licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 16988 |
import Infiltrator
############################################################
# (Function) Spaces
###########################################################
"""
AbstractSpace
Defines a function space within a Domain, on a mesh defined by a Grid
"""
AbstractSpace
"""
ScalarSpace <: AbstractSpace
A Domain position-independent quantity
"""
struct ScalarSpace <: AbstractSpace
end
"""
CellSpace <: AbstractSpace
A per-cell quantity. Use as Variable attribute :space to create a Variable with data array dimensions from Grid cells.
"""
struct CellSpace <: AbstractSpace
end
"""
ColumnSpace <: AbstractSpace
A per-column quantity. Use as Variable attribute :space to create a Variable with data array dimensions from Grid columns.
"""
struct ColumnSpace <: AbstractSpace
end
"""
Face1DColumnSpace <: AbstractSpace
A quantity defined on upper and lower faces of a cell in a 1D column
"""
struct Face1DColumnSpace <: AbstractSpace
end
"parse eg \"CellSpace\" as CellSpace"
function Base.parse(::Type{AbstractSpace}, str::AbstractString)
dtype = getproperty(@__MODULE__, Symbol(str))
dtype <: AbstractSpace ||
throw(ArgumentError("$str is not a subtype of AbstractSpace"))
return dtype
end
################################################################
# AbstractMesh Spaces and sizes
#
# Concrete types (UnstructuredVectorGrid, CartesianLinearGrid, ...)
# should implement internal_size, and optionally cartesian_size
#################################################################
"""
internal_size(::Type{<:AbstractSpace}, mesh::AbstractMesh; [subdomain=""] [space=:cell]) -> NTuple{ndims, Int}
Array size to use for model Variables.
All `AbstractMesh` concrete subtypes (UnstructuredVectorGrid, CartesianLinearGrid, ...) should implement this method.
# Optional Keyword Arguments
- `subdomain::String=""`: a named subdomain
"""
function internal_size end
"""
cartesian_size(mesh::AbstractMesh) -> NTuple{ndims, Int}
Optional (only regular Cartesian grids should implement this method): Array size of Cartesian Domain.
NB: this may be different from `internal_size` if the `mesh` implements a mapping
eg to a Vector for internal model Variables.
"""
function cartesian_size end
"""
spatial_size(::Type{<:AbstractSpace}, mesh::AbstractMesh) -> NTuple{ndims, Int}
Array size for given Space and mesh.
"""
spatial_size(space::Type{<:AbstractSpace}, mesh) = internal_size(space, mesh)
################################################################
# AbstractData interface
#
# Concrete types (ScalarData, ArrayScalarData, IsotopeData) should implement these methods
#################################################################
"""
AbstractData
Defines a Data type that can be composed with an [`AbstractSpace`](@ref) to form a Field
Concrete subtypes should implement:
[`allocate_values`](@ref), [`check_values`](@ref), [`zero_values!`](@ref), [`dof_values`](@ref),
[`get_values_output`](@ref)
If the subtype needs to provide values for a numerical solver (eg as a state variable), it also needs to implement:
[`init_values!`](@ref), [`copyfieldto!`](@ref), [`copytofield!`](@ref), [`add_field!`](@ref), [`add_field_vec!`](@ref)
If the subtype has a representation as components, it should implement:
[`num_components`](@ref), [`get_components`](@ref)
"""
AbstractData
"""
allocate_values(
field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple;
thread_safe::Bool, allocatenans::Bool,
) -> values
allocate `Field.values` (eg an Array) for `field_data` with dimensions defined by `spatial_size` and `data_dims`
"""
function allocate_values(
field_data::Type{<:AbstractData},
data_dims::Tuple{Vararg{NamedDimension}},
data_type,
space::Type{<:AbstractSpace},
spatial_size::Tuple{Integer, Vararg{Integer}}, # an NTuple with at least one element
thread_safe::Bool, allocatenans::Bool,
)
end
"""
check_values(
existing_values,
field_data::Type{<:AbstractData},
data_dims::Tuple{Vararg{NamedDimension}},
data_type,
space::Type{<:AbstractSpace},
spatial_size::Tuple{Integer, Vararg{Integer}}
)
Check `existing_values` is of suitable type, size etc for use as `Field.values`, throw exception if not.
"""
function check_values(
existing_values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}},
)
end
"""
check_data_type(existing_values, data_type::Union{Missing, Type})
Helper function for [`check_values`](@ref) implementations: check `existing_values` are consistent
with `data_type` (if supplied), throw exception if not.
"""
check_data_type(existing_values, data_type::Missing) = nothing
function check_data_type(existing_values, data_type::Type)
existing_eltype = eltype(existing_values)
existing_eltype === data_type ||
throw(ArgumentError("data_type mismatch: supplied $existing_eltype, require $data_type"))
return nothing
end
"""
init_values!(
values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace},
init_value::Symbol, attribv::VariableBase, convertfn, convertvalues, cellrange, info::NTuple{3, String}
)
Initialize `values` at model start to `init_value` over region `cellrange` using information from
Variable `attribv` attributes, scaled by `convertfn` and `convertvalues`.
Optional: only required if this `field_data` type is used for a model (state) Variable that requires initialisation.
Arguments:
- `values`: data to be zeroed
- `init_value::Symbol`: one of :initial_value, :norm_value, requesting type of initial value required
- `attribv::VariableBase`: Variable with attributes to use for initialisation
- `convertfn::Function`: apply multiplier `convertfn(convertvalues, i)` to initialisation value for cell i.
Typically this is used to convert units eg concentration to mol.
- `convertvalues`: parameters (if any) required by `convertfn`, eg a volume measure.
- `cellrange`: range of cells to initialise
- `info::::NTuple{3, String}`: Tuple (varinfo, convertinfo, trsfrinfo) of identifier strings to use for log messages
"""
function init_values!(
values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace},
init_value::Symbol, attribv::VariableBase, convertfn, convertvalues, cellrange, info::NTuple{3, String}
)
end
"""
zero_values!(values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, cellrange)
Set `values` over spatial region `cellrange` to zero at start of main loop
"""
function zero_values!(values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, cellrange)
end
"""
field_single_element(field_data::Type{<:AbstractData}, N) -> Bool
Return true if `field_data` with length(data_dims) = N is represented with
a single value that can be accessed as [] (used to optimize FieldRecord storage).
Default is probably OK, unless `field_data` uses a Vector of values per element.
"""
function field_single_element(field_data::Type{<:AbstractData}, N)
if N == 0
return true
else
return false
end
end
"""
dof_values(
field_data::Type{<:AbstractData},
data_dims::Tuple{Vararg{NamedDimension}},
space::Type{<:AbstractSpace},
mesh,
cellrange
) -> dof::Int
Return degrees-of-freedom for `field_data` over spatial region `cellrange`.
"""
function dof_values(field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, mesh, cellrange)
end
"""
copyfieldto!(
dest,
doff,
values,
field_data::Type{<:AbstractData},
data_dims::Tuple{Vararg{NamedDimension}},
space::Type{<:AbstractSpace},
cellrange
) -> num_copied::Int
Copy Field.values `values` from spatial region defined by `cellrange`, to `dest` Array starting at index `doff`.
Number of values over whole Domain should equal degrees-of-freedom returned by [`dof_values`](@ref)
Required if this `field_data` type needs to provide values for a numerical solver.
"""
function copyfieldto!(dest, doff, values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, cellrange)
end
"""
copytofield!(
values,
field_data::Type{<:AbstractData},
data_dims::Tuple{Vararg{NamedDimension}},
space::Type{<:AbstractSpace},
cellrange,
src,
soff
) -> num_copied::Int
Copy from `src` Array starting at index `soff` to Field.values `values` for spatial region defined by `cellrange`.
Number of values over whole Domain should equal degrees-of-freedom returned by [`dof_values`](@ref)
Required if this `field_data` type needs to provide values for a numerical solver.
"""
function copytofield!(values, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, cellrange, src, soff)
end
"""
add_field!(dest, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, a, cellrange, src)
Implement `dest += a*src` where `dest`, `src` are Field.values, `a` is a number, over region defined by `cellrange`
"""
function add_field!(dest, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, a, cellrange, src)
end
"""
add_field_vec!(
dest,
field_data::Type{<:AbstractData},
data_dims::Tuple{Vararg{NamedDimension}},
space::Type{<:AbstractSpace},
a,
cellrange,
src,
soff
) -> num_added::Int
Implement `dest += a*src` where `dest` is a Field.values, `src` is an Array, `a` is a number, over region defined by `cellrange`,
starting at index `soff` in `src`.
Returns number of elements of `src` used.
See [`copytofield!`](@ref), [`copyfieldto!`](@ref) for the relationship between Array `src` and Field values `dest`.
"""
function add_field_vec!(dest, field_data::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space::Type{<:AbstractSpace}, a, cellrange, src, soff)
end
"""
num_components(field_data::Type{<:AbstractData}) -> Int
get number of components (optional - implement if `field_data` has a representation as components)
"""
function num_components(field_data::Type{<:AbstractData}) end
"""
get_components(values, field_data::Type{<:AbstractData}) -> Vector
Convert Field `values` to a Vector of components
(optional - implement if `field_data` has a representation as components)
"""
function get_components(values, field_data::Type{<:AbstractData}) end
"Optional: sanitize `values` for storing as model output.
Default implementation is usually OK - only implement eg for Atomic types that should be converted to standard types for storage"
get_values_output(values, data_type::Type{<:AbstractData}, data_dims::Tuple{Vararg{NamedDimension}}, space, mesh) = values
################################################################
# UndefinedData
#################################################################
"""
UndefinedData <: AbstractData
Undefined data type (no methods implemented). Used to indicate that a Variable can link to any data type.
"""
struct UndefinedData <: AbstractData
end
#############################################################
# Field
#############################################################
"""
Field{D <: AbstractData, S <: AbstractSpace, V, N, M}
A Field of `values::V` of data type `D` defined on function space `S` over `mesh::M`
and (optionally) with `N` `data_dims::NTuple{N, NamedDimensions}`.
"""
struct Field{D <: AbstractData, S <: AbstractSpace, V, N, M}
values::V
data_dims::NTuple{N, NamedDimension}
mesh::M
end
field_data(field::Field{D, S, V, N, M}) where {D, S, V, N, M} = D
space(field::Field{D, S, V, N, M}) where {D, S, V, N, M} = S
"""
get_field(obj, ...) -> Field
Get Field from PALEO object `obj`
"""
function get_field end
"""
add_field!(obj, f::Field ...)
Add Field or Field to PALEO object `obj`
"""
function add_field! end
"create a new Field, allocating `values` data arrays"
function allocate_field(
field_data::Type, data_dims::NTuple{N, NamedDimension}, data_type::Type, space::Type{<:AbstractSpace}, mesh;
thread_safe::Bool, allocatenans
) where {N}
v = allocate_values(
field_data, data_dims, data_type, space, spatial_size(space, mesh),
thread_safe=thread_safe, allocatenans=allocatenans,
)
return Field{field_data, space, typeof(v), N, typeof(mesh)}(v, data_dims, mesh)
end
"create a new Field, containing supplied `existing_values` data arrays"
function wrap_field(
existing_values, field_data::Type, data_dims::NTuple{N, NamedDimension}, data_type::Union{DataType, Missing}, space::Type{<:AbstractSpace}, mesh
) where {N}
check_values(
existing_values, field_data, data_dims, data_type, space, spatial_size(space, mesh),
)
return Field{field_data, space, typeof(existing_values), N, typeof(mesh)}(existing_values, data_dims, mesh)
end
"zero out `field::Field` over region defined by `cellrange`"
function zero_field!(field::Field{D, S, V, N, M}, cellrange) where {D, S, V, N, M}
zero_values!(field.values, D, field.data_dims, S, cellrange)
end
"initialize `field::Field` to `init_value` (`:initial_value` or `:norm_value`)
from Variable `attribv` attributes, over region defined by `cellrange`.
Optionally calculate transformed initial values from supplied `convertfn` and `convertvalues`"
function init_field!(
field::Field{D, S, V, N, M}, init_value::Symbol, attribv::VariableBase, convertfn, convertvalues, cellrange, info,
) where {D, S, V, N, M}
init_values!(field.values, D, field.data_dims, S, init_value, attribv, convertfn, convertvalues, cellrange, info)
end
"calculate number of degrees-of-freedom for `field::Field` over region defined by `cellrange`"
function dof_field(field::Field{D, S, V, N, M}, cellrange) where {D, S, V, N, M}
return dof_values(D, field.data_dims, S, field.mesh, cellrange)
end
"copy `src::Field`` to `dest::Vector`, optionally restricting to region defined by `cellrange`"
function Base.copyto!(dest, doff, src::Field{D, S, V, N, M}, cellrange) where {D, S, V, N, M}
return copyfieldto!(dest, doff, src.values, D, src.data_dims, S, cellrange)
end
"copy `src::Vector`` to `dest::Field`, optionally restricting to region defined by `cellrange`"
function Base.copyto!(dest::Field{D, S, V, N, M}, cellrange, src, soff) where {D, S, V, N, M}
return copytofield!(dest.values, D, dest.data_dims, S, cellrange, src, soff)
end
"Calculate `dest::Field = dest::Field + a * src::Field`, optionally restricting to region defined by `cellrange`"
function add_field!(dest::Field{D, S, V, N, M}, a, cellrange, src::Field{D, S, V, N, M}) where {D, S, V, N, M}
return add_field!(dest.values, D, dest.data_dims, S, a, cellrange, src.values)
end
function add_field_vec!(dest::Field{D, S, V, N, M}, a, cellrange, srcvalues::AbstractVector, soff) where {D, S, V, N, M}
return add_field_vec!(dest.values, D, dest.data_dims, S, a, cellrange, srcvalues, soff)
end
"sanitized version of `values`, suitable for storing as output"
function get_values_output(field::Field{D, S, V, N, M}) where {D, S, V, N, M}
return get_values_output(field.values, D, field.data_dims, S, field.mesh)
end
# get values from `linkvar_field`, optionally applying view defined by `linksubdomain`
function create_accessor(
output_data::Union{Type{D}, Type{UndefinedData}},
# TODO - check space, data_dims,
linkvar_field::Field{D, S, V, N, M}, linksubdomain::Union{Nothing, AbstractSubdomain};
forceview, components,
) where {D, S, V, N, M}
# create accessor
if isnothing(linksubdomain)
if forceview
if components
var_accessor = [view(vc, 1:length(vc)) for vc in get_components(linkvar_field.values, D)]
else
var_accessor = view(linkvar_field.values, 1:length(linkvar_field.values))
end
else
if components
var_accessor = get_components(linkvar_field.values, D)
else
var_accessor = linkvar_field.values
end
end
else
if components
var_accessor = [Grids.subdomain_view(vc, linksubdomain) for vc in get_components(linkvar_field.values, D)]
else
var_accessor = Grids.subdomain_view(linkvar_field.values, linksubdomain)
end
end
return var_accessor
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 40966 | module Grids
import NCDatasets
import PALEOboxes as PB
import Infiltrator # Julia debugger
###########################
# Subdomains
###########################
"""
AbstractSubdomain
Defines the relationship between two [`PB.Domain`](@ref)s by mapping indices in one Domain to related indices in the other,
eg interior cells adjacent to a boundary.
Concrete subtypes should implement:
[`subdomain_view`](@ref)
[`subdomain_indices`](@ref)
"""
PB.AbstractSubdomain
"""
BoundarySubdomain <: PB.AbstractSubdomain
A 2D subdomain corresponding to the 2D boundary Domain associated with a 3D interior Domain:
- `indices[ibnd]` is the index of the 3D interior cell corresponding to a 2D boundary cell `ibnd`.
"""
struct BoundarySubdomain <: PB.AbstractSubdomain
indices::Vector{Int}
end
"""
subdomain_view(values, subdomain::BoundarySubdomain) -> view
Create a `view` on `values` in an interior `Domain` to access cells corresponding to indices
in a boundary `Domain`.
"""
function subdomain_view(values, subdomain::BoundarySubdomain)
return view(values, subdomain.indices)
end
"""
subdomain_indices(subdomain::BoundarySubdomain) -> nothing
No additional indices required to access Variables in an interior `Domain` from a boundary `Domain`
(view created by [`subdomain_view`](@ref) is sufficient).
"""
function subdomain_indices(subdomain::BoundarySubdomain)
return nothing
end
"""
InteriorSubdomain <: PB.AbstractSubdomain
A 3D subdomain corresponding to the 3D interior Domain associated with a 2D boundary Domain: `indices[iint]` is either:
- `missing` if `iint` is the index of an interior cell in the 3D Domain, or
- the index of the 2D boundary Domain cell corresponding to the boundary-adjacent 3D interior Domain cell `iint`
"""
struct InteriorSubdomain <: PB.AbstractSubdomain
indices::Vector{Union{Missing, Int}}
end
"Create InteriorSubdomain given size of interior Domain and
boundaryindices[ibnd] index of interior point corresponding to boundary point ibnd"
function InteriorSubdomain(ninterior, boundaryindices)
indices = Vector{Union{Missing, eltype(boundaryindices)}}(undef, ninterior)
for i in 1:length(boundaryindices)
indices[boundaryindices[i]] = i
end
return InteriorSubdomain(indices)
end
"""
subdomain_view(values, subdomain::InteriorSubdomain) -> var
Return unmodified `values` from a boundary `Domain`, `indices` to access
from interior supplied by [`subdomain_indices`](@ref)
"""
function subdomain_view(values, subdomain::InteriorSubdomain)
return values
end
"""
subdomain_indices(subdomain::InteriorSubdomain) -> indices
Return `indices` to access Variables in a boundary `Domain` from interior `Domain`
(will have `missing` entries where interior cells do not correspond to boundary)
"""
function subdomain_indices(subdomain::InteriorSubdomain)
return subdomain.indices
end
function is_boundary(subdomain::InteriorSubdomain, i)
return !ismissing(subdomain.indices[i])
end
"""
subdomain_view(values, subdomain::Nothing) -> values
Fallback when `subdomain == nothing`
"""
function subdomain_view(values, subdomain::Nothing)
return values
end
"""
subdomain_indices(subdomain::Nothing) -> nothing
fallback when `subdomain == nothing`
"""
function subdomain_indices(subdomain::Nothing)
return nothing
end
#########################################
# Grids
##########################################
"""
AbstractMesh
Defines additional geometric and topological information for [`PB.Domain`](@ref)
Concrete subtypes should implement methods:
[`PB.internal_size`](@ref), optionally [`PB.cartesian_size`](@ref)
[`PB.Grids.set_subdomain!`](@ref), [`PB.Grids.get_subdomain`](@ref)
[`PB.Grids.create_default_cellrange`](@ref), [`PB.Grids.get_region`](@ref)
"""
PB.AbstractMesh
"parse eg \"CartesianLinearGrid\" as CartesianLinearGrid"
function Base.parse(::Type{PB.AbstractMesh}, str::AbstractString)
dtype = getproperty(@__MODULE__, Symbol(str))
dtype <: PB.AbstractMesh ||
throw(ArgumentError("$str is not a subtype of AbstractMesh"))
return dtype
end
"""
create_default_cellrange(domain, grid, [; operatorID=0]) -> CellRange
Create a CellRange for entire `domain` and supplied `operatorID`
"""
function create_default_cellrange(domain::PB.AbstractDomain, grid::Union{PB.AbstractMesh, Nothing}) end
"""
get_region(grid::Union{PB.AbstractMesh, Nothing}, values; selectargs...) -> values_subset, (dim_subset::NamedDimension, ...)
Return the subset of `values` given by `selectargs` (Grid-specific keywords eg cell=, column=, ...)
and corresponding dimensions (with attached coordinates).
"""
function get_region(grid::Union{PB.AbstractMesh, Nothing}, values) end
"""
set_subdomain!(grid::PB.AbstractMesh, subdomainname::AbstractString, subdom::PB.AbstractSubdomain, allowcreate::Bool=false)
Set Subdomain
"""
function set_subdomain!(grid::PB.AbstractMesh, subdomainname::AbstractString, subdom::PB.AbstractSubdomain, allowcreate::Bool=false)
if !haskey(grid.subdomains, subdomainname) && !allowcreate
error("attempt to create new subdomain name='$subdomainname' failed (allowcreate=false)")
end
grid.subdomains[subdomainname] = subdom
return nothing
end
"""
get_subdomain(grid::PB.AbstractMesh, subdomainname::AbstractString) -> PB.AbstractSubdomain
Get Subdomain
"""
function get_subdomain(grid::PB.AbstractMesh, subdomainname::AbstractString)
subdomain = get(grid.subdomains, subdomainname, nothing)
!isnothing(subdomain) || error("get_subdomain: no subdomain $subdomainname")
return subdomain
end
# generic handler when subdomainname present
function PB.internal_size(space::Type{<:PB.AbstractSpace}, grid::Union{PB.AbstractMesh, Nothing}, subdomainname::AbstractString)
if isempty(subdomainname)
if space === PB.ScalarSpace
return (1, )
else
return PB.internal_size(space, grid)
end
else
if space === PB.CellSpace
subdomain = get_subdomain(grid, subdomainname)
return (length(subdomain.indices),)
else
error("internal_size: cannot specify subdomain with space=$space (subdomainname=$subdomainname)")
end
end
end
# scalar space always supported
PB.internal_size(space::Type{PB.ScalarSpace}, grid::Union{PB.AbstractMesh, Nothing}) = (1, )
# ignore subdomain
PB.internal_size(space::Type{PB.ScalarSpace}, grid::Union{PB.AbstractMesh, Nothing}, subdomainname::AbstractString) = (1, )
###################################
# Fallbacks for Domain with no grid
#####################################
# allow Vector variables length 1 in a 0D Domain without a grid
PB.internal_size(space::Type{PB.CellSpace}, grid::Nothing) = (1, )
# allow single dimension
PB.cartesian_size(grid::Nothing) = (1, )
cartesian_to_internal(grid::Nothing, griddata::AbstractArray) = griddata
get_subdomain(grid::Nothing, subdomainname::AbstractString) = error("get_subdomain: no subdomain $subdomainname")
"""
create_default_cellrange(domain, grid::Nothing [; operatorID=0]) -> CellRange
Create a CellRange for entire `domain`. Fallback for a domain with no grid
"""
function create_default_cellrange(domain::PB.AbstractDomain, grid::Nothing; operatorID=0)
return PB.CellRange(domain=domain, indices=1:PB.get_length(domain), operatorID=operatorID)
end
"""
get_region(grid::Nothing, values) -> values[]
Fallback for Domain with no grid, assumed 1 cell
"""
function get_region(grid::Nothing, values)
length(values) == 1 ||
throw(ArgumentError("grid==Nothing and length(values) != 1"))
return values[], ()
end
##################################
# UnstructuredVectorGrid
##################################
"""
UnstructuredVectorGrid <: PB.AbstractMesh
Minimal Grid for a Vector Domain, defines only some named cells for plotting
"""
Base.@kwdef mutable struct UnstructuredVectorGrid <: PB.AbstractMesh
ncells::Int64
"Define some named cells for plotting (only)"
cellnames::Dict{Symbol,Int} = Dict{Symbol,Int}()
subdomains::Dict{String, PB.AbstractSubdomain} = Dict{String, PB.AbstractSubdomain}()
end
function Base.show(io::IO, grid::UnstructuredVectorGrid)
print(io, "UnstructuredVectorGrid(ncells=", grid.ncells,
", cellnames=", grid.cellnames, ", subdomains: ", keys(grid.subdomains), ")")
return nothing
end
PB.internal_size(space::Type{PB.CellSpace}, grid::UnstructuredVectorGrid) = (grid.ncells, )
# single dimension
PB.cartesian_size(grid::UnstructuredVectorGrid) = (grid.ncells, )
cartesian_to_internal(grid::UnstructuredVectorGrid, griddata::AbstractArray) = griddata
"""
get_region(grid::UnstructuredVectorGrid, values; cell) ->
values_subset, (dim_subset::NamedDimension, ...)
# Keywords for region selection:
- `cell::Union{Int, Symbol}`: an Int, or a Symbol to look up in `cellnames`
"""
function get_region(grid::UnstructuredVectorGrid, values; cell::Union{Int, Symbol})
if cell isa Int
idx = cell
else
idx = get(grid.cellnames, cell, nothing)
!isnothing(idx) ||
throw(ArgumentError("cell ':$cell' not present in grid.cellnames=$(grid.cellnames)"))
end
return (
values[idx],
(), # no dimensions (ie squeeze out a dimension length 1 for single cell)
)
end
"""
create_default_cellrange(domain, grid::UnstructuredVectorGrid [; operatorID=0]) -> CellRange
Create a CellRange for entire `domain` - use linear index.
"""
function create_default_cellrange(domain::PB.AbstractDomain, grid::UnstructuredVectorGrid; operatorID=0)
return PB.CellRange(domain=domain, indices=1:grid.ncells, operatorID=operatorID)
end
############################################
# UnstructuredColumnGrid
###########################################
"""
UnstructuredColumnGrid <: PB.AbstractMesh
Minimal Grid for a Vector Domain composed of columns (not necessarily forming a 2-D array).
# Fields
- `ncells::Int` total number of cells in this Domain
- `Icolumns::Vector{Vector{Int}}`: Icolumns[n] should be the indices of column n, in order from surface to floor, where n is also the index of
any associated boundary surface.
- `z_coords::Vector{FixedCoord}`: z coordinates of cell mid point, lower surface, upper surface
- `columnnames::Vector{Symbol}:` optional column names
"""
Base.@kwdef mutable struct UnstructuredColumnGrid <: PB.AbstractMesh
ncells::Int64
Icolumns::Vector{Vector{Int}}
z_coords::Vector{PB.FixedCoord} = PB.FixedCoord[]
"Define optional column names"
columnnames::Vector{Symbol} = Symbol[]
subdomains::Dict{String, PB.AbstractSubdomain} = Dict{String, PB.AbstractSubdomain}()
end
function Base.show(io::IO, grid::UnstructuredColumnGrid)
print(io, "UnstructuredColumnGrid(ncells=", grid.ncells, ", columns: ", length(grid.Icolumns),
", columnnames=", grid.columnnames, ", subdomains: ", keys(grid.subdomains), ")")
return nothing
end
PB.internal_size(space::Type{PB.CellSpace}, grid::UnstructuredColumnGrid) = (grid.ncells, )
PB.internal_size(space::Type{PB.ColumnSpace}, grid::UnstructuredColumnGrid) = (length(grid.Icolumns), )
# single dimension
PB.cartesian_size(grid::UnstructuredColumnGrid) = (grid.ncells, )
cartesian_to_internal(grid::UnstructuredColumnGrid, griddata::AbstractArray) = griddata
"""
get_region(grid::UnstructuredColumnGrid, values; column, [cell=nothing]) ->
values_subset, (dim_subset::NamedDimension, ...)
# Keywords for region selection:
- `column::Union{Int, Symbol}`: (may be an Int, or a Symbol to look up in `columnames`)
- `cell::Int`: optional cell index within `column`, highest cell is cell 1
"""
function get_region(grid::UnstructuredColumnGrid, values; column, cell::Union{Nothing, Int}=nothing)
if column isa Int
column in 1:length(grid.Icolumns) ||
throw(ArgumentError("column index $column out of range"))
colidx = column
else
colidx = findfirst(isequal(column), grid.columnnames)
!isnothing(colidx) ||
throw(ArgumentError("columnname '$column' not present in grid.columnnames=$(grid.columnnames)"))
end
if isnothing(cell)
indices = grid.Icolumns[colidx]
return (
values[indices],
(PB.NamedDimension("z", length(indices), PB.get_region(grid.z_coords, indices)), ),
)
else
# squeeze out z dimension
idx = grid.Icolumns[colidx][cell]
return (
values[idx],
(), # no dimensions (ie squeeze out a dimension length 1 for single cell)
)
end
end
"""
create_default_cellrange(domain, grid::UnstructuredColumnGrid [; operatorID=0]) -> CellRangeColumns
Create a CellRange for entire `domain`. Return a [`PB.CellRangeColumns`](@ref) with iterators for columns and cells.
"""
function create_default_cellrange(domain::PB.AbstractDomain, grid::UnstructuredColumnGrid; operatorID=0)
return PB.CellRangeColumns(
domain=domain,
indices=1:grid.ncells,
columns=[
(isurf, PB.replace_contiguous_range(grid.Icolumns[isurf]))
for isurf in eachindex(grid.Icolumns)
],
operatorID=operatorID
)
end
######################################
# CartesianLinearGrid
#######################################
"""
CartesianLinearGrid <: PB.AbstractMesh
nD grid with netcdf CF1.0 coordinates, using Vectors for PALEO internal representation of Variables,
with a mapping linear indices <--> some subset of grid indices.
The linear indices mapping should be set with `set_linear_index`. Conversion of Field values between
the PALEO internal representation (a Vector with a linear index) and a Cartesian Array with multiple dimensions
(for import and export of model output) is then implemented by `cartesian_to_internal` and `internal_to_cartesian`.
# Fields
- `ncells::Int64`: number of cells in Domain = `length(linear_index)` (may be subset of total points in `prod(dims)`)
- `dimnames::Vector{String}`: names of dimensions (ordered list)
- `dims::Vector{Int}`: sizes of dimensions (ordered list)
- `coords::Vector{Vector{Float64}}`: attached cell-centre coordinates for each dimension (ordered list)
- `coords_edges::Vector{Vector{Float64}}`: attached cell-edge coordinates for each dimension (ordered list)
"""
Base.@kwdef mutable struct CartesianLinearGrid{N} <: PB.AbstractMesh
ncells::Int64 = -1
ncolumns::Int64 = -1
dimnames::Vector{String} = Vector{String}(undef, N) # netcdf dimension names
dims::Vector{Int} = Vector{Int}(undef, N)
coords::Vector{Vector{Float64}} = Vector{Vector{Float64}}()
coords_edges::Vector{Vector{Float64}} = Vector{Vector{Float64}}()
"index of longitude dimension (if any)"
londim::Int = 0
"index of latitude dimension (if any)"
latdim::Int = 0
"index of z dimension (if any)"
zdim::Int = 0
"index of surface in z coordinate (if any) (1 or length(z dim))"
zidxsurface::Int = 0
"multiplier to use for display (eg -1.0 to convert depth to height)"
display_mult::Vector{Float64} = ones(N)
subdomains::Dict{String, PB.AbstractSubdomain} = Dict{String, PB.AbstractSubdomain}()
"cartesian -> linear index mapping (initialized to `missing` ie linear index contains 0 cells)"
linear_index::Array{Union{Missing,Int32}, N} = Array{Union{Missing,Int32},N}(undef, zeros(Int,N)...)
"linear -> cartesian index mapping (initialized to empty Vector ie linear index contains 0 cells)"
cartesian_index::Vector{CartesianIndex{N}} = Vector{CartesianIndex{N}}()
end
function Base.show(io::IO, grid::CartesianLinearGrid)
dimtuple = NamedTuple{Tuple(Symbol.(grid.dimnames))}(Tuple(grid.dims))
print(io, "CartesianLinearGrid(ncells=", grid.ncells, ", dimensions: ", dimtuple,
", subdomains: ", keys(grid.subdomains), ")")
return nothing
end
PB.internal_size(space::Type{PB.CellSpace}, grid::CartesianLinearGrid) = (grid.ncells, )
PB.internal_size(space::Type{PB.ColumnSpace}, grid::CartesianLinearGrid{3}) = (grid.ncolumns, )
PB.cartesian_size(grid::CartesianLinearGrid) = Tuple(grid.dims)
"""
CartesianArrayGrid <: PB.AbstractMesh
nD grid with netcdf CF1.0 coordinates, using n-dimensional Arrays for PALEO internal representation of Variables
# Fields
- `ncells::Int64`: number of cells in Domain = `length(linear_index)` (may be subset of total points in `prod(dims)`)
- `dimnames::Vector{String}`: names of dimensions (ordered list)
- `dims::Vector{Int}`: sizes of dimensions (ordered list)
- `coords::Vector{Vector{Float64}}`: attached cell-centre coordinates for each dimension (ordered list)
- `coords_edges::Vector{Vector{Float64}}`: attached cell-edge coordinates for each dimension (ordered list)
"""
Base.@kwdef mutable struct CartesianArrayGrid{N} <: PB.AbstractMesh
ncells::Int64 = -1
dimnames::Vector{String} = Vector{String}(undef, N) # netcdf dimension names
dims::Vector{Int} = Vector{Int}(undef, N)
coords::Vector{Vector{Float64}} = Vector{Vector{Float64}}()
coords_edges::Vector{Vector{Float64}} = Vector{Vector{Float64}}()
"index of longitude dimension (if any)"
londim::Int = 0
"index of latitude dimension (if any)"
latdim::Int = 0
"index of z dimension (if any)"
zdim::Int = 0
"index of surface in z coordinate (if any) (1 or length(z dim))"
zidxsurface::Int = 0
"multiplier to use for display (eg -1.0 to convert depth to height)"
display_mult::Vector{Float64} = ones(N)
subdomains::Dict{String, PB.AbstractSubdomain} = Dict{String, PB.AbstractSubdomain}()
end
function Base.show(io::IO, grid::CartesianArrayGrid)
dimtuple = NamedTuple{Tuple(Symbol.(grid.dimnames))}(Tuple(grid.dims))
print(io, "CartesianArrayGrid(ncells=", grid.ncells, ", dimensions: ", dimtuple,
", subdomains: ", keys(grid.subdomains), ")")
return nothing
end
PB.internal_size(space::Type{PB.CellSpace}, grid::CartesianArrayGrid) = Tuple(grid.dims)
PB.cartesian_size(grid::CartesianArrayGrid) = Tuple(grid.dims)
"""
get_region(grid::Union{CartesianLinearGrid{2}, CartesianArrayGrid{2}} , internalvalues; [i=i_idx], [j=j_idx]) ->
arrayvalues_subset, (dim_subset::NamedDimension, ...)
# Keywords for region selection:
- `i::Int`: optional, slice along first dimension
- `j::Int`: optional, slice along second dimension
`internalvalues` are transformed if needed from internal Field representation as a Vector length `ncells`, to
an Array (2D if neither i, j arguments present, 1D if i or j present, 0D ie one cell if both present)
"""
function get_region(
grid::Union{CartesianLinearGrid{2}, CartesianArrayGrid{2}}, internalvalues;
i::Union{Integer, Colon}=Colon(), j::Union{Integer, Colon}=Colon()
)
return _get_region(grid, internalvalues, [i, j])
end
"""
get_region(grid::Union{CartesianLinearGrid{3}, CartesianArrayGrid{3}}, internalvalues; [i=i_idx], [j=j_idx]) ->
arrayvalues_subset, (dim_subset::NamedDimension, ...)
# Keywords for region selection:
- `i::Int`: optional, slice along first dimension
- `j::Int`: optional, slice along second dimension
- `k::Int`: optional, slice along third dimension
`internalvalues` are transformed if needed from internal Field representation as a Vector length `ncells`, to
an Array (3D if neither i, j, k arguments present, 2D if one of i, j or k present, 1D if two present,
0D ie one cell if i, j, k all specified).
"""
function get_region(
grid::Union{CartesianLinearGrid{3}, CartesianArrayGrid{3}}, internalvalues;
i::Union{Integer, Colon}=Colon(), j::Union{Integer, Colon}=Colon(), k::Union{Integer, Colon}=Colon()
)
return _get_region(grid, internalvalues, [i, j, k])
end
function _get_region(
grid::Union{CartesianLinearGrid, CartesianArrayGrid}, internalvalues, indices
)
if !isempty(grid.coords) && !isempty(grid.coords_edges)
dims = [
PB.NamedDimension(grid.dimnames[idx], grid.coords[idx], grid.coords_edges[idx])
for (idx, ind) in enumerate(indices) if isa(ind, Colon)
]
elseif !isempty(grid.coords)
dims = [
PB.NamedDimension(grid.dimnames[idx], grid.coords[idx])
for (idx, ind) in enumerate(indices) if isa(ind, Colon)
]
else
dims = [
PB.NamedDimension(grid.dimnames[idx])
for (idx, ind) in enumerate(indices) if isa(ind, Colon)
]
end
values = internal_to_cartesian(grid, internalvalues)
if !all(isequal(Colon()), indices)
values = values[indices...]
end
return values, Tuple(dims)
end
"""
CartesianGrid(
gridtype, dimnames::Vector{<:AbstractString}, dims, coords, coords_edges;
[londim] [, latdim] [,zdim=0], [,zidxsurface=0], [, ztoheight=1.0]) -> grid::CartesianLinearGrid
Create a CartesianLinearGrid or CartesianArrayGrid from dimensions and coordinates.
"""
function CartesianGrid(
GridType::Type{<:Union{CartesianLinearGrid, CartesianArrayGrid}},
dimnames::Vector{<:AbstractString}, dims, coords=Vector{Vector{Float64}}(), coords_edges=Vector{Vector{Float64}}();
londim=findfirst(isequal("lon"), dimnames),
latdim=findfirst(isequal("lat"), dimnames),
zdim=0,
zidxsurface=0,
ztoheight=1.0
)
grid = GridType{length(dimnames)}(
dimnames=dimnames,
dims=dims,
coords=coords,
coords_edges=coords_edges,
londim=londim,
latdim=latdim,
zdim=zdim,
zidxsurface=zidxsurface
)
if zdim > 0
grid.display_mult[zdim] = ztoheight
end
if GridType == CartesianLinearGrid
# create linear index (with no points)
grid.linear_index = Array{Union{Missing,Int32},length(grid.dims)}(undef, grid.dims...)
grid.ncells = 0
else
grid.ncells = prod(grid.dims)
end
return grid
end
"""
CartesianGrid(griddtype, ncfilename::AbstractString, dimnames::Vector{<:AbstractString}; equalspacededges=false) -> grid::CartesianLinearGrid
Read a netcdf file with CF1.0 coordinates, and create corresponding a CartesianLinearGrid or CartesianArrayGrid from dimensions `dimnames`.
"""
function CartesianGrid(
GridType::Type{<:Union{CartesianLinearGrid, CartesianArrayGrid}},
ncfilename::AbstractString,
dimnames::Vector{<:AbstractString};
equalspacededges=false
)
@info "CartesianGrid creating $GridType{$(length(dimnames))} from dimnames=$dimnames in netcdf file $(ncfilename)"
grid = GridType{length(dimnames)}()
grid.coords = Vector{Vector{Float64}}(undef, length(dimnames))
grid.coords_edges = Vector{Vector{Float64}}(undef, length(dimnames))
NCDatasets.Dataset(ncfilename) do ds
# read dimensions and coordinates
for i in eachindex(dimnames)
dimname = dimnames[i]
grid.dimnames[i] = dimname
grid.dims[i] = ds.dim[dimname]
@info " read dimension $(dimname) = $(grid.dims[i])"
v_cf = ds[dimname]
grid.coords[i] = Array(v_cf)
if haskey(v_cf.attrib, "edges")
edgesname = v_cf.attrib["edges"]
@info " reading coordinate edges from $edgesname"
grid.coords_edges[i] = Array(ds[edgesname])
elseif equalspacededges
es = grid.coords[i][2] - grid.coords[i][1]
@info " assuming equal spacing $es to calculate coordinate edges"
grid.coords_edges[i] = [grid.coords[i] .- es/2.0; grid.coords[i][end] + es/2.0 ]
else
error(" no edges attribute and equalspacededges=false")
end
if v_cf.attrib["standard_name"] == "longitude"
@info " dim $i got standard_name=='longitude'"
grid.londim = i
elseif v_cf.attrib["standard_name"] == "latitude"
@info " dim $i got standard_name=='latitude'"
grid.latdim = i
elseif v_cf.attrib["standard_name"] == "depth"
@info " dim $i got standard_name=='depth', using this as z dimension"
grid.zdim = i
grid.display_mult[i] = -1.0
if grid.coords[i][1] < grid.coords[i][end]
grid.zidxsurface = 1
else
grid.zidxsurface = length(grid.coords[i])
end
@info " surface is index $(grid.zidxsurface)"
end
end
end
if GridType == CartesianLinearGrid
# create linear index (with no points)
grid.linear_index = Array{Union{Missing,Int32},length(grid.dims)}(undef, grid.dims...)
grid.ncells = 0
else
grid.ncells = prod(grid.dims)
end
return grid
end
"""
set_linear_index(grid::CartesianLinearGrid{3}, v_i, v_j, v_k)
Set 3D grid linear index (given by v_i, v_j, v_k Vectors defining Cartesian [i,j,k] for each v_i[l], v_j[l], v_k[l])
"""
function set_linear_index(grid::CartesianLinearGrid{3}, v_i, v_j, v_k)
grid.ncells = length(v_i)
grid.ncolumns = 0
grid.linear_index = Array{Union{Missing,Int32}, 3}(undef, grid.dims...)
grid.cartesian_index = Vector{CartesianIndex{3}}(undef, grid.ncells)
fill!(grid.linear_index, missing)
for l in eachindex(v_i)
grid.linear_index[v_i[l], v_j[l], v_k[l]] = l
grid.cartesian_index[l] = CartesianIndex(v_i[l], v_j[l], v_k[l])
if v_k[l] == grid.zidxsurface
grid.ncolumns += 1
end
end
return nothing
end
"""
set_linear_index(grid::CartesianLinearGrid{2}, v_i, v_j)
Set 2D grid linear index (given by v_i, v_j Vectors defining Cartesian [i,j] for each v_i[l], v_j[l])
"""
function set_linear_index(grid::CartesianLinearGrid{2}, v_i, v_j)
grid.ncells = length(v_i)
grid.linear_index = Array{Union{Missing,Int32}, 2}(undef, grid.dims...)
grid.cartesian_index = Vector{CartesianIndex{2}}(undef, grid.ncells)
fill!(grid.linear_index, missing)
for l in eachindex(v_i)
grid.linear_index[v_i[l], v_j[l]] = l
grid.cartesian_index[l] = CartesianIndex(v_i[l], v_j[l])
end
return nothing
end
"""
cartesian_to_internal(grid::CartesianLinearGrid, griddata::AbstractArray) -> lindata::Vector
Convert Cartesian Array `griddata` to Vector on `grid.linear_index`
"""
function cartesian_to_internal(grid::CartesianLinearGrid, griddata::AbstractArray)
size(grid.linear_index) == size(griddata) || error("grid and data size mismatch")
return griddata[grid.cartesian_index]
end
cartesian_to_internal(grid::CartesianArrayGrid, griddata::AbstractArray) = griddata
"""
internal_to_cartesian(grid::CartesianLinearGrid, internaldata::AbstractVector [,missing_value=missing]) -> griddata::Array
Convert Vector `internaldata` (on `grid.linear_index`) to Cartesian Array `griddata` (with `missing_value` where no data)
"""
function internal_to_cartesian(grid::CartesianLinearGrid, internaldata::AbstractArray; missing_value=missing)
grid.ncells == length(internaldata) || error("grid and data size mismatch")
if missing_value isa Missing
gr_eltype = Union{Missing, eltype(internaldata)}
else
gr_eltype = eltype(internaldata)
end
griddata = similar(grid.linear_index, gr_eltype)
fill!(griddata, missing_value)
griddata[grid.cartesian_index] .= internaldata
return griddata
end
internal_to_cartesian(grid::CartesianArrayGrid, internaldata::AbstractArray; missing_value=missing) = internaldata
function get_lon(grid::CartesianLinearGrid, linear_idx::Integer)
cartesian_idx = grid.cartesian_index[linear_idx]
return _get_coord(grid.coords, grid.londim, "longitude", cartesian_idx)
end
get_lon(grid::CartesianArrayGrid{N}, cartesian_idx::CartesianIndex{N}) where {N} =
_get_coord(grid.coords, grid.londim, "longitude", cartesian_idx)
function get_lon_edges(grid::CartesianLinearGrid, linear_idx::Integer)
cartesian_idx = grid.cartesian_index[linear_idx]
return _get_coord_edges(grid.coords_edges, grid.londim, "longitude", cartesian_idx)
end
get_lon_edges(grid::CartesianArrayGrid{N}, cartesian_idx::CartesianIndex{N}) where {N} =
_get_coord_edges(grid.coords_edges, grid.londim, "longitude", cartesian_idx)
function get_lat(grid::CartesianLinearGrid, linear_idx::Integer)
cartesian_idx = grid.cartesian_index[linear_idx]
return _get_coord(grid.coords, grid.latdim, "latitude", cartesian_idx)
end
get_lat(grid::CartesianArrayGrid{N}, cartesian_idx::CartesianIndex{N}) where {N} =
_get_coord(grid.coords, grid.latdim, "latitude", cartesian_idx)
function get_lat_edges(grid::CartesianLinearGrid, linear_idx::Integer)
cartesian_idx = grid.cartesian_index[linear_idx]
return _get_coord_edges(grid.coords_edges, grid.latdim, "latitude", cartesian_idx)
end
get_lat_edges(grid::CartesianArrayGrid{N}, cartesian_idx::CartesianIndex{N}) where {N} =
_get_coord_edges(grid.coords_edges, grid.latdim, "latitude", cartesian_idx)
function _get_coord(coords, cdim, dimname, cartesian_idx::CartesianIndex)
cdim > 0 || error("grid has no $dimname dimension")
return coords[cdim][cartesian_idx[cdim]]
end
function _get_coord_edges(coords_edges, cdim, dimname, cartesian_idx::CartesianIndex)
cdim > 0 || error("grid has no $dimname dimension")
return (
coords_edges[cdim][cartesian_idx[cdim]],
coords_edges[cdim][cartesian_idx[cdim]+1],
)
end
"""
linear_indices_cartesian_ranges(grid::CartesianLinearGrid, rangestuple) -> lindices
Find linear indices corresponding to a region in a Cartesian grid
# Example
lindices = linear_indices_cartesian_ranges(grid, (1:2, 10:20, :))
"""
#=
function linear_indices_cartesian_ranges(grid::CartesianLinearGrid{2}, rangestuple )
r1 = rangestuple[1]
r2 = rangestuple[2]
return [l for l in grid.linear_index[r1, r2] if !ismissing(l)]
end
function linear_indices_cartesian_ranges(grid::CartesianLinearGrid{3}, (r1, r2, r3) )
return [l for l in grid.linear_index[r1, r2, r3] if !ismissing(l)]
end
=#
"""
cellrange_cartesiantile
Create a range of cells within a region of CartesianLinearGrid specified by `rangestuple` in a specified [`PB.Domain`](@ref)
`rangestuple` is a tuple of Cartesian index ranges eg (1:9, :, :) for a 3D grid.
"""
function cellrange_cartesiantile(domain, grid::CartesianLinearGrid{2}, rangestuple; operatorID=0)
indices = Int[]
r1, r2 = _expandrangetuple(grid.dims, rangestuple[1:2])
for i=1:length(grid.cartesian_index)
ci = grid.cartesian_index[i]
if ci[1] in r1 && ci[2] in r2
push!(indices, i)
end
end
return PB.CellRange(domain=domain, indices=PB.replace_contiguous_range(indices), operatorID=operatorID)
end
"3D case return a CellRangeColumns"
function cellrange_cartesiantile(domain, grid::CartesianLinearGrid{3}, rangestuple; operatorID=0)
grid.zdim == 3 || error("grid.zdim = $(grid.zdim) not supported (must be last dimension = 3)")
# recreate (all) surface indices
surfindices = [ci for ci in grid.cartesian_index if ci[3] == grid.zidxsurface]
r1, r2, r3 = _expandrangetuple(grid.dims, rangestuple)
indices = Int[]
colindices = Vector{Pair{Int,Vector{Int}}}()
# iterate through surface indices and generate columns
for is in 1:length(surfindices)
sci = surfindices[is]
# println("is ", is, " sci ", sci)
if sci[1] in r1 && sci[2] in r2
colinds = Int[]
# iterate through column in order surface -> floor
if grid.zidxsurface == 1
krange = 1:size(grid.linear_index,3)
else
krange = reverse(1:size(grid.linear_index,3))
end
for k in krange
li = grid.linear_index[sci[1], sci[2], k ]
if k in r3 && !ismissing(li)
push!(colinds, li)
end
end
if !isempty(colinds)
colinds = PB.replace_contiguous_range(colinds)
append!(indices, colinds)
push!(colindices, is=>colinds)
end
end
end
return PB.CellRangeColumns(
domain=domain,
indices=PB.replace_contiguous_range(indices),
columns=colindices,
operatorID=operatorID
)
end
function cellrange_cartesiantile(domain, grid::CartesianArrayGrid{2}, rangestuple; operatorID=0)
rt = _expandrangetuple(grid.dims, rangestuple[1:2])
return PB.CellRange(domain=domain, indices=CartesianIndices(rt), operatorID=operatorID)
end
function cellrange_cartesiantile(domain, grid::CartesianArrayGrid{3}, rangestuple; operatorID=0)
rt = _expandrangetuple(grid.dims, rangestuple[1:3])
return PB.CellRange(domain=domain, indices=CartesianIndices(rt), operatorID=operatorID)
end
"""
create_default_cellrange(domain, grid::Union{CartesianLinearGrid, CartesianArrayGrid} [; operatorID=0]) -> CellRangeColumns
Create a CellRange for entire `domain`. Return a [`PB.CellRangeColumns`](@ref) provided by [`cellrange_cartesiantile`](@ref)
"""
function create_default_cellrange(domain::PB.AbstractDomain, grid::Union{CartesianLinearGrid, CartesianArrayGrid}; operatorID=0)
return cellrange_cartesiantile(domain, grid, (:, :, :), operatorID=operatorID)
end
"expand (1:2, :, :) replacing : with ranges"
function _expandrangetuple(dims, rangestuple)
ranges = []
for i = 1:length(rangestuple)
r = rangestuple[i]
if r isa Colon
push!(ranges, 1:dims[i])
else
push!(ranges, r)
end
end
return Tuple(ranges)
end
"return partitioning of a 3D Domain into n tiles"
function cellrange_cartesiantile(domain::PB.AbstractDomain, grid::CartesianLinearGrid{3}, ntiles::Int; operatorID=0)
# get entire Domain
default_cellrange = create_default_cellrange(domain, grid)
cumulative_cells = Int[] # total cells including column i
cc = 0
for (icol, cellscol) in default_cellrange.columns
cc += length(cellscol)
push!(cumulative_cells, cc)
end
total_cols = length(default_cellrange.columns)
total_cells = last(cumulative_cells)
@info "cellrange_cartesiantile total_cols=$total_cols, total_cells=$total_cells"
cellranges = []
firsttilecol = 1
for t in 1:ntiles
indices = Int[]
colindices = Vector{Pair{Int,Vector{Int}}}()
tilecells = 0
for tc in firsttilecol:total_cols
(icol, cellscol) = default_cellrange.columns[tc]
append!(indices, cellscol)
push!(colindices, icol=>cellscol)
tilecells += length(cellscol)
if tilecells >= total_cells/ntiles && t != ntiles
firsttilecol = tc+1
break
end
end
@info " tile $t columns $(first(colindices)[1]):$(last(colindices)[1]) total cells $(length(indices))"
push!(
cellranges,
PB.CellRangeColumns(
domain=domain,
indices=PB.replace_contiguous_range(indices),
columns=colindices,
operatorID=operatorID
)
)
end
return cellranges
end
"derive CellRange for a 2D boundary Domain from a CellRangeColumns for the 3D interior Domain"
function cellrange_from_columns(boundarydomain, grid::CartesianLinearGrid{2}, interior_crcolumns::PB.CellRangeColumns)
indices = [icol for (icol, cellscol) in interior_crcolumns.columns]
return PB.CellRange(
domain=boundarydomain,
indices=PB.replace_contiguous_range(indices),
operatorID=interior_crcolumns.operatorID
)
end
"""
linear_kji_order(grid, v_i, v_j, v_k) -> perm::Vector
Find `perm` such that indices `v_i[perm], v_j[perm], v_k[perm]` correspond to
traversal of the 3D grid in order k, j, i
"""
function linear_kji_order(grid, v_i, v_j, v_k)
length(grid.dims) == 3 || error("linear_kji_order grid is not a 3D grid")
# construct a 3D Array and fill with linear index values
linear_index = Array{Union{Missing,Int32},length(grid.dims)}(missing, grid.dims...)
for l in eachindex(v_i)
linear_index[v_i[l], v_j[l], v_k[l]] = l
end
# visit 3D Array in k, j, i order and record linear index values
perm = Vector{Int}(undef, length(v_i))
ip = 0
for i in 1:grid.dims[1]
for j in 1:grid.dims[2]
for k in 1:grid.dims[3]
if !ismissing(linear_index[i, j, k])
ip += 1
perm[ip] = linear_index[i, j, k]
end
end
end
end
return (perm, sortperm(perm))
end
###########################
# Grid tiling
###########################
"""
get_tiled_cellranges(model::Model, tiles [; operatorID]) -> cellranges::Vector{Vector}
Partition Domains into tiles, assuming a single Cartesian gridded Domain + associated boundaries (eg ocean + oceansurface + ...)
and that all additional Domains are scalar Domains (eg atmosphere).
`tiles` should be a collection of tuples of ranges eg `tiles = [(1:9, :, :), (10:16, :, :), (17:25, :, :), (26:36, :, :)]`.
Returns `cellranges`, a Vector of Vectors of CellRanges providing one Vector of Cellranges per tile.
"""
function get_tiled_cellranges(model::PB.Model, tiles; operatorID=0)
cellranges = [] # vector of vectors, 1 per tile
for tr in tiles
@info "creating CellRanges for tile $tr operatorID $operatorID"
tcellranges = []
for dom in model.domains
if !isnothing(dom.grid)
push!(tcellranges, cellrange_cartesiantile(dom, dom.grid, tr, operatorID=operatorID))
@info " add CellRange for domain $(dom.name) length $(length(last(tcellranges).indices))"
end
end
push!(cellranges, tcellranges)
end
# create cellranges for scalar Domains
cellrangesscalar = []
@info "creating CellRanges for scalar domains"
for dom in model.domains
if isnothing(dom.grid)
push!(cellrangesscalar, create_default_cellrange(dom, dom.grid, operatorID=operatorID))
@info " added CellRange for scalar domain $(dom.name)"
end
end
@info "adding CellRanges for scalar domains to first tile"
append!(first(cellranges), cellrangesscalar)
return cellranges
end
"""
get_tiled_cellranges(model::Model, ntiles::Int, interior_domain_name [; operatorID]) -> cellranges::Vector{Vector}
Partition Domains into `ntiles` with approximately equal numbers of cells for `interior_domain_name`,
assuming a single Cartesian gridded Domain `interior_domain_name` + associated boundaries (eg ocean + oceansurface + ...)
and that all additional Domains are scalar Domains (eg atmosphere).
Returns `cellranges`, a Vector of Vectors of CellRanges providing one Vector of Cellranges per tile.
"""
function get_tiled_cellranges(model::PB.Model, ntiles::Int, interior_domain_name::AbstractString; operatorID=0)
interior_domain = PB.get_domain(model, interior_domain_name)
interior_cellranges = cellrange_cartesiantile(interior_domain, interior_domain.grid, ntiles, operatorID=operatorID)
cellranges = [] # vector of vectors, 1 per tile
for it in 1:ntiles
println("creating CellRanges for tile $it")
tcellranges = []
push!(tcellranges, interior_cellranges[it])
for dom in model.domains
if !isnothing(dom.grid) && dom != interior_domain
push!(tcellranges, cellrange_from_columns(dom, dom.grid, interior_cellranges[it]))
println(" add CellRange for domain $(dom.name) length $(length(last(tcellranges).indices))")
end
end
push!(cellranges, tcellranges)
end
# create cellranges for scalar Domains
cellrangesscalar = []
@info "creating CellRanges for scalar domains"
for dom in model.domains
if isnothing(dom.grid)
push!(cellrangesscalar, create_default_cellrange(dom, dom.grid, operatorID=operatorID))
@info " added CellRange for scalar domain $(dom.name)"
end
end
@info "adding CellRanges for scalar domains to first tile"
append!(first(cellranges), cellrangesscalar)
return cellranges
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 37580 | import Infiltrator
"""
Model
A biogeochemical model consisting of [`Domain`](@ref)s, created from a [YAML](https://en.wikipedia.org/wiki/YAML)
configuration file using [`create_model_from_config`](@ref).
"""
Base.@kwdef mutable struct Model <: AbstractModel
name::String
config_files::Vector{String}
parameters::Dict{String, Any}
domains::Vector{AbstractDomain} = Vector{AbstractDomain}()
sorted_methods_setup = nothing
sorted_methods_initialize = nothing
sorted_methods_do = nothing
end
"Get number of model domains"
function get_num_domains(model::Model)
return length(model.domains)
end
"""
get_domain(model::Model, name::AbstractString; allow_not_found=true) -> Domain or nothing
get_domain(model::Model, domainid) -> Domain
Get Domain by `name` (may be nothing if `name` not matched)
or `domainid` (range 1:num_domains).
"""
function get_domain(model::Model, name::AbstractString; allow_not_found=true)
domainidx = findfirst(d -> d.name==name, model.domains)
if isnothing(domainidx)
allow_not_found || error("get_domain: no Domain $name")
return nothing
else
return model.domains[domainidx]
end
end
function get_domain(model::Model, domainid)
domainid <= length(model.domains) || error("get_domain: invalid domainid=", domainid)
return model.domains[domainid]
end
function get_mesh(model::Model, domainname::AbstractString)
return get_domain(model, domainname; allow_not_found=false).grid
end
"""
get_reaction(model::Model, domainname, reactionname; allow_not_found=false) -> Reaction or nothing
Get Reaction by domainname and reaction name
"""
function get_reaction(model::Model, domainname, reactionname; allow_not_found=false)
domain = get_domain(model, domainname; allow_not_found)
return isnothing(domain) ? nothing : get_reaction(domain, reactionname; allow_not_found)
end
"""
get_variable(model::Model, varnamefull; allow_not_found=false) -> VariableDomain or nothing
Get Variable by name of form `<domainname>.<variablename>`
"""
function get_variable(model::Model, varnamefull::AbstractString; allow_not_found=false)
varsplit = split(varnamefull, ".")
length(varsplit) == 2 ||
throw(ArgumentError("varnamefull $varnamefull is not of form <domainname>.<variablename>"))
domainname, variablename = varsplit
domain = get_domain(model, domainname; allow_not_found)
return isnothing(domain) ? nothing : get_variable(domain, variablename; allow_not_found)
end
"""
get_field(model::Model, modeldata, varnamefull) -> Field
Get [`Field`](@ref) by Variable name
"""
function get_field(model::Model, modeldata::AbstractModelData, varnamefull::AbstractString)
var = get_variable(model, varnamefull; allow_not_found=false)
return get_field(var, modeldata)
end
"""
set_variable_attribute!(model::Model, varnamefull, attributename::Symbol, value)
Set `varnamefull` (of form <domain name>.<var name>) `attributename` to `value`.
"""
function set_variable_attribute!(
model::Model,
varnamefull::AbstractString,
attributename::Symbol,
value
)
domvar = get_variable(model, varnamefull; allow_not_found=false)
return set_attribute!(domvar, attributename, value)
end
set_variable_attribute!(
model::Model,
domainname::AbstractString,
variablename::AbstractString,
attributename::Symbol,
value
) = set_variable_attribute!(model, domainname*"."*variablename, attributename, value)
"""
get_variable_attribute(model::Model, varnamefull, attributename::Symbol, missing_value=missing) -> attributevalue
Get `varnamefull` (of form <domain name>.<var name>) `attributename`.
"""
function get_variable_attribute(
model::Model,
varnamefull::AbstractString,
attributename::Symbol,
missing_value=missing,
)
domvar = get_variable(model, varnamefull; allow_not_found=false)
return get_attribute(domvar, attributename, missing_value)
end
"convenience function to get VariableReaction with 'localname' from all ReactionMethods of 'reactionname'"
function get_reaction_variables(
model::Model, domainname::AbstractString, reactionname::AbstractString, localname::AbstractString
)
react = get_reaction(model, domainname, reactionname; allow_not_found=false)
return get_variables(react, localname)
end
"convenience function to get VariableReaction matching 'filterfn' from all ReactionMethods of 'reactionname'"
function get_reaction_variables(
model::Model, domainname::AbstractString, reactionname::AbstractString;
filterfn = v -> true,
)
react = get_reaction(model, domainname, reactionname; allow_not_found=false)
return get_variables(react, filterfn=filterfn)
end
"""
set_parameter_value!(model::Model, domainname, reactionname, parname, value)
Convenience function to set Parameter value.
"""
function set_parameter_value!(
model::Model,
domainname::AbstractString,
reactionname::AbstractString,
parname::AbstractString,
value
)
react = get_reaction(model, domainname, reactionname; allow_not_found=false)
return set_parameter_value!(react, parname, value)
end
"""
get_parameter_value(model::Model, domainname, reactionname, parname) -> value
Convenience function to get Parameter value.
"""
function get_parameter_value(
model::Model,
domainname::AbstractString,
reactionname::AbstractString,
parname::AbstractString,
)
react = get_reaction(model, domainname, reactionname; allow_not_found=false)
return get_parameter_value(react, parname, value)
end
###################################
# creation from _cfg.yaml
##################################
"""
create_model_from_config(
config_file::AbstractString, configmodel::AbstractString;
modelpars::Dict = Dict()
) -> model::Model
create_model_from_config(
config_files,
configmodel::AbstractString;
modelpars::Dict = Dict()
) -> model::Model
Construct model from a single [YAML](https://en.wikipedia.org/wiki/YAML) `config_file`, or from a collection of `config_files`,
which are read in order and concatenated before being parsed as yaml.
Optional argument `modelpars` provides parameters that override those in `<configmodel>:` `parameters:` section.
"""
function create_model_from_config(
config_file::AbstractString,
configmodel::AbstractString;
kwargs...
)
return create_model_from_config([config_file], configmodel; kwargs...)
end
function create_model_from_config(
config_files,
configmodel::AbstractString;
modelpars::Dict=Dict(),
sort_methods_algorithm=group_methods,
)
io = IOBuffer()
print(io, """
================================================================================
create_model_from_config: configmodel $configmodel
""")
# concatenate input yaml files
yamltext = ""
for fn in config_files
fnpath = abspath(fn)
println(io, " config_file: ", fnpath)
isfile(fnpath) || infoerror(io, "config file $fnpath not found")
yamltext *= read(fnpath, String) * "\n" # add newline so concatenation correct if one file doesn't have a blank line at end
end
print(io, """
================================================================================
""")
@info String(take!(io))
data = nothing
try
data = YAML.load(yamltext)
catch e
error("$(typeof(e)) while reading .yaml config file(s) $(abspath.(config_files)).\n"*
"If the error isn't obvious by looking at the file(s) (often this is a whitespace issue), "*
"try an online YAML validator eg http://www.yamllint.com")
end
conf_model = data[configmodel]
for k in keys(conf_model)
if !(k in ("parameters", "domains", "geometry_precedence"))
error("Model configuration error invalid key '$k'")
end
end
io = IOBuffer()
parameters = get(conf_model, "parameters", Dict{String, Any}())
if isnothing(parameters)
@warn "empty Model.parameters"
parameters = Dict{String,Any}()
else
println(io, "Model.parameters:")
end
# extrapars can override parameter from configuration file, but not create new parameters (to catch typos)
for (parname, value) in modelpars
if haskey(parameters, parname)
println(io, " Resetting Model parameter $(rpad(parname, 20)) = $value (configuration file had value=$value)")
parameters[parname] = value
else
error("configuration error: modelpars parameter $parname not present in configuration file for Model parameters:")
end
end
for (parname, value) in parameters
println(io, " $(rpad(parname,20)) = $value")
end
@info String(take!(io))
@timeit "Model" model = Model(
config_files=[abspath(fn) for fn in config_files],
name=configmodel,
parameters=parameters
)
conf_domains = conf_model["domains"]
@info """
================================================================================
creating Domains
================================================================================
"""
@timeit "creating Domains" begin
rdict = find_all_reactions()
@info "generated Reaction catalog with $(length(rdict)) Reactions"
for (name, conf_domain) in conf_domains
nextDomainID = length(model.domains) + 1
@info """
================================================================================
creating domain '$(name)' ID=$nextDomainID
================================================================================
"""
if isnothing(conf_domain) # empty domain will return nothing
conf_domain = Dict()
end
push!(
model.domains,
create_domain_from_config(name, nextDomainID, conf_domain, model.parameters, rdict)
)
end
end # timeit
# request configuration of Domain sizes, Subdomains
@info """
================================================================================
set_model_geometry
================================================================================
"""
for dom in model.domains
for react in dom.reactions
set_model_geometry(react, model)
end
end
@info """
================================================================================
register_reaction_methods!
================================================================================
"""
@timeit "_register_reaction_methods" _register_reaction_methods!(model)
# Link variables
@timeit "_link_variables" _link_variables!(model)
# sort methods
@timeit "_sort_method_dispatch" _sort_method_dispatch!(model, sort_methods_algorithm=sort_methods_algorithm)
@info """
================================================================================
create_model_from_config: done
================================================================================
"""
return model
end
###################################
# setup
##################################
"""
create_modeldata(model::Model [, eltype] [; threadsafe]) -> modeldata::ModelData
Create a new [`ModelData`](@ref) struct for model variables of element type `eltype`.
"""
function create_modeldata(
model::Model, arrays_eltype::DataType=Float64;
threadsafe=false,
allocatenans=true, # fill Arrays with NaN when first allocated
)
modeldata = ModelData(model; arrays_eltype, threadsafe, allocatenans)
modeldata.cellranges_all = create_default_cellrange(model)
return modeldata
end
"""
create_default_cellrange(model::Model [; operatorID=0]) -> Vector{AbstractCellRange}
Create a `Vector` of `CellRange` instances covering the entire model.
"""
function create_default_cellrange(model::Model ; operatorID=0)
cellranges_all = Vector{AbstractCellRange}()
for dom in model.domains
push!(cellranges_all, Grids.create_default_cellrange(dom, dom.grid, operatorID=operatorID))
end
return cellranges_all
end
"""
allocate_variables!(model, modeldata, arrays_idx; kwargs...)
Allocate memory for Domain variables for every Domain in `model`.
See [`allocate_variables!(domain::Domain, modeldata::AbstractModelData, arrays_idx::Int)`](@ref).
"""
function allocate_variables!(
model::Model, modeldata::AbstractModelData, arrays_idx::Int;
kwargs...
)
@info """
================================================================================
allocate_variables! (modeldata arrays_idx=$arrays_idx)
================================================================================
"""
check_modeldata(model, modeldata)
for dom in model.domains
allocate_variables!(dom, modeldata, arrays_idx; kwargs...)
end
return nothing
end
"""
check_ready(model, modeldata; [throw_on_error=true] [, check_hostdep_varnames=true] [, expect_hostdep_varnames=["global.tforce"]]) -> ready
Check all variable pointers set, and no unexpected host-dependent non-state Variables (ie unlinked Variables)
"""
function check_ready(
model::Model, modeldata::AbstractModelData;
throw_on_error=true,
check_hostdep_varnames=true,
expect_hostdep_varnames=["global.tforce"],
)
check_modeldata(model, modeldata)
ready = true
for dom in model.domains
# don't exit on first error so display report from all Domains
ready = ready && check_ready(dom, modeldata, throw_on_error=false)
if check_hostdep_varnames
dom_hdv, _ = get_host_variables(dom, VF_Undefined)
for hv in dom_hdv
fullname_hv = fullname(hv)
if !(fullname_hv in expect_hostdep_varnames)
io = IOBuffer()
println(io, "check_ready: unexpected host-dependent Variable $fullname_hv (usually an unlinked Variable due to eg a "*
"missing renaming in the :variable_links sections in the .yaml file, a spelling mistake either "*
"in a Variable default name in the code or renaming in the .yaml file, or a missing Reaction)")
show_links(io, hv)
@warn String(take!(io))
ready = false
end
end
end
end
if !ready
@error "check_ready failed"
throw_on_error && error("check_ready failed")
end
return ready
end
"Check configuration"
function check_configuration(
model::Model;
throw_on_error=true
)
configok = true
for dom in model.domains
configok = configok && check_configuration(dom, model)
end
if !configok
@error "check_configuration failed"
throw_on_error && error("check_configuration failed")
end
return configok
end
"""
initialize_reactiondata!(model::Model, modeldata::AbstractModelData; kwargs...)
Processes `VarList_...`s from ReactionMethods and populates `modeldata.sorted_methodsdata_...`
with sorted lists of ReactionMethods and corresponding Variable accessors.
Optionally calls `create_dispatch_methodlists(model, modeldata, modeldata.cellranges_all)`
to set `modeldata.dispatchlists_all` to default ReactionMethodDispatchLists for entire model.
# Keyword arguments
- `arrays_indices=1:num_arrays(modeldata)`: `modeldata` `arrays_idx` to generate dispatch lists for
- `create_dispatchlists_all=false`: true to set `modeldata.dispatchlists_all`
- `generated_dispatch=true`: true to use autogenerated code for `modeldata.dispatchlists_all` (fast dispatch, slow compile)
"""
function initialize_reactiondata!(
model::Model, modeldata::AbstractModelData;
arrays_indices=1:num_arrays(modeldata),
method_barrier=nothing,
create_dispatchlists_all=false,
generated_dispatch=true,
)
@info """
================================================================================
initialize_reactiondata! (modeldata arrays_indices=$arrays_indices)
================================================================================
"""
check_modeldata(model, modeldata)
# TODO using Ref here seems to trade off time to create ReactionMethodDispatchList
# and time for first call to do_deriv ??
# (Ref gives fast ReactionMethodDispatchList creation, but slow first do_deriv)
# NB: passing Ref to call_method seems to speed up first do_deriv
# only for arrays_idx = 1
for arrays_idx in arrays_indices
arrays_idx in 1:num_arrays(modeldata) || error("arrays_idx $arrays_idx out of range")
if arrays_idx == 1
modeldata.sorted_methodsdata_setup =
[
Any[Ref(m), Ref(m.preparefn(m, create_accessors(m, modeldata, 1)))]
for m in get_methods(model.sorted_methods_setup)
]
end
modeldata.sorted_methodsdata_initialize[arrays_idx] =
[
Any[Ref(m), Ref(m.preparefn(m, create_accessors(m, modeldata, arrays_idx)))]
for m in get_methods(model.sorted_methods_initialize; method_barrier)
]
modeldata.sorted_methodsdata_do[arrays_idx] =
[
Any[Ref(m), Ref(m.preparefn(m, create_accessors(m, modeldata, arrays_idx)))]
for m in get_methods(model.sorted_methods_do; method_barrier)
]
end
if create_dispatchlists_all
# create default dispatchlists_all corresponding to cellranges_all for arrays_idx=1
modeldata.dispatchlists_all =
create_dispatch_methodlists(model, modeldata, 1, modeldata.cellranges_all; generated_dispatch)
end
return nothing
end
"""
dispatch_setup(model, attribute_name, modeldata, cellranges=modeldata.cellranges_all)
Call setup methods, eg to initialize data arrays (including state variables).
`attribute_name` defines the setup operation performed. `dispatch_setup` should be called in sequence with `attribute_name` = :
- `:setup`: initialise Reactions and set up any non-state Variables (eg model grid Variables) (applied to `modeldata` `arrays_idx=1`, values then copied to other `arrays_idx`)
- `:norm_value`: set state Variable values from `:norm_value` attribute in .yaml file, and initialise any Reaction state that requires this value (`arrays_idx` 1 only)
- `:initial_value` (optional): set state Variable values from `:initial_value` attribute in .yaml file (`arrays_idx` 1 only)
"""
function dispatch_setup(
model::Model, attribute_name, modeldata::AbstractModelData, cellranges=modeldata.cellranges_all
)
@info """
================================================================================
dispatch_setup :$attribute_name
================================================================================
"""
check_modeldata(model, modeldata)
for (method, vardata) in modeldata.sorted_methodsdata_setup
for cr in _dispatch_cellranges(method[], cellranges)
call_method(method[], vardata[], cr, attribute_name)
end
end
if attribute_name == :setup
copy_base_values!(modeldata)
end
return nothing
end
"""
add_arrays_data!(
model, modeldata, arrays_eltype::DataType, arrays_tagname::AbstractString;
[method_barrier=nothing] [, generated_dispatch=true] [, kwargs...])
Add a data array set to `modeldata`, allocate memory, and initialize reactiondata.
Element type and tag name are set by `arrays_eltype`, `arrays_tagname`
See [`allocate_variables!(model::Model, modeldata::AbstractModelData, arrays_idx::Int)`](@ref) and
[`initialize_reactiondata!`] for keyword arguments.
"""
function add_arrays_data!(
model::Model, modeldata::AbstractModelData, arrays_eltype::DataType, arrays_tagname::AbstractString;
method_barrier=nothing,
logger=Logging.NullLogger(),
kwargs...
)
@info "add_arrays_data! (arrays_eltype=$arrays_eltype, arrays_tagname=$arrays_tagname)"
Logging.with_logger(logger) do
push_arrays_data!(modeldata, arrays_eltype, arrays_tagname)
allocate_variables!(model, modeldata, num_arrays(modeldata); kwargs...)
copy_base_values!(modeldata, num_arrays(modeldata))
initialize_reactiondata!(
model, modeldata;
arrays_indices=num_arrays(modeldata),
method_barrier,
create_dispatchlists_all=false,
)
end
return nothing
end
struct DispatchMethodLists
list_initialize # not typed to avoid specializing large Tuples
list_do # not typed to avoid specializing large Tuples
end
"""
create_dispatch_methodlists(model::Model, modeldata::AbstractModelData, arrays_idx::Int, cellranges; kwargs)
-> DispatchMethodLists(list_initialize, list_do)
Compile lists of `initialize` and `do` methods + corresponding `cellrange` for main loop [`do_deriv`](@ref).
