licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
12404
using Dates, Random, UUIDs using Logging import Base: convert export Model, Network, InstantNetwork, DynamicNetwork, Placeholder, Node, SFunc, Dist, Score, ValueTyped, Variable, VariableGraph, VariableParentTimeOffset, get_initial_graph, get_transition_graph, get_children, get_initial_children, get_transition_children, get_parents, get_initial_parents, get_transition_parents, get_sfunc, get_node, get_variables, get_placeholders, get_nodes, has_timeoffset, input_type, make_initial, make_transition, output_type """ abstract type ValueTyped{O} Supertype for typing all Scruff Variables; `O` is the actual type of the variable """ abstract type ValueTyped{O} end """ value_type(v::ValueTyped{O}) where {O} return the actual type (i.e. `O`) of the `ValueTyped` """ value_type(v::ValueTyped{O}) where {O} = O """ abstract type SFunc{I<:Tuple, O} A Stochastic Function type with input variables defined by `I` and output type `O`. This is an abstract representation for a collection of operators with the same input and output types. All sfuncs have the following operators defined: - `compute_lambda` - `compute_bel` - `send_pi` - `outgoing_pis` - `outgoing_lambdas` `SFunc` _also_ has both the operators `cpdf` and `logcpdf` defined in terms of the other. All sfuncs should implement one or the other of these operators. """ abstract type SFunc{I<:Tuple, O} end Base.print_without_params(x::Type{<:SFunc}) = false """ Dist{T} = SFunc{Tuple{}, T} # Additional supported operators - `make_factors` - `send_lambda` """ Dist{T} = SFunc{Tuple{}, T} """ Score{I} = SFunc{Tuple{I}, Nothing} `Score` supports two (2) operators: `get_score` and `get_log_score`. `get_log_score` is defined, by default, using `get_score.` Every subtype of `Score` _must_ implement `get_score`. """ Score{I} = SFunc{Tuple{I}, Nothing} """ input_type(::Type{<:SFunc{I,O}}) where {I,O} input_type(::SFunc{I,O}) where {I,O} Return the input type (i.e. `I`) of the `SFunc` """ input_type(::Type{<:SFunc{I,O}}) where {I,O} = I input_type(::SFunc{I,O}) where {I,O} = I """ output_type(::Type{<:SFunc{I,O}}) where {I,O} output_type(::SFunc{I,O}) where {I,O} Return the output type (i.e. `O`) of the `SFunc` """ output_type(::Type{<:SFunc{I,O}}) where {I,O} = O output_type(::SFunc{I,O}) where {I,O} = O """ Placeholder{O} <: ValueTyped{O} A type for typing Scruff variables that do not reference models """ struct Placeholder{O} <: ValueTyped{O} name::Symbol end """ Model{I, J, O} <: ValueTyped{O} Supertype for all Scruff models. The model represents a variable that varies over time and has output type `O`. The model may return an initial sfunc with input type `I` using `make_initial`, which takes the current time as argument, and a transition sfunc with input type `J` using `make_transition`, which takes both the parent times (a tuple of times of the same length as `J`) and the current time as arguments. These two functions need to be defined for every sfunc. # Type parameters - `I`: the input type to the `SFunc` returned by the model's `make_initial` function - `J`: the input type to the `SFunc` used during the `make_transition` function call - `O`: the actual type of the variables represented by this model """ abstract type Model{I, J, O} <: ValueTyped{O} end # is_fixed(m) = false # Define these interfaces: function make_initial(m, t) end function make_transition(m, parenttimes, time) end (model::Model)(symbol::Symbol) = instantiate(model, symbol) """ instantiate(model::Model, name::Symbol) Create a new `Variable` with the given name for the given model. Every `Model` instance is also a function that, given a `Symbol`, will call this method. """ function instantiate(model::Model, name::Symbol) return Variable(name, model) end """ mutable struct Variable{I,J,O} <: ValueTyped{O} A Variable describes the (time-series) of some set of random values. It must be named, described by a model, and references to the model inputs must be defined. For the type variables, see [`Model`](@ref) """ mutable struct Variable{I,J,O} <: ValueTyped{O} name::Symbol model::Model{I,J,O} end """`Node{O} = Union{Placeholder{O}, Variable{I,J,O} where {I,J}}`""" Node{O} = Union{Placeholder{O}, Variable{I,J,O} where {I,J}} """ output_type(::Variable{I,J,O}) output_type(::Placeholder{O}) returns the output type `O` of the given parameter """ output_type(::Variable{I,J,O}) where {I,J,O} = O output_type(::Placeholder{O}) where O = O get_name(node::Node) = node.name """VariableGraph = Dict{Node, Vector{Node}}""" VariableGraph = Dict{Node, Vector{Node}} """ VariableParentTimeOffset = Set{Pair{Node, Node}} Represents whether a child-parent pair of nodes is time-offset; if they are time-offset, they will be a set of this type. """ VariableParentTimeOffset = Set{Pair{Node, Node}} """ abstract type Network{I,J,O} Collects variables, with placeholders for inputs, and defined outputs, along with up to two directed graphs for initial and transition. Must implement `get_nodes`, `get_outputs`, `get_initial_graph`, `get_transition_graph` (which returns a `VariableGraph`) For the type parameters, see the underlying [`Model`](@ref) class for the mapped [`Variable`](@ref)s. """ abstract type Network{I,J,O} end """ get_initial_parents(n::Network, node::Node)::Vector{Node} Returns a list of the initial parent nodes in the network from the network's initial graph (i.e. the return graph from get_initial_graph(network)). """ function get_initial_parents(n::Network, node::Node)::Vector{Node} g = get_initial_graph(n) get(g, node, Node[]) end """ get_transition_parents(n::Network, node::Node)::Vector{Node} Returns a list of transitioned parent nodes in the network from the network's transition graph (i.e. the return graph from get_transition_graph(network)) """ function get_transition_parents(n::Network, node::Node)::Vector{Node} g = get_transition_graph(n) get(g, node, Node[]) end """ get_node(n::Network, name::Symbol)::Union{Node, Nothing} Returns the node with the given name, or `nothing`. """ function get_node(n::Network, name::Symbol; throw_missing=false)::Union{Node, Nothing} vs = get_nodes(n) for v in vs if v.name == name return v end end if throw_missing throw(KeyError(name)) end return nothing end """ get_initial_children(n::Network, var::Node)::Vector{Node} Returns a list of the initial child nodes in the network from the network's initial graph (i.e. the return graph from get_initial_graph(network)). """ function get_initial_children(n::Network, var::Node)::Vector{Node} [c for c in get_nodes(n) if var in get_initial_parents(n, c)] end """ get_transition_children(n::Network, var::Node)::Vector{Node} Returns a list of transitioned child nodes in the network from the network's transition graph (i.e. the return graph from get_transition_graph(network)) """ function get_transition_children(n::Network, var::Node)::Vector{Node} [c for c in get_nodes(n) if var in get_transition_parents(n, c)] end """ complete_graph!(variables::Vector{<:Variable}, graph::VariableGraph) Populate the `graph` with `v=>Node[]` for all `variables` not in the graph. """ function complete_graph!(variables::Vector{<:Variable}, graph::VariableGraph) ks = keys(graph) for v in variables if !(v in ks) graph[v] = Node[] end end return graph end """ struct InstantNetwork{I,J,O} <: Network{I,Nothing,O} A network that only supports initial models. The `Nothing` in the supertype shows that there is no transition to another time. See [`Network`](@ref) for the type parameters """ struct InstantNetwork{I,O} <: Network{I,Nothing,O} variables::Vector{<:Variable} placeholders::Vector{<:Placeholder} outputs::Vector{<:Variable} # outputs is a subset of variables parents::VariableGraph function InstantNetwork( variables::Vector{<:Variable}, parents::VariableGraph, placeholders::Vector{<:Placeholder} = Placeholder[], outputs::Vector{<:Variable} = Variable[]) I = Tuple{[value_type(p) for p in placeholders]...} O = Tuple{[output_type(v) for v in outputs]...} return new{I,O}(variables, placeholders, outputs, complete_graph!(variables, parents)) end end get_variables(n::InstantNetwork) = n.variables get_placeholders(n::InstantNetwork) = n.placeholders get_nodes(n::InstantNetwork) = union(Set(n.variables), Set(n.placeholders)) get_initial_placeholders(n::InstantNetwork) = n.placeholders get_transition_placeholders(::InstantNetwork) = error("InstantNetwork does not have a transition graph") get_outputs(n::InstantNetwork) = n.outputs get_graph(n::InstantNetwork) = n.parents get_initial_graph(n::InstantNetwork) = n.parents get_transition_graph(::InstantNetwork) = error("InstantNetwork does not have a transition graph") get_parents(n::InstantNetwork, v) = get_initial_parents(n,v) get_children(n::InstantNetwork, v) = get_initial_children(n,v) has_timeoffset(n::InstantNetwork, child::Node, parent::Node) = false """ DynamicNetwork{I,J,O} <: Network{I,J,O} A network that can transition over time. See [`Network`](@ref) for the type parameters. """ struct DynamicNetwork{I,J,O} <: Network{I,J,O} variables::Vector{<:Variable} initial_placeholders::Vector{<:Placeholder} transition_placeholders::Vector{<:Placeholder} outputs::Vector{<:Variable} # outputs is a subset of variables initial_parents::VariableGraph transition_parents::VariableGraph parents_timeoffset::VariableParentTimeOffset function DynamicNetwork( variables::Vector{<:Variable}, initial_parents::VariableGraph, transition_parents::VariableGraph, parents_timeoffset::VariableParentTimeOffset = Set{Pair{Node, Node}}(), init_placeholders::Vector{<:Placeholder} = Placeholder[], trans_placeholders::Vector{<:Placeholder} = Placeholder[], outputs::Vector{<:Variable} = Variable[]) I = Tuple{[value_type(p) for p in init_placeholders]...} J = Tuple{[value_type(p) for p in trans_placeholders]...} O = Tuple{[output_type(v) for v in outputs]...} return new{I,J,O}(variables, init_placeholders, trans_placeholders, outputs, complete_graph!(variables, initial_parents), complete_graph!(variables, transition_parents), parents_timeoffset) end end get_variables(n::DynamicNetwork) = n.variables get_initial_placeholders(n::DynamicNetwork) = n.initial_placeholders get_transition_placeholders(n::DynamicNetwork) = n.transition_placeholders get_nodes(n::DynamicNetwork) = union(Set(n.variables), Set(n.initial_placeholders), Set(n.transition_placeholders)) get_outputs(n::DynamicNetwork) = n.outputs get_initial_graph(n::DynamicNetwork) = n.initial_parents get_transition_graph(n::DynamicNetwork) = n.transition_parents has_timeoffset(n::DynamicNetwork, child::Node, parent::Node) = child == parent || Pair(child, parent) in n.parents_timeoffset function assign_times(parents::Dict{Variable, Vector{Node}}, timed_varplaces::Dict{Node,Time})::Dict{Node,Time} # TODO be smarter. For now this is exhaustive at least, but exponentially slower than needed. # Unclear what the exact assumptions on model constraints should be # Easy improvement - select immediately identifiable vars with preference (i.e. FixedModel) untimed_vars = [var for var in parents.keys() if ~(var in keys(timed_varplaces))] if length(untimed_vars)==0 return timed_varplaces end for untimed_var in untimed_vars new_time = assign_var(parents, timed_varplaces, untimed_var) if new_time sub_timed_varplaces = copy(timed_varplaces) sub_timed_varplaces[untimed_var] = new_time recursed = assign_times(parents, sub_timed_varplaces) else # Can't assign return false end if recursed return recursed end # Else try assigning another variable end return false end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
578
module Models using ..Scruff using ..Scruff.Operators using ..Scruff.SFuncs import ..Scruff: make_initial, make_transition include("models/instantmodel.jl") include("models/timelessinstantmodel.jl") include("models/simplemodel.jl") include("models/fixedtimemodel.jl") include("models/timelessfixedtimemodel.jl") include("models/homogeneousmodel.jl") include("models/variabletimemodel.jl") include("models/staticmodel.jl") include("models/configurable/configurablemodel.jl") include("models/configurable/parameterized.jl") include("models/configurable/simplenumeric.jl") end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4135
""" The `Operators` module defines the following interfaces for the following operators: - `is_deterministic(sf::SFunc)::Bool` - `sample(sf::SFunc{I,O}, i::I)::O where {I,O}` - `sample_logcpdf(sf::SFunc{I,O}, i::I)::Tuple{O, AbstractFloat} where {I,O}` - `invert(sf::SFunc{I,O}, o::O)::I where {I,O}` - `lambda_msg(sf::SFunc{I,O}, i::SFunc{<:Option{Tuple{}}, O})::SFunc{<:Option{Tuple{}}, I} where {I,O}` - `marginalize(sf::SFunc{I,O}, i::SFunc{<:Option{Tuple{}}, I})::SFunc{<:Option{Tuple{}}, O} where {I,O}` - `logcpdf(sf::SFunc{I,O}, i::I, o::O)::AbstractFloat where {I,O}` - `cpdf(sf::SFunc{I,O}, i::I, o::O)::AbstractFloat where {I,O}` - `log_cond_prob_plus_c(sf::SFunc{I,O}, i::I, o::O)::AbstractFloat where {I,O}` - `f_expectation(sf::SFunc{I,O}, i::I, fn::Function) where {I,O}` - `expectation(sf::SFunc{I,O}, i::I)::O where {I,O}` - `variance(sf::SFunc{I,O}, i::I)::O where {I,O}` - `get_config_spec(sf::SFunc{I,O,P})::P where {I,O,P}` - `set_config_spec!(sf::SFunc{I,O,P}, p::P)::SFunc{I,O,P} where {I,O,P}` - `get_score(sf::SFunc{Tuple{I},O}, i::I)::AbstractFloat where {I,O}` - `get_log_score(sf::SFunc{Tuple{I},O}, i::I)::AbstractFloat where {I,O}` - ```support(sf::SFunc{I,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {I,O,N}``` - `support_quality(sf::SFunc, parranges)` - ```bounded_probs(sf::SFunc{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector})::Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {I,O,N}``` - ```make_factors(sf::SFunc{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {I,O,N}``` - `initial_stats(sf::SFunc)` - ```expected_stats(sf::SFunc{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, child_lambda::Score{<:O}) where {I,O,N,M}``` - `accumulate_stats(sf::SFunc, existing_stats, new_stats)` - `maximize_stats(sf::SFunc, stats)` - ```compute_bel(sf::SFunc{I,O}, range::VectorOption{<:O}, pi::Dist{<:O}, lambda::Score{<:O})::Dist{<:O} where {I,O}``` - `compute_lambda(sf::SFunc, range::VectorOption, lambda_msgs::Vector{<:Score})::Score` - ```send_pi(sf::SFunc{I,O}, range::VectorOption{O}, bel::Dist{O}, lambda_msg::Score{O})::Dist{<:O} where {I,O}``` - ```outgoing_pis(sf::SFunc, range::VectorOption, bel::Dist, incoming_lambdas::VectorOption{<:Score})::Vector{<:Dist}``` - ```outgoing_lambdas(sf::SFunc{I,O}, lambda::Score{O}, range::VectorOption{O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Vector{<:Score} where {N,I,O}``` - ```compute_pi(sf::SFunc{I,O}, range::VectorOption{O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,I,O}``` - ```send_lambda(sf::SFunc{I,O}, lambda::Score{O}, range::VectorOption{O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {N,I,O}``` """ module Operators using ..Scruff export VectorOption, Option """VectorOption{T} = Union{Vector{Union{}}, Vector{T}}""" VectorOption{T} = Union{Vector{Union{}}, Vector{T}} """Option{T} = Union{Nothing, T}""" Option{T} = Union{Nothing, T} include("operators/op_performance.jl") include("operators/op_defs.jl") include("operators/op_impls.jl") end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
20503
export Instance, VariableInstance, PlaceholderInstance, Env, Runtime, InstantRuntime, DynamicRuntime, collect_messages, current_instance, current_time, get_all_instances, get_belief, get_placeholder_beliefs, get_definition, get_env, get_evidence, get_instance, get_intervention, get_message, get_name, get_network, get_sfunc, get_state, get_time, get_value, get_node, has_belief, has_evidence, has_instance, has_intervention, has_previous_instance, has_state, has_value, previous_instance, rng, clear_state!, concat!, delete_evidence!, delete_state!, delete_value!, distribute_messages!, instantiate!, ensure_all!, ensure_instance!, post_belief!, post_evidence!, post_intervention!, latest_instance_before, remove_messages!, set_message!, set_state!, set_time!, set_value! using DataStructures using Dates using Random using .Models import Base.isless """ Instance{O} An abstract base type for variable and placeholder instances. This is instance can have values associated with it in the runtime. O is the output type of the node. """ abstract type Instance{O} end """ VariableInstance An instance of variable node at `time`. `sf` is an sfunc generated from the variable's model. """ struct VariableInstance{O} <: Instance{O} node :: Variable{I,J,O} where {I,J} sf :: Union{SFunc{I,O}, SFunc{J,O}} where {I,J} time :: Any end """ PlaceholderInstance An instance of placeholder `node` at `time`. This instance has no sfunc, but can still take values in the runtime. """ struct PlaceholderInstance{O} <: Instance{O} node :: Placeholder{O} time :: Any end """ get_sfunc(i::VariableInstance)::SFunc Get the instance's sfunc. """ get_sfunc(i::VariableInstance)::SFunc = i.sf """ get_node(i::Instance)::Node Get the instance's node, whether it is a placeholder or a variable. """ get_node(i::Instance)::Node = i.node """ get_time(i::Instance) Get the instance's time. """ get_time(i::Instance) = i.time """ get_name(i::Instance)::Symbol Get the name of the instance's node. """ get_name(i::Instance):: Symbol = get_node(i).name """ get_definition(i::VariableInstance)::D where {D<:ValueTyped} Get the instance's variable's underlying model. """ get_definition(i::VariableInstance)::D where {D<:ValueTyped} = get_node(i).model """ get_model(i::VariableInstance)::D where {D<:ValueTyped} Get the instance's variable's underlying model. """ get_model(i::VariableInstance)::D where {D<:ValueTyped} = get_definition(i) output_type(i::Instance) = output_type(get_node(i)) """ struct Env Holds all external state of a Runtime. The `Env` supports the following methods: ``` get_state(env::Env) :: Dict{Symbol, Any} has_state(env::Env, key::Symbol) :: Bool get_state(env::Env, key::Symbol) set_state!(env::Env, key::Symbol, value) delete_state!(env::Env, key::Symbol) clear_state!(env::Env) clone(env::Env) ``` """ struct Env state::Dict{Symbol, Any} Env() = new(Dict{Symbol, Any}()) end get_state(env::Env) :: Dict{Symbol, Any} = env.state has_state(env::Env, key::Symbol) :: Bool = haskey(get_state(env), key) function get_state(env::Env, key::Symbol) has_state(env, key) || ArgumentError("symbol :$key does not exist in the environment") get_state(env)[key] end set_state!(env::Env, key::Symbol, value) = get_state(env)[key] = value delete_state!(env::Env, key::Symbol) = pop!(get_state(env), key, nothing) clear_state!(env::Env) = empty!(get_state(env)) clone(env::Env) :: Env = deepcopy(env) # TODO what should happen if a global and local key conflicts? function concat!(local_env::Env, global_env::Env) :: Env for (k,v) in get_state(clone(global_env)) set_state!(local_env, k, v) end local_env end """ abstract type Runtime A struct that contains the state of the compute graph. This code makes the assumption that values are associated with instances but messages are passed between variables and applied to the relevant instances later. It has to be this way because the receiving instance might not exist at the time the message is sent. """ abstract type Runtime end """ struct InstantRuntime <: Runtime A runtime that represents a network whose variables take on a single instance. As a convenience, the following methods create an `InstantRuntime`: ``` Runtime() Runtime(net :: InstantNetwork) Runtime(net :: DynamicNetwork) ``` """ struct InstantRuntime <: Runtime env :: Env name :: Symbol network :: InstantNetwork instances :: Dict{Node, Instance} values :: Dict{Tuple{Instance, Symbol}, Any} messages :: Dict{Tuple{Node, Symbol}, Dict{Node, Any}} end """ struct DynamicRuntime <: Runtime A runtime that represents a network whose variables take on many instances at different times `T`. """ struct DynamicRuntime{T} <: Runtime env :: Env name :: Symbol network :: DynamicNetwork instances :: Dict{Node, SortedDict{T, Instance, Base.Order.ReverseOrdering}} values :: Dict{Tuple{Instance, Symbol}, Any} messages :: Dict{Tuple{Node, Symbol}, Dict{Node, Any}} end Runtime() = InstantRuntime(InstantNetwork(Variable[], Placeholder[], Placeholder[], VariableGraph())) Runtime(net :: InstantNetwork) = InstantRuntime(Env(), gensym(), net, Dict(), Dict(), Dict()) Runtime(net :: DynamicNetwork) = Runtime(net, 0) function Runtime(net :: DynamicNetwork, time::T) where {T} rt = DynamicRuntime{T}(Env(), gensym(), net, Dict(), Dict(), Dict()) set_time!(rt, time) return rt end function rng(r::Runtime) return Random.GLOBAL_RNG end get_env(runtime::Runtime) :: Env = runtime.env get_name(runtime::Runtime) :: Symbol = runtime.name get_network(runtime::Runtime) :: Network = runtime.network get_nodes(runtime::Runtime) :: Set{Node} = get_nodes(get_network(runtime)) function get_node(runtime::Runtime, name::Symbol) :: Union{Placeholder, Variable, Nothing} get_node(get_network(runtime), name) end #= state functions =# get_state(runtime::Runtime) :: Dict{Symbol, Any} = get_state(get_env(runtime)) has_state(runtime::Runtime, key::Symbol) :: Bool = has_state(get_env(runtime), key) get_state(runtime::Runtime, key::Symbol) = get_state(get_env(runtime), key) set_state!(runtime::Runtime, key::Symbol, value) = set_state!(get_env(runtime), key, value) delete_state!(runtime::Runtime, key::Symbol) = delete_state!(get_env(runtime), key) clear_state!(runtime::Runtime) = empty!(get_state(runtime)) #= Managing Runtime time =# const TIME = :__simulated_time__ """ current_time(runtime::Runtime) -> T Returns the currently set time of the given `Runtime` """ function current_time(runtime::DynamicRuntime{T}) :: T where {T} return get_state(runtime, TIME) end """ set_time(runtime::Runtime{T}, newtime::T) -> T Sets the current time for the given `Runtime` """ set_time!(runtime::DynamicRuntime{T}, newtime::T) where {T} = set_state!(runtime, TIME, newtime) #= Instantiating instances =# isless(::Nothing, ::Nothing) = false """ instantiate!(runtime::InstantRuntime,variable::Variable,time = 0) instantiate!(runtime::InstantRuntime,placeholder::Placeholder,time = 0) instantiate!(runtime::DynamicRuntime{T}, node::Node,time::T = current_time(runtime))::Instance where {T} Instantiate and return an instance for the given runtime at the given time; the default time is the current time of the runtime in unix time (an `Int64`). For an `InstantRuntime`, there is only a single instance for each variable. """ function instantiate!(runtime::InstantRuntime,variable::Variable,time = 0) # time argument is provided for uniformity but ignored return get!(runtime.instances, variable, VariableInstance(variable, make_initial(variable.model, time), time)) end function instantiate!(runtime::InstantRuntime,placeholder::Placeholder,time = 0) return get!(runtime.instances, placeholder, PlaceholderInstance(placeholder, time)) end function instantiate!(runtime::DynamicRuntime{T}, node::Node,time::T = current_time(runtime))::Instance where {T} if haskey(runtime.instances, node) curr = (runtime.instances[node]) @assert !in(time, keys(curr)) "variable $(variable.name) at time $(time) is already instantiated" parents = get_transition_parents(runtime.network, node) parenttimes = Vector{T}() for p in parents time_offset = has_timeoffset(runtime.network, node, p) parinst = latest_instance_before(runtime, p, time, !time_offset) if isnothing(parinst) error("In instantiate! for ", variable.name, ": parent ", p.name, " not instantiated at time ", time) end push!(parenttimes, get_time(parinst)) end parenttimes = tuple(parenttimes...) if isa(node, Variable) sf = make_transition(node.model, parenttimes, time) inst = VariableInstance(node, sf, time) else inst = PlaceholderInstance(node, time) end curr[time] = inst return inst else curr = SortedDict{T, Instance, Base.Order.ReverseOrdering} (Base.Order.ForwardOrdering()) local inst::Instance if isa(node, Variable) sf = make_initial(node.model, time) inst = VariableInstance(node, sf, time) else inst = PlaceholderInstance(node, time) end instvec = Pair{T, Instance}[time => inst] runtime.instances[node] = SortedDict{T, Instance, Base.Order.ReverseOrdering}(Base.Order.ReverseOrdering(), instvec) return inst end end """ ensure_all!(runtime::InstantRuntime, time=0) :: Dict{Symbol, Instance} ensure_all!(runtime::DynamicRuntime, time = current_time(runtime)) :: Dict{Symbol, Instance} Instantiate all the variables in the network at the given time and returns them as a dict from variable names to their corresponding instance; the default time is the current time of the runtime in unix time. """ function ensure_all!(runtime::InstantRuntime, time=0) :: Dict{Symbol, Instance} insts = Dict{Symbol, Instance}() for node in get_nodes(runtime) insts[node.name] = instantiate!(runtime, node) end return insts end function ensure_all!(runtime::DynamicRuntime, time = current_time(runtime)) :: Dict{Symbol, Instance} insts = Dict{Symbol, Instance}() for node in get_nodes(runtime) try insts[node.name] = ensure_instance!(runtime, node, time) catch ex @error("Error $ex on $(node.name), $node") rethrow(ex) end end return insts end """ ensure_instance!(runtime::Runtime{T}, node::Node{O}, time::T = current_time(runtime))::Instance{O} where {O,T} Returns an instance for the given variable at the given time, either by using an existing one or creating a new one. """ function ensure_instance!(runtime::Runtime, node::Node{O}, time = current_time(runtime))::Instance{O} where O if has_instance(runtime, node, time) return get_instance(runtime, node, time) else return instantiate!(runtime, node, time) end end """ current_instance(runtime::InstantRuntime, node::Node) current_instance(runtime::DynamicRuntime, node::Node) Returns the current (last) instance for the given runtime and node; this method will throw an exception if there is no current instance for the given node """ current_instance(runtime::InstantRuntime, node::Node) = runtime.instances[node] function current_instance(runtime::DynamicRuntime, node::Node) :: Instance first(runtime.instances[node]).second end """ previous_instance(runtime::DynamicRuntime, node::Node) Returns the previous instance for the given runtime and node. This will throw and exception if there is no previous instance. """ function previous_instance(runtime::DynamicRuntime, node::Node) insts = runtime.instances[node] key = keys[insts][2] return insts[key] end """ get_all_instances(runtime::DynamicRuntime, variable::Variable) get_all_instances(runtime::InstantRuntime, variable::Variable) Returns all instances in the `runtime` for the given variable, in order, as a `Vector{Instance}`. """ function get_all_instances(runtime::DynamicRuntime, variable::Variable) has_instance(runtime, variable) ? collect(values(runtime.instances[variable])) : Instance[] end function get_all_instances(runtime::InstantRuntime, variable::Variable) has_instance(runtime, variable) ? [runtime.instances[variable]] : Instance[] end """ function get_instance(runtime::DynamicRuntime{T}, node::Node, t::T)::Instance Returns instance for the given variable at time `T`; throws an error if no such instance exists. """ function get_instance(runtime::DynamicRuntime{T}, node::Node, t::T) :: Instance where {T} return runtime.instances[node][t] end """ latest_instance_before(runtime::DynamicRuntime{T}, node::Node, t::T, allow_equal::Bool) :: Union{Instance, Nothing} where T Return the latest instance of the node before the given time. The `allow_equal` flag indicates whether instances at a time equal to `t`` are allowed. If there is no such instance, returns `nothing`. """ function latest_instance_before(runtime::DynamicRuntime{T}, node::Node, t::T, allow_equal::Bool) :: Union{Instance, Nothing} where T if !(node in keys(runtime.instances)) return nothing end smd = runtime.instances[node] for u in keys(smd) if allow_equal ? u <= t : u < t return smd[u] end end return nothing end """ has_instance(runtime::DynamicRuntime, node::Node, time = current_time(runtime)) has_instance(runtime::InstantRuntime, node::Node) Returns true if the given node has an instance in the given runtime at a time greater than or equal to the given time. """ function has_instance(runtime::DynamicRuntime, node::Node, time = current_time(runtime)) haskey(runtime.instances, node) && time in keys(runtime.instances[node]) end has_instance(runtime::InstantRuntime, node::Node) = haskey(runtime.instances, node) """ has_previous_instance(runtime::DynamicRuntime, node::Node) Checks if the specified node has an instance prior to the current one. """ function has_previous_instance(runtime::DynamicRuntime, node::Node) haskey(runtime.instances, node) && length(keys(runtime.instances, node)) > 1 end #= Setting and getting values associated with instances =# """ set_value!(runtime::Runtime, instance::Instance, key::Symbol, value) Set the value on an instance for the given key """ function set_value!(runtime::Runtime, instance::Instance, key::Symbol, value) runtime.values[(instance, key)] = value end """ get_value(runtime::Runtime, instance::Instance, key::Symbol) Get the value on an instance for the given key; this will throw an exception if the instance does not contain the given key """ function get_value(runtime::Runtime, instance::Instance, key::Symbol) result = runtime.values[(instance, key)] return result end """ delete_value!(runtime::Runtime{T}, instance::Instance, key::Symbol) where {T} Deletes the mapping for the given instance and key in the runtime and returns it """ function delete_value!(runtime::Runtime, instance::Instance, key::Symbol) return pop!(runtime.values, (instance, key), nothing) end function has_value(runtime::Runtime, instance::Instance, key::Symbol) (instance, key) in keys(runtime.values) end #= Sending and receiving messages between variables =# function set_message!(runtime::Runtime, sender::Node, recipient::Node, key::Symbol, value) msgs = get(runtime.messages, (sender, key), Dict()) msgs[recipient] = value runtime.messages[(sender, key)] = msgs end function get_message(runtime::Runtime, sender::Node, recipient::Node, key::Symbol) runtime.messages[(sender, key)][recipient] end function distribute_messages!(runtime::Runtime, sender::Node, recipients::Vector{Node}, key::Symbol, values) msgs = get(runtime.messages, (sender, key), Dict()) for (rcp, val) in zip(recipients, values) msgs[rcp] = val end runtime.messages[(sender, key)] = msgs end function collect_messages(runtime::Runtime, senders::Vector{Node}, recipient::Node, key::Symbol) [get_message(runtime, sdr, recipient, key) for sdr in senders] end function remove_messages!(runtime::Runtime, sender::Node, key::Symbol) delete!(runtime.messages, (sender, key)) end #= Invoking an operation on an instance =# function _unwrap(p) if p isa Tuple && length(p) == 1 p[1] else p end end """ BELIEF The constant key used to store belief for a specific variable instance """ const BELIEF = :__belief__ """ post_belief!(runtime::Runtime, inst::Instance, belief) Posts the given evidence for the given instance. """ function post_belief!(runtime::Runtime, inst::Instance, belief) set_value!(runtime, inst, BELIEF, belief) end """ get_belief(runtime::Runtime, inst::Instance) Returns the last posted belief for the given instance; this will return `nothing` if no belief has been posted """ function get_belief(runtime::Runtime, inst::Instance) has_value(runtime, inst, BELIEF) || return nothing return get_value(runtime, inst, BELIEF) end has_belief(runtime::Runtime, inst::Instance) = has_value(runtime, inst, BELIEF) function get_placeholder_beliefs(runtime::Runtime)::Dict{Symbol,Dist} result = Dict{Symbol,Dist}() for ph in get_placeholders(get_network(runtime)) i = current_instance(runtime, ph) if has_belief(runtime, i) result[ph.name] = get_belief(runtime, i) end end return result end """ EVIDENCE The constant key used to store evidence for a specific variable instance """ const EVIDENCE = :__evidence__ """ post_evidence!(runtime::Runtime, inst::Instance, evidence) Posts the given evidence for the given instance. """ function post_evidence!(runtime::Runtime, inst::Instance, evidence::Score) set_value!(runtime, inst, EVIDENCE, evidence) end """ get_evidence(runtime::Runtime, inst::Instance) Returns the last posted evidence for the given instance; this will return `nothing` if no evidence has been posted """ function get_evidence(runtime::Runtime, inst::Instance) has_value(runtime, inst, EVIDENCE) || return nothing return get_value(runtime, inst, EVIDENCE) end function delete_evidence!(runtime::Runtime, inst::Instance) if has_value(runtime, inst, EVIDENCE) return delete_value!(runtime, inst, EVIDENCE) end end has_evidence(runtime::Runtime, inst::Instance) = has_value(runtime, inst, EVIDENCE) """ INTERVENTION The constant key used to store interventions for a specific variable instance """ const INTERVENTION = :__intervention__ """ post_intervention!(runtime::Runtime, inst::Instance, intervention::Dist) Posts the given intervention for the given instance. """ function post_intervention!(runtime::Runtime, inst::Instance, intervention::Dist) set_value!(runtime, inst, INTERVENTION, intervention) end """ get_intervention(runtime::Runtime, inst::Instance) Returns the last posted intervention for the given instance; this will return `nothing` if no intervention has been posted """ function get_intervention(runtime::Runtime, inst::Instance) has_value(runtime, inst, INTERVENTION) || return nothing return get_value(runtime, inst, INTERVENTION) end has_intervention(runtime::Runtime, inst::Instance) = has_value(runtime, inst, INTERVENTION) #= Define the interface for Algorithms =# """ initialize_algorithm(alg_fun::Function, runtime::Runtime) Initializes the given algorithm's [`Runtime`](@ref). By default, this does nothing. """ initialize_algorithm(alg_fun::Function, runtime::Runtime) = nothing """ start_algorithm(alg_fun::Function, runtime::Runtime, args...) Starts the algorithm in the current thread """ start_algorithm(alg_fun::Function, runtime::Runtime, args...) = nothing # TODO implement ; should take a list of instance/evidence pairs # (or rather, variable-name/time/evidence tuples) function post_evidence!(alg_fun::Function, runtime::Runtime, inst::Instance, evidence) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
214
module RTUtils using ..Scruff using ..Utils using ..SFuncs import ..Operators: Support using ..MultiInterface include("utils/range_utils.jl") include("utils/expansions.jl") include("utils/initializer.jl") end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
630
module SFuncs using Base: reinit_stdio using ..MultiInterface using ..Scruff using ..Utils using ..Operators import ..Operators import ..Operators: VectorOption, Support, SupportQuality import ..Operators: InitialStats, AccumulateStats, ExpectedStats, MaximizeStats macro impl(expr) return esc(MultiInterface.impl(__module__, __source__, expr, Operators)) end include("sfuncs/dist/dist.jl") include("sfuncs/score/score.jl") include("sfuncs/util/extend.jl") include("sfuncs/conddist/conddist.jl") include("sfuncs/compound/compound.jl") include("sfuncs/op_impls/bp_ops.jl") include("sfuncs/op_impls/basic_ops.jl") end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1331
module Utils include("utils/factor.jl") include("utils/cutils.jl") include("utils/simple_graph.jl") # Helper functions for normalize; may be useful elsewhere function _entries(xs::Array) ys = map(_entries, xs) result = [] for y in ys append!(result, y) end return result end _entries(d::Dict) = _entries(collect(map(_entries, values(d)))) _entries(xs::Tuple) = _entries([y for y in xs]) _entries(x::Number) = [x] _entries(::Nothing) = [] _transform(f::Function, xs::Array) = [_transform(f,x) for x in xs] _transform(f::Function, d::Dict) = Dict([(k,_transform(f,x)) for (k,x) in d]) _transform(f::Function, xs::Tuple) = tuple([_transform(f,x) for x in xs]...) _transform(f::Function, x::Number) = f(x) _transform(::Function, ::Nothing) = nothing """ normalize(xs) Normalize an array of non-negative reals to sum to 1 """ function normalize(xs) tot = 0.0 ys = _entries(xs) for y in ys if y < 0 error("Negative probability in $(ys)") end tot += y end # In the case of learning, it is legitimately possible that a case never # happens, so all statistics are zero. Therefore we accept this case. if tot == 0.0 f = x -> 1.0 / length(ys) else f = x -> x / tot end return _transform(f, xs) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
288
export Algorithm, marginal, joint, probability, mean """ Algorithm The supertype of all algorithms. A standard set of queries is defined for algorithms. Any given subtype of `Algorithm` will implement a subset of these queries. """ abstract type Algorithm end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
9207
export Query, Queryable, Marginal, Joint, ProbValue, ProbFunction, ProbabilityBounds, Expectation, Mean, Variance, answer, marginal, joint, probability, probability_bounds, mean """ abstract type Query end General type of query that can be answered after running an algorithm. """ abstract type Query end """ A query target is either a variable instance or a variable. Allowing queries to be defined in terms of instances rather than variables makes it possible to ask queries across multiple instances of a variable at different times. However, in many cases the current instance of the variable(s) is required and then it is easier to use variables. """ Queryable{O} = Union{VariableInstance{O}, Variable{I,J,O}} where {I,J} function _resolve(r::Runtime, q::Queryable{O})::VariableInstance{O} where O if q isa Instance return q else return current_instance(r, q) end end """ answer(::Query, ::Algorithm, ::Runtime, ::VariableInstance) answer(::Query, ::Algorithm, ::Runtime, ::Vector{VariableInstance}) answer(::Query, ::Algorithm, ::Runtime, ::Queryable) answer(::Query, ::Algorithm, ::Runtime, ::Vector{Queryable}) Answer the query. An implementation of an algorithm should implement an `answer` method for any queries it can handle. The type hierarchies of `Query` and `Algorithm` will enable query answering methods to be used wherever appropriate with the right specialization. The implementations of `answer` are differentiated along two dimensions: - single or multiple items - queryable items in general or specifically instances It is expected that an algorithm will implement one of the first two methods for queries it can handle. I.e., an algorithm is expected to handle a single instance or a vector of instances. If it can handle multiple instances, it should implement a second method and a single instance implementation is derived by default using a singleton vector. An algorithm can still override this default method if it handles single instances differently from multiple. Algorithms will generally not implement the latter two methods, which are provide for convenience. Default implementations are provided that delegate to the instance-specific methods. Defining a very high-level default implementation that throws an error enables implementations to go through sequences of preferences. """ function answer(q::Query, a::Algorithm, r::Runtime, i::VariableInstance) is = VariableInstance[i] answer(q, a, r, is) end function answer(q::Query, a::Algorithm, r::Runtime, item::Queryable) answer(q, a, r, _resolve(r,item)) end function answer(q::Query, a::Algorithm, r::Runtime, items::Vector{Queryable}) insts = VariableInstance[] for i in items inst::VariableInstance = _resolve(r,i) push!(insts, inst) end answer(q, a, r, insts) end answer(::Any, ::Any, ::Any, ::Any) = error("_answer_") "" struct Marginal <: Query end """ marginal(alg::Algorithm, runtime::Runtime, item::Queryable{O})::Union{Dist{O}, Tuple{Dist{O}, Dist{O}}} where O Return the marginal distribution over `item`, or lower and upper marginals, depending on the algorithm. The returned `Score` assigns a score to each value of `item`. """ function marginal(alg::Algorithm, run::Runtime, item::Queryable{O})::Union{Dist{O}, Tuple{Dist{O}, Dist{O}}} where O mg = answer(Marginal(), alg, run, item) return mg end struct Joint <: Query end """ joint(alg::Algorithm, run::Runtime, items::Vector{Queryable})::Union{Score{O}, Tuple{Score{O}, Score{O}}} Return the joint distribution over `items`, or lower and upper distributions, depending on the algorithm. The returned `Score` assigns a score for each Vector of values of the items. """ function joint(alg::Algorithm, run::Runtime, items::Vector{Queryable})::Union{Score, Tuple{Score, Score}} answer(Joint(), alg, run, items) end struct ProbValue{O} <: Query value :: O end struct ProbFunction <: Query fn :: Function end """ probability(alg::Algorithm, run::Runtime, items::Vector{Queryable}, predicate::Function)::Union{Float64, Tuple{Float64, Float64}} Return the probability that `items` satisfy `query` or lower and upper probabilities. `predicate` is a function from Vector{Any} to `Bool`. """ function probability(alg::Algorithm, run::Runtime, items::Vector{Queryable}, predicate::Function)::Union{Float64, Tuple{Float64, Float64}} answer(ProbFunction(predicate), alg, run, items) end function probability(alg::Algorithm, run::Runtime, item::Queryable, predicate::Function)::Union{Float64, Tuple{Float64, Float64}} f(vec) = predicate(vec[1]) insts = VariableInstance[_resolve(run,item)] answer(ProbFunction(f), alg, run, insts) end """ probability(alg::Algorithm, run::Runtime, item::Queryable{O}, value::O)::Union{Float64, Tuple{Float64, Float64}} where O Return the probability that `item` has `value` or lower and upper probabilities. The default implementation tries to use the more general probability of a query. If that fails, it uses the `cpdf` operation on the marginal of `item`. """ function probability(alg::Algorithm, run::Runtime, item::Queryable{O}, value::O)::Union{Float64, Tuple{Float64, Float64}} where O inst::Instance = _resolve(run, item) try answer(ProbValue(value), alg, run, inst) catch e if e == ErrorException("_answer_") try probability(alg, run, item, x -> x == value) catch e if e == ErrorException("_answer_") try m = marginal(alg, run, inst) return cpdf(m, (), value) catch e if e == ErrorException("_answer_") error("None of the methods to compute the probability of a value are implemented") else rethrow(e) end end else rethrow(e) end end else rethrow(e) end end end struct ProbabilityBounds{O} <: Query range :: Vector{O} end """ probability_bounds(alg::Algorithm, run::Runtime, item::Queryable, range::Vector)::Tuple{Vector{Float64}, Vector{Float64}} For an algorithm that produces lower and upper bounds, return vectors of lower and upper bounds on probabilities for values in the range. The range is important for computing the bounds, because it is assumed that values outside the range have probability zero. """ function probability_bounds(alg::Algorithm, run::Runtime, item::Queryable, range::Vector)::Tuple{Vector{Float64}, Vector{Float64}} return answer(ProbabilityBounds(range), alg, run, item) end struct Expectation <: Query fn :: Function end struct Mean <: Query end """ expectation(alg::Algorithm, runtime::Runtime, item::Queryable, f::Function)::Float64 Return the expectation of the function `f` over the marginal distribution of `item`. The default implementation uses the expectation operation on the SFunc representing the marginal distribution. """ function expectation(alg::Algorithm, run::Runtime, item::Queryable, fn::Function)::Float64 try return answer(Expectation(fn), alg, run, item) catch e if e == ErrorException("_answer_") m = marginal(alg, run, item) if m isa Tuple # marginal produced bounds; support is same for lower and upper bounds m = m[1] end tot = 0.0 O = output_type(item) sup = support(m, (), 1000, O[]) for x in unique(sup) tot += cpdf(m, (), x) * fn(x) end return tot # return Operators.f_expectation(marginal(alg, run, item), (), fn) else rethrow(e) end end end """ mean(alg::Algorithm, runtime::Runtime, item::Queryable) Return the mean of `item`. """ function mean(alg::Algorithm, runtime::Runtime, item::Queryable{O})::Float64 where {O <: Number} try answer(Mean(), alg, runtime, item) catch e if e == ErrorException("_answer_") return expectation(alg, runtime, item, x -> x) else rethrow(e) end end return end struct Variance <: Query end """ variance(alg::Algorithm, runtime::Runtime, item::Queryable)::Float64 Return the variance of `item`. """ function variance(alg::Algorithm, run::Runtime, item::Queryable)::Float64 #answer(Variance(), alg, run, item) try return answer(Variance(), alg, run, item) catch e if e == ErrorException("_answer_") exp_x = expectation(alg, run, item, x->x) exp_xsq = expectation(alg, run, item, x->x^2) variance_x = exp_xsq - exp_x^2 #return Operators.f_expectation(marginal(alg, run, item), (), fn) return variance_x else rethrow(e) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
2337
import Base.length using StatsFuns: logsumexp using ..SFuncs: Cat export Particles, effective_sample_size, normalize_weights, log_prob_evidence, resample, probability, marginal "Sample = Dict{Symbol, Any}" Sample = Dict{Symbol, Any} """ struct Particles A structure of particles containing a vector of `Samples` and of log_weights. """ struct Particles samples::Vector{Sample} log_weights::Vector{Float64} end """ probability(parts::Particles, predicate::Sample -> Bool)::Float64 Returns the probability that the predicate is satisfied """ function probability(parts::Particles, predicate::Function)::Float64 sum = 0.0 tot = 0.0 for i in 1:length(parts.samples) w = exp(parts.log_weights[i]) s = parts.samples[i] if predicate(s) sum += w end tot += w end return sum / tot end """ marginal(parts::Particles, x::Symbol)::Cat Returns a Cat representing the marginal distribution over the given symbol according to parts """ function marginal(parts::Particles, x::Symbol)::Cat d = Dict{Any, Float64}() xs = [s[x] for s in parts.samples] lws = normalize_weights(parts.log_weights) for i in 1:length(parts.samples) d[xs[i]] = get(d, xs[i], 0.0) + exp(lws[i]) end ks = Vector{Any}() ps = Vector{Float64}() for (k,p) in d push!(ks, k) push!(ps, p) end return Cat(ks, ps) end """ expected_sample_size(log_weights::Vector{Float64}) Effective sample size """ function effective_sample_size(lws::Vector{Float64}) log_ess = (2 * logsumexp(lws)) - logsumexp(2 .* lws) return exp(log_ess) end """ normalize_weights(log_weights::Vector{Float64}) Normalize weights """ function normalize_weights(lws::Vector{Float64}) return lws .- logsumexp(lws) end function log_prob_evidence(lws::Vector{Float64}) return logsumexp(lws) - log(length(lws)) end function resample(ps::Particles, target_num_particles::Int = length(ps.samples)) lnws = normalize_weights(ps.log_weights) weights = exp.(lnws) selections = rand(Distributions.Categorical(weights/sum(weights)), target_num_particles) samples = map(selections) do ind ps.samples[ind] end return Particles(samples, zeros(target_num_particles)) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
14825
