licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
21389
export AffineConstantFlow, AffineHalfFlow, SlowMAF, MAF, IAF, ActNorm, Invertible1x1Conv, NormalizingFlow, NormalizingFlowModel, NeuralCouplingFlow, autoregressive_network, FlowOp, LinearFlow, TanhFlow, AffineScalarFlow, InvertFlow, AffineFlow abstract type FlowOp end #------------------------------------------------------------------------------------------ # Users can define their own FlowOp in the Main forward(fo::T, x::Union{Array{<:Real}, PyObject}) where T<:FlowOp = Main.forward(fo, x) backward(fo::T, z::Union{Array{<:Real}, PyObject}) where T<:FlowOp = Main.backward(fo, z) #------------------------------------------------------------------------------------------ mutable struct LinearFlow <: FlowOp dim::Int64 indim::Int64 outdim::Int64 A::PyObject b::PyObject end @doc raw""" LinearFlow(indim::Int64, outdim::Int64, A::Union{PyObject, Array{<:Real,2}, Missing}=missing, b::Union{PyObject, Array{<:Real,1}, Missing}=missing, name::Union{String, Missing}=missing) LinearFlow(A::Union{PyObject, Array{<:Real,2}}, b::Union{PyObject, Array{<:Real,1}, Missing} = missing; name::Union{String, Missing}=missing) Creates a linear flow operator, $$x = Az + b$$ The operator is not necessarily invertible. $A$ has the size `outdim×indim`, $b$ is a length `outdim` vector. # Example 1: Reconstructing a Gaussian random variable using invertible A ```julia using ADCME using Distributions d = MvNormal([2.0;3.0],[2.0 1.0;1.0 2.0]) flows = [LinearFlow(2, 2)] prior = ADCME.MultivariateNormalDiag(loc = zeros(2)) model = NormalizingFlowModel(prior, flows) x = rand(d, 10000)'|>Array zs, prior_logpdf, logdet = model(x) log_pdf = prior_logpdf + logdet loss = -sum(log_pdf) sess = Session(); init(sess) BFGS!(sess, loss) run(sess, flows[1].b) # approximately [2.0 3.0] run(sess, flows[1].A * flows[1].A') # approximate [2.0 1.0;1.0 2.0] ``` # Example 2: Reconstructing a Gaussian random variable using non-invertible A ```julia using ADCME using Distributions d = Normal() A = reshape([2. 1.], 2, 1) b = Variable(ones(2)) flows = [LinearFlow(A, b)] prior = ADCME.MultivariateNormalDiag(loc = zeros(1)) model = NormalizingFlowModel(prior, flows) x = rand(d, 10000, 1) x = x * [2.0 1.0] .+ [1.0 3.0] x = [2.0 2.0] zs, prior_logpdf, logdet = model(x) log_pdf = prior_logpdf + logdet loss = -sum(log_pdf) sess = Session(); init(sess) BFGS!(sess, loss) run(sess, b[1]*2 + b[2]) # approximate 6.0 ``` """ function LinearFlow(indim::Int64, outdim::Int64, A::Union{PyObject, Array{<:Real,2}, Missing}=missing, b::Union{PyObject, Array{<:Real,1}, Missing}=missing; name::Union{String, Missing}=missing) if ismissing(name) name = randstring(10) end if ismissing(A) if indim==outdim A = diagm(0=>ones(indim)) A = get_variable(A, name=name*"_A") else A = get_variable(Float64, shape=[outdim,indim], name=name*"_A") end end if ismissing(b) b = get_variable(zeros(1,outdim), name=name*"_b") end A = constant(A) b = constant(b) b = reshape(b, (1,-1)) if size(A)!=(outdim,indim) error("Expected A shape: $((outdim,indim)), but got $(size(A))") end if size(b)!=(1,outdim) error("Expected b shape: $((1,outdim)), but got $(size(b))") end LinearFlow(outdim, indim, outdim, A, b) end function LinearFlow(dim::Int64) LinearFlow(dim,dim) end function LinearFlow(A::Union{PyObject, Array{<:Real,2}}, b::Union{PyObject, Array{<:Real}, Missing} = missing; name::Union{String, Missing}=missing) outdim, indim = size(A) if ismissing(b) b = zeros(outdim) end A = constant(A) b = constant(b) LinearFlow(outdim, indim, outdim, A, b) end function forward(fo::LinearFlow, x::Union{Array{<:Real}, PyObject}) if fo.indim==fo.outdim return solve_batch(fo.A, x - fo.b), -log(abs(det(fo.A))) * ones(size(x, 1)) else return solve_batch(fo.A, x - fo.b), -1/2*log(abs(det(fo.A'*fo.A))) * ones(size(x, 1)) end end function backward(fo::LinearFlow, z::Union{Array{<:Real}, PyObject}) d = nothing if fo.indim==fo.outdim d = log(abs(det(fo.A))) end z * fo.A' + fo.b, d end #------------------------------------------------------------------------------------------ mutable struct AffineConstantFlow <: FlowOp dim::Int64 s::Union{Missing,PyObject} t::Union{Missing,PyObject} end function AffineConstantFlow(dim::Int64, name::Union{String, Missing}=missing; scale::Bool=true, shift::Bool=true) if ismissing(name) name = randstring(10) end s = missing t = missing if scale s = get_variable(Float64, shape=[1,dim], name=name*"_s") end if shift t = get_variable(Float64, shape=[1,dim], name=name*"_t") end AffineConstantFlow(dim, s, t) end function forward(fo::AffineConstantFlow, x::Union{Array{<:Real}, PyObject}) s = ismissing(fo.s) ? zeros_like(x) : fo.s t = ismissing(fo.t) ? zeros_like(x) : fo.t z = x .* exp(s) + t log_det = sum(s, dims=2) return z, log_det end function backward(fo::AffineConstantFlow, z::Union{Array{<:Real}, PyObject}) s = ismissing(fo.s) ? zeros_like(z) : fo.s t = ismissing(fo.t) ? zeros_like(z) : fo.t x = (z-t) .* exp(-s) log_det = sum(-s, dims=2) return x, log_det end #------------------------------------------------------------------------------------------ mutable struct ActNorm <: FlowOp dim::Int64 fo::AffineConstantFlow initialized::PyObject end function ActNorm(dim::Int64, name::Union{String, Missing}=missing) if ismissing(name) name = "ActNorm_"*randstring(10) end initialized = get_variable(1, name = name) ActNorm(dim, AffineConstantFlow(dim), initialized) end function forward(actnorm::ActNorm, x::Union{Array{<:Real}, PyObject}) x = constant(x) actnorm.fo.s, actnorm.fo.t = tf.cond(tf.equal(actnorm.initialized,constant(0)), ()->(actnorm.fo.s, actnorm.fo.t), #actnorm.fo.s, actnorm.fo.t), ()->begin setzero = assign(actnorm.initialized, 0) x0 = copy(x) s0 = reshape(-log(std(x0, dims=1)), 1, :) t0 = reshape(mean(-x0 .* exp(s0), dims=1), 1, :) op = assign([actnorm.fo.s, actnorm.fo.t], [s0, t0]) p = tf.print("ActNorm: initializing s and t...") op[1] = bind(op[1], setzero) op[1] = bind(op[1], p) op[1], op[2] end) forward(actnorm.fo, x) end function backward(actnorm::ActNorm, z::Union{Array{<:Real}, PyObject}) backward(actnorm.fo, z) end #------------------------------------------------------------------------------------------ mutable struct SlowMAF <: FlowOp dim::Int64 layers::Array{Function} order::Array{Int64} p::PyObject end function SlowMAF(dim::Int64, parity::Bool, nns::Array) local order @assert length(nns)==dim - 1 if parity order = Array(1:dim) else order = reverse(Array(1:dim)) end p = Variable(zeros(2)) SlowMAF(dim, nns, order, p) end function forward(fo::SlowMAF, x::Union{Array{<:Real}, PyObject}) z = tf.zeros_like(x) log_det = zeros(size(x,1)) for i = 1:fo.dim if i==1 st = repeat(fo.p', size(x,1), 1) else st = fo.layers[i-1](x[:,1:i-1]) @assert size(st, 2)==2 end s, t = st[:,1], st[:,2] z = scatter_update(z, :, fo.order[i], x[:, i]*exp(s) + t) log_det += s end return z, log_det end function backward(fo::SlowMAF, z::Union{Array{<:Real}, PyObject}) x = tf.zeros_like(z) log_det = zeros(size(z,1)) for i = 1:fo.dim if i==1 st = repeat(fo.p', size(x,1), 1) else st = fo.layers[i-1](x[:,1:i-1]) end s, t = st[:,1], st[:,2] x = scatter_update(x, :, i, (z[:, fo.order[i]] - t) * exp(-s)) log_det += -s end return x, log_det end #------------------------------------------------------------------------------------------ mutable struct MAF <: FlowOp dim::Int64 net::Function parity::Bool end function MAF(dim::Int64, parity::Bool, config::Array{Int64}; name::Union{String, Missing} = missing, activation::Union{Nothing,String} = "relu", kwargs...) push!(config, 2) kwargs = jlargs(kwargs) if ismissing(name) name = "MAF_"*randstring(10) end net = x->autoregressive_network(x, config, name; activation = activation) MAF(dim, net, parity) end function forward(fo::MAF, x::Union{Array{<:Real}, PyObject}) st = fo.net(x) # @info st, split(st, 1, dims=2) s, t = squeeze.(split(st, 2, dims=3)) z = x .* exp(s) + t if fo.parity z = reverse(z, dims=2) end log_det = sum(s, dims=2) return z, log_det end function backward(fo::MAF, z::Union{Array{<:Real}, PyObject}) x = zeros_like(z) log_det = zeros(size(z, 1)) if fo.parity z = reverse(z, dims=2) end for i = 1:fo.dim st = fo.net(copy(x)) s, t = squeeze.(split(st, 2, dims=3)) x = scatter_update(x, :, i, (z[:, i] - t[:, i]) * exp(-s[:, i])) log_det += -s[:,i] end return x, log_det end """ autoregressive_network(x::Union{Array{Float64}, PyObject}, config::Array{<:Integer}, scope::String="default"; activation::String=nothing, kwargs...) Creates an masked autoencoder for distribution estimation. """ function autoregressive_network(x::Union{Array{Float64}, PyObject}, config::Array{<:Integer}, scope::String="default"; activation::Union{Nothing,String}="tanh", kwargs...) local y x = constant(x) params = config[end] hidden_units = PyVector(config[1:end-1]) event_shape = [size(x, 2)] if haskey(STORAGE, scope*"/autoregressive_network/") made = STORAGE[scope*"/autoregressive_network/"] y = made(x) else made = ADCME.tfp.bijectors.AutoregressiveNetwork(params=params, hidden_units = hidden_units, event_shape = event_shape, activation = activation, kwargs...) STORAGE[scope*"/autoregressive_network/"] = made y = made(x) end return y end #------------------------------------------------------------------------------------------ mutable struct IAF <: FlowOp maf::MAF end function IAF(dim::Int64, parity::Bool, config::Array{Int64}; name::Union{String, Missing} = missing, activation::Union{Nothing,String} = "relu", kwargs...) MAF(dim, parity, config; name=name, activation=activation, kwargs...) end function forward(fo::IAF, x::Union{Array{<:Real}, PyObject}) backward(fo.maf, x) end function backward(fo::IAF, z::Union{Array{<:Real}, PyObject}) forward(fo.maf, z) end #------------------------------------------------------------------------------------------ mutable struct Invertible1x1Conv <: FlowOp dim::Int64 P::Array{Float64} L::PyObject S::PyObject U::PyObject end function Invertible1x1Conv(dim::Int64, name::Union{Missing,String}=missing) if ismissing(name) name = randstring(10) end Q = lu(randn(dim,dim)) P, L, U = Q.P, Q.L, Q.U L = get_variable(L, name=name*"_L") S = get_variable(diag(U), name=name*"_S") U = get_variable(triu(U, 1), name=name*"_U") Invertible1x1Conv(dim, P, L, S, U) end function _assemble_W(fo::Invertible1x1Conv) L = tril(fo.L, -1) + diagm(0=>ones(fo.dim)) U = triu(fo.U, 1) W = fo.P * L * (U + diagm(fo.S)) return W end function forward(fo::Invertible1x1Conv, x::Union{Array{<:Real}, PyObject}) W = _assemble_W(fo) z = x*W log_det = sum(log(abs(fo.S))) return z, log_det end function backward(fo::Invertible1x1Conv, z::Union{Array{<:Real}, PyObject}) W = _assemble_W(fo) Winv = inv(W) x = z*Winv log_det = -sum(log(abs(fo.S))) return x, log_det end #------------------------------------------------------------------------------------------ mutable struct AffineHalfFlow <: FlowOp dim::Int64 parity::Bool s_cond::Function t_cond::Function end """ AffineHalfFlow(dim::Int64, parity::Bool, s_cond::Union{Function, Missing} = missing, t_cond::Union{Function, Missing} = missing) Creates an `AffineHalfFlow` operator. """ function AffineHalfFlow(dim::Int64, parity::Bool, s_cond::Union{Function, Missing} = missing, t_cond::Union{Function, Missing} = missing) if ismissing(s_cond) s_cond = x->constant(zeros(size(x,1), (dim+1)÷2)) end if ismissing(t_cond) t_cond = x->constant(zeros(size(x,1), dim÷2)) end AffineHalfFlow(dim, parity, s_cond, t_cond) end function forward(fo::AffineHalfFlow, x::Union{Array{<:Real}, PyObject}) x = constant(x) x0 = x[:,1:2:end] x1 = x[:,2:2:end] if fo.parity x0, x1 = x1, x0 end s = fo.s_cond(x0) t = fo.t_cond(x0) z0 = x0 z1 = exp(s) .* x1 + t if fo.parity z0, z1 = z1, z0 end z = [z0 z1] log_det = sum(s, dims=2) return z, log_det end function backward(fo::AffineHalfFlow, z::Union{Array{<:Real}, PyObject}) z = constant(z) z0 = z[:,1:2:end] z1 = z[:,2:2:end] if fo.parity z0, z1 = z1, z0 end s = fo.s_cond(z0) t = fo.t_cond(z0) x0 = z0 x1 = (z1-t).*exp(-s) if fo.parity x0, x1 = x1, x0 end x = [x0 x1] log_det = sum(-s, dims=2) return x, log_det end #------------------------------------------------------------------------------------------ mutable struct NeuralCouplingFlow <: FlowOp dim::Int64 K::Int64 B::Int64 f1::Function f2::Function end function NeuralCouplingFlow(dim::Int64, f1::Function, f2::Function, K::Int64=8, B::Int64=3) @assert mod(dim,2)==0 NeuralCouplingFlow(dim, K, B, f1, f2) end function forward(fo::NeuralCouplingFlow, x::Union{Array{<:Real}, PyObject}) x = constant(x) dim, K, B, f1, f2 = fo.dim, fo.K, fo.B, fo.f1, fo.f2 RQS = tfp.bijectors.RationalQuadraticSpline log_det = constant(zeros(size(x,1))) lower, upper = x[:,1:dim÷2], x[:,dim÷2+1:end] f1_out = f1(lower) @assert size(f1_out,2)==(3K-1)*size(lower,2) out = reshape(f1_out, (-1, size(lower,2), 3K-1)) W, H, D = split(out, [K, K, K-1], dims=3) W, H = softmax(W, dims=3), softmax(H, dims=3) W, H = 2B*W, 2B*H D = softplus(D) rqs = RQS(W, H, D, range_min=-B) upper, ld = rqs.forward(upper), rqs.forward_log_det_jacobian(upper, 1) log_det += ld f2_out = f2(upper) @assert size(f2_out,2)==(3K-1)*size(upper,2) out = reshape(f2_out, (-1, size(upper,2), 3K -1)) W, H, D = split(out, [K, K, K-1], dims=3) W, H = softmax(W, dims=3), softmax(H, dims=3) W, H = 2B*W, 2B*H D = softplus(D) rqs = RQS(W, H, D, range_min=-B) lower, ld = rqs.forward(lower), rqs.forward_log_det_jacobian(lower, 1) log_det += ld return [lower upper], log_det end function backward(fo::NeuralCouplingFlow, x::Union{Array{<:Real}, PyObject}) x = constant(x) dim, K, B, f1, f2 = fo.dim, fo.K, fo.B, fo.f1, fo.f2 RQS = tfp.bijectors.RationalQuadraticSpline log_det = constant(zeros(size(x,1))) lower, upper = x[:,1:dim÷2], x[:,dim÷2+1:end] f2_out = f2(upper) @assert size(f2_out,2)==(3K-1)*size(upper,2) out = reshape(f2_out, (-1, size(upper,2), 3K-1)) W, H, D = split(out, [K, K, K-1], dims=3) W, H = softmax(W, dims=3), softmax(H, dims=3) W, H = 2B*W, 2B*H D = softplus(D) rqs = RQS(W, H, D, range_min=-B) lower, ld = rqs.inverse(lower), rqs.inverse_log_det_jacobian(lower, 1) log_det += ld f1_out = f1(lower) @assert size(f1_out,2)==(3K-1)*size(lower,2) out = reshape(f1_out, (-1, size(lower,2), 3K -1)) W, H, D = split(out, [K, K, K-1], dims=3) W, H = softmax(W, dims=3), softmax(H, dims=3) W, H = 2B*W, 2B*H D = softplus(D) rqs = RQS(W, H, D, range_min=-B) upper, ld = rqs.inverse(upper), rqs.inverse_log_det_jacobian(upper, 1) log_det += ld return [lower upper], log_det end #------------------------------------------------------------------------------------------ mutable struct TanhFlow <: FlowOp dim::Int64 o::PyObject end function TanhFlow(dim::Int64) TanhFlow(dim, tfp.bijectors.Tanh()) end function forward(fo::TanhFlow, x::Union{Array{<:Real}, PyObject}) fo.o.forward(x), fo.o.forward_log_det_jacobian(x, 1) end function backward(fo::TanhFlow, z::Union{Array{<:Real}, PyObject}) fo.o.inverse(z), fo.o.inverse_log_det_jacobian(z, 1) end #------------------------------------------------------------------------------------------ mutable struct AffineScalarFlow <: FlowOp dim::Int64 o::PyObject end function AffineScalarFlow(dim::Int64, shift::Float64 = 0.0, scale::Float64 = 1.0) AffineScalarFlow(dim, tfp.bijectors.AffineScalar(shift=shift, scale=constant(scale))) end function forward(fo::AffineScalarFlow, x::Union{Array{<:Real}, PyObject}) fo.o.forward(x), fo.o.forward_log_det_jacobian(x, 1) end function backward(fo::AffineScalarFlow, z::Union{Array{<:Real}, PyObject}) fo.o.inverse(z), fo.o.inverse_log_det_jacobian(z, 1) end #------------------------------------------------------------------------------------------ mutable struct InvertFlow <: FlowOp dim::Int64 o::FlowOp end """ InvertFlow(fo::FlowOp) Creates a flow operator that is the invert of `fo`. # Example ```julia inv_tanh_flow = InvertFlow(TanhFlow(2)) ``` """ function InvertFlow(fo::FlowOp) InvertFlow(fo.dim, fo) end forward(fo::InvertFlow, x::Union{Array{<:Real}, PyObject}) = backward(fo.o, x) backward(fo::InvertFlow, z::Union{Array{<:Real}, PyObject}) = forward(fo.o, z) #------------------------------------------------------------------------------------------ @doc raw""" AffineFlow(args...;kwargs...) Creates a linear flow operator, $$z = Ax + b$$ See [`LinearFlow`](@ref) """ AffineFlow(args...;kwargs...) = InvertFlow(LinearFlow(args...;kwargs...)) #------------------------------------------------------------------------------------------ mutable struct NormalizingFlow flows::Array NormalizingFlow(flows::Array) = new(flows) end function forward(fo::NormalizingFlow, x::Union{PyObject, Array{<:Real,2}}) x = constant(x) m = size(x,1) log_det = constant(zeros(m)) zs = PyObject[x] for flow in fo.flows x, ld = forward(flow, x) log_det += ld push!(zs, x) end return zs, log_det end function backward(fo::NormalizingFlow, z::Union{PyObject, Array{<:Real,2}}) z = constant(z) m = size(z,1) log_det = constant(zeros(m)) xs = [z] for flow in reverse(fo.flows) z, ld = backward(flow, z) if isnothing(ld) || isnothing(log_det) log_det = nothing else log_det += ld end push!(xs, z) end return xs, log_det end #------------------------------------------------------------------------------------------ mutable struct NormalizingFlowModel prior::ADCMEDistribution flow::NormalizingFlow end function Base.:show(io::IO, model::NormalizingFlowModel) typevec = typeof.(model.flow.flows) println("( $(string(typeof(model.prior))[7:end]) )") println("\t↓") for i = length(typevec):-1:1 println("$(typevec[i]) (dim = $(model.flow.flows[i].dim))") println("\t↓") end println("( Data )") end function NormalizingFlowModel(prior::T, flows::Array{<:FlowOp}) where T<:ADCMEDistribution NormalizingFlowModel(prior, NormalizingFlow(flows)) end function forward(nf::NormalizingFlowModel, x::Union{PyObject, Array{<:Real,2}}) x = constant(x) zs, log_det = forward(nf.flow, x) prior_logprob = logpdf(nf.prior, zs[end]) return zs, prior_logprob, log_det end function backward(nf::NormalizingFlowModel, z::Union{PyObject, Array{<:Real,2}}) z = constant(z) xs, log_det = backward(nf.flow, z) return xs, log_det end function Base.:rand(nf::NormalizingFlowModel, num_samples::Int64) z = rand(nf.prior, num_samples) xs, _ = backward(nf.flow, z) return xs end #------------------------------------------------------------------------------------------ (o::NormalizingFlowModel)(x::Union{PyObject, Array{<:Real,2}}) = forward(o, x) #------------------------------------------------------------------------------------------ # From TensorFlow Probability for (op1, op2) in [(:Abs, :AbsoluteValue), (:Exp, :Exp), (:Log, :Log), (:MaskedAutoregressiveFlow, :MaskedAutoregressiveFlow), (:Permute,:Permute), (:PowerTransform, :PowerTransform), (:Sigmoid,:Sigmoid), (:Softplus,:Softplus), (:Square, :Square)] @eval begin export $op1 mutable struct $op1 <: FlowOp dim::Int64 fo::PyObject end function $op1(dim::Int64, args...;kwargs...) fo = tfp.bijectors.$op2(args...;kwargs...) $op1(dim, fo) end forward(o::$op1, x::Union{PyObject, Array{<:Real,2}}) = (o.fo.forward(x), o.fo.forward_log_det_jacobian(x, 1)) backward(o::$op1, z::Union{PyObject, Array{<:Real,2}}) = (o.fo.inverse(z), o.fo.inverse_log_det_jacobian(z, 1)) end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
11989
export GAN, jsgan, klgan, wgan, rklgan, lsgan, sample, predict, dcgan_generator, dcgan_discriminator, wgan_stable mutable struct GAN latent_dim::Int64 batch_size::Int64 dim::Int64 dat::PyObject generator::Union{Missing, Function} discriminator::Union{Missing, Function} loss::Function d_vars::Union{Missing,Array{PyObject}} g_vars::Union{Missing,Array{PyObject}} d_loss::Union{Missing,PyObject} g_loss::Union{Missing,PyObject} is_training::Union{Missing,PyObject, Bool} update::Union{Missing,Array{PyObject}} fake_data::Union{Missing,PyObject} true_data::Union{Missing,PyObject} ganid::String noise::Union{Missing,PyObject} ids::Union{Missing,PyObject} STORAGE::Dict{String, Any} end """ build!(gan::GAN) Builds the GAN instances. This function returns `gan` for convenience. """ function build!(gan::GAN) gan.noise = placeholder(get_dtype(gan.dat), shape=(gan.batch_size, gan.latent_dim)) gan.ids = placeholder(Int32, shape=(gan.batch_size,)) variable_scope("generator_$(gan.ganid)") do gan.fake_data = gan.generator(gan.noise, gan) end gan.true_data = tf.gather(gan.dat,gan.ids-1) variable_scope("discriminator_$(gan.ganid)") do gan.d_loss, gan.g_loss = gan.loss(gan) end gan.d_vars = Array{PyObject}(get_collection("discriminator_$(gan.ganid)")) gan.d_vars = length(gan.d_vars)>0 ? gan.d_vars : missing gan.g_vars = Array{PyObject}(get_collection("generator_$(gan.ganid)")) gan.g_vars = length(gan.g_vars)>0 ? gan.g_vars : missing gan.update = Array{PyCall.PyObject}(get_collection(UPDATE_OPS)) gan.update = length(gan.update)>0 ? gan.update : missing # gan.STORAGE["d_grad_magnitude"] = gradient_magnitude(gan.d_loss, gan.d_vars) # gan.STORAGE["g_grad_magnitude"] = gradient_magnitude(gan.g_loss, gan.g_vars) gan end @doc raw""" GAN(dat::Union{Array,PyObject}, generator::Function, discriminator::Function, loss::Union{Missing, Function}=missing; latent_dim::Union{Missing, Int64}=missing, batch_size::Int64=32) Creates a GAN instance. - `dat` ``\in \mathbb{R}^{n\times d}`` is the training data for the GAN, where ``n`` is the number of training data, and ``d`` is the dimension per training data. - `generator```:\mathbb{R}^{d'} \rightarrow \mathbb{R}^d`` is the generator function, ``d'`` is the hidden dimension. - `discriminator```:\mathbb{R}^{d} \rightarrow \mathbb{R}`` is the discriminator function. - `loss` is the loss function. See [`klgan`](@ref), [`rklgan`](@ref), [`wgan`](@ref), [`lsgan`](@ref) for examples. - `latent_dim` (default=``d``, the same as output dimension) is the latent dimension. - `batch_size` (default=32) is the batch size in training. # Example: Constructing a GAN ```julia dat = rand(10000,10) generator = (z, gan)->10*z discriminator = (x, gan)->sum(x) gan = GAN(dat, generator, discriminator, "wgan_stable") ``` # Example: Learning a Gaussian random variable ```julia using ADCME using PyPlot using Distributions dat = randn(10000, 1) * 0.5 .+ 3.0 function gen(z, gan) ae(z, [20,20,20,1], "generator_$(gan.ganid)", activation = "relu") end function disc(x, gan) squeeze(ae(x, [20,20,20,1], "discriminator_$(gan.ganid)", activation = "relu")) end gan = GAN(dat, gen, disc, g->wgan_stable(g, 0.001); latent_dim = 10) dopt = AdamOptimizer(0.0002, beta1=0.5, beta2=0.9).minimize(gan.d_loss, var_list=gan.d_vars) gopt = AdamOptimizer(0.0002, beta1=0.5, beta2=0.9).minimize(gan.g_loss, var_list=gan.g_vars) sess = Session(); init(sess) for i = 1:5000 batch_x = rand(1:10000, 32) batch_z = randn(32, 10) for n_critic = 1:1 global _, dl = run(sess, [dopt, gan.d_loss], feed_dict=Dict(gan.ids=>batch_x, gan.noise=>batch_z)) end _, gl, gm, dm, gp = run(sess, [gopt, gan.g_loss, gan.STORAGE["g_grad_magnitude"], gan.STORAGE["d_grad_magnitude"], gan.STORAGE["gradient_penalty"]], feed_dict=Dict(gan.ids=>batch_x, gan.noise=>batch_z)) mod(i, 100)==0 && (@info i, dl, gl, gm, dm, gp) end hist(run(sess, squeeze(rand(gan,10000))), bins=50, density = true) nm = Normal(3.0,0.5) x0 = 1.0:0.01:5.0 y0 = pdf.(nm, x0) plot(x0, y0, "g") ``` """ function GAN(dat::Union{Array,PyObject}, generator::Function, discriminator::Function, loss::Union{Missing, Function, String}=missing; latent_dim::Union{Missing, Int64}=missing, batch_size::Int64=32) dim = size(dat, 2) dat = convert_to_tensor(dat) if ismissing(latent_dim) latent_dim=dim end if ismissing(loss) loss = "jsgan" end if isa(loss, String) if loss=="jsgan" loss = jsgan elseif loss=="klgan" loss = klgan elseif loss=="wgan" loss = wgan elseif loss=="wgan_stable" loss = wgan_stable elseif loss=="rklgan" loss = rklgan elseif loss=="lsgan" loss = lsgan else error("loss function $loss not found!") end end gan = GAN(latent_dim, batch_size, dim, dat, generator, discriminator, loss, missing, missing, missing, missing, ADCME.options.training.training, missing, missing, missing, randstring(), missing, missing, Dict()) build!(gan) gan end GAN(dat::Array{T}) where T<:Real = GAN(constant(dat)) function Base.:show(io::IO, gan::GAN) yes_or_no = x->ismissing(x) ? "✘" : "✔️" print( """ ( Generative Adversarial Network -- $(gan.ganid) ) ================================================== $(gan.latent_dim) D $(gan.dim) D (Latent Space)---->(Data Space) batch_size = $(gan.batch_size) loss function: $(gan.loss) generator: $(gan.generator) discriminator: $(gan.discriminator) d_vars ... $(yes_or_no(gan.d_vars)) g_vars ... $(yes_or_no(gan.g_vars)) d_loss ... $(yes_or_no(gan.d_loss)) g_loss ... $(yes_or_no(gan.g_loss)) update ... $(yes_or_no(gan.update)) true_data ... $(size(gan.true_data)) fake_data ... $(size(gan.fake_data)) is_training... Placeholder (Bool), $(gan.is_training) noise ... Placeholder (Float64) of size $(size(gan.noise)) ids ... Placeholder (Int32) of size $(size(gan.ids)) """ ) end ##################### GAN Library ##################### """ klgan(gan::GAN) Computes the KL-divergence GAN loss function. """ function klgan(gan::GAN) P, Q = gan.true_data, gan.fake_data D_real = gan.discriminator(P, gan) D_fake = gan.discriminator(Q, gan) D_loss = -mean(log(D_real) + log(1-D_fake)) G_loss = mean(log((1-D_fake)/D_fake)) D_loss, G_loss end """ jsgan(gan::GAN) Computes the vanilla GAN loss function. """ function jsgan(gan::GAN) P, Q = gan.true_data, gan.fake_data D_real = gan.discriminator(P, gan) D_fake = gan.discriminator(Q, gan) D_loss = -mean(log(D_real) + log(1-D_fake)) G_loss = -mean(log(D_fake)) D_loss, G_loss end """ wgan(gan::GAN) Computes the Wasserstein GAN loss function. """ function wgan(gan::GAN) P, Q = gan.true_data, gan.fake_data D_real = gan.discriminator(P, gan) D_fake = gan.discriminator(Q, gan) D_loss = mean(D_fake)-mean(D_real) G_loss = -mean(D_fake) D_loss, G_loss end @doc raw""" wgan_stable(gan::GAN, λ::Float64) Returns the discriminator and generator loss for the Wasserstein GAN loss with penalty parameter $\lambda$ The objective function is ```math L = E_{\tilde x\sim P_g} [D(\tilde x)] - E_{x\sim P_r} [D(x)] + \lambda E_{\hat x\sim P_{\hat x}}[(||\nabla_{\hat x}D(\hat x)||^2-1)^2] ``` """ function wgan_stable(gan::GAN, λ::Float64=1.0) real_data, fake_data = gan.true_data, gan.fake_data @assert length(size(real_data))==2 @assert length(size(fake_data))==2 D_logits = gan.discriminator(real_data, gan) D_logits_ = gan.discriminator(fake_data, gan) g_loss = -mean(D_logits_) d_loss_real = -mean(D_logits) d_loss_fake = tf.reduce_mean(D_logits_) α = tf.random_uniform( shape=(gan.batch_size, 1), minval=0., maxval=1., dtype=tf.float64 ) differences = fake_data - real_data interpolates = real_data + α .* differences # nb x dim d_inter = gan.discriminator(interpolates, gan) @assert length(size(d_inter))==1 gradients = tf.gradients(d_inter, interpolates)[1] # ∇D(xt), nb x dim slopes = sqrt(sum(gradients^2, dims=2)) # ||∇D(xt)||, (nb,) gradient_penalty = mean((slopes-1.)^2) d_loss = d_loss_fake + d_loss_real + λ * gradient_penalty gan.STORAGE["gradient_penalty"] = mean(slopes) return d_loss, g_loss end """ rklgan(gan::GAN) Computes the reverse KL-divergence GAN loss function. """ function rklgan(gan::GAN) P, Q = gan.true_data, gan.fake_data D_real = gan.discriminator(P, gan) D_fake = gan.discriminator(Q, gan) G_loss = mean(log((1-D_fake)/D_fake)) D_loss = -mean(log(D_fake)+log(1-D_real)) D_loss, G_loss end """ lsgan(gan::GAN) Computes the least square GAN loss function. """ function lsgan(gan::GAN) P, Q = gan.true_data, gan.fake_data D_real = gan.discriminator(P, gan) D_fake = gan.discriminator(Q, gan) D_loss = mean((D_real-1)^2+D_fake^2) G_loss = mean((D_fake-1)^2) D_loss, G_loss end ####################################################### """ sample(gan::GAN, n::Int64) rand(gan::GAN, n::Int64) Samples `n` instances from `gan`. """ function sample(gan::GAN, n::Int64) local out @info "Using a normal latent vector" noise = constant(randn(n, gan.latent_dim)) variable_scope("generator_$(gan.ganid)") do out = gan.generator(noise, gan) end out end Base.:rand(gan::GAN) = squeeze(sample(gan, 1), dims=1) Base.:rand(gan::GAN, n::Int64) = sample(gan, n) """ predict(gan::GAN, input::Union{PyObject, Array}) Predicts the GAN `gan` output given input `input`. """ function predict(gan::GAN, input::Union{PyObject, Array}) local out flag = false if length(size(input))==1 flag = true input = reshape(input, 1, length(input)) end input = convert_to_tensor(input) variable_scope("generator_$(gan.ganid)", initializer=random_uniform_initializer(0.0,1e-3)) do out = gan.generator(input, gan) end if flag; out = squeeze(out); end out end # adapted from https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dcgan.py function dcgan_generator(x::PyObject, n::Int64=1) if length(size(x))!=2 error("ADCME: input must have rank 2, rank $(length(size(x))) received") end variable_scope("generator", reuse=AUTO_REUSE) do # TensorFlow Layers automatically create variables and calculate their # shape, based on the input. x = tf.layers.dense(x, units=6n * 6n * 128) x = tf.nn.tanh(x) # Reshape to a 4-D array of images: (batch, height, width, channels) # New shape: (batch, 6, 6, 128) x = tf.reshape(x, shape=[-1, 6n, 6n, 128]) # Deconvolution, image shape: (batch, 14, 14, 64) x = tf.layers.conv2d_transpose(x, 64, 4, strides=2) # Deconvolution, image shape: (batch, 28, 28, 1) x = tf.layers.conv2d_transpose(x, 1, 2, strides=2) # Apply sigmoid to clip values between 0 and 1 x = tf.nn.sigmoid(x) end return squeeze(x) end function dcgan_discriminator(x) variable_scope("Discriminator", reuse=AUTO_REUSE) do # Typical convolutional neural network to classify images. x = tf.layers.conv2d(x, 64, 5) x = tf.nn.tanh(x) x = tf.layers.average_pooling2d(x, 2, 2) x = tf.layers.conv2d(x, 128, 5) x = tf.nn.tanh(x) x = tf.layers.average_pooling2d(x, 2, 2) x = tf.contrib.layers.flatten(x) x = tf.layers.dense(x, 1024) x = tf.nn.tanh(x) # Output 2 classes: Real and Fake images x = tf.layers.dense(x, 2) end return x end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
3783
export gpu_info, get_gpu, has_gpu """ gpu_info() Returns the CUDA and GPU information. An examplary output is ``` - NVCC: /usr/local/cuda/bin/nvcc - CUDA library directories: /usr/local/cuda/lib64 - Latest supported version of CUDA: 11000 - CUDA runtime version: 10010 - CUDA include_directories: /usr/local/cuda/include - CUDA toolkit directories: /home/kailaix/.julia/adcme/pkgs/cudatoolkit-10.0.130-0/lib:/home/kailaix/.julia/adcme/pkgs/cudnn-7.6.5-cuda10.0_0/lib - Number of GPUs: 7 ``` """ function gpu_info() NVCC = "missing" CUDALIB = "missing" v = "missing" u = "missing" dcount = 0 try NVCC = strip(String(read(`which nvcc`))) CUDALIB = abspath(joinpath(NVCC, "../../lib64")) v = zeros(Int32,1) @eval ccall((:cudaRuntimeGetVersion, $(joinpath(CUDALIB, "libcudart.so"))), Cvoid, (Ref{Cint},), $v) u = zeros(Int32,1) @eval ccall((:cudaDriverGetVersion, $(joinpath(CUDALIB, "libcudart.so"))), Cvoid, (Ref{Cint},), $u) dcount = zeros(Int32, 1) @eval ccall((:cudaGetDeviceCount, $(joinpath(CUDALIB, "libcudart.so"))), Cvoid, (Ref{Cint},), $dcount) v = v[1] if v==0 v = "missing" end u = u[1] dcount = dcount[1] catch end println("- NVCC: ", NVCC) println("- CUDA library directories: ", CUDALIB) println("- Latest supported version of CUDA: ", u) println("- CUDA runtime version: ", v) println("- CUDA include_directories: ", length(ADCME.CUDA_INC)==0 ? "missing" : ADCME.CUDA_INC) println("- CUDA toolkit directories: ", length(ADCME.LIBCUDA)==0 ? "missing" : ADCME.LIBCUDA) println("- Number of GPUs: ", dcount) if NVCC == "missing" println("\nTips: nvcc is not found in the path. Please add nvcc to your environment path if you intend to use GPUs.") end if length(ADCME.CUDA_INC)==0 println("\nTips: ADCME is not configured to use GPUs. See https://kailaix.github.io/ADCME.jl/latest/tu_customop/#Install-GPU-enabled-TensorFlow-(Linux-and-Windows) for instructions.") end if dcount==0 println("\nTips: No GPU resources found. Do you have access to GPUs?") end end """ get_gpu() Returns the compiler information for GPUs. An examplary output is > (NVCC = "/usr/local/cuda/bin/nvcc", LIB = "/usr/local/cuda/lib64", INC = "/usr/local/cuda/include", TOOLKIT = "/home/kailaix/.julia/adcme/pkgs/cudatoolkit-10.0.130-0/lib", CUDNN = "/home/kailaix/.julia/adcme/pkgs/cudnn-7.6.5-cuda10.0_0/lib") """ function get_gpu() NVCC = missing CUDALIB = missing CUDAINC = missing CUDATOOLKIT = missing CUDNN = missing try NVCC = strip(String(read(`which nvcc`))) CUDALIB = abspath(joinpath(NVCC, "../../lib64")) CUDAINC = abspath(joinpath(NVCC, "../../include")) if length(ADCME.CUDA_INC)>0 && CUDAINC!=ADCME.CUDA_INC @warn """ Inconsistency detected: ADCME CUDAINC: $(ADCME.CUDA_INC) Implied CUDAINC: $CUDAINC """ end catch end if length(ADCME.LIBCUDA)>0 CUDATOOLKIT = split(ADCME.LIBCUDA, ":")[1] CUDNN = split(ADCME.LIBCUDA, ":")[2] else end return (NVCC=NVCC, LIB=CUDALIB, INC=CUDAINC, TOOLKIT=CUDATOOLKIT, CUDNN=CUDNN) end """ has_gpu() Check if the TensorFlow backend is using CUDA GPUs. Operators that have GPU implementations will be executed on GPU devices. See also [`get_gpu`](@ref) !!! note ADCME will use GPU automatically if GPU is available. To disable GPU, set the environment variable `ENV["CUDA_VISIBLE_DEVICES"]=""` before importing ADCME """ function has_gpu() s = tf.test.gpu_device_name() if length(s)==0 return false else return true end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
4465
# install.jl collects scripts to install many third party libraries export install_adept, install_blas, install_openmpi, install_hypre, install_had, install_mfem, install_matplotlib function install_blas(blas_binary::Bool = true) if Sys.iswindows() if isfile(joinpath(ADCME.LIBDIR, "openblas.lib")) @info "openblas.lib exists" return end if blas_binary http_file("https://github.com/kailaix/tensorflow-1.15-include/releases/download/v0.1.0/openblas.lib", joinpath(ADCME.LIBDIR, "openblas.lib")) return end @info "You are building openblas from source on Windows, and this process may take a long time. Alternatively, you can place your precompiled binary to $(joinpath(ADCME.LIBDIR, "openblas.lib"))" PWD = pwd() change_directory() http_file("https://github.com/xianyi/OpenBLAS/archive/v0.3.9.zip", "OpenBlas.zip") uncompress("OpenBLAS.zip", "OpenBlas-0.3.9") change_directory("OpenBlas-0.3.9/build") require_cmakecache() do ADCME.cmake(CMAKE_ARGS="-DCMAKE_Fortran_COMPILER=flang -DBUILD_WITHOUT_LAPACK=no -DNOFORTRAN=0 -DDYNAMIC_ARCH=ON") end require_library("lib/Release/openblas") do ADCME.make() end change_directory("lib/Release") copy_file("openblas.lib", joinpath(ADCME.LIBDIR, "openblas.lib")) cd(PWD) else required_file = get_library(joinpath(ADCME.LIBDIR, "openblas")) if !isfile(required_file) files = readdir(ADCME.LIBDIR) files = filter(x->!isnothing(x), match.(r"(libopenblas\S*.dylib)", files))[1] target = joinpath(ADCME.LIBDIR, files[1]) symlink(target, required_file) @info "Symlink $(required_file) --> $(files[1])" end end end """ install_adept() Install adept-2 library: https://github.com/rjhogan/Adept-2 """ function install_adept(; blas_binary::Bool = true) change_directory() git_repository("https://github.com/ADCMEMarket/Adept-2", "Adept-2") cd("Adept-2/adept") install_blas(blas_binary) cp("$(@__DIR__)/../deps/AdeptCMakeLists.txt", "./CMakeLists.txt", force=true) change_directory("build") require_cmakecache() do ADCME.cmake() end if Sys.iswindows() require_file("$(ADCME.LIBDIR)/adept.lib") do ADCME.make() end else require_library("$(ADCME.LIBDIR)/adept") do ADCME.make() end end end function install_openmpi() filepath = joinpath(@__DIR__, "..", "deps", "install_openmpi.jl") include(filepath) end function install_hypre() filepath = joinpath(@__DIR__, "..", "deps", "install_hypre.jl") include(filepath) end function install_mfem() PWD = pwd() change_directory() http_file("https://github.com/kailaix/mfem/archive/shared-msvc-dev.zip", "mfem.zip") uncompress("mfem.zip", "mfem-shared-msvc-dev") change_directory("mfem-shared-msvc-dev/build") require_file("CMakeCache.txt") do ADCME.cmake(CMAKE_ARGS = ["-DCMAKE_INSTALL_PREFIX=$(joinpath(ADCME.LIBDIR, ".."))", "-SHARED=YES", "-STATIC=NO"]) end require_library("mfem") do ADCME.make() end require_file(joinpath(ADCME.LIBDIR, get_library_name("mfem"))) do if Sys.iswindows() run_with_env(`cmd /c $(ADCME.CMAKE) --install .`) else run_with_env(`$(ADCME.NINJA) install`) end end if Sys.iswindows() mfem_h = """ // Auto-generated file. #undef NO_ERROR #undef READ_ERROR #undef WRITE_ERROR #undef ALIAS #undef REGISTERED #include "mfem/mfem.hpp" """ open(joinpath(ADCME.LIBDIR, "..", "include", "mfem.hpp"), "w") do io write(io, mfem_h) @info "Fixed mfem.hpp definitions" end end cd(PWD) end function install_had() change_directory() git_repository("https://github.com/kailaix/had", "had") end function install_matplotlib() PIP = get_pip() run(`$PIP install matplotlib`) if Sys.isapple() CONDA = get_conda() pkgs = run(`$CONDA list`) if occursin("pyqt", pkgs) return end if !isdefined(Main, :Pkg) error("Package Pkg must be imported in the main module using `import Pkg` or `using Pkg`") end run(`$CONDA install -y pyqt`) Main.Pkg.build("PyPlot") end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
6921
using MAT export save, load, Diary, scalar, writepb, psave, pload, activate, logging, print_tensor pybytes(b) = PyObject( ccall(PyCall.@pysym(PyCall.PyString_FromStringAndSize), PyPtr, (Ptr{UInt8}, Int), b, sizeof(b))) """ psave(o::PyObject, file::String) Saves a Python objection `o` to `file`. See also [`pload`](@ref) """ function psave(o::PyObject, file::String) pickle = pyimport("pickle") f = open(file, "w") pickle.dump(o, f) close(f) end """ pload(file::String) Loads a Python objection from `file`. See also [`psave`](@ref) """ function pload(file::String) r = nothing pickle = pyimport("pickle") @pywith pybuiltin("open")(file,"rb") as f begin r = pickle.load(f) end return r end """ save(sess::PyObject, file::String, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...) Saves the values of `vars` in the session `sess`. The result is written into `file` as a dictionary. If `vars` is nothing, it saves all the trainable variables. See also [`save`](@ref), [`load`](@ref) """ function save(sess::PyObject, file::String, vars::Union{PyObject, Nothing, Array{PyObject}, Array{Any}}=nothing, args...; kwargs...) if vars==nothing vars = get_collection(TRAINABLE_VARIABLES) elseif isa(vars, PyObject) vars = [vars] elseif isa(vars, Array{Any}) vars = Array{PyObject}(vars) end d = Dict{String, Any}() vals = run(sess, vars, args...;kwargs...) for i = 1:length(vars) name = replace(vars[i].name, ":"=>"colon") name = replace(name, "/"=>"backslash") d[name] = vals[i] end matwrite(file, d) d end function save(sess::PyObject, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...) if vars==nothing vars = get_collection(TRAINABLE_VARIABLES) elseif isa(vars, PyObject) vars = [vars] end d = Dict{String, Any}() vals = run(sess, vars, args...;kwargs...) for i = 1:length(vars) name = replace(vars[i].name, ":"=>"colon") name = replace(name, "/"=>"backslash") d[name] = vals[i] end d end """ load(sess::PyObject, file::String, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...) Loads the values of variables to the session `sess` from the file `file`. If `vars` is nothing, it loads values to all the trainable variables. See also [`save`](@ref), [`load`](@ref) """ function load(sess::PyObject, file::String, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...) if vars==nothing vars = get_collection(TRAINABLE_VARIABLES) elseif isa(vars, PyObject) vars = [vars] end d = matread(file) ops = PyObject[] for i = 1:length(vars) name = replace(vars[i].name, ":"=>"colon") name = replace(name, "/"=>"backslash") if !(name in keys(d)) @warn "$(vars[i].name) not found in the file, skipped" else if occursin("bias", name) && isa(d[name], Number) d[name] = [d[name]] end push!(ops, assign(vars[i], d[name])) end end run(sess, ops, args...; kwargs...) end function load(sess::PyObject, d::Dict, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...) if vars==nothing vars = get_collection(TRAINABLE_VARIABLES) elseif isa(vars, PyObject) vars = [vars] end ops = PyObject[] for i = 1:length(vars) name = replace(vars[i].name, ":"=>"colon") name = replace(name, "/"=>"backslash") if !(name in keys(d)) @warn "$(vars[i].name) not found in the file, skipped" else push!(ops, assign(vars[i], d[name])) end end run(sess, ops, args...; kwargs...) end mutable struct Diary writer::PyObject tdir::String end """ Diary(suffix::Union{String, Nothing}=nothing) Creates a diary at a temporary directory path. It returns a writer and the corresponding directory path """ function Diary(suffix::Union{String, Nothing}=nothing) tdir = mktempdir() printstyled("tensorboard --logdir=\"$(tdir)\" --port 0\n", color=:blue) Diary(tf.summary.FileWriter(tdir, tf.get_default_graph(),filename_suffix=suffix), tdir) end """ save(sw::Diary, dirp::String) Saves [`Diary`](@ref) to `dirp`. """ function save(sw::Diary, dirp::String) cp(sw.tdir, dirp, force=true) end """ load(sw::Diary, dirp::String) Loads [`Diary`](@ref) from `dirp`. """ function load(sw::Diary,dirp::String) sw.writer = tf.summary.FileWriter(dirp, tf.get_default_graph()) sw.tdir = dirp end """ activate(sw::Diary, port::Int64=6006) Running [`Diary`](@ref) at http://localhost:port. """ function activate(sw::Diary, port::Int64=0) printstyled("tensorboard --logdir=\"$(sw.tdir)\" --port $port\n", color=:blue) run(`tensorboard --logdir="$(sw.tdir)" --port $port '&'`) end """ scalar(o::PyObject, name::String) Returns a scalar summary object. """ function scalar(o::PyObject, name::Union{String,Missing}=missing) if ismissing(name) name = tensorname(o) end tf.summary.scalar(name, o) end """ write(sw::Diary, step::Int64, cnt::Union{String, Array{String}}) Writes to [`Diary`](@ref). """ function Base.:write(sw::Diary, step::Int64, cnt::Union{String, Array{String}}) if isa(cnt, String) sw.writer.add_summary(pybytes(cnt), step) else for c in cnt sw.writer.add_summary(pybytes(c), step) end end end function writepb(writer::PyObject, sess::PyObject) output_path = writer.get_logdir() tf.io.write_graph(sess.graph_def, output_path, "model.pb") return end """ logging(file::Union{Nothing,String}, o::PyObject...; summarize::Int64 = 3, sep::String = " ") Logging `o` to `file`. This operator must be used with [`bind`](@ref). """ function logging(file::Union{Nothing,String}, o::PyObject...; summarize::Int64 = 3, sep::String = " ") if isnothing(file) tf.print(o..., summarize=summarize, sep=sep) else filepath = "file://$(abspath(file))" tf.print(o..., output_stream=filepath, summarize=summarize, sep=sep) end end logging(o::PyObject...; summarize::Int64 = 3, sep::String = " ") = logging(nothing, summarize=summarize, sep=sep) """ print_tensor(in::Union{PyObject, Array{Float64,2}}) Prints the tensor `in` """ function print_tensor(in::Union{PyObject, Array{Float64,2}}, info::AbstractString = "") @assert length(size(in))==2 print_tensor_ = load_system_op("print_tensor") in = convert_to_tensor(Any[in], [Float64]); in = in[1] info = tf.constant(info) out = print_tensor_(in, info) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
12965
export test_jacobian, test_gradients, linedata, lineview, meshdata, meshview, gradview, jacview, PCLview, pcolormeshview, animate, saveanim, test_hessian function require_pyplot() if !isdefined(Main, :PyPlot) error("You must load PyPlot to use this function, e.g., `using PyPlot` or `import PyPlot`") end Main.PyPlot end """ test_gradients(f::Function, x0::Array{Float64, 1}; scale::Float64 = 1.0, showfig::Bool = true) Testing the gradients of a vector function `f`: `y, J = f(x)` where `y` is a scalar output and `J` is the vector gradient. """ function test_gradients(f::Function, x0::Array{Float64, 1}; scale::Float64 = 1.0, showfig::Bool = true, mpi::Bool = false) v0 = rand(Float64,length(x0)) γs = scale ./10 .^(1:5) err2 = Float64[] err1 = Float64[] f0, J = f(x0) for i = 1:5 f1, _ = f(x0+γs[i]*v0) push!(err1, abs(f1-f0)) push!(err2, abs(f1-f0-γs[i]*sum(J.*v0))) end if showfig if mpi && mpi_rank()>0 return end mp = require_pyplot() mp.close("all") mp.loglog(γs, err1, label="Finite Difference") mp.loglog(γs, err2, label="Automatic Differentiation") mp.loglog(γs, γs * 0.5*abs(err1[1])/γs[1], "--",label="\$\\mathcal{O}(\\gamma)\$") mp.loglog(γs, γs.^2 * 0.5*abs(err2[1])/γs[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$") mp.plt.gca().invert_xaxis() mp.legend() mp.savefig("test.png") @info "Results saved to test.png" println("Finite difference: $err1") println("Automatic differentiation: $err2") end return err1, err2 end """ test_jacobian(f::Function, x0::Array{Float64, 1}; scale::Float64 = 1.0, showfig::Bool = true) Testing the gradients of a vector function `f`: `y, J = f(x)` where `y` is a vector output and `J` is the Jacobian. """ function test_jacobian(f::Function, x0::Array{Float64, 1}; scale::Float64 = 1.0, showfig::Bool = true) v0 = rand(Float64,size(x0)) γs = scale ./10 .^(1:5) err2 = Float64[] err1 = Float64[] f0, J = f(x0) for i = 1:5 f1, _ = f(x0+γs[i]*v0) push!(err1, norm(f1-f0)) push!(err2, norm(f1-f0-γs[i]*J*v0)) end if showfig mp = require_pyplot() mp.close("all") mp.loglog(γs, err1, label="Finite Difference") mp.loglog(γs, err2, label="Automatic Differentiation") mp.loglog(γs, γs * 0.5*abs(err1[1])/γs[1], "--",label="\$\\mathcal{O}(\\gamma)\$") mp.loglog(γs, γs.^2 * 0.5*abs(err2[1])/γs[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$") mp.plt.gca().invert_xaxis() mp.legend() mp.savefig("test.png") @info "Results saved to test.png" println("Finite difference: $err1") println("Automatic differentiation: $err2") end return err1, err2 end """ test_hessian(f::Function, x0::Array{Float64, 1}; scale::Float64 = 1.0) Testing the Hessian of a scalar function `f`: `g, H = f(x)` where `y` is a scalar output, `g` is a vector gradient output, and `H` is the Hessian. """ test_hessian(f::Function, x0::Array{Float64, 1}; kwargs...) = test_jacobian(f, x0; kwargs...) function linedata(θ1, θ2=nothing; n::Integer = 10) if θ2 === nothing θ2 = θ1 .* (1 .+ randn(size(θ1)...)) end T = [] for x in LinRange(0.0,1.0,n) push!(T, θ1*(1-x)+θ2*x) end T end function lineview(losses::Array{Float64}) mp = require_pyplot() n = length(losses) v = collect(LinRange(0.0,1.0,n)) mp.close("all") mp.plot(v, losses) mp.xlabel("\$\\alpha\$") mp.ylabel("loss") mp.grid("on") end @doc raw""" lineview(sess::PyObject, pl::PyObject, loss::PyObject, θ1, θ2=nothing; n::Integer = 10) Plots the function $$h(α) = f((1-α)θ_1 + αθ_2)$$ # Example ```julia pl = placeholder(Float64, shape=[2]) l = sum(pl^2-pl*0.1) sess = Session(); init(sess) lineview(sess, pl, l, rand(2)) ``` """ function lineview(sess::PyObject, pl::PyObject, loss::PyObject, θ1, θ2=nothing; n::Integer = 10) mp = require_pyplot() dat = linedata(θ1, θ2, n=n) V = zeros(length(dat)) for i = 1:length(dat) @info i, n V[i] = run(sess, loss, pl=>dat[i]) end lineview(V) end function meshdata(θ; a::Real=1, b::Real=1, m::Integer=10, n::Integer=10 ,direction::Union{Array{<:Real}, Missing}=missing) local δ, γ as = LinRange(-a, a, m) bs = LinRange(-b, b, n) α = zeros(m, n) β = zeros(m, n) θs = Array{Any}(undef, m, n) if !ismissing(direction) δ = direction - θ γ = randn(size(θ)...) γ = γ/norm(γ)*norm(δ) else δ = randn(size(θ)...) γ = randn(size(θ)...) end for i = 1:m for j = 1:n α[i,j] = as[i] β[i,j] = bs[j] θs[i,j] = θ + δ*as[i] + γ*bs[j] end end return θs end function meshview(losses::Array{Float64}, a::Real=1, b::Real=1) mp = require_pyplot() m, n = size(losses) α = zeros(m, n) β = zeros(m, n) as = LinRange(-a, a, m) bs = LinRange(-b, b, n) for i = 1:m for j = 1:n α[i,j] = as[i] β[i,j] = bs[j] end end mp.close("all") mp.mesh(α, β, losses) mp.xlabel("\$\\alpha\$") mp.ylabel("\$\\beta\$") mp.zlabel("loss") mp.scatter3D(α[(m+1)÷2, (n+1)÷2], β[(m+1)÷2, (n+1)÷2], losses[(m+1)÷2, (n+1)÷2], color="red", s=100) return α, β, losses end function pcolormeshview(losses::Array{Float64}, a::Real=1, b::Real=1) mp = require_pyplot() m, n = size(losses) α = zeros(m, n) β = zeros(m, n) as = LinRange(-a, a, m) bs = LinRange(-b, b, n) for i = 1:m for j = 1:n α[i,j] = as[i] β[i,j] = bs[j] end end mp.close("all") mp.pcolormesh(α, β, losses) mp.xlabel("\$\\alpha\$") mp.ylabel("\$\\beta\$") mp.scatter(0.0,0.0, marker="*", s=100) mp.colorbar() return α, β, losses end function meshview(sess::PyObject, pl::PyObject, loss::PyObject, θ; a::Real=1, b::Real=1, m::Integer=9, n::Integer=9, direction::Union{Array{<:Real}, Missing}=missing) dat = meshdata(θ; a=a, b=b, m=m, n=n, direction=direction) m, n = size(dat) V = zeros(m, n) for i = 1:m @info i, m for j = 1:n V[i,j] = run(sess, loss, pl=>dat[i,j]) end end meshview(V, a, b) end function pcolormeshview(sess::PyObject, pl::PyObject, loss::PyObject, θ; a::Real=1, b::Real=1, m::Integer=9, n::Integer=9, direction::Union{Array{<:Real}, Missing}=missing) dat = meshdata(θ; a=a, b=b, m=m, n=n, direction=direction) m, n = size(dat) V = zeros(m, n) for i = 1:m @info i, m for j = 1:n V[i,j] = run(sess, loss, pl=>dat[i,j]) end end pcolormeshview(V, a, b) end function gradview(sess::PyObject, pl::PyObject, loss::PyObject, u0, grad::PyObject; scale::Float64 = 1.0, mpi::Bool = false) mp = require_pyplot() local v if length(size(u0))==0 v = rand() else v = rand(length(u0)) end γs = scale ./ 10 .^ (1:5) v1 = Float64[] v2 = Float64[] L_ = run(sess, loss, pl=>u0) J_ = run(sess, grad, pl=>u0) for i = 1:5 @info i L__ = run(sess, loss, pl=>u0+v*γs[i]) push!(v1, norm(L__-L_)) if size(J_)==size(v) if length(size(J_))==0 push!(v2, norm(L__-L_-γs[i]*sum(J_*v))) else push!(v2, norm(L__-L_-γs[i]*sum(J_.*v))) end else push!(v2, norm(L__-L_-γs[i]*J_*v)) end end if !(mpi) || (mpi && mpi_rank()==0) mp.close("all") mp.loglog(γs, abs.(v1), "*-", label="finite difference") mp.loglog(γs, abs.(v2), "+-", label="automatic linearization") mp.loglog(γs, γs.^2 * 0.5*abs(v2[1])/γs[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$") mp.loglog(γs, γs * 0.5*abs(v1[1])/γs[1], "--",label="\$\\mathcal{O}(\\gamma)\$") mp.plt.gca().invert_xaxis() mp.legend() mp.xlabel("\$\\gamma\$") mp.ylabel("Error") if mpi mp.savefig("mpi_gradview.png") end end return v1, v2 end """ gradview(sess::PyObject, pl::PyObject, loss::PyObject, u0; scale::Float64 = 1.0) Visualizes the automatic differentiation and finite difference convergence converge. For correctly implemented differentiable codes, the convergence rate for AD should be 2 and for FD should be 1 (if not evaluated at stationary point). - `scale`: you can control the step size for perturbation. """ function gradview(sess::PyObject, pl::PyObject, loss::PyObject, u0; scale::Float64 = 1.0, mpi::Bool = false) grad = tf.convert_to_tensor(gradients(loss, pl)) gradview(sess, pl, loss, u0, grad, scale = scale, mpi = mpi) end @doc raw""" jacview(sess::PyObject, f::Function, θ::Union{Array{Float64}, PyObject, Missing}, u0::Array{Float64}, args...) Performs gradient test for a vector function. `f` has the signature ``` f(θ, u) -> r, J ``` Here `θ` is a nuisance parameter, `u` is the state variables (w.r.t. which the Jacobian is computed), `r` is the residual vector, and `J` is the Jacobian matrix (a dense matrix or a [`SparseTensor`](@ref)). # Example 1 ```julia u0 = rand(10) function verify_jacobian_f(θ, u) r = u^3+u - u0 r, spdiag(3u^2+1.0) end jacview(sess, verify_jacobian_f, missing, u0) ``` # Example 2 ``` u0 = rand(10) rs = rand(10) function verify_jacobian_f(θ, u) r = [u^2;u] - [rs;rs] r, [spdiag(2*u); spdiag(10)] end jacview(sess, verify_jacobian_f, missing, u0); close("all") ``` """ function jacview(sess::PyObject, f::Function, θ::Union{Array{Float64}, PyObject, Missing}, u0::Array{Float64}, args...) mp = require_pyplot() u = placeholder(Float64, shape=[length(u0)]) L, J = f(θ, u) init(sess) L_ = run(sess, L, u=>u0, args...) J_ = run(sess, J, u=>u0, args...) v = rand(length(u0)) γs = 1.0 ./ 10 .^ (1:5) v1 = Float64[] v2 = Float64[] for i = 1:5 L__ = run(sess, L, u=>u0+v*γs[i], args...) push!(v1, norm(L__-L_)) push!(v2, norm(L__-L_-γs[i]*J_*v)) end mp.close("all") mp.loglog(γs, abs.(v1), "*-", label="finite difference") mp.loglog(γs, abs.(v2), "+-", label="automatic linearization") mp.loglog(γs, γs.^2 * 0.5*abs(v2[1])/γs[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$") mp.loglog(γs, γs * 0.5*abs(v1[1])/γs[1], "--",label="\$\\mathcal{O}(\\gamma)\$") mp.plt.gca().invert_xaxis() mp.legend() mp.xlabel("\$\\gamma\$") mp.ylabel("Error") end function PCLview(sess::PyObject, f::Function, L::Function, θ::Union{PyObject,Array{Float64,1}, Float64}, u0::Union{PyObject, Array{Float64}}, args...; options::Union{Dict{String, T}, Missing}=missing) where T<:Real mp = require_pyplot() if isa(θ, PyObject) θ = run(sess, θ, args...) end x = placeholder(Float64, shape=[length(θ)]) l, u, g = NonlinearConstrainedProblem(f, L, x, u0; options=options) init(sess) L_ = run(sess, l, x=>θ, args...) J_ = run(sess, g, x=>θ, args...) v = rand(length(x)) γs = 1.0 ./ 10 .^ (1:5) v1 = Float64[] v2 = Float64[] for i = 1:5 @info i L__ = run(sess, l, x=>θ+v*γs[i], args...) # @show L__,L_,J_, v push!(v1, L__-L_) push!(v2, L__-L_-γs[i]*sum(J_.*v)) end mp.close("all") mp.loglog(γs, abs.(v1), "*-", label="finite difference") mp.loglog(γs, abs.(v2), "+-", label="automatic linearization") mp.loglog(γs, γs.^2 * 0.5*abs(v2[1])/γs[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$") mp.loglog(γs, γs * 0.5*abs(v1[1])/γs[1], "--",label="\$\\mathcal{O}(\\gamma)\$") mp.plt.gca().invert_xaxis() mp.legend() mp.xlabel("\$\\gamma\$") mp.ylabel("Error") end @doc raw""" animate(update::Function, frames; kwargs...) Creates an animation using update function `update`. # Example ```julia θ = LinRange(0, 2π, 100) x = cos.(θ) y = sin.(θ) pl, = plot([], [], "o-") t = title("0") xlim(-1.2,1.2) ylim(-1.2,1.2) function update(i) t.set_text("$i") pl.set_data([x[1:i] y[1:i]]'|>Array) end animate(update, 1:100) ``` """ function animate(update::Function, frames; kwargs...) mp = require_pyplot() animation_ = pyimport("matplotlib.animation") if !isa(frames, Integer) frames = Array(frames) end animation_.FuncAnimation(mp.gcf(), update, frames=frames; kwargs...) end """ saveanim(anim::PyObject, filename::String; kwargs...) Saves the animation produced by [`animate`](@ref) """ function saveanim(anim::PyObject, filename::String; kwargs...) if Sys.iswindows() anim.save(filename, "ffmpeg"; kwargs...) else anim.save(filename, "imagemagick"; kwargs...) end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
25343
export dense, flatten, ae, ae_num, ae_init, fc, fc_num, fc_init, fc_to_code, ae_to_code, fcx, bn, sparse_softmax_cross_entropy_with_logits, Resnet1D #---------------------------------------------------- # activation functions _string2fn = Dict( "relu" => relu, "tanh" => tanh, "sigmoid" => sigmoid, "leakyrelu" => leaky_relu, "leaky_relu" => leaky_relu, "relu6" => relu6, "softmax" => softmax, "softplus" => softplus, "selu" => selu, "elu" => elu, "concat_elu"=>concat_elu, "concat_relu"=>concat_relu, "hard_sigmoid"=>hard_sigmoid, "swish"=>swish, "hard_swish"=>hard_swish, "concat_hard_swish"=>concat_hard_swish, "sin"=>sin, "fourier"=>fourier ) function get_activation_function(a::Union{Function, String, Nothing}) if isnothing(a) return x->x end if isa(a, String) if haskey(_string2fn, lowercase(a)) return _string2fn[lowercase(a)] else error("Activation function $a is not supported, available activation functions:\n$(collect(keys(_string2fn))).") end else return a end end @doc raw""" fcx(x::Union{Array{Float64,2},PyObject}, output_dims::Array{Int64,1}, θ::Union{Array{Float64,1}, PyObject}; activation::String = "tanh") Creates a fully connected neural network with output dimension `o` and inputs $x\in \mathbb{R}^{m\times n}$. $$x \rightarrow o_1 \rightarrow o_2 \rightarrow \ldots \rightarrow o_k$$ `θ` is the weights and biases of the neural network, e.g., `θ = ae_init(output_dims)`. `fcx` outputs two tensors: - the output of the neural network: $u\in \mathbb{R}^{m\times o_k}$. - the sensitivity of the neural network per sample: $\frac{\partial u}{\partial x}\in \mathbb{R}^{m \times o_k \times n}$ """ function fcx(x::Union{Array{Float64,2},PyObject}, output_dims::Array{Int64,1}, θ::Union{Array{Float64,1}, PyObject}; activation::String = "tanh") pth = joinpath(@__DIR__, "../deps/Plugin/ExtendedNN/build/ExtendedNn") pth = get_library(pth) require_file(pth) do install_adept() change_directory(splitdir(pth)[1]) require_cmakecache() do cmake() end make() end extended_nn_ = load_op_and_grad(pth, "extended_nn"; multiple=true) config = [size(x,2);output_dims] x_,config_,θ_ = convert_to_tensor([x,config,θ], [Float64,Int64,Float64]) x_ = reshape(x_, (-1,)) u, du = extended_nn_(x_,config_,θ_,activation) reshape(u, (size(x,1), config[end])), reshape(du, (size(x,1), config[end], size(x,2))) end """ ae(x::PyObject, output_dims::Array{Int64}, scope::String = "default"; activation::Union{Function,String} = "tanh") Alias: `fc`, `ae` Creates a neural network with intermediate numbers of neurons `output_dims`. """ function ae(x::Union{Array{Float64},PyObject}, output_dims::Array{Int64}, scope::String = "default"; activation::Union{Function,String} = "tanh") if isa(x, Array) x = constant(x) end flag = false if length(size(x))==1 x = reshape(x, length(x), 1) flag = true end net = x variable_scope(scope, reuse=AUTO_REUSE) do for i = 1:length(output_dims)-1 net = dense(net, output_dims[i], activation=activation) end net = dense(net, output_dims[end]) end if flag && (size(net,2)==1) net = squeeze(net) end return net end """ ae(x::Union{Array{Float64}, PyObject}, output_dims::Array{Int64}, θ::Union{Array{Float64}, PyObject}; activation::Union{Function,String, Nothing} = "tanh") Alias: `fc`, `ae` Creates a neural network with intermediate numbers of neurons `output_dims`. The weights are given by `θ` # Example 1: Explicitly construct weights and biases ```julia x = constant(rand(10,2)) n = ae_num([2,20,20,20,2]) θ = Variable(randn(n)*0.001) y = ae(x, [20,20,20,2], θ) ``` # Example 2: Implicitly construct weights and biases ```julia θ = ae_init([10,20,20,20,2]) x = constant(rand(10,10)) y = ae(x, [20,20,20,2], θ) ``` See also [`ae_num`](@ref), [`ae_init`](@ref). """ function ae(x::Union{Array{Float64}, PyObject}, output_dims::Array{Int64}, θ::Union{Array{Float64}, PyObject}; activation::Union{Function,String, Nothing} = "tanh") activation = get_activation_function(activation) x = convert_to_tensor(x) θ = convert_to_tensor(θ) flag = false if length(size(x))==1 x = reshape(x, length(x), 1) flag = true end offset = 0 net = x output_dims = [size(x,2); output_dims] for i = 1:length(output_dims)-2 m = output_dims[i] n = output_dims[i+1] net = net * reshape(θ[offset+1:offset+m*n], (m, n)) + θ[offset+m*n+1:offset+m*n+n] net = activation(net) offset += m*n+n end m = output_dims[end-1] n = output_dims[end] net = net * reshape(θ[offset+1:offset+m*n], (m, n)) + θ[offset+m*n+1:offset+m*n+n] offset += m*n+n if offset!=length(θ) error("ADCME: the weights and configuration does not match. Required $offset but given $(length(θ)).") end if flag && (size(net,2)==1) net = squeeze(net) end return net end """ ae(x::Union{Array{Float64}, PyObject}, output_dims::Array{Int64}, θ::Union{Array{Array{Float64}}, Array{PyObject}}; activation::Union{Function,String} = "tanh") Alias: `fc`, `ae` Constructs a neural network with given weights and biases `θ` # Example ```julia x = constant(rand(10,30)) θ = ae_init([30, 20, 20, 5]) y = ae(x, [20, 20, 5], θ) # 10×5 ``` """ function ae(x::Union{Array{Float64}, PyObject}, output_dims::Array{Int64}, θ::Union{Array{Array{Float64}}, Array{PyObject}}; activation::Union{Function,String} = "tanh") if isa(θ, Array{Array{Float64}}) val = [] for t in θ push!(val, θ'[:]) end val = vcat(val...) else val = [] for t in θ push!(val, reshape(θ, (-1,))) end vcat(val...) end ae(x, output_dims, θ, activation=activation) end @doc raw""" ae_init(output_dims::Array{Int64}; T::Type=Float64, method::String="xavier") fc_init(output_dims::Array{Int64}) Return the initial weights and bias values by TensorFlow as a vector. The neural network architecture is ```math o_1 (\text{Input layer}) \rightarrow o_2 \rightarrow \ldots \rightarrow o_n (\text{Output layer}) ``` Three types of random initializers are provided - `xavier` (default). It is useful for `tanh` fully connected neural network. ``` W^l_i \sim \mathcal{N}\left(0, \sqrt{\frac{1}{n_{l-1}}}\right) ``` - `xavier_avg`. A variant of `xavier` ```math W^l_i \sim \mathcal{N}\left(0, \sqrt{\frac{2}{n_l + n_{l-1}}}\right) ``` - `he`. This is the activation aware initialization of weights and helps mitigate the problem of vanishing/exploding gradients. $$W^l_i \sim \mathcal{N}\left(0, \sqrt{\frac{2}{n_{l-1}}}\right)$$ # Example ```julia x = constant(rand(10,30)) θ = fc_init([30, 20, 20, 5]) y = fc(x, [20, 20, 5], θ) # 10×5 ``` """ function ae_init(output_dims::Array{Int64}; T::Type=Float64, method::String="xavier") N = ae_num(output_dims) W = zeros(T, N) offset = 0 for i = 1:length(output_dims)-1 m = output_dims[i] n = output_dims[i+1] if method=="xavier" W[offset+1:offset+m*n] = randn(T, m*n) * T(sqrt(1/m)) elseif method=="xavier_normal" W[offset+1:offset+m*n] = randn(T, m*n) * T(sqrt(2/(n+m))) elseif method=="xavier_uniform" W[offset+1:offset+m*n] = rand(T, m*n) * T(sqrt(6/(n+m))) elseif method=="he" W[offset+1:offset+m*n] = randn(T, m*n) * T(sqrt(2/(m))) else error("Method $method not understood") end offset += m*n+n end W end """ ae_num(output_dims::Array{Int64}) fc_num(output_dims::Array{Int64}) Estimates the number of weights and biases for the neural network. Note the first dimension should be the feature dimension (this is different from [`ae`](@ref) since in `ae` the feature dimension can be inferred), and the last dimension should be the output dimension. # Example ```julia x = constant(rand(10,30)) θ = ae_init([30, 20, 20, 5]) @assert ae_num([30, 20, 20, 5])==length(θ) y = ae(x, [20, 20, 5], θ) ``` """ function ae_num(output_dims::Array{Int64}) offset = 0 for i = 1:length(output_dims)-2 m = output_dims[i] n = output_dims[i+1] offset += m*n+n end m = output_dims[end-1] n = output_dims[end] offset += m*n+n return offset end function _ae_to_code(d::Dict, scope::String; activation::String) i = 0 nn_code = "" while true si = i==0 ? "" : "_$i" Wkey = "$(scope)backslashfully_connected$(si)backslashweightscolon0" bkey = "$(scope)backslashfully_connected$(si)backslashbiasescolon0" if haskey(d, Wkey) if i!=0 nn_code *= " isa(net, Array) ? (net = $activation.(net)) : (net=$activation(net))\n" nn_code *= " #-------------------------------------------------------------------\n" end nn_code *= " W$i = aedict$scope[\"$Wkey\"]\n b$i = aedict$scope[\"$bkey\"];\n" nn_code *= " isa(net, Array) ? (net = net * W$i .+ b$i') : (net = net *W$i + b$i)\n" i += 1 else break end end nn_code = """ global nn$scope\n function nn$scope(net) $(nn_code) return net\n end """ nn_code end """ ae_to_code(file::String, scope::String; activation::String = "tanh") Return the code string from the feed-forward neural network data in `file`. Usually we can immediately evaluate the code string into Julia session by ```julia eval(Meta.parse(s)) ``` If `activation` is not specified, `tanh` is the default. """ function ae_to_code(file::String, scope::String = "default"; activation::String = "tanh") d = matread(file) s = "let aedict$scope = matread(\"$file\")\n"*_ae_to_code(d, scope; activation = activation)*"\nend\n" return s end fc_to_code = ae_to_code # tensorflow layers from contrib for (op, tfop) in [(:avg_pool2d, :avg_pool2d), (:avg_pool3d, :avg_pool3d), (:flatten, :flatten), (:max_pool2d, :max_pool2d), (:max_pool3d, :max_pool3d)] @eval begin export $op $op(args...; kwargs...) = tf.contrib.layers.$tfop(args...; kwargs...) end end for (op, tfop) in [(:conv1d, :conv1d), (:conv2d, :conv2d), (:conv2d_in_plane, :conv2d_in_plane), (:conv2d_transpose, :conv2d_transpose), (:conv3d, :conv3d), (:conv3d_transpose, :conv3d_transpose)] @eval begin export $op function $op(args...;activation = nothing, bias=false, kwargs...) activation = get_activation_function(activation) if bias biases_initializer = tf.zeros_initializer() else biases_initializer = nothing end tf.contrib.layers.$tfop(args...; activation_fn = activation, biases_initializer=biases_initializer, kwargs...) end end end """ dense(inputs::Union{PyObject, Array{<:Real}}, units::Int64, args...; activation::Union{String, Function} = nothing, kwargs...) Creates a fully connected layer with the activation function specified by `activation` """ function dense(inputs::Union{PyObject, Array{<:Real}}, units::Int64, args...; activation::Union{String, Function, Nothing} = nothing, kwargs...) inputs = constant(inputs) activation = get_activation_function(activation) tf.contrib.layers.fully_connected(inputs, units, args...; activation_fn=activation, kwargs...) end """ bn(args...;center = true, scale=true, kwargs...) `bn` accepts a keyword parameter `is_training`. # Example ```julia bn(inputs, name="batch_norm", is_training=true) ``` !!! note `bn` should be used with `control_dependency` ```julia update_ops = get_collection(UPDATE_OPS) control_dependencies(update_ops) do global train_step = AdamOptimizer().minimize(loss) end ``` """ function bn(args...;center = true, scale=true, kwargs...) @warn """ `bn` should be used with `control_dependency` ```julia update_ops = get_collection(UPDATE_OPS) control_dependencies(update_ops) do global train_step = AdamOptimizer().minimize(loss) end ``` """ maxlog=1 kwargs = Dict{Any, Any}(kwargs) if :is_training in keys(kwargs) kwargs[:training] = kwargs[:is_training] delete!(kwargs, :is_training) end if :scope in keys(kwargs) kwargs[:name] = kwargs[:scope] delete!(kwargs, :scope) end tf.layers.batch_normalization(args...;center = center, scale=scale, kwargs...) end sparse_softmax_cross_entropy_with_logits(args...;kwargs...) = tf.nn.sparse_softmax_cross_entropy_with_logits(args...;kwargs...) export group_conv2d function group_conv2d(inputs::PyObject, filters::Int64, args...; groups = 1, scope=scope, kwargs...) if groups==1 return conv2d(inputs, filters, args...;scope=scope, kwargs...) else dims = size(inputs) if mod(dims[end], groups)!=0 || mod(filters, groups)!=0 error("channels and outputs must be the multiples of `groups`") end n = div(filters, groups) in_ = Array{PyObject}(undef, groups) out_ = Array{PyObject}(undef, groups) for i = 1:groups py""" temp = $inputs[:,:,:,$((i-1)*n):$(i*n)] """ in_[i] = py"temp" out_[i] = conv2d(in_[i], n, args...;scope=scope*"_group$i", kwargs...) end out = concat(out_, dims=4) return out end end export separable_conv2d function separable_conv2d(inputs, num_outputs, args...; activation=nothing, bias=false, kwargs...) activation = get_activation_function(activation) if bias biases_initializer = tf.zeros_initializer() else biases_initializer = nothing end tf.contrib.layers.separable_conv2d(inputs, num_outputs, args...;activation_fn = activation, biases_initializer=biases_initializer, kwargs...) end export depthwise_conv2d function depthwise_conv2d(input, num_outputs, args...; kernel_size = 3, channel_multiplier = 1, stride = 1, padding="SAME", bias=false, scope="default", reuse=AUTO_REUSE, kwargs...) local res, strides if isa(kernel_size, Int64) kernel_size = (3,3) end if isa(stride, Int64) strides = (1, stride, stride, 1) end variable_scope(scope, reuse=reuse) do filter = get_variable("dconv2d", shape=[kernel_size[1], kernel_size[2], size(input,4), channel_multiplier], initializer=tf.contrib.layers.xavier_initializer()) res = tf.nn.depthwise_conv2d(input, filter, strides, padding, args...; kwargs...) if bias res = tf.contrib.layers.bias_add(res, scope=scope, reuse=AUTO_REUSE) end end return res end """ $(@doc ae) """ fc = ae """ $(@doc ae_num) """ fc_num = ae_num """ $(@doc ae_init) """ fc_init = ae_init #------------------------------------------------------------------------------------------ export dropout """ dropout(x::Union{PyObject, Real, Array{<:Real}}, rate::Union{Real, PyObject}, training::Union{PyObject,Bool} = true; kwargs...) Randomly drops out entries in `x` with a rate of `rate`. """ function dropout(x::Union{PyObject, Real, Array{<:Real}}, rate::Union{Real, PyObject}, training::Union{PyObject,Bool, Nothing} = nothing ; kwargs...) x = constant(x) if isnothing(training) training = options.training.training else training = constant(training) end tf.keras.layers.Dropout(rate, kwargs...)(x, training) end export BatchNormalization mutable struct BatchNormalization dims::Int64 o::PyObject end """ BatchNormalization(dims::Int64=2; kwargs...) Creates a batch normalization layer. # Example ```julia b = BatchNormalization(2) x = rand(10,2) training = placeholder(true) y = b(x, training) run(sess, y) ``` """ function BatchNormalization(dims::Int64=-1; kwargs...) local o if dims>=1 o = tf.keras.layers.BatchNormalization(dims-1, kwargs...) else o = tf.keras.layers.BatchNormalization(dims, kwargs...) end BatchNormalization(dims, o) end function Base.:show(io::IO, b::BatchNormalization) print("<BatchNormalization normalization_dim=$(b.dims)>") end function (o::BatchNormalization)(x, training=ADCME.options.training.training) flag = false if get_dtype(x)==Float64 x = cast(x, Float32) flag = true end out = o.o(x, training) if flag out = cast(Float64, out) end return out end export Dense, Conv1D, Conv2D, Conv3D, Conv2DTranspose mutable struct Dense hidden_dim::Int64 activation::Union{String, Function} o::PyObject end """ Dense(units::Int64, activation::Union{String, Function, Nothing} = nothing, args...;kwargs...) Creates a callable dense neural network. """ function Dense(units::Int64, activation::Union{String, Function, Nothing} = nothing, args...;kwargs...) activation = get_activation_function(activation) o = tf.keras.layers.Dense(units, activation, args...;kwargs...) Dense(units, activation, o) end function Base.:show(io::IO, o::Dense) print("<Fully connected neural network with $(o.hidden_dim) hidden units and activation function \"$(o.activation)\">") end (o::Dense)(x) = o.o(x) mutable struct Conv1D filters kernel_size strides activation o::PyObject end """ Conv1D(filters, kernel_size, strides, activation, args...;kwargs...) ```julia c = Conv1D(32, 3, 1, "relu") x = rand(100, 6, 128) # 128-length vectors with 6 timesteps ("channels") y = c(x) # shape=(100, 4, 32) ``` """ function Conv1D(filters, kernel_size, strides=1, activation=nothing, args...;kwargs...) activation = get_activation_function(activation) o = tf.keras.layers.Conv1D(filters, kernel_size, strides,args...; activation = activation, kwargs...) Conv1D(filters, kernel_size, strides, activation, o) end function Base.:show(io::IO, o::Conv1D) print("<Conv1D filters=$(o.filters) kernel_size=$(o.kernel_size) strides=$(o.strides) activation=$(o.activation)>") end function (o::Conv1D)(x::Union{PyObject, Array{<:Real,3}}) x = constant(x) @assert length(size(x))==3 o.o(x) end mutable struct Conv2D filters kernel_size strides activation o::PyObject end """ Conv2D(filters, kernel_size, strides, activation, args...;kwargs...) The arrangement is (samples, rows, cols, channels) (data_format='channels_last') ```julia Conv2D(32, 3, 1, "relu") ``` """ function Conv2D(filters, kernel_size, strides=1, activation=nothing, args...;kwargs...) activation = get_activation_function(activation) o = tf.keras.layers.Conv2D(filters, kernel_size, strides,args...; activation = activation, kwargs...) Conv2D(filters, kernel_size, strides, activation, o) end function Base.:show(io::IO, o::Conv2D) print("<Conv2D filters=$(o.filters) kernel_size=$(o.kernel_size) strides=$(o.strides) activation=$(o.activation)>") end function (o::Conv2D)(x::Union{PyObject, Array{<:Real,4}}) x = constant(x) @assert length(size(x))==4 o.o(x) end mutable struct Conv2DTranspose filters kernel_size strides activation o::PyObject end function Conv2DTranspose(filters, kernel_size, strides=1, activation=nothing, args...;kwargs...) activation = get_activation_function(activation) o = tf.keras.layers.Conv2DTranspose( filters, kernel_size, strides=strides; activation = activation, kwargs... ) Conv2DTranspose(filters, kernel_size, strides, activation, o) end function (o::Conv2DTranspose)(x::Union{PyObject, Array{<:Real,4}}) x = constant(x) @assert length(size(x))==4 o.o(x) end mutable struct Conv3D filters kernel_size strides activation o::PyObject end """ Conv3D(filters, kernel_size, strides, activation, args...;kwargs...) The arrangement is (samples, rows, cols, channels) (data_format='channels_last') ```julia c = Conv3D(32, 3, 1, "relu") x = constant(rand(100, 10, 10, 10, 16)) y = c(x) # shape=(100, 8, 8, 8, 32) ``` """ function Conv3D(filters, kernel_size, strides=1, activation=nothing, args...;kwargs...) activation = get_activation_function(activation) o = tf.keras.layers.Conv3D(filters, kernel_size, strides,args...; activation = activation, kwargs...) Conv3D(filters, kernel_size, strides, activation, o) end function Base.:show(io::IO, o::Conv3D) print("<Conv3D filters=$(o.filters) kernel_size=$(o.kernel_size) strides=$(o.strides) activation=$(o.activation)>") end function (o::Conv3D)(x::Union{PyObject, Array{<:Real,5}}) x = constant(x) @assert length(size(x))==5 o.o(x) end #------------------------------------------------------------------------------------------ # resnet, adapted from https://github.com/bayesiains/nsf/blob/master/nn/resnet.py mutable struct ResnetBlock use_batch_norm::Bool activation::Union{String,Function} linear_layers::Array{Dense} bn_layers::Array{BatchNormalization} dropout_probability::Float64 end function ResnetBlock(features::Int64; dropout_probability::Float64=0., use_batch_norm::Bool, activation::String="relu") activation = get_activation_function(activation) bn_layers = [] if use_batch_norm bn_layers = [ BatchNormalization(), BatchNormalization() ] end linear_layers = [ Dense(features, nothing) Dense(features, nothing) ] ResnetBlock(use_batch_norm, activation, linear_layers, bn_layers, dropout_probability) end function (res::ResnetBlock)(input) x = input if res.use_batch_norm x = res.bn_layers[1](x) end x = res.activation(x) x = res.linear_layers[1](x) if res.use_batch_norm x = res.bn_layers[2](x) end x = res.activation(x) x = dropout(x, res.dropout_probability, options.training.training) x = res.linear_layers[2](x) return x + input end mutable struct Resnet1D initial_layer::Dense blocks::Array{ResnetBlock} final_layer::Dense end """ Resnet1D(out_features::Int64, hidden_features::Int64; num_blocks::Int64=2, activation::Union{String, Function, Nothing} = "relu", dropout_probability::Float64 = 0.0, use_batch_norm::Bool = false, name::Union{String, Missing} = missing) Creates a 1D residual network. If `name` is not missing, `Resnet1D` does not create a new entity. # Example ```julia resnet = Resnet1D(20) x = rand(1000,10) y = resnet(x) ``` # Example: Digit recognition ``` using MLDatasets using ADCME # load data train_x, train_y = MNIST.traindata() train_x = reshape(Float64.(train_x), :, size(train_x,3))'|>Array test_x, test_y = MNIST.testdata() test_x = reshape(Float64.(test_x), :, size(test_x,3))'|>Array # construct loss function ADCME.options.training.training = placeholder(true) x = placeholder(rand(64, 784)) l = placeholder(rand(Int64, 64)) resnet = Resnet1D(10, num_blocks=10) y = resnet(x) loss = mean(sparse_softmax_cross_entropy_with_logits(labels=l, logits=y)) # train the neural network opt = AdamOptimizer().minimize(loss) sess = Session(); init(sess) for i = 1:10000 idx = rand(1:60000, 64) _, loss_ = run(sess, [opt, loss], feed_dict=Dict(l=>train_y[idx], x=>train_x[idx,:])) @info i, loss_ end # test for i = 1:10 idx = rand(1:10000,100) y0 = resnet(test_x[idx,:]) y0 = run(sess, y0, ADCME.options.training.training=>false) pred = [x[2]-1 for x in argmax(y0, dims=2)] @info "Accuracy = ", sum(pred .== test_y[idx])/100 end ``` ![](https://github.com/ADCMEMarket/ADCMEImages/tree/master/ADCME/assets/resnet.png?raw=true) """ function Resnet1D(out_features::Int64, hidden_features::Int64 = 20; num_blocks::Int64=2, activation::Union{String, Function, Nothing} = "relu", dropout_probability::Float64 = 0.0, use_batch_norm::Bool = false, name::Union{String, Missing} = missing) if haskey(ADCME.STORAGE, name) @info "Reusing $name..." return ADCME.STORAGE[name] end initial_layer = Dense(hidden_features) blocks = ResnetBlock[] for i = 1:num_blocks push!(blocks, ResnetBlock( hidden_features, dropout_probability = dropout_probability, use_batch_norm = use_batch_norm )) end final_layer = Dense(out_features) if ismissing(name) name = "Resnet1D_"*randstring(10) end res = Resnet1D(initial_layer, blocks, final_layer) ADCME.STORAGE[name] = res return res end function (res::Resnet1D)(x) x = res.initial_layer(x) for b in res.blocks x = b(x) end x = res.final_layer(x) x end function Base.:show(io::IO, res::Resnet1D) println("( Input )") println("\t↓") show(io, res.initial_layer) println("\n") for i = 1:length(res.blocks) show(io, res.blocks[i]) println("\n") println("\t↓") end show(io, res.final_layer) println("\n( Output )") end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
18484