Subset of methods and cellrange to operate on are generated from supplied `cellranges`.
# Keyword arguments
- `verbose=false`: true for additional log output
- `generated_dispatch=true`: `true` to create `ReactionMethodDispatchList`s (fast dispatch using generated code, slow compile time),
`false` to create `ReactionMethodDispatchListNoGen` (slow dynamic dispatch, fast compile time)
"""
function create_dispatch_methodlists(
model::Model, modeldata::AbstractModelData, arrays_idx::Int, cellranges;
verbose=false,
generated_dispatch=true,
)
check_modeldata(model, modeldata)
verbose && @info "list_initialize:\n"
arrays_idx in 1:length(modeldata.sorted_methodsdata_initialize) || error("list_initialize: arrays_idx $arrays_idx not available")
@timeit "list_initialize" list_initialize = _create_dispatch_methodlist(
modeldata.sorted_methodsdata_initialize[arrays_idx],
cellranges,
generated_dispatch,
)
verbose && @info "list_do:\n"
arrays_idx in 1:length(modeldata.sorted_methodsdata_do) || error("list_do: arrays_idx $arrays_idx not available")
@timeit "list_do" list_do = _create_dispatch_methodlist(
modeldata.sorted_methodsdata_do[arrays_idx],
cellranges,
generated_dispatch,
)
DispatchMethodLists(list_initialize, list_do)
end
function _create_dispatch_methodlist(methodsdata, cellranges, generated_dispatch::Bool)
methods, vardatas, crs = Ref{<:AbstractReactionMethod}[], Ref{<:Tuple}[], Union{Nothing, AbstractCellRange}[]
@timeit "create arrays" begin
for (method, vardata) in methodsdata
for cr in _dispatch_cellranges(method[], cellranges)
push!(methods, method)
push!(vardatas, vardata)
push!(crs, cr)
end
end
end # timeit
if generated_dispatch
@timeit "ReactionMethodDispatchList" rmdl = ReactionMethodDispatchList(methods, vardatas, crs)
else
@timeit "ReactionMethodDispatchListNoGen" rmdl = ReactionMethodDispatchListNoGen(methods, vardatas, crs)
end
return rmdl
end
function _dispatch_cellranges(@nospecialize(method::AbstractReactionMethod), cellranges)
if is_do_barrier(method)
return (nothing, )
else
domain = method.domain
operatorID = method.operatorID
return Iterators.filter(
cr -> (cr.domain === domain) &&
(cr.operatorID == 0 || cr.operatorID in operatorID),
cellranges
)
end
end
####################################
# Main loop methods
#####################################
"""
do_deriv(dispatchlists, deltat::Float64=0.0)
do_deriv(dispatchlists, pa::ParameterAggregator, deltat::Float64=0.0)
Wrapper function to calculate entire derivative (initialize and do methods) in one call.
`dispatchlists` is from [`create_dispatch_methodlists`](@ref).
"""
function do_deriv(dispatchlists, deltat::Float64=0.0)
dispatch_methodlist(dispatchlists.list_initialize)
dispatch_methodlist(dispatchlists.list_do, deltat)
return nothing
end
function do_deriv(dispatchlists, pa::ParameterAggregator, deltat::Float64=0.0)
dispatch_methodlist(dispatchlists.list_initialize) # assume initialize methods don't use parameters
dispatch_methodlist(dispatchlists.list_do, pa, deltat)
return nothing
end
"""
dispatch_methodlist(dl::ReactionMethodDispatchList, deltat::Float64=0.0)
dispatch_methodlist(dl::ReactionMethodDispatchList, pa::ParameterAggregator, deltat::Float64=0.0)
dispatch_methodlist(dl::ReactionMethodDispatchListNoGen, deltat::Float64=0.0)
dispatch_methodlist(dl::ReactionMethodDispatchListNoGen, pa::ParameterAggregator, deltat::Float64=0.0)
Call a list of ReactionMethods.
# Implementation
As an optimisation, with `dl::ReactionMethodDispatchList` uses @generated for Type stability
and to avoid dynamic dispatch, instead of iterating over lists.
[`ReactionMethodDispatchList`](@ref) fields are Tuples hence are fully Typed, the @generated
function emits unrolled code with a function call for each Tuple element.
"""
function dispatch_methodlist(
dl::ReactionMethodDispatchListNoGen,
deltat::Float64=0.0
)
for i in eachindex(dl.methods)
call_method(dl.methods[i], dl.vardatas[i], dl.cellranges[i], deltat)
end
return nothing
end
function dispatch_methodlist(
dl::ReactionMethodDispatchListNoGen,
pa::ParameterAggregator,
deltat::Float64=0.0
)
for j in eachindex(dl.methods)
methodref = dl.methods[j]
if has_modified_parameters(pa, methodref)
call_method(methodref, get_parameters(pa, methodref), dl.vardatas[j], dl.cellranges[j], deltat)
else
call_method(methodref, dl.vardatas[j], dl.cellranges[j], deltat)
end
end
return nothing
end
@generated function dispatch_methodlist(
dl::ReactionMethodDispatchList{M, V, C},
deltat::Float64=0.0
) where {M, V, C}
# See https://discourse.julialang.org/t/manually-unroll-operations-with-objects-of-tuple/11604
ex = quote ; end # empty expression
for j=1:fieldcount(M)
push!(ex.args,
quote
# let
# call_method(dl.methods[$j][], dl.vardatas[$j][], dl.cellranges[$j], deltat)
# pass Ref to function to reduce compile time
call_method(dl.methods[$j], dl.vardatas[$j], dl.cellranges[$j], deltat)
# end
end
)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@generated function dispatch_methodlist(
dl::ReactionMethodDispatchList{M, V, C},
pa::ParameterAggregator,
deltat::Float64=0.0
) where {M, V, C}
# See https://discourse.julialang.org/t/manually-unroll-operations-with-objects-of-tuple/11604
ex = quote ; end # empty expression
for j=1:fieldcount(M)
push!(ex.args,
quote
if has_modified_parameters(pa, dl.methods[$j])
call_method(dl.methods[$j], get_parameters(pa, dl.methods[$j]), dl.vardatas[$j], dl.cellranges[$j], deltat)
else
call_method(dl.methods[$j], dl.vardatas[$j], dl.cellranges[$j], deltat)
end
end
)
end
push!(ex.args, quote; return nothing; end)
return ex
end
#################################
# Pretty printing
################################
# compact form
function Base.show(io::IO, model::Model)
print(io, "Model(config_files='", model.config_files,"', name='", model.name,"')")
end
# multiline form
function Base.show(io::IO, ::MIME"text/plain", model::Model)
println(io, "Model")
println(io, "\tname='", model.name,"'")
println(io, "\tconfig_files='", model.config_files,"'")
println(io, "\tdomains=", model.domains)
end
"""
show_methods_setup(model::Model)
Display ordered list of Reaction setup methods (registered by [`add_method_setup!`](@ref),
called by [`dispatch_setup`](@ref))
"""
function show_methods_setup(model::Model)
println("All methods_setup:")
println(model.sorted_methods_setup)
return nothing
end
"""
show_methods_initialize(model::Model)
Display ordered list of Reaction initialize methods (registered by [`add_method_initialize!`](@ref),
called by [`do_deriv`](@ref) at start of each model timestep).
"""
function show_methods_initialize(model::Model)
println("All methods_initialize:")
println(model.sorted_methods_initialize)
return nothing
end
"""
show_methods_do(model::Model)
Display ordered list of Reaction do methods (registered by [`add_method_do!`](@ref),
called by [`do_deriv`](@ref) for each model timestep).
"""
function show_methods_do(model::Model)
println("All methods_do:")
println(model.sorted_methods_do)
return nothing
end
"""
show_variables(model::Model; [attributes], [filter], showlinks=false, modeldata=nothing) -> DataFrame
show_variables(model::Model, domainname; [attributes], [filter], showlinks=false, modeldata=nothing) -> DataFrame
Show table of Domain Variables. Optionally get variable links, data.
# Keywords:
See [`show_variables(domain::Domain, kwargs...)`](@ref)
# Examples:
Display all model Variables using VS Code table viewer:
julia> vscodedisplay(PB.show_variables(run.model))
Write out all model Variables as csv for import to a spreadsheet:
julia> CSV.write("vars.csv", PB.show_variables(run.model, modeldata=modeldata, showlinks=true))
"""
function show_variables(model::Model; kwargs...)
df = DataFrames.DataFrame()
for dom in model.domains
dfdom = show_variables(dom; kwargs...)
# prepend domain name
DataFrames.insertcols!(dfdom, 1, :domain=>fill(dom.name, size(dfdom,1)))
# append to df
df = vcat(df, dfdom)
end
DataFrames.sort!(df, [:domain, :name])
return df
end
function show_variables(model::Model, domainname::AbstractString; kwargs...)
dom = get_domain(model, domainname; allow_not_found=false)
return show_variables(dom; kwargs...)
end
show_links(model::Model, varnamefull::AbstractString) = show_links(stdout, model, varnamefull)
function show_links(io::IO, model::Model, varnamefull::AbstractString)
vardom = get_variable(model, varnamefull; allow_not_found=false)
show_links(io, vardom)
end
"""
show_parameters(model) -> DataFrame
Get parameters for all reactions in model.
# Examples:
Show all model parameters using VS Code table viewer:
julia> vscodedisplay(PB.show_parameters(run.model))
Write out all model parameters as csv for import to a spreadsheet:
julia> CSV.write("pars.csv", PB.show_parameters(run.model))
"""
function show_parameters(model::Model)
df = DataFrames.DataFrame()
for dom in model.domains
for react in dom.reactions
dfreact = show_parameters(react)
DataFrames.insertcols!(dfreact, 1, :reaction=>fill(react.name, size(dfreact,1)))
DataFrames.insertcols!(dfreact, 2, :classname=>fill(react.classname, size(dfreact,1)))
DataFrames.insertcols!(dfreact, 1, :domain=>fill(dom.name, size(dfreact,1)))
# append to df
df = vcat(df, dfreact)
end
end
DataFrames.sort!(df, [:domain, :reaction, :name])
return df
end
######################################
# Variable linking
#######################################
"""
_link_variables!(model::Model) -> nothing
Populate `Domain` variable lists, renaming and linking Reaction variables
"""
function _link_variables!(model::Model)
# First pass - variables defined in config file
foreach(_link_clear!, model.domains)
@info """
================================================================================
link_variables: first pass
================================================================================
"""
# _link_variables!(model, _link_print)
_link_variables!(model, _link_create, false)
_link_variables!(model, _link_create_contrib, false)
_link_variables!(model, _link_create_dep, false)
_link_variables!(model, _link_link, false)
# Allow reactions to define additional variables, based on
# the model structure
@info """
================================================================================
link_variables: register_reaction_dynamic_methods and configure variables
================================================================================
"""
_register_reaction_dynamic_methods!(model)
# Second pass including additional variables
foreach(_link_clear!, model.domains)
@info """
================================================================================
link_variables: second pass:
================================================================================
"""
_link_variables!(model, _link_print, true)
_link_variables!(model, _link_create, true)
_link_variables!(model, _link_create_contrib, true)
_link_variables!(model, _link_create_dep, true)
_link_variables!(model, _link_link, true)
io = IOBuffer()
print(io, """
================================================================================
link_variables! unlinked variables:
================================================================================
""")
_link_variables!(model, _link_print_not_linked, io)
@info String(take!(io))
return nothing
end
"""
relink_variables!(model::Model) -> nothing
Optional relink `Reaction` variables and repopulate `Domain` Variable lists.
Only needed if modifying `variable_links` after calling [`create_model_from_config`](@ref)
NB: dynamic Variables are not recreated, so will not reflect any changes
"""
function relink_variables!(model::Model)
foreach(_link_clear!, model.domains)
@info """
================================================================================
relink_variables!:
================================================================================
"""
_link_variables!(model, _link_print, true)
_link_variables!(model, _link_create, true)
_link_variables!(model, _link_create_contrib, true)
_link_variables!(model, _link_create_dep, true)
_link_variables!(model, _link_link, true)
io = IOBuffer()
println(io, """
================================================================================
relink_variables! unlinked variables:
================================================================================
""")
_link_variables!(model, _link_print_not_linked, io)
@info String(take!(io))
return nothing
end
function _link_variables!(model::Model, oper, dolog)
for dom in model.domains
_link_variables!(dom, model, oper, dolog)
end
end
############################
# Method registration and ordering
##############################
function _register_reaction_methods!(model::Model)
for dom in model.domains
for r in dom.reactions
_register_methods!(r, model)
# not all methods registered and ReactionVariables available, so no error if missing
_configure_variables(r; allow_missing=true, dolog=false)
end
end
return nothing
end
function _register_reaction_dynamic_methods!(model::Model)
for dom in model.domains
for r in dom.reactions
register_dynamic_methods!(r, model)
_configure_variables(r; allow_missing=false, dolog=true)
end
end
return nothing
end
get_methods_setup(model; kwargs...) = _get_methods(model, :methods_setup)
get_methods_initialize(model; kwargs...) = _get_methods(model, :methods_initialize)
get_methods_do(model; kwargs...) = _get_methods(model, :methods_do)
function _get_methods(model::Model, mfield::Symbol; filterfn=m->!is_do_nothing(m))
methods=ReactionMethod[]
for dom in model.domains
for r in dom.reactions
append!(methods, filter(filterfn, getproperty(r, mfield)))
end
end
return methods
end
"""
_sort_method_dispatch!(model::Model) -> nothing
Sort methods into dispatch order, based on variable dependencies
"""
function _sort_method_dispatch!(model::Model; sort_methods_algorithm=group_methods)
# create unsorted list of all Reactions in model
all_reacts = Vector{AbstractReaction}()
for dom in model.domains
append!(all_reacts, dom.reactions)
end
# get all domain Variables
all_domvars = Vector{VariableDomain}()
for dom in model.domains
append!(all_domvars, get_variables(dom))
end
methods_setup = get_methods_setup(model)
model.sorted_methods_setup = sort_methods_algorithm(methods_setup, all_domvars)
methods_initialize = get_methods_initialize(model)
# TODO no sort needed as no dependencies allowed
model.sorted_methods_initialize = sort_methods_algorithm(methods_initialize, all_domvars)
methods_do = get_methods_do(model)
model.sorted_methods_do = sort_methods_algorithm(methods_do, all_domvars)
return nothing
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 6329 |
"""
DomainData
struct to hold VariableDomain data.
"""
Base.@kwdef mutable struct DomainData <: AbstractDomainData
domain::Domain
variable_data::Vector{Any} = Vector{Any}()
end
function DomainData(domain)
domaindata = DomainData(domain = domain, variable_data = fill(nothing, get_num_variables(domain)))
return domaindata
end
"""
ModelData(model::Model; arrays_eltype::DataType=Float64, threadsafe::Bool=false, allocatenans::Bool=true)
Create a ModelData struct containing `model` data arrays.
One set of data arrays is created with `eltype=arrays_eltype`, accessed with `arrays_idx=1`
Additional sets of data arrays may be added by [`push_arrays_data!`](@ref), eg in order to support automatic differentiation
which requires Dual numbers as the array element type.
# Fields
- `cellranges_all::Vector{AbstractCellRange}`: default cellranges covering all domains
- `dispatchlists_all`: default dispatchlists covering all domains
- `solver_view_all`: optional untyped context field for use by external solvers.
"""
Base.@kwdef mutable struct ModelData <: AbstractModelData
model::Model
domain_data::Vector{Tuple{DataType, String, Vector{DomainData}}} = Tuple{DataType, String, Vector{DomainData}}[]
threadsafe::Bool
allocatenans::Bool # fill with NaN when allocating
sorted_methodsdata_setup = nothing # only for arrays_idx = 1
sorted_methodsdata_initialize = [] # one per arrays_idx
sorted_methodsdata_do = [] # one per arrays_idx
cellranges_all::Vector{AbstractCellRange} = Vector{AbstractCellRange}()
dispatchlists_all = nothing # only for arrays_idx = 1
solver_view_all = nothing # only for arrays_idx = 1
end
function ModelData(model::Model; arrays_eltype::DataType=Float64, threadsafe::Bool=false, allocatenans::Bool=true)
modeldata = ModelData(;
model,
threadsafe,
allocatenans,
)
push_arrays_data!(modeldata, arrays_eltype, "base")
return modeldata
end
"""
push_arrays_data!(modeldata, arrays_eltype::DataType, arrays_tagname::AbstractString)
Add an (unallocated) additional array set with element type `arrays_eltype`.
"""
function push_arrays_data!(modeldata::ModelData, arrays_eltype::DataType, arrays_tagname::AbstractString)
isnothing(find_arrays_idx(modeldata, arrays_tagname::AbstractString)) || throw(ArgumentError("arrays_tagname $arrays_tagname already exists"))
push!(modeldata.domain_data, (arrays_eltype, arrays_tagname, [DomainData(dom) for dom in modeldata.model.domains]))
resize!(modeldata.sorted_methodsdata_initialize, num_arrays(modeldata))
resize!(modeldata.sorted_methodsdata_do, num_arrays(modeldata))
return nothing
end
"""
pop_arrays_data!(modeldata)
Remove last array set (NB: base array set with `arrays_idx==1`) cannot be removed).
"""
function pop_arrays_data!(modeldata::ModelData)
length(modeldata.domain_data) > 1 || error("cannot remove base domain_data")
return pop!(modeldata.domain_data)
end
num_arrays(modeldata::ModelData) = length(modeldata.domain_data)
find_arrays_idx(modeldata::ModelData, arrays_eltype::DataType) = findfirst(x -> x[1] == arrays_eltype, modeldata.domain_data)
find_arrays_idx(modeldata::ModelData, arrays_tagname::AbstractString) = findfirst(x -> [2] == arrays_tagname, modeldata.domain_data)
"""
copy_base_values!(modeldata::ModelData, array_indices=2:num_arrays(modeldata))
Copy array contents from base `arrays_idx=1` to other `array_indices`
"""
function copy_base_values!(modeldata::ModelData, array_indices=2:num_arrays(modeldata))
base_domain_data = first(modeldata.domain_data)
_, _, base_data = base_domain_data
for ai in array_indices
domain_data = modeldata.domain_data[ai]
dd_eltype, dd_tagname, dd_data = domain_data
@info "copy_base_values! copying to modeldata arrays_index $ai ($dd_eltype, $dd_tagname)"
for (dbase, d) in IteratorUtils.zipstrict(base_data, dd_data)
for (vardata_base, vardata) in IteratorUtils.zipstrict(dbase.variable_data, d.variable_data)
if !isnothing(vardata) # non-base arrays may not be allocated
if vardata !== vardata_base # non-base array may just be a "link" to the same array
vardata.values .= vardata_base.values
end
end
end
end
end
return nothing
end
"""
eltype(modeldata::ModelData, arrays_idx::Int) -> DataType
eltype(modeldata::ModelData, arrays_tagname::AbstractString)
Determine the type of Array elements for ModelData
"""
function Base.eltype(modeldata::ModelData, arrays_idx::Int)
arrays_idx in 1:length(modeldata.domain_data) || throw(ArgumentError("arrays_idx $arrays_idx out of range"))
return modeldata.domain_data[arrays_idx][1]
end
function Base.eltype(modeldata::ModelData, arrays_tagname::AbstractString)
arrays_idx = find_arrays_idx(modeldata, arrays_tagname)
!isnothing(arrays_idx) || throw(ArgumentError("arrays_tagname $arrays_tagname not found"))
return eltype(modeldata, arrays_idx)
end
Base.eltype(modeldata::ModelData) = error("eltype(modeldata) not supported")
"Check ModelData consistent with Model"
function check_modeldata(model::Model, modeldata::ModelData)
if model === modeldata.model
return nothing
else
error("modeldata inconsistent with model - check for missing call to create_modeldata")
end
end
# compact form
function Base.show(io::IO, md::ModelData)
print(io, "ModelData(model=", md.model, ", domain_data=", [(x[1], x[2]) for x in md.domain_data], ")")
end
# multiline form
function Base.show(io::IO, ::MIME"text/plain", md::ModelData)
println(io, "ModelData")
println(io, " model=", md.model)
println(io, " domain_data=", [(x[1], x[2]) for x in md.domain_data])
println(io, " solver_view_all=", md.solver_view_all)
end
function get_domaindata(modeldata::ModelData, domain::AbstractDomain, arrays_idx::Int)
arrays_idx in 1:length(modeldata.domain_data) || throw(ArgumentError("arrays_idx $arrays_idx out of range"))
return modeldata.domain_data[arrays_idx][3][domain.ID]
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 7400 | """
PALEOboxes
PALEOboxes provides the model coupler for the PALEO model framework.
It is registered as a Julia package with public github repository
[PALEOboxes.jl](https://github.com/PALEOtoolkit/PALEOboxes.jl)
and online
[documentation](https://paleotoolkit.github.io/PALEOboxes.jl)
A PALEO `Model` contains `Domain`s, each of which contain Variables
defining `Field`s containing `Data` arrays, and Reactions with `ReactionMethod`s
that operate on the Variables to calculate model time evolution.
PALEOboxes creates the model from a .yaml configuration file, and implements a coupler that provides
a unified mechanism for:
1. ‘low-level’ coupling (e.g. linking individual redox Reactions within a Domain, on which is built
2. ‘module-level’ coupling (linking e.g. atmosphere and ocean components) based on standardising names for communicating fluxes, and which enables
3. separation of biogeochemical reaction and transport.
"""
module PALEOboxes
import YAML
import Graphs # formerly LightGraphs
import DataFrames
using DocStringExtensions
import OrderedCollections
import Logging
import Printf
import PrecompileTools
import TimerOutputs: @timeit, @timeit_debug
include("utils/DocStrings.jl")
include("Types.jl")
include("CoordsDims.jl")
include("Fields.jl")
include("data/AtomicScalar.jl")
include("data/ScalarData.jl")
include("data/ArrayScalarData.jl")
include("data/IsotopeData.jl")
include("VariableAttributes.jl")
include("VariableReaction.jl")
include("VariableDomain.jl")
include("Parameter.jl")
include("ParameterAggregator.jl")
include("ReactionMethodSorting.jl")
include("Model.jl")
include("Domain.jl")
include("CellRange.jl")
include("ReactionMethod.jl")
include("Reaction.jl")
include("ReactionFactory.jl")
include("ModelData.jl")
include("Grids.jl")
include("reactionmethods/SetupInitializeUtilityMethods.jl")
include("reactionmethods/VariableStatsMethods.jl")
include("reactionmethods/RateStoich.jl")
include("utils/Interpolation.jl")
include("utils/TestUtils.jl")
include("utils/SIMDutils.jl")
include("utils/IteratorUtils.jl")
include("utils/DocUtils.jl")
include("variableaggregators/VariableAggregator.jl")
include("reactioncatalog/Reactions.jl")
# Deprecated functions
"""
get_statevar
DEPRECATED - moved to PALEOmodel
"""
function get_statevar end
"""
get_statevar_norm
DEPRECATED - moved to PALEOmodel
"""
function get_statevar_norm end
#####################################################
# Precompilation
# Run code to precompile
#######################################################
"""
precompile_reaction(rdict::Dict{String, Type}, classname::AbstractString; logger=Logging.NullLogger())
precompile_reaction(ReactionType::Type{<:AbstractReaction}; logger=Logging.NullLogger())
For use in @PrecompileTools.compile_workload: create Reaction and call register_methods
"""
function precompile_reaction(rdict::Dict{String, Type}, classname::AbstractString; logger=Logging.NullLogger())
try
Logging.with_logger(logger) do
rj = create_reaction(rdict, classname, "test", Dict{String, Any}())
rj.base.domain = Domain(name="test", ID=1, parameters=Dict{String, Any}())
register_methods!(rj)
end
catch ex
@warn "precompile_reaction(rdict, $classname) failed with exception:" ex
end
return nothing
end
function precompile_reaction(ReactionType::Type{<:AbstractReaction}; logger=Logging.NullLogger())
try
Logging.with_logger(logger) do
rj = create_reaction(ReactionType, "test", Dict{String, Any}())
rj.base.domain = Domain(name="test", ID=1, parameters=Dict{String, Any}())
register_methods!(rj)
end
catch ex
@warn "precompile_reaction($ReactionType) failed with exception:" ex
end
return nothing
end
"""
run_model(configfile::AbstractString, configname::AbstractString; call_do_deriv=true, tforce=0.0, logger=Logging.NullLogger())
run_model(model::Model; call_do_deriv=true, tforce=0.0, logger=Logging.NullLogger())
For use in @PrecompileTools.compile_workload: create_model_from_config and optionally call do_deriv at time tforce
"""
function run_model(configfile::AbstractString, configname::AbstractString; logger=Logging.NullLogger(), kwargs...)
try
model = Logging.with_logger(logger) do
create_model_from_config(configfile, configname)
end
run_model(model; logger, kwargs...)
catch ex
@warn "run_model($configfile, $configname) failed with exception:" ex
end
return nothing
end
function run_model(model::Model; call_do_deriv=true, tforce=0.0, logger=Logging.NullLogger())
try
Logging.with_logger(logger) do
arrays_idx = 1
modeldata = create_modeldata(model)
allocate_variables!(model, modeldata, arrays_idx)
check_ready(model, modeldata)
initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
check_configuration(model)
dispatch_setup(model, :setup, modeldata)
dispatch_setup(model, :norm_value, modeldata)
dispatch_setup(model, :initial_value, modeldata)
# take a time step at forcing time tforce - TODO, can be model dependent on missing setup
if call_do_deriv
# set tforce (if present)
hostdep_vars = VariableDomain[]
for dom in model.domains
dv, _ = get_host_variables(dom, VF_Undefined)
append!(hostdep_vars, dv )
end
hostdep = VariableAggregatorNamed(hostdep_vars, modeldata, arrays_idx)
set_values!(hostdep, Val(:global), Val(:tforce), tforce; allow_missing=true)
dispatchlists = modeldata.dispatchlists_all
do_deriv(dispatchlists)
end
end
catch ex
@warn "run_model($model; call_do_deriv=$call_do_deriv) failed with exception:" ex
end
return nothing
end
@PrecompileTools.setup_workload begin
# create Reactions and register methods to precompile this code
# Putting some things in `setup` can reduce the size of the
# precompile file and potentially make loading faster.
rdict = find_all_reactions()
reactionlist = [
"ReactionFluxTransfer", "ReactionReservoirScalar", "ReactionFluxPerturb", "ReactionReservoir",
"ReactionReservoirForced", "ReactionSum", "ReactionFluxTarget", "ReactionForceInterp", "ReactionGrid2DNetCDF",
"ReactionAreaVolumeValInRange", "ReactionReservoirWellMixed", "ReactionForceGrid", "ReactionConst",
"ReactionRestore", "ReactionScalarConst", "ReactionVectorSum", "ReactionWeightedMean",
"ReactionReservoirTotal", "ReactionUnstructuredVectorGrid", "ReactionCartesianGrid", "ReactionReservoirConst",
]
@PrecompileTools.compile_workload begin
# all calls in this block will be precompiled, regardless of whether
# they belong to your package or not (on Julia 1.8 and higher)
for r in reactionlist
precompile_reaction(rdict, r)
end
# Negligible difference ?
run_model(joinpath(@__DIR__, "../test/configreservoirs.yaml"), "model1")
run_model(joinpath(@__DIR__, "../test/configfluxes.yaml"), "model1")
end
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 16238 |
import Preferences
"""
AbstractParameter
Base Type for Parameters
See also: [`Parameter`](@ref), [`VecParameter`](@ref), [`VecVecParameter`](@ref)
"""
AbstractParameter
"""
Parameter{T, ParseFromString}
A reaction parameter of type `T`.
Create using short names `ParDouble`, `ParInt`, `ParBool`, `ParString`.
Read value as `<par>[]`, set with [`setvalue!`](@ref).
Parameters with `external=true` may be set from the Model-level Parameters list, if `name` is present in that list.
`ParseFromString` should usually be `Nothing`: a value of `Type T` is then required when calling [`setvalue!`](@ref).
If `ParseFromString` is not `Nothing`, then [`setvalue!`](@ref) will accept an `AbstractString` and call `Base.parse(ParseFromString, strvalue)`.
This allows eg an enum-valued Parameter to be defined by Parameter{EnumType, EnumType} and implementing
parse(EnumType, rawvalue::AbstractString)
"""
mutable struct Parameter{T, ParseFromString} <: AbstractParameter
name::String
description::String
units::String
"value"
v::T
default_value::T
allowed_values::Vector{T}
frozen::Bool
external::Bool
end
# Parameter behaves as a minimal 0D array (NB: doesn't support full Array interface)
Base.getindex(parameter::Parameter) = parameter.v
Base.size(parameter::Parameter) = Tuple{}()
Base.length(parameter::Parameter) = 1
"""
ParDouble(name, defaultvalue::Float64; units="", description="", external=false)
"""
function ParDouble(
name, defaultvalue::Float64;
units="", description="", external=false
)
return Parameter{Float64, Nothing}(
name, description, units, defaultvalue, defaultvalue, Vector{Float64}(), false, external
)
end
"""
ParInt(name, defaultvalue::Integer; units="", description="", allowed_values=Vector{Int}(), external=false)
"""
function ParInt(
name, defaultvalue::Integer;
units="", description="", allowed_values=Vector{Int}(), external=false
)
# splat allowed_values to allow Tuple etc
return Parameter{Int, Nothing}(
name, description, units, defaultvalue, defaultvalue, [allowed_values...], false, external
)
end
"""
ParEnum(name, defaultvalue::T; units="", description="", allowed_values=Vector{T}(), external=false)
T can be an Enum (or any Type) that implements Base.parse.
"""
function ParEnum(
name, defaultvalue::T;
units="", description="", allowed_values=Vector{T}(), external=false
) where {T}
# splat allowed_values to allow Tuple etc
return Parameter{T, T}(
name, description, units, defaultvalue, defaultvalue, [allowed_values...], false, external
)
end
"""
ParType(::Type{T}, name, defaultvalue; units="", description="", allowed_values=Vector{T}(), external=false)
T can be an abstract Type that implements Base.parse.
"""
function ParType(
::Type{T}, name, defaultvalue::Type{D};
units="", description="", allowed_values=Vector{Type}(), external=false
) where {T, D <: T}
# splat allowed_values to allow Tuple etc
return Parameter{Type, T}(
name, description, units, defaultvalue, defaultvalue, [allowed_values...], false, external
)
end
"""
ParBool(name, defaultvalue::Bool; description="", external=false)
"""
function ParBool(
name, defaultvalue::Bool;
description="", external=false
)
return Parameter{Bool, Nothing}(
name, description, "", defaultvalue, defaultvalue, Vector{Bool}(), false, external
)
end
"""
ParString(name, defaultvalue::String; description="", allowed_values=Vector{String}(), external=false)
"""
function ParString(
name, defaultvalue::String;
description="", allowed_values=Vector{String}(), external=false
)
# splat allowed_values to allow Tuple etc
par = Parameter{String, Nothing}(
name, description, "", defaultvalue, defaultvalue, [allowed_values...], false, external
)
setvalue!(par, defaultvalue) # catch attempt to set a defaultvalue not in allowed_values
return par
end
"""
VecParameter{T, ParseFromString}
A reaction parameter of type `Vector{T}`.
Create using short names `ParDoubleVec`, `ParStringVec`.
Read values as `<par>[i]`, access raw `Vector{T}` as `<par>.v`.
Set with [`setvalue!`](@ref), in config file use standard yaml syntax for a vector eg [1, 2, 3]
See [`Parameter`](@ref) for additional documentation.
# Implementation
Implements part of the `AbstractVector` interface, sufficient to access elements as `<par>[i]`,
and to support iteration eg `for v in <par>; ...; end`.
"""
mutable struct VecParameter{T, ParseFromString} <: AbstractParameter
name::String
description::String
units::String
v::Vector{T}
default_value::Vector{T}
allowed_values::Vector{T}
frozen::Bool
external::Bool
end
# VecParameter behaves as a minimal 1D array (NB: doesn't support full Array interface)
Base.getindex(p::VecParameter, index) = p.v[index]
Base.firstindex(p::VecParameter) = firstindex(p.v)
Base.lastindex(p::VecParameter) = lastindex(p.v)
Base.size(p::VecParameter) = size(p.v)
Base.length(p::VecParameter) = length(p.v)
Base.iterate(p::VecParameter, state=1) = state > length(p) ? nothing : (p.v[state], state+1)
Base.keys(p::VecParameter) = keys(p.v)
Base.eltype(::Type{VecParameter{T, ParseFromString}}) where {T, ParseFromString} = T
"""
ParDoubleVec(name, defaultvalue::Vector{Float64}; units="", description="", external=false)
"""
function ParDoubleVec(
name, defaultvalue::Vector{Float64};
units="", description="", external=false
)
return VecParameter{Float64, Nothing}(
name, description, units, defaultvalue, defaultvalue, Vector{Float64}(), false, external
)
end
"""
ParIntVec(name, defaultvalue::Vector{Integer}; units="", description="", allowed_values=Vector{Int}(), external=false)
"""
function ParIntVec(
name, defaultvalue::Vector{Int};
units="", description="", allowed_values=Vector{Int}(), external=false
)
# splat allowed_values to allow Tuple etc
par = VecParameter{Int, Nothing}(
name, description, units, defaultvalue, defaultvalue, [allowed_values...], false, external
)
setvalue!(par, defaultvalue) # catch attempt to set defaultvalue not in allowed_values
return par
end
"""
ParBoolVec(name, defaultvalue::Vector{Bool}; description="", external=false)
"""
function ParBoolVec(
name, defaultvalue::Vector{Bool};
description="", external=false
)
return VecParameter{Bool, Nothing}(
name, description, "", defaultvalue, defaultvalue, Vector{Bool}(), false, external
)
end
"""
ParStringVec(name, defaultvalue::Vector{String}; description="", external=false)
"""
function ParStringVec(
name, defaultvalue::Vector{String}=String[];
description="", allowed_values=Vector{String}(), external=false
)
# splat allowed_values to allow Tuple etc
par = VecParameter{String, Nothing}(
name, description, "", defaultvalue, defaultvalue, [allowed_values...], false, external
)
setvalue!(par, defaultvalue) # catch attempt to set defaultvalue not in allowed_values
return par
end
"""
VecVecParameter{T, ParseFromString}
A reaction parameter of type Vector{Vector{T}}.
Create using short names `ParDoubleVecVec`.
Read values as `<par>.v::Vector{Vector{T}}`.
Set using standard yaml syntax for a vector of vectors eg [[1, 2, 3], [4, 5, 6]]
See [`Parameter`](@ref) for additional documentation.
"""
mutable struct VecVecParameter{T, ParseFromString} <: AbstractParameter
name::String
description::String
units::String
v::Vector{Vector{T}}
default_value::Vector{Vector{T}}
allowed_values::Vector{T} # Int, String only
frozen::Bool
external::Bool
end
"""
ParDoubleVecVec(name, defaultvalue::Vector{Vector{Float64}}; units="", description="", external=false)
"""
function ParDoubleVecVec(
name, defaultvalue::Vector{Vector{Float64}} = Vector{Vector{Float64}}();
units="", description="", external=false
)
par = VecVecParameter{Float64, Nothing}(
name, description, units, defaultvalue, defaultvalue, Vector{Float64}(), false, external
)
return par
end
"""
check_parameter_sum(parameter::VecParameter, ncells) -> sumok::Bool
Check whether `parameter` is of length `ncells` and correctly normalized to sum to 1.0
"""
function check_parameter_sum(parameter::VecParameter, ncells; tol=1e-3)
sumok = true
isnothing(ncells) || length(parameter.v) == ncells ||
(sumok = false; @error "config error: length($(parameter.name)) != $ncells")
sumpar = sum(parameter.v)
abs(sumpar - 1.0) < tol ||
(sumok = false; @error "config error: sum($(parameter.name)) = $sumpar != 1 +/- $(tol)")
return sumok
end
"""
vecvecpar_matrix(par::VecVecParameter) -> Matrix
Convert `par.v` to a Matrix
# Examples:
```jldoctest; setup = :(import PALEOboxes)
julia> p = PB.ParDoubleVecVec("pdvv");
julia> PB.setvalue!(p, [[1.0, 2.0], [3.0, 4.0]]);
julia> PB.vecvecpar_matrix(p)
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
```
"""
function vecvecpar_matrix(par::VecVecParameter{T}) where T
nrows = length(par.v)
if nrows == 0
return Matrix{T}(undef, 0, 0)
end
ncols = length(par.v[1])
m = Matrix{T}(undef, nrows, ncols)
for (i, rowvals) in enumerate(par.v)
length(rowvals) == ncols || error("par is not convertable to a matrix: ", par)
m[i, :] .= rowvals
end
return m
end
"Prevent modification via properties"
function Base.setproperty!(par::AbstractParameter, s::Symbol, v)
error("setproperty! attempt to set Parameter $(par.name).$s=$v (use setvalue! to set :v)")
end
# Default - no attempt to parse value from String
function _parsevalue(par::Union{Parameter{T, Nothing}, VecParameter{T, Nothing}, VecVecParameter{T, Nothing}}, value) where {T}
return value
end
function _parsevalue(par::Union{Parameter{T, Nothing}, VecParameter{T, Nothing}, VecVecParameter{T, Nothing}}, value::AbstractString) where {T}
return value
end
# any (Data)Type - any subtype of PT is acceptable
function _parsevalue(par::Union{Parameter{T, PT}, VecParameter{T, PT}, VecVecParameter{T, PT}}, value::Type{V}) where {T, PT, V <: PT}
return value
end
# enum is a value of type T
function _parsevalue(par::Union{Parameter{T, T}, VecParameter{T, T}, VecVecParameter{T, T}}, value::T) where {T}
return parse(T, value)
end
# attempt to parse value::PT from AbstractString
function _parsevalue(par::Union{Parameter{T, PT}, VecParameter{T, PT}, VecVecParameter{T, PT}}, value::AbstractString) where {T, PT}
return parse(PT, value)
end
"""
setvalue!(par::Parameter, value)
Set Parameter to `value`.
Optionally (if [`Parameter`](@ref) has Type parameter `ParseFromString != Nothing`) parse `value` from a String.
"""
function setvalue!(par::Parameter, rawvalue)
value = _parsevalue(par, rawvalue)
if !isempty(par.allowed_values) && !(value in par.allowed_values)
error("setvalue! attempt to set Parameter $(par.name) to invalid value=$value (allowed_values=$(par.allowed_values))")
end
if par.frozen
error("setvalue! Parameter $(par.name) can no longer be modified")
end
setfield!(par, :v, value)
return nothing
end
function setvalue!(par::VecParameter, values)
if !isempty(par.allowed_values)
for rawv in values
v = _parsevalue(par, rawv)
if !(v in par.allowed_values)
error("setvalue! attempt to set VecParameter $(par.name) to $values with invalid value(s) (allowed_values=$(par.allowed_values))")
end
end
end
if par.frozen
error("setvalue! Parameter $(par.name) can no longer be modified")
end
setfield!(par, :v, values)
return nothing
end
# allow an empty Vector{Any} (as that is what yaml provides for [])
function setvalue!(par::VecParameter{T, ParseFromString}, values::Vector{Any}) where{T, ParseFromString}
if isempty(values)
return setvalue!(par, T[])
else
return setvalue!(par, values) # will error
end
end
function setvalue!(par::VecVecParameter, values)
if !isempty(par.allowed_values)
for rawv in Iterators.Flatten(values)
v = _parsevalue(par, rawv)
if !(v in par.allowed_values)
error("setvalue! attempt to set VecVecParameter $(par.name) to $values with invalid value(s) (allowed_values=$(par.allowed_values))")
end
end
end
if par.frozen
error("setvalue! Parameter $(par.name) can no longer be modified")
end
setfield!(par, :v, values)
return nothing
end
"""
setvalueanddefault!(par::Parameter, value; freeze=false)
Set Parameter value and default to `value`.
Optionally (if [`Parameter`](@ref) has Type parameter `ParseFromString != Nothing`) parse `value` from a String.
"""
function setvalueanddefault!(par::Union{Parameter, VecParameter, VecVecParameter}, rawvalue; freeze=false)
value = _parsevalue(par, rawvalue)
setvalue!(par, value)
setfield!(par, :default_value, value)
if freeze
setfrozen!(par)
end
return nothing
end
"""
externalvalue(io, rawvalue::AbstractString, external_parameters) -> value
Replace `"external%somename"`` with `external_parameters["somename"]`
Write log message to io
"""
function externalvalue(io::IO, rawvalue::AbstractString, external_parameters)
# substitute 'external%parname' with value of external parameter 'parname'
if length(rawvalue) > 9 && findfirst("external%", rawvalue) == 1:9
externalkey = rawvalue[10:end]
if haskey(external_parameters, externalkey)
value = external_parameters[externalkey]
println(io, " expandvalue: $rawvalue -> $value")
else
error(" $(rawvalue) external parameter $(externalkey) not found")
end
else
value = rawvalue
end
return value
end
"Non-string values returned unmodified"
externalvalue(io::IO, rawvalue, external_parameters) = rawvalue
function externalvalue(rawvalue, external_parameters)
io = IOBuffer()
ev = externalvalue(io, rawvalue, external_parameters)
iszero(io.size) || @info String(take!(io))
return ev
end
"""
substitutevalue(module, rawvalue::AbstractString) -> value
Substitute "\$MyLocalSetting\$" with the value of the MyLocalSetting key in the
Julia LocalPreferences.toml file, from the section for `module`
(for a Reaction Parameter value, this should be the Julia module of the Reaction containing the Parameter).
"""
function substitutevalue(mod::Module, rawvalue::AbstractString; dontsub=("\$fluxname\$",))
value = rawvalue
for m in eachmatch(r"\$\w+\$", rawvalue)
if m.match in dontsub
# dont substitute
continue
end
# look up in LocalPreferences.toml
subval = m.match[2:end-1] # omit $ $
# if a Reaction is not part of a package (eg development code), use Preferences package instead to look for a key
if isnothing(Base.PkgId(mod).uuid)
@warn "substitutevalue $subval - Module $(mod) does not correspond to a loaded package, using a key from [PALEOboxes] instead"
mod = PALEOboxes
end
Preferences.has_preference(mod, String(subval)) ||
error("substitutevalue: key [$(Base.PkgId(mod).name)] $subval not found in LocalPreferences.toml")
replacestr = Preferences.load_preference(mod, String(subval))
value = replace(value, m.match => replacestr)
end
return value
end
"Return non-string values unmodified"
substitutevalue(mod::Module, rawvalue) = rawvalue
function setfrozen!(parameters::AbstractParameter...)
for par in parameters
setfield!(par, :frozen, true)
end
end
"""
ParametersTuple(parameters::AbstractParameter...) -> NamedTuple
ParametersTuple(parameters) -> NamedTuple
Create a NamedTuple of Parameters.
"""
function ParametersTuple(parameters::AbstractParameter...)
return NamedTuple{Tuple(Symbol(par.name) for par in parameters)}(parameters)
end
ParametersTuple(parameters) = ParametersTuple(parameters...)
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 8343 | ############################################################################################
# ParameterAggregator
###########################################################################################
"""
ParameterAggregator(parfullnames::Vector{String}, model; eltype=Float64) -> ParameterAggregator
Represent a subset of model parameters given by `parfullnames` as a flattened Vector
`parfulnames` is a Vector of form `["domainname.reactionname.parname", ...]` defining a subset of
model parameters (NB: must be of type `ParDouble` or `ParDoubleVec` ie scalar or vector of Float64).
`norm_values` can be used to specify normalisation of the flattened parameter vector (defaults to 1.0).
The parameters can then be set from and copied to a flattened Vector using:
copyto!(pa::ParameterAggregator, newvalues::Vector) # set from newvalues .* norm_values
copyto!(currentvalues::Vector, pa::ParameterAggregator) # copy to currentvalues, dividing by norm_values
get_currentvalues(pa::ParameterAggregator) -> currentvalues::Vector
The subset of parameters are then defined by the `p` parameter Vector used by SciML solvers, and
combined with the full set (from the yaml file) to eg solve an ODE to enable sensitivity studies.
`eltype` can be eg a Dual number to support ForwardDiff automatic differentiation for parameter Jacobians.
"""
mutable struct ParameterAggregator{T}
# Parameter full names
parfullnames::Vector{String}
# replacement Parameters to be used (order matches parfullnames)
replacement_parameters::Vector{Union{Parameter{T, Nothing}, VecParameter{T, Nothing}}}
# indices in flattened p Vector for each replacement parameter
indices::Vector{UnitRange{Int64}}
# normalization (as flattened vector) for parameters
norm_values::Vector{Float64}
# reactions with replacement parameter values (each entry is a Dict of :par_name => index in replacement_parameters)
reactpars::Dict{AbstractReaction, Dict{Symbol, Int}}
# replacement ParametersTuple (merging replacement parameters with all reaction parameters),
# for those reactions that need parameter replacement
reactpartuples::Dict{AbstractReaction, NamedTuple}
end
# compact form
function Base.show(io::IO, pa::ParameterAggregator)
print(io, "ParameterAggregator(parfullnames='", pa.parfullnames,"', indices='", pa.indices,"')")
end
# multiline form
function Base.show(io::IO, ::MIME"text/plain", pa::ParameterAggregator)
println(io, typeof(pa))
Printf.@printf(io, "%40s%20s\n", "parfullname", "indices")
for (pfn, i) in IteratorUtils.zipstrict(pa.parfullnames, pa.indices)
Printf.@printf(io, "%40s%20s\n", pfn, string(i))
end
end
function ParameterAggregator(model::AbstractModel, parfullnames::Vector{String}; eltype=Float64)
reactpars = Dict{AbstractReaction, Dict{Symbol, Int}}()
replacement_parameters = Vector{Union{Parameter{eltype, Nothing}, VecParameter{eltype, Nothing}}}()
indices = UnitRange{Int}[]
nextidx = 1
# iterate through parfullnames and assemble lists of replacement parameters and corresponding indices in flattened vector
for (pidx, domreactpar) in enumerate(parfullnames)
domainname, reactionname, parname = split(domreactpar, ".")
react = get_reaction(model, domainname, reactionname; allow_not_found=false)
p = get_parameter(react, parname)
if p isa Parameter{Float64, Nothing}
replace_p = Parameter{eltype, Nothing}(
p.name, p.description, p.units, eltype(p.v), eltype(p.default_value), eltype[], false, p.external
)
elseif p isa VecParameter{Float64, Nothing}
replace_p = VecParameter{eltype, Nothing}(
p.name, p.description, p.units, Vector{eltype}(p.v), Vector{eltype}(p.default_value), eltype[], false, p.external
)
else
error("parameter $domreactpar $p is not a ParDouble or ParDoubleVec")
end
rparsindices = get!(reactpars, react, Dict{Symbol, Int}())
rparsindices[Symbol(parname)] = pidx
push!(replacement_parameters, replace_p)
endidx = nextidx + length(replace_p) - 1
push!(indices, nextidx:endidx)
nextidx = endidx + 1
end
# generate new ParametersTuple for those reactions that need parameter replacement
reactpartuples = Dict{AbstractReaction, NamedTuple}()
for (react, rparsindices) in reactpars
newparstuple = (haskey(rparsindices, k) ? replacement_parameters[rparsindices[k]] : v for (k, v) in pairs(react.pars))
reactpartuples[react] = NamedTuple{keys(react.pars)}(newparstuple)
end
norm_values = ones(indices[end][end])
return ParameterAggregator{eltype}(
parfullnames,
replacement_parameters,
indices,
norm_values,
reactpars,
reactpartuples,
)
end
Base.copy(pa::ParameterAggregator{old_eltype}) where {old_eltype} = copy_new_eltype(old_eltype, pa)
function copy_new_eltype(new_eltype, pa::ParameterAggregator{old_eltype}) where {old_eltype}
replacement_parameters = Vector{Union{Parameter{new_eltype, Nothing}, VecParameter{new_eltype, Nothing}}}()
for p in pa.replacement_parameters
if p isa Parameter{old_eltype, Nothing}
replace_p = Parameter{new_eltype, Nothing}(
p.name, p.description, p.units, new_eltype(p.v), new_eltype(p.default_value), new_eltype[], false, p.external
)
elseif p isa VecParameter{old_eltype, Nothing}
replace_p = VecParameter{new_eltype, Nothing}(
p.name, p.description, p.units, Vector{new_eltype}(p.v), Vector{new_eltype}(p.default_value), new_eltype[], false, p.external
)
else
error("parameter $p is not a scalar or vector parameter with eltype $old_eltype")
end
push!(replacement_parameters, replace_p)
end
# generate new ParametersTuple for those reactions that need parameter replacement
reactpartuples = Dict{AbstractReaction, NamedTuple}()
for (react, rparsindices) in pa.reactpars
newparstuple = (haskey(rparsindices, k) ? replacement_parameters[rparsindices[k]] : v for (k, v) in pairs(react.pars))
# @Infiltrator.infiltrate
reactpartuples[react] = NamedTuple{keys(react.pars)}(newparstuple)
end
pa_net = ParameterAggregator{new_eltype}(
pa.parfullnames,
replacement_parameters,
pa.indices,
pa.norm_values,
pa.reactpars,
reactpartuples,
)
return pa_net
end
# for use by solver: test whether `reaction` has modified parameters
has_modified_parameters(pa::ParameterAggregator, reaction::AbstractReaction) = haskey(pa.reactpartuples, reaction)
# for use by solver: retrieve modified parameters for `reaction`, or return `nothing` if no modified parameters
get_parameters(pa::ParameterAggregator, reaction::AbstractReaction) = get(pa.reactpartuples, reaction, nothing)
function Base.copyto!(pa::ParameterAggregator, newvalues::Vector)
lastidx = pa.indices[end][end]
lastidx == length(newvalues) ||
error("ParameterAggregator length $lastidx != length(newvalues) $(length(newvalues))")
for (p, indices) in IteratorUtils.zipstrict(pa.replacement_parameters, pa.indices)
if p isa Parameter
# p.v = only(view(newvalues, indices))
setvalue!(p, only(view(newvalues, indices)) * only(view(pa.norm_values, indices)))
elseif p isa VecParameter
p.v .= view(newvalues, indices) .* view(pa.norm_values, indices)
else
error("invalid Parameter type $p")
end
end
return pa
end
function Base.copyto!(currentvalues::Vector, pa::ParameterAggregator)
lastidx = pa.indices[end][end]
lastidx == length(currentvalues) ||
error("ParameterAggregator length $lastidx != length(currentvalues) $(length(currentvalues))")
for (p, indices) in IteratorUtils.zipstrict(pa.replacement_parameters, pa.indices)
currentvalues[indices] .= p.v ./ view(pa.norm_values, indices)
end
return currentvalues
end
function get_currentvalues(pa::ParameterAggregator{T}) where T
currentvalues = Vector{T}(undef, pa.indices[end][end])
return Base.copyto!(currentvalues, pa)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 25732 |
"""
AbstractReaction
Abstract base Type for Reactions.
# Implementation
Derived types should include a field `base::`[`ReactionBase`](@ref), and usually a [`ParametersTuple`](@ref), eg
Base.@kwdef mutable struct ReactionHello{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParDouble("my_par", 42.0, units="yr",
description="an example of a Float64-valued scalar parameter called 'my_par'"),
)
some_additional_field::Float64 # additional fields to eg cache data read from disk etc
end
Derived types should implement [`register_methods!`](@ref), and may optionally implement [`create_reaction`](@ref),
[`set_model_geometry`](@ref), [`check_configuration`](@ref), [`register_dynamic_methods!`](@ref).
Methods should be registered using [`add_method_setup!`](@ref), [`add_method_initialize!`](@ref), [`add_method_do!`](@ref).
Any parameters not included in `pars` should be added explicitly with [`add_par`](@ref) (this is rarely needed).
"""
AbstractReaction
"""
ReactionBase
Base Type for a biogeochemical Reaction.
# Implementation
Include as field `base` in types derived from [`AbstractReaction`](@ref)
"""
Base.@kwdef mutable struct ReactionBase
"domain containing this Reaction"
domain::Union{Nothing, Domain} = nothing
"operator ID (to allow operator splitting)"
operatorID::Vector{Int} = [1]
"name of this instance (from .yaml config)"
name::String
"classname (as defined for .yaml config)"
classname::String
"external parameters and values supplied from Model or Domain"
external_parameters::Dict{String, Any} = Dict{String, Any}()
"Reaction parameters"
parameters::Vector{AbstractParameter} = Vector{AbstractParameter}()
methods_setup::Vector{AbstractReactionMethod} = Vector{AbstractReactionMethod}()
methods_initialize::Vector{AbstractReactionMethod}=Vector{AbstractReactionMethod}()
methods_do::Vector{AbstractReactionMethod} = Vector{AbstractReactionMethod}()
# temporary storage for Variable configuration (read from .yaml config and applied after Variables linked)
_conf_variable_links = nothing
_conf_variable_attributes = nothing
end
struct NoReaction <: AbstractReaction
base::ReactionBase
NoReaction() = new(ReactionBase(name="", classname="NoReaction"))
end
# helps type stability: even though we are using @nospecialize(AbstractReaction) everywhere,
# we still know the type of base
base(react::AbstractReaction) = getfield(react, :base)::ReactionBase
"""
Base.getproperty(react::AbstractReaction, s::Symbol)
Forward to `react.base::ReactionBase` to define additional properties.
"""
function Base.getproperty(react::AbstractReaction, s::Symbol)
if s == :base
return base(react)
elseif s == :name
return base(react).name
elseif s == :classname
return base(react).classname
elseif s == :domain
return base(react).domain
elseif s == :operatorID
return base(react).operatorID
elseif s == :external_parameters
return base(react).external_parameters
elseif s == :methods_setup
return base(react).methods_setup
elseif s == :methods_initialize
return base(react).methods_initialize
elseif s == :methods_do
return base(react).methods_do
else
return getfield(react, s)
end
end
##########################################################
# Query methods for Parameters, ReactionMethods, Variables
##########################################################
"Get all parameters"
get_parameters(@nospecialize(reaction::AbstractReaction)) = reaction.base.parameters
"Get parameter by name"
function get_parameter(@nospecialize(reaction::AbstractReaction), parname::AbstractString; allow_not_found=false)
matchpars = filter(p -> p.name==parname, reaction.base.parameters)
length(matchpars) <= 1 ||
error("coding error: duplicate parameter name '$(name)' for Reaction: ", reaction)
!isempty(matchpars) || allow_not_found ||
error("configuration error, Reaction $(fullname(reaction)) $(reaction)\n",
"has no parameter name='$(parname)' (available parameters $([p.name for p in get_parameters(reaction)]))")
return isempty(matchpars) ? nothing : matchpars[1]
end
set_parameter_value!(@nospecialize(reaction::AbstractReaction), parname::AbstractString, value) =
setvalue!(get_parameter(reaction, parname, allow_not_found=false), value)
get_parameter_value(@nospecialize(reaction::AbstractReaction), parname::AbstractString) =
get_parameter(reaction, parname, allow_not_found=false).v
"Get method by name"
get_method_setup(@nospecialize(reaction::AbstractReaction), methodname::AbstractString; allow_not_found=false) =
_get_method(reaction.base.methods_setup, "setup", reaction, methodname, allow_not_found)
get_method_initialize(@nospecialize(reaction::AbstractReaction), methodname::AbstractString; allow_not_found=false) =
_get_method(reaction.base.methods_initialize, "initialize", reaction, methodname, allow_not_found)
get_method_do(@nospecialize(reaction::AbstractReaction), methodname::AbstractString; allow_not_found=false) =
_get_method(reaction.base.methods_do, "do", reaction, methodname, allow_not_found)
function _get_method(methodlist, methodtype, reaction, methodname, allow_not_found)
matchmethods = filter(m -> m.name==methodname, methodlist)
length(matchmethods) <= 1 ||
error("coding error: duplicate method $(methodtype) name '$(name)' for Reaction: ", reaction)
!isempty(matchmethods) || allow_not_found ||
error("configuration error in $(fullname(reaction)) parameters: $(reaction) has no method $(methodtype) name='$(methodname)'")
return isempty(matchmethods) ? nothing : matchmethods[1]
end
"""
get_variables(reaction, localname) -> Vector{VariableReaction}
get_variables(reaction; [filterfn=v->true]) -> Vector{VariableReaction}
Get matching Variables from all ReactionMethods.
"""
function get_variables(
@nospecialize(reaction::AbstractReaction), localname::AbstractString
)
return get_variables(reaction, filterfn = v -> v.localname==localname)
end
function get_variables(
@nospecialize(reaction::AbstractReaction);
filterfn = v -> true
)
matchvars = VariableReaction[]
for methodlist in (reaction.methods_setup, reaction.methods_initialize, reaction.methods_do)
for m in methodlist
append!(matchvars, get_variables(m; filterfn=filterfn))
end
end
return matchvars
end
"""
get_variable(reaction, methodname, localname) -> VariableReaction or nothing
Get a single VariableReaction or nothing if match not found.
"""
function get_variable(
@nospecialize(reaction::AbstractReaction), methodname::AbstractString, localname::AbstractString;
allow_not_found=false
)
matchvars = get_variables(reaction, filterfn = v -> (v.method.name == methodname && v.localname==localname))
length(matchvars) <= 1 ||
error("duplicate variable localname", localname)
!isempty(matchvars) || allow_not_found ||
error("method ", fullname(method), " no variable localname=", localname)
return isempty(matchvars) ? nothing : matchvars[1]
end
##################################################
# Initialization callbacks
#################################################
"""
set_model_geometry(reaction, model)
Optional: define [`Domain`](@ref) `grid`, `data_dims`.
One Reaction per Domain may create a grid (an [`AbstractMesh`](@ref) subtype) and set the `domain.grid` field.
Multiple Reactions per domain may call [`set_data_dimension!`](@ref) to define (different) named data dimensions (eg wavelength grids).
"""
function set_model_geometry(reaction::AbstractReaction, model::Model)
end
"""
check_configuration(reaction, model) -> Bool
Optional: check configuration is valid, log errors and return `false` if not
"""
function check_configuration(reaction::AbstractReaction, model::Model)
return true
end
"""
register_methods!(reaction)
register_methods!(reaction, model)
Add [`ReactionMethod`](@ref)s, using [`add_method_setup!`](@ref), [`add_method_initialize!`](@ref)
[`add_method_do!`](@ref). See also [`register_dynamic_methods!`](@ref).
"""
register_methods!(reaction::AbstractReaction, model::Model) = register_methods!(reaction)
register_methods!(reaction::AbstractReaction) =
error("$(typename(reaction)) register_methods! not implemented")
"""
register_dynamic_methods!(reaction)
register_dynamic_methods!(reaction, model)
Optional: called after first variable link pass, to
add [`ReactionMethod`](@ref)s that depend on Variables generated by other Reactions
(see [`register_methods!`](@ref)).
"""
register_dynamic_methods!(reaction::AbstractReaction, model::Model) =
register_dynamic_methods!(reaction)
function register_dynamic_methods!(reaction::AbstractReaction)
end
########################################################################################
# Helper functions to allow a Reaction implementation to populate Parameter and ReactionMethod lists
#########################################################################################
"""
add_par(reaction::AbstractReaction, par::AbstractParameter)
add_par(reaction::AbstractReaction, objectwithpars)
Add a single parameter or parameters from fields of `objectwithpars` to a new Reaction.
Not usually needed: Parameters in `pars::ParametersTuple`` will be added automatically, only needed if there are additional
Parameters that are not members of `pars`.
"""
function add_par(@nospecialize(reaction::AbstractReaction), par::AbstractParameter)
if isnothing(get_parameter(reaction, par.name, allow_not_found=true))
push!(reaction.base.parameters, par)
else
error("attempt to add duplicate parameter name=''", par.name, "'' to reaction", reaction)
end
return nothing
end
function add_par(@nospecialize(reaction::AbstractReaction), objectwithpars)
for f in fieldnames(typeof(objectwithpars))
if getfield(objectwithpars, f) isa AbstractParameter
add_par(reaction, getfield(objectwithpars, f))
end
end
end
"""
add_method_setup!(reaction::AbstractReaction, method::AbstractReactionMethod)
add_method_setup!(reaction::AbstractReaction, methodfn::Function, vars::Tuple{Vararg{AbstractVarList}}; kwargs...) -> ReactionMethod
Add or create-and-add a setup method (called before main loop) eg to set persistent data or initialize state variables.
`methodfn`, `vars`, `kwargs` are passed to [`ReactionMethod`](@ref).
"""
function add_method_setup!(@nospecialize(reaction::AbstractReaction), method::AbstractReactionMethod)
push!(reaction.base.methods_setup, method)
return nothing
end
add_method_setup!(@nospecialize(reaction::AbstractReaction), methodfn::Function, vars::Tuple{Vararg{AbstractVarList}}; kwargs...) =
_add_method!(reaction, methodfn, vars, add_method_setup!; kwargs...)
"""
add_method_initialize!(reaction::AbstractReaction, method::AbstractReactionMethod)
add_method_initialize!(reaction::AbstractReaction, methodfn::Function, vars::Tuple{Vararg{AbstractVarList}}; kwargs...) -> ReactionMethod
Add or create-and-add an initialize method (called at start of each main loop iteration)
eg to zero out accumulator Variables.
`methodfn`, `vars`, `kwargs` are passed to [`ReactionMethod`](@ref).
"""
function add_method_initialize!(@nospecialize(reaction::AbstractReaction), method::AbstractReactionMethod)
push!(reaction.base.methods_initialize, method)
return nothing
end
add_method_initialize!(@nospecialize(reaction::AbstractReaction), methodfn::Function, vars::Tuple{Vararg{AbstractVarList}}; kwargs...) =
_add_method!(reaction, methodfn, vars, add_method_initialize!; kwargs...)
"""
add_method_do!(reaction::AbstractReaction, method::AbstractReactionMethod)
add_method_do!(reaction::AbstractReaction, methodfn::Function, vars::Tuple{Vararg{AbstractVarList}}; kwargs...) -> ReactionMethod
Add or create and add a main loop method.
`methodfn`, `vars`, `kwargs` are passed to [`ReactionMethod`](@ref).
"""
function add_method_do!(@nospecialize(reaction::AbstractReaction), @nospecialize(method::AbstractReactionMethod))
push!(reaction.base.methods_do, method)
return nothing
end
add_method_do!(@nospecialize(reaction::AbstractReaction), @nospecialize(methodfn::Function), @nospecialize(vars::Tuple{Vararg{AbstractVarList}}); kwargs...) =
_add_method!(reaction, methodfn, vars, add_method_do!; kwargs...)
function _add_method!(
@nospecialize(reaction::AbstractReaction), @nospecialize(methodfn::Function), @nospecialize(vars::Tuple{Vararg{AbstractVarList}}), add_method_fn;
name=string(methodfn),
p=nothing,
preparefn=(m, vardata) -> vardata,
operatorID=reaction.operatorID,
domain=reaction.domain
)
method = ReactionMethod(
methodfn,
reaction,
name,
vars,
p,
copy(operatorID),
domain,
preparefn=preparefn
)
add_method_fn(reaction, method)
return method
end
###################################
# creation from _cfg.yaml
##################################
"Create new ReactionXXXX of specified classname from config file, set parameters,
read variable mapping and initial values (to be set later by _configure_variables!)"
function create_reaction_from_config(
classname::AbstractString,
rdict::Dict{String, Type},
domain::Domain,
name,
conf_reaction,
external_parameters::Dict{String, Any}
)
io = IOBuffer()
local newreaction, conf_parameters # make available outside try block
try
println(io, "create_reaction_from_config: $(domain.name).$name classname $classname")
newreaction = create_reaction(rdict, classname, name, external_parameters)
newreaction.base.domain = domain
for k in keys(conf_reaction)
if !(k in ("operatorID", "parameters", "variable_links", "variable_attributes"))
error("reaction $(fullname(newreaction)) configuration error invalid key '$k'")
end
end
operatorID = get(conf_reaction, "operatorID", nothing)
if !isnothing(operatorID)
println(io, " operatorID=$(operatorID)")
newreaction.base.operatorID = operatorID
end
# set parameters
allpars = get_parameters(newreaction)
conf_parameters_raw = get(conf_reaction, "parameters", Dict{Any,Any}()) # empty 'parameters:' will return nothing
conf_parameters = isnothing(conf_parameters_raw) ? Dict{Any, Any}() : copy(conf_parameters_raw)
for par in allpars
rawvalue = par.v
par_modified = false
if par.external && haskey(newreaction.base.external_parameters, par.name)
rawvalue = newreaction.base.external_parameters[par.name]
par_modified = true
end
if haskey(conf_parameters, par.name)
rawvalue = pop!(conf_parameters, par.name)
par_modified = true
end
par_modstr = ("[Default] ", "[config.yaml] ")[1+par_modified]
println(io, " set parameters: $par_modstr $(rpad(par.name,20))=$(rawvalue)")
value = substitutevalue(parentmodule(typeof(newreaction)), externalvalue(io, rawvalue, newreaction.base.external_parameters))
if isa(rawvalue, AbstractString) && value != rawvalue
par_modified = true
println(io, " after substitution $(par.name)=$(value)")
end
if par_modified
setvalue!(par, value)
end
end
finally
@info String(take!(io))
end
if !isempty(conf_parameters)
io = IOBuffer()
println(io, "reaction $(fullname(newreaction)) has no Parameter(s):")
for (k, v) in conf_parameters
println(io, " $k: $v")
end
error(String(take!(io)))
end
# Read Variable configuration
# These are applied later by _configure_variables! after Variables are created
newreaction.base._conf_variable_links = get(conf_reaction, "variable_links", nothing)
newreaction.base._conf_variable_attributes = get(conf_reaction, "variable_attributes", nothing)
return newreaction
end
function _register_methods!(@nospecialize(reaction::AbstractReaction), model::Model)
empty!(reaction.methods_setup)
empty!(reaction.methods_initialize)
empty!(reaction.methods_do)
register_methods!(reaction, model)
return nothing
end
"apply Variable configuration.
NB: runs twice:
- after register_methods! (with allow_missing true)
- after register_dynamic_methods! (with allow_missing false)"
function _configure_variables(@nospecialize(reaction::AbstractReaction); allow_missing::Bool, dolog::Bool)
function sortstarfirst(x, y)
if occursin("*", x) && !occursin("*", y)
lt = true
elseif !occursin("*", x) && occursin("*", y)
lt = false
else
lt = x < y
end
return lt
end
io = devnull
if !isnothing(reaction.base._conf_variable_links) # missing or empty 'variable_links:' will return nothing
# sort Dict so wild cards (ending in *) are processed first, so they can be selectively overridden
cvl = sort(reaction.base._conf_variable_links, lt=sortstarfirst)
if dolog
io = IOBuffer()
println(io, "_configure_variables: $(nameof(typeof(reaction))) $(fullname(reaction)) variable_links:")
end
for (name, fullmapnameraw) in cvl
try
fullmapname = externalvalue(io, fullmapnameraw, reaction.base.external_parameters)
linkreq_domain, linkreq_subdomain, mapname = split_link_name(fullmapname)
match_vars = _gen_var_names(get_variables(reaction), name, mapname)
uniquelocalnames = Set{String}()
if isempty(match_vars)
allow_missing ||
error(" set variable_links: $name -> $fullmapname no variables match $name\n",
" available Variable local names: ", unique([v.localname for v in get_variables(reaction)]))
else
for (var, newname) = match_vars
linkreq_fullname = combine_link_name(linkreq_domain, linkreq_subdomain, newname)
# Variables may appear in multiple ReactionMethods, so just print a log message for the first one
dolog && !(var.localname in uniquelocalnames) &&
println(io, " set variable_links: $(rpad(var.localname,20)) -> $linkreq_fullname")
push!(uniquelocalnames, var.localname)
var.linkreq_name = newname
var.linkreq_domain = linkreq_domain
var.linkreq_subdomain = linkreq_subdomain
end
end
catch
io === devnull || @info String(take!(io))
@warn "_configure_variables: error setting Variable link for $(nameof(typeof(reaction))) $(fullname(reaction)) $name"
rethrow()
end
end
end
# set variable attributes
if !isnothing(reaction.base._conf_variable_attributes)
if dolog
io = (io === devnull) ? IOBuffer() : io
println(io, "_configure_variables: $(nameof(typeof(reaction))) $(fullname(reaction)) variable_attributes:")
end
cva = reaction.base._conf_variable_attributes
for (nameattrib, rawvalue) in cva
try
split_na = split(nameattrib, (':', '%'))
length(split_na) == 2 || error(" invalid variable:attribute or variable%attribute $nameattrib")
name, attrib = split_na
match_vars = _gen_var_names(get_variables(reaction), name, "not used") # no wild cards (trailing *) allowed
uniquelocalnames = Set{String}()
if isempty(match_vars)
allow_missing || error(" $nameattrib = $rawvalue no variables match $name")
else
for (var, dummy) = match_vars
# if isnothing(var.linkvar)
# @warn " unable to set $(Symbol(attrib)) attribute, VariableReaction $(fullname(var)) not linked"
# else
# set_attribute!(var.linkvar, Symbol(attrib), value)
# end
# Variables may appear in multiple ReactionMethods, so just print a log message for the first one
iofirstvar = (dolog && !(var.localname in uniquelocalnames)) ? io : devnull
push!(uniquelocalnames, var.localname)
println(iofirstvar, " set attribute: $(rpad(var.localname,20)) :$(rpad(attrib,20)) = $(rpad(rawvalue, 20)) ")
value = externalvalue(iofirstvar, rawvalue, reaction.base.external_parameters)
set_attribute!(var, Symbol(attrib), value)
end
end
catch
io === devnull || @info String(take!(io))
@warn "_configure_variables: error setting Variable attribute for $(nameof(typeof(reaction))) $(fullname(reaction)) $nameattrib"
rethrow()
end
end
end
io === devnull || @info String(take!(io))
return nothing
end
"""
_gen_var_names(variables, matchroot::AbstractString, newroot::AbstractString) -> Vector{Pair{VariableReaction, String}}
Return a list of (variable => newname) for `variables` where localname matches `matchroot`,
generating `newname` from `newroot`.
If `matchroot` and `newroot` contain a *, treat this as a wildcard.
If `matchroot` contains a * and `newroot` doesn't (legacy form), append a * to `newroot` first.
"""
function _gen_var_names(variables, matchroot::AbstractString, newroot::AbstractString)
# variable => newname
match_vars = Vector{Pair{VariableReaction, String}}()
count("*", matchroot) <= 1 ||
error("matchroot $matchroot contains more than one *")
if contains(newroot, "*")
newrootstar = newroot
else
# legacy form without a * on the RHS - interpret as if had a trailing *
newrootstar = newroot*"*"
end
for var in variables
if contains(matchroot, "*") && (length(var.localname) >= length(matchroot) - 1)
starpos = findfirst('*', matchroot)
beforestar = matchroot[1:starpos-1]
afterstar = matchroot[starpos+1:end]
if startswith(var.localname, beforestar) && endswith(var.localname, afterstar)
starmatched = var.localname[length(beforestar)+1:end-length(afterstar)] # string that * matched
push!(match_vars, var => replace(newrootstar, "*"=>starmatched))
end
else
if var.localname == matchroot
push!(match_vars, var => newroot)
end
end
end
return match_vars
end
###########################################
# Pretty printing
############################################
function Base.show(io::IO, react::AbstractReaction)
print(
io,
typename(react),
"(name='", react.name,
"', classname='", react.classname,
"', domain='", domainname(react) ,
", operatorID=", react.operatorID,
")"
)
end
function Base.show(io::IO, ::MIME"text/plain", react::AbstractReaction)
println(io, typename(react))
println(io, " name='", react.name, "'")
println(io, " classname='", react.classname, "'")
println(io, " domain='", domainname(react), "'")
println(io, " operatorID=", react.operatorID)
println(io, " parameters=", get_parameters(react))
println(io, " methods_setup=", react.methods_setup)
println(io, " methods_initialize=", react.methods_initialize)
println(io, " methods_do=", react.methods_do)
end
"""
show_parameters(react::AbstractReaction) -> DataFrame
show_parameters(classname::AbstractString) -> DataFrame
list all parameters for a Reaction `react` instance or `classname`
"""
function show_parameters(react::AbstractReaction)
pars = get_parameters(react)
dfreact = DataFrames.DataFrame()
dfreact.name = [p.name for p in pars]
dfreact.v = [p.v for p in pars]
dfreact.type = [typeof(p) for p in pars]
dfreact.units = [p.units for p in pars]
dfreact.description = [p.description for p in pars]
DataFrames.sort!(dfreact, [:name])
return dfreact
end
show_parameters(classname::AbstractString) =
show_parameters(_create_reaction(classname, "test", Dict{String,Any}()))
"fully-qualified name"
fullname(react::AbstractReaction) = domainname(react)*"."*react.name
"safe Reaction Domain name"
domainname(react::AbstractReaction) = isnothing(react.domain) ? "<no domain>" : react.domain.name
"type name, excluding (verbose) template arguments"
typename(react::AbstractReaction) = join(Base.fullname(parentmodule(typeof(react))), ".")*"."*String(nameof(typeof(react)))
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 4861 |
import InteractiveUtils
"""
find_all_reactions() -> Dict{String, Type}
Use `InteractiveUtils.subtypes(AbstractReaction)` to find all currently loaded subtypes off
AbstractReaction, and create a `Dict` with last part of the name of the Type
as key (ie without the module prefix) and Type as value.
Any Types that generate non-unique keys (eg Module1.MyReactionType and Module2.MyReactionType) will generate
a warning, and no entry will be added to the Dict (so if this Reaction is present in a config file, it will
not be found and will error).