using Base.Threads export em, bp_info_provider using Scruff using Scruff.Models #========================================= The EM algorithm is written generically. It takes a runtime and a source of data. To make the algorithm concrete, it requires an inference algorithm, as well as a data_batcher to convert the source of data into training examples for each iteration. The format of the data is not specified. A data_batcher is used to produce the required data to use at each iteration. The result of the data_batcher should be a one-dimensional array of examples, where each example is a Dict mappimg variable names to evidence. The evidence format is specified in evidence_ops. It can either be hard evidence, consisting of a value of the variable, or soft evidence, consisting of a distribution over values. The default data_batcher assumes the data already has the right format and simply returns the data as a batch. This implementation allows for both batch and online versions of EM. For online EM, use a non-zero discount_factor (see below). Furthermore, the data_batcher takes the runtime as an argument. This enables it, for example, to change the network as new objects are encountered, enabling EM with flexible structures. This also supports dynamic and asynchronous operation. The algorithm can be any algorithm that computes beliefs over its variables that can be used to compute statistics. The algorithm takes only the runtime as argument and uses the evidence associated with instances in the runtime. Parameters associated with the variables are generalized to any configuration specification that can change an sfunc. The configuration specifications used by the algorithm are found in the runtime, associated with instances using the :config_spec key. The configuration specifications are used by ConfigurableModels. In EM, ConfigurableModels and other kinds of models are treated differently. Only ConfigurableModels are learned and have statistics computed. The models defining the variables in the network must support the operations: initial_stats, which produces initial statistics as the basis for accumulation expected_stats, which produces the expected sufficient statistics for a single training example, using information computed by the algorithm accumulate_stats, which adds statistics across examples maximize_stats, which produces new parameter values from the statistics The default algorithm is three pass BP. Along with the algorithm, an initializer is required that does whatever work is necessary for the algorithm before the first iteration. At the minimum, the initializer should instantiate all variables in the initial network and extract initial spec from the configurable variables into the runtime under the :config_spec key. At the minimum, get_config should be called on the configurable model to initialize the value of :config_spec. A default initializer is provided in initializer.jl, which does only this. The EM algorithm will take care of maintaining the specs in the runtime through the iterations. In order to accommodate different algorithms, which may use different data structures to compute statistics, em uses an info_provider, which takes a runtime and an instance and returns the information to pass to the expected_stats operation. Therefore, for all models, the expected_stats operation takes a single argument, the information produced by the info_provider. em returns a flag indicating whether or not the parameters have converged at termination. In addition to the previous arguments, em takes the following configuration parameters: max_iterations The maximum number of iterations to run before terminating. If this number is negative (the default), there is no maximum. epsilon The maximum difference allowed between parameter values for convergence to be considered achieved # discount_factor The degree to which old statistics should be discounted # when considering new examples. For batch mode, this will be zero. # For online mode, this will be close to 1. discount_factor is actually # a function that takes the runtime as an argument. In many cases it will # be constant, but this allows it to change with runtime factors. ===================# function bp_info_provider(runtime, inst) net = get_network(runtime) var = get_node(inst) pars = get_parents(net, var) parentpis :: Array{SFunc} = collect_messages(runtime, pars, var, :pi_message) childlam = get_value(runtime, inst, :lambda) # cpd = get_params(inst.sf) # cpd = get_value(runtime, inst, :params) pars = get_parents(net, var) parranges = [get_range(runtime, current_instance(runtime, p)) for p in pars] parranges = Tuple(parranges) range = get_range(runtime, inst) # sts = operate(runtime, inst, expected_stats, parranges, parentpis, childlam) sts = expected_stats(inst.sf, range, parranges, Tuple(parentpis), childlam) sts = normalize(sts) # We normalize here so we can apply normalization uniformly, # whatever the sfunc of the variable. # This is a very important point in the design! # We don't have to normalize the individual sfuncs' expected_stats. return sts # return (parent_πs, λ, cpd) end function init_config_spec(network) result = Dict{Symbol, Any}() for var in get_variables(network) if var.model isa ConfigurableModel result[var.name] = get_config_spec(var.model) end end return result end function em(network, data ; data_batcher = (n,x) -> x, algorithm = three_pass_BP, initializer = default_initializer, info_provider = bp_info_provider, showprogress = false, max_iterations = -1, min_iterations = 1) iteration = 0 new_config_specs = init_config_spec(network) conv = false stats = nothing while (max_iterations < 0 || iteration < max_iterations) && !(conv && iteration >= min_iterations) # We have to deepcopy the config specs since their values are complex # and are updated, in many cases, in place. if showprogress println("Iteration ", iteration) end old_config_specs = deepcopy(new_config_specs) batch = data_batcher(network, data) iteration_result = em_iteration(network, batch, algorithm, initializer, info_provider, old_config_specs, showprogress) (stats, new_config_specs) = iteration_result conv = converged_numeric(old_config_specs, new_config_specs) if conv new_config_specs = old_config_specs # roll back end iteration += 1 end # At the end of the algorithm, the runtime will store the most recent # parameter values. # We return a flag indicating whether the algorithm converged # within the given iterations if showprogress if conv println("EM converged after ", iteration, " iterations") else println("EM did not converge; terminating after ", iteration, " iterations") end end return ((conv, iteration), new_config_specs) end function em_iteration(network, batch, algorithm, initializer, info_provider, old_config_specs, showprogress) vars = get_variables(network) config_vars = filter(v -> v.model isa ConfigurableModel, vars) # 1: Initialize the statistics if showprogress println("Initializing statistics") end new_stats = Dict{Symbol, Any}() for var in config_vars new_stats[get_name(var)] = initial_stats(var.model) end new_config_specs = Dict{Symbol, Any}() newruntime = Runtime(network) # 2: For each example, accumulate statistics alock = SpinLock() Threads.@threads for i = 1:length(batch) runtime = deepcopy(newruntime) initializer(runtime) # Need to get the variables again because we did a deep copy runvars = get_variables(get_network(runtime)) config_vars_batch = filter(v -> v.model isa ConfigurableModel, runvars) example = batch[i] if showprogress println("Accumulating statistics for example ", i) end # 2.1: Prepare the evidence for var in runvars inst = current_instance(runtime, var) delete_evidence!(runtime, inst) if var.name in keys(example) post_evidence!(runtime, inst, example[get_name(var)]) end end # 2.2: Run the algorithm if showprogress println("Running the algorithm for example ", i) end algorithm(runtime) # 2.3: Use the algorithm results to compute statistics for this example if showprogress println("Computing statistics for example ", i) end for var in config_vars_batch inst = current_instance(runtime, var) sf = get_sfunc(inst) info = info_provider(runtime, inst) lock(alock) sts = accumulate_stats(sf, new_stats[get_name(var)], info) new_stats[get_name(var)] = sts unlock(alock) #= (parentpis, childlam, _) = info_provider(runtime, inst) pars = get_parents(get_network(runtime), var) parranges = [get_range(runtime, current_instance(runtime, p)) for p in pars] parranges = Tuple(parranges) range = get_range(runtime, inst) # sts = operate(runtime, inst, expected_stats, parranges, parentpis, childlam) sts = expected_stats(sf, range, parranges, Tuple(parentpis), childlam) sts = normalize(sts) # We normalize here so we can apply normalization uniformly, # whatever the sfunc of the variable. # This is a very important point in the design! # We don't have to normalize the individual sfuncs' expected_stats. newstats[] if var.name in keys(newstats) newstats[var.name] = accumulate_stats(sf, newstats[var.name], sts) else newstats[var.name] = sts end unlock(alock) =# end lock(alock) config_vars = config_vars_batch unlock(alock) end #= This doesn't make sense in the generalized algorithm # 3 blend in the old statistics if showprogress println("Blending in old statistics") end if !isnothing(oldstats) # will be nothing on first iteration d = discount_factor(newruntime) for var in vars if var.name in keys(oldstats) if !isnothing(oldstats[var.name]) ss = mult_through(oldstats[var.name], d) tt = add_through(newstats[var.name], ss) newstats[var.name] = tt end end end end =# # 4 choose the maximizing parameter values and store them in the runtime # To implement parameter sharing, we invoke the maximize_stats once per model # for all the variables defined by the model. # Currently, parameter sharing doesn't work if showprogress println("Choosing maximizing parameters") end for var in config_vars maximize_stats(var.model, new_stats[get_name(var)]) new_config_specs[get_name(var)] = get_config_spec(var.model) end #= modelvars = Dict{Model, Array{Variable, 1}}() for var in vars m = var.model if false && isa(m, FixedModel) vs = get(modelvars, m, []) push!(vs, var) modelvars[m] = vs else # no parameter sharing sf = make_sfunc(var, newruntime) newparams[var.name] = maximize_stats(sf, newstats[var.name]) end end for (m, vs) in modelvars stats = initial_stats(m.sf) for v in vs stats = accumulate_stats(m.sf, stats, newstats[v.name]) end modelparams = maximize_stats(m.sf, stats) for v in vs newparams[v.name] = modelparams end end =# return (new_stats, new_config_specs) end # function close(x::Float64, y::Float64, eps::Float64) # return abs(x-y) < eps # end # function close(xs::Array, ys::Array, eps::Float64) # if length(xs) != length(ys) return false end # for i = 1:length(xs) # if !close(xs[i], ys[i], eps) return false end # end # return true # end # function close(xs::Tuple, ys::Tuple, eps::Float64) # if length(xs) != length(ys) return false end # for i = 1:length(xs) # if !close(xs[i], ys[i], eps) return false end # end # return true # end # function close(xs::Dict, ys::Dict, eps::Float64) # println("close: xs = ", xs, ", ys = ", ys) # ks = keys(xs) # ls = keys(ys) # if length(ks) != length(ls) # println("Lengths unequal: returning false") # return false # end # for k in ks # if !k in ls # println("Value not present: returning false") # return false # end # if !close(xs[k], ys[k], eps) # println("Values not close: returning false") # return false # end # end # println("Returning true") # return true # end # # Score the new parameters on the given validation set # function score(network, params, validationset, algorithm, initializer) # result = 0.0 # alock = SpinLock() # Threads.@threads for example in validationset # runtime = Runtime(network) # tvars = get_variables(runtime) # for var in tvars # set_params!(make_sfunc(var.model), params[var.name]) # end # # we have to call the initializer after we set the params, since we create instances # # with the underlying parameter values # initializer(runtime) # # Don't set the evidence. Run the algorithm and check the marginal probability of the evidence. # algorithm(runtime) # localscore = 0 # for var in tvars # inst = current_instance(runtime, var) # bel = get_belief(runtime, inst) # if var.name in keys(example) # prob = bel[example[var.name]] # localscore += log(prob) # end # end # lock(alock) # result += localscore # unlock(alock) # end # return result # end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
925
export SyncBP, AsyncBP, CoherentBP """ SyncBP(range_size = 10) A window filter that uses a synchronous window with ThreePassBP with the given range size. """ SyncBP(range_size = 10) = WindowFilter(SyncWindow(), ThreePassBP(range_size)) """ AsyncBP(range_size = 10, T = Float64) A window filter that uses an asynchronous window with ThreePassBP with the given range size. `T` represents the time type and must be the same as used in creation of the runtime. """ AsyncBP(range_size = 10, T = Float64) = WindowFilter(AsyncWindow{T}(), ThreePassBP(range_size)) """ CoherentBP(range_size = 10, T = Float64) A window filter that uses a coherent window with ThreePassBP with the given range size. `T` represents the time type and must be the same as used in creation of the runtime. """ CoherentBP(range_size = 10, T = Float64) = WindowFilter(CoherentWindow{T}(), ThreePassBP(range_size))
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
767
export Filter, init_filter, filter_step """ abstract type Filter <: Algorithm end General type of filtering algorithms. Must implement init_filter and filter_step methods. """ abstract type Filter <: Algorithm end """ init_filter!(::Filter, ::DynamicRuntime) An interface for intializing the filter for a dynamic runtime. """ function init_filter!(::Filter, ::DynamicRuntime) end """ filter_step(filter::Filter, runtime::Runtime, variables::Vector{Variable}, time::T, evidence::Dict{Symbol, Score}) Run one step of the filter by instantiating the given variables at the given time and passing in the given evidence. """ function filter_step(::Filter, ::DynamicRuntime{T}, ::Vector{<:Variable}, ::T, ::Dict{Symbol, Score}) where T end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
930
export SyncLoopy, AsyncLoopy, CoherentLoopy """ SyncLoopy(range_size = 10) A window filter that uses a synchronous window with LoopyBP with the given range size. """ SyncLoopy(range_size = 10) = WindowFilter(SyncWindow(), LoopyBP(range_size)) """ AsyncLoopy(range_size = 10, T = Float64) A window filter that uses an asynchronous window with LoopyBP with the given range size. `T` represents the time type and must be the same as used in creation of the runtime. """ AsyncLoopy(range_size = 10, T = Float64) = WindowFilter(AsyncWindow{T}(), LoopyBP(range_size)) """ CoherentLoopy(range_size = 10, T = Float64) A window filter that uses a coherent window with LoopyBP with the given range size. `T` represents the time type and must be the same as used in creation of the runtime. """ CoherentLoopy(range_size = 10, T = Float64) = WindowFilter(CoherentWindow{T}(), LoopyBP(range_size))
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
6205
export ParticleFilter, SyncPF, AsyncPF, CoherentPF function ParticleFilter(window_creator::WindowCreator, num_particles::Int, resampling_size::Int = num_particles) function pp!(run) particles = get_state(run, :particles) newparticles = resample(particles, resampling_size) set_state!(run, :particles, newparticles) end return WindowFilter(window_creator, LW(num_particles), pp!) end """ SyncPF(num_particles::Int, resampling_size::Int = num_particles) A particle filter that uses a synchronous window with the given number of particles and resampling buffer size. """ SyncPF(num_particles::Int, resampling_size::Int = num_particles) = ParticleFilter(SyncWindow(), num_particles, resampling_size) """ AsyncPF(num_particles::Int, resampling_size::Int = num_particles, T = Float64) A particle filter that uses an asynchronous window with the given number of particles and resampling buffer size. `T` represents the time type and must be the same as used in creation of the runtime. """ AsyncPF(num_particles::Int, resampling_size::Int = num_particles, T = Float64) = ParticleFilter(AsyncWindow{T}(), num_particles, resampling_size) """ CoherentPF(num_particles::Int, resampling_size::Int = num_particles, T = Float64) A particle filter that uses a coherent window with the given number of particles and resampling buffer size. `T` represents the time type and must be the same as used in creation of the runtime. """ CoherentPF(num_particles::Int, resampling_size::Int = num_particles, T = Float64) = ParticleFilter(CoherentWindow{T}(), num_particles, resampling_size) #= """ General type of particle filters. Implementations must have fields runtime, num_particles, and resampling_size. Some implementations will also provide APIs that organize the filtering in a specific way. """ abstract type ParticleFilter end """ current_particles(pf::ParticleFilter) Returns a Particles data structure consisting of the current view of the most recent samples of all variables in the network, along with the current log weights. """ # Samples are stored in a distributed manner across variables, possibly at different time points. # Coherence of global samples is maintained by consistent indexing into arrays of variable samples. function current_particles(pf::ParticleFilter) vars = get_variables(get_network(pf.runtime)) # Need to make sure samples is initialized with distinct empty dictionaries samples = Sample[] for i in 1:pf.num_particles push!(samples, Sample()) end for var in vars inst = current_instance(pf.runtime, var) varsample = get_value(pf.runtime, inst, :samples) for i in 1:pf.num_particles samples[i][var.name] = varsample[i] end end lws = get_state(pf.runtime, :log_weights) return Particles(samples, lws) end """ store_particles!(pf::ParticleFilter, ps::Particles) Stores the information in ps in a form pf can use. """ function store_particles!(pf::ParticleFilter, ps::Particles) vars = get_variables(get_network(pf.runtime)) # Reset the samples and log weights in the runtime for var in vars inst = current_instance(pf.runtime, var) varsample = Vector{output_type(get_sfunc(inst))}() for i in 1:pf.num_particles # correction for 1-indexing push!(varsample, ps.samples[(i-1) % length(ps.samples) + 1][var.name]) end set_value!(pf.runtime, inst, :samples, varsample) end set_state!(pf.runtime, :log_weights, ps.log_weights) end function resample!(pf::ParticleFilter) current_ps = current_particles(pf) new_ps = resample(current_ps, pf.resampling_size) store_particles!(pf, new_ps) end function init_filter(pf::ParticleFilter) ensure_all!(pf.runtime, 0) likelihood_weighting(pf.runtime, pf.num_particles) ps = get_state(pf.runtime, :particles) store_particles!(pf, ps) end # TODO: Handle evidence at different points in time function filter_step(pf::ParticleFilter, variables_to_sample::Vector{<:Variable}, time::Int, evidence::Dict{Symbol, Score}) @assert time > current_time(pf.runtime) set_time!(pf.runtime, time) # The log weights of the current evidence are added to the existing log weights for each sample. scores = get_state(pf.runtime, :log_weights) for var in variables_to_sample varsamples = Vector{output_type(var)}() inst = instantiate!(pf.runtime, var, time) sf = get_sfunc(inst) varev = var.name in keys(evidence) ? evidence[var.name] : nothing # Get the sample sets of each of the parents of the current variable in the transition model. # These parents may have been previously instantiated at any time. # instantiate! will make sure that the sfunc correctly takes into account the time lags, # as long as the model of the variable is defined appropriately. parents = get_transition_parents(get_network(pf.runtime), var) n = length(parents) parsamples = map(parents) do p if p == var # self edge from previous parinst = previous_instance(pf.runtime, var) else parinst = current_instance(pf.runtime, p) end get_value(pf.runtime, parinst, :samples) end for i in 1:pf.num_particles parvals = tuple([parsamples[j][i] for j in 1:n]...) if isa(varev, HardScore) # Since the value is known, force it and score it instead of sampling, LW style evval = varev.value push!(varsamples, evval) scores[i] += logcpdf(sf, parvals, evval) else # Otherwise, we sample it, but if there is evidence we still score it sampval = sample(sf, parvals) push!(varsamples, sampval) if !isnothing(varev) scores[i] += get_log_score(varev, sampval) end end end set_value!(pf.runtime, inst, :samples, varsamples) end set_state!(pf.runtime, :log_weights, scores) end =#
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4214
export WindowCreator, create_window, SyncWindow, AsyncWindow, CoherentWindow """ abstract type WindowCreator end A type that identifies how to create windows of instances for filtering algorithms. T represents the time type. Must implement `create_window`. """ abstract type WindowCreator{T} end struct SyncWindow <: WindowCreator{Int} end """ create_window(::SyncWindow, runtime::Runtime, variables::Vector{<:Variable}, time::Int)::Vector{Instance} Creates a window by instantiating all variables at all intermediate time steps from the earliest parent to the given time. The `variables` argument is ignored. """ function create_window(::SyncWindow, runtime::Runtime, variables_to_sample::Vector{<:Variable}, time::Int)::Vector{Instance} prevtime = time net = get_network(runtime) ord = topsort(get_transition_graph(net)) for v in variables_to_sample pars = get_transition_parents(net, v) for p in pars time_offset = has_timeoffset(net, v, p) t = get_time(latest_instance_before(runtime, p, time, !time_offset)) prevtime = min(prevtime, t) end end insts = Instance[] for n in ord ph = Placeholder{output_type(n)}(n.name) push!(insts, PlaceholderInstance(ph, prevtime)) end for t in prevtime+1:time for n in ord push!(insts, ensure_instance!(runtime, n, t)) end end return insts end struct AsyncWindow{T <: Number} <: WindowCreator{T} end """ create_window(::AsyncWindow, runtime::Runtime, variables::Vector{<:Variable}, time::Int)::Vector{Instance} Creates a window by instantiating only the given variables at the given time. """ function create_window(::AsyncWindow{T}, runtime::Runtime, variables::Vector{<:Variable}, time::T)::Vector{Instance} where T insts = Instance[] done = Set{Variable}() for v in variables for p in get_transition_parents(get_network(runtime), v) if !(p in done) parinst = latest_instance_before(runtime, p, time, true) # changed false to true!!! partime = get_time(parinst) ph = Placeholder{output_type(p)}(p.name) phinst = PlaceholderInstance(ph, partime) push!(insts, phinst) push!(done, p) end end push!(insts, ensure_instance!(runtime, v, time)) push!(done, v) end return insts end """ struct CoherentWindow <: WindowCreator end A variant of AsyncWindow that ensures that parent values are never stale for any variable that gets updated in a filter step. In other words, if any parent of a direct parent has been updated more recently than a variable to be updated, the direct parent is added to the variables to be updated. This condition then recurses for the direct parents. """ struct CoherentWindow{T <: Number} <: WindowCreator{T} end function create_window(::CoherentWindow{T}, runtime::Runtime, variables::Vector{<:Variable}, time::T)::Vector{Instance} where T # Note: This method does not allow placeholder parents of dynamic variables net = get_network(runtime) parents = get_transition_graph(net) fullvars = Set{Variable}() order = topsort(parents) times = Dict([(n, get_time(current_instance(runtime, n))) for n in order]) function ensure(v) if !(v in fullvars) push!(fullvars, v) for anc in ancestors(parents, v, Set{Node}()) for grandanc in get(parents, anc, []) if times[grandanc] > times[anc] ensure(anc) break end end end times[v] = time # Need to do this to ensure instantiation through a chain of dependencies end end for var in variables ensure(var) end # We must make sure variables get sampled in the correct order to maintain coherence orderedvars = Variable[] for v in order if v in fullvars push!(orderedvars, v) end end create_window(AsyncWindow{T}(), runtime, orderedvars, time) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4024
export WindowFilter, SyncPF, AsyncPF, CoherentPF """ struct WindowFilter <: Filter General construction for a filter based on a flexible windowing scheme. #arguments window_creator Defines the method used to create windows inference_algorithm Defines the algorithm to use on a window postprocess! A postprocessing function, that takes the runtime and does any additional processing needed to carry to the next iteration. Defaults to doing nothing. """ mutable struct WindowFilter <: Filter window_creator :: WindowCreator inference_algorithm :: InstantAlgorithm postprocess! :: Function latest_window :: Union{InstantRuntime, Nothing} WindowFilter(wc, ia, pp) = new(wc, ia, pp, nothing) WindowFilter(wc, ia) = new(wc, ia, run -> nothing, nothing) end function init_filter(wf::WindowFilter, dynrun::DynamicRuntime) ensure_all!(dynrun, current_time(dynrun)) instrun = initial_instant_runtime(dynrun) # We assume no evidence or interventions at time 0 # TODO: Handle placeholder beliefs infer(wf.inference_algorithm, instrun) wf.latest_window = instrun retrieve_values_from_instant_runtime!(dynrun, instrun) _store_beliefs(wf, dynrun, instrun) end function _store_beliefs(wf::WindowFilter, dynrun::DynamicRuntime{T}, instrun::InstantRuntime) where T dynnet = get_network(dynrun) for instvar in get_variables(get_network(instrun)) instinst = current_instance(instrun, instvar) belief = marginal(wf.inference_algorithm, instrun, instinst) (dynname, t) = dynamic_name_and_time(instvar, T) dyninst = get_instance(dynrun, get_node(dynnet, dynname), t) set_value!(dynrun, dyninst, :belief, belief) end end function filter_step(wf::WindowFilter, dynrun::DynamicRuntime{T}, variables::Vector{<:Variable}, time::T, evidence::Dict{Symbol, Score}) where T dynnet = get_network(dynrun) insts = create_window(wf.window_creator, dynrun, variables, time) instrun = instant_runtime_from_instances(dynrun, insts) # Apply the dynamic evidence to the instant runtime instev = Dict{Symbol, Score}() for (name, sc) in evidence instev[instant_name(name, time)] = sc end # Apply beliefs in the dynamic network as placeholder beliefs in the instant network. placeholder_beliefs = Dict{Symbol,Dist}() inst_phs = get_placeholders(get_network(instrun)) for instnode in inst_phs (dynname, t) = dynamic_name_and_time(instnode, T) dynnode = get_node(dynnet, dynname) dyninst = get_instance(dynrun, dynnode, t) belief = get_value(dynrun, dyninst, :belief) placeholder_beliefs[get_name(instnode)] = belief end # TODO: Handle interventions instinterv = Dict{Symbol,Dist}() infer(wf.inference_algorithm, instrun, instev, instinterv, placeholder_beliefs) wf.latest_window = instrun retrieve_values_from_instant_runtime!(dynrun, instrun) set_time!(dynrun, time) _store_beliefs(wf, dynrun, instrun) end function answer(::Marginal, ::WindowFilter, dynrun::Runtime, target::VariableInstance) return get_value(dynrun, target, :belief) end # function answer(query::Query, wf::WindowFilter, dynrun::Runtime, targets::Vector{VariableInstance}) # # TODO: This code assumes that targets are in the latest_window, which might not be true # # for an asynchronous filter. We need to construct an instant window for the targets. # # For that, we need to put information from the dynamic window into the instant window, # # which is not done yet. # instrun = wf.latest_window # insttargets = VariableInstance[] # for target in targets # instname = instant_name(get_name(target), current_time(dynrun)) # instnode = get_node(get_network(instrun), instname) # insttarget = current_instance(instrun, instnode) # push!(insttargets, insttarget) # end # answer(query, wf.inference_algorithm, wf.latest_window, insttargets) # end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
7029
export instant_runtime_from_instances, retrieve_values_from_instant_runtime!, initial_instant_runtime, instant_name, dynamic_name_and_time, instant_node """ Create a name in an instant network corresponding to the given dynamic name and time. """ function instant_name(dynamic_name::Symbol, time::Number)::Symbol return Symbol(dynamic_name, "_", time) end """ Create a dynamic name and time from an instant node. T is the time type. """ function dynamic_name_and_time(instant_node::Node, T = Int)::Tuple{Symbol, T} instant_name = collect(repr(instant_node.name)) # Need to handle two different representations of symbols if length(instant_name) >= 6 && instant_name[1:6] == ['S', 'y', 'm', 'b', 'o', 'l'] instant_name = instant_name[9:length(instant_name)-2] # strip parens and quotes else instant_name = instant_name[2:length(instant_name)] # strip leading colon end len = length(instant_name) i = findlast(x -> x == '_', instant_name) dynamic_name = Symbol(String(instant_name[1:i-1])) time = parse(T, String(instant_name[i+1:len])) return (dynamic_name, time) end """ Create an instant node from a dynamic variable instance. """ function instant_node(dyninst::VariableInstance) name = instant_name(get_name(dyninst), get_time(dyninst)) model = SimpleModel(get_sfunc(dyninst)) var = Variable(name, model) return var end """ Create an instant node from a dynamic placeholder instance. """ function instant_node(dyninst::PlaceholderInstance{O}) where O name = instant_name(get_name(dyninst), get_time(dyninst)) ph = Placeholder{O}(name) return ph end """ instant_runtime_from_instances(runtime::DynamicRuntime, instances::Vector{Instance}) Create an instant runtime from the given instances in the given dynamic runtime. This runtime has an instant network that contains a variable for each instance in `insts`, tagged with the time of the instance. The network also contains a placeholder for each instance in `placeholder_insts`. The function also instantiates the variables in the instant runtime and stores any runtime values from the dynamic runtime with the corresponding instances in the instant runtime. This function is useful for running instant algorithms on a time window for dynamic reasoning. """ function instant_runtime_from_instances(dynrun::DynamicRuntime, dyninsts::Vector{Instance}) dynnet = get_network(dynrun) forward_index = Dict{Instance, Node}() back_index = Dict{Node, Instance}() placeholders = Placeholder[] variables = Variable[] nodes = Node[] for dyninst in dyninsts node = instant_node(dyninst) if get_node(dyninst) isa Variable push!(variables, node) else push!(placeholders, node) end forward_index[dyninst] = node back_index[node] = dyninst push!(nodes, node) end instgraph = VariableGraph() for node in nodes nodepars = Node[] dyninst = back_index[node] insttime = get_time(dyninst) dynnode = get_node(dyninst) dynpars = get_transition_parents(dynnet, dynnode) for dynpar in dynpars # Find the most recent parent instance equal or before this variable's instance time_offset = has_timeoffset(dynnet, dynnode, dynpar) parinst = latest_instance_before(dynrun, dynpar, insttime, !time_offset) if isnothing(parinst) error("Variable does not have parent in instances") elseif !(parinst in dyninsts) # should be a placeholder ph = Placeholder{output_type(dynpar)}(get_name(dynpar)) parinst = PlaceholderInstance(ph, get_time(parinst)) end push!(nodepars, forward_index[parinst]) end instgraph[node] = nodepars end instnet = InstantNetwork(variables, instgraph, placeholders) instrun = Runtime(instnet) ensure_all!(instrun) for ((dyninst, valuename), value) in dynrun.values if dyninst in dyninsts instinst = current_instance(instrun, forward_index[dyninst]) set_value!(instrun, instinst, valuename, value) end end for (k,v) in get_state(dynrun) set_state!(instrun, k, v) end return instrun end """ Creates an instant runtime for the first time step. """ function initial_instant_runtime(dynrun::DynamicRuntime) variables = Variable[] placeholders = Placeholder[] dynnet = get_network(dynrun) node_index = Dict{Symbol, Node}() # Maps names of dynamic nodes to instant instances instgraph = VariableGraph() for dynnode in topsort(get_initial_graph(dynnet)) nodename = get_name(dynnode) dyninst = current_instance(dynrun, dynnode) instvar = instant_node(dyninst) if instvar isa Variable push!(variables, instvar) else push!(placeholders, instvar) end node_index[nodename] = instvar dynpars = get_initial_parents(dynnet, dynnode) instpars = Node[] for dynpar in dynpars instpar = node_index[get_name(dynpar)] push!(instpars, instpar) end instgraph[instvar] = instpars end instnet = InstantNetwork(variables, instgraph, placeholders) instrun = Runtime(instnet) for node in values(node_index) instantiate!(instrun, node, 0) end return instrun end """ retrieve_values_from_instant_runtime!(dynrun::DynamicRuntime, instrun::InstantRuntime) Retrieve values in a dynamic runtime from an instant runtime constructed using `instant_runtime_from_instances`. """ function retrieve_values_from_instant_runtime!(dynrun::DynamicRuntime{T}, instrun::InstantRuntime) where T index = Dict{Instance, Instance}() for node in get_nodes(get_network(instrun)) # If instrun has been constructed correctly from dynrun, # there should be no runtime errors in this code. instinst = current_instance(instrun, node) (dynname, dyntime) = dynamic_name_and_time(node, T) dynnode = get_node(get_network(dynrun), dynname) dyninst = get_instance(dynrun, dynnode, dyntime) index[instinst] = dyninst end # TODO: This assumes that the values in the dynamic runtime take the same value as in the instant runtime. # This is not necessarily the case, e.g. for :particles, which contains samples that are dictionaries from node name to # node value. The node names in the instant runtime and dynamic runtime are different. # For this, importance stores beliefs with nodes in the instant runtime that can get translated. # A better general method is needed. for ((instinst, valuename), value) in instrun.values set_value!(dynrun, index[instinst], valuename, value) end for (k, v) in get_state(instrun) set_state!(dynrun, k, v) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4293
export BP, infer """ abstract type BP <: InstantAlgorithm Belief Propagation algorithm """ abstract type BP <: InstantAlgorithm end function answer(::Marginal, ::BP, runtime::Runtime, instance::VariableInstance, bounds = false) if bounds error("BP cannot provide bounded answers") end return get_belief(runtime, instance) end function infer(algorithm::BP, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score} = Dict{Symbol, Score}(), interventions::Dict{Symbol, <:Dist} = Dict{Symbol, Dist}(), placeholder_beliefs = get_placeholder_beliefs(runtime)) net = get_network(runtime) ensure_all!(runtime) order = topsort(get_initial_graph(net)) set_ranges!(runtime, evidence, algorithm.default_range_size, 1, order, placeholder_beliefs) for ph in get_placeholders(net) if !(ph.name in keys(placeholder_beliefs)) error("Placeholder ", ph.name, " does not have a belief") end pi = placeholder_beliefs[ph.name] for ch in get_children(net, ph) set_message!(runtime, ph, ch, :pi_message, pi) end end for (n,e) in evidence v = get_node(net, n) inst = current_instance(runtime, v) post_evidence!(runtime, inst, e) end for (n,i) in interventions v = get_node(net, n) inst = current_instance(runtime, v) post_intervention!(runtime, inst, i) end run_bp(algorithm, runtime) end # Run a backward step of BP for a single variable. function _backstep(runtime, var, ranges) network = get_network(runtime) inst = current_instance(runtime, var) evidence = get_evidence(runtime, inst) sf = get_sfunc(inst) chs = get_children(get_network(runtime), var) msgs = collect_messages(runtime, chs, var, :lambda_message) O = output_type(sf) range::Vector{<:O} = [convert(output_type(sf), r) for r in ranges[var.name]] if isempty(msgs) ilams = Score{output_type(sf)}[] if !isnothing(evidence) push!(ilams, evidence) end lam = compute_lambda(sf, range, ilams) else incoming_lams = Score[] for m in msgs m1::Score = m push!(incoming_lams, m1) end if !isnothing(evidence) push!(incoming_lams, evidence) end lam = compute_lambda(sf, range, incoming_lams) end set_value!(runtime, inst, :lambda, lam) pars = get_parents(network, var) incoming_pis::Vector{Dist} = collect_messages(runtime, pars, var, :pi_message) parranges = [ranges[p.name] for p in pars] outgoing_lams = outgoing_lambdas(sf, lam, range, tuple(parranges...), tuple(incoming_pis...)) distribute_messages!(runtime, var, pars, :lambda_message, outgoing_lams) end # Run a forward step of BP for a single variable # The procedure is slightly different for the first pass, so use the firstpass flag function _forwardstep(runtime, var, ranges, firstpass) network = get_network(runtime) inst = current_instance(runtime, var) sf = get_sfunc(inst) pars = get_parents(network, var) O = output_type(sf) range = convert(Vector{O}, ranges[var.name]) parranges = [ranges[p.name] for p in pars] incoming_pis = tuple(collect_messages(runtime, pars, var, :pi_message)...) if has_intervention(runtime, inst) intervention = get_intervention(runtime, inst) pi = intervention elseif firstpass && has_evidence(runtime, inst) # In the first pass, evidence is treated like lambda messages from elsewhere evidence = get_evidence(runtime, inst) pi = Cat(range, [get_score(evidence, x) for x in range]) else pi = compute_pi(sf, range, tuple(parranges...), incoming_pis) end set_value!(runtime, inst, :pi, pi) chs = get_children(network, var) if firstpass outpis = fill(pi, length(chs)) else lam = get_value(runtime, inst, :lambda) bel = compute_bel(sf, range, pi, lam) post_belief!(runtime, inst, bel) incoming_lams::Vector{Score} = collect_messages(runtime, chs, var, :lambda_message) outpis = outgoing_pis(sf, range, bel, incoming_lams) end distribute_messages!(runtime, var, chs, :pi_message, outpis) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
10201
export Importance, Rejection, LW, rejection_proposal, lw_proposal, make_custom_proposal """ Importance <: InstantAlgorithm Representation of an importance sampling algorithm. # arguments - proposal_function Specifies how the algorithm should make proposals. This is a function that takes a runtime and an instance and returns a proposer. The proposer takes parent values and proposes a value for the instance along with a log score. - num_particles The number of completed particles to use. This is not necessarily the number attempted. If there are rejections, the algorithm will continue to create particles until `num_particles` have been completed. Warning: With impossible evidence, the process will not terminate. """ struct Importance <: InstantAlgorithm proposal_function :: Function num_particles :: Int end function answer(pf::ProbFunction, ::Importance, runtime::Runtime, instances::Vector{VariableInstance}) particles = get_state(runtime, :particles) score = 0.0 total = 0.0 for (s, lw) in zip(particles.samples, particles.log_weights) x = [s[get_name(inst)] for inst in instances] w = exp(lw) if pf.fn(x) score += w end total += w end return score / total end function answer(::Marginal, ::Importance, runtime::Runtime, instance::VariableInstance) O = output_type(get_node(instance)) dict = Dict{O, Float64}() particles = get_state(runtime, :particles) for (s, lw) in zip(particles.samples, particles.log_weights) x = s[get_name(instance)] w = exp(lw) dict[x] = get(dict, x, 0.0) + w end z = sum(values(dict)) vs = O[] ps = Float64[] for (v, p) in dict push!(vs, v) push!(ps, p/z) end return Cat(vs, ps) end """ rejection_proposal(::Runtime, instance::VariableInstance, parent_values::Tuple) Return a proposer and scorer to implement standard rejection sampling from the prior. It proposes a value for the `instance` from its sfunc, and scores it by the evidence, if any. """ function rejection_proposal(runtime::Runtime, instance::VariableInstance) sfunc = get_sfunc(instance) proposer(parent_values) = (sample(sfunc, parent_values), 0.0) proposer end function _get_hard_evidence(runtime, instance)::Union{HardScore, Nothing} if has_evidence(runtime, instance) ev = get_evidence(runtime, instance) if ev isa HardScore return ev end end return nothing end """ lw_proposal(runtime::Runtime, instance::VariableInstance, parent_values::Tuple) Return a proposer and scorer to implement likelihood weighting. This proposal scheme is the same as the prior proposal unless a variable has hard evidence. In the case of hard evidence, the proposer sets the value of the variable to the evidence value and scores it by the log conditional probability of the evidence given the parent values. """ function lw_proposal(runtime::Runtime, instance::VariableInstance) evidence = _get_hard_evidence(runtime, instance) if !isnothing(evidence) return _hard_evidence_proposal(evidence, instance) else return rejection_proposal(runtime, instance) end end function _hard_evidence_proposal(evidence, instance) sf = get_sfunc(instance) x = evidence.value proposer(parent_values) = (x, logcpdf(sf, parent_values, x)) return proposer end """ make_custom_proposal(custom_sfs::Dict{Symbol, SFunc}) Create a proposal function for a custom proposal scheme. Returns a proposal function that can be provided to the Importance constructor. Evidence is handled similar to `lw`, except that the custom proposal is used for soft evidence. # Arguments - custom_sfs A dictionary mapping variable names to custom sfuncs used for their proposal. Need not be complete; if a variable is not in this dictionary, its standard sfunc will be used. """ function make_custom_proposal(custom_sfs::Dict{Symbol, SFunc}) function proposal(runtime, instance) evidence = _get_hard_evidence(runtime, instance) if !isnothing(evidence) return _hard_evidence_proposal(evidence, instance) else name = get_name(instance) if name in keys(custom_sfs) prior_sf = get_sfunc(instance) proposal_sf = custom_sfs[name] function proposer(parent_values) x = sample(proposal_sf, parent_values) l = logcpdf(prior_sf, parent_values, x) - logcpdf(proposal_sf, parent_values, x) return (x, l) end return proposer else return rejection_proposal(runtime, instance) end end end return proposal end Rejection(num_particles) = Importance(rejection_proposal, num_particles) LW(num_particles) = Importance(lw_proposal, num_particles) function _importance(runtime::Runtime, num_samples::Int, proposal_function::Function, samples::Vector{Dict{Symbol, Any}}, lws) net = runtime.network nodes = topsort(get_initial_graph(net)) proposers = Function[] evidences = Score[] interventions = Union{Dist,Nothing}[] for v in nodes if v isa Variable inst = current_instance(runtime, v) push!(proposers, proposal_function(runtime, inst)) if has_evidence(runtime, inst) push!(evidences, get_evidence(runtime, inst)) else push!(evidences, FunctionalScore{output_type(v)}(x -> 1.0)) end if has_intervention(runtime, inst) push!(interventions, get_intervention(runtime, inst)) else push!(interventions, nothing) end end end function handle_sample(s) vnum = 1 for v in nodes if v isa Variable try inst = current_instance(runtime, v) if !isnothing(interventions[vnum]) iv = interventions[vnum] samples[s][v.name] = sample(iv, ()) else proposer = proposers[vnum] pars = get_initial_parents(net, v) parvals = tuple([samples[s][p.name] for p in pars]...) (x, lw) = proposer(parvals) pe = get_log_score(evidences[vnum], x) if !isfinite(pe) # Try again return s end samples[s][v.name] = x lws[s] += lw + pe end vnum += 1 catch ex @error("Error $ex on variable $v") rethrow(ex) end end end # Success return s + 1 end s = 1 while s <= num_samples s = handle_sample(s) end for v in nodes if v isa Variable ps = Dict{output_type(v), Float64}() for i in 1:length(samples) x = samples[i][v.name] ps[x] = get(ps, x, 0.0) + exp(lws[i]) end i = current_instance(runtime, v) set_value!(runtime, i, :belief, Cat(ps)) end end log_prob_evidence = logsumexp(lws) - log(num_samples) set_state!(runtime, :log_prob_evidence, log_prob_evidence) set_state!(runtime, :particles, Particles(samples, lws)) end function infer(algorithm::Importance, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score} = Dict{Symbol, Score}(), interventions::Dict{Symbol, <:Dist} = Dict{Symbol, Dist}(), placeholder_beliefs::Dict{Symbol, Dist} = get_placeholder_beliefs(runtime)) net = get_network(runtime) nodes = get_nodes(net) ensure_all!(runtime) # See comment in instantalgorithm.jl # During particle filtering, importance needs joint samples of placeholders, not marginals # So we first check to see if particles already exists, and only add placeholder beliefs if # they're not found in existing particles samples = Dict{Symbol, Any}[] lws = Float64[] if has_state(runtime, :particles) particles = get_state(runtime, :particles) # Copy over only values of nodes in the current runtime psamples = particles.samples plog_weights = particles.log_weights for i in 1:algorithm.num_particles if length(particles.samples) > 0 index_into_particles = (i-1) % length(particles.samples) + 1 newsample = Dict{Symbol, Any}() oldsample = psamples[index_into_particles] for n in nodes if n.name in keys(oldsample) newsample[n.name] = oldsample[n.name] end end push!(samples, newsample) push!(lws, plog_weights[index_into_particles]) else push!(samples, Dict{Symbol, Any}()) push!(lws, 0.0) end end else for i in 1:algorithm.num_particles push!(samples, Dict{Symbol, Any}()) end lws = zeros(Float64, algorithm.num_particles) end placeholders = get_placeholders(net) for ph in placeholders pi = placeholder_beliefs[ph.name] for i in 1:algorithm.num_particles if !(ph.name in keys(samples[i])) samples[i][ph.name] = sample(pi, ()) end end end for (n, e) in evidence v = get_node(net, n; throw_missing=true) inst = current_instance(runtime, v) post_evidence!(runtime, inst, e) end for (n, i) in interventions v = get_node(net, n; throw_missing=true) inst = current_instance(runtime, v) post_intervention!(runtime, inst, i) end _importance(runtime, algorithm.num_particles, algorithm.proposal_function, samples, lws) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1882
export InstantAlgorithm, infer """ InstantAlgorithm Algorithm that runs once on an `InstantNetwork`. """ abstract type InstantAlgorithm <: Algorithm end # FIXME: # placeholder_beliefs is intended to provide information about the distribution of placeholders to an algorithm. # The current interface allows marginal distributions over placeholders to be passed, which is fine for an # algorithm like BP, but if an algorithm needs joint information it has to get it in a different way. # In particular, during particle filtering, the importance sampling algorithm needs joint samples of the previous state. # Fortunately, it can get it out of the :particles state in the runtime, but this is clunky and not in line with the # intentions of the general infer method. # We should introduce sfuncs that define distributions over dictionaries, and provide operators to produce joint samples # or compute marginals over individual variables, as they are able to support them. placeholder_beliefs should be # such an sfunc. """ infer(algorithm::InstantAlgorithm, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score}, interventions::Dict{Symbol, <:Dist}, placeholder_beliefs::Dict{Symbol, <:Dist}) Run the inference algorithm. Stores the results in `runtime`. The format of these results is up to `algorithm`, but they should be usable by queries with this algorithm. # Arguments - `algorithm`: The instant algorithm to run. - `runtime`: The runtime in which to run the algorithm. - `evidence`: The supplied evidence, which defaults to `Dict()`. - `interventions`: The supplied interventions, which defaults to `Dict()`. - `placeholder_beliefs`: The beliefs associated with the placeholders in the network, which default to `Dict()`. Instant algorithms might require that a belief be supplied for every placeholder in `network`. """
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4253
export LoopyBP, loopy_BP """ LoopyBP An instant algorithm that runs loopy belief propagation. # Arguments - default_range_size: The size to use as default when calling `support` on a node. - epsilon: The allowable difference between beliefs on successive iterations for termination. - maxiterations: The maximum number of iterations to run. `infer` will terminate if this number of iterations is reached, even if it has not converged. """ struct LoopyBP <: BP default_range_size::Int epsilon::Float64 maxiterations::Int LoopyBP(drs = 10, epsilon = 0.0001, maxiterations = 10) = new(drs, epsilon, maxiterations) end function loopy_BP(runtime::Runtime; default_range_size = 10, epsilon = 0.0001, maxiterations = 10) network = get_network(runtime) for node in topsort(get_initial_graph(network)) remove_messages!(runtime, node, :pi_message) remove_messages!(runtime, node, :lambda_message) end run_bp(LoopyBP(default_range_size, epsilon, maxiterations), runtime) end function run_bp(algorithm::LoopyBP, runtime) network = get_network(runtime) ranges = Dict() nodes = get_nodes(network) for node in nodes inst = current_instance(runtime, node) rng = get_range(runtime, inst) ranges[node.name] = rng end for node in nodes for par in get_parents(network, node) if par isa Variable set_message!(runtime, par, node, :pi_message, ones(length(ranges[par.name]))) end end end newbeliefs = initial_pass(runtime, network, ranges) conv = false iteration = 0 while !conv && iteration < algorithm.maxiterations oldbeliefs = copy(newbeliefs) backward_pass(runtime, network, ranges) forward_pass(runtime, network, ranges, newbeliefs) conv = converged_loopy(get_variables(network), ranges, newbeliefs, oldbeliefs, algorithm.epsilon) iteration += 1 end end function initialize(runtime, network, ranges) end function initial_pass(runtime, network, ranges) newbeliefs = Dict{Variable, Dist}() variables = [v for v in topsort(get_initial_graph(network)) if v isa Variable] for var in variables inst = current_instance(runtime, var) sf = get_sfunc(inst) pars = get_parents(network, var) incoming_pis :: Vector{Dist} = collect_messages(runtime, pars, var, :pi_message) range = ranges[var.name] parranges = [ranges[p.name] for p in pars] pi = compute_pi(sf, range, tuple(parranges...), tuple(incoming_pis...)) # on the first pass, we interpret evidence as lambda message # coming from elsewhere, so include it in the pi if has_evidence(runtime, inst) evidence = get_evidence(runtime, inst) pi = Cat(range, [get_score(evidence, x) for x in range]) end if has_intervention(runtime, inst) intervention = get_intervention(runtime, inst) pi = intervention end set_value!(runtime, inst, :pi, pi) newbeliefs[var] = pi for ch in get_children(network, var) set_message!(runtime, var, ch, :pi_message, pi) end end return newbeliefs end function backward_pass(runtime, network, ranges) variables = [v for v in topsort(get_initial_graph(network)) if v isa Variable] for var in reverse(variables) _backstep(runtime, var, ranges) end end function forward_pass(runtime, network, ranges, newbeliefs) variables = [v for v in topsort(get_initial_graph(network)) if v isa Variable] for var in variables _forwardstep(runtime, var, ranges, false) inst = current_instance(runtime, var) newbeliefs[var] = get_belief(runtime, inst) end end function converged_loopy(variables, ranges, new_beliefs, old_beliefs, epsilon::Float64) total_diff = 0.0 total_len = 0 for var in variables range = ranges[var.name] diffs = [abs(cpdf(new_beliefs[var], (), x) - cpdf(old_beliefs[var], (), x)) for x in range] total_diff += sum(diffs) total_len += length(range) end return total_diff / total_len < epsilon end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1838
export ThreePassBP, # The export of three_pass_BP is kept for backward compatibility, # but new implementations should use ThreePassBP. three_pass_BP """ ThreePassBP An instant algorithm that runs three passes of belief propagation. """ struct ThreePassBP <: BP default_range_size::Int ThreePassBP(drs = 10) = new(drs) end function debugparams(sf, range, prob, varname, fname, name) Dict(:type=>(output_type(sf) <: Real ? :cont : :discrete), :numBins=>min(10, length(range)), :range=>range, :prob=>prob, :varname=>varname, :fname=>fname, :name=>name) end function three_pass_BP(runtime::InstantRuntime) for node in get_nodes(get_network(runtime)) remove_messages!(runtime, node, :pi_message) remove_messages!(runtime, node, :lambda_message) end run_bp(ThreePassBP(), runtime) end function run_bp(::ThreePassBP, runtime::InstantRuntime) network = get_network(runtime) variables = [v for v in topsort(get_initial_graph(network)) if v isa Variable] ranges = Dict{Symbol, Array{Any, 1}}() for node in get_nodes(network) inst = current_instance(runtime, node) ranges[node.name] = get_range(runtime, inst) end for var in variables for par in get_parents(network, var) if par isa Variable rng = ranges[par.name] initial_message = Cat(rng, ones(length(rng))) set_message!(runtime, par, var, :pi_message, initial_message) end end end for var in variables _forwardstep(runtime, var, ranges, true) end for var in reverse(variables) _backstep(runtime, var, ranges) end for var in variables _forwardstep(runtime, var, ranges, false) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
14840