export mpi_bcast, mpi_init, mpi_recv, mpi_send, mpi_sendrecv, mpi_sum, mpi_finalize, mpi_initialized, mpi_halo_exchange, mpi_halo_exchange2, mpi_finalized, mpi_rank, mpi_size, mpi_sync!, mpi_gather, mpi_SparseTensor, require_mpi """ mpi_init() Initialized the MPI session. `mpi_init` must be called before any `run(sess, ...)`. """ function mpi_init() if mpi_initialized() @warn "MPI has already been initialized" return end @eval ccall((:mpi_init, $LIBADCME), Cvoid, ()) end """ mpi_finalize() Finalize the MPI call. """ function mpi_finalize() mpi_check() @eval ccall((:mpi_finalize, $LIBADCME), Cvoid, ()) end """ mpi_rank() Returns the rank of current MPI process (rank 0 based). """ function mpi_rank() mpi_check() out = @eval ccall((:mpi_rank, $LIBADCME), Cint, ()) Int64(out) end """ mpi_size() Returns the size of MPI world. """ function mpi_size() mpi_check() @eval ccall((:mpi_size, $LIBADCME), Cint, ()) end """ require_mpi() Throws an error if `mpi_init()` has not been called. """ function require_mpi() if !mpi_initialized() error("MPI has not been initialized. Run `mpi_init()` to initialize MPI first.") end end """ mpi_finalized() Returns a boolean indicating whether the current MPI session is finalized. """ function mpi_finalized() require_mpi() Bool(@eval ccall((:mpi_finalized, $LIBADCME), Cuchar, ())) end """ mpi_initialized() Returns a boolean indicating whether the current MPI session is initialized. """ function mpi_initialized() Bool(@eval ccall((:mpi_initialized, $LIBADCME), Cuchar, ())) end """ mpi_sync!(message::Array{Int64,1}, root::Int64 = 0) mpi_sync!(message::Array{Float64,1}, root::Int64 = 0) Sync `message` across all MPI processors. """ function mpi_sync!(message::Array{Int64,1}, root::Int64 = 0) mpi_check() @eval ccall((:mpi_sync, $LIBADCME), Cvoid, (Ptr{Clonglong}, Cint, Cint), $message, Int32(length($message)), Int32($root)) end function mpi_sync!(message::Array{Float64,1}, root::Int64 = 0) mpi_check() @eval ccall((:mpi_sync_double, $LIBADCME), Cvoid, (Ptr{Cdouble}, Cint, Cint), $message, Int32(length($message)), Int32($root)) end function mpi_check() require_mpi() if mpi_finalized() error("MPI has been finalized.") end end function _mpi_sum(a,root::Int64=0) mpi_check() mpisum_ = load_system_op("mpisum") a,root = convert_to_tensor(Any[a,root], [Float64,Int64]) out = mpisum_(a,root) if !isnothing(length(a)) return set_shape(out, (length(a),)) else return out end end """ mpi_sum(a::Union{Array{Float64}, Float64, PyObject}, root::Int64 = 0) Sum `a` on the MPI processor `root`. """ function mpi_sum(a::Union{Array{Float64}, Float64, PyObject}, root::Int64 = 0) a = convert_to_tensor(a, dtype = Float64) if length(size(a))==0 a = reshape(a, (1,)) out = _mpi_sum(a, root) return squeeze(out) elseif length(size(a))==1 return _mpi_sum(a, root) elseif nothing in size(a) error("The shape of 1st input $(size(a)) contains nothing. mpi_sum is not able to determine the output shape.") else s = size(a) a = reshape(a, (-1,)) out = _mpi_sum(a, root) return reshape(out, s) end end function _mpi_bcast(a,root::Int64=0) mpi_check() mpibcast_ = load_system_op("mpibcast") a,root = convert_to_tensor(Any[a,root], [Float64,Int64]) out = mpibcast_(a,root) if !isnothing(length(a)) return set_shape(out, (length(a),)) else return out end end """ mpi_bcast(a::Union{Array{Float64}, Float64, PyObject}, root::Int64 = 0) Broadcast `a` from processor `root` to all other processors. """ function mpi_bcast(a::Union{Array{Float64}, Float64, PyObject}, root::Int64 = 0) a = convert_to_tensor(a, dtype = Float64) if length(size(a))==0 a = reshape(a, (1,)) out = _mpi_bcast(a, root) return squeeze(out) elseif length(size(a))==1 return _mpi_bcast(a, root) elseif nothing in size(a) error("The shape of 1st input $(size(a)) contains nothing. mpi_bcast is not able to determine the output shape.") else s = size(a) a = reshape(a, (-1,)) out = _mpi_bcast(a, root) return reshape(out, s) end end function _mpi_send(a,dest::Int64,tag::Int64=0) mpisend_ = load_system_op("mpisend") a,dest,tag = convert_to_tensor(Any[a,dest,tag], [Float64,Int64,Int64]) out = mpisend_(a,dest,tag) if !isnothing(length(a)) return set_shape(out, (length(a),)) else return out end end """ mpi_send(a::Union{Array{Float64}, Float64, PyObject}, dest::Int64,root::Int64 = 0) Sends `a` to processor `dest`. `a` itself is returned so that the send action can be added to the computational graph. """ function mpi_send(a::Union{Array{Float64}, Float64, PyObject}, dest::Int64,root::Int64 = 0) a = convert_to_tensor(a, dtype = Float64) if length(size(a))==0 a = reshape(a, (1,)) out = _mpi_send(a,dest, root) return squeeze(out) elseif length(size(a))==1 return _mpi_send(a, dest, root) elseif nothing in size(a) error("The shape of 1st input $(size(a)) contains nothing. mpi_send is not able to determine the output shape.") else s = size(a) a = reshape(a, (-1,)) out = _mpi_send(a, dest, root) return reshape(out, s) end end function _mpi_recv(a,src::Int64,tag::Int64=0) mpirecv_ = load_system_op("mpirecv") a,src,tag = convert_to_tensor(Any[a,src,tag], [Float64,Int64,Int64]) mpirecv_(a,src,tag) end """ mpi_recv(a::Union{Array{Float64}, Float64, PyObject}, src::Int64, tag::Int64 = 0) Receives an array from processor `src`. `mpi_recv` requires an input for gradient backpropagation. Typically we can write ```julia r = mpi_rank() a = constant(Float64(r)) if r==1 a = mpi_send(a, 0) end if r==0 a = mpi_recv(a, 1) end ``` Then `a=1` on both processor 0 and processor 1. """ function mpi_recv(a::Union{Array{Float64}, Float64, PyObject}, src::Int64, tag::Int64 = 0) a = convert_to_tensor(a, dtype = Float64) if length(size(a))==0 a = reshape(a, (1,)) out = _mpi_recv(a, src, tag) return squeeze(out) elseif length(size(a))==1 return _mpi_recv(a, src, tag) elseif nothing in size(a) error("The shape of 1st input $(size(a)) contains nothing. mpi_recv is not able to determine the output shape.") else s = size(a) a = reshape(a, (-1,)) out = _mpi_recv(a, src, tag) return reshape(out, s) end end """ mpi_sendrecv(a::Union{Array{Float64}, Float64, PyObject}, dest::Int64, src::Int64, tag::Int64=0) A convenient wrapper for `mpi_send` followed by `mpi_recv`. """ function mpi_sendrecv(a::Union{Array{Float64}, Float64, PyObject}, dest::Int64, src::Int64, tag::Int64=0) r = mpi_rank() @assert src != dest if r==src a = mpi_send(a, dest, tag) elseif r==dest a = mpi_recv(a, src, tag) end a end """ mpi_gather(u::Union{Array{Float64, 1}, PyObject}, deps::Union{Missing, PyObject} = missing) Gathers all the vectors from different processes to the root process. The function returns a long vector which concatenates of local vectors in the order of process IDs. """ function mpi_gather(u::Union{Array{Float64, 1}, PyObject}, deps::Union{Missing, PyObject} = missing) mpigather_ = load_system_op("mpigather") u = convert_to_tensor(Any[u], [Float64]); u = u[1] out = mpigather_(u) set_shape(out, (mpi_size()*length(u))) end function load_plugin_MPITensor() if !isfile("$(ADCME.LIBDIR)/libHYPRE.so") scriptpath = joinpath(@__DIR__, "..", "deps", "install_hypre.jl") include(scriptpath) end if Sys.isapple() oplibpath = joinpath(@__DIR__, "..", "deps", "Plugin", "MPITensor", "build", "libMPITensor.dylib") elseif Sys.iswindows() oplibpath = joinpath(@__DIR__, "..", "deps", "Plugin", "MPITensor", "build", "MPITensor.dll") else oplibpath = joinpath(@__DIR__, "..", "deps", "Plugin", "MPITensor", "build", "libMPITensor.so") end if !isfile(oplibpath) PWD = pwd() cd(joinpath(@__DIR__, "..", "deps", "Plugin", "MPITensor")) if !isdir("build") mkdir("build") end cd("build") cmake() make() cd(PWD) end oplibpath end function load_plugin_MPIHaloExchange(reach::Int64=1) if reach==1 DIR = joinpath(@__DIR__, "..", "deps", "Plugin", "MPIHaloExchange") LIB = "HaloExchangeTwoD" elseif reach==2 DIR = joinpath(@__DIR__, "..", "deps", "Plugin", "MPIHaloExchange2") LIB = "HaloExchangeNeighborTwo" end if Sys.isapple() oplibpath = joinpath(DIR, "build", "lib$LIB.dylib") elseif Sys.iswindows() oplibpath = joinpath(DIR, "build", "$LIB.dll") else oplibpath = joinpath(DIR, "build", "lib$LIB.so") end if !isfile(oplibpath) PWD = pwd() cd(DIR) if !isdir("build") mkdir("build") end cd("build") cmake() make() cd(PWD) end oplibpath end function mpi_halo_exchange_(oplibpath, u,fill_value,m,n, tag, deps) halo_exchange_two_d_ = load_op_and_grad(oplibpath,"halo_exchange_two_d") u,fill_value,m,n,tag = convert_to_tensor(Any[u,fill_value,m,n,tag], [Float64,Float64,Int64,Int64,Int64]) deps = coalesce(deps, u[1,1]) out = halo_exchange_two_d_(u,fill_value,m,n,tag, deps) set_shape(out, (size(u,1)+2, size(u,2)+2)) end function mpi_halo_exchange2_(oplibpath, u,fill_value,m,n,tag,w) halo_exchange_neighbor_two_ = load_op_and_grad(oplibpath,"halo_exchange_neighbor_two") w = coalesce(w, u[1,1]) u,fill_value,m,n,tag,w = convert_to_tensor(Any[u,fill_value,m,n,tag,w], [Float64,Float64,Int64,Int64,Int64,Float64]) out = halo_exchange_neighbor_two_(u,fill_value,m,n,tag,w) set_shape(out, (size(u,1)+4, size(u,2)+4)) end function mpi_create_matrix(oplibpath, indices,values,ilower,iupper) mpi_create_matrix_ = load_op_and_grad(oplibpath,"mpi_create_matrix", multiple=true) indices,values,ilower,iupper = convert_to_tensor(Any[indices,values,ilower,iupper], [Int64,Float64,Int64,Int64]) mpi_create_matrix_(indices,values,ilower,iupper) end function mpi_get_matrix(oplibpath, rows,ncols,cols,ilower,iupper,values, N) mpi_get_matrix_ = load_op_and_grad(oplibpath,"mpi_get_matrix", multiple=true) rows,ncols,cols,ilower_,iupper_,values = convert_to_tensor(Any[rows,ncols,cols,ilower,iupper,values], [Int32,Int32,Int32,Int64,Int64,Float64]) indices, vals = mpi_get_matrix_(rows,ncols,cols,ilower_,iupper_,values) SparseTensor(tf.SparseTensor(indices, vals, (iupper-ilower+1, N)), false) end function mpi_tensor_solve(oplibpath, rows,ncols,cols,values,rhs,ilower,iupper,solver,printlevel) mpi_tensor_solve_ = load_op_and_grad(oplibpath,"mpi_tensor_solve") rows,ncols,cols,values,rhs,ilower,iupper,printlevel = convert_to_tensor(Any[rows,ncols,cols,values,rhs,ilower,iupper,printlevel], [Int32,Int32,Int32,Float64,Float64,Int64,Int64,Int64]) mpi_tensor_solve_(rows,ncols,cols,values,rhs,ilower,iupper,solver,printlevel) end @doc raw""" mutable struct mpi_SparseTensor rows::PyObject ncols::PyObject cols::PyObject values::PyObject ilower::Int64 iupper::Int64 N::Int64 oplibpath::String end A structure to hold local data of a sparse matrix. The global matrix is assumed to be a $M\times N$ square matrix. The current processor owns rows from `ilower` to `iupper` (inclusive). The data is specified by - `rows`: an array indicating the rows that contain nonzero values. Note `rows ≥ ilower`. - `ncols`: an array indicating the number of nonzero values for each row in `rows`. - `cols`: the column indices for nonzero values. Its length is $\sum_{i=1}^{\mathrm{ncols}} \mathrm{ncols}_i$ - `vals`: the nonzero values corresponding to each column index in `cols` - `oplibpath`: the backend library (returned by `ADCME.load_plugin_MPITensor`) All data structure are 0-based. Note if we work with a linear solver, $M=N$. For example, consider the sparse matrix ``` [ 1 0 0 1 ] [ 0 1 2 1 ] ``` We have ```julia rows = Int32[0;1] ncols = Int32[2;3] cols = Int32[0;3;1,2,3] values = [1.;1.;1.;2.;1.] iupper = ilower + 2 ``` """ mutable struct mpi_SparseTensor rows::PyObject ncols::PyObject cols::PyObject values::PyObject ilower::Int64 iupper::Int64 N::Int64 oplibpath::String end function Base.:show(io::IO, sp::mpi_SparseTensor) if isnothing(length(sp.values)) len = "?" else len = length(sp.values) end print("mpi_SparseTensor($(sp.iupper - sp.ilower + 1), $(sp.N)), range = [$(sp.ilower), $(sp.iupper)], nnz = $(len)") end function mpi_SparseTensor(indices::PyObject, values::PyObject, ilower::Int64, iupper::Int64, N::Int64) @assert ilower >=0 @assert ilower <= iupper @assert iupper <= N oplibpath = load_plugin_MPITensor() rows, ncols, cols, out = mpi_create_matrix(oplibpath, indices,values,ilower,iupper) mpi_SparseTensor(rows, ncols, cols, out, ilower, iupper, N, oplibpath) end @doc raw""" mpi_SparseTensor(rows::Union{Array{Int32,1}, PyObject}, ncols::Union{Array{Int32,1}, PyObject}, cols::Union{Array{Int32,1}, PyObject}, vals::Union{Array{Float64,1}, PyObject}, ilower::Int64, iupper::Int64, N::Int64) Create a $N\times N$ distributed sparse tensor `A` for the current MPI processor. The current MPI processor owns rows with indices `[ilower, iupper]`. The submatrix is specified using the CSR format. - `rows`: an array indicating the rows that contain nonzero values. Note `rows ≥ ilower`. - `ncols`: an array indicating the number of nonzero values for each row in `rows`. - `cols`: the column indices for nonzero values. Its length is $\sum_{i=1}^{\mathrm{ncols}} \mathrm{ncols}_i$ - `vals`: the nonzero values corresponding to each column index in `cols` Note that by default the indices are zero-based. """ function mpi_SparseTensor(rows::Union{Array{Int32,1}, PyObject}, ncols::Union{Array{Int32,1}, PyObject}, cols::Union{Array{Int32,1}, PyObject}, vals::Union{Array{Float64,1}, PyObject}, ilower::Int64, iupper::Int64, N::Int64) @assert ilower >=0 @assert ilower <= iupper @assert iupper <= N oplibpath = load_plugin_MPITensor() rows, ncols, cols, vals = convert_to_tensor( [rows, ncols, cols, vals], [Int32, Int32, Int32, Float64] ) mpi_SparseTensor(rows, ncols, cols, vals, ilower, iupper, N, oplibpath) end """ mpi_SparseTensor(sp::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}, ilower::Union{Int64, Missing} = missing, iupper::Union{Int64, Missing} = missing) Constructing `mpi_SparseTensor` from a `SparseTensor` or a sparse Array. """ function mpi_SparseTensor(sp::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}, ilower::Union{Int64, Missing} = missing, iupper::Union{Int64, Missing} = missing) sp = constant(sp) ilower = coalesce(ilower, 0) iupper = coalesce(iupper, size(sp, 1)-1) N = size(sp, 2) mpi_SparseTensor(sp.o.indices, sp.o.values, ilower, iupper, N) end function LinearAlgebra.:\(sp::mpi_SparseTensor, b::Union{Array{Float64, 1}, PyObject}) b = constant(b) @assert length(b)==sp.iupper - sp.ilower + 1 out = mpi_tensor_solve(sp.oplibpath, sp.rows,sp.ncols, sp.cols,sp.values,b, sp.ilower,sp.iupper,options.mpi.solver, options.mpi.printlevel) set_shape(out, (sp.iupper-sp.ilower+1,)) end function SparseTensor(sp::mpi_SparseTensor) mpi_get_matrix(sp.oplibpath, sp.rows,sp.ncols,sp.cols,sp.ilower,sp.iupper,sp.values, sp.N) end function Base.:run(sess::PyObject, sp::mpi_SparseTensor) run(sess, SparseTensor(sp)) end @doc raw""" mpi_halo_exchange(u::Union{Array{Float64, 2}, PyObject},m::Int64,n::Int64; deps::Union{Missing, PyObject} = missing, fill_value::Float64 = 0.0, tag::Union{PyObject, Int64} = 0) Perform Halo exchnage on `u` (a $k \times k$ matrix). The output has a shape $(k+2)\times (k+2)$ - `fill_value`: value used for the boundaries - `tag`: message tag - `deps`: a **scalar** tensor; it can be used to serialize the MPI calls """ function mpi_halo_exchange(u::Union{Array{Float64, 2}, PyObject},m::Int64,n::Int64; deps::Union{Missing, PyObject} = missing, fill_value::Float64 = 0.0, tag::Union{PyObject, Int64} = 0) @assert size(u,1)==size(u,2) oplibpath = load_plugin_MPIHaloExchange() mpi_halo_exchange_(oplibpath, u, fill_value, m, n, tag, deps) end @doc raw""" mpi_halo_exchange2(u::Union{Array{Float64, 2}, PyObject},m::Int64,n::Int64; deps::Union{Missing, PyObject} = missing, fill_value::Float64 = 0.0, tag::Union{PyObject, Int64} = 0) Similar to [`mpi_halo_exchange`](@ref), but the reach is 2, i.e., for a $N\times N$ matrix $u$, the output will be a $(N+4)\times (N+4)$ matrix. """ function mpi_halo_exchange2(u::Union{Array{Float64, 2}, PyObject},m::Int64,n::Int64; deps::Union{Missing, PyObject} = missing, fill_value::Float64 = 0.0, tag::Union{PyObject, Int64} = 0) @assert size(u,1)==size(u,2) oplibpath = load_plugin_MPIHaloExchange(2) mpi_halo_exchange2_(oplibpath, u, fill_value, m, n, tag, deps) end function mpi_tensor_transpose(oplibpath, row,col,ncol,val,n,rank,nt) require_mpi() mpi_tensor_transpose_ = load_op_and_grad(oplibpath,"mpi_tensor_transpose", multiple=true) row,col,ncol,val,n,rank,nt = convert_to_tensor(Any[row,col,ncol,val,n,rank,nt], [Int32,Int32,Int32,Float64,Int64,Int64,Int64]) indices, vals = mpi_tensor_transpose_(row,col,ncol,val,n,rank,nt) end """ adjoint(A::mpi_SparseTensor) Returns the adjoint of `A`, i.e., `A'`. Each MPI rank owns the same number of rows. """ function Base.:adjoint(A::mpi_SparseTensor) oplibpath = load_plugin_MPITensor() n = A.iupper - A.ilower + 1 indices, vals = mpi_tensor_transpose(oplibpath, A.rows, A.cols, A.ncols, A.values, n, mpi_rank(), A.N) sp = RawSparseTensor(indices, vals, n, A.N) mpi_SparseTensor(sp, A.ilower, A.iupper) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
15215
export ode45, rk4, αscheme, αscheme_time, αscheme_atime, TR_BDF2, ExplicitNewmark function runge_kutta_one_step(f::Function, t::PyObject, y::PyObject, Δt::PyObject, θ::Union{PyObject, Missing}) k1 = Δt*f(t, y, θ) k2 = Δt*f(t+Δt/2, y+k1/2, θ) k3 = Δt*f(t+Δt/2, y+k2/2, θ) k4 = Δt*f(t+Δt, y+k3, θ) y = y + k1/6 + k2/3 + k3/3 + k4/6 end function ode45_one_step(f::Function, t::PyObject, y::PyObject, h::PyObject, θ::Union{PyObject, Missing}) k1 = h * f(t, y, θ); k2 = h * f(t + (1/5)*h, y + (1/5)*k1, θ); k3 = h * f(t + (3/10)*h, y + (3/40)*k1 + (9/40)*k2, θ); k4 = h * f(t + (4/5)*h, y + (44/45)*k1 + (-56/15)*k2 + (32/9)*k3, θ); k5 = h * f(t + (8/9)*h, y + (19372/6561)*k1 + (-25360/2187)*k2 + (64448/6561)*k3 + (-212/729)*k4, θ); k6 = h * f(t + h, y + (9017/3168)*k1 + (-355/33)*k2 + (46732/5247 )*k3 + (49/176)*k4 + (-5103/18656)*k5, θ); k7 = h * f(t + h, y + (35/384)*k1 + (500/1113)*k3 + (125/192)*k4 + (-2187/6784)*k5 + (11/84)*k6, θ); y_new = y + (35/384)*k1 + (500/1113)*k3 + (125/192)*k4 + (-2187/6784)*k5 + (11/84)*k6; end @doc raw""" runge_kutta(f::Function, T::Union{PyObject, Float64}, NT::Union{PyObject,Int64}, y::Union{PyObject, Float64, Array{Float64}}, θ::Union{PyObject, Missing}=missing; method::String="rk4") Solves ```math \frac{dy}{dt} = f(y, t, \theta) ``` with Runge-Kutta method. For example, the default solver, `RK4`, has the following numerical scheme per time step ```math \begin{aligned} k_1 &= \Delta t f(t_n, y_n, \theta)\\ k_2 &= \Delta t f(t_n+\Delta t/2, y_n + k_1/2, \theta)\\ k_3 &= \Delta t f(t_n+\Delta t/2, y_n + k_2/2, \theta)\\ k_4 &= \Delta t f(t_n+\Delta t, y_n + k_3, \theta)\\ y_{n+1} &= y_n + \frac{k_1}{6} +\frac{k_2}{3} +\frac{k_3}{3} +\frac{k_4}{6} \end{aligned} ``` """ function runge_kutta(f::Function, T::Union{PyObject, Float64}, NT::Union{PyObject,Int64}, y::Union{PyObject, Float64, Array{Float64}}, θ::Union{PyObject, Missing}=missing; method::String="rk4") local one_step if lowercase(method)=="rk4" one_step = runge_kutta_one_step elseif lowercase(method)=="rk45" one_step = ode45_one_step else error("Method $method not implemented yet") end y = convert_to_tensor(y) Δt = convert_to_tensor(T/NT) ta = TensorArray(NT+1) # storing y function condition(i, ta) i <= NT+1 end function body(i, ta) y = read(ta, i-1) y_ = one_step(f, (cast(eltype(Δt), i)-1)*Δt, y, Δt, θ) ta = write(ta, i, y_) i+1, ta end ta = write(ta, 1, y) i = constant(2, dtype=Int32) _, out = while_loop(condition, body, [i, ta]) res = stack(out) end @doc raw""" rk4(y::Union{PyObject, Float64, Array{Float64}}, T::Union{PyObject, Float64}, NT::Union{PyObject,Int64}, f::Function, θ::Union{PyObject, Missing}=missing) Solves ```math \frac{dy}{dt} = f(y, t, \theta) ``` with Runge-Kutta (order 4) method. """ rk4(args...;kwargs...) = runge_kutta(args...;method="rk4", kwargs...) @doc raw""" ode45(y::Union{PyObject, Float64, Array{Float64}}, T::Union{PyObject, Float64}, NT::Union{PyObject,Int64}, f::Function, θ::Union{PyObject, Missing}=missing) Solves ```math \frac{dy}{dt} = f(y, t, \theta) ``` with six-stage, fifth-order, Runge-Kutta method. """ ode45(args...;kwargs...) = runge_kutta(args...;method="rk45", kwargs...) @doc raw""" αscheme(M::Union{SparseTensor, SparseMatrixCSC}, C::Union{SparseTensor, SparseMatrixCSC}, K::Union{SparseTensor, SparseMatrixCSC}, Force::Union{Array{Float64}, PyObject}, d0::Union{Array{Float64, 1}, PyObject}, v0::Union{Array{Float64, 1}, PyObject}, a0::Union{Array{Float64, 1}, PyObject}, Δt::Array{Float64}; solve::Union{Missing, Function} = missing, extsolve::Union{Missing, Function} = missing, ρ::Float64 = 1.0) Generalized α-scheme. $$M u_{tt} + C u_{t} + K u = F$$ `Force` must be an array of size `n`×`p`, where `d0`, `v0`, and `a0` have a size `p` `Δt` is an array (variable time step). The generalized α scheme solves the equation by the time stepping ```math \begin{aligned} \bf d_{n+1} &= \bf d_n + h\bf v_n + h^2 \left(\left(\frac{1}{2}-\beta_2 \right)\bf a_n + \beta_2 \bf a_{n+1} \right)\\ \bf v_{n+1} &= \bf v_n + h((1-\gamma_2)\bf a_n + \gamma_2 \bf a_{n+1})\\ \bf F(t_{n+1-\alpha_{f_2}}) &= M \bf a _{n+1-\alpha_{m_2}} + C \bf v_{n+1-\alpha_{f_2}} + K \bf{d}_{n+1-\alpha_{f_2}} \end{aligned} ``` where ```math \begin{aligned} \bf d_{n+1-\alpha_{f_2}} &= (1-\alpha_{f_2})\bf d_{n+1} + \alpha_{f_2} \bf d_n\\ \bf v_{n+1-\alpha_{f_2}} &= (1-\alpha_{f_2}) \bf v_{n+1} + \alpha_{f_2} \bf v_n \\ \bf a_{n+1-\alpha_{m_2} } &= (1-\alpha_{m_2}) \bf a_{n+1} + \alpha_{m_2} \bf a_n\\ t_{n+1-\alpha_{f_2}} & = (1-\alpha_{f_2}) t_{n+1 + \alpha_{f_2}} + \alpha_{f_2}t_n \end{aligned} ``` Here the parameters are computed using ```math \begin{aligned} \gamma_2 &= \frac{1}{2} - \alpha_{m_2} + \alpha_{f_2}\\ \beta_2 &= \frac{1}{4} (1-\alpha_{m_2}+\alpha_{f_2})^2 \\ \alpha_{m_2} &= \frac{2\rho_\infty-1}{\rho_\infty+1}\\ \alpha_{f_2} &= \frac{\rho_\infty}{\rho_\infty+1} \end{aligned} ``` ∘ `solve`: users can provide a solver function, `solve(A, rhs)` for solving `Ax = rhs` ∘ `extsolve`: similar to `solve`, but the signature has the form ```julia extsolve(A, rhs, i) ``` This provides the users with more control, e.g., (time-dependent) Dirichlet boundary conditions. See [Generalized α Scheme](https://kailaix.github.io/ADCME.jl/dev/alphascheme/) for details. !!! note In the case $u$ has a nonzero essential boundary condition $u_b$, we let $\tilde u=u-u_b$, then $$M \tilde u_{tt} + C \tilde u_t + K u = F - K u_b - C \dot u_b$$ """ function αscheme(M::Union{SparseTensor, SparseMatrixCSC}, C::Union{SparseTensor, SparseMatrixCSC}, K::Union{SparseTensor, SparseMatrixCSC}, Force::Union{Array{Float64, 2}, PyObject}, d0::Union{Array{Float64, 1}, PyObject}, v0::Union{Array{Float64, 1}, PyObject}, a0::Union{Array{Float64, 1}, PyObject}, Δt::Array{Float64, 1}; solve::Union{Missing, Function} = missing, extsolve::Union{Missing, Function} = missing, ρ::Float64 = 1.0) if !ismissing(solve) && !ismissing(extsolve) error("You cannot provide `solve` and `extsolve` at the same time.") end nt = length(Δt) αm = (2ρ-1)/(ρ+1) αf = ρ/(1+ρ) γ = 1/2-αm+αf β = 0.25*(1-αm+αf)^2 d = length(d0) M = isa(M, SparseMatrixCSC) ? constant(M) : M C = isa(C, SparseMatrixCSC) ? constant(C) : C K = isa(K, SparseMatrixCSC) ? constant(K) : K Force, d0, v0, a0, Δt = convert_to_tensor([Force, d0, v0, a0, Δt], [Float64, Float64, Float64, Float64, Float64]) function equ(dc, vc, ac, dt, Force, i) dn = dc + dt*vc + dt^2/2*(1-2β)*ac vn = vc + dt*((1-γ)*ac) df = (1-αf)*dn + αf*dc vf = (1-αf)*vn + αf*vc am = αm*ac rhs = Force - (M*am + C*vf + K*df) A = (1-αm)*M + (1-αf)*C*dt*γ + (1-αf)*K*β*dt^2 if !ismissing(solve) return solve(A, rhs) elseif !ismissing(extsolve) return extsolve(A, rhs, i) else return A\rhs end end function condition(i, tas...) return i<=nt end function body(i, tas...) dc_arr, vc_arr, ac_arr = tas dc = read(dc_arr, i) vc = read(vc_arr, i) ac = read(ac_arr, i) y = equ(dc, vc, ac, Δt[i], Force[i], i) dn = dc + Δt[i]*vc + Δt[i]^2/2*((1-2β)*ac+2β*y) vn = vc + Δt[i]*((1-γ)*ac+γ*y) i+1, write(dc_arr, i+1, dn), write(vc_arr, i+1, vn), write(ac_arr, i+1, y) end dM = TensorArray(nt+1); vM = TensorArray(nt+1); aM = TensorArray(nt+1) dM = write(dM, 1, d0) vM = write(vM, 1, v0) aM = write(aM, 1, a0) i = constant(1, dtype=Int32) _, d, v, a = while_loop(condition, body, [i,dM, vM, aM]) set_shape(stack(d), (nt+1, length(d0))), set_shape(stack(v), (nt+1, length(v0))), set_shape(stack(a), (nt+1, length(a0))) end @doc raw""" αscheme_time(Δt::Array{Float64}; ρ::Float64 = 1.0) Returns the integration time $t_{i+1-\alpha_{f_2}}$ between $[t_i, t_{i+1}]$ using the alpha scheme. If $\Delta t$ has length $n$, the output will also have length $n$. """ function αscheme_time(Δt::Array{Float64}; ρ::Float64 = 1.0) n = length(Δt) αm = (2ρ-1)/(ρ+1) αf = ρ/(1+ρ) γ = 1/2-αm+αf β = 0.25*(1-αm+αf)^2 function equ(tc, dt) tf1 = (1-αf)*(tc+dt) + αf*tc return tf1 end tcf = Float64[] tc = 0.0 for i = 1:n t1 = equ(tc, Δt[i]) push!(tcf, t1) tc += Δt[i] end return tcf end @doc raw""" TR_BDF2(D0::Union{SparseTensor, SparseMatrixCSC}, D1::Union{SparseTensor, SparseMatrixCSC}, Δt::Float64) Constructs a TR-BDF2 (the Trapezoidal Rule with Second Order Backward Difference Formula) handler for the DAE $$D_1 \dot y + D_0 y = f$$ The struct is a functor, which performs one step simulation ``` (tr::TR_BDF2)(y::Union{PyObject, Array{Float64, 1}}, f1::Union{PyObject, Array{Float64, 1}}, f2::Union{PyObject, Array{Float64, 1}}, f3::Union{PyObject, Array{Float64, 1}}) ``` Here `f1`, `f2`, and `f3` correspond to the right hand side at time step $n$, $n+\frac12$, and $n+1$. Or we can pass a batched `F` defined as a `(2NT+1) × DOF` array ``` (tr::TR_BDF2)(y0::Union{PyObject, Array{Float64, 1}}, F::Union{PyObject, Array{Float64, 2}}) ``` The output will be the entire solution of size `(NT+1) × DOF`. !!! info The scheme takes the following form for n = 0, 1, ... $$\begin{aligned} D_1(y^{n+\frac12}-y^n) = \frac12\frac{\Delta t}{2}\left(f^{n+\frac12} + f^n - D_0 \left(y^{n+\frac12} + y^n\right)\right)\\ \left(\frac{\Delta t}{2}\right)^{-1} D_1 \left(\frac32y^{n+1} - 2y^{n+\frac12} + \frac12 y^n\right) + D_0 y^{n+1} = f^{n+1}\end{aligned}$$ """ mutable struct TR_BDF2 D0::Union{SparseTensor, SparseMatrixCSC} D1::Union{SparseTensor, SparseMatrixCSC} Δt::Float64 _D0::Union{SparseTensor, SparseMatrixCSC} _D1::Union{SparseTensor, SparseMatrixCSC} symbolic::Bool function TR_BDF2(D0::Union{SparseTensor, SparseMatrixCSC}, D1::Union{SparseTensor, SparseMatrixCSC}, Δt::Float64) if isa(D0, SparseTensor) || isa(D1, SparseTensor) symbolic = true D0 = constant(D0) D1 = constant(D1) else symbolic = false end @assert size(D0, 1)==size(D0,2)==size(D1,1)==size(D1,2) _D0 = D1 + Δt/4 * D0 _D1 = 1/(Δt/2) * 3/2 * D1 + D0 new(D0, D1, Δt, _D0, _D1, symbolic) end end """ constant(tr::TR_BDF2) Converts `tr` to a symbolic solver. """ function constant(tr::TR_BDF2) TR_BDF2(constant(tr.D0), constant(tr.D1), tr.Δt) end function Base.:show(io::IO, tr::TR_BDF2) print("""TR_BDF2 (DOF = $(size(tr.D0, 1)), Δt = $(tr.Δt)$(tr.symbolic ? ", symbolic" : ""))""") end function (tr::TR_BDF2)(y::Union{PyObject, Array{Float64, 1}}, f1::Union{PyObject, Array{Float64, 1}}, f2::Union{PyObject, Array{Float64, 1}}, f3::Union{PyObject, Array{Float64, 1}}) y, f1, f2, f3 = convert_to_tensor([y, f1, f2, f3], [Float64, Float64, Float64, Float64]) r1 = tr.Δt/4 * (f2 + f1) - tr.Δt/4 * (tr.D0 * y) + tr.D1 * y yn = tr._D0\r1 r2 = f3 + 1/(tr.Δt/2)*(tr.D1* (2*yn - 0.5*y)) tr._D1\r2 end function (tr::TR_BDF2)(y0::Union{PyObject, Array{Float64, 1}}, F::Union{PyObject, Array{Float64, 2}}) @assert size(F, 2)==size(tr.D0, 1) && mod(size(F, 1), 2)==1 y0, F = convert_to_tensor([y0, F], [Float64, Float64]) NT = size(F, 1)÷2 y_arr = TensorArray(NT+1) y_arr = write(y_arr, 1, y0) function condition(i, y_arr) i<=NT end function body(i, y_arr) y = read(y_arr, i) f1, f2, f3 = F[2*i-1], F[2*i], F[2*i+1] yn = tr(y, f1, f2, f3) i+1, write(y_arr, i+1, yn) end i = constant(1, dtype = Int32) _, ya = while_loop(condition, body, [i, y_arr]) set_shape(stack(ya), (NT+1, length(y0))) end function (tr::TR_BDF2)(y::Array{Float64, 1}, f1::Array{Float64, 1}, f2::Array{Float64, 1}, f3::Array{Float64, 1}) if tr.symbolic return tr(constant(y), f1, f2, f3) end r1 = tr.Δt/4 * (f2 + f1) - tr.Δt/4 * (tr.D0 * y) + tr.D1 * y yn = tr._D0\r1 r2 = f3 + 1/(tr.Δt/2)*(tr.D1* (2*yn - 0.5*y)) tr._D1\r2 end function (tr::TR_BDF2)(y0::Array{Float64,1}, F::Array{Float64, 2}) if tr.symbolic return tr(constant(y0), F) end @assert size(F, 2)==size(tr.D0, 1) && mod(size(F, 1), 2)==1 y = zeros(size(F, 1)÷2+1, 2) y[1,:] = y0 for i = 1:size(F, 1)÷2 y[i+1,:] = tr(y[i,:], F[2*i-1,:], F[2*i,:], F[2*i+1,:]) end y end # design principle: proceed one step # (states) u0, u1, ..., (coefficients) M0, M1, ..., (step size) Δt @doc raw""" ExplicitNewmark(M::Union{SparseTensor, SparseMatrixCSC}, Z1::Union{Missing, SparseTensor, SparseMatrixCSC}, Z2::Union{Missing, SparseTensor, SparseMatrixCSC}, Δt::Float64) An explicit Newmark integrator for $$M \ddot{\mathbf{d}} + Z_1 \dot{\mathbf{d}} + Z_2 \mathbf{d} + f = 0$$ The numerical scheme is $$\left(\frac{1}{\Delta t^2} M + \frac{1}{2\Delta t}Z_1\right)d^{n+1} = \left(\frac{2}{\Delta t^2} M - \frac{1}{2\Delta t}Z_2\right)d^n - \left(\frac{1}{\Delta t^2} M - \frac{1}{2\Delta t}Z_1\right) d^{n-1} - f$$ To use this integrator, ```julia en = ExplicitNewmark(M, Z1, Z2, Δt) d2 = step(en, d0, d1, f) ``` """ struct ExplicitNewmark A::Union{PyObject, Tuple{SparseTensor, PyObject}} B::Union{PyObject, SparseTensor} C::Union{PyObject, SparseTensor} function ExplicitNewmark(M::Union{SparseTensor, PyObject, Array{Float64, 2}, SparseMatrixCSC}, Z1::Union{Missing, PyObject, Array{Float64, 2}, SparseTensor, SparseMatrixCSC}, Z2::Union{Missing, PyObject, Array{Float64, 2}, SparseTensor, SparseMatrixCSC}, Δt::Float64) M = constant(M) if ismissing(Z1) A = 1/Δt^2 * M C = -1/Δt^2 * M else Z1 = constant(Z1) A = (1/Δt^2 * M + 1/(2Δt) * Z1) C = -(1/Δt^2 * M - 1/(2Δt) * Z1) end if isa(A, SparseTensor) A = factorize(A) end if ismissing(Z2) B = 2/Δt^2 * M else Z2 = constant(Z2) B = (2/Δt^2 * M - Z2) end new(A, B, C) end end function Base.:show(io::IO, en::ExplicitNewmark) print("ExplicitNewmark(DOF=$(size(en.B, 1)))") end function Base.:step(en::ExplicitNewmark, d0::Union{Array{Float64, 1}, PyObject}, d1::Union{Array{Float64, 1}, PyObject}, f::Union{Array{Float64, 1}, PyObject}) d0, d1, f = convert_to_tensor([d0, d1, f], [Float64, Float64, Float64]) en.A \ (en.B * d1 + en.C * d0 - f) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
38630
import Base:*, broadcast, reshape, exp, log, tanh, sum, adjoint, inv, argmax, argmin, ^, max, maximum, min, minimum, vec, \, cos, sin, sign, map, prod, reverse import LinearAlgebra: tr, diag, det, norm, diagm, dot, I, svd, tril, triu import Statistics: mean, std import FFTW: fft, ifft export *, ^, einsum, sigmoid, tanh, mean, log, exp, softplus, softmax, softsign, sum, relu, relu6, squeeze, adjoint, diag, diagm, det, inv, triangular_solve, argmin, argmax, max, min, group_assign, assign, maximum, minimum, cast, group, clip, scatter_add, scatter_sub, scatter_update, stack, concat, unstack, norm, cvec, rvec, vec, sqrt, mean, pad, leaky_relu, fft, ifft, I, svd, vector, pmap, std, lgamma, topk, argsort, batch_matmul, dot, set_shape, selu, elu, tr, tril, triu, solve_batch, swish, hard_sigmoid, hard_swish, concat_elu, concat_hard_swish, concat_relu, fourier, rollmean, rollsum, rollvar, rollstd, softmax_cross_entropy_with_logits @doc raw""" batch_matmul(o1::PyObject, o2::PyObject) Computes `o1[i,:,:] * o2[i, :]` or `o1[i,:,:] * o2[i, :, :]` for each index `i`. """ function batch_matmul(o1::PyObject, o2::PyObject) flag = false if length(size(o2))==2 flag = true o2 = tf.expand_dims(o2, 2) end if length(size(o1))!=3 || length(size(o2))!=3 error("The size of o1 or o2 is not valid.") end out = tf.matmul(o1, o2) if flag squeeze(out) else out end end batch_matmul(o1::Array{<:Real}, o2::PyObject) = batch_matmul(constant(o1), o2) batch_matmul(o1::PyObject, o2::Array{<:Real}) = batch_matmul(o1, constant(o2)) batch_matmul(o1::Array{<:Real}, o2::Array{<:Real}) = batch_matmul(constant(o1), constant(o2)) function PyCall.:*(o1::PyObject, o2::PyObject) s1 = size(o1) s2 = size(o2) if s1==nothing || s2==nothing error("o1 and o2 should be tensors of rank 0, 1, 2") end if length(s1) == 0 || length(s2)==0 return tf.multiply(o1, o2) end if length(s1)==2 && length(s2)==2 return tf.matmul(o1, o2) elseif length(s1)==2 && length(s2)==1 return tf.einsum("nm,m->n", o1, o2) elseif length(s1)==2 && length(s2)==0 return tf.multiply(o1, o2) elseif length(s1)==1 && length(s2)==2 error("[rand 1] x [rank 2] not defined") elseif length(s1)==1 && length(s2)==1 return tf.multiply(o1, o2) else @warn("Unusual usage of multiplication. Check carefully") tf.matmul(o1,o2) end end Base.:*(o1::PyObject, o2::AbstractArray{<:Real}) = *(o1, constant(Array(o2), dtype=get_dtype(o1))) Base.:*(o1::AbstractArray{<:Real}, o2::PyObject) = *(constant(Array(o1), dtype=get_dtype(o2)), o2) Base.:*(o1::Number, o2::PyObject) = *(constant(o1, dtype=get_dtype(o2)), o2) Base.:*(o1::PyObject, o2::Number) = *(o1, constant(o2, dtype=get_dtype(o1))) Base.Broadcast.broadcasted(::typeof(*), o1::PyObject, o2::AbstractArray{<:Real}) = tf.multiply(o1, Array(o2)) Base.Broadcast.broadcasted(::typeof(*), o1::AbstractArray{<:Real}, o2::PyObject) = tf.multiply(Array(o1), o2) Base.Broadcast.broadcasted(::typeof(*), o1::PyObject, o2::PyObject) = tf.multiply(o1, o2) Base.Broadcast.broadcasted(::typeof(*), o1::PyObject, o2::Number) = tf.multiply(o1, o2) Base.Broadcast.broadcasted(::typeof(*), o1::Number, o2::PyObject) = tf.multiply(o1, o2) Base.Broadcast.broadcasted(::typeof(/), o1::PyObject, o2::AbstractArray{<:Real}) = tf.divide(o1, Array(o2)) Base.Broadcast.broadcasted(::typeof(/), o1::AbstractArray{<:Real}, o2::PyObject) = tf.divide(Array(o1), o2) Base.Broadcast.broadcasted(::typeof(/), o1::PyObject, o2::PyObject) = tf.divide(o1, o2) Base.Broadcast.broadcasted(::typeof(/), o1::PyObject, o2::Number) = tf.divide(o1, o2) Base.Broadcast.broadcasted(::typeof(/), o1::Number, o2::PyObject) = tf.divide(o1, o2) Base.Broadcast.broadcasted(::typeof(+), o1::PyObject, o2::AbstractArray{<:Real}) = o1 + Array(o2) Base.Broadcast.broadcasted(::typeof(+), o1::AbstractArray{<:Real}, o2::PyObject) = Array(o1) + o2 Base.Broadcast.broadcasted(::typeof(+), o1::PyObject, o2::PyObject) = o1 + o2 Base.Broadcast.broadcasted(::typeof(+), o1::PyObject, o2::Number) = o1 + o2 Base.Broadcast.broadcasted(::typeof(+), o1::Number, o2::PyObject) = o1 + o2 Base.Broadcast.broadcasted(::typeof(-), o1::PyObject, o2::AbstractArray{<:Real}) = o1 - Array(o2) Base.Broadcast.broadcasted(::typeof(-), o1::AbstractArray{<:Real}, o2::PyObject) = Array(o1) - o2 Base.Broadcast.broadcasted(::typeof(-), o1::PyObject, o2::PyObject) = o1 - o2 Base.Broadcast.broadcasted(::typeof(-), o1::PyObject, o2::Number) = o1 - o2 Base.Broadcast.broadcasted(::typeof(-), o1::Number, o2::PyObject) = o1 - o2 warn_broadcast_pow() = error(".^ is disabled due to eager evaluation. Use ^ instead.") Base.Broadcast.broadcasted(::typeof(^), o1::PyObject, o2::Union{AbstractArray{<:Real},Number}) = warn_broadcast_pow() Base.Broadcast.broadcasted(::typeof(^), o1::PyObject, o2::PyObject) = warn_broadcast_pow() Base.Broadcast.broadcasted(::typeof(^), o1::Union{AbstractArray{<:Real},Number}, o2::PyObject) = warn_broadcast_pow() function einsum(equation, args...; kwargs...) tf.einsum(equation, args...; kwargs...) end """ reshape(o::PyObject, s::Union{Array{<:Integer}, Tuple{Vararg{<:Integer, N}}}) where N reshape(o::PyObject, s::Integer; kwargs...) reshape(o::PyObject, m::Integer, n::Integer; kwargs...) reshape(o::PyObject, ::Colon, n::Integer) reshape(o::PyObject, n::Integer, ::Colon) Reshapes the tensor according to row major if the "TensorFlow style" syntax is used; otherwise reshaping according to column major is assumed. # Example ```julia reshape(a, [10,5]) # row major reshape(a, 10, 5) # column major ``` """ function reshape(o::PyObject, s::Union{Array{<:Integer}, Tuple{Vararg{<:Integer, N}}}) where N tf.reshape(o, s) end function reshape(o::PyObject, s::Integer; kwargs...) if length(size(o))>=2 return tf.reshape(o', [s]; kwargs...) end tf.reshape(o, [s]; kwargs...) end function reshape(o::PyObject, m::Integer, n::Integer; kwargs...) if length(size(o))==1 return tf.reshape(o, [n,m]; kwargs...)' elseif length(size(o))==2 return tf.reshape(o', [n,m]; kwargs...)' end tf.reshape(o, [m, n]; kwargs...) end reshape(o::PyObject, ::Colon, n::Integer) = reshape(o, -1, n) reshape(o::PyObject, n::Integer, ::Colon) = reshape(o, n, -1) """ rvec(o::PyObject; kwargs...) Vectorizes the tensor `o` to a row vector, assuming column major. """ function rvec(o::PyObject; kwargs...) s = size(o) if length(s)==0 return reshape(o, 1, 1, kwargs...) elseif length(s)==1 return reshape(o, 1, s[1], kwargs...) elseif length(s)==2 return reshape(o, 1, s[1]*s[2], kwargs...) else error("Invalid argument") end end """ rvec(o::PyObject; kwargs...) Vectorizes the tensor `o` to a column vector, assuming column major. """ function cvec(o::PyObject;kwargs...) s = size(o) if length(s)==0 return reshape(o, 1, 1,kwargs...) elseif length(s)==1 return reshape(o, s[1], 1,kwargs...) elseif length(s)==2 return reshape(o, s[1]*s[2], 1,kwargs...) else error("Invalid argument") end end """ vec(o::PyObject;kwargs...) Vectorizes the tensor `o` assuming column major. """ function vec(o::PyObject;kwargs...) s = size(o) if length(s)==0 return reshape(o, 1, kwargs...) elseif length(s)==1 return o elseif length(s)>=2 return reshape(o, s[1]*s[2]) end end """ set_shape(o::PyObject, s::Union{Array{<:Integer}, Tuple{Vararg{<:Integer, N}}}) where N set_shape(o::PyObject, s::Integer...) Sets the shape of `o` to `s`. `s` must be the actual shape of `o`. This function is used to convert a tensor with unknown dimensions to a tensor with concrete dimensions. # Example ```julia a = placeholder(Float64, shape=[nothing, 10]) b = set_shape(a, 3, 10) run(sess, b, a=>rand(3,10)) # OK run(sess, b, a=>rand(5,10)) # Error run(sess, b, a=>rand(10,3)) # Error ``` """ function set_shape(o::PyObject, s::Union{Array{<:Integer}, Tuple{Vararg{<:Integer, N}}}) where N o.set_shape(s) return o end set_shape(o::PyObject, s::Integer...) = set_shape(o, s) function sigmoid(x::Real) return 1/(1+exp(-x)) end function sigmoid(o::PyObject; kwargs...) tf.math.sigmoid(o; kwargs...) end relu(x::Real) = max(zero(x), x) function relu(o::PyObject; kwargs...) tf.nn.relu(o; kwargs...) end relu6(x::Real) = min(relu(x), one(x)*oftype(x, 6)) relu6(o::PyObject; kwargs...) = tf.nn.relu6(o; kwargs...) function tan(o::PyObject; kwargs...) tf.math.tan(o; kwargs...) end function leaky_relu(x::Real, a = oftype(x / 1, 0.2)) max(a * x, x / one(x)) end function leaky_relu(o::PyObject; kwargs...) tf.nn.leaky_relu(o; kwargs...) end function tanh(o::PyObject; kwargs...) tf.tanh(o; kwargs...) end function selu(x::Real) λ = oftype(x / 1, 1.0507009873554804934193349852946) α = oftype(x / 1, 1.6732632423543772848170429916717) λ * ifelse(x > 0, x / one(x), α * (exp(x) - one(x))) end selu(o::PyObject; kwargs...) = tf.nn.selu(o; kwargs...) elu(x, α = one(x)) = ifelse(x ≥ 0, x / one(x), α * (exp(x) - one(x))) elu(o::PyObject; kwargs...) = tf.nn.elu(o; kwargs...) softsign(x::Real) = x / (one(x) + abs(x)) softsign(o::PyObject; kwargs...) = tf.nn.softsign(o; kwargs...) function argmax(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.argmax(o; kwargs...) + 1 end function Base.:sqrt(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.sqrt(o) end function argmin(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.argmin(o; kwargs...) + 1 end function max(o1::PyObject, o2::PyObject; kwargs...) tf.maximum(o1, o2; kwargs...) end function min(o1::PyObject, o2::PyObject; kwargs...) tf.minimum(o1, o2; kwargs...) end function maximum(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.reduce_max(o; kwargs...) end function minimum(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.reduce_min(o; kwargs...) end function std(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.math.reduce_std(o; kwargs...) end function cast(x::PyObject, dtype::Type;kwargs...) dtype = DTYPE[dtype] tf.cast(x, dtype; kwargs...) end function cast(dtype::Type, x::PyObject;kwargs...) dtype = DTYPE[dtype] tf.cast(x, dtype; kwargs...) end softplus(x::Real) = ifelse(x > 0, x + log1p(exp(-x)), log1p(exp(x))) function softplus(x;kwargs...) tf.math.softplus(x; kwargs...) end function log(o::PyObject; kwargs...) tf.math.log(o; kwargs...) end function exp(o::PyObject; kwargs...) tf.exp(o; kwargs...) end function cos(o::PyObject; kwargs...) tf.cos(o; kwargs...) end function sin(o::PyObject; kwargs...) tf.sin(o; kwargs...) end function sign(o::PyObject; kwargs...) tf.sign(o; kwargs...) end function softmax(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.math.softmax(o; kwargs...) end function sum(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.reduce_sum(o; kwargs...) end function mean(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.reduce_mean(o; kwargs...) end function prod(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.reduce_prod(o; kwargs...) end function squeeze(o::PyObject; kwargs...) kwargs = jlargs(kwargs) tf.squeeze(o;kwargs...) end """ pad(o::PyObject, paddings::Array{Int64, 2}, args...; kwargs...) Pads `o` with values on the boundary. # Example ```julia o = rand(3,3) o = pad(o, [1 4 # first dimension 2 3]) # second dimension run(sess, o) ``` Expected: ``` 8×8 Array{Float64,2}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.250457 0.666905 0.823611 0.0 0.0 0.0 0.0 0.0 0.23456 0.625145 0.646713 0.0 0.0 0.0 0.0 0.0 0.552415 0.226417 0.67802 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ``` """ function pad(o::Union{Array{<:Real}, PyObject}, paddings::Array{Int64, 2}, args...; kwargs...) o = constant(o) tf.pad(o, paddings, args...; kwargs...) end function assign(o::PyObject,value, args...; kwargs...) tf.compat.v1.assign(o, value, args...;kwargs...) end function group(args...; kwargs...) tf.group(args...; kwargs...) end assign(o::Array{PyObject}, value::Array, args...;kwargs...) = group_assign(o, value, args...; kwargs...) @deprecate group_assign assign function group_assign(os::Array{PyObject}, values, args...; kwargs...) ops = Array{PyObject}(undef, length(os)) for i = 1:length(os) ops[i] = tf.compat.v1.assign(os[i], values[i], args...; kwargs...) end ops end """ adjoint(o::PyObject; kwargs...) Returns the conjugate adjoint of `o`. When the dimension of `o` is greater than 2, only the last two dimensions are permuted, i.e., `permutedims(o, [1,2,...,n,n-1])` """ function adjoint(o::PyObject; kwargs...) if length(size(o))==0 return o elseif length(size(o))==1 return rvec(o) else return tf.linalg.adjoint(o; kwargs...) end end diagm(o::PyObject; kwargs...) = tf.linalg.diag(o; kwargs...) diag(o::PyObject; kwargs...) = tf.linalg.diag_part(o; kwargs...) det(o::PyObject; kwargs...) = tf.linalg.det(o; kwargs...) inv(o::PyObject; kwargs...) = tf.linalg.inv(o; kwargs...) @doc raw""" solve_batch(A::Union{PyObject, Array{<:Real, 2}}, rhs::Union{PyObject, Array{<:Real,2}}) Solves $$Ax = b$$ for a batch of right hand sides. - `A`: a $m\times n$ matrix, where $m\geq n$ - `rhs`: a $n_b\times m$ matrix. Each row is a new right hand side to solve. The returned value is a $n_b\times n$ matrix. # Example ```julia a = rand(10,5) b = rand(100, 10) sol = solve_batch(a, b) @assert run(sess, sol) ≈ (a\b')' ``` !!! note Internally, the matrix $A$ is factorized first and then the factorization is used to solve multiple right hand side. """ function solve_batch(A::Union{PyObject, Array{<:Real, 2}}, rhs::Union{PyObject, Array{<:Real,2}}) solve_batched_rhs_ = load_system_op("solve_batched_rhs"; multiple=false) a,rhs = convert_to_tensor([A,rhs], [Float64,Float64]) sol = solve_batched_rhs_(a,rhs) if size(a, 2)!=nothing && size(rhs,1) != nothing sol = set_shape(sol, (size(rhs,1), size(a,2))) end return sol end function solve(matrix, rhs; kwargs...) rhs = constant(rhs) matrix = constant(matrix) flag = false if length(size(rhs))==1 flag = true rhs = reshape(rhs, size(rhs, 1), 1) end if size(matrix,1)==size(matrix,2) ret = tf.linalg.solve(matrix, rhs; kwargs...) else # @show matrix, rhs ret = tf.linalg.lstsq(matrix, rhs;kwargs...) end if flag ret = squeeze(ret, dims=2) end return ret end Base.:\(o1::PyObject, o2::PyObject) = solve(o1, o2) Base.:\(o1::PyObject, o2::Array) = solve(o1, o2) Base.:\(o1::Array, o2::PyObject) = solve(o1, o2) function triangular_solve(matrix, rhs; kwargs...) flag = false if length(size(rhs))==1 flag = true rhs = reshape(rhs, size(rhs, 1), 1) end ret = tf.linalg.triangular_solve(matrix, rhs; kwargs...) if flag ret = squeeze(ret, dims=2) end return ret end # reference: https://blog.csdn.net/LoseInVain/article/details/79638183 function concat(o::Union{PyObject,Array{PyObject}}, args...;kwargs...) if isa(o, PyObject) @warn "Only one input is consumed by concat" maxlog=1 return o end kwargs = jlargs(kwargs) if length(size(o[1]))==0 return tf.stack(o) end tf.concat(o, args...; kwargs...) end function stack(o::Array{PyObject}, args...;kwargs...) kwargs = jlargs(kwargs) tf.stack(o, args...; kwargs...) end Base.:vcat(args::PyObject...) = concat([args...],0) function Base.:hcat(args::PyObject...) if length(size(args[1]))>=2 concat([args...],1) elseif length(size(args[1]))==1 stack([args...],dims=2) else vcat(args...)' end end """ stack(o::PyObject) Convert a `TensorArray` `o` to a normal tensor. The leading dimension is the size of the tensor array. """ function stack(o::PyObject) o.stack() end function unstack(o::PyObject, args...;kwargs...) kwargs = jlargs(kwargs) tf.unstack(o, args...; kwargs...) end function _jlindex2indices(len::Int64, indices::Union{PyObject, Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}}) if isa(indices, BitArray{1}) || isa(indices, Array{Bool,1}) indices = findall(indices) elseif isa(indices, UnitRange{Int64}) || isa(indices, StepRange{Int64, Int64}) indices = collect(indices) elseif isa(indices, Colon) indices = Array(1:len) elseif isa(indices, Int64) indices = [indices] end if isa(indices, PyObject) return indices - 1 else return constant(indices .- 1) end end for (op1, op2) = [(:_scatter_add, :tensor_scatter_nd_add), (:_scatter_sub, :tensor_scatter_nd_sub), (:_scatter_update,:tensor_scatter_nd_update)] @eval begin function $op1(ref::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) updates = convert_to_tensor(updates, dtype=get_dtype(ref)) @assert length(size(updates)) <= 1 @assert length(size(ref))==1 if length(size(updates))==0 updates = reshape(updates, (-1,)) end indices = _jlindex2indices(length(ref),indices) indices = reshape(indices, (-1,1)) # @info ref, indices, updates tf.$op2(ref, indices, updates) end end end """ scatter_update(a::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) Updates array `a` ``` a[indices] = updates ``` # Example Julia: ```julia A[[1;2;3]] = rand(3) A[2] = 1.0 ``` ADCME: ``` A = scatter_update(A, [1;2;3], rand(3)) A = scatter_update(A, 2, 1.0) ``` """ scatter_update(a::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) = _scatter_update(a, indices, updates) """ scatter_sub(a::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) Updates array `a` ``` a[indices] -= updates ``` # Example Julia: ```julia A[[1;2;3]] -= rand(3) A[2] -= 1.0 ``` ADCME: ``` A = scatter_sub(A, [1;2;3], rand(3)) A = scatter_sub(A, 2, 1.0) ``` """ scatter_sub(a::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) = _scatter_sub(a, indices, updates) """ scatter_add(a::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) Updates array `add` ``` a[indices] += updates ``` # Example Julia: ```julia A[[1;2;3]] += rand(3) A[2] += 1.0 ``` ADCME: ``` A = scatter_add(A, [1;2;3], rand(3)) A = scatter_add(A, 2, 1.0) ``` """ scatter_add(a::PyObject, indices::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) = _scatter_add(a, indices, updates) for (op1, op2) = [(:scatter_update2, :scatter_update), (:scatter_add2, :scatter_add), (:scatter_sub2,:scatter_sub)] @eval begin function $op1(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) m, n = size(A) updates = convert_to_tensor(updates, dtype=get_dtype(A)) @assert length(size(A))==2 xind = _jlindex2indices(m,xind) yind = _jlindex2indices(n,yind) if length(size(updates))==0 updates = reshape(updates, (1,1)) end indices = reshape(repeat(xind, 1, length(yind)), (-1,)) * n + repeat(yind, length(xind)) out = $op2(reshape(A, (-1,)), indices + 1, reshape(updates, (-1,))) reshape(out, (m, n)) end end end """ scatter_update(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) ```julia A[xind, yind] = updates ``` """ scatter_update(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) = scatter_update2(A, xind, yind, updates) """ scatter_add(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) ```julia A[xind, yind] += updates ``` """ scatter_add(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) = scatter_add2(A, xind, yind, updates) """ scatter_add(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) ```julia A[xind, yind] -= updates ``` """ scatter_sub(A::PyObject, xind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, yind::Union{Colon, Int64, Array{Int64}, BitArray{1}, Array{Bool,1}, UnitRange{Int64}, StepRange{Int64, Int64}, PyObject}, updates::Union{Array{<:Real}, Real, PyObject}) = scatter_sub2(A, xind, yind, updates) function norm(o::PyObject, args...;kwargs...) kwargs = jlargs(kwargs) tf.norm(o, args...;kwargs...) end function Base.:diff(o::PyObject; dims::Union{Int64,Nothing}=nothing) if dims==nothing if length(size(o))!=1 error("expect rank=1") end return o[2:end]-o[1:end-1] elseif length(size(o))==2 if dims==1 return o[2:end,:]-o[1:end-1,:] elseif dims==2 return o[:,2:end]-o[:,1:end-1] end else error("Arguments not understood") end end clip(o::PyObject, vmin, vmax, args...;kwargs...) = tf.clip_by_value(o, vmin, vmax, args...;kwargs...) @doc raw""" clip(o::Union{Array{Any}, Array{PyObject}}, vmin, vmax, args...;kwargs...) Clips the values of `o` to the range [`vmin`, `vmax`] # Example ```julia a = constant(3.0) a = clip(a, 1.0, 2.0) b = constant(rand(3)) b = clip(b, 0.5, 1.0) ``` """ function clip(o::Union{Array{Any}, Array{PyObject}}, vmin, vmax, args...;kwargs...) out = Array{PyObject}(undef, length(o)) for i = 1:length(o) out[i] = clip(o[i], vmin, vmax, args...;kwargs...) end out end function fft(o::PyObject, args...; kwargs...) if length(size(o))==1 tf.fft(o, args...; kwargs...) elseif length(size(o))==2 tf.fft2d(o, args...; kwargs...) elseif length(size(o))==3 tf.fft3d(o, args...; kwargs...) else error("FFT for d>=4 not supported") end end # mimic the Julia SVD struct TFSVD S::PyObject U::PyObject V::PyObject Vt::PyObject end """ svd(o::PyObject, args...; kwargs...) Returns a `TFSVD` structure which holds the following data structures ```julia S::PyObject U::PyObject V::PyObject Vt::PyObject ``` We have the equality ``o = USV'`` # Example ```julia A = rand(10,20) r = svd(constant(A)) A2 = r.U*diagm(r.S)*r.Vt # The value of `A2` should be equal to `A` ``` """ function svd(o::PyObject, args...; kwargs...) s,u,v = tf.linalg.svd(o) TFSVD(s, u, v, v') end function ifft(o::PyObject, args...; kwargs...) if length(size(o))==1 tf.ifft(o, args...; kwargs...) elseif length(size(o))==2 tf.ifft2d(o, args...; kwargs...) elseif length(size(o))==3 tf.ifft3d(o, args...; kwargs...) else error("IFFT for d>=4 not supported") end end function Base.:real(o::PyObject, args...; kwargs...) tf.real(o, args...; kwargs...) end function Base.:imag(o::PyObject, args...; kwargs...) tf.imag(o, args...; kwargs...) end @doc raw""" map(fn::Function, o::Union{Array{PyObject},PyObject}; kwargs...) Applies `fn` to each element of `o`. - `o`∈`Array{PyObject}` : returns `[fn(x) for x in o]` - `o`∈PyObject : splits `o` according to the first dimension and then applies `fn`. # Example ```julia a = constant(rand(10,5)) b = map(x->sum(x), a) # equivalent to `sum(a, dims=2)` ``` !!! note If `fn` is a multivariate function, we need to specify the output type using `dtype` keyword. For example, ```julia a = constant(ones(10)) b = constant(ones(10)) fn = x->x[1]+x[2] c = map(fn, [a, b], dtype=Float64) ``` """ function map(fn::Function, o::Union{Array{PyObject},PyObject}; kwargs...) # if `o` is not a tensorflow tensor, roll back to normal `map` if (isa(o, Array) && !hasproperty(o[1], :graph)) || (isa(o, PyObject) && !hasproperty(o, :graph)) return fn.(o) end kwargs = jlargs(kwargs) tf.map_fn(fn, o;kwargs...) end """ pmap(fn::Function, o::Union{Array{PyObject}, PyObject}) Parallel for loop. There should be no data dependency between different iterations. # Example ```julia x = constant(ones(10)) y1 = pmap(x->2.0*x, x) y2 = pmap(x->x[1]+x[2], [x,x]) y3 = pmap(1:10, x) do z i = z[1] xi = z[2] xi + cast(Float64, i) end run(sess, y1) run(sess, y2) run(sess, y3) ``` """ function pmap(fn::Function, o::Union{Array{PyObject}, PyObject}) tf.compat.v1.vectorized_map(fn, o) end function pmap(fn::Function, range_::Union{Array{Int64},UnitRange{Int64},StepRange{Int64}, PyObject}, o::Union{Array{PyObject}, PyObject}) ipt = convert_to_tensor(collect(range_)) if isa(o, PyObject) return tf.compat.v1.vectorized_map(fn, [ipt,o]) end if length(o)==0 return tf.compat.v1.vectorized_map(fn, ipt) end if length(o)>0 tf.compat.v1.vectorized_map(fn, [ipt, o...]) end end dot(x::PyObject, y::PyObject) = sum(x.*y) dot(x::PyObject, y::AbstractArray{<:Real}{<:Real}) = sum(x.*constant(y)) dot(x::AbstractArray{<:Real}{<:Real}, y::PyObject) = sum(constant(x).*y) import PyCall: +, - function +(o::PyObject, I::UniformScaling{Bool}) @assert size(o,1)==size(o,2) o + diagm(0=>ones(size(o,1))) end function -(o::PyObject, I::UniformScaling{Bool}) @assert size(o,1)==size(o,2) o - diagm(0=>ones(size(o,1))) end Base.:+(I::UniformScaling{Bool}, o::PyObject) = o+I Base.:-(I::UniformScaling{Bool}, o::PyObject) = -(o-I) function Base.:findall(o::PyObject) if !(length(size(o)) in [1,2]) error("ADCME: input tensor must have rank 1 or 2") end if !(eltype(o) <: Bool) error("ADCME: input tensor must have boolean types") end if length(size(o))==2 tf.compat.v2.where(o) + 1 else o = reshape(o, :, 1) res = findall(o) res'[1,:] end end """ vector(i::Union{Array{T}, PyObject, UnitRange, StepRange}, v::Union{Array{Float64},PyObject},s::Union{Int64,PyObject}) Returns a vector `V` with length `s` such that ``` V[i] = v ``` """ function vector(i::Union{Array{T}, PyObject, UnitRange, StepRange}, v::Union{Array{Float64},PyObject}, s::Union{Int64,PyObject}) where T<:Integer if isa(i, UnitRange) || isa(i, StepRange) i = collect(i) end i = convert_to_tensor(i) s = convert_to_tensor(s) i = reshape(i - 1,:,1) s = reshape(s, 1) tf.scatter_nd(i, v, s) end function Base.:repeat(o::PyObject, i::Int64, j::Int64) if length(size(o))==0 return o*ones(eltype(o), i, j) end if length(size(o))==1 o = reshape(o, :, 1) end if length(size(o))!=2 error("ADCME: size of `o` must be 0, 1, 2") end tf.tile(o, (i,j)) end function Base.:repeat(o::PyObject, i::Int64) if length(size(o))==0 o * ones(eltype(o),i) elseif length(size(o))==1 squeeze(repeat(o, i, 1)) elseif length(size(o))==2 repeat(o, i, 1) else error("ADCME: rank of `o` must be 0, 1, 2") end end function lgamma(o::Union{T, PyObject}, args...;kwargs...) where T<:Real tf.math.lgamma(convert_to_tensor(o), args...;kwargs...) end @doc raw""" Base.:sort(o::PyObject; rev::Bool=false, dims::Integer=-1, name::Union{Nothing,String}=nothing) Sort a multidimensional array `o` along the given dimension. - `rev`: `true` for DESCENDING and `false` (default) for ASCENDING - `dims`: `-1` for last dimension. """ function Base.:sort(o::PyObject; rev::Bool=false, dims::Integer=-1, name::Union{Nothing,String}=nothing) direction = rev == false ? "ASCENDING" : "DESCENDING" axis = -1 if dims!=-1 axis = dims - 1 end tf.compat.v1.sort(o, axis=axis, direction=direction, name = name) end """ topk(o::PyObject, k::Union{PyObject,Integer}=1; sorted::Bool=true, name::Union{Nothing,String}=nothing) Finds values and indices of the `k` largest entries for the last dimension. If `sorted=true` the resulting k elements will be sorted by the values in descending order. """ function topk(o::PyObject, k::Union{PyObject,Integer}=1; sorted::Bool=true, name::Union{Nothing,String}=nothing) k = convert_to_tensor(k, dtype=Int32) tf.compat.v1.math.top_k(o, k, sorted=sorted, name = name) end """ argsort(o::PyObject; stable::Bool = false, rev::Bool=false, dims::Integer=-1, name::Union{Nothing,String}=nothing) Returns the indices of a tensor that give its sorted order along an axis. """ function argsort(o::PyObject; stable::Bool = false, rev::Bool=false, dims::Integer=-1, name::Union{Nothing,String}=nothing) direction = rev == false ? "ASCENDING" : "DESCENDING" axis = -1 if dims!=-1 axis = dims + 1 end tf.compat.v1.argsort( o, axis=axis, direction=direction, stable=stable, name=name ) + 1 end function tr(o::PyObject) tf.linalg.trace(o) end function tril(o::PyObject, num::Int64 = 0) flag = false if length(size(o))==2 flag = true o = tf.expand_dims(o, 0) end tri_lu_ = load_system_op("tri_lu"; multiple=false) u,num,lu = convert_to_tensor([o,num,1], [Float64,Int64,Int64]) out = tri_lu_(u,num,lu) if flag return out[1] else return out end end function triu(o::PyObject, num::Int64 = 0) flag = false if length(size(o))==2 flag = true o = tf.expand_dims(o, 0) end tri_lu_ = load_system_op("tri_lu"; multiple=false) u,num,lu = convert_to_tensor([o,num,0], [Float64,Int64,Int64]) out = tri_lu_(u,num,lu) if flag return out[1] else return out end end """ split(o::PyObject, num_or_size_splits::Union{Integer, Array{<:Integer}, PyObject}; kwargs...) Splits `o` according to `num_or_size_splits` # Example 1 ```julia a = constant(rand(10,8,6)) split(a, 5) ``` Expected output: ``` 5-element Array{PyCall.PyObject,1}: PyObject <tf.Tensor 'split_5:0' shape=(2, 8, 6) dtype=float64> PyObject <tf.Tensor 'split_5:1' shape=(2, 8, 6) dtype=float64> PyObject <tf.Tensor 'split_5:2' shape=(2, 8, 6) dtype=float64> PyObject <tf.Tensor 'split_5:3' shape=(2, 8, 6) dtype=float64> PyObject <tf.Tensor 'split_5:4' shape=(2, 8, 6) dtype=float64> ``` # Example 2 ```julia a = constant(rand(10,8,6)) split(a, [4,3,1], dims=2) ``` Expected output: ``` 3-element Array{PyCall.PyObject,1}: PyObject <tf.Tensor 'split_6:0' shape=(10, 4, 6) dtype=float64> PyObject <tf.Tensor 'split_6:1' shape=(10, 3, 6) dtype=float64> PyObject <tf.Tensor 'split_6:2' shape=(10, 1, 6) dtype=float64> ``` # Example 3 ```julia a = constant(rand(10,8,6)) split(a, 3, dims=3) ``` Expected output: ``` 3-element Array{PyCall.PyObject,1}: PyObject <tf.Tensor 'split_7:0' shape=(10, 8, 2) dtype=float64> PyObject <tf.Tensor 'split_7:1' shape=(10, 8, 2) dtype=float64> PyObject <tf.Tensor 'split_7:2' shape=(10, 8, 2) dtype=float64> ``` """ function Base.:split(o::PyObject, num_or_size_splits::Union{Integer, Array{<:Integer}, PyObject}; kwargs...) kwargs = jlargs(kwargs) tf.split(o, num_or_size_splits; kwargs...) end """ reverse(o::PyObject, kwargs...) Given a tensor `o`, and an index `dims` representing the set of dimensions of tensor to reverse. # Example ```julia a = rand(10,2) A = constant(a) @assert run(sess, reverse(A, dims=1)) == reverse(a, dims=1) @assert run(sess, reverse(A, dims=2)) == reverse(a, dims=2) @assert run(sess, reverse(A, dims=-1)) == reverse(a, dims=2) ``` """ function reverse(o::PyObject; dims::Integer = -1) if dims==-1 dims = length(size(o)) end dims = convert_to_tensor([dims-1], dtype=Int32) tf.reverse(o, dims) end function swish(x) return x*sigmoid(x) end function hard_swish(x) return x*sigmoid(100*x) end function hard_sigmoid(x) return min(1.0, maximum(0, x+0.5)) end function concat_relu(x) relu([x -x]) end function concat_elu(x) elu([x -x]) end function concat_hard_swish(x) hard_swish([x -x]) end function fourier(x, terms::Int64=10) list = [] for i = 1:terms push!(list, sin(x)) push!(list, cos(x)) end hcat(list...) end function __rollfunction(u, window::Int64, op) rolling_functions_ = load_op_and_grad(libadcme,"rolling_functions") u,window_ = convert_to_tensor(Any[u,window], [Float64,Int64]) @assert isnothing(size(u)) || length(size(u))==1 @assert length(u)>=window @assert window>1 out = rolling_functions_(u,window_,op) if !isnothing(length(u)) set_shape(out, (length(u) - window + 1,)) else out end end @doc raw""" rollmean(u, window::Int64) Returns the rolling mean given a window size `m` $$o_k = \frac{\sum_{i=k}^{k+m-1} u_i}{m}$$ ## Rolling functions in ADCME: - [`rollmean`](@ref): rolling mean - [`rollsum`](@ref): rolling sum - [`rollvar`](@ref): rolling variance - [`rollstd`](@ref): rolling standard deviation """ function rollmean(u, window::Int64) __rollfunction(u, window, "mean") end @doc raw""" rollsum(u, window::Int64) Returns the rolling sum given a window size `m` $$o_k = \sum_{i=k}^{k+m-1} u_i$$ ## Rolling functions in ADCME: - [`rollmean`](@ref): rolling mean - [`rollsum`](@ref): rolling sum - [`rollvar`](@ref): rolling variance - [`rollstd`](@ref): rolling standard deviation """ function rollsum(u, window::Int64) __rollfunction(u, window, "sum") end @doc raw""" rollvar(u, window::Int64) Returns the rolling variance given a window size `m` $$o_k = \frac{\sum_{i=k}^{k+m-1} (u_i - m_i)^2}{m-1}$$ Here $m_i$ is the rolling mean computed using [`rollmean`](@ref) ## Rolling functions in ADCME: - [`rollmean`](@ref): rolling mean - [`rollsum`](@ref): rolling sum - [`rollvar`](@ref): rolling variance - [`rollstd`](@ref): rolling standard deviation """ function rollvar(u, window::Int64) __rollfunction(u, window, "var") end @doc raw""" rollstd(u, window::Int64) Returns the rolling standard deviation given a window size `m` $$o_k = \sqrt{\frac{\sum_{i=k}^{k+m-1} (u_i - m_i)^2}{m-1}}$$ Here $m_i$ is the rolling mean computed using [`rollmean`](@ref) ## Rolling functions in ADCME: - [`rollmean`](@ref): rolling mean - [`rollsum`](@ref): rolling sum - [`rollvar`](@ref): rolling variance - [`rollstd`](@ref): rolling standard deviation """ function rollstd(u, window::Int64) __rollfunction(u, window, "std") end """ softmax_cross_entropy_with_logits(logits::Union{Array, PyObject}, labels::Union{Array, PyObject}) Computes softmax cross entropy between `logits` and `labels` `logits` is typically the output of a linear layer. For example, ``` logits = [ 0.124575 0.511463 0.945934 0.538054 0.0749339 0.187802 0.355604 0.052569 0.177009 0.896386 0.546113 0.456832 ] labels = [2;1;2;3] ``` !!! info The values of `labels` are from {1,2,...,`num_classes`}. Here `num_classes` is the number of columns in `logits`. The predicted labels associated with `logits` is ``` argmax(softmax(logits), dims = 2) ``` Labels can also be one hot vectors ``` labels = [0 1 1 0 0 1 0 1] ``` """ function softmax_cross_entropy_with_logits(logits::Union{Array, PyObject}, labels::Union{Array, PyObject}) logits = convert_to_tensor(logits, dtype = Float64) labels = convert_to_tensor(labels, dtype = Int64) if ndims(labels)==1 tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels - 1) else tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels) end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
29658
export AdadeltaOptimizer, AdagradDAOptimizer, AdagradOptimizer, AdamOptimizer, GradientDescentOptimizer, RMSPropOptimizer, minimize, ScipyOptimizerInterface, ScipyOptimizerMinimize, BFGS!, CustomOptimizer, newton_raphson, newton_raphson_with_grad, NonlinearConstrainedProblem, Optimize!, optimize #### Section 1: TensorFlow Optimizers #### @doc raw""" AdamOptimizer(learning_rate=1e-3;kwargs...) Constructs an ADAM optimizer. # Example ```julia learning_rate = 1e-3 opt = AdamOptimizer(learning_rate).minimize(loss) sess = Session(); init(sess) for i = 1:1000 _, l = run(sess, [opt, loss]) @info "Iteration $i, loss = $l") end ``` # Dynamical Learning Rate We can also use dynamical learning rate. For example, if we want to use a learning rate $l_t = \frac{1}{1+t}$, we have ```julia learning_rate = placeholder(1.0) opt = AdamOptimizer(learning_rate).minimize(loss) sess = Session(); init(sess) for i = 1:1000 _, l = run(sess, [opt, loss], lr = 1/(1+i)) @info "Iteration $i, loss = $l") end ``` The usage of other optimizers such as [`GradientDescentOptimizer`](@ref), [`AdadeltaOptimizer`](@ref), and so on is similar: we can just replace `AdamOptimizer` with the corresponding ones. """ function AdamOptimizer(learning_rate=1e-3;kwargs...) return tf.train.AdamOptimizer(;learning_rate=learning_rate,kwargs...) end """ AdadeltaOptimizer(learning_rate=1e-3;kwargs...) See [`AdamOptimizer`](@ref) for descriptions. """ function AdadeltaOptimizer(learning_rate=1e-3;kwargs...) return tf.train.AdadeltaOptimizer(;learning_rate=learning_rate,kwargs...) end """ AdagradDAOptimizer(learning_rate=1e-3; global_step, kwargs...) See [`AdamOptimizer`](@ref) for descriptions. """ function AdagradDAOptimizer(learning_rate=1e-3; global_step, kwargs...) return tf.train.AdagradDAOptimizer(learning_rate, global_step;kwargs...) end """ AdagradOptimizer(learning_rate=1e-3;kwargs...) See [`AdamOptimizer`](@ref) for descriptions. """ function AdagradOptimizer(learning_rate=1e-3;kwargs...) return tf.train.AdagradOptimizer(learning_rate;kwargs...) end """ GradientDescentOptimizer(learning_rate=1e-3;kwargs...) See [`AdamOptimizer`](@ref) for descriptions. """ function GradientDescentOptimizer(learning_rate=1e-3;kwargs...) return tf.train.GradientDescentOptimizer(learning_rate;kwargs...) end """ RMSPropOptimizer(learning_rate=1e-3;kwargs...) See [`AdamOptimizer`](@ref) for descriptions. """ function RMSPropOptimizer(learning_rate=1e-3;kwargs...) return tf.train.RMSPropOptimizer(learning_rate;kwargs...) end function minimize(o::PyObject, loss::PyObject; kwargs...) o.minimize(loss;kwargs...) end """ ScipyOptimizerInterface(loss; method="L-BFGS-B", options=Dict("maxiter"=> 15000, "ftol"=>1e-12, "gtol"=>1e-12), kwargs...) A simple interface for Scipy Optimizer. See also [`ScipyOptimizerMinimize`](@ref) and [`BFGS!`](@ref). """ ScipyOptimizerInterface(loss; method="L-BFGS-B", options=Dict("maxiter"=> 15000, "ftol"=>1e-12, "gtol"=>1e-12), kwargs...) = tf.contrib.opt.ScipyOptimizerInterface(loss; method = method, options=options, kwargs...) """ ScipyOptimizerMinimize(sess::PyObject, opt::PyObject; kwargs...) Minimizes a scalar Tensor. Variables subject to optimization are updated in-place at the end of optimization. Note that this method does not just return a minimization Op, unlike `minimize`; instead it actually performs minimization by executing commands to control a Session https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface. See also [`ScipyOptimizerInterface`](@ref) and [`BFGS!`](@ref). - feed_dict: A feed dict to be passed to calls to session.run. - fetches: A list of Tensors to fetch and supply to loss_callback as positional arguments. - step_callback: A function to be called at each optimization step; arguments are the current values of all optimization variables packed into a single vector. - loss_callback: A function to be called every time the loss and gradients are computed, with evaluated fetches supplied as positional arguments. - run_kwargs: kwargs to pass to session.run. """ function ScipyOptimizerMinimize(sess::PyObject, opt::PyObject; kwargs...) opt.minimize(sess;kwargs...) end @doc raw""" CustomOptimizer(opt::Function, name::String) creates a custom optimizer with struct name `name`. For example, we can integrate `Optim.jl` with `ADCME` by constructing a new optimizer ```julia CustomOptimizer("Con") do f, df, c, dc, x0, x_L, x_U opt = Opt(:LD_MMA, length(x0)) bd = zeros(length(x0)); bd[end-1:end] = [-Inf, 0.0] opt.lower_bounds = bd opt.xtol_rel = 1e-4 opt.min_objective = (x,g)->(g[:]= df(x); return f(x)[1]) inequality_constraint!(opt, (x,g)->( g[:]= dc(x);c(x)[1]), 1e-8) (minf,minx,ret) = NLopt.optimize(opt, x0) minx end ``` Here ∘ `f`: a function that returns $f(x)$ ∘ `df`: a function that returns $\nabla f(x)$ ∘ `c`: a function that returns the constraints $c(x)$ ∘ `dc`: a function that returns $\nabla c(x)$ ∘ `x0`: initial guess ∘ `nineq`: number of inequality constraints ∘ `neq`: number of equality constraints ∘ `x_L`: lower bounds of optimizable variables ∘ `x_U`: upper bounds of optimizable variables Then we can create an optimizer with ``` opt = Con(loss, inequalities=[c1], equalities=[c2]) ``` To trigger the optimization, use ``` minimize(opt, sess) ``` Note thanks to the global variable scope of Julia, `step_callback`, `optimizer_kwargs` can actually be passed from Julia environment directly. """ function CustomOptimizer(opt::Function) name = "CustomOptimizer_"*randstring(16) name = Symbol(name) @eval begin @pydef mutable struct $name <: tf.contrib.opt.ExternalOptimizerInterface function _minimize(self; initial_val, loss_grad_func, equality_funcs, equality_grad_funcs, inequality_funcs, inequality_grad_funcs, packed_bounds, step_callback, optimizer_kwargs) local x_L, x_U x0 = initial_val # rename nineq, neq = length(inequality_funcs), length(equality_funcs) printstyled("[CustomOptimizer] Number of inequalities constraints = $nineq, Number of equality constraints = $neq\n", color=:blue) nvar = Int64(sum([prod(self._vars[i].get_shape().as_list()) for i = 1:length(self._vars)])) printstyled("[CustomOptimizer] Total number of variables = $nvar\n", color=:blue) if isnothing(packed_bounds) printstyled("[CustomOptimizer] No bounds provided, use (-∞, +∞) as default; or you need to provide bounds in the function CustomOptimizer\n", color=:blue) x_L = -Inf*ones(nvar); x_U = Inf*ones(nvar) else x_L = vcat([x[1] for x in packed_bounds]...) x_U = vcat([x[2] for x in packed_bounds]...) end ncon = nineq + neq f(x) = loss_grad_func(x)[1] df(x) = loss_grad_func(x)[2] function c(x) inequalities = vcat([inequality_funcs[i](x) for i = 1:nineq]...) equalities = vcat([equality_funcs[i](x) for i=1:neq]...) return Array{eltype(initial_val)}([inequalities;equalities]) end function dc(x) inequalities = [inequality_grad_funcs[i](x) for i = 1:nineq] equalities = [equality_grad_funcs[i](x) for i=1:neq] values = zeros(eltype(initial_val),nvar, ncon) for idc = 1:nineq values[:,idc] = inequalities[idc][1] end for idc = 1:neq values[:,idc+nineq] = equalities[idc][1] end return values[:] end $opt(f, df, c, dc, x0, x_L, x_U) end end return $name end end @doc raw""" BFGS!(sess::PyObject, loss::PyObject, max_iter::Int64=15000; vars::Array{PyObject}=PyObject[], callback::Union{Function, Nothing}=nothing, method::String = "L-BFGS-B", kwargs...) `BFGS!` is a simplified interface for **L-BFGS-B** optimizer. See also [`ScipyOptimizerInterface`](@ref). `callback` is a callback function with signature ```julia callback(vs::Array, iter::Int64, loss::Float64) ``` `vars` is an array consisting of tensors and its values will be the input to `vs`. # Example 1 ```julia a = Variable(1.0) loss = (a - 10.0)^2 sess = Session(); init(sess) BFGS!(sess, loss) ``` # Example 2 ```julia θ1 = Variable(1.0) θ2 = Variable(1.0) loss = (θ1-1)^2 + (θ2-2)^2 cb = (vs, iter, loss)->begin printstyled("[#iter $iter] θ1=$(vs[1]), θ2=$(vs[2]), loss=$loss\n", color=:green) end sess = Session(); init(sess) cb(run(sess, [θ1, θ2]), 0, run(sess, loss)) BFGS!(sess, loss, 100; vars=[θ1, θ2], callback=cb) ``` # Example 3 Use `bounds` to specify upper and lower bound of a variable. ```julia x = Variable(2.0) loss = x^2 sess = Session(); init(sess) BFGS!(sess, loss, bounds=Dict(x=>[1.0,3.0])) ``` !!! note Users can also use other scipy optimization algorithm by providing `method` keyword arguments. For example, you can use the BFGS optimizer ```julia BFGS!(sess, loss, method = "BFGS") ``` """-> function BFGS!(sess::PyObject, loss::PyObject, max_iter::Int64=15000; vars::Array{PyObject}=PyObject[], callback::Union{Function, Nothing}=nothing, method::String = "L-BFGS-B", kwargs...) __cnt = 0 __loss = 0 __var = nothing out = [] function print_loss(l, vs...) if !isnothing(callback); __var = vs; end if mod(__cnt,1)==0 println("iter $__cnt, current loss=",l) end __loss = l __cnt += 1 end __iter = 0 function step_callback(rk) if mod(__iter,1)==0 println("================ STEP $__iter ===============") end if !isnothing(callback) callback(__var, __iter, __loss) end push!(out, __loss) __iter += 1 end kwargs = Dict(kwargs) if haskey(kwargs, :bounds) kwargs[:var_to_bounds] = kwargs[:bounds] delete!(kwargs, :bounds) end feed_dict = nothing if haskey(kwargs, :feed_dict) feed_dict = kwargs[:feed_dict] delete!(kwargs, :feed_dict) end if haskey(kwargs, :var_to_bounds) desc = "`bounds` or `var_to_bounds` keywords of `BFGS!` only accepts dictionaries whose keys are Variables" for (k,v) in kwargs[:var_to_bounds] if !(hasproperty(k, "trainable")) error("The tensor $k does not have property `trainable`, indicating it is not a `Variable`. $desc\n") end if !k.trainable @warn("The variable $k is not trainable, ignoring the bounds") end end end opt = ScipyOptimizerInterface(loss, method=method,options=Dict("maxiter"=> max_iter, "ftol"=>1e-12, "gtol"=>1e-12); kwargs...) @info "Optimization starts..." ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=step_callback, fetches=[loss, vars...], feed_dict = feed_dict) out end """ BFGS!(value_and_gradients_function::Function, initial_position::Union{PyObject, Array{Float64}}, max_iter::Int64=50, args...;kwargs...) Applies the BFGS optimizer to `value_and_gradients_function` """ function BFGS!(value_and_gradients_function::Function, initial_position::Union{PyObject, Array{Float64}}, max_iter::Int64=50, args...;kwargs...) tfp.optimizer.bfgs_minimize(value_and_gradients_function, initial_position=initial_position, args...;max_iterations=max_iter, kwargs...)[5] end struct NRResult x::Union{PyObject, Array{Float64}} # final solution res::Union{PyObject, Array{Float64, 1}} # residual u::Union{PyObject, Array{Float64, 2}} # solution history converged::Union{PyObject, Bool} # whether it converges iter::Union{PyObject, Int64} # number of iterations end function Base.:run(sess::PyObject, nr::NRResult) NRResult(run(sess, [nr.x, nr.res, nr.u, nr.converged, nr.iter])...) end function backtracking(compute_gradient::Function , u::PyObject) f0, r0, _, δ0 = compute_gradient(u) df0 = -sum(r0.*δ0) c1 = options.newton_raphson.linesearch_options.c1 ρ_hi = options.newton_raphson.linesearch_options.ρ_hi ρ_lo = options.newton_raphson.linesearch_options.ρ_lo iterations = options.newton_raphson.linesearch_options.iterations maxstep = options.newton_raphson.linesearch_options.maxstep αinitial = options.newton_raphson.linesearch_options.αinitial @assert !isnothing(f0) @assert ρ_lo < ρ_hi @assert iterations > 0 function condition(i, ta_α, ta_f) f = read(ta_f, i) α = read(ta_α, i) tf.logical_and(f > f0 + c1 * α * df0, i<=iterations) end function body(i, ta_α, ta_f) α_1 = read(ta_α, i-1) α_2 = read(ta_α, i) d = 1/(α_1^2*α_2^2*(α_2-α_1)) f = read(ta_f, i) a = (α_1^2*(f - f0 - df0*α_2) - α_2^2*(df0 - f0 - df0*α_1))*d b = (-α_1^3*(f - f0 - df0*α_2) + α_2^3*(df0 - f0 - df0*α_1))*d α_tmp = tf.cond(abs(a)<1e-10, ()->df0/(2b), ()->begin d = max(b^2-3a*df0, constant(0.0)) (-b + sqrt(d))/(3a) end) α_2 = tf.cond(tf.math.is_nan(α_tmp), ()->α_2*ρ_hi, ()->begin α_tmp = min(α_tmp, α_2*ρ_hi) α_2 = max(α_tmp, α_2*ρ_lo) end) fnew, _, _, _ = compute_gradient(u - α_2*δ0) ta_f = write(ta_f, i+1, fnew) ta_α = write(ta_α, i+1, α_2) i+1, ta_α, ta_f end ta_α = TensorArray(iterations) ta_α = write(ta_α, 1, constant(αinitial)) ta_α = write(ta_α, 2, constant(αinitial)) ta_f = TensorArray(iterations) ta_f = write(ta_f, 1, constant(0.0)) ta_f = write(ta_f, 2, f0) i = constant(2, dtype=Int32) iter, out_α, out_f = while_loop(condition, body, [i, ta_α, ta_f]; back_prop=false) α = read(out_α, iter) return α end """ newton_raphson(func::Function, u0::Union{Array,PyObject}, θ::Union{Missing,PyObject, Array{<:Real}}=missing, args::PyObject...) where T<:Real Newton Raphson solver for solving a nonlinear equation. ∘ `func` has the signature - `func(θ::Union{Missing,PyObject}, u::PyObject)->(r::PyObject, A::Union{PyObject,SparseTensor})` (if `linesearch` is off) - `func(θ::Union{Missing,PyObject}, u::PyObject)->(fval::PyObject, r::PyObject, A::Union{PyObject,SparseTensor})` (if `linesearch` is on) where `r` is the residual and `A` is the Jacobian matrix; in the case where `linesearch` is on, the function value `fval` must also be supplied. ∘ `θ` are external parameters. ∘ `u0` is the initial guess for `u` ∘ `args`: additional inputs to the func function ∘ `kwargs`: keyword arguments to `func` The solution can be configured via `ADCME.options.newton_raphson` - `max_iter`: maximum number of iterations (default=100) - `rtol`: relative tolerance for termination (default=1e-12) - `tol`: absolute tolerance for termination (default=1e-12) - `LM`: a float number, Levenberg-Marquardt modification ``x^{k+1} = x^k - (J^k + \\mu^k)^{-1}g^k`` (default=0.0) - `linesearch`: whether linesearch is used (default=false) Currently, the backtracing algorithm is implemented. The parameters for `linesearch` are supplied via `options.newton_raphson.linesearch_options` - `c1`: stop criterion, ``f(x^k) < f(0) + \\alpha c_1 f'(0)`` - `ρ_hi`: the new step size ``\\alpha_1\\leq \\rho_{hi}\\alpha_0`` - `ρ_lo`: the new step size ``\\alpha_1\\geq \\rho_{lo}\\alpha_0`` - `iterations`: maximum number of iterations for linesearch - `maxstep`: maximum allowable steps - `αinitial`: initial guess for the step size ``\\alpha`` """ function newton_raphson(func::Function, u0::Union{Array,PyObject}, θ::Union{Missing,PyObject, Array{<:Real}}=missing, args::PyObject...; kwargs...) where T<:Real f = (θ, u)->func(θ, u, args...; kwargs...) if length(size(u0))!=1 error("ADCME: Initial guess must be a vector") end if length(u0)===nothing error("ADCME: The length of the initial guess must be determined at compilation.") end u = convert_to_tensor(u0) max_iter = options.newton_raphson.max_iter verbose = options.newton_raphson.verbose oprtol = options.newton_raphson.rtol optol = options.newton_raphson.tol LM = options.newton_raphson.LM linesearch = options.newton_raphson.linesearch function condition(i, ta_r, ta_u) if verbose; @info "(2/4)Parsing Condition..."; end if_else(tf.math.logical_and(tf.equal(i,2), tf.less(i, max_iter+1)), constant(true), ()->begin tol = read(ta_r, i-1) rel_tol = read(ta_r, i-2) if verbose op = tf.print("Newton iteration ", i-2, ": r (abs) =", tol, " r (rel) =", rel_tol, summarize=-1) tol = bind(tol, op) end return tf.math.logical_and( tf.math.logical_and(tol>=optol, rel_tol>=oprtol), i<=max_iter ) end ) end function body(i, ta_r, ta_u) local δ, val, r_ if verbose; @info "(3/4)Parsing Main Loop..."; end u_ = read(ta_u, i-1) function compute_gradients(x) val = nothing out = f(θ, x) if length(out)==2 r_, J = out else val, r_, J = out end if LM>0.0 # Levenberg-Marquardt μ = LM μ = convert_to_tensor(μ) δ = (J + μ*spdiag(size(J,1)))\r_ else δ = J\r_ end return val, r_, J, δ end if linesearch if verbose; @info "Perform Linesearch..."; end step_size = backtracking(compute_gradients, u_) else step_size = 1.0 end val, r_, _, δ = compute_gradients(u_) ta_r = write(ta_r, i, norm(r_)) δ = step_size * δ new_u = u_ - δ if verbose && linesearch op = tf.print("Current Step Size = ", step_size) new_u = bind(new_u, op) end ta_u = write(ta_u, i, new_u) i+1, ta_r, ta_u end if verbose; @info "(1/4)Intializing TensorArray..."; end out = f(θ, u) r0 = length(out)==2 ? out[1] : out[2] tol0 = norm(r0) if verbose op = tf.print("Newton-Raphson with absolute tolerance = $optol and relative tolerance = $oprtol") tol0 = bind(tol0, op) end ta_r = TensorArray(max_iter) ta_u = TensorArray(max_iter) ta_u = write(ta_u, 1, u) ta_r = write(ta_r, 1, tol0) i = constant(2, dtype=Int32) i_, ta_r_, ta_u_ = while_loop(condition, body, [i, ta_r, ta_u], back_prop=false) r_out, u_out = stack(ta_r_), stack(ta_u_) if verbose; @info "(4/4)Postprocessing Results..."; end sol = if_else( tf.less(tol0,optol), u, u_out[i_-1] ) res = if_else( tf.less(tol0,optol), reshape(tol0, 1), tf.slice(r_out, [1],[i_-2]) ) u_his = if_else( tf.less(tol0,optol), reshape(u, 1, length(u)), tf.slice(u_out, [0; 0], [i_-2; length(u)]) ) iter = if_else( tf.less(tol0,optol), constant(1), cast(Int64,i_)-2 ) converged = if_else( tf.less(i_, max_iter), constant(true), constant(false) ) # it makes no sense to take the gradients sol = stop_gradient(sol) res = stop_gradient(res) NRResult(sol, res, u_his', converged, iter) end """ newton_raphson_with_grad(f::Function, u0::Union{Array,PyObject}, θ::Union{Missing,PyObject, Array{<:Real}}=missing, args::PyObject...) where T<:Real Differentiable Newton-Raphson algorithm. See [`newton_raphson`](@ref). Use `ADCME.options.newton_raphson` to supply options. # Example ```julia function f(θ, x) x^3 - θ, 3spdiag(x^2) end θ = constant([2. .^3;3. ^3; 4. ^3]) x = newton_raphson_with_grad(f, constant(ones(3)), θ) run(sess, x)≈[2.;3.;4.] run(sess, gradients(sum(x), θ)) ``` """ function newton_raphson_with_grad(func::Function, u0::Union{Array,PyObject}, θ::Union{Missing,PyObject, Array{<:Real}}=missing, args::PyObject...; kwargs...) where T<:Real f = ( θ, u, args...) -> func(θ, u, args...; kwargs...) function forward(θ, args...) nr = newton_raphson(f, u0, θ, args...) return nr.x end function backward(dy, x, θ, xargs...) θ = copy(θ) args = [copy(z) for z in xargs] r, A = f(θ, x, args...) dy = tf.convert_to_tensor(dy) g = independent(A'\dy) s = sum(r*g) gs = [-gradients(s, z) for z in args] if length(args)==0 -gradients(s, θ) else -gradients(s, θ), gs... end end if !isa(θ, PyObject) @warn("θ is not a PyObject, no gradients is available") return forward(θ, args...) end fn = register(forward, backward) return fn(θ, args...) end @doc raw""" NonlinearConstrainedProblem(f::Function, L::Function, θ::PyObject, u0::Union{PyObject, Array{Float64}}; options::Union{Dict{String, T}, Missing}=missing) where T<:Integer Computes the gradients ``\frac{\partial L}{\partial \theta}`` ```math \min \ L(u) \quad \mathrm{s.t.} \ F(\theta, u) = 0 ``` `u0` is the initial guess for the numerical solution `u`, see [`newton_raphson`](@ref). Caveats: Assume `r, A = f(θ, u)` and `θ` are the unknown parameters, `gradients(r, θ)` must be defined (backprop works properly) Returns: It returns a tuple (`L`: loss, `C`: constraints, and `Graidents`) ```math \left(L(u), u, \frac{\partial L}{\partial θ}\right) ``` # Example We want to solve the following constrained optimization problem $$\begin{aligned}\min_\theta &\; L(u) = (u-1)^3\\ \text{s.t.} &\; u^3 + u = \theta\end{aligned}$$ The solution is $\theta = 2$. The Julia code is ```julia function f(θ, u) u^3 + u - θ, spdiag(3u^2+1) end function L(u) sum((u-1)^2) end pl = Variable(ones(1)) l, θ, dldθ = NonlinearConstrainedProblem(f, L, pl, ones(1)) ``` We can coupled it with a mathematical optimizer ```julia using Optim sess = Session(); init(sess) BFGS!(sess, l, dldθ, pl) ``` """ function NonlinearConstrainedProblem(f::Function, L::Function, θ::Union{Array{Float64,1},PyObject}, u0::Union{PyObject, Array{Float64}}) where T<:Real θ = convert_to_tensor(θ) nr = newton_raphson(f, u0, θ) r, A = f(θ, nr.x) l = L(nr.x) top_grad = tf.convert_to_tensor(gradients(l, nr.x)) A = A' g = A\top_grad g = independent(g) # preventing gradients backprop l, nr.x, tf.convert_to_tensor(-gradients(sum(r*g), θ)) end @doc raw""" BFGS!(sess::PyObject, loss::PyObject, grads::Union{Array{T},Nothing,PyObject}, vars::Union{Array{PyObject},PyObject}; kwargs...) where T<:Union{Nothing, PyObject} Running BFGS algorithm ``\min_{\texttt{vars}} \texttt{loss}(\texttt{vars})`` The gradients `grads` must be provided. Typically, `grads[i] = gradients(loss, vars[i])`. `grads[i]` can exist on different devices (GPU or CPU). # Example 1 ```julia import Optim # required a = Variable(0.0) loss = (a-1)^2 g = gradients(loss, a) sess = Session(); init(sess) BFGS!(sess, loss, g, a) ``` # Example 2 ```julia import Optim # required a = Variable(0.0) loss = (a^2+a-1)^2 g = gradients(loss, a) sess = Session(); init(sess) cb = (vs, iter, loss)->begin printstyled("[#iter $iter] a = $vs, loss=$loss\n", color=:green) end BFGS!(sess, loss, g, a; callback = cb) ``` """ function BFGS!(sess::PyObject, loss::PyObject, grads::Union{Array{T},Nothing,PyObject}, vars::Union{Array{PyObject},PyObject}; kwargs...) where T<:Union{Nothing, PyObject} Optimize!(sess, loss; vars=vars, grads = grads, kwargs...) end """ Optimize!(sess::PyObject, loss::PyObject, max_iter::Int64 = 15000; vars::Union{Array{PyObject},PyObject, Missing} = missing, grads::Union{Array{T},Nothing,PyObject, Missing} = missing, optimizer = missing, callback::Union{Function, Missing}=missing, x_tol::Union{Missing, Float64} = missing, f_tol::Union{Missing, Float64} = missing, g_tol::Union{Missing, Float64} = missing, kwargs...) where T<:Union{Nothing, PyObject} An interface for using optimizers in the Optim package or custom optimizers. - `sess`: a session; - `loss`: a loss function; - `max_iter`: maximum number of max_iterations; - `vars`, `grads`: optimizable variables and gradients - `optimizer`: Optim optimizers (default: LBFGS) - `callback`: callback after each linesearch completion (NOT one step in the linesearch) Other arguments are passed to Options in Optim optimizers. We can also construct a custom optimizer. For example, to construct an optimizer out of Ipopt: ```julia import Ipopt x = Variable(rand(2)) loss = (1-x[1])^2 + 100(x[2]-x[1]^2)^2 function opt(f, g, fg, x0, kwargs...) prob = createProblem(2, -100ones(2), 100ones(2), 0, Float64[], Float64[], 0, 0, f, (x,g)->nothing, (x,G)->g(G, x), (x, mode, rows, cols, values)->nothing, nothing) prob.x = x0 Ipopt.addOption(prob, "hessian_approximation", "limited-memory") status = Ipopt.solveProblem(prob) println(Ipopt.ApplicationReturnStatus[status]) println(prob.x) Ipopt.freeProblem(prob) nothing end sess = Session(); init(sess) Optimize!(sess, loss, optimizer = opt) ``` """ function Optimize!(sess::PyObject, loss::PyObject, max_iter::Int64 = 15000; vars::Union{Array{PyObject},PyObject, Missing} = missing, grads::Union{Array{T},Nothing,PyObject, Missing} = missing, optimizer = missing, callback::Union{Function, Missing}=missing, x_tol::Union{Missing, Float64} = missing, f_tol::Union{Missing, Float64} = missing, g_tol::Union{Missing, Float64} = missing, return_feval_loss::Bool = false, kwargs...) where T<:Union{Nothing, PyObject} vars = coalesce(vars, get_collection()) grads = coalesce(grads, gradients(loss, vars)) if isa(vars, PyObject); vars = [vars]; end if isa(grads, PyObject); grads = [grads]; end if length(grads)!=length(vars); error("ADCME: length of grads and vars do not match"); end if !all(is_variable.(vars)) error("ADCME: the input `vars` should be trainable variables") end idx = ones(Bool, length(grads)) pynothing = pytypeof(PyObject(nothing)) for i = 1:length(grads) if isnothing(grads[i]) || pytypeof(grads[i])==pynothing idx[i] = false end end grads = grads[idx] vars = vars[idx] sizes = [] for v in vars push!(sizes, size(v)) end grds = vcat([tf.reshape(g, (-1,)) for g in grads]...) vs = vcat([tf.reshape(v, (-1,)) for v in vars]...); x0 = run(sess, vs) pl = placeholder(x0) n = 0 assign_ops = PyObject[] for (k,v) in enumerate(vars) push!(assign_ops, assign(v, tf.reshape(pl[n+1:n+prod(sizes[k])], sizes[k]))) n += prod(sizes[k]) end __loss = 0.0 __losses = Float64[] __feval_loss = Float64[] __iter = 0 __value = nothing __ls_iter = 0 function f(x) run(sess, assign_ops, pl=>x) __loss = run(sess, loss) __ls_iter += 1 push!(__feval_loss, __loss) options.training.verbose && (println("iter $__ls_iter, current loss = $__loss")) return __loss end function g!(G, x) run(sess, assign_ops, pl=>x) G[:] = run(sess, grds) __value = x end function fg(G, x) run(sess, assign_ops, pl=>x) __loss, G[:] = run(sess, [loss, grds]) __ls_iter += 1 __value = x return __loss end if isa(optimizer, Function) if length(kwargs)>0 kwargs_ = copy(kwargs) else kwargs_ = Dict{Symbol, Any}() end kwargs_[:max_iter] = max_iter __losses = optimizer(f, g!, fg, x0; kwargs_...) if return_feval_loss __losses = (__losses, __feval_loss) end return __losses end if !isdefined(Main, :Optim) error("Package Optim.jl must be imported in the main module using `import Optim` or `using Optim`") end function callback1(x) @info x.iteration, x.value __iter = x.iteration __loss = x.value push!(__losses, __loss) if options.training.verbose println("================== STEP $__iter ==================") end if !ismissing(callback) callback(__value, __iter, __loss) end false end method = coalesce(optimizer, Main.Optim.LBFGS()) @info "Optimization starts..." res = Main.Optim.optimize(f, g!, x0, method, Main.Optim.Options( ; store_trace = false, show_trace = false, callback=callback1, iterations = max_iter, x_tol = coalesce(x_tol, 1e-12), f_tol = coalesce(f_tol, 1e-12), g_tol = coalesce(g_tol, 1e-12), kwargs...)) if return_feval_loss __losses = (__losses, __feval_loss) end return __losses end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
2004
export reset_default_options ########################### OptionsSparse ########################### """ OptionsSparse Options for sparse linear algebra. """ mutable struct OptionsSparse auto_reorder::Bool solver::String OptionsSparse() = new(true, "SparseLU") end ########################### OptionsNewtonRaphson ########################### """ OptionsNewtonRaphson_LineSearch Options for the line search in the Newton Raphson algorithm. """ mutable struct OptionsNewtonRaphson_LineSearch c1::Float64 ρ_hi::Float64 ρ_lo::Float64 iterations::Int64 maxstep::Int64 αinitial::Float64 OptionsNewtonRaphson_LineSearch() = new(1e-4, 0.5, 0.1, 1000, 9999999, 1.0) end """ OptionsNewtonRaphson Options for Newton Raphson related algorithms. """ mutable struct OptionsNewtonRaphson max_iter::Int64 verbose::Bool rtol::Float64 tol::Float64 LM::Float64 linesearch::Bool linesearch_options::OptionsNewtonRaphson_LineSearch OptionsNewtonRaphson() = new(100, false, 1e-12, 1e-12, 0.0, false, OptionsNewtonRaphson_LineSearch()) end mutable struct OptionsTraining training::PyObject verbose::Bool OptionsTraining() = new(placeholder(false), true) end mutable struct OptionsMPI solver::String printlevel::Int64 OptionsMPI() = new("BoomerAMG", 2) end mutable struct OptionsCustomOp verbose::Bool OptionsCustomOp() = new(true) end ###################################################### """ Options The container of all options in ADCME. """ mutable struct Options sparse::OptionsSparse newton_raphson::OptionsNewtonRaphson training::OptionsTraining mpi::OptionsMPI customop::OptionsCustomOp Options() = new(OptionsSparse(), OptionsNewtonRaphson(), OptionsTraining(), OptionsMPI(), OptionsCustomOp()) end """ reset_default_options() Results the ADCME options to default. """ function reset_default_options() global options options = Options() end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
8303
