sys.islinux()) || (Base.Sys.isapple())) return element_coloring(fes, e2e) end map = e2e.map g = make_graph(length(map), sum([length(c) for c in map])) idx = 1 for i in eachindex(map) add_nindex(g, i, idx) idx += length(map[i]) end add_nindex(g, length(map)+1, idx) Threads.@threads for i in eachindex(map) neighbors = map[i] add_nlist_all_row(g, i, length(neighbors), neighbors); end # print_graph(g) run_graph_coloring(g, ntasks, 0, 0) Threads.@threads for i in 1:length(map) element_colors[i] = get_color(g, i) end # write_graph(g, "testgraph.egr") free_graph(g) return element_colors, sort(unique(element_colors)) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
837
using ThreadedScans using ChunkSplitters function _scan!(arr) n = length(arr) @inbounds for i in 2:n arr[i] += arr[i-1] end return arr end """ psp_scan!(arr) Perform prefix sum scan on the input array `arr` in place. # Arguments - `arr`: The input array to perform prefix sum scan on. The array is modified in-place. The computation is multithreaded, and uses all available threads. """ function psp_scan!(arr) n = length(arr) ntasks = Threads.nthreads() chks = chunks(1:n, ntasks) Threads.@threads for s in 1:length(chks) _scan!(@view arr[chks[s][1]]) end segment_ends = [arr[chks[s][1][end]] for s in 1:length(chks)] _scan!(segment_ends) Threads.@threads for s in 2:length(chks) @view(arr[chks[s][1]]) .+= segment_ends[s-1] end return arr end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
2361
using LazyArrays function _store_dofs!(rowval, n, nghbrs, dofnums, colptr) s1 = colptr[dofnums[n, 1]] p = 0 @inbounds for k in ApplyArray(vcat, n, nghbrs) for d in axes(dofnums, 2) rowval[s1+p] = dofnums[k, d]; p += 1 end end bl = p # block length sort!(@view(rowval[s1:s1+bl-1])) @inbounds for d in 2:size(dofnums, 2) s = colptr[dofnums[n, d]] copy!(@view(rowval[s:s+bl-1]), @view(rowval[s1:s1+bl-1])) end return nothing end function _row_blocks(IT, map, dofnums) nd = size(dofnums, 2) total_dofs = length(map) * nd lengths = Vector{IT}(undef, total_dofs + 1) lengths[1] = 1 @inbounds Threads.@threads for k in eachindex(map) kl = (length(map[k]) + 1) * nd # +1 for the node itself for d in axes(dofnums, 2) j = dofnums[k, d] lengths[j+1] = kl end end return lengths end function _acc_start_ptr!(s) len = length(s) @inbounds for k = 1:len-1 s[k+1] += s[k] end s end function _csc_arrays(IT, FT, map, dofnums) # First we create an array of the lengths of the dof blocks colptr = _row_blocks(IT, map, dofnums) # Now we start overwriting the "lengths" array colptr with the starts # ThreadedScans.scan!(+, colptr) # replaced because of some weird results on the Grace system psp_scan!(colptr) sumlen = colptr[end] - 1 rowval = Vector{IT}(undef, sumlen) # This will get filled in later nzval = _zeros_via_calloc(FT, sumlen) # This needs to be initialized for future accumulation return colptr, rowval, nzval end """ csc_symmetric_pattern( dofnums::Array{IT,2}, nrowscols, n2n, FT = Float64, ) where {IT<:Integer} Create symmetric sparse zero matrix (sparsity pattern). Uses the following data structures: ``` n2n = FENodeToNeighborsMap(n2e, fes.conn) ``` """ function csc_symmetric_pattern( dofnums::Array{IT,2}, nrowscols, n2n, FT = Float64, ) where {IT<:Integer} @assert length(n2n.map) == size(dofnums, 1) colptr, rowval, nzval = _csc_arrays(IT, FT, n2n.map, dofnums) Base.Threads.@threads for n in axes(dofnums, 1) _store_dofs!(rowval, n, n2n.map[n], dofnums, colptr) end return SparseMatrixCSC(nrowscols, nrowscols, colptr, rowval, nzval) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
180
function _zeros_via_calloc(::Type{T}, dims::Integer...) where {T} ptr = Ptr{T}(Libc.calloc(prod(dims), sizeof(T))) return unsafe_wrap(Array{T}, ptr, dims; own = true) end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
69
using Test include("test_coloring.jl") include("test_parallel.jl")
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1931
module mparallelcoloring_2 using FinEtools using FinEtoolsMultithreading.Exports using ECLGraphColor using LinearAlgebra using Test function test_coloring(coloring, n2e) element_colors, unique_colors = coloring findall(c -> c <= 0, element_colors) === nothing findall(c -> c > maximum(unique_colors), element_colors) === nothing # @show sort(unique(element_colors)), sort(unique_colors) @assert norm(sort(unique(element_colors)) - sort(unique_colors)) == 0 for k in eachindex(n2e.map) nc = element_colors[n2e.map[k]] @assert length(nc) == length(unique(nc)) @assert norm(sort(nc) - sort(unique(nc))) == 0 end true end function test() W = 11.0 L = 12.0 t = 10.0 nl, nt, nw = 72, 83, 24 nl, nt, nw = 2, 3, 4 # nl, nt, nw = 7, 13, 9 # nl, nt, nw = 17, 13, 19 # nl, nt, nw = 27, 23, 29 ntasks = 2 # @show methods(element_coloring) fens, fes = T4block(Float64.((nl, nw, nt))..., nl, nw, nt) n2e = FENodeToFEMap(fes, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) e2e = FElemToNeighborsMap(n2e, fes.conn) coloring = element_coloring(fes, n2e) @time coloring = element_coloring(fes, n2e) # @show unique(coloring[1]) test_coloring(coloring, n2e) e2e = FElemToNeighborsMap(n2e, fes, ECLGraphColor.int_type()) coloring = element_coloring(fes, e2e, ntasks) @time coloring = element_coloring(fes, e2e, ntasks) # @show unique(coloring[1]) # element_colors, unique_colors = coloring # @show unique_colors = sort(unique_colors) # @show partitions = unique_colors # for j in 1:length(partitions) # sfes = subset(fes, findall(v -> v == partitions[j], element_colors)) # @show count(sfes) # vtkexportmesh("mesh_test_coloring_1-c=$(partitions[j]).vtk", fens, sfes) # end test_coloring(coloring, n2e) true end test() nothing end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
1416
module m function _binary_search(array::Array{IT,1}, target::IT, left::IT, right::IT) where {IT} @inbounds while left <= right # Generating the middle element position mid = fld((left + right), 2) # If element > mid, then it can only be present in right subarray if array[mid] < target left = mid + 1 # If element < mid, then it can only be present in left subarray elseif array[mid] > target right = mid - 1 # If element is present at the middle itself else # == return mid end end return 0 end N = 10000 r = collect(1:N) g = collect(N:-1:1) NLOOP = 1000 d = Dict{Int, Int}(zip(r, r)) function test_bsearch(N, r, g) for l in 1:NLOOP for R in Int.(round.([0.13, 0.39, 0.77, 0.98] * N)) v = do_bsearch(N, r, g, R) @assert v == g[R] end end nothing end function do_bsearch(N, r, g, R) k = _binary_search(r, R, 1, N) return g[k] end function test_dict(N, d, g) for l in 1:NLOOP for R in Int.(round.([0.13, 0.39, 0.77, 0.98] * N)) v = do_dict(N, d, g, R) @assert v == g[R] end end nothing end function do_dict(N, d, g, R) k = d[R] return g[k] end using BenchmarkTools @btime test_bsearch(N, r, g) @btime test_bsearch($N, $r, $g) @btime test_dict(N, d, g) @btime test_dict($N, $d, $g) end # module
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
code
17861
module mscan001 using Test using ThreadedScans using FinEtoolsMultithreading: _scan!, psp_scan! function test() a = [1, 3, 4, 2, 6, 3, 2, 1, 3, 4, 7, 8, 3] for i in 1:12 a = vcat(a, a) end @show length(a) @info "ThreadedScans.scan!" b = deepcopy(a) ThreadedScans.scan!(+, b[1:5]) ThreadedScans.scan!(+, b) @info "_scan!" c = deepcopy(a) _scan!(c) @test maximum(abs.(b - c)) == 0 @info "psp_scan!" d = deepcopy(a) psp_scan!(d[1:5]) d = deepcopy(a) psp_scan!(d) @test maximum(abs.(b - d)) == 0 true end test() nothing end module mparallelfenodetoelemmap using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: SysmatAssemblerSparsePatt, SysmatAssemblerSparsePattwLookup, startassembly!, assemble!, makematrix! using FinEtoolsMultithreading.FENodeToFEMapModule: FENodeToFEMapThr using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 15, 13, 12 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) n2e = FinEtools.FENodeToFEMap(fes.conn, count(fens)) # n2e = FinEtools.FENodeToFEMap(fes.conn, count(fens)) # n2ethr = FENodeToFEMapThr(fes, count(fens)) n2ethr = FENodeToFEMapThr(fes, count(fens)) for i in eachindex(n2e.map) @test n2e.map[i] == n2ethr.map[i] end # @info "On $(Threads.nthreads()) threads" true end test() nothing end module mparallelassembly_assembler_w_lup_2 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: SysmatAssemblerSparsePatt, SysmatAssemblerSparsePattwLookup, startassembly!, assemble!, makematrix! using FinEtoolsMultithreading.FENodeToFEMapModule: FENodeToFEMapThr using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 nl, nt, nw = 5, 3, 4 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) n2e = FENodeToFEMapThr(fes, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n, eltype(psi.values)) K = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n) c = [i for i in fes.conn[end]] z = zeros(8, 8); r = psi.dofnums[c, 1] assembler = SysmatAssemblerSparsePattwLookup(K) startassembly!(assembler, 8, 8, 1000, nalldofs(psi), nalldofs(psi)) assemble!(assembler, z, r, r) assembler = SysmatAssemblerSparsePatt(K) startassembly!(assembler, 8, 8, 1000, nalldofs(psi), nalldofs(psi)) assemble!(assembler, z, r, r) # @code_warntype assemble!(assembler, zeros(8, 8), psi.dofnums[c, 1], psi.dofnums[c, 1]) true end test() nothing end module mparallelassembly_assembler_w_lup_1 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: SysmatAssemblerSparsePattwLookup, startassembly!, assemble!, makematrix! using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 nl, nt, nw = 2, 3, 2 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n, eltype(psi.values)) assmblr = SysmatAssemblerSparsePattwLookup(K) K = bilform_diffusion(femm, assmblr, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mmmmaps1 using FinEtools using FinEtoolsMultithreading.Exports using Test function test(n = 2) W, L, H = 3.5, 7.1, 9.3 fens, fes = H8block(W, L, H, n, n, n) n2e = FENodeToFEMap(fes.conn, count(fens)) e2e = FElemToNeighborsMap(n2e, fes.conn) found = true for i in eachindex(n2e.map) for k in n2e.map[i] for m in n2e.map[i] (k != m) && ( # self-references are excluded found = found && ((k in e2e.map[m]) && (m in e2e.map[k])) ) end end end @test found e2e = FElemToNeighborsMap(n2e, fes) found = true for i in eachindex(n2e.map) for k in n2e.map[i] for m in n2e.map[i] (k != m) && ( # self-references are excluded found = found && ((k in e2e.map[m]) && (m in e2e.map[k])) ) end end end @test found end test(2) test(17) test(18) nothing end module mmmmaps2 using FinEtools using FinEtoolsMultithreading.Exports using Test function test(n = 20) W, L, H = 3.5, 7.1, 9.3 fens, fes = H8block(W, L, H, n, n, n) # println("nalldofs(u) = $(nalldofs(u))").# n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) found = true for i in eachindex(fes.conn) for k in fes.conn[i] for m in fes.conn[i] (k != m) && ( # exclude self reference found = found && ((k in n2n.map[m]) && (m in n2n.map[k])) ) end end end @test found n2n = FENodeToNeighborsMap(n2e, fes) found = true for i in eachindex(fes.conn) for k in fes.conn[i] for m in fes.conn[i] (k != m) && ( # exclude self reference found = found && ((k in n2n.map[m]) && (m in n2n.map[k])) ) end end end @test found end test(13) test(17) test(18) nothing end module mparallelassembly_assembler_1 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: SysmatAssemblerSparsePatt, startassembly!, assemble!, makematrix! using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 nl, nt, nw = 2, 3, 2 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n, eltype(psi.values)) assmblr = SysmatAssemblerSparsePatt(K) K = bilform_diffusion(femm, assmblr, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mparallelassembly_high_level_1 using FinEtools using FinEtoolsMultithreading.Exports using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 nl, nt, nw = 2, 3, 2 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assembler) bilform_diffusion(femm, assembler, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end K = parallel_make_matrix( fes, psi, createsubdomain, matrixcomputation!; ntasks=Threads.nthreads(), kind=:CSC, ) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mparallelassembly_high_level_2 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 nl, nt, nw = 2, 3, 2 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assembler) bilform_diffusion(femm, assembler, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K_pattern = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n, eltype(psi.values)) coloring = element_coloring(fes, n2e) decomposition = decompose(fes, coloring, createsubdomain, ntasks) K = parallel_matrix_assembly!( SysmatAssemblerSparsePatt(K_pattern), decomposition, matrixcomputation! ) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mparallelassembly_high_level_3 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using LinearAlgebra using Test function test_coloring(coloring, n2e) element_colors, unique_colors = coloring @assert norm(sort(unique(element_colors)) - sort(unique_colors)) == 0 for k in eachindex(n2e.map) nc = element_colors[n2e.map[k]] @assert length(nc) == length(unique(nc)) @assert norm(sort(nc) - sort(unique(nc))) == 0 end end function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assembler) bilform_diffusion(femm, assembler, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K_pattern = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n, eltype(psi.values)) coloring = element_coloring(fes, n2e) test_coloring(coloring, n2e) decomposition = decompose(fes, coloring, createsubdomain, ntasks) K = parallel_matrix_assembly!( SysmatAssemblerSparsePatt(K_pattern), decomposition, matrixcomputation! ) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) if !(norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5) @show K_ff @show K_ff2 end @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mparallelassembly_high_level_4 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assembler) bilform_diffusion(femm, assembler, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K = parallel_make_matrix( fes, psi, createsubdomain, matrixcomputation!; ntasks, kind=:CSC, ) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mparallelassembly_high_level_5 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 ntasks = 2 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assembler) bilform_diffusion(femm, assembler, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end n2e = FENodeToFEMap(fes.conn, count(fens)) n2n = FENodeToNeighborsMap(n2e, fes.conn) K = parallel_make_matrix( fes, psi, createsubdomain, matrixcomputation!; ntasks, kind=:CSC, ) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end module mparallelassembly_high_level_6 using FinEtools using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: decompose, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using LinearAlgebra using Test function test() W = 1.1 L = 12.0 t = 0.32 nl, nt, nw = 12, 33, 24 ntasks = 1 fens, fes = H8block(L, W, t, nl, nw, nt) geom = NodalField(fens.xyz) psi = NodalField(fill(1.0, count(fens), 1)) nl = collect(1:3) setebc!(psi, nl, true, ones(Int, length(nl)), 0.0) numberdofs!(psi) v_f = gathersysvec(psi) function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assembler) bilform_diffusion(femm, assembler, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end K = parallel_make_matrix( fes, psi, createsubdomain, matrixcomputation! ) # n2e = FENodeToFEMap(fes, nnodes(psi)) # n2n = FENodeToNeighborsMap(n2e, fes) # K_pattern = csc_symmetric_pattern(psi.dofnums, nalldofs(psi), n2n, zero(Float64)) # coloring = element_coloring(fes, n2e) # decomposition = decompose(fes, coloring, createsubdomain, ntasks) # K = parallel_matrix_assembly!( # SysmatAssemblerSparsePatt(K_pattern), # decomposition, # matrixcomputation! # ) K_ff = matrix_blocked_ff(K, nfreedofs(psi)) result = abs(v_f' * K_ff * v_f) ass = SysmatAssemblerFFBlock(nfreedofs(psi)) K_ff2 = bilform_diffusion(FEMMBase(IntegDomain(fes, GaussRule(3, 2))), ass, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) @test norm(K_ff - K_ff2) / norm(K_ff2) <= 1.0e-5 @test abs(v_f' * K_ff2 * v_f - (result)) / (result) <= 1.0e-5 true end test() nothing end
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
docs
1372
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build status](https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl/workflows/CI/badge.svg)](https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl/actions) [![Code Coverage](https://codecov.io/gh/PetrKryslUCSD/FinEtoolsMultithreading.jl/branch/master/graph/badge.svg)](https://app.codecov.io/gh/PetrKryslUCSD/FinEtoolsMultithreading.jl) [![Latest documentation](https://img.shields.io/badge/docs-latest-blue.svg)](https://petrkryslucsd.github.io/FinEtoolsMultithreading.jl/dev) # FinEtoolsMultithreading.jl This package is an overlay for FinEtools-based application packages. It can be used to parallelize certain finite element operations with multithreading. Currently, sparse matrix operators can be assembled in parallel on multiple threads. Please refer to the documentation. ## Examples Check out the [`examples/README.md`](examples/README.md) documentation. ## References A [paper](https://dx.doi.org/10.2139/ssrn.4775111) has been submitted and is under review. The paper is consistent with v0.1.13. The revision of the above paper is now under a review. A draft has been placed in the `docs` folder. The revision is consistent with v0.5.0.
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
docs
385
Issues and ideas: -- Documenter: using Pkg; Pkg.add("DocumenterTools"); using DocumenterTools DocumenterTools.genkeys(user="PetrKryslUCSD", repo="[email protected]:PetrKryslUCSD/FinEtoolsMultithreading.jl.git") using Pkg; Pkg.rm("DocumenterTools");
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
docs
531
# FinEtoolsMultithreading Documentation ```@contents ``` ## Conceptual guide The construction of the toolkit is described: the composition of modules, the basic data structures, the methodology of computing quantities required in the finite element methodology, and more. ```@contents Pages = [ "guide/guide.md", ] Depth = 1 ``` ## Manual The description of the types and the functions, organized by module and/or other logical principle. ```@contents Pages = [ "man/man.md", ] Depth = 2 ``` ## Index ```@index ```
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
docs
994
# Guide The [`FinEtools`](https://petrkryslucsd.github.io/FinEtools.jl/latest/index.html) package is used here to solve a variety of finite element problems. This package can provide an overlay to parallelize sparse matrix assembly. There is one high-level function that can be used to parallelize the assembly of any sparse matrix -- acoustic mass or stiffness, conductivity matrix, stiffness or mass matrix, etc. This bit of code will assemble the diffusion bilinear form sparse matrix stored in the CSR format: ``` function createsubdomain(fessubset) FEMMBase(IntegDomain(fessubset, GaussRule(3, 2))) end function matrixcomputation!(femm, assblr) bilform_diffusion(femm, assblr, geom, psi, DataCache(Matrix(1.0 * LinearAlgebra.I(3)))) end K1 = parallel_make_matrix(fes, psi, createsubdomain, matrixcomputation!; ntasks=ntasks, kind=:CSR) ``` The user can ask for any number of tasks to be used (even though it would be best to match it to the number of available threads).