export VE, ve import ..Operators.make_factors import ..SFuncs: Invertible, Serial using Folds """ VE(query_vars::Vector{Variable}) An instant algorithm that runs variable elimination. # Arguments - network - `query_vars`: The variables to query, which are not eliminated - depth: A depth of 1 means not to expand expanders, otherwise expands recursively to the given depth - bounds: If true, return lower and upper bounds factors, otherwise just return a single factor """ struct VE <: InstantAlgorithm query_vars::Vector{<:Variable} depth::Int bounds::Bool default_range_size::Int VE(q; depth = 1, bounds = false, range_size = 1000) = new(q,depth,bounds,range_size) end function answer(::Marginal, alg::VE, runtime::Runtime, inst::VariableInstance{O}) where O inv = Invertible{Tuple{O},O}(x -> x[1], x -> (x,)) jnt = joint(alg, runtime, [inst]) if !alg.bounds s = Serial(Tuple{}, O, (jnt, inv)) support(s, (), 10000, O[]) # need to precompute return s else (lower, upper) = jnt sl = Serial(Tuple{}, O, (lower, inv)) su = Serial(Tuple{}, O, (upper, inv)) support(sl, (), 10000, O[]) # need to precompute support(su, (), 10000, O[]) # need to precompute return (sl, su) end end function answer(query::ProbValue{O}, alg::VE, runtime::Runtime, inst::VariableInstance{O}) where O x = query.value if !alg.bounds m = answer(Marginal(), alg, runtime, inst) return cpdf(m, (), x) else (lm,um) = answer(Marginal(), alg, runtime, inst) l = cpdf(lm, (), x) u = cpdf(um, (), x) if isapprox(l,u) return(l) else error("Lower and upper bounds are not equal - use ProbabilityBounds") end end end function answer(query::ProbabilityBounds{O}, alg::VE, runtime::Runtime, inst::VariableInstance{O}) where O (lm,um) = answer(Marginal(), alg, runtime, inst) r = query.range n = length(r) ls = zeros(Float64, n) us = zeros(Float64, n) # Typically, when a value is not in the support of an sfunc, we interpret its probability as zero # However, for upper bounds, if it is in range, we want the upper bound to be 1 usup = support(um, (), 1000, O[]) for i in 1:n x = r[i] ls[i] = cpdf(lm, (), x) us[i] = x in usup ? cpdf(um, (), x) : 1.0 end lsum = sum(ls) usum = sum(us) resultls = zeros(Float64, n) resultus = zeros(Float64, n) for i in 1:n # The probability of a value cannot be less than 1 - the upper bounds of the other values # or more than 1 - the lower bounds of the other values resultls[i] = max(ls[i], 1 - (usum - us[i])) resultus[i] = min(us[i], 1 - (lsum - ls[i])) end return (resultls, resultus) end function joint(alg::VE, runtime::Runtime, insts::Vector{<:Instance}) vars::Vector{Variable} = [i.node for i in insts] if any(v -> !(v in alg.query_vars), vars) error("Cannot query eliminated variables") end (jnt, ids) = get_state(runtime, :joint_belief) if !alg.bounds # no bounds, just a single result return marginalize(runtime, normalize(jnt), ids, alg.query_vars, vars, alg.depth) else # jnt has lower and upper bounds to probabilities lower = marginalize(runtime, normalize(jnt[1]), ids, alg.query_vars, vars, alg.depth) upper = marginalize(runtime, normalize(jnt[2]), ids, alg.query_vars, vars, alg.depth) return (lower, upper) end end function marginalize(runtime, factor::Factor, keys::Dict{<:Node,Int}, query_vars::Vector{<:Variable}, vars_to_remain::Vector{<:Variable}, depth::Int) function get_var(k) for v in query_vars if keys[v] == k return v end end end index = [get_var(k) for k in factor.keys] ranges = [get_range(runtime, current_instance(runtime, v), depth) for v in index] selector = [v in vars_to_remain for v in index] combos = cartesian_product(ranges) result = Dict{Tuple, Float64}() for (combo, entry) in zip(combos, factor.entries) vals = [] for i in 1:length(index) if selector[i] push!(vals, combo[i]) end end tup = tuple(vals...) result[tup] = get(result, tup, 0.0) + entry end return Cat(result) end function infer(alg::VE, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score} = Dict{Symbol, Score}(), interventions::Dict{Symbol, <:Dist} = Dict{Symbol, Dist}(), placeholder_beliefs = get_placeholder_beliefs(runtime)) network = get_network(runtime) if !(isempty(interventions)) error("VE cannot handle interventions") end order = topsort(get_initial_graph(network)) ensure_all!(runtime) for pname in keys(placeholder_beliefs) ph = get_node(network, pname) inst = current_instance(runtime, ph) pi = placeholder_beliefs[pname] set_range!(runtime, inst, support(pi, NTuple{0,Vector}(), alg.default_range_size, output_type(ph)[]), alg.depth) end set_ranges!(runtime, evidence, alg.default_range_size, 1, order) for (n,e) in evidence node = get_node(network, n) inst = current_instance(runtime, node) post_evidence!(runtime, inst, e) end jnt = ve(runtime, order, alg.query_vars; depth = alg.depth, placeholder_beliefs = placeholder_beliefs, bounds = alg.bounds) set_state!(runtime, :joint_belief, jnt) end ############################################# # # # Helper functions for variable elimination # # # ############################################# # Create a map from variable names to factor keys function factorkeys(order) :: Dict{Node, Int} result = Dict{Node, Int}() for var in order result[var] = nextkey() end return result end # Create lower and upper bound factors for the given variable. # Uses predetermined ranges for the variable and its parents. # # TODO: Change this to use an operator that returns a set of factors rather than probabilities. # This will enable local factor decompositions for sfuncs. function lower_and_upper_factors(runtime::Runtime, fn::Function, ids::Dict{Node, Int}, var::Variable{I,J,O}, depth) where {I,J,O} range = get_range(runtime, var, depth) pars = get_parents(get_network(runtime), var) parranges = [] for v in pars push!(parranges, get_range(runtime, v, depth)) end prtype = isempty(parranges) ? Vector{O} : typejoin([typeof(x) for x in parranges]...) parranges = convert(Vector{prtype}, parranges) inst = current_instance(runtime, var) sf = get_sfunc(inst) # @debug "lower_and_upper_factors" var=var.name sf=typeof(sf) parids = tuple([ids[p] for p in pars]...) # Since Expander needs a runtime to create factors, it has special purpose code # if is_fixed(var.model) && isa(make_sfunc(var, runtime), Expander) if isa(make_initial(var.model), Expander) (lowers, uppers) = expander_probs(runtime, fn, var, depth) keys = map(s -> ids[s], pars) dims = isempty(pars) ? Int[] : map(length, parranges) push!(keys, ids[var]) push!(dims, length(range)) kds = Tuple(dims) kts = Tuple(keys) return ([Factor(kds, kts, lowers)], [Factor(kds, kts, uppers)]) else facts = make_factors(sf, range, Tuple(parranges), ids[var], parids) return facts end end function evidence_factor(runtime, var::Variable, ids::Dict) inst = current_instance(runtime, var) evidence = get_evidence(runtime, inst) range = get_range(runtime, inst) dims = Tuple(length(range)) keys = Tuple(ids[var]) entries = Array{Float64, 1}(undef, length(range)) for i = 1:length(range) entries[i] = get_score(evidence, range[i]) end return Factor(dims, keys, entries) end # Make all the initial factors for the given network function produce_factors(runtime::Runtime, fn::Function, order::Vector{Node}, ids::Dict, placeholder_beliefs, depth) lowers = [] uppers = [] for node in order if node isa Variable (lower, upper) = lower_and_upper_factors(runtime, fn, ids, node, depth) append!(lowers, lower) append!(uppers, upper) inst = current_instance(runtime, node) if has_evidence(runtime, inst) evfact = evidence_factor(runtime, node, ids) push!(lowers, evfact) push!(uppers, evfact) end else bel = placeholder_beliefs[node.name] range = get_range(runtime, node, depth) (phlower, phupper) = make_factors(bel, range, (), ids[node], ()) append!(lowers, phlower) append!(uppers, phupper) end end return (lowers, uppers) end function make_graph(factors) result = Graph() for fact in factors ids = fact.keys for (i,id) in enumerate(ids) size = fact.dims[i] add_node!(result, id, size) for other in ids if other != id add_undirected!(result, id, other) end end end end return result end # Eliminate the variable with the given id by multiplying all factors # mentioning the variable and summing the variable out of the result function eliminate(var_id, factors) relevant = filter(f -> var_id in f.keys, factors) remaining = filter(f -> !(var_id in f.keys), factors) if !isempty(relevant) prodfact = relevant[1] for i in 2:length(relevant) prodfact = product(prodfact, relevant[i]) end sumfact = sum_over(prodfact, var_id) # If the node being eliminated is completely isolated from the rest of the network, # sumfact will be empty and shouldn't be added if length(sumfact.dims) > 0 push!(remaining, sumfact) end end return remaining end ######################################################## # # # Run the variable elimination algorithm # # # # Works with both discrete and continuous variables, # # using previously determined ranges. # # # # The second argument is a topologically ordered # # list of variables to include in the computation. # # The code assumes that for any variable, its parents # # are present and precede it in the order. # # The third argument is a list of variables to query # # i.e. not to eliminate. This must be nonempty. # # # # Returns lower and upper bound factors, # # as well as a key to variable names from factor keys. # # # ######################################################## function ve(runtime::Runtime, order::Vector{<:Node}, query_vars::Vector{<:Variable}; depth = 1, placeholder_beliefs = Dict{Symbol,Dist}(), bounds = false) @assert !isempty(query_vars) ids :: Dict{Node, Int} = factorkeys(order) # Making values for an expander takes a function to solve subnetworks. # Here we create a function that passes the bounds flag for ve. f(runtime, order, query_vars, depth) = ve(runtime, order, query_vars; depth = depth, placeholder_beliefs = placeholder_beliefs, bounds = bounds) (lowers, uppers) = produce_factors(runtime, f, order, ids, placeholder_beliefs, depth) ve_graph = make_graph(lowers) # Assumes that lower and upper factors have same structure elim_order = greedy_order(ve_graph, map(v -> ids[v], query_vars)) for var_id in elim_order lowers = eliminate(var_id, lowers) if bounds uppers = eliminate(var_id, uppers) end end lowerprod = lowers[1] for i in 2:length(lowers) lowerprod = product(lowerprod, lowers[i]) end if bounds # if (length(lowers[1].entries) > 45 && length(uppers[1].entries) > 45) # @info("$(typeof(lowers[1])) && $(typeof(uppers[1]))", # lowers=lowers[1].entries[40:1:45], # uppers=uppers[1].entries[40:1:45]) # end upperprod = uppers[1] for i in 2:length(uppers) upperprod = product(upperprod, uppers[i]) end return ((lowerprod, upperprod), ids) else return (lowerprod, ids) end end function copy_graph(g :: Graph) ns = copy(g.nodes) es = Dict() ss = Dict() for n in ns es[n] = copy(g.edges[n]) ss[n] = g.sizes[n] end return Graph(ns, es, ss) end ########################## # # # Eliminating a variable # # # ########################## function unconnected_neighbors(g :: Graph, n :: Int) neighbors = g.edges[n] m = length(neighbors) result = [] for i = 1:m n1 = neighbors[i] for j = i+1:m n2 = neighbors[j] if !(n1 in g.edges[n2]) || !(n2 in g.edges[n1]) push!(result, (n1, n2)) end end end return result end function eliminate(g :: Graph, n :: Int) ns = unconnected_neighbors(g, n) deleteat!(g.nodes, findfirst(m -> m == n, g.nodes)) delete!(g.edges, n) delete!(g.sizes, n) for (m,ms) in g.edges if n in ms deleteat!(ms, findfirst(m -> m == n, ms)) end end for (i, j) in ns add_undirected!(g, i, j) end end ############################################# # # # Greedily determining an elimination order # # to minimize the number of edges added # # # ############################################# function cost(g :: Graph, n :: Int) return length(unconnected_neighbors(g, n)) end function greedy_order(g :: Graph, to_leave :: Array{Int}) candidates = filter(n -> !(n in to_leave), g.nodes) result = [] h = copy_graph(g) while !isempty(candidates) costs = map(c -> cost(h, c), candidates) best = candidates[argmin(costs)] push!(result, best) eliminate(h, best) deleteat!(candidates, findfirst(n -> n == best, candidates)) end return result end function greedy_order(g :: Graph) a :: Array{Int, 1} = [] return greedy_order(g, a) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1901
export IterativeAlgorithm, prepare, refine """ abstract type IterativeAlgorithm <: InstantAlgorithm Algorithm that runs iteratively on an `InstantNetwork`. The algorithm should support two methods: `prepare` and `refine`. An IterativeAlgorithm is also trivially an InstantAlgorithm where `Infer` is implemented by calling `prepare` and `refine` once. """ abstract type IterativeAlgorithm <: InstantAlgorithm end """ prepare(algorithm::IterativeAlgorithm, runtime::InstantRuntime evidence::Dict{Symbol, <:Score}, interventions::Dict{Symbol, <:Dist}, placeholder_beliefs::Dict{Symbol, <:Dist}) Prepare the inference algorithm for iteration. Stores the algorithm state in `runtime`. # Arguments - `algorithm`: The iterative algorithm to run. - `runtime`: The runtime in which to run the algorithm. - `evidence`: The supplied evidence, which defaults to `Dict()`. - `interventions`: The supplied interventions, which defaults to `Dict()`. - `placeholder_beliefs`: The beliefs associated with the placeholders in the network, which default to `Dict()`. """ function prepare(algorithm::InstantAlgorithm, runtime::InstantRuntime, placeholder_beliefs::Vector{<:Dist}, evidence::Vector{Tuple{Symbol, <:Score}}, interventions::Vector{Tuple{Symbol, <:Dist}}) end """ refine(algorithm::IterativeAlgorithm, runtime::InstantRuntime) Perform the next iteration of the algorithm. Uses the algorithm state stored in `runtime` and stores the next state in `runtime`. """ function refine(algorithm::IterativeAlgorithm, runtime::InstantRuntime) end function infer(algorithm::IterativeAlgorithm, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score}, interventions::Dict{Symbol, <:Dist}, placeholder_beliefs::Dict{Symbol, <:Dist}) prepare(algorithm, runtime, placeholder_beliefs, evidence, interventions) refine(algorithm, runtime) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1847
export IterativeSampler """ struct IterativeSampler <: IterativeAlgorithm An iterative algorithm that uses a sampler to accumulate more samples on each refinement. """ struct IterativeSampler <: IterativeAlgorithm base_algorithm :: InstantAlgorithm end function prepare(alg::IterativeSampler, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score} = Dict{Symbol, Score}(), interventions::Dict{Symbol, <:Dist} = Dict{Symbol, Dist}(), placeholder_beliefs = get_placeholder_beliefs(runtime)) net = get_network(runtime) for (n,e) in evidence v = get_node(net, n) inst = current_instance(runtime, v) post_evidence!(runtime, inst, e) end for (n,i) in interventions v = get_node(net, n) inst = current_instance(runtime, v) post_intervention!(runtime, inst, i) end for (n,b) in placeholder_beliefs p = get_node(net, n) inst = current_instance(runtime, p) post_belief!(runtime, inst, b) end set_state!(runtime, :particles, Particles(Sample[], Float64[])) end function refine(alg::IterativeSampler, runtime::InstantRuntime) current_particles = get_state(runtime, :particles) infer(alg.base_algorithm, runtime) new_particles = get_state(runtime, :particles) all_samples = copy(current_particles.samples) append!(all_samples, new_particles.samples) all_log_weights = copy(current_particles.log_weights) append!(all_log_weights, new_particles.log_weights) set_state!(runtime, :particles, Particles(all_samples, all_log_weights)) end answer(q::Query, alg::IterativeSampler, run::Runtime, inst::VariableInstance) = answer(q, alg.base_algorithm, run, inst) answer(q::Query, alg::IterativeSampler, run::Runtime, insts::Vector{VariableInstance}) = answer(q, alg.base_algorithm, run, insts)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4045
export LazyInference, LazyState """ mutable struct LazyState Maintains the state of a lazy algorithm # Fields - `previous_algorithm`: The last instant algorithm used, if any - `evidence`: The evidence supplied in `prepare` - `interventions`: The interventions supplied in `prepare` - `placeholder_beliefs`: The placeholder beliefs supplied in `prepare` - `next_size`: The range size to use in the next call to `refine` - `next_depth`: The depth to use in the next call to `refine` - `next_iteration`: The number of the next iteration - `is_complete`: A flag indicating whether the netwowk has been fully expanded - `order`: The order of nodes used in computations """ mutable struct LazyState previous_algorithm :: Union{InstantAlgorithm, Nothing} evidence :: Dict{Symbol, Score} interventions :: Dict{Symbol, Dist} placeholder_beliefs :: Dict{Symbol, Dist} next_size :: Int next_depth :: Int next_iteration :: Int is_complete :: Bool order :: Vector{Node} end """ LazyState(ns, nd, ni, ic) Intantiate `LazyState` with `next_size`, `next_depth`, `next_iterator`, and `is_complete`. """ LazyState(ns, nd, ni, ic) = LazyState(nothing, Dict{Symbol,Score}(), Dict{Symbol,Dist}(), Dict{Symbol,Dist}(), ns, nd, ni, ic, Node[]) """ struct LazyInference <: IterativeAlgorithm An iterative algorithm that expands recursively and increases the ranges of instances on every iteration. """ struct LazyInference <: IterativeAlgorithm algorithm_maker :: Function # A function that takes the current depth and range size and returns the instant algorithm to use increment :: Int start_size :: Int max_iterations :: Int start_depth :: Int state :: LazyState """ function LazyInference(maker::Function; increment = 10, start_size = increment, max_iterations = 100, start_depth = 1) # Arguments - `maker``: A function that takes a range size and expansion depth and returns an `InstantAlgorithm` - `increment`: The increment to range size on every iteration - `start_size`: The starting range size - `max_iterations`: The maximum number of refinement steps - `start_depth`: The depth of recursive expansion in the first iteration """ function LazyInference(maker::Function; increment = 10, start_size = increment, max_iterations = 100, start_depth = 1) new(maker, increment, start_size, max_iterations, start_depth, LazyState(start_size, start_depth, 1, false)) end end function answer(query::Query, lazyalg::LazyInference, runtime::InstantRuntime, target::VariableInstance) state = lazyalg.state return answer(query, state.previous_algorithm, runtime, target) end function prepare(alg::LazyInference, runtime::InstantRuntime, evidence::Dict{Symbol, <:Score} = Dict{Symbol, Score}(), interventions::Dict{Symbol, <:Dist} = Dict{Symbol, Dist}(), placeholder_beliefs = get_placeholder_beliefs(runtime)) ensure_all!(runtime) net = get_network(runtime) # The evidence, interventions, and placeholder_beliefs are punted to refine to pass to the underlying algorithm state = alg.state state.evidence = evidence state.interventions = interventions state.placeholder_beliefs = placeholder_beliefs state.order = topsort(get_initial_graph(net)) clear_analysis!() end function refine(lazyalg::LazyInference, runtime::InstantRuntime) state = lazyalg.state if !(state.is_complete || state.next_iteration > lazyalg.max_iterations) set_ranges!(runtime, state.evidence, state.next_size, state.next_depth, state.order) inferencealg = lazyalg.algorithm_maker(state.next_size, state.next_depth) state.previous_algorithm = inferencealg infer(inferencealg, runtime, state.evidence, state.interventions, state.placeholder_beliefs) state.is_complete = _complete(runtime) state.next_iteration += 1 state.next_depth += 1 state.next_size += lazyalg.increment end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
933
export LSFI """ function LSFI(query_vars; increment = 10, start_size = increment, max_iterations = 100, start_depth = 1) A lazy inference algorithm that uses variable elimination at every step. # Arguments - `query_vars`: Variables that can be queried after each `refine` step - `increment`: The increment to range size on every iteration - `start_size`: The starting range size - `max_iterations`: The maximum number of refinement steps - `start_depth`: The depth of recursive expansion in the first iteration """ function LSFI(query_vars; increment = 10, start_size = increment, max_iterations = 100, start_depth = 1) # query_vars = [get_node(net, :out)] maker(size, depth) = VE(query_vars; depth = depth, bounds = true, range_size =size) return LazyInference(maker; increment = increment, start_size = start_size, max_iterations = max_iterations, start_depth = start_depth) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
958
export FixedTimeModel """ abstract type FixedTimeModel{I,O} <: Model{I,O} A dynamic model described only for fixed time delta. Must implement `get_initial`, `get_transition`, and `get_dt`. These can depend on the current time. """ abstract type FixedTimeModel{I,J,O} <: Model{I,J,O} end # get_initial(::FixedTimeModel) = error("Not implemented") # get_transition(::FixedTimeModel) = error("Not implemented") # get_dt(::FixedTimeModel) = error("Not implemented") make_initial(m::FixedTimeModel, t=0) = get_initial(m, t) function make_transition(m::FixedTimeModel, parenttimes, time) dt = get_dt(m) # Allow edges from the same time step, or intertemporal edges from the previous time step at distance dt if all(t -> time - t == dt || time == t, parenttimes) return get_transition(m, time) else error("make_transition called on FixedTimeModel with incorrect dt") end end # is_fixed(::FixedTimeModel) = true
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
719
export HomogeneousModel """ HomogeneousModel{I,O} <: FixedTimeModel{I,O} A dynamic model with a fixed time step and same transition model at every time point.. The constructor is called with the initial sfunc and transition sfuncs. The constructor is also called with an optional dt (defaults to 1). """ struct HomogeneousModel{I,J,O} <: TimelessFixedTimeModel{I,J,O} initial :: SFunc{I,O} transition :: SFunc{J,O} dt :: Number end function HomogeneousModel(init::SFunc{I,O}, trans::SFunc{J,O}, dt = 1) where {I,J,O} HomogeneousModel{I,J,O}(init, trans, dt) end get_initial(m::HomogeneousModel) = m.initial get_transition(m::HomogeneousModel) = m.transition get_dt(m::HomogeneousModel) = m.dt
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
494
export InstantModel """ abstract type InstantModel{I,O} <: Model{I,Nothing,O} A model for a variable with no time dependencies. Since this model has no transitions, it can only called with `make_initial` and not `make_transition` (i.e. `make_transition` = `make_initial`) """ abstract type InstantModel{I,O} <: Model{I,Nothing,O} end # Instant models can be freely used dynamically, with no time dependencies make_transition(m::InstantModel, parenttimes, time) = make_initial(m)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
637
export SimpleModel """ struct SimpleModel{I,O} <: TimelessInstantModel{I,O} A model that always produces the same SFunc. This is an TimelessInstantModel, so must always be called when the parents are the same time point. The constructor takes the sfunc as argument, which is stored. There is a convenience method to create a SimpleModel for any sfunc by applying the sfunc to zero arguments. """ struct SimpleModel{I, O} <: TimelessInstantModel{I, O} sf::SFunc{I, O} end make_initial(m::SimpleModel) = m.sf # Convenience for making constant models, a very common case (sf::SFunc{I, O})() where {I, O} = SimpleModel{I, O}(sf)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
614
export StaticModel """ struct StaticModel{I,O} <: VariableTimeModel{I,O,O} end A static model represents a variable that never changes its value. The value is setup through an sfunc created by make_initial. At any time point, it simply copies its previous value. Because it can be used flexibly, we make it a subtype of VariableTimeModel. """ struct StaticModel{I,O} <: VariableTimeModel{I,Tuple{O},O} sf::SFunc{I,O} end function make_initial(m::StaticModel, time) return m.sf end function make_transition(::StaticModel{I,O}, parenttimes, time) where {I,O} return Det(Tuple{O}, O, x -> x) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
545
export TimelessFixedTimeModel """ abstract type TimelessFixedTimeModel{I,J,O} <: FixedTimeModel{I,J,O} A FixedTimeModel in which the initial and transition models do not depend on the current time. In addition to `get_dt`, must implement a version of `get_initial` and `get_transition` that do not take the current time as an argument. """ abstract type TimelessFixedTimeModel{I,J,O} <: FixedTimeModel{I,J,O} end get_initial(m::TimelessFixedTimeModel, t) = get_initial(m) get_transition(m::TimelessFixedTimeModel, t) = get_transition(m)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
531
export TimelessInstantModel """ abstract type TimelessInstantModel{I,O} <: InstantModel{I,O} An InstantModel in which the sfunc made does not depend on time. Must implement a version of `make_initial` that does not take the current time as argument. Note that `make_initial` can be defined to take keyword arguments, so the sfunc created need not be exactly the same every time. """ abstract type TimelessInstantModel{I,O} <: InstantModel{I,O} end make_initial(m::TimelessInstantModel,t;keys...) = make_initial(m;keys...)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
614
export VariableTimeModel """ abstract type VariableTimeModel{I,J,O} <: Model{I,J,O} A model that creates sfuncs based on the time delta between the parents and the current instance. In general, the deltas can be different for different parents. This type does not introduce any new functionality over Model. Its purpose is to make explicit the fact that for this type of model, separate time deltas are possible. Must implement 'make_initial', which takes the current time, and 'make_transition', which takes the current time and parent times. """ abstract type VariableTimeModel{I,J,O} <: Model{I,J,O} end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
2427
export ConfigurableModel, set_config_spec!, get_config_spec, converged #= A ConfigurableModel contains an underlying model, and allows the SFuncs returned by the underlying model to be configured using a configuration specification. Those SFuncs should support the following operators: configure(sf, config_spec), which returns an sfunc (could be fresh or a mutation of sf) converged(sf, old_config_spec, new_config_spec) :: Boolean (this is only needed by algorithms like EM) The type parameters of ConfigurableModel are as follows: I : Parents of initial sfunc J : Parents of transition sfunc O : Outputs of both initial and transition sfuncs C : Configuration specification S : Stats An instance of ConfigurableModel must be provided with the following methods: base_Model(m) configSpec(m) initial_stats(m) :: S accumulate_stats(m, current_stats :: s, new_stats) :: S which uses the current stats to produce updated stats maximize_stats!(m, stats :: S) :: C Typical usage will start by first setting current_stats to initial_stats, and then repeatedly - computing update_info - calling add_stats using current_stats and update_info - calling maximize_stats! after all the stats have been added to set config_spec =# abstract type ConfigurableModel{I,J,O,C,S} <: Model{I,J,O} end make_initial(m :: ConfigurableModel, t) = configure(make_initial(m.base_model, t), m.config_spec) make_transition(m :: ConfigurableModel, parent_times, time) = configure(make_transition(m.base_model, parent_times, time), m.config_spec) function set_config_spec!(m :: ConfigurableModel, spec :: C) where C m.config_spec = spec end get_config_spec(m :: ConfigurableModel) = m.config_spec # Eventually we want to create a dynamic version, but for now it's just static # function converged(m :: ConfigurableModel{I, J, O, C, S}, old_spec :: C, new_spec :: C, # parent_times, time) :: Boolean where {I, J, O, C, S}:: Boolean # init = make_initial(m.base_model, time) # trans = make_transition(m.base_model, parent_times, time) # converged(init, old_spec, new_spec) && converged(trans, old_spec, new_spec) # end function converged(m :: ConfigurableModel{I, J, O, C, S}, old_spec :: C, new_spec :: C) :: Boolean where {I, J, C, O, S} init = make_initial(m.base_model, time) converged(init, old_spec, new_spec) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1424
export Parameterized import Scruff: make_initial, make_transition import Scruff.Operators: initial_stats, accumulate_stats, maximize_stats # Parameterized is a ConfigurableModel in which the base model is a SimpleModel over an sfunc, and the config_spec has the same datatype as explicitly defined # parameters of the sfunc. The sfunc must have get_params, set_params!, initial_stats, accumulate_stats, # and maximize_stats methods are defined. # This very common case is made easy with this code. # A Parameterized must have an method defined # # base_model(m) :: SimpleModel{I, O} # # All the other methods of a ConfigurableModel will then be defined automatically. abstract type Parameterized{I,O,C,S} <: ConfigurableModel{I,I,O,C,S} end make_initial(m :: Parameterized, t) = set_params!(make_initial(base_model(m), t), get_config_spec(m)) make_transition(m :: Parameterized, parent_times, time) = set_params!(make_transition(base_model(m), parent_times, time), get_config_spec(m)) initial_stats(m :: Parameterized) = initial_stats(get_sf(m)) accumulate_stats(m :: Parameterized, s1, s2) = accumulate_stats(get_sf(m), s1, s2) function maximize_stats(m :: Parameterized{I, O, S}, stats) where {I,O,S} conf_sp = maximize_stats(get_sf(m), stats) set_config_spec!(m, conf_sp) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
697
export SimpleNumeric mutable struct SimpleNumeric{I,O,S} <: Parameterized{I,O,S,S} base :: SimpleModel{I, O} config_spec :: S epsilon :: Float64 SimpleNumeric{I,O,S}(sf) where {I,O,S} = new(SimpleModel(sf), get_params(sf), 0.01) SimpleNumeric{I,O,S}(sf, eps) where {I,O,S} = new(SimpleModel(sf), get_params(sf), eps) end get_sf(m :: SimpleNumeric) = m.base.sf base_model(m :: SimpleNumeric) = m.base get_config_spec(m :: SimpleNumeric) = m.config_spec function set_config_spec!(m :: SimpleNumeric{I, O, S}, cs :: S) where {I,O,S} m.config_spec = cs m end converged(m :: SimpleNumeric, old_spec, new_spec) = converged_numeric(old_spec, new_spec, m.epsilon)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
5769
using ..MultiInterface # to support MultiInterface.get_imp(::Nothing, args...) = nothing # Being specific here has big perf implact due to type-stability const FloatType = Float64 @interface forward(sf::SFunc{I, O}, i::I)::Dist{O} where {I, O} # Provide a set of weighted values that characterize the distribution # (e.g. such that expectations can be well approximated E[f(x)] \approx \sum w_i f(x_i) / \sum w_i # It is up to the implementation / policy how many to return # So e.g. discretely supported distributions can return a precise value # while continuous distributions can return some approximate set of samples # controlled by an op_impl hyper parameter @interface weighted_values(d::Dist{O})::Tuple{Vector{<:O}, Vector{FloatType}} where {O} @interface inverse(sf::SFunc{I,O}, o::O)::Score{I} where {I,O} @interface is_deterministic(sf::SFunc)::Bool @interface sample(sf::SFunc{I,O}, i::I)::O where {I,O} @interface sample_logcpdf(sf::SFunc{I,O}, i::I)::Tuple{O, <:AbstractFloat} where {I,O} # @interface invert(sf::SFunc{I,O}, o::O)::I where {I,O} @interface lambda_msg(sf::SFunc{I,O}, i::SFunc{<:Option{Tuple{}}, O})::SFunc{<:Option{Tuple{}}, I} where {I,O} @interface marginalize(sfb::SFunc{X, Y}, sfa::SFunc{Y, Z})::SFunc{X, Z} where {X, Y, Z} @interface logcpdf(sf::SFunc{I,O}, i::I, o::O)::FloatType where {I,O} @interface cpdf(sf::SFunc{I,O}, i::I, o::O)::FloatType where {I,O} @interface log_cond_prob_plus_c(sf::SFunc{I,O}, i::I, o::O)::AbstractFloat where {I,O} @interface f_expectation(sf::SFunc{I,O}, i::I, fn::Function) where {I,O} # Expectation (and others) should either return some continuous relaxation of O (e.g. Ints -> Float) or there should be another op that does @interface expectation(sf::SFunc{I,O}, i::I) where {I,O} @interface variance(sf::SFunc{I,O}, i::I)::O where {I,O} @interface get_score(sf::SFunc{Tuple{I},O}, i::I)::AbstractFloat where {I,O} @interface get_log_score(sf::SFunc{Tuple{I},O}, i::I)::AbstractFloat where {I,O} # Return a new SFunc that is the result of summing samples from each constituent SFunc @interface sumsfs(fs::NTuple{N, <:SFunc{I, O}})::SFunc{I, O} where {N, I, O} # Stuff inspired by Distributions.jl interfaces (not super consistent in support though - may require some patching / care in declarations) @interface fit_mle(t::Type{S}, dat::Dist{O})::S where {O, S <: Dist{O}} @interface fit_mle_joint(t::Type{S}, dat::Dist{Tuple{I, O}})::S where {I, O, S <: SFunc{I, O}} @interface support_minimum(sf::SFunc{I, O}, i::I)::O where {I, O} @interface support_maximum(sf::SFunc{I, O}, i::I)::O where {I, O} # One output SFunc for each entry in O (and vice-versa). TODO more specific type signatures @interface make_marginals(sf::SFunc{I, <:Tuple})::NTuple{<:Any, <:SFunc{I}} where {I} @interface join_marginals(sfs::NTuple{<:Any, <:SFunc{I}})::SFunc{I, <:Tuple} where {I} @interface support(sf::SFunc{I,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {I,O,N} @interface support_quality(sf::SFunc, parranges) @interface bounded_probs(sf::SFunc{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector})::Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {I,O,N} @interface make_factors(sf::SFunc{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {I,O,N} @interface get_params(sf::SFunc) @interface set_params!(sf :: SFunc, params) # TODO vvvvvv Statistics computation not finished - not using anymore, defined for ConfigurableModel @interface initial_stats(sf::SFunc) # TODO create an abstract type Stats{I,O} # (range, parranges, pi's, lambda's) @interface expected_stats(sf::SFunc{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, child_lambda::Score{<:O}) where {I,O,N,M} @interface accumulate_stats(sf::SFunc, existing_stats, new_stats) @interface maximize_stats(sf::SFunc, stats) @interface configure(sf::SFunc, config_spec) :: SFunc # ^^^^ Not finished @interface compute_bel(sf::SFunc{I,O}, range::VectorOption{<:O}, pi::Dist{<:O}, lambda::Score)::Dist{<:O} where {I,O} @interface compute_lambda(sf::SFunc, range::VectorOption, lambda_msgs::Vector{<:Score})::Score @interface send_pi(sf::SFunc{I,O}, range::VectorOption{O}, bel::Dist{O}, lambda_msg::Score)::Dist{<:O} where {I,O} @interface outgoing_pis(sf::SFunc, range::VectorOption, bel::Dist, incoming_lambdas::VectorOption{<:Score})::Vector{<:Dist} @interface outgoing_lambdas(sf::SFunc{I,O}, lambda::Score, range::VectorOption, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Vector{<:Score} where {N,I,O} @interface compute_pi(sf::SFunc{I,O}, range::VectorOption{O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,I,O} @interface send_lambda(sf::SFunc{I,O}, lambda::Score, range::VectorOption, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {N,I,O}
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1679
export support_quality_rank, support_quality_from_rank @impl begin struct SFuncExpectation end function expectation(sf::SFunc{I,O}, i::I) where {I,O} return f_expectation(sf, i, x -> x) end end """ support_quality_rank(sq::Symbol) Convert the support quality symbol into an integer for comparison. """ function support_quality_rank(sq::Symbol) if sq == :CompleteSupport return 3 elseif sq == :IncrementalSupport return 2 else return 1 end end """ support_quality_from_rank(rank::Int) Convert the rank back into the support quality. """ function support_quality_from_rank(rank::Int) if rank == 3 return :CompleteSupport elseif rank == 2 return :IncrementalSupport else return :BestEffortSupport() end end @impl begin struct SFuncSupportQuality end function support_quality(s::SFunc, parranges) :BestEffortSupport end end @impl begin struct DefaultWeightedValues num_samples::Int end function weighted_values(s::Dist) samples = [sample(s, ()) for _ in 1:num_samples] return (samples, ones(num_samples)) end end @impl begin struct DefaultFitMLE end function fit_mle(s::Type{D}, ref::D) where {D <: Dist} return ref end end @impl begin struct SampledFitMLEJoint end function fit_mle_joint(t::Type{D}, dat::Dist{Tuple{Tuple{}, O}})::D where {O, D <: Dist{O}} samples, weights = weighted_values(dat) # Just get the output component (rest should be empty tuple) samples = [s[2] for s in samples] cat = Discrete(samples, weights / sum(weights)) return fit_mle(t, cat) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
336
export @op_perf, @make_c, runtime # All TODO macro op_perf(op_perf_body) return esc(op_perf_macro(op_perf_body)) end function op_perf_macro(op_perf_body::Expr) return quote $op_perf_body export $(op_perf_body.args[1].args[1]) end end macro make_c() return (:1) end function runtime end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1906
#= unconditional.jl : General representation of sfuncs that don't depend on anything. =# export Unconditional """ abstract type Unconditional{T} <: SFunc{Tuple{}, T} `Unconditional` is a general representation of an *sfunc* that does not depend on anything. It has no input. # Type parameters - `T`: the input type(s) of the `Unconditional` - `P`: the parameter type(s) of the `Unconditional` """ abstract type Unconditional{T} <: SFunc{Tuple{}, T} end @impl begin struct UnconditionalSample end function sample(sf::Unconditional{T}, i::Tuple{})::T sample(sf, x) # should never be called end end @impl begin struct UnconditionalLogcpdf end function logcpdf(sf::Unconditional{T}, i::Tuple{}, o::T) logcpdf(sf, i, o) # should never be called end end @impl begin struct UnconditionalMakeFactors numpartitions::Int64 = 100 end function make_factors(sf::Unconditional{T}, range::Vector{T}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {T,N} (lowers, uppers) = bounded_probs(sf, range, ()) keys = (id,) dims = (length(range),) return ([Factor(dims, keys, lowers)], [Factor(dims, keys, uppers)]) end end # compute_pi(u::Unconditional, range, parranges, incoming_pis) = compute_pi(u, range) # unconditional sfuncs do not have parents, so send_lambda trivially sends an empty message @impl begin struct UnconditionalSendLambda end function send_lambda(sf::Unconditional{T}, lambda::Score{T}, range::Vector{T}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {T,N} SoftScore(Float64[], Float64[]) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
4506
export Apply """ Apply{J, O} <: SFunc{Tuple{SFunc{J, O}, J}, O} Apply represents an sfunc that takes two groups of arguments. The first group is a single argument, which is an sfunc to apply to the second group of arguments. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `compute_pi` - `send_lambda` # Type parameters - `J`: the input type of the *sfunc* that may be applied; that *sfunc* is the input type of the `Apply` - `O`: the output type of the *sfunc* that may be applied, which is also the output type of the `Apply` """ struct Apply{J <: Tuple, O} <: SFunc{Tuple{SFunc{J, O}, J}, O} end @impl begin struct ApplySupport end function support(::Apply{J,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {J<:Tuple,O,N} result = Vector{O}() for sf in parranges[1] append!(result, support(sf, (parranges[2],), size, curr)) end return unique(result) end end @impl begin struct ApplySupportQuality end function support_quality(::Apply{J,O}, parranges) where {J,O} q = support_quality_rank(:CompleteSupport) for sf in parranges[1] imp = get_imp(MultiInterface.get_policy(), Support, sf, parranges[2], 0, O[]) q = min(q, support_quality_rank(support_quality(imp, sf, parranges[2]))) end return support_quality_from_rank(q) end end @impl begin struct ApplySample end function sample(::Apply{J,O}, input::Tuple{SFunc{J,O}, J})::O where {J<:Tuple,O} return sample(input[1], input[2]) end end @impl begin struct ApplyLogcpdf end function logcpdf(::Apply{J,O}, i::Tuple{SFunc{J,O}, J}, o::O)::AbstractFloat where {J<:Tuple,O} return logcpdf(i[1], i[2], o) end end # WARNING: THIS LOGIC DOES NOT WORK WITH MORE THAN ONE PARENT @impl begin struct ApplyComputePi end function compute_pi(::Apply{J,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,J<:Tuple,O} sfrange = parranges[1] argsrange = parranges[2] sfpi = incoming_pis[1] argspi = incoming_pis[2] result = zeros(Float64, length(range)) for sf in sfrange p1 = cpdf(sfpi, (), sf) p2 = compute_pi(sf, range, (argsrange,), (argspi,)) p3 = [p1 * cpdf(p2, (), x) for x in range] result .+= p3 end return Cat(range, result) end end # WARNING: THIS LOGIC DOES NOT WORK WITH MORE THAN ONE PARENT @impl begin struct ApplySendLambda end function send_lambda(::Apply{J,O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {N,J<:Tuple,O} @assert parent_idx == 1 || parent_idx == 2 sfrange = parranges[1] argsrange = parranges[2] sfpi = incoming_pis[1] argspi = incoming_pis[2] if parent_idx == 2 # For each x, we must sum over the sfunc argument compute P(y|x) for each possible sfunc result = Vector{Float64}() for args in argsrange resultpieces = Vector{Float64}() for sf in sfrange sp = logcpdf(sfpi, (), sf) for y in range a = isa(args, Tuple) ? args : tuple(args) push!(resultpieces, sp + logcpdf(sf, a, y) + get_log_score(lambda, y)) end end push!(result, logsumexp(resultpieces)) end return LogScore(argsrange, result) else # parent_idx == 1 # This is simpler; we must sum over the arguments, which is achieved by the embedded compute_pi result = Vector{Float64}() for sf in sfrange resultpieces = Vector{Float64}() ypi = compute_pi(sf, range, (argsrange,), (argspi,)) for y in range push!(resultpieces, logcpdf(ypi, (), y) + get_log_score(lambda, y)) end push!(result, logsumexp(resultpieces)) end return LogScore(sfrange, result) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1051
export Chain """ struct Chain{I, J, K, O} <: Conditional{I, J, K, O, Nothing, Q, SFunc{J, O, Nothing}} A `Conditional` that chains its input `I` through a given function that returns an `SFunc{J,O}`. """ struct Chain{I, J, K, O} <: Conditional{I, J, K, O, SFunc{J, O}} fn::Function """ function Chain(I, J, O, fn) Chain an input through `fn`. The chain is an `SFunc{K,O}`, where `K` is the concatenation of tuples `I` and `J`. `fn` is a function that takes an argument of type `I` and returns an `SFunc{J,O}`. The `Chain` defines a generative conditional distribution as follows: - Given inputs `i` and `j` - Let `s::SFunc{J,O} = fn(i)` - Use `j` to generate a value from `s` For the common case, `Chain` has a special constructors where J is empty. """ function Chain(I, J, O, fn) K = extend_tuple_type(I,J) new{I, J, K, O}(fn) end Chain(I, O, fn) = Chain(I, Tuple{}, O, fn) end function gensf(ch::Chain{I, J, K, O}, i::I) where {I, J, K, O} ch.fn(i) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
169
include("generate.jl") include("apply.jl") include("chain.jl") include("mixture.jl") include("network.jl") include("serial.jl") include("expander.jl") include("sum.jl")
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1413
export Expander, apply """ mutable struct Expander{I,O} <: SFunc{I,O} An Expander represents a model defined by a function that returns a network. For a given value of an input, the conditional probability distribution is provided by the network produced by the function on that input. For each such network, the expander manages a runtime to reason about it. Expanders are lazy and do not evaluate the function until they have to. As a result, there is state associated with Expanders. This is analysis state rather than world state, i.e., it is the state of Scruff's reasoning about the Expander. In keeping with Scruff design, Expanders are immutable and all state associated with reasoning is stored in the runtime that contains the expander. To support this, a runtime has three fields of global state: - `:subnets`: the expansions of all Expanders managed by the runtime - `:subruntimes`: all the subruntimes recursively managed by this runtime through Expanders, keyed by the networks - `:depth`: the depth to which Expanders in this runtime should be expanded # Type parameters - `I`: the input type(s) of the `Expander` - `O`: the output type(s) of the `Expander` """ mutable struct Expander{I,O} <: SFunc{I,O} # TODO (MRH): SFunc params type parameter fn :: Function Expander(fn, I, O) = new{I,O}(memo(fn)) end apply(expander::Expander, args...) = expander.fn(args...)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
3840
export Generate """ Generate{O} <: SFunc{Tuple{Dist{O}}, O} Generate a value from its `Dist` argument. This helps in higher-order programming. A typical pattern will be to create an sfunc that produces a `Dist`, and then generate many observations from the `Dist` using `Generate`. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `compute_pi` - `send_lambda` - `make_factors` """ struct Generate{O} <: SFunc{Tuple{Dist{O}}, O} end @impl begin struct GenerateSupport end function support(::Generate{O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {O,N} result = Vector{O}() for sf in parranges[1] append!(result, support(sf, (), size, curr)) end return unique(result) end end @impl begin struct GenerateSupportQuality end function support_quality(::Generate{O}, parranges) where O q = support_quality_rank(:CompleteSupport) for sf in parranges[1] imp = get_imp(MultiInterface.get_policy(), Support, sf, (), 0, O[]) q = min(q, support_quality_rank(support_quality(imp, sf, ()))) end return support_quality_from_rank(q) end end @impl begin struct GenerateSample end function sample(::Generate{O}, input::Tuple{<:Dist{O}})::O where O return sample(input[1], ()) end end @impl begin struct GenerateLogcpdf end function logcpdf(::Generate{O}, i::Tuple{<:Dist{O}}, o::O)::AbstractFloat where O return logcpdf(i[1], (), o) end end # WARNING: THIS LOGIC DOES NOT WORK WITH MORE THAN ONE PARENT @impl begin struct GenerateComputePi end function compute_pi(::Generate{O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,O} sfrange = parranges[1] sfpi = incoming_pis[1] result = zeros(Float64, length(range)) for sf in sfrange p1 = cpdf(sfpi, (), sf) p2 = compute_pi(sf, range, (), ()) p3 = [p1 * cpdf(p2, (), x) for x in range] result .+= p3 end return Cat(range, result) end end # WARNING: THIS LOGIC DOES NOT WORK WITH MORE THAN ONE PARENT @impl begin struct GenerateSendLambda end function send_lambda(::Generate{O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {N,O} @assert parent_idx == 1 sfrange::Vector{typeof(parranges[1][1])} = parranges[1] sfpi = incoming_pis[1] resultprobs = Vector{Float64}() for sf in sfrange resultpieces = Vector{Float64}() ypi = compute_pi(sf, range, (), ()) for y in range push!(resultpieces, logcpdf(ypi, (), y) + get_log_score(lambda, y)) end push!(resultprobs, logsumexp(resultpieces)) end result :: LogScore{typeof(sfrange[1])} = LogScore(sfrange, resultprobs) return result end end @impl begin struct GenerateMakeFactors end function make_factors(::Generate{O}, range::Vector{<:O}, parranges::Tuple{<:Vector{<:Dist{O}}}, id::Int, parids::Tuple{Int}) where O dims = (length(parranges[1]), length(range)) keys = (parids[1], id) entries = Float64[] for u in parranges[1] for x in range p = cpdf(u, (), x) push!(entries, p) end end fact = Factor(dims, keys, entries) return ([fact], [fact]) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
8667
export Mixture """ mutable struct Mixture{I,O} <: SFunc{I,O} `Mixture` defines an *sfunc* representing mixtures of other *sfuncs*. It contains a vector of *sfuncs* and a vector of probabilities that those *sfuncs* are selected, which indices are keys associating the two. The output type of a `Mixture` is defined by the output type of its internal components. The parameters of a `Mixture` are its probabilities followed by parameters of all its internal components, in order. # Additional supported operators - `support` - `support_quality` - `sample` - `cpdf` - `expectation` - `compute_pi` - `send_lambda` # Type parameters - `I`: the input type(s) of the `Mixture` - `O`: the shared output type(s) of its internal components and the output type(s) of the `Mixture` """ mutable struct Mixture{I,O} <: SFunc{I,O} components::Vector{<:SFunc{I,O}} probabilities::Vector{Float64} end @impl begin struct MixtureSupport end function support(sf::Mixture{I,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {I,O,N} subsize = Int(ceil(size / length(sf.components))) ranges = [support(comp, parranges, subsize, curr) for comp in sf.components] result = [] for range in ranges append!(result, range) end result = unique(result) tresult = convert(Vector{output_type(sf)}, result) # tresult = Vector{output_type(sf)}(undef, length(result)) # copyto!(tresult, result) sort!(tresult) return tresult end end # STATS @impl begin struct MixtureInitialStats end initial_stats(sf::Mixture) = [initial_stats(c) for c in sf.components] end @impl begin struct MixtureAccumulateStats end function accumulate_stats(sf::Mixture, existing_stats, new_stats) [accumulate_stats(sf.components[i], existing_stats[i], new_stats[i]) for i in 1:length(sf.components)] end end @impl begin struct MixtureExpectedStats end function expected_stats(sf::Mixture{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, child_lambda::Score{<:O}) where {I,O,N,M} # The statistics organize mutually exclusive cases. # Each case consists of a component i, a parent value p, and a child value c, # and represents the #(i selected, c | p, evidence). # This is equal to P(i selected | p, evidence) #(c | i selected, p, evidence). # P(i selected | p, evidence) is proportional to m.probabilities[i] * \sum_c #(c | i selected, p, evidence). # P(C | i selected, p, evidence) is equal to expected_stats(m.components[i], same arguments...) compstats = [expected_stats(comp, range, parranges, pis, child_lambda) for comp in sf.components] # This is bad. It assumes stats is a Dict, which is okay for tables # summed = [Dict((k,sum(v)) for (k,v) in stats) for stats in compstats] summed = [sum(sum(v) for v in values(stats)) for stats in compstats] pselected = sf.probabilities .* summed # return [mult_through(compstats[i], pselected[i]) for i in 1:length(m.components)] return [mult_through(compstats[i], sf.probabilities[i]) for i in 1:length(sf.components)] end end @impl begin struct MixtureMaximizeStats end function maximize_stats(sf::Mixture, stats) probparams = normalize([sum(sum(values(st))) for st in stats]) compparams = [maximize_stats(sf.components[i], stats[i]) for i in 1:length(sf.components)] return (probparams, compparams...) end end # END STATS @impl begin struct MixtureSupportQuality end function support_quality(sf::Mixture{I,O}, parranges) where {I,O} q = support_quality_rank(:CompleteSupport) for comp in sf.components imp = get_imp(MultiInterface.get_policy(), Support, sf, parranges, 0, O[]) q = min(q, support_quality_rank(support_quality(imp, comp, parranges))) end return support_quality_from_rank(q) end end @impl begin mutable struct MixtureMakeFactors numpartitions::Dict{SFunc, Int64} = Dict{SFunc, Int64}() end function make_factors(sf::Mixture{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {I,O,N} lfactors = Vector{Scruff.Utils.Factor}() ufactors = Vector{Scruff.Utils.Factor}() numcomps = length(sf.components) mixkey = nextkey() for (i,comp) in enumerate(sf.components) (lcompfactors, ucompfactors) = make_factors(comp, range, parranges, id, parids) function process(factors, target) for fact in factors dims = [d for d in fact.dims] push!(dims, numcomps) dims = Tuple(dims) keys = [k for k in fact.keys] push!(keys, mixkey) keys = Tuple(keys) entries = Float64[] for e in fact.entries for j = 1:numcomps push!(entries, i == j ? e : 1.0) # 1.0 means irrelevant end end relevantfact = Factor(dims, keys, entries) push!(target, relevantfact) end end process(lcompfactors, lfactors) process(ucompfactors, ufactors) end mixdims = (numcomps,) mixkeys = (mixkey,) mixentries = sf.probabilities mixfact = Factor(mixdims, mixkeys, mixentries) push!(lfactors, mixfact) push!(ufactors, mixfact) return (lfactors, ufactors) end end @impl begin struct MixtureComputePi end function compute_pi(sf::Mixture{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,I,O} function f(i) cp = compute_pi(sf.components[i], range, parranges, incoming_pis) sf.probabilities[i] .* [cpdf(cp, (), x) for x in range] end scaled = [f(i) for i in 1:length(sf.components)] result = sum(scaled) return Cat(range, normalize(result)) end end @impl begin struct MixtureSendLambda end function send_lambda(sf::Mixture{I,O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_ix::Integer)::Score where {N,I,O} # Need to make sure the target parent range is a Vector{T} rather than a Vector{Any} T = typejoin([typeof(x) for x in parranges[parent_ix]]...) target_parrange :: Vector{T} = parranges[parent_ix] lams = [send_lambda(comp, lambda, range, parranges, incoming_pis, parent_ix) for comp in sf.components] scores = [[get_score(lams[j], target_parrange[i]) for i in 1:length(target_parrange)] for j in 1:length(sf.components)] scaled = sf.probabilities .* scores result = zeros(Float64, length(target_parrange)) for sc in scaled result .+= sc end return SoftScore(target_parrange, result) end end # This does not seem to fit @impl begin struct MixtureSample end function sample(sf::Mixture{I,O}, x::I)::O where {I,O} probs = sf.probabilities/sum(sf.probabilities) cat = Distributions.Categorical(probs) which_component = rand(cat) component = sf.components[which_component] return sample(component, x) end end @impl begin struct MixtureCpdf end function cpdf(sf::Mixture{I,O}, i::I, o::O)::AbstractFloat where {I,O} complpdf = [cpdf(comp, i, o) for comp in sf.components] probs = sf.probabilities/sum(sf.probabilities) return sum(probs .* complpdf) end end @impl begin struct MixtureExpectation end function expectation(sf::Mixture{I,O}, x::I)::O where {I,O} probs = sf.probabilities/sum(sf.probabilities) cat = Distributions.Categorical(probs) which_component = rand(cat) component = sf.components[which_component] return expectation(component, x) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
5105
