licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
06939499b8c623fd97998b85bb0263b88bea4b8f
code
150
using MonteCarloSummary using Test const tests = [ "mcsummary.jl", ] for t in tests @testset "Test $t" begin include(t) end end
MonteCarloSummary
https://github.com/andrewjradcliffe/MonteCarloSummary.jl.git
[ "MIT" ]
0.1.0
06939499b8c623fd97998b85bb0263b88bea4b8f
docs
942
# MonteCarloSummary ## Installation ```julia using Pkg Pkg.add("MonteCarloSummary") ``` ## Description Have Monte Carlo simulations and need a simple, efficiently computed summary? This package provides just that. A single function, `mcsummary`, computes the bare minimum of statistical properties -- mean, Monte Carlo standard error, standard deviation, and quantiles (the granularity of which may be specified by the user). The assumption is that irrespective of how one's Monte Carlo simulations are generated, the result is a matrix of numeric values. Perhaps the simulation index may be on the first or second dimension -- the user may specify this with the `dim` keyword argument. Given that Monte Carlo typically involves a large number of simulations (and/or high-dimensional spaces), `mcsummary` defaults to a threaded implementation, but the user may opt out of this with the `multithreaded` keyword argument. That's it. Enjoy.
MonteCarloSummary
https://github.com/andrewjradcliffe/MonteCarloSummary.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
554
using Documenter using GEEBRA makedocs( sitename = "GEEBRA", authors = "Ioannis Kosmidis, Nicola Lunardon", format = Documenter.HTML(), modules = [GEEBRA], pages = [ "Home" => "index.md", "Examples" => "man/examples.md", "Documentation" => Any[ "Public" => "lib/public.md", "Internal" => "lib/internal.md", ] ], doctest = false ) deploydocs( repo = "github.com/ikosmidis/GEEBRA.jl.git", target = "build", devbranch = "develop", push_preview = true, )
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
918
module GEEBRA # general estimating equations with or without bias-reducting adjustments @warn "As of version 0.1.1, GEEBRA will receive no further updates in the methods it provides. All methods in GEEBRA are available and will be maintained in the more extensive MEstimation (https://github.com/ikosmidis/MEstimation.jl) Julia package." using NLsolve using Optim using FiniteDiff using ForwardDiff using LinearAlgebra using Distributions import Base: show, print import StatsBase: fit, aic, vcov, coef, coeftable, stderror, CoefTable export objective_function export objective_function_template export estimating_function export get_estimating_function export estimating_function_template export aic export tic export vcov export coef export coeftable export fit export stderror include("estimating_functions.jl") include("objective_functions.jl") include("fit.jl") include("result_methods.jl") end # module
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
3685
""" estimating_function_template(nobs::Function, ef_contribution::Function) Define an `estimating_function_template` by supplying: + `nobs`: a function of `data` that computes the number of observations of the particular data type, + `ef_contribution`: a function of the parameters `theta`, the `data` and the observation index `i` that returns a vector of length `length(theta)`. """ struct estimating_function_template nobs::Function ef_contribution::Function end """ estimating_function(theta::Vector, data::Any, template::estimating_function_template, br::Bool = false) Construct the estimating function by adding up all contributions in the `data` according to [`estimating_function_template`](@ref), and evaluate it at `theta`. If `br = true` then automatic differentiation is used to compute the empirical bias-reducing adjustments and add them to the estimating function. """ function estimating_function(theta::Vector, data::Any, template::estimating_function_template, br::Bool = false) p = length(theta) n_obs = template.nobs(data) contributions = Matrix(undef, p, n_obs) for i in 1:n_obs contributions[:, i] = template.ef_contribution(theta, data, i) end if (br) quants = ef_quantities(theta, data, template, br) sum(contributions, dims = 2) + quants[1] else sum(contributions, dims = 2) end end """ get_estimating_function(data::Any, template::estimating_function_template, br::Bool = false) Construct the estimating function by adding up all contributions in the `data` according to [`estimating_function_template`](@ref). If `br = true` then automatic differentiation is used to compute the empirical bias-reducing adjustments and add them to the estimating function. The result is a function that stores the estimating functions values at its second argument, in a preallocated vector passed as its first argument, ready to be used withing `NLsolve.nlsolve`. """ function get_estimating_function(data::Any, template::estimating_function_template, br::Bool = false) function g!(F, theta::Vector) out = estimating_function(theta, data, template, br) for i in 1:length(out) F[i] = out[i] end end end function ef_quantities(theta::Vector, data::Any, template::estimating_function_template, adjustment::Bool = false) nj(eta::Vector, i::Int) = ForwardDiff.jacobian(beta -> template.ef_contribution(beta, data, i), eta) p = length(theta) n_obs = template.nobs(data) psi = Matrix{Float64}(undef, n_obs, p) njmats = Vector(undef, n_obs) for i in 1:n_obs psi[i, :] = template.ef_contribution(theta, data, i) njmats[i] = nj(theta, i) end jmat_inv = inv(-sum(njmats)) emat = psi' * psi vcov = jmat_inv * (emat * jmat_inv') if (adjustment) u(eta::Vector, i::Int) = ForwardDiff.jacobian(beta -> nj(beta, i), eta) psi_tilde = Matrix(undef, n_obs, p) umats = Vector(undef, n_obs) for i in 1:n_obs umats[i] = u(theta, i) end umat = sum(umats) A = Vector(undef, p) for j in 1:p for i in 1:n_obs psi_tilde[i, :] = njmats[i][j, :] end A[j] = -tr(jmat_inv * psi_tilde' * psi + vcov * umat[j:p:(p * p - p + j), :] / 2) end [A, jmat_inv, emat] else [vcov, jmat_inv, emat] end end
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
6519
""" fit(template::objective_function_template, data::Any, theta::Vector; estimation_method::String = "M", br_method::String = "implicit_trace", optim_method = LBFGS(), optim_options = Optim.Options()) Fit an [`objective_function_template`](@ref) on `data` using M-estimation ([keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `estimation_method = "M"`; default) or RBM-estimation (reduced-bias M estimation; [Kosmidis & Lunardon, 2020](http://arxiv.org/abs/2001.03786); [keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `estimation_method = "RBM"`). Bias reduction is either through the maximization of the bias-reducing penalized objective in Kosmidis & Lunardon (2020) ([keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `br_method = "implicit_trace"`; default) or by subtracting an estimate of the bias from the M-estimates ([keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `br_method = "explicit_trace"`). The bias-reducing penalty is constructed internally using automatic differentiation (using the [ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl) package), and the bias estimate using a combination of automatic differentiation (using the [ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl) package) and numerical differentiation (using the [FiniteDiff](https://github.com/JuliaDiff/FiniteDiff.jl) package). The maximization of the objective or the penalized objective is done using the [**Optim**](https://github.com/JuliaNLSolvers/Optim.jl) package. Optimization methods and options can be supplied directly through the [keyword arguments](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `optim_method` and `optim_options`, respectively. `optim_options` expects an object of class `Optim.Options`. See the [Optim documentation](https://julianlsolvers.github.io/Optim.jl/stable/#user/config/#general-options) for more details on the available options. """ function fit(template::objective_function_template, data::Any, theta::Vector; estimation_method::String = "M", br_method::String = "implicit_trace", optim_method = LBFGS(), optim_options = Optim.Options()) if (estimation_method == "M") br = false elseif (estimation_method == "RBM") if (br_method == "implicit_trace") br = true elseif (br_method == "explicit_trace") br = false else error(br_method, " is not a recognized bias-reduction method") end else error(estimation_method, " is not a recognized estimation method") end obj = beta -> -objective_function(beta, data, template, br) out = optimize(obj, theta, optim_method, optim_options) if (estimation_method == "M") theta = out.minimizer elseif (estimation_method == "RBM") if (br_method == "implicit_trace") theta = out.minimizer elseif (br_method == "explicit_trace") quants = obj_quantities(out.minimizer, data, template, true) jmat_inv = quants[2] adjustment = FiniteDiff.finite_difference_gradient(beta -> obj_quantities(beta, data, template, true)[1], out.minimizer) theta = out.minimizer + jmat_inv * adjustment br = true end end GEEBRA_results(out, theta, data, template, br, true, br_method) end """ fit(template::estimating_function_template, data::Any, theta::Vector; estimation_method::String = "M", br_method::String = "implicit_trace", nlsolve_arguments...) Fit an [`estimating_function_template`](@ref) on `data` using M-estimation ([keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `estimation_method = "M"`; default) or RBM-estimation (reduced-bias M estimation; [Kosmidis & Lunardon, 2020](http://arxiv.org/abs/2001.03786); [keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `estimation_method = "RBM"`). Bias reduction is either through the solution of the empirically adjusted estimating functions in Kosmidis & Lunardon (2020) ([keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `br_method = "implicit_trace"`; default) or by subtracting an estimate of the bias from the M-estimates ([keyword argument](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `br_method = "explicit_trace"`). The bias-reducing adjustments and the bias estimate are constructed internally using automatic differentiation (using the [ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl) package). The solution of the estimating equations or the adjusted estimating equations is done using the [**NLsolve**](https://github.com/JuliaNLSolvers/NLsolve.jl) package. Arguments can be passed directly to `NLsolve.nlsolve` through [keyword arguments](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1). See the [NLsolve README](https://github.com/JuliaNLSolvers/NLsolve.jl) for more information on available options. """ function fit(template::estimating_function_template, data::Any, theta::Vector; estimation_method::String = "M", br_method::String = "implicit_trace", nlsolve_arguments...) if (estimation_method == "M") br = false elseif (estimation_method == "RBM") if (br_method == "implicit_trace") br = true elseif (br_method == "explicit_trace") br = false else error(br_method, " is not a recognized bias-reduction method") end else error(estimation_method, " is not a recognized estimation method") end ef = get_estimating_function(data, template, br) out = nlsolve(ef, theta; nlsolve_arguments...) if (estimation_method == "M") theta = out.zero elseif (estimation_method == "RBM") if (br_method == "implicit_trace") theta = out.zero elseif (br_method == "explicit_trace") quants = ef_quantities(out.zero, data, template, true) adjustment = quants[1] jmat_inv = quants[2] theta = out.zero + jmat_inv * adjustment br = true end end GEEBRA_results(out, theta, data, template, br, false, br_method) end
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
2294
""" objective_function_template(nobs::Function, obj_contribution::Function) Define an `objective_function_template` by supplying: + `nobs`: a function of `data` that computes the number of observations of the particular data type, + `obj_contribution`: a function of the parameters `theta`, the `data` and the observation index `i` that returns a real. """ struct objective_function_template nobs::Function obj_contribution::Function end """ objective_function(theta::Vector, data::Any, template::objective_function_template, br::Bool = false) Construct the objective function by adding up all contributions in the `data` according to [`objective_function_template`](@ref), and evaluate it at `theta`. If `br = true` then automatic differentiation is used to compute the empirical bias-reducing penalty and add it to the objective function. """ function objective_function(theta::Vector, data::Any, template::objective_function_template, br::Bool = false) p = length(theta) n_obs = template.nobs(data) contributions = Vector(undef, n_obs) for i in 1:n_obs contributions[i] = template.obj_contribution(theta, data, i) end if (br) quants = obj_quantities(theta, data, template, br) sum(contributions) + quants[1] else sum(contributions) end end function obj_quantities(theta::Vector, data::Any, template::objective_function_template, penalty::Bool = false) npsi(eta::Vector, i::Int) = ForwardDiff.gradient(beta -> template.obj_contribution(beta, data, i), eta) nj(eta::Vector, i::Int) = ForwardDiff.hessian(beta -> template.obj_contribution(beta, data, i), eta) p = length(theta) n_obs = template.nobs(data) psi = Matrix{Float64}(undef, n_obs, p) njmats = Vector(undef, n_obs) for i in 1:n_obs psi[i, :] = npsi(theta, i) njmats[i] = nj(theta, i) end jmat_inv = inv(-sum(njmats)) emat = psi' * psi vcov = jmat_inv * (emat * jmat_inv) if (penalty) penalty = - tr(jmat_inv * emat) / 2 [penalty, jmat_inv, emat] else [vcov, jmat_inv, emat] end end
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
5715
""" GEEBRA_results(results::Union{NLsolve.SolverResults, Optim.MultivariateOptimizationResults, Optim.UnivariateOptimizationResults}, theta::Vector, data::Any, data::Any, template::Union{objective_function_template, estimating_function_template}, br::Bool, has_objective::Bool, br_method::String) Composite type for the output of [`fit`](@ref) for an [`objective_function_template`](@ref) or an [`estimating_function_template`](@ref). """ struct GEEBRA_results results::Union{NLsolve.SolverResults, Optim.MultivariateOptimizationResults, Optim.UnivariateOptimizationResults} theta::Vector data::Any template::Union{objective_function_template, estimating_function_template} br::Bool has_objective::Bool br_method::String end """ vcov(results::GEEBRA_results) Compute an esitmate of the variance-covariance matrix of the `M`-estimator or its reduced-bias version from the output of [`fit`](@ref) for an [`objective_function_template`](@ref) or an [`estimating_function_template`](@ref). """ function vcov(results::GEEBRA_results) if (results.has_objective) obj_quantities(results.theta, results.data, results.template, false)[1] else ef_quantities(results.theta, results.data, results.template, false)[1] end end """ tic(results::GEEBRA_results) Compute the Takeuchi Information Criterion at the `M`-estimator or its reduced-bias version from the output of [`fit`](@ref) for an [`objective_function_template`](@ref). `nothing` is returned if `results` is the output of [`fit`](@ref) for an [`estimating_function_template`](@ref). """ function tic(results::GEEBRA_results) if (results.has_objective) obj = objective_function(results.theta, results.data, results.template, false) quants = obj_quantities(results.theta, results.data, results.template, true) -2 * (obj + 2 * quants[1]) end end """ aic(results::GEEBRA_results) Compute the Akaike Information Criterion at the `M`-estimator or its reduced-bias version from the output of [`fit`](@ref) for an [`objective_function_template`](@ref). `nothing` is returned if `results` is the output of [`fit`](@ref) for an [`estimating_function_template`](@ref). """ function aic(results::GEEBRA_results) if (results.has_objective) obj = objective_function(results.theta, results.data, results.template, false) p = length(results.theta) -2 * (obj - p) end end """ coef(results::GEEBRA_results) Extract the `M`-estimates or their reduced-bias versions from the output of [`fit`](@ref) for an [`objective_function_template`](@ref) or an [`estimating_function_template`](@ref). """ function coef(results::GEEBRA_results) results.theta end """ show(io::IO, results::GEEBRA_results; digits::Real = 4) `show` method for `GEEBRA_results` objects. If `GEEBRA_results.has_object == true`, then the result of `aic(results)` and `tic(results)` are also printed. """ function Base.show(io::IO, results::GEEBRA_results; digits::Real = 4) theta = results.theta p = length(theta) v = vcov(results) if results.has_objective println(io, (results.br ? "RBM" : "M") * "-estimation with objective contributions ", results.template.obj_contribution) else println(io, (results.br ? "RBM" : "M") * "-estimation with estimating function contributions ", results.template.ef_contribution) end if (results.br) println(io, "Bias reduction method: ", results.br_method) end println(io) show(io, coeftable(results)) if results.has_objective objfun = objective_function(results.theta, results.data, results.template, results.br) if results.br print(io, "\nMaximum penalized objetive:\t", round(objfun, digits = digits)) else print(io, "\nMaximum objetive:\t\t", round(objfun, digits = digits)) end print(io, "\nTakeuchi information criterion:\t", round(tic(results), digits = digits)) print(io, "\nAkaike information criterion:\t", round(aic(results), digits = digits)) else estfun = estimating_function(results.theta, results.data, results.template, results.br) if results.br print(io, "\nAdjusted estimating functions:\t", estfun) else print(io, "\nEstimating functions:\t", estfun) end end end """ stderror(results::GEEBRA_results) Compute esitmated standard errors for the `M`-estimator or its reduced-bias version from the output of [`fit`](@ref) for an [`objective_function_template`](@ref) or an [`estimating_function_template`](@ref). """ function stderror(results::GEEBRA_results) sqrt.(diag(vcov(results))) end """ coeftable(results::GEEBRA_results; level::Real=0.95) Return a `StatsBase.CoefTable` for the `M`-estimator or its reduced-bias version from the output of [`fit`](@ref) for an [`objective_function_template`](@ref) or an [`estimating_function_template`](@ref). `level` can be used to set the level of the reported Wald-type confidence intervals (using quantiles of the standard normal distribution). """ function coeftable(results::GEEBRA_results; level::Real=0.95) cc = coef(results) se = stderror(results) zz = cc ./ se p = 2 * ccdf.(Ref(Normal()), abs.(zz)) ci = se * quantile(Normal(), (1-level)/2) levstr = isinteger(level*100) ? string(Integer(level*100)) : string(level*100) CoefTable(hcat(cc, se, zz, p, cc + ci, cc - ci), ["Estimate","Std. Error","z value","Pr(>|z|)","Lower $levstr%","Upper $levstr%"], ["theta[$i]" for i = 1:length(cc)], 4) end
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
code
12600
using Test ## Ratios @testset "ef implementation for a single parameter" begin using GEEBRA using Random ## Ratio data struct ratio_data y::Vector x::Vector end ## Ratio nobs function ratio_nobs(data::ratio_data) nx = length(data.x) ny = length(data.y) if (nx != ny) error("length of x is not equal to the length of y") end nx end ## Ratio contribution to estimating function function ratio_ef(theta::Vector, data::ratio_data, i::Int64) p = length(theta) (data.y[i] .- theta * data.x[i])[1:p] end ## Set the ratio template ratio_template = estimating_function_template(ratio_nobs, ratio_ef) @inferred estimating_function_template(ratio_nobs, ratio_ef) ## Generate some data Random.seed!(123); my_data = ratio_data(randn(10), rand(10)); ## Get M-estimator for the ratio result_m = fit(ratio_template, my_data, [0.1], estimation_method = "M") @inferred fit(ratio_template, my_data, [0.1], estimation_method = "M") ## Get reduced-bias estimator for the ratio result_br = fit(ratio_template, my_data, [0.1], estimation_method = "RBM") @inferred fit(ratio_template, my_data, [0.1], estimation_method = "RBM") ## Gere reduced-bias estimator for the ration using explicit RBM-estimation result_br1 = fit(ratio_template, my_data, [0.1], estimation_method = "RBM", br_method = "explicit_trace") ## Quantities for estimators sx = sum(my_data.x) sxx = sum(my_data.x .* my_data.x) sy = sum(my_data.y) sxy = sum(my_data.x .* my_data.y) @test isapprox(sy/sx, coef(result_m)[1]) @test isapprox((sy + sxy/sx)/(sx + sxx/sx), coef(result_br)[1]) @test isapprox(sy/sx * (1 - sxx / sx^2) + sxy/sx^2, coef(result_br1)[1]) @test_throws ErrorException result_br1 = fit(ratio_template, my_data, [0.1], estimation_method = "RBM", br_method = "magic_br_method") end ## Instrumental variables @testset "ef implementation for multiple parameters" begin using GEEBRA using Random using Distributions using NLsolve ## IV data struct iv_data y::Vector t::Vector w::Vector end ## IV nobs function iv_nobs(data::iv_data) nw = length(data.w) ny = length(data.y) nt = length(data.t) if (nw != ny) error("length of w is not equal to the length of y") elseif (nw != nt) error("length of w is not equal to the length of t") elseif (nw != nt) error("length of w is not equal to the length of t") end nw end ## Contributions to the estimating functions function iv_ef(theta::Vector, data::iv_data, i::Int64) [theta[1] - data.t[i], (data.y[i] - theta[2] * data.w[i]) * (theta[1] - data.t[i])] end ## Simulating IV data function simulate_iv(nobs::Int, theta::Vector) alpha = theta[1] beta = theta[2] gamma = theta[3] delta = theta[4] mux = theta[5] sigmax = theta[6] sigmae = theta[7] sigmau = theta[8] sigmat = theta[9] e1 = rand(Normal(0, sigmae), nobs) e2 = rand(Normal(0, sigmau), nobs) e3 = rand(Normal(0, sigmat), nobs) x = rand(Normal(mux, sigmax), nobs) w = x + e2 y = alpha .+ beta * x + e1 t = gamma .+ delta * x + e3 iv_data(y, t, w) end ## Set up IV GEEBRA template iv_template = estimating_function_template(iv_nobs, iv_ef) @inferred estimating_function_template(iv_nobs, iv_ef) ## Simulate data true_theta = [2.0, 2.0, 1.0, 3.0, 0.0, 1.0, 2.0, 1.0, 1.0] true_parameter = true_theta[[3, 2]] Random.seed!(123) my_data = simulate_iv(100, true_theta) o1_ml = fit(iv_template, my_data, true_parameter, estimation_method = "M") @inferred fit(iv_template, my_data, true_parameter, estimation_method = "M") o1_br = fit(iv_template, my_data, true_parameter, estimation_method = "RBM") @inferred fit(iv_template, my_data, true_parameter, estimation_method = "RBM") o1_br1 = fit(iv_template, my_data, true_parameter, estimation_method = "RBM", br_method = "explicit_trace") @inferred fit(iv_template, my_data, true_parameter, estimation_method = "RBM", br_method = "explicit_trace") ef_br = get_estimating_function(my_data, iv_template, true) @inferred get_estimating_function(my_data, iv_template, true) ef_ml = get_estimating_function(my_data, iv_template, false) @inferred get_estimating_function(my_data, iv_template, false) o2_ml = nlsolve(ef_ml, [0.1, 0.2]) o2_br = nlsolve(ef_br, [0.1, 0.2]) qs = GEEBRA.ef_quantities(coef(o1_ml), my_data, iv_template, true) @test isapprox(coef(o1_ml) + qs[2] * qs[1], coef(o1_br1)) @test isapprox(coef(o1_ml), o2_ml.zero) @test isapprox(coef(o1_br), o2_br.zero) ## Estimating function at the estimates @test isapprox(estimating_function(o2_br.zero, my_data, iv_template, true), zeros(Float64, 2, 1), atol = 1e-10) end @testset "obj implementation for multiple parameters" begin using GEEBRA using Random using Distributions using Optim using LinearAlgebra ## Logistic regression data struct logistic_data y::Vector x::Array{Float64} m::Vector end ## Logistic regression nobs function logistic_nobs(data::logistic_data) nx = size(data.x)[1] ny = length(data.y) nm = length(data.m) if (nx != ny) error("number of rows in of x is not equal to the length of y") elseif (nx != nm) error("number of rows in of x is not equal to the length of m") elseif (ny != nm) error("length of y is not equal to the length of m") end nx end function logistic_loglik(theta::Vector, data::logistic_data, i::Int64) eta = sum(data.x[i, :] .* theta) mu = exp.(eta)./(1 .+ exp.(eta)) ll = data.y[i] .* log.(mu) + (data.m[i] - data.y[i]) .* log.(1 .- mu) ll end Random.seed!(123); n = 100; m = 1; x = Array{Float64}(undef, n, 2); x[:, 1] .= 1.0; x[:, 2] .= rand(n); true_betas = [0.5, -1]; y = rand.(Binomial.(m, cdf.(Logistic(), x * true_betas))); my_data = logistic_data(y, x, fill(m, n)); logistic_template = objective_function_template(logistic_nobs, logistic_loglik) @inferred objective_function_template(logistic_nobs, logistic_loglik) o1_ml = optimize(b -> -objective_function(b, my_data, logistic_template, false), true_betas, LBFGS()) o1_br = optimize(b -> -objective_function(b, my_data, logistic_template, true), true_betas, LBFGS()) o2_ml = fit(logistic_template, my_data, true_betas, estimation_method = "M") o2_br = fit(logistic_template, my_data, true_betas, estimation_method = "RBM") o3_ml = optimize(b -> -objective_function(b, my_data, logistic_template, false), true_betas, Optim.Options(iterations = 2)) o3_br = optimize(b -> -objective_function(b, my_data, logistic_template, true), true_betas, Optim.Options(iterations = 2)) o4_ml = fit(logistic_template, my_data, true_betas, estimation_method = "M", optim_method = NelderMead(), optim_options = Optim.Options(iterations = 2)) o4_br = fit(logistic_template, my_data, true_betas, estimation_method = "RBM", optim_method = NelderMead(), optim_options = Optim.Options(iterations = 2)) @test isapprox(Optim.minimizer(o1_ml), Optim.minimizer(o2_ml.results)) @test isapprox(Optim.minimizer(o1_br), Optim.minimizer(o2_br.results)) @test isapprox(Optim.minimizer(o3_ml), Optim.minimizer(o4_ml.results)) @test isapprox(Optim.minimizer(o3_br), Optim.minimizer(o4_br.results)) @test isapprox(sqrt.(diag(vcov(o2_br))), stderror(o2_br)) end @testset "agreement between obj and ef implementations" begin using GEEBRA using Random using Distributions using Optim using NLsolve ## Logisti regression data struct logistic_data y::Vector x::Array{Float64} m::Vector end ## Logistic regression nobs function logistic_nobs(data::logistic_data) nx = size(data.x)[1] ny = length(data.y) nm = length(data.m) if (nx != ny) error("number of rows in of x is not equal to the length of y") elseif (nx != nm) error("number of rows in of x is not equal to the length of m") elseif (ny != nm) error("length of y is not equal to the length of m") end nx end function logistic_loglik(theta::Vector, data::logistic_data, i::Int64) eta = sum(data.x[i, :] .* theta) mu = exp.(eta)./(1 .+ exp.(eta)) ll = data.y[i] .* log.(mu) + (data.m[i] - data.y[i]) .* log.(1 .- mu) ll end function logistic_ef(theta::Vector, data::logistic_data, i::Int64) eta = sum(data.x[i, :] .* theta) mu = exp.(eta)./(1 .+ exp.(eta)) data.x[i, :] * (data.y[i] - data.m[i] * mu) end Random.seed!(123); n = 100; m = 1; p = 5; x = Array{Float64}(undef, n, p); x[:, 1] .= 1.0; for j in 2:p x[:, j] .= rand(n); end true_betas = randn(p) * sqrt(p); y = rand.(Binomial.(m, cdf.(Logistic(), x * true_betas))); my_data = logistic_data(y, x, fill(m, n)); logistic_obj_template = objective_function_template(logistic_nobs, logistic_loglik) logistic_ef_template = estimating_function_template(logistic_nobs, logistic_ef) o1_ml = fit(logistic_obj_template, my_data, true_betas, estimation_method = "M") e1_ml = fit(logistic_ef_template, my_data, true_betas, estimation_method = "M") o1_br = fit(logistic_obj_template, my_data, true_betas, estimation_method = "RBM") e1_br = fit(logistic_ef_template, my_data, true_betas, estimation_method = "RBM") o1_br1 = fit(logistic_obj_template, my_data, true_betas, estimation_method = "RBM", br_method = "explicit_trace") o1_br2 = fit(logistic_obj_template, my_data, coef(o1_ml), estimation_method = "RBM", br_method = "explicit_trace") e1_br1 = fit(logistic_ef_template, my_data, true_betas, estimation_method = "RBM", br_method = "explicit_trace") e1_br2 = fit(logistic_ef_template, my_data, coef(o1_ml), estimation_method = "RBM", br_method = "explicit_trace") @test isapprox(coef(o1_ml), coef(e1_ml), atol = 1e-05) @test isapprox(coef(o1_br), coef(e1_br), atol = 1e-05) @test isapprox(coef(o1_br1), coef(e1_br1), atol = 1e-05) @test isapprox(coef(o1_br2), coef(e1_br2), atol = 1e-05) @test isapprox(coef(o1_br1), coef(e1_br2), atol = 1e-05) @test isapprox(aic(o1_ml), -2 * (objective_function(coef(o1_ml), my_data, logistic_obj_template, false) - p)) @test isapprox(aic(o1_br), -2 * (objective_function(coef(o1_br), my_data, logistic_obj_template) - p)) quants_ml = GEEBRA.obj_quantities(coef(o1_ml), my_data, logistic_obj_template, true) quants_br = GEEBRA.obj_quantities(coef(o1_br), my_data, logistic_obj_template, true) @test isapprox(tic(o1_ml), -2 * (objective_function(coef(o1_ml), my_data, logistic_obj_template) + 2 * quants_ml[1])) @test isapprox(tic(o1_br), -2 * (objective_function(coef(o1_br), my_data, logistic_obj_template) + 2 * quants_br[1])) @test isapprox(vcov(o1_ml), vcov(e1_ml)) @test isapprox(vcov(o1_br), vcov(e1_br)) @test isapprox(vcov(o1_br1), vcov(e1_br1)) @test isapprox(vcov(o1_br2), vcov(e1_br2)) @test isapprox(coeftable(o1_ml).cols, coeftable(e1_ml).cols) @test isapprox(coeftable(o1_br).cols, coeftable(e1_br).cols) @test isapprox(coeftable(o1_br1).cols, coeftable(e1_br1).cols) @test isapprox(coeftable(o1_br2).cols, coeftable(e1_br2).cols) end # using Revise # using Pkg # Pkg.activate("/Users/yiannis/Repositories/GEEBRA.jl")
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
docs
327
# GEEBRA 0.1.1 * As of version 0.1.1, GEEBRA will receive no further updates in the methods it provides. All methods in GEEBRA are available and will be maintained in the more extensive [MEstimation](https://github.com/ikosmidis/MEstimation.jl) Julia package. * Added deprecation warning # GEEBRA 0.1.0 First public release
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
docs
988
# GEEBRA.jl **G**eneral **E**stimating **E**quations with or without **B**ias-**R**educing **A**djustments (pronounced `zee· bruh`) [![Travis status](https://travis-ci.com/ikosmidis/GEEBRA.jl.svg?branch=master)](https://travis-ci.org/ikosmidis/GEEBRA.jl) [![Coverage Status](https://img.shields.io/codecov/c/github/ikosmidis/GEEBRA.jl/master.svg)](https://codecov.io/github/ikosmidis/GEEBRA.jl?branch=master) [![](https://img.shields.io/badge/docs-dev-red.svg)](https://ikosmidis.github.io/GEEBRA.jl/dev/) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://ikosmidis.github.io/GEEBRA.jl/stable/) [![](https://img.shields.io/github/license/ikosmidis/GEEBRA.jl)](https://github.com/ikosmidis/GEEBRA.jl/blob/master/LICENSE.md) **As of version 0.1.1, GEEBRA will receive no further updates in the methods it provides. All methods in GEEBRA are available and will be maintained in the more extensive [MEstimation](https://github.com/ikosmidis/MEstimation.jl) Julia package.**
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
docs
3212
# [GEEBRA.jl](https://github.com/ikosmidis/GEEBRA.jl) ## Authors | [**Ioannis Kosmidis**](http://www.ikosmidis.com) | **(author, maintainer)** | --- | --- | [**Nicola Lunardon**](https://www.unimib.it/nicola-lunardon) | **(author)** | ## Licence [MIT License](https://github.com/ikosmidis/GEEBRA.jl/blob/master/LICENSE.md) ## Package description **GEEBRA** is a Julia package that implements ``M``-estimation for statistical models, either by solving estimating equations or by maximizing inference objectives, like [likelihoods](https://en.wikipedia.org/wiki/Likelihood_function) and composite likelihoods (see, [Varin et al, 2011](http://www3.stat.sinica.edu.tw/statistica/oldpdf/A21n11.pdf), for a review), using user-specified templates of the estimating function or the objective functions contributions. A key feature is the use of only those templates and forward mode automatic differentiation (as implemented in [**ForwardDiff**](https://github.com/JuliaDiff/ForwardDiff.jl)) to provide methods for **reduced-bias ``M``-estimation** (**RB``M``-estimation**; see, [Kosmidis & Lunardon, 2020](http://arxiv.org/abs/2001.03786)). RB``M``-estimation takes place either through the adjustment of the estimating equations or the penalization of the objectives, or the subtraction of an estimate of the bias of the ``M``-estimator from the ``M``-estimates. See the [examples](https://ikosmidis.github.io/GEEBRA.jl/dev/man/examples/) for a showcase of the functionaly **GEEBRA** provides. See [NEWS.md](https://github.com/ikosmidis/GEEBRA.jl/blob/master/NEWS.md) for changes, bug fixes and enhancements. ## **GEEBRA** templates **GEEBRA** has been designed so that the only requirements from the user are to: 1. implement a [Julia composite type](https://docs.julialang.org/en/v1/manual/types/index.html) for the data; 2. implement a function for computing the number of observations from the data object; 3. implement a function for calculating the contribution to the estimating function or to the objective function from a single observation that has arguments the parameter vector, the data object, and the observation index; 4. specify a GEEBRA template (using [`estimating_function_template`](@ref) for estimating functions and [`objective_function_template`](@ref) for objective function) that has fields the functions for computing the contributions to the estimating functions or to the objective, and the number of observations. **GEEBRA**, then, can estimate the unknown parameters by either ``M``-estimation or RB``M``-estimation. ## Examples ```@contents Pages = [ "man/examples.md", ] ``` ## Documentation ```@contents Pages = [ "lib/public.md", "lib/internal.md", ] ``` ## [Index](@id main-index) ```@index Pages = [ "lib/public.md", "lib/internal.md", ] ``` ## References + Varin, C., N. Reid, and D. Firth (2011). An overview of composite likelihood methods. Statistica Sinica 21(1), 5–42. [Link](http://www3.stat.sinica.edu.tw/statistica/oldpdf/A21n11.pdf) + Kosmidis, I., N. Lunardon (2020). Empirical bias-reducing adjustments to estimating functions. ArXiv:2001.03786. [Link](http://arxiv.org/abs/2001.03786)
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
docs
177
# Internals ## Contents ```@contents Pages = ["internal.md"] ``` ## Index ```@index Pages = ["internal.md"] ``` ## Internals ```@docs GEEBRA.GEEBRA_results GEEBRA.show ```
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
docs
675
# Public documentation ## Contents ```@contents Pages = ["public.md"] ``` ## Index ```@index Pages = ["public.md"] ``` ## Public interface ```@docs estimating_function_template get_estimating_function estimating_function objective_function_template objective_function fit(template::objective_function_template, data::Any, theta::Vector; estimation_method::String = "M", br_method::String = "implicit_trace", optim_method = LBFGS(), optim_options = Optim.Options()) fit(template::estimating_function_template, data::Any, theta::Vector; estimation_method::String = "M", br_method::String = "implicit_trace", nlsolve_arguments...) coef vcov stderror coeftable tic aic ```
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.1
60edca49e56b2d8aa4f712369fc49ba57cbfe976
docs
9028
# Examples ## Contents ```@contents Pages = ["examples.md"] Depth=3 ``` ## Ratio of two means Consider a setting where independent pairs of random variables ``(X_1, Y_1), \ldots, (X_n, Y_n)`` are observed, and suppose that interest is in the ratio of the mean of ``Y_i`` to the mean of ``X_i``, that is ``\theta = \mu_Y / \mu_X``, with ``\mu_X = E(X_i)`` and ``\mu_Y = E(Y_i) \ne 0`` ``(i = 1, \ldots, n)``. Assuming that sampling is from an infinite population, one way of estimating ``\theta`` without any further assumptions about the joint distribution of ``(X_i, Y_i)`` is to set the unbiased estimating equation ``\sum_{i = 1}^n (Y_i - \theta X_i) = 0``. The resulting ``M``-estimator is then ``\hat\theta = s_Y/s_X`` where ``s_X = \sum_{i = 1}^n X_i`` and ``s_Y = \sum_{i = 1}^n Y_i``. The estimator ``\hat\theta`` is generally biased, as can be shown, for example, by an application of the Jensen inequality assuming that ``X_i``is independent of ``Y_i``, and its bias can be reduced using the empirically adjusted estimating functions approach in Kosmidis & Lunardon (2020). This example illustrates how GEEBRA can be used to calculate the ``M``-estimator and its reduced-bias version. ```@repl 1 using GEEBRA, Random ``` Define a data type for ratio estimation problems ```@repl 1 struct ratio_data y::Vector x::Vector end; ``` Write a function to compute the number of observations for objects of type `ratio_data`. ```@repl 1 function ratio_nobs(data::ratio_data) nx = length(data.x) ny = length(data.y) if (nx != ny) error("length of x is not equal to the length of y") end nx end; ``` Generate some data to test things out ```@repl 1 Random.seed!(123); my_data = ratio_data(randn(10), rand(10)); ratio_nobs(my_data) ``` The estimating function for the ratio ``\theta`` is ``\sum_{i = 1}^n (Y_i - \theta X_i)`` So, the contribution to the estimating function can be implemented as ```@repl 1 function ratio_ef(theta::Vector, data::ratio_data, i::Int64) data.y[i] .- theta * data.x[i] end; ``` The `estimating_function_template` for the ratio estimation problem can now be set up using `ratio_nobs` and `ratio_ef`. ```@repl 1 ratio_template = estimating_function_template(ratio_nobs, ratio_ef); ``` We are now ready use `ratio_template` and `my_data` to compute the ``M``-estimator of ``\theta`` by solving the esitmating equation ``\sum_{i = 1}^n (Y_i - \theta X_i) = 0``. The starting value for the nonlinear solver is set to `0.1`. ```@repl 1 result_m = fit(ratio_template, my_data, [0.1]) ``` `fit` uses methods from the [**NLsolve**](https://github.com/JuliaNLSolvers/NLsolve.jl) package for solving the estimating equations. Arguments can be passed directly to `NLsolve.nlsolve` through [keyword arguments](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) to the `fit` method. For example, ```@repl 1 result_m = fit(ratio_template, my_data, [0.1], show_trace = true) ``` Bias reduction in general ``M``-estimation can be achieved by solving the adjusted estimating equation ``\sum_{i = 1}^n (Y_i - \theta X_i) + A(\theta, Y, X) = 0``, where ``A(\theta)`` are empirical bias-reducing adjustments depending on the first and second derivatives of the estimating function contributions. **GEEBRA** can use `ratio_template` and automatic differentiation (see, [ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl)) to construct ``A(\theta, Y, X)`` and, then, solve the bias-reducing adjusted estimating equations. All this is simply done by ```@repl 1 result_br = fit(ratio_template, my_data, [0.1], estimation_method = "RBM") ``` where `RBM` stands for reduced-bias `M`-estimation. Kosmidis & Lunardon (2020) show that the reduced-bias estimator of $\theta$ is ``\tilde\theta = (s_Y + s_{XY}/s_{X})/(s_X + s_{XX}/s_{X})``. The code chunks below tests that this is indeed the result **GEEBRA** returns. ```@repl 1 sx = sum(my_data.x); sxx = sum(my_data.x .* my_data.x); sy = sum(my_data.y); sxy = sum(my_data.x .* my_data.y); isapprox(sy/sx, result_m.theta[1]) isapprox((sy + sxy/sx)/(sx + sxx/sx), result_br.theta[1]) ``` ## Logistic regression ### Using [`objective_function_template`](@ref) Here, we use **GEEBRA**'s [`objective_function_template`](@ref) to estimate a logistic regression model using maximum likelihood and maximum penalized likelihood, with the empirical bias-reducing penalty in Kosmidis & Lunardon (2020). ```@repl 2 using GEEBRA using Random using Distributions using Optim ``` A data type for logistic regression models (consisting of a response vector `y`, a model matrix `x`, and a vector of weights `m`) is ```@repl 2 struct logistic_data y::Vector x::Array{Float64} m::Vector end ``` A function to compute the number of observations from `logistic_data` objects is ```@repl 2 function logistic_nobs(data::logistic_data) nx = size(data.x)[1] ny = length(data.y) nm = length(data.m) if (nx != ny) error("number of rows in of x is not equal to the length of y") elseif (nx != nm) error("number of rows in of x is not equal to the length of m") elseif (ny != nm) error("length of y is not equal to the length of m") end nx end ``` The logistic regression log-likelihood contribution at a parameter `theta` for the ``i``th observations of data `data` is ```@repl 2 function logistic_loglik(theta::Vector, data::logistic_data, i::Int64) eta = sum(data.x[i, :] .* theta) mu = exp.(eta)./(1 .+ exp.(eta)) data.y[i] .* log.(mu) + (data.m[i] - data.y[i]) .* log.(1 .- mu) end ``` Let's simulate some logistic regression data with $10$ covariates ```@repl 2 Random.seed!(123); n = 100; m = 1; p = 10 x = Array{Float64}(undef, n, p); x[:, 1] .= 1.0; for j in 2:p x[:, j] .= rand(n); end true_betas = randn(p) * sqrt(p); y = rand.(Binomial.(m, cdf.(Logistic(), x * true_betas))); my_data = logistic_data(y, x, fill(m, n)); ``` and set up an `objective_function_template` for logistic regression ```@repl 2 logistic_template = objective_function_template(logistic_nobs, logistic_loglik) ``` The maximum likelihood estimates starting at `true_betas` are ```@repl 2 o1_ml = fit(logistic_template, my_data, true_betas, optim_method = NelderMead()) ``` `fit` uses methods from the [**Optim**](https://github.com/JuliaNLSolvers/Optim.jl) package internally. Here, we used the `Optim.NelderMead` method. Alternative optimization methods and options can be supplied directly through the [keyword arguments](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments-1) `method` and `optim.Options`, respectively. For example, ```@repl 2 o2_ml = fit(logistic_template, my_data, true_betas, optim_method = LBFGS(), optim_options = Optim.Options(g_abstol = 1e-05)) ``` The reduced-bias estimates starting at the maximum likelihood ones are ```@repl 2 o1_br = fit(logistic_template, my_data, coef(o1_ml), estimation_method = "RBM") ``` ### Using [`estimating_function_template`](@ref) The same results as above can be returned using an [`estimating_function_template`](@ref) for logistic regression. The contribution to the derivatives of the log-likelihood for logistic regression is ```@repl 2 function logistic_ef(theta::Vector, data::logistic_data, i::Int64) eta = sum(data.x[i, :] .* theta) mu = exp.(eta)./(1 .+ exp.(eta)) data.x[i, :] * (data.y[i] - data.m[i] * mu) end ``` Then, solving the bias-reducing adjusted estimating equations ```@repl 2 logistic_template_ef = estimating_function_template(logistic_nobs, logistic_ef); e1_br = fit(logistic_template_ef, my_data, true_betas, estimation_method = "RBM") ``` returns the reduced-bias estimates from maximum penalized likelihood: ```@repl 2 isapprox(coef(o1_br), coef(e1_br)) ``` ### Bias-reduction methods **GEEBRA** currently implements 2 alternative bias reduction methods, called `implicit_trace` and `explicit_trace`. `implicit_trace` will adjust the estimating functions or penalize the objectives, as we have seen earlier. `explicit_trace`, on the other hand, will form an estimate of the bias of the ``M``-estimator and subtract that from the ``M``-estimates. The default method is `implicit_trace`. For example, for logistic regression via estimating functions ```@repl 2 e2_br = fit(logistic_template_ef, my_data, true_betas, estimation_method = "RBM", br_method = "explicit_trace") ``` which gives slightly different estimates that what are in the `implict_trace` fit in `e1_br`. The same can be done using objective functions, but numerical differentiation (using the [FiniteDiff](https://github.com/JuliaDiff/FiniteDiff.jl) package) is used to approximate the gradient of the bias-reducing penalty (i.e. ``A(\theta)``). ```@repl 2 o2_br = fit(logistic_template, my_data, true_betas, estimation_method = "RBM", br_method = "explicit_trace") isapprox(coef(e2_br), coef(o2_br)) ```
GEEBRA