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
docs
119
# Manual ```@meta CurrentModule = FinEtoolsMultithreading ``` ## High-level API ```@docs parallel_make_matrix ```
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.5.0
50fe5082e08b83183a2f1521a8c52214988ef972
docs
1828
# FinEtoolsMultithreading.jl examples The assumption is that the user is working in the `FinEtoolsMultithreading/examples` folder. Furthermore, the use of a shell is presumed (for instance `bash`). Then, we could use the shell commands: ``` user:~$ mkdir try user:~$ cd try user:~/try$ git clone https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git user:~/try$ cd FinEtoolsMultithreading.jl/examples/ ``` Then, we pick a testcase and proceed as described below. It is assumed that the executable of `julia` is on the path. ## Linear elasticity test case The mesh with 50 mesh edges amounts to 500,000 elements. To run the parallel and serial assembly for a mesh with 40 mesh edges along one of the dimensions, type the following into the shell prompt: The parallel assembly of the sparse matrix on three computing threads ``` julia -t 3 ./testlindef/parsim.jl 40 ``` The serial assembly of the sparse matrix ``` julia ./testlindef/sersim.jl 40 ``` ## Steady-state heat analysis test case The mesh with 50 mesh edges amounts to 750,000 elements. To run the parallel and serial assembly for a mesh with 40 mesh edges along one of the dimensions, type the following into the shell prompt: The parallel assembly of the sparse matrix on three computing threads ``` julia -t 3 ./testheat/parsim.jl 40 ``` The serial assembly of the sparse matrix ``` julia ./testheat/sersim.jl 40 ``` ## Modal acoustic analysis test case The mesh with number of refinements 6 amounts to 8.4 million elements. To run the parallel and serial assembly for a mesh refinement 4, type the following into the shell prompt: The parallel assembly of the sparse matrix on three computing threads ``` julia -t 3 ./testacoust/parsim.jl 4 ``` The serial assembly of the sparse matrix ``` julia ./testacoust/sersim.jl 4 ```
FinEtoolsMultithreading
https://github.com/PetrKryslUCSD/FinEtoolsMultithreading.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
2591
__precompile__() # this module is safe to precompile module Sleipnir # ############################################## # ########### PACKAGES ############## # ############################################## using Base: @kwdef using Infiltrator import Pkg using PyCall using JLD2 using Distributed using Statistics using CairoMakie using Downloads using HDF5 # ############################################## # ############ PARAMETERS ############### # ############################################## cd(@__DIR__) const global root_dir::String = dirname(Base.current_project()) # ############################################## # ############ PYTHON LIBRARIES ############## # ############################################## # We either retrieve the reexported Python libraries from Sleipnir or we start from scratch const netCDF4::PyObject = isdefined(Sleipnir, :netCDF4) ? Sleipnir.netCDF4 : PyNULL() const cfg::PyObject = isdefined(Sleipnir, :cfg) ? Sleipnir.cfg : PyNULL() const utils::PyObject = isdefined(Sleipnir, :utils) ? Sleipnir.utils : PyNULL() const workflow::PyObject = isdefined(Sleipnir, :workflow) ? Sleipnir.workflow : PyNULL() const tasks::PyObject = isdefined(Sleipnir, :tasks) ? Sleipnir.tasks : PyNULL() const global_tasks::PyObject = isdefined(Sleipnir, :global_tasks) ? Sleipnir.global_tasks : PyNULL() const graphics::PyObject = isdefined(Sleipnir, :graphics) ? Sleipnir.graphics : PyNULL() const bedtopo::PyObject = isdefined(Sleipnir, :bedtopo) ? Sleipnir.bedtopo : PyNULL() const millan22::PyObject = isdefined(Sleipnir, :millan22) ? Sleipnir.millan22 : PyNULL() const MBsandbox::PyObject = isdefined(Sleipnir, :MBsandbox) ? Sleipnir.MBsandbox : PyNULL() const salem::PyObject = isdefined(Sleipnir, :salem) ? Sleipnir.salem : PyNULL() # Essential Python libraries const xr::PyObject = isdefined(Sleipnir, :xr) ? Sleipnir.xr : PyNULL() const rioxarray::PyObject = isdefined(Sleipnir, :rioxarray) ? Sleipnir.rioxarray : PyNULL() const pd::PyObject = isdefined(Sleipnir, :pd) ? Sleipnir.pd : PyNULL() # ############################################## # ########## SLEIPNIR LIBRARIES ############## # ############################################## include("setup/config.jl") # All parameters needed for the models include("parameters/Parameters.jl") # Anything related to managing glacier topographical and climate data include("glaciers/glacier/Glacier.jl") # All structures and functions related to ODINN models include("models/Model.jl") # Everything related to running simulations in ODINN include("simulations/Simulation.jl") end # module
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
907
@kwdef mutable struct Climate1Dstep{F <: AbstractFloat} temp::Vector{F} PDD::Vector{F} snow::Vector{F} rain::Vector{F} gradient::Ref{F} avg_gradient::Ref{F} x::Vector{F} y::Vector{F} ref_hgt::Ref{F} end @kwdef mutable struct Climate1D{F <: AbstractFloat} raw_climate::PyObject # Raw climate dataset for the whole simulation # Buffers to avoid memory allocations climate_raw_step::Ref{PyObject} # Raw climate trimmed for the current step climate_step::Ref{PyObject} # Climate data for the current step climate_2D_step::Climate2Dstep # 2D climate data for the current step to feed to the MB model longterm_temps::Vector{F} # Longterm temperatures for the ice rheology avg_temps::Ref{PyObject} # Intermediate buffer for computing average temperatures avg_gradients::Ref{PyObject} # Intermediate buffer for computing average gradients end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
940
export Climate2Dstep, Climate2D @kwdef mutable struct Climate2Dstep{F <: AbstractFloat} temp::Matrix{F} PDD::Matrix{F} snow::Matrix{F} rain::Matrix{F} gradient::Ref{F} avg_gradient::Ref{F} x::Vector{F} y::Vector{F} ref_hgt::Ref{F} end @kwdef mutable struct Climate2D{F <: AbstractFloat} raw_climate::PyObject # Raw climate dataset for the whole simulation # Buffers to avoid memory allocations climate_raw_step::Ref{PyObject} # Raw climate trimmed for the current step climate_step::Ref{PyObject} # Climate data for the current step climate_2D_step::Climate2Dstep # 2D climate data for the current step to feed to the MB model longterm_temps::Vector{F} # Longterm temperatures for the ice rheology avg_temps::Ref{PyObject} # Intermediate buffer for computing average temperatures avg_gradients::Ref{PyObject} # Intermediate buffer for computing average gradients end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
10426
############################################### ############ FUNCTIONS ##################### ############################################### export initialize_glacier_climate!, downscale_2D_climate!, downscale_2D_climate, get_cumulative_climate!, get_cumulative_climate, apply_t_cumul_grad!, apply_t_grad!, trim_period, partial_year, get_longterm_temps using Dates # to provide correct Julian time slices """ function initialize_glacier_climate!(glacier::Glacier, params::Parameters) Initializes the `Climate` data structure for a given `Glacier`` """ function initialize_glacier_climate!(glacier::AbstractGlacier, params::Parameters) dummy_period = partial_year(Day, params.simulation.tspan[1]):Day(1):partial_year(Day, params.simulation.tspan[1] + params.simulation.step) raw_climate::PyObject = xr.open_dataset(joinpath(glacier.gdir.dir, "raw_climate_$(params.simulation.tspan).nc")) climate_step = Ref{PyObject}(get_cumulative_climate(raw_climate.sel(time=dummy_period))) climate_2D_step = downscale_2D_climate(climate_step[], glacier) longterm_temps = get_longterm_temps(glacier.gdir, raw_climate) glacier.climate = Climate2D(raw_climate = raw_climate, climate_raw_step = Ref{PyObject}(raw_climate.sel(time=dummy_period)), #climate_cum_step = raw_climate.sel(time=dummy_period).sum(), climate_step = climate_step, climate_2D_step = climate_2D_step, longterm_temps = longterm_temps, avg_temps = Ref{PyObject}(raw_climate.sel(time=dummy_period).temp.mean()), avg_gradients = Ref{PyObject}(raw_climate.sel(time=dummy_period).gradient.mean())) end function generate_raw_climate_files(gdir::PyObject, tspan::Tuple{F, F}) where {F <: AbstractFloat} if !ispath(joinpath(gdir.dir, "raw_climate_$tspan.nc")) println("Getting raw climate data for: ", gdir.rgi_id) # Get raw climate data for gdir tspan_date = partial_year(Day, tspan[1]):Day(1):partial_year(Day, tspan[2]) climate = get_raw_climate_data(gdir) # Make sure the desired period is covered by the climate data period = trim_period(tspan_date, climate) if any((climate.time[1].dt.date.data[1] <= period[1]) & any(climate.time[end].dt.date.data[1] >= period[end])) climate = climate.sel(time=period) # Crop desired time period else @warn "No overlapping period available between climate tspan!" end # Save raw gdir climate on disk climate.to_netcdf(joinpath(gdir.dir, "raw_climate_$tspan.nc")) climate.close() GC.gc() end end """ get_cumulative_climate(climate, gradient_bounds=[-0.009, -0.003], default_grad=-0.0065) Computes Positive Degree Days (PDDs) and cumulative rainfall and snowfall from climate data. """ function get_cumulative_climate!(climate, period, gradient_bounds=[-0.009, -0.003], default_grad=-0.0065) climate.climate_raw_step[] = climate.raw_climate.sel(time=period) climate.avg_temps[] = climate.climate_raw_step[].temp.mean() climate.avg_gradients[] = climate.climate_raw_step[].gradient.mean() climate.climate_raw_step[].temp.data = climate.climate_raw_step[].temp.where(climate.climate_raw_step[].temp > 0.0, 0.0).data # get PDDs climate.climate_raw_step[].gradient.data = utils.clip_array(climate.climate_raw_step[].gradient.data, gradient_bounds[1], gradient_bounds[2]) # Clip gradients within plausible values climate.climate_step[] = climate.climate_raw_step[].sum() # get monthly cumulative values climate.climate_step[] = climate.climate_step[].assign(Dict("avg_temp"=>climate.avg_temps[])) climate.climate_step[] = climate.climate_step[].assign(Dict("avg_gradient"=>climate.avg_gradients[])) climate.climate_step[].attrs = climate.climate_raw_step[].attrs end function get_cumulative_climate(climate, gradient_bounds=[-0.009, -0.003], default_grad=-0.0065) avg_temp = climate.temp.mean() avg_gradients = climate.gradient.mean() climate.temp.data = climate.temp.where(climate.temp > 0, 0).data # get PDDs climate.gradient.data = utils.clip_array(climate.gradient.data, gradient_bounds[1], gradient_bounds[2]) # Clip gradients within plausible values attributes = climate.attrs climate_sum = climate.sum() # get monthly cumulative values climate_sum = climate_sum.assign(Dict("avg_temp"=>avg_temp)) climate_sum = climate_sum.assign(Dict("avg_gradient"=>avg_gradients)) climate_sum.attrs = attributes return climate_sum end """ get_raw_climate_data(gdir, temp_resolution="daily", climate="W5E5") Downloads the raw W5E5 climate data with a given resolution (daily by default). Returns an xarray Dataset. """ function get_raw_climate_data(gdir; temp_resolution="daily", climate="W5E5") MBsandbox.process_w5e5_data(gdir, climate_type=climate, temporal_resol=temp_resolution) fpath = gdir.get_filepath("climate_historical", filesuffix="_daily_W5E5") climate = xr.open_dataset(fpath) return climate end # TODO: make snow/rain thresholds customizable function apply_t_cumul_grad!(climate_2D_step::Climate2Dstep, S::Matrix{F}) where {F <: AbstractFloat} # We apply the gradients to the temperature climate_2D_step.temp .= climate_2D_step.temp .+ climate_2D_step.avg_gradient .* (S .- climate_2D_step.ref_hgt) climate_2D_step.PDD .= climate_2D_step.PDD .+ climate_2D_step.gradient .* (S .- climate_2D_step.ref_hgt) climate_2D_step.PDD .= ifelse.(climate_2D_step.PDD .< 0.0, 0.0, climate_2D_step.PDD) # Crop negative PDD values # We adjust the rain/snow fractions with the updated temperature climate_2D_step.snow .= ifelse.(climate_2D_step.temp .> 0.0, 0.0, climate_2D_step.snow) climate_2D_step.rain .= ifelse.(climate_2D_step.temp .< 0.0, 0.0, climate_2D_step.rain) end """ apply_t_grad!(climate, g_dem) Applies temperature gradients to the glacier 2D climate data based on a DEM. """ function apply_t_grad!(climate::PyObject, dem) # We apply the gradients to the temperature # /!\ AVOID USING `.=` IN JULIA TO ASSIGN. IT'S NOT HANDLED BY XARRAY. USE `=` INSTEAD climate.temp.data = climate.temp.data .+ climate.gradient.data .* (mean(dem.data) .- climate.ref_hgt) end """ downscale_2D_climate(climate, g_dem) Projects climate data to the glacier matrix by simply copying the closest gridpoint to all matrix gridpoints. Generates a new xarray Dataset which is returned. """ function downscale_2D_climate!(glacier::Glacier2D) # Update 2D climate structure climate = glacier.climate climate.climate_2D_step.temp .= climate.climate_step[].avg_temp.data[1] climate.climate_2D_step.PDD .= climate.climate_step[].temp.data[1] climate.climate_2D_step.snow .= climate.climate_step[].prcp.data[1] climate.climate_2D_step.rain .= climate.climate_step[].prcp.data[1] # Update gradients climate.climate_2D_step.gradient[] = climate.climate_step[].gradient.data[1] climate.climate_2D_step.avg_gradient[] = climate.climate_step[].avg_gradient.data[1] # Apply temperature gradients and compute snow/rain fraction for the selected period apply_t_cumul_grad!(climate.climate_2D_step, reshape(glacier.S, size(glacier.S))) # Reproject current S with xarray structure end function downscale_2D_climate(climate_step::PyObject, glacier::Glacier2D) # Create dummy 2D arrays to have a base to apply gradients afterwards MFT = typeof(glacier.S) FT = typeof(glacier.S[1]) dummy_grid::MFT = ones(size(glacier.S)) temp_2D::MFT = climate_step.avg_temp.data .* dummy_grid PDD_2D::MFT = climate_step.temp.data .* dummy_grid snow_2D::MFT = climate_step.prcp.data .* dummy_grid rain_2D::MFT = climate_step.prcp.data .* dummy_grid # We generate a new dataset with the scaled data climate_2D_step = Climate2Dstep(temp=temp_2D, PDD=PDD_2D, snow=snow_2D, rain=rain_2D, gradient=Ref{FT}(climate_step.gradient.data[1]), avg_gradient=Ref{FT}(climate_step.avg_gradient.data[1]), x=glacier.S_coords.x.data, y= glacier.S_coords.y.data, ref_hgt=Ref{FT}(climate_step.ref_hgt)) # Apply temperature gradients and compute snow/rain fraction for the selected period apply_t_cumul_grad!(climate_2D_step, reshape(glacier.S, size(glacier.S))) # Reproject current S with xarray structure return climate_2D_step end function downscale_2D_climate(glacier::Glacier2D) climate_2D_step = downscale_2D_climate(glacier.climate.climate_step[], glacier) return climate_2D_step end """ trim_period(period, climate) Trims a time period based on the time range of a climate series. """ function trim_period(period, climate) if any(climate.time[1].dt.date.data[1] > period[1]) head = jldate(climate.time[1]) period = Date(year(head), 10, 1):Day(1):period[end] # make it a hydrological year end if any(climate.time[end].dt.date.data[1] < period[end]) tail = jldate(climate.time[end]) period = period[1]:Day(1):Date(year(tail), 9, 30) # make it a hydrological year end return period end function partial_year(period::Type{<:Period}, float) _year, Δ = divrem(float, 1) year_start = Date(_year) year = period((year_start + Year(1)) - year_start) partial = period(round(Dates.value(year) * Δ)) year_start + partial end partial_year(float) = partial_year(Day, float) function get_longterm_temps(gdir::PyObject, tspan) climate = xr.open_dataset(joinpath(gdir.dir, "raw_climate_$tspan.nc")) # load only once at the beginning dem = rioxarray.open_rasterio(gdir.get_filepath("dem")) apply_t_grad!(climate, dem) longterm_temps = climate.groupby("time.year").mean().temp.data return longterm_temps end function get_longterm_temps(gdir::PyObject, climate::PyObject) dem = rioxarray.open_rasterio(gdir.get_filepath("dem")) apply_t_grad!(climate, dem) longterm_temps = climate.groupby("time.year").mean().temp.data return longterm_temps end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
49
include("Glacier2D.jl") include("Glacier1D.jl")
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
3448
export Glacier1D, Climate1D, AbstractGlacier abstract type AbstractGlacier end include("../climate/Climate1D.jl") mutable struct Glacier1D{F <: AbstractFloat, I <: Integer} <: AbstractGlacier rgi_id::Union{String, Nothing} gdir::Union{PyObject, Nothing} climate::Union{Climate1D, Nothing} H₀::Union{Vector{F}, Nothing} S::Union{Vector{F}, Nothing} B::Union{Vector{F}, Nothing} V::Union{Vector{F}, Nothing} A::Union{F, Nothing} C::Union{F, Nothing} n::Union{F, Nothing} w₀::Union{Vector{F}, Nothing} λ::Union{Vector{F}, Nothing} slope::Union{Vector{F}, Nothing} dist_border::Union{Vector{F}, Nothing} S_coords::Union{PyObject, Nothing} Δx::Union{F, Nothing} Δy::Union{F, Nothing} nx::Union{I, Nothing} ny::Union{I, Nothing} end """ function Glacier1D(; rgi_id::Union{String, Nothing} = nothing, gdir::Union{PyObject, Nothing} = nothing, climate::Union{Climate1D, Nothing} = nothing, H₀::Union{Vector{F}, Nothing} = nothing, S::Union{Vector{F}, Nothing} = nothing, B::Union{Vector{F}, Nothing} = nothing, V::Union{Vector{F}, Nothing}= nothing, slope::Union{Vector{F}, Nothing} = nothing, dist_border::Union{Vector{F}, Nothing} = nothing, S_coords::Union{PyObject, Nothing} = nothing, Δx::Union{F, Nothing} = nothing, Δy::Union{F, Nothing} = nothing, nx::Union{I, Nothing} = nothing, ny::Union{I, Nothing} = nothing ) where {F <: AbstractFloat, I <: Integer} Constructor for empty 2D Glacier object. """ function Glacier1D(; rgi_id::Union{String, Nothing} = nothing, gdir::Union{PyObject, Nothing} = nothing, climate::Union{Climate1D, Nothing} = nothing, H₀::Union{Vector{F}, Nothing} = nothing, S::Union{Vector{F}, Nothing} = nothing, B::Union{Vector{F}, Nothing} = nothing, V::Union{Vector{F}, Nothing}= nothing, A::Union{F, Nothing} = nothing, C::Union{F, Nothing} = nothing, n::Union{F, Nothing} = nothing, w₀::Union{Vector{F}, Nothing} = nothing, λ::Union{Vector{F}, Nothing} = nothing, slope::Union{Vector{F}, Nothing} = nothing, dist_border::Union{Vector{F}, Nothing} = nothing, S_coords::Union{PyObject, Nothing} = nothing, Δx::Union{F, Nothing} = nothing, Δy::Union{F, Nothing} = nothing, nx::Union{I, Nothing} = nothing, ny::Union{I, Nothing} = nothing ) where {F <: AbstractFloat, I <: Integer} # Define default float and integer type for constructor ft = Float64 it = Int64 return Glacier1D{ft,it}(rgi_id, gdir, climate, H₀, S, B, V, A, C, n, w₀, λ, slope, dist_border, S_coords, Δx, Δy, nx, ny) end ############################################### ################### UTILS ##################### ############################################### Base.:(==)(a::Glacier1D, b::Glacier1D) = a.rgi_id == b.rgi_id && a.gdir == b.gdir && a.climate == b.climate && a.H₀ == b.H₀ && a.S == b.S && a.B == b.B && a.V == b.V && a.A == b.A && a.C == b.C && a.n == b.n && a.w₀ == b.w₀ && a.λ == b.λ && a.slope == b.slope && a.dist_border == b.dist_border && a.rgi_id == b.rgi_id && a.S_coords == b.S_coords && a.Δx == b.Δx && a.Δy == b.Δy && a.Δx == b.Δx && a.nx == b.nx && a.ny == b.ny include("glacier1D_utils.jl") include("../climate/climate1D_utils.jl")
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
4705
export Glacier2D, Climate2D abstract type AbstractGlacier end include("../climate/Climate2D.jl") mutable struct Glacier2D{F <: AbstractFloat, I <: Integer} <: AbstractGlacier rgi_id::Union{String, Nothing} gdir::Union{PyObject, Nothing} climate::Union{Climate2D, Nothing} H₀::Union{Matrix{F}, Nothing} H_glathida::Union{Matrix{F}, Nothing} S::Union{Matrix{F}, Nothing} B::Union{Matrix{F}, Nothing} V::Union{Matrix{F}, Nothing} Vx::Union{Matrix{F}, Nothing} Vy::Union{Matrix{F}, Nothing} A::Union{F, Nothing} C::Union{F, Nothing} n::Union{F, Nothing} slope::Union{Matrix{F}, Nothing} dist_border::Union{Matrix{F}, Nothing} S_coords::Union{PyObject, Nothing} Δx::Union{F, Nothing} Δy::Union{F, Nothing} nx::Union{I, Nothing} ny::Union{I, Nothing} cenlon::Union{F, Nothing} cenlat::Union{F, Nothing} end """ function Glacier2D(; rgi_id::Union{String, Nothing} = nothing, gdir::Union{PyObject, Nothing} = nothing, climate::Union{Climate2D, Nothing} = nothing, H₀::Union{Matrix{F}, Nothing} = nothing, H_glathida::Union{Matrix{F}, Nothing}, S::Union{Matrix{F}, Nothing} = nothing, B::Union{Matrix{F}, Nothing} = nothing, V::Union{Matrix{F}, Nothing}= nothing, slope::Union{Matrix{F}, Nothing} = nothing, dist_border::Union{Matrix{F}, Nothing} = nothing, S_coords::Union{PyObject, Nothing} = nothing, Δx::Union{F, Nothing} = nothing, Δy::Union{F, Nothing} = nothing, nx::Union{I, Nothing} = nothing, ny::Union{I, Nothing} = nothing ) where {F <: AbstractFloat, I <: Integer} Constructor for empty 2D Glacier object. """ function Glacier2D(; rgi_id::Union{String, Nothing} = nothing, gdir::Union{PyObject, Nothing} = nothing, climate::Union{Climate2D, Nothing} = nothing, H₀::Union{Matrix{F}, Nothing} = nothing, H_glathida::Union{Matrix{F}, Nothing} = nothing, S::Union{Matrix{F}, Nothing} = nothing, B::Union{Matrix{F}, Nothing} = nothing, V::Union{Matrix{F}, Nothing}= nothing, Vx::Union{Matrix{F}, Nothing}= nothing, Vy::Union{Matrix{F}, Nothing}= nothing, A::Union{F, Nothing} = nothing, C::Union{F, Nothing} = nothing, n::Union{F, Nothing} = nothing, slope::Union{Matrix{F}, Nothing} = nothing, dist_border::Union{Matrix{F}, Nothing} = nothing, S_coords::Union{PyObject, Nothing} = nothing, Δx::Union{F, Nothing} = nothing, Δy::Union{F, Nothing} = nothing, nx::Union{I, Nothing} = nothing, ny::Union{I, Nothing} = nothing, cenlon::Union{F, Nothing} = nothing, cenlat::Union{F, Nothing} = nothing ) where {F <: AbstractFloat, I <: Integer} # Define default float and integer type for constructor ft = typeof(Δx) it = typeof(nx) return Glacier2D{ft,it}(rgi_id, gdir, climate, H₀, H_glathida, S, B, V, Vx, Vy, A, C, n, slope, dist_border, S_coords, Δx, Δy, nx, ny, cenlon, cenlat) end ############################################### ################### UTILS ##################### ############################################### Base.:(==)(a::Glacier2D, b::Glacier2D) = a.rgi_id == b.rgi_id && a.gdir == b.gdir && a.climate == b.climate && a.H₀ == b.H₀ && a.H_glathida == b.H_glathida && a.S == b.S && a.B == b.B && a.V == b.V && a.A == b.A && a.C == b.C && a.n == b.n && a.slope == b.slope && a.dist_border == b.dist_border && a.S_coords == b.S_coords && a.Δx == b.Δx && a.Δy == b.Δy && a.nx == b.nx && a.ny == b.ny && a.cenlon == b.cenlon && a.cenlat == b.cenlat Base.:(≈)(a::Glacier2D, b::Glacier2D) = a.rgi_id == b.rgi_id && a.gdir == b.gdir && a.climate == b.climate && safe_approx(a.H₀, b.H₀) && safe_approx(a.H_glathida, b.H_glathida) && safe_approx(a.S, b.S) && safe_approx(a.B, b.B) && safe_approx(a.V, b.V) && safe_approx(a.A, b.A) && safe_approx(a.C, b.C) && safe_approx(a.n, b.n) && isapprox(a.slope, b.slope; rtol=1e-3) && safe_approx(a.dist_border, b.dist_border) && a.S_coords == b.S_coords && safe_approx(a.Δx, b.Δx) && safe_approx(a.Δy, b.Δy) && safe_approx(a.nx, b.nx) && safe_approx(a.ny, b.ny) && safe_approx(a.cenlon, b.cenlon) && safe_approx(a.cenlat, b.cenlat) include("glacier2D_utils.jl") include("../climate/climate2D_utils.jl")
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
17076