export sinkhorn, ot_dist, empirical_sinkhorn, dtw, emd, ot_plot1D, empirical_emd # roadmap: implement all related functions from https://github.com/rflamary/POT/blob/master/ot/bregman.py @doc raw""" sinkhorn(a::Union{PyObject, Array{Float64}}, b::Union{PyObject, Array{Float64}}, M::Union{PyObject, Array{Float64}}; reg::Float64 = 1.0, iter::Int64 = 1000, tol::Float64 = 1e-9, method::String="sinkhorn") Computes the optimal transport with Sinkhorn algorithm. The mathematical formulation is ```math \begin{aligned} \arg\min_P &\ \left(P, M\right) + \lambda \Omega(\Gamma)\\ \text{s.t.} &\ \Gamma 1 = a\\ &\ \Gamma^T 1 = b\\ & \Gamma \geq 0 \end{aligned} ``` Here $\Omega$ is the entropic regularization. Note if $\lambda$ is very small, the algorithm may encounter numerical instabilities. The implementation are adapted from https://github.com/rflamary/POT. """ function sinkhorn(a::Union{PyObject, Array{Float64}}, b::Union{PyObject, Array{Float64}}, M::Union{PyObject, Array{Float64, 2}}; reg::Union{PyObject,Float64} = 1.0, iter::Int64 = 1000, tol::Float64 = 1e-9, method::String="sinkhorn", returnall::Bool=false) if isa(a, Array) @assert sum(a)≈1.0 @assert all(a .>= 0) end if isa(b, Array) @assert sum(b)≈1.0 @assert all(b .>= 0) end a = convert_to_tensor(a) b = convert_to_tensor(b) M = convert_to_tensor(M) reg = convert_to_tensor(reg) iter = convert_to_tensor(iter) tol = convert_to_tensor(tol) if method=="lp" pth = install("OTNetwork") lp = load_op_and_grad(pth, "ot_network"; multiple=true) if returnall P, loss = lp(a, b, M, iter) P = set_shape(P, (length(a), length(b))) P, loss end return lp(a, b, M, iter)[2] else METHODIDS = Dict( "sinkhorn"=>0, "greenkhorn"=>1 ) if !haskey(METHODIDS, method) error("$method not implemented") end METHODID = METHODIDS[method] sk = load_system_op("sinkhorn_knopp"; multiple=true) if returnall return sk(a,b,M,reg,iter,tol, constant(METHODID)) end return sk(a,b,M,reg,iter,tol, constant(METHODID))[2] end end @doc raw""" emd(a::Union{PyObject, Array{Float64}}, b::Union{PyObject, Array{Float64}}, M::Union{PyObject, Array{Float64}}; iter::Int64 = 1000, tol::Float64 = 1e-9, returnall::Bool=false) Computes the Earth Mover's Distance, which is defined as $$D(M) = \sum_{i=1}^m \sum_{j=1}^n M_{ij} d_{ij}$$ Here $M \in \mathbb{R}^{m\times n}$ is the ground distance matrix. The algorithm solves the following optimization problem $$\begin{aligned}\min_{M} &\ D(M)\\\text{s.t.} & \ \sum_{i=1}^m M_{ij} = b_j\\ &\ \sum_{j=1}^n M_{ij} = a_i \end{aligned}$$ The internal solver for the optimization problem is a netflow solver. The algorithm requires $\sum_i a_i = \sum_j b_j = 1$. """ function emd(a::Union{PyObject, Array{Float64}}, b::Union{PyObject, Array{Float64}}, M::Union{PyObject, Array{Float64}}; iter::Int64 = 1000, tol::Float64 = 1e-9, returnall::Bool=false) return sinkhorn(a, b, M, reg = 0.0, iter = iter, tol = tol, method = "lp", returnall = returnall) end """ ot_plot1D(a::Array{Float64, 1}, b::Array{Float64, 1}, M::Array{Float64, 2}) Plots the optimal transport matrix for 1D distributions. """ function ot_plot1D(a::Array{Float64, 1}, b::Array{Float64, 1}, M::Array{Float64, 2}) @assert length(a) == size(M, 1) @assert length(b) == size(M, 2) pl = require_import(:PyPlot) pl.figure(4, figsize = (5, 5)) xa = 0:size(M, 1)-1 xb = 0:size(M, 2)-1 ax1 = pl.subplot(222) pl.plot(xb, b, "r") pl.yticks(()) pl.title("Target") ax2 = pl.subplot(223) pl.plot(a, xa, "b") pl.gca().invert_xaxis() pl.gca().invert_yaxis() pl.xticks(()) pl.title("Source") pl.subplot(224, sharex=ax1, sharey=ax2) pl.imshow(M, interpolation="nearest") pl.axis("off") pl.xlim((0, size(M, 2)-1)) pl.tight_layout() pl.subplots_adjust(wspace=0., hspace=0.2) end @doc raw""" empirical_sinkhorn(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}; reg::Union{PyObject,Float64} = 1.0, iter::Int64 = 1000, tol::Float64 = 1e-9, method::String="sinkhorn", dist::Function=dist, returnall::Bool=false) Computes the empirical Sinkhorn distance with sinkhorn algorithm. Here $x$ and $y$ are samples from two distributions. - `reg` (default = 1.0): entropy regularization parameter - `tol` (default = 1e-9), `iter` (default = 1000): tolerance and max iterations for the Sinkhorn algorithm - `dist` (default = 2): Integer or Function, the distance function between two samples; if `dist` is integer, $L-dist$ norm is used. - `returnall`: returns (`TransportMatrix`, `Loss`) if true; otherwise, only `Loss` is returned. The implementation are adapted from https://github.com/rflamary/POT. """ function empirical_sinkhorn(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}; reg::Union{PyObject,Float64} = 1.0, iter::Int64 = 1000, tol::Float64 = 1e-9, method::String="sinkhorn", dist::Union{Integer,Function}=2, returnall::Bool=false, normalized::Bool = false) x, y = convert_to_tensor([x,y], [Float64, Float64]) length(size(x))==1 && (x = reshape(x, :, 1)) length(size(y))==1 && (y = reshape(y, :, 1)) if isa(dist, Integer) d = copy(dist) dist = (x,y) -> ot_dist(x, y, d) end M = dist(x, y) if normalized M = M/maximum(M) end a = tf.ones(tf.shape(x)[1], dtype=tf.float64)/cast(Float64, tf.shape(x)[1]) b = tf.ones(tf.shape(y)[1], dtype=tf.float64)/cast(Float64, tf.shape(y)[1]) sinkhorn(a, b, M; reg=reg, iter=iter, tol=tol, method=method, returnall=returnall) end """ empirical_emd(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}; iter::Int64 = 1000, tol::Float64 = 1e-9, dist::Union{Integer,Function}=2, returnall::Bool=false) Same as [`empirical_sinkhorn`](@ref), except that the Earth Mover Distance is computed. """ function empirical_emd(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}; iter::Int64 = 1000, tol::Float64 = 1e-9, dist::Union{Integer,Function}=2, returnall::Bool=false, normalized::Bool = false) empirical_sinkhorn(x, y; iter = iter, tol = tol, method = "lp", returnall = returnall) end """ ot_dist(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}, order::Union{Int64, PyObject}=2) Computes the distance function with norm `order`. `dist` returns a ``n\\times m`` matrix, where ``x\\in \\mathbb{R}^{n\\times d}`` and ``y\\in \\mathbb{R}^{m\\times d}``, and the return ``M\\in \\mathbb{R}^{n\\times m}`` ```math M_{ij} = ||x_i - y_j||_{o} ``` """ function ot_dist(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}, order::Union{Int64, PyObject}=2) if !(isa(x, PyObject) || isa(y, PyObject) || isa(order, PyObject)) x = reshape(x, size(x, 1), :) y = reshape(y, size(y, 1), :) M = zeros(size(x, 1), size(y, 1)) for i = 1:size(x, 1) for j = 1:size(y, 1) M[i, j] = norm(x[i,:]-y[j,:], order) end end return M end x = convert_to_tensor(x) y = convert_to_tensor(y) order = convert_to_tensor(order, dtype=Float64) x = tf.expand_dims(x, axis=1) y = tf.expand_dims(y, axis=0) sum(abs(x-y)^order, dims=3)^(1.0/order) end """ dtw(s::Union{PyObject, Array{Float64}}, t::Union{PyObject, Array{Float64}}, use_fast::Bool = false) Computes the dynamic time wrapping (DTW) distance between two time series `s` and `t`. Returns the distance and path. `use_fast` specifies whether fast algorithm is used. Note fast algorithm may not be accurate. """ function dtw(s::Union{PyObject, Array{Float64}}, t::Union{PyObject, Array{Float64}}, use_fast::Bool = false) use_fast = Int32(use_fast) pth = install("FastDTW") dtw_ = load_op_and_grad(pth, "dtw"; multiple=true) s,t, use_fast = convert_to_tensor([s,t,use_fast], [Float64,Float64, Int32]) cost, path = dtw_(s,t,use_fast) return cost, path + 1 end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
3329
# This is an implementation of second order physics constrained learning export pcl_sparse_solve, pcl_square_sum, pcl_hessian, pcl_linear_op, pcl_compress @doc raw""" pcl_sparse_solve(indices::Array{Int64, 2}, vals::Array{Float64, 1}, u::Array{Float64, 1}, hessian_u::Array{Float64, 2}, grad_u::Array{Float64, 1}) Hessian backpropagation for $$Au = f$$ `A` is given by a sparse matrix (the nonzero entries are a vector $a$). This function back-propagates the Hessian w.r.t. $u$ to the Hessian w.r.t. $A$. """ function pcl_sparse_solve(indices::Array{Int64, 2}, vals::Array{Float64, 1}, u::Array{Float64, 1}, hessian_u::Array{Float64, 2}, grad_u::Array{Float64, 1}) A = sparse(indices[:,1], indices[:,2], vals) indof = length(vals) outdof = length(u) invA = inv(Array(A)) J = zeros(indof, outdof) for k = 1:indof i = indices[k,1] j = indices[k,2] J[k,:] = -invA[:,i] * u[j] end H = zeros(indof, indof) x = A'\grad_u for l = 1:indof for r = 1:indof li, lj = indices[l, :] ri, rj = indices[r, :] H[l, r] = -(x[li] * J[r, lj] + x[ri] * J[l, rj]) end end return J*hessian_u*J' + H end @doc raw""" pcl_square_sum(scaling::Float64 = 1.0) Returns the Hessian matrix for $$\text{scaling} * \|u - u_o\|_2^2$$ `pcl_square_sum` is a reduction op, which can provides the highest level Hessian matrix. """ pcl_square_sum(n::Int64; scaling::Float64 = 1.0) = 2Array(I(n)) * scaling @doc raw""" pcl_linear_op(J::Array{Float64, 2}, W::Array{Float64,2}) For a linear operator $$y = J^Tx + b$$ The PCL backpropagation is given by $$H = JWJ^T$$ """ function pcl_linear_op(J::Array{Float64, 2}, W::Array{Float64,2}) J * W * J' end @doc raw""" pcl_hessian(y::PyObject, x::PyObject) Returns the Hessian tensor for the operator $$y = F(x)$$ $x\in \mathbb{R}^m$ and $y\in \mathbb{R}^n$ are 1D vectors. The function returns a tuple - `H`: $m\times m$ Hessian matrix - `W`: $n\times n$ Hessian matrix from downstream of the computational graph - `dy`: length $n$ tensor; gradient from downstream of the computational graph """ function pcl_hessian(y::PyObject, x::PyObject, loss::PyObject) @assert length(size(x))==length(size(y))==1 J = jacobian(y, x) if isnothing(J) error("`jacobian(y, x) = nothing. Please check the dependency of `y` on `x`") end W = placeholder(Float64, shape = (length(y), length(y))) dy = independent(gradients(loss, y)) H = J' * W * J + hessian(dot(dy, y), x) return H, W end @doc raw""" pcl_compress(indices::Array{Int64, 2}) Computes the Jacobian matrix for `compress`. Assume that `compress` does the following transformation: ``` indices, values (v) --> new_indices, new_values (u) ``` This function computes $$J_{ij} = \frac{\partial u_j}{\partial v_i}$$ """ function pcl_compress(indices::Array{Int64, 2}) N = size(indices,1) v = zeros(N) nout = zeros(Int32,1) indices = indices'[:] .- 1 out = @eval ccall((:pcl_SparseCompressor, $(ADCME.LIBADCME)), Ptr{Cdouble}, (Ptr{Clonglong}, Ptr{Cdouble}, Cint, Ptr{Cint}), $indices, $v, Int32($N), $nout) J = unsafe_wrap(Array, out, (N,Int64(nout[1])); own = true) return J end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
2127
for o in [:Scatter, :Bar, :Scattergl, :Pie, :Heatmap, :Image, :Contour, :Table, :Box, :Violin, :Histogram, :Histogram2dContour, :Ohlc, :Candlestick, :Waterfall, :Funnel, :Funnelarea, :Indicator, :Scatter3d, :Surface, :Mesh3d, :Cone, :Volume, :Isosurface, :Scattergeo, :Choropleth, :Scattermapbox, :Choroplethmapbox, :Densitymapbox, :Scatterpolar, :Scatterpolargl, :Barpolar, :Scatterternary, :Sunburst, :Treemap, :Sankey, :Splom, :Parcats, :Parcoords, :Carpet, :Scattercarpet, :Contourcarpet, :Layout] @eval begin export $o function $o(args...;kwargs...) plotly.graph_objects.$o(args...;kwargs...) end end end export Plot """ Plot(rows::Int64 = 1, cols::Int64 = 1, args...; kwargs...) Makes a figure consists of `rows × cols` subplots. # Example ```julia fig = Plot(3,1) x = LinRange(0,1,100) y1 = sin.(x) y2 = sin.(2*x) y3 = sin.(3*x) fig.add_trace(Scatter(x=x, y=y1, name = "Line 1"), row = 1, col = 1) fig.add_trace(Scatter(x=x, y=y2, name = "Line 2"), row = 2, col = 1) fig.add_trace(Scatter(x=x, y=y3, name = "Line 3"), row = 3, col = 1) fig.show() ``` """ function Plot(rows::Int64 = 1, cols::Int64 = 1, args...; kwargs...) pkgs = read(`$PIP list`, String) if !occursin("plotly", pkgs) run(`$PIP install plotly==4.14.3`) end copy!(plotly, "plotly") spt = pyimport("plotly.subplots") spt.make_subplots(rows = rows, cols = cols, args...;kwargs...) end export to_html """ to_html(fig::PyObject, filename::String, args...; include_plotlyjs = "cnd", include_mathjax = "cnd", full_html = true, kwargs...) Exports the figure `fig` to an HTML file. """ function to_html(fig::PyObject, filename::String, args...; include_plotlyjs = "cdn", include_mathjax = "cdn", full_html = true, kwargs...) open(filename, "w") do io cnt = fig.to_html( include_plotlyjs = include_plotlyjs, include_mathjax = include_mathjax, full_html = full_html ) write(io, cnt) end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
4257
export seed!, categorical, choice, logpdf # random variables for op in [:uniform, :normal] @eval begin export $op function $op(shape...;kwargs...) kwargs = jlargs(kwargs) if !haskey(kwargs, :dtype); kwargs[:dtype] = tf.float64; end tf.random.$op(shape;kwargs...) end $op() = squeeze($op(1, dtype=Float64)) # Docs.getdoc(::typeof($op)) = Docs.getdoc(tf.random.$op) end end """ categorical(n::Union{PyObject, Integer}; kwargs...) `kwargs` has a keyword argument `logits`, a 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes. """ function categorical(n::Union{PyObject, Integer}; kwargs...) flag = false kwargs = jlargs(kwargs) if !haskey(kwargs, :dtype); kwargs[:dtype] = tf.float64; end if !haskey(kwargs, :logits) kwargs[:logits] = tf.ones(n, dtype=kwargs[:dtype]) end logits = kwargs[:logits]; delete!(kwargs, :logits) if length(size(logits))==1 flag = true logits = convert_to_tensor(reshape(logits, 1, length(logits))) end out = tf.random.categorical(logits, n) if flag out = squeeze(out) end return out+1 end """ choice(inputs::Union{PyObject, Array}, n_samples::Union{PyObject, Integer};replace::Bool=false) Choose `n_samples` samples from `inputs` with/without replacement. """ function choice(inputs::Union{PyObject, Array}, n_samples::Union{PyObject, Integer}; replace::Bool=false) inputs = convert_to_tensor(inputs) if replace Idx = categorical(n_samples, logits=ones(size(inputs,1))) tf.gather(inputs, Idx-1) else dist = uniform(size(inputs,1)) _, indices_to_keep = tf.nn.top_k(dist, n_samples) indices_to_keep_sorted = tf.sort(indices_to_keep) tf.gather(inputs,indices_to_keep) end end for op in [:Beta, :Bernoulli,:Gamma, :TruncatedNormal, :Binomial, :Cauchy, :Chi, :Chi2, :Exponential, :Gumbel, :HalfCauchy, :HalfNormal, :Horseshoe, :InverseGamma, :InverseGaussian, :Kumaraswamy, :Pareto, :SinhArcsinh, :StudentT, :VonMises, :Poisson] opname = Symbol(lowercase(string(op))) @eval begin export $opname function $opname(shape...;kwargs...) if !haskey(kwargs, :dtype); T = Float64; else T=kwargs[:dtype]; end kwargs = jlargs(kwargs) if haskey(kwargs, :dtype); delete!(kwargs, :dtype); end out = tfp.distributions.$op(;kwargs...).sample(shape...) cast(out, T) end $opname(;kwargs...) = squeeze($opname(1; dtype =Float64, kwargs...)) # Docs.getdoc(::typeof($opname)) = Docs.getdoc(tfp.distributions.$op) end end function seed!(k::Int64) tf.random.set_random_seed(k) end abstract type ADCMEDistribution end for op in [:Beta, :Bernoulli,:Gamma, :TruncatedNormal, :Binomial, :Cauchy, :Chi, :Chi2, :Exponential, :Gumbel, :HalfCauchy, :HalfNormal, :Horseshoe, :InverseGamma, :InverseGaussian, :Kumaraswamy, :Pareto, :SinhArcsinh, :StudentT, :VonMises, :Normal, :Uniform, :Poisson, :MultivariateNormalDiag, :MultivariateNormalFullCovariance, :Empirical] @eval begin mutable struct $op <: ADCMEDistribution o::PyObject $op(args...;kwargs...) = new(tfp.distributions.$op(args...;kwargs...)) end end # @eval Docs.getdoc($op) = Docs.getdoc($op.o) end Base.:rand(dist::T) where T<:ADCMEDistribution = dist.o.sample() Base.:rand(dist::T, shape::Integer) where T<:ADCMEDistribution = dist.o.sample(shape) Base.:rand(dist::T, shape::Tuple{Vararg{Int64,N}} where N) where T<:ADCMEDistribution = dist.o.sample(shape) Base.:rand(dist::T, shape::Array{Int64}) where T<:ADCMEDistribution = dist.o.sample(shape) Base.:rand(dist::T, shape::PyObject) where T<:ADCMEDistribution = dist.o.sample(shape) Base.:rand(dist::T, d::Integer, dims::Integer...) where T<:ADCMEDistribution = dist.o.sample([d;dims]) """ logpdf(dist::T, x) where T<:ADCMEDistribution Returns the log(prob) for a distribution `dist`. """ function logpdf(dist::T, x) where T<:ADCMEDistribution dist.o.log_prob(x) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
6403
export RBF2D, interp1, RBF3D @doc raw""" function RBF2D(xc::Union{PyObject, Array{Float64, 1}}, yc::Union{PyObject, Array{Float64, 1}}; c::Union{PyObject, Array{Float64, 1}, Missing} = missing, eps::Union{PyObject, Array{Float64, 1}, Real, Missing} = missing, d::Union{PyObject, Array{Float64, 1}} = zeros(0), kind::Int64 = 0) Constructs a radial basis function representation on a 2D domain $$f(x, y) = \sum_{i=1}^N c_i \phi(r; \epsilon_i) + d_0 + d_1 x + d_2 y$$ Here `d` can be either 0, 1 (only $d_0$ is present), or 3 ($d_0$, $d_1$, and $d_2$ are all present). `kind` determines the type of radial basis functions * 0:Gaussian $$\phi(r; \epsilon) = e^{-(\epsilon r)^2}$$ * 1:Multiquadric $$\phi(r; \epsilon) = \sqrt{1+(\epsilon r)^2}$$ * 2:Inverse quadratic $$\phi(r; \epsilon) = \frac{1}{1+(\epsilon r)^2}$$ * 3:Inverse multiquadric $$\phi(r; \epsilon) = \frac{1}{\sqrt{1+(\epsilon r)^2}}$$ Returns a callable struct, i.e. to evaluates the function at locations $(x, y)$ (`x` and `y` are both vectors), run ```julia rbf(x, y) ``` """ mutable struct RBF2D xc::PyObject yc::PyObject eps::PyObject c::PyObject d::PyObject kind::Int64 function RBF2D(xc::Union{PyObject, Array{Float64, 1}}, yc::Union{PyObject, Array{Float64, 1}}; c::Union{PyObject, Array{Float64, 1}, Missing} = missing, eps::Union{PyObject, Array{Float64, 1}, Real, Missing} = missing, d::Union{PyObject, Array{Float64, 1}} = zeros(0), kind::Int64 = 0) if isa(eps, Real) eps = eps * ones(length(xc)) end c = coalesce(c, Variable(zeros(length(xc)))) eps = coalesce(eps, ones(length(xc))) @assert length(xc)==length(yc)==length(c)==length(eps) @assert length(d) in [0,1,3] new(constant(xc), constant(yc), constant(eps), constant(c), constant(d), kind) end end function (o::RBF2D)(x,y) radial_basis_function_ = load_op_and_grad(libadcme,"radial_basis_function") x,y,xc,yc,eps,c,d,kind = convert_to_tensor(Any[x,y,o.xc,o.yc,o.eps,o.c,o.d,o.kind], [Float64,Float64,Float64,Float64,Float64,Float64,Float64,Int64]) out = radial_basis_function_(x,y,xc,yc,eps,c,d,kind) set_shape(out, (length(x,))) end function Base.:show(io::IO, o::RBF2D) ct = hasproperty(o.c, :trainable) && o.c.trainable et = hasproperty(o.eps, :trainable) && o.eps.trainable dt = hasproperty(o.d, :trainable) && o.d.trainable print("RadialBasisFunction(NumOfCenters=$(length(o.xc)),NumOfAdditionalTerm=$(length(o.d)),CoeffIsVariable=$(ct),ShapeIsVariable=$(et),AdditionalTermIsVariable=$dt)") end """ interp1(x::Union{Array{Float64, 1}, PyObject},v::Union{Array{Float64, 1}, PyObject},xq::Union{Array{Float64, 1}, PyObject}) returns interpolated values of a 1-D function at specific query points using linear interpolation. Vector x contains the sample points, and v contains the corresponding values, v(x). Vector xq contains the coordinates of the query points. !!! info `x` should be sorted in ascending order. # Example ```julia x = sort(rand(10)) y = constant(@. x^2 + 1.0) z = [x[1]; x[2]; rand(5) * (x[end]-x[1]) .+ x[1]; x[end]] u = interp1(x,y,z) ``` """ function interp1(x::Union{Array{Float64, 1}, PyObject},v::Union{Array{Float64, 1}, PyObject},xq::Union{Array{Float64, 1}, PyObject}) interp_dim_one_ = load_system_op("interp_dim_one") x,v,xq = convert_to_tensor(Any[x,v,xq], [Float64,Float64,Float64]) out = interp_dim_one_(x,v,xq) end @doc raw""" RBF3D(xc::Union{PyObject, Array{Float64, 1}}, yc::Union{PyObject, Array{Float64, 1}}, zc::Union{PyObject, Array{Float64, 1}}; c::Union{PyObject, Array{Float64, 1}, Missing} = missing, eps::Union{PyObject, Array{Float64, 1}, Real, Missing} = missing, d::Union{PyObject, Array{Float64, 1}} = zeros(0), kind::Int64 = 0) Constructs a radial basis function representation on a 3D domain $$f(x, y, z) = \sum_{i=1}^N c_i \phi(r; \epsilon_i) + d_0 + d_1 x + d_2 y + d_3 z$$ Here `d` can be either 0, 1 (only $d_0$ is present), or 4 ($d_0$, $d_1$, $d_2$, and $d_3$ are all present). `kind` determines the type of radial basis functions * 0:Gaussian $$\phi(r; \epsilon) = e^{-(\epsilon r)^2}$$ * 1:Multiquadric $$\phi(r; \epsilon) = \sqrt{1+(\epsilon r)^2}$$ * 2:Inverse quadratic $$\phi(r; \epsilon) = \frac{1}{1+(\epsilon r)^2}$$ * 3:Inverse multiquadric $$\phi(r; \epsilon) = \frac{1}{\sqrt{1+(\epsilon r)^2}}$$ Returns a callable struct, i.e. to evaluates the function at locations $(x, y, z)$ (`x`, `y`, and `z` are all vectors), run ```julia rbf(x, y, z) ``` """ mutable struct RBF3D xc::PyObject yc::PyObject zc::PyObject eps::PyObject c::PyObject d::PyObject kind::Int64 function RBF3D(xc::Union{PyObject, Array{Float64, 1}}, yc::Union{PyObject, Array{Float64, 1}}, zc::Union{PyObject, Array{Float64, 1}}; c::Union{PyObject, Array{Float64, 1}, Missing} = missing, eps::Union{PyObject, Array{Float64, 1}, Real, Missing} = missing, d::Union{PyObject, Array{Float64, 1}} = zeros(0), kind::Int64 = 0) if isa(eps, Real) eps = eps * ones(length(xc)) end c = coalesce(c, Variable(zeros(length(xc)))) eps = coalesce(eps, ones(length(xc))) @assert length(xc)==length(yc)==length(zc)==length(c)==length(eps) @assert length(d) in [0,1,4] new(constant(xc), constant(yc), constant(zc), constant(eps), constant(c), constant(d), kind) end end function (o::RBF3D)(x,y,z) radial_basis_function_ = load_op_and_grad(libadcme,"radial_basis_function_three_d") x,y,z,xc,yc,zc,eps,c,d,kind = convert_to_tensor(Any[x,y,z,o.xc,o.yc,o.zc, o.eps,o.c,o.d,o.kind], [Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Int64]) out = radial_basis_function_(x,y,z,xc,yc,zc,eps,c,d,kind) set_shape(out, (length(x,))) end function Base.:show(io::IO, o::RBF3D) ct = hasproperty(o.c, :trainable) && o.c.trainable et = hasproperty(o.eps, :trainable) && o.eps.trainable dt = hasproperty(o.d, :trainable) && o.d.trainable print("RadialBasisFunction(NumOfCenters=$(length(o.xc)),NumOfAdditionalTerm=$(length(o.d)),CoeffIsVariable=$(ct),ShapeIsVariable=$(et),AdditionalTermIsVariable=$dt)") end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
3453
import Base:run export run, Session, init, run_profile, save_profile """ Session(args...; kwargs...) Create an ADCME session. By default, ADCME will take up all the GPU resources at the start. If you want the GPU usage to grow on a need basis, before starting ADCME, you need to set the environment variable via ```julia ENV["TF_FORCE_GPU_ALLOW_GROWTH"] = "true" ``` # Configuration Session accepts some runtime optimization configurations - `intra`: Number of threads used within an individual op for parallelism - `inter`: Number of threads used for parallelism between independent operations. - `CPU`: Maximum number of CPUs to use. - `GPU`: Maximum number of GPU devices to use - `soft`: Set to True/enabled to facilitate operations to be placed on CPU instead of GPU !!! note `CPU` limits the number of CPUs being used, not the number of cores or threads. """ function Session(args...; kwargs...) kwargs_ = Dict{Symbol, Any}() if haskey(kwargs, :intra) kwargs_[:intra_op_parallelism_threads] = kwargs[:intra] end if haskey(kwargs, :inter) kwargs_[:inter_op_parallelism_threads] = kwargs[:intra] end if haskey(kwargs, :soft) kwargs_[:allow_soft_placement] = kwargs[:soft] end if haskey(kwargs, :CPU) || haskey(kwargs, :GPU) cnt = Dict{String, Int64}() if haskey(kwargs, :CPU) cnt["CPU"] = kwargs[:CPU] end if haskey(kwargs, :GPU) cnt["GPU"] = kwargs[:GPU] end kwargs_[:device_count] = cnt end if haskey(kwargs, :config) sess = tf.compat.v1.Session(args...;kwargs...) else config = tf.ConfigProto(;kwargs_...) sess = tf.compat.v1.Session(config = config) end STORAGE["session"] = sess return sess end function Base.:run(sess::PyObject, fetches::Union{PyObject, Array{PyObject}, Array{Any}, Tuple}, args::Pair{PyObject, <:Any}...; kwargs...) local ret if length(args)>0 ret = sess.run(fetches, feed_dict = Dict(args)) else ret = sess.run(fetches; kwargs...) end if isnothing(ret) return nothing elseif isa(ret, Array) && size(ret)==() return ret[1] else return ret end end function global_variables_initializer() tf.compat.v1.global_variables_initializer() end function init(o::PyObject) run(o, global_variables_initializer()) end """ run_profile(args...;kwargs...) Runs the session with tracing information. """ function run_profile(args...;kwargs...) global run_metadata options = tf.compat.v1.RunOptions(trace_level=tf.compat.v1.RunOptions.FULL_TRACE) run_metadata = tf.compat.v1.RunMetadata() run(args...;options=options, run_metadata=run_metadata, kwargs...) end """ save_profile(filename::String="default_timeline.json") Save the timeline information to file `filename`. - Open Chrome and navigate to chrome://tracing - Load the timeline file """ function save_profile(filename::String="default_timeline.json"; kwargs...) timeline = pyimport("tensorflow.python.client.timeline") fetched_timeline = timeline.Timeline(run_metadata.step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format(;kwargs...) open(filename,"w") do io write(io, chrome_trace) end @info "Timeline information saved in $filename - Open Chrome and navigate to chrome://tracing - Load the timeline file" end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
25995
using SparseArrays import Base: accumulate import LinearAlgebra: factorize export SparseTensor, SparseAssembler, spdiag, find, spzero, dense_to_sparse, accumulate, assemble, rows, cols, factorize, solve, trisolve, RawSparseTensor, compress """ SparseTensor A sparse matrix object. It has two fields - `o`: internal data structure - `_diag`: `true` if the sparse matrix is marked as "diagonal". """ mutable struct SparseTensor o::PyObject _diag::Bool function SparseTensor(o::PyObject, _diag::Bool=false) new(o, _diag) end end promote_(x::SparseMatrixCSC, y::SparseTensor) = (constant(x), y) promote_(y::SparseTensor, x::SparseMatrixCSC) = (y, constant(x)) +(x::SparseMatrixCSC, y::SparseTensor) = +(promote_(x,y)...) -(x::SparseMatrixCSC, y::SparseTensor) = -(promote_(x,y)...) *(x::SparseMatrixCSC, y::SparseTensor) = *(promote_(x,y)...) +(x::SparseTensor, y::SparseMatrixCSC) = +(promote_(x,y)...) -(x::SparseTensor, y::SparseMatrixCSC) = -(promote_(x,y)...) *(x::SparseTensor, y::SparseMatrixCSC) = *(promote_(x,y)...) function Base.:values(o::SparseTensor) o.o.values end function rows(o::SparseTensor) get(o.o.indices',0)+1 end function cols(o::SparseTensor) get(o.o.indices',1)+1 end """ SparseTensor(I::Union{PyObject,Array{T,1}}, J::Union{PyObject,Array{T,1}}, V::Union{Array{Float64,1}, PyObject}, m::Union{S, PyObject, Nothing}=nothing, n::Union{S, PyObject, Nothing}=nothing) where {T<:Integer, S<:Integer} Constructs a sparse tensor. Examples: ``` ii = [1;2;3;4] jj = [1;2;3;4] vv = [1.0;1.0;1.0;1.0] s = SparseTensor(ii, jj, vv, 4, 4) s = SparseTensor(sprand(10,10,0.3)) ``` """ function SparseTensor(I::Union{PyObject,Array{T,1}}, J::Union{PyObject,Array{T,1}}, V::Union{Array{Float64,1}, PyObject}, m::Union{S, PyObject, Nothing}=nothing, n::Union{S, PyObject, Nothing}=nothing; is_diag::Bool=false) where {T<:Integer, S<:Integer} if isa(I, PyObject) && size(I,2)==2 return SparseTensor_(I, J, V) end I, J, V = convert_to_tensor(I, dtype=Int64), convert_to_tensor(J, dtype=Int64), convert_to_tensor(V) m, n = convert_to_tensor(m, dtype=Int64), convert_to_tensor(n, dtype=Int64) indices = [I J] .- 1 value = V shape = [m;n] sp = tf.SparseTensor(indices, value, shape) options.sparse.auto_reorder && (sp = tf.sparse.reorder(sp)) SparseTensor(sp, is_diag) end function dense_to_sparse(o::Union{Array, PyObject}) if isa(o, Array) return SparseTensor(sparse(o)) else idx = tf.where(tf.not_equal(o, 0)) indices, value = convert_to_tensor([idx, tf.gather_nd(o, idx)], [Int64, Float64]) return SparseTensor(tf.SparseTensor(indices, value, o.get_shape()), false) end end """ find(s::SparseTensor) Returns the row, column and values for sparse tensor `s`. """ function find(s::SparseTensor) ind = s.o.indices val = s.o.values ii = ind'[1,:] jj = ind'[2,:] ii+1, jj+1, val end function Base.:copy(s::SparseTensor) t = SparseTensor(tf.SparseTensor(copy(s.o.indices), copy(s.o.values), s.o.dense_shape), copy(s.is_diag)) end function Base.:eltype(o::SparseTensor) return (eltype(o.o.indices), eltype(o.o.values)) end function SparseTensor_(indices::Union{PyObject,Array{T,2}}, value::Union{PyObject,Array{Float64,1}}, shape::Union{PyObject,Array{T,1}}; is_diag::Bool=false) where T<:Integer indices = convert_to_tensor(indices, dtype=Int64) value = convert_to_tensor(value, dtype=Float64) shape = convert_to_tensor(shape, dtype=Int64) sp = tf.SparseTensor(indices-1, value, shape) options.sparse.auto_reorder && (sp = tf.sparse.reorder(sp)) SparseTensor(sp, is_diag) end """ RawSparseTensor(indices::Union{PyObject,Array{T,2}}, value::Union{PyObject,Array{Float64,1}}, m::Union{PyObject,Int64}, n::Union{PyObject,Int64}; is_diag::Bool=false) where T<:Integer A convenient wrapper for making custom operators. Here `indices` is 0-based. """ function RawSparseTensor(indices::Union{PyObject,Array{T,2}}, value::Union{PyObject,Array{Float64,1}}, m::Union{PyObject,Int64}, n::Union{PyObject,Int64}; is_diag::Bool=false) where T<:Integer indices = convert_to_tensor(indices, dtype=Int64) value = convert_to_tensor(value, dtype=Float64) m = convert_to_tensor(m, dtype = Int64) n = convert_to_tensor(n, dtype = Int64) shape = [m;n] sp = tf.SparseTensor(indices, value, shape) options.sparse.auto_reorder && (sp = tf.sparse.reorder(sp)) SparseTensor(sp, is_diag) end """ SparseTensor(A::SparseMatrixCSC) SparseTensor(A::Array{Float64, 2}) Creates a `SparseTensor` from numerical arrays. """ function SparseTensor(A::SparseMatrixCSC) rows = rowvals(A) vals = nonzeros(A) cols = zeros(eltype(rows), length(rows)) m, n = size(A) k = 1 for i = 1:n for j in nzrange(A, i) cols[k] = i k += 1 end end SparseTensor(rows, cols, vals, m, n; is_diag=isdiag(A)) end constant(o::SparseMatrixCSC) = SparseTensor(o) constant(o::SparseTensor) = o SparseTensor(o::SparseTensor) = o function SparseTensor(A::Array{Float64, 2}) SparseTensor(sparse(A)) end function Base.:show(io::IO, s::SparseTensor) shape = size(s) s1 = shape[1]===nothing ? "?" : shape[1] s2 = shape[2]===nothing ? "?" : shape[2] print(io, "SparseTensor($s1, $s2)") end function Base.:run(o::PyObject, S::SparseTensor, args...; kwargs...) indices, value, shape = run(o, S.o, args...; kwargs...) sparse(indices[:,1].+1, indices[:,2].+1, value, shape...) end """ Array(A::SparseTensor) Converts a sparse tensor `A` to dense matrix. """ function Base.:Array(A::SparseTensor) ij = A.o.indices vv = values(A) m, n = size(A) sparse_to_dense_ = load_system_op("sparse_to_dense_ad",multiple=false) m_, n_ = convert_to_tensor(Any[m,n], [Int64,Int64]) out = sparse_to_dense_(ij, vv, m_,n_) set_shape(out, (m, n)) end function Base.:size(s::SparseTensor) (get(s.o.shape,0).value,get(s.o.shape,1).value) end function Base.:size(s::SparseTensor, i::T) where T<:Integer get(s.o.shape, i-1).value end function PyCall.:+(s::SparseTensor, o::PyObject) if size(s)!=size(o) error("size $(size(s)) and $(size(o)) does not match") end out = tf.sparse_add(s.o, o) out end PyCall.:+(o::PyObject, s::SparseTensor) = s+o function Base.:-(s::SparseTensor) SparseTensor(s.o.indices+1, -s.o.values, s.o.dense_shape, is_diag=s._diag) end PyCall.:-(o::PyObject, s::SparseTensor) = o + (-s) PyCall.:-(s::SparseTensor, o::PyObject) = s + (-o) Base.:+(s1::SparseTensor, s2::SparseTensor) = SparseTensor(tf.sparse.add(s1.o,s2.o), s1._diag&&s2._diag) Base.:-(s1::SparseTensor, s2::SparseTensor) = s1 + (-s2) function Base.:adjoint(s::SparseTensor) indices = [s.o.indices'[2,:] s.o.indices'[1,:]] sp = tf.SparseTensor(indices, s.o.values, (size(s,2), size(s,1))) options.sparse.auto_reorder && (sp = tf.sparse.reorder(sp)) SparseTensor(sp, s._diag) end function PyCall.:*(s::SparseTensor, o::PyObject) flag = false if length(size(o))==0 return o * s end if length(size(o))==1 flag = true o = reshape(o, length(o), 1) end out = tf.sparse.sparse_dense_matmul(s.o, o) if flag out = squeeze(out) end out end function Base.:*(s::SparseTensor, o::Array{Float64}) s*convert_to_tensor(o) end function PyCall.:*(o::PyObject, s::SparseTensor) if length(size(o))==0 SparseTensor(tf.SparseTensor(copy(s.o.indices), o*tf.identity(s.o.values), s.o.dense_shape), s._diag) else tf.sparse.sparse_dense_matmul(s.o, o, adjoint_a=true, adjoint_b=true)' end end function Base.:*(o::Array{Float64}, s::SparseTensor) convert_to_tensor(o)*s end function Base.:*(o::Real, s::SparseTensor) o = Float64(o) SparseTensor(tf.SparseTensor(copy(s.o.indices), o*tf.identity(s.o.values), s.o.dense_shape), s._diag) end Base.:*(s::SparseTensor, o::Real) = o*s Base.:/(s::SparseTensor, o::Real) = (1/o)*s function _sparse_concate(A1::SparseTensor, A2::SparseTensor, hcat_::Bool) m1,n1 = size(A1) m2,n2 = size(A2) ii1,jj1,vv1 = find(A1) ii2,jj2,vv2 = find(A2) sparse_concate_ = load_system_op("sparse_concate"; multiple=true) ii1,jj1,vv1,m1_,n1_,ii2,jj2,vv2,m2_,n2_ = convert_to_tensor([ii1,jj1,vv1,m1,n1,ii2,jj2,vv2,m2,n2], [Int64,Int64,Float64,Int32,Int32,Int64,Int64,Float64,Int32,Int32]) ii,jj,vv = sparse_concate_(ii1,jj1,vv1,m1_,n1_,ii2,jj2,vv2,m2_,n2_,constant(hcat_)) if hcat_ SparseTensor(ii,jj,vv, m1, n1+n2) else SparseTensor(ii,jj,vv,m1+m2,n1) end end function sparse_concate(args::SparseTensor...; hcat_::Bool) reduce((x,y)->_sparse_concate(x,y,hcat_), args) end Base.:vcat(args::SparseTensor...) = sparse_concate(args...;hcat_=false) Base.:hcat(args::SparseTensor...) = sparse_concate(args...;hcat_=true) function Base.:hvcat(rows::Tuple{Vararg{Int}}, values::SparseTensor...) r = Array{SparseTensor}(undef, length(rows)) k = 1 for i = 1:length(rows) r[i] = hcat(values[k:k+rows[i]-1]...) k += rows[i] end vcat(r...) end function Base.:lastindex(o::SparseTensor, i::Int64) return size(o,i) end function Base.:getindex(s::SparseTensor, i1::Union{Integer, Colon, UnitRange{S}, PyObject,Array{S,1}}, i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}}) where {S<:Real,T<:Real} squeeze_dims = Int64[] if isa(i1, Integer); i1 = [i1]; push!(squeeze_dims, 1); end if isa(i2, Integer); i2 = [i2]; push!(squeeze_dims, 2); end if isa(i1, UnitRange) || isa(i1, StepRange); i1 = collect(i1); end if isa(i2, UnitRange) || isa(i2, StepRange); i2 = collect(i2); end if isa(i1, Colon); i1 = collect(1:lastindex(s,1)); end if isa(i2, Colon); i2 = collect(1:lastindex(s,2)); end if isa(i1, Array{Bool,1}); i1 = findall(i1); end if isa(i2, Array{Bool,1}); i2 = findall(i2); end m_, n_ = length(i1), length(i2) i1 = convert_to_tensor(i1, dtype=Int64) i2 = convert_to_tensor(i2, dtype=Int64) ii1, jj1, vv1 = find(s) m = tf.convert_to_tensor(get(s.o.shape,0),dtype=tf.int64) n = tf.convert_to_tensor(get(s.o.shape,1),dtype=tf.int64) ss = load_system_op("sparse_indexing"; multiple=true) ii2, jj2, vv2 = ss(ii1,jj1,vv1,m,n,i1,i2) ret = SparseTensor(ii2, jj2, vv2, m_, n_) if length(squeeze_dims)>0 ret = squeeze(Array(ret), dims=squeeze_dims) end ret end @doc raw""" scatter_update(A::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}, i1::Union{Integer, Colon, UnitRange{T}, PyObject,Array{S,1}}, i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}}, B::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}) where {S<:Real,T<:Real} Updates a subblock of a sparse matrix by `B`. Equivalently, ``` A[i1, i2] = B ``` """ function scatter_update(A::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}, i1::Union{Integer, Colon, UnitRange{S}, PyObject,Array{S,1}}, i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}}, B::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}) where {S<:Real,T<:Real} if isa(i1, Integer); i1 = [i1]; push!(squeeze_dims, 1); end if isa(i2, Integer); i2 = [i2]; push!(squeeze_dims, 2); end if isa(i1, UnitRange) || isa(i1, StepRange); i1 = collect(i1); end if isa(i2, UnitRange) || isa(i2, StepRange); i2 = collect(i2); end if isa(i1, Colon); i1 = collect(1:lastindex(A,1)); end if isa(i2, Colon); i2 = collect(1:lastindex(A,2)); end if isa(i1, Array{Bool,1}); i1 = findall(i1); end if isa(i2, Array{Bool,1}); i2 = findall(i2); end ii = convert_to_tensor(i1, dtype=Int64) jj = convert_to_tensor(i2, dtype=Int64) !isa(A, SparseTensor) && (A=SparseTensor(A)) !isa(B, SparseTensor) && (B=SparseTensor(B)) ii1, jj1, vv1 = find(A) m1_, n1_ = size(A) ii2, jj2, vv2 = find(B) sparse_scatter_update_ = load_system_op("sparse_scatter_update"; multiple=true) ii1,jj1,vv1,m1,n1,ii2,jj2,vv2,ii,jj = convert_to_tensor([ii1,jj1,vv1,m1_,n1_,ii2,jj2,vv2,ii,jj], [Int64,Int64,Float64,Int64,Int64,Int64,Int64,Float64,Int64,Int64]) ii, jj, vv = sparse_scatter_update_(ii1,jj1,vv1,m1,n1,ii2,jj2,vv2,ii,jj) SparseTensor(ii, jj, vv, m1_, n1_) end @doc raw""" scatter_update(A::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}, i1::Union{Integer, Colon, UnitRange{T}, PyObject,Array{S,1}}, i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}}, B::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}) where {S<:Real,T<:Real} Adds `B` to a subblock of a sparse matrix `A`. Equivalently, ``` A[i1, i2] += B ``` """ function scatter_add(A::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}, i1::Union{Integer, Colon, UnitRange{T}, PyObject,Array{S,1}}, i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}}, B::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}}) where {S<:Real,T<:Real} !(isa(A, SparseTensor)) && (A = SparseTensor(A)) !(isa(B, SparseTensor)) && (B = SparseTensor(B)) C = A[i1,i2] D = B + C scatter_update(A, i1, i2, D) end function Base.:reshape(s::SparseTensor, shape::T...) where T<:Integer SparseTensor(tf.sparse.reshape(s, shape), false) end @doc raw""" \(A::SparseTensor, o::PyObject, method::String="SparseLU") Solves the linear equation $$A x = o$$ # Method For square matrices $A$, one of the following methods is available - `auto`: using the solver specified by `ADCME.options.sparse.solver` - `SparseLU` - `SparseQR` - `SimplicialLDLT` - `SimplicialLLT` !!! note In the case `o` is 2 dimensional, `\` is understood as "batched solve". `o` must have size $n_{b} \times m$, and $A$ has a size $m\times n$. It returns the solution matrix of size $n_b \times n$ $$s_{i,:} = A^{-1} o_{i,:}$$ """ function PyCall.:\(s::SparseTensor, o::PyObject, method::String="auto") local u if method=="auto" method = options.sparse.solver end if size(s,1)!=size(s,2) _cfun = load_system_op("sparse_least_square") ii, jj, vv = find(s) ii, jj, vv, o = convert_to_tensor([ii, jj, vv, o], [Int32, Int32, Float64, Float64]) if length(size(o))==1 @assert size(s,1)==length(o) o = reshape(o, (1, -1)) u = _cfun(ii, jj, vv, o, constant(size(s, 2), dtype=Int32)) return u[1] end @assert size(o,2)==size(s,1) u = _cfun(ii, jj, vv, o, constant(size(s, 2), dtype=Int32)) if size(s,2)!=nothing && size(o,1)!=nothing u.set_shape((size(o,1), size(s,2))) end else ss = load_system_op("sparse_solver") # in case `indices` has dynamical shape ii, jj, vv = find(s) ii,jj,vv,o = convert_to_tensor([ii,jj,vv,o], [Int64,Int64,Float64,Float64]) u = ss(ii,jj,vv,o,method) if size(s,2)!=nothing u.set_shape((size(s,2),)) end end u end Base.:\(s::SparseTensor, o::Array{Float64}) = s\constant(o) """ SparseAssembler(handle::Union{PyObject, <:Integer}, n::Union{PyObject, <:Integer}, tol::Union{PyObject, <:Real}=0.0) Creates a SparseAssembler for accumulating `row`, `col`, `val` for sparse matrices. - `handle`: an integer handle for creating a sparse matrix. If the handle already exists, `SparseAssembler` return the existing sparse matrix handle. If you are creating different sparse matrices, the handles should be different. - `n`: Number of rows of the sparse matrix. - `tol` (optional): Tolerance. `SparseAssembler` will treats any values less than `tol` as zero. # Example 1 ```julia handle = SparseAssembler(100, 5, 1e-8) op1 = accumulate(handle, 1, [1;2;3], [1.0;2.0;3.0]) op2 = accumulate(handle, 2, [1;2;3], [1.0;2.0;3.0]) J = assemble(5, 5, [op1;op2]) ``` `J` will be a [`SparseTensor`](@ref) object. # Example 2 ```julia handle = SparseAssembler(0, 5) op1 = accumulate(handle, 1, [1;2;3], ones(3)) op2 = accumulate(handle, 1, [3], [1.]) op3 = accumulate(handle, 2, [1;3], ones(2)) J = assemble(5, 5, [op1;op2;op3]) # op1, op2, op3 are parallel Array(run(sess, J))≈[1.0 1.0 2.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] ``` """ function SparseAssembler(handle::Union{PyObject, <:Integer}, n::Union{PyObject, <:Integer}, tol::Union{PyObject, <:Real}=0.0) sparse_accumulator = load_system_op("sparse_accumulator", false) n = convert_to_tensor(n, dtype=Int32) tol = convert_to_tensor(tol, dtype=Float64) handle = convert_to_tensor(handle, dtype=Int32) sparse_accumulator(tol, n, handle) end """ accumulate(handle::PyObject, row::Union{PyObject, <:Integer}, cols::Union{PyObject, Array{<:Integer}}, vals::Union{PyObject, Array{<:Real}}) Accumulates `row`-th row. It adds the value to the sparse matrix ```julia for k = 1:length(cols) A[row, cols[k]] += vals[k] end ``` `handle` is the handle created by [`SparseAssembler`](@ref). See [`SparseAssembler`](@ref) for an example. !!! note The function `accumulate` returns a `op::PyObject`. Only when `op` is executed, the nonzero values are populated into the sparse matrix. """ function accumulate(handle::PyObject, row::Union{PyObject, <:Integer}, cols::Union{PyObject, Array{<:Integer}}, vals::Union{PyObject, Array{<:Real}}) sparse_accumulator_add = load_system_op("sparse_accumulator_add", false) row = convert_to_tensor(row, dtype=Int32) cols = convert_to_tensor(cols, dtype=Int32) vals = convert_to_tensor(vals, dtype=Float64) return sparse_accumulator_add(handle, row, cols, vals) end """ assemble(m::Union{PyObject, <:Integer}, n::Union{PyObject, <:Integer}, ops::PyObject) Assembles the sparse matrix from the `ops` created by [`accumulate`](@ref). `ops` is either a single output from `accumulate`, or concated from several `ops` ```julia op1 = accumulate(handle, 1, [1;2;3], [1.0;2.0;3.0]) op2 = accumulate(handle, 2, [1;2;3], [1.0;2.0;3.0]) op = [op1;op2] # equivalent to `vcat([op1, op2]...)` ``` `m` and `n` are rows and columns of the sparse matrix. See [`SparseAssembler`](@ref) for an example. """ function assemble(m::Union{PyObject, <:Integer}, n::Union{PyObject, <:Integer}, ops::PyObject) sparse_accumulator_copy = load_system_op("sparse_accumulator_copy", false) if length(size(ops))==0 ops = reshape(ops, 1) end ii, jj, vv = sparse_accumulator_copy(ops) return SparseTensor(ii, jj, vv, m, n) end """ spdiag(n::Int64) Constructs a sparse identity matrix of size ``n\\times n``, which is equivalent to `spdiag(n, 0=>ones(n))` """ function spdiag(n::Int64) SparseTensor(sparse(1:n, 1:n, ones(Float64, n))) end """ spdiag(o::PyObject) Constructs a sparse diagonal matrix where the diagonal entries are `o`, which is equivalent to `spdiag(length(o), 0=>o)` """ function spdiag(o::PyObject) if length(size(o))!=1 error("ADCME: input `o` must be a vector") end ii = collect(1:length(o)) SparseTensor(ii, ii, o, length(o), length(o), is_diag=true) end spdiag(o::Array{Float64, 1}) = spdiag(constant(o)) """ spzero(m::Int64, n::Union{Missing, Int64}=missing) Constructs a empty sparse matrix of size ``m\\times n``. `n=m` if `n` is `missing` """ function spzero(m::Int64, n::Union{Missing, Int64}=missing) if ismissing(n) n = m end ii = Int64[] jj = Int64[] vv = Float64[] SparseTensor(ii, jj, vv, m, n, is_diag=true) end function Base.:*(s1::SparseTensor, s2::SparseTensor) ii1, jj1, vv1 = find(s1) ii2, jj2, vv2 = find(s2) m, n = size(s1) n_, k = size(s2) if n!=n_ error("IGACS: matrix size mismatch: ($m, $n) vs ($n_, $k)") end mat_mul_fn = load_system_op("sparse_sparse_mat_mul") if s1._diag mat_mul_fn = load_system_op("diag_sparse_mat_mul") elseif s2._diag mat_mul_fn = load_system_op("sparse_diag_mat_mul") end ii3, jj3, vv3 = mat_mul_fn(ii1-1,jj1-1,vv1,ii2-1,jj2-1,vv2, constant(m), constant(n), constant(k)) SparseTensor(ii3, jj3, vv3, m, k, is_diag=s1._diag&&s2._diag) end # missing is treated as zeros Base.:+(s1::SparseTensor, s2::Missing) = s1 Base.:-(s1::SparseTensor, s2::Missing) = s1 Base.:*(s1::SparseTensor, s2::Missing) = missing Base.:/(s1::SparseTensor, s2::Missing) = missing Base.:-(s1::Missing, s2::SparseTensor) = -s2 Base.:+(s1::Missing, s2::SparseTensor) = s2 Base.:*(s1::Missing, s2::SparseTensor) = missing Base.:/(s1::Missing, s2::SparseTensor) = missing function Base.:sum(s::SparseTensor; dims::Union{Integer, Missing}=missing) if ismissing(dims) tf.sparse.reduce_sum(s.o) else tf.sparse.reduce_sum(s.o, axis=dims-1) end end @doc raw""" spdiag(m::Integer, pair::Pair...) Constructs a square $m\times m$ [`SparseTensor`](@ref) from pairs of the form ``` offset => array ``` # Example Suppose we want to construct a $10\times 10$ tridiagonal matrix, where the lower off-diagonals are all -2, the diagonals are all 2, and the upper off-diagonals are all 3, the corresponding Julia code is ```julia spdiag(10, -1=>-2*ones(9), 0=>2*ones(10), 1=>3ones(9)) ``` """ function spdiag(n::Integer, pair::Pair...) ii = Array{Int64}[] jj = Array{Int64}[] vv = PyObject[] for (k, v) in pair @assert -(n-1)<=k<=n-1 v = convert_to_tensor(v, dtype=Float64) if k>=0 push!(ii, collect(1:n-k)) push!(jj, collect(k+1:n)) push!(vv, v) else push!(ii, collect(-k+1:n)) push!(jj, collect(1:n+k)) push!(vv, v) end end ii = vcat(ii...) jj = vcat(jj...) vv = vcat(vv...) indices = [ii jj] .- 1 sp = tf.SparseTensor(indices, vv, (n, n)) options.sparse.auto_reorder && (sp = tf.sparse.reorder(sp)) SparseTensor(sp) end @doc raw""" factorize(A::Union{SparseTensor, SparseMatrixCSC}, max_cache_size::Int64 = 999999) Factorizes $A$ for sparse matrix solutions. `max_cache_size` specifies the maximum cache sizes in the C++ kernels, which determines the maximum number of factorized matrices. The function returns the factorized matrix, which is basically `Tuple{SparseTensor, PyObject}`. # Example ```julia A = sprand(10,10,0.7) Afac = factorize(A) # factorizing the matrix run(sess, Afac\rand(10)) # no factorization, solving the equation run(sess, Afac\rand(10)) # no factorization, solving the equation ``` """ function factorize(A::Union{SparseTensor, SparseMatrixCSC}, max_cache_size::Int64 = 999999) sparse_factorization_ = load_system_op("sparse_factorization"; multiple=false) A = constant(A) ii, jj, vv = find(A) d = size(A, 1) ii,jj,vv,d,max_cache_size = convert_to_tensor([ii,jj,vv,d,max_cache_size], [Int64,Int64,Float64,Int64,Int64]) o = stop_gradient(sparse_factorization_(ii,jj,vv,d,max_cache_size)) return (A, o) end @doc raw""" solve(A_factorized::Tuple{SparseTensor, PyObject}, rhs::Union{Array{Float64,1}, PyObject}) Solves the equation `A_factorized * x = rhs` using the factorized sparse matrix. See [`factorize`](@ref). """ function solve(A_factorized::Tuple{SparseTensor, PyObject}, rhs::Union{Array{Float64,1}, PyObject}) A, o = A_factorized solve_ = load_system_op("solve"; multiple=false) ii, jj, vv = find(constant(A)) rhs,ii, jj, vv,o = convert_to_tensor([rhs,ii, jj, vv,o], [Float64,Int64, Int64, Float64,Int64]) out = solve_(rhs,ii, jj, vv,o) end @doc raw""" Base.:\(A_factorized::Tuple{SparseTensor, PyObject}, rhs::Union{Array{Float64,1}, PyObject}) A convenient overload for [`solve`](@ref). See [`factorize`](@ref). """ Base.:\(A_factorized::Tuple{SparseTensor, PyObject}, rhs::Union{Array{Float64,1}, PyObject}) = solve(A_factorized, rhs) @doc raw""" trisolve(a::Union{PyObject, Array{Float64,1}},b::Union{PyObject, Array{Float64,1}}, c::Union{PyObject, Array{Float64,1}},d::Union{PyObject, Array{Float64,1}}) Solves a tridiagonal matrix linear system. The equation is as follows $$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i$$ In the matrix format, ```math \begin{bmatrix} b_1 & c_1 & &0 \\ a_2 & b_2 & c_2 & \\ & a_3 & b_3 & &\\ & & & & c_{n-1}\\ 0 & & &a_n & b_n \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1\\ d_2\\ \vdots\\ d_n\end{bmatrix} ``` """ function trisolve(a::Union{PyObject, Array{Float64,1}},b::Union{PyObject, Array{Float64,1}}, c::Union{PyObject, Array{Float64,1}},d::Union{PyObject, Array{Float64,1}}) n = length(b) @assert length(b) == length(d) == length(a)+1 == length(c)+1 tri_solve_ = load_system_op("tri_solve"; multiple=false) a,b,c,d = convert_to_tensor(Any[a,b,c,d], [Float64,Float64,Float64,Float64]) out = tri_solve_(a,b,c,d) set_shape(out, (n,)) end function Base.:bind(op::SparseTensor, ops...) bind(op.o.values, ops...) end """ compress(A::SparseTensor) Compresses the duplicated index in `A`. # Example ```julia using ADCME indices = [ 1 1 1 1 2 2 3 3 ] v = [1.0;1.0;1.0;1.0] A = SparseTensor(indices[:,1], indices[:,2], v, 3, 3) Ac = compress(A) sess = Session(); init(sess) run(sess, A.o.indices) # expected: [0 0;0 0;1 1;2 2] run(sess, A.o.values) # expected: [1.0;1.0;1.0;1.0] run(sess, Ac.o.indices) # expected: [0 0;1 1;2 2] run(sess, Ac.o.values) # expected: [2.0;1.0;1.0] ``` !!! note The indices of `A` should be sorted. `compress` does not check the validity of the input arguments. """ function compress(A::SparseTensor) indices, v = A.o.indices, A.o.values sparse_compress_ = load_op_and_grad(libadcme,"sparse_compress", multiple=true) ind, vv = sparse_compress_(indices,v) RawSparseTensor(ind, vv, size(A)...) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
3841
export Database, execute, commit mutable struct Database conn::PyObject c::PyObject sqlite3::PyObject commit_after_execute::Bool filename::String end """ Database(filename::Union{Missing, String} = missing; commit_after_execute::Bool = true) Creates a database from `filename`. If `filename` is not provided, an in-memory database is created. If `commit_after_execute` is false, no commit operation is performed after each [`execute`](@ref). - do block syntax: ```julia Database() do db execute(db, "create table mytable (a real, b real)") end ``` The database is automatically closed after execution. Therefore, if execute is a query operation, users need to store the results in a global variable. - Query meta information ```julia keys(db) # all tables keys(db, "mytable") # all column names in `db.mytable` ``` """ function Database(filename::Union{Missing, String} = missing; commit_after_execute::Bool = true) filename = coalesce(filename, ":memory:") sqlite3 = pyimport("sqlite3") db = Database(PyNULL(), PyNULL(), sqlite3, commit_after_execute, filename) db end function connect(db::Database) sqlite3 = pyimport("sqlite3") db.conn = sqlite3.connect(db.filename) db.c = db.conn.cursor() end function Database(f::Function, args...; kwargs...) db = Database(args...;kwargs...) out = f(db) close(db) out end """ execute(db::Database, sql::String, args...) Executes the SQL statement `sql` in `db`. Users can also use the do block syntax. ```julia execute(db) do "create table mytable (a real, b real)" end ``` `execute` can also be used to insert a batch of records ```julia t1 = rand(10) t2 = rand(10) param = collect(zip(t1, t2)) execute(db, "INSERT TO mytable VALUES (?,?)", param) ``` or ```julia execute(db, "INSERT TO mytable VALUES (?,?)", t1, t2) ``` """ function execute(db::Database, sql::String, args...) connect(db) if length(args)>=1 if length(args)>1 param = collect(zip(args...)) else param = args[1] end db.c.executemany(sql, param) else db.c.execute(sql) end if db.commit_after_execute commit(db) end db.c end function execute(f::Function, db::Database; kwargs...) sql = f() execute(db, sql; kwargs...) end """ commit(db::Database) Commits changes to `db`. """ function commit(db::Database) db.conn.commit() end function Base.:close(db::Database) if !(db.conn==PyNULL()) commit(db) db.c.close() db.conn.close() db.c = PyNULL() db.conn = PyNULL() end nothing end function Base.:keys(db::Database) ret = execute(db, "select name from sqlite_master")|>collect close(db) tables = String[] for k = 1:length(ret) push!(tables, ret[k][1]) end tables end function Base.:keys(db::Database, table::String) execute(db, "select * from $table limit 1") ret = db.c.description close(db) columns = String[] for r in ret push!(columns, r[1]) end columns end function Base.:push!(db::Database, table::String, nts::NamedTuple...) v1 = [] v2 = [] for nt in nts cols = propertynames(nt) push!(v1, join(["\"$c\"" for c in cols], ",")) push!(v2, join([isnothing(nt[i]) ? "NULL" : "\"$(nt[i])\"" for i = 1:length(nt)], ",")) end v1 = join(v1, ",") v2 = join(v2, ",") execute(db, """ INSERT OR REPLACE INTO $table ($v1) VALUES ($v2) """ ) close(db) end function Base.:delete!(db::Database, table::String) execute(db, "drop table $table") close(db) end function Base.:getindex(db::Database, table::String) c = execute(db, "select * from $table") out = collect(c) close(db) out end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
9338
#= toolchain.jl implements a build system Compilers ========= CC CXX GFORTRAN Tools ===== CMAKE MAKE NINJA Directories =========== BINDIR LIBDIR PREFIXDIR =# export http_file, uncompress, git_repository, require_file, link_file, make_directory, change_directory, require_library, get_library, run_with_env, get_conda, read_with_env, get_library_name, get_pip, copy_file, require_cmakecache, require_import, get_xml GFORTRAN = nothing CONDA = nothing """ http_file(url::AbstractString, file::AbstractString) Download a file from `url` and rename it to `file`. """ function http_file(url::AbstractString, file::AbstractString) require_file(file) do @info "Downloading $url -> $file" download(url, file) @info "Downloaded $file from $url." end end """ uncompress(zipfile::AbstractString, file::AbstractString) Uncompress a zip file `zipfile` to `file` (a directory). Note this function does not check that the uncompressed content has the name `file`. It is used as a hint to skip `uncompress` action. Users may use `mv uncompress_file file` to enforce the consistency. """ function uncompress(zipfile::AbstractString, file::Union{Missing, AbstractString}=missing) zipfile = abspath(zipfile) if ismissing(file) d = "." else file = abspath(file) d = splitdir(file)[1] end uncompress_ = ()->begin if length(zipfile)>4 && zipfile[end-3:end]==".zip" if Sys.iswindows() run(`unzip $zipfile -d $d`) else UNZIP = joinpath(BINDIR, "unzip") run(`$UNZIP $zipfile -d $d`) end elseif length(zipfile)>4 && zipfile[end-3:end]==".tar" run(`tar -xvf $zipfile -C $d`) elseif length(zipfile)>7 && (zipfile[end-6:end]==".tar.gz" || zipfile[end-3:end]==".tgz") run(`tar -xvzf $zipfile -C $d`) else error("ADCME doesn't know how to uncompress $zipfile") end end if ismissing(file) uncompress_() else require_file(file) do uncompress_() end end end """ git_repository(url::AbstractString, file::AbstractString) Clone a repository `url` and rename it to `file`. """ function git_repository(url::AbstractString, file::AbstractString) @info "Cloning from $url to $file..." require_file(file) do LibGit2.clone(url, file) @info "Cloned $url to $file" end end """ require_file(f::Function, file::Union{String, Array{String}}) If any of the files/links/directories in `file` does not exist, execute `f`. """ function require_file(f::Function, file::Union{String, Array{String}}) if isa(file, String) file = [file] end if !all([isfile(x)||islink(x)||isdir(x) for x in file]) f() else if length(file)==1 @info "File $(file[1]) exists" else @info "Files exist: $(file)" end end end """ get_gfortran() Install a gfortran compiler if it does not exist. """ function get_gfortran() global GFORTRAN try GFORTRAN = split(String(read(`which gfortran`)))[1] catch error("gfortran is not in the path.") end GFORTRAN end """ link_file(target::AbstractString, link::AbstractString) Make a symbolic link `link` -> `target` """ function link_file(target::AbstractString, link::AbstractString) if isfile(link) || islink(link) return else symlink(target, link) @info "Made symbolic link $link -> $target" end end """ make_directory(directory::AbstractString) Make a directory if it does not exist. """ function make_directory(directory::AbstractString) require_file(directory) do mkpath(directory) @info "Made directory directory" end end """ change_directory(directory::Union{Missing, AbstractString}) Change the current working directory to `directory`. If `directory` does not exist, it is made. If `directory` is missing, the default is `ADCME.PREFIXDIR`. """ function change_directory(directory::Union{Missing, AbstractString}=missing) directory = coalesce(directory, ADCME.PREFIXDIR) if !isdir(directory) make_directory(directory) end cd(directory) @info "Changed to directory $directory" end """ get_library(filename::AbstractString) Returns a valid library file. For example, for `filename = "adcme"`, we have - On MacOS, the function returns `libadcme.dylib` - On Linux, the function returns `libadcme.so` - On Windows, the function returns `adcme.dll` """ function get_library(filename::AbstractString) filename = abspath(filename) dir, file = splitdir(filename) if Sys.islinux() || Sys.isapple() if length(file)<3 || file[1:3]!="lib" file = "lib" * file end f, _ = splitext(file) ext = Sys.islinux() ? "so" : "dylib" file = f * "." * ext else f, _ = splitext(file) file = f * ".dll" end filename = joinpath(dir, file) end """ get_conda() Returns the conda executable location. """ function get_conda() global CONDA = joinpath(ADCME.BINDIR, "conda") CONDA end """ require_library(func::Function, filename::AbstractString) If the library file `filename` does not exist, `func` is executed. """ function require_library(func::Function, filename::AbstractString) filename = get_library(filename) if !(isfile(filename) || islink(filename)) func() else @info "Library $filename exists" end end """ get_library_name(filename::AbstractString) Returns the OS-dependent library name # Example ``` get_library_name("mylibrary") ``` - Windows: `mylibrary.dll` - MacOS: `libmylibrary.dylib` - Linux: `libmylibrary.so` """ function get_library_name(filename::AbstractString) if length(filename)>3 && filename[1:3]=="lib" @warn "No prefix `lib` is need. Removed." filename = filename[4:end] end if Sys.iswindows() filename = filename * ".dll" elseif Sys.isapple() filename = "lib" * filename * ".dylib" else filename = "lib" * filename * ".so" end filename end """ run_with_env(cmd::Cmd, env::Union{Missing, Dict} = missing) Running the command with the default environment and an extra environment variables `env` """ function run_with_env(cmd::Cmd, env::Union{Missing, Dict} = missing) ENV_ = copy(ENV) LD_PATH = Sys.iswindows() ? "PATH" : "LD_LIBRARY_PATH" if haskey(ENV_, LD_PATH) ENV_[LD_PATH] = ENV[LD_PATH]*":$LIBDIR" else ENV_[LD_PATH] = LIBDIR end if !ismissing(env) ENV_ = merge(env, ENV_) end run(setenv(cmd, ENV_)) end """ read_with_env(cmd::Cmd, env::Union{Missing, Dict} = missing) Similar to [`run_with_env`](@ref), but returns a string containing the output. """ function read_with_env(cmd::Cmd, env::Union{Missing, Dict} = missing) ENV_ = copy(ENV) LD_PATH = Sys.iswindows() ? "PATH" : "LD_LIBRARY_PATH" if haskey(ENV_, LD_PATH) ENV_[LD_PATH] = ENV[LD_PATH]*":$LIBDIR" else ENV_[LD_PATH] = LIBDIR end if !ismissing(env) ENV_ = merge(env, ENV_) end String(read(setenv(cmd, ENV_))) end """ get_pip() Returns the location for `pip` """ function get_pip() PIP = "" if Sys.iswindows() PIP = joinpath(BINDIR, "pip.exe") else PIP = joinpath(BINDIR, "pip") end return PIP end """ copy_file(src::String, dest::String) Copy file `src` to `dest` """ function copy_file(src::String, dest::String) if !isfile(src) && !isdir(src) error("$src is neither a file nor a directory") end require_file(dest) do cp(src, dest) @info "Move file $src to $dest" end end """ require_cmakecache(func::Function, DIR::String = ".") Check if `cmake` has output something. If not, `func` is executed. """ function require_cmakecache(func::Function, DIR::String = ".") DIR = abspath(DIR) if !isdir(DIR) error("$DIR is not a valid directory") end if Sys.iswindows() files = readdir(DIR) if length(files)==0 func() return end x = [splitext(x)[2] for x in files] if ".sln" in x return else func() end else file = joinpath(DIR, "build.ninja") if isfile(file) return else func() end end end @doc raw""" require_import(s::Symbol) Checks whether the package `s` is imported in the Main namespace. Returns the package handle. """ function require_import(s::Symbol) if !isdefined(Main, s) error("Package $s.jl must be imported in the main module using `import $s` or `using $s`") end @eval Main.$s end raw""" get_xml() Returns the xml file for `conda install`. In case conda dependencies need to be reinstalled, run ``` run(`$(get_conda()) env update -n base --file $(get_xml())`) ``` """ function get_xml() os = "" if Sys.iswindows() os = "windows" elseif Sys.isapple() os = "osx" else os = "linux" end return abspath(joinpath(@__DIR__, "..", "deps", "$(os).yml")) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
25077
import Base:lastindex, getindex export constant, Variable, cell, set_shape, get_dtype, get_variable, placeholder, variable_scope, gradients, gradient_magnitude, hessian, constant_initializer, glorot_normal_initializer, random_normal_initializer, random_uniform_initializer, truncated_normal_initializer, uniform_unit_scaling_initializer, variance_scaling_initializer, sym, spd, tensor, convert_to_tensor, hessian_vector, TensorArray, gradient_checkpointing, zeros_like, ones_like, gradients_colocate, is_variable, jacobian """ constant(value; kwargs...) Constructs a non-trainable tensor from `value`. """ function constant(value; kwargs...) if isa(value, PyObject) return value end if isa(value, Char) value = string(value) end kwargs = jlargs(kwargs) if !(:dtype in keys(kwargs)) kwargs[:dtype] = DTYPE[eltype(value)] end tf.constant(value; kwargs...) end """ Variable(initial_value;kwargs...) Constructs a trainable tensor from `value`. """ function Variable(initial_value;kwargs...) kwargs = jlargs(kwargs) if !(:dtype in keys(kwargs)) kwargs[:dtype] = DTYPE[eltype(initial_value)] end tf.Variable(initial_value; kwargs...) end """ cell(arr::Array, args...;kwargs...) Construct a cell tensor. # Example ```julia-REPL julia> r = cell([[1.],[2.,3.]]) julia> run(sess, r[1]) 1-element Array{Float32,1}: 1.0 julia> run(sess, r[2]) 2-element Array{Float32,1}: 2.0 3.0 ``` """ function cell(arr::Array, args...;kwargs...) kwargs = jlargs(kwargs) if !(:dtype in keys(kwargs)) kwargs[:dtype] = DTYPE[eltype(arr[1])] end tf.ragged.constant(arr, args...;kwargs...) end """ copy(o::PyObject) Creates a tensor that has the same value that is currently stored in a variable. !!! note The output is a graph node that will have that value when evaluated. Any time you evaluate it, it will grab the current value of `o`. """ function Base.:copy(o::PyObject) return tf.identity(o) end function get_variable(name::String; kwargs...) kwargs = jlargs(kwargs) tf.compat.v1.get_variable(name;kwargs...) end """ get_variable(o::Union{PyObject, Bool, Array{<:Number}}; name::Union{String, Missing} = missing, scope::String = "") Creates a new variable with initial value `o`. If `name` exists, `get_variable` returns the variable instead of create a new one. """ function get_variable(o::Union{PyObject, Bool, Number, Array{<:Number}}; name::Union{String, Missing} = missing, scope::String = "") local v o = constant(o) if ismissing(name) name = "unnamed_"*randstring(10) end variable_scope(scope) do v = tf.compat.v1.get_variable(name = name, initializer=o, dtype=DTYPE[get_dtype(o)]) end return v end """ get_variable(dtype::Type; shape::Union{Array{<:Integer}, NTuple{N, <:Integer}}, name::Union{Missing,String} = missing scope::String = "") Creates a new variable with initial value `o`. If `name` exists, `get_variable` returns the variable instead of create a new one. """ function get_variable(dtype::Type; shape::Union{Array{<:Integer}, NTuple{N, <:Integer}}, name::Union{Missing,String} = missing, scope::String = "") where N local v dtype = DTYPE[dtype] if ismissing(name) name = "unnamed_"*randstring(10) end variable_scope(scope) do v = tf.compat.v1.get_variable(name = name, shape=shape, dtype = dtype) end return v end get_variable(dtype::Type, shape::Union{Array{<:Integer}, NTuple{N, <:Integer}}, name::Union{Missing,String} = missing, scope::String = "") where N = get_variable(dtype, shape=shape, name=name, scope = scope) """ placeholder(dtype::Type; kwargs...) Creates a placeholder of the type `dtype`. # Example ```julia a = placeholder(Float64, shape=[20,10]) b = placeholder(Float64, shape=[]) # a scalar c = placeholder(Float64, shape=[nothing]) # a vector ``` """ function placeholder(dtype::Type; kwargs...) dtype = DTYPE[dtype] kwargs = Dict{Any,Any}(kwargs) if !(:shape in keys(kwargs)) kwargs[:shape] = [] end tf.compat.v1.placeholder(dtype;kwargs...) end """ placeholder(o::Union{Number, Array, PyObject}; kwargs...) Creates a placeholder of the same type and size as `o`. `o` is the default value. """ function placeholder(o::Union{Number, Array, PyObject}; kwargs...) o = convert_to_tensor(o; kwargs...) tf.compat.v1.placeholder_with_default(o, shape=size(o)) end function variable_scope(f, name_or_scope; reuse=AUTO_REUSE, kwargs...) @pywith tf.variable_scope(name_or_scope;reuse = reuse, kwargs...) begin f() end end function set_shape(o::PyObject, shape) o.set_shape(shape) o end function get_dtype(o::PyObject) for (k,v) in DTYPE if occursin(string(v),string(o.dtype)) return k end end return nothing end Base.:eltype(o::PyObject) = get_dtype(o) @deprecate get_shape size get_shape(o::PyObject, i::Union{Int64,Nothing}) = size(o,i) # compatible with Julia size function PyCall.:size(o::PyObject, i::Union{Int64, Nothing}=nothing) d = o.shape.dims if d===nothing return nothing end if length(d)==0 if i!=nothing return 1 else return () end else s = o.get_shape().as_list() s = [isnothing(x) ? x : Int64(x) for x in s] if i==nothing return Tuple(s) elseif 0<i<=length(s) return s[i] else return 1 end end end function PyCall.:length(o::PyObject) # If `o.shape.dims` is invalid, it is not a TensorFlow object. if !hasproperty(o, :graph) return PyCall.@pycheckz ccall((PyCall.@pysym :PySequence_Size), Int, (PyCall.PyPtr,), o) end if any(isnothing.(size(o))) return nothing else return prod(size(o)) end end function Base.:ndims(o::PyObject) return length(size(o)) end @doc raw""" gradients(ys::PyObject, xs::PyObject; kwargs...) Computes the gradients of `ys` w.r.t `xs`. - If `ys` is a scalar, `gradients` returns the gradients with the same shape as `xs`. - If `ys` is a vector, `gradients` returns the Jacobian $\frac{\partial y}{\partial x}$ !!! note The second usage is not suggested since `ADCME` adopts reverse mode automatic differentiation. Although in the case `ys` is a vector and `xs` is a scalar, `gradients` cleverly uses forward mode automatic differentiation, it requires that the second order gradients are implemented for relevant operators. """ function gradients(ys::PyObject, xs::PyObject; kwargs...) s1 = size(ys) s2 = size(xs) kwargs = jlargs(kwargs) if isnothing(s1) && isnothing(s2) error("s1, s2 should be rank 0, 1, 2") end if length(s1)==0 ret = tf.gradients(ys, xs; kwargs...) if !isnothing(ret) && !isnothing(ret[1]) return tf.convert_to_tensor(ret[1]) else return nothing end elseif length(s1)==1 && length(s2)==0 return gradients10(ys, xs; kwargs...) elseif length(s1)==1 && length(s2)==1 return gradients11(ys, xs) elseif length(s1)==2 && length(s2)==0 grad = gradients(vec(ys), xs; kwargs...) reshape(grad, s1...) else error("gradients: Invalid argument") end end function gradients(ys::PyObject, xs::Array{T}; kwargs...) where T <: Union{Any, PyObject} zs = Array{PyObject}(undef, length(xs)) for i = 1:length(zs) zs[i] = gradients(ys, xs[i]; kwargs...) end zs end function gradients(ys::Array{T}, xs::PyObject; kwargs...) where T <: Union{Any, PyObject} zs = Array{PyObject}(undef, length(ys)) for i = 1:length(ys) zs[i] = gradients(ys[i], xs; kwargs...) end zs end function gradients10(ys::PyObject, xs::PyObject; kwargs...) kwargs = jlargs(kwargs) try u = Variable(rand(length(ys)), trainable=false) g = tf.gradients(ys, xs, grad_ys=u; kwargs...) g==nothing && (return nothing) r = tf.gradients(g[1], u; unconnected_gradients="zero", kwargs...)[1] catch gradients_v(ys, xs; kwargs...) end end function gradients_v(ys::PyObject, xs::PyObject;kwargs...) kwargs = jlargs(kwargs) if length(size(ys))!=1 error("ys should be a n dimensional vector function") end if length(size(xs))!=0 error("xs should be a scalar") end n = length(ys) function condition(i, ta) i<=n end function body(i,ta) ta = write(ta, i, tf.gradients(ys[i], xs, unconnected_gradients="zero", kwargs...)[1]) i+1, ta end ta = TensorArray(n) i = constant(1, dtype=Int32) _, ta = while_loop(condition, body, [i,ta], parallel_iterations=10) out = stack(ta) end # https://stackoverflow.com/questions/50244270/computing-jacobian-matrix-in-tensorflow function gradients11(ys::PyObject, xs::PyObject; kwargs...) n = size(ys,1) function condition(i, ta) i <= n end function body(i, ta) ta = write(ta, i, tf.convert_to_tensor(gradients(ys[i], xs; unconnected_gradients="zero"))) i+1, ta end ta = TensorArray(n) i = constant(1, dtype=Int32) _, ta = while_loop(condition, body, [i,ta],parallel_iterations=10) stack(ta) end """ gradients_colocate(loss::PyObject, xs::Union{PyObject, Array{PyObject}}, args...;use_locking::Bool = true, kwargs...) Computes the gradients of a **scalar** loss function `loss` with respect to `xs`. The gradients are colocated with respect to the forward pass. This function is usually in distributed computing. """ function gradients_colocate(loss::PyObject, xs::Union{PyObject, Array{PyObject}}, args...;use_locking::Bool = true, kwargs...) flag = false if isa(xs, PyObject) xs = [xs] flag = true end opt = tf.train.Optimizer(use_locking, "default_optimizer_"*randstring(8)) grads_and_vars = opt.compute_gradients( loss, var_list=xs, colocate_gradients_with_ops=true) grads = [x[1] for x in grads_and_vars] flag && (grads = grads[1]) return grads end @doc raw""" jacobian(y::PyObject, x::PyObject) Computes the Jacobian matrix $$J_{ij} = \frac{\partial y_i}{\partial x_j}$$ """ function jacobian(y::PyObject, x::PyObject) @assert length(size(y))==1 @assert length(size(x))==1 tfj = pyimport("tensorflow.python.ops.parallel_for.gradients") tfj.jacobian(y, x) end function hessian_vector(f, xs, v; kwargs...) kwargs = jlargs(kwargs) gradients_impl = pyimport("tensorflow.python.ops.gradients_impl") gradients_impl._hessian_vector_product(f, [xs], [v]; kwargs...)[1] end @doc raw""" hessian(ys::PyObject, xs::PyObject; kwargs...) `hessian` computes the hessian of a scalar function f with respect to vector inputs xs. # Example ```julia x = constant(rand(10)) y = 0.5 * sum(x^2) o = hessian(y, x) sess = Session(); init(sess) run(sess, o) # should be an identity matrix ``` """ function hessian(ys::PyObject, xs::PyObject; kwargs...) if length(size(ys))==0 && length(size(xs))==1 return tf.hessians(ys, xs)[1] end kwargs = jlargs(kwargs) s1 = size(ys) s2 = size(xs) if s1==nothing || s2 == nothing || (length(s1)!=0 && length(s2)!=1) error("Invalid input arguments") end h = tf.gradients(ys, xs; kwargs...) if h==nothing return nothing else h = h[1] end vs = Array{PyObject}(undef, s2[1]) for i = 1:s2[1] # verbose && (@info "_hessian... $i/$(s2[1])") vs[i] = gradients(get(h,i-1), xs) if isnothing(vs[i]) vs[i] = constant(zeros(get_dtype(ys), s2[1])) end end stack(vs, dims=1) end # initializers constant_initializer(args...;kwargs...) = tf.constant_initializer(args...;kwargs...) glorot_normal_initializer(args...;kwargs...) = tf.glorot_normal_initializer(args...;kwargs...) glorot_uniform_initializer(args...;kwargs...) = tf.glorot_uniform_initializer(args...;kwargs...) random_normal_initializer(args...;kwargs...) = tf.random_normal_initializer(args...;kwargs...) random_uniform_initializer(args...;kwargs...) = tf.random_uniform_initializer(args...;kwargs...) truncated_normal_initializer(args...;kwargs...) = tf.truncated_normal_initializer(args...;kwargs...) uniform_unit_scaling_initializer(args...;kwargs...) = tf.uniform_unit_scaling_initializer(args...;kwargs...) variance_scaling_initializer(args...;kwargs...) = tf.uniform_unit_scaling_initializer(args...;kwargs...) #-------------------------------------------------------------------------------------------------------- # Indexing function PyCall.:lastindex(o::PyObject) return size(o,1) end function PyCall.:lastindex(o::PyObject, i::Int64) return size(o,i) end # rank 1 tensor function getindex(o::PyObject, r::Union{Colon, Array{Bool,1}, BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}) if typeof(r)==Colon return vec(o) elseif typeof(r)==Array{Bool,1} || typeof(r)==BitArray{1} return getindex(o, findall(r)) elseif typeof(r)==UnitRange{Int64} || typeof(r)==StepRange{Int64, Int64} return getindex(o, collect(r)) elseif typeof(r)==Array{Int64,1} return tf.gather(o, r.-1) end end function getindex(o::PyObject, i::PyObject) return tf.gather(o, i-1) end # rank 2 tensor # drawback: only access the 1st dimension of a tensor function getindex(o::PyObject, i1::Union{Int64, Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}, c::Colon) if typeof(i1)==Colon return o elseif typeof(i1)==Array{Bool,1}|| typeof(i1)==BitArray{1} return getindex(o, findall(i1), c) elseif typeof(i1)==UnitRange{Int64} || typeof(i1)==StepRange{Int64, Int64} i1 = (i1|>collect) end tf.gather(o, i1.-1) end # less efficient function _to_range_array(o::PyObject, i::Union{Int64, Colon, Array{Bool,1},BitArray{1}, UnitRange{Int64}, Array{Int64,1}, StepRange{Int64, Int64}}, d::Int64) if typeof(i)==Int64 return [i] elseif typeof(i)==Colon if isnothing(size(o,d)) error(ArgumentError("Dimension $d of `o` is `nothing`. You need to set a concrete dimension, e.g., using `set_shape`")) end return collect(1:size(o,d)) elseif typeof(i)<:StepRange || typeof(i)<:UnitRange return collect(i) elseif typeof(i)==Array{Bool,1}|| typeof(i)==BitArray{1} return findall(i) else return i end end function getindex(o::PyObject, i1::Union{Int64, Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}, i2::Union{Int64, Array{Bool,1},Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}) sdim1 = typeof(i1)==Int64 sdim2 = typeof(i2)==Int64 if typeof(i1)==Int64 && typeof(i2)==Int64 return squeeze(tf.strided_slice(o, (i1[1]-1,i2[1]-1),(i1[1],i2[1]),(1,1)), dims=(1,2)) end i1 = _to_range_array(o, i1, 1) i2 = _to_range_array(o, i2, 2) temp = Base.Iterators.product(i2,i1)|>collect indices = [vec([x[2] for x in temp]) vec([x[1] for x in temp])] .- 1 p = tf.gather_nd(o, indices) p = tf.reshape(p', (length(i1), length(i2))) if sdim1 return squeeze(p, dims=1) elseif sdim2 return squeeze(p, dims=2) else return p end end function getindex(o::PyObject, i1, i2, i3) sdims = Int64[] if isa(i1, Int64) push!(sdims, 1) i1 = i1:i1 end if isa(i2, Int64) push!(sdims, 2) i2 = i2:i2 end if isa(i3, Int64) push!(sdims, 3) i3 = i3:i3 end res = getindex(o, i1, i2, i3) squeeze(res, dims=sdims) end function getindex(o::PyObject, i1::Union{Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}, i2::Union{Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}, i3::Union{Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}) if length(size(o))!=3 error(DimensionMismatch("input tensor is $(length(size(o))) dimensional, but expected 3")) end i1 = _to_range_array(o, i1, 1) i2 = _to_range_array(o, i2, 2) i3 = _to_range_array(o, i3, 3) idx = Int64[] for i = 1:length(i1) for j = 1:length(i2) for k = 1:length(i3) ii = i3[k] + (i2[j]-1)*size(o,3) + (i1[i]-1)*size(o,2)*size(o,3) push!(idx, ii) end end end p = reshape(o, (-1,))[idx] reshape(p, (length(i1), length(i2), length(i3))) end function Base.:getindex(o::PyObject, i::PyObject, j::Union{Int64, Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}) flag = false if isa(j, Colon) return o[i] end if length(size(i))!=0 || !(get_dtype(i)<:Integer) error(ArgumentError("Only integer `i` is supported")) end if isnothing(size(o,2)) error(ArgumentError("Dimension 2 of `o` is `nothing`. You need to set a concrete dimension, e.g., using `set_shape`")) end if isa(j, Integer) flag = true end j = _to_range_array(o, j, 2) idx = (i-1)*size(o,2) + j ret = tf.reshape(o, (-1,))[idx] if flag return get(ret, 0) else return ret end end function Base.:getindex(o::PyObject, i::Union{Int64, Colon, Array{Bool,1},BitArray{1}, Array{Int64,1},UnitRange{Int64}, StepRange{Int64, Int64}}, j::PyObject) flag = false if length(size(j))!=0 || !(get_dtype(j)<:Integer) error(ArgumentError("Only integer `j` is supported")) end if isnothing(size(o,2)) error(ArgumentError("Dimension 2 of `o` is `nothing`. You need to set a concrete dimension, e.g., using `set_shape`")) end if isa(i, Integer) flag = true end i = _to_range_array(o, i, 1) idx = (i .- 1)*size(o,2) + j ret = tf.reshape(o, (-1,))[idx] if flag return get(ret, 0) else return ret end end #------------------------------------------------------------------------------------------------------- # https://stackoverflow.com/questions/46718356/tensorflow-symmetric-matrix function sym(o::Union{Array{<:Real}, PyObject}) convert_to_tensor(1/2 * (o + o')) end function spd(o::Union{Array{<:Real}, PyObject}) if length(size(o))!=2 || size(o,1)!=size(o,2) error("Input `o` must be a square matrix") end convert_to_tensor(o * o') end """ tensor(v::Array{T,2}; dtype=Float64, sparse=false) where T """ function tensor(v::Array{T,1}; dtype=Float64, sparse=false) where T local ret N = length(v) ret = Variable(zeros(dtype, N), trainable=false) for i = 1:N if sparse && isa(v[i], Number) && v[i]≈0 continue end if isa(v[i], Number) v[i] = dtype(v[i]) end ret = scatter_add(ret, i, v[i]) end ret end """ tensor(v::Array{T,2}; dtype=Float64, sparse=false) where T Convert a generic array `v` to a tensor. For example, ```julia v = [0.0 constant(1.0) 2.0 constant(2.0) 0.0 1.0] u = tensor(v) ``` `u` will be a ``2\\times 3`` tensor. !!! note This function is expensive. Use with caution. """ function tensor(v::Array{T,2}; dtype=Float64, sparse=false) where T local ret M, N = size(v) ret = Variable(zeros(dtype, M, N), trainable=false) for i = 1:M for j = 1:N if sparse && isa(v[i,j], Number) && v[i,j]≈0 continue end if isa(v[i,j], Number) v[i,j] = dtype(v[i,j]) end ret = scatter_add(ret, i, j, v[i, j]) end end ret end """ TensorArray(size_::Int64=0, args...;kwargs...) Constructs a tensor array for [`while_loop`](@ref). """ function TensorArray(size_::Int64=0, args...;kwargs...) kwargs = jlargs(kwargs) if !(haskey(kwargs, :dtype)) kwargs[:dtype] = tf.float64 end if !haskey(kwargs, :dynamic_size) kwargs[:dynamic_size] = false end if !haskey(kwargs, :clear_after_read) kwargs[:clear_after_read] = false end kwargs[:size] = size_ tf.TensorArray(args...;kwargs...) end """ read(ta::PyObject, i::Union{PyObject,Integer}) Reads data from [`TensorArray`](@ref) at index `i`. """ function Base.:read(ta::PyObject, i::Union{PyObject,Integer}) ta.read(i-1) end """ write(ta::PyObject, i::Union{PyObject,Integer}, obj) Writes data `obj` to [`TensorArray`](@ref) at index `i`. """ function Base.:write(ta::PyObject, i::Union{PyObject,Integer}, obj::PyObject) ta.write(i-1, obj) end Base.:write(ta::PyObject, i::Union{PyObject,Integer}, obj::Union{Array{<:Real}, Real}) = write(ta, i, constant(obj)) """ convert_to_tensor(o::Union{PyObject, Number, Array{T}, Missing, Nothing}; dtype::Union{Type, Missing}=missing) where T<:Number convert_to_tensor(os::Array, dtypes::Array) Converts the input `o` to tensor. If `o` is already a tensor and `dtype` (if provided) is the same as that of `o`, the operator does nothing. Otherwise, `convert_to_tensor` converts the numerical array to a constant tensor or casts the data type. `convert_to_tensor` also accepts multiple tensors. # Example ```julia convert_to_tensor([1.0, constant(rand(2)), rand(10)], [Float32, Float64, Float32]) ``` """ function convert_to_tensor(o::Union{PyObject, Number, Array{T}, Missing, Nothing}; dtype::Union{Type, Missing}=missing) where T<:Number if ismissing(o) || isnothing(o) return o end if isa(o, PyObject) if ismissing(dtype) || dtype==eltype(o) return o else return cast(o, dtype) end else if !ismissing(dtype) return constant(o, dtype=dtype) else return constant(o) end end end function convert_to_tensor(os::Array, dtypes::Array) [convert_to_tensor(o, dtype=d) for (o, d) in zip(os, dtypes)] end """ gradient_checkpointing(type::String="speed") Uses checkpointing scheme for gradients. - 'speed': checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive, so checkpointing them maximizes the running speed (this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory) - 'memory': try to minimize the memory usage (currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint) - 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint """ function gradient_checkpointing(type::String="speed") pyfile = "$(ADCME.LIBDIR)/memory_saving_gradients.py" if !isfile(pyfile) @info "Downloading memory_saving_gradients.py..." download("https://raw.githubusercontent.com/cybertronai/gradient-checkpointing/master/memory_saving_gradients.py", pyfile) end py"""exec(open($pyfile).read())""" gradients_speed = py"gradients_speed" gradients_memory = py"gradients_memory" gradients_collection = py"gradients_collection" if type=="speed" tf.__dict__["gradients"] = gradients_speed elseif type=="memory" tf.__dict__["gradients"] = gradients_memory elseif type=="collection" tf.__dict__["gradients"] = gradients_collection else error("ADCME: $type not defined") end @info "Loaded: $type" end @doc raw""" gradient_magnitude(l::PyObject, o::Union{Array, PyObject}) Returns the gradient sum $$\sqrt{\sum_{i=1}^n \|\frac{\partial l}{\partial o_i}\|^2}$$ This function is useful for debugging the training """ function gradient_magnitude(l::PyObject, o::Union{Array, PyObject}) if isa(o, PyObject) o = [o] end tf.global_norm(gradients(l, o)) end """ zeros_like(o::Union{PyObject,Real, Array{<:Real}}, args...; kwargs...) Returns a all-zero tensor, which has the same size as `o`. # Example ```julia a = rand(100,10) b = zeros_like(a) @assert run(sess, b)≈zeros(100,10) ``` """ function zeros_like(o::Union{PyObject,Real, Array{<:Real}}, args...; kwargs...) kwargs = jlargs(kwargs) tf.zeros_like(o, args...;kwargs...) end """ ones_like(o::Union{PyObject,Real, Array{<:Real}}, args...; kwargs...) Returns a all-one tensor, which has the same size as `o`. # Example ```julia a = rand(100,10) b = ones_like(a) @assert run(sess, b)≈ones(100,10) ``` """ function ones_like(o::Union{PyObject,Real, Array{<:Real}}, args...; kwargs...) kwargs = jlargs(kwargs) tf.ones_like(o, args...;kwargs...) end """ is_variable(o::PyObject) Determines whether `o` is a trainable variable. """ function is_variable(o::PyObject) hasproperty(o, :trainable) && o.trainable end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
4201