"""
function find_all_reactions()
rtypes = InteractiveUtils.subtypes(AbstractReaction)
rdict = Dict{String, Type}()
duplicate_keys = []
for ReactionType in rtypes
rname = _classname(ReactionType)
if haskey(rdict, rname)
push!(duplicate_keys, (rname, ReactionType))
end
rdict[rname] = ReactionType
end
for (rname, ReactionType) in duplicate_keys
@warn "Duplicate reaction name $rname for Type $ReactionType (removing from Dict)"
if haskey(rdict, rname)
@warn "Duplicate reaction name $rname for Type $(rdict[rname]) (removing from Dict)"
delete!(rdict, rname)
end
end
return rdict
end
"""
_classname(ReactionType::Type{<:AbstractReaction}) -> String
Get Reaction classname from `ReactionType` (this is the Julia Type after stripping module prefixes and converting to String)
"""
_classname(ReactionType::Type{<:AbstractReaction}) = String(last(split(string(ReactionType), ".")))
"""
find_reaction(class::AbstractString) -> ReactionType
Look up "class" in list of Reactions from [`find_all_reactions`](@ref), and return
fully-qualified Reaction Type (including module prefixes).
"""
function find_reaction(class::AbstractString)
rdict = find_all_reactions()
if haskey(rdict, class)
return rdict[class]
else
error("class \"$class\" not found")
end
end
"""
create_reaction(ReactionType::Type{<:AbstractReaction}, base::ReactionBase) -> reaction::AbstractReaction
Default method to create a `ReactionType` and set `base` field.
A reaction implementation may optionally implement a custom method eg to set additional fields
"""
function create_reaction(ReactionType::Type{<:AbstractReaction}, base::ReactionBase)
return ReactionType(base=base)
end
"""
create_reaction(rdict::Dict{String, Type}, classname::String, name::String, external_parameters::Dict{String, Any}) -> reaction::AbstractReaction
create_reaction(ReactionType::Type{<:AbstractReaction}, name::String, external_parameters::Dict{String, Any}) -> reaction::AbstractReaction
Create and configure a reaction.
Sets `ReactionBase` with name, classname, external_parameters, and list of `Parameters` from `pars` field (if present)
"""
function create_reaction(
ReactionType::Type{<:AbstractReaction}, name::String, external_parameters::Dict{String, Any};
classname=_classname(ReactionType),
)
base=ReactionBase(;name, classname, external_parameters)
rj = create_reaction(ReactionType, base)
# Add parameters from pars field
if hasproperty(rj, :pars)
add_par(rj, rj.pars)
end
return rj
end
function create_reaction(
rdict::Dict{String, Type}, classname::String, name::String, external_parameters::Dict{String, Any}
)
if haskey(rdict, classname)
return create_reaction(rdict[classname], name, external_parameters; classname)
else
error("create_reaction: name $name classname $classname not found")
return nothing
end
end
function add_reaction_factory(ReactionType::Type{<:AbstractReaction})
Base.depwarn("call to deprecated add_reaction_factory($ReactionType), this does nothing and can be removed", :add_reaction_factory, force=true)
end
"""
show_all_reactions(classfilter="", typenamefilter="")
List all registered Reactions with `classname` containing (`occursin`) `classfilter` and `typenamefilter`
A Reaction is loaded when the module that defines it is imported.
Examples:
- `PB.show_all_reactions(r"reservoir"i)` case-insensitive match for classname containing "reservoir".
- `PB.show_all_reactions("", "Reservoir")` all Reactions defined in a module name containing "Reservoir"
"""
function show_all_reactions(classnamefilter="", typenamefilter="")
for (classname, ReactionType) in sort!(OrderedCollections.OrderedDict(find_all_reactions()))
if occursin(classnamefilter, classname)
println(classname)
rtstring = Printf.@sprintf("%s", ReactionType)
if occursin(typenamefilter, rtstring )
println(" ", ReactionType)
# doc = Base.Docs.doc(rt) # a Markdown object?
# display(doc)
end
end
end
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 9238 | """
ReactionMethod(
methodfn::Function,
reaction::AbstractReaction,
name::String,
varlists::Tuple{Vararg{AbstractVarList}},
p,
operatorID::Vector{Int64},
domain::AbstractDomain;
preparefn = (m, vardata) -> vardata
) -> m::ReactionMethod
Defines a callback function `methodfn` with Variables `varlists`, to be called from the Model framework
either during setup or as part of the main loop.
# Fields
$(FIELDS)
# methodfn
The `methodfn` callback is:
methodfn(m::ReactionMethod, pars, vardata::Tuple, cellrange::AbstractCellRange, modelctxt)
or (if Parameters are not required):
methodfn(m::ReactionMethod, vardata::Tuple, cellrange::AbstractCellRange, modelctxt)
With arguments:
- `m::ReactionMethod`: context is available as `m.reaction::AbstractReaction` (the Reaction that defined the `ReactionMethod`),
and `m.p` (an arbitrary extra context field supplied when `ReactionMethod` created).
- `pars`: a struct with Parameters as fields (current just the ParametersTuple defined as `reaction.pars`)
- `vardata`: A Tuple of collections of views on Domain data arrays corresponding to [`VariableReaction`](@ref)s defined by `varlists`
- `cellrange::AbstractCellRange`: range of cells to calculate.
- `modelctxt`:
- for a setup method, `:setup`, `:initial_value` or `:norm_value` defining the type of setup requested
- for a main loop method `deltat` providing timestep information eg for rate throttling.
# preparefn
An optional `preparefn` callback can be supplied eg to allocate buffers that require knowledge of
the data types of `vardata` or to cache expensive calculations:
preparefn(m::ReactionMethod, vardata::Tuple) -> modified_vardata::Tuple
This is called after model arrays are allocated, and prior to setup.
"""
struct ReactionMethod{M, R, P, Nargs} <: AbstractReactionMethod
"callback from Model framework"
methodfn::M # NB: store function object, even though we have M (see https://discourse.julialang.org/t/is-there-a-way-to-get-f-from-typeof-f/18818/12)
"the Reaction that created this ReactionMethod"
reaction::R
"a descriptive name, eg generated from the name of methodfn"
name::String
"Tuple of VarLists, each representing a list of [`VariableReaction`](@ref)s.
Corresponding Variable accessors `vardata` (views on Arrays) will be provided to the `methodfn` callback.
NB: not concretely typed to reduce compile time, as not performance-critical"
varlists::Tuple{Vararg{AbstractVarList}}
"optional context field (of arbitrary type) to store data needed by methodfn."
p::P
operatorID::Vector{Int64}
domain::Domain
"preparefn(m::ReactionMethod, vardata::Tuple) -> modified_vardata::Tuple
optionally modify `vardata` to eg add buffers. NB: not concretely typed as not performance-critical"
preparefn::Function
function ReactionMethod(
methodfn::M,
reaction::R,
name,
varlists::Tuple{Vararg{AbstractVarList}},
p::P,
operatorID::Vector{Int64},
domain;
preparefn = (m, vardata) -> vardata,
) where {M <: Function, R <: AbstractReaction, P}
# Find number of arguments that methodfn takes
# (in order to support two forms of 'methodfn', with and without Parameters)
nargs = fieldcount(methods(methodfn).ms[1].sig) - 1
newmethod = new{M, R, P, nargs}(
methodfn,
reaction,
name,
varlists,
p,
operatorID,
domain,
preparefn,
)
for v in get_variables(newmethod)
v.method = newmethod
set_attribute!(v, :operatorID, newmethod.operatorID, allow_create=true)
end
return newmethod
end
end
get_nargs(method::ReactionMethod{M, R, P, Nargs}) where {M, R, P, Nargs} = Nargs
get_nargs(methodref::Ref{ReactionMethod{M, R, P, Nargs}}) where {M, R, P, Nargs} = Nargs
# deprecated methodfn form without pars
@inline call_method(method::ReactionMethod{M, R, P, 4}, vardata, cr, modelctxt) where {M, R, P} =
method.methodfn(method, vardata, cr, modelctxt)
# updated methodfn form with pars
@inline call_method(method::ReactionMethod{M, R, P, 5}, vardata, cr, modelctxt) where {M, R, P} =
method.methodfn(method, method.reaction.pars, vardata, cr, modelctxt)
@noinline call_method(methodref::Ref{<: ReactionMethod}, vardataref::Ref, cr, modelctxt) =
call_method(methodref[], vardataref[], cr, modelctxt)
# with modified pars for sensitivity studies: deprecated methodfn form without pars
@inline call_method(method::ReactionMethod{M, R, P, 4}, pars, vardata, cr, modelctxt) where {M, R, P} =
method.methodfn(method, vardata, cr, modelctxt)
# with modified pars for sensitivity studies: updated methodfn form with pars
@inline call_method(method::ReactionMethod{M, R, P, 5}, pars, vardata, cr, modelctxt) where {M, R, P} =
method.methodfn(method, pars, vardata, cr, modelctxt)
@noinline call_method(methodref::Ref{<: ReactionMethod}, pars, vardataref::Ref, cr, modelctxt) =
call_method(methodref[], pars, vardataref[], cr, modelctxt)
@inline has_modified_parameters(pa::ParameterAggregator, methodref::Ref{<: ReactionMethod}) =
has_modified_parameters(pa, methodref[].reaction)
@inline get_parameters(pa::ParameterAggregator, methodref::Ref{<: ReactionMethod}) =
get_parameters(pa, methodref[].reaction)
# for benchmarking etc: apply codefn to the ReactionMethod methodfn (without this, will just apply to the call_method wrapper)
# codefn=code_warntype, code_llvm, code_native
call_method_codefn(io::IO, codefn, method::ReactionMethod{M, R, P, 4}, vardata, cr, modelctxt; kwargs...) where {M, R, P} =
codefn(io, method.methodfn, (typeof(method), typeof(vardata), typeof(cr), typeof(modelctxt)); kwargs...)
call_method_codefn(io::IO, codefn, method::ReactionMethod{M, R, P, 5}, vardata, cr, modelctxt; kwargs...) where {M, R, P} =
codefn(io, method.methodfn, (typeof(method), typeof(method.reaction.pars), typeof(vardata), typeof(cr), typeof(modelctxt)); kwargs...)
"""
get_variables_tuple(method::AbstractReactionMethod) -> (Vector{VariableReaction}, ...)
Get all [`VariableReaction`](@ref)s from `method` as a Tuple of `Vector{VariableReaction}`
"""
get_variables_tuple(@nospecialize(method::ReactionMethod); flatten=true) = Tuple(get_variables(vl; flatten) for vl in method.varlists)
"""
get_variables(method::AbstractReactionMethod; filterfn = v -> true) -> Vector{VariableReaction}
Get VariableReactions from `method.varlists` as a flat Vector, optionally restricting to those that match `filterfn`
"""
function get_variables(
@nospecialize(method::ReactionMethod);
filterfn = v -> true
)
vars = VariableReaction[]
for vl in method.varlists
append!(vars, filter(filterfn, get_variables(vl)))
end
return vars
end
"""
get_variable(
method::AbstractReactionMethod, localname::AbstractString;
allow_not_found=false
) -> v
Get a single VariableReaction `v` by `localname`.
If `localname` not present, returns `nothing` if `allow_not_found==true` otherwise errors.
"""
function get_variable(
@nospecialize(method::ReactionMethod), localname::AbstractString;
allow_not_found=false
)
matchvars = get_variables(method; filterfn = v -> v.localname==localname)
length(matchvars) <= 1 || error("duplicate variable localname", localname)
!isempty(matchvars) || allow_not_found || error("method ", fullname(method), " no variable localname=", localname)
return isempty(matchvars) ? nothing : matchvars[1]
end
fullname(@nospecialize(method::ReactionMethod)) = fullname(method.reaction)*"."*method.name
is_method_setup(@nospecialize(method::ReactionMethod)) = (method in base(method.reaction).methods_setup)
is_method_initialize(@nospecialize(method::ReactionMethod)) = (method in base(method.reaction).methods_initialize)
is_method_do(@nospecialize(method::ReactionMethod)) = (method in base(method.reaction).methods_do)
"""
get_rate_stoichiometry(m::PB.ReactionMethod) -> Vector[(ratevarname, process, Dict(speciesname=>stoich, ...)), ...]
DEPRECATED: Optionally provide rate Variable name(s), a process name ("photolysis", "reaction", ...) and stoichiometry of reactants and products, for postprocessing of results.
Use attributes on rate variable instead:
- `rate_processname::String`: a process name (eg "photolysis", "reaction", ...)
- `rate_species::Vector{String}` names of reactant and product species
- `rate_stoichiometry::Vector{Float64}` stoichiometry of reactant and product species
"""
get_rate_stoichiometry(@nospecialize(m::ReactionMethod)) = []
###########################################
# Pretty printing
############################################
"compact form"
function Base.show(io::IO, @nospecialize(method::ReactionMethod))
print(
io,
"ReactionMethod(fullname='", fullname(method),
"', methodfn=", string(method.methodfn),
", domain='", method.domain.name ,
"', operatorID=", method.operatorID,
")",
)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 5805 |
"""
MethodSort
Sorted ReactionMethods.
Each group of methods in `groups` has no internal dependencies, but depends on methods
in previous groups in the Vector.
# Fields
- `methods::Vector{AbstractReactionMethod}`: (unsorted) ReactionMethods
- `groups::Vector{BitSet}`: indices in `methods` of sequentially dependent groups of ReactionMethods
(ReactionMethods in each group depend on the previous group, no dependencies within group)
- `g::Graphs.SimpleDiGraph `: dependency graph (Vertices are numbered using indices in `methods`)
- `depvars::Dict{Tuple{Int64, Int64}, Vector{PALEOboxes.VariableDomain}}`:
Dict((modifier_idx, dependent_idx)=>var): Variables modified by method modifier_idx and
required by method dependent_idx
"""
struct MethodSort
methods::Vector{AbstractReactionMethod}
groups::Vector{BitSet}
g::Graphs.SimpleDiGraph
depvars::Dict{Tuple{Int64, Int64}, Vector{PALEOboxes.VariableDomain}}
end
"""
get_methods(ms::MethodSort; [method_barrier=nothing]) -> Vector{AbstractReactionMethod}
Flatten MethodSort to a Vector of ReactionMethods, optionally inserting
`method_barrier` between groups for a multithreaded timestepper.
NB: adds a `method_barrier` before first group, no `method_barrier` after last group.
"""
function get_methods(ms::MethodSort; method_barrier=nothing)
methods = AbstractReactionMethod[]
for grp in ms.groups
isnothing(method_barrier) || push!(methods, method_barrier)
append!(methods, (ms.methods[midx] for midx in grp))
end
return methods
end
function Base.show(io::IO, m::MethodSort)
println(io, "MethodSort")
for grp in m.groups
println(io, " group=", grp)
for midx in grp
println(io, " ", fullname(m.methods[midx]))
end
end
end
"""
dfs_methods(methods::Vector, all_domvars::Vector; verbose=false) -> MethodSort
Depth-first topological sort based on dependencies from Variables.
NB: No grouping of methods (returns each method in a group of 1).
"""
function dfs_methods(methods::Vector, all_domvars::Vector; verbose=false)
g, depvars = _method_dependencies(methods, all_domvars)
# topological sort
groups = BitSet.(Graphs.topological_sort_by_dfs(g))
MethodSort(methods, groups, g, depvars)
end
"""
group_methods(methods::Vector, all_domvars::Vector; verbose=false) -> MethodSort
Group methods based on dependencies from Variables using a topological sort
(using Kahn's algorithm, similar to a breadth-first search).
Methods in each group have no dependencies (ie can run in any order). Each group must
run after the previous groups in the list.
"""
function group_methods(methods::Vector, all_domvars::Vector; verbose=false)
g, depvars = _method_dependencies(methods, all_domvars)
num_vertices = Graphs.nv(g)
# number of incoming edges for each Vertex
inn = [length(Graphs.inneighbors(g,v)) for v in Graphs.vertices(g)]
groups = BitSet[]
num_grouped = 0
while true
# find all vertices with no remaining incoming edges
grp = BitSet(v for v in Graphs.vertices(g) if iszero(inn[v]))
if isempty(grp)
break
else
push!(groups, grp)
num_grouped += length(grp)
verbose && println(grp)
for gv in grp
verbose && println(" ", fullname(methods[gv]))
inn[gv] -= 1 # now -1 (ie remove from further consideration)
# remove an edge from all our dependents
for ov in Graphs.outneighbors(g, gv)
inn[ov] -= 1
end
end
end
end
num_grouped == num_vertices ||
error("The input graph contains at least one loop.")
return MethodSort(methods, groups, g, depvars)
end
"""
_method_dependencies(methods::Vector, all_domvars::Vector) ->
(g::Graphs.SimpleDiGraph, depvars::Dict((modifier_idx, dependent_idx)=>Vector{VariableDomain})
Create ReactionMethod dependency graph based on dependencies from `all_domvars`.
Vertices of directed graph `g` are numbered by index in `methods`. 'Out' edges from a method point to
(are `in` edges to) methods that are dependent on Variables modified by it.
Domain Variables generating dependencies are returned in `depvars::Dict((modifier_idx, dependent_idx)=>var)`
where `modifier_idx`, `dependent_idx` are indices in `methods`.
"""
function _method_dependencies(methods::Vector, all_domvars::Vector)
# invert to get map from ReactionMethod -> ReactionMethod index
method_to_idx = Dict{AbstractReactionMethod, Int}(
method=>idx for (idx, method) in enumerate(methods)
)
g = Graphs.SimpleDiGraph(length(method_to_idx))
depvars = Dict{Tuple{Int64, Int64}, Vector{PALEOboxes.VariableDomain}}()
# add edges for each variable Dependency
for var in all_domvars
modifying_methods = get_modifying_methods(var) # all methods (setup, initialize, do)
dependent_methods = get_dependent_methods(var) # all methods (setup, initialize, do)
for mod_m in modifying_methods
for dep_m in dependent_methods
# filter out methods to those we are interested in
if haskey(method_to_idx, mod_m) && haskey(method_to_idx, dep_m)
mod_idx = method_to_idx[mod_m]
dep_idx = method_to_idx[dep_m]
# Add edge to graph - duplicate edges will not be added and will return false
Graphs.add_edge!(g, mod_idx, dep_idx)
# keep track of all Variables generating dependencies
push!(get!(depvars, (mod_idx, dep_idx), VariableDomain[]), var)
end
end
end
end
return (g, depvars)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 5245 | # Get scalar value from variable x (discarding any AD derivatives)
value_ad(x) = x
# Model code should implement this for any AD types used, eg
# value_ad(x::SparsityTracing.ADval) = SparsityTracing.value(x)
# value_ad(x::ForwardDiff.Dual) = ForwardDiff.value(x)
# get scalar or ad from variable x, as specified by first argument
value_ad(::Type{T}, x::T) where {T} = x # pass through AD
value_ad(::Type{T}, x::Float64) where {T} = x # pass through Float64
value_ad(::Type{Float64}, x) = value_ad(x) # strip AD
value_ad(::Type{Float64}, x::Float64) = x # avoid method ambiguity
# TODO there doesn't seem to be an easy way of parameterising ModelData by an Array type ?
const PaleoArrayType = Array
################################
# Parameters
###############################
abstract type AbstractParameter
end
#################################
# Reactions
###################################
"""
AbstractReactionMethod
Base Type for Reaction Methods.
"""
abstract type AbstractReactionMethod
end
abstract type AbstractReaction
end
##############################################
# Variables
###############################################
"""
VariableBase
A `Model` biogeochemical `Variable`. `Reaction`s access `Variable`s using derived Types [`VariableReaction`](@ref)
which are links to [`VariableDomain`](@ref)s.
"""
abstract type VariableBase
end
"""
show_variables(obj, ...) -> Table
Show all Variables attached to PALEO object `obj`
"""
function show_variables end
"""
get_variable(obj, varname, ...) -> variable
Get `variable <: VariableBase` by name from PALEO object
"""
function get_variable end
"""
has_variable(obj, varname, ...) -> Bool
True if PALEO object containts `varname`
"""
function has_variable end
"""
@enum VariableType
Enumeration of `VariableBase` subtypes. Allowed values:
- `VariableReaction`: `VT_ReactProperty`, `VT_ReactDependency`, `VT_ReactContributor`, `VT_ReactTarget`
- `VariableDomain` : `VT_DomPropDep`, `VT_DomContribTarget`
"""
@enum VariableType::Cint begin
VT_Undefined = 0
VT_ReactProperty
VT_ReactDependency
VT_ReactContributor
VT_ReactTarget
VT_DomPropDep
VT_DomContribTarget
end
abstract type VariableDomain <: VariableBase
end
abstract type AbstractModel
end
"""
AbstractDomain
A model region containing Fields and Reactions that act on them.
"""
abstract type AbstractDomain
end
abstract type AbstractSubdomain
end
abstract type AbstractMesh
end
"""
function get_mesh(obj, ...)
Return an [`AbstractMesh`](@ref) for PALEO object `obj`
"""
function get_mesh end
abstract type AbstractCellRange
end
abstract type AbstractSpace
end
abstract type AbstractData
end
"parse eg \"ScalarData\" or \"PALEOboxes.ScalarData\" as ScalarData"
function Base.parse(::Type{AbstractData}, str::AbstractString)
dtype = tryparse(AbstractData, str)
!isnothing(dtype) ||
throw(ArgumentError("$str is not a subtype of AbstractData"))
return dtype
end
function Base.tryparse(::Type{AbstractData}, str::AbstractString)
dtype = getproperty(@__MODULE__, Symbol(replace(str, "PALEOboxes."=>"")))
return (dtype <: AbstractData) ? dtype : nothing
end
"""
AbstractField
Defines a Field in a Domain
"""
abstract type AbstractField
end
"`model` data arrays etc"
abstract type AbstractModelData
end
"struct to hold Domain Field data"
abstract type AbstractDomainData
end
"""
function get_table(obj, ...)
Return a Tables.jl data table view for PALEO object `obj`
"""
function get_table end
#############################################
# ReactionMethodDispatchList
#############################################
"""
ReactionMethodDispatchList
Defines a list of [`ReactionMethod`](@ref) with corresponding [`CellRange`](@ref)
and views on Variable data (sub)arrays.
"""
struct ReactionMethodDispatchList{M <:Tuple, V <:Tuple, C <: Tuple}
methods::M
vardatas::V
cellranges::C
end
ReactionMethodDispatchList(methods::Vector, vardatas::Vector, cellranges::Vector) =
ReactionMethodDispatchList(Tuple(methods), Tuple(vardatas), Tuple(cellranges))
struct ReactionMethodDispatchListNoGen
methods::Vector
vardatas::Vector
cellranges::Vector
end
# See https://discourse.julialang.org/t/pretty-print-of-type/19555
# Customize typeof function, as full type name is too verbose (as Tuples are of length ~ number of ReactionMethods to call)
Base.show(io::IO, ::Type{PALEOboxes.ReactionMethodDispatchList{M, V, C}}) where {M, V, C} =
print(io, "PALEOboxes.ReactionMethodDispatchList{M::Tuple, V::Tuple, C::Tuple each of length=$(fieldcount(M))}")
function Base.show(io::IO, dispatchlist::ReactionMethodDispatchList)
print(io, typeof(dispatchlist))
end
function Base.show(io::IO, ::MIME"text/plain", dl::ReactionMethodDispatchList)
println(io, typeof(dl))
for i in eachindex(dl.methodfns)
println(io, " ", dl.methods[i], ", ", dl.cellranges[i])
end
end
"""
infoerror(io::IOBuffer, message::AbstractString)
Output accumulated log messages in io, then raise `ErrorException` with message
"""
function infoerror(io::IOBuffer, message::AbstractString)
@info String(take!(io))
error(message)
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 13244 |
#####################################################
# Attribute accessors
#####################################################
"""
set_attribute!(var::VariableBase, name::Symbol, value, allow_create=false) -> var
Set Variable attribute.
"""
function set_attribute!(var::VariableBase, name::Symbol, value; allow_create=false)
_set_attribute!(var.attributes, name, value, allow_create)
return var
end
"""
has_attribute(var::VariableBase, name::Symbol)
Test Variable attribute present.
"""
has_attribute(var::VariableBase, name::Symbol) = haskey(var.attributes, name)
"""
get_attribute(var::VariableBase, name::Symbol, missing_value=missing) -> value
Get Variable attribute.
"""
function get_attribute(var::VariableBase, name::Symbol, missing_value=missing)
return get(var.attributes, name, missing_value)
end
"""
num_components(var::VariableBase) -> Int
Number of components in `var`.
"""
num_components(var::VariableBase) = num_components(get_attribute(var, :field_data))
###################################
# enum-valued VariableAttributes
####################################
"""
@enum VariableFunction
Allowed values of `:vfunction` Variable [`Attribute`](@ref),
defining the Variable function to the host ODE or DAE solver.
Explicit ODE problems with dS/dt = F(S) consist of pairs of S::VF_StateExplicit, F::VF_Deriv Variables.
An implicit ODE problem with dU/dt = F(U) where Total variables U are functions U(S) of State variables S
will consist of pairs of U::VF_Total and F::VF_Deriv Variables, and also the same number of S::VF_StateTotal (in
no particular order).
Algebraic constraints C(S) = 0 include variables C::VF_Constraint and the same number of S::VF_State,
with no corresponding VF_Deriv.
Not all solvers support all combinations.
"""
@enum VariableFunction::Cint begin
VF_Undefined = 0
VF_StateExplicit = 1
VF_Total = 2
VF_Constraint = 3
VF_State = 4
VF_Deriv = 5
VF_StateTotal = 6
end
"parse eg \"VF_Deriv\" as Enum VF_Deriv"
function Base.parse(::Type{VariableFunction}, str::AbstractString)
return getproperty(@__MODULE__, Symbol(str))::VariableFunction
end
"""
@enum VariablePhase
Allowed values of `:vphase` Variable [`Attribute`](@ref), defining the component phase this Variable belongs to
for multiphase cells.
"""
@enum VariablePhase::Cint begin
VP_Undefined = 0
VP_Solute = 1
VP_Solid = 2
end
"parse eg \"VP_Solute\" as Enum VP_Solute"
function Base.parse(::Type{VariablePhase}, str::AbstractString)
return getproperty(@__MODULE__, Symbol(str))::VariablePhase
end
###################################################
# Standard Attributes
#####################################################
"""
Attribute{T}
Definition for Variable attribute `name`. Defines a data type `T`, a `default_value`, `required` (`true` if always present ie
added with `default_value` when Variable is created), `units`, and an optional `description`.
Note that Variable attributes are stored as a per-Variable `Dict(name => value)`, these definitions are only used to provide defaults,
check types, and provide descriptive metadata.
`ParseFromString` should usually be `Nothing`: a value of `Type T` is then required when calling [`set_attribute!`](@ref).
If `ParseFromString` is `true`, then [`set_attribute!`](@ref) will accept an `AbstractString` and call `Base.parse(T, strvalue)`
to convert to `T`. This allows eg an enum-valued Attribute to be defined by Attribute{EnumType, true} and implementing
parse(EnumType, rawvalue::AbstractString)
"""
struct Attribute{T, ParseFromString}
name::Symbol
default_value::T
required::Bool
units::String
description::String
end
attributeType(::Attribute{T}) where{T} = T
"""
StandardAttributes
List of standard Variable attributes.
Some of these follow netCDF COARDS/CF conventions:
COARDS:<https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions>
- units (where possible should follow the Unidata udunits package <https://docs.unidata.ucar.edu/udunits/current/>)
- long_name
CF conventions: <https://cfconventions.org/cf-conventions/cf-conventions.html#_description_of_the_data>
- standard_name <http://cfconventions.org/Data/cf-standard-names/current/src/cf-standard-name-table.xml>
"""
const StandardAttributes = [
# name default_value required units description
Attribute{Type, AbstractData}( :field_data, UndefinedData, true, "", "AbstractData type Variable contains")
Attribute{Tuple{Vararg{String}}, Tuple{Vararg{String}}}(
:data_dims, (), true, "", "Tuple of variable data dimension names, or empty for a scalar")
Attribute{Type, AbstractSpace}( :space, CellSpace, true, "", "function space Variable is defined on")
Attribute{String, Nothing}( :mesh, "default", false, "", "grid mesh on which Variable is defined (empty for Domain spatial scalar)")
Attribute{Bool, Nothing}( :check_length, true, false, "", "true to check length matches length of linked VariableDomain")
Attribute{Bool, Nothing}( :is_constant, false, true, "", "true if variable is not changed after initialisation")
Attribute{VariableFunction, VariableFunction}(
:vfunction, VF_Undefined, true, "", "host function (to label state variables etc)")
Attribute{Vector{Int}, Nothing}( :operatorID, Int[], false, "", "Reaction operatorIDs that modify this Variable")
Attribute{VariablePhase, VariablePhase}(
:vphase, VP_Undefined, false, "", "phase for concentrations in multiphase cells")
Attribute{Vector{String}, Nothing}( :totalnames, String[], false, "", "Vector of total Variable names for this species")
Attribute{String, Nothing}( :rate_processname, "", false, "", "process name for this reaction rate variable")
Attribute{Vector{String}, Nothing}( :rate_species, String[], false, "", "Vector of reactant and product species for this reaction rate variable")
Attribute{Vector{Float64}, Nothing}( :rate_stoichiometry, Float64[], false, "", "Vector of reactant and product stoichiometries for this reaction rate variable")
Attribute{String, Nothing}( :safe_name, "", false, "", "optional short or escaped name for compatibility with other software")
Attribute{String, Nothing}( :long_name, "", false, "", "netcdf long descriptive name")
Attribute{String, Nothing}( :units, "", true, "", "where possible should follow netcdf conventions")
Attribute{String, Nothing}( :description, "", true, "", "human-readable description")
Attribute{String, Nothing}( :standard_name, "", false, "", "netcdf CF conventions standard name")
Attribute{Bool, Nothing}( :advect, false, false, "", "true to apply advective transport to this tracer")
Attribute{Float64, Nothing}( :advect_zmin, 0.0, false, "m", "minimum height for transport")
# Attribute{Bool, Nothing}( :optional, false, true, "", "")
Attribute{Bool, Nothing}( :initialize_to_zero, false, false, "", "request initialize to zero at start of each timestep.")
Attribute{Float64, Nothing}( :vertical_movement, 0.0, false, "m d-1", "vertical advective transport (+ve upwards) in column")
Attribute{String, Nothing}( :diffusivity_speciesname, "", false, "", "species name to define diffusivity and charge")
Attribute{Union{Float64,Missing}, Nothing}(
:diffusivity, missing, false, "cm^2/s", "species diffusivity")
Attribute{Union{Float64,Missing}, Nothing}(
:charge, missing, false, "", "species charge")
Attribute{Union{Float64,Vector{Float64}}, Nothing}(
:initial_value, 0.0, true, "", "initial value to be applied eg to state or constant variable")
Attribute{Union{Float64,Vector{Float64}}, Nothing}(
:norm_value, 1.0, true, "", "normalisation value to be passed through to solver and optionally provided as model variable")
Attribute{Float64, Nothing}( :initial_delta, 0.0, true, "per mil", "initial value for isotope variable to be applied eg to state or constant variable")
Attribute{Float64, Nothing}( :specific_light_extinction, 0.0, false, "m^2 mol-1","wavelength-independent specific extinction in water column")
Attribute{Union{Float64,Missing}, Nothing}(
:deposition_velocity, missing, false, "cm s-1", "surface deposition velocity for atmospheric tracer")
Attribute{Union{Float64,Missing}, Nothing}(
:rainout, missing, false, "", "normalized rainout rate for atmospheric tracer")
Attribute{Union{Float64,Missing}, Nothing}(
:gamma, missing, false, "", "bioirrigation scaling factor for sediment solute")
]
"""
default_variable_attributes()
Required attributes that should be present in all `VariableReaction`
"""
function default_variable_attributes()
return Dict(a.name => a.default_value for a in StandardAttributes if a.required)
end
"""
is_standard_attribute(attribute::Symbol) -> Bool
```jldoctest; setup = :(import PALEOboxes)
julia> PALEOboxes.is_standard_attribute(:data_dims)
true
julia> PALEOboxes.is_standard_attribute(:foo)
false
```
"""
function is_standard_attribute(attribute::Symbol)
return !isnothing(findfirst(a->a.name==attribute, StandardAttributes))
end
"""
standard_attribute_type(attribute::Symbol) -> DataType
"""
function standard_attribute_type(attribute::Symbol)
idx = findfirst(a->a.name==attribute, StandardAttributes)
if isnothing(idx)
return nothing
else
return attributeType(StandardAttributes[idx])
end
end
###################################
# Internal implementation
##################################
"Set attribute, with type conversion and checking"
function _set_attribute!(attributes::Dict{Symbol, Any}, name::Symbol, value, allow_create)
if haskey(attributes, name) || allow_create
attributes[name] = _convert_standard_attribute_type(name, value)
else
error("invalid attempt to create new attribute ",name,"=",value)
end
return nothing
end
"""
NB: conversion of :initial_value or :norm_value from an integer fails, eg
julia> PALEOboxes._convert_standard_attribute_type(:initial_value, 1)
as
julia> convert(Union{Float64,Vector{Float64}}, 1)
fails.
```jldoctest; setup = :(import PALEOboxes)
julia> PALEOboxes._convert_standard_attribute_type(:initial_delta, 1)
1.0
julia> PALEOboxes._convert_standard_attribute_type(:my_new_attribute, 1)
1
julia> PALEOboxes._convert_standard_attribute_type(:vphase, "VP_Solute")
VP_Solute::VariablePhase = 1
```
"""
function _convert_standard_attribute_type(attribute::Symbol, value)
a_idx = findfirst(a->a.name==attribute, StandardAttributes)
if isnothing(a_idx)
return value # no type conversion
else
stdatt = StandardAttributes[a_idx]
return convert(attributeType(stdatt), _parsevalue(stdatt, value))
end
end
# Default - no attempt to parse value from String
function _parsevalue(attribute::Attribute{T, Nothing}, value) where {T}
return value
end
function _parsevalue(attribute::Attribute{T, Nothing}, value::AbstractString) where {T}
return value
end
# any (Data)Type - any subtype of PT is acceptable
function _parsevalue(attribute::Attribute{T, PT}, value::Type{V}) where {T, PT, V <: PT}
return value
end
# enum is a value of type T
function _parsevalue(attribute::Attribute{T, T}, value::T) where {T}
return value
end
# attempt to parse value from AbstractString into type PT
function _parsevalue(attribute::Attribute{T, PT}, value::AbstractString) where {T, PT}
return parse(PT, value)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 20412 | """
VariableDomain <: VariableBase
Abstract base Type for a ([`Domain`](@ref)) model variable.
Defines a named Variable and corresponding data [`Field`](@ref)s that are linked to by [`VariableReaction`](@ref)s.
See [`VariableDomPropDep`](@ref), [`VariableDomContribTarget`](@ref)
"""
VariableDomain
"""
VariableDomPropDep <: VariableDomain
[`Model`](@ref) ([`Domain`](@ref)) `VariableDomain` linking a single `VariableReaction{VT_ReactProperty}`
to multiple `VariableReaction{VT_ReactDependency}`.
"""
Base.@kwdef mutable struct VariableDomPropDep <: VariableDomain
ID::Int64
domain::AbstractDomain
name::String
master::VariableReaction
var_property::Union{Nothing, VariableReaction{VT_ReactProperty}} =
nothing
var_property_setup::Union{Nothing, VariableReaction{VT_ReactProperty}} =
nothing
var_dependencies::Vector{VariableReaction{VT_ReactDependency}} =
Vector{VariableReaction{VT_ReactDependency}}()
end
function get_properties(var::VariableDomPropDep)
pvars = VariableReaction[]
isnothing(var.var_property) || push!(pvars, var.var_property)
isnothing(var.var_property_setup) || push!(pvars, var.var_property_setup)
return pvars
end
get_var_type(var::VariableDomPropDep) = VT_DomPropDep
"""
VariableDomContribTarget <: VariableDomain
[`Model`](@ref) ([`Domain`](@ref)) `VariableDomain` linking a single `VariableReaction{VT_ReactTarget}`
to multiple `VariableReaction{VT_ReactContributor}` and `VariableReaction{VT_ReactDependency}`.
"""
Base.@kwdef mutable struct VariableDomContribTarget <: VariableDomain
ID::Int64
domain::AbstractDomain
name::String
master::VariableReaction
var_target::Union{Nothing, VariableReaction{VT_ReactTarget}} =
nothing
var_contributors::Vector{VariableReaction{VT_ReactContributor}} =
Vector{VariableReaction{VT_ReactContributor}}()
var_dependencies::Vector{VariableReaction{VT_ReactDependency}} =
Vector{VariableReaction{VT_ReactDependency}}()
end
get_var_type(var::VariableDomContribTarget) = VT_DomContribTarget
####################################
# Properties
###################################
"""
Base.getproperty(var::VariableDomain, s::Symbol)
Define [`VariableDomain`](@ref) properties.
`var.attributes` is forwarded to the linked [`VariableReaction`](@ref) defined by the `var.master` field.
"""
function Base.getproperty(var::VariableDomain, s::Symbol)
if s == :attributes
return var.master.attributes
else
return getfield(var, s)
end
end
is_scalar(var::VariableDomain) = (var.attributes[:space] === ScalarSpace)
"true if data array assigned"
function is_allocated(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int)
return !isnothing(get_field(var, modeldata, arrays_idx))
end
"fully qualified name"
function fullname(var::VariableDomain)
return var.domain.name*"."*var.name
end
function host_dependent(var::VariableDomPropDep)
return isnothing(var.var_property) && isnothing(var.var_property_setup)
end
function host_dependent(var::VariableDomContribTarget)
return isnothing(var.var_target)
end
################################################
# Field and data access
##################################################
"""
set_field!(var::VariableDomain, modeldata, arrays_idx::Int, field::Field)
Set `VariableDomain` data to `field`
"""
function set_field!(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int, field::Field)
variable_data = get_domaindata(modeldata, var.domain, arrays_idx).variable_data
variable_data[var.ID] = field
return nothing
end
"""
set_data!(var::VariableDomain, modeldata, arrays_idx::Int, data)
Set [`VariableDomain`](@ref) to a Field containing `data`.
Calls [`wrap_field`](@ref) to create a new [`Field`](@ref).
"""
function set_data!(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int, data)
variable_data = get_domaindata(modeldata, var.domain, arrays_idx).variable_data
variable_data[var.ID] = wrap_field(
data,
get_attribute(var, :field_data),
Tuple(get_data_dimension(domain, dn) for dn in get_attribute(var, :data_dims)),
get_attribute(var, :datatype),
get_attribute(var, :space),
var.domain.grid,
)
return nothing
end
"""
get_field(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int) -> field::Field
get_field(var::VariableDomain, domaindata::AbstractDomainData) -> field::Field
Get Variable `var` `field`
"""
function get_field(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int=1)
domaindata = get_domaindata(modeldata, var.domain, arrays_idx)
return get_field(var, domaindata)
end
function get_field(var::VariableDomain, domaindata::AbstractDomainData)
return domaindata.variable_data[var.ID]
end
"""
get_data(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int=1) -> field.values
get_data(var::VariableDomain, domaindata::AbstractDomainData) -> field.values
Get Variable `var` data array from [`Field`](@ref).values
"""
get_data(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int=1) = get_field(var, modeldata, arrays_idx).values
get_data(var::VariableDomain, domaindata::AbstractDomainData) = get_field(var, domaindata).values
"""
get_data(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int) -> get_values_output(field.values)
get_data(var::VariableDomain, domaindata::AbstractDomainData) -> get_values_output(field.values)
Get a sanitized version of Variable `var` data array for storing as output
from [`get_values_output`]@ref)`(`[`Field`](@ref).values`)`
"""
get_data_output(var::VariableDomain, modeldata::AbstractModelData, arrays_idx::Int=1) = get_values_output(get_field(var, modeldata, arrays_idx))
get_data_output(var::VariableDomain, domaindata::AbstractDomainData) = get_values_output(get_field(var, domaindata))
####################################################################
# Create and add to Domain
##################################################################
"create and add to Domain"
function create_VariableDomPropDep(domain, name, master)
newvar = VariableDomPropDep(domain=domain, name=name, master=master, ID=_next_variable_ID(domain))
if haskey(domain.variables, name)
error("attempt to add duplicate VariableDomPropDep $(domain.name).$(name) to Domain")
end
domain.variables[name] = newvar
_reset_master!(newvar, master)
return newvar
end
"create and add to Domain"
function create_VariableDomContribTarget(domain, name, master)
newvar = VariableDomContribTarget(domain=domain, name=name, master=master, ID=_next_variable_ID(domain))
if haskey(domain.variables, name)
error("attempt to add duplicate VariableDomContribTarget $(domain.name).$(name) to Domain")
end
domain.variables[name] = newvar
_reset_master!(newvar, master)
return newvar
end
#############################################################
# Allocate data arrays
#############################################################
"""
allocate_variables!(
vars, modeldata, arrays_idx;
[, eltypemap::Dict{String, DataType}],
[, default_host_dependent_field_data=nothing],
[, allow_base_link=true],
[. use_base_transfer_jacobian=true],
[, use_base_vars=String[]],
[, check_units_opt=:no])
Allocate or link memory for [`VariableDomain`](@ref)s `vars` in `modeldata` array set `arrays_idx`
Element type of allocated Arrays is determined by `eltype(modeldata, arrays_idx)` (the usual case, allowing use of AD types),
which can be overridden by Variable `:datatype` attribute if present (allowing Variables to ignore AD types).
`:datatype` may be either a Julia `DataType` (eg Float64), or a string to be looked up in `eltypemap`.
If `allow_base_link==true`, and any of the following are true a link is made to the base array (`arrays_idx=1`),
instead of allocating a new array in array set `arrays_idx`:
- Variable element type matches `modeldata` base eltype (arrays_idx=1)
- `use_base_transfer_jacobian=true` and Variable `:transfer_jacobian` attribute is set
- Variable full name is in `use_base_vars`
Field data type is determined by Variable `:field_data` attribute, optionally this can take a
`default_host_dependent_field_data` default for Variables with `host_dependent(v)==true` (these are Variables with no Target or no Property linked,
intended to be external dependencies supplied by the solver).
If `check_units_opt != :no` then the `:units` field of linked variable is checked, resulting in either a warning (if `check_units_opt=:warn`)
or error (if `check_units_opt=:error`).
"""
function allocate_variables!(
vars, modeldata::AbstractModelData, arrays_idx::Int;
eltypemap=Dict{String, DataType}(),
default_host_dependent_field_data=ScalarData,
allow_base_link=true,
use_base_transfer_jacobian=true,
use_base_vars=String[],
check_units_opt=:no,
)
for v in vars
check_lengths(v)
check_units(v; check_units_opt)
data_dims = Tuple(
get_data_dimension(v.domain, dimname)
for dimname in get_attribute(v, :data_dims)
)
# eltype usually is eltype(modeldata, arrays_idx), but can be overridden by :datatype attribute
# (can be used by a Reaction to define a fixed type eg Float64 for a constant Property)
mdeltype = get_attribute(v, :datatype, eltype(modeldata, arrays_idx))
if mdeltype isa AbstractString
mdeltype_str = mdeltype
mdeltype = get(eltypemap, mdeltype_str, Float64)
@debug "Variable $(fullname(v)) mdeltype $mdeltype_str -> $mdeltype"
end
thread_safe = false
if get_attribute(v, :atomic, false) && modeldata.threadsafe
@info " $(fullname(v)) allocating Atomic data"
thread_safe = true
end
field_data = get_attribute(v, :field_data)
space = get_attribute(v, :space)
if field_data == UndefinedData
if host_dependent(v) && (get_attribute(v, :vfunction, VF_Undefined) == VF_Undefined) && !isnothing(default_host_dependent_field_data)
set_attribute!(v, :field_data, default_host_dependent_field_data)
field_data = get_attribute(v, :field_data)
@info " set :field_data=$field_data for host-dependent Variable $(fullname(v))"
else
error("allocate_variables! :field_data=UndefinedData for Variable $(fullname(v)) $v")
end
end
# allocate or link
if (arrays_idx != 1 && allow_base_link) &&
(
mdeltype == eltype(modeldata, 1) ||
(use_base_transfer_jacobian && get_attribute(v, :transfer_jacobian, false)) ||
fullname(v) in use_base_vars
)
# link to existing array
v_field = get_field(v, modeldata, 1)
else
# allocate new field array
v_field = allocate_field(
field_data, data_dims, mdeltype, space, v.domain.grid,
thread_safe=thread_safe, allocatenans=modeldata.allocatenans
)
end
set_field!(v, modeldata, arrays_idx, v_field)
end
return nothing
end
"""
reallocate_variables!(vars, modeldata, arrays_idx, new_eltype) -> [(v, old_eltype), ...]
Reallocate memory for [`VariableDomain`](@ref)s `vars` to `new_eltype`. Returns Vector of
`(reallocated_variable, old_eltype)`.
"""
function reallocate_variables!(vars, modeldata::AbstractModelData, arrays_idx::Int, new_eltype)
reallocated_variables = []
for v in vars
v_data = get_data(v, modeldata)
if v_data isa AbstractArray
old_eltype = eltype(v_data)
if old_eltype != new_eltype
set_data!(v, modeldata, arrays_idx, similar(v_data, new_eltype))
push!(reallocated_variables, (v, old_eltype))
end
end
end
return reallocated_variables
end
"""
check_lengths(var::VariableDomain)
Check that sizes of all linked Variables match
"""
function check_lengths(var::VariableDomain)
var_space = get_attribute(var, :space)
for lv in get_all_links(var)
if get_attribute(lv, :check_length, true)
try
var_size = internal_size(var_space, var.domain.grid, lv.linkreq_subdomain)
link_space = get_attribute(lv, :space)
link_size = internal_size(link_space, lv.method.domain.grid)
var_size == link_size ||
error("check_lengths: VariableDomain $(fullname(var)), :space=$var_space size=$var_size "*
"!= $(fullname(lv)), :space=$link_space size=$link_size created by $(typename(lv.method.reaction)) (check size of Domains $(var.domain.name), $(lv.method.domain.name), "*
"$(isempty(lv.linkreq_subdomain) ? "" : "subdomain "*lv.linkreq_subdomain*",") and Variables :space)")
catch
error("check_lengths: exception VariableDomain $(fullname(var)), :space=$var_space "*
"linked by $(fullname(lv)), created by $(typename(lv.method.reaction)) (check size of Domains $(var.domain.name), $(lv.method.domain.name), "*
"$(isempty(lv.linkreq_subdomain) ? "" : "subdomain "*lv.linkreq_subdomain*",") and Variables :space)")
end
end
end
return nothing
end
"""
check_units(var::VariableDomain; check_units_opt=:warn)
Check that units of all linked Variables match
"""
function check_units(var::VariableDomain; check_units_opt=:warn)
check_units_opt in (:no, :warn, :error) ||
error("check_units(): unsupported option check_units_opt=$check_units_opt (allowed values are :no, :warn, :error)")
check_units_opt == :no && return
var_units = get_attribute(var, :units)
num_errors = 0
for lv in get_all_links(var)
lv_units = get_attribute(lv, :units)
if !_compare_units(var_units, lv_units)
num_errors += 1
@warn "check_units: VariableDomain $(fullname(var)), :units=\"$var_units\" (from master $(typename(var.master.method.reaction)) $(fullname(var.master)))"*
" != $(fullname(lv)), :units=\"$lv_units\" (created by $(typename(lv.method.reaction)) $(fullname(lv.method.reaction)))"
end
end
if check_units_opt == :error && !iszero(num_errors)
error("check_units: VariableDomain $(fullname(var)), :units=$var_units units of linked variables do not match")
end
return num_errors
end
function _compare_units(units1, units2)
# very crude regularization of unit strings: m^3 and m3 are both accepted
units1 = replace(units1, "^"=>"")
units2 = replace(units2, "^"=>"")
return (units1 == units2) || (units1 == "unknown") || (units2 == "unknown")
end
####################################################################
# Manage linked VariableReactions
##################################################################
function add_dependency(vardom::VariableDomPropDep, varreact::VariableReaction{VT_ReactDependency})
push!(vardom.var_dependencies, varreact)
if get_attribute(varreact, :vfunction) in (VF_StateExplicit, VF_StateTotal, VF_State)
@debug " Resetting master variable"
_reset_master!(vardom, varreact)
end
return nothing
end
function add_dependency(vardom::VariableDomContribTarget, varreact::VariableReaction{VT_ReactDependency})
push!(vardom.var_dependencies, varreact)
vf = get_attribute(varreact, :vfunction)
if vf in (VF_StateExplicit, VF_StateTotal, VF_State)
error("attempt to link Dependency with :vfunction==$vf to a VariableDomContribTarget "*
"$(fullname(varreact)) --> $(fullname(vardom))")
end
return nothing
end
function add_contributor(vardom::VariableDomPropDep, varreact::VariableReaction{VT_ReactContributor})
error("configuration error: attempting to link a VariableReactContrib $(fullname(varreact)) "*
"(usually a flux) which must link to a Target, to a Property VariableDomPropDep $(fullname(vardom))")
return nothing
end
function add_contributor(vardom::VariableDomContribTarget, varreact::VariableReaction{VT_ReactContributor})
push!(vardom.var_contributors, varreact)
if get_attribute(varreact, :vfunction) in (VF_Deriv, VF_Total, VF_Constraint)
@debug " Resetting master variable"
_reset_master!(vardom, varreact)
end
return nothing
end
# reset master variable
function _reset_master!(var::VariableDomain, master::VariableReaction)
var.master = master
end
function get_all_links(var::VariableDomPropDep)
all_links = Vector{VariableReaction}()
append!(all_links, get_properties(var))
append!(all_links, var.var_dependencies)
return all_links
end
function get_all_links(var::VariableDomContribTarget)
all_links = Vector{VariableReaction}()
isnothing(var.var_target) || push!(all_links, var.var_target)
append!(all_links, var.var_contributors)
append!(all_links, var.var_dependencies)
return all_links
end
function get_modifying_methods(var::VariableDomPropDep)
methods = AbstractReactionMethod[rv.method for rv in get_properties(var)]
return methods
end
function get_modifying_methods(var::VariableDomContribTarget)
methods = AbstractReactionMethod[rv.method for rv in var.var_contributors]
return methods
end
function get_dependent_methods(var::VariableDomPropDep)
methods = AbstractReactionMethod[rv.method for rv in var.var_dependencies]
return methods
end
function get_dependent_methods(var::VariableDomContribTarget)
methods = AbstractReactionMethod[rv.method for rv in var.var_dependencies]
if !isnothing(var.var_target)
push!(methods, var.var_target.method)
end
return methods
end
##############################
# Pretty printing
############################
"compact display form"
function Base.show(io::IO, var::VariableDomain)
print(io,
typeof(var),
"(name='", var.name,"'",
", hostdep=", host_dependent(var),
")"
)
end
"multiline display form"
function Base.show(io::IO, ::MIME"text/plain", var::VariableDomain)
println(io, typeof(var))
println(io, " name='", var.name, "'")
println(io, " hostdep=", host_dependent(var))
println(io, " attributes=", var.attributes)
end
"""
show_links(vardom::VariableDomain)
show_links(model::Model, varnamefull::AbstractString)
show_links(io::IO, vardom::VariableDomain)
show_links(io::IO, model::Model, varnamefull::AbstractString)
Display all [`VariableReaction`](@ref)s linked to this [`VariableDomain`](@ref)
`varnamefull` should be of form "<domain name>.<variable name>"
Linked variables are shown as "<domain name>.<reaction name>.<method name>.<local name>"
"""
function show_links end
show_links(vardom::VariableDomain) = show_links(stdout, vardom)
# implementation of show_links(model::Model, varnamefull::AbstractString) is in Model.jl
function show_links(io::IO, vardom::VariableDomPropDep)
println(io, "\t$(typeof(vardom)) \"$(fullname(vardom))\" links:")
println(io, "\t\tproperty:\t", if isnothing(vardom.var_property) "nothing" else "\""*fullname(vardom.var_property)*"\"" end)
if !isnothing(vardom.var_property_setup)
println(io, "\t\tproperty_setup:\t", "\""*fullname(vardom.var_property_setup)*"\"")
end
println(io, "\t\tdependencies:\t", String[fullname(var) for var in vardom.var_dependencies])
return nothing
end
function show_links(io::IO, vardom::VariableDomContribTarget)
println(io, "\t$(typeof(vardom)) \"$(fullname(vardom))\" links:")
println(io, "\t\ttarget:\t\t", if isnothing(vardom.var_target) "nothing" else "\""*fullname(vardom.var_target)*"\"" end)
println(io, "\t\tcontributors:\t", String[fullname(var) for var in vardom.var_contributors])
println(io, "\t\tdependencies:\t", String[fullname(var) for var in vardom.var_dependencies])
return nothing
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 46132 | # import Infiltrator
#############################################
# VariableReaction
#############################################
# define docstring, this is then attached to relevant functions (see further down in this file)
const variable_reaction_docstr =
"""
VariableReaction(VT, localname => link_namestr, units, description; attributes=Tuple()) -> VariableReaction{VT}
VariableReaction(VT, linklocal_namestr, units, description; attributes=Tuple()) -> VariableReaction{VT}
VarProp, VarPropScalar, VarPropStateIndep, VarPropScalarStateIndep -> VariableReaction{VT_ReactProperty}
VarDep, VarDepColumn, VarDepScalar, VarDepStateIndep, VarDepColumnStateIndep, VarDepScalarStateIndep -> VariableReaction{VT_ReactDependency}
VarTarget, VarTargetScalar -> VariableReaction{VT_ReactTarget}
VarContrib, VarContribColumn, VarContribScalar -> VariableReaction{VT_ReactContributor}
VarStateExplicit, VarStateExplicitScalar -> VariableReaction{VT_ReactDependency}
VarDeriv, VarDerivScalar -> VariableReaction{VT_ReactContributor}
VarState, VarStateScalar -> VariableReaction{VT_ReactDependency}
VarConstraint, VarConstraintScalar -> VariableReaction{VT_ReactDependency}
[deprecated] VariableReaction(VT, localname, units, description; link_namestr, attributes=Tuple()) -> VariableReaction{VT}
Reaction view on a model variable.
Reactions define [`AbstractVarList`](@ref)s of `VariableReaction`s when creating a [`ReactionMethod`](@ref).
Within a `ReactionMethod`, a `VariableReaction` is referred to by `localname`. When the model is initialised,
[`VariableDomain`](@ref) variables are created that link together `VariableReaction`s with the same `link_namestr`, and
data Arrays are allocated. `views` on the `VariableDomain` data Arrays are then passed to the [`ReactionMethod`](@ref)
function at each timestep.
# Subtypes
The Type parameter `VT` is one of `VT_ReactProperty`, `VT_ReactDependency`, `VT_ReactContributor`, `VT_ReactTarget`, where
short names are defined for convenience:
const VarPropT = VariableReaction{VT_ReactProperty}
const VarDepT = VariableReaction{VT_ReactDependency}
const VarTargetT = VariableReaction{VT_ReactTarget}
const VarContribT = VariableReaction{VT_ReactContributor}
There are two pairings of `VariableReaction`s with [`VariableDomain`](@ref)s:
- Reaction Property and Dependency Variables, linked to a [`VariableDomPropDep`](@ref). These are used to represent
a quantity calculated in one Reaction that is then used by other Reactions.
- Reaction Target and Contributor Variables, linked to a [`VariableDomContribTarget`](@ref). These are used to represent
a flux-like quantity, with one Reaction definining the Target and multiple Reactions adding contributions.
# Variable Attributes and constructor convenience functions
Variable attributes are used to define Variable `:space` [`AbstractSpace`](@ref) (scalar, per-cell, etc) and data content
`:field_data` [`AbstractData`](@ref), and to label state Variables for use by numerical solvers.
`VariableReaction` is usually not called directly, instead convenience functions are defined that provide commonly-used combinations of `VT`
and `attributes`:
| short name | VT | attributes | | | | | |
|-----------------------|-----------------------|---------------|---------------|---------------|-----------------------|-----------|--------------|
| | | `:space` | `:field_data` | `:vfunction` | `:initialize_to_zero` |`:datatype`|`:is_constant`|
|||||||||
| `VarProp` | `VT_ReactProperty` | `CellSpace` | `ScalarData` | `VF_Undefined`| - | - | false |
| `VarPropScalar` | `VT_ReactProperty` | `ScalarSpace` | `ScalarData` | `VF_Undefined`| - | - | false |
| `VarPropStateIndep` | `VT_ReactProperty` | `CellSpace` | `ScalarData` | `VF_Undefined`| - | `Float64` | true |
| `VarPropScalarStateIndep`|`VT_ReactProperty` | `ScalarSpace` | `ScalarData` | `VF_Undefined`| - | `Float64` | true |
|||||||||
| `VarDep` | `VT_ReactDependency` | `CellSpace` | `UndefinedData`|`VF_Undefined`| - | - | false |
| `VarDepColumn` | `VT_ReactDependency` | `ColumnSpace` | `UndefinedData`|`VF_Undefined`| - | - | false |
| `VarDepScalar` | `VT_ReactDependency` | `ScalarSpace` | `UndefinedData`|`VF_Undefined`| - | - | false |
| `VarDepStateIndep` | `VT_ReactDependency` | `CellSpace` | `UndefinedData`|`VF_Undefined`| - | `Float64` | true |
| `VarDepColumnStateIndep`|`VT_ReactDependency` | `ColumnSpace` | `UndefinedData`|`VF_Undefined`| - | `Float64` | true |
| `VarDepScalarStateIndep`| `VT_ReactDependency`| `ScalarSpace` | `UndefinedData`|`VF_Undefined`| - | `Float64` | true |
|||||||||
| `VarTarget` | `VT_ReactTarget` | `CellSpace` | `ScalarData` | `VF_Undefined`| `true` | - | false |
| `VarTargetScalar` | `VT_ReactTarget` | `ScalarSpace` | `ScalarData` | `VF_Undefined`| `true` | - | false |
|||||||||
| `VarContrib` | `VT_ReactContributor` | `CellSpace` | `UndefinedData`|`VF_Undefined`| - | - | false |
| `VarContribColumn` | `VT_ReactContributor` | `ColumnSpace` | `UndefinedData`|`VF_Undefined`| - | - | false |
| `VarContribScalar` | `VT_ReactContributor` | `ScalarSpace` | `UndefinedData`|`VF_Undefined`| - | - | false |
|||||||||
| `VarStateExplicit` | `VT_ReactDependency` | `CellSpace` | `ScalarData` | `VF_StateExplicit`| - | - | false |
| `VarStateExplicitScalar`| `VT_ReactDependency`| `ScalarSpace` | `ScalarData` | `VF_StateExplicit`| - | - | false |
| `VarDeriv` | `VT_ReactContributor` | `CellSpace` | `ScalarData` | `VF_Deriv` | `true` | - | false |
| `VarDerivScalar` | `VT_ReactContributor` | `ScalarSpace` | `ScalarData` | `VF_Deriv` | `true` | - | false |
|||||||||
| `VarState` | `VT_ReactDependency` | `CellSpace` | `ScalarData` | `VF_State` | - | - | false |
| `VarStateScalar` | `VT_ReactDependency` | `ScalarSpace` | `ScalarData` | `VF_State` | - | - | false |
| `VarConstraint` | `VT_ReactContributor` | `CellSpace` | `ScalarData` | `VF_Constraint`| `true` | - | false |
| `VarConstraintScalar` | `VT_ReactContributor` | `ScalarSpace` | `ScalarData` | `VF_Constraint`| `true` | - | false |
This illustrates some general principles for the use of attributes:
- All Variables must define the `:space` VariableAttribute (a subtype of [`AbstractSpace`](@ref)) to specify whether they are Domain scalars, per-cell quantities, etc.
This is used to define array dimensions, and to check that dimensions match when variables are linked.
- The `:field_data` attribute (a subtype of [`AbstractData`](@ref)) specifies the quantity that Property and Target Variables represent. This defaults to
`ScalarData` to represent a scalar value. To eg represent a single isotope the `:field_data` attribute should be set to `IsotopeLinear`. Dependency and
Contributor Variables with `:field_data = UndefinedData` then acquire this value when they are linked, or may specify `:field_data` to constrain allowed links.
- The `:initialize_to_zero` attribute is set for Target variables, this is than used (by the ReactionMethod created by
[`add_method_initialize_zero_vars_default!`](@ref)) to identify variables that should be initialised to zero at the start of each timestep.
- The `:vfunction` attribute is used to label state Variables and corresponding time derivatives, for access by a numerical solver.
- An ODE-like combination of a state variable and time derivative are defined by a paired `VarStateExplicit` and `VarDeriv`. Note that
that these are just `VarDep` and `VarContrib` with the `:vfunction` attribute set, and that there is no `VarProp` and `VarTarget` defined
in the model (these are effectively provided by the numerical solver). The pairing is defined by the naming convention of `varname` and `varname_sms`.
- An algebraic constraint (for a DAE) is defined by a `VarState` and `VarConstraint`. Note that
that these are just `VarDep` and `VarContrib` with the `:vfunction` attribute set, and that there is no `VarProp` and `VarTarget` defined
in the model (these are effectively provided by the numerical solver). These variables are not paired.
- The :initialize_to_zero attribute is also set for Contributor variables VarDeriv and VarConstraint (as there is no corresponding Target variable in the model).
- The :field_data attribute should be set on labelled state etc Variables (as there are no corresponding Property or Target variables in the model to define this).
- The `:is_constant` attribute is used to identify constant Property Variables (not modified after initialisation). A Dependency Variable with :is_constant = true
can only link to a constant Property Variable.
- The `:datatype` attribute is used both to provide a concrete datatype for constant Variables, and to exclude a non-constant Variable
from automatic differentiation (TODO document that usage).
Additional attributes can be specified to provide model-specific information, with defaults defined in the Reaction .jl code that can often then be
overridden in the .yaml configuration file, see [`StandardAttributes`](@ref).
Examples include:
- `:initial_value`, `:norm_value`, `:initial_delta` for state variables or constant variables. NB: the Reaction creating these variables is responsible
for implementing a setup method to read the attributes and set the variable data array appropriately at model initialisation.
- An `:advect` attribute is used to label tracer variables to indicate that they should have advective transport applied by
a transport Reaction included in the model.
NB: after Variables are linked to Domain Variables, the attributes used are those from the `master` Variable (either a Property or Target variable, or
a labelled state variable Dependency or Contributor with no corresponding Property or Target). Additional attributes must therefore be set on this master Variable.
# Specifying links
`localname` identifies the `VariableReaction` within the `Reaction`, and can be used to set `variable_attributes:`
and `variable_links:` in the .yaml configuration file.
`linkreq_domain.linkreq_subdomain.linkreq_name` defines the Domain, Subdomain and name for run-time linking
to [`VariableDomain`](@ref) variables.
# Arguments
- `VT::VariableType`: one of `VT_ReactProperty`, `VT_ReactDependency`, `VT_ReactContributor`, `VT_ReactTarget`
- `localname::AbstractString`: Reaction-local Variable name
- `link_namestr::AbstractString`: `<linkreq_domain>.[linkreq_subdomain.]linkreq_name`. Parsed by [`parse_variablereaction_namestr`](@ref)
to define the requested linking to `Domain` Variable.
- `linklocal_namestr::AbstractString`: `<linkreq_domain>.[linkreq_subdomain.]localname`. Convenience form to define both `localname`
and requested linking to Domain Variable, for the common case where `linkreq_name == localname`.
- `units::AbstractString`: units ("" if not applicable)
- `description::AbstractString`: text describing the variable
# Keywords
- `attributes::Tuple(:attrb1name=>attrb1value, :attrb2name=>attrb2value, ...)`:
variable attributes, see [`StandardAttributes`](@ref), [`set_attribute!`](@ref), [`get_attribute`](@ref)
"""
Base.@kwdef mutable struct VariableReaction{VT} <: VariableBase
method::Union{Nothing, AbstractReactionMethod} = nothing
localname::String
attributes::Dict{Symbol, Any} = default_variable_attributes()
"Requested (ie set by config file) named domain-hosted variable to link to"
linkreq_domain::String = ""
linkreq_subdomain::String = ""
linkreq_name::String = ""
link_optional::Bool = false # VT_ReactDependency, VT_ReactContributor only
"Link variable"
linkvar::Union{Nothing, VariableDomain} = nothing
end
get_var_type(var::VariableReaction{VT}) where VT = VT
const VarPropT = VariableReaction{VT_ReactProperty}
const VarDepT = VariableReaction{VT_ReactDependency}
const VarTargetT = VariableReaction{VT_ReactTarget}
const VarContribT = VariableReaction{VT_ReactContributor}
VariableReaction(
VT::VariableType,
localname_linkname::Pair{<:AbstractString, <:AbstractString},
units::AbstractString,
description::AbstractString;
attributes::Tuple{Vararg{Pair}}=(), # (:atrb1=>value1, :atrb2=>value2)
) = VariableReaction(
VT, first(localname_linkname), units, description;
link_namestr=last(localname_linkname), attributes=attributes
)
function VariableReaction(
VT::VariableType,
linklocal_namestr::AbstractString,
units::AbstractString,
description::AbstractString;
attributes::Tuple{Vararg{Pair}}=(), # (:atrb1=>value1, :atrb2=>value2)
link_namestr = linklocal_namestr
)
(_, _, localname, _) = parse_variablereaction_namestr(linklocal_namestr)
localname = sub_variablereaction_linkreq_name(localname, "") # strip %reaction%
if linklocal_namestr != link_namestr
linklocal_namestr == localname ||
error("VariableReaction: invalid combination of explicit link_namestr=$link_namestr and localname=$linklocal_namestr")
end
(linkreq_domain, linkreq_subdomain, linkreq_name, link_optional) = parse_variablereaction_namestr(link_namestr)
VT in (VT_ReactProperty, VT_ReactDependency, VT_ReactContributor, VT_ReactTarget) ||
error("VariableReaction $name invalid VT=$VT")
newvar = VariableReaction{VT}(
localname=localname,
linkreq_domain=linkreq_domain,
linkreq_subdomain=linkreq_subdomain,
linkreq_name=linkreq_name,
link_optional=link_optional,
)
if ((get_var_type(newvar) == VT_ReactProperty) || (get_var_type(newvar) == VT_ReactTarget)) && link_optional
error("VariableReaction $name invalid link_optional=$link_optional")
end
set_attribute!(newvar, :units, units)
set_attribute!(newvar, :description, description)
for (namesymbol, value) in attributes
set_attribute!(newvar, namesymbol, value; allow_create=true)
end
return newvar
end
function Base.copy(v::VariableReaction{T}) where T
vcopy = VariableReaction{T}(
method = v.method,
localname = v.localname,
attributes = copy(v.attributes), # NB: no deepcopy
# attributes = Dict{Symbol, Any}(k=>copy(v) for (k, v) in v.attributes), #
linkreq_domain = v.linkreq_domain,
linkreq_subdomain = v.linkreq_subdomain,
linkreq_name = v.linkreq_name,
link_optional = v.link_optional,
linkvar = v.linkvar,
)
return vcopy
end
"""
get_domvar_attribute(var::VariableReaction, name::Symbol, missing_value=missing) -> value
Get the 'master' Variable attribute from the VariableDomain a VariableReaction is linked to.
TODO: this is almost always what is wanted, as only the 'master' VariableReaction will be updated
by the configuration file.
"""
function get_domvar_attribute(var::VariableReaction, name::Symbol, missing_value=missing)
domvar = var.linkvar
!isnothing(domvar) || error("get_domvar_attribute: VariableReaction $(fullname(var)) not linked")
return get_attribute(domvar, name, missing_value)
end
"""
reset_link_namestr!(var, link_namestr)
Reset `link_namestr` after Variable creation, but before Model link_variables
"""
function reset_link_namestr!(var, link_namestr)
(linkreq_domain, linkreq_subdomain, linkreq_name, link_optional) =
parse_variablereaction_namestr(link_namestr)
var.linkreq_domain = linkreq_domain
var.linkreq_subdomain = linkreq_subdomain
var.linkreq_name = linkreq_name
var.link_optional = link_optional
return nothing
end
# convenience functions to create commonly-used VariableReaction subtypes, with appropriate attributes set
# NB: order matters within the combined attributes list: later entries can overwrite earlier entries, so the order should be:
# - default value for attributes eg :field_data that can be changed
# - the supplied attributes argument
# - attributes eg :vfunction that cannot be overridden by the supplied attributes argument
VarPropScalar(localname, units, description; attributes::Tuple=(), kwargs...) =
VarProp(localname, units, description; attributes=(attributes..., :space=>ScalarSpace), kwargs...)
VarProp(localname, units, description; attributes::Tuple=(), kwargs... ) =
VariableReaction(VT_ReactProperty, localname, units, description; attributes=(:field_data=>ScalarData, attributes...), kwargs...)
VarPropScalarStateIndep(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarPropScalar(localname, units, description; attributes=(:datatype=>Float64, attributes..., :is_constant=>true), kwargs...)
VarPropStateIndep(localname, units, description; attributes::Tuple=(), kwargs...) =
VarProp(localname, units, description; attributes=(:datatype=>Float64, attributes..., :is_constant=>true), kwargs...)
VarDepScalar(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDep(localname, units, description; attributes=(attributes..., :space=>ScalarSpace), kwargs...)
VarDepColumn(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDep(localname, units, description; attributes=(attributes..., :space=>ColumnSpace), kwargs...)
VarDep(localname, units, description; kwargs... ) =
VariableReaction(VT_ReactDependency, localname, units, description; kwargs...)
VarDepScalarStateIndep(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDepScalar(localname, units, description; attributes=(:datatype=>Float64, attributes..., :is_constant=>true), kwargs...)
VarDepColumnStateIndep(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDepColumn(localname, units, description; attributes=(:datatype=>Float64, attributes..., :is_constant=>true), kwargs...)
VarDepStateIndep(localname, units, description; attributes::Tuple=(), kwargs...) =
VarDep(localname, units, description; attributes=(:datatype=>Float64, attributes..., :is_constant=>true), kwargs...)
# create a VarDep suitable for linking to a VarProp or VarTarget
VarDep(v::VarDepT) = v
function VarDep(v::Union{VarPropT, VarTargetT})
vdep = VarDepT(
localname = v.localname,
attributes = copy(v.attributes), # NB: no deepcopy
linkreq_domain = v.linkreq_domain,
linkreq_subdomain = v.linkreq_subdomain,
linkreq_name = v.linkreq_name
)
# remove as v will handle this
has_attribute(vdep, :initialize_to_zero) && set_attribute!(vdep, :initialize_to_zero, false)
has_attribute(vdep, :calc_total) && set_attribute!(vdep, :calc_total, false)
return vdep
end
VarTargetScalar(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarTarget(localname, units, description; attributes=(attributes..., :space=>ScalarSpace), kwargs...)
# set :initialize_to_zero on VarTarget
VarTarget(localname, units, description; attributes::Tuple=(), kwargs... ) =
VariableReaction(VT_ReactTarget, localname, units, description; attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes...), kwargs...)
VarContribScalar(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContrib(localname, units, description; attributes=(attributes..., :space=>ScalarSpace), kwargs...)
VarContribColumn(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContrib(localname, units, description; attributes=(attributes..., :space=>ColumnSpace), kwargs...)
VarContrib(localname, units, description; kwargs... ) =
VariableReaction(VT_ReactContributor, localname, units, description; kwargs...)
VarContrib(v::VarContribT) = v
function VarContrib(v::VarTargetT)
vcontrib = VarContribT(
localname=v.localname,
attributes=copy(v.attributes), # NB: no deepcopy
linkreq_domain=v.linkreq_domain,
linkreq_subdomain=v.linkreq_subdomain,
linkreq_name=v.linkreq_name,
)
# remove as v will handle this
has_attribute(vcontrib, :initialize_to_zero) && set_attribute!(vcontrib, :initialize_to_zero, false)
has_attribute(vcontrib, :calc_total) && set_attribute!(vcontrib, :calc_total, false)
return vcontrib
end
VarStateExplicitScalar(localname, units, description; attributes::Tuple=(), kwargs...) =
VarDepScalar(localname, units, description; attributes=(:field_data=>ScalarData, attributes..., :vfunction=>VF_StateExplicit), kwargs...)
VarStateExplicit(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDep(localname, units, description; attributes=(:field_data=>ScalarData, attributes..., :vfunction=>VF_StateExplicit), kwargs...)
# set :initialize_to_zero as :vfunction VF_Total is host-dependent so there will be no VT_ReactTarget within the model to handle :initialize_to_zero
VarTotalScalar(localname, units, description; attributes::Tuple=(), kwargs...) =
VarContribScalar(localname, units, description;
components, attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes..., :vfunction=>VF_Total), kwargs...)
VarTotal(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContrib(localname, units, description; attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes..., :vfunction=>VF_Total), kwargs...)
VarStateTotalScalar(localname, units, description; attributes::Tuple=(), kwargs...) =
VarDepScalar(localname, units, description; attributes=(:field_data=>ScalarData, attributes..., :vfunction=>VF_StateTotal), kwargs...)
VarStateTotal(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDep(localname, units, description; attributes=(:field_data=>ScalarData, attributes..., :vfunction=>VF_StateTotal), kwargs...)
# set :initialize_to_zero as :vfunction VF_Deriv is host-dependent so there will be no VT_ReactTarget within the model to handle :initialize_to_zero
VarDerivScalar(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContribScalar(localname, units, description; attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes..., :vfunction=>VF_Deriv), kwargs...)
VarDeriv(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContrib(localname, units, description; attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes..., :vfunction=>VF_Deriv), kwargs...)
# set :initialize_to_zero as :vfunction VF_Constraint is host-dependent so there will be no VT_ReactTarget within the model to handle :initialize_to_zero
VarConstraintScalar(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContribScalar(localname, units, description; attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes..., :vfunction=>VF_Constraint), kwargs...)