export initialize_glaciers ############################################### ############ FUNCTIONS ##################### ############################################### """ initialize_glaciers(rgi_ids::Vector{String}, params::Parameters; velocities=true) Initialize multiple `Glacier`s based on a list of RGI IDs, a º span for a simulation and step. Keyword arguments ================= - `rgi_ids`: List of RGI IDs of glaciers - `tspan`: Tuple specifying the initial and final year of the simulation - `params`: `Parameters` object to be passed """ function initialize_glaciers(rgi_ids::Vector{String}, params::Parameters; test=false) # Generate missing glaciers file missing_glaciers_path = joinpath(params.simulation.working_dir, "data") if !isdir(missing_glaciers_path) mkdir(missing_glaciers_path) end if !isfile(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2")) missing_glaciers = Vector([]) jldsave(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"); missing_glaciers) end filter_missing_glaciers!(rgi_ids, params) # Initialize glacier directories gdirs::Vector{PyObject} = init_gdirs(rgi_ids, params; velocities=params.simulation.velocities) # Generate raw climate data if necessary if params.simulation.test_mode map((gdir) -> generate_raw_climate_files(gdir, params.simulation.tspan), gdirs) # avoid GitHub CI issue else pmap((gdir) -> generate_raw_climate_files(gdir, params.simulation.tspan), gdirs) end glaciers::Vector{Glacier2D} = pmap((gdir) -> initialize_glacier(gdir, params; smoothing=false, test=test), gdirs) if params.simulation.use_glathida_data == true data_glathida, glathida_rgi_ids = get_glathida_path_and_IDs() # Obtain H_glathida values for the valid RGI IDs H_glathida_values, valid_gdirs = get_glathida!(data_glathida, gdirs, params) valid_rgi_ids = [gdir.rgi_id for gdir in valid_gdirs] if isempty(valid_rgi_ids) error("None of the provided RGI IDs have GlaThiDa.") end if length(valid_rgi_ids) < length(rgi_ids) @warn "Not all glaciers have GlaThiDa data available." end # Create a mapping from RGI ID to H_glathida value rgi_to_H_glathida = Dict(zip(valid_rgi_ids, H_glathida_values)) # Assign H_glathida to glaciers with valid RGI IDs for glacier in glaciers if glacier.rgi_id in valid_rgi_ids glacier.H_glathida = rgi_to_H_glathida[glacier.rgi_id] end end end return glaciers end """ initialize_glacier(gdir::PyObject, tspan, step; smoothing=false, velocities=true) Initialize a single `Glacier`s, including its `Climate`, based on a `gdir` and timestepping arguments. Keyword arguments ================= - `gdir`: Glacier directory - `tspan`: Tuple specifying the initial and final year of the simulation - `step`: Step in years for the surface mass balance processing - `smoothing` Flag determining if smoothing needs to be applied to the surface elevation and ice thickness. - `velocities` Flag determining if the ice surface velocities need to be retrieved. """ function initialize_glacier(gdir::PyObject, parameters; smoothing=false, test=false) # Initialize glacier initial topography glacier = initialize_glacier_data(gdir, parameters; smoothing=smoothing, test=test) # Initialize glacier climate initialize_glacier_climate!(glacier, parameters) if test glacier.gdir = nothing glacier.S_coords = nothing end return glacier end """ initialize_glacier(gdir::PyObject; smoothing=false, velocities=true) Retrieves the initial glacier geometry (bedrock + ice thickness) for a glacier with other necessary data (e.g. grid size and ice surface velocities). """ function initialize_glacier_data(gdir::PyObject, params::Parameters; smoothing=false, test=false) # Load glacier gridded data F = params.simulation.float_type I = params.simulation.int_type glacier_gd = xr.open_dataset(gdir.get_filepath("gridded_data")) # println("Using $ice_thickness_source for initial state") # Retrieve initial conditions from OGGM # initial ice thickness conditions for forward model if params.OGGM.ice_thickness_source == "Millan22" && params.simulation.velocities H₀ = F.(ifelse.(glacier_gd.glacier_mask.data .== 1, glacier_gd.millan_ice_thickness.data, 0.0)) elseif params.OGGM.ice_thickness_source == "Farinotti19" H₀ = F.(ifelse.(glacier_gd.glacier_mask.data .== 1, glacier_gd.consensus_ice_thickness.data, 0.0)) end fillNaN!(H₀) # Fill NaNs with 0s to have real boundary conditions if smoothing println("Smoothing is being applied to initial condition.") smooth!(H₀) # Smooth initial ice thickness to help the solver end # Create path for simulation results gdir_path = dirname(gdir.get_filepath("dem")) if !isdir(gdir_path) mkdir(gdir_path) end try # We filter glacier borders in high elevations to avoid overflow problems dist_border::Matrix{F} = F.(glacier_gd.dis_from_border.data) # H_mask = (dist_border .< 20.0) .&& (S .> maximum(S)*0.7) # H₀[H_mask] .= 0.0 B::Matrix{F} = F.(glacier_gd.topo.data) .- H₀ # bedrock S_coords::PyObject = rioxarray.open_rasterio(gdir.get_filepath("dem")) #S::Matrix{F} = F.(glacier_gd.topo.data) S::Matrix{F} = F.(S_coords[1].values) # surface elevation #smooth!(S) if params.simulation.velocities V::Matrix{F} = F.(ifelse.(glacier_gd.glacier_mask.data .== 1, glacier_gd.millan_v.data, 0.0)) Vx::Matrix{F} = F.(ifelse.(glacier_gd.glacier_mask.data .== 1, glacier_gd.millan_vx.data, 0.0)) Vy::Matrix{F} = F.(ifelse.(glacier_gd.glacier_mask.data .== 1, glacier_gd.millan_vy.data, 0.0)) fillNaN!(V) fillNaN!(Vx) fillNaN!(Vy) else V = zeros(F, size(H₀)) Vx = zeros(F, size(H₀)) Vy = zeros(F, size(H₀)) end nx = I(glacier_gd.y.size) # glacier extent ny = I(glacier_gd.x.size) # really weird, but this is inversed Δx = abs(F(gdir.grid.dx)) Δy = abs(F.(gdir.grid.dy)) slope = F.(glacier_gd.slope.data) glacier_gd.close() # Release any resources linked to this object # We initialize the Glacier with all the initial topographical conditions glacier = Glacier2D(rgi_id = gdir.rgi_id, gdir = gdir, climate=nothing, H₀ = H₀, S = S, B = B, V = V, Vx = Vx, Vy = Vy, A = 4e-17, C = 0.0, n = 3.0, slope = slope, dist_border = dist_border, S_coords = S_coords, Δx=Δx, Δy=Δy, nx=nx, ny=ny, cenlon = gdir.cenlon, cenlat = gdir.cenlat) return glacier catch error @show error missing_glaciers = load(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"))["missing_glaciers"] push!(missing_glaciers, gdir.rgi_id) jldsave(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"); missing_glaciers) glacier_gd.close() # Release any resources linked to this object @warn "Glacier without data: $(gdir.rgi_id). Updating list of missing glaciers. Please try again." end end """ init_gdirs(rgi_ids; force=false) Initializes Glacier Directories using OGGM. Wrapper function calling `init_gdirs_scratch(rgi_ids)`. """ function init_gdirs(rgi_ids::Vector{String}, params::Parameters; velocities=true) # Try to retrieve glacier gdirs if they are available filter_missing_glaciers!(rgi_ids, params) try gdirs::Vector{PyObject} = workflow.init_glacier_directories(rgi_ids) filter_missing_glaciers!(gdirs, params) # Set different surface topography source if specified if params.OGGM.DEM_source != "Default" for gdir in gdirs tasks.define_glacier_region(gdir, source = params.OGGM.DEM_source) end end return gdirs catch @warn "Cannot retrieve gdirs from disk!" println("Generating gdirs from scratch...") # Generate all gdirs if needed gdirs::Vector{PyObject} = init_gdirs_scratch(rgi_ids, params; velocities = velocities) # Check which gdirs errored in the tasks (useful to filter those gdirs) filter_missing_glaciers!(gdirs, params) return gdirs end end """ init_gdirs_scratch(rgi_ids) Initializes Glacier Directories from scratch using OGGM. """ function init_gdirs_scratch(rgi_ids::Vector{String}, params::Parameters; velocities=true)::Vector{PyObject} # Check if some of the gdirs is missing files gdirs::Vector{PyObject} = workflow.init_glacier_directories(rgi_ids, prepro_base_url=params.OGGM.base_url, from_prepro_level=2, prepro_border=10, reset=true, force=true) # Set different surface topography source if specified if params.OGGM.DEM_source != "Default" for gdir in gdirs tasks.define_glacier_region(gdir, source = params.OGGM.DEM_source) end end if velocities list_talks = [ # tasks.compute_centerlines, # tasks.initialize_flowlines, # tasks.compute_downstream_line, # tasks.catchment_area, # tasks.process_dem, tasks.gridded_attributes, tasks.glacier_masks, # tasks.gridded_mb_attributes, # tasks.prepare_for_inversion, # This is a preprocessing task # tasks.mass_conservation_inversion, # This gdirsdoes the actual job # tasks.filter_inversion_output, # This smoothes the thicknesses at the tongue a little # tasks.distribute_thickness_per_altitude, bedtopo.add_consensus_thickness, # Use consensus ice thicknesses from Farinotti et al. (2019) # tasks.get_topo_predictors, millan22.thickness_to_gdir, millan22.velocity_to_gdir ] else list_talks = [ tasks.gridded_attributes, tasks.glacier_masks, bedtopo.add_consensus_thickness # Use consensus ice thicknesses from Farinotti et al. (2019) ] end for task in list_talks # The order matters! workflow.execute_entity_task(task, gdirs) end GC.gc() return gdirs end # [Begin] Glathida Utilities function get_glathida!(gtd_file, gdirs, params; force=false) glathida = pd.HDFStore(gtd_file) gtd_grids = map(gdir -> get_glathida_glacier(gdir, glathida, force), gdirs) # Update missing_glaciers list before removing them missing_glaciers = load(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"))["missing_glaciers"] for (gtd_grid, gdir) in zip(gtd_grids, gdirs) if (length(gtd_grid[gtd_grid .!= 0.0]) == 0) && all(gdir.rgi_id .!= missing_glaciers) push!(missing_glaciers, gdir.rgi_id) @info "Glacier with all data at 0: $(gdir.rgi_id). Updating list of missing glaciers..." end end jldsave(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"); missing_glaciers) # Apply deletion to both gtd_grids and gdirs using the same set of indices indices_to_remove = findall(x -> length(x[x .!= 0.0]) == 0, gtd_grids) deleteat!(gtd_grids, indices_to_remove) deleteat!(gdirs, indices_to_remove) return gtd_grids, gdirs end function get_glathida_glacier(gdir, glathida, force) gtd_path = joinpath(gdir.dir, "glathida.h5") if isfile(gtd_path) && !force gtd_grid = h5read(gtd_path, "gtd_grid") else df_gtd = glathida[gdir.rgi_id] jj, ii = gdir.grid.transform(df_gtd["POINT_LON"], df_gtd["POINT_LAT"], crs=salem.wgs84, nearest=true) gtd_grid = zeros((gdir.grid.ny,gdir.grid.nx)) for (thick, i, j) in zip(df_gtd["THICKNESS"], ii, jj) if gtd_grid[i,j] != 0.0 gtd_grid[i,j] = (gtd_grid[i,j] + thick)/2.0 # average else gtd_grid[i,j] = thick end end # Save file h5open(joinpath(gdir.dir, "glathida.h5"), "w") do file write(file, "gtd_grid", gtd_grid) end end return gtd_grid end function get_glathida_path_and_IDs() gtd_file = Downloads.download("https://cluster.klima.uni-bremen.de/~oggm/glathida/glathida-v3.1.0/data/TTT_per_rgi_id.h5") glathida = pd.HDFStore(gtd_file) rgi_ids = glathida.keys() rgi_ids = String[id[2:end] for id in rgi_ids] return gtd_file, rgi_ids end # [End] Glathida Utilities function filter_missing_glaciers!(gdirs::Vector{PyObject}, params::Parameters) task_log::PyObject = global_tasks.compile_task_log(gdirs, task_names=["gridded_attributes", "velocity_to_gdir", "thickness_to_gdir"]) task_log.to_csv(joinpath(params.simulation.working_dir, "task_log.csv")) glacier_filter = ((task_log.velocity_to_gdir != "SUCCESS").values .&& (task_log.gridded_attributes != "SUCCESS").values .&& (task_log.thickness_to_gdir != "SUCCESS").values) glacier_ids = String[] for id in task_log.index push!(glacier_ids, id) end missing_glaciers::Vector{String} = glacier_ids[glacier_filter] try missing_glaciers_old::Vector{String} = load(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"))["missing_glaciers"] for missing_glacier in missing_glaciers_old if all(missing_glacier .!= missing_glaciers) # if the glacier is already not present, let's add it push!(missing_glaciers, missing_glacier) end end catch error @warn "$error: No missing_glaciers.jld file available. Skipping..." end for id in missing_glaciers deleteat!(gdirs, findall(x->x.rgi_id==id, gdirs)) end # Save missing glaciers in a file jldsave(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"); missing_glaciers) # @warn "Filtering out these glaciers from gdir list: $missing_glaciers" return missing_glaciers end function filter_missing_glaciers!(rgi_ids::Vector{String}, params::Parameters) # Check which glaciers we can actually process rgi_stats::PyObject = pd.read_csv(utils.file_downloader("https://cluster.klima.uni-bremen.de/~oggm/rgi/rgi62_stats.csv"), index_col=0) # rgi_stats = rgi_stats.loc[rgi_ids] # if any(rgi_stats.Connect .== 2) # @warn "You have some level 2 glaciers... Removing..." # rgi_ids = [rgi_stats.loc[rgi_stats.Connect .!= 2].index] # end indices = [rgi_stats.index...] for rgi_id in rgi_ids if rgi_stats.Connect.values[indices .== rgi_id] == 2 @warn "Filtering glacier $rgi_id..." deleteat!(rgi_ids, rgi_ids .== rgi_id) end end try missing_glaciers::Vector{String} = load(joinpath(params.simulation.working_dir, "data/missing_glaciers.jld2"))["missing_glaciers"] for missing_glacier in missing_glaciers deleteat!(rgi_ids, findall(x->x == missing_glacier,rgi_ids)) end @info "Filtering out these glaciers from RGI ID list: $missing_glaciers" catch error @warn "$error: No missing_glaciers.jld file available. Skipping..." end end """ fillNaN!(x, fill) Convert empty matrix grid cells into fill value """ function fillNaN!(A, fill=zero(eltype(A))) for i in eachindex(A) @inbounds A[i] = ifelse(isnan(A[i]), fill, A[i]) end end function fillNaN(A, fill=zero(eltype(A))) return @. ifelse(isnan(A), fill, A) end function fillZeros!(A, fill=NaN) for i in eachindex(A) @inbounds A[i] = ifelse(iszero(A[i]), fill, A[i]) end end function fillZeros(A, fill=NaN) return @. ifelse(iszero(A), fill, A) end """ smooth!(A) Smooth data contained in a matrix with one time step (CFL) of diffusion. """ @views function smooth!(A) A[2:end-1,2:end-1] .= A[2:end-1,2:end-1] .+ 1.0./4.1.*(diff(diff(A[:,2:end-1], dims=1), dims=1) .+ diff(diff(A[2:end-1,:], dims=2), dims=2)) A[1,:]=A[2,:]; A[end,:]=A[end-1,:]; A[:,1]=A[:,2]; A[:,end]=A[:,end-1] end # function smooth(A) # A_smooth = A[2:end-1,2:end-1] .+ 1.0./4.1.*(diff(diff(A[:,2:end-1], dims=1), dims=1) .+ diff(diff(A[2:end-1,:], dims=2), dims=2)) # @tullio A_smooth_pad[i,j] := A_smooth[pad(i-1,1,1),pad(j-1,1,1)] # Fill borders # return A_smooth_pad # end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
386
export Model, AbstractModel abstract type AbstractModel end const AbstractEmptyModel = Union{AbstractModel,Nothing} # Composite type as a representation of ODINN models mutable struct Model{IFM <: AbstractEmptyModel, MBM <: AbstractEmptyModel, MLM <: AbstractEmptyModel} iceflow::Union{IFM, Vector{IFM}} mass_balance::Union{MBM, Vector{MBM}} machine_learning::MLM end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
3750
export oggm_config struct OGGMparameters <: AbstractParameters working_dir::String paths::Union{PyDict, Nothing} params::Union{PyDict, Nothing} multiprocessing::Bool workers::Int64 ice_thickness_source::String DEM_source::String base_url::String end """ OGGMparameters(; working_dir::String = joinpath(homedir(), "OGGM/OGGM_data"), paths::Union{PyDict, Nothing} = nothing, paths::Union{PyDict, Nothing} = nothing, multiprocessing::Bool = false, workers::Int64 = 1, base_url::String = "https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.6/L1-L2_files/elev_bands/" ) Initializes OGGM and it configures its parameters. Keyword arguments ================= - `working_dir`: Working directory were all the files will be stored. - `paths`: Dictionary for OGGM-related paths. - `params`: Dictionary for OGGM-related parameters. - `multiprocessing`: Determines if multiprocessing is used for OGGM. - `workers`: How many workers are to be used for OGGM multiprocessing. - `ice_thickness_source`: Source for the ice thickness dataset. Either `Millan22` of `Farinotti19`. - `base_url`: Base URL to download all OGGM data. """ function OGGMparameters(; working_dir::String = joinpath(homedir(), "OGGM/OGGM_data"), paths::Union{PyDict, Nothing} = nothing, params::Union{PyDict, Nothing} = nothing, multiprocessing::Bool = false, workers::Int64 = 1, ice_thickness_source::String = "Farinotti19", DEM_source::String = "Default", base_url::String = "https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.6/L1-L2_files/elev_bands/", test = false ) @assert ((ice_thickness_source == "Millan22") || (ice_thickness_source == "Farinotti19")) "Wrong ice thickness source! Should be either `Millan22` or `Farinotti19`." # Build the OGGM parameters and configuration OGGM_parameters = OGGMparameters(working_dir, paths, params, multiprocessing, workers, ice_thickness_source, DEM_source, base_url) return OGGM_parameters end Base.:(==)(a::OGGMparameters, b::OGGMparameters) = a.working_dir == b.working_dir && a.paths == b.paths && a.params == b.params && a.multiprocessing == b.multiprocessing && a.workers == b.workers && a.ice_thickness_source == b.ice_thickness_source && a.DEM_source == b.DEM_source && a.base_url == b.base_url """ oggm_config() Configures the basic paths and parameters for OGGM. """ function oggm_config(working_dir=joinpath(homedir(), "OGGM/OGGM_data"); oggm_processes=1) scope = @__MODULE__ # Capture current module to allow use from external packages (e.g. Huginn, Muninn and ODINN) @eval begin @everywhere begin @eval $scope begin cfg.initialize() # initialize OGGM configuration PATHS = PyDict(cfg."PATHS") # OGGM PATHS PATHS["working_dir"] = $working_dir # Choose own custom path for the OGGM data PARAMS = PyDict(cfg."PARAMS") PARAMS["hydro_month_nh"]=1 PARAMS["dl_verify"] = false PARAMS["continue_on_error"] = true # avoid stopping when a task fails for a glacier (e.g. lack of data) PARAMS["border"] = 10 # Multiprocessing multiprocessing = $oggm_processes > 1 ? true : false PARAMS["use_multiprocessing"] = multiprocessing # Let's use multiprocessing for OGGM if multiprocessing PARAMS["mp_processes"] = $oggm_processes end end # @eval Sleipnir end # @everywhere end # @eval end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
1883
export Parameters, AbstractParameters, PhysicalParameters, SimulationParameters, OGGMparameters, AbstractEmptyParams abstract type AbstractParameters end const AbstractEmptyParams = Union{AbstractParameters,Nothing} include("PhysicalParameters.jl") include("SimulationParameters.jl") include("OGGMparameters.jl") struct Parameters{PPHY <: AbstractEmptyParams, PSIM <: AbstractEmptyParams, PHY <: AbstractEmptyParams, PSOL <: AbstractEmptyParams, PUDE <: AbstractEmptyParams, POGGM <: AbstractEmptyParams, PINV <: AbstractEmptyParams} physical::PPHY simulation::PSIM OGGM::POGGM hyper::PHY solver::PSOL UDE::PUDE inversion::PINV end """ Parameters(; simulation::SimulationParameters = SimulationParameters() physical::PhysicalParameters = PhysicalParameters() ) Initialize ODINN parameters Keyword arguments ================= """ function Parameters(; physical::PhysicalParameters = PhysicalParameters(), simulation::SimulationParameters = SimulationParameters(), OGGM::OGGMparameters = OGGMparameters(), ) # Build the parameters based on all the subtypes of parameters parameters = Parameters(physical, simulation, OGGM, nothing, nothing, nothing, nothing) if parameters.simulation.multiprocessing enable_multiprocessing(parameters.simulation.workers) end oggm_config(parameters.OGGM.working_dir; oggm_processes=parameters.OGGM.workers) return parameters end Base.:(==)(a::Parameters, b::Parameters) = a.physical == b.physical && a.simulation == b.simulation && a.OGGM == b.OGGM && a.solver == b.solver && a.hyper == b.hyper && a.UDE == b.UDE && a.inversion == b.inversion
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
1912
struct PhysicalParameters{F <: AbstractFloat} <: AbstractParameters ρ::F g::F ϵ::F η₀::F maxA::F minA::F maxTlaw::F minTlaw::F noise_A_magnitude::F end """ PhysicalParameters(; ρ::Float64 = 900.0, g::Float64 = 9.81, ϵ::Float64 = 1e-3, η₀::F = 1.0, maxA::Float64 = 8e-17, minA::Float64 = 8.5e-20, maxTlaw::Float64 = 1.0, minTlaw::Float64 = -25.0, noise_A_magnitude::Float64 = 5e-18 ) Initialize the physical parameters of a model. Keyword arguments ================= - `ρ`: Ice density - `g`: Gravitational constant - `n`: Glen's exponent - `A`: Glen's coefficient - `ϵ`: Small number - `C`: Sliding coefficient - `η₀`: - `maxA`: Maximum value for `A` (Glen's coefficient) - `minA`: Minimum value for `A` (Glen's coefficient) """ function PhysicalParameters(; ρ::F = 900.0, g::F = 9.81, ϵ::F = 1e-3, η₀::F = 1.0, maxA::F = 8e-17, minA::F = 8.5e-20, maxTlaw::F = 1.0, minTlaw::F = -25.0, noise_A_magnitude::F = 5e-18 ) where {F <: AbstractFloat} # Build PhysicalParameters based on values ft = typeof(g) physical_parameters = PhysicalParameters{ft}(ρ, g, ϵ, η₀, maxA, minA, maxTlaw, minTlaw, noise_A_magnitude) return physical_parameters end Base.:(==)(a::PhysicalParameters, b::PhysicalParameters) = a.ρ == b.ρ && a.g == b.g && a.ϵ == b.ϵ && a.η₀ == b.η₀ && a.maxA == b.maxA && a.minA == b.minA && a.maxTlaw == b.maxTlaw && a.noise_A_magnitude == b.noise_A_magnitude
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
3121
struct SimulationParameters{I <: Integer, F <: AbstractFloat} <: AbstractParameters use_MB::Bool use_iceflow::Bool plots::Bool velocities::Bool overwrite_climate::Bool use_glathida_data::Bool float_type::DataType int_type::DataType tspan::Tuple{F, F} step::F multiprocessing::Bool workers::I working_dir::String test_mode::Bool end """ SimulationParameters(; use_MB::Bool = true, use_iceflow::Bool = true, plots::Bool = true, velocities::Bool = true, overwrite_climate::Bool = false, use_glathida_data::Bool = false, float_type::DataType = Float64, int_type::DataType = Int64, tspan::Tuple{F, F} = (2010.0,2015.0), multiprocessing::Bool = true, workers::I = 4 ) Initialize the parameters for a simulation. Keyword arguments ================= - `use_MB`: Determines if surface mass balance should be used. - `plots`: Determines if plots should be made. - `overwrite_climate`: Determines if climate data should be overwritten - 'use_glathida_data': Determines if data from the Glathida data set should be used """ function SimulationParameters(; use_MB::Bool = true, use_iceflow::Bool = true, plots::Bool = true, velocities::Bool = true, overwrite_climate::Bool = false, use_glathida_data::Bool = false, float_type::DataType = Float64, int_type::DataType = Int64, tspan::Tuple{F, F} = (2010.0,2015.0), step::F = 1/12, multiprocessing::Bool = true, workers::I = 4, working_dir::String = "", test_mode::Bool = false ) where {I <: Integer, F <: AbstractFloat} simulation_parameters = SimulationParameters(use_MB, use_iceflow, plots, velocities, overwrite_climate, use_glathida_data, float_type, int_type, tspan, step, multiprocessing, workers, working_dir, test_mode) if !ispath(working_dir) mkpath(joinpath(working_dir, "data")) end return simulation_parameters end Base.:(==)(a::SimulationParameters, b::SimulationParameters) = a.use_MB == b.use_MB && a.use_iceflow == b.use_iceflow && a.plots == b.plots && a.velocities == b.velocities && a.overwrite_climate == b.overwrite_climate && a.use_glathida_data == b.use_glathida_data && a.float_type == b.float_type && a.int_type == b.int_type && a.tspan == b.tspan && a.step == b.step && a.multiprocessing == b.multiprocessing && a.workers == b.workers && a.working_dir == b.working_dir && a.test_mode == b.test_mode
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
2344
export netCDF4, cfg, utils, workflow, tasks, global_tasks, graphics, bedtopo, millan22, MBsandbox, salem, pd, xr, rioxarray function __init__() # Create structural folders if needed OGGM_path = joinpath(homedir(), "Python/OGGM_data") if !isdir(OGGM_path) mkpath(OGGM_path) end # Load Python packages try # Only load Python packages if not previously loaded by Sleipnir if cfg == PyNULL() && workflow == PyNULL() && utils == PyNULL() && MBsandbox == PyNULL() println("Initializing Python libraries...") copy!(netCDF4, pyimport("netCDF4")) copy!(cfg, pyimport("oggm.cfg")) copy!(utils, pyimport("oggm.utils")) copy!(workflow, pyimport("oggm.workflow")) copy!(tasks, pyimport("oggm.tasks")) copy!(global_tasks, pyimport("oggm.global_tasks")) copy!(graphics, pyimport("oggm.graphics")) copy!(bedtopo, pyimport("oggm.shop.bedtopo")) copy!(millan22, pyimport("oggm.shop.millan22")) copy!(MBsandbox, pyimport("MBsandbox.mbmod_daily_oneflowline")) copy!(salem, pyimport("salem")) copy!(pd, pyimport("pandas")) copy!(xr, pyimport("xarray")) copy!(rioxarray, pyimport("rioxarray")) end catch e @warn "It looks like you have not installed and/or activated the virtual Python environment. \n Please follow the guidelines in: https://github.com/ODINN-SciML/ODINN.jl#readme" @warn exception=(e, catch_backtrace()) end end function clean() atexit() do run(`$(Base.julia_cmd())`) end exit() end function enable_multiprocessing(procs::Int) if procs > 0 if nprocs() < procs @eval begin addprocs($procs - nprocs(); exeflags="--project") println("Number of cores: ", nprocs()) println("Number of workers: ", nworkers()) @everywhere using Sleipnir end # @eval elseif nprocs() != procs && procs == 1 @eval begin rmprocs(workers(), waitfor=0) println("Number of cores: ", nprocs()) println("Number of workers: ", nworkers()) end # @eval end end return nworkers() end include("helper_utilities.jl")
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
685
export safe_approx # Function to override "≈" to handle nothing values function safe_approx(a, b) if isnothing(a) && isnothing(b) return true elseif isnothing(a) || isnothing(b) return false else return a ≈ b end end # Function for Python objects function safe_getproperty(obj::PyObject, prop_name::Symbol) if PyCall.hasproperty(obj, prop_name) return PyCall.getproperty(obj, prop_name) else return 0.0 end end # Function for Julia objects function safe_getproperty(obj, prop_name::Symbol) if hasproperty(obj, prop_name) return getproperty(obj, prop_name) else return 0.0 end end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
397
export Simulation, Results # Abstract type as a parent type for simulations abstract type Simulation end include("results/Results.jl") ############################################### ################### UTILS ##################### ############################################### include("simulation_utils.jl") include("results/results_utils.jl") include("results/results_plotting_utils.jl")
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
216
""" stop_condition_tstops(u,t,integrator, tstops) Function that iterates through the tstops, with a closure including `tstops` """ function stop_condition_tstops(u,t,integrator, tstops) t in tstops end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
1761
