licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.2 | 60341f3f9a9f7634574034d06740914489f12317 | docs | 35 | # References
```@bibliography
```
| ParameterizedQuantumControl | https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl.git |
|
[
"MIT"
] | 1.0.0 | f78110dacfc8bfac774adf73570473da058bc593 | code | 5158 | module DebuggingUtilities
export @showln, @showlnt, test_showline, time_showline
"""
DebuggingUtilities contains a few tools that may help debug julia code. The
exported tools are:
- `@showln`: like `@show`, but displays file and line number information as well
- `@showlnt`: like `@showlnt`, but also uses indentation to display recursion depth
- `test_showline`: a function that displays progress as it executes a file
- `time_showline`: a function that displays execution time for each expression in a file
"""
DebuggingUtilities
## @showln and @showlnt
mutable struct FlushedIO <: IO
io
end
function Base.println(io::FlushedIO, args...)
println(io.io, args...)
flush(io.io)
end
Base.getindex(io::FlushedIO) = io.io
Base.setindex!(io::FlushedIO, newio) = io.io = newio
const showlnio = FlushedIO(stdout)
"""
`@showln x` prints "x = val", where `val` is the value of `x`, along
with information about the function, file, and line number at which
this statement was executed. For example:
```julia
function foo()
x = 5
@showln x
x = 7
@showln x
nothing
end
```
might produce output like
x = 5
(in foo at ./error.jl:26 at /tmp/showln_test.jl:52)
x = 7
(in foo at ./error.jl:26 at /tmp/showln_test.jl:54)
If you need call depth information, see [`@showlnt`](@ref).
"""
macro showln(exs...)
blk = showexprs(exs)
blk = quote
local indent = 0
$blk
println(showlnio[], "(in ", $(string(__source__.file)), ':', $(__source__.line), ')')
end
if !isempty(exs)
push!(blk.args, :value)
end
blk
end
"""
`@showlnt x` prints "x = val", where `val` is the value of `x`, along
with information about the function, file, and line number at which
this statement was executed, using indentation to indicate recursion depth.
For example:
```julia
function recurses(n)
@showlnt n
n += 1
@showlnt n
if n < 10
n = recurses(n)
end
return n
end
```
might produce output like
x = 5
(in foo at ./error.jl:26 at /tmp/showln_test.jl:52)
x = 7
(in foo at ./error.jl:26 at /tmp/showln_test.jl:54)
This macro causes a backtrace to be taken, and looking up the
corresponding code information is relatively expensive, so using
`@showlnt` can have a substantial performance cost.
The indentation of the line is proportional to the length of the
backtrace, and consequently is an indication of recursion depth.
"""
macro showlnt(exs...)
blk = showexprs(exs)
blk = quote
local bt = backtrace()
local indent = length(bt) # to mark recursion
$blk
print(showlnio[], " "^indent*"(")
show_backtrace1(showlnio[], bt)
println(showlnio[], ")")
end
if !isempty(exs)
push!(blk.args, :value)
end
blk
end
function showexprs(exs)
blk = Expr(:block)
for ex in exs
push!(blk.args, :(println(showlnio[], " "^indent, sprint(Base.show_unquoted,$(Expr(:quote, ex)),indent)*" = ", repr(begin value=$(esc(ex)) end))))
end
blk
end
# backtrace utilities
function print_btinfo(io, frm)
print(io, "in ", frm.func, " at ", frm.file, ":", frm.line)
end
function show_backtrace1(io, bt)
st = stacktrace(bt)
for frm in st
funcname = frm.func
if funcname != :backtrace && funcname != Symbol("macro expansion")
print_btinfo(io, frm)
break
end
end
end
"""
`test_showline(filename)` is equivalent to `include(filename)`, except
that it also displays the expression and file-offset (in characters) for
each expression it executes. This can be useful for debugging errors,
especially those that cause a segfault.
"""
function test_showline(filename)
str = read(filename, String)
Core.eval(Main, Meta.parse("using Test"))
idx = 1
while idx < length(str)
ex, idx = Meta.parse(str, idx)
try
println(showlnio, idx, ": ", ex)
catch
println(showlnio, "failed to print line starting at file-offset ", idx)
end
Core.eval(Main,ex)
end
println(showlnio, "done")
end
"""
`time_showline(filename)` is equivalent to `include(filename)`, except
that it also analyzes the time expended on each expression within the
file. Once finished, it displays the file-offset (in characters),
elapsed time, and expression in order of increasing duration. This
can help you identify bottlenecks in execution.
This is less useful now that julia has package precompilation, but can
still be handy on occasion.
"""
function time_showline(filename)
str = read(filename, String)
idx = 1
exprs = Any[]
t = Float64[]
pos = Int[]
while idx < length(str)
ex, idx = Meta.parse(str, idx)
push!(exprs, ex)
push!(t, @elapsed Core.eval(Main,ex))
push!(pos, idx)
end
perm = sortperm(t)
for p in perm
print(showlnio[], pos[p], " ", t[p], ": ")
str = string(exprs[p])
println(showlnio[], split(str, '\n')[1])
end
println(showlnio[], "done")
end
function __init__()
showlnio[] = stdout
end
end # module
| DebuggingUtilities | https://github.com/timholy/DebuggingUtilities.jl.git |
|
[
"MIT"
] | 1.0.0 | f78110dacfc8bfac774adf73570473da058bc593 | code | 47 | # The next line is a deliberate error
sqrt(-3)
| DebuggingUtilities | https://github.com/timholy/DebuggingUtilities.jl.git |
|
[
"MIT"
] | 1.0.0 | f78110dacfc8bfac774adf73570473da058bc593 | code | 263 | # Note: tests are sensitive to the line numbers of statements below
function foo()
x = 5
@showln x
x = 7
@showln x
end
function recurses(n)
@showlnt n
n += 1
@showlnt n
if n < 10
n = recurses(n+1)
end
return n
end
| DebuggingUtilities | https://github.com/timholy/DebuggingUtilities.jl.git |
|
[
"MIT"
] | 1.0.0 | f78110dacfc8bfac774adf73570473da058bc593 | code | 1491 | using DebuggingUtilities
using Test
include("funcdefs.jl")
funcdefs_path = joinpath(@__DIR__, "funcdefs.jl")
@testset "DebuggingUtilities" begin
io = IOBuffer()
DebuggingUtilities.showlnio[] = io
@test foo() == 7
str = chomp(String(take!(io)))
target = ("x = 5", "(in $funcdefs_path:4)", "x = 7", "(in $funcdefs_path:6)")
for (i,ln) in enumerate(split(str, '\n'))
ln = lstrip(ln)
@test ln == target[i]
end
@test recurses(1) == 10
str = chomp(String(take!(io)))
lines = split(str, '\n')
offset = lstrip(lines[1]).offset
for i = 1:5
j = 2*i-1
k = 4*i-3
ln = String(lines[k])
lns = lstrip(ln)
@test lns.offset == offset + i - 1
@test lns == "n = $j"
ln = String(lines[k+1])
lns = lstrip(ln)
@test lns.offset == offset + i - 1
@test lns == "(in recurses at $funcdefs_path:10)"
j += 1
ln = String(lines[k+2])
lns = lstrip(ln)
@test lns.offset == offset + i - 1
@test lns == "n = $j"
ln = String(lines[k+3])
lns = lstrip(ln)
@test lns.offset == offset + i - 1
@test lns == "(in recurses at $funcdefs_path:12)"
end
# Just make sure these run
io = IOBuffer()
DebuggingUtilities.showlnio[] = io
test_showline("noerror.jl")
@test_throws DomainError test_showline("error.jl")
time_showline("noerror.jl")
DebuggingUtilities.showlnio[] = stdout
end
| DebuggingUtilities | https://github.com/timholy/DebuggingUtilities.jl.git |
|
[
"MIT"
] | 1.0.0 | f78110dacfc8bfac774adf73570473da058bc593 | docs | 3295 | # DebuggingUtilities
[](https://travis-ci.org/timholy/DebuggingUtilities.jl)
This package contains simple utilities that may help debug julia code.
# Installation
Install with
```julia
pkg> dev https://github.com/timholy/DebuggingUtilities.jl.git
```
When you use it in packages, you should `activate` the project and add
DebuggingUtilities as a dependency use `project> dev DebuggingUtilities`.
# Usage
## @showln
`@showln` shows variable values and the line number at which the
statement was executed. This can be useful when variables change value
in the course of a single function. For example:
```julia
using DebuggingUtilities
function foo()
x = 5
@showln x
x = 7
@showln x
nothing
end
```
might, when called (`foo()`), produce output like
```
x = 5
(in /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:5)
x = 7
(in /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:7)
7
```
## @showlnt
`@showlnt` is for recursion, and uses indentation to show nesting depth.
For example,
```julia
function recurses(n)
@showlnt n
n += 1
@showlnt n
if n < 10
n = recurses(n+1)
end
return n
end
```
might, when called as `recurses(1)`, generate
```
n = 1
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:10)
n = 2
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:12)
n = 3
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:10)
n = 4
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:12)
n = 5
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:10)
n = 6
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:12)
n = 7
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:10)
n = 8
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:12)
n = 9
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:10)
n = 10
(in recurses at /home/tim/.julia/dev/DebuggingUtilities/test/funcdefs.jl:12)
```
Each additional space indicates one additional layer in the call chain.
Most of the initial space (even for `n=1`) is due to Julia's own REPL.
## test_showline
This is similar to `include`, except it displays progress. This can be
useful in debugging long scripts that cause, e.g., segfaults.
## time_showline
Also similar to `include`, but it also measures the execution time of
each expression, and prints them in order of increasing duration.
| DebuggingUtilities | https://github.com/timholy/DebuggingUtilities.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | code | 253 | """
Block and braille rendering of julia arrays, for terminal graphics.
"""
module UnicodeGraphics
const DEFAULT_METHOD = :braille
include("api.jl")
include("ndarray.jl")
include("core.jl")
include("deprecate.jl")
export uprint, ustring
end # module
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | code | 3458 | """
uprint([io::IO], A, [method])
Write to `io` (or to the default output stream `stdout` if `io` is not given) a binary
unicode representation of `A` , filling values that are `true` or greater than zero.
The printing method can be specified by passing either `:braille` or `:block`.
The default is `:$DEFAULT_METHOD`.
# Example
```julia-repl
julia> A = rand(Bool, 8, 8)
8ร8 Matrix{Bool}:
0 1 0 1 0 1 0 1
0 1 1 1 0 1 1 1
1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 1 1 0 0
0 0 1 0 0 1 0 1
1 1 0 1 1 1 0 0
julia> uprint(A)
โ โ โฃโฃ
โฃโขโฃบโ ฉ
julia> uprint(A, :block)
โโโ โโโ
โ โโโโ
โโโ โโโโ
โโโโโโ โ
```
"""
uprint(A::AbstractArray, method::Symbol=DEFAULT_METHOD) = uprint(stdout, A, method)
function uprint(io::IO, A::AbstractArray, method::Symbol=DEFAULT_METHOD)
return uprint(io, >(zero(eltype(A))), A, method)
end
"""
uprint([io::IO], f, A, [method])
Write to `io` (or to the default output stream `stdout` if `io` is not given) a binary
unicode representation of `A` , filling values for which `f` returns `true`.
The printing method can be specified by passing either `:braille` or `:block`.
The default is `:$DEFAULT_METHOD`.
# Example
```julia-repl
julia> A = rand(1:9, 8, 8)
8ร8 Matrix{Int64}:
9 1 6 3 4 2 9 6
4 1 2 8 2 5 9 1
7 5 6 1 1 4 8 8
4 8 3 4 8 7 8 8
4 2 2 6 2 6 1 7
9 1 4 1 8 1 6 1
3 8 4 3 9 5 5 6
1 4 4 2 8 6 3 9
julia> uprint(iseven, A)
โฃโขโกซโฃฌ
โขฉโฃโฃโ ข
julia> uprint(>(3), A, :block)
โ โโโโโโ
โโโโโโโโ
โ โโโโโโ
โโ โโโโ
```
"""
function uprint(f::Function, A::AbstractArray, method::Symbol=DEFAULT_METHOD)
return uprint(stdout, f, A, method)
end
function uprint(io::IO, f::Function, A::AbstractArray, method::Symbol=DEFAULT_METHOD)
return _uprint_nd(io::IO, f::Function, A::AbstractArray, method::Symbol)
end
"""
ustring(A, [method])
Return a string containing a binary unicode representation of `A` , filling values that are
`true` or greater than zero.
The printing method can be specified by passing either `:braille` or `:block`.
The default is `:$DEFAULT_METHOD`.
# Example
```julia-repl
julia> A = rand(Bool, 8, 8)
8ร8 Matrix{Bool}:
1 1 1 1 0 1 0 0
1 0 0 1 1 1 0 0
1 0 0 0 1 0 1 0
1 0 1 0 1 1 1 1
0 0 0 0 0 0 1 0
0 1 1 0 1 0 0 1
0 0 1 0 0 1 1 1
1 1 1 1 0 0 1 1
julia> ustring(A)
"โกโกโฃโฃ\nโฃโฃโ ขโฃต\n"
julia> ustring(A, :block)
"โโโโโโ \nโ โ โโโโ\n โโ โ โโ\nโโโโ โโโ\n"
```
"""
function ustring(A::AbstractArray, method::Symbol=DEFAULT_METHOD)
return ustring(>(zero(eltype(A))), A, method)
end
"""
ustring(f, A, [method])
Return a string containing a binary unicode representation of `A`, filling values for which
`f` returns `true`.
The printing method can be specified by passing either `:braille` or `:block`.
The default is `:$DEFAULT_METHOD`.
# Example
```julia-repl
julia> A = rand(1:9, 8, 8)
8ร8 Matrix{Int64}:
8 7 9 6 9 8 3 7
9 9 3 3 5 5 3 2
1 6 8 3 7 9 3 7
9 4 4 7 8 7 3 4
3 8 7 2 2 1 6 6
4 8 9 4 1 3 4 6
4 9 6 2 3 4 8 4
7 2 7 9 8 2 6 7
julia> ustring(iseven, A)
"โขกโกโกโข\nโขโ ผโฃกโกฟ\n"
julia> ustring(>(3), A, :block)
"โโโโโโ โ\nโโโโโโ โ\nโโโโ โโ\nโโโโโโโโ\n"
```
"""
function ustring(f::Function, A::AbstractArray, method::Symbol=DEFAULT_METHOD)
io = IOBuffer()
uprint(io, f, A, method)
return String(take!(io))
end
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | code | 1192 | const BRAILLE_HEX = (0x01, 0x02, 0x04, 0x40, 0x08, 0x10, 0x20, 0x80)
function to_braille(io::IO, f::Function, A::AbstractMatrix)
h, w = axes(A)
yrange = first(h):4:last(h)
xrange = first(w):2:last(w)
for y in yrange
for x in xrange
ch = 0x2800
for j in 0:3, i in 0:1
if checkval(f, A, y + j, x + i, h, w)
@inbounds ch += BRAILLE_HEX[1 + j % 4 + 4 * (i % 2)]
end
end
print(io, Char(ch))
end
println(io)
end
return nothing
end
function to_block(io::IO, f::Function, A::AbstractMatrix)
h, w = axes(A)
yrange = first(h):2:last(h)
for y in yrange
for x in w
top = checkval(f, A, y, x, h, w)
bottom = checkval(f, A, y + 1, x, h, w)
if top
print(io, bottom ? 'โ' : 'โ')
else
print(io, bottom ? 'โ' : ' ')
end
end
println(io)
end
return nothing
end
@inline function checkval(f, a, y, x, yrange, xrange)
x > last(xrange) && return false
y > last(yrange) && return false
return @inbounds f(a[y, x])
end
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | code | 118 | @deprecate brailize(A, cutoff=0) ustring(>(cutoff), A)
@deprecate blockize(A, cutoff=0) ustring(>(cutoff), A, :block)
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | code | 1274 | # For matrices, directly call core.jl method matching method Symbol.
function _uprint_nd(io::IO, f::Function, A::AbstractMatrix, method::Symbol)
if method == :braille
to_braille(io, f, A)
elseif method == :block
to_block(io, f, A)
else
throw(ArgumentError("Valid methods are :braille and :block, got :$method."))
end
return nothing
end
# View vectors as 1xn adjoints
function _uprint_nd(io::IO, f::Function, v::AbstractVector, method::Symbol)
_uprint_nd(io, f, adjoint(v), method)
return nothing
end
# For multi-dimensional arrays, iterate over tail-indices
function _uprint_nd(io::IO, f::Function, A::AbstractArray, method::Symbol)
axs= axes(A)
tailinds = Base.tail(Base.tail(axs))
Is = CartesianIndices(tailinds)
for I in Is
idxs = I.I
_show_nd_label(io, idxs)
slice = view(A, axs[1], axs[2], idxs...) # matrix-shaped slice
_uprint_nd(io, f, slice, method)
print(io, idxs == map(last,tailinds) ? "" : "\n")
end
return nothing
end
# adapted from Base._show_nd_label
function _show_nd_label(io::IO, idxs)
print(io, "[:, :, ")
for i = 1:length(idxs)-1
print(io, idxs[i], ", ")
end
println(io, idxs[end], "] =")
return nothing
end
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | code | 3585 | using Test
using ReferenceTests
using Suppressor: @capture_out
using UnicodeGraphics, OffsetArrays
pac = [
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
]
@test_reference "references/braille_pac.txt" ustring(pac)
@test_reference "references/block_pac.txt" ustring(pac, :block)
@test_reference "references/braille_pac.txt" @capture_out uprint(pac)
@test_reference "references/block_pac.txt" @capture_out uprint(pac, :block)
@test_throws ArgumentError ustring(pac, :foo)
ghost = [
0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0
0.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0
1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0
1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0
1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0
]
@test_reference "references/braille_ghost.txt" ustring(ghost)
@test_reference "references/block_ghost.txt" ustring(ghost, :block)
offset_ghost = OffsetArray(ghost, 3:15, 4:17)
@test_reference "references/braille_ghost.txt" ustring(offset_ghost)
@test_reference "references/block_ghost.txt" ustring(offset_ghost, :block)
ghost2 = [
1 7 7 7 7 8 6 4 6 3 9 9 9 7
1 5 3 6 6 8 2 8 2 2 2 9 3 7
9 5 4 8 8 6 4 8 4 8 2 6 5 9
5 2 5 1 8 8 6 8 3 3 6 8 6 9
9 9 9 3 1 8 4 5 3 7 9 6 8 3
3 8 8 7 5 6 4 4 2 5 5 6 4 1
2 8 8 3 7 4 6 2 8 9 7 6 8 2
2 4 9 7 2 6 2 4 1 5 6 4 8 8
8 2 4 4 4 4 8 6 4 4 6 4 2 2
6 8 2 6 4 4 8 6 4 2 4 4 2 8
4 2 6 4 2 6 8 6 6 2 8 8 8 8
8 2 3 6 6 8 9 1 2 4 8 5 4 8
8 3 7 3 8 6 9 3 6 6 1 9 1 6
]
@test_reference "references/braille_ghost.txt" ustring(iseven, ghost2)
@test_reference "references/block_ghost.txt" ustring(iseven, ghost2, :block)
@test_reference "references/braille_ghost.txt" @capture_out uprint(iseven, ghost2)
@test_reference "references/block_ghost.txt" @capture_out uprint(iseven, ghost2, :block)
# Test vector and n-dimensional arrays
v = [0, 1, 0, 1, 1, 0, 0, 1]
@test ustring(v) == "โ โ โ โ \n"
A = reshape(v, 2, 2, 1, 1, 2)
@test ustring(A) == "[:, :, 1, 1, 1] =\nโ \n\n[:, :, 1, 1, 2] =\nโ \n"
# Remove deprecations before next breaking release:
@test_reference "references/braille_ghost.txt" (@test_deprecated brailize(ghost))
@test_reference "references/block_ghost.txt" (@test_deprecated blockize(ghost))
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | docs | 1679 | # UnicodeGraphics.jl
## Version `v0.2.1`
* ![Feature][badge-feature] Added support for multidimensional arrays ([#7][pr-7])
## Version `v0.2.0`
* ![Feature][badge-feature] Directly write to `stdout` using `uprint(A)` or to any IO using `uprint(io, A)` ([#5][pr-5])
* ![Feature][badge-feature] Added support for filtering functions to `uprint` and `ustring`. `uprint(f, A)` shows values of `A` for which `f` returns `true` ([#5][pr-5])
* ![Deprecation][badge-deprecation] Deprecated `brailize(A)`, use `ustring(A)` or `ustring(A, :braille)` instead ([#5][pr-5])
* ![Deprecation][badge-deprecation] Deprecated `blockize(A)`, use `ustring(A, :block)` instead ([#5][pr-5])
<!--
# Badges
![BREAKING][badge-breaking]
![Deprecation][badge-deprecation]
![Feature][badge-feature]
![Enhancement][badge-enhancement]
![Bugfix][badge-bugfix]
![Experimental][badge-experimental]
![Maintenance][badge-maintenance]
![Documentation][badge-docs]
-->
[pr-5]: https://github.com/JuliaGraphics/UnicodeGraphics.jl/pull/5
[pr-7]: https://github.com/JuliaGraphics/UnicodeGraphics.jl/pull/7
[badge-breaking]: https://img.shields.io/badge/BREAKING-red.svg
[badge-deprecation]: https://img.shields.io/badge/deprecation-orange.svg
[badge-feature]: https://img.shields.io/badge/feature-green.svg
[badge-enhancement]: https://img.shields.io/badge/enhancement-blue.svg
[badge-bugfix]: https://img.shields.io/badge/bugfix-purple.svg
[badge-security]: https://img.shields.io/badge/security-black.svg
[badge-experimental]: https://img.shields.io/badge/experimental-lightgrey.svg
[badge-maintenance]: https://img.shields.io/badge/maintenance-gray.svg
[badge-docs]: https://img.shields.io/badge/docs-orange.svg
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"MIT"
] | 0.2.1 | 53c9f486b447ad390a87559a440ca5fe4c830643 | docs | 3569 | # UnicodeGraphics
[](https://travis-ci.org/rafaqz/UnicodeGraphics.jl)
[](http://codecov.io/github/rafaqz/UnicodeGraphics.jl?branch=master)
Convert any matrix into a braille or block Unicode string, real fast and dependency free.
## Installation
This package supports Julia โฅ1.6. To install it, open the Julia REPL and run
```julia-repl
julia> ]add UnicodeGraphics
```
## Examples
By default, `uprint` prints all values in an array that are true or greater than zero:
```julia
julia> pac = [
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
];
julia> uprint(pac) # same as uprint(pac, :braille)
โ โฃ โฃดโฃพโฃฟโฃฟโฃทโฃฆโฃโ
โฃฐโฃฟโฃฟโฃฟโฃงโฃผโฃฟโกฟโ โ
โฃฟโฃฟโฃฟโฃฟโฃฟโฃโกโ โ โ
โ นโฃฟโฃฟโฃฟโฃฟโฃฟโฃฟโฃทโฃฆโก
โ โ โ ปโขฟโฃฟโฃฟโกฟโ โ โ
julia> uprint(pac, :block)
โโโโโโโโโโ
โโโโโโโโโโโโโโโโ
โโโโโโโโ โโโโโโโโ
โโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโ
โโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโ
โโโโโโโโโโ
```
It is also possible to pass a filtering function, filling values for which the function returns `true`, e.g. all even numbers in the following array:
```julia
julia> ghost = [
1 7 7 7 7 8 6 4 6 3 9 9 9 7
1 5 3 6 6 8 2 8 2 2 2 9 3 7
9 5 4 8 8 6 4 8 4 8 2 6 5 9
5 2 5 1 8 8 6 8 3 3 6 8 6 9
9 9 9 3 1 8 4 5 3 7 9 6 8 3
3 8 8 7 5 6 4 4 2 5 5 6 4 1
2 8 8 3 7 4 6 2 8 9 7 6 8 2
2 4 9 7 2 6 2 4 1 5 6 4 8 8
8 2 4 4 4 4 8 6 4 4 6 4 2 2
6 8 2 6 4 4 8 6 4 2 4 4 2 8
4 2 6 4 2 6 8 6 6 2 8 8 8 8
8 2 3 6 6 8 9 1 2 4 8 5 4 8
8 3 7 3 8 6 9 3 6 6 1 9 1 6
];
julia> uprint(iseven, ghost)
โขโ ดโฃพโฃฟโ ทโฃฆโก
โฃดโ โฃธโฃทโ โฃธโฃง
โฃฟโขฟโฃฟโ ฟโฃฟโกฟโฃฟ
โ โ โ โ โ โ โ
```
Non-number type inputs are also supported,
as long as the filtering function returns boolean values:
```julia-repl
julia> A = rand("abc123", 4, 4)
4ร4 Matrix{Char}:
'3' 'c' '3' '1'
'a' 'c' '1' 'c'
'1' '1' '2' 'a'
'b' 'a' '2' 'a'
julia> uprint(isletter, A, :block)
โโ โ
โโ โ
```
Multidimensional arrays are also supported:
```julia-repl
julia> A = rand(Bool, 4, 4, 1, 2)
4ร4ร1ร2 Array{Bool, 4}:
[:, :, 1, 1] =
0 1 0 0
1 0 1 0
0 1 1 1
0 0 1 1
[:, :, 1, 2] =
1 1 0 0
1 1 0 0
0 0 1 0
0 0 1 0
julia> uprint(A, :block)
[:, :, 1, 1] =
โโโ
โโโ
[:, :, 1, 2] =
โโ
โ
```
`uprint` can be used to write into any `IO` stream, defaulting to `stdout`.
```julia-repl
julia> io = IOBuffer();
julia> uprint(io, pac)
julia> String(take!(io)) |> print
โ โฃ โฃดโฃพโฃฟโฃฟโฃทโฃฆโฃโ
โฃฐโฃฟโฃฟโฃฟโฃงโฃผโฃฟโกฟโ โ
โฃฟโฃฟโฃฟโฃฟโฃฟโฃโกโ โ โ
โ นโฃฟโฃฟโฃฟโฃฟโฃฟโฃฟโฃทโฃฆโก
โ โ โ ปโขฟโฃฟโฃฟโกฟโ โ โ
```
To directly return a string instead of printing to IO, `ustring` can be used:
```julia-repl
julia> ustring(pac)
"โ โฃ โฃดโฃพโฃฟโฃฟโฃทโฃฆโฃโ \nโฃฐโฃฟโฃฟโฃฟโฃงโฃผโฃฟโกฟโ โ \nโฃฟโฃฟโฃฟโฃฟโฃฟโฃโกโ โ โ \nโ นโฃฟโฃฟโฃฟโฃฟโฃฟโฃฟโฃทโฃฆโก\nโ โ โ ปโขฟโฃฟโฃฟโกฟโ โ โ \n"
```
| UnicodeGraphics | https://github.com/JuliaGraphics/UnicodeGraphics.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 515 | using Polymer
using Documenter
makedocs(;
modules=[Polymer],
authors="Yi-Xin Liu <[email protected]> and contributors",
repo="https://github.com/liuyxpp/Polymer.jl/blob/{commit}{path}#L{line}",
sitename="Polymer.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://liuyxpp.github.io/Polymer.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/liuyxpp/Polymer.jl",
)
| Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 3821 | module Polymer
using LinearAlgebra
using ArgCheck
using REPL: symbol_latex
using LaTeXStrings
using Configurations
using YAML
using Setfield
include("utils.jl")
export
unicodesymbol2string,
reverse_dict
include("parameters.jl")
export
AbstractParameter,
PolymerParameter
export
ฯType,
NType,
ฯNType,
fType,
ฯType,
RgType,
CType,
bType,
ฮฑType,
ฯType,
ฯParam,
NParam,
ฯNParam,
fParam,
ฯParam,
RgParam,
CParam,
bParam,
ฮฑParam,
ฯParam,
DEFAULT_PARAMETERS
export
description,
value_type,
variable_symbol,
as_variable_name,
as_ascii_label,
as_plot_label
include("chiN.jl")
export
AbstractฯNMatrix,
ฯNMatrix
# Not exported but useful:
# ฯN, ฯNmap
include("types.jl")
export
PolymerSystemType,
NeatPolymer,
PolymerBlend,
PolymerSolution
export
ComponentNumberType,
MonoSystem,
BinarySystem,
TernarySystem,
MultiComponentSystem
export
SpecieNumberType,
SingleSpecieSystem,
TwoSpeciesSystem,
MultiSpeciesSystem
export
SpaceDimension,
D1, D2, D3
export
ConfinementType,
BulkConfinement,
BoxConfinement,
SlabConfinement,
DiskConfinement,
SphereConfinement,
CylinderConfinement
export
ChargedType,
Neutral,
SmearedCharge,
DiscreteCharge
export
BlockEnd,
FreeEnd,
BranchPoint,
PolymerBlock
export
AbstractSpecie,
KuhnSegment
export
AbstractMolecule,
SmallMolecule,
AbstractPolymer,
BlockCopolymer,
RandomCopolymer,
AlternatingCopolymer,
Particle,
GiantMolecule
export
AbstractComponent,
Component,
AbstractSystem,
PolymerSystem
include("control_parameters.jl")
export
AbstractControlParameter,
ฯControlParameter,
ฮฑControlParameter,
fControlParameter,
ฯNControlParameter,
bControlParameter
include("properties.jl")
export
isconfined,
ischarged,
isfreeblockend,
multicomponent,
ncomponents,
specie, species, nspecies,
nblocks,
systemtype,
component_number_type,
specie_number_type,
component_label, component_labels,
component_id, component_ids,
molecule_id, molecule_ids,
molecule_label, molecule_labels,
block_id, block_ids,
block_label, block_labels,
block_length, block_lengths,
block_specie, block_species,
block_b, block_bs
# not exported but useful functions:
# ฯ, ฯs, ฮฑ, ฮฑs, molecules, molecule,
# blocks, block
# getparam
include("systems.jl")
export
branchpoints,
freeends,
homopolymer_chain,
diblock_chain,
linearABC,
solvent,
AB_system,
ABC_system,
A_B_system,
AB_A_system,
AB_A_B_system,
AB_S_system,
A_B_S_system,
A_B_S1_S2_system
include("config.jl")
export
SpecieConfig,
BlockConfig,
BlockCopolymerConfig,
ComponentConfig,
PolymerSystemConfig
include("make.jl")
export
ObjType
export
load_config, save_config,
make
include("serialize.jl")
export
specie_object, specie_objects,
to_config, from_config
include("update.jl")
# update! is not exported because of possible name confilication
# setparam! is an alias of update!
import PrecompileTools: @setup_workload, @compile_workload
@setup_workload begin
system = AB_A_system()
@compile_workload begin
ฯAc = ฯControlParameter(:hA, system)
fc = fControlParameter(:B, :AB, system)
ฮฑc = ฮฑControlParameter(:AB, system)
ฯNc = ฯNControlParameter(:A, :B, system)
bc = bControlParameter(:A, bParam)
update!(system, 0.6, ฯAc)
update!(system, 0.2, fc)
update!(system, 0.3, ฮฑc)
update!(system, 2.0, ฯNc)
update!(system, 0.5, bc)
end
end
end # module
| Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 4283 | abstract type AbstractฯNMatrix{T} <: AbstractMatrix{T} end
struct ฯNMatrix{T} <: AbstractฯNMatrix{T}
map::Dict{Set{Symbol}, T}
mat::Matrix{T}
imat::Matrix{T} # the inverse of mat
end
function _species(map::Dict{Set{Symbol}, T}) where T<:Real
sps = Symbol[]
for key in keys(map)
append!(sps, key)
end
return unique(sps) |> sort
end
function _check_consistency(map::Dict{Set{Symbol}, T}) where T<:Real
# Now sps is a list of sorted and unique symbols.
# which make sure following loops sp1 and sp2 are distinct.
sps = _species(map)
for i in 1:length(sps)
sp1 = sps[i]
for j in (i+1):length(sps)
sp2 = sps[j]
!haskey(map, Set((sp1,sp2))) && return false
end
end
return true
end
function _ฯNmap_to_matrix(map::Dict{Set{Symbol}, T}) where T<:Real
_check_consistency(map) || error("Full map of interactions should be specified!")
sps = _species(map)
nc = length(sps)
mat = zeros(T, nc, nc)
for i in 1:nc
sp1 = sps[i]
for j in (i+1):nc
sp2 = sps[j]
ฯN = map[Set((sp1,sp2))]
mat[i, j] = ฯN
mat[j, i] = ฯN
end
end
r = rank(mat)
(r == size(mat)[1]) || error("ฯN map is singular! Possible indistinguishable speices are presented in the map. Consider to combine them.")
return mat
end
function ฯNMatrix(map::Dict{Set{Symbol}, T}) where T<:Real
mat = _ฯNmap_to_matrix(map)
imat = inv(mat)
e1 = first(imat)
mapnew = Dict(keys(map) .=> [promote(v, e1)[1] for v in values(map)])
return ฯNMatrix(mapnew, promote(mat, imat)...)
end
"""
ฯNMatrix(m)
Convert a dictionary of interaction pairs to an interaction matrix. The input argument `m` can be a dictionary of `Dict{Tuple{Symobl}, <:Real}`, `Dict{Tuple{String}, <:Real}`, `Dict{<:AbstractArray{Symbol}, <:Real}`, `Dict{<:AbstractArray{String}, <:Real}`.
Example:
```julia
map = Dict((:A, :B)=>10.0, (:A, :C)=>20.0, (:B, :C)=>30.0)
map = Dict(("A", "B")=>10.0, ("A", "C")=>20.0, ("B", "C")=>30.0)
map = Dict([:A, :B]=>10, [:A, :C]=>10.0, [:B, :C]=>20.0)
map = Dict(["A", "B"]=>10.0, ["A", "C"]=>20.0, ["B", "C"]=>30.0)
```
"""
function ฯNMatrix(m)
mapnew = Dict(Set.([Symbol.(k) for k in keys(m)]) .=> promote(values(m)...))
return ฯNMatrix(mapnew)
end
species(m::ฯNMatrix) = _species(m.map)
Base.size(A::ฯNMatrix) = size(A.mat)
Base.getindex(A::ฯNMatrix, i::Int) = getindex(A.mat, i)
Base.getindex(A::ฯNMatrix, I::Vararg{Int, N}) where N = getindex(A.mat, I...)
Base.getindex(::ฯNMatrix{T}, ::Symbol) where T = zero(T)
function Base.getindex(A::ฯNMatrix{T}, sp1::Symbol, sp2::Symbol) where T
(sp1 == sp2) && return zero(T)
return A.map[Set((sp1, sp2))]
end
function _setindex!(A::ฯNMatrix, v, sp1::Symbol, sp2::Symbol)
A.map[Set((sp1, sp2))] = v
# call _ฯNmap_to_matrix to validate the matrix
mat = _ฯNmap_to_matrix(A.map)
# If no error, set the value
# update the inverse matrix
A.mat .= mat
A.imat .= inv(mat)
end
function _setindex!(A::ฯNMatrix, v, i, j)
# Do not set value for j = k
(i == j) && return nothing
sps = _species(A.map)
_setindex!(A, v, sps[i], sps[j])
end
function Base.setindex!(A::ฯNMatrix, v, i::Int)
j, k = Tuple(CartesianIndices(A)[i])
_setindex!(A, v, j, k)
return nothing
end
function Base.setindex!(A::ฯNMatrix, v, i::Int, j::Int)
_setindex!(A, v, i, j)
return nothing
end
Base.setindex!(::ฯNMatrix, v, ::Symbol) = nothing
function Base.setindex!(A::ฯNMatrix, v, sp1::Symbol, sp2::Symbol)
_setindex!(A, v, sp1, sp2)
end
Base.eltype(::ฯNMatrix{T}) where T = T
Base.showarg(io::IO, A::ฯNMatrix, toplevel) = print(io, typeof(A), " of species: ", _species(A.map))
function Base.show(io::IO, m::ฯNMatrix)
println(io, "Flory-Huggins interaction parameters betwen species:")
for (k, v) in m.map
sp1, sp2 = k
println(io, " ($sp1, $sp2) => $v")
end
end
function Base.show(io::IO, ::MIME"text/plain", m::ฯNMatrix)
println(io, "Flory-Huggins interaction parameters between species:")
for (k, v) in m.map
sp1, sp2 = k
println(io, " ($sp1, $sp2) => $v")
end
println(io, "as a matrix:")
show(io, "text/plain", m.mat)
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 1727 | @option struct SpecieConfig
label::Symbol=:A
"Can be: :Segment, :Small"
type::Symbol=:Segment
b::Float64=1.0
M::Union{Float64, Nothing}=nothing
end
@option struct BlockConfig
label::Symbol=:A
segment::Symbol=:A
length::Float64=0.5
ends::Vector{Symbol}=[:AB]
end
@option struct BlockCopolymerConfig
label::Symbol=:BCP
species::Vector{SpecieConfig}=SpecieConfig[]
blocks::Vector{BlockConfig}=BlockConfig[]
end
@option struct ComponentConfig
"Can be: :BCP, :SMOL"
type::Symbol=:BCP
label::Symbol=:AB
length::Float64=1.0
volume_fraction::Float64=1.0
blocks::Vector{BlockConfig}=BlockConfig[]
end
@option struct PolymerSystemConfig
label::Union{String, Nothing}=nothing
species::Vector{SpecieConfig}=[SpecieConfig(), SpecieConfig(; label=:B)]
ฯN_map::Vector{Vector{Any}}=[[:A, :B, 20.0]]
components::Vector{ComponentConfig}=[ComponentConfig(; blocks=[BlockConfig(), BlockConfig(; label=:B, segment=:B)])]
chain_density::Float64=1.0
end
Configurations.from_dict(::Type{SpecieConfig}, ::Type{Symbol}, s) = Symbol(s)
Configurations.from_dict(::Type{ComponentConfig}, ::Type{Symbol}, s) = Symbol(s)
Configurations.from_dict(::Type{BlockConfig}, ::Type{Symbol}, s) = Symbol(s)
Configurations.from_dict(::Type{BlockCopolymerConfig}, ::Type{Symbol}, s) = Symbol(s)
"`top` is the key of the top level of the config in the yaml."
function load_config(yamlfile, T=PolymerSystemConfig; top=nothing)
d = YAML.load_file(yamlfile; dicttype=Dict{String, Any})
d = isnothing(top) ? d : d[top]
return from_dict(T, d)
end
function save_config(yamlfile, config)
d = to_dict(config, YAMLStyle)
return YAML.write_file(yamlfile, d)
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 4898 | """
AbstractControlParameter provides a unified interface to represent a control parameter for a polymer system. The control parameter can be varied to change the properties of a polymer system.