export NetworkInput, NetworkSFunc struct NetworkInput{T} end tupler(x::Array) = length(x) == 1 ? x[1] : tuple(x...) tupler(x::Tuple) = length(x) == 1 ? x[1] : x tupler(x) = x get_place_type(p::NetworkInput{T}) where T = T """ struct NetworkSFunc{I,O} <: SFunc{I,O} An sfunc that combines multiple sfuncs in a network structure. # Arguments input_placeholders A vector of placeholders indicating the types of network inputs. The type parameter `I` is computed from these. sfuncs The sfuncs to combine. parents A `Dict` that maps sfuncs to their parent sfuncs. Note that this parallels networks, except that we are mapping sfuncs to lists of sfuncs directly rather than variables to vectors of variables. output A vector of output sfuncs, determining the `O` type parameter. # Additional supported operators - `sample` - `sample_logcpdf` - `logcpdf` """ struct NetworkSFunc{I,O} <: SFunc{I,O} input_placeholders::NTuple{N,NetworkInput} where N sfuncs::NTuple{N,SFunc} where N parents::Dict{SFunc,Vector} where M outputs::Tuple """ function NetworkSFunc(input_placeholders, sfuncs, parents, outputs) TODO """ function NetworkSFunc(input_placeholders, sfuncs, parents, outputs) in_types = [get_place_type(placeholder) for placeholder in input_placeholders] # I = length(in_types) == 1 ? in_types[1] : Tuple{in_types...} I = Tuple{in_types...} out_types = [output_type(sf) for sf in outputs] O = length(out_types) == 1 ? out_types[1] : Tuple{out_types...} # TODO (MRH): Validate types of parents # TODO (MRH): Propagate param types of constituent SFuncs to type parameter P return new{I,O}(input_placeholders, sfuncs, parents, outputs) end end @impl begin struct NetworkSFuncSample end function sample(sf::NetworkSFunc{I,O}, input::I)::O where {I,O} network = sf sample_cache = Dict{Union{SFunc,NetworkInput},Any}(s_inp => walk_inp for (s_inp, walk_inp) in zip(network.input_placeholders, input)) # Assume network.funcs is topologically sorted. TODO? for sfunc in network.sfuncs sample_cache[sfunc] = sample(sfunc, Tuple([sample_cache[sinp] for sinp in network.parents[sfunc]])) end s = [sample_cache[o] for o in network.outputs] return tupler(s) end end @impl begin struct NetworkSFuncSampleLogcpdf end function sample_logcpdf(sf::NetworkSFunc{I,O}, input::I) where {I,O} network = sf sample_cache = Dict{Union{SFunc,NetworkInput},Any}(s_inp => (walk_inp, 0.0) for (s_inp, walk_inp) in zip(network.input_placeholders, input)) # Assume network.funcs is topologically sorted. TODO? for sfunc in network.sfuncs par_samples = [sample_cache[sinp][1] for sinp in network.parents[sfunc]] this_sample, logcpdf = sample_logcpdf(sfunc, Tuple(par_samples)) logcpdf = logcpdf + sum([sample_cache[sinp][2] for sinp in network.parents[sfunc]]) sample_cache[sfunc] = (this_sample, logcpdf) end joint_sample = tuple([sample_cache[o][1] for o in network.outputs]...) joint_logcpdf = sum([sample_cache[o][2] for o in network.outputs]) return (tupler(joint_sample), joint_logcpdf) end end @impl begin struct NetworkSFuncLogcpdf end function logcpdf(sf::NetworkSFunc{I, O}, input::I, output::O) where {I, O} # I think this returns a sample x of a distribution s.t. log(Expectation(exp(x))) gives the logcpdf # In the special case where all NetworkSFunc nodes are in outputs then the calculation is deterministic sample_cache = Dict{Union{SFunc, NetworkInput}, Any}((s_inp => (walk_inp, 0.0) for (s_inp, walk_inp) in zip(sf.input_placeholders, input))..., (s_out => (walk_out, nothing) for (s_out, walk_out) in zip(sf.outputs, output))...) # Assume network.funcs is topologically sorted. TODO? # Is this even right? Seems neat for sfunc in sf.sfuncs if haskey(sample_cache, sfunc) par_samples = [sample_cache[sinp][1] for sinp in sf.parents[sfunc]] cumlogcpdf = logcpdf(sfunc, Tuple(par_samples), sample_cache[sfunc][1]) + sum([sample_cache[sinp][2] for sinp in sf.parents[sfunc]]) sample_cache[sfunc] = (sample_cache[sfunc][1], cumlogcpdf) else par_samples = [sample_cache[sinp][1] for sinp in sf.parents[sfunc]] this_sample = sample(sfunc, Tuple(par_samples)) cumlogcpdf = sum([sample_cache[sinp][2] for sinp in sf.parents[sfunc]]) sample_cache[sfunc] = (this_sample, cumlogcpdf) end end return sum([sample_cache[o][2] for o in sf.outputs]) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
8802
export Serial """ struct Serial{I,O} <: SFunc{I,O} A sequence of sfuncs in series. Although this could be implemented as a special case of NetworkSFunc, the serial composition allows an easier and more efficient implementation of operations. All but the first sfunc in the sequence will have a single input; the output of each sfunc feeds into the input of the next sfunc. To work properly, most of the operations on `Serial` need the support of the intermediate sfuncs, given an input range. Rather than compute this each time, and to avoid having the non-support operations take a size argument, support is memoized, and must be called before other operations like logcpdf are called. The `support_memo` is a dictionary whose keys are tuples of parent ranges and whose values are the support computed for those parent ranges, along with the target size for which they were computed. Storing the target size enables refinement algorithms that increase the size and improve the support. # Additional supported operators - `support` - `support_quality` - `sample` - `cpdf` - `bounded_probs` - `make_factors` - `compute_pi` - `send_lambda` # Type parameters - I the input type of the first sfunc - O the output type of the last sfunc """ struct Serial{I,O} <: SFunc{I,O} components :: NTuple{N,SFunc} where N support_memo :: Dict Serial(I,O,sfuncs) = new{I,O}(sfuncs, Dict()) end @impl begin struct SerialSupport end function support(sf::Serial{I,O}, parranges, size, curr) where {I,O} if parranges in keys(sf.support_memo) (sup,sz) = sf.support_memo[parranges] if sz >= size return last(sup) end end # Adequate support has not been found - compute it now prs = parranges compsups = Vector[] for component in sf.components sup = support(component, prs, size, output_type(component)[]) push!(compsups, sup) prs = (sup,) end for c in curr if !(c in sup) push!(sup, c) end end sf.support_memo[parranges] = (tuple(compsups...), size) return sup end end @impl begin struct SerialSupportQuality end function support_quality(sf::Serial{I,O}, parranges) where {I,O} if !(parranges in keys(sf.support_memo)) error("Support must be called before support_quality for Serial") end compsups = sf.support_memo[parranges][1] rank = support_quality_rank(:CompleteSupport) prs = parranges for (comp,sup) in zip(sf.components, compsups) q = support_quality_rank(support_quality(comp, prs)) rank = min(rank, q) prs = (sup,) end return support_quality_from_rank(rank) end end @impl begin struct SerialSample end function sample(sf::Serial{I,O}, i::I) where {I,O} x = i for component in sf.components x = (sample(component, x),) end return x[1] end end function _checksup(sf, i) for k in keys(sf.support_memo) if all([i[j] in k[j] for j in 1:length(k)]) return sf.support_memo[k][1] end end return nothing end @impl begin struct SerialCpdf end function cpdf(sf::Serial{I,O}, i::I, o::O) where {I,O} compsups = _checksup(sf, i) if isnothing(compsups) error("No support found for parent values in logcpdf for Serial") end us = [i] pis = [1.0] n = length(sf.components) for j in 1:n-1 comp = sf.components[j] sup = compsups[j] newpis = zeros(Float64, length(sup)) for (u,pi) in zip(us,pis) for l in 1:length(sup) x = sup[l] newpis[l] += cpdf(comp, u, x) * pi end end us = [(x,) for x in sup] pis = newpis end result = 0.0 finalcomp = sf.components[n] for (u, pi) in zip(us,pis) result += cpdf(finalcomp, u, o) * pi end return result end end @impl begin struct SerialBoundedProbs end function bounded_probs(sf::Serial{I,O}, range::Vector{<:O}, parranges) where {I,O} probs = Float64[] combos = cartesian_product(parranges) for i in combos for o in range push!(probs, cpdf(sf, tuple(i...), o)) end end return (probs, probs) end end @impl begin struct SerialMakeFactors end function make_factors(sf::Serial{I,O}, range::Vector{<:O}, parranges, id, parids) where {I,O} if !(parranges in keys(sf.support_memo)) error("Support must be called before make_factors for Serial") end compsups = sf.support_memo[parranges][1] inids = parids outid = nextkey() prs = parranges lowers = Factor[] uppers = Factor[] for i in 1:length(sf.components) outid = i == length(sf.components) ? id : nextkey() (ls, us) = make_factors(sf.components[i], compsups[i], prs, outid, inids) inid = (outid,) prs = (compsups[i],) append!(lowers, ls) append!(uppers, us) end return(lowers, uppers) end end @impl begin struct SerialComputePi end function compute_pi(sf::Serial{I,O}, range::Vector{<:O}, parranges, incoming_pis) where {I,O} ps = zeros(Float64, length(range)) combos = cartesian_product(parranges) m = length(parranges) for combo in combos parpis = [cpdf(incoming_pis[i], (), combo[i]) for i in 1:m] ipi = reduce(*, parpis) for (j,o) in enumerate(range) ps[j] += cpdf(sf, tuple(combo...), o) * ipi end end return Cat(range, ps) end end function _incpis(components, supports, parranges, incoming_pis) incpis = Tuple[incoming_pis] prs = parranges for i in 1:length(components)-1 comp = components[i] rng = supports[i] pi = compute_pi(comp, rng, prs, incpis[i]) push!(incpis, (pi,)) prs = (rng,) end return incpis end function _lambdas(components, supports, lambda, incpis) lambdas = Score[lambda] lam = lambda for i = length(components):-1:2 comp = components[i] rng = supports[i] prs = (supports[i-1],) ipis = incpis[i] lam = send_lambda(comp, lam, rng, prs, ipis, 1) pushfirst!(lambdas, lam) end return lambdas end @impl begin struct SerialSendLambda end function send_lambda(sf::Serial{I,O}, lambda, range, parranges, incoming_pis, parent_idx) where {I,O} if !(parranges in keys(sf.support_memo)) error("Support must be called before send_lambda for Serial") end compsups = sf.support_memo[parranges][1] incpis = _incpis(sf.components, compsups, parranges, incoming_pis) lambdas = _lambdas(sf.components, compsups, lambda, incpis) return send_lambda(sf.components[1], lambdas[1], compsups[1], parranges, incoming_pis, parent_idx) end end # STATS @impl begin struct SerialInitialStats end initial_stats(sf::Serial) = map(initial_stats, sf.components) end @impl begin struct SerialAccumulateStats end accumulate_stats(sf::Serial, existing_stats, new_stats) = [accumulate_stats(sf.components[i], existing_stats[i], new_stats[i]) for i in 1:length(sf.components)] end @impl begin struct SerialExpectedStats end function expected_stats(sf::Serial, range, parranges, incoming_pis, child_lambda) if !(parranges in keys(sf.support_memo)) error("Support must be called before expected_stats for Serial") end compsups = sf.support_memo[parranges][1] incpis = _incpis(sf.components, compsups, parranges, incoming_pis) lambdas = _lambdas(sf.components, compsups, child_lambda, incpis) stats = Any[] prs = parranges for i in 1:length(sf.components) comp = sf.components[i] sup = compsups[i] ipi = incpis[i] lam = lambdas[i] push!(stats, expected_stats(comp, sup, prs, ipi, lam)) prs = (sup,) end return tuple(stats...) end end @impl begin struct SerialMaximizeStats end function maximize_stats(sf::Serial, stats) ps = [maximize_stats(sf.components[i], stats[i]) for i in 1:length(sf.components)] return tuple(ps...) end end # STATS END
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
433
struct SumSF{I, O, SFs <: NTuple{<:Number, <: SFunc{I, O}}} <: SFunc{I, O} sfs::SFs end @impl begin function sumsfs(fs::NTuple{N, <:SFunc}) where {N} # Return an SFunc representing g(x) = f1(x) + f2(x) + ... # I.e. convolution of the respective densities return SumSF(fs) end end @impl begin function sample(sf::SumSF, x) return sum(sample(sub_sf, x) for sub_sf in sf.sfs) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
11716
export CLG """ CLG(paramdict::Dict) Constructs an*sfunc representing a Conditional linear Gaussian. These sfuncs may have both discrete and continuous parents. For each combination of discrete parents, there is a `LinearGaussian` that depends on the continuous parents. `CLG`s are implemented as a `Table` with a `LinearGaussian`. The `paramdict` parameter defines the discrete and continuous parents, and the linear gaussean values where the length of a key is the count of the discrete inputs, the length of the tuple in a value is the count of continuous inputs, and the rest of the values are used to build the parameters for `CLG` itself. For example, ``` Dict((:x,1) => ((-1.0, 1.0, 2.0), 3.0, 1.0), (:x,2) => ((-2.0, 4.0, 2.0), 3.0, 1.0), (:x,3) => ((-3.0, 2.0, 2.0), 3.0, 1.0), (:y,1) => ((-4.0, 5.0, 2.0), 3.0, 1.0), (:y,2) => ((-5.0, 3.0, 2.0), 3.0, 1.0), (:y,3) => ((-6.0, 6.0, 2.0), 3.0, 1.0)) ``` - the keys define two(2) discrete parents, with values `[:x,:y]` and `[1,2,3]` - in the values, the first tuple defines three(3) continuous parents for each underlying `LinearGausian`, with values `-1.0:-6.0`, `1.0:6.0`, and `2.0` - the values `3.0` and `1.0` are mean/stddev of the underlying `LinearGaussian` See also: [`Table`](@ref), [`LinearGaussian`](@ref) """ function CLG(paramdict::Dict) numdiscreteinputs = length(collect(keys(paramdict))[1]) numcontinuousinputs = length(collect(values(paramdict))[1][1]) sfmaker(weights) = LinearGaussian(weights[1], weights[2], weights[3]) return Table(NTuple{numcontinuousinputs, Float64}, Float64, numdiscreteinputs, paramdict, sfmaker) end #= This representation is deprecated, but there may be useful implementation details. # TODO (MRH): Convert CLG constructor into a call to a method that builds a Tables as in make_CLG above struct CLG{NumDiscreteInputs, NumContinuousInputs, O} <: SFunc{Tuple{NTuple{NumDiscreteInputs, O}, NTuple{NumContinuousInputs, Float64}}, Float64, Tuple{}} # TODO (MRH): Params type # each segment corresponds to one setting of the discrete parents # and includes a linear weight for each continuous parent and a bias term segments :: Dict{<: Array{O, N} where N, <: Tuple{Array{Float64, N} where N, Float64}} variance :: Float64 function CLG(num_discrete_inputs, num_continous_inputs, seg, var) T = typeof(seg).parameters[1].parameters[1] new{num_discrete_inputs, num_continous_inputs, T}(seg, var) end end ############################# # # # Helper functions for CLGs # # # ############################# # Return all 2-tuples of discrete parent combinations and continuous # parent combinations function get_parent_combos(:: CLG{M,N}, parent_ranges) where {M,N} discrete_ranges = Array{Array{Any, 1}, 1}(parent_ranges[1:M]) continuous_ranges = Array{Array{Any, 1}, 1}(parent_ranges[M+1:M+N]) if isempty(discrete_ranges) discrete_combos = [[]] else discrete_combos = cartesian_product(discrete_ranges) end if isempty(continuous_ranges) continuous_combos = [[]] else continuous_combos = cartesian_product(continuous_ranges) end l = Array{Array{Any,1},1}([discrete_combos, continuous_combos]) return map(a -> Tuple(a), cartesian_product(l)) end function overlaps(int1, int2) :: Bool (l1, u1) = int1 (l2, u2) = int2 return l1 <= l2 && u1 >= l2 || l1 <= u2 && u1 >= u2 end # Return the minimum and maximum probabilities of a normal distribution # over an interval, when the mean is bounded and the variance is given. function minmaxprob(lower, upper, lower_mean, upper_mean, variance) if lower == -Inf || upper == Inf return (0,1) end # The point can be anywhere between lower and upper # The mean can be anywhere between lower_mean and upper_mean # We need to find the minimum and maximum possible density # To find this, we compute the minimum and maximum possible distances # from the point to the mean. # If the point interval overlaps the mean interval, the minimum possible # distance is zero. # Otherwise the minimum possible distance is the min distance between # mean endpoints and interval endpoints. # The maximum possible distance is always the max distance between mean # endpoints and interval endpoints. d1 = abs(lower_mean - lower) d2 = abs(upper_mean - lower) d3 = abs(lower_mean - upper) d4 = abs(upper_mean - upper) dmin = overlaps((lower, upper), (lower_mean, upper_mean)) ? 0 : max(min(d1, d2, d3, d4), 0) dmax = max(d1, d2, d3, d4) densmin = normal_density(dmax, 0, variance) densmax = normal_density(dmin, 0, variance) diff = upper - lower pmin = min(max(densmin * diff, 0), 1) pmax = min(max(densmax * diff, 0), 1) return (pmin, pmax) end # Compute numerical lower and upper bounds on the density by partitioning # the interval into num_partitions and computing bounds in each partition function numerical_bounds(lower, upper, lmean, umean, num_partitions, variance) if lower == -Inf || upper == Inf return (0,1) end start = lower step = (upper - lower) / num_partitions l = 0.0 u = 0.0 for i = 1:num_partitions (x,y) = minmaxprob(start, start + step, lmean, umean, variance) l += x u += y start += step end return (l,u) end #= ============================================================ Operators =============================================================== =# function make_range(sf :: CLG, parranges, size :: Int) sd = sqrt(sf.variance) parent_combos = get_parent_combos(sf, parranges) # Prepare for accumulating the list of candidates by determining # whether the mean should be included for each segment and the number # of candidates around the mean. We choose the number of values per # segment so that the total is approximately the number of values desired. values_per_segment = max(div(size, length(parent_combos)), 1) if mod(values_per_segment, 2) == 1 use_mean = true values_per_segment -= 1 else use_mean = false end pairs_per_segment = values_per_segment / 2 # Get candidates for including in the range # For each combinatiuon of parent values, we get the segment according # to the discrete values and the mean according to the continuous values. # We then spread candidates around the mean according to the standard # deviation. candidates = [] for (discrete_combo, continuous_combo) in parent_combos (weights, bias) = sf.segments[discrete_combo] mean = linear_value(weights, bias, continuous_combo) if use_mean push!(candidates, mean) for i = 1:pairs_per_segment push!(candidates, mean - i * sd) push!(candidates, mean + i * sd) end else for i = 1:pairs_per_segment push!(candidates, mean - (i - 0.5) * sd) push!(candidates, mean + (i - 0.5) * sd) end end end sort!(candidates) # Select size of the candidates evenly spread skip = div(length(candidates), size) position = div(mod(length(candidates), size), 2) + 1 result = [] for i = 1:size push!(result, candidates[position]) position += skip end return result end @op_impl begin struct CLGSupport{NumDiscreteInputs, NumContinuousInputs, O} <: Support{CLG{NumDiscreteInputs, NumContinuousInputs, O}} end function support((parranges, size, curr)) if isempty(parranges) return nothing end old_size = length(curr) if old_size >= size return curr end result = make_range(sf, parranges, size) # We must make sure that any value in the current range is kept # so we replace the closest element in the new range with an element # from the current range i = 1 j = 1 is_current = fill(false, size) while i <= old_size && j <= size if curr[i] < result[j] if j == 1 || is_current[j-1] || result[j] - curr[i] < curr[i] - result[j-1] result[j] = curr[i] is_current[j] = true i += 1 j += 1 else result[j-1] = curr[i] is_current[j-1] = true i += 1 end else j += 1 end end if i <= old_size tail = old_size - i result[size-tail:new_size] = curr[old_size-tail:old_size] end return result end end # We bound the integral under the density by dividing each interval of the # range into num_partitions partitions and computing the lower and upper # bound in each partition. However, this is complicated by the fact that # we don't know the density function because we only have ranges for the # parents. @op_impl begin mutable struct CLGBoundedProbs <: BoundedProbs{CLG} numpartitions::Int64 = 100 end function bounded_probs((range, parrange)) vec = typeof(sf).parameters M = vec[1] N = vec[2] intervals = make_intervals(range) prs = Array{Array{Union{Symbol, Tuple{Float64, Float64}}, 1}, 1}(undef, M+N) for i = 1:M prs[i] = parrange[i] end for i = M+1:M+N prs[i] = make_intervals(parrange[i]) end parent_combos = get_parent_combos(sf, prs) # Normally, the length of the range and the number of intervals is the same # However, for an empty range, there is still one unbounded interval if isempty(range) lower = Array{Float64}(undef, length(parent_combos)) upper = Array{Float64}(undef, length(parent_combos)) else lower = Array{Float64}(undef, length(parent_combos) * length(range)) upper = Array{Float64}(undef, length(parent_combos) * length(range)) end pos = 1 for (discrete_combo, continuous_combo) in parent_combos (weights, bias) = sf.segments[discrete_combo] (lmean, umean) = bounded_linear_value(weights, bias, continuous_combo) ls = [] us = [] for interval in intervals (il, iu) = interval (l,u) = numerical_bounds(il, iu, lmean, umean, op_impl.numpartitions, sf.variance) push!(ls, l) push!(us, u) end # We get better bounds by considering the bounds on other intervals. # This is especially important for intervals with -Inf or Inf as an # endpoint. for i = 1:length(intervals) otherls = 0.0 otherus = 0.0 for j = 1:i-1 otherls += ls[j] otherus += us[j] end for j = i+1:length(intervals) otherls += ls[j] otherus += us[j] end l = max(ls[i], 1 - otherus) u = min(us[i], 1 - otherls) lower[pos] = l upper[pos] = u pos += 1 end end return (lower, upper) end end =#
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
207
include("conditional.jl") include("det.jl") include("invertible.jl") include("table.jl") include("discretecpt.jl") include("lineargaussian.jl") include("CLG.jl") include("separable.jl") include("switch.jl")
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
15607
export Conditional, extend_tuple_type using Folds using StatsFuns @inline tuplejoin(x, y, z...) = (x..., tuplejoin(y, z...)...) tuplejoin(t::Tuple) = t """ extend_tuple_type(T1, T2) Given two types `T1` and `T2`, concatenate the types into a single tuple type. # Arguments - `T1`: Any type - `T2`: A tuple type # Returns - If `T1` is a tuple type, a tuple with the concatenation of the types in `T1` and `T2` - If `T1` is not a tuple type, a tuple with `T1` prepended to the types in `T2` # Examples ``` julia> extend_tuple_type(Int64, Tuple{Float64}) Tuple{Int64, Float64} julia> extend_tuple_type(Tuple{Int64}, Tuple{Float64}) Tuple{Int64, Float64} julia> extend_tuple_type(Tuple{Vector{Float64}}, Tuple{Symbol,Symbol}) Tuple{Vector{Float64}, Symbol, Symbol} ``` """ function extend_tuple_type(T1, T2) if T1 <: Tuple Tuple{tuplejoin(fieldtypes(T1), fieldtypes(T2))...} else Tuple{T1, fieldtypes(T2)...} end end """ abstract type Conditional{I <: Tuple, J <: Tuple, K <: Tuple, O, S <: SFunc{J, O}} <: SFunc{K, O} `Conditional` *sfuncs* represent the generation of an sfunc depending on the values of parents. An subtype of `Conditional` must provide a `gensf` method that takes an `I` and returns an `SFunc{J,O}` (**important** the generated SFunc must not appear outside the Conditional. It should not be a parent). # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `make_factors` - `compute_pi` - `send_lambda` # Type parameters - `I`: the type of data used to generate the `Conditional`'s *sfunc* - `J`: a tuple that represents the input types (the `I`) of the `Conditional`'s generated *sfunc* - `K`: the input types of the `Conditional`; this is a tuple of types constructed from `I`, and `J` using `extend_tuple_types` - `O`: the output type(s) of both the `Conditional` and the `Conditional`'s generated *sfunc* - `S`: the type of the `Conditional`'s generated *sfunc* """ abstract type Conditional{I, J <: Tuple, K <: Tuple, O, S <: SFunc{J, O}} <: SFunc{K, O} end function split_pars(::Conditional{I}, pars) where {I} if I <: Tuple n1 = length(fieldnames(I)) (Tuple(pars[1:n1]), Tuple(pars[n1+1:length(pars)])) else (pars[1], Tuple(pars[2:length(pars)])) end end @impl begin struct ConditionalSupport end function support(sf::Conditional{I,J,K,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {I,J,K,O,N} (iranges, jranges) = split_pars(sf, parranges) irgs::Array{Array{Any, 1}, 1} = [r for r in iranges] isrange = cartesian_product(irgs) rng::Vector = isempty(curr) ? Vector{O}() : copy(curr) # inc = Int(ceil(size / length(isrange))) allcombranges= Dict{Any, Vector{O}}() # create complete range regardless of the size for is in isrange gsf = gensf(sf,tuple(is...)) newrng = copy(support(gsf, jranges, size, curr)) allcombranges[is] = unique(newrng) end # create range by mixing values from ranges created by each combination of parents values up to size allrng = collect(Iterators.flatten(values(allcombranges))) max_size = length(unique(allrng)) while length(rng) < min(size, max_size) for is in isrange if(length(allcombranges[is]) > 0) val = popfirst!(allcombranges[is]) push!(rng, val) end end rng = unique(rng) end return isempty(rng) ? O[] : rng end end # STATS @impl begin struct ConditionalInitialStats end function initial_stats(::Conditional{I}) where {I} Dict{I,Any}() end end @impl begin struct ConditionalAccumulateStats end function accumulate_stats(cond::Conditional, existing_stats, new_stats) if isnothing(new_stats) return existing_stats end result = copy(existing_stats) for (i,stat) in new_stats sf = gensf(cond, i) exist = get(result, i, initial_stats(sf)) next = accumulate_stats(sf, exist, stat) result[i] = next end return result end end @impl begin struct ConditionalExpectedStats end function expected_stats(cond::Conditional, range::Vector{O}, parranges::NTuple{N,Vector}, parent_pis::NTuple{M,Dist}, lambda::Score{<:O}) where {O,N,M} (iranges, jranges) = split_pars(cond, parranges) iinds = cartesian_product(collect(map(r -> collect(1:length(r)), iranges))) (ipis, jpis) = split_pars(cond, parent_pis) result = Dict() for iind in iinds ival = [iranges[r][iind[r]] for r in 1:length(iranges)] sf = gensf(cond, tuple(ival...)) ipi = reduce(*, (bounded_probs(ipis[r], [iind[r]], ())[1][1] for r in 1:length(iranges))) innerstat = expected_stats(sf, range, jranges, jpis, lambda) result[tuple(ival...)] = mult_through(innerstat, ipi) end return result end end @impl begin struct ConditionalMaximizeStats end function maximize_stats(cond::Conditional, stats) qs = Dict() if !isnothing(stats) for (i,st) in stats sf = gensf(cond, i) q = maximize_stats(sf, st) qs[i] = q end end result = do_maximize_stats(cond, qs) return result # Must be written separately for each kind of Conditional end end # STATS END @impl begin struct ConditionalSample end function sample(sf::Conditional{I,J,K,O}, i::K)::O where {I,J,K,O} (ivals, jvals) = split_pars(sf, i) sfg = gensf(sf,ivals) return sample(sfg, jvals) end end @impl begin struct ConditionalLogcpdf end function logcpdf(sf::Conditional{I,J,K,O}, i::K, o::O) where {I,J,K,O} (ivals, jvals) = split_pars(sf, i) sfgen = gensf(sf,ivals) return logcpdf(sfgen, jvals, o) end end @impl begin struct ConditionalSupportQuality end function support_quality(sf::Conditional{I,J,K,O,S}, parranges) where {I,J,K,O,S} q = support_quality_rank(:CompleteSupport) (iranges, jranges) = split_pars(sf, parranges) isrange = cartesian_product(iranges) for is in isrange gsf = gensf(sf,tuple(is...)) imp = get_imp(MultiInterface.get_policy(), Support, gsf, jranges, 0, O[]) q = min(q, support_quality_rank(support_quality(imp, gsf, jranges))) end return support_quality_from_rank(q) end end @impl begin mutable struct ConditionalMakeFactors numpartitions::Int64 = 1 end function make_factors(sf::Conditional{I,J,K,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {I,J,K,O,N} if any(isempty, parranges) # This is possible in lazy inference # Just return an empty factor so as not to break keys = (id,) dims = (0,) entries = Float64[] fs = [Factor(dims, keys, entries)] return (fs, fs) end # Here is a very general method for constructing factors for conditional sfuncs. # We introduce a switch variable. # For each of the generated sfuncs, we make its factors and extend them by saying # they are only relevant when the switch value corresponds to that choice. # We also add a factor saying that the switch variable takes on the appropriate value # for each value of the i inputs. # For this switch factor, we use another decomposition, relating the switch variable # to each of the i inputs separately. This avoids a quadratic blowup and brings the # complexity analogous to that of less general methods. # This can be improved by making a special case where there is only one i parent, # and returning a single factor. (iranges, jranges) = split_pars(sf, parranges) (iids, jids) = split_pars(sf, parids) icombos = cartesian_product(iranges) lfs = Factor[] ufs = Factor[] switchkey = nextkey() switchsize = length(icombos) for (switchval, ivals) in enumerate(icombos) function extend(factor) keys = [k for k in factor.keys] push!(keys, switchkey) keys = Tuple(keys) dims = [d for d in factor.dims] push!(dims, switchsize) dims = Tuple(dims) entries = Float64[] for e in factor.entries for k in 1:switchsize # 1.0 is the irrelevant value when factors are multiplied push!(entries, k == switchval ? e : 1.0) end end result = Factor(dims, keys, entries) return result end subsf = gensf(sf,tuple(ivals...)) (sublfs, subufs) = make_factors(subsf, range, jranges, id, jids) append!(lfs, [extend(f) for f in sublfs]) append!(ufs, [extend(f) for f in subufs]) end for i in 1:length(iranges) switchfactorkeys = (parids[i], switchkey) parsize = length(parranges[i]) switchfactordims = (parsize, switchsize) switchfactorentries = Float64[] for j in 1:parsize for ivals in icombos # The effect of this is that the product will only be 1 for all the corresponding # i values. push!(switchfactorentries, j == indexin([ivals[i]], parranges[i])[1] ? 1.0 : 0.0) end end switchfact = Factor(switchfactordims, switchfactorkeys, switchfactorentries) push!(lfs, switchfact) push!(ufs, switchfact) end return (lfs, ufs) end end @impl begin struct ConditionalComputePi end function compute_pi(sf::Conditional{I,J,K,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,I,J,K,O} (iranges, jranges) = split_pars(sf, parranges) # We need to correctly handle the case with duplicate parent values # logcpdf below will get the full incoming pi for all duplicate values irgs::Vector{Set{Any}} = [Set(r) for r in iranges] icombos = cartesian_product(irgs) (ipis, jpis) = split_pars(sf, incoming_pis) result_pieces = [Vector{Float64}() for x in range] for is in icombos gsf = gensf(sf,tuple(is...)) ps = compute_pi(gsf, range, Tuple(jranges), jpis) if (!isempty(iranges)) # ipi = sum([logcpdf(ipis[i], (), irgs[i][ind[i]]) for i in 1:length(iranges)]) ipi = sum([logcpdf(ipis[j], (), is[j]) for j in 1:length(iranges)]) else ipi = 1 end for i in 1:length(range) push!(result_pieces[i], ipi + logcpdf(ps, (), range[i])) end end result = normalize([exp(StatsFuns.logsumexp(rps)) for rps in result_pieces]) return Cat(range, result) end end @impl begin struct ConditionalSendLambda end function send_lambda(sf::Conditional{I,J,K,O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_ix::Integer)::Score where {N,I,J,K,O} (iranges, jranges) = split_pars(sf, parranges) (ipis, jpis) = split_pars(sf, incoming_pis) iar :: Array{Array{Int, 1}} = collect(map(r -> collect(1:length(r)), iranges)) iinds = cartesian_product(iar) jar :: Array{Array{Int, 1}} = collect(map(r -> collect(1:length(r)), jranges)) jinds = cartesian_product(jar) result = zeros(Float64, length(parranges[parent_ix])) # Need to make sure the target parent range is a Vector{T} rather than a Vector{Any} T = typejoin([typeof(x) for x in parranges[parent_ix]]...) target_parrange :: Vector{T} = parranges[parent_ix] if parent_ix <= length(iranges) rs::Array{Array{Int, 1}, 1} = [collect(1:length(rg)) for rg in iranges] deleteat!(rs, parent_ix) restranges = cartesian_product(rs) # We want to send a lambda message to the specific I input. # We can ignore the pi message from this input. # For each value of this input, we want to compute \sum_{i',j,o} \pi_J(j) P_ps.sf(o | j ; gen_params(ps, (i, i'))) \lambda(o). for i = 1:length(iranges[parent_ix]) ival = iranges[parent_ix][i] ls = Vector{Float64}() for rest in restranges ipi = 0 fullvals = [] for r = 1:parent_ix-1 ipi += logcpdf(ipis[r], (), parranges[r][rest[r]]) push!(fullvals, iranges[r][rest[r]]) end push!(fullvals, ival) for r = parent_ix+1:length(iranges) ipi += logcpdf(ipis[r], (), parranges[r][rest[r-1]]) push!(fullvals, iranges[r][rest[r-1]]) end gsf = gensf(sf,tuple(fullvals...)) for jind in jinds jpi = 0 jval = [] for r = 1:length(jpis) jpi += logcpdf(jpis[r], (), jind[r]) push!(jval, jranges[r][jind[r]]) end jvaltypes = [typeof(j) for j in jval] tjval = convert(Vector{typejoin(jvaltypes...)}, jval) pi = ipi + jpi for o in range push!(ls, pi + logcpdf(gsf, Tuple(tjval), o) + get_log_score(lambda, o)) end end end result[i] = StatsFuns.logsumexp(ls) end elseif parent_ix <= length(parranges) n = length(iranges) jix = parent_ix - n # We weight the lambda messages sent to the specific J parent by the pi message for the I parents result_pieces = [Vector{Float64}() for x in target_parrange] for iind in iinds ival = [iranges[r][iind[r]] for r in 1:n] gsf = gensf(sf,tuple(ival...)) ipi = sum(logcpdf(ipis[r], (), iind[r]) for r in 1:n) lam = send_lambda(gsf, lambda, range, jranges, jpis, jix) for i in 1:length(target_parrange) push!(result_pieces[i], ipi + get_log_score(lam, parranges[parent_ix][i])) end end result = [StatsFuns.logsumexp(rp) for rp in result_pieces] end return LogScore(target_parrange, result) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
7973
export Det, ExplicitDet import StatsBase import StatsFuns """ abstract type Det{I, O} <: SFunc{I, O} `Det` defines an *sfunc* that represents a deterministic function `I -> O`. When a `Det` is subtyped, a function `apply(d::Det, i::I)::O` or `apply(d::Det, i::I...)::O` must also be implemented. It has no parameters. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `bounded_probs` - `make_factors` - `compute_pi` - `send_lambda` # Type parameters - `I`: the input type(s) of the `Det` - `O`: the output type(s) of the `Det` """ abstract type Det{I, O} <: SFunc{I, O} end """ struct ExplicitDet{I, O} <: Det{I, O} `ExplicitDet` is a `Det` that contains a field `f::Function`. It also has an `apply` method that simply delegates to the `ExplicitDet`'s function: ``` apply(d::ExplicitDet, i...) = d.f(i...) ``` ``` julia> d = ExplicitDet{Tuple{Vararg{Real}},Real}(sum) ExplicitDet{Tuple{Vararg{Real, N} where N}, Real}(sum) ``` """ struct ExplicitDet{I, O} <: Det{I, O} f :: Function end apply(d::ExplicitDet, i::Tuple) = d.f(i...) apply(d::ExplicitDet, i...) = d.f(i...) function Det(I, O, f) return ExplicitDet{I,O}(f) end @impl begin struct DetSupport end function support(sf::Det{I,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {I,O,N} ps = cartesian_product(parranges) result = unique([apply(sf, p...) for p in ps]) if (length(result) > size) # do downsampling but ensure that curr is included in the range # include curr in the result, it is OK if it > size if (!isempty(curr)) # curr is provided curr = unique(curr) curr_size= length(curr) if(curr_size >= size) result = curr else sample_size = size - curr_size # number of samples result_without_curr = setdiff(result, curr) # what is being sampled result = StatsBase.sample(result_without_curr, sample_size, replace = false) # samples result = vcat(curr, result) # concatanate curr and samples end else # curr is not provided result = StatsBase.sample(result, size, replace = false) # samples end end sort!(result) return result end end @impl begin struct DetSupportQuality end function support_quality(::Det, parranges) :CompleteSupport end end @impl begin struct DetSample end function sample(sf::Det{I,O}, x::I)::O where {I,O} if isa(x, Tuple) apply(sf, x...) else apply(sf, x) end end end @impl begin struct DetLogcpdf end function logcpdf(sf::Det{I,O}, inp::I, o::O)::AbstractFloat where {I,O} y = apply(sf, inp...) return y == o ? 0.0 : -Inf end end # We cannot define complete for Det in an abstract way, because it depends on whether the ranges of the parents # is complete. @impl begin struct DetBoundedProbs end function bounded_probs(sf::Det{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}):: Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {I,O,N} ps = cartesian_product(parranges) result = Float64[] for p in ps x = apply(sf, p...) for r in range push!(result, x == r ? 1.0 : 0.0) end end return (result, result) end end @impl begin struct DetMakeFactors end function make_factors(sf::Det{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {I,O,N} entries = bounded_probs(sf, range, parranges) keys = [i for i in parids] push!(keys, id) keys = Tuple(keys) dims = [length(r) for r in parranges] push!(dims, length(range)) dims = Tuple(dims) factors = [Factor(dims, keys, entries[1])] return (factors, factors) end end @impl begin struct DetComputePi end function compute_pi(sf::Det{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,I,O} pinds = cartesian_product([collect(1:length(r)) for r in parranges]) result = zeros(Float64, length(range)) result_pieces = [Vector{Float64}() for i in range] prng = 1:length(parranges) for pind in pinds xs = [parranges[i][pind[i]] for i in prng] x = apply(sf, xs...) idx = indexin([x], range)[1] if !isnothing(idx) pi = sum([logcpdf(incoming_pis[i], (), xs[i]) for i in prng]) push!(result_pieces[idx], pi) end end result = [exp(StatsFuns.logsumexp(pieces)) for pieces in result_pieces] return Cat(range, normalize(result)) end end @impl begin struct DetSendLambda end function send_lambda(sf::Det{I,O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_ix::Integer)::Score where {N,I,O} # For a particular parent, we consider all possible values of the other parents. # We make a joint argument p, and compute pi(other parents) * lambda(f(p)). # Need to make sure the target parent range is a Vector{T} rather than a Vector{Any} T = typejoin([typeof(x) for x in parranges[parent_ix]]...) target_parrange :: Vector{T} = parranges[parent_ix] otherranges = [r for r in parranges] deleteat!(otherranges, parent_ix) otherinds = cartesian_product([collect(1:length(r)) for r in otherranges]) result_pieces = [Vector{Float64}() for u in target_parrange] for i in 1:length(target_parrange) parval = target_parrange[i] for otherind in otherinds fullval = [] pi = 0.0 for j = 1:parent_ix - 1 u = parranges[j][otherind[j]] push!(fullval, u) pi += logcpdf(incoming_pis[j], (), u) end push!(fullval, parval) for j = parent_ix + 1:length(parranges) u = parranges[j][otherind[j-1]] push!(fullval, u) pi += logcpdf(incoming_pis[j], (), u) end x = apply(sf, fullval...) idx = indexin([x], range)[1] if !isnothing(idx) push!(result_pieces[i], pi + get_log_score(lambda, range[idx])) end end end result = [StatsFuns.logsumexp(pieces) for pieces in result_pieces] return LogScore(target_parrange, result) end end # STATS @impl begin struct DetInitialStats end initial_stats(::Det) = nothing end @impl begin struct DetAccumulateStats end accumulate_stats(::Det, existing_stats, new_stats) = nothing end @impl begin struct DetExpectedStats end function expected_stats(sf::Det{I,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, child_lambda::Score{<:O}) where {I,O,N,M} nothing end end @impl begin struct DetMaximizeStats end maximize_stats(::Det, stats) = nothing end # STATS END
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1808
export DiscreteCPT """ function DiscreteCPT(range::Vector{O}, paramdict::Dict{I, Vector{Float64}}) where {I <: Tuple, O} Constructs an sfunc that represents a Discrete Conditional Probability table. `DiscreteCPT`s are implemented as a `Table` with a `Cat`. The `range` parameter defines all the possible outputs of the `DiscreteCPT`. The `paramdict` parameter defines the input(s) and the actual CPT. For example, ``` range = [1, 2] paramdict = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) =>[0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) ``` can create a `DiscreteCPT` which has two(2) inputs (the length of the key) and, given each input as defined by the key, selects either `1` or `2` (the range) with the given probability. So, if the input is `(2,1)`, `1` is selected with probability `0.4` and `2` is selected with probability `0.6`. See also: [`Table`](@ref), [`Cat`](@ref) """ function DiscreteCPT(range::Vector{O}, paramdict::Dict{I, Vector{Float64}}) where {I <: Tuple, O} NumInputs = length(collect(keys(paramdict))[1]) sfmaker(probs) = Cat(range, probs) return Table(Tuple{}, O, NumInputs, paramdict, sfmaker) end #= # This form is provided for backward compatibility # The ranges of the parents and child are all integer ranges from 1 to the number of values function DiscreteCPT(params :: Array{Vector{Float64}, N}) where N rangesizes = size(params) parranges = [collect(1:r) for r in rangesizes] parcombos = cartesian_product(parranges) childrange = collect(1:length(params[1])) I = NTuple{N, Int} paramdict = Dict{I, Vector{Float64}}() for (i, combo) in enumerate(parcombos) paramdict[tuple(combo...)] = params[i] end return DiscreteCPT(childrange, paramdict) end =#
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
3030
export Invertible """ struct Invertible{I,O} <: SFunc{Tuple{I},O} An invertible sfunc, with both a `forward` and a `inverse` function provided. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `bounded_probs` - `make_factors` - `compute_pi` - `send_lambda` """ struct Invertible{I,O} <: SFunc{Tuple{I},O} forward :: Function inverse :: Function end @impl begin struct InvertibleSupport end function support(sf::Invertible{I,O}, parranges, size, curr) where {I,O} invsup = map(sf.forward, parranges[1]) return invsup end end @impl begin struct InvertibleSupportQuality end function support_quality(::Invertible{I,O}, parranges) where {I,O} return :CompleteSupport end end @impl begin struct InvertibleSample end function sample(sf::Invertible{I,O}, i::Tuple{I}) where {I,O} return sf.forward(i[1]) end end @impl begin struct InvertibleLogcpdf end function logcpdf(sf::Invertible{I,O}, i::Tuple{I}, o::O) where {I,O} return sf.forward(i[1]) == o ? 0.0 : -Inf end end @impl begin struct InvertibleBoundedProbs end function bounded_probs(sf::Invertible{I,O}, range::Vector{<:O}, parranges) where {I,O} result = Float64[] for i in parranges[1] for o in range p = sf.forward(i) == o ? 1.0 : 0.0 push!(result, p) end end return (result, result) end end @impl begin struct InvertibleMakeFactors end function make_factors(sf::Invertible{I,O}, range::Vector{<:O}, parranges, id, parids) where {I,O} dims = (length(parranges[1]), length(range)) keys = (parids[1], id) entries = bounded_probs(sf, range, parranges)[1] facts = [Factor(dims, keys, entries)] return (facts, facts) end end @impl begin struct InvertibleComputePi end function compute_pi(sf::Invertible{I,O}, range::Vector{<:O}, parranges, incoming_pis) where {I,O} ps = [cpdf(incoming_pis[1], (), sf.inverse(o)) for o in range] return Cat(range, ps) end end @impl begin struct InvertibleSendLambda end function send_lambda(sf::Invertible{I,O}, lambda, range, parranges, incoming_pis, parent_idx) where {I,O} @assert parent_idx == 1 ls = [get_log_score(lambda, sf.forward(x)) for x in parranges[1]] return LogScore(parranges[1], ls) end end #= @impl begin struct InvertibleInitialStats end initial_stats(::Invertible) = nothing end @impl begin struct InvertibleAccumulateStats end accumulate_stats(::Invertible, existing_stats, new_stats) = nothing end @impl begin struct InvertibleExpectedStats end expected_stats(::Invertible, range, parranges, incoming_pis, child_lambda) = nothing end @impl begin struct InvertibleMaximizeStats end maximize_stats(::Invertible, stats) = nothing end =#
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1843
export LinearGaussian """ mutable struct LinearGaussian{I <: Tuple{Vararg{Float64}}} <: Conditional{I, Tuple{}, I, Float64, Normal} `LinearGaussian` defines an sfunc whose mean is a linear function of its parents. A `LinearGaussian`'s output type is a `Float`, its parameter type is `Tuple{I, Float64, Float64}`, and it's contained *sfunc* is a `Normal` mean `0.0`. # Type parameters - `I`: the input type(s) of the `LinearGaussian` See also: [`Conditional`](@ref), [`Normal`](@ref) """ mutable struct LinearGaussian{I <: Tuple{Vararg{Float64}}} <: Conditional{I, Tuple{}, I, Float64, Normal{Float64}} sf :: Normal{Float64} params :: Tuple{Tuple{Vararg{Float64}}, Float64, Float64} """ function LinearGaussian(weights :: Tuple{Vararg{Float64}}, bias :: Float64, sd :: Float64) `LinearGaussian` constructor # Arguments - `weights::Tuple{Vararg{Float64}}`: the weights of each parent - `bias::Float64`: the bias of the mean of the internal `Normal` *sfunc* - `sd::Float64`: the standard deviation of the internal `Normal` *sfunc* """ function LinearGaussian(weights :: Tuple{Vararg{Float64}}, bias :: Float64, sd :: Float64) params = (weights, bias, sd) sf = Normal(0.0, sd) N = length(weights) new{NTuple{N, Float64}}(sf, params) end end # STATS @impl begin struct LinearGaussianInitialStats end function initial_stats(sf::LinearGaussian) (weights, _, _) = sf.params initweights = Tuple(zeros(length(weights))) Dict(initweights=>(0.0, 0.0)) end end # END STATS function gensf(lg::LinearGaussian, inputs::Tuple{Vararg{Float64}})::Normal{Float64} (weights, bias, sd) = lg.params to_sum = inputs .* weights mean = isempty(to_sum) ? bias : sum(to_sum) + bias return Normal(mean, sd) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
2015
export Separable, SepCPTs "SepCPTs = Array{Dict{I, Array{Float64, 1}} where I}" SepCPTs = Array{Dict{I, Array{Float64, 1}} where I} # TODO: Generalize this to separable additive decompositions in general, not just CPTs """ function Separable(range::Vector{O}, probabilities :: Vector{Float64}, compparams :: SepCPTs) where O Constructs an sfunc representing separable models, defined by additive decompositon of a conditional probability distribution into separate distributions depending on each of the parents. `Separable`s are implemented as a `Mixture` of `Extend` sfuncs that extend `DiscreteCPT`s. To construct a `Separable`, this method is passed the `range` of output values, the `probabilities` of each of the underlying `DiscreteCPT` (which are the internal sfuncs of the `Mixture`), and the parameters for each of the `DiscreteCPT`s. For example, ``` alphas = [0.2, 0.3, 0.5] cpd1 = Dict((1,) => [0.1, 0.9], (2,) => [0.2, 0.8]) cpd2 = Dict((1,) => [0.3, 0.7], (2,) => [0.4, 0.6], (3,) => [0.5, 0.5]) cpd3 = Dict((1,) => [0.6, 0.4], (2,) => [0.7, 0.3]) cpds :: Array{Dict{I,Array{Float64,1}} where I,1} = [cpd1, cpd2, cpd3] s = Separable([1, 2], alphas, cpds) ``` See also: [`Mixture`](@ref), [`Extend`](@ref), [`DiscreteCPT`](@ref), [`Table`](@ref) """ function Separable(range::Vector{O}, probabilities :: Vector{Float64}, compparams :: SepCPTs) where O N = length(compparams) @assert length(probabilities) == N IS = [] for i = 1:N ks = collect(keys(compparams[i])) push!(IS, typeof(ks[1][1])) end J = Tuple{IS...} # Explicit typing is necessary to ensure that the cpts passed to Mixture all have the same type. function make_cpt(i, I)::SFunc{J,O} cpt::Table{1, I, Tuple{}, I, O} = DiscreteCPT(range, compparams[i]) extended::SFunc{J,O} = Extend(J, cpt, i) return extended end cpts::Vector{SFunc{J,O}} = [make_cpt(i,Tuple{IS[i]}) for i in 1:N] return Mixture(cpts, probabilities) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
7707
export Switch, LinearSwitch, If, choose """ abstract type Switch{N, I, K, O} <: Det{K, O} `Switch` defines an sfunc that represents choosing between multiple incoming (parent) Sfuncs based on a test. A subtype of `Switch` must provide a `choose` function that takes the switch and an `i` and returns an integer between `1` and `N`. This is an index into a 'parent array'. `K` must be a flat tuple type consisting of `I` and `N` occurrences of `O`: for example, if I is `Int` ``` K = extend_tuple_type(Tuple{Int}, NTuple{N, O}) ``` If the subtype'd sfunc is not in the Scruff.SFuncs module, the system must `import Scruff.SFuncs: choose`. # Additional supported operators - `support` - `support_quality` - `compute_pi` - `send_lambda` # Type parameters - `N`: the count of *sfuncs* from which to choose - `I`: the type of the second argument of the `choose` function defined for the `Switch` - `K`: the input type of the `Switch`; see above - `O`: the output type of the `Switch` See also: [`choose`](@ref), [`extend_tuple_type`](@ref) """ abstract type Switch{N, I, K, O} <: Det{K, O} end """ `choose` interface. For every subtype of `Switch`, an implementation of this method must be created, whose first parameter is the subtype, and the second parameter is of type `I` for the parameter type in `Switch`. For example, the definition of the `If` *sfunc* is as follows, where `choose` returns either index `1` or index `2`. ``` struct If{O} <: Switch{2, Bool, Tuple{Bool, O, O}, O} end choose(::If, b::Bool) = b ? 1 : 2 ``` """ function choose end # apply(sw::Switch, i, hs...) = hs[choose(sw,i)] # implemented because subtype of `Det` apply(sw::Switch, i, hs...) = hs[choose(sw,i)] # implemented because subtype of `Det` struct LinearSwitch{N, K, O} <: Switch{N, Int, K, O} n :: Int function LinearSwitch(N, O) K = extend_tuple_type(Tuple{Int}, NTuple{N, O}) new{N, K, O}(N) end end choose(::LinearSwitch, i) = i struct If{O} <: Switch{2, Bool, Tuple{Bool, O, O}, O} end choose(::If, b) = b ? 1 : 2 # switch overrides the functions for det that use the Cartesian product of the parents. # Since only one parent is ever active at a time, we don't need to compute the Cartesian product. # This leads to exponential time savings in the number of parents. @impl begin struct SwitchSupport end function support(sf::Switch{N,I,K,O}, parranges::NTuple{M,Vector}, size::Integer, curr::Vector{<:O}) where {I,K,O,N,M} result = Vector{output_type(sf)}() for i in parranges[1] h = choose(sf, i) append!(result, parranges[h + 1]) end return unique(result) end end @impl begin struct SwitchSupportQuality end function support_quality(sf::LinearSwitch, parranges) ivals = map(i -> choose(sf, i), parranges[1]) if all(j -> j in ivals, 1:sf.n) return :CompleteSupport else return :BestEffortSupport end end function support_quality(::Union{<:Support,Nothing}, sf::If, parranges) ivals = map(i -> choose(sf, i), parranges[1]) if all(j -> j in ivals, 1:2) return :CompleteSupport else return :BestEffortSupport end end end # We currently don't overwrite bounded_probs. # bounded_probs will be replaced with an operation that produces factors. @impl begin struct SwitchComputePi end function compute_pi(sf::Switch{N,I,K,O}, range::VectorOption{<:O}, parranges::NTuple{M,Vector}, incoming_pis::Tuple)::Dist{<:O} where {M,N,I,K,O} result = zeros(Float64, length(range)) ipis = incoming_pis[1] for (i,ival) in enumerate(parranges[1]) ipi = cpdf(ipis, (), parranges[1][i]) h = choose(sf, ival) hpis = incoming_pis[h+1] hrange = parranges[h+1] for (j,jval) in enumerate(range) k = indexin([jval], hrange)[1] # the range of the parent can be a subset of the range of the switch hpi = isnothing(k) ? 0.0 : cpdf(hpis, (), parranges[h+1][k]) result[j] += ipi * hpi end end return Cat(range, result) end end @impl begin struct SwitchSendLambda end function send_lambda(sf::Switch{N,I,K,O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{M,Vector}, incoming_pis::Tuple, parent_ix::Integer)::Score where {M,N,I,K,O} # This helper function computes, for a particular choice, the sum of # pi times lambda values. function compute1(h) hrange = parranges[h+1] hpis = incoming_pis[h+1] tot = 0.0 for (j,jval) in enumerate(hrange) # We need to keep track of indices properly. # We cannot assume that the range of the switch and the range passed into # send_lambda are the same, even though they are of the same type O. # In particular, choices might have different ranges from each other, # perhaps restricted or in a different order. k = indexin([jval], range)[1] tot += cpdf(hpis, (), parranges[h+1][j]) * get_score(lambda, range[k]) end return tot end # We need to make sure the message is correctly typed to the output type of the appropriate parent # Need to make sure the target parent range is a Vector{T} rather than a Vector{Any} T = typejoin([typeof(x) for x in parranges[parent_ix]]...) target_parrange :: Vector{T} = parranges[parent_ix] if parent_ix == 1 # We send a lambda message to the selector parent # For a given value of the selector, the lambda value is the # probability of the child lambda for the corresponding choice. # This is equal to the sum, over all values in the range of the # choice, of the incoming_pi * lambda for that value. return SoftScore(target_parrange, map(i -> compute1(choose(sf, i)), target_parrange)) else # The lambda message to a choice consists of two components: # A choice-specific component equal to the pi of the I value that leads to that choice, times lambda # A constant from all the other choices, equal to the sum, over all choices, of the pi of the I value for the choice # times the sum of pi * lambda values for that choice. con = 0.0 spec = nothing ipis = incoming_pis[1] for (i,ival) in enumerate(parranges[1]) h = choose(sf, ival) if h+1 != parent_ix con += cpdf(ipis, (), ival) * compute1(h) else # lambda is in the order of range, but hrange might be a subset and in a different order hrange = parranges[h+1] qs = [] for (j,jval) in enumerate(hrange) # k = indexin([jval], range)[1] # push!(qs, lambda[k]) push!(qs, get_score(lambda, jval)) end spec = cpdf(ipis, (), ival) .* qs end end return SoftScore(target_parrange, con .+ spec) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