mutable struct Results{F <: AbstractFloat} rgi_id::String H::Vector{Matrix{F}} H_glathida::Union{Nothing, Vector{Matrix{F}}} S::Matrix{F} B::Matrix{F} V::Matrix{F} Vx::Matrix{F} Vy::Matrix{F} V_ref::Union{Nothing, Matrix{F}} Vx_ref::Union{Nothing, Matrix{F}} Vy_ref::Union{Nothing, Matrix{F}} Δx::F Δy::F lon::Union{Nothing, F} lat::Union{Nothing, F} θ::Union{Nothing, Vector{F}} loss::Union{Nothing, Vector{F}} end function Results(glacier::G, ifm::IF; rgi_id::String = glacier.rgi_id, H::Vector{Matrix{F}} = Vector{Matrix{F}}([]), H_glathida::Union{Nothing, Vector{Matrix{F}}} = glacier.H_glathida, S::Matrix{F} = zeros(F, size(ifm.S)), B::Matrix{F} = zeros(F, size(ifm.B)), V::Matrix{F} = zeros(F, size(ifm.V)), Vx::Matrix{F} = zeros(F, size(ifm.Vx)), Vy::Matrix{F} = zeros(F, size(ifm.Vy)), V_ref::Union{Nothing, Matrix{F}} = glacier.V, Vx_ref::Union{Nothing, Matrix{F}} = glacier.Vx, Vy_ref::Union{Nothing, Matrix{F}} = glacier.Vy, Δx::F = glacier.Δx, Δy::F = glacier.Δy, lon::Union{Nothing, F} = glacier.cenlon, lat::Union{Nothing, F} = glacier.cenlat, θ::Union{Nothing,Vector{F}} = nothing, loss::Union{Nothing,Vector{F}} = nothing ) where {G <: AbstractGlacier, F <: AbstractFloat, IF <: AbstractModel} # Build the results struct based on input values results = Results(rgi_id, H, H_glathida, S, B, V, Vx, Vy, V_ref, Vx_ref, Vy_ref, Δx, Δy,lon,lat, θ, loss) return results end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
18375
export plot_glacier function plot_glacier_heatmaps(results, variables, title_mapping; scale_text_size::Union{Nothing,Float64}=nothing) # Dictionary of variable-specific colormaps colormap_mapping = Dict(key => value[3] for (key, value) in title_mapping) # Extract the rgi_id rgi_id = :rgi_id in fieldnames(typeof(results)) ? results.rgi_id : "none" # Extract longitude and latitude lon = if hasproperty(results, :lon) results.lon elseif hasproperty(results.gdir, :cenlon) results.gdir.cenlon else nothing end lat = if hasproperty(results, :lat) results.lat elseif hasproperty(results.gdir, :cenlat) results.gdir.cenlat else nothing end Δx = results.Δx ice_thickness_vars = [:H, :H₀, :H_glathida, :H_pred, :H_obs] # Ice thickness variables velocity_vars = [:V, :Vx, :Vy, :V_pred, :V_obs] # Velocity variables, excluding V_diff # Initialize max_values for ice thickness and velocity separately, considering only given variables max_values_ice = [] max_values_velocity = [] for var in intersect(union(ice_thickness_vars, velocity_vars), variables) # Check only given vars for maximum if hasproperty(results, var) current_matrix = getfield(results, var) if !isnothing(current_matrix) && !isempty(current_matrix) if typeof(current_matrix) <: Vector current_matrix = current_matrix[end] end if var in ice_thickness_vars push!(max_values_ice, maximum(current_matrix)) elseif var in velocity_vars push!(max_values_velocity, maximum(current_matrix)) end end end end # Determine global maximum for ice and velocity separately global_max_ice = isempty(max_values_ice) ? nothing : maximum(max_values_ice) global_max_velocity = isempty(max_values_velocity) ? nothing : maximum(max_values_velocity) num_vars = length(variables) rows, cols = if num_vars == 1 2, 2 elseif num_vars == 2 3, 2 elseif num_vars in [3, 4] 3, 4 else error("Unsupported number of variables.") end fig = Figure(layout=GridLayout(rows, cols)) for (i, var) in enumerate(variables) ax_row = div(i - 1, 2) + 1 ax_col = 2 * (rem(i - 1, 2)) + 1 ax = Axis(fig[ax_row, ax_col], aspect=DataAspect()) data = getfield(results, var) if typeof(data) <: Vector data = data[end] end ny, nx = size(data) data = reverse(data', dims=2) colormap = get(colormap_mapping, string(var), :cool) # Default colormap # Apply global_max_ice to ice thickness variables and global_max_velocity to velocity variables if var in ice_thickness_vars hm = heatmap!(ax, data, colormap=colormap, colorrange=(0, global_max_ice)) Colorbar(fig[ax_row, ax_col + 1], hm) elseif var in velocity_vars hm = heatmap!(ax, data, colormap=colormap, colorrange=(0, global_max_velocity)) Colorbar(fig[ax_row, ax_col + 1], hm) else hm = heatmap!(ax, data, colormap=colormap) Colorbar(fig[ax_row, ax_col + 1], hm) end title, unit = get(title_mapping, string(var), (string(var), "")) ax.title = "$title ($unit)" ax.xlabel = "Longitude" ax.ylabel = "Latitude" ax.xticks=([round(nx/2)], ["$lon °"]) ax.yticks=([round(ny/2)], ["$lat °"]) ax.yticklabelrotation = π/2 ax.ylabelpadding = 15 ax.yticklabelalign = (:center, :bottom) scale_width = 0.10*nx scale_number = round(Δx * scale_width / 1000; digits=1) # Convert to km if scale_text_size === nothing textsize = if num_vars == 1 1.2*scale_width elseif num_vars == 2 0.9*scale_width else 0.5*scale_width end else textsize = scale_text_size end poly!(ax, Rect(nx - round(0.15*nx), round(0.075*ny), scale_width, scale_width/10), color=:black) text!(ax, "$scale_number km", position=(nx - round(0.15*nx) + scale_width/16, round(0.075*ny) + scale_width/10), fontsize=textsize) end fig[0, :] = Label(fig, "$rgi_id") resize_to_layout!(fig) return fig end function plot_glacier_difference_evolution(results, variables, title_mapping; tspan, metrics) # Check if more than one variable is passed if length(variables) > 1 error("Only one variable can be passed to this function.") end # Check for valid metrics valid_metrics = ["hist", "difference"] for metric in metrics if !(metric in valid_metrics) error("Invalid metric: $metric. Valid metrics are: $valid_metrics") return end end # Extract data for the variable data = getfield(results, variables[1]) #Extract longitude and latitude lon = hasproperty(results, :lon) ? results.lon : "none" lat = hasproperty(results, :lat) ? results.lat : "none" #pixel width Δx = results.Δx # Check the shape of the extracted data if typeof(data) ≠ Vector{Matrix{Float64}} error("Only temporal quantities can be used in this function.") end # Extract the rgi_id rgi_id = :rgi_id in fieldnames(typeof(results)) ? results.rgi_id : "none" # Print plot information variable_title = get(title_mapping, variables[1], variables[1]) # Create a time vector t = range(tspan[1], stop=tspan[2], length=length(getfield(results, variables[1]))) matrix_size = size(data[1]) diff_width = 1.0 * matrix_size[2] diff_height = 1.0 * matrix_size[1] data_diff=data[end] - data[1] # Determine whether to create a single plot or a subplot if metrics == ["hist"] fig = Figure() ax = Axis(fig[1, 1], xlabel="Δ$variable_title ($(title_mapping[string(variables[1])][2]))", ylabel="Frequency", title="Histogram of $(title_mapping[string(variables[1])][1]) Evolution") elseif metrics == ["difference"] fig = Figure() ax_diff = Axis(fig[1, 1], title="$(title_mapping[string(variables[1])][1]) Evolution",aspect=DataAspect()) else fig = Figure(layout=GridLayout(1, 4)) ax = Axis(fig[1, 3:4], xlabel="Δ$variable_title ($(title_mapping[string(variables[1])][2]))", ylabel="Frequency", title="Histogram of $(title_mapping[string(variables[1])][1]) Evolution",width=diff_width,height=diff_height) ax_diff = Axis(fig[1, 1], title="$(title_mapping[string(variables[1])][1]) Evolution",aspect=DataAspect()) end # Plot based on the metric for metric in metrics if metric == "hist" hist!(ax, vec(data[end]-data[1]), bins=50) ax.limits[] = (minimum(data_diff), maximum(data_diff), nothing, nothing) elseif metric == "difference" ny, nx = size(data_diff) data_diff = reverse(data_diff',dims=2) # Fix alignment # Calculate the symmetric color range max_abs_value = max(abs(minimum(data_diff)), abs(maximum(data_diff))) hm_diff = heatmap!(ax_diff, data_diff, colormap=:redsblues, halign=:right, colorrange=(-max_abs_value, max_abs_value)) ax_diff.xlabel = "Longitude" ax_diff.ylabel = "Latitude" ax_diff.xticks=([round(nx/2)], ["$lon °"]) ax_diff.yticks=([round(ny/2)], ["$lat °"]) ax_diff.yticklabelrotation = π/2 ax_diff.ylabelpadding = 15.0 ax_diff.yticklabelalign = (:center, :bottom) # Width of the scale division in heatmap data units scale_width = 0.10*nx scale_number = round(Δx * scale_width / 1000; digits=1)#to km if metrics == ["difference"] textsize=1.2*scale_width else textsize=0.5*scale_width end # Position and draw the scale division rectangle poly!(ax_diff, Rect(nx -round(0.15*nx) , round(0.075*ny), scale_width, scale_width/10), color=:black) text!(ax_diff, "$scale_number km", position = (nx - round(0.15*nx)+scale_width/16, round(0.075*ny)+scale_width/10), fontsize=textsize) Colorbar(fig[1, 2], hm_diff) end end fig[0, :] = Label(fig, "$rgi_id") resize_to_layout!(fig) fig # Return the main figure end function plot_glacier_statistics_evolution(results, variables, title_mapping; tspan, metrics, threshold=0.5) # Check if more than one variable is passed if length(variables) > 1 error("Only one variable can be passed to this function.") end # Extract data for the variable data = getfield(results, variables[1]) # Check the shape of the extracted data if typeof(data) ≠ Vector{Matrix{Float64}} error("Only temporal quantities can be used in this function.") end # Check for valid metrics valid_metrics = ["average", "median", "max", "std","min"] for metric in metrics if !(metric in valid_metrics) error("Invalid metric: $metric. Valid metrics are: $valid_metrics") return end end # Extract the rgi_id rgi_id = :rgi_id in fieldnames(typeof(results)) ? results.rgi_id : "none" # Create a time vector t = range(tspan[1], stop=tspan[2], length=length(getfield(results, variables[1]))) # Create a single plot for all other metrics fig = Figure() ax = Axis(fig[1, 1], xlabel="Time (years)", ylabel="$(title_mapping[string(variables[1])][1]) ($(title_mapping[string(variables[1])][2]))", title="Metrics for $(title_mapping[string(variables[1])][1]) through Time ($rgi_id)") # If "average" or "std" is in metrics, calculate them if "average" in metrics || "std" in metrics avg_vals = [mean(filter(x -> !(isnan(x)) && x >= threshold, matrix[:])) for matrix in data] std_vals = [std(filter(x -> !(isnan(x)) && x >= threshold, matrix[:])) for matrix in data] end # Calculate and plot metrics for metric in metrics if metric == "average" if "std" in metrics band!(ax, t, avg_vals .- std_vals, avg_vals .+ std_vals, fillalpha=0.1, label="Std Dev", color=:lightgray) end lines!(ax, t, avg_vals, label="Average") elseif metric == "median" median_vals = [median(filter(x -> !isnan(x) && x >= threshold, matrix[:])) for matrix in data] lines!(ax, t, median_vals, label="Median") elseif metric == "min" min_vals = [minimum(filter(x -> !isnan(x) && x >= threshold, matrix[:])) for matrix in data] lines!(ax, t, min_vals, linestyle=:dot, label="Min") elseif metric == "max" max_vals = [maximum(filter(x -> !isnan(x) && x >= threshold, matrix[:])) for matrix in data] lines!(ax, t, max_vals, linestyle=:dot, label="Max") end end leg = Legend(fig, ax) fig[1, 2] = leg resize_to_layout!(fig) fig # Return the main figure end function plot_glacier_integrated_volume(results, variables, title_mapping; tspan) # Determine pixel area area=results.Δx*results.Δy # Check if more than one variable is passed if length(variables) > 1 error("Only one variable can be passed to this function.") end # Extract the rgi_id rgi_id = :rgi_id in fieldnames(typeof(results)) ? results.rgi_id : "none" # Print plot information variable_title = get(title_mapping, variables[1], variables[1]) # Create a time vector t = range(tspan[1], stop=tspan[2], length=length(getfield(results, variables[1]))) # Extract data for the variable data = getfield(results, variables[1]) # Check the shape of the extracted data if typeof(data) ≠ Vector{Matrix{Float64}} error("Only temporal quantities can be used in this function.") end # Calculate integrated ice volume for each time step integrated_ice_volume = [sum(matrix) * area for matrix in data] # Multiply by area # Plot the integrated ice volume as a function of time fig = Figure() ax = Axis(fig[1, 1]) lines!(ax, t, integrated_ice_volume, color=:blue) ax.xlabel = "Time (years)" ax.ylabel = "Integrated Ice Volume (m³) " ax.title = "Evolution of Integrated Ice Volume ($rgi_id)" resize_to_layout!(fig) return fig # Return the main figure with the plot end function plot_bias(data, keys; treshold = [0, 0]) # Check for exactly two keys if length(keys) != 2 error("Exactly two keys are required for the scatter plot.") end # Ensure treshold is an array of length 2 if length(treshold) == 1 treshold = [treshold[1], treshold[1]] end # Extract data rgi_id = data.rgi_id x_values = getfield(data,keys[1]) y_values = getfield(data,keys[2]) # Filter non-zero observations if necessary if :H_obs in keys || :V_obs in keys obs_key = :H_obs in keys ? :H_obs : :V_obs #non_zero_indices = findall(getfield(data,obs_key) .!= 0) mask_H = getfield(data,obs_key) .> treshold[1] * maximum(getfield(data,obs_key)) mask_H_2 = getfield(data,obs_key) .< (1-treshold[2]) * maximum(getfield(data,obs_key)) x_values = x_values[mask_H .& mask_H_2] y_values = y_values[mask_H .& mask_H_2] end # Calculate metrics differences = x_values .- y_values rmse = sqrt(mean(differences .^ 2)) # Root Mean Square Error bias = mean(differences) # Bias ss_res = sum(differences .^ 2) # Sum of squares of residuals ss_tot = sum((x_values .- mean(x_values)) .^ 2) # Total sum of squares r_squared = 1 - (ss_res / ss_tot) # R-squared # Plotting fig = Figure(size = (600, 400)) ax = Axis(fig[1, 1], xlabel = string(keys[1]), ylabel = string(keys[2]), title = "Scatter Plot for RGI ID: " * rgi_id) scatter!(ax, vec(x_values), vec(y_values), markersize = 5, color = :blue, label = "Data") xmin, xmax = minimum(x_values), maximum(x_values) ymin, ymax = minimum(y_values), maximum(y_values) lines!(ax, [xmin, xmax], [xmin, xmax], linestyle = :dash, color = :red, label = "y = x") # Display metrics on the plot metrics_text = "RMSE: $(round(rmse, digits=2))\nR²: $(round(r_squared, digits=2))\nBias: $(round(bias, digits=2))" text!(ax, metrics_text, position = (xmax, ymax), align = (:right, :top), color = :black) fig end """ plot_glacier(results::T, plot_type::String, variables::Vector{Symbol}; kwargs...) -> Figure Generate various types of plots for glacier data. # Arguments - `results`: A custom type containing the results of a glacier simulation. - `plot_type`: Type of plot to generate. Options are: * "heatmaps": Heatmaps for glacier variables like `:H`, `:S`, `:B`, `:V`, `:Vx`, and `:Vy`. * "difference": Temporal difference metrics (between start and end) for a variable, with optional metrics like "hist" (histogram) and "difference". * "statistics": Temporal statistical metrics for a variable, with optional metrics like "average", "median", "min", "max", and "std". * "integrated_volume": Temporal evolution of the integrated ice volume for a variable. - `variables`: Variables to be plotted, e.g., `:H`. # Optional Keyword Arguments - `tspan`: A tuple representing the start and end time for the simulation. - `metrics`: Metrics to visualize, e.g., `["average"]` for statistics, `["difference"]` for difference. # Returns - A `Figure` object containing the desired visualization. # Notes - Ensure the `variables` and `kwargs` match the requirements of the specified `plot_type`. - The function routes requests to specific plotting functions based on `plot_type`. """ function plot_glacier(results::T, plot_type::String, variables::Vector{Symbol}; kwargs...) where T title_mapping = Dict( "H" => ("Ice Thickness", "m", :YlGnBu), "H₀" => ("Ice Thickness", "m", :YlGnBu), "H_glathida" => ("Ice Thickness (GlaThiDa)", "m", :YlGnBu), "S" => ("Surface Topography", "m", :terrain), "B" => ("Bed Topography", "m", :terrain), "V" => ("Ice Surface Velocity", "m/y", :viridis), "Vx" => ("Ice Surface Velocity (X-direction)", "m/y", :viridis), "Vy" => ("Ice Surface Velocity (Y-direction)", "m/y", :viridis), "H_pred" => ("Predicted Ice Thickness", "m", :YlGnBu), "H_obs" => ("Observed Ice Thickness", "m", :YlGnBu), "H_diff" => ("Ice Thickness Difference", "m", :RdBu), "V_pred" => ("Predicted Ice Surface Velocity", "m/y", :viridis), "V_obs" => ("Observed Ice Surface Velocity", "m/y", :viridis), "V_diff" => ("Ice Surface Velocity Difference", "m/y", :RdBu) ) if plot_type == "heatmaps" return plot_glacier_heatmaps(results, variables, title_mapping; kwargs...) elseif plot_type == "evolution_difference" return plot_glacier_difference_evolution(results, variables, title_mapping; kwargs...) elseif plot_type == "evolution_statistics" return plot_glacier_statistics_evolution(results, variables, title_mapping; kwargs...) elseif plot_type == "integrated_volume" return plot_glacier_integrated_volume(results, variables, title_mapping; kwargs...) elseif plot_type == "bias" return plot_bias(results, variables; kwargs...) else error("Invalid plot_type: $plot_type") end end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
2312
""" store_results!(simulation::SIM, glacier_idx::I, solution) where {SIM <: Simulation, I <: Int} Store the results of a simulation of a single glacier into a `Results`. """ function create_results(simulation::SIM, glacier_idx::I, solution, loss=nothing; light=false, batch_id::Union{Nothing, I}=nothing) where {SIM <: Simulation, I <: Integer} H = light ? [solution.u[begin],solution.u[end]] : solution.u # Simulations using Reverse Diff require an iceflow model per glacier if isnothing(batch_id) iceflow_model = simulation.model.iceflow else iceflow_model = simulation.model.iceflow[batch_id] end if !isnothing(simulation.model.machine_learning) θ = simulation.model.machine_learning.θ else θ = nothing end results = Results(simulation.glaciers[glacier_idx], iceflow_model; H = H, S = iceflow_model.S, B = simulation.glaciers[glacier_idx].B, V = iceflow_model.V, Vx = iceflow_model.Vx, Vy = iceflow_model.Vy, Δx = simulation.glaciers[glacier_idx].Δx, Δy = simulation.glaciers[glacier_idx].Δy, lon = simulation.glaciers[glacier_idx].cenlon, lat = simulation.glaciers[glacier_idx].cenlat, θ = θ, loss = loss ) return results end """ save_results_file(simulation::Prediction) Save simulation `Results` into a `.jld2` file. """ function save_results_file!(results_list::Vector{Results{F}}, simulation::SIM; path::Union{String,Nothing}=nothing) where {F <: AbstractFloat, SIM <: Simulation} # Create path for simulation results predictions_path = joinpath(dirname(Base.current_project()), "data/results/predictions") if !ispath(predictions_path) mkpath(predictions_path) end simulation.results = results_list if isnothing(path) tspan = simulation.parameters.simulation.tspan nglaciers = length(simulation.glaciers) jldsave(joinpath(predictions_path, "prediction_$(nglaciers)glaciers_$tspan.jld2"); simulation.results) end end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
1026
function glaciers2D_constructor(; save_refs::Bool = false) rgi_ids = ["RGI60-11.03638", "RGI60-11.01450"] params = Parameters(simulation=SimulationParameters(velocities=false, use_glathida_data=false, working_dir=Sleipnir.root_dir, test_mode=true), OGGM=OGGMparameters(ice_thickness_source="Farinotti19")) glaciers = initialize_glaciers(rgi_ids, params; test=true) # Empty all PyCall stuff to avoid issues for glacier in glaciers glacier.gdir = nothing glacier.climate = nothing glacier.S_coords = nothing end if save_refs jldsave(joinpath(Sleipnir.root_dir, "test/data/glaciers/glaciers2D.jld2"); glaciers) end glaciers_ref = load(joinpath(Sleipnir.root_dir,"test/data/glaciers/glaciers2D.jld2"))["glaciers"] @test all(glaciers .≈ glaciers_ref) end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
4673
function params_constructor_specified(; save_refs::Bool = false) physical_params = PhysicalParameters(ρ = 900.0, g = 9.81, ϵ = 1e-3, η₀ = 1.0, maxA = 8e-17, minA = 8.5e-20, maxTlaw = 1.0, minTlaw = -25.0, noise_A_magnitude = 5e-18) simulation_params = SimulationParameters(use_MB = true, use_iceflow = true, plots = false, velocities = false, overwrite_climate = false, use_glathida_data = false, float_type = Float64, int_type = Int64, tspan = (2010.0,2015.0), multiprocessing = false, workers = 10, working_dir = "") oggm_params = OGGMparameters(working_dir = "", paths = nothing, params = nothing, multiprocessing = false, workers = 1, ice_thickness_source = "Millan22", DEM_source = "Default", base_url = "https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.6/L1-L2_files/elev_bands/", test = true) params = Parameters(physical=physical_params, simulation=simulation_params, OGGM=oggm_params) if save_refs jldsave(joinpath(Sleipnir.root_dir, "test/data/params/simulation_params_specified.jld2"); simulation_params) jldsave(joinpath(Sleipnir.root_dir, "test/data/params/physical_params_specified.jld2"); physical_params) jldsave(joinpath(Sleipnir.root_dir, "test/data/params/oggm_params_specified.jld2"); oggm_params) jldsave(joinpath(Sleipnir.root_dir, "test/data/params/params_specified.jld2"); params) end simulation_params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/simulation_params_specified.jld2"))["simulation_params"] physical_params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/physical_params_specified.jld2"))["physical_params"] oggm_params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/oggm_params_specified.jld2"))["oggm_params"] params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/params_specified.jld2"))["params"] @test physical_params == physical_params_ref @test simulation_params == simulation_params_ref @test oggm_params == oggm_params_ref @test params == params_ref end function params_constructor_default(; save_refs::Bool = false) physical_params = PhysicalParameters() simulation_params = SimulationParameters() oggm_params = OGGMparameters(test=true, working_dir="") params = Parameters(simulation=simulation_params, physical=physical_params, OGGM=oggm_params ) if save_refs jldsave(joinpath(Sleipnir.root_dir, "test/data/params/simulation_params_default.jld2"); simulation_params) jldsave(joinpath(Sleipnir.root_dir, "test/data/params/physical_params_default.jld2"); physical_params) jldsave(joinpath(Sleipnir.root_dir, "test/data/params/oggm_params_default.jld2"); oggm_params) jldsave(joinpath(Sleipnir.root_dir, "test/data/params/params_default.jld2"); params) end simulation_params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/simulation_params_default.jld2"))["simulation_params"] physical_params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/physical_params_default.jld2"))["physical_params"] oggm_params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/oggm_params_default.jld2"))["oggm_params"] params_ref = load(joinpath(Sleipnir.root_dir, "test/data/params/params_default.jld2"))["params"] @test physical_params == physical_params_ref @test simulation_params == simulation_params_ref @test oggm_params == oggm_params_ref @test params == params_ref end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
1484
function glaciers2D_plots() # Load glacier data @load (joinpath(@__DIR__,"data/glaciers/glaciers2D_test_temporal.jld2")) results # Test execution @testset "plot_glacier tests" begin @testset "Heatmaps" begin try plot_glacier(results[2], "heatmaps", [:H,:B]) @test true catch @test false end end @testset "Statistics Evolution" begin try plot_glacier(results[2], "evolution_statistics", [:H], tspan=(2010.0,2015.0), metrics=["average","std","max","median","min"]) @test true catch @test false end end @testset "Difference Evolution" begin try plot_glacier(results[2], "evolution_difference", [:H], tspan=(2010.0,2015.0), metrics=["difference","hist"]) @test true catch @test false end end @testset "Integrated Volume" begin try plot_glacier(results[2], "integrated_volume", [:H], tspan=(2010.0,2015.0)) @test true catch @test false end end @testset "Bias" begin try plot_glacier(results[2], "bias", [:B,:S]) @test true catch @test false end end end end
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
code
617
import Pkg Pkg.activate(dirname(Base.current_project())) using Revise using Sleipnir using PyCall using Test using JLD2 using Infiltrator using CairoMakie include("params_construction.jl") include("glaciers_construction.jl") include("plot_utils.jl") # Activate to avoid GKS backend Plot issues in the JupyterHub ENV["GKSwstype"]="nul" @testset "Parameters constructors with specified values" params_constructor_specified() @testset "Parameters constructors by default" params_constructor_default() @testset "Glaciers 2D constructors" glaciers2D_constructor() #@testset "Glaciers 2D plots" glaciers2D_plots()
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.6.1
ee6a6a5ae18d30c495cf860269b67fe66c044635
docs
862
[![Build Status](https://github.com/ODINN-SciML/Sleipnir.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/ODINN-SciML/Sleipnir.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/ODINN-SciML/Sleipnir.jl/branch/main/graph/badge.svg)](https://app.codecov.io/gh/ODINN-SciML/Sleipnir.jl) [![CompatHelper](https://github.com/ODINN-SciML/Sleipnir.jl/actions/workflows/CompatHelper.yml/badge.svg)](https://github.com/ODINN-SciML/Sleipnir.jl/actions/workflows/CompatHelper.yml) <img src="https://github.com/JordiBolibar/Sleipnir.jl/blob/main/data/Sleipnir_logo-19.png" width="250"> Sleipnir.jl is the core package of [ODINN.jl](https://github.com/ODINN-SciML/ODINN.jl), containing all the basic data structures to manage glacier and climate data, as well as multiple types of numerical simulations and parameters.