Concrete types include:
* ฯControlParameter
* ฮฑControlParameter
* fControlParameter
* ฯNControlParameter
* bControlParameter
The functor of each concrete type will return either a list or a scalar values of the parameters which fully detemines its setting.
"""
abstract type AbstractControlParameter end
struct ฯControlParameter{F<:Function} <: AbstractControlParameter
id::Integer # the unique id for a molecule in a polymer system
param::ฯType
func::F
end
"""
Default function is for binary system.
"""
function ฯControlParameter(id::Integer, param::ฯType=ฯParam,
func=(ฯ)->[one(ฯ)-ฯ])
ฯs = func(0.1)
@argcheck sum(ฯs) + 0.1 == 1.0 "func should return a vector with a sum equal to 1!"
return ฯControlParameter(id, param, func)
end
function ฯControlParameter(label::Symbol, s::PolymerSystem;
param::ฯType=ฯParam, func=(ฯ)->[one(ฯ)-ฯ])
id = molecule_id(label, s)
@argcheck !isnothing(id) "$label is not a component label!"
return ฯControlParameter(id, param, func)
end
"""
This functor produce a vector of ฯ whose order is assumed to be consistent with the polymer system it acts on.
"""
(c::ฯControlParameter)(ฯ) = insert!(c.func(ฯ), c.id, ฯ)
struct ฮฑControlParameter <: AbstractControlParameter
id::Integer # the unique id for a molecule in a polymer system
param::ฮฑType
end
ฮฑControlParameter(id, param::ฮฑType=ฮฑParam) = ฮฑControlParameter(id, param)
function ฮฑControlParameter(label::Symbol, s::PolymerSystem;
param::ฮฑType=ฮฑParam)
id = molecule_id(label, s)
@argcheck !isnothing(id) "$label is not a component label!"
return ฮฑControlParameter(id, param)
end
(::ฮฑControlParameter)(ฮฑ) = ฮฑ
"""
Set([sp1, sp2]) will determine which ฯN is the control parameter. For example, sp1=:A, sp2=:B, ฯ_AB N will be the control parameter.
"""
struct ฯNControlParameter <: AbstractControlParameter
sp1::Symbol # the unique name for the specie of a polymer system
sp2::Symbol # the unique name for the specie of a polymer system
param::ฯNType
end
ฯNControlParameter(sp1, sp2, param::ฯNType=ฯNParam) = ฯNControlParameter(sp1, sp2, param)
function ฯNControlParameter(sp1::Symbol, sp2::Symbol, s::PolymerSystem;
param::ฯNType=ฯNParam)
@argcheck sp1 โ species(s) "$sp1 is not a specie in the polymer system!"
@argcheck sp2 โ species(s) "$sp2 is not a specie in the polymer system!"
return ฯNControlParameter(sp1, sp2, param)
end
(::ฯNControlParameter)(ฯN) = ฯN
struct fControlParameter{F<:Function} <: AbstractControlParameter
id_block::Integer # the unique id for a block in a molecule
id_mol::Integer # the unique id for a molecule in a polymer system
param::fType
func::F
end
"""
Default function is for diblock copolymer.
"""
function fControlParameter(id_block, id_mol, param::fType=fParam,
func=(f)->[one(f)-f])
fs = func(0.1)
@argcheck sum(fs) + 0.1 == 1.0 "func should return a vector with a sum equal to 1!"
return fControlParameter(id_block, id_mol, param, func)
end
function fControlParameter(id_block::Integer, label::Symbol, s::PolymerSystem;
param::fType=fParam, func=(f)->[one(f)-f])
id_mol = molecule_id(label, s)
@argcheck !isnothing(id_mol) "$label is not a component label!"
@argcheck 0 < id_block <= nblocks(molecule(id_mol, s)) "Polymer block #$id_block is not in the polymer component!"
return fControlParameter(id_block, id_mol, param, func)
end
function fControlParameter(label_block::Symbol, label_mol::Symbol,
s::PolymerSystem;
param::fType=fParam, func=(f)->[one(f)-f])
id_mol = molecule_id(label_mol, s)
@argcheck !isnothing(id_mol) "$label_mol is not a component label!"
id_block = block_id(label_block, molecule(id_mol, s))
@argcheck !isnothing(id_block) "Polymer block $label_block is not in the polymer component!"
return fControlParameter(id_block, id_mol, param, func)
end
"""
This functor produce a vector of f whose order is assumed to be consistent with the molecule it acts on.
"""
(c::fControlParameter)(f) = insert!(c.func(f), c.id_block, f)
struct bControlParameter <: AbstractControlParameter
sp::Symbol # the unique name for the specie of a polymer system
param::bType
end
bControlParameter(sp, param::bType=bParam) = bControlParameter(sp, param)
function bControlParameter(sp::Symbol, s::PolymerSystem; param::bType=bParam)
@argcheck sp โ species(s) "$sp is not a specie in the polymer system!"
return bControlParameter(sp, param)
end
(::bControlParameter)(b) = b | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 6886 | using Random: randstring
"""
load_config(yamlfile)
Load configurations which directs creation of a polymer system and its components from a YAML file given at `yamlfile`.
The configurations are stored in a nested Dicts.
"""
# load_config(yamlfile) = YAML.load_file(yamlfile)
"""
ObjType{name}
A type representing the type of an object defined in Polymer.jl.
A `ObjType` object can be passed to the first argument of [`make`](@ref) to dispatch to the correction version of this method to create an object designated by `name`:
* :System: PolymerSystem
* :Component: Component
* :ฯN_map: Dict{Set{Symbol},AbstractFloat}
* :Specie: AbstractSpecie (KuhnSegment) and SmallMolecule
* :SMOL: SmallMolecule
* :BCP: BlockCopolymer
* :Block: PolymerBlock
* :BlockEnd: BlockEnd (FreeEnd and BranchPoint)
"""
struct ObjType{name} end
function make(::ObjType{:BlockEnd}, config)
if isempty(config)
return FreeEnd(Symbol(randstring(3))), FreeEnd(Symbol(randstring(3)))
end
if length(config) == 1
return FreeEnd(Symbol(randstring(3))), BranchPoint(Symbol(config[1]))
end
e1, e2 = Symbol.(config)
return BranchPoint(e1), BranchPoint(e2)
end
function make(::ObjType{:Block}, config, sps)
label = Symbol(config["label"])
if haskey(config, "segment") && !isnothing(config["segment"])
slabel = Symbol(config["segment"])
else
slabel= label
end
segment = nothing
for sp in sps
if sp.label == slabel
segment = sp
continue
end
end
f = config["length"]
E1, E2 = make(ObjType{:BlockEnd}(), config["ends"])
return PolymerBlock(label, segment, f, E1, E2)
end
function make(::ObjType{:BCP}, config, sps)
label = Symbol(config["label"])
blocks = [make(ObjType{:Block}(), c, sps) for c in config["blocks"]]
return BlockCopolymer(label, blocks)
end
function make(::ObjType{:SMOL}, config, sps)
label = Symbol(config["label"])
for sp in sps
if sp.label == label
return sp
end
end
end
function make(::ObjType{:Component}, config, sps)
molecule = make(ObjType{Symbol(config["type"])}(), config, sps)
kwargs = Dict()
if haskey(config, "length")
kwargs[:ฮฑ] = config["length"]
end
if haskey(config, "volume_fraction")
kwargs[:ฯ] = config["volume_fraction"]
end
return Component(molecule; kwargs...)
end
function make(::ObjType{:Specie}, config)
label = Symbol(config["label"])
kwargs = Dict()
if haskey(config, "b") && !isnothing(config["b"])
kwargs[:b] = config["b"]
end
if haskey(config, "M") && !isnothing(config["M"])
kwargs[:M] = config["M"]
end
if haskey(config, "type")
t = config["type"]
else
t = "Segment"
end
if t == "Segment"
return KuhnSegment(label; kwargs...)
else
return SmallMolecule(label; kwargs...)
end
end
function make(::ObjType{:ฯN_map}, config)
sp1, sp2, ฯN = first(config)
ฯN_map = Dict{Set{Symbol}, eltype(ฯN)}()
for a in config
s1, s2, ฯN = a
ฯN_map[Set([Symbol(s1), Symbol(s2)])] = ฯN
end
return ฯN_map
end
"""
make(::ObjType{:System}, config)
Make an `PolymerSystem` object.
Note: `confinement` is not implmented.
"""
function make(::ObjType{:System}, config)
sps = [make(ObjType{:Specie}(), c) for c in config["species"]]
components = [make(ObjType{:Component}(), c, sps) for c in config["components"]]
kwargs = Dict()
if haskey(config, "ฯN_map")
ฯN_map = make(ObjType{:ฯN_map}(), config["ฯN_map"])
else
error("Must provide an interaction map.")
end
if haskey(config, "chain_density")
kwargs[:C] = config["chain_density"]
end
return PolymerSystem(components, ฯN_map; kwargs...)
end
make(config) = make(ObjType{:System}(), config)
function make(config::SpecieConfig)
label = config.label
kwargs = isnothing(config.M) ? (; b=config.b) : (; b=config.b, M=config.M)
(config.type == :Segment) && return KuhnSegment(label; kwargs...)
(config.type == :Small) && return SmallMolecule(label; kwargs...)
error("Unknown specie type!")
end
function make(config::BlockConfig, sps)
i = findfirst(sp -> sp.label == config.segment, sps)
isnothing(i) && error("No specie found for block!")
label = config.label
if isempty(config.ends)
E1, E2 = FreeEnd(Symbol(randstring(3))), FreeEnd(Symbol(randstring(3)))
elseif length(config.ends) == 1
E1, E2 = FreeEnd(Symbol(randstring(3))), BranchPoint(config.ends[1])
else
E1, E2 = BranchPoint(config.ends[1]), BranchPoint(config.ends[2])
end
return PolymerBlock(label, sps[i], config.length, E1, E2)
end
function make(config::ComponentConfig, sps)
(config.type โ [:BCP, :SMOL]) || error("Only BCP and SMOL is allowed for molecule type!")
(config.type == :BCP && isempty(config.blocks)) && error("At least one block is expected for a block copolymer!")
if config.type == :SMOL
i = findfirst(sp -> sp.label == config.label, sps)
isnothing(i) && error("No specie found for small molecule found!")
molecule = sps[i]
else
blocks = make.(config.blocks, Ref(sps))
molecule = BlockCopolymer(config.label, blocks)
end
return Component(molecule; ฮฑ=config.length, ฯ=config.volume_fraction)
end
function _make_ฯNmap(config)
ฯN_map = Dict{Set{Symbol}, Float64}()
for a in config
s1, s2, ฯN = a
ฯN_map[Set([Symbol(s1), Symbol(s2)])] = ฯN
end
return ฯN_map
end
function make(config::PolymerSystemConfig)
sps = make.(config.species)
components = make.(config.components, Ref(sps))
ฯN_map = _make_ฯNmap(config.ฯN_map)
return PolymerSystem(components, ฯN_map; C=config.chain_density)
end
function KuhnSegment(config::SpecieConfig)
sp = make(config)
(sp isa SmallMolecule) && error("Configuration is for SmallMolecule!")
return sp
end
function SmallMolecule(config::SpecieConfig)
sp = make(config)
(sp isa KuhnSegment) && error("Configuration is for KuhnSegment!")
return sp
end
function BlockCopolymer(config::ComponentConfig, sps)
mol = make(config, sps).molecule
(mol isa SmallMolecule) && error("Configuration is for SmallMolecule!")
return mol
end
function BlockCopolymer(config::BlockCopolymerConfig)
sps = make.(config.species)
blocks = make.(config.blocks, Ref(sps))
return BlockCopolymer(config.label, blocks)
end
function SmallMolecule(config::ComponentConfig, sps)
mol = make(config, sps).molecule
(mol isa BlockCopolymer) && error("Configuration is for BlockCopolymer")
return mol
end
PolymerBlock(config::BlockConfig, sps) = make(config, sps)
Component(config::ComponentConfig, sps) = make(config, sps)
PolymerSystem(config::PolymerSystemConfig) = make(config) | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 5004 | """
## Parameteric types
* `T`: should be a symbol to identify the parameter.
* `R`: the value type of the parameter.
"""
abstract type AbstractParameter{T,R} end
"""
PolymerParameter{T, R} <: AbstractParameter
Type represents phyiscal parameters of a polymer system. Each type with a specific T (normally a symbol) defines a parameter. E.g.
```julia
PolymerParameter{:ฯ} # define the ฯ parameter
```
Pre-defined parameter symbols:
* ฯ: Flory-Huggins interaction parameters.
* N: chain length in number of monomers or Kuhn segments.
* f: volume fraction of a block in a block copolymer.
* ฯ: volume fraction of a type of chain in a polymer system.
* Rg: radius of gyration of a polymer chain.
* C: chain density C = ฯโRg^3/N.
* b: length of a monomer or a Kuhn segment.
* ฮฑ: chain length of a chain with respect to a reference chain.
* ฯ: ratio of length of two or more blocks.
Fields
* `description`: a description of the parameter.
* `variable_name`: a string representation of the parameter which can be used as Julia variable name.
* `ascii_label`: a label with pure ascii characters which shall be used for file names, directory names, etc.
* `plot_label`: a LaTeXStrings used as label for plotting.
* `value_type`: the number type of the parameter, e.g. integer, float, complex, etc.
* `allowed_min`: minimum value allowed. If negative infinity, using `typemin(Type)`.
* `allowed_max`: maximum value allowed. If positive infinity, using `typemax(Type)`.
* `allowed_values`: only used for discrete finite set. If the allowed values are infinite, use `allowed_min` and `allowed_max` instead.
* `disallowed_values`: an array of values which are invalid.
User can define their own parameter symbols as long as they also define following two field values. Other fields are deduced automatically from parametric type `T`.
* `description`
* `plot_label`
"""
struct PolymerParameter{T, R<:Real} <: AbstractParameter{T,R}
description::String
variable_name::String
ascii_label::String
plot_label::LaTeXString
value_type::Type{R}
allowed_min::Union{R, typeof(Inf)}
allowed_max::Union{R, typeof(Inf)}
allowed_values::AbstractVector{R}
disallowed_values::AbstractVector{R}
function PolymerParameter{T}(desc, plot_label, value_type::Type{R}; allowed_min=-Inf, allowed_max=Inf, allowed_values=R[], disallowed_values=R[]) where {T, R<:Real}
varname = String(T)
ascii_label = ""
for c in varname
ascii_label *= unicodesymbol2string(c)
end
new{T, R}(desc, varname, ascii_label, plot_label, value_type, allowed_min, allowed_max, allowed_values, disallowed_values)
end
end
"""
A list of pre-defined polymer parameters.
"""
const ฯType = PolymerParameter{:ฯ, <:Real}
const NType = PolymerParameter{:N, <:Real}
const ฯNType = PolymerParameter{:ฯN, <:Real}
const fType = PolymerParameter{:f, <:Real}
const ฯType = PolymerParameter{:ฯ, <:Real}
const RgType = PolymerParameter{:Rg, <:Real}
const CType = PolymerParameter{:C, <:Real}
const bType = PolymerParameter{:b, <:Real}
const ฮฑType = PolymerParameter{:ฮฑ, <:Real}
const ฯType = PolymerParameter{:ฯ, <:Real}
const ฯParam = PolymerParameter{:ฯ}(
"Flory-Huggins Interaction Parameter.",
L"\chi", Float64)
const NParam = PolymerParameter{:N}(
"Chain length in number of monomers or Kuhn segments.",
L"N", Int; allowed_min=zero(Int))
const ฯNParam = PolymerParameter{:ฯN}(
"Flory-Huggins Interaction Parameter times N.",
L"\chi N", Float64)
const fParam = PolymerParameter{:f}(
"Volume fraction of a block in a block copolymer.",
L"f", Float64; allowed_min=0, allowed_max=1)
const ฯParam = PolymerParameter{:ฯ}(
"volume fraction of a type of chain in a polymer system.",
L"\phi", Float64; allowed_min=0, allowed_max=1)
const RgParam = PolymerParameter{:Rg}(
"Radius of gyration of a polymer chain.",
L"R_g", Float64; allowed_min=0)
const CParam = PolymerParameter{:C}(
"Chain density C = ฯโRg^3/N.",
L"C", Float64; allowed_min=0)
const bParam = PolymerParameter{:b}(
"Length of a monomer or a Kuhn segment.",
L"b", Float64; allowed_min=0)
const ฮฑParam = PolymerParameter{:ฮฑ}(
"Chain length of a chain with respect to a reference chain.",
L"\alpha", Float64; allowed_min=0)
const ฯParam = PolymerParameter{:ฯ}(
"Ratio of length of two or more blocks.",
L"\tau", Float64; allowed_min=0)
const DEFAULT_PARAMETERS = Dict(
:ฯ => ฯParam,
:N => NParam,
:ฯN => ฯNParam,
:f => fParam,
:ฯ => ฯParam,
:Rg => RgParam,
:C => CParam,
:b => bParam,
:ฮฑ => ฮฑParam,
:ฯ => ฯParam,
)
"""
Accessors for the `PolymerParameter` type.
"""
description(p::AbstractParameter) = p.description
value_type(p::AbstractParameter) = p.value_type
variable_symbol(::AbstractParameter{T,R}) where {T,R} = T
as_variable_name(p::AbstractParameter) = p.variable_name
as_ascii_label(p::AbstractParameter) = p.ascii_label
as_plot_label(p::AbstractParameter) = p.plot_label | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 8668 | specie_object(m::SmallMolecule) = m
specie_object(b::PolymerBlock) = b.segment
specie_objects(bcp::BlockCopolymer) = specie_object.(bcp.blocks) |> unique
specie_objects(m::SmallMolecule) = [m]
specie_objects(c::Component) = specie_objects(c.molecule)
function specie_objects(s::PolymerSystem)
species = Any[]
for c in s.components
append!(species, specie_objects(c))
end
return unique(species)
end
isconfined(::BulkConfinement) = false
isconfined(::ConfinementType) = true
isconfined(s::PolymerSystem) = isconfined(s.confinement)
ischarged(::Neutral) = false
ischarged(::ChargedType) = true
ฯN(s::PolymerSystem, sp1::Symbol, sp2::Symbol) = s.ฯNmatrix[sp1, sp2]
ฯNmap(s::PolymerSystem) = s.ฯNmatrix.map
ฯNmatrix(s::PolymerSystem) = s.ฯNmatrix
multicomponent(s::PolymerSystem) = length(s.components) == 1 ? false : true
ncomponents(s::PolymerSystem) = length(s.components)
specie(s::AbstractSpecie) = s.label
specie(m::SmallMolecule) = m.label
specie(b::PolymerBlock) = specie(b.segment)
species(c::BlockCopolymer) = [specie(b) for b in c.blocks] |> unique |> sort
nspecies(c::BlockCopolymer) = species(c) |> length
species(m::SmallMolecule) = [specie(m)]
nspecies(m::SmallMolecule) = 1
function _species(components)
sps = Symbol[]
for c in components
append!(sps, species(c))
end
return unique(sps) |> sort
end
species(c::Component) = species(c.molecule)
nspecies(c::Component) = species(c) |> length
species(s::PolymerSystem) = _species(s.components)
nspecies(s::PolymerSystem) = species(s) |> length
function systemtype(s::PolymerSystem)
if !multicomponent(s)
return NeatPolymer()
end
for c in s.components
if c.molecule isa SmallMolecule
return PolymerSolution()
end
end
return PolymerBlend()
end
function component_number_type(s::PolymerSystem)
nc = ncomponents(s)
if nc == 1
t = MonoSystem()
elseif nc == 2
t = BinarySystem()
elseif nc == 3
t = TernarySystem()
else
t = MultiComponentSystem()
end
return t
end
function _specie_number_type(ns)
if ns == 1
t = SingleSpecieSystem()
elseif ns == 2
t = TwoSpeciesSystem()
else
t = MultiSpeciesSystem()
end
return t
end
function specie_number_type(bcp::BlockCopolymer)
return _specie_number_type(nspecies(bcp))
end
function specie_number_type(s::PolymerSystem)
return _specie_number_type(nspecies(s))
end
label(e::BlockEnd) = e.label
label(s::AbstractSpecie) = s.label
label(b::AbstractBlock) = b.label
label(m::AbstractMolecule) = m.label
label(c::Component) = label(c.molecule)
const name = label
components(s::PolymerSystem) = s.components
function component(id::Integer, s::PolymerSystem)
(id < 1 || id > ncomponents(s)) && return nothing
return components(s)[id]
end
component_label(c::Component) = label(c)
component_labels(s::PolymerSystem) = label.(components(s))
component_ids(s::PolymerSystem) = collect(1:ncomponents(s))
component_id(label::Symbol, s::PolymerSystem) = findfirst(component_labels(s) .== label)
component_id(c::Component, s::PolymerSystem) = component_id(component_label(c), s)
function component_label(id::Integer, s::PolymerSystem)
(id < 1 || id > ncomponents(s)) && return nothing
return component_labels(s)[id]
end
label(id::Integer, s::PolymerSystem) = component_label(id, s)
function component(label::Symbol, s::PolymerSystem)
id = component_id(label, s)
return isnothing(id) ? nothing : component(id, s)
end
ฯs(s::PolymerSystem) = [c.ฯ for c in s.components]
ฯ(id::Integer, s::PolymerSystem) = ฯs(s)[id]
ฯ(label::Symbol, s::PolymerSystem) = ฯ(component_id(label, s), s)
ฮฑ(c::Component) = c.ฮฑ
ฮฑs(s::PolymerSystem) = ฮฑ.(components(s))
ฮฑ(id::Integer, s::PolymerSystem) = ฮฑs(s)[id]
ฮฑ(label::Symbol, s::PolymerSystem) = ฮฑ(component_id(label, s), s)
molecules(s::PolymerSystem) = [c.molecule for c in s.components]
molecule(c::Component) = c.molecule
molecule(id::Integer, s::PolymerSystem) = molecules(s)[id]
molecule(label::Symbol, s::PolymerSystem) = molecule(component_id(label, s), s)
molecule_labels(s::PolymerSystem) = component_labels(s)
molecule_label(id::Integer, s::PolymerSystem) = component_label(id, s)
molecule_label(mol::AbstractMolecule) = mol.label
molecule_ids(s::PolymerSystem) = component_ids(s)
molecule_id(label::Symbol, s::PolymerSystem) = component_id(label, s)
molecule_id(mol::AbstractMolecule, s::PolymerSystem) = molecule_id(molecule_label(mol), s)
isfreeblockend(::BlockEnd) = false
isfreeblockend(::FreeEnd) = true
block_ends(b::PolymerBlock) = [b.E1, b.E2]
segment(b::PolymerBlock) = b.segment
nblocks(sm::SmallMolecule) = 0
nblocks(bc::BlockCopolymer) = length(bc.blocks)
nblocks(c::Component) = nblocks(c.molecule)
nblocks(s::PolymerSystem) = sum(nblocks.(s.components))
blocks(bcp::BlockCopolymer) = bcp.blocks
blocks(::SmallMolecule) = []
blocks(c::Component) = blocks(c.molecule)
block_labels(sm::SmallMolecule) = [label(sm)]
block_labels(bcp::BlockCopolymer) = [b.label for b in bcp.blocks]
block_labels(c::Component) = block_labels(molecule(c))
block_labels(label::Symbol, s::PolymerSystem) = block_labels(molecule(label, s))
block_label(b::AbstractBlock) = b.label
block_ids(bcp::BlockCopolymer) = collect(1:nblocks(bcp))
block_id(label::Symbol, bcp::BlockCopolymer) = findfirst(block_labels(bcp) .== label)
function block_label(id::Integer, bcp::BlockCopolymer)
(id < 1 || id > nblocks(bcp)) && return nothing
return block_labels(bcp)[id]
end
block_label(::Integer, ::SmallMolecule) = nothing
label(id::Integer, m::AbstractMolecule) = block_label(id, m)
label(id::Integer, c::Component) = label(id, molecule(c))
block_id(b::AbstractBlock, bcp::BlockCopolymer) = block_id(block_label(b), bcp)
block(id::Integer, bcp::BlockCopolymer) = bcp.blocks[id]
block(label::Symbol, bcp::BlockCopolymer) = block(block_id(label, bcp), bcp)
block_lengths(bcp::BlockCopolymer) = [b.f for b in bcp.blocks]
block_lengths(::SmallMolecule) = []
block_lengths(c::Component) = block_lengths(c.molecule)
block_length(id::Integer, bcp::BlockCopolymer) = block_lengths(bcp)[id]
block_length(label::Symbol, bcp::BlockCopolymer) = block_length(block_id(label, bcp), bcp)
block_length(b::PolymerBlock) = b.f
block_species(bcp::BlockCopolymer) = [specie(b) for b in bcp.blocks]
block_species(::SmallMolecule) = []
block_species(c::Component) = block_species(c.molecule)
species(m::AbstractMolecule) = block_species(m)
block_specie(id::Integer, bcp::BlockCopolymer) = block_species(bcp)[id]
block_specie(label::Symbol, bcp::BlockCopolymer) = block_specie(block_id(label, bcp), bcp)
block_bs(bcp::BlockCopolymer) = [b.segment.b for b in bcp.blocks]
block_bs(::SmallMolecule) = []
block_bs(c::Component) = block_bs(c.molecule)
block_b(id::Integer, bcp::BlockCopolymer) = block_bs(bcp)[id]
block_b(label::Symbol, bcp::BlockCopolymer) = block_b(block_id(label, bcp), bcp)
block_b(b::PolymerBlock) = b.segment.b
function b(sp::Symbol, system::PolymerSystem)
(sp โ species(system)) || error("$sp is not existing!")
for mol in molecules(system)
if mol isa SmallMolecule
(sp == specie(mol)) && return mol.b
else
id_block = findfirst(sp .== block_species(mol))
return block_b(id_block, mol)
end
end
end
bs(system) = [b(sp, system) for sp in species(system)]
getparam(system::PolymerSystem, cp::ฯControlParameter) = ฯ(cp.id, system)
getparam(system::PolymerSystem, cp::ฮฑControlParameter) = ฮฑ(cp.id, system)
getparam(bcp::BlockCopolymer, cp::fControlParameter) = block_length(cp.id_block, bcp)
getparam(system::PolymerSystem, cp::fControlParameter) = getparam(molecule(cp.id_mol, system), cp)
getparam(system::PolymerSystem, cp::ฯNControlParameter) = ฯN(system, cp.sp1, cp.sp2)
getparam(system::PolymerSystem, cp::bControlParameter) = b(cp.sp, system)
"""
ฯฬ(c::Component{SmallMolecule}, sp::Symbol)
ฯฬ(c::Component{<:BlockCopolymer}, sp::Symbol)
ฯฬ(s::PolymerSystem, sp::Symbol)
The averaging density (volume fraction) of specie `sp` in a `PolymerSystem` or a `Component`.
This functionality can be used to compute the enthalpy energy in the Flory-Huggins theory.
"""
function ฯฬ(c::Component{<:SmallMolecule}, sp::Symbol)
(sp โ species(c)) || return 0.0
return c.ฯ
end
function ฯฬ(c::Component{<:BlockCopolymer}, sp::Symbol)
(sp โ species(c)) || return 0.0
ฯ = 0.0
for b in c.molecule.blocks
(specie(b) == sp) && (ฯ += c.ฯ * b.f)
end
return ฯ
end
function ฯฬ(s::PolymerSystem, sp::Symbol)
(sp โ species(s)) || return 0.0
return sum([ฯฬ(c, sp) for c in s.components])
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 1455 | function to_config(sp::KuhnSegment)
return SpecieConfig(label=sp.label, type=:Segment, b=sp.b, M=sp.M)
end
function to_config(sp::SmallMolecule)
return SpecieConfig(label=sp.label, type=:Small, b=sp.b, M=sp.M)
end
function to_config(b::PolymerBlock)
ends = Symbol[]
(b.E1 isa BranchPoint) && push!(ends, b.E1.label)
(b.E2 isa BranchPoint) && push!(ends, b.E2.label)
return BlockConfig(label=b.label, segment=specie(b), length=b.f, ends=ends)
end
function to_config(bcp::BlockCopolymer)
sps = to_config.(specie_objects(bcp))
bs = to_config.(blocks(bcp))
return BlockCopolymerConfig(label=label(bcp), species=sps, blocks=bs)
end
function to_config(c::Component)
type = c.molecule isa BlockCopolymer ? :BCP : :SMOL
blocks = type == :BCP ? to_config.(c.molecule.blocks) : BlockConfig[]
return ComponentConfig(type=type, label=c.molecule.label, length=c.ฮฑ, volume_fraction=c.ฯ, blocks=blocks)
end
function to_config(ฯNmatrix::ฯNMatrix)
map = []
for ((sp1, sp2), v) in ฯNmatrix.map
push!(map, [sp1, sp2, v])
end
return map
end
function to_config(system::PolymerSystem)
species = to_config.(specie_objects(system))
ฯN_map = to_config(system.ฯNmatrix)
components = to_config.(system.components)
return PolymerSystemConfig(species=species, ฯN_map=ฯN_map, components=components, chain_density=system.C)
end
"`from_config` is an alias for `make`"
const from_config = make | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 5813 | ## Convenient functions for creating polymer chains.
branchpoints(n, prefix="EB") = [BranchPoint(Symbol(prefix*string(i))) for i in 1:n]
freeends(n, prefix="A") = [FreeEnd(Symbol(prefix*string(i))) for i in 1:n]
function homopolymer_chain(; label=:A, segment=KuhnSegment(label))
labelE1 = Symbol(label, :1)
labelE2 = Symbol(label, :2)
A = PolymerBlock(label, segment, 1.0, FreeEnd(labelE1), FreeEnd(labelE2))
return BlockCopolymer(label, [A])
end
function diblock_chain(; labelA=:A, labelB=:B, segmentA=KuhnSegment(labelA), segmentB=KuhnSegment(labelB), fA=0.5)
labelAB = Symbol(labelA, labelB)
fB = 1.0 - fA
eAB = BranchPoint(labelAB)
A = PolymerBlock(labelA, segmentA, fA, FreeEnd(labelA), eAB)
B = PolymerBlock(labelB, segmentB, fB, FreeEnd(labelB), eAB)
return BlockCopolymer(labelAB, [A,B])
end
function linearABC(fA=0.3, fB=0.3)
sA = KuhnSegment(:A)
sB = KuhnSegment(:B)
sC = KuhnSegment(:C)
eb = branchpoints(2)
fe = freeends(2)
A = PolymerBlock(:A, sA, fA, eb[1], fe[1])
C = PolymerBlock(:C, sC, 1-fA-fB, eb[2], fe[2])
B = PolymerBlock(:B, sB, fB, eb[1], eb[2])
return BlockCopolymer(:ABC, [A, B, C])
end
## Convenient functions for creating non-polymer components.
solvent(; label=:S) = SmallMolecule(label)
## Convenient functions for creating polymer systems.
"Default AB diblock copolymer system: two species are A and B, lengths of both segmeents are 1.0. However, ฯN and fA can be changed by Keyword argument. Default values are: ฯN=20.0 and fA=0.5."
function AB_system(; ฯN=20.0, fA=0.5)
polymer = Component(diblock_chain(; fA=fA))
return PolymerSystem([polymer], Dict(Set([:A, :B])=>ฯN))
end
function ABC_system(; ฯABN=40.0, ฯACN=40.0, ฯBCN=40.0, fA=0.3, fB=0.4)
polymer = Component(linearABC(fA, fB))
return PolymerSystem([polymer],
Dict(
Set([:A,:B])=>ฯABN,
Set([:A,:C])=>ฯACN,
Set([:B,:C])=>ฯBCN
)
)
end
"A/B homopolymers binary blend."
function A_B_system(; ฯN=20.0, ฯA=0.5, ฮฑA=1.0, ฮฑB=1.0)
polymerA = Component(homopolymer_chain(label=:A), ฮฑA, ฯA)
polymerB = Component(homopolymer_chain(label=:B), ฮฑB, 1-ฯA)
return PolymerSystem([polymerA, polymerB], Dict([:A, :B]=>ฯN))
end
"AB diblock copolymers / A homopolymers blend."
function AB_A_system(; ฯN=20.0, ฯAB=0.5, fA=0.5, ฮฑ=0.5)
polymerAB = Component(diblock_chain(; fA=fA), 1.0, ฯAB)
polymerA = Component(homopolymer_chain(; label=:hA, segment=KuhnSegment(:A)), ฮฑ, 1-ฯAB)
return PolymerSystem([polymerAB, polymerA],
Dict(Set([:A, :B])=>ฯN))
end
"AB diblock copolymers / A homopolymers / B homopolymers blend."
function AB_A_B_system(; ฯN=20.0, ฯAB=0.5, fA=0.5, ฯA=0.1, ฮฑA=0.5, ฮฑB=0.5)
polymerAB = Component(diblock_chain(; fA=fA), 1.0, ฯAB)
polymerA = Component(homopolymer_chain(; label=:hA, segment=KuhnSegment(:A)), ฮฑA, ฯA)
polymerB = Component(homopolymer_chain(; label=:hB, segment=KuhnSegment(:B)), ฮฑB, 1-ฯAB-ฯA)
return PolymerSystem([polymerAB, polymerA, polymerB],
Dict(Set([:A, :B])=>ฯN))
end
function A_B_AB_system(; ฯN=20.0, fA=0.5, ฯA=0.2, ฮฑA=0.5, ฯB=0.2, ฮฑB=0.5)
polymerAB = Component(diblock_chain(; fA=fA), 1.0, 1-ฯA-ฯB)
polymerA = Component(homopolymer_chain(; label=:hA, segment=KuhnSegment(:A)), ฮฑA, ฯA)
polymerB = Component(homopolymer_chain(; label=:hB, segment=KuhnSegment(:B)), ฮฑB, ฯB)
return PolymerSystem([polymerA, polymerB, polymerAB],
Dict(Set([:A, :B])=>ฯN))
end
"AB diblock copolymers + solvent solution."
function AB_S_system(; ฯNAB=20.0, ฯNAS=100.0, ฯNBS=100.0, ฯAB=0.1, fA=0.5, ฮฑ=0.01)
polymer = Component(diblock_chain(; fA=fA), 1.0, ฯAB)
sol = Component(solvent(), ฮฑ, 1-ฯAB)
return PolymerSystem([polymer, sol],
Dict(
Set([:A,:B])=>ฯNAB,
Set([:A,:S])=>ฯNAS,
Set([:B,:S])=>ฯNBS
)
)
end
"A homopolymer + B homopolymer + solvent solution."
function A_B_S_system(; ฯNAB=20.0, ฯNAS=100.0, ฯNBS=100.0, ฯA=0.1, ฯB=0.1, ฮฑA=1.0, ฮฑB=1.0, ฮฑS=0.01)
polymerA = Component(homopolymer_chain(; label=:A, segment=KuhnSegment(:A)), ฮฑA, ฯA)
polymerB = Component(homopolymer_chain(; label=:B, segment=KuhnSegment(:B)), ฮฑB, ฯB)
sol = Component(solvent(), ฮฑS, one(ฯA)-ฯA-ฯB)
return PolymerSystem([polymerA, polymerB, sol],
Dict(
Set([:A,:B])=>ฯNAB,
Set([:A,:S])=>ฯNAS,
Set([:B,:S])=>ฯNBS
)
)
end
"A homopolymer + B homopolymer + solvent1 + solvent2 solution."
function A_B_S1_S2_system(; ฯNAB=20.0, ฯNAS1=100.0, ฯNBS1=100.0, ฯNAS2=100.0, ฯNBS2=100.0, ฯNS1S2=100.0, ฯA=0.1, ฯB=0.1, ฯS1=0.4, ฮฑA=1.0, ฮฑB=1.0, ฮฑS1=0.01, ฮฑS2=0.01)
polymerA = Component(homopolymer_chain(; label=:A, segment=KuhnSegment(:A)), ฮฑA, ฯA)
polymerB = Component(homopolymer_chain(; label=:B, segment=KuhnSegment(:B)), ฮฑB, ฯB)
S1 = Component(solvent(label=:S1), ฮฑS1, ฯS1)
S2 = Component(solvent(label=:S2), ฮฑS2, one(ฯA)-ฯA-ฯB-ฯS1)
return PolymerSystem([polymerA, polymerB, S1, S2],
Dict(
Set([:A,:B])=>ฯNAB,
Set([:A,:S1])=>ฯNAS1,
Set([:B,:S1])=>ฯNBS1,
Set([:A,:S2])=>ฯNAS2,
Set([:B,:S2])=>ฯNBS2,
Set([:S1,:S2])=>ฯNS1S2
)
)
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 8586 | # traits for space dimension
abstract type SpaceDimension end
struct D1 <: SpaceDimension end
struct D2 <: SpaceDimension end
struct D3 <: SpaceDimension end
# traits for the type of confinement
abstract type ConfinementType end
struct BulkConfinement <: ConfinementType end
struct BoxConfinement <: ConfinementType end
struct SlabConfinement <: ConfinementType end
struct DiskConfinement <: ConfinementType end
struct SphereConfinement <: ConfinementType end
struct CylinderConfinement <: ConfinementType end
# traits for the type of polymer system
abstract type PolymerSystemType end
struct NeatPolymer <: PolymerSystemType end
struct PolymerBlend <: PolymerSystemType end
struct PolymerSolution <: PolymerSystemType end
# traits for multicomponent system
abstract type ComponentNumberType end
struct MonoSystem <: ComponentNumberType end
struct BinarySystem <: ComponentNumberType end
struct TernarySystem <: ComponentNumberType end
struct MultiComponentSystem <: ComponentNumberType end
# traits for multi-species system
abstract type SpecieNumberType end
struct SingleSpecieSystem <: SpecieNumberType end
struct TwoSpeciesSystem <: SpecieNumberType end
struct MultiSpeciesSystem <: SpecieNumberType end
# traits for the type of charge distribution
abstract type ChargedType end
struct Neutral <: ChargedType end
struct SmearedCharge <: ChargedType end
struct DiscreteCharge <: ChargedType end
abstract type AbstractSpecie end
struct KuhnSegment{T} <: AbstractSpecie
label::Symbol
b::T # length
M::T # molecular weight in g/mol
KuhnSegment(label::Symbol, b::T, M::T) where T = new{T}(label, b, M)
end
KuhnSegment(label; b=1.0, M=1.0) = KuhnSegment(Symbol(label), promote(b, M)...)