3966
export Table """ mutable struct Table{NumInputs, I <: NTuple{NumInputs, Any}, J, K, O, S <: SFunc{J,O}} <: Conditional{I, J, K, O, S} `Table` defines a `Conditional` whose function is given by a multi-dimensional table of type `Array{Q, NumInputs}`, where `Q` is the output type of the internal *sfunc* and `NumInputs` is the count of incoming parent values. See also: [`Conditional`](@ref), [`DiscreteCPT`](@ref), [`CLG`](@ref) """ mutable struct Table{NumInputs, I <: NTuple{NumInputs, Any}, J, K, O, Q, S <: SFunc{J,O}} <: Conditional{I, J, K, O, S} params :: Dict{I, Q} sf_maker :: Function __icombos :: Vector{I} __iranges :: NTuple{NumInputs, Array{Any, 1}} __isizes :: NTuple{NumInputs, Int} __imults :: NTuple{NumInputs, Int} __inversemaps :: NTuple{NumInputs, Dict{Any, Int}} __sfs :: Array{S, NumInputs} """ function Table(J, O, NumInputs::Int, paramdict, sfmaker:Function) where {J, O, S <: SFunc{J,O}} `Table` constructor. # Arguments - `J` the type of inputs to the sfuncs in the table - 'O' the type of outputs from the sfuncs in the table - `NumInputs::Int` the count of incoming parent values - `paramdict` see [`DiscreteCPT`](@ref) and [`CLG`](@ref) for examples - `sfmaker` a function from Q to S """ function Table(J, O, NumInputs::Int, paramdict::Dict{I, Q}, sf_maker::Function) where {I, Q} K = extend_tuple_type(I,J) icombos = keys(paramdict) iranges :: Array{Array{Any,1}} = [unique(collect([combo[k] for combo in icombos])) for k in 1:NumInputs] isizes = tuple([length(irange) for irange in iranges]...) m = 1 ims = zeros(Int, NumInputs) for k in NumInputs:-1:1 ims[k] = m m *= isizes[k] end imults = tuple(ims...) # TODO: Fix ordering of Dict inversemaps = tuple([Dict([x => i for (i,x) in enumerate(irange)]) for irange in iranges]...) sortedcombos = [tuple(p...) for p in cartesian_product(iranges)] S = SFunc{J,O} sfs = Array{S, NumInputs}(undef, isizes) for k in 1:length(sortedcombos) is = sortedcombos[k] q = paramdict[is] sfs[k] = sf_maker(q) end new{NumInputs,I,J,K,O,Q,S}(paramdict, sf_maker, sortedcombos, tuple(iranges...), isizes, imults, inversemaps, sfs) end end @impl begin struct TableGetParams end get_params(t :: Table) = t.params end @impl begin struct TableSetParams! end function set_params!(t :: Table{NumInputs,I,J,K,O}, new_params) where {NumInputs,I,J,K,O} Table(J, O, NumInputs, new_params, t.sf_maker) end end #= function dict2tableparams(sf::Table{NumInputs,I,J,K,O,S}, p::Dict{I,Q}) where {NumInputs,I,J,K,O,Q,S} k1 = collect(keys(p))[1] @assert NumInputs == length(k1) icombos = keys(p) iranges :: Array{Array{Any,1}} = [unique(collect([combo[k] for combo in icombos])) for k in 1:NumInputs] sortedcombos = [tuple(p...) for p in cartesian_product(iranges)] isizes = tuple([length(irange) for irange in iranges]...) array = Array{Q, NumInputs}(undef, isizes) for k in 1:length(sortedcombos) is = sortedcombos[k] array[k] = get(p, is, sf.default) # The input dict does not have to have all combos end array end =# function gensf(t::Table{N}, parvals::NTuple{N,Any}) where {N} inds = tuple([t.__inversemaps[k][parvals[k]] for k in 1:length(parvals)]...) i = 1 for k in 1:N i += (inds[k] - 1) * t.__imults[k] end return t.__sfs[i]# Change this to just index on the tuple of indices rather than do the calculation ourselves end # STATS function do_maximize_stats(t::Table{N,I,J,K,O,Q,S}, sfmaximizers) where {N,I,J,K,O,Q,S} # result = Dict{I, Q}() # for k in keys(t.params) # result[k] = sfmaximizers[k] # end # return result sfmaximizers end # STATS END
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
6462
export Cat, Categorical, Discrete import ..Utils.normalize import Distributions const Categorical{P, Ps} = DistributionsSF{Distributions.Categorical{P, Ps}, Int} Categorical(p::Ps) where {P, Ps <: AbstractVector{P}} = Categorical{Ps, P}(p) const Discrete{T, P, Ts, Ps} = DistributionsSF{Distributions.DiscreteNonParametric{T, P, Ts, Ps}, T} function Discrete(xs::Xs, ps::Ps) where {X, Xs <: AbstractVector{X}, P, Ps <: AbstractVector{P}} # Handle duplicates sort_order = sortperm(xs) xs = xs[sort_order] ps = ps[sort_order] for i=1:(length(xs) - 1) if xs[i] == xs[i + 1] ps[i] += ps[i + 1] ps[i + 1] = 0 end end keep = ps .> 0 xs = xs[keep] ps = ps[keep] return Discrete{X, P, Xs, Ps}(xs, ps) end @doc """ mutable struct Cat{O} <: Dist{O, Vector{Real}} `Cat` defines an sfunc that represents a set of categorical output values that are not conditioned on any input. Its parameters are always of type `Vector{Real}`, which is the probability of each output value. # Supported operations - `support` - `support_quality` - `sample` - `cpdf` - `bounded_probs` - `compute_pi` - `f_expectation` # Type parameters - `O`: the output type of the `Cat` """ mutable struct Cat{O, T<:Real} <: Dist{O} original_range :: Vector{O} params :: Vector{T} __inversemap :: Dict{O, Int} __compiled_range :: Vector{O} """ Cat(r::Vector{O}, ps::Vector{<:Real}) where O `Cat`'s constructor # Arguments - `r::Vector{O}`: the set of possible output values - `ps::Vector{<:Real}`: the set of probabilities for each value in `r` (will be normalized on call to `sample`) """ function Cat(original_range::Vector{O}, params::Vector{T}) where {O, T<:Real} @assert length(original_range) == length(params) # Handle repeated values correctly d = Dict{O, Float64}() for (x, p) in zip(original_range, params) d[x] = get(d, x, 0) + p end r = collect(keys(d)) ps = [d[x] for x in r] inversemap = Dict([x => i for (i,x) in enumerate(r)]) return new{O, T}(original_range, ps, inversemap, r) end function Cat(d::Dict{O, <:Real}) where O return Cat(collect(keys(d)), collect(values(d))) end """ Cat(rps::Vector{Pair{O,<:Real}}) where O `Cat` constructor # Arguments - rps::Vector{Pair{O,Float64}}: a set of `Pair`s `output_value=>probability_of_value` """ function Cat(rps::Vector{<:Pair{O,<:Real}}) where O range = first.(rps) probs = last.(rps) # This should be moved up into the normal constructor, but there's a bunch of tests # using Cat to represent densities at finite sets of points...? probs = normalize(probs) return Cat(range, probs) end end @impl begin struct CatGetParams end get_params(c :: Cat) = c.params end @impl begin struct CatSetParams! end function set_params!(c :: Cat, p) c.params = p c end end @impl begin struct CatConfigure end function configure(sf::Cat{O}, rps::Vector{<:Pair{O, <:Real}}) where O Cat(rps) end end @impl begin struct CatSupport end function support(sf::Cat{O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {O,N} sf.original_range end end @impl begin struct CatSupportQuality end function support_quality(::Cat, parranges) :CompleteSupport end end @impl begin struct CatSample end function sample(sf::Cat{O}, i::Tuple{})::O where {O} i = rand(Distributions.Categorical(sf.params)) return sf.__compiled_range[i] end end @impl begin struct CatCpdf end function cpdf(sf::Cat{O}, i::Tuple{}, o::O) where {O} ind = get(sf.__inversemap, o, 0) if ind == 0 return 0.0 else return sf.params[ind] end end end @impl begin struct CatBoundedProbs end function bounded_probs(sf::Cat{O}, range::Vector{O}, ::NTuple{N,Vector})::Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {O,N} ps = [x in keys(sf.__inversemap) ? sf.params[sf.__inversemap[x]] : 0.0 for x in range] (ps, ps) end end @impl begin struct CatComputePi end function compute_pi(sf::Cat{O}, range::Vector{O}, ::NTuple{N,Vector}, ::Tuple)::Cat{O} where {N,O} ps = bounded_probs(sf, range, ())[1] Cat(range, ps) end end # STATS @impl begin struct CatInitialStats end function initial_stats(sf::Cat{T}) where T # d = Dict{T, Float64}() # for k in sf.range # d[k] = 0.0 # end # d zeros(Float64, length(sf.__compiled_range)) end end @impl begin struct CatAccumulateStats end function accumulate_stats(sf::Cat{T}, existing_stats, new_stats) where T existing_stats .+ new_stats end end @impl begin struct CatExpectedStats end function expected_stats(sf::Cat{O}, range::Vector{O}, ::NTuple{N,Vector}, ::NTuple{M,Dist}, lambda::Score{<:O}) where {O,N,M} orig = sf.__compiled_range ps = zeros(Float64, length(orig)) for (i,x) in enumerate(range) if x in orig ps[i] = sf.params[sf.__inversemap[x]] end end ls = [get_score(lambda, r) for r in range] return ps .* ls end end @impl begin struct CatMaximizeStats end function maximize_stats(sf::Cat, stats) normalize(stats) end end # END STATS @impl begin struct CatFExpectation end function f_expectation(sf::Cat, ::Tuple{}, fn::Function) sum = 0.0 total = 0.0 for (i, x) in enumerate(sf.__compiled_range) sum += fn(x) * sf.params[i] total += sf.params[i] end return sum / total end end @impl begin function weighted_values(sf::Union{Discrete, Categorical}) d = sf.dist return (d.support, d.p) end end @impl begin function weighted_values(sf::Cat) return (sf.range, sf.params) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
2434
export Constant """ mutable struct Constant{O} <: Dist{O,Nothing} `Constant` represents an sfunc that always produces the same value. It has no inputs and no parameters. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `bounded_probs` - `compute_pi` # Type parameters - `O`: the output type(s) of the `Constant` """ mutable struct Constant{O} <: Dist{O} "the constant value to be returned" x :: O end @impl begin struct ConstantSupport end function support(sf::Constant{O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {O,N} [sf.x] end end @impl begin struct ConstantSupportQuality end function support_quality(::Constant, parranges) :CompleteSupport end end @impl begin struct ConstantSample end function sample(sf::Constant{O}, i::Tuple{})::O where {O} sf.x end end @impl begin struct ConstantLogcpdf end function logcpdf(sf::Constant{O}, i::Tuple{}, o::O)::AbstractFloat where {O} return o == sf.x ? 0.0 : -Inf end end @impl begin struct ConstantBoundedProbs end function bounded_probs(sf::Constant{O}, range::Vector{<:O}, parranges::NTuple{N,Vector})::Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {O,N} p = sf.x in range ? [1.0] : [0.0] return (p, p) end end #= @impl begin struct ConstantInitialStats end initial_stats(sf::Constant) = nothing end =# @impl begin struct ConstantComputePi end function compute_pi(sf::Constant{O}, range::Vector{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {O,N} ps = [x == sf.x ? 1.0 : 0.0 for x in range] Cat(range, ps) end end # STATS @impl begin struct ConstantAccumulateStats end function accumulate_stats(::Constant, existing_stats, new_stats) nothing end end @impl begin struct ConstantExpectedStats end function expected_stats(::Constant{O}, range::Vector{}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, lambda::Score{<:O}) where {O,N,M} nothing end end @impl begin struct ConstantMaximizeStats end function maximize_stats(::Constant, stats) nothing end end # STATS END
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1050
@impl begin struct DistMakeFactors numpartitions::Int64 = 100 end function make_factors(sf::Dist{T}, range::Vector{T}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {T,N} (lowers, uppers) = bounded_probs(sf, range, ()) keys = (id,) dims = (length(range),) return ([Factor(dims, keys, lowers)], [Factor(dims, keys, uppers)]) end end @impl begin struct DistSendLambda end function send_lambda(sf::Dist{T}, lambda::Score{<:T}, range::VectorOption{<:T}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {N,T} SoftScore(Float64[], Float64[]) end end include("distributions.jl") include("cat.jl") include("constant.jl") include("flip.jl") include("normal.jl") include("uniform.jl")
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
3781
import Distributions export DistributionsSF struct DistributionsSF{D <: Distributions.Distribution, O} <: Dist{O} dist::D function DistributionsSF(dist::D) where {D <: Distributions.Distribution} O = eltype(D) return new{D, O}(dist) end function DistributionsSF{D}(params...) where {D <: Distributions.Distribution} d = D(params...) return DistributionsSF(d) end function DistributionsSF{D, O}(params...) where {D <: Distributions.Distribution, O} d = D(params...) return DistributionsSF(d) end end @impl begin function expectation(sf::DistributionsSF, i::Tuple{}) return Distributions.mean(sf.dist) end end @impl begin function sample(sf::DistributionsSF, i::Tuple{}) return Distributions.rand(sf.dist) end end @impl begin function variance(sf::DistributionsSF{D}, i::Tuple{}) where {D <: Distributions.ContinuousDistribution} return Distributions.std(sf.dist)^2 end end @impl begin function logcpdf(sf::DistributionsSF{D, T}, i::Tuple{}, o::T) where {D, T} return Distributions.logpdf(sf.dist, o) end end @impl begin function support_minimum(sf::DistributionsSF, i::Tuple{}) return Distributions.minimum(sf.dist) end end @impl begin function support_maximum(sf::DistributionsSF, i::Tuple{}) return Distributions.maximum(sf.dist) end end @impl begin function support(sf::DistributionsSF{<:Distributions.DiscreteDistribution, O}, parranges::NTuple{N, Vector}, size::Integer, curr::Vector{<:O}) where {O, N} return Distributions.support(sf.dist) end end @impl begin function support_quality(::DistributionsSF{<:Distributions.DiscreteNonParametric}, parranges) :CompleteSupport end end # See https://juliastats.org/Distributions.jl/stable/convolution/ ConvSupported = Union{Distributions.Bernoulli, Distributions.Binomial, Distributions.NegativeBinomial, Distributions.Geometric, Distributions.Poisson, Distributions.Normal, Distributions.Cauchy, Distributions.Chisq, Distributions.Exponential, Distributions.Gamma, Distributions.MvNormal} @impl begin function sumsfs(fs::NTuple{N, DistributionsSF{SubSF}}) where {N, SubSF <: ConvSupported} # Return an SFunc representing g(x) = f1(x) + f2(x) + ... # I.e. convolution of the respective densities dists = tuple((f.dist for f in fs)...) return DistributionsSF(reduce(Distributions.convolve, dists)) end end # This won't work for all Distributions @impl begin struct GeneralFitDistributions end function fit_mle(::Type{DistributionsSF{T, O}}, ref::Dist{O}) where {O, T} return DistributionsSF(Distributions.fit_mle(T, weighted_values(ref)...)) end end # Some implementations are iterative and you can control iters - lets expose that via hyperparams IterFitDists = Union{Distributions.Beta, Distributions.Dirichlet, Distributions.DirichletMultinomial, Distributions.Gamma} @impl begin # These defaults are a fair bit looser than Distributions.jl struct IterFitDistributions maxiter::Int = 100 tol::Float64 = 1e-6 end function fit_mle(::Type{DistributionsSF{T, O}}, ref::Dist{O}) where {O, T <: IterFitDists} return DistributionsSF(Distributions.fit_mle(T, weighted_values(ref)...; maxiter=maxiter, tol=tol)) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
279
export Flip """ Flip(p) Constructs a very simple *sfunc* corresponding to a Bernoulli distribution, represented by a `Cat`. The output is `true` with probability `p`, and `false` with probability `1-p`. See also: [`Cat`](@ref) """ Flip(p) = Cat([false, true], [1-p, p])
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
6717
export Normal import Distributions """ mutable struct Normal <: Dist{Float64} `Normal` defines an *sfunc* representing unconditional Gaussian distributions. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `bounded_probs` - `compute_pi` """ const Normal{T} = DistributionsSF{Distributions.Normal{T}, T} Normal(mean, sd) = Normal{typeof(mean)}(mean, sd) @impl begin struct NormalSupport end function support( sf::Normal, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{Float64}) where N mu = expectation(sf, ()) sd = variance(sf, ())^0.5 if isempty(curr) oldl = mu oldu = mu else oldl = minimum(filter(x -> x > -Inf, curr)) oldu = maximum(filter(x -> x < Inf, curr)) end if oldl == oldu if size <= 1 result = [oldl] return result else l = oldl - sd u = oldl + sd result = Vector{Float64}() gap = (u-l) / (size-1) push!(result, l) for i = 1:(size-1) push!(result, l + i*gap) end return result end else len = length(curr) if size <= len return curr else # we need to extend and thicken the current range while keeping existing points olddiff = oldu - oldl oldgap = olddiff / (len-1) newl = oldl - olddiff newu = oldu + olddiff result = copy(curr) i = newl while i < oldl push!(result, i) i += oldgap end i = newu while i > oldu push!(result, i) i -= oldgap end # Now we have 3 * len points covering twice the range # If size is greater, we will add points in between numperinterval = ceil(size / (3*len)) if numperinterval > 1 newgap = oldgap / numperinterval for x in copy(result) for j = 1:(numperinterval-1) push!(result, x + newgap * j) end end end sort!(result) return result end end end end @impl begin struct NormalSupportQuality end function support_quality(::Normal, parranges) :IncrementalSupport end end @impl begin struct NormalBoundedProbsBoundedProbs numpartitions::Int64 = 10 end function bounded_probs( sf::Normal, range::VectorOption{Float64}, parranges::NTuple{N,Vector})::Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {N} intervals = make_intervals(range) lower = Array{Float64}(undef, length(range)) upper = Array{Float64}(undef, length(range)) d = sf.dist ls = [] us = [] for interval in intervals (l, u) = interval if l == -Inf || u == Inf push!(ls, 0.0) push!(us, 1.0) else diff = (u - l) / numpartitions mn = 0.0 mx = 0.0 for i = 1:numpartitions il = l + (i-1) * diff iu = l + i * diff p1 = Distributions.pdf(d, il) * diff p2 = Distributions.pdf(d, iu) * diff mn += min(p1,p2) mx += max(p1,p2) end push!(ls, mn) push!(us, mx) end end # We get better bounds by considering the bounds on other intervals. # For any point, the lower bound can be normalized using the upper bounds of every other point, and vice versa. # This is especially important for intervals with -Inf or Inf as an # endpoint. for i = 1:length(intervals) otherls = 0.0 otherus = 0.0 for j = 1:i-1 otherls += ls[j] otherus += us[j] end for j = i+1:length(intervals) otherls += ls[j] otherus += us[j] end l = max(ls[i], 1 - otherus) u = min(us[i], 1 - otherls) lower[i] = l upper[i] = u end return(lower, upper) end end # TODO: Replace this with a lazy implicit representation that doesn't require enumerating until the last minute @impl begin struct NormalComputePi end function compute_pi(sf::Normal, range::VectorOption{Float64}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{Float64} where {N} Cat(range, collect(map(x -> Distributions.pdf(sf.dist, x), range))) end end # STATS @impl begin struct NormalExpectedStats end function expected_stats(sf::Normal, range::VectorOption{Float64}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, child_lambda::Score{Float64}) where {N,M} pis = [Distributions.pdf(sf.dist, x) for x in range] ls = [get_score(child_lambda, r) for r in range] prob = pis .* ls let totalX = 0.0, totalX2 = 0.0, count = 0.0 for (i, x) in enumerate(range) totalX += x * prob[i] totalX2 += x^2 * prob[i] count += prob[i] end return (count,totalX,totalX2) end end end @impl begin struct NormalAccumulateStats end function accumulate_stats(sf::Normal, existing_stats, new_stats) existing_stats .+ new_stats end end @impl begin struct NormalInitialStats end function initial_stats(sf::Normal) return (0.0,0.0,0.0) end end @impl begin struct NormalMaximizeStats end function maximize_stats(sf::Normal, stats) (count, totalX, totalX2) = stats mean = totalX/count std = sqrt(totalX2/count - mean^2) return (mean, std) end end # STATS Base.hash(n::Normal, h::UInt) = hash(n.dist.σ, hash(n.dist.μ, hash(:Normal, h))) Base.isequal(a::Normal, b::Normal) = Base.isequal(hash(a), hash(b)) Base.:(==)(a::Normal, b::Normal) = Base.isequal(hash(a), hash(b)) Base.isless(a::Normal, b::Normal) = a.dist.μ < b.dist.μ Base.:<(a::Normal, b::Normal) = Base.isless(a, b)
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
2404
# Continuous uniform sfunc export Uniform import Distributions const Uniform{T} = DistributionsSF{Distributions.Uniform{T}, T} Uniform(lb, ub) = Uniform{typeof(lb)}(lb, ub) @impl begin struct UniformSupport end function support( sf::Uniform, ::NTuple, size::Integer, curr::Vector{Float64} ) newsize = size - length(curr) result = curr sfmin = support_minimum(sf, ()) sfmax = support_maximum(sf, ()) if newsize > 0 x = sfmin push!(result, x) numsteps = newsize - 1 step = (sfmax - sfmin) / numsteps for i in 1:numsteps x += step push!(result, x) end end unique(result) end end @impl begin struct UniformSupportQuality end function support_quality(::Uniform, parranges) :IncrementalSupport end end @impl begin struct UniformBoundedProbs end # assumes range is sorted function bounded_probs( sf::Uniform, range::Vector{Float64}, ::NTuple ) l = support_minimum(sf, ()) u = support_maximum(sf, ()) d = u - l n = length(range) # Each element in the range is associated with the interval between the midpoint # of it and the point below and the midpoint between it and the point above, # except for the end intervals which go to negative or positive infinity. points = [-Inf64] for i in 2:n push!(points, (range[i-1] + range[i]) / 2) end push!(points, Inf64) # Each interval might be completely, partially, or not contained in the bounds # of the uniform distribution. The following code determines the length of each # interval that is in the bounds. lengthsinbound = Float64[] for i in 1:n a = max(points[i], l) b = min(points[i+1], u) push!(lengthsinbound, max(b-a, 0.0)) end ps = [lengthsinbound[i] / d for i in 1:n] return (ps, ps) end end @impl begin struct UniformComputePi end function compute_pi(sf::Uniform, range::Vector{Float64}, ::NTuple, ::Tuple)::Cat{Float64} ps = bounded_probs(sf, range, ())[1] Cat(range, ps) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1110
#= # Default implementations of operators. These are defined using other operators. # They will always be called if a more specific implementation is not provided. # If the operators they rely on are not implemented, they will produce a runtime error. # Writers of default implementations should avoid infinite loops. =# # if forward is defined, we get a default implementation of sample @impl begin struct DefaultSample end # This should not produce an infinite loop, because a dist should not implement forward, # since forwards maps a parent to a dist, but here the parent is empty. function sample(sf::SFunc{I,O}, i::I)::O where {I,O} d = forward(sf, i) return sample(d, tuple()) end end @impl begin function cpdf(sf::SFunc{I,O}, i::I, o::O) where {I,O} exp(logcpdf(sf, i, o)) end end @impl begin function logcpdf(sf::SFunc{I,O}, i::I, o::O) where {I,O} log(cpdf(sf, i, o)) end end # TODO: Create default implementations of compute_pi and send_lambda # TODO: Create weighted_sample operator with default implementation using inverse
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
2303
#= bp_ops: operators used in BP that apply to all sfuncs =# using ..Utils using Folds @impl begin struct SFuncComputeLambda end function compute_lambda(sf::SFunc, range::VectorOption, lambda_msgs::Vector{<:Score})::Score if isempty(lambda_msgs) ps = zeros(Float64, length(range)) else lams = [[get_log_score(l, o) for l in lambda_msgs] for o in range] ps = [sum(lams[i]) for i in 1:length(range)] end # avoid underflow m = maximum(ps) qs = ps .- m return LogScore(range, qs) end end @impl begin struct SFuncComputeBel end function compute_bel(sf::SFunc{I,O}, range::VectorOption{O}, pi::Dist{O}, lambda::Score)::Dist{<:O} where {I,O} ps = [cpdf(pi, (), x) * get_score(lambda, x) for x in range] return Cat(range, normalize(ps)) end end @impl begin struct SFuncSendPi end function send_pi(sf::SFunc{I,O}, range::VectorOption{O}, bel::Dist{O}, lambda_msg::Score)::Dist{<:O} where {I,O} # pi_msg = [get_score(bel, x) / max.(1e-8, get_score(lambda_msg, x)) for x in range] f(x,y) = y == -Inf ? -Inf : x - y ps = [f(logcpdf(bel, (), x), get_log_score(lambda_msg, x)) for x in range] # delay exponentiation until after avoiding underflow m = maximum(ps) qs = ps .- m exped = exp.(qs) return Cat(range, normalize(exped)) end end @impl begin struct SFuncOutgoingPis end function outgoing_pis(sf::SFunc, range::VectorOption, bel::Dist, incoming_lambdas::VectorOption{<:Score})::Vector{<:Dist} if length(incoming_lambdas) == 0 return Vector{Dist}() else return [send_pi(sf, range, bel, l) for l in incoming_lambdas] end end end @impl begin struct SFuncOutgoingLambdas end function outgoing_lambdas(sf::SFunc{I,O}, lambda::Score, range::VectorOption, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Vector{<:Score} where {N,I,O} lambdas = Score[] for i = 1:length(incoming_pis) msg = send_lambda(sf, lambda, range, parranges, incoming_pis, i) push!(lambdas, msg) end return lambdas end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1828
#= OBSOLETE - SUBSUMED BY SCORE evidence_ops.jl : Support for operators that process evidence and interventions =# export evidence_message, evidence_entry, intervention_message, intervention_entry, NoiseEvidence import LinearAlgebra function evidence_entry(hard_evidence::T, value::T) where {T} return hard_evidence == value ? 1.0 : 0.0 end function evidence_entry(soft_evidence::Dict{T, Float64}, value::T) where {T} return get(soft_evidence, value, 0.0) end struct NoiseEvidence mean ::Union{Array{Float64,1}, Float64} std ::Union{Array{Float64,2}, Float64} end function evidence_entry(noise_evid::NoiseEvidence, value::Float64) val = 1.0/(noise_evid.std * sqrt(2*pi)) * exp(-0.5 * ((noise_evid.mean - value)/noise_evid.std)^2) return val end function evidence_entry(noise_evid::NoiseEvidence, value::Array{Float64,1}) k = length(value) val = exp.(-0.5 * transpose(value - noise_evid.mean) * LinearAlgebra.inv(noise_evid.std) * (value - noise_evid.mean))/sqrt((2*pi)^k * LinearAlgebra.det(noise_evid.std)) return val end function evidence_entry(f::Function , value) ::Float64 # return f(v), has to be Float64 return f(value) end function intervention_entry(hard_evidence::T, value::T) where {T} return hard_evidence == value ? 1.0 : 0.0 end function evidence_message(::SFunc{I,O,P}, range::Vector{O}, evidence::Score{O})::Score{O} where {I,O,P} n = length(range) ps = Array{Float64, 1}(undef, n) for i = 1:n ps[i] = get_score(evidence, range[i]) end return SoftScore{O}(range, ps) end function intervention_message(SFunc, range, intervention) n = length(range) ps = Array{Float64, 1}(undef, n) for i = 1:n ps[i] = intervention_entry(intervention, range[i]) end return Cat(range, ps) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
357
export FunctionalScore """ struct FunctionalScore{I} <: Score{I} A score defined by a function. """ struct FunctionalScore{I} <: Score{I} fn :: Function # Function I => Double end @impl begin struct FunctionalScoreGetScore end function get_score(sf::FunctionalScore{I}, i::I)::AbstractFloat where {I} return sf.fn(i) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
289
export HardScore """ HardScore{I} <: Score{I} A fixed score. """ struct HardScore{I} <: Score{I} value :: I end @impl begin struct HardScoreGetScore end function get_score(sf::HardScore{I}, i::I)::AbstractFloat where {I} i == sf.value ? 1.0 : 0.0 end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
858
export LogScore """ struct LogScore{I} <: Score{I} A Log score. """ struct LogScore{I} <: Score{I} logscores :: Dict{I, Float64} function LogScore(ls::Dict{I, Float64}) where I new{I}(ls) end function LogScore(vs::Vector{I}, ss::Vector{Float64}) where I # must handle non-unique values correctly d = Dict{I, Float64}() for (v,s) in zip(vs,ss) d[v] = logsumexp([get(d, v, -Inf), s]) end new{I}(d) end end @impl begin struct LogScoreGetScore end function get_score(sf::LogScore{I}, i::I)::AbstractFloat where {I} return exp(get_log_score(sf, i)) end end @impl begin struct LogScoreGetLogScore end function get_log_score(sf::LogScore{I}, x::I)::AbstractFloat where {I} return x in keys(sf.logscores) ? sf.logscores[x] : -Inf end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
356
# MultipleScore lets you assert multiple evidence on the same variable export MultipleScore struct MultipleScore{I} <: Score{I} components :: Vector{<:Score{I}} end @impl begin function get_log_score(ms::MultipleScore{I}, i::I) where I tot = 0.0 for m in ms.components tot += get_log_score(m, i) end tot end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
397
export NormalScore """ struct NormalScore <: Score{Float64} A score defined by a normal density given the mean and sd of the score. """ struct NormalScore <: Score{Float64} mean :: Float64 sd :: Float64 end @impl begin struct NormalScoreGetScore end function get_score(sf::NormalScore, i::Float64)::AbstractFloat return normal_density(i, sf.mean, sf.sd) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
411
export Parzen """ struct Parzen <: Score{Float64} A parzen score. """ struct Parzen <: Score{Float64} means :: Vector{Float64} sd :: Float64 end @impl begin struct ParzenGetScore end function get_score(sf::Parzen, i::Float64)::AbstractFloat t = 0.0 for m in sf.means t += normal_density(i, m, sf.sd) end return t / length(sf.means) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
366
#default implementation @impl begin struct ScoreGetLogScore end function get_log_score(sf::Score{I}, i::I)::AbstractFloat where {I} return log(get_score(sf, i)) end end include("hardscore.jl") include("softscore.jl") include("multiplescore.jl") include("logscore.jl") include("functionalscore.jl") include("normalscore.jl") include("parzen.jl")
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
511
export SoftScore """ SoftScore(vs::Vector{I}, ss::Vector{Float64}) Return a `LogScore` of the log values in `ss` vector for the associated keys in `vs`. """ function SoftScore(vs::Vector{I}, ss::Vector{Float64}) where I return LogScore(vs, [log(s) for s in ss]) end """ SoftScore(scores::Dict{I,Float64}) Return a `LogScore` of the keys and log values in `score`. """ function SoftScore(scores::Dict{I,Float64}) where I d = Dict([(k,log(v)) for (k,v) in scores]) return LogScore(d) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
5700
export Extend """ struct Extend{I<:Tuple{Any},J,O} <: SFunc{J,O} `Extend` defines an sfunc that extend the input of another sfunc. Useful for defining Separable SFuncs. # Additional supported operators - `support` - `support_quality` - `sample` - `logcpdf` - `bounded_probs` - `make_factors` - `compute_pi` - `send_lambda` # Type parameters - `I`: the input type(s) of the extended *sfunc*; it must be a tuple of length 1 - `J`: the input type(s) of the `Extend` - `O`: the output type(s) of both the `Extend` and the extended *sfunc* """ struct Extend{I<:Tuple{Any},J,O} <: SFunc{J,O} given :: SFunc{I,O} # I must be a Tuple type of length 1 position :: Int """ function Extend(J::DataType, given::S, position::Int) where {I<:Tuple{Any},O,S <: SFunc{I,O}} `Extend`'s constructor # Arguments - `J::DataType`: the input type of the `Extend` - `given::S`: the *sfunc* to extend - `position::Int`: the index of the !TODO! """ function Extend(J::DataType, given::S, position::Int) where {I<:Tuple{Any},O,S <: SFunc{I,O}} new{I,J,O}(given, position) end end @impl begin struct ExtendSupport end function support(sf::Extend{I,J,O}, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{<:O}) where {I<:Tuple{Any},J,O,N} parrange = parranges[sf.position] return support(sf.given, Tuple([[p] for p in parrange]), size, curr) end end @impl begin struct ExtendSample end function sample(sf::Extend{I,J,O}, i::J)::O where {I<:Tuple{Any},J,O} parval = i[sf.position] return sample(sf.given, tuple(parval)) end end @impl begin struct ExtendLogcpdf end function logcpdf(sf::Extend{I,J,O}, i::J, o::O)::AbstractFloat where {I<:Tuple{Any},J,O} parval = i[sf.position] return logcpdf(sf.given, tuple(parval), o) end end @impl begin struct ExtendSupportQuality end function support_quality(sf::Extend{I,J,O}, fullparranges) where {I,J,O} parrange = fullparranges[sf.position] parranges = Tuple([[p] for p in parrange]) imp = get_imp(MultiInterface.get_policy(), Support, sf.given, parranges, 0, O[]) return support_quality(imp, sf.given, parranges) end end @impl begin mutable struct ExtendMakeFactors numpartitions::Int64 = 10 end function make_factors(sf::Extend{I,J,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, id, parids::Tuple)::Tuple{Vector{<:Scruff.Utils.Factor}, Vector{<:Scruff.Utils.Factor}} where {I<:Tuple{Any},J,O,N} parrange = parranges[sf.position] parid = parids[sf.position] return make_factors(sf.given, range, (parrange,), id, (parid,)) end end @impl begin struct ExtendComputePi end function compute_pi(sf::Extend{I,J,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple)::Dist{<:O} where {N,J,I<:Tuple{Any},O} thisparrange = parranges[sf.position] thisincoming_pis = incoming_pis[sf.position] return compute_pi(sf.given, range, (thisparrange,), (thisincoming_pis,)) end end @impl begin struct ExtendSendLambda end function send_lambda(sf::Extend{I,J,O}, lambda::Score{<:O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, incoming_pis::Tuple, parent_idx::Integer)::Score where {I<:Tuple{Any},N,J,O} thisparrange = parranges[sf.position] thisincoming_pis = incoming_pis[sf.position] if parent_idx != sf.position # This parent is not relevant. # We need to return a constant: \sum_i \sum_x \pi_i P(x|i) \lambda(x) # where i ranges over fullparranges[e.position] cpieces = Vector{Float64}() for i in 1:length(thisparrange) pi = logcpdf(thisincoming_pis, (), thisparrange[i]) for j in 1:length(range) px = logcpdf(sf.given, Tuple(thisparrange[i]), range[j]) push!(cpieces, pi + px + get_log_score(lambda, range[j])) end end c = exp(StatsFuns.logsumexp(cpieces)) l = SoftScore(parranges[parent_idx], fill(c, length(parranges[parent_idx]))) return l else # We use parent_idx 1 since e.given has only one parent l = send_lambda(sf.given, lambda, range, (thisparrange,), (thisincoming_pis,), 1) return l end end end # STATS @impl begin struct ExtendInitialStat end initial_stats(sf::Extend) = initial_stats(sf.given) end @impl begin struct ExtendAccumulateStats end function accumulate_stats(sf::Extend, existing_stats, new_stats) accumulate_stats(sf.given, existing_stats, new_stats) end end @impl begin struct ExtendExpectedStats end function expected_stats(sf::Extend{I,J,O}, range::VectorOption{<:O}, parranges::NTuple{N,Vector}, pis::NTuple{M,Dist}, child_lambda::Score{<:O}) where {I<:Tuple{Any},J,O,N,M} parrange = parranges[sf.position] parent_pis = pis[sf.position] return expected_stats(sf.given, range, tuple(parrange), tuple(parent_pis), child_lambda) end end @impl begin struct ExtendMaximizeStats end maximize_stats(sf::Extend, stats) = maximize_stats(sf.given, stats) end # STATS END
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
9044
export cartesian_product, normalize, normalized_product, make_intervals, linear_value, bounded_linear_value, normal_density, memo, doop, mult_through, add_through, ancestors, topsort, converged_numeric ############################################### # # # Cartesian product of arrays # # Result contains every combination of inputs # # # ############################################### """ cartesian_product(xs::Tuple) cartesian_product(xs::Array) Given an array of arrays, returns the cartesian product of those arrays. # Examples ```julia-repl julia> cartesian_product([[1,2],[3,4]]) 4-element Array{Array{Int64,1},1}: [1, 3] [1, 4] [2, 3] [2, 4] julia> cartesian_product([[1,2],[3,4],[5,6]]) 8-element Array{Array{Int64,1},1}: [1, 3, 5] [1, 3, 6] [1, 4, 5] [1, 4, 6] [2, 3, 5] [2, 3, 6] [2, 4, 5] [2, 4, 6] ``` """ cartesian_product(xs::Tuple) = cartesian_product([x for x in xs]) function cartesian_product(xs :: Array) if isempty(xs) result = Array{Any, 1}[[]] else yss = cartesian_product(xs[2:end]) result = Array{Any, 1}[] for x in xs[1] for ys in yss zs = copy(ys) pushfirst!(zs, x) push!(result, zs) end end end return result end ######################################################## # # # Normalize an array of non-negative reals to xum to 1 # # # ######################################################## """ normalized_product(xss, n) Compute the product of the given arrays of length n and normalize the result. Uses log computations to avoid underflow. """ function normalized_product(xss, n) rs = zeros(Float64, n) for xs in xss rs .+= [log(x) for x in xs] end z = max(rs...) rs .-= z ps = [exp(x) for x in rs] return normalize(ps) end ################################# # # # Continuous variable utilities # # # ################################# """ make_intervals(range) Given a range of values of a continuous variable, create interval bins surrounding the values """ function make_intervals(range) srng = copy(range) sort!(srng) last = -Inf result = Tuple{Float64, Float64}[] for i = 2:length(srng) next = (srng[i-1] + srng[i]) / 2 push!(result, (last, next)) last = next end push!(result, (last, Inf)) return result end """ linear_value(weights, bias, continuous_combo) Weight and sum the `continuous_combo` with the given bias """ function linear_value(weights, bias, continuous_combo) result = bias for (weight, parent_value) in zip(weights, continuous_combo) result += weight * parent_value end return result end """ bounded_linear_value(weights, bias, interval_combo) Weight and sum the upper and lower bounds in `interval_combo` with the given bias """ function bounded_linear_value(weights, bias, interval_combo) lower = bias upper = bias # This code assumes that the intervals are correctly ordered for (weight, (lower_parent, upper_parent)) in zip(weights, interval_combo) if weight < 0 lower += weight * upper_parent upper += weight * lower_parent else lower += weight * lower_parent upper += weight * upper_parent end end return (lower, upper) end """ normal_density(x, mean, variance) Get the normal density of `x` """ function normal_density(x, mean, variance) d = sqrt(2 * pi * variance) e = -0.5 * (x-mean) * (x-mean) / variance return exp(e) / d end """ memo(f::Function) returns a memoized one argument function """ function memo(f::Function) cache = Dict() function apply(arg) if arg in keys(cache) return cache[arg] else result = f(arg) cache[arg] = result return result end end return apply end #################################################################################### # # # Functions for performing an arithmetic operation recursively on a data structure # # # #################################################################################### # This avoids having to write both forms of the function. # Writing both forms could cause ambiguity. # Will cause stack overflow if neither form is defined. # Assumes op is commutative. doop(x::Any, y::Any, op) = doop(y,x,op) function doop(x::Float64, y::Float64, op::Function) return op(x,y) end function doop(x::Dict, y::Any, op) result = Dict() xf = floatize(x) for (k,v) in xf result[k] = doop(v, floatize(y), op) end return result end function doop(x::Dict, y::Dict, op) result = Dict() xf = floatize(x) yf = floatize(y) for k in keys(xf) result[k] = doop(xf[k], yf[k], op) end return result end function doop(xs::Array, y::Any, op) result = floatize(xs) for i = 1:length(xs) result[i] = doop(xs[i], floatize(y), op) end return result end function doop(xs::Array, ys::Array, op) xf = floatize(xs) yf = floatize(ys) return [doop(xf[i], yf[i], op) for i in 1:length(xs)] end function doop(xs::Tuple, y::Any, op) xf = floatize(xs) return ntuple(i -> doop(xf[i], floatize(y), op), length(xf)) end function doop(xs::Tuple, ys::Tuple, op) xf = floatize(xs) yf = floatize(ys) return ntuple(i -> doop(xf[i], yf[i], op), length(xs)) end mult_through(x,y) = doop(x, y, (x,y) -> x*y) add_through(x,y) = doop(x, y, (x,y) -> x+y) floatize(x) = _transform(y -> Float64(y), x) #= Topological sort =# """ ancestors(graph :: Dict{U, Vector{U}}, var :: U, found:: Set{U}) :: Vector{U} where U Find the ancestors of the given value x in the graph. Found is a set of previously found ancestors, to handle cyclic graphs and avoid infinite loops """ # Need to handle cyclic graphs function ancestors(graph :: Dict{U, Vector{U}}, var :: U, found:: Set{U}) :: Vector{U} where U result = Vector{U}() for par in get(graph, var, []) if isa(par, U) && !(par in found) push!(found, par) # Prevent infinite recursion append!(result, ancestors(graph, par, found)) push!(result, par) # Guarantee that the ancestors appear before par end end return result end """ topsort(graph::Dict{T, Vector{T}}) :: Vector{T} where T Performs a topological sort on the given graph. In a cyclic graph, the order of variables in the cycle is arbitrary, but they will be correctly sorted relative to other variables. """ function topsort(graph::Dict{U, Vector{U}}) :: Vector{U} where U result = Vector{U}() found = Set{U}() for var in keys(graph) if !(var in found) push!(found, var) s = Set{U}([var]) ancs = ancestors(graph, var, s) # guaranteed to be in topological order for anc in ancs if !(anc in found) push!(found, anc) push!(result, anc) end end push!(result, var) # after the ancestors end end return result end diff(x :: Number, y :: Number) = abs(x-y) function diff(xs :: Dict, ys :: Dict) total = 0.0 for k in keys(xs) total += diff(xs[k], ys[k]) end return total end function diff(xs :: Vector, ys :: Vector) total = 0.0 for i in eachindex(xs) total += diff(xs[i], ys[i]) end return total end function same_structure_and_num_params(:: Number, :: Number) return (true, 1) end function same_structure_and_num_params(xs :: Dict, ys :: Dict) if Set(keys(xs)) != Set(keys(ys)) return (false, 0) end np = 0 for k in keys(xs) (b, n) = same_structure_and_num_params(xs[k], ys[k]) if !b return (false, np) else np += n end end return (true, np) end function same_structure_and_num_params(xs :: Vector, ys :: Vector) if length(xs) != length(ys) return (false, 0) end np = 0 for i in eachindex(xs) (b, n) = same_structure_and_num_params(xs[i], ys[i]) if !b return(false, np) else np += n end end return(true, np) end function converged_numeric(oldp, newp, eps::Float64 = 0.01) (same_structure, num_params) = same_structure_and_num_params(oldp, newp) if !same_structure return false end return diff(newp, oldp) / num_params < eps end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
6768
export _complete, depth, expander_complete, expansions, expanded, expansion, subruntime, clear_analysis!, ensure_expansion_state!, expand!, expander_probs function expander_complete(runtime :: Runtime, v :: Variable, parent_ranges) for p in parent_ranges[1] if !expanded(runtime, v, p) return false end subnet = expansion(runtime, v, p) subrun = subruntime(runtime, v, subnet) if !_complete(subrun) return false end end return true end # This method _only_ works if the model being operated upon contains an # operated called 'support_quality' function _complete(runtime :: Runtime) net = runtime.network order = topsort(get_initial_graph(net)) for var in order if !has_instance(runtime, var) return false end inst = current_instance(runtime, var) sf = get_sfunc(inst) if !has_range(runtime, inst) return false end parranges = parent_ranges(runtime, var) imp = get_imp(MultiInterface.get_policy(), Support, sf, parranges, 0, output_type(sf)[]) # if is_fixed(var.model) && isa(sf, Expander) if isa(sf, Expander) if !expander_complete(runtime, var, Tuple(parranges)) return false end elseif !(support_quality(imp, sf, parranges) == :CompleteSupport) return false end end return true end function expansions(runtime::InstantRuntime, var::Variable) :: Dict exp :: Expander = make_initial(var.model) mod = var.model has_state(runtime, :subnets) || return Dict() exps = get_state(runtime, :subnets) mod in keys(exps) || return Dict() return exps[mod] end function expanded(runtime::Runtime, var::Variable, arg) return arg in keys(expansions(runtime, var)) end function expansion(runtime :: Runtime, var :: Variable, arg) :: Network return expansions(runtime, var)[arg] end function subruntime(runtime::Runtime, var::Variable, net) subruns = get_state(runtime, :subruntimes) return subruns[net] end function depth(runtime::Runtime) :: Int if has_state(runtime, :depth) get_state(runtime, :depth) else 0 end end function ensure_expansion_state!(runtime::Runtime) has_state(runtime, :subnets) || set_state!(runtime, :subnets, Dict()) has_state(runtime, :subruntimes) || set_state!(runtime, :subruntimes, Dict()) end # Returns the expanded subnet and a flag indicating whether it was newly expanded function expand!(runtime::InstantRuntime, var::Variable, arg) ensure_expansion_state!(runtime) exp :: Expander = make_initial(var.model) mod = var.model exps = get_state(runtime, :subnets) subruns = get_state(runtime, :subruntimes) if !(mod in keys(exps)) exps[mod] = Dict() elseif arg in keys(exps[mod]) return (exps[mod][arg], false) end subnet = apply(exp, arg) subrun = Runtime(subnet) # push all parent variables to subruntime set_state!(subrun, :parent_env, get_env(runtime)) # we associate a subrun with the network, in case the same network is # produced for multiple arguments, so we avoid repeating computation for all # the arguments that produce the same network subruns[subnet] = subrun ensure_all!(subrun) exps[mod][arg] = subnet return (subnet, true) end # analysis is 'per network', so we have to make sure we track per-network network_analysis = Dict{Network, Dict{Symbol, Any}}() clear_analysis!() = empty!(network_analysis) function has_analysis(net,sym) haskey(network_analysis, net) && haskey(network_analysis[net], sym) end get_analysis(net,sym) = network_analysis[net][sym] function add_analysis!(net,sym,val) get!(network_analysis, net, Dict{Symbol, Any}())[sym] = val end function expander_probs(runtime::Runtime, fn::Function, v::Variable, depth::Int) net = get_network(runtime) par = get_parents(net, v)[1] parinst = current_instance(runtime, par) inst = current_instance(runtime, v) if has_range(runtime, parinst) parrange = get_range(runtime, parinst, depth) else parrange = [] end if has_range(runtime, inst) range = get_range(runtime, inst, depth) else range = [] end lowers = Float64[] uppers = Float64[] function make_unexpanded_row() for i in 1:length(range) push!(lowers, 0) push!(uppers, 1) end end for p in parrange if depth < 2 || !expanded(runtime, v, p) make_unexpanded_row() else subnet = expansion(runtime, v, p) subrun = subruntime(runtime, v, subnet) output = get_node(subnet, :out) need_to_compute = true if has_analysis(subnet, :depthsolution) (saved_depth, saved_range, solution) = get_analysis(subnet, :depthsolution) # To be able to reuse the solution to define this node's CPD, # it must have the required depth and range if saved_depth >= depth && saved_range == range need_to_compute = false (lfact, ufact) = solution end end if need_to_compute order = topsort(get_initial_graph(subnet)) ((lfact, ufact), _) = fn(subrun, order, [output], depth - 1) add_analysis!(subnet, :depthsolution, (depth, range, (lfact, ufact))) end lsum = sum(lfact.entries) output_range = get_range(subrun, output, depth - 1) inds = indexin(range, output_range) for i in 1:length(range) if isempty(inds) || isnothing(inds[i]) # If this value is not in the output range, then it # might not be in the range of the output, so has # probability 0, or it might be in the range but not # expanded yet. But it's probability cannot be more than # 1 - lsum push!(lowers, 0) push!(uppers, 1 - lsum) else if isempty(lfact.entries) push!(lowers, 0) else push!(lowers, lfact.entries[inds[i]]) end if isempty(ufact.entries) push!(uppers, 0) else push!(uppers, ufact.entries[inds[i]]) end end end end end return (lowers, uppers) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
8791