https://github.com/ikosmidis/GEEBRA.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
616
using DataTools using Documenter makedocs(; modules=[DataTools], authors="Takafumi Arakaki <[email protected]> and contributors", repo="https://github.com/JuliaFolds/DataTools.jl/blob/{commit}{path}#L{line}", sitename="DataTools.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://JuliaFolds.github.io/DataTools.jl", assets=String[], ), pages=[ "Home" => "index.md", ], strict = get(ENV, "CI", "false") == "true", ) deploydocs(; repo="github.com/JuliaFolds/DataTools.jl", push_preview = true, )
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
996
module DataTools export averaging, firstitem, firstitems, inc1, lastitem, lastitems, meanvar, modifying, nitems, oncol, rightif using Base: HasLength, HasShape, IteratorSize using InitialValues: InitialValues using Accessors: @optic, PropertyLens, modify, set using StaticNumbers: static using Statistics: Statistics, mean, std, var using Tables: Tables using Transducers: Composition, Count, IdentityTransducer, Map, MapSplat, Scan, Take, TakeLast, Transducers, combine, complete, extract_transducer, next, opcompose, reducingfunction, right, start include("utils.jl") include("oncol.jl") include("modifying.jl") include("reductions.jl") include("reducers.jl") # Use README as the docstring of the module: @doc let path = joinpath(dirname(@__DIR__), "README.md") include_dependency(path) replace(read(path, String), r"^```julia"m => "```jldoctest README") end DataTools end
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
2019
""" modifying(; \$property₁ = f₁, ..., \$propertyₙ = fₙ) -> g::Function modifying(lens₁ => f₁, ..., lensₙ => fₙ) -> g::Function Create a function that runs function `fᵢ` on the locations specified by `propertyᵢ` or `lensᵢ`. The keyword-only method `modifying(; a = f₁, b = f₂)` is equivalent to `modifying(@len(_.a) => f₁, @len(_.b) => f₂)`. The unary method `g(x)` is equivalent to ```julia x = modify(f₁, x, lens₁) x = modify(f₂, x, lens₂) ... x = modify(fₙ, x, lensₙ) ``` The binary method `g(x, y)` is equivalent to ```julia x = set(x, lens₁, f₁(lens₁(x)), lens₁(y)) x = set(x, lens₂, f₂(lens₂(x)), lens₂(y)) ... x = set(x, lensₙ, fₙ(lensₙ(x)), lensₙ(y)) ``` Note that the locations that are not specified by the lenses keep the values as in `x`. This is similar to how `mergewith` behaves. # Examples ```jldoctest julia> using DataTools julia> map(modifying(a = string), [(a = 1, b = 2), (a = 3, b = 4)]) 2-element Array{NamedTuple{(:a, :b),Tuple{String,Int64}},1}: (a = "1", b = 2) (a = "3", b = 4) julia> reduce(modifying(a = +), [(a = 1, b = 2), (a = 3, b = 4)]) (a = 4, b = 2) julia> using Accessors julia> map(modifying(@optic(_.a[1].b) => x -> 10x), [(a = ((b = 1,), 2),), (a = ((b = 3,), 4),)]) 2-element Array{NamedTuple{(:a,),Tuple{Tuple{NamedTuple{(:b,),Tuple{Int64}},Int64}}},1}: (a = ((b = 10,), 2),) (a = ((b = 30,), 4),) ``` """ modifying modifying(; specs...) = ModifyingFunction(map(((k, v),) -> PropertyLens{k}() => v, Tuple(specs))) modifying(specs::Pair...) = ModifyingFunction(specs) modifying(f, lens) = ModifyingFunction((f, lens)) struct ModifyingFunction{FS} <: Function functions::FS end @inline (f::ModifyingFunction)(x) = foldl(f.functions; init = x) do x, (lens, g) @_inline_meta modify(g, x, lens) end @inline (f::ModifyingFunction)(x, y) = foldl(f.functions; init = x) do z, (lens, g) @_inline_meta modify(z, lens) do v @_inline_meta g(v, lens(y)) end end
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
5429
# Something like `DataFrames.combine` # https://juliadata.github.io/DataFrames.jl/stable/man/split_apply_combine/ # https://juliadata.github.io/DataFrames.jl/stable/lib/functions/#DataFrames.select """ oncol(iname₁ => spec₁, ..., inameₙ => specₙ) -> f::Function oncol(; \$iname₁ = spec₁, ..., \$inameₙ = specₙ) -> f::Function Combine functions that work on a column and create a function that work on an entire row. It constructs a reducing step function acting on a table row where `specᵢ` is either a reducing step function or a `Pair` of a reducing step function and an output column name. It also defines a unary function when `specᵢ` is either a unary function or a `Pair` of a unary function and an output column name. This function is inspired by the "`Pair` notation" in DataFrames.jl (see also [Split-apply-combine · DataFrames.jl](https://juliadata.github.io/DataFrames.jl/stable/man/split_apply_combine/) and [`DataFrames.select`](https://juliadata.github.io/DataFrames.jl/stable/lib/functions/#DataFrames.select)). # Examples ```jldoctest oncol julia> using DataTools using Transducers julia> rf = oncol(a = +, b = *); julia> foldl(rf, Map(identity), [(a = 1, b = 2), (a = 3, b = 4)]) (a = 4, b = 8) julia> rf((a = 1, b = 2), (a = 3, b = 4)) (a = 4, b = 8) julia> rf = oncol(:a => (+) => :sum, :a => max => :max); julia> foldl(rf, Map(identity), [(a = 1,), (a = 2,)]) (sum = 3, max = 2) julia> rf((sum = 1, max = 1), (a = 2,)) (sum = 3, max = 2) julia> rf = oncol(:a => min, :a => max); julia> foldl(rf, Map(identity), [(a = 2,), (a = 1,)]) (a_min = 1, a_max = 2) julia> rf((a_min = 2, a_max = 2), (a = 1,)) (a_min = 1, a_max = 2) julia> foldl(rf, Map(x -> (a = x,)), [5, 2, 6, 8, 3]) (a_min = 2, a_max = 8) ``` `oncol` also defines a unary function ```jldoctest oncol julia> f = oncol(a = string); julia> f((a = 1, b = 2)) (a = "1",) ``` Note that `oncol` does not verify the arity of input functions. If the input functions have unary and binary methods, `oncol` is callable with both arities: ```jldoctest oncol julia> f((a = 1, b = 2), (a = 3, b = 4)) (a = "13",) ``` """ oncol struct Property{name} end Property(p::Property) = p Property(name::Symbol) = Property{name}() Property(::Val{name}) where {name} = Property{name}() @inline getprop(x, ::Property{name}) where {name} = getproperty(x, name) @inline Base.Symbol(::Property{name}) where {name} = name::Symbol const PropertyLike = Union{Symbol,Val,Property} struct OnRowFunction{FS} <: Function functions::FS end # :x => f (x_f = f(a.x, b.x),) # :x => f => :y (y = f(a.x, b.x),) # (:x, :y) => f => :z (z = f((a.x, a.y), (b.x, b.y)),) ??? @inline (f::OnRowFunction)(x) = mapfoldl(merge, f.functions; init = NamedTuple()) do (iname, g, oname) @_inline_meta (; Symbol(oname) => g(getprop(x, iname))) end @inline (rf::OnRowFunction)(acc, x) = next(rf, acc, x) @inline Transducers.next(rf::OnRowFunction, acc, x) = mapfoldl(merge, rf.functions; init = NamedTuple()) do (iname, op, oname) @_inline_meta (; Symbol(oname) => next(op, getprop(acc, oname), getprop(x, iname))) end Transducers.start(rf::OnRowFunction, init) = mapfoldl(merge, rf.functions; init = NamedTuple()) do (_, op, oname) (; Symbol(oname) => start(op, init)) end # TODO: dispatch on "Initializer" type instead Transducers.start(rf::OnRowFunction, init::RowLike) = mapfoldl(merge, rf.functions; init = NamedTuple()) do (_, op, oname) (; Symbol(oname) => start(op, getprop(init, oname))) end Transducers.complete(rf::OnRowFunction, acc) = mapfoldl(merge, rf.functions; init = NamedTuple()) do (_, op, oname) (; Symbol(oname) => complete(op, getprop(acc, oname))) end Transducers.combine(rf::OnRowFunction, a, b) = mapfoldl(merge, rf.functions; init = NamedTuple()) do (_, op, oname) (; Symbol(oname) => combine(op, getprop(a, oname), getprop(b, oname))) end # TODO: define better API: Transducers._asmonoid(rf::OnRowFunction) = OnRowFunction(map(modifying(@optic(_[2]) => Transducers._asmonoid), rf.functions)) Transducers.Completing(rf::OnRowFunction) = OnRowFunction(map(modifying(@optic(_[2]) => Transducers.Completing), rf.functions)) @inline process_spec_kwargs((iname, spec)::Pair) = process_spec(Property(iname), spec, Property(iname)) @inline process_spec(name::PropertyLike) = (Property(name), identity, Property(name)) @inline process_spec((iname, spec)::Pair) = process_spec(iname, spec) @inline process_spec(iname, (op, oname)::Pair) = process_spec(iname, op, oname) @inline process_spec(iname, op) = process_spec(iname, op, outname(iname, op)) @inline process_spec(iname, op, oname) = (Property(iname), op, Property(oname)) outname(iname, op) = Symbol(Symbol(iname), '_', funname(op)) funname(op::ComposedFunction) = Symbol(funname(op.f), :_, funname(op.g)) function funname(op) name = string(op) return startswith(name, "#") ? :function : Symbol(op) end oncol(; specs...) = if any(((_, spec),) -> spec isa Pair, specs) fs = map(process_spec, Tuple(specs)) @assert allunique(map(last, fs)) # TODO: uniquify function names OnRowFunction(fs) else OnRowFunction(map(process_spec_kwargs, Tuple(specs))) end oncol(specs::Union{Pair{<:PropertyLike},PropertyLike}...) = OnRowFunction(map(process_spec, specs))
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
2420
""" nitems(xs) -> n::Integer Count number of items in `xs`. Consume `xs` if necessary. # Examples ```jldoctest julia> using DataTools, Transducers julia> nitems(1:10) 10 julia> 1:10 |> Filter(isodd) |> Map(inv) |> nitems 5 ``` """ nitems nitems(xs) = if IteratorSize(xs) isa Union{HasLength, HasShape} length(xs) else xf, coll = extract_transducer(xs) _nitems(_pop_innermost_maplikes(xf), coll) end _pop_innermost_maplikes(xf) = xf _pop_innermost_maplikes(::Union{Map,MapSplat,Scan}) = IdentityTransducer() function _pop_innermost_maplikes(xf::Composition) inner = _pop_innermost_maplikes(xf.inner) if inner isa IdentityTransducer return _pop_innermost_maplikes(xf.outer) else opcompose(xf.outer, inner) end end _nitems(::IdentityTransducer, xs) = _nitems(xs) _nitems(xf, xs) = xs |> xf |> _nitems _nitems(xs) = if IteratorSize(xs) isa Union{HasLength, HasShape} length(xs) else foldl(inc1, IdentityTransducer(), xs) end # TODO: optimization for `Cat`. """ firstitem(xs) Get the first item of `xs`. Consume `xs` if necessary. # Examples ```jldoctest julia> using DataTools, Transducers julia> firstitem(3:7) 3 julia> 3:7 |> Map(x -> x + 1) |> Filter(isodd) |> firstitem 5 ``` """ firstitem firstitem(xs::AbstractArray) = first(xs) firstitem(xs) = foldl(right, Take(1), xs) """ lastitem(xs) Get the last item of `xs`. Consume `xs` if necessary. # Examples ```jldoctest julia> using DataTools, Transducers julia> lastitem(3:7) 7 julia> 3:7 |> Map(x -> x + 1) |> Filter(isodd) |> lastitem 7 ``` """ lastitem lastitem(xs::AbstractArray) = last(xs) lastitem(xs) = foldl(right, Map(identity), xs) """ firstitems(xs, n::Integer) firstitems(n::Integer) -> xs -> firstitems(xs, n) Get the first `n` items of `xs`. Consume `xs` if necessary. """ firstitems firstitems(n::Integer) = xs -> firstitems(xs, n) firstitems(xs, n::Integer) = collect(Take(n), xs) firstitems(xs::AbstractArray, n::Integer) = view(xs, firstindex(xs):firstindex(xs)+n-1) """ lastitems(xs, n::Integer) lastitems(n::Integer) -> xs -> lastitems(xs, n) Get the last `n` items of `xs`. Consume `xs` if necessary. """ lastitems lastitems(n::Integer) = xs -> lastitems(xs, n) lastitems(xs, n::Integer) = collect(TakeLast(n), xs) lastitems(xs::AbstractArray, n::Integer) = view(xs, lastindex(xs)-n+1:lastindex(xs))
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
7470
""" inc1(n, _) -> n + 1 A reducing function for counting elements. It increments the first argument by one. # Examples ```jldoctest julia> using DataTools using Transducers julia> inc1(10, :ignored) 11 julia> inc1(Init(inc1), :ignored) 1 julia> foldl(inc1, Map(identity), 'a':2:'e') 3 julia> foldl(TeeRF(+, inc1), Map(identity), 1:2:10) # sum and count (25, 5) julia> rf = oncol(:a => (+) => :sum, :a => inc1 => :count); julia> foldl(rf, Map(identity), [(a = 1, b = 2), (a = 2, b = 3)]) (sum = 3, count = 2) ``` """ inc1(n, _) = n + 1 Transducers.start(::typeof(inc1), ::InitializerFor{typeof(inc1)}) = 0 Transducers.combine(::typeof(inc1), a, b) = a + b InitialValues.@def inc1 1 function merge_state end Transducers.Completing(::typeof(merge_state)) = merge_state # TODO: remove this @inline initialize_state(x) = x @inline initialize_right(x) = initialize_state(x) @inline initialize_left(x) = initialize_state(x) const InitMergeState = InitialValues.GenericInitialValue{typeof(merge_state)} merge_state(::InitMergeState, x) = initialize_right(x) merge_state(x, ::InitMergeState) = initialize_left(x) merge_state(x::InitMergeState, ::InitMergeState) = x InitialValues.hasinitialvalue(::Type{typeof(merge_state)}) = true """ averaging A reducing function for averaging elements. # Examples ```jldoctest julia> using DataTools using Transducers julia> foldl(averaging, Filter(isodd), 1:10) 5.0 julia> rf = oncol(a = averaging, b = averaging); julia> foldl(rf, Map(identity), [(a = 1, b = 2), (a = 2, b = 3)]) (a = 1.5, b = 2.5) ``` """ averaging struct AverageState{Sum} sum::Sum count::Int end @inline singleton_average(x) = AverageState(x, 1) @inline merge_state(a::AverageState, b::AverageState) = AverageState(a.sum + b.sum, a.count + b.count) @inline Transducers.complete(::typeof(merge_state), a::AverageState) = a.sum / a.count const averaging = reducingfunction(Map(singleton_average), merge_state) """ meanvar A reducing function for computing the mean and variance. # Examples ```jldoctest julia> using DataTools, Transducers, Statistics julia> acc = foldl(meanvar, Filter(isodd), 1:96) MeanVarState(mean=48.0, var=784.0, count=48) julia> acc.mean, mean(acc) (48.0, 48.0) julia> acc.var, var(acc), var(acc, corrected = false) (784.0, 784.0, 767.6666666666666) julia> acc.std, std(acc) (28.0, 28.0) julia> acc.count 48 julia> m, v, c = acc; # destructuring works julia> Tuple(acc) # (mean, var, count) (48.0, 784.0, 48) julia> NamedTuple(acc) (mean = 48.0, var = 784.0, count = 48) julia> rf = oncol(a = meanvar, b = meanvar); julia> foldl(rf, Map(identity), [(a = 1, b = 2), (a = 2, b = 3)]) (a = MeanVarState(mean=1.5, var=0.5, count=2), b = MeanVarState(mean=2.5, var=0.5, count=2)) ``` """ meanvar struct MeanVarState{Count,Mean,M2} count::Count mean::Mean m2::M2 end @inline singleton_meanvar(x) = MeanVarState(static(1), x, static(0)) # Optimization for avoiding type-changing accumulator @inline function initialize_state(a::MeanVarState) count, ione = promote(a.count, 1) mean = float(a.mean) m2, = promote(a.m2, (one(mean) * one(mean) + one(a.m2)) / (ione + ione)) return MeanVarState(count, mean, m2) end @inline function merge_state(a::MeanVarState, b::MeanVarState) d = b.mean - a.mean count = a.count + b.count return MeanVarState( a.count + b.count, a.mean + d * b.count / count, a.m2 + b.m2 + d^2 * a.count * b.count / count, ) end @inline Transducers.complete(::typeof(merge_state), a::MeanVarState) = a Statistics.mean(a::MeanVarState) = a.mean Statistics.var(a::MeanVarState; corrected::Bool = true) = a.m2 / (corrected ? (a.count - 1) : a.count) Statistics.std(a::MeanVarState; kw...) = sqrt(var(a; kw...)) const meanvar = reducingfunction(Map(singleton_meanvar), merge_state) Base.propertynames(::MeanVarState) = (:mean, :var, :count) Base.propertynames(::MeanVarState, private) = private ? (:mean, :var, :count, :m2, :std) : (:mean, :var, :count) @inline function Base.getproperty(a::MeanVarState, name::Symbol) if name === :count return getfield(a, :count) elseif name === :mean return getfield(a, :mean) elseif name === :m2 return getfield(a, :m2) elseif name === :var return var(a) elseif name === :std return std(a) else throw(KeyError(name)) end end Base.IteratorEltype(::Type{<:MeanVarState}) = Base.EltypeUnknown() Base.IteratorSize(::Type{<:MeanVarState}) = Base.HasLength() Base.length(::MeanVarState) = 3 Base.iterate(a::MeanVarState) = (mean(a), Val(2)) Base.iterate(a::MeanVarState, ::Val{2}) = (var(a), Val(3)) Base.iterate(a::MeanVarState, ::Val{3}) = (a.count, Val(4)) Base.iterate(a::MeanVarState, ::Val{4}) = nothing Base.NamedTuple(a::MeanVarState) = (mean = mean(a), var = var(a), count = a.count) function Base.show(io::IO, a::MeanVarState) if get(io, :limit, false) !== true print(io, @__MODULE__, '.') end if a === MeanVarState(a.count, a.mean, a.m2) print(io, "MeanVarState") else print(IOContext(io, :module => @__MODULE__), typeof(a)) end print(io, '(') print(io, "mean=", mean(a)) print(io, ", var=", var(a)) print(io, ", count=", a.count) if get(io, :limit, false) !== true print(io, ", m2=", a.m2) end print(io, ')') end # Constructor to be compatible with the `repr` (and for testing) function (::Type{T})(; count, mean, m2 = nothing, var = nothing) where {T<:MeanVarState} m2 === nothing && var === nothing && throw(ArgumentError("`m2` or `var` required")) if m2 === nothing m2 = var * (count - 1) end return T(count, mean, m2) end """ rightif(predicate, [focus = identity]) -> op::Function Return a binary function that keeps the first argument unless `predicate` evaluates to `true`. This is equivalent to ```julia (l, r) -> predicate(focus(l), focus(r)) ? r : l ``` # Examples ```jldoctest julia> using DataTools, Transducers julia> table = 1:100 |> Map(x -> (k = gcd(x, 42), v = x)); julia> table |> Take(5) |> collect # preview 5-element Array{NamedTuple{(:k, :v),Tuple{Int64,Int64}},1}: (k = 1, v = 1) (k = 2, v = 2) (k = 3, v = 3) (k = 2, v = 4) (k = 1, v = 5) julia> foldl(rightif(<), Map(x -> x.k), table) # maximum 42 julia> foldl(rightif(>), Map(x -> x.k), table) # minimum 1 julia> foldl(rightif(<, x -> x.k), table) # first maximum (k = 42, v = 42) julia> foldl(rightif(<=, x -> x.k), table) # last maximum (k = 42, v = 84) julia> foldl(rightif(>, x -> x.k), table) # first minimum (k = 1, v = 1) julia> foldl(rightif(>=, x -> x.k), table) # last minimum (k = 1, v = 97) julia> table |> Scan(rightif(<, x -> x.k)) |> Take(5) |> collect 5-element Array{NamedTuple{(:k, :v),Tuple{Int64,Int64}},1}: (k = 1, v = 1) (k = 2, v = 2) (k = 3, v = 3) (k = 3, v = 3) (k = 3, v = 3) ``` """ rightif(predicate, focus = identity) = RightIf(predicate, focus) struct RightIf{P,F} <: _Function predicate::P focus::F end RightIf(predicate::P, ::Type{F}) where {P,F} = RightIf{P,Type{F}}(predicate, F) @inline (f::RightIf)(l, r) = f.predicate(f.focus(l), f.focus(r)) ? r : l const InitRightIf{P,F} = InitialValues.GenericInitialValue{RightIf{P,F}} (::RightIf)(::InitRightIf, x) = x (::RightIf)(x, ::InitRightIf) = x (::RightIf)(x::InitRightIf, ::InitRightIf) = x InitialValues.hasinitialvalue(::Type{<:RightIf}) = true
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
981
@static if VERSION < v"1.8.0-DEV.410" using Base: @_inline_meta else const var"@_inline_meta" = Base.var"@inline" end const RowLike = Union{NamedTuple,Tables.Row,Tables.AbstractRow} if isdefined(Base, :ComposedFunction) # Julia >= 1.6.0-DEV.85 using Base: ComposedFunction else const ComposedFunction = let h = identity ∘ convert @assert h.f === identity @assert h.g === convert getfield(parentmodule(typeof(h)), nameof(typeof(h))) end @assert identity ∘ convert isa ComposedFunction end const GenericInitializer = Union{typeof(Transducers.Init),Transducers.InitOf} const InitializerFor{OP} = Union{GenericInitializer,InitialValues.GenericInitialValue{OP}} # Just like `Function` but for defining some common methods. abstract type _Function <: Function end # Avoid `Function` fallbacks: @nospecialize Base.show(io::IO, ::MIME"text/plain", f::_Function) = show(io, f) Base.print(io::IO, f::_Function) = show(io, f) @specialize
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
498
module TestDataTools using Test @testset "$file" for file in sort([ file for file in readdir(@__DIR__) if match(r"^test_.*\.jl$", file) !== nothing ]) if file == "test_doctest.jl" if lowercase(get(ENV, "JULIA_PKGEVAL", "false")) == "true" @info "Skipping doctests on PkgEval." continue elseif VERSION >= v"1.6-" @info "Skipping doctests on Julia $VERSION." continue end end include(file) end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
422
module TestAveraging using DataTools using Test using Transducers: Filter, Map reduce_bs1(args...; kw...) = reduce(args...; basesize = 1, kw...) @testset for fold in [foldl, reduce_bs1, reduce] @test fold(averaging, Filter(isodd), 1:10) == 5 @test fold( oncol(a = averaging, b = averaging), Map(identity), [(a = 1, b = 2), (a = 2, b = 3)], ) == (a = 1.5, b = 2.5) end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
158
module TestDoctest import DataTools using Documenter: doctest using Test @testset "doctest" begin doctest(DataTools; manual = false) end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
393
module TestFirstitems using DataTools using Test using Transducers include("utils.jl") @testset "firstitem" begin @test firstitem(3:7) === 3 @test 3:7 |> Map(x -> x + 1) |> Filter(isodd) |> firstitem == 5 end @testset "firstitems" begin @test firstitems(3:7, 2) ==ₜ view(3:7, 1:2) @test 3:7 |> Map(x -> x + 1) |> Filter(isodd) |> firstitems(2) == [5, 7] end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
386
module TestLastitems using DataTools using Test using Transducers include("utils.jl") @testset "lastitem" begin @test lastitem(3:7) === 7 @test 3:7 |> Map(x -> x + 1) |> Filter(isodd) |> lastitem == 7 end @testset "lastitems" begin @test lastitems(3:7, 2) ==ₜ view(3:7, 4:5) @test 3:7 |> Map(x -> x + 1) |> Filter(isodd) |> lastitems(2) == [5, 7] end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
2695
module TestMeanVar using DataTools using DataTools: MeanVarState using Statistics using Test using Transducers: Filter, Map, TeeRF include("utils.jl") reduce_bs1(args...; kw...) = reduce(args...; basesize = 1, kw...) @testset for fold in [foldl, reduce_bs1, reduce] foldl = reduce = nothing @testset "accessors" begin s = fold(meanvar, Filter(isodd), 1:16) m, v, c = s @test Tuple(s) == (m, v, c) == (8.0, 24.0, 8) @test NamedTuple(s) == (mean = m, var = v, count = c) s = fold(meanvar, Filter(isodd), 1:10) @test mean(s) === mean(1:2:9) === 5.0 @test var(s) === var(1:2:9) === var(s; corrected = true) === 10.0 @test var(s; corrected = false) === var(1:2:9; corrected = false) === 8.0 s = fold(meanvar, Filter(isodd), 1:96) @test mean(s) === mean(1:2:95) === 48.0 @test var(s) === var(1:2:95) === 784.0 @test std(s) === std(1:2:95) === 28.0 end @testset "TeeRF" begin s1, s2 = fold( TeeRF(Filter(isodd)'(meanvar), Filter(iseven)'(meanvar)), Map(identity), 1:96, ) @test s1 isa MeanVarState @test s2 isa MeanVarState @test mean(s1) === 48.0 @test mean(s2) === 49.0 @test var(s1) === 784.0 @test var(s2) === 784.0 end @testset "oncol" begin snt = fold( oncol(odd = meanvar, even = meanvar), Map(x -> (odd = 2x - 1, even = 2x)), 1:48, ) @test snt.odd isa MeanVarState @test snt.even isa MeanVarState @test mean(snt.odd) === 48.0 @test mean(snt.even) === 49.0 @test var(snt.odd) === 784.0 @test var(snt.even) === 784.0 end end @testset "show and constructor" begin @testset "default type parameters" begin s = MeanVarState(mean = 8.0, count = 8, m2 = 168.0) @test s === MeanVarState(mean = 8.0, var = 24.0, count = 8) str = sprint(show, s; context = :limit => true) @test str == "MeanVarState(mean=8.0, var=24.0, count=8)" str = sprint(show, s; context = :limit => false) @test str == "DataTools.MeanVarState(mean=8.0, var=24.0, count=8, m2=168.0)" end @testset "non-default type parameters" begin s = MeanVarState{Any,Any,Any}(mean = 8.0, var = 24.0, count = 8) str = sprint(show, s; context = :limit => true) @test str ==ᵣ "MeanVarState{Any,Any,Any}(mean=8.0, var=24.0, count=8)" str = sprint(show, s; context = :limit => false) @test str ==ᵣ "DataTools.MeanVarState{Any,Any,Any}(mean=8.0, var=24.0, count=8, m2=168.0)" end end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
658
module TestModifying using DataTools using Accessors: @optic using Test using Transducers reduce_bs1(args...; kw...) = reduce(args...; basesize = 1, kw...) @testset for fold in [foldl, reduce_bs1, reduce] @test fold(modifying(a = +), Map(identity), [(a = 1, b = 2), (a = 3, b = 4)]) == (a = 4, b = 2) end @testset "map" begin @test map(modifying(a = string), [(a = 1, b = 2), (a = 3, b = 4)]) == [(a = "1", b = 2), (a = "3", b = 4)] @test map( modifying(@optic(_.a[1].b) => x -> 10x), [(a = ((b = 1,), 2),), (a = ((b = 3,), 4),)], ) == [(a = ((b = 10,), 2),), (a = ((b = 30,), 4),)] end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
887
module TestNItems using DataTools using Test using Transducers using Transducers: IdentityTransducer @testset "_pop_innermost_maplikes" begin pop(args...) = DataTools._pop_innermost_maplikes(opcompose(args...)) @test pop(Map(inv)) === IdentityTransducer() @test pop(MapSplat(tuple), Map(inv)) === IdentityTransducer() @test pop(Filter(isodd), MapSplat(tuple), Map(inv)) === Filter(isodd) @test pop(Map(isodd), Filter(isodd), MapSplat(tuple), Map(inv)) === opcompose(Map(isodd), Filter(isodd)) end @testset "nitems" begin @test nitems(1:10) == 10 @test nitems(error(x) for x in 1:10) == 10 @test 1:10 |> Map(error) |> MapSplat(error) |> Scan(+) |> nitems == 10 @test 1:10 |> Filter(isodd) |> Map(error) |> MapSplat(error) |> nitems == 5 @test 1:10 |> Filter(isodd) |> Map(x -> x ÷ 3) |> Filter(isodd) |> nitems == 3 end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
693
module TestOncol using DataTools using Test using Transducers reduce_bs1(args...; kw...) = reduce(args...; basesize = 1, kw...) @testset begin @test oncol(a = +, b = *)((a = 1, b = 2), (a = 3, b = 4)) == (a = 4, b = 8) @test oncol(:a => (+) => :sum, :a => max => :max)((sum = 1, max = 1), (a = 2,)) == (sum = 3, max = 2) @test oncol(:a => min, :a => max)((a_min = 2, a_max = 2), (a = 1,)) == (a_min = 1, a_max = 2) end @testset for fold in [foldl, reduce_bs1, reduce] @test fold( oncol(a = +, b = averaging), Filter(x -> isodd(x.a)), [(a = 1, b = 7), (a = 2, b = 3), (a = 3, b = 4)], ) == (a = 4, b = 5.5) end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
461
module TestRightIf using DataTools using Test using Transducers: Map, Take reduce_bs1(args...; kw...) = reduce(args...; basesize = 1, kw...) @testset for fold in [foldl, reduce_bs1, reduce] foldl = nothing table = 43:100 |> Map(x -> (k = gcd(x, 42), v = x)) @test fold(rightif(<), Map(x -> x.k), table) == 42 @test fold(rightif(>), Map(x -> x.k), table) == 1 @test fold(rightif(<, x -> x.k), table) == (k = 42, v = 84) end end # module
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
code
506
""" ==ₜ(x, y) Check that _type_ and value of `x` and `y` are equal. """ ==ₜ(_, _) = false ==ₜ(x::T, y::T) where T = x == y """ ==ₛ(a::AbstractString, b::AbstractString) Equality check ignoring white spaces """ ==ₛ(a::AbstractString, b::AbstractString) = replace(a, r"\s" => "") == replace(b, r"\s" => "") """ ==ᵣ(a::AbstractString, b::AbstractString) Equality check appropriate for comparing `repr` output. """ ==ᵣ if VERSION >= v"1.6-" const ==ᵣ = ==ₛ else const ==ᵣ = == end
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
docs
1142
# DataTools: manipulating flat tables and nested data structures using Transducers.jl [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliafolds.github.io/DataTools.jl/dev) [![GitHub Actions](https://github.com/JuliaFolds/DataTools.jl/workflows/Run%20tests/badge.svg)](https://github.com/JuliaFolds/DataTools.jl/actions?query=workflow%3A%22Run+tests%22) ```julia julia> using DataTools: oncol, modifying, averaging julia> using Transducers: Filter julia> data = [(a = 1, b = 7), (a = 2, b = 3), (a = 3, b = 4)]; julia> rf = oncol(a = +, b = averaging); julia> foldl(rf, Filter(x -> isodd(x.a)), data) (a = 4, b = 5.5) julia> map(modifying(a = string), data) 3-element Array{NamedTuple{(:a, :b),Tuple{String,Int64}},1}: (a = "1", b = 7) (a = "2", b = 3) (a = "3", b = 4) julia> reduce(modifying(a = +), data) (a = 6, b = 7) julia> using Accessors: @optic julia> data = [(a = ((b = 1,), 2),), (a = ((b = 3,), 4),)]; julia> map(modifying(@optic(_.a[1].b) => x -> 10x), data) 2-element Array{NamedTuple{(:a,),Tuple{Tuple{NamedTuple{(:b,),Tuple{Int64}},Int64}}},1}: (a = ((b = 10,), 2),) (a = ((b = 30,), 4),) ```
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
0.1.5
e7b4d9e05344a6d24a3d50549e3e1bbf3e309e4c
docs
107
```@meta CurrentModule = DataTools ``` # DataTools ```@index ``` ```@autodocs Modules = [DataTools] ```
DataTools
https://github.com/JuliaFolds/DataTools.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
682
using Continuables using Documenter makedocs(; modules=[Continuables], authors="Stephan Sahm <[email protected]> and contributors", repo="https://github.com/jolin-io/Continuables.jl/blob/{commit}{path}#L{line}", sitename="Continuables.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://jolin-io.github.io/Continuables.jl", assets=String[], ), pages=[ "Home" => "index.md", "Manual" => "manual.md", "Benchmark" => "benchmark.md", "Library" => "library.md", ], ) deploydocs(; repo="github.com/jolin-io/Continuables.jl", devbranch="main", )
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
22943
""" A Continuable is a function which takes a single argument function a -> b We could have made most of the core functionality work for general functions a... -> b however the semantics become too complicated very soon. For instance for product. How should the product look like? say we have two continuables and name the continuation's arguments a... and b... respectively. How to call the follow up continuation then? cont(a..., b...) or cont(a, b)? Probably something like if isa(a and b, SingletonTuple) then cont(a...,b...) else cont(a,b). However this seems to complicate things unnecessarily complex. Another point is for example the interaction with iterables which always deliver tuples. See also this github issue https://github.com/JuliaLang/julia/issues/6614 for tuple deconstructing which would give a similar familarity. Many documentation strings are taken and adapted from https://github.com/JuliaCollections/Iterators.jl/blob/master/src/Iterators.jl. """ # TODO copy documentation strings module Continuables export cont, @cont, AbstractContinuable, Continuable, innerfunctype, @Ref, stoppable, stop, emptycontinuable, singleton, repeated, iterated, aschannel, ascontinuable, i2c, @i2c, reduce, reduce!, zip, product, chain, flatten, cycle, foreach, map, all, any, sum, prod, take, takewhile, drop, dropwhile, partition, groupbyreduce, groupby, nth using ExprParsers using DataTypesBasic using OrderedCollections import Base.Iterators: cycle, flatten, take, drop, partition, product include("utils.jl") include("itertools.jl") ## Continuable Core ------------------------------------------------------------------------- """ `cont` is reserved function parameter name """ cont(args...; kwargs...) = error("`cont` is reserved to be used within `Continuables.@cont`") """ AbstractContinuable Abstract type which all continuable helper functions use for dispatch. The interface for a continuable just consists of ``` Base.foreach(cont, continuable::YourContinuable) ``` For julia 1.0 you further need to provide ``` (continuable::YourContinuable)(cont) = foreach(cont, continuable) ``` which is provided automatically for more recent julia versions. """ abstract type AbstractContinuable end """ foreach(func, continuable) Runs the continuable with `func` as the continuation. This is the core interface of a continuable. It is especially handy when using `do` syntax. """ function Base.foreach(cont, ::AbstractContinuable) error("You need to specialize `Base.foreach` for your custom Continuable type.") end """ Continuable(func) Assumes func to have a single argument, the continuation function (usually named `cont`). Example ------- ``` Continuable(function (cont) for i in 1:10 cont(i) end end) ``` """ struct Continuable{Func} <: AbstractContinuable f::Func # making sure typevar `Func` has always the correct meaning so that we can dispatch on it # otherwise one could construct `Continuable{Any}(func)` which would break dispatching on the typevariable. Continuable(f) = new{typeof(f)}(f) end Base.foreach(cont, c::Continuable) = c.f(cont) (c::Continuable)(cont) = foreach(cont, c) """ innerfunctype(continuable) Returns the generic type of `continuable.f`. This can be used to specialize functions on specific Continuables, like `Base.IteratorSize` and else. # Examples ```julia mycont(x) = @cont cont(x) Base.length(::Continuable{<:innerfunctype(mycont(:examplesignature))}) = :justatest length(mycont(1)) == :justatest length(mycont("a")) == :justatest # other continuables are not affected anothercont(x) = @cont cont(x) length(anothercont(42)) == 1 ``` """ function innerfunctype(continuable::Continuable) typeof(continuable.f).name.wrapper end include("./syntax.jl") # parts of syntax.jl require the Continuable definition, hence here ## conversions ---------------------------------------------- """ aschannel(continuable) -> Channel Convert the continuable into a channel. Performance is identical compared to when you would have build a Channel directly. """ function aschannel(continuable::AbstractContinuable, size=0; elemtype=Any, taskref=nothing, spawn=false) Channel{elemtype}(size, taskref=taskref, spawn=spawn) do channel continuable() do x put!(channel, x) end end end """ ascontinuable(iterable) Converts an iterable to a Continuable. There should not be any performance loss. """ ascontinuable(iterable) = @cont foreach(cont, iterable) """ i2c(iterable) Alias for [`ascontinuable`](@ref). "i2c" is meant as abbreviation for "iterable to continuable". Also comes in macro form as [`@i2c`](@ref). """ const i2c = ascontinuable """ @i2c iterable Alias for [`ascontinuable`](@ref). "i2c" is meant as abbreviation for "iterable to continuable". Also comes in function form as [`i2c`](@ref). """ macro i2c(expr) esc(:(ascontinuable($expr))) end ## factories ----------------------------------------------- """ emptycontinuable The continuable with no elements. """ const emptycontinuable = @cont () # mind the space!! """ singleton(value) Construct a Continuable containing only the one given value. """ singleton(value) = @cont cont(value) """ repeated(() -> 2[, n]) repeated([n]) do # ... "returnvalue" end Constructs a Continuable which repeatedly yields the returnvalue from calling the given function again and again. Until infinity or if `n` is given, exactly `n` times. """ @cont function repeated(f) while true cont(f()) end end @cont function repeated(f, n::Integer) for _ in 1:n cont(f()) end end """ iterated((x) -> x*x, startvalue) iterated(startvalue) do x # ... x*x end Constructs an infinite Continuable which """ @cont @Ref function iterated(f, x) a = Ref(x) cont(a) while true a = f(a) cont(a) end end ## core helpers ---------------------------------------------------------- # Continuable cannot implement Base.iterate efficiently try # only in more recent julia, we can specialize call syntax for AbstractTypes (c::AbstractContinuable)(cont) = foreach(cont, c) catch end Base.IteratorSize(::AbstractContinuable) = Base.SizeUnknown() @Ref function Base.length(continuable::AbstractContinuable) i = Ref(0) continuable() do _ i += 1 end i end Base.IteratorEltype(::AbstractContinuable) = Base.EltypeUnknown() Base.eltype(::AbstractContinuable) = Any """ collect(continuable[, n]) -> Vector Constructs Vector out of the given Continuable. If also given the length `n` explicitly, a Vector of respective is preallocated. IMPORTANTLY `n` needs to be the true length of the continuable. Smaller `n` will result in error. """ function Base.collect(c::AbstractContinuable) everything = Vector(undef, 0) reduce!(push!, c, init = everything) end @Ref function Base.collect(c::AbstractContinuable, n) a = Vector(undef, n) # unfortunately the nested call of enumerate results in slower code, hence we have a manual index here # this is so drastically that for small `n` a preallocate version with enumerate would be slower than the non-preallocate version i = Ref(1) c() do x a[i] = x i += 1 end a end """ enumerate(continuable) Constructs new Continuable with elements `(i, x)` for each `x` in the continuable, where `i` starts at `1` and increments by `1` for each element. """ @cont @Ref function Base.enumerate(continuable::AbstractContinuable) i = Ref(1) continuable() do x cont((i, x)) i += 1 end end """ map(func, continuable) Constructs new Continuable where the given `func` was applied to each element. """ Base.map(func, continuable::AbstractContinuable) = @cont continuable(x -> cont(func(x))) """ filter(predicate, continuable) Constructs new Continuable where only elements `x` with `predicate(x) == true` are kept. """ @cont function Base.filter(bool, continuable::AbstractContinuable) continuable() do x if bool(x) cont(x) end end end """ reduce(operator, continuable; [init]) Like Base.reduce this will apply `operator` iteratively to combine all elements into one accumulated result. """ Base.reduce(op, continuable::AbstractContinuable; init = nothing) = foldl_continuable(op, continuable, init) """ reduce(operator, continuable; [init]) Like Base.foldl this will apply `operator` iteratively to combine all elements into one accumulated result. The order is guaranteed to be left to right. """ Base.foldl(op, continuable::AbstractContinuable; init = nothing) = foldl_continuable(op, continuable, init) struct EmptyStart end @Ref function foldl_continuable(op, continuable, init::Nothing) acc = Ref{Any}(EmptyStart()) lifted_op(acc::EmptyStart, x) = x lifted_op(acc, x) = op(acc, x) continuable() do x acc = lifted_op(acc, x) end acc end @Ref function foldl_continuable(op, continuable, init) acc = Ref(init) continuable() do x acc = op(acc, x) end acc end """ reduce!(op!, continuable; [init]) Mutating version of Base.reduce If no `init` is given `op!` is assumed to mutate a hidden state (equivalent to mere continuation) else `init` is the explicit state and will be passed to `op!` as first argument (the accumulator) """ function reduce!(op!, continuable::AbstractContinuable; init = nothing) if isnothing(init) continuable(op!) else reduce!(op!, continuable, init) end end function reduce!(op!, continuable::AbstractContinuable, acc) continuable() do x op!(acc, x) end acc end """ sum(continuable) sums up all elements """ Base.sum(c::AbstractContinuable) = reduce(+, c) """ sum(continuable) multiplies up all elements """ Base.prod(c::AbstractContinuable) = reduce(*, c) """ all([func, ]continuable; [lazy]) Checks whether all elements in the continuable are true. If a function `func` is given, it is first applied to the elements before comparing for truth. If `lazy=true` (default) the Continuable will only be evaluated until the first `false` value. Elseif `lazy=false` all elements of the Continuable will be combined. """ @Ref function Base.all(continuable::AbstractContinuable; lazy=true) if lazy stoppable(continuable, true) do b if !b stop(false) end end else # non-lazy b = Ref(true) continuable() do x b &= x end b end end Base.all(f, continuable::AbstractContinuable; kwargs...) = all(map(f, continuable); kwargs...) """ any([func, ]continuable; [lazy]) Checks whether at least one element in the continuable is true. If a function `func` is given, it is first applied to the elements before comparing for truth. If `lazy=true` (default) the Continuable will only be evaluated until the first `true` value. Elseif `lazy=false` all elements of the Continuable will be combined. """ @Ref function Base.any(continuable::AbstractContinuable; lazy=true) if lazy stoppable(continuable, false) do b if b stop(true) end end else # non-lazy b = Ref(false) continuable() do x b |= x end b end end Base.any(f, continuable::AbstractContinuable; kwargs...) = any(map(f, continuable); kwargs...) ## zip ---------------------------- # zip is the only method which seems to be unimplementable with continuations # hence we have to go to tasks or arrays """ azip(continuables...) Zipping continuables via intermediate array representation CAUTION: loads everything into memory """ azip(cs::AbstractContinuable...) = @cont begin # not possible with continuations... bring it to memory and apply normal zip array_cs = collect.(cs) for t in zip(array_cs...) cont(t) end end """ chzip(continuables...) Zipping continuables via Channel """ chzip(cs::AbstractContinuable...) = @cont begin # or use aschannel and iterate channel_cs = aschannel.(cs) for t in zip(channel_cs...) cont(t) end end """ zip(continuables...; [lazy]) Constructs new Continuable with elements from the given continuables zipped up. I.e. will yield for each position in the original continuables a tuple `(x, y, ...)` where `x`, `y`, ... are the elements from `continuables` at the same position respectively. If `lazy=true` (default), it will use Channels to do the zipping. Elseif `lazy=false`, it will use Arrays instead. !!! warning CAUTION `zip` on Continuables is not performant, but will fallback to either Channels (`lazy=true`, default) which are very slow, or Arrays (`lazy=false`) which will load everything into Memory. """ function Base.zip(cs::AbstractContinuable...; lazy=true) if lazy chzip(cs...) else azip(cs...) end end """ cycle(continuable[, n]) Constructs new Continuable which loops through the given continuable. If `n` is given, it will loop `n` times, otherwise endlessly. """ cycle(continuable::AbstractContinuable) = @cont while true continuable(cont) end cycle(continuable::AbstractContinuable, n::Integer) = @cont for _ in 1:n continuable(cont) end ## combine continuables -------------------------------------------- # IMPORTANT we cannot overload the empty product as it would conflict with iterables """ product(continuables...) Construct a new Continuable which yields all combinations of the given continuables, analog to how Iterators.product work for iterables. Mind that `product()` will still return an empty iterator instead of an empty Continuable. Use [`emptycontinuable`](@ref) instead if you need an empty Continuable. """ product(c1::AbstractContinuable) = c1 # note this function in fact returns a continuable, however it is written as highlevel as that no explicit "f(...) = cont -> begin ... end" is needed product(c1::AbstractContinuable, c2::AbstractContinuable) = @cont begin c1() do x c2() do y cont((x,y)) end end end # this method is underscored because we assume the first continuation to deliver tuples and not values _product(c1::AbstractContinuable, c2::AbstractContinuable) = @cont begin c1() do t c2() do x cont(tuple(t..., x)) end end end @Ref function product(c1::AbstractContinuable, c2::AbstractContinuable, cs::Vararg{<:AbstractContinuable}) acc = Ref{Any}(product(c1, c2)) # make first into singleton tuple to start recursion for continuable in cs acc = _product(acc, continuable) end acc end """ flatten(continuable_of_continuables) Constructs new Continuable by concatinating all continuables in the given `continuable_of_continuables`. Analog to Iterators.flatten. For iterables of continuable use `Continuables.chain(iterable_of_continuables...)