Base.show(io::IO, s::KuhnSegment) = print(io, "KuhnSegment $(s.label) with b=$(s.b)")
abstract type BlockEnd end
struct FreeEnd <: BlockEnd
label::Symbol
end
FreeEnd(; label=:EF) = FreeEnd(label)
struct BranchPoint <: BlockEnd
label::Symbol
end
Base.show(io::IO, fe::FreeEnd) = print(io, "FreeEnd $(fe.label)")
Base.show(io::IO, bp::BranchPoint) = print(io, "BranchPoint $(bp.label)")
abstract type AbstractBlock end
struct PolymerBlock{T} <: AbstractBlock
label::Symbol
segment::KuhnSegment
f::T # = N_b / N, N is the total number of segments in a whole polymer chain
E1::BlockEnd
E2::BlockEnd
end
function PolymerBlock(; label=:A, specie=:A, f=1.0, E1=FreeEnd(), E2=FreeEnd())
return PolymerBlock(Symbol(label), KuhnSegment(specie), f, E1, E2)
end
function PolymerBlock(segment::KuhnSegment; label=segment.label, f=1.0, E1=FreeEnd(), E2=FreeEnd())
return PolymerBlock(Symbol(label), segment, f, E1, E2)
end
Base.show(io::IO, b::PolymerBlock) = print(io, "PolymerBlock $(b.label) with f=$(b.f) of specie $(b.segment.label)")
function Base.show(io::IO, ::MIME"text/plain", b::PolymerBlock)
f = round(b.f, digits=4)
println(io, "PolymerBlock $(b.label) with f=$f of $(b.segment)")
println(io, " Chain ends:")
println(io, " * ", b.E1)
print(io, " * ", b.E2)
end
"""
- Check whether each block has a unqiue label.
- Check whether the length of all blocks in a chain sum to 1.0.
"""
function _isachain(blocks)
labels = map(x->x.label, blocks)
length(unique(labels)) == length(labels) || return false
mapreduce(x->x.f, +, blocks) โ 1.0 || return false
return true
end
abstract type AbstractMolecule end
struct SmallMolecule{T} <: AbstractMolecule
label::Symbol
b::T # length
M::T # molecular weight in g/mol
SmallMolecule(label::Symbol, b::T, M::T) where T = new{T}(label, b, M)
end
SmallMolecule(label; b=1.0, M=1.0) = SmallMolecule(Symbol(label), promote(b, M)...)
Base.show(io::IO, smol::SmallMolecule) = print(io, "SmallMolecule $(smol.label) with b=$(smol.b)")
abstract type AbstractPolymer <: AbstractMolecule end
struct BlockCopolymer{T<:AbstractBlock} <: AbstractPolymer
label::Symbol
blocks::Vector{T}
function BlockCopolymer(label::Symbol, blocks::Vector{T}; check=true) where {T<:PolymerBlock}
check && @argcheck _isachain(blocks)
new{T}(label, blocks)
end
end
function Base.show(io::IO, bcp::BlockCopolymer)
n = length(bcp.blocks)
println(io, "BlockCopolymer $(bcp.label) with $n blocks:")
for b in bcp.blocks
println(io, " * $b")
end
end
function Base.show(io::IO, ::MIME"text/plain", bcp::BlockCopolymer)
n = length(bcp.blocks)
println(io, "BlockCopolymer $(bcp.label) with $n blocks:")
for b in bcp.blocks
print(io, " * ")
show(io, "text/plain", b)
println(io)
end
end
struct RandomCopolymer <: AbstractPolymer end
struct AlternatingCopolymer <: AbstractPolymer end
struct Particle <: AbstractMolecule end
struct GiantMolecule <: AbstractMolecule end
abstract type AbstractComponent end
struct Component{T<:AbstractMolecule, S<:Real} <: AbstractComponent
molecule::T
ฮฑ::S # N / N_ref, N_ref is the total number of segments in a reference polymer chain
ฯ::S # = n*N/V, number density of this component in the system.
function Component(molecule::T, ฮฑ::S, ฯ::S) where {T<:AbstractMolecule, S}
new{T, S}(molecule, ฮฑ, ฯ)
end
end
## Do not define `Base.show` for `Component` object to avoid disable tree view functionality of Pluto.jl.
# Base.show(io::IO, c::Component) = print(io, "Component $(c.molecule.label) with ฯ=$(c.ฯ) and ฮฑ=$(c.ฮฑ) contains $(c.molecule)")
# function Base.show(io::IO, ::MIME"text/plain", c::Component)
# println(io, "Polymer system component $(c.molecule.label):")
# print(io, "* ", c.molecule)
# println(io, "* ฯ = $(c.ฯ)")
# println(io, "* ฮฑ = $(c.ฮฑ)")
# end
Component(molecule::T; ฮฑ=1.0, ฯ=1.0) where {T<:AbstractMolecule} = Component(molecule, promote(ฮฑ, ฯ)...)
abstract type AbstractSystem end
"""
PolymerSystem{T} <: AbstractSystem
The key of `ฯN_map` should be a two-element `Set`. Each element is the unique symbol for a specie. For example, the `ฯN_map` of an AB diblock copolymer is a `Dict` with one entry `Set([:A, :B]) => ฯN`.
Note: For Edwards Model A (homopolymer + implicit solvent), one has to add a dummy solvent component in the `components` array to make the function `multicomponent` return correct result.
"""
struct PolymerSystem{T} <: AbstractSystem
components::Vector{Component}
confinement::ConfinementType
ฯNmatrix::ฯNMatrix{T}
C::T # = \rho_0 R_g^3 / N, dimensionless chain density
function PolymerSystem(components::Vector{S}, conf, ฯNmatrix::ฯNMatrix{T}, C) where {S<:AbstractComponent, T}
@argcheck _isasystem(components)
@argcheck _isasystem(components, ฯNmatrix)
new{T}(components, conf, ฯNmatrix, T(C))
end
end
function PolymerSystem(components::Vector{T}, ฯNmatrix::ฯNMatrix;
conf=BulkConfinement(), C=1.0) where {T<:AbstractComponent}
return PolymerSystem(components, conf, ฯNmatrix, C)
end
"""
PolymerSystem(components, ฯNmap; conf=BulkConfinement(), C=1.0)
Constructor for `PolymerSystem`. `components` is a collection of `Component` objects. `ฯNmap` is a dictionary of interaction pairs. See [`ฯNMatrix`](@ref) for how to write a valid `ฯNmap`.
"""
function PolymerSystem(components, ฯNmap; conf=BulkConfinement(), C=1.0)
return PolymerSystem(collect(components), ฯNMatrix(ฯNmap); conf=conf, C=C)
end
## Here, we define a `Base.print` instead of a `Base.show` to show `PolymerSystem`. If we define `Base.show` for `PolymerSystem`, then the tree view of this object will be disabled and fall back to this `Base.show`.
# This a compromise to show `PoymerSystem` object in their best representation in both REPL and Pluto.jl.
# To get a clean plain text display of `PolymerSystem`, use `print(system)` where `system` is a `PolymerSystem` object.
function Base.print(io::IO, s::PolymerSystem)
n = length(s.components)
name = ""
for i in 1:n
label = string(s.components[i].molecule.label)
name = i < n ? name * label * " + " : name * label
end
println(io, "PolymerSystem ($name) contains $n components:")
println(io)
for c in s.components
print(io, "Component $(c.molecule.label) with ฯ=$(c.ฯ) and ฮฑ=$(c.ฮฑ) contains ")
println(io, c.molecule)
end
println(io)
print(io, "with ", s.ฯNmatrix)
end
"""
Check if the volume fraction of all compnents sums to 1.0.
"""
function _isasystem(components)
return mapreduce(x->x.ฯ, +, components) โ 1.0 ? true : false
end
function _isasystem(components, ฯNmatrix::ฯNMatrix)
return _species(components) == species(ฯNmatrix)
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 9509 |
################
# update ฯNParam
################
function update!(system::PolymerSystem, sp1::Symbol, sp2::Symbol, ฯN, ::ฯNType)
system.ฯNmatrix[sp1, sp2] = ฯN
return system
end
function update!(system::PolymerSystem, ฯN::Real, ::ฯNType)
(ncomponents(system) == 2) || return system
sp1, sp2 = species(system)
return update!(system, sp1, sp2, ฯN, ฯNParam)
end
function update!(system::PolymerSystem, ฯNmap, ::ฯNType)
system.ฯNmatrix .= ฯNMatrix(ฯNmap)
return system
end
#################
# update molecule
#################
function update!(system::PolymerSystem, id_mol::Integer, mol::AbstractMolecule)
c = system.components[id_mol]
system.components[id_mol] = @set c.molecule = mol
return system
end
"""
`mol_old` can be a label or an instance of AbstractMolecule
"""
function update!(system::PolymerSystem, mol_old, mol_new::AbstractMolecule)
return update!(system, molecule_id(mol_old, system), mol_new)
end
#################
# update ฯParam
#################
function update!(system::PolymerSystem, ids::AbstractVector{<:Integer}, ฯs::AbstractVector, ::ฯType)
isapprox(sum(ฯs), 1.0) || error("ฯs should have sum 1.0!")
nc = ncomponents(system)
(nc == 1) && return system
(nc == length(ฯs)) || error("Length of ฯs should be equal to the number of components of the polymer system!")
(nc == length(ids)) || error("Length of ids (or labels) should be equal to the number of components of the polymer system!")
for i in 1:nc
id = ids[i]
c = system.components[id]
system.components[id] = @set c.ฯ = ฯs[i]
end
return system
end
function update!(system::PolymerSystem, labels::AbstractVector{<:Symbol}, ฯs::AbstractVector, ::ฯType)
ids = [component_id(label, system) for label in labels]
return update!(system, ids, ฯs, ฯParam)
end
"""
The sequence of the input ฯs should be consistent with `component_ids`, i.e. ฯs[1] corresponds to the ฯ for components[1], etc.
"""
function update!(system::PolymerSystem, ฯs::AbstractVector, ::ฯType)
return update!(system, 1:ncomponents(system), ฯs, ฯParam)
end
"""
Binary system is assumed implicitly.
"""
function update!(system::PolymerSystem, ฯ::Real, ::ฯType)
nc = ncomponents(system)
(nc == 2) || error("Binary system expected!")
return update!(system, [ฯ, one(ฯ)-ฯ], ฯParam)
end
#################
# update ฮฑParam
#################
function update!(system::PolymerSystem, id::Integer, ฮฑ::Real, ::ฮฑType)
c = system.components[id]
system.components[id] = @set c.ฮฑ = ฮฑ
return system
end
function update!(system::PolymerSystem, label::Symbol, ฮฑ::Real, ::ฮฑType)
return update!(system, component_id(label, system), ฮฑ, ฮฑParam)
end
function update!(system::PolymerSystem, ids::AbstractVector{<:Integer}, ฮฑs::AbstractVector, ::ฮฑType)
nc = ncomponents(system)
(nc == 1) && return system
(length(ids) == length(ฮฑs)) || error("Length of ids and ฮฑs should be equal!")
for (id, ฮฑ) in zip(ids, ฮฑs)
update!(system, id, ฮฑ, ฮฑParam)
end
return system
end
function update!(system::PolymerSystem, labels::AbstractVector{<:Symbol}, ฮฑs::AbstractVector, ::ฮฑType)
ids = [component_id(label, system) for label in labels]
return update!(system, ids, ฮฑs, ฮฑParam)
end
"""
The sequence of the input ฯs should be consistent with `component_ids`, i.e. ฯs[1] corresponds to the ฯ for components[1], etc.
"""
function update!(system::PolymerSystem, ฮฑs::AbstractVector, ::ฮฑType)
nc = ncomponents(system)
(nc == length(ฮฑs)) || error("Length of ฮฑs should be equal to the number of components!")
return update!(system, 1:nc, ฮฑs, ฮฑParam)
end
#################
# update fParam
#################
function update!(bcp::BlockCopolymer, ids::AbstractVector{<:Integer}, fs::AbstractVector, ::fType)
nb = nblocks(bcp)
isapprox(sum(fs), 1.0) || error("All f in one blockcopolymer must = 1.")
(nb == length(fs)) || error("Length of fs should be equal to the number of blocks of the block polymer!")
(nb == length(ids)) || error("Length of ids (or labels) should be equal to the number of blocks of the block polymer!")
# Homopolymer chain f = 1.0 always
(nb == 1) && (return bcp)
for i in 1:length(fs)
id = ids[i]
b = block(id, bcp)
bcp.blocks[id] = @set b.f = fs[i]
end
return bcp
end
function update!(bcp::BlockCopolymer, labels::AbstractVector{<:Symbol}, fs::AbstractVector, ::fType)
ids = [block_id(label, bcp) for label in labels]
return update!(bcp, ids, fs, fParam)
end
"""
The sequence of `fs` should be consistent with `block_ids`.
"""
function update!(bcp::BlockCopolymer, fs::AbstractVector, ::fType)
return update!(bcp, 1:nblocks(bcp), fs, fParam)
end
"""
Two-block blockcopolymer and the first block is assumed.
"""
function update!(bcp::BlockCopolymer, f::Real, ::fType)
(nblocks(bcp) == 2) || return bcp
return update!(bcp, [f, one(f)-f], fParam)
end
function update!(system::PolymerSystem, id_mol::Integer, ids_or_labels::AbstractVector, fs::AbstractVector, ::fType)
mol = molecule(id_mol, system)
update!(mol, ids_or_labels, fs, fParam)
return update!(system, id_mol, mol)
end
"""
`bcp` can be the label or instance of a BlockCopolymer.
"""
function update!(system::PolymerSystem, bcp, ids_or_labels::AbstractVector, fs::AbstractVector, ::fType)
return update!(system, molecule_id(bcp, system), ids_or_labels, fs, fParam)
end
function update!(system::PolymerSystem, id_mol::Integer, fs::AbstractVector, ::fType)
return update!(system, id_mol, 1:length(fs), fs, fParam)
end
"""
`bcp` can be the label or instance of a BlockCopolymer.
"""
function update!(system::PolymerSystem, bcp, fs::AbstractVector, ::fType)
return update!(system, molecule_id(bcp, system), fs, fParam)
end
"""
Two-block block copolymer is assumed.
"""
function update!(system::PolymerSystem, id_mol::Integer, f::Real, ::fType)
return update!(system, id_mol, [f, one(f)-f], fParam)
end
"""
Two-block block copolymer is assumed.
`bcp` can be the label or instance of a BlockCopolymer.
"""
function update!(system::PolymerSystem, bcp, f::Real, ::fType)
return update!(system, molecule_id(bcp, system), f, fParam)
end
#################
# update bParam
#################
function _update!(bcp::BlockCopolymer, id_block::Integer, b::Real, ::bType)
bk = bcp.blocks[id_block]
bcp.blocks[id_block] = @set bk.segment.b = b
return bcp
end
function _update!(bcp::BlockCopolymer, label_block::Symbol, b::Real, ::bType)
id_block = block_id(label_block, bcp)
return _update!(bcp, id_block, b, bParam)
end
function _update!(bcp::BlockCopolymer, ids::AbstractVector{<:Integer}, bs::AbstractVector, ::bType)
(length(ids) == length(bs)) || error("Length of ids and bs should be equal!")
for (id, b) in zip(ids, bs)
_update!(bcp, id, b, bParam)
end
return bcp
end
function _update!(bcp::BlockCopolymer, labels::AbstractVector{<:Symbol}, bs::AbstractVector, ::bType)
ids = [block_id(label, bcp) for label in labels]
return _update!(bcp, ids, bs, bParam)
end
"""
The sequence of `bs` should be consistent with `block_ids`.
"""
function _update!(bcp::BlockCopolymer, bs::AbstractVector, ::bType)
nb = nblocks(bcp)
(nb == length(bs)) || error("Length of bs must be equal to the number of blocks!")
return _update!(bcp, 1:nb, bs, bParam)
end
function _update(smol::SmallMolecule, b, ::bType)
return @set smol.b = b
end
"""
All blocks and/or small molecules consisting of the same specie should be updated together.
`sp` is the label of a specie (KuhnSegment and SmallMolecule).
"""
function update!(system::PolymerSystem, sp::Symbol, b::Real, ::bType)
for mol in molecules(system)
if mol isa SmallMolecule
(specie(mol) == sp) && update!(system, mol, _update(mol, b, bParam))
else
id_mol = molecule_id(mol, system)
labels = Symbol[]
for bk in blocks(mol)
(specie(bk) == sp) && push!(labels, block_label(bk))
end
if !isempty(labels)
_update!(mol, labels, fill(b, length(labels)), bParam)
update!(system, id_mol, mol)
end
end
end
return system
end
function update!(system::PolymerSystem, sps::AbstractVector, bs::AbstractVector, ::bType)
(length(sps) == length(bs)) || error("Lengths of sps and bs must be equal!")
for (sp, b) in zip(sps, bs)
update!(system, sp, b, bParam)
end
return system
end
"""
Update for a full list of b.
The order of list `bs` should be consistent with the order of `spcices(system)`, i.e. the internal order of the spcies in the BlockCopolymer instance.
"""
function update!(system::PolymerSystem, bs::AbstractVector, ::bType)
(nspecies(system) == length(bs)) || error("Length of bs must be equal to the number of species in the system!")
return update!(system, species(system), bs, bParam)
end
update!(system::PolymerSystem, ฯ, cp::ฯControlParameter) = update!(system, cp(ฯ), ฯParam)
update!(system::PolymerSystem, ฮฑ, cp::ฮฑControlParameter) = update!(system, cp.id, ฮฑ, ฮฑParam)
update!(system::PolymerSystem, f, cp::fControlParameter) = update!(system, cp.id_mol, cp(f), fParam)
update!(system::PolymerSystem, ฯN, cp::ฯNControlParameter) = update!(system, cp.sp1, cp.sp2, ฯN, ฯNParam)
update!(system::PolymerSystem, b, cp::bControlParameter) = update!(system, cp.sp, b, bParam)
const setparam! = update! | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 1413 | """
unicodesymbol2string(us::Char)
Return an ascii representation (LaTeX name for a unicode symbol) for the input character. If the input character is already an ASCII or it is not listed in `REPL.REPLCompletions.latex_symbols`, the input string is returned.
```julia-repl
julia> unicodesymbol2string("ฮฒ")
"beta"
julia> unicodesymbol2string("b")
"b"
```
"""
function unicodesymbol2string(us::Char)
us = string(us)
return isascii(us) ? us : isempty(symbol_latex(us)) ? us : symbol_latex(us)[2:end]
end
"""
reverse_dict(d::Dict)
Return a Dict instance with each `key => val` pair in `d` reversed as `val => key` pair. Same values in `d` will be overwirten by the last occurd pair.
"""
reverse_dict(d::Dict) = Dict(v => k for (k, v) in d)
"""
_sort_tuple2(t)
Sort two-element Tuple to increase order. Example
```julia-REPL
julia> _sort_tuple2((2, 1))
(1, 2)
julia> _sort_tuple2((1, 2))
(1, 2)
```
"""
function _sort_tuple2(t)
a, b = t
return a > b ? (b, a) : (a, b)
end
"""
retrieve(dict, key_of_interest, output=[])
Return all values matched the `key_of_interest` in a nested Dict.
"""
function retrieve(dict, key_of_interest, output=[])
for (key, value) in dict
if key == key_of_interest
push!(output, value)
end
if value isa AbstractDict
retrieve(value, key_of_interest, output)
end
end
return output
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 318 | using Polymer
using Test
# include("test_utils.jl")
# include("test_parameters.jl")
# include("test_chiN.jl")
# include("test_types.jl")
include("test_properties.jl")
# include("test_update.jl")
# include("test_systems.jl")
# include("test_config.jl")
# include("test_make.jl")
# include("test_serialize.jl")
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 291 | using Polymer
using Test
include("test_utils.jl")
include("test_parameters.jl")
include("test_chiN.jl")
include("test_types.jl")
include("test_properties.jl")
include("test_update.jl")
include("test_systems.jl")
include("test_config.jl")
include("test_make.jl")
include("test_serialize.jl") | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 2033 | ฯNmapAB = Dict(Set((:A,:B))=>20.0)
ฯNmapABS = Dict(Set((:A,:B))=>20.0, Set((:A, :S))=>80.0, Set((:B, :S))=>120.0)
ฯNmapABS_bad = Dict(Set((:A,:B))=>20.0, Set((:A, :S))=>80.0)
ฯNmapABS_singular = Dict(Set((:A,:B))=>20.0, Set((:A, :S))=>0.0, Set((:B, :S))=>20.0)
@testset "chiN.jl: _species" begin
@test Polymer._species(ฯNmapAB) == [:A, :B]
@test Polymer._species(ฯNmapABS) == [:A, :B, :S]
end
@testset "chiN.jl: _check_consistency" begin
@test Polymer._check_consistency(ฯNmapAB)
@test Polymer._check_consistency(ฯNmapABS)
@test !Polymer._check_consistency(ฯNmapABS_bad)
end
@testset "chiN.jl: _ฯNmap_to_matrix" begin
mat = Polymer._ฯNmap_to_matrix(ฯNmapAB)
@test mat == [0 20.0; 20.0 0]
mat = Polymer._ฯNmap_to_matrix(ฯNmapABS)
@test mat == [0 20.0 80.0; 20.0 0 120.0; 80.0 120.0 0]
@test_throws ErrorException Polymer._ฯNmap_to_matrix(ฯNmapABS_singular)
end
@testset "chiN.jl: ฯNMatrix" begin
m = ฯNMatrix(ฯNmapAB)
@test m == [0 20.0; 20.0 0]
m = ฯNMatrix(ฯNmapABS)
@test m == [0 20.0 80.0; 20.0 0 120.0; 80.0 120.0 0]
@test size(m) == (3,3)
@test_throws ErrorException ฯNMatrix(ฯNmapABS_bad)
@test_throws ErrorException ฯNMatrix(ฯNmapABS_singular)
end
@testset "chiN.jl: getindex" begin
m = ฯNMatrix(ฯNmapABS)
@test m[1] == 0
@test m[7] == 80.0
@test m[1, 2] == 20.0
@test m[2, 1] == 20.0
@test m[1, 3] == 80.0
@test m[2, 3] == 120.0
@test m[:A] == 0
@test m[:B, :B] == 0
@test m[:B, :A] == 20.0
@test m[:A, :S] == 80.0
@test m[:S, :B] == 120.0
end
@testset "chiN.jl: setindex" begin
m = ฯNMatrix(ฯNmapABS)
m[1] = 10.0
@test m[1] == 0
@test m[:A] == 0
@test m[:A, :A] == 0
m[7] = 88.0
@test m[7] == 88.0
@test m[1, 3] == 88.0
@test m[3, 1] == 88.0
m[:A, :A] = 99.0
@test m[1] == 0
@test m[1, 1] == 0
@test m[:A] == 0
@test m[:A, :A] == 0
m[:S, :B] = 102.0
@test m[:B, :S] == 102.0
@test m[2, 3] == 102.0
@test m[3, 2] == 102.0
end
| Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 592 | @testset "config.jl: load_config" begin
configfile = joinpath(@__DIR__, "ABS.yml")
config_abs = load_config(configfile, top="system")
@test config_abs isa PolymerSystemConfig
end
@testset "config.jl: save_config" begin
configfile = joinpath(@__DIR__, "ABS.yml")
config_abs = load_config(configfile, top="system")
configfile = joinpath(@__DIR__, "ABS_save.yml")
save_config(configfile, config_abs)
# The config file is saved without top level key.
config_abs_reload = load_config(configfile)
@test config_abs_reload isa PolymerSystemConfig
end
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 1024 | @testset "control_parameters.jl: ControlParameter" begin
fฯ(ฯ) = [0.8-ฯ, 0.2] # TernarySystem, with third component ฯ fixed at 0.2.