reset_default_graph(); sess = Session() # not testable # # this must be the test # @testset "Eager evaluation" begin # reset_default_graph() # sess = Session() # enable_eager_execution() # g = rand(10,10) # o = Variable(g) # @test value(o) ≈ g # end @testset "control_dependency" begin a = Variable(ones(10)) b = Variable(ones(10)) for i = 1:10 control_dependencies(a) do a = scatter_add(a, i, b[i]) end end a_ = constant(0.0) b_ = Variable(0.0) op = assign(b_, 2.0) a_ = a_ + 1.0 a_ = bind(a_, op) init(sess) run(sess, a_) @test run(sess, a)≈ones(10)*2 @test run(sess, b_)≈2.0 a = Variable(ones(10)) b = Variable(ones(10)) for i = 1:10 control_dependencies(a) do a = scatter_add(a, i, b[i]) end end a_ = spdiag(ones(10)) b_ = Variable(0.0) op = assign(b_, 2.0) a_ = a_*2 a_ = bind(a_, op) init(sess) run(sess, a_) @test run(sess, a)≈ones(10)*2 @test run(sess, b_)≈2.0 end @testset "while loop" begin a = constant(rand(10)) condition = (i, var)->tf.less(i,11) function body(i, var) var = tf.cond(tf.equal(i, 1), ()->write(var, i, a), ()->write(var, i, 2*read(var, i-1)) ) i+1, var end i = constant(1, dtype=Int32) ta = TensorArray(10) out_i, out_ta = tf.while_loop(condition, body, [i,ta]) ts = read(out_ta, 10) sum_ts = sum(ts) grd = gradients(sum_ts, a) @test run(sess, grd)≈512*ones(10) ta = TensorArray(10) a = constant(1.0) ta = write(ta, 1, a) ta = write(ta, 2, read(ta,1)+a) # 2a ta = write(ta, 3, read(ta,2)+a) # 3a ta = write(ta, 4, read(ta,2)+read(ta,3)+a) # 6a g = gradients(read(ta, 4), a) @test run(sess, g)≈6 ta = TensorArray(9) function condition(i, ta) tf.less(i, 10) end ta = write(ta, 1, constant(1.0)) ta = write(ta, 2, constant(1.0)) function body(i, ta) ta = write(ta, i, 2*read(ta,i-1)+read(ta,i-2)+a) i+1, ta end i = constant(3, dtype=Int32) _, ta_out = while_loop(condition, body, [i,ta]) g = gradients(read(ta_out,9),a) @test run(sess, g)≈288 end @testset "if_clause" begin a = constant(2.0) b = constant(1.0) c = constant(0.0) bb = b*2 cc = c + 3.0 res = if_else(a>1.0, bb, cc) @test run(sess, res)≈2.0 end @testset "if_else: tf.where" begin condition = [true true false false true true true true] a = [1 1 1 1 1 1 1 1] b = [2 2 2 2 2 2 2 2] res = if_else(condition, a, b) @test run(sess, res)≈[1 1 2 2 1 1 1 1] res1 = if_else(condition[1,:], a[1,:], b[1,:]) @test run(sess, res1)≈[1;1;2;2] end @testset "get and add collection" begin a = Variable(ones(10), name="my_collect1") b = 2a @test get_collection("my_collect")==[a] end @testset "has_gpu" begin @test has_gpu() in [true, false] @test isnothing(gpu_info()) @test isa(get_gpu(), NamedTuple) end @testset "timeline" begin a = normal(2000, 5000) b = normal(5000, 1000) res = a*b run_profile(sess, res) save_profile("test.json") rm("test.json") end @testset "independent" begin x = constant(rand(10)) y = 2*x z = sum(independent(y)) @test isnothing(gradients(z, x)) end @testset "run corner cases" begin pl = placeholder(0.1) @test run(sess, pl, pl=>4.0) ≈ 4.0 end @testset "@cpu @gpu" begin @cpu 2 begin global a = constant(rand(10,10)) end @gpu 2 begin global b = constant(rand(10,10)) end @test a.device == "/device:CPU:2" @test b.device == "/device:GPU:2" @cpu begin global a = constant(rand(10,10)) end @gpu begin global b = constant(rand(10,10)) end @test a.device == "/device:CPU:0" @test b.device == "/device:GPU:0" end @testset "mpi utils" begin @test_nowarn has_mpi() try get_mpi() catch @test true end try get_mpirun() catch @test true end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
685
reset_default_graph(); sess = Session() @testset "customop" begin if isdir("temp") rm("temp", force=true, recursive=true) end mkdir("temp") cd("temp") customop() customop() customop(;julia=true) cp("$(@__DIR__)/../examples/while_loop/DirichletBD/DirichletBD.cpp", "DirichletBD.cpp", force=true) cp("$(@__DIR__)/../examples/while_loop/DirichletBD/DirichletBD.h", "DirichletBD.h", force=true) cp("$(@__DIR__)/../examples/while_loop/DirichletBD/CMakeLists.txt", "CMakeLists.txt", force=true) mkdir("build") cd("build") ADCME.cmake() ADCME.make() cd("..") rm("temp", force=true, recursive=true) @test true end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
1705
reset_default_graph(); sess = Session() @testset "xavier_init" begin @test_nowarn a = xavier_init([100,10], Float32) end @testset "load_op" begin @test_nowarn load_op(ADCME.LIBADCME, "sparse_solver") @test_nowarn load_op_and_grad(ADCME.LIBADCME, "sparse_solver") end @testset "ae" begin n = ae_num([2,20,20,20,3]) @test n==length(ae_init([2,20,20,20,3])) end @testset "register" begin forward = x->log(1+exp(x)) backward = (dy, y, x)->dy*(1-1/(1+y)) f = register(forward, backward) x_ = rand(10) x = constant(x_) @test run(sess, f(x)) ≈ @. log(1+exp(x_)) @test_nowarn run(sess,gradients(sum(f(x)), x)) ADCME.options.newton_raphson.verbose = true function forward2(x, θ) f = (θ, y)->(y^3+1.0-θ -x, spdiag(3y^2)) nr = newton_raphson(f, constant(ones(length(x))), θ) y = nr.x return y end function backward2(dy, y, x, θ) e = 1/3*(θ+x-1)^(-2/3) e, e end f2 = register(forward2, backward2) θ = constant(ones(5)) x = constant(8ones(5)) y = f2(x, θ) @test run(sess, y)≈ones(5)*2 @test run(sess, gradients(sum(y), θ))≈0.08333333333333333*ones(5) end @testset "list_physical_devices" begin devices = list_physical_devices() @test length(devices)>0 end @testset "timestamp" begin @test begin a = constant(1.0) t0 = timestamp(a) sleep_time = sleep_for(a) t1 = timestamp(sleep_time) sess = Session(); init(sess) t0_, t1_ = run(sess, [t0, t1]) time = t1_ - t0_ true end end @testset "get_library_symbols" begin @test length(get_library_symbols(ADCME.libadcme))>0 end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
3061
reset_default_graph(); sess = Session() function test_flow(sess, flows, dim) prior = ADCME.MultivariateNormalDiag(loc=zeros(dim)) model = NormalizingFlowModel(prior, flows) x = rand(3, dim) z, _, J = model(x) xs, iJ = ADCME.backward(model, z[end]) init(sess) x_, J_, iJ_ = run(sess, [xs[end], J, iJ]) x, x_, J_, iJ_ end @testset "LinearFlow" begin dim = 3 flows = [LinearFlow(dim)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "AffineConstantFlow" begin dim = 3 flows = [AffineConstantFlow(dim)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "ActNorm" begin dim = 3 flows = [ActNorm(dim)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "SlowMAF" begin dim = 3 flows = [SlowMAF(dim, false, [x->fc(x, [20,20,2], "fc1"); x->fc(x,[20,20,2],"fc2")])] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "MAF" begin dim = 3 flows = [MAF(dim, false, [20,20,20])] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "IAF" begin dim = 3 flows = [IAF(dim, false, [20,20,20])] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "Invertible1x1Conv" begin dim = 3 flows = [Invertible1x1Conv(dim)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "AffineHalfFlow" begin dim = 3 flows = [AffineHalfFlow(dim, true)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "NeuralCouplingFlow" begin @test_skip begin dim = 6 K = 8 n = dim÷2 flows = [NeuralCouplingFlow(dim, x->fc(x, [20,20,n*(3K-1)], "ncf1"), x->fc(x,[20,20,n*(3K-1)],"ncf2"), K)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end end @testset "Permute" begin dim = 6 flows = [Permute(dim, randperm(6) .- 1)] x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end @testset "composite" begin function create_linear_transform(dim) permutation = randperm(dim) .- 1 flow = [Permute(dim, permutation);LinearFlow(dim)] end dim = 5 flows = create_linear_transform(dim) x1, x2, j1, j2 = test_flow(sess, flows, dim) @test x1≈x2 @test j1≈-j2 end # @testset "composite 2" begin # function create_base_transform(dim, K=8) # n1 = dim÷2 # n2 = dim - n1 # r1 = x->Resnet1D(n1 * (3K-1), 256, dropout_probability=0.0, use_batch_norm=false)(x) # r2 = x->Resnet1D(n2 * (3K-1), 256, dropout_probability=0.0, use_batch_norm=false)(x) # NeuralCouplingFlow(dim, r1, r2) # end # dim = 6 # flows = [create_base_transform(dim)] # x1, x2, j1, j2 = test_flow(sess, flows, dim) # @test x1≈x2 # @test j1≈-j2 # end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
881
@testset "save and load" begin a = Variable(1.0) b = Variable(2.0) init(sess) save(sess, "temp.mat", [a,b]) op1 = assign(a, 3.0) op2 = assign(b, 3.0) run(sess, op1) run(sess, op2) sess1 = Session() load(sess1, "temp.mat", [a,b]) @test run(sess1, [a,b])≈[1.0;2.0] rm("temp.mat", force=true) end @testset "psave and pload" begin py""" def psave_test_function(x): return x+1 """ a = py"psave_test_function" psave(a, "temp.pkl") b = pload("temp.pkl") @test b(2)==3 rm("temp.pkl", force=true) end @testset "diary" begin d = Diary("test") b = constant(1.0) a = scalar(b) for i = 1:100 write(d, i, run(sess, a)) end # activate(d) save(d, "mydiary") e = Diary("test2") load(e, "mydiary") # activate(e) try;rm("mydiary", recursive=true, force=true);catch;end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
1841
reset_default_graph(); sess = Session() @testset "test_jacobian" begin function f(x) x.^3, 3*diagm(0=>x.^2) end err1, err2 = test_jacobian(f, rand(10)) @test err2[end] < err1[end] end @testset "lineview" begin @test begin a = placeholder(rand(10)) loss = sum((a+1)^2) close("all") lineview(sess, a, loss, -ones(10)) savefig("lineview.png") true end end @testset "meshview" begin @test begin a = placeholder(rand(10)) loss = sum((a+1)^2) close("all") meshview(sess, a, loss, -ones(10)) savefig("meshview.png") true end @test begin a = placeholder(rand(10)) loss = sum((a+1)^2) close("all") pcolormeshview(sess, a, loss, -ones(10)) savefig("pcolormeshview.png") true end end @testset "gradview" begin @test begin a = placeholder(rand(10)) loss = sum((a+1.0)^2) close("all") gradview(sess, a, loss, rand(10)) true end end @testset "jacview" begin @test begin u0 = rand(10) function verify_jacobian_f(θ, u) r = u^3+u - u0 r, spdiag(3u^2+1.0) end close("all") jacview(sess, verify_jacobian_f, missing, u0) savefig("jacview.png") true end end @testset "PCLview" begin end @testset "animate" begin @test begin θ = LinRange(0, 2π, 100) x = cos.(θ) y = sin.(θ) pl, = plot([], [], "o-") t = title("0") xlim(-1.2,1.2) ylim(-1.2,1.2) function update(i) t.set_text("$i") pl.set_data([x[1:i] y[1:i]]'|>Array) end p = animate(update, 1:100) saveanim(p, "anim.gif") true end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
928
reset_default_graph(); sess = Session() @testset "indexing for rank 3 tensors" begin a = rand(100,10,20) i1 = 3:8 i2 = [1;3;4] V = a[i1,i2,:] P = constant(a)[i1,i2,:] @test run(sess, P)≈V P = constant(a)[2,i2,:] @test run(sess, P)≈a[2,i2,:] P = constant(a)[2,i2,5] @test run(sess, P)≈a[2,i2,5] end @testset "fcx" begin config = [2, 20,20,20,3] x = constant(rand(10,2)) θ = ae_init(config) u, du = fcx(x, config[2:end], θ) y = ae(x, config[2:end], θ) @test run(sess, u) ≈ run(sess, y) DU = run(sess, du) @test run(sess, tf.gradients(y[:,1], x)[1]) ≈ DU[:,1,:] @test run(sess, tf.gradients(y[:,2], x)[1]) ≈ DU[:,2,:] @test run(sess, tf.gradients(y[:,3], x)[1]) ≈ DU[:,3,:] end @testset "dropout" begin a = rand(10,2) @test sum(run(sess, dropout(a, 0.999, true)).==0)/20>0.9 @test sum(run(sess, dropout(a, 0.999, false)).==0)==0 end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
1179
@testset "poisson" begin n = 20 h = 1/n node = zeros((n+1)^2, 2) node_mid = zeros(2n^2,2) elem = zeros(Int32, 2n^2, 3) k = 1 for i = 1:n for j = 1:n node[i+(j-1)*(n+1), :] = [(i-1)*h;(j-1)*h] node[i+1+(j-1)*(n+1), :] = [i*h;(j-1)*h] node[i+(j)*(n+1), :] = [(i-1)*h;(j)*h] node[i+1+(j)*(n+1), :] = [(i)*h;(j)*h] elem[k,:] = [i+(j-1)*(n+1) i+1+(j-1)*(n+1) i+(j)*(n+1)]; elem[k+1,:] = [i+1+(j)*(n+1) i+1+(j-1)*(n+1) i+(j)*(n+1)]; node_mid[k, :] = mean(node[elem[k,:], :], dims=1) node_mid[k+1, :] = mean(node[elem[k+1,:], :], dims=1) k += 2 end end bdnode = Int32[] for i = 1:n+1 for j = 1:n+1 if i==1 || j == 1 || i==n+1 || j==n+1 push!(bdnode, i+(j-1)*(n+1)) end end end x, y = node_mid[:,1], node_mid[:,2] f = constant(@. 2y*(1-y)+2x*(1-x)) a = constant(ones(2n^2)) u = pde_poisson(node,elem,bdnode,f,a) uval = run(sess, u) x, y = node[:,1], node[:,2] uexact = @. x*(1-x)*y*(1-y) @test maximum(abs.(uval - uexact))<1e-3 end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
321
# if Sys.islinux() # @testset "mpi_SparseTensor" begin # A = sprand(10,10,0.3) # B = mpi_SparseTensor(A) # @test run(sess, B) ≈ A # B = mpi_SparseTensor(A+5I) # ADCME.options.mpi.solver = "GMRES" # g = rand(10) # @test run(sess, B\g) ≈ (A+5I)\g # end # end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
1784
@testset "newton raphson with linesearch" begin function f1(θ, u) return u^2 - 1, 2*spdiag(u) end function f2(θ, u) return u^3-2u-5, spdiag(3u^2-2) end function f3(θ, u) return exp(2u)-u-6, spdiag(2*exp(2u)-1) end function f4(θ, u) return (cos(u)-u)^2, spdiag((-u + cos(u))*(-2*sin(u) - 2)) end function f5(θ, u) return sum(1/3*(u-1)^3), (u - 1)^2, 2*spdiag(u-1) end function f6(θ, u) return sum((u-1.3)^2), 2(u-1.3), 2spdiag(length(u)) end function f7(θ, u) return sum((0.988 * u^5 - 4.96 * u^4 + 4.978 * u^3 + 5.015 * u^2 - 6.043 * u - 1)), 4.94 * u^4 - 19.84 * u^3 + 14.934 * u^2 + 10.03 * u - 6.043, spdiag(4.94*3*u^3 - 19.84*3*u^2 + 14.934*2*u + 10.03) end function f8(θ, u) return sum((u-1.3)^2), 2(u-1.3), 2spdiag(length(u)) end res = [1.0, 2.0946, 0.97085, 0.73989] nr = Array{Any}(undef, 8) fs = [f1,f2,f3,f4,f5,f6,f7,f8] ADCME.options.newton_raphson.linesearch = true ADCME.options.newton_raphson.verbose = false ADCME.options.newton_raphson.rtol = 1e-12 ADCME.options.newton_raphson.linesearch_options.αinitial = 1.0 for i = 5:7 nr[i] = newton_raphson(fs[i], constant(rand(1)), missing) end reset_default_options() ADCME.options.newton_raphson.verbose = false for i = 1:4 nr[i] = newton_raphson(fs[i], constant(rand(1)), missing) end sess = Session(); init(sess) nrr = [run(sess, nr[i]) for i = 1:7] for i = 1:4 @show nrr[i].x, nrr[i].iter, nrr[i].converged @test nrr[i].converged end for i = 5:7 @show nrr[i].x, nrr[i].iter, nrr[i].converged @test nrr[i].converged end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
1925
@testset "runge_kutta" begin function f(t, y, θ) return y end x0 = 1.0 out = rk4(f, 1.0, 100, x0) @test abs(run(sess, out)[end]-exp(1))<1e-5 out = ode45(f, 1.0, 100, x0) @test abs(run(sess, out)[end]-exp(1))<1e-5 function f(t, y, θ) return y end x0 = [1.0;1.0] out = rk4(f, 1.0, 100, x0) @test norm(run(sess, out)[end,:] .- exp(1))<1e-5 out = ode45(f, 1.0, 100, x0) @test norm(run(sess, out)[end,:] .- exp(1))<1e-5 x0 = [1.0 1.0 1.0 1.0] out = rk4(f, 1.0, 100, x0) @test norm(run(sess, out)[end,:,:] .- exp(1))<1e-5 out = ode45(f, 1.0, 100, x0) @test norm(run(sess, out)[end,:,:] .- exp(1))<1e-5 end @testset "alpha scheme" begin d0 = zeros(2) v0 = [2.;3.] a0 = zeros(2) Δt = 1e-3 n = 9001 Δt = Δt * ones(n) M = sparse([1.0 0.0;0.0 1.0]) C = sparse(zeros(2,2)) K = sparse([4.0 0.0;0.0 9.0]) F = zeros(n, 2) d, v, a = αscheme(M, C, K, F, d0, v0, a0, Δt) d_, v_, a_ = run(sess, [d, v, a]) tspan = 0:1e-3:(n-1)*1e-3 @test norm(d_[1:end-1,1] - sin.(2tspan))<1e-3 @test norm(d_[1:end-1,2] - sin.(3tspan))<1e-3 end @testset "tr_bdf2" begin D0 = sparse([1.0 0.0;1.0 1.0]) D1 = sparse([2.0 0.0; 0.0 1.0]) ts = collect(LinRange(0, 1, 100)) Δt = ts[2]-ts[1] F = zeros(199, 2) for i = 1:100 t = ts[i] F[2*i-1, :] = [ t^2 + 5t + 2 t^2 + 2t + 1 ] if i<100 t = t + Δt/2 F[2*i, :] = [ t^2 + 5t + 2 t^2 + 2t + 1 ] end end td = TR_BDF2(D0, D1, Δt) @test td.symbolic == false u = td(zeros(2), F) @test abs(u[end, 1]-2.0)<1e-5 @test abs(u[end, 2]-1.0)<1e-5 td = constant(td) ua = td(zeros(2), F) @test run(sess, ua)≈u end @testset "ExplicitNewmark" begin end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
13380
@testset "*" begin # reset graph here. reset_default_graph() global sess = Session() A = Array{Any}(undef, 6) A[1] = rand(Float32,10,10) A[2] = rand(Float32,10) A[3] = rand(Float32) A[4] = Variable(A[1]) A[5] = Variable(A[2]) A[6] = Variable(A[3]) init(sess) for i = 1:6 for j = 1:6 if i<=3 && j<=3 || (i in [2,5] && j in [1,4]) || (i in [2,5] && j in [2,5]) continue end ret1 = A[i]*A[j] ret1 = run(sess, ret1) ret2 = A[i>3 ? i-3 : i] * A[j>3 ? j-3 : j] @test ret1 ≈ ret2 end end @test A[1].*A[1] ≈ run(sess, A[4].*A[4]) @test A[1].*A[1] ≈ run(sess, A[4].*A[1]) @test A[1].*A[1] ≈ run(sess, A[1].*A[4]) @test A[2].*A[2] ≈ run(sess, A[2].*A[5]) @test A[2].*A[2] ≈ run(sess, A[5].*A[5]) @test A[2].*A[2] ≈ run(sess, A[5].*A[2]) end @testset "reshape" begin a = constant([1 2 3;4 5 6.]) @test run(sess, reshape(a, 6))≈[ 1.0 4.0 2.0 5.0 3.0 6.0] @test run(sess, reshape(a, 3, 2))≈[1.0 5.0 4.0 3.0 2.0 6.0] b = constant([1;2;3;4;5;6]) @test run(sess, reshape(b, 2, 3))≈[1 3 5 2 4 6] @test run(sess, reshape(constant(2.),1 )) ≈[2.0] a = constant([0.136944 0.364238 0.250264 0.202175 0.712224 0.388285 0.163095 0.797934 0.740991 0.382738]) @test run(sess, reshape(a, :, 1))≈reshape([0.136944 0.364238 0.250264 0.202175 0.712224 0.388285 0.163095 0.797934 0.740991 0.382738], :, 1) @test run(sess, reshape(a, 1,:))≈reshape([0.136944 0.364238 0.250264 0.202175 0.712224 0.388285 0.163095 0.797934 0.740991 0.382738], 1,:) end @testset "scatter_update" begin A = Variable(ones(3)) A = scatter_add(A, 3, 2.) B = [1.;1.;3.] C = Variable(ones(3,3)) D = scatter_add(C, [2], [1], 1.) E = [1. 1. 1; 2. 1. 1.; 1. 1. 1.] init(sess) @test run(sess, A)≈B @test run(sess, D)≈E F = scatter_update(C, 1:2, :, 2ones(2, 3)) @test run(sess, F)≈[ 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0] F = scatter_update(C, 1, :, 2ones(1, 3)) @test run(sess, F)≈[2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0] F = scatter_update(C, 1, 2, 2.0) @test run(sess, F)≈[1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0] A = Variable(rand(10)) B = Variable(rand(5)) C = scatter_add(A, [1;4;5;6;7], 2B) D = gradients(sum(C), B) E = gradients(sum(C), A) init(sess) @test run(sess, D)≈2ones(5) @test run(sess, E)≈ones(10) A = Variable(ones(10,10)) B = Variable(ones(3,4)) C = scatter_add(A, [1;2;3],[3;4;5;6], B) init(sess) @test run(sess, C)≈[1.0 1.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0] a = rand(10) A = constant(a) A = scatter_add(A, 3:4, -A[3:4]) a[3:4] .= 0.0 @test run(sess, A) ≈ a end @testset "adjoint" begin a = 1.0 @test run(sess, constant(a)')≈a' a = rand(10) @test run(sess, constant(a)')≈a' a = rand(10,10) @test run(sess, constant(a)')≈a' a = rand(2,3,4,5) @test run(sess, constant(a)')≈permutedims(a, [1,2,4,3]) end @testset "scatter_update_pyobject" begin A = constant(ones(10)) B = constant(ones(3)) ind = constant([2;4;6], dtype=Int32) C = scatter_add(A, ind, B) @test run(sess, C)≈[1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0] @test run(sess, gradients(sum(C),B))≈ones(3) @test run(sess, gradients(sum(C),A))≈ones(10) C = scatter_sub(A, ind, B) @test run(sess, C)≈[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0] @test run(sess, gradients(sum(C),B))≈-ones(3) @test run(sess, gradients(sum(C),A))≈ones(10) B = constant(3*ones(3)) C = scatter_update(A, ind, B) @test run(sess, C)≈[1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 1.0, 1.0, 1.0] @test run(sess, gradients(sum(C),B))≈ones(3) @test run(sess, gradients(sum(C),A))≈[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0] end @testset "Operators" begin A = rand(10,2) TA = Variable(A) a = Variable(1.0) b = Variable(0.5) maxA = argmax(A, dims=2) maxA = [maxA[i][2] for i = 1:10] maxTA = argmax(TA, dims=2) minA = argmin(A, dims=2) minA = [minA[i][2] for i = 1:10] minTA = argmin(TA, dims=2) B = rand(Float32, 10) TB = Variable(B) TBc = constant(B) gop = group_assign([a,b], [2.0,2.0]) init(sess) @test maxA ≈ run(sess, maxTA) @test minA ≈ run(sess, minTA) @test get_dtype(cast(maxTA, Float64))==Float64 @test B.^2 ≈ run(sess, TB^2) @test B.^2 ≈ run(sess, TBc^2) @test 1.0 ≈ run(sess, max(a, b)) @test 0.5 ≈ run(sess, min(a, b)) @test maximum(A) ≈ run(sess, maximum(TA)) @test minimum(A) ≈ run(sess, minimum(TA)) @test reshape(maximum(A, dims=1), 2) ≈ run(sess, maximum(TA, dims=1)) @test reshape(minimum(A, dims=1),2) ≈ run(sess, minimum(TA, dims=1)) @test reshape(maximum(A, dims=2),10) ≈ run(sess, maximum(TA, dims=2)) @test reshape(minimum(A, dims=2),10) ≈ run(sess, minimum(TA, dims=2)) run(sess, gop) @test run(sess, a)≈2.0 && run(sess,b) ≈ 2.0 end @testset "Other Operators" begin A = Variable(rand(10,10)) @test_nowarn group(assign(A, rand(10,10)), A+A, 2*A) end @testset "Concat and stack" begin A = Variable(rand(10)) B = Variable(rand(10,3)) @test size(stack([A, A]))==(2,10) @test size(concat([A, A], dims=0))==(20,) @test size([A;A])==(20,) @test size([A A])==(10,2) @test size([B;B])==(20,3) @test size([B B])==(10,6) end @testset "Vectorize" begin A = rand(10) B = reshape(A, 2, 5) tA = constant(A) tB = constant(B) rA = rvec(tA) cB = vec(tB) init(sess) a, b = run(sess, [rA, cB]) @test a≈reshape(A, 1, 10) @test run(sess, rvec(constant(B)))≈reshape(B[:], 1, :) @test run(sess, cvec(constant(B)))≈B[:] && size(cvec(constant(B)))==(10,1) @test run(sess, vec(constant(B)))≈B[:] @test b≈A end @testset "Solve" begin A = rand(10,10) x = rand(10) y = A*x tA = constant(A) ty = constant(y) @test run(sess, tA\ty)≈x @test run(sess, A\ty)≈x @test run(sess, tA\y)≈x end @testset "diff" begin A = rand(10,10) a = rand(10) tfA = constant(A) tfa = constant(a) @test run(sess, diff(tfA, dims=1))≈diff(A, dims=1) @test run(sess, diff(tfA, dims=2))≈diff(A, dims=2) @test run(sess, diff(tfa))≈diff(a) end @testset "clip" begin a = constant(3.0) a = clip(a, 1.0, 2.0) @test run(sess,a)≈2.0 end @testset "map" begin a = constant([1.0,2.0,3.0]) b = map(x->x^2, a) @test run(sess, b)≈[1.0;4.0;9.0] end @testset "diag" begin C = rand(3,3) D = rand(3) @test run(sess, diag(constant(C))) ≈ diag(C) @test run(sess, diagm(constant(D))) ≈ diagm(0=>D) end @testset "dot" begin A = rand(10) B = rand(10) tA = constant(A); tB = constant(B) u = sum(A.*B) @test run(sess, dot(tA, tB))≈u @test run(sess, dot(A, tB))≈u @test run(sess, dot(tA, B))≈u end @testset "prod" begin A = rand(10) @test run(sess, prod(constant(A)))≈prod(A) end @testset "findall" begin a = constant([0.849268 0.888376 0.0928501 0.119263 0.614649 0.768562 0.978984 0.0802774 0.764186 0.491608 0.00877878 0.751463 0.99539 0.613257 0.070678]) b = a>0.5 bi = findall(b) @test run(sess, bi)==[1 1 1 2 1 5 2 1 2 2 2 4 3 2 3 3 3 4] ci = findall(b[1,:]) @test run(sess, ci)==[1;2;5] end @testset "svd" begin A = rand(10,20) r = svd(constant(A)) A2 = r.U*diagm(r.S)*r.Vt @test run(sess, A2)≈A end @testset "vector" begin m = zeros(20) m[2:11] = rand(10) v = vector(2:11, m[2:11], 20) @test run(sess, v)≈m end @testset "repeat" begin A = constant(2.0) @test run(sess, repeat(A, 2)) ≈ ones(2)*2.0 @test run(sess, repeat(A, 1, 2)) ≈ ones(1, 2)*2.0 a = rand(2) A = constant(a) @test run(sess, repeat(A, 2)) ≈ repeat(a, 2) @test run(sess, repeat(A, 3, 2)) ≈ repeat(a, 3, 2) a = rand(2, 4) A = constant(a) @test run(sess, repeat(A, 2)) ≈ repeat(a, 2) @test run(sess, repeat(A, 3, 2)) ≈ repeat(a, 3, 2) end @testset "pmap" begin x = constant(ones(10)) y1 = pmap(x->2.0*x, x) y2 = pmap(x->x[1]+x[2], [x,x]) y3 = pmap(1:10, x) do z i = z[1] xi = z[2] xi + cast(Float64, i) end @test run(sess, y1)≈[ 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0] @test run(sess, y2)≈[ 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0] @test run(sess, y3)≈[ 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0] end @testset "reshape" begin o = constant(rand(100,10,10)) A = reshape(o, (100,2,50)) B = tf.reshape(o, (100,2,50)) @test run(sess, A)≈run(sess, B) end @testset "batch mul" begin A = rand(100, 10, 10) B = rand(100, 10, 3) C = zeros(100, 10, 3) for i = 1:100 C[i,:,:] = A[i,:,:] * B[i,:,:] end C_ = batch_matmul(A, B) @test run(sess, C_) ≈ C end @testset "sort" begin A = rand(10,5) B = constant(A) @test run(sess, sort(B, dims=1))≈sort(A, dims=1) @test run(sess, sort(B, rev=true, dims=2))≈sort(A, dims=2, rev=true) end @testset "set_shape" begin a = placeholder(Float64, shape=[nothing, 10]) b = set_shape(a, 3, 10) @test_nowarn run(sess, b, a=>rand(3,10)) # OK @test_throws PyCall.PyError run(sess, b, a=>rand(5,10)) # Error @test_throws PyCall.PyError run(sess, b, a=>rand(10,3)) # Error end @testset "activation" begin x = 1.0 x_ = constant(1.0) for fn in [sigmoid, leaky_relu, selu, elu, softsign, softplus, relu, relu6] @test run(sess, fn(x_))≈fn(x) end end @testset "trace" begin A = rand(10,10) @test tr(A) ≈ run(sess, tr(constant(A))) end @testset "trilu" begin for num = -5:5 lu = 1 m = 10 n = 5 u = rand(1, m, n) ref = zeros(size(u,1), m, n) for i = 1:size(u,1) ref[i,:,:] = tril(u[i,:,:], num) end out = tril(constant(u),num) sess = Session(); init(sess) @test norm(run(sess, out)- ref)≈0 end for num = -5:5 lu = 0 m = 5 n = 10 u = rand(1,m, n) ref = zeros(size(u,1), m, n) for i = 1:size(u,1) if lu==0 ref[i,:,:] = triu(u[i,:,:], num) else ref[i,:,:] = tril(u[i,:,:], num) end end out = triu(constant(u),num) sess = Session(); init(sess) @test norm(run(sess, out)- ref)≈0 end end @testset "reverse" begin a = rand(10,2) A = constant(a) @test run(sess, reverse(A, dims=1)) == reverse(a, dims=1) @test run(sess, reverse(A, dims=2)) == reverse(a, dims=2) @test run(sess, reverse(A, dims=-1)) == reverse(a, dims=2) end @testset "solve batch" begin a = rand(10,5) b = rand(100, 10) sol = solve_batch(a, b) @test run(sess, sol) ≈ (a\b')' a = rand(10,10) b = rand(100, 10) sol = solve_batch(a, b) @test run(sess, sol) ≈ (a\b')' end @testset "rolling functions" begin n = 10 window = 9 # TODO: specify your input parameters inu = rand(n) for ops in [(rollsum, sum), (rollmean, mean), (rollstd, std), (rollvar, var)] @info ops u = ops[1](inu,window) out = zeros(n-window+1) for i = window:n out[i-window+1] = ops[2](inu[i-window+1:i]) end @test maximum(abs.(run(sess, u)-out )) < 1e-8 end end @testset "logits" begin logits = [ 0.124575 0.511463 0.945934 0.538054 0.0749339 0.187802 0.355604 0.052569 0.177009 0.896386 0.546113 0.456832 ] labels = [2;1;2;3] out = softmax_cross_entropy_with_logits(logits, labels) o1 = run(sess, out) labels = [0 1 0 1 0 0 0 1 0 0 0 1] out = softmax_cross_entropy_with_logits(logits, labels) o2 = run(sess, out) @test o1≈o2 end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
7264
@testset "NLopt" begin ######################### integration with NLopt.jl ######################### # ================ standard NLopt ================ function myfunc(x::Vector, grad::Vector) if length(grad) > 0 grad[1] = 0 grad[2] = 2x[2] end return x[2]^2 end function myconstraint(x::Vector, grad::Vector, a, b) if length(grad) > 0 grad[1] = 2*(x[1]-1) grad[2] = -1 end (x[1]-1)^2 - x[2] end opt = Opt(:LD_MMA, 2) opt.lower_bounds = [-Inf, 0.0] opt.xtol_rel = 1e-4 opt.min_objective = myfunc inequality_constraint!(opt, (x,g) -> myconstraint(x,g,2,0), 1e-8) (minf,minx,ret) = NLopt.optimize(opt, [1.234, 5.678]) # ================ END NLopt ================ p = ones(10) Con = CustomOptimizer() do f, df, c, dc, x0, args... opt = Opt(:LD_MMA, length(x0)) bd = zeros(length(x0)); bd[end-1:end] = [-Inf, 0.0] opt.lower_bounds = bd opt.xtol_rel = 1e-4 opt.min_objective = (x,g)->(g[:]= df(x); return f(x)[1]) inequality_constraint!(opt, (x,g)->( g[:]= dc(x);c(x)[1]), 1e-8) (minf,minx,ret) = NLopt.optimize(opt, x0) minx end # unfortunately, we must ensure only minimization variables are in the current tensorflow graph # for NLopt to work properly reset_default_graph() x = Variable([1.234; 5.678]) y = Variable([1.0;2.0]) loss = x[2]^2 + sum(y^2) c1 = (x[1]-1)^2 - x[2] opt = Con(loss, inequalities=[c1],var_to_bounds=Dict(x=>[-1.,1.])) sess = Session(); init(sess) opt.minimize(sess) xmin = run(sess, x) @test true end @testset "Optim" begin ######################### integration with Optim.jl ######################### NonCon = CustomOptimizer() do f, df, c, dc, x0, args... @show f, df, c, dc, x0 res = Optim.optimize(f, df, x0; inplace = false) res.minimizer end reset_default_graph() x = Variable(rand(2)) f = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 f1(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 res = Optim.optimize(f1, rand(2)) opt = NonCon(f) sess = Session(); init(sess) opt.minimize(sess) xmin = run(sess, x) @test norm(xmin-res.minimizer)<1e-2 end @testset "newton raphson" begin @test_skip begin A = rand(10,10) A = A'*A + I rhs = rand(10) function newton_raphson_f(θ, u) r = A*u - rhs r, constant(A) end ADCME.options.newton_raphson.verbose = true nr = newton_raphson(newton_raphson_f, zeros(10), missing) nr = run(sess, nr) @test nr.x≈A\rhs u0 = rand(10) function newton_raphson_f2(θ, u) r = u^3+u - u0 r, spdiag(3u^2+1.0) end ADCME.options.newton_raphson.verbose = true ADCME.options.newton_raphson.tol = 1e-5 nr = newton_raphson(newton_raphson_f2, rand(10), missing) nr = run(sess, nr) uval = nr.x @test norm(uval.^3+uval-u0)<1e-3 # least square u0 = rand(10) rs = rand(10) function newton_raphson_f3(θ, u) r = [u^2;u] - [rs.^2;rs] r, [spdiag(2*u); spdiag(10)] end nr = newton_raphson(newton_raphson_f3, rand(10), missing) nr = run(sess, nr) uval = nr.x @test norm(uval-rs)<1e-3 end end @testset "NonlinearConstrainedProblem" begin @test_skip begin θ = Variable(1.8*ones(3)) u0 = ones(3) function f1(θ, u) r = u+u^3-θ A = spdiag(3u^2+1.0) r, A end function L1(u) return sum((u-u0)^2) end l, u, g = NonlinearConstrainedProblem(f1,L1,θ,zeros(3)) # the negative gradients and vars are (-g, θ) opt_ = AdamOptimizer(1e-1).apply_gradients([(g, θ)]) init(sess) for i = 1:500 run(sess, opt_) end @test norm(run(sess, θ)-2.0*ones(3))<1e-8 θ = constant(ones(1)) u0 = ones(3) Random.seed!(233) A = round.(rand(3, 3), digits=1) t = zeros(3); t[1:2].=1.0 function f1(θ, u) # r = u-sum(θ)^2-t*sum(θ) # A = spdiag(length(u)) # r, A # -t*sum(θ) A*u-[sum(θ);sum(θ);constant(0.0)], constant(A) end function L1(u) return sum(u) end close("all") function value_and_gradients_function(θ) l, u, g = NonlinearConstrainedProblem(f1,L1,θ,zeros(3)) l, g end results = BFGS!(value_and_gradients_function, zeros(3)) u = run(sess, results) @test u≈[2.;2.;2.] end end @testset "Custom BFGS!" begin reset_default_graph() x = Variable(2ones(10)) z = Variable(1.0) w = Variable(ones(20,30,10)) loss = sum((x-1.0)^2+z^2+w^2) grads = [gradients(loss, x), gradients(loss, z), gradients(loss, w)] vars = [x,z, w] global sess = Session(); init(sess) l = BFGS!(sess, loss, grads, vars) @test l[end]<1e-5 end @testset "var_to_bounds" begin x = Variable(2.0) loss = x^2 init(sess) BFGS!(sess, loss, bounds=Dict(x=>[1.0,3.0])) @test run(sess, x)≈1.0 end #= @testset "Ipopt" begin ######################### integration with Ipopt.jl ######################### # https://github.com/jainachin/tf-ipopt/blob/master/examples/hs071.py IPOPT = CustomOptimizer() do f, df, c, dc, x0, x_L, x_U n = length(x0) nz = length(dc(x0)) g_L, g_U = [-2e19;0.0], [0.0;0.0] function eval_jac_g(x, mode, rows, cols, values) if mode == :Structure rows[1] = 1; cols[1] = 1 rows[2] = 1; cols[2] = 1 rows[3] = 2; cols[3] = 1 rows[4] = 2; cols[4] = 1 else values[:]=dc(x) end end prob = Ipopt.createProblem(n, x_L, x_U, 2, g_L, g_U, nz, 0, f, (x,g)->(g[:]=c(x)), (x,g)->(g[:]=df(x)), eval_jac_g, nothing) addOption(prob, "hessian_approximation", "limited-memory") addOption(prob, "max_iter", 100) prob.x = x0 status = Ipopt.solveProblem(prob) println(Ipopt.ApplicationReturnStatus[status]) println(prob.x) prob.x end reset_default_graph() x = Variable([1.0;1.0]) x1 = x[1]; x2 = x[2]; loss = x2 g = x1 h = x1*x1 + x2*x2 - 1 opt = IPOPT(loss, inequalities=[g], equalities=[h], var_to_bounds=Dict(x=>(-1.0,1.0))) sess = Session(); init(sess) minimize(opt, sess) =# @testset "newton_raphson_with_grad" begin function f(θ, x) x^3 - θ, 3spdiag(x^2) end θ = [2. .^3;3. ^3; 4. ^3] x = newton_raphson_with_grad(f, constant(ones(3)), θ) @test run(sess, x)≈[2.;3.;4.] θ = constant([2. .^3;3. ^3; 4. ^3]) x = newton_raphson_with_grad(f, constant(ones(3)), θ) @test run(sess, x)≈[2.;3.;4.] @test run(sess, gradients(sum(x), θ))≈1/3*[2. .^3;3. ^3; 4. ^3] .^(-2/3) end # @testset "Constrained Optimizer" begin # reset_default_graph() # this is very important. UnconstrainedOptimizer only works with a fresh session # x = Variable(2*ones(10)) # y = constant(ones(10)) # loss = sum((y-x)^4) # init(sess) # uo = UnconstrainedOptimizer(sess, loss) # @test getInit(uo) ≈ 2ones(10) # @test getLoss(uo, 3*ones(10))≈ 160.0 # @test getLossAndGrad(uo, 3*ones(10))[2] ≈ [32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0] # @test getLossAndGrad(uo, 3*ones(10))[1] ≈ 160.0 # end # @testset "optimzers" begin # ad = AndersonAcceleration() # @test_nowarn begin # apply!(ad, rand(10), rand(10)) # end # end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
800
# test functions for developing optimizers # see https://en.wikipedia.org/wiki/Test_functions_for_optimization # optimal = (0, 0, 0, ...) function sphere(x) return sum(x^2) end # optimal = (1,1,1,...) function rosenbrock(x) x1 = x[1:end-1] x2 = x[2:end] return sum(100 * (x2-x1^2)^2 + (1-x1)^2) end # optimal = (3, 0.5) function beale(p) x, y = p[1], p[2] return (1.5 - x + x*y)^2 + (2.25 - x + x*y^2)^2 + (2.625 - x + x*y^3) end # optimal = (1, 3) function booth(p) x, y = p[1], p[2] return (x + 2y - 7)^2 + (2x+y-5)^2 end #optimal = (-0.2903, ...) function stybliski_tang(x) return sum(x^4 - 16x^2 + 5x)/2 end # optimal = (1,1) function levi(p) x, y = p[1], p[2] sin(3π*x)^2 + (x-1)^2 * (1+sin(3π*y)^2) + (y-1)^2 * (1+sin(2π*y)^2) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
926
@testset "sinkhorn" begin a = Float64.(1:5)/sum(1:5) b = Float64.(1:10)/sum(1:10) m = zeros(5, 10) for i = 1:5 for j = 1:10 m[i,j] = 1/(i+j) end end reg = 1.0 iter = 100 tol = 1e-10 loss = sinkhorn(a, b, m) @test run(sess, loss) ≈ 0.10269121 # @test_nowarn loss = sinkhorn(a, b, m, method = "lp") end @testset "dist" begin a = rand(10,3) b = rand(20,3) for order in [1,2,3,4,5] M = zeros(10, 20) for i = 1:10 for j = 1:20 M[i,j] = norm(a[i,:] - b[j,:], order) end end m = ot_dist(a, b, order) @test m≈M m = ot_dist(a, constant(b), order) @test run(sess, m)≈M end end # @testset "fastdtw" begin # Sample = Float64[1,2,3,5,5,5,6] # Test = Float64[1,1,2,2,3,5] # u, p = dtw(Sample, Test, true) # @test run(sess, u)≈1.0 # end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
2879
@testset "pcl_square_sum" begin using Random; Random.seed!(233) y = placeholder(rand(10)) loss = sum((y-rand(10))^2) g = tf.convert_to_tensor(gradients(loss, y)) function test_f(x0) run(sess, g, y=>x0), pcl_square_sum(length(y)) end err1, err2 = test_jacobian(test_f, rand(10); showfig=false) @test all(err1.>err2) end @testset "pl_hessian" begin using Random; Random.seed!(233) x = placeholder(rand(10)) z = (x[1:5]^2 + x[6:end]^3) * sum(x) y = [reshape(sum(z[1:3]), (-1,));z] loss = sum((y-rand(6))^2) H, dW = pcl_hessian(y, x, loss) g = gradients(loss, x) function test_f(x0) y0, H0 = run(sess, [g, H], feed_dict = Dict( x=>x0, dW => pcl_square_sum(length(y)) )) end err1, err2 = test_hessian(test_f, rand(length(x)); showfig = false) @test all(err1.>err2) end @testset "pcl_linear_op" begin using Random; Random.seed!(233) x = placeholder(rand(10)) A = rand(6, 10) y = A * x + rand(6) loss = sum((y-rand(6))^2) J = jacobian(y, x) g = gradients(loss, x) function test_f(x0) gval, Jval = run(sess, [g, J], x=>x0) H = pcl_linear_op(Array(Jval'), pcl_square_sum(6)) return gval, H end err1, err2 = test_hessian(test_f, rand(length(x)); showfig = false) @test all(err1.>err2) end @testset "pcl_sparse_solve" begin using Random; Random.seed!(233) A = sprand(10,10,0.6) II, JJ, VV = findnz(A) x = placeholder(rand(length(VV))) temp = SparseTensor(II,JJ,x,10,10) indices = run(sess, temp.o.indices) B = RawSparseTensor(constant(indices), x, 10, 10) rhs = rand(10) sol = B\rhs loss = sum(sol^2) g = gradients(loss, sol) G = gradients(loss, x) indices = run(sess, B.o.indices) .+ 1 function test_f(x0) s, gval, Gval = run(sess, [sol, g, G], x=>x0) H = pcl_sparse_solve(indices, x0, s, pcl_square_sum(length(sol)), gval) return Gval, H end err1, err2 = test_hessian(test_f, rand(length(x)); showfig = false) @test all(err1.>err2) end @testset "pcl_compress" begin using Random; Random.seed!(233) if !Sys.iswindows() indices = [ 1 1 1 1 1 1 2 2 3 3 ] pl = placeholder(rand(5)) A = RawSparseTensor(constant(indices)-1, pl, 3, 3) B = compress(A) loss = sum(B.o.values^2) g = gradients(loss, pl) function test_f(x0) G = run(sess, g, pl=>x0) W = pcl_square_sum(3) J = pcl_compress(indices) H = pcl_linear_op(J, W) G, H end x0 = rand(length(pl)) err1, err2 = test_hessian(test_f, x0; showfig = false) @test all(err1.>err2) end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
1677
@testset "random" begin @test_skip run(sess, categorical(10)) for shape in [[10], [10,5]] @test_skip run(sess, uniform(shape...)) @test_skip run(sess, normal(shape...)) @test_skip run(sess, choice(rand(10,2), 4)) @test_skip run(sess, choice(rand(10,2), 4, replace=true)) @test_skip run(sess, beta(shape...;concentration1=1.0, concentration0=1.0)) @test_skip run(sess, bernoulli(shape...; probs=0.2)) @test_skip run(sess, gamma(shape...;concentration=3.0, rate=2.0)) @test_skip run(sess, truncatednormal(shape...;loc=0.0, scale=1.0, low=-1., high=1.)) @test_skip run(sess, chi(shape...;df=5)) @test_skip run(sess, chi2(shape...;df=5)) @test_skip run(sess, exponential(shape...;rate=1.)) @test_skip run(sess, gumbel(shape...;loc=0, scale=1)) @test_skip run(sess, poisson(shape...;rate=1.0)) @test_skip run(sess, halfcauchy(shape...;loc=0, scale=1)) @test_skip run(sess, halfnormal(shape...;scale=1)) @test_skip run(sess, horseshoe(shape...;scale=1.0)) @test_skip run(sess, inversegamma(shape...;concentration=1.0, scale=1.0)) @test_skip run(sess, inversegaussian(shape...;loc=1.0, concentration=1.0)) @test_skip run(sess, kumaraswamy(shape...;concentration1=1.0, concentration0=1.0)) @test_skip run(sess, pareto(shape...;scale=1.0, concentration=1.0)) @test_skip run(sess, sinharcsinh(shape...;skewness=1.0, tailweight=1.0, loc=0.0, scale=1.0)) @test_skip run(sess, studentt(shape...;loc=0, scale=1, df=10)) @test_skip run(sess, vonmises(shape...;concentration=1.0, loc=1.0)) end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
2662
@testset "radial basis function" begin xc = rand(10) yc = rand(10) e = rand(10) c = rand(10) d = rand(3) r = RBF2D(xc, yc; c=c, eps=e, d=d, kind = 0) x = rand(5) y = rand(5) o = r(x, y) O = zeros(5) for i = 1:5 for j = 1:10 dist = sqrt((x[i]-xc[j])^2 + (y[i]-yc[j])^2) O[i] += c[j] * exp(-(e[j]*dist)^2) end O[i] += d[1] + d[2] * x[i] + d[3] * y[i] end init(sess) @test norm(run(sess, o)-O)<1e-5 end @testset "interp1" begin Random.seed!(233) x = sort(rand(10)) y = @. x^2 + 1.0 z = [x[1]; x[2]; rand(5) * (x[end]-x[1]) .+ x[1]; x[end]] u = interp1(x,y,z) @test norm(run(sess, u)-[1.026422850882909 1.044414684090653 1.312604319732756 1.810845361128137 1.280789421523103 1.600084940795178 1.930560200260898 1.972130181835701]) < 1e-10 end @testset "rbf3d" begin function f0(r, e) return exp(-(e*r)^2) end function f1(r, e) return sqrt((1+(e*r)^2)) end function f2(r, e) return 1/(1+(e*r)^2) end function f3(r, e) return 1/sqrt(1+(e*r)^2) end fs = [f0, f1, f2, f3] nc = 100 n = 10 xc = rand(nc) yc = rand(nc) zc = rand(nc) x = rand(n) y = rand(n) z = rand(n) c = rand(nc) d = rand(4) e = rand(nc) for kind = 1:4 out = zeros(n) for i = 1:n r = @. sqrt((x[i] - xc)^2 + (y[i] - yc)^2 + (z[i] - zc)^2) out[i] = sum(c .* fs[kind].(r, e)) + d[1] + d[2] * x[i] + d[3] * y[i] + d[4] * z[i] end rbf = RBF3D(xc, yc, zc, c = c, eps = e, d = d, kind = kind - 1) o = rbf(x,y,z) o_ = run(sess, o) @test maximum(abs.(out .- o_)) < 1e-8 end for kind = 1:4 out = zeros(n) for i = 1:n r = @. sqrt((x[i] - xc)^2 + (y[i] - yc)^2 + (z[i] - zc)^2) out[i] = sum(c .* fs[kind].(r, e)) + d[1] end rbf = RBF3D(xc, yc, zc, c = c, eps = e, d = d[1:1], kind = kind - 1) o = rbf(x,y,z) o_ = run(sess, o) @test maximum(abs.(out .- o_)) < 1e-8 end for kind = 1:4 out = zeros(n) for i = 1:n r = @. sqrt((x[i] - xc)^2 + (y[i] - yc)^2 + (z[i] - zc)^2) out[i] = sum(c .* fs[kind].(r, e)) end rbf = RBF3D(xc, yc, zc, c = c, eps = e, kind = kind - 1) o = rbf(x,y,z) o_ = run(sess, o) @test maximum(abs.(out .- o_)) < 1e-8 end end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
695
using NLopt using Optim using ADCME using Statistics using LinearAlgebra using PyCall using SparseArrays using Test using Random PIP = get_pip() run_with_env(`$PIP install matplotlib`) using PyPlot if has_gpu() use_gpu(0) end doctor() sess = Session() include("layers.jl") include("sparse.jl") include("random.jl") include("io.jl") include("variable.jl") include("ops.jl") include("core.jl") include("extra.jl") include("newton.jl") include("optim.jl") include("ot.jl") include("ode.jl") include("flow.jl") include("mpi.jl") include("toolchain.jl") include("rbf.jl") include("pcl.jl") # The default matplotlib backend does not work for MacOSX if !Sys.isapple() include("kit.jl") end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
8047
@testset "sparse_constructor" begin A = sprand(10,10,0.1) s = SparseTensor(A) @test run(sess, s)≈A I = [1;2;4;2;3;5] J = [1;3;2;2;2;1] V = rand(6) A = sparse(I,J,V,6,5) s = SparseTensor(I,J,V,6,5) @test run(sess, s)≈A indices = [I J] s = SparseTensor(I,J,V,6,5) @test run(sess, s)≈A S = Array(s) @test run(sess, S)≈Array(A) @test size(s)==(6,5) @test size(s,1)==6 @test size(s,2)==5 end @testset "sparse_arithmetic" begin A1 = rand(10,5); B1 = sprand(10,5,0.3) A = constant(A1) B = SparseTensor(B1) @test run(sess, -B)≈-B1 for op in [+,-] C = op(A, B) C1 = op(A1, B1) @test run(sess, C)≈C1 end @test run(sess, B-A)≈B1-A1 end @testset "sparse_adjoint" begin A = sprand(10,5,0.3) A1 = SparseTensor(A) @test run(sess, A1')≈sparse(A') end @testset "sparse_mul" begin A1 = rand(10,10); B1 = sprand(10,10,0.3) C1 = rand(10) A = constant(A1) B = SparseTensor(B1) C = constant(C1) @test run(sess, B*A) ≈ B1*A1 @test run(sess, A*B) ≈ A1*B1 @test run(sess, B*A1) ≈ B1*A1 @test run(sess, A1*B) ≈ A1*B1 @test run(sess, B*C) ≈ B1*C1 @test run(sess, B*C1) ≈ B1*C1 end @testset "sparse_vcat_hcat" begin B1 = sprand(10,3,0.3) B = SparseTensor(B1) @test run(sess, [B;B])≈[B1;B1] @test run(sess, [B B])≈[B1 B1] end @testset "sparse_indexing" begin B1 = sprand(10,10,0.3) B = SparseTensor(B1) @test run(sess, B[2:3,2:3])≈B1[2:3,2:3] @test run(sess, B[2:3,:])≈B1[2:3,:] @test run(sess, B[:,2:3])≈B1[:,2:3] end @testset "sparse_solve" begin A = sparse(I, 10,10) + sprand(10,10,0.1) b = rand(10) A1 = SparseTensor(A) b1 = constant(b) u = A1\b1 @test run(sess, u) ≈ A\b end @testset "sparse_assembler" begin m = 20 n = 100 handle = SparseAssembler(100, m, 0.0) op = PyObject[] A = zeros(m, n) for i = 1:1 ncol = rand(1:n, 10) row = rand(1:m) v = rand(10) for (k,val) in enumerate(v) @show k A[row, ncol[k]] += val end @show v push!(op, accumulate(handle, row, ncol, v)) end op = vcat(op...) J = assemble(m, n, op) B = run(sess, J) @test norm(A-B)<1e-8 handle = SparseAssembler(100, 5, 1.0) op1 = accumulate(handle, 1, [1;2;3], [2.0;0.5;0.5]) J = assemble(5, 5, op1) B = run(sess, J) @test norm(B-[2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0])<1e-8 handle = SparseAssembler(100, 5, 0.0) op1 = accumulate(handle, 1, [1;1], [1.0;1.0]) op2 = accumulate(handle, 1, [1;2], [1.0;1.0]) J = assemble(5, 5, [op1;op2]) B = run(sess, J) @test norm(B-[3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0])<1e-8 end @testset "sparse_least_square" begin ii = Int32[1;1;2;2;3;3] jj = Int32[1;2;1;2;1;2] vv = Float64[1;2;3;4;5;6] ff = Float64[1;1;1] A = SparseTensor(ii, jj, vv, 3, 2) o = A\ff @test norm(run(sess, o)-[-1;1])<1e-6 end @testset "sparse mat mul" begin A = sprand(10,5,0.3) B = sprand(5,20,0.3) C = A*B CC = SparseTensor(A)*SparseTensor(B) C_ = run(sess, CC) @test C_≈C A = spdiagm(0=>[1.;2.;3;4;5]) B = sprand(5,20,0.3) C = A*B CC = SparseTensor(A)*SparseTensor(B) C_ = run(sess, CC) @test C_≈C A = sprand(10,5,0.5) B = spdiagm(0=>[1.;2.;3;4;5]) C = A*B CC = SparseTensor(A)*SparseTensor(B) C_ = run(sess, CC) @test C_≈C end @testset "spdiag" begin p = rand(10) A = spdiagm(0=>p) B = spdiag(constant(p)) C = spdiag(10) @test run(sess, B)≈A @test B._diag @test run(sess, C)≈spdiagm(0=>ones(10)) end @testset "spzero" begin q = spzero(10) @test run(sess, q)≈sparse(zeros(10,10)) q = spzero(10,20) @test run(sess, q)≈sparse(zeros(10,20)) end @testset "sparse indexing" begin i1 = unique(rand(1:20,3)) j1 = unique(rand(1:30,3)) A = sprand(20,30,0.3) Ad = Array(A[i1, j1]) B = SparseTensor(A) Bd = Array(B[i1, j1]) Bd_ = run(sess, Bd) @test Ad≈Bd_ end @testset "sum" begin s = sprand(10,20,0.2) S = SparseTensor(s) @test run(sess, sum(S)) ≈ sum(s) @test run(sess, sum(S,dims=1)) ≈ sum(Array(s),dims=1)[:] @test run(sess, sum(S,dims=2)) ≈ sum(Array(s),dims=2)[:] end @testset "dense_to_sparse" begin A = sprand(10,20,0.3) B = Array(A) @test run(sess, dense_to_sparse((B))) ≈ A @test run(sess, dense_to_sparse(constant(B))) ≈ A end @testset "spdiagm" begin a = rand(10) b = rand(9) A = spdiag( 10, 0=>a, -1=>b ) B = diagm( 0=>a, -1=>b ) @test Array(run(sess, A)) ≈ B b = rand(7) A = spdiag( 10, 0=>a, -3=>b ) B = diagm( 0=>a, -3=>b ) @test Array(run(sess, A)) ≈ B b = rand(7) A = spdiag( 10, 0=>a, -3=>b, 3=>4b ) B = diagm( 0=>a, -3=>b, 3=>4b ) @test Array(run(sess, A)) ≈ B b = rand(7) A = spdiag( 10, 0=>a, -3=>b ) B = diagm( 0=>a, -3=>b ) @test Array(run(sess, A)) ≈ B end @testset "hvcat" begin A = sprand(10,5,0.3) B = sprand(10,5,0.2) C = sprand(5,10,0.4) D = [A B;C] D_ = [SparseTensor(A) SparseTensor(B); SparseTensor(C)] @test run(sess, D_)≈D end @testset "find" begin A = sprand(10,10, 0.3) ii = Int64[] jj = Int64[] vv = Float64[] for i = 1:10 for j = 1:10 if A[i,j]!=0 push!(ii, i) push!(jj, j) push!(vv, A[i,j]) end end end a = SparseTensor(A) i, j, v = find(a) @test run(sess, i)≈ii @test run(sess, j)≈jj @test run(sess, v)≈vv @test run(sess, rows(a))≈ii @test run(sess, cols(a))≈jj @test run(sess, values(a))≈vv end @testset "sparse scatter update add" begin A = sprand(10,10,0.3) B = sprand(3,3,0.6) ii = [1;4;5] jj = [2;4;6] u = scatter_update(A, ii, jj, B) C = copy(A) C[ii,jj] = B @test run(sess, u)≈C u = scatter_add(A, ii, jj, B) C = copy(A) C[ii,jj] += B @test run(sess, u)≈C end @testset "constant sparse" begin A = sprand(10,10,0.3) B = constant(A) @test run(sess, B)≈A end @testset "get index" begin idof = [false;true] M = spdiag(constant(ones(2))) Md = M[idof, idof] @test run(sess, Md) ≈ sparse(reshape([1.0],1,1)) end @testset "sparse_factorization_and_solve" begin A = sprand(10,10,0.7) rhs1 = rand(10) rhs2 = rand(10) Afac = factorize(constant(A)) v1 = Afac\rhs1 v2 = Afac\rhs2 @test norm(run(sess, v1) - A\rhs1)<1e-8 @test norm(run(sess, v2) - A\rhs2)<1e-8 end @testset "sparse solver warning" begin A = SparseTensor(zeros(10,10)) b = A\rand(10) @test_throws PyCall.PyError run(sess, b) end @testset "sparse promote" begin a = sprand(10,10,0.3) b = spdiag(constant(rand(10))) @test_nowarn a+b @test_nowarn a*b @test_nowarn a-b @test_nowarn b+a @test_nowarn b-a @test_nowarn b*a end @testset "trisolve" begin n = 10 a = rand(n-1) b = rand(n).+10 c = rand(n-1) d = rand(n) A = diagm(0=>b, -1=>a, 1=>c) x = A\d u = trisolve(a,b,c,d) @test norm(run(sess, u)-x)<1e-3 end @testset "compress" begin indices = [ 1 1 1 1 2 2 3 3 ] v = [1.0;1.0;1.0;1.0] A = SparseTensor(indices[:,1], indices[:,2], v, 3, 3) Ac = compress(A) sess = Session(); init(sess) @test run(sess, Ac.o.indices) == [0 0;1 1;2 2] @test run(sess, Ac.o.values) ≈ [2.0;1.0;1.0] end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
2138
@testset "sqlite" begin db = Database() execute(db, """ CREATE TABLE simulation_parameters ( desc text, rho real, gamma real, dt real, h real ) """) execute(db, """ INSERT INTO simulation_parameters VALUES ('baseline', 1.0, 2.0, 0.01, 0.02) """) params = [ ("compare1", 1.0, 2.0, 0.01), ("compare2", 2.0, 3.0, 4.0) ] execute(db, """ INSERT INTO simulation_parameters VALUES (?, ?, ?, ?, 0.1) """, params) res = execute(db, "SELECT * FROM simulation_parameters")|>collect @test keys(db)==["simulation_parameters"] @test keys(db, "simulation_parameters")==[ "desc" "rho" "gamma" "dt" "h"] @test length(res)==3 commit(db) close(db) end @testset "execute many" begin db = Database() execute(db, """ CREATE TABLE temp ( t1 real, t2 real ) """) execute(db, "INSERT INTO temp VALUES (?,?)", rand(10), rand(10)) @test length(db["temp"])==10 end @testset "sqlite do syntax" begin db = Database("temp.db") execute(db) do """ CREATE TABLE simulation_parameters ( desc text, rho real, gamma real, dt real, h real ) """ end @test "simulation_parameters" in keys(db) close(db) rm("temp.db", force=true) Database("temp.db") do db execute(db) do """ CREATE TABLE simulation_parameters ( desc text, rho real, gamma real, dt real, h real ) """ end end @test length(db["simulation_parameters"])==0 delete!(db, "simulation_parameters") @test_throws PyCall.PyError keys(db, "simulation_parameters") db = Database("temp.db") @test "simulation_parameters" in keys(db) close(db) rm("temp.db", force=true) end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
code
4953
using LinearAlgebra @testset "indexing" begin A1 = rand(10) A2 = rand(10,10) B1 = Variable(A1) B2 = Variable(A2) ind = Array{Any}(undef, 4) ind[1] = 3 ind[2] = 2:4 ind[3] = zeros(Bool,10) ind[3][3:4] .= true ind[4] = [3;4;5] init(sess) for i = 1:4 @test A1[ind[i]] ≈ run(sess, B1[ind[i]]) @test A2[ind[i], :] ≈ run(sess, B2[ind[i], :]) @test A2[:, ind[i]] ≈ run(sess, B2[:, ind[i]]) end for i = 1:4 for j = 1:4 @test A2[ind[i], ind[j]] ≈ run(sess, B2[ind[i], ind[j]]) end end end @testset "Variables" begin # @test_nowarn placeholder(Float64, shape=[nothing,20], name="myvar") # @test_nowarn Variable(rand(10,10), dtype=Float64, name="myvar") # @test_nowarn constant(rand(10,10), dtype=Float64, name="myvar") # @test_nowarn get_variable("W", shape=[10,20], dtype=Float64) # @test_nowarn placeholder(Float64, shape=[nothing,20]) # @test_nowarn Variable(rand(10,10), dtype=Float64) # @test_nowarn constant(rand(10,10), dtype=Float64) @test get_dtype(constant(rand(10,10))) == Float64 @test get_dtype(Variable(rand(Int64,10,10))) == Int64 v = get_variable(rand(10,10), name="test_get_variable") u = get_variable(rand(10,10), name="test_get_variable") @test u==v w = get_variable(Float64, shape=[10,20]) @test size(w)==(10,20) end @testset "tensor" begin v = Variable(0.5) g = [1;v;0] G = [1 v 0; v 1 0; 0 0 (1-v)/2] gv = tensor(g;sparse=true) g_gv = gradients(2sum(gv), v) Gv = tensor(G;sparse=true) G_gv = gradients(sum(Gv), v) init(sess) @test run(sess, g_gv) ≈ 2.0 @test run(sess, G_gv) ≈ 1.5 end @testset "Hessian" begin x = Variable(randn(), dtype = Float32) y = Variable(randn(), dtype = Float32) g = stack([x,y]) f = g[1]^2 + 2*g[1]*g[2] + 3*g[2]^2 + 4*g[1] + 5*g[2] + 6 hess = hessian(f, g) gv = rand(Float32,2) hess_v = hessian_vector(f, g, gv) val = [[2.;2.] [2.;6.]] * gv init(sess) @test run(sess, hess) ≈ [[2.;2.] [2.;6.]] @test run(sess, hess_v)≈val end @testset "Jacobian" begin xs = constant(rand(10)) A = rand(20,10) ys = A*xs jac = gradients(ys, xs) @test run(sess, jac)≈A end @testset "gradients_v" begin xs = constant(1.0) ys = stack([xs,xs,xs,xs]) gv = gradients(ys, xs) @test run(sess, gv)≈[1.0;1.0;1.0;1.0] end @testset "size and length" begin a = Variable(1.0) b = Variable(rand(10)) c = Variable(rand(10,20)) @test size(a)==() @test size(b)==(10,) @test size(b,1)==10 @test size(c) == (10,20) @test size(c,1)==10 @test size(c,2)==20 @test length(a)==1 @test length(b)==10 @test length(c)==200 end @testset "copy" begin o = constant(rand(10,10)) v = copy(o) init(sess) @test run(sess, v)≈run(sess, o) end @testset "getindex" begin i = constant(2) a = constant([1.;2.;3.;4.]) @test run(sess, a[i])≈2.0 end @testset "convert_to_tensor" begin a = rand(10) @test run(sess, convert_to_tensor(a))≈a a = 5.0 @test run(sess, convert_to_tensor(a))≈a a = constant(rand(10)) @test run(sess, convert_to_tensor(a))≈run(sess, a) @test ismissing(convert_to_tensor(missing)) @test isnothing(convert_to_tensor(nothing)) end @testset "cell" begin r = cell([[1.],[2.,3.]]) @test run(sess, r[1])≈[1.0] @test run(sess, r[2])≈[2.,3.] end @testset "special matrices" begin A = rand(10,10) @test run(sess, sym(A)) ≈ 0.5 * (A + A') @test all(eigvals(run(sess, spd(A))) .> 0.0) end @testset "ones/zeros like" begin a = rand(100,10) b = ones_like(a) @test run(sess, b)≈ones(100,10) b = zeros_like(a) @test run(sess, b)≈zeros(100,10) end @testset "gradient_magnitude" begin x = constant(rand(10)) y = constant(rand(20)) l = sum(x) + sum(y) gx, gy = gradients(l, [x,y]) n = gradient_magnitude(l, [x, y]) @test run(sess, n)≈sqrt(norm(run(sess, gx))^2 + norm(run(sess,gy))^2) end @testset "indexing with tensor" begin a = rand(10,3) i = constant(2) A = constant(a) @test run(sess, A[i,:])≈a[2,:] @test run(sess, A[i,3])≈a[2,3] @test run(sess, A[i,[1;2]])≈a[2,[1;2]] @test run(sess, A[:, i])≈a[:, 2] @test run(sess, A[3, i])≈a[3, 2] @test run(sess, A[[1;2], i])≈a[[1;2], 2] end @testset "ndims" begin @test ndims(constant(0.0))==0 @test ndims(constant(rand(2)))==1 @test ndims(constant(rand(3,3)))==2 @test ndims(constant(rand(4,4,4)))==3 end @testset "gradients_colocate" begin @cpu 1 begin global a = constant(rand(10,10)) global b = 2a end loss = sum(b) g = gradients_colocate(loss, a) @test g.device == "/device:CPU:1" end @testset "is_variable" begin a = Variable(rand(10)) b = constant(rand(10)) @test is_variable(a)==true @test is_variable(b)==false end
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
17407
<p align="center"> <img src="https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ADCME.gif?raw=true" alt="ADCME"/> </p> ![](https://travis-ci.org/kailaix/ADCME.jl.svg?branch=master) ![](https://github.com/kailaix/ADCME.jl/workflows/Documentation/badge.svg) ![Coverage Status](https://coveralls.io/repos/github/kailaix/ADCME.jl/badge.svg?branch=master) ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/demo.png?raw=true) The ADCME library (**A**utomatic **D**ifferentiation Library for **C**omputational and **M**athematical **E**ngineering) aims at general and scalable inverse modeling in scientific computing with gradient-based optimization techniques. It is built on the deep learning framework, **graph-mode [TensorFlow](https://www.tensorflow.org/)**, which provides the automatic differentiation and parallel computing backend. The dataflow model adopted by the framework makes it suitable for high performance computing and inverse modeling in scientific computing. The design principles and methodologies are summarized in the [slides](https://kailaix.github.io/ADCMESlides/ADCME.pdf). Check out more about [slides and videos on ADCME](https://kailaix.github.io/ADCME.jl/dev/videos_and_slides/)! | [Install ADCME and Get Started (Windows, Mac, and Linux)](https://www.youtube.com/playlist?list=PLKBz8ohiA3IlrCI0VO4cRYZp2S6SYG1Ww) | [Scientific Machine Learning for Inverse Modeling](https://www.youtube.com/playlist?list=PLKBz8ohiA3In-ZlvBKbvj_TIQEaboGC9_) | [Solving Inverse Modeling Problems with ADCME](https://www.youtube.com/playlist?list=PLKBz8ohiA3ImaNykOv56ONnCofEQMg3B8) | ...**more** on [ADCME Youtube Channel](https://www.youtube.com/channel/UCeaZFluNatYpkIYcq2TTklw/playlists)! | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | [![Alt text](https://img.youtube.com/vi/fH0QrqgzUeo/0.jpg)](https://www.youtube.com/playlist?list=PLKBz8ohiA3IlrCI0VO4cRYZp2S6SYG1Ww) | [![Alt text](https://img.youtube.com/vi/tNj7HooU6ek/0.jpg)](https://www.youtube.com/playlist?list=PLKBz8ohiA3In-ZlvBKbvj_TIQEaboGC9_) | [![Alt text](https://img.youtube.com/vi/wP39oNhIXh8/0.jpg)](https://www.youtube.com/playlist?list=PLKBz8ohiA3ImaNykOv56ONnCofEQMg3B8) | [![](https://yt3.ggpht.com/a-/AOh14GjNubZSOZameuPrlKlaCVNWe26UHO1MzXtbI3rP=s288-c-k-c0xffffffff-no-rj-mo)](https://www.youtube.com/channel/UCeaZFluNatYpkIYcq2TTklw/playlists) | Several features of the library are * **MATLAB-style Syntax**. Write `A*B` for matrix production instead of `tf.matmul(A,B)`. * **Custom Operators**. Implement operators in C/C++ for performance critical parts; incorporate legacy code or specially designed C/C++ code in `ADCME`; automatic differentiation through implicit schemes and iterative solvers. * **Numerical Scheme**. Easy to implement numerical schemes for solving PDEs. * **Physics Constrained Learning**. Embed neural network into PDEs and solve with any numerical schemes, including implicit and iterative schemes. * **Static Graphs**. Compilation time computational graph optimization; automatic parallelism for your simulation codes. * **Parallel Computing**. [Concurrent execution](https://kailaix.github.io/ADCME.jl/dev/multithreading/) and model/data parallel [distributed optimization](https://kailaix.github.io/ADCME.jl/dev/mpi/). * **Custom Optimizers**. Large scale constrained optimization? Use `CustomOptimizer` to integrate your favorite optimizer. Try out prebuilt [Ipopt and NLopt](https://kailaix.github.io/ADCME.jl/dev/customopt/#Dropin-substitute-of-BFGS!-1) optimizers. * **Sparse Linear Algebra**. Sparse linear algebra library tailored for scientific computing. * **Inverse Modeling**. Many inverse modeling algorithms have been developed and implemented in ADCME, with wide applications in solid mechanics, fluid dynamics, geophysics, and stochastic processes. * [![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/a82f1ae2c686e2c2a9eb2bc940540afb004c6503/ADCME/newrelease.svg)](https://github.com/kailaix/AdFem.jl)**Finite Element Method**. Get [AdFem.jl](https://github.com/kailaix/AdFem.jl) today for finite element simulation and inverse modeling! Start building your forward and inverse modeling using ADCME today! | Documentation | Tutorial | Applications | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | [![](https://img.shields.io/badge/-Documentation-blue)](https://kailaix.github.io/ADCME.jl/latest/) | [![](https://img.shields.io/badge/-Tutorial-green)](https://kailaix.github.io/ADCME.jl/dev/tutorial/) | [![](https://img.shields.io/badge/-Applications-orange)](https://kailaix.github.io/ADCME.jl/dev/apps) | ## Graph-mode TensorFlow for High Performance Scientific Computing Static computational graph (graph-mode AD) enables compilation time optimization. Below is a benchmark of common AD software from [here](https://github.com/microsoft/ADBench). In inverse modeling, we usually have a scalar-valued objective function, so the left panel is most relevant for ADCME. ![](https://raw.githubusercontent.com/microsoft/ADBench/master/Documents/figs/2020_Jan.png) # Installation 1. Install [Julia](https://julialang.org/). 🎉 Support Matrix | | Julia≧1.3 | GPU | Custom Operator | |---------| ----- |-----|-----------------| | Linux |✔ | ✔ | ✔ | | MacOS |✔ | ✕ | ✔ | | Windows | ✔ | ✔ | ✔ | 1. Install `ADCME` ``` using Pkg Pkg.add("ADCME") ``` ❗ FOR WINDOWS USERS: See [the instruction](https://kailaix.github.io/ADCME.jl/dev/windows_installation/) or [the video](https://www.youtube.com/playlist?list=PLKBz8ohiA3IlrCI0VO4cRYZp2S6SYG1Ww) for installation details. ❗ FOR MACOS USERS: See this [troubleshooting list](https://kailaix.github.io/ADCME.jl/dev/#Troubleshooting-for-MacOS) for potential installation and compilation problems on Mac. 2. (Optional) Test `ADCME.jl` ```julia using Pkg Pkg.test("ADCME") ``` See [Troubleshooting](https://kailaix.github.io/ADCME.jl/dev/tu_customop/#Troubleshooting-1) if you encounter any compilation problems. 3. (Optional) To enable GPU support, make sure `nvcc` is available from your environment (e.g., type `nvcc` in your shell and you should get the location of the executable binary file), and then type ```julia ENV["GPU"] = 1 Pkg.build("ADCME") ``` You can check the status with `using ADCME; gpu_info()`. 4. (Optional) Check the health of your installed ADCME and install missing dependencies or fixing incorrect paths. ```julia using ADCME doctor() ``` For manual installation without access to the internet, see [here](https://kailaix.github.io/ADCME.jl/dev/). ## Install via Docker If you have Docker installed on your system, you can try the no-hassle way to install ADCME (you don't even have to install Julia!): ```bash docker run -ti kailaix/adcme ``` See [this guide](https://kailaix.github.io/ADCME.jl/latest/docker/) for details. # Tutorial Here we present three inverse problem examples. The first one is a parameter estimation problem, the second one is a function inverse problem where the unknown function does not depend on the state variables, and the third one is also a function inverse problem, but the unknown function depends on the state variables. ### Parameter Inverse Problem Consider solving the following problem ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq1.svg?raw=true) where ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq2.svg?raw=true) Assume that we have observed `u(0.5)=1`, we want to estimate `b`. In this case, he true value should be `b=1`. ```julia using LinearAlgebra using ADCME n = 101 # number of grid nodes in [0,1] h = 1/(n-1) x = LinRange(0,1,n)[2:end-1] b = Variable(10.0) # we use Variable keyword to mark the unknowns A = diagm(0=>2/h^2*ones(n-2), -1=>-1/h^2*ones(n-3), 1=>-1/h^2*ones(n-3)) B = b*A + I # I stands for the identity matrix f = @. 4*(2 + x - x^2) u = B\f # solve the equation using built-in linear solver ue = u[div(n+1,2)] # extract values at x=0.5 loss = (ue-1.0)^2 # Optimization sess = Session(); init(sess) BFGS!(sess, loss) println("Estimated b = ", run(sess, b)) ``` Expected output ``` Estimated b = 0.9995582304494237 ``` The gradients can be obtained very easily. For example, if we want the gradients of `loss` with respect to `b`, the following code will create a Tensor for the gradient ``` julia> gradients(loss, b) PyObject <tf.Tensor 'gradients_1/Mul_grad/Reshape:0' shape=() dtype=float64> ``` ### Function Inverse Problem: Full Field Data Consider a nonlinear PDE, ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq3.svg?raw=true) where ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq4.svg?raw=true) Here `f(x)` can be computed from an analytical solution ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq5.svg?raw=true) In this problem, we are given the full field data of `u(x)` (the discrete value of `u(x)` is given on a very fine grid) and want to estimate the nonparametric function `b(u)`. We approximate `b(u)` using a neural network and use the [residual minimization method](https://kailaix.github.io/ADCME.jl/dev/tu_nn/) to find the optimal weights and biases of the neural network. The minimization problem is given by ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq6.svg?raw=true) ```julia using LinearAlgebra using ADCME using PyPlot n = 101 h = 1/(n-1) x = LinRange(0,1,n)|>collect u = sin.(π*x) f = @. (1+u^2)/(1+2u^2) * π^2 * u + u # `fc` is short for fully connected neural network. # Here we create a neural network with 2 hidden layers, and 20 neuron per layer. # The default activation function is tanh. b = squeeze(fc(u[2:end-1], [20,20,1])) residual = -b.*(u[3:end]+u[1:end-2]-2u[2:end-1])/h^2 + u[2:end-1] - f[2:end-1] loss = sum(residual^2) sess = Session(); init(sess) BFGS!(sess, loss) plot(x, (@. (1+x^2)/(1+2*x^2)), label="Reference") plot(u[2:end-1], run(sess, b), "o", markersize=5., label="Estimated") legend(); xlabel("\$u\$"); ylabel("\$b(u)\$"); grid("on") ``` Here we show the estimated coefficient function and the reference one: <p align="center"> <img src="https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readmenn.png?raw=true" style="zoom:50%;" /> </p> ### Function Inverse Problem: Sparse Data Now we consider the same problem as above, but only consider we have access to sparse observations. We assume that on the grid only the values of `u(x)` on every other 5th grid point are observable. We use the [physics constrained learning](https://arxiv.org/pdf/2002.10521.pdf) technique and train a neural network surrogate for `b(u)` by minimizing ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq7.svg?raw=true) Here `uᶿ` is the solution to the PDE with ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/readme-eq8.svg?raw=true) We add 1 to the neural network to ensure the initial guess does not result in a singular Jacobian matrix in the Newton Raphson solver. ```julia using LinearAlgebra using ADCME using PyPlot n = 101 h = 1/(n-1) x = LinRange(0,1,n)|>collect u = sin.(π*x) f = @. (1+u^2)/(1+2u^2) * π^2 * u + u # we use a Newton Raphson solver to solve the nonlinear PDE problem function residual_and_jac(θ, x) nn = squeeze(fc(reshape(x,:,1), [20,20,1], θ)) + 1.0 u_full = vector(2:n-1, x, n) res = -nn.*(u_full[3:end]+u_full[1:end-2]-2u_full[2:end-1])/h^2 + u_full[2:end-1] - f[2:end-1] J = gradients(res, x) res, J end θ = Variable(fc_init([1,20,20,1])) ADCME.options.newton_raphson.rtol = 1e-4 # relative tolerance ADCME.options.newton_raphson.tol = 1e-4 # absolute tolerance ADCME.options.newton_raphson.verbose = true # print details in newton_raphson u_est = newton_raphson_with_grad(residual_and_jac, constant(zeros(n-2)),θ) residual = u_est[1:5:end] - u[2:end-1][1:5:end] loss = sum(residual^2) b = squeeze(fc(reshape(x,:,1), [20,20,1], θ)) + 1.0 sess = Session(); init(sess) BFGS!(sess, loss) figure(figsize=(10,4)) subplot(121) plot(x, (@. (1+x^2)/(1+2*x^2)), label="Reference") plot(x, run(sess, b), "o", markersize=5., label="Estimated") legend(); xlabel("\$u\$"); ylabel("\$b(u)\$"); grid("on") subplot(122) plot(x, (@. sin(π*x)), label="Reference") plot(x[2:end-1], run(sess, u_est), "--", label="Estimated") plot(x[2:end-1][1:5:end], run(sess, u_est)[1:5:end], "x", markersize=5., label="Data") legend(); xlabel("\$x\$"); ylabel("\$u\$"); grid("on") ``` We show the reconstructed `b(u)` and the solution `u` computed from `b(u)`. We see that even though the neural network model fits the data very well, `b(u)` is not the same as the true one. This problem is ubiquitous in inverse modeling, where the unknown may not be unique. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/buu.png?raw=true) See [Applications](https://kailaix.github.io/ADCME.jl/dev/tutorial/) for more inverse modeling techniques and examples. ### Under the Hood: Computational Graph A static computational graph is automatic constructed for your implementation. The computational graph guides the runtime execution, saves intermediate results, and records data flows dependencies for automatic differentiation. Here we show the computational graph in the parameter inverse problem: ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/code.png?raw=true) See a detailed [tutorial](https://kailaix.github.io/ADCME.jl/dev/tutorial/), or a full [documentation](https://kailaix.github.io/ADCME.jl/dev). # Featured Applications | [Constitutive Modeling](https://kailaix.github.io/ADCME.jl/dev/apps_constitutive_law/) | [Seismic Inversion](https://kailaix.github.io/ADCME.jl/dev/apps_adseismic) | [Coupled Two-Phase Flow and Time-lapse FWI](https://kailaix.github.io/ADCME.jl/dev/apps_ad/) | [Calibrating Jump Diffusion](https://kailaix.github.io/ADCME.jl/dev/apps_levy/) | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | ![law](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/law.png?raw=true) | ![law](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/earthquake.png?raw=true) | ![law](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/geo.png?raw=true) | ![law](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/algo.png?raw=true) | Here are some research papers using ADCME: 1. Li, Dongzhuo, Kailai Xu, Jerry M. Harris, and Eric Darve. "Coupled Time‐Lapse Full‐Waveform Inversion for Subsurface Flow Problems Using Intrusive Automatic Differentiation." Water Resources Research 56, no. 8 (2020): e2019WR027032. 2. Xu, Kailai, Alexandre M. Tartakovsky, Jeff Burghardt, and Eric Darve. "Inverse Modeling of Viscoelasticity Materials using Physics Constrained Learning." arXiv preprint arXiv:2005.04384 (2020). 3. Zhu, Weiqiang, Kailai Xu, Eric Darve, and Gregory C. Beroza. "A General Approach to Seismic Inversion with Automatic Differentiation." arXiv preprint arXiv:2003.06027 (2020). 4. Xu, K. and Darve, E., 2019. Adversarial Numerical Analysis for Inverse Problems. arXiv preprint arXiv:1910.06936. 5. Xu, Kailai, Weiqiang Zhu, and Eric Darve. "Distributed Machine Learning for Computational Engineering using MPI." arXiv preprint arXiv:2011.01349 (2020). 6. Xu, Kailai, and Eric Darve. "Physics constrained learning for data-driven inverse modeling from sparse observations." arXiv preprint arXiv:2002.10521 (2020). 7. Xu, Kailai, Daniel Z. Huang, and Eric Darve. "Learning constitutive relations using symmetric positive definite neural networks." arXiv preprint arXiv:2004.00265 (2020). 8. Xu, Kailai, and Eric Darve. "The neural network approach to inverse problems in differential equations." arXiv preprint arXiv:1901.07758 (2019). 9. Huang, D.Z., Xu, K., Farhat, C. and Darve, E., 2019. Predictive modeling with learned constitutive laws from indirect observations. arXiv preprint arXiv:1905.12530. **Domain specific software based on ADCME** [ADSeismic.jl](https://github.com/kailaix/ADSeismic.jl): Inverse Problems in Earthquake Location/Source-Time Function, FWI, Rupture Process [FwiFlow.jl](https://github.com/lidongzh/FwiFlow.jl): Seismic Inversion, Two-phase Flow, Coupled seismic and flow equations [AdFem.jl](https://github.com/kailaix/AdFem.jl/): Inverse Modeling with the Finite Element Method # LICENSE ADCME.jl is released under MIT License. See [License](https://github.com/kailaix/ADCME.jl/tree/master/LICENSE) for details.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
104
[ ] S*v [ ] S*D [ ] D*S [ ] S\v [ ] S\D [ ] S+s [ ] -S [ ] S-->D [ ] D-->S [ ] S' [ ] α*S*S+βS [ ] S+D
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
14903
# Generalized α Scheme ## Generalized $\alpha$ Scheme The generalized $\alpha$ scheme is used to solve the second order linear differential equation of the form $$m\ddot{ \mathbf{u}} + \gamma\dot{\mathbf{u}} + k\mathbf{u} = \mathbf{f}$$ whose discretization form is $$M\mathbf{a} + C\mathbf v + K \mathbf d = \mathbf F$$ Here $M$, $C$ and $K$ are the generalized mass, damping, and stiffness matrices, $\mathbf a$, $\mathbf v$, and $\mathbf d$ are the generalized acceleration, velocity, and displacement, and $\mathbf F$ is the generalized force vector. There are two types of boundary conditions * Dirichlet (essential) boundary condition. In this case, the displacement $\mathbf{u}$ is specified at a point $\mathbf{x}_0$ $$\mathbf{u}(\mathbf{x}_0, t) = \mathbf{h}(t)$$ This boundary condition usually requires updating matrices $M$, $C$ and $K$ at each time step. * Essential boundry condition. In this case the external force is specified $${\sigma}(\mathbf{x})\mathbf{n}(\mathbf{x}) = \mathbf{t}(\mathbf{x})$$ This term goes directly into $\mathbf{F}$. The generalized $\alpha$ scheme solves for a discrete time step $$\begin{aligned} \mathbf d_{n+1} &= \mathbf d_n + h\mathbf v_n + h^2 \left(\left(\frac{1}{2}-\beta_2 \right)\mathbf a_n + \beta_2 \mathbf a_{n+1} \right)\\ \mathbf v_{n+1} &= \mathbf v_n + h((1-\gamma_2)\mathbf a_n + \gamma_2 \mathbf a_{n+1})\\ \mathbf F(t_{n+1-\alpha_{f_2}}) &= M \mathbf a _{n+1-\alpha_{m_2}} + C \mathbf v_{n+1-\alpha_{f_2}} + K \mathbf{d}_{n+1-\alpha_{f_2}} \end{aligned}$$ Here $h$ is the time step and $$\begin{aligned} \mathbf d_{n+1-\alpha_{f_2}} &= (1-\alpha_{f_2})\mathbf d_{n+1} + \alpha_{f_2} \mathbf d_n\\ \mathbf v_{n+1-\alpha_{f_2}} &= (1-\alpha_{f_2}) \mathbf v_{n+1} + \alpha_{f_2} \mathbf v_n \\ \mathbf a_{n+1-\alpha_{m_2} } &= (1-\alpha_{m_2}) \mathbf a_{n+1} + \alpha_{m_2} \mathbf a_n\\ t_{n+1-\alpha_{f_2}} & = (1-\alpha_{f_2}) t_{n+1 + \alpha_{f_2}} + \alpha_{f_2}t_n \end{aligned}$$ The parameters $\alpha_{f_2}$, $\alpha_{m_2}$, $\gamma_2$, and $\beta_2$ are used to control the amplification of high frequency numerical modes. High frequency modes normally describe motions with no physical sense (also contains very large phase error). Therefore, it is desirable to damp those high frequency modes. By properly choosing the parameters, we can recover HHT, Newmark, or WBZ methods. We can design new algorithms by taking $\rho_\infty\in [0,1]$ as a design variable to control the numerical dissipation above the normal frequency $\frac{h}{T}$, where $T$ is the period associated with the highest frequency of interest. The following relationships are used to obtain a good algorithm that are accurate and preserve low-frequency modes $$\begin{aligned} \gamma_2 &= \frac{1}{2} - \alpha_{m_2} + \alpha_{f_2}\\ \beta_2 &= \frac{1}{4} (1-\alpha_{m_2}+\alpha_{f_2})^2 \\ \alpha_{m_2} &= \frac{2\rho_\infty-1}{\rho_\infty+1}\\ \alpha_{f_2} &= \frac{\rho_\infty}{\rho_\infty+1} \end{aligned}$$ The following figure provides a plot of spectral radii versus $\frac hT$[^radii] ![](http://www.dymoresolutions.com/AnalysisControls/figures/DIS_fig8.png) [^radii]: http://www.dymoresolutions.com/AnalysisControls/CreateFEModel.html In ADCME, we provide an API to the generalized $\alpha$ scheme, [`αscheme`](@ref), and [`αscheme_time`](@ref), which computes $t_{n+1-\alpha_{f_2}}$. ## Rayleigh Damping Rayleigh damping is widely used to model internal structural damping. It is viscous damping that is proportional to a linear combination of mass and stiffness $$C = \alpha M + \beta K$$ The relation between the damping value $\xi$ and the naturual frequency $\omega$ is given by $$\xi =\frac12\left( \frac{\alpha}{\omega} + \beta\omega \right)$$ In practice, we can measure two real frequencies $\xi_1$ and $\xi_2$, corresponding to $\omega_1$ and $\omega_2$ and find the coefficients via $$\begin{bmatrix} \frac{1}{2\omega_1} & \frac{\omega_1}{2}\\ \frac{1}{2\omega_2} & \frac{\omega_2}{2} \end{bmatrix}\begin{bmatrix}\alpha\\\beta\end{bmatrix} = \begin{bmatrix}\xi_1\\\xi_2\end{bmatrix}$$ This approach will produce a curve that matches the two natural frequency points. In the case where the structure has one or two very dominant frequencies, Raleigh damping can closely approximate the behavior of a prescribed modal damping. ## Example: Elasticity In this example, we consider a plane stress elasticity deformation of a plate. The governing equation is given by $$\begin{aligned} \sigma_{ij,j} + f_i = \ddot u_i \\ \sigma_{ij} = \mathsf{C} \epsilon_{ij} \end{aligned}$$ The elasticity tensor $\mathsf{C}$ is calculated using a Young's modulus $E=1$ and a Poisson's ratio $\nu=0.35$. We consider a computational domain $[0,2]\times[0,1]$ and time horizon $t\in (0,1)$, the exact solution is given by $$u_1(x,y,t) = e^{-t}x(2-x)y(1-y)\qquad u_2(x,y,t) = e^{-t}x^2(2-x)^2y^2(1-y)^2$$ The other terms can be computed analytically based on the exact solutions. ```julia using ADCME using AdFem using PyPlot n = 20 m = 2n NT = 200 ρ = 1.0 Δt = 1/NT h = 1/n x = zeros((m+1)*(n+1)) y = zeros((m+1)*(n+1)) for i = 1:m+1 for j = 1:n+1 idx = (j-1)*(m+1)+i x[idx] = (i-1)*h y[idx] = (j-1)*h end end bd = bcnode("all", m, n, h) u1 = (x,y,t)->exp(-t)*x*(2-x)*y*(1-y) u2 = (x,y,t)->exp(-t)*x^2*(2-x)^2*y^2*(1-y)^2 ts = Δt * ones(NT) dt = αscheme_time(ts, ρ = ρ ) F = zeros(NT, 2(m+1)*(n+1)) for i = 1:NT t = dt[i] f1 = (x,y)->(-4.93827160493827*x^2*y^2*(x - 2)*(y - 1) - 4.93827160493827*x^2*y*(x - 2)*(y - 1)^2 - 4.93827160493827*x*y^2*(x - 2)^2*(y - 1) - 4.93827160493827*x*y*(x - 2)^2*(y - 1)^2 + x*y*(x - 2)*(y - 1) - 0.740740740740741*x*(x - 2) - 3.20987654320988*y*(y - 1))*exp(-t) f2 = (x,y)->(x^2*y^2*(x - 2)^2*(y - 1)^2 - 3.20987654320988*x^2*y^2*(x - 2)^2 - 0.740740740740741*x^2*y^2*(y - 1)^2 - 12.8395061728395*x^2*y*(x - 2)^2*(y - 1) - 3.20987654320988*x^2*(x - 2)^2*(y - 1)^2 - 2.96296296296296*x*y^2*(x - 2)*(y - 1)^2 - 1.23456790123457*x*y - 1.23456790123457*x*(y - 1) - 0.740740740740741*y^2*(x - 2)^2*(y - 1)^2 - 1.23456790123457*y*(x - 2) - 1.23456790123457*(x - 2)*(y - 1))*exp(-t) fval1 = eval_f_on_gauss_pts(f1, m, n, h) fval2 = eval_f_on_gauss_pts(f2, m, n, h) F[i,:] = compute_fem_source_term(fval1, fval2, m, n, h) end E = 1.0 ν = 0.35 H = E/(1+ν)/(1-2ν)*[ 1-ν ν 0 ν 1-ν 0 0 0 (1-2ν)/2 ] M = constant(compute_fem_mass_matrix(m, n, h)) K = constant(compute_fem_stiffness_matrix(H, m, n, h)) a0 = [(@. u1(x, y, 0.0)); (@. u2(x, y, 0.0))] u0 = -[(@. u1(x, y, 0.0)); (@. u2(x, y, 0.0))] d0 = [(@. u1(x, y, 0.0)); (@. u2(x, y, 0.0))] function solver(A, rhs) A, _ = fem_impose_Dirichlet_boundary_condition_experimental(A, bd, m, n, h) rhs = scatter_update(rhs, [bd; bd .+ (m+1)*(n+1)], zeros(2*length(bd))) return A\rhs end d, u, a = αscheme(M, spzero(2(m+1)*(n+1)), K, F, d0, u0, a0, ts; solve=solver, ρ = ρ ) sess = Session() d_, u_, a_ = run(sess, [d, u, a]) function plot_traj(idx) figure(figsize=(12,3)) subplot(131) plot((0:NT)*Δt, u1.(x[idx], y[idx],(0:NT)*Δt), "b-", label="x-Acceleration") plot((0:NT)*Δt, a_[:,idx], "y--", markersize=2) plot((0:NT)*Δt, u2.(x[idx], y[idx],(0:NT)*Δt), "r-", label="y-Acceleration") plot((0:NT)*Δt, a_[:,idx+(m+1)*(n+1)], "c--", markersize=2) legend() xlabel("Time") ylabel("Value") subplot(133) plot((0:NT)*Δt, u1.(x[idx], y[idx],(0:NT)*Δt), "b-", label="x-Displacement") plot((0:NT)*Δt, d_[:,idx], "y--", markersize=2) plot((0:NT)*Δt, u2.(x[idx], y[idx],(0:NT)*Δt), "r-", label="y-Displacement") plot((0:NT)*Δt, d_[:,idx+(m+1)*(n+1)], "c--", markersize=2) legend() xlabel("Time") ylabel("Value") subplot(132) plot((0:NT)*Δt, -u1.(x[idx], y[idx],(0:NT)*Δt), "b-", label="x-Velocity") plot((0:NT)*Δt, u_[:,idx], "y--", markersize=2) plot((0:NT)*Δt, -u2.(x[idx], y[idx],(0:NT)*Δt), "r-", label="y-Velocity") plot((0:NT)*Δt, u_[:,idx+(m+1)*(n+1)], "c--", markersize=2) legend() xlabel("Time") ylabel("Value") tight_layout() end idx2 = (n÷3)*(m+1) + m÷3 plot_traj(idx2) ``` Using the above code, we plot the trajectories of $\mathbf{a}$, $\mathbf{v}$, and $\mathbf{d}$ at $(0.64,0.32)$, and obtain the following plot ![alpha_elasticity](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/alpha_elasticity.png?raw=true) !!! info When we have (time-dependent) Dirichlet boundary conditions, we need to impose the boundary acceleration in each time step. This can be achieved using `extsolve` in [`αscheme`](@ref). ```julia function solver(A, rhs, i) A, Abd = fem_impose_Dirichlet_boundary_condition(A, bd, m, n, h) rhs = rhs - Abd * abd[i] rhs = scatter_update(rhs, [bd; bd .+ (m+1)*(n+1)], abd[i]) return A\rhs end d, u, a = αscheme(M, spzero(2(m+1)*(n+1)), K, F, d0, u0, a0, ts; extsolve=solver, ρ = ρ ) ``` Basically, we have $$A_{II} a_I + A_{IB} a_B = f \Rightarrow A_{II} a_I = f-A_{IB}a_B$$ and $a_B$(`abd`) is the acceleration from the Dirichlet boundary condition. Here is a script for demonstrating how to impose the Dirichlet boundary condition ```julia using Revise using ADCME using AdFem using PyPlot n = 20 m = 2n NT = 200 ρ = 0.5 Δt = 1/NT h = 1/n x = zeros((m+1)*(n+1)) y = zeros((m+1)*(n+1)) for i = 1:m+1 for j = 1:n+1 idx = (j-1)*(m+1)+i x[idx] = (i-1)*h y[idx] = (j-1)*h end end bd = bcnode("all", m, n, h) u1 = (x,y,t)->exp(-t)*(0.5-x)^2*(2-y)^2 u2 = (x,y,t)->exp(-t)*(0.5-x)*(0.5-y) ts = Δt * ones(NT) dt = αscheme_time(ts, ρ = ρ ) F = zeros(NT, 2(m+1)*(n+1)) for i = 1:NT t = dt[i] f1 = (x,y)->((x - 0.5)^2*(y - 2)^2 - 0.740740740740741*(x - 0.5)^2 - 3.20987654320988*(y - 2)^2 - 1.23456790123457)*exp(-t) f2 = (x,y)->(-3.93827160493827*x*y + 9.37654320987654*x + 1.96913580246914*y - 4.68827160493827)*exp(-t) fval1 = eval_f_on_gauss_pts(f1, m, n, h) fval2 = eval_f_on_gauss_pts(f2, m, n, h) F[i,:] = compute_fem_source_term(fval1, fval2, m, n, h) end abd = zeros(NT, (m+1)*(n+1)*2) dt = αscheme_time(ts, ρ = ρ ) for i = 1:NT t = dt[i] abd[i,:] = [(@. u1(x, y, t)); (@. u2(x, y, t))] end abd = constant(abd[:, [bd; bd .+ (m+1)*(n+1)]]) E = 1.0 ν = 0.35 H = E/(1+ν)/(1-2ν)*[ 1-ν ν 0 ν 1-ν 0 0 0 (1-2ν)/2 ] M = constant(compute_fem_mass_matrix(m, n, h)) K = constant(compute_fem_stiffness_matrix(H, m, n, h)) a0 = [(@. u1(x, y, 0.0)); (@. u2(x, y, 0.0))] u0 = -[(@. u1(x, y, 0.0)); (@. u2(x, y, 0.0))] d0 = [(@. u1(x, y, 0.0)); (@. u2(x, y, 0.0))] function solver(A, rhs, i) A, Abd = fem_impose_Dirichlet_boundary_condition(A, bd, m, n, h) rhs = rhs - Abd * abd[i] rhs = scatter_update(rhs, [bd; bd .+ (m+1)*(n+1)], abd[i]) return A\rhs end d, u, a = αscheme(M, spzero(2(m+1)*(n+1)), K, F, d0, u0, a0, ts; extsolve=solver, ρ = ρ ) sess = Session() d_, u_, a_ = run(sess, [d, u, a]) function plot_traj(idx) figure(figsize=(12,3)) subplot(131) plot((0:NT)*Δt, u1.(x[idx], y[idx],(0:NT)*Δt), "b-", label="x-Acceleration") plot((0:NT)*Δt, a_[:,idx], "y--", markersize=2) plot((0:NT)*Δt, u2.(x[idx], y[idx],(0:NT)*Δt), "r-", label="y-Acceleration") plot((0:NT)*Δt, a_[:,idx+(m+1)*(n+1)], "c--", markersize=2) legend() xlabel("Time") ylabel("Value") subplot(133) plot((0:NT)*Δt, u1.(x[idx], y[idx],(0:NT)*Δt), "b-", label="x-Displacement") plot((0:NT)*Δt, d_[:,idx], "y--", markersize=2) plot((0:NT)*Δt, u2.(x[idx], y[idx],(0:NT)*Δt), "r-", label="y-Displacement") plot((0:NT)*Δt, d_[:,idx+(m+1)*(n+1)], "c--", markersize=2) legend() xlabel("Time") ylabel("Value") subplot(132) plot((0:NT)*Δt, -u1.(x[idx], y[idx],(0:NT)*Δt), "b-", label="x-Velocity") plot((0:NT)*Δt, u_[:,idx], "y--", markersize=2) plot((0:NT)*Δt, -u2.(x[idx], y[idx],(0:NT)*Δt), "r-", label="y-Velocity") plot((0:NT)*Δt, u_[:,idx+(m+1)*(n+1)], "c--", markersize=2) legend() xlabel("Time") ylabel("Value") tight_layout() end idx2 = (n÷3)*(m+1) + m÷2 plot_traj(idx2) ``` ## Example: Viscosity In this section, we show how to use the generalized $\alpha$ scheme to solve the viscosity problem. The governing equation is given by $$\begin{aligned} \sigma_{3j,j} + f &= \ddot u \\ \sigma_{3j} &= \dot \epsilon_{3j} \end{aligned}$$ where $u(x,y,t)$ is the displacement in the $z$-direction. We assume zero Dirichlet boundary condition, the computational domain is $[0,2]\times [0,1]$, and the exact solution is $$u(x, y, t) = e^{-t} x(2-x)y(1-y)$$ The weak form of the equation is $$\int_\Omega \ddot u\delta u + \int_\Omega \dot \epsilon\delta \epsilon = \int_\Omega f \delta u$$ In the discretization form we have $$M\mathbf{a} + K \mathbf{v} = \mathbf{F}$$ ```julia using ADCME using AdFem n = 50 m = 2n NT = 200 ρ = 0.1 Δt = 1/NT h = 1/n x = zeros((m+1)*(n+1)) y = zeros((m+1)*(n+1)) for i = 1:m+1 for j = 1:n+1 idx = (j-1)*(m+1)+i x[idx] = (i-1)*h y[idx] = (j-1)*h end end bd = bcnode("all", m, n, h) uexact = (x,y,t)->exp(-t)*x*(2-x)*y*(1-y) ts = Δt * ones(NT) dt = αscheme_time(ts, ρ = ρ ) F = zeros(NT, (m+1)*(n+1)) for i = 1:NT t = dt[i] f = (x,y)->uexact(x, y, t) -2*(y-y^2+2x-x^2)*exp(-t) fval = eval_f_on_gauss_pts(f, m, n, h) F[i,:] = compute_fem_source_term1(fval, m, n, h) end M = constant(compute_fem_mass_matrix1(m, n, h)) K = constant(compute_fem_stiffness_matrix1(diagm(0=>ones(2)), m, n, h)) a0 = @. x*(2-x)*y*(1-y) u0 = @. -x*(2-x)*y*(1-y) d0 = @. x*(2-x)*y*(1-y) function solver(A, rhs) A, _ = fem_impose_Dirichlet_boundary_condition1(A, bd, m, n, h) rhs = scatter_update(rhs, bd, zeros(length(bd))) return A\rhs end d, u, a = αscheme(M, K, spzero((m+1)*(n+1)), F, d0, u0, a0, ts; solve=solver, ρ = ρ ) sess = Session() d_, u_, a_ = run(sess, [d, u, a]) function plot_traj(idx) figure(figsize=(12,3)) subplot(131) plot((0:NT)*Δt, uexact.(x[idx], y[idx],(0:NT)*Δt), "-", label="Acceleration") plot((0:NT)*Δt, a_[:,idx], "--", markersize=2) legend() xlabel("Time") ylabel("Value") subplot(133) plot((0:NT)*Δt, uexact.(x[idx], y[idx],(0:NT)*Δt), "-", label="Displacement") plot((0:NT)*Δt, d_[:,idx], "--", markersize=2) legend() xlabel("Time") ylabel("Value") subplot(132) plot((0:NT)*Δt, -uexact.(x[idx], y[idx],(0:NT)*Δt), "-", label="Velocity") plot((0:NT)*Δt, u_[:,idx], "--", markersize=2) legend() xlabel("Time") ylabel("Value") tight_layout() end idx = (n÷2)*(m+1) + m÷2 idx2 = (n÷3)*(m+1) + m÷3 plot_traj(idx2) ``` Using the above code, we plot the trajectories of $\mathbf{a}$, $\mathbf{v}$, and $\mathbf{d}$ at $(0.64,0.32)$, and obtain the following plot ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/alpha_visco.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
1243
# API Reference ## Core Functions ```@autodocs Modules = [ADCME] Pages = ["ADCME.jl", "core.jl", "run.jl"] ``` ## Variables ```@autodocs Modules = [ADCME] Pages = ["variable.jl"] ``` ## Random Variables ```@autodocs Modules = [ADCME] Pages = ["random.jl"] ``` ## Sparse Matrix ```@autodocs Modules = [ADCME] Pages = ["sparse.jl"] ``` ## Operations ```@autodocs Modules = [ADCME] Pages = ["ops.jl"] ``` ## IO ```@autodocs Modules = [ADCME] Pages = ["io.jl"] ``` ## Optimization ```@autodocs Modules = [ADCME] Pages = ["optim.jl"] ``` ## Neural Networks ```@autodocs Modules = [ADCME] Pages = ["layers.jl"] ``` ## Generative Neural Nets ```@autodocs Modules = [ADCME] Pages = ["gan.jl"] ``` ## Tools ```@autodocs Modules = [ADCME] Pages = ["extra.jl", "kit.jl", "sqlite.jl"] ``` ## ODE ```@autodocs Modules = [ADCME] Pages = ["ode.jl"] ``` ## Function Approximators ```@docs RBF2D RBF3D interp1 ``` ## Optimal Transport ```@autodocs Modules = [ADCME] Pages = ["ot.jl"] ``` ## MPI ```@autodocs Modules = [ADCME] Pages = ["mpi.jl"] ``` ## Toolchain ```@autodocs Modules = [ADCME] Pages = ["toolchain.jl", "gpu.jl"] ``` ## Misc ```@autodocs Modules = [ADCME] Pages = ["misc.jl"] ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
1408