` instead. """ @cont function flatten(continuable::AbstractContinuable) continuable() do subcontinuable subcontinuable(cont) end end """ chain(continuables...) chain(iterables...) = flatten(iterables) When given Continuables it will construct a new continuable by concatinating all given continuables. When given anything else it will default to use `Iterator.flatten`. """ chain(iterables::Vararg) = flatten(iterables) chain(cs::Vararg{<:AbstractContinuable}) = @cont begin for continuable in cs continuable(cont) end end # -------------------------- """ take(continuable, n) take(n, continuable) Construct a new Continuable which only yields the first `n` elements. `n` can be larger as the total length, no problem. """ @cont @Ref function take(continuable::AbstractContinuable, n::Integer) i = Ref(0) stoppable(continuable) do x i += 1 if i > n stop() end cont(x) end end take(n::Integer, continuable::AbstractContinuable) = take(continuable, n) """ takewhile(predicate, continuable) takewhile(predicate, iterable) If given a Continuable, it constructs a new Continuable yielding elements until `predicate(element)` returns `false`. Also implements a respective functionality for iterables for convenience. """ takewhile(bool, iterable) = TakeWhile(bool, iterable) @cont function takewhile(bool, continuable::AbstractContinuable) stoppable(continuable) do x if !bool(x) stop() end cont(x) end end """ drop(continuable, n) drop(n, continuable) Construct a new Continuable which yields all elements but the first `n`. `n` can be larger as the total length, no problem. """ @cont @Ref function drop(continuable::AbstractContinuable, n::Integer) i = Ref(0) continuable() do x i += 1 if i > n cont(x) end end end drop(n::Integer, continuable::AbstractContinuable) = drop(continuable, n) """ dropwhile(predicate, continuable) dropwhile(predicate, iterable) If given a Continuable, it constructs a new Continuable yielding elements until `predicate(element)` returns `true`. Also implements a respective functionality for iterables for convenience. """ dropwhile(bool, iterable) = DropWhile(bool, iterable) @cont @Ref function dropwhile(bool, continuable::AbstractContinuable) dropping = Ref(true) continuable() do x if dropping dropping &= bool(x) # without nested "if" statement we would have to use two separate if statements at the top (instead of using if else) !dropping && cont(x) else cont(x) end end end """ partition(continuable, n[, step]) Constructs new Continuable which yields whole subsections of the given continuable, gathered as Vectors. `n` is the length of a subsection. The very last subsection might be of length `n` or smaller respectively, collecting the remaining elements. If `step` is given, the second subsection is exactly `step`-number of elements apart from the previous subsection, and hence overlapping if `n > step`. Further, importantly, if `step` is given, there is no rest, but each subsection will be guaranteed to have the same length. This semantics is copied from [IterTools.jl](https://juliacollections.github.io/IterTools.jl/latest/#partition(xs,-n,-[step])-1) # Examples ```jldoctest julia> using Continuables julia> partition(i2c(1:10), 3) |> collect 4-element Array{Any,1}: Any[1, 2, 3] Any[4, 5, 6] Any[7, 8, 9] Any[10] julia> partition(i2c(1:10), 5, 2) |> collect 3-element Array{Any,1}: Any[1, 2, 3, 4, 5] Any[3, 4, 5, 6, 7] Any[5, 6, 7, 8, 9] julia> partition(i2c(1:10), 3, 3) |> collect 3-element Array{Any,1}: Any[1, 2, 3] Any[4, 5, 6] Any[7, 8, 9] ``` """ @cont @Ref function partition(continuable::AbstractContinuable, n::Integer) i = Ref(1) part = Ref(Vector(undef, n)) continuable() do x part[i] = x i += 1 if i > n cont(part) part = Vector(undef, n) i = 1 end end # final bit # TODO is this wanted? with additional step parameter I think this is mostly unwanted if i > 1 # following the implementation for iterable, we cut the length to the defined part cont(_takewhile_isassigned(part)) end end @cont @Ref function partition(continuable::AbstractContinuable, n::Integer, step::Integer) i = Ref(0) n_overlap = n - step part = Ref(Vector(undef, n)) continuable() do x i += 1 if i > 0 # if i is negative we simply skip these part[i] = x end if i == n cont(part) if n_overlap > 0 overlap = part[1+step:n] part = Vector(undef, n) part[1:n_overlap] = overlap else # we need to recreate new part because of references part = Vector(undef, n) end i = n_overlap end end end function _takewhile_isassigned(vec::Vector) n = length(vec) for i in 1:n if !isassigned(vec, i) return vec[1:(i-1)] end end return vec end """ groupbyreduce(by, continuable, op2[, op1]) groupbyreduce(by, iterable, op2[, op1]) Group elements and returns OrderedDict of keys (constructed by `by`) and values (aggregated with `op2`/`op1`) If given anything else then a continuable, we interpret it as an iterable and provide the same functionality. # Parameters by: function of element to return the key for the grouping/dict continuable: will get grouped op2: f(accumulator, element) = new_accumulator op1: f(element) = initial_accumulator # Examples ```jldoctest julia> using Continuables julia> groupbyreduce(x -> x % 4, @i2c(1:10), (x, y) -> x + y) OrderedCollections.OrderedDict{Any,Any} with 4 entries: 1 => 15 2 => 18 3 => 10 0 => 12 julia> groupbyreduce(x -> x % 4, @i2c(1:10), (x, y) -> x + y, x -> x+5) OrderedCollections.OrderedDict{Any,Any} with 4 entries: 1 => 20 2 => 23 3 => 15 0 => 17 ``` """ function groupbyreduce(by, continuable::AbstractContinuable, op2, op1=identity) d = OrderedDict() continuable() do x key = by(x) if key in keys(d) d[key] = op2(d[key], x) else d[key] = op1(x) end end d end # adding iterable versions for the general case (tests showed that these are actually compiling to the iterable version in terms of code and speed, awesome!) groupbyreduce(by, iterable, op2, op1=identity) = groupbyreduce(by, ascontinuable(iterable), op2, op1) """ groupby(f, continuable) groupby(f, iterable) Wrapper around the more general [`groupbyreduce`](@ref) which combines elements to a Vector. If you happen to aggregate your resulting grouped Vectors, think about using `groupbyreduce` directly, as this can massively speed up aggregations. Note that the interface is different from `IterTools.groupby`, as we directly return an OrderedDict (instead of a iterable of values). # Examples ```jldoctest julia> using Continuables julia> groupby(x -> x % 4, @i2c 1:10) OrderedCollections.OrderedDict{Any,Any} with 4 entries: 1 => [1, 5, 9] 2 => [2, 6, 10] 3 => [3, 7] 0 => [4, 8] ``` """ groupby(f, continuable::AbstractContinuable) = groupbyreduce(f, continuable, push!, x -> [x]) groupby(f, iterable) = groupby(f, ascontinuable(iterable)) ## subsets & peekiter ------------------------------------------------------- # subsets seem to be implemented for arrays in the first place (and not iterables in general) # hence better use IterTools.subsets directly # peekiter is the only method of Iterators.jl missing. However it in fact makes no sense for continuables # as they are functions and don't get consumed ## extract values from continuables ---------------------------------------- """ nth(continuable, n) nth(n, continuable) Extracts the `n`th element from the given continuable. # Examples ```jldoctest julia> using Continuables julia> nth(i2c(4:10), 3) 6 julia> nth(1, i2c(4:10)) 4 ``` """ @Ref function nth(continuable::AbstractContinuable, n::Integer) i = Ref(0) ret = stoppable(continuable) do x i += 1 if i==n # CAUTION: we cannot use return here as usual because this is a subfunction. Return works here more like continue stop(x) end end if ret === nothing error("given continuable has length $i < $n") end ret end nth(n::Integer, continuable::AbstractContinuable) = nth(continuable, n) end # module
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
1664
# to be a drop in replacement we need to support iterables struct TakeWhile{Func, Iter} f::Func iter::Iter end function Base.iterate(tw::TakeWhile) (nextval, nextstate) = @ifsomething Base.iterate(tw.iter) tw.f(nextval) ? (nextval, nextstate) : nothing end function Base.iterate(tw::TakeWhile, state) (nextval, nextstate) = @ifsomething Base.iterate(tw.iter, state) tw.f(nextval) ? (nextval, nextstate) : nothing end # to be a drop in replacement we need to support iterables struct DropWhile{Func, Iter} f::Func iter::Iter end function Base.iterate(dw::DropWhile) (nextval, nextstate) = @ifsomething Base.iterate(dw.iter) while dw.f(nextval) (nextval, nextstate) = @ifsomething Base.iterate(dw.iter, nextstate) end (nextval, nextstate) end Base.iterate(dw::DropWhile, state) = Base.iterate(dw.iter, state) # IteratorEltype and IteratorSize can be defined for both simultanuously const DropWhile_or_TakeWhile{F, Iter} = Union{DropWhile{F, Iter}, TakeWhile{F, Iter}} const TypeDropWhile_or_TypeTakeWhile{F, Iter} = Union{Type{DropWhile{F, Iter}}, Type{TakeWhile{F, Iter}}} Base.IteratorEltype(::TypeDropWhile_or_TypeTakeWhile{F, Iter}) where {F, Iter} = Base.IteratorEltype(Iter) Base.eltype(::TypeDropWhile_or_TypeTakeWhile{F, Iter}) where {F, Iter} = Base.eltype(Iter) # defaulting to Base.SizeUnknown function Base.IteratorSize(::TypeDropWhile_or_TypeTakeWhile) Base.SizeUnknown() end function Base.length(tw::DropWhile_or_TakeWhile) s::Int = 0 for x in tw s += 1 end s end function Base.collect(tw::DropWhile_or_TakeWhile) everything = [] for x in tw push!(everything, x) end everything end
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
6145
using ExprParsers using DataTypesBasic using SimpleMatch # @Ref # ==== # TODO also replace `::Ref` annotations. Currently only `r = Ref(2)` assignments are replaced. const _parser = EP.AnyOf(EP.NestedDot(), EP.Function()) # entrypoint - start with empty list of substitutions refify!(expr::Expr) = refify!(expr, Vector{Symbol}()) # map Expr to Parsers refify!(any, ::Vector{Symbol}) = () # if there is no expression (or Vector, see below), we cannot refify anything refify!(expr::Expr, Refs::Vector{Symbol}) = refify!(expr, Refs, @TryCatch EP.ParseError parse_expr(_parser, expr)) # if specific parser was detected, then dispatch directly on Parsed result refify!(expr::Expr, Refs::Vector{Symbol}, parsed::Identity{P}) where P = refify!(expr, Refs, parsed.value) # Specific Parsers function refify!(expr::Expr, Refs::Vector{Symbol}, nesteddot_parsed::EP.NestedDot_Parsed) # refify only most left dot expression `nesteddot_parsed.base`, i.e. the object which is originally accessed @match(nesteddot_parsed.base) do f # if `nesteddot_parsed.base` is a Symbol, we cannot do in-place replacement with refify! but can only changed the parsed result f(_) = nothing f(s::Symbol) = nesteddot_parsed.base = refify_symbol(s, Refs) f(e::Expr) = refify!(e, Refs) end # as not everything could be replaced inplace, we still have to inplace-replace the whole parsed expression newexpr = to_expr(nesteddot_parsed) expr.head = newexpr.head expr.args = newexpr.args end function refify!(expr::Expr, Refs::Vector{Symbol}, function_parsed::EP.Function_Parsed) # when going into a function, we need to ignore the function parameter names from Refs as they are new variables, not related to the Refs args = [parse_expr(EP.Arg(), arg) for arg in function_parsed.args] kwargs = [parse_expr(EP.Arg(), kwarg) for kwarg in function_parsed.kwargs] # recurse into any default arguments for arg in [args; kwargs] @match(arg.default) do f f(_) = nothing # in case of Symbol we can only change the parsed result in place, but not the original expression f(s::Symbol) = arg.default = refify_symbol(s, Refs) f(e::Expr) = refify!(e, Refs) end end # recurse into body with function arguments not being refified args_names = [arg.name for arg in args if arg.name != nothing] kwargs_names = [kwarg.name for kwarg in kwargs if kwarg.name != nothing] # CAUTION: we need to use Base.filter so that we can still overwrite filter in the module Refs::Vector{Symbol} = Base.filter(ref -> ref ∉ args_names && ref ∉ kwargs_names, Refs) refify!(function_parsed.body, Refs) # some parts might not have been replaced-inplace in the original expression # hence we have to replace the whole expression function_parsed.args = args function_parsed.kwargs = kwargs newexpr = to_expr(function_parsed) expr.head = newexpr.head expr.args = newexpr.args end # if no parser was successful, recurse into expr.args # core logic, capture each new Ref, substitute each old one # this has to be done on expr.args level, as Refs on the same level need to be available for replacement # Additionally, this has to be done on expr.args level because Symbols can only be replaced inplace on the surrounding Vector function refify!(expr::Expr, Refs::Vector{Symbol}, ::Const{<:Any}) # important to use Base.enumerate as plain enumerate would bring Base.enumerate into namespace, however we want to create an own const link for (i, a) in Base.enumerate(expr.args) Ref_assignment_parser = EP.Assignment( left = EP.anysymbol, right = EP.Call( name = :Ref, ), ) parsed = @TryCatch EP.ParseError parse_expr(Ref_assignment_parser, a) if issuccess(parsed) # create new Refs to properly handle subexpressions with Refs (so that no sideeffects occur) Refs = Symbol[Refs; parsed.value.left] else substituted = false for r in Refs if a == r expr.args[i] = :($r.x) substituted = true break end end if !substituted refify!(a, Refs) end end end end function refify_symbol(sym::Symbol, Refs::Vector{Symbol}) for r in Refs if sym == r return :($sym.x) end end # default to identity sym end """ @Ref begin a = Ref(2) a + 3 end is translated to begin a = Ref(2) a.x + 3 end So that you do not need to write `a.x` or 'a[]' all the way. The macro works correctly with subfunctions shadowing the variables. """ macro Ref(expr) refify!(expr) esc(expr) end # @cont # ===== macro assert_noerror(expr, msg) esc(quote try $expr catch error(msg) end end) end """ @cont begin cont(1) cont(2) end translates to Continuable(function(cont) cont(1) cont(2) end) Furthermore, also function syntax is especially supported @cont function(a, b) begin cont(a) cont(b) end is translated to function(a, b) Continuable(function(cont) cont(1) cont(2) end) end In summary, `@cont` wraps the return value into a Continuable. """ macro cont(expr) expr = macroexpand(__module__, expr) # get rid of maybe confusing macros esc(cont_expr(expr)) end function cont_expr(expr::Expr) if issuccess(@TryCatch EP.ParseError parse_expr(EP.Function(), expr)) cont_funcexpr(expr) else quote Continuables.Continuable(cont -> $expr) end end end function _extract_symbol(a) if isa(a, Symbol) a elseif isa(a.args[1], Symbol) # something like Type annotation a::Any or Defaultvalue b = 3 a.args[1] else # Type annotation with Defaultvalue a.args[1].args[1] end end function cont_funcexpr(expr::Expr) func_parsed = parse_expr(EP.Function(), expr) @assert Base.all(func_parsed.args) do s _extract_symbol(s) != :cont end "No function parameter can be called `cont` for @cont to apply." # return Continuable instead func_parsed.body = :(Continuables.Continuable(cont -> $(func_parsed.body))) # make Expr to_expr(func_parsed) end
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
1275
# We realise early stopping via exceptions struct StopException{T} <: Exception ret::T end Stop = StopException(nothing) stop() = throw(Stop) stop(ret) = throw(StopException(ret)) """ contextmanager handling custom breakpoints with `stop()` This is usually only used within creating a new continuable from a previous one # Examples ```julia @cont stop_at4(continuable) = stoppable(continuable) do x x == 4 && stop() cont(x) end ``` """ function stoppable(func, continuable, default_return = nothing) try continuable(func) default_return # default returnvalue to be able to handle `stop(returnvalue)` savely catch exc if !isa(exc, StopException) rethrow(exc) end exc.ret end end """ Continuables.@ifsomething expr If `expr` evaluates to `nothing`, equivalent to `return nothing`, otherwise the macro evaluates to the value of `expr`. Not exported, useful for implementing iterators. # Example ```jldoctest julia> using Continuables julia> Continuables.@ifsomething iterate(1:2) (1, 1) julia> let elt, state = Continuables.@ifsomething iterate(1:2, 2); println("not reached"); end ``` """ macro ifsomething(ex) quote result = $(esc(ex)) result === nothing && return nothing result end end
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
4410
using Continuables import BenchmarkTools.@benchmark @cont function crange(n::Int) for i in 1:n cont(i) end end function trange(n::Int) c = Channel{Int}(1) task = @async for i ∈ 1:n put!(c, i) end bind(c, task) end @Ref function sum_continuable(continuable) a = Ref(0) continuable() do i a += i end a end function sum_continuable_withoutref(continuable) a = 0 continuable() do i a += i end a end function sum_iterable(it) a = 0 for i in it a += i end a end function collect_continuable(continuable) a = [] continuable() do i push!(a, i) end a end function collect_iterable(it) a = [] for i in it push!(a, i) end a end @benchmark sum_continuable(crange(1000)) #= BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.185 ns (0.00% GC) median time: 1.580 ns (0.00% GC) mean time: 1.756 ns (0.00% GC) maximum time: 57.679 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 =# @benchmark sum_continuable(@i2c 1:1000) #= BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.185 ns (0.00% GC) median time: 1.580 ns (0.00% GC) mean time: 1.877 ns (0.00% GC) maximum time: 31.210 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 =# @benchmark sum_continuable_withoutref(crange(1000)) #= BenchmarkTools.Trial: memory estimate: 22.81 KiB allocs estimate: 1460 -------------- minimum time: 26.074 μs (0.00% GC) median time: 27.654 μs (0.00% GC) mean time: 39.603 μs (15.68% GC) maximum time: 42.758 ms (99.85% GC) -------------- samples: 10000 evals/sample: 1 =# @benchmark sum_continuable_withoutref(@i2c 1:1000) #= BenchmarkTools.Trial: memory estimate: 22.81 KiB allocs estimate: 1460 -------------- minimum time: 26.074 μs (0.00% GC) median time: 27.654 μs (0.00% GC) mean time: 39.910 μs (16.12% GC) maximum time: 46.847 ms (99.92% GC) -------------- samples: 10000 evals/sample: 1 =# @benchmark sum_iterable(trange(1000)) #= BenchmarkTools.Trial: memory estimate: 33.05 KiB allocs estimate: 2019 -------------- minimum time: 4.968 ms (0.00% GC) median time: 5.839 ms (0.00% GC) mean time: 6.089 ms (0.34% GC) maximum time: 23.466 ms (73.27% GC) -------------- samples: 821 evals/sample: 1 =# @benchmark sum_iterable(1:1000) #= BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.185 ns (0.00% GC) median time: 1.580 ns (0.00% GC) mean time: 1.742 ns (0.00% GC) maximum time: 56.494 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 =# @benchmark collect_continuable(crange(1000)) #= BenchmarkTools.Trial: memory estimate: 24.03 KiB allocs estimate: 499 -------------- minimum time: 11.456 μs (0.00% GC) median time: 12.247 μs (0.00% GC) mean time: 20.871 μs (30.69% GC) maximum time: 43.985 ms (99.97% GC) -------------- samples: 10000 evals/sample: 1 =# @benchmark collect_continuable(@i2c 1:1000) #= BenchmarkTools.Trial: memory estimate: 24.03 KiB allocs estimate: 499 -------------- minimum time: 11.456 μs (0.00% GC) median time: 12.247 μs (0.00% GC) mean time: 25.120 μs (26.38% GC) maximum time: 44.245 ms (99.96% GC) -------------- samples: 10000 evals/sample: 1 =# @benchmark collect_iterable(trange(1000)) #= BenchmarkTools.Trial: memory estimate: 57.08 KiB allocs estimate: 2518 -------------- minimum time: 4.968 ms (0.00% GC) median time: 5.715 ms (0.00% GC) mean time: 6.082 ms (1.31% GC) maximum time: 57.567 ms (89.97% GC) -------------- samples: 822 evals/sample: 1 =# @benchmark collect_iterable(1:1000) #= BenchmarkTools.Trial: memory estimate: 24.03 KiB allocs estimate: 499 -------------- minimum time: 11.456 μs (0.00% GC) median time: 12.642 μs (0.00% GC) mean time: 23.706 μs (27.20% GC) maximum time: 45.308 ms (99.97% GC) -------------- samples: 10000 evals/sample: 1 =#
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
5685
using Continuables using Test @testset "utils" begin include("utils.jl") end # check that @Ref is working correctly # ==================================== @testset "Ref" begin expr1_simple = @macroexpand @Ref begin a = Ref(1) f(a) = 2 * a a + f(a) end expr2_simple = quote a = Ref(1) f(a) = 2 * a a.x + f(a.x) end @test same_expr(expr1_simple, expr2_simple) # difficult case to parse: expr1_complex = @macroexpand @Ref begin a = Ref(Some(1)) b = Ref("hi") f(a::Int = b; c = b, d = 4) = 2 * a a.value + f(a.value) end expr2_complex = quote a = Ref(Some(1)) b = Ref("hi") f(a::Int = b.x; c = b.x, d = 4) = 2 * a a.x.value + f(a.x.value) end @test same_expr(expr1_complex, expr2_complex) end @testset "specializing functions for Continuable" begin mycont(x) = @cont cont(x) Base.length(::Continuable{<:innerfunctype(mycont(:examplesignature))}) = :justatest @test length(mycont(1)) == :justatest @test length(mycont("a")) == :justatest # other continuables are not affected anothercont(x) = @cont cont(x) @test length(anothercont(42)) == 1 end @testset "constructing Continuables" begin cont1 = @cont cont(1) @test collect(cont1) == [1] @test collect(singleton(3)) == [3] @test collect(take(repeated(() -> 4), 3)) == [4, 4, 4] @test collect(repeated(() -> 4, 3)) == [4, 4, 4] @test collect(take(3, iterated(x -> x*x, 2))) == [2, 4, 16] end @testset "DropWhile TakeWhile iterables" begin @test length(dropwhile(x -> x<4, 1:10)) == 7 @test Base.IteratorSize(typeof(dropwhile(x -> x<4, 1:10))) == Base.SizeUnknown() @test eltype(dropwhile(x -> x<4, 1:10)) == Int @test Base.IteratorEltype(typeof(dropwhile(x -> x<4, 1:10))) == Base.HasEltype() @test length(takewhile(x -> x<4, 1:10)) == 3 @test Base.IteratorSize(typeof(takewhile(x -> x<4, 1:10))) == Base.SizeUnknown() @test eltype(takewhile(x -> x<4, 1:10)) == Int @test Base.IteratorEltype(typeof(takewhile(x -> x<4, 1:10))) == Base.HasEltype() end # Check Continuables standard Interface # ===================================== @testset "standard interface" begin @test_throws ErrorException cont(1) @test collect(@i2c 2:4:10) == collect(2:4:10) @test collect(i2c(2:4:10), length(2:4:10)) == collect(2:4:10) @test collect(enumerate(@i2c 2:4:10)) == collect(enumerate(2:4:10)) @test collect(filter(x -> x < 7, @i2c 2:4:10)) == collect(filter(x -> x < 7, 2:4:10)) @test collect(map(x->x^2, @i2c 2:4:10)) == collect(map(x->x^2, 2:4:10)) @test collect(take(cycle(@i2c 1:3), 11)) == collect(take(cycle(1:3), 11)) @test collect(take(cycle(@i2c 1:3), 11)) == collect(take(cycle(1:3), 11)) @test collect(cycle(i2c(1:3), 3)) == [1,2,3, 1,2,3, 1,2,3] @test collect(drop(i2c(1:10), 3)) == collect(drop(1:10, 3)) @test collect(drop(3, i2c(1:10))) == collect(drop(1:10, 3)) @test nth(i2c(0:10), 8) == (0:10)[8] @test_throws ErrorException nth(12, i2c(0:10)) @test Base.IteratorSize(@i2c 1:4) == Base.SizeUnknown() @test length(@i2c 3:20) == 18 @test Base.IteratorEltype(emptycontinuable) == Base.EltypeUnknown() @test Base.eltype(@i2c 1:4) == Any test_continuable_product = @i2c 1:10 @test product(test_continuable_product) === test_continuable_product # should be a no-op @test collect(product(i2c(1:10), i2c(1:3))) == [(i,j) for i in 1:10 for j in 1:3] @test collect(product(i2c(1:10), i2c(1:3), i2c(2:4))) == [(i,j,k) for i in 1:10 for j in 1:3 for k in 2:4] # however they both are not easily comparable... because transpose does not work on arrays of tuples right now... @test collect(partition(i2c(1:15), 4)) == collect(partition(1:15, 4)) @test collect(partition(i2c(1:20), 3, 5)) == [ Any[1, 2, 3], Any[6, 7, 8], Any[11, 12, 13], Any[16, 17, 18], ] @test collect(partition(i2c(1:10), 5, 2)) == Any[ Any[1, 2, 3, 4, 5], Any[3, 4, 5, 6, 7], Any[5, 6, 7, 8, 9], ] @test collect(zip(i2c(1:10), i2c(4:13))) == collect(zip(1:10, 4:13)) @test collect(zip(i2c(1:10), i2c(4:13), lazy = false)) == collect(zip(1:10, 4:13)) @test any(x -> x == 4, @i2c 1:10) == any(x -> x == 4, 1:10) @test any(x -> x == 4, i2c(1:10), lazy=false) == any(x -> x == 4, 1:10) @test any(x -> x == 4, i2c(1:3)) == any(x -> x == 4, 1:3) @test any(x -> x == 4, i2c(1:3), lazy=false) == any(x -> x == 4, 1:3) @test all(x -> x <= 4, i2c(1:10)) == all(x -> x <= 4, 1:10) @test all(x -> x <= 4, i2c(1:10), lazy=false) == all(x -> x <= 4, 1:10) @test all(x -> x <= 4, i2c(1:3)) == all(x -> x <= 4, 1:3) @test all(x -> x <= 4, i2c(1:3), lazy=false) == all(x -> x <= 4, 1:3) @test reduce((acc, x) -> acc + x*x, @i2c 1:10) == reduce((acc, x) -> acc + x*x, 1:10) @test foldl((acc, x) -> acc + x*x, @i2c 1:10) == foldl((acc, x) -> acc + x*x, 1:10) @test reduce((acc, x) -> acc + x*x, i2c(1:10), init = 100) == reduce((acc, x) -> acc + x*x, 1:10, init = 100) @test reduce!(push!, i2c(1:10), init = []) == collect(1:10) @test sum(@i2c 1:10) == sum(1:10) @test prod(@i2c 1:10) == prod(1:10) @test collect(chain(@i2c(1:10), @i2c(3:5))) == collect(chain(1:10, 3:5)) contcont = @cont begin for i in 1:10 cont(@i2c i:10) end end @test collect(flatten(contcont)) == collect(flatten(i:10 for i in 1:10)) @test collect(takewhile(x -> x <= 4, @i2c 1:10)) == collect(takewhile(x -> x <= 4, 1:10)) @test collect(dropwhile(x -> x <= 4, @i2c 1:10)) == collect(dropwhile(x -> x <= 4, 1:10)) @test groupby(x -> x % 4, @i2c 1:10) == groupby(x -> x % 4, 1:10) @test groupbyreduce(x -> x % 4, @i2c(1:10), (x, y) -> x + y, x -> x+5) == groupbyreduce(x -> x % 4, 1:10, (x, y) -> x + y, x -> x+5) end
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
code
1277
# zip of uneven iterators is still not supported in julia... super weird # see https://discourse.julialang.org/t/collecting-zip/20739 # and https://github.com/JuliaLang/julia/issues/17928 function Base.collect(itr::Base.Iterators.Zip) itrsize = Base.IteratorSize(itr) itrsize isa Base.HasShape && (itrsize = Base.HasLength()) Base._collect(1:1, itr, Base.IteratorEltype(itr), itrsize) end """ only continue if true, else return false immediately """ macro iftrue(expr) quote $(esc(expr)) || return false end end same_expr(e1, e2) = e1 == e2 function same_expr(e1::Expr, e2::Expr) # don't differentiate between `f(a) = a` and `function f(a); a; end` e1.head == :function && (e1.head = :(=)) e2.head == :function && (e2.head = :(=)) @iftrue e1.head == e2.head args1 = filter(x -> !isa(x, LineNumberNode), e1.args) args2 = filter(x -> !isa(x, LineNumberNode), e2.args) @iftrue length(args1) == length(args2) # recurse all(zip(args1, args2)) do (a, b) same_expr(a, b) end end @test same_expr(:a, :a) @test same_expr(:(a = 4), :(a = 4)) @test same_expr(quote f(a) = a end, quote function f(a) a end end) @test !same_expr(:a, :b) @test !same_expr(:(a = 4), :(a = 5)) @test !same_expr(quote f(a) = a end, quote f(b) = b end)
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
docs
1299
# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [Unreleased] ## [1.0.3] - 2023-07-01 ### Changed - generalized dependencies compat entries - removed Compat dependency ## [1.0.2] - 2022-07-19 ### Changed - Compat compat now includes version 4 - BenchmarkTools are now in Test dependencies ## [1.0.1] - 2021-07-15 ### Changed - updated Compat section ## [1.0.0] - 2020-07-29 ### Added - GithubActions for CICD - Documentation using Documenter.jl - License - Codecoverage - extensive doc strings ### Added - introduced abstract type `AbstractContinuable` to enable other Continuable types with more specialized information about (e.g. you may know `Iterators.HasEltype` or `Iterators.IteratorSize`) ### Changed - License is now MIT ## [0.3.1] - 2020-02-04 ### Changed - switched deprecated dependency AstParsers.jl to renamed ExprParsers.jl ## [0.2.1] - 2020-01-11 ### Changed - more stable macros by switching to use AstParsers.jl - Continuables is now a wrapper type - we now reuse functions from Base and Iterators instead of defining our own ## [0.1.0] - 2018-10-07 initial sketch
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
docs
2566
# Continuables [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jolin-io.github.io/Continuables.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jolin-io.github.io/Continuables.jl/dev) [![Build Status](https://github.com/jolin-io/Continuables.jl/workflows/CI/badge.svg)](https://github.com/jolin-io/Continuables.jl/actions) [![Coverage](https://codecov.io/gh/jolin-io/Continuables.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/jolin-io/Continuables.jl) TLDR: Python / C# `yield` with performance matching plain Julia iterators (i.e. unbelievably fast) Continuables are generator-like higher-order functions which take a continuation as an extra argument. The key macro provided by the package is `@cont` which will give access to the special function `cont` within its scope and wraps the computation in a special Type `Continuables.Continuable`. It is best to think of `cont` in the sense of `yield` from Python's Generators. It generates values and takes feedback from the outer process as return value. If you come from Python, use Continuables wherever you would use generators. If you are Julia-native, Continuables can be used instead of Julia's Channels in many place with drastic performance-improvements (really drastic: in the little benchmark example below it is 20 million times faster!). This package implements all standard functions like e.g. `collect`, `reduce`, `any` and others. As well as functionalities known from `Base.Iterators` and [`IterTools.jl`](https://github.com/JuliaCollections/IterTools.jl) like `take`, `dropwhile`, `groupby`, `partition`, `nth` and others. For convenience, all methods also work for plain iterables. ## Installation Install like ```julia using Pkg pkg"add Continuables" ``` Use it like ```julia using Continuables ``` For further information take a look at the [documentation](https://jolin-io.github.io/Continuables.jl/dev). ## Example: flexible alternative to `walkdir` Sometimes you recursively want to read files, skipping certain directories and doing other individual adaptations. Using `Continuables` you get full flexibility with very well readable code and good performance: ```julia list_all_juliafiles(path=abspath(".")) = @cont begin if isfile(path) endswith(path, ".jl") && cont(path) elseif isdir(path) basename(path) in (".git",) && return for file in readdir(path) foreach(cont, list_all_juliafiles(joinpath(path, file))) end end end collect(list_all_juliafiles()) ```
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
docs
5315
# Benchmark We compare Continuables with standard Julia Channel and iterators for performance an a simple implementation of `sum`. The equivalent Channel function to the above `corange` function is: ```julia # standard Channel ----------------------------------------------------- function chrange(r) Channel{Int}(1) do ch for i ∈ 1:r put!(ch, i) end end end ``` The sum benchmark functions are defined as follows ```julia using Continuables # Summing continuable -------------------------------------- # we use a convenient macro which replaces all uses of r where r was defined as r = Ref(value) with r.x, i.e. the pointer to its referenced value. # The effect is that the variable assignment becomes a mutation of the Reference's field. # This macro leads to very clean code while being intuitively transparent. @Ref function sum_continuable(continuable) a = Ref(0) continuable() do i a += i end a end function sum_continuable_withoutref(continuable) # interestingly, this works too, however with a lot of magic happening in the background # which is also decreasing performance a = 0 continuable() do i a += i end a end # Summing Task ---------------------------------------------- function sum_iterable(it) a = 0 for i in it a += i end a end ``` You may need to add BenchmarkTools to your julia project by running `] add BenchmarkTools`. All below are tested on the same machine, results may vary for your architecture. We start with the base-line, i.e. summing up the pure range iterator: ```julia julia> import BenchmarkTools.@benchmark julia> @benchmark sum_iterable(1:1000) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.420 ns (0.00% GC) median time: 1.706 ns (0.00% GC) mean time: 1.663 ns (0.00% GC) maximum time: 16.456 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 ``` We reach the same performance with our self-written continuable version of range. However, as you can see below, if you do not use References everywhere (like Ref or arrays or dictionaries) then performance decreases. ```julia julia> @benchmark sum_continuable(corange(1000)) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.420 ns (0.00% GC) median time: 1.708 ns (0.00% GC) mean time: 1.671 ns (0.00% GC) maximum time: 16.778 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 julia> @benchmark sum_continuable_withoutref(corange(1000)) BenchmarkTools.Trial: memory estimate: 22.81 KiB allocs estimate: 1460 -------------- minimum time: 22.658 μs (0.00% GC) median time: 24.315 μs (0.00% GC) mean time: 28.105 μs (2.64% GC) maximum time: 1.925 ms (97.74% GC) -------------- samples: 10000 evals/sample: 1 ``` Last but not least the Channel version of range. ```julia julia> @benchmark sum_iterable(chrange(1000)) BenchmarkTools.Trial: memory estimate: 32.95 KiB allocs estimate: 2026 -------------- minimum time: 28.208 ms (0.00% GC) median time: 34.169 ms (0.00% GC) mean time: 33.836 ms (0.00% GC) maximum time: 38.737 ms (0.00% GC) -------------- samples: 148 evals/sample: 1 ``` Mind that 1μs = 1000ns and 1ms = 1000μs. So on median we have | range | median | x-times of range | |----------------------------------|------------|------------------| | 1:1000 | 1.706ns | 1 | | corange(1000) summed with Ref | 1.708ns | 1 | | corange(1000) summed without Ref | 24315ns | 1.4e4 | | chrange(1000) | 34169000ns | 2e7 | Also note that the continuable version with Ref has 0 bytes memory footprint! ## Related packages There is a package called [ResumableFunctions.jl](https://github.com/BenLauwens/ResumableFunctions.jl) with the same motivation but completely different implementation. ```julia using ResumableFunctions @resumable function rfrange(n::Int) for i in 1:n @yield i end end # apparently the @resumable macro relies of having Base.iterate directly available on the namespace, but Continuables also exports one, so that we have to explicitly declare which we want to use to repair this little @resumable bug const iterate = Base.iterate @benchmark sum_iterable(rfrange(1000)) ``` The resulting time are as follows on my machine: ```julia BenchmarkTools.Trial: memory estimate: 93.84 KiB allocs estimate: 3001 -------------- minimum time: 453.640 μs (0.00% GC) median time: 475.210 μs (0.00% GC) mean time: 505.774 μs (1.18% GC) maximum time: 4.360 ms (85.91% GC) -------------- samples: 9869 evals/sample: 1 ``` I.e. you see it is an impressive factor of `2.8e5` slower on median compared to the plain range or the Continuables version. It is still a factor 100 faster than the current Channels version, but the Channel one is exceptionally slow (probably because of thread-safety). And in terms of memory allocation, `@resumable` is even the worst of all for this very simple computation.
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
docs
1480
# Continuables.jl TLDR: Python / C# `yield` with performance matching plain Julia iterators (i.e. unbelievably fast) Continuables are generator-like higher-order functions which take a continuation as an extra argument. The key macro provided by the package is `@cont` which will give access to the special function `cont` within its scope and wraps the computation in a special Type `Continuables.Continuable`. It is best to think of `cont` in the sense of `yield` from Python's Generators. It generates values and takes feedback from the outer process as return value. If you come from Python, use Continuables wherever you would use generators. If you are Julia-native, Continuables can be used instead of Julia's Channels in many place with drastic performance-improvements (really drastic: in the little benchmark example below it is 20 million times faster!). This package implements all standard functions like e.g. `collect`, `reduce`, `any` and others. As well as functionalities known from `Base.Iterators` and [`IterTools.jl`](https://github.com/JuliaCollections/IterTools.jl) like `take`, `dropwhile`, `groupby`, `partition`, `nth` and others. For convenience, all methods also work for plain iterables. ## Installation Install like ```julia using Pkg pkg"add Continuables" ``` Use it like ```julia using Continuables ``` ## Manual Outline ```@contents Pages = ["manual.md"] ``` ## [Library Index](@id main-index) ```@contents Pages = ["library.md"] ```
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
docs
470
```@meta CurrentModule = Continuables ``` # Public API ```@index ``` ## Core ```@docs Continuable @cont @Ref innerfunctype AbstractContinuable ``` ## Conversions ```@docs aschannel ascontinuable i2c @i2c ``` ## Factories ```@docs emptycontinuable singleton repeated iterated ``` ## Common Helpers ```@docs collect reduce reduce! zip product chain flatten cycle foreach map all any sum prod take takewhile drop dropwhile partition groupbyreduce groupby nth ```
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "MIT" ]
1.0.3
96107b5ecb77d0397395cec4a95a28873e124204
docs
5679
# Manual TLDR: Python / C# `yield` with performance matching plain Julia iterators (i.e. unbelievably fast) Continuables are generator-like higher-order functions which take a continuation as an extra argument. The key macro provided by the package is `@cont` which will give access to the special function `cont` within its scope and wraps the computation in a special Type `Continuables.Continuable`. It is best to think of `cont` in the sense of `yield` from Python's Generators. It generates values and takes feedback from the outer process as return value. If you come from Python, use Continuables wherever you would use generators. If you are Julia-native, Continuables can be used instead of Julia's Channels in many place with drastic performance-improvements (really drastic: in the little benchmark example below it is 20 million times faster!). This package implements all standard functions like e.g. `collect`, `reduce`, `any` and others. As well as functionalities known from `Base.Iterators` and [`IterTools.jl`](https://github.com/JuliaCollections/IterTools.jl) like `take`, `dropwhile`, `groupby`, `partition`, `nth` and others. For convenience, all methods also work for plain iterables. ## Example of a Continuable Let's define our fist continuable by wrapping a simple range iterator `1:n`. ```julia using Continuables # new Continuable --------------------------------------------- corange(n::Integer) = @cont begin for i in 1:n cont(i) end end ``` That's it. Very straight forward and intuitive. Many standard functions work seamlessly for Continuables. ```julia using Continuables collect(corange(10)) == collect(1:10) co2 = map(corange(5)) do x 2x end collect(co2) == [2,4,6,8,10] foreach(println, corange(3)) # 1, 2, 3 foreach(chain(corange(2), corange(4))) do x print("$x, ") end # 1, 2, 1, 2, 3, 4, reduce(*, corange(4)) == 24 all(x -> x < 5, corange(3)) any(x -> x == 2, corange(3)) map(corange(10)) do x corange(x) end |> flatten |> co -> take(co, 5) |> collect == Any[1,1,2,1,2] collect(product(corange(2), corange(3))) == Any[ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), ] collect(partition(corange(11), 4)) == [ Any[1,2,3,4], Any[5,6,7,8], Any[9,10,11], ] using OrderedCollections groupbyreduce(isodd, corange(5), +) == OrderedDict{Any, Any}( true => 9, false => 6, ) nth(3, ascontinuable(4:10)) == 6 nth(4, i2c(4:10)) == 7 nth(5, @i2c 4:10) == 8 # further defined are `takewhile`, `drop`, `dropwhile`, `repeated` and `iterate`, as well as `groupby`. ``` Importantly, Continuables do not support `Base.iterate`, i.e. you cannot directly for-loop over a Continuable. There is just no direct way to implement `iterate` on top of Continuables. Give it a try. Instead, you have to convert it into an Array first using `collect`, or to a Channel using `aschannel`. The same holds true for `zip`, however we provide a convenience implementation where you can choose which interpretation you want to have ```julia # uses Channels and hence offers lazy execution, however might be slower zip(i2c(1:4), i2c(3:6), lazy=true) # Default # uses Array, might be faster, but loads everything into memory zip(i2c(1:4), i2c(3:6), lazy=false) ``` Last but not least, you can call a Continuable directly. It is just a higher order function expecting a `cont` function to run its computation. ```julia continuable = corange(3) foreach(print, continuable) # 123 # is the very same as continuable(print) # 123 ``` ## The `@Ref` macro As you already saw, for continuables we cannot use for-loops. Instead we use higher-order functions like `map`, `foreach`, `reduce` or `groupbyreduce` to work with Continuables. Fortunately, julia supports beautiful `do` syntax for higher-order functions. In fact, `do` becomes the equivalent of `for` for continuables. However, importantly, a `do`-block constructs an anonymous function and consequently what happens within the do-block has its own variable namespace! This is essential if you want to define your own Continuables. You cannot easily change an outer variable from within a do-block like you may have done it within a for-loop. The solution is to simply use julia's `Ref` object to get mutations instead of simple variable assignments. For example instead of `var_changing_every_loop = 0`, and an update `var_changing_every_loop += 1` you use `var_changing_every_loop = Ref(yourvalue)` and `var_changing_every_loop.x += 1`. (If you would use something mutable instead like an Vector instead of the non-mutable Int here, you of course can directly work in place. I.e. say `a = []`, then `push!(a, i)` will do the right thing also in a do-block). For convenience, Continuables comes with a second macro `@Ref` which checks your code for `variable = Ref(value)` parts and replaces all plain assignments `var = newvalue` with `var.x = newvalue`. This makes for beautiful code. Let's implement reduce with it: ```julia using Continuables @Ref function myreduce(continuable, merge, init) accumulator = Ref(init) continuable() do x accumulator = merge(accumulator, x) end accumulator end myreduce(i2c(0:5), +, 0) == 15 ``` Let's check that `@Ref` indeed only replaced `accumulator` with `accumulator.x`. Run `@macroexpand` on the whole definition, i.e. `@macroexpand @Ref function myreduce(....`, which returns ```julia :(function myreduce(continuable, merge, init) accumulator = Ref(init) continuable() do x accumulator.x = merge(accumulator.x, x) end accumulator.x end) ``` When combining `@cont` with `@Ref` do `@cont @Ref ...`, i.e. let `@cont` be the outer and `@Ref` be the inner macro.