import Base.show import Base.isapprox using Folds export Factor, show, product, sum_over, nextkey, normalize """ struct Factor{N} Representation of a factor over `N` instances. # arguments dims a tuple of dimensions of the instances keys ids of the instances entries a vector of factor values """ struct Factor{N, T <: Real} dims :: NTuple{N, Int} keys :: NTuple{N, Int} entries :: Vector{T} function Factor(dims::Nothing, keys::Nothing, entries::Vector{T}) where T return new{0, T}((), (), entries) end function Factor(dims::NTuple{N, Int}, keys, entries::Vector{T}) where {N, T} return new{N, T}(dims, keys, entries) end end """ function normalize(f::Factor) Return a new factor equal to the given factor except that entries sum to 1 """ function normalize(f::Factor) z = sum(f.entries) new_entries = [e / z for e in f.entries] return Factor(f.dims, f.keys, new_entries) end """ nextkey()::Int Produce a fresh instance id that does not conflict with an existing id. """ nextkey = begin count = 0 f() = begin global count count += 1 return count end f end function Base.isapprox(fact1 :: Factor, fact2 :: Factor, epsilon = 0.0001) if fact1.dims != fact2.dims || fact1.keys != fact2.keys return false end len = length(fact1.entries) return all(map(i -> isapprox(fact2.entries[i], fact1.entries[i]; atol = epsilon), 1:len)) end ########################### # # # Pretty printing factors # # # ########################### function show_boundary(N, space) total = (space + 1) * (N + 1) + 1 for i in 1:total print("#") end println() end get_content(content :: String) = content get_content(content) = sprint(show, content) function show_spaced(space, content) c = get_content(content) init_gap = div(space - length(c), 2) for i in 1:init_gap print(' ') end print(c) for i in 1:space - length(c) - init_gap print(' ') end end function show_content(N, space, content) for i in 1:N print('#') show_spaced(space, content[i]) end print('#') for i in 1:space print(' ') end print('#') println() end """ function show(f::Factor) Print the factor in an easy to read format. """ function show(f :: Factor{0}) # This factor should have been produced by summing out all the variables # and should have one row space = length(string(f.entries[1])) + 2 show_boundary(0, space) print('#') show_spaced(space, f.entries[1]) println('#') show_boundary(0, space) end function show(f :: Factor{N}) where N max1 = max(map(k -> length(string(k)), f.keys)...) max2 = max(map(k -> length(string(k)), f.entries)...) space = max(max1, max2) + 2 show_boundary(N, space) show_content(N, space, f.keys) show_boundary(N, space) mults = Array{Int64}(undef, N) mults[N] = 1 for k in N-1:-1:1 mults[k] = mults[k+1] * f.dims[k+1] end for i in eachindex(f.entries) vs = [] j = i-1 for k in 1:N (r, j) = divrem(j, mults[k]) print("#") show_spaced(space, r + 1) end print("#") show_spaced(space, f.entries[i]) println("#") end show_boundary(N, space) end ################## # # # Factor product # # # ################## # The product computation is written so that it can be compiled and optimized # once the sizes of the input factors (N1 and N2), # dimensions of the variables (D1 and D2), # and join indices (J) are known. struct ProdOp{N1, N2, D1, D2, J} end function mults(dims) n = length(dims) result = Array{Int64}(undef, n) result[n] = 1 for k in (n - 1):-1:1 result[k] = result[k+1] * dims[k+1] end return result end function do_prod(N1, N2, J, f1, f2) # The result factor is constructed so that the variables in the second # input come first, in order, and then any variables in the first factor # that are not in the join come in order. # We construct DR, the dimensions of variables in the result factor, # as well as the keys of the result factor. # We work out the instructions, # which will be used to indicate which rows of the two input factors # any row of the result factor will be composed from. D1 = f1.dims D2 = f2.dims instructions = Vector{Vector{Tuple{Int, Int}}}(undef, N2) NR = N2 rda = Vector{Int}([d for d in D2]) rk = Vector{Int}([k for k in f2.keys]) for j = 1:N2 instructions[j] = [(2, j)] end for (i, j) in J if j == 0 NR += 1 push!(instructions, [(1, i)]) push!(rda, D1[i]) push!(rk, f1.keys[i]) else push!(instructions[j], (1, i)) end end DR = NTuple{NR, Int}(rda) mults1 = mults(f1.dims) mults2 = mults(f2.dims) multsr = mults(DR) rkeys = NTuple{NR, Int}(rk) result = Array{Float64}(undef, Folds.reduce(*, DR)) for i in eachindex(result) # Cartesian indices don't work here because you can't get inside them # So we have to build up the index ourselves idx1 = Array{Int16}(undef, N1) idx2 = Array{Int16}(undef, N2) j = i-1 for k = 1:NR instr = instructions[k] (r, j) = divrem(j, multsr[k]) e = r + 1 if length(instr) == 2 idx2[instr[1][2]] = e idx1[instr[2][2]] = e elseif instr[1][1] == 1 idx1[instr[1][2]] = e else idx2[instr[1][2]] = e end end x1 = sum(map(q -> (idx1[q] - 1) * mults1[q], 1:N1)) + 1 x2 = sum(map(q -> (idx2[q] - 1) * mults2[q], 1:N2)) + 1 result[i] = f1.entries[x1] * f2.entries[x2] end return Factor(DR, rkeys, result) end function product(f1 :: Factor{N1}, f2 :: Factor{N2}) where {N1, N2} js = map(k -> findfirst(x -> x == k, f2.keys), f1.keys) ijs :: Array{Tuple{Int16, Int16}, 1} = Array{Tuple{Int16, Int16}, 1}(undef, length(f1.keys)) for i = 1:length(f1.keys) j = length(f1.keys) - i + 1 y = isnothing(js[j]) ? 0 : js[j] ijs[i] = (j, y) end matches = NTuple{N1, Tuple{Int16, Int16}}(ijs) return do_prod(N1, N2, matches, f1, f2) end ########################### # # # Summing over a variable # # # ########################### struct SumOp{N, D, I} end # Special case: Summing out the only variable in a factor function do_sum(op :: SumOp{1, D, 1}, f :: Factor) where D x = sum(f.entries) dims = nothing keys = nothing return Factor(dims, keys, [x]) end function do_sum(op :: SumOp{N, D, I}, f :: Factor) where {N, D, I} rdims = [] rkeys = [] for i in 1:I-1 push!(rdims, f.dims[i]) push!(rkeys, f.keys[i]) end for i in I+1:N push!(rdims, f.dims[i]) push!(rkeys, f.keys[i]) end rdims = Tuple(rdims) rkeys = Tuple(rkeys) # The summation is efficeintly implemented by computing a pattern of # moves through the input factor's entries as we accumulate the result # factor's entries. # For any given entry of the result, we add a number of entries of the # input. inner_skip is the gap between those entries. # We also do inner_skip parallel sums per block, before skipping to the next # block. outer_skip is the amount to skip to the next block. inner_skip = 1 for k = I+1:N inner_skip *= D[k] end outer_skip = inner_skip * D[I] result_size = inner_skip for k = 1:I-1 result_size *= D[k] end result = Array{Float64}(undef, result_size) if result_size == 0 # This can legitimately happen for unexpanded Expander return Factor(rdims, rkeys, result) end section_start = 1 result_index = 1 for j = 1 : div(result_size, inner_skip) start = section_start for k = 1 : inner_skip total = 0.0 orig_index = start for l = 1 : D[I] total += f.entries[orig_index] orig_index += inner_skip end result[result_index] = total result_index += 1 start += 1 end section_start += outer_skip end return Factor(rdims, rkeys, result) end function sum_over(f :: Factor{N}, key :: Int) where N for i = 1:N if f.keys[i] == key return do_sum(SumOp{N, f.dims, i}(), f) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1755
export default_initializer using ..Operators """ Deprecated """ function default_initializer(runtime::InstantRuntime, default_range_size::Int=10, placeholder_beliefs :: Dict = Dict()) ensure_all!(runtime) for (pname, bel) in placeholder_beliefs node = get_node(runtime, pname) inst = current_instance(runtime, node) post_belief!(runtime, inst, bel) end order = topsort(get_initial_graph(get_network(runtime))) set_ranges!(runtime, Dict{Symbol, Score}(), default_range_size, 1, order, placeholder_beliefs) end #= function default_initializer(runtime::DynamicRuntime{T}, default_time::T, default_range_size::Int=10) where {T} ensure_all!(runtime, default_time) net = get_network(runtime) ord = topsort(get_transition_graph(net)) ranges = Dict{Symbol, Array{Any, 1}}() for var in ord inst = current_instance(runtime, var) sf = get_sfunc(inst) parranges = collect(map(p -> ranges[p.name], get_parents(net, var))) rng = support(sf, Tuple(parranges), default_range_size, Vector{output_type(sf)}()) set_range!(runtime, inst, rng) ranges[var.name] = rng end end function default_initializer(runtime::DynamicRuntime{Int}) default_initializer(runtime, 0) end =# function preserve_evidence(evid_i, typeOfEvidence) preserve_values = Vector{typeOfEvidence}() if isa(evid_i, Dict) # soft evidence push!(preserve_values, collect(keys(evid_i))) elseif isa(evid_i, NoiseEvidence) # noise evidence push!(preserve_values, evid_i.mean) elseif isa(evid_i, Function)# hard evidence # do nothing else # hard evidence push!(preserve_values, evid_i) end return preserve_values end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
5034
""" logplots.jl contains code to help gain insight into belief propagation. It creates a Logger called `BPLogger` that plots the results, for a single variable, of the following methods in the three pass BP algorithm: * compute_pi * compute_lambda * compute_bel * incoming_pi * outgoing_pis To use `BPLogger`, first install `Plots` and use `pyplot()`. Then, ``` julia> include("src/utils/logplots.jl") histogram_plot_discrete (generic function with 1 method) julia> logger = BPLogger(:x1) # :x1 is the name of the variable being plotted BPLogger(:x1) julia> with_logger(logger) do include("mybpcall.jl") # mybpcall.jl contains a call to threepassbp() end ``` """ export BPLogger import Logging: handle_message, shouldlog, min_enabled_level using Plots using Logging struct BPLogger <: AbstractLogger varname::Vector{Symbol} end BPLogger(varname::Symbol...) = BPLogger(collect(varname)) function handle_message( logger::BPLogger, level, message, _module, group, id, filepath, line; kwargs...) if isempty(kwargs) || !in(:type, keys(kwargs)) with_logger(global_logger()) do @logmsg level message kwargs... end return end d = Dict(kwargs...) type = get(d, :type, :cont) if (type != :cont && type != :discrete) write_missing("Value of :type must be either :cont or :discrete, not $(type)", level, _module, filepath, line; kwargs...) return end if (type == :cont && !in(:numBins, keys(kwargs))) write_missing("Continuous missing a required parameter [:numBins]", level, _module, filepath, line; kwargs...) return end if !issubset([:range,:prob,:varname,:fname,:name], keys(kwargs)) write_missing("Missing a required parameter [:range,:prob,:varname,:fname,:name]", level, _module, filepath, line; kwargs...) return end if (d[:varname] in logger.varname) if (type == :cont) histogram_plot( d[:range], d[:prob], d[:numBins], d[:varname], d[:fname], d[:name]) else histogram_plot_discrete( d[:range], d[:prob], d[:varname], d[:fname], d[:name]) end end end function write_missing(msg, level, _module, filepath, line; kwargs...) buf = IOBuffer() iob = IOContext(buf, stderr) levelstr = level == Logging.Warn ? "Warning" : string(level) msglines = split(chomp(string(msg)::String), '\n') println(iob, "┌ ", levelstr, ": ", msglines[1]) for i in 2:length(msglines) println(iob, "│ ", msglines[i]) end for (key, val) in kwargs println(iob, "│ ", key, " = ", val) end println(iob, "└ @ ", _module, " ", filepath, ":", line) write(stderr, take!(buf)) nothing end function shouldlog(logger::BPLogger, level, _module, group, id) true # group == :threepassbp end function min_enabled_level(logger::BPLogger) Logging.Debug end """ histogram_plot(range, prob, numBins::Int64, name::String) A utility function that, if the Plots module is loaded, returns a histogram bar graph; otherwise it returns a string with the values that would have been a histogram """ function histogram_plot(range, prob, numBins::Int64, varname::Symbol, fname, name::String) @debug("histogram_plot", range=range, prob=prob,numBins=numBins,varname=varname, fname=fname,name=name) if isempty(prob) prob = zeros(length(range)) end range_min = minimum(range) range_max = maximum(range) if(range_min==range_max) range_max = range_min+1 end numBins = max(min(length(range), numBins),1) stepsize = (range_max - range_min)/ numBins samplespace = range_min : stepsize : range_max bins = zeros(numBins) for (i,lb) in enumerate(samplespace) curr_bin_min = samplespace[i] curr_bin_max = samplespace[i] + stepsize idx = findall(x -> curr_bin_min <= range[x] < curr_bin_max, 1:length(range)) if(!isempty(idx)) if(i==length(samplespace)) # last elements bins[i-1] += sum(prob[idx]) else bins[i] = sum(prob[idx]) end end end x_min = samplespace[1] x_max = samplespace[end] + stepsize @debug "bin_centers=$(collect(samplespace)[1:numBins] .+ (stepsize/2)), bins=$bins" gui(bar(samplespace[1:numBins].+(stepsize/2), bins; reuse=false,title="$(varname).$(fname)", label=name, xlims=(x_min-2, x_max+2), hover = samplespace[1:numBins].+(stepsize/2), legend=true)) end function histogram_plot_discrete(range, prob:: Array{Float64,1}, varname, fname, name::String) gui(bar(string.(range),prob; reuse=false,title="$(varname).$(fname)",label=name, hover = string.(range), legend=true)) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
9932
export parent_ranges, get_range, has_range, set_range!, set_ranges!, expander_range ##################################################################### # # # Algorithm building blocks for setting and expanding the ranges of # # all the current instances in a runtime. # # # # order is a topological sort of the network in the runtime. # # size is a uniform target size for each instance. # # # ##################################################################### """ parent_ranges(runtime::Runtime, var::Variable{I,J,O}, depth = typemax(Int)) where {I,J,O} Returns the ranges of the parents of the given variable. See [`Scruff.get_range`](@ref) """ function parent_ranges(runtime::Runtime, var::Variable{I,J,O}, depth = typemax(Int)) where {I,J,O} net = get_network(runtime) pars = get_parents(net, var) result = [] for p in pars pinst = current_instance(runtime, p) push!(result, get_range(runtime, pinst, depth)) end T = isempty(result) ? Vector{O} : typejoin([typeof(x) for x in result]...) return convert(Vector{T}, result) end """ RANGE The constant key used to store the range of a specific variable instance """ const RANGE = :__range__ """ set_range!(runtime::Runtime, inst::Instance{O}, range::Vector{<:O}, depth::Int = 1) where O Sets the range value for the given instance. Defaults to depth of 1. """ function set_range!(runtime::Runtime, inst::Instance{O}, range::Vector{<:O}, depth::Int = 1) where O if has_value(runtime, inst, RANGE) curr = get_value(runtime, inst, RANGE) s = Tuple{Int, Vector{O}}[] i = 1 while i <= length(curr) pair = curr[i] d = pair[1] if d > depth push!(s, pair) i += 1 end push!(s, (depth, range)) i = d == depth ? i+1 : i for j = i:length(curr) push!(s, curr[j]) end set_value!(runtime, inst, RANGE, s) return end push!(s, (depth, range)) set_value!(runtime, inst, RANGE, s) else set_value!(runtime, inst, RANGE, [(depth, range)]) end end """ get_range(runtime::Runtime, inst::Instance, depth = max_value(Int)) Returns the range value for the given instance; this will return `nothing` if no range has been set. The depth specifies the maximum depth of range desired. """ function get_range(runtime::Runtime, inst::Instance, depth = typemax(Int)) has_range(runtime, inst, depth) || return nothing rng = get_value(runtime, inst, RANGE) for i in 1:length(rng) (d,r) = rng[i] if d <= depth return r end end return nothing end function has_range(runtime::Runtime, inst::Instance, depth::Int = typemax(Int)) has_value(runtime, inst, RANGE) || return false r = get_value(runtime, inst, RANGE) (d,_) = r[length(r)] return d <= depth end """ get_range(runtime::DynamicRuntime, v::Variable{I,J,O}, depth = 1) where {I,J,O} Returns the range of the most recent instance of the given variable. """ function get_range(runtime::DynamicRuntime, v::Variable{I,J,O}, depth = 1) where {I,J,O} inst = current_instance(runtime, v) range = get_range(runtime, inst, depth) if range !== nothing return range elseif has_previous_instance(runtime, v) prev = previous_instance(runtime, v) if has_range(runtime, prev) return get_range(runtime, prev, depth) else return O[] end else return O[] end end """ get_range(runtime::InstantRuntime, v::Node{O}, depth = 1) where O Returns the range of the given node. """ function get_range(runtime::InstantRuntime, v::Node{O}, depth = 1) where O inst = runtime.instances[v] range = get_range(runtime, inst, depth) if range !== nothing return range else return O[] end end """ set_ranges!(runtime::InstantRuntime, evidence = Dict{Symbol, Score}(), size = 10, depth = 1, order = topsort(get_initial_graph(get_network(runtime))), placeholder_beliefs = get_placeholder_beliefs(runtime)) Set the ranges of all current instances in the runtime. This method first checks whether ranges exist for the runtime at the desired depth, with the desired range size, and with the same evidence. If so, it doesn't do anything. If the depth is less than 1, it doesn't do anything. Otherwise, it uses the support operator to compute ranges of variables in order. Placeholders should have ranges set already in `placeholder_beliefs`. For expanders, it recursively sets the ranges of the subnetworks at depth - 1. Returns a flag indicating whether any instance has a changed range. """ function set_ranges!(runtime::InstantRuntime, evidence::Dict{Symbol, <:Score} = Dict{Symbol, Score}(), size :: Int = 10, depth :: Int = 1, order = topsort(get_initial_graph(get_network(runtime))), placeholder_beliefs = get_placeholder_beliefs(runtime)) if depth < 1 return false end nodes = get_nodes(get_network(runtime)) # If we require greater depth or greater size or different evidence, we have to do it again if has_state(runtime, :nodes) && has_state(runtime, :range_size) && has_state(runtime, :range_depth) && has_state(runtime, :range_evidence) && get_state(runtime, :range_size) >= size && get_state(runtime, :range_depth) >= depth && get_state(runtime, :range_evidence) == evidence && get_state(runtime, :nodes) == nodes return false else set_state!(runtime, :range_size, size) set_state!(runtime, :range_depth, depth) set_state!(runtime, :range_evidence, evidence) set_state!(runtime, :nodes, nodes) end changed = false for v in order O = output_type(v) rng::Vector{O} = O[] curr = get_range(runtime, v, depth) inst = current_instance(runtime, v) if v isa Placeholder pi = placeholder_beliefs[v.name] rng = support(pi, (), size, output_type(v)[]) chng = rng != curr else sf = get_sfunc(inst) if length(curr) < size parranges = parent_ranges(runtime, v, depth) if isa(sf, Expander) rc = expander_range(runtime, v, size, depth) rng= rc[1] chng = rc[2] else rng = support(sf, tuple(parranges...), size, curr) chng = rng != curr end if v.name in keys(evidence) ev = evidence[v.name] if ev isa HardScore if !(ev.value in rng) push!(rng, ev.value) chng = true end elseif ev isa LogScore for k in keys(ev.logscores) if !(k in rng) push!(rng, k) chng = true end end end end changed = changed || chng else rng = curr end end set_range!(runtime, inst, rng, depth) end if changed delete_state!(runtime, :solution) end return changed end """ function expander_range(runtime :: Runtime, v :: Variable, target_size :: Int, depth :: Int) Recursively compute the range of the expander and subnetworks up to the given depth. Computing the range of the expander expands enough of the parent range to reach the desired target size, or expands all the parents fully. """ function expander_range(runtime :: Runtime, v :: Variable, target_size :: Int, depth :: Int) changed = false net = runtime.network parents = get_parents(net, v) parent = parents[1] parrange = get_range(runtime, parent, depth) rangeset = Set() subranges = Dict() for p in parrange if expanded(runtime, v, p) subnet = expansion(runtime, v, p) subrun = subruntime(runtime, v, subnet) subout = current_instance(subrun, get_node(subnet, :out)) if has_range(subrun, subout, depth - 1) subrange = get_range(subrun, subout, depth - 1) subranges[p] = subrange union!(rangeset, subrange) else subranges[p] = [] end else subranges[p] = [] end end todo = Dict() for p in parrange todo[p] = length(subranges[p]) end while length(rangeset) < target_size && !isempty(todo) p = argmin(todo) delete!(todo, p) (subnet, chng) = expand!(runtime, v, p) changed = chng subrun = subruntime(runtime, v, subnet) if depth > 1 order = topsort(get_initial_graph(subnet)) outvar = get_node(subrun, :out) # Cannot have evidence on subnet if set_ranges!(subrun, Dict{Symbol, Score}(), target_size - length(rangeset), depth - 1, order) changed = true end inst = current_instance(subrun, outvar) rng = get_range(subrun, inst, depth - 1) union!(rangeset, rng) end end result = output_type(v)[] for x in rangeset push!(result, x) end sort!(result) return (result, changed) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
802
import Base.copy export Graph, add_node!, add_undirected! """ struct Graph A simple graph with nodes (Int), edges (outgoing), and a size property for each node """ struct Graph nodes :: Array{Int, 1} edges :: Dict{Int, Array{Int, 1}} sizes :: Dict{Int, Int} Graph() = new([], Dict(), Dict()) Graph(ns, es, ss) = new(ns, es, ss) end function add_node!(g :: Graph, n :: Int, size :: Int) if !(n in g.nodes) push!(g.nodes, n) g.edges[n] = [] end g.sizes[n] = size end function add_undirected!(g :: Graph, n1 :: Int, n2 :: Int) if n1 in g.nodes && n2 in g.nodes if !(n2 in g.edges[n1]) push!(g.edges[n1], n2) end if !(n1 in g.edges[n2]) push!(g.edges[n2], n1) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
537
using Profile include("runtests.jl") @profile include("runtests.jl") open("output/profile_tree.txt", "w") do s Profile.print(IOContext(s, :displaysize => (24, 500)); format=:tree, maxdepth=100, noisefloor=2, mincount=2) end open("output/profile_flat.txt", "w") do s Profile.print(IOContext(s, :displaysize => (24, 500)); format=:flat, sortedby=:count, noisefloor=1, mincount=1) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
822
# File test/runtests.jl using Test @testset "ScruffTests" begin include("test_core.jl") include("test_sfuncs.jl") include("test_score.jl") include("test_utils.jl") include("test_ops.jl") include("test_ve.jl") include("test_lsfi.jl") include("test_bp.jl") include("test_importance.jl") include("test_net.jl") include("test_filter.jl") include("test_em.jl") # These don't test anything, but we want to make sure any changes haven't broken the examples redirect_stdout(devnull) do include("../docs/examples/novelty_example.jl") include("../docs/examples/novelty_lazy.jl") include("../docs/examples/novelty_filtering.jl") include("../docs/examples/rembrandt_example.jl") include("../docs/examples/soccer_example.jl") end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
75279
import Base.timedwait import Base.isapprox import PrettyPrint import Scruff.Operators.bounded_probs import Scruff.Operators.range using Test using Scruff using Scruff.Utils using Scruff.RTUtils using Scruff.SFuncs using Scruff.Models using Scruff.Operators import Scruff.Algorithms: three_pass_BP, loopy_BP, ThreePassBP, LoopyBP, infer, probability @testset "BP" begin @testset "Cat operations" begin x = Cat([1,2,3], [0.2, 0.3, 0.5]) @testset "compute_pi" begin p = compute_pi(x, [1,2,3], (), ()) i1 = indexin(1, p.__compiled_range)[1] i2 = indexin(2, p.__compiled_range)[1] i3 = indexin(3, p.__compiled_range)[1] @test p.params[i1] == 0.2 @test p.params[i2] == 0.3 @test p.params[i3] == 0.5 end end @testset "DiscreteCPT operations" begin cpd1 = Dict((1,) => [0.1, 0.9], (2,) => [0.2, 0.8], (3,) => [0.3, 0.7]) cpd2 = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) =>[0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) cpd3entries = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6] cpd3 = Dict{Tuple{Int, Int, Int}, Vector{Float64}}() for i1 = 1:2 for i2 = 1:3 for i3 = 1:2 ix = (i1-1)*6 + (i2-1)*2 + i3 p = cpd3entries[ix] cpd3[(i1,i2,i3)] = [p, 1-p] end end end cpd4entries = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9] cpd4 = Dict{Tuple{Int, Int, Int, Int}, Vector{Float64}}() for i1 = 1:2 for i2 = 1:3 for i3 = 1:2 for i4 = 1:2 ix = (i1-1)*12 + (i2-1)*4 + (i3-1)*2 + i4 p = cpd4entries[ix] cpd4[(i1,i2,i3,i4)] = [p, 1-p] end end end end x1 = DiscreteCPT([1, 2], cpd1) x2 = DiscreteCPT([1, 2], cpd2) x3 = DiscreteCPT([1, 2], cpd3) x4 = DiscreteCPT([1, 2], cpd4) i1 = indexin(1, x1.__sfs[1].__compiled_range)[1] i2 = indexin(2, x1.__sfs[1].__compiled_range)[1] @testset "compute_pi" begin @testset "with one parent" begin pa = 0.2 * 0.1 + 0.3 * 0.2 + 0.5 * 0.3 pb = 1 - pa pi = compute_pi(x1, [1,2], ([1,2,3],), (Cat([1,2,3], [0.2, 0.3, 0.5]),)) @test isapprox(pi.params[i1], pa) @test isapprox(pi.params[i2], pb) end @testset "with two parents" begin # First parent is outermost (range 2). # Second parent is innermost (range 3). # If first parent probabilities are [0.1, 0.9] # and second parent probablity are [0.2, 0.3, 0.5] # we get the following probabilities over x: pa = 0.2 * (0.1 * 0.3 + 0.9 * 0.6) + 0.3 * (0.1 * 0.4 + 0.9 * 0.7) + 0.5 * (0.1 * 0.5 + 0.9 * 0.8) pb = 1 - pa pi = compute_pi(x2, [1,2], ([1,2,3], [1,2]), (Cat([1,2,3], [0.2, 0.3, 0.5]), Cat([1,2],[0.1, 0.9]))) @test isapprox(pi.params[i1], pa) @test isapprox(pi.params[i2], pb) end @testset "with three parents" begin pa = 0.0 pi1 = [0.3, 0.7] pi2 = [0.2, 0.3, 0.5] pi3 = [0.6, 0.4] for i = 1:12 ix1 = div(i-1,6) + 1 ix2 = div(mod(i-1,6), 2) + 1 ix3 = mod(i-1,2) + 1 parp = pi1[ix1] * pi2[ix2] * pi3[ix3] pa += parp * cpd3entries[i] end pb = 1 - pa pi = compute_pi(x3, [1,2], ([1,2], [1,2,3], [1,2]), (Cat([1,2], pi1), Cat([1,2,3], pi2), Cat([1,2], pi3))) @test isapprox(pi.params[i1], pa) @test isapprox(pi.params[i2], pb) end @testset "with four parents" begin pa = 0.0 pi1 = [0.3, 0.7] pi2 = [0.2, 0.3, 0.5] pi3 = [0.6, 0.4] pi4 = [0.8, 0.2] for i = 1:24 ix1 = div(i-1,12) + 1 ix2 = div(mod(i-1,12), 4) + 1 ix3 = div(mod(i-1,4), 2) + 1 ix4 = mod(i-1, 2) + 1 parp = pi1[ix1] * pi2[ix2] * pi3[ix3] * pi4[ix4] pa += parp * cpd4entries[i] end pb = 1 - pa pi = compute_pi(x4, [1,2], ([1,2], [1,2,3], [1,2], [1,2]), (Cat([1,2], pi1), Cat([1,2,3], pi2), Cat([1,2], pi3), Cat([1,2], pi4))) @test isapprox(pi.params[i1], pa) @test isapprox(pi.params[i2], pb) end end @testset "send_lambda" begin @testset "with one parent" begin p1 = 0.3 * 0.1 + 0.7 * 0.9 p2 = 0.3 * 0.2 + 0.7 * 0.8 p3 = 0.3 * 0.3 + 0.7 * 0.7 # l1 = send_lambda(x1, [0.3, 0.7], [1,2], ([1,2,3], [1,2]), [[0.2, 0.3, 0.5], [0.1, 0.9]], 1) # @test isapprox(l1, [p1, p2, p3]) # FIXME is this a correct test? l1 = send_lambda(x1, SoftScore([1,2], [0.3, 0.7]), [1,2], ([1,2,3],), (Cat([1,2,3], [0.2, 0.3, 0.5]),), 1) @test isapprox(get_score(l1, 1), p1) @test isapprox(get_score(l1, 2), p2) @test isapprox(get_score(l1, 3), p3) end @testset "with two parents" begin # If the lambda for x is [0.3, 0.7], the lambda messages to the parents are: p11 = 0.3 * (0.1 * 0.3 + 0.9 * 0.6) + 0.7 * (0.1 * 0.7 + 0.9 * 0.4) p12 = 0.3 * (0.1 * 0.4 + 0.9 * 0.7) + 0.7 * (0.1 * 0.6 + 0.9 * 0.3) p13 = 0.3 * (0.1 * 0.5 + 0.9 * 0.8) + 0.7 * (0.1 * 0.5 + 0.9 * 0.2) p21 = 0.3 * (0.2 * 0.3 + 0.3 * 0.4 + 0.5 * 0.5) + 0.7 * (0.2 * 0.7 + 0.3 * 0.6 + 0.5 * 0.5) p22 = 0.3 * (0.2 * 0.6 + 0.3 * 0.7 + 0.5 * 0.8) + 0.7 * (0.2 * 0.4 + 0.3 * 0.3 + 0.5 * 0.2) chlam = SoftScore([1,2], [0.3,0.7]) range = [1,2] parranges = ([1,2,3], [1,2]) parpis = (Cat([1,2,3], [0.2, 0.3, 0.5]), Cat([1,2], [0.1, 0.9])) l1 = send_lambda(x2, chlam, range, parranges, parpis, 1) l2 = send_lambda(x2, chlam, range, parranges, parpis, 2) @test isapprox([get_score(l1, i) for i in 1:3], [p11, p12, p13]) @test isapprox([get_score(l2, i) for i in 1:2], [p21, p22]) end @testset "with three parents" begin pi1 = [0.3, 0.7] pi2 = [0.2, 0.3, 0.5] pi3 = [0.6, 0.4] p11 = 0.0 p12 = 0.0 p21 = 0.0 p22 = 0.0 p23 = 0.0 p31 = 0.0 p32 = 0.0 for i = 1:12 ix1 = div(i-1,6) + 1 ix2 = div(mod(i-1,6), 2) + 1 ix3 = mod(i-1,2) + 1 p1mod = (0.3 * cpd3entries[i] + 0.7 * (1 - cpd3entries[i])) * pi2[ix2] * pi3[ix3] p2mod = (0.3 * cpd3entries[i] + 0.7 * (1 - cpd3entries[i])) * pi1[ix1] * pi3[ix3] p3mod = (0.3 * cpd3entries[i] + 0.7 * (1 - cpd3entries[i])) * pi1[ix1] * pi2[ix2] if ix1 == 1 p11 += p1mod else p12 += p1mod end if ix2 == 1 p21 += p2mod elseif ix2 == 2 p22 += p2mod else p23 += p2mod end if ix3 == 1 p31 += p3mod else p32 += p3mod end end chlam = SoftScore([1,2], [0.3, 0.7]) range = [1,2] parranges = ([1,2], [1,2,3], [1,2]) parpis = (Cat([1,2], pi1), Cat([1,2,3], pi2), Cat([1,2], pi3)) l1 = send_lambda(x3, chlam, range, parranges, parpis, 1) l2 = send_lambda(x3, chlam, range, parranges, parpis, 2) l3 = send_lambda(x3, chlam, range, parranges, parpis, 3) @test isapprox([get_score(l1, i) for i in 1:2], [p11, p12]) @test isapprox([get_score(l2, i) for i in 1:3], [p21, p22, p23]) @test isapprox([get_score(l3, i) for i in 1:2], [p31, p32]) end @testset "with four parents" begin pi1 = [0.3, 0.7] pi2 = [0.2, 0.3, 0.5] pi3 = [0.6, 0.4] pi4 = [0.8, 0.2] p11 = 0.0 p12 = 0.0 p21 = 0.0 p22 = 0.0 p23 = 0.0 p31 = 0.0 p32 = 0.0 p41 = 0.0 p42 = 0.0 for i = 1:24 ix1 = div(i-1,12) + 1 ix2 = div(mod(i-1,12), 4) + 1 ix3 = div(mod(i-1,4), 2) + 1 ix4 = mod(i-1, 2) + 1 p1mod = (0.3 * cpd4entries[i] + 0.7 * (1 - cpd4entries[i])) * pi2[ix2] * pi3[ix3] * pi4[ix4] p2mod = (0.3 * cpd4entries[i] + 0.7 * (1 - cpd4entries[i])) * pi1[ix1] * pi3[ix3] * pi4[ix4] p3mod = (0.3 * cpd4entries[i] + 0.7 * (1 - cpd4entries[i])) * pi1[ix1] * pi2[ix2] * pi4[ix4] p4mod = (0.3 * cpd4entries[i] + 0.7 * (1 - cpd4entries[i])) * pi1[ix1] * pi2[ix2] * pi3[ix3] if ix1 == 1 p11 += p1mod else p12 += p1mod end if ix2 == 1 p21 += p2mod elseif ix2 == 2 p22 += p2mod else p23 += p2mod end if ix3 == 1 p31 += p3mod else p32 += p3mod end if ix4 == 1 p41 += p4mod else p42 += p4mod end end chlam = SoftScore([1,2], [0.3, 0.7]) range = [1,2] parranges = ([1,2], [1,2,3], [1,2], [1,2]) parpis = (Cat([1,2], pi1), Cat([1,2,3], pi2), Cat([1,2], pi3), Cat([1,2], pi4)) l1 = send_lambda(x4, chlam, range, parranges, parpis, 1) l2 = send_lambda(x4, chlam, range, parranges, parpis, 2) l3 = send_lambda(x4, chlam, range, parranges, parpis, 3) l4 = send_lambda(x4, chlam, range, parranges, parpis, 4) @test isapprox([get_score(l1, i) for i in 1:2], [p11, p12]) @test isapprox([get_score(l2, i) for i in 1:3], [p21, p22, p23]) @test isapprox([get_score(l3, i) for i in 1:2], [p31, p32]) @test isapprox([get_score(l4, i) for i in 1:2], [p41, p42]) end end end @testset "Separable operations" begin alphas = [0.2, 0.3, 0.5] cpd1 = Dict((1,) => [0.1, 0.9], (2,) => [0.2, 0.8]) cpd2 = Dict((1,) => [0.3, 0.7], (2,) => [0.4, 0.6], (3,) => [0.5, 0.5]) cpd3 = Dict((1,) => [0.6, 0.4], (2,) => [0.7, 0.3]) cpds :: Array{Dict{I,Array{Float64,1}} where I,1} = [cpd1, cpd2, cpd3] range = [1, 2] parranges = ([1, 2], [1, 2, 3], [1, 2]) parpis = (Cat([1,2], [0.8, 0.2]), Cat([1,2,3], [0.5, 0.3, 0.2]), Cat([1,2], [0.9, 0.1])) x = Separable([1, 2], alphas, cpds) @testset "compute_pi" begin # If the parent probabilities are [0.8, 0.2], [0.5, 0.3, 0.2], and # [0.9, 0.1], x probabilities are: pa = 0.2 * (0.8 * 0.1 + 0.2 * 0.2) + 0.3 * (0.5 * 0.3 + 0.3 * 0.4 + 0.2 * 0.5) + 0.5 * (0.9 * 0.6 + 0.1 * 0.7) pb = 1 - pa ps = compute_pi(x, range, parranges, parpis) i1 = indexin(1, ps.__compiled_range)[1] i2 = indexin(2, ps.__compiled_range)[1] @test isapprox(ps.params[i1], pa) @test isapprox(ps.params[i2], pb) end @testset "send_lambda" begin # If the x probabilities are [0.3, 0.7], the lambda messages are computed by: p1othera = 0.3 * (0.5 * 0.3 + 0.3 * 0.4 + 0.2 * 0.5) + 0.5 * (0.9 * 0.6 + 0.1 * 0.7) p11a = 0.2 * 0.1 + p1othera p11 = 0.3 * p11a + 0.7 * (1-p11a) # = 0.3 * 0.2 * 0.1 + 0.3 * p1othera + 0.7 * (1 - 0.2 * 0.1) + 0.7 * p1otherb p12a = 0.2 * 0.2 + p1othera p12 = 0.3 * p12a + 0.7 * (1-p12a) p2othera = 0.2 * (0.8 * 0.1 + 0.2 * 0.2) + 0.5 * (0.9 * 0.6 + 0.1 * 0.7) p21a = 0.3 * 0.3 + p2othera p21 = 0.3 * p21a + 0.7 * (1-p21a) p22a = 0.3 * 0.4 + p2othera p22 = 0.3 * p22a + 0.7 * (1-p22a) p23a = 0.3 * 0.5 + p2othera p23 = 0.3 * p23a + 0.7 * (1-p23a) q21a = 0.3 * 0.3 q21b = 0.3 * q21a + 0.7 * (1-q21a-p2othera) p3othera = 0.2 * (0.8 * 0.1 + 0.2 * 0.2) + 0.3 * (0.5 * 0.3 + 0.3 * 0.4 + 0.2 * 0.5) p31a = 0.5 * 0.6 + p3othera p31 = 0.3 * p31a + 0.7 * (1-p31a) p32a = 0.5 * 0.7 + p3othera p32 = 0.3 * p32a + 0.7 * (1-p32a) chlam = SoftScore([1,2], [0.3, 0.7]) l1 = send_lambda(x, chlam, range, parranges, parpis, 1) l2 = send_lambda(x, chlam, range, parranges, parpis, 2) l3 = send_lambda(x, chlam, range, parranges, parpis, 3) @test isapprox([get_score(l1, i) for i in 1:2], [p11, p12]) @test isapprox([get_score(l2, i) for i in 1:3], [p21, p22, p23]) @test isapprox([get_score(l3, i) for i in 1:2], [p31, p32]) end end @testset "BP operations in general" begin cpd = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) =>[0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) x = DiscreteCPT([1,2], cpd) @testset "compute_lambda" begin l1 = SoftScore([1,2], [0.1, 0.2]) l2 = SoftScore([1,2], [0.3, 0.4]) l3 = SoftScore([1,2], [0.5, 0.6]) lam1 = compute_lambda(x, [1,2], [l1, l2, l3]) lam2 = compute_lambda(x, [1,2], Score{output_type(x)}[]) @test isapprox(normalize([get_score(lam1, i) for i in 1:2]), normalize([0.1 * 0.3 * 0.5, 0.2 * 0.4 * 0.6])) @test isapprox(normalize([get_score(lam2, i) for i in 1:2]), normalize([1.0, 1.0])) end @testset "compute_lambda avoids underflow" begin ls = fill(SoftScore([1,2], [0.000000001, 0.000000001]), 500) lam = compute_lambda(x, [1,2], ls) @test isapprox(normalize([get_score(lam, i) for i in 1:2]), [0.5, 0.5]) end @testset "compute_bel" begin p1 = Cat([1, 2], [0.1, 0.2]) l1 = SoftScore([1, 2], [0.3, 0.4]) b = compute_bel(x, [2, 1], p1, l1) @test isapprox([cpdf(b, (), i) for i in [2,1]], normalize([0.2 * 0.4, 0.1 * 0.3])) end @testset "send_pi" begin b1 = Cat([1,2], [0.1, 0.2]) l1 = SoftScore([1,2], [0.3, 0.4]) l2 = SoftScore([1,2], [0.0, 0.0]) p1 = send_pi(x, [2, 1], b1, l1) p2 = send_pi(x, [2, 1], b1, l2) @test isapprox([cpdf(p1, (), i) for i in [2,1]], normalize([0.2 / 0.4, 0.1 / 0.3])) @test all(y -> !isinf(y), [cpdf(p2, (), i) for i in [2,1]]) end @testset "outgoing_pis" begin b1 = Cat([1,2], [0.1, 0.2]) l1 = SoftScore([1,2], [0.3, 0.4]) l2 = SoftScore([1,2], [0.5, 0.6]) p1 = send_pi(x, [2,1], b1, l1) p2 = send_pi(x, [2,1], b1, l2) op = outgoing_pis(x, [2,1], b1, [l1, l2]) @test all(i -> cpdf(op[1], (), i) == cpdf(p1, (), i), [2,1]) @test all(i -> cpdf(op[2], (), i) == cpdf(p2, (), i), [2,1]) end @testset "outgoing_lambdas" begin lam = SoftScore([1,2], [0.3, 0.7]) incoming_pis = (Cat([1,2,3], [0.2, 0.3, 0.5]), Cat([1,2],[0.1, 0.9])) l1 = send_lambda(x, lam, [1,2], ([1,2,3], [1,2]), incoming_pis, 1) l2 = send_lambda(x, lam, [1,2], ([1,2,3], [1,2]), incoming_pis, 2) ols = outgoing_lambdas(x, lam, [1,2], ([1,2,3], [1,2]), incoming_pis) @test length(ols) == 2 @test all(i -> get_score(ols[1], i) == get_score(l1, i), [1,2]) @test all(i -> get_score(ols[2], i) == get_score(l2, i), [1,2]) end end @testset "Three pass BP" begin x1m = Cat([1,2], [0.1, 0.9])() x2m = Cat([1,2,3], [0.2, 0.3, 0.5])() cpd2 = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) =>[0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) x3m = DiscreteCPT([1,2], cpd2)() x4m = DiscreteCPT([1,2], Dict((1,) => [0.15, 0.85], (2,) => [0.25, 0.75]))() x5m = DiscreteCPT([1,2], Dict((1,) => [0.35, 0.65], (2,) => [0.45, 0.55]))() x6m = DiscreteCPT([1,2], Dict((1,) => [0.65, 0.35], (2,) => [0.75, 0.25]))() x1 = x1m(:x1) x2 = x2m(:x2) x3 = x3m(:x3) x4 = x4m(:x4) x5 = x5m(:x5) x6 = x6m(:x6) singlenet = InstantNetwork(Variable[x1], VariableGraph()) @testset "single node network, no evidence" begin run = Runtime(singlenet) default_initializer(run) inst = current_instance(run, x1) three_pass_BP(run) bel = get_belief(run, inst) @test isapprox(cpdf(bel, (), 1), 0.1) @test isapprox(cpdf(bel, (), 2), 0.9) end @testset "single node network, with evidence" begin run = Runtime(singlenet) default_initializer(run) inst = current_instance(run, x1) post_evidence!(run, inst, HardScore(2)) three_pass_BP(run) bel = get_belief(run, inst) @test isapprox(cpdf(bel, (), 1), 0.0) @test isapprox(cpdf(bel, (), 2), 1.0) end twoindepnet = InstantNetwork(Variable[x1, x2], VariableGraph()) @testset "two independent nodes, no evidence" begin run = Runtime(twoindepnet) default_initializer(run) inst = current_instance(run, x1) three_pass_BP(run) bel = get_belief(run, inst) @test isapprox(cpdf(bel, (), 1), 0.1) @test isapprox(cpdf(bel, (), 2), 0.9) end @testset "two independent nodes, with evidence on other variable" begin run = Runtime(twoindepnet) default_initializer(run) inst1 = current_instance(run, x1) inst2 = current_instance(run, x2) post_evidence!(run, inst2, HardScore(2)) three_pass_BP(run) bel = get_belief(run, inst1) @test isapprox(cpdf(bel, (), 1), 0.1) @test isapprox(cpdf(bel, (), 2), 0.9) end parchildnet = InstantNetwork(Variable[x1, x6], VariableGraph(x6=>[x1])) @testset "parent and child, no evidence" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) three_pass_BP(run) bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), 0.1) @test isapprox(cpdf(bel1, (), 2), 0.9) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.1 * 0.65 + 0.9 * 0.75) @test isapprox(cpdf(bel6, (), 2), 0.1 * 0.35 + 0.9 * 0.25) end @testset "parent and child, evidence on parent" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) post_evidence!(run, inst1, HardScore(2)) three_pass_BP(run) bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), 0.0) @test isapprox(cpdf(bel1, (), 2), 1.0) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.75) @test isapprox(cpdf(bel6, (), 2), 0.25) end @testset "parent and child, evidence on child" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) post_evidence!(run, inst6, HardScore(2)) three_pass_BP(run) p1 = 0.1 * 0.35 p2 = 0.9 * 0.25 z = p1 + p2 bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), p1 / z) @test isapprox(cpdf(bel1, (), 2), p2 / z) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.0) @test isapprox(cpdf(bel6, (), 2), 1.0) end @testset "parent and child, intervention on parent" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) post_intervention!(run, inst1, Constant(2)) three_pass_BP(run) bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), 0.0) @test isapprox(cpdf(bel1, (), 2), 1.0) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.75) @test isapprox(cpdf(bel6, (), 2), 0.25) end @testset "parent and child, intervention on child" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) post_intervention!(run, inst6, Constant(2)) three_pass_BP(run) p1 = 0.1 * 0.35 p2 = 0.9 * 0.25 z = p1 + p2 bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), 0.1) @test isapprox(cpdf(bel1, (), 2), 0.9) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.0) @test isapprox(cpdf(bel6, (), 2), 1.0) end @testset "running bp twice with different evidence" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) post_evidence!(run, inst1, HardScore(2)) three_pass_BP(run) delete_evidence!(run, inst1) post_evidence!(run, inst6, HardScore(2)) three_pass_BP(run) p1 = 0.1 * 0.35 p2 = 0.9 * 0.25 z = p1 + p2 bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), p1 / z) @test isapprox(cpdf(bel1, (), 2), p2 / z) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.0) @test isapprox(cpdf(bel6, (), 2), 1.0) end @testset "with soft evidence on root and evidence on child" begin run = Runtime(parchildnet) default_initializer(run) inst1 = current_instance(run, x1) inst6 = current_instance(run, x6) post_evidence!(run, inst1, SoftScore([1,2], [0.3, 0.7])) post_evidence!(run, inst6, HardScore(2)) three_pass_BP(run) # soft evidence is interpreted as an additional lambda message p1 = 0.1 * 0.3 * 0.35 p2 = 0.9 * 0.7 * 0.25 z = p1 + p2 bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), p1 / z) @test isapprox(cpdf(bel1, (), 2), p2 / z) bel6 = get_belief(run, inst6) @test isapprox(cpdf(bel6, (), 1), 0.0) @test isapprox(cpdf(bel6, (), 2), 1.0) end fivecpdnet = InstantNetwork(Variable[x1,x2,x3,x4,x5], VariableGraph(x3=>[x2,x1], x4=>[x3], x5=>[x3])) acfhj = 0.1 * 0.2 * 0.3 * 0.15 * 0.35 acfhk = 0.1 * 0.2 * 0.3 * 0.15 * 0.65 acfij = 0.1 * 0.2 * 0.3 * 0.85 * 0.35 acfik = 0.1 * 0.2 * 0.3 * 0.85 * 0.65 acghj = 0.1 * 0.2 * 0.7 * 0.25 * 0.45 acghk = 0.1 * 0.2 * 0.7 * 0.25 * 0.55 acgij = 0.1 * 0.2 * 0.7 * 0.75 * 0.45 acgik = 0.1 * 0.2 * 0.7 * 0.75 * 0.55 adfhj = 0.1 * 0.3 * 0.4 * 0.15 * 0.35 adfhk = 0.1 * 0.3 * 0.4 * 0.15 * 0.65 adfij = 0.1 * 0.3 * 0.4 * 0.85 * 0.35 adfik = 0.1 * 0.3 * 0.4 * 0.85 * 0.65 adghj = 0.1 * 0.3 * 0.6 * 0.25 * 0.45 adghk = 0.1 * 0.3 * 0.6 * 0.25 * 0.55 adgij = 0.1 * 0.3 * 0.6 * 0.75 * 0.45 adgik = 0.1 * 0.3 * 0.6 * 0.75 * 0.55 aefhj = 0.1 * 0.5 * 0.5 * 0.15 * 0.35 aefhk = 0.1 * 0.5 * 0.5 * 0.15 * 0.65 aefij = 0.1 * 0.5 * 0.5 * 0.85 * 0.35 aefik = 0.1 * 0.5 * 0.5 * 0.85 * 0.65 aeghj = 0.1 * 0.5 * 0.5 * 0.25 * 0.45 aeghk = 0.1 * 0.5 * 0.5 * 0.25 * 0.55 aegij = 0.1 * 0.5 * 0.5 * 0.75 * 0.45 aegik = 0.1 * 0.5 * 0.5 * 0.75 * 0.55 bcfhj = 0.9 * 0.2 * 0.6 * 0.15 * 0.35 bcfhk = 0.9 * 0.2 * 0.6 * 0.15 * 0.65 bcfij = 0.9 * 0.2 * 0.6 * 0.85 * 0.35 bcfik = 0.9 * 0.2 * 0.6 * 0.85 * 0.65 bcghj = 0.9 * 0.2 * 0.4 * 0.25 * 0.45 bcghk = 0.9 * 0.2 * 0.4 * 0.25 * 0.55 bcgij = 0.9 * 0.2 * 0.4 * 0.75 * 0.45 bcgik = 0.9 * 0.2 * 0.4 * 0.75 * 0.55 bdfhj = 0.9 * 0.3 * 0.7 * 0.15 * 0.35 bdfhk = 0.9 * 0.3 * 0.7 * 0.15 * 0.65 bdfij = 0.9 * 0.3 * 0.7 * 0.85 * 0.35 bdfik = 0.9 * 0.3 * 0.7 * 0.85 * 0.65 bdghj = 0.9 * 0.3 * 0.3 * 0.25 * 0.45 bdghk = 0.9 * 0.3 * 0.3 * 0.25 * 0.55 bdgij = 0.9 * 0.3 * 0.3 * 0.75 * 0.45 bdgik = 0.9 * 0.3 * 0.3 * 0.75 * 0.55 befhj = 0.9 * 0.5 * 0.8 * 0.15 * 0.35 befhk = 0.9 * 0.5 * 0.8 * 0.15 * 0.65 befij = 0.9 * 0.5 * 0.8 * 0.85 * 0.35 befik = 0.9 * 0.5 * 0.8 * 0.85 * 0.65 beghj = 0.9 * 0.5 * 0.2 * 0.25 * 0.45 beghk = 0.9 * 0.5 * 0.2 * 0.25 * 0.55 begij = 0.9 * 0.5 * 0.2 * 0.75 * 0.45 begik = 0.9 * 0.5 * 0.2 * 0.75 * 0.55 @testset "five node non-loopy network with discrete CPD nodes and no evidence" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst3 = current_instance(run, x3) inst5 = current_instance(run, x5) three_pass_BP(run) a = acfhj + acfhk + acfij + acfik + acghj + acghk + acgij + acgik + adfhj + adfhk + adfij + adfik + adghj + adghk + adgij + adgik + aefhj + aefhk + aefij + aefik + aeghj + aeghk + aegij + aegik b = 1-a f = acfhj + acfhk + acfij + acfik + adfhj + adfhk + adfij + adfik + aefhj + aefhk + aefij + aefik + bcfhj + bcfhk + bcfij + bcfik + bdfhj + bdfhk + bdfij + bdfik + befhj + befhk + befij + befik g = 1-f j = acfhj + acfij + acghj + acgij + adfhj + adfij + adghj + adgij + aefhj + aefij + aeghj + aegij + bcfhj + bcfij + bcghj + bcgij + bdfhj + bdfij + bdghj + bdgij + befhj + befij + beghj + begij k = 1-j bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), a) @test isapprox(cpdf(bel1, (), 2), b) bel3 = get_belief(run, inst3) @test isapprox(cpdf(bel3, (), 1), f) @test isapprox(cpdf(bel3, (), 2), g) bel5 = get_belief(run, inst5) @test isapprox(cpdf(bel5, (), 1), j) @test isapprox(cpdf(bel5, (), 2), k) end @testset "five node non-loopy network with discrete CPD nodes and evidence at root" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst5 = current_instance(run, x5) post_evidence!(run, inst1, HardScore(2)) three_pass_BP(run) bj = bcfhj + bcfij + bcghj + bcgij + bdfhj + bdfij + bdghj + bdgij + befhj + befij + beghj + begij bk = bcfhk + bcfik + bcghk + bcgik + bdfhk + bdfik + bdghk + bdgik + befhk + befik + beghk + begik bel5 = get_belief(run, inst5) @test isapprox(cpdf(bel5, (), 1), bj / (bj + bk)) @test isapprox(cpdf(bel5, (), 2), bk / (bj + bk)) end @testset "five node non-loopy network with discrete CPD nodes and evidence at leaves" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst4 = current_instance(run, x4) inst5 = current_instance(run, x5) post_evidence!(run, inst4, HardScore(1)) post_evidence!(run, inst5, HardScore(2)) three_pass_BP(run) ahk = acfhk + acghk + adfhk + adghk + aefhk + aeghk bhk = bcfhk + bcghk + bdfhk + bdghk + befhk + beghk bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), ahk / (ahk + bhk)) @test isapprox(cpdf(bel1, (), 2), bhk / (ahk + bhk)) end @testset "five node non-loopy network with discrete CPD nodes and evidence at root and leaf" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst2 = current_instance(run, x2) inst3 = current_instance(run, x3) inst4 = current_instance(run, x4) inst5 = current_instance(run, x5) post_evidence!(run, inst1, HardScore(1)) post_evidence!(run, inst5, HardScore(2)) three_pass_BP(run) ack = acfhk + acfik + acghk + acgik adk = adfhk + adfik + adghk + adgik aek = aefhk + aefik + aeghk + aegik afj = acfhj + acfij + adfhj + adfij + aefhj + aefij afk = acfhk + acfik + adfhk + adfik + aefhk + aefik agj = acghj + acgij + adghj + adgij + aeghj + aegij agk = acghk + acgik + adghk + adgik + aeghk + aegik ahk = acfhk + acghk + adfhk + adghk + aefhk + aeghk aik = acfik + acgik + adfik + adgik + aefik + aegik af = afj + afk ag = agj + agk bel2 = get_belief(run, inst2) @test isapprox(cpdf(bel2, (), 1), ack / (ack + adk + aek)) @test isapprox(cpdf(bel2, (), 2), adk / (ack + adk + aek)) @test isapprox(cpdf(bel2, (), 3), aek / (ack + adk + aek)) bel3 = get_belief(run, inst3) @test isapprox(cpdf(bel3, (), 1), afk / (afk + agk)) @test isapprox(cpdf(bel3, (), 2), agk / (afk + agk)) bel4 = get_belief(run, inst4) @test isapprox(cpdf(bel4, (), 1), ahk / (ahk + aik)) @test isapprox(cpdf(bel4, (), 2), aik / (ahk + aik)) end y1 = Cat([1,2], [0.1, 0.9])()(:y1) y2 = Cat([1,2,3], [0.2, 0.3, 0.5])()(:y2) y3 = Cat([1,2], [0.8, 0.2])()(:y3) cpt1 = Dict((1,) => [0.1, 0.9], (2,) => [0.2, 0.8]) cpt2 = Dict((1,) => [0.3, 0.7], (2,) => [0.4, 0.6], (3,) => [0.5, 0.5]) cpt3 = Dict((1,) => [0.6, 0.4], (2,) => [0.7, 0.3]) cpts::SepCPTs = [cpt1, cpt2, cpt3] y4= Separable([1,2], [0.5, 0.2, 0.3], cpts)()(:y4) y5 = DiscreteCPT([1,2], Dict((1,) => [0.35, 0.65], (2,) => [0.45, 0.55]))()(:y5) fivesepnet = InstantNetwork(Variable[y1,y2,y3,y4,y5], VariableGraph(y4=>[y1,y2,y3], y5=>[y4])) acfhj = 0.1 * 0.2 * 0.8 * (0.5 * 0.1 + 0.2 * 0.3 + 0.3 * 0.6) * 0.35 acfhk = 0.1 * 0.2 * 0.8 * (0.5 * 0.1 + 0.2 * 0.3 + 0.3 * 0.6) * 0.65 acfij = 0.1 * 0.2 * 0.8 * (0.5 * 0.9 + 0.2 * 0.7 + 0.3 * 0.4) * 0.45 acfik = 0.1 * 0.2 * 0.8 * (0.5 * 0.9 + 0.2 * 0.7 + 0.3 * 0.4) * 0.55 acghj = 0.1 * 0.2 * 0.2 * (0.5 * 0.1 + 0.2 * 0.3 + 0.3 * 0.7) * 0.35 acghk = 0.1 * 0.2 * 0.2 * (0.5 * 0.1 + 0.2 * 0.3 + 0.3 * 0.7) * 0.65 acgij = 0.1 * 0.2 * 0.2 * (0.5 * 0.9 + 0.2 * 0.7 + 0.3 * 0.3) * 0.45 acgik = 0.1 * 0.2 * 0.2 * (0.5 * 0.9 + 0.2 * 0.7 + 0.3 * 0.3) * 0.55 adfhj = 0.1 * 0.3 * 0.8 * (0.5 * 0.1 + 0.2 * 0.4 + 0.3 * 0.6) * 0.35 adfhk = 0.1 * 0.3 * 0.8 * (0.5 * 0.1 + 0.2 * 0.4 + 0.3 * 0.6) * 0.65 adfij = 0.1 * 0.3 * 0.8 * (0.5 * 0.9 + 0.2 * 0.6 + 0.3 * 0.4) * 0.45 adfik = 0.1 * 0.3 * 0.8 * (0.5 * 0.9 + 0.2 * 0.6 + 0.3 * 0.4) * 0.55 adghj = 0.1 * 0.3 * 0.2 * (0.5 * 0.1 + 0.2 * 0.4 + 0.3 * 0.7) * 0.35 adghk = 0.1 * 0.3 * 0.2 * (0.5 * 0.1 + 0.2 * 0.4 + 0.3 * 0.7) * 0.65 adgij = 0.1 * 0.3 * 0.2 * (0.5 * 0.9 + 0.2 * 0.6 + 0.3 * 0.3) * 0.45 adgik = 0.1 * 0.3 * 0.2 * (0.5 * 0.9 + 0.2 * 0.6 + 0.3 * 0.3) * 0.55 aefhj = 0.1 * 0.5 * 0.8 * (0.5 * 0.1 + 0.2 * 0.5 + 0.3 * 0.6) * 0.35 aefhk = 0.1 * 0.5 * 0.8 * (0.5 * 0.1 + 0.2 * 0.5 + 0.3 * 0.6) * 0.65 aefij = 0.1 * 0.5 * 0.8 * (0.5 * 0.9 + 0.2 * 0.5 + 0.3 * 0.4) * 0.45 aefik = 0.1 * 0.5 * 0.8 * (0.5 * 0.9 + 0.2 * 0.5 + 0.3 * 0.4) * 0.55 aeghj = 0.1 * 0.5 * 0.2 * (0.5 * 0.1 + 0.2 * 0.5 + 0.3 * 0.7) * 0.35 aeghk = 0.1 * 0.5 * 0.2 * (0.5 * 0.1 + 0.2 * 0.5 + 0.3 * 0.7) * 0.65 aegij = 0.1 * 0.5 * 0.2 * (0.5 * 0.9 + 0.2 * 0.5 + 0.3 * 0.3) * 0.45 aegik = 0.1 * 0.5 * 0.2 * (0.5 * 0.9 + 0.2 * 0.5 + 0.3 * 0.3) * 0.55 bcfhj = 0.9 * 0.2 * 0.8 * (0.5 * 0.2 + 0.2 * 0.3 + 0.3 * 0.6) * 0.35 bcfhk = 0.9 * 0.2 * 0.8 * (0.5 * 0.2 + 0.2 * 0.3 + 0.3 * 0.6) * 0.65 bcfij = 0.9 * 0.2 * 0.8 * (0.5 * 0.8 + 0.2 * 0.7 + 0.3 * 0.4) * 0.45 bcfik = 0.9 * 0.2 * 0.8 * (0.5 * 0.8 + 0.2 * 0.7 + 0.3 * 0.4) * 0.55 bcghj = 0.9 * 0.2 * 0.2 * (0.5 * 0.2 + 0.2 * 0.3 + 0.3 * 0.7) * 0.35 bcghk = 0.9 * 0.2 * 0.2 * (0.5 * 0.2 + 0.2 * 0.3 + 0.3 * 0.7) * 0.65 bcgij = 0.9 * 0.2 * 0.2 * (0.5 * 0.8 + 0.2 * 0.7 + 0.3 * 0.3) * 0.45 bcgik = 0.9 * 0.2 * 0.2 * (0.5 * 0.8 + 0.2 * 0.7 + 0.3 * 0.3) * 0.55 bdfhj = 0.9 * 0.3 * 0.8 * (0.5 * 0.2 + 0.2 * 0.4 + 0.3 * 0.6) * 0.35 bdfhk = 0.9 * 0.3 * 0.8 * (0.5 * 0.2 + 0.2 * 0.4 + 0.3 * 0.6) * 0.65 bdfij = 0.9 * 0.3 * 0.8 * (0.5 * 0.8 + 0.2 * 0.6 + 0.3 * 0.4) * 0.45 bdfik = 0.9 * 0.3 * 0.8 * (0.5 * 0.8 + 0.2 * 0.6 + 0.3 * 0.4) * 0.55 bdghj = 0.9 * 0.3 * 0.2 * (0.5 * 0.2 + 0.2 * 0.4 + 0.3 * 0.7) * 0.35 bdghk = 0.9 * 0.3 * 0.2 * (0.5 * 0.2 + 0.2 * 0.4 + 0.3 * 0.7) * 0.65 bdgij = 0.9 * 0.3 * 0.2 * (0.5 * 0.8 + 0.2 * 0.6 + 0.3 * 0.3) * 0.45 bdgik = 0.9 * 0.3 * 0.2 * (0.5 * 0.8 + 0.2 * 0.6 + 0.3 * 0.3) * 0.55 befhj = 0.9 * 0.5 * 0.8 * (0.5 * 0.2 + 0.2 * 0.5 + 0.3 * 0.6) * 0.35 befhk = 0.9 * 0.5 * 0.8 * (0.5 * 0.2 + 0.2 * 0.5 + 0.3 * 0.6) * 0.65 befij = 0.9 * 0.5 * 0.8 * (0.5 * 0.8 + 0.2 * 0.5 + 0.3 * 0.4) * 0.45 befik = 0.9 * 0.5 * 0.8 * (0.5 * 0.8 + 0.2 * 0.5 + 0.3 * 0.4) * 0.55 beghj = 0.9 * 0.5 * 0.2 * (0.5 * 0.2 + 0.2 * 0.5 + 0.3 * 0.7) * 0.35 beghk = 0.9 * 0.5 * 0.2 * (0.5 * 0.2 + 0.2 * 0.5 + 0.3 * 0.7) * 0.65 begij = 0.9 * 0.5 * 0.2 * (0.5 * 0.8 + 0.2 * 0.5 + 0.3 * 0.3) * 0.45 begik = 0.9 * 0.5 * 0.2 * (0.5 * 0.8 + 0.2 * 0.5 + 0.3 * 0.3) * 0.55 @testset "five node non-loopy network with separable CPD nodes and no evidence" begin run = Runtime(fivesepnet) default_initializer(run) inst4 = current_instance(run, y4) three_pass_BP(run) h = acfhj + acfhk + acghj + acghk + adfhj + adfhk + adghj + adghk + aefhj + aefhk + aeghj + aeghk + bcfhj + bcfhk + bcghj + bcghk + bdfhj + bdfhk + bdghj + bdghk + befhj + befhk + beghj + beghk i = acfij + acfik + acgij + acgik + adfij + adfik + adgij + adgik + aefij + aefik + aegij + aegik + bcfij + bcfik + bcgij + bcgik + bdfij + bdfik + bdgij + bdgik + befij + befik + begij + begik bel4 = get_belief(run, inst4) @test isapprox(cpdf(bel4, (), 1), h) @test isapprox(cpdf(bel4, (), 2), i) end @testset "five node non-loopy network with separable CPD nodes and evidence at root" begin run = Runtime(fivesepnet) default_initializer(run) inst1 = current_instance(run, y1) inst5 = current_instance(run, y5) post_evidence!(run, inst1, HardScore(2)) three_pass_BP(run) bj = bcfhj + bcfij + bcghj + bcgij + bdfhj + bdfij + bdghj + bdgij + befhj + befij + beghj + begij bk = bcfhk + bcfik + bcghk + bcgik + bdfhk + bdfik + bdghk + bdgik + befhk + befik + beghk + begik bel5 = get_belief(run, inst5) @test isapprox(cpdf(bel5, (), 1), bj / (bj + bk)) @test isapprox(cpdf(bel5, (), 2), bk / (bj + bk)) end @testset "five node non-loopy network with separable CPD nodes and evidence at leaves" begin run = Runtime(fivesepnet) default_initializer(run) inst1 = current_instance(run, y1) inst5 = current_instance(run, y5) post_evidence!(run, inst5, HardScore(2)) three_pass_BP(run) ak = acfhk + acfik + acghk + acgik + adfhk + adfik + adghk + adgik + aefhk + aefik + aeghk + aegik bk = bcfhk + bcfik + bcghk + bcgik + bdfhk + bdfik + bdghk + bdgik + befhk + befik + beghk + begik bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), ak / (ak + bk)) @test isapprox(cpdf(bel1, (), 2), bk / (ak + bk)) end @testset "five node non-loopy network with separable CPD nodes and evidence at root and leaf" begin run = Runtime(fivesepnet) default_initializer(run) inst1 = current_instance(run, y1) inst4 = current_instance(run, y4) inst5 = current_instance(run, y5) post_evidence!(run, inst1, HardScore(2)) post_evidence!(run, inst5, HardScore(2)) three_pass_BP(run) bhk = bcfhk + bcghk + bdfhk + bdghk + befhk + beghk bik = bcfik + bcgik + bdfik + bdgik + befik + begik bel4 = get_belief(run, inst4) @test isapprox(cpdf(bel4, (), 1), bhk / (bhk + bik)) @test isapprox(cpdf(bel4, (), 2), bik / (bhk + bik)) end @testset "five node non-loopy network with separable CPD nodes and evidence on separable node" begin run = Runtime(fivesepnet) default_initializer(run) inst1 = current_instance(run, y1) inst4 = current_instance(run, y4) post_evidence!(run, inst4, HardScore(2)) three_pass_BP(run) ai = acfij + acgij + adfij + adgij + aefij + aegij + acfik + acgik + adfik + adgik + aefik + aegik bi = bcfij + bcgij + bdfij + bdgij + befij + begij + bcfik + bcgik + bdfik + bdgik + befik + begik bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), ai / (ai + bi)) @test isapprox(cpdf(bel1, (), 2), bi / (ai + bi)) end z1 = Cat([1,2], [0.1, 0.9])()(:z1) z2 = DiscreteCPT([1,2], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7]))()(:z2) z3 = DiscreteCPT([1,2], Dict((1,) => [0.4, 0.6], (2,) => [0.5, 0.5]))()(:z3) cpt1 = Dict((1,) => [0.6, 0.4], (2,) => [0.7, 0.3]) cpt2 = Dict((1,) => [0.8, 0.2], (2,) => [0.9, 0.1]) cpts = [cpt1, cpt2] z4 = Separable([1,2], [0.75, 0.25], cpts)()(:z4) loopynet = InstantNetwork(Variable[z1,z2,z3,z4], VariableGraph(z2=>[z1], z3=>[z1], z4=>[z2,z3])) aceg = 0.1 * 0.2 * 0.4 * (0.75 * 0.6 + 0.25 * 0.8) aceh = 0.1 * 0.2 * 0.4 * (0.75 * 0.4 + 0.25 * 0.2) acfg = 0.1 * 0.2 * 0.6 * (0.75 * 0.6 + 0.25 * 0.9) acfh = 0.1 * 0.2 * 0.6 * (0.75 * 0.4 + 0.25 * 0.1) adeg = 0.1 * 0.8 * 0.4 * (0.75 * 0.7 + 0.25 * 0.8) adeh = 0.1 * 0.8 * 0.4 * (0.75 * 0.3 + 0.25 * 0.2) adfg = 0.1 * 0.8 * 0.6 * (0.75 * 0.7 + 0.25 * 0.9) adfh = 0.1 * 0.8 * 0.6 * (0.75 * 0.3 + 0.25 * 0.1) bceg = 0.9 * 0.3 * 0.5 * (0.75 * 0.6 + 0.25 * 0.8) bceh = 0.9 * 0.3 * 0.5 * (0.75 * 0.4 + 0.25 * 0.2) bcfg = 0.9 * 0.3 * 0.5 * (0.75 * 0.6 + 0.25 * 0.9) bcfh = 0.9 * 0.3 * 0.5 * (0.75 * 0.4 + 0.25 * 0.1) bdeg = 0.9 * 0.7 * 0.5 * (0.75 * 0.7 + 0.25 * 0.8) bdeh = 0.9 * 0.7 * 0.5 * (0.75 * 0.3 + 0.25 * 0.2) bdfg = 0.9 * 0.7 * 0.5 * (0.75 * 0.7 + 0.25 * 0.9) bdfh = 0.9 * 0.7 * 0.5 * (0.75 * 0.3 + 0.25 * 0.1) @testset "four node loopy network with separable nodes and no evidence" begin run = Runtime(loopynet) default_initializer(run) inst4 = current_instance(run, z4) three_pass_BP(run) g = aceg + acfg + adeg + adfg + bceg + bcfg + bdeg + bdfg h = aceh + acfh + adeh + adfh + bceh + bcfh + bdeh + bdfh bel4 = get_belief(run, inst4) @test isapprox(cpdf(bel4, (), 1), g) @test isapprox(cpdf(bel4, (), 2), h) end @testset "four node loopy network with separable nodes and evidence at root (exact)" begin run = Runtime(loopynet) default_initializer(run) inst1 = current_instance(run, z1) inst4 = current_instance(run, z4) post_evidence!