VarConstraint(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarContrib(localname, units, description; attributes=(:initialize_to_zero=>true, :field_data=>ScalarData, attributes..., :vfunction=>VF_Constraint), kwargs...)
VarStateScalar(localname, units, description; attributes::Tuple=(), kwargs...) =
VarDepScalar(localname, units, description; attributes=(:field_data=>ScalarData, attributes..., :vfunction=>VF_State), kwargs...)
VarState(localname, units, description; attributes::Tuple=(), kwargs... ) =
VarDep(localname, units, description; attributes=(:field_data=>ScalarData, attributes..., :vfunction=>VF_State), kwargs...)
# TODO: define a VarInit Type. Currently (ab)using VarDep
VarInit(v::Union{VarPropT, VarTargetT, VarContribT}) = VarDepT(
localname = v.localname,
attributes = copy(v.attributes), # NB: no deepcopy
linkreq_domain = v.linkreq_domain,
linkreq_subdomain = v.linkreq_subdomain,
linkreq_name = v.linkreq_name
)
function VarInit(v::VarDepT)
error("VarInit for VarDepT $(fullname(v))")
end
# attach docstring to relevant functions
"$variable_reaction_docstr"
VariableReaction,
VarProp, VarPropScalar, VarPropStateIndep, VarPropScalarStateIndep,
VarDep, VarDepColumn, VarDepScalar, VarDepStateIndep, VarDepColumnStateIndep, VarDepScalarStateIndep,
VarTarget, VarTargetScalar,
VarContrib, VarContribColumn, VarContribScalar,
VarStateExplicit, VarStateExplicitScalar,
VarTotal, VarTotalScalar,
VarStateTotal, VarStateTotalScalar,
VarDeriv, VarDerivScalar,
VarState, VarStateScalar,
VarConstraint, VarConstraintScalar
"""
VarVector(variable_ctorfn, variables_list) -> Vector{VariableReaction{T}}
Create and return a `Vector{VariableReaction{T}}` defined by specified `variable_ctorfn`
from `variables_list = [(linklocal_namestr, units, description), ...]``
"""
VarVector(variable_ctorfn, variables_list) =
[
variable_ctorfn(linklocal_namestr, units, description)
for (linklocal_namestr, units, description) in variables_list
]
#########################################################################
# VarLists
#########################################################################
"""
AbstractVarList
Variables required by a [`ReactionMethod`](@ref) `methodfn` are specified by
a Tuple of VarList_xxx <: AbstractVarList, each containing a collection of [`VariableReaction`](@ref).
These are then converted (by the [`create_accessors`](@ref) method) to a corresponding
Tuple of collections of views on Domain data arrays , which are then be passed to the [`ReactionMethod`](@ref) `methodfn`.
NB: creates and uses a copy of supplied Variables including metadata, so set / modify Variable attributes *before* creating a VarList.
# Implementation
Subtypes of `AbstractVarList` should implement:
- a constructor that takes a collection of VariableReactions
- [`create_accessors`](@ref), returning the views on Domain data arrays in a subtype-specific collection.
- [`get_variables`](@ref), returning the collection of VariableReactions (as a flat list).
"""
abstract type AbstractVarList
end
"""
create_accessors(varlist::AbstractVarList, modeldata::AbstractModelData, arrays_idx::Int) -> vardata
Return a collection `vardata` of views on Domain data arrays for VariableReactions in `varlist`.
Collection and view are determined by `varlist` Type.
"""
function create_accessors(va::AbstractVarList, modeldata::AbstractModelData, arrays_idx::Int) end
"""
get_variables(varlist::AbstractVarList; flatten=true) -> Vector{VariableReaction}
Return VariableReaction in `varlist`.
If `flatten=true`, a Vector-of-Vectors is flattened.
"""
function get_variables(va::AbstractVarList) end
"""
VarList_single(var; components=false) -> VarList_single
Create a `VarList_single` describing a single `VariableReaction`,
`create_accessors` will then return a single accessor.
"""
struct VarList_single <: AbstractVarList
var::VariableReaction
components::Bool
VarList_single(var; components=false) = new(copy(var), components)
end
get_variables(vl::VarList_single; flatten=true) = [vl.var]
create_accessors(vl::VarList_single, modeldata::AbstractModelData, arrays_idx::Int) =
create_accessor(vl.var, modeldata, arrays_idx, vl.components)
"""
VarList_components(varcollection) -> VarList_components
Create a `VarList_components` describing a collection of `VariableReaction`s,
`create_accessors` will then return a Vector with data array components concatenated (flattened).
"""
struct VarList_components <: AbstractVarList
vars::Vector{VariableReaction}
allow_unlinked::Bool
VarList_components(varcollection; allow_unlinked=false) =
new([copy(v) for v in varcollection], allow_unlinked)
end
get_variables(vl::VarList_components; flatten=true) = vl.vars
function create_accessors(vl::VarList_components, modeldata::AbstractModelData, arrays_idx::Int)
accessors_generic = []
for v in vl.vars
a = create_accessor(v, modeldata, arrays_idx, true)
if isnothing(a) || isempty(a)
if vl.allow_unlinked
append!(accessors_generic, fill(nothing, num_components(v)))
else
error("create_accessors(::VarList_components, ) - unlinked variable $(fullname(v)) $v")
end
else
append!(accessors_generic, a)
end
end
accessors_typed = [a for a in accessors_generic] # narrow Type
return accessors_typed
end
# _dynamic_svector(av) = _dynamic_svector(Val(length(av)), av)
# _dynamic_svector(::Val{N}, av) where {N} = StaticArrays.SVector{N}(av)
struct VarList_namedtuple <: AbstractVarList
vars::Vector{VariableReaction}
keys::Vector{Symbol}
components::Bool
end
"""
VarList_namedtuple(varcollection; components=false) -> VarList_namedtuple
Create a `VarList_namedtuple` describing a collection of `VariableReaction`s,
`create_accessors` will then return a NamedTuple with field names = `VariableReaction.localname`
and field values = corresponding data arrays.
If `components = true`, each NamedTuple field will be a Vector of data array components.
"""
function VarList_namedtuple(varcollection; components=false)
keys = Symbol.([v.localname for v in varcollection])
vars = [copy(v) for v in varcollection]
return VarList_namedtuple(vars, keys, components)
end
"""
VarList_namedtuple_fields(objectwithvars; components=false) -> VarList_namedtuple
Create a `VarList_namedtuple` describing `VariableReaction` fields in `objectwithvars`,
`create_accessors` will then return a NamedTuple with field names = field names in `objectwithvars` and
field values = corresponding data arrays.
If `components = true`, each NamedTuple field will be a Vector of data array components.
"""
function VarList_namedtuple_fields(objectwithvars; components=false)
# find field names and VariableReactions
fieldnamesvars = [(f, getproperty(objectwithvars, f)) for f in propertynames(objectwithvars)
if getproperty(objectwithvars, f) isa VariableReaction]
keys = [f for (f,v) in fieldnamesvars]
vars = [copy(v) for (f,v) in fieldnamesvars]
return VarList_namedtuple(vars, keys, components)
end
get_variables(vl::VarList_namedtuple; flatten=true) = vl.vars
create_accessors(vl::VarList_namedtuple, modeldata::AbstractModelData, arrays_idx::Int) =
NamedTuple{Tuple(vl.keys)}(create_accessor(v, modeldata, arrays_idx, vl.components) for v in vl.vars)
"""
VarList_tuple(varcollection; components=false) -> VarList_tuple
Create a `VarList_tuple` describing a collection of `VariableReaction`s,
`create_accessors` will then return a Tuple of data arrays.
An entry of `nothing` in `varcollection` will produce `nothing` in the corresponding
entry in the Tuple of arrays supplied to the Reaction method.
If `components = true`, each Tuple field will be a Vector of data array components.
"""
struct VarList_tuple <: AbstractVarList
vars::Vector{Union{VariableReaction, Nothing}}
components::Bool
VarList_tuple(varcollection; components=false) = new([isnothing(v) ? nothing : copy(v) for v in varcollection], components)
end
get_variables(vl::VarList_tuple; flatten=true) = filter(!isnothing, vl.vars)
create_accessors(vl::VarList_tuple, modeldata::AbstractModelData, arrays_idx::Int) =
Tuple(isnothing(v) ? nothing : create_accessor(v, modeldata, arrays_idx, vl.components) for v in vl.vars)
Base.@deprecate VarList_tuple_nothing(nvec) VarList_tuple(fill(nothing, nvec))
"""
VarList_ttuple(varcollection) -> VarList_ttuple
Create a `VarList_ttuple` describing a collection of collections of `VariableReaction`s,
`create_accessors` will then return a Tuple of Tuples of data arrays.
"""
struct VarList_ttuple <: AbstractVarList
vars::Vector{Vector{VariableReaction}}
VarList_ttuple(vars) = new([[copy(v) for v in vv] for vv in vars])
end
get_variables(vl::VarList_ttuple; flatten=true) = flatten ? vcat(vl.vars...) : vl.vars
create_accessors(vl::VarList_ttuple, modeldata::AbstractModelData, arrays_idx::Int) =
Tuple(Tuple(create_accessor(v, modeldata, arrays_idx, false) for v in vv) for vv in vl.vars)
"""
VarList_vector(varcollection; components=false, forceview=false) -> VarList_vector
Create a `VarList_vector` describing a collection of `VariableReaction`s,
`create_accessors` will then return a Vector of data arrays.
If `components = true`, each Vector element will be a Vector of data array components.
If `forceview = true`, each accessor will be a 1-D `view` to help type stability,
even if this is redundant (ie no `view` required, v::Vector -> view(v, 1:length(v)))
"""
struct VarList_vector <: AbstractVarList
vars::Vector{VariableReaction}
components::Bool
forceview::Bool
VarList_vector(varcollection; components=false, forceview=false) =
new([copy(v) for v in varcollection], components, forceview)
end
get_variables(vl::VarList_vector; flatten=true) = vl.vars
create_accessors(vl::VarList_vector, modeldata::AbstractModelData, arrays_idx::Int) =
[create_accessor(v, modeldata, arrays_idx, vl.components, forceview=vl.forceview) for v in vl.vars]
"""
VarList_vvector(Vector{Vector{VariableReaction}}::vars; components=false) -> VarList_vvector
Create a `VarList_vvector` describing a Vector of Vectors of `VariableReaction`s,
`create_accessors` will then return a Vector of Vectors of data arrays.
If `components = true`, each Vector of Vectors element will be a Vector of data array components.
"""
struct VarList_vvector <: AbstractVarList
vars::Vector{Vector{VariableReaction}}
components::Bool
VarList_vvector(vars; components=false) = new([[copy(v) for v in vv] for vv in vars], components)
end
get_variables(vl::VarList_vvector; flatten=true) = flatten ? vcat(vl.vars...) : vl.vars
create_accessors(vl::VarList_vvector, modeldata::AbstractModelData, arrays_idx::Int) =
[[create_accessor(v, modeldata, arrays_idx, vl.components) for v in vv] for vv in vl.vars]
"""
VarList_nothing() -> VarList_nothing
Create a placeholder for a missing/unavailable VariableReaction.
`create_accessors` will then return `nothing`.
"""
struct VarList_nothing <: AbstractVarList
end
get_variables(vl::VarList_nothing; flatten=true) = VariableReaction[]
create_accessors(vl::VarList_nothing, modeldata::AbstractModelData, arrays_idx::Int) = nothing
"""
VarList_fields(varcollection) -> VarList_fields
Create a `VarList_fields` describing a collection of `VariableReaction`s,
`create_accessors` will then return a Tuple with unprocessed Fields.
"""
struct VarList_fields <: AbstractVarList
vars::Vector{VariableReaction}
VarList_fields(varcollection) = new([copy(v) for v in varcollection])
end
get_variables(vl::VarList_fields; flatten=true) = vl.vars
function create_accessors(vl::VarList_fields, modeldata::AbstractModelData, arrays_idx::Int)
accessors = []
for v in vl.vars
isempty(v.linkreq_subdomain) || error("variable $v subdomains not supported")
if isnothing(v.linkvar)
v.link_optional || error("unlinked variable $v")
push!(accessors, nothing)
else
push!(accessors, get_field(v.linkvar, modeldata, arrays_idx))
end
end
return Tuple(accessors)
end
# convert Tuple of VarLists to Tuple of data array views
create_accessors(method::AbstractReactionMethod, modeldata::AbstractModelData, arrays_idx::Int) =
Tuple(create_accessors(vl, modeldata, arrays_idx) for vl in method.varlists)
"""
create_accessor(var::VariableReaction, modeldata, arrays_idx, components, [,forceview=false])
-> accessor or (accessor, subdomain_indices)
Creates a `view` on a (single) [`VariableDomain`](@ref) data array linked by `var::`[`VariableReaction`](@ref).
Called by an [`AbstractVarList`](@ref) [`create_accessors`](@ref)
implementation to generate a collection of `views` for multiple [`VariableReaction`](@ref)s.
Returns:
- if `var` is linked, an `accessor` or Tuple `(accessor, subdomain_indices)` that provides a `view` on variable data.
- if `var` is not linked, `nothing` if `var` is optional, or errors and doesn't return if `var` is non-optional.
Mapping of indices for Subdomains <--> Domains:
- if no Subdomain, returns unmodified indices (if `forceview=false`),
or an equivalent view (if `forceview=true`, this is to help type stability)
- if Variable is a Domain interior and Subdomain is a Domain boundary,
`accessor` is a view with a subset of Domain indices.
- if Variable is a Domain boundary and Subdomain is the Domain interior,
returns a Tuple with `subdomain_indices`, length(Subdomain size), with `missing` for interior points.
Mapping of multi-component (Isotope) Variables:
- If `components=false`:
- map multi-component Variable to `accessor::IsotopeArray`
- return a single-component Variable as a `accessor::AbstractArray`.
- If `components=true`:
- variable data as a `accessor::Vector{Array}`, length=number of components
"""
function create_accessor(
var::VariableReaction, modeldata::AbstractModelData, arrays_idx::Int, components;
forceview=false
)
errstring = "create_accessor: VariableReaction $(fullname(var)) -> $(isnothing(var.linkvar) ? nothing : fullname(var.linkvar))"
@debug errstring
if isnothing(var.linkvar)
var.link_optional || error("$errstring: unlinked variable")
return nothing
else
linkvar_field = get_field(var.linkvar, modeldata, arrays_idx)
# find subdomain (if requested)
if !isempty(var.linkreq_subdomain)
!isnothing(var.linkvar.domain.grid) || error("$errstring: linkreq_subdomain='$(var.linkreq_subdomain)' but Domain has no grid defined")
linksubdomain = Grids.get_subdomain(var.linkvar.domain.grid, var.linkreq_subdomain)
!isnothing(linksubdomain) || error("$errstring: linkreq_subdomain='$(var.linkreq_subdomain)' not found")
subdomain_indices = Grids.subdomain_indices(linksubdomain) # nothing, unless accessing boundary from interior
else
linksubdomain = nothing
subdomain_indices = nothing
end
try
var_accessor = create_accessor(
get_attribute(var, :field_data),
# TODO - check space, data_dims,
linkvar_field, linksubdomain,
forceview=forceview, components=components,
)
!isnothing(var_accessor) || error("$errstring: create_accessor returned $nothing")
if isnothing(subdomain_indices)
return var_accessor # usual case: no subdomain, or accessing interior from boundary as a view
else
return (var_accessor, subdomain_indices) # accessing boundary from interior
end
catch ex
if isa(ex, MethodError)
@warn "$errstring: invalid :field_data combination - attempting to link a Variable "*
"with :field_data=$(get_attribute(var, :field_data)) to a Variable with :field_data=$(field_data(linkvar_field))"
end
rethrow(ex)
end
end
end
###################################################################
# Get / set / modify variable data arrays
# (optional, provide convenient ways of handling unlinked variables)
####################################################################
@Base.propagate_inbounds function add_if_available(vardata, idx, flux)
vardata[idx] += flux
return nothing
end
add_if_available(vardata::Nothing, idx, flux) = nothing
@Base.propagate_inbounds function add_if_available(vardata, flux)
vardata[] += flux
return nothing
end
add_if_available(vardata::Nothing, flux) = nothing
@Base.propagate_inbounds function set_if_available(vardata, idx, val)
vardata[idx] = val
return nothing
end
set_if_available(vardata::Nothing, idx, val) = nothing
@Base.propagate_inbounds function set_if_available(vardata, val)
vardata[] = val
return nothing
end
set_if_available(vardata::Nothing, val) = nothing
@Base.propagate_inbounds get_if_available(vardata, defaultval) = vardata[]
get_if_available(vardata::Nothing, defaultval) = defaultval
@Base.propagate_inbounds get_if_available(vardata, idx, defaultval) = vardata[idx]
get_if_available(vardata::Nothing, idx, defaultval) = defaultval
###########################################################
# Parsing of variable names into domain, subdomain etc
########################################################
"Split a name into component parts.
name = domain.subdomain.name
"
function split_link_name(fullname::AbstractString)
splitname = split(fullname, ".")
if length(splitname) == 1
(domain, subdomain, name) = ("", "", splitname[1])
elseif length(splitname) == 2
(domain, subdomain, name) = (splitname[1], "", splitname[2])
elseif length(splitname) == 3
(domain, subdomain, name) = (splitname[1], splitname[2], splitname[3])
else
error("invalid format $fullname")
end
return (domain, subdomain, name)
end
"Combine component parts to form name"
function combine_link_name(domain::AbstractString, subdomain::AbstractString, name::AbstractString; sep=".")
fullname = name
if !isempty(subdomain)
fullname = subdomain*sep*fullname
end
if !isempty(domain)
fullname = domain*sep*fullname
end
return fullname
end
function combine_link_name(var::VariableReaction)
return combine_link_name(var.linkreq_domain, var.linkreq_subdomain, var.linkreq_name)
end
function sub_variablereaction_linkreq_name(linkreq_name::AbstractString, reactionname::AbstractString)
return replace(linkreq_name, "%reaction%" => reactionname)
end
function strip_brackets(linkstr::AbstractString)
if linkstr[1]=='(' && linkstr[end] == ')'
hasbrackets = true
linkstr_core = linkstr[2:end-1]
else
hasbrackets = false
linkstr_core = linkstr
end
return (hasbrackets, linkstr_core)
end
"""
parse_variablereaction_namestr(linkstr)
-> (linkreq_domain, linkreq_subdomain, linkreq_name, link_optional)
Parse a linkstr into component parts.
`linkstr` is of format: `[(][<linkreq_domain>.][<linkreq_subdomain>.]<linkreq_name>[)]`
* Optional brackets `( ... )` set `link_optional=true`
* `linkreq_name` may contain `%reaction%` which will later be substituted with `<Reaction name>/`
# Examples:
```jldoctest; setup = :(import PALEOboxes)
julia> PALEOboxes.parse_variablereaction_namestr("foo") # Common case eg for a property that should be public
("", "", "foo", false)
julia> PALEOboxes.parse_variablereaction_namestr("%reaction%foo") # Reaction-private by default
("", "", "%reaction%foo", false)
julia> PALEOboxes.parse_variablereaction_namestr("ocean.foo") # Request link to variable of same name in ocean Domain
("ocean", "", "foo", false)
julia> PALEOboxes.parse_variablereaction_namestr("(ocean.oceansurface.goo)") # Full syntax
("ocean", "oceansurface", "goo", true)
```
"""
function parse_variablereaction_namestr(linkstr::AbstractString)
any(occursin.([' ', '>', '<'], linkstr)) &&
error("invalid character in linkstr='$linkstr'")
(link_optional, slink) = strip_brackets(linkstr)
(linkreq_domain, linkreq_subdomain, linkreq_name) =
split_link_name(slink)
return (linkreq_domain, linkreq_subdomain, linkreq_name, link_optional)
end
#####################################
# Pretty printing
########################################
"fully qualified name (domainname.reactionname.methodname.varname)"
function fullname(var::VariableReaction)
if isnothing(var.method)
return "<no method>."*var.localname
else
return fullname(var.method)*"."*var.localname
end
end
"link name + link status"
function show_link_name(var::VariableReaction)
link_name = combine_link_name(var)
if isnothing(var.linkvar)
link_name = link_name*"[unlinked]"
end
return link_name
end
show_links(var::VariableReaction) = show_links(stdout, var)
function show_links(io::IO, var::VariableReaction)
if isnothing(var.linkvar)
println(io, "\t$(typeof(var)) $(fullname(var)) not linked")
else
println(io, "\t$(typeof(var)) $(fullname(var)) --> $(fullname(var.linkvar))")
show_links(var.linkvar)
end
return nothing
end
show_links(vars::AbstractVector) = foreach(show_links, vars)
"compact form"
function Base.show(io::IO, var::VariableReaction)
print(io, typeof(var), "(localname='$(var.localname)', link_name='$(show_link_name(var))')")
end
"multiline form"
function Base.show(io::IO, ::MIME"text/plain", var::VariableReaction)
println(io, typeof(var))
println(io, " localname='$(var.localname)'")
println(io, " link_name='$(show_link_name(var))'")
println(io, " attributes=", var.attributes)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 2456 | ###############################################
# ArrayScalarData
################################################
"""
ArrayScalarData <: AbstractData
An Array of Field scalars (eg a intensity on a wavelength grid).
NB: only implements minimal methods sufficient to allow use as a model internal variable, not as a state variable.
"""
struct ArrayScalarData <: AbstractData
end
function allocate_values(
field_data::Type{ArrayScalarData}, data_dims::Tuple{NamedDimension, Vararg{NamedDimension}}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}};
thread_safe, allocatenans,
)
!thread_safe || throw(ArgumentError("ArrayScalarData with thread_safe==true"))
s = _size_arrayscalardata(data_dims, space, spatial_size)
d = Array{data_type, length(s)}(undef, s...)
if allocatenans
fill!(d, NaN)
end
return d
end
function check_values(
existing_values, field_data::Type{ArrayScalarData}, data_dims::Tuple{NamedDimension, Vararg{NamedDimension}}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}},
)
check_data_type(existing_values, data_type)
existing_size = size(existing_values)
req_size = _size_arrayscalardata(data_dims, space, spatial_size)
existing_size == req_size ||
throw(ArgumentError("size mismatch: supplied $existing_size, require $req_size"))
return nothing
end
function zero_values!(values, field_data::Type{ArrayScalarData}, data_dims::Tuple{NamedDimension, Vararg{NamedDimension}}, space::Type{ScalarSpace}, cellrange)
values .= 0.0
return nothing
end
function zero_values!(values, field_data::Type{ArrayScalarData}, data_dims::Tuple{NamedDimension, Vararg{NamedDimension}}, space::Type{CellSpace}, cellrange)
data_dims_colons = ntuple(i->Colon(), fieldcount(typeof(data_dims)))
@inbounds for i in cellrange.indices
values[i, data_dims_colons...] .= 0.0
end
return nothing
end
# NB: Tuple{Int, Vararg{Int}} is an NTuple with at least one element
function _size_arrayscalardata(data_dims::Tuple{NamedDimension, Vararg{NamedDimension}}, space, spatial_size::Tuple{Integer, Vararg{Integer}})
size_data_dims = Tuple(d.size for d in data_dims)
if space === ScalarSpace
# Don't include a first dimension length 1 for ScalarSpace
return size_data_dims
else
return (spatial_size..., size_data_dims...)
end
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 1116 |
"""
AtomicScalar{T}
Provides an implementation of the Julia Array interface
for a length 1 Vector that holds an atomic scalar variable.
"""
mutable struct AtomicScalar{T} <: AbstractArray{T, 1}
value::Threads.Atomic{T}
function AtomicScalar{T}() where T
return new(Threads.Atomic{T}())
end
end
Base.size(as::AtomicScalar) = (1, )
Base.IndexStyle(::Type{<:AtomicScalar}) = IndexLinear()
Base.getindex(as::AtomicScalar) = as.value[]
function Base.getindex(as::AtomicScalar, i::Integer)
@boundscheck(checkbounds(as, i))
return as.value[]
end
Base.setindex!(as::AtomicScalar, v) = (as.value[] = v)
function Base.setindex!(as::AtomicScalar, v, i::Integer)
@boundscheck(checkbounds(as, i))
as.value[] = v
return v
end
"""
atomic_add!(as::AtomicScalar, v)
atomic_add!(a::Array, v)
Add v to as[] using Thread-safe atomic operation, with fallback for
normal Julia Arrays.
Fallback adds v to a[] using standard addition.
"""
atomic_add!(as::AtomicScalar, v) = Threads.atomic_add!(as.value, v)
@Base.propagate_inbounds atomic_add!(a::AbstractArray, v) = (a[] += v) | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 15626 | # import Infiltrator
import StructArrays
#############################
# AbstractIsotopeScalar
################################
"""
AbstractIsotopeScalar <: AbstractData
An IsotopeScalar represents a quantity or flux with isotopic composition.
Can be added, subtracted, multiplied by a scalar, and decomposed into components with the
same (bulk) transport properties.
# Implementation
Each IsotopeScalar should be added to `IsotopeTypes`, and implement:
- get_total(is::IsotopeScalar) -> total
- arithmetic operations +/- (ie IsotopeScalars can be added and subtracted) and *number, /number
(IsotopeScalars can be scaled by a real number).
- methods of the [`AbstractData`](@ref) interface
and optional isotope-specific functions, eg for a single isotope:
- isotope_totaldelta(::Type{<: IsotopeScalar}, total, delta) -> IsotopeScalar()
- get_delta(is::IsotopeScalar) -> delta
"""
abstract type AbstractIsotopeScalar <: AbstractData
end
num_components(is::AbstractIsotopeScalar) = num_components(typeof(is))
num_components(iv::AbstractArray) = num_components(eltype(iv))
Base.length(is::AbstractIsotopeScalar) = 1
Base.size(is::AbstractIsotopeScalar) = ()
"""
@isotope_totaldelta(IsotopeType::Type, total, delta) -> Type
Convenience macro to create either an `IsotopeXXX` of `IsotopeType::Type`,
or a Float64 if `IsotopeType==ScalarData` (in which case `delta` argument is ignored).
This generates code equivalent to:
IsotopeType == ScalarData ? total : isotope_totaldelta(IsotopeType, total, delta)
"""
macro isotope_totaldelta(IsotopeType, total, delta)
return :($(esc(IsotopeType)) == ScalarData ? $(esc(total)) : isotope_totaldelta($(esc(IsotopeType)), $(esc(total)), $(esc(delta)) ) )
end
"generic get_total for non-isotope variable"
function get_total(scalar)
return scalar
end
"""
get_property(data; propertyname::Union{Symbol, Nothing}=nothing, default_total=false) -> data
Generic wrapper for test scripts etc to provide access to field `propertyname` (which can be `nothing`)
from struct-valued `data`, or to always apply [`get_total`](@ref).
This is intended for use in test scripts etc, where it is useful to have a function that can take arguments
to control access either to a property or to the raw `data`. This is not efficient (it allocates), not
recommended for use in application code.
"""
function get_property(
data;
propertyname::Union{Symbol, Nothing}=nothing,
default_total=false
)
if !isnothing(propertyname)
if eltype(data) <: AbstractVector
data = [getproperty.(d, propertyname) for d in data]
else
data = getproperty.(data, propertyname)
end
elseif default_total
if eltype(data) <: AbstractVector
data = [get_total.(d) for d in data]
else
data = get_total.(data)
end
end
return data
end
#####################################################
# IsotopeLinear
#####################################################
"""
IsotopeLinear <: AbstractIsotopeScalar
Linearized representation of isotopic composition, where
`moldelta` = `total` * `delta`.
"""
struct IsotopeLinear{T1, T2} <: AbstractIsotopeScalar
v::T1
v_moldelta::T2
end
function Base.getproperty(obj::IsotopeLinear, sym::Symbol)
if sym === :v_delta
return get_delta(obj)
else # fallback to getfield
return getfield(obj, sym)
end
end
function Base.propertynames(obj::IsotopeLinear, private::Bool=false)
return (:v, :v_moldelta, :v_delta)
end
"compact form"
function Base.show(io::IO, il::IsotopeLinear)
print(io, "(v=", il.v,", v_moldelta=", il.v_moldelta,", ‰=", il.v_delta, ")")
end
"""
isotope_totaldelta(::Type{IsotopeLinear}, total, delta) -> IsotopeLinear
Create an `IsotopeLinear` from `total` and `delta`
# Examples:
```jldoctest; setup = :(import PALEOboxes as PB)
julia> a = PB.isotope_totaldelta(PB.IsotopeLinear, 10.0, -2.0)
(v=10.0, v_moldelta=-20.0, ‰=-2.0)
julia> b = a*2
(v=20.0, v_moldelta=-40.0, ‰=-2.0)
julia> c = a + b
(v=30.0, v_moldelta=-60.0, ‰=-2.0)
julia> PB.get_total(c)
30.0
julia> PB.get_delta(c)
-2.0
```
"""
isotope_totaldelta(::Type{IsotopeLinear}, total, delta) = IsotopeLinear(total, total*delta)
isotope_totaldelta(::Type{IsotopeLinear{T, T}}, total::T, delta::T) where {T} = IsotopeLinear(total, total*delta)
"""
get_total(is::IsotopeLinear)
Get isotope total
"""
function get_total(is::IsotopeLinear)
return is.v
end
"""
get_delta(is::IsotopeLinear)
Get isotope delta (per mil)
"""
function get_delta(is::IsotopeLinear, add_eps_denom=0.0)
delta = is.v_moldelta / (is.v + add_eps_denom) # (is.v + 1e-3*sign(is.v)*abs(is.v_moldelta))
return delta # min(max(delta, -100.0), 100.0)
end
function get_delta_limit(is::IsotopeLinear, add_eps_denom, delta_limit)
if is.v < add_eps_denom
delta = 0.0
else
delta = is.v_moldelta / is.v # (is.v + 1e-3*sign(is.v)*abs(is.v_moldelta))
end
return min(max(delta, -delta_limit), delta_limit)
end
Base.zero(x::IsotopeLinear{T1, T2}) where{T1,T2}= zero(typeof(x))
Base.zero(::Type{IsotopeLinear{T1, T2}}) where{T1,T2} = IsotopeLinear(zero(T1), zero(T2))
Base.eltype(::Type{IsotopeLinear{T1, T2}}) where {T1, T2} = IsotopeLinear{T1, T2}
Base.:-(a::IsotopeLinear) = IsotopeLinear(-a.v, -a.v_moldelta)
Base.:-(a::IsotopeLinear, b::IsotopeLinear) = IsotopeLinear(a.v-b.v, a.v_moldelta-b.v_moldelta)
Base.:+(a::IsotopeLinear, b::IsotopeLinear) = IsotopeLinear(a.v+b.v, a.v_moldelta+b.v_moldelta)
Base.:*(a::IsotopeLinear, b::Real) = IsotopeLinear(a.v*b, a.v_moldelta*b)
Base.:*(a::Real, b::IsotopeLinear) = IsotopeLinear(a*b.v, a*b.v_moldelta)
Base.:/(a::IsotopeLinear, b::Real) = IsotopeLinear(a.v/b, a.v_moldelta/b)
# convert methods for cases (eg from Float64 to an AD type) where scalar components v, v_moldelta can be converted
IsotopeLinear{T1, T2}(x::IsotopeLinear) where {T1, T2} = IsotopeLinear{T1, T2}(x.v, x.v_moldelta)
Base.convert(::Type{IsotopeLinear{T1, T2}}, x::IsotopeLinear) where {T1, T2} = IsotopeLinear{T1, T2}(x)
"""
IsotopeTypes::Tuple
Available [`AbstractIsotopeScalar`](@ref) types
"""
const IsotopeTypes = (ScalarData, IsotopeLinear)
"""
split_nameisotope(
nameisotope::AbstractString, isotope_data::Dict=Dict();
default=UndefinedData,
) -> (name::AbstractString, field_data::AbstractData)
Split `nameisotope` string of form <name>[::XIsotope], and look up `field_data` from key `XIsotope` in supplied Dict `isotope_data`.
Returns ScalarData if ::XIsotope not present in `nameisotope`, `field_data = default` if `XIsotope` key is not present in `isotope_data`.
# Examples
```jldoctest; setup = :(import PALEOboxes as PB)
julia> PB.split_nameisotope("myflux::CIsotope", Dict("CIsotope"=>PB.IsotopeLinear))
("myflux", PALEOboxes.IsotopeLinear)
julia> PB.split_nameisotope("myflux::PALEOboxes.IsotopeLinear")
("myflux", PALEOboxes.IsotopeLinear)
julia> PB.split_nameisotope("myflux", Dict("CIsotope"=>PB.IsotopeLinear))
("myflux", PALEOboxes.ScalarData)
julia> PB.split_nameisotope("::CIsotope", Dict("CIsotope"=>PB.IsotopeLinear))
("", PALEOboxes.IsotopeLinear)
```
"""
function split_nameisotope(
nameisotope::AbstractString, isotope_data::Dict=Dict();
default=UndefinedData
)
convertd(v_data::AbstractString) = parse(AbstractData, v_data)
convertd(v_data::Type{D}) where {D <: AbstractData} = D
convertd(v_data) = error("split_nameisotope: $v_data isotope_data must contain String or <:AbstractData")
spfn = split(nameisotope, "::")
name = spfn[1]
if length(spfn) == 1
field_data = ScalarData
elseif length(spfn) == 2
if haskey(isotope_data, spfn[2])
field_data = convertd(isotope_data[spfn[2]])
elseif !isnothing(tryparse(AbstractData, spfn[2]))
field_data = parse(AbstractData, spfn[2])
elseif default != UndefinedData
field_data = default
else
error("flux '$nameisotope' isotope not defined, isotope_data=$isotope_data")
end
else
error("invalid flux '$nameisotope'")
end
return (name, field_data)
end
#####################################################
# IsotopeLinear AbstractData implementation
#####################################################
function allocate_values(
data::Type{IsotopeLinear}, data_dims::Tuple{}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}};
thread_safe, allocatenans,
)
v = allocate_values(ScalarData, data_dims, data_type, space, spatial_size, thread_safe=thread_safe, allocatenans=allocatenans)
v_moldelta = allocate_values(ScalarData, data_dims, data_type, space, spatial_size, thread_safe=thread_safe, allocatenans=allocatenans)
return StructArrays.StructArray{IsotopeLinear{data_type, data_type}}((v, v_moldelta))
end
function check_values(
existing_values, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}}
)
eltype(existing_values) <: IsotopeLinear ||
throw(ArgumentError("type mismatch: supplied eltype $(eltype(existing_values))"))
check_data_type(existing_values, data_type)
existing_size = size(existing_values)
existing_size == spatial_size ||
throw(ArgumentError("size mismatch: supplied $existing_size, require spatial_size=$spatial_size"))
return nothing
end
function init_values!(
values, data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{S},
init_value::Symbol, attribv::VariableBase, convertfn, convertvalues, cellrange,
info::NTuple{3, String}
) where {S <: Union{ScalarSpace, CellSpace}}
varinfo, convertinfo, trsfrinfo = info
initial_value = get_attribute(attribv, init_value)
if init_value == :norm_value
initial_delta = 1.0
@info "init_values! :$(rpad(init_value, 20)) $(rpad(varinfo, 30)) "*
"= $initial_value$convertinfo, delta=$initial_delta (fixed delta value to calculate norm)$trsfrinfo"
else
initial_delta = get_attribute(attribv, :initial_delta)
@info "init_values! :$(rpad(init_value, 20)) $(rpad(varinfo, 30)) "*
"= $initial_value$convertinfo, delta=$initial_delta$trsfrinfo"
end
# . as initial_value may be a Vector
i_initial_value = isotope_totaldelta.(IsotopeLinear, initial_value, initial_delta)
if S === ScalarSpace
values[] = i_initial_value*convertfn(convertvalues, nothing)
else
if initial_value isa Real # ie not a Vector
for i in cellrange.indices
values[i] = i_initial_value*convertfn(convertvalues, i)
end
elseif length(initial_value) == length(values)
for i in cellrange.indices
values[i] = i_initial_value[i]*convertfn(convertvalues, i)
end
else
error("init_values!: configuration error, Vector Variable $varinfo and Vector :initial_value lengths mismatch ($(length(values)) != $(length(initial_value)))")
end
end
return nothing
end
function zero_values!(values, data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{ScalarSpace}, cellrange)
values[] = zero(eltype(values))
return nothing
end
function zero_values!(values, data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange)
@inbounds for i in cellrange.indices
values[i] = zero(eltype(values))
end
return nothing
end
dof_values(data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{ScalarSpace}, mesh, cellrange) = 2
dof_values(data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{CellSpace}, mesh, cellrange) = 2*length(cellrange.indices)
dof_values(data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{CellSpace}, mesh, cellrange::Nothing) = 2*mesh.ncells
function copyfieldto!(dest, doff, values, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{<:AbstractSpace}, cellrange)
n1 = copyfieldto!(dest, doff, values.v, ScalarData, data_dims, space, cellrange)
n2 = copyfieldto!(dest, doff+n1, values.v_moldelta, ScalarData, data_dims, space, cellrange)
return n1 + n2
end
function copytofield!(values, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{<:AbstractSpace}, cellrange, src, soff)
n1 = copytofield!(values.v, ScalarData, data_dims, space, cellrange, src, soff)
n2 = copytofield!(values.v_moldelta, ScalarData, data_dims, space, cellrange, src, soff+n1)
return n1 + n2
end
add_field!(dest, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{<:AbstractSpace}, a, cellrange, src) =
add_field!(dest, ScalarData, data_dims::Tuple{}, space, a, cellrange, src)
function add_field_vec!(dest, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{ScalarSpace}, a, cellrange, src, soff)
dest[].v += a*IsotopeLinear(src[soff], src[soff+1])
return 2
end
function add_field_vec!(dest, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{CellSpace}, a, cellrange, src, soff)
# assume src layout matches that of copytofield!
@inbounds for i in cellrange.indices
dest[i] += a*IsotopeLinear(src[soff], src[soff+length(cellrange.indices)])
soff += 1
end
return 2*length(cellrange.indices)
end
add_field_vec!(dest, field_data::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange::Nothing, src, soff) =
add_field_vec!(dest, field_data, data_dims, space, a, (indices=1:length(dest),), src, soff)
num_components(field_data::Type{IsotopeLinear}) = 2
num_components(field_data::Type{IsotopeLinear{T1, T2}}) where {T1,T2} = num_components(IsotopeLinear)
get_components(values, data::Type{IsotopeLinear}) = [values.v, values.v_moldelta]
# provide a create_accessor method for ScalarData --> IsotopeLinear that takes just the first (total) component
function create_accessor(
output_data::Type{ScalarData},
# TODO - check space, data_dims,
linkvar_field::Field{IsotopeLinear, S, V, W, M}, linksubdomain::Union{Nothing, AbstractSubdomain};
forceview, components,
) where {S, V, W, M}
# create accessor
if isnothing(linksubdomain)
if forceview
var_accessor = view(linkvar_field.values.v, 1:length(linkvar_field.values.v))
else
var_accessor = linkvar_field.values.v
end
else
var_accessor = Grids.subdomain_view(linkvar_field.values.v, linksubdomain)
end
if components
return [var_accessor]
else
return var_accessor
end
end
#############################################################
# Special cases for atomic scalar Vectors of IsotopeLinear
##########################################################
"type of an atomic scalar Vector of IsotopeLinear"
const AtomicIsotopeLinear = StructArrays.StructVector{
IsotopeLinear{Float64, Float64},
NamedTuple{(:v, :v_moldelta), Tuple{AtomicScalar{Float64}, AtomicScalar{Float64}}},
Int64
}
atomic_add!(ias::AtomicIsotopeLinear, iv::IsotopeLinear) = (atomic_add!(ias.v, iv.v); atomic_add!(ias.v_moldelta, iv.v_moldelta))
function get_values_output(values::AtomicIsotopeLinear, data_type::Type{IsotopeLinear}, data_dims::Tuple{}, space::Type{<:AbstractSpace}, mesh)
# convert to an IsotopeLinear for output
return StructArrays.StructArray( [values[]])
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 6006 |
################################################################
# ScalarData
#################################################################
"""
ScalarData <: AbstractData
A Field scalar (eg a biogeochemical concentration)
"""
struct ScalarData <: AbstractData
end
num_components(field_data::Type{ScalarData}) = 1
get_components(values, field_data::Type{ScalarData}) = [values]
function allocate_values(
field_data::Type{ScalarData}, data_dims::Tuple{}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}};
thread_safe, allocatenans,
)
if thread_safe
spatial_size == (1, ) ||
throw(ArgumentError("thread_safe with spatial_size != (1, )"))
d = AtomicScalar{data_type}()
else
d = Array{data_type, length(spatial_size)}(undef, spatial_size...)
end
if allocatenans
fill!(d, NaN)
end
return d
end
function get_values_output(values::AtomicScalar, data_type::Type{ScalarData}, data_dims::Tuple{}, space, mesh)
return [values[]]
end
function check_values(
existing_values, field_data::Type{ScalarData}, data_dims::Tuple{}, data_type, space::Type{<:AbstractSpace}, spatial_size::Tuple{Integer, Vararg{Integer}}
)
check_data_type(existing_values, data_type)
existing_size = size(existing_values)
existing_size == spatial_size ||
throw(ArgumentError("size mismatch: supplied $existing_size, require spatial_size=$spatial_size"))
return nothing
end
function init_values!(
values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{S},
init_value::Symbol, attribv::VariableBase, convertfn, convertvalues, cellrange,
info::NTuple{3, String}
) where {S <: Union{ScalarSpace, CellSpace}}
varinfo, convertinfo, trsfrinfo = info
initial_value = get_attribute(attribv, init_value)
@info "init_values! :$(rpad(init_value, 20)) $(rpad(varinfo, 30)) "*
"= $initial_value$convertinfo$trsfrinfo"
if S === ScalarSpace
values[] = initial_value*convertfn(convertvalues, nothing)
else
if initial_value isa Real # ie not a Vector
for i in cellrange.indices
values[i] = initial_value*convertfn(convertvalues, i)
end
elseif length(initial_value) == length(values)
for i in cellrange.indices
values[i] = initial_value[i]*convertfn(convertvalues, i)
end
else
error("init_values!: configuration error, Vector Variable $varinfo and Vector :initial_value lengths mismatch ($(length(values)) != $(length(initial_value)))")
end
end
return nothing
end
function zero_values!(values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{ScalarSpace}, cellrange)
values[] = 0.0
return nothing
end
function zero_values!(values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange)
@inbounds for i in cellrange.indices
values[i] = 0.0
end
return nothing
end
dof_values(field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{ScalarSpace}, mesh, cellrange) = 1
dof_values(field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, mesh, cellrange) = length(cellrange.indices)
dof_values(field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, mesh, cellrange::Nothing) = mesh.ncells
function copyfieldto!(dest, doff, values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{ScalarSpace}, cellrange)
dest[doff] = values[]
return 1
end
function copyfieldto!(dest, doff, values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange)
@inbounds for i in cellrange.indices
dest[doff] = values[i]
doff += 1
end
return length(cellrange.indices)
end
function copyfieldto!(dest, doff, values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange::Nothing)
@inbounds copyto!(dest, doff, values, 1, length(values))
return length(values)
end
function copytofield!(values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{ScalarSpace}, cellrange, src, soff)
values[] = src[soff]
return 1
end
function copytofield!(values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange, src, soff)
@inbounds for i in cellrange.indices
values[i] = src[soff]
soff += 1
end
return length(cellrange.indices)
end
function copytofield!(values, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange::Nothing, src, soff)
@inbounds copyto!(values, 1, src, soff, length(values))
return length(values)
end
function add_field!(dest, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{ScalarSpace}, a, cellrange, src)
dest[] += a*src[]
return nothing
end
function add_field!(dest, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, a, cellrange, src)
@inbounds for i in cellrange.indices
dest[i] += a*src[i]
end
return nothing
end
function add_field!(dest, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, a, cellrange::Nothing, src)
dest .+= a .* src
return nothing
end
function add_field_vec!(dest, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{ScalarSpace}, a, cellrange, src, soff)
dest[] += a*src[soff]
return 1
end
function add_field_vec!(dest, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, a, cellrange, src, soff)
@inbounds for i in cellrange.indices
dest[i] += a*src[soff]
soff += 1
end
return length(cellrange.indices)
end
add_field_vec!(dest, field_data::Type{ScalarData}, data_dims::Tuple{}, space::Type{CellSpace}, cellrange::Nothing, src, soff) =
add_field_vec!(dest, field_data, data_dims, space, a, (indices=1:length(dest),), src, soff)
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 1371 | module Constants
# Physical constants
const k_CtoK = 273.15 # convert temperature in Celsius to Kelvin
const k_molVolIdealGas= 22.4136 # l/mol molar volume of ideal gas at STP (0C, 1 atm)
const k_Rgas = 8.3144621 # J/K/mol gas constant
const k_Avogadro = 6.0221409e23 # molecules mol-1
# Earth system present-day constants
const age_present_yr = 4.5e9 # Age of Earth at present-day
const k_solar_presentday = 1368.0 # present-day solar insolation W/m^2
const k_secpyr = 3.15569e7 # present-day seconds per year
const k_secpday = 24.0*3600.0 # sec per day
const k_daypyr = k_secpyr/k_secpday # days in a year
const k_g_earth = 9.80665 # gravitational field strength for Earth m/s^2
const k_SurfAreaEarth = 5.101e14 # Earth surface area in m
const pCO2atm0 = 280e-6 # ppm pre-industrial pCO2
const k16_PANtoO = 3.762 #
const k18_oceanmass = 1.397e21 # kg Ocean total mass
const k_moles1atm = 1.77e20 # Moles in 1 atm
const k_preindCO2atm = 280e-6 # pre-industrial pCO2 (atm)
# Atmospheric composition from Sarmiento & Gruber (2006) Table 3.1.1 (which cites Weast & Astle 1982)
const k_atmmixrN2 = 0.78084 # N2 atmospheric mixing ratio (moles / moles dry air)
const k_atmmixrO2 = 0.20946 # O2 atmospheric mixing ratio (moles / moles dry air)
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 7242 | module FluxPerturb
import PALEOboxes as PB
using ..DocStrings
"""
ReactionFluxPerturb
Provide a scalar flux `F`, linearly interpolated from a table of values vs time `tforce`.
The table of values is set by parameters `perturb_times` and `perturb_totals`, and optionally `perturb_deltas`.
The input time Variable is `tforce`, with default linking to the `global.tforce` Variable.
Use the configuration file to rename output variable `F` (and if necessary, the input Variable `tforce`).
Set `extrapolate = "extrapolate"` to use `extrapolate_before`, `extrapolate_after` to set constant values
when 'tforce' is out-of-range of `perturb_times` (or alternatively, set `extrapolate = "throw"` and use
guard values for `perturb_times` at -1e30, 1e30).
# Parameters
$(PARS)
# Methods and Variables
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionFluxPerturb{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
PB.ParDoubleVec("perturb_times", [-1e30, 1e30], units="yr",
description="interpolated perturbation times"),
PB.ParDoubleVec("perturb_totals",[1.0, 1.0], units="mol yr-1",
description="interpolated perturbation totals"),
PB.ParDoubleVec("perturb_deltas",[0.0, 0.0], units="per mil",
description="interpolated perturbation deltas"),
PB.ParString("extrapolate", "throw", allowed_values=["throw", "constant"],
description="behaviour if tforce is out of range"),
PB.ParDouble("extrapolate_before", NaN,
description="value to use if 'extrapolate=constant' and tforce < first(perturb_times)"),
PB.ParDouble("extrapolate_before_delta", NaN,
description="value to use if 'extrapolate=constant' and tforce < first(perturb_times)"),
PB.ParDouble("extrapolate_after", NaN,
description="value to use if 'extrapolate=constant' and tforce > last(perturb_times)"),
PB.ParDouble("extrapolate_after_delta", NaN,
description="value to use if 'extrapolate=constant' and tforce > last(perturb_times)"),
)
end
function PB.register_methods!(rj::ReactionFluxPerturb)
@info "ReactionFluxPerturb.register_methods! $(PB.fullname(rj))"
IsotopeType = rj.pars.field_data[]
PB.setfrozen!(rj.pars.field_data)
vars = [
PB.VarDepScalar( "global.tforce", "yr", "time at which to apply perturbation"),
PB.VarContribScalar( "F", "mol yr-1", "interpolated flux perturbation",
attributes=(:field_data=>IsotopeType,)),
PB.VarPropScalar( "%reaction%FApplied", "mol yr-1", "flux perturbation applied, for diagnostic output",
attributes=(:field_data=>IsotopeType,)),
]
PB.add_method_do!(
rj,
do_flux_perturb,
(PB.VarList_namedtuple(vars), ),
p=IsotopeType,
)
return nothing
end
function do_flux_perturb(
m::PB.ReactionMethod,
pars,
(vars, ),
cellrange::PB.AbstractCellRange,
deltat
)
IsotopeType = m.p
tforce = vars.tforce[]
f = zero(first(pars.perturb_totals.v)*vars.tforce[]) # ensure zero is of correct type for perturb_totals, tforce
f_delta = zero(first(pars.perturb_deltas.v)*vars.tforce[])
idx_after = searchsortedfirst(pars.perturb_times.v, tforce)
if tforce == first(pars.perturb_times.v) # extra check as searchsortedfirst uses >=
idx_after += 1
end
if idx_after == 1
(pars.extrapolate[] == "constant") || error("tforce $tforce out-of-range, < first(perturb_times) = $(first(pars.perturb_times.v))")
f += pars.extrapolate_before[]
f_delta += pars.extrapolate_before_delta[]
elseif idx_after > length(pars.perturb_times.v)
(pars.extrapolate[] == "constant") || error("tforce $tforce out-of-range, > last(perturb_times) = $(last(pars.perturb_times.v))")
f += pars.extrapolate_after[]
f_delta += pars.extrapolate_after_delta[]
else
# linearly interpolate
t_l, t_h = pars.perturb_times.v[idx_after-1], pars.perturb_times.v[idx_after]
x_l = (t_h-tforce)/(t_h - t_l)
x_h = (tforce-t_l)/(t_h - t_l)
f += x_l*pars.perturb_totals.v[idx_after-1] + x_h*pars.perturb_totals.v[idx_after]
f_delta += x_l*pars.perturb_deltas.v[idx_after-1] + x_h*pars.perturb_deltas.v[idx_after]
end
F = @PB.isotope_totaldelta(IsotopeType, f, f_delta)
vars.F[] += F
vars.FApplied[] = F
return nothing
end
"""
ReactionRestore
Adds `RestoringFlux` in response to discrepancy between Variable `WatchLevel` and Parameter `RequiredLevel`
# Parameters
$(PARS)
# Methods and Variables
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionRestore{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
PB.ParDouble("RequiredLevel", 0.0, units="mol",
description="target value of WatchLevel"),
PB.ParDouble("trestore", 1.0, units="yr",
description="restoring timescale"),
PB.ParDouble("RequiredDelta", 0.0, units="per mil",
description="target value of WatchLevel delta"),
PB.ParBool("source_only", false,
description="false to allow input and output, true to allow input only"),
)
end
function PB.register_methods!(rj::ReactionRestore)
PB.setfrozen!(rj.pars.field_data)
IsotopeType = rj.pars.field_data[]
vars = [
PB.VarDepScalar( "WatchLevel", "mol", "level to observe and restore",
attributes=(:field_data=>IsotopeType,)),
PB.VarContribScalar("RestoringFlux", "mol yr-1", "restoring flux",
attributes=(:field_data=>IsotopeType,)),
PB.VarPropScalar( "%reaction%RestoringApplied", "mol yr-1", "restoring flux for diagnostic output",
attributes=(:field_data=>IsotopeType,)),
]
PB.add_method_do!(
rj,
do_restore,
(PB.VarList_namedtuple(vars), ),
p=IsotopeType,
)
return nothing
end
function do_restore(m::PB.ReactionMethod, (vars, ), cellrange::PB.AbstractCellRange, deltat)
rj = m.reaction
IsotopeType = m.p
requiredlevelisotope = @PB.isotope_totaldelta(IsotopeType, rj.pars.RequiredLevel[], rj.pars.RequiredDelta[])
restoreflux = -(vars.WatchLevel[] - requiredlevelisotope)/rj.pars.trestore[]
if !rj.pars.source_only[] || PB.get_total(restoreflux) > 0
vars.RestoringApplied[] = restoreflux
vars.RestoringFlux[] += restoreflux
else
vars.RestoringApplied[] = 0.0*restoreflux
vars.RestoringFlux[] += 0.0*restoreflux # multiply by zero so AD sparsity detection sees the restoring term
end
return nothing
end
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 21277 | """
Fluxes
Create and manage collections of Target and Contrib Variables used to define fluxes within or between Domains.
# Conventions for defining biogeochemical fluxes within Domains
- Particulate organic matter (including CaCO3) with stoichiometry Corg:N:P:Ccarb is usually transferred as:
`flux_list` `["P", "N", "Corg::CIsotope", "Ccarb::CIsotope"]`
with a prefix indicating the function (eg `export_`).
- Solute fluxes are usually transferred as:
`flux_list` `["DIC::CIsotope", "TAlk", "Ca", "P", "O2", "SO4::SIsotope", "H2S::SIsotope", "CH4::CIsotope"]`
(where these names match the Reservoir names for the solutes), with a prefix indicating the function
(usually just `flux_` or `soluteflux_`).
# Conventions for defining global fluxes between modules
The model configuration `.yaml` file should create
a `Domain` for each global flux, containing one or more [`Fluxes.ReactionFluxTarget`](@ref). Fluxes are then transferred
(copied) by adding a [`Fluxes.ReactionFluxTransfer`](@ref) to each destination Domain.
Naming conventions for Earth system fluxes:
|Domain name | target prefix | flux_list (illustrative, add as needed) |
|:----------------------|:---------------|:--------------------|
|fluxAtoLand | flux_ | ["CO2::CIsotope", "O2"] |
|fluxRtoOcean | flux_ | ["DIC::CIsotope", "TAlk", "Ca", "P", "SO4::SIsotope"]|
|fluxOceanBurial | flux_ | ["Corg::CIsotope", "Ccarb::CIsotope", "Porg", "Pauth", "PFe", "P", "GYP::SIsotope", "PYR::SIsotope"]|
|fluxSedCrusttoAOcean | flux_ | ["C::CIsotope", "S::SIsotope", "Redox"]|
|fluxLandtoSedCrust | flux_ |["Ccarb::CIsotope", "Corg::CIsotope", "GYP::SIsotope", "PYR::SIsotope"]|
|fluxOceanfloor | particulateflux_|["P", "N", "Corg::CIsotope", "Ccarb::CIsotope"] |
| | soluteflux_ | ["DIC::CIsotope", "TAlk", "Ca", "P", "O2", "SO4::SIsotope", "H2S::SIsotope", "CH4::CIsotope"] |
|fluxAtmtoOceansurface | flux_ | ["CO2::CIsotope", "CH4::CIsotope", "O2"] |
"""
module Fluxes
import PALEOboxes as PB
import SparseArrays
import LinearAlgebra # for I
import Infiltrator # Julia debugger
using ..DocStrings
"""
FluxContrib(
fluxprefix::AbstractString, flux_list;
[, isotope_data::Dict]
[, space=PB.CellSpace][, alloptional=true]
) -> vartuple::NamedTuple
Create a `NamedTuple` of `VarContrib` from `flux_prefix.*flux_list`, needed for a Reaction to write to a flux coupler.
Entries in `flux_list` of form `fluxname::isotope` are parsed to look up isotope type from `isotope_data` Dict.
For each `fluxname` in `flux_list`, the generated `VarContrib` `vartuple.fluxname` have
`link_namestr=\$(fluxprefix)\$(fluxname)"` and
`localname="\$(fluxprefix)\$(fluxname)` (with any `.` in `fluxprefix` substituted to `_`).
# Example:
```julia
julia> fluxRtoOcean = PB.Fluxes.FluxContrib("fluxRtoOcean.flux_", ["P", "SO4::SIsotope"], isotope_data=Dict("SIsotope"=>PB.IsotopeLinear), space=PB.ScalarSpace);
julia> fluxRtoOcean.P
PALEOboxes.VariableReaction{PALEOboxes.VT_ReactContributor}
localname='fluxRtoOcean_flux_P'
link_name='fluxRtoOcean.flux_P[unlinked]'
attributes=Dict{Symbol, Any}(:description => "flux P", :space => PALEOboxes.ScalarSpace, :standard_variable => false, :norm_value => 1.0, :data_dims => String[], :long_name => "", :vfunction => PALEOboxes.VF_Undefined, :field_data => PALEOboxes.ScalarData, :initial_delta => 0.0, :units => "mol yr-1"…)
julia> fluxRtoOcean.SO4
PALEOboxes.VariableReaction{PALEOboxes.VT_ReactContributor}
localname='fluxRtoOcean_flux_SO4'
link_name='fluxRtoOcean.flux_SO4[unlinked]'
attributes=Dict{Symbol, Any}(:description => "flux SO4", :space => PALEOboxes.ScalarSpace, :standard_variable => false, :norm_value => 1.0, :data_dims => String[], :long_name => "", :vfunction => PALEOboxes.VF_Undefined, :field_data => PALEOboxes.IsotopeLinear, :initial_delta => 0.0, :units => "mol yr-1"…)
```
"""
FluxContrib(fluxprefix::AbstractString, flux_list; alloptional=true, kwargs...) =
_FluxVars(PB.VarContrib, fluxprefix, flux_list; alloptional=alloptional, kwargs...)
FluxContribScalar(fluxprefix::AbstractString, flux_list; kwargs...) =
_FluxVars(PB.VarContrib, fluxprefix, flux_list; space=PB.ScalarSpace, kwargs...)
"""
FluxTarget(fluxprefix::AbstractString, flux_list;
[, isotope_data::Dict=Dict()]
[, space=PB.CellSpace]
) -> vartuple::NamedTuple
Create a `NamedTuple` of `VarTarget` from `flux_list`, needed for a Reaction to define a flux coupler.
See [`FluxContrib`](@ref) for arguments.
"""
FluxTarget(fluxprefix::AbstractString, flux_list; kwargs...) =
_FluxVars(PB.VarTarget, fluxprefix, flux_list; kwargs...)
FluxTargetScalar(fluxprefix::AbstractString, flux_list; kwargs...) =
_FluxVars(PB.VarTarget, fluxprefix, flux_list; space=PB.ScalarSpace, kwargs...)
"Create a NamedTuple of Variables using `varctorfn`"
function _FluxVars(
varctorfn, fluxprefix::AbstractString, flux_list;
isotope_data::Dict=Dict(),
localname_prefix=nothing,
alloptional=false,
description="flux",
space=PB.CellSpace,
)
(fluxdomain, fluxsubdomain, fluxnameprefix) = PB.split_link_name(fluxprefix)
if isnothing(localname_prefix)
localname_prefix = PB.combine_link_name(fluxdomain, fluxsubdomain, fluxnameprefix, sep="_")
end
field_names = []
variables = []
for fluxnameisotopestr in flux_list
optional, fluxnameisotope = PB.strip_brackets(fluxnameisotopestr)
fluxname, IsotopeType = PB.split_nameisotope(fluxnameisotope, isotope_data)
push!(field_names, Symbol(fluxname))
attributes = (:space=>space, :field_data=>IsotopeType)
localname = localname_prefix*fluxname
link_namestr = PB.combine_link_name(fluxdomain, fluxsubdomain, fluxnameprefix*fluxname)
if alloptional || optional
link_namestr = "("*link_namestr*")"
end
push!(
variables,
varctorfn(
localname=>link_namestr, "mol yr-1", "$description $fluxname",
attributes=attributes
)
)
end
return NamedTuple{Tuple(field_names)}(variables)
end
"""
ReactionFluxTarget
Provides either a target for fluxes from `fluxlist` in an input `Domain` or a constant stub, optionally calculates totals.
For each `fluxname` in `fluxlist`, creates:
- if `const_stub==false`, an input `VarTarget` `pars.target_prefix[]*"flux_"*fluxname`
(or if `const_stub==true`, a constant `VarProp`).
- if `flux_totals` is `true`, a total `VarPropScalar` `target_prefix[]*"flux_total_"*fluxname`.
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionFluxTarget{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParStringVec("fluxlist", ["example"],
description="available fluxes"),
PB.ParString("target_prefix", "flux_",
description="target names will be \"<target_prefix><fluxname>\",
target total names will be \"<target_prefix>total_<fluxname>\"
(where <fluxname> is an entry in fluxlist)"),
PB.ParBool("flux_totals", false,
description="true to calculate flux totals (as \"<target_prefix>flux_total_<fluxname>\")"),
PB.ParBool("const_stub", false,
description="true to provide constant flux defined by :initial_value, :initial_delta attributes "*
"on input Target Variables \"<target_prefix>flux_<fluxname>\""),
)
end
function PB.register_methods!(rj::ReactionFluxTarget)
# Add flux targets and transfers
target_variables = []
total_localnames = []
target_prefix = rj.pars.target_prefix[]
if !isempty(target_prefix) && target_prefix[end] != '_'
target_prefix = target_prefix*"_"
@warn "Reaction $(PB.fullname(rj)) bodging target_prefix without trailing underscore $(rj.pars.target_prefix[]) -> $target_prefix"
end
for fluxnameisotope in rj.pars.fluxlist
fluxname, IsotopeType = PB.split_nameisotope(fluxnameisotope, rj.external_parameters)
targetname = target_prefix*fluxname
if rj.pars.const_stub[]
target_var = PB.VarPropStateIndep(targetname, "mol yr-1", "constant flux", attributes=(:field_data=>IsotopeType,))
else
target_var = PB.VarTarget(targetname, "mol yr-1", "flux input", attributes=(:field_data=>IsotopeType,))
end
if rj.pars.flux_totals[]
PB.set_attribute!(target_var, :calc_total, true, allow_create=true)
end
push!(target_variables, target_var)
push!(total_localnames, target_prefix*"total_"*fluxname)
end
if rj.pars.const_stub[]
# method to set constant value
# supply filterfn to initialize supplied Variables even though they aren't state variables
PB.add_method_setup_initialvalue_vars_default!(rj, target_variables, filterfn = v->true)
else
# target_variables not used by us, but must appear in a method to be linked and created
PB.add_method_do_nothing!(rj, target_variables)
end
if rj.pars.flux_totals[]
totals_method = PB.create_totals_method(rj, target_variables, total_localnames=total_localnames)
PB.add_method_do!(rj, totals_method)
end
PB.add_method_initialize_zero_vars_default!(rj)
return nothing
end
"""
ReactionFluxTransfer
Copy fluxes, optionally using transfer matrices to define cell-cell mappings if input and output fluxes
are in a different Domain.
There are three common cases:
- Transfer within a Domain, using `transfer_matrix` `Identity`
- Transfer from a `fluxXXX` Domain to the Domain hosting the `ReactionFluxTransfer`, using `transfer_matrix` to
define a mapping if these Domains are of different sizes.
- Transfer from a `fluxXXX` Domain to the boundary cells of an interior Domain (eg `ocean.oceansurface`),
where the Domain hosting the `ReactionFluxTransfer` is the corresponding boundary Domain (eg `oceansurface`).
# Flux names
The list of flux names is generated by finding all names that match the pattern supplied to `input_fluxes`, so
parameters:
input_fluxes: fluxAtmtoOceansurface.flux_\$fluxname\$
output_fluxes: ocean.oceansurface.\$fluxname\$_sms
will:
1. Match eg `fluxAtmtoOceansurface.flux_CO2`, `fluxAtmtoOceansurface.flux_O2` and generate names `CO2`, `O2`.
2. Generate variables with Reaction-local names `input_CO2`, `input_O2`, and link names configured to link to the input fluxes
3. Generate variables with Reaction-local names `output_CO2`, `output_O2`, and link names configured to link to the output flux
names generated by substituting `\$fluxname\$` in `output_fluxes`.
This handles the common case eg `O2` where the names of the input and output fluxes match.
However, if they don't match, eg the input flux is called `CO2` and the output flux should be applied to `DIC`, then it is necessary
to use `variable_links:` to change the link name for `output_CO2` to `DIC`.
# Parameters
$(PARS)
"""
Base.@kwdef mutable struct ReactionFluxTransfer{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParString("input_fluxes", "[inputdomain.][inputsubdomain.]flux_\$fluxname\$",
description="string to match to find input flux Variables. "*
"These Variables will local names \"input_\$fluxname\$\"."),
PB.ParString("output_fluxes", "[outputdomain.][outputsubdomain.]\$fluxname\$_sms",
description="string to use to generate output flux Variables where \$fluxname\$ is substituted from input_fluxes. "*
"These Variables will local names \"output_\$fluxname\$\", and are optional (ie ignored if not linked). "*
"Usually the output Domain is the Domain hosting the ReactionFluxTransfer (in general, it must be a Domain "*
"of the same size as the Domain hosting the ReactionFluxTransfer)."),
PB.ParDouble("transfer_multiplier", 1.0,
description="scalar multiplier for transfer"),
PB.ParString("transfer_matrix", "Identity",
allowed_values=["Identity", "Distribute", "Custom"],
description="matrix defining input Domain (length n) -> output Domain (length m) mapping:
'Identity' copies fluxes directly, requires m == n;
'Distribute' uniformly distributes fluxes from input->output: sums over n and them distributes fraction 1/m evenly to each m;
'Custom' requires transfer matrix to be supplied"),
)
input_domain = nothing
transfer_matrix_tr::SparseArrays.SparseMatrixCSC{Float64, Int64} = SparseArrays.spzeros(0, 0)
end
PB.register_methods!(rj::ReactionFluxTransfer) = nothing
function PB.register_dynamic_methods!(rj::ReactionFluxTransfer, model::PB.Model)
(input_domain_name, input_subdomain_name, input_var_matchname) =
PB.split_link_name(rj.pars.input_fluxes[])
# get Domain for input fluxes
rj.input_domain = isempty(input_domain_name) ? rj.domain : PB.get_domain(model, input_domain_name)
!isnothing(rj.input_domain) ||
error("$(PB.fullname(rj)) no Domain $input_domain_name")
input_var_matchname_split = split(input_var_matchname, "\$fluxname\$")
length(input_var_matchname_split) == 2 ||
error("$(PB.fullname(rj)) invalid input_fluxes: must contain \$fluxname\$ $(rj.pars.input_fluxes[])")
# Regular expression so $fluxname$ matches any alphanumeric characters
input_var_regex = input_var_matchname_split[1]*r"(\p{Xan}+)"*input_var_matchname_split[2]
(output_domain_name, output_subdomain_name, output_var_patternname) =
PB.split_link_name(rj.pars.output_fluxes[])
occursin("\$fluxname\$", output_var_patternname) ||
error("$(PB.fullname(rj)) invalid output_fluxes: must contain \$fluxname\$ $(rj.pars.output_fluxes[])")
flux_names, var_inputs, var_outputs = [], [], []
@debug "register_dynamic_methods! $(PB.fullname(rj)):"
for input_var in PB.get_variables(rj.input_domain)
m = match(input_var_regex, input_var.name)
# bodge in additional check as regex seems wrong when $fluxname is at end of string,
# "prefix_$fluxname" apparently will also match "prefix_$fluxname_otherstuff"
if !isnothing(m) && (input_var.name == input_var_matchname_split[1]*m.captures[1]*input_var_matchname_split[2])
fluxname = m.captures[1]
push!(flux_names, fluxname)
input_namestr = PB.combine_link_name(
input_domain_name,
input_subdomain_name,
input_var.name
)
input_attrb = Tuple(atnm=>PB.get_attribute(input_var, atnm) for atnm in (:field_data, :data_dims, :space))
v_input = PB.VarDep("input_"*fluxname => input_namestr, "mol yr-1", "flux input",
attributes=input_attrb,
)
if rj.pars.transfer_matrix[] != "Identity"
PB.set_attribute!(v_input, :check_length, false; allow_create=true)
end
push!(var_inputs, v_input)
output_namestr = "("*PB.combine_link_name(
output_domain_name,
output_subdomain_name,
replace(output_var_patternname, "\$fluxname\$" => fluxname)
)*")"
v_output = PB.VarContrib("output_"*fluxname => output_namestr, "mol yr-1", "flux output",
attributes=input_attrb,
)
push!(var_outputs, v_output)
else
@debug " ignoring $(PB.fullname(input_var))"
end
end
PB.add_method_do!(
rj,
do_transfer,
(PB.VarList_components(var_inputs), PB.VarList_components(var_outputs, allow_unlinked=true)),
p = flux_names,
preparefn = prepare_do_transfer
)
return nothing
end
"remove unlinked Variables and create transfer_matrix"
function prepare_do_transfer(m::PB.ReactionMethod, (input_vardata, output_vardata))
io = IOBuffer()
println(io, "prepare_do_transfer: ReactionMethod $(PB.fullname(m))")
# write diagnostic output
println(io, " active fluxes:")
var_inputs, var_outputs = PB.get_variables_tuple(m)
flux_names = m.p
nactive = 0
for (var_input, var_output, fluxname) in PB.IteratorUtils.zipstrict(var_inputs, var_outputs, flux_names)
if isnothing(var_output.linkvar)
println(io, " $(rpad(fluxname, 20)) $(rpad(PB.fullname(var_input.linkvar),40)) output not linked")
else
println(io, " $(rpad(fluxname, 20)) $(rpad(PB.fullname(var_input.linkvar),40)) -> $(PB.fullname(var_output.linkvar))")
nactive += 1
end
end
# check we have the same number of components
length(input_vardata) == length(output_vardata) ||
PB.infoerror(io, "prepare_do_transfer: ReactionMethod $(PB.fullname(m)) number of input components != number of output components - check :field_data (ScalarData, IsotopeLinear etc) match")
# remove unlinked Variables
input_vardata_active = []
output_vardata_active = []
for (ainput, aoutput) in PB.IteratorUtils.zipstrict(input_vardata, output_vardata)
if !isnothing(aoutput)
push!(input_vardata_active, ainput)
push!(output_vardata_active, aoutput)
end
end
if !isempty(input_vardata_active)
# figure out length of input and output arrays
input_length = 0
output_length = 0
for (ainput, aoutput) in PB.IteratorUtils.zipstrict(input_vardata_active, output_vardata_active)
if iszero(input_length)
input_length = prod(size(ainput))::Int
end
input_length == prod(size(ainput)) ||
PB.infoerror(io, "$(PB.fullname(m)) input Variables are not all the same size")
if iszero(output_length)
output_length = prod(size(aoutput))::Int
end
output_length == prod(size(aoutput)) ||
PB.infoerror(io, "$(PB.fullname(m)) output Variables are not all the same size")
end
# define transpose of transfer matrix (for sparse CSR efficiency, so output = input * transfer_matrix_tr)
rj = m.reaction
if rj.pars.transfer_matrix[] == "Custom"
# will be supplied (not yet implemented)
PB.infoerror(io, "$(PB.fullname(m)) not implemented Custom transfer matrix * $(rj.pars.transfer_multiplier[])")
elseif rj.pars.transfer_matrix[] == "Identity"
input_length == output_length ||
PB.infoerror(io, "$(PB.fullname(m)) Identity transfer_matrix but Variable lengths don't match (input, output) $(input_length) != $(output_length)")
rj.transfer_matrix_tr = SparseArrays.sparse(LinearAlgebra.I, input_length, output_length).*rj.pars.transfer_multiplier[]
println(io, " using Identity transfer matrix * $(rj.pars.transfer_multiplier[])")
elseif rj.pars.transfer_matrix[] == "Distribute"
rj.transfer_matrix_tr = SparseArrays.sparse(ones(input_length, output_length)./output_length.*rj.pars.transfer_multiplier[])
println(io, " using Distribute transfer matrix size (input, output) $(size(rj.transfer_matrix_tr)) * $(rj.pars.transfer_multiplier[])")
else
PB.infoerror(io, "$(PB.fullname(m)) unknown transfer_matrix='$(rj.pars.transfer_matrix[])'")
end
@info String(take!(io))
else
@info String(take!(io))
@warn "ReactionMethod $(PB.fullname(m)) no active fluxes found"
end
rt = ([v for v in input_vardata_active], [v for v in output_vardata_active]) # narrow Types of Vectors
return rt
end
function do_transfer(
m::PB.ReactionMethod,
(input_vardata, output_vardata),
cellrange::PB.AbstractCellRange,
deltat
)
tm_tr = m.reaction.transfer_matrix_tr
# _transfer(acinput::Nothing, acoutput::Nothing, tm_tr, cr) = nothing
function _transfer(acinput, acoutput, tm_tr, cr)
if length(acoutput) == 1
# Scalar Variables, (we have already checked size(tm_tr, 2) == 1)
for idx in SparseArrays.nzrange(tm_tr, 1)
i = tm_tr.rowval[idx]
acoutput[1] += acinput[i]*tm_tr.nzval[idx]
end
else
for j in cr.indices
for idx in SparseArrays.nzrange(tm_tr, j)
i = tm_tr.rowval[idx]
acoutput[j] += acinput[i]*tm_tr.nzval[idx]
end
end
end
return nothing
end
for (acinput, acoutput) in PB.IteratorUtils.zipstrict(input_vardata, output_vardata)
_transfer(acinput, acoutput, tm_tr, cellrange)
end
return nothing
end
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 3170 | module Forcings
import PALEOboxes as PB
using ..DocStrings
"""
ReactionForceInterp
Provide a scalar Property `F`, linearly interpolated from a table of values vs time `tforce`.
The table of values is set by parameters `force_times` and `force_values`.
The input time Variable is `tforce`, with default linking to the `global.tforce` Variable.
Use the configuration file to rename the output variable `F` (and if necessary, the input Variable `tforce`).