Sleipnir
https://github.com/ODINN-SciML/Sleipnir.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
231
using Documenter, ISAtmosphere makedocs( sitename = "DDR2import.jl", modules = [DDR2import], pages = Any[ "Home" => "index.md", ], ) deploydocs( repo = "github.com/rjdverbeek-tud/DDR2import.jl.git", )
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
15126
""" ALL_FT+ fileformat Defines a list of flight trajectories (planned/actual/etc) for a given day See EUROCONTROL NEST Manual Section 9.7.5 for ALL_FT+ fileformat description The headers of the DataFrame follow the naming convention from the EUROCONTROL NEST Manual + '_' + index_number from manual. """ module Allftplus export read # include("utility.jl") using ..util using Format using CSV using Dates using DataFrames const fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>String, 5=>String, 6=>String, 7=>String, 8=>String, 9=>String, 10=>String, 11=>String, 12=>String, 13=>String, 14=>String, 15=>String, 16=>String, 17=>String, 18=>String, 19=>String, 20=>String, 21=>String, 22=>String, 23=>Int64, 24=>String, 25=>String, 26=>String, 27=>String, 28=>String, 29=>String, 30=>Int64, 31=>Int64, 32=>String, 33=>String, 34=>String, 35=>String, 36=>String, 37=>String, 38=>String, 39=>Int64, 40=>Int64, 41=>Int64, 42=>String, 43=>String, 44=>String, 45=>String, 46=>String, 47=>String, 48=>String, 49=>Int64, 50=>Int64, 51=>String, 52=>String, 53=>String, 54=>Int64, 55=>Int64, 56=>String, 57=>String, 58=>String, 59=>String, 60=>String, 61=>String, 62=>String, 63=>String, 64=>String, 65=>String, 66=>String, 67=>String, 68=>String, 69=>String, 70=>String, 71=>String, 72=>String, 73=>Int64, 74=>String, 75=>Int64, 76=>String, 77=>Int64, 78=>Int64, 79=>String, 80=>String, 81=>Int64, 82=>String, 83=>Float64, 84=>Float64, 85=>Int64, 86=>String, 87=>Int64, 88=>String, 89=>Int64, 90=>String, 91=>Int64, 92=>Int64, 93=>String, 94=>String, 95=>Int64, 96=>String, 97=>Float64, 98=>Float64, 99=>Int64, 100=>String, 101=>Int64, 102=>String, 103=>Int64, 104=>String, 105=>Int64, 106=>Int64, 107=>String, 108=>String, 109=>Int64, 110=>String, 111=>Float64, 112=>Float64, 113=>Int64, 114=>String, 115=>Int64, 116=>String, 117=>Int64, 118=>String, 119=>String, 120=>String, 121=>Float64, 122=>Float64, 123=>Int64, 124=>String, 125=>Int64, 126=>String, 127=>Int64, 128=>String, 129=>String, 130=>Float64, 131=>Float64, 132=>Int64, 133=>String, 134=>Int64, 135=>String, 136=>Int64, 137=>String, 138=>String, 139=>Float64, 140=>Float64, 141=>Int64, 142=>String, 143=>Int64, 144=>String, 145=>Int64, 146=>String, 147=>String, 148=>Float64, 149=>Float64, 150=>Int64, 151=>String, 152=>Int64, 153=>String, 154=>Int64, 155=>String, 156=>String, 157=>Float64, 158=>Float64, 159=>Int64, 160=>String, 161=>Int64, 162=>String, 163=>Int64, 164=>String, 165=>String, 166=>String, 167=>String, 168=>Int64, 169=>String, 170=>String, 171=>String, 172=>String, 173=>String, 174=>String, 175=>Int64, 176=>Int64, 177=>String, 178=>Int64, 179=>String, 180=>Int64, 181=>String) const header_format = ["departureAerodromeIcaoId_0", "arrivalAerodromeIcaoId_1", "aircraftId_2", "aircraftOperatorIcaoId_3", "aircraftTypeIcaoId_4", "aobt_5", "ifpsId_6", "iobt_7", "originalFlightDataQuality_8", "flightDataQuality_9", "source_10", "exemptionReasonType_11", "exemptionReasonDistance_12", "lateFiler_13", "lateUpdater_14", "northAtlanticFlight_15", "cobt_16", "eobt_17", "lobt_18", "flightState_19", "previousToActivationFlightState_20", "suspensionStatus_21", "tactId_22", "samCtot_23", "samSent_24", "sipCtot_25", "sipSent_26", "slotForced_27", "mostPenalizingRegulationId_28", "regulationsAffectedByNrOfInstances_29", "excludedFromNrOfInstances_30", "lastReceivedAtfmMessageTitle_31", "lastReceivedMessageTitle_32", "lastSentAtfmMessageTitle_33", "manualExemptionReason_34", "sensitiveFlight_35", "readyForImprovement_36", "readyToDepart_37", "revisedTaxiTime_38", "tis_39", "trs_40", "toBeSentSlotMessageTitle_41", "toBeSentProposalMessageTitle_42", "lastSentSlotMessageTitle_43", "lastSentProposalMessageTitle_44", "lastSentSlotMessage_45", "lastSentProposalMessage_46", "flightCountOption_47", "normalFlightTactId_48", "proposalFlightTactId_49", "operatingAircraftOperatorIcaoId_50", "reroutingWhy_51", "reroutedFlightState_52", "runwayVisualRange_53", "numberIgnoredErrors_54", "arcAddrSource_55", "arcAddr_56", "ifpsRegistrationMark_57", "flightType_58", "aircraftEquipment_59", "cdmStatus_60", "cdmEarlyTtot_61", "cdmAoTtot_62", "cdmAtcTtot_63", "cdmSequencedTtot_64", "cdmTaxiTime_65", "cdmOffBlockTimeDiscrepancy_66", "cdmDepartureProcedureId_67", "cdmAircraftTypeId_68", "cdmRegistrationMark_69", "cdmNoSlotBefore_70", "cdmDepartureStatus_71", "ftfmEetFirNrOfInstances_72", "ftfmEetFirList_73", "ftfmEetPtNrOfInstances_74", "ftfmEetPtList_75", "ftfmAiracCycleReleaseNumber_76", "ftfmEnvBaselineNumber_77", "ftfmDepartureRunway_78", "ftfmArrivalRunway_79", "ftfmReqFlightlevelSpeedNrOfInstances_80", "ftfmReqFlightlevelSpeedList_81", "ftfmConsumedFuel_82", "ftfmRouteCharges_83", "ftfmAllFtPointNrOfInstances_84", "ftfmAllFtPointProfile_85", "ftfmAllFtAirspaceNrOfInstances_86", "ftfmAllFtAirspaceProfile_87", "ftfmAllFtCircleIntersectionsNrOfInstances_88", "ftfmAllFtCircleIntersections_89", "rtfmAiracCycleReleaseNumber_90", "rtfmEnvBaselineNumber_91", "rtfmDepartureRunway_92", "rtfmArrivalRunway_93", "rtfmReqFlightlevelSpeedNrOfInstances_94", "rtfmReqFlightlevelSpeedList_95", "rtfmConsumedFuel_96", "rtfmRouteCharges_97", "rtfmAllFtPointNrOfInstances_98", "rtfmAllFtPointProfile_99", "rtfmAllFtAirspaceNrOfInstances_100", "rtfmAllFtAirspaceProfile_101", "rtfmAllFtCircleIntersectionsNrOfInstances_102", "rtfmAllFtCircleIntersections_103", "ctfmAiracCycleReleaseNumber_104", "ctfmEnvBaselineNumber_105", "ctfmDepartureRunway_106", "ctfmArrivalRunway_107", "ctfmReqFlightlevelSpeedNrOfInstances_108", "ctfmReqFlightlevelSpeedList_109", "ctfmConsumedFuel_110", "ctfmRouteCharges_111", "ctfmAllFtPointNrOfInstances_112", "ctfmAllFtPointProfile_113", "ctfmAllFtAirspaceNrOfInstances_114", "ctfmAllFtAirspaceProfile_115", "ctfmAllFtCircleIntersectionsNrOfInstances_116", "ctfmAllFtCircleIntersections_117", "noCPGCPFReason_118", "scrObt_119", "scrConsumedFuel_120", "scrRouteCharges_121", "scrAllFtPointNrOfInstances_122", "scrAllFtPointProfile_123", "scrAllFtAirspaceNrOfInstances_124", "scrAllFtAirspaceProfile_125", "scrAllFtCircleIntersectionsNrOfInstances_126", "scrAllFtCircleIntersections_127", "srrObt_128", "srrConsumedFuel_129", "srrRouteCharges_130", "srrAllFtPointNrOfInstances_131", "srrAllFtPointProfile_132", "srrAllFtAirspaceNrOfInstances_133", "srrAllFtAirspaceProfile_134", "srrAllFtCircleIntersectionsNrOfInstances_135", "srrAllFtCircleIntersections_136", "surObt_137", "surConsumedFuel_138", "surRouteCharges_139", "surAllFtPointNrOfInstances_140", "surAllFtPointProfile_141", "surAllFtAirspaceNrOfInstances_142", "surAllFtAirspaceProfile_143", "surAllFtCircleIntersectionsNrOfInstances_144", "surAllFtCircleIntersections_145", "dctObt_146", "dctConsumedFuel_147", "dctRouteCharges_148", "dctAllFtPointNrOfInstances_149", "dctAllFtPointProfile_150", "dctAllFtAirspaceNrOfInstances_151", "dctAllFtAirspaceProfile_152", "dctAllFtCircleIntersectionsNrOfInstances_153", "dctAllFtCircleIntersections_154", "cpfObt_155", "cpfConsumedFuel_156", "cpfRouteCharges_157", "cpfAllFtPointNrOfInstances_158", "cpfAllFtPointProfile_159", "cpfAllFtAirspaceNrOfInstances_160", "cpfAllFtAirspaceProfile_161", "cpfAllFtCircleIntersectionsNrOfInstances_162", "cpfAllFtCircleIntersections_163", "aircraftidIATA_164", "intentionFlight_165", "intentionRelatedRouteAssignmentMethod_166", "intentionUID_167", "intentionEditionDate_168", "intentionSource_169", "associatedIntentions_170", "enrichmentOutput_171", "eventID_172", "eventTime_173", "flightVersionNr_174", "ftfmNrTvProfiles_175", "ftfmTvProfile_176", "rtfmNrTvProfiles_177", "rtfmTvProfile_178", "ctfmNrTvProfiles_179", "ctfmTvProfile_180"] const yymmdd = DateFormat("YYmmdd") const hhmmss = DateFormat("HHMMSS") const mmmmss = DateFormat("MMMMSS") const yyyymmddhhmmss = DateFormat("YYYYmmddHHMMSS") const year2000 = Year(2000) function read(file) df = CSV.read(file, delim=";", types=fileformat, header=header_format, copycols=true, datarow=2) # remove_unused!(df) reformat!(df) return df end struct FlightlevelSpeed FL::Int64 Spd::String Value::Int64 function FlightlevelSpeed(x::AbstractString) flspdvalue = split(x, ':') FL = parse(Int64, flspdvalue[1][2:end]) Spd = flspdvalue[2] Value = parse(Int64, flspdvalue[3]) new(FL, Spd, Value) end end function reqFlightlevelSpeedList(items::Union{AbstractString, Missing}) if items === missing return missing else return [FlightlevelSpeed(item) for item in split(items)] end end struct AllFtPointProfile datetime::Union{DateTime, Missing} point::AbstractString route::AbstractString FL::Union{Int64, Missing} pointDistance::Union{Int64, Missing} pointType::AbstractString geoPointId::Union{Point_deg, AbstractString} ratio::Union{Int64, Missing} isVisible::Bool # Y indicated IFR/GAT/IFPSTART, N indicates VFR/OAT/IFPSTOP/STAY function AllFtPointProfile(x::AbstractString) items = split(x, ':') datetime = items[1] == "" ? missing : format_datetime(items[1], yyyymmddhhmmss) point = items[2] route = items[3] FL = items[4] == "" ? missing : parse(Int64, items[4]) pointDistance = items[5] == "" ? missing : parse(Int64, items[5]) pointType = items[6] geoPointId = occursin(r"\d{6}[NS]\d{7}[EW]", items[7]) ? latlon(items[7]) : items[7] ratio = items[8] == "" ? missing : parse(Int64, items[8]) isVisible = items[9] == "Y" ? true : false new(datetime, point, route, FL, pointDistance, pointType, geoPointId, ratio, isVisible) end end function AllFtPointProfileList(items::Union{AbstractString, Missing}) if items === missing return missing else return [AllFtPointProfile(item) for item in split(items)] end end struct AllFtAirspaceProfile entry_datetime::Union{DateTime, Missing} sector::AbstractString exit_datetime::Union{DateTime, Missing} fir::AbstractString entry_geoPointId::Union{Point_deg, AbstractString} exit_geoPointId::Union{Point_deg, AbstractString} # entry_geoPointId::Union{Point, AbstractString} # exit_geoPointId::Union{Point, AbstractString} entry_FL::Union{Int64, Missing} exit_FL::Union{Int64, Missing} entry_pointDistance::Union{Int64, Missing} exit_pointDistance::Union{Int64, Missing} function AllFtAirspaceProfile(x::AbstractString) items = split(x, ':') entry_datetime = items[1] == "" ? missing : format_datetime(items[1], yyyymmddhhmmss) sector = items[2] exit_datetime = items[3] == "" ? missing : format_datetime(items[3], yyyymmddhhmmss) fir = items[4] entry_geoPointId = occursin(r"\d{6}[NS]\d{7}[EW]", items[5]) ? latlon(items[5]) : items[5] exit_geoPointId = occursin(r"\d{6}[NS]\d{7}[EW]", items[6]) ? latlon(items[6]) : items[6] entry_FL = items[7] == "" ? missing : parse(Int64, items[7]) exit_FL = items[8] == "" ? missing : parse(Int64, items[8]) entry_pointDistance = items[9] == "" ? missing : parse(Int64, items[9]) exit_pointDistance = items[10] == "" ? missing : parse(Int64, items[10]) new(entry_datetime, sector, exit_datetime, fir, entry_geoPointId, exit_geoPointId, entry_FL, exit_FL, entry_pointDistance, exit_pointDistance) end end function AllFtAirspaceProfileList(items::Union{AbstractString, Missing}) if items === missing return missing else return [AllFtAirspaceProfile(item) for item in split(items)] end end function reformat!(df) #Date conversion df[:,:TEMP] = format_datetime.(df[:,:aobt_5], yyyymmddhhmmss) select!(df, Not(:aobt_5)) df[:,:aobt_5] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:iobt_7], yyyymmddhhmmss) select!(df, Not(:iobt_7)) df[:,:iobt_7] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:cobt_16], yyyymmddhhmmss) select!(df, Not(:cobt_16)) df[:,:cobt_16] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:eobt_17], yyyymmddhhmmss) select!(df, Not(:eobt_17)) df[:,:eobt_17] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:lobt_18], yyyymmddhhmmss) select!(df, Not(:lobt_18)) df[:,:lobt_18] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:samCtot_23], yyyymmddhhmmss) select!(df, Not(:samCtot_23)) df[:,:samCtot_23] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:sipCtot_25], yyyymmddhhmmss) select!(df, Not(:sipCtot_25)) df[:,:sipCtot_25] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:lastSentSlotMessage_45], yyyymmddhhmmss) select!(df, Not(:lastSentSlotMessage_45)) df[:,:lastSentSlotMessage_45] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:lastSentProposalMessage_46], yyyymmddhhmmss) select!(df, Not(:lastSentProposalMessage_46)) df[:,:lastSentProposalMessage_46] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:cdmEarlyTtot_61], yyyymmddhhmmss) select!(df, Not(:cdmEarlyTtot_61)) df[:,:cdmEarlyTtot_61] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:cdmAoTtot_62], yyyymmddhhmmss) select!(df, Not(:cdmAoTtot_62)) df[:,:cdmAoTtot_62] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:cdmAtcTtot_63], yyyymmddhhmmss) select!(df, Not(:cdmAtcTtot_63)) df[:,:cdmAtcTtot_63] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:cdmSequencedTtot_64], yyyymmddhhmmss) select!(df, Not(:cdmSequencedTtot_64)) df[:,:cdmSequencedTtot_64] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_time.(df[:,:cdmTaxiTime_65], mmmmss) select!(df, Not(:cdmTaxiTime_65)) df[:,:cdmTaxiTime_65] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:cdmNoSlotBefore_70], yyyymmddhhmmss) select!(df, Not(:cdmNoSlotBefore_70)) df[:,:cdmNoSlotBefore_70] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:scrObt_119], yyyymmddhhmmss) select!(df, Not(:scrObt_119)) df[:,:scrObt_119] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:srrObt_128], yyyymmddhhmmss) select!(df, Not(:srrObt_128)) df[:,:srrObt_128] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:surObt_137], yyyymmddhhmmss) select!(df, Not(:surObt_137)) df[:,:surObt_137] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:dctObt_146], yyyymmddhhmmss) select!(df, Not(:dctObt_146)) df[:,:dctObt_146] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:eventTime_173], yyyymmddhhmmss) select!(df, Not(:eventTime_173)) df[:,:eventTime_173] = df[:,:TEMP] select!(df, Not(:TEMP)) end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
4127
""" ARE fileformat Newmaxo ASCII Region file Example: 14 2799 925 0 0 660 0 0 0 0 0 0 0 0 0 LJ 2.799.925 2792 932 2797 943 2785.91 954.62 2780 942 2774 947 2781 957 2784 964 2784 975 2784 977 2790 974 2794 982 2790 992 2799 925 Returns dictionary with airspace description Key Name of Volume Airspace struct nb_point Contains the number of vertices of the volume bottom_fl Low level of the volume in flight level (FL). Can be 0. top_fl High level of the volume in flight level (FL). Can be 0. surface Value 2 (can be negative). Can be 0. sector_num Value 3 (can be negative). Can be 0. points Matrix with all lat/lon [deg] vertices of the volume (first/last the same) See EUROCONTROL NEST Manual sectino 9.7.6 for Are fileformat description """ module Are export read # include("utility.jl") using ..util using Format using CSV using Dates using Navigation struct Airspace nb_point::Int64 bottom_fl::Float64 top_fl::Float64 surface::Float64 sector_num::Float64 points::Matrix{Float64} box::Array{Float64, 2} end #TODO Remove open. Just use eachline function read(filename) dict = Dict{String, Airspace}() open(filename) do file j = 1 nb_point = 3 name = "" points = Matrix{Float64}(undef, 0, 2) bottom_fl = 0.0 top_fl = 0.0 surface = 0.0 sector_num = 0.0 for (i, ln) in enumerate(eachline(file)) splitline = split(ln, " ") if length(splitline) == 2 lat = parse(Float64, splitline[1]) / 60.0 lon = parse(Float64, splitline[2]) / 60.0 points = vcat(points, [lat lon]) if j == nb_point box = box_spherical_polygon(points) dict[name] = Airspace(nb_point, bottom_fl, top_fl, surface, sector_num, points, box) end j += 1 elseif length(splitline) == 15 nb_point = parse(Int64, splitline[1]) bottom_fl = parse(Float64, splitline[5]) top_fl = parse(Float64, splitline[6]) surface = parse(Float64, splitline[7]) sector_num = parse(Float64, splitline[8]) name = splitline[15] points = Matrix{Float64}(undef, 0, 2) j = 1 else end end end return dict end # function isinside(are::Airspace, point::Point) # # test if inside box # if isinsidebox(are, point) # #test if inside polygon # return NaN # else # return false # end # end function box_spherical_polygon(points::Array{Float64,2}) box = Array{Float64, 2}(undef, 2, 2) lats_max = Array{Float64,1}() lats_min = Array{Float64,1}() previous_point = Array{Float64,1}() for point in eachrow(points) if isempty(previous_point) previous_point = point else # pos₁ = Point(previous_point[1], previous_point[2]) # pos₂ = Point(point[1], point[2]) pos₁ = Point_deg(previous_point[1], previous_point[2]) pos₂ = Point_deg(point[1], point[2]) append!(lats_max, maximum(latitude_options(pos₁, pos₂))) append!(lats_min, minimum(latitude_options(pos₁, pos₂))) previous_point = point end end box[1,1] = maximum(lats_max) box[2,1] = minimum(lats_min) # Limiting longitudes box[1,2] = maximum(points[:,2]) box[2,2] = minimum(points[:,2]) return box end function latitude_options(pos₁::Point_deg, pos₂::Point_deg) bearing = Navigation.bearing(pos₁, pos₂) closest_point_deg = Navigation.closest_point_to_pole(pos₁, bearing) if Navigation.distance(pos₁, pos₂) > Navigation.distance(pos₁, closest_point_deg) return pos₁.ϕ, pos₂.ϕ, closest_point_deg.ϕ else return pos₁.ϕ, pos₂.ϕ end end # function isinsidebox(are::Airspace, point::Point) # return are.box[2,1] < point.ϕ < are.box[1,1] && are.box[2,2] < point.λ < are.box[1,2] # end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
777
""" ARP fileformat Defines the geographical location of airports used in the assignment process Example: EGSX 3103.267 9.350 EGTT_FIR EGSY 3203.650 -83.300 EGTT_FIR EGSZ 3620.000 -102.000 EGPX_FIR EGTA 3106.883 -56.550 EGTT_FIR EGTB 3096.700 -48.483 EGTT_FIR See EUROCONTROL NEST Manual sectino 9.7.7 for Arp fileformat description """ module Arp export read using CSV const fileformat = Dict(1=>String, 2=>Float64, 3=>Float64, 4=>String) const header_format = ["AIRPORT", "LAT_DEG", "LON_DEG", "FIR"] function read(file) df = CSV.read(file, types=fileformat, header=header_format, copycols=true) reformat!(df) return df end function reformat!(df) df[:,:LAT_DEG] = df[:,:LAT_DEG] / 60.0 df[:,:LON_DEG] = df[:,:LON_DEG] / 60.0 end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
2185
""" Ase fileformat ASCII Segment File Described as route network. Each line represents a route segment See EUROCONTROL NEST Manual for Ase fileformat description Ase DataFrame Column Names # Field Type Size Comment 1 :FLIGHTCOUNT Float64 normally number of flights using this route segment, could be a load 2 :SEGMENTPARITY Int64 0=NO, 1=ODD, 2=EVEN, 3=ODD_LOW, 4=EVEN_LOW, 5=ODD_HIGH, 6=EVEN_HIGH 3 :SEGMENTTYPE Int64 0=NO, 1=NORMAL, 2=ARRIVAL, 3=DEPARTURE (permanent rte segment) 20=NO, 21=NORMAL, 22=ARRIVAL, 23=DEPARTURE (CDR Generic) 40=NO, 41=NORMAL, 42=ARRIVAL, 43=DEPARTURE (CDR 1 ) 60=NO, 61=NORMAL, 62=ARRIVAL, 63=DEPARTURE (CDR 2) 80=NO, 81=NORMAL, 82=ARRIVAL, 83=DEPARTURE (CDR 3) 100=NO, 101=NORMAL, 102=ARRIVAL, 103=DEPARTURE (CDR 1+2) 120=NO, 121=NORMAL, 122=ARRIVAL, 123=DEPARTURE (CDR 1+3) 4 :LATBEGINSEGMENT_DEG Float64 5 :LONBEGINSEGMENT_DEG Float64 6 :LATENDSEGMENT_DEG Float64 7 :LONENDSEGMENT_DEG Float64 8 :SEGMENTNAME String 11 routePointNameBegin_routePointNameEnd (separator '_') %% = TBD % = TBD * = TBD """ module Ase export read using Format using CSV using Dates const fileformat = Dict(1=>Float64, 2=>Int64, 3=>Int64, 4=>Float64, 5=>Float64, 6=>Float64, 7=>Float64, 8=>String) const header_format = ["FLIGHTCOUNT", "SEGMENTPARITY", "SEGMENTTYPE", "LATBEGINSEGMENT_DEG", "LONBEGINSEGMENT_DEG", "LATENDSEGMENT_DEG", "LONENDSEGMENT_DEG", "SEGMENTNAME"] function read(file) df = CSV.read(file, delim=" ", types=fileformat, header=header_format, copycols=true) reformat!(df) return df end function reformat!(df) df[:,:LATBEGINSEGMENT_DEG] = df[:,:LATBEGINSEGMENT_DEG] / 60.0 df[:,:LONBEGINSEGMENT_DEG] = df[:,:LONBEGINSEGMENT_DEG] / 60.0 df[:,:LATENDSEGMENT_DEG] = df[:,:LATENDSEGMENT_DEG] / 60.0 df[:,:LONENDSEGMENT_DEG] = df[:,:LONENDSEGMENT_DEG] / 60.0 end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
543
""" Cost fileformat See EUROCONTROL NEST Manual for Cost fileformat description Example cost fileformat 139729486 ED 356.159 139729486 LB 230.25 139729486 LC 86.7351 139729486 LH 148.107 139729486 LO 234.767 139729486 LT 365.319 139729486 LY 190.189 """ module Cost export read using CSV const fileformat = Dict(1=>Int64, 2=>String, 3=>Float64) const header_format = ["FLIGHTID", "COUNTRYCODE", "COST"] function read(file) return CSV.read(file, delim=" ", types=fileformat, header=header_format, copycols=true) end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
775
""" Country fileformat Create the link between the country code and the country name Example: #;COUNTRY;2;446;20181206;20190102;307;EAR_P AG;Solomon Islands;N AN;Nauru;N AY;Papua New Guinea;N BG;Greenland (Denmark);N BI;Iceland;Y """ module Country export read struct CountryDc name::String member::Bool CountryDc(name, member) = new(name, member=="Y") # Country(name::AbstractString, member::Bool) = new(name, member) end function read(file) countries = Dict{String, CountryDc}() for line in eachline(file) line_elements = split(line, ';') if length(line_elements) == 3 countries[line_elements[1]] = CountryDc(line_elements[2], line_elements[3]) end end return countries end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1989
""" Crco fileformat See EUROCONTROL NEST Manual for Crco fileformat description Example CRCO fileformat ED N182QS B737 1523 3217.8167 599.3000 3018.8009 726.39836 396.03131430 090500 020322 0.000 095918 020322 270.000 LK N182QS B737 1523 3018.8009 726.3983 3019.0000 726.9864 0.78728520 095918 020322 270.000 095922 020322 270.000 LK N182QS B737 1523 3018.8009 726.3983 3019.0000 726.9864 0.78728520 111918 020322 270.000 111922 020322 270.000 ED N182QS B737 1523 3019.0000 726.9864 3217.8167 599.3000 395.93214016 111922 020322 270.000 121700 020322 0.000 """ module Crco export read # include("utility.jl") using ..util # new using Format using CSV using Dates using DataFrames const fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>Int64, 5=>Float64, 6=>Float64, 7=>Float64, 8=>Float64, 9=>Float64, 10=>String, 11=>String, 12=>Float64, 13=>String, 14=>String, 15=>Float64) const header_format = ["COUNTRYNAME", "CALLSIGN", "ACTYPE", "FLIGHTID", "LATENTRY_DEG", "LONENTRY_DEG", "LATEXIT_DEG", "LONEXIT_DEG", "DISTANCE_M", "TIMEENTRY", "DATEENTRY", "ENTRYFL", "TIMEEXIT", "DATEEXIT", "EXITFL"] const yymmddhhmmss = DateFormat("YYmmddHHMMSS") const year2000 = Year(2000) function read(file) df = CSV.read(file, types=fileformat, header=header_format, copycols=true) reformat!(df); return df end function reformat!(df) df[:,:LATENTRY_DEG] = df[:,:LATENTRY_DEG] / 60.0 df[:,:LONENTRY_DEG] = df[:,:LONENTRY_DEG] / 60.0 df[:,:LATEXIT_DEG] = df[:,:LATEXIT_DEG] / 60.0 df[:,:LONEXIT_DEG] = df[:,:LONEXIT_DEG] / 60.0 df[:,:DISTANCE_M] = df[:,:DISTANCE_M] * 1000.0 df[:,:DATETIMEENTRY] = format_datetime.(df[:,:DATEENTRY] .* df[:,:TIMEENTRY], yymmddhhmmss, addyear=year2000) df[:,:DATETIMEEXIT] = format_datetime.(df[:,:DATEEXIT] .* df[:,:TIMEEXIT], yymmddhhmmss, addyear=year2000) select!(df, Not(:TIMEENTRY)) select!(df, Not(:TIMEEXIT)) select!(df, Not(:DATEENTRY)) select!(df, Not(:DATEEXIT)) end end #module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
3678
""" The EUROCONTROL Demand Data Repository 'DDR2' provides air traffic management (ATM) actors with the most accurate picture of past and future pan-European air traffic demand (from several years ahead until the day before operation), as well as environment data, analysis reports and tools that can read and process the data. All this information is management by DDR service, a EUROCONTROL cross-unit activity, and can be accessed from the Demand Data Repository 2 'DDR2' web portal. Access to the DDR2 web portal is restricted. Access conditions apply. DDR future traffic can be forecast thanks to the knowledge of past traffic and several thousands of flight intentions provided by airlines and airports that are collected, stored, analysed and treated on a daily basis. DDR traffic forecast supports strategic, seasonal and pre-tactical planning, and also special events or major ATM evolution projects. Finally, DDR provides a refined analysis of past demand to facilitate post-operations analysis and to identify best practices for future operations. Functionality DDR2 gives access to: Past traffic data - from August 2012 till now, traffic demand, last filed flight plan traffic trajectories as well as actual trajectories are provided for past analysis; Past and Pre-OPS (one AIRAC in advance) environment data - they can be downloaded and are used internally for processing future traffic trajectories. They contain all information necessary to analyse and process sector loads, capacity bottlenecks, re-routing options, etc; Strategic traffic forecast - this covers the planning phase, from 18 months to 7 days before operations. It is used for medium- to-short-term capacity planning and seasonal planning. Users can themselves generate, with several 4D trajectory processing options, and download this type of forecast directly via the DDR2 web portal; Pre-tactical traffic forecast - it focusses on the planning phase, from 6 days to 1 day before operations. Network pre-tactical planning is supported by the NM PREDICT system and can be accessed via the DDR2 portal; NEST and SAAM tools - they can be downloaded from DDR2 Web portal and are compatible with DDR data. These tools analyse and process a great deal of information for the purpose of facilitating airspace design and capacity planning in Europe. Users The DDR addresses the needs of a wide range of users such as: air navigation service providers (ANSPs), who use it to prepare and optimise their capacity plans; airlines, who rely on it to detect flight efficiency improvement opportunities, by visualising and comparing flight plan trajectories for any period of time in the past; airspace management actors, for airspace management and coordination of the available airspace; airports, with the aim of integrating their local plans with the Network Operations Plan; the NM at central/FAB/local level. See EUROCONTROL NEST Manual Section 9.7 for fileformat descriptions """ module DDR2import include("util.jl") include("T5.jl") include("SO6.jl") include("Exp2.jl") include("Allftplus.jl") include("Ase.jl") include("Are.jl") include("Gar.jl") include("Gsl.jl") include("Frp.jl") include("Sls.jl") include("Sid.jl") include("Star.jl") include("Spc.jl") include("Mot.jl") include("Narp.jl") include("Nnpt.jl") include("Ntfv.jl") include("Cost.jl") include("Crco.jl") include("Ur.jl") include("Arp.jl") include("Country.jl") include("Operator.jl") include("Routes.jl") include("Runway.jl") include("For.jl") end # module #TODO Add tests for last element in test files.