ฯc = ฯControlParameter(1, ฯParam, fฯ)
@test ฯc(0.3) == [0.3, 0.5, 0.2]
abs = A_B_S_system()
ฯc2 = ฯControlParameter(:B, abs; func=fฯ)
@test ฯc2(0.3) == [0.5, 0.3, 0.2]
ฮฑc = ฮฑControlParameter(1, ฮฑParam)
@test ฮฑc(1.1) == 1.1
ฮฑc2 = ฮฑControlParameter(:A, abs) # control ฮฑ value for A component
ฯNc = ฯNControlParameter(:A, :B, ฯNParam)
@test ฯNc(10.0) == 10.0
ฯNc2 = ฯNControlParameter(:A, :B, abs)
ff(f) = [0.8-f, 0.2] # triblock copolymer, with third block f fixed at 0.2
fc = fControlParameter(1, 1, fParam, ff)
@test fc(0.3) == [0.3, 0.5, 0.2]
abc = ABC_system()
fc2 = fControlParameter(1, :ABC, abc; func=ff)
@test fc2(0.3) == [0.3, 0.5, 0.2]
fc3 = fControlParameter(:B, :ABC, abc; func=ff)
@test fc3(0.3) == [0.5, 0.3, 0.2]
bc = bControlParameter(:A, bParam)
@test bc(1.1) == 1.1
end
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 1123 | @testset "make.jl: make" begin
configfile = joinpath(@__DIR__, "ABS.yml")
config = load_config(configfile, top="system")
abs = make(config)
@test systemtype(abs) == PolymerSolution()
end
@testset "make.jl: constructors" begin
abs = AB_S_system()
config = to_config(abs)
sp1 = KuhnSegment(config.species[1])
@test sp1.label == :A
sp2 = KuhnSegment(config.species[2])
@test sp2.label == :B
sp3 = SmallMolecule(config.species[3])
@test sp3.label == :S
sps = [sp1, sp2, sp3]
blockA = PolymerBlock(config.components[1].blocks[1], sps)
@test blockA.label == :A
blockB = PolymerBlock(config.components[1].blocks[2], sps)
@test blockB.label == :B
bcp = BlockCopolymer(config.components[1], sps)
@test bcp.label == :AB
smol = SmallMolecule(config.components[2], sps)
@test smol.label == :S
c1 = Component(config.components[1], sps)
@test c1.molecule isa BlockCopolymer
c2 = Component(config.components[2], sps)
@test c2.molecule isa SmallMolecule
abs1 = PolymerSystem(config)
@test systemtype(abs) == PolymerSolution()
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 364 | using Polymer
@testset "parameters.jl: AbstractParameter" begin
@test ฯParam.allowed_min == 0.0
@test ฯParam.allowed_max == 1.0
@test ฯParam.allowed_min == -Inf
@test ฯParam.allowed_max == Inf
@test NParam.allowed_min == 0
@test NParam.allowed_max == Inf
@test fParam.allowed_min == 0.0
@test fParam.allowed_max == 1.0
end
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 4462 | using Polymer
using Polymer:
label, components, component, blocks, segment, block_ends, molecule
@testset "properties.jl" begin
model = AB_system()
@test component_number_type(model) == MonoSystem()
@test specie_number_type(model) == TwoSpeciesSystem()
@test Polymer.ฯฬ(model, :A) == 0.5
@test Polymer.ฯฬ(model, :B) == 0.5
model = AB_A_system()
bcp = Polymer.molecule(:AB, model)
@test component_number_type(model) == BinarySystem()
@test specie_number_type(model) == TwoSpeciesSystem()
@test Polymer.ฯฬ(model, :A) == 0.75
@test Polymer.ฯฬ(model, :B) == 0.25
@test component_label(1, model) == :AB
@test component_labels(model) == [:AB, :hA]
@test component_id(:AB, model) == 1
@test component_ids(model) == [1, 2]
@test Polymer.ฯN(model, :A, :B) == 20.0
@test Polymer.ฯ(1, model) == 0.5
@test Polymer.ฯ(:AB, model) == 0.5
@test Polymer.ฯs(model) == [0.5, 0.5]
@test Polymer.ฮฑ(2, model) == 0.5
@test Polymer.ฮฑ(:hA, model) == 0.5
@test Polymer.ฮฑs(model) == [1.0, 0.5]
@test Polymer.molecule(1, model) == model.components[1].molecule
@test Polymer.molecule(:AB, model) == model.components[1].molecule
@test molecule_labels(model) == [:AB, :hA]
@test molecule_label(1, model) == :AB
@test molecule_label(Polymer.molecule(:AB, model)) == :AB
@test molecule_ids(model) == [1, 2]
@test molecule_id(:AB, model) == 1
@test molecule_id(Polymer.molecule(:AB, model), model) == 1
blockA = Polymer.block(:A, bcp)
blockB = Polymer.block(:B, bcp)
@test Polymer.blocks(bcp) == bcp.blocks
@test block_labels(bcp) == [:A, :B]
@test block_label(blockA) == :A
@test block_label(1, bcp) == :A
@test block_ids(bcp) == [1, 2]
@test block_id(:A, bcp) == 1
@test block_id(blockA, bcp) == 1
@test Polymer.block(1, bcp) == blockA
@test Polymer.block(:A, bcp) == Polymer.block(1, bcp)
@test block_lengths(bcp) == [0.5, 0.5]
@test block_length(1, bcp) == 0.5
@test block_length(:A, bcp) == 0.5
@test block_species(bcp) == [:A, :B]
@test block_specie(1, bcp) == :A
@test block_specie(:A, bcp) == :A
@test block_bs(bcp) == [1.0, 1.0]
@test block_b(1, bcp) == 1.0
@test block_b(:A, bcp) == 1.0
@test Polymer.b(:A, model) == 1.0
@test Polymer.b(:B, model) == 1.0
@test Polymer.bs(model) == [1.0, 1.0]
ฯc = ฯControlParameter(1, ฯParam)
@test Polymer.getparam(model, ฯc) == 0.5
ฮฑc = ฮฑControlParameter(2, ฮฑParam)
@test Polymer.getparam(model, ฮฑc) == 0.5
ฯNc = ฯNControlParameter(:A, :B, ฯNParam)
@test Polymer.getparam(model, ฯNc) == 20.0
fc = fControlParameter(1, 1, fParam)
@test Polymer.getparam(model, fc) == 0.5
bc = bControlParameter(:A, bParam)
@test Polymer.getparam(model, bc) == 1.0
model = AB_S_system()
@test component_number_type(model) == BinarySystem()
@test Polymer.ฯฬ(model, :A) == 0.05
@test Polymer.ฯฬ(model, :B) == 0.05
@test Polymer.ฯฬ(model, :S) == 0.9
s3 = A_B_S_system()
@test component_number_type(s3) == TernarySystem()
@test specie_number_type(s3) == MultiSpeciesSystem()
s4 = A_B_S1_S2_system()
@test component_number_type(s4) == MultiComponentSystem()
@test specie_number_type(s4) == MultiSpeciesSystem()
end
@testset "properties.jl: label" begin
model = AB_A_system()
cs = components(model)
@test label.(cs) == component_labels(model)
c1 = first(cs)
@test label(c1) == :AB
@test label(c1) == component_label(c1)
AB = molecule(c1)
@test label(AB) == :AB
b1 = first(blocks(AB))
@test label(b1) == :A
s1 = segment(b1)
@test label(s1) == :A
e1 = first(block_ends(b1))
@test label(e1) == :A
@test label.(blocks(AB)) == block_labels(AB)
@test label(1, model) == :AB
@test isnothing(label(3, model))
@test label(1, AB) == :A
@test isnothing(label(0, AB))
end
@testset "properties.jl: specie, species" begin
model = AB_S_system()
@test species(model) == [:A, :B, :S]
cs = components(model)
c1 = first(cs)
c2 = last(cs)
@test species(c1) == [:A, :B]
@test species(c2) == [:S]
AB = molecule(c1)
S = molecule(c2)
@test species(AB) == [:A, :B]
@test species(S) == [:S]
bA = first(blocks(AB))
bB = last(blocks(AB))
@test specie(bA) == :A
@test specie(bB) == :B
@test specie(S) == :S
@test isempty(blocks(S))
end
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 211 | @testset "serialize.jl: to_config" begin
config_aba = to_config(AB_A_system())
@test config_aba isa PolymerSystemConfig
aba = make(config_aba)
@test systemtype(aba) == PolymerBlend()
end
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 988 | @testset "systems.jl: Components" begin
chainA = homopolymer_chain()
@test length(chainA.blocks) == 1
chainAB = diblock_chain()
@test length(chainAB.blocks) == 2
@test chainAB.blocks[1].E2 == chainAB.blocks[2].E2
@test chainAB.blocks[1].E1 != chainAB.blocks[2].E1
sol = solvent()
@test sol.label == :S
end
@testset "systems.jl: Systems" begin
ab = AB_system()
@test systemtype(ab) == NeatPolymer()
@test multicomponent(ab) == false
@test ncomponents(ab) == 1
@test species(ab) == [:A, :B]
@test nspecies(ab) == 2
aba = AB_A_system()
@test systemtype(aba) == PolymerBlend()
@test multicomponent(aba) == true
@test ncomponents(aba) == 2
@test species(aba) == [:A, :B]
@test nspecies(aba) == 2
abs = AB_S_system()
@test systemtype(abs) == PolymerSolution()
@test multicomponent(abs) == true
@test ncomponents(abs) == 2
@test species(abs) == [:A, :B, :S]
@test nspecies(abs) == 3
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 3624 | @testset "types.jl: Confinement" begin
@test isconfined(BulkConfinement()) == false
@test isconfined(BoxConfinement()) == true
@test isconfined(SlabConfinement()) == true
@test isconfined(DiskConfinement()) == true
@test isconfined(SphereConfinement()) == true
@test isconfined(CylinderConfinement()) == true
end
@testset "types.jl: Charge" begin
@test ischarged(Neutral()) == false
@test ischarged(SmearedCharge()) == true
@test ischarged(DiscreteCharge()) == true
end
@testset "types.jl: Specie" begin
segment = KuhnSegment(:A)
@test segment.b == 1.0
@test segment.M == 1.0
end
@testset "types.jl: Block" begin
sA = KuhnSegment(:A)
e1A = FreeEnd(:A1)
e2A = FreeEnd(:A2)
A = PolymerBlock(:A, sA, 1.0, e1A, e2A)
@test A.f == 1.0
end
@testset "types.jl: Component" begin
sA = KuhnSegment(:A)
sB = KuhnSegment(:B)
e1A = FreeEnd(:A1)
e2A = BranchPoint(:A2)
e1B = FreeEnd(:B1)
e2B = BranchPoint(:B2)
A = PolymerBlock(:A, sA, 0.4, e1A, e2A)
B = PolymerBlock(:B, sB, 0.6, e1B, e2B)
c = BlockCopolymer(:AB, [A,B])
pc = Component(c)
@test pc.ฮฑ == 1.0
@test pc.ฯ == 1.0
smol = SmallMolecule(:S)
@test smol.b == 1.0
@test smol.M == 1.0
sc = Component(smol)
@test sc.ฮฑ == 1.0
@test sc.ฯ == 1.0
end
@testset "types.jl: Polymer System AB+S" begin
sA = KuhnSegment(:A)
sB = KuhnSegment(:B)
e1A = FreeEnd(:A1)
e2A = BranchPoint(:A2)
e1B = FreeEnd(:B1)
e2B = BranchPoint(:B2)
A = PolymerBlock(:A, sA, 0.4, e1A, e2A)
B = PolymerBlock(:B, sB, 0.6, e1B, e2B)
chain = BlockCopolymer(:AB, [A,B])
smol = SmallMolecule(:S)
polymer = Component(chain, 1.0, 0.1)
solvent = Component(smol, 0.01, 0.9)
ฯN_map = Dict(
Set([:A,:B])=>20.0,
Set([:A,:S])=>80.0,
Set([:B,:S])=>120.0)
m = ฯNMatrix(ฯN_map)
ABS = PolymerSystem([polymer, solvent], m)
@test isconfined(ABS.confinement) == false
@test ABS.C == 1.0
@test multicomponent(ABS) == true
@test ncomponents(ABS) == 2
@test species(chain) == [:A, :B]
@test nspecies(chain) == 2
@test species(smol) == [:S]
@test nspecies(smol) == 1
@test species(polymer) == species(chain)
@test nspecies(polymer) == nspecies(chain)
@test species(solvent) == species(smol)
@test nspecies(solvent) == nspecies(smol)
@test species(ABS) == [:A, :B, :S]
@test nspecies(ABS) == 3
@test systemtype(ABS) == PolymerSolution()
end
@testset "types.jl: Polymer System AB+A" begin
sA = KuhnSegment(:A)
sB = KuhnSegment(:B)
eA = FreeEnd(:A1)
eAB = BranchPoint(:AB)
eB = FreeEnd(:B1)
A = PolymerBlock(:A, sA, 0.4, eA, eAB)
B = PolymerBlock(:B, sB, 0.6, eB, eAB)
chainAB = BlockCopolymer(:AB, [A,B])
hA = PolymerBlock(:hA, sA, 1.0, FreeEnd(:hA1), FreeEnd(:hA2))
chainA = BlockCopolymer(:hA, [hA])
polymerAB = Component(chainAB, 1.0, 0.5)
polymerA = Component(chainA, 0.5, 0.5)
ฯN_map = Dict(Set([:A,:B])=>20.0)
AB_A = PolymerSystem([polymerAB, polymerA], ฯN_map)
@test multicomponent(AB_A) == true
@test ncomponents(AB_A) == 2
@test species(chainAB) == [:A, :B]
@test nspecies(chainAB) == 2
@test species(chainA) == [:A]
@test nspecies(chainA) == 1
@test species(polymerAB) == species(chainAB)
@test nspecies(polymerAB) == nspecies(chainAB)
@test species(polymerA) == species(chainA)
@test nspecies(polymerA) == nspecies(chainA)
@test species(AB_A) == [:A, :B]
@test nspecies(AB_A) == 2
@test systemtype(AB_A) == PolymerBlend()
end
| Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 8642 | using Polymer
import Polymer: update!, molecule, block_lengths, block_bs, setparam!, getparam
function starAB3(; fA=0.4, fB1=0.2, fB2=0.2, fB3=0.2)
sA = KuhnSegment(:A)
sB = KuhnSegment(:B)
eb0 = BranchPoint(:EB0)
A = PolymerBlock(:A, sA, fA, FreeEnd(:A), eb0)
B1 = PolymerBlock(:B1, sB, fB1, FreeEnd(:B1), eb0)
B2 = PolymerBlock(:B2, sB, fB2, FreeEnd(:B2), eb0)
B3 = PolymerBlock(:B3, sB, fB3, FreeEnd(:B3), eb0)
return BlockCopolymer(:AB3, [A, B1, B2, B3])
end
function AB3_A_system(; ฯN=12.0, ฯAB3=0.8, ฮฑAB3=1.0, ฮฑA=0.35)
polymerAB3 = Component(starAB3(), ฮฑAB3, ฯAB3)
polymerA = Component(homopolymer_chain(; label=:A, segment=KuhnSegment(:A)), ฮฑA, 1-ฯAB3)
return PolymerSystem([polymerAB3, polymerA],
Dict(Set([:A, :B])=>ฯN))
end
@testset "update.jl: ฯNParam" begin
system = AB3_A_system()
update!(system, :A, :B, 10.0, ฯNParam)
@test Polymer.ฯN(system, :A, :B) == 10.0
system = AB3_A_system()
update!(system, 11.0, ฯNParam)
@test Polymer.ฯN(system, :A, :B) == 11.0
system = AB3_A_system()
update!(system, Dict(Set([:A, :B])=>13.0), ฯNParam)
@test Polymer.ฯN(system, :A, :B) == 13.0
end
@testset "update.jl: molecule" begin
system = AB3_A_system()
bcp = starAB3(; fA=0.1, fB1=0.3, fB2=0.3, fB3=0.3)
update!(system, 1, bcp)
@test block_lengths(molecule(1, system)) == [0.1, 0.3, 0.3, 0.3]
system = AB3_A_system()
bcp = starAB3(; fA=0.1, fB1=0.3, fB2=0.3, fB3=0.3)
update!(system, :AB3, bcp)
@test block_lengths(molecule(:AB3, system)) == [0.1, 0.3, 0.3, 0.3]
system = AB3_A_system()
bcp = starAB3(; fA=0.1, fB1=0.3, fB2=0.3, fB3=0.3)
update!(system, molecule(:AB3, system), bcp)
@test block_lengths(molecule(:AB3, system)) == [0.1, 0.3, 0.3, 0.3]
end
@testset "update.jl: ฯParam" begin
system = AB3_A_system()
update!(system, [2, 1], [0.6, 0.4], ฯParam)
@test Polymer.ฯ(1, system) == 0.4
@test Polymer.ฯ(2, system) == 0.6
system = AB3_A_system()
update!(system, [:A, :AB3], [0.6, 0.4], ฯParam)
@test Polymer.ฯ(:AB3, system) == 0.4
@test Polymer.ฯ(:A, system) == 0.6
system = AB3_A_system()
update!(system, [0.4, 0.6], ฯParam)
@test Polymer.ฯ(:AB3, system) == 0.4
@test Polymer.ฯ(:A, system) == 0.6
system = AB3_A_system()
update!(system, 0.4, ฯParam)
@test Polymer.ฯ(:AB3, system) == 0.4
@test Polymer.ฯ(:A, system) == 0.6
end
@testset "update.jl: ฮฑParam" begin
system = AB3_A_system()
update!(system, 2, 0.5, ฮฑParam)
@test Polymer.ฮฑ(1, system) == 1.0
@test Polymer.ฮฑ(2, system) == 0.5
system = AB3_A_system()
update!(system, :A, 0.5, ฮฑParam)
@test Polymer.ฮฑ(:AB3, system) == 1.0
@test Polymer.ฮฑ(:A, system) == 0.5
system = AB3_A_system()
update!(system, [2, 1], [0.5, 1.0], ฮฑParam)
@test Polymer.ฮฑ(:AB3, system) == 1.0
@test Polymer.ฮฑ(:A, system) == 0.5
system = AB3_A_system()
update!(system, [:A, :AB3], [0.5, 1.0], ฮฑParam)
@test Polymer.ฮฑ(:AB3, system) == 1.0
@test Polymer.ฮฑ(:A, system) == 0.5
system = AB3_A_system()
update!(system, [2], [0.5], ฮฑParam)
@test Polymer.ฮฑ(:AB3, system) == 1.0
@test Polymer.ฮฑ(:A, system) == 0.5
system = AB3_A_system()
update!(system, [:A], [0.5], ฮฑParam)
@test Polymer.ฮฑ(:AB3, system) == 1.0
@test Polymer.ฮฑ(:A, system) == 0.5
system = AB3_A_system()
update!(system, [1.0, 0.5], ฮฑParam)
@test Polymer.ฮฑ(:AB3, system) == 1.0
@test Polymer.ฮฑ(:A, system) == 0.5
end
@testset "update.jl: fParam" begin
bcp = starAB3()
update!(bcp, [2, 3, 4, 1], [0.2, 0.3, 0.4, 0.1], fParam)
@test block_lengths(bcp) == [0.1, 0.2, 0.3, 0.4]
bcp = starAB3()
update!(bcp, [:B1, :B2, :B3, :A], [0.2, 0.3, 0.4, 0.1], fParam)
@test block_lengths(bcp) == [0.1, 0.2, 0.3, 0.4]
bcp = starAB3()
update!(bcp, [0.1, 0.2, 0.3, 0.4], fParam)
@test block_lengths(bcp) == [0.1, 0.2, 0.3, 0.4]
bcp = diblock_chain()
update!(bcp, 0.4, fParam)
@test block_lengths(bcp) == [0.4, 0.6]
system = AB3_A_system()
update!(system, 1, [2, 3, 4, 1], [0.2, 0.3, 0.4, 0.1], fParam)
@test block_lengths(molecule(1, system)) == [0.1, 0.2, 0.3, 0.4]
system = AB3_A_system()
update!(system, :AB3, [2, 3, 4, 1], [0.2, 0.3, 0.4, 0.1], fParam)
@test block_lengths(molecule(:AB3, system)) == [0.1, 0.2, 0.3, 0.4]
system = AB3_A_system()
update!(system, molecule(:AB3, system), [2, 3, 4, 1], [0.2, 0.3, 0.4, 0.1], fParam)
@test block_lengths(molecule(:AB3, system)) == [0.1, 0.2, 0.3, 0.4]
system = AB3_A_system()
update!(system, 1, [0.1, 0.2, 0.3, 0.4], fParam)
@test block_lengths(molecule(1, system)) == [0.1, 0.2, 0.3, 0.4]
system = AB3_A_system()
update!(system, :AB3, [0.1, 0.2, 0.3, 0.4], fParam)
@test block_lengths(molecule(:AB3, system)) == [0.1, 0.2, 0.3, 0.4]
system = AB3_A_system()
update!(system, molecule(:AB3, system), [0.1, 0.2, 0.3, 0.4], fParam)
@test block_lengths(molecule(:AB3, system)) == [0.1, 0.2, 0.3, 0.4]
system = AB_A_system()
update!(system, 1, 0.4, fParam)
@test block_lengths(molecule(1, system)) == [0.4, 0.6]
system = AB_A_system()
update!(system, :AB, 0.4, fParam)
@test block_lengths(molecule(:AB, system)) == [0.4, 0.6]
system = AB_A_system()
update!(system, molecule(:AB, system), 0.4, fParam)
@test block_lengths(molecule(:AB, system)) == [0.4, 0.6]
end
@testset "update.jl: bParam" begin
bcp = starAB3()
Polymer._update!(bcp, 3, 1.2, bParam)
@test block_bs(bcp) == [1.0, 1.0, 1.2, 1.0]
bcp = starAB3()
Polymer._update!(bcp, :B2, 1.2, bParam)
@test block_bs(bcp) == [1.0, 1.0, 1.2, 1.0]
bcp = starAB3()
Polymer._update!(bcp, [:B3, :B1, :B2], [1.3, 1.1, 1.2], bParam)
@test block_bs(bcp) == [1.0, 1.1, 1.2, 1.3]
bcp = starAB3()
Polymer._update!(bcp, [1.0, 1.2, 1.2, 1.2], bParam)
@test block_bs(bcp) == [1.0, 1.2, 1.2, 1.2]
system = AB3_A_system()
update!(system, :A, 1.2, bParam)
@test block_bs(molecule(1,system)) == [1.2, 1.0, 1.0, 1.0]
@test block_bs(molecule(2,system)) == [1.2]
system = AB3_A_system()
update!(system, :B, 1.2, bParam)
@test block_bs(molecule(1,system)) == [1.0, 1.2, 1.2, 1.2]
@test block_bs(molecule(2,system)) == [1.0]
system = AB3_A_system()
update!(system, [:A, :B], [1.1, 1.2], bParam)
@test block_bs(molecule(1,system)) == [1.1, 1.2, 1.2, 1.2]
@test block_bs(molecule(2,system)) == [1.1]
@test Polymer.b(:A, system) == 1.1
@test Polymer.b(:B, system) == 1.2
system = AB3_A_system()
update!(system, [1.1, 1.2], bParam)
@test block_bs(molecule(1,system)) == [1.1, 1.2, 1.2, 1.2]
@test block_bs(molecule(2,system)) == [1.1]
@test Polymer.b(:A, system) == 1.1
@test Polymer.b(:B, system) == 1.2
end
@testset "update.jl: AbstractControlParameter" begin
system = AB3_A_system()
ฯc = ฯControlParameter(2, ฯParam)
update!(system, 0.6, ฯc)
@test Polymer.ฯ(1, system) == 0.4
@test getparam(system, ฯc) == 0.6
setparam!(system, 0.3, ฯc)
@test Polymer.ฯ(1, system) == 0.7
@test getparam(system, ฯc) == 0.3
system = AB3_A_system()
ฮฑc = ฮฑControlParameter(2, ฮฑParam)
update!(system, 0.8, ฮฑc)
@test getparam(system, ฮฑc) == 0.8
system = AB3_A_system()
ฯNc = ฯNControlParameter(:A, :B, ฯNParam)
update!(system, 12.0, ฯNc)
@test getparam(system, ฯNc) == 12.0
system = AB3_A_system()
ff(f) = (one(f) - f)/3 * [1, 1, 1]
id_mol = molecule_id(:AB3, system)
id_block = block_id(:A, molecule(id_mol, system))
fc = fControlParameter(id_block, id_mol, fParam, ff)
update!(system, 0.4, fc)
@test block_lengths(molecule(id_mol, system)) โ [0.4, 0.2, 0.2, 0.2]
system = AB3_A_system()
bc = bControlParameter(:A, bParam)
update!(system, 1.1, bc)
@test getparam(system, bc) == 1.1
@test block_b(:A, molecule(:AB3, system)) == 1.1
@test block_b(:B1, molecule(:AB3, system)) == 1.0
@test block_b(:B2, molecule(:AB3, system)) == 1.0
@test block_b(:B3, molecule(:AB3, system)) == 1.0
@test block_b(:A, molecule(:A, system)) == 1.1
system = AB3_A_system()
bc = bControlParameter(:B, bParam)
update!(system, 1.2, bc)
@test getparam(system, bc) == 1.2
@test block_b(:A, molecule(:AB3, system)) == 1.0
@test block_b(:B1, molecule(:AB3, system)) == 1.2
@test block_b(:B2, molecule(:AB3, system)) == 1.2
@test block_b(:B3, molecule(:AB3, system)) == 1.2
@test block_b(:A, molecule(:A, system)) == 1.0
end
nothing | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | code | 544 | import Polymer
@testset "utils.jl" begin
@test unicodesymbol2string('ฯ') == "phi"
@test unicodesymbol2string('ฮฒ') == "beta"
@test unicodesymbol2string('b') == "b"
d = Dict("a"=>1, "b"=>2, "c"=>3)
@test reverse_dict(d) == Dict(1=>"a", 2=>"b", 3=>"c")
d = Dict("c"=>1, "a"=>1, "b"=>2)
@test reverse_dict(d) == Dict(1=>"a", 2=>"b")
d = Dict("a"=>1, "b"=>2, "c"=>1)
@test reverse_dict(d) == Dict(1=>"a", 2=>"b")
@test Polymer._sort_tuple2((2,1)) == (1,2)
@test Polymer._sort_tuple2((1,2)) == (1,2)
end | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | docs | 4414 | # Polymer.jl
**Polymer.jl** defines a common interface to describe a polymer system.
*Warning: Be aware that this package is currently under active development. The interface is highly unstable and subjects to change frequently.*
## Usage
### Construct a `PolymerSystem` object form scratch
```julia
julia> using Polymer
# Create A and B monomers.
julia> sA = KuhnSegment(:A)
julia> sB = KuhnSegment(:B)
# Create free end and branch point (joint)
julia> eA = FreeEnd(:A1)
julia> eAB = BranchPoint(:AB)
julia> eB = FreeEnd(:B1)
# Create A and B blocks
julia> A = PolymerBlock(:A, sA, 0.5, eA, eAB)
julia> B = PolymerBlock(:B, sB, 0.5, eB, eAB)
# Create a AB diblock copolymer chain
julia> chainAB = BlockCopolymer(:AB, [A,B])
# Create a homopolymer chain
julia> hA = PolymerBlock(:hA, sA, 1.0, FreeEnd(), FreeEnd())
julia> chainA = BlockCopolymer(:hA, [hA])
# Create components
julia> polymerAB = Component(chainAB; ฯ=0.5)
julia> polymerA = Component(chainA; ฯ=0.5)
# Create AB/A polymer blend system.
julia> AB_A = PolymerSystem([polymerAB, polymerA]; ฯN_map=Dict([:A, :B]=>20.0))
```
Convenient functions are also provided to create common polymer chains and systems. For example, above AB chain, A chain, AB/A polymer blend system can be simply created by a single line of code, respectively.
```julia
julia> diblock_chain() # AB chain
julia> homopolymer_chain() # A chain
julia> AB_A_system() # AB/A polymer blend
```
### Properties
```julia
julia> abc = linear_ABC()
julia> Polymer.block_labels(abc) # get block labels
julia> ab_a = AB_A_system()
julia> Polymer.block_labels(:AB, ab_a) # get block labels of a specific component
```
Available properties are listed below:
```julia
specie_object, specie_objects, isconfined, ischarged, ฯN, ฯNmap, ฯNmatrix, multicomponent, ncomponents, specie, species, nspecies, systemtype, component_number_type, specie_number_type, label, name, components, component, component_label, component_id, ฯs, ฯ, ฮฑ, ฮฑs, molecules, molecule, molecule_label, molecule_id, molecule_labels, molecule_ids, isfreeblockend, block_ends, segment, nblocks, blocks, block_label, block_labels, block_id, block_ids, block_lengths, block_length, block_specie, block_bs, block_b, b, bs, getparam, ฯฬ
```
### Update/Modify a `PolymerSystem` object
Parameters in a parameters can be achieved or updated easily via `update!` or `setparam!` function. There are two kinds of parameter defined by `AbstractParameter` and `AbstractControlParameter`, respectively. The first kind makes lower level setting of parameters possible. However, it is more complicated and the signature of `update!` is less unified. The second kind provides a convenient and unified way to read and write a PolymerSystem instance. However, it only supports update a single value of any parameter. One can use `AbstractControlParameter` to define a parameter which is considered to be an independent variable in a set of simulations or for construction of a phase diagram. Currently, there are 5 concrete types of `AbstractControlParameter`:
* `ฯControlParameter`
* `ฮฑControlParameter`
* `ฯNControlParameter`
* `fControlParameter`
* `bControlParameter`
```julia
julia> system = AB_A_system()
# ฯAB = 0.5, ฯA = 0.5
julia> ฯA = ฯControlParameter(:hA, system) # ฯA is the control parameter
julia> update!(system, 0.6, ฯA) # ฯAB will be updated accordingly due to the conservation of mass.
# ฯAB = 0.4, ฯA = 0.6
```
For more details, consult the testing codes reside in `test` folder.
### Serialization and configurations
Based on Configurations.jl, we can serialize a `PolymerSystem` object to a `PolymerSystemConfig` object. Then the `PolymerSystemConfig` object can be saved to a YAML file.
```julia
julia> config = to_config(AB_A_system())
julia> save_config("./AB_A.yml", config)
```
We can load the `PolymerSystemConfig` object back from the YAML file. Then we can re-construct the `PolymerSystem` object from the `PolymerSystemConfig` object.
```julia
julia> config = load_config("./AB_A.yml", PolymerSystemConfig)
julia> AB_A = Polymer.make(config)
# or
julia> AB_A = PolymerSystem(config)
```
## Contribute
* Star the package on [github.com](https://github.com/liuyxpp/Polymer.jl).
* File an issue or make a pull request on [github.com](https://github.com/liuyxpp/Polymer.jl).
* Contact the author via email <[email protected]>.
## Links
* [Source code](https://github.com/liuyxpp/Polymer.jl) | Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"BSD-3-Clause"
] | 0.8.11 | acb934136ab1344643fbfbc188d981aaa017dec5 | docs | 101 | ```@meta
CurrentModule = Polymer
```
# Polymer
```@index
```
```@autodocs
Modules = [Polymer]
```
| Polymer | https://github.com/liuyxpp/Polymer.jl.git |
|
[
"MIT"
] | 0.1.5 | 8a5d4332019e086e06b68563bd1b26073ac1dbfc | code | 591 | using Jl2Py
using Documenter
DocMeta.setdocmeta!(Jl2Py, :DocTestSetup, :(using Jl2Py); recursive=true)
makedocs(; modules=[Jl2Py], authors="Gabriel Wu <[email protected]> and contributors",
repo="https://github.com/lucifer1004/Jl2Py.jl/blob/{commit}{path}#{line}", sitename="Jl2Py.jl",
format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://lucifer1004.github.io/Jl2Py.jl", assets=String[]),
pages=["Home" => "index.md"])
deploydocs(; repo="github.com/lucifer1004/Jl2Py.jl", devbranch="main")
| Jl2Py | https://github.com/lucifer1004/Jl2Py.jl.git |
|
[
"MIT"
] | 0.1.5 | 8a5d4332019e086e06b68563bd1b26073ac1dbfc | code | 20095 | module Jl2Py
export jl2py, unparse
using MLStyle
using PythonCall
const AST = PythonCall.pynew()
const OP_DICT = Dict{Symbol,Py}()
const OP_UDICT = Dict{Symbol,Py}()
const TYPE_DICT = Dict{Symbol,String}()
const BUILTIN_DICT = Dict{Symbol,String}()
function __unaryop(jl_expr, op)
operand = __jl2py(jl_expr.args[2])
unaryop = AST.UnaryOp(op(), operand)
return unaryop
end
function __binop(jl_expr, op)
left = __jl2py(jl_expr.args[2])
right = __jl2py(jl_expr.args[3])
binop = AST.BinOp(left, op(), right)
return binop
end
function __boolop(jl_expr, op)
left = __jl2py(jl_expr.args[1])
right = __jl2py(jl_expr.args[2])
boolop = AST.BoolOp(op(), [left, right])
return boolop
end
function __compareop_from_comparison(jl_expr)
elts = __jl2py(jl_expr.args[1:2:end])
ops = map(x -> OP_DICT[x](), jl_expr.args[2:2:end])
compareop = AST.Compare(elts[1], ops, elts[2:end])
return compareop
end
function __compareop_from_call(jl_expr, op)
elts = __jl2py(jl_expr.args[2:end])
compareop = AST.Compare(elts[1], [op()], elts[2:end])
return compareop
end
function __multiop(jl_expr, op)
left = __jl2py(jl_expr.args[2])
right = __jl2py(jl_expr.args[3])
binop = AST.BinOp(left, op(), right)
argcnt = length(jl_expr.args)
for i in 4:argcnt
right = __jl2py(jl_expr.args[i])
binop = AST.BinOp(binop, op(), right)
end
return binop
end
function __parse_arg(arg::Union{Symbol,Expr})
if isa(arg, Symbol)
return AST.arg(pystr(arg))
elseif arg.head == :(::)
return AST.arg(pystr(arg.args[1]), __parse_type(arg.args[2]))
end
end
function __parse_args(params)
posonlyargs = []
defaults = []
kwonlyargs = []
kw_defaults = []
kwarg = nothing
vararg = nothing
for arg in params
if isa(arg, Symbol) || arg.head == :(::)
push!(posonlyargs, __parse_arg(arg))
elseif arg.head == :kw
push!(posonlyargs, __parse_arg(arg.args[1]))
push!(defaults, __jl2py(arg.args[2]))
elseif arg.head == :...
vararg = __parse_arg(arg.args[1])
elseif arg.head == :parameters
for param in arg.args
if isa(param, Symbol)
push!(kwonlyargs, __parse_arg(param))
push!(kw_defaults, nothing)
elseif param.head == :kw
push!(kwonlyargs, __parse_arg(param.args[1]))
push!(kw_defaults, __jl2py(param.args[2]))
elseif param.head == :...
kwarg = __parse_arg(param.args[1])
end
end
end
end
return AST.arguments(; args=PyList(),
posonlyargs=PyList(posonlyargs),
kwonlyargs=PyList(kwonlyargs),
defaults=PyList(defaults),
kw_defaults=PyList(kw_defaults),
kwarg=kwarg, vararg=vararg)
end
function __parse_pair(expr::Expr)
(expr.head == :call && expr.args[1] == :(=>)) || error("Invalid pair expr")
return __jl2py(expr.args[2]), __jl2py(expr.args[3])
end
"""
Parse a Julia range (leading by :(:)).
We modify the end when all args are `Integer`s. For example:
- `1:3` becomes `range(1, 4)`
- `1:5:11` becomes `range(1, 12, 5)`
- `1:-5:-9` becomes `range(1, -10, -5)`
We also modify the end when the step is implicit (=1). For example:
- `a:b` becomes `range(a, b + 1)`
This might cause problems in such cases as `1.5:1.8`, but since Python only supports integer-indexed implicit ranges,
we do not consider such edge cases here.
"""
function __parse_range(args::AbstractVector)
@match args begin
[start::Integer, stop::Integer] => [AST.Constant(start), AST.Constant(stop + 1)]
[start, stop] => [__jl2py(start), AST.BinOp(__jl2py(stop), AST.Add(), AST.Constant(1))]
[start::Integer, step::Integer, stop::Integer] => [AST.Constant(start), AST.Constant(stop + sign(step)),
__jl2py(step)]
[start, step, stop] => [__jl2py(start), __jl2py(stop), __jl2py(step)]
end
end
function __parse_type(typ::Union{Symbol,Expr})
@match typ begin
::Symbol => AST.Name(get(TYPE_DICT, typ, pystr(typ)))
Expr(:curly, arg1, arg2) => AST.Subscript(__parse_type(arg1), __parse_type(arg2))
Expr(:curly, arg1, args...) => AST.Subscript(__parse_type(arg1), AST.Tuple(map(__parse_type, args)))
end
end
function __parse_generator(args::AbstractVector)
return PyList(vcat(map(args) do arg
if arg.head == :(=)
target = __jl2py(arg.args[1])
iter = __jl2py(arg.args[2])
[AST.comprehension(target, iter, PyList(); is_async=false)]
else
__jl2py(arg)
end
end...))
end
function __parse_if(expr::Expr)
# Julia's `if` is always an expression, while Python's `if` is mostly a statement.
test = __jl2py(expr.args[1])
@match expr.args[2] begin
Expr(:block, _...) => begin
# AST.If
body = __jl2py(expr.args[2])
orelse = length(expr.args) == 3 ? __jl2py(expr.args[3]) : nothing
if !isnothing(orelse) && !isa(orelse, Vector)
orelse = PyList([orelse])
end
AST.If(test, body, orelse)
end
_ => begin
# AST.IfExp
body = __jl2py(expr.args[2])
orelse = __jl2py(expr.args[3])
AST.IfExp(test, body, orelse)
end
end
end
function __parse_function(expr::Expr)
returns = nothing
if expr.args[1].head == :call
name = expr.args[1].args[1]
params = expr.args[1].args[2:end]
elseif expr.args[1].head == :(::)
returns = __parse_type(expr.args[1].args[2])
name = expr.args[1].args[1].args[1]
params = expr.args[1].args[1].args[2:end]
else
expr.head = :-> # Assume it to be a lambda
return __jl2py(expr)
end
arguments = __parse_args(params)
# # The following code tries to handle return issue in Julia
# # but still has some issues.
#
# i = lastindex(jl_expr.args[2].args)
# while i > 0 && isa(jl_expr.args[2].args[i], LineNumberNode)
# i -= 1
# end
# if i > 0
# last_arg = jl_expr.args[2].args[i]
# if !(isa(last_arg, Expr) && last_arg.head == :return)
# jl_expr.args[2].args[i] = Expr(:return, last_arg)
# end
# end
body = __jl2py(expr.args[2])
if isempty(body)
push!(body, AST.Pass())
elseif !pyisinstance(body[end], AST.Return)
if pyisinstance(body[end], AST.Assign)
push!(body, AST.Return(body[end].targets[0]))
elseif pyisinstance(body[end], AST.AugAssign)
push!(body, AST.Return(body[end].target))
elseif pyisinstance(body[end], AST.Expr)
body[end] = AST.Return(body[end].value)
elseif !pyisinstance(body[end], AST.For) && !pyisinstance(body[end], AST.While)
body[end] = AST.Return(body[end])
end
end
return AST.fix_missing_locations(AST.FunctionDef(pystr(name),
arguments,
PyList(body), PyList(); returns=returns))
end
function __parse_lambda(expr::Expr)
begin
body = __jl2py(expr.args[2])
if isa(expr.args[1], Expr) && expr.args[1].head == :(::) && !isa(expr.args[1].args[1], Symbol)
expr = expr.args[1]
end
if isa(expr.args[1], Symbol) || expr.args[1].head == :(::)
arguments = __parse_args([expr.args[1]])
else
map!(expr.args[1].args, expr.args[1].args) do arg
return isa(arg, Expr) && arg.head == :(=) ? Expr(:kw, arg.args[1], arg.args[2]) : arg
end
if expr.args[1].head == :tuple
arguments = __parse_args(expr.args[1].args)
else
expr.args[1].head == :block || error("Invalid lambda")
split_pos = findfirst(x -> isa(x, LineNumberNode), expr.args[1].args)
wrapped_args = expr.args[1].args[1:(split_pos - 1)]
keyword_args = Expr(:parameters,
map(expr.args[1].args[(split_pos + 1):end]) do arg
return arg.head == :(=) ? Expr(:kw, arg.args[1], arg.args[2]) : arg
end...)
push!(wrapped_args, keyword_args)
arguments = __parse_args(wrapped_args)
end
end
length(body) >= 2 && error("Python lambdas can only have one statement.")
# # Use a hacky way to compress all lines of body into one line
# if length(body) > 1
# prev = map(x -> AST.BoolOp(AST.And(), [x, AST.Constant(false)]), body[1:(end - 1)])
# body = AST.BoolOp(AST.Or(), PyList([prev..., body[end]]))
# else
# body = body[1]
# end
return AST.Lambda(arguments, body[1])
end
end
function __parse_ref(value, slices)
value = __jl2py(value)
map!(slices, slices) do arg
if isa(arg, Expr) && arg.args[1] == :(:)
slice = AST.Slice(__parse_range(arg.args[2:end])...)
else
slice = __jl2py(arg)
end
end
slice = length(slices) == 1 ? slices[1] : AST.Tuple(PyList(slices))
return AST.Subscript(value, slice)
end
function __parse_generator(arg1, args; isflatten, iscomprehension)
if isflatten
elt, extra_gens = __jl2py(arg1; iscomprehension=iscomprehension)
gens = __parse_generator(args)
append!(gens, extra_gens)
else
elt = __jl2py(arg1)
gens = __parse_generator(args)
end
return iscomprehension ? (elt, gens) : AST.GeneratorExp(elt, gens)
end
function __parse_filter(filter, args)
filter = __jl2py(filter)
return map(1:length(args)) do i
arg = args[i]
target = __jl2py(arg.args[1])
iter = __jl2py(arg.args[2])
return i == length(args) ? AST.comprehension(target, iter, PyList([filter]); is_async=false) :
AST.comprehension(target, iter, PyList(); is_async=false)
end
end
function __parse_call(jl_expr, arg1, args; topofblock)
if arg1 == :+
if length(args) == 1
__unaryop(jl_expr, OP_UDICT[arg1])
else
__multiop(jl_expr, OP_DICT[arg1])
end
elseif arg1 โ [:-, :~, :(!)]
if length(args) == 1
__unaryop(jl_expr, OP_UDICT[arg1])
else
__binop(jl_expr, OP_DICT[arg1])
end
elseif arg1 == :*
__multiop(jl_expr, OP_DICT[arg1])
elseif arg1 == :(:)
AST.Call(AST.Name("range"), __parse_range(args), [])
elseif arg1 โ [:/, :รท, :div, :%, :mod, :^, :&, :|, :โป, :xor, :(<<), :(>>)]
__binop(jl_expr, OP_DICT[arg1])
elseif arg1 โ [:(==), :(===), :โ , :(!=), :(!==), :<, :<=, :>, :>=, :โ, :โ, :in]
__compareop_from_call(jl_expr, OP_DICT[arg1])
elseif arg1 == :(=>)
AST.Tuple(__jl2py(args))
elseif arg1 == :Dict ||
(isa(arg1, Expr) && arg1.head == :curly && arg1.args[1] == :Dict)
# Handle generator separately
if length(args) == 1 && args[1].head == :generator
generator = __jl2py(args[1])
dict_call = AST.Call(AST.Name("dict"), PyList([generator]), PyList())
return topofblock ? AST.Expr(dict_call) : dict_call
end
_keys = []
values = []
for arg in args
if isa(arg, Expr) && arg.head == :...
push!(_keys, nothing)
push!(values, __jl2py(arg.args[1]))
else
key, value = __parse_pair(arg)
push!(_keys, key)
push!(values, value)
end
end
AST.fix_missing_locations(AST.Dict(PyList(_keys), PyList(values)))
else
if isa(arg1, Symbol) || arg1.head == :curly
# We discard the curly braces trailing a function call
arg = isa(arg1, Symbol) ? arg1 : arg1.args[1]
if arg โ keys(BUILTIN_DICT)
func = AST.Name(BUILTIN_DICT[arg])
elseif string(arg1)[end] != '!'
func = AST.Name(string(arg))
else
func = AST.Name(string(arg)[1:(end - 1)] * "_inplace")
end
else
func = __jl2py(arg1)
end
parameters = []
keywords = []
for arg in args
if isa(arg, Expr) && arg.head == :parameters
for param in arg.args
if param.head == :kw
key = pystr(param.args[1])
value = __jl2py(param.args[2])
push!(keywords, AST.keyword(key, value))
elseif param.head == :...
value = __jl2py(param.args[1])
push!(keywords, AST.keyword(nothing, value))
end
end
else
push!(parameters, __jl2py(arg))
end
end
call = AST.Call(func, parameters, keywords)
topofblock ? AST.Expr(call) : call
end
end
function __parse_assign(args)
@match args[1] begin
Expr(:(::), target, annotation) => AST.fix_missing_locations(AST.AnnAssign(__jl2py(target),
__parse_type(annotation),
__jl2py(args[2]), nothing)) # AnnAssign
_ => begin # Assign
targets = PyList()
curr = args
while isa(curr[2], Expr) && curr[2].head == :(=)
push!(targets, __jl2py(curr[1]))
curr = curr[2].args
end
last_target, value = __jl2py(curr)
push!(targets, last_target)
return AST.fix_missing_locations(AST.Assign(targets, value))
end
end
end
__jl2py(args::AbstractVector) = map(__jl2py, args)
function __jl2py(jl_constant::Union{Number,String}; topofblock::Bool=false)
return topofblock ? AST.Expr(AST.Constant(jl_constant)) : AST.Constant(jl_constant)
end
function __jl2py(jl_symbol::Symbol; topofblock::Bool=false)
name = jl_symbol == :nothing ? AST.Constant(nothing) : AST.Name(pystr(jl_symbol))
return topofblock ? AST.Expr(name) : name
end
function __jl2py(jl_qnode::QuoteNode; topofblock::Bool=false)
return string(jl_qnode.value)
end
__jl2py(::Nothing) = AST.Constant(nothing)
function __jl2py(jl_expr::Expr; topofblock::Bool=false, isflatten::Bool=false, iscomprehension::Bool=false)
@match jl_expr begin
Expr(:block, args...) ||
Expr(:toplevel, args...) => PyList([__jl2py(expr; topofblock=true)
for expr in args if !isa(expr, LineNumberNode)])
Expr(:function, _...) => __parse_function(jl_expr)
Expr(:(&&), _...) ||
Expr(:(||), _...) => __boolop(jl_expr, OP_DICT[jl_expr.head])
Expr(:tuple, args...) => AST.Tuple(__jl2py(jl_expr.args))
Expr(:..., arg) => AST.Starred(__jl2py(arg))
Expr(:., arg1, arg2) => AST.Attribute(__jl2py(arg1), __jl2py(arg2))
Expr(:->, _...) => __parse_lambda(jl_expr)
Expr(:if, _...) || Expr(:elseif, _...) => __parse_if(jl_expr)
Expr(:while, test, body) => AST.While(__jl2py(test), __jl2py(body), nothing)
Expr(:for, Expr(_, target, iter), body) => AST.fix_missing_locations(AST.For(__jl2py(target), __jl2py(iter),
__jl2py(body), nothing, nothing))
Expr(:continue) => AST.Continue()
Expr(:break) => AST.Break()
Expr(:return, arg) => AST.Return(__jl2py(arg))
Expr(:ref, value, slices...) => __parse_ref(value, slices)
Expr(:comprehension, arg) => AST.ListComp(__jl2py(arg; iscomprehension=true)...)