(run, inst1, HardScore(2)) three_pass_BP(run) bg = bceg + bcfg + bdeg + bdfg bh = bceh + bcfh + bdeh + bdfh bel4 = get_belief(run, inst4) @test isapprox(cpdf(bel4, (), 1), bg / (bg + bh)) @test isapprox(cpdf(bel4, (), 2), bh / (bg + bh)) end @testset "four nodeloopy network with separable nodes and evidence at leaves (approximate)" begin run = Runtime(loopynet) default_initializer(run) inst1 = current_instance(run, z1) inst4 = current_instance(run, z4) post_evidence!(run, inst4, HardScore(2)) three_pass_BP(run) ah = aceh + acfh + adeh + adfh bh = bceh + bcfh + bdeh + bdfh bel1 = get_belief(run, inst1) @test isapprox(cpdf(bel1, (), 1), ah / (ah + bh); atol = 0.0001) @test isapprox(cpdf(bel1, (), 2), bh / (ah + bh); atol = 0.0001) end end @testset "loopy BP" begin # Loopy BP is hard to test directly. # Even on loopy networks, it is not guaranteed to have less error than three pass BP. # We can only test that it behaves like three pass BP where expected, which is without evidence, # and differently where not. x1 = Cat([1,2], [0.1, 0.9])()(:x1) x2 = DiscreteCPT([1,2], Dict((1,) => [0.2, 0.8], (2,) => [0.8, 0.2]))()(:x2) x3 = DiscreteCPT([1,2], Dict((1,) => [0.3, 0.7], (2,) => [0.7, 0.3]))()(:x3) x4 = DiscreteCPT([1,2], Dict((1,1) => [0.1, 0.9], (1,2) => [0.1, 0.9], (2,1) => [0.1, 0.9], (2,2) => [0.95, 0.05]))()(:x4) loopynet = InstantNetwork(Variable[x1,x2,x3,x4], VariableGraph(x2=>[x1], x3=>[x1], x4=>[x3,x2])) @testset "marginal query" begin # On marginal queries, there are no lambda messages, so loopy BP converges in one pass # Therefore it should have the same result as three pass BP. runloopy = Runtime(loopynet) default_initializer(runloopy) loopy_BP(runloopy; epsilon = 0.000001) runthree = Runtime(loopynet) default_initializer(runthree) three_pass_BP(runthree) # runve = Runtime(loopynet) # order = topsort(get_initial_graph(loopynet)) # ensure_all!(runve) # set_ranges!(runve, 2, 1, order) # exact = ve(runve, order, [x4]) loopyinst4 = current_instance(runloopy, x4) loopybel = get_belief(runloopy, loopyinst4) threeinst4 = current_instance(runthree, x4) threebel = get_belief(runthree, threeinst4) # exactbel = exact.entries for i in 1:2 # @test abs(loopybel[i] - exactbel[i]) <= abs(threebel[i] - exactbel[i]) @test cpdf(loopybel, (), i) == cpdf(threebel, (), i) end end @testset "marginal query" begin # On conditional queries with evidence, loopy BP could run more iterations. # We design the network to make sure this happens. # Therefore it should have different results from three pass BP. runloopy = Runtime(loopynet) default_initializer(runloopy) loopyinst4 = current_instance(runloopy, x4) post_evidence!(runloopy, loopyinst4, HardScore(2)) loopy_BP(runloopy; epsilon = 0.000001) runthree = Runtime(loopynet) default_initializer(runthree) threeinst4 = current_instance(runthree, x4) post_evidence!(runthree, threeinst4, HardScore(2)) three_pass_BP(runthree) loopyinst1 = current_instance(runloopy, x1) loopybel = get_belief(runloopy, loopyinst1) threeinst1 = current_instance(runthree, x1) threebel = get_belief(runthree, threeinst1) for x in [1,2] @test cpdf(loopybel, (), x) != cpdf(threebel, (), x) end end @testset "Correctly handle ranges not in alphabetical order" begin # create network p = Cat([:N, :AN],[1.0, 0.0])()(:p) o = DiscreteCPT([:B, :I], Dict((:N,) => [1.0, 0.0], (:AN,) => [0.2, 0.8]))()(:o) a = DiscreteCPT([:SK, :SH], Dict((:B,) => [1.0, 0.0], (:I,) => [0.0,1.0]))()(:a) m = DiscreteCPT([:P, :M1, :M2], Dict((:SK,) => [0.9, 0.099, 0.001], (:SH,) => [0.2, 0.05, 0.75]))()(:m) network = InstantNetwork(Variable[p,o,a,m], VariableGraph(o=>[p], a=>[o], m=>[a])) # create runtime runtime = Runtime(network) default_initializer(runtime) # run algorithm loopy_BP(runtime; epsilon = 0.000001) # get beliefs p_i = current_instance(runtime,get_node(network,:p)) belief = get_belief(runtime, p_i) @test isapprox([cpdf(belief, (), x) for x in [:N, :AN]], [1.0, 0.0];atol=0.1) o_i = current_instance(runtime, get_node(network,:o)) belief = get_belief(runtime, o_i) @test isapprox([cpdf(belief, (), x) for x in [:B, :I]], [1.0, 0.0];atol=0.1) a_i = current_instance(runtime, get_node(network,:a)) belief = get_belief(runtime, a_i) @test isapprox([cpdf(belief, (), x) for x in [:SK, :SH]], [1.0, 0.0];atol=0.1) m_i = current_instance(runtime, get_node(network,:m)) belief = get_belief(runtime, m_i) @test isapprox([cpdf(belief, (), x) for x in [:P, :M1,:M2]], [0.9, 0.099, 0.001];atol=0.1) end end @testset "BP with determinisitic variables" begin @testset "Det" begin c1 = Cat([1.1, 2.2], [0.4, 0.6]) c2 = Cat([3.3, 4.4, 5.5], [0.2, 0.3, 0.5]) f(i,j) = Int(floor(i + j)) d = Det(Tuple{Float64, Float64}, Int, f) vc1 = c1()(:c1) vc2 = c2()(:c2) vd = d()(:d) net = InstantNetwork(Variable[vc1,vc2,vd], VariableGraph(vd=>[vc1,vc2])) @testset "Prior probabilities" begin run = Runtime(net) default_initializer(run) # post_evidence!(run, current_instance(run, vd), SoftScore([5,6], [0.9, 0.1])) three_pass_BP(run) bc1 = get_belief(run, current_instance(run, vc1)) bc2 = get_belief(run, current_instance(run, vc2)) bd = get_belief(run, current_instance(run, vd)) @test isapprox(cpdf(bc1, (), 1.1), 0.4) @test isapprox(cpdf(bc1, (), 2.2), 0.6) @test isapprox(cpdf(bc2, (), 3.3), 0.2) @test isapprox(cpdf(bc2, (), 4.4), 0.3) @test isapprox(cpdf(bc2, (), 5.5), 0.5) @test isapprox(cpdf(bd, (), 4), 0.4 * 0.2) @test isapprox(cpdf(bd, (), 5), 0.4 * 0.3 + 0.6 * 0.2) @test isapprox(cpdf(bd, (), 6), 0.4 * 0.5 + 0.6 * 0.3) @test isapprox(cpdf(bd, (), 7), 0.6 * 0.5) end @testset "Posterior probabilities" begin run = Runtime(net) default_initializer(run) post_evidence!(run, current_instance(run, vd), SoftScore([5,6], [0.9, 0.1])) three_pass_BP(run) bc1 = get_belief(run, current_instance(run, vc1)) bc2 = get_belief(run, current_instance(run, vc2)) bd = get_belief(run, current_instance(run, vd)) p14 = 0.4 * 0.3 * 0.9 p15 = 0.4 * 0.5 * 0.1 p23 = 0.6 * 0.2 * 0.9 p24 = 0.6 * 0.3 * 0.1 p1 = p14 + p15 p2 = p23 + p24 p3 = p23 p4 = p14 + p24 p5 = p15 pd5 = p14 + p23 pd6 = p15 + p24 z1 = p1 + p2 z2 = p3 + p4 + p5 zd = pd5 + pd6 @test isapprox([cpdf(bc1, (), x) for x in [1.1, 2.2]], [p1, p2] ./ z1) @test isapprox([cpdf(bc2, (), x) for x in [3.3, 4.4, 5.5]], [p3, p4, p5] ./ z2) @test isapprox([cpdf(bd, (), x) for x in [4, 5, 6, 7]], [0, pd5, pd6, 0] ./ zd) end # @testset "Downsampling in Det" begin # function f(x_tmin1::Float64, func::Symbol) # delta_t = 1 # if (func==:F2) # square: x_t = t^2 <=> x_t = x_tmin1 + 2*sqrt(x_tmin1)*delta_t + delta_t^2 # x_t = floor(x_tmin1 + 2 * sqrt(x_tmin1) * delta_t + delta_t^2) # elseif (func==:F3) # linear: x_t = at + k <=> x_t = x_tmin1 + a * delta_t # a = 5 # slope # x_t = floor(x_tmin1 + a * delta_t) # else # include propagation constant x_t = x_tmin1 # :F1 # x_t = floor(x_tmin1) # end # return x_t # end # p = Det(Tuple{Float64, Symbol}, Float64, f) # parranges = ([100.0], [:F1, :F2, :F3]) # pis = ((1.0,), (0.2,0.3,0.5)) # @test support(p, parranges, 100, Float64[])==[100.0, 105.0, 121.0] # # test downsampling # samples = support(p, parranges, 2, Float64[]) # @test length(samples)==2 # @test setdiff(samples, [100.0, 105.0, 121.0]) |> isempty == true # check if samples is contained in the original range # #create network # a0 = Cat([:F1,:F2,:F3], [1.0,0.0,0.0])()(:a0) # b0 = DiscreteCPT([100.0], Dict((:F1,) => [1.0], (:F2,) => [1.0], (:F3,) => [1.0]))()(:b0) # aCPD = Dict((:F1, ) => [0.95, 0.045, 0.005], # (:F2, ) => [0.95, 0.045, 0.005], # (:F3, ) => [0.45, 0.1, 0.45]) # a1 = DiscreteCPT([:F1,:F2,:F3], aCPD)()(:a1) # b1 = Det(Tuple{Float64, Symbol}, Float64, f)()(:b1) # a2 = DiscreteCPT([:F1,:F2,:F3], aCPD)()(:a2) # b2 = Det(Tuple{Float64, Symbol}, Float64, f)()(:b2) # network = InstantNetwork(Variable[a0,b0,a1,b1,a2,b2], VariableGraph(b0=>[a0], a1=>[a0], b1=>[b0,a1], a2=>[a1], b2=>[b1,a2])) # runtime = Runtime(network) # Scruff.RTUtils.default_initializer(runtime, 1, 3) # limit to 3 possible values of Det # @test length(get_range(runtime, current_instance(runtime,b0))) == 1 # @test length(get_range(runtime, current_instance(runtime,b1))) == 3 # @test length(get_range(runtime, current_instance(runtime,b2))) == 3 # post_evidence!(runtime, current_instance(runtime,a1), HardScore(:F2)) # three_pass_BP(runtime) # a0_i = current_instance(runtime,a0) # belief_a0 = get_belief(runtime, a0_i) # #println("belief a0=$belief_a0") # b0_i = current_instance(runtime,b0) # belief_b0 = get_belief(runtime, b0_i) # #println("belief b0=$belief_b0 and range = $(get_value(runtime, current_instance(runtime,b0), :range))") # a1_i = current_instance(runtime,a1) # belief_a1 = get_belief(runtime, a1_i) # #println("belief a1=$belief_a1") # b1_i = current_instance(runtime,b1) # belief_b1 = get_belief(runtime, b1_i) # #println("belief b1=$belief_b1 and range = $(get_value(runtime, current_instance(runtime,b1), :range))") # a2_i = current_instance(runtime,a2) # belief_a2 = get_belief(runtime, a2_i) # #println("belief a2=$belief_a2") # b2_i = current_instance(runtime,b2) # belief_b2 = get_belief(runtime, b2_i) # #println("belief b2=$belief_b2 and range = $(get_value(runtime, current_instance(runtime,b2), :range))") # end end @testset "If" begin c1 = Cat([1, 2], [0.1, 0.9]) c2 = Cat([1, 2, 3], [0.2, 0.3, 0.5]) f = Flip(0.4) i = If{Int}() vc1 = c1()(:c1) vc2 = c2()(:c2) vf = f()(:f) vi = i()(:i) net = InstantNetwork(Variable[vc1,vc2,vf,vi], VariableGraph(vi=>[vf, vc1, vc2])) @testset "Marginal probabilities without evidence" begin run = Runtime(net) default_initializer(run) three_pass_BP(run) bc1 = get_belief(run, current_instance(run, vc1)) bc2 = get_belief(run, current_instance(run, vc2)) bf = get_belief(run, current_instance(run, vf)) bi = get_belief(run, current_instance(run, vi)) @test isapprox([cpdf(bc1, (), x) for x in [1,2]], [0.1, 0.9]) @test isapprox([cpdf(bc2, (), x) for x in [1,2,3]], [0.2, 0.3, 0.5]) @test isapprox([cpdf(bf, (), x) for x in [false, true]], [0.6, 0.4]) @test isapprox([cpdf(bi, (), x) for x in [1,2,3]], [0.4 * 0.1 + 0.6 * 0.2, 0.4 * 0.9 + 0.6 * 0.3, 0.6 * 0.5]) end @testset "Posterior probabilities with evidence" begin run = Runtime(net) default_initializer(run) post_evidence!(run, current_instance(run, vi), HardScore(1)) three_pass_BP(run) bc1 = get_belief(run, current_instance(run, vc1)) bc2 = get_belief(run, current_instance(run, vc2)) bf = get_belief(run, current_instance(run, vf)) bi = get_belief(run, current_instance(run, vi)) # The following are the probabilities of joint states consistent with vi = 1 p11t = 0.1 * 0.2 * 0.4 p12t = 0.1 * 0.3 * 0.4 p13t = 0.1 * 0.5 * 0.4 p11f = 0.1 * 0.2 * 0.6 p21f = 0.9 * 0.2 * 0.6 z = p11t + p12t + p13t + p11f + p21f @test isapprox([cpdf(bc1, (), x) for x in [1,2]], [(p11t + p12t + p13t + p11f) / z, p21f / z]) @test isapprox([cpdf(bc2, (), x) for x in [1,2,3]], [(p11t + p11f + p21f) / z, p12t / z, p13t / z]) @test isapprox([cpdf(bf, (), x) for x in [false, true]], [(p11f + p21f) / z, (p11t + p12t + p13t) / z]) @test isapprox([cpdf(bi, (), x) for x in [1,2,3]], [1.0, 0.0, 0.0]) end end end @testset "BP with Apply" begin ff1((x,)) = x + x ff2((x,)) = x f1 = Det(Tuple{Int}, Int, ff1) f2 = Det(Tuple{Int}, Int, ff2) gg1(x, y) = x + y gg2(x, y) = x g1 = Det(Tuple{Int,Int}, Int, gg1) g2 = Det(Tuple{Int,Int}, Int, gg2) h1 = f2 h2params = Dict((1,) => [0.4,0.6], (2,) => [0.7, 0.3]) h2 = DiscreteCPT([1,2], h2params) xrange = [1,2] yrange = [1,2,3] xyrange = [(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)] frange = [f1, f2] grange = [g1, g2] hrange = [h1, h2] xpi = [0.1, 0.9] ypi = [0.2, 0.3, 0.5] xypi = [0.1 * 0.2, 0.1 * 0.3, 0.1 * 0.5, 0.9 * 0.2, 0.9 * 0.3, 0.9 * 0.5] fpi = [0.2, 0.8] gpi = [0.3, 0.7] hpi = [0.7, 0.3] x = Cat(xrange, xpi) y = Cat(yrange, ypi) xy = Cat(xyrange, xypi) f = Cat(frange, fpi) g = Cat(grange, gpi) h = Cat(hrange, hpi) appf = Apply{Tuple{Int}, Int}() appg = Apply{Tuple{Int, Int}, Int}() apph = appf appfrange = [1,2,4] appgrange = [1,2,3,4,5] apphrange = [1,2] lf = [0.1, 0.2, 0.7] lg = [0.1, 0.2, 0.25, 0.3, 0.15] lh = [0.75, 0.25] lamappf = SoftScore(appfrange, lf) lamappg = SoftScore(appgrange, lg) lamapph = SoftScore(apphrange, lh) @testset "compute_pi" begin @testset "with one arg parent and deterministic sfuncs" begin pi = compute_pi(appf, appfrange, (frange, xrange), (f, x)) p1 = cpdf(pi, (), 1) p2 = cpdf(pi, (), 2) p4 = cpdf(pi, (), 4) @test isapprox(p1, 0.8 * 0.1) @test isapprox(p2, 0.8 * 0.9 + 0.2 * 0.1) @test isapprox(p4, 0.2 * 0.9) end @testset "with two arg parents and deterministic sfuncs" begin pi = compute_pi(appg, appgrange, (grange, xyrange), (g, xy)) p1 = cpdf(pi, (), 1) p2 = cpdf(pi, (), 2) p3 = cpdf(pi, (), 3) p4 = cpdf(pi, (), 4) p5 = cpdf(pi, (), 5) @test isapprox(p1, gpi[2] * xpi[1]) # Only 1 @test isapprox(p2, gpi[2] * xpi[2] + gpi[1] * xpi[1] * ypi[1]) # Only 2 or 1+1 @test isapprox(p3, gpi[1] * (xpi[1] * ypi[2] + xpi[2] * ypi[1])) # 1+2 or 2+1 @test isapprox(p4, gpi[1] * (xpi[1] * ypi[3] + xpi[2] * ypi[2])) # 1+3 or 2+2 @test isapprox(p5, gpi[1] * xpi[2] * ypi[3]) # 2+3 end @testset "with stochastic functions" begin pi = compute_pi(apph, apphrange, (hrange, xrange), (h, x)) q1 = cpdf(pi, (), 1) q2 = cpdf(pi, (), 2) p1given1 = hpi[1] + hpi[2] * h2params[(1,)][1] p1given2 = hpi[2] * h2params[(2,)][1] p2given1 = hpi[2] * h2params[(1,)][2] p2given2 = hpi[1] + hpi[2] * h2params[(2,)][2] p1 = xpi[1] * p1given1 + xpi[2] * p1given2 p2 = xpi[1] * p2given1 + xpi[2] * p2given2 @test isapprox(q1, p1) @test isapprox(q2, p2) end end @testset "compute_lambda" begin @testset "on sfunc parent" begin @testset "with one arg parent and deterministic functions" begin lam = send_lambda(appf, lamappf, appfrange, (frange, xrange), (f, x), 1) # Possibilities for f1 = x -> x + x: # 1: impossible # 2: x == 1 # 4: x == 2 l1 = cpdf(x, (), 1) * get_score(lamappf, 2) + cpdf(x, (), 2) * get_score(lamappf, 4) # Possibilities for f2 = x -> x # 1: x == 1 # 2: x == 2 # 4: impossible l2 = cpdf(x, (), 1) * get_score(lamappf, 1) + cpdf(x, (), 2) * get_score(lamappf, 2) @test isapprox(get_score(lam, f1), l1) @test isapprox(get_score(lam, f2), l2) end @testset "with two arg parents and deterministic functions" begin xyrange = [(xy[1], xy[2]) for xy in Utils.cartesian_product([xrange, yrange])] xy = Cat(xyrange, [p[1] * p[2] for p in Utils.cartesian_product([xpi, ypi])]) pi = compute_pi(appg, appgrange, (grange, xyrange), (g, xy)) lam = send_lambda(appg, lamappg, appgrange, (grange, xyrange), (g, xy), 1) # Possibilities for g1 = (x,y) -> x + y # 1: impossible # 2: x == 1, y == 1 # 3: x == 1, y == 2 or x == 2, y == 1 # 4: x == 1, y == 3 or x == 2, y == 2 # 5: x == 2, y == 3 l1 = cpdf(x, (), 1) * cpdf(y, (), 1) * get_score(lamappg, 2) + (cpdf(x, (), 1) * cpdf(y, (), 2) + cpdf(x, (), 2) * cpdf(y, (), 1)) * get_score(lamappg, 3) + (cpdf(x, (), 1) * cpdf(y, (), 3) + cpdf(x, (), 2) * cpdf(y, (), 2)) * get_score(lamappg, 4) + cpdf(x, (), 2) * cpdf(y, (), 3) * get_score(lamappg, 5) # Possibilities for g2 = (x,y) -> x # 1: x == 1, y == anything # 2: x == 2, y == anything # 3-5: impossible l2 = cpdf(x, (), 1) * get_score(lamappg, 1) + cpdf(x, (), 2) * get_score(lamappg, 2) @test isapprox(get_score(lam, g1), l1) @test isapprox(get_score(lam, g2), l2) end @testset "with stochastic functions" begin lam = send_lambda(apph, lamapph, apphrange, (hrange, xrange), (h, x), 1) # possibilities for h1 = x -> x # 1: x == 1 # 2: x == 2 l1 = cpdf(x, (), 1) * get_score(lamapph, 1) + cpdf(x, (), 2) * get_score(lamapph, 2) # possibilities for h2 = DiscreteCpt([1,2], h2params) # 1: x == 1 (prob h2params[(1,)][1]) or x == 2 (prob h2params[(2,)][1]) # 2: x == 1 (prob h2params[(1,)][2]) or x == 2 (prob h2params[(2,)][2]) l2 = (cpdf(x, (), 1) * h2params[(1,)][1] + cpdf(x, (), 2) * h2params[(2,)][1]) * get_score(lamapph, 1) + (cpdf(x, (), 1) * h2params[(1,)][2] + cpdf(x, (), 2) * h2params[(2,)][2]) * get_score(lamapph, 2) @test isapprox(get_score(lam, h1), l1) @test isapprox(get_score(lam, h2), l2) end end @testset "on args parent" begin @testset "with one arg parent and deterministic functions" begin lam = send_lambda(appf, lamappf, appfrange, (frange, xrange), (f, x), 2) # Possibilities for x == 1: # 1: f == f2 # 2: f == f1 # 4: impossible l1 = cpdf(f, (), f2) * get_score(lamappf, 1) + cpdf(f, (), f1) * get_score(lamappf, 2) # Possibilities for x == 2 # 1: impossible # 2: f == f2 # 4: f == f1 l2 = cpdf(f, (), f2) * get_score(lamappf, 2) + cpdf(f, (), f1) * get_score(lamappf, 4) @test isapprox(get_score(lam, 1), l1) @test isapprox(get_score(lam, 2), l2) end @testset "with two arg parents and deterministic functions" begin lam = send_lambda(appg, lamappg, appgrange, (grange, xyrange), (g, xy), 2) # Possibilities for (1,1) # 1: g == g2 # 2: g == g1 l11 = cpdf(g, (), g2) * get_score(lamappg, 1) + cpdf(g, (), g1) * get_score(lamappg, 2) # Possibilities for (1,2) # 1: g == g2 # 3: g == g1 l12 = cpdf(g, (), g2) * get_score(lamappg, 1) + cpdf(g, (), g1) * get_score(lamappg, 3) # Possibilities for (1,3) # 1: g == g2 # 4: g == g1 l13 = cpdf(g, (), g2) * get_score(lamappg, 1) + cpdf(g, (), g1) * get_score(lamappg, 4) # Possibilities for (2,1) # 2: g == g2 # 3: g == g1 l21 = cpdf(g, (), g2) * get_score(lamappg, 2) + cpdf(g, (), g1) * get_score(lamappg, 3) # Possibilities for (2,2) # 2: g == g2 # 4: g == g1 l22 = cpdf(g, (), g2) * get_score(lamappg, 2) + cpdf(g, (), g1) * get_score(lamappg, 4) # Possibilities for (2,3) # 2: g == g2 # 5: g == g1 l23 = cpdf(g, (), g2) * get_score(lamappg, 2) + cpdf(g, (), g1) * get_score(lamappg, 5) @test isapprox(get_score(lam, (1,1)), l11) @test isapprox(get_score(lam, (1,2)), l12) @test isapprox(get_score(lam, (1,3)), l13) @test isapprox(get_score(lam, (2,1)), l21) @test isapprox(get_score(lam, (2,2)), l22) @test isapprox(get_score(lam, (2,3)), l23) end @testset "with stochastic functions" begin lam = send_lambda(apph, lamapph, apphrange, (hrange, xrange), (h, x), 2) # possibilities for 1 # 1: h == h1 or h == h2 (prob h2params[(1,)][1]) # 2: h == h2 (prob h2params[(1,)][2]) l1 = (cpdf(h, (), h1) + cpdf(h, (), h2) * h2params[(1,)][1]) * get_score(lamapph, 1) + cpdf(h, (), h2) * h2params[(1,)][2] * get_score(lamapph, 2) # possibilities for 2 # 1: h == h2 (prob h2params[(2,)][1]) # 2: h == h1 h == h2 (prob h2params[(2,)][2]) l2 = cpdf(h, (), h2) * h2params[(2,)][1] * get_score(lamapph, 1) + (cpdf(h, (), h1) + cpdf(h, (), h2) * h2params[(2,)][2]) * get_score(lamapph, 2) @test isapprox(get_score(lam, 1), l1) @test isapprox(get_score(lam, 2), l2) end end end end @testset "Using the ThreePassBP instant algorithm" begin @testset "Basic" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = ThreePassBP() infer(alg, runtime) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1) @test isapprox(probability(alg, runtime, i1, :b), 0.9) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7) end @testset "Mean and Variance" begin v1 = Cat([4, 34, 18, 12, 2, 26], [1/6, 1/6, 1/6, 1/6, 1/6, 1/6])()(:v1) net = InstantNetwork(Variable[v1], VariableGraph()) runtime = Runtime(net) alg = ThreePassBP() infer(alg, runtime, Dict{Symbol, Score}()) i1 = current_instance(runtime, v1) @test isapprox(Scruff.Algorithms.mean(alg, runtime, i1), (4 + 34 + 18 + 12 + 2 + 26)/6) @test isapprox(Scruff.Algorithms.variance(alg, runtime, i1), ((4-16)^2 + (34-16)^2 + (18-16)^2 + (12-16)^2 + (2-16)^2 + (26-16)^2)/6) end @testset "With placeholder" begin p1 = Placeholder{Symbol}(:p1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v2], VariableGraph(v2 => [p1]), Placeholder[p1]) runtime = Runtime(net) default_initializer(runtime, 10, Dict(p1.name => Cat([:a,:b], [0.1, 0.9]))) alg = ThreePassBP() infer(alg, runtime) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7) end @testset "With evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = ThreePassBP() infer(alg, runtime, Dict{Symbol, Score}(:v2 => HardScore(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) p1 = 0.1 * 0.8 p2 = 0.9 * 0.7 z = p1 + p2 @test isapprox(probability(alg, runtime, i1, :a), p1 / z) @test isapprox(probability(alg, runtime, i1, :b), p2 / z) @test isapprox(probability(alg, runtime, i2, 1), 0.0) @test isapprox(probability(alg, runtime, i2, 2), 1.0) end @testset "With intervention" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = ThreePassBP() infer(alg, runtime, Dict{Symbol, Score}(), Dict{Symbol, Dist}(:v2 => Constant(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1) @test isapprox(probability(alg, runtime, i1, :b), 0.9) @test isapprox(probability(alg, runtime, i2, 1), 0.0) @test isapprox(probability(alg, runtime, i2, 2), 1.0) end end @testset "Using the LoopyBP instant algorithm" begin @testset "Basic" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LoopyBP() infer(alg, runtime) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1) @test isapprox(probability(alg, runtime, i1, :b), 0.9) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7) end @testset "With placeholder" begin p1 = Placeholder{Symbol}(:p1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v2], VariableGraph(v2 => [p1]), Placeholder[p1]) runtime = Runtime(net) default_initializer(runtime, 10, Dict(p1.name => Cat([:a,:b], [0.1, 0.9]))) alg = LoopyBP() infer(alg, runtime) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7) end @testset "With evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LoopyBP() infer(alg, runtime, Dict{Symbol, Score}(:v2 => HardScore(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) p1 = 0.1 * 0.8 p2 = 0.9 * 0.7 z = p1 + p2 @test isapprox(probability(alg, runtime, i1, :a), p1 / z) @test isapprox(probability(alg, runtime, i1, :b), p2 / z) @test isapprox(probability(alg, runtime, i2, 1), 0.0) @test isapprox(probability(alg, runtime, i2, 2), 1.0) end @testset "With intervention" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LoopyBP() infer(alg, runtime, Dict{Symbol, Score}(), Dict{Symbol, Dist}(:v2 => Constant(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1) @test isapprox(probability(alg, runtime, i1, :b), 0.9) @test isapprox(probability(alg, runtime, i2, 1), 0.0) @test isapprox(probability(alg, runtime, i2, 2), 1.0) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1024
include("..//src//utils//logplots.jl") using Scruff using Scruff.SFuncs using Scruff.Utils using Scruff.RTUtils using Scruff.Models import Scruff.Algorithms pyplot() x1m = Cat([1,2], [0.1, 0.9])() x2m = Cat([1,2,3], [0.2, 0.3, 0.5])() cpd2 = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) =>[0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) x3m = DiscreteCPT([1,2], cpd2)() x4m = DiscreteCPT([1,2], Dict((1,) => [0.15, 0.85], (2,) => [0.25, 0.75]))() x5m = DiscreteCPT([1,2], Dict((1,) => [0.35, 0.65], (2,) => [0.45, 0.55]))() x6m = DiscreteCPT([1,2], Dict((1,) => [0.65, 0.35], (2,) => [0.75, 0.25]))() x1 = x1m(:x1) x2 = x2m(:x2) x3 = x3m(:x3) x4 = x4m(:x4) x5 = x5m(:x5) x6 = x6m(:x6) fivecpdnet = InstantNetwork(Variable[x1,x2,x3,x4,x5], VariableGraph(x3=>[x2,x1], x4=>[x3], x5=>[x3])) run = Runtime(fivecpdnet) # default_initializer(run) logger = BPLogger([:x1,:x2]) @info "logger=$logger" # run em with_logger(logger) do Scruff.Algorithms.three_pass_BP(run) end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
8020
module CoreTest using Test using Plots import Distributions using Scruff using Scruff.Operators using Scruff.MultiInterface using Scruff.Models using Scruff.SFuncs import Scruff: make_initial, make_transition import Scruff.Models: get_dt import Scruff.Operators: Sample, sample, Logcpdf, logcpdf, Marginalize, marginalize, Expectation, expectation, Variance, variance struct MyModel <: Model{Tuple{}, Tuple{Int}, Tuple{Int, Int}} end function make_transition(m::MyModel, parenttimes, time) return Constant((parenttimes[1],time)) end function make_initial(m::MyModel, time) return Cat([(1,0)], [1.0]) end struct MyNormal <: SFunc{Tuple{}, Float32} mean::Float32 var::Float32 end @impl begin struct MyNormalExpectation end function expectation(sf::MyNormal, i::Tuple{})::Float32 # Have access the sfunc as `sf` as well as `op_imp` return sf.mean end end @impl begin struct MyNormalVariance end function variance(sf::MyNormal, i::Tuple{})::Float32 return sf.var end end @impl begin struct MyNormalSample end function sample(sf::MyNormal, i::Tuple{})::Float32 return rand(Distributions.Normal(sf.mean, sqrt(sf.var))) end end @impl begin struct MyNormalLogcpdf end function logcpdf(sf::MyNormal, i::Tuple{}, o::Float32)::AbstractFloat return Distributions.logpdf(Distributions.Normal(sf.mean, sqrt(sf.var)), o) end end struct MyCondMuNormal <: SFunc{Tuple{Float32}, Float32} # A conditional distribution for a Normal conditioned on mu with fixed var. # CondMuNormal_var(mu) = N(mu,var), essentially. var::Float32 end @impl begin struct MyCondMuNormalSample end function sample(sf::MyCondMuNormal, x::Tuple{Float32})::Float32 return rand(Distributions.Normal(x[1], sqrt(sf.var))) end end @impl begin struct MyCondMuNormalLogcpdf end function logcpdf(sf::MyCondMuNormal, i::Tuple{Float32}, o::Float32)::AbstractFloat return Distributions.logpdf(Distributions.Normal(i[1], sqrt(sf.var)), o) end end @impl begin struct MyCondMuNormalMarginalize end function marginalize(x::MyNormal, sf::MyCondMuNormal)::MyNormal mu = expectation(x, tuple()) var = variance(x, tuple()) + sf.var return MyNormal(mu, var) end end @impl begin struct MyCondMuNormalExpectation end function expectation(sf::MyCondMuNormal, x::Tuple{Float32, Tuple{}})::Float32 return x[1] end end @impl begin struct MyCondMuNormalVariance end function variance(sf::MyCondMuNormal, i::Tuple{Float32, Tuple{}})::Float32 return sf.var end end randomwalk = HomogeneousModel(MyNormal(0.0, 1.0), MyCondMuNormal(1.0), 2.0) struct WienerProcess <: VariableTimeModel{Tuple{}, Tuple{Float32}, Float64} # A continuous limit of Gaussian random walk k::Float32 # "Rate" of random walk. Units of var/time end function make_transition(m::WienerProcess,parenttimes,time) var = m.k*abs(time-parenttimes[1]) return MyCondMuNormal(var) end function make_initial(m::WienerProcess) return MyNormal(0,1) end wienerprocess = WienerProcess(0.1) @testset "Core" begin @testset "instantiate!" begin @testset "instant network" begin @testset "correctly instantiates variables and placeholders" begin v = MyModel()(:v) p = Placeholder{Tuple{Int,Int}}(:p) net = InstantNetwork(Variable[v], VariableGraph(v => [p]), Placeholder[p]) run = Runtime(net) ensure_all!(run) inst1 = current_instance(run, p) inst2 = current_instance(run, v) @test inst1 isa PlaceholderInstance @test inst2 isa VariableInstance @test get_sfunc(inst2) isa Cat # ensure has_timeoffset returns false @test !has_timeoffset(net, v, v) end end @testset "dynamic network" begin @testset "correctly calls make_initial or make_transition" begin v = MyModel()(:v) u = Constant(1)()(:u) net = DynamicNetwork(Variable[u,v], VariableGraph(), VariableGraph(v => [u])) run = Runtime(net) instantiate!(run, u, 1) instantiate!(run, v, 2) instantiate!(run, v, 4) inst2 = get_instance(run, v, 2) inst4 = get_instance(run, v, 4) @test get_sfunc(inst2) isa Cat @test get_sfunc(inst4) isa Constant end @testset "correctly instantiates variables and placeholders" begin v = MyModel()(:v) p = Placeholder{Int}(:p) net = DynamicNetwork(Variable[v], VariableGraph(), VariableGraph(v => [p]), VariableParentTimeOffset(), Placeholder[p]) run = Runtime(net) inst1 = instantiate!(run, p, 1) inst2 = instantiate!(run, v, 2) @test isa(inst1, PlaceholderInstance) @test isa(inst2, VariableInstance) end @testset "passes the correct times to the model" begin v = MyModel()(:v) net = DynamicNetwork(Variable[], VariableGraph(), VariableGraph(v => [v])) run = Runtime(net) inst2 = instantiate!(run, v, 2) inst4 = instantiate!(run, v, 4) inst3 = instantiate!(run, v, 3) inst5 = instantiate!(run, v, 5) # Each instance should have a previous time of the previously existing latest instance, if any @test get_sfunc(inst4).x == (2,4) @test get_sfunc(inst3).x == (2,3) @test get_sfunc(inst5).x == (4,5) end @testset "passes the correct offset times to the model" begin u = MyModel()(:u) v = MyModel()(:v) net = DynamicNetwork(Variable[u,v], VariableGraph(), VariableGraph(v => [u], u => [u]), VariableParentTimeOffset([Pair(v, u)])) run = Runtime(net) uinst1 = instantiate!(run, u, 0) inst1 = instantiate!(run, v, 1) inst3 = instantiate!(run, v, 3) uinst4 = instantiate!(run, u, 4) uinst5 = instantiate!(run, u, 5) inst5 = instantiate!(run, v, 5) # Each instance should have a previous time of the previously existing latest instance, if any @test get_sfunc(inst3).x == (0,3) @test get_sfunc(inst5).x == (4,5) end end end @testset "models" begin @testset "HomogeneousModel" begin @testset "Initial model" begin sf = make_initial(randomwalk) @test sf isa MyNormal # Test some ops _sample = sample(sf, ()) _logcpdf = logcpdf(sf, (), _sample) end @testset "Transition model" begin sf = make_transition(randomwalk,0.,2.) @test sf isa MyCondMuNormal # Test some ops _sample = sample(sf, (0.0f0,)) _logcpdf = logcpdf(sf, (0.0f0,), _sample) end end @testset "VariableTimeModel" begin @testset "Initial model" begin sf = make_initial(wienerprocess) @test sf isa MyNormal # Test some ops _sample = sample(sf, ()) _logcpdf = logcpdf(sf, (), _sample) end @testset "Transition model" begin sf = make_transition(wienerprocess,(0.,),2.) @test sf isa MyCondMuNormal # Test some ops _sample = sample(sf, (0.0f0,)) _logcpdf = logcpdf(sf, (0.0f0,), _sample) end end end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
22251
using Test using Scruff using Scruff.Utils using Scruff.RTUtils using Scruff.SFuncs using Scruff.Operators using Scruff.Algorithms import Scruff.Algorithms: em, bp_info_provider using Scruff.Models using Base.Filesystem using Random @testset "EM" begin @testset "Cat operations" begin range = [1, 2, 3] x = Cat(range, [0.2, 0.3, 0.5]) @testset "initial_stats" begin @test initial_stats(x) == [0, 0, 0] end @testset "expected_stats" begin @test expected_stats(x, range, (), (), FunctionalScore{Int}(i->[0,1,0][i])) == [0.0, 0.3, 0.0] @test expected_stats(x, range, (), (), FunctionalScore{Int}(i->[0.5, 0.6, 0][i])) == [0.1, 0.18, 0.0] end @testset "accumulate_stats" begin @test accumulate_stats(x, [0.2, 0.3, 0.5], [0.5, 0.5, 0.0]) == [0.7, 0.8, 0.5] end @testset "maximize_stats" begin @test maximize_stats(x, [0.7, 0.8, 0.5]) == [0.35, 0.4, 0.25] end @testset "full loop" begin s = initial_stats(x) es1 = expected_stats(x, range, (), (), FunctionalScore{Int}(i->[0,1,0][i])) es2 = expected_stats(x, range, (), (), FunctionalScore{Int}(i->[0.5, 0.6, 0][i])) s = accumulate_stats(x, s, normalize(es1)) s = accumulate_stats(x, s, normalize(es2)) @test isapprox(maximize_stats(x, s), [0.1 / 0.28 / 2, (1 + 0.18 / 0.28) / 2, 0]) end end @testset "DiscreteCPT operations" begin cpd = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) => [0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) x = DiscreteCPT([1,2], cpd) @testset "initial_stats" begin @test initial_stats(x) == Dict() end @testset "expected_stats " begin parpi1 = [0.2, 0.3, 0.5] parpi2 = [0.9, 0.1] lam = FunctionalScore{Int}(i->[0.1, 0.4][i]) px11 = [0.3 * 0.1, 0.7 * 0.4] * 0.9 * 0.2 px12 = [0.6 * 0.1, 0.4 * 0.4] * 0.1 * 0.2 px21 = [0.4 * 0.1, 0.6 * 0.4] * 0.9 * 0.3 px22 = [0.7 * 0.1, 0.3 * 0.4] * 0.1 * 0.3 px31 = [0.5 * 0.1, 0.5 * 0.4] * 0.9 * 0.5 px32 = [0.8 * 0.1, 0.2 * 0.4] * 0.1 * 0.5 d = Dict((1,1) => px11, (1,2) => px12, (2,1) => px21, (2,2) => px22, (3,1) => px31, (3,2) => px32) stats = expected_stats(x, [1,2], ([1,2,3], [1,2]), (Cat([1,2,3], parpi1), Cat([1,2], parpi2)), lam) @test length(stats) == length(d) ans = [isapprox(stats[k], d[k]) for k in keys(stats)] @test all(ans) # for k in keys(stats) # @test isapprox(stats[k], d[k]) # end end @testset "accumulate_stats" begin d1 = Dict((1,1) => [0.4, 0.2], (1,2) => [0.5, 0.6]) d2 = Dict((1,1) => [0.7, 0.8], (2,1) => [1.0, 0.0]) d3 = Dict((1,1) => [1.1, 1.0], (1,2) => [0.5, 0.6], (2,1) => [1.0, 0.0]) stats = accumulate_stats(x, d1, d2) # This test is written assuming the stats are not normalized while accumulating @test length(stats) == length(d3) for k in keys(stats) @test isapprox(stats[k], d3[k]) end end @testset "maximize_stats" begin stats = Dict((1,1) => [0.55, 0.95], (1,2) => [0.7, 1.3], (2,1) => [0.6, 1.4], (2,2) => [1.0, 1.0], (3,1) => [0.9, 1.1], (3,2) => [1.3, 0.7]) m = maximize_stats(x, stats) for k in keys(stats) @test isapprox(m[k], normalize(stats[k])) end end end #= @testset "Separable operations" begin alphas = [0.2, 0.3, 0.5] cpt1 = Dict((1,) => [0.1, 0.9], (2,) => [0.2, 0.8]) cpt2 = Dict((1,) => [0.3, 0.7], (2,) => [0.4, 0.6], (3,) => [0.5, 0.5]) cpt3 = Dict((1,) => [0.6, 0.4], (2,) => [0.7, 0.3]) cpts::SepCPTs = [cpt1, cpt2, cpt3] x = Separable([1,2], alphas, cpts) insts = [Dict(), Dict(), Dict()] range = [1,2] parranges = ([1,2], [1,2,3], [1,2]) parent_πs = ([0.8, 0.2], [0.5, 0.3, 0.2], [0.9, 0.1]) child_λ = FunctionalScore{Int}(i->[0.1, 0.3][i]) (p111, p112) = [0.1 * 0.1, 0.9 * 0.3] * 0.8 (p121, p122) = [0.2 * 0.1, 0.8 * 0.3] * 0.2 (p211, p212) = [0.3 * 0.1, 0.7 * 0.3] * 0.5 (p221, p222) = [0.4 * 0.1, 0.6 * 0.3] * 0.3 (p231, p232) = [0.5 * 0.1, 0.5 * 0.3] * 0.2 (p311, p312) = [0.6 * 0.1, 0.4 * 0.3] * 0.9 (p321, p322) = [0.7 * 0.1, 0.3 * 0.3] * 0.1 es1 = Dict((1,) => [p111, p112] * alphas[1], (2,) => [p121, p122] * alphas[1]) es2 = Dict((1,) => [p211, p212] * alphas[2], (2,) => [p221, p222] * alphas[2], (3,) => [p231, p232] * alphas[2]) es3 = Dict((1,) => [p311, p312] * alphas[3], (2,) => [p321, p322] * alphas[3]) exps = [es1, es2, es3] @testset "initial_stats" begin stats = initial_stats(x) @test stats == insts end # This test checks whether the code correctly computes according to the theory in the comment # prior to the function. It does not test whether this theory is correct. @testset "expected_stats" begin compparams = expected_stats(x, range, parranges, (Cat(parranges[1], parent_πs[1]), Cat(parranges[2], parent_πs[2]), Cat(parranges[3], parent_πs[3])), child_λ) for i in 1:3 @test length(keys(compparams[i])) == length(keys(exps[i])) for j in keys(compparams[i]) @test isapprox(compparams[i][j], exps[i][j]) end end end @testset "accumulate_stats" begin @test accumulate_stats(x, insts, exps) == exps end @testset "maximize_stats" begin ms = maximize_stats(x, exps) alphas = ms[1] ps = tuple(ms[2:end]...) a1 = sum(exps[1][(1,)]) + sum(exps[1][(2,)]) a2 = sum(exps[2][(1,)]) + sum(exps[2][(2,)]) + sum(exps[2][(3,)]) a3 = sum(exps[3][(1,)]) + sum(exps[3][(2,)]) as = normalize([a1, a2, a3]) @test length(alphas) == 3 @test isapprox(alphas[1], as[1]) @test isapprox(alphas[2], as[2]) @test isapprox(alphas[3], as[3]) @test length(cpts) == 3 c11 = normalize(exps[1][(1,)]) c12 = normalize(exps[1][(2,)]) c21 = normalize(exps[2][(1,)]) c22 = normalize(exps[2][(2,)]) c23 = normalize(exps[2][(3,)]) c31 = normalize(exps[3][(1,)]) c32 = normalize(exps[3][(2,)]) k1 = [x.components[1].given.inversemaps[1][i] for i in 1:2] k2 = [x.components[2].given.inversemaps[1][i] for i in 1:3] k3 = [x.components[3].given.inversemaps[1][i] for i in 1:2] @test isapprox(ps[1][k1[1][1]], c11) @test isapprox(ps[1][k1[2][1]], c12) @test isapprox(ps[2][k2[1][1]], c21) @test isapprox(ps[2][k2[2][1]], c22) @test isapprox(ps[2][k2[3][1]], c23) @test isapprox(ps[3][k3[1][1]], c31) @test isapprox(ps[3][k3[2][1]], c32) end end =# ConfigurableCatModel(sf) = SimpleNumeric{Tuple{}, Int, Vector{Float64}}(sf) ConfigurableDiscreteCPTModel(I, sf) = SimpleNumeric{I, Int, Dict{I, Vector{Float64}}}(sf) sf1 = Cat([1,2], [0.1, 0.9]) mod1 = ConfigurableCatModel(sf1) x1 = Variable(:x1, mod1) sf2 = Cat([1,2,3], [0.2,0.3,0.5]) mod2 = ConfigurableCatModel(sf2) x2 = Variable(:x2, mod2) sf3 = DiscreteCPT([1,2], Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) => [0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2])) mod3 = ConfigurableDiscreteCPTModel(Tuple{Int, Int}, sf3) x3 = Variable(:x3, mod3) sf4 = DiscreteCPT([1,2], Dict((1,) => [0.15, 0.85], (2,) => [0.25, 0.75])) mod4 = ConfigurableDiscreteCPTModel(Tuple{Int}, sf4) x4 = Variable(:x4, mod4) sf5 = DiscreteCPT([1,2], Dict((1,) => [0.35, 0.65], (2,) => [0.45, 0.55])) mod5 = ConfigurableDiscreteCPTModel(Tuple{Int}, sf5) x5 = Variable(:x5, mod5) fivecpdnet = InstantNetwork([x1,x2,x3,x4,x5], VariableGraph(x3=>[x2,x1], x4=>[x3], x5=>[x3])) @testset "support functions" begin @testset "bp_info_provider" begin run = Runtime(fivecpdnet) default_initializer(run) three_pass_BP(run) # v_x3 = get_node(run, :x3) # inst = current_instance(run, v_x3) inst = current_instance(run, x3) sf = get_sfunc(inst) # m1 = get_message(run, get_node(run, :x1), v_x3, :pi_message) # m2 = get_message(run, get_node(run, :x2), v_x3, :pi_message) m1 = get_message(run, x1, x3, :pi_message) m2 = get_message(run, x2, x3, :pi_message) l = get_value(run, inst, :lambda) info = bp_info_provider(run, inst) expected_stats(sf, [1,2], ([1, 2, 3], [1, 2]), (m2, m1), l) end @testset "convergence" begin p1 = Dict(:a => 0.1, :b => [0.2, 0.3]) p2 = Dict(:a => 0.1, :b => [0.2, 0.3]) p3 = Dict(:a => 0.10001, :b => [0.20001, 0.30001]) p4 = Dict(:a => 0.11, :b => [0.20001, 0.30001]) p5 = Dict(:a => 0.1, :b => [0.2, 0.3], :c => 0.4) @test converged_numeric(p1, p2, 0.001) @test converged_numeric(p1, p3, 0.001) @test !converged_numeric(p1, p4, 0.001) @test !converged_numeric(p1, p5, 0.001) @test !converged_numeric(p5, p1, 0.001) end end @testset "EM" begin @testset "termination" begin @testset "should terminate immediately with false flag with 0 max_iterations" begin function err(runtime) error() end @test em(fivecpdnet, nothing ; algorithm = err, max_iterations = 0)[1] == (false, 0) end @testset "should converge right away if parameters don't change" begin # if there's no evidence, the parameters shouldn't change data = [Dict()] @test em(fivecpdnet, data ; max_iterations = 2, showprogress=false)[1] == (true, 2) end @testset "should converge in few iterations with fully observed data" begin # Ordinarily, this would be 2 iterations. # However, with noise added to the evidence, it may take a few more. data = [Dict(:x1 => HardScore(1), :x2 => HardScore(1), :x3 => HardScore(1), :x4 => HardScore(1), :x5 => HardScore(2))] @test !em(fivecpdnet, data ; max_iterations = 1)[1][1] # @test em(fivecpdnet, data ; max_iterations = 5)[1][1] end @testset "does not use less than min_iterations" begin data = [Dict(:x1 => HardScore(1), :x2 => HardScore(1), :x3 => HardScore(1), :x4 => HardScore(1), :x5 => HardScore(2))] @test em(fivecpdnet, data ; min_iterations = 7)[1] == (true, 7) end end @testset "learning with Cat" begin @testset "on single node" begin data = [ Dict(:x1 => HardScore(1)), Dict(:x1 => HardScore(2)), Dict(:x1 => HardScore(1)), Dict(:x1 => HardScore(1)) ] onenet = InstantNetwork([x1], VariableGraph()) newparams = em(onenet, data)[2] @test isapprox(newparams[:x1], normalize([3, 1])) end @testset "with two independent nodes, each observed sometimes" begin data = [ Dict(:x1 => HardScore(1)), Dict(:x2 => HardScore(1)), Dict(:x1 => HardScore(2), :x2 => HardScore(2))] twonet = InstantNetwork([x1, x2], VariableGraph()) # We should converge to ignoring the unobserved cases since the variables are independent # and there is no other evidence affecting them newparams = em(twonet, data)[2] # When :x1 is not observed, its stats are 0.1, 0.9 # When :x2 is not observed, its stats are 0.2, 0.3, 0.5 @test isapprox(newparams[:x1], normalize([1 + 0.1, 1 + 0.9])) @test isapprox(newparams[:x2], normalize([1 + 0.2, 1 + 0.3, 0.5])) end @testset "with soft score, should consider prior" begin data = [Dict(:x1 => SoftScore(Dict(1 => 0.8, 2 => 0.2)))] onenet = InstantNetwork([x1], VariableGraph()) newparams = em(onenet, data)[2] @test isapprox(newparams[:x1], normalize([0.1 * 0.8, 0.9 * 0.2])) end end @testset "learning with DiscreteCPT" begin @testset "fully observed" begin data = [ Dict(:x1 => HardScore(1), :x2 => HardScore(1), :x3 => HardScore(1)), Dict(:x1 => HardScore(1), :x2 => HardScore(2), :x3 => HardScore(2)), Dict(:x1 => HardScore(2), :x2 => HardScore(3), :x3 => HardScore(2))] newparams = em(fivecpdnet, data)[2] # p3 = [[[1.0, 0.0], [0.5, 0.5]] [[0.0, 1.0], [0.5, 0.5]] [[0.5, 0.5], [0.0, 1.0]]] @test isapprox(newparams[:x1], [2.0 / 3, 1.0 / 3], atol = 0.0001) @test isapprox(newparams[:x2], [1.0 / 3, 1.0 / 3, 1.0 / 3], atol = 0.0001) p3 = newparams[:x3] @test isapprox(p3[(1,1)], [1.0, 0.0]) @test isapprox(p3[(1,2)], [0.5, 0.5]) @test isapprox(p3[(2,1)], [0.0, 1.0]) @test isapprox(p3[(2,2)], [0.5, 0.5]) @test isapprox(p3[(3,1)], [0.5, 0.5]) @test isapprox(p3[(3,2)], [0.0, 1.0]) end @testset "with children observed" begin # sf3 = Cat([1,2], [0.1, 0.9]) # mod3 = SimpleNumeric(sf3) # x3 = Variable(:x3, mod3) # sf4 = DiscreteCPT([1,2], Dict((1,) => [0.9, 0.1], (2,) => [0.1, 0.9])) # mod4 = SimpleNumeric(sf4) # x4 = Variable(:x4, mod4) # sf5 = DiscreteCPT([1,2], Dict((1,) => [0.9, 0.1], (2,) => [0.1, 0.9])) # mod5 = SimpleNumeric(sf5) # x5 = Variable(:x5, mod5) # fivecpdnet = Network([x3,x4,x5], Placeholder[], Placeholder[], Dict(x4=>[x3], x5=>[x3])) data = [ Dict(:x4 => HardScore(1), :x5 => HardScore(1)), Dict(:x4 => HardScore(2), :x5 => HardScore(2)) ] ((converged, numiters), newparams) = em(fivecpdnet, data) p1s = newparams[:x1] p2s = newparams[:x2] p3s = newparams[:x3] # belief on :x3 calculated from learned network learned_belief3 = p2s[1] * p1s[1] * p3s[(1,1)] .+ p2s[1] * p1s[2] * p3s[(1,2)] .+ p2s[2] * p1s[1] * p3s[(2,1)] .+ p2s[2] * p1s[2] * p3s[(2,2)] .+ p2s[3] * p1s[1] * p3s[(3,1)] .+ p2s[3] * p1s[2] * p3s[(3,2)] # belief on :x3 computed analytically # prior distribution over node 3 prior31 = 0.2 * 0.1 * 0.3 + 0.2 * 0.9 * 0.6 + 0.3 * 0.1 * 0.4 + 0.3 * 0.9 * 0.7 + 0.5 * 0.1 * 0.5 + 0.5 * 0.9 * 0.8 prior32 = 1 - prior31 # Posteriors for each data case are computed by considering the appropriate prior and lambda collect_messages. # The these posteriors are summed over the data cases. (Note: each case is individually normalized so this makes sense.) case1p1 = prior31 * 0.15 * 0.35 case1p2 = prior32 * 0.25 * 0.45 case2p1 = prior31 * 0.85 * 0.65 case2p2 = prior32 * 0.75 * 0.55 case1post3 = normalize([case1p1, case1p2]) case2post3 = normalize([case2p1, case2p2]) post3 = normalize(case1post3 .+ case2post3) @test isapprox(learned_belief3, post3; atol = 0.01) end end #= @testset "learning with Separable" begin # Testing separable models is challenging, because it can be hard to calculate what the maximizing alphas should be. # Therefore, we use extreme cases to test. @testset "with one component" begin alphas = [1.0] cpd1 = Dict((1,) => [0.2, 0.8]) cpds::SepCPTs = [cpd1] sf1 = Cat([1], [1.0]) mod1 = SimpleNumeric(sf1) x1 = Variable(:x1, mod1) sf2 = Separable([1,2], alphas, cpds)() mod2 = SimpleNumeric(sf2) x2 = Variable(:x2, mod2) net = Network([x1,x2], Placeholder[], Placeholder[], Dict(x2=>[x1])) data = [Dict(:x2 => 1), Dict(:x2 => 1), Dict(:x2 => 2), Dict(:x2 => 1)] cs = em(net, data)[2] @test isapprox(cs[(:x2)][2], [[0.75, 0.25]]; atol = 0.01) end @testset "when each parent predicts a different child value" begin alphas = [0.2, 0.3, 0.5] cpd1 = Dict((1,) => [1.0, 0.0, 0.0]) cpd2 = Dict((1,) => [0.0, 1.0, 0.0]) cpd3 = Dict((1,) => [0.0, 0.0, 1.0]) cpds::SepCPTs = [cpd1, cpd2, cpd3] sf1 = Cat([1], [1.0]) mod1 = SimpleNumeric(sf1) x1 = Variable(:x1, mod1) sf2 = Cat([1], [1.0]) mod2 = SimpleNumeric(sf2) x2 = Variable(:x2, mod2) sf3 = Cat([1], [1.0]) mod3 = SimpleNumeric(sf3) x3 = Variable(:x3, mod3) sf4 = Separable([1,2,3], alphas, cpds) x4 = Variable(:x4, mod4) net = Network([x1,x2,x3,x4], Placeholder[], Placeholder[], Dict(x4=>[x1,x2,x3])) data = [Dict(:x4 => 1), Dict(:x4 => 2), Dict(:x4 => 2), Dict(:x4 => 3)] newparams = em(net, data)[2] (as, cs1, cs2, cs3) = newparams[:x4] @test as == [0.25, 0.5, 0.25] @test cs1 == [[1.0, 0.0, 0.0]] @test cs2 == [[0.0, 1.0, 0.0]] @test cs3 == [[0.0, 0.0, 1.0]] end end =# #= @testset "Learning with If" begin sfc1 = Cat([1, 2], [0.1, 0.9]) modc1 = SimpleNumeric(sfc1) vc1 = Variable(:c1, modc1) sfc2 = Cat([1, 2, 3], [0.2, 0.3, 0.5]) modc2 = SimpleNumeric(sfc2) vc2 = Variable(:c2, modc2) sff = Flip(0.4) modf = SimpleNumeric(sff) vf = Variable(:f, modf) sfi = If{Int} modi = SimpleModel(sfi) vi = Variable(:i, modi) net = Network([vc1,vc2,vf,vi], Placeholder[], Placeholder[], Dict(vi=>[vf,vc1,vc2])) data = [Dict(:i => 1), Dict(:i => 2)] newparams = em(net, data)[2] pc1 = newparams[:c1] pc2 = newparams[:c2] pf = newparams[:f] pi = newparams[:i] @test pi === nothing # The problem is underconstrained, but we can check that we have learned not to predict 3 # We can also check that 1 and 2 have similar probability. # To avoid predicting 3, we need either f to always be true (second value) or c2 to always be 1 or 2. @test isapprox(pf[1], 0.0; atol = 0.05) || isapprox(pc2[3], 0.0; atol = 0.05) p1 = pf[1] * pc2[1] + pf[2] * pc1[1] p2 = pf[1] * pc2[2] + pf[2] * pc1[2] @test isapprox(p1, p2; atol = 0.05) end # Parameter sharing currently doesn't work @testset "parameter sharing" begin sf = Cat([1,2], [0.5, 0.5]) m = sf() x1 = m(:x1) x2 = m(:x2) net = Network(Tuple{}, Nothing) add_variable!(net, x1) add_variable!(net, x2) data = [Dict(:x1 => 1, :x2 => 1), Dict(:x1 => 2, :x2 => 1)] newparams = em(net, data)[2] @test newparams[:x1] == [0.75, 0.25] @test newparams[:x2] == [0.75, 0.25] end =# #= we do not currently have validation set code @testset "with validation set" begin @testset "retains the old parameters when learning makes validation set worse" begin m = Cat([1,2], [0.5, 0.5]) x = m()(:x) net = Network([x], Placeholder[], Placeholder[], Dict()) data = [Dict(:x => 1)] validation = [Dict(:x => 2)] ((conv, iteration), newparams) = em(net, data; validationset = validation) @test conv @test iteration == 1 @test newparams[:x] == [0.5, 0.5] end @testset "when training set and validation set are the same, behaves like before" begin m = Cat([1,2], [0.5, 0.5]) x = m()(:x) net = Network([x], Placeholder[], Placeholder[], Dict()) data = [Dict(:x => 1), Dict(:x => 1), Dict(:x => 1), Dict(:x => 2)] validation = [Dict(:x => 1), Dict(:x => 1), Dict(:x => 1), Dict(:x => 2)] ((conv, iteration), newparams) = em(net, data; validationset = validation) @test conv @test iteration == 2 @test newparams[:x] == [0.75, 0.25] end =# end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
38769