Set `extrapolate = "extrapolate"` to use `extrapolate_before`, `extrapolate_after` to set constant values
when 'tforce' is out-of-range of `force_times` (or alternatively, set `extrapolate = "throw"` and use
guard values for `force_times` at -1e30, 1e30).
# Parameters
$(PARS)
# Methods and Variables
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionForceInterp{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParDoubleVec("force_times", [-1e30, 1e30], units="yr",
description="interpolated forcing times"),
PB.ParDoubleVec("force_values", [1.0, 1.0], units="",
description="interpolated forcing values"),
PB.ParString("extrapolate", "throw", allowed_values=["throw", "constant"],
description="behaviour if tforce is out of range"),
PB.ParDouble("extrapolate_before", NaN,
description="value to use if 'extrapolate=constant' and tforce < first(perturb_times)"),
PB.ParDouble("extrapolate_after", NaN,
description="value to use if 'extrapolate=constant' and tforce > last(perturb_times)"),
)
end
function PB.register_methods!(rj::ReactionForceInterp)
@info "ReactionForceInterp.register_methods! $(PB.fullname(rj))"
vars = [
PB.VarDepScalar("global.tforce", "yr", "historical time at which to apply forcings, present = 0 yr"),
PB.VarPropScalar("F", "", "interpolated forcing"),
]
PB.add_method_do!(rj, do_forceinterp, (PB.VarList_namedtuple(vars), ))
return nothing
end
function do_forceinterp(m::PB.ReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
tforce = vars.tforce[]
idx_after = searchsortedfirst(pars.force_times.v, tforce)
if tforce == first(pars.force_times.v) # extra check as searchsortedfirst uses >=
idx_after += 1
end
if idx_after == 1
(pars.extrapolate[] == "constant") || error("tforce $tforce out-of-range, < first(force_times) = $(first(pars.force_times.v))")
vars.F[] = pars.extrapolate_before[]
elseif idx_after > length(pars.force_times.v)
(pars.extrapolate[] == "constant") || error("tforce $tforce out-of-range, > last(force_times) = $(last(pars.force_times.v))")
vars.F[] = pars.extrapolate_after[]
else
# linearly interpolate
t_l, t_h = pars.force_times.v[idx_after-1], pars.force_times.v[idx_after]
x_l = (t_h-tforce)/(t_h - t_l)
x_h = (tforce-t_l)/(t_h - t_l)
vars.F[] = x_l*pars.force_values.v[idx_after-1] + x_h*pars.force_values.v[idx_after]
end
return nothing
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 15925 | module GridForcings
import NCDatasets
import MAT
import Interpolations
import PALEOboxes as PB
using ..DocStrings
using Infiltrator # Julia debugger
"""
ReactionForceGrid
Apply time-dependent, periodic forcing from a variable in a netcdf or Matlab file, optionally applying a scaling, a constant linear offset,
and a linear offset generated from a scalar model variable.
Reads records `tidx_start`:`tidx_end` (assumed to be the last dimension) for `data_var` from a gridded dataset in `netcdf_file`
or `matlab_file`, maps grid to linear using the Domain grid (which must match that of `data_var`).
If `tidx_end > tidx_start` (ie multiple records), reads a netcdf or Matlab variable named `time_var`, applies periodicity `cycle_time`, and uses this to linearly interpolate to model time.
Then applies forcing:
F = scale*`data_var` + constant_offset + scale_offset_var*`scalar_offset_var`
Optionally (if `interp_vars` is non-empty), interpolate forcing from additional dimensions in the netcdf file,
given values supplied by additional Variable dependencies.
NB: netcdf dimensions order must be `grid_vars` x `interp_vars`` x `time_var`, where order within `interp_vars` also must match netcdf order.
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionForceGrid{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParString("netcdf_file", "",
description="netcdf file with gridded time-series data"),
PB.ParString("matlab_file", "",
description="matlab file with gridded time-series data"),
PB.ParString("matlab_key", "",
description="Dictionary key in Matlab file to use (empty string to stay at top level Dict)"),
PB.ParString("data_var", "",
description="variable name in data file"),
PB.ParString("time_var", "time",
description="time variable name in data file (empty to generate evenly spaced times from cycle_time)"),
PB.ParDouble("time_fac", 1.0, units="",
description="multiplier to convert time_var to model time (yr)"),
PB.ParInt("tidx_start", 1,
description="first record in data file to use"),
PB.ParInt("tidx_end", 1,
description="last record in data file to use (set equal to tidx_start for constant forcing from single record)"),
PB.ParBool("use_timeav", false,
description="true to average records and provide constant forcing at time-averaged value"),
PB.ParBool("time_extrap_const", false,
description="true to extrapolate out-of-range times to first/last value, false to error if time out-of-range"),
PB.ParDouble("cycle_time", 0.0, units="yr",
description="time periodicity to apply (0.0 to disable periodic)"),
PB.ParStringVec("interp_vars", String[],
description="optional interpolation variables for additional grid dimensions. "*
"NB: netcdf dimensions order must be grid_vars x interp_vars x time_var, where order within interp_vars also must match netcdf order"),
PB.ParBoolVec("interp_log", Bool[],
description="true to interpolate interp_vars in log space"),
PB.ParDouble("data_replace_nan", NaN, units="",
description="value to replace NaN in data"),
PB.ParDouble("scale", 1.0, units="",
description="scaling factor to apply"),
PB.ParDouble("constant_offset", 0.0, units="",
description="constant offset to apply"),
PB.ParDouble("scale_offset_var", 0.0, units="",
description="scaling for additional scalar offset from model variable (0.0 to disable)"),
)
data_time = nothing
data_var = nothing
time_interp = nothing
interp_interp = nothing
interp_fn = nothing
end
function PB.register_methods!(rj::ReactionForceGrid)
@info "register_methods! $(PB.fullname(rj))"
vars = [
PB.VarDepScalar("global.tforce", "yr", "historical time at which to apply forcings, present = 0 yr"),
PB.VarProp("F", "unknown", "interpolated forcing"),
]
if rj.pars.scale_offset_var[] != 0.0
@info " adding scalar offset from Variable 'scalar_offset'"
push!(vars, PB.VarDepScalar("scalar_offset", "unknown", "scalar offset"))
end
PB.setfrozen!(rj.pars.scale_offset_var)
interp_vars = []
for (vname, vlog) in PB.IteratorUtils.zipstrict(rj.pars.interp_vars, rj.pars.interp_log; errmsg="length(interp_vars) != length(interp_log)")
@info " adding interpolation Variable $vname log $vlog"
push!(interp_vars, PB.VarDepScalar(vname, "unknown", "interpolation variable log $vlog"))
end
PB.setfrozen!(rj.pars.interp_vars, rj.pars.interp_log)
PB.add_method_do!(
rj,
do_force_grid,
(PB.VarList_namedtuple(vars), PB.VarList_tuple(interp_vars)),
preparefn=prepare_do_force_grid,
)
return nothing
end
function prepare_do_force_grid(
m::PB.ReactionMethod,
(vars, interp_vars),
)
rj = m.reaction
@info "prepare_do_force_grid: $(PB.fullname(rj))"
if !isempty(rj.pars.netcdf_file[]) && isempty(rj.pars.matlab_file[])
@info " reading 'data_var' from variable '$(rj.pars.data_var[])' in netcdf file '$(rj.pars.netcdf_file[])'"
NCDatasets.Dataset(rj.pars.netcdf_file[]) do ds
_prepare_data(rj, ds)
end
elseif !isempty(rj.pars.matlab_file[]) && isempty(rj.pars.netcdf_file[])
@info " reading 'data_var' from variable '$(rj.pars.data_var[])' in matlab file '$(rj.pars.matlab_file[])' key '$(rj.pars.matlab_key[])'"
ds = MAT.matread(rj.pars.matlab_file[]) # must return a Dict varname=>vardata
if !isempty(rj.pars.matlab_key[])
ds = ds[rj.pars.matlab_key[]]
end
_prepare_data(rj, ds)
else
error(" both netcdf_file $(rj.pars.netcdf_file[]) and matlab_file $(rj.pars.matlab_file[]) are specified")
end
PB.setfrozen!(rj.pars.netcdf_file, rj.pars.matlab_file, rj.pars.data_var, rj.pars.time_var,
rj.pars.tidx_start, rj.pars.tidx_end, rj.pars.use_timeav, rj.pars.cycle_time,)
return (vars, interp_vars, rj.time_interp, rj.interp_interp, rj.interp_fn, rj.data_var)
end
"""
_prepare_data(rj::ReactionForceGrid, ds)
Read data variable from `ds[rj.pars.data_var[]]` and optional time values from `ds[rj.pars.time_var[]]`.
Map data variable to PALEO internal array layout and store in `rj.data_var`, generate time interpolator in `rj.time_interp`.
"""
function _prepare_data(rj::ReactionForceGrid, ds)
num_nc_time_recs = rj.pars.tidx_end[] - rj.pars.tidx_start[] + 1
if rj.pars.use_timeav[]
num_time_recs = 1
else
num_time_recs = num_nc_time_recs
end
# NB: A PALEO Cartesian Grid may define an internal_size for model Variables that has different dimensions (eg a linear Vector)
# to the n-D cartesian_size of the forcings read from the NetCDF file
ncartesiandims = length(PB.cartesian_size(rj.domain.grid)) # as read from NetCDF
cartesiancolons = fill(Colon(), ncartesiandims)
ninternaldims = length(PB.internal_size(PB.CellSpace, rj.domain.grid)) # PALEO array layout
internalcolons = fill(Colon(), ninternaldims)
ninterpdims = length(rj.pars.interp_vars)
interpcolons = fill(Colon(), ninterpdims)
interpdims = [length(ds[vn]) for vn in rj.pars.interp_vars]
# map to grid internal storage (ie mapping ncartesiandims -> ninternaldims)
# grid interp time
data_ndims = ninternaldims + length(interpdims) + 1
rj.data_var = Array{Float64, data_ndims}(undef, PB.internal_size(PB.CellSpace, rj.domain.grid)..., interpdims..., num_time_recs)
@info " size(data_var) = $(size(rj.data_var))"
# TODO - reorder indices (currently require gridvars..., interpvars..., timevar)
# read netcdf data, taking only the time records we need
tmp_var = Array(ds[rj.pars.data_var[]][cartesiancolons..., interpcolons..., rj.pars.tidx_start[]:rj.pars.tidx_end[]])
# copy into data_var, mapping ngriddims -> 1 linear index and creating time average if necessary
drn = rj.pars.data_replace_nan[]
if rj.pars.use_timeav[]
@views rj.data_var[internalcolons..., interpcolons..., 1] .= 0.0
for i in 1:num_nc_time_recs
if length(interpdims) == 0
@views rj.data_var[internalcolons..., 1] .+= _replace_nan!(PB.Grids.cartesian_to_internal(rj.domain.grid, tmp_var[cartesiancolons..., i]), drn) ./num_nc_time_recs
elseif length(interpdims) == 1
for id1 in 1:interpdims[1]
@views rj.data_var[internalcolons..., id1, 1] .+= _replace_nan!(PB.Grids.cartesian_to_internal(rj.domain.grid, tmp_var[cartesiancolons..., id1, i]), drn) ./num_nc_time_recs
end
elseif length(interpdims) == 2
for id1 in 1:interpdims[1], id2 in 1:interpdims[2]
@views rj.data_var[internalcolons..., id1, id2, 1] .+= _replace_nan!(PB.Grids.cartesian_to_internal(rj.domain.grid, tmp_var[cartesiancolons..., id1, id2, i]), drn) ./num_nc_time_recs
end
else
error(" > 2 interpdims not supported")
end
end
else
for i in 1:num_nc_time_recs
if length(interpdims) == 0
@views rj.data_var[internalcolons..., i] .= _replace_nan!(PB.Grids.cartesian_to_internal(rj.domain.grid, tmp_var[cartesiancolons..., i]), drn)
elseif length(interpdims) == 1
for id1 in 1:interpdims[1]
@views rj.data_var[internalcolons..., id1, i] .= _replace_nan!(PB.Grids.cartesian_to_internal(rj.domain.grid, tmp_var[cartesiancolons..., id1, i]), drn)
end
elseif length(interpdims) == 2
for id1 in 1:interpdims[1], id2 in 1:interpdims[2]
@views rj.data_var[internalcolons..., id1, id2, i] .= _replace_nan!(PB.Grids.cartesian_to_internal(rj.domain.grid, tmp_var[cartesiancolons..., id1, id2, i]), drn)
end
else
error(" > 2 interpdims not supported")
end
end
end
# create time interpolator
if num_time_recs > 1
if !isempty(rj.pars.time_var[])
@info " reading 'data_time' from variable '$(rj.pars.time_var[])' * $(rj.pars.time_fac[]) to generate time-dependent forcing from $num_time_recs records out of $num_nc_time_recs in file"
rj.data_time = Array(ds[rj.pars.time_var[]][rj.pars.tidx_start[]:rj.pars.tidx_end[]]) .* rj.pars.time_fac[]
@info " data_time[1]: $(rj.data_time[1]) = $(ds[rj.pars.time_var[]][rj.pars.tidx_start[]]) * $(rj.pars.time_fac[])"
@info " data_time[$(length(rj.data_time))]: $(rj.data_time[end]) = $(ds[rj.pars.time_var[]][rj.pars.tidx_end[]]) * $(rj.pars.time_fac[])"
else
@info " generating evenly spaced intervals in range 0.0 - $(rj.pars.time_fac[]) to apply time-dependent forcing from $num_time_recs records with no time axis defined"
rj.data_time = collect(range(0.5/num_time_recs, step=1.0/num_time_recs, length=num_time_recs)) .* rj.pars.time_fac[]
end
# create time interpolation
rj.time_interp = PB.LinInterp(rj.data_time, rj.pars.cycle_time[]; extrap_const=rj.pars.time_extrap_const[])
else
@info " generating constant time forcing from $num_nc_time_recs time record(s)"
rj.time_interp = nothing
end
# create variable interpolator(s) (if any)
rj.interp_interp = []
rj.interp_fn = []
for (vidx, (vname, vlog)) in enumerate(PB.IteratorUtils.zipstrict(rj.pars.interp_vars, rj.pars.interp_log; errmsg="length(interp_vars) != length(interp_log)"))
if vlog
interp_fn = log
else
interp_fn = identity
end
push!(rj.interp_fn, interp_fn)
vvalues = interp_fn.(Array(ds[vname]))
@info " interpolate $vname (log $vlog) values $vvalues"
length(vvalues) == size(rj.data_var)[ninternaldims+vidx] ||
error(" number of values != array size of dimension $(ninternaldims+vidx)")
push!(rj.interp_interp, PB.LinInterp(vvalues[:], extrap_const=true))
end
rj.interp_fn = tuple(rj.interp_fn...)
rj.interp_interp = tuple(rj.interp_interp...)
return nothing
end
function _replace_nan!(x::AbstractArray, rnan)
for i in eachindex(x)
if isnan(x[i])
x[i] = rnan
end
end
return x
end
function do_force_grid(
m::PB.ReactionMethod,
pars,
(vars, interp_vars, time_interp, interp_interp, interp_fn, data_var),
cellrange::PB.AbstractCellRange,
deltat,
)
rj = m.reaction
if !isnothing(time_interp)
# time dependent forcing
tforce = vars.tforce[]
((wt_lo, rec_lo), (wt_hi, rec_hi)) = PB.interp(time_interp, tforce)
else
# constant forcing
wt_lo = 1.0
rec_lo = 1
wt_hi = 0.0
rec_hi = 1
end
# apply scaling
wt_lo *= pars.scale[]
wt_hi *= pars.scale[]
# apply scalar offset
scalar_offset = pars.constant_offset[]
if pars.scale_offset_var[] != 0.0
scalar_offset += pars.scale_offset_var[] * vars.scalar_offset[]
end
if length(interp_vars) == 0
_do_interp_0(vars, data_var, cellrange, wt_lo, wt_hi, rec_lo, rec_hi, scalar_offset)
elseif length(interp_vars) == 1
_do_interp_1(vars, data_var, cellrange, wt_lo, wt_hi, rec_lo, rec_hi, scalar_offset, interp_interp, interp_fn, interp_vars)
elseif length(interp_vars) == 2
_do_interp_2(vars, data_var, cellrange, wt_lo, wt_hi, rec_lo, rec_hi, scalar_offset, interp_interp, interp_fn, interp_vars)
else
error(" > 2 interp_vars not supported")
end
return nothing
end
function _do_interp_0(vars, data_var, cellrange, wt_lo, wt_hi, rec_lo, rec_hi, scalar_offset)
@inbounds for i in cellrange.indices
vars.F[i] = wt_lo*data_var[i, rec_lo] + wt_hi*data_var[i, rec_hi] + scalar_offset
end
end
function _do_interp_1(vars, data_var, cellrange, wt_lo, wt_hi, rec_lo, rec_hi, scalar_offset, interp_interp, interp_fn, interp_vars)
((wt1_lo, rec1_lo), (wt1_hi, rec1_hi)) = PB.interp(interp_interp[1], interp_fn[1](interp_vars[1][]))
@inbounds for i in cellrange.indices
vars.F[i] = (
wt_lo*(wt1_lo*data_var[i, rec1_lo, rec_lo] + wt1_hi*data_var[i, rec1_hi, rec_lo])
+ wt_hi*(wt1_lo*data_var[i, rec1_lo, rec_hi] + wt1_hi*data_var[i, rec1_hi, rec_hi])
+ scalar_offset
)
end
end
function _do_interp_2(vars, data_var, cellrange, wt_lo, wt_hi, rec_lo, rec_hi, scalar_offset, interp_interp, interp_fn, interp_vars)
((wt1_lo, rec1_lo), (wt1_hi, rec1_hi)) = PB.interp(interp_interp[1], interp_fn[1](interp_vars[1][]))
((wt2_lo, rec2_lo), (wt2_hi, rec2_hi)) = PB.interp(interp_interp[2], interp_fn[2](interp_vars[2][]))
@inbounds for i in cellrange.indices
vars.F[i] = (
wt_lo*(
wt1_lo*(wt2_lo*data_var[i, rec1_lo, rec2_lo, rec_lo] + wt2_hi*data_var[i, rec1_lo, rec2_hi, rec_lo])
+ wt1_hi*(wt2_lo*data_var[i, rec1_hi, rec2_lo, rec_lo] + wt2_hi*data_var[i, rec1_hi, rec2_hi, rec_lo])
)
+ wt_hi*(
wt1_lo*(wt2_lo*data_var[i, rec1_lo, rec2_lo, rec_hi] + wt2_hi*data_var[i, rec1_lo, rec2_hi, rec_hi])
+ wt1_hi*(wt2_lo*data_var[i, rec1_hi, rec2_lo, rec_hi] + wt2_hi*data_var[i, rec1_hi, rec2_hi, rec_hi])
)
+ scalar_offset
)
end
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 5656 | module GridReactions
import PALEOboxes as PB
using ..DocStrings
import Infiltrator # Julia debugger
"""
ReactionUnstructuredVectorGrid
Create an [`PB.Grids.UnstructuredVectorGrid`](@ref) with `ncells` (from `ncells` Parameter).
# Parameters
$(PARS)
"""
Base.@kwdef mutable struct ReactionUnstructuredVectorGrid{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParInt("ncells", 1,
description="number of grid cells"),
)
end
function PB.set_model_geometry(rj::ReactionUnstructuredVectorGrid, model::PB.Model)
@info "set_model_geometry $(PB.fullname(rj))"
grid = PB.Grids.UnstructuredVectorGrid(ncells=rj.pars.ncells[])
rj.domain.grid = grid
@info " set $(rj.domain.name) Domain size=$(grid.ncells) grid=$grid"
return nothing
end
PB.register_methods!(rj::ReactionUnstructuredVectorGrid) = nothing
"""
ReactionCartesianGrid
Create a [`PB.Grids.CartesianArrayGrid`](@ref) with `dims` and `dimnames``
# Parameters
$(PARS)
"""
Base.@kwdef mutable struct ReactionCartesianGrid{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParStringVec("dimnames", ["lat", "lon", "z"],
description="grid dimension names"),
PB.ParIntVec("dims", [2, 3, 4],
description="grid dimensions"),
)
end
function PB.set_model_geometry(rj::ReactionCartesianGrid, model::PB.Model)
@info "set_model_geometry $(PB.fullname(rj))"
grid = PB.Grids.CartesianGrid(
PB.Grids.CartesianArrayGrid,
rj.pars.dimnames.v, rj.pars.dims.v
)
rj.domain.grid = grid
@info " set $(rj.domain.name) Domain size=$(grid.ncells) grid=$grid"
return nothing
end
PB.register_methods!(rj::ReactionCartesianGrid) = nothing
"""
ReactionGrid2DNetCDF
Create a 2D [`PB.Grids.CartesianLinearGrid`](@ref) from grid information in a NetCDF file.
# Parameters
$(PARS)
# Methods
$(METHODS_SETUP)
"""
Base.@kwdef mutable struct ReactionGrid2DNetCDF{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractMesh, "grid_type", PB.Grids.CartesianArrayGrid,
allowed_values=(PB.Grids.CartesianArrayGrid, PB.Grids.CartesianLinearGrid),
description="Cartesian grid type to create"),
PB.ParString("grid_file", "",
description="netcdf file with 2D grid information"),
PB.ParStringVec("coordinate_names", ["longitude", "latitude"],
description="coordinate names to read from netcdf file"),
PB.ParBool("equalspacededges", false,
description="true to calculate cell edges assuming an equal-spaced grid"),
PB.ParString("area_var", "",
description="netcdf variable with cell area (if available)"),
PB.ParDouble("planet_radius", 6.371229e6,
description="radius to calculate cell area from spherical geometry (if area_var = \"\")"),
)
end
function PB.set_model_geometry(rj::ReactionGrid2DNetCDF, model::PB.Model)
@info "set_model_geometry $(PB.fullname(rj))"
@info " reading 2D grid from $(rj.pars.grid_file[])"
grid2D = PB.Grids.CartesianGrid(
rj.pars.grid_type[],
rj.pars.grid_file[], rj.pars.coordinate_names.v,
equalspacededges=rj.pars.equalspacededges[]
)
if rj.pars.grid_type[] == PB.Grids.CartesianLinearGrid
# define a linear index including every cell, in column-major order (first indices are consecutive in memory)
v_i = vec([i for i=1:grid2D.dims[1], j=1:grid2D.dims[2]])
v_j = vec([j for i=1:grid2D.dims[1], j=1:grid2D.dims[2]])
PB.Grids.set_linear_index(grid2D, v_i, v_j)
end
rj.domain.grid = grid2D
@info " set $(rj.domain.name) Domain size=$(grid2D.ncells) grid=$grid2D"
return nothing
end
function PB.register_methods!(rj::ReactionGrid2DNetCDF)
@info "register_methods! $(PB.fullname(rj))"
grid_vars = [
PB.VarPropStateIndep("Asurf", "m^2", "horizontal area of surface"),
PB.VarPropScalarStateIndep("Asurf_total", "m^2", "total horizontal area of surface"),
]
PB.add_method_setup!(
rj,
setup_grid_2DNetCDF,
(PB.VarList_namedtuple(grid_vars),)
)
return nothing
end
function setup_grid_2DNetCDF(
m::PB.ReactionMethod,
pars,
(grid_vars, ),
cellrange::PB.AbstractCellRange,
attribute_name
)
rj = m.reaction
attribute_name == :setup || return
@info "$(PB.fullname(m)):"
grid2D = rj.domain.grid
length(cellrange.indices) == grid2D.ncells ||
error("tiled cellrange not supported")
if !isempty(pars.area_var[])
NCDatasets.Dataset(pars.grid_file[]) do ds
area2D = Array(ds[pars.area_var[]][:, :, 1])
grid_vars.Asurf .= cartesian_to_internal(rj.domain.grid, area2D)
end
else
for i in cellrange.indices
lon_edges = PB.Grids.get_lon_edges(grid2D, i)
lat_edges = PB.Grids.get_lat_edges(grid2D, i)
area = calc_spherical_area(pars.planet_radius[], lon_edges, lat_edges)
grid_vars.Asurf[i] = area
end
end
grid_vars.Asurf_total[] = sum(grid_vars.Asurf)
return nothing
end
"area of cell on regular spherical grid"
function calc_spherical_area(r, (lond_l, lond_u), (latd_l, latd_u))
Astrip = 2*pi*r^2*(sind(latd_u) - sind(latd_l)) # area of strip between latitudes
A = (lond_u - lond_l)/360.0 * Astrip # area of cell
return A
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 203 |
include("Constants.jl")
include("Fluxes.jl")
include("FluxPerturb.jl")
include("Forcings.jl")
include("GridForcings.jl")
include("GridReactions.jl")
include("Reservoirs.jl")
include("VariableStats.jl")
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 30452 | # -*- coding: utf-8 -*-
module Reservoirs
import PALEOboxes as PB
import Infiltrator # Julia debugger
using ..DocStrings
"""
ReactionReservoirScalar
A single scalar biogeochemical reservoir with optional paired isotope reservoir, for use in a 0D Domain
(eg sedimentary or ocean reservoirs for COPSE [Bergman2004](@cite)).
Creates State and associated Variables, depending on parameter settings:
- `const=false`: usual case
- `state_norm=false` create state variable `R` (units mol, with attribute `vfunction=VF_StateExplicit`)
and `R_sms` (units mol yr-1, with attribute `vfunction=VF_Deriv`).
- `state_norm=true` create state variable `R_solve` (`R` normalized by the values of attribute `R:norm_value`, with attribute `vfunction=VF_StateExplicit`)
and `R_solve_sms` (units yr-1, with attribute `vfunction=VF_Deriv`).
- `const=true`: a constant value, create `R` (a Property), and `R_sms` (a Target)
In addition:
- a Property `R_norm` (normalized value) is always created.
- if parameter `field_data <: AbstractIsotopeScalar` (eg `IsotopeLinear`), a Property `R_delta` is created.
The local name prefix `R` should then be renamed using `variable_links:` in the configuration file.
# Initialisation
Initial and norm value is set in the `variable_attributes:` section in
the configuration file, using `R:initial_value`, `R:initial_delta`, and `R:norm_value`.
# Example configuration in .yaml file
reservoir_P: # 0D ocean Phosphorus
class: ReactionReservoirScalar
parameters:
# field_data: ScalarData # change to IsotopeLinear to represent an isotope
# const: false # true to fix to constant value
variable_links:
R*: P # rename to represent Phosphorus
variable_attributes:
R:norm_value: 3.1e15 # mol
R:initial_value: 3.1e15 # mol
# See also
[`ReactionReservoir`](@ref) (one value per cell for a spatially resolved Domain eg ocean),
[`ReactionReservoirWellMixed`](@ref) (one value for a whole spatially resolved Domain).
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionReservoirScalar{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
PB.ParBool("const", false,
description="true to provide a constant value: R is not a state variable, fluxes in R_sms Variable are ignored"),
PB.ParBool("state_norm", false,
description="true to provide solver with normalized values"),
)
norm_value::Float64 = NaN
end
function PB.register_methods!(rj::ReactionReservoirScalar)
do_vars = PB.VariableReaction[PB.VarPropScalar("R_norm", "", "scalar reservoir normalized")]
if rj.pars.const[]
R = PB.VarPropScalar( "R", "mol", "scalar constant reservoir", attributes=(:field_data =>rj.pars.field_data[],))
push!(do_vars, R)
PB.add_method_setup!(
rj,
setup_reactionreservoirscalar,
(PB.VarList_fields([R]), PB.VarList_nothing() ),
)
R_sms = PB.VarTargetScalar( "R_sms", "mol yr-1", "scalar reservoir source-sinks", attributes=(:field_data =>rj.pars.field_data[],))
# sms variable not used by us, but must appear in a method to be linked and created
PB.add_method_do_nothing!(rj, [R_sms])
else
if rj.pars.state_norm[]
R = PB.VarPropScalar("R", "mol", "scalar reservoir", attributes=(:field_data =>rj.pars.field_data[],))
R_solve = PB.VarStateExplicitScalar("R_solve", "", "normalized scalar reservoir", attributes=(:field_data =>rj.pars.field_data[],))
append!(do_vars, [R, R_solve])
PB.add_method_setup!(
rj,
setup_reactionreservoirscalar,
(PB.VarList_fields([R]), PB.VarList_fields([R_solve]) ),
)
R_sms = PB.VarTargetScalar( "R_sms", "mol yr-1", "scalar reservoir source-sinks", attributes=(:field_data =>rj.pars.field_data[],))
R_solve_sms = PB.VarDerivScalar( "R_solve_sms", "yr-1", "normalized scalar reservoir source-sinks", attributes=(:field_data =>rj.pars.field_data[],))
PB.add_method_do!(
rj,
do_reactionreservoirscalar_sms,
(PB.VarList_namedtuple([R_sms, R_solve_sms]), ),
)
else
R = PB.VarStateExplicitScalar("R", "mol", "scalar reservoir", attributes=(:field_data =>rj.pars.field_data[],))
push!(do_vars, R)
PB.add_method_setup!(
rj,
setup_reactionreservoirscalar,
(PB.VarList_fields([R]), PB.VarList_nothing() ),
)
R_sms = PB.VarDerivScalar( "R_sms", "mol yr-1", "scalar reservoir source-sinks", attributes=(:field_data =>rj.pars.field_data[],))
# sms variable not used by us, but must appear in a method to be linked and created
PB.add_method_do_nothing!(rj, [R_sms])
end
PB.setfrozen!(rj.pars.state_norm)
end
PB.setfrozen!(rj.pars.const)
if rj.pars.field_data[] <: PB.AbstractIsotopeScalar
push!(do_vars, PB.VarPropScalar("R_delta", "per mil", "scalar reservoir isotope delta"))
end
PB.setfrozen!(rj.pars.field_data)
PB.add_method_do!(
rj,
do_reactionreservoirscalar,
(PB.VarList_namedtuple(do_vars), ),
)
PB.add_method_initialize_zero_vars_default!(rj)
return nothing
end
function setup_reactionreservoirscalar(m::PB.AbstractReactionMethod, pars, (R, R_solve, ), cellrange::PB.AbstractCellRange, attribute_name)
rj = m.reaction
# VariableReactions corresponding to (R, R_solve)
R_vars, R_solve_vars = PB.get_variables_tuple(m)
R_var = only(R_vars)
R_domvar = R_var.linkvar
rj.norm_value = PB.get_attribute(R_domvar, :norm_value)
if pars.const[] && (attribute_name == :setup)
PB.init_field!(
only(R), :initial_value, R_domvar, (_, _)->1.0, [], cellrange, (PB.fullname(R_domvar), "", "")
)
elseif attribute_name in (:norm_value, :initial_value)
if pars.state_norm[]
R_solve_var = only(R_solve_vars)
R_solve_domvar = R_solve_var.linkvar
PB.init_field!(
only(R_solve), attribute_name, R_domvar, (_, _)->1/rj.norm_value, [], cellrange, (PB.fullname(R_solve_domvar), " / $(rj.norm_value)", " [from $(PB.fullname(R_domvar))]")
)
else
PB.init_field!(
only(R), attribute_name, R_domvar, (_, _)->1.0, [], cellrange, (PB.fullname(R_domvar), "", "")
)
end
end
return nothing
end
function do_reactionreservoirscalar(m::PB.AbstractReactionMethod, pars, (vars, ), cr::PB.AbstractCellRange, deltat)
rj = m.reaction
if pars.state_norm[]
vars.R[] = vars.R_solve[]*rj.norm_value
vars.R_norm[] = PB.get_total(vars.R_solve[])
else
vars.R_norm[] = PB.get_total(vars.R[])/rj.norm_value
end
if hasfield(typeof(vars), :R_delta)
vars.R_delta[] = PB.get_delta(vars.R[])
end
return nothing
end
function do_reactionreservoirscalar_sms(m::PB.AbstractReactionMethod, pars, (vars, ), cr::PB.AbstractCellRange, deltat)
rj = m.reaction
vars.R_solve_sms[] += vars.R_sms[]/rj.norm_value
return nothing
end
"""
ReactionReservoir, ReactionReservoirTotal
A single (vector) reservoir (state variable) representing a biogeochemical tracer, ie one value per cell in a spatially-resolved
Domain (eg ocean).
State Variables can represent either per-cell concentration, or per-cell moles, set by parameter `state_conc`:
- `state_conc=false` (default): create `R` (mol) and `R_sms` (mol yr-1) as state variable and source-sink,
calculate `R_conc` (mol m-3)
- `state_conc=true`: create `R_conc` (mol m-3) and `R_conc_sms` (mol m-3 yr-1) as state variable and source-sink,
calculate `R` (mol), NB: `R_sms` (mol yr-1) is still available and is added to `R_conc_sms`.
In addition:
- if parameter `field_data <: AbstractIsotopeScalar` (eg `IsotopeLinear`), a Property `R_delta` is created.
- `ReactionReservoirTotal` or `ReactionReservoirConcTotal` also calculates the Domain total `R_total` (units mol), eg to check budgets.
Local name prefix `R` should then be renamed using `variable_links:` in the configuration file.
# Initialisation
Initial value is set using `variable_attributes:` in the configuration file, using `R:initial_value` and `R:initial_delta`
(for 'state_conc=false') or `R_conc:initial_value` and `R_conc:initial_delta` (for a 'state_conc=true').
(NB: even if `initial_value` is set on `R`, it *sets concentration in `mol m-3`*.)
Transport is defined by attributes `:advect`, `:vertical_movement` (m d-1) set on the concentration variable `R_conc`. Optical
extinction is defined by the `:specific_light_extinction` (m^2 mol-1) attribute set on the concentration variable `R_conc`.
# Example configuration in .yaml file
reservoir_P: # ocean Phosphorus
class: ReactionReservoirTotal # include _total (mol)
parameters:
# field_data: ScalarData # change to IsotopeLinear to represent an isotope
variable_links:
R*: P # rename to represent Phosphorus
variable_attributes:
R:norm_value: 3e-3 # mol m-3, normalisation value (used by some solvers)
R:initial_value: 2e-3 # mol m-3, initial concentration
# See also
[`ReactionReservoirWellMixed`](@ref) (one value for the whole Domain), [`ReactionReservoirScalar`](@ref) (one value for
a reservoir in a 0D Domain eg for COPSE [Bergman2004](@cite)), [`ReactionReservoirConst`](@ref) (constant time-independent value
ie no state variable).
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionReservoir{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
PB.ParBool("total", false,
description="true to calculate R_total"),
PB.ParDouble("limit_delta_conc", 0.0, units="mol m-3",
description="**EXPERIMENTAL** attempt to limit delta for low/-ve concentrations (0.0 to disable)"),
PB.ParBool("state_conc", false,
description="true to define R_conc, R_sms_conc as the state variable pair and calculate R, false to define R, R_sms and calculate R_conc"),
)
end
abstract type ReactionReservoirTotal <: PB.AbstractReaction end
function PB.create_reaction(::Type{ReactionReservoirTotal}, base::PB.ReactionBase)
rj = ReactionReservoir(base=base)
PB.setvalueanddefault!(rj.pars.total, true)
PB.setfrozen!(rj.pars.total)
return rj
end
function PB.register_methods!(rj::ReactionReservoir)
PB.setfrozen!(rj.pars.field_data)
PB.setfrozen!(rj.pars.total)
R_attributes=(
:field_data=>rj.pars.field_data[],
:calc_total=>rj.pars.total[],
)
R_conc_attributes = (
:field_data=>rj.pars.field_data[],
:advect=>true,
:vertical_movement=>0.0,
:specific_light_extinction=>0.0,
:vphase=>PB.VP_Undefined,
:diffusivity_speciesname=>"",
:diffusivity=>missing,
:charge=>missing,
:gamma=>missing,
)
volume = PB.VarDep("volume", "m3", "cell volume (or cell phase volume eg for a sediment with solid and liquid phases)")
if rj.pars.state_conc[]
R = PB.VarProp("R", "mol", "vector reservoir"; attributes=R_attributes)
R_conc = PB.VarStateExplicit("R_conc", "mol m-3", "concentration"; attributes=R_conc_attributes)
PB.add_method_setup_initialvalue_vars_default!(rj, [R_conc])
else
R = PB.VarStateExplicit("R", "mol", "vector reservoir"; attributes=R_attributes)
PB.add_method_setup_initialvalue_vars_default!(
rj, [R],
convertvars = [volume],
convertfn = ((volume,), i) -> volume[i],
convertinfo = " * volume",
)
R_conc = PB.VarProp("R_conc", "mol m-3", "concentration"; attributes=R_conc_attributes)
end
PB.setfrozen!(rj.pars.state_conc)
do_vars = PB.VariableReaction[R, R_conc, volume,]
if rj.pars.field_data[] <: PB.AbstractIsotopeScalar
push!(do_vars, PB.VarProp("R_delta", "per mil", "isotopic composition"))
if rj.pars.limit_delta_conc[] > 0.0
@warn "$(PB.fullname(rj)) using experimental limit_delta_conc $(rj.pars.limit_delta_conc[]) mol m-3"
end
end
PB.add_method_do!(rj, do_reactionreservoir, (PB.VarList_namedtuple(do_vars),))
if rj.pars.state_conc[]
R_conc_sms = PB.VarDeriv("R_conc_sms", "mol m-3 yr-1", "vector reservoir source-sinks",
attributes=(:field_data=>rj.pars.field_data[], ),
)
R_sms = PB.VarTarget("R_sms", "mol yr-1", "vector reservoir source-sinks",
attributes=(:field_data=>rj.pars.field_data[], ),
)
PB.add_method_do!(rj, do_reactionreservoirconc_sms, (PB.VarList_namedtuple([volume, R_conc_sms, R_sms]),))
else
R_sms = PB.VarDeriv("R_sms", "mol yr-1", "vector reservoir source-sinks",
attributes=(:field_data=>rj.pars.field_data[], ),
)
# sms variable not used by us, but must appear in a method to be linked and created
PB.add_method_do_nothing!(rj, [R_sms])
end
if rj.pars.total[]
PB.add_method_do_totals_default!(rj, [R])
end
PB.setfrozen!(rj.pars.total)
PB.add_method_initialize_zero_vars_default!(rj)
return nothing
end
function do_reactionreservoir(m::PB.AbstractReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
if pars.state_conc[]
@inbounds for i in cellrange.indices
vars.R[i] = vars.R_conc[i]*vars.volume[i]
end
else
@inbounds for i in cellrange.indices
vars.R_conc[i] = vars.R[i]/vars.volume[i]
end
end
if hasfield(typeof(vars), :R_delta)
limit_value = pars.limit_delta_conc[]
if limit_value > 0.0
# norm_value = PB.get_attribute(rj.var_R, :norm_value)::Float64
# limit_value = 1e-6 # mol m-3
@inbounds for i in cellrange.indices
vars.R_delta[i] = PB.get_delta_limit(vars.R[i], limit_value*vars.volume[i], 100.0)
end
else
@inbounds for i in cellrange.indices
vars.R_delta[i] = PB.get_delta(vars.R[i])
end
end
end
return nothing
end
function do_reactionreservoirconc_sms(m::PB.AbstractReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for i in cellrange.indices
vars.R_conc_sms[i] += vars.R_sms[i]/vars.volume[i]
end
return nothing
end
"""
ReactionReservoirConst
A single (vector) constant tracer `R_conc` (constant replacement for a [`ReactionReservoir`](@ref)).
Local name prefix `R` should then be renamed using `variable_links:` in the configuration file.
# Initialisation
Set `:initial_value`, `:initial_delta` on `R_conc` (mol m-3) in the `variable_attributes:` section of the
config file.
TODO salinity normalisation.
# Example configuration in .yaml file
reservoir_B: # Constant value for ocean Boron
class: ReactionReservoirConst
parameters:
field_data: IsotopeLinear
variable_links:
R*: B
variable_attributes:
R_conc:initial_value: 0.4269239 # contemporary value
R_conc:initial_delta: 34.0
# See also
[`ReactionReservoir`](@ref)
# Parameters
$(PARS)
# Methods and Variables
$(METHODS_SETUP)
"""
Base.@kwdef mutable struct ReactionReservoirConst{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
)
end
function PB.register_methods!(rj::ReactionReservoirConst)
var_R_conc = PB.VarProp("R_conc", "mol m-3", "concentration",
attributes=(:field_data=>rj.pars.field_data[], :specific_light_extinction=>0.0,)
)
# specify filterfn to initialize var_R_conc even though it isn't a state variables
PB.add_method_setup_initialvalue_vars_default!(rj, [var_R_conc], filterfn = v->true)
if rj.pars.field_data[] <: PB.AbstractIsotopeScalar
vars = [
var_R_conc,
PB.VarProp("R_delta", "per mil", "isotopic composition"),
]
# use do, not setup, so we handle the case where the value is modified after setup
PB.add_method_do!(rj, do_reactionreservoirconst, (PB.VarList_namedtuple(vars),) )
else
# add a dummy method to block any other reaction from also setting a var_R_conc Property Variable
PB.add_method_do_nothing!(rj, [var_R_conc])
end
PB.setfrozen!(rj.pars.field_data)
return nothing
end
function do_reactionreservoirconst(m::PB.ReactionMethod, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for i in cellrange.indices
vars.R_delta[i] = PB.get_delta(vars.R_conc[i])
end
return nothing
end
"""
ReactionReservoirForced
A single (vector) constant tracer (constant replacement for a [`ReactionReservoir`](@ref)), with forcing.
Calculates `R_conc = R_conc_initial * R_FORCE`.
Local name prefix `R` should then be renamed using `variable_links:` in the configuration file.
# Initialisation
NB: set `:initial_value`, `:initial_delta` on `R_conc_initial` in the `variable_attributes:`
section of the config file.
TODO salinity normalisation.
# See also
[`ReactionReservoirConst`](@ref), [`ReactionReservoir`](@ref)
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionReservoirForced{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
)
end
function PB.register_methods!(rj::ReactionReservoirForced)
var_R_conc_initial = PB.VarProp("R_conc_initial", "mol m-3", "initial concentration",
attributes=(:field_data=>rj.pars.field_data[], )
)
# specify filterfn to initialize var_R_conc_initial even though it isn't a state variable
PB.add_method_setup_initialvalue_vars_default!(
rj, [var_R_conc_initial],
filterfn = v->true,
)
do_vars = [
var_R_conc_initial,
PB.VarProp("R_conc", "mol m-3", "concentration = initial * forcing",
attributes=(:field_data=>rj.pars.field_data[], :specific_light_extinction=>0.0,)),
# PB.VarDep( "volume", "m3", "cell volume"),
PB.VarDepScalar( "R_FORCE", "", "forcing factor"),
]
if rj.pars.field_data[] <: PB.AbstractIsotopeScalar
push!(do_vars, PB.VarProp("R_delta", "per mil", "isotopic composition"))
end
PB.setfrozen!(rj.pars.field_data)
PB.add_method_do!(
rj,
do_reactionreservoirconstforced,
(PB.VarList_namedtuple(do_vars),),
)
return nothing
end
function do_reactionreservoirconstforced(m::PB.ReactionMethod, (do_vardata, ), cellrange::PB.AbstractCellRange, deltat)
force_fac = do_vardata.R_FORCE[]
@inbounds for i in cellrange.indices
do_vardata.R_conc[i] = do_vardata.R_conc_initial[i]*force_fac
if hasfield(typeof(do_vardata), :R_delta)
do_vardata.R_delta[i] = PB.get_delta(do_vardata.R_conc_initial[i])
end
end
return nothing
end
"""
ReactionReservoirWellMixed
A Scalar Reservoir representing a well-mixed tracer in a vector Domain (eg ocean). Provides a scalar state Variable `R` and `R_sms`,
and also vector Variables: `R_conc` (set to uniform concentration), and `R_vec_sms` Target for accumulating fluxes that is added to the scalar
`R_sms`.
# Initialisation
Initial value is set in the `variable_attributes:` section in the configuration file, using `R:initial_value` and `R:initial_delta`.
NB: may be initialized either from mean concentration or total (set by parameter `initialization_type`)
TODO salinity normalisation.
# See also
[`ReactionReservoir`](@ref) (one value per cell), [`ReactionReservoirScalar`](@ref) (one value for
a reservoir in a 0D Domain eg for COPSE [Bergman2004](@cite)).
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionReservoirWellMixed{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
PB.ParString("initialization_type", "conc",
allowed_values=["conc", "total"],
description=":initial_value attribute represents conc (mol m-3) or total (mol)"),
)
total_norm::Float64 = NaN
end
function PB.register_methods!(rj::ReactionReservoirWellMixed)
R = PB.VarStateExplicitScalar( "R", "mol", "scalar reservoir",
attributes=(:field_data=>rj.pars.field_data[],))
volume_total = PB.VarDepScalar("volume_total", "m^3", "total volume")
vars = [
R,
PB.VarPropScalar( "R_norm", "", "scalar reservoir normalized"),
PB.VarProp( "R_conc", "mol m-3", "concentration",
attributes=(:field_data=>rj.pars.field_data[], :specific_light_extinction=>0.0,)),
volume_total,
]
if rj.pars.field_data[] <: PB.AbstractIsotopeScalar
push!(vars, PB.VarProp("R_delta", "per mil", "isotopic composition"))
end
PB.setfrozen!(rj.pars.field_data)
# callback function to store Variable norm during setup
function setup_callback(m, attribute_value, v, vdata)
v.localname == "R" || error("setup_callback unexpected Variable $(PB.fullname(v))")
if attribute_value == :norm_value
m.reaction.total_norm = PB.value_ad(PB.get_total(vdata[]))
end
return nothing
end
if rj.pars.initialization_type[] == "total"
PB.add_method_setup_initialvalue_vars_default!(
rj, [R],
setup_callback=setup_callback
)
elseif rj.pars.initialization_type[] == "conc"
PB.add_method_setup_initialvalue_vars_default!(
rj, [R],
convertvars=[volume_total],
convertfn=((volume_total,), i) -> volume_total[],
convertinfo=" * total_volume",
setup_callback=setup_callback,
)
end
PB.setfrozen!(rj.pars.initialization_type)
PB.add_method_do!(rj, do_reservoir_well_mixed, (PB.VarList_namedtuple(vars),))
# add method to sum per-cell vec_sms to scalar sms
vars_sms = [
PB.VarDerivScalar( "R_sms", "mol yr-1", "scalar reservoir source-sinks",
attributes=(:field_data=>rj.pars.field_data[], :atomic=>true,)),
PB.VarTarget( "R_vec_sms","mol yr-1", "vector reservoir source-sinks",
attributes=(:field_data=>rj.pars.field_data[],))
]
PB.add_method_do!(rj, do_reservoir_well_mixed_sms, (PB.VarList_namedtuple(vars_sms),))
PB.add_method_initialize_zero_vars_default!(rj)
return nothing
end
function do_reservoir_well_mixed(
m::PB.ReactionMethod,
(vars, ),
cellrange::PB.AbstractCellRange,
deltat,
)
rj = m.reaction
if Threads.threadid() == 1 # only set once ! TODO implicitly assuming will always be called from threadid==1
vars.R_norm[] = PB.get_total(vars.R[])/rj.total_norm
end
@inbounds for i in cellrange.indices
vars.R_conc[i] = vars.R[]/vars.volume_total[]
end
if hasfield(typeof(vars), :R_delta)
delta = PB.get_delta(vars.R[])
@inbounds for i in cellrange.indices
vars.R_delta[i] = delta
end
end
return nothing
end
function do_reservoir_well_mixed_sms(
m::PB.ReactionMethod,
(vars, ),
cellrange::PB.AbstractCellRange,
deltat,
)
# accumulate first into a subtotal,
# in order to minimise time spent with lock held if this is one tile of a threaded model
subtotal = zero(vars.R_sms[])
@inbounds for i in cellrange.indices
subtotal += vars.R_vec_sms[i]
end
PB.atomic_add!(vars.R_sms, subtotal)
return nothing
end
"""
ReactionConst, ReactionScalarConst
Create constant Property Variables with names from parameter `constnames`.
# Initialisation
Constant values set by `:initial_value`, `:initial_delta` attributes in the `variable_attributes:` section of the configuration file.
# Example configuration in .yaml file
atmfloor:
reactions:
floorstubgasmr: # Provide mixing-ratio boundary condition for a subset of atmospheric variables
class: ReactionConst
parameters:
constnames: ["O2_mr", "CH4_mr", "CO2_mr", "H2_mr"] #, "H2O_mr"]
variable_attributes:
O2_mr:initial_value: [0.21] # mol/mol
CH4_mr:initial_value: [0.7443e-6] # [.NaN] # [1.271e-6] # [1.8e-6] # mol/mol
CO2_mr:initial_value: [300e-6] # mol/mol
H2_mr:initial_value: [.NaN] # mol/mol
# See also
[`ReactionReservoirConst`](@ref), [`ReactionReservoirScalar`](@ref). These provide additional variables (eg `R_delta`) to
allow them to function as a drop-in replacement for a non-constant Reservoir.
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_SETUP)
"""
Base.@kwdef mutable struct ReactionConst{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParStringVec("constnames", ["constvar"],
description="vector of names for constant Variables. Isotopes use <name>::CIsotope syntax"),
)
scalar::Bool = false
end
function PB.register_methods!(rj::ReactionConst)
vars_const = []
for varnameisotope in rj.pars.constnames
varname, IsotopeType = PB.split_nameisotope(varnameisotope, rj.external_parameters)
if rj.scalar
constvar = PB.VarPropScalarStateIndep(varname, "unknown", "constant value", attributes=(:field_data=>IsotopeType, ))
else
constvar = PB.VarPropStateIndep(varname, "unknown", "constant value", attributes=(:field_data=>IsotopeType, ))
end
push!(vars_const, constvar)
end
# add a dummy method to block any other reaction from also creating (and modifying!) a Property Variable
PB.add_method_do_nothing!(rj, vars_const)
# specify filterfn to initialize vars_const even though they aren't state variables
PB.add_method_setup_initialvalue_vars_default!(rj, vars_const, filterfn = v->true)
return nothing
end
abstract type ReactionScalarConst <: PB.AbstractReaction end
function PB.create_reaction(::Type{ReactionScalarConst}, base::PB.ReactionBase)
rj = ReactionConst(base=base, scalar=true)
return rj
end
"""
ReservoirLinksVector(isotope_data::Dict, reservoirlist) -> (res::Vector, sms::Vector, diag::Vector)
Convenience function to create variables required for a Reaction to link to a list of Reservoir variables.
`res` contains VariableReactions `<reservoir_name>`, `sms` `<reservoir_name>_sms` that link to `State`, `State_sms` variables.
`diag` contains VariableReactions `<reservoir_name>_norm` etc that link to additional properties.
# Arguments
- `reservoirlist::[(reservoir_name[::Isotope], units, description), ...]`: list of Reservoirs
"""
function ReservoirLinksVector(isotope_data::Dict, reservoirlist)
# create a list of required variables
reservoirs = Vector{PB.VariableReaction}()
sms = Vector{PB.VariableReaction}()
diagnostics = Vector{PB.VariableReaction}()
for reservoir in reservoirlist
nameisotopebr, units, description = reservoir
(var_optional, nameisotope) = PB.strip_brackets(nameisotopebr)
name_root, IsotopeType = PB.split_nameisotope(nameisotope, isotope_data)
if var_optional
lb="("; rb=")"
else
lb=""; rb=""
end
push!(
reservoirs,
PB.VarDepScalar(lb*name_root*rb, units, description,
attributes=(:field_data=>IsotopeType,))
)
push!(
sms,
PB.VarContribScalar(lb*name_root*"_sms"*rb, units*" yr-1", description*" source-sinks",
attributes=(:field_data=>IsotopeType,))
)
push!(
diagnostics,
PB.VarDepScalar(lb*name_root*"_norm"*rb, "", "normalized "*description)
)
if IsotopeType <: PB.AbstractIsotopeScalar
push!(
diagnostics,
PB.VarDepScalar(lb*name_root*"_delta"*rb, "per mil", "isotope delta "*description)
)
end
end
return (reservoirs, sms, diagnostics)
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 10484 | # -*- coding: utf-8 -*-
module VariableStats
import PALEOboxes as PB
using ..DocStrings
import Infiltrator # Julia debugger
"""
ReactionSum, ReactionVectorSum
A sum of variables (eg budget).
- If Parameter `component_to_add == 0`, all components of Isotopes are included.
- If Parameter `component_to_add == component_number`, a single component only is included.
# Parameters
$(PARS)
# Methods and Variables for default Parameters
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionSum{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParStringVec( "vars_to_add", ["2*myvar", "myothervar", "-1*mythirdvar"],
description="vector of variable names to add, eg [2*myvar, myothervar, -1*mythirdvar]"),
PB.ParString("vars_prefix", "",
description="optional prefix for vars_to_add"),
PB.ParInt("component_to_add", 0,
description="component to add, 0 for all"),
PB.ParBool("vectorsum", false,
description="true to accumulate sum into vector Variable, "*
"false to accumulate sum into scalar (adding vector cells if necessary)"),
)
var_multipliers::Vector{Float64} = Float64[]
comprange::UnitRange{Int64} = 0:-1
end
abstract type ReactionVectorSum <: PB.AbstractReaction end
function PB.create_reaction(::Type{ReactionVectorSum}, base::PB.ReactionBase)
rj = ReactionSum(base=base)
PB.setvalueanddefault!(rj.pars.vectorsum, true)
PB.setfrozen!(rj.pars.vectorsum)
return rj
end
function PB.register_methods!(rj::ReactionSum)
io = IOBuffer()
println(io, "register_methods: $(PB.fullname(rj)) $(PB.typename(rj))")
vars_to_add = []
empty!(rj.var_multipliers)
for varmultname in rj.pars.vars_to_add
# parse multiplier
svmn = split(varmultname, ['*', ' '], keepempty=false)
if length(svmn) == 1
mult, varname = (1.0, rj.pars.vars_prefix[]*svmn[1])
elseif length(svmn) == 2
mult, varname = (parse(Float64, svmn[1]), rj.pars.vars_prefix[]*svmn[2])
else
PB.infoerror(io, "reaction ", fullname(rj), "invalid field in vars_to_add ", varmultname)
end
println(io, " add $mult * $varname")
push!(rj.var_multipliers, mult)
# generate new name with domain prefix to disambiguate eg O2 in atm and ocean
(linkreq_domain, linkreq_subdomain, linkreq_name, link_optional) =
PB.parse_variablereaction_namestr(varname)
localname = PB.combine_link_name(linkreq_domain, "", linkreq_name, sep="_")
# mark all vars_to_add as optional to help diagnose config errors
# default :field_data=>PB.UndefinedData to allow Variable to link to any data type (this is checked later)
v = PB.VarDep(localname => "("*varname*")", "unknown", "")
# no length check if scalar sum
if !rj.pars.vectorsum[]
PB.set_attribute!(v, :check_length, false; allow_create=true)
end
push!(vars_to_add, v)
end
if rj.pars.vectorsum[]
methodfn = do_vectorsum
var_sum = PB.VarProp("sum", "unknown", "sum of specified variables")
else
methodfn = do_scalarsum
var_sum = PB.VarPropScalar("sum", "unknown", "sum of specified variables")
end
PB.add_method_do!(
rj,
methodfn,
(
PB.VarList_single(var_sum, components=true),
PB.VarList_tuple(vars_to_add, components=true)
),
)
@info String(take!(io))
return nothing
end
function PB.register_dynamic_methods!(rj::ReactionSum)
# update method now Variable are linked hence components known
method_sum = PB.get_method_do(rj, rj.pars.vectorsum[] ? "do_vectorsum" : "do_scalarsum")
var_sum = PB.get_variable(method_sum, "sum")
vars_to_add = PB.get_variables(method_sum, filterfn = v->v.localname != "sum")
# set units from sum variable
# (may have been set explicitly in yaml file)
sum_units = PB.get_attribute(var_sum, :units)
for v in vars_to_add
PB.set_attribute!(v, :units, sum_units)
end
# check variable components match and update var_sum.components
if rj.pars.component_to_add[] == 0
# add all components of vars_to_add Variables
# check all Variable have the same data
firstvar_d = nothing
for v in vars_to_add
!isnothing(v.linkvar) ||
error("Reaction $(PB.fullname(rj)) variable $(v.localname) is not linked: check configuration")
linkvar_d = PB.get_attribute(v.linkvar, :field_data)
if v === first(vars_to_add)
firstvar_d = linkvar_d
PB.set_attribute!(var_sum, :field_data, firstvar_d)
@info "Reaction $(PB.fullname(rj)) Variable $(PB.fullname(var_sum.linkvar)) adding data=$firstvar_d"
end
linkvar_d == firstvar_d ||
error("Reaction $(PB.fullname(rj)) not all variables to be summed have the same :field_data Type: $(PB.fullname(v.linkvar)) $(linkvar_d) != $(PB.fullname(first(vars_to_add).linkvar)) $(firstvar_d)")
end
else
# add first component of vars_to_add Variables
PB.set_attribute!(var_sum, :field_data, PB.ScalarData)
@info "Reaction $(PB.fullname(rj)) Variable $(PB.fullname(var_sum.linkvar)) adding single component $(rj.pars.component_to_add[])"
end
if rj.pars.component_to_add[] == 0
rj.comprange = 1:PB.num_components(PB.get_attribute(var_sum, :field_data))
else
rj.comprange = rj.pars.component_to_add[]:rj.pars.component_to_add[]
end
end
function do_scalarsum(
m::PB.ReactionMethod,
(var_sum_data, vars_to_add_data),
cellrange::PB.AbstractCellRange,
deltat
)
rj = m.reaction
comprange = rj.comprange
function _add_var(var_to_add, multiplier)
for j in comprange
var_sum_data[j][] += multiplier * sum(var_to_add[j])
end
return nothing
end
for j in comprange
var_sum_data[j][] = 0.0
end
PB.IteratorUtils.foreach_longtuple(_add_var, vars_to_add_data, rj.var_multipliers)
return nothing
end
function do_vectorsum(
m::PB.ReactionMethod,
(var_sum_data, vars_to_add_data),
cellrange::PB.AbstractCellRange,
deltat
)
rj = m.reaction
comprange = rj.comprange
function _add_var(var_to_add, multiplier)
@inbounds for j in comprange
for i in cellrange.indices
var_sum_data[j][i] += multiplier * var_to_add[j][i]
end
end
return nothing
end
for j in comprange
@inbounds for i in cellrange.indices
var_sum_data[j][i] = 0.0
end
end
PB.IteratorUtils.foreach_longtuple(_add_var, vars_to_add_data, rj.var_multipliers)
return nothing
end
"""
ReactionWeightedMean
Weighted mean (eg by area or volume) of Variable
# Parameters
$(PARS)
# Methods and Variables
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionWeightedMean{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParType(PB.AbstractData, "field_data", PB.ScalarData,
allowed_values=PB.IsotopeTypes,
description="disable / enable isotopes and specify isotope type"),
)
end
function PB.register_methods!(rj::ReactionWeightedMean)
vars = [
PB.VarDep( "var", "unknown", "variable to calculate weighted mean from",
attributes=(:field_data=>rj.pars.field_data[],)),
PB.VarDep( "measure", "unknown", "cell area or volume"),
PB.VarDepScalar( "measure_total", "unknown", "total Domain area or volume"),
PB.VarPropScalar("var_mean", "unknown", "weighted mean over Domain area or volume",
attributes=(:field_data=>rj.pars.field_data[], :initialize_to_zero=>true, :atomic=>true)),
]
PB.add_method_do!(rj, do_weighted_mean, (PB.VarList_namedtuple(vars),))
PB.add_method_initialize_zero_vars_default!(rj)
return nothing
end
function do_weighted_mean(m::PB.ReactionMethod, (vars,), cellrange::PB.AbstractCellRange, deltat)
rj = m.reaction
# use a subtotal to minimise time lock held if this is one tile of a threaded model
subtotal = zero(vars.var_mean[])
@inbounds for i in cellrange.indices
subtotal += vars.var[i]*vars.measure[i] # normalisation by measure_total below
end
PB.atomic_add!(vars.var_mean, subtotal/vars.measure_total[])
return nothing
end
"""
ReactionAreaVolumeValInRange
Fraction of Domain area or volume with Variable in a range of values.
# Parameters
$(PARS)
# Methods and Variables
$(METHODS_DO)
"""
Base.@kwdef mutable struct ReactionAreaVolumeValInRange{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParDouble( "range_min", -Inf, units="mol m-3",
description="minimum value to include in frac"),
PB.ParDouble( "range_max", Inf, units="mol m-3",
description="maximum value to include in frac"),
)
end
function PB.register_methods!(rj::ReactionAreaVolumeValInRange)
vars = [
PB.VarDep( "rangevar", "unknown", "variable to check within range";
attributes=(:field_data=>PB.ScalarData, )), # total only, not isotope
PB.VarDep( "measure", "unknown", "cell area or volume"),
PB.VarDepScalar( "measure_total", "unknown", "total Domain area or volume"),
PB.VarPropScalar("frac", "", "fraction of Domain area or volume in specified range",
attributes=(:initialize_to_zero=>true, :atomic=>true)),
]
PB.add_method_do!(rj, do_area_volume_in_range, (PB.VarList_namedtuple(vars),))
PB.add_method_initialize_zero_vars_default!(rj)
return nothing
end
function do_area_volume_in_range(m::PB.ReactionMethod, pars, (vars,), cellrange::PB.AbstractCellRange, deltat)
# use a subtotal to minimise time lock held if this is one tile of a threaded model
frac_subtotal = zero(vars.frac[])
@inbounds for i in cellrange.indices
if vars.rangevar[i] >= pars.range_min[] && vars.rangevar[i] <= pars.range_max[]
frac_subtotal += vars.measure[i] # normalisation by measure_total below
end
end
PB.atomic_add!(vars.frac, frac_subtotal/vars.measure_total[])
return nothing
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 9031 | import Infiltrator
"""
RateStoich(
ratevartemplate, stoich_statevarname;
deltavarname_eta=nothing, prcessname="", sms_prefix="", sms_suffix="_sms"
) -> RateStoich
Calculate fluxes for a biogeochemical reaction given rate, stoichiometry, and optionally isotope eta.
Add to a Reaction using [`create_ratestoich_method`](@ref) and [`add_method_do!`](@ref).
A Property Variable should be set to provide the reaction rate (often this is implemented by another method of the same Reaction).
This method will then link to that (using the local and link names supplied by `ratevartemplate`)
and calculate the appropriate product rates, omitting products that are not present (`VariableReaction` not linked)
in the `Model` configuration. Metadata for use when analysing model output should be added to the rate variable using [`add_rate_stoichiometry!`](@ref),
in the usual case where this Variable is supplied as `ratevartemplate` this will happen automatically.
# Arguments:
- `ratevartemplate::Union{VarPropT, VarDepT}`: used to define the rate variable local and link names.
- `stoich_statevarname`: collection of Tuple(stoichiometry, name) eg ((-2.0, "O2"), (-1.0,"H2S::Isotope"), (1.0, "SO4::Isotope"))
- `deltavarname_eta`: optional tuple of variable delta + eta ("SO4\\_delta", -30.0) or ("SO4\\_delta", rj.pars.delta). If a Parameter is supplied, this is read in `do_react_ratestoich` to allow modification.
- `processname::String`: optional tag to identify the type of reaction in model output
- `add_rate_stoichiometry=true`: `true` to add call [`add_rate_stoichiometry!`](@ref) to add metadata to `ratevartemplate`.
# Examples:
Create a `RateStoich` representing the reaction 2 O2 + H2S -> H2SO4
```jldoctest; setup = :(import PALEOboxes)
julia> myratevar = PALEOboxes.VarProp("myrate", "mol yr-1", "a rate");
julia> rs = PALEOboxes.RateStoich(myratevar, ((-2.0, "O2"), (-1.0,"H2S"), (1.0, "SO4")));
julia> rs.stoich_statevarname
((-2.0, "O2"), (-1.0, "H2S"), (1.0, "SO4"))
```
"""
mutable struct RateStoich
"template to define rate variable name, units, etc"
ratevartemplate::Union{VarPropT, VarDepT}
"label for output analysis (ratevar :rate_processname attribute)"
processname::String
"Tuple of (stoich, statevarname) eg ((-2.0, \"O2\"), (-1.0, \"H2S\"), (1.0, \"SO4\"))"
stoich_statevarname::Tuple
sms_prefix::String
sms_suffix::String
"Tuple (delta_varname, eta)"
deltavarname_eta
isotope_data::Type
"construct a new RateStoich"
function RateStoich(
ratevartemplate::Union{VarPropT, VarDepT}, stoich_statevarname;
processname="",
sms_prefix="",
sms_suffix="_sms",
deltavarname_eta=nothing,
add_rate_stoichiometry=true,
)
rs = new(
ratevartemplate,
processname,
stoich_statevarname,
sms_prefix,
sms_suffix,
deltavarname_eta,
UndefinedData,
)
if add_rate_stoichiometry
add_rate_stoichiometry!(ratevartemplate, rs)
end
return rs
end
end
"""
get_stoich_statevarname(reactantnames, prodnames) -> stoich_statevarname
Convert collections of reactant and product names (which may be duplicated) to reaction stoichiometry
in form suitable to create a [`RateStoich`](@ref).
Returns Tuple of (stoich, statevarname) eg ((-2.0, \"O2\"), (-1.0, \"H2S\"), (1.0, \"SO4\"))"
"""
function get_stoich_statevarname(reactantnames, prodnames)
stoich = Dict{String, Float64}()
for s in reactantnames
stoich[s] = get(stoich, s, 0) - 1
end
for s in prodnames
stoich[s] = get(stoich, s, 0) + 1
end
stoich_statevarname = Tuple((n, s) for (s, n) in stoich)
return stoich_statevarname
end
function add_method_do!(reaction::AbstractReaction, ratestoich::RateStoich; kwargs...)
method = create_ratestoich_method(reaction, ratestoich; kwargs...)
add_method_do!(reaction, method)
return method
end
"""
create_ratestoich_method(reaction::AbstractReaction, ratestoich::RateStoich; isotope_data=ScalarData)
-> ReactionMethod
Create method (see [`RateStoich`](@ref)).
"""
function create_ratestoich_method(
@nospecialize(reaction::AbstractReaction), ratestoich::RateStoich;
isotope_data=ScalarData,
ignore_unlinked=true,
operatorID=reaction.operatorID,
domain=reaction.domain
)
ratevarlocalname = ratestoich.ratevartemplate.localname # used for diagnostic info
space = get_attribute(ratestoich.ratevartemplate, :space)
# if isotopes in use, create _delta variable
do_isotopes = (isotope_data <: AbstractIsotopeScalar) && !isnothing(ratestoich.deltavarname_eta)
if do_isotopes
ratestoich.isotope_data = isotope_data
delta_varname, tmpeta = ratestoich.deltavarname_eta
if tmpeta isa Parameter
etapar = tmpeta
else
etapar = ParDouble("eta", tmpeta, units="per mil", description="constant eta")
end
delta_var = VarDep(delta_varname, "per mil", "generated by RateStoich.rate="*ratevarlocalname,
attributes=(:space=>space,))
else
ratestoich.isotope_data = ScalarData
etapar = nothing
delta_var = nothing
end
isotope_dict = Dict("Isotope" => ratestoich.isotope_data)
# iterate through the flux variables in stoich_statevarname and create if necessary
vars_sms = VariableReaction[]
vars_stoich = Float64[]
for (stoich, statevarnamefull) in ratestoich.stoich_statevarname
# parse out ::Isotope, substituting with ratestoich.isotope_data
statevarname, disotope = split_nameisotope(statevarnamefull, isotope_dict)
# construct name for flux variable
smsname = ratestoich.sms_prefix*statevarname*ratestoich.sms_suffix
smsname = ignore_unlinked ? "("*smsname*")" : smsname
# create variable
push!(
vars_sms,
VarContrib(smsname, "mol yr-1", "generated by RateStoich rate="*ratevarlocalname,
attributes=(:field_data=>disotope, :space=>space,))
)
push!(vars_stoich, stoich)
end
p = (
etapar,
vars_stoich,
ratestoich,
)
return ReactionMethod(
do_react_ratestoich,
reaction,
"RateStoich_"*ratevarlocalname,
(
VarList_single(VarDep(ratestoich.ratevartemplate)),
isnothing(delta_var) ? VarList_nothing() : VarList_single(delta_var),
VarList_tuple(vars_sms),
),
p,
operatorID,
domain
)
end
"""
add_rate_stoichiometry!(ratevar::VarPropT, ratestoich::RateStoich)
Add metadata to rate variable `ratevar` for use when analysing model output.
Only needs to be called explicitly if `RateStoich` was supplied with a VarDep that links to the rate variable,
not the rate variable itself.
Adds Variable attributes:
- `rate_processname::String = ratestoich.processname`
- `rate_species::Vector{String}` reactants + products from `ratestoich.stoich_statevarname`
- `rate_stoichiometry::Vector{Float64}` reaction stoichiometry from `ratestoich.stoich_statevarname`
"""
function add_rate_stoichiometry!(
ratevar, ratestoich::RateStoich,
)
isa(ratevar, VarPropT) || @warn "add_rate_stoichiometry! ratevar $(fullname(ratevar)) is not a Property Variable, metadata will be ignored"
set_attribute!(ratevar, :rate_processname, ratestoich.processname; allow_create=true)
rate_species = String[species for (stoich, species) in ratestoich.stoich_statevarname]
set_attribute!(ratevar, :rate_species, rate_species; allow_create=true)
rate_stoichiometry = Float64[stoich for (stoich, species) in ratestoich.stoich_statevarname]
set_attribute!(ratevar, :rate_stoichiometry, rate_stoichiometry; allow_create=true)
return nothing
end
"""
do_react_ratestoich(m::ReactionMethod, vardata, cellrange, deltat)
Calculate rates for reaction products defined by a [`RateStoich`](@ref).
`ratestoich_accessor` should be a NamedTuple generated by
[`create_accessors`](@ref).
"""
function do_react_ratestoich(m::ReactionMethod, (rate, delta, sms_data), cellrange, deltat)
(etapar, sms_stoich, _) = m.p
IteratorUtils.foreach_longtuple_p(_do_sms, sms_data, sms_stoich, (cellrange, etapar, rate, delta))
return nothing
end
function _do_sms(sms_data, stoich, (cellrange, etapar, rate, delta))
isotype = eltype(sms_data)
# @Infiltrator.infiltrate
if isotype <: AbstractIsotopeScalar
eta = etapar[]
@inbounds for idx in cellrange.indices
sms_data[idx] += isotope_totaldelta(isotype, stoich*rate[idx], delta[idx] + eta)
end
else
@inbounds for idx in cellrange.indices
sms_data[idx] += stoich*rate[idx]
end
end
return nothing
end
# ignore unlinked Variables
function _do_sms(sms_data::Nothing, stoich, p)
return nothing
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 8298 | ##############################
# Default setup methods (optional)
##############################
"""
add_method_setup_initialvalue_vars_default!(react::AbstractReaction, variables [; kwargs...])
Create and add a default method to initialize Variables matching `filterfn` (defaults to state Variables)
at beginning of integration.
# Setup callbacks used
- State Variables and similar (`:vfunction != VF_Undefined`) are initialized in a setup callback with
`attribute_name in (:initial_value, :norm_value)`, with values from those Variable attributes.
- If `force_state_norm_value=false`, other Variables (with `:vfunction == VF_Undefined`) are initialized in a setup callback with
`attribute_name=:setup`, with values from the `:initial_value` Variable attribute. NB: `filterfn` must be set to include these Variables.
- If `force_initial_norm_value=true`, all Variables (including those with `:vfunction == VF_Undefined`) are initialised as state Variables
# Keywords
- `filterfn`: set to f(var)::Bool to override the default selection for state variables only
(Variables with `:vfunction in (VF_StateExplicit, VF_State, VF_Total, VF_StateTotal, VF_Constraint)`)
- `force_initial_norm_value=false`: `true` to always use `:initial_value`, `:norm_value`, even for variables with `:vfunction=VF_Undefined`
- `transfer_attribute_vars=[]`: Set to a list of the same length as `variables` to initialise `variables`
from attributes of `transfer_attribute_vars`.
- `setup_callback=(method, attribute_name, var, vardata) -> nothing`: Set to a function that is called
after each Variable initialisation eg to store norm values.
- `convertvars=[]`
- `convertfn = (convertvars_tuple, i) -> 1.0`
- `convertinfo = ""`
# Including volume etc conversion
Set `convertvars` to a Vector of Variables (eg for cell volume) and supply `convertfn` and `convertinfo`
to initialize to `:initial_value*convertfn(convertvars_tuple, i)` where the argument of `convertfn`
is the Tuple generated by `VarList_tuple(convertvars)`.
Example: To interpret `:initial_value` as a concentration-like quantity:
convertvars = [volume],
convertfn = ((volume, ), i) -> volume[i],
convertinfo = " * volume"
"""
function add_method_setup_initialvalue_vars_default!(
react::AbstractReaction, variables;
filterfn=var -> get_attribute(var, :vfunction) in (VF_StateExplicit, VF_State, VF_Total,VF_StateTotal, VF_Constraint),
force_initial_norm_value=false,
transfer_attribute_vars = [],
convertvars = [],
convertfn = (convertvars_tuple, i) -> 1.0,
convertinfo = "",
setup_callback = (method, attribute_name, var, vardata) -> nothing,
)
isempty(transfer_attribute_vars) || length(variables) == length(transfer_attribute_vars) ||
error("transfer_attribute_vars list is not the same length as variables list")
setup_vars = []
setup_transfer_vars = []
for i in eachindex(variables)
var = variables[i]
if filterfn(var)
push!(setup_vars, var)
isempty(transfer_attribute_vars) ||
push!(setup_transfer_vars, VarDep(transfer_attribute_vars[i]))
end
end
add_method_setup!(
react,
setup_initialvalue_vars_default,
(VarList_fields(setup_vars), VarList_tuple(setup_transfer_vars), VarList_tuple(convertvars)),
p = (force_initial_norm_value, convertfn, convertinfo, setup_callback),
)
return nothing
end
"""
setup_initialvalue_vars_default
Initialize Variables to (`:initial_value` or `:norm_value`) [* convertfn] at beginning of integration.