Expr(:generator, arg1, args...) => __parse_generator(arg1, args; isflatten, iscomprehension)
Expr(:filter, filter, args...) => __parse_filter(filter, args)
Expr(:flatten, arg) => __jl2py(arg; isflatten=true, iscomprehension=iscomprehension)
Expr(:comparison, _...) => __compareop_from_comparison(jl_expr)
Expr(:call, arg1, args...) => __parse_call(jl_expr, arg1, args; topofblock)
Expr(:(=), args...) => __parse_assign(args)
Expr(:vect, args...) => AST.List(__jl2py(args))
Expr(op, target, value) => AST.fix_missing_locations(AST.AugAssign(__jl2py(target),
OP_DICT[op](),
__jl2py(value)))
_ => begin
@warn("Pattern unmatched")
return AST.Constant(nothing)
end
end
end
jl2py(ast) = __jl2py(ast)
unparse(ast) = AST.unparse(ast)
function jl2py(jl_str::String; ast_only::Bool=false, apply_polyfill::Bool=false)
jl_ast = Meta.parse(jl_str)
if isnothing(jl_ast)
return ""
end
py_ast = __jl2py(jl_ast)
if ast_only
return py_ast
end
_module = AST.Module(PyList([py_ast]), [])
py_str = AST.unparse(_module)
if apply_polyfill
polyfill = read(joinpath(@__DIR__, "..", "polyfill", "polyfill.py"), String)
return polyfill * "\n" * string(py_str)
end
return string(py_str)
end
function __init__()
PythonCall.pycopy!(AST, pyimport("ast"))
OP_UDICT[:+] = AST.UAdd
OP_UDICT[:-] = AST.USub
OP_UDICT[:~] = AST.Invert
OP_UDICT[:(!)] = AST.Not
OP_DICT[:+] = AST.Add
OP_DICT[:-] = AST.Sub
OP_DICT[:*] = AST.Mult
OP_DICT[:/] = AST.Div
OP_DICT[:รท] = AST.FloorDiv
OP_DICT[:div] = AST.FloorDiv
OP_DICT[:%] = AST.Mod
OP_DICT[:mod] = AST.Mod
OP_DICT[:^] = AST.Pow
OP_DICT[:(==)] = AST.Eq
OP_DICT[:(===)] = AST.Eq
OP_DICT[:โ ] = AST.NotEq
OP_DICT[:(!=)] = AST.NotEq
OP_DICT[:(!==)] = AST.NotEq
OP_DICT[:<] = AST.Lt
OP_DICT[:<=] = AST.LtE
OP_DICT[:>=] = AST.GtE
OP_DICT[:>] = AST.Gt
OP_DICT[:in] = AST.In
OP_DICT[:โ] = AST.In
OP_DICT[:โ] = AST.NotIn
OP_DICT[:(<<)] = AST.LShift
OP_DICT[:(>>)] = AST.RShift
OP_DICT[:&] = AST.BitAnd
OP_DICT[:|] = AST.BitOr
OP_DICT[:โป] = AST.BitXor
OP_DICT[:xor] = AST.BitXor
OP_DICT[:(&&)] = AST.And
OP_DICT[:(||)] = AST.Or
OP_DICT[:+=] = AST.Add
OP_DICT[:-=] = AST.Sub
OP_DICT[:*=] = AST.Mult
OP_DICT[:/=] = AST.Div
OP_DICT[:รท=] = AST.FloorDiv
OP_DICT[:%=] = AST.Mod
OP_DICT[:^=] = AST.Pow
OP_DICT[:(<<=)] = AST.LShift
OP_DICT[:(>>=)] = AST.RShift
OP_DICT[:&=] = AST.BitAnd
OP_DICT[:|=] = AST.BitOr
OP_DICT[:โป=] = AST.BitXor
TYPE_DICT[:Float32] = "float"
TYPE_DICT[:Float64] = "float"
TYPE_DICT[:Int] = "int"
TYPE_DICT[:Int8] = "int"
TYPE_DICT[:Int16] = "int"
TYPE_DICT[:Int32] = "int"
TYPE_DICT[:Int64] = "int"
TYPE_DICT[:Int128] = "int"
TYPE_DICT[:UInt] = "int"
TYPE_DICT[:UInt8] = "int"
TYPE_DICT[:UInt16] = "int"
TYPE_DICT[:UInt32] = "int"
TYPE_DICT[:UInt64] = "int"
TYPE_DICT[:UInt128] = "int"
TYPE_DICT[:Bool] = "bool"
TYPE_DICT[:Char] = "str"
TYPE_DICT[:String] = "str"
TYPE_DICT[:Vector] = "List"
TYPE_DICT[:Set] = "Set"
TYPE_DICT[:Dict] = "Dict"
TYPE_DICT[:Tuple] = "Tuple"
TYPE_DICT[:Pair] = "Tuple"
TYPE_DICT[:Union] = "Union"
TYPE_DICT[:Nothing] = "None"
BUILTIN_DICT[:length] = "len"
BUILTIN_DICT[:sort] = "sorted"
BUILTIN_DICT[:print] = "print"
BUILTIN_DICT[:println] = "print"
BUILTIN_DICT[:Set] = "set"
return
end
end
| Jl2Py | https://github.com/lucifer1004/Jl2Py.jl.git |
|
[
"MIT"
] | 0.1.5 | 8a5d4332019e086e06b68563bd1b26073ac1dbfc | code | 15192 | using Jl2Py
using PythonCall
using Test
@testset "Jl2Py.jl" begin
@testset "Basic functions" begin
@testset "Empty" begin
@test jl2py("") == ""
@test jl2py("#comment") == ""
end
@testset "Literal constants" begin
@test jl2py("2") == "2"
@test jl2py("2.0") == "2.0"
@test jl2py("\"hello\"") == "'hello'"
@test jl2py("false") == "False"
@test jl2py("true") == "True"
@test jl2py("nothing") == "None"
@test jl2py("foo") == "foo"
end
@testset "Attributes" begin
@test jl2py("a.b") == "a.b"
@test jl2py("a.b.c") == "a.b.c"
@test jl2py("a.b.c.d") == "a.b.c.d"
end
@testset "UAdd & USub" begin
@test jl2py("+3") == "3"
@test jl2py("-3") == "-3"
@test jl2py("+a") == "+a"
@test jl2py("-a") == "-a"
end
@testset "Add" begin
@test jl2py("1 + 1") == "1 + 1"
@test jl2py("1 + 1 + 1") == "1 + 1 + 1"
@test jl2py("1 + 1 + 1 + 1") == "1 + 1 + 1 + 1"
@test jl2py("a + 2") == "a + 2"
@test jl2py("a + b") == "a + b"
end
@testset "Sub" begin
@test jl2py("1 - 1") == "1 - 1"
@test jl2py("a - 2") == "a - 2"
@test jl2py("a - b") == "a - b"
end
@testset "Mult" begin
@test jl2py("1 * 2") == "1 * 2"
@test jl2py("1 * 2 * 3") == "1 * 2 * 3"
end
@testset "Div & FloorDiv" begin
@test jl2py("1 / 2") == "1 / 2"
@test jl2py("1 รท 3") == "1 // 3"
@test jl2py("div(3, 1)") == "3 // 1"
end
@testset "Mod" begin
@test jl2py("1 % 2") == "1 % 2"
@test jl2py("mod(3, 1)") == "3 % 1"
end
@testset "Pow" begin
@test jl2py("10 ^ 5") == "10 ** 5"
end
@testset "Bitwise operators" begin
@test jl2py("~2") == "~2"
@test jl2py("1 & 2") == "1 & 2"
@test jl2py("1 | 2") == "1 | 2"
@test jl2py("1 โป 2") == "1 ^ 2"
@test jl2py("xor(1, 2)") == "1 ^ 2"
@test jl2py("1 << 2") == "1 << 2"
@test jl2py("1 >> 2") == "1 >> 2"
@test jl2py("1 + (-2 * 6) >> 2") == "1 + (-2 * 6 >> 2)" # Note the different association order
end
@testset "Logical operators" begin
@test jl2py("!true") == "not True"
@test jl2py("!false") == "not False"
@test jl2py("!a") == "not a"
@test jl2py("true && false") == "True and False"
@test jl2py("true || false") == "True or False"
end
@testset "Complex arithmetic" begin
@test jl2py("(1 + 5) * (2 - 5) / (3 * 6)") == "(1 + 5) * (2 - 5) / (3 * 6)"
end
@testset "Binary comparisons" begin
@test jl2py("1 == 2") == "1 == 2"
@test jl2py("1 === 2") == "1 == 2"
@test jl2py("1 != 2") == "1 != 2"
@test jl2py("1 < 2") == "1 < 2"
@test jl2py("1 <= 2") == "1 <= 2"
@test jl2py("1 > 2") == "1 > 2"
@test jl2py("1 >= 2") == "1 >= 2"
@test jl2py("a โ b") == "a in b"
@test jl2py("a in b") == "a in b"
@test jl2py("a โ b") == "a not in b"
end
@testset "Multiple comparisons" begin
@test jl2py("1 < 2 < 3") == "1 < 2 < 3"
@test jl2py("1 < 2 < 3 < 4") == "1 < 2 < 3 < 4"
@test jl2py("3 > 2 != 3 == 3") == "3 > 2 != 3 == 3"
end
@testset "Ternary operator" begin
@test jl2py("x > 2 ? 1 : 0") == "1 if x > 2 else 0"
end
@testset "Ranges" begin
@test jl2py("1:10") == "range(1, 11)"
@test jl2py("1:2:10") == "range(1, 11, 2)"
@test jl2py("a:b") == "range(a, b + 1)"
@test jl2py("1:0.1:5") == "range(1, 5, 0.1)"
end
@testset "List" begin
@test jl2py("[1, 2, 3]") == "[1, 2, 3]"
@test jl2py("[1, 2 + 3, 3]") == "[1, 2 + 3, 3]"
@test jl2py("[1, 2, [3, 4], []]") == "[1, 2, [3, 4], []]"
end
@testset "Pair" begin
@test jl2py("1 => 2") == "(1, 2)"
@test jl2py("a => b") == "(a, b)"
@test jl2py("a => b => c") == "(a, (b, c))"
end
@testset "Tuple" begin
@test jl2py("(1,)") == "(1,)"
@test jl2py("(1, 2, 3)") == "(1, 2, 3)"
@test jl2py("(1, 2, 3,)") == "(1, 2, 3)"
@test jl2py("(a, a + b, c)") == "(a, a + b, c)"
end
@testset "Dict" begin
@test jl2py("Dict(1=>2, 3=>14)") == "{1: 2, 3: 14}"
@test jl2py("Dict{Number,Number}(1=>2, 3=>14)") == "{1: 2, 3: 14}" # Type info is discarded
end
@testset "Expansion" begin
@test jl2py("(a...,)") == "(*a,)"
@test jl2py("[a..., b...]") == "[*a, *b]"
@test jl2py("Dict(a..., b => c)") == "{**a, b: c}"
end
@testset "Assign" begin
@test jl2py("a = 2") == "a = 2"
@test jl2py("a = 2 + 3") == "a = 2 + 3"
@test jl2py("a = b = 2") == "a = b = 2"
@test jl2py("a = b = c = 23 + 3") == "a = b = c = 23 + 3"
end
@testset "AnnAssign" begin
@test jl2py("a::Int = 2") == "(a): int = 2"
end
@testset "AugAssign" begin
@test jl2py("a += 2") == "a += 2"
@test jl2py("a -= 2 + 3") == "a -= 2 + 3"
@test jl2py("a *= 2") == "a *= 2"
@test jl2py("a /= 2") == "a /= 2"
@test jl2py("a รท= 2") == "a //= 2"
@test jl2py("a %= 2") == "a %= 2"
@test jl2py("a ^= 2") == "a **= 2"
@test jl2py("a <<= 2") == "a <<= 2"
@test jl2py("a >>= 2") == "a >>= 2"
@test jl2py("a &= 2") == "a &= 2"
@test jl2py("a |= 2") == "a |= 2"
@test jl2py("a โป= 2") == "a ^= 2"
end
@testset "If statement" begin
@test jl2py("if x > 3 x += 2 end") == "if x > 3:\n x += 2"
@test jl2py("if x > 3 x += 2 else x -= 1 end") == "if x > 3:\n x += 2\nelse:\n x -= 1"
@test jl2py("if x > 3 x += 2 elseif x < 0 x -= 1 end") ==
"if x > 3:\n x += 2\nelif x < 0:\n x -= 1"
end
@testset "Loops" begin
@testset "While statement" begin
@test jl2py("while x > 3 x -= 1 end") == "while x > 3:\n x -= 1"
end
@testset "For statement" begin
@test jl2py("for (x, y) in zip(a, b) print(x) end") ==
"for (x, y) in zip(a, b):\n print(x)"
end
@testset "Loop with continue & break" begin
@test jl2py("""
for i in 1:10
if i % 2 == 0
continue
elseif i % 7 == 0
break
else
print(i)
end
end""") ==
"for i in range(1, 11):\n" *
" if i % 2 == 0:\n" *
" continue\n" *
" elif i % 7 == 0:\n" *
" break\n" *
" else:\n" *
" print(i)"
end
end
@testset "Subscript" begin
@test jl2py("a[1]") == "a[1]"
@test jl2py("a[1:5]") == "a[1:6]"
@test jl2py("a[1:2:5]") == "a[1:6:2]"
@test jl2py("a[1,2,3]") == "a[1, 2, 3]"
@test jl2py("a[1,2:5,3]") == "a[1, 2:6, 3]"
@test jl2py("a[:,1,2:4]") == "a[:, 1, 2:5]"
@test jl2py("d[\"a\"]") == "d['a']"
end
@testset "GeneratorExp" begin
@test jl2py("sum(x for x in 1:100)") == "sum((x for x in range(1, 101)))"
@test jl2py("Set(x for x in 1:100)") == "set((x for x in range(1, 101)))"
@test jl2py("Dict(x=>y for (x, y) in zip(1:5, 1:6))") ==
"dict(((x, y) for (x, y) in zip(range(1, 6), range(1, 7))))"
end
@testset "List Comprehension" begin
@test jl2py("[x for x in 1:5]") == "[x for x in range(1, 6)]"
@test jl2py("[x for x in 1:5 if x % 2 == 0]") ==
"[x for x in range(1, 6) if x % 2 == 0]"
@test jl2py("[(x, y) for (x, y) in zip(1:5, 5:-1:1)]") ==
"[(x, y) for (x, y) in zip(range(1, 6), range(5, 0, -1))]"
@test jl2py("[x + 2 for x in 1:5 if x > 0]") ==
"[x + 2 for x in range(1, 6) if x > 0]"
@test jl2py("[x for x in 1:5 if x > 4 for y in 1:5 if y >4]") ==
"[x for x in range(1, 6) if x > 4 for y in range(1, 6) if y > 4]"
@test jl2py("[1 for y in 1:5, z in 1:6 if y > z]") ==
"[1 for y in range(1, 6) for z in range(1, 7) if y > z]"
@testset "GeneratorExp within Generator" begin
@test jl2py("[x for x in 1:5 if x > 4 for y in 1:5 if y >4 for z in 1:sum(x for x in 1:5)]") ==
"[x for x in range(1, 6) if x > 4 for y in range(1, 6) if y > 4 for z in range(1, sum((x for x in range(1, 6))) + 1)]"
end
end
@testset "Function call (and builtins)" begin
@test jl2py("print(2)") == "print(2)"
@test jl2py("println(2)") == "print(2)"
@test jl2py("length(a)") == "len(a)"
@test jl2py("sort([2, 3, 4])") == "sorted([2, 3, 4])"
@test jl2py("sort!([1, 5, 3])") == "sort_inplace([1, 5, 3])" # The trailing "!" is replaced by "_inplace"
@test jl2py("f(a)") == "f(a)"
@test jl2py("f(a, b)") == "f(a, b)"
@test jl2py("f(a, b; c = 2)") == "f(a, b, c=2)"
@test jl2py("f(a, b; kw...)") == "f(a, b, **kw)"
@test jl2py("f(a, b, d...; c = 2, e...)") == "f(a, b, *d, c=2, **e)"
@test jl2py("f(g(x))") == "f(g(x))"
@test jl2py("f(x)(y)") == "f(x)(y)"
@test jl2py("Set{Int}([1,2,3])") == "set([1, 2, 3])"
end
@testset "Multi-line" begin
@test jl2py("a = 2; b = 3") == "a = 2\nb = 3"
@test jl2py("""
begin
function f(x::Int64, y::Int64)
x + y
end
a = f(3)
f(4)
end
""") == "def f(x: int, y: int, /):\n return x + y\na = f(3)\nf(4)"
end
@testset "Function defintion" begin
@test jl2py("function f(x) end") == "def f(x, /):\n pass"
@test jl2py("function f(x) return end") == "def f(x, /):\n return None"
@test jl2py("function f(x) return x end") == "def f(x, /):\n return x"
@test jl2py("function f(x) y; x + 1 end") == "def f(x, /):\n y\n return x + 1"
@test jl2py("function f(x) x + 2 end") == "def f(x, /):\n return x + 2"
@test jl2py("function f(x) x = 2 end") == "def f(x, /):\n x = 2\n return x"
@test jl2py("function f(x) x += 2 end") == "def f(x, /):\n x += 2\n return x"
@test jl2py("function f(x) g(x) end") == "def f(x, /):\n return g(x)"
@test jl2py("function f(x::Float64) x + 2 end") == "def f(x: float, /):\n return x + 2"
@test jl2py("function f(x::Int64, y) x + y end") == "def f(x: int, y, /):\n return x + y"
@test jl2py("function f(x::Int)::Int x end") == "def f(x: int, /) -> int:\n return x"
@test jl2py("function f(x::Int, y::Int)::Int x + y end") ==
"def f(x: int, y: int, /) -> int:\n return x + y"
@test jl2py("function f(x=2, y=3) x + y end") == "def f(x=2, y=3, /):\n return x + y"
@test jl2py("function f(x::Int=2, y=3) x + y end") == "def f(x: int=2, y=3, /):\n return x + y"
@test jl2py("function f(;x::Int=2, y=3) x + y end") == "def f(*, x: int=2, y=3):\n return x + y"
@test jl2py("function f(b...;x::Float32=2, y) x + y end") ==
"def f(*b, x: float=2, y):\n return x + y"
@test jl2py("function f(a,b,c...;x::Float32=2, y) x + y end") ==
"def f(a, b, /, *c, x: float=2, y):\n return x + y"
@test jl2py("function f(a,b,c...;x::Float32=2, y, z...) x + y end") ==
"def f(a, b, /, *c, x: float=2, y, **z):\n return x + y"
@test jl2py("function f() for i in 1:10 print(i) end end") ==
"def f():\n for i in range(1, 11):\n print(i)"
end
@testset "Lambda" begin
@test jl2py("x -> x + 1") == "lambda x, /: x + 1"
@test jl2py("x::Float64 -> x + 1") == "lambda x: float, /: x + 1"
@test jl2py("(x::Float64, y) -> x + y") == "lambda x: float, y, /: x + y"
@test jl2py("(x::Float64, y)::Float64 -> x + y") == "lambda x: float, y, /: x + y"
@test jl2py("function (x) x + 1 end") == "lambda x, /: x + 1"
@test jl2py("(x; y = 2) -> x + y") == "lambda x, /, *, y=2: x + y"
@test jl2py("(x, y = 2) -> x + y") == "lambda x, y=2, /: x + y"
@test jl2py("(x; y::Float64 = 2, z = 3) -> x + y") == "lambda x, /, *, y: float=2, z=3: x + y"
@test jl2py("(x, pos::Int; y::Float64 = 2, z = 3) -> x + y") ==
"lambda x, pos: int, /, *, y: float=2, z=3: x + y"
@test_throws ErrorException jl2py("function (x) x + 1; y + 1 end")
end
@testset "Type annotations" begin
@test jl2py("a::Nothing = nothing") == "(a): None = None"
@test jl2py("a::Vector{Int} = 2") == "(a): List[int] = 2"
@test jl2py("a::Set{Int} = Set([2, 3])") == "(a): Set[int] = set([2, 3])"
@test jl2py("a::Dict{Int, Pair{Int, Tuple{String, Int, Char}}} = Dict()") ==
"(a): Dict[int, Tuple[int, Tuple[str, int, str]]] = {}"
@test jl2py("a::Union{Int, Nothing} = nothing") ==
"(a): Union[int, None] = None"
@test jl2py("a::ListNode = ListNode()") ==
"(a): ListNode = ListNode()" # Unknown types are not changed
end
@testset "Unmatched expressions" begin
@test (@test_logs (:warn, "Pattern unmatched") jl2py("a = ")) == "None"
end
end
@testset "Misc" begin
@testset "AST to AST" begin
a = jl2py(1)
@test pyconvert(Bool, pyisinstance(a, Jl2Py.AST.Constant) && a.value == 1)
end
@testset "Reexported unparse" begin
@test pyconvert(String, unparse(jl2py("a + b"; ast_only=true))) == "a + b"
end
@testset "Apply Polyfill" begin
polyfill = read(joinpath(@__DIR__, "..", "polyfill", "polyfill.py"), String)
@test jl2py("print(1)"; apply_polyfill=true) == polyfill * "\n" * "print(1)"
end
end
end
| Jl2Py | https://github.com/lucifer1004/Jl2Py.jl.git |
|
[
"MIT"
] | 0.1.5 | 8a5d4332019e086e06b68563bd1b26073ac1dbfc | docs | 1749 | # Jl2Py
[](https://lucifer1004.github.io/Jl2Py.jl/stable)
[](https://lucifer1004.github.io/Jl2Py.jl/dev)
[](https://github.com/lucifer1004/Jl2Py.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/lucifer1004/Jl2Py.jl)
## Examples
Conversion results of [LeetCode.jl - 1. Two Sum](https://github.com/JuliaCN/LeetCode.jl/blob/master/src/problems/1.two-sum.jl)
```python
def two_sum(nums: List[int], target: int, /) -> Union[None, Tuple[int, int]]:
seen = {}
for (i, n) in enumerate(nums):
m = target - n
if haskey(seen, m):
return (seen[m], i)
else:
seen[n] = i
```
Conversion results of [LeetCode.jl - 2. Add Two Numbers](https://github.com/JuliaCN/LeetCode.jl/blob/master/src/problems/2.add-two-numbers.jl)
```python
def add_two_numbers(l1: ListNode, l2: ListNode, /) -> ListNode:
carry = 0
fake_head = cur = ListNode()
while not isnothing(l1) or (not isnothing(l2) or not iszero(carry)):
(v1, v2) = (0, 0)
if not isnothing(l1):
v1 = val(l1)
l1 = next(l1)
if not isnothing(l2):
v2 = val(l2)
l2 = next(l2)
(carry, v) = divrem(v1 + v2 + carry, 10)
next_inplace(cur, ListNode(v))
cur = next(cur)
val_inplace(cur, v)
return next(fake_head)
```
We can see that we only need to define a few polyfill functions to make the generated Python code work.
| Jl2Py | https://github.com/lucifer1004/Jl2Py.jl.git |
|
[
"MIT"
] | 0.1.5 | 8a5d4332019e086e06b68563bd1b26073ac1dbfc | docs | 164 | ```@meta
CurrentModule = Jl2Py
```
# Jl2Py
Documentation for [Jl2Py](https://github.com/lucifer1004/Jl2Py.jl).
```@index
```
```@autodocs
Modules = [Jl2Py]
```
| Jl2Py | https://github.com/lucifer1004/Jl2Py.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 616 | using Documenter
using VLConstraintBasedModelGenerationUtilities
makedocs(
sitename = "Model",
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true"
),
modules = [VLConstraintBasedModelGenerationUtilities],
pages = [
"Home" => "index.md",
],
)
# Documenter can also automatically deploy documentation to gh-pages.
# See "Hosting Documentation" and deploydocs() in the Documenter manual
# for more information.
deploydocs(
repo = "github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git",
devurl = "stable",
devbranch = "main",
)
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 664 | # setup project paths -
const _PATH_TO_SRC = dirname(pathof(@__MODULE__))
const _PATH_TO_BASE = joinpath(_PATH_TO_SRC, "base")
const _PATH_TO_CONFIG = joinpath(_PATH_TO_SRC, "config")
# packages that I'm going to use ...
using Test
using TOML
using DataFrames
using CSV
using JSON
using BioSequences
using BioSymbols
using FASTX
using DelimitedFiles
using Logging
using BSON
# load my codes ...
include(joinpath(_PATH_TO_BASE, "VLTypes.jl"))
include(joinpath(_PATH_TO_BASE, "VLBase.jl"))
include(joinpath(_PATH_TO_BASE, "VLSequenceUtilities.jl"))
include(joinpath(_PATH_TO_BASE, "VLMetabolicUtilities.jl"))
include(joinpath(_PATH_TO_BASE, "VLFileUtilities.jl"))
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 705 | module VLConstraintBasedModelGenerationUtilities
# Include my files -
include("Include.jl")
# export methods and types -
export VLResult
export check
export build_gene_table
export build_protein_table
export build_metabolic_reaction_table
export build_transcription_reaction_table
export build_translation_reaction_table
export build_transport_reaction_table
export transcribe
export translate
export count
# metabolic methods -
export build_reaction_id_array
export build_flux_bounds_array
export build_species_symbol_array
export build_stoichiometric_matrix
# private: but has a unit test
# export extract_stochiometric_coefficient_from_phrase
# export complement function -
export !
end # module
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 2294 | using Base: has_nondefault_cmd_flags
import Base.+
import Base.!
import Base.count
function !(nucleotide::BioSymbols.DNA)::BioSymbols.RNA
# ok: use watson-crick base pairing rules to return the opposite nucleotide
if nucleotide == DNA_T
return RNA_A
elseif nucleotide == DNA_A
return RNA_U
elseif nucleotide == DNA_C
return RNA_G
elseif nucleotide == DNA_G
return RNA_C
else
return RNA_N
end
end
function +(buffer::Array{String,1}, content::String;
prefix::Union{String,Nothing}=nothing,suffix::Union{String,Nothing}=nothing)
# create a new content line -
new_line = content
# prefix -
if (prefix !== nothing)
new_line = prefix*new_line
end
# suffix -
if (suffix !== nothing)
new_line = new_line*suffix
end
# cache -
push!(buffer,new_line)
end
function read_file_from_path(path_to_file::String)::Array{String,1}
# initialize -
buffer = String[]
# Read in the file -
open("$(path_to_file)", "r") do file
for line in eachline(file)
+(buffer,line)
end
end
# return -
return buffer
end
function +(buffer::Array{String,1}, content_array::Array{String,1})
for line in content_array
push!(buffer, line)
end
end
function check(result::VLResult)::(Union{Nothing,T} where T <: Any)
# ok, so check, do we have an error object?
# Yes: log the error if we have a logger, then throw the error.
# No: return the result.value
# Error case -
if (isa(result.value, Exception) == true)
# get the error object -
error_object = result.value
# get the error message as a String -
error_message = sprint(showerror, error_object, backtrace())
@error(error_message)
# throw -
throw(result.value)
end
# default -
return result.value
end
function count(sequence::BioSequences.LongSequence, bioSymbol::BioSymbol)::Int64
# initialize -
number_of_biosymbols = 0
# iterate -
for test_symbol in sequence
if (test_symbol == bioSymbol)
number_of_biosymbols = number_of_biosymbols + 1
end
end
# return -
return number_of_biosymbols
end | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 7912 | # === PRIVATE METHODS BELOW HERE =================================================================== #
function _build_vff_reaction_table(path_to_reaction_file::String)::DataFrame
# vff: CSV format with record structure
# name,[ec;...],reactant,product,reversible
# initialize -
id_array = String[]
forward_reaction_string = String[]
reverse_reaction_string = String[]
reversibility_array = Bool[]
ec_number_array = Union{Missing,String}[]
# get file buffer (array of strings) -
vff_file_buffer = read_file_from_path(path_to_reaction_file)
# process -
for (_, reaction_line) in enumerate(vff_file_buffer)
# skip comments and empty lines -
if (occursin("//", reaction_line) == false && isempty(reaction_line) == false)
# split around ,
reaction_record_components_array = split(reaction_line, ",")
# process each of the components -
# 1: id -
push!(id_array, string(reaction_record_components_array[1]))
# 2: ec numbers -
ec_number_component = reaction_record_components_array[2]
if (ec_number_component == "[]")
push!(ec_number_array, missing)
else
push!(ec_number_array, string(ec_number_component[2:end - 1]))
end
# 3: L phrase -
push!(forward_reaction_string, string(reaction_record_components_array[3]))
# 4: R phrase -
push!(reverse_reaction_string, string(reaction_record_components_array[4]))
# 5: reverse -
push!(reversibility_array, parse(Bool, string(reaction_record_components_array[5])))
end
end
# build the df -
df_metabolic_reactions = DataFrame(id=id_array, forward=forward_reaction_string, reverse=reverse_reaction_string, reversibility=reversibility_array, ec=ec_number_array)
# return -
return df_metabolic_reactions
end
function _build_json_reaction_table(path_to_reaction_file::String)::DataFrame
end
function _build_sbml_reaction_table(path_to_reaction_file::String)::DataFrame
end
# === PRIVATE METHODS ABOVE HERE =================================================================== #
# === PUBLIC METHODS BELOW HERE ==================================================================== #
function build_gene_table(path_to_gene_file::String;
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# initialize -
local_data_row = Union{String,Symbol,Missing,FASTA.Record}[]
# ok - lets load the gene file
open(FASTA.Reader, path_to_gene_file) do reader
for record in reader
push!(local_data_row, record)
end
end
# create a data frame -
sequence_data_frame = DataFrame(id=String[], description=String[], gene_sequence=Union{Missing,BioSequences.LongSequence}[])
sequence_data_record = Union{String,Missing,BioSequences.LongSequence}[]
for record in local_data_row
# get attributes from record -
id_value = FASTX.FASTA.identifier(record)
description_value = FASTX.FASTA.description(record)
sequence_value = FASTX.FASTA.sequence(record)
# pack -
push!(sequence_data_record, id_value)
push!(sequence_data_record, description_value)
push!(sequence_data_record, sequence_value)
push!(sequence_data_frame, tuple(sequence_data_record...))
end
# return -
return VLResult(sequence_data_frame)
catch error
return VLResult(error)
end
end
function build_gene_table(gene_path_array::Array{String,1};
logger::Union{Nothing,SimpleLogger}=nothing)
try
# initialize -
gene_table_dictionary::Dict{String,DataFrame}()
# ok, so let process the array of files -
for file_path in gene_path_array
sequence_data_frame = build_gene_table(file_path; logger=logger) |> check
gene_table_dictionary[file_path] = sequence_data_frame
end
# return a dictionary of gene tables -
return VLResult(gene_table_dictionary)
catch error
return VLResult(error)
end
end
function build_protein_table(path_to_protein_file::String;
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# initialize -
local_data_row = Union{String,Symbol,Missing,FASTA.Record}[]
# ok - lets load the gene file
open(FASTA.Reader, path_to_protein_file) do reader
for record in reader
push!(local_data_row, record)
end
end
# create a data frame -
sequence_data_frame = DataFrame(id=String[], description=String[], protein_sequence=Union{Missing,BioSequences.LongSequence}[])
for record in local_data_row
# init a row -
sequence_data_record = Union{String,Missing,BioSequences.LongSequence}[]
# get attributes from record -
id_value = FASTX.FASTA.identifier(record)
description_value = FASTX.FASTA.description(record)
sequence_value = FASTX.FASTA.sequence(record)
# pack -
push!(sequence_data_record, id_value)
push!(sequence_data_record, description_value)
push!(sequence_data_record, sequence_value)
push!(sequence_data_frame, tuple(sequence_data_record...))
end
# return -
return VLResult(sequence_data_frame)
catch error
return VLResult(error)
end
end
function build_protein_table(protein_path_array::Array{String,1};
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# initialize -
protein_table_dictionary::Dict{String,DataFrame}()
# ok, so let process the array of files -
for file_path in protein_path_array
sequence_data_frame = build_protein_table(file_path; logger=logger) |> check
protein_table_dictionary[file_path] = sequence_data_frame
end
# return a dictionary of protein tables -
return VLResult(protein_table_dictionary)
catch error
return VLResult(error)
end
end
function build_metabolic_reaction_table(path_to_reaction_file::String;
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# what is the set of extensions that we can parse?