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
13554
""" EXP2 fileformat See EUROCONTROL NEST Manual for EXP2 fileformat description Exp2 DataFrame Column Names # CellName Field Type Comment 1 :ADEP origin String ICAO code (airport) 2 :ADES destination String ICAO code (airport) 4 :ACTYPE String 5 :RFL RFL Int64 Requested Flight Level 6 :ZONE_ORIG zone origin String ICAO code (could be the same as airport) 7 :ZONE_DEST zone destin String ICAO code (could be the same as airport) 8 :FLIGHT_ID flight ID Int64 SAMAD ID or SAAM ID or ... (must be unique) 9 :ETD_DATETIME DateTime Estimated Time and Date of Departure 11 :ETA_DATETIME DateTime Estimated Time and Date of Arrival (Not used = !!!!) 12 :CALLSIGN String Char <= 7 13 :COMPANY String Generally the 3 first letters of the callsign 15 :UUID Universal Unique ID String CALLSIGN-ADEP-ADES-EOBD-EOBT 16 :FIPS_CLONED Fips cloned String Y/N 18 :FLIGHT_SAAM_ID Flight SAAM ID Int64 Unique for the day 19 :FLIGHT_SAMAD_ID Flight SAMAD ID Int64 Unique for ever 20 :TACT_ID Int64 CFMU ID: Check with TACTID on ALL-FT 21 :SSR_CODE String plan identifiant (12bits mode A), Secondary Surveillance Rader 22 :REGISTRATION String 23 :PTD_DATETIME DateTime Planned Date and Time Departure 25 :ATFM_DELAY Air Traffic Flow Management Delay: Difference between calculated by CASA take off time (CTOT) and estimated take off time (ETOT) 26 :REROUTING_STATE String 27 :MOST_PEN_REG String Most penelizing regulation. If no regulation 'X' is present: Check with mostPenalizingRegulationID 28 :TYPE_OF_FLIGHT String Letters indicating type of flight (military ?) 29 :EQUIPMENT String Letters indicating equipment of flight 30 :ICAO_EQUIP String 31 :COM_EQUIP String 32 :NAV_EQUIP String 33 :SSR_EQUIP String Secondary Surveillance Radar equipment 34 :SURVIVAL_EQUIP String 35 :PERSONS_ON_BOARD Int64 0 means no information 36 :TOP_FL Int64 37 :MAX_RFL Int64 Requested Flight Level 38 :FLT_PLN_SOURCE String 40 :AOBT DateTime Actual Of Block in Time 41 :IFPSID String Prisme (Integrated Initial Flight Plan Processing System) 42 :IOBT DateTime Initial Of Block in Time | FLF (planned time departure) 43 :ORIGFLIGHTDATAQUALITY String NON, PFD, RPL, FPL 44 :FLIGHTDATAQUALITY String FLF (flt plan source), NON, PFD, RPL, FPL 45 :SOURCE String UNK, FPL, RPL, AFI, MFS, FNM, AFP, DIV 46 :EXEMPTREASON String NEXE, EMER, SERE, HEAD, AEAP, empty 47 :EXEMPTREASONDIST String NEXE, LONG, empty .Note in NEST the flight exemption is limited to exempted or not exempted states. Not exempted corresponds to NEXT in fields 46 and 47. All other values correspon to exempted. During export, NEST writes empty fields in 46 and 47 for exempted flights. 48 :LATEFILER String Y/N 49 :LATEUPDATER String Y/N 50 :NORTHATLANTIC String Y/N 51 :COBT DateTime Computed Of Block in Time 52 :EOBT DateTime Estimate Of Block in Time 53 :FLIGHTSTATE String NE, PL, PS, PR, SR, FI, FS, SI, TA, AA, CA, TE 54 :PREV2ACTIVATIONFLIGHTSTATE String NE, PL, PS, PR, SR, FI, FS, SI, TA, AA, CA, TE 55 :SUSPENSIONSTATUS String NS, ST, SM, RC, TV, NR, RV 57 :SAMCTOT DateTime 58 :SAMSENT String Y/N 59 :SIPCTOT DateTime 60 :SIPSENT String Y/N 61 :SLOTFORCED String Y/N 62 :MOSTPENALIZINGREGID String Is it the same as most pen reg on FLF 63 :REGAFFECTEDBYNROFINST Int64 64 :EXCLFROMNROFINST Int64 65 :LASTRECEIVEDATFMMESSAGETITLE String DES, ERR, FCM, FUM, FLS, REA, RFI, RJT, RRN, RRP, SAM, SIP, SLC, SMM, SPA, SRJ, SRM, SWM, UNK 66 :LASTRECEIVEDMESSAGETITLE String ABI, ACH, ACT, APL, ARR, CAN, CHG, CNL, DEP, DLA, ERR, EST, FPL, FSA, MFS, PAC, PFD, RPL, UNK 67 :LASTSENTATFMMESSAGETITLE String DES, ERR, FCM, FUM, FLS, REA, RFI, RJT, RRN, RRP, SAM, SIP, SLC, SMM, SPA, SRJ, SRM, SWM, UNK 68 :MANUALEXEMPREASON String N/S/R 69 :SENSITIVEFLIGHT String Y/N 70 :READYFORIMPROVEMENT String Y/N 71 :READYFORDEP String Y/N 72 :REVISEDTAXITIME Int64 0..999999 73 :TIS Int64 Time to intert the sequence, 0..999999 74 :TRS Int64 Time to remove the sequence, 0..999999 75 :TOBESENTSLOTMESSAGE String Related to flight progress, ABI, ACH, ACT, APL, ARR, CAN, CHG, CNL, DEP, DLA, ERR, EST, FPL, FSA, MFS, PAC, PFD, RPL, UNK 76 :TOBESENTPROPMESSAGETITLE String Related to flight progress, ABI, ACH, ACT, APL, ARR, CAN, CHG, CNL, DEP, DLA, ERR, EST, FPL, FSA, MFS, PAC, PFD, RPL, UNK 77 :LASTSENTSLOTMESSAGETITLE String Related to flight progress, ABI, ACH, ACT, APL, ARR, CAN, CHG, CNL, DEP, DLA, ERR, EST, FPL, FSA, MFS, PAC, PFD, RPL, UNK 78 :LASTSENTPROPMESSAGETITLE String Related to flight progress, ABI, ACH, ACT, APL, ARR, CAN, CHG, CNL, DEP, DLA, ERR, EST, FPL, FSA, MFS, PAC, PFD, RPL, UNK 79 :LASTSENTSLOTMESSAGE DateTime Related to flight progress 80 :LASTSENTPROPMESSAGE DateTime Related to flight progress 81 :FLIGHTCOUNTOPTION String Indicates which flight plan should be / has been ussed when doing flight/count related operations. Used in TACT queries and replies P,N 82 :NORMALFLIGHTTACT_ID Int64 83 :PROPFLIGHTTACT_ID Int64 84 :OPERATINGACOPERICAOID String 85 :REROUTINGWHY String N/M/C/A/O 86 :REROUTINGLFIGHTSTATE String P/E/T/R/V/N 87 :RVR Int64 88 :FTFMAIRAC Int64 Filed traffic flight model (TFM=Profile) airac.. 89 :FTFMENVBASELINENUM Int64 Filed traffic flight model (TFM=Profile) env.. 90 :RTFMAIRAC Int64 Regulated traffic flight model (TFM=Profile) airac.. 91 :RTFMENVBASELINENUM Int64 Regulated traffic flight model (TFM=Profile) env.. 92 :CTFMAIRAC Int64 Computer traffic flight model (TFM=Profile) airac.. 93 :CTFMENVBASELINENUM Int64 Computer traffic flight model (TFM=Profile) env.. 94 :LASTRECEIVEDPROGRESSMESSAGE String DPI, EMPTY, SIZE """ module Exp2 export read #TODO Keep unused fields? using ..util # new using Format using CSV using Dates using DataFrames const exp2_fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>String, 5=>Int64, 6=>String, 7=>String, 8=>Int64, 9=>String, 10=>String, 11=>String, 12=>String, 13=>String, 14=>Int64, 15=>String, 16=>String, 17=>Int64, 18=>Int64, 19=>Int64, 20=>Int64, 21=>String, 22=>String, 23=>String, 24=>String, 25=>Int64, 26=>String, 27=>String, 28=>String, 29=>String, 30=>String, 31=>String, 32=>String, 33=>String, 34=>String, 35=>Int64, 36=>Int64, 37=>Int64, 38=>String, 39=>Int64, 40=>String, 41=>String, 42=>String, 43=>String, 44=>String, 45=>String, 46=>String, 47=>String, 48=>String, 49=>String, 50=>String, 51=>String, 52=>String, 53=>String, 54=>String, 55=>String, 56=>Int64, 57=>String, 58=>String, 59=>String, 60=>String, 61=>String, 62=>String, 63=>Int64, 64=>Int64, 65=>String, 66=>String, 67=>String, 68=>String, 69=>String, 70=>String, 71=>String, 72=>Int64, 73=>Int64, 74=>Int64, 75=>String, 76=>String, 77=>String, 78=>String, 79=>String, 80=>String, 81=>String, 82=>Int64, 83=>Int64, 84=>String, 85=>String, 86=>String, 87=>Int64, 88=>Int64, 89=>Int64, 90=>Int64, 91=>Int64, 92=>Int64, 93=>Int64, 94=>String, 95=>Int64) const header_format = ["ADEP", "ADES", "NOT_USED1", "ACTYPE", "RFL", "ZONE_ORIG", "ZONE_DEST", "FLIGHT_ID", "DEP_DATE", "DEP_TIME", "ARR_TIME", "CALLSIGN", "COMPANY", "SEPARATOR1", "UUID", "FIPS_CLONED", "SEPARATOR2", "FLIGHT_SAAM_ID", "FLIGHT_SAMAD_ID", "TACT_ID", "SSR_CODE", "REGISTRATION", "PLAN_DEP_DATE", "PLAN_DEP_TIME", "ATFM_DELAY", "REROUTING_STATE", "MOST_PEN_REG", "TYPE_OF_FLIGHT", "EQUIPMENT", "ICAO_EQUIP", "COM_EQUIP", "NAV_EQUIP", "SSR_EQUIP", "SURVIVAL_EQUIP", "PERSONS_ON_BOARD", "TOP_FL", "MAX_RFL", "FLT_PLN_SOURCE", "SEPARATOR3", "AOBT", "IFPSID", "IOBT", "ORIGFLIGHTDATAQUALITY", "FLIGHTDATAQUALITY", "SOURCE", "EXEMPTREASON", "EXEMPTREASONDIST", "LATEFILER", "LATEUPDATER", "NORTHATLANTIC", "COBT", "EOBT", "FLIGHTSTATE", "PREV2ACTIVATIONFLIGHTSTATE", "SUSPENSIONSTATUS", "TACT_ID_DUPLICATE", "SAMCTOT", "SAMSENT", "SIPCTOT", "SIPSENT", "SLOTFORCED", "MOSTPENALIZINGREGID", "REGAFFECTEDBYNROFINST", "EXCLFROMNROFINST", "LASTRECEIVEDATFMMESSAGETITLE", "LASTRECEIVEDMESSAGETITLE", "LASTSENTATFMMESSAGETITLE", "MANUALEXEMPREASON", "SENSITIVEFLIGHT", "READYFORIMPROVEMENT", "READYFORDEP", "REVISEDTAXITIME", "TIS", "TRS", "TOBESENTSLOTMESSAGE", "TOBESENTPROPMESSAGETITLE", "LASTSENTSLOTMESSAGETITLE", "LASTSENTPROPMESSAGETITLE", "LASTSENTSLOTMESSAGE", "LASTSENTPROPMESSAGE", "FLIGHTCOUNTOPTION", "NORMALFLIGHTTACT_ID", "PROPFLIGHTTACT_ID", "OPERATINGACOPERICAOID", "REROUTINGWHY", "REROUTINGLFIGHTSTATE", "RVR", "FTFMAIRAC", "FTFMENVBASELINENUM", "RTFMAIRAC", "RTFMENVBASELINENUM", "CTFMAIRAC", "CTFMENVBASELINENUM", "LASTRECEIVEDPROGRESSMESSAGE", "SEPARATOR4"] const yymmdd = DateFormat("YYmmdd") const hhmm = DateFormat("HHMM") const yyyymmddhhmmss = DateFormat("YYYYmmddHHMMSS") const yymmddhhmm = DateFormat("YYmmddHHMM") const year2000 = Year(2000) function read(file) df = CSV.read(file, delim=";", types=exp2_fileformat, header=header_format, copycols=true) reformat!(df); return df end function eta_datetime(eta_time::String, etd_datetime::DateTime) eta_time_type = format_time(eta_time, hhmm) eta_datetime = "" if eta_time_type === missing return missing else eta_datetime = Date(etd_datetime) + eta_time_type end if eta_datetime === missing return missing elseif eta_datetime < etd_datetime return eta_datetime + Dates.Day(1) else eta_datetime end end function reformat_exp!(df) df[:,:ETD_DATETIME] = format_datetime.(df[:,:DEP_DATE] .* df[:,:DEP_TIME], yymmddhhmm, addyear=year2000) df[:,:ETA_DATETIME] = eta_datetime.(df[:,:ARR_TIME], df[:,:ETD_DATETIME]) end function reformat_flf!(df) df[:,:PTD_DATETIME] = format_datetime.(df[:,:PLAN_DEP_DATE] .* df[:,:PLAN_DEP_TIME], yymmddhhmm, addyear=year2000) end function reformat_allft!(df) df[:,:TEMP] = format_datetime.(df[:,:AOBT], yyyymmddhhmmss) select!(df, Not(:AOBT)) df[:,:AOBT] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:IOBT], yyyymmddhhmmss) select!(df, Not(:IOBT)) df[:,:IOBT] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:COBT], yyyymmddhhmmss) select!(df, Not(:COBT)) df[:,:COBT] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_datetime.(df[:,:EOBT], yyyymmddhhmmss) select!(df, Not(:EOBT)) df[:,:EOBT] = df[:,:TEMP] select!(df, Not(:TEMP)) end function remove_unused!(df) select!(df,[:ADEP, :ADES, :ACTYPE, :RFL, :ZONE_ORIG, :ZONE_DEST, :FLIGHT_ID, :ETD_DATETIME, :ETA_DATETIME, :CALLSIGN, :COMPANY, :UUID, :FIPS_CLONED, :FLIGHT_SAAM_ID, :FLIGHT_SAMAD_ID, :TACT_ID, :SSR_CODE, :REGISTRATION, :PTD_DATETIME, :ATFM_DELAY, :REROUTING_STATE, :MOST_PEN_REG, :TYPE_OF_FLIGHT, :EQUIPMENT, :ICAO_EQUIP, :COM_EQUIP, :NAV_EQUIP, :SSR_EQUIP, :SURVIVAL_EQUIP, :PERSONS_ON_BOARD, :TOP_FL, :MAX_RFL, :FLT_PLN_SOURCE, :AOBT, :IFPSID, :IOBT, :ORIGFLIGHTDATAQUALITY, :FLIGHTDATAQUALITY, :SOURCE, :EXEMPTREASON, :EXEMPTREASONDIST, :LATEFILER, :LATEUPDATER, :NORTHATLANTIC, :COBT, :EOBT, :FLIGHTSTATE, :PREV2ACTIVATIONFLIGHTSTATE, :SUSPENSIONSTATUS, :SAMCTOT, :SAMSENT, :SIPCTOT, :SIPSENT, :SLOTFORCED, :MOSTPENALIZINGREGID, :REGAFFECTEDBYNROFINST, :EXCLFROMNROFINST, :LASTRECEIVEDATFMMESSAGETITLE, :LASTRECEIVEDMESSAGETITLE, :LASTSENTATFMMESSAGETITLE, :MANUALEXEMPREASON, :SENSITIVEFLIGHT, :READYFORIMPROVEMENT, :READYFORDEP, :REVISEDTAXITIME, :TIS, :TRS, :TOBESENTSLOTMESSAGE, :TOBESENTPROPMESSAGETITLE, :LASTSENTSLOTMESSAGETITLE, :LASTSENTPROPMESSAGETITLE, :LASTSENTSLOTMESSAGE, :LASTSENTPROPMESSAGE, :FLIGHTCOUNTOPTION, :NORMALFLIGHTTACT_ID, :PROPFLIGHTTACT_ID, :OPERATINGACOPERICAOID, :REROUTINGWHY, :REROUTINGLFIGHTSTATE, :RVR, :FTFMAIRAC, :FTFMENVBASELINENUM, :RTFMAIRAC, :RTFMENVBASELINENUM, :CTFMAIRAC, :CTFMENVBASELINENUM, :LASTRECEIVEDPROGRESSMESSAGE]) end function reformat!(df) reformat_exp!(df) reformat_flf!(df) reformat_allft!(df) remove_unused!(df) end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1016
""" For fileformat MTF forecasting file Example: RANK;Dep;Des;2017;2018;2019;2020;2021;2022;2023;2024 Base;ALANDISLANDS;BELARUS;0.002739726;0.000362248;0.000781042;0.000861343;0.000887779;0.00103794;0.001057792;0.000948328 Base;ALANDISLANDS;DENMARK;0.008219178;0.007356467;0.01588544;0.015864169;0.01588544;0.01588544;0.01588544;0.015864169 Base;ALANDISLANDS;ESTONIA;0.010958904;0.003430455;0.004855271;0.004871514;0.004855271;0.004855271;0.004855271;0.004871514 Base;ALANDISLANDS;FINLAND;2.536986301;2.813270647;2.762885585;2.822041934;2.882595408;2.943180367;3.004312251;3.065653134 """ module For export read using CSV # using DataFrames # const fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>String, # 5=>String, 6=>String, 7=>Int64, 8=>Int64, 9=>Int64, 10=>String) # const header_format = ["DATEACTIVE", "AIRPORT", "RWY", "TIMEOPEN", # "TIMECLOSED", "YN", "NUM1", "NUM2", "NUM3", "T"] function read(file) df = CSV.read(file, delim=';', header=1, copycols=true) return df end end # Module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
4045
""" FRP fileformat Used for generating Free Route segments See EUROCONTROL NEST Manual for Frp fileformat description Output: TBD Frp fileformat example ALBANIA EX DIMIS N400421 E0203541 ALBANIA EX DOBAR N411958 E0202941 ALBANIA EX GOKEL N403554 E0190000 ALBANIA EX MAVAR N414012 E0203148 ALBANIA EX PAPIZ N405330 E0185706 ALBANIA EX PINDO N402851 E0205721 ALBANIA EX RETRA N421342 E0192006 ALBANIA EX RODON N412730 E0190600 ALBANIA E PETAK N414631 E0191850 ALBANIA A PETAK LATI ALBANIA E AKIKA N423203 E0193614 ALBANIA E NIKRO N393957 E0200712 ALBANIA E TUMBO N400402 E0202822 ALBANIA E VJOSA N395855 E0202329 ALBANIA X ALELU N422845 E0195102 ALBANIA X EBELA N411136 E0185432 ALBANIA X PITAS N395400 E0195040 ALBANIA I DIRES N410328 E0191133 ALBANIA AD DIRES LATI ALBANIA I DITAN N405644 E0191813 ALBANIA AD DITAN LATI ALBANIA I ELBAK N405151 E0200452 ALBANIA AD ELBAK LATI ALBANIA I INLOT N415847 E0192711 ALBANIA AD INLOT LATI ALBANIA I ODRAS N413335 E0201027 ALBANIA AD ODRAS LATI ALBANIA I RINAV N415901 E0194718 ALBANIA D RINAV LATI ALBANIA I ADDER N403126 E0201817 ALBANIA I GRIBA N402830 E0193712 ALBANIA I MAGGI N411103 E0192236 ALBANIA I NURSO N403956 E0203217 ALBANIA I OVVER N403230 E0200046 ALBANIA I TR N412748 E0194251 ALBANIA I UMRES N412610 E0192553 ALBANIA I UNASA N412642 E0191801 ALBANIA I UNDER N410405 E0195651 ALBANIA I VALIN N411104 E0194600 ALBANIA I VOLBI N413855 E0194122 """ module Frp export read using ..util struct FreeRoutePoint type::AbstractString name::AbstractString # point::Union{Point, AbstractString, Missing} point::Union{Point_deg, AbstractString, Missing} end struct FreeRouteAirports type::AbstractString name::AbstractString airports::Vector{String} end struct FreeRouteArea freeroutepoints::Vector{FreeRoutePoint} freerouteairports::Vector{FreeRouteAirports} end function read(file) freerouteareas = Dict{String, FreeRouteArea}() freerouteareaname = "" freeroutepoints = Vector{FreeRoutePoint}() freerouteairports = Vector{FreeRouteAirports}() lines = sort(readlines(file)) for line in lines line_elements = split(line, ' ') if line_elements[1] != freerouteareaname # new freeroutearea if freerouteareaname != "" freerouteareas[freerouteareaname] = FreeRouteArea( freeroutepoints, freerouteairports) end freerouteareaname = line_elements[1] freeroutepoints = Vector{FreeRoutePoint}() freerouteairports = Vector{FreeRouteAirports}() end if line_elements[2] in ["E", "X", "EX", "I", "EI", "XI", "EXI"] point_type = convert(String, line_elements[2]) point_name = convert(String, line_elements[3]) if length(line_elements) > 4 point = latlon(line_elements[4], line_elements[5]) elseif length(line_elements) > 3 # println(line_elements) point = line_elements[4] else # println(line_elements) point = missing end freeroutepoints = vcat(freeroutepoints, FreeRoutePoint(point_type, point_name, point)) elseif line_elements[2] in ["D", "A", "AD"] point_type = convert(String, line_elements[2]) point_name = convert(String, line_elements[3]) airports = Vector{String}() if length(line_elements) ≤ 3 elseif length(line_elements) == 4 airports = [convert(String, line_elements[4])] else for airport in line_elements[4:end] airports = vcat(airports, convert(String, airport)) end end freerouteairports = vcat(freerouteairports, FreeRouteAirports(point_type, point_name, airports)) else end end freerouteareas[freerouteareaname] = FreeRouteArea( freeroutepoints, freerouteairports) return freerouteareas end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1180
""" GAR fileformat See EUROCONTROL NEST Manual for Gar fileformat description Dictionary with point list (latitude + longitude [deg]) for each airblock ID (key) """ module Gar export read using Format using CSV const fileformat = Dict(1=>String, 2=>String, 3=>String) const header_format = ["AorP", "LAT_DEG", "LON_DEG"] function read(file) csviterator = CSV.File(file, delim=";", types=fileformat, header=header_format, datarow=2) return splitintodict(csviterator) end function splitintodict(iterator) dict = Dict{String, Matrix{Float64}}() points = Matrix{Float64}(undef, 0, 2) j = 1 n_points = 1000 airblockname = "" for (i, row) in enumerate(iterator) if row.AorP == "P" points = vcat(points,[parse(Float64, row.LAT_DEG) parse(Float64, row.LON_DEG)]) if j == n_points dict[airblockname] = points end j += 1 elseif row.AorP == "A" airblockname = row.LAT_DEG n_points = parse(Int64, row.LON_DEG) points = Matrix{Float64}(undef, 0, 2) j = 1 else end end return dict end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
2394
""" GSL fileformat Describes how elementary sectors are built from airblocks (GAR) See EUROCONTROL NEST Manual for Gsl fileformat description Output: Sectors dictionary with the following elements: * ID Sector ID String * Name Sector name String * Category Airspace category String Single character * Type Sectory typeassert String FIR=Flight Information Region, ERSA=Elementary Restricted Airspace, ES=Elementary Sector ERAS=Elementary Regulated Airspace UNK=Unknown type * Airblocks Vector{Airblock} Airblocks struct with the following elements: * Name Airblock name * LowerFL Lower flight level Int64 * UpperFL Upper flight level Int64 GSL fileformat example 4 S;BALTIC;;1;_;ES A;BALTIC;+;0;999 S;BGGLFIR;SONDRESTROM FIR;1;_;FIR A;002BG;+;0;999 S;BIFAROER;FAEROER CTA;1;_;FIR A;011BI;+;0;200 S;BIRD;_;9;_;FIR A;001BI;+;0;999 A;002BI;+;0;999 A;003BI;+;0;999 A;004BI;+;0;999 A;011BI;+;200;999 A;100BI;+;0;999 A;104BI;+;0;999 A;107BI;+;0;999 A;108BI;+;0;999 """ module Gsl export read struct Airblock Name::String LowerFL::Int64 UpperFL::Int64 end struct Sector ID::String Name::String Category::String Type::String Airblocks::Vector{Airblock} end function read(file) sectors = Dict{String, Sector}() id = "" sname = "" category = 0 type = "" airblocks = Vector{Airblock}() for line in eachline(file) line_elements = split(line, ';') if line_elements[1] == "S" if id != "" sectors[id] = Sector(id, sname, category, type, airblocks) end id = line_elements[2] sname = line_elements[3] category = line_elements[5] type = line_elements[6] airblocks = Vector{Airblock}() elseif line_elements[1] == "A" aname = line_elements[2] lowerfl = parse(Int64, line_elements[4]) upperfl = parse(Int64, line_elements[5]) airblock = Airblock(aname, lowerfl, upperfl) airblocks = vcat(airblocks, airblock) end end sectors[id] = Sector(id, sname, category, type, airblocks) return sectors end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
2518
""" Mot fileformat Militairy opening times for usage with route choices See EUROCONTROL NEST Manual for Mot fileformat description Output: Mot fileformat example 1 MIL1 1000 1200 1 MIL1 1400 1700 1 MIL2 0900 1300 1 MIL3 1100 1300 1 MIL4 0900 1800 2 MIL1 1000 1200 055 245 2 MIL1 1400 1700 085 285 2 MIL2 0900 1300 000 600 2 MIL3 1100 1300 125 245 2 MIL4 0900 1800 000 285 3 ED 2200 0500 EX 3 LF 2300 0600 EX 3 LI 2200 0500 E """ module Mot using ..util using Dates export read const hhmm = DateFormat("HHMM") struct OnlyTime begintime::Union{Time, Missing} endtime::Union{Time, Missing} end struct TimeLevel begintime::Union{Time, Missing} endtime::Union{Time, Missing} lowerFL::Int64 upperFL::Int64 end struct TimeType begintime::Union{Time, Missing} endtime::Union{Time, Missing} type::String end struct OpeningTimes onlytimes::Vector{OnlyTime} timelevels::Vector{TimeLevel} timetypes::Vector{TimeType} end function read(file) militairyzones = Dict{String, OpeningTimes}() onlytimes = Vector{OnlyTime}() timelevels = Vector{TimeLevel}() timetypes = Vector{TimeType}() for line in eachline(file) line_elements = split(line) if length(line_elements) > 3 begintime = format_time.(line_elements[3], hhmm) endtime = format_time.(line_elements[4], hhmm) if haskey(militairyzones, line_elements[2]) openingtimes = militairyzones[line_elements[2]] onlytimes = openingtimes.onlytimes timelevels = openingtimes.timelevels timetypes = openingtimes.timetypes else onlytimes = Vector{OnlyTime}() timelevels = Vector{TimeLevel}() timetypes = Vector{TimeType}() end if line_elements[1] == "1" onlytimes = vcat(onlytimes, OnlyTime(begintime, endtime)) elseif line_elements[1] == "2" lowerFL = parse(Int64, line_elements[5]) upperFL = parse(Int64, line_elements[6]) timelevels = vcat(timelevels, TimeLevel(begintime, endtime, lowerFL, upperFL)) elseif line_elements[1] == "3" timetypes = vcat(timetypes, TimeType(begintime, endtime, line_elements[5])) else end militairyzones[line_elements[2]] = OpeningTimes(onlytimes, timelevels, timetypes) end end return militairyzones end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1867