"""
function setup_initialvalue_vars_default(
m::ReactionMethod,
(varfields, transfervardata, convertvarsdata),
cellrange::AbstractCellRange,
attribute_name
)
(force_initial_norm_value, convertfn, convertinfo, setup_callback) = m.p
# VariableReactions corresponding to (vardata, transfervardata, convertvarsdata)
vars, transfer_attribute_vars, convertvars = get_variables_tuple(m)
domvars = [v.linkvar for v in vars] # get_attributes from Domain var, as only 'master' Reaction var will be updated
if isempty(transfer_attribute_vars)
attrbvars = domvars
else
attrbvars = [v.linkvar for v in transfer_attribute_vars]
end
first_var = true
for (rv, v, attrbv, vfield) in IteratorUtils.zipstrict(vars, domvars, attrbvars, varfields)
vfunction = get_attribute(v, :vfunction, VF_Undefined)
if vfunction == VF_Undefined && !force_initial_norm_value
# non-state Variables are initialized in :setup, from :initial_value attribute
attribute_name == :setup || continue
attribute_to_read = :initial_value
else
# state Variables etc are initialized in :initial_value, :norm_value, from that attribute
attribute_name in (:initial_value, :norm_value) || continue
attribute_to_read = attribute_name
end
if first_var
@info "$(fullname(m)):"
first_var = false
end
if v === attrbv
trsfrinfo = ""
else
trsfrinfo = " [from $(fullname(attrbv))]"
end
init_field!(
vfield, attribute_to_read, attrbv, convertfn, convertvarsdata, cellrange, (fullname(v), convertinfo, trsfrinfo)
)
setup_callback(m, attribute_name, rv, vfield.values)
end
return nothing
end
##############################
# Default initialize methods (optional)
##############################
"""
add_method_initialize_zero_vars_default!(react::AbstractReaction, variables=PB.get_variables(react))
Create and add a default method to initialize Variables to zero at beginning of each timestep. Defaults to
adding all Variables from `react` with `:initialize_to_zero` attribute `true`.
NB: TODO variables are converted to VarDep (no dependency checking or sorting needed, could define a VarInit or similar?)
"""
function add_method_initialize_zero_vars_default!(
react::AbstractReaction, variables=get_variables(react);
filterfn=v->get_attribute(v, :initialize_to_zero, false)
)
init_vars = []
for var in variables
if filterfn(var)
push!(init_vars, VarInit(var))
end
end
add_method_initialize!(
react,
initialize_zero_vars_default,
(
VarList_fields(init_vars),
),
)
return nothing
end
"""
initialize_zero_vars_default
Initialize variables at beginning of timestep
"""
function initialize_zero_vars_default(
m::ReactionMethod,
(init_fields,),
cellrange::AbstractCellRange,
deltat
)
IteratorUtils.foreach_longtuple_p(zero_field!, init_fields, cellrange)
return nothing
end
################################
# do nothing method
#################################
"""
add_method_do_nothing!(react::AbstractReaction, variables)
Create and add a dummy method to define Variables only.
"""
function add_method_do_nothing!(react::AbstractReaction, variables)
add_method_do!(
react,
methodfn_do_nothing,
(VarList_tuple(variables),)
)
return nothing
end
methodfn_do_nothing(m::ReactionMethod, (vars, ), cellrange::AbstractCellRange, deltat) = nothing
is_do_nothing(m::ReactionMethod) = false
is_do_nothing(m::ReactionMethod{typeof(methodfn_do_nothing)}) = true
###############################################
# Thread barrier method (PALEOboxes internal use only)
###############################################
function do_method_barrier(m::ReactionMethod, _, _, _)
(barrier, barrierfn) = m.p
barrierfn(barrier)
return nothing
end
"""
reaction_method_thread_barrier(barrier)
Create a ReactionMethod holding a thread barrier `barrier`.
"""
function reaction_method_thread_barrier(barrier, barrierfn)
return ReactionMethod(
do_method_barrier,
NoReaction(),
"thread_barrier",
(VarList_nothing(),),
(barrier, barrierfn), # p
[-1],
Domain(name="thread_barrier", ID=-1, parameters=Dict{String, Any}()),
)
end
is_do_barrier(m::ReactionMethod) = false
is_do_barrier(m::ReactionMethod{typeof(do_method_barrier)}) = true
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 5398 | """
add_method_do_totals_default!(react::AbstractReaction, total_candidates=PB.get_variables(react);
[filterfn] [, methodname] [, total_localnames] [, operatorID])
Create and add a method to add total variables (Scalar Properties), for Variables in collection `total_candidates` that match `filterfn`
(defaults to those that are Array Variables and have attribute ``:calc_total == true`).
NB: total Variables will require initialization to zero using [`add_method_initialize_zero_vars_default!`](@ref)
"""
function add_method_do_totals_default!(
reaction::AbstractReaction, total_candidates=get_variables(reaction);
kwargs...
)
return add_method_do!(
reaction,
create_totals_method(reaction, total_candidates; kwargs...),
)
end
"""
create_totals_method(reaction, var; [methodname] [, total_localname] [, operatorID]) -> ReactionMethod
Create a method to add a total variable (Scalar Property) to `reaction` for `var`. If `total_localname` is not supplied, it will be generated
by appending `_total` to `var.localname`.
NB: total Variables will require initialization to zero using [`add_method_initialize_zero_vars_default!`](@ref)
"""
function create_totals_method(
reaction::AbstractReaction, var::VariableReaction;
methodname="totals",
total_localname=nothing,
operatorID=reaction.operatorID
)
return _create_totals_method(
reaction,
methodname,
([var], [create_totalvar(var, total_localname)]),
operatorID
)
end
"""
create_totals_method(reaction, total_candidates;
[filterfn] [, methodname] [, total_localnames] [, operatorID]) -> ReactionMethod
Create a method to add total variables (Scalar Properties), for Variables in `total_candidates` that match `filterfn`
(defaults to those that are Array Variables and have attribute ``:calc_total == true`).
NB: total Variables will require initialization to zero using [`add_method_initialize_zero_vars_default!`](@ref)
"""
function create_totals_method(
reaction::AbstractReaction, total_candidates;
filterfn=v->get_attribute(v, :calc_total, false),
methodname="totals",
total_localnames=nothing,
operatorID=reaction.operatorID
)
if isnothing(total_localnames)
# remove duplicates (eg from setup and do methods)
vars_all = Dict(v.localname =>v for v in total_candidates if filterfn(v))
vars = [v for (k, v) in vars_all]
else
# check no filtering if total_localnames supplied
vars = [v for v in total_candidates if filterfn(v)]
length(vars) == length(total_candidates) ||
error("create_totals_method: configuration error, Reaction $(fullname(reaction)), filterfn not supported with total_localnames")
length(total_localnames) == length(vars) ||
error("create_totals_method: configuration error, Reaction $(fullname(reaction)) length(total_localnames) != number of total Variables")
end
var_totals = []
for (idx, v) in enumerate(vars)
if isnothing(total_localnames)
total_localname = nothing
else
total_localname = total_localnames[idx]
end
push!(var_totals, create_totalvar(v, total_localname))
end
return _create_totals_method(
reaction,
methodname,
(vars, var_totals),
operatorID
)
end
function create_totalvar(var, total_localname=nothing)
if isnothing(total_localname)
total_localname = var.localname*"_total"
end
return VarPropScalar(total_localname, get_attribute(var, :units), "total "*get_attribute(var, :description),
attributes=(:field_data=>get_attribute(var, :field_data), :initialize_to_zero=>true, :atomic=>true),
)
end
"""
do_vartotals(varstats, varstats_data, cellrange::AbstractCellRange)
Calculate totals. `varstats_data` is `accessors` returned by `create_accessors`. Call from the
`ReactionPhase` supplied to [`add_var`](@ref).
"""
function do_vartotals(m::AbstractReactionMethod, (vars_data, var_totals_data), cellrange::AbstractCellRange, deltat)
function calc_total(data, total_data, cellrange)
# accumulate first into a subtotal, and then into total_data[], in order to minimise time spent with lock held
# if this is one tile of a threaded model
subtotal = zero(total_data[])
@inbounds for i in cellrange.indices
subtotal += data[i]
end
atomic_add!(total_data, subtotal)
return nothing
end
length(vars_data) == length(var_totals_data) ||
error("do_vartotals: components length mismatch $(fullname(m)) $(get_variables_tuple(m)) (check :field_data (ScalarData, IsotopeLinear etc) match)")
# if cellrange.operatorID == 0 || cellrange.operatorID in totals_method.operatorID
for iv in eachindex(vars_data)
calc_total(vars_data[iv], var_totals_data[iv], cellrange)
end
# end
return nothing
end
function _create_totals_method(
reaction::AbstractReaction,
methodname::AbstractString,
(vars, var_totals),
operatorID,
)
return ReactionMethod(
do_vartotals,
reaction,
methodname,
(VarList_components(VarDep.(vars)), VarList_components(var_totals)),
nothing,
operatorID,
reaction.domain
)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 4521 | """
DocStrings
Extends Julia `DocStringExtensions` package to provide PALEO-specific "Abbreviations" to list
Reaction Parameters and Variables in docstrings.
exports PARS, METHODS_SETUP, METHODS_INITIALIZE, METHODS_DO
`\$(PARS)` expands to a list of Reaction Parameters
`\$(METHODS_SETUP)`, `\$(METHODS_INITIALIZE)`, `\$(METHODS_DO)` expand to a list of ReactionMethods and Variables
NB: a Reaction is created with `create_reaction`. In addition, `\$(METHODS_DO)` etc call `register_methods(rj::AbstractReaction)`,
so may fail if this call fails with default parameters.
"""
module DocStrings
import DocStringExtensions as DSE
import PALEOboxes as PB
struct Pars <: DSE.Abbreviation end
const PARS = Pars()
function DSE.format(::Pars, buf, doc)
local docs = get(doc.data, :fields, Dict())
local binding = doc.data[:binding]
local object = Docs.resolve(binding)
# println(buf, "PARS binding $binding object $object")
try
rj = PB.create_reaction(object, PB.ReactionBase(name="test", classname="test", external_parameters=Dict{String, Any}()))
if hasproperty(rj, :pars)
PB.add_par(rj, rj.pars)
end
# println(buf, "$object $(length(PB.get_parameters(rj))) Parameters" )
for p in PB.get_parameters(rj)
md = "- `$(p.name)["
md *= p.external ? "external, " : ""
md *= "$(typeof(p.v))]`="
md *= md_value(p.v)
md *= isempty(p.units) ? "," : " ($(p.units)),"
md *= " `default_value`="*md_value(p.default_value)*","
md *= isempty(p.allowed_values) ? "" : " `allowed_values`=$(p.allowed_values),"
md *= " `description`=\"$(PB.escape_markdown(p.description))\""
println(buf, md)
end
catch e
println(buf, PB.escape_markdown("PARS exception: $e"))
end
return nothing
end
struct Methods <: DSE.Abbreviation
field::Symbol
end
const METHODS_SETUP = Methods(:methods_setup)
const METHODS_INITIALIZE = Methods(:methods_initialize)
const METHODS_DO = Methods(:methods_do)
function DSE.format(methods::Methods, buf, doc)
local docs = get(doc.data, :fields, Dict())
local binding = doc.data[:binding]
local object = Docs.resolve(binding)
try
# println(buf, "PARS binding $binding object $object")
rj = PB.create_reaction(object, PB.ReactionBase(name="test", classname="test", external_parameters=Dict{String, Any}()))
if hasproperty(rj, :pars)
PB.add_par(rj, rj.pars)
end
d = PB.Domain(name="test", ID=1, parameters=Dict{String, Any}())
rj.base.domain = d
PB.register_methods!(rj)
for m in getproperty(rj.base, methods.field)
println(buf, "- `$(m.name)`")
for v in PB.get_variables(m)
md = " - "
md *= v.link_optional ? "\\[" : ""
md *= "`$(v.localname)`"
md *= v.link_optional ? "\\]" : ""
ln = PB.combine_link_name(v)
md *= (ln == v.localname) ? "" : " --> $(PB.escape_markdown(ln))"
units = PB.get_attribute(v, :units)
md *= " ($(units)),"
md *= " `$(PB.get_var_type(v))`,"
vfunction = PB.get_attribute(v, :vfunction)
md *= (ismissing(vfunction) || vfunction == PB.VF_Undefined) ? "" : " `$vfunction`,"
description = PB.get_attribute(v, :description)
md *= " `description`=\"$(PB.escape_markdown(description))\""
println(buf, md)
end
end
catch e
println(buf, PB.escape_markdown("METHODS $methods exception: $e"))
end
return nothing
end
md_value(v) = "$v"
md_value(v::AbstractString) = "\"$(PB.escape_markdown(v))\""
function md_value(vv::Vector{<:AbstractString})
evv = [PB.escape_markdown(v) for v in vv]
return "$evv"
end
function md_value(vv::Vector)
str = "$vv"
str = replace(str, "["=>"\\[")
str = replace(str, "]"=>"\\]")
return str
end
export PARS, METHODS_SETUP, METHODS_INITIALIZE, METHODS_DO
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 3204 | """
collate_markdown(
io, inputpath, docspath, src_folderpath;
includes=String[], includename="doc_include.jl", imagesdirs=["images"]
) -> (pages::Vector, includes::Vector{String})
Recursively look through `inputpath` and subfolders for:
- markdown files (`.md` extension),
- code files with name matching `includename`
- folders with name in `imagesdirs`
- a text file "doc_order.txt"
and then:
- copy markdown files and folders in `imagedirs` to subfolders under `<docspath>/src/<src_folderpath>`
- return a `pages::Vector` suitable to build a tree structure for `Documenter.jl`,
where each element is either a path to a markdown file, or a pair `folder_name => Vector`,
sorted according to "doc_order.txt" if present, or otherwise with "README.md" first and then
in lexographical order.
- return an `includes::Vector` of code files that should be included to define modules etc
"""
function collate_markdown(
io::IOBuffer, inputpath::AbstractString, docspath::AbstractString, src_folderpath::AbstractString;
includes=String[],
includename="doc_include.jl",
imagesdirs=["images"],
sortpref=["README.md"],
)
docs = Any[]
filenames_read = readdir(inputpath)
# if a text file defining order is present, then that overrides sortpref
if "doc_order.txt" in filenames_read
orderpath = normpath(inputpath, "doc_order.txt")
sortpref = readlines(orderpath)
println(io, "sorting in order $sortpref from file $orderpath")
end
# put any names in sortpref at the front of the list
filenames_sort = String[]
for fn in sortpref
if fn in filenames_read
push!(filenames_sort, fn)
end
end
for fn in filenames_read
if ! (fn in filenames_sort)
push!(filenames_sort, fn)
end
end
for fn in filenames_sort
inpath = normpath(inputpath, fn)
src_relpath = joinpath(src_folderpath, fn)
outpath = normpath(docspath, "src", src_relpath)
if isdir(inpath)
if fn in imagesdirs
println(io, "cp $inpath --> $outpath")
mkpath(dirname(outpath))
cp(inpath, outpath; force=true)
else
subdocs, _ = collate_markdown(
io,
inpath,
docspath,
src_relpath;
includes=includes,
imagesdirs=imagesdirs
)
!isempty(subdocs) && push!(docs, escape_markdown(fn)=>subdocs)
end
else
if length(fn) >= 3 && fn[end-2:end] == ".md"
push!(docs, src_relpath) # path relative to <docspath>/src/
println(io, "cp $inpath --> $outpath")
mkpath(dirname(outpath))
cp(inpath, outpath; force=true)
elseif fn == includename
push!(includes, inpath)
end
end
end
return (docs, includes)
end
function escape_markdown(str::AbstractString)
str = replace(str, "_"=>"\\_")
str = replace(str, "\$"=>"\\\$")
str = replace(str, "*"=>"\\*")
return str
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 4366 | """
LinInterp(xvals, xperiod=0.0; require_sorted_input=true) -> LinInterp
Create a `LinInterp` struct for generic linear interpolation for (scalar) value `xval` into a set of records at `xvals`.
[`interp`](@ref) calculates weights and indices for the two records enclosing `xval`,
hence allows use for arbitrary record types.
# Args:
- `xvals::Vector`: x values at which function is available.
- `xperiod=0.0`: Periodicity of x values (0.0 for not periodic)
- `require_sorted_input::Bool=true`: to check that input is sorted in ascending order,
`false` to allow arbitrary order (which will then be sorted for internal use).
"""
struct LinInterp
"supplied values at each record index"
xvals::Vector{Float64}
"optional periodicity (0.0 means not periodic)"
xperiod::Float64
"modified values, mapped to `xperiod`, sorted in order, and padded at each end"
_xvals::Vector{Float64}
"record indices corresponding to _xvals"
_recidx::Vector{Int}
"out-of-range values set to constant"
_extrap_const::Bool
function LinInterp(xvals, xperiod=0.0; require_sorted_input=true, extrap_const=false)
if require_sorted_input
issorted(xvals) || error("`xvals` not sorted and `require_sorted_input==true`")
end
if xperiod > 0.0 && xperiod < Inf
# periodic - normalize, sort, and pad
normxvals = mod.(xvals, Float64(xperiod)) # all normxvals now in range 0 - xperiod
p = sortperm(normxvals) # if xvals contained eg out-of-range values, normxvals will now be out of ascending order
_xvals = zeros(length(normxvals)+2)
_xvals[2:end-1] = normxvals[p]
_recidx = zeros(Int, length(normxvals)+2)
_recidx[2:end-1] = p
# pad (these values will be outside range 0 - xperiod)
_xvals[1] = _xvals[end-1] - xperiod
_xvals[end] = _xvals[2] + xperiod
_recidx[1] = _recidx[end-1]
_recidx[end] = _recidx[2]
# check sorted (failure not expected here)
issorted(_xvals) || error("programming error: normalized periodic xvalues not sorted xvals=$xvals, _xvals=$_xvals")
elseif xperiod == 0.0
p = sortperm(xvals)
_xvals = xvals[p]
_recidx = p
else
error("invalid `xperiod` $xperiod")
end
return new(copy(xvals), xperiod, _xvals, _recidx, extrap_const)
end
end
"""
interp(lininterp::LinInterp, xval) -> ((wt_lo, recidx_lo), (wt_hi, recidx_hi))
Linear interpolation for (scalar) value `xval`. See [`LinInterp`](@ref).
"""
function interp(lininterp::LinInterp, xval)
if lininterp.xperiod != 0.0
# AD workaround (ForwardDiff generates NaN for derivative if on mod boundary ?)
# as we know the solution is periodic.
xval_val = mod(value_ad(xval), lininterp.xperiod) # sign of divisor ie +ve
xval += xval_val - value_ad(xval)
end
# Return the index of the last value in a less than or equal to x
idx = searchsortedlast(lininterp._xvals, xval)
# exact equality to last record means we need the previous record (as we take a linear combination of idx and idx+1)
if idx==length(lininterp._xvals) && xval == lininterp._xvals[end]
idx -= 1
end
if idx == 0
if lininterp._extrap_const
idx = 1
xval = lininterp._xvals[1]
else
error("xval out of range")
end
end
if idx == length(lininterp._xvals)
if lininterp._extrap_const
idx = length(lininterp._xvals) - 1
xval = lininterp._xvals[end]
else
error("xval out of range")
end
end
x_lo = lininterp._xvals[idx]
x_hi = lininterp._xvals[idx+1]
rec_lo = lininterp._recidx[idx]
rec_hi = lininterp._recidx[idx+1]
wt_lo = (x_hi - xval)/(x_hi - x_lo)
wt_hi = (xval - x_lo)/(x_hi - x_lo)
return ((wt_lo, rec_lo), (wt_hi, rec_hi))
end
"""
interp(lininterp::LinInterp, xval, yvals) -> yval
Linear interpolation for (scalar) value `xval`. See [`LinInterp`](@ref).
"""
function interp(lininterp::LinInterp, xval, yvals)
(wt_lo, rec_lo), (wt_hi, rec_hi) = interp(lininterp, xval)
yval = wt_lo*yvals[rec_lo] + wt_hi*yvals[rec_hi]
return yval
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 15043 | module IteratorUtils
"""
check_lengths_equal(it1, it2)
check_lengths_equal(it1, it2, it3)
check_lengths_equal(it1, it2, it3, it4)
check_lengths_equal(it1, it2, it3, it4, it5)
check_lengths_equal(it1, it2, it3, it4, it5, it6)
Error if iterables it1 ... itn do not have the same length (length(t1) == length(t2) == ...)
"""
@inline check_lengths_equal(it1) = (length(it1); true)
@inline check_lengths_equal(it1, it2; errmsg="lengths differ") = length(it1) == length(it2) ||
throw(ArgumentError(errmsg))
@inline check_lengths_equal(it1, it2, it3; errmsg="lengths differ") = length(it1) == length(it2) == length(it3) ||
throw(ArgumentError(errmsg))
@inline check_lengths_equal(it1, it2, it3, it4; errmsg="lengths differ") = length(it1) == length(it2) == length(it3) == length(it4) ||
throw(ArgumentError(errmsg))
@inline check_lengths_equal(it1, it2, it3, it4, it5; errmsg="lengths differ") = length(it1) == length(it2) == length(it3) == length(it4) == length(it5) ||
throw(ArgumentError(errmsg))
@inline check_lengths_equal(it1, it2, it3, it4, it5, it6; errmsg="lengths differ") = length(it1) == length(it2) == length(it3) == length(it4) == length(it5) == length(it6) ||
throw(ArgumentError(errmsg))
@inline check_lengths_equal(it1, it2, it3, it4, it5, it6, it7; errmsg="lengths differ") = length(it1) == length(it2) == length(it3) == length(it4) == length(it5) == length(it6) == length(it7) ||
throw(ArgumentError(errmsg))
@inline check_lengths_equal(it1, it2, it3, it4, it5, it6, it7, it8; errmsg="lengths differ") = length(it1) == length(it2) == length(it3) == length(it4) == length(it5) == length(it6) == length(it7) == length(it8) ||
throw(ArgumentError(errmsg))
"""
zipstrict(iters...; errmsg="iterables lengths differ")
`Base.zip` with additional check that lengths of iterables are equal.
"""
@inline zipstrict(iters...; errmsg="iterables lengths differ") = (check_lengths_equal(iters...; errmsg=errmsg); zip(iters...))
"""
named_tuple_ref(keys, eltype)
Construct a "mutable NamedTuple" with `keys` where `values` are of type Ref{eltype}.
Access values as nt.x[] etc
"""
function named_tuple_ref(keys, eltype)
return NamedTuple{keys}([Ref{eltype}() for i in 1:length(keys)])
end
"""
foreach_tuple(f, t1::Tuple; errmsg="iterables lengths differ")
foreach_tuple(f, t1::Tuple, t2; errmsg="iterables lengths differ")
Call `f(t1[n])` for each element `n` of `t1::Tuple`.
Call `f(t1[n], t2[n])` for each element `n` of `t1::Tuple`, `t2::Tuple`.
# Implementation
Recursively generates inline code for speed and type stability.
# Limitations
As of Julia 1.6, slows down and allocates if `length(t1) > 32` due to Julia limitation.
See [`foreach_longtuple`](@ref).
See https://github.com/JuliaLang/julia/issues/31869
https://github.com/JuliaLang/julia/blob/master/base/tuple.jl (map implementation)
"""
@inline foreach_tuple(f::F, tuples...; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(tuples...; errmsg=errmsg); foreach_tuple_unchecked(f, tuples...))
foreach_tuple_unchecked(f, t1::Tuple{}) = ()
foreach_tuple_unchecked(f, t1::Tuple{Any, }) =
(@Base._inline_meta; f(t1[1]); nothing)
foreach_tuple_unchecked(f, t1::Tuple) =
(@Base._inline_meta; f(t1[1]); foreach_tuple_unchecked(f, Base.tail(t1)); nothing)
foreach_tuple_unchecked(f, t1::Tuple{}, tv2) = ()
foreach_tuple_unchecked(f, i::Int64, t1::Tuple{Any, }, tv2) =
(@Base._inline_meta; f(t1[1], tv2[i]); nothing)
foreach_tuple_unchecked(f, i::Int64, t1::Tuple, tv2) =
(@Base._inline_meta; f(t1[1], tv2[i]); foreach_tuple_unchecked(f, i+1, Base.tail(t1), tv2); nothing)
foreach_tuple_unchecked(f, t1::Tuple, tv2) =
(@Base._inline_meta; foreach_tuple_unchecked(f, 1, t1, tv2); nothing)
@inline foreach_tuple_p(f::F, t1, p; errmsg="iterables lengths differ") where{F} =
foreach_tuple_unchecked_p(f, t1, p)
foreach_tuple_unchecked_p(f, t1::Tuple{}, p) = ()
foreach_tuple_unchecked_p(f, t1::Tuple{Any, }, p) =
(@Base._inline_meta; f(t1[1], p); nothing)
foreach_tuple_unchecked_p(f, t1::Tuple, p) =
(@Base._inline_meta; f(t1[1], p); foreach_tuple_unchecked_p(f, Base.tail(t1), p); nothing)
@inline foreach_tuple_p(f::F, t1, tv2, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, tv2; errmsg=errmsg); foreach_tuple_unchecked_p(f, 1, t1, tv2, p))
foreach_tuple_unchecked_p(f, t1::Tuple{}, tv2, p) = ()
foreach_tuple_unchecked_p(f, i::Int, t1::Tuple{Any, }, tv2, p) =
(@Base._inline_meta; f(t1[1], tv2[i], p); nothing)
foreach_tuple_unchecked_p(f, i::Int, t1::Tuple, tv2, p) =
(@Base._inline_meta; f(t1[1], tv2[i], p); foreach_tuple_unchecked_p(f, i+1, Base.tail(t1), tv2, p); nothing)
foreach_tuple_unchecked_p(f, t1::Tuple, tv2, p) =
(@Base._inline_meta; foreach_tuple_unchecked_p(f, 1, t1, tv2, p); nothing)
"""
foreach_longtuple(f, t1::Tuple, t2, ... tm; errmsg="iterables lengths differ")
foreach_longtuple_p(f, t1::Tuple, t2, ... tm, p; errmsg="iterables lengths differ")
Call `f(t1[n], t2[n], ... tm[n])` or `f(t1[n], t2[n], ... tm[n], p)` for each element
`n` of `t1::Tuple`, `t2`, ... `tm`.
# Examples
Here `input_concs_cell` and `input_concs` are `NamedTuple`s.
PB.IteratorUtils.foreach_longtuple(values(input_concs_cell), values(input_concs)) do ic_cell, ic
ic_cell[] = r_rhofac*ic[i] # generates a closure with r_rhofac as a captured variable
end
# closure with r_rhofac as a captured variable
function f(ic_cell, ic)
ic_cell[] = r_rhofac*ic[i]
end
PB.IteratorUtils.foreach_longtuple(f, values(input_concs_cell), values(input_concs))
PB.IteratorUtils.foreach_longtuple_p(values(input_concs_cell), values(input_concs), r_rhofac) do ic_cell, ic, _r_rhofac
ic_cell[] = _r_rhofac*ic[i] # no closure with _r_rhofac as an argument
end
# no closure with _r_rhofac as an argument
function f(ic_cell, ic, _r_rhofac)
ic_cell[] = _r_rhofac*ic[i]
end
PB.IteratorUtils.foreach_longtuple_p(f, values(input_concs_cell), values(input_concs), r_rhofac)
# Limitations
See Julia performance tips:
- There are potential problems with captured variables when using a closure as `f`, either explicitly or using do block syntax.
It is usually safer to explicitly write out `f` with all arguments, and pass them in using `foreach_longtuple_p`, using `p::Tuple` for multiple arguments.
- Passing type parameters to `f` is prone to creating additional problems if `f` is not specialized, which happens:
- if `f` is either an explicit closure or is a closure created using do block syntax
- if a type parameter is passed as a member of `p::Tuple`
- if a type parameter is passed as `p`, but `f` is not explicitly specialized using `p::Type{MyType}` and `f` is not inlined (do block syntax does appear to work)
It is safest to either explicitly specialize `f` on a type parameter using `p::Type{MyType}`, or avoid passing type parameters and eg use eltype to derive them.
# Allocates: generates a closure with BufType as a captured variable, with no specialization
PB.IteratorUtils.foreach_longtuple(values(input_concs_cell), values(input_concs)) do ic_cell, ic
ic_cell[] = convert(BufType, ic[i]) # allocates
end
# OK: no closure, with explicit specialization on BufType argument
function f(ic_cell, ic, ::Type{BufType}) where {BufType} # force specialization
ic_cell[] = convert(BufType, ic[i])
end
PB.IteratorUtils.foreach_longtuple_p(f, values(input_concs_cell), values(input_concs), BufType)
# Allocates: no closure, but BufType is a Tuple member so is passed as a `DataType` hence no specialization
function f(ic_cell, ic, (BufType, r_rhofac))
ic_cell[] = r_rhofac*convert(BufType, ic[i])
end
PB.IteratorUtils.foreach_longtuple_p(f, values(input_concs_cell), values(input_concs), (r_rhofac, BufType))
# Implementation
Uses `@generated` to generate unrolled code for speed and type stability without length restrictions on `tm`.
See https://discourse.julialang.org/t/manually-unroll-operations-with-objects-of-tuple/11604
"""
@inline foreach_longtuple(f::F, tuples...; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(tuples...; errmsg=errmsg); foreach_longtuple_unchecked(f, tuples...))
@generated function foreach_longtuple_unchecked(f, t1::Tuple)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j]); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@generated function foreach_longtuple_unchecked(f, t1::Tuple, t2)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j]); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@generated function foreach_longtuple_unchecked(f, t1::Tuple, t2, t3)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j]); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@generated function foreach_longtuple_unchecked(f, t1::Tuple, t2, t3, t4)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j]); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@generated function foreach_longtuple_unchecked(f, t1::Tuple, t2, t3, t4, t5)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j], t5[$j]); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, p; errmsg="iterables lengths differ") where{F} =
foreach_longtuple_unchecked_p(f, t1, p)
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, t3, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2, t3; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, t3, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, t3, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, t3, t4, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2, t3, t4; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, t3, t4, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, t3, t4, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, t3, t4, t5, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2, t3, t4, t5; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, t3, t4, t5, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, t3, t4, t5, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j], t5[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, t3, t4, t5, t6, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2, t3, t4, t5, t6; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, t3, t4, t5, t6, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, t3, t4, t5, t6, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j], t5[$j], t6[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, t3, t4, t5, t6, t7, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2, t3, t4, t5, t6, t7; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, t3, t4, t5, t6, t7, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, t3, t4, t5, t6, t7, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j], t5[$j], t6[$j], t7[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
@inline foreach_longtuple_p(f::F, t1, t2, t3, t4, t5, t6, t7, t8, p; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(t1, t2, t3, t4, t5, t6, t7, t8; errmsg=errmsg); foreach_longtuple_unchecked_p(f, t1, t2, t3, t4, t5, t6, t7, t8, p))
@generated function foreach_longtuple_unchecked_p(f, t1::Tuple, t2, t3, t4, t5, t6, t7, t8, p)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; f(t1[$j], t2[$j], t3[$j], t4[$j], t5[$j], t6[$j], t7[$j], t8[$j], p); end)
end
push!(ex.args, quote; return nothing; end)
return ex
end
"""
reduce_longtuple(f, rinit, t1::Tuple, t2, ... tm; errmsg="iterables lengths differ") -> r
Call `r += f(r, t1[n], t2[n], ... tm[n])` for each element
`n` of `t1::Tuple`, `t2`, ... `tm`. Initial value of `r = rinit`
# Implementation
Uses `@generated` to generate unrolled code for speed and type stability without length restrictions on `tm`.
See https://discourse.julialang.org/t/manually-unroll-operations-with-objects-of-tuple/11604
"""
@inline reduce_longtuple(f::F, rinit, tuples...; errmsg="iterables lengths differ") where{F} =
(check_lengths_equal(tuples...; errmsg=errmsg); reduce_longtuple_unchecked(f, rinit, tuples...))
@generated function reduce_longtuple_unchecked(f, rinit, t1::Tuple)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; rinit = f(rinit, t1[$j]); end)
end
push!(ex.args, quote; return rinit; end)
return ex
end
@generated function reduce_longtuple_unchecked(f, rinit, t1::Tuple, t2)
ex = quote ; end # empty expression
for j=1:fieldcount(t1)
push!(ex.args, quote; rinit = f(rinit, t1[$j], t2[$j]); end)
end
push!(ex.args, quote; return rinit; end)
return ex
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 12632 |
"""
SIMDutils
Helper functions to pack and unpack vector data to enable use of SIMD instructions.
"""
module SIMDutils
import SLEEF_jll
import SIMD
import Preferences
#####################################
# Short names for packed vector Types
#####################################
const FP64P4 = SIMD.Vec{4, Float64}
const FP64P2 = SIMD.Vec{2, Float64}
const FP32P8 = SIMD.Vec{8, Float32}
const FP32P4 = SIMD.Vec{4, Float32}
######################################
# Iteration
######################################
"""
SIMDIter(baseiter, Val{N})
SIMDIter(baseiter, ::Type{SIMD.Vec{N, U}})
SIMDIter(baseiter, ::Val{1}) # scalar fallback
SIMDIter(baseiter, ::Type{U}) where {U <: Real} # scalar fallback
Iterator that takes up to `N` SIMD elements at a time from `baseiter` (which should represent
indices into a Vector). See Julia package [SIMD.jl](https://github.com/eschnett/SIMD.jl)
If `baseiter` contained 1 or more but less then `N` elements, then `indices` is filled with
repeats of the last available element.
Returns Tuple of indices (length `N`).
# Examples
v_a = [1.0, 2.0, 3.0, 4.0, 5.0]
v_b = similar(v_a)
iter = eachindex(v_a) # iter should represent indices into a Vector
# simplest version - Float64 x 4, ie type of v_a x 4
for i in SIMDIter(iter, Val(4))
x = v_a[i] # x is a packed SIMD vector
v_b[i] = x
end
# with type conversion - Float32 x 8, ie explicitly change Type of SIMD vector
ST = SIMD.Vec{8, Float32}}
for i in SIMDIter(iter, ST)
# v = vec[i] <--> vgatherind(ST, vec, i)
# vec[i] = v <--> vscatterind!(v, vec, i)
# vec[i] += v <--> vaddind!(v, vec, i)
x = vgatherind(ST, v_a, i) # x is a packed SIMD vector with type conversion to Float32
vscatterind!(x, v_b, i)
end
"""
struct SIMDIter{T, N}
baseiter::T
end
SIMDIter(baseiter::T, ::Val{N}) where {T, N} = SIMDIter{T, N}(baseiter)
SIMDIter(baseiter::T, ::Type{SIMD.Vec{N, U}}) where {T, N, U} = SIMDIter{T, N}(baseiter)
# scalar fallback
SIMDIter(baseiter, ::Val{1}) = baseiter
SIMDIter(baseiter, ::Type{U}) where {U <: Real} = baseiter
import Base.iterate
iterate(iter::SIMDIter{T, N}) where {T, N} = _iterate(iter, iterate(iter.baseiter))
iterate(iter::SIMDIter{T, N}, state) where {T, N} = _iterate(iter, iterate(iter.baseiter, state))
_iterate(iter::SIMDIter{T, 2}, basenext::Nothing) where {T} = nothing
function _iterate(iter::SIMDIter{T, 2}, basenext) where {T}
local i1::Int64, i2::Int64
(i1, state) = basenext
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i2 = i1; else; (i2, state) = basenext; end
return (SIMD.Vec((i1, i2)), state)
end
_iterate(iter::SIMDIter{T, 4}, basenext::Nothing) where {T} = nothing
function _iterate(iter::SIMDIter{T, 4}, basenext) where {T}
local i1::Int64, i2::Int64, i3::Int64, i4::Int64
(i1, state) = basenext
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i2 = i1; else; (i2, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i3 = i2; else; (i3, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i4 = i3; else; (i4, state) = basenext; end
return (SIMD.Vec((i1, i2, i3, i4)), state)
end
_iterate(iter::SIMDIter{T, 8}, basenext::Nothing) where {T} = nothing
function _iterate(iter::SIMDIter{T, 8}, basenext) where {T}
local i1::Int64, i2::Int64, i3::Int64, i4::Int64, i5::Int64, i6::Int64, i7::Int64, i8::Int64
(i1, state) = basenext
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i2 = i1; else; (i2, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i3 = i2; else; (i3, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i4 = i3; else; (i4, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i5 = i4; else; (i5, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i6 = i5; else; (i6, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i7 = i6; else; (i7, state) = basenext; end
basenext = iterate(iter.baseiter, state)
if isnothing(basenext); i8 = i7; else; (i8, state) = basenext; end
return (SIMD.Vec((i1, i2, i3, i4, i5, i6, i7, i8)), state)
end
#################################
# Fill SIMD type from scalar Vector
#####################################
"""
vgatherind(vec, indices::Integer, mask) -> v # v[i], scalar fallback
vgatherind(vec, indices::SIMD.Vec{N, <:Integer}, mask) -> v::SIMD.Vec{N, eltype(vec)}
Fill SIMD type from scalar Vector, without type conversion
See [`SIMDIter`](@ref) for example usage.
"""
@Base.propagate_inbounds function vgatherind(vec, indices::Integer, mask)
return vec[indices]
end
@Base.propagate_inbounds function vgatherind(vec, indices::SIMD.Vec{N, <:Integer}, mask) where N
return SIMD.vgather(vec, indices, mask)
end
"""
vgatherind(::Type{T}, vec, indices::Integer, mask) -> v::T # v[i], scalar fallback
vgatherind(::Type{SIMD.Vec{N, T}}, vec, indices::SIMD.Vec{N, <:Integer}) -> v::SIMD.Vec{N, T}
Fill SIMD type from scalar Vector, with explicit type conversion to scalar type `T`
NB: assumes all `indices` are valid
See [`SIMDIter`](@ref) for example usage.
"""
@Base.propagate_inbounds function vgatherind(::Type{T}, vec, indices::Integer) where {T}
return convert(T, vec[indices])
end
@Base.propagate_inbounds function vgatherind(::Type{SIMD.Vec{2, T}}, vec, indices::SIMD.Vec{2, <:Integer}) where T
return SIMD.Vec{2, T}((vec[indices[1]], vec[indices[2]]))
end
@Base.propagate_inbounds function vgatherind(::Type{SIMD.Vec{4, T}}, vec, indices::SIMD.Vec{4, <:Integer}) where T
return SIMD.Vec{4, T}((vec[indices[1]], vec[indices[2]], vec[indices[3]], vec[indices[4]]))
end
@Base.propagate_inbounds function vgatherind(::Type{SIMD.Vec{8, T}}, vec, indices::SIMD.Vec{8, <:Integer}) where T
return SIMD.Vec{8, T}(
(
vec[indices[1]], vec[indices[2]], vec[indices[3]], vec[indices[4]],
vec[indices[5]], vec[indices[6]], vec[indices[7]], vec[indices[8]]
)
)
end
###############################################
# Unpack SIMD type and write to scalar Vector
#############################################
"""
vscatterind!(v::T, vec::Array{T, N}, indices::Integer, mask) # scalar fallback, no type conversion
vscatterind!(v::T, vec::Array{T, N}, indices::Integer) # scalar fallback, no type conversion
vscatterind!(v::SIMD.Vec{N, T}, vec, indices::SIMD.Vec{N, <:Integer}, mask) # converts to eltype{vec}
vscatterind!(v::SIMD.Vec{N, T}, vec, indices::SIMD.Vec{N, <:Integer}) # converts to eltype{vec}
Unpack SIMD type and write to scalar Vector, with type conversion to `eltype(vec)`.
Versions without `mask` assume all indices are valid (but may be repeated).
See [`SIMDIter`](@ref) for example usage.
"""
@Base.propagate_inbounds function vscatterind!(v::T, vec::Array{T, N}, indices::Integer, mask) where {T,N}
vec[indices] = v
return nothing
end
@Base.propagate_inbounds function vscatterind!(v::T, vec::Array{T,N}, indices::Integer) where {T,N}
vec[indices] = v
return nothing
end
@Base.propagate_inbounds function vscatterind!(v::SIMD.Vec{N, T}, vec, indices::SIMD.Vec{N, <:Integer}, mask) where {N, T}
SIMD.vscatter(convert(SIMD.Vec{N, eltype(vec)}, v), vec, indices, mask)
return nothing
end
@Base.propagate_inbounds function vscatterind!(v::SIMD.Vec{N, T}, vec, indices::SIMD.Vec{N, <:Integer}) where {N, T}
SIMD.vscatter(convert(SIMD.Vec{N, eltype(vec)}, v), vec, indices)
return nothing
end
###############################################
# Unpack SIMD type and add to scalar Vector
#############################################
"""
vaddind!(v::T, vec::Array{T, N}, indices::Integer) # scalar fallback, no type conversion
vaddind!(v::SIMD.Vec{N, T}, vec, indices::SIMD.Vec{N, <:Integer})
Unpack SIMD type and add to scalar Vector, with type conversion to `eltype(vec)`.
Assumes all indices are valid (but may be repeated, which will still have the effect of one add).
See [`SIMDIter`](@ref) for example usage.
"""
@Base.propagate_inbounds function vaddind!(v::T, vec::Array{T, N}, indices::Integer) where {T, N}
vec[indices] += v
return nothing
end
@Base.propagate_inbounds function vaddind!(v::SIMD.Vec{N, T}, vec, indices::SIMD.Vec{N, <:Integer}) where {N, T}
tmp = vgatherind(SIMD.Vec{N, T}, vec, indices)
vscatterind!(tmp + v, vec, indices)
return nothing
end
######################################################
# functions to call SLEEF library Sleef <https://sleef.org>, using binary from SLEEF_jll.jl
# see <https://github.com/chriselrod/SLEEFPirates.jl/blob/master/src/svmlwrap32.jl> for ccall examples
#
# NB: need to provide specific Base.exp etc for each type in order to override the fallbacks in SIMD.jl
#############################################################
# raw tuple data types held in Vec.data
const FP64P4_d = NTuple{4,Core.VecElement{Float64}}
const FP64P2_d = NTuple{2,Core.VecElement{Float64}}
const FP32P8_d = NTuple{8,Core.VecElement{Float32}}
const FP32P4_d = NTuple{4,Core.VecElement{Float32}}
if [email protected]_preference("USE_SLEEF")
@info "$(@__MODULE__) defining USE_SLEEF = false in LocalPreferences.toml"
@Preferences.set_preferences!("USE_SLEEF"=>false)
end
const USE_SLEEF = @Preferences.load_preference("USE_SLEEF", false)
@static if USE_SLEEF
@info "$(@__MODULE__) defining Vectorized SIMD functions log, exp, log10 functions from Sleef library $(SLEEF_jll.libsleef)"*
" - to disable Sleef, set USE_SLEEF = false in LocalPreferences.toml and restart your Julia session"
# exp Sleef Vectorized double/single precision base-e exponential functions functions with 1.0 ULP error bound
sleefexp(v::FP64P4_d) = ccall((:Sleef_expd4_u10, SLEEF_jll.libsleef), FP64P4_d, (FP64P4_d,), v)
Base.exp(v::FP64P4) = SIMD.Vec(sleefexp(v.data))
sleefexp(v::FP64P2_d) = ccall((:Sleef_expd2_u10, SLEEF_jll.libsleef), FP64P2_d, (FP64P2_d,), v)
Base.exp(v::FP64P2) = SIMD.Vec(sleefexp(v.data))
sleefexp(v::FP32P8_d) = ccall((:Sleef_expf8_u10, SLEEF_jll.libsleef), FP32P8_d, (FP32P8_d,), v)
Base.exp(v::FP32P8) = SIMD.Vec(sleefexp(v.data))
sleefexp(v::FP32P4_d) = ccall((:Sleef_expf4_u10, SLEEF_jll.libsleef), FP32P4_d, (FP32P4_d,), v)
Base.exp(v::FP32P4) = SIMD.Vec(sleefexp(v.data))
# log Sleef Vectorized double/single precision natural logarithmic functions with 1.0 ULP error bound
sleeflog(v::FP64P4_d) = ccall((:Sleef_logd4_u10, SLEEF_jll.libsleef), FP64P4_d, (FP64P4_d,), v)
Base.log(v::FP64P4) = SIMD.Vec(sleeflog(v.data))
sleeflog(v::FP64P2_d) = ccall((:Sleef_logd2_u10, SLEEF_jll.libsleef), FP64P2_d, (FP64P2_d,), v)
Base.log(v::FP64P2) = SIMD.Vec(sleeflog(v.data))
sleeflog(v::FP32P8_d) = ccall((:Sleef_logf8_u10, SLEEF_jll.libsleef), FP32P8_d, (FP32P8_d,), v)
Base.log(v::FP32P8) = SIMD.Vec(sleeflog(v.data))
sleeflog(v::FP32P4_d) = ccall((:Sleef_logf4_u10, SLEEF_jll.libsleef), FP32P4_d, (FP32P4_d,), v)
Base.log(v::FP32P4) = SIMD.Vec(sleeflog(v.data))
# this should work, but isn't specific enough to override the fallbacks in SIMD.jl
# Base.log(v::SIMD.Vec{N,T}) where {N,T} = SIMD.Vec(sleeflog(v.data))
# Vectorized double/single precision base-10 logarithmic functions with 1.0 ULP error bound
sleeflog10(v::FP64P4_d) = ccall((:Sleef_log10d4_u10, SLEEF_jll.libsleef), FP64P4_d, (FP64P4_d,), v)
Base.log10(v::FP64P4) = SIMD.Vec(sleeflog10(v.data))
sleeflog10(v::FP64P2_d) = ccall((:Sleef_log10d2_u10, SLEEF_jll.libsleef), FP64P2_d, (FP64P2_d,), v)
Base.log10(v::FP64P2) = SIMD.Vec(sleeflog10(v.data))
sleeflog10(v::FP32P8_d) = ccall((:Sleef_log10f8_u10, SLEEF_jll.libsleef), FP32P8_d, (FP32P8_d,), v)
Base.log10(v::FP32P8) = SIMD.Vec(sleeflog10(v.data))
sleeflog10(v::FP32P4_d) = ccall((:Sleef_log10f4_u10, SLEEF_jll.libsleef), FP32P4_d, (FP32P4_d,), v)
Base.log10(v::FP32P4) = SIMD.Vec(sleeflog10(v.data))
else
@info "$(@__MODULE__) Using defaults (probably slow scalar fallbacks) for SIMD log, exp, log10 functions"*
" - to enable Sleef library, set USE_SLEEF = true in LocalPreferences.toml and restart your Julia session"
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 5277 | """
TestUtils
Utility functions for testing and benchmarking
"""
module TestUtils
using BenchmarkTools
using InteractiveUtils
import PALEOboxes as PB
"repeatedly call `dispatch_methodlist` `N` times to generate a long-duration run for profiling"
function profile_dispatchlist(dispatchlist, N, deltat::Float64=0.0)
for i in 1:N
PB.dispatch_methodlist(dispatchlist..., deltat)
end
return nothing
end
"""
bench_method(
dispatchlist, domainname="", reactionname="", methodname="";
deltat::Float64=0.0,
use_time=false,
use_btime=true,
do_code_llvm=false,
do_code_native=true,
do_code_warntype=false
)
Benchmark or dump llvm code etc for specified method(s).
Iterates through `dispatchlist`, if names match then benchmark method else just call method normally.
"""
function bench_method(
dispatchlist, domainname="", reactionname="", methodname="";
deltat::Float64=0.0,
call_all=true,
use_time=false,
use_btime=true,
do_code_llvm=false,
do_code_native=false,
do_code_warntype=false,
)
# fns, methods, vardatas, crs = dispatchlist
# iterate through dispatchlist, if names match then benchmark method else just call method
for (method, vardata, cr) in PB.IteratorUtils.zipstrict(
dispatchlist.methods,
dispatchlist.vardatas,
dispatchlist.cellranges)
if (isempty(domainname) || method[].domain.name == domainname) &&
(isempty(reactionname) || method[].reaction.name == reactionname) &&
(isempty(methodname) || method[].name == methodname)
println(PB.fullname(method[]), ":")
if use_time
println(" @time:")
@time PB.call_method(method[], vardata[], cr, deltat)
end
if use_btime
println(" @btime:")
@btime PB.call_method($method[], $vardata[], $cr, $deltat)
end
if do_code_llvm
println(" @code_llvm:")
b = IOBuffer()
PB.call_method_codefn(IOContext(b, :color=>true), code_llvm, method[], vardata[], cr, deltat)
println(String(take!(b)))
end
if do_code_native
println(" @code_native:")
b = IOBuffer()
PB.call_method_codefn(IOContext(b, :color=>true), code_native, method[], vardata[], cr, deltat)
println(String(take!(b)))
end
if do_code_warntype
println(" @code_warntype:")
b = IOBuffer()
PB.call_method_codefn(IOContext(b, :color=>true), code_warntype, method[], vardata[], cr, deltat)
println(String(take!(b)))
# @code_warntype PB.call_method(method, vardata[], cr, deltat)
end
elseif call_all
PB.call_method(method[], vardata[], cr, deltat)
end
end
return nothing
end
"""
bench_model(model, modeldata; bench_whole=true, domainname="", reactionname="", methodname="", [; kwargs...])
Optionally benchmark whole model, and then call [`bench_method`](@ref) to benchmark selected methods
# Keywords
- `bench_whole=true`: true to benchmark whole model (using `dispatch_methodlist` and `do_deriv`)
- `domainname`, `reactionname`, `methodname`, `kwargs`: passed through to [`bench_method`](@ref)
# Example
Run @code_warntype on a single method:
```julia
julia> PB.TestUtils.bench_model(run.model, modeldata; bench_whole=false, reactionname="atmtransport", methodname="calc_gas_floormrbc",
use_btime=false, do_code_warntype=true)
````
"""
function bench_model(
model, modeldata;
bench_whole=true,
domainname="",
reactionname="",
methodname="",
kwargs...
)
dispatchlists = modeldata.dispatchlists_all
if bench_whole
println()
println("@btime PB.dispatch_list initialize")
@btime PB.dispatch_methodlist($dispatchlists.list_initialize)
println()
println("@btime PB.dispatch_list do")
@btime PB.dispatch_methodlist($dispatchlists.list_do)
println()
println("@btime do_deriv")
@btime PB.do_deriv($dispatchlists)
end
println()
println("bench_method initialize")
PB.TestUtils.bench_method(dispatchlists.list_initialize, domainname, reactionname, methodname; kwargs...)
println()
println("bench_method do")
PB.TestUtils.bench_method(dispatchlists.list_do, domainname, reactionname, methodname; kwargs...)
return nothing
end
function check_round(a, b, sigdigits; message="")
lhs = round(a, sigdigits=sigdigits)
rhs = round(b, sigdigits=sigdigits)
result = lhs == rhs
if !result
println("check_round (", message, ") ",a, " != ",b, " sigdigits=", sigdigits, " round(a) ", lhs, " != round(b) ", rhs)
end
return result
end
# macro to validate output
macro check_true(test_expression)
message = string("check_true failed: ", test_expression)
:($(esc(test_expression)) || error($message))
end
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 13204 |
# import Infiltrator
#################################################################
# VariableAggregator
#################################################################
struct VariableAggregator{T, F <: Tuple, C <: Tuple}
# modeldata used for data arrays (for diagnostic output only)
modeldata::AbstractModelData # not typed
arrays_idx::Int
# Variables
vars::Vector{VariableDomain}
# indices in contiguous Vector for each Variable
indices::Vector{UnitRange{Int64}}
# field and corresponding CellRange for each Variable
fields::F
cellranges::C
end
"""
VariableAggregator(vars, cellranges, modeldata, arrays_idx) -> VariableAggregator
Aggregate multiple VariableDomains into a flattened list (a contiguous Vector).
Creates a `VariableAggregator` for collection of Variables `vars`, with indices from corresponding `cellranges`,
for data arrays in `modeldata` with `arrays_idx`.
`cellranges` may contain `nothing` entries to indicate whole Domain.
This is mostly useful for aggregating state Variables, derivatives, etc to implement an interface to a generic ODE/DAE etc solver.
Values may be copied to and from a Vector using [`copyto!`](@ref)
"""
function VariableAggregator(vars, cellranges, modeldata::AbstractModelData, arrays_idx::Int)
IteratorUtils.check_lengths_equal(vars, cellranges; errmsg="'vars' and 'cellranges' must be of same length")
fields = []
indices = UnitRange{Int64}[]
nextidx = 1
for (v, cr) in IteratorUtils.zipstrict(vars, cellranges)
f = get_field(v, modeldata, arrays_idx)
dof = dof_field(f, cr)
r = nextidx:(nextidx+dof-1)
push!(fields, f)
push!(indices, r)
nextidx += dof
end
fields=Tuple(fields)
cellranges=Tuple(cellranges)
return VariableAggregator{eltype(modeldata, arrays_idx), typeof(fields), typeof(cellranges)}(
modeldata, arrays_idx, copy(vars), indices, fields, cellranges,
)
end
# compact form
function Base.show(io::IO, va::VariableAggregator)
print(io, "VariableAggregator(modeldata=$(va.modeldata), arrays_idx=$(va.arrays_idx), length=$(length(va)), number of variables=$(length(va.vars)))")
return nothing
end
# multiline form
function Base.show(io::IO, ::MIME"text/plain", va::VariableAggregator)
println(io, "VariableAggregator(modeldata=$(va.modeldata), arrays_idx=$(va.arrays_idx), length=$(length(va)), number of variables=$(length(va.vars))):")
if length(va) > 0
println(
io,
" ",
rpad("var", 6),
rpad("indices", 14),
rpad("name", 40),
rpad("cellrange.indices", 14)
)
for i in eachindex(va.vars)
println(
io,
" ",
rpad(i,6),
rpad(va.indices[i], 14),
rpad("$(fullname(va.vars[i]))", 40),
rpad(isnothing(va.cellranges[i]) ? "-" : va.cellranges[i].indices, 14),
)
end
end
return nothing
end
Base.eltype(va::VariableAggregator{T, F, C}) where{T, F, C} = T
function Base.length(va::VariableAggregator)
if isempty(va.indices)
return 0
else
return last(last(va.indices))
end
end
"""
get_indices(va::VariableAggregator, varnamefull::AbstractString; allow_not_found=false) -> indices::UnitRange{Int64}
Return indices in flattened Vector corresponding to Variable `varnamefull`
"""
function get_indices(va::VariableAggregator, varnamefull::AbstractString; allow_not_found=false)
indices = nothing
for (v, ind) in IteratorUtils.zipstrict(va.vars, va.indices)
if fullname(v) == varnamefull
indices = ind
break
end
end
!isnothing(indices) || allow_not_found || error("get_indices: Variable $varnamefull not found")
return indices
end
"""
copyto!(dest::VariableAggregator, src::AbstractVector; sof=1) -> num_copied::Int
Set aggregated Variables `dest` = (contiguous) Vector `src`.
Optional `sof` sets first index in `src` to use.
"""
function Base.copyto!(dest::VariableAggregator, src::AbstractVector; sof::Int=1)
function copy(si, field, cellrange)
si += copyto!(field, cellrange, src, si)
return si
end
fof = IteratorUtils.reduce_longtuple(copy, sof, dest.fields, dest.cellranges)
return fof - sof
end
"""
copyto!(dest::AbstractVector, va::VariableAggregator; dof=1) -> num_copied::Int
Set (contiguous) Vector `dest` = aggregated Variables `src`
Optional `dof` sets first index in `dest`
"""
function Base.copyto!(dest::AbstractVector, src::VariableAggregator; dof::Int=1)
function copy(di, field, cellrange)
di += copyto!(dest, di, field, cellrange)
return di
end
fof = IteratorUtils.reduce_longtuple(copy, dof, src.fields, src.cellranges)
return fof - dof
end
"""
get_data(va::VariableAggregator) -> Vector
Allocate Vector and set to values of aggregated Variables `va`.
"""
function get_data(va::VariableAggregator)
x = Vector{eltype(va)}(undef, length(va))
copyto!(x, va)
return x
end
"vay += a * vax"
function add_data!(vay::VariableAggregator{T, F, C}, a, vax::VariableAggregator{T, F, C}) where {T, F, C}
length(vay) == length(vax) ||
throw(ArgumentError("'vay' and 'vax' must be of same length"))
adapt_add_field!(dest, cellrange, src) = add_field!(dest, a, cellrange, src)
IteratorUtils.foreach_longtuple(adapt_add_field!, vay.fields, vay.cellranges, vax.fields)
return nothing
end
"vay += a * vax"
function add_data!(vay::VariableAggregator{T, F, C}, a, vax::AbstractArray) where {T, F, C}
length(vay) == length(vax) ||
throw(ArgumentError("'vay' and 'vax' must be of same length"))
function adapt_add_field_vec!(vidx, dest, cellrange)
vidx += add_field_vec!(dest, a, cellrange, vax, vidx)
return vidx
end
IteratorUtils.reduce_longtuple(adapt_add_field_vec!, 1, vay.fields, vay.cellranges)
return nothing
end
"get Variables"
get_vars(va::VariableAggregator) = va.vars
num_vars(va::VariableAggregator) = length(va.vars)
#################################################################
# VariableAggregatorNamed
#################################################################
struct VariableAggregatorNamed{V <: NamedTuple, VV <: NamedTuple}
# modeldata used for data arrays (for diagnostic output only)
modeldata::AbstractModelData # not typed
arrays_idx::Int
# Variables as a NamedTuple
vars::V
# Values for each Variable as NamedTuple
values::VV
end
function num_vars(va::VariableAggregatorNamed)
nv = 0
for vnt in va.vars
nv += length(vnt)
end
return nv
end
function Base.length(va::VariableAggregatorNamed)
l = 0
for vnt in va.values
for v in vnt
l += length(v)
end
end
return l
end
# compact form
function Base.show(io::IO, van::VariableAggregatorNamed)
print(io, "VariableAggregatorNamed(modeldata=$(van.modeldata), arrays_idx=$(van.arrays_idx), ")
for (domainname, dvarsnt) in zip(keys(van.vars), van.vars)
print(io, "$domainname.*$([k for k in keys(dvarsnt)]), ")
end
print(io, ")")
return nothing
end
# multiline form
function Base.show(io::IO, ::MIME"text/plain", van::VariableAggregatorNamed)
println(io, "VariableAggregatorNamed(modeldata=$(van.modeldata), arrays_idx=$(van.arrays_idx):")
for (domainname, dvaluesnt) in zip(keys(van.vars), van.values)
println(io, " $domainname:")
for (varname, varvalues) in zip(keys(dvaluesnt), dvaluesnt)
println(io, " $(rpad(varname, 20))$varvalues")
end
end
return nothing
end
"""
VariableAggregatorNamed(modeldata, arrays_idx=1) -> VariableAggregatorNamed
VariableAggregatorNamed(vars, modeldata, arrays_idx=1) -> VariableAggregatorNamed
VariableAggregatorNamed(va::VariableAggregator; ignore_cellranges=false) -> VariableAggregatorNamed
Aggregate VariableDomains into nested NamedTuples, with Domain and Variable names as keys and
data arrays (from `get_data`) as values.
Any `/` characters in Variable names are replaced with `__` (double underscore)
This provides direct access to Variables by name, and is mostly useful for testing or for small models.
# Fields
- `vars`: nested NamedTuples (domainname, varname) of VariableDomains
- `values`: nested NamedTuples (domainname, varname) of data arrays.
"""
function VariableAggregatorNamed(
modeldata::AbstractModelData, arrays_idx=1,
)
# get all domain Variables
all_domvars = Vector{VariableDomain}()
for dom in modeldata.model.domains
append!(all_domvars, get_variables(dom))
end
return VariableAggregatorNamed(all_domvars, modeldata, arrays_idx)
end
function VariableAggregatorNamed(va::VariableAggregator, ignore_cellranges=false)
all(va.cellranges .== nothing) || ignore_cellranges || error("VariableAggregatorNamed: VariableAggregator is using cellranges to select part of Domain")
return VariableAggregatorNamed(va.vars, va.modeldata, va.arrays_idx)
end
function VariableAggregatorNamed(
vars, modeldata::AbstractModelData, arrays_idx=1,
)
# sort into Dicts of
# domain.name => (Dict of v.name=>v)
# domain.name => (Dict of v.name=>data)
# Sort by name and then use OrderedDict to preserve alphabetical order (domainname, varname)
domains_vars = OrderedCollections.OrderedDict()
domains_values = OrderedCollections.OrderedDict()
for v in sort(vars, by=fullname)
sym_vname = Symbol(replace(v.name, "/"=>"__")) # Reaction-private Variables use <reactionname>/<varname>, but / isn't a legal Symbol name
d_vars = get!(domains_vars, Symbol(v.domain.name), OrderedCollections.OrderedDict())
d_vars[sym_vname] = v
d_values = get!(domains_values, Symbol(v.domain.name), OrderedCollections.OrderedDict())
d_values[sym_vname] = get_data(v, modeldata, arrays_idx)
end
# convert to nested NamedTuples, via a Dict of NamedTuples
vars_dictnt = OrderedCollections.OrderedDict()
for (dname, d_vars) in domains_vars
vars_dictnt[dname] = NamedTuple{Tuple(keys(d_vars))}(Tuple(values(d_vars)))
end
vars_nt = NamedTuple{Tuple(keys(vars_dictnt))}(Tuple(values(vars_dictnt)))
vars_values_dictnt = OrderedCollections.OrderedDict()
for (dname, d_values) in domains_values
vars_values_dictnt[dname] = NamedTuple{Tuple(keys(d_values))}(Tuple(values(d_values)))
end
vars_values_nt = NamedTuple{Tuple(keys(vars_values_dictnt))}(Tuple(values(vars_values_dictnt)))
return VariableAggregatorNamed(modeldata, arrays_idx, vars_nt, vars_values_nt)
end
"""
set_values!(van::VariableAggregatorNamed, domainname_sym::Symbol, varname_sym::Symbol, val; allow_not_found=false)
set_values!(van::VariableAggregatorNamed, domainname::AbstractString, varname::AbstractString, val; allow_not_found=false)
set_values!(van::VariableAggregatorNamed, ::Val{domainname_sym}, ::Val{varname_sym}, val; allow_not_found=false)
Set a data array in `var`: ie set `van.values.domainname.varname .= val`.
If Variable `domainname.varname` not present, errors if `allow_not_found==false`, or has no effect if `allow_not_found==true`.
As an optimisation where `domainname` and `varname` are known at compile time, they can be passed as Val(domainname_sym), Val(varname_sym) to maintain
type stability and avoid allocations.
"""
function set_values!(
van::VariableAggregatorNamed, domainname::Symbol, varname::Symbol, val;
allow_missing::Bool=false, # deprecated
allow_not_found::Bool=allow_missing,
)
# check Variable exists
if hasfield(typeof(van.values), domainname)
if hasfield(typeof(getfield(van.values, domainname)), varname)
getfield(getfield(van.values, domainname), varname) .= val
else
allow_not_found ||
error("VariableAggregatorNamed has no Variable $domainame.$varname")
end
else
allow_not_found ||
error("VariableAggregatorNamed has no Variable $domainame.$varname")
end
return nothing
end
set_values!(
van::VariableAggregatorNamed, domainname::AbstractString, varname::AbstractString, val;
allow_missing::Bool=false, # deprecated
allow_not_found::Bool=allow_missing,
) = set_values!(van, Symbol(domainname), Symbol(varname), val; allow_not_found)
# type stable version
function set_values!(
van::VariableAggregatorNamed, domainname::Val{DN}, varname::Val{VN}, val;
allow_missing::Bool=false, # deprecated
allow_not_found::Bool=allow_missing,
) where {DN, VN}
# check Variable exists
if hasfield(typeof(van.values), DN)
if hasfield(typeof(getfield(van.values, DN)), VN)
getfield(getfield(van.values, DN), VN) .= val
else
allow_not_found ||
error("VariableAggregatorNamed has no Variable $DN.$VN")
end
else
allow_not_found ||
error("VariableAggregatorNamed has no Variable $DN.$VN")
end
return nothing
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 2177 | module ReactionPaleoMockModule
import PALEOboxes as PB
# using Infiltrator # Julia debugger
"Define variables, parameters, and any additional reaction state"
Base.@kwdef mutable struct ReactionPaleoMock{P} <: PB.AbstractReaction
base::PB.ReactionBase
pars::P = PB.ParametersTuple(
PB.ParDouble( "par1", 0.0, units="m-3",
description="test parameter double"),
PB.ParInt( "parint", 2,
description="test parameter int"),
PB.ParBool( "parbool", true,
description="test parameter bool"),
PB.ParString( "parstring", "a_string",
description="test parameter string"),
)
end
function do_stateandeqb(m::PB.ReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
vars.scalar_prop[] = vars.scalar_dep[] # 25nS, 0 allocations
return nothing
end
function do_react(m::PB.ReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for i in cellrange.indices
vars.phy[i] = pars.par1[]
end
return nothing
end
function PB.register_methods!(rj::ReactionPaleoMock)
println("ReactionPaleoMock.register_methods! rj=", rj)
println(" parint=", rj.pars.parint[])
println(" parbool=", rj.pars.parbool[])
println(" parstring=", rj.pars.parstring[])
vars_stateandeqb = [
PB.VarDepScalar("scalar_dep", "mol m-3", "a scalar dependency"),
PB.VarPropScalar("%reaction%scalar_prop", "mol m-3", "a scalar property")
]
PB.add_method_do!(rj, do_stateandeqb, (PB.VarList_namedtuple(vars_stateandeqb),))
# default vector Variable
vars_react = [
PB.VarProp( "phy", "mol m-3", "phytoplankton concentration")
]
PB.add_method_do!(rj, do_react, (PB.VarList_namedtuple(vars_react),))
return nothing
end
# contiguous range is faster than using indices array
# @btime ReactionPaleoMockModule.do_react_kernel(reaction.var_phy._data, 1:1000, reaction.pars.par1.value)
# 168.262 ns (1 allocation: 16 bytes)
function do_react_kernel(v, indices, p)
for i in indices
@inbounds v[i] = p
end
return nothing
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 940 | module ReactionRateStoichMockModule
import PALEOboxes as PB
"Mock Reaction to test RateStoich"
Base.@kwdef mutable struct ReactionRateStoichMock <: PB.AbstractReaction
base::PB.ReactionBase
# a biogeochemically implausible fractionating H2S oxidation
# H2S + 2O2 -> SO4, with -10 per mil fractionation
ratestoich = PB.RateStoich(
PB.VarProp("myrate", "mol yr-1", "a rate"),
((-2.0, "O2"), (-1.0,"H2S::Isotope"), (1.0, "SO4::Isotope")),
deltavarname_eta=("H2S_delta", -10.0),
processname="redox"
)
end
function PB.register_methods!(rj::ReactionRateStoichMock)
PB.add_method_do!(rj, do_rate, (PB.VarList_single(rj.ratestoich.ratevartemplate),))
PB.add_method_do!(rj, rj.ratestoich, isotope_data=PB.IsotopeLinear)
return nothing
end
function do_rate(m, (rate, ), cellrange::PB.AbstractCellRange, deltat)
rate .= 42.0
return nothing
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 748 | module ReactionRateStoichMockModule
import PALEOboxes as PB
"Mock Reaction to test calculating a flux that depends on a reservoir"
Base.@kwdef mutable struct ReactionReservoirFlux <: PB.AbstractReaction
base::PB.ReactionBase
end
function PB.register_methods!(rj::ReactionReservoirFlux)
vars = [
PB.VarDepScalar("R", "mol", "a scalar reservoir"),
PB.VarContribScalar("R_sms", "mol yr-1", "a scalar reservoir source-sink"),
]
PB.add_method_do!(rj, do_reservoirflux, (PB.VarList_namedtuple(vars),))
return nothing
end
function do_reservoirflux(m, (vars, ), cellrange::PB.AbstractCellRange, deltat)
flux = 1.0*vars.R[] # first order rate
vars.R_sms[] -= flux
return nothing
end
end # module
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 4822 | import PALEOboxes as PB
using Test
using BenchmarkTools
include("ReactionPaleoMockModule.jl")
@testset "PALEOboxes base" begin
model = PB.create_model_from_config("configbase.yaml", "model1")
PB.show_methods_setup(model)
PB.show_methods_initialize(model)
PB.show_methods_do(model)
@test length(model.domains) == 3
ocean_domain = model.domains[1]
@test ocean_domain.name == "ocean"
@test ocean_domain.ID == 1
@test length(ocean_domain.reactions) == 2
reaction = PB.get_reaction(ocean_domain, "julia_paleo_mock")
@test reaction.name == "julia_paleo_mock"
println(reaction)
@test length(PB.get_parameters(reaction)) == 4
par = PB.get_parameter(reaction, "par1")
@test par.name == "par1"
@test par.v == 0.15
@test length(PB.get_variables(reaction)) == 3
var = PB.get_variable(reaction, "do_react", "phy")
@test var.localname == "phy"
@test var.linkreq_name == "mock_phy"
@test length(PB.get_variables(ocean_domain)) == 5
modelvars = Dict((var.name, var) for var in PB.get_variables(ocean_domain, hostdep=false))
@test length(modelvars) == 4
@test !isnothing(PB.get_variable(ocean_domain, "mock_phy"))
@test haskey(modelvars, "mock_phy")
@test haskey(modelvars, "julia_paleo_mock/scalar_prop")
@test haskey(modelvars, "mock2_phy")
@test haskey(modelvars, "julia_paleo_mock2/scalar_prop")
hostvars = PB.get_variables(ocean_domain, hostdep=true)
@test length(hostvars) == 1
@test hostvars[1].name == "scalar_dep"
@test PB.is_scalar(hostvars[1])
domain_size = 1000
# domain_size = 10
ocean_domain.grid = PB.Grids.UnstructuredVectorGrid(ncells=domain_size)
@test PB.get_length(ocean_domain) == domain_size
modeldata = PB.create_modeldata(model)
@test length(PB.get_unallocated_variables(ocean_domain, modeldata, 1)) == 5
PB.allocate_variables!(ocean_domain, modeldata, 1; hostdep=false, check_units_opt=:error)
@test length(PB.get_unallocated_variables(ocean_domain, modeldata, 1)) == 1
@test PB.check_ready(ocean_domain, modeldata, throw_on_error=false) == false
hostvardata = Float64[NaN]
PB.set_data!(hostvars[1], modeldata, 1, hostvardata)
@test PB.check_ready(ocean_domain, modeldata, throw_on_error=false) == true
@test PB.check_configuration(model, throw_on_error=false) == true
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
cellrange = PB.Grids.create_default_cellrange(ocean_domain, ocean_domain.grid)
cellranges = [cellrange]
PB.dispatch_setup(model, :setup, modeldata, cellranges)
PB.dispatch_setup(model, :norm_value, modeldata, cellranges)
PB.dispatch_setup(model, :initial_value, modeldata, cellranges)
dispatchlists = modeldata.dispatchlists_all
hostvardata[] = 27.3
PB.do_deriv(dispatchlists)
allvars = PB.VariableAggregatorNamed(modeldata)
println(allvars)
@test PB.num_vars(allvars) == 5
@test length(allvars) == 3 + 2*domain_size
@test PB.get_data(modelvars["julia_paleo_mock/scalar_prop"], modeldata) == hostvardata
@test PB.get_data(modelvars["julia_paleo_mock2/scalar_prop"], modeldata) == hostvardata
# NB: / in name --> __ in field, so "ocean.julia_paleo_mock/scalar_prop" -> field ocean.julia_paleo_mock__scalar_prop
@test allvars.values.ocean.julia_paleo_mock__scalar_prop == hostvardata
@test allvars.values.ocean.julia_paleo_mock2__scalar_prop == hostvardata
@test allvars.values.ocean.mock_phy == fill(0.15, domain_size)
end
@testset "PALEOboxes base loop" begin
@test_throws ErrorException("The input graph contains at least one loop.") PB.create_model_from_config("configbase.yaml", "model_with_loop")
end
@testset "PALEOboxes base invalid parameter name" begin
@test_throws ErrorException("reaction ocean.julia_paleo_mock has no Parameter(s):\n misspelt_par: something\n") PB.create_model_from_config("configbase.yaml", "model_with_invalid_parameter")
end
@testset "PALEOboxes base empty parameters" begin
model = PB.create_model_from_config("configbase.yaml", "model_with_empty_parameters")
@test length(model.domains) == 3
end
@testset "PALEOboxes base empty variable link" begin
@test_throws MethodError PB.create_model_from_config("configbase.yaml", "model_with_empty_variable_link")
end
@testset "PALEOboxes base invalid variable attribute" begin
@test_throws ErrorException PB.create_model_from_config("configbase.yaml", "model_with_invalid_variable_attribute")
end
# test parsing concatenated yaml files
@testset "PALEOboxes base concatenate" begin
model = PB.create_model_from_config(["configbase_pt1.yaml", "configbase_pt2.yaml"], "model1")
@test length(model.domains) == 3
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 1644 |
# Tests for Tuple iteration and dispatch
# see https://github.com/JuliaLang/julia/issues/31869
# https://github.com/JuliaLang/julia/blob/master/base/tuple.jl (map implementation)
#
# (looking for a simple way to dispatch a Tuple of similar Reactions (do_ in Model.jl)
# or Variables (RateStoich.jl, several other places) that uses the Julia type
# system to eliminate dynamic dispatch overhead, both speed and spurious allocations)
using BenchmarkTools
foreach_test(f, t::Tuple{}) = ()
# foreach_test(f, t::Tuple{Any, }) = (f(t[1]); nothing)
# foreach_test(f, t::Tuple) = (f(t[1]); foreach_test(f, Base.tail(t)); nothing)
foreach_test(f, t::Tuple{Any, }) = (@Base._inline_meta; f(t[1]); nothing)
foreach_test(f, t::Tuple) = (@Base._inline_meta; f(t[1]); foreach_test(f, Base.tail(t)); nothing)
# benchmarks demonstrate Base.tail hits some arbitrary limit at 32 ??
t2 = Tuple(ones(32))
@btime foreach_test(sin, $t2) # no allocations
t2 = Tuple(ones(33))
@btime foreach_test(sin, $t2) # allocates
fprint(a) = println("a=$a typeof(a)=$(typeof(a))")
foreach_test2(f, t1::Tuple{}, t2::Tuple{}) = ()
# foreach_test(f, t::Tuple{Any, }) = (f(t[1]); nothing)
# foreach_test(f, t::Tuple) = (f(t[1]); foreach_test(f, Base.tail(t)); nothing)
foreach_test2(f, t1::Tuple{Any, }, t2::Tuple{Any,}) = (@Base._inline_meta; f(t1[1], t2[1]); nothing)
foreach_test2(f, t1::Tuple, t2::Tuple) = (@Base._inline_meta; f(t1[1], t2[1]); foreach_test2(f, Base.tail(t1), Base.tail(t2)); nothing)
t2 = Tuple(ones(32))
@btime foreach_test2(min, $t2, $t2 ) # no allocations
t2 = Tuple(ones(33))
@btime foreach_test2(min, $t2, $t2) # allocates | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 80 |
using Test, Documenter
import PALEOboxes
doctest(PALEOboxes; manual=false)
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 2165 |
using Test
using Logging
import PALEOboxes as PB
@testset "Fields" begin
@testset "ScalarData, ScalarSpace" begin
f = PB.allocate_field(PB.ScalarData, (), Float64, PB.ScalarSpace, nothing; thread_safe=false, allocatenans=true)
@test isnan(f.values[])
end
@testset "ScalarData, CellSpace, no grid" begin
# check that a CellSpace Field with no grid behaves as a ScalarSpace Field
f = PB.allocate_field(PB.ScalarData, (), Float64, PB.CellSpace, nothing; thread_safe=false, allocatenans=true)
@test isnan(f.values[])
end
@testset "ScalarData, CellSpace, UnstructuredColumnGrid" begin
g = PB.Grids.UnstructuredColumnGrid(ncells=5, Icolumns=[collect(1:5)])
f = PB.allocate_field(PB.ScalarData, (), Float64, PB.CellSpace, g; thread_safe=false, allocatenans=true)
@test isnan.(f.values) == [true for i in 1:5]
end
@testset "ArrayScalarData, ScalarSpace" begin
f = PB.allocate_field(PB.ArrayScalarData, (PB.NamedDimension("test", 2, []), ), Float64, PB.ScalarSpace, nothing; thread_safe=false, allocatenans=true)
@test isnan.(f.values) == [true, true]
end
@testset "ArrayScalarData, CellSpace, no grid" begin
# TODO this is possibly inconsistent with (ScalarData, CellSpace, no grid),
# as Field.values here is a (1, 2) Array, not a (2,) Vector
f = PB.allocate_field(PB.ArrayScalarData, (PB.NamedDimension("test", 2, []), ), Float64, PB.CellSpace, nothing; thread_safe=false, allocatenans=true)
@test_broken size(f.values) == (2, ) # TODO should be a Vector ?