extension_set = Set{String}()
push!(extension_set, ".vff")
push!(extension_set, ".json")
push!(extension_set, ".sbml")
push!(extension_set, ".xml")
# get the file name from the path -
reaction_filename = basename(path_to_reaction_file)
# do we support this extension?
reaction_file_extension = string(last(splitext(reaction_filename)))
if (in(reaction_file_extension, extension_set) == false)
throw(ArgumentError("Reaction file extension not supported: $(reaction_file_extension)"))
end
# ok: if we get here then we support this extension -
reaction_table = nothing
if (reaction_file_extension == ".vff")
reaction_table = _build_vff_reaction_table(path_to_reaction_file)
elseif (reaction_file_extension == ".json")
reaction_table = _build_json_reaction_table(path_to_reaction_file)
elseif (reaction_file_extension == ".sbml" || reaction_file_extension == ".xml")
reaction_table = _build_sbml_reaction_table(path_to_reaction_file)
end
# return -
return VLResult(reaction_table)
catch error
return VLResult(error)
end
end
# === PUBLIC METHODS ABOVE HERE ==================================================================== # | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 6869 | # == PRIVATE METHODS BELOW HERE ======================================================================================= #
function _extract_species_from_phrase(phrase::String)::Array{String,1}
# cut around the +'s
species_array = Array{String,1}()
species_substring_array = split(phrase, "+")
# process each substring -
for species_substring in species_substring_array
# get the last value after we split for * -
species_value = string(last(split(species_substring, "*")))
# grab -
push!(species_array, species_value)
end
# return -
return species_array
end
function _extract_stochiometric_coefficient_from_phrase(phrase::String, species::String)::Float64
# check: does this species occur in this phrase?
if (occursin(species, phrase) == false)
return 0.0
end
# ok: if we get here, then we have this species -
# split around the +
plus_split_product_array = split(phrase, "+")
# process each component of the phrase -
for species_substring in plus_split_product_array
# get the values after we split for * -
tmp_value_array = string.(split(species_substring, "*"))
# ok: the last element will always be the species. If we have two elements the first is the st coeff -
if (last(tmp_value_array) == species)
if (length(tmp_value_array) == 2)
return parse(Float64, first(tmp_value_array))
else
return 1.0
end
end
end
# default returns 0.0 -
return 0.0
end
function _process_left_phrase(phrase::String, species::String)::Float64
# get coeff -
stm_coeff = _extract_stochiometric_coefficient_from_phrase(phrase, species)
# ok: if non-zero, then multiply by -1
if (stm_coeff > 0)
return -1.0 * stm_coeff
end
# default -
return stm_coeff
end
function _process_right_phrase(phrase::String, species::String)::Float64
return _extract_stochiometric_coefficient_from_phrase(phrase, species)
end
# == PRIVATE METHODS ABOVE HERE ======================================================================================= #
# == PUBLIC METHODS BELOW HERE ======================================================================================== #
function build_stoichiometric_matrix(reactionTable::DataFrame)::VLResult
try
# initialize -
reaction_id_array = build_reaction_id_array(reactionTable) |> check
species_symbol_array = build_species_symbol_array(reactionTable) |> check
number_of_reactions = length(reaction_id_array)
number_of_species = length(species_symbol_array)
stoichiometric_matrx = zeros(number_of_species, number_of_reactions)
# main -
for species_index = 1:number_of_species # rows
# grab species symbol -
species_symbol = species_symbol_array[species_index]
# does this symbol appear in a reaction?
for reaction_index = 1:number_of_reactions
# get the L and R phrases -
L = reactionTable[reaction_index,:forward]
R = reactionTable[reaction_index,:reverse]
# get the stcoeff from the L phrase -
L_st_coeff = _process_left_phrase(L, species_symbol)
# get the stcoeff from the R phrase -
R_st_coeff = _process_right_phrase(R, species_symbol)
# update the stoichiometric_matrx -
stoichiometric_matrx[species_index,reaction_index] = (L_st_coeff + R_st_coeff)
end
end
# return -
return VLResult(stoichiometric_matrx)
catch error
return VLResult(error)
end
end
function build_flux_bounds_array(reactionTable::DataFrame; defaultFluxBoundValue::Float64=100.0)::VLResult
try
# initialize -
reaction_id_array = build_reaction_id_array(reactionTable) |> check
number_of_reactions = length(reaction_id_array)
flux_bounds_array = Array{Float64,2}(undef, number_of_reactions, 2)
# iterate through the reaction id's and determine if the reaction is reversible. If so, then build the bounds array
# using the default values -
for (index, id_value) in enumerate(reaction_id_array)
# is this reaction reversible?
is_reversible = reactionTable[index,:reversibility]
if (is_reversible == true)
flux_bounds_array[index,1] = -1.0 * defaultFluxBoundValue
flux_bounds_array[index,2] = defaultFluxBoundValue
elseif (is_reversible == false)
flux_bounds_array[index,1] = 0.0
flux_bounds_array[index,2] = defaultFluxBoundValue
end
end
# return -
return VLResult(flux_bounds_array)
catch error
return VLResult(error)
end
end
function build_species_bounds_array()::VLResult
try
catch error
return VLResult(error)
end
end
function build_species_symbol_array(reactionTable::DataFrame)::VLResult
try
# initialize -
species_symbol_array = Array{String,1}()
reaction_phrase_array = Array{String,1}()
(number_of_reactions, _) = size(reactionTable)
# populate the array of reaction phrases -
for reaction_index = 1:number_of_reactions
# get the L and R phrases -
L = reactionTable[reaction_index,:forward]
R = reactionTable[reaction_index,:reverse]
# capture -
push!(reaction_phrase_array, L)
push!(reaction_phrase_array, R)
end
# ok, so now lets populate the tmp species set -
for reaction_phrase in reaction_phrase_array
# get species sub array -
species_in_reaction_phrase = _extract_species_from_phrase(reaction_phrase)
# push into set -
for tmp_species_symbol in species_in_reaction_phrase
if (in(tmp_species_symbol, species_symbol_array) == false)
push!(species_symbol_array, tmp_species_symbol)
end
end
end
# return -
return VLResult(species_symbol_array)
catch error
return VLResult(error)
end
end
function build_reaction_id_array(reactionTable::DataFrame)::VLResult
try
# get the id col -
id_col = reactionTable[!,:id]
# return -
return VLResult(id_col)
catch error
return VLResult(error)
end
end
# == PUBLIC METHODS ABOVE HERE ======================================================================================== # | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 13192 | function build_transcription_reaction_table(gene_name::String, sequence::BioSequences.LongSequence;
polymeraseSymbol::Symbol=:RNAP, ecnumber::String="2.7.7.6", logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# initialize -
id_array = String[]
forward_reaction_string = String[]
reverse_reaction_string = String[]
reversibility_array = Bool[]
ec_number_array = Union{Missing,String}[]
polymeraseSymbol = string(polymeraseSymbol)
# get a count on G,C,A,U -
number_of_A = count(sequence, DNA_A)
number_of_U = count(sequence, DNA_T)
number_of_C = count(sequence, DNA_C)
number_of_G = count(sequence, DNA_G)
total_nucleotides = number_of_A + number_of_U + number_of_C + number_of_G
# setup reactions -
# gene + RNAP <=> gene_RNAP_closed
push!(id_array, "$(gene_name)_binding")
push!(forward_reaction_string, "$(gene_name)+$(polymeraseSymbol)")
push!(reverse_reaction_string, "$(gene_name)_$(polymeraseSymbol)_closed")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# gene_RNAP_closed => gene_RNAP_open
push!(id_array, "$(gene_name)_open")
push!(forward_reaction_string, "$(gene_name)_$(polymeraseSymbol)_closed")
push!(reverse_reaction_string, "$(gene_name)_$(polymeraseSymbol)_open")
push!(reversibility_array, false)
push!(ec_number_array, missing)
# transcription -
push!(id_array, "$(gene_name)_transcription")
push!(forward_reaction_string, "$(gene_name)_$(polymeraseSymbol)_open+$(number_of_A)*M_atp_c+$(number_of_U)*M_utp_c+$(number_of_C)*M_ctp_c+$(number_of_G)*M_gtp_c+$(total_nucleotides)*M_h2o_c")
push!(reverse_reaction_string, "mRNA_$(gene_name)+$(gene_name)+$(polymeraseSymbol)+$(total_nucleotides)*M_ppi_c")
push!(reversibility_array, false)
push!(ec_number_array, ecnumber)
# mRNA degradation -
push!(id_array, "mRNA_$(gene_name)_degradation")
push!(forward_reaction_string, "mRNA_$(gene_name)")
push!(reverse_reaction_string, "$(number_of_A)*M_amp_c+$(number_of_U)*M_ump_c+$(number_of_C)*M_cmp_c+$(number_of_G)*M_gmp_c")
push!(reversibility_array, false)
push!(ec_number_array, missing)
# package into DataFrame -
reaction_dataframe = DataFrame(id=id_array, forward=forward_reaction_string, reverse=reverse_reaction_string, reversibility=reversibility_array, ec=ec_number_array)
# return -
return VLResult(reaction_dataframe)
catch error
return VLResult(error)
end
end
function build_translation_reaction_table(protein_name::String, sequence::BioSequences.LongAminoAcidSeq;
ribosomeSymbol::Symbol=:RIBOSOME, ecnumber::String="3.1.27.10", logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# initailize -
id_array = String[]
forward_reaction_string = String[]
reverse_reaction_string = String[]
reversibility_array = Bool[]
ec_number_array = Union{Missing,String}[]
ribosomeSymbol = string(ribosomeSymbol)
total_residue_count = 0
protein_aa_map = Dict{BioSymbol,Int64}()
aa_biosymbol_array = [
AA_A, AA_R, AA_N, AA_D, AA_C, AA_Q, AA_E, AA_G, AA_H, AA_I, AA_L, AA_K, AA_M, AA_F, AA_P, AA_S, AA_T, AA_W, AA_Y, AA_V
];
# load AA map -
aa_metabolite_map = TOML.parsefile(joinpath(_PATH_TO_CONFIG, "AAMap.toml"))
# build the protein_aa_map -
for residue in aa_biosymbol_array
protein_aa_map[residue] = count(sequence, residue)
end
# total residue count -
for residue in aa_biosymbol_array
number_per_AA = protein_aa_map[residue]
total_residue_count = total_residue_count + number_per_AA
end
# setup reactions -
# mRNA + RIBOSOME <=> mRNA_RIBOSOME_closed
push!(id_array, "$(protein_name)_binding")
push!(forward_reaction_string, "mRNA_$(protein_name)+$(ribosomeSymbol)")
push!(reverse_reaction_string, "mRNA_$(protein_name)_$(ribosomeSymbol)_closed")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# mRNA_RIBOSOME_closed => mRNA_RIBOSOME_start
push!(id_array, "mRNA_$(protein_name)_open")
push!(forward_reaction_string, "mRNA_$(protein_name)_$(ribosomeSymbol)_closed")
push!(reverse_reaction_string, "mRNA_$(protein_name)_$(ribosomeSymbol)_start")
push!(reversibility_array, false)
push!(ec_number_array, missing)
# mRNA_RIBOSOME_translation -
push!(id_array, "mRNA_$(protein_name)_translation")
push!(forward_reaction_string, "mRNA_$(protein_name)_$(ribosomeSymbol)_start+$(2 * total_residue_count)*M_gtp_c+$(2 * total_residue_count)*M_h2o_c")
push!(reverse_reaction_string, "mRNA_$(protein_name)+$(ribosomeSymbol)+P_$(protein_name)+$(2 * total_residue_count)*M_gdp_c+$(2 * total_residue_count)*M_pi_c+$(total_residue_count)*tRNA_c")
push!(reversibility_array, false)
push!(ec_number_array, missing)
# charge the tRNA -
for residue in aa_biosymbol_array
# get the key symbol -
key_value = "AA_" * (string(residue))
# get the number and M_* of this residue -
number_of_AA_residue = protein_aa_map[residue]
metabolite_symbol = aa_metabolite_map[key_value]
# build the reaction record -
push!(id_array, "tRNA_charging_$(metabolite_symbol)_$(protein_name)")
push!(forward_reaction_string, "$(number_of_AA_residue)*$(metabolite_symbol)+$(number_of_AA_residue)*M_atp_c+$(number_of_AA_residue)*tRNA_c+$(number_of_AA_residue)*M_h2o_c")
push!(reverse_reaction_string, "$(number_of_AA_residue)*$(metabolite_symbol)_tRNA_c+$(number_of_AA_residue)*M_amp_c+$(number_of_AA_residue)*M_ppi_c")
push!(reversibility_array, false)
push!(ec_number_array, missing)
end
# package into DataFrame -
reaction_dataframe = DataFrame(id=id_array, forward=forward_reaction_string, reverse=reverse_reaction_string, reversibility=reversibility_array, ec=ec_number_array)
# return -
return VLResult(reaction_dataframe)
catch error
return VLResult(error)
end
end
function build_transport_reaction_table()::VLResult
try
# initailize -
id_array = String[]
forward_reaction_string = String[]
reverse_reaction_string = String[]
reversibility_array = Bool[]
ec_number_array = Union{Missing,String}[]
aa_biosymbol_array = [
AA_A, AA_R, AA_N, AA_D, AA_C, AA_Q, AA_E, AA_G, AA_H, AA_I, AA_L, AA_K, AA_M, AA_F, AA_P, AA_S, AA_T, AA_W, AA_Y, AA_V
];
# load AA map -
aa_metabolite_map = TOML.parsefile(joinpath(_PATH_TO_CONFIG, "AAMap.toml"))
# add exchange water reactions -
push!(id_array, "M_h2o_c_exchange")
push!(forward_reaction_string, "M_h2o_e")
push!(reverse_reaction_string, "M_h2o_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_ppi_e exchange -
push!(id_array, "M_ppi_c_exchange")
push!(forward_reaction_string, "M_ppi_e")
push!(reverse_reaction_string, "M_ppi_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_amp_c exchange -
push!(id_array, "M_amp_c_exchange")
push!(forward_reaction_string, "M_amp_e")
push!(reverse_reaction_string, "M_amp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_gmp_c exchange -
push!(id_array, "M_gmp_c_exchange")
push!(forward_reaction_string, "M_gmp_e")
push!(reverse_reaction_string, "M_gmp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_cmp_c exchange -
push!(id_array, "M_cmp_c_exchange")
push!(forward_reaction_string, "M_cmp_e")
push!(reverse_reaction_string, "M_cmp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_ump_c exchange -
push!(id_array, "M_ump_c_exchange")
push!(forward_reaction_string, "M_ump_e")
push!(reverse_reaction_string, "M_ump_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_atp_c exchange -
push!(id_array, "M_atp_c_exchange")
push!(forward_reaction_string, "M_atp_e")
push!(reverse_reaction_string, "M_atp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_gtp_c exchange -
push!(id_array, "M_gtp_c_exchange")
push!(forward_reaction_string, "M_gtp_e")
push!(reverse_reaction_string, "M_gtp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_ctp_c exchange -
push!(id_array, "M_ctp_c_exchange")
push!(forward_reaction_string, "M_ctp_e")
push!(reverse_reaction_string, "M_ctp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# add M_utp_c exchange -
push!(id_array, "M_utp_c_exchange")
push!(forward_reaction_string, "M_utp_e")
push!(reverse_reaction_string, "M_utp_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
push!(id_array, "tRNA_c_exchange")
push!(forward_reaction_string, "tRNA_e")
push!(reverse_reaction_string, "tRNA_c")
push!(reversibility_array, true)
push!(ec_number_array, missing)
# transfer AAs -
for residue in aa_biosymbol_array
# get the key symbol -
key_value = "AA_" * (string(residue))
# metabilite -
metabolite_symbol_c = aa_metabolite_map[key_value]
metabolite_symbol_e = replace(metabolite_symbol_c, "_c" => "_e")
# write the record -
push!(id_array, "$(metabolite_symbol_c)_exchange")
push!(forward_reaction_string, metabolite_symbol_e)
push!(reverse_reaction_string, metabolite_symbol_c)
push!(reversibility_array, true)
push!(ec_number_array, missing)
end
# package into DataFrame -
reaction_dataframe = DataFrame(id=id_array, forward=forward_reaction_string, reverse=reverse_reaction_string, reversibility=reversibility_array, ec=ec_number_array)
# return -
return VLResult(reaction_dataframe)
catch error
return VLResult(error)
end
end
function transcribe(sequence::BioSequences.LongSequence; complementOperation::Function=!,
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# initialize -
new_sequence_array = Array{BioSymbol,1}()
# ok: let's iterate the sequence, call the complementOperation function for each nt -
for nt in sequence
# call the complementOperation function to get the complementary nucleotide -
complementary_nt = complementOperation(nt)
# push -
push!(new_sequence_array, complementary_nt)
end
# create new sequence -
new_seq_from_array = LongSequence{RNAAlphabet{4}}(new_sequence_array)
# return -
return VLResult(new_seq_from_array)
catch error
return VLResult(error)
end
end
function transcribe(table::DataFrame, complementOperation::Function=!;
logger::Union{Nothing,SimpleLogger}=nothing)
try
# initailize -
transcription_dictionary = Dict{String,Any}()
# get the length of the table -
(number_of_rows, _) = size(table)
for row_index = 1:number_of_rows
# get id -
sequence_id = table[row_index, :id]
sequence = table[row_index, :sequence]
# transcribe -
result = transcribe_sequence(sequence, complementOperation; logger=logger) |> check
# package -
transcription_dictionary[sequence_id] = result
end
# return -
return VLResult(transcription_dictionary)
catch error
return VLResult(error)
end
end
function translate(sequence::BioSequences.LongAminoAcidSeq, complementOperation::Function;
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
catch error
return VLResult(error)
end
end
function translate(table::DataFrame, complementOperation::Function;
logger::Union{Nothing,SimpleLogger}=nothing)::VLResult
try
# get the size of the table -
(number_of_proteins, _) = size(table)
for protein_index in number_of_proteins
# get the sequence -
protein_seq = table[protein_index, :protein_sequence]
end
catch error
return VLResult(error)
end
end | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 56 |
# concrete types -
struct VLResult{T}
value::T
end
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 874 | using VLConstraintBasedModelGenerationUtilities
using DataFrames
# setup path to sequence file -
path_to_protein_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/P-MZ373340.fasta"
# load -
protein_table = build_protein_table(path_to_protein_sequence_file) |> check
seq = protein_table[1,:protein_sequence]
seq_name = protein_table[1,:id]
# build the translation table -
translation_dictionary = Dict{String,DataFrame}()
(number_of_proteins, _) = size(protein_table)
for protein_index = 1:number_of_proteins
local_seq = protein_table[protein_index,:protein_sequence]
local_seq_name = protein_table[protein_index,:id]
translation_table = build_translation_reaction_table(local_seq_name, local_seq) |> check
# grab -
translation_dictionary[local_seq_name] = translation_table
end
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 352 | using VLConstraintBasedModelGenerationUtilities
using Test
# -- Model creation tests ------------------------------------------------------ #
function run_default_test()
return true
end
# ------------------------------------------------------------------------------- #
@testset "default_test_set" begin
@test run_default_test() == true
end | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 1848 | using VLConstraintBasedModelGenerationUtilities
using DataFrames
# setup path to sequence file -
path_to_gene_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/G-MZ373340.fasta"
# load -
gene_table = build_gene_table(path_to_gene_sequence_file) |> check
# get the sequence -
gene_seq = gene_table[!,:gene_sequence][1]
gene_seq_name = gene_table[!,:id][1]
# transcription table -
transcription_table = build_transcription_reaction_table(gene_seq_name, gene_seq) |> check
# setup path to protein sequence file -
path_to_protein_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/P-MZ373340.fasta"
# load -
protein_table = build_protein_table(path_to_protein_sequence_file) |> check
# build the translation table -
translation_dictionary = Dict{String,DataFrame}()
translation_array = Array{DataFrame,1}()
(number_of_proteins, _) = size(protein_table)
for protein_index = 1:number_of_proteins
local_seq = protein_table[protein_index,:protein_sequence]
local_seq_name = protein_table[protein_index,:id]
translation_table = build_translation_reaction_table(local_seq_name, local_seq) |> check
# grab -
# translation_dictionary[local_seq_name] = translation_table
push!(translation_array, translation_table)
end
# add together -
master_translation_table = reduce(vcat, translation_array)
# lastly - let's build the transport reactions -
transport_reaction_table = build_transport_reaction_table() |> check
# append reactions into master reaction table -
master_reaction_table = reduce(vcat, [transcription_table, master_translation_table, transport_reaction_table])
# build the flux bounds array -
fba = build_flux_bounds_array(master_reaction_table; defaultFluxBoundValue=1.0) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 1728 | using VLConstraintBasedModelGenerationUtilities
using DataFrames
# setup path to sequence file -
path_to_gene_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/G-MZ373340.fasta"
# load -
gene_table = build_gene_table(path_to_gene_sequence_file) |> check
# get the sequence -
gene_seq = gene_table[!,:gene_sequence][1]
gene_seq_name = gene_table[!,:id][1]
# transcription table -
transcription_table = build_transcription_reaction_table(gene_seq_name, gene_seq) |> check
# setup path to protein sequence file -
path_to_protein_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/P-MZ373340.fasta"
# load -
protein_table = build_protein_table(path_to_protein_sequence_file) |> check
# build the translation table -
translation_dictionary = Dict{String,DataFrame}()
translation_array = Array{DataFrame,1}()
(number_of_proteins, _) = size(protein_table)
for protein_index = 1:number_of_proteins
local_seq = protein_table[protein_index,:protein_sequence]
local_seq_name = protein_table[protein_index,:id]
translation_table = build_translation_reaction_table(local_seq_name, local_seq) |> check
# grab -
# translation_dictionary[local_seq_name] = translation_table
push!(translation_array, translation_table)
end
# add together -
master_translation_table = reduce(vcat, translation_array)
# lastly - let's build the transport reactions -
transport_reaction_table = build_transport_reaction_table() |> check
# append reactions into master reaction table -
master_reaction_table = reduce(vcat, [transcription_table, master_translation_table, transport_reaction_table])
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 527 | using VLConstraintBasedModelGenerationUtilities
# setup path to protein sequence file -
path_to_vff_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/Test.vff"
# let's build the reaction table -
metabolic_reaction_table = build_metabolic_reaction_table(path_to_vff_file) |> check
# get list of species -
list_of_species = build_species_symbol_array(metabolic_reaction_table) |> check
# build the stm -
stm = build_stoichiometric_matrix(metabolic_reaction_table) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 219 | using VLConstraintBasedModelGenerationUtilities
# test phrase -
reaction_phrase = "3*M_a_c+8*M_b_c+M_d_c"
# test:
species = "M_gtp_c"
stm_coeff = extract_stochiometric_coefficient_from_phrase(reaction_phrase, species) | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 207 | using VLConstraintBasedModelGenerationUtilities
# setup path to JSON file -
path_to_json_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/iJO1366.json"
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 296 | using VLConstraintBasedModelGenerationUtilities
# setup path to sequence file -
path_to_gene_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/G-MZ373340.fasta"
# load -
result = build_gene_table(path_to_gene_sequence_file) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 305 | using VLConstraintBasedModelGenerationUtilities
# setup path to sequence file -
path_to_protein_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/P-MZ373340.fasta"
# load -
result = build_protein_table(path_to_protein_sequence_file) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 335 | using VLConstraintBasedModelGenerationUtilities
# setup path to protein sequence file -
path_to_vff_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/Test.vff"
# let's build the reaction table -
metabolic_reaction_table = build_metabolic_reaction_table(path_to_vff_file) |> check
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 1824 | using VLConstraintBasedModelGenerationUtilities
using DataFrames
# setup path to sequence file -
path_to_gene_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/G-MZ373340.fasta"
# load -
gene_table = build_gene_table(path_to_gene_sequence_file) |> check
# get the sequence -
gene_seq = gene_table[!,:gene_sequence][1]
gene_seq_name = gene_table[!,:id][1]
# transcription table -
transcription_table = build_transcription_reaction_table(gene_seq_name, gene_seq) |> check
# setup path to protein sequence file -
path_to_protein_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/P-MZ373340.fasta"
# load -
protein_table = build_protein_table(path_to_protein_sequence_file) |> check
# build the translation table -
translation_dictionary = Dict{String,DataFrame}()
translation_array = Array{DataFrame,1}()
(number_of_proteins, _) = size(protein_table)
for protein_index = 1:number_of_proteins
local_seq = protein_table[protein_index,:protein_sequence]
local_seq_name = protein_table[protein_index,:id]
translation_table = build_translation_reaction_table(local_seq_name, local_seq) |> check
# grab -
# translation_dictionary[local_seq_name] = translation_table
push!(translation_array, translation_table)
end
# add together -
master_translation_table = reduce(vcat, translation_array)
# lastly - let's build the transport reactions -
transport_reaction_table = build_transport_reaction_table() |> check
# append reactions into master reaction table -
master_reaction_table = reduce(vcat, [transcription_table, master_translation_table, transport_reaction_table])
# build the flux bounds array -
ssa = build_species_symbol_array(master_reaction_table) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 831 | using VLConstraintBasedModelGenerationUtilities
using BioSymbols
# setup path to sequence file -
path_to_gene_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/G-MZ373340.fasta"
# load -
gene_table = build_gene_table(path_to_gene_sequence_file) |> check
# get the sequence -
gene_seq = gene_table[!,:gene_sequence][1]
# setup local complementOp function -
function complementOp(nucleotide::BioSymbols.DNA)::BioSymbols.RNA
if nucleotide == DNA_T
return RNA_U
elseif nucleotide == DNA_A
return RNA_A
elseif nucleotide == DNA_C
return RNA_C
elseif nucleotide == DNA_G
return RNA_G
else
return RNA_N
end
end
# table -
transcription_table = transcribe(gene_seq; complementOperation=complementOp) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | code | 465 | using VLConstraintBasedModelGenerationUtilities
# setup path to sequence file -
path_to_gene_sequence_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/G-MZ373340.fasta"
# load -
gene_table = build_gene_table(path_to_gene_sequence_file) |> check
# get the sequence -
gene_seq = gene_table[!,:gene_sequence][1]
# table -
transcription_table = build_transcription_reaction_table("test_gene", gene_seq) |> check | VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.1.0 | 6932df6a6deb4c6c63f88b04a9fef8bf1ac830c0 | docs | 2167 | [](https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl/actions/workflows/varnerlab.yml)
[](https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl/actions/workflows/docdeploy.yml)
[](https://varnerlab.github.io/VLConstraintBasedModelGenerationUtilities.jl/)
## Introduction
``VLConstraintBasedModelGenerationUtlities.jl`` is a [Julia](https://julialang.org/downloads/) package holding constraint based model generation utility functions and types.
## Installation and requirements
``VLConstraintBasedModelGenerationUtlities.jl`` is organized as a [Julia](http://julialang.org) package which can be installed in the ``package mode`` of Julia.
Start of the [Julia REPL](https://docs.julialang.org/en/v1/stdlib/REPL/index.html) and enter the ``package mode`` using the ``]`` key (to get back press the ``backspace`` or ``^C`` keys). Then, at the prompt enter:
(v1.1) pkg> add VLConstraintBasedModelGenerationUtlities
This will install the ``VLConstraintBasedModelGenerationUtlities.jl`` package and the other required packages. ``VLConstraintBasedModelGenerationUtlities.jl`` requires Julia 1.6.x and above.
``VLConstraintBasedModelGenerationUtlities.jl`` is open source. You can download this repository as a zip file, or clone or pull it by using the command (from the command-line):
$ git pull https://github.com/varnerlab/VLConstraintBasedModelGenerationUtlities.jl.git
or
$ git clone https://github.com/varnerlab/VLConstraintBasedModelGenerationUtlities.jl.git
## How do I contribute to this package?
[Fork the project](https://guides.github.com/activities/forking/) and go crazy with it!
Check out [Rob Allen's DevNotes](https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project/)
for a beginner's guide to contributing to a GitHub project to get started.
| VLConstraintBasedModelGenerationUtilities | https://github.com/varnerlab/VLConstraintBasedModelGenerationUtilities.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 554 | using Documenter
using IntervalConstraintProgramming, IntervalArithmetic
makedocs(
modules = [IntervalConstraintProgramming],
doctest = true,
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
authors = "David P. Sanders",
sitename = "IntervalConstraintProgramming.jl",
pages = Any[
"Home" => "index.md",
"API" => "api.md"
]
)
deploydocs(
repo = "github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git",
target = "build",
deps = nothing,
make = nothing,
)
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 1132 | using Makie
using Colors
using IntervalConstraintProgramming, IntervalArithmetic
## Constraint programming
solid_torus = @constraint (3 - sqrt(x^2 + y^2))^2 + z^2 <= 1
half_space = @constraint (x + y) + z <= 1
x = interval(-5, 5)
Y = IntervalBox(x, 3)
@time paving = pave(solid_torus โฉ half_space, Y, 0.1);
inner = paving.inner
boundary = paving.boundary;
## Makie plotting set-up
positions = Point{3, Float32}[Point3(mid(x)...) for x in vcat(inner, boundary)]
scales = Vec3f0[Vec3f0([diam(x) for x in xx]) for xx in vcat(inner, boundary)]
zs = Float32[x[3] for x in positions]
minz = minimum(zs)
maxz = maximum(zs)
xs = Float32[x[1] for x in positions]
minx = minimum(xs)
maxx = maximum(xs)
colors1 = RGBA{Float32}[RGBA( (zs[i]-minz)/(maxz-minz), (xs[i]-minx)/(maxx-minx), 0f0, 0.1f0)
for i in 1:length(inner)];
colors2 = RGBA{Float32}[RGBA( 0.5f0, 0.5f0, 0.5f0, 0.02f0) for x in boundary];
colors = vcat(colors1, colors2);
## Makie plotting:
cube = Rect{3, Float32}(Vec3f0(-0.5, -0.5, -0.5), Vec3f0(1, 1, 1))
# centre, widths
meshscatter(positions, marker=cube, scale=scales, color=colors, transparency=true)
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 663 | __precompile__()
module IntervalConstraintProgramming
using IntervalArithmetic,
IntervalContractors
using Requires
using MacroTools
import Base:
show, โฉ, โช, !, โ, setdiff
import IntervalArithmetic: sqr, setindex
export
BasicContractor,
@contractor,
Contractor,
Separator, @constraint,
@function,
SubPaving, Paving,
pave,
Vol
const reverse_operations = IntervalContractors.reverse_operations
include("ast.jl")
include("code_generation.jl")
include("contractor.jl")
include("separator.jl")
include("paving.jl")
include("setinversion.jl")
include("volume.jl")
include("functions.jl")
include("init.jl")
end # module
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 11144 | const symbol_numbers = Dict{Symbol, Int}()
"""Return a new, unique symbol like _z3_"""
function make_symbol(s::Symbol) # default is :z
i = get(symbol_numbers, s, 0)
symbol_numbers[s] = i + 1
if i == 0
return Symbol("_", s)
else
return Symbol("_", s, i)
end
end
make_symbol(c::Char) = make_symbol(Symbol(c))
let current_symbol = 'a'
global function make_symbol()
current_sym = current_symbol
if current_sym < 'z'
current_symbol += 1
else
current_symbol = 'a'
end
return make_symbol(current_sym)
end
end
make_symbols(n::Integer) = [make_symbol() for i in 1:n]
make_symbols(v::Vector{Symbol}) = make_symbols(length(v))
# The following function is not used
"""Check if a symbol like `:a` has been uniqued to `:_a_1_`"""
function isuniqued(s::Symbol)
ss = string(s)
contains(ss, "_") && isdigit(ss[end-1])
end
# Types for representing a flattened AST:
# Combine Assignment and FunctionAssignment ?
struct Assignment
lhs
op
args
end
struct FunctionAssignment
f # function name
args # input arguments
return_arguments
intermediate # tuple of intermediate variables
end
# Close to single assignment form
mutable struct FlatAST
top # topmost variable(s)
input_variables::Vector{Symbol}
intermediate::Vector{Symbol} # generated vars
code # ::Vector{Assignment}
variables::Vector{Symbol} # cleaned version of input_variables
end
function Base.show(io::IO, flatAST::FlatAST)
println(io, "top: ", flatAST.top)
println(io, "input vars: ", flatAST.input_variables)
println(io, "intermediate vars: ", flatAST.intermediate)
println(io, "code: ", flatAST.code)
end
FlatAST() = FlatAST([], [], [], [], [])
export FlatAST
##
set_top!(flatAST::FlatAST, vars) = flatAST.top = vars # also returns vars
add_variable!(flatAST::FlatAST, var) = push!(flatAST.input_variables, var)
add_intermediate!(flatAST::FlatAST, var::Symbol) = push!(flatAST.intermediate, var)
add_intermediate!(flatAST::FlatAST, vars::Vector{Symbol}) = append!(flatAST.intermediate, vars)
add_code!(flatAST::FlatAST, code) = push!(flatAST.code, code)
export flatten
function flatten(ex, var = [])
ex = MacroTools.striplines(ex)
flatAST = FlatAST()
if !isempty(var)
for i in var push!(flatAST.input_variables, i) end
end
top = flatten!(flatAST, ex, var)
return top, flatAST
end
"""`flatten!` recursively converts a Julia expression into a "flat" (one-dimensional)
structure, stored in a FlatAST object. This is close to SSA (single-assignment form,
https://en.wikipedia.org/wiki/Static_single_assignment_form).
Variables that are found are considered `input_variables`.
Generated variables introduced at intermediate nodes are stored in
`intermediate`.
Returns the variable at the top of the current piece of the tree."""
# TODO: Parameters
function _load_MT_flatten()
return quote
# numbers:
function flatten!(flatAST::FlatAST, ex::Constant, var)
return ex.value # nothing to do the AST; return the number
end
function flatten!(flatAST::FlatAST, ex::Variable, var) # symbols are leaves
if isempty(var)
add_variable!(flatAST, Symbol(ex)) # add the discovered symbol as an input variable
end
return Symbol(ex)
end
function flatten!(flatAST::FlatAST, ex::Operation, var)
# top = process_operation!(flatAST, ex, var)
# set_top!(flatAST, top)
if ex.op isa Variable
return flatten!(flatAST, ex.op, var)
else
top = process_operation!(flatAST, ex, var)
set_top!(flatAST, top)
end
end
end
end
function flatten!(flatAST::FlatAST, ex, var)
return ex # nothing to do to the AST; return the number
end
# symbols:
function flatten!(flatAST::FlatAST, ex::Symbol, var)
if isempty(var)
add_variable!(flatAST, ex) # add the discovered symbol as an input variable
end
return ex
end
function flatten!(flatAST::FlatAST, ex::Expr, var = [])
local top
if ex.head == :$ # constants written as $a
top = process_constant!(flatAST, ex)
elseif ex.head == :call # function calls
top = process_call!(flatAST, ex, var)
elseif ex.head == :(=) # assignments
top = process_assignment!(flatAST, ex)
elseif ex.head == :block
top = process_block!(flatAST, ex)
elseif ex.head == :tuple
top = process_tuple!(flatAST, ex)
elseif ex.head == :return
top = process_return!(flatAST, ex)
else
error("Currently unable to process expressions with ex.head=$(ex.head)")
end
set_top!(flatAST, top)
end
function process_constant!(flatAST::FlatAST, ex)
return esc(ex.args[1]) # interpolate the value of the external constant
end
"""A block represents a linear sequence of Julia statements.
They are processed in order.
"""
function process_block!(flatAST::FlatAST, ex)
local top
for arg in ex.args
isa(arg, LineNumberNode) && continue
top = flatten!(flatAST, arg)
end
return top # last variable assigned
end
# function process_iterated_function!(flatAST::FlatAST, ex)
function process_tuple!(flatAST::FlatAST, ex)
# println("Entering process_tuple")
# @show flatAST
# @show ex
top_args = [flatten!(flatAST, arg) for arg in ex.args]
# top_args = [] # the arguments returned for each element of the tuple
# for arg in ex.args
# top = flatten!(flatAST, arg)
# push!(top_args, top)
# end
return top_args
end
"""An assigment is of the form a = f(...).
The name a is currently retained.
TODO: It should later be made unique.
"""
function process_assignment!(flatAST::FlatAST, ex)
# println("process_assignment!:")
# @show ex
# @show ex.args[1], ex.args[2]
top = flatten!(flatAST, ex.args[2])
# @show top
var = ex.args[1]
# @show var
# TODO: Replace the following by multiple dispatch
if isa(var, Expr) && var.head == :tuple
vars = [var.args...]
elseif isa(var, Tuple)
vars = [var...]
elseif isa(var, Vector)
vars = var
else
vars = [var]
end
add_intermediate!(flatAST, vars)
top_level_code = Assignment(vars, :(), top) # empty operation
add_code!(flatAST, top_level_code)
# j@show flatAST
return var
end
"""Processes something of the form `(fโ4)(x)` (write as `\\uparrow<TAB>`)
by rewriting it to the equivalent set of iterated functions"""
function process_iterated_function!(flatAST::FlatAST, ex)
total_function_call = ex.args[1]
args = ex.args[2:end]
# @show args
function_name = total_function_call.args[2]
power = total_function_call.args[3] # assumed integer
new_expr = :($function_name($(args...)))
# @show new_expr
for i in 2:power
new_expr = :($function_name($new_expr))
end
# @show new_expr
flatten!(flatAST, new_expr) # replace the current expression with the new one
end
"""A call is something like +(x, y).
A new variable is introduced for the result; its name can be specified
using the new_var optional argument. If none is given, then a new, generated
name is used.
"""
function process_call!(flatAST::FlatAST, ex, var = [], new_var=nothing)
#println("Entering process_call!")