Continuables
https://github.com/jolin-io/Continuables.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
1782
""" Set of recipes to compute opacities. """ module Transparency export σ_hminus_ff, σ_hminus_bf, α_hminus_ff, α_hminus_bf export σ_hydrogenic_ff, σ_hydrogenic_bf, α_hydrogenic_ff, α_hydrogenic_bf export σ_hydrogenic_bf_scaled export σ_h2minus_ff, σ_h2plus_ff, σ_h2plus_bf, α_h2minus_ff, α_h2plus_ff, α_h2plus_bf export σ_rayleigh_h2, σ_rayleigh_h, σ_thomson, α_rayleigh_h2, α_rayleigh_h, α_thomson export humlicek, voigt_profile, dispersion_profile export calc_Aul, calc_Bul, damping, doppler_width export const_unsold, γ_unsold, γ_stark_linear export const_barklem, γ_barklem export const_deridder_rensbergen, γ_deridder_rensbergen export const_stark_quadratic, γ_stark_quadratic, γ_stark_quadratic_gray export blackbody_λ, blackbody_ν export coll_CE, coll_CI, coll_Ω export coll_deexc_hydrogen_PB04, coll_exc_hydrogen_johnson, coll_ion_hydrogen_johnson export CE_RH_hydrogen, CI_RH_hydrogen using Interpolations using StaticArrays using Unitful import PhysicalConstants.CODATA2018: h, k_B, R_∞, c_0, m_e, m_u, e, ε_0, a_0 import SpecialFunctions: expint, gamma @derived_dimension NumberDensity Unitful.𝐋^-3 @derived_dimension PerLength Unitful.𝐋^-1 @derived_dimension UnitsIntensity_λ Unitful.𝐋^-1 * Unitful.𝐌 * Unitful.𝐓^-3 const Ar_H = 1.007975 # Atomic weight of hydrogen const Ry = R_∞ * c_0 * h # Rydberg energy const Ryh = Ry / (1 + m_e / (Ar_H * m_u)) # Hydrogen ionisation energy const αp = 4.5 * 4*π * ε_0 * a_0^3 # Polarisability of hydrogen [F m^2] const inv_4πε0 = 1. / (4 * π * ε_0) include("line.jl") include("broadening.jl") include("collisions.jl") include("hydrogen.jl") include("thomson.jl") include("voigt.jl") end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
14259
""" Functions to calculate different line broadenings. """ # For now const mass_H = 1.008 * m_u const mass_He = 4.003 * m_u const abund_He = 10^10.99 / 10^12 # From RH #=---------------------------------------------------------------------------- Linear Stark broadening: C_2 / r^2 ----------------------------------------------------------------------------=# """ γ_stark_linear( electron_density::NumberDensity{T}, n_upper::Integer, n_lower::Integer ) where T <: AbstractFloat Calculate linear Stark broadening according to the approximation of [Sutton (1978)](https://ui.adsabs.harvard.edu/abs/1978JQSRT..20..333S/), eq (24), so that it can be added into a Voigt profile and avoid the computation of a Holtsmark profile. Valid up to electron densities of 1e19 m^-3 in the chromosphere. # Arguments - `electron_density`: electron density per volume - `n_upper`: principal quantum number of upper level - `n_lower`: principal quantum number of lower level # Returns - `γ::Unitful.Frequency`: broadening in units of rad / s. """ function γ_stark_linear( electron_density::NumberDensity{T}, n_upper::Integer, n_lower::Integer ) where T <: AbstractFloat @assert n_upper > n_lower @assert n_upper > 1 if n_upper - n_lower == 1 a1 = convert(T, 0.642) else a1 = convert(T, 1) end γβ = convert(T, 0.425) power = convert(T, 2/3) zcoeff = convert(T, 6e-5)u"s^-1" # should be m^2/s, dropping m^2 to allow ne=ustrip(ne) ne = ustrip(electron_density |> u"m^-3") # Conversion factors: 2 from half half-width to half-width, 2π from 1 / s to rad / s return 2 * 2 * π * u"rad" * γβ * a1 * zcoeff * (n_upper^2 - n_lower^2) * ne^power end #=---------------------------------------------------------------------------- Quadratic Stark broadening: C_4 / r^4 ----------------------------------------------------------------------------=# """ c4_traving(χup, χlo, χ∞, Z) Calculate the \$C_4\$ interaction constant (quadratic Stark effect) using the recipe of Traving (1960), "Uber die Theorie der Druckverbreiterung von Spektrallinien", p 93. # Arguments - χup, χlo, χ∞: energies of upper, lower, and ionisation - Z: effective nuclear charge of the ionised level """ function c4_traving(χup, χlo, χ∞, Z) n_eff_u = n_eff(χ∞, χup, Z) n_eff_l = n_eff(χ∞, χlo, Z) C4 = (e^2 * inv_4πε0 * a_0^3 * 2 * π / (h * 18 * Z^4) * ((n_eff_u * (5 * n_eff_u^2 + 1))^2 - (n_eff_l * (5 * n_eff_l^2 + 1))^2)) return C4 |> u"m^4 / s" end """ const_stark_quadratic(atomic_mass::Unitful.Mass, χup::Unitful.Energy, χlo::Unitful.Energy, χ∞::Unitful.Energy, Z::Real; mean_atomic_weight::Unitful.Mass=28 * m_u, scaling::Real=1) Calculate height-independent constant to use in `γ_stark_quadratic`, using the recipe from RH, which is based on the following estimate: \$\$ \\gamma = 11.37 \\cdot vrel^{1/3} * C_4^{2/3} * (n_e + n_{ion}), \$\$ Using the estimate for \$C_4\$ from Traving (1960), "Uber die Theorie der Druckverbreiterung von Spektrallinien", p 93., and \$n_{ion}\\approx n_e\$ (following Gray). """ function const_stark_quadratic(atomic_mass::Unitful.Mass, χup::Unitful.Energy, χlo::Unitful.Energy, χ∞::Unitful.Energy, Z::Real; mean_atomic_weight::Unitful.Mass=28 * m_u, scaling::Real=1) C = ustrip(8 * k_B / (π * atomic_mass) |> u"J/(K * kg)") Cm = ((1 + atomic_mass / m_e)^(1/6) + (1 + atomic_mass / mean_atomic_weight)^(1/6)) C4 = ustrip(c4_traving(χup, χlo, χ∞, Z) |> u"m^4 / s") cStark23 = 11.37u"m^3 * rad / s" * (scaling * C4)^(2/3) return C^(1/6) * cStark23 * Cm end """ γ_stark_quadratic( electron_density::NumberDensity, temperature::Unitful.Temperature; stark_constant::Unitful.VolumeFlow=1.0u"m^3 / s", ) Compute quadratic Stark broadening for a given `electron_density`. If `temperature` is nonzero, then it will apply the standard recipe of RH (using \$C_4\$ from Traving 1960). The `stark_constant` can be obtained either from atomic data sources, or, if using the RH recipe, using the function `const_stark_quadratic`. """ function γ_stark_quadratic( electron_density::NumberDensity, temperature::Unitful.Temperature; stark_constant::Unitful.VolumeFlow=1.0u"m^3 * rad / s", ) if temperature > 0u"K" t_factor = ustrip(temperature |> u"K")^(1/6) else t_factor = 1.0 end return stark_constant * t_factor * electron_density end """ γ_stark_quadratic_gray( electron_density::NumberDensity, temperature::Unitful.Temperature, c4::Quantity{<:AbstractFloat, Unitful.𝐋^4 / Unitful.𝐓}, ) Compute quadratic Stark broadening using the recipe of Gray (2005), page 244, eq 11.27. The interaction constant `c4` should be provided, either from atomic data or from the estimate of Traving (1960) using `c4_traving`. """ function γ_stark_quadratic_gray( electron_density::NumberDensity, temperature::Unitful.Temperature, c4::Quantity{<:AbstractFloat, Unitful.𝐋^4 / Unitful.𝐓}, ) # Formula assumes CGS ne_term = ustrip(electron_density * k_B |> u"erg / (K * cm^3)") c4_term = ustrip(c4 |> u"cm^4 / s") t_term = ustrip(temperature |> u"K") log10γ = 19 + (2/3) * log10(c4_term) + log10(ne_term) + (1/6) * log10(t_term) return (10^log10γ) * u"rad / s" end #=---------------------------------------------------------------------------- van der Waals broadening, C_6 / r^6 ----------------------------------------------------------------------------=# """ function const_unsold(atom_mass::Unitful.Mass, χup::Unitful.Energy, χlo::Unitful.Energy, χ∞::Unitful.Energy, Z::Real; H_scaling=1, He_scaling=1) Compute atmosphere-independent constant for γ_unsold, to be used in function `γ_unsold`. Based on expressions from RH broad.c, which uses formula in Mihalas (1978), pp 282, 286-287, eq. (9-50) for v_rel, table 9-1 and eq. (9-76) for the interaction coefficient C6. Arguments are line parameters, where Z is the nuclear charge of the upper level plus one (e.g. 1 for neutral, 2 for singly ionised). The van der Waals broadening can be scaled for both H and He perturbers using `H_scaling` and `He_scaling`. """ function const_unsold(atomic_mass::Unitful.Mass, χup::Unitful.Energy, χlo::Unitful.Energy, χ∞::Unitful.Energy, Z::Real; H_scaling=1, He_scaling=1) Δr = (Ry^2 * (1 / (χ∞ - χup)^2 - 1 / (χ∞ - χlo)^2)) |> u"J/J" C6 = ustrip((2.5 * e^2 * αp * inv_4πε0^2 * 2 * π * (Z * a_0)^2 / h * Δr) |> u"C^2 * m^6 / (F * J * s)") v_rel_const = ustrip(8 * k_B / (π * atomic_mass) |> u"J/(K * kg)") v_rel_H = v_rel_const * (1 + atomic_mass / mass_H) v_rel_He = v_rel_const * (1 + atomic_mass / mass_He) return 8.08 * (H_scaling * v_rel_H^0.3 + He_scaling * abund_He * v_rel_He^0.3) * C6^0.4 end """ function γ_unsold(unsold_const::AbstractFloat, temperature::Unitful.Temperature, h_neutral_density::NumberDensity) Compute van der Waals broadening in Lindholm theory using Unsöld's approximation for the interaction coefficient \$C_6\$. Based on Mihalas (1978), pp 282, 286-287. Takes the atmosphere-indepenent `unsold_const` from `γ_unsold_const`, temperature, and populations of neutral hydrogen, and returns broadening in units of rad * s^-1. """ function γ_unsold( unsold_const::AbstractFloat, temperature::Unitful.Temperature, h_neutral_density::NumberDensity ) return (unsold_const * ustrip(temperature |> u"K")^0.3 * ustrip(h_neutral_density |> u"m^-3") * u"rad / s") end """ function const_barklem(atomic_weight::Unitful.Mass, α::Real, σ::Real) Compute the atmosphere-independent constant used to calculate broadening from collisions with neutral hydrogen using the recipes of Barklem/O'Mara/Anstee, in the function `γ_barklem`. The calculation performed here follows eq (3) of [Anstee & O'Mara (1995)](https://ui.adsabs.harvard.edu/abs/1995MNRAS.276..859A). # Arguments - `atomic_weight::Unitful.Mass`: atomic weight of element - `α::Real`: velocity exponent from Barklem/O'Mara/Anstee tables - `σ::Real`: line broadening cross section in atomic units (a_0^2) for a collision velocity of 10 km/s, from Barklem/O'Mara/Anstee tables. # Returns - `Unitful.VolumeFlow`: line broadening width per neutral hydrogen atom. Needs to be multiplied by temperature ^ ((1 - α)/2) to give proper temperature dependence. """ function const_barklem(atomic_mass::Unitful.Mass, α::Real, σ::Real) α < 0 && error("α must be non-negative") σ < 0 && error("σ must be non-negative") μ = m_u / (1 / Ar_H + 1 / (atomic_mass / m_u)) # Using 1 K to keep units right for later multiplication by correct temperature v_bar = sqrt(8 * k_B * u"K"/ (π * μ)) |> u"m/s" v_ratio = (1e4u"m/s" / v_bar) |> u"m/m" # Squared Bohr radius is to convert from atomic units to m^2, factor of 2 from HW to FW return (a_0^2 * 2 * (4 / π)^(α / 2) * gamma((4 - α) / 2) * v_bar * σ * v_ratio^α) |> u"m^3 * rad / s" end """ function γ_barklem( α::AbstractFloat, barklem_const::Unitful.VolumeFlow, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, ) Compute van der Waals broadening from collisions with neutral hydrogen atoms following the theory from Barklem/O'Mara/Anstee. # Arguments - `α::AbstractFloat`: velocity exponent from Barklem/O'Mara/Anstee tables - `barklem_const::Unitful.VolumeFlow`: atmosphere-independent constant computed from `const_barklem()`. - `temperature::Unitful.Temperature` - `h_neutral_density::NumberDensity`: number density of neutral hydrogen atoms # Returns - `γ::Unitful.Frequency`: broadening in units of rad / s. # Notes This computes broadening only from hydrogen atoms. For collisions with helium atoms, it is recommended to add van der Waals broadening using Unsöld's approximation (see example). # Examples Example for Ca II 854.2 nm line: ``` julia> Ca8542 = AtomicLine(25414.400u"cm^-1", 13710.880u"cm^-1", 95785.470u"cm^-1", 4, 6, 7.242e-02, 40.08 * m_u, 20); julia> temp = 6000u"K"; julia> h_density = 1e23u"m^-3"; julia> bconst = const_barklem(Ca8542.atom_weight, 0.275, 291) 7.495208174533257e-16 m³ rad s⁻¹ julia> γ = γ_barklem(0.275, bconst, temp, h_density) 1.3596876505340942e11 rad s⁻¹ ``` Now adding van der Waals broadening for helium as well: ``` julia> uconst = const_unsold(Ca8542; H_scaling=0, He_scaling=1) 2.482484115415461e-16 julia> γ = γ_barklem(0.275, bconst, temp, h_density) + γ_unsold(uconst, temp, h_density) 1.3630631018876224e11 rad s⁻¹ ``` # References - [Anstee & O'Mara (1995)](https://ui.adsabs.harvard.edu/abs/1995MNRAS.276..859A) - [Barklem & O'Omara (1997)](https://ui.adsabs.harvard.edu/abs/1997MNRAS.290..102B) - [Barklem, O'Mara & Ross (1998)](https://ui.adsabs.harvard.edu/abs/1998MNRAS.296.1057B) - [Barklem & O'Mara (1998)](https://ui.adsabs.harvard.edu/abs/1998MNRAS.300..863B) """ function γ_barklem( α::AbstractFloat, barklem_const::Unitful.VolumeFlow, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, ) return barklem_const * ustrip(temperature |> u"K")^((1 - α)/2) * h_neutral_density end """ function const_deridder_rensbergen( atomic_mass_pert::Unitful.Mass, atomic_mass_rad::Unitful.Mass α::Real, β::Real ) Compute the atmosphere-independent constant used to calculate broadening using the recipes of [Deridder & Rensbergen (1976)](https://ui.adsabs.harvard.edu/abs/1976A%26AS...23..147D), in the function `γ_deridder_rensbergen`. # Arguments - `atomic_weight_pert::Unitful.Mass`: atomic mass of perturbing element (hydrogen or helium) - `atomic_weight_rad::Unitful.Mass`: atomic mass of line-producing species - `α::Real`: α parameter as taken from the tables of Deridder & Rensbergen (1976), in units of 10^-8 cm^3/s (ignoring the dimensions of the temperature exponent) - `β::Real`: β parameter as taken from the tables of Deridder & Rensbergen (1976), dimensionless. # Returns - `Unitful.VolumeFlow`: line broadening width per perturber atom. Needs to be multiplied by temperature ^ β to give proper temperature dependence. """ function const_deridder_rensbergen( atomic_mass_pert::Unitful.Mass, atomic_mass_rad::Unitful.Mass, α::Real, β::Real, ) α < 0 && error("α must be non-negative") α = (α * 1e-8u"cm^3/s") |> u"m^3/s" # Convert from paper's 1e-8 units to SI mass_corr = (1 + atomic_mass_pert / atomic_mass_rad) ^ β return α * mass_corr end """ function γ_deridder_rensbergen( β::Real, deridder_const::Unitful.VolumeFlow, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, ) Compute van der Waals broadening from collisions with neutral hydrogen or helium atoms following [Deridder & Rensbergen (1976)](https://ui.adsabs.harvard.edu/abs/1976A%26AS...23..147D). # Arguments - `β::Real`: β parameter as taken from the tables of Deridder & Rensbergen (1976), dimensionless. - `deridder_const::Unitful.VolumeFlow`: atmosphere-independent constant computed from `const_deridder_rensbergen()`. - `temperature::Unitful.Temperature` - `perturber_density::NumberDensity`: number density of perturber atoms, either neutral hydrogen or helium. # Returns - `γ::Unitful.Frequency`: broadening in units of s^-1. """ function γ_deridder_rensbergen( β::Real, deridder_const::Unitful.VolumeFlow, temperature::Unitful.Temperature, perturber_density::NumberDensity, ) return deridder_const * ustrip(temperature |> u"K")^β * perturber_density end #=---------------------------------------------------------------------------- Utilities ----------------------------------------------------------------------------=# """ Compute damping parameter. """ function damping(γ::Unitful.Frequency, λ::Unitful.Length, ΔλD::Unitful.Length) return (γ * λ^2 / (4 * π * c_0 * ΔλD)) |> u"m/m" end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
14180
""" Functions to calculate atomic collisional rates. """ # Dimension for CE and CI collisional tables, in SI units m^3 K^-1/2 s-1 @derived_dimension CEI_dimension Unitful.𝐋^3 / (Unitful.𝚯^(1/2) * Unitful.𝐓) const Ω_c0 = Ry / sqrt(m_e) * π * a_0^2 * sqrt(8 / (π * k_B)) """ coll_CE( rate_interpolant::Interpolations.AbstractInterpolation{<:CEI_dimension, 1}, g_ratio::Real, electron_density::NumberDensity, temperature::Unitful.Temperature ) Calculate collisional de-excitation by electrons of a bound-bound transition, using the CE expression from RH / MULTI. # Arguments - `rate_interpolant`: a generic interpolant that takes as argument a value of temperature, and returns in units similar to m^3 K^-1/2 s^-1 - `g_ratio`: ratio g_l / g_u, statistical weights of lower and upper level - `electron_density`: electron density - `temperature`: gas temperature # Returns - `coll_deexc`: collisional de-excitations per second (from upper level to lower level) """ function coll_CE( rate_interpolant::Interpolations.AbstractInterpolation{<:CEI_dimension, 1}, g_ratio::Real, electron_density::NumberDensity, temperature::Unitful.Temperature ) return (rate_interpolant(temperature) * g_ratio * electron_density * sqrt(temperature)) |> u"s^-1" end """ coll_CI( rate_interpolant::Interpolations.AbstractInterpolation{<:CEI_dimension, 1}, dE::Unitful.Energy, electron_density::NumberDensity, temperature::Unitful.Temperature ) Calculate collisional ionisation by electrons of a given level, using the CI expression from RH / MULTI. # Arguments - `rate_interpolant`: a generic interpolant that takes as argument a value of temperature, and returns in units similar to m^3 K^-1/2 s^-1 - `dE`: energy difference between continuum and level, dE = E_cont - E_level. - `electron_density`: electron density - `temperature`: gas temperature # Returns - `coll_ion`: collisional ionisations per second (from level to continuum) """ function coll_CI( rate_interpolant::Interpolations.AbstractInterpolation{<:CEI_dimension, 1}, dE::Unitful.Energy, electron_density::NumberDensity, temperature::Unitful.Temperature ) @assert dE > 0u"J" "dE should be positive" return (rate_interpolant(temperature) * exp(-dE / (k_B * temperature)) * electron_density * sqrt(temperature)) |> u"s^-1" end """ coll_Ω( rate_interpolant::Interpolations.AbstractInterpolation{<:CEI_dimension, 1}, g_u::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature ) Calculate collisional de-excitation by electrons of a bound-bound transition, using the OMEGA expression from RH (OHMEGA from MULTI), from a tabulated dimensionless Ω (collision strength). # Arguments - `rate_interpolant`: a generic interpolant that takes as argument a value of temperature, and returns a dimensionless Ω - `g_u`: statistical weight of upper level - `electron_density`: electron density - `temperature`: gas temperature # Returns - `coll_deexc`: collisional de-excitations per second (from upper level to lower level) """ function coll_Ω( rate_interpolant::Interpolations.AbstractInterpolation{<:Real, 1}, g_u::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature ) return (rate_interpolant(temperature) * Ω_c0 * electron_density / (g_u * sqrt(temperature))) |> u"s^-1" end #=---------------------------------------------------------------------------- Collisional rates for hydrogen from Johnson (1972), based on make_h.c from RH ----------------------------------------------------------------------------=# const johnson_c0 = sqrt(8 * k_B / (π * m_e)) * 2 * π * a_0^2 const johnson_c1 = 32 / (3 * sqrt(3) * π) """ coll_exc_hydrogen_johnson( n_l::Integer, n_u::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature, ) Calculates the rates for collisional excitation for a hydrogen line, resulting from collisions with electrons, using the recipe of [Johnson (1972)](https://ui.adsabs.harvard.edu/abs/1972ApJ...174..227J/abstract) # Arguments - `n_l`: lower level (principal quantum number) of transition - `n_u`: upper level (principal quantum number) of transition - `electron_density`: electron density - `temperature`: gas temperature # Returns - `coll_exc`: collisional excitations per second from n_l -> n_u """ function coll_exc_hydrogen_johnson( n_l::Integer, n_u::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature, ) @assert n_l > 0 "n_l must be > 0" @assert n_u > n_l "n_u must be > n_l" rn = _rn(n_l) bn = _bn(n_l) x = 1 - (n_l / n_u)^2 rnn = rn * x fnn = johnson_c1 * n_l / (n_u * x)^3 * (g0(n_l) + (g1(n_l) + g2(n_l) / x) / x) Ann = 2 * n_l^2 / x * fnn Bnn = 4 * n_l * (n_l / n_u)^3 * (1 + 4 / (3 * x) + bn / x^2) / x^2 y = x * Ryh / (n_l^2 * k_B * temperature) z = rnn + y coll_exc = (johnson_c0 * (n_l * y)^2 / x * sqrt(temperature) * electron_density * (Ann * ((1 / y + 0.5) * expint(1, y) - (1 / z + 0.5) * expint(1, z)) + (Bnn - Ann * log(2 * n_l^2 / x)) * (expint(2, y) / y - expint(2, z) / z))) return coll_exc |> u"s^-1" end """ coll_ion_hydrogen_johnson( n::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature, ) Calculates the rates for collisional ionisation for a hydrogen level, resulting from collisions with electrons, using the recipe of [Johnson (1972)](https://ui.adsabs.harvard.edu/abs/1972ApJ...174..227J/abstract). # Arguments - `n`: principal quantum number of hydrogen level - `electron_density`: electron density - `temperature`: gas temperature # Returns - `coll_ion`: collisional ionisations per second from level n """ function coll_ion_hydrogen_johnson( n::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature, ) @assert n > 0 "n must be > 0" An = johnson_c1 * n * (g0(n) / 3 + g1(n) / 4 + g2(n) / 5) Bn = 2 * n^2 / 3 * (5 + _bn(n)) yn = Ryh / (n^2 * k_B * temperature) zn = _rn(n) + yn coll_ion = (johnson_c0 * (n * yn)^2 * sqrt(temperature) * electron_density * (An * (expint(1, yn) / yn - expint(1, zn) / zn) + (Bn - An * log(2 * n^2)) * (ξ(yn) - ξ(zn)))) return coll_ion |> u"s^-1" end """ CI_RH_hydrogen(n::Integer, temperature::Unitful.Temperature) Calculate CI coefficients for collisional ionisation for a hydrogen level, in the SI units of RH, using the recipe of [Johnson (1972)](https://ui.adsabs.harvard.edu/abs/1972ApJ...174..227J/abstract). # Arguments - `n`: principal quantum number of hydrogen level - `temperature`: gas temperature """ function CI_RH_hydrogen(n::Integer, temperature::Unitful.Temperature) tmp = coll_ion_hydrogen_johnson(n, 1.0u"m^-3", temperature) yn = Ryh / (n^2 * k_B * temperature) return tmp * exp(yn) / sqrt(temperature) / 1.0u"m^-3" end """ CE_RH_hydrogen(n_l::Integer, n_u::Integer, temperature::Unitful.Temperature) Calculate CE coefficients for collisional deexcitation for a hydrogen transition, in the SI units of RH, using the recipe of [Johnson (1972)](https://ui.adsabs.harvard.edu/abs/1972ApJ...174..227J/abstract). # Arguments - `n_l`: lower level (principal quantum number) of transition - `n_u`: upper level (principal quantum number) of transition - `temperature`: gas temperature """ function CE_RH_hydrogen(n_l::Integer, n_u::Integer, temperature::Unitful.Temperature) tmp = coll_exc_hydrogen_johnson(n_l, n_u, 1.0u"m^-3", temperature) x = 1 - (n_l / n_u)^2 y = x * Ryh / (n_l^2 * k_B * temperature) return tmp * exp(y) / sqrt(temperature) / 1.0u"m^-3" end #=---------------------------------------------------------------------------- Utility functions from Johnson (1972) ----------------------------------------------------------------------------=# # bn and rn expressions, from eqs (24) and (32) of Johnson (1972) _bn(n::Integer) = (n == 1) ? -0.603 : (4.0+ (-18.63 + (36.24 - 28.09 / n) / n) / n) / n _rn(n::Integer) = (n == 1) ? 0.45 : 1.94 * n^-1.57 # ξ(t), eq (42) ξ(t::AbstractFloat) = expint(0, t) - 2 * expint(1, t) + expint(2, t) # Gaunt factor coefficients, Table 1 of Johnson (1972) function g0(n::Integer) if n == 1 return 1.1330f0 elseif n == 2 return 1.0785f0 else return 0.9935f0 + (0.2328f0 - 0.1296f0 / n) / n end end function g1(n::Integer) if n == 1 return -0.4059f0 elseif n == 2 return -0.2319f0 else return -(0.6282 - (0.5598 - 0.5299 / n) / n) / n end end function g2(n::Integer) if n == 1 return 0.07014f0 elseif n == 2 return 0.02947f0 else return (0.3887f0 - (1.181f0 - 1.4700f0 / n) / n) / n^2 end end #=---------------------------------------------------------------------------- Collisional rates for hydrogen from Przybilla & Butler (2004) ----------------------------------------------------------------------------=# const PB04_temp = [0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 15, 20, 25] * 10000u"K" const PB04_Ω = [[6.40f-1 6.98f-1 7.57f-1 8.09f-1 8.97f-1 9.78f-1 1.06f+0 1.15f+0 #= 1->2 =# 1.32f+0 1.51f+0 1.68f+0 2.02f+0 2.33f+0 2.97f+0 3.50f+0 3.95f+0]; [2.20f-1 2.40f-1 2.50f-1 2.61f-1 2.88f-1 3.22f-1 3.59f-1 3.96f-1 #= 1->3 =# 4.64f-1 5.26f-1 5.79f-1 6.70f-1 7.43f-1 8.80f-1 9.79f-1 1.06f+0]; [9.93f-2 1.02f-1 1.10f-1 1.22f-1 1.51f-1 1.80f-1 2.06f-1 2.28f-1 #= 1->4 =# 2.66f-1 2.95f-1 3.18f-1 3.55f-1 3.83f-1 4.30f-1 4.63f-1 4.88f-1]; [4.92f-2 5.84f-2 7.17f-2 8.58f-2 1.12f-1 1.33f-1 1.50f-1 1.64f-1 #= 1->5 =# 1.85f-1 2.01f-1 2.12f-1 2.29f-1 2.39f-1 2.59f-1 2.71f-1 2.81f-1]; [2.97f-2 4.66f-2 6.28f-2 7.68f-2 9.82f-2 1.14f-1 1.25f-1 1.33f-1 #= 1->6 =# 1.45f-1 1.53f-1 1.58f-1 1.65f-1 1.70f-1 1.77f-1 1.82f-1 1.85f-1]; [5.03f-2 6.72f-2 7.86f-2 8.74f-2 1.00f-1 1.10f-1 1.16f-1 1.21f-1 #= 1->7 =# 1.27f-1 1.31f-1 1.34f-1 1.36f-1 1.37f-1 1.39f-1 1.39f-1 1.40f-1]; [2.35f+1 2.78f+1 3.09f+1 3.38f+1 4.01f+1 4.71f+1 5.45f+1 6.20f+1 #= 2->3 =# 7.71f+1 9.14f+1 1.05f+2 1.29f+2 1.51f+2 1.93f+2 2.26f+2 2.52f+2]; [1.07f+1 1.15f+1 1.23f+1 1.34f+1 1.62f+1 1.90f+1 2.18f+1 2.44f+1 #= 2->4 =# 2.89f+1 3.27f+1 3.60f+1 4.14f+1 4.56f+1 5.31f+1 5.83f+1 6.23f+1]; [5.22f+0 5.90f+0 6.96f+0 8.15f+0 1.04f+1 1.23f+1 1.39f+1 1.52f+1 #= 2->5 =# 1.74f+1 1.90f+1 2.03f+1 2.23f+1 2.37f+1 2.61f+1 2.78f+1 2.89f+1]; [2.91f+0 4.53f+0 6.06f+0 7.32f+0 9.17f+0 1.05f+1 1.14f+1 1.21f+1 #= 2->6 =# 1.31f+1 1.38f+1 1.44f+1 1.51f+1 1.56f+1 1.63f+1 1.68f+1 1.71f+1]; [5.25f+0 7.26f+0 8.47f+0 9.27f+0 1.03f+1 1.08f+1 1.12f+1 1.14f+1 #= 2->7 =# 1.17f+1 1.18f+1 1.19f+1 1.19f+1 1.20f+1 1.19f+1 1.19f+1 1.19f+1]; [1.50f+2 1.90f+2 2.28f+2 2.70f+2 3.64f+2 4.66f+2 5.70f+2 6.72f+2 #= 3->4 =# 8.66f+2 1.04f+3 1.19f+3 1.46f+3 1.67f+3 2.08f+3 2.39f+3 2.62f+3]; [7.89f+1 9.01f+1 1.07f+2 1.26f+2 1.66f+2 2.03f+2 2.37f+2 2.68f+2 #= 3->5 =# 3.19f+2 3.62f+2 3.98f+2 4.53f+2 4.95f+2 5.68f+2 6.16f+2 6.51f+2]; [4.13f+1 6.11f+1 8.21f+1 1.01f+2 1.31f+2 1.54f+2 1.72f+2 1.86f+2 #= 3->6 =# 2.08f+2 2.24f+2 2.36f+2 2.53f+2 2.65f+2 2.83f+2 2.94f+2 3.02f+2]; [7.60f+1 1.07f+2 1.25f+2 1.37f+2 1.52f+2 1.61f+2 1.68f+2 1.72f+2 #= 3->7 =# 1.78f+2 1.81f+2 1.83f+2 1.85f+2 1.86f+2 1.87f+2 1.86f+2 1.87f+2]; [5.90f+2 8.17f+2 1.07f+3 1.35f+3 1.93f+3 2.47f+3 2.96f+3 3.40f+3 #= 4->5 =# 4.14f+3 4.75f+3 5.25f+3 6.08f+3 6.76f+3 8.08f+3 9.13f+3 1.00f+4]; [2.94f+2 4.21f+2 5.78f+2 7.36f+2 1.02f+3 1.26f+3 1.46f+3 1.64f+3 #= 4->6 =# 1.92f+3 2.15f+3 2.33f+3 2.61f+3 2.81f+3 3.15f+3 3.36f+3 3.51f+3]; [4.79f+2 7.06f+2 8.56f+2 9.66f+2 1.11f+3 1.21f+3 1.29f+3 1.34f+3 #= 4->7 =# 1.41f+3 1.46f+3 1.50f+3 1.55f+3 1.57f+3 1.61f+3 1.62f+3 1.63f+3]; [1.93f+3 2.91f+3 4.00f+3 5.04f+3 6.81f+3 8.20f+3 9.29f+3 1.02f+4 #= 5->6 =# 1.15f+4 1.26f+4 1.34f+4 1.49f+4 1.63f+4 1.97f+4 2.27f+4 2.54f+4]; [1.95f+3 3.24f+3 4.20f+3 4.95f+3 6.02f+3 6.76f+3 7.29f+3 7.70f+3 #= 5->7 =# 8.26f+3 8.63f+3 8.88f+3 9.21f+3 9.43f+3 9.78f+3 1.00f+4 1.02f+4]; [6.81f+1 1.17f+4 1.50f+4 1.73f+4 2.03f+4 2.21f+4 2.33f+4 2.41f+4 #= 6->7 =# 2.52f+4 2.60f+4 2.69f+4 2.90f+4 3.17f+4 3.94f+4 4.73f+4 5.50f+4]] # Index of transition data in matrix form: PB04_index[n_l, n_u] = i, # where i is row index in PB04_Ω const PB04_index = [0 1 2 3 4 5 6 0 0 7 8 9 10 11 0 0 0 12 13 14 15 0 0 0 0 16 17 18 0 0 0 0 0 19 20 0 0 0 0 0 0 21] const PB04_interp = [linear_interpolation(PB04_temp, PB04_Ω[i, :], extrapolation_bc=Line()) for i in 1:16] """ coll_deexc_hydrogen_PB04( n_l::Integer, n_u::Integer, g_u::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature, ) Calculate collisional de-excitation by electrons of a bound-bound hydrogen transition, using the Ω data from Table 3 of [Przybilla & Butler (2004)](https://ui.adsabs.harvard.edu/abs/2004ApJ...610L..61P/abstract). Data available only up to n=7. # Arguments - `n_l`: lower level (principal quantum number) of transition - `n_u`: upper level (principal quantum number) of transition - `g_u`: statistical weight of upper level - `electron_density`: electron density - `temperature`: gas temperature # Returns - `coll_deexc`: collisional de-excitations per second (from upper level to lower level) """ function coll_deexc_hydrogen_PB04( n_l::Integer, n_u::Integer, g_u::Integer, electron_density::NumberDensity, temperature::Unitful.Temperature, ) @assert 7 > n_l > 0 "Must have 7 > n_l > 0" @assert 8 > n_u > n_l "Must have 8 > n_u > n_l" return coll_Ω(PB04_interp[PB04_index[n_l, n_u]], g_u, electron_density, temperature) end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
45178
""" Computes the extinction for hydrogen-related bound-free and free-free transitions. Functions are organised in two types: 1. `σ_*` functions compute the cross section (in m^2) or "cross section coefficient" (in m^5) 2. `α_*` functions compute the linear extinction coefficient (in m^-1), by multiplying extinction coefficient \$\\alpha_\\nu\$ for hydrogen-related bound-free and free-free transitions. Includes: * Neutral Hydrogen bound-free and free-free. * H\$^-\$ bound-free and free-free. * H\$_2^-\$ free-free. * H\$_2^+\$ free-free. * Rayleigh scattering by molecular H\$_2\$ """ #=---------------------------------------------------------------------------- Catch-all functions ----------------------------------------------------------------------------=# """ σ_hminus_ff( λ::Unitful.Length, temperature::Unitful.Temperature, recipe::String="stilley" ) Compute free-free extinction from H minus ion. Recipe can be one of: - `stilley` (default): Interpolates table from [Stilley & Callaway (1970)](https://ui.adsabs.harvard.edu/abs/1970ApJ...160..245S/abstract), which is valid for λ up to 9113 nm. - `john`: Follows [John (1988)](https://ui.adsabs.harvard.edu/abs/1988A%26A...193..189J/abstract), which is valid beyond 9113 nm but may not be good below 364.5 nm. """ function σ_hminus_ff(λ::Unitful.Length, temperature::Unitful.Temperature; recipe::String="stilley" ) if recipe == "stilley" σ = σ_hminus_ff_stilley(λ, temperature) elseif recipe == "john" σ = σ_hminus_ff_john(λ, temperature) else throw("NotImplemented recipe $recipe") end return σ end """ α_hminus_ff( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity; recipe::String="stilley" ) Compute free-free extinction from H minus ion. Recipe can be one of: - `stilley` (default): Interpolates table from [Stilley & Callaway (1970)](https://ui.adsabs.harvard.edu/abs/1970ApJ...160..245S/abstract), which is valid for λ up to 9113 nm. - `john`: Follows [John (1988)](https://ui.adsabs.harvard.edu/abs/1988A%26A...193..189J/abstract), which is valid beyond 9113 nm but may not be good below 364.5 nm. """ function α_hminus_ff( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity; recipe::String="stilley" ) σ = σ_hminus_ff(λ, temperature; recipe=recipe) return σ * h_neutral_density * electron_density end """ σ_hminus_bf( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity; recipe::String="wbr" ) Compute bound-free extinction from H minus ion. Recipe can be one of: - `geltman` (default): Uses recipe from [Geltman (1962)](https://ui.adsabs.harvard.edu/abs/1962ApJ...136..935G/abstract) - `john`: Follows [John (1988)](https://ui.adsabs.harvard.edu/abs/1988A%26A...193..189J/abstract), which is valid beyond 9113 nm but may not be good below 364.5 nm. - `wbr`: Follows [Wishart (1979)](https://ui.adsabs.harvard.edu/abs/1979MNRAS.187P..59W) for λ > 175 nm, and [Broad and Reinhardt (1976)](https://ui.adsabs.harvard.edu/abs/1976PhRvA..14.2159B) for λ <= 164 nm. """ function σ_hminus_bf(λ::Unitful.Length, temperature::Unitful.Temperature; recipe::String="wbr" ) if recipe == "geltman" σ = σ_hminus_bf_geltman(λ, temperature) elseif recipe == "john" σ = σ_hminus_bf_john(λ, temperature) elseif recipe == "wbr" σ = σ_hminus_bf_wbr(λ, temperature) else throw("NotImplemented recipe $recipe") end return σ end """ α_hminus_bf( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity; recipe::String="wbr" ) Compute bound-free extinction from H minus ion. Recipe can be one of: - `geltman`: Uses recipe from [Geltman (1962)](https://ui.adsabs.harvard.edu/abs/1962ApJ...136..935G/abstract) - `john`: Follows [John (1988)](https://ui.adsabs.harvard.edu/abs/1988A%26A...193..189J/abstract), which is valid beyond 9113 nm but may not be good below 364.5 nm. - `wbr` (default): Follows [Wishart (1979)](https://ui.adsabs.harvard.edu/abs/1979MNRAS.187P..59W) for λ > 175 nm, and [Broad and Reinhardt (1976)](https://ui.adsabs.harvard.edu/abs/1976PhRvA..14.2159B) for λ <= 164 nm. """ function α_hminus_bf( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity; recipe::String="wbr" ) σ = σ_hminus_bf(λ, temperature; recipe=recipe) return σ * h_neutral_density * electron_density end #=---------------------------------------------------------------------------- Recipes from Karzas and Latter / Kurucz ----------------------------------------------------------------------------=# #= Tabulated Gaunt factors from Kurucz (1970, SAO Special Report no. 309), page 77, which is a fit to figures 3-5 of Karzas and Latter (1961, ApJ Suppl 6, 167) - Note from Mats Carlsson in RH: There is extrapolation outside the range of lg(gamma2) (T outside [1570,1.57e8K]) or outside range of lg(U) (for lambda=3.2mm for T>49 kK). This should be OK for reasonable extrapolation distances (and better than setting to constant end value or zero). Interpolation tested against table in Gustafsson (1973) with results within 1%. =# const kurucz_ff_table = [5.53 5.49 5.46 5.43 5.40 5.25 5.00 4.69 4.48 4.16 3.85 4.91 4.87 4.84 4.80 4.77 4.63 4.40 4.13 3.87 3.52 3.27 4.29 4.25 4.22 4.18 4.15 4.02 3.80 3.57 3.27 2.98 2.70 3.64 3.61 3.59 3.56 3.54 3.41 3.22 2.97 2.70 2.45 2.20 3.00 2.98 2.97 2.95 2.94 2.81 2.65 2.44 2.21 2.01 1.81 2.41 2.41 2.41 2.41 2.41 2.32 2.19 2.02 1.84 1.67 1.50 1.87 1.89 1.91 1.93 1.95 1.90 1.80 1.68 1.52 1.41 1.30 1.33 1.39 1.44 1.49 1.55 1.56 1.51 1.42 1.33 1.25 1.17 0.90 0.95 1.00 1.08 1.17 1.30 1.32 1.30 1.20 1.15 1.11 0.55 0.58 0.62 0.70 0.85 1.01 1.15 1.18 1.15 1.11 1.08 0.33 0.36 0.39 0.46 0.59 0.76 0.97 1.09 1.13 1.10 1.08 0.19 0.21 0.24 0.28 0.38 0.53 0.76 0.96 1.08 1.09 1.09] # table_y is log10(hν / kT) const kurucz_ff_table_y = -4:0.5:1.5 # table_x is log10(3.28805e15 * (Z^2 h) / (kT)) const kurucz_ff_table_x = -3:0.5:2.0 const h_k = h / k_B const hc_k = h * c_0 / k_B const hminusχ = 0.754u"eV" const saha_const = h^2 / (2 * π * m_e * k_B) # Constant for Saha equation const αff_const = (4 / (3 * h * c_0) * (e^2 / (4 * π * ε_0))^3 * sqrt(2 * π / (3 * m_e^3 * k_B))) |> u"K^(1/2) * m^5 / s^3" const αbf_const = (4 * e^2 / (3 * π * sqrt(3) * ε_0 * m_e * c_0^2 * R_∞)) |> u"m^2" const kurucz_ff_interp = linear_interpolation((kurucz_ff_table_y, kurucz_ff_table_x), kurucz_ff_table, extrapolation_bc=Line()) """ gaunt_ff(ν::Unitful.Frequency, temperature::Unitful.Temperature, charge::Int) gaunt_ff(λ::Unitful.Length, temperature::Unitful.Temperature, charge::Int) Compute Gaunt factor for free-free based on [Karzas and Latter (1961, ApJ Suppl 6, 167)] (https://ui.adsabs.harvard.edu/abs/1961ApJS....6..167K/abstract) fit in [Kurucz (1970, SAO Special Report no. 309), page 77](https://ui.adsabs.harvard.edu/abs/1970SAOSR.309.....K/abstract) """ function gaunt_ff(ν::Unitful.Frequency, temperature::Unitful.Temperature, charge::Int) lookup_y = log10(h_k * ν / temperature) lookup_x = log10(3.28805e15u"Hz" * charge^2 * h_k / temperature) return kurucz_ff_interp(lookup_y, lookup_x)::Float64 end function gaunt_ff(λ::Unitful.Length, temperature::Unitful.Temperature, charge::Int) return gaunt_ff(c_0 / λ, temperature, charge) end #=---------------------------------------------------------------------------- Recipes from Seaton ----------------------------------------------------------------------------=# """ gaunt_bf(charge::Int, n_eff::Number, λ::Unitful.Length)::Float64 Compute bound-free Gaunt factor for a given nuclear charge Z, effective principal quantum number and wavelength λ. Taken from RH. Formula from [Seaton (1960), Rep. Prog. Phys. 23, 313](https://ui.adsabs.harvard.edu/abs/1960RPPh...23..313S/abstract), page 316. """ function gaunt_bf(λ::Unitful.Length, Z::Real, n_eff::Real)::Float64 x = ustrip(1 / (λ * R_∞ * Z^2) |> u"m/m") x3 = x^(1/3) nsqx = 1 / (n_eff^2 * x) g_bf = 1 + 0.1728 * x3 * (1 - 2 * nsqx) - 0.0496 * x3^2 * (1 - (1 - nsqx) * 0.66666667 * nsqx) @assert g_bf >= 0 "gaunt_bf negative, calculation will not be reliable" return g_bf end function gaunt_bf(ν::Unitful.Frequency, Z::Real, n_eff::Real)::Float64 return gaunt_bf(c_0 / ν, Z, n_eff) end """ n_eff(energy_upper::Unitful.Energy, energy_lower::Unitful.Energy, Z::Integer) Compute the effective principal quantum number for a given energy difference and nuclear charge Z. """ function n_eff(energy_upper::Unitful.Energy, energy_lower::Unitful.Energy, Z::Real) return Z * sqrt(Ryh / (energy_upper - energy_lower)) end #=---------------------------------------------------------------------------- Recipes from Stilley ----------------------------------------------------------------------------=# const stilley_ff_λ = [0.0, 303.8, 455.6, 506.3, 569.5, 650.9, 759.4, 911.3, 1013.0, 1139.0, 1302.0, 1519.0, 1823.0, 2278.0, 3038.0, 4556.0, 9113.0] # in nm const stilley_ff_t = 5040.0 ./ [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] # in K const stilley_ff_table = [[0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 #= 0.0 nm =# 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00]; [3.44e-02 4.18e-02 4.91e-02 5.65e-02 6.39e-02 7.13e-02 7.87e-02 8.62e-02 #= 303.8 nm =# 9.36e-02 1.01e-01 1.08e-01 1.16e-01 1.23e-01 1.30e-01 1.38e-01 1.45e-01]; [7.80e-02 9.41e-02 1.10e-01 1.25e-01 1.40e-01 1.56e-01 1.71e-01 1.86e-01 #= 455.6 nm =# 2.01e-01 2.16e-01 2.31e-01 2.45e-01 2.60e-01 2.75e-01 2.89e-01 3.03e-01]; [9.59e-02 1.16e-01 1.35e-01 1.53e-01 1.72e-01 1.90e-01 