@test size(f.values) == (1, 2)
@test isnan.(f.values) == [true true] # TODO 1x2 Array or Vector ?
end
@testset "ArrayScalarData, CellSpace, UnstructuredColumnGrid" begin
g = PB.Grids.UnstructuredColumnGrid(ncells=5, Icolumns=[collect(1:5)])
f = PB.allocate_field(PB.ArrayScalarData, (PB.NamedDimension("test", 2, []), ), Float64, PB.CellSpace, g; thread_safe=false, allocatenans=true)
@test size(f.values) == (5, 2)
end
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 2131 |
using Test
using Logging
import PALEOboxes as PB
@testset "Fluxes" begin
model = PB.create_model_from_config("configfluxes.yaml", "model1")
global_domain = PB.get_domain(model, "global")
@test PB.get_length(global_domain) == 1
ocean_domain = PB.get_domain(model, "ocean")
ocean_domain.grid = PB.Grids.UnstructuredVectorGrid(ncells=1000)
ocean_length = PB.get_length(ocean_domain)
@test ocean_length == 1000
modeldata = PB.create_modeldata(model)
PB.allocate_variables!(model, modeldata, 1; check_units_opt=:error)
@test PB.check_ready(model, modeldata) == true
# get variables
all_vars = PB.VariableAggregatorNamed(modeldata)
@test PB.num_vars(all_vars) == 9
@info "all_vars: $all_vars"
all_data = all_vars.values
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
@info "dispatch_setup"
PB.dispatch_setup(model, :setup, modeldata)
PB.dispatch_setup(model, :norm_value, modeldata)
PB.dispatch_setup(model, :initial_value, modeldata)
@info "const fluxes:"
@test all_data.ocean.flux_A == fill(10.0, ocean_length)
@test all_data.ocean.flux_B == fill(20.0, ocean_length)
@test all_data.ocean.flux_C ==
fill(PB.isotope_totaldelta(PB.IsotopeLinear, 2.0, -1.0), ocean_length)
dispatchlists = modeldata.dispatchlists_all
PB.do_deriv(dispatchlists)
PB.do_deriv(dispatchlists)
@info "transferred fluxes"
@test all_data.ocean.tflux_A == fill(2*10.0, ocean_length)
@test all_data.ocean.tflux_C ==
fill(2*PB.isotope_totaldelta(PB.IsotopeLinear, 2.0, -1.0), ocean_length)
@info "transferred flux totals"
@test all_data.ocean.tflux_total_A[] == ocean_length*2*10.0
@test all_data.ocean.tflux_total_C[] ==
ocean_length*2*PB.isotope_totaldelta(PB.IsotopeLinear, 2.0, -1.0)
@info "global transferred fluxes"
@test all_data.global.tflux_B[] == ocean_length*-1*20.0
@test all_data.global.tflux_C[] ==
ocean_length*-1*PB.isotope_totaldelta(PB.IsotopeLinear, 2.0, -1.0)
@info "test complete"
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 4147 |
using Test
import PALEOboxes as PB
include("ReactionPaleoMockModule.jl")
@testset "Grids" begin
@testset "Cartesian Grid" begin
model = PB.create_model_from_config(joinpath(@__DIR__, "configgrids.yaml"), "cartesiangrid")
# Test domains
@test PB.get_num_domains(model) == 1
ocean_domain = PB.get_domain(model, "ocean")
dsize = (2, 3, 4)
@test PB.get_length(ocean_domain) == prod(dsize)
hostvars = PB.get_variables(ocean_domain, hostdep=true)
modeldata = PB.create_modeldata(model)
PB.allocate_variables!(ocean_domain, modeldata, 1; hostdep=false, check_units_opt=:error)
@test length(PB.get_unallocated_variables(ocean_domain, modeldata, 1)) == 1
@test length(hostvars) == 1
@test hostvars[1].name == "scalar_dep"
@test PB.is_scalar(hostvars[1])
hostvardata = Float64[NaN]
PB.set_data!(hostvars[1], modeldata, 1, hostvardata)
@test PB.check_ready(ocean_domain, modeldata, throw_on_error=false) == true
@test PB.check_configuration(model, throw_on_error=false) == true
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
cellrange = PB.Grids.create_default_cellrange(ocean_domain, ocean_domain.grid)
cellranges = [cellrange]
PB.dispatch_setup(model, :setup, modeldata, cellranges)
PB.dispatch_setup(model, :norm_value, modeldata, cellranges)
PB.dispatch_setup(model, :initial_value, modeldata, cellranges)
dispatchlists = modeldata.dispatchlists_all
hostvardata[] = 23.0
PB.do_deriv(dispatchlists)
all_vars = PB.VariableAggregatorNamed(modeldata)
@info "allvars: $all_vars"
all_data = all_vars.values
# NB: "ocean.julia_paleo_mock/scalar_prop" substitute / --> __
@test all_data.ocean.julia_paleo_mock__scalar_prop == hostvardata
@test all_data.ocean.mock_phy == fill(0.15, dsize)
model = nothing
end
@testset "Cartesian Linear 2D" begin
model = PB.create_model_from_config(joinpath(@__DIR__, "configgrids.yaml"), "cartesianlinear2D")
# Test domains
@test PB.get_num_domains(model) == 1
surface_domain = PB.get_domain(model, "surface")
dsize = (144, 90)
@test PB.get_length(surface_domain) == prod(dsize)
modeldata = PB.create_modeldata(model)
PB.allocate_variables!(model, modeldata, 1; check_units_opt=:error)
@test PB.check_ready(model, modeldata; throw_on_error=false) == true
modelcreated_vars_dict = Dict([(var.name, var) for var in PB.get_variables(surface_domain, hostdep=false)])
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
PB.dispatch_setup(model, :setup, modeldata)
PB.dispatch_setup(model, :norm_value, modeldata)
PB.dispatch_setup(model, :initial_value, modeldata)
Asurf = PB.get_data(modelcreated_vars_dict["Asurf"], modeldata)
@test length(Asurf) == prod(dsize)
@test size(Asurf) == (prod(dsize), ) # linear Vector
@test isapprox(sum(Asurf), 4*pi*6.371229e6^2, rtol=1e-14)
model = nothing
end
@testset "Cartesian Array 2D" begin
model = PB.create_model_from_config(joinpath(@__DIR__, "configgrids.yaml"), "cartesianarray2D")
# Test domains
@test PB.get_num_domains(model) == 1
surface_domain = PB.get_domain(model, "surface")
dsize = (144, 90)
@test PB.get_length(surface_domain) == prod(dsize)
modeldata = PB.create_modeldata(model)
PB.allocate_variables!(model, modeldata, 1; check_units_opt=:error)
@test PB.check_ready(model, modeldata, throw_on_error=false) == true
modelcreated_vars_dict = Dict([(var.name, var) for var in PB.get_variables(surface_domain, hostdep=false)])
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
PB.dispatch_setup(model, :setup, modeldata)
PB.dispatch_setup(model, :norm_value, modeldata)
PB.dispatch_setup(model, :initial_value, modeldata)
Asurf = PB.get_data(modelcreated_vars_dict["Asurf"], modeldata)
@test length(Asurf) == prod(dsize)
@test size(Asurf) == dsize # 2D Array
@test isapprox(sum(Asurf), 4*pi*6.371229e6^2, rtol=1e-14)
model = nothing
end
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 2196 | import PALEOboxes as PB
using Test
# import Infiltrator
include("ReactionRateStoichMock.jl")
@testset "RateStoich" begin
model = PB.create_model_from_config("configratestoich.yaml", "model1")
domain = PB.get_domain(model, "ocean")
domain.grid = PB.Grids.UnstructuredVectorGrid(ncells=10)
@test PB.get_length(domain) == 10
modeldata = PB.create_modeldata(model)
PB.allocate_variables!(model, modeldata, 1; check_units_opt=:error)
PB.check_ready(model, modeldata)
all_vars = PB.VariableAggregatorNamed(modeldata)
all_data = all_vars.values
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
PB.dispatch_setup(model, :setup, modeldata)
PB.dispatch_setup(model, :norm_value, modeldata)
PB.dispatch_setup(model, :initial_value, modeldata)
dispatchlists = modeldata.dispatchlists_all
PB.do_deriv(dispatchlists)
ocean_H2S = all_data.ocean.H2S
# @Infiltrator.infiltrate
@test PB.get_total.(ocean_H2S) == fill(10.0, 10)
@test PB.get_delta.(ocean_H2S) == fill(-30.0, 10)
ocean_H2S_delta = all_data.ocean.H2S_delta
@test maximum(ocean_H2S_delta .- fill(-30.0, 10)) < 1e-13
ocean_myrate = all_data.ocean.myrate
@test ocean_myrate == fill(42.0, 10)
ocean_H2S_sms = all_data.ocean.H2S_sms
@test PB.get_total.(ocean_H2S_sms) == fill(-1.0*42.0, 10)
deltaabserr = abs.(PB.get_delta.(ocean_H2S_sms) .- fill(-30.0 - 10.0, 10))
@test maximum(deltaabserr) < 1e-13
ocean_SO4_sms = all_data.ocean.SO4_sms
@test PB.get_total.(ocean_SO4_sms) == fill(1.0*42.0, 10)
deltaabserr = abs.(PB.get_delta.(ocean_SO4_sms) .- fill(-30.0 - 10.0, 10))
@test maximum(deltaabserr) < 1e-13
@info "stoichiometry"
ratevars = PB.get_variables(domain, v->PB.has_attribute(v, :rate_processname))
@test length(ratevars) == 1
rv = ratevars[1]
@test rv.name == "myrate"
@test PB.get_attribute(rv, :rate_processname) == "redox"
speciesstoich = Dict(zip(PB.get_attribute(rv, :rate_species), PB.get_attribute(rv, :rate_stoichiometry)))
@test speciesstoich == Dict("SO4::Isotope" => 1.0, "H2S::Isotope" => -1.0, "O2" => -2.0)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 5448 |
using Test
using Logging
import PALEOboxes as PB
import Infiltrator
include("ReactionReservoirFlux.jl")
@testset "Reactions" begin
@test PB.find_reaction("ReactionReservoirScalar") == PB.Reservoirs.ReactionReservoirScalar
PB.show_all_reactions() # just check runs without error
end
@testset "Reservoirs" begin
# logfile = open("Reservoirs_log.txt", "w")
# println("writing log output to ", logfile)
# global_logger(SimpleLogger(logfile))
model = PB.create_model_from_config("configreservoirs.yaml", "model1")
# Test domains
@test PB.get_num_domains(model) == 2
global_domain = PB.get_domain(model, "global")
@test global_domain.name == "global"
@test PB.get_length(global_domain) == 1
ocean_domain = PB.get_domain(model, "ocean")
@test PB.get_length(ocean_domain) == 1000
ocean_length = PB.get_length(ocean_domain)
# test variable attribute access
@test PB.get_variable_attribute(model, "global.A", :norm_value) == 3.193e17
# allocate internal variables
modeldata = PB.create_modeldata(model)
PB.allocate_variables!(model, modeldata, 1; hostdep=false, check_units_opt=:error)
@test length( PB.get_unallocated_variables(global_domain, modeldata, 1)) == 4
@test PB.check_ready(global_domain, modeldata, throw_on_error=false) == false
# allocate arrays for host dependencies and set data pointers
PB.allocate_variables!(model, modeldata, 1; hostdep=true, check_units_opt=:error)
@test PB.check_ready(global_domain, modeldata) == true
# get all variable data arrays
all_vars = PB.VariableAggregatorNamed(modeldata)
@info "all_vars: $all_vars\n"
all_data = all_vars.values
# check state variables
stateexplicit_vars, stateexplicit_sms_vars =
PB.get_host_variables(global_domain, PB.VF_StateExplicit, match_deriv_suffix="_sms")
@test length(stateexplicit_vars) == 2 # A and O
# get global state variable aggregator
global_stateexplicit_va = PB.VariableAggregator(stateexplicit_vars, fill(nothing, length(stateexplicit_vars)), modeldata, 1)
stateexplicit_vars, stateexplicit_sms_vars =
PB.get_host_variables(ocean_domain, PB.VF_StateExplicit, match_deriv_suffix="_sms")
@test length(stateexplicit_vars) == 2
# get ocean state variable aggregator
ocean_stateexplicit_va = PB.VariableAggregator(stateexplicit_vars, fill(nothing, length(stateexplicit_vars)), modeldata, 1)
# get host-dependent variables
global_hostdep_vars_vec = PB.get_variables(global_domain, hostdep=true)
@test length(global_hostdep_vars_vec) == 4
ocean_hostdep_vars_vec = PB.get_variables(ocean_domain, hostdep=true)
@test length(ocean_hostdep_vars_vec) == 4
PB.initialize_reactiondata!(model, modeldata; create_dispatchlists_all=true)
@info "dispatch_setup"
PB.dispatch_setup(model, :setup, modeldata)
PB.dispatch_setup(model, :norm_value, modeldata)
PB.dispatch_setup(model, :initial_value, modeldata)
@info "global stateexplicit variables:\n"
@test all_data.global.A.v[] == 3.193e18 # A
@test all_data.global.A.v_moldelta[] == 2.0*3.193e18 # A_moldelta
# test access via flattened vector (as used eg by an ODE solver)
global_A_indices = PB.get_indices(global_stateexplicit_va, "global.A")
@test global_A_indices == 2:3
stateexplicit_vector = PB.get_data(global_stateexplicit_va)
@test stateexplicit_vector[global_A_indices] == [all_data.global.A.v[], all_data.global.A.v_moldelta[]]
# test VariableAggregatorNamed created from VariableAggregator
global_stateexplicit_data = PB.VariableAggregatorNamed(global_stateexplicit_va).values
@test global_stateexplicit_data.global.A == all_data.global.A
@info "global const variables:"
@test all_data.global.ConstS[] == 1.0
@info "ocean host-dependent variable initialisation:\n"
@test all_data.ocean.T[1] == 1.0*10.0
@test all_data.ocean.C_conc == fill(2.0, ocean_length)
# take a time step
dispatchlists = modeldata.dispatchlists_all
PB.do_deriv(dispatchlists)
@info "global model-created variables:\n"
@test all_data.global.A_norm[] == 10.0
@test all_data.global.A_delta[] == 2.0
@info "ocean model-created variables:\n"
@test all_data.ocean.T_conc == fill(1.0, ocean_length)
@test all_data.ocean.C[1] == 2.0*10.0
PB.do_deriv(dispatchlists) # repeat do_deriv to check total is reinitialized each time step
@test all_data.ocean.T_total[] == 1.0*10.0*ocean_length
@test all_data.ocean.C_total[] == 2.0*10.0*ocean_length
@info "sum variables:"
@test all_data.ocean.vectorsum == fill(30.0, ocean_length)
@test all_data.global.scalarsum[] == 4.0
@info "ocean constant concentrations"
const_conc_data = all_data.ocean.const_conc
@test const_conc_data.v == fill(0.1, ocean_length)
@test const_conc_data.v_moldelta == fill(-0.2, ocean_length)
@info "weighted mean"
@test all_data.ocean.const_conc_mean[] == PB.IsotopeLinear(0.1, -0.2)
@info "volume in range"
@test all_data.ocean.frac[] == 1.0
@info "test complete"
# close(logfile)
end
@testset "ReservoirsFluxes" begin
# test is just that the model links correctly with flux and a constant ReactionReservoirScalar
model = PB.create_model_from_config("configreservoirsfluxes.yaml", "model1")
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 1272 |
using Test
import PALEOboxes as PB
function copy_simd_fillindex!(b, a, ::Type{T}) where T
# N = Val{4}()
# indvec = [0,0,0,0]
iter = eachindex(a)
@inbounds for indices in PB.SIMDutils.SIMDIter(iter, T)
# println(" indices=", indices)
xs = PB.SIMDutils.vgatherind(T, a, indices)
PB.SIMDutils.vscatterind!(xs, b, indices)
end
return nothing
end
function copy_scalar_fillindex!(b, a)
iter = eachindex(a)
ST = eltype(a)
for i in PB.SIMDutils.SIMDIter(iter, ST)
# println(" i=", i)
xs = PB.SIMDutils.vgatherind(ST, a, i)
PB.SIMDutils.vscatterind!(xs, b, i)
end
return nothing
end
function copy_fillindex!(b, a)
iter = eachindex(a)
for i in iter
b[i] = a[i]
end
return nothing
end
@testset "scatter gather" begin
a = zeros(7)
a .= 42 .+ (1:length(a))
b = similar(a)
fill!(b, 0.0)
copy_simd_fillindex!(b, a, PB.SIMDutils.FP64P4)
@test b == a
b = similar(a)
fill!(b, 0.0)
copy_scalar_fillindex!(b, a)
@test b == a
b = similar(a)
fill!(b, 0.0)
copy_fillindex!(b, a)
@test b == a
a = zeros(Float32, 27)
a .= 42 .+ (1:length(a))
b = similar(a)
fill!(b, 0.0)
copy_simd_fillindex!(b, a, PB.SIMDutils.FP32P8)
@test b == a
end | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 357 |
using Test
# using NBInclude
import PALEOboxes as PB
@testset "PALEOboxes" begin
include("runfieldtests.jl")
include("rundoctests.jl")
include("runyamltests.jl")
include("runbasetests.jl")
include("rungridstests.jl")
include("runreservoirtests.jl")
include("runfluxtests.jl")
include("runratestoichtests.jl")
include("runsimdtests.jl")
end # @testset
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 1302 |
using Test
import YAML
@testset "YAML.jl" begin
# test YAML.jl handling of merge keys and duplicate keys
# see comments in merge.yaml test file
data = YAML.load_file("merge.yaml")
@test length(data) == 11
# CENTER
@test data[1] == Dict("x" => 1, "y" => 2)
# LEFT
@test data[2] == Dict("x" => 0, "y" => 2)
# BIG
@test data[3] == Dict("r" => 10)
# SMALL
@test data[4] == Dict("r" => 1)
# All the following maps are equal:
# explicit keys
@test data[5] == Dict("label" => "center/big", "x" => 1, "r" => 10, "y" => 2)
# Merge one map
@test data[6] == Dict("label" => "center/big", "x" => 1, "r" => 10, "y" => 2)
# Merge multiple maps
@test data[7] == Dict("label" => "center/big", "x" => 1, "r" => 10, "y" => 2)
# Override
@test data[8] == Dict("label" => "center/big", "x" => 1, "r" => 10, "y" => 2)
# SD added: testing key yaml.jl key override and merge
# yaml.jl merge keys don't override explicit keys (as spec)
@test data[9] == Dict("r" => 10)
# yaml.jl issue ? duplicates are allowed, and later keys override earlier ones
@test data[10] == Dict("r" => 10)
# yaml.jl issue ? allows duplicate merge keys, and later ones override earlier ones !
@test data[11] == Dict("r" => 1)
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | code | 1179 | # code from https://github.com/cdsousa/SingleDispatchJuliaVsCXX
# demonstrating Julia dynamic dispatch overhead
using BenchmarkTools
abstract type AbstrType end
struct ConcrType1 <: AbstrType; x::Int; end
struct ConcrType2 <: AbstrType; x::Int; end
@noinline f(a) = a.x
const n = 1_000_000
const arrconcr = [ConcrType1(i) for i=1:n]
const arrabstr = AbstrType[rand(Bool) ? ConcrType1(i) : ConcrType2(i) for i=1:n]
const arrunion = Union{ConcrType1, ConcrType2}[rand(Bool) ? ConcrType1(i) : ConcrType2(i) for i=1:n]
println()
println("concr")
sum_arrconcr = 0::Int
@btime for i=1:n
@inbounds $sum_arrconcr += f($arrconcr[i])
end
println("abstr")
sum_arrabstr = 0::Int
@btime for i=1:n
@inbounds $sum_arrabstr += f($arrabstr[i])
end
println("manual dispatch")
# manual dispatch
sum_arrabstr2 = 0::Int
@btime for i=1:n
@inbounds a = $arrabstr[i]
T = typeof(a)
if T === ConcrType1
$sum_arrabstr2 += f(a::ConcrType1)
elseif T === ConcrType2
$sum_arrabstr2 += f(a::ConcrType2)
else
$sum_arrabstr2 += f(a)
end
end
println("union")
sum_arrunion = 0::Int
@btime for i=1:n
@inbounds $sum_arrunion += f($arrunion[i])
end
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 1544 |
# PALEOboxes.jl
[](https://github.com/PALEOtoolkit/PALEOboxes.jl/actions/workflows/CI.yml)
[](https://PALEOtoolkit.github.io/PALEOboxes.jl/dev)
PALEOboxes.jl provides the model coupler for the PALEO model framework.
PALEO provides a toolkit for constructing biogeochemical reaction-transport models of Earth system components (eg atmosphere, ocean, sediment) as a well as coupled Earth system configurations. A [YAML](https://en.wikipedia.org/wiki/YAML) format configuration file defines both the model structure (spatial domains containing biogeochemical variables and reactions that operate on them) and model parameter values, making it straightforward to add and remove biogeochemical tracers and their interactions, change the representation of eg ocean circulation, and couple components together. Biogeochemical reaction networks can be embedded in a Fortran or C host model providing the dynamics and transport, or combined with an offline transport representation to provide a standalone model.
PALEOboxes creates the model and implements a coupler that provides a unified mechanism for
1. ‘low-level’ coupling (e.g. linking individual redox Reactions within a Domain, on which is built
2. ‘module-level’ coupling (linking e.g. atmosphere and ocean components) based on standardising names for communicating fluxes, and which enables
3. separation of biogeochemical reaction and transport.
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 6723 | # Control flow
```@meta
CurrentModule = PALEOboxes
```
## Model Creation
A [YAML](https://en.wikipedia.org/wiki/YAML) format configuration file defines both the model structure (spatial domains containing biogeochemical variables and reactions that operate on them) and model parameter values. Reactions (subtypes of [`AbstractReaction`](@ref)) are identified by Type name (without module prefix) in the configuration file.
To create the model, the numerical solver or host should call [`create_model_from_config`](@ref) which reads the configuration file, and then:
- creates model [`Domain`](@ref)s and Reactions (subtypes of [`AbstractReaction`](@ref)), applying any [`Parameter`](@ref)s settings from the `parameters:` sections in the config file.
- calls [`set_model_geometry`](@ref) allowing Reactions to create and attach Grids ([`AbstractMesh`](@ref) subtypes) defining [`Domain`](@ref) sizes.
- calls [`register_methods!`](@ref) on each Reaction, allowing Reactions to define local [`VariableReaction`](@ref)s and register [`ReactionMethod`](@ref)s. [`ReactionMethod`](@ref)s can be added to one of three groups, by calling [`add_method_setup!`](@ref) (called during model setup), [`add_method_initialize!`](@ref) (called at start of main loop) [`add_method_do!`](@ref) (called during main loop).
- links [`VariableReaction`](@ref)s to [`VariableDomain`](@ref)s, applying any renaming from the `variable_links:` sections in the config file.
- calls [`register_dynamic_methods!`](@ref) on each Reaction, allowing Reactions to create [`VariableReaction`](@ref)s and register [`ReactionMethod`](@ref)s that depend on [`VariableDomain`](@ref)s created by other Reactions.
- relinks [`VariableReaction`](@ref)s to [`VariableDomain`](@ref)s to include these additional [`VariableReaction`](@ref)s
- sorts each group of [`ReactionMethod`](@ref)s into dispatch order based on dependencies between Variables, storing the sorted lists in the [`Model`](@ref) struct.
## Model initialisation
To initialise the model, the numerical solver or host should then:
- call [`create_modeldata`](@ref) to create a [`ModelData`](@ref) struct that will store data Arrays for model Variables. A default Vector of [`CellRange`](@ref)s covering the whole model, generated by [`create_default_cellrange`](@ref), is also stored in the `cellranges_all` field of the [`ModelData`](@ref) struct.
- call [`allocate_variables!`](@ref) to allocate memory for model Variables, storing these Array references in the [`ModelData`](@ref) struct.
- call [`check_ready`](@ref) to check that all Variables are allocated.
- call [`initialize_reactiondata!`](@ref) to:
- store sorted lists of [`ReactionMethod`](@ref)s and corresponding Variable array accessors in the [`ModelData`](@ref) struct. A [`ReactionMethod`](@ref) may include a prepare function to include additional buffers etc.
- call [`create_dispatch_methodlists`](@ref) to compile default model-wide lists of `initialize` and `do` methods + corresponding Variable array accessors and [`CellRange`](@ref)s. This is stored as the in the `dispatchlists_all` of the [`ModelData`](@ref) struct.
- call [`check_configuration`](@ref) to call any optional [`check_configuration`](@ref) Reaction methods to validate the model configuration.
- call [`dispatch_setup`](@ref) with `attribute_name = :setup`, which calls Reaction setup methods (registered by [`add_method_setup!`](@ref)) to initialise any internal Reaction state and any non-state Variables (eg grid variables).
## State Variable initialization
To initialise state Variables and perform any Reaction-specific initialisation, the numerical solver or host should:
- call [`dispatch_setup`](@ref) with `attribute_name = :norm_value`. These Reaction setup methods should set state Variables according to the `:norm_value` Variable attribute (which can be set in the `variable_attributes:` section of the config file). Reactions may also use these values internally.
- optionally (if normalisation values are required by a numerical solver), copy the Variable normalisation values from the arrays in [`ModelData`](@ref) to the solver.
- optionally call [`dispatch_setup`](@ref) with `attribute_name = :initial_value` to set state Variables according to the `:initial_value` Variable attribute (which can be set in the `variable_attributes:` section of the config file).
## Main loop
To calculate the model derivative, the numerical solver or host should:
- call [`do_deriv`](@ref) to call lists of `initialize` and `do` methods created by [`create_dispatch_methodlists`](@ref)
## Additional notes
### Operator splitting and Domain tiling: Reaction and Domain subsets
The default initialisation described above calculates the model derivative for all model Reactions for all Domains, using
the `cellranges_all`, and `dispatchlists_all` fields of the [`ModelData`](@ref) struct. A custom Vector of [`CellRange`](@ref)s can be used to select a subset of [`ReactionMethod`](@ref)s by [`Domain`](@ref) and `operatorID`, eg to implement operator splitting. Tiles within [`Domain`](@ref) eg to implement Domain decomposition for a multithreaded model can be defined by specifying [`CellRange`](@ref)s with a subset of cell indices within [`Domain`](@ref)s.
The custom Vector of [`CellRange`](@ref)s should then be supplied to
- [`create_dispatch_methodlists`](@ref) to create lists of methods + corresponding [`CellRange`](@ref)s which can then be supplied to [`do_deriv`](@ref) for the model main loop.
- Optionally to [`VariableAggregator`](@ref)s to create subsets of Variables and tiles within [`Domain`](@ref)s for a numerical solver.
### Multithreaded models
To use with a multithreaded solver eg for a spatially tiled model:
- Set `threadsafe=true` when calling [`create_modeldata`](@ref). The subsequent call to [`allocate_variables!`](@ref) will then allocate Julia `Threads.Atomic` variables for PALEO Variables with attribute `atomic: = true` (usually scalar accumulator variables for totals etc).
- Supply a `method_barrier` implementing a thread barrier function to [`initialize_reactiondata!`](@ref). Reactions are sorted into groups, where each group has no dependencies and later groups depend on earlier ones. The `method_barrier` will be inserted between these groups of independent Reactions.
### Automatic differentiation
- Set `eltype` when calling [`create_modeldata`](@ref) to the appropriate dual number type for a (forward) automatic differentation implementation. All model arrays are held in the created [`ModelData`](@ref) struct and multiple [`ModelData`](@ref) instances can be created, allowing a combination of eg AD Jacobian and standard derivative calculations with different array types.
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 9715 | # PALEOboxes coupler design
```@meta
CurrentModule = PALEOboxes
```
A PALEO [`Model`](@ref) contains [`Domain`](@ref)s, each of which contain Variables defining [`Field`](@ref)s containing `Data` arrays, and Reactions with [`ReactionMethod`](@ref)s that operate on the Variables to calculate model time evolution.
The PALEOboxes Julia package (abbreviated to `PB` in the PALEO code) implements a coupler that provides a unified mechanism for
1. ‘low-level’ coupling (e.g. linking individual redox Reactions within a [`Domain`](@ref)), on which is built
2. ‘module-level’ coupling (linking e.g. atmosphere and ocean components) based on standardising names for communicating fluxes, and which enables
3. separation of biogeochemical reaction and transport.
A [YAML](https://en.wikipedia.org/wiki/YAML) format configuration file then defines both the model structure (spatial domains containing biogeochemical variables and reactions that operate on them) and model parameter values.
## Composing Reactions and Variables within a [`Domain`](@ref)
###### Figure 1

*The PALEOboxes object model illustrated by a fragment of a marine biogeochemical model representing two phytoplankton populations competing for the same nutrient. The Ocean Domain contains two Reactions phytA and phytB, and three state Variables P, phytA and phytB with paired time derivatives P\_sms, phytA\_sms and phytB\_sms. The Reactions are both instances of the same class PaleoReactionSimplePhyt, with a Parameter k\_P, and a single method. The ReactionMethod defines interactions with a nutrient P via a Variable Dependency P and a Variable Contributor P\_sms, and a population represented by Variable Dependency phyt and Contributor phyt\_sms. P and P\_sms from each PaleoReactionSimplePhyt instance are linked at run time to the same Domain Variables P and P\_sms, using the default names from the PaleoReactionSimplePhyt code. phyt and phyt\_sms are renamed in the configuration file to two different pairs of Domain Variables phytA, phytA\_sms and phytB, phytB\_sms, hence representing two distinct phytoplankton populations.*
### Reactions and ReactionMethods
Reactions contain [`Parameter`](@ref)s and are implemented as subtypes of [`AbstractReaction`](@ref) along with associated methods. [`ReactionMethod`](@ref)s and [`VariableReaction`](@ref)s are created by Reactions during model initialization. All PALEO model time evolution (including external prescribed forcing, biogeochemistry, transport within eg an ocean Domain) is then implemented by the [`ReactionMethod`](@ref)s as they are called during the model main loop.
### Biogeochemical Variables
Variables defined as [`VariableReaction`](@ref)s are then linked within (or across) Domains, creating corresponding [`VariableDomain`](@ref)s. Linking of Variables is based on names (as text strings). Default names are encoded in the Reaction implementations (with standard names for e.g. chemical species such as O2, DIC marine tracers), and can be overridden in the configuration file. This is analogous to the use of ‘dummy variables’ in a Fortran or Python function call, and allows (i) a combination of default names for commonly-used biogeochemical variables (‘P’, ‘SO4’ etc), with (ii) renamed variables to allow multiple Reaction instances (e.g. two phytoplankton populations with state variable names and parameter choices for the same Reaction implementation), or (iii) enable rerouting of fluxes and dependencies that are specific to the model configuration, or (iv) sort out name conflicts where no default names have been established.
Variables are classified into two pairings: Properties with Dependencies (shown shaded green in [Figure 1](@ref), linked at run time to [`Domain`](@ref) [`VariableDomPropDep`](@ref)s), or flux Targets and Contributors (shaded pink in [Figure 1](@ref), linked at run-time to [`Domain`](@ref) [`VariableDomContribTarget`](@ref)s). This classification retains flexibility while providing sufficient information to allow automatic detection of errors in model specification (for example, a Dependency with no Property, or a flux Contributor with no Target), and automatic scheduling of Reactions within the model main loop (as a Reaction that defines a Property must be executed before a Reaction that Depends on this property).
Variables can specify metadata as an extensible list of attributes which can then be queried (using [`get_attribute`](@ref)) and filtered on (using [`get_variables`](@ref)) during model configuration and initialisation. This enables the labelling of groups of variables (e.g. the `:advect` and `:vertical_motion` attributes are used by a Reaction implementing ocean transport to identify those state variables representing solutes that should be transported; the `:vfunction` attribute is used by numerical solvers to identify state variables and their time derivatives).
### Spatially-resolved Domains and Grids
Domains may contain a Grid (a subtype of [`AbstractMesh`](@ref)) to define a spatially-resolved Domain containing multiple cells.
Three-dimensional [`Domain`](@ref)s (eg ocean) are associated with two-dimensional boundary [`Domain`](@ref)s (eg oceansurface, oceanfloor), and also provide [Subdomains](@ref) (subtypes of [`AbstractSubdomain`](@ref), eg ocean.oceansurface, ocean.oceanfloor) that specify the subset of 3D ocean cells adjacent to the 2D boundaries.
### Fields and Data
Variables contain [`Field`](@ref)s which represent data (a subtype of [`AbstractData`](@ref) defined by the `:field_data` ttribute) in a function space (a subtype of [`AbstractSpace`](@ref) defined by the `:space` attribute).
The [`AbstractSpace`](@ref) subtype (see [Spaces](@ref)) can define a per-Domain ([`ScalarSpace`](@ref)) or per-cell ([`CellSpace`](@ref)) quantity, where the number of cells is defined by the Domain grid.
The [`AbstractData`](@ref) subtype (see [Data types](@ref)) defines the information that is stored per Domain or per grid cell. [`ScalarData`](@ref) defines one value, [`ArrayScalarData`](@ref) an array of scalar values eg for intensity on a wavelength grid, and [`AbstractIsotopeScalar`](@ref) a multiple-component isotope system (see [Isotopes](@ref)).
## Coupling Spatial Domains
###### Figure 2

*Defining and coupling spatial Domains. The four Domains atm, oceansurface, ocean and fluxAtmOceansurface are defined in the model configuration file. The first three of these contain arbitrary biogeochemical Reactions and Variables. Domain fluxAtmOceansurface contains only a FluxTarget Reaction and a set of Target Variables flux_O2. Exchange fluxes are accumulated into these flux_ Variables (in this case, produced by air-sea exchange reactions in the oceansurface Domain), and then redistributed to atm and ocean by the FluxTransfer Reactions taking account of mapping between Domain dimensions.*
Coupling between Earth system components is provided by [Fluxes](@ref), implemented by [`Fluxes.ReactionFluxTarget`](@ref)s ([Figure 2](@ref)) that provide a set of flux Target Variables in nominated flux coupler [`Domain`](@ref)s, and [`Fluxes.ReactionFluxTransfer`](@ref) that then transfer fluxes (with appropriate mapping) to a different [`Domain`](@ref).
Variable text names may be referred to from other [`Domain`](@ref)s by prefixing with Domain and Subdomain names (eg ocean.P\_conc links to the 3D ocean interior Variable P\_conc, ocean.oceansurface.O2\_conc links to the ocean oxygen concentration for the 2D subset of ocean cells adjacent to the oceansurface boundary).
## Separating time integration, reaction, and transport
###### Figure 3

*Examples of model configurations with different reaction/transport partitioning: a) a configuration with offline transport and forcing provided by Reactions within the PALEO framework. The only external dependencies are state variables and derivatives, with time integration provided by a standard ODE solver such as CVODE and the overall model workflow (initialisation, solution, output) managed by the PALEOmodel package. b) an ocean-only model embedded in a GCM host which provides transport and physical properties such as temperature and sequences the model workflow.*
The `:vfunction` Variable attribute is used to identify pairs of state variables (labelled with `:vfunction = VF_StateExplicit`) and their corresponding time derivatives (labelled with `:vfunction = VF_Deriv`). Algebraic constraints are defined by Variables labelled with `:vfunction = VF_Constraint`, with a corresponding number of state variables labelled with `:vfunction = VF_State`. Implicit variables are defined by pairs of variables and time derivatives labelled with `:vfunction = VF_Total` and `:vfunction = VF_Deriv`, with a corresponding number of state variables labelled with `:vfunction = VF_State`.
To access variables, a numerical ODE or DAE solver can use [`VariableAggregator`](@ref) to implement a high-level interface to aggregated lists. A host dynamical model can alternatively use [`get_variables`](@ref) during model configuration and initialisation to link to individual host data arrays.
The abstractions described above enable a natural separation of biogeochemical reaction and transport, which can then either be provided by a host dynamical model e.g. implemented in C or Fortran, or as offline transport implemented by PALEO “reactions” within the framework ([Figure 3](@ref)). This enables both rapid, interactive development and experimentation in a PC/workstation environment using offline transport, and deployment of the same model code as a component embedded in a larger GCM model.
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 4686 | # Domains, Variables, Fields, and Data arrays.
```@meta
CurrentModule = PALEOboxes
```
A [`Model`](@ref) contains [`Domain`](@ref)s, each of which contain [Variables](@ref) defining [`Field`](@ref)s which contain `Data` arrays, and `Reactions` with [`ReactionMethod`](@ref)s that operate on the [`Field`](@ref)s to calculate model time evolution.
## Model
```@meta
CurrentModule = PALEOboxes
```
```@docs
Model
```
## Domains
```@meta
CurrentModule = PALEOboxes
```
```@docs
Domain
```
### Grids
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractMesh
internal_size
cartesian_size
```
```@meta
CurrentModule = PALEOboxes.Grids
```
```@docs
set_subdomain!
get_subdomain
UnstructuredVectorGrid
UnstructuredColumnGrid
CartesianLinearGrid
CartesianArrayGrid
```
#### Subdomains
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractSubdomain
```
```@meta
CurrentModule = PALEOboxes.Grids
```
```@docs
BoundarySubdomain
InteriorSubdomain
subdomain_view
subdomain_indices
```
#### Regions, Dimensions and Coordinates
```@meta
CurrentModule = PALEOboxes.Grids
```
```@docs
get_region
```
Grids may define name dimensions and attach coordinates for the convenience of output visualisation. Any coordinate information required by Reactions should be supplied as Variables.
```@meta
CurrentModule = PALEOboxes
```
```@docs
NamedDimension
FixedCoord
```
## Variables
```@meta
CurrentModule = PALEOboxes
```
PALEO `Variables` exist in [`Domain`](@ref)s and represent biogeochemical or other quantities.
They are defined by `Reactions` as [`VariableReaction`](@ref)s which are then linked to create [`VariableDomain`](@ref)s,
and contain [`Field`](@ref)s which represent data (a subtype of [`AbstractData`](@ref)) in a function space (a subtype of [`AbstractSpace`](@ref)) with dimensions defined by the Domain grid (a subtype of [`AbstractMesh`](@ref))
Dataflow dependency between `Variables` is represented by two pairings:
- [`VariableReaction`](@ref)s of [`VariableType`](@ref) `VT_ReactProperty` and `VT_ReactDependency` which are linked to create [`VariableDomPropDep`](@ref)s
- [`VariableReaction`](@ref)s of [`VariableType`](@ref) `VT_ReactTarget` and `VT_ReactContributor` which are linked to create [`VariableDomContribTarget`](@ref)s.
```@docs
VariableBase
VariableType
VariableDomain
VariableDomPropDep
VariableDomContribTarget
```
### Variable Attributes
```@meta
CurrentModule = PALEOboxes
```
```@docs
Attribute
StandardAttributes
```
```@example
import PALEOboxes as PB # hide
import DataFrames # hide
show( # hide
DataFrames.sort!( # hide
DataFrames.DataFrame((s=>getproperty.(PB.StandardAttributes, s) for s in (:name, :default_value, :required, :units, :description))...), # hide
[DataFrames.order(:required, rev=true), :name] # hide
); # hide
allcols=true, allrows=true, truncate=96, show_row_number=false #hide
) # hide
```
```@docs
get_attribute
VariableFunction
VariablePhase
```
TODO standard Variable names.
Use NetCDF CF standard names <https://cfconventions.org/Data/cf-standard-names/76/build/cf-standard-name-table.html> ?
## Fields
```@meta
CurrentModule = PALEOboxes
```
Field, data and function space are defined by Variable [`Attribute`](@ref)s in combination with an [`AbstractMesh`](@ref)
- `:field_data` and optionally `:data_dims` define the subtype of [`AbstractData`](@ref)
- `:space` defines the subtype of [`AbstractSpace`](@ref)
Examples:
- `:field_data` = [`ScalarData`](@ref), `:space` = [`ScalarSpace`](@ref) defines a Domain scalar (0D) quantity.
- `:field_data` = [`IsotopeLinear`](@ref), `:space` = [`ScalarSpace`](@ref) defines a Domain scalar (0D) isotope quantity.
- `:field_data` = [`ScalarData`](@ref), `:space` = [`CellSpace`](@ref) defines a per-cell quantity in a spatial Domain.
- `:field_data` = [`ArrayScalarData`](@ref), `:data_dims =("wgrid",)` `:space` = [`ScalarSpace`](@ref) defines a Domain scalar (0D) quantity on a wavelength grid, a Vector of length given by the value of the Domain "wgrid" data dimension (see [`set_data_dimension!`](@ref))
```@docs
Field
get_field
wrap_field
```
## Spaces
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractSpace
ScalarSpace
CellSpace
ColumnSpace
```
## Data types
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractData
UndefinedData
ScalarData
ArrayScalarData
allocate_values
check_values
zero_values!
dof_values
get_values_output
init_values!
copyfieldto!
copytofield!
add_field!
add_field_vec!
num_components(field_data::Type{<:AbstractData})
get_components
```
### Isotopes
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractIsotopeScalar
IsotopeLinear
isotope_totaldelta
get_total
get_delta
```
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 6767 | # Reaction API
```@meta
CurrentModule = PALEOboxes
```
API calls used by [`AbstractReaction`](@ref) implementations.
Implementations should create a subclass of [`AbstractReaction`](@ref) containing a [`ReactionBase`](@ref) and
[`Parameter`](@ref)s, optionally provide a [`create_reaction`](@ref), and implement callbacks to define [`VariableReaction`](@ref)s and register [`ReactionMethod`](@ref)s.
## Reaction struct
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractReaction
ReactionBase
```
## Parameters
```@docs
AbstractParameter
Parameter
VecParameter
VecVecParameter
ParametersTuple
add_par
setvalue!
```
## Registering Reactions with the PALEOboxes framework
All subtypes of [`AbstractReaction`](@ref) that are present in loaded modules are
available to the PALEO framework. Available Reactions can be listed with [`find_reaction`](@ref)
and [`find_all_reactions`](@ref). The default [`create_reaction`](@ref) is called to create Reactions
when the model is created (this method can be overridden if needed).
```@docs
create_reaction(ReactionType::Type{<:AbstractReaction}, base::ReactionBase)
find_reaction
find_all_reactions
```
## Defining Domain Grids and array sizes
```@docs
set_model_geometry
set_data_dimension!
```
## Creating and registering Reaction methods
All Reactions should implement [`register_methods!`](@ref), and may optionally implement [`register_dynamic_methods!`](@ref).
```@docs
register_methods!
register_dynamic_methods!
```
These methods should then define one or more [`ReactionMethod`](@ref)s, which requires:
- Defining collections of [`VariableReaction`](@ref)s (see [Defining VariableReactions](@ref), [Defining collections of VariableReactions](@ref)).
- Implementing a function to iterate over model cells and calculate the required fluxes etc (see [Implementing method functions](@ref))
- Adding methods (see [Adding ReactionMethods](@ref)).
In addition it is possible to add [Predefined ReactionMethods](@ref) for some common operations (Variable initialisation, calculating totals, etc).
### Defining VariableReactions
```@docs
VariableReaction
parse_variablereaction_namestr
set_attribute!
```
### Defining collections of VariableReactions
```@docs
AbstractVarList
VarList_single
VarList_namedtuple
VarList_tuple
VarList_ttuple
VarList_vector
VarList_vvector
VarList_nothing
```
### Implementing method functions
Reaction method functions should iterate over the cells in the Domain supplied by `cellrange` argument and calculate appropriate biogeochemical fluxes etc (which may include the model time derivative and any intermediate or diagnostic output).
#### Iterating over cells
The simplest case is a method function that iterates over individual cells, with skeleton form:
function do_something_cellwise(m::PB.AbstractReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for i in cellrange.indices
vars.A[i] = something*vars.B[i]*vars.C[i] # in general A is some function of B, C, etc
# etc
end
return nothing
end
#### Iterating over cells in columns
If necessary (eg to calculate vertical transport), provided the model grid and cellrange allow,
it is possible to iterate over columns and then cells within columns (in order from top to bottom):
function do_something_columnwise(m::PB.AbstractReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for (icol, colindices) in cellrange.columns
accum = zero(vars.A[first(colindices)]) # accumulator of appropriate type
for i in colindices # order is top to bottom
accum += vars.A[i]
vars.C[i] = accum # C = sum of A in cells above
# etc
end
vars.floor_C[icol] = vars.C[last(colindices)] # assumes model has a floor domain with one floor cell per column in the interior domain
end
return nothing
end
Iteration from bottom to top within a column can be implemented using `Iterators.reverse`, eg
function do_something_columnwise(m::PB.AbstractReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for (icol, colindices) in cellrange.columns
colreverse = Iterators.reverse(colindices)
for i in colreverse # order is bottom to top
# etc
end
end
return nothing
end
!!! note
The method function shouldn't make any assumptions about `colindices` other than that it is a list of indices ordered from top to bottom in a column. Depending on the grid in use, the indices may not be contiguous, and may not be integers.
!!! note
The example above made the additional assumption that a `floor` domain had been defined (containing Variable `floor_C`) with one floor cell per column. This is determined by the model configuration, and is not true in general.
In rare cases where it is necessary to operate on a Vector representing a quantity for the whole column (rather than just iterate through it), this can be implemented using `view`, eg
function do_something_columnwise(m::PB.AbstractReactionMethod, pars, (vars, ), cellrange::PB.AbstractCellRange, deltat)
@inbounds for (icol, colindices) in cellrange.columns
A_col = view(vars.A, colindices) # A_col is an AbstractVector with contiguous indices 1:length(colindices)
B_col = view(vars.B, colindices) # B_col is an AbstractVector with contiguous indices 1:length(colindices)
# do something that needs a vector of cells for a whole column
end
return nothing
end
#### Optimising loops over cells using explicit SIMD instructions
Reactions with simple loops over `cellindices` that implement time-consuming per-cell calculations
may be optimised by using explicit SIMD instructions.
```@docs
SIMDutils.SIMDIter
```
### Adding ReactionMethods
```@docs
ReactionMethod
add_method_setup!
add_method_initialize!
add_method_do!
```
## Predefined ReactionMethods
### Setup and initialization of Variables
```@docs
add_method_setup_initialvalue_vars_default!
add_method_initialize_zero_vars_default!
```
### Adding totals for Variables
```@docs
add_method_do_totals_default!
```
### Chemical reactions
```@docs
RateStoich
create_ratestoich_method
add_rate_stoichiometry!
```
## Internal details of Variable arrays accessor generation
[`VariableReaction`](@ref)s in the [`AbstractVarList`](@ref)s for a [`ReactionMethod`](@ref) are processed by [`create_accessor`](@ref) to supply `view`s on arrays as corresponding arguments to the [`ReactionMethod`](@ref) function.
```@docs
create_accessor
create_accessors
```
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 1552 | # Generic Reaction catalog
```@meta
CurrentModule = PALEOboxes
```
PALEOboxes includes a catalog of generic Reactions as a starting point for model construction.
## Reservoirs
```@meta
CurrentModule = PALEOboxes.Reservoirs
```
```@docs
ReactionReservoirScalar
ReactionReservoir
ReactionReservoirWellMixed
ReactionReservoirConst
ReactionReservoirForced
ReactionConst
```
### Linking to Reservoirs from a Reaction
```@docs
ReservoirLinksVector
```
## Variable Statistics
```@meta
CurrentModule = PALEOboxes.VariableStats
```
```@docs
ReactionSum
ReactionWeightedMean
ReactionAreaVolumeValInRange
```
## Fluxes
```@meta
CurrentModule = PALEOboxes
```
```@docs
Fluxes
```
```@meta
CurrentModule = PALEOboxes.Fluxes
```
```@docs
ReactionFluxTarget
ReactionFluxTransfer
```
### Contributing to flux couplers from a Reaction
```@docs
FluxContrib
```
```@meta
CurrentModule = PALEOboxes
```
## Forcings
```@docs
Forcings.ReactionForceInterp
GridForcings.ReactionForceGrid
FluxPerturb.ReactionFluxPerturb
FluxPerturb.ReactionRestore
```
## Grids
Minimal generic model grids for test purposes.
These just define the Domain size, and don't provide coordinate or metric information (cell volume, area). Models will usually require a Reaction with a Domain-specific implementation (eg for ocean, atmosphere) that defines coordinates and volumes etc and also implements transport (advection, eddy diffusion, etc).
```@meta
CurrentModule = PALEOboxes.GridReactions
```
```@docs
ReactionUnstructuredVectorGrid
ReactionCartesianGrid
ReactionGrid2DNetCDF
```
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 35 | # References
```@bibliography
```
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 2498 | # Solver API
```@meta
CurrentModule = PALEOboxes
```
A [`Model`](@ref) contains [`Domain`](@ref)s, each of which contain [Variables](@ref) defining [`Field`](@ref)s, and `Reactions` with [`ReactionMethod`](@ref)s that operate on the [`Field`](@ref)s to calculate model time evolution.
## Create and initialise
```@meta
CurrentModule = PALEOboxes
```
```@docs
create_model_from_config(config_file::AbstractString, configmodel::AbstractString)
create_modeldata(model::Model, vectype::DataType=Array{Float64,1})
ModelData
add_arrays_data!
push_arrays_data!
allocate_variables!
check_ready(model::Model, modeldata::AbstractModelData; throw_on_error=true)
check_configuration(model::Model)
initialize_reactiondata!(model::Model, modeldata::AbstractModelData)
dispatch_setup
create_dispatch_methodlists
ReactionMethodDispatchList
```
## Attaching numerical solvers
High-level access to aggregated collections of Variables is provided by [`VariableAggregator`](@ref) and [`VariableAggregatorNamed`](@ref) (see [Accessing model objects](@ref) for low-level access).
```@docs
VariableAggregator
get_indices
copyto!(dest::VariableAggregator, src::AbstractVector; sof::Int=1)
copyto!(dest::AbstractVector, src::VariableAggregator; dof::Int=1)
VariableAggregatorNamed
```
Aggregated collections of a subset of Parameters as a flattened Vector (eg for sensitivity studies) is provided by [`ParameterAggregator`](@ref):
```@docs
ParameterAggregator
```
## Defining CellRanges
```@meta
CurrentModule = PALEOboxes
```
```@docs
AbstractCellRange
CellRange
CellRangeColumns
create_default_cellrange
```
```@meta
CurrentModule = PALEOboxes.Grids
```
```@docs
create_default_cellrange
cellrange_cartesiantile
```
## Main loop
```@meta
CurrentModule = PALEOboxes
```
```@docs
do_deriv
dispatch_methodlist
```
## Diagnostics
```@meta
CurrentModule = PALEOboxes
```
```@docs
show_methods_setup
show_methods_initialize
show_methods_do
show_variables
show_links
show_parameters
```
## Accessing model objects
### [`Model`](@ref)
```@docs
get_domain
get_reaction(model::Model, domainname, reactionname)
set_parameter_value!
get_parameter_value
set_variable_attribute!
get_variable_attribute
```
### [`Domain`](@ref)s
```@docs
get_variable
get_variables
get_host_variables
get_unallocated_variables
get_reaction(domain::Domain, reactname::String)
```
### VariableDomain
Low-level access to individual [Variables](@ref).
```@meta
CurrentModule = PALEOboxes
```
```@docs
set_data!
get_data
get_data_output
```
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 540 | # PALEOboxes.jl
PALEOboxes.jl provides the model coupler for the PALEO model framework.
PALEO provides a toolkit for constructing biogeochemical reaction-transport models of Earth system components (eg atmosphere, ocean, sediment) as a well as coupled Earth system configurations. Model structure as well as parameters are described by a configuration file, making it straightforward to add and remove biogeochemical tracers and their interactions, change the representation of eg ocean circulation, and couple components together.
| PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.21.29 | 52cfdf2df400205dd8912e997224331d6d185f6a | docs | 25 |
# Index
```@index
``` | PALEOboxes | https://github.com/PALEOtoolkit/PALEOboxes.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 1596 | using Documenter, Sisyphus, QuantumOptics
sourcedir = "examples/"
markdowndir = "markdown"
targetpath_examples = "docs/src/examples/"
names = filter(name -> endswith(name, ".ipynb"), readdir(sourcedir))
function convert2markdown(name)
sourcepath = joinpath(sourcedir, name)
println(sourcepath)
run(
`jupyter-nbconvert --to markdown --output-dir=$markdowndir $sourcepath --template=docs/markdown_template.tpl`,
)
end
for name in names
convert2markdown(name)
end
cp(markdowndir, targetpath_examples; force = true)
rm(markdowndir; recursive = true)
makedocs(
sitename = "Sisyphus.jl",
format = Documenter.HTML(prettyurls = false),
pages = [
"Home" => "index.md",
"Installation" => "installation.md",
"Introduction" => "introduction.md",
"Gradient-based QOC" => "gbqoc.md",
"Open quantum systems" => "noisy.md",
"Tutorial" => "tutorial.md",
"Examples" => [
"DRAG" => "examples/DRAG.md",
"Two-level system" => "examples/TwoLevelSystem.md",
"Noisy two-level system" => "examples/TwoLevelSystemNoisy.md",
"Rₓ(π/2)" => "examples/RXpi2.md",
"√iSWAP" => "examples/SQRTiSWAP.md",
"CZ" => "examples/CZ2.md",
"GHZ state" => "examples/GHZState.md",
"GHZ state 12 atoms (CUDA)" => "examples/GHZStateCUDANeuralNetwork.md",
"GHZ state 16 atoms (CUDA)" => "examples/GHZStateCUDALinearInterp.md",
],
"API" => "api.md",
],
)
deploydocs(repo = "github.com/SatyaBade12/Sisyphus.jl.git")
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 970 | module Sisyphus
import QuantumOpticsBase
using QuantumOpticsBase: IncompatibleBases
using QuantumOptics
using SparseArrays
using MKLSparse
using LinearAlgebra
using OrdinaryDiffEq
using Flux: jacobian
using Flux
using CUDA
import CUDA: cu
using CUDA.CUSPARSE
using ProgressMeter: Progress, next!
using DataStructures
using NLopt: Opt
import NLopt
import CommonSolve: solve!, init, solve
import Base: convert
include("hamiltonian.jl")
include("transforms.jl")
include("cost.jl")
include("problem.jl")
include("solver.jl")
include("evolution.jl")
include("vectorization.jl")
include("utils.jl")
export Transform,
StateTransform,
Hamiltonian,
UnitaryTransform,
Solution,
CostFunction,
QOCProblem,
schroedinger_dynamic,
master_dynamic,
AdjointSolver,
solve!,
init,
solve,
cu,
CuKet,
convert,
vectorize,
heaviside,
interval,
piecewise_const_interp,
linear_interp,
cubic_spline_interp
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 896 | """
CostFunction(distance, constraints)
Defines a cost function used for optimization.
# Arguments
`distance` denotes a distance measure between quantum states, it should be a real valued function
for e.g. `d(x,y) = 1 - real(x'*y)` where `x` and `y` are two complex valued vectors.
`constraints` (optional) denotes the constraints on the shapes of pulses, it should be a real valued function
NOTE: During the optimization we minimize the total cost given by the sum of average distance (considering all states in the transform) evaluated for a given set of parameters and the constraints. i.e. `d(x,y) + constraints(params)`.
"""
mutable struct CostFunction
distance::Function
constraints::Union{Function,Nothing}
function CostFunction(
distance::Function,
constraints::Union{Function,Nothing} = nothing,
)
new(distance, constraints)
end
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 1498 | """
schroedinger_dynamic(tspan, psi, h, params; kwargs)
Wraps `schroedinger_dynamic` from QuantumOptics by accepting
our custom [`Hamiltonian`](@ref) structure and the parameters.
"""
function schroedinger_dynamic(
tspan,
psi::Ket,
h::Hamiltonian{T},
params::Vector{T};
kwargs...,
) where {T<:Real}
n_coeffs = length(h.operators)
const_op = Operator(h.basis_l, h.basis_r, h.const_op)
ops = [Operator(h.basis_l, h.basis_r, op) for op in h.operators]
func(t, psi) =
let coeffs = h.drives(params, t)
const_op + sum([coeffs[i] * ops[i] for i = 1:n_coeffs])
end
timeevolution.schroedinger_dynamic(tspan, psi, func; kwargs...)
end
"""
master_dynamic(tspan, psi, h, params, J, rates; kwargs)
Wraps `master_dynamic` from QuantumOptics by accepting
our custom [`Hamiltonian`](@ref) structure and the parameters.
"""
function master_dynamic(
tspan,
psi,
h::Hamiltonian,
params::Vector{T},
J::Vector{<:AbstractOperator},
rates::Vector{T};
kwargs...,
) where {T<:Real}
n_coeffs = length(h.operators)
const_op = Operator(h.basis_l, h.basis_r, h.const_op)
ops = [Operator(h.basis_l, h.basis_r, op) for op in h.operators]
Jdagger = [dagger(op) for op in J]
func(t, psi) =
let coeffs = h.drives(params, t)
(const_op + sum([coeffs[i] * ops[i] for i = 1:n_coeffs]), J, Jdagger, rates)
end
timeevolution.master_dynamic(tspan, psi, func; kwargs...)
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 1989 | """
Hamiltonian(const_op::op,
ops::Vector{op}),
drives::Function) where {op<:AbstractOperator}
Structure to represent a time-dependent Hamiltonian.
NOTE: Drives are required to be real-valued functions and should be of the form
`drives(p::Vector{T}, t::T) where {T<:Real}`, where `p` is a vector of real values parametrizing
the control knobs and `t` is the time.
"""
mutable struct Hamiltonian{T<:Real}
const_op::AbstractMatrix{Complex{T}}
basis_l::Basis
basis_r::Basis
operators::Vector{AbstractMatrix{Complex{T}}}
drives::Function
function Hamiltonian(
const_op::op,
ops::Vector{op},
drives::Function,
) where {op<:AbstractOperator}
h = new{real(eltype(const_op.data))}()
h.basis_l = const_op.basis_l
h.basis_r = const_op.basis_r
h.const_op = const_op.data
h.operators = [op.data for op in ops]
h.drives = drives
h
end
function Hamiltonian(
const_op::mat,
basis_l::Basis,
basis_r::Basis,
operators::Vector{mat},
drives::Function,
) where {T<:Real,mat<:AbstractMatrix{Complex{T}}}
h = new{T}()
h.basis_l = basis_l
h.basis_r = basis_r
h.const_op = const_op
h.operators = operators
h.drives = drives
h
end
end
"""
cu(h::Hamiltonian)
Converts the Hamiltonian with the operators allocated on GPU memory.
"""
cu(h::Hamiltonian) = Hamiltonian(
CuSparseMatrixCSC(h.const_op),
h.basis_l,
h.basis_r,
[CuSparseMatrixCSC(op) for op in h.operators],
h.drives,
)
"""
convert(::Type{Float32}, h::Hamiltonian)
Returns a Hamiltonian with all operators in single precision.
"""
Base.convert(::Type{Float32}, h::Hamiltonian) = Hamiltonian(
SparseMatrixCSC{ComplexF32,Int64}(h.const_op),
h.basis_l,
h.basis_r,
[SparseMatrixCSC{ComplexF32,Int64}(op) for op in h.operators],
h.drives,
)
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 901 | """
QOCProblem(hamiltonian::Hamiltonian{T},
transform::Transform,
tspan::Tuple{T,T}},
cost::CostFunction) where {T<:Real}
Defines a quantum optimal control problem to be solved.
"""
struct QOCProblem{T<:Real}
hamiltonian::Hamiltonian{T}
transform::Transform
tspan::Tuple{T,T}
cost::CostFunction
end
"""
cu(prob)
Turns a quantum optimal control problem into a form
suitable for running on GPU.
"""
cu(prob::QOCProblem) =
QOCProblem(cu(prob.hamiltonian), cu(prob.transform), prob.tspan, prob.cost)
"""
convert(::Type{Float32}, prob::QOCProblem)
Returns a QOCProblem with all data in single precision.
"""
Base.convert(::Type{Float32}, prob::QOCProblem) = QOCProblem(
convert(Float32, prob.hamiltonian),
convert(ComplexF32, prob.transform),
(Float32(prob.tspan[1]), Float32(prob.tspan[2])),
prob.cost,
)
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 11063 | """
Solution(params)
Contains the optimized parameters after solving the QOCProblem. It also contains traces of
distance and constraints specified in the CostFunction. Optionally, it contains the full trace
of parameters.
"""
mutable struct Solution{T<:Real}
params::Vector{T}
distance_trace::Vector{T}
constraints_trace::Vector{T}
params_trace::Vector{Vector{T}}
function Solution(params::Vector{T}) where {T<:Real}
s = new{T}()
s.params = params
s.distance_trace = T[]
s.constraints_trace = T[]
s.params_trace = T[]
s
end
end
"""
AdjointSolver
Solver to evaluate gradients by solving the coupled equations, defined for compatibility with CommonSolve interface.
"""
mutable struct AdjointSolver{T<:Real}
initial_params::Vector{T}
ode_prob::ODEProblem
opt::Any
alg::Any
drives::Function
gradients::Function
const_op::AbstractMatrix{Complex{T}}
ops::Vector{AbstractMatrix{Complex{T}}}
target::AbstractMatrix{Complex{T}}
cost::CostFunction
n_dim::Integer
n_iter::Integer
save_iters::AbstractRange
kwargs::Any
end
"""
init(prob, args; kwargs)
Initializes the [`QOCProblem`](@ref) by providing the
arguments for the choice of the optimizer and differential
equations solver. Used for the common solve abstraction.
"""
function init(prob::QOCProblem{T}, args...; kwargs...) where {T<:Real}
initial_params, opt = args
alg = :alg in keys(kwargs) ? kwargs[:alg] : Tsit5()
maxiter = :maxiter in keys(kwargs) ? kwargs[:maxiter] : 100
save_iters = :save_iters in keys(kwargs) ? kwargs[:save_iters] : 1:-1
kwargs_dict = Dict()
for k in collect(Base.pairs(kwargs))
if k[1] ∉ [:alg, :maxiter, :save_iters]
kwargs_dict[k[1]] = k[2]
end
end
const_op = prob.hamiltonian.const_op
ops = prob.hamiltonian.operators
drives = prob.hamiltonian.drives
n_params = length(initial_params)
check_compatibility(drives, length(ops), n_params, T)
psi, n_dim, wf_dim = input_data(prob.transform, n_params)
check_compatibility(prob.cost, wf_dim, n_params, T)
gradients(ps, t) = jacobian((_ps, _t) -> drives(_ps, _t), ps, t)[1]
ode_prob = ODEProblem{true}(
adjoint_system!,
psi,
prob.tspan,
((const_op, ops), (drives, gradients), n_dim, initial_params),
)
target = output_data(prob.transform)
AdjointSolver(
copy(initial_params),
ode_prob,
opt,
alg,
drives,
gradients,
const_op,
ops,
target,
prob.cost,
n_dim,
maxiter,
save_iters,
(;kwargs_dict...),
)
end
"""
solve!(solver::AdjointSolver{T}) where {T<:Real}
Solves the quantum optimal control problem.
"""
function solve!(solver::AdjointSolver{T}) where {T<:Real}
drives = solver.drives
cost = solver.cost
constraint_gradient(θ) =
cost.constraints == nothing ? T(0) : gradient(ps -> cost.constraints(ps), θ)[1]
distance_gradient(x, y) = gradient((_x, _y) -> cost.distance(_x, _y), x, y)[2]
drives_gradients(ps, t) = jacobian((_ps, _t) -> drives(_ps, _t), ps, t)[1]
sol = Solution(solver.initial_params)
optimize!(
sol,
solver.opt,
solver,
drives_gradients,
constraint_gradient,
distance_gradient,
)
end
function adjoint_system!(
dpsi::AbstractMatrix{Complex{T}},
psi::AbstractMatrix{Complex{T}},
p::Tuple{Tuple{op,Vector{op}},Tuple{Function,Function},Vector{T},Integer},
t::T,
) where {T<:Real,op<:AbstractMatrix{Complex{T}}}
ops, (_ct, _gt), params, n_dim = p
n_ops = length(ops[2])
ct = _ct(params, t)
mul!(dpsi, ops[1], psi, -T(1)im, T(0)im)
@inbounds for i = 1:n_ops
mul!(dpsi, ops[2][i], psi, -T(1)im * T(ct[i]), T(1) + T(0)im)
end
gt = _gt(params, t)
_psi = @view psi[:, 1:n_dim]
@inbounds for i = 1:length(params)
_dpsi = @view dpsi[:, n_dim*i+1:n_dim*(i+1)]
@inbounds for j = 1:n_ops
mul!(_dpsi, ops[2][j], _psi, -T(1)im * T(gt[j, i]), T(1) + T(0)im)
end
end
end
function input_data(t::UnitaryTransform, n_params::Integer)
n_dim = length(t.inputs)
wf_size = length(t.inputs[1])
psi = hcat([elm.data for elm in t.inputs]...)
psi = hcat([psi, zeros(eltype(t.inputs[1].data), wf_size, n_dim * n_params)]...)
psi, n_dim, wf_size
end
function input_data(t::StateTransform, n_params::Integer)
n_dim = 1
wf_size = length(t.input)
psi = hcat([t.input.data]...)
psi = hcat([psi, zeros(eltype(t.input.data), wf_size, n_params)]...)
psi, n_dim, wf_size
end
output_data(t::StateTransform) = hcat([t.output.data]...)
output_data(t::UnitaryTransform) = hcat([k.data for k in t.outputs]...)
function augmented_ode_problem(
prob::QOCProblem{T},
initial_params::Vector{T},
) where {T<:Real}
H = prob.hamiltonian
n_coeffs = length(H.operators)
n_params = length(initial_params)
psi, n_dim = input_data(prob.transform, n_params)
gradients(ps, t) = jacobian((_ps, _t) -> H.drives(_ps, _t), ps, t)[1]
ODEProblem{true}(
adjoint_system!,
psi,
prob.tspan,
(H.const_op, H.operators, (H.drives, gradients), n_dim, initial_params),
)
end
function evaluate_distance(
cost::CostFunction,
result::AbstractMatrix{Complex{T}},
target::AbstractMatrix{Complex{T}},
n_dim::Integer,
) where {T<:Real}
c = T(0)
final_states = @view result[:, 1:n_dim]
for (x, y) in zip(eachcol(target), eachcol(final_states))
c += real(cost.distance(x, y) / T(n_dim))
end
c
end
function evaluate_gradient(
distance_gradient::Function,
result::AbstractMatrix{Complex{T}},
target::AbstractMatrix{Complex{T}},
n_dim::Integer,
n_params::Integer,
) where {T<:Real}
final_states = @view result[:, 1:n_dim]
gradients = []
@inbounds for i = 1:n_params
res = @view result[:, n_dim*i+1:n_dim*(i+1)]
_c = T(0)
for (j, (x, y)) in enumerate(zip(eachcol(target), eachcol(res)))
_c += real(distance_gradient(x, final_states[:, j])' * y)
end
push!(gradients, _c / T(n_dim))
end
gradients
end
dimension(t::UnitaryTransform) = length(t.inputs)
dimension(t::StateTransform) = 1
function optimize!(
sol::Solution{T},
opt, #flux optimizer
solver::AdjointSolver{T},
drives_gradients::Function,
constraint_gradient::Function,
distance_gradient::Function,
) where {T<:Real}
p = Progress(solver.n_iter)
n_params = length(solver.initial_params)
for i = 1:solver.n_iter
res = solve(
solver.ode_prob,
solver.alg,
p = (
(solver.const_op, solver.ops),
(solver.drives, drives_gradients),
sol.params,
solver.n_dim,
),
save_start = false,
save_everystep = false;
solver.kwargs...,
)
distance = evaluate_distance(solver.cost, res.u[1], solver.target, solver.n_dim)
constraints =
solver.cost.constraints == nothing ? T(0) : solver.cost.constraints(sol.params)
push!(sol.distance_trace, distance)
push!(sol.constraints_trace, constraints)
grads = evaluate_gradient(
distance_gradient,
res.u[1],
solver.target,
solver.n_dim,
n_params,
)
if i ∈ solver.save_iters
push!(sol.params_trace, copy(sol.params))
end
grads .+= constraint_gradient(sol.params)
Flux.Optimise.update!(opt, sol.params, grads)
next!(p, showvalues = [(:distance, distance), (:constraints, constraints)])
GC.gc()
end
sol
end
function optimize!(
sol::Solution{T},
opt::Opt, #NLopt optimizer
solver::AdjointSolver{T},
drives_gradients::Function,
constraint_gradient::Function,
distance_gradient::Function,
) where {T<:Real}
if string(opt.algorithm)[2] != 'D'
@warn "$(opt.algorithm) does not use the computed gradient"
end
p = Progress(solver.n_iter)
n_params = length(solver.initial_params)
opt.maxeval = solver.n_iter
function opt_function(x::Vector{T}, g::Vector{T})
@inbounds for i = 1:n_params
sol.params[i] = x[i]
end
res = solve(
solver.ode_prob,
solver.alg,
p = (
(solver.const_op, solver.ops),
(solver.drives, drives_gradients),
sol.params,
solver.n_dim,
),
save_start = false,
save_everystep = false;
solver.kwargs...,
)
distance = evaluate_distance(solver.cost, res.u[1], solver.target, solver.n_dim)
constraints =
solver.cost.constraints == nothing ? T(0) : solver.cost.constraints(sol.params)
grads = evaluate_gradient(
distance_gradient,
res.u[1],
solver.target,
solver.n_dim,
n_params,
)
grads .+= constraint_gradient(sol.params)
if length(g) > 0
for i = 1:n_params
g[i] = grads[i]
end
end
push!(sol.distance_trace, distance)
push!(sol.constraints_trace, constraints)
next!(p, showvalues = [(:distance, distance), (:constraints, constraints)])
GC.gc()
return distance + constraints
end
opt.min_objective = opt_function
(minf, minx, ret) = NLopt.optimize(opt, sol.params)
sol.params[:] = minx
sol
end
function check_compatibility(drives::Function, n_ops::Integer, n_params::Integer, T::DataType)
if !applicable(drives, rand(T, n_params), rand(T))
throw(ArgumentError("drives should be of the form: f(params, t)"))
end
if length(drives(rand(T, n_params), rand(T))) != n_ops
throw(
ArgumentError(
"drives must return a vector of length equal to the number of operators",
),
)
end
end
function check_compatibility(cost::CostFunction, n_dim::Integer, n_params::Integer, T::DataType)
if cost.constraints != nothing
if !applicable(cost.constraints, rand(T, n_params))
throw(
ArgumentError(
"constraints in the cost function should be of the form: f(params)",
),
)
end
if !isreal(cost.constraints(rand(T, n_params)))
throw(ArgumentError("constraints function must return real value"))
end
end
if !applicable(cost.distance, rand(Complex{T}, n_dim), rand(Complex{T}, n_dim))
throw(ArgumentError("invalid distance in the cost function"))
end
if !isreal(cost.distance(rand(Complex{T}, n_dim), rand(Complex{T}, n_dim)))
throw(ArgumentError("distance function must return a real value"))
end
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 4631 | """
Abstract base class for transformations between states.