""" NARP fileformat See EUROCONTROL NEST Manual for NARP fileformat description Example Narp file format 8214 AGGA;AUKI/GWAUNARU'U;-8.6983333333;160.6783333333;0;0;0;0 AGGE;BALALAE;-6.9833333333;155.8850000000;0;0;0;0 AGGH;HONIARA/HENDERSON;-9.4316666667;160.0533333333;0;0;0;0 AGGJ;AVU AVU;-9.8683333333;160.4100000000;0;0;0;0 AGGK;KIRA KIRA;-10.4500000000;161.8966666667;0;0;0;0 AGGL;GRACIOSA BAY;-10.7233333333;165.7800000000;0;0;0;0 AGGM;MUNDA;-8.3250000000;157.2633333333;0;0;0;0 AGGN;GIZO/NUSATAPE;-8.1016666667;156.8350000000;0;0;0;0 AGGP;PARASI;-9.6416666667;161.4252777778;0;0;0;82 """ module Narp export read using Format using CSV using Dates using DataFrames const fileformat = Dict(1=>String, 2=>String, 3=>Float64, 4=>Float64, 5=>String, 6=>String, 7=>String, 8=>String) const header_format = ["AIRPORT_ID", "AIRPORT_NAME", "LAT_DEG", "LON_DEG", "TIS", "TRS", "TAXITIME", "ALTITUDE_FL"] function read(file) df = CSV.read(file, delim=";", types=fileformat, header=header_format, copycols=true, datarow=2) reformat!(df) return df end function reformat!(df) df[:,:TEMP] = string2int.(df[:,:TIS]) select!(df, Not(:TIS)) df[:,:TIS] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = string2int.(df[:,:TRS]) select!(df, Not(:TRS)) df[:,:TRS] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = string2int.(df[:,:TAXITIME]) select!(df, Not(:TAXITIME)) df[:,:TAXITIME] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = string2int.(df[:,:ALTITUDE_FL]) select!(df, Not(:ALTITUDE_FL)) df[:,:ALTITUDE_FL] = df[:,:TEMP] select!(df, Not(:TEMP)) end function string2int(str::String) maybeint = tryparse(Int, str) if maybeint == nothing return missing elseif str == "" return missing else return maybeint end end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1345
""" NNPT fileformat See EUROCONTROL NEST Manual for NNPT fileformat description Example NNPT file format 17189 *01BP;DB;47.6513888888889;19.1944444444444;_ *01DC;DB;47.57;21.7191666666667;_ *01RD;DB;52.1555555555556;4.78694444444444;_ *02BP;DB;47.3927777777778;19.5241666666667;_ *02DC;DB;47.3327777777778;21.5022222222222;_ *03BP;DB;47.1725;19.6636111111111;_ *03DC;DB;47.3191666666667;21.6580555555556;_ *03RD;DB;52.0022222222222;4.57416666666667;_ *04BP;DB;47.2441666666667;19.7613888888889;_ *04DC;DB;47.3402777777778;21.7294444444444;_ *04RD;DB;51.8711111111111;4.55694444444444;_ *05BP;DB;47.7327777777778;18.7886111111111;_ """ module Nnpt export read using Format using CSV using Dates using DataFrames const fileformat = Dict(1=>String, 2=>String, 3=>Float64, 4=>Float64, 5=>String) const header_format = ["NAV_ID", "NAV_TYPE", "LAT_DEG", "LON_DEG", "NAV_NAME"] function read(file) df = CSV.read(file, delim=";", types=fileformat, header=header_format, copycols=true, datarow=2) reformat!(df) return df end function reformat!(df) df[:,:TEMP] = stringreformat.(df[:,:NAV_NAME]) select!(df, Not(:NAV_NAME)) df[:,:NAV_NAME] = df[:,:TEMP] select!(df, Not(:TEMP)) end function stringreformat(str::String) if str == "_" return missing else return str end end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
3191
""" NTFV fileformat See EUROCONTROL NEST Manual for Ntfv fileformat description Example Ntfv fileformat #;TRAFFIC_VOLUME;2;383;20140206;20140305;7799;EAR_P T;ABSON;ABSON FLOWS;_;UKLVCTA;AS;G;5 F;BUK>AB;IN F;BUK>AG;IN F;DIB>AB;IN F;INR>AB;IN F;INR>AG;IN T;AERODS1;EDNY ARRS VIA EDGGADS;_;EDGGADS;AS;G;1 F;>EDNY;IN T;AERODS2;EDNY DEPS VIA EDGGADS;_;EDGGADS;AS;G;1 F;EDNY>;IN ;EX """ module Ntfv export read struct Airblock name::String upperFL::String end struct Trafficvolume name::String category::String reflocname::String refloctype::String reflocrole::String airblocks::Vector{Airblock} end function read(file) trafficvolumes = Dict{String, Trafficvolume}() airblocks = Vector{Airblock}() tv_id = "" tv_name = "" category = "" reflocname = "" refloctype = "" reflocrole = "" for line in eachline(file) line_elements = split(line, ';') if line_elements[1] == "T" if tv_id != "" trafficvolumes[tv_id] = Trafficvolume(tv_name, category, reflocname, refloctype, reflocrole, airblocks) airblocks = Vector{Airblock}() end tv_id = line_elements[2] tv_name = line_elements[3] category = line_elements[4] reflocname = line_elements[5] refloctype = line_elements[6] reflocrole = line_elements[7] elseif line_elements[1] == "F" airblocks = vcat(airblocks, Airblock(line_elements[2], line_elements[3])) end end trafficvolumes[tv_id] = Trafficvolume(tv_name, category, reflocname, refloctype, reflocrole, airblocks) return trafficvolumes end # # function splitintodict(iterator) # dict = Dict{String, Trafficvolume}() # airblocks = Vector{Airblock}(undef, 0) # j = 1 # n_flowelements = j+2 # trafficvolumeid = "" # trafficvolumename = "" # trafficvolumecategory = "" # reflocname = "" # refloctype = "" # reflocrole = "" # for (i, row) in enumerate(iterator) # if row.TorF == "F" # airblocks = vcat(airblocks, Airblock(row.ID, row.NAME)) # if n_flowelements == j # dict[trafficvolumeid] = Trafficvolume(trafficvolumeid, # trafficvolumename, trafficvolumecategory, reflocname, # refloctype, reflocrole, n_flowelements, airblocks) # end # j += 1 # elseif row.TorF == "T" # trafficvolumeid = row.ID === missing ? "" : row.ID # trafficvolumename = row.NAME === missing ? "" : row.NAME # trafficvolumecategory = row.CATEGORY === missing ? "" : row.CATEGORY # reflocname = row.REFLOCNAME === missing ? "" : row.REFLOCNAME # refloctype = row.REFLOCTYPE === missing ? "" : row.REFLOCTYPE # reflocrole = row.REFLOCROLE === missing ? "" : row.REFLOCROLE # n_flowelements = parse(Int64, row.N_FLOWELEMENTS) # airblocks = Vector{Airblock}(undef, 0) # j = 1 # else # end # end # return dict # end end # module"
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1463
""" Operator fileformat Create the link between the ICAO operator code, the operator name, and the country of origin Example: #;OPERATOR;1;446;20181206;20190102;6478;EAR_P AAA;ANSETT AUSTRALIA HOLDINGS LTD;ANSETT;AU;AUSTRALIA;19000101;21001231 AAB;ABELAG AVIATION;ABG;BE;BELGIUM;19000101;21001231 AAC;ARMY AIR CORPS;ARMYAIR;GB;UNITED KINGDOM;19000101;21001231 AAD;AERO AVIATION CENTRE LTD.;SUNRISE;CA;CANADA;19000101;21001231 AAE;EXPRESS AIR, INC. (PHOENIX, AZ);ARIZONA;US;UNITED STATES;19000101;21001231 AAF;AIGLE AZUR;AIGLE AZUR;FR;FRANCE;19000101;21001231 AAG;AIR ATLANTIQUE;ATLANTIC;GB;UNITED KINGDOM;20150101;21001231 """ module Operator export read using Dates struct OperatorICAO name::String callsign::String countryid::String country::String startdate::Date enddate::Date function OperatorICAO(name, callsign, countryid, country, startdate, enddate) sd = Date(startdate, "YYYYmmdd") ed = Date(enddate, "YYYYmmdd") new(name, callsign, countryid, country, sd, ed) end end function read(file) operators = Dict{String, OperatorICAO}() for line in eachline(file) line_elements = split(line, ';') if length(line_elements) == 7 operators[line_elements[1]] = OperatorICAO(line_elements[2], line_elements[3], line_elements[4], line_elements[5], line_elements[6], line_elements[7]) end end return operators end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1450
""" Routes fileformat Example: #;ROUTES;3;446;20181206;20190102;8;EAR_P L;ABIRO1AGMTT;AP;999999999999;000000000000;ABIRO;SP;1 L;ABIRO1AGMTT;AP;999999999999;000000000000;*2TNG;DBP;2 L;ABIRO1DGMTT;DP;999999999999;000000000000;*TAN3;DBP;1 L;ABIRO1DGMTT;DP;999999999999;000000000000;ABIRO;SP;2 L;ABIRO2AGMTT;AP;999999999999;000000000000;ABIRO;SP;1 L;ABIRO2AGMTT;AP;999999999999;000000000000;*2TNG;DBP;2 L;ABIRO2DGMTT;DP;999999999999;000000000000;*1TNG;DBP;1 L;ABIRO2DGMTT;DP;999999999999;000000000000;ABIRO;SP;2 """ module Routes export read struct RoutePoint wp::String location_type::String end struct Route type::String route::Vector{RoutePoint} end function read(file) routes = Dict{String, Route}() name = "" type = "" route = Vector{RoutePoint}() for route_line in eachline(file) split_route = split(route_line, ';') if split_route[1] == "L" if split_route[2] != name # Create route if split_route[2] != "" routes[name] = Route(type, route) end name = split_route[2] type = split_route[3] route = Vector{RoutePoint}() end route = vcat(route, RoutePoint(split_route[6], split_route[7])) else # Initial line end end # Create route routes[name] = Route(type, route) return routes end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1644
""" Runway fileformat Example: #;RUNWAY;2;446;20181206;20190102;241483;EAR_P 06/12/2018;BIAR;01;0000;2359;Y;5;1;1;T 06/12/2018;BIAR;19;0000;2359;N;5;1;1;T 06/12/2018;BIBA;03;0000;2359;N;10;10;5;T 06/12/2018;BIBA;12;0000;2359;Y;10;10;5;T 06/12/2018;BIBA;21;0000;2359;N;10;10;5;T 06/12/2018;BIBA;30;0000;2359;N;10;10;5;T 06/12/2018;BIBD;04;0000;2359;Y;10;10;5;T 06/12/2018;BIBD;22;0000;2359;N;10;10;5;T 06/12/2018;BIBF;18;0000;2359;N;10;10;5;T 06/12/2018;BIBF;36;0000;2359;Y;10;10;5;T 06/12/2018;BIBL;03;0000;2359;Y;10;10;5;T 06/12/2018;BIBL;21;0000;2359;N;10;10;5;T """ module Runway export read using ..util using CSV using Dates using DataFrames const ddmmYYYY = DateFormat("dd/mm/YYYY") const hhmm = DateFormat("HHMM") const fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>String, 5=>String, 6=>String, 7=>Int64, 8=>Int64, 9=>Int64, 10=>String) const header_format = ["DATEACTIVE", "AIRPORT", "RWY", "TIMEOPEN", "TIMECLOSED", "YN", "NUM1", "NUM2", "NUM3", "T"] function read(file) df = CSV.read(file, delim=';', types=fileformat, header=header_format, copycols=true, datarow=2) reformat!(df) return df end function reformat!(df) df[:,:TEMP] = format_date.(df[:,:DATEACTIVE], ddmmYYYY) select!(df, Not(:DATEACTIVE)) df[:,:DATEACTIVE] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_time.(df[:,:TIMEOPEN], hhmm) select!(df, Not(:TIMEOPEN)) df[:,:TIMEOPEN] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:TEMP] = format_time.(df[:,:TIMECLOSED], hhmm) select!(df, Not(:TIMECLOSED)) df[:,:TIMECLOSED] = df[:,:TEMP] select!(df, Not(:TEMP)) end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
4712
""" Import SO6 fileformat as a DataFrame See EUROCONTROL NEST Manual for original SO6 fileformat description SO6 DataFrame Column Names # Field Type Size Comment :SEGMENT_ID segment identifier String first point name "_" last point name (see note) :ADEP origin of flight String 4 ICAO code :ADES destination of flight String 4 ICAO code :ACTYPE aircraft type String 4 :DATETIMEBEGINSEGMENT DateTime :DATETIMEENDSEGMENT DateTime :FLBEGINSEGMENT FL begin segment Int64 1-3 :FLENDSEGMENT FL begin segment Int64 1-3 :STATUS flight status Int64 1 0=climb, 1=descent, 2=cruise :CALLSIGN String :LATBEGINSEGMENT_DEG Latitude of begin of segment in degrees Float64 :LONBEGINSEGMENT_DEG Longitude of begin of segment in degrees Float64 :LATENDSEGMENT_DEG Latitude of begin of segment in degrees Float64 :LONENDSEGMENT_DEG Longitude of begin of segment in degrees Float64 :FLIGHT_ID Flight identifier Int64 Unique ID :SEQUENCE Sequence number Int64 Start at 1 for new flight :SEGMENT_LENGTH_M Segment length in m Float64 In meters :SEGMENT_PARITY Segment parity Int64 * see below * Segment parity 0=NO 1=ODD 2=EVEN 3=ODD_LOW 4=EVEN_LOW 5=ODD_HIGH 6=EVEN_HIGH 7 =General Purpose 8=General Purpose 9=General Purpose Example SO6 file format EHAM_*AM80 EHAM UUEE A321 214900 214926 0 10 0 AFL2193 171214 171214 3138.483333 285.850000 3137.483333 284.183333 213765625 1 1.427867 0 *AM80_!AAEW EHAM UUEE A321 214926 215004 10 25 0 AFL2193 171214 171214 3137.483333 284.183333 3135.833333 284.033333 213765625 2 1.652550 0 !AAEW_!AAEX EHAM UUEE A321 215004 215026 25 35 0 AFL2193 171214 171214 3135.833333 284.033333 3134.166667 283.883333 213765625 3 1.669195 0 !AAEX_*AM46 EHAM UUEE A321 215026 215047 35 45 0 AFL2193 171214 171214 3134.166667 283.883333 3133.066667 283.783333 213765625 4 1.101704 0 """ module SO6 export read # include("utility.jl") using ..util using CSV using Dates using DataFrames const fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>String, 5=>String, 6=>String, 7=>Int64, 8=>Int64, 9=>String, 10=>String, 11=>String, 12=>String, 13=>Float64, 14=>Float64, 15=>Float64, 16=>Float64, 17=>Int64, 18=>Int64, 19=>Float64, 20=>Int64) const header_format = ["SEGMENT_ID", "ADEP", "ADES", "ACTYPE", "TIMEBEGINSEGMENT", "TIMEENDSEGMENT", "FLBEGINSEGMENT", "FLENDSEGMENT", "STATUS", "CALLSIGN", "DATEBEGINSEGMENT", "DATEENDSEGMENT", "LATBEGINSEGMENT_DEG", "LONBEGINSEGMENT_DEG", "LATENDSEGMENT_DEG", "LONENDSEGMENT_DEG", "FLIGHT_ID", "SEQUENCE", "SEGMENT_LENGTH_M", "SEGMENT_PARITY"] const yymmdd = DateFormat("YYmmdd") const hhmmss = DateFormat("HHMMSS") const yymmddhhmmss = DateFormat("YYmmddHHMMSS") const year2000 = Year(2000) function read(file) df = CSV.read(file, delim=" ", types=fileformat, header=header_format, copycols=true) reformat!(df); return df end function format_status(str::Union{String, Missing}) if str === missing return missing end maybeint = tryparse(Int64, str) if maybeint == nothing return missing else return parse(Int64, str) end end function reformat!(df) #Date/Time conversion df[:,:DATETIMEBEGINSEGMENT] = format_datetime.(df[:,:DATEBEGINSEGMENT] .* df[:,:TIMEBEGINSEGMENT], yymmddhhmmss, addyear=year2000) df[:,:DATETIMEENDSEGMENT] = format_datetime.(df[:,:DATEENDSEGMENT] .* df[:,:TIMEENDSEGMENT], yymmddhhmmss, addyear=year2000) select!(df, Not(:TIMEBEGINSEGMENT)) select!(df, Not(:TIMEENDSEGMENT)) select!(df, Not(:DATEBEGINSEGMENT)) select!(df, Not(:DATEENDSEGMENT)) df[:,:TEMP] = format_status.(df[:,:STATUS]) select!(df, Not(:STATUS)) df[:,:STATUS] = df[:,:TEMP] select!(df, Not(:TEMP)) df[:,:LATBEGINSEGMENT_DEG] = df[:,:LATBEGINSEGMENT_DEG] / 60.0 df[:,:LONBEGINSEGMENT_DEG] = df[:,:LONBEGINSEGMENT_DEG] / 60.0 df[:,:LATENDSEGMENT_DEG] = df[:,:LATENDSEGMENT_DEG] / 60.0 df[:,:LONENDSEGMENT_DEG] = df[:,:LONENDSEGMENT_DEG] / 60.0 df[:,:SEGMENT_LENGTH_M] = df[:,:SEGMENT_LENGTH_M] * 1852.0 select!(df,[:SEGMENT_ID, :ADEP, :ADES, :ACTYPE, :DATETIMEBEGINSEGMENT, :DATETIMEENDSEGMENT, :FLBEGINSEGMENT, :FLENDSEGMENT, :STATUS, :CALLSIGN, :LATBEGINSEGMENT_DEG, :LONBEGINSEGMENT_DEG, :LATENDSEGMENT_DEG, :LONENDSEGMENT_DEG, :FLIGHT_ID, :SEQUENCE, :SEGMENT_LENGTH_M, :SEGMENT_PARITY]) end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
562
""" Sid fileformat Output dictionary with for each Airport a list of SID names. See EUROCONTROL NEST Manual for Sid fileformat description Sid fileformat example BIKF THORI ALDAN BIRK THORI ALDAN DTMB MON.D DTNH NBA.D """ module Sid export read function read(file) airportsids = Dict{String, Vector{AbstractString}}() for line in eachline(file) line_elements = split(line, ' ') airport_name = line_elements[1] airportsids[airport_name] = [sid for sid in line_elements[2:end]] end return airportsids end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1138
""" Sls fileformat Sector list file The link between this and the region file ARE is made by volume name See EUROCONTROL NEST Manual for Sls fileformat description Sls DataFrame Column Names # Field Type Size Comment 1 :SECTORNAME String Max 19 2 :VOLUMENAME String Refer to name in volumne IN the ARE file (max 24 characters) 3 :VOLUMEBOTTOMLEVEL Int64 In FL, overwrite level present in ARE file for that volume 4 :VOLUMETOPLEVEL Int64 In FL, overwrite level present in ARE file for that volume Example SLS fileformat CASTOR_UP + AX 000 295 CASTOR_UP + GU 245 265 TMA + SLP 000 095 TMA + SLX 000 125 ABRON + TOP 45 660 """ module Sls export read using Format using CSV using DataFrames const fileformat = Dict(1=>String, 2=>String, 3=>String, 4=>Int64, 5=>Int64) const header_format = ["SECTORNAME", "VOLUMESIGN", "VOLUMENAME", "VOLUMEBOTTOMLEVEL", "VOLUMETOPLEVEL"] function read(file) df = CSV.read(file, delim=" ", types=fileformat, header=header_format, copycols=true) select!(df, Not(:VOLUMESIGN)) return df end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1764
""" Spc fileformat Described how elementary sectors can be collapsed. Can also contain descriptions of other bigger airspaces (like ACC...) See EUROCONTROL NEST Manual for Spc fileformat description Output: * name Airspace name/description String * type Airspace tuype String CS, CRSA, AUA, CLUS, NAS, AREA, AUAG, CRAS, REG, UNK * sectors Sub-airspace struct with the following elements: * name Sub-airspace name * type Sub-airspace type Spc fileformat example #;AIRSPACE;2;383;20140206;20140305;4082;EAR_P A;BENELUX;EB/EH;AREA;2 S;EB;NAS S;EH;NAS A;BG;GREENLAND (DENMARK);NAS;1 S;BGGLFIR;FIR A;BI;ICELAND;NAS;3 S;BIFAROER;FIR S;BIRD;FIR S;ENJA;FIR A;BICC;ICELAND AUAG;AUAG;6 S;BIRDCTA;AUA S;BIRDICTA;AUA S;BIRDTMA;AUA S;BIRDTOCA;AUA S;EKVGCTR;AUA S;ENJACTR;AUA """ module Spc export read struct Sector name::String type::String end struct Airspace name::String type::String sectors::Vector{Sector} end function read(file) airspaces = Dict{String, Airspace}() id = "" aname = "" type = "" sectors = Vector{Sector}() for line in eachline(file) line_elements = split(line, ';') if line_elements[1] == "A" if id != "" airspaces[id] = Airspace(aname, type, sectors) end id = line_elements[2] aname = line_elements[3] type = line_elements[4] sectors = Vector{Sector}() elseif line_elements[1] == "S" sname = line_elements[2] stype = line_elements[3] sector = Sector(sname, stype) sectors = vcat(sectors, sector) end end airspaces[id] = Airspace(aname, type, sectors) return airspaces end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
604
""" Star fileformat Output dictionary with for each Airport a list of STAR names. See EUROCONTROL NEST Manual for Star fileformat description Star fileformat example BIKF THORI METIL ASTAM KEF CELLO BIRK THORI METIL ASTAM KEF CELLO DTMB MON.A DTNH NBA.A """ module Star export read function read(file) airportstars = Dict{String, Vector{AbstractString}}() for line in eachline(file) line_elements = split(line, ' ') airport_name = line_elements[1] airportstars[airport_name] = [star for star in line_elements[2:end]] end return airportstars end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
3302
""" T5 fileformat See EUROCONTROL NEST Manual for T5 fileformat description T5 DataFrame Column Names Field Type Size Comment :FLIGHT_ID Int64 Flight ID :SECTOR_NAME String :ENTRY_DATETIME DateTime :EXIT_DATETIME DateTime :ENTRY_FL Float64 Flight level in decimal :EXIT_FL Float64 Flight level in decimal :ENTRY_SEGMENT_NAME String Separator between point name is '_' '##' as a prefix means that the flight was already present in the sector before it was opened :EXIT_SEGMENT_NAME String Separator between point name is '_', might be different from ENTRY_SEGMENT_NAME '##' as a prefix means that the flight was still present in the sector after it was closed. :TOT_DISTANCE_IN_SEGMENT_M Float64 For that FLIGHT_ID in that SECTOR_NAME, expressed in meters. :TOT_TIME_IN_SEGMENT_S Float64 For that FLIGHT_ID in that SECTOR_NAME, expressed in seconds. Example T5 file format 213765625 EHAMCR1 1513288140.000000 1513288226.000000 0.000000 35.000000 0.000000 1.669195 EHAM_*AM80 !AAEW_!AAEX 4.749612 86.000000 213765625 EHAAFIR 1513288140.000000 1513288980.000000 0.000000 255.000000 0.000000 14.478077 EHAM_*AM80 !AAEb_SONEB 84.060844 840.000000 213765625 EHALL 1513288140.000000 1513288980.000000 0.000000 255.000000 0.000000 14.478077 EHAM_*AM80 !AAEb_SONEB 84.060844 840.000000 213765625 EH_DN 1513288140.000000 1513288982.000000 0.000000 255.361450 0.000000 0.247570 EHAM_*AM80 SONEB_OLDOD 84.308411 842.000000 """ module T5 export read using Format using CSV using Dates using DataFrames const fileformat = Dict(1=>Int64, 2=>String, 3=>Float64, 4=>Float64, 5=>Float64, 6=>Float64, 7=>Float64, 8=>Float64, 9=>String, 10=>String, 11=>Float64, 12=>Float64) const header_format = ["FLIGHT_ID", "SECTOR_NAME", "ENTRY_DATETIME", "EXIT_DATETIME", "ENTRY_FL", "EXIT_FL", "ENTRY_DISTANCE_M", "EXIT_DISTANCE_M", "ENTRY_SEGMENT_NAME", "EXIT_SEGMENT_NAME", "TOT_DISTANCE_IN_SEGMENT_M", "TOT_TIME_IN_SEGMENT_S"] function read(file) df = CSV.read(file, delim=" ", types=fileformat, header=header_format, copycols=true) reformat!(df); return df end function reformat!(df) #Date conversion df[:,:TEMP] = df[:,:ENTRY_DATETIME] select!(df, Not(:ENTRY_DATETIME)) df[:,:ENTRY_DATETIME] = unix2datetime.(df[:,:TEMP]) select!(df, Not(:TEMP)) df[:,:TEMP] = df[:,:EXIT_DATETIME] select!(df, Not(:EXIT_DATETIME)) df[:,:EXIT_DATETIME] = unix2datetime.(df[:,:TEMP]) select!(df, Not(:TEMP)) df[:,:ENTRY_DISTANCE_M] = df[:,:ENTRY_DISTANCE_M] * 1852.0 df[:,:EXIT_DISTANCE_M] = df[:,:EXIT_DISTANCE_M] * 1852.0 df[:,:TOT_DISTANCE_IN_SEGMENT_M] = df[:,:TOT_DISTANCE_IN_SEGMENT_M] * 1852.0 select!(df,[:FLIGHT_ID, :SECTOR_NAME, :ENTRY_DATETIME, :EXIT_DATETIME, :ENTRY_FL, :EXIT_FL, :ENTRY_SEGMENT_NAME, :EXIT_SEGMENT_NAME, :TOT_DISTANCE_IN_SEGMENT_M, :TOT_TIME_IN_SEGMENT_S]) end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
1853
""" Ur fileformat See EUROCONTROL NEST Manual for Ur fileformat description Example Ur fileformat AZ 2020/02/01 2020/02/29 791 Portugal S M EB 2020/02/01 2020/02/29 9114 Belg.-Luxembourg ED 2020/02/01 2020/02/29 6374 Germany EE 2020/02/01 2020/02/29 3151 Estonia EF 2020/02/01 2020/02/29 4366 Finland EG 2020/02/01 2020/02/29 6512 0.848504 GBP United Kingdom EH 2020/02/01 2020/02/29 6739 Netherlands EI 2020/02/01 2020/02/29 2461 Ireland EK 2020/02/01 2020/02/29 5759 7.47133 DKK Denmark Example Ur fileformat AZ 2017/12/01 2017/12/31 1089 EB 2017/12/01 2017/12/31 6550 ED 2017/12/01 2017/12/31 8268 EF 2017/12/01 2017/12/31 5632 EG 2017/12/01 2017/12/31 9381 EH 2017/12/01 2017/12/31 6709 EI 2017/12/01 2017/12/31 2976 """ module Ur export read # include("utility.jl") using ..util using Dates const yyyymmdd = DateFormat("yyyy/mm/dd") struct UnitRate start_date::Date end_date::Date unitrate::Float64 valutaconversion::Float64 valuta::String country::String function UnitRate(line::String) line_elements = split(line, '\t') start_date = format_date(line_elements[2], yyyymmdd) end_date = format_date(line_elements[3], yyyymmdd) unitrate = parse(Float64, line_elements[4]) / 100.0 if length(line_elements[5]) > 0 valutaconversion = parse(Float64, line_elements[5]) valuta = strip(line_elements[6]) country = strip(line_elements[7]) else valutaconversion = 1.0 valuta = "EUR" country = strip(line_elements[7]) end new(start_date, end_date, unitrate, valutaconversion, valuta, country) end end function read(file) ur = Dict{String, UnitRate}() for line in eachline(file) ur[line[1:2]] = UnitRate(line) end return ur end end # module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