2.08e-01 2.25e-01 #= 506.3 nm =# 2.43e-01 2.61e-01 2.78e-01 2.96e-01 3.13e-01 3.30e-01 3.47e-01 3.64e-01]; [1.21e-01 1.45e-01 1.69e-01 1.92e-01 2.14e-01 2.36e-01 2.58e-01 2.80e-01 #= 569.5 nm =# 3.01e-01 3.22e-01 3.43e-01 3.64e-01 3.85e-01 4.06e-01 4.26e-01 4.46e-01]; [1.56e-01 1.88e-01 2.18e-01 2.47e-01 2.76e-01 3.03e-01 3.31e-01 3.57e-01 #= 650.9 nm =# 3.84e-01 4.10e-01 4.36e-01 4.62e-01 4.87e-01 5.12e-01 5.37e-01 5.62e-01]; [2.10e-01 2.53e-01 2.93e-01 3.32e-01 3.69e-01 4.06e-01 4.41e-01 4.75e-01 #= 759.4 nm =# 5.09e-01 5.43e-01 5.76e-01 6.08e-01 6.40e-01 6.72e-01 7.03e-01 7.34e-01]; [2.98e-01 3.59e-01 4.16e-01 4.70e-01 5.22e-01 5.73e-01 6.21e-01 6.68e-01 #= 911.3 nm =# 7.15e-01 7.60e-01 8.04e-01 8.47e-01 8.90e-01 9.32e-01 9.73e-01 1.01e+00]; [3.65e-01 4.39e-01 5.09e-01 5.75e-01 6.39e-01 7.00e-01 7.58e-01 8.15e-01 #= 1013.0 nm =# 8.71e-01 9.25e-01 9.77e-01 1.03e+00 1.08e+00 1.13e+00 1.18e+00 1.23e+00]; [4.58e-01 5.50e-01 6.37e-01 7.21e-01 8.00e-01 8.76e-01 9.49e-01 1.02e+00 #= 1139.0 nm =# 1.09e+00 1.15e+00 1.22e+00 1.28e+00 1.34e+00 1.40e+00 1.46e+00 1.52e+00]; [5.92e-01 7.11e-01 8.24e-01 9.31e-01 1.03e+00 1.13e+00 1.23e+00 1.32e+00 #= 1302.0 nm =# 1.40e+00 1.49e+00 1.57e+00 1.65e+00 1.73e+00 1.80e+00 1.88e+00 1.95e+00]; [7.98e-01 9.58e-01 1.11e+00 1.25e+00 1.39e+00 1.52e+00 1.65e+00 1.77e+00 #= 1519.0 nm =# 1.89e+00 2.00e+00 2.11e+00 2.21e+00 2.32e+00 2.42e+00 2.51e+00 2.61e+00]; [1.14e+00 1.36e+00 1.58e+00 1.78e+00 1.98e+00 2.17e+00 2.34e+00 2.52e+00 #= 1823.0 nm =# 2.68e+00 2.84e+00 3.00e+00 3.15e+00 3.29e+00 3.43e+00 3.57e+00 3.70e+00]; [1.77e+00 2.11e+00 2.44e+00 2.75e+00 3.05e+00 3.34e+00 3.62e+00 3.89e+00 #= 2278.0 nm =# 4.14e+00 4.39e+00 4.63e+00 4.86e+00 5.08e+00 5.30e+00 5.51e+00 5.71e+00]; [3.10e+00 3.71e+00 4.29e+00 4.84e+00 5.37e+00 5.87e+00 6.36e+00 6.83e+00 #= 3038.0 nm =# 7.28e+00 7.72e+00 8.14e+00 8.55e+00 8.95e+00 9.33e+00 9.71e+00 1.01e+01]; [6.92e+00 8.27e+00 9.56e+00 1.08e+01 1.19e+01 1.31e+01 1.42e+01 1.52e+01 #= 4556.0 nm =# 1.62e+01 1.72e+01 1.82e+01 1.91e+01 2.00e+01 2.09e+01 2.17e+01 2.25e+01]; [2.75e+01 3.29e+01 3.80e+01 4.28e+01 4.75e+01 5.19e+01 5.62e+01 6.04e+01 #= 9133.0 nm =# 6.45e+01 6.84e+01 7.23e+01 7.60e+01 7.97e+01 8.32e+01 8.67e+01 9.01e+01]] const stilley_ff_interp = linear_interpolation((stilley_ff_λ, stilley_ff_t[end:-1:1]), stilley_ff_table[:, end:-1:1], extrapolation_bc=Line()) """ σ_hminus_ff_stilley(λ::Unitful.Length, temperature::Unitful.Temperature) Compute free-free cross section coefficient from H minus ion, for a given wavelength and temperature. Units are m^5, needs to be multiplied by electron density and density of neutral hydrogen atoms to obtain linear extinction. Interpolates table from [Stilley & Callaway (1970)](https://ui.adsabs.harvard.edu/abs/1970ApJ...160..245S/abstract), page 255, which is valid for λ up to 9113 nm. """ function σ_hminus_ff_stilley(λ::Unitful.Length, temperature::Unitful.Temperature) λi = ustrip(λ |> u"nm") # convert to units of table temp = ustrip(temperature |> u"K") kappa = max(0.0, stilley_ff_interp(λi, temp)::Float64) * 1e-29u"m^4/N" return k_B * temperature * kappa |> u"m^5" end """ α_hminus_ff_stilley( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) Compute free-free extinction from H minus ion, for a given wavelength, temperature, density of neutral hydrogen atoms `h_neutral_density`, and electron density. Based on `σ_hminus_ff_stilley`. """ function α_hminus_ff_stilley( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) σ = σ_hminus_ff_stilley(λ, temperature) return σ * h_neutral_density * electron_density |> u"m^-1" end #=---------------------------------------------------------------------------- Recipes from Geltman ----------------------------------------------------------------------------=# const geltman_bf_λ = [ 0.0, 50.0, 100.0, 150.0, 200.0, 250.0, 300.0, 350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 650.0, 700.0, 750.0, 800.0, 850.0, 900.0, 950.0, 1000.0, 1050.0, 1100.0, 1150.0, 1200.0, 1250.0, 1300.0, 1350.0, 1400.0, 1450.0, 1500.0, 1550.0, 1600.0, 1641.9] # in nm const geltman_bf_σ = [0.00, 0.15, 0.33, 0.57, 0.85, 1.17, 1.52, 1.89, 2.23, 2.55, 2.84, 3.11, 3.35, 3.56, 3.71, 3.83, 3.92, 3.95, 3.93, 3.85, 3.73, 3.58, 3.38, 3.14, 2.85, 2.54, 2.20, 1.83, 1.46, 1.06, 0.71, 0.40, 0.17, 0.0] # in 1e-21 m^2 const geltman_bf_interp = linear_interpolation(geltman_bf_λ, geltman_bf_σ, extrapolation_bc=0) """ σ_hminus_bf_geltman(λ::Unitful.Length, temperature::Unitful.Temperature) Compute bound-free cross section from H minus ion. Uses recipe from [Geltman (1962)](https://ui.adsabs.harvard.edu/abs/1962ApJ...136..935G/abstract) Units are m^5, needs to be multiplied by density of neutral H atoms and electron density to obtain linear extinction. """ function σ_hminus_bf_geltman(λ::Unitful.Length, temperature::Unitful.Temperature) λi = ustrip(λ |> u"nm") # convert to units of table stimulated_emission = exp(-hc_k / (λ * temperature)) # Get H- fraction to convert from σ per H- atom to σ per H atom per electron hminus_frac = calc_hminus_density(1.0u"m^-3", temperature, 1.0u"m^-3") * u"m^6" σ = geltman_bf_interp(λi)::Float64 * 1e-21u"m^2" * (1 - stimulated_emission) * hminus_frac return σ end """ α_hminus_bf_geltman( λ::Unitful.Length, temperature::Unitful.Temperature, h_minus_density::NumberDensity ) α_hminus_bf_geltman( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) Compute extinction from H minus ion, from input H minus populations. Uses recipe from [Geltman (1962)](https://ui.adsabs.harvard.edu/abs/1962ApJ...136..935G/abstract) """ function α_hminus_bf_geltman( λ::Unitful.Length, temperature::Unitful.Temperature, h_minus_density::NumberDensity ) σ = σ_hminus_bf_geltman(λ, temperature) λi = ustrip(λ |> u"nm") # convert to units of table stimulated_emission = exp(-hc_k / (λ * temperature)) σ = geltman_bf_interp(λi)::Float64 * 1e-21u"m^2" * (1 - stimulated_emission) return σ * h_minus_density end function α_hminus_bf_geltman( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) h_minus_density = calc_hminus_density(h_neutral_density, temperature, electron_density) return α_hminus_bf_geltman(λ, temperature, h_minus_density) end """ calc_hminus_density( h_neutral_density::NumberDensity, temperature::Unitful.Temperature, electron_density::NumberDensity ) Compute H minus populations based on electron density, temperature, and density of neutral hydrogen atoms. """ function calc_hminus_density( h_neutral_density::NumberDensity, temperature::Unitful.Temperature, electron_density::NumberDensity ) tmp = (ustrip(saha_const) / ustrip(temperature |> u"K"))^(3/2) * u"m^3" ϕ = tmp * exp(hminusχ / (k_B * temperature)) / 4 return h_neutral_density * electron_density * ϕ end #=---------------------------------------------------------------------------- Recipes from John ----------------------------------------------------------------------------=# """ σ_hminus_ff_john(λ::Unitful.Length, temperature::Unitful.Temperature) Compute free-free cross section coefficient from H minus ion, for a given wavelength and temperature. Units are m^5, needs to be multiplied by electron density and density of neutral hydrogen atoms to obtain linear extinction. Uses recipe from [John (1988)](https://ui.adsabs.harvard.edu/abs/1988A%26A...193..189J/abstract), which is valid beyond 9113 nm but may not be good below 364.5 nm. Includes stimulated emission. """ function σ_hminus_ff_john(λ::Unitful.Length, temperature::Unitful.Temperature) λμ = ustrip(λ |> u"μm") if λμ > 0.3645 table = SA[ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2483.3460 285.8270 -2054.2910 2827.7760 -1341.5370 208.9520 -3449.8890 -1158.3820 8746.5230 -11485.6320 5303.6090 -812.9390 2200.0400 2427.7190 -13651.1050 16755.5240 -7510.4940 1132.7380 -696.2710 -1841.4000 8624.9700 -10051.5300 4400.0670 -655.0200 88.2830 444.5170 -1863.8640 2095.2880 -901.7880 132.9850] else table = SA[ 518.1021 -734.8666 1021.1775 -479.0721 93.1373 -6.4285 473.2636 1443.4137 -1977.3395 922.3575 -178.9275 12.3600 -482.2089 -737.1616 1096.8827 -521.1341 101.7963 -7.0571 115.5291 169.6374 -245.6490 114.2430 -21.9972 1.5097 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000] end sqrtθ = sqrt((5040.0u"K" / temperature) |> u"K/K") λinv = 1.0 / λμ κ = 0.0 for i in 1:6 κ += sqrtθ^(1 + i) * (λμ^2 * table[i, 1] + table[i, 2] + λinv * (table[i, 3] + λinv * (table[i, 4] + λinv * (table[i, 5] + λinv * table[i, 6])))) end κ = max(0.0, κ) # ensure no extrapolation to negative values return κ * 1e-32u"m^4/N" * k_B * temperature |> u"m^5" end """ α_hminus_ff_john( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) Compute free-free extinction from H minus ion. Based on `σ_hminus_ff_john`. """ function α_hminus_ff_john( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) σ = σ_hminus_ff_john(λ, temperature) # NOTE: in RH temperature from electron pressure is set to 5040 K! # Also, RH uses sometimes nHminus = nH * pe, other times atmos.nHmin... return σ * h_neutral_density * electron_density end """ σ_hminus_bf_john(λ::Unitful.Length, temperature::Unitful.Temperature) Compute free-free cross section coefficient from H minus ion, for a given wavelength and temperature. Units are m^5, needs to be multiplied by electron density and density of neutral hydrogen atoms to obtain linear extinction. Uses recipe from [John (1988)](https://ui.adsabs.harvard.edu/abs/1988A%26A...193..189J/abstract), which is valid for 0.125 <= λ (μm) <= 1.6419. Seems to already include stimulated emission. """ function σ_hminus_bf_john(λ::Unitful.Length, temperature::Unitful.Temperature) table = SA[152.519, 49.534, -118.858, 92.536, -34.194, 4.982] λμ = ustrip(λ |> u"μm") λ0 = ustrip(1.6419u"μm") λ1 = ustrip(0.125u"μm") # edge wavelength when approximation for fλ no longer valid temp = ustrip(temperature |> u"K") λidiff = max(0.0, 1.0 / λμ - 1.0 / λ0) # cases beyond λ0 set to zero σλ = 1e-18 * λμ^3 * λidiff^1.5 fλ = 0.0 if λμ < λ1 λidiff = 1.0 / λ1 - 1.0 / λ0 end for n in 1:6 fλ += table[n] * λidiff^((n-1)/2) end σλ *= fλ α = h_k * c_0 κ = 0.750 * sqrt(temp)^-5 * exp(α / (λ0*u"μm" * temperature)) * (1 - exp(-α / (λ * temperature))) * σλ * 1e-3u"m^4/N" return κ * k_B * temperature |> u"m^5" end """ α_hminus_bf_john( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) Compute extinction from H minus ion. Based on `σ_hminus_bf_john`. """ function α_hminus_bf_john( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) σ = σ_hminus_bf_john(λ, temperature) return σ * h_neutral_density * electron_density end #=---------------------------------------------------------------------------- Recipes from Wishart (1979) and Broad and Reinhardt (1976) ----------------------------------------------------------------------------=# const wbr_λ = [ 18, 19.6, 21.4, 23.6, 26.4, 29.8, 34.3, 40.4, 49.1, 62.6, 121, 139, 164, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, 1400, 1425, 1450, 1475, 1500, 1525, 1550, 1575, 1600, 1610, 1620, 1630] # in nm const wbr_σ = [0.067, 0.088, 0.117, 0.155, 0.206, 0.283, 0.414, 0.703, 1.24, 2.33, 5.43, 5.91, 7.29, 7.918, 9.453, 11.08, 12.75, 14.46, 16.19, 17.92, 19.65, 21.35, 23.02, 24.65, 26.24, 27.77, 29.23, 30.62, 31.94, 33.17, 34.32, 35.37, 36.32, 37.17, 37.91, 38.54, 39.07, 39.48, 39.77, 39.95, 40.01, 39.95, 39.77, 39.48, 39.06, 38.53, 37.89, 37.13, 36.25, 35.28, 34.19, 33.01, 31.72, 30.34, 28.87, 27.33, 25.71, 24.02, 22.26, 20.46, 18.62, 16.74, 14.85, 12.95, 11.07, 9.211, 7.407, 5.677, 4.052, 2.575, 1.302, 0.8697, 0.4974, 0.1989] # in 1e-22 m^2 const wbr_bf_interp = linear_interpolation(wbr_λ, wbr_σ, extrapolation_bc=0) """ σ_hminus_bf_wbr(λ::Unitful.Length, temperature::Unitful.Temperature) Compute cross section coefficient for bound-free from H minus ion (units m^5). Needs to be multiplied by density of neutral hydrogen atoms and electron density to obtain linear extinction. Uses recipe from [Wishart (1979)](https://ui.adsabs.harvard.edu/abs/1979MNRAS.187P..59W) for λ down to 175 nm, and recipe from [Broad and Reinhardt (1976)](https://ui.adsabs.harvard.edu/abs/1976PhRvA..14.2159B) for λ=164 nm and below, following the recommendation from Mathisen (1984, MSC thesis). """ function σ_hminus_bf_wbr(λ::Unitful.Length, temperature::Unitful.Temperature) λi = ustrip(λ |> u"nm") # convert to units of table κ = wbr_bf_interp(λi)::Float64 * 1e-22u"m^2" stimulated_emission = exp(-hc_k / (λ * temperature)) # Get H- fraction to convert from σ per H- atom to σ per H atom per electron hminus_frac = calc_hminus_density(1.0u"m^-3", temperature, 1.0u"m^-3") * u"m^6" return κ * (1 - stimulated_emission) * hminus_frac end """ α_hminus_bf_wbr( λ::Unitful.Length, temperature::Unitful.Temperature, h_minus_density::NumberDensity ) α_hminus_bf_wbr( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) Compute extinction from H minus ion, from input H minus populations. Uses recipe from [Wishart (1979)](https://ui.adsabs.harvard.edu/abs/1979MNRAS.187P..59W) for λ down to 175 nm, and recipe from [Broad and Reinhardt (1976)](https://ui.adsabs.harvard.edu/abs/1976PhRvA..14.2159B) for λ=164 nm and below, following the recommendation from Mathisen (1984, MSC thesis). """ function α_hminus_bf_wbr( λ::Unitful.Length, temperature::Unitful.Temperature, h_minus_density::NumberDensity ) λi = ustrip(λ |> u"nm") # convert to units of table κ = wbr_bf_interp(λi)::Float64 * 1e-22u"m^2" stimulated_emission = exp(-hc_k / (λ * temperature)) return κ * h_minus_density * (1 - stimulated_emission) end function α_hminus_bf_wbr( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, electron_density::NumberDensity ) h_minus_density = calc_hminus_density(h_neutral_density, temperature, electron_density) return α_hminus_bf_wbr(λ, temperature, h_minus_density) end #=---------------------------------------------------------------------------- Recipes from Mihalas ----------------------------------------------------------------------------=# """ σ_hydrogenic_ff( ν::Unitful.Frequency, charge::Real ) Compute free-free cross section (units m^5) for a hydrogen-like species. Following Mihalas (1978) p. 101 and [Rutten's IART](https://www.uio.no/studier/emner/matnat/astro/AST4310/h20/pensumliste/iart.pdf) p 69. For linear extinction, needs to be multiplied by electron density and species density. Includes stimulated emission. Will not work in single-precision. """ function σ_hydrogenic_ff( ν::Unitful.Frequency, temperature::Unitful.Temperature, charge::Real ) ν = ν |> u"s^-1" stimulated_emission = exp(-h_k * ν / temperature) return (αff_const * charge^2 / sqrt(temperature) * ν^-3 * gaunt_ff(ν, temperature, charge)) * (1 - stimulated_emission) end """ α_hydrogenic_ff( ν::Unitful.Frequency, temperature::Unitful.Temperature, electron_density::NumberDensity, species_density::NumberDensity, charge::Int ) Compute free-free linear extinction using `hydrogenic_ff_σ`. For the hydrogen case, `ion_density` is the proton density (H II). """ function α_hydrogenic_ff( ν::Unitful.Frequency, temperature::Unitful.Temperature, electron_density::NumberDensity, species_density::NumberDensity, charge::Real ) α = σ_hydrogenic_ff(ν, temperature, charge) * electron_density * species_density return α end """ σ_hydrogenic_bf( ν::Unitful.Frequency, ν_edge::Unitful.Frequency, temperature::Unitful.Temperature, species_density::NumberDensity, charge::Real, n_eff::AbstractFloat ) Compute bound-free cross section for a hydrogen-like species in m^2. Multiply by number density of species to obtain linear extinction. Following Mihalas (1978) p. 99 and [Rutten's IART](https://www.uio.no/studier/emner/matnat/astro/AST4310/h20/pensumliste/iart.pdf) p. 70. Using simplified constant and expression for threshold cross section. """ function σ_hydrogenic_bf( ν::Unitful.Frequency, ν_edge::Unitful.Frequency, temperature::Unitful.Temperature, charge::Real, n_eff::AbstractFloat ) if ν < ν_edge return 0 * αbf_const else ν3_ratio = (ν_edge / ν)^3 stimulated_emission = exp(-h_k * ν / temperature) return (αbf_const * charge^4 * ν3_ratio * n_eff * (1 - stimulated_emission) * gaunt_bf(ν, charge, n_eff)) end end """ α_hydrogenic_bf( ν::Unitful.Frequency, ν_edge::Unitful.Frequency, temperature::Unitful.Temperature, species_density::NumberDensity, charge::Real, n_eff::AbstractFloat ) Compute bound-free extinction for a hydrogen-like species. Based on `σ_hydrogenic_bf`. """ function α_hydrogenic_bf( ν::Unitful.Frequency, ν_edge::Unitful.Frequency, temperature::Unitful.Temperature, species_density::NumberDensity, charge::Real, n_eff::AbstractFloat ) σ = σ_hydrogenic_bf(ν, ν_edge, temperature, charge, n_eff) return σ * species_density end """ σ_hydrogenic_bf_scaled( σ0::Unitful.Area, ν::Unitful.Frequency, ν_edge::Unitful.Frequency, charge::Real, n_eff::AbstractFloat ) σ_hydrogenic_bf_scaled( σ0::Unitful.Area, λ::Unitful.Length, λ_edge::Unitful.Length, charge::Real, n_eff::AbstractFloat ) Compute bound-free cross section for a hydrogen-like species by scaling a peak cross section σ0 with frequency and the appropriate Gaunt factor. No stimulated emission is added. """ function σ_hydrogenic_bf_scaled( σ0::Unitful.Area, ν::Unitful.Frequency, ν_edge::Unitful.Frequency, charge::Real, n_eff::AbstractFloat ) if ν < ν_edge σ = 0 * σ0 else σ = σ0 * (ν_edge / ν)^3 * ( gaunt_bf(ν, charge, n_eff) / gaunt_bf(ν_edge, charge, n_eff)) end return σ end function σ_hydrogenic_bf_scaled( σ0::Unitful.Area, λ::Unitful.Length, λ_edge::Unitful.Length, charge::Real, n_eff::AbstractFloat ) return σ_hydrogenic_bf_scaled(σ0, c_0 / λ, c_0 / λ_edge, charge, n_eff) end #=---------------------------------------------------------------------------- Recipes from Bell (1980) ----------------------------------------------------------------------------=# const bell_ff_λ = [ 0.0, 350.5, 414.2, 506.3, 569.6, 650.9, 759.4, 911.3, 1139.1, 1518.8, 1822.6, 2278.3, 3037.7, 3645.2, 4556.5, 6075.3, 9113.0, 11391.3, 15188.3] # in nm const bell_ff_t = 5040.0 ./ [0.5, 0.8, 1.0, 1.2, 1.6, 2.0, 2.8, 3.6] # in K const bell_ff_κ = [0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 4.17e-02 6.10e-02 7.34e-02 8.59e-02 1.11e-01 1.37e-01 1.87e-01 2.40e-01 5.84e-02 8.43e-02 1.01e-01 1.17e-01 1.49e-01 1.82e-01 2.49e-01 3.16e-01 8.70e-02 1.24e-01 1.46e-01 1.67e-01 2.10e-01 2.53e-01 3.39e-01 4.27e-01 1.10e-01 1.54e-01 1.80e-01 2.06e-01 2.55e-01 3.05e-01 4.06e-01 5.07e-01 1.43e-01 1.98e-01 2.30e-01 2.59e-01 3.17e-01 3.75e-01 4.92e-01 6.09e-01 1.92e-01 2.64e-01 3.03e-01 3.39e-01 4.08e-01 4.76e-01 6.13e-01 7.51e-01 2.73e-01 3.71e-01 4.22e-01 4.67e-01 5.52e-01 6.33e-01 7.97e-01 9.63e-01 4.20e-01 5.64e-01 6.35e-01 6.97e-01 8.06e-01 9.09e-01 1.11e+00 1.32e+00 7.36e-01 9.75e-01 1.09e+00 1.18e+00 1.34e+00 1.48e+00 1.74e+00 2.01e+00 1.05e+00 1.39e+00 1.54e+00 1.66e+00 1.87e+00 2.04e+00 2.36e+00 2.68e+00 1.63e+00 2.14e+00 2.36e+00 2.55e+00 2.84e+00 3.07e+00 3.49e+00 3.90e+00 2.89e+00 3.76e+00 4.14e+00 4.44e+00 4.91e+00 5.28e+00 5.90e+00 6.44e+00 4.15e+00 5.38e+00 5.92e+00 6.35e+00 6.99e+00 7.50e+00 8.32e+00 9.02e+00 6.47e+00 8.37e+00 9.20e+00 9.84e+00 1.08e+01 1.16e+01 1.28e+01 1.38e+01 1.15e+01 1.48e+01 1.63e+01 1.74e+01 1.91e+01 2.04e+01 2.24e+01 2.40e+01 2.58e+01 3.33e+01 3.65e+01 3.90e+01 4.27e+01 4.54e+01 4.98e+01 5.33e+01 4.03e+01 5.20e+01 5.70e+01 6.08e+01 6.65e+01 7.08e+01 7.76e+01 8.30e+01 7.16e+01 9.23e+01 1.01e+02 1.08e+02 1.18e+02 1.26e+02 1.38e+02 1.47e+02] # Linear extrapolation in λ, flat extrapolation in θ const bell_ff_interp = linear_interpolation((bell_ff_λ, bell_ff_t[end:-1:1]), bell_ff_κ[:, end:-1:1], extrapolation_bc=(Line(), Flat())) """ σ_h2minus_ff(λ::Unitful.Length, temperature::Unitful.Temperature) Compute free-free cross section coefficient from H2^- molecule. Units are m^5, needs to be multiplied by electron density anddensity of neutral hydrogen atoms to obtain linear extinction. Follows recipe from [Bell (1980)](https://ui.adsabs.harvard.edu/abs/1980JPhB...13.1859B/abstract), page 1863. Stimulated emission is included. """ function σ_h2minus_ff(λ::Unitful.Length, temperature::Unitful.Temperature) λi = ustrip(λ |> u"nm") # convert to units of table temp = ustrip(temperature |> u"K") κ = bell_ff_interp(λi, temp)::Float64 * 1e-29u"m^4/N" return κ * k_B * temperature |> u"m^5" end """ α_h2minus_ff( λ::Unitful.Length, temperature::Unitful.Temperature, h2_density::NumberDensity, electron_density::NumberDensity ) Compute extinction from H2^- molecule. Based on `σ_h2minus_ff`. """ function α_h2minus_ff( λ::Unitful.Length, temperature::Unitful.Temperature, h2_density::NumberDensity, electron_density::NumberDensity ) σ = σ_h2minus_ff(λ, temperature) return σ * h2_density * electron_density |> u"m^-1" end #=---------------------------------------------------------------------------- Recipes from Bates (1952) ----------------------------------------------------------------------------=# const bates_λ = 1f7 ./ [ 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000, 9000, 10_000, 12_000, 14_000, 16_000, 18_000, 20_000, 22_000, 24_000, 26_000, Inf32] # in nm const bates_t = [2.5f+03, 3.0f+03, 3.5f+03, 4.0f+03, 5.0f+03, 6.0f+03, 7.0f+03, 8.0f+03, 1.0f+04, 1.2f+04] # in K # H2plus bf + ff extinction coefficient in 1e-49 m^5 const bates_κ = convert(Array{Float32, 2}, [ 1.14 0.94 0.80 0.69 0.55 0.46 0.39 0.34 0.27 0.226 1.61 1.32 1.12 0.97 0.77 0.63 0.54 0.47 0.38 0.31 1.97 1.60 1.35 1.17 0.92 0.76 0.64 0.56 0.44 0.37 2.28 1.83 1.53 1.32 1.03 0.85 0.72 0.63 0.50 0.41 2.56 2.04 1.69 1.45 1.13 0.92 0.78 0.68 0.54 0.44 2.84 2.23 1.84 1.56 1.21 0.99 0.83 0.72 0.57 0.47 3.1 2.42 1.97 1.67 1.28 1.04 0.88 0.76 0.60 0.49 3.4 2.60 2.10 1.77 1.35 1.09 0.92 0.79 0.62 0.51 4.0 2.98 2.36 1.96 1.47 1.17 0.98 0.84 0.66 0.54 4.8 3.4 2.63 2.15 1.57 1.25 1.04 0.89 0.69 0.57 5.6 3.9 2.91 2.33 1.67 1.31 1.08 0.92 0.71 0.58 6.7 4.4 3.2 2.53 1.77 1.37 1.12 0.95 0.73 0.59 7.9 5.0 3.5 2.74 1.87 1.43 1.16 0.97 0.74 0.60 9.3 5.6 3.9 2.95 1.97 1.48 1.19 0.99 0.75 0.61 13.0 7.2 4.7 3.4 2.18 1.58 1.25 1.03 0.77 0.62 18.1 9.3 5.7 4.0 2.40 1.69 1.30 1.06 0.78 0.62 25.1 11.9 7.0 4.7 2.64 1.80 1.36 1.09 0.78 0.62 35. 15.2 8.4 5.4 2.91 1.91 1.41 1.11 0.79 0.61 47. 19.3 10.2 6.3 3.2 2.03 1.46 1.14 0.79 0.61 64. 24.3 12.2 7.3 3.5 2.16 1.52 1.16 0.79 0.60 86. 31. 14.6 8.4 3.8 2.29 1.57 1.18 0.79 0.59 114. 38. 17.3 9.6 4.2 2.42 1.63 1.21 0.79 0.58 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]) const bates_bf_fraction = convert(Array{Float32, 2}, [0.059 0.046 0.037 0.031 0.022 0.017 0.014 0.011 0.008 0.006 0.135 0.107 0.087 0.072 0.053 0.041 0.033 0.027 0.020 0.015 0.214 0.171 0.141 0.118 0.088 0.069 0.056 0.046 0.034 0.026 0.291 0.236 0.196 0.166 0.125 0.098 0.080 0.067 0.049 0.038 0.363 0.298 0.250 0.214 0.162 0.129 0.105 0.088 0.065 0.050 0.430 0.357 0.303 0.260 0.200 0.159 0.131 0.110 0.082 0.064 0.490 0.413 0.353 0.305 0.237 0.190 0.157 0.132 0.099 0.077 0.546 0.464 0.400 0.349 0.273 0.221 0.183 0.155 0.116 0.091 0.640 0.556 0.486 0.429 0.342 0.280 0.234 0.200 0.151 0.120 0.715 0.632 0.561 0.501 0.406 0.336 0.284 0.243 0.186 0.148 0.775 0.696 0.625 0.564 0.464 0.388 0.331 0.285 0.220 0.176 0.822 0.748 0.680 0.619 0.517 0.437 0.375 0.326 0.254 0.204 0.859 0.792 0.727 0.667 0.564 0.482 0.417 0.364 0.286 0.232 0.888 0.827 0.767 0.709 0.607 0.524 0.456 0.400 0.317 0.258 0.929 0.881 0.829 0.777 0.680 0.597 0.526 0.467 0.375 0.309 0.954 0.917 0.874 0.829 0.739 0.658 0.586 0.525 0.428 0.356 0.970 0.942 0.906 0.867 0.786 0.708 0.638 0.577 0.476 0.400 0.980 0.959 0.930 0.897 0.824 0.751 0.683 0.622 0.519 0.440 0.987 0.970 0.947 0.919 0.854 0.786 0.721 0.661 0.558 0.476 0.991 0.978 0.960 0.936 0.879 0.816 0.754 0.695 0.593 0.510 0.994 0.984 0.969 0.949 0.898 0.841 0.782 0.726 0.625 0.541 0.996 0.988 0.976 0.959 0.914 0.862 0.806 0.752 0.653 0.569 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]) const bates_ff_fraction = 1 .- bates_bf_fraction const bates_ff_κ = bates_κ .* bates_ff_fraction const bates_bf_κ = bates_κ .* bates_bf_fraction const bates_ff_interp = linear_interpolation((bates_λ[end:-1:1], bates_t), bates_ff_κ[end:-1:1, :], extrapolation_bc=(Line(), Flat())) const bates_bf_interp = linear_interpolation((bates_λ[end:-1:1], bates_t), bates_bf_κ[end:-1:1, :], extrapolation_bc=(Line(), Flat())) """ σ_h2plus_ff(λ::Unitful.Length, temperature::Unitful.Temperature) Compute free-free cross section coefficient from H2plus molecule, according to recipe from [Bates (1952)](https://ui.adsabs.harvard.edu/abs/1952MNRAS.112...40B/abstract), page 43. """ function σ_h2plus_ff(λ::Unitful.Length, temperature::Unitful.Temperature) λi = convert(Float32, ustrip(λ |> u"nm")) # convert to units of table temp = convert(Float32, ustrip(temperature |> u"K")) σ = bates_ff_interp(λi, temp)::Float32 * u"m^5" * 1e-49 return σ end """ α_h2plus_ff(λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, proton_density::NumberDensity) Compute free-free extinction from H2plus molecule. Based on `σ_h2plus_ff`. """ function α_h2plus_ff( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, proton_density::NumberDensity ) σ = σ_h2plus_ff(λ, temperature) return σ * h_neutral_density * proton_density end """ σ_h2plus_bf(λ::Unitful.Length, temperature::Unitful.Temperature) Compute bound-free extinction from H2plus molecule, according to recipe from [Bates (1952)](https://ui.adsabs.harvard.edu/abs/1952MNRAS.112...40B/abstract), page 43. """ function σ_h2plus_bf(λ::Unitful.Length, temperature::Unitful.Temperature) λi = convert(Float32, ustrip(λ |> u"nm")) # convert to units of table temp = convert(Float32, ustrip(temperature |> u"K")) # Table in 1e-49 m^5 return bates_bf_interp(λi, temp)::Float32 * u"m^5" * 1e-49 end """ h2plus_bf(λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, proton_density::NumberDensity) Compute bound-free extinction from H2plus molecule, based on `σ_h2plus_bf`. """ function α_h2plus_bf( λ::Unitful.Length, temperature::Unitful.Temperature, h_neutral_density::NumberDensity, proton_density::NumberDensity ) σ = σ_h2plus_bf(λ, temperature) return σ * h_neutral_density * proton_density end #=---------------------------------------------------------------------------- Recipes from Victor & Dalgarno (1969) ----------------------------------------------------------------------------=# const victor_h2_λ = SA[121.57, 130.00, 140.00, 150.00, 160.00, 170.00, 185.46, 186.27, 193.58, 199.05, 230.29, 237.91, 253.56, 275.36, 296.81, 334.24, 404.77, 407.90, 435.96, 546.23, 632.80] # in nm const victor_h2_σ = SA[2.35E-28, 1.22E-28, 6.80E-29, 4.24E-29, 2.84E-29, 2.00E-29, 1.25E-29, 1.22E-29, 1.00E-29, 8.70E-30, 4.29E-30, 3.68E-30, 2.75E-30, 1.89E-30, 1.36E-30, 8.11E-31, 3.60E-31, 3.48E-31, 2.64E-31, 1.04E-31, 5.69E-32] # in m2 const victor_h2_interp = linear_interpolation(victor_h2_λ, victor_h2_σ, extrapolation_bc=Line()) """ function σ_rayleigh_h2(λ::Unitful.Length) Compute cross section from Rayleigh scattering from H2 molecules. Uses recipe from [Victor and Dalgarno (1969)](https://aip.scitation.org/doi/pdf/10.1063/1.1671412), J. Chem. Phys. 50, 2535, page 2538 for λ <= 632.80, and the recipe from [Tarafdar & Vardya (1973)](https://ui.adsabs.harvard.edu/abs/1973MNRAS.163..261T/abstract) page 272, for λ > 632.80. """ function σ_rayleigh_h2(λ::Unitful.Length) λi = ustrip(λ |> u"nm") if λi >= victor_h2_λ[1] if λi <= victor_h2_λ[end] σ_h2 = victor_h2_interp(λi)::Float64 * u"m^2" else λ2 =1 / λi^2 # Tarafdar coeffs converted from λ^4, λ^6, λ^8 in Å to nm and cm^2 to m^2: σ_h2 = (8.779e-21 + (1.323e-16 + 2.245e-12 * λ2) * λ2) * λ2^2 * u"m^2" end else σ_h2 = 0.0u"m^2" end return σ_h2 end """ function α_rayleigh_h2(λ::Unitful.Length, h2_density::NumberDensity) Compute extinction from Rayleigh scattering from H2 molecules. Based on `σ_rayleigh_h2`. """ function α_rayleigh_h2(λ::Unitful.Length, h2_density::NumberDensity) σ_h2 = σ_rayleigh_h2(λ) return σ_h2 * h2_density end #=---------------------------------------------------------------------------- Recipes from Dalgarno (1962) ----------------------------------------------------------------------------=# """ σ_rayleigh_h(λ::Unitful.Length) Compute cross section from Rayleigh scattering from neutral H atoms. To obtain extinction, multiply by the number density of neutral hydrogen atoms. Uses recipe from Dalgarno (1962), Geophysics Corp. of America, Technical Report No. 62-28-A (unavailable), which is accurate to 1% for λ > 125.0 nm. """ function σ_rayleigh_h(λ::Unitful.Length) λi = ustrip(λ |> u"Å") if λi >= 1215.7 λ2 = 1 / λi^2 # First coefficient has conversion from Mbarn to m^2. From RH: σ_h = (5.81e-17 * λ2^2 * (1 + 2.452e6 * λ2 + 4.801e12 * λ2^2)) * u"m^2" else σ_h = 0.0u"m^2" end return σ_h end """ α_rayleigh_h(λ::Unitful.Length, h_neutral_density::NumberDensity) Compute extinction from Rayleigh scattering from neutral H atoms. """ function α_rayleigh_h(λ::Unitful.Length, h_neutral_density::NumberDensity) σ_h = σ_rayleigh_h(λ) return σ_h * h_neutral_density end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
2061
""" Computes line extinction and associated quantities. """ """ function calc_Aul(λ0::Unitful.Length, g_ratio::Real, f_value::AbstractFloat) Compute the spontaneous deexcitation rate \$A_{ul}\$ (natural broadening) for a bound-bound transition, using the SI expression *per wavelength*: \$\$ A_{ul} = \\frac{2\\pi e^2}{\\varepsilon_0 m_e c} \\frac{g_l}{g_u} \\frac{f_{lu}}{\\lambda^2} \$\$ for a given rest wavelength `λ0`, ration between statistical weights of lower and upper levels (`g_ratio` = gl / gu), and `f_value` . """ function calc_Aul(λ0::Unitful.Length, g_ratio::Real, f_value::AbstractFloat) (2π * e^2 / (ε_0 * m_e * c_0) * g_ratio * f_value / λ0^2) |> u"s^-1" end """ function calc_Bul(λ0::Unitful.Length, Aul::Unitful.Frequency) Compute the induced deexcitation rate \$B_{ul}\$ for a bound-bound transition, using the SI expression *per wavelength*: \$\$ B_{ul} = \\frac{\\lambda^5}{2 h c} A_{ul} \$\$ for a given rest wavelength `λ0`, and spontaneous deexcitation rate `Aul.` """ calc_Bul(λ0::Unitful.Length, Aul::Unitful.Frequency) = (λ0^5 * Aul / (2h * c_0^2)) |> u"m^3 / J" """ If input is in wavenumber, convert to energy. Otherwise keep as energy. """ function wavenumber_to_energy(a::Quantity{T}) where T <: AbstractFloat if typeof(a) <: PerLength a = convert(Unitful.Quantity{T, Unitful.𝐋^2 * Unitful.𝐓^-2 * Unitful.𝐌}, (h * c_0 * a) |> u"aJ") end @assert typeof(a) <: Unitful.Energy{T} "Input units must either be wavenumber or energy" return a end """ Calculates the Blackbody (Planck) function per wavelength, for given wavelength and temperature. """ function blackbody_λ(λ::Unitful.Length, temperature::Unitful.Temperature) (2h * c_0^2) / (λ^2 * λ^3 * (exp((h * c_0 / k_B) / (λ * temperature)) - 1)) end """ Calculates the Blackbody (Planck) function per frequency, for a given frequency and temperature. """ function blackbody_ν(ν::Unitful.Frequency, temperature::Unitful.Temperature) (2h / c_0^2) * (ν^3 / (exp((h / k_B) * (ν / temperature)) - 1)) end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
262
const σ_thomson = (e^4 / (6π * ε_0^2 * m_e^2 * c_0^4)) |> u"m^2" """ α_thomson(electron_density::NumberDensity) Compute the Thomson extinction as a function of electron density. """ α_thomson(electron_density::NumberDensity) = σ_thomson * electron_density
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
3229
""" Computes line profiles and associated quantities. """ const invSqrtPi = 1. / sqrt(π) """ Compute scaled complex complementary error function using [Humlicek (1982, JQSRT 27, 437)](https://doi.org/10.1016/0022-4073(82)90078-4) W4 rational approximations. Here, z is defined as z = v + i * a, and returns w(z) = H(a,v) + i * L(a, v). """ function humlicek(z::Complex) s = abs(real(z)) + imag(z) if s > 15.0 # region I w = im * invSqrtPi * z / (z * z - 0.5) elseif s > 5.5 # region II zz = z * z w = im * (z * (zz * invSqrtPi - 1.4104739589)) / (0.75 + zz * (zz - 3.0)) else x, y = real(z), imag(z) t = y - im * x if y >= 0.195 * abs(x) - 0.176 # region III w = ((16.4955 + t * (20.20933 + t * (11.96482 + t * (3.778987 + 0.5642236 * t)))) / (16.4955 + t * (38.82363 + t * (39.27121 + t * (21.69274 + t * (6.699398 + t)))))) else # region IV u = t * t nom = t * (36183.31 - u * (3321.99 - u * (1540.787 - u * (219.031 - u * (35.7668 - u * (1.320522 - u * .56419)))))) den = 32066.6 - u * (24322.8 - u * (9022.23 - u * (2186.18 - u * (364.219 - u * (61.5704 - u * (1.84144 - u)))))) w = exp(u) - nom / den end end return w end """ voigt_profile(a::T, v::AbstractFloat, ΔD::T)::T Compute the normalised Voigt profile, given a damping constant `a`, dimensionless wavelength or frequency `v`, and Doppler width `ΔD` (wavelength or frequency). In the case of wavelength, v = (λ - λ0) / ΔD. Uses Humlicek's W4 approximation. Returns in inverse units of ΔD. """ function voigt_profile(a::T, v::AbstractFloat, ΔD::T)::T where T <: AbstractFloat z = v + a * im profile = real(humlicek(z)) return profile * invSqrtPi / ΔD end """ dispersion_profile(a::T, v::AbstractFloat, ΔD::T)::T Compute the normalised dispersion (or Faraday) profile, given a damping constant `a`, dimensionless wavelength or frequency `v`, and Doppler width `ΔD` (wavelength or frequency). In the case of wavelength, v = (λ - λ0) / ΔD. Uses Humlicek's W4 approximation. Returns in inverse units of ΔD. """ function dispersion_profile(a::T, v::AbstractFloat, ΔD::T)::T where T <: AbstractFloat z = v + a * im profile = imag(humlicek(z)) return profile * invSqrtPi / ΔD end """ doppler_width( λ0::Unitful.Length, mass::Unitful.Mass, temperature::Unitful.Temperature ) doppler_width( ν0::Unitful.Frequency, mass::Unitful.Mass, temperature::Unitful.Temperature ) Compute Doppler width in wavelength or frequency units, given a rest wavelength/frequency, mass of atom/ion, and temperature. Returns in typical units for UV/optical/infrared lines. """ function doppler_width( λ0::Unitful.Length, mass::Unitful.Mass, temperature::Unitful.Temperature ) return (λ0 / c_0 * sqrt(2 * k_B * temperature / mass)) |> u"nm" end function doppler_width( ν0::Unitful.Frequency, mass::Unitful.Mass, temperature::Unitful.Temperature ) return (ν0 / c_0 * sqrt(2 * k_B * temperature / mass)) |> u"THz" end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
code
15028