"""
abstract type Transform end
"""
StateTransform(input::Ket{B,T}, output::Ket{B,T}) where {B, T}
Represents a state to state transformation between two pure states.
"""
struct StateTransform <: Transform
basis::Basis
input::Ket
output::Ket
StateTransform(input::Ket{B,T}, output::Ket{B,T}) where {B,T} =
new(input.basis, input, output)
StateTransform(p::Pair{<:Ket,<:Ket}) = StateTransform(p[1], p[2])
StateTransform(input::Ket, output::Ket) = throw(IncompatibleBases())
end
"""
UnitaryTransform(inputs::Vector{Ket{B, T}}, U::Matrix) where {B, T}
Represents a unitary transformation between two sets of states.
The tranformation can be initialized with a vector of kets and
a unitary matrix representing the desired transformation.
"""
mutable struct UnitaryTransform <: Transform
basis::Basis
inputs::Vector{Ket}
outputs::Vector{Ket}
UnitaryTransform(p::Pair{<:Ket,<:Ket}) = UnitaryTransform(p[1], p[2])
UnitaryTransform(input::Ket{B,T}, output::Ket{B,T}) where {B,T} =
new(input.basis, [input], [output])
UnitaryTransform(input::Ket, output::Ket) = throw(IncompatibleBases())
function UnitaryTransform(inputs::Vector{Ket{B,T}}, U::Matrix) where {B,T}
size(U)[1] == size(U)[2] || throw(DimensionMismatch("U is not a square matrix"))
length(inputs) == size(U)[1] ||
throw(DimensionMismatch("Matrix dimensions do not correspond to the inputs"))
U * U' ≈ one(U) || throw(ArgumentError("Matrix is not unitary"))
outputs = Ket{B,T}[]
for r in eachrow(U)
output = 0.0 * inputs[1]
for (j, e) in enumerate(r)
output += e * inputs[j]
end
push!(outputs, output)
end
tr = UnitaryTransform(inputs[1].basis)
for (in, out) in zip(inputs, outputs)
tr += in => out
end
tr
end
UnitaryTransform(inputs::Vector{<:Ket}, U::Matrix) = throw(IncompatibleBases())
UnitaryTransform(bs::Basis) = new(bs, Vector{Ket}[], Vector{Ket}[])
end
Base.:+(a::UnitaryTransform, p::Pair{<:Ket,<:Ket}) = throw(IncompatibleBases())
function Base.:+(a::UnitaryTransform, p::Pair{Ket{B,T},Ket{B,T}}) where {B,T}
a.basis == p[1].basis || throw(IncompatibleBases())
a.basis == p[2].basis || throw(IncompatibleBases())
for k in a.inputs
dagger(k) * p[1] == 0.0 ||
@warn("The transformation is not unitary $(dagger(k)*p[1])")
end
for k in a.outputs
dagger(k) * p[2] == 0.0 ||
@warn("The transformation is not unitary $(dagger(k)*p[2])")
end
push!(a.inputs, p[1])
push!(a.outputs, p[2])
a
end
"""
CuKet(k::Ket)
Returns a Ket with the data allocated on GPU memory.
"""
CuKet(k::Ket) = Ket(k.basis, CuVector(k.data))
"""
cu(trans::UnitaryTransform)
Returns a unitary transformation with the kets allocated on GPU memory.
"""
function cu(trans::UnitaryTransform)
UnitaryTransform([
CuKet(in) => CuKet(out) for (in, out) in zip(trans.inputs, trans.outputs)
])
end
"""
cu(trans::StateTransform)
Returns a state to state transformation with the kets allocated on GPU memory.
"""
cu(trans::StateTransform) = StateTransform(CuKet(trans.input) => CuKet(trans.output))
"""
vectorize(k::Ket)
Returns a ket representing the vectorized form of the density matrix of ket `k`.
"""
function vectorize(k::Ket)
basis = k.basis ⊗ k.basis
N = length(k.data)
Ket(basis, reshape(dm(k).data, N * N))
end
"""
vectorize(trans::StateTransform)
Returns a vectorized form of the state to state transformation.
"""
vectorize(trans::StateTransform) =
StateTransform(vectorize(trans.input) => vectorize(trans.output))
"""
vectorize(trans::UnitaryTransform)
Returns a vectorized form of the unitary transformation.
"""
function vectorize(trans::UnitaryTransform)
t = UnitaryTransform(trans.basis ⊗ trans.basis)
for (k1, k2) in zip(trans.inputs, trans.outputs)
t += vectorize(k1) => vectorize(k2)
end
t
end
Base.convert(::Type{ComplexF32}, k::Ket) = Ket(k.basis, Vector{ComplexF32}(k.data))
Base.convert(::Type{ComplexF32}, trans::StateTransform) =
StateTransform(convert(ComplexF32, trans.input) => convert(ComplexF32, trans.output))
function Base.convert(::Type{ComplexF32}, trans::UnitaryTransform)
trans_F32 = UnitaryTransform(trans.basis)
for (in, out) in zip(trans.inputs, trans.outputs)
trans_F32 += convert(ComplexF32, in) => convert(ComplexF32, out)
end
trans_F32
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 1812 | """
heaviside(t::T) where {T <: Real}
Heaviside step function
```math
H(t) =
\\begin{cases}
1, & t > 0 \\\\
0, & t \\leq 0
\\end{cases}.
```
"""
heaviside(t::T) where {T <: Real} = T(t > T(0))
"""
interval(t::T, a::T, b::T) where {T <: Real}
Interval function
```math
I(t; a, b) = H(t - a) - H(t - b).
```
"""
interval(t::T, a::T, b::T) where {T <: Real} = heaviside(t - a) - heaviside(t - b)
"""
piecewise_const_interp(p, t; t0, t1)
Piecewise constant interpolation of equidistant samples `p`.
"""
function piecewise_const_interp(p::Vector{T}, t::T; t0=T(0), t1=T(1)) where {T <: Real}
ts = t0:(t1 - t0)/length(p):t1
sum(p[i] * interval(t, ts[i], ts[i + 1]) for i=1:length(ts) - 1)
end
"""
linear_interp(p, t; t0, t1)
Linear interpolation of equidistant samples `p`.
"""
function linear_interp(p::Vector{T}, t::T; t0=T(0), t1=T(1)) where {T <: Real}
Δt = (t1 - t0)/(length(p) - 1)
ts = t0:Δt:t1
sum((p[i] + (t - ts[i]) * (p[i + 1] - p[i]) / Δt) * interval(t, ts[i], ts[i + 1]) for i=1:length(ts) - 1)
end
"""
cubic_spline_interp(p, t; t0, t1)
Cubic spline interpolation of equidistant samples `p` with natural boundary conditions.
"""
function cubic_spline_interp(p::Vector{T}, t::T; t0=T(0), t1=T(1)) where {T <: Real}
Δt = (t1 - t0)/(length(p) - 1)
ts = t0:Δt:t1
v = 4 * ones(T, length(p) - 2)
h = ones(T, length(p) - 3)
b = [p[i + 1] - p[i] for i=1:length(p) - 1] / Δt
u = 6 * [b[i] - b[i - 1] for i=2:length(b)]
z = vcat([T(0)], inv(SymTridiagonal(v, h)) * u / Δt, [T(0)])
sum(interval(t, ts[i], ts[i + 1]) * (z[i + 1] * (t - ts[i])^3 + z[i] * (ts[i + 1] - t)^3 +
(6 * p[i + 1] - z[i + 1] * Δt^2) * (t - ts[i]) + (6 * p[i] - z[i] * Δt^2) * (ts[i + 1] - t)) / (6Δt) for i=1:length(ts) - 1)
end | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 1478 | """
vectorize(H, J, rates)
Vectorizes the Hamiltonian and jump operators so that
they can be submitted to the Schroedinger time evolution solver.
Uses the vectorization identity ``\\text{vec}(ABC) = (C^T \\otimes A)\\text{vec}(B)``.
"""
function vectorize(
H::Hamiltonian,
J::Vector{<:AbstractOperator},
rates::Vector{T},
) where {T<:Real}
for op in J
op.basis_r == H.basis_r ? nothing : throw(IncompatibleBases)
op.basis_l == H.basis_l ? nothing : throw(IncompatibleBases)
end
const_op = vectorize_constant_op(H.const_op, [op.data for op in J], rates)
ops = [vectorize_operator(op) for op in H.operators]
Hamiltonian(const_op, J[1].basis_l, J[1].basis_r, ops, H.drives)
end
function vectorize_operator(op::AbstractMatrix)
id = one(op)
sparse(kron(id, op) - kron(transpose(op), id))
end
function vectorize_jump_operators(
ops::Vector{<:AbstractMatrix{Complex{T}}},
rates::Vector{T},
) where {T<:Real}
id = one(ops[1])
res = T(0) * kron(id, id)
for (Op, r) in zip(ops, rates)
res += r * kron(conj(Op), Op)
res -= r * T(0.5) * kron(id, Op' * Op)
res -= r * T(0.5) * kron(transpose(Op) * conj(Op), id)
end
T(1)im * sparse(res)
end
function vectorize_constant_op(
H0::op,
ops::Vector{op},
rates::Vector{T},
) where {T<:Real,op<:AbstractMatrix{Complex{T}}}
Op = vectorize_operator(H0)
sparse(Op + vectorize_jump_operators(ops, rates))
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 233 | using Test
using Sisyphus
using QuantumOpticsBase: IncompatibleBases
using QuantumOptics
using Flux: Adam
@testset "Transform" begin
include("test_transforms.jl")
end
@testset "Problem" begin
include("test_problem.jl")
end
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 1426 | bs = SpinBasis(1 // 2)
H = Hamiltonian(sigmaz(bs), [sigmax(bs), sigmay(bs)], a -> [1.0, 2.0])
trans = StateTransform(spindown(bs) => spinup(bs))
cost = CostFunction((x, y) -> 1.0 - real(x' * y), a -> 0.0)
prob = QOCProblem(H, trans, (0.0, 1.0), cost)
@test_throws ArgumentError solve(prob, [1.0], Adam(0.1))
H = Hamiltonian(sigmaz(bs), [sigmax(bs), sigmay(bs)], (a, t) -> [1.0])
trans = StateTransform(spindown(bs) => spinup(bs))
cost = CostFunction((x, y) -> 1.0 - real(x' * y), a -> 0.0)
prob = QOCProblem(H, trans, (0.0, 1.0), cost)
@test_throws ArgumentError solve(prob, [1.0], Adam(0.1))
H = Hamiltonian(sigmaz(bs), [sigmax(bs), sigmay(bs)], (a, t) -> [1.0, 2.0])
trans = StateTransform(spindown(bs) => spinup(bs))
cost = CostFunction((x, y) -> 1.0 - x' * y)
prob = QOCProblem(H, trans, (0.0, 1.0), cost)
@test_throws ArgumentError solve(prob, [1.0], Adam(0.1))
H = Hamiltonian(sigmaz(bs), [sigmax(bs), sigmay(bs)], (a, t) -> [1.0, 2.0])
trans = StateTransform(spindown(bs) => spinup(bs))
cost = CostFunction(x -> x)
prob = QOCProblem(H, trans, (0.0, 1.0), cost)
@test_throws ArgumentError solve(prob, [1.0], Adam(0.1))
H = Hamiltonian(sigmaz(bs), [sigmax(bs), sigmay(bs)], (a, t) -> [1.0, 2.0])
trans = StateTransform(spindown(bs) => spinup(bs))
cost = CostFunction((x, y) -> 1.0 - real(x' * y), p -> p * 1.0im)
prob = QOCProblem(H, trans, (0.0, 1.0), cost)
@test_throws ArgumentError solve(prob, [1.0], Adam(0.1))
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | code | 776 | bs1 = SpinBasis(1 // 2)
bs2 = SpinBasis(2 // 2)
@test_throws IncompatibleBases StateTransform(spinup(bs1) => spinup(bs2))
@test_throws IncompatibleBases UnitaryTransform(spinup(bs1) => spinup(bs2))
t = UnitaryTransform(spinup(bs1) => spindown(bs1))
@test_throws IncompatibleBases global t += spindown(bs1) => spinup(bs2)
@test_throws ArgumentError UnitaryTransform(
[spinup(bs1), spindown(bs1)],
[[1.0, 2.0][3.0, 4.0]],
)
@test_throws ArgumentError UnitaryTransform(
[spinup(bs1), spindown(bs1)],
[[1.0 0.0]; [0.0 2.0]],
)
@test_throws DimensionMismatch UnitaryTransform(
[spinup(bs1), spindown(bs1)],
[[1.0 0.0 1.0]; [0.0 2.0 1.0]],
)
@test_throws IncompatibleBases UnitaryTransform(
[spinup(bs1), spindown(bs2)],
[[1.0 0.0]; [0.0 1.0]],
)
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 412 | # Sisyphus
A high-performance library for gradient based quantum optimal control
# Installation
Sisyphus is not yet available in the official registry of Julia packages. You can install Sisyphus and it's dependencies in the REPL (press `]` to enter the `Pkg` mode) with the github link,
```
pkg> add [email protected]:SatyaBade12/Sisyphus.jl.git
```
# Documentation
https://satyabade12.github.io/Sisyphus.jl
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 622 | # API
## Types
```@docs
Hamiltonian
```
```@docs
Transform
```
```@docs
StateTransform
```
```@docs
UnitaryTransform
```
```@docs
CostFunction
```
```@docs
QOCProblem
```
```@docs
AdjointSolver
```
```@docs
Solution
```
## Functions
```@docs
schroedinger_dynamic
```
```@docs
master_dynamic
```
```@docs
vectorize
```
### Utilities
```@docs
heaviside
```
```@docs
interval
```
```@docs
piecewise_const_interp
```
```@docs
linear_interp
```
```@docs
cubic_spline_interp
```
## GPU
```@docs
CuKet(k::Ket)
```
```@docs
cu
```
## Single precision
```@docs
convert(::Type{Float32}, prob::QOCProblem)
``` | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 3731 | # Gradient-based quantum optimal control
In this section, we describe in detail the optimization algorithm implemented in `Sisyphus.jl`.
A general QOC problem aims to find time-dependent control knobs to simultaneously guide the evolution of a given set of input states to some chosen target states subject to physical and hardware constraints. Let us denote the input and target states of the problem $|\psi^{(1)}_i\rangle, |\psi^{(2)}_i\rangle, \dots |\psi^{(N)}_i\rangle$ and $|\psi^{(1)}_f\rangle, |\psi^{(2)}_f\rangle, \dots |\psi^{(N)}_f\rangle$ respectively. Without loss of generality, the time-dependent Hamiltonian governing the dynamics of a quantum system can be written as,
$$H(t) = H_0 + H_c(t) = H_0 + \sum_{m=1}^{M} c_m(t) H_m.$$
The control drives $c_1(t), c_2(t), \dots c_M(t)$ define the unitary transformation:
$$U(\{c_m\}, T) = e^{-i \int_0^T H(t) \mathrm{d}t}.$$
The drives $\{c_k(t)\}$ are designed by optimizing a certain cost function. In practice, the cost function is chosen to reflect the quality of the desired transformation and by constraining the pulses:
$$C(\{c_m\}) = \frac{1}{N}\sum_{j=1}^{N} d(|\psi^{(j)}_f\rangle, U(\{c_m\}, T)|\psi^{(j)}_i\rangle) + F(\{c_m(t)\}),$$
where $d(|\psi^{(j)}_f\rangle, U(\{c_m\}, T)|\psi^{(j)}_i\rangle)$ is some distance measure and $F$ takes into account the experimental constraints such as bounds on control signals, finite bandwidth and power etc.
The gradient of the cost function wrt the parameters is,
$$\frac{\partial C(\{c_m\})}{\partial w_k} = \frac{1}{N}\sum_{j=1}^{N} \frac{\partial}{\partial w_k}d\left(|\psi^{(j)}_f\rangle, |\psi^{(j)}(T)\rangle\right) + \frac{\partial F}{\partial w_k}.$$
where $|\psi^{(j)}(T)\rangle = U(\{c_m\}, T)|\psi^{(j)}_i\rangle$ and $w_k$ parameterize the control signals $\{c_m\}$. The second term in the above equation can be evaluated with standard AD techniques. The first term can be efficiently calculated without propagating the derivative through the ODE solver using the [adjoint sensitivity method](https://arxiv.org/abs/1806.07366). We have,
$$\frac{\partial}{\partial w_k}d\left(|\psi^{(j)}_f\rangle, |\psi^{(j)}(T)\rangle\right) = \frac{\partial d(x,y)}{\partial y} \Big|_{x=|\psi^{(j)}_f\rangle, y = |\psi^{(j)}(T)\rangle} \frac{\partial|\psi^{(j)}(T)\rangle}{\partial w_k}.$$
Therefore, the gradient $\partial C(\{c_m\})/\partial w_k$ can be computed from $|\psi^{(j)}(T)\rangle$ and $\partial|\psi^{(j)}(T)\rangle/ \partial w_k$. For a closed quantum system, we get the following augmented system of equations,
$$\frac{\mathrm{d}|\psi^{(j)}\rangle}{\mathrm{d}t} = -i H(t) |\psi^{(j)}\rangle$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial|\psi^{(j)}\rangle}{\partial w_k} = -i\left[H(t) \frac{\partial|\psi^{(j)}\rangle}{\partial w_k} + \sum_{m=1}^{M}\frac{\partial c_m(t)}{\partial w_k} H_m |\psi^{(j)}\rangle\right],$$
with initial conditions $|\psi^{(j)}(0)\rangle = |\psi^{(j)}_i\rangle$ and $\partial|\psi^{(j)}(0)\rangle/\partial w_k = 0$.
These coupled equations can be solved using a higher-order ODE solver and gradients wrt the parameters can be evaluated to the desired numerical accuracy. For a given set of parameters, knowing the cost function and the gradients, one could then use any gradient based optimization method to iteratively update the parameters, until a satisfactory solution is found.
Note that the algorithm presented here is quite similar to [GOAT](https://doi.org/10.1103/physrevlett.120.150401), except that the equations we solve are expressed only in terms of states instead of the evolution operator. Therefore, effectively `Sisyphus.jl` requires less memory compared to GOAT!
 | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 1298 | # Sisyphus
`Sisyphus.jl` is a flexible high-performance Julia package for gradient based quantum optimal control. It is well integrated into the Julia ecosystem by supporting definitions of quantum objects from the [QuantumOptics.jl](https://qojulia.org/) library, automatic differentiation through [Flux.jl](https://fluxml.ai/), it relies on [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) to simulate the dynamics of quantum systems and can be used in conjunction with any optimizer in the [Flux](https://fluxml.ai/Flux.jl/stable/training/optimisers/) or [NLopt](https://github.com/JuliaOpt/NLopt.jl)[^1] packages. The solver is implemented with the [CommonSolve](https://github.com/SciML/CommonSolve.jl) API. The simulation backend is multi-threaded (uses [MKLSparse](https://github.com/JuliaSparse/MKLSparse.jl) library) and autoscales on multicore CPUs depending on the problem size. It can also be seamlessly run on a GPU and it is suitable for solving large scale quantum optimal control problems.
## Examples
*optimization of a two level state transfer problem*

*optimization of GHZ state preparation in a linear chain of 12 atoms on a GPU*

[^1]: including derivative free optimization algorithms | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 182 | # Installation
You can install `Sisyphus.jl` and it's dependencies in the REPL (press `]` to enter the `Pkg` mode) with
```
pkg> add https://github.com/entropy-lab/Sisyphus.git
``` | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 4438 | # Introduction
Optimal control strategies pervade a wide range of fields in science and engineering. In particular, quantum optimal control (QOC) has the potential to extract the best of the quantum technologies. QOC techniques are routinely employed to coherently manipulate and drive the quantum system to a given state or to perform a given quantum operation (or gate). In practice, the system dynamics and/or objective function to be minimized in QOC problems can be quite involved and often they do not yield to a simple analytical treatment (except in a few cases such as DRAG, STIRAP etc.). Therefore, one must often resort to computational methods.
Numerical techniques to solve QOC problems fall into two categories: gradient based and gradient free methods. As a general rule of thumb, gradient free methods such as [CRAB](https://arxiv.org/abs/1103.0855) and [dCRAB](https://arxiv.org/abs/1506.04601) are suitable for problems involving few tens of parameters. However, they require large number of iterations to converge as the parameter size increases and gradient based techniques should be preferred, whenever it is possible to evaluate the gradients efficiently. Among the gradient based methods, [GRAPE](https://qutip.org/docs/4.0.2/guide/guide-control.html) and [Krotov](https://qucontrol.github.io/krotov/v1.0.0/01_overview.html) solve QOC problems by representing the drive signals as piece-wise constant functions and iteratively optimize these discrete values based on the gradient of the cost function with respect to the control parameters. In these approaches, for a given set of control signals, the resulting unitary transformation is computed by first-order Trotterization of each time slice. These methods are inherently prone to discretization errors and one must sample the control signals sufficiently to obtain high fidelity protocols. A continuous parametrization of drive signals, combined with higher-order ordinary differential equation solvers are indispensible for solving optimal control problems when accuracy can not be traded with computational effort (see Gradient Optimization of Analytical conTrols [(GOAT)](https://doi.org/10.1103/physrevlett.120.150401) for a thorough discussion).
In this library, we implement a gradient based approach to solve a generic QOC problem. We rely on automatic differentiation (AD) to automatically write the [adjoint equations](https://arxiv.org/abs/1806.07366), necessary to calculate the gradients for any user defined parametrized control knobs and objective function. These equations coupled with the dynamical equations of the system are then efficiently solved to evaluate gradients. The control parameters can then be updated iteratively using any gradient based method to optimize the objective function.
## Why do we need a dedicated library for quantum optimal control?
SciML ecosystem already supports solving [optimal control problems](https://diffeqflux.sciml.ai/dev/examples/optimal_control/) via sensitivity analysis. In principle, quantum optimal control problems can be solved with this approach, however, it has two shortcomings:
a) Time evolution of Schrodinger or Master equation must be expressed only in terms of real numbers i.e. by separating the real and imaginary parts of operators and kets (it also means that we can not easily interface with `QuantumOptics.jl`). Otherwise, we'll run into errors while calculating gradients of cost function (loss) using AD.
b) The size of Hilbert space and/or the number of parameters in QOC problems can be large. In such cases, it is beneficial to implement the RHS of time evolution equations with Intel MKL or CUBLAS libraries. However, AD once again fails if the equations contain calls to functions not written in pure Julia (for e.g. when `mul!` points to Intel MKL library).
In `Sisyphus.jl` package we solve these problems by separating the AD part from the time evolution. The result is a high-performance library for quantum optimal control that enables users to: describe a general quantum optimal control problem in the familiar language of [QuantumOptics.jl](https://docs.qojulia.org/) with almost any objective for optimization, select any [ODE solver](https://diffeq.sciml.ai/dev/solvers/ode_solve/), optimizer (in [Flux.jl](https://fluxml.ai/Flux.jl/stable/training/optimisers/#Optimiser-Reference) and [NLopt.jl](https://github.com/JuliaOpt/NLopt.jl)) and solve it fast! | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 1302 | # Open quantum systems
Quantum systems interacting with the environment can be modelled with the Master equation,
$$\dot{\rho} = -i[H, \rho] + \sum_k \gamma_k \big( J_k \rho J_k^\dagger - \frac{1}{2} J_k^\dagger J_k \rho - \frac{1}{2} \rho J_k^\dagger J_k \big),$$
where $J_k$ are the jump operators and $\gamma_k$ the respective jump rates. Using the vectorization identity ($\text{vec}(A B C) = (C^T \otimes A)\text{vec}(B)$), we can cast a quantum optimal control problem in the presence of Lindbladian noise into a `QOCProblem` in the absence of noise, but with an effective Hamiltonian,
$$H^{e} = I \otimes H - H^T \otimes I + i\sum_k \gamma_k[J_k^*\otimes J_k - \frac{1}{2} I \otimes J_k^{\dagger}J_k - \frac{1}{2}J_k^TJ_k^*\otimes I],$$
acting on the vectorized form of the density matrix. This trick allows us to use the same solver to solve optimal control problems in the presence of noise.
For a general time-dependent Hamiltonian $H(t) = H_0 + H_c(t)$, the effective time-dependent Hamiltonian is,
$$H^{e}(t) = H^{e}_{0} + I \otimes H_c(t) - H_c(t)^T \otimes I,$$
where the constant part of the effective Hamiltonian is,
$$H^{e}_{0} = I \otimes H_0 - H_0^T \otimes I + i\sum_k \gamma_k[J_k^*\otimes J_k - \frac{1}{2} I \otimes J_k^{\dagger}J_k - \frac{1}{2}J_k^TJ_k^*\otimes I].$$ | Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.0 | 60f3af90297538750462943668651f3e457d1364 | docs | 7097 | # Tutorial
The main goal of this tutorial is to introduce the terminology and workflow of the package.
## Constructing a [`Hamiltonian`](@ref)
We split the Hamiltonian into time-independent and time-dependent parts. Operators constituting the Hamiltonian are represented by QuantumOptics operators. For a list of operators we submit a drives function that returns the corresponding list of real-valued drives that multiplies the operators respectively. Below is a construction of a simple two-level Hamiltonian with a parameterized Gaussian shaped drive
$$H(t)/\hbar\omega_0 = -\frac{1}{2}\sigma_z + \Omega(p, t)\sigma_x$$
```julia
bs = SpinBasis(1//2)
Ω(p, t) = [p[1] * exp(-p[2] * t^2) + p[3]]
H = Hamiltonian(-0.5*sigmaz(bs), [sigmax(bs)], Ω)
```
The real valued drives can be any function in Julia, as long as it is differentiable. You can find some examples showcasing the use of neural networks, piecewise constant and linear functions in the notebooks.
## Defining a [`Transform`](@ref)
### a) [`StateTransform`](@ref)
Transformation can be defined between two Kets as in the following code.
```julia
bs = SpinBasis(1//2)
trans = StateTransform(spindown(bs) => spinup(bs))
```
### b) [`UnitaryTransform`](@ref)
It can alternatively be defined on a vector of Kets by providing unitary matrix that acts on the subspace spanned by them and represents the desired unitary evolution.
```julia
bs = FockBasis(5)
states = [fockstate(bs, 0)⊗fockstate(bs, 0),
fockstate(bs, 0)⊗fockstate(bs, 1),
fockstate(bs, 1)⊗fockstate(bs, 0),
fockstate(bs, 1)⊗fockstate(bs, 1)]
trans = UnitaryTransform(states, [[1.0 0.0 0.0 0.0];
[0.0 1.0 1.0im 0.0]/√2;
[0.0 1.0im 1.0 0.0]/√2;
[0.0 0.0 0.0 1.0]])
```
## Constructing a [`CostFunction`](@ref)
Cost function is composed of a distance function measuring the overlap of the quantum states and the optional constraints on the shape of pulses. The following code defines a cost function that measures the infidelity between quantum states and constrains the pulse to zero at initial and final times `t0` and `t1`.
```julia
(t0, t1) = (0.0, 1.0)
Ω(p, t) = [p[1] * exp(-p[2] * t^2) + p[3]]
cost = CostFunction((x, y) -> 1.0 - abs2(x' * y),
p -> Ω(p, t0)[1]^2 + Ω(p, t1)[1]^2)
```
The solver automatically calculates the gradient of the distance and constraints function wrt the parameters of the problem. Therefore, the `CostFunction` arguments have to be differentiable real valued functions (`Zygote` handles most functions, just try!).
## Creating and solving a [`QOCProblem`](@ref)
Once we have constructed the Hamiltonian, cost function, and target unitary transformation, we can define a quantum optimal control problem by submitting a timeframe `(t0, t1)` for the evolution along the previously mentioned objects and functions. `QOCProblem` can be solved by invoking the `solve` method that can further be customized, e.g. through the selection of an optimizer or by setting optimization hyperparameters like below.
```julia
prob = QOCProblem(H, trans, (t0, t1), cost)
sol = solve(prob, initial_params, ADAM(0.01);)
```
The [`Solution`](@ref) returned by the solver contains the optimal parameters and also the values of distance metric and constraints during the optimization process.
Optionally, you can use the following keywords while invoking the `solve` method:
a) `maxiter` allows to set the maximum number of iterations, the default value is `100`.
b) `save_iters` to save the parameters tried by the optimizer at the specified iterations (useful for visualization of optimization). By default, the [`Solution`](@ref) object returned by the solver does not contain intermediate results.
## Selecting an optimizer
User can pick any of the available optimizers from the Flux or NLopt packages, for example
```julia
using Flux.Optimise: RMSProp
sol = solve(prob, initial_params, RMSProp(0.01); maxiter=100)
```
## Selecting a differential equation solver
The ODE solver used to compute the system dynamics and gradients can be chosen with the keyword `alg`.
```julia
sol = solve(prob, initial_params, ADAM(0.01); maxiter=100, alg=DP5(), abstol=1e-6, reltol=1e-6)
```
You may select appropriate ODE solvers available in `OrdinaryDiffEq` package. By default `Sisyphus.jl` uses `Tsit5()` algorithm, we encourage you to go through the documentation of [ODE Solvers](https://diffeq.sciml.ai/stable/solvers/ode_solve/#ode_solve) and try different algorithms to identify the algorithm best suited for your problem. In addition, you can also control the solver tolerances by setting `abstol` and `reltol`.
## Optimization in the presence of noise
Optimal control problems in the presence of Lindbladian noise can be solved by converting them into an equivalent [closed system problem](noisy.md) by vectorizing the master equation. Here, we only provide tools to convert [`Hamiltonian`](@ref) and [`Transform`](@ref)s into their vectorized forms. However, it is the responsibility of the users to provide an appropriate distance measure between the two density matrices in the [`CostFunction`](@ref) (check examples) while working with the vectorized forms. For example, one can write Frobenius norm in its vectorized form as
$$\|\rho - \sigma\|_F = \sqrt{\text{Tr}(\rho - \sigma)^\dagger(\rho - \sigma)} = \sqrt{\text{vec}(\rho - \sigma)^\dagger\text{vec}(\rho - \sigma)},$$
and define a correspoding distance function as `(x, y) -> 1.0 - sqrt((x - y)' * (x - y))`.
## Solving problems on GPU
Usually, all the kets and operators in `QOCProblem` are allocated on the CPU. In order to solve the problem on a GPU, we need to move the data to GPU memory, this can be done simply with the [`cu`](@ref) function as shown below. Once the data is moved to the GPU, the problem can be solved with the `solve` method as usual
```julia
cu_prob = cu(QOCProblem(H, trans, (t0, t1), cost))
solve(cu_prob, init_params, ADAM(0.1); maxiter=100)
```
GPUs have better single precision performance, if your problem does not require double precision, it is better to use single precision to obtain results quicker (it also reduces the memory footprint). We provide [`convert`](@ref) method to automatically convert all data types to single precision,
```julia
prob = cu(convert(Float32, QOCProblem(H, trans, (t0, t1), cost)))
```
notebooks demonstrating these features can be found in the examples.
### How to choose a `CostFunction`?
We have to bear in mind that the distance function (specified in `CostFunction`) must operate on arrays allocated on GPU. Most of the time, Julia's GPU compiler automatically generates CUDA kernels behind the scenes, both for distance and it's gradient! However it fails sometimes, for example, you should use,
```julia
cost = CostFunction((x, y) -> 1.0 - real(sum(conj(x) .* y))
```
instead of,
```julia
cost = CostFunction((x, y) -> 1.0 - real(x' * y)
```
eventhough they are equivalent. Solving this in general is beyond the scope of `Sisyphus.jl`.
| Sisyphus | https://github.com/SatyaBade12/Sisyphus.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 1380 | # Source this script as e.g.
#
# include("PATH/TO/devrepl.jl")
#
# from *any* Julia REPL or run it as e.g.
#
# julia -i --banner=no PATH/TO/devrepl.jl
#
# from anywhere. This will change the current working directory and
# activate/initialize the correct Julia environment for you.
#
# You may also run this in vscode to initialize a development REPL
#
using Pkg
using Downloads: download
cd(@__DIR__)
Pkg.activate("test")
function _instantiate()
installorg_script = joinpath("..", "scripts", "installorg.jl")
if !isfile(installorg_script)
@warn "$(@__DIR__) should be inside the JuliaQuantumControl development environment. See https://github.com/JuliaQuantumControl/JuliaQuantumControl#readme"
installorg_script = download(
"https://raw.githubusercontent.com/JuliaQuantumControl/JuliaQuantumControl/master/scripts/installorg.jl",
)
end
if !isfile(joinpath("..", ".JuliaFormatter.toml"))
download(
"https://raw.githubusercontent.com/JuliaQuantumControl/JuliaQuantumControl/master/.JuliaFormatter.toml",
".JuliaFormatter.toml"
)
end
include(installorg_script)
eval(:(installorg()))
Pkg.develop(path=".") # XXX
end
if !isfile(joinpath("test", "Manifest.toml"))
_instantiate()
end
include("test/init.jl")
if abspath(PROGRAM_FILE) == @__FILE__
help()
end
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 3943 | using Pkg
DOCUMENTER_VERSION =
[p for (uuid, p) in Pkg.dependencies() if p.name == "Documenter"][1].version
if DOCUMENTER_VERSION <= v"1.3.0"
Pkg.develop("Documenter")
end
using QuantumControl
using QuantumPropagators
using ParameterizedQuantumControl
using Documenter
using DocumenterCitations
using DocumenterInterLinks
using Plots
gr()
ENV["GKSwstype"] = "100"
PROJECT_TOML = Pkg.TOML.parsefile(joinpath(@__DIR__, "..", "Project.toml"))
VERSION = PROJECT_TOML["version"]
NAME = PROJECT_TOML["name"]
AUTHORS = join(PROJECT_TOML["authors"], ", ") * " and contributors"
GITHUB = "https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl"
DEV_OR_STABLE = "stable/"
if endswith(VERSION, "dev")
DEV_OR_STABLE = "dev/"
end
links = InterLinks(
"Julia" => "https://docs.julialang.org/en/v1/",
"QuantumControl" => "https://juliaquantumcontrol.github.io/QuantumControl.jl/$DEV_OR_STABLE",
"QuantumPropagators" => "https://juliaquantumcontrol.github.io/QuantumPropagators.jl/$DEV_OR_STABLE",
"QuantumGradientGenerators" => "https://juliaquantumcontrol.github.io/QuantumGradientGenerators.jl/$DEV_OR_STABLE",
"QuantumControl" => "https://juliaquantumcontrol.github.io/QuantumControl.jl/$DEV_OR_STABLE",
"GRAPE" => "https://juliaquantumcontrol.github.io/GRAPE.jl/$DEV_OR_STABLE",
"Krotov" => "https://juliaquantumcontrol.github.io/Krotov.jl/$DEV_OR_STABLE",
"Examples" => "https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/$DEV_OR_STABLE",
"Optimization" => "https://docs.sciml.ai/Optimization/stable/",
"ComponentArrays" => "https://jonniedie.github.io/ComponentArrays.jl/stable/",
"RecursiveArrayTools" => "https://docs.sciml.ai/RecursiveArrayTools/stable/",
)
fallbacks = ExternalFallbacks(
"get_parameters" => "@extref QuantumControl :jl:function:`QuantumPropagators.Controls.get_parameters`",
"QuantumControl.Generators.Generator" => "@extref QuantumControl :jl:type:`QuantumPropagators.Generators.Generator`",
"QuantumControl.hamiltonian" => "@extref QuantumControl :jl:function:`QuantumPropagators.Generators.hamiltonian`",
"QuantumControl.liouvillian" => "@extref QuantumControl :jl:function:`QuantumPropagators.Generators.liouvillian`",
"QuantumControl.Controls.ParameterizedFunction" => "@extref QuantumControl :jl:type:`QuantumPropagators.Controls.ParameterizedFunction`",
"QuantumControl.init_prop" => "@extref QuantumControl :jl:function:`QuantumPropagators.init_prop`",
"QuantumControl.prop_step!" => "@extref QuantumControl :jl:function:`QuantumPropagators.prop_step!`",
)
println("Starting makedocs")
bib = CitationBibliography(joinpath(@__DIR__, "src", "refs.bib"); style=:numeric)
PAGES = [
"Home" => "index.md",
"Overview" => "overview.md",
"API" => "api.md",
"References" => "references.md",
]
makedocs(;
plugins=[bib, links, fallbacks],
modules=[ParameterizedQuantumControl],
authors=AUTHORS,
sitename="ParameterizedQuantumControl.jl",
doctest=false, # we have no doctests (but trying to run them is slow)
format=Documenter.HTML(;
prettyurls=true,
canonical="https://juliaquantumcontrol.github.io/ParameterizedQuantumControl.jl",
assets=[
"assets/citations.css",
asset(
"https://juliaquantumcontrol.github.io/QuantumControl.jl/dev/assets/topbar/topbar.css"
),
asset(
"https://juliaquantumcontrol.github.io/QuantumControl.jl/dev/assets/topbar/topbar.js"
),
],
mathengine=KaTeX(Dict(:macros => Dict("\\Op" => "\\hat{#1}"))),
footer="[$NAME.jl]($GITHUB) v$VERSION docs powered by [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl).",
),
pages=PAGES,
warnonly=true,
)
println("Finished makedocs")
deploydocs(;
repo="github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl",
devbranch="master"
)
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 2941 | #using QuantumPropagators.Interfaces: check_generator
using QuantumControl.Interfaces: check_generator
using ComponentArrays: ComponentVector, Axis
using QuantumControl.Controls: get_parameters
using QuantumControl.QuantumPropagators: propagate
import OrdinaryDiffEq
using UnPack: @unpack
const 𝕚 = 1im;
# # Definition of the Hamiltonian
include("enantiomer_ham.jl")
using .EnantiomerHams: EnantiomerHam
# # Testing the Hamiltonian
H = EnantiomerHam(;
sign=+1,
ΔT₁=0.3,
ΔT₂=0.4,
ΔT₃=0.3,
ϕ₁=0.0,
ϕ₂=0.0,
ϕ₃=0.0,
E₀₁=4.5,
E₀₂=4.0,
E₀₃=5.0
)
tlist = collect(range(0, 1; length=101));
Ψ₀ = ComplexF64[1, 0, 0];
check_generator(
H;
tlist,
state=Ψ₀,
for_mutable_state=true,
for_parameterization=true,
for_gradient_optimization=false,
for_time_continuous=true
)
# # Defining the control problem
using QuantumControl: ControlProblem, Trajectory
Ψ₊tgt = ComplexF64[1, 0, 0];
Ψ₋tgt = ComplexF64[0, 0, 1];
parameters =
ComponentVector(ΔT₁=0.2, ΔT₂=0.4, ΔT₃=0.3, ϕ₁=π, ϕ₂=π, ϕ₃=π, E₀₁=4.0, E₀₂=4.0, E₀₃=4.0)
H₊ = EnantiomerHam(parameters; sign=+1)
H₋ = EnantiomerHam(parameters; sign=-1)
@assert get_parameters(H₊) === get_parameters(H₋)
@assert get_parameters(H₊) === parameters
using QuantumControl.Functionals: J_T_ss
function J_T(ϕ, trajectories; τ=nothing)
Ψ₊, Ψ₋ = ϕ[1], ϕ[2]
return 1 - (abs(Ψ₊[1]) + abs(Ψ₋[3])) / 2
end
problem = ControlProblem(
[Trajectory(Ψ₀, H₊; target_state=Ψ₊tgt), Trajectory(Ψ₀, H₋; target_state=Ψ₋tgt)],
tlist;
parameters=parameters,
lb=ComponentVector(
ΔT₁=0.1,
ΔT₂=0.1,
ΔT₃=0.1,
ϕ₁=0.0,
ϕ₂=0.0,
ϕ₃=0.0,
E₀₁=1.0,
E₀₂=1.0,
E₀₃=1.0,
),
ub=ComponentVector(
ΔT₁=1.0,
ΔT₂=1.0,
ΔT₃=1.0,
ϕ₁=2π,
ϕ₂=2π,
ϕ₃=2π,
E₀₁=5.0,
E₀₂=5.0,
E₀₃=5.0,
),
J_T=J_T_ss,
#J_T,
prop_method=OrdinaryDiffEq,
prop_reltol=1e-9,
prop_abstol=1e-9,
iter_stop=500,
check_convergence=res -> begin
((res.J_T < 1e-5) && (res.converged = true) && (res.message = "J_T < 10⁻⁵"))
end,
)
@assert get_parameters(problem) === parameters
using QuantumControl: propagate_trajectory
Ψ₊out = propagate_trajectory(
problem.trajectories[1],
tlist;
method=OrdinaryDiffEq,
reltol=1e-9,
abstol=1e-9
)
Ψ₋out = propagate_trajectory(
problem.trajectories[2],
tlist;
method=OrdinaryDiffEq,
reltol=1e-9,
abstol=1e-9
)
# # Running the Optimization
using QuantumControl: optimize
using ParameterizedQuantumControl
using Optimization
using OptimizationNLopt
import NLopt
res = optimize(
problem;
method=ParameterizedQuantumControl,
backend=Optimization,
optimizer=NLopt.LN_NELDERMEAD(),
info_hook=(
((wrk, iter) -> (1.0 - wrk.J_parts[1],)),
ParameterizedQuantumControl.print_table,
)
)
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 2232 | module EnantiomerHams
using ComponentArrays: ComponentVector, Axis
using UnPack: @unpack
const 𝕚 = 1im
struct EnantiomerHam
a::Float64
sign::Int64
parameters::ComponentVector{
Float64,
Vector{Float64},
Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}}
}
end
function EnantiomerHam(; a=1000.0, sign=1, kwargs...)
EnantiomerHam(a, sign, ComponentVector(; kwargs...))
end
function EnantiomerHam(parameters; a=1000.0, sign=1)
EnantiomerHam(a, sign, parameters)
end
import QuantumControl.Controls:
get_controls, evaluate, evaluate!, get_parameters, get_control_deriv
get_controls(::EnantiomerHam) = tuple()
function evaluate(G::EnantiomerHam, args...; kwargs...)
H = zeros(ComplexF64, 3, 3)
evaluate!(H, G, args...; kwargs...)
end
# Midpoint of n'th interval of tlist, but snap to beginning/end (that's
# because any S(t) is likely exactly zero at the beginning and end, and we
# want to use that value for the first and last time interval)
function _t(tlist, n)
@assert 1 <= n <= (length(tlist) - 1) # n is an *interval* of `tlist`
if n == 1
t = tlist[begin]
elseif n == length(tlist) - 1
t = tlist[end]
else
dt = tlist[n+1] - tlist[n]
t = tlist[n] + dt / 2
end
return t
end
E(t; E₀, t₁, t₂, a) = (E₀ / 2) * (tanh(a * (t - t₁)) - tanh(a * (t - t₂)))
function evaluate!(H, G::EnantiomerHam, tlist, n; _...)
t = _t(tlist, n)
evaluate!(H, G, t)
end
function evaluate!(H, G::EnantiomerHam, t; _...)
@unpack a, sign = G
@unpack ΔT₁, ΔT₂, ΔT₃, ϕ₁, ϕ₂, ϕ₃, E₀₁, E₀₂, E₀₃ = G.parameters
T₁ = ΔT₁
T₂ = ΔT₁ + ΔT₂
T₃ = ΔT₁ + ΔT₂ + ΔT₃
μ = sign
E₁ = E(t; E₀=E₀₁, t₁=0.0, t₂=T₁, a)
E₂ = E(t; E₀=E₀₂, t₁=T₁, t₂=T₂, a)
E₃ = E(t; E₀=E₀₃, t₁=T₂, t₂=T₃, a)
copyto!(
H,
µ * [
0.0 E₁*exp(𝕚 * ϕ₁) E₃*exp(𝕚 * ϕ₃)
E₁*exp(-𝕚 * ϕ₁) 0.0 E₂*exp(𝕚 * ϕ₂)
E₃*exp(-𝕚 * ϕ₃) E₂*exp(-𝕚 * ϕ₂) 0.0
]
)
return H
end
get_parameters(G::EnantiomerHam) = G.parameters
get_control_deriv(G::EnantiomerHam, ::Any) = nothing # does not have controls
end
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 1304 | module ParameterizedQuantumControlOptimizationExt
using Dates: now
using Optimization: Optimization, OptimizationProblem
import ParameterizedQuantumControl: run_optimizer, update_result!
function run_optimizer(
backend::Val{:Optimization},
optimizer,
wrk,
f,
info_hook,
check_convergence!
)
u0 = copy(wrk.result.guess_parameters)
#kwargs = ... # TODO: optimization_kwargs
function callback(state, loss_val)
wrk.optimizer_state = state
iter = wrk.result.iter
update_result!(wrk, iter)
#update_hook!(...) # TODO
info_tuple = info_hook(wrk, iter)
wrk.fg_count .= 0
(info_tuple !== nothing) && push!(wrk.result.records, info_tuple)
check_convergence!(wrk.result)
wrk.result.iter += 1 # next iteration
return wrk.result.converged
end
prob = OptimizationProblem(
(u, _) -> f(u),
u0,
nothing;
lb=get(wrk.kwargs, :lb, nothing),
ub=get(wrk.kwargs, :ub, nothing)
)
try
sol = Optimization.solve(prob, optimizer; callback)
catch exc
exc_msg = sprint(showerror, exc)
if !contains(exc_msg, "Optimization halted by callback")
rethrow()
end
end
wrk.result.end_local_time = now()
end
end
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 109 | module ParameterizedQuantumControl
include("workspace.jl")
include("result.jl")
include("optimize.jl")
end
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 7187 | import QuantumControl: optimize
using LinearAlgebra
using QuantumControl: @threadsif
using QuantumControl: set_atexit_save_optimization
using QuantumControl: propagate_trajectories
@doc raw"""
```julia
using ParameterizedQuantumControl
result = optimize(problem; method=ParameterizedQuantumControl, kwargs...)
```
optimizes the given control [`problem`](@ref QuantumControl.ControlProblem)
by varying a set of control parameters in order to minimize the functional
```math
J(\{u_{n}\}) = J_T(\{|ϕ_k(T)⟩\})
```
where ``|ϕ_k(T)⟩`` is the result of propagating the initial state of the
``k``'th trajectory under the parameters ``\{u_n\}``
Returns a [`ParameterizedOptResult`](@ref).
Keyword arguments that control the optimization are taken from the keyword
arguments used in the instantiation of `problem`; any of these can be overridden
with explicit keyword arguments to `optimize`.
# Required problem keyword arguments
* `backend`: A package to perform the optimization, e.g., `Optimization` (for
[Optimization.jl](https://github.com/SciML/Optimization.jl))
* `optimizer`: A backend-specific object to perform the optimizatino, e.g.,
`NLopt.LN_NELDERMEAD()` from `NLOpt`/`OptimizationNLOpt`
* `J_T`: A function `J_T(ϕ, trajectories; τ=τ)` that evaluates the final time
functional from a vector `ϕ` of forward-propagated states and
`problem.trajectories`. For all `trajectories` that define a `target_state`,
the element `τₖ` of the vector `τ` will contain the overlap of the state `ϕₖ`
with the `target_state` of the `k`'th trajectory, or `NaN` otherwise.
# Optional problem keyword arguments
* `parameters`: An `AbstractVector` of parameters to tune in the optimization.
By default, [`parameters=get_parameters(problem)`](@ref get_parameters). If
given explicitly, the vector must alias values inside the generators used in
`problem.trajectories` so that mutating the `parameters` array directly
affects any subsequent propagation.
* `lb`: An `AbstractVector` of lower bound values for a box constraint. Must be
a vector similar to (and of the same size as `parameters`)
* `ub`: An `AbstractVector` of upper bound values for a box constraint,
cf. `lb`
* `use_threads`: If given a `true`, propagate trajectories in parallel
* `iter_stop`: The maximum number of iterations
"""
function optimize_parameters(problem)
verbose = get(problem.kwargs, :verbose, false)
wrk = ParameterizedOptWrk(problem; verbose)
J_T_func = wrk.kwargs[:J_T]
initial_states = [traj.initial_state for traj ∈ wrk.trajectories]
Ψtgt = Union{eltype(initial_states),Nothing}[
(hasproperty(traj, :target_state) ? traj.target_state : nothing) for
traj ∈ wrk.trajectories
]
τ = wrk.result.tau_vals
J = wrk.J_parts
# loss function
function f(u; count_call=true)
copyto!(wrk.parameters, u)
Ψ = propagate_trajectories(
wrk.trajectories,
problem.tlist;
use_threads=wrk.use_threads,
_prefixes=["prop_"],
_filter_kwargs=true,
problem.kwargs...
)
for k in eachindex(wrk.trajectories)
Ψtgt = wrk.trajectories[k].target_state
τ[k] = isnothing(Ψtgt) ? NaN : (Ψtgt ⋅ Ψ[k])
end
wrk.states = Ψ
J[1] = J_T_func(Ψ, wrk.trajectories; τ=τ)
if count_call
wrk.fg_count[2] += 1
end
return sum(J)
end
backend = wrk.backend
optimizer = wrk.optimizer
info_hook = get(problem.kwargs, :info_hook, print_table)
check_convergence! = get(problem.kwargs, :check_convergence, res -> res)
atexit_filename = get(problem.kwargs, :atexit_filename, nothing)
# atexit_filename is undocumented on purpose: this is considered a feature
# of @optimize_or_load
if !isnothing(atexit_filename)
set_atexit_save_optimization(atexit_filename, wrk.result)
if !isinteractive()
@info "Set callback to store result in $(relpath(atexit_filename)) on unexpected exit."
# In interactive mode, `atexit` is very unlikely, and
# `InterruptException` is handles via try/catch instead.
end
end
try
run_optimizer(Val(backend), optimizer, wrk, f, info_hook, check_convergence!)
catch exc
# Primarily, this is intended to catch Ctrl-C in interactive
# optimizations (InterruptException)
exc_msg = sprint(showerror, exc)
wrk.result.message = "Exception: $exc_msg"
end
if !isnothing(atexit_filename)
popfirst!(Base.atexit_hooks)
end
# restore guess parameters - we don't want to mutate the problem;
# the optimized parameters are in result.optimized_parameters
copyto!(wrk.parameters, wrk.result.guess_parameters)
return wrk.result
end
# backend code stub (see extensions)
function run_optimizer end
"""Print optimization progress as a table.
This functions serves as the default `info_hook` for an optimization with
`ParameterizedQuantumControl`.
"""
function print_table(wrk, iteration, args...)
# TODO: make_print_table that precomputes headers and such, and maybe
# allows for more options.
# TODO: should we report ΔJ instead of ΔJ_T?
J_T = wrk.result.J_T
ΔJ_T = J_T - wrk.result.J_T_prev
secs = wrk.result.secs
headers = ["iter.", "J_T", "ΔJ_T", "FG(F)", "secs"]
@assert length(wrk.J_parts) == 1
iter_stop = "$(get(wrk.kwargs, :iter_stop, 5000))"
width = Dict(
"iter." => max(length("$iter_stop"), 6),
"J_T" => 11,
"|∇J_T|" => 11,
"|∇J_a|" => 11,
"|∇J|" => 11,
"ΔJ" => 11,
"ΔJ_T" => 11,
"FG(F)" => 8,
"secs" => 8,
)
if iteration == 0
for header in headers
w = width[header]
print(lpad(header, w))
end
print("\n")
end
strs = [
"$iteration",
@sprintf("%.2e", J_T),
(iteration > 0) ? @sprintf("%.2e", ΔJ_T) : "n/a",
@sprintf("%d(%d)", wrk.fg_count[1], wrk.fg_count[2]),
@sprintf("%.1f", secs),
]
for (str, header) in zip(strs, headers)
w = width[header]
print(lpad(str, w))
end
print("\n")
flush(stdout)
end
# Transfer information from `wrk` to `wrk.result` in each iteration (before the
# `info_hook`)
function update_result!(wrk::ParameterizedOptWrk, i::Int64)
res = wrk.result
for (k, Ψ) in enumerate(wrk.states)
copyto!(res.states[k], Ψ)
end
copyto!(wrk.result.optimized_parameters, wrk.parameters)
res.f_calls += wrk.fg_count[2]
res.fg_calls += wrk.fg_count[1]
res.J_T_prev = res.J_T
res.J_T = wrk.J_parts[1]
(i > 0) && (res.iter = i)
if i >= res.iter_stop
res.converged = true
res.message = "Reached maximum number of iterations"
# Note: other convergence checks are done in user-supplied
# check_convergence routine
end
prev_time = res.end_local_time
res.end_local_time = now()
res.secs = Dates.toms(res.end_local_time - prev_time) / 1000.0
end
optimize(problem, method::Val{:ParameterizedQuantumControl}) = optimize_parameters(problem)
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 2913 | using QuantumControl.QuantumPropagators.Controls: get_parameters
using Printf
using Dates
"""Result object returned by [`optimize_parameters`](@ref)."""
mutable struct ParameterizedOptResult{STST,PT}
tlist::Vector{Float64}
iter_start::Int64 # the starting iteration number
iter_stop::Int64 # the maximum iteration number
iter::Int64 # the current iteration number
secs::Float64 # seconds that the last iteration took
tau_vals::Vector{ComplexF64}
J_T::Float64 # the current value of the final-time functional J_T
J_T_prev::Float64 # previous value of J_T
guess_parameters::PT
optimized_parameters::PT
states::Vector{STST}
start_local_time::DateTime
end_local_time::DateTime
records::Vector{Tuple} # storage for info_hook to write data into at each iteration
converged::Bool
f_calls::Int64
fg_calls::Int64
message::String
function ParameterizedOptResult(problem)
tlist = problem.tlist
iter_start = get(problem.kwargs, :iter_start, 0)
iter_stop = get(problem.kwargs, :iter_stop, 5000)
iter = iter_start
secs = 0
tau_vals = zeros(ComplexF64, length(problem.trajectories))
J_T = 0.0
J_T_prev = 0.0
parameters = get(problem.kwargs, :parameters, get_parameters(problem))
optimized_parameters = copy(parameters)
guess_parameters = copy(parameters)
states = [similar(traj.initial_state) for traj in problem.trajectories]
start_local_time = now()
end_local_time = now()
records = Vector{Tuple}()
converged = false
message = "in progress"
f_calls = 0
fg_calls = 0
PT = typeof(optimized_parameters)
STST = eltype(states)
new{STST,PT}(
tlist,
iter_start,
iter_stop,
iter,
secs,
tau_vals,
J_T,
J_T_prev,
guess_parameters,
optimized_parameters,
states,
start_local_time,
end_local_time,
records,
converged,
f_calls,
fg_calls,
message
)
end
end
Base.show(io::IO, r::ParameterizedOptResult) =
print(io, "ParameterizedOptResult<$(r.message)>")
Base.show(io::IO, ::MIME"text/plain", r::ParameterizedOptResult) = print(
io,
"""
Parameterized Optimization Result
---------------------------------
- Started at $(r.start_local_time)
- Number of trajectories: $(length(r.states))
- Number of iterations: $(max(r.iter - r.iter_start, 0))
- Number of pure func evals: $(r.f_calls)
- Number of func/grad evals: $(r.fg_calls)
- Value of functional: $(@sprintf("%.5e", r.J_T))
- Reason for termination: $(r.message)
- Ended at $(r.end_local_time) ($(Dates.canonicalize(Dates.CompoundPeriod(r.end_local_time - r.start_local_time))))
"""
)
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 2607 | import QuantumControl
using QuantumControl.QuantumPropagators.Controls: get_parameters
"""Parameterized Optimization Workspace."""
mutable struct ParameterizedOptWrk{O}
# a copy of the trajectories
trajectories
# parameters: AbstractVector of parameters in the problem. This must
# aliases into the problem, so that mutating the vector directly affects
# the propgation
parameters::AbstractVector
# The kwargs from the control problem
kwargs
# vector [J_T, …] (parts other than J_T for future use)
J_parts::Vector{Float64}
fg_count::Vector{Int64}
# The backend (name of package/module)
backend::Symbol
# The states from the most recent evaluation of the functional
states
# The optimizer
optimizer::O
optimizer_state
result
use_threads::Bool
end
function ParameterizedOptWrk(problem::QuantumControl.ControlProblem; verbose=false)
use_threads = get(problem.kwargs, :use_threads, false)
kwargs = Dict(problem.kwargs) # creates a shallow copy; ok to modify
trajectories = [traj for traj in problem.trajectories]
states = [traj.initial_state for traj in trajectories]
parameters = get(problem.kwargs, :parameters, get_parameters(problem))
J_parts = zeros(1)
fg_count = zeros(Int64, 2)
backend = Symbol(nothing)
if haskey(kwargs, :backend)
if !(kwargs[:backend] isa Module)
throw(ArgumentError("`backend` must be a module"))
end
backend = nameof(kwargs[:backend])
else
error("no backend: cannot optimize")
end
optimizer = nothing
if haskey(kwargs, :optimizer)
optimizer = kwargs[:optimizer]
else
error("no optimizer: cannot optimize")
end
optimizer_state = nothing
if haskey(kwargs, :continue_from)
@info "Continuing previous optimization"
result = kwargs[:continue_from]
if !(result isa ParameterizedOptResult)
# account for continuing from a different optimization method
result = convert(ParameterizedOptResult, result)
end
result.iter_stop = get(kwargs, :iter_stop, 5000)
result.converged = false
result.start_local_time = now()
result.message = "in progress"
else
result = ParameterizedOptResult(problem)
end
O = typeof(optimizer)
ParameterizedOptWrk{O}(
trajectories,
parameters,
kwargs,
J_parts,
fg_count,
backend,
states,
optimizer,
optimizer_state,
result,
use_threads
)
end
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 2201 | """
clean([distclean=false])
Clean up build/doc/testing artifacts. Restore to clean checkout state
(distclean)
"""
function clean(; distclean=false, _exit=true)
_exists(name) = isfile(name) || isdir(name)
_push!(lst, name) = _exists(name) && push!(lst, name)
function _glob(folder, ending)
if !_exists(folder)
return []
end
[name for name in readdir(folder; join=true) if (name |> endswith(ending))]
end
function _glob_star(folder; except=[])
if !_exists(folder)
return []
end
[
joinpath(folder, name) for
name in readdir(folder) if !(name |> startswith(".") || name ∈ except)
]
end
ROOT = dirname(@__DIR__)
###########################################################################
CLEAN = String[]
_push!(CLEAN, joinpath(ROOT, "coverage"))
_push!(CLEAN, joinpath(ROOT, "docs", "build"))
_push!(CLEAN, joinpath(ROOT, "docs", "LocalPreferences.toml"))
_push!(CLEAN, joinpath(ROOT, "test", "LocalPreferences.toml"))
append!(CLEAN, _glob(ROOT, ".info"))
append!(CLEAN, _glob(joinpath(ROOT, ".coverage"), ".info"))
###########################################################################
###########################################################################
DISTCLEAN = String[]
for folder in ["", "docs", "test"]
_push!(DISTCLEAN, joinpath(joinpath(ROOT, folder), "Manifest.toml"))
end
_push!(DISTCLEAN, joinpath(ROOT, "docs", "Project.toml"))
append!(DISTCLEAN, _glob_star(joinpath(ROOT, "test", "data")))
append!(DISTCLEAN, _glob_star(joinpath(ROOT, "docs", "data")))
_push!(DISTCLEAN, joinpath(ROOT, ".JuliaFormatter.toml"))
###########################################################################
for name in CLEAN
@info "rm $name"
rm(name, force=true, recursive=true)
end
if distclean
for name in DISTCLEAN
@info "rm $name"
rm(name, force=true, recursive=true)
end
if _exit
@info "Exiting"
exit(0)
end
end
end
distclean() = clean(distclean=true)
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 1214 | # init file for "make devrepl"
using Revise
using Plots
unicodeplots()
using JuliaFormatter
using QuantumControlTestUtils: test, show_coverage, generate_coverage_html
using LiveServer: LiveServer, serve, servedocs
include(joinpath(@__DIR__, "clean.jl"))
REPL_MESSAGE = """
*******************************************************************************
DEVELOPMENT REPL
Revise, JuliaFormatter, LiveServer, Plots with unicode backend are active.
* `help()` – Show this message
* `include("test/runtests.jl")` – Run the entire test suite
* `test()` – Run the entire test suite in a subprocess with coverage
* `show_coverage()` – Print a tabular overview of coverage data
* `generate_coverage_html()` – Generate an HTML coverage report
* `include("docs/make.jl")` – Generate the documentation
* `format(".")` – Apply code formatting to all files
* `servedocs([port=8000, verbose=false])` –
Build and serve the documentation. Automatically recompile and redisplay on
changes
* `clean()` – Clean up build/doc/testing artifacts
* `distclean()` – Restore to a clean checkout state
*******************************************************************************
"""
"""Show help"""
help() = println(REPL_MESSAGE)
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | code | 435 | using Test
using SafeTestsets
using Plots
unicodeplots()
# Note: comment outer @testset to stop after first @safetestset failure
@time @testset verbose = true "ParameterizedQuantumControl.jl Package" begin
@test "Hello World" isa String
#=
println("\n* TLS Optimization (test_tls_optimization.jl)")
@time @safetestset "TLS Optimization" begin
include("test_tls_optimization.jl")
end
=#
end
nothing
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | docs | 2345 | # ParameterizedQuantumControl.jl
[](https://juliahub.com/ui/Packages/ParameterizedQuantumControl/W0mna)
[](https://juliaquantumcontrol.github.io/ParameterizedQuantumControl.jl/)
[](https://juliaquantumcontrol.github.io/ParameterizedQuantumControl.jl/dev)
[](https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl/actions)
[](https://codecov.io/gh/JuliaQuantumControl/ParameterizedQuantumControl.jl)
Implementation of control methods for analytical parameterized control fields.
Part of [`QuantumControl.jl`][QuantumControl] and the [JuliaQuantumControl][] organization.
## Installation
As usual, the package can be installed with
~~~
pkg> add ParameterizedQuantumControl
~~~
## Usage
* Define a `QuantumControl.ControlProblem` that contains parameterized generators or control fields: `get_parameters(problem)` must return a vector of control parameters.
* Call `QuantumControl.optimize` using `method=ParameterizedQuantumControl`, and give an appropriate backend and optimizer, e.g.,
```
optimize(
problem;
method=ParameterizedQuantumControl,
backend=Optimization,
optimizer=NLopt.LN_NELDERMEAD(),
)
```
Currently, only [`Optimization.jl`](https://github.com/SciML/Optimization.jl) is supported as a backend, and only with gradient-free optimizers. In the future, this will be extended to gradient-based optimizers (i.e., the "GOAT" method), as well as specific pulse parametrizations (e.g., CRAB).
## Documentation
A minimal standalone documentation of `ParameterizedQuantumControl.jl` is available at <https://juliaquantumcontrol.github.io/ParameterizedQuantumControl.jl>.
For a broader perspective, see the [documentation of the `QuantumControl.jl` package](https://juliaquantumcontrol.github.io/QuantumControl.jl/).
[QuantumControl]: https://github.com/JuliaQuantumControl/QuantumControl.jl#readme
[JuliaQuantumControl]: https://github.com/JuliaQuantumControl
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | docs | 105 | ```@meta
CollapsedDocStrings = true
```
# API
```@autodocs
Modules = [ParameterizedQuantumControl]
```
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | docs | 2099 | ```@meta
CurrentModule = ParameterizedQuantumControl
```
# ParameterizedQuantumControl.jl
```@eval
using Markdown
using Pkg
VERSION = Pkg.dependencies()[Base.UUID("409be4c9-afa4-4246-894e-472b92a1ed06")].version
github_badge = "[](https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl)"
version_badge = ", "-" => "--"))-green.svg)"
Markdown.parse("$github_badge $version_badge")
```
Implementation of control methods for analytical parameterized control fields.
Part of [`QuantumControl.jl`](https://github.com/JuliaQuantumControl/QuantumControl.jl#readme) and the [JuliaQuantumControl](https://github.com/JuliaQuantumControl) organization.
## Installation
As usual, the package can be installed with
~~~
pkg> add ParameterizedQuantumControl
~~~
## Usage
* Define a [`QuantumControl.ControlProblem`](@ref) that contains parameterized generators or control fields: [`get_parameters(problem)`](@ref get_parameters) must return a vector of control parameters.
* Call [`QuantumControl.optimize`](@extref) using `method=ParameterizedQuantumControl`, and give an appropriate backend and optimizer, e.g.,
```
optimize(
problem;
method=ParameterizedQuantumControl,
backend=Optimization,
optimizer=NLopt.LN_NELDERMEAD(),
)
```
See [`ParameterizedQuantumControl.optimize_parameters`](@ref) for details.
Currently, only [`Optimization.jl`](@extref Optimization :doc:`index`) is supported as a backend, and only with gradient-free optimizers. In the future, this will be extended to gradient-based optimizers (i.e., the "GOAT" method [MachnesPRL2018](@cite)), as well as specific pulse parametrizations (e.g., CRAB [CanevaPRA2011](@cite)).
## Contents
```@contents
Depth = 2
Pages = [pair[2] for pair in Main.PAGES[2:end-1]]
```
## History
See the [Releases](https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl/releases) on Github.
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | docs | 8535 | # Overview
## Control Parameters
The `ParameterizedQuantumControl` package optimizes a set ``\{u_n\}`` of arbitrary [control parameters](@extref QuantumControl Control-Parameters) associated with a given [control problem](@ref ControlProblem).
The dynamic generators ``\Op{H} = \Op{H}(\{u_n\}, t)`` from the different [trajectories](@ref Trajectory) implicitly depend on these parameter values in arbitrary ways.
Contrast this with the form
```math
\Op{H} = \Op{H}_0 + \sum_l \Op{H}_l(\{ϵ_{l′}(t)\}, t)
\quad\text{or}\quad
\Op{H}_0 + \sum_l a_l(\{ϵ_{l′}(t)\}, t) \Op{H}_l
\quad\text{or}\quad
\Op{H}_0 + \sum_l ϵ_l(t) \Op{H}_l
```
of a [Generator](@extref QuantumControl :label:`Generator`), where ``\Op{H}_0`` is the drift term, ``\Op{H}_l`` are the control terms, and ``a_l(t)`` and ``ϵ_l(t)`` are the [control amplitudes](@extref QuantumControl :label:`Control-Amplitude`) and [control functions](@extref QuantumControl :label:`Control-Function`), respectively. Methods such as [GRAPE](@extref GRAPE :doc:`index`) and [Krotov's method](@extref Krotov :doc:`index`) optimize each ``ϵ_l(t)`` as a time-continuous function.
Control amplitudes or control functions still play a conceptual role: Even though in the most general case, the generator ``\Op{H}`` can directly depend on the parameters, the most common case is for that dependency to be inside of the controls, ``ϵ_l(t) → ϵ_l(\{u_n\}, t)``. The crucial difference is that in `ParameterizedQuantumControl`, we solve the optimization problem by tuning the values ``u_n``, not ``ϵ_l(t)`` as arbitrary time-continuous control functions.
The `ParameterizedQuantumControl` package evaluates an arbitrary optimization functional ``J(\{u_n\})`` and optionally the gradient ``\frac{∂J}{∂ u_n}`` and feeds that information to an optimization backend, e.g. [Optimization.jl](@extref Optimization :doc:`index`) with its large collection of solvers. We may again contrast this with [GRAPE](@extref GRAPE :doc:`index`) and [Krotov's method](@extref Krotov :doc:`index`) which conceptually optimize time-continuous control functions ``ϵ_l(t)`` but in practice discretize these functions as piecewise-constant on a time grid. One might be tempted to think if this discretization as the use of control parameters ``ϵ_l(t) = ϵ_l(\{ϵ_{nl}\})`` where each parameter ``ϵ_{nl}`` is the amplitude of ``ϵ_l(t)`` on the ``n``'th interval of the time grid (what we refer to as a ["pulse"](@extref QuantumControl :label:`Pulse`)). However, GRAPE and Krotov have a specific numerical scheme to evaluate the gradients of the optimization functional with respect to the pulse values. That scheme is dramatically more efficient than the [more general scheme to determine gradients](@ref gradients) with respect to *arbitrary* parameters that is used in `ParameterizedQuantumControl`.
## Parameter API
`ParameterizedQuantumControl` manages the evaluation of functionals and gradients, and organizes feeding that information into an optimization backend. However, the structures for working with control parameters are already provided by the [`QuantumPropagators`](@extref QuantumPropagators :doc:`index`) and [`QuantumControl`](@extref QuantumControl :doc:`index`) packages. We summarize them here in the context of optimal control.
Generally, the vector of `parameters` is obtained from `problem` via the [`get_parameters`](@ref) function. This delegates to `get_parameters(traj)` for each [`Trajectory`](@ref) in `problem.trajectories`, which in turn delegates to `get_parameters(traj.generator)`. This makes it possible to define a custom datatype for the dynamic generator for which a `get_parameters` method is defined. It is recommended for `get_parameters` to return a [`ComponentArrays.ComponentVector`](@extref) `parameters`. That makes it easy to keep track of which value is which parameters. However, in general, `get_parameters` can return an arbitrary [`AbstractVector`](@extref Julia `Base.AbstractVector`). What is important is that the returned `parameters` alias into the generator. That is, mutating `parameters` and then calling [`QuantumControl.Controls.evaluate(generator, args...; kwargs...)`](@extref QuantumControl `QuantumPropagators.Controls.evaluate`) must return an operator that takes into account the current values in `parameters`. The easiest way to achieve this is to have `parameters` be a field in the custom `struct` of the generator and have `get_parameters` return a reference to that field. The `QuantumControl.Interfaces.check_parameterized` function of `QuantumControl.Interfaces.check_generator` with `for_parameterization=true` can be used to verify the implementation of a custom generator.
```@raw todo
As soon as we figure out the interface for the gradients, `QuantumControl.Interfaces.check_generator` needs to be implemented separately from the version in `QuantumPropagators`, and then we can properly link the above references
```
When there are multiple trajectories (and thus multiple generators) in the [`ControlProblem`](@ref), these are automatically combined into a [`RecursiveArrayTools.ArrayPartition`](@extref). The parameters from different generators are considered independent unless they are the same object.
When using a built-in [`QuantumControl.Generators.Generator`](@ref) as returned by [`QuantumControl.hamiltonian`](@ref) or [`QuantumControl.liouvillian`](@ref), the [`get_parameters`](@ref) function delegates to the `get_parameters(control)` for any control returned by [`get_controls(generator)`](@extref QuantumControl `QuantumPropagators.Controls.get_controls`). The recommended way to implement a custom parameterized control is to subtype [`QuantumControl.Controls.ParameterizedFunction`](@ref). Just like parameters from different generators in the same control problem are automatically combined, the parameters from different controls are also automatically combined into a [`RecursiveArrayTools.ArrayPartition`](@extref), taking into account if `get_parameters` returns the same object for two different controls. In any case, for any custom implementation of a parameterized system, and especially if control parameters are aliased between different components of the system, it is important to carefully check that the result of `get_parameters` contains all the independent parameters of the problem.
```@raw todo
The is a connection to be made with the `parameters` field of a propagator and the paremters of the dynamic generators for the propagation.
```
```@raw todo
Explain pulse parameterization
```
## Evaluation of the Functional
In order to evaluate an optimization functional ``J(\{u_n\})``, the `ParameterizedQuantumControl` package simply uses [`QuantumControl.propagate_trajectories`](@ref) and passes the resulting states to a `J_T` function.
Running costs are a work in progress.
Again, the dynamic generators are assumed to have been implemented in such a way that mutating the values in the array returned by [`get_parameters`](@ref) are automatically taken into account.
In principle, any [propagation method](@extref QuantumPropagators :doc:`methods`) can be used for the evaluation of the functional. However, parameterized controls are typically time-continuous functions, and using piecewise-constant propagators such as [`ExpProp`](@extref QuantumPropagators :label:`method_expprop`), [`Cheby`](@extref QuantumPropagators :label:`method_cheby`), or [`Newton`](@extref QuantumPropagators :label:`method_newton`) is unnecessary and introduces a discretization error. Usually, using an ODE solver with [`method=OrdinaryDiffEq`](@extref QuantumPropagators :label:`method_ode`) is more appropriate.
It is also worth noting that the time discretization that happens in piecewise-constant propagators severs the connection between the control parameters and the pulse amplitudes at each interval of the time grid. Thus, any changes to the `parameters` after [`QuantumControl.init_prop`](@ref) will not be reflected in subsequent calls to [`QuantumControl.prop_step!`](@ref). This is not an issue inside of `ParameterizedQuantumControl`, as [`QuantumControl.propagate_trajectories`](@ref) initializes a new propagator for every evaluation of the functional.
```@raw todo
* Can we guarantee that the `OrdinaryDiffEq` propagator is reusable?
* Test that reinit_prop! updates the parameters
```
## [Gradient Evaluation](@id gradients)
Optimizers that rely on gradient information will be supported in a future release.
## Running costs
Running costs are planned in a future release.
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.