using Test using Scruff using Scruff.Utils using Scruff.RTUtils using Scruff.Models using Scruff.SFuncs using Scruff.Algorithms import Scruff: make_initial, make_transition @testset "Filtering" begin struct Tree x :: Int left :: Union{Nothing, Tree} right :: Union{Nothing, Tree} Tree(x) = new(x, nothing, nothing) Tree(x,l,r) = new(x, l, r) end struct Model1 <: VariableTimeModel{Tuple{}, Tuple{}, Tree} end global make_initial(::Model1, t) = Constant(Tree(0)) global make_transition(::Model1, parts, t) = Constant(Tree(t)) struct Model2 <: VariableTimeModel{Tuple{}, Tuple{Tree, Tree}, Tree} end global make_initial(::Model2, t) = Constant(Tree(0)) global make_transition(::Model2, parts, t) = Det(Tuple{Tree, Tree}, Tree, (l,r) -> Tree(t, l, r)) @testset "Window utilities" begin @testset "construct an instant network from instances" begin usf = Constant(1) umodel = HomogeneousModel(usf, usf) uvar = umodel(:u) vsf = DiscreteCPT([:a,:b], Dict((1,) => [0.5, 0.5])) vmodel = HomogeneousModel(vsf, vsf) vvar = vmodel(:v) ph = Placeholder{Int}(:p) dynnet = DynamicNetwork(Variable[uvar,vvar], VariableGraph(vvar => [uvar]), VariableGraph(vvar => [uvar]), VariableParentTimeOffset(), Placeholder[ph], Placeholder[ph]) dynrun = Runtime(dynnet) inst1 = instantiate!(dynrun, ph, 1) # this instance won't be used to create the instant network instantiate!(dynrun, uvar, 1) inst2 = instantiate!(dynrun, uvar, 2) inst3 = instantiate!(dynrun, vvar, 3) inst4 = instantiate!(dynrun, uvar, 4) set_value!(dynrun, inst1, :x, 1) set_value!(dynrun, inst2, :x, 2) set_value!(dynrun, inst3, :x, 3) set_value!(dynrun, inst4, :x, 4) run = instant_runtime_from_instances(dynrun, [inst3, inst1, inst2, inst4]) net = get_network(run) phs = get_placeholders(net) vars = get_variables(net) p1 = Placeholder{Int}(:p_1) @test phs == [p1] @test length(vars) == 3 varnames = [var.name for var in vars] i2 = findfirst(x -> x == :u_2, varnames) i3 = findfirst(x -> x == :v_3, varnames) i4 = findfirst(x -> x == :u_4, varnames) @test !isnothing(i2) @test !isnothing(i3) @test !isnothing(i4) v2 = vars[i2] v3 = vars[i3] v4 = vars[i4] @test v2.model isa SimpleModel @test v3.model isa SimpleModel @test v4.model isa SimpleModel @test v2.model.sf == usf @test v3.model.sf == vsf @test v4.model.sf == usf @test get_parents(net, p1) == Node[] @test get_parents(net, v2) == Node[] @test get_parents(net, v3) == Node[v2] @test get_parents(net, v4) == Node[] @test has_instance(run, p1) @test has_instance(run, v2) @test has_instance(run, v3) @test has_instance(run, v4) i1 = current_instance(run, p1) i2 = current_instance(run, v2) i3 = current_instance(run, v3) i4 = current_instance(run, v4) @test get_value(run, i1, :x) == 1 @test get_value(run, i2, :x) == 2 @test get_value(run, i3, :x) == 3 @test get_value(run, i4, :x) == 4 end @testset "restore values in the dynamic network" begin usf = Constant(1) umodel = HomogeneousModel(usf, usf) uvar = umodel(:u) vsf = DiscreteCPT([:a,:b], Dict((1,) => [0.5, 0.5])) vmodel = HomogeneousModel(vsf, vsf) vvar = vmodel(:v) ph = Placeholder{Int}(:p) dynnet = DynamicNetwork(Variable[uvar,vvar], VariableGraph(vvar => [uvar]), VariableGraph(vvar => [uvar]), VariableParentTimeOffset(), Placeholder[ph], Placeholder[ph]) dynrun = Runtime(dynnet) dyninst1 = instantiate!(dynrun, ph, 1) # this instance won't be used to create the instant network instantiate!(dynrun, uvar, 1) dyninst2 = instantiate!(dynrun, uvar, 2) dyninst3 = instantiate!(dynrun, vvar, 3) dyninst4 = instantiate!(dynrun, uvar, 4) set_value!(dynrun, dyninst1, :x, 1) set_value!(dynrun, dyninst2, :x, 2) set_value!(dynrun, dyninst3, :x, 3) set_value!(dynrun, dyninst4, :x, 4) instrun = instant_runtime_from_instances(dynrun, [dyninst3, dyninst1, dyninst2, dyninst4]) instnet = get_network(instrun) phs = get_placeholders(instnet) instvars = get_variables(instnet) instp1 = Placeholder{Int}(:p_1) varnames = [var.name for var in instvars] i2 = findfirst(x -> x == :u_2, varnames) i3 = findfirst(x -> x == :v_3, varnames) i4 = findfirst(x -> x == :u_4, varnames) instv2 = instvars[i2] instv3 = instvars[i3] instv4 = instvars[i4] instinst1 = current_instance(instrun, instp1) instinst2 = current_instance(instrun, instv2) instinst3 = current_instance(instrun, instv3) instinst4 = current_instance(instrun, instv4) set_value!(instrun, instinst1, :x, -1) set_value!(instrun, instinst2, :x, -2) set_value!(instrun, instinst3, :x, -3) set_value!(instrun, instinst4, :x, -4) retrieve_values_from_instant_runtime!(dynrun, instrun) @test get_value(dynrun, dyninst1, :x) == -1 @test get_value(dynrun, dyninst2, :x) == -2 @test get_value(dynrun, dyninst3, :x) == -3 @test get_value(dynrun, dyninst4, :x) == -4 end @testset "make an initial instant network" begin ph = Placeholder{Int}(:p) usf = DiscreteCPT([1], Dict((0,) => [1.0])) umodel = HomogeneousModel(usf, usf) uvar = umodel(:u) vsf = DiscreteCPT([:a,:b], Dict((1,) => [0.5, 0.5])) vmodel = HomogeneousModel(vsf, vsf) vvar = vmodel(:v) dynnet = DynamicNetwork(Variable[uvar,vvar], VariableGraph(uvar => [ph], vvar => [uvar]), VariableGraph(uvar => [ph], vvar => [uvar]), VariableParentTimeOffset(), Placeholder[ph], Placeholder[ph]) dynrun = Runtime(dynnet) ensure_all!(dynrun) instrun = initial_instant_runtime(dynrun) instnet = get_network(instrun) phnames = map(get_name, get_placeholders(instnet)) @test length(phnames) == 1 @test :p_0 in phnames varnames = map(get_name, get_variables(instnet)) @test length(varnames) == 2 @test :u_0 in varnames @test :v_0 in varnames p_0 = get_node(instnet, :p_0) u_0 = get_node(instnet, :u_0) v_0 = get_node(instnet, :v_0) @test p_0 isa Placeholder @test u_0 isa Variable @test v_0 isa Variable @test has_instance(instrun, p_0) @test has_instance(instrun, u_0) @test has_instance(instrun, v_0) @test get_time(current_instance(instrun, p_0)) == 0 @test get_time(current_instance(instrun, u_0)) == 0 @test get_time(current_instance(instrun, v_0)) == 0 end end @testset "Particle filter" begin @testset "Synchronous" begin @testset "Initialization step" begin c = Cat([1,2], [0.1, 0.9]) d = DiscreteCPT([:a, :b], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7])) m1 = HomogeneousModel(c, c) m2 = HomogeneousModel(d, d) v1 = m1(:v1) v2 = m2(:v2) net = DynamicNetwork(Variable[v1, v2], VariableGraph(v2 => [v1]), VariableGraph(v2 => [v1])) pf = SyncPF(1000) runtime = Runtime(net) init_filter(pf, runtime) @test isapprox(probability(pf, runtime, v1, 1), 0.1; atol = 0.05) # Can't currently answer joint probability queries # @test isapprox(probability(pf, runtime, Queryable[v1,v2], x -> x[1] == 1 && x[2] == :a), 0.1 * 0.2; atol = 0.05) end @testset "Filter step" begin p101 = 0.1 p102 = 0.9 p20a = 0.5 p20b = 0.5 # Observe v21 = :a prior111 = p101 * 0.2 + p102 * 0.3 prior112 = p101 * 0.8 + p102 * 0.7 q111 = prior111 * 0.4 q112 = prior112 * 0.9 post111 = q111 / (q111 + q112) post112 = q112 / (q111 + q112) # Observe v22 = :b prior121 = post111 * 0.2 + post112 * 0.3 prior122 = post111 * 0.8 + post112 * 0.7 q121 = prior121 * 0.6 q122 = prior122 * 0.1 post121 = q121 / (q121 + q122) post122 = q122 / (q121 + q122) c1 = Cat([1,2], [0.1, 0.9]) d1 = DiscreteCPT([1, :2], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7])) c2 = Cat([:a,:b], [0.5, 0.5]) d2 = DiscreteCPT([:a, :b], Dict((1,) => [0.4, 0.6], (2,) => [0.9, 0.1])) m1 = HomogeneousModel(c1, d1) m2 = HomogeneousModel(c2, d2) v1 = m1(:v1) v2 = m2(:v2) vars = Variable[v1, v2] net = DynamicNetwork(vars, VariableGraph(), VariableGraph(v1 => [v1], v2 => [v1])) pf = SyncPF(1000) runtime = Runtime(net) init_filter(pf, runtime) @test isapprox(probability(pf, runtime, v1, 1), p101; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), p102; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), p20a; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), p20b; atol = 0.05) filter_step(pf, runtime, vars, 1, Dict{Symbol, Score}(:v2 => HardScore(:a))) @test isapprox(probability(pf, runtime, v1, 1), post111; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), post112; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), 1.0; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), 0.0; atol = 0.05) filter_step(pf, runtime, vars, 2, Dict{Symbol, Score}(:v2 => HardScore(:b))) @test isapprox(probability(pf, runtime, v1, 1), post121; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), post122; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), 0.0; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), 1.0; atol = 0.05) end end @testset "Asynchronous PF" begin # These tests are designed to test whether variables are instantiated correctly # We use a four-node network v1 -> v2 -> v3 -> v4. Each variable also depends on its own previous state. # To keep track of instantiation, each sfunc is a constant whose value represents the instantiation pattern as a tree. # Instantiations happen at times 2, 3, and 5 # We consider three orders of instantiation: # 1) v2, v3, v4 - no extra instances should be created # 2) v3, v2, v4 - when v4 is instantiated, the coherent PF should also instantiate v3 # 3) v3, v1, v4 - when v4 is instantiated, the coherent PF should also instantiate v2 and v3 - difficult because it has to recognize an ancestor v1 = Model1()(:v1) v2 = Model2()(:v2) v3 = Model2()(:v3) v4 = Model2()(:v4) net = DynamicNetwork(Variable[v1,v2,v3,v4], VariableGraph(), VariableGraph(v2 => [v2, v1], v3 => [v3, v2], v4 => [v4, v3])) noev = Dict{Symbol, Score}() @testset "Non-coherent PF" begin @testset "Order 2-3-4" begin pf = AsyncPF(10, 10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v2], 2, noev) filter_step(pf, runtime, Variable[v3], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t22 = Tree(2, t0, t0) t33 = Tree(3, t0, t22) t45 = Tree(5, t0, t33) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t22) == 1.0 @test probability(pf, runtime, v3, t33) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-2-4" begin pf = AsyncPF(10, 10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v2], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t23 = Tree(3, t0, t0) t45 = Tree(5, t0, t32) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t23) == 1.0 @test probability(pf, runtime, v3, t32) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-1-4" begin pf = AsyncPF(10, 10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v1], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t13 = Tree(3, nothing, nothing) t45 = Tree(5, t0, t32) @test probability(pf, runtime, v1, t13) == 1.0 @test probability(pf, runtime, v2, t0) == 1.0 @test probability(pf, runtime, v3, t32) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end end @testset "Coherent PF" begin @testset "Order 2-3-4" begin pf = CoherentPF(10, 10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v2], 2, noev) filter_step(pf, runtime, Variable[v3], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t22 = Tree(2, t0, t0) t33 = Tree(3, t0, t22) t45 = Tree(5, t0, t33) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t22) == 1.0 @test probability(pf, runtime, v3, t33) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-2-4" begin pf = CoherentPF(10, 10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v2], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t23 = Tree(3, t0, t0) t35 = Tree(5, t32, t23) # extra instance added t45 = Tree(5, t0, t35) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t23) == 1.0 @test probability(pf, runtime, v3, t35) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-1-4" begin pf = CoherentPF(10, 10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v1], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t13 = Tree(3, nothing, nothing) t25 = Tree(5, t0, t13) # added t35 = Tree(5, t32, t25) # added t45 = Tree(5, t0, t35) @test probability(pf, runtime, v1, t13) == 1.0 @test probability(pf, runtime, v2, t25) == 1.0 @test probability(pf, runtime, v3, t35) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end end end end @testset "BP filter" begin @testset "Synchronous" begin @testset "Initialization step" begin c = Cat([1,2], [0.1, 0.9]) d = DiscreteCPT([:a, :b], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7])) m1 = HomogeneousModel(c, c) m2 = HomogeneousModel(d, d) v1 = m1(:v1) v2 = m2(:v2) net = DynamicNetwork(Variable[v1, v2], VariableGraph(v2 => [v1]), VariableGraph(v2 => [v1])) pf = SyncBP() runtime = Runtime(net) init_filter(pf, runtime) @test isapprox(probability(pf, runtime, v1, 1), 0.1; atol = 0.05) # Can't currently answer joint probability queries # @test isapprox(probability(pf, runtime, Queryable[v1,v2], x -> x[1] == 1 && x[2] == :a), 0.1 * 0.2; atol = 0.05) end @testset "Filter step" begin p101 = 0.1 p102 = 0.9 p20a = 0.5 p20b = 0.5 # Observe v21 = :a prior111 = p101 * 0.2 + p102 * 0.3 prior112 = p101 * 0.8 + p102 * 0.7 q111 = prior111 * 0.4 q112 = prior112 * 0.9 post111 = q111 / (q111 + q112) post112 = q112 / (q111 + q112) # Observe v22 = :b prior121 = post111 * 0.2 + post112 * 0.3 prior122 = post111 * 0.8 + post112 * 0.7 q121 = prior121 * 0.6 q122 = prior122 * 0.1 post121 = q121 / (q121 + q122) post122 = q122 / (q121 + q122) c1 = Cat([1,2], [0.1, 0.9]) d1 = DiscreteCPT([1, :2], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7])) c2 = Cat([:a,:b], [0.5, 0.5]) d2 = DiscreteCPT([:a, :b], Dict((1,) => [0.4, 0.6], (2,) => [0.9, 0.1])) m1 = HomogeneousModel(c1, d1) m2 = HomogeneousModel(c2, d2) v1 = m1(:v1) v2 = m2(:v2) vars = Variable[v1, v2] net = DynamicNetwork(vars, VariableGraph(), VariableGraph(v1 => [v1], v2 => [v1])) pf = SyncBP() runtime = Runtime(net) init_filter(pf, runtime) @test isapprox(probability(pf, runtime, v1, 1), p101; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), p102; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), p20a; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), p20b; atol = 0.05) filter_step(pf, runtime, vars, 1, Dict{Symbol, Score}(:v2 => HardScore(:a))) @test isapprox(probability(pf, runtime, v1, 1), post111; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), post112; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), 1.0; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), 0.0; atol = 0.05) filter_step(pf, runtime, vars, 2, Dict{Symbol, Score}(:v2 => HardScore(:b))) @test isapprox(probability(pf, runtime, v1, 1), post121; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), post122; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), 0.0; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), 1.0; atol = 0.05) end end @testset "Asynchronous BP" begin # These tests are designed to test whether variables are instantiated correctly # We use a four-node network v1 -> v2 -> v3 -> v4. Each variable also depends on its own previous state. # To keep track of instantiation, each sfunc is a constant whose value represents the instantiation pattern as a tree. # Instantiations happen at times 2, 3, and 5 # We consider three orders of instantiation: # 1) v2, v3, v4 - no extra instances should be created # 2) v3, v2, v4 - when v4 is instantiated, the coherent PF should also instantiate v3 # 3) v3, v1, v4 - when v4 is instantiated, the coherent PF should also instantiate v2 and v3 - difficult because it has to recognize an ancestor v1 = Model1()(:v1) v2 = Model2()(:v2) v3 = Model2()(:v3) v4 = Model2()(:v4) net = DynamicNetwork(Variable[v1,v2,v3,v4], VariableGraph(), VariableGraph(v2 => [v2, v1], v3 => [v3, v2], v4 => [v4, v3])) noev = Dict{Symbol, Score}() @testset "Non-coherent PF" begin @testset "Order 2-3-4" begin pf = AsyncBP(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v2], 2, noev) filter_step(pf, runtime, Variable[v3], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t22 = Tree(2, t0, t0) t33 = Tree(3, t0, t22) t45 = Tree(5, t0, t33) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t22) == 1.0 @test probability(pf, runtime, v3, t33) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-2-4" begin pf = AsyncBP(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v2], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t23 = Tree(3, t0, t0) t45 = Tree(5, t0, t32) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t23) == 1.0 @test probability(pf, runtime, v3, t32) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-1-4" begin pf = AsyncBP(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v1], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t13 = Tree(3, nothing, nothing) t45 = Tree(5, t0, t32) @test probability(pf, runtime, v1, t13) == 1.0 @test probability(pf, runtime, v2, t0) == 1.0 @test probability(pf, runtime, v3, t32) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end end @testset "Coherent BP" begin @testset "Order 2-3-4" begin pf = CoherentBP(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v2], 2, noev) filter_step(pf, runtime, Variable[v3], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t22 = Tree(2, t0, t0) t33 = Tree(3, t0, t22) t45 = Tree(5, t0, t33) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t22) == 1.0 @test probability(pf, runtime, v3, t33) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-2-4" begin pf = CoherentBP(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v2], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t23 = Tree(3, t0, t0) t35 = Tree(5, t32, t23) # extra instance added t45 = Tree(5, t0, t35) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t23) == 1.0 @test probability(pf, runtime, v3, t35) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-1-4" begin pf = CoherentBP(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v1], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t13 = Tree(3, nothing, nothing) t25 = Tree(5, t0, t13) # added t35 = Tree(5, t32, t25) # added t45 = Tree(5, t0, t35) @test probability(pf, runtime, v1, t13) == 1.0 @test probability(pf, runtime, v2, t25) == 1.0 @test probability(pf, runtime, v3, t35) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end end end end @testset "Loopy filter" begin @testset "Synchronous" begin @testset "Initialization step" begin c = Cat([1,2], [0.1, 0.9]) d = DiscreteCPT([:a, :b], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7])) m1 = HomogeneousModel(c, c) m2 = HomogeneousModel(d, d) v1 = m1(:v1) v2 = m2(:v2) net = DynamicNetwork(Variable[v1, v2], VariableGraph(v2 => [v1]), VariableGraph(v2 => [v1])) pf = SyncLoopy() runtime = Runtime(net) init_filter(pf, runtime) @test isapprox(probability(pf, runtime, v1, 1), 0.1; atol = 0.05) # Can't currently answer joint probability queries # @test isapprox(probability(pf, runtime, Queryable[v1,v2], x -> x[1] == 1 && x[2] == :a), 0.1 * 0.2; atol = 0.05) end @testset "Filter step" begin @testset "Without evidence" begin p101 = 0.1 p102 = 0.9 p20a = 0.5 p20b = 0.5 # Observe v21 = :a prior111 = p101 * 0.2 + p102 * 0.3 prior112 = p101 * 0.8 + p102 * 0.7 q111 = prior111 * 0.4 q112 = prior112 * 0.9 post111 = q111 / (q111 + q112) post112 = q112 / (q111 + q112) # Observe v22 = :b prior121 = post111 * 0.2 + post112 * 0.3 prior122 = post111 * 0.8 + post112 * 0.7 q121 = prior121 * 0.6 q122 = prior122 * 0.1 post121 = q121 / (q121 + q122) post122 = q122 / (q121 + q122) c1 = Cat([1,2], [0.1, 0.9]) d1 = DiscreteCPT([1, :2], Dict((1,) => [0.2, 0.8], (2,) => [0.3, 0.7])) c2 = Cat([:a,:b], [0.5, 0.5]) d2 = DiscreteCPT([:a, :b], Dict((1,) => [0.4, 0.6], (2,) => [0.9, 0.1])) m1 = HomogeneousModel(c1, d1) m2 = HomogeneousModel(c2, d2) v1 = m1(:v1) v2 = m2(:v2) vars = Variable[v1, v2] net = DynamicNetwork(vars, VariableGraph(), VariableGraph(v1 => [v1], v2 => [v1])) pf = SyncLoopy() runtime = Runtime(net) init_filter(pf, runtime) @test isapprox(probability(pf, runtime, v1, 1), p101; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), p102; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), p20a; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), p20b; atol = 0.05) filter_step(pf, runtime, vars, 1, Dict{Symbol, Score}(:v2 => HardScore(:a))) @test isapprox(probability(pf, runtime, v1, 1), post111; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), post112; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), 1.0; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), 0.0; atol = 0.05) filter_step(pf, runtime, vars, 2, Dict{Symbol, Score}(:v2 => HardScore(:b))) @test isapprox(probability(pf, runtime, v1, 1), post121; atol = 0.05) @test isapprox(probability(pf, runtime, v1, 2), post122; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :a), 0.0; atol = 0.05) @test isapprox(probability(pf, runtime, v2, :b), 1.0; atol = 0.05) end end end @testset "Asynchronous Loopy" begin # These tests are designed to test whether variables are instantiated correctly # We use a four-node network v1 -> v2 -> v3 -> v4. Each variable also depends on its own previous state. # To keep track of instantiation, each sfunc is a constant whose value represents the instantiation pattern as a tree. # Instantiations happen at times 2, 3, and 5 # We consider three orders of instantiation: # 1) v2, v3, v4 - no extra instances should be created # 2) v3, v2, v4 - when v4 is instantiated, the coherent PF should also instantiate v3 # 3) v3, v1, v4 - when v4 is instantiated, the coherent PF should also instantiate v2 and v3 - difficult because it has to recognize an ancestor v1 = Model1()(:v1) v2 = Model2()(:v2) v3 = Model2()(:v3) v4 = Model2()(:v4) net = DynamicNetwork(Variable[v1,v2,v3,v4], VariableGraph(), VariableGraph(v2 => [v2, v1], v3 => [v3, v2], v4 => [v4, v3])) noev = Dict{Symbol, Score}() @testset "Non-coherent Loopy" begin @testset "Order 2-3-4" begin pf = AsyncLoopy(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v2], 2, noev) filter_step(pf, runtime, Variable[v3], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t22 = Tree(2, t0, t0) t33 = Tree(3, t0, t22) t45 = Tree(5, t0, t33) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t22) == 1.0 @test probability(pf, runtime, v3, t33) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-2-4" begin pf = AsyncLoopy(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v2], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t23 = Tree(3, t0, t0) t45 = Tree(5, t0, t32) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t23) == 1.0 @test probability(pf, runtime, v3, t32) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-1-4" begin pf = AsyncLoopy(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v1], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t13 = Tree(3, nothing, nothing) t45 = Tree(5, t0, t32) @test probability(pf, runtime, v1, t13) == 1.0 @test probability(pf, runtime, v2, t0) == 1.0 @test probability(pf, runtime, v3, t32) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end end @testset "Coherent Loopy" begin @testset "Order 2-3-4" begin pf = CoherentLoopy(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v2], 2, noev) filter_step(pf, runtime, Variable[v3], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t22 = Tree(2, t0, t0) t33 = Tree(3, t0, t22) t45 = Tree(5, t0, t33) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t22) == 1.0 @test probability(pf, runtime, v3, t33) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-2-4" begin pf = CoherentLoopy(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v2], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t23 = Tree(3, t0, t0) t35 = Tree(5, t32, t23) # extra instance added t45 = Tree(5, t0, t35) @test probability(pf, runtime, v1, t0) == 1.0 @test probability(pf, runtime, v2, t23) == 1.0 @test probability(pf, runtime, v3, t35) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end @testset "Order 3-1-4" begin pf = CoherentLoopy(10, Int) runtime = Runtime(net) init_filter(pf, runtime) filter_step(pf, runtime, Variable[v3], 2, noev) filter_step(pf, runtime, Variable[v1], 3, noev) filter_step(pf, runtime, Variable[v4], 5, noev) t0 = Tree(0, nothing, nothing) t32 = Tree(2, t0, t0) t13 = Tree(3, nothing, nothing) t25 = Tree(5, t0, t13) # added t35 = Tree(5, t32, t25) # added t45 = Tree(5, t0, t35) @test probability(pf, runtime, v1, t13) == 1.0 @test probability(pf, runtime, v2, t25) == 1.0 @test probability(pf, runtime, v3, t35) == 1.0 @test probability(pf, runtime, v4, t45) == 1.0 end end end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
30239
import Base.timedwait import Base.isapprox import PrettyPrint using Test using Scruff using Scruff.Utils using Scruff.RTUtils using Scruff.SFuncs using Scruff.Algorithms import Scruff.Operators: cpdf @testset "Importance" begin @testset "Sampling utilities" begin @testset "Probability" begin sample1 = Dict(:a => 1, :b => 2) sample2 = Dict(:a => 1, :b => 3) sample3 = Dict(:a => 2, :b => 4) lws = [-0.1, -0.2, -0.3] parts = Particles([sample1, sample2, sample3], lws) tot = sum([exp(x) for x in lws]) p1 = exp(-0.1) + exp(-0.2) @test isapprox(probability(parts, s -> s[:a] == 1), p1 / tot) end @testset "Marginal" begin sample1 = Dict(:a => 1, :b => 2) sample2 = Dict(:a => 1, :b => 3) sample3 = Dict(:a => 2, :b => 4) lws = [-0.1, -0.2, -0.3] parts = Particles([sample1, sample2, sample3], lws) p1 = exp(-0.1) + exp(-0.2) p2 = exp(-0.3) tot = p1 + p2 marg = marginal(parts, :a) @test isapprox(cpdf(marg, (), 1), p1 / tot) @test isapprox(cpdf(marg, (), 2), p2 / tot) end @testset "Effective sample size" begin @test isapprox(effective_sample_size([log(0.4)]), 1.0) @test isapprox(effective_sample_size([log(0.4), log(0.2)]), (0.6 * 0.6 / (0.4 * 0.4 + 0.2 * 0.2))) end @testset "Normalizing weights" begin @test isapprox(normalize_weights([log(0.1), log(0.3)]), [log(0.25), log(0.75)]) end @testset "Probability of evidence" begin @test isapprox(log_prob_evidence([log(0.1), log(0.3)]), log((0.1+0.3)/2)) end @testset "Resampling" begin samples = fill(Dict(:a => false), 1000) append!(samples, fill(Dict(:a => true), 1000)) weights = fill(log(0.1), 1000) append!(weights, fill(log(0.9), 1000)) ps = resample(Particles(samples, weights)) @test all(x -> x == 0.0, ps.log_weights) @test isapprox(count(x -> x[:a], ps.samples) / 2000, 0.9, atol = 0.05) end end @testset "Rejection" begin @testset "Basic" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = Rejection(1000) infer(alg, runtime) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, x -> x == :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, x -> x == :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With placeholder" begin p1 = Placeholder{Symbol}(:p1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v2], VariableGraph(v2 => [p1]), Placeholder[p1]) runtime = Runtime(net) default_initializer(runtime, 10, Dict(p1.name => Cat([:a,:b], [0.1, 0.9]))) alg = Rejection(1000) infer(alg, runtime) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m2, (), 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With hard evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = Rejection(1000) infer(alg, runtime, Dict{Symbol, Score}(:v2 => HardScore(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) p1 = 0.1 * 0.8 p2 = 0.9 * 0.7 z = p1 + p2 @test isapprox(probability(alg, runtime, i1, :a), p1 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), p2 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), p1 / z; atol = 0.05) @test isapprox(cpdf(m1, (), :b), p2 / z; atol = 0.05) @test isapprox(cpdf(m2, (), 1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), 2), 1.0; atol = 0.05) end @testset "With soft evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = Rejection(1000) infer(alg, runtime, Dict{Symbol, Score}(:v2 => SoftScore(Dict(1 => 0.6, 2 => 0.4)))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) pa = 0.1 * (0.2 * 0.6 + 0.8 * 0.4) pb = 0.9 * (0.3 * 0.6 + 0.7 * 0.4) z1 = pa + pb # soft evidence is treated like a lambda message on a variable, # so the prior also comes into play, unlike an intervention p1 = (0.1 * 0.2 + 0.9 * 0.3) * 0.6 p2 = (0.1 * 0.8 + 0.9 * 0.7) * 0.4 z2 = p1 + p2 @assert isapprox(z1, z2) @test isapprox(probability(alg, runtime, i1, :a), pa / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), pb / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), p1 / z2; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), p2 / z2; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), pa / z1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), pb / z1; atol = 0.05) @test isapprox(cpdf(m2, (), :1), p1 / z2; atol = 0.05) @test isapprox(cpdf(m2, (), :2), p2 / z2; atol = 0.05) end @testset "With intervention" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = Rejection(1000) infer(alg, runtime, Dict{Symbol, Score}(), Dict{Symbol, Dist}(:v2 => Constant(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end end @testset "LW" begin @testset "Basic" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LW(1000) infer(alg, runtime) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, x -> x == :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, x -> x == :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With placeholder" begin p1 = Placeholder{Symbol}(:p1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v2], VariableGraph(v2 => [p1]), Placeholder[p1]) runtime = Runtime(net) default_initializer(runtime, 10, Dict(p1.name => Cat([:a,:b], [0.1, 0.9]))) alg = LW(1000) infer(alg, runtime) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m2, (), 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With hard evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LW(1000) infer(alg, runtime, Dict{Symbol, Score}(:v2 => HardScore(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) p1 = 0.1 * 0.8 p2 = 0.9 * 0.7 z = p1 + p2 @test isapprox(probability(alg, runtime, i1, :a), p1 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), p2 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), p1 / z; atol = 0.05) @test isapprox(cpdf(m1, (), :b), p2 / z; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end @testset "With soft evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LW(1000) infer(alg, runtime, Dict{Symbol, Score}(:v2 => SoftScore(Dict(1 => 0.6, 2 => 0.4)))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) pa = 0.1 * (0.2 * 0.6 + 0.8 * 0.4) pb = 0.9 * (0.3 * 0.6 + 0.7 * 0.4) z1 = pa + pb # soft evidence is treated like a lambda message on a variable, # so the prior also comes into play, unlike an intervention p1 = (0.1 * 0.2 + 0.9 * 0.3) * 0.6 p2 = (0.1 * 0.8 + 0.9 * 0.7) * 0.4 z2 = p1 + p2 @assert isapprox(z1, z2) @test isapprox(probability(alg, runtime, i1, :a), pa / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), pb / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), p1 / z2; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), p2 / z2; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), pa / z1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), pb / z1; atol = 0.05) @test isapprox(cpdf(m2, (), :1), p1 / z2; atol = 0.05) @test isapprox(cpdf(m2, (), :2), p2 / z2; atol = 0.05) end @testset "With intervention" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = LW(1000) infer(alg, runtime, Dict{Symbol, Score}(), Dict{Symbol, Dist}(:v2 => Constant(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end end @testset "Custom proposal" begin prop::Dict{Symbol,SFunc} = Dict(:v2 => DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))) alg = Importance(make_custom_proposal(prop), 1000) @testset "Basic" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) infer(alg, runtime) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, x -> x == :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, x -> x == :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With placeholder" begin p1 = Placeholder{Symbol}(:p1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v2], VariableGraph(v2 => [p1]), Placeholder[p1]) runtime = Runtime(net) default_initializer(runtime, 10, Dict(p1.name => Cat([:a,:b], [0.1, 0.9]))) infer(alg, runtime) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m2, (), 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With hard evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) infer(alg, runtime, Dict{Symbol, Score}(:v2 => HardScore(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) p1 = 0.1 * 0.8 p2 = 0.9 * 0.7 z = p1 + p2 @test isapprox(probability(alg, runtime, i1, :a), p1 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), p2 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), p1 / z; atol = 0.05) @test isapprox(cpdf(m1, (), :b), p2 / z; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end @testset "With soft evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) infer(alg, runtime, Dict{Symbol, Score}(:v2 => SoftScore(Dict(1 => 0.6, 2 => 0.4)))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) pa = 0.1 * (0.2 * 0.6 + 0.8 * 0.4) pb = 0.9 * (0.3 * 0.6 + 0.7 * 0.4) z1 = pa + pb # soft evidence is treated like a lambda message on a variable, # so the prior also comes into play, unlike an intervention p1 = (0.1 * 0.2 + 0.9 * 0.3) * 0.6 p2 = (0.1 * 0.8 + 0.9 * 0.7) * 0.4 z2 = p1 + p2 @assert isapprox(z1, z2) @test isapprox(probability(alg, runtime, i1, :a), pa / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), pb / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), p1 / z2; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), p2 / z2; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), pa / z1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), pb / z1; atol = 0.05) @test isapprox(cpdf(m2, (), :1), p1 / z2; atol = 0.05) @test isapprox(cpdf(m2, (), :2), p2 / z2; atol = 0.05) end @testset "With intervention" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) infer(alg, runtime, Dict{Symbol, Score}(), Dict{Symbol, Dist}(:v2 => Constant(2))) i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end end @testset "Iterative sampling" begin @testset "Basic" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = IterativeSampler(LW(1000)) prepare(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 0 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 1000 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 2000 i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, x -> x == :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, x -> x == :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, x -> x == 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With placeholder" begin p1 = Placeholder{Symbol}(:p1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v2], VariableGraph(v2 => [p1]), Placeholder[p1]) runtime = Runtime(net) default_initializer(runtime, 10, Dict(p1.name => Cat([:a,:b], [0.1, 0.9]))) alg = IterativeSampler(LW(1000)) prepare(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 0 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 1000 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 2000 i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i2, 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m2, (), 1), 0.1 * 0.2 + 0.9 * 0.3; atol = 0.05) @test isapprox(cpdf(m2, (), 2), 0.1 * 0.8 + 0.9 * 0.7; atol = 0.05) end @testset "With hard evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = IterativeSampler(LW(1000)) prepare(alg, runtime, Dict(:v2 => HardScore(2))) particles = get_state(runtime, :particles) @test length(particles.samples) == 0 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 1000 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 2000 i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) p1 = 0.1 * 0.8 p2 = 0.9 * 0.7 z = p1 + p2 @test isapprox(probability(alg, runtime, i1, :a), p1 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), p2 / z; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), p1 / z; atol = 0.05) @test isapprox(cpdf(m1, (), :b), p2 / z; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end @testset "With soft evidence" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = IterativeSampler(LW(1000)) prepare(alg, runtime, Dict(:v2 => SoftScore(Dict(1 => 0.6, 2 => 0.4)))) particles = get_state(runtime, :particles) @test length(particles.samples) == 0 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 1000 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 2000 i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) pa = 0.1 * (0.2 * 0.6 + 0.8 * 0.4) pb = 0.9 * (0.3 * 0.6 + 0.7 * 0.4) z1 = pa + pb # soft evidence is treated like a lambda message on a variable, # so the prior also comes into play, unlike an intervention p1 = (0.1 * 0.2 + 0.9 * 0.3) * 0.6 p2 = (0.1 * 0.8 + 0.9 * 0.7) * 0.4 z2 = p1 + p2 @assert isapprox(z1, z2) @test isapprox(probability(alg, runtime, i1, :a), pa / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), pb / z1; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), p1 / z2; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), p2 / z2; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), pa / z1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), pb / z1; atol = 0.05) @test isapprox(cpdf(m2, (), :1), p1 / z2; atol = 0.05) @test isapprox(cpdf(m2, (), :2), p2 / z2; atol = 0.05) end @testset "With intervention" begin v1 = Cat([:a,:b], [0.1, 0.9])()(:v1) v2 = DiscreteCPT([1,2], Dict((:a,) => [0.2, 0.8], (:b,) => [0.3, 0.7]))()(:v2) net = InstantNetwork(Variable[v1,v2], VariableGraph(v2 => [v1])) runtime = Runtime(net) default_initializer(runtime) alg = IterativeSampler(LW(1000)) prepare(alg, runtime, Dict{Symbol, Score}(), Dict(:v2 => Constant(2))) particles = get_state(runtime, :particles) @test length(particles.samples) == 0 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 1000 refine(alg, runtime) particles = get_state(runtime, :particles) @test length(particles.samples) == 2000 i1 = current_instance(runtime, v1) i2 = current_instance(runtime, v2) @test isapprox(probability(alg, runtime, i1, :a), 0.1; atol = 0.05) @test isapprox(probability(alg, runtime, i1, :b), 0.9; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 1), 0.0; atol = 0.05) @test isapprox(probability(alg, runtime, i2, 2), 1.0; atol = 0.05) m1 = marginal(alg, runtime, i1) m2 = marginal(alg, runtime, i2) @test isapprox(cpdf(m1, (), :a), 0.1; atol = 0.05) @test isapprox(cpdf(m1, (), :b), 0.9; atol = 0.05) @test isapprox(cpdf(m2, (), :1), 0.0; atol = 0.05) @test isapprox(cpdf(m2, (), :2), 1.0; atol = 0.05) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
3959
using Test using Logging using Scruff using Scruff.Models using Scruff.Utils using Scruff.RTUtils using Scruff.SFuncs using Scruff.Operators @testset "test loggers" begin x1 = Cat([1,2], [0.1, 0.9])()(:x1) x2 = Cat([1,2,3], [0.2, 0.3, 0.5])()(:x2) cpd2 = Dict((1,1) => [0.3, 0.7], (1,2) => [0.6, 0.4], (2,1) =>[0.4, 0.6], (2,2) => [0.7, 0.3], (3,1) => [0.5, 0.5], (3,2) => [0.8, 0.2]) x3 = DiscreteCPT([1,2], cpd2)()(:x3) x4 = DiscreteCPT([1,2], Dict((1,) => [0.15, 0.85], (2,) => [0.25, 0.75]))()(:x4) x5 = DiscreteCPT([1,2], Dict((1,) => [0.35, 0.65], (2,) => [0.45, 0.55]))()(:x5) x6 = DiscreteCPT([1,2], Dict((1,) => [0.65, 0.35], (2,) => [0.75, 0.25]))()(:x6) fivecpdnet = InstantNetwork(Variable[x1,x2,x3,x4,x5], VariableGraph(x3=>[x2,x1], x4=>[x3], x5=>[x3])) @testset "runtime logger" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst3 = current_instance(run, x3) inst5 = current_instance(run, x5) @test_logs( (:info, r"distribute_messages!"), (:info, r"get_node"), (:info, r"collect_messages"), (:info, r"get_variables"), (:info, r"set_value!"), (:info, r"current_instance"), match_mode=:any, trace_runtime(Scruff.Algorithms.three_pass_BP, run)) @test_logs( (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), (:info, r"collect_messages"), trace_runtime(Scruff.Algorithms.three_pass_BP, run; fnamefilter=x->x == "collect_messages")) end #= This test takes too long @testset "log all" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst3 = current_instance(run, x3) inst5 = current_instance(run, x5) @test_logs( (:info, r"distribute_messages!"), (:info, r"has_state"), (:info, r"get_network"), (:info, r"get_state"), (:info, r"collect_messages"), (:info, r"current_time"), (:info, r"get_variables"), (:info, r"set_value!"), (:info, r"outgoing_pis"), (:info, r"get_parents"), (:info, r"get_children"), (:info, r"compute_bel"), (:info, r"current_instance"), match_mode=:any, trace_algorithm(Scruff.Algorithms.three_pass_BP, run)) end =# @testset "timing logger" begin run = Runtime(fivecpdnet) default_initializer(run) inst1 = current_instance(run, x1) inst3 = current_instance(run, x3) inst5 = current_instance(run, x5) @test_logs( (:info, "three_pass_BP"), (:info, "outgoing_pis"), (:info, "get_sfunc"), match_mode=:any, time_algorithm(Scruff.Algorithms.three_pass_BP, run)) end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
17088
import Base.timedwait import Base.isapprox import PrettyPrint using Test using Scruff using Scruff.Utils using Scruff.RTUtils using Scruff.Models using Scruff.SFuncs using Scruff.Operators import Scruff.Algorithms: LSFI, probability_bounds, prepare, refine, ve using Scruff.MultiInterface import Scruff.Operators: Support, bounded_probs, support_quality, support import Scruff.SFuncs: Dist struct MyFlip <: Dist{Bool} end solve_count = 0 @impl begin struct MyFlipBoundedProbs end function bounded_probs(sf::MyFlip, range::VectorOption{Bool}, parranges::NTuple{N,Vector})::Tuple{Vector{<:AbstractFloat}, Vector{<:AbstractFloat}} where {N} global solve_count += 1 return ([0.1, 0.9], [0.1, 0.9]) end end @impl begin struct MyFlipSupport end function support(sf::MyFlip, parranges::NTuple{N,Vector}, size::Integer, curr::Vector{Bool}) where {N} [false, true] end end @impl begin struct MyFlipSupportQuality end function support_quality(::MyFlip, parranges) :CompleteSupport end end @testset "lsfi" begin @testset "expander" begin @testset "Construction" begin x1 = Cat([1,2], [0.1, 0.9])() net1 = InstantNetwork(Variable[x1(:out)], VariableGraph()) x2 = Cat([1,2], [0.2, 0.8])() net2 = InstantNetwork(Variable[x2(:out)], VariableGraph()) f(b) = b ? net1 : net2 b3v = Flip(0.5)()(:b3) e3v = Expander(f, Tuple{Bool}, Int)()(:out) net3 = InstantNetwork(Variable[e3v,b3v], VariableGraph(e3v=>[b3v])) run3 = Runtime(net3) ensure_expansion_state!(run3) @test isempty(get_state(run3, :subnets)) @test isempty(get_state(run3, :subruntimes)) end @testset "Expand" begin x1 = Cat([1,2], [0.1, 0.9])() net1 = InstantNetwork(Variable[x1(:out)], VariableGraph()) x2 = Cat([1,2], [0.2, 0.8])() net2 = InstantNetwork(Variable[x2(:out)], VariableGraph()) f(b) = b ? net1 : net2 vb3 = Flip(0.5)()(:b3) ve3 = Expander(f, Tuple{Bool}, Int)()(:out) net3 = InstantNetwork(Variable[ve3,vb3], VariableGraph(ve3=>[vb3])) run3 = Runtime(net3) @testset "The first time" begin expand!(run3, ve3, true) @test expanded(run3, ve3, true) @test expansion(run3, ve3, true) == net1 run1 = subruntime(run3, ve3, net1) @test run1.network == net1 @test !expanded(run3, ve3, false) end @testset "The second time" begin expand!(run3, ve3, true) @test expanded(run3, ve3, true) @test !expanded(run3, ve3, false) end end @testset "Getting range" begin x1 = Cat([1,2], [0.1, 0.9])() net1 = InstantNetwork(Variable[x1(:out)], VariableGraph()) x2 = Cat([1,2], [0.2, 0.8])() net2 = InstantNetwork(Variable[x2(:out)], VariableGraph()) f₀(b) = (b) = b ? net1 : net2 vb3 = Flip(0.5)()(:b3) ve3 = Expander(f₀ , Tuple{Bool}, Int)()(:out) net3 = InstantNetwork(Variable[ve3,vb3], VariableGraph(ve3=>[vb3])) @testset "With size requiring all expansions" begin run3 = Runtime(net3) ensure_all!(run3) instb3 = current_instance(run3, vb3) set_range!(run3, instb3, [false, true], 2) (rng, _) = expander_range(run3, ve3, 4, 2) @test expanded(run3, ve3, false) @test expanded(run3, ve3, true) @test rng == [1, 2] end @testset "With size not requiring all expansions" begin run3 = Runtime(net3) ensure_all!(run3) instb3 = current_instance(run3, vb3) set_range!(run3, instb3, [false, true], 2) (rng, _) = expander_range(run3, ve3, 1, 2) @test expanded(run3, ve3, false) @test !expanded(run3, ve3, true) @test rng == [1, 2] end @testset "With recursion" begin b1 = Cat([1,2], [0.1, 0.9])() net1 = InstantNetwork(Variable[b1(:out)], VariableGraph()) b2 = Cat([1,2], [0.2, 0.8])() net2 = InstantNetwork(Variable[b2(:out)], VariableGraph()) f₁(b) = b ? net1 : net2 vb3 = Flip(0.5)()(:b3) ve3 = Expander(f₁, Tuple{Bool}, Int)()(:out) net3 = InstantNetwork(Variable[ve3,vb3], VariableGraph(ve3=>[vb3])) f₂(b) = b ? net1 : net2 vb3 = Flip(0.7)()(:b3) ve3 = Expander(f₂, Tuple{Bool}, Int)()(:out) net3 = InstantNetwork(Variable[vb3,ve3], VariableGraph(ve3=>[vb3])) g(b) = net3 vb4 = Flip(0.6)()(:b4) ve4 = Expander(g, Tuple{Bool}, Int)()(:out) net4 = InstantNetwork(Variable[vb4,ve4], VariableGraph(ve4=>[vb4])) run4 = Runtime(net4) ensure_all!(run4) expand!(run4, ve4, false) expand!(run4, ve4, true) run3 = subruntime(run4, ve4, net3) expand!(run3, ve3, false) expand!(run3, ve3, true) instb4 = current_instance(run4, vb4) set_range!(run4, instb4, [false, true], 2) (rng, _) = expander_range(run4, ve4, 4, 2) @test rng == [] # recursion depth too shallow (rng, _) = expander_range(run4, ve4, 4, 3) @test Set(rng) == Set([1, 2]) end end @testset "Expanding range" begin vx1 = Normal(-0.1, 1.0)()(:out) net1 = InstantNetwork(Variable[vx1], VariableGraph()) vx2 = Normal(0.4, 1.0)()(:x2) vy2 = LinearGaussian((0.7,), 0.0, 1.0)()(:out) net2 = InstantNetwork(Variable[vx2,vy2], VariableGraph(vy2=>[vx2])) g(b) = b ? net1 : net2 vb3 = Flip(0.5)()(:b3) ve3 = Expander(g, Tuple{Bool}, Float64)()(:out) net3 = InstantNetwork(Variable[vb3,ve3], VariableGraph(ve3=>[vb3])) run3 = Runtime(net3) instb3 = instantiate!(run3, vb3, 0) set_range!(run3, instb3, [false, true], 2) (r1,_) = expander_range(run3, ve3, 5, 2) (r2,_) = expander_range(run3, ve3, 10, 2) @test length(r2) >= 10 @test issorted(r2) @test length(Set(r2)) == length(r2) @test issubset(Set(r1), Set(r2)) end @testset "Computing probability bounds" begin vx1 = Cat([1,2], [0.1, 0.9])()(:out) net1 = InstantNetwork(Variable[vx1], VariableGraph()) vx2 = Cat([1,2], [0.2, 0.8])()(:out) net2 = InstantNetwork(Variable[vx2], VariableGraph()) f(b) = b ? net1 : net2 vb3 = Flip(0.5)()(:b3) ve3 = Expander(f, Tuple{Bool}, Int)()(:out) net3 = InstantNetwork(Variable[vb3,ve3], VariableGraph(ve3=>[vb3])) @testset "With a fully expanded model" begin run3 = Runtime(net3) ensure_all!(run3) instb3 = current_instance(run3, vb3) set_range!(run3, instb3, [false, true]) ord = topsort(get_initial_graph(net3)) set_ranges!(run3, Dict{Symbol, Score}(), 4, 2, ord) f₃(runtime, order, query_vars, depth) = ve(runtime, order, query_vars; depth = depth, bounds = true) (l, u) = expander_probs(run3, f₃, ve3, 2) @test l == [0.2, 0.8, 0.1, 0.9] @test u == [0.2, 0.8, 0.1, 0.9] end @testset "With a partially expanded model" begin run3 = Runtime(net3) ensure_all!(run3) instb3 = current_instance(run3, vb3) set_range!(run3, instb3, [false, true]) ord = topsort(get_initial_graph(net3)) set_ranges!(run3, Dict{Symbol, Score}(), 1, 2, ord) f₄(runtime, order, query_vars, depth) = ve(runtime, order, query_vars; depth = depth, bounds = true) (l, u) = expander_probs(run3, f₄, ve3, 2) @test l == [0.2, 0.8, 0, 0] @test u == [0.2, 0.8, 1, 1] end end end @testset "inside lsfi" begin @testset "Completeness" begin vx1 = Cat([1,2], [0.1, 0.9])()(:out) net1 = InstantNetwork(Variable[vx1], VariableGraph()) vx2 = Cat([1,2], [0.2, 0.8])()(:out) net2 = InstantNetwork(Variable[vx2], VariableGraph()) vx3 = Normal(-0.1, 1.0)()(:out) net3 = InstantNetwork(Variable[vx3], VariableGraph()) vx4 = Normal(0.4, 1.0)()(:x4) vy4 = LinearGaussian((0.7,), 0.0, 1.0)()(:out) net4 = InstantNetwork(Variable[vx4,vy4], VariableGraph(vy4=>[vx4])) f5(b) = b ? net1 : net2 vb5 = Flip(0.5)()(:b5) ve5 = Expander(f5, Tuple{Bool}, Int)()(:out) net5 = InstantNetwork(Variable[vb5,ve5], VariableGraph(ve5=>[vb5])) f6(b) = b ? net3 : net4 vb6 = Flip(0.6)()(:b6) ve6 = Expander(f6, Tuple{Bool}, Float64)()(:out) net6 = InstantNetwork(Variable[vb6,ve6], VariableGraph(ve6=>[vb6])) run5 = Runtime(net5) ord5 = topsort(get_initial_graph(net5)) run6 = Runtime(net6) ord6 = topsort(get_initial_graph(net6)) ensure_all!(run5, 0) ensure_all!(run6, 0) expand!(run5, ve5, false) expand!(run5, ve5, true) expand!(run6, ve6, false) expand!(run6, ve6, true) @test !RTUtils._complete(run5) set_ranges!(run5, Dict{Symbol, Score}(), 1, 3, ord5) # range is too small to be complete @test !RTUtils._complete(run5) # because subnetwork not expanded set_ranges!(run5, Dict{Symbol, Score}(), 4, 3, ord5) # range is large enough @test RTUtils._complete(run5) set_ranges!(run6, Dict{Symbol, Score}(), 10, 3, ord6) @test !RTUtils._complete(run6) set_ranges!(run6, Dict{Symbol, Score}(), 20, 3, ord6) # continuous range not complete @test !RTUtils._complete(run6) end @testset "Completeness with recursion" begin f(b) = net1 vb1 = Flip(0.1)()(:b1) ve1 = Expander(f, Tuple{Bool}, Bool)()(:out) net1 = InstantNetwork(Variable[vb1,ve1], VariableGraph(ve1=>[vb1])) run1 = Runtime(net1) expand!(run1, ve1, false) expand!(run1, ve1, true) @test !RTUtils._complete(run1) end @testset "Run to completion" begin v1 = Cat([1,2], [0.1, 0.9])()(:out) net1 = InstantNetwork(Variable[v1], VariableGraph()) x2 = Cat([1,2], [0.2, 0.8])()(:out) net2 = InstantNetwork(Variable[x2], VariableGraph()) vb5 = Flip(0.4)()(:b5) f5(b) = b ? net2 : net1 ve5 = Expander(f5, Tuple{Bool}, Int)()(:out) net5 = InstantNetwork(Variable[vb5,ve5], VariableGraph(ve5=>[vb5])) run5 = Runtime(net5) ord5 = topsort(get_initial_graph(net5)) ensure_all!(run5, 0) alg = LSFI([ve5]; start_depth = 2) prepare(alg, run5) refine(alg, run5) inst = current_instance(run5, ve5) range = get_range(run5, inst) (ls,us) = probability_bounds(alg, run5, inst, range) pa = 0.4 * 0.2 + 0.6 * 0.1 pb = 0.4 * 0.8 + 0.6 * 0.9 @test isapprox(ls, [pa, pb]) @test isapprox(us, [pa, pb]) end @testset "With dynamic programming" begin expand_count = 0 global function PrettyPrint.pp_impl(io, frame::StackTraces.StackFrame, indent::Int) line = frame.inlined ? "[inlined]" : "$(frame.line)" print(io, "$(frame.func) at $(frame.file):$(line)") indent end b1 = MyFlip()()(:out) net1 = InstantNetwork(Variable[b1], VariableGraph()) function f1(x) if x expand_count += 1 end net1 end vb2 = Flip(0.2)()(:b2) ve2 = Expander(f1, Tuple{Bool}, Bool)()(:out) net2 = InstantNetwork(Variable[vb2,ve2], VariableGraph(ve2=>[vb2])) vb3 = Flip(0.3)()(:b3) ve3 = Expander(x -> net2, Tuple{Bool}, Bool)()(:out) net3 = InstantNetwork(Variable[vb3,ve3], VariableGraph(ve3=>[vb3])) vb4 = Flip(0.4)()(:b4) ve4 = Expander(x -> net2, Tuple{Bool}, Bool)()(:out) net4 = InstantNetwork(Variable[vb4,ve4], VariableGraph(ve4=>[vb4])) vb5 = Flip(0.5)()(:b5) ve5 = Expander(b -> b ? net3 : net4, Tuple{Bool}, Bool)()(:out) net5 = InstantNetwork(Variable[vb5,ve5], VariableGraph(ve5=>[vb5])) run5 = Runtime(net5) ensure_all!(run5, 0) order = topsort(get_initial_graph(net5)) alg = LSFI([ve5]; start_depth = 10) prepare(alg, run5) refine(alg, run5) inst = current_instance(run5, ve5) range = get_range(run5, inst) (lower, upper) = probability_bounds(alg, run5, inst, range) @test isapprox(lower, [0.1, 0.9], atol = 0.0000001) @test isapprox(upper, lower) end @testset "With recursion" begin bx1 = Flip(1.0)()(:out) netx1 = InstantNetwork(Variable[bx1], VariableGraph()) vx2 = Flip(0.9)()(:b2) fx(b) = b ? netx2 : netx1 vex2 = Expander(fx, Tuple{Bool}, Bool)()(:out) netx2 = InstantNetwork(Variable[vx2,vex2], VariableGraph(vex2=>[vx2])) runtime = Runtime(netx2) ensure_all!(runtime, 0) alg = LSFI([vex2]; start_depth = 11) prepare(alg, runtime) refine(alg, runtime) @test true # This test succeeds if the above call terminates end end @testset "Using the LazyInference interface" begin @testset "LSFI" begin m1 = Cat([1,2], [0.1, 0.9])() v1 = m1(:out) net1 = InstantNetwork(Variable[v1], VariableGraph()) m2 = Cat([1,2], [0.2, 0.8])() v2 = m2(:out) net2 = InstantNetwork(Variable[v2], VariableGraph()) f(b) = b ? net1 : net2 m3 = Flip(0.9)() m4 = Expander(f, Tuple{Bool}, Int)() m5 = DiscreteCPT([1,2], Dict((1,) => [0.3, 0.7], (2,) => [0.4, 0.6]))() v3 = m3(:v3) v4 = m4(:v4) v5 = m5(:out) net3 = InstantNetwork(Variable[v3,v4,v5], VariableGraph(v4 => [v3], v5 => [v4])) alg = LSFI([get_node(net3, :out)]; increment = 3, max_iterations = 20, start_size=3) runtime = Runtime(net3) ensure_all!(runtime, 0) prepare(alg, runtime) refine(alg, runtime) @test has_instance(runtime, v5) i5 = current_instance(runtime, v5) state = alg.state @test state.next_size == 6 @test state.next_iteration == 2 @test state.next_depth == 2 @test !state.is_complete # At first expansion, the bounds for i5 are (0,1) (ls1, us1) = probability_bounds(alg, runtime, i5, [1,2]) @test isapprox(ls1[1], 0.0) @test isapprox(us1[1], 1.0) q2 = 0.9 * (0.1 * 0.3 + 0.9 * 0.4) + 0.1 * (0.2 * 0.3 + 0.8 * 0.4) refine(alg, runtime) @test has_instance(runtime, v5) i5 = current_instance(runtime, v5) state = alg.state @test state.next_size == 9 @test state.next_iteration == 3 @test state.next_depth == 3 @test state.is_complete # At second expansion, lower bounds = upper bounds = q2 (ls2, us2) = probability_bounds(alg, runtime, i5, [1,2]) @test isapprox(ls2[1], q2) @test isapprox(us2[1], q2) end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
1828
using Test using Scruff using Scruff.SFuncs using Scruff.Operators @testset "net" begin @testset "Build NetworkSFunc" begin x = NetworkInput{Int}() struct AddC <: SFunc{Tuple{Int},Int} c::Int end addc = AddC(2) struct MulC <: SFunc{Tuple{Int},Int} c::Int end struct Add <: SFunc{Tuple{Int,Int},Int} end mulc = MulC(-1) add = Add() sfuncs = (addc, mulc, add) parents = Dict{SFunc,Any}(addc=>[x], mulc=>[x], add=>[addc, mulc]) outputs = (add,) net = NetworkSFunc((x,), sfuncs, parents, outputs) @test 1 == 1 end @testset "Netwalk Ops" begin x = NetworkInput{Int}() x_y = DiscreteCPT([1,2], Dict((1,) => [0.9, 0.1], (2,) => [0.1, 0.9])) y_z = DiscreteCPT([1,2], Dict((1,) => [0.1, 0.9], (2,) => [0.9, 0.1])) sfuncs = (x_y, y_z) parents = Dict{SFunc,Any}(x_y=>[x],y_z=>[x_y]) outputs = (y_z,) net = NetworkSFunc((x,), sfuncs, parents, outputs) y1 = sample(net, (1,)) y2 = sample(net, (1,)) cpdf2 = logcpdf(net, (1,), y2) # cpdf2, y2 = sample_logcpdf(net, 1) N = 100000 correct = [0.18 0.82 0.82 0.18] for x in 1:2 for z in 1:2 cpdf3 = 0.0 for i in 1:N cpdf3 += exp(logcpdf(net, (x,), z)) end cpdf3 = cpdf3/N # println("P(z=$z|x=$x) = $cpdf3") @test isapprox(correct[x,z], cpdf3, rtol=5e-2) end end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git
[ "BSD-3-Clause" ]
0.9.0
bfd0515d3e2361c639b104b8f4c919c80ee5c91b
code
3097
using Test import Logging using Scruff using Scruff.Operators using Scruff.MultiInterface: @impl import Scruff.Operators: sample, forward, cpdf, logcpdf import Scruff.SFuncs: Constant # Test default implementation of operators logger = Logging.SimpleLogger(stderr, Logging.Error+1) struct SF1 <: SFunc{Tuple{Int},Int} end @impl begin struct SF1Forward end function forward(sf::SF1, i::Tuple{Int})::Dist{Int} Constant(1) end end @impl begin struct SF1Sample end function sample(sf::SF1, i::Tuple{Int})::Int 0 end end struct SF2 <: SFunc{Tuple{Int},Int} end @impl begin struct SF2Forward end function forward(sf::SF2, i::Tuple{Int})::Dist{Int} Constant(1) end end struct SF3 <: SFunc{Tuple{Int}, Int} end struct SF4 <: SFunc{Tuple{Int}, Int} end @impl begin struct SF4Cpdf end function cpdf(sf::SF4, i::Tuple{Int}, o::Int) 0.0 end end @impl begin struct SF4Logcpdf end function logcpdf(sf::SF4, i::Tuple{Int}, o::Int) 0.0 # so cpdf is 1.0 end end struct SF5 <: SFunc{Tuple{Int}, Int} end @impl begin struct SF5Cpdf end function cpdf(sf::SF5, i::Tuple{Int}, o::Int) 0.0 end end struct SF6 <: SFunc{Tuple{Int}, Int} end @impl begin struct SF6Logcpdf end function logcpdf(sf::SF6, i::Tuple{Int}, o::Int) 0.0 end end struct SF7 <: SFunc{Tuple{Int}, Int} end Logging.with_logger(logger) do @testset "Implementation of sample using forward" begin @testset "When explicit sample defined that is different" begin # To test the calls, we implement forward and sample in contradictory ways # The explicit sample should be used @test sample(SF1(), (2,)) == 0 end @testset "When forward is implemented explicitly but not sample" begin # sample should use forward @test sample(SF2(), (2,)) == 1 end @testset "When neither sample nor forward are implemented explicitly" begin # Should throw a MethodError because forward is not found when using the default implemenation of sample`` @test_throws MethodError sample(SF3(), (2,)) end end @testset "Default implementations of cpdf and logcpdf in terms of each other" begin @testset "When both cpdf and logcpdf are implemented explicitly" begin # To test the calls, we implement cpdf and logcpdf in contradictory ways @test cpdf(SF4(), (2,), 1) == 0.0 @test logcpdf(SF4(), (2,), 1) == 0.0 end @testset "When only cpdf is implemented explicitly" begin @test cpdf(SF5(), (2,), 1) == 0.0 @test logcpdf(SF5(), (2,), 1) == -Inf64 end @testset "When only cpdf is implemented explicitly" begin @test cpdf(SF6(), (2,), 1) == 1.0 @test logcpdf(SF6(), (2,), 1) == 0.0 end # @testset "When neither cpdf nor logcpdf are implemented explicitly" begin # # should detect infinite loop and throw error # @test_throws ErrorException cpdf(SF7(), (2,), 1) # @test_throws ErrorException logcpdf(SF7(), (2,), 1) # end end end
Scruff
https://github.com/charles-river-analytics/Scruff.jl.git