using Interpolations using SpecialFunctions: erfcx using Test using Transparency using Unitful import PhysicalConstants.CODATA2018: h, k_B, R_∞, c_0, m_e, e, ε_0, m_u @testset "Thomson" begin @test α_thomson(1.e29u"m^-3") ≈ 6.652458732173518u"m^-1" @test α_thomson(0u"m^-3") == 0.0u"m^-1" @test_throws MethodError α_thomson(1) @test_throws MethodError α_thomson(1u"m") end @testset "Hydrogen" begin @testset "hminus_ff" begin θ = [0.5, 1, 2] temp = 5040u"K" ./ θ λ = [91130, 11390, 3038]u"Å" # Testing against values in the original table @test all(Transparency.α_hminus_ff_stilley.( λ, temp, 1u"m^-3", 1u"Pa" ./ (k_B .* temp)) ≈ [2.75e-28, 8.76e-30, 1.45e-30]u"m^-1") # Only testing against implementation (no table, only coefficients) @test all(Transparency.α_hminus_ff_john.( λ, temp, 1u"m^-3", 1u"Pa" ./ (k_B .* temp)) ≈ [2.7053123415611454e-28, 8.7520478601176e-30, 1.6977098265784962e-30]u"m^-1") @test α_hminus_ff.(λ, temp, 1u"m^-3", 1u"m^-3", recipe="stilley") ≈ Transparency.α_hminus_ff_stilley.(λ, temp, 1u"m^-3", 1u"m^-3") @test α_hminus_ff.(λ, temp, 1u"m^-3", 1u"m^-3", recipe="john") ≈ Transparency.α_hminus_ff_john.(λ, temp, 1u"m^-3", 1u"m^-3") @test_throws "ErrorException" α_hminus_ff.(λ, temp, 1u"m^-3", 1u"m^-3", recipe="aaa") end @testset "hminus_bf" begin # Values from the table, ensuring no stimulated emission λ = [18, 121, 164, 500, 850, 1600]u"nm" # three values from each table temp = 6000u"K" @test σ_hminus_bf.(λ, temp; recipe="wbr") ≈ Transparency.σ_hminus_bf_wbr.(λ, temp) @test all(Transparency.α_hminus_bf_wbr.(λ, 0u"K", 1u"m^-3") ≈ [6.7e-24, 5.43e-22, 7.29e-22, 2.923e-21, 4.001e-21, 1.302e-22]u"m^-1") @test Transparency.α_hminus_bf_wbr(0u"nm", 0u"K", 1u"m^-3") == 0u"m^-1" λ = [500, 8000, 16000]u"Å" tmp = [1.257012463394068, 36.18291836328047, 0.9682451193929176] @test Transparency.α_hminus_bf_wbr.(λ, temp, 1e24u"m^-3", 1e25u"m^-3") ≈ tmp * u"m^-1" @test Transparency.σ_hminus_bf_wbr.(λ, temp) * 1e49 ≈ tmp * u"m^5" @test all(Transparency.α_hminus_bf_geltman.(λ, 0u"K", 1u"m^-3") ≈ [1.5e-22, 3.92e-21, 1.7e-22]u"m^-1") @test Transparency.α_hminus_bf_geltman(0u"nm", 0u"K", 1u"m^-3") == 0u"m^-1" # Only testing against implementation (no table, only coefficients) @test all(Transparency.α_hminus_bf_geltman.(λ, 5000u"K", 1e24u"m^-3", 1e25u"m^-3") ≈ [ 2.5276368595110785, 64.24516492134173, 2.3904062765360763]u"m^-1") @test all(Transparency.α_hminus_bf_john.(λ, 5000u"K", 1e24u"m^-3", 1e25u"m^-3") ≈ [ 2.5257481813577, 65.22804371400161, 1.8270928643449478]u"m^-1") temp = [2000, 5000, 10000]u"K" @test Transparency.calc_hminus_density.(1e13u"m^-3", temp, 1e14u"m^-3") ≈ [91.94566524525405, 1.6850912396740527, 0.24835857088939245]u"m^-3" @test α_hminus_bf.(λ, temp, 1u"m^-3", 1u"m^-3"; recipe="geltman") ≈ Transparency.α_hminus_bf_geltman.(λ, temp, 1u"m^-3", 1u"m^-3") @test α_hminus_bf.(λ, temp, 1u"m^-3", 1u"m^-3"; recipe="john") ≈ Transparency.α_hminus_bf_john.(λ, temp, 1u"m^-3", 1u"m^-3") @test_throws "ErrorException" α_hminus_bf.(λ, temp, 1u"m^-3", 1u"m^-3"; recipe="aaa") end @testset "hydrogenic" begin t1 = (3.28805e15u"Hz" * h / k_B) |> u"K" temp = [t1 * 1e3, t1, t1 * 1e-2] ν = k_B / h .* [temp[1] * 1e-4, temp[2] * 1e-1, temp[3] * 1e1] # Test a few points from Kurucz's table @test all(Transparency.gaunt_ff.(ν, temp, 1) .≈ [5.53, 1.8, 1.08]) @test Transparency.gaunt_ff(500u"nm", 5000u"K", 1) == Transparency.gaunt_ff( c_0 / 500u"nm", 5000u"K", 1) @test Transparency.gaunt_bf(500u"nm", 2, 5) == Transparency.gaunt_bf(c_0 / 500u"nm", 2, 5) # Note: gaunt_bf only tested against RH version, which is < 0 in some cases! @test Transparency.gaunt_bf(500u"nm", 1, 1.1) ≈ 0.023132239149173173 @test Transparency.gaunt_bf(100u"nm", 2, 5) ≈ 1.0517607988011628 @test_throws AssertionError Transparency.gaunt_bf(500u"nm", 1, 1) ν = [0.15, 0.6, 300]u"PHz" # Only testing against implementation (no table, only expression) @test all(α_hydrogenic_ff.(ν, 5000u"K", 1e24u"m^-3", 1e24u"m^-3", 1) ≈ [ 134.2760926064222, 2.662541955122332, 2.0317078183858428e-8]u"m^-1") @test all(σ_hydrogenic_ff.(ν, 5000u"K", 1) ≈ [ 1.342760926064222e-46, 2.6625419551223324e-48, 2.0317078183858426e-56]u"m^5") @test all(α_hydrogenic_bf.(ν, ν / 1.1, 5000u"K", 1e22u"m^-3", 1., 2.) ≈ [ 2.4903105889694794, 9.569685175346825, 9.154320813938323]u"m^-1") @test α_hydrogenic_bf(ν[1], ν[1] * 1.1, 1u"K", 1u"m^-3", 1, 2.) == 0u"m^-1" @test α_hydrogenic_bf(ν[1], ν[1] * 1.1, 1u"K", 1u"m^-3", 1, 2.) == 0u"m^-1" @test σ_hydrogenic_bf_scaled(1u"m^2", ν[3], ν[3] * 1.1, 1., 1.) == 0u"m^2" @test σ_hydrogenic_bf_scaled(42u"m^2", ν[3], ν[3], 1., 1.) == 42u"m^2" @test σ_hydrogenic_bf_scaled(1u"m^2", c_0 / ν[3], c_0 /ν[3], 2., 5.) ≈ σ_hydrogenic_bf_scaled(1u"m^2", ν[3], ν[3], 2., 5.) end @testset "h2minus" begin # Test a few points from the table λ = [350.5, 1139.1, 15_188.3]u"nm" temp = 5040u"K" ./ [0.5, 1.6, 3.6] @test all(α_h2minus_ff.(λ, temp, 1e31u"m^-3", 1u"Pa" ./ (k_B .* temp)) ≈ [ 4.17, 80.60, 14700]u"m^-1") end @testset "h2plus" begin λ = 1f7u"nm" ./ [500, 4000, 26_000] temp = [12_000, 5000, 2500]u"K" # Test opacity table directly, sum of bf and ff κ_total = α_h2plus_ff.(λ, temp, 1f25u"m^-3", 1f24u"m^-3") .+ α_h2plus_bf.(λ, temp, 1f25u"m^-3", 1f24u"m^-3") κ_total = convert.(typeof(1f0u"m^-1"), κ_total) # convert to Float32 @test all(κ_total ≈ [0.226, 1.35, 114.]u"m^-1") # Test bf fraction table κ_tmp = α_h2plus_bf.(λ, temp, 1f25u"m^-3", 1f24u"m^-3") @test all(convert.(typeof(1f0u"m^-1"), κ_tmp) ./ κ_total ≈ [0.006, 0.273, 0.996]) end @testset "rayleigh" begin # Testing against implementation @test α_rayleigh_h2(100u"nm", 1u"m^-3") == 0.0u"m^-1" λ = [200, 600, 2000]u"nm" @test all(α_rayleigh_h2.(λ, 1e30u"m^-3") ≈ [ 8.565893085787453, 0.0747454429941088, 0.0005507634570312499]u"m^-1") @test α_rayleigh_h(100u"nm", 1u"m^-3") == 0.0u"m^-1" @test all(α_rayleigh_h.(λ, 1e30u"m^-3") ≈ [ 6.946808203124999, 0.04804975738502133, 0.00036536185226953123]u"m^-1") end end @testset "Voigt" begin a = im .* 10 .^LinRange(-4, -0.3, 20)' v = 10 .^LinRange(-1, 2, 20)' z = a' .+ hcat(-v, v) @testset "humlicek" begin # Test against more precise erfcx function @test isapprox(humlicek.(z), erfcx.(-im .* z), rtol=1e-4) @test humlicek(im * 0) == 1. @test_throws MethodError humlicek(0.) end @testset "profiles" begin wave = 1.0 @test voigt_profile(0.1, 0.5, wave) ≈ real(humlicek(0.5 + 0.1 *im)) / sqrt(π) @test dispersion_profile(0.1, 0.5, wave) ≈ imag(humlicek(0.5 + 0.1 *im)) / sqrt(π) # Symmetry / anti-symmetry @test voigt_profile.(0.1, v, wave) == voigt_profile.(0.1, -v, wave) @test dispersion_profile.(0.1, v, wave) == -dispersion_profile.(0.1, -v, wave) end @test doppler_width(ustrip(c_0) * u"m", 1u"kg", ustrip(0.5 / k_B) * u"K") ≈ 1u"m" @test doppler_width(ustrip(c_0) / u"s", 1u"kg", ustrip(0.5 / k_B) * u"K") ≈ 1u"Hz" end @testset "Broadening" begin χup = 1.1u"aJ" χlo = 1.0u"aJ" χ∞ = 1.5u"aJ" Z = 1 mass = 1.0u"kg" @testset "van der Waals" begin # Testing against implementation @test const_unsold(mass, χup, χlo, χ∞, Z) ≈ 1.1131993895644783e-15 rtol=1e-10 @test γ_unsold.(1.0, 1u"K", [1, 2]u"m^-3") ≈ [1, 2]u"s^-1" @test γ_unsold(1.0, 1000u"K", 1u"m^-3") ≈ (1000^0.3)u"s^-1" @test const_barklem(m_u * 1, 0.3, 300) ≈ 1.0853795252714703e-15u"m^3 / s" @test const_barklem(m_u * 1, 1, 2) == 2 * const_barklem(m_u * 1, 1, 1) @test_throws ErrorException const_barklem(m_u * 1, 1, -1) @test_throws ErrorException const_barklem(m_u * 1, -1, 1) @test γ_barklem(0.3, 123u"m^3/s", 1u"K", 1u"m^-3") == 123.0u"s^-1" @test γ_barklem(0.3, 1e-16u"m^3/s", 6000u"K", 1e23u"m^-3") ≈ 2.100646320154e8u"s^-1" @test const_deridder_rensbergen(m_u * 1, m_u * 1, 3, 1) ≈ 3*2e-14u"m^3/s" @test_throws ErrorException const_deridder_rensbergen(m_u * 1, m_u * 1, -1, 1) @test γ_deridder_rensbergen(0.5, 2e-14u"m^3/s", 6000u"K", 1e22u"m^-3") ≈ 1.5491933384829668e10u"s^-1" @test γ_deridder_rensbergen(0.5, 1u"m^3/s", 1e3u"K", 1u"m^-3") ≈ sqrt(1e3)u"s^-1" end @testset "Linear Stark" begin # Test against Sutton formula @test γ_stark_linear.([0., 1.]u"m^-3", 3, 1) ≈ [0, 0.0025635396]u"rad / s" tmp = 0.00102862026663837u"rad / s" @test γ_stark_linear.([1, 1e20]u"m^-3", 3, 2) ≈ [tmp, tmp * (1e20)^(2/3)] @test_throws AssertionError γ_stark_linear(1.0u"m^-3", 1, 1) @test_throws AssertionError γ_stark_linear(1.0u"m^-3", 1, 0) end @testset "Quadratic Stark" begin # Testing against implementation @test Transparency.c4_traving(χup, χlo, χ∞, Z) ≈ 3.744741607310466e-23u"m^4 / s" @test const_stark_quadratic(mass, χup, χlo, χ∞, Z) ≈ 2.7236711602117037e-13u"m^3 / s" @test const_stark_quadratic(mass, χup, χlo, χ∞, Z; scaling=2) ≈ const_stark_quadratic(mass, χup, χlo, χ∞, Z) * 2^(2/3) @test γ_stark_quadratic(1.2345u"m^-3", 0u"K") ≈ 1.2345u"s^-1" @test γ_stark_quadratic(1e10u"m^-3", 10000u"K") ≈ 1e10u"s^-1" * 10000^(1/6) # Testing against implementation temp = [5000, 10000]u"K" @test (γ_stark_quadratic_gray.(1e22u"m^-3", temp, 1e-20u"m^4/s") ≈ [5.709239783376956e11, 6.40840498153864e11]u"s^-1") end @testset "Radiation quantities" begin @test calc_Aul(1u"m", ustrip(ε_0 * m_e * c_0), 1 / ustrip(2π * e^2)) ≈ 1u"s^-1" @test calc_Bul(1u"m", 0u"Hz") ≈ 0u"m^3 / J" @test calc_Bul(1000u"nm", 1e9u"Hz") ≈ 8.396002689872053e-6u"m^3 / J" @test damping(1u"Hz", 1u"m", 1u"m") ≈ ustrip(1 / (4π * c_0)) end end @testset "Line" begin @testset "Blackbody" begin λ = 500.0u"nm" @test blackbody_λ(λ, 5000u"K") ≈ 12.107190590398108u"kW / (m^2 * nm)" @test blackbody_ν(c_0 / λ, 5000u"K") ≈ 10.096310186694323u"nW / (m^2 * Hz)" @test blackbody_λ(λ, 5000u"K") ≈ blackbody_ν(c_0 / λ, 5000u"K") * c_0 / λ^2 end @test Transparency.wavenumber_to_energy(ustrip(1 / (h * c_0)) * u"m^-1") ≈ 1u"J" end @testset "Collisions" begin @testset "Johnson" begin ne = 1e20u"m^-3" @test_throws AssertionError coll_exc_hydrogen_johnson(2, 1, ne, 1u"K") @test_throws AssertionError coll_exc_hydrogen_johnson(-1, 1, ne, 1u"K") @test_throws AssertionError coll_ion_hydrogen_johnson(-1, ne, 1u"K") @test coll_exc_hydrogen_johnson(1, 2, ne, 1u"K") ≈ 0.0u"s^-1" @test coll_ion_hydrogen_johnson(1, ne, 1u"K") ≈ 0.0u"s^-1" @test all(Transparency._bn.([1, 2, 3]) ≈ [-0.603, 0.116875, 0.25876543209876557]) @test all(Transparency._rn.([1, 2, 3]) ≈ [0.45, 1.94 * 2^-1.57, 1.94 * 3^-1.57]) @test Transparency.ξ(1e20) ≈ 0.0 @test Transparency.ξ(0.1) ≈ 6.125071285714834 # Testing against implementation temp = [3000, 5000, 10000]u"K" @test all(coll_exc_hydrogen_johnson.(1, 2, ne, temp) ≈ [3.930707156378747e-11, 0.0002263838629287018, 24.38373538697928]u"s^-1") @test all(coll_exc_hydrogen_johnson.(1, 4, ne, temp) ≈ [1.3966268525286798e-16, 4.2003964667891764e-8, 0.08902629232613525]u"s^-1") @test all(coll_exc_hydrogen_johnson.(2, 3, ne, temp) ≈ [41449.22586174524, 712944.3194152612, 6.358527475844925e6]u"s^-1") @test all(coll_ion_hydrogen_johnson.(1, ne, temp) ≈ [2.0663760818067978e-18, 3.980869050632006e-9, 0.04717372440180093]u"s^-1") @test all(coll_ion_hydrogen_johnson.(2, ne, temp) ≈ [5.6897483527787776, 1746.3754923299948, 166085.00320954874]u"s^-1") @test all(coll_ion_hydrogen_johnson.(3, ne, temp) ≈ [35134.766878609924, 592137.0862432675, 6.093655265672546e6]u"s^-1") @test all(CE_RH_hydrogen.(1, [2, 3, 4], 5000u"K") ≈ [6.098416316523097e-16, 1.151527001714162e-16, 4.20364505409004e-17]u"m^3 / (K^(1/2) * s)") @test all(CI_RH_hydrogen.([1, 2, 3], 5000u"K") ≈ [2.86396932776755e-17, 6.595860989488697e-16, 2.791765778377678e-15]u"m^3 / (K^(1/2) * s)") end @testset "RH rates" begin temp = [3000, 5000, 10000]u"K" data1 = [1, 1, 1]u"m^3 / (K^(1/2) * s)" data2 = [1, 1, 1] interp1 = linear_interpolation(temp, data1) interp2 = linear_interpolation(temp, data2) # Using wrong units of data: @test_throws MethodError coll_CE(interp2, 1, 1u"m^-3", 5000u"K") @test_throws MethodError coll_CI(interp2, 1u"J", 1u"m^-3", 5000u"K") @test_throws MethodError coll_Ω(interp1, 1, 1u"m^-3", 5000u"K") @test_throws AssertionError coll_CI(interp1, -1u"J", 1u"m^-3", 5000u"K") @test coll_CE(interp1, 1, 1u"m^-3", 10000u"K") ≈ 100.0u"s^-1" @test coll_CI(interp1, 1e-50u"J", 1u"m^-3", 10000u"K") ≈ 100.0u"s^-1" @test coll_Ω(interp2, 1, 1u"m^-3"/8.629132180819955e-14, 10000u"K") ≈ 1.0u"s^-1" end @testset "Przybilla & Butter" begin temp = [5000, 10000, 30000, 250000]u"K" ne = 1u"m^-3" c0 = sqrt.(temp) ./ Transparency.Ω_c0 @test_throws AssertionError coll_deexc_hydrogen_PB04(1, 8, 1, ne, temp[1]) @test_throws AssertionError coll_deexc_hydrogen_PB04(3, 1, 1, ne, temp[1]) # Compare with a few random values from the original table @test isapprox(ustrip.(coll_deexc_hydrogen_PB04.(1, 2, 1, ne, temp) .* c0), [0.698, 0.809, 1.15, 3.95], atol=1e-3) @test isapprox(ustrip.(coll_deexc_hydrogen_PB04.(1, 4, 1, ne, temp) .* c0), [0.102, 0.122, 0.228, 0.488], atol=1e-3) @test isapprox(ustrip.(coll_deexc_hydrogen_PB04.(2, 3, 1, ne, temp) .* c0), [27.8, 33.8, 62.0, 252], atol=1e-3) @test isapprox(ustrip.(coll_deexc_hydrogen_PB04.(2, 7, 1, ne, temp) .* c0), [7.26, 9.27, 11.4, 11.9], atol=1e-3) @test isapprox(ustrip.(coll_deexc_hydrogen_PB04.(4, 5, 1, ne, temp) .* c0), [817, 1350, 3400, 10000], atol=1e-3) end end
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "BSD-3-Clause" ]
0.2.2
870b7b286b2114e1b051860e55f6ca7ee7a39b83
docs
492
[![Build Status][gha-img]][gha-url] [![][codecov-img]][codecov-url] # Transparency.jl A package to compute opacity (or transparency) in stellar atmospheres. [gha-img]: https://github.com/tiagopereira/Transparency.jl/workflows/CI/badge.svg [gha-url]: https://github.com/tiagopereira/Transparency.jl/actions?query=workflow%3ACI [codecov-img]: https://codecov.io/gh/tiagopereira/Transparency.jl/branch/main/graph/badge.svg [codecov-url]: https://codecov.io/gh/tiagopereira/Transparency.jl
Transparency
https://github.com/tiagopereira/Transparency.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
code
4968
module TypeTransform export @transform, transform include("fexpr.jl") include("subtypes.jl") """ @transform Transform the given type to another type during defining a method. Use `@transform` and the function that transforms the type to another type. The function should return an `Array` of types that you want the method to be defined for. For example, we use `allsubtypes()` type transform function to define specific methods for all of subtypes of a given type (fix ambiguity error!). ```julia using TypeTransform abstract type A end abstract type B <:A end abstract type C <:B end @transform function foo(a, b::allsubtypes(A)) println("a new method") end ``` Since `allsubtypes(A)` returns the array of types `[A, B, C]`, three methods are defined ```julia julia> methods(foo) # 3 methods for generic function "foo": [1] foo(a, b::C) in Main at none:2 [2] foo(a, b::B) in Main at none:2 [3] foo(a, b::A) in Main at none:2 ``` Note that you could use `subtypes()` instead of `allsubtypes()`, which defines methods only for the direct subtypes (`[B]` in this case). If you want that only specific functions to be considered in transformation by `@transform`, give an `Array` of `Symbol`s that contains the function names you want to be transformed. ```julia @transform [:subtypes, :allsubtypes], function foo_array(a, b::allsubtypes(A)) println("a new method") end ``` It is possible to use the function names inside curly expressions like `Union{A, subtypes{B}}` or `Type{allsubtypes{A}}` or use arguments without a name: ```julia @transform function foo_curly(a, ::Union{T,allsubtypes(A)}, c::T) where {T<:Int64} println("a new method") end ``` # Motivation The first motivation for this package was to fix ambiguity error by defining specific methods. If you run the following program ```julia abstract type A end abstract type B <:A end # my general vector method foo(a::Vector, b::Type{<:A}) = print("vector method") # my special B mwthod foo(a, b::Type{B}) = print("B method") ``` `foo([1,2], B)` will give an ambiguity error, while if you use `allsubtypes`, you can fix the issue. ```julia # my general vector method @transform foo(a::Vector, b::allsubtypes(A)) = print("vector method") ``` """ macro transform(expr::Expr) #TODO: support for multiple function transforms in a @transform modul = __module__ macroexpand(modul, expr) out = transform(modul, expr) return out end function transform(modul::Module, expr) if expr.head == :block expr = expr.args[2] end if expr.head == :tuple # some functions are specified funclist = eval(expr.args[1]) isfunclist = true fexpr = expr.args[2] else fexpr = expr isfunclist = false end f, args, wherestack, body = unwrap_fun(fexpr, true, true) fmethods = Expr[] for (iArg, arg) in enumerate(args) if arg isa Expr && arg.head == :(::) && arg.args[end] isa Expr if arg.args[end].head == :call # skip this function if it is not in funclist if isfunclist && !(arg.args[end].args[1] in funclist) continue end funcname = arg.args[end].args[1] intype = arg.args[end].args[2] isCurly =false elseif arg.args[end].head == :curly # string match is faster strarg = string(arg.args[end]) # match any function name m = match(r"([a-zA-Z\_][a-zA-Z0-9\_]*)\((.*)\)", strarg) if m === nothing continue end funcname = Meta.parse(m.captures[1]) # skip this function if it is not in funclist if isfunclist && !(funcname in funclist) continue end intype = Meta.parse(m.captures[2]) isCurly =true else continue end outtypes =Core.eval(modul, quote $funcname($intype) end) outtypes_len = length(outtypes) fmethod = Vector{Expr}(undef, outtypes_len) for (iouttype, outtypeI) in enumerate(outtypes) # replacing with actual trasformed type if !isCurly args[iArg].args[end] = outtypeI else args[iArg].args[end] = Meta.parse(replace(strarg, m.match=>string(outtypeI))) end fmethod[iouttype] = copy(wrap_fun(f, args, wherestack, body)) end append!(fmethods, fmethod) end end if isempty(fmethods) error("No method defined") end # print(fmethods) out = quote Base.@__doc__(function $f end) # supports docuementation $(esc.(fmethods)...) end return out end end
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
code
3368
export unwrap_fun, wrap_fun, unwrap_head, wrap_head, unwrap_fcall, wrap_fcall ################################################################ """ head, body = unwrap_fun(fexpr) fcall, wherestack, body = unwrap_fun(fexpr,true) f, args, wherestack, body = unwrap_fun(fexpr, true, true) Unwraps function expression. """ function unwrap_fun(expr::Expr) if expr.head in (:function, :(=)) fexpr = expr elseif expr.head == :block fexpr = expr.args[2] # separate fexpr from block else error("Expression is not supported") end head = fexpr.args[1] body = fexpr.args[2] return head, body end function unwrap_fun(expr::Expr, should_unwrap_head::Bool) if expr.head in (:function, :(=)) fexpr = expr elseif expr.head == :block fexpr = expr.args[2] # separate fexpr from block else error("Expression is not supported") end head = fexpr.args[1] fcall, wherestack = unwrap_head(head) body = fexpr.args[2] return fcall, wherestack, body end function unwrap_fun(expr::Expr, should_unwrap_head::Bool, should_unwrap_fcall::Bool) if expr.head in (:function, :(=)) fexpr = expr elseif expr.head == :block fexpr = expr.args[2] # separate fexpr from block else error("Expression is not supported") end head = fexpr.args[1] fcall, wherestack = unwrap_head(head) f, args = unwrap_fcall(fcall) body = fexpr.args[2] return f, args, wherestack, body end ################################################################ """ fexpr = wrap_fun(f, args, wherestack, body) fexpr = wrap_fun(fcall, wherestack, body) fexpr = wrap_fun(head, body) fexpr = wrap_fun(fexpr) Returns a function definition expression """ function wrap_fun(f, args, wherestack, body) fcall = wrap_fcall(f, args) head = wrap_head(fcall, wherestack) return Expr(:function, head, Expr(:block, body)) end function wrap_fun(fcall, wherestack, body) head = wrap_head(fcall, wherestack) return Expr(:function, head, Expr(:block, body)) end function wrap_fun(head::Expr, body::Expr) return Expr(:function, head, Expr(:block, body)) end function wrap_fun(fexpr::Expr) if fexpr.head in (:function, :(=)) return fexpr elseif fexpr.head == :block fexpr = fexpr.args[2] # separate fexpr from block return fexpr else error("Expression is not supported") end end ################################################################ function unwrap_head(head) wherestack = Any[] while head isa Expr && head.head == :where push!(wherestack, head.args[2]) head = head.args[1] end fcall = head fcall, wherestack end function wrap_head(fcall, wherestack) for w in Iterators.reverse(wherestack) fcall = Expr(:where, fcall, w) # fcall = Expr(:where, fcall, esc(w)) end head = fcall return head end ################################################################ function unwrap_fcall(fcall::Expr) if !(fcall.head == :call) error("Expression is not supported") end f = fcall.args[1] args = fcall.args[2:end] return f, args end function wrap_fcall(f, args) fcall = :($f($((args)...))) return fcall end ################################################################
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
code
544
export allsubtypes, subtypes import InteractiveUtils.subtypes ################################################################ function allsubtypes(T::Type) t = Type[] push!(t, T) # include itself allsubtypes.(subtypes(T), Ref(t)) return unique(t) end function allsubtypes(T, t) # T is an element # recursive method push!(t, T) if isempty(subtypes(T)) return else allsubtypes.(subtypes(T), Ref(t)) end end allsubtypes(T::Symbol) = allsubtypes(Core.eval(Main, T))#convert Symbol to Type
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
code
337
@testset "fexpr" begin fexpr = :( function bar(a, b::T1, c::T2) where {T1<:AbstractArray} where {T2<:Int64} print("vector method") end) f, args, wherestack, body = unwrap_fun(fexpr, true, true) fexpr1 = wrap_fun(f, args, wherestack, body) eval(fexpr1) methods(bar) # @test fexp1 == fexpr end
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
code
75
using TypeTransform using Test include("fexpr.jl") include("specific.jl")
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
code
1199
abstract type A end abstract type B <:A end abstract type C <:B end @testset "subtypes" begin @transform function foo(a, b::subtypes(A), c::T) where {T<:Int64} println("a new method") end @test length(methods(foo)) == 1 end @testset "allsubtypes" begin @transform function foo_all(a, b::allsubtypes(A), c::T) where {T<:Int64} println("a new method") end @test length(methods(foo_all)) == 3 end @testset "curly" begin @transform function foo_curly(a, b::Type{allsubtypes(A)}, c::T) where {T<:Int64} println("a new method") end @test length(methods(foo_curly)) == 3 @transform function foo_curly2(a, b::Union{T,allsubtypes(A)}, c::T) where {T<:Int64} println("a new method") end @test length(methods(foo_curly2)) == 3 end @testset "noname arguemnts" begin @transform function foo_noname(a, ::allsubtypes(A)) println("a new method") end @test length(methods(foo_noname)) == 3 end @testset "array of functions" begin @transform [:subtypes, :allsubtypes], function foo_array(a, b::allsubtypes(A)) println("a new method") end @test length(methods(foo_array)) == 3 end
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.1.3
7636444dde71ab19019a2f9c9b1bd244194c2572
docs
2271
# TypeTransform [![Build Status](https://github.com/aminya/TypeTransform.jl/workflows/CI/badge.svg)](https://github.com/aminya/TypeTransform.jl/actions) Transform the given type to another type during defining a method. Use `@transform` and the function that transforms the type to another type. The function should return an `Array` of types that you want the method to be defined for. For example, we use `allsubtypes()` type transform function to define specific methods for all of subtypes of a given type (fix ambiguity error!). ```julia using TypeTransform abstract type A end abstract type B <:A end abstract type C <:B end @transform function foo(a, b::allsubtypes(A)) println("a new method") end ``` Since `allsubtypes(A)` returns the array of types `[A, B, C]`, three methods are defined ```julia julia> methods(foo) # 3 methods for generic function "foo": [1] foo(a, b::C) in Main at none:2 [2] foo(a, b::B) in Main at none:2 [3] foo(a, b::A) in Main at none:2 ``` Note that you could use `subtypes()` instead of `allsubtypes()`, which defines methods only for the direct subtypes (`[B]` in this case). If you want that only specific functions to be considered in transformation by `@transform`, give an `Array` of `Symbol`s that contains the function names you want to be transformed. ```julia @transform [:subtypes, :allsubtypes], function foo_array(a, b::allsubtypes(A)) println("a new method") end ``` It is possible to use the function names inside curly expressions like `Union{A, subtypes{B}}` or `Type{allsubtypes{A}}` or use arguments without a name: ```julia @transform function foo_curly(a, ::Union{T,allsubtypes(A)}, c::T) where {T<:Int64} println("a new method") end ``` # Motivation The first motivation for this package was to fix ambiguity error by defining specific methods. If you run the following program ```julia abstract type A end abstract type B <:A end # my general vector method foo(a::Vector, b::Type{<:A}) = print("vector method") # my special B mwthod foo(a, b::Type{B}) = print("B method") ``` `foo([1,2], B)` will give an ambiguity error, while if you use `allsubtypes`, you can fix the issue. ```julia # my general vector method @transform foo(a::Vector, b::allsubtypes(A)) = print("vector method") ```
TypeTransform
https://github.com/aminya/TypeTransform.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
621
using NamedGraphs using Documenter DocMeta.setdocmeta!(NamedGraphs, :DocTestSetup, :(using NamedGraphs); recursive=true) makedocs(; modules=[NamedGraphs], authors="Matthew Fishman <[email protected]> and contributors", repo="https://github.com/mtfishman/NamedGraphs.jl/blob/{commit}{path}#{line}", sitename="NamedGraphs.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://mtfishman.github.io/NamedGraphs.jl", assets=String[], ), pages=["Home" => "index.md"], ) deploydocs(; repo="github.com/mtfishman/NamedGraphs.jl", devbranch="main")
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
4485
#' # NamedGraphs #' [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://mtfishman.github.io/NamedGraphs.jl/stable) #' [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://mtfishman.github.io/NamedGraphs.jl/dev) #' [![Build Status](https://github.com/mtfishman/NamedGraphs.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/mtfishman/NamedGraphs.jl/actions/workflows/CI.yml?query=branch%3Amain) #' [![Coverage](https://codecov.io/gh/mtfishman/NamedGraphs.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/mtfishman/NamedGraphs.jl) #' [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) #' ## Installation #' You can install the package using Julia's package manager: #' ```julia #' julia> ] add NamedGraphs #' ``` #' ## Introduction #' This packages introduces graph types with named vertices, which are built on top of the `Graph`/`SimpleGraph` type in the [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl) package that only have contiguous integer vertices (i.e. linear indexing). The vertex names can be strings, tuples of integers, or other unique identifiers (anything that is hashable). #' There is a supertype `AbstractNamedGraph` that defines an interface and fallback implementations of standard #' Graphs.jl operations, and two implementations: `NamedGraph` and `NamedDiGraph`. #' ## `NamedGraph` #' `NamedGraph` simply takes a set of names for the vertices of the graph. For example: #+ term=true using Graphs: grid, has_edge, has_vertex, neighbors using NamedGraphs: NamedGraph using NamedGraphs.GraphsExtensions: ⊔, disjoint_union, subgraph, rename_vertices g = NamedGraph(grid((4,)), ["A", "B", "C", "D"]) #'Common operations are defined as you would expect: #+ term=true has_vertex(g, "A") has_edge(g, "A" => "B") has_edge(g, "A" => "C") neighbors(g, "B") subgraph(g, ["A", "B"]) #' Internally, this type wraps a `SimpleGraph`, and stores a `Dictionary` from the [Dictionaries.jl](https://github.com/andyferris/Dictionaries.jl) package that maps the vertex names to the linear indices of the underlying `SimpleGraph`. #' Graph operations are implemented by mapping back and forth between the generalized named vertices and the linear index vertices of the `SimpleGraph`. #' It is natural to use tuples of integers as the names for the vertices of graphs with grid connectivities. #' For example: #+ term=true dims = (2, 2) g = NamedGraph(grid(dims), Tuple.(CartesianIndices(dims))) #' In the future we will provide a shorthand notation for this, such as `cartesian_graph(grid((2, 2)), (2, 2))`. #' Internally the vertices are all stored as tuples with a label in each dimension. #' Vertices can be referred to by their tuples: #+ term=true has_vertex(g, (1, 1)) has_edge(g, (1, 1) => (2, 1)) has_edge(g, (1, 1) => (2, 2)) neighbors(g, (2, 2)) #' You can use vertex names to get [induced subgraphs](https://juliagraphs.org/Graphs.jl/dev/core_functions/operators/#Graphs.induced_subgraph-Union{Tuple{T},%20Tuple{U},%20Tuple{T,%20AbstractVector{U}}}%20where%20{U%3C:Integer,%20T%3C:AbstractGraph}): #+ term=true subgraph(v -> v[1] == 1, g) subgraph(v -> v[2] == 2, g) subgraph(g, [(1, 1), (2, 2)]) #' You can also take [disjoint unions](https://en.wikipedia.org/wiki/Disjoint_union) or concatenations of graphs: #+ term=true g₁ = g g₂ = g disjoint_union(g₁, g₂) g₁ ⊔ g₂ # Same as above #' The symbol `⊔` is just an alias for `disjoint_union` and can be written in the terminal #' or in your favorite [IDE with the appropriate Julia extension](https://julialang.org/) with `\sqcup<tab>` #' By default, this maps the vertices `v₁ ∈ vertices(g₁)` to `(v₁, 1)` and the vertices `v₂ ∈ vertices(g₂)` #' to `(v₂, 2)`, so the resulting vertices of the unioned graph will always be unique. #' The resulting graph will have no edges between vertices `(v₁, 1)` and `(v₂, 2)`, these would have to #' be added manually. #' The original graphs can be obtained from subgraphs: #+ term=true rename_vertices(first, subgraph(v -> v[2] == 1, g₁ ⊔ g₂)) rename_vertices(first, subgraph(v -> v[2] == 2, g₁ ⊔ g₂)) #' ## Generating this README #' This file was generated with [Weave.jl](https://github.com/JunoLab/Weave.jl) with the following commands: #+ eval=false using NamedGraphs: NamedGraphs using Weave: Weave Weave.weave( joinpath(pkgdir(NamedGraphs), "examples", "README.jl"); doctype="github", out_path=pkgdir(NamedGraphs), )
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
503
using NamedGraphs.GraphsExtensions: boundary_edges, boundary_vertices, inner_boundary_vertices, outer_boundary_vertices using NamedGraphs.NamedGraphGenerators: named_grid g = named_grid((5, 5)) subgraph_vertices = [(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)] vs = @show boundary_vertices(g, subgraph_vertices) vs = @show inner_boundary_vertices(g, subgraph_vertices) vs = @show outer_boundary_vertices(g, subgraph_vertices) es = @show boundary_edges(g, subgraph_vertices)
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
353
using Graphs: grid using NamedGraphs: NamedGraph using NamedGraphs.GraphsExtensions: ⊔, subgraph g1 = NamedGraph(grid((2, 2)), Tuple.(CartesianIndices((2, 2)))) g2 = NamedGraph(grid((2, 2)), Tuple.(CartesianIndices((2, 2)))) g = ⊔("X" => g1, "Y" => g2) @show g1 @show g2 @show g @show subgraph(v -> v[1] == "X", g) @show subgraph(v -> v[1] == "Y", g)
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
597
using Graphs: path_graph using NamedGraphs: NamedGraph using NamedGraphs.GraphsExtensions: mincut_partitions g = NamedGraph(path_graph(4), ["A", "B", "C", "D"]) part1, part2 = mincut_partitions(g) @show part1, part2 # Requires `GraphsFlows` to be loaded. using GraphsFlows: GraphsFlows part1, part2 = mincut_partitions(g, "A", "D") @show part1, part2 weights = Dict{Any,Float64}() weights["A", "B"] = 3.0 weights["B", "C"] = 2.0 weights["C", "D"] = 3.0 part1, part2 = mincut_partitions(g, weights) @show part1, part2 part1, part2 = mincut_partitions(g, "A", "D", weights) @show part1, part2
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1144
using Graphs: grid, has_edge, has_vertex, ne, nv using NamedGraphs: NamedGraph using NamedGraphs.GraphsExtensions: ⊔, subgraph position_graph = grid((4,)) vs = ["A", "B", "C", "D"] g = NamedGraph(position_graph, vs) @show has_vertex(g, "A") @show !has_vertex(g, "E") @show has_edge(g, "A" => "B") @show !has_edge(g, "A" => "C") g_sub = subgraph(g, ["A"]) @show has_vertex(g_sub, "A") @show !has_vertex(g_sub, "B") @show !has_vertex(g_sub, "C") @show !has_vertex(g_sub, "D") g_sub = subgraph(g, ["A", "B"]) @show has_vertex(g_sub, "A") @show has_vertex(g_sub, "B") @show !has_vertex(g_sub, "C") @show !has_vertex(g_sub, "D") @show has_edge(g_sub, "A" => "B") g_sub = subgraph(Returns(true), g) @show has_vertex(g_sub, "A") @show has_vertex(g_sub, "B") @show has_vertex(g_sub, "C") @show has_vertex(g_sub, "D") g_union = g ⊔ g @show nv(g_union) == 8 @show ne(g_union) == 6 @show has_vertex(g_union, ("A", 1)) @show has_vertex(g_union, ("A", 2)) # Error: vertex names are the same # g_vcat = [g; g] # TODO: Implement ## g_hcat = [g;; g] ## ## @show nv(g_hcat) == 8 ## @show ne(g_hcat) == 6 ## ## @show has_vertex(g_hcat, ("A", 1))
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1465
using Graphs: grid, has_edge, has_vertex, nv using NamedGraphs: NamedGraph using NamedGraphs.GraphsExtensions: ⊔, subgraph position_graph = grid((2, 2)) vs = [("X", 1), ("X", 2), ("Y", 1), ("Y", 2)] g = NamedGraph(position_graph, vs) @show has_vertex(g, ("X", 1)) @show has_edge(g, ("X", 1) => ("X", 2)) @show !has_edge(g, ("X", 2) => ("Y", 1)) @show has_edge(g, ("X", 2) => ("Y", 2)) g_sub = subgraph(g, [("X", 1)]) @show has_vertex(g_sub, ("X", 1)) @show !has_vertex(g_sub, ("X", 2)) @show !has_vertex(g_sub, ("Y", 1)) @show !has_vertex(g_sub, ("Y", 2)) g_sub = subgraph(g, [("X", 1), ("X", 2)]) @show has_vertex(g_sub, ("X", 1)) @show has_vertex(g_sub, ("X", 2)) @show !has_vertex(g_sub, ("Y", 1)) @show !has_vertex(g_sub, ("Y", 2)) # g_sub = g["X", :] g_sub = subgraph(v -> v[1] == "X", g) @show has_vertex(g_sub, ("X", 1)) @show has_vertex(g_sub, ("X", 2)) @show !has_vertex(g_sub, ("Y", 1)) @show !has_vertex(g_sub, ("Y", 2)) # g_sub = g[:, 2] g_sub = subgraph(v -> v[2] == 2, g) @show !has_vertex(g_sub, ("X", 1)) @show has_vertex(g_sub, ("X", 2)) @show !has_vertex(g_sub, ("Y", 1)) @show has_vertex(g_sub, ("Y", 2)) position_graph = grid((2, 2)) g1 = NamedGraph(position_graph, Tuple.(CartesianIndices((2, 2)))) g2 = NamedGraph(position_graph, Tuple.(CartesianIndices((2, 2)))) g_disjoint_union = g1 ⊔ g2 @show nv(g_disjoint_union) == 8 ## g_vcat = [g1; g2] ## ## @show nv(g_vcat) == 8 ## ## g_hcat = [g1;; g2] ## ## @show nv(g_hcat) == 8
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
659
using Graphs: add_edge!, grid, has_edge, has_vertex, neighbors using NamedGraphs: NamedGraph using NamedGraphs.GraphsExtensions: subgraph g = NamedGraph(grid((4,)), ["A", "B", "C", "D"]) @show has_vertex(g, "A") @show has_vertex(g, "B") @show has_vertex(g, "C") @show has_vertex(g, "D") @show has_edge(g, "A" => "B") add_edge!(g, "A" => "C") @show has_edge(g, "A" => "C") @show issetequal(neighbors(g, "A"), ["B", "C"]) @show issetequal(neighbors(g, "B"), ["A", "C"]) g_sub = subgraph(g, ["A", "B"]) @show has_vertex(g_sub, "A") @show has_vertex(g_sub, "B") @show !has_vertex(g_sub, "C") @show !has_vertex(g_sub, "D") @show has_edge(g_sub, "A" => "B")
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1971
module NamedGraphsGraphsFlowsExt using Graphs: AbstractGraph, IsDirected using GraphsFlows: GraphsFlows using NamedGraphs: NamedGraphs, AbstractNamedGraph, DefaultNamedCapacity, _symmetrize, dist_matrix_to_position_dist_matrix, ordered_vertices, position_graph, vertex_positions using NamedGraphs.GraphsExtensions: GraphsExtensions, directed_graph using SimpleTraits: SimpleTraits, @traitfn @traitfn function NamedGraphs.dist_matrix_to_position_dist_matrix( graph::AbstractNamedGraph::IsDirected, dist_matrix::DefaultNamedCapacity ) return GraphsFlows.DefaultCapacity(graph) end @traitfn function GraphsFlows.mincut( graph::AbstractNamedGraph::IsDirected, source, target, capacity_matrix=DefaultNamedCapacity(graph), algorithm::GraphsFlows.AbstractFlowAlgorithm=GraphsFlows.PushRelabelAlgorithm(), ) position_part1, position_part2, flow = GraphsFlows.mincut( directed_graph(position_graph(graph)), vertex_positions(graph)[source], vertex_positions(graph)[target], dist_matrix_to_position_dist_matrix(graph, capacity_matrix), algorithm, ) (part1, part2) = map((position_part1, position_part2)) do position_part return map(v -> ordered_vertices(graph)[v], position_part) end return (part1, part2, flow) end @traitfn function GraphsFlows.mincut( graph::AbstractNamedGraph::(!IsDirected), source, target, capacity_matrix=DefaultNamedCapacity(graph), algorithm::GraphsFlows.AbstractFlowAlgorithm=GraphsFlows.PushRelabelAlgorithm(), ) return GraphsFlows.mincut( directed_graph(graph), source, target, _symmetrize(capacity_matrix), algorithm ) end function GraphsExtensions.mincut_partitions( graph::AbstractGraph, source, target, capacity_matrix=DefaultNamedCapacity(graph), algorithm::GraphsFlows.AbstractFlowAlgorithm=GraphsFlows.PushRelabelAlgorithm(), ) part1, part2, flow = GraphsFlows.mincut(graph, source, target, capacity_matrix, algorithm) return part1, part2 end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1761
module NamedGraphsKaHyParExt using Graphs: AbstractSimpleGraph, incidence_matrix using KaHyPar: KaHyPar using NamedGraphs.GraphsExtensions: GraphsExtensions, @Backend_str using SplitApplyCombine: groupfind using Suppressor: @suppress GraphsExtensions.set_partitioning_backend!(Backend"kahypar"()) # KaHyPar configuration options # # configurations = readdir(joinpath(pkgdir(KaHyPar), "src", "config")) # "cut_kKaHyPar_sea20.ini" # "cut_rKaHyPar_sea20.ini" # "km1_kKaHyPar-E_sea20.ini" # "km1_kKaHyPar_eco_sea20.ini" # "km1_kKaHyPar_sea20.ini" # "km1_rKaHyPar_sea20.ini" # const KAHYPAR_ALGS = Dict([ (objective="edge_cut", alg="kway") => "cut_kKaHyPar_sea20.ini", (objective="edge_cut", alg="recursive") => "cut_rKaHyPar_sea20.ini", (objective="connectivity", alg="kway") => "km1_kKaHyPar_sea20.ini", (objective="connectivity", alg="recursive") => "km1_rKaHyPar_sea20.ini", ]) """ partitioned_vertices(::Backend"kahypar", g::Graph, npartiations::Integer; objective="edge_cut", alg="kway", kwargs...) - default_configuration => "cut_kKaHyPar_sea20.ini" - :edge_cut => "cut_kKaHyPar_sea20.ini" - :connectivity => "km1_kKaHyPar_sea20.ini" - imbalance::Number=0.03 """ function GraphsExtensions.partitioned_vertices( ::Backend"kahypar", g::AbstractSimpleGraph, npartitions::Integer; objective="edge_cut", alg="kway", configuration=nothing, kwargs..., ) if isnothing(configuration) configuration = joinpath( pkgdir(KaHyPar), "src", "config", KAHYPAR_ALGS[(; objective=objective, alg=alg)] ) end # https://github.com/kahypar/KaHyPar.jl/issues/20 partitioned_verts = @suppress KaHyPar.partition( incidence_matrix(g), npartitions; configuration, kwargs... ) return groupfind(partitioned_verts .+ 1) end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
942
module NamedGraphsMetisExt using Graphs: AbstractSimpleGraph using Metis: Metis using NamedGraphs.GraphsExtensions: GraphsExtensions, @Backend_str using SplitApplyCombine: groupfind GraphsExtensions.set_partitioning_backend!(Backend"metis"()) # Metis configuration options const METIS_ALGS = Dict(["kway" => :KWAY, "recursive" => :RECURSIVE]) """ partitioned_vertices(::Backend"metis", g::AbstractGraph, npartitions::Integer; alg="recursive") Partition the graph `G` in `n` parts. The partition algorithm is defined by the `alg` keyword: - :KWAY: multilevel k-way partitioning - :RECURSIVE: multilevel recursive bisection """ function GraphsExtensions.partitioned_vertices( ::Backend"metis", g::AbstractSimpleGraph, npartitions::Integer; alg="recursive", kwargs... ) metis_alg = METIS_ALGS[alg] partitioned_verts = Metis.partition(g, npartitions; alg=metis_alg, kwargs...) return groupfind(Int.(partitioned_verts)) end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
265
module NamedGraphsSymRCMExt using Graphs: AbstractGraph, adjacency_matrix using NamedGraphs.GraphsExtensions: GraphsExtensions using SymRCM: SymRCM function GraphsExtensions.symrcm_perm(graph::AbstractGraph) return SymRCM.symrcm(adjacency_matrix(graph)) end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
903