# Overview In this section, we present some applications of ADCME to physics based machine learning. We design data-driven algorithms for estimating unknown parameters, functions, functionals, and stochastic processes to physical or statistical models. One highlight of the applications is using neural networks to approximate the unknowns, and at the same time preserving the physical constraints such as conservation laws. We believe that as deep learning technology continues to grow, building an AD tool based on the deep learning framework will benefit scientific computing and helps solve long standing challenging inverse problems. Meanwhile, we can leverage the knowledge of physical laws to reduce the amount of data required for training deep neural networks. This goal is achieved by the insights into the connection between deep learning algorithms and inverse modeling algorithm via automatic differentiation. **Sample Applications** [Adversarial Numerical Analysis](./apps_ana.md) [Intelligent Automatic Differentiation ](./apps_ad.md) [Learning Constitutive Relations from Indirect Observations Using Deep Neural Networks](./apps_constitutive_law.md) [Calibrating Multivariate Lévy Processes with Neural Networks](./apps_levy.md) [General Seismic Inversion using Automatic Differentiation](./apps_adseismic.md) [Symmetric Positive Definite Neural Networks (SPD-NN)](./apps_nnfem.md)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2385
# Intelligent Automatic Differentiation --- Kailai Xu, Dongzhuo Li, Eric Darve, and Jerry M. Harris. "[Learning Hidden Dynamics using Intelligent Automatic Differentiation](https://arxiv.org/abs/1912.07547)" Dongzhuo Li, Kailai Xu, Jerry M. Harris, and Eric Darve. "[Time-lapse Full Waveform Inversion for Subsurface Flow Problems with Intelligent Automatic Differentiation](https://arxiv.org/abs/1912.07552)" [Project Website](https://github.com/lidongzh/FwiFlow.jl) --- We treat physical simulations as a chain of multiple differentiable operators, such as discrete Laplacian evaluation, a Poisson solver and a single implicit time stepping for nonlinear PDEs. They are like building blocks that can be assembled to make simulation tools for new physical models. Those operators are differentiable and integrated in a computational graph so that the gradients can be computed automatically and efficiently via analyzing the dependency in the graph. Independent operators are parallelized executed. With the gradients we can perform gradient-based PDE-constrained optimization for inverse problems. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/op.png?raw=true) This view of numerical simulation enables us to develope very sophisticated tools for inverse modeling: we decouple the individual operators and implement a forward/backward for each of them; they are consolidated using ADCME to create a computational graph. The computational dependency is then parsed and gradients are automatically computed based on the dependency. For example, in this work, we coupled multiphysics and obtain the gradients of the objective function with respect to the hidden dynamics parameters (i.e., permeability). This can be quite time-consuming and error-prone if we are going to derive the gradients by hand, implement and debug. With ADCME, we "chain" all the operators and the gradients are obtained automatically. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/diagram.png?raw=true) We call this technique **intelligent automatic differentiation**, since we can design our own operators for performance and those operators are submodules that can be flexibly replaced and reused. For more details, see [FwiFlow.jl](https://github.com/lidongzh/FwiFlow.jl), a package focused on elastic full waveform inversion for subsurface flow problems.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2054
# General Seismic Inversion using Automatic Differentiation --- Weiqiang Zhu (**co-first author**), Kailai Xu (**co-first author**), Eric Darve, and Gregory C. Beroza [Project Website](https://github.com/kailaix/ADSeismic.jl) --- Imaging Earth structure or seismic sources from seismic data involves minimizing a target misfit function, and is commonly solved through gradient-based optimization. The adjoint-state method has been developed to compute the gradient efficiently; however, its implementation can be time-consuming and difficult. We develop a general seismic inversion framework to calculate gradients using reverse-mode automatic differentiation. The central idea is that adjoint-state methods and reverse-mode automatic differentiation are mathematically equivalent. The mapping between numerical PDE simulation and deep learning allows us to build a seismic inverse modeling library, ADSeismic, based on deep learning frameworks, which supports high performance reverse-mode automatic differentiation on CPUs and GPUs. We demonstrate the performance of ADSeismic on inverse problems related to velocity model estimation, rupture imaging, earthquake location, and source time function retrieval. ADSeismic has the potential to solve a wide variety of inverse modeling applications within a unified framework. | Connection Between the Adjoint-State Method and Automatic Differentiation | Remarkable Multi-GPU Acceleration | Earthquake Location and Source-Time Function Inversion | | ------------------------------------------------------------ | ----------------------------------------------- | ------------------------------------------------------------ | | ![compare-NN-PDE](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/compare-NN-PDE.png?raw=true) | ![image-20200313110921108](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/cpugpu.png?raw=true) | ![image-20200313111045121](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/earthquake.png?raw=true) |
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2404
# Adversarial Numerical Analysis --- Kailai Xu, and Eric Darve. "[Adversarial Numerical Analysis for Inverse Problems](https://arxiv.org/abs/1910.06936)" [Project Website](https://github.com/kailaix/GAN) --- Many scientific and engineering applications are formulated as inverse problems associated with stochastic models. In such cases the unknown quantities are distributions. The applicability of traditional methods is limited because of their demanding assumptions or prohibitive computational consumptions; for example, maximum likelihood methods require closed-form density functions, and Markov Chain Monte Carlo needs a large number of simulations. Consider the forward model ```math x = F(w, \theta) ``` Here $w$ is a known stochastic process such as Gaussian processes, $\theta$ is an unknown parameter, distribution or stochastic processes. Consequently, the output of the model $x$ is also a stochastic process. $F$ can be a very complicated model such as a system of partial differential equations. Many models fall into this category; here we solve an inverse modeling problem of boundary value Poisson equations $$\begin{cases} -\nabla \cdot (a(x)\nabla u(x)) = 1 & x\in(0,1)\\\\ u(0) = u(1) = 0 & \text{otherwise} \end{cases}$$ ```math a(x) = 1-0.9\exp\left( -\frac{(x-\mu)^2}{2\sigma^2} \right) ``` Here ($\mu$, $\sigma$) is subject to unknown distribution ($\theta$ in the forward model). $w=\emptyset$ and $x$ is the solution to the equation, $u$. Assume we have observed a set of solutions $u_i$, and we want to estimate the distribution of ($\mu$, $\sigma$). Adversarial numerical analysis works as follows 1. The distribution ($\mu$, $\sigma$) is parametrized by a deep neural network $G_{\eta}$. 2. For each instance of ($\mu$, $\sigma$) sampled from the neural network parametrized distribution, we can compute a solution $u_{\mu, \sigma}$ using the finite difference method. 3. We compute a metric between the *distribution* $u_{\mu, \sigma}$ and $u_i$ with a discriminative neural network $D_{\xi}$. 4. Minimize the metric by adjusting the weights of $G_{\eta}$ and $D_{\xi}$. The distribution of ($\mu$, $\sigma$) is given by $G_{\eta}$. The following plots show the workflow of adversarial numerical analysis and a sample result for the Dirichlet distribution. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ana.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2662
# Learning Constitutive Relations from Indirect Observations Using Deep Neural Networks --- Huang, Daniel Z. (**co-first author**), Kailai Xu (**co-first author**), Charbel Farhat, and Eric Darve. "[Learning Constitutive Relations from Indirect Observations Using Deep Neural Networks](https://arxiv.org/abs/1905.12530)" [Project Website](https://github.com/kailaix/UQ) --- We present a new approach for predictive modeling and its uncertainty quantification for mechanical systems, where coarse-grained models such as constitutive relations are derived directly from observation data. We explore the use of neural networks to represent the unknowns functions (e.g., constitutive relations). Its counterparts, like piecewise linear functions and radial basis functions, are compared, and the strength of neural networks is explored. The training and predictive processes in this framework seamlessly combine the finite element method, automatic differentiation, and neural networks (or its counterparts). Under mild assumptions, we establish convergence guarantees. This framework also allows uncertainty quantification analysis in the form of intervals of confidence. Numerical examples on a multiscale fiber-reinforced plate problem and a nonlinear rubbery membrane problem from solid mechanics demonstrate the effectiveness of the framework. The solid mechanics equation can be formulated as ```math \mathcal{P}(u(\mathbf{x}), \mathcal{M}(u(\mathbf{x}),\dot u(\mathbf{x}), \mathbf{x})) = \mathcal{F}(u(\mathbf{x}), \mathbf{x}, p) ``` where $u$ is the displacement, $\mathbf{x}$ is the location, $p$ is the external pressure, $\mathcal{F}$ is the external force, $\mathcal{M}(u(\mathbf{x}),\dot u(\mathbf{x}), \mathbf{x})$ is the stress ($\mathcal{M}$ is also called the constitutive law), $\mathcal{P}(u(\mathbf{x}), \mathcal{M}(u(\mathbf{x}),\dot u(\mathbf{x}), \mathbf{x}))$ is the internal force. For a new material or nonhomogeneous material, the constitutive relation $\mathcal{M}$ is not known and we want to estimate it. In laboratory, usually only $u(\mathbf{x})$ can be measured but the stress cannot. The idea is to substitute the constitutive law relation--in this work, we assume $\mathcal{M}$ only depends on $u(\mathbf{x})$ and the neural network is $\mathcal{M}_{\theta}(u(\mathbf{x}))$, where $\theta$ is the unknown parameter. We train the neural network by solving the optimization problem ```math \min_{\theta}\|\mathcal{P}(\mathbf{u}, \mathcal{M}_{\theta}(\mathbf{u})) - \mathcal{F}(\mathbf{u}, \mathbf{x}, p) \|^2_2 ``` ![image-20191031200808697](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/law.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3671
# Calibrating Multivariate Lévy Processes with Neural Networks --- Kailai Xu and Eric Darve. "[Calibrating Multivariate Lévy Processes with Neural Networks](https://arxiv.org/abs/1812.08883)" [Project Website](https://github.com/kailaix/LevyNN.jl) --- Calibrating a Lévy process usually requires characterizing its jump distribution. Traditionally this problem can be solved with nonparametric estimation using the empirical characteristic functions (ECF), assuming certain regularity, and results to date are mostly in 1D. For multivariate Lévy processes and less smooth Lévy densities, the problem becomes challenging as ECFs decay slowly and have large uncertainty because of limited observations. We solve this problem by approximating the Lévy density with a parametrized functional form; the characteristic function is then estimated using numerical integration. In our benchmarks, we used deep neural networks and found that they are robust and can capture sharp transitions in the Lévy density. They perform favorably compared to piecewise linear functions and radial basis functions. The methods and techniques developed here apply to many other problems that involve nonparametric estimation of functions embedded in a system model. The Lévy process can be described by the Lévy-Khintchine formula ``\phi({\xi}) = \mathbb{E}[e^{\mathrm{i} \langle {\xi}, \mathbf{X}_t \rangle}] =\exp\left[t\left( \mathrm{i} \langle \mathbf{b}, {\xi} \rangle - \frac{1}{2}\langle {\xi}, \mathbf{A}{\xi}\rangle +\int_{\mathbb{R}^d} \left( e^{\mathrm{i} \langle {\xi}, \mathbf{x}\rangle} - 1 - \mathrm{i} \langle {\xi}, \mathbf{x}\rangle \mathbf{1}_{\|\mathbf{x}\|\leq 1}\right)\nu(d\mathbf{x})\right) \right]`` Here the multivariate Lévy process is described by three parameters: a positive semi-definite matrix $\mathbf{A} = {\Sigma}{\Sigma}^T \in \mathbb{R}^{d\times d}$, where ${\Sigma}\in \mathbb{R}^{d\times d}$; a vector $\mathbf{b}\in \mathbb{R}^d$; and a measure $\nu\in \mathbb{R}^d\backslash\{\mathbf{0}\}$. Given a sample path $\mathbf{X}_{i\Delta t}$, $i=1,2,3,\ldots$, we focus on estimating $\mathbf{b}$, $\mathbf{A}$ and $\nu$. In this work, we focus on the functional inverse problem--estimate $\nu$--and assume $\mathbf{b}=0,\mathbf{A}=0$. The idea is * The Lévy density is approximated by a parametric functional form---such as piecewise linear functions---with parameters $\theta$, ```math \nu(\mathbf{x}) \approx \nu_{\theta}(\mathbf{x}) ``` * The characteristic function is approximated by numerical integration ```math \phi({\xi})\approx \phi_{\theta}({\xi}) := \exp\left[ \Delta t \sum_{i=1}^{n_q} \left(e^{\mathrm{i} \langle{\xi}, \mathbf{x}_i \rangle}-1-\mathrm{i}\langle{\xi}, \mathbf{x}_i \rangle\mathbf{1}_{\|\mathbf{x}_i\|\leq 1} \right)\nu_{\theta}(\mathbf{x}_i) w_i \right] ``` where $\{(\mathbf{x}_i, w_i)\}_{i=1}^{n_q}$ are quadrature nodes and weights. * The empirical characteristic functions are computed given observations $\{\mathbf{X}_{i\Delta t}\}_{i=0}^n$ ```math \hat\phi_n({\xi}) := \frac{1}{n}\sum_{i=1}^n \exp(\mathrm{i}\langle {\xi}, \mathbf{X}_{i\Delta t}-\mathbf{X}_{(i-1)\Delta t}\rangle ),\ {\xi} \in \mathbb{R}^d ``` * Solve the following optimization problem with a gradient based method. Here $\{{\xi}_i \}_{i=1}^m$ are collocation points depending on the data. ```math \min_{\theta}\frac{1}{m} \sum_{i=1}^m \|\hat\phi_n({\xi}_i)-\phi_{\theta}({\xi}_i) \|^2 ``` We show the schematic description of the method and some results on calibrating a discontinuous Lévy density function $\nu$. ![image-20191031200808697](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/levy.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
4174
# Symmetric Positive Definite Neural Networks (SPD-NN) --- Kailai Xu (**co-first author**), Huang, Daniel Z. (**co-first author**), and Eric Darve. "Learning Constitutive Relations using Symmetric Positive Definite Neural Networks" [Project Website](https://github.com/kailaix/NNFEM.jl) --- Material modeling aims to construct constitutive models to describe the relationship between strain and stress, in which the relationship may be hysteresis. The constitutive relations can be derived from microscopic interactions between multiscale structures or between atoms. However, the first-principles simulations, which resolve all these interactions, remain prohibitively expensive. This motivates to learn a data-driven constitutive relation that expresses the mapping from strain tensors (possibly with historic information) to stress tensors. In a [previous application](https://kailaix.github.io/ADCME.jl/dev/apps_constitutive_law/), we showed how to learn a constitutive relation, which is a (nonlinear) map from strain tensors to stress tensors, from state variables in a static equation. However, many constitutive relations also depend on the historic information, such as (elasto-)plasticity and viscosity. The constitutive relation is much more complex since they have the form $${\sigma}(t) = \mathcal{M}({\epsilon}(t), \mathcal{I}(t))$$ where $t$ is the time, $\sigma$, $\epsilon$ are strain and stress tensors, $\mathcal{I}$ contains the historic information in $[0,t)$, and $\mathcal{M}$ is an unknown function. This is a high dimensional mapping and traditional methods, such as piecewise linear functions, suffer from the curse of dimensionality problem. This issue motivates us to use neural network as surrogate models. However, typically we cannot measure the stress directly and therefore a strain-stress pair training data set is not available. The idea is to plug the neural network based constitutive relation into physical laws, i.e., the kinematic and kinetic equations of motion, and obtain a hypothetical displacement $u$. $u$ is a quantity which we can measure. We can find the optimal weights and biases of the neural network by minimizing the discrepancy between $u$ and observed displacement. This procedure is done using automatic differentiation, where the gradients are back-propagated through both the numerical solver and the neural network. The challenge here is that **the numerical solver is unstable if we plug in a random neural network based constitutive relation**. Indeed, numerical solvers are developed based on certain physical assumptions, and a neural network from random choices may go wild and can be quite ill-behaved. The idea is to **add physical constraints** to the neural network. The solution we proposed is the symmetric positive definite neural network (SPD-NN): instead of modeling the constitutive relation directly, we model the tangent stiffness matrix. To be more specific, $$\Delta {\sigma} =\mathsf{L}_{\theta}\mathsf{L}_{\theta}^T \Delta {\epsilon}$$ where $\mathsf L_\theta$ is a Cholesky factor and therefore $\mathsf{L}_{\theta}\mathsf{L}_{\theta}^T$ is SPD. The formulation preserves both time consistency and weak convexity of the strain energy. In specific applications, the formulation is further customized. For example, $${\sigma}^{n+1} = \mathsf{M}_{\theta}({\epsilon}^{n+1}, {\epsilon}^{n}, {\sigma}^{n}) := \left\{\begin{matrix} & \mathsf{C}_{\theta}{\epsilon}^{n+1} & \text{Linear Elasticity}\\ &\mathsf{L}_{\theta}({\epsilon}^{n+1} )\mathsf{L}_{\theta}({\epsilon}^{n+1})^T({\epsilon}^{n+1} - {\epsilon}^{n}) + {\sigma}^{n} & \text{Nonlinear Elasticity}\\ & (1 - D(\sigma^{n}, \tilde{\sigma}_Y)) \sigma_{\mathrm{elasticity}}^{n+1} + D(\sigma^{n}, \tilde{\sigma}_Y) \sigma_{\mathrm{plasticity}}^{n+1} & \text{Elasto-Plasticity} \end{matrix}\right.$$ As a final remark, the challenge in learning plasticity behavior is that we have to capture the loading and unloading transitions. In this case, the tangent stiffness matrix exhibits a discontinuity. To alleviate the problem, we adjust the neural network by using a transition function $D$ in the elasto-plasticity case.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
12969
# Bayesian Neural Networks ## Uncertainty Quantification We want to quantify uncertainty. But what is uncertainty? In the literature, there are usually two types of uncertainty: **aleatoric**, the irreducible part of the uncertainty, and **epidemic**, the reducible part of the uncertainty. For example, when we flip a coin, the outcome of one experiment is intrinsically stochastic, and we cannot reduce the uncertainty by conducting more experiments. However, if we want to estimate the probability of heads, we can reduce the uncertainty of estimation by observing more experiments. In finance, the words for these two types of uncertainty is **systematic** and **non-systematic** uncertainty. The total uncertainty is composed of these two types of uncertainty. | Statistics | Finance | Reducibility | |------------|----------------|--------------| | aleatoric | systematic | irreducible | | epidemic | non-systematic | reducible | ## Bayesian Thinking One popular approach for uncertainty quantification is the Bayesian method. One distinct characteristic of the Bayesian method is that we have a prior. The prior can be subjective: it is up to the researcher to pick and justify one. Even for the so-called non-informative prior, it introduces some bias if the posterior is quite different from the prior. However, this should be the most exciting part of the Bayesian philosophy: as human beings, we do have prior knowledge on stochastic events. The prior knowledge can be domain specific knowledge, experience, or even opinions. As long as we can justify the prior well, it is fine. ## Bayesian Neural Network The so-called Bayesian neural network is the application of the Bayesian thinking on neural networks. Instead of treating the weights and biases as deterministic numbers, we consider them as probability distributions with certain priors. As we collect more and more data, we can calculate the posteriors. But why do we bother with the Bayesian approach? For example, if we just want to quantify the uncertainty in the prediction, suppose we have a point estimation $w$ for the neural network, we can perturb $w$ a little and run the forward inference. This process will give us many candidate values of the prediction, which serve as our uncertainty estimation. If we think about it, it is actually an extreme case in the Bayesian approach: we actually use the **prior** to do uncertainty quantification. The perturbation is our prior, and we have not taken into account of the observed data for constructing the distribution except for that we get our point estimation $w$. The Bayesian approach goes a bit further: instead of just using a prior, we use data to calibrate our distribution, and this leads to the **posterior**. The following figure shows training of a Bayesian network. The figure with the title "Prior" is obtained by using a prior distribution. From 1 to 3, the weight for the data (compared to the prior) is larger and larger. We can see the key idea of Bayesian methods is a trade-off game between how strongly we believe in our point estimation, and how eagerly we want to take the uncertainty exposed in the data into consideration. | Point Estimation | Prior | 1 | 2 | 3 | |------------------|------------|-------------|---|---| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/bnn1.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/naive_bnn.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/bnn3.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/bnn4.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/bnn2.png?raw=true) | ```julia using ADCME using PyPlot x0 = rand(100) x0 = @. x0*0.4 + 0.3 x1 = collect(LinRange(0, 1, 100)) y0 = sin.(2π*x0) w = Variable(fc_init([1, 20, 20, 20, 1])) y = squeeze(fc(x0, [20, 20, 20, 1], w)) loss = sum((y - y0)^2) sess = Session(); init(sess) BFGS!(sess, loss) y1 = run(sess, y) plot(x0, y0, ".", label="Data") x_dnn = run(sess, squeeze(fc(x1, [20, 20, 20, 1], w))) plot(x1, x_dnn, "--", label="DNN Estimation") legend() w1 = run(sess, w) ############################## μ = Variable(w1) ρ = Variable(zeros(length(μ))) σ = log(1+exp(ρ)) function likelihood(z) w = μ + σ * z y = squeeze(fc(x0, [20, 20, 20, 1], w)) sum((y - y0)^2) - sum((w-μ)^2/(2σ^2)) + sum((w-w1)^2) end function inference(x) z = tf.random_normal((length(σ),), dtype=tf.float64) w = μ + σ * z y = squeeze(fc(x, [20, 20, 20, 1], w))|>squeeze end W = tf.random_normal((10, length(w)), dtype=tf.float64) L = constant(0.0) for i = 1:10 global L += likelihood(W[i]) end y2 = inference(x1) opt = AdamOptimizer(0.01).minimize(L) init(sess) # run(sess, L) losses = [] for i = 1:2000 _, l = run(sess, [opt, L]) push!(losses, l) @info i, l end Y = zeros(100, 1000) for i = 1:1000 Y[:,i] = run(sess, y2) end for i = 1:1000 plot(x1, Y[:,i], "--", color="gray", alpha=0.5) end plot(x1, x_dnn, label="DNN Estimation") plot(x0, y1, ".", label="Data") legend() ############################## # Naive Uncertainty Quantification function inference_naive(x) z = tf.random_normal((length(w1),), dtype=tf.float64) w = w1 + log(2)*z y = squeeze(fc(x, [20, 20, 20, 1], w))|>squeeze end y3 = inference(x1) Y = zeros(100, 1000) for i = 1:1000 Y[:,i] = run(sess, y3) end for i = 1:1000 plot(x1, Y[:,i], "--", color="gray", alpha=0.5) end plot(x1, x_dnn, label="DNN Estimation") plot(x0, y1, ".", label="Data") legend() ``` ## Training the Neural Network One caveat here is that deep neural networks may be hard to train, and we may get stuck at a local minimum. But even in this case, we can get an uncertainty quantification. But is it valid? No. The Bayesian approach assumes that your prior is reasonable. If we get stuck at a bad local minimum $w$, and use a prior $\mathcal{N}(w, \sigma I)$, then the results are not reliable at all. Therefore, to obtain a reasonable uncertainty quantification estimation, we need to make sure that our point estimation is valid. ## Mathematical Formulation Now let us do the math. Bayesian neural networks are different from plain neural networks in that weights and biases in Bayesian neural networks are interpreted in a probabilistic manner. Instead of finding a point estimation of weights and biases, in Bayesian neural networks, a prior distribution is assigned to the weights and biases, and a posterior distribution is obtained from the data. It relies on the Bayes formula $$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$ Here $\mathcal{D}$ is the data, e.g., the input-output pairs of the neural network $\{(x_i, y_i)\}$, $w$ is the weights and biases of the neural network, and $p(w)$ is the prior distribution. If we have a full posterior distribution $p(w|\mathcal{D})$, we can conduct predictive modeling using $$p(y|x, \mathcal{D}) = \int p(y|x, w) p(w|\mathcal{D})d w$$ However, computing $p(w|\mathcal{D})$ is usually intractable since we need to compute the normalized factor $p(\mathcal{D}) = \int p(\mathcal{D}|w)p(w) dw$, which requires us to integrate over all possible $w$. Traditionally, Markov chain Monte Carlo (MCMC) has been used to sample from $p(w|\mathcal{D})$ without evaluating $p(\mathcal{D})$. However, MCMC can converge very slowly and requires a voluminous number of sampling, which can be quite expensive. ## Variational Inference In Bayesian neural networks, the idea is to approximate $p(w|\mathcal{D})$ using a parametrized family $p(w|\theta)$, where $\theta$ is the parameters. This method is called **variational inference**. We minimize the KL divergeence between the true posterior and the approximate posterial to find the optimal $\theta$ $$\text{KL}(p(w|\theta)||p(w|\mathcal{D})) = \text{KL}(p(w|\theta)||p(W)) - \mathbb{E}_{p(w|\theta)}\log p(\mathcal{D}|w) + \log p(\mathcal{D})$$ Evaluating $p(\mathcal{D})\geq 0$ is intractable, so we seek to minimize a lower bound of the KL divergence, which is known as **variational free energy** $$F(\mathcal{D}, \theta) = \text{KL}(p(w|\theta)||p(w)) - \mathbb{E}_{p(w|\theta)}\log p(\mathcal{D}|w)$$ In practice, thee variational free energy is approximated by the discrete samples $$F(\mathcal{D}, \theta) \approx \frac{1}{N}\sum_{i=1}^N \left[\log p(w_i|\theta)) - \log p(w_i) - \log p(\mathcal{D}|w_i)\right]$$ ## Parametric Family In Baysian neural networks, the parametric family is usually chosen to be the Gaussian distribution. For the sake of automatic differentiation, we usually parametrize $w$ using $$w = \mu + \sigma \otimes z\qquad z \sim \mathcal{N}(0, I) \tag{1}$$ Here $\theta = (\mu, \sigma)$. The prior distributions for $\mu$ and $\sigma$ are given as hyperparameters. For example, we can use a mixture of Gaussians as prior $$\pi_1 \mathcal{N}(0, \sigma_1) + \pi_2 \mathcal{N}(0, \sigma_2)$$ The advantage of Equation 1 is that we can easily obtain the log probability $\log p(w|\theta)$. Because $\sigma$ should always be positive, we can instead parametrize another parameter $\rho$ and transform $\rho$ to $\sigma$ using a softplus function $$\sigma = \log (1+\exp(\rho))$$ ## Example Now let us consider a concrete example. The following example is adapted from [this post](http://krasserm.github.io/2019/03/14/bayesian-neural-networks/). ### Generating Training Data We first generate some 1D training data ```julia using ADCME using PyPlot using ProgressMeter using Statistics function f(x, σ) ε = randn(size(x)...) * σ return 10 * sin.(2π*x) + ε end batch_size = 32 noise = 1.0 X = reshape(LinRange(-0.5, 0.5, batch_size)|>Array, :, 1) y = f(X, noise) y_true = f(X, 0.0) close("all") scatter(X, y, marker="+", label="Training Data") plot(X, y_true, label="Truth") legend() ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/bnn_training_data.png?raw=true) ### Construct Bayesian Neural Network ```julia mutable struct VariationalLayer units activation prior_σ1 prior_σ2 prior_π1 prior_π2 Wμ bμ Wρ bρ init_σ end function VariationalLayer(units; activation=relu, prior_σ1=1.5, prior_σ2=0.1, prior_π1=0.5) init_σ = sqrt( prior_π1 * prior_σ1^2 + (1-prior_π1)*prior_σ2^2 ) VariationalLayer(units, activation, prior_σ1, prior_σ2, prior_π1, 1-prior_π1, missing, missing, missing, missing, init_σ) end function kl_loss(vl, w, μ, σ) dist = ADCME.Normal(μ,σ) return sum(logpdf(dist, w)-logprior(vl, w)) end function logprior(vl, w) dist1 = ADCME.Normal(constant(0.0), vl.prior_σ1) dist2 = ADCME.Normal(constant(0.0), vl.prior_σ2) log(vl.prior_π1*exp(logpdf(dist1, w)) + vl.prior_π2*exp(logpdf(dist2, w))) end function (vl::VariationalLayer)(x) x = constant(x) if ismissing(vl.bμ) vl.Wμ = get_variable(vl.init_σ*randn(size(x,2), vl.units)) vl.Wρ = get_variable(zeros(size(x,2), vl.units)) vl.bμ = get_variable(vl.init_σ*randn(1, vl.units)) vl.bρ = get_variable(zeros(1, vl.units)) end Wσ = softplus(vl.Wρ) W = vl.Wμ + Wσ.*normal(size(vl.Wμ)...) bσ = softplus(vl.bρ) b = vl.bμ + bσ.*normal(size(vl.bμ)...) loss = kl_loss(vl, W, vl.Wμ, Wσ) + kl_loss(vl, b, vl.bμ, bσ) out = vl.activation(x * W + b) return out, loss end function neg_log_likelihood(y_obs, y_pred, σ) y_obs = constant(y_obs) dist = ADCME.Normal(y_pred, σ) sum(-logpdf(dist, y_obs)) end ipt = placeholder(X) x, loss1 = VariationalLayer(20, activation=relu)(ipt) x, loss2 = VariationalLayer(20, activation=relu)(x) x, loss3 = VariationalLayer(1, activation=x->x)(x) loss_lf = neg_log_likelihood(y, x, noise) loss = loss1 + loss2 + loss3 + loss_lf ``` ### Optimization We use an ADAM optimizer to optimize the loss function. In this case, quasi-Newton methods that are typically used for deterministic function optimization are not appropriate because the loss function essentially involves stochasticity. Another caveat is that because the neural network may have many local minimum, we need to run the optimizer multiple times in order to obtain a good local minimum. ```julia opt = AdamOptimizer(0.08).minimize(loss) sess = Session(); init(sess) @showprogress for i = 1:5000 run(sess, opt) end X_test = reshape(LinRange(-1.5,1.5,32)|>Array, :, 1) y_pred_list = [] @showprogress for i = 1:10000 y_pred = run(sess, x, ipt=>X_test) push!(y_pred_list, y_pred) end y_preds = hcat(y_pred_list...) y_mean = mean(y_preds, dims=2)[:] y_std = std(y_preds, dims=2)[:] close("all") plot(X_test, y_mean) scatter(X[:], y[:], marker="+") fill_between(X_test[:], y_mean-2y_std, y_mean+2y_std, alpha=0.5) ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/bnn_prediction.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
4757
# Convolutional Neural Network The convolutional neural network (CNN) is one of the key building blocks for deep learning. Mathematically, it is a linear operator whose actions are "local", in the sense that each output only depends on a small number of inputs. These actions share the same kernel functions, and the sharing reduces the number of parameters significantly. One remarkable feature of CNNs is that they are massively parallelizable. The parallesim makes CNNs very efficient on GPUs, which are good at doing a large number of simple tasks at the same time. In the practical use of CNNs, we can stick to images, which have four dimensions: batch number, height, width, and channel. A CNN transforms the images to another images with the same four dimensions, but possibly with different heights, widths, and channels. In the following script, we use CNNs instead of fully connected neural networks to train a variational autoencoder. Readers can compare the results with [this article](./vae.md). You are also encouraged to run the same script on CPUs and GPUs. You might get surprised at the huge performance gap for training CNNs on these two different computing environment. We also observe some CNN artifacts (the dots in the images). ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/cnn.png?raw=true) ```julia using ADCME using PyPlot using MLDatasets using ProgressMeter using Images mutable struct Generator dim_z::Int64 layers::Array end function Generator( dim_z::Int64 = 100, ngf::Int64 = 8) layers = [ Conv2DTranspose(ngf*32, 4, 1, use_bias=false) BatchNormalization() relu Conv2DTranspose(ngf*16, 4, 1, padding="same", use_bias=false) BatchNormalization() relu Conv2DTranspose(ngf*8, 4, 1, use_bias=false) x -> pad(x, [ 0 0 0 1 0 1 0 0 ]) BatchNormalization() relu Conv2DTranspose(1, 4, 4, use_bias = false) BatchNormalization() sigmoid ] Generator(dim_z, layers) end function (g::Generator)(z) z = constant(z) z = reshape(z, (-1, 1, 1, g.dim_z)) @info size(z) for l in g.layers z = l(z) @info size(z) end return z end function encoder(x, n_hidden, n_output, rate) local μ, σ variable_scope("encoder") do y = dense(x, n_hidden, activation = "elu") y = dropout(y, rate, ADCME.options.training.training) y = dense(y, n_hidden, activation = "tanh") y = dropout(y, rate, ADCME.options.training.training) y = dense(y, 2n_output) μ = y[:, 1:n_output] σ = 1e-6 + softplus(y[:,n_output+1:end]) end return μ, σ end function decoder(z, n_hidden, n_output, rate) Generator(dim_z)(z) end function autoencoder(xh, x, dim_img, dim_z, n_hidden, rate) μ, σ = encoder(xh, n_hidden, dim_z, rate) z = μ + σ .* tf.random_normal(size(μ), 0, 1, dtype=tf.float64) y = decoder(z, n_hidden, dim_img, rate) y = clip(y, 1e-8, 1-1e-8) y = tf.reshape(y, (-1,32^2)) marginal_likelihood = sum(x .* log(y) + (1-x).*log(1-y), dims=2) KL_divergence = 0.5 * sum(μ^2 + σ^2 - log(1e-8 + σ^2) - 1, dims=2) marginal_likelihood = mean(marginal_likelihood) KL_divergence = mean(KL_divergence) ELBO = marginal_likelihood - KL_divergence loss = -ELBO return y, loss, -marginal_likelihood, KL_divergence end function step(epoch) tx = train_x[1:batch_size,:] @showprogress for i = 1:div(60000, batch_size) idx = Array((i-1)*batch_size+1:i*batch_size) run(sess, opt, x=>train_x[idx,:]) end y_, loss_, ml_, kl_ = run(sess, [y, loss, ml, KL_divergence], feed_dict = Dict( ADCME.options.training.training=>false, x => tx )) println("epoch $epoch: L_tot = $(loss_), L_likelihood = $(ml_), L_KL = $(kl_)") close("all") for i = 1:3 for j = 1:3 k = (i-1)*3 + j img = reshape(y_[k,:], 32, 32)'|>Array img = imresize(img, 28, 28) subplot(3,3,k) imshow(img) end end savefig("result$epoch.png") end n_hidden = 500 rate = 0.1 dim_z = 100 dim_img = 32^2 batch_size = 32 ADCME.options.training.training = placeholder(true) x = placeholder(Float64, shape = [32, 32^2]) xh = x y, loss, ml, KL_divergence = autoencoder(xh, x, dim_img, dim_z, n_hidden, rate) opt = AdamOptimizer(1e-3).minimize(loss) train_x_ = MNIST.traintensor(Float64); train_x = zeros(60000, 32^2) for i = 1:60000 train_x[i,:] = imresize(train_x_[:, :, i], 32, 32)[:] end sess = Session(); init(sess) for i = 1:100 @info i step(i) end ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
9546
# Custom Optimizer In this article, we describe how to make your custom optimizer ```@docs CustomOptimizer ``` We will show here a few examples of custom optimizer. These examples can be cast to your specific applications. ## Ipopt Custom Optimizer For a concrete example, let us consider using [Ipopt](https://github.com/JuliaOpt/Ipopt.jl) as a constrained optimization optimizer. ```julia using Ipopt using ADCME IPOPT = CustomOptimizer() do f, df, c, dc, x0, x_L, x_U n_variables = length(x0) nz = length(dc(x0)) m = div(nz, n_variables) # Number of constraints g_L, g_U = [-Inf;-Inf], [0.0;0.0] function eval_jac_g(x, mode, rows, cols, values) if mode == :Structure rows[1] = 1; cols[1] = 1 rows[2] = 1; cols[2] = 1 rows[3] = 2; cols[3] = 1 rows[4] = 2; cols[4] = 1 else values[:]=dc(x) end end nele_jac = 0 # Number of non-zeros in Jacobian prob = Ipopt.createProblem(n_variables, x_L, x_U, m, g_L, g_U, nz, nele_jac, f, (x,g)->(g[:]=c(x)), (x,g)->(g[:]=df(x)), eval_jac_g, nothing) addOption(prob, "hessian_approximation", "limited-memory") addOption(prob, "max_iter", 100) addOption(prob, "print_level", 2) # 0 -- 15, the larger the number, the more detailed the information prob.x = x0 status = Ipopt.solveProblem(prob) println(Ipopt.ApplicationReturnStatus[status]) println(prob.x) prob.x end reset_default_graph() # be sure to reset graph before any optimization x = Variable([1.0;1.0]) x1 = x[1]; x2 = x[2]; loss = x2 g = x1 h = x1*x1 + x2*x2 - 1 opt = IPOPT(loss, inequalities=[g], equalities=[h], var_to_bounds=Dict(x=>(-1.0,1.0))) sess = Session(); init(sess) minimize(opt, sess) ``` Here is a detailed description of the code * `Ipopt.createProblem` has signature ```julia function createProblem( n::Int, # Number of variables x_L::Vector{Float64}, # Variable lower bounds x_U::Vector{Float64}, # Variable upper bounds m::Int, # Number of constraints g_L::Vector{Float64}, # Constraint lower bounds g_U::Vector{Float64}, # Constraint upper bounds nele_jac::Int, # Number of non-zeros in Jacobian nele_hess::Int, # Number of non-zeros in Hessian eval_f, # Callback: objective function eval_g, # Callback: constraint evaluation eval_grad_f, # Callback: objective function gradient eval_jac_g, # Callback: Jacobian evaluation eval_h = nothing) # Callback: Hessian evaluation ``` * Typically $\nabla c(x)$ is a $m\times n$ sparse matrix, where $m$ is the number of constraints, $n$ is the number of variables. `nz = length(dc(x0))` computes the number of nonzeros in the Jacobian matrix. * `g_L`, `g_U` specify the constraint lower and upper bounds: $g_L \leq c(x) \leq g_U$. If $g_L=g_U=0$, the constraint is reduced to equality constraint. Each of the parameters should have the same length as the number of variables, i.e., $n$ * `eval_jac_g` has two modes. In the `Structure` mode, as we mentioned, the constraint $\nabla c(x)$ is a sparse matrix, and therefore we should specify the nonzero pattern of the sparse matrix in `row` and `col`. However, in our application, we usually assume a dense Jacobian matrix, and therefore, we can always use the following code for `Structure` ```julia k = 1 for i = 1:div(nz, n_variables) for j = 1:n_variables rows[k] = i cols[k] = j k += 1 end end ``` For the other mode, `eval_jac_g` simply assign values to the array. * We can add optimions to the Ipopt optimizer via `addOptions`. See [here](https://coin-or.github.io/Ipopt/OPTIONS.html) for a full list of available options. * To add callbacks, you can simply refactor your functions `f`, `df`, `c`, or `dc`. ## NLopt Custom Optimizer Here is an example of using [NLopt](https://github.com/JuliaOpt/NLopt.jl) for optimization. ```julia using ADCME using NLopt p = ones(10) Con = CustomOptimizer() do f, df, c, dc, x0, x_L, x_U opt = Opt(:LD_MMA, length(x0)) opt.upper_bounds = 10ones(length(x0)) opt.lower_bounds = zeros(length(x0)) opt.lower_bounds[end-1:end] = [-Inf, 0.0] opt.xtol_rel = 1e-4 opt.min_objective = (x,g)->(g[:]= df(x); return f(x)[1]) inequality_constraint!(opt, (x,g)->( g[:]= dc(x);c(x)[1]), 1e-8) (minf,minx,ret) = NLopt.optimize(opt, x0) minx end reset_default_graph() # be sure to reset the graph before any operation x = Variable([1.234; 5.678]) y = Variable([1.0;2.0]) loss = x[2]^2 + sum(y^2) c1 = (x[1]-1)^2 - x[2] opt = Con(loss, inequalities=[c1]) sess = Session(); init(sess) opt.minimize(sess) xmin = run(sess, x) # expected: (1., 0.) ``` Here is the detailed explanation * NLopt solver takes the following parameters ``` algorithm stopval # stop minimizing when an objective value ≤ stopval is found ftol_rel ftol_abs xtol_rel xtol_abs constrtol_abs maxeval maxtime initial_step # a vector, initial step size population seed vector_storage # number of "remembered gradients" in algorithms such as "quasi-Newton" lower_bounds upper_bounds ``` For a full list of optimization algorithms, see [NLopt algorithms](https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/). * You can provide upper and lower bounds either via `var_to_bounds` or inside `CustomOptimizer`. ## Drop-in Substitutes of `BFGS!` ### IPOPT The following codes are for unconstrained optimizattion of `BFGS!` optimizer. Copy and execute the following code to have access to `IPOPT!` function. ```julia using PyCall using Ipopt using ADCME function IPOPT!(sess::PyObject, loss::PyObject, max_iter::Int64=15000; verbose::Int64=0, vars::Array{PyObject}=PyObject[], callback::Union{Function, Nothing}=nothing, kwargs...) losses = Float64[] loss_ = 0 cnt_ = -1 iter_ = 0 IPOPT = CustomOptimizer() do f, df, c, dc, x0, x_L, x_U n_variables = length(x0) nz = length(dc(x0)) m = div(nz, n_variables) # Number of constraints # g_L, g_U = [-Inf;-Inf], [0.0;0.0] g_L = Float64[] g_U = Float64[] function eval_jac_g(x, mode, rows, cols, values); end function eval_f(x) loss_ = f(x) iter_ += 1 if iter_==1 push!(losses, loss_) if !isnothing(callback) callback(run(sess, vars), cnt_, loss_) end end println("iter $iter_, current loss= $loss_") return loss_ end function eval_g(x, g) if cnt_>=1 push!(losses, loss_) if !isnothing(callback) callback(run(sess, vars), cnt_, loss_) end end cnt_ += 1 if cnt_>=1 println("================ ITER $cnt_ ===============") end g[:]=df(x) end nele_jac = 0 # Number of non-zeros in Jacobian prob = Ipopt.createProblem(n_variables, x_L, x_U, m, g_L, g_U, nz, nele_jac, eval_f, (x,g)->(), eval_g, eval_jac_g, nothing) addOption(prob, "hessian_approximation", "limited-memory") addOption(prob, "max_iter", max_iter) addOption(prob, "print_level", verbose) # 0 -- 15, the larger the number, the more detailed the information prob.x = x0 status = Ipopt.solveProblem(prob) if status == 0 printstyled(Ipopt.ApplicationReturnStatus[status],"\n", color=:green) else printstyled(Ipopt.ApplicationReturnStatus[status],"\n", color=:red) end prob.x end opt = IPOPT(loss; kwargs...) minimize(opt, sess) return losses end ``` The usage is exactly the same as [`BFGS!`](@ref). Therefore, you can simply replace `BFGS!` to `Ipopt`. For example ```julia x = Variable(rand(10)) loss = sum((x-0.6)^2 + (x^2-2x+0.8)^4) cb = (vs, i, l)->println("$i, $l") sess = Session(); init(sess) IPOPT!(sess, loss, vars=[x], callback = cb) ``` ### NLOPT Likewise, `NLOPT!` also has the dropin substitute of `BFGS!` ```julia using ADCME using NLopt using PyCall function NLOPT!(sess::PyObject, loss::PyObject, max_iter::Int64=15000; algorithm::Union{Symbol, Enum} = :LD_LBFGS, vars::Array{PyObject}=PyObject[], callback::Union{Function, Nothing}=nothing, kwargs...) losses = Float64[] iter_ = 0 NLOPT = CustomOptimizer() do f, df, c, dc, x0, x_L, x_U opt = Opt(algorithm, length(x0)) opt.upper_bounds = x_U opt.lower_bounds = x_L opt.maxeval = max_iter opt.min_objective = (x,g)->begin g[:]= df(x); iter_ += 1 l = f(x)[1] println("================ ITER $iter_ ===============") println("current loss= $l") push!(losses, l) if !isnothing(callback) callback(run(sess, vars), iter_, l) end return f(x)[1] end (minf,minx,ret) = NLopt.optimize(opt, x0) minx end opt = NLOPT(loss; kwargs...) minimize(opt, sess) return losses end ``` For example ```julia x = Variable(rand(10)) loss = sum((x-0.6)^2 + (x^2-2x+0.8)^4) cb = (vs, i, l)->println("$i, $l") sess = Session(); init(sess) NLOPT!(sess, loss, vars=[x], callback = cb, algorithm = :LD_TNEWTON) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
491
# Custom Optimizers ADCME provides a function [`UnconstrainedOptimizer`](@ref) that allows users to craft their own optimizers for unconstrained optimization problems. ```julia using Optim x = Variable(rand(2)) loss = (1-x[1])^2 + 100(x[2]-x[1]^2)^2 sess = Session(); init(sess) uo = UnconstrainedOptimizer(sess, loss) function f(x) return getLoss(uo, x) end function g!(G, x) _, g = getLossAndGrad(uo, x) G[:] = g end x0 = getInit(uo) optimize(f, g!, x0, LBFGS()) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
8209
# Design Pattern Design patterns aim at providing reusable solutions for solving the challenges in the process of software development. The ultimate goal of design patterns is to avoid reinventing the wheels and making software flexible and resilient to change. Design patterns are neither concrete algorithms, nor programming templates, but ways of thinking. They are not always necessary if you can come up with very simple designs, which are actually more preferable in practice. Rather, they are "rules of thumb" that facilitates you when you have a hard time how to design the structure of your codes. We strive to make ADCME easily maintainable and extendable by using well-established design patterns for some design decisions. In this section, we describe some design patterns that are useful for programming ADCME. ## Strategy Pattern The strategy pattern defines a family of algorithms, encapsulates each one, and makes them interchangeable. The strategy pattern makes programmers wrap algorithms that are subject to frequent changes (e.g., extending) as **interfaces** instead of concrete implementations. For example, in ADCME, [`FlowOp`](@ref) is implemented using the strategy pattern. When you want to create a flow-based model, the structure [`NormalizingFlow`](@ref) has a method that performs a sequence of forward operations. The forward operations might have different combinations, which results in a large number of different normalizing flows. If we define a different normalizing flow structure for a different combination, there will be exponentially many such structures. Instead of defining a separate `forward` method for each different normalizing flow, we define an interface [`FlowOp`](@ref), which has a `forward` method. The interface is **implemented** with many concrete structures, which are called **algorithms** in the strategy pattern. These concrete `FlowOp`s, such as `SlowMAF` and `MAF`, have their specific `forward` implementations. Therefore, the system become easily extendable. When we have a new algorithm, we only need to add a new `FlowOp` instead of modifying `NormalizingFlow`. ## Adaptor Pattern The adapter pattern converts the interface of a structure into another interface users expect. It is very useful to unify the APIs and reuses the existing functions, and thus reliefs users from memorizing many new functions. The typical structure of an adaptor has the form ```julia struct Adaptor <: AbstractNewComponent o::LegacyComponent function new_do_this(adaptor, x) old_do_this(adaptor.o, x) end ... end ``` Here users work with `AbstractNewComponent`, whose concrete types implement a function `new_do_this`. However, we have a structure of type `LegacyComponent`, which has a function `old_do_this`. An adaptor pattern is used to match an old function call `old_do_this` to `new_do_this` in the new system. An example of adaptor pattern is [`SparseTensor`](@ref), which wraps a `PyObject`. The operations on the `SparseTensor` is propagated to the `PyObject`, and therefore users can think in terms of the new `SparseTensor` data type. ## Observer Pattern The observer pattern define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically. The basic pattern is **Subject** ```julia struct Subject o # Observer state function update(s) # some operations on `s.state` end function notify(s) # some operations on `s.o` end end ``` **Observer** ```julia struct Observer subjects::Array{Subject} function update(o) for s in o.subjects update(s) end end end ``` For example, the `commitHistory` function in [NNFEM.jl](https://github.com/kailaix/NNFEM.jl) uses the observer pattern to update states from `Domain`, to `Element`, and finally to `Material`. ## Decorator Pattern The decorator pattern attaches additional responsibilities to an object dynamically. Decorator patterns are very similar to adaptor patterns. The difference is that the input and output types of the decorator pattern are the same. For example, if the input is a `SparseTensor`, the output should also be a `SparseTensor`. The adaptor pattern converts `PyObject` to `SparseTensor`. Another difference is that the decorator pattern usually does not change the methods and fields of the structure. For example, ```julia struct Juice cost::Float64 end function add_one_dollar(j::Juice) Juice(j.cost+1) end ``` Then `add_one_dollar(j)` is still a `Juice` structure but the cost is increased by 1. You can also compose multiple `add_one_dollar`: ```julia add_one_dollar(add_one_dollar(j)) ``` In Julia, this can be done elegantly using macros. We do not discuss macros in this section but leave it to another section on macros. ## Iterator Pattern Iterator patterns provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation. Julia has built-in iterator support. The `in` keyword loops through iterations and `collect` collects all the entries in the iterator. In Julia, to understand iteration, remember that the following code ```julia for i in x # stuff end ``` is a shorthand for writing ```julia it = iterate(x) while it !== nothing i, state = it # stuff it = iterate(x, state) end ``` Therefore, we only need to implement `iterate` ```julia iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}} ``` ## Factory Pattern The factory pattern defines an interface for creating an object, but lets subclasses decide which class to instantiate. Simply put, we define a function that returns a specific structure ```julia function factory(s::String) if s=="StructA" return StructA() elseif s=="StructB" return StructB() elseif s=="StructC" return StructC() else error(ArgumentError("$s is not understood")) end end ``` For example, `FiniteStrainContinuum` in `NNFEM.jl` has a constructor ```julia function FiniteStrainContinuum(coords::Array{Float64}, elnodes::Array{Int64}, props::Dict{String, Any}, ngp::Int64=2) eledim = 2 dhdx, weights, hs = get2DElemShapeData( coords, ngp ) nGauss = length(weights) name = props["name"] if name=="PlaneStrain" mat = [PlaneStrain(props) for i = 1:nGauss] elseif name=="Scalar1D" mat = [Scalar1D(props) for i = 1:nGauss] elseif name=="PlaneStress" mat = [PlaneStress(props) for i = 1:nGauss] elseif name=="PlaneStressPlasticity" mat = [PlaneStressPlasticity(props) for i = 1:nGauss] elseif name=="PlaneStrainViscoelasticityProny" mat = [PlaneStrainViscoelasticityProny(props) for i = 1:nGauss] elseif name=="PlaneStressViscoelasticityProny" mat = [PlaneStressViscoelasticityProny(props) for i = 1:nGauss] elseif name=="PlaneStressIncompressibleRivlinSaunders" mat = [PlaneStressIncompressibleRivlinSaunders(props) for i = 1:nGauss] elseif name=="NeuralNetwork2D" mat = [NeuralNetwork2D(props) for i = 1:nGauss] else error("Not implemented yet: $name") end strain = Array{Array{Float64}}(undef, length(weights)) FiniteStrainContinuum(eledim, mat, elnodes, props, coords, dhdx, weights, hs, strain) end ``` Every time we add a new material, we need to modify this structure. This is not very desirable. Instead, we can have a function ```julia function get_element(s) if name=="PlaneStrain" PlaneStrain elseif name=="Scalar1D" Scalar1D ... end ``` This can also be achieved via Julia macros, thanks to the powerful meta-programming feature in ADCME. ## Summary We have introduced some important design patterns that facilitate design maintainable and extendable software. Design patterns should not be viewed as rules to abide by, but they are useful principles in face of design difficulties. As mentioned, Julia provides powerful meta-programming features. These features can be used in the design patterns to simplify implementations. Meta-programming will be discussed in a future section.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2000
# Install ADCME Docker Image For users who do not want to deal with installing and debugging dependencies, we also provide a [Docker](https://docs.docker.com/get-docker/) image for ADCME. Docker creates a virtual environment that isolates ADCME and its dependencies from the rest of the system. To install ADCME through docker, the user system must 1. have Docker installed; 2. have sufficient space (at least 5G). After docker has been installed, ADCME can be installed and launched via the following line (users do not have to install Julia separately because the Docker container is shipped with a compatible Julia binary) ```julia docker run -ti kailaix/adcme ``` This will fire a Julia prompt, which already includes precompiled ADCME. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/docker.png?raw=true) For users who want to open a terminal, run ```julia docker run -ti kailaix/adcme bash ``` This will launch a terminal where users can type `julia` to open a Julia prompt. ## Tips * To detach from the docker environment without suspending the process, press `Ctrl-p Ctrl-q`. To re-attach the process, first find the corresponding container ID ```bash docker ps -a ``` Then ```bash docker container attach <container_id> ``` Or start a new bash from the same container ``` docker exec -ti <container_id> bash ``` * To share a folder with the host file system (e.g., share persistent data), use `-v` to attach a volume: ```bash docker run -ti -v "/path/to/host/folder:/path/to/docker/folder" kailaix/adcme bash ``` * Create a new docker image containing all changes: ```bash docker commit <container_id> <tag> ``` * Build and upload (change `kailaix/adcme` to your own repository) ```bash docker build -t kailaix/adcme . docker run -ti kailaix/adcme docker push kailaix/adcme ``` The current directory should have a Dockerfile: ``` FROM adcme:<tag> CMD ["/julia-1.6.1/bin/julia"] ``` * Clean up docker containers ```bash docker system prune ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
12360
# Exercise: Inverse Modeling with ADCME The starter code can be downloaded [here](https://github.com/kailaix/ADCME.jl/releases/download/ex_v1.0/Exercise.zip). ## Background The **thermal diffusivity** is the measure of the ease with which heat can diffuse through a material. Let $u$ be the temperature, and $\kappa$ be the thermal diffusivity. The heat transfer process is described by the Fourier law $$\frac{\partial u(\mathbf{x}, t)}{\partial t} = \kappa\Delta u(\mathbf{x}, t) + f(\mathbf{x}, t), \quad t\in (0,T), x\in \Omega \tag{1}$$ Here $f$ is the heat source and $\Omega$ is the domain. To make use of the heat equation, we need additional information. - **Initial Condition**: the initial temperature distribution is given by $u(\mathbf{x}, 0) = u_0(\mathbf{x})$. - **Boundary Conditions**: the temperature of the material is affected by what happens on the boundary. There are several possible boundary conditions. In this exercise we consider two of them: (1) Temperature fixed at a boundary, $$u(\mathbf{x}, t) = 0, \quad \mathbf{x}\in \Gamma_D \tag{2}$$ (2) Insulated boundary. The heat flow can be prescribed (known as the _no flow_ boundary condition) $$-\kappa\frac{\partial u(\mathbf{x},t)}{\partial n} = 0, \quad \mathbf{x}\in \Gamma_N \tag{3}$$ Here $n$ is the outward normal vector. The boundaries $\Gamma_D$ and $\Gamma_N$ satisfy $\partial \Omega = \Gamma_D \cup \Gamma_N, \Gamma_D\cap \Gamma_N = \emptyset$. Assume that we want to experiment with a piece of new material. The thermal diffusivity coefficient of the material is an unknown function of the space. Our goal of the experiment is to find out the thermal diffusivity coefficient. To this end, we place some sensors in the domain or on the boundary. The measurements are sparse in the sense that only the temperature from those sensors---but nowhere else---are collected. Namely, let the sensors be located at $\{\mathbf{x}_i\}_{i=1}^M$, then we can observe $\{\hat u(\mathbf{x}_i, t)\}_{i=1}^M$, i.e., the measurements of $\{ u(\mathbf{x}_i, t) \}_{i=1}^M$. We also assume that the boundary conditions, initial conditions and the source terms are known. ![](./assets/ex_figure.png) ## Problem 1: Parameter Inverse Problem in 1D We first consider the 1D case. In this problem, the material is a rod $\Omega=[0,1]$. We consider a homogeneous (zero) fixed boundary condition on the right side, and an insulated boundary on the left side. The initial temperature is zero everywhere, i.e., $u(x, 0)=0$, $x\in [0,1]$. The source term is $f(x, t) = \exp(-10(x-0.5)^2)$, and $\kappa(x)$ is a function of space $$\kappa(x) = a + bx$$ Our task is to estimate the coefficient $a$ and $b$ in $\kappa(x)$. To this end, we place a sensor at $x=0,$ and the sensor records the temperature as a time series $u_0(t)$, $t\in (0,1)$. Recall that in lecture slide [35](https://ericdarve.github.io/cme216-spring-2020/Slides/AD/AD.pdf#page=39)/47 of AD.pdf, we formulate the inverse modeling problem as a PDE-constrained optimization problem $$\begin{aligned} \min_{a, b}\ & \int_{0}^t ( u(0, t)- u_0(t))^2 dt\\ \mathrm{s.t.}\ & \frac{\partial u(x, t)}{\partial t} = \kappa(x)\Delta u(x, t) + f(x, t), \quad t\in (0,T), x\in (0,1) \\ & -\kappa(0)\frac{\partial u(0,t)}{\partial x} = 0, t>0\\ & u(1, t) = 0, t>0\\ & u(x, 0) = 0, x\in [0,1]\\ & \kappa(x) = a x + b \end{aligned}$$ We consider the discretization of the above forward problem. We divide the domain $[0,1]$ into $n$ equispaced intervals. We consider the time horizon $T = 1$, and divide the time horizon $[0,T]$ into $m$ equispaced intervals. We use a finite difference scheme to solve the 1D heat equation Equations (1)--(3). Specifically, we use an implicit scheme for stability: $$\frac{u^{k+1}_i-u^k_i}{\Delta t} = \kappa_i \frac{u^{k+1}_{i+1}+u^{k+1}_{i-1}-2u^{k+1}_i}{\Delta x^2} + f_i^{k+1},$$ $$k=1,2,\ldots,m, i=1,2,\ldots, n \tag{4}$$ where $\Delta t$ is the time interval, $\Delta x$ is the space interval, $u_i^k$ is the numerical approximation to $u((i-1)\Delta x, (k-1)\Delta t)$, $\kappa_i$ is the numerical approximation to $\kappa((i-1)\Delta x) = a + b(i-1)\Delta x$, and $f_i^{k} = f((i-1)\Delta x, (k-1)\Delta t)$. For the insulated boundary, we introduce the ghost node $u_0^k$ at location $x=-\Delta x$, and the insulated boundary condition can be numerically discretized by $$-\kappa_1 \frac{u_2^{k}-u_0^k}{2\Delta x} = 0\tag{5}$$ Let $$U^k = \begin{bmatrix}u_1^k\\ u_2^k\\ \vdots\\ \\u_n^k\end{bmatrix}$$ The index starts from 1 and ends with $n$. Using the finite difference scheme, together with eliminating the boundary values $u_0^k$, $u_{n+1}^k$, we have the following formula $$AU^{k+1} = U^k + F^{k+1}$$ 1. Express the matrix $A\in \mathbb{R}^{n\times n}$ in terms of $\Delta t$, $\Delta x$ and $\{\kappa_i\}_{i=1}^{n}$. What is $F^{k+1}\in \mathbb{R}^n$ ? Hint: Can you eliminate $u_0^k$ and $u_{n+1}^k$ in Eq. (4) using Eq. (5) and $u_{n+1}^k=0$ ? The starter code `Case1D/starter1.jl` precomputes the force vector $F^k$ and packs it into a matrix $F\in \mathbb{R}^{(m+1)\times n}$. 1. Use `spdiag`[^spdiag] to construct `A` as a `SparseTensor` (see the starter code for details). `spdiag` is an ADCME function. See the documentation[^spdiag] for the syntax. Here $\kappa$ is given by $$\kappa(x) = 2+1.5x$$ [^spdiag]: [API Reference](https://kailaix.github.io/ADCME.jl/dev/api/#ADCME.spdiag-Tuple{Integer,Vararg{Pair,N}%20where%20N}) For debugging, check that your $A_{ij}$ is tridiagonal. You can use `run(sess, A)` to evaluate the `SparseTensor` `A`. You should get the following values: | Entry | Value | | ---- | ---- | | $A_{11}$ | $201$ | | $A_{12}$ | $-200$ | | $A_{21}$ | $-101.5$ | | $A_{33}$ | $207$ | | $A_{10,10}$ | $228$ | The computational graph of the dynamical system can be efficiently constructed using `while_loop`. * Implement the forward computation using `while_loop`. Turn in your code. For debugging, you can plot the temperature on the left side, i.e., $u(0,t)$. You should have something similar to the following plot ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ex1_reference.png?raw=true) Now we are ready to perform inverse modeling. * Read the starter code `Case1D/starter2.jl` carefully and complete the missing implementations. Turn in your code. What is your estimate `a` and `b`? ## Problem 2: Function Inverse Problem Let us consider the function inverse problem, where we do not know the form of $\kappa(x)$. To this end, we substitute $\kappa(x)$ using a neural network. We will use physics constrained learning (PCL) to train $\kappa(x)$ from the temperature data $u_0(x, t)$, where $x$ is the location of a sensor. Since we do not know the form of $\kappa(x)$, we need more data to solve the inverse problem. Therefore, we assume that we place sensors at the first 25 locations in the discretized grid. The observation data `data_pcl.txt` is a $(m+1)\times 25$ matrix; each column corresponds to the observation at one sensor. In this problem, let us parametrize $\kappa(x)$ with a fully connected neural network with 3 hidden layers, 20 neurons per layer, and $\tanh$ activation functions. In ADCME, such a neural network can be constructed using ```julia y = fc(x, [20,20,20,1]) ``` Here x is a $n \times 1$ input, y is a $n \times 1$ output, $[20,20,20,1]$ is the number of neurons per layer (last output layer only has 1 neuron), and fc stands for "fully-connected". Assume that the neural network is written as $\kappa_\theta(x)$, where $\theta$ is the weights and biases. * Write down the mathematical optimization problem for the inverse modeling. What variables are we optimizing for this problem? * Complete the starter code `Case1D/starter3.jl` for conducting physics constrained learning. The observation data is provided as `data_pcl.txt`. Run the program several times to ensure you do not terminate early at a bad local minimum. Turn in your code. * Plot your estimated $\kappa_\theta$ curve. Hint: Your curve should look like the following ![](./assets/kappa.png) * Add 1% and 10% Gaussian noise to the dataset and redo (7). Plot the estimated $\kappa_\theta$ curve. Comment on your observations. Hint: You can add noise using ```julia uc = @. uc * (1 + 0.01*randn(length(uc))) uc = @. uc * (1 + 0.1*randn(length(uc))) ``` Here `@.` is for elementwise operations. ## Problem 3: Parameter Inverse Problem in 2D In this problem, we will explore more deeply how ADCME works with numerical solvers. We will use an important technique, custom operators, for incorporating C++ codes. This will be useful when you want to accelerate a performance-critical part, or you want to reuse existing codes. To make the problem simple, the `C++` kernel has been prepared for you. For this exercise, you will be working with `Case2D/starter.jl`. We consider the 2D case and $T=1 $. We assume that $\Omega=[0,1]^2$. We impose zero boundary conditions on the entire boundary $\Gamma_D=\partial\Omega$. Additionally, we assume that the initial condition is zero everywhere. Two sensors are located at $(0.2,0.2)$ and $(0.8,0.8)$ and these sensors record time series of the temperature $u_1(t)$ and $u_2(t)$. The thermal diffusivity coefficient is a linear function of the space coordinates $$\kappa(x, y) = a + bx + cy$$ where $a, b$ and $c$ are three coefficients we want to find out from the data $u_1(t)$ and $u_2(t)$. * Write down the mathematical optimization problem for the inverse modeling. As before, explain what variables we are optimizing for this problem. We use the finite difference method to discretize the PDE. Consider $\Omega=[0,1]\times [0,1]$, we use a uniform grid and divide the domain into $m\times n$ squares, with length $\Delta x$. We also divide $[0,T]$ into $N_T$ intervals of equal length. The implicit scheme for the equation is $$\frac{u_{ij}^{k+1}-u_{ij}^k}{\Delta t} = \kappa_{ij}\frac{u_{i+1,j}^{k+1}+u_{i,j+1}^{k+1}+u_{i-1,j}^{k+1}+u_{i,j-1}^{k+1}-4u_{ij}^{k+1}}{\Delta x^2} + f_{ij}^{k+1}$$ where $i=2,3,\ldots, m, j=2,3,\ldots, n, k=1,2,\ldots, N_T$. Here $u_{ij}^k$ is an approximation to $u((i-1)h, (j-1)h, (k-1)\Delta t)$, and $f_{ij}^k = f((i-1)h, (j-1)h, (k-1)\Delta t)$. We flatten $\{u_{ij}^k\}$ to a 1D vector $U^k$, using $i$ as the leading dimension, i.e., the ordering of the vector is $u_{11}^k, u_{12}^k, \ldots$; We also flatten $f_{ij}^{k+1}$ and $\kappa_{ij}$ as well. In this problem, we extend the AD framework using custom operators (also known as _external function support_ in the AD community). In the starter code `Case2D/starter.jl`, we provide a function, `heat_equation`, a differentiable heat equation solver, which is already implemented for you using C++. By using custom operators, we replace the PDE solver node in the computational graph with our own, more efficient, implementation. Read the [instructions](./ADCME_setup.md) on how to compile the custom operator, and answer the following two questions. * Similar to Problem 1, implement the forward computation using `while_loop` with the starter code `Case2D/starter.jl`. Plot the curve of the temperature at $(0.5,0.5)$. Hint: you should obtain something similar to ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ex2_reference.png?raw=true) The parameters used in this problem are: $m=50$, $n=50$, $T=1$, $N_T=50$, $f(\mathbf{x},t) = e^{-t}\exp(-50((x-0.5)^2+(y-0.5)^2))$, $a = 1.5$, $b=1.0$, $c=2.0$. The data file `data.txt` is a $(N_T+1)\times 2$ matrix, where the first and the second columns are $u_1(t)$ and $u_2(t)$ respectively. * Use these data to do inverse modeling and report the values $a, b$ and $c$. We do not provide a starter code intentionally, but the forward computation codes in `Case2D/starter.jl` and neural-network-based inverse modeling codes in `Case1D/starter3.jl` will be helpful. Hint: - For checking your program, you can save your own `data.txt` from Question 10, try to estimate $a$, $b$, and $c$, and check if you can recover the true values. - If the optimization stops too early, you can multiply your loss function by a large number (e.g., $10^{10}$) and run your `BFGS!` optimizer again. An alternative approach is to use a smaller tolerance. See the `BFGS!` function documentation for details.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2412
# Direct Methods for Sparse Matrices ## Usage The direct methods for sparse matrix solutions feature a matrix factorization for solving a set of equations. This procedure is call **factorization** or **decomposition**. We can also support factorization or decomposition via [shared memory across kernels](https://kailaix.github.io/ADCME.jl/dev/global/). The design is to store the factorized matrix in the C++ memory and pass an identifying code (an integer) to the solution operators. Here is how you solve $Ax_i = b_i$ for a list of $(x_i, b_i)$ **Step 1:** Factorization ```julia A_factorized = factorize(A) ``` **Step2:** Solve ```julia x1 = A_factorized\b1 x2 = A_factorized\b2 ...... ``` Compared to `A\b`, the factorize-then-solve approach is more efficient, especially when you have to solve a lot of equations. ## Control Flow Safety The factorize-then-solve method is also control flow safe. That is, we can safely use it in the control flow and gradient backpropagation is correct. For example, if the matrix $A$ keeps unchanged throught the loop, we might want to factorize $A$ first and then use the factorized $A$ to solve equations repeatly. To verify the control flow safety, consider the following code, where in the loop we have $$u_{i+1} = A^{-1}(u_i + r), i=1,2,\ldots$$ ```julia using ADCME using SparseArrays using ADCMEKit function while_loop_simulation(vv, rhs, ns = 10) A = SparseTensor(ii, jj, vv, 10, 10) + spdiag(10)*100. Afac = factorize(A) ta = TensorArray(ns) i = constant(2, dtype=Int32) ta = write(ta, 1, ones(10)) function condition(i, ta) i<= ns end function body(i, ta) u = read(ta, i-1) res = Afac\(u + rhs) # res = u ta = write(ta, i, res) i+1, ta end _, out = while_loop(condition, body, [i, ta]) sum(stack(out)^2) end sess = Session(); init(sess) A = sprand(10, 10, 0.8) ii, jj, vv = find(constant(A)) k = length(vv) # Test 1: autodiff through A pl = placeholder(rand(k)) res = while_loop_simulation(pl, rhs , 100) gradview(sess, pl, res, rand(k)) # Test 2: autodiff through rhs pl = placeholder(rand(10)) res = while_loop_simulation(vv, pl , 100) gradview(sess, pl, res, rand(10)) ``` We have the following convergence plot ![Screen Shot 2020-04-04 at 11.15.19 PM](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/factorization.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
11126
# Finite-difference Time-domain for Electromagnetics and Seismic Inversion The finite-difference time-domain (FDTD) is a very conceptually and technically simple technique for full-wave simulation. It has been widely adopted in electromagnetics and geophysics. For example, the full-waveform inversion (FWI), which is arguably the most famous seismic inversion technique, is typically implemented with FDTD. It is also known as Yee scheme. Given its significance, in this section, we show how to implement FDTD in one-dimension using ADCME, and use the forward computation code to do inverse problems. ## FDTD To make the discussion clear and consistent throughout the session, we use notations from electromagnetics, $E$, the electric field, and $H$, the magnetic flux. In 1D, the Faraday's law and Ampere's law are simplified to $$\begin{aligned} \mu \frac{\partial H}{\partial t} &= \frac{\partial E}{\partial x}\\ \epsilon \frac{\partial E}{\partial t} &= \frac{\partial H}{\partial x} \end{aligned}$$ We use the staggered grid shown in the following figure ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/grid.png?raw=true) The superscript denotes time step, while the subscript denotes location index. The electric field $E_i^q$ is defined on the grid point, while the magnetic flux is defined in the cell center. The Yee algorithm alternatively updates $H$ and $E$ with $$\begin{aligned} H_i^{q+\frac12} & = H_i^{q-\frac12} + \frac{\Delta t}{\mu\Delta x} (E^q_{i+1} - E^q_i)\\ E_i^{q+1} &= E_i^{q} + \frac{\Delta t}{\epsilon \Delta x}(H^{q+\frac12}_{i} - H^{q+\frac12}_{i-1}) \end{aligned}$$ When we simulate within a finite computational domain, we usually need to design a boundary condition that "absorbs" reflecting waves. This can be done with the so-called perfectly matched layer (PML) boundaries. In practice, we can pad the computational domain with extra grids (the magenta region in the figure above). See the next section for a detailed discussion. In the case we want to add some source functions, there are typically two ways: * Hardwiring source functions by setting $E_k^q=s_k^q$ for all $q$ and certain index $k$. * Additive source functions. This is achieved by replacing the second equation with $$E_i^{q+1} = E_i^{q} + \frac{\Delta t}{\epsilon \Delta x}(H^{q+\frac12}_{i} - H^{q+\frac12}_{i-1}) + \frac{\Delta t}{\epsilon} J_i^{q+\frac12}$$ ## Perfectly Matched Layer (PML) Let us consider the plane wave $e^{i kx}$. In the infinite space, the plane wave will pass through the domain of interest and never get reflected back. However, in practice, computational domains are finite. If we impose a reflection boundary condition, the plane wave will get reflected. Even if we impose Dirichlet boundary conditions, some portions of reflection is still present. These reflections are not desirable for relevant applications. Therefore, we want to find a way for damping reflected waves away. Let us consider the plane waves $e^{ikx}$. It's complex but we can always think of it as an analytical continuous of $sin(kx)$ in the complex space. Instead of looking at real $x$, we consider a complex $x$, and we have $$e^{ik(\Re x + i\Im x)} = e^{ik\Re x - k\Im x}$$ Here is an important observation: if $\Im x = f(\Re x) >0$ for some increasing function $f(x)$, the magnitude of the wave $e^{ikx}$ along the line $\Re x + i f(\Re x)$ will decay exponentially. Thus, within a finite computational domain $[0,1]$, we can extend the governing equation beyond $[0,1]$ in the complex domain, with the path given by $$\{ x + i f(x): x\in \mathbb{R}\}$$ Here $f(x) = 0$, $x\in (0,1)$, and $$f'(x) = \frac{\sigma(x)}{k}, x>1$$ The case for $f(x)<0$ is similar. The fundamental idea is that instead of looking at the governing equation in $[0,1]$, we extend it analytically into the complex space. For example, the transport equation $$\frac{\partial u(x, t)}{\partial t} = \frac{\partial u(x, t)}{\partial x}$$ becomes $$\frac{\partial \tilde u(z, t)}{\partial t} = \frac{\partial \tilde u(z, t)}{\partial z}, z\in \mathbb{C}$$ Then the question is: what is the governing equation for $\bar u(x, t) = \tilde u(x+i f(x), t)$? To simplify our notation, we omit $t$ here because it is unrelated to the complex domain. We denote $z = x + i f(x)$ and $$\Re \tilde u = u_1, \Im \tilde u = u_2$$ Then we have $$\begin{aligned} \frac{\partial \bar u(x)}{\partial x} &= \frac{\partial \tilde u(x+i f(x))}{\partial x}\\ &= \frac{\partial (u_1(x+i f(x)) + i u_2(x+i f(x)))}{\partial x}\\ &= \frac{\partial (u_1(x+i f(x))}{\partial x} + i \frac{\partial u_2(x+i f(x)))}{\partial x} \\ &= \frac{\partial u_1}{\partial x} + i \frac{\partial u_2}{\partial x} + i \frac{\partial u_1}{\partial x} \frac{\partial f}{\partial x} - \frac{\partial u_2}{\partial x}\frac{\partial f}{\partial x} \end{aligned}$$ Note from complex analysis, $$\frac{\partial \tilde u(z)}{\partial z} = \frac{\partial u_1}{\partial x} + i \frac{\partial u_2}{\partial x}$$ We have $$\frac{\partial \bar u(x)}{\partial x} =\left(1 + i\frac{\partial f}{\partial x} \right) \frac{\partial \tilde u}{\partial z}\tag{1}$$ Now let us consider the Faraday's law $$\mu \frac{\partial H}{\partial t} = \frac{\partial E}{\partial x}\tag{2}$$ We consider the plane wave $H = e^{-ikx}$, which we want to damp outside the computational domain. First we extend Equation 2 to the complex domain and plug $H$ to the equation (note $\frac{\partial H}{\partial t} = \frac{\partial \bar H}{\partial t}$) $$-i\mu k \bar H = \frac{\partial \tilde E}{\partial z}$$ Using Equation 1, we have $$-i \mu k \bar H+ \mu \sigma_x(x) \bar H= \frac{\partial \bar E}{\partial x}$$ Converting back to the time domain, we have $$\mu\frac{\partial \bar H}{\partial t} = \frac{\partial \bar E}{\partial x} - \mu \sigma_x(x) \bar H$$ Likewise, we have $$\epsilon\frac{\partial \bar H}{\partial t} = \frac{\partial \bar E}{\partial x} - \epsilon \sigma_x(x) \bar H$$ Note that the two above equations are exactly the original equations within the domain $[0,1]$. ## Numerical Experiment: Forward Computation Let us consider a 1D wave equation $$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$ which is equivalent to $$\begin{aligned} \frac{\partial u}{\partial t} &= c \frac{\partial v}{\partial x}\\ \frac{\partial v}{\partial t} &= c \frac{\partial u}{\partial x} \end{aligned}$$ This set of equations is related to Faraday's law and Ampere's law via $$E = v, H = u, \epsilon = \frac1c, \mu = \frac1c$$ We use a hardwiring source at the center of the computational domain $[0,1]$. The source function is shown in the left panel. The evolution of $u$ is shown in the right panel. |Source Function|Evolution of $u$| |--|--| |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ricker.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/fdtd.gif?raw=true)| ```julia using ADCME using PyPlot using ADCMEKit n = 200 pml = 30 C = 100.0 NT = 1000 Δt = 1.5/NT x0 = LinRange(0, 1, n+1) h = 1/n xE = Array((0:n+2pml)*h .- pml*h) xH = (xE[2:end]+xE[1:end-1])/2 N = n + 2pml + 1 σE = zeros(N) for i = 1:pml d = i*h σE[pml + n + 1 + i] = C* (d/(pml*h))^3 σE[pml+1-i] = C* (d/(pml*h))^3 end σH = zeros(N-1) for i = 1:pml d = (i-1/2)*h σH[pml + n + i] = C* (d/(pml*h))^3 σH[pml+1-i] = C* (d/(pml*h))^3 end function ricker(dt = 0.002, f0 = 3.0) nw = 2/(f0*dt) nc = floor(Int, nw/2) t = dt*collect(-nc:1:nc) b = (π*f0*t).^2 w = @. (1 - 2b)*exp(-b) end R = ricker() if length(R)<NT+1 R = [R;zeros(NT+1-length(R))] end R_ = constant(R) # cH = constant(ones(N-1)) cH = ones(length(xH)) * 1.5 cE = (cH[1:end-1]+cH[2:end])/2 Z = zeros(N) Z[N÷2] = 1.0 Z = Z[2:end-1] function condition(i, E_arr, H_arr) i<=NT+1 end function body(i, E_arr, H_arr) E = read(E_arr, i-1) H = read(H_arr, i-1) ΔH = cH * (E[2:end]-E[1:end-1])/h - σH*H H += ΔH * Δt ΔE = cE * (H[2:end]-H[1:end-1])/h - σE[2:end-1]*E[2:end-1] #+ R_[i] * Z E = scatter_add(E, 2:N-1, ΔE * Δt) E = scatter_update(E, N÷2, R_[i]) i+1, write(E_arr, i, E), write(H_arr, i, H) end E_arr = TensorArray(NT+1) H_arr = TensorArray(NT+1) E0 = zeros(N) E0[N÷2] = R[1] E_arr = write(E_arr, 1, E0) H_arr = write(H_arr, 1, zeros(N-1)) i = constant(2, dtype = Int32) _, E, H = while_loop(condition, body, [i, E_arr, H_arr]) E = stack(E) H = stack(H) sess = Session(); init(sess) E_, H_ = run(sess, [E, H]) pl, = plot([], [], ".-") xlim(-0.5,1.5) ylim(minimum(E_), maximum(E_)) xlabel("x") ylabel("y") t = title("time = 0.0000") function update(i) t.set_text("time = $(round(i*Δt, digits=4))") pl.set_data([xE E_[i,:]]'|>Array) end p = animate(update, 1:10:NT+1) # saveanim(p, "fdtd.gif") ``` ### Numerical Experiment Let us consider inverting for a constant $c_H$. The following code is mainly a copy and paste from the above code. The optimization converges within a few iterations. ```julia using ADCME using PyPlot using ADCMEKit n = 200 pml = 30 C = 100.0 NT = 1000 Δt = 1.5/NT x0 = LinRange(0, 1, n+1) h = 1/n xE = Array((0:n+2pml)*h .- pml*h) xH = (xE[2:end]+xE[1:end-1])/2 N = n + 2pml + 1 σE = zeros(N) for i = 1:pml d = i*h σE[pml + n + 1 + i] = C* (d/(pml*h))^3 σE[pml+1-i] = C* (d/(pml*h))^3 end σH = zeros(N-1) for i = 1:pml d = (i-1/2)*h σH[pml + n + i] = C* (d/(pml*h))^3 σH[pml+1-i] = C* (d/(pml*h))^3 end function ricker(dt = 0.002, f0 = 3.0) nw = 2/(f0*dt) nc = floor(Int, nw/2) t = dt*collect(-nc:1:nc) b = (π*f0*t).^2 w = @. (1 - 2b)*exp(-b) end R = ricker() if length(R)<NT+1 R = [R;zeros(NT+1-length(R))] end R_ = constant(R) # cH = constant(ones(N-1)) # cH = Variable(ones(length(cH))) b = softplus(Variable(1.0)) cH = ones(length(xH)) * b cE = (cH[1:end-1]+cH[2:end])/2 Z = zeros(N) Z[N÷2] = 1.0 Z = Z[2:end-1] function condition(i, E_arr, H_arr) i<=NT+1 end function body(i, E_arr, H_arr) E = read(E_arr, i-1) H = read(H_arr, i-1) ΔH = cH * (E[2:end]-E[1:end-1])/h - σH*H H += ΔH * Δt ΔE = cE * (H[2:end]-H[1:end-1])/h - σE[2:end-1]*E[2:end-1] #+ R_[i] * Z E = scatter_add(E, 2:N-1, ΔE * Δt) E = scatter_update(E, N÷2, R_[i]) i+1, write(E_arr, i, E), write(H_arr, i, H) end E_arr = TensorArray(NT+1) H_arr = TensorArray(NT+1) E0 = zeros(N) E0[N÷2] = R[1] # v0[N÷2] = 1.0 E_arr = write(E_arr, 1, E0) H_arr = write(H_arr, 1, zeros(N-1)) i = constant(2, dtype = Int32) _, E, H = while_loop(condition, body, [i, E_arr, H_arr]) E = stack(E); E = set_shape(E, (NT+1, N)) H = stack(H) receivers = [pml+1:pml+10; N-pml-9:N-pml] loss = sum((E[:,receivers] - E_[:,receivers])^2) sess = Session(); init(sess) BFGS!(sess, loss) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
12042