#@show ex
#@show flatAST
#@show new_var
op = ex.args[1]
#@show op
if isa(op, Expr)
if op.head == :line
return
elseif op.head == :call && op.args[1]==:โ # iterated function like f โ 4
return process_iterated_function!(flatAST, ex)
end
end
# rewrite +(a,b,c) as +(a,+(b,c)) by recursive splitting
# TODO: Use @match here!
if op in (:+, :*) && length(ex.args) > 3
return flatten!(flatAST, :( ($op)($(ex.args[2]), ($op)($(ex.args[3:end]...) )) ), var)
end
top_args = []
for arg in ex.args[2:end]
isa(arg, LineNumberNode) && continue
top = flatten!(flatAST, arg, var)
if isa(top, Vector) # TODO: make top always a Vector?
append!(top_args, top)
else
push!(top_args, top)
end
end
top_level_code = quote end
#@show op
if op โ keys(reverse_operations) # standard operator
if isnothing(new_var)
new_var = make_symbol()
end
add_intermediate!(flatAST, new_var)
top_level_code = Assignment(new_var, op, top_args)
else
if haskey(registered_functions, op)
f = registered_functions[op]
# make enough new variables for all the returned arguments:
return_args = make_symbols(f.return_arguments)
intermediate = make_symbols(f.intermediate) #registered_functions[op].intermediate # make_symbol(:z_tuple)
add_intermediate!(flatAST, return_args)
add_intermediate!(flatAST, intermediate)
top_level_code = FunctionAssignment(op, top_args, return_args, intermediate)
new_var = return_args
else
throw(ArgumentError("Function $op not available. Use @function to define it."))
end
end
add_code!(flatAST, top_level_code)
return new_var
end
function process_operation!(flatAST::FlatAST, ex, var, new_var=nothing)
# println("\n\n--")
# @show flatAST
# @show ex
# @show var
# @show new_var
op = ex.op
if op in (+, *) && length(ex.args) > 2
return flatten!(flatAST, Expression( (op)((ex.args[1]), (op)((ex.args[2:end]...) )) ), var)
end
top_args = []
for arg in ex.args[1:end]
isa(arg, LineNumberNode) && continue
top = flatten!(flatAST, arg, var)
if isa(top, Vector)
append!(top_args, top)
else
push!(top_args, top)
end
end
top_level_code = quote end
#@show op
if Symbol(op) โ keys(reverse_operations) # standard operator
if isnothing(new_var)
new_var = make_symbol()
end
add_intermediate!(flatAST, new_var)
top_level_code = Assignment(new_var, Symbol(op), top_args)
else
if haskey(registered_functions, Symbol(op))
f = registered_functions[Symbol(op)]
# make enough new variables for all the returned arguments:
return_args = make_symbols(f.return_arguments)
intermediate = make_symbols(f.intermediate) #registered_functions[op].intermediate # make_symbol(:z_tuple)
add_intermediate!(flatAST, return_args)
add_intermediate!(flatAST, intermediate)
top_level_code = FunctionAssignment(Symbol(op), top_args, return_args, intermediate)
new_var = return_args
else
throw(ArgumentError("Function $op not available. Use @function to define it."))
end
end
add_code!(flatAST, top_level_code)
return new_var
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 5156 | """
A generated function, with the code that generated it
"""
struct GeneratedFunction{F}
f::F
code::Expr
end
#GeneratedFunction(code::Expr) = GeneratedFunction(eval(code), code)
(f::GeneratedFunction{F})(x...) where {F} = f.f(x...)
function make_tuple(args)
if isa(args, Symbol)
# args = [args]
return args
end
length(args) == 1 && return args[1]
return Expr(:tuple, args...)
end
function really_make_tuple(args)
return Expr(:tuple, args...)
end
function emit_forward_code(a::Assignment)
args = isa(a.args, Vector) ? a.args : [a.args]
lhs = make_tuple(a.lhs)
if a.op == :() # empty
args = make_tuple(args)
:($lhs = $args)
else
:($lhs = $(a.op)($(args...) ) )
end
end
function emit_backward_code(a::Assignment)
args = isa(a.args, Vector) ? a.args : [a.args]
return_args = [a.lhs, args...]
rev_op = reverse_operations[a.op] # find reverse operation
if rev_op == :() # empty
args = make_tuple(args)
lhs = make_tuple(a.lhs)
return :($args = $lhs)
#return :($(args...) = $(a.lhs))
else
rev_code = :($(rev_op)($(return_args...)))
end
# delete non-symbols in return args:
for (i, arg) in enumerate(return_args)
if !(isa(arg, Symbol))
return_args[i] = :_
end
end
return_tuple = Expr(:tuple, return_args...) # make tuple out of array
# or: :($(return_args...),)
return :($(return_tuple) = $(rev_code))
end
# TODO: Just pass intermediate as tuple between forward and backward for functions
function emit_forward_code(a::FunctionAssignment)
f = a.f
args = isa(a.args, Vector) ? a.args : [a.args]
args_tuple = really_make_tuple(args)
return_tuple = really_make_tuple(a.return_arguments)
intermediate = really_make_tuple(a.intermediate)
# Remove the following once https://github.com/JuliaLang/julia/issues/20524 fixed and replace with
# :( ( $return_tuple, $intermediate ) = $(esc(f)).forward($args_tuple))
temp1 = make_symbol(:z_tuple)
temp2 = make_symbol(:z_tuple)
return quote
($temp1, $temp2) = $(esc(f)).forward($args_tuple)
$return_tuple = $temp1
$intermediate = $temp2
end
end
function emit_backward_code(a::FunctionAssignment)
f = a.f
args = isa(a.args, Vector) ? a.args : [a.args]
args_tuple = really_make_tuple(args)
intermediate = really_make_tuple(a.intermediate)
return_tuple = really_make_tuple(a.return_arguments)
:($args_tuple = $(esc(f)).backward($args_tuple, $return_tuple, $intermediate))
end
function emit_forward_code(code) # code::Vector{Assignment})
new_code = quote end
new_code.args = vcat([emit_forward_code(line) for line in code])
return new_code
end
function emit_backward_code(code) #::Vector{Assignment})
new_code = quote end
new_code.args = vcat([emit_backward_code(line) for line in reverse(code)])
return new_code
end
function forward_backward(flatAST::FlatAST)
# @show flatAST.input_variables
# @show flatAST.intermediate
input = collect(flatAST.input_variables)
# @show flatAST.top
if isa(flatAST.top, Symbol)
output = [flatAST.top]
elseif isa(flatAST.top, Expr) && flatAST.top.head == :tuple
output = flatAST.top.args
else
output = flatAST.top
# @show output
end
# @show input
# @show flatAST.intermediate
# @show output
input = setdiff(input, flatAST.intermediate) # remove local variables
intermediate = setdiff(flatAST.intermediate, output)
flatAST.variables = input
forward_code = emit_forward_code(flatAST.code)
forward = make_forward_function(input, output, intermediate, forward_code)
# @show input
# @show intermediate
# @show output
backward_code = emit_backward_code(flatAST.code)
backward = make_backward_function(input, output, intermediate,
input, backward_code)
# @show input
# @show output
# @show intermediate
return (forward, backward)
end
"""
Generate code for an anonymous function with given
input arguments, output arguments, and code block.
"""
function make_forward_function(input_args, output_args, intermediate, code)
input = really_make_tuple(input_args) # make a tuple of the variables
intermediate = really_make_tuple(intermediate)
output = make_tuple(output_args) # make a tuple of the variables
quote
t -> begin
$input = t
$code
return ($output, $intermediate)
end
end
end
function make_backward_function(input1, input2, input3, output_args, code)
input1 = really_make_tuple(input1) # make a tuple of the variables
input2 = really_make_tuple(input2)
input3 = really_make_tuple(input3)
output = really_make_tuple(output_args) # make a tuple of the variables
quote
(t1, t2, t3) -> begin
$input1 = t1
$input2 = t2
$input3 = t3
$code
return $output
end
end
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 6319 | """
`Contractor` represents a `Contractor` from ``\\mathbb{R}^N`` to ``\\mathbb{R}^N``.
Nout is the output dimension of the forward part.
"""
abstract type AbstractContractor end
struct Contractor{N, Nout, F1<:Function, F2<:Function, ex} <:AbstractContractor
variables::Vector{Symbol} # input variables
forward::GeneratedFunction{F1}
backward::GeneratedFunction{F2}
expression::ex
end
struct BasicContractor{F1<:Function, F2<:Function} <:AbstractContractor
forward::F1
backward::F2
end
function Contractor(variables::Vector{Symbol}, top, forward, backward, expression)
# @show variables
# @show top
N = length(variables) # input dimension
local Nout # number of outputs
if isa(top, Symbol)
Nout = 1
elseif isa(top, Expr) && top.head == :tuple
Nout = length(top.args)
else
Nout = length(top)
end
Contractor{N, Nout, typeof(forward.f), typeof(backward.f), typeof(expression)}(variables, forward, backward, expression)
end
function Base.show(io::IO, C::Contractor{N,Nout,F1,F2,ex}) where {N,Nout,F1,F2,ex}
println(io, "Contractor in $(N) dimensions:")
println(io, " - forward pass contracts to $(Nout) dimensions")
println(io, " - variables: $(C.variables)")
print(io, " - expression: $(C.expression)")
end
(C::Contractor)(X) = C.forward(X)[1]
(C::BasicContractor)(X) = C.forward(X)[1]
function contract(C::AbstractContractor, A::IntervalBox{Nout,T}, X::IntervalBox{N,T})where {N,Nout,T}
output, intermediate = C.forward(X)
# @show output
# @show intermediate
output_box = IntervalBox(output)
constrained = output_box โฉ A
# if constrained is already empty, eliminate call to backward propagation:
if isempty(constrained)
return emptyinterval(X)
end
# @show X
# @show constrained
# @show intermediate
# @show C.backward(X, constrained, intermediate)
return IntervalBox{N,T}(C.backward(X, constrained, intermediate) )
end
function (C::Contractor)(A::IntervalBox{Nout,T}, X::IntervalBox{N,T})where {N,Nout,T}
return contract(C, A, X)
end
# allow 1D contractors to take Interval instead of IntervalBox for simplicty:
(C::Contractor)(A::Interval{T}, X::IntervalBox{N,T}) where {N,T} = C(IntervalBox(A), X)
function (C::BasicContractor)(A::IntervalBox{Nout,T}, X::IntervalBox{N,T})where {N,Nout,T}
return contract(C, A, X)
end
# allow 1D contractors to take Interval instead of IntervalBox for simplicty:
(C::BasicContractor)(A::Interval{T}, X::IntervalBox{N,T}) where {N,T} = C(IntervalBox(A), X)
function Base.show(io::IO, C::BasicContractor{F1,F2}) where {F1,F2}
println(io, " Basic version of Contractor")
end
function _load_MT_contractor()
return quote
""" Contractor can also be construct without the use of macros
vars = @variables x y z
C = Contractor(x + y , vars)
C(-Inf..1, IntervalBox(0.5..1.5,3))
"""
function Contractor(variables, expr::Operation)
var = [i.op.name for i in variables]
top, linear_AST = flatten(expr, var)
forward_code, backward_code = forward_backward(linear_AST)
# @show top
if isa(top, Symbol)
top = [top]
end
forward = eval(forward_code)
backward = eval(backward_code)
Contractor(linear_AST.variables,
top,
GeneratedFunction(forward, forward_code),
GeneratedFunction(backward, backward_code),
expr)
end
function BasicContractor(variables, expr::Operation)
var = [i.op.name for i in variables]
top, linear_AST = flatten(expr, var)
forward_code, backward_code = forward_backward(linear_AST)
forward = eval(forward_code)
backward = eval(backward_code)
BasicContractor{typeof(forward), typeof(backward)}(forward, backward)
end
BasicContractor(expr::Operation) = BasicContractor([], expr::Operation)
BasicContractor(vars::Union{Vector{Operation}, Tuple{Vararg{Operation,N}}}, g::Function) where N = BasicContractor(vars, g(vars...)) #Contractor can be constructed by function name only
BasicContractor(vars, f::Function) = BasicContractor([Variable(Symbol(i))() for i in vars], f([Variable(Symbol(i))() for i in vars]...))#if vars is not vector of Operation
Contractor(expr::Operation) = Contractor([], expr::Operation)
Contractor(vars::Union{Vector{Operation}, Tuple{Vararg{Operation,N}}}, g::Function) where N = Contractor(vars, g(vars...)) #Contractor can be constructed by function name only
Contractor(vars, f::Function) = Contractor([Variable(Symbol(i))() for i in vars], f([Variable(Symbol(i))() for i in vars]...))#if vars is not vector of Operation
end
end
function make_contractor(expr::Expr, var = [])
# println("Entering Contractor(ex) with ex=$ex")
# expr, constraint_interval = parse_comparison(ex)
# if constraint_interval != entireinterval()
# warn("Ignoring constraint; include as first argument")
# end
top, linear_AST = flatten(expr, var)
# @show expr
# @show top
# @show linear_AST
forward_code, backward_code = forward_backward(linear_AST)
# @show top
if isa(top, Symbol)
top = [top]
elseif isa(top, Expr) && top.head == :tuple
top = top.args
end
# @show forward_code
# @show backward_code
:(Contractor($(linear_AST.variables),
$top,
GeneratedFunction($forward_code, $(Meta.quot(forward_code))),
GeneratedFunction($backward_code, $(Meta.quot(backward_code))),
$(Meta.quot(expr))))
end
"""Usage:
```
C = @contractor(x^2 + y^2)
A = -โ..1 # the constraint interval
x = y = @interval(0.5, 1.5)
C(A, x, y)
`@contractor` makes a function that takes as arguments the variables contained in the expression, in lexicographic order
```
TODO: Hygiene for global variables, or pass in parameters
"""
macro contractor(ex, variables=[])
isa(variables, Array) ? var = [] : var = variables.args
make_contractor(ex, var)
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 2532 | """
A `ConstraintFunction` contains the created forward and backward
code
"""
mutable struct ConstraintFunction{F <: Function, G <: Function}
input::Vector{Symbol} # input arguments for forward function
output::Vector{Symbol} # output arguments for forward function
forward::F
backward::G
forward_code::Expr
backward_code::Expr
expression::Expr
end
function (C::ConstraintFunction)(args...)
return C.forward(args)[1]
end
function Base.show(io::IO, f::ConstraintFunction{F,G}) where {F,G}
println(io, "ConstraintFunction:")
println(io, " - input arguments: $(f.input)")
println(io, " - output arguments: $(f.output)")
print(io, " - expression: $(MacroTools.striplines(f.expression))")
end
struct FunctionArguments
input
return_arguments
intermediate
end
const registered_functions = Dict{Symbol, FunctionArguments}()
# """
# `@function` registers a function to be used in forwards and backwards mode.
#
# Example: `@function f(x, y) = x^2 + y^2`
# """ # this docstring does not work!
@eval macro ($(:function))(ex) # workaround to define macro @function
(f, args, code) = match_function(ex)
return_arguments, flatAST = flatten(code)
# make into an array:
if !(isa(return_arguments, Array))
return_arguments = [return_arguments]
end
# rearrange so actual return arguments come first:
flatAST.intermediate = setdiff(flatAST.intermediate, return_arguments)
# println("HERE")
# flatAST.intermediate = [return_arguments; flatAST.intermediate]
forward, backward = forward_backward(flatAST)
registered_functions[f] = FunctionArguments(
flatAST.variables, return_arguments, flatAST.intermediate)
return quote
$(esc(f)) =
ConstraintFunction($(flatAST.variables),
$(flatAST.intermediate),
$(forward),
$(backward),
$(Meta.quot(forward)),
$(Meta.quot(backward)),
$(Meta.quot(ex))
)
end
end
function match_function(ex)
try
@capture ex begin
( (f_(args__) = body_)
| (function f_(args__) body_ end) )
end
return (f, args, rmlines(body)) # rmlines is from MacroTools package
catch
throw(ArgumentError("$ex does not have the form of a function"))
end
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 129 | function __init__()
@require ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78" include("init_ModelingToolkit.jl")
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 191 | using .ModelingToolkit: Constant, Variable, Operation
eval(_load_MT_flatten())
eval(_load_MT_parse())
eval(_load_MT_make_constraint())
eval(_load_MT_separator())
eval(_load_MT_contractor())
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 1264 | const SubPaving{N,T} = Vector{IntervalBox{N,T}}
struct Paving{N,T}
separator::Separator # parametrize!
inner::SubPaving{N,T}
boundary::SubPaving{N,T}
ฯต::Float64
end
function setdiff(x::IntervalBox{N,T}, subpaving::SubPaving{N,T}) where {N,T}
working = [x]
new_working = IntervalBox{N,T}[]
local have_split
for y in subpaving
for x in working
have_split = false
diff = setdiff(x, y)
if diff != [x]
have_split = true
append!(new_working, diff)
end
end
!have_split && push!(new_working, x)
working = new_working
new_working = IntervalBox{N,T}[]
end
return working
end
setdiff(X::SubPaving{N,T}, Y::SubPaving{N,T}) where {N,T} = vcat([setdiff(x, Y) for x in X]...)
function setdiff(x::IntervalBox{N,T}, paving::Paving{N,T}) where {N,T}
Y = setdiff(x, paving.inner)
Z = setdiff(Y, paving.boundary)
return Z
end
function show(io::IO, p::Paving{N,T}) where {N,T}
print(io, """Paving:
- tolerance ฯต = $(p.ฯต)
- inner approx. of length $(length(p.inner))
- boundary approx. of length $(length(p.boundary))"""
)
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 10398 | abstract type Separator end
"""
ConstraintSeparator is a separator that represents a constraint defined directly
using `@constraint`.
"""
struct ConstraintSeparator{C, II, ex} <: Separator
variables::Vector{Symbol}
constraint::II # Interval or IntervalBox
contractor::C
expression::ex
end
ConstraintSeparator(constraint, contractor, expression) = ConstraintSeparator(contractor.variables, constraint, contractor, expression)
"""CombinationSeparator is a separator that is a combination (union, intersection,
or complement) of other separators.
"""
struct CombinationSeparator{F, ex} <: Separator
variables::Vector{Symbol}
separator::F
expression::ex
end
function (S::ConstraintSeparator)(X::IntervalBox)
C = S.contractor
a, b = S.constraint.lo, S.constraint.hi
inner = C(IntervalBox(Interval(a, b)), X)
local outer
if a == -โ
outer = C(IntervalBox(Interval(b, โ)), X)
elseif b == โ
outer = C(IntervalBox(Interval(-โ, a)), X)
else
outer1 = C(IntervalBox(Interval(-โ, a)), X)
outer2 = C(IntervalBox(Interval(b, โ)), X)
outer = outer1 โช outer2
end
return (inner, outer)
end
"""`parse_comparison` parses comparisons like `x >= 10`
into the corresponding interval, expressed as `x โ [10,โ]`
Returns the expression and the constraint interval
TODO: Allow something like [3,4]' for the complement of [3,4]
"""
function parse_comparison(ex::Expr)
expr, limits =
@match ex begin
((a_ <= b_) | (a_ < b_) | (a_ โค b_)) => (a, (-โ, b))
((a_ >= b_) | (a_ > b_) | (a_ โฅ b_)) => (a, (b, โ))
((a_ == b_) | (a_ = b_)) => (a, (b, b))
((a_ <= b_ <= c_)
| (a_ < b_ < c_)
| (a_ <= b_ < c)
| (a_ < b_ <= c)) => (b, (a, c))
((a_ >= b_ >= c_)
| (a_ > b_ > c_)
| (a_ >= b_ > c_)
| (a_ > b_ >= c)) => (b, (c, a))
((a_ โ [b_, c_])
| (a_ in [b_, c_])
| (a_ โ b_ .. c_)
| (a_ in b_ .. c_)) => (a, (b, c))
_ => (ex, (-โ, โ))
end
a, b = limits
return (expr, a..b) # expr โ [a,b]
end
function _load_MT_parse()
return quote
function parse_comparison(ex::Operation)
if isa(ex.args[1], Constant)
if ex.op == <
a = ex.args[1].value
b = Inf
elseif ex.op == >
a = -Inf
b = ex.args[1].value
end
return (ex.args[2], a..b)
elseif isa(ex.args[2], Constant)
if ex.op == >
a = ex.args[2].value
b = Inf
elseif ex.op == <
a = -Inf
b = ex.args[2].value
else
a = ex.args[2].value
b = ex.args[2].value
end
return (ex.args[1], a..b)
end
end
end
end
function new_parse_comparison(ex)
# @show ex
if @capture ex begin
(op_(a_, b_))
end
#return (op, a, b)
# @show op, a, b
elseif ex.head == :comparison
println("Comparison")
symbols = ex.args[1:2:5]
operators = ex.args[2:2:4]
# @show symbols
# @show operators
end
end
function make_constraint(expr, constraint, var =[])
if isa(expr, Symbol)
expr = :(1 * $expr) # make into an expression!
end
contractor_name = make_symbol(:C)
full_expr = Meta.quot(:($expr โ $constraint))
contractor_code = make_contractor(expr, var)
code = quote end
push!(code.args, :($(esc(contractor_name)) = $(contractor_code)))
push!(code.args, :(ConstraintSeparator($constraint, $(esc(contractor_name)), $full_expr)))
code
end
function _load_MT_make_constraint()
return quote
make_constraint(expr::Variable, constraint) = make_constraint(Operation(expr), constraint)
function make_constraint(expr::Operation, constraint, var=[])
C = Contractor(var, expr)
ex = expr โ constraint
ConstraintSeparator(constraint, C, ex)
end
end
end
"""Create a separator from a given constraint expression, written as
standard Julia code.
e.g. `C = @constraint x^2 + y^2 <= 1`
The variables (`x` and `y`, in this case) are automatically inferred.
External constants can be used as e.g. `\$a`:
```
a = 3
C = @constraint x^2 + y^2 - \$a <= 0
```
"""
macro constraint(ex::Expr, variables = [])
expr, constraint = parse_comparison(ex)
isa(variables, Array) ? var = [] : var = variables.args
make_constraint(expr, constraint, var)
end
function _load_MT_separator()
return quote
"""
Create a separator without the use of macros using ModelingToolkit
e.g
```
vars = @variables x y z
S = Separator(vars, x^2+y^2<1)
X= IntervalBox(-0.5..1.5, -0.5..1.5, -0.5..1.5)
S(X)
```
"""
function Separator(variables, ex::Operation)
expr, constraint = parse_comparison(ex)
make_constraint(expr, constraint, variables)
end
Separator(ex::Operation) = Separator([], ex)
Separator(vars::Union{Vector{Operation}, Tuple{Vararg{Operation,N}}}, g::Function) where N = Separator(vars, g(vars...))
Separator(vars, f::Function) = Separator([Variable(Symbol(i))() for i in vars], f([Variable(Symbol(i))() for i in vars]...)) # if vars is not vector of variables
end
end
function show(io::IO, S::Separator)
println(io, "Separator:")
print(io, " - variables: ")
print(io, join(map(string, S.variables), ", "))
println(io)
print(io, " - expression: ")
print(io, S.expression)
end
(S::CombinationSeparator)(X) = S.separator(X)
"Unify the variables of two separators"
function unify_variables(vars1, vars2)
variables = unique(sort(vcat(vars1, vars2)))
numvars = length(variables) # total number of variables
indices1 = indexin(vars1, variables)
indices2 = indexin(vars2, variables)
where1 = zeros(Int, numvars) # inverse of indices1
where2 = zeros(Int, numvars)
for (i, which) in enumerate(indices1)
where1[which] = i
end
for (i, which) in enumerate(indices2)
where2[which] = i
end
return variables, indices1, indices2, where1, where2
end
# TODO: when S1 and S2 have different variables -- amalgamate!
"""
โฉ(S1::Separator, S2::Separator)
Separator for the intersection of two sets given by the separators `S1` and `S2`.
Takes an iterator of intervals (`IntervalBox`, tuple, array, etc.), of length
equal to the total number of variables in `S1` and `S2`;
it returns inner and outer tuples of the same length
"""
function โฉ(S1::Separator, S2::Separator)
#=variables, indices1, indices2, where1, where2 = unify_variables(S1.variables, S2.variables)
numvars = length(variables)=#
variables = S1.variables # as S1 and S2 have same variables
f = X -> begin
inner1, outer1 = S1(X)
inner2, outer2 = S2(X)
inner = inner1 โฉ inner2
outer = outer1 โช outer2
#=
inner1, outer1 = S1(IntervalBox([X[i] for i in indices1]...))
inner2, outer2 = S2(IntervalBox([X[i] for i in indices2]...))
if any(isempty, inner1)
inner1 = emptyinterval(IntervalBox(X))
else
inner1 = [i โ indices1 ? inner1[where1[i]] : X[i] for i in 1:numvars]
end
if any(isempty, outer1)
outer1 = emptyinterval(IntervalBox(X))
else
outer1 = [i โ indices1 ? outer1[where1[i]] : X[i] for i in 1:numvars]
end
if any(isempty, inner2)
inner2 = emptyinterval(IntervalBox(X))
else
inner2 = [i โ indices2 ? inner2[where2[i]] : X[i] for i in 1:numvars]
end
if any(isempty, outer2)
outer2 = emptyinterval(IntervalBox(X))
else
outer2 = [i โ indices2 ? outer2[where2[i]] : X[i] for i in 1:numvars]
end
# Treat as if had X[i] in the other directions, except if empty
inner = IntervalBox( [x โฉ y for (x,y) in zip(inner1, inner2) ]... )
outer = IntervalBox( [x โช y for (x,y) in zip(outer1, outer2) ]... )
=#
return (inner, outer)
end
expression = :($(S1.expression) โฉ $(S2.expression))
return CombinationSeparator(variables, f, expression)
end
function โช(S1::Separator, S2::Separator)
#=variables, indices1, indices2, where1, where2 = unify_variables(S1.variables, S2.variables)
numvars = length(variables)=#
variables = S1.variables # S1 and S2 have same variables
f = X -> begin
inner1, outer1 = S1(X)
inner2, outer2 = S2(X)
inner = inner1 โช inner2
outer = outer1 โฉ outer2
#=
inner1, outer1 = S1(IntervalBox([X[i] for i in indices1]...))
inner2, outer2 = S2(IntervalBox([X[i] for i in indices2]...))
if any(isempty, inner1)
inner1 = emptyinterval(IntervalBox(X))
else
inner1 = [i โ indices1 ? inner1[where1[i]] : X[i] for i in 1:numvars]
end
if any(isempty, outer1)
outer1 = emptyinterval(IntervalBox(X))
else
outer1 = [i โ indices1 ? outer1[where1[i]] : X[i] for i in 1:numvars]
end
if any(isempty, inner2)
inner2 = emptyinterval(IntervalBox(X))
else
inner2 = [i โ indices2 ? inner2[where2[i]] : X[i] for i in 1:numvars]
end
if any(isempty, outer2)
outer2 = emptyinterval(IntervalBox(X))
else
outer2 = [i โ indices2 ? outer2[where2[i]] : X[i] for i in 1:numvars]
end
inner = IntervalBox( [x โช y for (x,y) in zip(inner1, inner2) ]... )
outer = IntervalBox( [x โฉ y for (x,y) in zip(outer1, outer2) ]... )
=#
return (inner, outer)
end
expression = :($(S1.expression) โช $(S2.expression))
return CombinationSeparator(variables, f, expression)
end
function !(S::Separator)
f = X -> begin
inner, outer = S(X)
return (outer, inner)
end
expression = :(!($(S.expression)))
return CombinationSeparator(S.variables, f, expression)
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 1913 | """
`pave` takes the given working list of boxes and splits them into inner and boundary
lists with the given separator
"""
function pave(S::Separator, working::Vector{IntervalBox{N,T}}, ฯต, bisection_point=nothing) where {N,T}
inner_list = SubPaving{N,T}()
boundary_list = SubPaving{N,T}()
while !isempty(working)
X = pop!(working)
inner, outer = S(X) # here inner and outer are reversed compared to Jaulin
# S(X) returns the pair (contractor with respect to the inside of the constraing, contractor with respect to outside)
#@show X, outer
inside_list = setdiff(X, outer)
if length(inside_list) > 0
append!(inner_list, inside_list)
end
boundary = inner โฉ outer
if isempty(boundary)
continue
end
if diam(boundary) < ฯต
push!(boundary_list, boundary)
else
if isnothing(bisection_point)
push!(working, bisect(boundary)...)
else
push!(working, bisect(boundary, bisection_point)...)
end
end
end
return inner_list, boundary_list
end
"""
pave(S::Separator, domain::IntervalBox, eps)`
Find the subset of `domain` defined by the constraints specified by the separator `S`.
Returns (sub)pavings `inner` and `boundary`, i.e. lists of `IntervalBox`.
"""
function pave(S::Separator, X::IntervalBox{N,T}, ฯต = 1e-2, bisection_point=nothing) where {N,T}
inner_list, boundary_list = pave(S, [X], ฯต, bisection_point)
return Paving(S, inner_list, boundary_list, ฯต)
end
# """Refine a paving to tolerance ฯต"""
# function refine!(P::Paving, ฯต = 1e-2)
# if P.ฯต <= ฯต # already refined
# return
# end
#
# new_inner, new_boundary = pave(P.separator, P.boundary, ฯต)
#
# append!(P.inner, new_inner)
# P.boundary = new_boundary
# P.ฯต = ฯต
# end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 855 | import Base:
+, show, *
"""N-dimensional Volume with lower and upper bounds"""
struct Vol{N,T}
bounds::Interval{T}
end
Vol_name(i::Integer) = i == 1 ? "length" : i == 2 ? "area" : i == 3 ? "Volume" : "hyper-Volume"
show(io::IO, v::Vol{N,T}) where {N,T} = print(io, "$N-dimensional $(Vol_name(N)): $(v.bounds)")
Vol(X::IntervalBox{N,T}) where {N,T} = Vol{N,T}(prod([Interval(x.hi) - Interval(x.lo) for x in X]))
Vol(x::Interval{T}) where {T} = Vol(IntervalBox(x))
+(v::Vol{N,T}, w::Vol{N,T}) where {N,T} = Vol{N,T}(v.bounds + w.bounds)
*(v::Vol{N1,T}, w::Vol{N2,T}) where {N1,N2,T} = Vol{N1+N2,T}(v.bounds * w.bounds)
Vol(XX::SubPaving{N,T}) where {N,T} = sum([Vol(X) for X in XX])
function Vol(P::Paving{N,T}) where {N,T}
Vin = Vol(P.inner)
Vout = Vin + Vol(P.boundary)
return Vol{N,T}(hull(Vin.bounds, Vout.bounds))
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 2183 | using ModelingToolkit
@testset "BasicContractor" begin
@variables x y
C = BasicContractor(x^2 + y^2)
@test C(-โ..1, IntervalBox(-โ..โ,2)) == IntervalBox(-1..1, -1..1)
X =IntervalBox(-1..1,2)
@test C(X) == 0..2
@test C((1,2)) == 5
end
@testset "Contractor without using macro" begin
@variables x y
C = Contractor(x^2 + y^2)
@test C(-โ..1, IntervalBox(-โ..โ, 2)) == IntervalBox(-1..1, -1..1)
end
@testset "Contractor (with macros and without macros) specifying variables explicitly" begin
X =IntervalBox(0.5..1.5,3)
A=-Inf..1
C1 = @contractor(x+y, [x,y,z])
@test C1(A,X) == IntervalBox(0.5..0.5, 0.5..0.5, 0.5..1.5)
C2 = @contractor(y+z, [x,y,z])
@test C2(A,X) == IntervalBox(0.5..1.5, 0.5..0.5, 0.5..0.5)
vars = @variables x y z
C1 = Contractor(vars, x+y)
@test C1(A,X) == IntervalBox(0.5..0.5, 0.5..0.5, 0.5..1.5)
C2 = Contractor(vars, y+z)
@test C2(A,X) == IntervalBox(0.5..1.5, 0.5..0.5, 0.5..0.5)
C1 = Contractor([x, y, z], x+y)
@test C1(A,X) == IntervalBox(0.5..0.5, 0.5..0.5, 0.5..1.5)
C2 = Contractor([x, y, z], y+z)
@test C2(A,X) == IntervalBox(0.5..1.5, 0.5..0.5, 0.5..0.5)
vars = @variables x1 x3 x2
C = Contractor(vars, x1+x2)
@test C(A, X) == IntervalBox(0.5..0.5, 0.5..1.5, 0.5..0.5)
end
@testset "Contractor is created by function name " begin
vars = @variables x y
g(x, y) = x + y
C = Contractor(vars, g)
@test C(-Inf..1, IntervalBox(0.5..1.5, 2)) == IntervalBox(0.5..0.5, 2)
end
@testset "Separators without using macros" begin
II = -100..100
X = IntervalBox(II, II)
vars = @variables x y
S = Separator(vars, x^2 + y^2 < 1)
inner, outer = S(X)
@test inner == IntervalBox(-1..1, -1..1)
@test outer == IntervalBox(II, II)
X = IntervalBox(-โ..โ, -โ..โ)
inner, outer = S(X)
@test inner == IntervalBox(-1..1, -1..1)
@test outer == IntervalBox(-โ..โ, -โ..โ)
end
@testset "Separator is created by function name " begin
vars = @variables x y
g(x, y) = x + y < 1
S = Separator(vars, g)
@test S(IntervalBox(0.5..1.5, 2)) == (IntervalBox(0.5..0.5, 2), IntervalBox(0.5..1.5, 2))
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | code | 4921 | using IntervalConstraintProgramming, Test
using IntervalArithmetic
@testset "Utilities" begin
@test IntervalConstraintProgramming.unify_variables([:a, :c], [:c, :b]) == ([:a,:b,:c], [1,3], [3,2], [1,0,2], [0,2,1])
end
@testset "Contractor" begin
x = y = -โ..โ
X = IntervalBox(x, y)
C = @contractor x^2 + y^2
@test C(-โ..1, X) == IntervalBox(-1..1, -1..1)
X =IntervalBox(-1..1,2)
@test C(X) == 0..2
@test C((1,2)) == 5
end
@testset "Separators" begin
II = -100..100
X = IntervalBox(II, II)
S = @constraint x^2 + y^2 <= 1
@test typeof(S) <: IntervalConstraintProgramming.ConstraintSeparator
inner, outer = S(X)
@test inner == IntervalBox(-1..1, -1..1)
@test outer == IntervalBox(II, II)
X = IntervalBox(-โ..โ, -โ..โ)
inner, outer = S(X)
@test inner == IntervalBox(-1..1, -1..1)
@test outer == IntervalBox(-โ..โ, -โ..โ)
end
@testset "pave" begin
S1a = @constraint(x > 0 , [x, y])
S1b = @constraint(y > 0 , [x, y])
S1 = S1a โฉ S1b
paving = pave(S1, IntervalBox(-3..3, -3..3), 2.0, 0.5)
@test Set(paving.inner) == Set([IntervalBox(1.5..3, 0..3), IntervalBox(0..1.5, 1.5..3)])
@test length(paving.inner) == 2
@test isempty(paving.boundary) == false
S2 = S1a โช S1b
paving = pave(S2, IntervalBox(-3..3, -3..3), 0.1)
@test Set(paving.inner) == Set([IntervalBox(-3..0, 0..3), IntervalBox(0..3, -3..3)])
@test length(paving.inner) == 2
@test isempty(paving.boundary) == false
S3 = @constraint x^2 + y^2 <= 1
X = IntervalBox(-โ..โ, -โ..โ)
paving = pave(S3, X, 1.0, 0.5)
@test Set(paving.inner) == Set([IntervalBox(Interval(0.0, 0.5), Interval(0.0, 0.8660254037844386)),
IntervalBox(Interval(0.0, 0.5), Interval(-0.8660254037844386, 0.0)),
IntervalBox(Interval(-0.5, 0.0), Interval(0.0, 0.8660254037844386)),
IntervalBox(Interval(-0.5, 0.0), Interval(-0.8660254037844386, 0.0))])
@test Set(paving.boundary) == Set([ IntervalBox(Interval(0.5, 1.0), Interval(0.0, 0.8660254037844387)),
IntervalBox(Interval(0.0, 0.5), Interval(0.8660254037844386, 1.0)),
IntervalBox(Interval(0.5, 1.0), Interval(-0.8660254037844387, 0.0)),
IntervalBox(Interval(0.0, 0.5), Interval(-1.0, -0.8660254037844386)),
IntervalBox(Interval(-0.5, 0.0), Interval(0.8660254037844386, 1.0)),
IntervalBox(Interval(-1.0, -0.5), Interval(0.0, 0.8660254037844387)),
IntervalBox(Interval(-0.5, 0.0), Interval(-1.0, -0.8660254037844386)),
IntervalBox(Interval(-1.0, -0.5), Interval(-0.8660254037844387, 0.0))])
@test length(paving.inner) == 4
@test length(paving.boundary) == 8
end
# @testset "Constants" begin
# x = y = -โ..โ
# X = IntervalBox(x, y)
# a = 3
# S4 = @constraint x^2 + y^2 - $a <= 0
# paving = pave(S4, X)
# @test paving.ฯต == 0.01
# @test length(paving.inner) == 1532
# length(paving.boundary) == 1536
# end
@testset "Paving a 3D torus" begin
S5 = @constraint (3 - sqrt(x^2 + y^2))^2 + z^2 <= 1
x = y = z = -โ..โ
X = IntervalBox(x, y, z)
paving = pave(S5, X, 1.)
@test typeof(paving) == IntervalConstraintProgramming.Paving{3, Float64}
end
@testset "Volume" begin
x = 3..5
@test Vol(x).bounds == 2
V = Vol(IntervalBox(-1..1.5, 2..3.5))
@test typeof(V) == IntervalConstraintProgramming.Vol{2, Float64}
@test V.bounds == 3.75
end
@testset "Functions" begin
@function f(x) = 4x;
C1 = @contractor f(x);
A = IntervalBox(0.5..1);
x = IntervalBox(0..1);
@test C1(A, x) == IntervalBox(0.125..0.25) # x such that 4x โ A=[0.5, 1]
C2 = @constraint f(x) โ [0.5, 0.6]
X = IntervalBox(0..1)
paving = pave(C2, X)
@test length(paving.inner) == 2
@test length(paving.boundary) == 2
C3 = @constraint f(f(x)) โ [0.4, 0.8]
@test length(paving.inner) == 2
@test length(paving.boundary) == 2
end
@testset "Nested functions" begin
@function f(x) = 2x
@function g(x) = ( a = f(x); a^2 )
@function g2(x) = ( a = f(f(x)); a^2 )
C = @contractor g(x)
C2 = @contractor g2(x)
A = IntervalBox(0.5..1)
x = IntervalBox(0..1)
@test C(A, x) == IntervalBox(sqrt(A[1] / 4))
@test C2(A, x) == IntervalBox(sqrt(A[1] / 16))
end
@testset "Iterated functions" begin
@function f(x) = 2x
A = IntervalBox(0.5..1)
x = IntervalBox(0..1)
@function g3(x) = ( a = (fโ2)(x); a^2 )
C3 = @contractor g3(x)
@test C3(A, x) == IntervalBox(sqrt(A[1] / 16))
end
@static if VERSION < v"1.9"
# ModelingToolkit causes compilation problems with new Julia versions starting v1.9
include("ModelingToolkit.jl")
end
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | docs | 3918 | # IntervalConstraintProgramming.jl
# v0.11
## Minimum Julia version
- The minimum Julia version supported is now Julia 1.1
## Functionality's are added
- Contractor can be make by just function name only
- New type of Contractor named as `BasicContractor` can be construct which only contain fields of useful data.
# v0.10
## Minimum Julia version
- The minimum Julia version supported is now Julia 1.0.
## New Dependency added: `ModelingToolkit.jl`
- By the help of `ModelingToolkit.jl` we can construct contractors and separators without the use of macros.
# v0.9
## Minimum Julia version
- The minimum Julia version supported is now Julia 0.7. The package is fully compatible with Julia 1.0.
## Functionality removed
- Pavings are now immutable, so `refine!` no longer works.
# v0.8
## Minimum Julia version
- The minimum Julia version required has been bumped to 0.6; this will be the last release to support 0.6.
# v0.7
## New dependency: `IntervalContractors.jl`
The reverse functions used for constraint propagation have been factored out into the `IntervalContractors.jl` package.