module NamedGraphs include("lib/SimilarType/src/SimilarType.jl") include("lib/Keys/src/Keys.jl") include("lib/OrdinalIndexing/src/OrdinalIndexing.jl") include("lib/OrderedDictionaries/src/OrderedDictionaries.jl") include("lib/GraphGenerators/src/GraphGenerators.jl") include("lib/GraphsExtensions/src/GraphsExtensions.jl") include("utils.jl") include("abstractnamededge.jl") include("namededge.jl") include("abstractnamedgraph.jl") include("decorate.jl") include("shortestpaths.jl") include("distance.jl") include("distances_and_capacities.jl") include("steiner_tree.jl") include("dfs.jl") include("namedgraph.jl") include("lib/NamedGraphGenerators/src/NamedGraphGenerators.jl") include("lib/PartitionedGraphs/src/PartitionedGraphs.jl") export AbstractNamedGraphs, NamedDiGraph, NamedEdge, NamedGraph using PackageExtensionCompat: @require_extensions function __init__() @require_extensions end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
2068
using Graphs: Graphs, AbstractEdge, dst, src using .GraphsExtensions: GraphsExtensions, convert_vertextype, rename_vertices abstract type AbstractNamedEdge{V} <: AbstractEdge{V} end Base.eltype(::Type{<:AbstractNamedEdge{V}}) where {V} = V Graphs.src(e::AbstractNamedEdge) = not_implemented() Graphs.dst(e::AbstractNamedEdge) = not_implemented() AbstractNamedEdge(e::AbstractNamedEdge) = e function GraphsExtensions.convert_vertextype( ::Type{V}, E::Type{<:AbstractNamedEdge{V}} ) where {V} return E end function GraphsExtensions.convert_vertextype(::Type, E::Type{<:AbstractNamedEdge}) return not_implemented() end function Base.show(io::IO, mime::MIME"text/plain", e::AbstractNamedEdge) show(io, src(e)) print(io, " => ") show(io, dst(e)) return nothing end Base.show(io::IO, edge::AbstractNamedEdge) = show(io, MIME"text/plain"(), edge) # Conversions Base.Pair(e::AbstractNamedEdge) = Pair(src(e), dst(e)) Base.Tuple(e::AbstractNamedEdge) = (src(e), dst(e)) # Convenience functions Base.reverse(e::AbstractNamedEdge) = typeof(e)(dst(e), src(e)) function Base.:(==)(e1::AbstractNamedEdge, e2::AbstractNamedEdge) return (src(e1) == src(e2) && dst(e1) == dst(e2)) end Base.hash(e::AbstractNamedEdge, h::UInt) = hash(src(e), hash(dst(e), h)) # TODO: Define generic version in `GraphsExtensions`. # TODO: Define generic `set_vertices` in `GraphsExtensions`. set_src(e::AbstractNamedEdge, src) = set_vertices(e, src, dst(e)) # TODO: Define generic version in `GraphsExtensions`. # TODO: Define generic `set_vertices` in `GraphsExtensions`. set_dst(e::AbstractNamedEdge, dst) = set_vertices(e, src(e), dst) function GraphsExtensions.rename_vertices(f::Function, e::AbstractNamedEdge) # TODO: Define generic `set_vertices` in `GraphsExtensions`. return set_vertices(e, f(src(e)), f(dst(e))) end function GraphsExtensions.rename_vertices(e::AbstractEdge, name_map) return rename_vertices(v -> name_map[v], e) end function GraphsExtensions.rename_vertices(f::Function, e::AbstractEdge) return rename_vertices(f, AbstractNamedEdge(e)) end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
18978
using Dictionaries: set! using Graphs: Graphs, AbstractGraph, IsDirected, a_star, add_edge!, adjacency_matrix, bfs_parents, boruvka_mst, connected_components, degree, edges, has_path, indegree, inneighbors, is_connected, is_cyclic, kruskal_mst, ne, neighborhood, neighborhood_dists, nv, outdegree, prim_mst, rem_edge!, spfa_shortest_paths, vertices, weights using Graphs.SimpleGraphs: SimpleDiGraph, SimpleEdge using .GraphsExtensions: GraphsExtensions, directed_graph, incident_edges, partitioned_vertices, rename_vertices, subgraph using SimpleTraits: SimpleTraits, Not, @traitfn abstract type AbstractNamedGraph{V} <: AbstractGraph{V} end # # Required for interface # Graphs.vertices(graph::AbstractNamedGraph) = not_implemented() position_graph(graph::AbstractNamedGraph) = not_implemented() Graphs.rem_vertex!(graph::AbstractNamedGraph, vertex) = not_implemented() Graphs.add_vertex!(graph::AbstractNamedGraph, vertex) = not_implemented() GraphsExtensions.rename_vertices(f::Function, g::AbstractNamedGraph) = not_implemented() # TODO: Is this a good definition? Maybe make it generic to any graph? function GraphsExtensions.permute_vertices(graph::AbstractNamedGraph, permutation) return subgraph(graph, map(v -> ordered_vertices(graph)[v], permutation)) end # Outputs an object that when indexed by a vertex # returns the position of that vertex in the parent # graph `position_graph(graph::AbstractNamedGraph)`. # Inverse map of `ordered_vertices`. vertex_positions(graph::AbstractNamedGraph) = not_implemented() # Outputs an object that when indexed by a vertex position # returns the corresponding vertex. ordered_vertices(graph::AbstractNamedGraph) = not_implemented() Graphs.edgetype(graph::AbstractNamedGraph) = not_implemented() # TODO: Define generic version in `GraphsExtensions`. GraphsExtensions.directed_graph_type(G::Type{<:AbstractNamedGraph}) = not_implemented() GraphsExtensions.undirected_graph_type(G::Type{<:AbstractNamedGraph}) = not_implemented() # In terms of `position_graph_type` # is_directed(::Type{<:AbstractNamedGraph}) = not_implemented() GraphsExtensions.convert_vertextype(::Type, ::AbstractNamedGraph) = not_implemented() # TODO: implement as: # # graph = set_position_graph(graph, copy(position_graph(graph))) # graph = set_vertices(graph, copy(vertices(graph))) # # or: # # graph_copy = similar(typeof(graph))(vertices(graph)) # for e in edges(graph) # add_edge!(graph_copy, e) # end Base.copy(graph::AbstractNamedGraph) = not_implemented() function Graphs.merge_vertices!( graph::AbstractNamedGraph, merge_vertices; merged_vertex=first(merge_vertices) ) return not_implemented() end # # Derived interface # position_graph_type(graph::AbstractNamedGraph) = typeof(position_graph(graph)) function Graphs.has_vertex(graph::AbstractNamedGraph, vertex) # TODO: `vertices` should have fast lookup! return vertex ∈ vertices(graph) end Graphs.SimpleDiGraph(graph::AbstractNamedGraph) = SimpleDiGraph(position_graph(graph)) Base.zero(G::Type{<:AbstractNamedGraph}) = G() # TODO: Implement using `copyto!`? function GraphsExtensions.directed_graph(graph::AbstractNamedGraph) digraph = directed_graph_type(typeof(graph))(vertices(graph)) for e in edges(graph) add_edge!(digraph, e) add_edge!(digraph, reverse(e)) end return digraph end # Default, can overload Base.eltype(graph::AbstractNamedGraph) = eltype(vertices(graph)) # TODO: Rename `position_edges(graph::AbstractNamedGraph)`. function edge_to_position_edge(graph::AbstractNamedGraph, edge::AbstractEdge) return edgetype(position_graph(graph))( vertex_positions(graph)[src(edge)], vertex_positions(graph)[dst(edge)] ) end # TODO: Rename `named_edges(graph::AbstractNamedGraph)`. function position_edge_to_edge(graph::AbstractNamedGraph, position_edge::AbstractEdge) return edgetype(graph)( ordered_vertices(graph)[src(position_edge)], ordered_vertices(graph)[dst(position_edge)] ) end function Graphs.edges(graph::AbstractNamedGraph) return map(e -> position_edge_to_edge(graph, e), edges(position_graph(graph))) end # TODO: write in terms of a generic function. for f in [ :(Graphs.outneighbors), :(Graphs.inneighbors), :(Graphs.all_neighbors), :(Graphs.neighbors), ] @eval begin function $f(graph::AbstractNamedGraph, vertex) position_vertices = $f(position_graph(graph), vertex_positions(graph)[vertex]) return map(v -> ordered_vertices(graph)[v], position_vertices) end # Ambiguity errors with Graphs.jl function $f(graph::AbstractNamedGraph, vertex::Integer) position_vertices = $f(position_graph(graph), vertex_positions(graph)[vertex]) return map(v -> ordered_vertices(graph)[v], position_vertices) end end end function Graphs.common_neighbors(g::AbstractNamedGraph, u, v) return intersect(neighbors(g, u), neighbors(g, v)) end namedgraph_indegree(graph::AbstractNamedGraph, vertex) = length(inneighbors(graph, vertex)) function namedgraph_outdegree(graph::AbstractNamedGraph, vertex) return length(outneighbors(graph, vertex)) end Graphs.indegree(graph::AbstractNamedGraph, vertex) = namedgraph_indegree(graph, vertex) Graphs.outdegree(graph::AbstractNamedGraph, vertex) = namedgraph_outdegree(graph, vertex) # Fix for ambiguity error with `AbstractGraph` version function Graphs.indegree(graph::AbstractNamedGraph, vertex::Integer) return namedgraph_indegree(graph, vertex) end function Graphs.outdegree(graph::AbstractNamedGraph, vertex::Integer) return namedgraph_outdegree(graph, vertex) end @traitfn function namedgraph_degree(graph::AbstractNamedGraph::IsDirected, vertex) return indegree(graph, vertex) + outdegree(graph, vertex) end @traitfn namedgraph_degree(graph::AbstractNamedGraph::(!IsDirected), vertex) = indegree(graph, vertex) function Graphs.degree(graph::AbstractNamedGraph, vertex) return namedgraph_degree(graph::AbstractNamedGraph, vertex) end # Fix for ambiguity error with `AbstractGraph` version function Graphs.degree(graph::AbstractNamedGraph, vertex::Integer) return namedgraph_degree(graph::AbstractNamedGraph, vertex) end function Graphs.degree_histogram(g::AbstractNamedGraph, degfn=degree) hist = Dictionary{Int,Int}() for v in vertices(g) # minimize allocations by for d in degfn(g, v) # iterating over vertices set!(hist, d, get(hist, d, 0) + 1) end end return hist end function namedgraph_neighborhood( graph::AbstractNamedGraph, vertex, d, distmx=weights(graph); dir=:out ) position_distmx = dist_matrix_to_position_dist_matrix(graph, distmx) position_vertices = neighborhood( position_graph(graph), vertex_positions(graph)[vertex], d, position_distmx; dir ) return [ordered_vertices(graph)[position_vertex] for position_vertex in position_vertices] end function Graphs.neighborhood( graph::AbstractNamedGraph, vertex, d, distmx=weights(graph); dir=:out ) return namedgraph_neighborhood(graph, vertex, d, distmx; dir) end # Fix for ambiguity error with `AbstractGraph` version function Graphs.neighborhood( graph::AbstractNamedGraph, vertex::Integer, d, distmx=weights(graph); dir=:out ) return namedgraph_neighborhood(graph, vertex, d, distmx; dir) end # Fix for ambiguity error with `AbstractGraph` version function Graphs.neighborhood( graph::AbstractNamedGraph, vertex::Integer, d, distmx::AbstractMatrix{<:Real}; dir=:out ) return namedgraph_neighborhood(graph, vertex, d, distmx; dir) end function namedgraph_neighborhood_dists(graph::AbstractNamedGraph, vertex, d, distmx; dir) position_distmx = dist_matrix_to_position_dist_matrix(graph, distmx) position_vertices_and_dists = neighborhood_dists( position_graph(graph), vertex_positions(graph)[vertex], d, position_distmx; dir ) return [ (ordered_vertices(graph)[position_vertex], dist) for (position_vertex, dist) in position_vertices_and_dists ] end function Graphs.neighborhood_dists( graph::AbstractNamedGraph, vertex, d, distmx=weights(graph); dir=:out ) return namedgraph_neighborhood_dists(graph, vertex, d, distmx; dir) end # Fix for ambiguity error with `AbstractGraph` version function Graphs.neighborhood_dists( graph::AbstractNamedGraph, vertex::Integer, d, distmx=weights(graph); dir=:out ) return namedgraph_neighborhood_dists(graph, vertex, d, distmx; dir) end # Fix for ambiguity error with `AbstractGraph` version function Graphs.neighborhood_dists( graph::AbstractNamedGraph, vertex::Integer, d, distmx::AbstractMatrix{<:Real}; dir=:out ) return namedgraph_neighborhood_dists(graph, vertex, d, distmx; dir) end function namedgraph_mincut(graph::AbstractNamedGraph, distmx) position_distmx = dist_matrix_to_position_dist_matrix(graph, distmx) position_parity, bestcut = Graphs.mincut(position_graph(graph), position_distmx) return Dictionary(vertices(graph), position_parity), bestcut end function Graphs.mincut(graph::AbstractNamedGraph, distmx=weights(graph)) return namedgraph_mincut(graph, distmx) end function Graphs.mincut(graph::AbstractNamedGraph, distmx::AbstractMatrix{<:Real}) return namedgraph_mincut(graph, distmx) end # TODO: Make this more generic? function GraphsExtensions.partitioned_vertices( graph::AbstractNamedGraph; npartitions=nothing, nvertices_per_partition=nothing, kwargs... ) vertex_partitions = partitioned_vertices( position_graph(graph); npartitions, nvertices_per_partition, kwargs... ) # TODO: output the reverse of this dictionary (a Vector of Vector # of the vertices in each partition). # return Dictionary(vertices(g), partitions) return map(vertex_partitions) do vertex_partition return map(v -> ordered_vertices(graph)[v], vertex_partition) end end function namedgraph_a_star( graph::AbstractNamedGraph, source, destination, distmx=weights(graph), heuristic::Function=(v -> zero(eltype(distmx))), edgetype_to_return=edgetype(graph), ) position_distmx = dist_matrix_to_position_dist_matrix(graph, distmx) position_shortest_path = a_star( position_graph(graph), vertex_positions(graph)[source], vertex_positions(graph)[destination], dist_matrix_to_position_dist_matrix(graph, distmx), heuristic, SimpleEdge, ) return map(e -> position_edge_to_edge(graph, e), position_shortest_path) end function Graphs.a_star(graph::AbstractNamedGraph, source, destination, args...) return namedgraph_a_star(graph, source, destination, args...) end # Fix ambiguity error with `AbstractGraph` version function Graphs.a_star( graph::AbstractNamedGraph{U}, source::Integer, destination::Integer, args... ) where {U<:Integer} return namedgraph_a_star(graph, source, destination, args...) end # Fix ambiguity error with `AbstractGraph` version function Graphs.a_star( graph::AbstractNamedGraph, source::Integer, destination::Integer, args... ) return namedgraph_a_star(graph, source, destination, args...) end function Graphs.spfa_shortest_paths( graph::AbstractNamedGraph, vertex, distmx=weights(graph) ) position_distmx = dist_matrix_to_position_dist_matrix(graph, distmx) position_shortest_paths = spfa_shortest_paths( position_graph(graph), vertex_positions(graph)[vertex], position_distmx ) return Dictionary(vertices(graph), position_shortest_paths) end function Graphs.boruvka_mst( g::AbstractNamedGraph, distmx::AbstractMatrix{<:Real}=weights(g); minimize=true ) position_mst, weights = boruvka_mst(position_graph(g), distmx; minimize) return map(e -> position_edge_to_edge(g, e), position_mst), weights end function Graphs.kruskal_mst( g::AbstractNamedGraph, distmx::AbstractMatrix{<:Real}=weights(g); minimize=true ) position_mst = kruskal_mst(position_graph(g), distmx; minimize) return map(e -> position_edge_to_edge(g, e), position_mst) end function Graphs.prim_mst(g::AbstractNamedGraph, distmx::AbstractMatrix{<:Real}=weights(g)) position_mst = prim_mst(position_graph(g), distmx) return map(e -> position_edge_to_edge(g, e), position_mst) end function Graphs.add_edge!(graph::AbstractNamedGraph, edge) add_edge!(position_graph(graph), edge_to_position_edge(graph, edgetype(graph)(edge))) return graph end Graphs.add_edge!(g::AbstractNamedGraph, src, dst) = add_edge!(g, edgetype(g)(src, dst)) function Graphs.rem_edge!(graph::AbstractNamedGraph, edge) rem_edge!(position_graph(graph), edge_to_position_edge(graph, edgetype(graph)(edge))) return graph end function Graphs.has_edge(graph::AbstractNamedGraph, edge::AbstractNamedEdge) return has_edge(position_graph(graph), edge_to_position_edge(graph, edge)) end # handles two-argument edge constructors like src,dst Graphs.has_edge(g::AbstractNamedGraph, edge) = has_edge(g, edgetype(g)(edge)) Graphs.has_edge(g::AbstractNamedGraph, src, dst) = has_edge(g, edgetype(g)(src, dst)) function Graphs.has_path( graph::AbstractNamedGraph, source, destination; exclude_vertices=vertextype(graph)[] ) return has_path( position_graph(graph), vertex_positions(graph)[source], vertex_positions(graph)[destination]; exclude_vertices=map(v -> vertex_positions(graph)[v], exclude_vertices), ) end function Base.union(graph1::AbstractNamedGraph, graph2::AbstractNamedGraph) union_graph = promote_type(typeof(graph1), typeof(graph2))() union_vertices = union(vertices(graph1), vertices(graph2)) for v in union_vertices add_vertex!(union_graph, v) end for e in edges(graph1) add_edge!(union_graph, e) end for e in edges(graph2) add_edge!(union_graph, e) end return union_graph end function Base.union( graph1::AbstractNamedGraph, graph2::AbstractNamedGraph, graph3::AbstractNamedGraph, graph_rest::AbstractNamedGraph..., ) return union(union(graph1, graph2), graph3, graph_rest...) end function Graphs.is_directed(graph_type::Type{<:AbstractNamedGraph}) return is_directed(position_graph_type(graph_type)) end Graphs.is_directed(graph::AbstractNamedGraph) = is_directed(position_graph(graph)) Graphs.is_connected(graph::AbstractNamedGraph) = is_connected(position_graph(graph)) Graphs.is_cyclic(graph::AbstractNamedGraph) = is_cyclic(position_graph(graph)) @traitfn function Base.reverse(graph::AbstractNamedGraph::IsDirected) return not_implemented() end @traitfn function Base.reverse!(g::AbstractNamedGraph::IsDirected) return not_implemented() end # TODO: Move to `namedgraph.jl`, or make the output generic? function Graphs.blockdiag(graph1::AbstractNamedGraph, graph2::AbstractNamedGraph) new_position_graph = blockdiag(position_graph(graph1), position_graph(graph2)) new_vertices = vcat(vertices(graph1), vertices(graph2)) @assert allunique(new_vertices) return GenericNamedGraph(new_position_graph, new_vertices) end # TODO: What `args` are needed? Graphs.nv(graph::AbstractNamedGraph, args...) = nv(position_graph(graph), args...) # TODO: What `args` are needed? Graphs.ne(graph::AbstractNamedGraph, args...) = ne(position_graph(graph), args...) # TODO: What `args` are needed? function Graphs.adjacency_matrix(graph::AbstractNamedGraph, args...) return adjacency_matrix(position_graph(graph), args...) end function Graphs.connected_components(graph::AbstractNamedGraph) position_connected_components = connected_components(position_graph(graph)) return map(position_connected_components) do position_connected_component return map(v -> ordered_vertices(graph)[v], position_connected_component) end end function Graphs.merge_vertices( graph::AbstractNamedGraph, merge_vertices; merged_vertex=first(merge_vertices) ) merged_graph = copy(graph) add_vertex!(merged_graph, merged_vertex) for vertex in merge_vertices for e in incident_edges(graph, vertex; dir=:both) merged_edge = rename_vertices(v -> v == vertex ? merged_vertex : v, e) if src(merged_edge) ≠ dst(merged_edge) add_edge!(merged_graph, merged_edge) end end end for vertex in merge_vertices if vertex ≠ merged_vertex rem_vertex!(merged_graph, vertex) end end return merged_graph end # # Graph traversals # # Overload Graphs.tree. Used for bfs_tree and dfs_tree # traversal algorithms. function Graphs.tree(graph::AbstractNamedGraph, parents) n = length(parents) # TODO: Use `directed_graph` here to make more generic? ## t = GenericNamedGraph(DiGraph(n), vertices(graph)) t = directed_graph_type(typeof(graph))(vertices(graph)) for destination in eachindex(parents) source = parents[destination] if source != destination add_edge!(t, source, destination) end end return t end function namedgraph_bfs_tree(graph::AbstractNamedGraph, vertex; kwargs...) return Graphs.tree(graph, bfs_parents(graph, vertex; kwargs...)) end # Disambiguation from Graphs.bfs_tree function Graphs.bfs_tree(graph::AbstractNamedGraph, vertex::Integer; kwargs...) return namedgraph_bfs_tree(graph, vertex; kwargs...) end function Graphs.bfs_tree(graph::AbstractNamedGraph, vertex; kwargs...) return namedgraph_bfs_tree(graph, vertex; kwargs...) end # Returns a Dictionary mapping a vertex to it's parent # vertex in the traversal/spanning tree. function namedgraph_bfs_parents(graph::AbstractNamedGraph, vertex; kwargs...) position_bfs_parents = bfs_parents( position_graph(graph), vertex_positions(graph)[vertex]; kwargs... ) # Works around issue in this `Dictionary` constructor: # https://github.com/andyferris/Dictionaries.jl/blob/v0.4.1/src/Dictionary.jl#L139-L145 # when `inds` has holes. This removes the holes. # TODO: Raise an issue with `Dictionaries.jl`. ## vertices_graph = Indices(collect(vertices(graph))) # This makes the vertices ordered according to the parent vertices. vertices_graph = map(v -> ordered_vertices(graph)[v], vertices(position_graph(graph))) return Dictionary( vertices_graph, map(v -> ordered_vertices(graph)[v], position_bfs_parents) ) end # Disambiguation from Graphs.jl function Graphs.bfs_parents(graph::AbstractNamedGraph, vertex::Integer; kwargs...) return namedgraph_bfs_parents(graph, vertex; kwargs...) end function Graphs.bfs_parents(graph::AbstractNamedGraph, vertex; kwargs...) return namedgraph_bfs_parents(graph, vertex; kwargs...) end # # Printing # function Base.show(io::IO, mime::MIME"text/plain", graph::AbstractNamedGraph) println(io, "$(typeof(graph)) with $(nv(graph)) vertices:") show(io, mime, vertices(graph)) println(io, "\n") println(io, "and $(ne(graph)) edge(s):") for e in edges(graph) show(io, mime, e) println(io) end return nothing end Base.show(io::IO, graph::AbstractNamedGraph) = show(io, MIME"text/plain"(), graph) # # Convenience functions # function Base.:(==)(g1::AbstractNamedGraph, g2::AbstractNamedGraph) issetequal(vertices(g1), vertices(g2)) || return false for v in vertices(g1) issetequal(inneighbors(g1, v), inneighbors(g2, v)) || return false issetequal(outneighbors(g1, v), outneighbors(g2, v)) || return false end return true end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1057
using Graphs: add_edge!, dst, edges, neighbors, rem_edge!, rem_vertex!, src, vertices using Graphs.SimpleGraphs: SimpleGraph using .GraphsExtensions: GraphsExtensions, add_edges! function GraphsExtensions.decorate_graph_edges( g::AbstractNamedGraph; edge_map::Function=Returns(NamedGraph(1)) ) g_dec = copy(g) es = edges(g_dec) for e in es dec = edge_map(e) dec = rename_vertices(v -> (v, e), dec) g_dec = union(g_dec, dec) add_edge!(g_dec, src(e) => first(vertices(dec))) add_edge!(g_dec, dst(e) => last(vertices(dec))) rem_edge!(g_dec, src(e) => dst(e)) end return g_dec end function GraphsExtensions.decorate_graph_vertices( g::AbstractNamedGraph; vertex_map::Function=Returns(NamedGraph(1)) ) g_dec = copy(g) vs = vertices(g_dec) for v in vs vneighbors = neighbors(g_dec, v) dec = vertex_map(v) dec = rename_vertices(vdec -> (vdec, v), dec) g_dec = union(g_dec, dec) rem_vertex!(g_dec, v) add_edges!(g_dec, [first(vertices(dec)) => vn for vn in vneighbors]) end return g_dec end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1887
using Graphs: Graphs, dfs_parents, dfs_tree, topological_sort_by_dfs using SimpleTraits: SimpleTraits, Not, @traitfn @traitfn function Graphs.topological_sort_by_dfs(g::AbstractNamedGraph::IsDirected) return map(v -> ordered_vertices(g)[v], topological_sort_by_dfs(position_graph(g))) end function namedgraph_dfs_tree(graph::AbstractNamedGraph, vertex; kwargs...) return Graphs.tree(graph, dfs_parents(graph, vertex; kwargs...)) end function Graphs.dfs_tree(graph::AbstractNamedGraph, vertex::Integer; kwargs...) return namedgraph_dfs_tree(graph, vertex; kwargs...) end function Graphs.dfs_tree(graph::AbstractNamedGraph, vertex; kwargs...) return namedgraph_dfs_tree(graph, vertex; kwargs...) end # Returns a Dictionary mapping a vertex to it's parent # vertex in the traversal/spanning tree. function namedgraph_dfs_parents(graph::AbstractNamedGraph, vertex; kwargs...) position_dfs_parents = dfs_parents( position_graph(graph), vertex_positions(graph)[vertex]; kwargs... ) # Works around issue in this `Dictionary` constructor: # https://github.com/andyferris/Dictionaries.jl/blob/v0.4.1/src/Dictionary.jl#L139-L145 # when `inds` has holes. This removes the holes. # TODO: Raise an issue with `Dictionaries.jl`. ## vertices_graph = Indices(collect(vertices(graph))) # This makes the vertices ordered according to the parent vertices. vertices_graph = map(v -> ordered_vertices(graph)[v], vertices(position_graph(graph))) return Dictionary( vertices_graph, map(v -> ordered_vertices(graph)[v], position_dfs_parents) ) end # Disambiguation from Graphs.dfs_parents function Graphs.dfs_parents(graph::AbstractNamedGraph, vertex::Integer; kwargs...) return namedgraph_dfs_parents(graph, vertex; kwargs...) end function Graphs.dfs_parents(graph::AbstractNamedGraph, vertex; kwargs...) return namedgraph_dfs_parents(graph, vertex; kwargs...) end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
3086
using Graphs: Graphs, dijkstra_shortest_paths, weights using .GraphsExtensions: eccentricities function namedgraph_eccentricity(graph::AbstractNamedGraph, vertex, distmx) e = maximum(dijkstra_shortest_paths(graph, [vertex], distmx).dists) e == typemax(e) && @warn("Infinite path length detected for vertex $vertex") return e end function Graphs.eccentricity(graph::AbstractNamedGraph, vertex, distmx=weights(graph)) return namedgraph_eccentricity(graph, vertex, distmx) end # Fix for ambiguity error with `AbstractGraph` function Graphs.eccentricity( graph::AbstractNamedGraph, vertex::Integer, distmx::AbstractMatrix{<:Real} ) return namedgraph_eccentricity(graph, vertex, distmx) end function Graphs.eccentricity(graph::AbstractNamedGraph, vertex, distmx::AbstractMatrix) return namedgraph_eccentricity(graph, vertex, distmx) end function eccentricities_center(eccentricities) rad = eccentricities_radius(eccentricities) return filter(x -> eccentricities[x] == rad, keys(eccentricities)) end function eccentricities_periphery(eccentricities) diam = eccentricities_diameter(eccentricities) return filter(x -> eccentricities[x] == diam, keys(eccentricities)) end eccentricities_radius(eccentricities) = minimum(eccentricities) eccentricities_diameter(eccentricities) = maximum(eccentricities) function namedgraph_center(graph::AbstractNamedGraph, distmx) return eccentricities_center(eccentricities(graph, vertices(graph), distmx)) end function Graphs.center(graph::AbstractNamedGraph, distmx=weights(graph)) return namedgraph_center(graph, distmx) end # Fix for ambiguity error with `AbstractGraph` function Graphs.center(graph::AbstractNamedGraph, distmx::AbstractMatrix) return namedgraph_center(graph, distmx) end function namedgraph_radius(graph::AbstractNamedGraph, distmx) return eccentricities_radius(eccentricities(graph, vertices(graph), distmx)) end function Graphs.radius(graph::AbstractNamedGraph, distmx=weights(graph)) return namedgraph_radius(graph, distmx) end # Fix for ambiguity error with `AbstractGraph` function Graphs.radius(graph::AbstractNamedGraph, distmx::AbstractMatrix) return namedgraph_radius(graph, distmx) end function namedgraph_diameter(graph::AbstractNamedGraph, distmx) return eccentricities_diameter(eccentricities(graph, vertices(graph), distmx)) end function Graphs.diameter(graph::AbstractNamedGraph, distmx=weights(graph)) return namedgraph_diameter(graph, distmx) end # Fix for ambiguity error with `AbstractGraph` function Graphs.diameter(graph::AbstractNamedGraph, distmx::AbstractMatrix) return namedgraph_diameter(graph, distmx) end function namedgraph_periphery(graph::AbstractNamedGraph, distmx) return eccentricities_periphery(eccentricities(graph, vertices(graph), distmx)) end function Graphs.periphery(graph::AbstractNamedGraph, distmx=weights(graph)) return namedgraph_periphery(graph, distmx) end # Fix for ambiguity error with `AbstractGraph` function Graphs.periphery(graph::AbstractNamedGraph, distmx::AbstractMatrix) return namedgraph_periphery(graph, distmx) end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
2657
using Dictionaries: AbstractDictionary using Graphs: Graphs, IsDirected, dst, edges, nv, src using .GraphsExtensions: directed_graph using LinearAlgebra: Symmetric using SimpleTraits: SimpleTraits, Not, @traitfn using SparseArrays: sparse, spzeros # TODO: Move to `GraphsExtensions`. function _symmetrize(dist::AbstractMatrix) return sparse(Symmetric(dist)) end # TODO: Move to `GraphsExtensions`. function _symmetrize(dist) symmetrized_dist = copy(dist) for k in keys(dist) symmetrized_dist[reverse(k)] = dist[k] end return symmetrized_dist end # TODO: Move to `GraphsExtensions`. function _symmetrize(dist::AbstractDictionary) symmetrized_dist = copy(dist) for k in keys(dist) insert!(symmetrized_dist, reverse(k), dist[k]) end return symmetrized_dist end getindex_dist_matrix(dist_matrix, I...) = dist_matrix[I...] getindex_dist_matrix(dist_matrix::AbstractDictionary, I...) = dist_matrix[I] function namedgraph_dist_matrix_to_position_dist_matrix( graph::AbstractNamedGraph, dist_matrix ) position_dist_matrix = spzeros(valtype(dist_matrix), nv(graph), nv(graph)) for e in edges(graph) position_e = edge_to_position_edge(graph, e) position_dist_matrix[src(position_e), dst(position_e)] = getindex_dist_matrix( dist_matrix, src(e), dst(e) ) end return position_dist_matrix end @traitfn function dist_matrix_to_position_dist_matrix( graph::AbstractNamedGraph::IsDirected, dist_matrix ) return namedgraph_dist_matrix_to_position_dist_matrix(graph, dist_matrix) end @traitfn function dist_matrix_to_position_dist_matrix( graph::AbstractNamedGraph::(!IsDirected), dist_matrix ) return _symmetrize(namedgraph_dist_matrix_to_position_dist_matrix(graph, dist_matrix)) end function dist_matrix_to_position_dist_matrix( graph::AbstractNamedGraph, distmx::Graphs.DefaultDistance ) return distmx end """ DefaultNamedCapacity{T} Structure that returns `1` if a forward edge exists in `flow_graph`, and `0` otherwise. """ struct DefaultNamedCapacity{G<:AbstractNamedGraph,T<:Integer} <: AbstractMatrix{T} flow_graph::G nv::T end DefaultNamedCapacity(graph::AbstractNamedGraph) = DefaultNamedCapacity(graph, nv(graph)) function _symmetrize(dist::DefaultNamedCapacity) return DefaultNamedCapacity(directed_graph(dist.flow_graph)) end # Base.getindex(d::DefaultNamedCapacity{T}, s, t) where {T} = has_edge(d.flow_graph, s, t) ? one(T) : zero(T) # Base.size(d::DefaultNamedCapacity) = (Int(d.nv), Int(d.nv)) # Base.transpose(d::DefaultNamedCapacity) = DefaultNamedCapacity(reverse(d.flow_graph)) # Base.adjoint(d::DefaultNamedCapacity) = DefaultNamedCapacity(reverse(d.flow_graph))
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1143
using Graphs: Graphs using .GraphsExtensions: GraphsExtensions struct NamedEdge{V} <: AbstractNamedEdge{V} src::V dst::V NamedEdge{V}(src, dst) where {V} = new{V}(src, dst) end NamedEdge(src::V, dst::V) where {V} = NamedEdge{V}(src, dst) NamedEdge(src, dst) = NamedEdge{promote_type(typeof(src), typeof(dst))}(src, dst) function GraphsExtensions.convert_vertextype(vertextype::Type, ::Type{<:NamedEdge}) return NamedEdge{vertextype} end Graphs.src(e::NamedEdge) = e.src Graphs.dst(e::NamedEdge) = e.dst NamedEdge{V}(e::NamedEdge{V}) where {V} = e NamedEdge(e::NamedEdge) = e NamedEdge{V}(e::AbstractEdge) where {V} = NamedEdge{V}(src(e), dst(e)) NamedEdge(e::AbstractEdge) = NamedEdge(src(e), dst(e)) AbstractNamedEdge(e::AbstractEdge) = NamedEdge(e) Base.convert(edgetype::Type{<:NamedEdge}, e::AbstractEdge) = edgetype(e) NamedEdge(p::Tuple) = NamedEdge(p...) NamedEdge(p::Pair) = NamedEdge(p...) NamedEdge{V}(p::Pair) where {V} = NamedEdge{V}(p...) NamedEdge{V}(p::Tuple) where {V} = NamedEdge{V}(p...) # TODO: Define generic `set_vertices` in `GraphsExtensions`. set_vertices(e::NamedEdge, src, dst) = NamedEdge(src, dst)
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
7692
using Dictionaries: Dictionary using Graphs: Graphs, AbstractGraph, add_edge!, add_vertex!, edgetype, has_edge, is_directed, outneighbors, rem_vertex!, vertices using Graphs.SimpleGraphs: AbstractSimpleGraph, SimpleDiGraph, SimpleGraph using .GraphsExtensions: GraphsExtensions, vertextype, directed_graph_type, undirected_graph_type using .OrderedDictionaries: OrderedDictionaries, OrderedIndices using .OrdinalIndexing: th struct GenericNamedGraph{V,G<:AbstractSimpleGraph{Int}} <: AbstractNamedGraph{V} position_graph::G vertices::OrderedIndices{V} global function _GenericNamedGraph(position_graph, vertices) @assert length(vertices) == nv(position_graph) return new{eltype(vertices),typeof(position_graph)}(position_graph, vertices) end end # AbstractNamedGraph required interface. function position_graph_type(graph_type::Type{<:GenericNamedGraph}) return fieldtype(graph_type, :position_graph) end position_graph(graph::GenericNamedGraph) = getfield(graph, :position_graph) function vertex_positions(graph::GenericNamedGraph) return OrderedDictionaries.index_positions(vertices(graph)) end function ordered_vertices(graph::GenericNamedGraph) return OrderedDictionaries.ordered_indices(vertices(graph)) end # TODO: Decide what this should output. Graphs.vertices(graph::GenericNamedGraph) = getfield(graph, :vertices) function Graphs.add_vertex!(graph::GenericNamedGraph, vertex) if vertex ∈ vertices(graph) return false end add_vertex!(position_graph(graph)) insert!(vertices(graph), vertex) return true end function Graphs.rem_vertex!(graph::GenericNamedGraph, vertex) if vertex ∉ vertices(graph) return false end position_vertex = vertex_positions(graph)[vertex] rem_vertex!(position_graph(graph), position_vertex) delete!(vertices(graph), vertex) return graph end function GraphsExtensions.rename_vertices(f::Function, graph::GenericNamedGraph) # TODO: Fix broadcasting of `OrderedIndices`. # return GenericNamedGraph(position_graph(graph), f.(vertices(graph))) return GenericNamedGraph(position_graph(graph), map(f, vertices(graph))) end function GraphsExtensions.rename_vertices(f::Function, g::AbstractSimpleGraph) return error( "Can't rename the vertices of a graph of type `$(typeof(g)) <: AbstractSimpleGraph`, try converting to a named graph.", ) end function GraphsExtensions.convert_vertextype(vertextype::Type, graph::GenericNamedGraph) return GenericNamedGraph( position_graph(graph), convert(Vector{vertextype}, ordered_vertices(graph)) ) end # # Constructors from `AbstractSimpleGraph` # to_vertices(vertices) = vertices to_vertices(vertices::AbstractArray) = vec(vertices) to_vertices(vertices::Integer) = Base.OneTo(vertices) # Inner constructor # TODO: Is this needed? function GenericNamedGraph{V,G}( position_graph::G, vertices::OrderedIndices{V} ) where {V,G<:AbstractSimpleGraph{Int}} return _GenericNamedGraph(position_graph, vertices) end function GenericNamedGraph{V,G}( position_graph::AbstractSimpleGraph, vertices ) where {V,G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{V,G}( convert(G, position_graph), OrderedIndices{V}(to_vertices(vertices)) ) end function GenericNamedGraph{V}(position_graph::AbstractSimpleGraph, vertices) where {V} return GenericNamedGraph{V,typeof(position_graph)}(position_graph, vertices) end function GenericNamedGraph{<:Any,G}( position_graph::AbstractSimpleGraph, vertices ) where {G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{eltype(vertices),G}(position_graph, vertices) end function GenericNamedGraph{<:Any,G}( position_graph::AbstractSimpleGraph ) where {G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{<:Any,G}(position_graph, vertices(position_graph)) end function GenericNamedGraph(position_graph::AbstractSimpleGraph, vertices) return GenericNamedGraph{eltype(vertices)}(position_graph, vertices) end function GenericNamedGraph(position_graph::AbstractSimpleGraph) return GenericNamedGraph(position_graph, vertices(position_graph)) end # # Tautological constructors # function GenericNamedGraph{V,G}( graph::GenericNamedGraph{V,G} ) where {V,G<:AbstractSimpleGraph{Int}} return copy(graph) end # # Constructors from vertex names # function GenericNamedGraph{V,G}(vertices) where {V,G<:AbstractSimpleGraph{Int}} return GenericNamedGraph(G(length(to_vertices(vertices))), vertices) end function GenericNamedGraph{V}(vertices) where {V} return GenericNamedGraph{V,SimpleGraph{Int}}(vertices) end function GenericNamedGraph{<:Any,G}(vertices) where {G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{eltype(vertices),G}(vertices) end function GenericNamedGraph(vertices) return GenericNamedGraph{eltype(vertices)}(vertices) end # # Empty constructors # GenericNamedGraph{V,G}() where {V,G<:AbstractSimpleGraph{Int}} = GenericNamedGraph{V,G}(V[]) GenericNamedGraph{V}() where {V} = GenericNamedGraph{V}(V[]) function GenericNamedGraph{<:Any,G}() where {G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{<:Any,G}(Any[]) end GenericNamedGraph() = GenericNamedGraph(Any[]) function GenericNamedGraph(graph::GenericNamedGraph) return GenericNamedGraph{vertextype(graph),position_graph_type(graph_type)}(graph) end function GenericNamedGraph{V}(graph::GenericNamedGraph) where {V} return GenericNamedGraph{V,position_graph_type(graph_type)}(graph) end function GenericNamedGraph{<:Any,G}( graph::GenericNamedGraph ) where {G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{vertextype(graph),G}(graph) end function GenericNamedGraph{V,G}( graph::GenericNamedGraph ) where {V,G<:AbstractSimpleGraph{Int}} return GenericNamedGraph{V,G}(copy(position_graph(graph)), copy(vertices(graph))) end function Base.convert(graph_type::Type{<:GenericNamedGraph}, graph::GenericNamedGraph) return graph_type(graph) end # TODO: implement as: # graph = set_position_graph(graph, copy(position_graph(graph))) # graph = set_vertices(graph, copy(vertices(graph))) function Base.copy(graph::GenericNamedGraph) return GenericNamedGraph(copy(position_graph(graph)), copy(vertices(graph))) end Graphs.edgetype(graph_type::Type{<:GenericNamedGraph}) = NamedEdge{vertextype(graph_type)} Graphs.edgetype(graph::GenericNamedGraph) = edgetype(typeof(graph)) function GraphsExtensions.directed_graph_type(graph_type::Type{<:GenericNamedGraph}) return GenericNamedGraph{ vertextype(graph_type),directed_graph_type(position_graph_type(graph_type)) } end function GraphsExtensions.undirected_graph_type(graph_type::Type{<:GenericNamedGraph}) return GenericNamedGraph{ vertextype(graph_type),undirected_graph_type(position_graph_type(graph_type)) } end function Graphs.is_directed(graph_type::Type{<:GenericNamedGraph}) return is_directed(position_graph_type(graph_type)) end # TODO: Implement an edgelist version function namedgraph_induced_subgraph(graph::AbstractGraph, subvertices) subgraph = typeof(graph)(subvertices) subvertices_set = Set(subvertices) for src in subvertices for dst in outneighbors(graph, src) if dst in subvertices_set && has_edge(graph, src, dst) add_edge!(subgraph, src => dst) end end end return subgraph, nothing end function Graphs.induced_subgraph(graph::AbstractNamedGraph, subvertices) return namedgraph_induced_subgraph(graph, subvertices) end function Graphs.induced_subgraph(graph::AbstractNamedGraph, subvertices::Vector{<:Integer}) return namedgraph_induced_subgraph(graph, subvertices) end # # Type aliases # const NamedGraph{V} = GenericNamedGraph{V,SimpleGraph{Int}} const NamedDiGraph{V} = GenericNamedGraph{V,SimpleDiGraph{Int}}