4088
module util export Point, Point3D, extract_lat, extract_lon, latlon, format_date, format_datetime, format_time, Point_deg import Base:(convert) using Dates using Navigation: Point_deg, Point_rad "Point type with latitude `lat` [deg] and longitude `lon` [deg]" struct Point{T<:Float64} lat::T lon::T end "Point type with latitude `lat` [deg], longitude `lon` [deg] and altitude [m]" struct Point3D{T<:Float64} lat::T lon::T alt::T end Base.:convert(type::Type{Point_deg}, x::Point) = Point_deg(x.lat, x.lon) Base.:convert(type::Type{Point_rad}, x::Point) = Point_rad(deg2rad(x.lat), deg2rad(x.lon)) Base.:convert(type::Type{Point}, x::Point_deg) = Point(x.ϕ, x.λ) Base.:convert(type::Type{Point}, x::Point_rad) = Point(rad2deg(x.ϕ), rad2deg(x.λ)) function extract_lat(str::AbstractString) if length(str) > 2 if str[1] in ['N', 'S'] sign_lat = str[1] == 'N' ? 1 : -1 relative = 1 elseif str[end] in ['N', 'S'] sign_lat = str[end] == 'N' ? 1 : -1 relative = 0 else return NaN end else return NaN end lat_h = parse(Float64, str[relative+1:relative+2]) lat_m = 0.0 lat_s = 0.0 if length(str) > 3 lat_m = parse(Float64, str[relative+3:relative+4]) end if length(str) > 5 lat_s = parse(Float64, str[relative+5:end+relative-1]) end return sign_lat*(lat_h + lat_m/60.0 + lat_s/3600.0) end function extract_lon(str::AbstractString) if length(str) > 3 if str[1] in ['E', 'W'] sign_lon = str[1] == 'E' ? 1 : -1 relative = 1 elseif str[end] in ['E', 'W'] sign_lon = str[end] == 'E' ? 1 : -1 relative = 0 else return NaN end else return NaN end lon_h = parse(Float64, str[relative+1:relative+3]) lon_m = 0.0 lon_s = 0.0 if length(str) > 4 lon_m = parse(Float64, str[relative+4:relative+5]) end if length(str) > 6 lon_s = parse(Float64, str[relative+6:end+relative-1]) end return sign_lon*(lon_h + lon_m/60.0 + lon_s/3600.0) end function latlon(str_lat::AbstractString, str_lon::AbstractString) lat = extract_lat(str_lat) lon = extract_lon(str_lon) if !isnan(lat*lon) # return Point(lat, lon) return Point_deg(lat, lon) else return NaN end end function latlon(str::AbstractString) nors = "S" if occursin("S", str) nors = "S" else nors = "N" end split_str = split(str, nors) str_lat = split_str[1]*nors str_lon = split_str[2] return latlon(str_lat, str_lon) end function format_date(str::Union{AbstractString, Missing}, format; addyear = Year(0)) if str === missing return missing elseif str == "!!!!" return missing end maybedate = tryparse(Date, str, format) if maybedate == nothing return missing elseif maybedate > Date(1, 1, 1) return Date(str, format) + addyear else return missing end end function format_datetime(str::Union{AbstractString, Missing}, format; addyear = Year(0)) if str === missing return missing elseif occursin("!!!!", str) return missing end maybedatetime = tryparse(DateTime, str, format) if maybedatetime == nothing return missing elseif maybedatetime > DateTime(1, 1, 1, 0, 0, 0) return DateTime(str, format) + addyear else return missing end end function format_time(str::Union{AbstractString, Missing}, format) if str === missing return missing end # handling special case of 2400 hours used in ATM to indicate 0000 24 hours later if str == "2400" str = "235959" format = DateFormat("HHMMSS") end maybetime = tryparse(Time, str, format) if maybetime == nothing return missing else if str == "" return missing else return Time(str, format) end end end end #Module
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
903
""" NACT fileformat See EUROCONTROL NEST Manual for Nact fileformat description """ module Nact export read using Format using CSV using Dates # using StaticArrays const fileformat = Dict(1=>String, 2=>String, 3=>String) const header_format = ["NAME", "TYPE", "ACTIVATION"] struct Activation AirspaceOrTv::Bool # Airspace = true / Tv = false Activated::Bool # Activated = true / Non activated = false end function read(file) csviterator = CSV.File(file, delim=";", types=fileformat, header=header_format, silencewarnings=false, ignoreemptylines=true) return splitintovector(csviterator) end function splitintovector(iterator) dict = Dict{String, Activation}() for row in iterator airspaceortv = row.TYPE == "AS" activation = row.ACTIVATION == "A" dict[row.NAME] = Activation(airspaceortv, activation) end return dict end end # module"
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
753
using DDR2import using Test @testset "DDR2import.jl" begin tests = ["Implemented\\SO6", "Implemented\\T5", "Implemented\\Exp2", "Implemented\\Allftplus", "Implemented\\Ase", "Implemented\\Are", "Implemented\\Gar", "Implemented\\Gsl", "Implemented\\Frp", "Implemented\\Sls", "Implemented\\Sid", "Implemented\\Star", "Implemented\\Spc", "Implemented\\Mot", "Implemented\\Narp", "Implemented\\Nnpt", "Implemented\\Cost", "Implemented\\Crco", "Implemented\\Ur", "Implemented\\Arp", "Implemented\\Ntfv", "util", "Implemented\\Country", "Implemented\\Operator", "Implemented\\Routes", "Implemented\\Runway", "Implemented\\For"] # tests = ["Implemented\\For"] for t in tests include("$(t).jl") end end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
3290
using Dates @testset "util.jl" begin p1 = DDR2import.util.Point(1.0, 2.0) @test p1.lat == 1.0 @test p1.lon == 2.0 @test DDR2import.util.extract_lat("S123456") ≈ -12.58222222 atol = 0.0001 @test DDR2import.util.extract_lat("N123456.0") ≈ 12.58222222 atol = 0.0001 @test DDR2import.util.extract_lat("123456N") ≈ 12.58222222 atol = 0.0001 @test DDR2import.util.extract_lat("S1234") ≈ -12.56666666 atol = 0.0001 @test DDR2import.util.extract_lat("N12") ≈ 12.0 atol = 0.0001 @test DDR2import.util.extract_lat("1234S") ≈ -12.56666666 atol = 0.0001 @test DDR2import.util.extract_lat("12N") ≈ 12.0 atol = 0.0001 @test DDR2import.util.extract_lat("") === NaN @test DDR2import.util.extract_lon("W1123456") ≈ -112.58222222 atol = 0.0001 @test DDR2import.util.extract_lon("E1123456.0") ≈ 112.58222222 atol = 0.0001 @test DDR2import.util.extract_lon("0123456E") ≈ 12.58222222 atol = 0.0001 @test DDR2import.util.extract_lon("W01234") ≈ -12.56666666 atol = 0.0001 @test DDR2import.util.extract_lon("E112") ≈ 112.0 atol = 0.0001 @test DDR2import.util.extract_lon("11234W") ≈ -112.56666666 atol = 0.0001 @test DDR2import.util.extract_lon("012E") ≈ 12.0 atol = 0.0001 @test DDR2import.util.extract_lon("E1") === NaN # @test DDR2import.util.latlon("S123456", "012E").lat ≈ -12.58222222 atol = 0.0001 # @test DDR2import.util.latlon("S123456", "012E").lon ≈ 12.0 atol = 0.0001 # @test DDR2import.util.latlon("S123456", "E1") === NaN # # @test DDR2import.util.latlon("S123456E1123456.0").lat ≈ -12.58222222 atol = 0.0001 # @test DDR2import.util.latlon("S123456E1123456.0").lon ≈ 112.58222222 atol = 0.0001 # @test DDR2import.util.latlon("S123456W1123456.0").lon ≈ -112.58222222 atol = 0.0001 @test DDR2import.util.latlon("S123456", "012E").ϕ ≈ -12.58222222 atol = 0.0001 @test DDR2import.util.latlon("S123456", "012E").λ ≈ 12.0 atol = 0.0001 @test DDR2import.util.latlon("S123456", "E1") === NaN @test DDR2import.util.latlon("123456S1123456.0E").ϕ ≈ -12.58222222 atol = 0.0001 @test DDR2import.util.latlon("123456S1123456.0E").λ ≈ 112.58222222 atol = 0.0001 @test DDR2import.util.latlon("123456S1123456.0W").λ ≈ -112.58222222 atol = 0.0001 yymmdd = DateFormat("YYmmdd") testdate = DDR2import.util.format_date("200110", yymmdd, addyear=Year(2000)) @test Dates.year(testdate) == 2020 @test Dates.month(testdate) == 1 @test Dates.day(testdate) == 10 hhmmss = DateFormat("HHMMSS") testtime = DDR2import.util.format_time("102030", hhmmss) @test Dates.hour(testtime) == 10 @test Dates.minute(testtime) == 20 @test Dates.second(testtime) == 30 hhmm = DateFormat("HHMM") testtime2 = DDR2import.util.format_time("2400", hhmm) @test Dates.hour(testtime2) == 23 @test Dates.minute(testtime2) == 59 @test Dates.second(testtime2) == 59 yyyymmddhhmmss = DateFormat("YYYYmmddHHMMSS") testdatetime = DDR2import.util.format_datetime("20200110102030", yyyymmddhhmmss) @test Dates.year(testdatetime) == 2020 @test Dates.month(testdatetime) == 1 @test Dates.day(testdatetime) == 10 @test Dates.hour(testdatetime) == 10 @test Dates.minute(testdatetime) == 20 @test Dates.second(testdatetime) == 30 end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
11140
using Dates @testset "Allftplus.jl" begin filename = "data\\test1.ALL_FT+" filename2 = "data\\test2.ALL_FT+" df = DDR2import.Allftplus.read(filename) df2 = DDR2import.Allftplus.read(filename2) #EXP @test df[2,:departureAerodromeIcaoId_0] == "LFST" @test df[2,:arrivalAerodromeIcaoId_1] == "EHAM" @test df[2,:aircraftId_2] == "AFR27FK" @test df[2,:aircraftOperatorIcaoId_3] == "AFR" @test df[2,:aircraftTypeIcaoId_4] == "E145" @test Dates.year(df[2,:aobt_5]) == 2017 @test Dates.minute(df[2,:aobt_5]) == 46 @test df[2,:ifpsId_6] == "AA70843154" @test df[2,:aircraftTypeIcaoId_4] == "E145" @test Dates.hour(df2[2,:iobt_7]) == 14 @test df2[2,:originalFlightDataQuality_8] == "FPL" @test df2[2,:flightDataQuality_9] == "FPL" @test df[2,:source_10] == "UNK" @test df[2,:exemptionReasonType_11] == "NEXE" @test df[2,:exemptionReasonDistance_12] == "NEXE" @test df2[2,:lateFiler_13] == "N" @test df2[2,:lateUpdater_14] == "N" @test df2[2,:northAtlanticFlight_15] == "N" @test Dates.month(df[2,:cobt_16]) == 12 @test Dates.hour(df[2,:cobt_16]) == 5 @test Dates.day(df[2,:eobt_17]) == 15 @test Dates.minute(df[2,:eobt_17]) == 45 @test Dates.month(df2[2,:lobt_18]) == 1 @test df[2,:flightState_19] == "NE" @test df[2,:previousToActivationFlightState_20] == "NE" @test df[2,:suspensionStatus_21] == "NS" @test df[2,:tactId_22] == 512256 @test Dates.year(df[2,:samCtot_23]) == 2017 @test df2[2,:samSent_24] == "N" @test Dates.day(df[2,:sipCtot_25]) == 15 @test df2[2,:sipSent_26] == "N" @test df2[2,:slotForced_27] == "N" @test df[2,:mostPenalizingRegulationId_28] == "EHAMA15M" @test df[2,:regulationsAffectedByNrOfInstances_29] == 0 @test df[2,:excludedFromNrOfInstances_30] == 0 @test df2[6,:lastReceivedAtfmMessageTitle_31] == "REA" @test df2[2,:lastReceivedMessageTitle_32] == "FPL" @test df2[6,:lastSentAtfmMessageTitle_33] == "SRM" @test df[2,:manualExemptionReason_34] == "N" @test df2[2,:sensitiveFlight_35] == "N" @test df2[2,:readyForImprovement_36] == "Y" @test df2[2,:readyToDepart_37] == "N" @test df[2,:revisedTaxiTime_38] == 0 @test df[2,:tis_39] == 0 @test df[2,:trs_40] == 0 @test df[2,:toBeSentSlotMessageTitle_41] === missing @test df[2,:toBeSentProposalMessageTitle_42] === missing @test df2[3,:lastSentSlotMessageTitle_43] === "SRM" @test df[2,:lastSentProposalMessageTitle_44] === missing @test Dates.year(df[2,:lastSentSlotMessage_45]) == 2017 @test Dates.day(df[2,:lastSentSlotMessage_45]) == 15 @test Dates.month(df[2,:lastSentProposalMessage_46]) == 12 @test df[2,:flightCountOption_47] == "N" @test df2[2,:normalFlightTactId_48] == 0 @test df2[2,:proposalFlightTactId_49] == 0 @test df2[2,:operatingAircraftOperatorIcaoId_50] == "RSC" @test df2[2,:reroutingWhy_51] == "N" @test df[2,:reroutedFlightState_52] === missing @test df[2,:runwayVisualRange_53] == 0 @test df2[2,:numberIgnoredErrors_54] == 0 @test df2[2,:arcAddrSource_55] == "N" @test df2[1,:arcAddr_56] == "A9F2C6" @test df2[2,:ifpsRegistrationMark_57] == "ECMIF" @test df2[2,:flightType_58] == "S" @test df2[2,:aircraftEquipment_59] == "DFGRSY:B2B3B4:EB1" @test df2[2,:cdmStatus_60] == "N" @test Dates.minute(df2[1,:cdmEarlyTtot_61]) == 8 @test Dates.hour(df2[1,:cdmAoTtot_62]) == 21 @test Dates.day(df2[1,:cdmAtcTtot_63]) == 2 @test Dates.month(df2[1,:cdmSequencedTtot_64]) == 1 @test Dates.minute(df2[1,:cdmTaxiTime_65]) == 21 @test df2[2,:cdmOffBlockTimeDiscrepancy_66] == "N" @test df2[1,:cdmDepartureProcedureId_67] == "DENUT6C" @test df2[1,:cdmAircraftTypeId_68] == "B744" @test df2[1,:cdmRegistrationMark_69] == "N740CK" @test Dates.minute(df2[1,:cdmNoSlotBefore_70]) == 9 @test df2[2,:cdmDepartureStatus_71] == "K" @test df2[2,:ftfmEetFirNrOfInstances_72] == 0 @test df2[1,:ftfmEetFirList_73] == "EHAAFIR:10" @test df2[2,:ftfmEetPtNrOfInstances_74] == 0 #TODO Setup function to extract EetPtList @test df2[1,:ftfmEetPtList_75] == "55N020W:125 57N030W:170 58N040W:211 58N050W:251 CUDDY:281" @test df2[2,:ftfmAiracCycleReleaseNumber_76] == 447 @test df2[2,:ftfmEnvBaselineNumber_77] == 842 @test df2[2,:ftfmDepartureRunway_78] == "GCXO30" @test df2[2,:ftfmArrivalRunway_79] == "GCHI34" @test df[2,:ftfmReqFlightlevelSpeedNrOfInstances_80] == 1 @test df2[1,:ftfmReqFlightlevelSpeedList_81] == "F320:N0487:0 F340:M084:1383 F360:M084:4022" fll = DDR2import.Allftplus.reqFlightlevelSpeedList(df2[1,:ftfmReqFlightlevelSpeedList_81]) @test fll[1].FL == 320 @test fll[2].Spd == "M084" @test fll[3].Value == 4022 # TODO What is Value? Time in seconds? Travel distance in NM? @test df2[2,:ftfmConsumedFuel_82] == 322.0 @test df2[2,:ftfmRouteCharges_83] == 49.0 @test df2[2,:ftfmAllFtPointNrOfInstances_84] == 16 pp = DDR2import.Allftplus.AllFtPointProfileList(df2[2,:ftfmAllFtPointProfile_85]) @test Dates.minute(pp[1].datetime) == 10 @test pp[5].point == "TESEL" @test pp[1].route == "HIE1J" @test pp[2].FL == 25 @test pp[3].pointDistance == 11 @test pp[4].pointType == "V" @test pp[6].geoPointId.ϕ ≈ 28.461666 atol = 0.0001 @test pp[6].geoPointId.λ ≈ -16.875555555555557 atol = 0.0001 @test pp[8].ratio == 54 @test pp[9].isVisible == true #@test df[2,:ftfmAllFtPointProfile_85] @test df2[2,:ftfmAllFtAirspaceNrOfInstances_86] == 10 #@test df[2,:ftfmAllFtAirspaceProfile_87] ap = DDR2import.Allftplus.AllFtAirspaceProfileList(df2[2,:ftfmAllFtAirspaceProfile_87]) @test Dates.minute(ap[1].entry_datetime) == 10 @test ap[2].sector == "GCXOAXO" @test Dates.day(ap[3].exit_datetime) == 3 @test ap[4].fir == "NAS" @test ap[5].entry_geoPointId.ϕ ≈ 28.47222222222222 atol = 0.00001 @test ap[6].exit_geoPointId.λ ≈ -17.3275 atol = 0.00001 @test ap[7].entry_FL == 80 @test ap[8].exit_FL == 80 @test ap[9].entry_pointDistance == 119 @test ap[10].exit_pointDistance == 185 @test df2[2,:ftfmAllFtCircleIntersectionsNrOfInstances_88] == 2 #@test df[2,:ftfmAllFtCircleIntersections_89] @test df2[3,:rtfmAiracCycleReleaseNumber_90] == 447 @test df2[3,:rtfmEnvBaselineNumber_91] == 1498 @test df2[3,:rtfmDepartureRunway_92] == "EDDL23R" @test df2[3,:rtfmArrivalRunway_93] == "LTAC03R" @test df2[3,:rtfmReqFlightlevelSpeedNrOfInstances_94] == 3 @test df2[3,:rtfmReqFlightlevelSpeedList_95] == "F350:N0425:0 F370:N0439:410 F390:N0453:1497" @test df2[3,:rtfmConsumedFuel_96] == 7772.0 @test df2[3,:rtfmRouteCharges_97] == 1153.0 @test df2[3,:rtfmAllFtPointNrOfInstances_98] == 68 #@test df[2,:rtfmAllFtPointProfile_99] @test df2[3,:rtfmAllFtAirspaceNrOfInstances_100] == 97 #@test df[2,:rtfmAllFtAirspaceProfile_101] @test df2[3,:rtfmAllFtCircleIntersectionsNrOfInstances_102] == 4 #@test df[2,:rtfmAllFtCircleIntersections_103] @test df2[2,:ctfmAiracCycleReleaseNumber_104] == 447 @test df2[2,:ctfmEnvBaselineNumber_105] == 1270 @test df2[2,:ctfmDepartureRunway_106] == "GCXO30" @test df2[2,:ctfmArrivalRunway_107] == "GCHI34" @test df[2,:ctfmReqFlightlevelSpeedNrOfInstances_108] == 1 @test df2[1,:ctfmReqFlightlevelSpeedList_109] == "F300:N0487:0 F320:N0487:492 F320:M084:1367 F360:M084:4021" @test df2[2,:ctfmConsumedFuel_110] == 343.0 @test df2[2,:ctfmRouteCharges_111] == 49.0 @test df2[2,:ctfmAllFtPointNrOfInstances_112] == 28 #@test df[2,:ctfmAllFtPointProfile_113] @test df2[2,:ctfmAllFtAirspaceNrOfInstances_114] == 8 #@test df[2,:ctfmAllFtAirspaceProfile_115] @test df2[2,:ctfmAllFtCircleIntersectionsNrOfInstances_116] == 2 #@test df[2,:ctfmAllFtCircleIntersections_117] @test df2[5,:noCPGCPFReason_118] == "X" @test Dates.day(df2[2,:scrObt_119]) == 3 @test df2[2,:scrConsumedFuel_120] == 322.0 @test df2[2,:scrRouteCharges_121] === 49.0 @test df2[2,:scrAllFtPointNrOfInstances_122] == 16 #@test df[2,:scrAllFtPointProfile_123] @test df2[2,:scrAllFtAirspaceNrOfInstances_124] == 10 #@test df[2,:scrAllFtAirspaceProfile_125] @test df2[2,:scrAllFtCircleIntersectionsNrOfInstances_126] == 0 #@test df[2,:scrAllFtCircleIntersections_127] @test Dates.minute(df2[3,:srrObt_128]) == 15 @test df2[3,:srrConsumedFuel_129] == 7813.0 @test df2[3,:srrRouteCharges_130] == 1113.0 @test df2[3,:srrAllFtPointNrOfInstances_131] == 74 #@test df[2,:srrAllFtPointProfile_132] @test df2[3,:srrAllFtAirspaceNrOfInstances_133] == 80 #@test df[2,:srrAllFtAirspaceProfile_134] @test df2[3,:srrAllFtCircleIntersectionsNrOfInstances_135] == 4 #@test df[2,:srrAllFtCircleIntersections_136] @test Dates.minute(df2[2,:surObt_137]) == 54 @test df2[2,:surConsumedFuel_138] == 343.0 @test df2[2,:surRouteCharges_139] == 49.0 @test df2[2,:surAllFtPointNrOfInstances_140] == 28 #@test df[2,:surAllFtPointProfile_141] @test df2[2,:surAllFtAirspaceNrOfInstances_142] == 8 #@test df[2,:surAllFtAirspaceProfile_143] @test df2[3,:surAllFtCircleIntersectionsNrOfInstances_144] == 4 #@test df[2,:surAllFtCircleIntersections_145] @test Dates.minute(df2[1,:dctObt_146]) == 50 @test df2[1,:dctConsumedFuel_147] == 73966.0 @test df2[1,:dctRouteCharges_148] == 1864.0 @test df2[1,:dctAllFtPointNrOfInstances_149] == 40 #@test df[2,:dctAllFtPointProfile_150] @test df2[1,:dctAllFtAirspaceNrOfInstances_151] == 79 #@test df[2,:dctAllFtAirspaceProfile_152] @test df2[1,:dctAllFtCircleIntersectionsNrOfInstances_153] == 4 #@test df[2,:dctAllFtCircleIntersections_154] @test df[2,:cpfObt_155] === missing @test df[2,:cpfConsumedFuel_156] === missing @test df[2,:cpfRouteCharges_157] === missing @test df2[2,:cpfAllFtPointNrOfInstances_158] == 0 #@test df[2,:cpfAllFtPointProfile_159] @test df2[2,:cpfAllFtAirspaceNrOfInstances_160] == 0 #@test df[2,:cpfAllFtAirspaceProfile_161] @test df2[2,:cpfAllFtCircleIntersectionsNrOfInstances_162] == 0 #@test df[2,:cpfAllFtCircleIntersections_163] @test df[2,:aircraftidIATA_164] === missing @test df[2,:intentionFlight_165] === missing @test df[2,:intentionRelatedRouteAssignmentMethod_166] === missing @test df[2,:intentionUID_167] === missing @test df[2,:intentionEditionDate_168] === missing @test df[2,:intentionSource_169] === missing @test df[2,:associatedIntentions_170] === missing @test df[2,:enrichmentOutput_171] === missing @test df2[2,:eventID_172] == "TTE" @test Dates.second(df2[1,:eventTime_173]) == 44 @test df2[2,:flightVersionNr_174] == 44 @test df[2,:ftfmNrTvProfiles_175] === missing # @test df[2,:ftfmTvProfile_176] === missing @test df[2,:rtfmNrTvProfiles_177] === missing # @test df[2,:rtfmTvProfile_178] === missing @test df[2,:ctfmNrTvProfiles_179] === missing # @test df[2,:ctfmTvProfile_180] === missing #LAST TEST @test df[5,:departureAerodromeIcaoId_0] == "WSSS" end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
521
# using Dates @testset "Are.jl" begin filename = "data\\test.are" dc = DDR2import.Are.read(filename) @test dc["AZ"].nb_point == 48 @test dc["AZ"].bottom_fl == 0.0 @test dc["AZ"].top_fl == 0.0 @test dc["AZ"].surface == 0.0 @test dc["AZ"].sector_num == 0.0 @test dc["AZ"].points[5,1] == 45.0 @test dc["AZ"].points[4,2] == -40.0 @test dc["AZ"].box[1,1] ≈ 45.00775771902942 atol = 0.00001 #LAST TEST @test dc["EB"].nb_point == 550 @test dc["EB"].points[550,1] == 51.5 end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
320
@testset "Arp.jl" begin filename = "data\\test.arp" df = DDR2import.Arp.read(filename) @test df[1, :AIRPORT] == "EGSX" @test df[2, :LAT_DEG] ≈ 53.3941667 atol = 0.001 @test df[3, :LON_DEG] ≈ -1.7 atol = 0.001 @test df[4, :FIR] == "EGTT_FIR" #LAST TEST @test df[5, :AIRPORT] == "EGTB" end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
566
# using Dates @testset "Ase.jl" begin filename = "data\\test.ase" df = DDR2import.Ase.read(filename) @test df[1,:FLIGHTCOUNT] == 0.0 @test df[1,:SEGMENTPARITY] == 1 @test df[1,:SEGMENTTYPE] == 41 @test df[1,:LATBEGINSEGMENT_DEG] ≈ 48.7580 atol = 0.0001 @test df[1,:LONBEGINSEGMENT_DEG] ≈ 10.8534 atol = 0.0001 @test df[1,:LATENDSEGMENT_DEG] ≈ 48.6956 atol = 0.0001 @test df[1,:LONENDSEGMENT_DEG] ≈ 10.9489 atol = 0.0001 @test df[1,:SEGMENTNAME] == "%%BRU_BURAM" #LAST TEST @test df[3,:SEGMENTNAME] == "%%EDH_WSN" end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
267
@testset "Cost.jl" begin filename = "data\\test.cost" df = DDR2import.Cost.read(filename) @test df[1, :FLIGHTID] == 139729486 @test df[2, :COUNTRYCODE] == "LB" @test df[3, :COST] == 86.7351 #LAST TEST @test df[7, :COUNTRYCODE] == "LY" end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
209
@testset "Country.jl" begin filename = "data\\test.country" dc = DDR2import.Country.read(filename) @test dc["AG"].name == "Solomon Islands" @test dc["EB"].member @test !dc["ZY"].member end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git
[ "MIT" ]
0.1.1
829430e89d511d1ffcc93e16866f26e2426d4089
code
740
using Dates @testset "Crco.jl" begin filename = "data\\test.crco" df = DDR2import.Crco.read(filename) @test df[1, :COUNTRYNAME] == "ED" @test df[2, :CALLSIGN] == "N182QS" @test df[3, :ACTYPE] == "B737" @test df[4, :FLIGHTID] == 1523 @test df[1, :LATENTRY_DEG] ≈ 53.630278 atol = 0.001 @test df[2, :LONENTRY_DEG] ≈ 12.1066383 atol = 0.001 @test df[3, :LATEXIT_DEG] ≈ 50.3166667 atol = 0.001 @test df[4, :LONEXIT_DEG] ≈ 9.98833333 atol = 0.001 @test df[1, :DISTANCE_M] ≈ 396031.3143 atol = 0.1 @test df[4, :ENTRYFL] ≈ 270.0 atol = 0.1 @test df[1, :EXITFL] ≈ 270.0 atol = 0.1 @test Dates.minute(df[2, :DATETIMEENTRY]) == 59 @test Dates.second(df[3, :DATETIMEEXIT]) == 22 end
DDR2import
https://github.com/rjdverbeek-tud/DDR2import.jl.git