# Normalizing Flows In this article we introduce the ADCME module for flow-based generative models. The flow-based generative models can be used to model the joint distribution of high-dimensional random variables. It constructs a sequence of invertible transformation of distributions $$x = f(u) \quad u \sim \pi(u)$$ based on the change of variable equation $$p(x) = \pi(f^{-1}(x)) \left|\det\left(\frac{\partial f^{-1}(x)}{\partial x}\right)\right|$$ !!! example Consider the transformation $f: \mathbb{R}\rightarrow [0,1]$, s.t. $f(x) = \mathrm{sigmoid}(x) = \frac{1}{1+e^{-x}}$. Consider the random variable $$u \sim \mathcal{N}(0,1)$$ We want to find out the probability density function of $p(x)$, where $x=f(u)$. To this end, we have $$f^{-1}(x)=\log(x) - \log(1-x) \Rightarrow \frac{\partial f^{-1}(x)}{\partial x} = \frac{1}{x} + \frac{1}{1-x}$$ Therefore, we have $$\begin{aligned} p(x) &= \pi(f^{-1}(x))\left( \frac{1}{x} + \frac{1}{1-x}\right) \\ &= \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(\log(x)-\log(1-x))^2}{2}\right)\left( \frac{1}{x} + \frac{1}{1-x}\right) \end{aligned}$$ Compared to other generative models such as variational autoencoder (VAE) and generative neural networks (GAN), the flow-based generative models give us explicit formuas of density functions. For model training, we can directly minimizes the posterier log likelihood in the flow-based generative models, while use approximate likelihood functions in VAE and adversarial training in GAN. In general, the flow-based generative model is easier to train than VAE and GAN. In the following, we give some examples of using flow-based generatives models in ADCME. ## Type Hierarchy The flow-based generative model is organized as follows, from botton level to top level: * `FlowOp`. This consists of unit invertible transformations, such as [`AffineConstantFlow`](@ref) and [`Invertible1x1Conv`](@ref). * `NormalizingFlow`. This is basically a sequence of `FlowOp`. It is not exposed to users. * `NormalizingFlowModel`. This is a container of the sequence of `FlowOp`s and a prior distribution. `NormalizingFlowModel` is callable and can "normalize" the data distribution. We can also sample from `NormalizingFlowModel`, where the prior distribution is transformed to data distribution. ## A Simple Example Let's consider a simple example for transforming the two moons dataset to a univariate Gaussian distribution. First, we adapt a function from [here](https://github.com/wildart/nmoons) and use it to generate the dataset ```julia using Revise using ADCME using PyCall using PyPlot using Random # `nmoons` is adapted from https://github.com/wildart/nmoons function nmoons(::Type{T}, n::Int=100, c::Int=2; shuffle::Bool=false, ε::Real=0.1, d::Int = 2, translation::Vector{T}=zeros(T, d), rotations::Dict{Pair{Int,Int},T} = Dict{Pair{Int,Int},T}(), seed::Union{Int,Nothing}=nothing) where {T <: Real} rng = seed === nothing ? Random.GLOBAL_RNG : MersenneTwister(Int(seed)) ssize = floor(Int, n/c) ssizes = fill(ssize, c) ssizes[end] += n - ssize*c @assert sum(ssizes) == n "Incorrect partitioning" pi = convert(T, π) R(θ) = [cos(θ) -sin(θ); sin(θ) cos(θ)] X = zeros(d,0) for (i, s) in enumerate(ssizes) circ_x = cos.(range(zero(T), pi, length=s)).-1.0 circ_y = sin.(range(zero(T), pi, length=s)) C = R(-(i-1)*(2*pi/c)) * hcat(circ_x, circ_y)' C = vcat(C, zeros(d-2, s)) dir = zeros(d)-C[:,end] # translation direction X = hcat(X, C .+ dir.*translation) end y = vcat([fill(i,s) for (i,s) in enumerate(ssizes)]...) if shuffle idx = randperm(rng, n) X, y = X[:, idx], y[idx] end # Add noise to the dataset if ε > 0.0 X += randn(rng, size(X)).*convert(T,ε/d) end # Rotate dataset for ((i,j),θ) in rotations X[[i,j],:] .= R(θ)*view(X,[i,j],:) end return X, y end function sample_moons(n) X, _ = nmoons(Float64, n, 2, ε=0.05, d=2, translation=[0.25, -0.25]) return Array(X') end ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/moons.png?raw=true) Next we construct a flow-based generative model, as follows: ```julia prior = ADCME.MultivariateNormalDiag(loc=zeros(2)) model = NormalizingFlowModel(prior, flows) ``` We can print the model by just type `model` in REPL: ``` ( MultivariateNormalDiag ) ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ↓ AffineHalfFlow ``` Finally, we maximize the log llikelihood function using [`AdamOptimizer`](@ref) ```julia x = placeholder(rand(128,2)) zs, prior_logpdf, logdet = model(x) log_pdf = prior_logpdf + logdet loss = -sum(log_pdf) model_samples = rand(model, 128*8) sess = Session(); init(sess) opt = AdamOptimizer(1e-4).minimize(loss) sess = Session(); init(sess) for i = 1:10000 _, l = run(sess, [opt, loss], x=>sample_moons(128)) if mod(i,100)==0 @info i, l end end ``` ## Models ADCME has implemeted some popular flow-based generative models. For example, [`AffineConstantFlow`](@ref), [`AffineHalfFlow`](@ref), [`SlowMAF`](@ref), [`MAF`](@ref), [`IAF`](@ref), [`ActNorm`](@ref), [`Invertible1x1Conv`](@ref), [`NormalizingFlow`](@ref), [`NormalizingFlowModel`](@ref), and [`NeuralCouplingFlow`](@ref). The following script shows how to usee those functions: ```julia # Adapted from https://github.com/karpathy/pytorch-normalizing-flows using Revise using ADCME using PyCall using PyPlot using Random # `nmoons` is adapted from https://github.com/wildart/nmoons function nmoons(::Type{T}, n::Int=100, c::Int=2; shuffle::Bool=false, ε::Real=0.1, d::Int = 2, translation::Vector{T}=zeros(T, d), rotations::Dict{Pair{Int,Int},T} = Dict{Pair{Int,Int},T}(), seed::Union{Int,Nothing}=nothing) where {T <: Real} rng = seed === nothing ? Random.GLOBAL_RNG : MersenneTwister(Int(seed)) ssize = floor(Int, n/c) ssizes = fill(ssize, c) ssizes[end] += n - ssize*c @assert sum(ssizes) == n "Incorrect partitioning" pi = convert(T, π) R(θ) = [cos(θ) -sin(θ); sin(θ) cos(θ)] X = zeros(d,0) for (i, s) in enumerate(ssizes) circ_x = cos.(range(zero(T), pi, length=s)).-1.0 circ_y = sin.(range(zero(T), pi, length=s)) C = R(-(i-1)*(2*pi/c)) * hcat(circ_x, circ_y)' C = vcat(C, zeros(d-2, s)) dir = zeros(d)-C[:,end] # translation direction X = hcat(X, C .+ dir.*translation) end y = vcat([fill(i,s) for (i,s) in enumerate(ssizes)]...) if shuffle idx = randperm(rng, n) X, y = X[:, idx], y[idx] end # Add noise to the dataset if ε > 0.0 X += randn(rng, size(X)).*convert(T,ε/d) end # Rotate dataset for ((i,j),θ) in rotations X[[i,j],:] .= R(θ)*view(X,[i,j],:) end return X, y end function sample_moons(n) X, _ = nmoons(Float64, n, 2, ε=0.05, d=2, translation=[0.25, -0.25]) return Array(X') end #------------------------------------------------------------------------------------------ # RealNVP function mlp(x, k, id) x = constant(x) variable_scope("layer$k$id") do x = dense(x, 24, activation="leaky_relu") x = dense(x, 24, activation="leaky_relu") x = dense(x, 24, activation="leaky_relu") x = dense(x, 1) end return x end flows = [AffineHalfFlow(2, mod(i,2)==1, x->mlp(x, i, 0), x->mlp(x, i, 1)) for i = 0:8] #------------------------------------------------------------------------------------------ # RealNVP function mlp(x, k, id) x = constant(x) variable_scope("layer$k$id") do x = dense(x, 24, activation="leaky_relu") x = dense(x, 24, activation="leaky_relu") x = dense(x, 24, activation="leaky_relu") x = dense(x, 1) end return x end flows = [AffineHalfFlow(2, mod(i,2)==1, x->mlp(x, i, 0), x->mlp(x, i, 1)) for i = 0:8] #------------------------------------------------------------------------------------------ # NICE # function mlp(x, k, id) # x = constant(x) # variable_scope("layer$k$id") do # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 1) # end # return x # end # flow1 = [AffineHalfFlow(2, mod(i,2)==1, missing, x->mlp(x, i, 1)) for i = 0:4] # flow2 = [AffineConstantFlow(2, shift=false)] # flows = [flow1;flow2] # SlowMAF #------------------------------------------------------------------------------------------ # function mlp(x, k, id) # x = constant(x) # variable_scope("layer$k$id") do # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 2) # end # return x # end # flows = [SlowMAF(2, mod(i,2)==1, [x->mlp(x, i, 0)]) for i = 0:3] # MAF #------------------------------------------------------------------------------------------ # flows = [MAF(2, mod(i,2)==1, [24, 24, 24], name="layer$i") for i = 0:3] # IAF #------------------------------------------------------------------------------------------ # flows = [IAF(2, mod(i,2)==1, [24, 24, 24], name="layer$i") for i = 0:3] # prior = ADCME.MultivariateNormalDiag(loc=zeros(2)) # model = NormalizingFlowModel(prior, flows) # Insert ActNorm to any of the flows #------------------------------------------------------------------------------------------ # flow2 = [ActNorm(2, "ActNorm$i") for i = 1:length(flows)] # flows = permutedims(hcat(flow2, flows))[:] # # error() # # msample = rand(model,1) # # zs, prior_logprob, log_det = model([0.0040 0.4426]) # # sess = Session(); init(sess) # # run(sess, msample) # # run(sess,zs) # GLOW #------------------------------------------------------------------------------------------ # function mlp(x, k, id) # x = constant(x) # variable_scope("layer$k$id") do # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 24, activation="leaky_relu") # x = dense(x, 1) # end # return x # end # flows = [Invertible1x1Conv(2, "conv$i") for i = 0:2] # norms = [ActNorm(2, "ActNorm$i") for i = 0:2] # couplings = [AffineHalfFlow(2, mod(i, 2)==1, x->mlp(x, i, 0), x->mlp(x, i, 1)) for i = 0:length(flows)-1] # flows = permutedims(hcat(norms, flows, couplings))[:] #------------------------------------------------------------------------------------------ # Neural Splines Coupling # function mlp(x, k, id) # x = constant(x) # variable_scope("fc$k$id") do # x = dense(x, 16, activation="leaky_relu") # x = dense(x, 16, activation="leaky_relu") # x = dense(x, 16, activation="leaky_relu") # x = dense(x, 3K-1) # end # return x # end # K = 8 # flows = [NeuralCouplingFlow(2, x->mlp(x, i, 0), x->mlp(x, i, 1), K) for i = 0:2] # convs = [Invertible1x1Conv(2, "conv$i") for i = 0:2] # norms = [ActNorm(2, "ActNorm$i") for i = 0:2] # flows = permutedims(hcat(norms, convs, flows))[:] #------------------------------------------------------------------------------------------ prior = ADCME.MultivariateNormalDiag(loc=zeros(2)) model = NormalizingFlowModel(prior, flows) x = placeholder(rand(128,2)) zs, prior_logpdf, logdet = model(x) log_pdf = prior_logpdf + logdet loss = -sum(log_pdf) model_samples = rand(model, 128*8) sess = Session(); init(sess) opt = AdamOptimizer(1e-4).minimize(loss) sess = Session(); init(sess) for i = 1:10000 _, l = run(sess, [opt, loss], x=>sample_moons(128)) if mod(i,100)==0 @info i, l end end z = run(sess, model_samples[end]) x = sample_moons(128*8) scatter(x[:,1], x[:,2], c="b", s=5, label="data") scatter(z[:,1], z[:,2], c="r", s=5, label="prior --> posterior") axis("scaled"); xlabel("x"); ylabel("y")# ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
13680
# Shared Memory Across Kernels ## Introuction In many use cases, we want to share data across multiple kernels. For example, if we want to design several custom operators for finite element analysis (e.g., one for assembling, one for solving the linear system and one for performing Newton's iteration), we might want to share the geometric data such as nodes and element connectivity matrices. This can be done by the share memory mechanism of dynamical shared libraries. The technique introduced here is very useful. For example, in the ADCME standard library, [`factorize`](@ref) is implemented using this technique. `factorize` factorizes a nonsingular matrix and store the factorized form in the shared library so you can amortize the computational cost for factorization by efficiently solving many linear systems. ## Solutions for *nix Dynamical shared libraries have the following property: in Unix-like environments, shared libries export all `extern` global variables. That is, multiple shared libraries can change the same variable as long as the variable is marked as `extern`. However, `extern` variable itself is not a definition but only a declaration. The variable should be defined in one and only one shared library. Therefore, when we design custom operators and want to have global variables that will be reused by multiple custom kernels (each constitutes a separate dynamical shared library), we can link each of them to a "data storage" shared library. The "data storage" shared library should contain the definition of the global variable to be shared among those kernels. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/disk.png?raw=true) As an example, consider we want to share `Float64` vectors (with `String` keys). The data structure of the storage is given in `Saver.h` ```c++ #include <map> #include <string> #include <vector> struct DataStore { std::map<std::string, std::vector<double>> vdata; }; extern DataStore ds; ``` Note we include `extern DataStore ds;` for convenience: we can include `Saver.h` for our custom operator kernels so that we have access to `ds`. Additionally, in `Saver.cpp`, we define `ds` ```c++ #include "Saver.h" DataStore ds; ``` Now we can compile a dynamical shared library `Saver.so` (or `Saver.dylib`) with `Saver.h` and `Saver.cpp`. For all the other kernel implementation, we can include the header file `Saver.h` and link to `Saver.so` (or `Saver.dylib`) during compilation. ### Code Examples We show an example for storing, querying and deleting $10\times 1$ `Float64` vectors with this technique. The main files are (the codes can be accessed [here](https://github.com/kailaix/ADCME.jl/tree/master/docs/src/assets/Codes/SharedMemory)) * `SaverTensor.cpp` ```c++ #include "Saver.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/default/logging.h" #include "tensorflow/core/framework/shape_inference.h" #include<cmath> #include<string> #include<eigen3/Eigen/Core> using std::string; using namespace tensorflow; REGISTER_OP("SaveTensor") .Input("handle : string") .Input("val : double") .Output("out : string") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { shape_inference::ShapeHandle handle_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle_shape)); shape_inference::ShapeHandle val_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &val_shape)); c->set_output(0, c->Scalar()); return Status::OK(); }); class SaveTensorOp : public OpKernel { private: public: explicit SaveTensorOp(OpKernelConstruction* context) : OpKernel(context) { } void Compute(OpKernelContext* context) override { DCHECK_EQ(2, context->num_inputs()); const Tensor& handle = context->input(0); const Tensor& val = context->input(1); const TensorShape& val_shape = val.shape(); DCHECK_EQ(val_shape.dims(), 1); // extra check // create output shape TensorShape out_shape({}); // create output tensor Tensor* out = NULL; OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &out)); // get the corresponding Eigen tensors for data access auto handle_tensor = handle.flat<string>().data(); auto val_tensor = val.flat<double>().data(); auto out_tensor = out->flat<string>().data(); // implement your forward function here // context->tensors_[string(*handle_tensor)] = val; ds.vdata[string(*handle_tensor)] = std::vector<double>(val_tensor, val_tensor+10); *out_tensor = *handle_tensor; printf("[Add] %s to collections.\n", string(*handle_tensor).c_str()); printf("========Existing Keys========\n"); for(auto & kv: ds.vdata){ printf("Key %s\n", kv.first.c_str()); } printf("\n"); } }; REGISTER_KERNEL_BUILDER(Name("SaveTensor").Device(DEVICE_CPU), SaveTensorOp); ``` * `GetTensor.cpp` ```c++ #include "Saver.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/default/logging.h" #include "tensorflow/core/framework/shape_inference.h" #include<cmath> #include<string> #include<map> #include<eigen3/Eigen/Core> using std::string; using namespace tensorflow; REGISTER_OP("GetTensor") .Input("handle : string") .Output("val : double") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { shape_inference::ShapeHandle handle_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle_shape)); c->set_output(0, c->Vector(-1)); return Status::OK(); }); class GetTensorOp : public OpKernel { private: public: explicit GetTensorOp(OpKernelConstruction* context) : OpKernel(context) { } void Compute(OpKernelContext* context) override { DCHECK_EQ(1, context->num_inputs()); const Tensor& handle = context->input(0); auto handle_tensor = handle.flat<string>().data(); auto val_shape = TensorShape({10}); Tensor *val = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, val_shape, &val)); if (!ds.vdata.count(string(*handle_tensor))){ printf("[Get] Key %s does not exist.\n", string(*handle_tensor).c_str()); } else{ printf("[Get] Key %s exists.\n", string(*handle_tensor).c_str()); auto v = ds.vdata[string(*handle_tensor)]; for(int i=0;i<10;i++){ val->flat<double>().data()[i] = v[i]; } } printf("========Existing Keys========\n"); for(auto & kv: ds.vdata){ printf("Key %s\n", kv.first.c_str()); } printf("\n"); } }; REGISTER_KERNEL_BUILDER(Name("GetTensor").Device(DEVICE_CPU), GetTensorOp); ``` * `DeleteTensor.cpp` ```c++ #include "Saver.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/default/logging.h" #include "tensorflow/core/framework/shape_inference.h" #include<cmath> #include<string> #include<map> #include<eigen3/Eigen/Core> using std::string; using namespace tensorflow; REGISTER_OP("DeleteTensor") .Input("handle : string") .Output("val : bool") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { shape_inference::ShapeHandle handle_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle_shape)); c->set_output(0, c->Scalar()); return Status::OK(); }); class DeleteTensorOp : public OpKernel { private: public: explicit DeleteTensorOp(OpKernelConstruction* context) : OpKernel(context) { } void Compute(OpKernelContext* context) override { DCHECK_EQ(1, context->num_inputs()); const Tensor& handle = context->input(0); auto handle_tensor = handle.flat<string>().data(); auto val_shape = TensorShape({}); Tensor *val = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, val_shape, &val)); if (ds.vdata.count(string(*handle_tensor))){ ds.vdata.erase(string(*handle_tensor)); printf("[Delete] Erase key %s.\n", string(*handle_tensor).c_str()); *(val->flat<bool>().data()) = true; } else{ printf("[Delete] Key %s does not exist.\n", string(*handle_tensor).c_str()); *(val->flat<bool>().data()) = false; } printf("========Existing Keys========\n"); for(auto & kv: ds.vdata){ printf("Key %s\n", kv.first.c_str()); } printf("\n"); } }; REGISTER_KERNEL_BUILDER(Name("DeleteTensor").Device(DEVICE_CPU), DeleteTensorOp); ``` Here is part of the [`CMakeLists.txt`](https://github.com/kailaix/ADCME.jl/tree/master/docs/src/assets/Codes/SharedMemory/CMakeLists.txt) used for compilation, where we link `XXTensor.cpp` with `Saver` ```cmake cmake_minimum_required(VERSION 3.5) project(TF_CUSTOM_OP) set (CMAKE_CXX_STANDARD 11) message("JULIA=${JULIA}") execute_process(COMMAND ${JULIA} -e "import ADCME; print(ADCME.__STR__)" OUTPUT_VARIABLE JL_OUT) list(GET JL_OUT 0 BINDIR) list(GET JL_OUT 1 LIBDIR) list(GET JL_OUT 2 TF_INC) list(GET JL_OUT 3 TF_ABI) list(GET JL_OUT 4 PREFIXDIR) list(GET JL_OUT 5 CC) list(GET JL_OUT 6 CXX) list(GET JL_OUT 7 CMAKE) list(GET JL_OUT 8 MAKE) list(GET JL_OUT 9 GIT) list(GET JL_OUT 10 PYTHON) list(GET JL_OUT 11 TF_LIB_FILE) message("BINDIR=${BINDIR}") message("LIBDIR=${LIBDIR}") message("TF_INC=${TF_INC}") message("TF_ABI=${TF_ABI}") message("PREFIXDIR=${PREFIXDIR}") message("Python path=${PYTHON}") message("TF_LIB_FILE=${TF_LIB_FILE}") if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 5.0 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 5.0) set(CMAKE_CXX_FLAGS "-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI} ${CMAKE_CXX_FLAGS}") endif() set(CMAKE_BUILD_TYPE Release) if(MSVC) set(CMAKE_CXX_FLAGS_RELEASE "-DNDEBUG") else() set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG") endif() include_directories(${TF_INC} ${PREFIXDIR}) link_directories(${TF_LIB}) if(MSVC) if(CMAKE_CXX_FLAGS MATCHES "/W[0-4]") string(REGEX REPLACE "/W[0-4]" "/W0" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") else() set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /W0") endif() add_library(Saver SHARED Saver.cpp SaveTensor.cpp GetTensor.cpp DeleteTensor.cpp) set_property(TARGET Saver PROPERTY POSITION_INDEPENDENT_CODE ON) target_link_libraries(Saver ${TF_LIB_FILE}) add_definitions(-DNOMINMAX) else() add_library(Saver SHARED Saver.cpp) set_property(TARGET Saver PROPERTY POSITION_INDEPENDENT_CODE ON) add_library(SaveTensor SHARED SaveTensor.cpp) set_property(TARGET SaveTensor PROPERTY POSITION_INDEPENDENT_CODE ON) target_link_libraries(SaveTensor ${TF_LIB_FILE} Saver) add_library(GetTensor SHARED GetTensor.cpp) set_property(TARGET GetTensor PROPERTY POSITION_INDEPENDENT_CODE ON) target_link_libraries(GetTensor ${TF_LIB_FILE} Saver) add_library(DeleteTensor SHARED DeleteTensor.cpp) set_property(TARGET DeleteTensor PROPERTY POSITION_INDEPENDENT_CODE ON) target_link_libraries(DeleteTensor ${TF_LIB_FILE} Saver) endif() ``` Here we have separate procedure for Windows and *nix systems. We can test our implementation with ```julia using ADCME if Sys.iswindows() global save_tensor = load_op_and_grad("./build/Release/libSaver","save_tensor") global get_tensor = load_op_and_grad("./build/Release/libSaver","get_tensor") global delete_tensor = load_op_and_grad("./build/Release/libSaver","delete_tensor") else global save_tensor = load_op_and_grad("./build/libSaveTensor","save_tensor") global get_tensor = load_op_and_grad("./build/libGetTensor","get_tensor") global delete_tensor = load_op_and_grad("./build/libDeleteTensor","delete_tensor") end val = constant(rand(10)) t1 = constant("tensor1") t2 = constant("tensor2") t3 = constant("tensor3") u1 = save_tensor(t1,val) u2 = save_tensor(t2,2*val) u3 = save_tensor(t3,3*val) z1 = get_tensor(t1); z2 = get_tensor(t2); z3 = get_tensor(t3); d1 = delete_tensor(t1); d2 = delete_tensor(t2); d3 = delete_tensor(t3); sess = Session(); run(sess, [u1,u2,u3]) # add all the keys # get the keys one by one run(sess, z1) run(sess, z2) run(sess, z3) # delete 2nd key run(sess, d2) ``` The expected output is ```txt [Add] tensor3 to collections. ========Existing Keys======== Key tensor3 [Add] tensor2 to collections. ========Existing Keys======== Key tensor2 Key tensor3 [Add] tensor1 to collections. ========Existing Keys======== Key tensor1 Key tensor2 Key tensor3 [Get] Key tensor1 exists. ========Existing Keys======== Key tensor1 Key tensor2 Key tensor3 [Get] Key tensor2 exists. ========Existing Keys======== Key tensor1 Key tensor2 Key tensor3 [Get] Key tensor3 exists. ========Existing Keys======== Key tensor1 Key tensor2 Key tensor3 [Delete] Erase key tensor2. ========Existing Keys======== Key tensor1 Key tensor3 ``` For example, in [this article](./factorization.md) we use the technique introduced here to design a custom operator for direct methods for sparse matrix solutions. ## Solutions for Windows Windows systems have special rules for creating and linking dynamic libraries. Basically you need to export symbols in the dynamic libraries so that they are visiable to application programs. To avoid many troubles that you may encounter getting the macros and configurations correct, you can instead compile all the source into a single dynamic library. The model is as follows ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/saver_win.png?raw=true) The source codes and CMakeLists.txt in the above section can be reused without any modification.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3144
# The Mathematical Structure of DNN Hessians It has been observed empirically that the converged weights and biases of DNNs are close to a proper initial guess. This indicates that DNNs are well approximated with its first order Taylor expansion. Let us consider a scalar-valued DNN $f(x, \theta)$, where $x$ is a $d$-dimensional input and $\theta$ is the weights and biases. The initial guess is $\theta_0$. Then we have $$f(x, \theta) \approx f(x, \theta_0) + \nabla_\theta f(x, \theta_0)^T (\theta - \theta_0)\tag{1}$$ Consider a quadratic loss function $$L(\theta) = \sum_{i=1}^m (f(x_i, \theta) - y_i)^2$$ Using the Taylor expansion Eq. 1, we have $$L(\theta) \approx \sum_{i=1}^m (f(x_i, \theta_0) + \nabla_\theta f(x_i, \theta_0)^T (\theta - \theta_0) - y_i)^2 \tag{2}$$ Eq. 2 is a quadratic function of $\theta$, and the Hessian matrix is given by $$H = \sum_{i=1}^m \nabla_\theta f(x_i, \theta_0) \nabla_\theta f(x_i, \theta_0)^T$$ Let us consider $\nabla_\theta f(x_i, \theta_0) \nabla_\theta f(x_i, \theta_0)^T$, which is a rank-one matrix. Therefore, one straight-forward corollary is $$\text{rank}(H) \leq m$$ That is, for small data, the rank of $H$ is small, and the rank of $H$ is always no greater than the size of samples. The implication is significant for applications in computational engineering: unlike many machine learning problems, where plenty of training data are available, data are usually scarce in computational engineering (e.g., expensive to collect in experiments). Thus a low rank Hessian is predominate in engineering applications. We can also write $H$ as follows: $$H = X^TX, \quad X = \begin{bmatrix}\nabla_\theta f(x_1, \theta_0)^T \\ \nabla_\theta f(x_2, \theta_0)^T \\ \ldots \\ \nabla_\theta f(x_m, \theta_0)^T\end{bmatrix}$$ We have $\text{rank}(H) = \text{rank}(X^TX) \leq \text{rank}(X)$, that is, the rank of $H$ is upper bounded by the rank of $X$. The rank of $X$ determines on the information provided by $\{x_i\}_{i=1}^m$. For example, if most of $x_i$ are the same or similar, we expect $X$ to have a low rank. We demonstrate the rank of Hessians using the following examples: let $x_i = \frac{i-1}{99}$, $i = 1, 2, \ldots, 100$, and $y_i = \sin(\pi x_i)$. We train a scalar-valued deep neural network $f(x, \theta)$ with 3 hidden neurals, 20 neurons per layer, and tanh activation functions. The loss function is $$L(\theta) = \sum_{i\in\mathcal{I}} (y_i - f(x_i, \theta))^2$$ Here $\mathcal{I}$ is a subset of $\{1,2,\ldots, 100\}$ and linearly spaced between 1 and 100. We train the deep neural network using L-BFGS-B optimizer, and calculate the Hessian matrix $H = \frac{\partial^2 L}{\partial \theta \partial \theta^T}$. We report the number of positive eigenvalues, which is defined as $$\lambda > 10^{-6} \lambda_{\max}$$ Here $\lambda_{\max}$ is the maximum eigenvalue. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/hessian_eigenvalue_rank.png?raw=true) We can see when the dataset size is small, the Hessian rank is the same as the dataset size. The rank reaches plateau when the datasize increases to 6.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
8743
# Overview ADCME is suitable for conducting inverse modeling in scientific computing; specifically, ADCME targets **physics informed machine learning**, which leverages machine learning techniques to solve challenging scientific computing problems. The purpose of the package is to: (1) provide differentiable programming framework for scientific computing based on TensorFlow automatic differentiation (AD) backend; (2) adapt syntax to facilitate implementing scientific computing, particularly for numerical PDE discretization schemes; (3) supply missing functionalities in the backend (TensorFlow) that are important for engineering, such as sparse linear algebra, constrained optimization, etc. Applications include - physics informed machine learning (a.k.a., scientific machine learning, physics informed learning, etc.) - coupled hydrological and full waveform inversion - constitutive modeling in solid mechanics - learning hidden geophysical dynamics - parameter estimation in stochastic processes The package inherits the scalability and efficiency from the well-optimized backend TensorFlow. Meanwhile, it provides access to incorporate existing C/C++ codes via the custom operators. For example, some functionalities for sparse matrices are implemented in this way and serve as extendable "plugins" for ADCME. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/summary.png?raw=true) ADCME is open-sourced with an MIT license. You can find the source codes at [https://github.com/kailaix/ADCME.jl](https://github.com/kailaix/ADCME.jl) Read more about methodology, philosophy, and insights about ADCME: [slides](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/Slide/ADCME.pdf?raw=true). Start with [tutorial](./tutorial.md) to solve your own inverse modeling problems! ## Installation It is recommended to install ADCME via ```julia using Pkg Pkg.add("ADCME") ``` ❗ For windows users, please follow the instructions [here](./windows_installation.md). !!! info In some cases, you may want to install the package and configure the environment manually. Step 1: Install `ADCME` on a computer with Internet access and zip all files from the following paths ```julia julia> using Pkg julia> Pkg.depots() ``` The files will contain all the dependencies. Step 2: Copy the `deps.jl` file from your built ADCME and modify it for your local repository. ```julia using ADCME; print(joinpath(splitdir(pathof(ADCME))[1], "deps/deps.jl")) ``` ## Docker If you have Docker installed on your system, you can try the no-hassle way to install ADCME (you don't even have to install Julia!): ```bash docker run -ti kailaix/adcme ``` See [this guide](./docker.md) for details. ## Troubleshooting for MacOS Here are some common problems you may encounter on a Mac computer: - You may get stuck at building ADCME. It is a [known issue](https://github.com/kailaix/ADCME.jl/issues/64) for some combinations of specific MacOS and Julia versions. You can verify this by checking whether the following step gets stuck: ```julia using PyCall pyimport("tensorflow") ``` One workaround is to use another Julia version; for example, we tested Julia 1.3 on several MacOS versions and it works fine. - You may encounter the following warning when you run `using PyPlot`. > PyPlot is using `tkagg` backend, which is known to cause crashes on macOS (#410); use the MPLBACKEND environment variable to request a different backend. To fix this problem, add the following line immediately after `using PyPlot` ```julia using PyPlot matplotlib.use("agg") ``` The images may not show up but you can save the figure (`savefig("filename.png")`). - Your Julia program may crash when you run `BFGS!` and show the following error message. > Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized OMP: Hint: This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/. This is because `matplotlib` (called by `PyPlot`) and `scipy` (called by `BFGS!`) simultaneously access OpenMP libraries in an unsafe way. To fix this problem, add the following line in the **very beginning** of your script (or run the command right after you enter a Julia prompt) ```julia ENV["KMP_DUPLICATE_LIB_OK"] = true ``` - You may see the following error message when you run `ADCME.precompile()`: > The C compiler > > "/Users/<YourUsername>/.julia/adcme/bin/clang" > > is not able to compile a simple test program. > > It fails with the following output: ... This is because your developer tools are not the one required by `ADCME`. To solve this problem, run the following commands in your terminal: ``` rm /Users/<YourUsername>/.julia/adcme/bin/clang rm /Users/<YourUsername>/.julia/adcme/bin/clang++ ln -s /usr/bin/clang /Users/<YourUsername>/.julia/adcme/bin/clang ln -s /usr/bin/clang++ /Users/<YourUsername>/.julia/adcme/bin/clang++ ``` Here `<YourUsername>` is your user name. ## Optimization ADCME is an all-in-one solver for gradient-based optimization problems. It leverages highly optimized and concurrent/parallel kernels that are implemented in C++ for both the forward computation and gradient computation. Additionally, it provides a friendly user interface to specify the mathematical optimization problem: constructing a computational graph. Let's consider a simple problem: we want to solve the unconstrained optimization problem $$f(\mathbf{x}) = \sum_{i=1}^{n-1}\left[ 100(x_{i+1}-x_i^2) + (1-x_i)^2 \right]$$ where $x_i\in [-10,10]$ and $n=100$. We solve the problem using the L-BFGS-B method. ```julia using ADCME n = 100 x = Variable(rand(n)) # Use `Variable` to mark the quantity that gets updated in optimization f = sum(100((x[2:end]-x[1:end-1])^2 + (1-x[1:end-1])^2)) # Use typical Julia syntax sess = Session(); init(sess) # Create and initialize a session is mandatory for activating the computational graph BFGS!(sess, f, var_to_bounds = Dict(x=>[-10.,10.])) ``` To get the value of $\mathbf{x}$, we use [`run`](@ref) to extract the values ```julia run(sess, x) ``` The above code will return a value close to the optimal values $\mathbf{x} = [1\ 1\ \ldots\ 1]$. !!! info You can also use [`Optimize!`](@ref) to use other optimizers. For example, if you want to use an optimizer, such as `ConjugateGraidient` from the `Optim` package, simply replace `BFGS!` with `Optimize!` and specify the corresponding optimizer ```julia using Optim Optimize!(sess, loss, optimizer = ConjugateGradient()) ``` ## Machine Learning You can also use ADCME to do typical machine learning tasks and leverage the Julia machine learning ecosystem! Here is an example of training a ResNet for digital number recognition. ```julia using MLDatasets using ADCME # load data train_x, train_y = MNIST.traindata() train_x = reshape(Float64.(train_x), :, size(train_x,3))'|>Array test_x, test_y = MNIST.testdata() test_x = reshape(Float64.(test_x), :, size(test_x,3))'|>Array # construct loss function ADCME.options.training.training = placeholder(true) x = placeholder(rand(64, 784)) l = placeholder(rand(Int64, 64)) resnet = Resnet1D(10, num_blocks=10) y = resnet(x) loss = mean(sparse_softmax_cross_entropy_with_logits(labels=l, logits=y)) # train the neural network opt = AdamOptimizer().minimize(loss) sess = Session(); init(sess) for i = 1:10000 idx = rand(1:60000, 64) _, loss_ = run(sess, [opt, loss], feed_dict=Dict(l=>train_y[idx], x=>train_x[idx,:])) @info i, loss_ end # test for i = 1:10 idx = rand(1:10000,100) y0 = resnet(test_x[idx,:]) y0 = run(sess, y0, ADCME.options.training.training=>false) pred = [x[2]-1 for x in argmax(y0, dims=2)] @info "Accuracy = ", sum(pred .== test_y[idx])/100 end ``` ## Contributing Contribution and suggestions are always welcome. In addition, we are also looking for research collaborations. You can submit issues for suggestions, questions, bugs, and feature requests, or submit pull requests to contribute directly. You can also contact the authors for research collaboration.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3355
# Configure MPI for Distributed Computing This section will cover how to configure ADCME for MPI functionalities. ## Configure the MPI backend The first step is to configure your MPI backend. There are many choices depending on your operation system. For example, Windows have Microsoft MPI. There are also OpenMPI and Intel MPI available on most Linux distributions. If you want to use your own MPI backend, you need to locate the MPI libraries, header files, and executable (e.g., `mpirun`). You need to build ADCME with the following environment variable: * `MPI_C_LIBRARIES`: the MPI shared library, for example, on Windows, it may be ``` C:\\Program Files (x86)\\Microsoft SDKs\\MPI\\Lib\\x64\\msmpi.lib ``` On Unix systems, it may be ```/opt/ohpc/pub/compiler/intel-18/compilers_and_libraries_2018.2.199/linux/mpi/intel64/lib/release/libmpi.so``` Note that you must include **the shared library** in the variable. * `MPI_INCLUDE_PATH`: the directory where `mpi.h` is located, for example, ```C:\\Program Files (x86)\\Microsoft SDKs\\MPI\\Include``` Or in a Unix system, we have ```/opt/ohpc/pub/compiler/intel-18/compilers_and_libraries_2018.2.199/linux/mpi/intel64/include/``` The simplest way is to add these variables in the environment variables. For example, in Linux, we can add the following lines in the `~/.bashrc` file. ```bash export MPI_C_LIBRARIES=/opt/ohpc/pub/compiler/intel-18/compilers_and_libraries_2018.2.199/linux/mpi/intel64/lib/libmpi.so export MPI_INCLUDE_PATH=/opt/ohpc/pub/compiler/intel-18/compilers_and_libraries_2018.2.199/linux/mpi/intel64/include/ alias mpirun=/opt/ohpc/pub/compiler/intel-18/compilers_and_libraries_2018.2.199/linux/mpi/intel64/bin/mpirun ``` In the case you do not have an MPI backend, ADCME provides you a convenient way to install MPI by compiling from source. Just run ```julia using ADCME install_openmpi() ``` This should install an OpenMPI library for you. Note this functionality does not work on Windows and is only tested on Linux. ## Build MPI Libraries The MPI functionality of ADCME is not fulfilled at this point. To enable the MPI support, you need to recompile the built-in custom operators. ```julia using ADCME ADCME.precompile(true) ``` At this point, you will be able to use MPI features. ## Build MPI Custom Operators You can also build MPI-enabled custom operators by calling ```julia using ADCME customop(with_mpi=true) ``` In this case, there will be extra lines in `CMakeLists.txt` to setup MPI dependencies. ```julia IF(DEFINED ENV{MPI_C_LIBRARIES}) set(MPI_INCLUDE_PATH $ENV{MPI_INCLUDE_PATH}) set(MPI_C_LIBRARIES $ENV{MPI_C_LIBRARIES}) message("MPI_INCLUDE_PATH = ${MPI_INCLUDE_PATH}") message("MPI_C_LIBRARIES = ${MPI_C_LIBRARIES}") include_directories(${MPI_INCLUDE_PATH}) ELSE() message("MPI_INCLUDE_PATH and/or MPI_C_LIBRARIES is not set. MPI operators are not compiled.") ENDIF() ``` ## Running MPI Applications with Slurm To run MPI applications with slurm, the following commands are useful ```bash sbatch -n 4 -c 8 mpirun -n 4 julia app.jl ``` This specifies 4 tasks and each task uses 8 cores. You can also replace `sbatch` with `salloc`. To diagonose the application, you can also let `mpirun` print out the rank information, e.g., in OpenMPI we have ```bash sbatch -n 4 -c 8 mpirun --report-bindings -n 4 julia app.jl ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
8320
# Julia Custom Operators !!! warning Currently, embedding Julia suffers from multithreading issues: calling Julia from a non-Julia thread is not supported in ADCME. When TensorFlow kernel codes are executed concurrently, it is difficult to invoke the Julia functions. See [issue](https://github.com/kailaix/ADCME.jl/issues/8). In scientific and engineering applications, the operators provided by `TensorFlow` are not sufficient for high performance computing. In addition, constraining oneself to `TensorFlow` environment sacrifices the powerful scientific computing ecosystems provided by other languages such as `Julia` and `Python`. For example, one might want to code a finite volume method for a sophisticated fluid dynamics problem; it is hard to have the flexible syntax to achieve this goal, obtain performance boost from existing fast solvers such as AMG, and benefit from many other third-party packages within `TensorFlow`. This motivates us to find a way to "plugin" custom operators to `TensorFlow`. We have already introduced how to incooperate `C++` custom operators. For many researchers, they usually prototype the solvers in a high level language such as MATLAB, Julia or Python. To enjoy the parallelism and automatic differentiation feature of `TensorFlow`, they need to port them into `C/C++`. However, this is also cumbersome sometimes, espeically the original solvers depend on many packages in the high-level language. We solve this problem by incorporating `Julia` functions directly into `TensorFlow`. That is, for any `Julia` functions, we can immediately convert it to a `TensorFlow` operator. At runtime, when this operator is executed, the corresponding `Julia` function is executed. That implies we have the `Julia` speed. Most importantly, the function is perfectly compitable with the native `Julia` environment; third-party packages, global variables, nested functions, etc. all work smoothly. Since `Julia` has the ability to call other languages in a quite elegant and simple manner, such as `C/C++`, `Python`, `R`, `Java`, this means it is possible to incoporate packages/codes from any supported languages into `TensorFlow` ecosystem. We need to point out that in `TensorFlow`, `tf.numpy_function` can be used to convert a `Python` function to a `TensorFlow` operator. However, in the runtime, the speed for this operator falls back to `Python` (or `numpy` operation for related parts). This is a drawback. The key for implementing the mechanism is embedding `Julia` in `C++`. Still we need to create a `C++` dynamic library for `TensorFlow`. However, the library is only an interface for invoking `Julia` code. At runtime, `jl_get_function` is called to search for the related function in the main module. `C++` arrays, which include all the relavant data, are passed to this function through `jl_call`. It requires routine convertion from `C++` arrays to `Julia` array interfaces `jl_array_t*`. However, those bookkeeping tasks are programatic and possibly will be automated in the future. Afterwards,`Julia` returns the result to `C++` and thereafter the data are passed to the next operator. There are two caveats in the implementation. The first is that due to GIL of Python, we must take care of the thread lock while interfacing with `Julia`. This was done by putting a guard around th e`Julia` interface ```c PyGILState_STATE py_threadstate; py_threadstate = PyGILState_Ensure(); // code here PyGILState_Release(py_threadstate); ``` The second is the memory mangement of `Julia` arrays. This was done by defining gabage collection markers explicitly ```julia jl_value_t **args; JL_GC_PUSHARGS(args, 6); // args can now hold 2 `jl_value_t*` objects args[0] = ... args[1] = ... # do something JL_GC_POP(); ``` This technique is remarkable and puts together one of the best langages in scientific computing and that in machine learning. The work that can be built on `ADCME` is enormous and significantly reduce the development time. ## Example Here we present a simple example. Suppose we want to compute the Jacobian of a two layer neural network $\frac{\partial y}{\partial x}$ $$y = W_2\tanh(W_1x+b_1)+b_2$$ where $x, b_1, b_2, y\in \mathbb{R}^{10}$, $W_1, W_2\in \mathbb{R}^{100}$. In `TensorFlow`, this can be done by computing the gradients $\frac{\partial y_i}{\partial x}$ for each $i$. In `Julia`, we can use `ForwardDiff` to do it automatically. ```julia function twolayer(J, x, w1, w2, b1, b2) f = x -> begin w1 = reshape(w1, 10, 10) w2 = reshape(w2, 10, 10) z = w2*tanh.(w1*x+b1)+b2 end J[:] = ForwardDiff.jacobian(f, x)[:] end ``` To make a custom operator, we first generate a wrapper ```julia using ADCME mkdir("TwoLayer") cd("TwoLayer") customop() ``` We modify `custom_op.txt` ``` TwoLayer double x(?) double w1(?) double b1(?) double w2(?) double b2(?) double y(?) -> output ``` and run ```julia customop() ``` Three files are generated`CMakeLists.txt`, `TwoLayer.cpp` and `gradtest.jl`. Now create a new file `TwoLayer.h` ```c++ #include "julia.h" #include "Python.h" void forward(double *y, const double *x, const double *w1, const double *w2, const double *b1, const double *b2, int n){ PyGILState_STATE py_threadstate; py_threadstate = PyGILState_Ensure(); jl_value_t* array_type = jl_apply_array_type((jl_value_t*)jl_float64_type, 1); jl_value_t **args; JL_GC_PUSHARGS(args, 6); // args can now hold 2 `jl_value_t*` objects args[0] = (jl_value_t*)jl_ptr_to_array_1d(array_type, y, n*n, 0); args[1] = (jl_value_t*)jl_ptr_to_array_1d(array_type, const_cast<double*>(x), n, 0); args[2] = (jl_value_t*)jl_ptr_to_array_1d(array_type, const_cast<double*>(w1), n*n, 0); args[3] = (jl_value_t*)jl_ptr_to_array_1d(array_type, const_cast<double*>(w2), n*n, 0); args[4] = (jl_value_t*)jl_ptr_to_array_1d(array_type, const_cast<double*>(b1), n, 0); args[5] = (jl_value_t*)jl_ptr_to_array_1d(array_type, const_cast<double*>(b2), n, 0); auto fun = jl_get_function(jl_main_module, "twolayer"); if (fun==NULL) jl_errorf("Function not found in Main module."); else jl_call(fun, args, 6); JL_GC_POP(); if (jl_exception_occurred()) printf("%s \n", jl_typeof_str(jl_exception_occurred())); PyGILState_Release(py_threadstate); } ``` Most of the codes have been explanined except `jl_ptr_to_array_1d`. This function generates a `Julia` array wrapper from `C++` arrays. The last argument `0` indicates that `Julia` is not responsible for gabage collection. `TwoLayer.cpp` should also be modified according to [https://github.com/kailaix/ADCME.jl/blob/master/examples/twolayer_jacobian/TwoLayer.cpp](https://github.com/kailaix/ADCME.jl/blob/master/examples/twolayer_jacobian/TwoLayer.cpp). Finally, we can test in `gradtest.jl` ```julia two_layer = load_op("build/libTwoLayer", "two_layer") w1 = rand(100) w2 = rand(100) b1 = rand(10) b2 = rand(10) x = rand(10) J = rand(100) twolayer(J, x, w1, w2, b1, b2) y = two_layer(constant(x), constant(w1), constant(b1), constant(w2), constant(b2)) sess = Session(); init(sess) J0 = run(sess, y) @show norm(J-J0) ``` ## Embedded in Modules If the custom operator is intended to be used in a precompiled module, we can load the dynamic library at initialization ```julia global my_op function __init__() global my_op = load_op("$(@__DIR__)/path/to/libMyOp", "my_op") end ``` The corresponding `Julia` function called by `my_op` must be exported in the module (such that it is in the Main module when invoked). One such example is given in [MyModule](https://github.com/kailaix/ADCME.jl/blob/master/examples/JuliaOpModule.jl) ## Quick Reference for Implementing C++ Custom Operators in ADCME 1. Set output shape ``` c->set_output(0, c->Vector(n)); c->set_output(0, c->Matrix(m, n)); c->set_output(0, c->Scalar()); ``` 2. Names `.Input` and `.Ouput` : names must be in lower case, no `_`, only letters. 3. TensorFlow Input/Output to TensorFlow Tensors ``` grad.vec<double>(); grad.scalar<double>(); grad.matrix<double>(); grad.flat<double>(); ``` Obtain flat arrays ``` grad.flat<double>().data() ``` 4. Scalars Allocate scalars using TensorShape() 5. Allocate Shapes Although you can use -1 for shape reference, you must allocate exact shapes in `Compute`
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
7143
# Uncertainty Quantification of Neural Networks in Physics Informed Learning using MCMC In this section, we consider uncertainty quantification of a neural network prediction using Markov Chain Monte Carlo. The idea is that we use MCMC to sample from the posterior distribution of the **neural network weights and biases**. We consider an inverse problem, where the governing equation is a heat equation in an 1D interval $[0,1]$. The simulation is conducted over a time horizon $[0,1]$. We record the temperature $u(0,t)$ on the left of the interval. The diffusivity coefficient $\kappa(x)$ is assumed unknown and will be estimated from the temperature record. $\kappa(x)$ is approximated by a neural network $$\kappa(x) = \mathcal{NN}_{w}(x)$$ Here $w$ is the neural network weights and biases. First of all, we define a function `simulate` that takes in the diffusivity coefficient, and returns the solution of the PDE. File `heateq.jl`: ```julia using ADCME using PyPlot using ADCME using PyCall using ProgressMeter using Statistics using MAT using DelimitedFiles mpl = pyimport("tikzplotlib") function simulate(κ) κ = constant(κ) m = 50 n = 50 dt = 1 / m dx = 1 / n F = zeros(m + 1, n) xi = LinRange(0, 1, n + 1)[1:end - 1] f = (x, t)->exp(-50(x - 0.5)^2) for k = 1:m + 1 t = (k - 1) * dt F[k,:] = dt * f.(xi, t) end λ = κ*dt/dx^2 mask = ones(n-1) mask[1] = 2.0 A = spdiag(n, -1=>-λ[2:end], 0=>1+2λ, 1=>-λ[1:end-1].*mask) function condition(i, u_arr) i <= m + 1 end function body(i, u_arr) u = read(u_arr, i - 1) rhs = u + F[i] u_next = A \ rhs u_arr = write(u_arr, i, u_next) i + 1, u_arr end F = constant(F) u_arr = TensorArray(m + 1) u_arr = write(u_arr, 1, zeros(n)) i = constant(2, dtype = Int32) _, u = while_loop(condition, body, [i, u_arr]) u = set_shape(stack(u), (m + 1, n)) end ``` We set up the geometry as follows ```julia n = 50 xi = LinRange(0, 1, n + 1)[1:end - 1] x = Array(LinRange(0, 1, n+1)[1:end-1]) ``` # Forward Computation The forward computation is run with an analytical $\kappa(x)$, given by $$\kappa(x) = 5x^2 + \exp(x) + 1.0$$ We can generate the code using the following code: ```julia include("heateq.jl") κ = @. 5x^2 + exp(x) + 1.0 out = simulate(κ) obs = out[:,1] sess = Session(); init(sess) obs_ = run(sess, obs) writedlm("obs.txt", run(sess, out)) o = run(sess, out) pcolormesh( (0:49)*1/50, (0:50)*1/50, o, rasterized=true) xlabel("\$x\$") ylabel("\$t\$") savefig("solution.png") figure() plot((0:50)*1/50, obs_) xlabel("\$t\$") ylabel("\$u(0,t)\$") savefig("obs.png") figure() plot(x, κ) xlabel("\$x\$") ylabel("\$\\kappa\$") savefig("kappa.png") ``` | Solution | Observation | $\kappa(x)$ | | ------------------- | -------------- | ---------------- | | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mcmc/./solution.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mcmc/./obs.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mcmc/./kappa.png?raw=true) | # Inverse Modeling Although it is possible to use MCMC to solve the inverse problem, the convergence can be very slow if our initial guess is far away from the solution. Therefore, we first solve the inverse problem by solving a PDE-constrained optimization problem. We use the [`BFGS!`](@ref) optimizer. Note we do not need to solve the inverse problem very accurately because in Bayesian approaches, the solution is interpreted as a probability, instead of a point estimation. ```julia include("heateq.jl") using PyCall using Distributions using Optim using LineSearches reset_default_graph() using Random; Random.seed!(2333) w = Variable(ae_init([1,20,20,20,1]), name="nn") κ = fc(x, [20,20,20,1], w, activation="tanh") + 1.0 u = simulate(κ) obs = readdlm("obs.txt") loss = sum((u[:,1]-obs[:,1])^2) loss = loss*1e10 sess = Session(); init(sess) BFGS!(sess, loss) κ1 = @. 5x^2 + exp(x) + 1.0 plot(x, run(sess, κ), "+--", label="Estimation") plot(x, κ1, label="Reference") legend() savefig("inversekappa.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mcmc/./inversekappa.png?raw=true) We also save the solution for MCMC ```julia matwrite("nn.mat", Dict("w"=>run(sess, w))) ``` # Uncertainty Quantification Finally, we are ready to conduct uncertainty quantification using MCMC. We will use the `Mamba` package, which provides MCMC utilities. We will use the random walk MCMC because of its simplicity. ```julia include("heateq.jl") using PyCall using Mamba using ProgressMeter using PyPlot ``` The neural network weights and biases are conveniently expressed as a `placeholder`. This allows us to `sample` from a distribution of weights and biases easily. ```julia w = placeholder(ae_init([1,20,20,20,1])) κ = fc(x, [20,20,20,1], w, activation="tanh") + 1.0 u = simulate(κ) obs = readdlm("obs.txt") sess = Session(); init(sess) w0 = matread("nn.mat")["w"] ``` The log likelihood function (up to an additive constant) is given by $$-{{{{\left\| {{u_{{\rm{est}}}}(w) - {u_{{\rm{obs}}}}} \right\|}^2}} \over {2{\sigma ^2}}} - {{{{\left\| w \right\|}^2}} \over {2\sigma _w^2}}$$ The absolute value of $\sigma$ and $\sigma_w$ does not really matter. Only their ratios matter. Let's fix $\sigma = 1$. What is the interpretation of $\sigma_w$? A large $\sigma_w$ means very wide prior, and a small $\sigma_w$ means a very narrow prior. The relative value $\sigma/\sigma_w$ implies **the strength of prior influence**. Typically, we can choose a very large $\sigma_w$ so that the prior does not influence the posterior too much. ```julia σ = 1.0 σx = 1000000.0 function logf(x) y = run(sess, u, w=>x) -sum((y[:,1] - obs[:,1]).^2)/2σ^2 - sum(x.^2)/2σx^2 end n = 5000 burnin = 1000 sim = Chains(n, length(w0)) ``` A second important parameter is the scale (0.002 in the following code). It controls **the uncertainty bound width** via the way we generate the random numbers. ```julia θ = RWMVariate(copy(w0), 0.001ones(length(w0)), logf, proposal = SymUniform) ``` An immediate consequence is that the smaller the scale factor we use, the narrower the uncertainty band will be. In sum, we have two important parameters--relative standard deviation and the scaling factor--to control our uncertainty bound. ```julia @showprogress for i = 1:n sample!(θ) sim[i,:,1] = θ end v = sim.value K = zeros(length(κ), n-burnin) @showprogress for i = 1:n-burnin ws = v[i+burnin,:,1] K[:,i] = run(sess, κ, w=>ws) end kappa = mean(K, dims=2)[:] k_std = std(K, dims=2)[:] figure() κ1 = @. 5x^2 + exp(x) + 1.0 PyPlot.plot(x, kappa, "--", label="Posterior Mean") PyPlot.plot(x, κ1, "r", label="True") PyPlot.plot(x, run(sess, κ, w=>w0), label="Point Estimation") fill_between(x, kappa-3k_std, kappa+3k_std, alpha=0.5) legend() xlabel("x") ylabel("\$\\kappa(x)\$") savefig("kappa_mcmc.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mcmc/./kappa_mcmc.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
12010
# Distributed Scientific Machine Learning using MPI Many large-scale scientific computing involves parallel computing. Among many parallel computing models, the MPI is one of the most popular models. In this section, we describe how ADCME can work with MPI for solving inverse modeling. Specifically, we describe how gradients can be back-propagated via MPI function calls. !!! info Message Passing Interface (MPI) is an interface for parallel computing based on message passing models. In the message passing model, a master process assigns work to workers by passing them a message that describes the work. The message may be data or meta information (e.g., operations to perform). A consensus was reached around 1992 and the MPI standard was born. MPI is a definition of interface, and the implementations are left to hardware venders. ## MPI Support in ADCME The ADCME solution to distributed computing for scientific machine learning is to provide a set of "data communication" nodes in the computational graph. Each machine (MPI processor) runs an identical computational graph. The computational nodes are executed independently on each processor, and the data communication nodes need to synchronize among different processors. These data communication nodes are implemented using MPI APIs. They are not necessarily blocking operations, but because ADCME respects the data dependency of computation, they act like blocking operations and the child operators are executed only when data communication is finished. For example, in the following example, ```julia b = mpi_op(a) c = custom_op(b) ``` even though `mpi_op` and `custom_op` can overlap, ADCME still sequentially execute these two operations. This blocking behavior simplifies the synchronization logic as well as the implementation of gradient back-propagation while harming little performance. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi1.PNG?raw=true) ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi2.PNG?raw=true) ADCME provides a set of commonly used MPI operators. See [MPI Operators](https://kailaix.github.io/ADCME.jl/dev/api/#MPI). Basically, they are * [`mpi_init`](@ref), [`mpi_finalize`](@ref): Initialize and finalize MPI session. * [`mpi_rank`](@ref), [`mpi_size`](@ref): Get the MPI rank and size. * [`mpi_sum`](@ref), [`mpi_bcast`](@ref): Sum and broadcast tensors in different processors. * [`mpi_send`](@ref), [`mpi_recv`](@ref): Send and receive operators. The above two set of operators support automatic differentiation. They were implemented with MPI adjoint methods, which have existed in academia for decades. [This section](./installmpi.md) shows how to configure MPI for distributed computing in ADCME. ## Limitations Despite that the provided `mpi_*` operations meet most needs, some sophisticated data communication operations may not be easily expressed using these APIs. For example, when solving the Poisson's equation on a uniform grid, we may decompose the domain into many squares, and two adjacent squares exchange data in each iteration. A sequence of `mpi_send`, `mpi_recv` will likely cause deadlock. Just like when it is difficult to use automatic differentiation to implement a forward computation and its gradient back-propagation, we resort to custom operators, it is the same case for MPI. We can design a specialized custom operator for data communication. To resolve the deadlock problem, we found the asynchronous sending, followed by asynchronous receiving, and then followed by waiting, a very general and convenient way to implement custom operators. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpiadjoint.png?raw=true) ## Implementing Custom Operators using MPI We can also make custom operators with MPI. Let us consider computing $$f(\theta) = \sum_{i=1}^n f_i(\theta)$$ Each $f_i$ is a very expensive function so it makes sense to use MPI to split the jobs on different processors. To simplify the problem, we consider $$f(\theta) = f_1(\theta) + f_2(\theta) + f_3(\theta) + f_4(\theta)$$ where $f_i(\theta) = \theta^{i-1}$. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi.png?raw=true) Using the ADCME MPI API, we have the following code (`test_simple.jl`) ```julia using ADCME mpi_init() θ = placeholder(ones(1)) fθ = mpi_bcast(θ) l = fθ^mpi_rank() L = sum(mpi_sum(l)) g = gradients(L, θ) sess = Session(); init(sess) L_ = run(sess, L, θ=>ones(1)*2.0) g_ = run(sess, g, θ=>ones(1)*2.0) if mpi_rank()==0 @info L_, g_ end mpi_finalize() ``` We run the program with 4 processors ```bash mpirun -n 4 julia test_simple.jl ``` We have the results: ```bash [ Info: (15.0, [17.0]) ``` ## Hybrid Programming Each MPI processor can communicate data between processes, which do not share memory. Within each process, ADCME also allows for multi-threaded parallelism with a shared-memory model. For example, we can use OpenMP to accelerate matrix vector production. We can also use a threadpool per process to manage more complex and dynamic parallel tasks. However, the hybrid model brings challenges to communicate data using MPI. When we post MPI calls from different threads within the same process, we need to prevent data races and match the corresponding broadcast and collective operators. For example, without any guarantee on the ordering of concurrent MPI calls, we might incorrectly matched a send operator with a gather operator. In ADCME, we adopt the dependency injection technique: we explicitly serialize the MPI calls by adding ghost dependencies. For example, in the following computational graph, originally, Operator 2 and Operator 3 are independent. In a concurrent computing environment, Rank 0 may execute Operator 2 first and then Operator 3, while Rank 1 executes Operator 3 first and then Operator 2. Then there is a mismatch of the MPI call (race condition): Operator 2 in Rank 0 coacts with Operator 3 in Rank 1, and Operator 3 in Rank 0 coacts with Operator 2 in Rank 1. To resolve the data race issue, we can explicitly make Operator 3 depend on Operator 2. In this way, we can ensure that **the MPI calls** Operator 1, 2, and 3 are executed in order. Note this technique sacrifices some concurrency (Operator 2 and Operator 3 cannot be executed concurrently), but the concurrency of most non-MPI operators is still preserved. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/dependency_injection.PNG?raw=true) ## Optimization For solving inverse problems using distributed computing, an MPI-capable optimizer is required. The ADCME solution to distributed optimization is that the master machine holds, distributes and updates the optimizable variables. The gradients are calculated in the same device where the corresponding forward computation is done. Therefore, for a given serial optimizer, we can refactor it to a distributed one by letting worker nodes wait for instructions from the master node to compute either the objective function or the gradient. This idea is implemented in the [`ADOPT.jl`](https://github.com/kailaix/ADOPT.jl) package, a customized version of [`Optim.jl`](https://github.com/JuliaNLSolvers/Optim.jl). ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpiopt.png?raw=true) In the following, we try to solve $$1+\theta +\theta^2+\theta^3 = 2$$ using MPI-enabled LBFGS optimizer. ```julia using ADCME using ADOPT mpi_init() θ = placeholder(ones(1)) fθ = mpi_bcast(θ) l = fθ^mpi_rank() L = (sum(mpi_sum(l)) - 2.0)^2 sess = Session(); init(sess) f = x->run(sess, L, θ=>x) g! = (G, x)->(G[:] = run(sess, g, θ=>x)) options = Options() if mpi_rank()==0 options.show_trace = true end mpi_optimize(f, g!, ones(1), ADOPT.LBFGS(), options) if mpi_rank()==0 @info result.minimizer, result.minimum end mpi_finalize() ``` The expected output is ``` Iter Function value Gradient norm 0 4.000000e+00 2.400000e+01 * time: 0.00012421607971191406 1 6.660012e-01 7.040518e+00 * time: 1.128843069076538 2 7.050686e-02 1.322515e+00 * time: 1.210536003112793 3 2.254820e-03 2.744374e-01 * time: 1.2910940647125244 4 4.319834e-07 3.908046e-03 * time: 1.3442070484161377 5 2.894433e-16 1.011994e-07 * time: 1.3975300788879395 6 0.000000e+00 0.000000e+00 * time: 1.4507441520690918 [ Info: ([0.5436890126920764], 0.0) ``` ### Reduce Sum ```julia using ADCME mpi_init() r = mpi_rank() a = constant(Float64.(Array(1:10) * r)) b = mpi_sum(a) L = sum(b) g = gradients(L, a) sess = Session(); init(sess) v, G = run(sess, [b,g]) mpi_finalize() ``` ### Broadcast ```julia using ADCME mpi_init() r = mpi_rank() a = constant(ones(10) * r) b = mpi_bcast(a, 3) L = sum(b^2) L = mpi_sum(L) g = gradients(L, a) sess = Session(); init(sess) v, G = run(sess, [b, G]) mpi_finalize() ``` ### Send and Receive ```julia # mpiexec.exe -n 4 julia .\mpisum.jl using ADCME mpi_init() r = mpi_rank() a = constant(ones(10) * r) a = mpi_sendrecv(a, 0, 2) L = sum(a^2) g = gradients(L, a) sess = Session(); init(sess) v, G = run(sess, [a,g]) mpi_finalize() ``` [`mpi_sendrecv`](@ref) is a lightweight wrapper for [`mpi_send`](@ref) followed by [`mpi_recv`](@ref). Equivalently, we have ```julia if r==2 global a a = mpi_send(a, 0) end if r==0 global a a = mpi_recv(a,2) end ``` ## Solving the Heat Equation In this section, we consider solving the Poisson equation $$\frac{\partial u(x,y)}{\partial t} =\kappa(x,y) \Delta u(x,y) \quad (x,y) \in [0,1]^2$$ We discretize the above PDE with an explicit finite difference scheme $$\frac{u_{ij}^{n+1} - u^n_{ij}}{\Delta t} = \kappa_{ij} \frac{u_{i+1,j}^n + u_{i,j+1}^n + u_{i,j-1}^n + u_{i-1,j}^n - 4u_{ij}^n}{h^2} \tag{1}$$ To mitigate the computational and memory requirement, we use MPI APIs to implement a domain decomposition solver for the heat equation. The mesh is divided into $N\times M$ rectangle patches. We implemented two operation: 1. `heat_op`, which updates $u_{ij}^{n+1}$ using Equation 1 for a specific patch, with state variables $u_{ij}^n$ in the current rectangle patch and on the boundary (from adjacent patches). 2. `data_exchange`, which is a data communication operator that sends the boundary data to adjacent patches and receives boundary data from other patches. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/dataexchange.png?raw=true) Then the time marching scheme can be implemented with the following code: ```julia function heat_update_u(u, kv, f) r = mpi_rank() I = div(r, M) J = r%M up_ = constant(zeros(m)) down_ = constant(zeros(m)) left_ = constant(zeros(n)) right_ = constant(zeros(n)) up = constant(zeros(m)) down = constant(zeros(m)) left = constant(zeros(n)) right = constant(zeros(n)) (I>0) && (up = u[1,:]) (I<N-1) && (down = u[end,:]) (J>0) && (left = u[:,1]) (J<M-1) && (right = u[:,end]) left_, right_, up_, down_ = data_exchange(left, right, up, down) u = heat(u, kv, up_, down_, left_, right_, f, h, Δt) end ``` An MPI-capable heat equation time integrator can be implemented with ```julia function heat_solver(u0, kv, f, NT=10) f = constant(f) function condition(i, u_arr) i<=NT end function body(i, u_arr) u = read(u_arr, i) u_new = heat_update_u(u, kv, f[i]) # op = tf.print(r, i) # u_new = bind(u_new, op) i+1, write(u_arr, i+1, u_new) end i = constant(1, dtype =Int32) u_arr = TensorArray(NT+1) u_arr = write(u_arr, 1, u0) _, u = while_loop(condition, body, [i, u_arr]) reshape(stack(u), (NT+1, n, m)) end ``` For example, we can implement the heat solver with diffusivity coefficient $K_0$ and initial condition $u_0$ with the following code: ```julia K = placeholder(K0) a_ = mpi_bcast(K) sol = heat_solver(u0, K_, F, NT) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
13242
# MPI Benchmarks The purpose of this section is to present the distributed computing capability of ADCME via MPI. With the MPI operators, ADCME is well suited to parallel implementations on clusters with very large numbers of cores. We benchmark individual operators as well as the gradient calculation as a whole. Particularly, we use two metrics for measuring the scaling of the implementation: 1. **weak scaling**, i.e., how the solution time varies with the number of processors for a fixed problem size per processor. 2. **strong scaling**, i.e., the speedup for a fixed problem size with respect to the number of processors, and is governed by Amdahl's law. For most operators, ADCME is just a wrapper of existing third-party parallel computing software (e.g., Hypre). However, for gradient back-propagation, some functions may be missing and are implemented at our own discretion. For example, in Hypre, distributed sparse matrices split into multiple stripes, where each MPI rank owns a stripe with continuous row indices. In gradient back-propagation, the transpose of the original matrix is usually needed and such functionalities are missing in Hypre as of September 2020. The MPI programs are verified with serial programs. Note that ADCME uses hybrid parallel computing models, i.e., a mixture of multithreading programs and MPI communication; therefore, one MPI processor may be allocated multiple cores. ## Transposition Matrix transposition is an operator that are common in gradient back-propagation. For example, assume the forward computation is ($x$ is the input, $y$ is the output, and $A$ is a matrix) $$y(\theta) = Ax(\theta) \tag{1}$$ Given a loss function $L(y)$, we have $$\frac{\partial L(y(x))}{\partial x} = \frac{\partial L(y)}{\partial y}\frac{\partial y(x)}{\partial x} = \frac{\partial L(y)}{\partial y} A$$ Note that $\frac{\partial L(y)}{\partial y}$ is a row vector, and therefore, $$\left(\frac{\partial L(y(x))}{\partial x}\right)^T = A^T \left(\frac{\partial L(y)}{\partial y} \right)^T$$ requires a matrix vector multiplication, where the matrix is $A^T$. Given that Equation 1 is ubiquitous in numerical PDE schemes, a distributed implementation of parallel transposition is very important. ADCME uses the same distributed sparse matrix representation as Hypre. In Hypre, each MPI processor own a set of rows of the whole sparse matrix. The rows have continuous indices. To transpose the sparse matrix in a parallel environment, we first split the matrices in each MPI processor into blocks and then use `MPI_Isend`/`MPI_Irecv` to exchange data. Finally, we transpose the matrices in place for each block. Using this method, we obtained a CSR representation of the transposed matrix. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/mpi_transpose.png?raw=true) The following results shows the scalability of the transposition operator of [`mpi_SparseTensor`](@ref). In the plots, we show the strong scaling for a fixed matrix size of $25\text{M} \times 25\text{M}$ as well as the weak scaling, where each MPI processor owns $300^2=90000$ rows. | Strong Scaling | Weak Scaling | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/transpose_strong.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/transpose_weak.png?raw=true) | ## Poisson's Equation This example presents the overhead of ADCME MPI operators when the main computation is carried out through a third-party library (Hypre). We solve the Poisson's equation $$\nabla \cdot (\kappa(x, y) \nabla u(x,y)) = f(x, y), (x,y) \in \Omega \quad u(x,y) = 0, (x,y) \in \partial \Omega$$ Here $\kappa(x, y)$ is approximated by a neural network $\kappa_\theta(x,y) = \mathcal{NN}_\theta(x,y)$, and the weights and biases $\theta$ are broadcasted from the root processor. We express the numerical scheme as a computational graph is: ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/poisson_cg.png?raw=true) The domain decomposition is as follows: ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/grid.png?raw=true) The domain $[0,1]^2$ is divided into $N\times N$ blocks, and each block contains $n\times n$ degrees of freedom. The domain is padded with boundary nodes, which are eliminated from the discretized equation. The grid size is $$h = \frac{1}{Nn+1}$$ We use a finite difference method for discretizing the Poisson's equation, which has the following form $$\begin{aligned}(\kappa_{i+1, j}+\kappa_{ij})u_{i+1,j} + (\kappa_{i-1, j}+\kappa_{ij})u_{i-1,j} &\\ + (\kappa_{i,j+1}+\kappa_{ij})u_{i,j+1} + (\kappa_{i, j-1}+\kappa_{ij})u_{i,j-1} &\\ -(\kappa_{i+1, j}+\kappa_{i-1, j}+\kappa_{i,j+1}+\kappa_{i, j-1}+4\kappa_{ij})u_{ij} &\\ = 2h^2f_{ij} \end{aligned}$$ We show the strong scaling with a fixed problem size $1800 \times 1800$ (mesh size, which implies the matrix size is around 32 million). We also show the weak scaling where each MPI processor owns a $300\times 300$ block. For example, a problem with 3600 processors has the problem size $90000\times 3600 \approx 0.3$ billion. ### Weak Scaling We first consider the weak scaling. The following plots shows the runtime for forward computation as well as gradient back-propagation. | Speedup | Efficiency | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/speedup_core14.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/efficiency_core14.png?raw=true) | There are several important observations: 1. By using more cores per processor, the runtime is reduced significantly. For example, the runtime for the backward is reduced to around 10 seconds from 30 seconds by switching from 1 core to 4 cores per processor. 2. The runtime for the backward is typically less than twice the forward computation. Although the backward requires solve two linear systems (one of them is in the forward computation), the AMG linear solver in the back-propagation may converge faster, and therefore costs less than the forward. Additionally, we show the overhead, which is defined as the difference between total runtime and Hypre linear solver time, of both the forward and backward calculation. | 1 Core | 4 Cores | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/overhead_core1.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/overhead_core4.png?raw=true) | We see that the overhead is quite small compared to the total time, especially when the problem size is large. This indicates that the ADCME MPI implementation is very effective. ### Strong Scaling Now we consider the strong scaling. In this case, we fixed the whole problem size and split the mesh onto different MPI processors. The following plots show the runtime for the forward computation and the gradient back-propagation | Forward | Bckward | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/serial_forward.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/serial_backward.png?raw=true) | The following plots show the speedup and efficiency | 1 Core | 4 Cores | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/time_core1.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/time_core4.png?raw=true) | We can see that the 4 cores have smaller runtime compared to 1 core. Interested readers can go to [here](https://github.com/kailaix/ADCME.jl/tree/master/docs/src/assets/Codes/MPI) for implementations. To compile the codes, make sure that MPI and Hypre is available (see [`install_openmpi`](@ref) and [`install_hypre`](@ref)) and run the following script: ```julia using ADCME change_directory("ccode/build") ADCME.cmake() ADCME.make() ``` ## Acoustic Seismic Inversion In this example, we consider the acoustic wave equation with perfectly matched layer (PML). The governing equation for the acoustic equation is $$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (c^2 \nabla u)$$ where $u$ is the displacement, $f$ is the source term, and $c$ is the spatially varying acoustic velocity. In the inverse problem, only the wavefield $u$ on the surface is observable, and we want to use this information to estimate $c$. The problem is usually ill-posed, so regularization techniques are usually used to constrain $c$. One approach is to represent $c$ by a deep neural network $$c(x,y) = \mathcal{NN}_\theta(x,y)$$ where $\theta$ is the neural network weights and biases. The loss function is formulated by the square loss for the wavefield on the surface. | Model $c$ | Wavefield | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/acoustic_model.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/acoustic_wavefield.gif?raw=true) | To implement an MPI version of the acoustic wave equation propagator, we use [`mpi_halo_exchange`](@ref), which is implemented using MPI and performs the halo exchange mentioned in the last example for both wavefields and axilliary fields. This function communicates the boundary information for each block of the mesh. The following plot shows the computational graph for the numerical simulation of the acoustic wave equation ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/wave.png?raw=true) The following plot shows the strong scaling and weak scaling of our implementation. Each processor consists of 32 processors, which are used at the discretion of ADCME's backend, i.e., TensorFlow. The strong scaling result is obtained by using a $1000\times 1000$ grid and 100 times steps. For the weak scaling result, each MPI processor owns a $100\times 100$ grid, and the total number of steps is 2000. It is remarkable that even though we increase the number of processors from 1 to 100, the total time only increases 2 times in the weak scaling. | Strong Scaling | Weak Scaling | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/acoustic_time_forward_and_backward.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/acoustic_weak.png?raw=true) | We also show the speedup and efficiency for the strong scaling case. We can achieve more than 20 times acceleration by using 100 processors (3200 cores in total) and the trend is not slowing down at this scale. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/acoustic_speedup_and_efficiency.png?raw=true) ## Elastic Seismic Inversion In the last example, we consider the elastic wave equation $$\begin{aligned} \rho \frac{\partial v_i}{\partial t} &= \sigma_{ij,j} + \rho f_i \\ \frac{\partial \sigma_{ij}}{\partial t} &= \lambda v_{k, k} + \mu (v_{i,j}+v_{j,i}) \end{aligned}\tag{2}$$ where $v$ is the velocity, $\sigma$ is the stress tensor, $\rho$ is the density, and $\lambda$ and $\mu$ are the Lamé constants. Similar to the acoustic equation, we use the PML boundary conditions and have observations on the surface. However, the inversion parameters are now spatially varying $\rho$, $\lambda$ and $\mu$. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/elastic_wavefield.gif?raw=true) As an example, we approximate $\lambda$ by a deep neural network $$\lambda(x,y) = \mathcal{NN}_\theta(x,y)$$ and the other two parameters are kept fixed. We use the same geometry settings as the acoustic wave equation case. Note that elastic wave equation has more state variables as well as auxilliary fields, and thus is more memory demanding. The huge memory cost calls for a distributed framework, especially for large-scale problems. Additionally, we use fourth-order finite difference scheme for discretizing Equation 2. This scheme requires us to exchange two layers on the boundaries for each block in the mesh. This data communication is implemented using MPI, i.e., [`mpi_halo_exchange2`](@ref). The following plots show the strong and weak scaling. Again, we see that the weak scaling of the implementation is quite effective because the runtime increases mildly even if we increase the number of processors from 1 to 100. | Strong Scaling | Weak Scaling | |----------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/elastic_time_forward_and_backward.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/elastic_weak.png?raw=true) | The following plots show the speedup and efficiency for the strong scaling. We can achieve more than 20 times speedup when using 100 processors. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/mpi/elastic_speedup_and_efficiency.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
7668
# Understand the Multi-threading Model Multi-threading is a very important technique for accelerating simulations in ADCME. Through this section, we look into the multi-threading models of ADCME's backend, TensorFlow. Let us start with some basic concepts related to CPUs. ## Processes, Threads, and Cores We often hear about processes and threads when talking about multi-threading. In a word, a process is a program in execution. A process may invoke multiple threads. A thread can be viewed as a scheduler for executing each line of codes in order. It tells the CPU to perform an instruction. The biggest difference is that different processes do not share memory with each other. But different threads **within the same process** has the same memory space. Up till now, processes and threads are **logical** concepts, which are not bound to the physical devices. Cores are physical concepts. Nowadays, each CPU contains multiple cores. Cores contain workers that actually perform computation, and these workers are called ALUs (arithmetic logic units). To use these ALUs, we need some schedulers that tell the CPU/cores to perform certain tasks. This is done by **hardware threads**. Typically when we want to do some computation, we need to load data first and then perform calculations on ALUs. The data loading process is also taken care by the hardware threads. Therefore, it is possible that the ALUs are waiting for input data. One clever idea in computer science is to use pipelining: overlapping data loading of the current instruction and computation of the last instruction. This means we need more schedulers, i.e., hardware threads, to take care of data loading and computing simultaneously. Therefore, modern CPUs usually have multiple hardware threads for one core. For example, Intel CPUs have the so-called **hyperthreading technology**, i.e., each core has two physical threads. Now we understand four concepts: processes, (logical) threads, cores, hardware threads. So what is the relationship between threads and hardware threads? Actually this is straight-forward: logical threads are mapped to hardware threads. For example, if there are 4 logical threads and 4 hardware threads, the OS may map each logical thread to one distinct hardware thread. If there are more than 4 logical threads, some logical threads may be mapped to one. That says, these logical threads will not enjoy truly parallelism. Now let's consider how ADCME works: for one CPU, ADCME always runs only one process. But to gain maximum efficiency, ADCME will create multiple threads to leverage any parallelism we have in hardware resources and computational models. ## Inter and Intra Parallelism There are two types of parallelism in ADCME execution: **inter** and **intra**. Consider a computational graph, there may be multiple independent operators and therefore we can execute them in parallel. This type of parallelism is called inter-parallelism. For example, ```julia using ADCME a1 = constant(rand(10)) a2 = constant(rand(10)) a3 = a1 * a2 a4 = a1 + a2 a5 = a3 + a4 ``` In the above code, `a3 = a1 * a2` and `a4 = a1 + a2` are independent and can be executed in parallel. Another type of parallelism is intra-parallel, that is, the computation within each operator can be computed in parallel. For example, in the example above, we can compute the first 5 entries and last 5 entries in `a4 = a1 + a2` in parallel. These types of parallelism can be achieved using multi-threading. In the next section, we explain how this is implemented in TensorFlow. ## ThreadPools The backend of ADCME, TensorFlow, uses two threadpools for multithreading. One thread pool is for inter-parallelism, and the other is for intra-parallelism. They can be set by the users. One common mistake is that users think in terms of hardware threads instead of logical threads. For example, if we have 8 hardware threads in total, one might want to allocate 4 threads for inter-parallelism and 4 threads for intra-parallelism. That's not true. When we talk about allocating threads for intra and inter thread pools, we are always talking about logical threads. So we can have a threadpool containing 100 threads for both inter and intra thread pools even if we only have 8 hardware threads in total. And in the runtime, inter and intra thread pools may use the same hardware threads for scheduling tasks. The following figure is an illustration of the two thread pools of ADCME. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/threadpool.png?raw=true) ## How to Use the Intra Thread Pool In practice, when we implement custom operators, we may want to use the intra thread pool. [Here](https://github.com/kailaix/ADCME.jl/tree/master/docs/src/assets/Codes/ThreadPools) gives an example how to use thread pools. ```c++ #include <thread> #include <chrono> #include <condition_variable> #include <atomic> void print_thread(std::atomic_int &cnt, std::condition_variable &cv){ std::this_thread::sleep_for(std::chrono::milliseconds(1000)); printf("My thread ID is %d\n", std::this_thread::get_id()); cnt++; if (cnt==7) cv.notify_one(); } void threadpool_print(OpKernelContext* context){ thread::ThreadPool * const tp = context->device()->tensorflow_cpu_worker_threads()->workers; std::atomic_int cnt = 0; std::condition_variable cv; std::mutex mu; printf("Number of intra-parallel thread = %d\n", tp->NumThreads()); printf("Maximum Parallelism = %d\n", port::MaxParallelism()); for (int i = 0; i < 7; i++) tp->Schedule([&cnt, &cv](){print_thread(cnt, cv);}); { std::unique_lock<std::mutex> lck(mu); cv.wait(lck, [&cnt](){return cnt==7;}); } printf("Op finished\n"); } ``` Basically, we can asynchronously launch jobs using the thread pools. Additionally, we are responsible for synchronization. Here we have used condition variables for synchronization. Typically our CPU operators are synchronous and do not need the thread pools. But it does not hard to have an intra thread pool. ## Runtime Optimizations If you are using Intel CPUs, we may have some runtime optimization configurations. See this [link](https://software.intel.com/content/www/us/en/develop/articles/guide-to-tensorflow-runtime-optimizations-for-cpu.html) for details. Here, we show the effects of some optimizations. We already understand `intra_op_parallelism_threads` and `inter_op_parallelism_threads`; now let us consider some other options. We consider computing $\sin$ function using the following formula $$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$ The implementation can be found [here](). ### Configure OpenMP To set the number of OMP threads, we can configure the `OMP_NUM_THREADS` environment variable. One caveat is that the variable must be set before loading ADCME. For example ```julia ENV["OMP_NUM_THREADS"] = 5 using ADCME ``` Running the `omp_thread.jl`, we have the following output ``` There are 5 OpenMP threads 4 is computing... 0 is computing... 4 is computing... 1 is computing... 1 is computing... 0 is computing... 3 is computing... 3 is computing... 2 is computing... 2 is computing... ``` We see that there are 5 threads running. ### Configure Number of Devices [`Session`](@ref) accepts keywords `CPU`, which limits the number of CPUs we can use. Note, `CPU` corresponds to the number of CPU devices, not cores or threads. For example, if we run `num_device.jl` with (default is using all CPUs) ```julia sess = Session(CPU=1); init(sess) ``` We will see ``` There are 144 OpenMP threads ``` This is because we have 144 cores in our machine.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2987
# Newton Raphson Newton-Raphson algorithm is widely used in scientific computing. In ADCME, the function for the algorithm is [`newton_raphson`](@ref). And the signature is ```@docs newton_raphson ``` As an example, assume we want to solve ```math u_i^2 - 1 = 0, i=1,2,\ldots, 10 ``` We first need to construct a function ```julia function f(θ, u) return u^2 - 1, 2*spdiag(u) end ``` Here $2\texttt{spdiag}(u)$ is the Jacobian matrix for the equation. Then we construct a Newton Raphson solver via ```julia nr = newton_raphson(f, constant(rand(10))) ``` `nr` is a `NRResult` struct which is runnable and can be materialized by ```julia nr = run(sess, nr) ``` The signature for `NRResult` is ```julia struct NRResult x::Union{PyObject, Array{Float64}} # final solution res::Union{PyObject, Array{Float64, 1}} # residual u::Union{PyObject, Array{Float64, 2}} # solution history converged::Union{PyObject, Bool} # whether it converges iter::Union{PyObject, Int64} # number of iterations end ``` `u`$\in \mathbb{R}^{p\times n}$ where `p` is the solution dimension and `n` is the number of iterations. !!! note Sometimes we want to construct `f` via some external variables $\theta$, e.g., when $\theta$ is a trainable variable and embeded in the Newton-Raphson solver, we can pass this parameter to `newton_raphson` via the third parameter ```julia nr = newton_raphson(f, constant(rand(10)),θ) ``` !!! note We can provide options to `newton_raphson` using `ADCME.options.newton_raphson`. For example ```julia ADCME.options.newton_raphson.verbose = true ADCME.options.newton_raphson.tol = 1e-6 nr = newton_raphson(f, constant(rand(10)), missing) ``` This might be useful for debugging. In the case we want to apply a linesearch step in our Newton-Raphson solver, we can turn on the `linesearch` option in `options`. However, in this case, we must provide the function value for `f` (assuming we are solving a minimization problem). ```julia function f(θ, u) return sum(1/3*u^3-u), u^2 - 1, 2*spdiag(u) end ``` The corresponding driver code is ```julia ADCME.options.newton_raphson.verbose = false ADCME.options.newton_raphson.linesearch = true ADCME.options.newton_raphson.tol = 1e-12 ADCME.options.newton_raphson.linesearch_options.αinitial = 1.0 nr = newton_raphson(f, constant(rand(10)), missing ``` Finally we consider the differentiable Newton-Raphson algorithm. Consider we want to construct a map $f:x\mapsto y$, which satisfies ```math y^3-x=0 ``` In a later stage, we also want to evaluate $\frac{dy}{dx}$. To this end, we can use [`newton_raphson_with_grad`](@ref), which provides a differentiable implementation of the Newton-Raphson's algorithm. ```julia function f(θ, x) x^3 - θ, 3spdiag(x^2) end θ = constant([2. .^3;3. ^3; 4. ^3]) x = newton_raphson_with_grad(f, constant(ones(3)), θ) run(sess, x)≈[2.;3.;4.] run(sess, gradients(sum(x), θ))≈1/3*[2. .^3;3. ^3; 4. ^3] .^(-2/3) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
6164