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
3389
using Dictionaries: Dictionary using Graphs: Graphs, dijkstra_shortest_paths, weights """ struct NamedDijkstraState{V,T} An [`AbstractPathState`](@ref) designed for Dijkstra shortest-paths calculations. """ struct NamedDijkstraState{V,T<:Real} <: Graphs.AbstractPathState parents::Dictionary{V,V} dists::Dictionary{V,T} predecessors::Vector{Vector{V}} pathcounts::Dictionary{V,Float64} closest_vertices::Vector{V} end function NamedDijkstraState(parents, dists, predecessors, pathcounts, closest_vertices) return NamedDijkstraState{keytype(parents),eltype(dists)}( parents, dists, convert.(Vector{eltype(parents)}, predecessors), pathcounts, convert(Vector{eltype(parents)}, closest_vertices), ) end function position_path_state_to_path_state( graph::AbstractNamedGraph, position_path_state::Graphs.DijkstraState ) position_path_state_parents = map(eachindex(position_path_state.parents)) do i pᵢ = position_path_state.parents[i] return iszero(pᵢ) ? i : pᵢ end # Works around issue in this `Dictionary` constructor: # https://github.com/andyferris/Dictionaries.jl/blob/v0.4.1/src/Dictionary.jl#L139-L145 # when `inds` has holes. This removes the holes. # TODO: Raise an issue with `Dictionaries.jl`. ## graph_vertices = Indices(collect(vertices(graph))) # This makes the vertices ordered according to the parent vertices. graph_vertices = map(v -> ordered_vertices(graph)[v], vertices(position_graph(graph))) return NamedDijkstraState( Dictionary( graph_vertices, map(v -> ordered_vertices(graph)[v], position_path_state_parents) ), Dictionary(graph_vertices, position_path_state.dists), map(x -> map(v -> ordered_vertices(graph)[v], x), position_path_state.predecessors), Dictionary(graph_vertices, position_path_state.pathcounts), map(v -> ordered_vertices(graph)[v], position_path_state.closest_vertices), ) end function namedgraph_dijkstra_shortest_paths( graph::AbstractNamedGraph, srcs, distmx=weights(graph); allpaths=false, trackvertices=false, ) position_path_state = dijkstra_shortest_paths( position_graph(graph), map(v -> vertex_positions(graph)[v], srcs), dist_matrix_to_position_dist_matrix(graph, distmx); allpaths, trackvertices, ) return position_path_state_to_path_state(graph, position_path_state) end function Graphs.dijkstra_shortest_paths( graph::AbstractNamedGraph, srcs, distmx=weights(graph); kwargs... ) return namedgraph_dijkstra_shortest_paths(graph, srcs, distmx; kwargs...) end # Fix ambiguity error with `AbstractGraph` version function Graphs.dijkstra_shortest_paths( graph::AbstractNamedGraph, srcs::Vector{<:Integer}, distmx::AbstractMatrix{<:Real}=weights(graph); kwargs..., ) return namedgraph_dijkstra_shortest_paths(graph, srcs, distmx; kwargs...) end function Graphs.dijkstra_shortest_paths( graph::AbstractNamedGraph, vertex::Integer, distmx::AbstractMatrix; kwargs... ) return namedgraph_dijkstra_shortest_paths(graph, [vertex], distmx; kwargs...) end for f in [ :(Graphs.bellman_ford_shortest_paths), :(Graphs.desopo_pape_shortest_paths), :(Graphs.floyd_warshall_shortest_paths), :(Graphs.johnson_shortest_paths), :(Graphs.yen_k_shortest_paths), ] @eval begin function $f(graph::AbstractNamedGraph, args...; kwargs...) return not_implemented() end end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
571
using Graphs: Graphs, IsDirected, nv, steiner_tree using SimpleTraits: SimpleTraits, Not, @traitfn @traitfn function Graphs.steiner_tree( g::AbstractNamedGraph::(!IsDirected), term_vert, distmx=weights(g) ) position_tree = steiner_tree( position_graph(g), map(v -> vertex_positions(g)[v], term_vert), dist_matrix_to_position_dist_matrix(g, distmx), ) tree = typeof(g)(position_tree, map(v -> ordered_vertices(g)[v], vertices(position_tree))) for v in copy(vertices(tree)) iszero(degree(tree, v)) && rem_vertex!(tree, v) end return tree end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
45
not_implemented() = error("Not implemented")
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1269
module GraphGenerators using Dictionaries: Dictionary using Graphs: add_edge!, dst, edges, nv, src using Graphs.SimpleGraphs: SimpleDiGraph, SimpleGraph, binary_tree function comb_tree(dims::Tuple) @assert length(dims) == 2 nx, ny = dims return comb_tree(fill(ny, nx)) end function comb_tree(tooth_lengths::Vector{<:Integer}) @assert all(>(0), tooth_lengths) nv = sum(tooth_lengths) nx = length(tooth_lengths) ny = maximum(tooth_lengths) vertex_coordinates = filter(Tuple.(CartesianIndices((nx, ny)))) do (jx, jy) jy <= tooth_lengths[jx] end coordinate_to_vertex = Dictionary(vertex_coordinates, 1:nv) graph = SimpleGraph(nv) for (jx, jy) in vertex_coordinates if jy == 1 && jx < nx add_edge!(graph, coordinate_to_vertex[(jx, jy)], coordinate_to_vertex[(jx + 1, jy)]) end if jy < tooth_lengths[jx] add_edge!(graph, coordinate_to_vertex[(jx, jy)], coordinate_to_vertex[(jx, jy + 1)]) end end return graph end # TODO: More efficient implementation based # on the implementation of `binary_tree`. function binary_arborescence(k::Integer) graph = binary_tree(k) digraph = SimpleDiGraph(nv(graph)) for e in edges(graph) @assert dst(e) > src(e) add_edge!(digraph, e) end return digraph end end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
265
module GraphsExtensions include("abstractgraph.jl") include("abstracttrees.jl") include("boundary.jl") include("neighbors.jl") include("shortestpaths.jl") include("symrcm.jl") include("partitioning.jl") include("trees_and_forests.jl") include("simplegraph.jl") end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
19248
using Dictionaries: Dictionary, Indices, dictionary using Graphs: Graphs, AbstractEdge, AbstractGraph, IsDirected, Δ, a_star, add_edge!, add_vertex!, degree, dfs_tree, eccentricity, edgetype, has_edge, has_vertex, indegree, induced_subgraph, inneighbors, is_connected, is_cyclic, is_directed, is_tree, outdegree, outneighbors, ne, neighbors, nv, rem_edge!, rem_vertex!, weights using SimpleTraits: SimpleTraits, Not, @traitfn using SplitApplyCombine: groupfind not_implemented() = error("Not implemented") is_self_loop(e::AbstractEdge) = src(e) == dst(e) is_self_loop(e::Pair) = first(e) == last(e) directed_graph_type(::Type{<:AbstractGraph}) = not_implemented() undirected_graph_type(::Type{<:AbstractGraph}) = not_implemented() # TODO: Implement generic version for `IsDirected` # directed_graph_type(G::Type{IsDirected}) = G directed_graph_type(g::AbstractGraph) = directed_graph_type(typeof(g)) undirected_graph_type(g::AbstractGraph) = undirected_graph_type(typeof(g)) @traitfn directed_graph(graph::::IsDirected) = graph convert_vertextype(::Type{V}, graph::AbstractGraph{V}) where {V} = graph function convert_vertextype(V::Type, graph::AbstractGraph) return not_implemented() end function graph_from_vertices(graph_type::Type{<:AbstractGraph}, vertices) return graph_type(vertices) end # TODO: Handle metadata in a generic way @traitfn function directed_graph(graph::::(!IsDirected)) digraph = graph_from_vertices(directed_graph_type(graph), vertices(graph)) for e in edges(graph) add_edge!(digraph, e) add_edge!(digraph, reverse(e)) end return digraph end @traitfn undirected_graph(graph::::(!IsDirected)) = graph # TODO: Handle metadata in a generic way # Must have the same argument name as: # @traitfn undirected_graph(graph::::(!IsDirected)) # to avoid method overwrite warnings, see: # https://github.com/mauro3/SimpleTraits.jl#method-overwritten-warnings @traitfn function undirected_graph(graph::::IsDirected) undigraph = graph_from_vertices(undirected_graph_type(typeof(graph)), vertices(graph)) for e in edges(graph) # TODO: Check for repeated edges? add_edge!(undigraph, e) end return undigraph end # Similar to `eltype`, but `eltype` doesn't work on types vertextype(::Type{<:AbstractGraph{V}}) where {V} = V vertextype(graph::AbstractGraph) = vertextype(typeof(graph)) function has_vertices(graph::AbstractGraph, vertices) return all(v -> has_vertex(graph, v), vertices) end function has_edges(graph::AbstractGraph, edges) return all(e -> has_edge(graph, e), edges) end # Uniform interface for `outneighbors`, `inneighbors`, and `all_neighbors` function _neighbors(graph::AbstractGraph, vertex; dir=:out) if dir == :out return outneighbors(graph, vertex) elseif dir == :in return inneighbors(graph, vertex) elseif dir == :both return all_neighbors(graph, vertex) end return error( "`_neighbors(graph::AbstractGraph, vertex; dir)` with `dir = $(dir) not implemented. Use either `dir = :out`, `dir = :in`, or `dir = :both`.", ) end # Returns just the edges of a directed graph, # but both edge directions of an undirected graph. # TODO: Move to NamedGraphs.jl @traitfn function all_edges(g::::IsDirected) return edges(g) end @traitfn function all_edges(g::::(!IsDirected)) e = edges(g) return Iterators.flatten(zip(e, reverse.(e))) end # Alternative syntax to `getindex` for getting a subgraph # TODO: Should this preserve vertex names by # converting to `NamedGraph` if indexed by # something besides `Base.OneTo`? function subgraph(graph::AbstractGraph, vertices) return induced_subgraph(graph, vertices)[1] end # TODO: Should this preserve vertex names by # converting to `NamedGraph`? function subgraph(f::Function, graph::AbstractGraph) return subgraph(graph, filter(f, vertices(graph))) end function degrees(graph::AbstractGraph, vertices=vertices(graph)) return map(vertex -> degree(graph, vertex), vertices) end function indegrees(graph::AbstractGraph, vertices=vertices(graph)) return map(vertex -> indegree(graph, vertex), vertices) end function outdegrees(graph::AbstractGraph, vertices=vertices(graph)) return map(vertex -> outdegree(graph, vertex), vertices) end # `Graphs.is_tree` only works on undirected graphs. # TODO: Raise an issue. @traitfn function is_ditree(graph::AbstractGraph::IsDirected) # For directed graphs, `is_connected(graph)` returns `true` # if `graph` is weakly connected. return is_connected(graph) && ne(graph) == nv(graph) - 1 end # TODO: Define in `Graphs.jl`. # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.tree.recognition.is_tree.html # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.tree.recognition.is_arborescence.html # https://networkx.org/documentation/stable/_modules/networkx/algorithms/tree/recognition.html#is_arborescence # https://networkx.org/documentation/stable/_modules/networkx/algorithms/tree/recognition.html#is_tree # https://en.wikipedia.org/wiki/Arborescence_(graph_theory) # directed rooted tree @traitfn function is_arborescence(graph::AbstractGraph::IsDirected) return is_ditree(graph) && all(v -> indegree(graph, v) ≤ 1, vertices(graph)) end # # Graph unions # # Function `f` maps original vertices `vᵢ` of `g` # to new vertices `f(vᵢ)` of the output graph. rename_vertices(f, g::AbstractGraph) = not_implemented() # TODO: Does this relabel the vertices and/or change the adjacency matrix? function permute_vertices(graph::AbstractGraph, permutation) return not_implemented() end # https://en.wikipedia.org/wiki/Disjoint_union # Input maps the new index being appended to the vertices # to the associated graph. function disjoint_union(graphs::Dictionary{<:Any,<:AbstractGraph}) return reduce(union, (rename_vertices(v -> (v, i), graphs[i]) for i in keys(graphs))) end function disjoint_union(graphs::Vector{<:AbstractGraph}) return disjoint_union(Dictionary(graphs)) end disjoint_union(graph::AbstractGraph) = graph function disjoint_union(graph1::AbstractGraph, graphs_tail::AbstractGraph...) return disjoint_union(Dictionary([graph1, graphs_tail...])) end function disjoint_union(pairs::Pair...) return disjoint_union([pairs...]) end function disjoint_union(iter::Vector{<:Pair}) return disjoint_union(dictionary(iter)) end function ⊔(graphs...; kwargs...) return disjoint_union(graphs...; kwargs...) end """ Check if an undirected graph is a path/linear graph: https://en.wikipedia.org/wiki/Path_graph but not a path/linear forest: https://en.wikipedia.org/wiki/Linear_forest """ @traitfn function is_path_graph(graph::::(!IsDirected)) return is_tree(graph) && (Δ(graph) == 2) end """ https://juliagraphs.org/Graphs.jl/dev/core_functions/simplegraphs_generators/#Graphs.SimpleGraphs.cycle_graph-Tuple%7BT%7D%20where%20T%3C:Integer https://en.wikipedia.org/wiki/Cycle_graph """ @traitfn function is_cycle_graph(graph::::(!IsDirected)) return all(==(2), degrees(graph)) end function out_incident_edges(graph::AbstractGraph, vertex) return [ edgetype(graph)(vertex, neighbor_vertex) for neighbor_vertex in outneighbors(graph, vertex) ] end function in_incident_edges(graph::AbstractGraph, vertex) return [ edgetype(graph)(neighbor_vertex, vertex) for neighbor_vertex in inneighbors(graph, vertex) ] end # TODO: Only return one set of `:out` edges for undirected graphs if `dir=:both`. function all_incident_edges(graph::AbstractGraph, vertex) return out_incident_edges(graph, vertex) ∪ in_incident_edges(graph, vertex) end # TODO: Same as `edges(subgraph(graph, [vertex; neighbors(graph, vertex)]))`. # TODO: Only return one set of `:out` edges for undirected graphs if `dir=:both`. """ incident_edges(graph::AbstractGraph, vertex; dir=:out) Edges incident to the vertex `vertex`. `dir ∈ (:in, :out, :both)`, defaults to `:out`. For undirected graphs, returns all incident edges. Like: https://juliagraphs.org/Graphs.jl/v1.7/algorithms/linalg/#Graphs.LinAlg.adjacency_matrix """ function incident_edges(graph::AbstractGraph, vertex; dir=:out) if dir == :out return out_incident_edges(graph, vertex) elseif dir == :in return in_incident_edges(graph, vertex) elseif dir == :both return all_incident_edges(graph, vertex) end return error("dir = $dir not supported.") end # Get the leaf vertices of a tree-like graph # # For the directed case, could also use `AbstractTrees`: # # root_index = findfirst(vertex -> length(outneighbors(vertex)) == length(neighbors(vertex)), vertices(graph)) # root = vertices(graph)[root_index] # map(nodevalue, Leaves(tree_graph_node(graph, root))) # @traitfn function is_leaf_vertex(graph::::(!IsDirected), vertex) # @assert !is_cyclic(graph) return isone(length(neighbors(graph, vertex))) end # Check if a vertex is a leaf. # Assumes the graph is a DAG. @traitfn function is_leaf_vertex(graph::::IsDirected, vertex) # @assert !is_cyclic(graph) return isempty(child_vertices(graph, vertex)) end # Get the children of a vertex. # Assumes the graph is a DAG. @traitfn function child_vertices(graph::::IsDirected, vertex) # @assert !is_cyclic(graph) return outneighbors(graph, vertex) end # Get the edges from the input vertex towards the child vertices. # Assumes the graph is a DAG. @traitfn function child_edges(graph::::IsDirected, vertex) # @assert !is_cyclic(graph) return map(child -> edgetype(graph)(vertex, child), child_vertices(graph, vertex)) end function leaf_vertices(graph::AbstractGraph) # @assert !is_cyclic(graph) return filter(v -> is_leaf_vertex(graph, v), vertices(graph)) end """ Determine if an edge involves a leaf (at src or dst) """ @traitfn function is_leaf_edge(g::::(!IsDirected), e::AbstractEdge) return has_edge(g, e) && (is_leaf_vertex(g, src(e)) || is_leaf_vertex(g, dst(e))) end @traitfn function is_leaf_edge(g::::IsDirected, e::AbstractEdge) return has_edge(g, e) && is_leaf_vertex(g, dst(e)) end function is_leaf_edge(g::AbstractGraph, e::Pair) return is_leaf_edge(g, edgetype(g)(e)) end """ Determine if a node has any neighbors which are leaves """ function has_leaf_neighbor(g::AbstractGraph, v) return any(w -> is_leaf_vertex(g, w), neighbors(g, v)) end """ Get all edges which do not involve a leaf https://en.wikipedia.org/wiki/Tree_(graph_theory)#Definitions """ function non_leaf_edges(g::AbstractGraph) return Iterators.filter(e -> !is_leaf_edge(g, e), edges(g)) end """ Get distance of a vertex from a leaf """ function distance_to_leaves(g::AbstractGraph, v) return map(Indices(leaf_vertices(g))) do leaf v == leaf && return 0 path = a_star(g, v, leaf) isempty(path) && return typemax(Int) return length(path) end end function minimum_distance_to_leaves(g::AbstractGraph, v) return minimum(distance_to_leaves(g, v)) end @traitfn function is_root_vertex(graph::::IsDirected, vertex) return isempty(parent_vertices(graph, vertex)) end @traitfn function is_rooted(graph::::IsDirected) return isone(count(v -> is_root_vertex(graph, v), vertices(graph))) end @traitfn function is_binary_arborescence(graph::AbstractGraph::IsDirected) (is_rooted(graph) && is_arborescence(graph)) || return false for v in vertices(graph) if length(child_vertices(graph, v)) > 2 return false end end return true end """ Return the root vertex of a rooted directed graph. This will return the first root vertex that is found, so won't error if there is more than one. """ @traitfn function root_vertex(graph::::IsDirected) if is_cyclic(graph) return error("Graph must not have any cycles.") end v = first(vertices(graph)) while !is_root_vertex(graph, v) v = parent_vertex(graph, v) end return v end # # Graph iteration # @traitfn function post_order_dfs_vertices(graph::::(!IsDirected), root_vertex) dfs_tree_graph = dfs_tree(graph, root_vertex) return post_order_dfs_vertices(dfs_tree_graph, root_vertex) end # Traverse the tree using a [post-order depth-first search](https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search), returning the vertices. # Assumes the graph is a [rooted directed tree](https://en.wikipedia.org/wiki/Tree_(graph_theory)#Rooted_tree) @traitfn function post_order_dfs_vertices(graph::::IsDirected, root_vertex) # @assert is_tree(graph) # Outputs a rooted directed tree (https://en.wikipedia.org/wiki/Arborescence_(graph_theory)) return map(nodevalue, PostOrderDFS(tree_graph_node(graph, root_vertex))) end @traitfn function pre_order_dfs_vertices(graph::::(!IsDirected), root_vertex) dfs_tree_graph = dfs_tree(graph, root_vertex) return pre_order_dfs_vertices(dfs_tree_graph, root_vertex) end @traitfn function pre_order_dfs_vertices(graph::::IsDirected, root_vertex) # @assert is_tree(graph) return map(nodevalue, PreOrderDFS(tree_graph_node(graph, root_vertex))) end @traitfn function post_order_dfs_edges(graph::::(!IsDirected), root_vertex) dfs_tree_graph = dfs_tree(graph, root_vertex) return post_order_dfs_edges(dfs_tree_graph, root_vertex) end # Traverse the tree using a [post-order depth-first search](https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search), returning the edges where the source is the current vertex and the destination is the parent vertex. # Assumes the graph is a [rooted directed tree](https://en.wikipedia.org/wiki/Tree_(graph_theory)#Rooted_tree). # Returns a list of edges directed **towards the root vertex**! @traitfn function post_order_dfs_edges(graph::::IsDirected, root_vertex) # @assert is_tree(graph) vertices = post_order_dfs_vertices(graph, root_vertex) # Remove the root vertex pop!(vertices) return map(vertex -> parent_edge(graph, vertex), vertices) end # Paths for undirected tree-like graphs # TODO: Use `a_star`. @traitfn function vertex_path(graph::::(!IsDirected), s, t) # @assert is_tree(graph) dfs_tree_graph = dfs_tree(graph, t) return vertex_path(dfs_tree_graph, s, t) end # TODO: Use `a_star`. @traitfn function edge_path(graph::::(!IsDirected), s, t) # @assert is_tree(graph) dfs_tree_graph = dfs_tree(graph, t) return edge_path(dfs_tree_graph, s, t) end # # Rooted directed tree/directed acyclic graph functions. # [Rooted directed tree](https://en.wikipedia.org/wiki/Tree_(graph_theory)#Rooted_tree) # [Directed acyclic graph (DAG)](https://en.wikipedia.org/wiki/Directed_acyclic_graph) # # Get the parent vertices of a vertex. # Assumes the graph is a DAG. @traitfn function parent_vertices(graph::::IsDirected, vertex) # @assert !is_cyclic(graph) return inneighbors(graph, vertex) end # Get the parent vertex of a vertex. # Assumes the graph is a DAG. @traitfn function parent_vertex(graph::::IsDirected, vertex) # @assert !is_cyclic(graph) parents = parent_vertices(graph, vertex) return isempty(parents) ? nothing : only(parents) end # Returns the edges directed **towards the parent vertices**! # Assumes the graph is a DAG. @traitfn function parent_edges(graph::::IsDirected, vertex) # @assert !is_cyclic(graph) return map(parent -> edgetype(graph)(vertex, parent), parent_vertices(graph, vertex)) end # Returns the edge directed **towards the parent vertex**! # Assumes the graph is a DAG. @traitfn function parent_edge(graph::::IsDirected, vertex) parents = parent_edges(graph, vertex) return isempty(parents) ? nothing : only(parents) end # Paths for directed tree-like graphs # TODO: Use `a_star`, make specialized versions: # `vertex_path(graph::::IsTree, ...)` # or # `tree_vertex_path(graph, ...)` @traitfn function vertex_path(graph::::IsDirected, s, t) # @assert is_tree(graph) vertices = eltype(graph)[s] while vertices[end] != t parent = parent_vertex(graph, vertices[end]) isnothing(parent) && return nothing push!(vertices, parent) end return vertices end # TODO: Use `a_star`, make specialized versions: # `vertex_path(graph::::IsTree, ...)` # or # `tree_vertex_path(graph, ...)` @traitfn function edge_path(graph::::IsDirected, s, t) # @assert is_tree(graph) vertices = vertex_path(graph, s, t) isnothing(vertices) && return nothing pop!(vertices) return [edgetype(graph)(vertex, parent_vertex(graph, vertex)) for vertex in vertices] end function mincut_partitions(graph::AbstractGraph, distmx=weights(graph)) parts = groupfind(first(Graphs.mincut(graph, distmx))) return parts[1], parts[2] end function add_vertex(g::AbstractGraph, vs) g = copy(g) add_vertex!(g, vs) return g end function add_vertices!(graph::AbstractGraph, vs) for vertex in vs add_vertex!(graph, vertex) end return graph end function add_vertices(g::AbstractGraph, vs) g = copy(g) add_vertices!(g, vs) return g end function rem_vertex(g::AbstractGraph, vs) g = copy(g) rem_vertex!(g, vs) return g end """Remove a list of vertices from a graph g""" function rem_vertices!(g::AbstractGraph, vs) for v in vs rem_vertex!(g, v) end return g end function rem_vertices(g::AbstractGraph, vs) g = copy(g) rem_vertices!(g, vs) return g end function add_edge(g::AbstractGraph, edge) g = copy(g) add_edge!(g, edgetype(g)(edge)) return g end """Add a list of edges to a graph g""" function add_edges!(g::AbstractGraph, edges) for e in edges add_edge!(g, edgetype(g)(e)) end return g end function add_edges(g::AbstractGraph, edges) g = copy(g) add_edges!(g, edges) return g end function rem_edge(g::AbstractGraph, edge) g = copy(g) rem_edge!(g, edgetype(g)(edge)) return g end """Remove a list of edges from a graph g""" function rem_edges!(g::AbstractGraph, edges) for e in edges rem_edge!(g, edgetype(g)(e)) end return g end function rem_edges(g::AbstractGraph, edges) g = copy(g) rem_edges!(g, edges) return g end eccentricities(graph::AbstractGraph) = eccentricities(graph, vertices(graph)) function eccentricities(graph::AbstractGraph, vs, distmx=weights(graph)) return map(vertex -> eccentricity(graph, vertex, distmx), vs) end function decorate_graph_edges(g::AbstractGraph; kwargs...) return not_implemented() end function decorate_graph_vertices(g::AbstractGraph; kwargs...) return not_implemented() end """ Do a BFS search to construct a tree, but do it with randomness to avoid generating the same tree. Based on Int. J. Comput. Their Appl. 15 pp 177-186 (2008). Edges will point away from source vertex s.""" function random_bfs_tree(g::AbstractGraph, s; maxiter=1000 * (nv(g) + ne(g))) Q = [s] d = map(v -> v == s ? 0.0 : Inf, Indices(vertices(g))) visited = [s] # TODO: This fails for `SimpleDiGraph`. g_out = directed_graph_type(g)(vertices(g)) isempty_Q = false for iter in 1:maxiter v = rand(Q) setdiff!(Q, [v]) for vn in neighbors(g, v) if (d[vn] > d[v] + 1) d[vn] = d[v] + 1 if (vn ∉ Q) if (vn ∉ visited) add_edge!(g_out, edgetype(g)(v, vn)) push!(visited, vn) end push!(Q, vn) end end end isempty_Q = isempty(Q) if isempty_Q break end end if !isempty_Q error("Search failed to cover the graph in time. Consider increasing maxiter.") end return g_out end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
2578
# AbstractTreeGraph # Tree view of a graph. abstract type AbstractTreeGraph{V} <: AbstractGraph{V} end position_graph_type(type::Type{<:AbstractTreeGraph}) = not_implemented() position_graph(graph::AbstractTreeGraph) = not_implemented() function Graphs.is_directed(type::Type{<:AbstractTreeGraph}) return is_directed(position_graph_type(type)) end Graphs.edgetype(graph::AbstractTreeGraph) = edgetype(position_graph(graph)) function Graphs.outneighbors(graph::AbstractTreeGraph, vertex) return outneighbors(position_graph(graph), vertex) end function Graphs.inneighbors(graph::AbstractTreeGraph, vertex) return inneighbors(position_graph(graph), vertex) end Graphs.nv(graph::AbstractTreeGraph) = nv(position_graph(graph)) Graphs.ne(graph::AbstractTreeGraph) = ne(position_graph(graph)) Graphs.vertices(graph::AbstractTreeGraph) = vertices(position_graph(graph)) # AbstractTrees using AbstractTrees: AbstractTrees, IndexNode, PostOrderDFS, PreOrderDFS, children, nodevalue # Used for tree iteration. # Assumes the graph is a [rooted directed tree](https://en.wikipedia.org/wiki/Tree_(graph_theory)#Rooted_tree). tree_graph_node(g::AbstractTreeGraph, vertex) = IndexNode(g, vertex) function tree_graph_node(g::AbstractGraph, vertex) return tree_graph_node(TreeGraph(g), vertex) end tree_graph_node(g::AbstractGraph) = tree_graph_node(g, root_vertex(g)) # Make an `AbstractTreeGraph` act as an `AbstractTree` starting at # the root vertex. AbstractTrees.children(g::AbstractTreeGraph) = children(tree_graph_node(g)) AbstractTrees.nodevalue(g::AbstractTreeGraph) = nodevalue(tree_graph_node(g)) AbstractTrees.rootindex(tree::AbstractTreeGraph) = root_vertex(tree) function AbstractTrees.nodevalue(tree::AbstractTreeGraph, node_index) return node_index end function AbstractTrees.childindices(tree::AbstractTreeGraph, node_index) return child_vertices(tree, node_index) end function AbstractTrees.parentindex(tree::AbstractTreeGraph, node_index) return parent_vertex(tree, node_index) end # TreeGraph struct TreeGraph{V,G<:AbstractGraph{V}} <: AbstractTreeGraph{V} graph::G global function _TreeGraph(g::AbstractGraph) # No check for being a tree return new{vertextype(g),typeof(g)}(g) end end @traitfn function TreeGraph(g::AbstractGraph::IsDirected) @assert is_arborescence(g) return _TreeGraph(g) end @traitfn function TreeGraph(g::AbstractGraph::(!IsDirected)) @assert is_tree(g) return _TreeGraph(g) end position_graph(graph::TreeGraph) = getfield(graph, :graph) position_graph_type(type::Type{<:TreeGraph}) = fieldtype(type, :graph)
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
2143
using Graphs: AbstractGraph, dst, src, vertices # https://en.wikipedia.org/wiki/Boundary_(graph_theory) function boundary_edges(graph::AbstractGraph, subgraph_vertices; dir=:out) E = edgetype(graph) subgraph_vertices_set = Set(subgraph_vertices) subgraph_complement = setdiff(Set(vertices(graph)), subgraph_vertices_set) boundary_es = Vector{E}() for subgraph_vertex in subgraph_vertices_set for e in incident_edges(graph, subgraph_vertex; dir) if src(e) ∈ subgraph_complement || dst(e) ∈ subgraph_complement push!(boundary_es, e) end end end return boundary_es end # https://en.wikipedia.org/wiki/Boundary_(graph_theory) # See implementation of `Graphs.neighborhood_dists` as a reference. function inner_boundary_vertices(graph::AbstractGraph, subgraph_vertices; dir=:out) V = vertextype(graph) subgraph_vertices_set = Set(subgraph_vertices) subgraph_complement = setdiff(Set(vertices(graph)), subgraph_vertices_set) inner_boundary_vs = Vector{V}() for subgraph_vertex in subgraph_vertices_set for subgraph_vertex_neighbor in _neighbors(graph, subgraph_vertex; dir) if subgraph_vertex_neighbor ∈ subgraph_complement push!(inner_boundary_vs, subgraph_vertex) break end end end return inner_boundary_vs end # https://en.wikipedia.org/wiki/Boundary_(graph_theory) # See implementation of `Graphs.neighborhood_dists` as a reference. function outer_boundary_vertices(graph::AbstractGraph, subgraph_vertices; dir=:out) V = vertextype(graph) subgraph_vertices_set = Set(subgraph_vertices) subgraph_complement = setdiff(Set(vertices(graph)), subgraph_vertices_set) outer_boundary_vs = Set{V}() for subgraph_vertex in subgraph_vertices_set for subgraph_vertex_neighbor in _neighbors(graph, subgraph_vertex; dir) if subgraph_vertex_neighbor ∈ subgraph_complement push!(outer_boundary_vs, subgraph_vertex_neighbor) end end end return [v for v in outer_boundary_vs] end function boundary_vertices(graph::AbstractGraph, subgraph_vertices; dir=:out) return inner_boundary_vertices(graph, subgraph_vertices; dir) end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
341
using Graphs: AbstractGraph, neighborhood_dists function vertices_at_distance(g::AbstractGraph, vertex, distance::Int) vertices_and_distances = neighborhood_dists(g, vertex, distance) return map(first, filter(==(distance) ∘ last, vertices_and_distances)) end next_nearest_neighbors(g::AbstractGraph, v) = vertices_at_distance(g, v, 2)
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
2069
using Graphs: AbstractGraph, AbstractSimpleGraph, nv, vertices using SplitApplyCombine: group """ Graph partitioning backend """ struct Backend{T} end Backend(s::Symbol) = Backend{s}() Backend(s::String) = Backend(Symbol(s)) Backend(backend::Backend) = backend macro Backend_str(s) return :(Backend{$(Expr(:quote, Symbol(s)))}) end """ Current default graph partitioning backend """ const CURRENT_PARTITIONING_BACKEND = Ref{Union{Missing,Backend}}(missing) """ Get the graph partitioning backend """ current_partitioning_backend() = CURRENT_PARTITIONING_BACKEND[] """ Set the graph partitioning backend """ function set_partitioning_backend!(backend::Union{Missing,Backend,String}) CURRENT_PARTITIONING_BACKEND[] = Backend(backend) return nothing end function _npartitions( g::AbstractGraph, npartitions::Integer, nvertices_per_partition::Nothing ) return npartitions end function _npartitions( g::AbstractGraph, npartitions::Nothing, nvertices_per_partition::Integer ) return nv(g) ÷ nvertices_per_partition end function _npartitions(g::AbstractGraph, npartitions::Int, nvertices_per_partition::Int) return error("Can't specify both `npartitions` and `nvertices_per_partition`") end function _npartitions( g::AbstractGraph, npartitions::Nothing, nvertices_per_partition::Nothing ) return error("Must specify either `npartitions` or `nvertices_per_partition`") end function partitioned_vertices( g::AbstractSimpleGraph; npartitions=nothing, nvertices_per_partition=nothing, backend=current_partitioning_backend(), kwargs..., ) # Metis cannot handle the edge case npartitions = 1, so we will fix it here for now. # TODO: Check if this is still needed, or move to `NamedGraphsMetisExt`. if (_npartitions(g, npartitions, nvertices_per_partition) == 1) return group(v -> 1, collect(vertices(g))) end return partitioned_vertices( Backend(backend), g, _npartitions(g, npartitions, nvertices_per_partition); kwargs... ) end function partitioned_vertices(g::AbstractGraph; kwargs...) return not_implemented() end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
789
using Graphs: Graphs, dijkstra_shortest_paths, edgetype, weights function dijkstra_parents(graph::AbstractGraph, vertex, distmx=weights(graph)) return dijkstra_shortest_paths( graph, [vertex], distmx; allpaths=false, trackvertices=false ).parents end function dijkstra_mst(graph::AbstractGraph, vertex, distmx=weights(graph)) parents = dijkstra_shortest_paths( graph, [vertex], distmx; allpaths=false, trackvertices=false ).parents mst = Vector{edgetype(graph)}() for src in eachindex(parents) dst = parents[src] if src ≠ dst push!(mst, edgetype(graph)(src, dst)) end end return mst end function dijkstra_tree(graph::AbstractGraph, vertex, distmx=weights(graph)) return Graphs.tree(graph, dijkstra_parents(graph, vertex, distmx)) end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
1107
using Graphs.SimpleGraphs: AbstractSimpleGraph function permute_vertices(graph::AbstractSimpleGraph, permutation) return graph[permutation] end # https://github.com/JuliaGraphs/Graphs.jl/issues/365 function graph_from_vertices(graph_type::Type{<:AbstractSimpleGraph}, vertices) @assert vertices == Base.OneTo(length(vertices)) return graph_type(length(vertices)) end function convert_vertextype(vertextype::Type, graph::AbstractSimpleGraph) return not_implemented() end using Graphs.SimpleGraphs: SimpleDiGraph, SimpleGraph function convert_vertextype(vertextype::Type, graph::SimpleGraph) return SimpleGraph{vertextype}(graph) end function convert_vertextype(vertextype::Type, graph::SimpleDiGraph) return SimpleDiGraph{vertextype}(graph) end directed_graph_type(G::Type{<:SimpleGraph}) = SimpleDiGraph{vertextype(G)} # TODO: Use traits to make this more general. undirected_graph_type(G::Type{<:SimpleGraph}) = G # TODO: Use traits to make this more general. directed_graph_type(G::Type{<:SimpleDiGraph}) = G undirected_graph_type(G::Type{<:SimpleDiGraph}) = SimpleGraph{vertextype(G)}
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
335
# Symmetric sparse reverse Cuthill-McKee ordering # https://en.wikipedia.org/wiki/Cuthill%E2%80%93McKee_algorithm # https://github.com/PetrKryslUCSD/SymRCM.jl # https://github.com/rleegates/CuthillMcKee.jl function symrcm_perm end function symrcm_permute(graph::AbstractGraph) return permute_vertices(graph, symrcm_perm(graph)) end
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git
[ "MIT" ]
0.6.2
34c4653b98832143d3f5f8621e91aa2008873fb0
code
2401
using Graphs: IsDirected, bfs_tree, connected_components, edges, edgetype using .GraphsExtensions: random_bfs_tree, rem_edges, undirected_graph using SimpleTraits: SimpleTraits, Not, @traitfn abstract type SpanningTreeAlgorithm end struct BFS <: SpanningTreeAlgorithm end struct RandomBFS <: SpanningTreeAlgorithm end struct DFS <: SpanningTreeAlgorithm end default_spanning_tree_alg() = BFS() default_root_vertex(g) = last(findmax(eccentricities(g))) function spanning_tree( g::AbstractGraph; alg=default_spanning_tree_alg(), root_vertex=default_root_vertex(g) ) return spanning_tree(alg, g; root_vertex) end @traitfn function spanning_tree( ::BFS, g::AbstractGraph::(!IsDirected); root_vertex=default_root_vertex(g) ) return undirected_graph(bfs_tree(g, root_vertex)) end @traitfn function spanning_tree( ::RandomBFS, g::AbstractGraph::(!IsDirected); root_vertex=default_root_vertex(g) ) return undirected_graph(random_bfs_tree(g, root_vertex)) end @traitfn function spanning_tree( ::DFS, g::AbstractGraph::(!IsDirected); root_vertex=default_root_vertex(g) ) return undirected_graph(dfs_tree(g, root_vertex)) end # Given a graph, split it into its connected components, construct a spanning tree, using the function spanning_tree, over each of them # and take the union. function spanning_forest(g::AbstractGraph; spanning_tree=spanning_tree) return reduce(union, (spanning_tree(subgraph(g, vs)) for vs in connected_components(g))) end # TODO: Create a generic version in `GraphsExtensions`. # Given an undirected graph g with vertex set V, build a set of forests (each with vertex set V) which covers all edges in g # (see https://en.wikipedia.org/wiki/Arboricity) We do not find the minimum but our tests show this algorithm performs well function forest_cover(g::AbstractGraph; spanning_tree=spanning_tree) edges_collected = edgetype(g)[] remaining_edges = edges(g) forests = typeof(g)[] while !isempty(remaining_edges) g_reduced = rem_edges(g, edges_collected) g_reduced_spanning_forest = spanning_forest(g_reduced; spanning_tree) push!(edges_collected, edges(g_reduced_spanning_forest)...) push!(forests, g_reduced_spanning_forest) setdiff!(remaining_edges, edges(g_reduced_spanning_forest)) end return forests end # TODO: Define in `NamedGraphs.PartitionedGraphs`. # forest_cover(g::PartitionedGraph; kwargs...) = not_implemented()
NamedGraphs
https://github.com/ITensor/NamedGraphs.jl.git