# v0.6
## Minimum Julia version
- The minimum Julia version required has been bumped to 0.5
## API change
- Objects such as `Contractor` have been simplified by putting functions and the code that generated them inside a `GeneratedFunction` type
## Dependency change
- The dependency on `ValidatedNumerics.jl` has been replaced by `IntervalArithmetic.jl` and `IntervalRootFinding.jl`
# v0.5
- API change: Contractors now have their dimension as a type parameter
- Refactoring for type stability
- Removed reference to FixedSizeArrays; everything (including `bisect`) is now provided by `IntervalArithmetic`
- Removed all functions acting directly on `Interval`s and `IntervalBox`es that should belong to `IntervalArithmetic`
- Generated code uses simpler symbols
- Example notebooks have been split out into a separate repository: https://github.com/dpsanders/IntervalConstraintProgrammingNotebooks
# v0.4
- `@function f(x) = 4x` defines a function
- Functions may be used inside constraints
- Functions may be iterated
- Functions may be multi-dimensional
- Local variables may be introduced
- Simple plotting solution for the results of `pave` using `Plots.jl` recipes
(via `IntervalArithmetic.jl`):
```
using Plots
gr() # preferred (fast) backed for `Plots.jl`
plot(paving.inner)
plot!(paving.boundary)
```
- Major internals rewrite
- Unary minus and `power_rev` with odd powers now work correctly
- Examples updated
- Basic documentation using `Documenter.jl`
# v0.3
- Renamed `setinverse` to `pave`
- External constants may now be used in `@constraint`, e.g.
```
a, b = 1, 2
C = @constraint (x-$a)^2 + (y-$b)^2
```
The constraint will *not* change if the constants are changed, but may be
updated (changed) by calling the same `@constraint` command again.
# v0.2
- `setinverse` now returns an object of type `Paving` [#17](https://github.com/dpsanders/IntervalConstraintProgramming.jl/pull/17)
- `refine!` function added to refine an existing `Paving` to a lower tolerance [#17](https://github.com/dpsanders/IntervalConstraintProgramming.jl/pull/17)
- `vol` has been renamed to `Vol`, and is applied directly to a `Paving` object.
- Internal variable names in generated code are now of form `_z_1_` instead of `z1`
to eliminate collisions with user-defined variables [#20](https://github.com/dpsanders/IntervalConstraintProgramming.jl/pull/20)
# v0.1.1
- Add `sqrtRev` reverse-mode function
- Add solid torus example, including 3D visualization with GLVisualize
- Tests pass with Julia 0.5
# v0.1
- Basic functionality working (separators and `setinverse`)
- `Vol` function calculates the Volume of the set produced by `setinverse`; returns
objects of type `Vol` parametrised by the dimension $d$ of the set (i.e. $d$-dimensional
Lebesgue measure), which are interval ranges
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | docs | 2344 | # IntervalConstraintProgramming.jl
[](https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl/actions/workflows/CI.yml)
[](https://juliaintervals.github.io/pages/packages/intervalconstraintprogramming/)
[](https://codecov.io/gh/JuliaIntervals/IntervalConstraintProgramming.jl)
This Julia package allows us to specify a set of constraints on real-valued variables,
given by inequalities, and
rigorously calculate (inner and outer approximations to) the *feasible set*,
i.e. the set that satisfies the constraints.
The package is based on interval arithmetic using the
[`IntervalArithmetic.jl`](https://github.com/JuliaIntervals/IntervalArithmetic.jl) package (co-written by the author),
in particular multi-dimensional `IntervalBox`es (i.e. Cartesian products of one-dimensional intervals).
## Documentation
Documentation for the package is available [here](https://juliaintervals.github.io/pages/packages/intervalconstraintprogramming/).
The best way to learn how to use the package is to look at the tutorial, available in the organisation webpage [here](https://juliaintervals.github.io/pages/tutorials/tutorialConstraintProgramming/).
## Author
- [David P. Sanders](http://sistemas.fciencias.unam.mx/~dsanders),
Departamento de Fรญsica, Facultad de Ciencias, Universidad Nacional Autรณnoma de Mรฉxico (UNAM)
## References:
- *Applied Interval Analysis*, Luc Jaulin, Michel Kieffer, Olivier Didrit, Eric Walter (2001)
- Introduction to the Algebra of Separators with Application to Path Planning, Luc Jaulin and Benoรฎt Desrochers, *Engineering Applications of Artificial Intelligence* **33**, 141โ147 (2014)
## Acknowledements
Financial support is acknowledged from DGAPA-UNAM PAPIME grants PE-105911 and PE-107114, and DGAPA-UNAM PAPIIT grant IN-117214, and from a CONACYT-Mexico sabbatical fellowship. The author thanks Alan Edelman and the Julia group for hospitality during his sabbatical visit. He also thanks Luc Jaulin and Jordan Ninin for the [IAMOOC](http://iamooc.ensta-bretagne.fr/) online course, which introduced him to this subject.
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | docs | 95 | # API
```@autodocs
Modules = [IntervalConstraintProgramming]
Order = [:type, :function]
```
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.13.0 | aa88cc1284dc06dc9dd93e9c35fba59094f43130 | docs | 8150 | # `IntervalConstraintProgramming.jl`
This Julia package allows you to specify a set of **constraints** on real-valued variables, given by (in)equalities, and
rigorously calculate inner and outer approximations to the *feasible set*,
i.e. the set that satisfies the constraints.
This uses interval arithmetic provided by the author's
[`IntervalArithmetic.jl`](https://github.com/dpsanders/IntervalArithmetic.jl) package,
in particular multi-dimensional `IntervalBox`es, i.e. Cartesian products of one-dimensional intervals.
To do this, *interval constraint programming* is used, in particular the
so-called "forward--backward contractor". This is implemented in terms of *separators*; see
[Jaulin & Desrochers].
```@meta
DocTestSetup = quote
using IntervalConstraintProgramming, IntervalArithmetic
end
```
## Usage
Let's define a constraint, using the `@constraint` macro:
```jldoctest
julia> using IntervalConstraintProgramming, IntervalArithmetic
julia> S = @constraint x^2 + y^2 <= 1
Separator:
- variables: x, y
- expression: x ^ 2 + y ^ 2 โ [-โ, 1]
```
It works out automatically that `x` and `y` are variables.
The macro creates a `Separator` object, in this case a `ConstraintSeparator`.
We now create an initial interval box in the ``x``--``y`` plane:
```julia
julia> x = y = -100..100 # notation for creating an interval with `IntervalArithmetic.jl`
julia> X = IntervalBox(x, y)
```
The `@constraint` macro defines an object `S`, of type `Separator`.
This is a function which,
when applied to the box ``X = x \times y``
in the x--y plane, applies two *contractors*, an inner one and an outer one.
The inner contractor tries to shrink down, or *contract*, the box, to the smallest subbox
of ``X`` that contains the part of ``X`` that satisfies the constraint; the
outer contractor tries to contract ``X`` to the smallest subbox that contains the
region where the constraint is not satisfied.
When `S` is applied to the box `X`, it returns the result of the inner and outer contractors:
```julia
julia> inner, outer = S(X);
julia> inner
([-1, 1],[-1, 1])
julia> outer
([-100, 100],[-100, 100])
```
### Without using macros
We can also make an object `S`, of type `Separator` or `C`, of type `Contractor` without using Macros, for that you need to define variables using `ModelingToolkit.jl`.
Example
```julia
julia> using IntervalConstraintProgramming, IntervalArithmetic, ModelingToolkit
julia> @variables x y
(x(), y())
julia> S = Separator(x+y<1)
Separator:
- variables: x, y
- expression: x() + y() == [-โ, 1]
julia> C = Contractor(x+y)
Contractor in 2 dimensions:
- forward pass contracts to 1 dimensions
- variables: Symbol[:x, :y]
- expression: x() + y()
```
While making `Separator`or `Contractor`'s object we can also specify variables, like this
```julia
julia> vars = @variables x y z
(x(), y(), z())
julia> S = Separator(vars, x+y<1)
Separator:
- variables: x, y, z
- expression: x() + y() == [-โ, 1]
julia> C = Contractor(vars, y+z)
Contractor in 3 dimensions:
- forward pass contracts to 1 dimensions
- variables: Symbol[:x, :y, :z]
- expression: y() + z()
```
We can make objects (of type `Separator` or `Contractor`)by just using function name (Note: you have to specify variables explicitly as discussed above when you make objects by using function name). We can also use polynomial function to make objects.
```julia
julia> vars=@variables x y
(x(), y())
julia> f(a,b)= a+b
f (generic function with 1 method)
julia> C = Contractor(vars,f)
Contractor in 2 dimensions:
- forward pass contracts to 1 dimensions
- variables: Symbol[:x, :y]
- expression: x() + y()
julia> f(a,b) = a+b <1
f (generic function with 1 method)
julia> S=Separator(vars, f)
Separator:
- variables: x, y
- expression: x() + y() == [-โ, 1]
julia> using DynamicPolynomials #using polynomial functions
julia> pvars = @polyvar x y
(x, y)
julia> f(a,b) = a + b < 1
p (generic function with 1 method)
julia> S=Separator(pvars, f)
Separator:
- variables: x, y
- expression: x() + y() == [-โ, 1]
```
#### BasicContractor
Objects of type `Contractor` have four fields (variables, forward, backward and expression), among them data of two fields (forward, backward) are useful (i.e forward and backward functions) for further usage of that object, thats why it is preferred to use an object of type `BasicContractor` in place of `Contractor` which only contain these two fields for less usage of memory by unloading all the extra stuff.(Note: Like object of `Contractor` type,`BasicContractor`'s object will also have all the properties which are discussed above).
```julia
julia> @variables x y
(x(), y())
julia> C = BasicContractor(x^2 + y^2)
Basic version of Contractor
```
## Set inversion: finding the feasible set
To make progress, we must recursively bisect and apply the contractors, keeping
track of the region proved to be inside the feasible set, and the region that is
on the boundary ("both inside and outside"). This is done by the `pave` function,
that takes a separator, a domain to search inside, and an optional tolerance:
```julia
julia> using Plots
julia> x = y = -100..100
julia> S = @constraint 1 <= x^2 + y^2 <= 3
julia> paving = pave(S, X, 0.125);
```
`pave` returns an object of type `Paving`. This contains: the separator itself;
an `inner` approximation, of type `SubPaving`, which is an alias for a `Vector` of `IntervalBox`es;
a `SubPaving` representing the boxes on the boundary that could not be assigned either to the inside or outside of the set;
and the tolerance.
We may draw the result using a plot recipe from `IntervalArithmetic`. Either a
single `IntervalBox`, or a `Vector` of `IntervalBox`es (which a `SubPaving` is)
maybe be drawn using `plot` from `Plots.jl`:
```julia
julia> plot(paving.inner, c="green")
julia> plot!(paving.boundary, c="gray")
```
The output should look something like this:

The green boxes have been **rigorously** proved to be contained within the feasible set,
and the white boxes to be outside the set. The grey boxes show those that lie on the boundary, whose status is unknown.
### 3D
The package works in any number of dimensions, although it suffers from the usual exponential slowdown in higher dimensions ("combinatorial explosion"); in 3D, it is still relatively fast.
There are sample 3D calculations in the `examples` directory, in particular in the [solid torus notebook](examples/Solid torus.ipynb), which uses [`GLVisualize.gl`](https://github.com/JuliaGL/GLVisualize.jl) to provide an interactive visualization that may be rotated and zoomed. The output for the solid torus looks like this:

## Set operations
Separators may be combined using the operators `!` (complement), `โฉ` and `โช` to make
more complicated sets; see the [notebook](https://github.com/JuliaIntervals/IntervalConstraintProgrammingNotebooks/blob/master/Basic%20examples%20of%20separators.ipynb) for several examples. Further examples can be found in the repository [IntervalConstraintProgrammingNotebooks](https://github.com/JuliaIntervals/IntervalConstraintProgrammingNotebooks).
## Author
- [David P. Sanders](http://sistemas.fciencias.unam.mx/~dsanders)
- [Julia lab, MIT](http://julia.mit.edu/)
- Departamento de Fรญsica, Facultad de Ciencias, Universidad Nacional Autรณnoma de Mรฉxico (UNAM)
## References:
- *Applied Interval Analysis*, Luc Jaulin, Michel Kieffer, Olivier Didrit, Eric Walter (2001)
- Introduction to the Algebra of Separators with Application to Path Planning, Luc Jaulin and Benoรฎt Desrochers, *Engineering Applications of Artificial Intelligence* **33**, 141โ147 (2014)
## Acknowledements
Financial support is acknowledged from DGAPA-UNAM PAPIME grants PE-105911 and PE-107114, and DGAPA-UNAM PAPIIT grant IN-117214, and from a CONACYT-Mexico sabbatical fellowship. The author thanks Alan Edelman and the Julia group for hospitality during his sabbatical visit. He also thanks Luc Jaulin and Jordan Ninin for the [IAMOOC](http://iamooc.ensta-bretagne.fr/) online course, which introduced him to this subject.
| IntervalConstraintProgramming | https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 448 | using Documenter, Repotomata
makedocs(
sitename="Repotomata documentation",
format=Documenter.HTML(prettyurls=get(ENV, "CI", nothing) == "true"),
pages=[
"Home" => "index.md",
"Repotomata" => "repotomata.md",
"Rules" => "Rules.md",
"Connection and GitHub" => "connection.md",
"Image functions" => "image.md"
]
)
deploydocs(
repo="github.com/Nauss/Repotomata.git",
devbranch="main"
) | Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 2895 | module Repotomata
using Random, Serialization, JSON, FileIO
using ColorTypes, ImageAxes
using ImageView
include("utilities/constants.jl")
include("Rule.jl")
include("github/Repo.jl")
include("image.jl")
export repotomata, OutputType, open_viewer
"""
The different output types
- `raw`: will return a Vector of the created images.
- `viewer`: will open the result in a viewer.
- `gif`: will create a gif file at the given `output_path`.
See also: [`repotomata`](@ref)
"""
@enum OutputType raw viewer gif
"""
The different rules
- `life`: the "game of life" rule.
- `languages`: the languages rule.
See also: [`repotomata`](@ref)
"""
@enum RuleType life chromatic
"""
repotomata(owner::AbstractString, name::AbstractString; <keyword arguments>)
repotomata(ownername::AbstractString; kwargs...)
Generates a cellular automata animation of the given GitHub repository.
!!! note
When using the second method, the format must be: "owner/name".
# Arguments
- `epochs::Int=10`: the number of generations to compute.
- `width::Integer=500`: the output width (height will be automatically computed with the golden ratio).
- `output::OutputType=raw`: the output type.
- `output_path::String=""`: the output path when using OutputType.gif.
- `rule::RuleType=chromatic`: the rule to use.
- `seed_treshold::Real=0.58`: the threshold on the Perlin noise used as seed.
- `background_color::Colorant=black`: the background color.
"""
function repotomata(
owner::AbstractString,
name::AbstractString;
epochs::Int=250,
width::Int=500,
output::OutputType=raw,
output_path::String="",
rule::RuleType=chromatic,
seed_treshold::Real=0.58, # Happens to be a good value for the Julia repository
background_color::Colorant=black
)
# Get the repo information
repo = Repo(owner, name, background_color)
image_parameters::Dict{String,Any} = Dict(
"epochs" => epochs,
"width" => width,
"ruletype" => rule,
"seed_treshold" => seed_treshold
)
getparameters!(image_parameters, repo)
images = generate_images(image_parameters)
if output == viewer
open_viewer(images);
elseif output == gif
save(output_path, cat(images..., dims=3), fps=25)
else
images;
end
end
repotomata(ownername::AbstractString; kwargs...) = begin
owner = split(ownername, "/")[1]
name = split(ownername, "/")[2]
repotomata(owner, name; kwargs...)
end
"""
open_viewer(images)
Display the `images` in an interactive window.
"""
function open_viewer(images::Array{Array{ColorTypes.RGB{Float64},2},1})
ImageView.closeall()
epochs = size(images, 1)
if epochs == 0
return
end
height, width = size(images[1])
result = AxisArray(reshape(cat(images..., dims=1), (height, epochs, width)))
imshow(result, axes=(1, 3))
end
end # module
| Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 1482 | using PaddedViews
"""
An automata rule
The rule is applied to all the image pixel for each epoch.
# Fields
- `neighbours`: the pixels (relative positions) observered when applying the contidtion.
- `condition`: this function is called for each pixel and must return the new color.
- `extent`: the image padding needed by the neighbours.
"""
struct Rule
neighbours::Vector{<:Point}
condition::Function
extent::Tuple{Int,Int}
@doc """
Rule(neighbours, condition)
The rule constructor.
It will automatically create the `extent`.
"""
function Rule(neighbours::Vector{<:Point}, condition::Function)
extentx, extenty = 0, 0
for neighbour in neighbours
x, y = abs(neighbour[1]), abs(neighbour[2])
if x > extentx
extentx = x
end
if y > extenty
extenty = y
end
end
new(neighbours, condition, (extentx, extenty))
end
end
"""
getcolor(rule, image, position)
Computes the colors of the neighbours around `position`.
Calls the `rule`'s condition function and return its result.
"""
function getcolor(rule::Rule, image::AbstractArray{<:Colorant,2}, position::Point)::Colorant
# Get the neighbour's colors
colors = map(
neighbour -> getpixel(image, position + neighbour),
rule.neighbours
)
# Test the condition
rule.condition(rule, getpixel(image, position), colors)
end
| Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 4104 | using Random, Colors, GeometryBasics, LinearAlgebra
using Dates
include("utilities/perlinnoise.jl")
include("rules/game_of_life.jl")
include("rules/chromatic.jl")
export generate_images
"""
generate_images(input)
Create the base image and runs the evolutions.
Return a `Vector` of the created images.
"""
function generate_images(input::Dict)
# Get the parameters
parameters = copy(input)
ruletype = parameters["ruletype"]
epochs = parameters["epochs"]
width = parameters["width"]
height = floor(Int, width / MathConstants.golden)
maincolor = parameters["color"]
palette = parameters["palette"]
stargazers = parameters["stargazers"]
background_color = parameters["background_color"]
middle_index = round(Int, size(palette, 1) / 2.0)
# Create the Rule
if ruletype == life
rule = game_of_life(maincolor, background_color)
elseif ruletype == chromatic
rule = chromatic_rule(palette, background_color)
end
# Create the image
image = create_image(width, height, parameters)
# Evolution
evolution = [image]
for g = 1:epochs
image = newgeneration(image, rule, background_color)
push!(evolution, image)
end
return evolution
end
"""
setpixel!(image, position, color)
Set the `color` of the pixel at `position` in the `image`.
"""
function setpixel!(image::AbstractArray{<:Colorant,2}, position::Point, color::Colorant)
# bounds check ?
image[position[2], position[1]] = color
end
"""
getpixel(image, position)
Return the `color` of the pixel at `position` in the `image`.
"""
function getpixel(image::AbstractArray{<:Colorant,2}, position::Point)::Colorant
# bounds check ?
image[position[2], position[1]]
end
"""
newgeneration(image, rule, background_color)
Produce a new image by applying the `rule` to the given `image`.
"""
function newgeneration(image::AbstractArray{<:Colorant,2}, rule::Rule, background_color::Colorant)
# Create a new image to apply the rules but test the current generation
newimage = copy(image)
# Pad the image for easy neighbours detection
image_min = 1 .- rule.extent
image_max = size(image) .+ 2 .* rule.extent
padded = PaddedView(background_color, image,
(image_min[1]:image_max[1], image_min[2]:image_max[2])
)
# Update every pixel
Threads.@threads for x = 1:size(image, 2)
for y = 1:size(image, 1)
newimage[y, x] = getcolor(rule, padded, Point(x, y))
end
end
return newimage
end
"""
create_image(width, height, parameters)
Create the base image with the given `width` and `height`.
The `parameters` will be used to generate the Perlin noise and the random points.
"""
function create_image(width::Int, height::Int, parameters::Dict)
maincolor = parameters["color"]
stargazers = parameters["stargazers"]
forks_count = parameters["forks"]
watchers_count = parameters["watchers"]
udpatedat = parameters["updatedat"]
threshold = parameters["seed_treshold"]
background_color = parameters["background_color"]
# Create an image with the background color
image = fill(background_color, height, width)
# Fill with perlin noise
# area = width * height
stargazer_ratio = 100 * stargazers / MAX_STARGAZERS
forks_ratio = 100 * forks_count / MAX_FORKS
watchers_ratio = 100 * watchers_count / MAX_WATCHERS
colored_count = 0
for x = 1:width
for y = 1:height
noise = perlinsnoise(
x * forks_ratio,
y * watchers_ratio,
stargazer_ratio
)
if noise > threshold
image[y, x] = maincolor
colored_count += 1
else
image[y, x] = background_color
end
end
end
# Add random points
Random.seed!(Dates.datetime2epochms(udpatedat))
for s = 1:colored_count
position = Point(rand(1:width), rand(1:height))
setpixel!(image, position, maincolor)
end
return image
end | Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 3167 | using Diana, JSON, HTTP
export GitHubError, Connection
"""
Error
Simple error wrapper.
# Fields
- `name::String`: the error name.
- `type::String`: the error type.
- `message::String`: the error message.
"""
struct Error
name::String
type::String
message::String
end
"""
GitHubError
Any error related to the repository connection.
The error is created with either:
- A `HTTP.ExceptionRequest.StatusError`
- A failling `Diana.Result`
- A string (for now only for the token error)
# Fields
- `errors::Vector{Error}`: a collection of [`Error`](@ref)s.
"""
struct GitHubError <: Exception
errors::Vector{Error}
function GitHubError(result::Diana.Result)
jsondata = JSON.parse(result.Data)
errors = Vector{Error}(undef, 0)
if haskey(jsondata, "errors")
for error in jsondata["errors"]
push!(errors, Error("GitHub query error", error["type"], error["message"]))
end
end
new(errors)
end
function GitHubError(error::HTTP.ExceptionRequest.StatusError)
errors = fill(
Error("GitHub query StatusError", string(error.status), string(error.response)),
1
)
new(errors)
end
function GitHubError(error::AbstractString)
errors = fill(
Error("GitHub token missing", "Env: GITHUB_TOKEN is missing", "Please provide your GitHub token via the GITHUB_TOKEN environment variable"),
1
)
new(errors)
end
end
"""
Connection
Simple wrapper around `Diana.Client` with the current repository name and owner.
# Fields
- `owner::String`: the repository owner.
- `name::String`: the repository name.
- `client::Diana.Client`: the Diana.Client object.
"""
struct Connection
owner::String
name::String
client::Diana.Client
function Connection(owner::AbstractString, name::AbstractString)
GITHUB_TOKEN = haskey(ENV, "GITHUB_TOKEN") ? ENV["GITHUB_TOKEN"] : ""
if GITHUB_TOKEN == ""
throw(GitHubError("token"))
end
client = GraphQLClient(GITHUB_URL, auth="Bearer $GITHUB_TOKEN")
new(owner, name, client)
end
end
"""
query(connection::Connection, queryString)
The base function to make the queries.
It wraps the provided query in a "repository" query. It also handles connection and result errors.
"""
function query(connection::Connection, queryString::AbstractString)
result = Diana.Result("", "")
try
result = connection.client.Query(
"""query A (\$owner:String!, \$name:String!){
repository(name:\$name, owner:\$owner) {
$queryString
}
}""",
vars=Dict("name" => connection.name, "owner" => connection.owner),
operationName="A"
)
catch error
throw(GitHubError(error))
end
jsondata = JSON.parse(result.Data)
if result.Info.status != 200 || haskey(jsondata, "errors")
throw(GitHubError(result))
end
return jsondata
end
Base.showerror(io::IO, error::GitHubError) = begin
for e in error.errors
println(io, """$(e.name)
Type: $(e.type)
Message: $(e.message)""")
end
end | Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 6178 | using Base, Colors, Diana, JSON, Dates
include("queries.jl")
include("Connection.jl")
export Repo, Language, create_palette
"""
Language
When parsed from GitHub a `Language` has a `name`, `color` and the "usage" `size`.
# Fields
- `name::String`: the language name.
- `color::Colorant`: the language color (provided by [github/linguist](https://github.com/github/linguist)).
- `size::Int`: the relative usage of this [`Language`](@ref) in the repository.
See also: [`Repo`](@ref)
"""
struct Language
name::String
color::Colorant
size::Int
"""
Language(name, color, size)
Language(name, Nothing, size)
The `Language` constructor.
"""
function Language(name::String, color::String, size::Int)
new(name, parse(RGB{Float64}, color), size)
end
Language(name::String, color::Nothing, size::Int) = Language(name, "#000000", size)
end
"""
Repo
Wrapper representing the GitHub Repository.
# Fields
- `owner::String`: the repository owner.
- `name::String`: the repository name.
- `languages::Vector{Language}`: the repository [`Language`](@ref)s.
- `stargazer_count::UInt`: the repository stargazer count.
- `forks_count::UInt`: the repository forks count.
- `watchers_count::UInt`: the repository watchers count.
- `updatedat::DateTime`: the repository last update time.
- `background_color::Colorant`: the chosen background color
See also: [`Language`](@ref)
"""
struct Repo
owner::String
name::String
languages::Vector{Language}
stargazer_count::UInt
forks_count::UInt
watchers_count::UInt
updatedat::DateTime
background_color::Colorant
@doc """
Repo
The `Repo` constructor will create a `Connection` with the given `owner/name` and query the
needed information.
See also: [`Connection`](@ref)
"""
function Repo(owner::AbstractString, name::AbstractString, background_color::Colorant)
connection = Connection(owner, name)
# Query information
result = query(connection, """
$stargazer_count_query
$forks_count_query
$watchers_count_query
$updatedat_query
""")
data = result["data"]
repository = data["repository"]
stargazer_count = repository["stargazerCount"]
forks_count = repository["forkCount"]
watchers_count = repository["watchers"]["totalCount"]
updatedat = DateTime(repository["updatedAt"], GITHUB_DATE)
languages = get_languages(connection)
new(owner,
name,
languages,
stargazer_count,
forks_count,
watchers_count,
updatedat,
background_color)
end
end
Base.show(io::IO, repo::Repo) = print(io, """$(repo.owner)/$(repo.name)
Languages: $(size(repo.languages, 1))
Stars: $(repo.stargazer_count)
Forks: $(repo.forks_count)
Watchers: $(repo.watchers_count)
""")
"""
getparameters(parameters, repo)
Dump the `repo` parameters into the given `parameters` Dict
"""
function getparameters!(parameters::Dict, repo::Repo)
parameters["color"] = repo.languages[1].color
parameters["stargazers"] = repo.stargazer_count
parameters["forks"] = repo.forks_count
parameters["updatedat"] = repo.updatedat
parameters["watchers"] = repo.watchers_count
parameters["background_color"] = repo.background_color
parameters["palette"] = create_palette(repo)
end
"""
get_languages(connection)
Utility function used to query all the languages of the repository.
Return a Vector of [`Language`](@ref)s sorted by size (bigger first).
"""
function get_languages(connection::Connection)
result::Vector{Language} = Vector(undef, 0)
pagesize = 2
has_next_page = true
after = ""
while has_next_page
language_query = make_language_query(pagesize, after)
query_result = query(connection, """
$language_query
""")
data = query_result["data"]
repository = data["repository"]
languages = repository["languages"]
for language in languages["edges"]
push!(result, Language(
language["node"]["name"],
language["node"]["color"],
language["size"]))
end
has_next_page = languages["pageInfo"]["hasNextPage"]
after = languages["pageInfo"]["endCursor"]
end
sort!(result, by=language -> language.size, rev=true)
return result
end
"""
create_palette(repo)
Utility function used to create a color palette from the repositoty languages.
"""
function create_palette(repo::Repo)
background_color = repo.background_color
palette_size = PALETTE_SIZE
palette = Vector(undef, 0)
coeff_l, coeff_a, coeff_b = 50, 5, 5
total_size = sum(language -> language.size, repo.languages)
for language in repo.languages
if language.color == background_color
# Ignore languages with the same color as the background
continue
end
nbcolors = ceil(Int, language.size * palette_size / total_size)
half_colors_index = round(Int, nbcolors / 2)
labcolor = convert(Lab, language.color)
colors_before = Vector(undef, half_colors_index)
colors_after = Vector(undef, half_colors_index)
for i = 1:half_colors_index
a = (half_colors_index - i) / half_colors_index
b = i / half_colors_index
colors_before[i] = convert(RGB, Lab(
labcolor.l - coeff_l * a,
labcolor.a - coeff_a * a,
labcolor.b - coeff_b * a
))
colors_after[i] = convert(RGB, Lab(
labcolor.l + coeff_l * b,
labcolor.a + coeff_a * b,
labcolor.b + coeff_b * b
))
end
if size(palette, 1) == 0
palette = [colors_before..., language.color, colors_after...]
else
palette = [colors_before..., palette..., colors_after...]
end
end
# Make sure the palette does not contain the same color as the background
return filter(color -> color โ background_color, palette)
end
| Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 668 | """
make_language_query(pageSize, after)
Provide access to all the languages from the repository given the correct `pageSize` and `after`.
"""
make_language_query(pageSize, after) = begin
if after == ""
query = "languages(first: $pageSize) {"
else
query = """languages(first: $pageSize, after: "$after") {"""
end
query * """
totalCount
edges {
node {
name
color
}
size
}
pageInfo {
endCursor
hasNextPage
}
}"""
end
stargazer_count_query = "stargazerCount"
forks_count_query = """forkCount"""
watchers_count_query = """watchers {
totalCount
}"""
updatedat_query = """updatedAt""" | Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 2267 | """
chromatic_rule(palette, background_color)
Create a "Chromatic rule" with the following condition:
```
if current == background_color
3 OR 4 neighbours โ background_color > neighbours' color of the "smaller" in the palette
else > background_color
else
7 OR 8 neighbours โ background_color > background_color
3 OR 4 neighbours โ background_color > current
1 OR 2 neighbours โ background_color > previous color in palette or reset to the middle
5 OR 6 neighbours โ background_color > next color in palette or reset to the middle
```
"""
chromatic_rule(palette::Vector{<:Colorant}, background_color::Colorant) = Rule(
EIGHT_NEIGHBOURS,
(rule::Rule, current::Colorant, colors::Vector{<:Colorant}) -> begin
# Get current color index in palette
index = findfirst(color -> color == current, palette)
colored_neighbours = filter(color -> color โ background_color, colors)
nb_colored_neighbours = size(colored_neighbours, 1)
# background_color
if index === nothing
# Lives if 3 or 4 neighbours
if nb_colored_neighbours == 3 || nb_colored_neighbours == 4
sort(
colored_neighbours,
by=color -> findfirst(c -> c == color, palette),
rev=true)[1]
else
background_color
end
else
# Dies if 7 or 8 neighbours
if nb_colored_neighbours >= 7
background_color
elseif nb_colored_neighbours == 3 || nb_colored_neighbours == 4
# Do nothing
current
elseif nb_colored_neighbours == 1 || nb_colored_neighbours == 2
if index - 1 >= 1
# Update color "darker"
palette[index - 1]
else
# Reset
middle_index = round(Int, size(palette, 1) / 2.0)
palette[middle_index]
end
else # 5, 6
if index + 1 <= size(palette, 1)
# Update color "lighter"
palette[index + 1]
else
# Reset
middle_index = round(Int, size(palette, 1) / 2.0)
palette[middle_index]
end
end
end
end
) | Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 765 | """
game_of_life(color, background_color)
Create a "Game of life rule" with the following condition:
```
if current = background_color && 3 neighbours โ background_color > color
if current โ background_color && 2 OR 3 neighbours โ background_color > color
else > background_color
```
"""
game_of_life(color::Colorant, background_color::Colorant) = Rule(
EIGHT_NEIGHBOURS,
(rule::Rule, current::Colorant, colors::Vector{<:Colorant}) -> begin
# Count colored neighbours
nb_black = count(color -> color == background_color, colors)
if (current == background_color && nb_black == 5) ||
(current โ background_color && (nb_black == 6 || nb_black == 5))
color
else
background_color
end
end
)
| Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 597 | using ColorTypes, GeometryBasics
# Constants
const PALETTE_SIZE = 100;
const MAX_STARGAZERS = 500000;
const MAX_FORKS = 300000;
const MAX_WATCHERS = 30000;
# GitHub
const GITHUB_URL = "https://api.github.com/graphql"
const GITHUB_DATE = "yyyy-mm-ddTHH:MM:SSZ"
# Image
const white = RGB(1.0, 1.0, 1.0)
const black = RGB(0.0, 0.0, 0.0)
# Relative positions
const NORTH = Point(0, -1)
const SOUTH = Point(0, 1)
const EAST = Point(1, 0)
const WEST = Point(-1, 0)
# Default neighbours
const EIGHT_NEIGHBOURS = Vector([NORTH, NORTH + EAST, SOUTH, SOUTH + WEST, EAST, EAST + SOUTH, WEST, WEST + NORTH])
| Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 2886 | const permutation = UInt8[
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233,
7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219,
203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174,
20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27,
166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230,
220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25,
63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173,
186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118,
126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182,
189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163,
70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19,
98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246,
97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162,
241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181,
199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150,
254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141,
128, 195, 78, 66, 215, 61, 156, 180]
function grad(h::Integer, x, y, z)
h &= 15 # CONVERT LO 4 BITS OF HASH CODE
u = h < 8 ? x : y # INTO 12 GRADIENT DIRECTIONS.
v = h < 4 ? y : h == 12 || h == 14 ? x : z
(h & 1 == 0 ? u : -u) + (h & 2 == 0 ? v : -v)
end
function perlinsnoise(x, y, z)
p = vcat(permutation, permutation)
fade(t) = t * t * t * (t * (t * 6 - 15) + 10)
lerp(t, a, b) = a + t * (b - a)
floorb(x) = Int(floor(x)) & 0xff
X, Y, Z = floorb(x), floorb(y), floorb(z) # FIND UNIT CUBE THAT CONTAINS POINT.
x, y, z = x - floor(x), y - floor(y), z - floor(z) # FIND RELATIVE X,Y,Z OF POINT IN CUBE.
u, v, w = fade(x), fade(y), fade(z) # COMPUTE FADE CURVES FOR EACH OF X,Y,Z.
A = p[X + 1] + Y; AA = p[A + 1] + Z; AB = p[A + 2] + Z
B = p[X + 2] + Y; BA = p[B + 1] + Z; BB = p[B + 2] + Z # HASH COORDINATES OF THE 8 CUBE CORNERS
return lerp(w, lerp(v, lerp(u, grad(p[AA + 1], x, y, z), # AND ADD
grad(p[BA + 1], x - 1, y, z)), # BLENDED
lerp(u, grad(p[AB + 1], x, y - 1, z), # RESULTS
grad(p[BB + 1], x - 1, y - 1, z))), # FROM 8
lerp(v, lerp(u, grad(p[AA + 2], x, y, z - 1), # CORNERS
grad(p[BA + 2], x - 1, y, z - 1)), # OF CUBE.
lerp(u, grad(p[AB + 2], x, y - 1, z - 1),
grad(p[BB + 2], x - 1, y - 1, z - 1))))
end
| Repotomata | https://github.com/Nauss/Repotomata.git |
|
[
"MIT"
] | 0.1.0 | 32e6d8d53512284b78dc0446061d3337ba4946a3 | code | 1480 | using Colors, FixedPointNumbers, Dates
include("../src/utilities/constants.jl")
@testset "Repo" begin
@testset "Construction" begin
repo = Repo("JuliaLang", "Julia", RGB{Float64}(0.0, 0.0, 0.0))
@test repo.owner == "JuliaLang"
@test repo.name == "Julia"
@test size(repo.languages, 1) == 18
@test repo.languages[1].name == "Julia"
@test repo.languages[1].color == RGB{Float64}(0.6352941176470588, 0.4392156862745098, 0.7294117647058823)
@test repo.languages[1].size > 10000000
@test repo.stargazer_count > 30000
@test repo.forks_count > 4000
@test repo.watchers_count > 800
@test repo.updatedat >= DateTime("2020-11-15T14:15:25Z", GITHUB_DATE)
end
@testset "Construction fails" begin
@test_throws GitHubError Repo("Paul", "Poule", RGB{Float64}(0.0, 0.0, 0.0))
end
@testset "No token" begin
# Remove the token
token = ENV["GITHUB_TOKEN"]
ENV["GITHUB_TOKEN"] = ""
@test_throws GitHubError Repo("JuliaLang", "Julia", RGB{Float64}(0.0, 0.0, 0.0))
# Restore the token for other tests
ENV["GITHUB_TOKEN"] = token
end
@testset "create_palette" begin
repo = Repo("JuliaLang", "Julia", RGB{Float64}(0.0, 0.0, 0.0))
palette = create_palette(repo)
@test size(palette, 1) == PALETTE_SIZE - 2
@test findfirst(color -> color โ repo.languages[1].color, palette) !== nothing
end
end
| Repotomata | https://github.com/Nauss/Repotomata.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.