# Neural Networks A neural network can be viewed as a computational graph where each operator in the computational graph is composed of linear transformation or simple explicit nonlinear mapping (called _activation functions_). There are essential components of the neural network 1. Input: the input to the neural network, which is a real or complex valued vector; the input is often called _features_ in machine learning. To leverage dense linear algebra, features are usually aggregated into a matrix and fed to the neural network. 2. Output: the output of the neural network is also a real or complex valued vectors. The vector can be tranformed to categorical values (labels) based on the specific application. The common activations functions include ReLU (Rectified linear unit), tanh, leaky ReLU, SELU, ELU, etc. In general, for inverse modeling in scientific computing, tanh usually outperms the others due to its smoothness and boundedness, and forms a solid choice at the first try. A common limitation of the neural network is overfitting. The neural network contains plenty of free parameters, which makes the neural network "memorize" the training data easily. Therefore, you may see very a small training error, but have large test errors. Regularization methods have been proposed to alleviate this problem; to name a few, restricting network sizes, imposing weight regulization (Lasso or Ridge), using Dropout and batch normalization, etc. ## Constructing a Neural Network ADCME provides a very simple way to specify a fully connected neural network, [`fc`](@ref) (short for _autoencoder_) ```julia x = constant(rand(10,2)) # input config = [20,20,20,3] # hidden layers θ = fc_init([2;config]) # getting an initial weight-and-biases vector. y1 = fc(x, config) y2 = fc(x, config, θ) ``` !!! note When you construct a neural network using `fc(x, config)` syntax, ADCME will construct the weights and biases automatically for you and label the parameters (the default is `default`). In some cases, you may have multiple neural networks, and you can label the neural network manually using ```julia fc(x1, config1, "label1") fc(x2, config2, "label2") ... ``` In scientific computing, sometimes we not only want to evaluate the neural network output, but also the sensitivity. Specifically, if $$y = NN_{\theta}(x)$$ We also want to compute $\nabla_x NN_{\theta}(x)$. ADCME provides a function [`fcx`](@ref) (short for _fully-connected_) ```julia y3, dy3 = fcx(x, config, θ) ``` Here `dy3` will be a $10\times 3 \times 2$ tensor, where `dy3[i,:,:]` is the Jacobian matrix of the $i$-th output with respect to the $i$-th input (Note the $i$-th output is independent of $j$-th input, whenever $i\neq j$). ## Prediction After training a neural network, we can use the trained neural network for prediction. Here is an example ```julia using ADCME x_train = rand(10,2) x_test = rand(20,2) y = fc(x_train, [20,20,10]) y_obs = rand(10,10) loss = sum((y-y_obs)^2) sess = Session(); init(sess) BFGS!(sess, loss) # prediction run(sess, fc(x_test, [20,20,10])) ``` Note that the second `fc` does not create a new neural network, but instead searches for a neural network with the label `default` because the default label is `default`. If you constructed a neural network with label `mylabel`: `fc(x_train, [20,20,10], "mylabel")`, you can predict using ```julia run(sess, fc(x_test, [20,20,10], "mylabel")) ``` ## Save the Neural Network To save the trained neural network in the Session `sess`, we can use ```julia ADCME.save(sess, "filename.mat") ``` This will create a `.mat` file that contains all the **labeled** weights and biases. If there are other variables besides neural network parameters, these variables will also be saved. To load the weights and biases to the current session, create a neural network with the same label and run ```julia ADCME.load(sess, "filename.mat") ``` ## Convert Neural Network to Codes Sometimes we may also want to convert a fully-connected neural network to pure Julia codes. This can be done via [`fc_to_code`](@ref). After saving the neural network to a mat file via `ADCME.save`, we can call ```julia ae_to_code("filename.mat", "mylabel") ``` If the second argument is missing, the default is `default`. For example, ``` julia> ae_to_code("filename.mat", "default")|>println let aedictdefault = matread("filename.mat") global nndefault function nndefault(net) W0 = aedictdefault["defaultbackslashfully_connectedbackslashweightscolon0"] b0 = aedictdefault["defaultbackslashfully_connectedbackslashbiasescolon0"]; isa(net, Array) ? (net = net * W0 .+ b0') : (net = net *W0 + b0) isa(net, Array) ? (net = tanh.(net)) : (net=tanh(net)) #------------------------------------------------------------------- W1 = aedictdefault["defaultbackslashfully_connected_1backslashweightscolon0"] b1 = aedictdefault["defaultbackslashfully_connected_1backslashbiasescolon0"]; isa(net, Array) ? (net = net * W1 .+ b1') : (net = net *W1 + b1) isa(net, Array) ? (net = tanh.(net)) : (net=tanh(net)) #------------------------------------------------------------------- W2 = aedictdefault["defaultbackslashfully_connected_2backslashweightscolon0"] b2 = aedictdefault["defaultbackslashfully_connected_2backslashbiasescolon0"]; isa(net, Array) ? (net = net * W2 .+ b2') : (net = net *W2 + b2) return net end end ``` ## Advance: Use Neural Network Implementations from Python Script/Modules If you have a Python implementation of a neural network architecture and want to use that architecture, we do not need to reimplement it in ADCME. Instead, we can use the `PyCall.jl` package and import the functionalities. For example, if you have a Python package `nnpy` and it has a function `magic_neural_network`. We can use the following code to call `magic_neural_network` ```julia using PyCall using ADCME nnpy = pyimport("nnpy") x = constant(rand(100,2)) y = nnpy.magic_neural_network(x) ``` Because all the runtime computation are conducted in C++, there is no harm to performance using this mechanism.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
7732
# PDE/ODE Solvers ## Runge Kutta Method The Runge Kutta method is one of the workhorses for solving ODEs. The method is a higher order interpolation to the derivatives. The system of ODE has the form ```math \frac{dy}{dt} = f(y, t, \theta) ``` where $t$ denotes time, $y$ denotes states and $\theta$ denotes parameters. The Runge-Kutta method is defined as $\begin{aligned} k_1 &= \Delta t f(t_n, y_n, \theta)\\ k_2 &= \Delta t f(t_n+\Delta t/2, y_n + k_1/2, \theta)\\ k_3 &= \Delta t f(t_n+\Delta t/2, y_n + k_2/2, \theta)\\ k_4 &= \Delta t f(t_n+\Delta t, y_n + k_3, \theta)\\ y_{n+1} &= y_n + \frac{k_1}{6} +\frac{k_2}{3} +\frac{k_3}{3} +\frac{k_4}{6} \end{aligned}$ ADCME provides a built-in Runge Kutta solver [`rk4`](@ref) and [`ode45`](@ref). Consider an example: the Lorentz equation $\begin{aligned} \frac{dx}{dt} &= 10(y-x)\\ \frac{dy}{dt} &= x(27-z)-y\\ \frac{dz}{dt} &= xy -\frac{8}{3}z \end{aligned}$ Let the initial condition be $x_0 = [1,0,0]$, the following code snippets solves the Lorentz equation with ADCME ```julia function f(t, y, θ) [10*(y[2]-y[1]);y[1]*(27-y[3])-y[2];y[1]*y[2]-8/3*y[3]] end x0 = [1.;0.;0.] rk4(f, 30.0, 10000, x0) ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/lorentz.png?raw=true) We can also solve three body problem with the Runge-Kutta method. The full script is ```julia # # adapted from # https://github.com/pjpmarques/Julia-Modeling-the-World/ # using Revise using ADCME using PyPlot using Printf function f(t, y, θ) # Extract the position and velocity vectors from the g array r0, v0 = y[1:2], y[3:4] r1, v1 = y[5:6], y[7:8] r2, v2 = y[9:10], y[11:12] # The derivatives of the position are simply the velocities dr0 = v0 dr1 = v1 dr2 = v2 # Now calculate the the derivatives of the velocities, which are the accelarations # Start by calculating the distance vectors between the bodies (assumes m0, m1 and m2 are global variables) # Slightly rewriten the expressions dv0, dv1 and dv2 comprared to the normal equations so we can reuse d0, d1 and d2 d0 = (r2 - r1) / ( norm(r2 - r1)^3.0 ) d1 = (r0 - r2) / ( norm(r0 - r2)^3.0 ) d2 = (r1 - r0) / ( norm(r1 - r0)^3.0 ) dv0 = m1*d2 - m2*d1 dv1 = m2*d0 - m0*d2 dv2 = m0*d1 - m1*d0 # Reconstruct the derivative vector [dr0; dv0; dr1; dv1; dr2; dv2] end function plot_trajectory(t1, t2) t1i = round(Int,NT * t1/T) + 1 t2i = round(Int,NT * t2/T) + 1 # Plot the initial and final positions # In these vectors, the first coordinate will be X and the second Y X = 1 Y = 2 # figure(figsize=(6,6)) plot(r0[t1i,X], r0[t1i,Y], "ro") plot(r0[t2i,X], r0[t2i,Y], "rs") plot(r1[t1i,X], r1[t1i,Y], "go") plot(r1[t2i,X], r1[t2i,Y], "gs") plot(r2[t1i,X], r2[t1i,Y], "bo") plot(r2[t2i,X], r2[t2i,Y], "bs") # Plot the trajectories plot(r0[t1i:t2i,X], r0[t1i:t2i,Y], "r-") plot(r1[t1i:t2i,X], r1[t1i:t2i,Y], "g-") plot(r2[t1i:t2i,X], r2[t1i:t2i,Y], "b-") # Plot cente of mass # plot(cx[t1i:t2i], cy[t1i:t2i], "kx") # Setup the axis and titles xmin = minimum([r0[t1i:t2i,X]; r1[t1i:t2i,X]; r2[t1i:t2i,X]]) * 1.10 xmax = maximum([r0[t1i:t2i,X]; r1[t1i:t2i,X]; r2[t1i:t2i,X]]) * 1.10 ymin = minimum([r0[t1i:t2i,Y]; r1[t1i:t2i,Y]; r2[t1i:t2i,Y]]) * 1.10 ymax = maximum([r0[t1i:t2i,Y]; r1[t1i:t2i,Y]; r2[t1i:t2i,Y]]) * 1.10 axis([xmin, xmax, ymin, ymax]) title(@sprintf "3-body simulation for t=[%.1f .. %.1f]" t1 t2) end; m0 = 5.0 m1 = 4.0 m2 = 3.0 # Initial positions and velocities of each body (x0, y0, vx0, vy0) gi0 = [ 1.0; -1.0; 0.0; 0.0] gi1 = [ 1.0; 3.0; 0.0; 0.0] gi2 = [-2.0; -1.0; 0.0; 0.0] T = 30.0 NT = 500*300 g0 = [gi0; gi1; gi2] res_ = ode45(f, T, NT, g0) sess = Session(); init(sess) res = run(sess, res_) r0, v0, r1, v1, r2, v2 = res[:,1:2], res[:,3:4], res[:,5:6], res[:,7:8], res[:,9:10], res[:,11:12] figure(figsize=[4,1]) subplot(131); plot_trajectory(0.0,10.0) subplot(132); plot_trajectory(10.0,20.0) subplot(133); plot_trajectory(20.0,30.0) ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/threebody.png?raw=true) ## Explicit Newmark Scheme [`ExplicitNewmark`](@ref) provides an explicit Newmark integrator for $$M \ddot{\mathbf{d}} + Z_1 \dot{\mathbf{d}} + Z_2 \mathbf{d} + f = 0$$ The numerical scheme is given by $$\left(\frac{1}{\Delta t^2} M + \frac{1}{2\Delta t}Z_1\right)d^{n+1} = \left(\frac{2}{\Delta t^2} M - \frac{1}{2\Delta t}Z_2\right)d^n - \left(\frac{1}{\Delta t^2} M - \frac{1}{2\Delta t}Z_1\right) d^{n-1} - f^n$$ We consider an example: $$\mathbf{d} = \begin{bmatrix}e^{-t}\\ e^{-2t}\end{bmatrix}$$ and $$M = \begin{bmatrix}1 & 2\\3 &4 \end{bmatrix}\qquad Z_1 = \begin{bmatrix}5 & 6\\7 &8 \end{bmatrix}\qquad Z_2 =\begin{bmatrix}9 & 10\\11 &12 \end{bmatrix} $$ The function $f$ is given by $$f(t) = -\begin{bmatrix}5e^{-t} + 6e^{-2t}\\ 7 e^{-t} + 12 e^{-2t}\end{bmatrix}$$ We can carry out the simulation using the following codes: ```julia using ADCME using PyPlot M = Float64[1 2;3 4] Z1 = Float64[5 6;7 8] Z2 = Float64[9 10;11 12] NT = 200 Δt = 1/NT F = zeros(NT+1, 2) for i = 1:NT+1 t = (i-1)*Δt F[i,1] = -(5exp(-t) + 6exp(-2t)) F[i,2] = -(7exp(-t) + 12exp(-2t)) end F = constant(F) en = ExplicitNewmark(M, Z1, Z2, Δt) function condition(i, d) i<=NT end function body(i, d) d0 = read(d, i-1) d1 = read(d, i) d2 = step(en, d0, d1, F[i-1]) i+1, write(d, i+1, d2) end d = TensorArray(NT+1) d = write(d, 1, [1.0;1.0]) d = write(d, 2, [exp(-Δt);exp(-2Δt)]) i = constant(2, dtype = Int32) _, d = while_loop(condition, body, [i, d]) d = stack(d) sess = Session(); init(sess) D = run(sess, d) ts = (0:NT)*Δt close("all") plot(ts, D[:, 1], "b.") plot(ts, D[:,2], "g.") plot(ts, exp.(-ts), "r--") plot(ts, exp.(-2ts), "r--") xlabel("t"); ylabel("y") savefig("ode_solution.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ode_solution.png?raw=true) ## Build Your Own Solvers Sometimes it is helpful to build your own ODE/PDE solvers. The basic routine is 1. Implement the one step state transition function; 2. Use [`while_loop`](@ref) to build the time integrator. As an example, we build a second-order Runge-Kutta scheme for $$\dot{\mathbf{d}} + \beta \mathbf{d} = \mathbf{t}$$ The numerical scheme is $$\begin{aligned}h_1 &= -\beta \mathbf{d}^n + \mathbf{t}^n\\ h_2 &= -\beta(\mathbf{d}^n + \Delta t h_1) + \mathbf{t}^n\\ \mathbf{d}^{n+1} &= \mathbf{d}^n + \frac{\Delta t}{2}(h_1 + h_2)\end{aligned}$$ The state transition function has the following form ```julia function rk_one_step(d2, t) h1 = -β*d2 + t h2 = -β*(d2+Δt*h1)+t d2 + Δt/2*(h1+h2) end ``` Now consider an analytical solution $$\mathbf{d} = \begin{bmatrix}e^{-t}\\e^{-2t}\end{bmatrix}, \quad \beta = 2$$ Then we have $$\mathbf{t} = \begin{bmatrix}e^{-t}\\0\end{bmatrix}$$ The main code is as follows ```julia using ADCME using PyPlot NT = 100 Δt = 1/NT ts = Array((0:NT)*Δt) t = constant([exp.(-ts) zeros(NT+1)]) β = 2.0 function condition(i, d) i<=NT end function body(i, d) d0 = read(d, i) d1 = rk_one_step(d0, t[i]) i+1, write(d, i+1, d1) end d = TensorArray(NT+1) d = write(d, 1, ones(2)) i = constant(1, dtype = Int32) _, d = while_loop(condition, body, [i, d]) d = stack(d) sess = Session(); init(sess) D = run(sess, d) close("all") plot(ts, D[:,1], "y.") plot(ts, D[:,2], "g.") plot(ts, exp.(-ts), "r--") plot(ts, exp.(-2ts), "r--") xlabel("t"); ylabel("y") savefig("ode_solution2.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/ode_solution2.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
8776
# Study on Optimizers When working with BFGS/LBFGS, there are some important aspects of the algorithm, which affect the convergence of the optimizer. - BFGS approximates the Hessian or the inverse Hessian matrix. LBFGS, instead, stores a limited set of **vectors** and does not explicitly formulate the Hessian matrices. The Hessian matrix solve is approximated using recursions on vector vector production. - Both BFGS and LBFGS deploy a certain kind of line search strategies. For example, the Hager-Zhang and More-Thuente are two commonly used strategies. These linesearch algorithms require evaluating gradients in each line search step. This means we need to frequently do gradient back-propagation, which may be quite expensive. We instead employ a backtracking strategy, which requires evaluating forward computation only. - Initial guess of the line search algorithm. We found that the following initial guess is quite effective for our problems: $$\alpha=\min\{100\alpha_0, 10\}$$ Here $\alpha_0$ is the line search step size for the last step (for the first step, $\alpha=1$ is used). Using this choice, we found that in a typical line search step, only 1~3 evaluations of the loss function is needed. - Stopping criterion in line search algorithms. The algorithm backtracks until a certain set of condition is met. Typically the Wolfe condition, the Armijo curvature rule, or the strong Wolfe conditions are used. Note that these criterion require gradient information, and we want to avoid calculating extra gradients during linesearch. Therefore, we use the following sufficient decrease condition $$\phi(\alpha) \leq \phi(0) + c_1 \alpha \phi'(0)$$ Here $c_1=10^{-4}$. One interesting observation is that if we apply BFGS/LBFGS directly, we usually cannot make any progress. There are many reasons for this phenomenon: - The initial guess for the neural network is far away from optimal, and quasi-Newton methods usually do not work well in this regime. - The approximate Hessian is quite different from the true one. The estimated search direction may deviate from the optimal one too much. First-order methods, such as Adam optimizer, usually does not suffer from these difficulties. Therefore, one solution to this problem is via "warm start" by running a first order optimizer (Adam) for a few iterations. Additionally, for BFGS, we can build Hessian approximations while we are running the Adam optimizer. In this way, we can use the historic information as much as possible. Our algorithm is as follows (BFGS+Adam+Hessian): 1. Run the Adam optimizer for the first few iterations, and **build the approximate Hessian matrix at the same time**. That is, in each iteration, we update an approximate Hessian $B$ using $$B_{k+1} = \left(I - \frac{s_k y_k^T}{y_k^Ts_k}\right)B_k\left(I - \frac{ y_ks_k^T}{y_k^Ts_k}\right) + \frac{s_ks_k^T}{y_k^Ts_k}$$ Here $y_k = \nabla f(x_{k+1}) - \nabla f(x_{k}), s_k = x_{k+1}-x_k, B_0 = I$. Note $B_k$ is not used in the Adam optimizer. 2. Run the BFGS optimizer and use the last Hessian matrix $B_k$ built in Step 1 as the initial guess. We compare our algorithm with those without approximated Hessian (BFGS+Adam) or warm start (BFGS). Additionally, we also compare our algorithm with LBFGS counterparts. In the test case II and III, a physical field, $f$, is approximated using deep neural networks, $f_\theta$, where $\theta$ is the weights and biases. The neural network maps coordinates to a scalar value. $f_\theta$ is coupled with a DAE: $$F(u', u, Du, D^2u, \ldots ;f_\theta) = 0 \tag{1}$$ Here $u'$ represents the time derivative of $u$, and $Du$, $D^2u$, $\ldots$ are first-, second-, $\ldots$ order spatial gradients. Typically we can observe $u$ on some discrete points $\{\mathbf{x}_k\}_{k\in \mathcal{I}}$. To train the neural network, we consider the following optimization problem $$\min_\theta \sum_{k\in \mathcal{I}} (u(\mathbf{x}_i) - u_\theta(\mathbf{x}_i))$$ Here $u_\theta$ is the solution from Eq. 1. ## Test Case I In the first case, we train a 4 layer network with 20 neurons per layer, and tanh activation functions. The data set is $\{x_i, sin(x_i)\}_{i=1}^{100}$, where $x_i$ are randomly generated from $\mathcal{U}(0,1)$. The neural network $f_\theta$ is trained by solving the following optimization problem: $$\min_\theta \sum_{i=1}^{100} (\sin(x_i) - f_\theta(x_i))^2$$ The neural network is small, and thus we can use BFGS/LBFGS to train. In fact, the following plot shows that BFGS/LBFGS is much more accurate and effective than the commonly used Adam optimizer. Considering the wide range of computational engineering applications, where a small neural network is sufficient, this result implies that BFGS/LBFGS for training neural networks should receive far more attention than what it does nowadays. Also, in many applications, the major runtime is doing physical simulations instead of updating neural network parameters or approximate Hessian matrices, these "expensive" BFGS/LBFGS optimization algorithms should be considered a good way to leverage as much history information as possible, so as to reduce the total number of iterations (simulations). ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/Sin/data/sinloss.png?raw=true) ## Test Case II In this test case, we consider solving a Poisson's equation in [this post](https://kailaix.github.io/ADCME.jl/dev/optimizers/). The exact $\kappa$ and the corresponding solution $u$ is shown below ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/Poisson/data/fwd.png?raw=true) We run different optimization algorithms and obtain the following loss function profiles. We see that BFGS/LBFGS without Adam warm start terminates early. BFGS in general has much better accuracy than LBFGS. An extra benefit of BFGS+Adam+Hessian compared to BFGS+Adam is that we can achieve much better accuracy. | Loss Function | Zoom-in View | |---------------|--------------| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/Poisson/data/loss300.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/Poisson/data/loss300_zoom.png?raw=true) | We also show the mean squared error for $\kappa$, which confirms that BFGS+Adam+Hessian achieves the best test error. The error is calculated using the formula $$\frac{1}{n} (\kappa_{\text{true}}(\textbf{x}_i) - \kappa_\theta(\textbf{x}_i))^2$$ Here $\textbf{x}_i$ is defined on Gauss points. | Algorithm | Adam | BFGS+Adam+Hessian | BFGS+Adam | BFGS | LBFGS+Adam | LBFGS | |-----------|-------|-------------------|-----------|----------|------------|-------| | MSE | 0.013 | 1.00E-11 | 1.70E-10 | 1.10E+04 | 0.00023 | 97000 | ## Test Case III In the last example, we consider the linear elasticity. The problem description can be found [here](https://kailaix.github.io/AdFem.jl/dev/staticelasticity/). We fix the random seed for neural network initialization and run different optimization algorithms. The initial guess for the Young's modulus and the reference one are shown in the following plot ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/LinearElasticity/data/init_le.png?raw=true) The corresponding velocity and stress fields are ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/LinearElasticity/data/fwd.png?raw=true) We perform the optimization using different algorithms. In the case where Adam is used as warm start, we run Adam optimization for 50 iterations. We run the optimization for at most 500 iterations (so there is at most 500 evaluations of gradients) The loss function is shown below ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/LinearElasticity/data/loss_le.png?raw=true) We see that BFGS+Adam+Hessian achieves the smallest loss functions among all algorithms. We also show the MSE for $E$, i.e., $\frac{1}{n} (E_{\text{true}}(\textbf{x}_i) - E_\theta(\textbf{x}_i))^2$, where $\textbf{x}_i$ is defined on Gauss points. | Algorithm | Adam | BFGS+Adam+Hessian | BFGS+Adam | BFGS | LBFGS+Adam | LBFGS | |-----------|--------|-------------------|-----------|----------|------------|--------| | MSE | 0.0033 | 1.90E-07 | 4.00E-06 | 6.20E-06 | 0.0031 | 0.0013 | This confirms that BFGS+Adam+Hessian indeed generates a much more accurate result. We also compare the results for the BFGS+Adam+Hessian and Adam algorithms: ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/OR/LinearElasticity/data/compare_le.png?raw=true) We see the Adam optimizer achieves reasonable result but is challenging to deliver high accurate estimation within 500 iterations.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
5432
# Optimizers ADCME provides a rich class of optimizers and acceleration techniques for conducting inverse modeling. The programming model also allows for easily extending ADCME with customer optimizers. In this section, we show how to take advantage of the built-in optimization library by showing how to solve an inverse problem--estimating the diffusivity coefficient of a Poisson equation from sparse observations--using different kinds of optimization techniques. ## Solving an Inverse Problem using L-BFGS optimizer Consider the Poisson equation in 2D: $$\begin{aligned} \nabla \cdot (\kappa (x,y)\nabla u(x,y)) &= f(x) & (x,y) \in \Omega\\ u(x,y) &=0 & (x,y)\in \partial \Omega \end{aligned}\tag{1}$$ Here $\Omega$ is a L-shaped domain, which can be loaded using `meshread`. $$f(x,y) = -\sin\left(20\pi y+\frac{\pi}{8}\right)$$ and the diffusivity coefficient $\kappa(x,y)$ is given by $$\kappa(x,y) = 2+e^{10x} - (10y)^2$$ We can solve Equation 1 using a standard finite element method. Here, we use [AdFem.jl](https://github.com/kailaix/AdFem.jl) to solve the PDE. ```julia using AdFem using ADCME using PyPlot function kappa(x, y) return 2 + exp(10x) - (10y)^2 end function f(x, y) return sin(2π*10y+π/8) end mmesh = Mesh(joinpath(PDATA, "twoholes_large.stl")) Kappa = eval_f_on_gauss_pts(kappa, mmesh) F = eval_f_on_gauss_pts(f, mmesh) L = compute_fem_laplace_matrix1(Kappa, mmesh) RHS = compute_fem_source_term1(F, mmesh) bd = bcnode(mmesh) L, RHS = impose_Dirichlet_boundary_conditions(L, RHS, bd, zeros(length(bd))) SOL = L\RHS close("all") figure(figsize = (10, 4)) subplot(121) visualize_scalar_on_gauss_points(Kappa, mmesh) title("\$\\kappa\$") subplot(122) visualize_scalar_on_fem_points(SOL, mmesh) title("Solution") savefig("optimizers_poisson.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/Optimizers/optimizers_poisson.png?raw=true) Now we approximate $\kappa(x,y)$ using a deep neural network ([`fc`](@ref) in ADCME). The script is nearly the same as the forward computation ```julia using AdFem using ADCME using PyPlot function f(x, y) return sin(2π*10y+π/8) end mmesh = Mesh(joinpath(PDATA, "twoholes_large.stl")) xy = gauss_nodes(mmesh) Kappa = squeeze(fc(xy, [20, 20, 20, 1])) + 1.0 F = eval_f_on_gauss_pts(f, mmesh) L = compute_fem_laplace_matrix1(Kappa, mmesh) RHS = compute_fem_source_term1(F, mmesh) bd = bcnode(mmesh) L, RHS = impose_Dirichlet_boundary_conditions(L, RHS, bd, zeros(length(bd))) sol = L\RHS ``` We want to find a deep neural network such that `sol` and `SOL` match. We can train the neural network by minimizing a loss function. ```julia loss = sum((sol - SOL)^2)*1e10 ``` Here we multiply the loss function by `1e10` because the scale of `SOL` is $10^{-5}$. We want the initial value of `loss` to have a scale of $O(1)$. We can minimize the loss function by ```julia sess = Session(); init(sess) losses = BFGS!(sess, loss) ``` We can visualize the result: ```julia figure(figsize = (10, 4)) subplot(121) semilogy(losses) xlabel("Iterations"); ylabel("Loss") subplot(122) visualize_scalar_on_gauss_points(run(sess, Kappa), mmesh) savefig("optimizer_bfgs.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/Optimizers/optimizer_bfgs.png?raw=true) We see that the estimated $\kappa(x,y)$ is quite similar to the reference one. ## Use the optimizer from Optim.jl We have used the built-in optimizer L-BFGS. What if we want to try out other options? [`Optimize!`](@ref) is an API that allows you to try out custom optimizers. For convenience, it also supports optimizers from the [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl) package. Let's consider using BFGS to solve the above problem: ```julia import Optim sess = Session(); init(sess) losses = Optimize!(sess, loss, optimizer = Optim.BFGS()) figure(figsize = (10, 4)) subplot(121) semilogy(losses) xlabel("Iterations"); ylabel("Loss") subplot(122) visualize_scalar_on_gauss_points(run(sess, Kappa), mmesh) savefig("optimizer_bfgs2.png") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/Optimizers/optimizer_bfgs2.png?raw=true) Unfortunately, it got stuck after several iterations. ## Build Your Own Optimizer Sometimes we might want to build our own optimizer. This can be done using [`Optimize!`](@ref). To this end, we want to supply the function with the following arguments: - `sess`: Session - `loss`: Loss function to minimize - `optimizer`: a **keyword argument** that specifies the optimizer function. The function takes `f`, `fprime`, and `f_fprime` (outputs both loss and gradients), initial value `x0` as input. The output is redirected to the output of `Optimize!`. Let us consider minimizing the Rosenbrock function using an optimizer from Ipopt ```julia import Ipopt x = Variable(rand(2)) loss = (1-x[1])^2 + 100(x[2]-x[1]^2)^2 function opt(f, g, fg, x0) prob = createProblem(2, -100ones(2), 100ones(2), 0, Float64[], Float64[], 0, 0, f, (x,g)->nothing, (x,G)->g(G, x), (x, mode, rows, cols, values)->nothing, nothing) prob.x = x0 Ipopt.addOption(prob, "hessian_approximation", "limited-memory") status = Ipopt.solveProblem(prob) println(Ipopt.ApplicationReturnStatus[status]) println(prob.x) Ipopt.freeProblem(prob) nothing end sess = Session(); init(sess) Optimize!(sess, loss, optimizer = opt) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
784
# Global Options ADCME manages certain algorithm hyperparameters using a global option `ADCME.option`. ```@docs Options OptionsSparse OptionsNewtonRaphson OptionsNewtonRaphson_LineSearch reset_default_options ``` The current options and their default values are ```julia using PrettyPrint using ADCME pprint(ADCME.options) ``` ```text ADCME.Options( sparse=ADCME.OptionsSparse( auto_reorder=true, solver="SparseLU", ), newton_raphson=ADCME.OptionsNewtonRaphson( max_iter=100, verbose=false, rtol=1.0e-12, tol=1.0e-12, LM=0.0, linesearch=false, linesearch_options=ADCME.OptionsNewtonRaphson_LineSearch( c1=0.0001, ρ_hi=0.5, ρ_lo=0.1, iterations=1000, maxstep=9999999, αinitial=1.0, ), ), ) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3496
# Optimal Transport Optimal transport (OT) can be used to measure the "distance" between two probability distribution. ## Discrete Wasserstein Distance In this section, we introduce a novel approach for training a general model: SinkHorn Generative Networks (SGN). In this approach, a neural network is used to transform a sample from uniform distributions to a sample of targeted distribution. We train the neural network by minimizing the discrepancy between the targeted distribution and the desired distribution, which is described by optimal transport distance. Different from generative adversarial nets (GAN), we do not use a discriminator neural network to construct the discrepancy; instead, it is computed directly with efficient SinkHorn algorithm or net-flow solver. The minimization is conducted via a gradient-based optimizer, where the gradients are computed with reverse mode automatic differentiation. To begin with, we first construct the sample `x` of the targeted distribution and the sample `s` from the desired distribution and compute the loss function with [`sinkhorn`](@ref) ```julia using Revise using ADCME using PyPlot reset_default_graph() K = 64 z = placeholder(Float64, shape=[K, 10]) x = squeeze(ae(z, [20,20,20,1])) s = placeholder(Float64, shape=[K]) M = abs(reshape(x, -1, 1) - reshape(s, 1, -1)) loss = sinkhorn(ones(K)/K, ones(K)/K, M, reg=0.1) ``` **Example 1** In the first example, we assume the desired distribution is the standard Gaussian. We minimize the loss function with the Adam optimizer ```julia opt = AdamOptimizer().minimize(loss) sess = Session(); init(sess) for i = 1:10000 _, l = run(sess, [opt, loss], z=>rand(K, 10), s=>randn(K)) @show i, l end ``` The result is shown below ```julia V = [] for k = 1:100 push!(V,run(sess, x, z=>rand(K,10))) end V = vcat(V...) hist(V, bins=50, density=true) x0 = LinRange(-3.,3.,100) plot(x0, (@. 1/sqrt(2π)*exp(-x0^2/2)), label="Reference") xlabel("x") ylabel("f(x)") legend() ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/g1.png?raw=true) **Example 2** In the first example, we assume the desired distribution is the positive part of the the standard Gaussian. ```julia opt = AdamOptimizer().minimize(loss) sess = Session(); init(sess) for i = 1:10000 _, l = run(sess, [opt, loss], z=>rand(K, 10), s=>abs.(randn(K))) @show i, l end ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/g2.png?raw=true) ## Dynamic Time Wrapping Dynamic time wrapping is suitable for computing the distance of two time series. The idea is that we can shift the time series to obtain the "best" match while retaining the causality in time. This is best illustrated in the following figure ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/dtw.png?raw=true) In ADCME, the distance is computed using [`dtw`](@ref). As an example, given two time series ```julia Sample = Float64[1,2,3,5,5,5,6] Test = Float64[1,1,2,2,3,5] ``` The distance can be computed by ```julia c, p = dtw(Sample, Test, true) ``` `c` is the distance and `p` is the path. If we have 2000 time series `A` and 2000 time series `B` and we want to compute the total distance of the corresponding time series, we can use `map` function ```julia A = constant(rand(2000,1000)) B = constant(rand(2000,1000)) distance = map(x->dtw(x[1],x[2],false)[1],[A,B], dtype=Float64) ``` `distances` is a 2000 length vector and gives us the pairwise distance for all time series.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3656
# Parallel Computing The ADCME backend, TensorFlow, treats each operator as the smallest computation unit. Users are allowed to manually assign each operator to a specific device (GPU, CPU, or TPU). This is usually done with the `@cpu device_id expr` or `@gpu device_id expr` syntax, where `device_id` is the index of devices you want to place all operators and variables in `expr`. For example, if we want to create a variable `a` and compute $\sin(a)$ on `GPU:0` we can write ```julia @cpu 0 begin global a = Variable(1.0) global b = sin(a) end ``` If the `device_id` is missing, 0 is treated as default. ```julia @cpu begin global a = Variable(1.0) global b = sin(a) end ``` **Custom Device Placement Functions** The above placement function is useful and simple for placing operators on certain GPU devices without changing original codes. However, sometimes we want to place certain operators on certain devices. This can be done by implementing a custom `assign_to_device` function. As an example, we want to place all `Variables` on CPU:0 while placing all other operators on GPU:0, the code has the following form ```julia PS_OPS = ["Variable", "VariableV2", "AutoReloadVariable"] function assign_to_device(device, ps_device="/device:CPU:0") function _assign(op) node_def = pybuiltin("isinstance")(op, tf.NodeDef) ? op : op.node_def if node_def.op in PS_OPS return ps_device else return device end end return _assign end ``` Then we can write something like ```julia @pywith tf.device(assign_to_device("/device:GPU:0")) begin global a = Variable(1.0) global b = sin(a) end ``` We can check the location of `a` and `b` by inspecting their `device` attributes ```julia-repl julia> a.device "/device:CPU:0" julia> b.device "/device:GPU:0" ``` **Collocate Gradient Operators** When we call `gradients`, TensorFlow actually creates a set of new operators, one for each operator in the forward computation. By default, those operators are placed on the default device (`GPU:0` if GPU is available; otherwise it's `CPU:0`). Sometimes we want to place the operators created by gradients on the same devices as the corresponding forward computation operators. For example, if the operator `b` (`sin`) in the last example is on `GPU:0`, we hope the corresponding gradient computation (`cos`) is also on `GPU:0`. This can be done by specifying `colocate` [^colocate] keyword arguments in `gradients`: ```julia @pywith tf.device(assign_to_device("/device:GPU:0")) begin global a = Variable(1.0) global b = sin(a) end @pywith tf.device("/CPU:0") begin global c = cos(b) end g = gradients(c, a, colocate=true) ``` In the following figure, we show the effects of `colocate` of the above codes. The test code snippet is ```julia g = gradients(c, a, colocate=true) sess = Session(); init(sess) run_profile(sess, g+c) save_profile("true.json") g = gradients(c, a, colocate=false) sess = Session(); init(sess) run_profile(sess, g+c) save_profile("false.json") ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/colocate.png?raw=true) !!! note If you use `bn` (batch normalization) on multi-GPUs, you must be careful to update the parameters in batch normalization on CPUs. This can be done by explicitly specify ```julia @pywith tf.device("/cpu:0") begin global update_ops = get_collection(tf.GraphKeys.UPDATE_OPS) end ``` and bind `update_ops` to an active operator (or explictly execute it in `run(sess,...)`). [^colocate]: Unfortunately, in the TensorFlow APIs, "collocate" is spelt as "colocate".
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
1490
# Visualization with Plotly Starting from v0.7.2, [`Plotly`](https://github.com/plotly/plotly.py) plotting backend is included in ADCME. Plotly.py is an open source software for visualizing **interactive** plots based on web technologies. ADCME exposes several APIs of Plotly: [`Plotly`](@ref), [`Layout`](@ref), and common graph objects, such as [`Scatter`](@ref). In Plotly, each figure consists of `data`---a collection of traces---and `layout`, whcih is constructed using [`Layout`](@ref). The basic workflow for creating plotly plots is - Create a figure object. For example: ```julia fig = Plot() ``` In the case of subplots within a single figure, use ```julia fig = Plot(3, 1) # 3 x 1 subplots ``` - Create traces using `add_trace` methods of `fig`. For example ```julia x = LinRange(0, 2π, 100) y1 = sin.(x) y2 = sin.(2*x) y3 = sin.(3*x) fig.add_trace(Scatter(x=x, y=y1, name = "Line 1"), row = 1, col = 1) fig.add_trace(Scatter(x=x, y=y2, name = "Line 2"), row = 2, col = 1) fig.add_trace(Scatter(x=x, y=y3, name = "Line 3"), row = 3, col = 1) ``` - Update layout or properties ```julia fig.layout.yaxis.update(title = "Y Axis") fig.layout.update(hovermode="x unified", showlegend = false) fig.data[1].update(hovertemplate = """<b>%{y:.2f}</b>""") ``` - Visualize or save to files ```julia data = fig.to_dict() fig.write_html("figure.html", full_html = false) # save to HTML fig.show() ``` We can create a figure from dictionary as well. ```julia fig = Plot(data) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3542
# Numerical Integration This section describes how to do numerical integration in ADCME. In fact, the numerical integration functionality is independent of automatic differentiation. We can use a third-party library, such as [FastGaussQuadrature](https://github.com/JuliaApproximation/FastGaussQuadrature.jl) for extracts the quadrature weights and points. Then the quadrature weights and points can be used to calculate the integral. The general rule for numerical integral is $$\int_a^b w(x) f(x) dx = \sum_{i=1}^n w_i f(x_i)$$ The method works best when $f(x)$ can be approximated by a polynomial on the interval $(a, b)$. ## Examples Let us consider some examples. ### Example 1 $$\int_0^1\frac{\sin(a*x)}{\sqrt{1-x^2}}dx$$ Here $a$ is a tensor (e.g., `a = Variable(1.0)`). We can use the Gauss-Chebyshev quadrature rule of the 1st kind. The corresponding weight function is $\frac{1}{\sqrt{1-x^2}}$ ```julia using FastGaussQuadrature, ADCME x, w = gausschebyshev(100) # 100 is the number of quadrature nodes a = Variable(1.0) integral = sum(cos(a * x) * w) ``` We can verify the result with the exact value ```julia sess = Session(); init(sess) @show sum(cos.(x) .* w), run(sess, integral) ``` The output is ``` (sum(cos.(x) .* w), run(sess, integral)) = (2.4039394306344133, 2.4039394306344137) ``` ### Example 2 $$\int_0^\infty (x-1)^β x^\alpha \exp(-x) dx$$ Here we consider the Gauss-Laguerre quadrature rule. The weight function is $w(x) = x^\alpha \exp(-x)$ and $f(x) = (x-1)^2$. ```julia using FastGaussQuadrature, ADCME α = 2.0 x, w = gausslaguerre(100, α) β = Variable(2.0) integrand = constant(x .- 1)^β integral = sum(integrand .* w) ``` We can verify the result with the exact value ```julia sess = Session(); init(sess) @show sum((x .- 1).^2 .* w), run(sess, integral) ``` The output is ``` (sum((x .- 1) .^ 2 .* w), run(sess, integral)) = (14.000000000000039, 14.000000000000037) ``` The integral rule is also differentiable, for example, we can calculate the gradient of the integral with respect to $\beta$ ```julia run(sess, gradients(integral, β)) ``` For convenience, here is a list of supported quadrature rules (run `using FastGaussQuadrature` first) | Interval | ω(x) | Orthogonal polynomials | Function | |---------------------|-----------------------------|-------------------------------------|----------| | $[−1, 1]$ | 1 | Legendre polynomials | `gausslegendre(n)` | | $(−1, 1)$ | $(1-x)^\alpha (1+x)^\beta$ | Jacobi polynomials | `gaussjacobi(n, a, b)` | | $(−1, 1)$ | $\frac{1}{sqrt{1-x^2}}$ | Chebyshev polynomials (first kind) | `gausschebyshev(n, 1)` | | $[−1, 1]$ | $\sqrt{1-x^2}$ | Chebyshev polynomials (second kind) | `gausschebyshev(n, 2)` | | $[−1, 1]$ | $\sqrt{(1+x)/(1-x)}$ | Chebyshev polynomials (third kind) | `gausschebyshev(n, 3)` | | $[−1, 1]$ | $\sqrt{(1-x)/(1+x)}$ | Chebyshev polynomials (fourth kind) | `gausschebyshev(n, 4)` | | $[0, \infty)$ | $e^{-x}$ | Laguerre polynomials | `gausslaguerre(n)` | | $[0, \infty)$ | $x^\alpha e^{-x}, \alpha>1$ | Generalized Laguerre polynomials | `gausslaguerre(n, α)` | | $(-\infty, \infty)$ | $e^{-x^2}$ | Hermite polynomials | `gausshermite(n)` |
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
5529
# Radial Basis Functions The principle of radial basis functions (RBF) is to use linear combination of radial basis functions to approximate a function. The radial basis functions are usually global functions in the sense that its support spans over the entire domain. This property lends adaptivity and regularization to the RBF function form: unlike local basis functions such as piecewise linear functions, RBF usually does not suffer from local anomalies and produces a smoother approximation. The mathematical formulation of RBFs on a 2D domain is as follows $$f(x, y) = \sum_{i=1}^N c_i \phi(r; \epsilon_i) + d_0 + d_1 x + d_2 y$$ Here $r = \sqrt{|x-x_i|^2 + |y-y_i|^2}$. $\{x_i, y_i\}_{i=1}^N$ are called centers of the RBF, $c_i$ is the coefficient, $d_0+d_1x+d_2y$ is an additional affine term, and $\phi$ is a radial basis function parametrized by $\epsilon_i$. Four common radial basis functions are as follows (all are supported by ADCME) * Gaussian $$\phi(r; \epsilon) = e^{-(\epsilon r)^2}$$ * Multiquadric $$\phi(r; \epsilon) = \sqrt{1+(\epsilon r)^2}$$ * Inverse quadratic $$\phi(r; \epsilon) = \frac{1}{1+(\epsilon r)^2}$$ * Inverse multiquadric $$\phi(r; \epsilon) = \frac{1}{\sqrt{1+(\epsilon r)^2}}$$ In ADCME, we allow $(x_i, y_i)$, $\epsilon_i$, $d_i$ and $c_i$ to be trainable (of course, users can allow only a subset to be trainable). This is done via [`RBF2D`](@ref) function. As an example, we consider using radial basis function to approximate $$y = 1 + \frac{y^2}{1+x^2}$$ on the domain $[0,1]^2$. We use the following function to visualize the result ```julia using PyPlot n = 20 h = 1/n x = Float64[]; y = Float64[] for i = 1:n+1 for j = 1:n+1 push!(x, (i-1)*h) push!(y, (j-1)*h) end end close("all") f = run(sess, rbf(x, y)) g = (@. 1+y^2/(1+x^2)) figure() scatter3D(x, y, f, color="r") scatter3D(x, y, g, color="g") xlabel("x") ylabel("y") savefig("compare.png") figure() scatter3D(x, y, abs.(f-g)) xlabel("x") ylabel("y") savefig("diff.png") ``` We consider several cases: * Only $c_i$ is trainable ```julia using ADCME # use centers on a uniform grid n = 5 h = 1/n xc = Float64[]; yc = Float64[] for i = 1:n+1 for j = 1:n+1 push!(xc, (i-1)*h) push!(yc, (j-1)*h) end end # by default, c is initialized to Variable(ones(...)) # eps is initialized to ones(...) and no linear terms are used rbf = RBF2D(xc, yc) x = rand(100); y = rand(100) f = @. 1+y^2/(1+x^2) fv = rbf(x, y) loss = sum((f-fv)^2) sess = Session(); init(sess) BFGS!(sess, loss) ``` | Approximation | Difference | | ------------- |:-------------:| | ![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/master/ADCME/rbf1_compare.png) | ![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/master/ADCME/rbf1_diff.png) | * Only $c_i$ is trainable + Additional Linear Term Here we need to specify `d=Variable(zeros(3))` to tell ADCME we want both the constant and linear terms. If `d=Variable(zeros(1))`, only the constant term will be present. ```julia using ADCME # use centers on a uniform grid n = 5 h = 1/n xc = Float64[]; yc = Float64[] for i = 1:n+1 for j = 1:n+1 push!(xc, (i-1)*h) push!(yc, (j-1)*h) end end # by default, c is initialized to Variable(ones(...)) # eps is initialized to ones(...) and no linear terms are used rbf = RBF2D(xc, yc; d = Variable(zeros(3))) x = rand(100); y = rand(100) f = @. 1+y^2/(1+x^2) fv = rbf(x, y) loss = sum((f-fv)^2) sess = Session(); init(sess) BFGS!(sess, loss) ``` | Approximation | Difference | | ------------- |:-------------:| | ![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/master/ADCME/rbf2_compare.png) | ![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/master/ADCME/rbf2_diff.png) | * Free every trainable variables ```julia xc = Variable(rand(25)) yc = Variable(rand(25)) d = Variable(zeros(3)) e = Variable(ones(25)) # by default, c is initialized to Variable(ones(...)) # eps is initialized to ones(...) and no linear terms are used rbf = RBF2D(xc, yc; eps = e, d = d) x = rand(100); y = rand(100) f = @. 1+y^2/(1+x^2) fv = rbf(x, y) loss = sum((f-fv)^2) sess = Session(); init(sess) BFGS!(sess, loss) ``` We see we get much better result by freeing up all variables. | Approximation | Difference | | ------------- |:-------------:| | ![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/master/ADCME/rbf3_compare.png) | ![](https://raw.githubusercontent.com/ADCMEMarket/ADCMEImages/master/ADCME/rbf3_diff.png) | ## 3D Radial Basis Function ADCME also provides RBFs on a 3D domain. The usage of [`RBF3D`](@ref) is similar to [`RBF2D`](@ref). ```julia xc, yc, zc, c = rand(50), rand(50), rand(50), rand(50) d = rand(4) e = rand(50) rbf = RBF3D(xc, yc, zc; c = c, d = d, eps = e) x, y, z = rand(10), rand(10), rand(10) v = rbf(x,y,z) sess = Session() run(sess, v) ``` Here `xc`, `yc`, and `zc` are the centers; `e` and `d` are hyper-parameters for radial basis functions (see API documentation for [`RBF3D`](@ref)). These parameter are trainable, e.g., we elect to train `xc`, `yc`, `zc` and `e`, and set $d=0$ (no linear affine term) ```julia xc, yc, zc, c = Variable(rand(50)), Variable(rand(50)), Variable(rand(50)), Variable(rand(50)) e = Variable(rand(50)) rbf = RBF3D(xc, yc, zc; c = c, eps = e) # ... (details ommited) v = rbf(x, y, z) loss = sum((v-vobs)^2) sess = Session(); init(sess) BFGS!(sess, loss) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3924
# Reinforcement Learning Basics: Q-learning and SARSA This note gives a short introduction to Q-learning and SARSA in reinforcement learning. ## Reinforcement Learning Reinforcement learning aims at making optimal decisions using experiences. In reinforcement learning, an **agent** interacts with an **environment**. There are three important concepts in reinforcement learning: **states**, **actions**, and **rewards**. An agent in a certain state takes an action, which results in a reward from the environment and a change of states. In this note, we assume that the states and actions are discrete, and let $\mathcal{S}$ and $\mathcal{A}$ denotes the set of states and actions, respectively. We first define some important concepts in reinforcement learning: - Policy. A policy is a function $\pi: \mathcal{S}\rightarrow \mathcal{A}$ that defines the agent's action at a given state. - Reward. A reward is a function $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ whose value is rewarded to an agent for performing certain actions at a given state. Particularly, the goal of an agent is to maximum the discounted reward $$\min_\pi\ R = \sum_{t=0}^\infty \gamma^t R(s_{t+1}, a_{t+1}) \tag{1}$$ where $\gamma\in (0,1)$ is a discounted factor, and $(s_t, a_t)$ are a sequence of states and actions following a policy $\pi$. Specifically, in this note we assume that both the policy and the reward function are time-independent and deterministic. We can now define the quality function (Q-function) for a given policy $$Q^\pi(s_t, a_t) = \mathbf{E}(R(s_t, a_t) + \gamma R(s_{t+1}, a_{t+1}) + \gamma^2 R(s_{t+2}, a_{t+2}) + \ldots | s_t, a_t)$$ here $\pi$ is a given policy It can be shown that the solution to Equation 1 is given by the policy $\pi$ that satisfies $$\pi(s) = \max_a\ Q^\pi(s, a)$$ ## Q-learning and SARSA Both Q-learning and SARSA learn the Q-function iteratively. We denote the everchanging Q-function in the iterative process as $Q(s,a)$ (no superscript referring to any policy). When $|\mathcal{S}|<\infty, |\mathcal{A}|<\infty$, $Q(s,a)$ can be tabulated as a $|\mathcal{S}|\times |\mathcal{A}|$ table. A powerful technique in reinforcment learning is the epsilon-greedy algorithm, which strikes a balance between exploration and exploitation of the state space. To describe the espilon-greedy algorithm, we introduce the **stochastic policy** $\pi_\epsilon$ given a Q-function: $$\pi_\epsilon(s) = \begin{cases}a' & \text{w.p.}\ \epsilon \\ \arg\max_a Q(s, a) &\text{w.p.}\ 1-\epsilon\end{cases}$$ Here $a'$ is a random variable whose values are in $\mathcal{A}$ (e.g., a uniform random variable over $\mathcal{A}$). Then the Q-learning update formula can be expressed as $$Q(s,a) = (1-\alpha)Q(s,a) + \alpha \left(R(s,a) + \gamma\max_{a'} Q(s', a')\right)$$ The SARSA update formula can be expressed as $$Q(s,a) \gets (1-\alpha)Q(s,a) + \alpha \left(R(s,a) + \gamma Q (s', a')\right),\ a' = \pi_\epsilon(s')$$ In both cases, $s'$ is the subsequent state given the last action $a$ at state $s$, and $a = \pi_\epsilon(s)$. The subtle difference between Q-learning and SARSA is **how you select your next best action**, either max or mean. To extract the optimal deterministic policy $\pi$ from $\pi_\epsilon$, we only need to define $$\pi(s) := \arg\max_a Q(s,a)$$ ## Examples We use OpenAI gym to perform numerical experiments. We reimplemented the Q-learning algorithm from [this post](https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/) in Julia. - Q-learning: [code](https://github.com/kailaix/ADCME.jl/blob/master/docs/src/assets/Codes/ML/qlearning.jl) - SARSA: [code](https://github.com/kailaix/ADCME.jl/blob/master/docs/src/assets/Codes/ML/salsa.jl) To run the scripts, you need to install the dependencies via ```julia using ADCME PIP = get_pip() run(`$PIP install cmake 'gym[atari]'`) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
1903
# Resource Manager Sometimes we want to store data for different operations to share, or maintain a stateful kernel (data are shared across different invocations). One way to achieve this goal in the concurrency environment is to use `ResourceMgr` in C++ custom operators. A typical usage of `ResourceMgr` is as follows 1. Define your own resource, which should inherent from `ResourceBase` and `DebugString` must be defined (it is an abstract method in `ResourceBase`). ```c++ #include "tensorflow/core/framework/resource_mgr.h" struct MyVar: public ResourceBase{ string DebugString() const { return "MyVar"; }; mutex mu; int32 val; }; ``` 2. Access the system `ResourceMgr` through ```c++ auto rm = context->resource_manager(); ``` 3. Define your resource creation and manipulation method (make sure at any time there is only one single instance given the same container name and resource name). ```c++ MyVar* my_var; Status s = rm->LookupOrCreate<MyVar>("my_container", "my_name", &my_var, [&](MyVar** ret){ printf("Create a new container\n"); *ret = new MyVar; (*ret)->val = *u_tensor; return Status::OK(); }); DCHECK_EQ(s, Status::OK()); my_var->val += 1; my_var->Unref(); ``` When using the `ResourceMgr`, keep in mind that whenever you execute a new path in the computational graph, the system will create a new `ResourceMgr`. Therefore, to run operators that manipulate `ResourceMgr` in parallel, the trigger operator (which is fed to `run(sess, ...)`) must be attached those manipulation dependencies. See the following scripts for an example [CMakeLists.txt](https://kailaix.github.io/ADCME.jl/dev/assets/Codes/ResourceManager/CMakeLists.txt), [TestResourceManager.cpp](https://kailaix.github.io/ADCME.jl/dev/assets/Codes/ResourceManager/TestResourceManager.cpp), [gradtest.jl](https://kailaix.github.io/ADCME.jl/dev/assets/Codes/ResourceManager/gradtest.jl)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
26436
# Training Deep Neural Networks with Trust-Region Methods Trust-region methods are a class of global optimization methods. The basic idea is to successively solve an approximated optimization problem in a small neighborhood of the current state. For example, we can approximate the local landscape of the objective function using a quadratic function, and thus can solve efficiently and accurately. The biggest advantage of trust-region methods in the context of deep neural network is that they can escape saddle points, which are demonstrated to be the dominant causes for slow convergence, with proper algorithm design. However, the most challenging problem with trust-region methods is that we need to calculate the Hessian (curvature information) to leverage the local curvature information. Computing the Hessian can be quite expensive and challenging, especially if the forward computation involves complex procedures and has a large number of optimizable variables. Fortunately, for many deep neural network based inverse problems, the DNNs do not need to be huge for good accuracy. Therefore, calculating the Hessian is plausible. This does not mean that efficient computation is easy, and we introduce the technique is another post. In this post, we compare the trust-region method with other competing methods (L-BFGS-B, BFGS, and ADAM optimizer) for training deep neural networks that are coupled with a numerical solver. We also shed lights on why the other optimizers slow down. ## Trust-region Methods We consider an unconstrained optimization problem $$\min_x f(x) \tag{1}$$ The trust-region method solves the optimization problem Eq. 1 by iteratively solving many simpler subproblems, which are good approximation to $f(x_k)$ at the neighborhood of $x_k$. We model $f(x_k+s)$ using a quadratic model $$m(s) = f_k + s^T g_k + \frac{1}{2}s^T H_k s \tag{2}$$ Here $f_k = f(x_k)$, $g_k = \nabla f(x_k)$, $H_k = \nabla^2 f(x_k)$. Eq. 2 is essentially the Taylor expansion of $f(x)$ at $x_k$. This approximation is only accurate within the neighborhood of $x_k$. Therefore, we constrain our subproblem to a **trust region** $$||s||\leq \Delta_k$$ The subproblem has the following form $$\begin{aligned}\min_{s} & \; m(s) \\ \text{s.t.} & \; \|s\|\leq \Delta_k\end{aligned} \tag{3}$$ In this work, we use the method proposed in [^trust-region] to solve Eq. 3 nearly exactly. [^trust-region]: A.R. Conn, N.I. Gould, and P.L. Toint, "Trust region methods", Siam, pp. 169-200, 2000. ## Example: Static Poisson's Equation In this example, we consider the Poisson's equation $$\nabla \cdot (\kappa_\theta(u) \nabla u)) = f(x), \;x\in \Omega, \; x\in \partial\Omega$$ Here $\kappa_\theta(u)$ is a deep neural network and $\theta$ is the weights and biases. We discretize $\Omega$ using a uniform grid. Assume we can observe the full field data $u_{obs}$ on the grid points. We can then train the deep neural network using the residual minimization method [^residual-minimization] $$\min_\theta \sum_{i,j} (F_{i,j}(\theta) - f_{i,j})^2 \tag{4}$$ Here $F_{i,j}(\theta)$ is the finite difference discretization of $\nabla \cdot (\kappa_\theta(u_{obs}) \nabla u_{obs}))$ at the grid points. In our benchmark, we add 10% uniform random noise to $f$ and $u_{obs}$ to make the problem more challenging. [^residual-minimization]: Huang, Daniel Z., et al. "Learning constitutive relations from indirect observations using deep neural networks." Journal of Computational Physics (2020): 109491. We apply 4 optimizers to solve Eq. 4. Because the optimization results depend on the initialization of the deep neural network, we use 5 different initial guess for DNNs. The result is shown below | Case | Convergence Plots | |-------------|---| |1 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses2_static.png?raw=true)| |2 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses23_static.png?raw=true)| |3 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses233_static.png?raw=true)| |4 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses2333_static.png?raw=true)| |5 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses23333_static.png?raw=true)| We can see for all cases, the trust-region method provides a much more accurate result, and in general converges faster. The ADAM optimizer is the least competent, partially because it's a first-order optimizer and is not able to fully leverage the curvature information. The BFGS optimizers constructs an approximate Hessian that is SPD. The L-BFGS-B optimizer is an approximation to BFGS, where it uses only a limited number of previous iterates to construct the Hessian matrix. As mentioned, in the optimization problem involving deep neural networks, the slow down is mainly due to the saddle point, where the descent direction corresponds to the negative eigenvalues of the Hessian matrix. Because BFGS and L-BFGS-B ensure that the Hessian matrix is SPD, they cannot provide approximate guidance to escape the saddle point. This hypothesis is demonstrated in the following plot, where we show the distribution of Hessian eigenvalues at the last step for Case 2 | Optimizer | L-BFGS-B | BFGS | Trust Region | |-------------|---|---|---| | Eigenvalue Distribution | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_lbfgs_eig.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_bfgs_eig.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_tr_eig.png?raw=true)| In the following, we show the eigenvalue distribution of the Hessian matrix for $$l(\theta) = \sum_{i=1}^n (\kappa_\theta(u_i) - \kappa_i)^2$$ We can see that the Hessian possesses some negative eigenvalues. This implies that the DNN and DNN-FEM loss functions indeed have different curvature structures at the local minimum. The structure is altered by the PDE constraint. | Optimizer | L-BFGS-B | BFGS | Trust Region | |-------------|---|---|---| | Eigenvalue Distribution | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_static_lbfgs_eig.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_static_bfgs_eig.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_static_tr_eig.png?raw=true)| We also show the number of **negative** eigenvalues for the BFGS and trust region optimizer. Here we use a threshold $\epsilon=10^{-6}$: for a given eigenvalue $\lambda$, it is treated as "positive" if $\lambda>\epsilon \lambda_{\max}$, and "negative" if $\lambda < - \epsilon \lambda_{\max}$, otherwise zero. Here $\lambda_{\max}$ is the maximum eigenvalue. | BFGS | Trust Region | |-------------|---| |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_positive_eigvals.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_positive_eigvals_tr.png?raw=true)| We can see that the number of positive eigenvalues stays at around 18 and 30 for BFGS and trust region methods after a sufficient number of iterations. The number of negative eigenvalues is nearly zero. This means that both optimizers converge to points with positive semidefinite Hessian matrices. Stationary points are true local minima, instead of saddle points. We also analyze the direction of the search direction $p_k$ in the BFGS optimizer. We consider two values $$\begin{aligned}\cos(\theta_1) &= \frac{-p_k^T g_k}{\|p_k\|\|g_k\|} \\ \cos(\theta_2) &= \frac{p_k^T q_k}{\|p_k\|\|q_k\|}\end{aligned}$$ Here $q_k$ is the direction for the **Newton's point** $$q_k = -H_k^{-1}g_k$$ The two quantities are shown in the following plots (since the trust-region method converges in around 270 iterations, $\cos(\theta2)$ only has limited data points) | $\cos(\theta_1)$ | $\cos(\theta_2)$ | |-------------|---| | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_angles.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_angles2.png?raw=true)| There are two conclusions to draw from the plots 1. The search direction of the BFGS optimizer deviates from the gradient descent method. 2. The search direction of the BFGS optimizer is not very correlated with the Newton's point direction; this indicates the search direction poorly recognizes the negative curvature directions. ## Example: Heat Equation We consider a time-dependent PDE problem: the heat equation $$\frac{\partial u}{\partial t} = \nabla \cdot (\kappa_\theta(x) \nabla u)) + f(x), \;x\in \Omega, \; x\in \partial\Omega$$ We assume that we can observe the full field data of $u$ as snapshots. We again apply the residual minimization method to train the deep neural network. The following shows the convergence plots for different initial guesses of the DNNs. | Case | Convergence Plots | |-------------|---| |1 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses2_dynamic.png?raw=true)| |2 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses23_dynamic.png?raw=true)| |3 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses233_dynamic.png?raw=true)| |4 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses2333_dynamic.png?raw=true)| |5 | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/losses23333_dynamic.png?raw=true)| We see that the trust-region is more competitive than the other methods. We also show the eigenvalue distribution of the Hessian matrices for Case 3. | ADAM | BFGS | LBFGS| Trust Region | |---|---|---|---| |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/dynamic_ADAM_eig.png?raw=true)| ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/dynamic_BFGS_eig.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/dynamic_LBFGS_eig.png?raw=true)| ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/dynamic_TrustRegion_eig.png?raw=true)| |50|31|22|35| The eigenvalues of Hessian matrices are nonnegative except for the ADAM case, where the optimizer does not converge to a satisfactory local minimum after 5000 iterations. Hence, in what follows, we omit the discussion of ADAM optimizers. The third row show the number of positive eigenvalues using the criterion mentioned before. We again see that among all three methods---BFGS, LBFGS, and trust region---the smaller loss function at the last step is associated with a larger number of positive eigenvalues. We can interpret the eigenvalues associated with zero eigenvalues as "inactive directions", in the sense that given the gradient norm is small, perturbation in the direction of zero eigenvalues almost does not change the loss function values. In other words, the local minimum found by trust region methods has more active directions than BFGS and LBFGS. The active directions can also be viewed as "effective degrees of freedoms (DOFs)", and thus we conclude trust region methods find a local minimum with smaller loss function due to more effective DOFs. The readers may wonder why different local minimums have different effective DOFs. To answer this question, we show the cumulative distribution of the maginitude of weights and biases in the following plot ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/weight_dist.png?raw=true) The plot shows that BFGS and LBFGS outweight trust region methods in terms of large weights and biases (in terms of maginitudes). Because we use $\tanh$ as activation values, for fixed intermediate activation values, large weights and biases are more likely to cause saturation of activation values, i.e., the inputs to $\tanh$ is large or small and thus the outputs are close to 1. To illustrate the idea, consider a simple function $$y = w_1 \tanh(w_2 x + b_2) + b_1$$ Given a reasonable $x$ (e.g., $x\approx 0.1$), if $|w_2|$ or $|b_2|$ is large, $y \approx b_1 \pm w_1$, and thus the effective DOF is 2; if $w_2$ and $b_2$ is close to 0, $y\approx w_1 w_2 x + w_1 b_2 + b_1$, perturbation of all four parameters $w_1$, $w_2$, $b_1$, $b_2$ may contribute to the change of $y$, and thus the effective DOF is 4. In sum, trust region methods yield weights and biases with smaller magnitudes compared to BFGS/LBFGS in general, and thus achieve more effective DOFs. This conjecture is confirmed by the following plot, which shows the histogram of the intermediate activation values. We fixed the input $x = (0.5,0.5)$ (the midpoint of the computational domain), and collected all the outputs of the $\tanh$ function within the DNN. The figure shows that compared to the trust region method, the activation values of ADAM, BFGS and LBFGS are more concentrated near the extreme values $-1$ and $1$. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/activation_dist.png?raw=true) How can trust region methods manage the magnitudes of the weights and biases? The benefit is intrinsic to how the trust region method works: it only searches for "optimal solution" with a small neighborhood of the current state. However, BFGS and LBFGS searches for "optimal solution" along a direction aggressively. Given so many local minima, it is very likely that BFGS and LBFGS get trapped in a local minimum with smaller effective DOFs. In this perspective, trust region methods are useful methods for avoiding (instead of "escaping") bad local minima. | ADAM | BFGS | LBFGS| Trust Region | |---|---|---|---| |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_dynamic_ADAM_eig.png?raw=true)| ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_dynamic_BFGS_eig.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_dynamic_LBFGS_eig.png?raw=true)| ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/nn_dynamic_TrustRegion_eig.png?raw=true)| |132|34|41|38| In the above plot, we show the eigenvalue distribution of the Hessian matrix for $$l(\theta) = \sum_{i=1}^n (\kappa_\theta(x_i) - \kappa_i)^2$$ Here $\kappa_i$ is the true $\kappa$ value at location $x_i$ ($x_i$ is the Gauss quadrature point), and $\kappa_\theta(x_i)$ is the DNN estimate. We get rid of the PDE out of the loss function. The pattern of the eigenvalue distribution---a few positive eigenvalues accompanied by zero eigenvalues---still persists. The difference is that the number of positive eigenvalues are slightly larger than the loss function that couples DNNs and PDEs.This implies that PDEs restricts effective DOFs. We attribute the diminished effective DOFs to the physical constraints imposed by PDEs. ## Example: FEM for Static Poisson's Equation Consider the Poisson's equation again. This time, the loss function is formulated as $$L(\theta) = \sum_i (u_{obs}(x_i) - u_\theta(x_i))^2$$ Here $u_\theta$ is the numerical solution to the Poisson's equation. The evaluation of $\nabla^2_\theta L(\theta)$ requires back-propagating the Hessian matrix through various operators including the sparse solver (see [this post](https://kailaix.github.io/ADCME.jl/dev/second_order_pcl/#Example:-Developing-Second-Order-PCL-for-a-Sparse-Linear-Solver) for how the back-propagation rule is implemented). The following shows an example of the implementation, which is annotated for convenience. ```julia using AdFem using PyPlot using LinearAlgebra using JLD2 # disable auth reordering so that the Hessian back-propagation works properly ADCME.options.sparse.auto_reorder = false using Random; Random.seed!(233) sess = Session() function simulate(θ) # The first part is a standard piece of codes for doing numerical simulation in ADCME global mmesh = Mesh(10,10,0.1) x = gauss_nodes(mmesh) Fsrc = eval_f_on_gauss_pts((x,y)->1.0, mmesh) global kappa = squeeze(fc(x, [20,20,20,1], θ)) + 0.5 A_orig = compute_fem_laplace_matrix1(kappa, mmesh) F = compute_fem_source_term1(Fsrc, mmesh) global bdnode = bcnode(mmesh) global A, F = impose_Dirichlet_boundary_conditions(A_orig, F, bdnode, zeros(length(bdnode))) @load "Data/fwd_data.jld2" sol SOL = sol global sol = A\F global loss = sum((sol-SOL)^2) # We now calculate some extra tensors for use in Hessian back-propagation # We use the TensorFlow tf.hessians (hessian in ADCME) to calculate the Hessian of DNNs. Note this algorithm is different from second order PCL global H_dnn_pl, W_dnn_pl = pcl_hessian(kappa, θ, loss) global dsol = gradients(loss, sol) global dθ = gradients(loss, θ) # We need the indices for sparse matrices in the Hessian back-propagation init(sess) global indices_orig = run(sess, A_orig.o.indices) .+ 1 global indices = run(sess, A.o.indices) .+ 1 end function calculate_hessian(θ0) # Retrieve intermediate values. Note in an optimized implementation, these values should already be available in the "tape". However, because second order PCL is currently in development, we recalculate these values for simplicity A_vals, sol_vals, dsol_vals = run(sess, [A.o.values, sol, dsol], θ=>θ0) # SoPCL for `loss = sum((sol-SOL)^2)` W = pcl_square_sum(length(sol)) # SoPCL for `sol = A\F` W = pcl_sparse_solve(indices, A_vals, sol_vals, W, dsol_vals) # SoPCL for `A, F = impose_Dirichlet_boundary_conditions(...)` J = pcl_impose_Dirichlet_boundary_conditions(indices_orig, bdnode, size(indices,1)) W = pcl_linear_op(J, W) # SoPCL for `A_orig = compute_fem_laplace_matrix1(kappa, mmesh)` J = pcl_compute_fem_laplace_matrix1(mmesh) W = pcl_linear_op(J, W) # SoPCL for DNN run(sess, H_dnn_pl, feed_dict=Dict(W_dnn_pl=>W, θ=>θ0)) end function calculate_gradient(θ0) run(sess, dθ, θ=>θ0) end function calculate_loss(θ0) L = run(sess, loss, θ=>θ0) @info "Loss = $L" L end # The optimization step θ = placeholder(fc_init([2,20,20,20,1])) simulate(θ) res = opt.minimize( calculate_loss, θ0, method = "trust-exact", jac = calculate_gradient, hess = calculate_hessian, tol = 1e-12, options = Dict( "maxiter"=> 5000, "gtol"=>0.0 # force the optimizer not to stop ) ) ``` It is very important that before we perform the optimization, we carry out the Hessian test using the [`test_hessian`](@ref) function. ```julia function test_f(θ0) calculate_gradient(θ0), calculate_hessian(θ0) end θ0 = run(sess, θ) test_jacobian(test_f, θ0, scale=1e-3) ``` This should give us a plot as follows: ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/hessian_test.png?raw=true) Now let us consider the inverse problem. First we generate the observation using $$\kappa(x) = \frac{1}{1+\|x\|_2^2}+1$$ The observation is shown as below ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/sol.png?raw=true) We use the full field data for simplicity, although our method also applies to sparse observations. The following plots shows results where the trust region method performs significantly better than the BFGS and LBFGS method. **Case 1** | Description | Result | |--------------|---| | Loss | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/loss2.png?raw=true) | | LBFGS | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/lbfgs_2.png?raw=true) | | BFGS | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/bfgs_2.png?raw=true) | | Trust Region | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/tr_2.png?raw=true) | **Case 2** | Description | Result | |--------------|---| | Loss | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/loss2333.png?raw=true) | | LBFGS | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/lbfgs_2333.png?raw=true) | | BFGS | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/bfgs_2333.png?raw=true) | | Trust Region | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/tr_2333.png?raw=true) | **Case 3** | Description | Result | |--------------|---| | Loss | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/loss23333.png?raw=true) | | LBFGS | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/lbfgs_23333.png?raw=true) | | BFGS | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/bfgs_23333.png?raw=true) | | Trust Region | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/tr_23333.png?raw=true) | In the following plots, we show the absolute eigenvalue distributions of Hessians at the terminal point for Case 2. The red dashed line represents the level $10^{-6}\lambda_{\max}$, where $\lambda_{\max}$ is the maximum eigenvalue. | LBFGS | BFGS | Trust Region| |--------------|---|---| |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/lbfgs_eigs.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/bfgs_eigs.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/tr_eigs.png?raw=true)| Eigenvalues that lie below the red dashed line can be treated as zero. This means that for BFGS and the trust region method, the optimizers find local minima. In fact, we show $$F(\alpha) = L(x^* + \alpha v)$$ in the following plots, where $x^*$ is the converged point for LBFGS, $v$ is the eigenvector corresponding to either the minimum or maximum eigenvalues of the Hessian. The profile for the former case is quite flat, indicating that small perturbation along the eigenvector direction makes little change to the loss function. Thus, for LBFGS, we can also assume that a local minimum is found. Interestingly, even though all optimizers find local minima. The final loss functions and errors are quite different. Trust methods perform much better in these cases compared to BFGS and LBFGS (in some other cases, BFGS may perform better). | $\lambda_{\min}$ | $\lambda_{\max}$ | |--------------|---| |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/lbfgs_vmin.png?raw=true)|![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/second_order_optimizer/static_poisson/lbfgs_vmax.png?raw=true)| The problem itself is nonconvex and has many local minima---different from the common belief that in deep learning, stationary points are usually saddle points if they are not the global minimum. Trust region methods do not guarantee that we can find a global minimum, or even a "good" local minimum. However, because trust region methods shows faster convergence and superior accuracy in many cases, it never harms to add trust region methods into the optimization tool box. Additionally, the Hessian calculated using the second order PCL is a powerful weapon for diagnosing the convergence and provides curvature information for more sophisticated optimizers. ## Limitations Despite many promising features of the trust region method, it is not without limitations, which we want to discuss here. The current trust-region method requires calculating the Hessian matrix. Firstly, computing the Hessian matrix can be technically difficult, especially when DNNs are coupled with a sophisticated numerical PDE solver. There are many existing techniques for computing the Hessian. The TensorFlow backend supports Hessian computation concurrently, but it requires users to implement rules for calculating "gradients of gradients". Additionally, TensorFlow uses reverse-mode automatic differentiation to evaluate the Hessian. This means that TensorFlow loops over each gradient component and calculating a row of Hessian at a time. This does not leverage the symmetry of Hessians and can be quite inefficient if the number of unknowns is large. Another approach, the edge pushing algorithm, uses one backward pass to evaluate the Hessian. This approach takes advantage of the symmetry of Hessians. However, the implementation can be quite convolved and computations can be expensive in some scenarios. We will cover this topic in more details in [another post](https://kailaix.github.io/ADCME.jl/dev/second_order_pcl/#Second-Order-Physics-Constrained-Learning). ## Conclusion Trust-region methods are a class of global optimization techniques. They are less popular in the deep learning approach because the DNNs tend to be huge and the computation of Hessians is expensive. However, they are very suitable for many computational engineering problems, where DNNs are typically small, and convergence as well as accuracy is a critical concern. Our point of view is that although the Hessian computations are expensive, they are quite rewarding. Future researches will focus on efficient computation and automation of Hessian computations.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
7068
# Second Order Physics Constrained Learning In this note, we describe the second order physics constrained learning (PCL) for efficient calculating Hessians using computational graphs. To begin with, let $x\in\mathbb{R}^d$ be the coordinates and consider a chain of operations $$l(x) = F_n\circ F_{n-1}\circ \cdots \circ F_1(x) \tag{1}$$ Here $l$ is a scalar function, which means $F_n$ is a scalar function. It is not hard to see that we can express any computational graph with a scalar output using Eq. 1. For convenience, given a fixed $k\in\{1,2,\ldots, n\}$, we define $\Phi$, $F$ as follows $$l(x) = \underbrace{F_n\circ F_{n-1}\circ \cdots \circ F_k}_{\Phi} \circ \underbrace{F_{k-1}\cdots \circ F_1}_{F}(x)$$ We omit $k$ in $\Phi$, $F$ for clarity. ## Calculating the Hessian in TensorFlow TensorFlow provides [`tf.hessians`](https://www.tensorflow.org/api_docs/python/tf/hessians) to calculate hessian functions. ADCME exposes this function via [`hessians`](@ref). The idea is to first construct a computational graph for the gradients $\nabla_x l(x)$, then for **each component** of $\nabla_x l(x)$, $\nabla_{x_i} l(x)$, we construct a gradient back-propagation computational graph $$\nabla_x \nabla_{x_i} l(x)$$ This gives us a row/column in the Hessian matrix. The following shows the main code from TensorFlow: ```python _, hessian = control_flow_ops.while_loop( lambda j, _: j < n, lambda j, result: (j + 1, result.write(j, gradients(gradient[j], x)[0])), loop_vars ) ``` We see it's essentially a loop over each component in `gradient` Albeit straight-forward, this approach suffers from three drawbacks: 1. The algorithm does not leverage the symmetry of the Hessian matrix. The Hessian structure can be exploited for efficient computations. 2. The algorithm can be quite expensive. Firstly, it requires a gradient back-propagation over each component of $\nabla_x l(x)$. Although TensorFlow can concurrently evaluates these Hessian rows/columns concurrently, the dimension of $x$ can be very large and therefore the computations cannot be fully parallelized. Secondly, each back-propagation of $\nabla_{x_i} l(x)$ requires both forward computation $l(x)$ and gradient back-propagation for $\nabla_{x} l(x)$, we need to carefully arrange the computations and storages so that these intermediate results can be reused. Otherwise, redundant computations lead to extra costs. 3. The most demanding requirements of the algorithm is that we need to implement---for every operator---the "gradients of gradients". Although simple for some operators (there are already existing implementations for some operators in TensorFlow!), this can be very hard for sophisticated operators, e.g., implicit operators. ## Second Order Physics Constrained Learning Here we consider the second order physics constrained learning. The main idea is to apply the implicit function theorem to $$l = \Phi(F(x)) \tag{2}$$ twice. First, we introduce some notation: $$\Phi_k(y) = \frac{\partial \Phi(y)}{\partial y_k}, \quad \Phi_{kl}(y) = \frac{\partial^2 \Phi(y)}{\partial y_k \partial y_l}$$ $$F_{k,l}(x) = \frac{\partial F_k(x)}{\partial x_l}, \quad F_{k,lr}(x) = \frac{\partial^2 F_k(x)}{\partial x_l\partial x_r}$$ We take the derivative with respect to $x_i$ on both sides of Eq. 2, and get $$\frac{\partial l}{\partial x_i} = \Phi_k F_{k,i} \tag{3}$$ We take the derivative with respect to $x_j$ on both sides of Eq. 3, and get $$\frac{\partial^2 l}{\partial x_i\partial x_j} = \Phi_{kr} F_{k,i}F_{r,j} + \Phi_k F_{k, ij} \tag{4}$$ Here we have used the Einstein notation. Let $\bar\Phi = \nabla \Phi$ but we treat $x$ as a independent variable of $\bar\Phi$, then we can rewrite Eq. 4 to $$\nabla_x^2 l = (\nabla_x F) \nabla^2_x\Phi (\nabla_x F)^T + \nabla_x^2 (\bar\Phi^T F)\tag{5}$$ Note the values of $\bar\Phi$ is already available in the gradient back-propagation. ## Algorithm Based on Eq. 5, we have the following algorithm for calculating the Hessian 1. Initialize $H = 0$ 2. for $k = n-1, n-2,\ldots, 1$ * Calculate $J = \nabla F_k$ and extract $\bar \Phi_{k+1}$ from the gradient back-propagation tape. * Calculate $Z = \nabla^2 (\bar\Phi_{k+1}^T F_k)$ * $H \gets JHJ^T + Z$ This algorithm only requires one backward pass and constructs the Hessian iteratively. Additionally, we can leverage the symmetry of the Hessian when we do the calculations in the second step. This algorithm also doesn't require looping over each components of the gradient. However, the challenge here is that we need to calculate $\nabla F_k$ and $Z = \nabla^2 (\bar\Phi_{k+1}^T F_k)$. Developing a complete support of such calculations for all operators can be a time-consuming task. But due to the benefit brought by the trust region method, we deem it to be a rewarding investment. ## Example: Developing Second Order PCL for a Sparse Linear Solver Here we consider an application of second order PCL for a sparse solver. We focus on the operator that takes the sparse entries of a matrix $A\in\mathbb{R}^{n\times n}$ as input, and outputs $u$ $Au = f$ Let $A = [a_{ij}]$, and some of $a_{ij}$ are zero. According to 2nd order PCL, we need to calculate $\frac{\partial u_k}{\partial a_{ij}}$ and $\frac{\partial^2 (y^T u)}{\partial a_{ij} \partial a_{rs}}$. We consider a multi-index $l$ and $r$. We take the gradient with respect to $a_l$ on both sides of $$a_{i1}u_1 + a_{i2}u_2 + \ldots + a_{in}u_n = f_i$$ which leads to $$a_{i1}^lu_1 + a_{i2}^lu_2 + \ldots + a_{in}^lu_n + a_{i1}u^l_1 + a_{i2}u^l_2 + \ldots + a_{in}u^l_n = 0\tag{6}$$ Here the superscript indicates the derivative. Eq. 6 leads to $$u^l = -A^{-1}A^l u \tag{7}$$ Note at most one entry in $A^l$ is nonzero, and therefore at most one entry in $A^l u$ is nonzero. Thus to calculate Eq. 7, we can calculate the inverse $A^{-1}$ first, and then $u^l$ can be obtained cheaply by taking a column from $A^{-1}$. The complexity will be $\mathcal{O}(n^3)$---the cost of inverting $A^{-1}$. Now take the derivative with respect to $a_r$ on both sides of Eq. 6, we have $$\begin{aligned} a_{i1}^lu_1^r + a_{i2}^lu_2^r + \ldots + a_{in}^lu_n^r + \\ a_{i1}^ru^l_1 + a_{i2}^ru^l_2 + \ldots + a_{in}^ru^l_n +\\ a_{i1}u^{rl}_1 + a_{i2}u^{rl}_2 + \ldots + a_{in}u^{rl}_n = 0 \end{aligned}$$ which leads to $$Au^{rl} = -A^l u^r - A^r u^l$$ Therefore, $$(y^Tu)^{rl} = - y^TA^{-1}(A^l u^r + A^r u^l)$$ We can calculate $z^T = y^TA^{-1}$ first with a cost $\mathcal{O}(n^2)$. Because $u^r$, $u^l$ has already been calculated and $A^l$, $A^r$ has at most one nonzero entry, $A^l u^r + A^r u^l$ has at most two nonzero entries. The calculation $z^T(A^l u^r + A^r u^l)$ can be done in $\mathcal{O}(1)$ and therefore the total cost is $\mathcal{O}(d^2)$, where $d$ is the number of nonzero entries. Upon obtaining $\frac{\partial u_k}{\partial a_{ij}}$ and $\frac{\partial^2 (y^T u)}{\partial a_{ij} \partial a_{rs}}$, we can apply the recursive the formula to "back-propagate" the Hessian matrix.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
5423
# Introducing ADCME Database and SQL Integration: an Efficient Approach to Simulation Data Management ## Introduction If you have a massive number of simulations and results from different simulation parameters, to facilitate the data analysis and improve reproducibility, database and Structured Query Language (SQL) are convenient and powerful ways for data management. Database allows simulation parameters and results to be stored in a permanent storage, and records can be inserted, queried, updated, and deleted as we proceed in our research. Specifically, databases are usually designed in a way that we can concurrently read and write in a transactional manner, which ensures that the reads are writes are done correctly even in the case of data conflicts. This characteristic is very useful for parallel simulations. Another important feature of databases is "indexing". By indexing tables, we can manipute tables in a more efficient way. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/sqlite.png?raw=true) SQL is a standad language for accessing and manipulating databases. The four main operations in SQLs are: create, insert, update, and delete. More advanced commands include `where`, `groupby`, `join`, etc. In ADCME, we implemented an interface to SQLite, a relational database management system contained in a C library. SQLite provides basic SQL engines, which is compliant to the SQL standard. One particular feature of SQLite is that the database is a single file or in-memory. This simplifies the client and server SQL logic, but bears the limitation of scalability. Nevertheless, SQLite is more than sufficient to store and manipulate our simulation parameters and results (typically a link to the data folder). The introduction primarily focuses on some commonly used features of database management in ADCME. ## Database Structure In ADCME, a database is created using [`Database`](@ref). There are two types of database: ```julia db1 = Database() # in-memory db2 = Database("simulation.db") # file ``` If you created a file-based database, whenever you finished operation, you need to [`commit`](@ref) to the database or [`close`](@ref) the database to make the changes effective. ```julia commit(db2) close(db2) ``` To execute a SQL command in the database, we can use [`execute`](@ref) command. In the next section, we list some commonly used operations. By default, `commit` is called after `execute`. Users can disable this by using ```julia db1 = Database(commit_after_execute=false) # in-memory db2 = Database("simulation.db", commit_after_execute=false) # file ``` ## Commonly Used Operations ### Create a Database ```julia execute(db2, """ CREATE TABLE simulation_parameters ( name real primary key, dt real, h real, result text ) """) ``` ### Insert an Record ```julia execute(db2, """ INSERT INTO simulation_parameters VALUES ("sim1", 0.1, 0.01, "file1.png") """) ``` ### Insert Many Records ```julia params = [ ("sim2", 0.3, "file2.png"), ("sim3", 0.5, "file3.png"), ("sim4", 0.9, "file4.png") ] execute(db2, """ INSERT INTO simulation_parameters VALUES (?, ?, 0.01, ?) """, params) ``` ### Look Up Records ```julia c = execute(db2, """ SELECT * from simulation_parameters """) collect(c) ``` Expected output: ``` ("sim1", 0.1, 0.01, "file1.png") ("sim2", 0.3, 0.01, "file2.png") ("sim3", 0.5, 0.01, "file3.png") ("sim4", 0.9, 0.01, "file4.png") ``` ### Delete a Record ```julia execute(db2, """ DELETE from simulation_parameters WHERE name LIKE "%3" """) ``` Now the records are ``` ("sim1", 0.1, 0.01, "file1.png") ("sim2", 0.3, 0.01, "file2.png") ("sim4", 0.9, 0.01, "file4.png") ``` ### Update a Record ```julia execute(db2, """ UPDATE simulation_parameters SET h = 0.2 WHERE name = "sim4" """) ``` Now the records are ``` ("sim1", 0.1, 0.01, "file1.png") ("sim2", 0.3, 0.01, "file2.png") ("sim4", 0.9, 0.2, "file4.png") ``` ### Insert a Conflict Record Becase we set `name` as primary key, we cannot insert a record with the same name ```julia execute(db2, """ INSERT INTO simulation_parameters VALUES ("sim1", 0.1, 0.1, "file1_2.png") """) ``` We have an error ``` IntegrityError('UNIQUE constraint failed: simulation_parameters.name') ``` Alternatively, we can do ```julia execute(db2, """ INSERT OR IGNORE INTO simulation_parameters VALUES ("sim1", 0.1, 0.1, "file1_2.png") """) ``` ### Querying Meta Data - Get all tables in the database ```julia keys(db2) ``` Output: ``` "simulation_parameters" "sqlite_autoindex_simulation_parameters_1" ``` We can see a table that SQLites adds indexes to some fields: `sqlite_autoindex_simulation_parameters_1`. - Get column names in the database ```julia keys(db2, "simulation_parameters") ``` Output: ``` "name" "dt" "h" "result" ``` ### Drop a Table ```julia execute(db2, """ DROP TABLE simulation_parameters """) ``` ## Next Steps We introduced some basic usage of ADCME database and SQL integration for simulation data management. We used one common and lightweight database management system, SQLite, for managing data of moderate sizes. Due to SQL's wide adoption, it is possible to scale the data management system by adopting a full-fledged database, such as MySQL. In this case, developers can overload ADCME functions such as `execute`, `commit`, `close`, `keys`, etc., so that the top level codes requires little changes.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
4091
# Built-in Toolchain for Third-party Libraries Using third-party libraries, especially binaries with operation system and runtime dependencies, is troublesome and painful. ADCME has a built-in set of tools for downloading, uncompressing, and compiling third-party libraries. Therefore, we can compile external libraries from source and ensure that the products are compatible within the ADCME ecosystem. The toolchain uses the same set of C/C++ compilers that were used to compile the tensorflow dynamic library. Additionally, the toolchain provide essential building tools such as `cmake` and `ninja`. This section will be a short introduction to the toolchain. The best way to introduce the toolchain is through an example. Let us consider compiling a C++ library for use in ADCME. The library [LibHelloWorld](https://github.com/kailaix/LibHelloWorld) is hosted on GitHub and the repository contains a `CMakeLists.txt` and `HelloWorld.cpp`. Our goal is to download the repository into ADCME private workspace (`ADCME.PREFIXDIR`) and compile the library to the library path (`ADCME.LIBDIR`). The following code will do the job: ```julia using ADCME PWD = pwd() change_directory(ADCME.PREFIXDIR) git_repository("https://github.com/kailaix/LibHelloWorld", "LibHelloWorld") change_directory("LibHelloWorld") make_directory("build") change_directory("build") lib = get_library("hello_world") require_file(lib) do ADCME.cmake() ADCME.make() end _, libname = splitdir(lib) mv(lib, joinpath(ADCME.LIBDIR, libname), force=true) change_directory(PWD) ``` Here [`change_directory`](@ref), [`git_repository`](@ref), and others are ADCME toolchain functions. Note we have used `ADCME.cmake()` and `ADCME.make()` to ensure that the codes are compiled with a compatible compiler. The toolchain will cache all the intermediate files and therefore will not recompile as long as the files exist. To force recompiling, users need to delete the local repository, i.e., `LibHelloWorld` in `ADCME.PREFIXDIR`. The following is an exemplary output of the program: ```bash [ Info: Changed to directory /home/darve/kailaix/.julia/adcme/lib/Libraries [ Info: Cloning from https://github.com/kailaix/LibHelloWorld to LibHelloWorld... [ Info: Cloned https://github.com/kailaix/LibHelloWorld to LibHelloWorld [ Info: Changed to directory LibHelloWorld [ Info: Made directory directory [ Info: Changed to directory build -- The C compiler identification is GNU 5.4.0 -- The CXX compiler identification is GNU 5.4.0 -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: /home/darve/kailaix/.julia/adcme/bin/x86_64-conda_cos6-linux-gnu-gcc - skipped -- Detecting C compile features -- Detecting C compile features - done -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /home/darve/kailaix/.julia/adcme/bin/x86_64-conda_cos6-linux-gnu-g++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done JULIA=/home/darve/kailaix/julia-1.3.1/bin/julia ... Python path=/home/darve/kailaix/.julia/adcme/bin/python PREFIXDIR=/home/darve/kailaix/.julia/adcme/lib/Libraries TF_INC=/home/darve/kailaix/.julia/adcme/lib/python3.7/site-packages/tensorflow_core/include TF_ABI=1 TF_LIB_FILE=/home/darve/kailaix/.julia/adcme/lib/python3.7/site-packages/tensorflow_core/libtensorflow_framework.so.1 -- Configuring done -- Generating done -- Build files have been written to: /home/darve/kailaix/.julia/adcme/lib/Libraries/LibHelloWorld/build [2/2] Linking CXX shared library libhello_world.so [ Info: Changed to directory /home/darve/kailaix/project/MPI_Project/LibHelloWorld ``` To use the compiled library, we can write ```julia using ADCME libdir = joinpath(ADCME.LIBDIR, "libhello_world.so") @eval ccall((:helloworld, $libdir), Cvoid, ()) ``` Then we get the expected output: ```bash Hello World! ``` The design idea for ADCME toolchains is that users can write an install script. Then ADCME will guarantee that the runtime and compilation eco-system are compatible.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
2999
# Topological Optimization In this section, we present the ADCME implementation of a structural topology optimization problem. The optimization problem can be mathematically described as $$\begin{aligned}\min_x &\; l(x, u) \\ \text{s.t.} &\; V(x) = fV_0(x) \\ &\; F(x, u) = 0 \\ &\; 0<x_{\min} < x \leq 1 \end{aligned}$$ Here $x$ is a design variable, such as density in each element. $u$ is the state variable, such as the displacement vector. $F(x, u) = 0$ is the governing equation. $V(x)$ is the total volumn and $f$ is the prescribed volumn fraction. $x_{\min}$ is the lower bound for the design variable. Specifically, we consider a static linear elasticity load problem, where the governing equation is discretized to a linear system $$K(x) U - F = 0$$ Here $U$ is the discretized solution for $u$, $F$ is the load vector, $K(x)$ is the stiffness matrix. The discretized loss function $L$ is the strain energy, which has the form $$L(x, U) = U^T K(x) U = F^T K(x)^{-1} F$$ The original optimization problem becomes a constrained optimization problem. The following code is used for forward computation ```julia using AdFem m = 32 n = 20 h = 1.0 fracvol = 0.4 p = 3.0 x = Variable(fracvol*ones(m*n)) ρ = reshape(repeat(x^p, 1, 4), (-1,1)) ke = compute_plane_stress_matrix(1.0,0.3) ρ = reshape(ρ * reshape(ke, 1, 9), (-1,3,3)) K = compute_fem_stiffness_matrix(ρ, m, n, h) bdedge = bcedge("right", m, n, h) t1 = zeros(size(bdedge,1)) t2 = zeros(size(bdedge, 1)) t2[end] = 0.0001 F = compute_fem_traction_term([t1 t2],bdedge, m, n, h) bdnode = bcnode("left", m, n, h) K_, F_ = impose_Dirichlet_boundary_conditions(K, F, [bdnode; bdnode .+ (m+1)*(n+1)], zeros(2length(bdnode))) sol = K_\F_ ``` Here shows the initial guess for $x$: ```julia using PyPlot sess = Session(); init(sess) SOL = run(sess, sol) visualize_displacement(reshape(SOL, 1, :), m, n, h) savefig("init_opt.png") ``` We will use the Ipopt optimizer to solve the constraint optimization problem. The following code ```julia import Ipopt loss = sum(sol'*K*sol) function eval_g(x, g) g[1] = sum(x) - fracvol*m*n end function eval_jac_g(x, mode, rows, cols, values) if mode == :Structure for i = 1:length(x) rows[i] = 1; cols[i] = i end else for i = 1:length(x) values[i] = 1.0 end end end function opt(f, g, fg, x0, kwargs...) prob = Ipopt.createProblem(m*n, 1e-6*ones(m*n), ones(m*n), 1, zeros(1), zeros(1), m*n, 0, f, eval_g, (x,G)->g(G, x), eval_jac_g, nothing) prob.x = x0 Ipopt.addOption(prob, "hessian_approximation", "limited-memory") status = Ipopt.solveProblem(prob) println(Ipopt.ApplicationReturnStatus[status]) Ipopt.freeProblem(prob) nothing end sess = Session(); init(sess) losses = Optimize!(sess, loss, optimizer = opt) visualize_scalar_on_fvm_points(run(sess, x).^p, m, n, h, vmin = 0, vmax = 1) ``` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/beam.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
9474
# ADCME Basics: Tensor, Type, Operator, Session & Kernel ## Tensors and Operators `Tensor` is a data structure for storing structured data, such as a scalar, a vector, a matrix or a high dimensional tensor. The name of the ADCME backend, `TensorFlow`, is also derived from its core framework, `Tensor`. Tensors can be viewed as symbolic versions of Julia's `Array`. A tensor is a collection of $n$-dimensional arrays. ADCME represents tensors using a `PyObject` handle to the TensorFlow `Tensor` data structure. A tensor has three important properties - `name`: Each Tensor admits a unique name. - `shape`: For scalars, the shape is always an empty tuple `()`; for $n$-dimensional vectors, the shape is `(n,)`; for matrices or higher order tensors, the shape has the form `(n1, n2, ...)` - `dtype`: The type of the tensors. There is a one-to-one correspondence between most TensorFlow types and Julia types (e.g., `Int64`, `Int32`, `Float64`, `Float32`, `String`, and `Bool`). Therefore, we have overloaded the type name so users have a unified interface. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/tensorspec.png?raw=true) An important difference is that `tensor` object stores data in the row-major while Julia's default for `Array` is column major. The difference may affect performance if not carefully dealt with, but more often than not, the difference is not relevant if you do not convert data between Julia and Python often. Here is a representation of ADCME `tensor` ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/tensors.png?raw=true) There are 4 ways to create tensors. - [`constant`](@ref). As the name suggests, `constant` creates an immutable tensor from Julia Arrays. ```julia constant(1.0) constant(rand(10)) constant(rand(10,10)) ``` - [`Variable`](@ref). In contrast to `constant`, `Variable` creates tensors that are mutable. The mutability allows us to update the tensor values, e.g., in an optimization procedure. It is very important to understand the difference between `constant` and `Variable`: simply put, in inverse modeling, tensors that are defined as `Variable` should be the quantity you want to invert, while `constant` is a way to provide known data. ```julia Variable(1.0) Variable(rand(10)) Variable(rand(10,10)) ``` - [`placeholder`](@ref). `placeholder` is a convenient way to specify a tensor whose values are to be provided in the runtime. One use case is that you want to try out different values for this tensor and scrutinize the simulation result. ```julia placeholder(Float64, shape=[10,10]) placeholder(rand(10)) # default value is `rand(10)` ``` - [`SparseTensor`](@ref). `SparseTensor` is a special data structure to store a sparse matrix. Although it is not very emphasized in machine learning, sparse linear algebra is one of the cores to scientific computing. Thus possessing a strong sparse linear algebra support is the key to success inverse modeling with physics based machine learning. ```julia using SparseArrays SparseTensor(sprand(10,10,0.3)) SparseTensor([1,2,3],[2,2,2],[0.1,0.3,0.5],3,3) # specify row, col, value, number of rows, number of columns ``` Now we know how to create tensors, the next step is to perform mathematical operations on those tensors. `Operator` can be viewed as a function that takes multiple tensors and outputs multiple tensors. In the computational graph, operators are represented by nodes while tensors are represented by edges. Most mathematical operators, such as `+`, `-`, `*` and `/`, and matrix operators, such as matrix-matrix multiplication, indexing and linear system solve, also work on tensors. ```julia a = constant(rand(10,10)) b = constant(rand(10)) a + 1.0 # add 1 to every entry in `a` a * b # matrix vector production a * a # matrix matrix production a .* a # element wise production inv(a) # matrix inversion ``` ## Session With the aforementioned syntax to create and transform tensors, we have created a computational graph. However, at this point, all the operations are symbolic, i.e., the operators have not been executed yet. To trigger the actual computing, the TensorFlow mechanism is to create a session, which drives the graph based optimization (like detecting dependencies) and executes all the operations. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/session.gif?raw=true) ```julia a = constant(rand(10,10)) b = constant(rand(10)) c = a * b sess = Session() run(sess, c) # syntax for triggering the execution of the graph ``` If your computational graph contains `Variables`, which can be listed via [`get_collection`](@ref), then you must initialize your graph before any `run` command, in which the Variables are populated with initial values ```julia init(sess) ``` ## Kernel The kernels provide the low level C++ implementation for the operators. ADCME augments users with missing features in TensorFlow that are crucial for scientific computing and tailors the syntax for numerical schemes. Those kernels, depending on their implementation, can be used in CPU, GPU, TPU or heterogenious computing environments. All the intensive computations are done either in Julia or C++, and therefore we can achieve very high performance if the logic is done appropriately. For performance critical part, users may resort to custom kernels using [`customop`](@ref), which allows you to incooperate custom designed C++ codes. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/kernel.png?raw=true) ## Summary ADCME performances operations on tensors. The actual computations are pushed back to low level C++ kernels via operators. A session is need to drive the executation of the computation. It will be easier for you to analyze computational cost and optimize your codes with this computation model in mind. ## Tensor Operations Here we show a list of commonly used operators in ADCME. | Description | API | | --------------------------------- | ------------------------------------------------ | | Constant creation | `constant(rand(10))` | | Variable creation | `Variable(rand(10))` | | Get size | `size(x)` | | Get size of dimension | `size(x,i)` | | Get length | `length(x)` | | Resize | `reshape(x,5,3)` | | Vector indexing | `v[1:3]`,`v[[1;3;4]]`,`v[3:end]`,`v[:]` | | Matrix indexing | `m[3,:]`, `m[:,3]`, `m[1,3]`,`m[[1;2;5],[2;3]]` | | 3D Tensor indexing | `m[1,:,:]`, `m[[1;2;3],:,3]`, `m[1:3:end, 1, 4]` | | Index relative to end | `v[end]`, `m[1,end]` | | Extract row (most efficient) | `m[2]`, `m[2,:]` | | Extract column | `m[:,3]` | | Convert to dense diagonal matrix | `diagm(v)` | | Convert to sparse diagonal matrix | `spdiag(v)` | | Extract diagonals as vector | `diag(m)` | | Elementwise multiplication | `a.*b` | | Matrix (vector) multiplication | `a*b` | | Matrix transpose | `m'` | | Dot product | `sum(a*b)` | | Solve | `A\b` | | Inversion | `inv(m)` | | Average all elements | `mean(x)` | | Average along dimension | `mean(x, dims=1)` | | Maximum/Minimum of all elements | `maximum(x)`, `minimum(x)` | | Squeeze all single dimensions | `squeeze(x)` | | Squeeze along dimension | `squeeze(x, dims=1)`, `squeeze(x, dims=[1;2])` | | Reduction (along dimension) | `norm(a)`, `sum(a, dims=1)` | | Elementwise Multiplication | `a.*b` | | Elementwise Power | `a^2` | | SVD | `svd(a)` | | `A[indices] = updates` | `A = scatter_update(A, indices, updates)` | | `A[indices] += updates` | `A = scatter_add(A, indices, updates)` | | `A[indices] -= updates` | `A = scatter_sub(A, indices, updates)` | | `A[idx, idy] = updates` | `A = scatter_update(A, idx, idy, updates)` | | `A[idx, idy] += updates` | `A = scatter_add(A, idx, idy, updates)` | | `A[idx, idy] -= updates` | `A = scatter_sub(A, idx, idy, updates)` | !!! tip In some cases you might find some features missing in ADCME but present in TensorFlow. You can always use `tf.<function_name>`. It's compatible.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
23584
# Advanced: Custom Operators !!! note As a reminder, there are many built-in custom operators in `deps/CustomOps` and they are good resources for understanding custom operators. The following is a step-by-step instruction on how custom operators are implemented. ## The Need for Custom Operators Custom operators are ways to add missing features or improve performance critical components in ADCME. Typically users do not have to worry about custom operators. However, in the following situation custom opreators might be very useful - Direct implementation in ADCME is inefficient, e.g., vectorizing some codes is difficult. - There are legacy codes users want to reuse, such as Fortran libraries or adjoint-state method solvers. - Special acceleration techniques, such as checkpointing scheme, MPI-enabled linear solvers, and FPGA/GPU-accelerated codes. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/custom.png?raw=true) ## The Philosophy of Implementing Custom Operators Usually the motivation for implementing custom operators is to enable gradient backpropagation for some performance critical operators. However, not all performance critical operators participate the automatic differentiation. Using terminologies from programming, these computations are "constant expressions", which can be evaluated at compilation time (constant folding). Therefore, before we devote ourselves to implementating custom operators, we need to identify which operators need to be implemented as custom operators. ![forwardbackward](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/forwardbackward.png?raw=true) This identification task can be done by sketching out the computational graph of your program. Assume your optimization outer loops update $x$ repeatly, then we can track all downstream the operators that depend on this parameter $x$. We call the dependent operators "tensor operations", because they are essentially TensorFlow operators that consume and output tensors. The dependent variables are called "tensors". The counterpart of tensors and tensor operations are "numerical arrays" and "numerical operations", respectively. The names seem a bit vague here but the essence is that numerical operations/arrays do no participate automatic differentiation during the optimization, so the values can be precomputed only once during the entire optimization process. In ADCME, we can precompute all numerical quantities of numerical arrays using Julia. No TensorFlow operators or custom operators are needed. This procedure combines the best of the two worlds: the simple syntax and high performance computing environment provided by Julia, and the efficient AD capability provided by TensorFlow. The high performance computing for precomputing cannot be provided by Python, the main scripting language that TensorFlow or PyTorch supports. Readers migh suspect that such precomputing may not be significant in many tasks. Actually, the precomputing constitutes a large portion in scientific computing. For example, researchers assemble matrices, prepare geometries and construct preconditioners in a finite element program. These tasks are by no means trivial and cheap. The consideration for performance in scientific computing actually forms the major motivation behind adopting Julia for the major language for ADCME. ## Build Custom Operators In the following, we present an example of implementing a sparse solver for $Au=b$ as a custom operator. **Input**: row vector `ii`, column vector`jj` and value vector `vv` for the sparse coefficient matrix $A$; row vector `kk` and value vector `ff` for the right hand side $b$; the coefficient matrix dimension is $d\times d$ **Output**: solution vector $u\in \mathbb{R}^d$ **Step 1: Create and modify the template file** The following command helps create the wrapper ```julia customop() ``` There will be a `custom_op.txt` in the current directory. Modify the template file ```txt MySparseSolver int32 ii(?) int32 jj(?) double vv(?) int32 kk(?) double ff(?) int32 d() double u(?) -> output ``` The first line is the name of the operator. It should always be in the camel case. The 2nd to the 7th lines specify the input arguments, the signature is `type`+`variable name`+`shape`. For the shape, `()` corresponds to a scalar, `(?)` to a vector and `(?,?)` to a matrix. The variable names must be in *lower cases*. Additionally, the supported types are: `int32`, `int64`, `float`, `double`, `bool` and `string`. The last line is the output, denoted by ` -> output` (do not forget the whitespace before and after `->`). !!! note If there are non-real type outputs, the corresponding top gradients input to the gradient kernel should be removed. **Step 2: Implement the kernels** Run `customop()` again and there will be `CMakeLists.txt`, `gradtest.jl`, `MySparseSolver.cpp` appearing in the current directory. `MySparseSolver.cpp` is the main wrapper for the codes and `gradtest.jl` is used for testing the operator and its gradients. `CMakeLists.txt` is the file for compilation. In the gradient back-propagation (`backward` below), we want to back-propagate the gradients from the output to the inputs, and the associated rule can be derived using adjoint-state methods. Create a new file `MySparseSolver.h` and implement both the forward simulation and backward simulation (gradients) ```cpp #include <eigen3/Eigen/Sparse> #include <eigen3/Eigen/SparseLU> #include <vector> #include <iostream> using namespace std; typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double typedef Eigen::Triplet<double> T; SpMat A; void forward(double *u, const int *ii, const int *jj, const double *vv, int nv, const int *kk, const double *ff,int nf, int d){ vector<T> triplets; Eigen::VectorXd rhs(d); rhs.setZero(); for(int i=0;i<nv;i++){ triplets.push_back(T(ii[i]-1,jj[i]-1,vv[i])); } for(int i=0;i<nf;i++){ rhs[kk[i]-1] += ff[i]; } A.resize(d, d); A.setFromTriplets(triplets.begin(), triplets.end()); auto C = Eigen::MatrixXd(A); Eigen::SparseLU<SpMat> solver; solver.analyzePattern(A); solver.factorize(A); auto x = solver.solve(rhs); for(int i=0;i<d;i++) u[i] = x[i]; } void backward(double *grad_vv, const double *grad_u, const int *ii, const int *jj, const double *u, int nv, int d){ Eigen::VectorXd g(d); for(int i=0;i<d;i++) g[i] = grad_u[i]; auto B = A.transpose(); Eigen::SparseLU<SpMat> solver; solver.analyzePattern(B); solver.factorize(B); auto x = solver.solve(g); // cout << x << endl; for(int i=0;i<nv;i++) grad_vv[i] = 0.0; for(int i=0;i<nv;i++){ grad_vv[i] -= x[ii[i]-1]*u[jj[i]-1]; } } ``` !!! note In this implementation we have used `Eigen` library for solving sparse matrix. Other choices are also possible, such as algebraic multigrid methods. Note here for convenience we have created a global variable `SpMat A;`. This is not recommend if you want to run the code concurrently, since the variable `A` must be overwritten by another concurrent thread. **Step 3: Compile** You should always compile your custom operator using the [built-in toolchain](https://kailaix.github.io/ADCME.jl/dev/toolchain/) `ADCME.make` and `ADCME.cmake` to ensure compatibility such as ABIs. The built-in toolchain uses exactly the same compiler that has been used to compile your tensorflow shared library. For example, some of the toolchain variables are: | Variable | Description | | ------------- | ------------------------------------- | | `ADCME.CXX` | C++ Compiler | | `ADCME.CC` | C Compiler | | `ADCME.TF_LIB_FILE` | `libtensorflow_framework.so` location | | `ADCME.CMAKE` | Cmake binary location | | `ADCME.MAKE` | Make (Ninja for Unix systems) binary location | ADCME will properly handle the environment variable for you. So we always recommend you to compile custom operators using ADCME functions: First `cd` into your custom operator director (where `CMakeLists.txt` is located), create a directory `build` if it doesn't exist, `cd` into `build`, and do ```julia-repl julia> using ADCME julia> ADCME.cmake() julia> ADCME.make() ``` Based on your operation system, you will create `libMySparseSolver.{so,dylib,dll}`. This will be the dynamic library to link in `TensorFlow`. **Step 4: Test** Finally, you could use `gradtest.jl` to test the operator and its gradients (specify appropriate data in `gradtest.jl` first). If you implement the gradients correctly, you will be able to obtain first order convergence for finite difference and second order convergence for automatic differentiation. Note you need to modify this file first, e.g., creating data and modifying the function `scalar_function`. ![custom_op](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/custom_op.png?raw=true) !!! info If the process fails, it is most probable the GCC compiler is not compatible with which was used to compile `libtensorflow_framework.{so,dylib}`. ADCME downloads a GCC compiler via Conda for you. However, if you follow the above steps but encounter some problems, we are happy to resolve the compatibility issue and improve the robustness of ADCME. Submitting an issue is welcome. Please see [this repository](https://github.com/kailaix/ADCME-CustomOp-Example) for an extra example. ## Build GPU Custom Operators ### Install GPU-enabled TensorFlow (Linux and Windows) To use CUDA in ADCME, we need to install a GPU-enabled version of TensorFlow. In ADCME, this is achieved by simply rebuilding ADCME with `GPU` environment variabe. ```julia using Pkg ENV["GPU"] = 1 Pkg.build("ADCME") ``` This will install all GPU dependencies. ### Building a GPU custom operator We consider a toy example where the custom operator is a function $f: x\rightarrow 2x$. To begin with, we create a `custom_op.txt` via [`customop`](@ref) ```text GpuTest double a(?) double b(?) -> output ``` Next, by running `customop()` again several template files are generated. We can then do the implementation in those files **GpuTest.cpp** ```c++ #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/default/logging.h" #include "tensorflow/core/framework/shape_inference.h" #include<cmath> // Signatures for GPU kernels here void return_double(int n, double *b, const double*a); using namespace tensorflow; REGISTER_OP("GpuTest") .Input("a : double") .Output("b : double") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { shape_inference::ShapeHandle a_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &a_shape)); c->set_output(0, c->input(0)); return Status::OK(); }); REGISTER_OP("GpuTestGrad") .Input("grad_b : double") .Input("b : double") .Input("a : double") .Output("grad_a : double"); class GpuTestOpGPU : public OpKernel { private: public: explicit GpuTestOpGPU(OpKernelConstruction* context) : OpKernel(context) { } void Compute(OpKernelContext* context) override { DCHECK_EQ(1, context->num_inputs()); const Tensor& a = context->input(0); const TensorShape& a_shape = a.shape(); DCHECK_EQ(a_shape.dims(), 1); // extra check // create output shape int n = a_shape.dim_size(0); TensorShape b_shape({n}); // create output tensor Tensor* b = NULL; OP_REQUIRES_OK(context, context->allocate_output(0, b_shape, &b)); // get the corresponding Eigen tensors for data access auto a_tensor = a.flat<double>().data(); auto b_tensor = b->flat<double>().data(); // implement your forward function here // TODO: return_double(n, b_tensor, a_tensor); } }; REGISTER_KERNEL_BUILDER(Name("GpuTest").Device(DEVICE_GPU), GpuTestOpGPU); ``` **GpuTest.cu** ```c++ #include "cuda.h" __global__ void return_double_(int n, double *b, const double*a){ int i = blockIdx.x * blockDim.x + threadIdx.x; if (i<n) b[i] = 2*a[i]; } void return_double(int n, double *b, const double*a){ return_double_<<<(n+255)/256, 256>>>(n, b, a); } ``` **CMakeLists.txt** ```cmake cmake_minimum_required(VERSION 3.5) project(TF_CUSTOM_OP) set (CMAKE_CXX_STANDARD 11) message("JULIA=${JULIA}") execute_process(COMMAND ${JULIA} -e "import ADCME; print(ADCME.__STR__)" OUTPUT_VARIABLE JL_OUT) list(GET JL_OUT 0 BINDIR) list(GET JL_OUT 1 LIBDIR) list(GET JL_OUT 2 TF_INC) list(GET JL_OUT 3 TF_ABI) list(GET JL_OUT 4 PREFIXDIR) list(GET JL_OUT 5 CC) list(GET JL_OUT 6 CXX) list(GET JL_OUT 7 CMAKE) list(GET JL_OUT 8 MAKE) list(GET JL_OUT 9 GIT) list(GET JL_OUT 10 PYTHON) list(GET JL_OUT 11 TF_LIB_FILE) list(GET JL_OUT 12 LIBCUDA) list(GET JL_OUT 13 CUDA_INC) message("Python path=${PYTHON}") message("PREFIXDIR=${PREFIXDIR}") message("TF_INC=${TF_INC}") message("TF_ABI=${TF_ABI}") message("TF_LIB_FILE=${TF_LIB_FILE}") if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 5.0 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 5.0) set(CMAKE_CXX_FLAGS "-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI} ${CMAKE_CXX_FLAGS}") endif() set(CMAKE_BUILD_TYPE Release) if(MSVC) set(CMAKE_CXX_FLAGS_RELEASE "-DNDEBUG") else() set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG") endif() include_directories(${TF_INC} ${PREFIXDIR} ${CUDA_INC}) find_package(CUDA QUIET REQUIRED) set(CMAKE_CXX_FLAGS "-std=c++11 ${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "-O3 ${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "-shared ${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "-fPIC ${CMAKE_CXX_FLAGS}") set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS};--expt-relaxed-constexpr) SET(CUDA_PROPAGATE_HOST_FLAGS ON) add_definitions(-DGOOGLE_CUDA) message("Compiling GPU-compatible custom operator!") cuda_add_library(GpuTest SHARED GpuTest.cpp GpuTest.cu) set_property(TARGET GpuTest PROPERTY POSITION_INDEPENDENT_CODE ON) target_link_libraries(GpuTest ${TF_LIB_FILE}) file(MAKE_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/build) set_target_properties(GpuTest PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/build RUNTIME_OUTPUT_DIRECTORY_RELEASE ${CMAKE_CURRENT_SOURCE_DIR}/build) ``` We can then compile the operator on a system where `nvcc` is available: ```julia change_directory("build") ADCME.cmake() ADCME.make() ``` ### Running a GPU custom operator We can now run a GPU operator by loading the shared library ```julia using ADCME function gpu_test(a) gpu_test_ = load_op_and_grad("$(@__DIR__)/build/libGpuTest","gpu_test") a = convert_to_tensor([a], [Float64]); a = a[1] gpu_test_(a) end # TODO: specify your input parameters a = [1.0;3.0;-1.0] u = gpu_test(a) sess = Session(); init(sess) run(sess, u) ``` If we run the file on a system without GPU resources, we will get the following error ```text <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'> ``` If we have GPU resources, the kernel will run correctly with the output ```julia 2.0 6.0 -2.0 ``` ## Batch Build At some point, you might have a lot of custom operators. Building one-by-one will take up too much time. To reduce the building time, you might want to build all the operators all at once concurrently. To this end, you can consider batch build by using a common CMakeLists.txt. The commands in the CMakeLists.txt are the same as a typical custom operator, except that the designated libraries are different ```cmake # ... The same as a typical CMake script ... # Specify all the library paths and library names. set(LIBDIR_NAME VolumetricStrain ComputeVel DirichletBd FemStiffness FemStiffness1 SpatialFemStiffness SpatialVaryingTangentElastic Strain Strain1 StrainEnergy StrainEnergy1) set(LIB_NAME VolumetricStrain ComputeVel DirichletBd FemStiffness UnivariateFemStiffness SpatialFemStiffness SpatialVaryingTangentElastic StrainOp StrainOpUnivariate StrainEnergy StrainEnergyUnivariate) # Copy and paste the following lines (no modification is required) list(LENGTH "LIBDIR_NAME" LIBLENGTH) message("Total number of libraries to make: ${LIBLENGTH}") MATH(EXPR LIBLENGTH "${LIBLENGTH}-1") foreach(IDX RANGE 0 ${LIBLENGTH}) list(GET LIBDIR_NAME ${IDX} _LIB_DIR) list(GET LIB_NAME ${IDX} _LIB_NAME) message("Compiling ${IDX}th library: ${_LIB_DIR}==>${_LIB_NAME}") file(MAKE_DIRECTORY ${_LIB_DIR}/build) add_library(${_LIB_NAME} SHARED ${_LIB_DIR}/${_LIB_NAME}.cpp) set_property(TARGET ${_LIB_NAME} PROPERTY POSITION_INDEPENDENT_CODE ON) set_target_properties(${_LIB_NAME} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/${_LIB_DIR}/build) target_link_libraries(${_LIB_NAME} ${TF_LIB_FILE}) endforeach(IDX) ``` ## Loading Order To ensure that TensorFlow can find all the registered symbols, it is recommended that you should always load the shared libraries first if you also run `ccall` on the shared library. This can be done using [`load_library`](@ref) to obtain a handle to the shared library. Then you can use the handle in [`load_op_and_grad`](@ref) or [`load_op`](@ref). For example ```julia lib = load_library("path/to/my/library") my_custom_op = load_op_and_grad(lib, "my_custom_op") ``` ## Error Handling Sometimes we might encounter error in C++ kernels and we want to propagate the error to the Julia interface. This is done by `OP_REQUIRES_OK`. Its syntax is ```c++ OP_REQUIRES_OK(context, status) ``` where `context` is either a `OpKernelConstruction` or a `OpKernelContext`, and `status` can be created using ```c++ Status(error::Code::ERROR_CODE, message) ``` Here `ERROR_CODE` is one of the following: ```c++ OK = 0, CANCELLED = 1, UNKNOWN = 2, INVALID_ARGUMENT = 3, DEADLINE_EXCEEDED = 4, NOT_FOUND = 5, ALREADY_EXISTS = 6, PERMISSION_DENIED = 7, UNAUTHENTICATED = 16, RESOURCE_EXHAUSTED = 8, FAILED_PRECONDITION = 9, ABORTED = 10, OUT_OF_RANGE = 11, UNIMPLEMENTED = 12, INTERNAL = 13, UNAVAILABLE = 14, DATA_LOSS = 15, DO_NOT_USE_RESERVED_FOR_FUTURE_EXPANSION_USE_DEFAULT_IN_SWITCH_INSTEAD_ = 20, Code_INT_MIN_SENTINEL_DO_NOT_USE_ = std::numeric_limits<::PROTOBUF_NAMESPACE_ID::int32>::min(), Code_INT_MAX_SENTINEL_DO_NOT_USE_ = std::numeric_limits<::PROTOBUF_NAMESPACE_ID::int32>::max() ``` `message` is a string. For example, ```c++ OP_REQUIRES_OK(context, Status(error::Code::UNAVAILABLE, "Sparse solver type not supported.")); ``` ## Logging TensorFlow has a C++ level logging system. We can conveniently log messages to specific streams using the folloing syntax ```c++ VLOG(INFO) << message; VLOG(WARNING) << message; VLOG(ERROR) << message; VLOG(FATAL) << message; VLOG(NUM_SEVERITIES) << message; ``` ## Windows: Load Shared Library Sometimes you might encounter `NotFoundError()` when using `tf.load_op_library` on Windows system, despite that the library you referred does exist. You can then check using `Libdl` ```julia using Libdl dlopen(<MySharedLibrary.dll>) ``` and you still get an error ``` ERROR: could not load library "MySharedLibrary.dll" The specified module could not be found. ``` This is annoying. The reason is that when you load this shared library on windows, the system looks for all its dependencies. If at least one of the dependent library is not in the path, then the error occurs. To solve this problem, you need a dependency walker, such as [die.exe](https://gamejolt.com/games/die-exe/36157). For example, in the following right panel we see a lot of dynamic libraries. They must be in the system path so that we can load the current dynamic library (`dlopen(...)`). | Main Window | Import Window | | ---- | ---- | | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/die1.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/die2.png?raw=true) | ## Miscellany ### Mutable Inputs Sometimes we want to modify tensors in place. In this case we can use mutable inputs. Mutable inputs must be [`Variable`](@ref) and it must be forwarded to one of the output. We consider implement a `my_assign` operator, with signature ``` my_assign(u::PyObject, v::PyObject)::PyObject ``` Here `u` is a `Variable` and we copy the data from `v` to `u`. In the `MyAssign.cpp` file, we modify the input and output specifications to ```c++ .Input("u : Ref(double)") .Input("v : double") .Output("w : Ref(double)") ``` In addition, the input tensor is obtained through ```c++ Tensor u = context->mutable_input(0, true); ``` The second argument `lock_held` specifies whether the input mutex is acquired (false) before the operation. Note the output must be a `Tensor` instead of a reference. To forward the input, use ```c++ context->forward_ref_input_to_ref_output(0,0); ``` We use the following code snippet to test the program ```julia my_assign = load_op("./build/libMyAssign","my_assign") u = Variable([0.1,0.2,0.3]) v = constant(Array{Float64}(1:3)) u2 = u^2 w = my_assign(u,v) sess = tf.Session() init(sess) @show run(sess, u) @show run(sess, u2) @show run(sess, w) @show run(sess, u2) ``` The output is ``` [0.1,0.2,0.3] [0.1,0.04,0.09] [1.0,2.0,3.0] [1.0,4.0,9.0] ``` We can see that the tensors depending on `u` are also aware of the assign operator. The complete programs can be downloaded here: [CMakeLists.txt](https://kailaix.github.io/ADCME.jl/dev/assets/Codes/Mutables/CMakeLists.txt), [MyAssign.cpp](https://kailaix.github.io/ADCME.jl/dev/assets/Codes/Mutables/MyAssign.cpp), [gradtest.jl](https://kailaix.github.io/ADCME.jl/dev/assets/Codes/Mutables/gradtest.jl). ### Third-party Plugins ADCME also allows third-party custom operators hosted on Github. To build your own custom operators, implement your own custom operators in a Github repository. Users are free to arrange other source files or other third-party libraries. Upon using those libraries in ADCME, users first download those libraries to `deps` directory via ```julia pth = install("OTNetwork") ``` `pth` is the dynamic library product generated with source codes in `OTNetwork`. The official plugins are hosted on `https://github.com/ADCMEMarket`. To get access to the custom operators in ADCME, use ```julia op = load_op_and_grad(pth, "ot_network"; multiple=true) ``` 1. https://on-demand.gputechconf.com/ai-conference-2019/T1-3_Minseok%20Lee_Adding%20custom%20CUDA%20C++%20Operations%20in%20Tensorflow%20for%20boosting%20BERT%20Inference.pdf) ## Troubleshooting Here are some common errors you might encounter during custom operator compilation: **Q: The cmake output for the Julia path is empty.** ```text Julia= ``` **A:** Check whether `which julia` outputs the Julia location you are using. **Q: The cmake output for Python path, Eigen path, etc., is empty.** ```text Python path= PREFIXDIR= TF_INC= TF_ABI= TF_LIB_FILE= ``` **A:** Update ADCME to the latest version and check whether or not the ADCME compiler string is empty ```julia using ADCME ADCME.__STR__ ``` **Q: Julia package precompilation errors that seem not linked to ADCME.** **A:** Remove the corresponding packages using `using Pkg; Pkg.rm(XXX)` and reinstall those packages. **Q: Precompilation error linked to ADCME** ```text ERROR: LoadError: ADCME is not properly built; run `Pkg.build("ADCME")` to fix the problem. ``` **A:** Build ADCME using `Pkg.build("ADCME")`. Exit Julia and open Julia again. Check whether `deps.jl` exists in the `deps` directory of your Julia package (optional).
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
3063
# Advanced: Debugging and Profiling There are many handy tools implemented in `ADCME` for analysis, benchmarking, input/output, etc. ## Debugging and Printing Add the following line before `Session` and change `tf.Session` to see verbose printing (such as GPU/CPU information) ```julia tf.debugging.set_log_device_placement(true) ``` `tf.print` can be used for printing tensor values. It must be binded with an executive operator. ```julia # a, b are tensors, and b is executive op = tf.print(a) b = bind(b, op) ``` ## Debugging Python Codes If the error comes from Python (through PyCall), we can print out the Python trace with the following commands ```julia debug(sess, o) ``` where `o` is a tensor. The [`debug`](@ref) function traces back the Python function call. The above code is equivalent to ```python import traceback try: # Your codes here except Exception: print(traceback.format_exc()) ``` This Python script can be inserted to Julia and use interpolation to invoke Julia functions (in the comment line). This technique can also be applied to other TensorFlow codes. For example, we can use this trick to debug "NotFoundError" for custom operators ```julia using ADCME, PyCall py""" import tensorflow as tf import traceback try: tf.load_op_library("../libMyOp.so") except Exception: print(traceback.format_exc()) """ ``` ## Profiling Profiling can be done with the help of [`run_profile`](@ref) and [`save_profile`](@ref) ```julia a = normal(2000, 5000) b = normal(5000, 1000) res = a*b run_profile(sess, res) save_profile("test.json") ``` - Open Chrome and navigate to chrome://tracing - Load the timeline file Below shows an example of profiling results. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/profile.png?raw=true) ## Suppress Debugging Messages If you want to suppress annoying debugging messages, you can suppress them using the following command - Messages originated from Python By default, ADCME sets the warning level to ERROR only. To set other evels of messages, choose one from the following: ```julia tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.WARNING) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.FATAL) ``` - Messages originated from C++ In this case, we can set `TF_CPP_MIN_LOG_LEVEL` in the environment variable. Set `TF_CPP_MIN_LOG_LEVEL` to 1 to filter out INFO logs, 2 to additionally filter out WARNING, 3 to additionally filter out ERROR (all messages). For example, ```julia ENV["TF_CPP_MIN_LOG_LEVEL"] = "3" using ADCME # must be called after the above line ``` ## Save and Load Diary We can use TensorBoard to track a scalar value easily ```julia d = Diary("test") p = placeholder(1.0, dtype=Float64) b = constant(1.0)+p s = scalar(b, "variable") for i = 1:100 write(d, i, run(sess, s, Dict(p=>Float64(i)))) end activate(d) ```
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
7218
# Numerical Scheme in ADCME: Finite Difference Example ADCME provides convenient tools to implement numerical schemes. In this tutorial, we will implement a finite difference program and conduct inverse modeling. In the first part, we consider a toy example of estimating parameters in a partial differential equation. In the second part, we showcase a real world application of ADCME to geophysical inversion. ## Estimating a scalar unknown in the PDE Consider the following partial differential equation ```math -bu''(x)+u(x)=f(x)\quad x\in[0,1], u(0)=u(1)=0 ``` where ```math f(x) = 8 + 4x - 4x^2 ``` Assume that we have observed $u(0.5)=1$, we want to estimate $b$. The true value in this case should be $b=1$. We can discretize the system using finite difference method, and the resultant linear system will be ```math (bA+I)\mathbf{u} = \mathbf{f} ``` where ```math A = \begin{bmatrix} \frac{2}{h^2} & -\frac{1}{h^2} & \dots & 0\\ -\frac{1}{h^2} & \frac{2}{h^2} & \dots & 0\\ \dots \\ 0 & 0 & \dots & \frac{2}{h^2} \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} u_2\\ u_3\\ \vdots\\ u_{n} \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} f(x_2)\\ f(x_3)\\ \vdots\\ f(x_{n}) \end{bmatrix} ``` The idea for implementing the inverse modeling method in ADCME is that we make the unknown $b$ a `Variable` and then solve the forward problem pretending $b$ is known. The following code snippet shows the implementation ```julia using LinearAlgebra using ADCME # (1) n = 101 # number of grid nodes in [0,1] h = 1/(n-1) x = LinRange(0,1,n)[2:end-1] # (2) b = Variable(10.0) # we use Variable keyword to mark the unknowns # (3) A = diagm(0=>2/h^2*ones(n-2), -1=>-1/h^2*ones(n-3), 1=>-1/h^2*ones(n-3)) B = b*A + I # I stands for the identity matrix f = @. 4*(2 + x - x^2) u = B\f # solve the equation using built-in linear solver ue = u[div(n+1,2)] # extract values at x=0.5 # (4) loss = (ue-1.0)^2 # (5) # Optimization sess = Session(); init(sess) # (6) BFGS!(sess, loss) # (7) println("Estimated b = ", run(sess, b)) ``` The expected output is ``` Estimated b = 0.9995582304494237 ``` The detailed explaination is as follow: (1) The first two lines load necessary packages; (2) We split the interval $[0,1]$ into $100$ equal length subintervals; (3) Since $b$ is unknown and needs to be updated during optimization, we mark it as trainable using the `Variable` keyword; (4) Solve the linear system and extract the value at $x=0.5$. here `I` stands for the identity matrix and `@.` denotes element-wise operation. They are `Julia`-style syntax but are also compatible with tensors by overloading; (5) Formulate the loss function; (6) Create and initialize a `TensorFlow` session, which analyzes the computational graph and initializes the tensor values; (7) Finally, we trigger the optimization by invoking `BFGS!`, which wraps the `L-BFGS-B` algorithm. ## ADSeismic.jl: A General Approach to Seismic Inversion ADSeismic is a software package for solving seismic inversion problems, such as velocity model estimation, rupture imaging, earthquake location, and source time function retrieval. The governing equation for the acoustic wave equation is $$ \frac{\partial^2 u}{\partial t^2} = \nabla\cdot(c^2 \nabla u) + f$$ where $u$ is displacement, $f$ is the source term, and $c$ is the spatially varying acoustic velocity. The inversion parameters of interest are $c$ or $f$. The governing equation for the elastic wave equation is $$\begin{aligned} \rho \frac{\partial v_i}{\partial t} &= \sigma_{ij, j} + \rho f_i \\ \frac{\partial \sigma_{ij}}{\partial t} &= \lambda v_{k,k} + \mu(v_{i,j} + v_{j,i}) \end{aligned}$$ where $v$ is velocity, $\sigma$ is stress tensor, $\rho$ is density, and $\lambda$ and $\mu$ are the Lam\'e's constants. The inversion parameters in the elastic wave equation case are $\lambda$, $\mu$, $\rho$ or $f$. The idea is to substitute the unknowns such as the $c$ and $f$ using mutable tensors (with the `Variable` keyword) and implement the finite difference method. The implementation detail is beyond the scope of this tutorial. Basically, when explicit schemes are used, the finite difference scheme can be expressed by a computational graph as follows, where $U$ is the discretization of $u$, $A(\theta)$ is the fintie difference coefficient matrix and $\theta$ is the unknown (in this case, the entries in the coefficient matrix depends on $\theta$ ). The loss function is formulated by matching the predicted wavefield $U_i$ and the observed wavefield $U_i^{\mathrm{obs}}$. ![adg](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/adg.png?raw=true) The unknown $\theta$ is sought by solving a minimization problem using L-BFGS-B, using gradients computed in AD. Besides the simplification of implementation, a direct benefit of implementing the numerical in ADCME is that we can leverage multi-GPU computing resources. We distribute the loss function for each scenario (in practice, we can collect many $\{U_i^{\mathbf{obs}}\}$ corresponding to different source functions $f$) onto different GPUs and compute the gradients separately. Using this strategy, we can achieve more than 20 times and 60 times acceleration for acoustic and elastic wave equations respectively. ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/gpu.png?raw=true) Here we show a case in locating the centroid of an earthquake. The red star denotes the location where the earthquake happens and the triangles denote the seismic stations. The subsurface constitutes layers of different properties (the values of $c$ are different), affecting the propagation of the seismic waves. | Source/Receiver Location | Forward Simulation | | ------------------------------------------------------------ | ------------------------------------------------------------ | |![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/source-vp.png?raw=true) | ![](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/forward_source.gif?raw=true) | By running the optimization problem by specifying the earthquake location as `Variable` [^delta], we can locate the centroid of an earthquake. The result is amazingly good. It is worth noting that it requires substantial effort to implement the traditional adjoint-state solver for this problem (e.g., it takes time to manually deriving and implementing the gradients). However, in view of ADCME, the inversion functionality is merely a by-product of the forward simulation codes, which can be reused in many other inversion problems. ![fwi_source](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/fwi_source.gif?raw=true) [^delta]: Mathematically, $f(t, \mathbf{x})$ is a Delta function in $\mathbf{x}$; to make the inversion problem continuous, we use $f_{\theta}(t, \mathbf{x}) = g(t) \frac{1}{2\pi\sigma^2}\exp(-\frac{\|\mathbf{x}-\theta\|^2}{2\sigma^2})$ to approximate $f(t, \mathbf{x})$; here $\theta\in\mathbb{R}^2$ and $g(t)$ are unknown.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
7663
# Numerical Scheme in ADCME: Finite Element Example The purpose of this tutorial is to show how to work with the finite element method (FEM) in ADCME. The tutorial is divided into two part: * In the first part, we implement a finite element code for a time independent Poisson's equation in 1D and 2D. We present two styles of implementing a finite element code: using vectorized expression and low level C++ implementation using custom operators. The first approach is elegant and only uses ADCME syntax. The second approach is more flexible and allows for efficient optimization. However, the limitation is that you are responsible to calculate the sensititity of your finite element sensitivity matrix. * The second part is about solving a time dependent problem. Here we use finite element methods for the spatial discretization and a backward Euler for time integration. The custom operator approach is used. In this example, you will understand how [`while_loop`](@ref) can help avoid creating a computational graph for each time step. This is important because for many applications the number of time steps can be enormous. ## Poisson's Problem: Vectorized Implementation Let us consider the following Poisson's equation in $(0,1)$: $$(\kappa(x) u'(x))' = f(x)\qquad u(0) = u(1) = 0\tag{1}$$ To make the problem more interesting, we make $\kappa$ parameterized by `a`, which is constructed using [`constant`](@ref) so we can keep track of the dependencies of intermediate values on `a`. $$\kappa(x) = \frac{1}{1+x^2}, \ u(x) = x(1-x)$$ and $f(x)$ can be calculated according to Equation 1. We use the finite element method with a linear basis to solve Equation 1: find $u\in H_0^1((0,1))$, such that $$\int_0^1 \kappa(x) u'(x) v'(x) dx = \int_0^1 f(x) v(x) dx \quad \forall v\in H_0^1((0,1))$$ We consider a uniform grid with $n$ intervals of equal lengths. The common approach for assembling the finite element matrix $A$ is to iterate over elements and compute the contribution $\int_E \kappa(x) \phi'_i(x)\phi'_j(x) dx$ and add it to the entry $A_{ij}$; here $\phi_i(x)$ is the basis function associated with node $i$. The integration is usually done with numerical integration. Here we consider the Gauss quadrature. Consider the $i$-th element, the local stiffness matrix is $$L_i = \sum_{k=1}^G h\begin{bmatrix} \frac{w_k\kappa(x_k)}{h^2} & -\frac{w_k\kappa(x_k)}{h^2} \\ -\frac{w_k\kappa(x_k)}{h^2} & \frac{w_k\kappa(x_k)}{h^2} \end{bmatrix} = \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix}\frac{\sum_{k=1}^G w_k\kappa(x_k)}{h} $$ Here $(\xi_k, w_k)$ are Gauss quadrature points and weights on $[0,1]$, and $$x_k = (1-\xi_k) (i-1)h + \xi_k ih$$ The corresponding DOF (degrees of freedom) matrix, i.e., the mapping of local index to global index, is $$D_i = \begin{bmatrix}(i,i) & (i,i+1) \\ (i+1, i) & (i+1, i+1)\end{bmatrix}$$ ```julia xk = zeros(n, length(ξ)) for i = 1:length(ξ) xk[:,i] = x[1:end-1] * (1-ξ[i]) + x[2:end] * ξ[i] end xk = constant(xk) # convert xk from Julia array to tensor s = kappa(xk) * w / h i0 = Array(1:n) i1 = Array(2:n+1) II = [i0;i0;i1;i1] JJ = [i0;i1;i0;i1] VV = [s;-s;-s;s] A = SparseTensor(II, JJ, VV, n+1, n+1) ``` The right hand side $\int_\Omega f(x) v(x) dx$ can be computed in a similar fashion: the local contribution $l_i$ and DOF $d_i$ are $$l_i = \sum_{k=1}^G h\begin{bmatrix} w_k f(x_k) (1-\xi_k)\\ w_k f(x_k) \xi_k\\ \end{bmatrix}\qquad d_i = \begin{bmatrix} i\\ i+1 \end{bmatrix}$$ This is done with ```julia rhs = zeros(n+1) s = [f(xk) * (w .* (1 .-ξ)); f(xk) * (w .* ξ)] * h rhs = -vector([i0;i1], s, n+1) ``` ### Full Code Listing ```julia using ADCME function kappa(x) return 1/(1+a*x^2) end function f(x) return -2*a*x .* (1 - 2*x) ./(a*x^2 + 1)^2 - 2/(a*x^2 + 1) end function uexact(x) return x*(1-x) end n = 100 h = 1/n x = Array(LinRange(0, 1, n+1)) a = constant(1.0) ξ = [0.1127016653792583; 0.5;0.8872983346207417] w = [5/18; 4/9; 5/18] xk = zeros(n, length(ξ)) for i = 1:length(ξ) xk[:,i] = x[1:end-1] * (1-ξ[i]) + x[2:end] * ξ[i] end xk = constant(xk) # convert xk from Julia array to tensor # Assemble left hand side s = kappa(xk) * w / h i0 = Array(1:n) i1 = Array(2:n+1) II = [i0;i0;i1;i1] JJ = [i0;i1;i0;i1] VV = [s;-s;-s;s] A = SparseTensor(II, JJ, VV, n+1, n+1) # Assemble right hand side rhs = zeros(n+1) s = [f(xk) * (w .* (1 .-ξ)); f(xk) * (w .* ξ)] * h rhs = -vector([i0;i1], s, n+1) # Impose boundary condition using static condensation A = A[2:end-1, 2:end-1] rhs = rhs[2:end-1] # Solve sol = A\rhs sess = Session(); init(sess) solution = run(sess, sol) ``` The result for $a=1$ is shown below ```@raw html <center><img src="https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/poisson.png?raw=true" width="50%"></center> ``` ## Poisson's Problem: Custom Operators Vectorized implementation is great and elegant when we can easily figure out the mathematical formula. However, for more complicated problems and modular development, it is awkward to reason about vectorization each time. A preferred approach is to loop over elements and focus on calculating local contribution. However, a direct for loop will create a large computational graph and will not be able to take advantage of efficient implementation (e.g., parallel computing). In what follows, we consider another approach: custom operator. To motivate our method, we consider a 2D Poisson's equation in a domain $\Omega$ $$\nabla \cdot (\kappa(x) \nabla u) = f(x)\qquad u(x) = 0, x\in \partial\Omega$$ The weak formulation is given by $$\int_\Omega \kappa(x) \nabla u \cdot \nabla v dx = - \int_\Omega f(x) v(x) dx\quad \forall v \in H_0^1(\Omega)$$ The strategy is to implement two custom operators, one for computing the stiffness matrix, and the other for computing the right hand side. We suggest readers to use our [AdFem](https://github.com/kailaix/AdFem.jl) library instead of their own. the AdFem library is built on ADCME and contains a rich set of custom operators that allow users to implement FEM fairly easily. ```julia using AdFem using PyPlot mmesh = Mesh(50, 50, 1/50) function kappa(x, y) return 1/(1+a*(x^2+y^2)) end function ffun(x, y) return -2*x*(1 - x)/(x^2 + y^2 + 1) - 2*x*(-x*y*(1 - y) + y*(1 - x)*(1 - y))/(x^2 + y^2 + 1)^2 - 2*y*(1 - y)/ (x^2 + y^2 + 1) - 2*y*(-x*y*(1 - x) + x*(1 - x)*(1 - y))/(x^2 + y^2 + 1)^2 end a = constant(1.0) κ = eval_f_on_gauss_pts(kappa, mmesh, tensor_input = true) fv = eval_f_on_gauss_pts(ffun, mmesh, tensor_input = true) A = compute_fem_laplace_matrix1(κ, mmesh) rhs = -compute_fem_source_term1(fv, mmesh) bd = bcnode(mmesh) A, rhs = impose_Dirichlet_boundary_conditions(A, rhs, bd, zeros(length(bd))) sol = A\rhs sess = Session(); init(sess) U = run(sess, sol) close("all") figure(figsize = (15, 5)) subplot(131) visualize_scalar_on_fem_points(U, mmesh) subplot(132) xy = fem_nodes(mmesh) x, y = xy[:,1], xy[:,2] visualize_scalar_on_fem_points((@. x*(1-x)*y*(1-y)), mmesh) subplot(133) visualize_scalar_on_fem_points(abs.(U - (@. x*(1-x)*y*(1-y))), mmesh) savefig("poisson2d.png") ``` ```@raw html <center><img src="https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/poisson2d.png?raw=true" width="50%"></center> ``` ## Summary Finite element analysis is a powerful tool in numerical PDEs. However, it is more conceptually sophisticated than the finite difference method and requires more implementation efforts. The important lesson we learned from this tutorial is how to separate the computation into pure Julia and ADCME C++ kernels, and how complex numerical schemes can be implemented in ADCME.
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
6065
# Advanced: Automatic Differentiation for Implicit Operators An explicit operator is an operator directly supplied by the AD library while an implicit operator is an operator whose outputs must be computed using compositions of functions that may not be differentiable, or involving iterative algorithms. For example, $y = \texttt{sigmoid}(x)$ is an implicit operator while $x = \texttt{sigmoid}(y)$ is an implicit operator if the library does not provide $\texttt{sigmoid}^{-1}$, where $x$ is the input and $y$ is the output. Implicit operators are everywhere in scientific computing, from implicit numerical schemes to iterative algorithms. How to incooperate implicit operators into a differentiable programming framework is the true challenge in AD. AD is not the panacea to all inverse modeling problems; it must be augmented with abilities to tackle implicit operators to be real useful for a large variety of real-world applications. ![Operators](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/sim.png?raw=true) Roughly speaking, there are four types of operators in the computational graph, depending on whether it is linear or nonlinear and whether it is explicit or implicit. Let $A$ be a matrix, $f$ be a nonlinear function, $F$ be a bivariate nonlinear function, and it is hard to express $y$ analytically as a function of $x$ in $F(x,y)=0$. | Operator | Linear | Nonlinear | | -------- | -------- | ----------- | | Explicit | $y = Ax$ | $y = f(x)$ | | Implicit | $Ay = x$ | $F(x, y)=0$ | It is straightforward to apply AD to explicit operators, provided that the AD library supports the corresponding operators $A$ and $f$ (which usually do). In this tutorial, we focus on the implicit operators. ## Implicit Function Theorem We change our notation for clarity in this section. Let $L_h$ be a error functional, $F_h$ be the corresponding nonlinear implicit operator, $\theta$ is all the input to this operator and $u_h$ is all the output of this node. $$\begin{aligned} \min_{\theta}&\; L_h(u_h) \\ \mathrm{s.t.}&\;\; F_h(\theta, u_h) = 0 \end{aligned}$$ Assume in the forward computation, we solve for $u_h=G_h(\theta)$ in $F_h(\theta, u_h)=0$, and then $$\tilde L_h(\theta) = L_h(G_h(\theta))$$ Applying the implicit function theorem $$\begin{aligned} & \frac{{\partial {F_h(\theta, u_h)}}}{{\partial \theta }} + {\frac{{\partial {F_h(\theta, u_h)}}}{{\partial {u_h}}}} \frac{\partial G_h(\theta)}{\partial \theta} = 0 \qquad \Rightarrow \\[4pt] & \frac{\partial G_h(\theta)}{\partial \theta} = -\Big( \frac{{\partial {F_h(\theta, u_h)}}}{{\partial {u_h}}} \Big)^{ - 1} \frac{{\partial {F_h(\theta, u_h)}}}{{\partial \theta }} \end{aligned}$$ therefore we have $$\begin{aligned} \frac{{\partial {{\tilde L}_h}(\theta )}}{{\partial \theta }} &= \frac{\partial {{ L}_h}(u_h )}{\partial u_h}\frac{\partial G_h(\theta)}{\partial \theta} \\ &= - \frac{{\partial {L_h}({u_h})}}{{\partial {u_h}}} \; \Big( {\frac{{\partial {F_h(\theta, u_h)}}}{{\partial {u_h}}}\Big|_{u_h = {G_h}(\theta )}} \Big)^{ - 1} \; \frac{{\partial {F_h(\theta, u_h)}}}{{\partial \theta }}\Big|_{u_h = {G_h}(\theta )} \end{aligned}$$ This is the desired gradient. For efficiency, the computation strategy is crucial. We can either evaluate from left to right or from right to left. The correct approach is to compute from left to right. A detailed justification of this computational order is beyond the scope of this tutorial. Instead, we simply list the steps for calculating the gradients Step 1: Calculate $w$ by solving a linear system (never invert the matrix!) $$w^T = \underbrace{\frac{{\partial {L_h}({u_h})}}{{\partial {u_h}}\rule[-9pt]{1pt}{0pt}}}_{1\times N} \;\; \underbrace{\Big( {\frac{{\partial {F_h}}}{{\partial {u_h}}}\Big|_{u_h = {G_h}(\theta )}} \Big)^{ - 1}}_{N\times N}$$ Step 2: Calculate the gradient by automatic differentiation $$w^T\;\underbrace{\frac{{\partial {F_h}}}{{\partial \theta }}\Big|_{u_h = {G_h}(\theta )}}_{N\times p} = \frac{\partial (w^T\; {F_h}(\theta, u_h))}{\partial \theta }\Bigg|_{u_h = {G_h}(\theta )}$$ This step can be done using [`independent`](@ref), which stops back-propagating the gradients for its argument. ```julia l = L(u) r = F(theta, u) g = gradients(l, u) x = dF'\g x = independent(x) dL = -gradients(sum(r*x), theta) ``` Despite the complex nature of this approach, it is quite powerful and efficient in treating implicit operators. To make it more clear, we consider a simpler special case below: the linear implicit operator. ## Special Case: Linear Implicit Operator The linear implicit operator can be viewed as a special case of the nonlinear explicit operator. In this case $$F(x,y) = x - Ay$$ and therefore $$\frac{\partial J}{\partial x} = \frac{\partial J}{\partial y}A^{-1}$$ This requires us to solve a linear system with the adjoint of $A$, i.e., $$A^T g = \left(\frac{\partial J}{\partial y}\right)^T$$ ## Implementation in ADCME Let's see in action how to implement an implicit operator in ADCME. First of all, we can use the [`NonlinearConstrainedProblem`](@ref) used in [Functional Inverse Problem](https://kailaix.github.io/ADCME.jl/dev/tutorial/#Functional-Inverse-Problem-1). The API is suitable when the residual and the Jacobian matrix can be expressed using ADCME operators (or through custom operators) and a general Newton-Raphson algorithm is satisfactory. However, if the forward solver is performance critical and requires special accleration (such as preconditioning), then building custom operator is a preferable approach. This approach is named **physics constrained learning** and has been used to develop [`FwiFlow.jl`](https://github.com/lidongzh/FwiFlow.jl), a package for elastic full waveform inversion for subsurface flow problems. The physical equation is nonlinear, the discretization is implicit, and thus it must be solved using the Newton-Raphson method. ![diagram](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/diagram.png?raw=true)
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
13626
# Inverse Modeling with ADCME Roughly speaking, there are four types of inverse modeling in partial differential equations. We have developed numerical methods that takes advantage of deep neural networks and automatic differentiation. To be more concrete, let the forward model be a 1D Poisson equation $$\begin{aligned}-\nabla (X\nabla u(x)) &= \varphi(x) & x\in (0,1)\\ u(0)=u(1) &= 0\end{aligned}$$ Here $X$ is the unknown which may be one of the four forms: parameter, function, functional or random variable. | **Inverse problem** | **Problem type** | **ADCME Approach** | **Reference** | | ---------------------------------------- | -------------------- | ------------------------------- | :-----------------------------------: | | $\nabla\cdot(c\nabla u) = \varphi(x)$ | Parameter | Adjoint-State Method | [1](http://arxiv.org/abs/1912.07552) [2](http://arxiv.org/abs/1912.07547) | | $\nabla\cdot(f(x)\nabla u) = \varphi(x)$ | Function | DNN as a Function Approximator | [3](https://arxiv.org/abs/1901.07758) | | $\nabla\cdot(f(u)\nabla u) = \varphi(x)$ | Functional | Residual Learning or Physics Constrained Learning | [4](https://arxiv.org/abs/1905.12530) | | $\nabla\cdot(\varpi\nabla u) = \varphi(x)$ | Stochastic Inversion | Generative Neural Networks | [5](https://arxiv.org/abs/1910.06936) | ## Parameter Inverse Problem When $X$ is just a scalar/vector, we call this type of problem **parameter inverse problem**. We consider a manufactured solution: the exact $X=1$ and $u(x)=x(1-x)$, so we have ```math \varphi(x) = 2 ``` Assume we can observe $u(0.5)=0.25$ and the initial guess for $X_0=10$. We use finite difference method to discretize the PDE and the interval $[0,1]$ is divided uniformly to $0=x_0<x_1<\ldots<x_n=1$, with $n=100$, $x_{i+1}-x_i = h=\frac{1}{n}$. we can solve the problem with the following code snippet ```julia using ADCME n = 100 h = 1/n X0 = Variable(10.0) A = X0 * diagm(0=>2/h^2*ones(n-1), 1=>-1/h^2*ones(n-2), -1=>-1/h^2*ones(n-2)) # coefficient matrix for the finite difference φ = 2.0*ones(n-1) # right hand side u = A\φ loss = (u[50] - 0.25)^2 sess = Session(); init(sess) BFGS!(sess, loss) ``` After around 7 iterations, the estimated $X_0$ converges to 1.0000000016917243. ## Function Inverse Problem When $X$ is a function that does not depend on $u$, i.e., a function of location $x$, we call this type of problem **function inverse problem**. A common approach to this type of problem is to approximate the unknown function $X$ with a parametrized form, such as piecewise linear functions, radial basis functions or Chebyshev polynomials; sometimes we can also discretize $X$ and substitute $X$ by a vector of its values at the discrete grid nodes. This tutorial is not aimed at the comparison of different methods. Instead, we show how we can use neural networks to represent $X$ and train the neural network by coupling it with numerical schemes. The gradient calculation can be laborious with the traditional adjoint state methods but is trivial with automatic differentiation. Let's assume the true $X$ has the following form ```math X(x) = \frac{1}{1+x^2} ``` The exact $\varphi$ is given by ```math \varphi(x) = \frac{2 \left(x^{2} - x \left(2 x - 1\right) + 1\right)}{\left(x^{2} + 1\right)^{2}} ``` The idea is to use a neural network $\mathcal{N}(x;w)$ with weights and biases $w$ that maps the location $x\in \mathbb{R}$ to a scalar value such that ```math \mathcal{N}(x; w)\approx X(x) ``` To find the optional $w$, we solve the Poisson equation with $X(x)=\mathcal{N}(x;w)$, where the numerical scheme is ```math \left( -\frac{X_i+X_{i+1}}{2} \right) u_{i+1} + \frac{X_{i-1}+2X_i+X_{i+1}}{2} u_i + \left( -\frac{X_i+X_{i-1}}{2} \right) = \varphi(x_i) h^2 ``` Here $X_i = \mathcal{N}(x_i; w)$. Assume we can observe the full solution $u(x)$, we can compare it with the solution $u(x;w)$, and minimize the loss function ```math L(w) = \sum_{i=2}^{n-1} (u(x_i;w)-u(x_i))^2 ``` ```julia using ADCME n = 100 h = 1/n x = collect(LinRange(0, 1.0, n+1)) X = ae(x, [20,20,20,1])^2 # to ensure that X is positive, we use NN^2 instead of NN A = spdiag( n-1, 1=>-(X[2:end-2] + X[3:end-1])/2, -1=>-(X[3:end-1] + X[2:end-2])/2, 0=>(2*X[2:end-1]+X[3:end]+X[1:end-2])/2 )/h^2 φ = @. 2*x*(1 - 2*x)/(x^2 + 1)^2 + 2 /(x^2 + 1) u = A\φ[2:end-1] # for efficiency, we can use A\φ[2:end-1] (sparse solver) u_obs = (@. x * (1-x))[2:end-1] loss = sum((u - u_obs)^2) sess = Session(); init(sess) BFGS!(sess, loss) ``` We show the exact $X(x)$ and the pointwise error in the following plots ```math \left|\mathcal{N}(x_i;w)-X(x_i)\right| ``` | ![errorX](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/errorX.png?raw=true) | ![exactX](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/exactX.png?raw=true) | | ---------------------------- | ---------------------------- | | Pointwise Absolute Error | Exact $X(u)$ | ## Functional Inverse Problem In the **functional inverse problem**, $X$ is a function that _depends_ on $u$ (or both $x$ and $u$); it must not be confused with the functional inverse problem and it is much harder to solve (since the equation is nonlinear). As an example, assume $$\begin{aligned}\nabla (X(u)\nabla u(x)) &= \varphi(x) & x\in (0,1)\\ u(0)=u(1) &= 0\end{aligned}$$ where the quantity of interest is ```math X(u) = \frac{1}{1+100u^2} ``` The corresponding $\varphi$ can be analytically evaluated (e.g., using SymPy). To solve the Poisson equation, we use the standard Newton-Raphson scheme, in which case, we need to compute the residual $$R_i = X'(u_i)\left(\frac{u_{i+1}-u_{i-1}}{2h}\right)^2 + X(u_i)\frac{u_{i+1}+u_{i-1}-2u_i}{h^2} - \varphi(x_i)$$ and the corresponing Jacobian $$\frac{\partial R_i}{\partial u_j} = \left\{ \begin{matrix} -\frac{X'(u_i)}{h}\frac{u_{i+1}-u_{i-1}}{2h} + \frac{X(u_i)}{h^2} & j=i-1\\ X''(u_i)\frac{u_{i+1}-u_{i-1}}{2h} + X'(u_i)\frac{u_{i+1}+u_{i-1}-2u_i}{h^2} - \frac{2}{h^2}X(u_i) & j=i \\ \frac{X'(u_i)}{2h}\frac{u_{i+1}-u_{i-1}}{2h} + \frac{X(u_i)}{h^2} & j=i+1\\ 0 & |j-i|>1 \end{matrix} \right.$$ Just like the function inverse problem, we also use a neural network to approximate $X(u)$; the difference is that the input of the neural network is $u$ instead of $x$. It is convenient to compute $X'(u)$ with automatic differentiation. Solving the forward problem (given $X(u)$, solve for $u$) requires conducting Newton-Raphson iterations. One challenge here is that the Newton-Raphson operator is a nonlinear implicit operator that does not fall into the types of operators where automatic differentiation applies. The relevant technique is **physics constrained learning**. The basic idea is to extract the gradients by the implicit function theorem. The limitation is that we need to provide the Jacobian matrix for the residual term in the Newton-Raphson algorithm. In ADCME, the complex algorithm is wrapped in the API [`NonlinearConstrainedProblem`](@ref) and users only need to focus on constructing the residual and the gradient term ```julia using ADCME using PyPlot function residual_and_jacobian(θ, u) X = ae(u, config, θ) + 1.0 # (1) Xp = tf.gradients(X, u)[1] Xpp = tf.gradients(Xp, u)[1] up = [u[2:end];constant(zeros(1))] un = [constant(zeros(1)); u[1:end-1]] R = Xp .* ((up-un)/2h)^2 + X .* (up+un-2u)/h^2 - φ dRdu = Xpp .* ((up-un)/2h)^2 + Xp.*(up+un-2u)/h^2 - 2/h^2*X dRdun = -Xp[2:end]/h .* (up-un)[2:end]/2h + X[2:end]/h^2 dRdup = Xp[1:end-1]/h .* (up-un)[1:end-1]/2h + X[1:end-1]/h^2 J = spdiag(n-1, -1=>dRdun, 0=>dRdu, 1=>dRdup) # (2) return R, J end config = [20,20,20,1] n = 100 h = 1/n x = collect(LinRange(0, 1.0, n+1)) φ = @. (1 - 2*x)*(-100*x^2*(2*x - 2) - 200*x*(1 - x)^2)/(100*x^2*(1 - x)^2 + 1)^2 - 2 - 2/(100*x^2*(1 - x)^2 + 1) φ = φ[2:end-1] θ = Variable(ae_init([1,config...])) u0 = constant(zeros(n-1)) function L(u) # (3) u_obs = (@. x * (1-x))[2:end-1] loss = mean((u - u_obs)^2) end loss, solution, grad = NonlinearConstrainedProblem(residual_and_jacobian, L, θ, u0) X_pred = ae(collect(LinRange(0.0,0.25,100)), config, θ) + 1.0 sess = Session(); init(sess) BFGS!(sess, loss, grad, θ) x_pred, sol = run(sess, [X_pred, solution]) figure(figsize=(10,4)) subplot(121) s = LinRange(0.0,0.25,100) x_exact = @. 1/(1+100*s^2) + 1 plot(s, x_exact, "-", linewidth=3, label="Exact") plot(s, x_pred, "o", markersize=2, label="Estimated") legend() xlabel("u") ylabel("X(u)") subplot(122) s = LinRange(0.0,1.0,101)[2:end-1] plot(s, (@. s * (1-s)), "-", linewidth=3, label="Exact") plot(s, sol, "o", markersize=2, label="Estimated") legend() xlabel("x") ylabel("u") savefig("nn.png") ``` Detailed explaination: (1) This is the neural network we constructed. Note that with default initialization, the neural network output values are close to 0, and thus poses numerical stability issue for the solver. We can shift the neural network value by $+1$ (equivalently, we use 1 for the initial guess of the last bias term); (2) The jacobian matrix is sparse, and thus we use [`spdiag`](@ref) to create a sparse matrix; (3) A loss function is formulated and minimized in the physics constrained learning. ![nn](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/nn.png?raw=true) ## Stochastic Inverse Problem The final type of inverse problem is called **stochastic inverse problem**. In this problem, $X$ is a random variable with unknown distribution. Consequently, the solution $u$ will also be a random variable. For example, we may have the following settings in practice - The measurement of $u(0.5)$ may not be accurate. We might assume that $u(0.5) \sim \mathcal{N}(\hat u(0.5), \sigma^2)$ where $\hat u(0.5)$ is one observation and $\sigma$ is the prescribed standard deviation of the measurement. Thus, we want to estimate the distribution of $X$ which will produce the same distribution for $u(0.5)$. This type of problem falls under the umbrella of **uncertainty quantification**. - The quantity $X$ itself is subject to randomness in nature, but its distribution may be positively/negatively skewed (e.g., the stock price returns). We can measure several samples of $u(0.5)$ and want to estimate the distribution of $X$ based on the samples. This problem is also called the **probabilistic inverse problem**. We cannot simply minimize the distance between $u(0.5)$ and `u` (which are random variables) as usual; instead, we need a metric to measure the discrepancy between two distributions--`u` and $u(0.5)$. The observables $u(0.5)$ may be given in multiple forms - The probability density function. - The unnormalized log-likelihood function. - Discrete samples. We consider the third type in this tutorial. The idea is to construct a sampler for $X$ with a neural network and find the optimal weights and biases by minimizing the discrepancy between actually observed samples and produced ones. Here is how we train the neural network: We first propose a candidate neural network that transforms a sample from $\mathcal{N}(0, I_d)$ to a sample from $X$. Then we randomly generate $K$ samples $\{z_i\}_{i=1}^K$ from $\mathcal{N}(0, I_d)$ and transform them to $\{X_i; w\}_{i=1}^K$. We solve the Poisson equation $K$ times to obtain $\{u(0.5;z_i, w)\}_{i=1}^K$. Meanwhile, we sample $K$ items from the observations (e.g., with the bootstrap method) $\{u_i(0.5)\}_{i=1}^K$. We can use a probability metric $D$ to measure the discrepancy between $\{u(0.5;z_i, w)\}_{i=1}^K$ and $\{u_i(0.5)\}_{i=1}^K$. There are many choices for $D$, such as (they are not necessarily non-overlapped) - Wasserstein distance (from optimal transport) - KL-divergence, JS-divergence, etc. - Discriminator neural networks (from generative adversarial nets) For example, we can consider the first approach, and invoke [`sinkhorn`](@ref) provided by ADCME ```julia using ADCME using Distributions # we add a mixture Gaussian noise to the observation m = MixtureModel(Normal[ Normal(0.3, 0.1), Normal(0.0, 0.1)], [0.5, 0.5]) function solver(a) n = 100 h = 1/n A = a[1] * diagm(0=>2/h^2*ones(n-1), 1=>-1/h^2*ones(n-2), -1=>-1/h^2*ones(n-2)) φ = 2.0*ones(n-1) # right hand side u = A\φ u[50] end batch_size = 64 x = placeholder(Float64, shape=[batch_size,10]) z = placeholder(Float64, shape=[batch_size,1]) dat = z + 0.25 fdat = reshape(map(solver, ae(x, [20,20,20,1])+1.0), batch_size, 1) loss = empirical_sinkhorn(fdat, dat, dist=(x,y)->dist(x,y,2), method="lp") opt = AdamOptimizer(0.01, beta1=0.5).minimize(loss) sess = Session(); init(sess) for i = 1:100000 run(sess, opt, feed_dict=Dict( x=>randn(batch_size, 10), z=>rand(m, batch_size,1) )) end ``` | Loss Function | Iteration 5000 | Iteration 15000 | Iteration 25000 | | ------------------------ | -------------------------------- | ---------------------------------- | ---------------------------------- | | ![loss](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/loss.png?raw=true) | ![test5000](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/test5000.png?raw=true) | ![test15000](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/test15000.png?raw=true) | ![test25000](https://github.com/ADCMEMarket/ADCMEImages/blob/master/ADCME/test25000.png?raw=true) |
ADCME
https://github.com/kailaix/ADCME.jl.git
[ "MIT" ]
0.7.3
4ecfc24dbdf551f92b5de7ea2d99da3f7fde73c9
docs
8294
# Combining Neural Networks with Numerical Schemes Modeling unknown componenets in a physical models using a neural networks is an important method for function inverse problem. This approach includes a wide variety of applications, including * Koopman operator in dynamical systems * Constitutive relations in solid mechanics. * Turbulent closure relations in fluid mechanics. * ...... To use the known physics to the largest extent, we couple the neural networks and numerical schemes (e.g., finite difference, finite element, or finite volumn method) for partial differential equations. Based on the nature of the observation data, we present three methods to train the neural networks using gradient-based optimization method: the residual minimization method, the penalty method, and the physics constrained learning. We discuss the pros and cons for each method and show how the gradients can be computed using automatic differentiation in ADCME. ## Introduction Many science and engineering problems use models to describe the physical processes. These physical processes are usually derived from first principles or based on empirical relations. Neural networks have shown to be effective to model complex and high dimensional functions, and can be used to model the unknown mapping within a physical model. The known part of the model, such as conservation laws and boundary conditions, are preserved to obey the physics. Basically, we substutite unknown part of the model using neural networks in a physical system. As an example, consider a simple 1D heat equation $$\begin{aligned} \frac{\partial}{\partial x}\left(\kappa(u)\frac{\partial u}{\partial x}\right) &= f(x)& x\in \Omega\\ u(0) = u(1) &= 0 \end{aligned}$$ The diffusivity coefficient $\kappa(u)$ is a function of the temperature $u$, and is an unknown function to be calibrated. We consider a data-driven approach to discover $\kappa(u)$ using only the temperature data set $\mathcal{T}$. In the case where we do not know the constitutive relation, it can be modeled using a neural network $\kappa_\theta (u)$, where $\theta$ is the weights and biases of the neural network. In the following, we will discuss three methods based on the nature of the observation data set $\mathcal{T}$ to train the neural network. ## Residual Minimization for Full Field Data In the case $\mathcal{T}$ consist of full-field data, i.e., the values of $u(x)$ on a very fine grid, we can use the **residual minimization** to learn the neural network. Specifically, we can discretize the PDE using a numerical scheme, such as finite element method (FEM), and obtain the residual term $$R_j(\theta) =\sum_i u(x_i)\int_0^1 \kappa_\theta(\sum_i c_i \phi_i) \phi_i'(x) \phi_j'(x) dx - \int_0^1 f(x)\phi_j(x)dx$$ where $\phi_i$ are the basis functions in FEM. To find the optimal values for $\theta$, we can perform a residual minimization $$\min_\theta \sum_j R_j(\theta)^2$$ The residual minimization method avoids solving the PDE system, which can be expensive. The implication is straightforward using ADCME: all we need is to evaluate $R_j(\theta)$ and $\frac{\partial R_j(\theta)}{\partial \theta}$ (using automatic differention). However, the limitation is that this method is only applicable when full-field data are available. In the following two references, we explore the applications of the residual minimization method to constitutive modeling DZ Huang, K Xu, C Farhat, E Darve. [Learning Constitutive Relations from Indirect Observations Using Deep Neural Networks](https://arxiv.org/pdf/1905.12530.pdf) K Xu, DZ Huang, E Darve. [Learning Constitutive Relations using Symmetric Positive Definite Neural Networks](https://arxiv.org/pdf/2004.00265.pdf) ## Penalty Method for Sparse Observations In the case where $\mathcal{T}$ only consists of sparse observations, i.e., $u_o(x_i)$ (observation of $u(x_i)$) at only a few locations $\{x_i\}$, we can formulate the problem as a PDE-constrained optimization problem $$\begin{aligned} \min_\theta& \;\sum_i (u(x_i) - u_o(x_i))^2\\ \text{s.t.} &\; \frac{\partial}{\partial x}\left(\kappa_\theta(u)\frac{\partial u}{\partial x}\right) = f(x)& x\in \Omega\\ & u(0) = u(1) = 0 \end{aligned}\tag{1}$$ As pointed in [this article](https://kailaix.github.io/ADCME.jl/dev/tu_optimization/), we can apply the **penalty method** to solve the contrained optimization problem, $$\min_{\theta,u} \;\sum_i (u(x_i) - u_o(x_i))^2 + \rho \|F(u, \theta)\|^2_2$$ Here $\rho$ is the penalty parameter and $F(u, \theta)$ is the discretized form of the PDE. For example, $F(u,\theta)_i$ can be $R_i(\theta)$ in the residual minimization problem. The penalty method is conceptually simple and easy to implement. Like the residual minimization method, the penalty method requires limited insights into the numerical simulator to evaluate the gradients with respect to $u$ and $\theta$. The method does not require solving the PDE. However, the penalty method treats $u$ as optimization variable and therefore typically has much more degrees of freedom than the original constrained optimization problem. Mathematically, the penalty method suffers from worse conditioning than the constrained one, making it unfavorable in many scenarios. ## Physics Constrained Learning An alternative approach to the penalty method in the context of sparse observations is the **physics constrained learning** (PCL). The physics constrained learning reduces Equation 1 to an unconstrained optimization problem by two steps: 1. Solve for $u$ from the PDE constraint, given a candidate neural network; 2. Plug the solution $u(\theta)$ into the objective function and obtain a reduced loss function The reduced loss function only depends on $\theta$ and therefore we can perform the unconstrained optimization, in which case a wide variety of off-the-shelf optimizers are available. The advantage of this approach is that PCL enforces the physics constraints, which can be crucial for some applications and are essential for numerical solvers. Additionally, PCL typically exhibits high efficiency and fast convergence compared to the other two methods. However, PCL requires deep insights into the numerical simulator since an analytical form of $u(\theta)$ is not always tractable. It requires automatic differentiation through implict numerical solvers as well as iterative algorithms, which are usually not supported in AD frameworks. In the references below, we provide the key techniques for solving these problems. A final limitation of PCL is that it consumes much more memory and runtime per iteration than the other two methods. For more details on PCL, and comparison between the penalty method and PCL, see the following reference K Xu, E Darve. [Physics Constrained Learning for Data-driven Inverse Modeling from Sparse Observations](https://arxiv.org/pdf/2002.10521.pdf) ## Summary Using physics based machine learning to solve inverse problems requires techniques from different areas, deep learning, automatic differentiation, numerical PDEs, and physical modeling. By a combination of the best from all worlds, we can leverage the power of modern high performance computing environments to solve long standing inverse problems in physical modeling. Specially, in this article we review three methods for training a neural network in a physical model using automatic differentiation. These methods can be readily implemented in ADCME. We conclude this article by a direct comparison of the three methods | Method | Residual Minimization | Penalty Method | Physics Constrained Learning | | ------------------------------ | --------------------- | -------------- | ---------------------------- | | Sparse Observations | ❌ | ✔️ | ✔️ | | Easy-to-implement | ✔️ | ✔️ | ❌ | | Enforcing Physical Constraints | ❌ | ❌ | ✔️ | | Fast Convergence | ❌ | ❌ | ✔️ | | Minimal Optimization Variables | ✔️ | ❌ | ✔️ |
ADCME
https://github.com/kailaix/ADCME.jl.git